
Sequential Optimization of Asynchronous and

Synchronous Finite-State Machines: Algorithms and

Tools

Robert M. Fuhrer

Submitted in partial ful�llment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

1999

c©1999

Robert M. Fuhrer

All Rights Reserved

Sequential Optimization of Asynchronous and

Synchronous Finite-State Machines: Algorithms and

Tools

Approved by
Dissertation Committee:

This thesis is dedicated to:

the gift of music

pizza

Beef Wellington

the wines of Bordeaux

mi amore

iv

Contents

List of Tables ix

List of Figures x

Acknowledgments xiii

Chapter 1 Introduction 1

1.1 The Case for Asynchronous Circuits . 2

1.2 Asynchronous Controllers . 5

1.2.1 Classical Asynchronous FSM Models 6

1.2.2 Asynchronous Controller Design Styles 8

1.2.3 Programming in Silicon . 8

1.2.4 State Transition Graphs . 9

1.2.5 Asynchronous State Machines . 9

1.2.6 Burst-Mode Machines . 11

1.3 Sequential Synthesis . 12

1.3.1 Classic Synthesis Trajectory . 13

1.4 Toward Global Solutions to Optimal Synthesis 17

1.5 Asynchronous Sequential Synthesis . 18

1.5.1 Asynchronous Synthesis Path . 19

1.5.2 State of the Art . 21

i

1.6 Thesis Contributions . 22

1.6.1 CAD Algorithms and Tools . 23

1.6.2 CAD Framework . 25

1.6.3 Scope of the Thesis . 26

1.7 Outline of Dissertation . 27

Chapter 2 Background 29

2.1 Finite State Machines . 30

2.1.1 Synchronous FSM's . 30

2.1.2 Burst-Mode Asynchronous Speci�cations 34

2.2 Boolean functions and Logic Synthesis 41

2.2.1 Binary Functions . 41

2.2.2 Symbolic Functions . 43

2.2.3 Hazard-free Logic Minimization 44

2.3 Sequential Hazards . 53

2.3.1 Critical Races . 54

2.3.2 Essential Hazards . 55

2.4 Input Encoding . 56

2.5 Unate and Binate Covering . 58

Chapter 3 CHASM: Optimal State Assignment for Asynchronous State

Machines 61

3.1 Overview of CHASM . 62

3.2 Background . 63

3.2.1 Optimal State Assignment for Synchronous Machines 63

3.3 Problem Statement and CHASM Overview 69

3.3.1 State Assignment for Asynchronous Machines 70

3.4 Multiple-Valued Hazard-free Two-Level Logic Minimization 71

ii

3.5 CHASM Method . 75

3.5.1 Symbolic Hazard-Free Logic Minimization 75

3.5.2 Encoding Constraints . 75

3.5.3 Solving Constraints and Hazard-Free Logic Minimization 79

3.6 Optimal State Assignment for FSM's with Fed-back Outputs 80

3.7 Theoretical Results . 82

3.7.1 Machine Instantiation . 82

3.7.2 Correctness of Binary Cover . 85

3.7.3 Critical Race Freedom . 86

3.7.4 Logic Implementation . 87

3.7.5 Optimality of Binary Cover . 98

3.8 Experimental Results . 98

Chapter 4 OPTIMIST: Optimal State Minimization for Synchronous State

Machines 100

4.1 Introduction . 101

4.2 Background and Related Work . 102

4.2.1 State Minimization . 103

4.2.2 The State Mapping Problem . 109

4.2.3 Previous Work . 110

4.3 Optimal State Minimization: Overview 111

4.3.1 Optimal State Minimization and Input Encoding 112

4.3.2 Symbolic Primes . 113

4.3.3 Constraint Generation . 117

4.3.4 Constraint Solution . 117

4.3.5 Symbolic Instantiation . 118

4.4 Symbolic Primes: RGPI's . 120

4.4.1 Generating RGPI Seeds . 120

iii

4.4.2 Non-Seed RGPI's . 122

4.5 Constraint Generation . 126

4.5.1 Constraint Matrix Variables . 126

4.5.2 Cost Model . 127

4.5.3 Constraints . 127

4.5.4 Flow of Constraint Solution . 131

4.5.5 E�cient Constraint Solution . 132

4.6 Symbolic Instantiation . 132

4.7 Examples . 133

4.8 Theoretical Results . 138

4.8.1 Correctness . 138

4.8.2 Optimality . 143

4.9 E�cient RGPI Generation . 146

4.9.1 E�cient RGPI Seed Generation 146

4.9.2 E�cient RGPI Generation . 152

4.10 Experimental Results . 152

4.11 Conclusions and Future Work . 155

Chapter 5 State Minimization for Exactly Optimum Two-Level Output

Logic 157

5.1 Introduction . 158

5.2 Output-Targetted State Minimization for Synchronous FSM's 160

5.2.1 Overview of Problem Formulation 160

5.2.2 Overview of Method . 161

5.2.3 Symbolic Primes . 163

5.2.4 Binate Constraints . 163

5.2.5 Constraint Solution . 166

5.2.6 Symbolic Implicant Instantiation 166

iv

5.2.7 Method Summary . 168

5.3 Example . 168

5.4 Theoretical Results . 170

5.4.1 Correctness of the Constraint-Satisfaction Method 171

5.4.2 Optimality of the Unminimized Machine 173

5.4.3 Optimality of the Constraint-Satisfaction Method 174

5.5 Cost Function . 175

5.6 Experimental Results . 176

5.7 Conclusions and Future Work . 177

Chapter 6 OPTIMISTA: Output-Only OPTIMIST for Burst-Mode Asyn-

chronous State Machines 179

6.1 Problem Search Space . 180

6.1.1 Comparison to OPTIMIST . 181

6.1.2 Comparison to MINIMALIST's State Minimization Method . . . 182

6.2 The Challenge of State Mapping for OPTIMISTA 183

6.2.1 Hazard-Free Output Covering . 184

6.2.2 Existence of Hazard-Free Next-state Logic 184

6.2.3 Proper Burst-Mode Operation . 185

6.3 Method Flow . 187

6.4 State Compatible Generation . 188

6.5 Symbolic Prime Implicant Generation . 191

6.6 Binate Constraint Generation . 192

6.6.1 Constraint Variables . 192

6.6.2 Constraint Roadmap . 193

6.6.3 State Covering . 193

6.6.4 State Mapping . 194

6.6.5 State Mapping Coherency . 194

v

6.6.6 Functional Covering . 195

6.6.7 State Closure . 198

6.6.8 State Mapping Incompatibility . 198

6.7 State Mapping Incompatibility Constraints 199

6.7.1 Basic Elements in the Case Analysis 200

6.7.2 Horizontal Required Cubes for the Source State 203

6.7.3 Horizontal Required Cubes for the Destination State 204

6.7.4 Generating Horizontal State Mapping Incompatibility Constraints 205

6.7.5 Vertical Required Cubes for the Source State 208

6.7.6 Vertical Required Cubes for the Destination State 208

6.7.7 Generating Vertical State Mapping Incompatibility Constraints . 209

6.8 Binate Constraint Solution . 210

6.9 Instantiation . 210

6.10 Theoretical Results . 213

6.10.1 Correctness of OPTIMISTA . 214

6.10.2 Optimality of the Unminimized Machine 216

6.10.3 Optimality of OPTIMISTA . 219

6.11 E�cient Generation and Pruning of State Mapping Incompatibility Con-

straints . 220

6.12 Experimental Results . 220

6.13 Conclusions and Future Work . 221

Chapter 7 MINIMALIST: An Extensible Toolkit and Framework for Asyn-

chronous Burst-Mode Synthesis 225

7.1 Introduction . 226

7.2 Background and Overview . 228

7.2.1 Technical Comparison: Burst-Mode Synthesis Toolkits 228

7.2.2 Comparative Summary: MINIMALIST vs. Previous Tools 229

vi

7.3 MINIMALIST Framework . 229

7.4 MINIMALIST Tools . 230

7.4.1 State Minimization . 230

7.4.2 CHASM . 231

7.4.3 HFMIN . 233

7.4.4 ESPRESSO-HF . 234

7.4.5 IMPYMIN . 235

7.4.6 Synthesis-for-Testability . 235

7.4.7 Veri�er . 236

7.5 A Synthesis Session . 236

7.6 Experimental Results . 239

7.6.1 Experimental Set-up . 239

7.6.2 Performance-Oriented Comparison with 3D 240

7.6.3 Area-Oriented Comparison with 3D 242

7.6.4 Area-Oriented Comparison with UCLOCK 244

7.6.5 Optimal Encoding for Output-Targetted Synthesis 245

7.6.6 Exploring Varying Code Lengths 247

7.7 Conclusion . 250

Chapter 8 Conclusions 251

Appendix A Multiple-Valued Hazard-free Logic Minimization 254

A.1 Multiple-Valued Functions and Hazards 254

A.2 Circuit Model . 254

A.3 Multiple-Valued Multiple-Input Changes 255

A.4 Multiple-Valued Function Hazards . 256

A.5 Multiple-Valued Logic Hazards . 258

A.6 Problem Abstraction . 258

vii

A.7 Symbolic Hazard-Free Minimization . 259

A.7.1 Conditions for a Hazard-Free Transition 259

A.7.2 Hazard-Free Covers . 262

A.7.3 Exact Hazard-Free Multiple-Valued Minimization 262

A.7.4 Generation of Multiple-Valued DHF-Prime Implicants 264

A.7.5 Generation of the DHF-Prime Implicant Table 265

A.7.6 Generation of a Minimum Cover 266

A.7.7 Multiple-Output Minimization . 266

Appendix B E�cient Generation of State Mapping Incompatibility Con-

straints 267

B.1 Horizontal Required Cubes . 268

B.2 Vertical Required Cubes . 271

Appendix C MINIMALIST Shell and Command Set 278

viii

List of Tables

4.1 Results of minimization by Optimist using prime compatibles 154

4.2 Results of minimization by Optimist using all compatibles 156

5.1 Results of minimization with both Optimisto and Stamina 178

6.1 Experimental results for Optimista on some industrial benchmark spec-

i�cations . 222

7.1 A comparison of Minimalist and 3D synthesis results 243

7.2 An area-oriented comparison of Minimalist and Uclock 246

7.3 E�ect of focusing optimality constraints on output logic in Minimalist . 248

7.4 E�ect of varying code length on synthesis results for a single design . . . 249

ix

List of Figures

1.1 Simple asynchronous �ow table and Hu�man implementation 10

1.2 Traditional sequential synthesis trajectory 14

2.1 State transition graph for a simple FSM 31

2.2 A �ow table describing a simple FSMM 33

2.3 A �ow table describingM using a symbolic representation of the inputs . 33

2.4 A �ow table describing an incompletely-speci�ed FSM 33

2.5 Burst-mode speci�cation for a distributed mutual-exclusion controller . . 35

2.6 Textual (.bms) burst-mode speci�cation for DME-FAST-E 37

2.7 Asynchronous �ow table for DME-FAST-E 37

2.8 Horizontal and vertical transitions in a burst-mode �ow table 38

2.9 Hu�man implementation with fed-back outputs 39

2.10 Speci�ed transition in the presence of fed-back outputs 41

2.11 The domain B3 = xyz and the cube 0-1 42

2.12 A cube-table representation for the FSM of Figure 2.4 45

2.13 A hazardous circuit implementing F = A′D +AB 45

2.14 A hazard-free circuit implementing F . 46

2.15 Function exhibiting a static-0 function hazard 47

2.16 Function exhibiting a dynamic function hazard 48

2.17 An illegal intersection and resulting dynamic logic hazard 51

x

2.18 A function having no hazard-free implementation 52

2.19 Asynchronous �ow table and an encoding exhibiting a critical race 54

2.20 Asynchronous �ow table having an essential hazard 56

2.21 A symbolic function, an encoding for the symbolic inputs, and correspond-

ing binary cover . 57

2.22 A symbolic function, a minimum symbolic cover, an encoding, and instan-

tiated cover . 58

2.23 A unate covering matrix A and the equivalent POS expression E 59

3.1 A simple FSM and its input-encoding transformation 65

3.2 Diagram depicting improper encoding of table in Figure 3.1 67

3.3 A multiple-valued input function and three multiple-valued transitions . 72

3.4 Transitions in a multiple-valued function and their privileged and required

cubes . 73

3.5 DHF implicants and DHF prime implicants for an mvi function 74

3.6 A speci�ed transition in the presence of fed-back outputs 81

3.7 A simple transition in a single-output machine 84

3.8 An unstable state transition and the corresponding state bit transitions . 90

3.9 Experimental Results . 99

4.1 Flow table illustrating state compatibility 104

4.2 Table of Figure 4.1, after reduction by { {s0, s1}, {s2, s3}} 107

4.3 State table before and after minimization 109

4.4 The relationships among the various classes of RGI's and GPI's 116

4.5 Example of table requiring post-processing step 121

4.6 Cube-table speci�cation and corresponding characteristic function used in

fast RGPI seed generation . 151

5.1 An ISFSM, its output behaviour, and a reduced machine 161

xi

6.1 Flow table fragment and state mapping precluding a hazard-free cover . . 185

6.2 State mapping in the stable points of a speci�ed transition 186

6.3 State mapping of an embedded exit point 186

6.4 Karnaugh map for output function in reduced state s′ = {s1, s2, s3}. . . . 190

6.5 A speci�ed transition with two possible state mappings 201

6.6 One possible state mapping for the transition of Figure 6.5 201

6.7 Another possible state mapping for the transition of Figure 6.5 201

6.8 Horizontal required cubes for the source state in a stably-mapped transition204

6.9 Horizontal required cubes for the source state in an unstably-mapped tran-

sition . 205

6.10 Required cubes for the reduced destination state in the horizontal portion

of a speci�ed transition . 206

6.11 Required cubes for the reduced destination state in the vertical portion of

a speci�ed transition . 209

7.1 Performance-oriented synthesis script for Minimalist 241

A.1 A multiple-valued input function and two multiple-valued transitions . . 256

A.2 A multiple-valued function exhibiting both static and dynamic function

hazards . 257

A.3 Transitions in a multiple-valued function and their privileged and required

cubes . 261

xii

xiii

Acknowledgments

I would like to acknowledge several people who have made signi�cant contributions to

my life during the course of this thesis, in the form of technical discourse, and in other

ways.

First, I'd like to thank my advisor, Steven Nowick, whose guidance and encour-

agement of my research e�orts has been indispensable. Steve's unrelenting pursuit of

excellence prodded me at times when I needed it; and his patient, methodical approach

helped me slow down when I needed that too. The breadth of his knowledge in the

�eld of CAD for asynchronous and synchronous circuits has been inspiring, and has also

served as a source of pointers to timely and useful information.

Thanks also go to IBM, the National Science Foundation, and the Alfred P. Sloan

Foundation, whose generous grants partially funded the work which this dissertation

reports.

Earlier in my graduate education, several faculty members provided me with in-

spiration and motivation to pursue scienti�c research in general, and my chosen �eld of

CAD for VLSI circuits in particular.

Courses in VLSI given by Charles Zukowski early in my studies fascinated me,

and spurred me on to learn more about VLSI, and especially, computer-aided design.

Steven Unger's no-nonsense, intuitive approach to asynchronous circuits and sys-

tems, along with his wealth of knowledge of the early history of the area, were and are

an inspiration. His graduate course in asynchronous circuits was one of the best courses

I encountered, and was responsible for my awareness of asynchronous circuits and the

rich intellectual challenges they present.

I'd also like to thank Henryk Wozniakowski and John Kender, whose obvious

dedication to the art of teaching resulted in some of the best educational experiences I've

had. It was courses like theirs that gave me some of my �rst insights into the sheer joy

of scienti�c discovery.

Tiziano Villa graciously agreed to be on the defense committee at the last moment,

when an emergency necessitated a change. In spite of the timing, Tiziano deftly assimi-

lated the material, and o�ered useful criticism of both the work and the dissertation. I

am very grateful for his e�orts.

Sal Stolfo provided kind words of encouragement regarding my dissertation, at a

time when I needed them. To Sal, I give my thanks.

The students in my research group (John Cheng, Luis Plana, Montek Singh,

Michael Theobald, and Tibi Chelcea) have been a genuine pleasure to work with.

My colleagues at IBM, including Sesh Murthy, Fred Wu, Bob Risch, Fateh Tipu,

Marshall Schor, David Jameson, Jim Wright, Steve Abrams, Don Pazel, Danny Op-

penheim, Bill Jecusco, and Brian White, have been both good friends and stimulating

associates. I value them all highly.

The IBM Research Division itself deserves thanks as well, for providing a top-notch

research environment within which to hone my skills and develop my research potential.

The practical experience I gained at IBM has been instrumental in my development as a

scientist.

I thank my family, who patiently awaited my re-emergence from the isolation that

the demands of concurrent work and graduate studies required.

A special note of appreciation goes to Terry Rico O'Reilly, who has been my

mentor in many ways. Her support has been of immeasurable value to me. Her passion

for and knowledge of music, the arts and humanities has been a veritable wellspring of

xiv

nourishment for my artistic side. More importantly, she has helped me �nd my path to

happiness. I still strive to put her lessons into practice.

Last but by no means least, I owe the most to my wife Cindy. In every sense, I can

only speak of her place in my life as one would speak of a vital organ; one cannot begin

to comprehend what life would be like without it. Cindy has been the most positive

element in my life, and I am eternally grateful. I now begin with zeal the most pleasant

"task" I have ever faced: to repay her inasmuch as it is possible! To Cindy, all my love

and devotion!

xv

Sequential Optimization of Asynchronous and

Synchronous Finite-State Machines: Algorithms and

Tools

Robert M. Fuhrer

Asynchronous digital systems have signi�cant potential over their synchronous counter-

parts. For example, they o�er the potential to achieve high performance and low power

consumption, embodied in modular implementations. As such, they address several dif-

�cult problems faced by the designers of large-scale synchronous digital systems: power

consumption, worst-case timing constraints, and engineering issues associated with the

use of a global clock. Moreover, while for synchronous systems these problems are exacer-

bated by increasing system size, asynchronous systems promise to scale more gracefully.

The design of asynchronous systems poses unique challenges, however, which has

impeded designers' acceptance of asynchronous implementations for mainstream digital

system development. In particular, these challenges make hand design even less practical

for asynchronous circuits than for synchronous circuits. Thus, computer-aided design

(CAD) tools are of paramount importance to asynchronous systems designers. Unfortu-

nately, the development of suitably potent CAD algorithms, tools and complete synthesis

paths for asynchronous circuits has lagged those of the synchronous domain. Designers

have had little choice but to relegate asynchronous circuits to niche applications.

This thesis therefore consists of three contributions to the �eld of sequential opti-

mizations for �nite-state machines: 1) provably optimal algorithms for the synthesis and

optimization of asynchronous �nite state machines (FSM's), 2) practical software imple-

mentations of these algorithms, and 3) a complete CAD package binding these tools into

a state-of-the-art technology independent synthesis path for burst-mode asynchronous

circuits. Throughout, real-world industrial designs are used as benchmark circuits to

validate the tools' usefulness. As an additional bene�t, some of the theory and tools

developed provide methods for the optimization of synchronous FSM's.

1

Chapter 1

Introduction

This thesis addresses several problems in sequential optimization, that is, transformations

on �nite-state machines which produce machines having equivalent behaviour, but whose

implementations are either more economical, faster, or both. In particular, the focus of

this thesis is a suite of algorithms and tools which synthesize small, high-performance

realizations of �nite-state machines, given a suitable speci�cation. First and foremost,

the emphasis is on asynchronous controller circuits.

This chapter proceeds as follows. First, Section 1.1 provides some basic motivation

on why asynchronous designs are promising alternatives to traditional synchronous de-

signs. Next, Section 1.2 describes various forms of asynchronous controllers, which are the

focus of the bulk of the thesis. Section 1.3 o�ers a general overview of sequential synthesis

and traditional approaches. Then, Section 1.4 presents one of the central themes of this

thesis: obtaining stronger synthesis methods by merging steps. Section 1.5 gives some

insight into the unique problems asynchronous designs present to the synthesis process.

A brief sketch of the state of the art in asynchronous synthesis is also presented. The

main contributions of the thesis are then described in Section 1.6. Finally, the structure

of the remainder of the thesis is presented in Section 1.7.

2

1.1 The Case for Asynchronous Circuits

Sequential digital systems are typically constructed as synchronous systems, that is,

as systems which have a single synchronizing clock signal. The clock signal pulses at

regular intervals, and is distributed throughout the system, thus serving to keep all of

the components operating in lock-step. All processing in each step must complete within

the clock period, or the circuit will fail to function properly.

This implementation strategy simpli�es the system's timing, by quantizing time

into uniform, discrete steps. As a result, one can largely ignore timing issues while

deriving an implementation for a given behavioural speci�cation, and concentrate on the

intended functionality.

However, the use of a global clock presents several increasingly challenging prob-

lems [141][36]:

clock skew The clock must reach every component very nearly simultaneously in order

for synchronization to be achieved. In very large circuits, such as modern micro-

processors, the distribution of the clock signal to tens or hundreds of thousands of

components produces complicated signal paths of varying length. This variation

in length produces a corresponding variation in propagation delay, known as clock

skew. If this skew is more than a small fraction of the clock period itself, the system

is likely to fall out of sync and malfunction. Although clock distribution networks

have been constructed for large circuits using clock rates upwards of 500 MHz,

the engineering e�ort required is considerable [11][50][20], which impacts time-to-

market. Moreover, the problem becomes more di�cult to solve at ever-higher clock

speeds. To make matters worse, it is expected that future systems-on-a-chip will

require multiple clock domains,1with even more complex skew problems.

power consumption The distribution network for the clock signal itself, as well as

registers used to hold data stable in between clock events, consumes power. In

3

fact, in circuits using very fast clocks, such as the 500 MHz DEC Alpha, this can

be a considerable portion (up to 40%! [50]) of the circuit's total power consumption.

Moreover, in CMOS circuits, almost all of the power consumed is dissipated during

transitions. Hence, in synchronous CMOS systems, the clock signal causes many

CMOS components to consume power even when they are not performing �useful

work�. Clock gating [59] has been recently used to reduce power consumption by

preventing clock pulses from stimulating circuits unnecessarily. Unfortunately, this

technique must be designed into the circuit, and often introduces additional clock

skew. By comparison, asynchronous designs achieve the same e�ect �for free�, at

arbitrary granularity.

worst-case timing In order to use a single clock signal, all components in the system

must operate within the same period of time. As a result, slower components rob

the system of the opportunity to take advantage of faster components. Typically,

therefore, synchronous designers struggle to balance the system so that the �critical�

(slowest) path does not slow the system intolerably [41].

electromagnetic interference and noise In a synchronous system, the clock signal

triggers periodic bursts of activity. These bursts induce peaks of power-supply

current, with concomitant peaks in power-supply noise and electromagnetic (EM)

emissions. Such noise and EM bursts can be particularly problematic for sensi-

tive analog components that are nearby, e.g., digital-to-analog converters or radio

receivers [141].

asynchronous interfacing Even synchronous systems frequently must interface to in-

herently asynchronous components, e.g., memories, external devices, and so on.

Synchronous system designers must take great pains to ensure that such hybrid

interfaces operate correctly under all possible circumstances.

modularity Because a synchronous subsystem must meet the global timing constraint

4

to work alongside other subsystems, it is often di�cult or impossible to re-use its

implementation in a context where timing requirements are more stringent (i.e.

with a shorter clock period). Likewise, introducing a faster component into a syn-

chronous system does nothing to speed up the operation of the entire system, unless

all subsystems are made to operate at the faster speed. The trend toward systems-

on-a-chip and the desire to re-use large circuit implementations (e.g. microprocessor

cores) make modularity a critical design goal.

In addition, many of these di�cult problems are exacerbated by the continuing

trend to produce increasingly large-scale digital systems.

An asynchronous system, by comparison, uses no clock to synchronize the opera-

tion of its various components. In essence, each component performs local synchroniza-

tion, as needed, with the neighboring components with which it directly communicates.

As a result, asynchronous systems promise to either eliminate (as in the case of clock

skew or worst-case timing) or ameliorate (as in the case of power consumption) the above

problems. For the same reasons, asynchronous systems also tend to scale better to larger

sizes than do synchronous ones.

Several recent successes substantiate the bene�ts of asynchronous design:

• A fully asynchronous 80C51 microcontroller, designed by Philips Research in col-

laboration with Philips Semiconductor [142], which consumes one-quarter of the

power of the synchronous implementation. This design has been incorporated into

a line of integrated circuits (IC's) now on the market for use in pagers.

• An experimental asynchronous instruction decoder developed at Intel, exhibiting

three to four times the performance of the highly-tuned synchronous version [21].

This design demonstrates the potential for asynchronous circuits to exploit data-

dependent computational delays to reduce average-case delay.

1i.e., distinct portions of the chip's circuitry will operate under di�erent clocks

5

• The Amulet2e, an embedded micro-processor chip developed at the University of

Manchester [57], whose asynchronous components include an ARM-compatible ex-

ecution core and a level-1 cache. Although its power dissipation is only somewhat

lower than the synchronous versions of this chip, the absence of a clock allows mi-

crowatt power consumption when idle. The asynchronous chip also features near

instantaneous reaction to interrupts when idle. By comparison, the synchronous

versions take considerable time re-synchronizing the clock when awakening.

• A digital �lter bank, part of a synchronous digital hearing aid, was re-implemented

as a fully asynchronous system by the Technical University of Denmark and Oti-

con, Inc. [100]. The asynchronous design dissipates �ve times less power than its

synchronous counterpart.

• A self-timed RISC processor design, STRiP [41], based on the MIPS-X architec-

ture, exhibiting a factor of two speedup over the MIPS-X, due solely to its asyn-

chronous characteristics.

Additional examples include a high-performance asynchronous di�erential equation solver

[151], a high-performance asynchronous decompression engine for embedded micropro-

cessors [7], a low-power Reed-Solomon error corrector for digital audio [10], a high-

performance self-timed divider circuit [148], an infrared communications chip [86], and a

high-performance adaptive routing chip for parallel processing [132].

1.2 Asynchronous Controllers

This section describes various classes of asynchronous machines and classical modes of

operation. Particular attention is paid to asynchronous controllers, which are the focus of

this thesis. Finally, more extensive detail is given on the design style known as burst mode,

which is the target of the various optimization algorithms in the thesis. For an overview

6

of some of the major design and implementation problems associated with asynchronous

synthesis, refer to Chapter 2.

1.2.1 Classical Asynchronous FSM Models

Asynchronous circuits do not use a clock signal to synchronize their operation; hence, this

synchronization must be accomplished in various other ways. Essentially, a spectrum of

basic approaches exists, ordered according to the degree of timing assumptions required

in order to assure correct operation (see [36] for a survey). Broadly speaking, the fewer

timing assumptions are made, the more robust is the component's operation with respect

to its environment. In particular, the most robust approaches are exceedingly tolerant of

variations in ambient conditions (e.g. temperature and supply voltage), manufacturing

process parameters (which a�ect gate delays), as well as latencies and skews in the

surrounding circuitry.

Unfortunately, as robustness increases, the di�culty in designing and implement-

ing the individual components also rises, and, frequently, performance is sacri�ced. Fur-

ther, the most robust class of circuits even place constraints on communication protocols

among components2. Thus, these trade-o�s give rise to several classes of asynchronous

machines, which operate under varying degrees of timing constraints.

Delay Models

Each class assumes of one of several delay models, which prescribe allowable values for a

circuit's delays. The unbounded delay model allows any �nite delay, while the bounded

delay model requires that a delay be shorter than some speci�c �nite value. Finally, the

�xed delay model (the least common of the three) assigns a delay a speci�c value.

2E.g., delay-insensitive circuits require an acknowledgement for every output transition.

7

Classes of Asynchronous Circuits

At one end of the spectrum are delay-insensitive (DI) circuits [26], which operate correctly

under arbitrary gate and wire delays (i.e., under the unbounded delay model). Such

circuits are quite di�cult to design from simple gates, but have formal properties which

facilitate veri�cation of DI networks [46] and synthesis by translation from programming

language speci�cations [48], for example. The di�culty in using simple gates has led

some [48] to fashion complex gates that make use of internal timing assumptions, in

order to construct larger circuits than would otherwise be possible.

Quasi-delay-insensitive circuits are DI circuits that make use of isochronic forks.

An isochronic fork is a fan-out from a single component to several destinations, for which

the delay to all destinations is assumed equal. This timing assumption is disallowed in

true DI circuits, where the delays even to di�erent destinations of a single wire can not

be assumed in any way correlated. This slight weakening of delay insensitivity, however,

allows a larger class of circuits to be built [9, 87] from simple gates than is the case for

pure DI circuits.

Next, speed-independent (SI) circuits [96] can tolerate arbitrary gate delays, but

assume negligible wire delays.

Self-timed circuits [127] are essentially DI circuits composed of circuit elements,

de�ned by so-called �equipotential regions.� These regions have controlled or negligible

wire and gate delays, and therefore internally make use of timing assumptions (e.g.,

they are locally SI). However, self-timed circuits impose no timing constraints on the

communications among elements, and so are globally delay insensitive.

The most general class of circuits are asynchronous circuits [139]. This class often

makes timing assumptions regarding the interactions among components, in addition to

assumptions on component-internal timing.

8

1.2.2 Asynchronous Controller Design Styles

There are several design styles for asynchronous controllers, the most important of which

divide roughly in three categories. The �rst of these speci�es circuits in one of several

concurrent programming languages, and synthesizes circuits by syntax-directed transla-

tion. Second is a set of methods based on state transition graphs (or Petri Nets) as the

speci�cation form. The third class broadly subsumes state-machine-based speci�cations.

This latter design style is the focus of the thesis.

1.2.3 Programming in Silicon

One set of popular design styles derives from Hoare's Communicating Sequential Pro-

cesses (CSP) [65]. These styles all make use of speci�cations written in a concurrent

programming language. Speci�cations in the style of Martin, for example, describe a set

of concurrent processes which communicate over channels. Each program is automati-

cally [17] translated into a network of circuits. This is the origin of the term �programming

in silicon� [87, 9, 15, 48]. Channel communications are implemented by handshaking cir-

cuits observing a four-phase protocol. Martin and Burns have used this approach to

design an entire microprocessor [89], as well as numerous other circuits.

A similar approach has been taken by Ebergen [48], who de�ned a speci�cation

form known as commands based on Udding et al.'s trace theory [131]. Traces describe

permissible interleavings of transitions on the inputs and outputs. A notable feature of

this formal approach is its natural ability to verify implementations constructed by the

composition of smaller circuits.3

Although these methods o�er reasonably high-level speci�cation forms for con-

trol circuits, they synthesize circuits which generally retain the structure of the original

3Ebergen's presentation actually concentrates on synthesis by the reverse procedure of decomposition.

Although provably-correct synthesis by decomposition is attractive, it seems quite di�cult to automate.

To my knowledge, Ebergen has no such method. Veri�cation by composition, by contrast, is easily, if

not e�ciently, automated.

9

speci�cation. Typically, optimization is limited to local (�peephole�) methods of modest

potential. In particular, methods for more global and rigorous optimizations, such as

state minimization, state encoding, or logic minimization, are lacking. It is partly for

this reason that circuit implementations tend to be expensive and slow.

1.2.4 State Transition Graphs

Petri nets [110] and related formalisms have served as a foundation for a number of

asynchronous speci�cations and synthesis methods [143, 94, 24, 127]. Petri Nets have long

been used in a variety of contexts (e.g. distributed systems, communications protocol

speci�cation) as a convenient form for specifying concurrent behaviour. This is due

primarily to their ability to concisely represent the possible interleavings of events in a

distributed system, as well as synchronization. As with CSP-based methods, Petri nets

o�er an attractive high-level representation for asynchronous behaviour.

The conciseness of Petri nets makes robust global optimizations di�cult to con-

struct. Nevertheless, some progress has been made in recent years, e.g. in state encod-

ing [28, 22] and logic minimization [112]. Unfortunately, the optimality of these methods

is hard to quantify.

1.2.5 Asynchronous State Machines

Much of the earliest work on the design of asynchronous controllers focused on asyn-

chronous state machines, and includes seminal work by Hu�man [67], Unger [139], as

well as more recent contributions by Davis [35], Nowick [102], and Yun [153]. Asyn-

chronous state machines are �nite-state sequential machines using no clock signal. This

speci�cation style is somewhat lower-level than the two previous styles. These machines

are often speci�ed in terms of a �ow table, such as that shown in Figure 1.1. In ef-

fect, they trade the more explicit representation of concurrency, such as that available in

STG's or CSP's, for a simpler representation which is more amenable to the synthesis of

10

inputs xy

00 01 11 10

a a,0 a,0 c,1 a,0

b b,0 d,1 b,0 a,0

c b,0 -,- c,1 d,0

d d,0 d,1 c,1 d,0

(a) Flow table

Combinational

 Logic

OutputsInputs

State

(b) Hu�man machine

Figure 1.1: Simple asynchronous �ow table and Hu�man implementation

high-performance implementations.

In contrast to synchronous state machines, the lack of a clock implies that only

some states are stable. A stable machine state results in no state transition, e.g., total

state 〈00 a〉 in Figure1.1 (a). Stable states are typically shown in bold.4

A block diagram of a Hu�man machine [67], a common implementation for asyn-

chronous state machines, is also shown in Figure 1.1. The circuit consists of a block of

combinational logic and a set of feedback paths, on which the machine's internal state

is stored. No registers or latches are used, although delay elements are often added to

prevent the manifestation of sequential hazards.

Within the class of asynchronous state machines, Unger [139] de�ned several sub-

classes, based on restrictions of input/output behaviour. The spectrum of classes en-

compasses increasingly general behaviours, but with simultaneously more complex im-

plementation constraints.

For example, single-input change (SIC) machines allow only a single input to

change, after which the machine must be allowed to stabilize before any further input

changes. Although this operating mode is capable of expressing a limited set of be-

haviours, it is more easily implemented than the more general classes. In particular,

4or circled, as in some of the classic literature

11

hazard elimination is greatly simpli�ed.

A more �exible class is that of multiple-input change (MIC) machines. Here,

several inputs may change at once before the machine is allowed to settle. This �exibility

is tempered by the fact that MIC machines require that all input changes arrive within

some maximum time period. Also, hazard elimination requires more care than in SIC

mode.

The most general class of machine is the unrestricted-input change (UIC) machine.

Machines in this class allow arbitrary input changes, with the constraint that no input

may change more than once within a prescribed time period. Implementing such �exible

speci�cations has proved problematic, particularly with respect to metastability and the

use of expensive inertial delay elements.

1.2.6 Burst-Mode Machines

The last design style, and the focus of this thesis, is burst-mode, a generalization of

Unger's MIC mode. Burst-mode was �rst formalized by Nowick [101], who also developed

a systematic synthesis method for hazard-free implementations. This design style is based

on more ad-hoc methods used earlier by Davis et al.. [37].

Burst-mode machines allow multiple inputs to change concurrently, but, unlike

MIC machines, in any order and at any time. Hence, burst-mode removes the max-

imum time period constraint for input changes. This relaxation considerably reduces

the timing constraints placed on the environment, but nonetheless allows economical

and high-performance implementations. In particular, applying Nowick's method for ex-

act MIC two-level hazard-free logic minimization [106] yields low-area, high-performance

circuits.

Burst-mode has been successfully used by both academia and commercial interests

to design and implement a number of signi�cant circuits, for example, at Stanford, UCSD,

HP, AMD and Intel.

12

Details on burst-mode machines, their operation, and synthesis appear in Chap-

ter 2.

Extended Burst-Mode

An important variation of burst-mode asynchronous circuits, known as extended burst-

mode (XBM), was proposed by Yun et al. [153]. This form of asynchronous speci�cation

provides two useful extensions to basic burst-mode semantics. First, signal levels can

be sampled, whereas plain burst-mode is only sensitive to signal transitions. Second, a

more �exible interleaving of input and output changes is allowed, which allows for greater

concurrency between a pair of communicating asynchronous machines. The combination

of these extensions makes extended burst-mode especially well suited to the speci�cation

of interfaces between clocked and asynchronous circuits.

1.3 Sequential Synthesis

Computer-aided design (CAD) plays a vital role in the development of digital VLSI

systems. The demand for greater functionality, higher speed, smaller size, and lower

power in digital systems produces several trends in digital design. These trends include

increasing complexity (many interacting components), larger numbers of transistors per

chip, and approaching physical device and fabrication limits. Each of these trends in turn

places great demands on the development process, contributing to the need for e�ective

CAD tools. The desire to decrease the time-to-market simply ampli�es this need.

CAD tools for VLSI circuit development address these important issues by facili-

tating the �ow from speci�cation to physical realization. In particular, current practice

uses automated methods for synthesis, functional veri�cation, and optimization, to help

ensure some degree of correctness in the end result.

This thesis focuses on the synthesis of sequential digital systems, i.e., on the deriva-

13

tion of an arrangement of logic gates and memory elements which implements a given

speci�cation of sequential behaviour. Moreover, we address technology-independent syn-

thesis, which exclusively uses generic, somewhat idealized logic gates (e.g. AND, OR,

NOT) for its implementations.

The following section describes the classic sequential synthesis approach, and gives

some detail on the individual steps that constitute the synthesis process.

1.3.1 Classic Synthesis Trajectory

This section describes the sequential synthesis problem, and the traditional approach to

this problem as a sequence of decoupled steps. A brief recount of the history of sequential

synthesis and the current state of the art for both synchronous and asynchronous FSM's

is also given.

Sequential synthesis is the process of creating a suitable implementation for a given

FSM. It is an extremely di�cult problem, for several reasons. First, the number of possi-

ble implementations for even modest-sized speci�cations is staggering. Second, although

the cost criterion is approximated by many tools as a simple metric, in reality it is often

a complex, multi-dimensional function. Moreover, trade-o�s involving several character-

istics of the solution (e.g. area, power or latency) are typical. Further, addressing even

a simpli�ed cost metric often requires algorithms of high computational complexity. In

fact, many of the problems described below are NP-complete.

As a result, the synthesis problem is typically broken into a sequence of decoupled

sub-problems, as shown in Figure 1.2. We �rst sketch the overall �ow, and then give

some more detailed background on certain key steps.

The process starts with a speci�cation of the FSM's behaviour in some form, such

as a �ow-table. The machine's internal states are normally identi�ed by symbols, so that

the speci�cation focuses as much as possible on the intended behaviour and not some

particular implementation.

14

State
Minimization

FSM
Specification

State
Encoding

FSM
Realization

Multi-Level

Minimization
Logic

Mapping
Technology Technology

Optimization
Dependent

Minimization
Logic

2-Level

Logic
Synthesis

Figure 1.2: Traditional sequential synthesis trajectory

State Minimization

The �rst step in the �ow, state minimization, is an optimization that makes use of a classic

observation [64] that don't-cares in an incompletely-speci�ed FSM speci�cation often

permit a realization with fewer states. In fact, even when the FSM is completely speci�ed,

states having indistinguishable behaviour can be �merged�, producing smaller equivalent

machines. Often, the FSM's resulting from state minimization are fundamentally simpler

than their unminimized counterparts, and can thus be implemented with better logic,

regardless of the cost metric involved.

The importance of state minimization to �nding good implementations was recog-

nized early on [64], and has been studied by many researchers over several decades [60,

139, 62]. The bulk of this research has striven to �nd e�cient algorithms for solving

the classic problem as stated by Luccio and Grasselli [60], both exactly and heuristically.

A small minority of recent work has attempted to solve the more di�cult problem of

optimal state minimization, which targets logic complexity [4, 18], rather than the fewest

number of states. This line of research met with very limited success until the approach

described in Chapter 4.

State Encoding

Obviously, a realization in binary logic is required; hence, state encoding derives a suitable

assignment of binary codes to the symbolic states. The encoding so derived e�ectively

15

transforms the symbolic FSM speci�cation into a set of pure binary-valued Boolean

(�combinational�) functions.

Nominally, any encoding which maintains the distinction among the various states

is valid5; however, certain encodings permit more economical or faster realizations than

do others. This realization spurred signi�cant research into the problem of optimal state

encoding [40, 146, 44, 81]. The resulting algorithms o�er a wide variety of heuristic [128]

and exact approaches. Typically, the more successful approaches incorporate models of

the desired logic structure and/or cost functions. Hence, a variety of methods exists

targetting, for example, 2-level logic [40, 146] vs. multi-level logic [44, 81], or area vs.

power consumption [69, 8, 138].

Logic Implementation and Minimization

The wide variety of applications, design constraints, design complexity, production scales,

and so on, has given rise to a similar variety of implementation technologies. For example,

low-power applications favor the use of CMOS, which dissipates almost no power while

inactive. High-frequency applications, on the other hand, might require GaAs technology.

For various reasons, each technology most naturally supports a di�erent suite of basic

logic elements, or gates. In another dimension, small, critical circuits may permit care-

fully manually tuned (�full-custom�) designs, while limited productions of medium-sized

circuits may employ more regular structures (e.g. PLA's, FPGA's) to reduce design cost.

All of these forces shape the speci�c set of gates (�cells�) available to the implementation,

collectively known as a technology library.

The task of logic synthesis is to produce an optimal implementation of the given

combinational function(s) using the suite of logic gates o�ered by the technology library

in use. This too is such a complex process that it is normally decomposed into several sub-

steps that are more readily solved. These steps are 2-level logic minimization, multi-level

5for synchronous FSM's

16

logic optimization, technology mapping, and �nally, technology-dependent optimization.

Two-level logic forms are important both as �nal implementations for certain regu-

lar structures (such as PLA's) and as a starting point for subsequent multi-level optimiza-

tions. Pioneering work by Quine [113] and McCluskey [90] proposed exact methods for

two-level minimization. Later exact methods were developed largely as a re�nement of

their ideas, notably, Espresso-Exact [118], and Scherzo [30]. The latter of these in-

troduced the powerful notion of implicit representations based on so-called characteristic

functions, which greatly extended the reach of exact minimization. Another interesting

exact method by McGeer [93] departs considerably from the Quine-McCluskey method,

by avoiding the computation of the complete set of prime implicants, a bottleneck in other

approaches. Heuristic methods were also the subject of considerable research [66, 119, 30]

and address various cost functions, such as area, power, and testability. Recent devel-

opments include re-factoring for low power based on pre-computation [95], and other

techniques.

Multi-level logic is often capable of much smaller area, and o�ers a richer space of

trade-o�s, than does 2-level logic. Hence, a large number of methods has been developed,

using algorithmic algebraic manipulations [13, 14, 117], as well as rule-based systems [33].

Just as for 2-level optimization, algorithms for delay [130], area and testability [5, 61]

optimization abound. In particular, a signi�cant amount of attention has focused on

the computation of don't-care information, for use in both local and global network

optimization [136, 32, 5]. Similarly, the false path problem, central to accurate delay

estimation, has been investigated in depth [12, 42, 92].

Finally, technology mapping is the process by which the network of idealized gates

used by previous steps is transformed into a network of cells chosen from the technology

library. Methods include early rule-based systems such as Lss [33], as well as seminal

work by Keutzer [71] based on graph matching and covering, which was further developed

by Rudell [117]. Much work has been done on mapping to specialized technologies, such as

17

FPGA's (which present somewhat unique problems), XOR-based implementations, and

so on. Using the rich information available on the technology gates, many optimizations

are possible, including detailed power and delay analysis, and area minimization.

1.4 Toward Global Solutions to Optimal Synthesis

After much research into the above synthesis problems, it has become apparent that the

linear �ow of isolated steps, while simpler to engineer, produces globally sub-optimal

solutions, even when optimum solutions are found at each step. A typical response has

been to introduce additional quasi-local optimizations, such as retiming [79, 85] and

re-encoding [63]. Other approaches, such as technology-dependent and layout-oriented

logic optimizations [84, 27], early power estimation [99, 114] and so on, represent a more

concerted e�ort to move away from local maxima. These optimizations help, but are by

no means globally robust solutions.

Optimal state encoding represents a partial (and early) attempt to remedy this

situation. A critical insight by De Micheli [40] states that optimal state encoding requires

symbolic logic minimization. In other words, a better encoding method results when

encoding and logic minimization steps are combined.

This thesis embodies a stronger and more general principle that derives from

De Micheli's insight: more powerful synthesis methods are obtained by integrating steps

to a higher degree. The integration is achieved by embedding knowledge of the structure

of the solution in early transformations. By doing so, early transformations can be in-

strumented with knowledge of the rich trade-o�s inherent in sequential synthesis, thereby

allowing them to better target the desired cost function.

In other words, this thesis is, in large part, an e�ort to apply this philosophy to

the synthesis of asynchronous (and synchronous) FSM's. Later chapters will present a

progression in which each successive method captures more and more of the synthesis �ow.

For example, Chapter 3 presents Hfmin, which performs logic minimization, and Chasm,

18

which integrates both state encoding and logic minimization. Optimist, presented in

Chapter 4, merges three steps, and thus embodies simultaneous state minimization, state

encoding, and logic minimization.

Much work remains to be done in this area in order to understand and harness

the complex relationships among the many transformations and the myriad possible

optimizations.

1.5 Asynchronous Sequential Synthesis

This section highlights some of the unique problems confronting the implementation of

asynchronous sequential circuits. More on these problems can be found in Chapter 2.

Then, it gives a brief overview of the asynchronous controller synthesis path, and the

state of the art.

Asynchronous circuit implementations must satisfy several constraints above and

beyond those of synchronous systems, in order to ensure correct operation. In general,

because an asynchronous circuit is nearly always sensitive to changes in its inputs, many

implementation forms require that the output changes generated be free of undesired

transitions, or glitches. This is a pervasive issue in asynchronous synthesis, and appears

under several guises.

For combinational asynchronous circuits, combinational hazards [106] can cause

output glitches to manifest. A combinational hazard is said to exist for a given input

transition when a particular arrangement of delays reliably produces an output glitch. In

some cases, the Boolean function under consideration can never be implemented without

hazards; then, a function hazard is said to exist. Alternatively, a particular implementa-

tion may exhibit a logic hazard for that transition.

Both kinds of combinational hazards must be addressed in most robust synthesis

methods. We will see in Chapter 2 that early synthesis stages will often be charged with

ensuring function-hazard-freedom. Subsequent stages will then be concerned with �nding

19

a suitable logic-hazard-free implementation for that function.

Sequential asynchronous circuits also face di�culties beyond those of their syn-

chronous counterparts. These di�culties revolve around implementation malfunctions

caused by two classes of sequential hazards, namely, critical races [137] and essential haz-

ards [139]. Both malfunctions manifest in an implementation's settling in an incorrect

destination state for a given transition.

Critical races [68, 139] exist in an asynchronous machine's implementation when

an input transition causes two changing state variables to �race,� such that the state into

which the machine settles depends on which variable wins the race. Critical races can

be prevented by judicious encoding [137]. The process of critical race-free encoding is

described in detail in Chapter 2.

The second type of sequential hazard, the essential hazard [139],6 occurs in certain

machines when an arrangement of circuit delays allows a state change to complete before

the input change is fully processed. For this type of hazard, neither a judicious encoding

nor logic implementation avoids the problem � the problem is an inherent property of

the sequential function [139]. In fact, one can only solve the problem by adding delays

(e.g. to the feedback path) so as to ��x the race� [139]. These delays ensure that the

input change is completely absorbed before the state changes propagate.

1.5.1 Asynchronous Synthesis Path

Asynchronous controller synthesis follows a �ow similar to that of synchronous synthesis;

however, it presents unique problems requiring signi�cantly di�erent solution methods.

Like synchronous synthesis, the synthesis trajectory is divided for tractability's sake into

several steps: state minimization, state encoding, two-level logic minimization, multi-

level and testability transformations, and so on. Each of these steps can be modeled

roughly after its synchronous counterpart, but poses additional complications. We now

6a kind of steady-state hazard [139]

20

review each step, outlining the basic problems unique to asynchronous synthesis.

The task of state minimization is to �nd a closed state cover for the original

burst-mode speci�cation. The result is a reduced machine realizing the original speci�-

cation [64]. As with synchronous machines, this problem can be solved by �rst forming a

set of compatibles and then forming a binate covering problem expressing the two basic

sets of constraints (covering and closure) [60]. Asynchronous machines, however, require

di�erent forms of state compatibles in order to be assured of the existence of a hazard-free

logic implementation [102].

State encoding produces a set of binary codes for the symbolic states of the reduced

machine. For synchronous machines, all encodings which distinguish the states are valid;

however, typically this is performed judiciously, so as to minimize logic area [40], improve

performance, or reduce power consumption. By contrast, asynchronous machines must

be encoded so as to avoid critical races [137]. Further, if optimal logic is to be obtained,

logic hazards [139][105] must be taken into account [55].

Finally, to ensure correct operation, two-level logic minimization for burst-mode

asynchronous machines must also take care to avoid logic hazards. Recent developments

in this area include exact multi-valued-input/multi-output minimization [55], fast heuris-

tic minimization [134], and exact implicit minimization [135].

An additional issue facing asynchronous synthesis is the potential for using fed-

back outputs to reduce the number of state variables and the overall implementation

complexity. In this machine implementation style, primary outputs are fed back as addi-

tional input variables, which help to identify the machine's present state, thereby reducing

the need for distinct state variables. The loading on the outputs may be minimal (only

a short path to a feedback bu�er is added to its fan-out), but the savings in overall logic

complexity can be dramatic. Care must be taken, however, in various synthesis steps, in

order to ensure that the use of fed-back outputs does not introduce hazards or critical

races.

21

1.5.2 State of the Art

This section provides a brief overview of the state of the art in asynchronous sequential

synthesis.

Although asynchronous circuits were �rst studied long ago (see for example [68,

97, 139, 26]), only recently has enough progress been made that their use is starting to

become practical. This is due to the resurgence of interest in asynchronous circuits as a

solution to the problems faced by synchronous design. In turn, the interest has spurred

a signi�cant amount of research in three areas, among others:

• Speci�cation forms (e.g. signal transition graphs (STG's) [23], CSP-based [48, 88],

burst-mode [104, 155])

• Synthesis algorithms (both technology-independent [106], [75], [77], [24], [72] and

technology-dependent [17], [15], [140], [129])

• Veri�cation (both functional [46], [115], [47] and timing [43], [116])

In short, these research areas have seen considerable progress in a relatively short pe-

riod, and the results are encouraging. However, current asynchronous CAD tools and

algorithms still leave much room for improvement.

The asynchronous community has struggled to �nd a suitably expressive and ca-

pable speci�cation form which is amenable to the automated synthesis of high-quality

implementations. Unfortunately, the various speci�cation forms di�er enough that a dis-

tinct body of synthesis research has emerged for each. For example, specialized methods

for both state minimization and state encoding exist for STG's[77, 144], state machines

(e.g. [150]), and translation-based methods [17]. Further, the theoretical frameworks for

each method di�er enough that meaningful quantitative comparisons are di�cult. Also,

the insights gained in one domain are typically inapplicable to another.

22

Thus, the diversity of asynchronous speci�cation forms, coupled with the relative

youth of automated asynchronous synthesis, leaves the asynchronous CAD community

lagging far behind its synchronous cousin. The lag manifests in several ways:

• No robust optimal methods yet exist for several key synthesis problems, e.g. state

encoding, multi-level logic optimization, and so on.

• There are few high-quality, usable CAD tools which provide the kind of �exibility

designers need in order to craft solutions to domain-speci�c applications within

domain-speci�c constraints.

• There are no software frameworks which serve as a complete synthesis environment,

as well as a backplane onto which new tools and methods can be easily grafted.

With this in mind, the following section describes the contributions made by the present

body of work.

1.6 Thesis Contributions

This thesis makes contributions on three fronts.

First, the thesis o�ers a trio of practical algorithms for producing optimal two-level

implementations for burst-mode asynchronous machines. Hfmin is an exact method for

hazard-free two-level logic minimization. The second, Chasm, is the �rst known optimal

state encoding algorithm for asynchronous state machines. Finally, Optimista is the

�rst optimal state minimization algorithm for asynchronous machines of any kind.

Second, the thesis presents a suite of high-quality CAD tools embodying these al-

gorithms. The tools were implemented in C++, and make use of highly-tuned algorithms

for key substeps. They are capable of handling almost all known industrial benchmark

designs.

23

Third,Minimalist is a new software CAD framework which binds these tools into

a state-of-the-art technology-independent path for burst-mode synthesis. Minimalist is

both a complete technology-independent synthesis path with state of the art tools, and

a �exible framework for incorporating new tools.

Although the main thrust of this body of research is asynchronous synthesis, it

makes contributions to the state of the art in synchronous FSM synthesis as well. In

particular, one highlight of this thesis is a pair of algorithms (and corresponding tools)

for the state minimization of synchronous FSM's: Optimist, described in Chapter 4,

and Optimisto, described in Chapter 5. These are �rst-of-a-kind algorithms, and are

signi�cant beyond their use as a foundation for the asynchronous method of Chapter 6.

1.6.1 CAD Algorithms and Tools

The thesis o�ers three new algorithms for technology-independent asynchronous sequen-

tial synthesis, along with practical software implementations for each. All three algo-

rithms target two-level logic realizations.

The �rst of the tools, HFMIN, is a hazard-free two-level logic minimizer. It

embodies the �rst exact hazard-free two-level logic minimization algorithm [55] which

is capable of minimizing functions with symbolic inputs. This ability is vital to both

of our other algorithms. Notably, Hfmin o�ers several user-selectable operating modes

to accommodate di�erent applications. For example, Hfmin supports single-output,

output-disjoint, or multi-output implementation styles, exact and quasi-exact modes, and

both literal and product count minimization. The algorithm makes use of the highly-

optimized algorithms Espresso [118] and mincov[118] for key substeps, and is capable

of minimizing a large variety of industrial circuits.

Second, we present CHASM [55], the �rst general method for the optimal state as-

signment of asynchronous state machines. Chasm is a state-of-the-art algorithm which

produces state encodings that result in optimum or near-optimum logic implementa-

24

tions. Chasm features both an exact and an e�ective heuristic mode, and supports all

of Hfmin's logic implementation styles. In its exact mode, Chasm produces exactly op-

timum two-level output logic over all possible encodings. In its heuristic mode, Chasm

is capable of producing near-optimum output logic with more compact next-state logic.

Further, Chasm supports the use of outputs that are fed-back as state variables. This

frequently signi�cantly reduces the next-state logic complexity. Chasm's unique combi-

nation of features allows designers to explore various trade-o�s and �nd the solution that

best �ts their application's requirements. For constraint solution, Chasm uses existing

highly-optimized tools, namely, Dichot [121] for exact solution, and Nova [146] for

heuristic solution. These tools help Chasm encode large asynchronous FSM's.

Finally,OPTIMIST [56] is the �rst state minimization algorithm for incompletely-

speci�ed �nite state machines (FSM's) to directly and accurately target logic complexity.

Three state minimization methods are proposed, all based on the same theoretical foun-

dation: two for synchronous FSM's and another for asynchronous burst-mode machines.

The �rst synchronous method, OPTIMIST, described in Chapter 4, addresses

both output and next-state logic quality. Its computational complexity is high, and hence

it is currently capable of minimizing only relatively small synchronous FSM's.

The second synchronous method, OPTIMISTO, described in Chapter 5, takes

advantage of our method's precise modeling of outputs by focusing exclusively on output

logic complexity. The result is the �rst truly exactly optimum state minimization algo-

rithm for output logic. This method has the added bene�t of a far lower computational

complexity than the �rst method. The improvement in the cost of output logic over the

leading tool is quite dramatic in some cases.

The third state minimization method, OPTIMISTA, described in Chapter 6,

is the only known optimal state minimization algorithm for asynchronous machines of

any form. Moreover, it guarantees exactly minimum cardinality hazard-free output logic

over all possible state minimizations and encodings. Because of the more demanding

25

correctness requirements on asynchronous implementations, it is somewhat more complex

than its synchronous counterpart. Nonetheless, experimental results show that it is

capable of handling most of the industrial benchmark circuits available today.

1.6.2 CAD Framework

The Minimalist software package constitutes a state-of-the-art synthesis path for asyn-

chronous machines. Minimalist combines a simple, yet powerful software framework for

tool integration with top-�ight synthesis tools to yield a uniquely e�ective and extensible

synthesis environment.

The Minimalist CAD framework incorporates a C++ class library, an exten-

sible command interpreter, and a graphical user interface. The framework constitutes

approximately 35k lines of C++ (including certain core libraries), and o�ers key build-

ing blocks for crafting new tools and features. Together, the components provide a

uniquely powerful framework for binding CAD tools into a robust and usable synthesis

path for burst-mode asynchronous machines. For example, incorporating new tools into

the framework is typically as easy as writing a short shell script, or perhaps a couple of

dozen lines of C++.

Unlike other existing asynchronous synthesis packages (e.g. [150, 102]), Minimal-

ist is able to produce implementations in a variety of styles, and under various cost

functions. This feature supports the exploration of the complex trade-o�s inherent in

sequential synthesis. For example, a designer can choose an implementation targetted to

overall performance, area, output latency, or some hybrid. Because a single cost metric

can hardly expect to accommodate all applications, this ability should prove uniquely

e�ective for a wide spectrum of designers' needs.

In addition to the tools described above, Minimalist integrates several other

state-of-the-art tools, e.g., for extremely fast exact two-level hazard-free logic minimiza-

tion, asynchronous combinational veri�cation, and synthesis-for-testability.

26

1.6.3 Scope of the Thesis

This section discusses the scope and limitations of the present body of work.

This thesis focuses exclusively on two-level technology-independent synthesis. Al-

though such implementations are only directly usable for PLA-based implementations

(and hence require technology mapping in most other situations), this is actually a rea-

sonable �rst choice in the context of burst-mode synthesis. First, two-level forms serve

as a good starting point for multi-level transformations and technology-dependent logic

optimizations. Second, asynchronous machines are typically quite small, so that two-

level logic is often close to optimum, even for area. Also, output latency is the critical

performance parameter for burst-mode machines, and two-level forms have lower latency

than multi-level forms. Finally, it would have been di�cult to target multi-level logic in

optimal state encoding and optimal state minimization without �rst understanding the

two-level problem.

Nevertheless, it is clear that handling multi-level logic forms would increase the

path's value considerably. For example, it is well-known that where area is the primary

cost metric, multi-level realizations have a clear advantage over two-level forms. Exces-

sive fan-in can also necessitate the use of multi-level logic. Likewise, a mechanism for

technology mapping and technology-dependent logic optimization should be incorporated

into the framework, for it to serve as a complete package for asynchronous burst-mode

synthesis. However, both of these abilities can be added in modular fashion, without

disturbing either the framework or the upstream portions of the path.

One limitation of the present work is its restriction to plain burst-mode [104]

speci�cations. Although plain burst-mode speci�cations encompass a large number of

useful asynchronous designs, they do not allow sampling level-based signals, and require

a strict alternation of input and output bursts. Extended burst-mode speci�cations [155]

avoid these restrictions and as a result can be used to describe a wider range of behaviours.

We believe that an extension of each of the methods presented herein to extended burst-

27

mode design is relatively straightforward. This is an area for future work.

In addition, the algorithms in this thesis are all based on a single encoding model:

the input encoding model [40] (described in some detail in Chapter 2). This limits their

e�ectiveness under certain cost metrics,7 because input encoding is only an approximation

of optimal state encoding. As such, we expect that considerably better logic would result

under these metrics from using a more precise model. However, the use of input encoding

does not constitute a structural de�ciency of the work, but rather a modular decision.

In particular, a more potent model, namely output encoding [45], can be substituted

in the various steps, without disturbing the remainder of the synthesis path. Also,

input encoding precisely models output logic, which is the critical component of burst-

mode system performance. As a result, input encoding is actually quite e�ective for this

application.

Finally, certain of the optimization algorithms presented here are computationally

too expensive for the full range of sequential machines encountered in practice. Notably,

Optimist would especially bene�t from a more e�cient implementation. We believe

that implicit methods, such as those used by Scherzo [31] and ImpyMin [135], would

extend its capacity enough to handle any practical design.

1.7 Outline of Dissertation

The structure of the rest of the thesis is as follows.

First, in Chapter 2, we review the background material necessary to several of the

subsequent chapters. Chapters 3 through 6 materialize this thesis' philosophy of �step-

merging� in several tools that encompass progressively more of the synthesis path. In

Chapter 3, we present an encoding tool for asynchronous state machines, Chasm, along

with some substantiating experimental results and several important theoretical results

justifying its correctness and optimality. Chapter 4 presents the basic results for the

7such as total area or machine cycle time

28

Optimist state minimization method in the synchronous domain. Chapter 5 introduces

Optimisto, a synchronous algorithm, which focuses Optimist on output logic complex-

ity, and achieves some novel theoretical results as well as experimental results. The results

of Chapters 4 and 5 are useful in their own right. More importantly to this thesis, how-

ever, they serve as a foundation for the work presented in Chapter 6 for asynchronous

machines. Chapter 6 introduces a further extension of Optimist, Optimista, which

performs optimal state minimization for asynchronous burst-mode machines. Chapter 7

describes the Minimalist framework and the suite of tools currently integrated into it,

and compares it to two existing synthesis packages for burst-mode asynchronous ma-

chines. Finally, in Chapter 8, we o�er some concluding remarks on the relative success

of the research and suggest several avenues for continued work on the subject.

29

Chapter 2

Background

This chapter reviews some basic technical material that is common to the later chapters.

Three major areas are reviewed: �nite state machines, logic functions and their synthesis,

and a related pair of abstract combinatorial problems that �nd numerous applications in

CAD.

Section 2.1 presents basic de�nitions related to �nite state machines. Section 2.1.1

deals with synchronous automata, while Section 2.1.2 describes burst-mode asynchronous

state machines, the design style addressed by this thesis. Section 2.2 de�nes Boolean

functions and two-level logic minimization for both binary functions (in Section 2.2.1)

and for symbolic functions (in Section 2.2.2). Additionally, Section 2.2.3 de�nes the

problem of hazard-free two-level logic minimization, a pivotal problem for asynchronous

synthesis. It also describes an exact method for its solution due to Nowick and Dill [106].

Section 2.3 discusses a class of problems known collectively as sequential hazards, along

with corresponding solutions. Section 2.4 introduces a problem known as input encoding,

which lies at the heart of this thesis. Finally, Section 2.5 de�nes a pair of abstract

problems with many applications in CAD, namely, unate and binate covering.

30

2.1 Finite State Machines

This section starts by giving a broad de�nition of �nite state machines (FSM's) and

proceeds by de�ning two particularly interesting subsets, namely, non-deterministic and

incompletely-speci�ed �nite state machines. Two commonly-used representations for

FSM's are also shown.

2.1.1 Synchronous FSM's

Generally speaking, a �nite state machine (FSM) is an automaton having a �nite set

of states, and a �nite number of binary inputs and outputs. One or more states are

identi�ed as initial states, from which the machine starts. A set of mappings determines

the next state and next output values, given the current machine state and input values.

Figure 2.1 shows a simple FSM, represented as a state graph. Here, each state

is represented by a graph node, and each transition appears as a directed arc. Each

transition is labelled by a set of input and output values. When in a given state (node)

and the input values match those of a given transition (arc) rooted in that state, the

machine generates the corresponding output values, and proceeds to the destination

state.

Two common types of FSM are de�ned in the literature: Mealy machines, whose

outputs depend upon the current inputs as well as the present state, and a sub-class of

Mealy machines known as Moore machines, whose outputs depend only upon the present

state. This thesis restricts its attention throughout to the more general class of Mealy

machines.

More formally, a completely-speci�ed or deterministic Finite State Machine (FSM)

M is de�ned [145] by the 6-tuple 〈I,O,S,S0, δ, λ〉, where:

I is the input alphabet,

O is the output alphabet,

31

S0 S1

S2

a/1

a/0b/1

b/0

a/0

Figure 2.1: State transition graph for a simple FSM

S is the set of states,

S0 ⊆ S is the (set of) initial state(s),

δ = δ(i, s) ∈ S, i ∈ I, s ∈ S is the transition function, and

λ = λ(i, s) ∈ O, i ∈ I, s ∈ S is the output function.

The �rst argument i ∈ I to both δ and λ is normally referred to as the present state;

the value of δ(i, s) is called the next state. A pair 〈i, s〉 for i ∈ I and s ∈ S is known as

a total state ofM. The machine is completely speci�ed in that, at each point, the next

state and output values are uniquely de�ned.

A non-deterministic FSM (NDFSM) is de�ned similarly, except that δ ⊂ I×S×S

and λ ⊂ I×S×O are relations, rather than functions.1 Thus, an NDFSM's speci�cation

allows for several possible outputs or next states for any given combination of input and

present state.

Unless otherwise indicated, we restrict attention to the common subclass of NDFSM's

known as incompletely-speci�ed FSM's (ISFSM's) where, for each total state 〈i, s〉, the

value of the transition function δ(i, s) is either a unique (singleton) state or the set of

1Where δ (respectively λ) maps some (i, s) onto a single element of S (respectively O), a functional

notation may be used, without loss of clarity.

32

all states. In the latter case, we say that the next-state is unspeci�ed for the total state

〈i, s〉.

While the above de�nitions describe a machine having a single input and a single

output (each taking its value from the given alphabet of symbols), it is often convenient

to represent an FSM as having several inputs or outputs. Such a representation more

adequately models the fact that, for example, the inputs may emanate from distinct

sources in a network of interconnected FSM's. In this case, each symbol in the alphabet

represents a combination of values, one for each input or output.

For convenience, �nite state machines are frequently speci�ed in one of two other

equivalent forms: as �ow tables, and in so-called cube-table format [39]. We describe

and give examples of each, as these forms will appear throughout the thesis.

Flow tables are a human-readable form mainly suitable for FSM's with a small

number of inputs. They consist of a single row for each machine state, and a single

column for each input combination (or, alternatively, each input symbol). In each table

entry, the speci�ed next state and output values are listed for the given input and present

state.

Figure 2.2 depicts the �ow table representing a simple completely-speci�ed FSM

M having 2 binary inputs x and y, and a single output, z. In state a, under inputs

xy = 00, M produces the output value z = 0 and remains in state a. In state b

and under inputs xy = 11, M produces the output 1 and proceeds to state c. Note

that the next state and output values are unique under all combinations of input and

state. The �ow table in Figure 2.3 is equivalent to that of Figure 2.2 under the mapping

{I0, I1, I2, I3} = {00, 01, 11, 10}.

A �ow table for an ISFSM is shown in Figure 2.4. Unspeci�ed next states and

output values are indicated with a dash ('-'). Note that it is permissible for a given entry

to specify a next state but not an output value, as is the case in total state 〈c, 01〉. The

reverse situation, a total state having an unspeci�ed next state but a speci�ed output, is

33

inputs x,y

00 01 11 10

a a,0 b,1 c,1 a,0

b b,1 b,1 b,1 a,0

c c,1 d,0 c,1 d,0

d d,1 d,0 c,1 d,1

Figure 2.2: A �ow table describing a simple FSMM

input I
I0 I1 I2 I3

a a,0 b,1 c,1 a,0

b b,1 b,1 b,1 a,0

c c,1 d,0 c,1 d,0

d d,1 d,0 c,1 d,1

Figure 2.3: A �ow table describingM using a symbolic representation of the inputs

allowed but rarely encountered in practice.

Cube-table format often compactly represents FSM's that are too large for a

�ow table representation, and are also particularly well suited for incompletely-speci�ed

FSM's. In order to de�ne cube-table format, however, we must �rst de�ne several basic

concepts relating to Boolean functions and their representation. The following de�-

nitions, adapted from [39], are also relevant to the description and synthesis of FSM

implementations.

inputs x,y

00 01 11 10

a a,0 b,1 a,1 -,0

b b,1 b,1 -,- -,0

c c,1 d,- -,- d,1

d -,- d,- a,1 d,1

Figure 2.4: A �ow table describing an incompletely-speci�ed FSM

34

2.1.2 Burst-Mode Asynchronous Speci�cations

We now describe burst-mode asynchronous speci�cations [101, 153], the asynchronous

design style that is the focus of this thesis. We �rst describe the speci�cations, and then

the corresponding �ow-table representation.

The speci�cations are most easily illustrated by example. A burst-mode speci�ca-

tion for a distributed mutual-exclusion controller with 3 inputs and 3 outputs is shown

in Figure 2.5. The unique starting state (S0) is indicated by a 'v', and initial input and

output values are either explicitly speci�ed or (as in the �gure) default to 0. Each arc is

labelled with a set of input and output transitions, known as bursts, separated by a '/'.

Rising transitions are denoted by a '+'; falling transitions, by a '-'.

The operation of a burst-mode machine is as follows. Starting in a given state,

the machine remains stable in that state until a complete input burst arrives. Individual

inputs within that burst may arrive in any order and at any time. Once the last input

arrives, the burst is complete. The machine then generates the corresponding output

burst, if any, and moves to the speci�ed next state. The environment allows the machine

to settle, and the next cycle begins.

Figure 2.5 illustrates burst-mode operation. For example, consider the transition

from S2 to S0, with corresponding input and output bursts LIN-,RIN- and LOUT-, re-

spectively. As a result, when in S2, if the pair of input changes LIN- and RIN- arrive

at any order, and within any time window, the machine responds with a falling edge on

LOUT and a transition to S0.

Burst-mode speci�cations must obey two important restrictions. First, input

bursts must not be empty; in the absence of input changes, the machine remains stable

in its current state. Second, the so-called maximal set property stipulates that no arc

leaving a given state may possess an input burst that is a subset of any other arc leaving

that state. This property guarantees that, at all times, the machine can unambiguously

decide whether to follow a transition or remain stable.

35

S0

S4

S5 S7
LIN+ /

LOUT+

UIN+ /
UOUT+

S6

S2

LIN+ /
ROUT+

S3 S1

LIN-, RIN- /
LOUT-

UIN- , RIN- /
UOUT-

UOUT+, ROUT-
RIN+ /

UIN- /
UOUT-

LOUT-
LIN- /

ROUT+
UIN+ /

LIN
RIN
UIN

INPUTS:
LOUT
ROUT
UOUT

OUTPUTS:

RIN+ /
LOUT+,ROUT-

DME-FAST-E:
Distributed Mutual Exclusion

Figure 2.5: Burst-mode speci�cation for a distributed mutual-exclusion controller

36

It is important to understand that, in a given burst-mode speci�cation, any un-

speci�ed input combinations are forbidden. For example, the input burst RIN+ in state S0

in the speci�cation of Figure 2.5 is prohibited. In other words, the surrounding circuitry

must never generate that input combination. Any such combinations can thus be treated

as don't-cares, and used to optimize the machine's implementation.

It is also conventional to adhere to a simple syntactic constraint, to make burst-

mode speci�cations more readable. Each state must have a unique entry point, i.e., a

unique set of input and output values upon entry. In other words, each state has a single

total state that is the destination of one or more transitions. Note that this property is

not necessary for proper burst-mode operation. However, it tends to produce machines

which are more easily minimized, and which are more easily proven to have hazard-free

implementations.

An equivalent textual burst-mode speci�cation (as used byMinimalist andMeat

[35]) appears in Figure 2.6, and an equivalent �ow table in Figure 2.7.

It is easy to see from Figure 2.7 that burst-mode speci�cations frequently o�er

signi�cant opportunity for state minimization. This due to the unique entry point crite-

rion, which generally results in states which bind the output and next-state functions in

only a few input columns.

The following de�nitions relate speci�ed transitions in burst-mode speci�cations

to transitions in the corresponding primitive �ow tables. Figure 2.8 shows a fragment of

the �ow-table for the burst-mode design of Figure 2.6. Also shown is a single speci�ed

transition from s4 → s5, with input burst RIN-,UIN- and output burst UOUT-. The

transition has the following components:

horizontal transition The portion of the transition corresponding to the input burst.

entry point The starting input column of the horizontal transition (011 in this case).

exit point The ending input column of the horizontal transition (000 in this case).

37

name DME_FAST_E

input LIN 0

input RIN 0

input UIN 0

output LOUT 0

output ROUT 0

output UOUT 0

0 1 LIN+ | ROUT+

0 3 UIN+ | ROUT+

1 2 RIN+ | LOUT+ ROUT-

2 0 LIN- RIN- | LOUT-

3 4 RIN+ | UOUT+ ROUT-

4 5 UIN- RIN- | UOUT-

5 6 UIN+ | UOUT+

5 7 LIN+ | LOUT+

6 5 UIN- | UOUT-

7 0 LIN- | LOUT-

Figure 2.6: Textual (.bms) burst-mode speci�cation for DME-FAST-E

Inputs: LIN, RIN, UIN;

Outputs: LOUT, ROUT, UOUT;

#Sn: 000 001 011 010 110 111 101 100

S0: S0,000 S3,010 -,--- -,--- -,--- -,--- -,--- S1,010;

S1: -,--- -,--- -,--- -,--- S2,100 -,--- -,--- S1,010;

S2: S0,000 -,--- -,--- S2,100 S2,100 -,--- -,--- S2,100;

S3: -,--- S3,010 S4,001 -,--- -,--- -,--- -,--- -,---;

S4: S5,000 S4,001 S4,001 S4,001 -,--- -,--- -,--- -,---;

S5: S5,000 S6,001 -,--- -,--- -,--- -,--- -,--- S7,100;

S6: S5,000 S6,001 -,--- -,--- -,--- -,--- -,--- -,---;

S7: S0,000 -,--- -,--- -,--- -,--- -,--- -,--- S7,100;

Figure 2.7: Asynchronous �ow table for DME-FAST-E

38

S5 S5,000

S4

011 110 111 101 100

Outputs: xy
Inputs: LIN,RIN,UIN

000 001 010

S4,001S4,001 S4,001S5,000

vertical transition (state change)
stable points

exit point
horizontal (specified input) transition

entry point

Figure 2.8: Horizontal and vertical transitions in a burst-mode �ow table

stable points All points in the horizontal transition, exclusive of the exit point (in this

case, 011, 001, and 010).

vertical transition The state change portion of the transition.

Two particular properties of primitive �ow tables are worth noting, as they have an impact

hazard-free logic implementation. First, stable points are so named because in proper

burst-mode �ow tables they always specify a stable next-state and unchanged output

values (relative to the entry point values). That is, a stable point always identi�es the

present state as the destination state, and the current output values as the new output

values. Second, both the outputs and next-state are stable throughout any vertical

transition.2

2One variation of burst-mode speci�cations allows so-called �late output� semantics, in which out-

puts may change concurrently with the state change (during the vertical transition). This thesis deals

exclusively with early output semantics, however.

39

Combinational

 Logic

OutputsInputs

State

Figure 2.9: Hu�man implementation with fed-back outputs

Burst-Mode Machines with Fed-Back Outputs

This section describes a special technique of feeding back outputs as internal state vari-

ables. This is purely an implementation technique, and does not a�ect the machine's

externally-visible (input-output) behaviour. However, using this technique often helps

to reduce the complexity of the next-state logic, since in many speci�cations the output

values re�ect the machine's internal state.

Figure 2.9 shows an FSM implementation (as a Hu�man machine) that employs

fed-back outputs. By this we mean that one or more outputs are fed back as inputs to

the combinational logic, thereby acting as state variables.

The machine's operation is essentially the same as for one without fedback outputs.

First, as input changes arrive, the machine remains stable in its present state. Once a

valid input burst is complete, the combinational logic generates a set of output and state

changes. These changes propagate through the feedback loop, and are presented to the

combinational logic as a distinct set of input changes. This second set of changes triggers

a set of static transitions on both outputs and next-state. The machine is allowed to

settle, and the cycle begins again.

Figure 2.10 illustrates a transition in the primitive �ow table of an FSM with 2

40

inputs ab and 2 fed-back outputs xy. In the �gure, groups of columns corresponding to

combinations of primary input values (i.e. original �ow-table columns) are separated by

thick borders. Individual columns within each group represent speci�c combinations of

values on the fed-back outputs. A point in the total state space is represented by the

triple 〈S ab xy〉. A transition Si → Sj is shown, triggered by the input burst a+b+ (i.e.

00 → 11).

First, we describe the e�ect of the horizontal transition on the combinational logic

inputs (which include the fed-back outputs) and logic outputs. The input change seen

by the logic during the horizontal transition is 〈Si −− 11〉, spanning the start point

〈Si 00 11〉 and the end point 〈Si 11 11〉. Notice in particular that the present-state and

fed-back outputs are constant throughout this cube. Meanwhile, the next state S and

primary outputs xy are stable at Si and 11, respectively, throughout this horizontal

transition, up until the exit point of the transition at total state 〈Si 11 11〉. At that

point, they change to Sj and 10, respectively. It is important to note also that the

outputs and next-state are unspeci�ed (don't-care) for intermediate total states lying

outside the transition supercube, such as 〈Si 01 10〉.3

Next, we describe the e�ect of the vertical transition on the combinational logic

inputs and outputs. During the vertical portion of the transition, both outputs and state

changes feed back to the logic inputs. The input change seen by the logic during this

period is thus {SiSj} 11 1−, re�ecting the state change from Si to Sj and the change

from 1 to 0 for the y output. In contrast to the horizontal transition, the primary inputs

are now constant.

3This is true because the output logic holds the outputs stable at 11. Hence, total states with the

fed-back outputs having other values cannot be reached during the horizontal transition.

41

00 01 11 10 00 01 11 10

Inputs: ab
Outputs: xy

Si

Sj

Si,11 Sj,10

Sj,10Sj,10

Sj,10

ab=00 ab=11

xy xy

specified input transition

Figure 2.10: Speci�ed transition in the presence of fed-back outputs

2.2 Boolean functions and Logic Synthesis

Having introduced synchronous and asynchronous �nite-state machines, we now proceed

to topics relevant to their implementation. The following section, Section 2.2.1, de�nes

Boolean functions, along with certain concepts that serve as basic building blocks for logic

synthesis. Section 2.2.2 then de�nes the class of multiple-valued input (mvi) functions.

2.2.1 Binary Functions

We denote the binary Boolean domain by B = {0, 1}. The n-dimensional Boolean space

spanned by n Boolean-valued variables is denoted Bn. B3 is depicted in Figure 2.11 for

Boolean variables x, y, z.

A completely-speci�ed Boolean function is a mapping f : Bn → B. Likewise, an

m-output completely-speci�ed Boolean function is a mapping f : Bn → Bm. A point in

the domain of an n-input Boolean function is called a minterm.

An incompletely-speci�ed Boolean function is a partial function, de�ned over a

portion of the Boolean n-space. It is de�ned as a mapping f : Bn → {0, 1, ∗}m, where

minterms mapped to ∗ are said to be unspeci�ed. Such minterms are referred to as don't-

42

�������
�������
�������
�������

010

111

100

000

110

x

z

y

011
001

101

Figure 2.11: The domain B3 = xyz and the cube 0-1

cares. Note that a given minterm may be unspeci�ed for some of the m outputs and

speci�ed for others.

The ON-, OFF-, and DON'T-care sets of a given output are those sets of minterms

for which that output is 1, 0, or unspeci�ed, respectively.

Given a set S ⊆ B, we can de�ne a literal XS corresponding to a function fX(x) :

B → B which is 1 i� x ∈ S and 0 otherwise. In Boolean expressions, X{0} is typically

written as x′, X{1] as simply x, and X{0,1} as x∗ (or omitted altogether).

A product term is a Boolean product of literals P =
∏

i=1...n
Xi, corresponding to

the function f(x1 . . . xn) : Bn → B. Now, f =
∏

i=1...n
fXi(xi), and so f = 1 i� fXi(xi) =

1, ∀i = 1 . . . n. A product P is said to contain a minterm m ∈ Bn i� fP (m) = 1. Because

a product comprises a set of adjacent minterms that forms a complete4 hypercube in Bn,

the terms product and cube are often used interchangeably.

A sum-of-products is a Boolean sum of product terms corresponding to a function

f(x1 . . . xn) : Bn → B which is 1 for minterm m i� some product term contains m and

0 otherwise.

A sum-of-products is said to cover a function f i� it contains all of f 's ON-set

4but possibly degenerate, if empty

43

minterms and none of f 's OFF-set minterms. A cover may contain any or all of f 's

DC-set.

The 3 non-empty subsets of B, namely, {0}, {1}, and {0, 1}, are often denoted

simply 0, 1, and -. This allows a terse representation of non-empty cubes by a vector

of characters. Figure 2.11, for example, shows the cube 0-1 comprising minterms 001

and 011, corresponding to product P = XS1
1 XS2

2 XS3
3 , where S1 = {0}, S2 = {0, 1} and

S3 = {1}. As an expression, P is written x′
1x3.

2.2.2 Symbolic Functions

Because this thesis deals with sequential synthesis, a pivotal class of Boolean functions is

that set of functions which operate over symbolic domains. This class contains the set of

sequential functions involving symbolic states, as are encountered in FSM speci�cations.

Such symbolic variables are often represented by so-called multiple-valued input

(or �mvi�) variables [39], variables taking their values from sets of positive integers. We

now extend the above de�nitions to describe functions of multiple-valued inputs, known

as mvi functions.

First, de�ne the sets Pi = {0, . . . , pi − 1} for i = 1 . . . n and positive integers pi.

Thus, each set Pi has pi members. The Pi de�ne a multiple-valued domain P1×· · ·×Pn,

whose points are multiple-valued minterms. For example, n = 2, p1 = 2 and p2 = 4

de�ne the sets P1 = {0, 1} and P2 = {0, 1, 2, 3} and the multiple-valued domain {0, 1}×

{0, 1, 2, 3}. Note that in this example, P1 identi�es the Boolean domain B.

A completely-speci�ed mvi function is a mapping P1 × · · · × Pn → B, while an

incompletely-speci�ed mvi function is a mapping P1 × · · · × Pn → {0, 1, ∗}.

Now, given set Si ⊆ Pi, a multiple-valued literal XSi
i de�nes a function fXi(xi) :

Pi → B which is 1 i� xi ∈ Si and 0 otherwise.

An mvi product term is a Boolean product of literals P =
∏

i=1...n
XSi

i , corresponding

to the function f(x1 . . . xn) : P1 × · · · × Pn → B, de�ned as above.

44

The de�nitions for sums of products, and so on, extend in similar fashion.

A common representation for multiple-valued inputs is positional-cube notation [39].

For each set having N possible members, an N-bit vector is used. A 1 in the i'th position

indicates that the i'th member is present in the set; a 0 indicates its absence.

Example 2.1 For example, the set S1 = {0, 1, 3} taken from the domain P1 = {0, . . . , 4}

could be represented in positional-cube notation as 11010. A vector of 1's corresponds to

a �don't-care� input. Positional-cube notation has the advantage of making set operations

simple and e�cient:5 set union is implemented as the bit-wise OR of positional cubes,

set intersection, as the bit-wise AND, and so on.

The cube-table format for an FSM of n binary inputs and m binary outputs is a set of

4-tuples 〈I, PS,NS,O〉, where I and O are cubes in Bn and Bm, respectively, PS ⊆ S

is a set of present states, and NS is either a next state or the symbol *. Each 4-tuple

indicates a single set of output values and next state for all total states contained by

〈I, PS〉. The symbol * indicates that the next state is unspeci�ed in all contained total

states. A total state not contained by any 4-tuple has unspeci�ed next state and output

values. Figure 2.12 shows a cube-table representation for the FSM of Figure 2.4. The

entry in the �fth row indicates next-state d and any output for all total states in input

column 01 and states c or d. Note that a given FSM typically has many distinct cube-

table representations.

2.2.3 Hazard-free Logic Minimization

Having laid the foundation for combinational logic minimization in the synchronous do-

main, we turn to the examination of the analogous problem in the asynchronous domain.

This section reviews a classic problem in asynchronous combinational logic implemen-

tation that is central to burst-mode synthesis: hazard avoidance. In particular, com-

5for the small sets typically encountered in FSM speci�cations

45

IN PS NS OUT

00 a a 0

0- b b 1

00 c c 1

01 a,b b 1

01 c,d d -

11 a,d a 1

10 a,b * 0

10 c,d d 1

Figure 2.12: A cube-table representation for the FSM of Figure 2.4

00 01 11 10

1

1 010

0

AB

CD

00

01

11

10

1

11 1 1

0000

0

1A

B

1
D
A’

Figure 2.13: A hazardous circuit implementing F = A′D +AB

binational hazards are de�ned, along with a characterization of the conditions for their

avoidance [106, 139, 49, 6].

For combinational asynchronous circuits, combinational hazards [106] can cause

output glitches to manifest, as shown in the simple 2-level circuit of Figure 2.13. For that

circuit, a transition from input vector ABCD = 0101 to 1111 nominally induces a stable

value of 1 on the OR gate's output. However, if the upper AND gate is su�ciently faster

than the lower one, a glitch will appear on the OR gate's output. This spurious output

change might cause an observing circuit to react, which might be an undesired response.

The circuit in Figure 2.14, however, never produces a glitch for the given input

46

00 01 11 10

1

1 010

0

AB

CD

00

01

11

10

1

11 1 1

0000

0

1
A
B

1D
A’

1
1B

D
11

Figure 2.14: A hazard-free circuit implementing F

transition. A single AND gate maintains a steady 1 value throughout the transition,

which in turn keeps the OR gate's output stable at 1. Thus, an observing circuit sees

only the intended (or speci�ed) transitions on the output.

We now de�ne several basic terms, leading to precise de�nitions of function and

logic hazards under multiple input changes. The following de�nitions are adapted from

those in [101].

A transition cube
6 is the cube in an n-dimensional Boolean space spanning a given

start point and an end point (both minterms in that space). Speci�cally, a transition t

from start point A to end point B is denoted [A, B]. t embodies a set of variable changes,

namely, those variables whose values di�er between A and B. As expected, t contains all

minterms that can be reached along any minimum-length path from A to B (i.e. under

any ordering of the individual variable changes).

We de�ne the open transition cube [A, B) as the set of minterms [A, B]−B. This

consists of the set of maximal sub-cubes spanning all minterms in [A, B] except B.

A Boolean function f(x) undergoes a static transition for [A, B] i� f(A) = f(B).

On the other hand, when f(A) �= f(B), f is said to undergo a dynamic transition. Ordi-

narily, we only consider transition cubes over which f is completely de�ned; embedded

6We often use the terms transition and transition cube interchangeably, where no ambiguity arises.

47

0

1

0

0

0

0

--

00

01

11

10

10

AB

C

Figure 2.15: Function exhibiting a static-0 function hazard

don't-care points are not allowed. We speak of 0→ 0 transitions when f(A) = f(B) = 0,

1→ 1 transitions when f(A) = f(B) = 1, and so on. 0→ 0 transitions are often referred

to as static-0 transitions, and 1→ 1 transitions as static-1 transitions.

A function hazard exists for function f during transition t i� f does not change

(weakly) monotonically for some path through t.

De�nition 2.2 A static function hazard exists for f during t = [A, B] i� a) f(A) =

f(B) and b) ∃C ∈ [A, B] such that f(C) �= f(A).

A dynamic function hazard exists for f during transition t = [A, B] i�

1. f(A) �= f(B)

2. ∃C ∈ [A, B) such that C �= A and f(C) = f(B) and

3. ∃D ∈ [C, B) such that D �= C and f(D) = f(A).

In other words, there exists a path from A to B for which f must change three times.

Figure 2.15 and Figure 2.16 depict a pair of functions having static and dynamic function

hazards. For each, the path that manifests that hazard is also shown.

If a function f has a function hazard for a given transition, it is always possible to

�nd an assignment of gate delays that causes any implementation to trace the hazardous

path, thereby producing an output glitch. As a result, in the sequel, we restrict attention

to logic implementations of functions that are function-hazard-free.

48

1

1

0

0

0

1

--

00

01

11

10

10

AB

C

Figure 2.16: Function exhibiting a dynamic function hazard

A combinational logic circuit C implementing a function f has a logic hazard for

transition t i� there exists some assignment of gate delays for which the output does not

change (weakly) monotonically during t. That is, C has a logic hazard if its output will

glitch during t, given an arbitrary arrangement of gate delays.

De�nition 2.3 Circuit C has a static logic hazard for t = [A, B] i�

1. f(A) = f(B), and

2. C's output is not monotonic under some delay assignment

The circuit of Figure 2.13 has a static-1 logic hazard.

De�nition 2.4 Circuit C has a dynamic logic hazard for t i�

1. f(A) �= f(B), and

2. C's output does not change monotonically under some delay assignment

It is worth noting that in general a given function f will be function-hazard-free for

some transitions, but not others. Likewise, a circuit C implementing a function f may

exhibit logic hazards only for certain transitions. The latter fact is quite important to

the synthesis of asynchronous circuits.

49

Conditions for a Hazard-Free Two-level SOP Implementation

We now present the conditions for logic hazard-freedom of a two-level sum-of-products

implementation of a Boolean function under multiple input changes, as formulated by

Nowick and Dill [101].7

Theorem 2.5 A sum-of-products P =
∑

pi implementing f is always static-hazard-free

for static-0 transition t.

For example, the trio of products in Figure 2.17 is static-hazard-free for the static-0

transition from 000 → 001 (not shown in the �gure).

Theorem 2.6 A sum-of-products P =
∑

pi implementing f is static-hazard-free for

static-1 transition t i� there exists some product pi which completely contains t.

The trio of products in Figure 2.17 is static-hazard-free for the static-1 transition from

101 → 111 (not shown).

Theorem 2.7 A sum-of-products P =
∑

pi implementing f is dynamic-hazard-free for

a 0→ 1 (resp.. 1→ 0) transition t i� every product pi that intersects t contains the end

(respectively, start) point.

The pair of products {AC, BC} in Figure 2.17 is dynamic-hazard-free for the 1 → 0

transition from 111 → 001.

As a consequence of the last condition, if P implements f , the maximal 1 → 1

sub-transitions of a dynamic transition t will be hazard-free if P is dynamic hazard-free

for t. For a proof of this fact, see [101].

The following de�nitions are useful in setting up the covering problem in the next

section.

7We restrict attention to sensible covers in which no product contains a literal and its negation.

50

De�nition 2.8 The required cubes of f for a set of transitions T are the transition cubes

of Theorem 2.6 (for static-1 transitions) and the maximal static-1 sub-cubes described by

Theorem 2.7 (for dynamic transitions).

The required cubes for the dynamic transition of Figure 2.17 are the cubes AC and BC.

Required cubes are so named because each must be contained by some product

for a two-level SOP cover to be logic-hazard-free.

De�nition 2.9 The privileged cubes of f for a set of transitions T are the transition

cubes of Theorem 2.7.

Privileged cubes serve to constrain the set of implicants that can be used in logic-hazard-

free two-level SOP implementations. In particular:

De�nition 2.10 A product p illegally intersects a privileged cube π i� it intersects π but

does not contain its start point.

A product that illegally intersects a privileged cube may turn on in the middle of a transi-

tion, thereby introducing a glitch. In the circuit of Figure 2.17, for example, the product

A′B intersects the privileged cube at 011, causing a glitch should the input changes trace

a path through that point. Clearly, products that illegally intersect privileged cubes

cannot be used in hazard-free SOP implementations.

Illegal intersections can sometimes be avoided in one of two ways: 1) by using a

smaller implicant, or 2) by using a larger implicant. We examine each possibility in turn.

The �rst solution is to reduce the implicant to one that does not intersect the

transition at all. In the case of Figure 2.17, the implicant A′BC ′ avoids the illegal

intersection. The smaller implicant is not hazardous because it does not turn on at

all during the given transition. Due to the potentially complex relationships among

transitions, however, it may be impossible to �nd a smaller product which has no illegal

51

C

A0

1

00 01 11 10

C

B

1

1 0

10

10

0
1

A’
B

privileged cube

BC

A

Figure 2.17: An illegal intersection and resulting dynamic logic hazard

intersections.8

The second solution is to use a larger implicant which contains the start point,

avoiding the illegal intersection. Again, such an implicant does not always exist, as shown

in our example; the larger product B is not even an implicant of f .

Some functions have no hazard-free implementation for a given set of transitions,

even if they are function-hazard-free. Consider Figure 2.18, for example, in which a

required cube for one transition illegally intersects the privileged cube of another. This

property is a key di�erence between hazard-free and ordinary 2-level logic minimization;

the latter always has a solution. However, many hazard-free minimization problems

encountered in practice do have solutions.

Hazard-freedom is not solely the concern of logic minimization. This is so because

up-stream transformations such as state minimization and state encoding play a role

in de�ning the functions and transition sets presented to hazard-free logic minimization.

These transformations must therefore be engineered so as to guarantee that a hazard-free

logic implementation exists. For example, the Uclock, 3D, and Minimalist synthesis

paths take great care in early synthesis steps to ensure hazard-free logic.

8For example, the smaller product may illegally intersect another transition which the larger one does

not, if the larger product contains that transition's start point.

52

0

1

00 01 11 10

1

1 0

10

10

0

privileged cube

BC

A required cube

Figure 2.18: A function having no hazard-free implementation

Exact Two-Level Hazard-Free Logic Minimization

Given the above correctness conditions, we now de�ne the problem of �nding a minimal

logic implementation, i.e., the problem known as hazard-free logic minimization. Because

exact hazard-free two-level logic minimization is central to several parts of this thesis, we

also brie�y review a solution method developed by Nowick [101]. The formulation uses

the framework of ordinary two-level logic minimization [117], but extends it in several

signi�cant ways.

The problem is de�ned thus:

Problem 2.11 Given a Boolean function f and a set T of transitions, �nd a sum-

of-products of minimum cardinality that implements f and is logic-hazard-free for all

transitions in T , if any such sum-of-products exists.

The classic Quine-McCluskey method for exact two-level logic minimization (the basis

for most exact methods) uses prime implicants to implement the ON-set of the function

under consideration. First, prime implicants are formed from the function's speci�cation.

Next, the selection of prime implicants to cover all ON-set minterms is cast as a unate

covering problem. An implicant is said to cover a minterm if and only if the implicant

contains the minterm.

Thus, the components involved in the covering problem are:

53

Covering objects Prime implicants

Objects to cover ON-set minterms

The solution to the covering problem is thus a minimum-cardinality selection of prime

implicants that covers all ON-set minterms.

Exact two-level hazard-free logic minimization proceeds along the same path. Note

however that the minimization problem is de�ned not only with respect to a Boolean

function, but also with respect to a set of speci�ed transitions.

The steps for two-level hazard-free logic minimization are as follows:

1. The set of required cubes and privileged cubes are formed from f and T . These

cubes capture the covering requirements mandated by the above theorems.

2. A novel form of prime implicant, the dynamic hazard-free prime implicant (DHF-

prime) is generated. DHF-primes are maximal implicants that do not illegally

intersect the privileged cube of any transition.

3. A unate covering problem is formed, using the following components:

Covering objects DHF prime implicants

Objects to cover Required cubes

4. The unate covering problem is solved, resulting in a selection of DHF-primes which

cover f without hazards, if a solution exists.

2.3 Sequential Hazards

In addition to the combinational hazards of the previous section, asynchronous synthesis

must deal with sequential hazards. This section describes the two basic types of sequential

hazards, namely, critical races and essential hazards. As mentioned earlier, critical races

54

S0

S1

S2

S3

00 01 11 10

S0,0

S0,0

S2,0

S2,0

S0,0

S3,1

S1,1

S1,1

S3,1

S0,0

S1,0

S0,0 S3,0

S3,0 111

110S3,0

S1,1

000

010

Figure 2.19: Asynchronous �ow table and an encoding exhibiting a critical race

are easily avoided through the use of a proper encoding. Tracey's classic method for

deriving such an encoding is presented.

2.3.1 Critical Races

An asynchronous sequential circuit has a critical race [68, 139] when an input transition

causes two changing state variables to �race,� such that the machine's state depends on

the outcome of the race. Critical races can be prevented by judicious encoding [137].

As an example, consider the asynchronous �ow table and 3-bit state assignment

in Figure 2.19. Notice that the transition in column 11 from S0 to S3 involves a change

to all three state bits. Note also that state S1 is stable, while S2 is not. Thus, depend-

ing upon which state bit change propagates more quickly, either intermediate state 010

(corresponding to S1) or 110 (corresponding to S2) will be reached. In the former case,

the machine incorrectly settles in S1; in the latter, the machine correctly settles in S3.9

A judicious (critical race-free [137]) encoding avoids this hazardous behaviour by

ensuring that no two such potentially interfering transitions share intermediate states.

Note further that no choice of logic implementation alone can prevent this problem.

Two distinct cases exist, both arising from the interference between two transitions

in a given input column:

9In fact, depending on the nature of the delay elements used, it is also possible for the machine to

oscillate between two states.

55

1. an unstable transition and another unstable transition [column 00 in Figure 2.19]

2. a stable transition and an unstable transition [column 11 in Figure 2.19]

De�nition 2.12 [�Tracey� Conditions] An encoding for a given �ow table is critical

race-free i� in each input column, for all transitions sa → sb and sc → sd (where sb �= sd),

there exists some state bit which has a 0 value for sa, sb and 1 for sc, sd.

The state bits satisfying the above necessary and su�cient condition ensure that the

portions of the Boolean N-space spanned by the two transitions are kept distinct. Thus,

the resulting machine is guaranteed to settle in the correct destination state.

The classic procedure for determining a minimum-length encoding satisfying the

above constraints is presented in Chapter 3.

Types of State Assignment

There are many possible kinds of state assignments; for a partial taxonomy, see [139].

Perhaps the most common class is that of Unicode Single-Transition-Time (USTT) as-

signments, which:

1. assign a single code to each symbolic state (unicode), and

2. employ only direct transitions which do not multi-step through intermediate binary

states (single-transition-time).

2.3.2 Essential Hazards

The third issue confronting asynchronous sequential synthesis is that of essential hazards.

As mentioned earlier, the problem arises in certain machines when some arrangement of

circuit delays allows a state change to complete before the input change is fully processed.

This problem is an inherent property of the sequential function [139], and cannot be

avoided by judicious encoding or logic implementation.

56

S2

S1

S0

0 1

S0 S1

S1S2

S2

S3

S3

S3*

normal path

Legend:

apparent path when input change delayed

Figure 2.20: Asynchronous �ow table having an essential hazard

Example 2.13 The simple �ow table in Figure 2.20, taken from [139], illustrates the

problem. If, during the transition from state s0 to s1 (upon input transition 0 → 1),

the state change is seen by the next-state logic before the input change, the next-state

logic will e�ect a change to state s2. Once the original input change �nally propagates

through the next-state logic, an incorrect transition to state s3 takes place. Observe that

this entire sequence of events was initiated by a single valid transition on the circuit's

input.

Fortunately, a simple solution is always possible. In particular, su�cient delays in the

feedback path will ensure that the input change is completely processed before the state

change. In terms of the example of Figure 2.20, the delay ensures that the next-state

logic will see the total state 〈1 s0〉 rather than the unintended 〈0 s1〉.

2.4 Input Encoding

A central topic for this thesis is that of the input encoding problem, which plays a

pivotal role in most of the algorithms developed herein: symbolic logic minimization,

state assignment, and state minimization. This section introduces the problem, as it was

�rst presented.

The input encoding problem was posed by De Micheli in [40] as one of encoding the

57

0 ADD 0

0 SUB 1

0 MUL 0

1 ADD 0

1 SUB 1

1 MUL 1

(a) a symbolic function

ADD = 00

SUB = 10

MUL = 11

(b) an encoding

- 10 1

1 1- 1

(c) the binary cover

Figure 2.21: A symbolic function, an encoding for the symbolic inputs, and corresponding

binary cover

symbolic inputs of a combinational function such that output logic cardinality is exactly

minimum, under a given cost function. Figure 2.21 depicts such a symbolic function

with one binary input, the symbolic input to be encoded, and one binary output. To

its right appear an optimum encoding and a 2-level logic cover for the binary function

that results from the encoding. Although De Micheli's presentation dealt exclusively

with 2-level SOP logic and product cardinality, the problem also extends naturally to

multi-level logic and other forms.

Several methods have been proposed for solving the input encoding problem, in-

cluding an exact method by De Micheli [40]. This approach uses mvi minimization [118]

as a form of symbolic logic minimization to derive a symbolic logic cover, using a result

due to Sasao [123]. This symbolic cover is then used as the basis for a constrained en-

coding step. In particular, encoding constraints in the form of dichotomies [137], [25]

are generated that ensure the existence of a binary logic cover of identical cardinality

and fundamentally the same structure. A straightforward instantiation of the symbolic

cover with the encoding produces the binary logic cover. If exact mvi minimization was

performed, the result is an exact solution to the input encoding problem. That is, the

binary cover has exactly minimum cardinality over all possible encodings.

To illustrate the process, Figure 2.22 displays again the symbolic function of Fig-

ure 2.21. From this, a minimum-cardinality symbolic logic cover of two products is

formed, shown to the function's right. Encoding constraints are generated which ensure

58

0 ADD 0

0 SUB 1

0 MUL 0

1 ADD 0

1 SUB 1

1 MUL 1

(a) a symbolic function

1 SUB,MUL 1

- SUB 1

(b) a minimum symbolic cover
ADD = 00

SUB = 01

MUL = 11

(c) an optimum encoding

1 -1 1

- 01 1

(d) the binary cover

Figure 2.22: A symbolic function, a minimum symbolic cover, an encoding, and instan-

tiated cover

that the symbolic cover, when instantiated with the resulting codes, is a cover for the

corresponding binary function. Such an encoding appears in Figure 2.22. The minimum-

cardinality instantiated binary cover appears at right, and is obtained by merely �plug-

ging� the state codes into the symbolic input �eld.

2.5 Unate and Binate Covering

This section de�nes the unate and binate covering problems. These abstract problems

appear at the core of many VLSI CAD algorithms, for example, two-level logic minimiza-

tion, multi-level logic minimization, state encoding, and state minimization.

The unate covering problem is stated as follows [117]:

Problem 2.14 (Minimum Unate Covering) Given a binary matrix A and a cost cj

for each column of A, �nd a binary row vector x such that A · xT ≥ [1, 1, . . . , 1]T and the

sum
∑m

j=1 xjcj is minimum.

Row ri of A is said to be �covered� by those columns cj for which Ai,j = 1. Thus, the

problem can be thought of as �nding a selection of columns (as signi�ed by the 1's in the

solution vector x) which cover all rows of A and has minimum cost.

59

A =



1 1 0 0 0 0
0 1 1 0 1 0
1 0 1 0 1 1
0 0 1 1 0 1


 E = (c1 + c2)(c2 + c3 + c5)(c1 + c3 + c5 + c6)(c3 + c4 + c6)

Figure 2.23: A unate covering matrix A and the equivalent POS expression E

Minimum unate covering is also frequently cast as a restricted form of the minimum-

cost satis�ability problem.

Problem 2.15 (Minimum-Cost Satis�ability) Given a set of decision variablesX =

{x1, . . . , xn}, a corresponding set of weights W = {w1, . . . , wn}, and a Boolean POS ex-

pression E over X, �nd the minimum-cost assignment of X for which E is true.

In particular, for unate covering, each column is associated with a Boolean variable, for

which a true value corresponds to the selection of the corresponding column. Hence, the

POS expression has one disjunctive clause for each row ri of A, of the form
∑

cj, ∀j such

that Ai,j = 1. It is easy to see that the expression so formed is in fact unate, giving rise to

the name. Figure 2.23 shows a covering matrix and the corresponding POS expression.

The classic algorithm [117] for solving the unate covering problem applies various

reductions, such as block partitioning, essential elimination, row and column dominance,

and so on, until a cyclic core is reached. At this point, a branching operation considers

selecting each remaining column in turn, discarding all but the lowest-cost alternative.

In part because unate covering is NP-complete [58], high-quality algorithms such

as Mincov [118] (used within Espresso-Exact and Hfmin) use careful cost-bounding

calculations and branching heuristics to prune the search tree as much and as early as

possible. In fact, even recently-introduced powerful implicit methods [30, 70] use many of

the same reduction and bounding operations, although the implementation details di�er

considerably, due to the nature of the data structures they employ.

An important generalization of the unate covering problem, binate covering,

also appears in many places in VLSI design. Its ability to model implications among

60

the selection of various objects, for example, is particularly useful. Most notably for the

purposes of this thesis, it appears in the classic formulation of state minimization [60, 70],

and is thus discussed in Chapter 4.

61

Chapter 3

CHASM: Optimal State Assignment

for Asynchronous State Machines

This chapter presents the �rst contribution of this thesis, namely, CHASM (Coding

for Hazard-free ASynchronous Machines), the �rst systematic method for the optimal

state assignment of asynchronous state machines. In other words, Chasm chooses a

state assignment for which the logic after encoding is optimum under some cost function.

Because Chasm operates on asynchronous machines, it must ensure that the resulting

machine implementation is both critical race-free and hazard-free.

The structure of the chapter is as follows. First, we de�ne the generic problem of

optimal state assignment, and relate it to the problem solved by Chasm in Section 3.1.

Then, some background on the problem of optimal state encoding in the synchronous

domain is given in Section 3.2. Particular attention is paid to two synchronous methods,

Kiss and Nova, whose contributions are leveraged by Chasm. Section 3.2 also reviews

previous work on state assignment for asynchronous machines. Chasm itself is the sub-

ject of subsequent sections. Section 3.3 de�nes the precise problem solved by Chasm,

and o�ers an overview of the method. Next, Section 3.4 gives a brief introduction to

multiple-valued input (mvi) hazard-free logic minimization, which is a cornerstone in the

62

Chasm method. Then, the method is described, and the key algorithms are presented

in detail, in Section 3.5. The application of the method to implementations employing

outputs as fed-back state variables appears in Section 3.6. Core theoretical results of

Chasm's correctness and optimality appear in Section 3.7. Finally, experimental results

in Section 3.8 demonstrate Chasm's performance relative to competitive methods.

3.1 Overview of CHASM

We begin the section by de�ning the optimal state assignment problem:

De�nition 3.1 (Optimal State Assignment) For a given FSM, �nd a state assign-

ment whose corresponding implementation has minimum cost over all possible state as-

signments.

Optimal state assignment is important because the state encoding can have a signi�cant

impact on the quality of the logic implementation [146, 44].

Many cost metrics are possible, including area, performance, power, as well as

complex cost functions combining several simpler metrics. Likewise, many logic imple-

mentation structures are possible, such as SOP, XOR-based, and other multi-level forms.

Because of the extremely large number of implementations when considering all logic

forms, a single form is customarily selected. The minimum cost is then de�ned relative

to the space of implementations using that form of logic.

Synchronous state assignment methods are inadequate for asynchronous designs,

however, since their application may result in machines having both critical races and

logic hazards. This section thus considers two related problems in the synthesis of asyn-

chronous state machines: critical race-free state encoding and hazard-free logic minimiza-

tion.

In many previously existing asynchronous synthesis trajectories [150, 102], these

problems are solved separately, so that state assignment is typically performed without

63

regard to the optimality of the logic implementation. Such a decoupling often leads to

unnecessarily expensive or slow solutions. (A more detailed treatment of previous work

is given in Section 3.3.1.)

Chasm builds on algorithms recently introduced to solve two constrained op-

timal state assignment sub-problems for asynchronous state machines [54]. The �rst

solved an optimal critical race-free assignment problem, but ignored hazard issues. The

second solved a combined hazard-free/critical race-free assignment problem limited to

single-input change (SIC) asynchronous state machines. Chasm generalizes this work,

and solves a combined hazard-free/critical race-free assignment problem for the class of

multiple-input change (MIC) state machines known as burst-mode [103, 150, 102]. Fur-

ther, Chasm addresses the optimal encoding of machines employing fed-back outputs,

which often simplify the next-state implementation. Finally, Chasm o�ers a variety of

operating modes to help best target the application's cost function.

A key contribution of this method is that it produces exactly minimum hazard-

free (two-level) output logic, over all possible critical race-free assignments. This

result is signi�cant since the latency of an asynchronous machine is determined by its

output logic: there are no clocks or latches. For next-state logic, the approach leads only

to an approximate solution. However, in practice, high quality solutions are produced

for next-state logic as well, ranging up to 17% overall improvement. This is the �rst

general method for the optimal state assignment of hazard-free MIC asynchronous state

machines.

3.2 Background

3.2.1 Optimal State Assignment for Synchronous Machines

This section reviews a successful approach to optimal state assignment for synchronous

machines, Kiss, on which Chasm is partly based.

64

The goal of the Kiss method is to �nd a binary encoding of the machine's symbolic

state that yields a minimum cardinality sum-of-products implementation.

In Kiss [40], the optimal state assignment problem is cast as an instance of the

input encoding problem. Input encoding, as described in Chapter 2, has been successfully

applied by several researchers to optimal state assignment for synchronous FSM's; see,

e.g., [40], [146], or [149].

Intuitively, the Kiss method subjects the �ow table to a simple transformation,

after which the input encoding method described in Section 2.4 can be directly applied.

The Kiss algorithm has four steps:

1. Transform �ow table into �input-encoding form�

2. Generate a minimal symbolic logic cover

3. Generate a set of encoding constraints

4. Solve the encoding constraints to produce a state assignment

Flow Table Transformation

A simple transformation is needed before multiple-valued input minimization can be

applied as it was in Section 2.4. This is because mvi minimization does not handle

symbolic outputs such as the FSM's next-state in the present problem. Thus, the table

is �rst transformed so that each next-state is treated as a distinct binary function.

The transformation is depicted in Figure 3.1 for a simple FSM. The next-state

is �1-hot� encoded; that is, each of the N next-states is assigned a unique N-bit code

consisting of a single 1 and N − 1 0's. For example, next-state A is assigned 1000; B is

assigned 0100, and so on.

With the �ow table now in �input encoding form�, the procedure continues with

the input encoding method, exactly as described in Section 2.4.

65

����
����
����
����D,0

y1,y0 y1,y0

invalid
state codes

valid
state codes

B

D

C

A

00 01 11 10

A,0

B,0

A,0

D,1 D,1 D,0

B,0

B,0

B,1

A,0 A,0

A,0

C,1 C,0

C,0

inputs xy

11

10

01

00 00

01

10

11

OFF-set point

p2

p1

(a) A simple FSM and two encodings

D

C

00 01 11 10

1000,0

0100,0

1000,0

0001,1 0001,1 0001,0

0100,0

0100,0

0100,1

1000,0 1000,0

1000,0

0010,1 0010,0

0010,0

inputs xy

p2

p1

0001,0

B

A

(b) FSM after transformation

Figure 3.1: A simple FSM and its input-encoding transformation

Symbolic Logic Minimization

Having cast the symbolic logic minimization problem as ordinary mvi minimization,

step two solves the problem using espresso-mv [118]. An exactly minimum-cardinality

symbolic cover, consisting of a set of symbolic implicants, is thus formed.

The key to the claim of optimality in this approach is the derivation of a binary

implementation of the machine by a simple one-for-one mapping (called instantiation)

of the minimum symbolic cover. In so doing, the binary implementation's cardinality

is guaranteed to be equal to that of the symbolic cover. Conversely, the cardinality

of any given symbolic cover is a direct measure of the cardinality of the corresponding

binary implementation. Thus, symbolic logic minimization actually serves to minimize

the cardinality of the binary implementation as well.

Because of the transformation applied above, however, input encoding can only

approximate optimal state assignment. This is true in part because mvi minimization can

express only a subset of the set of valid binary logic realizations. In particular, it cannot

model logic implementations which share product terms across di�erent next-state bits.

This is the case because any minterm in the ON-set of a given binary next-state function

is by de�nition in the OFF-set of every other next-state function. As a result, input

66

encoding is an approximate, though useful, solution to optimal state assignment.

Clearly, for this approach to work properly, the instantiation process must produce

a valid logic cover. Unfortunately, the instantiation of a given symbolic cover with arbi-

trary state codes often produces a faulty logic implementation. Speci�cally, instantiated

implicants may hit the OFF-set.

The state table of Figure 3.1 and the given 2-variable state assignment illustrate

the problem caused by instantiation with arbitrary encodings. A minimum-cardinality

symbolic cover for the output consists of 2 symbolic implicants: p1 = 〈0− {D}〉 and p2 =

〈11 {B,C}〉.1 Implicant p1 spans the single symbolic state, D, and its instantiation is

therefore the binary product p′1 = 〈0 ∗ 11〉 (by simply substituting D's code y0y1 = 11for

p1's present-state �eld). However, implicant p2 spans the pair of symbolic states{B,C},

which forms a state group. The smallest binary cube which contains the codes assigned

to B and C (called p2's group face) is the supercube of those two codes, namely, −−.

The resulting instantiated binary product, p′2 = 〈11 −−〉, is not an implicant, since it

contains the OFF-set minterm 〈11 00〉 corresponding to the OFF-set minterm at total

state 〈11 {A}〉. Figure 3.2 shows the situation in the Boolean half-space corresponding

to y = 1 (the middle two input columns of Figure 3.1 (b)).

Encoding Constraint Generation

The algorithm's third step solves the problem, by imposing face embedding constraints

on the encoding [40]:

For each symbolic implicant p (with state group Sp) in the minimum symbolic

cover, the group face of p must not contain the code of any state s not in Sp.

Face embedding constraints solve the problem by preventing instantiated implicants from

hitting the OFF-set. Recall that symbolic prime implicants are by de�nition maximally

1For simplicity, we consider only single-output implicants in this example; however, in general the

method produces multiple-output implicants.

67

OFF-set

Legend:
ON-set

y1

y0

xf(x, y0, y1)

p2A
DB

C

Figure 3.2: Diagram depicting improper encoding of table in Figure 3.1

expanded. In particular, any further expansion would result in an intersection with the

OFF-set. Hence, they must not be allowed to span any state after encoding that they

did not span before encoding.

Face embedding constraints can be described by dichotomies [137, 149].

De�nition 3.2 (Dichotomy) Given a set S (e.g. of states), a dichotomy is a biparti-

tion (T ; U) of a subset S ′
of S.

In a given state assignment, a binary state variable yi covers the dichotomy (T ; U) if

yi = 0 for every state in T and yi = 1 for every state in U (or vice-versa) [139, 137].

Example 3.3 We illustrate the set of dichotomies needed to ensure a valid binary cover

using the table of Figure 3.1. The dichotomy constraints needed for the minimum output

cover of that table are as follows. For p1, whose state group {D} is singleton, only trivial

dichotomies result. That is, only encodings that do not assign a distinct code to each

state could result in another state overlapping {D}. For p2, whose state group is {BC},

the constraints (BC; A) and (BC; D) are generated. These ensure that p2 does not hit

the OFF-set points in states A and D, respectively.

68

Step three thus forms a set of n-to-1 dichotomies, i.e., between each state group Sp (of n

states) and each disjoint state s �∈ Sp, using Algorithm 1.

Algorithm 1 Face embedding constraint generation

for each symbolic implicant p in the minimum symbolic cover {

for each state s not in state group Sp {

generate face embedding constraint (Sp; s);
} }

Encoding Constraint Solution

The fourth step �nds a state assignment that satis�es the encoding constraints. Several

exact dichotomy solvers have been developed which produce minimum-length assign-

ments [149, 122].

Example 3.4 We now give an encoding which satis�es the face-embedding constraints.

Speci�cally, the encoding labelled �valid� in Figure 3.1 satis�es the encoding constraints

for the symbolic cover consisting of {p1, p2}. In particular, the constraint (BC; A) is

covered by state bit y0, since y0 is assigned 1 for states B and C, and 0 for state A. The

constraint (BC; D) is also covered by state bit y0, whose value is 1 for B and C, and 0

for D.

After state assignment, instantiation produces the binary logic implementation. Instanti-

ation proceeds by transforming the implicants in the minimum symbolic cover produced

in step two, one by one, as described above. This produces a binary cover of cardinality

equal to that of the minimum symbolic cover.

Example 3.5 The instantiated output cover for Figure 3.1 is {p′1, p′2}, where p′1 =

〈0− 10〉 and p′2 = 〈11 − 1〉.

69

It is sometimes possible to produce a binary cover smaller than that obtained by instan-

tiation by passing the instantiated machine through a binary logic minimizer [40]. This

is a direct re�ection of the fact that input encoding is only an approximation to opti-

mal state encoding. In particular, although the encoding was not constructed to allow

product sharing between state bits, the encoding produced may in fact allow it. If so, a

smaller binary cover may result.

Optimal state assignment of synchronous machines has been an active area of

research. De Micheli's formulation [40] as the input encoding problem approximates

optimal state assignment for SOP logic implementations. Other formulations, e.g., as

an output encoding or input/output encoding problem have also been developed [38, 147,

122, 149].

3.3 Problem Statement and CHASM Overview

We now formulate the synthesis problem to be solved by Chasm, and give an overview

of the solution method. Details on the individual steps appear in Section 3.5.

Problem 3.6 (Optimal Critical Race-Free Assignment for Burst-Mode FSM's)

Find a USTT critical race-free assignment for a burst-mode �ow table having a hazard-

free sum-of-products implementation of minimum cost.

Chasm's synthesis method follows the three basic steps of the Kiss algorithm, but with

modi�cations. Like the KISS [40] method, the problem is formulated as an input encoding

problem.

In step 1, Chasm solves a symbolic hazard-free minimization problem for

asynchronous synthesis. In this formulation, the symbolic functional speci�cation is

transformed as in Kiss to a suitable mvi form, and minimized to obtain a minimum

symbolic logic cover. Unlike Kiss, however, a hazard-free mvi logic minimization proce-

dure must be used, namely, Hfmin (described below in Section 3.4).

70

After symbolic minimization, a constrained encoding step is performed. En-

coding constraints in the form of dichotomies [137, 122] are introduced, which must

be satis�ed in the context of MIC asynchronous state machines. These constraints are

related to the critical race-free constraints introduced by Tracey [137] and the face-

embedding constraints introduced by De Micheli [40], but subsume both.

Finally, the encoding constraints are solved using exact and heuristic tech-

niques. The exact procedure makes use of an existing tool, Dichot [122], while the

heuristic procedure uses the simulated annealing mode of Nova [147]. For the heuris-

tic problem, Chasm uses a novel partitioning of constraints into compulsory and non-

compulsory classes. A weighted annealing algorithm is used to ensure that all compulsory

constraints are satis�ed.

The following section brie�y describes Hfmin, the symbolic logic minimization

method used by Chasm in step one. As described earlier, ordinary mvi minimization

cannot be used, because the logic must be hazard-free for the machine implementation

to work properly.

3.3.1 State Assignment for Asynchronous Machines

The state encoding problem for asynchronous machines has been studied for over 30 years.

Several methods have been proposed for minimum-length critical race-free assignment,

which ignore logic complexity and hazards, e.g. Liu [83] and Tracey [137] targetted USTT

codes, while Saucier [125] and Datta et al. [34] achieved shorter codes with non-STT

assignments. Tan [133] and Saucier [124] proposed race-free STT encoding algorithms

which heuristically minimize next-state logic; however, the former only provides a hazard-

free implementation for SIC operation, and both ignored output logic.

More recent work by Fisher et al. [53] seeks race-free (but non-STT) assignments

for large machines, again heuristically minimizing code length while ignoring logic com-

plexity. Finally, Lam et al. [76] present a greedy algorithm which reduces the number of

71

state bits, but only for a very limited class of delay-insensitive circuits.

3.4 Multiple-Valued Hazard-free Two-Level Logic Min-

imization

This section brie�y presents the basic formulation of multiple-valued hazard-free two-

level logic minimization. This formulation is the basis for a novel method for symbolic

hazard-free logic minimization, Hfmin, which lies at the heart of Chasm. In particular,

Hfmin plays the same role in Chasm that Espresso plays inKiss: it obtains a symbolic

logic cover from which to derive the instantiated binary cover. For a more detailed and

theoretical treatment, refer to Appendix A.

The multiple-valued hazard-free logic minimization formulation given here is a

straightforward extension of the binary-valued (bv) two-level hazard-free logic minimiza-

tion problem posed and solved by Nowick and Dill [106]. It generalizes the key concepts

of the binary-valued framework, e.g., multiple-input change transitions, privileged and

required cubes, DHF implicants, and so on, to multiple-valued domains. With these core

analogues in place, the remainder of the framework works identically.

The following makes use of the de�nitions of mvi minterms, product terms, con-

tainment, and so on, given in Section 2.2.

First, we generalize the notion of a multiple-input change (MIC) transition t to

mvi domains. Such a transition spans all points in the multiple-valued domain that can

be reached during the transition from the start point to the end point. This set of points

constitutes a cube in the mvi domain, and is called the multiple-valued transition

cube.

Example 3.7 Figure 3.3 depicts a binary function over a multiple-valued domain having

two binary inputs (xy) and one four-valued symbolic input, with values A,B,C,D. It

also shows three multiple-input change transitions, t1, t2 and t3. t1 has start point 〈01 B〉

72

t1

t2

t3

0 0 0 0

000

0

00

1 1

1 1

0

B

C

D

A

10110100
xy

1

Figure 3.3: A multiple-valued input function and three multiple-valued transitions

and end point 〈00 A〉, while t2 has start point 〈10 C〉 and end point 〈01 D〉, and t3 has

start 〈11 A〉 and end 〈11 B〉. The transition supercube of t1 is 〈0− {A,B}〉, that of t2
is 〈− − {C,D}〉, and that of t3 is 〈11 {A,B}〉.

When a symbolic input undergoes a change, only the starting and ending values for that

symbolic input are considered reachable. Thus, other symbolic values are not possible

intermediate points. For example, the supercube of transition t3 in Figure 3.3 spans

states A and B, but neither C nor D.

Next, we classify an MIC transition over an mvi domain, according to the value

of the output at the start and end points. The same four types are possible as in the bv

case: 0 → 0 (static-0), 1 → 1 (static-1), and 0 → 1, 1 → 0 (dynamic).

Example 3.8 In Figure 3.3, t1 is a dynamic 1 → 0 transition, t2 is a static-0 (0 → 0)

transition, and t3 is a static-1 (1 → 1) transition.

Now, a multiple-valued function hazard is said to exist for a transition if and only if

the binary output changes non-monotonically for some path from the start point to the

end point lying wholly within the transition cube.

To generalize the notion of logic hazard-freedom to a Boolean sum (OR) of mvi

73

t2

t3t1

0 0 0 0

000

1

10

1 1

1 1

0

B

C

D

A

10110100
xy

privileged cube

required cube1

Figure 3.4: Transitions in a multiple-valued function and their privileged and required

cubes

product terms, we start by extending the concepts of privileged and required cubes to

the mvi domain. An mvi dynamic transition gives rise to an mvi privileged cube

and one or more mvi required cubes, which are the maximal ON-set sub-cubes of the

transition. Likewise, a static-1 mvi transition gives rise to a single mvi required cube

spanning the entire transition, and no privileged cube. A static-0 mvi transition gives

rise to neither a privileged cube nor any required cubes.

Example 3.9 In Figure 3.4, dynamic transition t1 has privileged cube 〈0− {A,B}〉

and required cubes {〈01 {A,B}〉 , 〈0− B〉}. Static-0 transition t2 has neither privileged

cubes nor required cubes. Static-1 transition t3 has no privileged cube but a single

required cube 〈11 {A,B}〉.

With the above de�nitions2, the remaining concepts generalize without further

modi�cation. For example, in Figure 3.5 mvi product 〈−1 A〉 illegally intersects the

privileged cube of t1 because it intersects t1 but does not contain t1's start point. However,

mvi product p3 is an mvi DHF implicant because it does not illegally intersect the

privileged cube of any speci�ed transition. On the other hand, p3 is not an mvi DHF

2along with the standard mvi de�nitions for intersection, containment, and so on

74

t2

t3t1

p2

p1

p4

p30 0 0 0

000

1

10

1 1

1 1

0

B

C

D

A

10110100
xy

1 DHF implicant

privileged cube

DHF prime implicant

Figure 3.5: DHF implicants and DHF prime implicants for an mvi function

prime implicant since it is contained by another DHF implicant (p1). p1 and p2 are

mvi DHF prime implicants.

We now de�ne the conditions for a hazard-free mvi cover. Speci�cally, a sum of mvi

products C is a hazard-free mvi cover for a function f for speci�ed input transitions

if and only if: (a) no cube of C intersects the OFF-set of f , (b) each required cube of f

is contained in some cube of C, and (c) no cube of C illegally intersects any privileged

cube. For example, the pair of implicants {p1, p4} in Figure 3.5 is a hazard-free cover for

the given set of transitions.

It is worth pointing out a subtle but important distinction between the hazard-

free covering problem as formulated here and the classic two-level logic covering problem.

Speci�cally, the above conditions do not require that all ON-set minterms of the given

Boolean function be covered. Rather, only those ON-set minterms that lie within a

speci�ed transition must be covered. In the example of Figure 3.5, the ON-set minterm

at Axy′ lies outside all speci�ed transitions, and therefore need not be covered. In fact,

it is not covered by the DHF prime cover {p1, p4} mentioned earlier.

75

3.5 CHASM Method

We now describe each of the steps in Chasm's method for optimal encoding for asyn-

chronous �ow tables.

3.5.1 Symbolic Hazard-Free Logic Minimization

The �rst step in the Chasm procedure is symbolic hazard-free logic minimization. As

mentioned earlier, this is similar in spirit to the mvi minimization used by Kiss, but

guarantees a hazard-free implementation. The �ow table is �rst transformed as in Kiss

into �input encoding form,� so that the next-state is represented as a set of distinct

binary functions. Then, the method of Section 3.4 is applied, which produces a symbolic

hazard-free logic cover for the �ow table. The resulting cover serves as the basis for the

encoding constraints described in the next section.

3.5.2 Encoding Constraints

In this step, encoding constraints are generated based on the symbolic cover. These

constraints ensure that the cover will be correctly instantiated.

The face embedding constraints used by Kiss for synchronous machines are insuf-

�cient for asynchronous machines for two reasons: (1) they do not consider the transient

behavior of an asynchronous state machine, and (2) they do not consider hazard-free logic

requirements. Therefore, face embedding constraints must be generalized. We consider

these two problems in turn in the sequel.

Functional Correctness

A new condition concerns the functional correctness of the output and next-state imple-

mentations in the presence of state transitions.

76

Example 3.10 Consider a symbolic implicant 〈I1 s0, s1, s2〉 for some binary output func-

tion z. Suppose there is a state transition s3 → s4 in input column I1 during which z

should be held at 0. With the state assignment

s0 = 0000, s1 = 1000, s2 = 1100, s3 = 0110, s4 = 0101

the corresponding instantiated binary implicant is 〈I1 −−00〉. As a result, during the

s3 → s4 transition, the state variables can reach the transient value 0100 which would

turn on the given implicant, incorrectly forcing the output value to 1. This problem occurs

even though the face embedding constraints for state group {s0, s1, s2} are satis�ed.

In general, during a transition of two or more state variables, transient points in the total

state space are reached which do not correspond to any symbolic state. The possibility

arises that the group face for some symbolic product term implementing a binary output

may intersect such a transient point, thus inadvertently turning on the product term

during the state transition. If the intended value of that output during the state transition

is 0, the output function will be incorrectly implemented.

A similar problem exists for the next-state function. This case requires a trivial

generalization of the condition: if the value of the symbolic function (i.e. the destination

state) during the transition di�ers from that which the product term implements, the

machine will be incorrectly realized.

The solution is to add new dichotomy constraints to avoid problems with such

state transitions. Unlike the face embedding constraints, these dichotomies are N-to-

2. For example, the constraint needed for the above example is {s0, s1, s2; s3, s4}. The

constraint contains the state group of the given symbolic product ({s0, s1, s2}) on the

left-hand side, and the pair of states de�ning the state transition ({s3, s4}) on the right.

The constraint ensures that the transition and the instantiated implicant lie in di�erent

77

halves of the total state space3. Hence, the instantiated product will not turn on during

the transition.

The above constraints do not directly consider critical race-free encoding con-

straints per se. In Section 3.7, however, it will be shown that the above constraints in

fact subsume all Tracey constraints, and therefore ensure a critical race-free assignment.

In summary, an asynchronous design di�ers from synchronous designs, since its

logic is sensitive to the intermediary states traversed during state transitions. While face

embedding constraints ensure that an implicant does not intersect an OFF-set minterm,

generalized constraints are needed for asynchronous machines to ensure that an implicant

does not intersect a cube of OFF-set minterms that may be traversed during a state

change.

Logic Hazards

The second di�erence between asynchronous constraints and face embedding constraints

addresses the need to avoid dynamic logic hazards. Recall that in asynchronous synthesis,

a DHF-prime implicant must not illegally intersect any privileged cubes. It is possible,

however, for a symbolic DHF implicant to intersect a privileged cube after instantiation.

The problem is solved by adding encoding constraints to ensure that a DHF mvi

prime implicant has no illegal intersections after instantiation. For example, given a sym-

bolic DHF-prime implicant with state group {s0, s1, s2} and a privileged cube spanning

state s3, a simple N-to-1 dichotomy {s0, s1, s2; s3} must be generated.

For the class of burst-mode machines under consideration, such hazard-free con-

straints are degenerate. As indicated earlier, in a burst-mode �ow table, dynamic transi-

tions only occur during input bursts: i.e., within a single state. Therefore, each privileged

cube has a singleton state group. However, such a dichotomy is already generated as a

face-embedding constraint. Therefore, no further constraints need to be generated.

3relative to the state bit that satis�es the dichotomy constraint

78

Constraint Generation Algorithm

The constraint generation algorithm for Chasm is as follows. In addition to the Kiss

face embedding constraints, Algorithm 2 is used. This algorithm generates n-to-2 di-

chotomies, where t is a state transition from an unstable to a stable state.

Note that Algorithm 2 tacitly makes use of the fact that next-states are treated

by input encoding as individual binary functions. In particular, an �output o that p

implements� (in line 4 of the algorithm) can in fact refer to a next-state function. The

correctness of the algorithm thus relies on the fact that a given next-state function is

de�ned to be 0 wherever the machine's speci�ed next-state di�ers.

Algorithm 2 Chasm encoding constraint generation

for each implicant p in the symbolic cover {

for each state transition t {

if p intersects the input column of t {

if some output o that p implements has value 0 during t {

generate dichotomy { stategroup(p); states(t) };
} } } }

Encoding Constraints for Output-Targetted State Assignment

We now describe a special case of the above encoding algorithm, for which we can make

stronger claims of optimality. Particularly, recall that input encoding precisely models

output logic, but only approximates optimal state encoding. Thus, focusing attention

exclusively on the output logic gives an even more potent method. This is accomplished

by generating on behalf of next-state only those constraints that are necessary to ensure

a valid implementation. In particular, Algorithm 2 can be modi�ed, as shown in Algo-

rithm 3. The sole di�erence between this and the earlier algorithm is the restriction to

binary outputs in the conditional clause of the fourth line of the algorithm.

To these constraints are added both face embedding constraints (for output im-

plicants) and Tracey constraints, which ensure a valid next-state implementation.

79

Algorithm 3 Chasm encoding constraint generation for output-targetted minimization

for each implicant p in the symbolic cover {

for each state transition t {

if p intersects the input column of t {

if some binary output o that p implements has value 0 during t {

generate dichotomy { stategroup(p); states(t) };
} } } }

The modi�ed constraint set works by focusing the cost function sharply on the

output logic. As a result, the constraint satisfaction engine can focus on satisfying

constraints that assure output logic quality, without the distraction of (approximated)

next-state optimality constraints. In particular, when optimality constraints are treated

as optional (as is done in �xed-length runs, described below), the less e�ective next-state

constraints will not compete with the more e�ective output constraints.

3.5.3 Solving Constraints and Hazard-Free Logic Minimization

Chasm's third and �nal step is to solve the above encoding constraints.

Since all constraints are described as dichotomies, they are solved using o�-the-

shelf dichotomy solvers.

Constraints are solved using two methods: exact solution (using Dichot [122])

and heuristic solution (using a slightly-modi�ed version4 of Nova's simulated annealing

mode [147]). The goal of the heuristic method is to solve as many constraints as possible

given a �xed code-length.

The straightforward application of the heuristic method may result in an incor-

rect implementation. Asynchronous machines require as a bare minimum that the state

assignment be critical race-free. Normally, critical race-free (Tracey) constraints are sub-

sumed by Chasm's optimality constraints (see Section 3.7.2). Thus, Chasm need not

4The modi�ed version allows passing in an arbitrary set of weighted dichotomies from the outside.

80

explicitly generate Tracey constraints when using the exact solution mode. However,

since the heuristic constraint solver may not satisfy all dichotomies, some Tracey con-

straints may be left unsatis�ed. The resulting state assignment would then have critical

races.

The solution is to partition dichotomies into two classes: compulsory and non-

compulsory. Critical race-free constraints are compulsory, and must be satis�ed. The

remaining constraints are concerned with logic optimality, and are thus non-compulsory,

or optional. Because the simulated annealing engine treats all constraints as optional, we

assign su�ciently large weights to the compulsory dichotomies, to ensure that they are

all satis�ed. In practice, such an approach has worked well on all available examples.5

Finally, once a state assignment is produced, the symbolic machine is instantiated

with the resulting encoding. The resulting binary-valued function is then passed through

a binary-valued hazard-free logic minimizer to produce a �nal machine implementation.

3.6 Optimal State Assignment for FSM's with Fed-

back Outputs

This section indicates that Chasm's state assignment method works properly for machine

implementations using fed-back outputs.

Because Chasm makes no assumptions regarding the form of the asynchronous

�ow table, Chasm can be used without modi�cation to encode machine implementations

using fed-back outputs. In particular, the functional speci�cation used as input toChasm

is �rst transformed as described in Section 2.1.2, to account for the presence of the

fed-back outputs. Then, Chasm's three steps (symbolic logic minimization, encoding

constraint generation, and constraint solution) are performed exactly as described in

5It is possible that a solution will not satisfy all compulsory constraints. If this occurs, the relative

weights can be modi�ed, the run can be repeated to randomly explore another portion of the solution

space, or the code length limit can be raised.

81

00 01 11 10 00 01 11 10

Inputs: ab
Outputs: xy

Si

Sj

Si,11 Sj,10

Sj,10Sj,10

Sj,10

ab=00 ab=11

xy xy

specified input transition

Figure 3.6: A speci�ed transition in the presence of fed-back outputs

Section 3.5.

Actually, the constraint generation method, Algorithm 2, requires a trivial ad-

justment to work properly in this context. As shown in Figure 3.6, vertical transitions

can span more than one input column. Thus, the algorithm must be aware of this fact

when it examines DHF-implicant/transition pairs for potential interference. The modi-

�ed algorithm is shown as Algorithm 4. The sole di�erence between this algorithm and

Algorithm 2 is that the intersection test between the DHF implicant p and the transition

t in the �rst if statement accounts for multi-column vertical transitions.

Algorithm 4 Chasm encoding constraint generation for fed-back outputs

for each implicant p in the symbolic cover {

for each state transition t {

if p intersects the input columns of t {

if some output o that p implements has value 0 during t {

generate dichotomy { stategroup(p); states(t) };
} } } }

82

3.7 Theoretical Results

This section sketches the basic theoretical results for the Chasm method. Speci�cally,

a basic result is �rst established in Section 3.7.1 regarding the cardinality of the instan-

tiated cover. This is analogous to a basic result from De Micheli's work [40]. Next, the

instantiated binary cover is shown to be correct in Section 3.7.2. Finally, a theorem

stating Chasm's exact optimality in its output-oriented mode is given in Section 3.7.5.

3.7.1 Machine Instantiation

First, a �pseudo-canonical� state assignment is de�ned, roughly analogous to the use of

a �canonical� 1-hot assignment in Kiss. Then, the instantiated asynchronous machine

speci�cation (encoded �ow table) and binary implementation (cover) is formally de�ned

under this assignment.

Pseudo-Canonical State Assignment

In [40], De Micheli indicates that, for synchronous machines, any symbolic minimized

cover can be assigned a 1-hot canonical encoding. The result is a 1 → 1 mapping of

symbolic to binary implicants, yielding a canonical cover whose cardinality is identical to

that of the symbolic cover. For asynchronous machines, however, a 1-hot encoding is not

in general critical race-free [139]; furthermore, it will not generally satisfy the encoding

constraints of Section 3.5.2. As a simple alternative, to demonstrate theoretical results,

we propose the following: solve the encoding constraints to produce an assignment.6 This

assignment will be called pseudo-canonical for the given machine.

6In fact, a state assignment which satis�es all possible N-to-1 and N-to-2 constraints can always be

found, for a given number N of states. However, such an assignment is prohibitively expensive; for

simplicity, we consider a more practical assignment here.

83

Symbolic Machine Instantiation

An encoding de�nes a mapping from a symbolic machine speci�cation to an equivalent

binary one. There are two components of an asynchronous machine speci�cation: its

functional speci�cation and a set of speci�ed transitions. For the functional speci�cation,

it is assumed that both ON-set and OFF-set are explicitly de�ned. The transitions are

mapped in the obvious way: each symbolic startpoint (endpoint) 〈in, present〉 maps to

the binary startpoint (endpoint) 〈in, code(present)〉.

We can view the functional speci�cation as a set of ON-set and OFF-set cubes.

Each symbolic product p (a 4-tuple 〈in, present, next, out〉), maps onto a binary product

p̃, as follows:

p: in present next out

⇓ ⇓ ⇓ ⇓

p̃: in supercube(codes(present)) code(next) out

Example 3.11 [Product Instantiation]Under the state assignment S0 = 000, S1 = 011,

S2 = 100, and S3 = 101, the symbolic product <011| {S0,S2} S2 |100> is mapped to

the binary product <011|-00 100|100>.

With the above view, mapping an asynchronous symbolic �ow table to an encoded table,

column transitions require special care. In a symbolic table, a column transition is de�ned

only at its symbolic startpoint and endpoint. However, in an encoded table with a USTT

critical race-free assignment, all intermediate (transient) entries for the transition must

be de�ned as well. This latter property can easily be guaranteed by constraining the

symbolic speci�cation: a single product must be used to specify each column transition.

This constraint ensures that, for each column transition (i.e., state change), some product

will be instantiated which de�nes all intermediate states in the encoded transition.

84

Inputs

S0 , 0 S1 , 1

00 01

S0

Figure 3.7: A simple transition in a single-output machine

Symbolic Cover Instantiation

Given a symbolic hazard-free cover and a resulting state assignment, symbolic implicants

can be instantiated by substituting binary codes using the mapping described above,

yielding a binary cover C. Note that instantiating a symbolic implicant may produce

an empty binary implicant, if its symbolic next-state is mapped to the binary 0-vector.

Such an implicant can be dropped from the binary cover.

Unfortunately, the sharing of 1-bits by di�erent state codes may cause static tran-

sitions for next-state to appear in the binary machine where only dynamic transitions

appeared in the symbolic machine. To avoid hazards, extra terms must be added to the

binary cover: static-1 transitions must each be completely covered by some implicant,

while the symbolic dynamic transitions clearly would not have been.

Example 3.12 To understand the problem, consider the input transition shown in Fig-

ure 3.7 for a machine with one output. No implicant in the symbolic cover can cover the

entire transition, since both output and next-state undergo dynamic transitions. Recall

that, under the input encoding model, each next-state is treated as a distinct binary

function. Hence, the next-state function S0 has a 1→ 0 transition, while the next-state

function S1 and the output both have 0 → 1 transitions. However, suppose that S0 is

assigned code 011 and S1 is assigned 110. In the instantiated machine, the second state

bit will then make a 1 → 1 transition. However, since no symbolic cube covered the

entire transition, no instantiated binary cube will either, and the second state bit will

have a static-1 hazard.

In sum, a naively instantiated cover will fail to properly implement certain static

85

transitions of the next-state variables.

One solution is to add one product term to the instantiated cover for each such

static-1 transition. For the above transition, the implicant <0- 011 010 0> would be

added. In that implicant, the present-state �eld 011 corresponds to symbolic state S0,

while the next-state �eld 010 indicates that the implicant contributes only to the second

next-state bit. As a result, the canonical cover may have greater cardinality than the

symbolic cover:

Property 3.13 [Opt-HFCRF Cardinality of Cover]Let | S | be the cardinality of the

symbolic cover, | C | be the cardinality of the binary instantiated cover, and k is the

number of unstable state transitions in the �ow table; then | C |= O(| S | + k).

Note that this result is a theoretical upper bound only. In practice, k additional products

need not be added. Instead, the instantiated cover C is passed to a binary hazard-free

minimizer and re-run, to improve results.

By analogy, Kiss produces a theoretical upper bound on cardinality based a 1-

hot-instantiated cover (although in Kiss the upper bound is the cardinality |S| of the

symbolic cover; no added terms are required). This 1-hot-instantiated cover in Kiss is

neither guaranteed to have minimum number of products nor minimum code length [40].

In practice, shorter codes are sought, and the instantiated cover is likewise re-run through

a binary minimizer to improve results [40, 147].

While in theory Chasm is only an approximate solution to the optimal state

assignment problem, in practice, it obtains signi�cant improvements over an arbitrary

critical race-free encoding method (see Section 3.8).

3.7.2 Correctness of Binary Cover

In the following, let C be the instantiated cover, derived using the pseudo-canonical

assignment.

86

Terms:

Ms symbolic machine

Mε machine Ms instantiated by encoding ε

xj(p) jth literal of product p

σ(t) start point of privileged cube for transition t

c̃ = map(c) instantiation of symbolic cube c by some encoding

εk the encoding assigned to state sk

εk[i] bit i of εk

t̃ = map(t) instantiation of symbolic transition t by some encoding

map(S) the member-wise mapping of a set S of cubes

C minimal hazard-free symbolic cover of Ms

C̃ pseudo-canonical cover

We will at times use Mε to denote also the combinational component of Mε, when

such usage is unambiguous.

We �rst need to establish certain characteristics of the instantiation process. In

particular, we show that certain basic properties of Ms are preserved by the mapping

performed by instantiation. These invariants will be used to prove the desired properties

of our canonical implementation of Mε, namely:

1. The critical race-freedom of Mε (Theorem 3.14), and

2. The correctness of the pseudo-canonical logic implementation C̃ (Theorem 3.29).

3.7.3 Critical Race Freedom

Theorem 3.14 Any state assignment satisfying the encoding constraints of Section 3.5.2

is critical race-free.

Proof: (See also [54].) In each �ow-table input column I, critical race-free constraints

are needed to avoid interference between an unstable transition and either stable states

87

(case 1), or other unstable transition (case 2).

Case 1:I contains an unstable transition t : Sa → Sb, and a distinct stable state Sc.

Tracey conditions demand that a 2-to-1 dichotomy constraint d = {Sa, Sb; Sc} be sat-

is�ed [137]. At the same time, in our framework, the unstable transition t de�nes a

symbolic required cube for next-state Sb, which must be covered. Therefore, some sym-

bolic implicant, p, must cover the transition and implement the destination next-state

function, Sb. Hence, present(p) ⊇ {Sa, Sb}. Note that Sc �∈ present(p), since the next-

state in 〈I Sc〉 is Sc, while p implements Sb. Now, Sc is stable in I, and so the next-state

function Sb is 0 there. Therefore, our encoding constraints include {stategroup(p); Sc},

which subsumes dichotomy d.

Case 2:I contains unstable transitions t1 : Sa → Sb and t2 : Sc → Sd, where Sb �= Sd.

In this case, a 2-to-2 dichotomy constraint d = {Sa, Sb; Sc, Sd} must be satis�ed [137].

Again, each unstable transition de�nes a symbolic required cube for the respective next-

state. Therefore, some implicant p covers transition t1 and implements next-state Sb,

so stategroup(p) ⊇ {Sa, Sb}. Again, Sc �∈ present(p) and Sd �∈ present(p), since the

next-state in 〈I Sc〉 and 〈I Sd〉 is Sd, and p implements Sb. Meanwhile, next-state

function Sb is 0 throughout transition t2. Hence, our encoding constraints include

{stategroup(p); Sc, Sd}, which subsumes dichotomy d. 2

3.7.4 Logic Implementation

First the relationship between the speci�ed transitions of Ms and those of Mε is estab-

lished. Then, the required cubes for the binary outputs and next-state functions of Mε

are determined. Finally, the pseudo-canonical cover C̃ is proven to be a hazard-free cover

for Mε, in three steps.

Speci�ed Transitions

88

Lemma 3.15 (Input transitions) The speci�ed input transitions of Mε's combina-

tional component are precisely the instantiated transitions of Ms, viz., {t̃ = map(t), t ∈

T}, where T are the input transitions of Ms.

Proof: Obvious, since instantiation does not a�ect the machine's primary inputs, and

symbolic states have been mapped 1→ 1 onto encoded states. 2

Lemma 3.16 (Mapping output functions) For binary output oi and minterm ps in

Ms' domain, õi(map(ps)) = oi(ps).

Lemma 3.17 (Mapping output transitions) Mε's binary output transitions are pre-

cisely the instantiated binary output transitions of Ms. Further, their type (i.e. static-0/1,

dynamic) is una�ected by the mapping.

Proof: This follows directly from Lemmas 3.15 and 3.16: the machine's binary output

values at the transition's endpoints are not a�ected by instantiation. 2

Required Cubes We prepare to de�ne the required cubes for Mε's outputs by showing

that the maximal ON-set subcubes of a horizontal dynamic transition map in the obvious

way. We then determine the required cubes for the binary outputs and next-state bits of

Mε.

Lemma 3.18 The maximal ON-set subcubes of horizontal transition t for binary output

oi map one-to-one onto the maximal ON-set subcubes map(c) of transition t̃, where t̃ =

map(t).

Proof: t clearly spans a single symbolic state. Hence, its image on Mε, t̃, likewise spans

a single binary state, and each minterm within t maps to a corresponding minterm in t̃

having identical binary output values. Thus, each maximal ON-set subcube of t maps

89

onto a unique maximal ON-set subcube of t̃. 2

Lemma 3.19 (Binary output required cubes) If binary output oi of Ms has the set

of required cubes Roi, then binary output õi of Mε has the set of required cubes R̃õi =

{r̃õi = map(roi), ∀roi ∈ Roi}.

Proof: Essentially, this follows from Lemmas 3.17 and 3.18 and the �early output�

implementation (which assures that all vertical output transitions are static). Speci�cally,

the required cubes of a logic function [106] are the union of:

i. the supercubes of all static-1 transitions and

ii. the maximal ON-set sub-cubes of all dynamic transitions.

We address each of the 2 sets in turn.

static By Lemma 3.17, static-1 transition t for oi maps onto static-1 transition

t̃ for õi. Hence, the corresponding required cube c = t maps onto required

cube c̃ = t̃ for õi.

dynamic Transition tmaps onto dynamic transition t̃ for õi. t̃must be horizon-

tal (corresponding to an input change), since the early output restriction

disallows dynamic vertical output transitions. We need to show that the

maximal ON-set subcubes of t̃ are the instantiations of the maximal ON-set

sub-cubes of t, which was proven by Lemma 3.18.

2

We now examine the required cubes for the next-state bits of Mε.

Lemma 3.20 Static-1 transition ts for symbolic state nsj maps onto static (0 or 1)

transition t̃s for each state bit s̃i for which εj [i] = 1.

90

S0

S1

S2

S3

00 01 11 10

S0,0

S0,0

S2,0

S2,0

S0,0

S3,1

S1,1

S1,1

S3,1

S0,0

S1,0

S0,0 S3,0

S3,0 111

S3,0

S1,1

000

110

010

Figure 3.8: An unstable state transition and the corresponding state bit transitions

Unlike the case for binary outputs, a dynamic transition td for symbolic next-state nsj

(corresponding to an unstable state transition) produces a mixture of static and dynamic

transitions for the various next-state bits. This is true in part because the transition's

source (nsj) and destination (say, nsk) states may share 0- or 1-bits (e.g. in order to

avoid critical races). The state bit values held in common result in static transitions. For

example, see Figure 3.8, in which the transition from s2 to s1 in column 01 produces one

dynamic (1→ 0) transition and two static transitions (1→ 1 and 0→ 0) for the 3 state

bits under the given encoding. The following lemma makes this notion precise.

Lemma 3.21 Dynamic transition td for symbolic next-state nsj is also dynamic for an-

other symbolic state nsk, k �= j. Furthermore, td maps onto:



0 or more dynamic transitions t̃d for s̃i one for each i | εj [i] �= εk[i]

0 or more static transitions t̃s for s̃i one for each i | εj [i] = εk[i]

From the above 2 Lemmas, we can see that there are 3 sources of required cubes for a

given state bit s̃i of Mε:

• stable transitions for symbolic next-states nsj which assign s̃i = 1,

• unstable transitions nsj → nsk when nsj and nsk assign di�erent values to s̃i, and

• unstable transitions nsj → nsk when nsj and nsk assign s̃i to 1.

91

More precisely:

Lemma 3.22 (State bit required cubes) State bit s̃i of Mε has required cubes:

R̃s̃i = map(Snsj)∪map(SD)∪map(ONmax),

where:

map(Snsj) the set
{
t̃s = map(ts)

}
, where ts is a static-1 transition on sym-

bolic state nsj for which εj [i] = 1.

SD the set {t̃d = map(td)}, where td is an unstable transition from

nsj to nsk, and εj [i] = εk[i] = 1.

map(ONmax) the set {c̃ = map(c), c ∈ ONmax(td)}, i.e. the maximal ON-set

sub-cubes of all unstable transitions td from nsj to nsk, where

εj [i] �= εk[i].

Proof: The required cubes of a logic function are the union of its static-1 transition

supercubes and the maximal ON-set sub-cubes for all of its dynamic transitions [106].

Lemmas 3.20 and 3.21 show that there are 2 sources of static-1 transitions and 1 source

of dynamic transitions for s̃i. The �rst two items above describe precisely the two sets

of static-1 transitions for s̃i. Our single transition-time (STT) operation allows only

horizontal dynamic transitions for next-state; hence, Lemma ?? applies, yielding the

third set of required cubes. 2

The following lemma states a property that is pivotal to establishing that C̃ covers Mε.

Lemma 3.23 (Preservation of Cube Containment) Cube containment is preserved

by instantiation. That is, if cube c1 contains c2, then map(c1) contains map(c2).

Proof: c1 = 〈in1, pres1〉, c2 = 〈in2, pres2〉. We know in1 ⊇ in2 and pres1 ⊇ pres2. Now,

map(c1) = 〈in1, supercube({εi, ∀i ∈ pres1})〉 ; map(c2) = 〈in2, supercube({εi, ∀i ∈ pres2})〉.

Hence, map(c1) ⊇ map(c2) i� supercube({εi, ∀i ∈ pres1}) ⊇ supercube({εi, ∀i ∈ pres2}).

92

Now, supercube(εi1 , . . . , εin) is the smallest cube containing all of {εi1 , . . . , εin}. So, given

pres1 ⊇ pres2, clearly supercube(pres1) ⊇ supercube(pres2). 2

The following three theorems prove that the pseudo-canonical cover C̃ covers Mε without

hazards. First, C̃ is shown to cover all of Mε's required cubes. Next, C̃ is shown not to

intersect the OFF-set of Mε. Finally, C̃ is shown to be dynamic hazard-free for all of Mε's

speci�ed transitions.

Theorem 3.24 C̃ covers all required cubes of Mε.

Proof: We must prove this for the binary outputs and state bits of Mε.

Binary outputs õi: This follows from Lemma 3.19 (R̃oi = map(Roi)), from the fact

that C̃ ⊇ {c̃ = map(c), c ∈ C}, from Lemma 3.23 (preservation of cube containment),

and from the fact that hazard-free symbolic logic minimization guarantees that C covers

all required cubes Roi of Ms.

State bits s̃i: We prove that each of the 3 sets of required cubes described in

Lemma 3.22 are covered.

map(Snsj) For each static-1 transition ts on nsj , where εj [i] = 1, clearly C contains

some term c which covered ts and contributed to nsj . Hence C̃ contains c̃, which

contributes to s̃k for all k for which εj [k] = 1; in particular, s̃i.

SD This is the set of required cubes induced by new static-1 transitions on shared-1 bits

in nsj and nsk for t. However, as described in section 3.7.1, C̃ contains terms for

each such transition, thus covering the shared-1 bits.

map(ONmax) Dynamic transitions occur only in horizontal transitions tH . Hence,

Lemma 3.18 applies, and the maximal ON-set sub-cubes of s̃i for all such t̃H are

map(ONmax(nsj)). Since C covers ONmax(nsj), C̃ covers map(ONmax(nsj)),

by Lemma 3.23.

93

2

Theorem 3.25 No product c̃ in C̃ intersects the OFF-set of Me.

Proof: We proceed by addressing �rst the portion of C̃ corresponding to map(C), and

then the added cubes RS1 of section 3.7.1. Recall that machine behaviour is don't-care

outside speci�ed transitions; hence, all OFF-set points lie within speci�ed transitions.

Binary output õi: Let m̃ be an OFF-set minterm of õi in transition t̃ of Mε. By

Lemma 3.17, t̃ = map(t) for some t, and ∃m ∈ t in the OFF-set of oi.

For any implicant p̃ = map(p), p ∈ C, symbolic minimization ensures that p

either does not contain m or does not contribute to oi. Speci�cally, one of the following

conditions holds true:

• p does not contribute to oi,

• input(t)∩ input(p) = φ,

• present(t)∩present(p) = φ

Only the �rst 2 conditions are guaranteed to hold after instantiation by an arbitrary

encoding. We must show that any encoding that satis�es our constraints ensure that

present(t̃)∩present(p̃) = φ when the �rst 2 conditions fail to hold. Observe that oi

is either 1 throughout t (impossible, since m ∈ t is an OFF-set minterm), or oi is 0

somewhere during t. In the latter case, an encoding constraint is generated to ensure

that present(p̃)∩present(t̃) = φ.

For any p̃ ∈ RS1, p̃ never contributes to any binary output, by construction.

State bit s̃i: Let m̃ be an OFF-set minterm of output s̃i in transition t̃ of Mε.

This corresponds7 to some m ∈ t in the ON-set of some nsj for which εj [i] = 0.

7perhaps not uniquely

94

For any implicant p̃ = map(p), p ∈ C, symbolic minimization ensures that p either

does not contain m or does not implement s̃i. Speci�cally, one of the following conditions

holds true:

• input(t)∩ input(p) = φ,

• p does not implement next-state

• p implements nsj

• p implements some distinct state nsk, k �= j

• present(t)∩present(p) = φ

The �rst two cases clearly present no problem after instantiation. In the third case,

p̃ implements only those state bits s̃i for which εj[i] = 1; but εj [i] = 0, so p̃ does not

implement s̃i, and there can be no problem. In the fourth case, either εk[i] = 0 or εk[i] = 1.

The sub-case εk[i] = 0 o�ers no di�culty. If εk[i] = 1, p̃ implements s̃i; however, since

nsj �= nsk, we generate an encoding constraint to ensure that present(t̃)∩present(p̃) = φ.

For any p̃ ∈ RS1, p̃ contributes only to a single state bit, and spans only a given

static-1 horizontal transition of Mε, so it cannot hit the OFF-set minterms of binary

outputs or state bits. 2

Lemma 3.26 If binary output oi of Ms has privileged cubes Poi with corresponding start

points σoi, binary output õi has privileged cubes

P̃õi = {p̃ = map(p), p ∈ Poi}

and corresponding start points σ̃õi = map(σoi).

95

Proof: This follows directly from Lemma 3.17. 2

Lemma 3.27 If the symbolic next-states nsj have privileged cubes Pnsj , with correspond-

ing start points σnsj , state bit s̃i has privileged cubes

P̃s̃i = {p̃ = map(p), p ∈ Pnsj , ∀j | εj [i] = 1} −

{p̃ = map(t), t : nsj → nsk, εj [i] = εk[i] = 1},

and corresponding start points σ̃s̃i = map(σnsj). In other words, P̃s̃i consists of the

mapped privileged cubes for all unstable transitions from nsj → nsk that assign s̃i a 1,

excluding those transitions where both source and destination state assign s̃i to 1.

Proof: This follows from Lemma 3.21: dynamic transitions for s̃i arise from dynamic

transitions on nsj and nsk when εj [i] �= εk[i]. 2

Lemma 3.28 For all privileged cubes c̃ for Mε, |present(c)| = 1.

Proof: This follows from the early output restriction (which ensures static state/output

transitions in all vertical transitions), along with the use of STT encodings. 2

Theorem 3.29 Cover C̃ is hazard-free for every speci�ed input transition.

Proof: A hazard-free implementation requires that:

1. All required cubes are covered by some implicant, and

2. No implicant illegally intersects a privileged cube for any output to which it con-

tributes.

96

Theorem 3.24 established the �rst point; the second remains to be demonstrated. We

again treat p̃ ∈ map(C) and added cubes p̃ ∈ RS1 separately.

Binary output õi: By Lemma 3.26, õi has privileged cubes {c̃p = map(cp), cp ∈

Poi}.

• For any implicant p̃ ∈ map(C), symbolic hazard-free logic minimization ensures

that one of the following holds:

1. oi �∈ output(p)

2. input(p)∩ input(cp) = φ

3. σcp ∈ p

4. present(p)∩present(cp) = φ

In cases 1, 2, and 4, there is no intersection; in the third, the intersection is legal:

the implicant contains the start point. Since instantiation does not a�ect the input

and output �elds of implicants, and by Lemma 3.23, one of the following three

analogous conditions also holds, for any encoding:

1. õi �∈ output(p̃)

2. input(p̃)∩ input(c̃p) = φ

3. σc̃p ∈ p̃

The condition analogous to the 4th, however, viz. present(p̃)∩present(c̃p) =

φ, is not guaranteed to hold for any arbitrary encoding. From Lemma 3.28,

|present(cp)| = 1, and hence the encoding constraint {present(p); present(cp)} that

we impose is in fact a face embedding constraint, which is thus respected by our

encoding. Thus, present(p̃)∩present(c̃p) = φ.

• For any p̃ ∈ RS1:

p̃ never implements binary outputs; hence no illegal intersection is possible.

97

State bit s̃i: By Lemma 3.27, s̃i has privileged cubes {c̃p = map(cp), cp ∈ Pnsj , ∀j |

εj [i] = 1}.

• For any implicant p̃ ∈ map(C), symbolic hazard-free logic minimization ensures

that either:

1. nsj �∈ output(p)

2. input(p)∩ input(cp) = φ

3. σcp ∈ p

4. present(p)∩present(cp) = φ

As for binary outputs, although the �rst three conditions are preserved by instanti-

ation with any encoding, the last is not. The illegal intersection is then only avoided

if present(p̃)∩present(c̃p) = φ, which is guaranteed by an encoding constraint of

the form: {present(p); present(cp)} which is in fact a face embedding constraint

(by Lemma 3.28), and is thus respected by encodings satisfying our constraints.

• For any p̃ ∈ R, recall that p̃ covers some static-1 horizontal transition t̃, correspond-

ing to some transition t for which nsk : 1 → 0, nsl : 0 → 1, and εk[i] = εl[i] = 1.

By Lemma 3.28, |present(cp)| = 1, and speci�cally, present(p) = nsj. Further, an

illegal intersection implies all of the following:

� input(p)∩ input(cp) �= φ

� σcp �∈ p

� s̃i ∈ next(p̃)

Now, cp corresponds to a dynamic horizontal transition t′ on nsj and εj [i] = 1.

However, note that the end point e of t lies strictly within t′. This would mean

that the next-state at e is ambiguous: for t, it must be nsl, while for t′, it must be

nsj .

98

2

3.7.5 Optimality of Binary Cover

A �nal key result is that Chasm's algorithm produces state assignments and hazard-

free realizations which are exactly optimal with respect to output logic (if outputs and

next-state are minimized separately).

Property 3.30 [Opt-HFCRF Optimality of Output Cover]The binary instantiated out-

put cover OC (where outputs are minimized separately from next-state) has exactly min-

imum cardinality.

This result is especially important for asynchronous state machines. Since asynchronous

machines have no clocks or latches, the input-to-output latency is determined solely by

output logic delay. Chasm's algorithm �nds a USTT state assignment which results

in a hazard-free output cover with smallest cardinality over all possible critical race-free

assignments.

3.8 Experimental Results

A preliminary set of experiments was run on industrial examples using our optimal en-

coding and logic minimization algorithms. Results appear in Figure 3.8.

For each set of runs, the number of state variables (#b) and number of cubes

(#c) in the �nal cover are reported. The column labelled optimal lists runs in which all

constraints were solved. A parallel set of runs using a �random� (but minimal length)

critical race-free encoding was done as well, labelled base-crf, for comparison with the

optimal. Finally, a third set of runs, opt-�xed, was performed (for cases where optimal

and base-crf di�ered in code length), using a �xed code length and partial constraint

99

satisfaction. For this set, runs at or near the code length of the base-crf case were

performed; the best of several iterations is reported. For all sets of runs, Hfmin was

used for the binary hazard-free logic implementation step.

The opt-�xed algorithm achieves results at least as good as the optimal and base-

crf algorithms. As in Kiss [40] and Nova [147], this phenomenon occurs because input

encoding is itself an approximate formulation. Hence, by using partial constraint satis-

faction with restricted code lengths, a large percentage of optimality constraints can be

satis�ed with less overhead in the next-state implementation. Improvements in cardinal-

ity of up to 17% are observed.

opt-�xed optimal base-crf

DESIGN I/S/O #b #c #b #c #b #c

sbuf-read-ctl 3/3/3 2 7 3 9 2 8

sbuf-send-ctl 3/4/3 2 11 4 12 2 11

rf-control 6/6/5 3 13 6 15 3 15

it-control 5/5/7 3 15 6 15 3 15

pe-send-ifc 5/5/3 3 18 7 27 3 21

sd-control 8/13/12 5 29 10 34 4 35

dram-ctrl 7/3/6 - - 2 22 2 22

pscsi-ircv 4/4/3 2 9 4 12 2 10

pscsi-isend 4/6/3 3 17 7 23 3 19

pscsi-trcv 4/4/3 3 9 4 13 2 11

pscsi-trcv-bm 4/4/4 2 12 4 15 2 14

pscsi-tsend 4/7/3 3 18 7 22 3 18

sscsi-isend-bm 5/4/4 2 21 5 22 2 24

sscsi-isend-csm 5/3/4 - - 2 12 2 12

sscsi-trcv-bm 5/4/4 2 18 5 24 2 18

sscsi-trcv-csm 5/3/4 2 12 3 12 2 12

sscsi-tsend-bm 5/5/4 3 17 6 20 3 18

sscsi-tsend-csm 5/4/4 2 14 5 15 2 14

stetson-p1 13/12/14 4 53 19 −∗
4 55

stetson-p2 8/13/12 4 31 10 37 4 36

*Exact logic minimization failed due to insu�cient virtual memory in prime generation.

Figure 3.9: Experimental Results

100

Chapter 4

OPTIMIST: Optimal State

Minimization for Synchronous State

Machines

This chapter presents Optimist, a novel method for state minimization of incompletely-

speci�ed �nite state machines. Where classic methods simply minimize the number

of states, this method directly addresses the implementation's logic complexity. The

method is the �rst to produce an exactly optimum two-level implementation under an

input encoding model.

Optimist extends the step-merging synthesis philosophy used by Chasm in Chap-

ter 3 by incorporating yet another step: state minimization. The result is a �rst-of-a-kind

concurrent state minimization, state encoding, and two-level logic minimization algo-

rithm. In a sense, Optimist can be thought of as playing a role for state minimization

analogous to that of Kiss for state encoding. Although Optimist as described here

applies only to synchronous FSM's, its framework serves as a springboard for a novel

algorithm applicable to asynchronous machines, which is presented in Chapter 6.

Optimist currently makes use of an input encoding model within its minimiza-

101

tion procedure. Nevertheless, it is capable of signi�cantly reducing logic complexity for

some machines. It also appears capable of being extended to encompass more powerful

encoding models, such as output encoding.

The Optimist method incorporates optimal state mapping, i.e., the process of

reducing the symbolic next-state relation which results from state splitting to an optimal

conforming symbolic function. Further, it o�ers a number of convenient sites for applying

heuristics to reduce time and space complexity, and is amenable to implementation based

on implicit representations.

4.1 Introduction

State minimization is the problem of �nding a machine realizing the input/output be-

haviour of a given FSM, with fewer internal states [60, 109, 62]. This is an important

step in sequential synthesis: implementing unminimized FSM's often leads to consider-

ably larger and/or slower implementations. However, it is well known that the classic

formulation for state minimization expresses a heuristic � reducing the number of states

only tends to decrease logic complexity. Early on, Hartmanis observed [52] that this

heuristic sometimes fails; realizations having more states may be simpler to implement.

Moreover, there may be many minimum-state realizations of a given FSM, and their logic

complexity can vary signi�cantly [111, 91]. Hence, simply targeting any minimum-state

solution is insu�cient.

The major contribution of this chapter is a state minimization method which,

in contrast to existing ones, directly targets logic complexity. In particular, it de�nes

and solves the optimal state minimization problem, that of �nding for a given FSM a

realization having minimum 2-level logic complexity over all realizations.

Classic sequential synthesis comprises several steps: state minimization, state en-

coding, 2-level logic minimization, multi-level optimization and technology mapping.

Each step has traditionally been treated as an isolated problem, which limits early steps

102

most severely. In [40], a key insight into optimal state encoding was presented: sym-

bolic logic minimization can be performed concurrently with state encoding. More recent

methods for optimal encoding have been developed [147, 45] based on the same insight,

but yielding even better results.

Optimist borrows this insight, as did Chasm, and takes it one step further, by

performing symbolic logic minimization concurrently with both state minimization and

state encoding. The method is cast as a unique form of generalized prime implicant

minimization [45]. Speci�cally, symbolic prime implicants are generated, and a binate

covering problem is formed and solved, yielding a reduced machine and logic cover.

This chapter o�ers a novel theoretical framework for formulating and solving the

optimal state minimization problem. It demonstrates that the method identi�es optimal

solutions which are inaccessible to existing tools, due to their focus on minimum cardi-

nality state covers. In addition, it provides initial results of a CAD tool implementation.

The structure of the chapter is as follows. Section 4.2 provides background on

state minimization, state assignment and related work. Section 4.3 then gives a general

overview of our method, with a focus on the major issues. Sections 4.4, 4.5 and 4.6, pro-

vide greater detail on the three major components of our method: symbolic prime gener-

ation, binate constraint generation and solution, and symbolic instantiation, respectively.

Two examples in Section 4.7 demonstrate the procedure and show results unattainable

by existing methods. The key theoretical results of this chapter are given in Section 4.8.

E�cient algorithms for symbolic prime generation are described in Section 4.9. Finally,

Section 4.10 provides some experimental results, and Section 4.11 presents conclusions

and future work.

4.2 Background and Related Work

The following sections review some basic background material related to the problem

of optimal state minimization. Speci�cally, the classic state minimization problem and

103

some of its solutions are �rst presented. Next, the related problem of state mapping is

described, an issue that is key to obtaining optimal next-state logic. Finally, the body

of previous work on state minimization is reviewed.

We continue with the notation presented earlier in Chapter 2. Again, we restrict

attention to the common subclass of ISFSM's where, in all total states 〈i, s〉, the next-

state δ(i, s) is either a singleton state or else is completely unspeci�ed (denoted δ(i, s) =

S). Likewise, it is assumed that output O(i, s) is either a single value or unspeci�ed.

4.2.1 State Minimization

We now review basic de�nitions for state minimization [60]. The �rst several of these

are su�cient to formulate the problem under consideration. The remainder is used in

describing the classic exact solution proposed by Grasselli [60].

Central to state minimization is the notion of state compatibility, on which basis

states are merged in order to form a reduced machine. State compatibility is based on

the compatibility of the output behaviour that results from starting in a given state

and applying a given input sequence. Clearly, the output behaviour depends on the state

behaviour (i.e. the sequence of states visited under the given input sequence). To capture

this e�ect, the transitive closure of the next-state relation is mirrored by an inductive

de�nition of state compatibility.

De�nition 4.1 A pair of states is output-compatible i� corresponding output values

agree wherever both are speci�ed.

In the �ow table of Figure 4.1, state pairs (s0, s1) and (s2, s3) are each output-compatible,

while the pair (s0, s2) is not, because of the di�erent output values in input column 00.

It is worthwhile noting that the output compatibility relation is both re�exive and

symmetric, but not transitive.

De�nition 4.2 A pair of states (sa, sb) implies the state pair (sc, sd) under input Ik i�

104

inputs xy
00 01 11 10

s0 s0, 1 s2, 1 s0,− s3, 0
s1 s1,− s2, 1 s1, 0 s2, 0
s2 s2, 0 s3, 0 s1, 1 s3, 0
s3 s3,− s2, 0 s0,− s3, 0

Figure 4.1: Flow table illustrating state compatibility

{δ(Ik, sa), δ(Ik, sb)} = {sc, sd}.

For example, in Figure 4.1, states (s0, s1) imply (s2, s3) under input 10, since the desti-

nation states for s0 and s1 in that column are s3 and s2, respectively.

Implication is signi�cant because a merged state such as (s0, s1) must specify a

single valid destination state in each input column. At the same time, the merged state's

output behaviour must conform to that of both the original states. This in turn requires

merging the respective destination states. For example, if (s0, s1) were to be merged, the

states (s2, s3) would have to be merged as well, due to the implication in column 10.

Clearly, there are cases where an implied set of states is not itself output-compatible;

hence the following de�nition.

De�nition 4.3 A pair of states is compatible i� they are output-compatible and imply

no incompatible pair of states.

We now extend the above de�nitions to state sets having more than two members.

De�nition 4.4 A set of states is a compatible i� it consists only of pairwise-compatible

states.

The set of compatibles for the table of Figure 4.1 is c0 = {s0}, c1 = {s1}, c2 = {s2},

c3 = {s3}, c4 = {s0, s1}, and c5 = {s2, s3}. However, the state set {s1, s2, s3} is not a

compatible because s1 and s2 are incompatible.

105

De�nition 4.5 Compatible ca implies compatible cb under input Ik i� cb = {δ(Ik, s), ∀s ∈

ca}.

De�nition 4.6 The implied set P (c) of a compatible c is the set of compatibles implied by

c over all inputs, excluding singleton states, subsets of c, and proper subsets of compatibles

in P (c).

The above de�nition e�ectively ignores those implications that would be trivially satis�ed

(i.e. that would never require the merging of another set of states). In particular, re�exive

implications such as (s0, s1) → (s0, s1) (which occurs in column 00) are omitted from

the implied set. Likewise, degenerate implications such as (s0, s1)→ (s2, s2) are omitted.

Example 1 The implied sets for the table of Figure 4.1 are:

P (c0) = φ P (c1) = φ

P (c2) = φ P (c3) = φ

P (c4) = {c5} P (c5) = {c4}

The following two de�nitions capture the two essential characteristics of any valid selec-

tion of state compatibles: closure and covering.

De�nition 4.7 (Closure) A set C of compatibles is closed i� every element of the implied

set of each compatible c ∈ C is contained by some compatible in C.

De�nition 4.8 (Covering) A set C of compatibles is a cover for M i� for every state

s ∈ S there exists a compatible c ∈ C such that s ∈ c.

The concept of state covering allows us to de�ne precisely whether the selected set of

state compatibles represents a complete realization ofM.

Note that the above de�nition does not require that each implied compatible is

itself selected; rather, it requires selecting some compatible which contains the implied

compatible. Containment is su�cient because a set of states always has output behaviour

compatible with any subset of itself.

106

Using the above conditions, it is now possible to de�ne the state minimization

problem precisely.

Problem 4.9 State Minimization Find a minimum cardinality closed cover of compati-

bles ofM.

Exact State Minimization

Given a machine M and the set C of all of its compatibles, we can now form a simple

covering problem to express all of the constraints (covering and closure). There are two

types of constraints:

Covering Each state must be covered by some selected compatible.

∀ states s ofM

ci1 + · · ·+ cin , where s ∈ cik .

Here, variable cik represents the selection of compatible cik . This constraint ensures

that, for each state s in the unminimized machine M, some compatible cik is

selected which contains s. Note that each such constraint is unate, since it consists

of a sum of positive literals.

Closure Every member of every selected compatible's implied set must be covered.

∀ compatibles c ofM

∀ c′ ∈ P (c)

c+ ci1 + · · ·+ cin , where cik ⊇ c′

This constraint ensures that, for each selected compatible c, each member of c's

implied set is contained by some selected compatible cik . Note that each such

constraint is binate, since it consists of a sum of both positive and negative literals.

The closure constraints as shown make use of the following well-known equivalence

in Boolean logic: p→ q ⇔ p+ q.

107

M′ 00 01 11 10
s′0 = {s0, s1} s′0, 1 s′1, 1 s′0, 0 s′1, 0
s′1 = {s2, s3} s′1, 0 s′1, 0 s′0, 1 s′1, 0

Figure 4.2: Table of Figure 4.1, after reduction by { {s0, s1}, {s2, s3}}

Unlike the unate covering problems encountered in Chapter 3, this problem is binate[60,

117]. That is, it corresponds to a product of Boolean clauses containing both comple-

mented and uncomplemented literals.

As an example, given the table of Figure 4.1 and the set of compatibles c0 = {s0},

c1 = {s1}, c2 = {s2}, c3 = {s0, s1}, c4 = {s1, s2}, the following constraint clauses result:

Covering:

c0 + c4 Cover s0

c1 + c4 Cover s1

c2 + c5 Cover s2

c3 + c5 Cover s3

Closure:

c4 + c5 c5 in implied set of c4

c5 + c4 c4 in implied set of c5

The minimum-cardinality solution given these constraints is the assignment {c0 =

0, c1 = 0, c2 = 0, c3 = 0, c4 = 1, c5 = 1}, corresponding to the compatibles {c4, c5}. It is

easy to verify that this set covers all states and is closed. The resulting reduced machine

has 2 states corresponding to these 2 selected compatibles, and is shown in Figure 4.2.

More E�cient Solutions

One can fashion a state cover from the set of all possible compatibles, as was just shown.

However, for the problem at hand, it is possible (and desirable, especially for large ma-

108

chines) to restrict attention to a smaller set of compatibles.1 We describe two such classes:

maximal compatibles and prime compatibles.

De�nition 4.10 Compatible c is a maximal compatible i� it is a proper subset of no

other compatible.

It is always possible to �nd a closed cover of maximal compatibles for any machineM

(see Unger [139]).

If a minimum cardinality cover were not the goal, maximal compatibles would

su�ce. Unfortunately, larger compatibles may possess more implications, and thus com-

plicate the closure requirements. For this reason, so-called prime compatibles [60] are

de�ned, which take into account not only the size of the compatible, but the closure

requirements as well (in the form of their implied sets).

De�nition 4.11 Compatible ca excludes cb i� cb ⊂ ca and P (ca) ⊆ P (cb).

Informally, exclusion expresses the notion that one compatible is larger than another,

but has no more restrictive closure requirements.

De�nition 4.12 Compatible c is a prime compatible i� it is excluded by no other com-

patible.

Since maximal compatibles are by de�nition prime and a closed cover of maximal com-

patibles can always be found, a solution consisting solely of prime compatibles also always

exists.

Problem 4.13 Classic State Minimization Find a minimum cardinality closed cover of

prime compatibles ofM.

In the sequel, a reduced machine corresponding toM is designatedM′.

1It will be shown later, however, that this commonly-used smaller set of compatibles will not su�ce

for optimal state minimization.

109

M 0 1

s0 s0, 0 s2, 0
s1 s1, 0 s1,−
s2 s1,− s0, 1

M′ 0 1

s′0 = {s0, s1} s′0, 0 s′1, 0
s′1 = {s1, s2} {s1}, 0 s′0, 1

Figure 4.3: State table before and after minimization

4.2.2 The State Mapping Problem

This section describes an issue pivotal to optimal state minimization, because it is par-

tially responsible for de�ning the next-state function after state minimization.

Given an incompletely-speci�ed FSM, a state reduction often de�nes a set of

compatible realizations [109, 60]. Speci�cally, a given unreduced state s may be split,

i.e., two or more states covering s may be selected. In that case, a reduced next-state

entry referring to s may be bound to any of the covering states ofM′. When there are

two or more such covering states, a choice for the next-state binding exists (even when

the next-state was uniquely speci�ed in the original speci�cation). Thus, the next-state

behaviour of the resulting ISFSM forms a relation. This �exibility gives rise to the state-

mapping problem [82], in which the symbolic relation must be reduced to a conforming

symbolic function. The function is obtained by choosing a speci�c next-state wherever a

choice exists. This choice clearly has a direct impact on logic quality, and thus constitutes

an important issue for optimal state minimization.

The state mapping problem is illustrated in Figure 4.3, taken from [82]. A choice

of next-state exists in the reduced machine M′ in total state 〈 0 s′1 〉. Speci�cally, the

next state can be assigned to either of the reduced states s′0 or s′1, since each of these

two states covers the unreduced state s1. The best cover achievable
2 when state mapping

s1 to s′1 in that total state has 4 terms. In contrast, state mapping to s′0 yields a 3-

term cover. Thus, the state mapping choice has a direct impact on the optimality of

the implementation. The impact of state mapping on logic has been investigated, and

2assuming an input-encoded symbolic implementation

110

several approaches to selecting a good mapping have been suggested [82][62].

4.2.3 Previous Work

The topic of state minimization has been researched extensively over several decades.

Hartmanis et al. observed in [52] that the minimum cardinality solution does not always

yield the best implementation. The classic problem was later formulated as a search for a

closed cover of minimum cardinality and solved exactly in [60]. In [64], the relationship of

state reduction to implementation complexity was explored through an elegant theoretical

framework, which unfortunately did not provide a solution to the problem.

Several recent methods have been focused on producing minimum cardinality cov-

ers. E�cient algorithms have been produced for solving the problem exactly ([62], [70]),

and heuristics ([62], [2], [3]) have been developed for inexact solutions. These two fronts

have seen considerable progress.

Only a few recent attempts have been made to address the more general problem of

optimal state minimization. In Stamina [62], some attention is paid to implementation

complexity, but no attempt at direct or exact solutions was made. A more direct approach

was taken by Avedillo et al. [4], but results were less than encouraging (they were not

even compared with a state reduction tool, but rather with Nova, a state assignment

tool, which did better on already-minimized FSM's), and no theoretical results are given.

Finally, Calazans [18] o�ers a framework within which both optimal encoding and state

minimization can be expressed. In it, state reduction is modeled as the assignment of two

or more states to the same code. This insight constitutes one of the cornerstones of our

method. Unfortunately, the only solution method given is a simple, greedy method which

fares relatively poorly. Worse, it is not evident how to express a high-quality solution

method within that formulation.

Two recently developed CAD optimization techniques are also relevant to this

work, though created for other purposes. First, Devadas and Newton [45] address the

111

problem of exact state encoding through GPI minimization. In this method, generalized

symbolic prime implicants (GPI's) are formed, and a constrained binate covering problem

is then solved which both selects a set of GPI's and produces a compatible state encoding.

The basic �ow � symbolic prime generation followed by constrained covering � is used

in Optimist, but with considerably di�erent symbolic primes and constraints.

Second, Lin and Somenzi [82] introduce a technique for the exact minimization

of symbolic relations. Of particular interest is its application to exact state encoding,

incorporating an elegant method for state mapping. The symbolic relation they minimize,

however, is the result of state minimization; state minimization itself is not addressed in

their work.

4.3 Optimal State Minimization: Overview

This section provides a general overview of Optimist's method for optimal state mini-

mization. A more detailed presentation appears in subsequent sections.

Optimal state minimization is de�ned as �nding, for an unminimized machineM,

a reduced machineM′ with compatible behaviour and minimum logic complexity. Our

method is cast as a form of symbolic GPI (generalized prime implicant) minimization

which encapsulates both state minimization and state encoding. The method has 5 steps:

1. Generate state compatibles

2. Generate symbolic primes

3. Generate binate constraints

4. Solve constraints

5. Instantiate symbolic cover

112

First, state compatibles are formed by any standard method (e.g., STAMINA [62]). Next,

a novel form of symbolic prime called restricted GPI's (RGPI's), based on GPI's [45],

is generated. A set of binate constraints which identify the valid realizations is then

formed. Finally, the constraints are solved so as to minimize logic cardinality using a

binate solver (e.g., Scherzo [31]).

The solution is a set of selected compatibles and a set of selected RGPI's. These

are trivially combined during cover instantiation, to produce the reduced machine M′

and its symbolic two-level implementation. From there, input encoding constraints can

be immediately generated and solved to produce an optimal encoding.

The following sections �rst describe the relationship between the encoding model

to the rest of the process, and then give an overview of each of the 3 steps unique to our

method: symbolic prime generation, binate constraint generation, and cover instantia-

tion. Further details are provided in sections 4.4 through 4.6.

4.3.1 Optimal State Minimization and Input Encoding

The input encoding model provides a framework for symbolic logic minimization that is

applied in Optimist in a novel way to an ISFSM. In this way, Optimist captures state

reduction, state assignment, and two-level logic minimization.

The abstract �ow of the approach is as follows. Optimist starts with an ISFSM,

and transforms it exactly as does Chasm, turning the next-state into a set of distinct

output functions. In other words, it produces an mvi description consistent with the

input encoding model. It then performs symbolic logic minimization, using a new form of

symbolic prime implicants (described in the following section) that is capable of modelling

the collapsing of compatible states.

The symbolic logic minimization problem is e�ectively cast as a search through the

space of all valid reduced machines for a machine having an exactly minimum-cardinality

symbolic logic cover. The symbolic logic cover consists of mvi products which, after state

113

reduction, each contribute to at most one next-state. As a result, the cover so derived

will be suitable for use as the basis of an input encoding process. From there, one can

derive an encoding, and instantiate the symbolic cover, resulting in a binary cover of

exactly minimum cardinality over all possible state reductions and input encodings.

4.3.2 Symbolic Primes

This section describes the unique form of symbolic prime implicants that lie at the heart

of theOptimistmethod. The concepts are de�ned and illustrated with several examples.

A symbolic product is a product of literals over an mvi domain [39]. Each value

taken by a symbolic output is called a symbolic part. For example, each state si of a

machineM is a symbolic part of the symbolic output known as the next-state.

A symbolic implicant is a symbolic product which satis�es the following two prop-

erties: (i) it contains no OFF-set minterm of any binary output to which it contributes;

(ii) for each symbolic output to which it contributes, it asserts all symbolic parts speci�ed

in the total states which it contains. A symbolic implicant of an FSM is expressed as a

4-tuple p : 〈 in ps ns out 〉, denoting the input, present-state, next-state and output

�elds. For example, the symbolic product pa : 〈 0 s0, s1 s0, s1 0 〉 in Figure 4.3 is a sym-

bolic implicant. Observe that pa satis�es property (ii) by contributing to the symbolic

parts of the next-state (namely, s0 and s1) that are speci�ed in the total states (namely,

〈0 s0〉 and 〈0 s1〉) that pa spans.

Our procedure forms a set of symbolic implicants on the unreduced machine, which

can be used to cover portions of various reduced machines, after a suitable transformation.

These implicants are maximal over M in an intuitive sense. Speci�cally, we de�ne a

novel type of symbolic prime implicant, called a restricted generalized (prime) implicant,

or RG(P)I, a variant of a GPI, formed on the unreduced machine.

GPI's were introduced in [45] as a kind of symbolic prime implicant, �tagged with�

(i.e., having a �eld comprising) a set of next-states. The tag contains all next-states

114

which are speci�ed in all total states the GPI contains. For example, in Figure 4.3, the

symbolic implicant ga : 〈− s0 s0, s2 0 〉 is a GPI, where ns= {s0, s2}.

We now formally de�ne RGI's, and also an easily-calculated subset of RGPI's

called RGPI seeds.

De�nition 4.14 An RGI is a symbolic implicant whose next-state �eld consists of com-

patible states.

Intuitively, the selection of an RGI corresponds to making a state-mapping choice. Note

that the next-state �eld of an RGI (if non-empty) is a set of states, i.e. a compatible, in

the unreduced machine. This compatible, if selected, will appear as a single state in the

reduced machine. Thus, the RGI, if selected, will be used to bind a cube-shaped region

in the reduced machine M′ with a single uniform next-state choice � the row in M′

corresponding to the compatible. Moreover, the RGI's next-state �eld will then refer to

(at most3) one symbolic next-state in the reduced machineM′, as required by the input

encoding formulation.

De�nition 4.15 An RGI p1contains RGI p2 i� each �eld of p1 contains the correspond-

ing �eld of p2.

De�nition 4.16 An RGPI seed is an RGI which is contained only by RGI's with

unequal next-state �elds.

Example 4.17 The �ow table of Figure 4.3 has the following RGPI seeds:

3some RGPI's contribute only to the FSM's binary outputs

115

p0 : 〈0 s0 s0 0〉 p1 : 〈0 s0, s1, s2 s0, s1 0〉

p2 : 〈0 s1, s2 s1 0〉 p3 : 〈0 s2 s1 1〉

p4 : 〈1 s0 s2 0〉 p5 : 〈1 s1 s1 1〉

p6 : 〈− s1 s1 0〉 p7 : 〈1 s0, s1 s1, s2 0〉

p8 : 〈1 s1, s2 s0, s1 1〉 p9 : 〈0 s1, s2 s1, s2 0〉

p10 : 〈− s1, s2 s0, s1 0〉 p11 : 〈− s2 s0, s1 1〉

p12 : 〈1 s2 s0 1〉 p13 : 〈0 s2 s1, s2 1〉

p14 : 〈− s1 s1, s2 0〉 p15 : 〈1 s1 s1, s2 1〉

Note that {s0, s1} is a compatible, but {s0, s2} is not. Therefore, p1 is an RGI, but GPI

ga : 〈− s0 s0, s2 0 〉 is not. Furthermore, pb : 〈 0 s0, s1 s0, s1 0 〉 is an RGI, but is

contained by p1: each �eld of pb is contained by the corresponding �eld of p1. Hence, pb

is not an RGPI, since p1 contains it and has the same next-state �eld. On the other hand,

although p1 contains p0, its next-state �eld is di�erent, and so p0 is a distinct RGPI.

RGPI seeds can be generated by a slightly modi�ed version of a GPI generation

algorithm [45], which will be described in section 4.4. A more sophisticated and e�cient

algorithm is also presented in that section as well.

While RGPI seeds are the basic covering objects which will be used, it will be

shown in section 4.4 that a more general class, RGPI's, is in fact needed.4

De�nition 4.18 An RGPI is an RGI which is contained only by RGI's with unequal

input or next-state �elds (or both).

Example 4.23 shows several RGPI's that are not RGPI seeds.

The class of RGPI's includes RGPI seeds, as well as smaller RGPI's which result from

reducing seeds in the input dimension, to allow �ner-grained control over state mapping.

The various relationships are depicted in Figure 4.4.

4Note that all RGPI seeds are GPI's, while RGPI's in general are not.

116

RGI’s

GPI’s
(possibly incompatible NS field)

RGPI Seeds
(compatible NS field)

(maximal input/PS fields)

(possibly non-maximal input/PS fields)

RGPI’s
(possibly non-maximal input field)

Figure 4.4: The relationships among the various classes of RGI's and GPI's

117

4.3.3 Constraint Generation

Once RGPI's are generated, constraints are formulated to insure a valid and optimum

implementation. The solution is a set of selected compatibles and RGPI's. There are 3

main objectives. First, reduced machine M′ must be a realization of M. Second, the

selected set of RGPI's must constitute a symbolic cover for M′. Third, the resulting

cover must have minimum cardinality, under the input encoding model. We now outline

the constraints; details are provided in section 4.5.

The �rst objective is ensured by two sets of constraints. Each corresponds to a

classic state minimization constraint: 1) the selected state compatibles form a cover, and

2) the resulting cover is closed. These state covering constraints are precisely as described

in [60].

The second objective, forming a symbolic logic cover for M′, is met by a novel

set of constraints. Each selected compatible identi�es a unique state s′ in the reduced

machine. These constraints ensure that each symbolic ON-set minterm of each reduced

state s′ in the reduced machineM′ is covered by some selected RGPI.

The third objective, minimum logic cardinality, is assured by the binate solver,

which �nds a minimum-cost solution. To make cost a straightforward calculation, we

introduce one extra variable per RGPI. Only these variables have non-zero cost, so that

the cost function is simply the cardinality of the solution; that is, the number of selected

RGPI's.

4.3.4 Constraint Solution

The binate constraints are solved by any of the various standard binate solvers, such

as Scherzo [30]. The solution constitutes a selection of compatibles and RGPI's which

de�ne both a reduced machineM′ and a symbolic logic cover forM′.

118

4.3.5 Symbolic Instantiation

Symbolic instantiation is the process by which selected RGPI's are transformed one-for-

one into a symbolic realization (a 2-level symbolic cover) ofM′. This symbolic realization

is then used as the starting point for the encoding process, according to the classic Kiss

method.

To describe the RGPI instantiation process, we consider the transformation of a

single RGPI. We consider separately the mapping of each of the RGPI's 4 �elds.

Formally, for RGPI p = 〈IN, PS, NS, OUT 〉 we de�ne

p′ = Instantiate(p) = 〈IN, PS ′, NS ′, OUT 〉

The input and output �elds of p are unchanged by instantiation. The next-state �eld of

p is a compatible of M. Note that this compatible corresponds to a single row in the

reduced machine. Hence, an RGPI's next-state �eld identi�es a unique state ofM′, and

is mapped trivially:

NS ′ = the unique state ofM′ corresponding to NS

This step simply identi�es the compatible given by the next-state �eld in p with the

corresponding reduced row inM′. The role of the RGPI in the reduced machine is thus

to contribute to (at most) a single symbolic next-state. This role re�ects our use of an

input encoding formulation, where each next-state in the reduced machine is treated as

a distinct function. Thus, a symbolic implicant which contributes to next-state can con-

tribute to only one next-state. Therefore, each RGPI embodies a uniform state mapping

over some cube ofM′ to a speci�c reduced state ofM′.

Finally, the present-state �eld of an RGPI contains one or more symbolic states.

To a �rst approximation, an RGPI will be mapped so as to cover all selected compatibles

119

c which are contained by the present state �eld of that RGPI. That is, the RGPI is

regarded as covering the class of compatibles which are contained within its present state

�eld.

Example 4.19 RGPI p8 : 〈 1 s1, s2 s0, s1 1 〉 in Figure 4.3 contributes to (compatible)

next-states {s0, s1} of M, and has present states {s1, s2}. Therefore, in the reduced

table M′, p8 maps to the product p′8 : 〈 1 s′1 s′0 1 〉. The resulting present state �eld

contains s′1 = {s1, s2}; the next-state �eld consists of the single reduced next-state s′0

(which corresponds to the original compatible set {s0, s1}).

As indicated, for the present state, we can include in PS ′ all selected compatibles con-

tained by PS. This scheme works in some cases, but fails to capture the full �exibility

of state mapping in others. In section 4.6, we de�ne the precise mapping for PS which

circumvents this problem.

Example 4.20 One complete solution to the constrained covering problem for Figure 4.3

consists of (i) compatibles s′0 ≡ {s0, s1} and s′1 ≡ {s1, s2}, and (ii) RGPI's {p1, p7, p8}

shown below.

p1 : 〈 0 s0, s1, s2 s0, s1 0 〉

p7 : 〈 1 s0, s1 s1, s2 0 〉

p8 : 〈 1 s1, s2 s0, s1 1 〉

p′1 : 〈 0 s′0, s
′
1 s′0 0 〉

p′7 : 〈 1 s′0 s′1 0 〉

p′8 : 〈 1 s′1 s′0 1 〉

The selected RGPI's, {p1, p7, p8} can be instantiated as symbolic implicants {p′1, p′7, p′8}

of reduced machineM′. It is easy to verify that the result is a cover forM′. Observe

that the input and output �elds are unchanged; only the present-state and next-state

�elds are transformed. Further, each mapped implicant contributes to at most 1 state.

Note that the state mapping choice in 〈 0 s′1 〉 is resolved to s′0 by the binding e�ected by

p′1.

Now the method �ow has been outlined, details for each of the three steps are

given in the following sections.

120

4.4 Symbolic Primes: RGPI's

This section completely characterizes the full set of RGPI's used by Optimist, and

presents simple algorithms for their generation.

The structure of this section is as follows. First, we present a naive algorithm for

generating RGPI seeds. Next, we highlight the problem arising from restricting solutions

to RGPI seeds. Then, we describe the solution to this problem � use of a larger set

of symbolic primes, the complete set of RGPI's. A later section (section 4.9) describes

a much more e�cient RGPI generation algorithm, based on the use of characteristic

functions.

4.4.1 Generating RGPI Seeds

RGPI seeds can be generated by a modi�ed version of the GPI �k-cube� algorithm pre-

sented in [45]. The k-cube algorithm starts by generating small cubes, and then merges

them iteratively to generate the complete set of GPI's.

The modi�ed algorithm for RGPI seed generation works as follows. First, �0-

cubes� are generated, which essentially record the next-state and output in each total

state. Then, an iterative �merge-and-dominate� step is performed, in which pairs of

distance-1 cubes at level i are merged to form a new cube at level i+1. When a merged

cube has the same output and next-state �eld as either of its (smaller) parent cubes, the

parent cube is not an RGPI seed, and is �dominated away�. Otherwise, both parents and

child are added to the set of RGPI seeds.

The k-cube algorithm appears as Algorithms 5, 6, and 7.

The algorithm as shown only produces a subset of the RGPI seeds. In particular,

it produces RGPI seeds with �tight-�tting� next-state �elds, which exactly equal the set

of speci�ed next-states within each seed. However, the set of RGPI seeds may include

cubes that are nearly identical to cubes generated by the k-cube algorithm, but whose

121

M 0 1

s0 s2,− s2, 0
s1 s2, 1 s2, 0
s2 s1, 1 s1,−
s3 s1, 1 s2, 0

Figure 4.5: Example of table requiring post-processing step

next-state �elds specify a larger set of compatible states.

For example, Figure 4.5 shows a table and the RGPI seed p1 = 〈− s0, s1 s2 0〉.

p1 contributes only to next-state s2, the speci�ed next-state throughout the total states

spanned by p1. Note that p1 would be generated by the k-cube algorithm. {s2, s3} is

also a compatible, and properly contains {s2}. Hence, p2 = 〈− s0, s1 s2, s3 0〉 is also an

RGPI seed; however, p2 would not be generated by the k-cube algorithm.

A trivial post-processing step (not shown) produces the remaining RGPI seeds, by

expanding the next-state �eld of each seed to all possible properly containing compatibles.

Algorithm 5 Function merge()

merge(sa, sb) := sa ∪ sb if compatible(sa, sb) and neither sa nor sb are φ
sa if sb = DC
sb if sa = DC
φ otherwise

Algorithm 6 Procedure generate-0-cubes()

generate-0-cubes() {

cubes0 := φ;
foreach total state τ = 〈IN, PS〉 do {

OUT := {oi | output i �= 0 in τ};
NS := {s}, iff δ(IN, PS) = s, else DC;

cubes0 := cubes0 ∪ { 〈IN, PS, OUT, NS〉 };
} }

122

Algorithm 7 Procedure generate-k-cubes()

generate-k-cubes() {

generate-0-cubes();

for k := 1 to kmax do {

cubesk := φ;
for each pair pi, pj in cubesk−1

do {

if distance(pi, pj) = 1 then {

IN′ := INi ∪ INj;
PS′ := PSi ∪ PSj;
NS′ := merge(NSi,NSj);

OUT′ := OUTi ∩OUTj;
if (not empty(NS′)OR not empty(OUT′)) then {

cubesk := cubesk ∪ { 〈IN
′, PS′, NS′, OUT′〉 };

if (OUT′ = OUTi)AND (NS
′ = NSi) then

mark pi dominated;

if (OUT′ = OUTj)AND (NS
′ = NSj) then

mark pj dominated;

} } } } }

4.4.2 Non-Seed RGPI's

It is not always possible to construct an optimum solution using only RGPI seeds. The

reason for this is the incompatibility of RGPI's which intersect and implement next-state,

but disagree on the next-state. Their incompatibility results from their commitment to

bind the next-state entries of contained total states to con�icting next-states. Lacking

�ner-grained cubes, this interference results in cases where only sub-optimal solutions

are produced, or worse, where no cover exists.

Example 4.21 The following table, when reduced using compatibles {s1, s2} and {s2, s3},

cannot be covered by RGPI seeds alone:

123

M 00 01 11 10

s0 s1,− s2,− s3,− s4, 1

s1 s1, 1 s1, 1 s4,− s4,−

s2 s2, 1 s2,− s4,0 s4, 0

s3 s2,− s3, 0 s4, 0 s4, 0

s4 s4, 0 s4, 1 s4, 1 s4, 1

Consider the RGPI seeds p1 : 〈 0− s0, s1, s2 s1, s2 1 〉 and p2 : 〈−1 s0 s2, s3 1 〉. These

seeds are incompatible: they intersect in total state 〈 01 s0 〉, but have di�erent next-state

�elds ({s1, s2} vs. {s2, s3}), representing con�icting state mappings. Yet, p1 and p2 are

both essential for covering minterms at 〈 00 s0 〉 and 〈 11 s0 〉, respectively. Hence no

solution exists that uses RGPI seeds alone.

Clearly, RGPI seeds are not �ne-grained enough to express the full �exibility of

state mapping. In some cases, no solution consisting solely of RGPI seeds exists; in others,

no optimum solution exists. In general, an optimum solution requires a combination of

RGPI seeds and �ner-grained symbolic cubes.

To see the kind of cubes that are needed, consider the following reduction of the

above machine.

Example 4.22

M′ 00 01 11 10

s′0 = {s0} s′1,− {s2},− s′2,− s′3, 1

s′1 = {s1, s2} s′1, 1 s′1, 1 s′3, 0 s′3, 0

s′2 = {s2,s3} {s2}, 1 s′2, 0 s′3, 0 s′3, 0

s′3 = {s4} s′3, 0 s′3, 1 s′3, 1 s′3, 1

There are two state mapping choices in 〈 01 s′0 〉: s′1 and s′2. If we choose mapping s′1,

we require an implicant which covers the isolated s′2 minterm at 〈 11 s′0 〉; however, no

RGPI seed maps onto such an implicant. If we choose s′2 instead, two distinct implicants

are required to cover the minterms of s′1 at 〈 00 s′0 〉 and 〈 01 s′1 〉, since the only RGPI

124

seeds that contain both total states are incompatible with the state mapping choice s′2.

Unfortunately, no RGPI seed maps onto either implicant.

We need smaller RGPI's to gain �ner control over state-mapping. Speci�cally, we

require a set of implicants with smaller input and/or present-state �elds.

Example 4.23 An optimum cover can be constructed if the set of RGPI seeds is aug-

mented with the following smaller RGPI's:

p1a : 〈 00 s0, s1, s2 s1, s2 1 〉,

p1b : 〈 0− s1, s2 s1, s2 1 〉, and

p2a : 〈 11 s0 s2, s3 1 〉.

The following paragraphs show how such non-seed cubes as p1a, p1b, and p2a above can

be derived from RGPI seeds by restricting their input and/or present-state �elds. Two

distinct approaches are used, for reasons described below. For cubes restricted in the

present-state �eld, we introduce decision variables into constrained covering which de-

termine the selected state mapping in each total state. The instantiation process then

restricts the present-state dimension of each cube so as to ensure consistency with the

chosen mapping. For cubes restricted in the input �eld, we simply re�ne RGPI seeds in

the input dimension. In the following sections, we describe both approaches.

Present State Field Non-seed RGPI's which span fewer reduced states (such as p1b

above) are obtained by associating a set of Boolean decision variables {γp,c} with

each RGPI p. Each variable γp,c is set to true i� RGPI p is to be instantiated so as

to span the reduced state corresponding to c. Thus, control over the instantiation

of p's present-state �eld is incorporated into the constrained covering step. The

γp,c assignments made during the binate covering solver are then used in symbolic

instantiation to map the selected set of RGPI's onto a proper symbolic cover for

the reduced machineM′.

125

This approach is preferable to one which, for example, explicitly enumerates all combi-

nations (subsets) of the states in the present-state �eld. Since any set of symbolic states

can be made adjacent with a proper encoding, a single implicant can always be made to

span those states after encoding.5 Moreover, N binary variables {γp,c} for an RGPI p

with N candidate reduced states can express any of the 2N possible subsets of those N

states.

Naturally, a variable γp,c is only meaningful for those compatibles c that are con-

tained in PS(p), since including any other compatible c could never result in an impli-

cant of M′.6Therefore, more formally, we de�ne the set of compatibles Γp = {c | c ⊆

PS(p), c ∈ C} (those whose corresponding reduced states can be considered for inclusion

in an instantiation of p), and reserve a γp,c for each c in Γp.

Input Field Non-seed RGPI's which are smaller in the input dimension (such as p1a

and p2a above) are obtained by simply re�ning RGPI seeds, i.e., reducing them in

all possible input dimensions, and adding the resulting sub-cubes to the RGPI set.

A trivial algorithm produces such cubes readily.7

Unlike the case for the present-state �eld, an optimum state mapping for the region

spanned by a given RGPI seed may necessitate the use of multiple implicants to cover

any speci�c next-state. This can happen because there is no guarantee that optimal state

mapping will produce a cube-shaped sub-region for any given next-state. Consider for

example the region of 〈 0− s′0, s
′
1 〉 (the region corresponding to seed p1) when 〈 01 s0 〉

is mapped to s′2. That state mapping choice e�ectively �breaks up� the single cube p1

into two smaller RGPI's, one (p1a) spanning only column 00, and another (p1b) spanning

columns 00 and 01 in row s′1.

5Recall that a solution always exists to any combination of face embedding constraints [40].
6because an RGPI p is maximal in that any further expansion in the present-state �eld would cause

it to hit the OFF-set of some output
7This algorithm is not shown, because in reality Optimist uses the much more e�cient RGPI gen-

eration method presented in section 4.9.

126

There seems to be no convenient way to encode a subset of the 3N possible sub-

cubes of an RGPI seed spanning 2N input columns (i.e., a seed with N full input literals).

Hence, these sub-cubes are instead explicitly represented in the set of RGPI's.

The additional cubes increase the complexity of the covering problem, in exchange

for the control necessary to ensure an exactly optimum solution to the state mapping

problem.

4.5 Constraint Generation

Once the sets of state compatibles and RGPI's have been generated, constraints must

then be generated.

This section describes the novel set of binate constraints used by Optimist in

the third step of the process, after RGPI generation. These constraints ensure that

the selection of RGPI's and compatibles constitutes a valid (symbolic) realization of the

original machineM.

In the following subsections, the decision variables involved are �rst introduced.

Next, the cost model is brie�y described, and the constraints themselves are presented in

detail. Finally, a mock recursive descent walk-through of the constraint solution process

helps illustrate the interactions among the various types of constraint.

4.5.1 Constraint Matrix Variables

The covering problem can be expressed as a constraint matrix, where each row is a

constraint and each column is a decision variable. The covering matrix contains three

kinds of columns: state compatibles, RGPI's, and �γ� variables (which modulate the

instantiation of a selected RGPI's present-state �eld, as discussed in Section 4.4.2).

Speci�cally, the columns in the covering matrix are:

127

variable description cost

ci � include compatible ci in the state cover 0

pi � include RGPI pi in the symbolic logic cover 1

γpi,ci � make RGPI pi span the reduced state ci inM′ 0

4.5.2 Cost Model

Optimist's cost model for optimal state minimization, namely, the cardinality of the

2-level logic cover, is re�ected in the column costs shown above. In particular, the cost

of selecting an RGPI is 1; all other columns have 0 cost.

Given a binate solver capable of handling a two-tiered cost function, a more ap-

propriate cost model for optimal state minimization would assign RGPI selection to the

higher tier, while assigning compatible selection to the lower tier. This cost would have

the e�ect of �nding a closed state cover that has lowest cardinality, among all state covers

yielding minimum cardinality logic covers.

4.5.3 Constraints

There are �ve distinct sets of constraints, each addressing a speci�c requirement on

valid realizations. Two sets (sets 1 and 3 below) correspond directly to classic state

minimization constraints, which ensure a closed cover of state compatibles. One set (set

2) ensures that the ON-set of the reduced machineM′ is covered by the selected set of

RGPI's. An additional set (set 4) ensures that the machine is state-mapped consistently

by the selected RGPI's. The �nal set of constraints (set 5) provides the solver with a

trivial means of determining the cover's cost.

The constraint clauses, which correspond to covering matrix rows, are shown be-

low, grouped in �ve sections according to purpose. Each section consists of a set of similar

clauses, all of which must be satis�ed. The �nal Boolean expression is a conjunction of

all rows/clauses in all �ve sections.

128

Below, some constraints are shown in the form a → b, to emphasize the implica-

tion between the choices a and b. Such constraints are equivalent to the Boolean binate

expression a+ b.

1. State Covering

Each unreduced state must be covered by some state compatible (reduced state).

∀ states s ofM

ci1 + ci2 + · · ·+ ciN

where s ∈ cik . This corresponds to a classic closure constraint [60].

2. Compatible Selection ⇒ RGPI Selection

(�Functional Covering�)

Each ON-set minterm of each output and next-state ofM′ must be covered. Since

selecting a compatible corresponds to adding a row in the reduced table, this con-

straint ensures that every ON-set minterm in the reduced row is covered.

∀ compatibles ck

∀ minterms m′ lying in ck

ck → γp1,ck
+ γp2,ck

+ · · ·+ γpN ,ck

Here, m′ is an ON-set minterm lying in ck, corresponding to either an output or the

next-state in the reduced machineM′. That is, m′ lies in some total state 〈Ii, s
′
k〉

ofM′, where s′k corresponds to ck. p1 . . . pN are those RGPI's that cover m′. If we

select compatible ck, we must cover minterm m′, and so must select some RGPI pi.

Because of the need to control the present-state extent of instantiated RGPI's,

however, we do not directly select pi. Rather, we use γ variables to delimit the

present-state extent of each selected RGPI. As a result, each clause does not select

pi, but instead selects γpi,ck
, in order to ensure that RGPI pi will be mapped over

ck. This in turn will guarantee that m′ is covered inM′.

Although the minterms m′ in row ck of the reduced machine are not yet explicitly

available, they can easily be derived. Let Ii ∈ I be any input column. A minterm

129

m′ = 〈Ii, s
′
k〉 is in the ON-set of a binary output j in reduced machineM′ i� some

unreduced state s ∈ ck speci�es a 1 for output j; i.e., λj(s, Ii) = 1.

Similarly, minterm m′ is considered an ON-set minterm of the symbolic next-state

of the reduced machineM′ i� for some unreduced state s ∈ ck, δ(s, i) = s̃, for some

singleton state s̃; that is, the next-state is speci�ed in s. In this case, the next-state

in m′ will also be speci�ed.

For each ON-set minterm, m′, those γpi,ck
are included in the above constraints

for which (i) pi contributes to the corresponding output or next-state, and (ii) also

contains the minterm (i.e. intersects input column i).

3. RGPI Selection ⇒ Compatible Selection

If an RGPI which implements next-state is selected, the corresponding state com-

patible must also be selected.

∀ RGPI′s pi | NS(pi) �= φ

pi → ck

where compatible ck = NS(pi).

This constraint corresponds to a classic closure constraint [60]. An RGPI pi which

implements next-state identi�es a unique reduced state to which the next-state of

all contained total states is uniformly state mapped. Hence, RGPI selection im-

plies a commitment to select the compatible ck corresponding to its next-state �eld.

Thus, if RGPI pi implements next state, and has next-state �eld equal to ck, ck

must be selected if pi is selected. Note that an RGPI implementing only outputs

has no such constraint.

4. Implicant Incompatibility

Two RGPI's are incompatible if they intersect in some selected compatible, but

disagree on next-state.

Recall that each RGPI corresponds to a state mapping choice for the total states

that it contains. This set of constraints states that overlapping RGPI's cannot be

130

simultaneously selected if they represent con�icting state mapping choices.

∀ RGPI′s pi, pj | i �= j, IN(pi) ∩ IN(pj) �= φ,

NS(pi) �= φ, NS(pj) �= φ, NS(pi) �= NS(pj),

∀ compatibles ck ⊆ PS(pi) ∩ PS(pj)

and δ(IN(pi) ∩ IN(pj), ck) �= S

ck → γpi,ck
+ γpj,ck

If two RGPI's implement next-state and disagree, and intersect in some compatible

ck, they can both be mapped over ck only if the next-state is unspeci�ed (δ(Ia, s) =

S) throughout the region of intersection. Otherwise, there is a con�ict: a total state

would be simultaneously mapped in two ways. We must either not select ck, or not

map one of the RGPI's onto reduced state ck.

The above constraint thus identi�es the precise conditions under which 2 RGPI's

pi and pj overlap and specify con�icting next-states. When such a con�ict exists,

the binate constraint ensures that at least one of the RGPI's is not mapped over

the reduced state.

5. Implicant Cost

Mapping an RGPI over a reduced state implies selecting that RGPI.

∀ RGPI′s pi, ∀ compatibles ck ∈ Γpi

γpi,ck
→ pi

This is a bookkeeping device to make it easier for the solver to determine the

solution cost (logic cover cardinality). The variable pi is made true if pi is mapped

over at least one reduced state.

The rationale for this constraint is as follows. A given RGPI pi can be mapped

over several reduced states, if several γpi,c are set to 1. However, no matter how

many reduced states pi spans, it contributes only 1 to the cardinality of the logic

cover. This constraint ensures that each pi is counted only once.

131

4.5.4 Flow of Constraint Solution

The implications interconnecting the various constraints can be envisioned in a ��ow�

from, e.g., state covering (set 1) to functional covering (set 2) to state implication (set

3), and so on. To better illustrate the relationships, we o�er the following solution

scenario.8

1. We start by selecting a compatible ci to cover some state, say, s0. This satis�es the

corresponding clause from set 1.

2. The selection of compatible ci implies covering conditions on the ON-set minterms

m′ of M′ lying in ci (set 2). We choose one such minterm, and map an eligible

RGPI p over ci to cover it, by setting γp,ci to true.

3. As a result, the corresponding RGPI, p is added to the cover (set 5).

4. Once p is selected, the closure requirement demands the selection of the compatible

cj associated with p's next-state �eld, if any (set 3). If cj was not previously selected,

new covering constraints must be satis�ed, and we recur on step 2.

5. If there are uncovered minterms in ci, continue at step 2.

6. If there are uncovered states, continue at step 1.

At any point, the currently selected RGPI's may be incompatible (set 4) with RGPI's

mentioned in covering clauses (set 2) for a speci�c compatible. If so, the latter RGPI's

cannot be mapped over that compatible, and the corresponding γ's are removed from

consideration in this sub-tree. There may then be no RGPI eligible to cover some minterm

in step 2. If so, the sub-problem has no solution, and backtracking occurs.

8which can be regarded as a crude recursive-descent algorithm

132

4.5.5 E�cient Constraint Solution

The constraints used by Optimist are all unate and binate. Hence, in practice, an

e�cient general-purpose binate solver such as Coudert's Scherzo [30] is used to solve

these constraints.

4.6 Symbolic Instantiation

Once all constraints are solved, the result is a selected set of compatibles and symbolic

implicants (RGPI's). The �nal step produces a symbolic logic cover for the chosen

reduced machine by instantiating the selected RGPI's. Section 4.3.5 gave a somewhat

intuitive but incomplete description of the process of symbolic instantiation.

We now de�ne symbolic instantiation precisely, taking into account the γ variables

associated with each RGPI. γ variables were introduced in section 4.4 in order to gain

�ner control over the shape of instantiated implicants.

Symbolic instantiation is de�ned with respect to a selected set of compatibles (and

hence a reduced machineM′), along with the set of γ variable assignments identifying

speci�c reduced states to span. Speci�cally,

p′ = Instantiateγp(p)

where γp is a set of Boolean variables associated with p. Each member of γp is associated

with a compatible contained in PS(p). We let

p′ = Instantiateγp(p) = 〈I, PS ′, NS ′, O〉

with NS ′ as before, but, for the present state �eld:

133

PS ′ = {reduced states s′ | γp,c = 1 and

s′ corresponds to c }

That is, the present state of p′ contains all reduced states whose corresponding γ variables

were assigned a 1 value by the binate solver. Any other selected compatible c′, which

could be covered by p but was not selected for covering by p (i.e. γp,c′ = 0) will not

be included in PS ′. In this way, the γ assignments determine the precise extent of the

instantiated implicant p′, i.e., the set of reduced rows p′ will span.

4.7 Examples

This section presents two examples to illustrate the Optimist method.

The �rst example illustrates the mechanics of the procedure by giving complete

results for each step of the procedure, using the simple table of Figure 4.3. The set

of compatibles, RGPI's, and all constraints are shown. We show both the optimum

logic cover, corresponding to the optimum state mapping, and a sub-optimal logic cover,

resulting from sub-optimal mapping.

The second example focuses on the results obtained by the Optimist method.

In particular, it demonstrates an optimum result that is not available to other existing

methods. In this case, Optimist wins by relaxing both of the common restrictions of

classic state minimization methods: (i) the search for only minimum-cardinality state

covers, and (ii) the use of prime compatibles.

Example 4.24 (from Figure 4.3)

134

M 0 1

s0 s0, 0 s2, 0

s1 s1, 0 s1,−

s2 s1,− s0, 1

Maximal compatibles:

MC = {{s0, s1}, {s1, s2}}

Prime compatibles:

PC = {c0, . . . , c4} =

{{s0}, {s1}, {s2}} ∪ MC.

The RGPI seeds were given in section 4.3.2. There are no non-seed RGPI's. The complete

set of constraints follows, in POS form, and grouped by section.

State Covering :

(c0 + c3)(c1 + c3 + c4)(c2 + c4)

Functional Covering :

The �rst clause ensures that, when compatible c0 is selected, the minterm for s0 in

〈 0 s0 〉 is then covered. This clause is satis�ed when, for example, γp0,c0 is set to true,

thereby mapping p0 over c0. Likewise, the second clause ensures the covering of the

minterm for s2 in 〈 1 s0 〉, when c0 is selected.

(c0 → γp0,c0 + γp1,c0)(c0 → γp4,c0 + γp7,c0)

(c1 → γp1,c1 + γp2,c1 + γp6,c1 + γp9,c1 + γp10,c1 + γp14,c1)

(c1 → γp5,c1 + γp6,c1 + γp7,c1 + γp8,c1 + γp10,c1 + γp14,c1 + γp15,c1)

(c2 → γp1,c2 + γp2,c2 + γp3,c2 + γp9,c2 + γp10,c2 + γp11,c2 + γp13,c2)

(c2 → γp8,c2 + γp10,c2 + γp11,c2 + γp12,c2)

(c2 → γp8,c2 + γp11,c2 + γp12,c2)

(c3 → γp1,c3)(c3 → γp7,c3)

(c4 → γp1,c4 + γp2,c4 + γp9,c4 + γp10,c4)(c4 → γp8,c4 + γp10,c4)(c4 → γp8,c4)

Compatible Implication:

135

Each clause ensures that when an RGPI that implements next-state is selected, the

corresponding next-state is also selected.

(p0 → c0)(p1 → c3)(p2 → c1)(p3 → c1)(p4 → c2)(p5 → c1)

(p6 → c1)(p7 → c4)(p8 → c3)(p9 → c4)(p10 → c3)(p11 → c3)(p12 → c0)

(p13 → c4)(p14 → c4)(p15 → c4)

Implicant Incompatibility :

RGPI's p0 and p1 implement the reduced next-states {s0} and {s0, s1}, respectively,

and overlap in total state 〈 0 s0 〉. Because of their disagreement, they cannot both be

mapped over c0. Hence, either c0 must not be selected, or one of {γp0,c0, γp1,c0} must not

be.

(c0 → γp0,c0 + γp1,c0)(c0 → γp4,c0 + γp7,c0)

(c1 → γp1,c1 + γp2,c1)(c1 → γp1,c1 + γp6,c1)(c1 → γp1,c1 + γp9,c1)(c1 → γp1,c1 + γp14,c1)

(c1 → γp2,c1 + γp9,c1)(c1 → γp2,c1 + γp10,c1)(c1 → γp2,c1 + γp14,c1)

(c1 → γp6,c1 + γp9,c1)(c1 → γp6,c1 + γp10,c1)(c1 → γp6,c1 + γp14,c1)

(c1 → γp9,c1 + γp10,c1)(c1 → γp10,c1 + γp14,c1)

(c1 → γp5,c1 + γp7,c1)(c1 → γp5,c1 + γp8,c1)(c1 → γp5,c1 + γp10,c1)(c1 → γp5,c1 +

γp14,c1)(c1 → γp5,c1 + γp15,c1)

(c1 → γp6,c1 + γp7,c1)(c1 → γp6,c1 + γp8,c1)(c1 → γp6,c1 + γp10,c1)(c1 → γp6,c1 +

γp14,c1)(c1 → γp6,c1 + γp15,c1)

(c1 → γp7,c1 + γp8,c1)(c1 → γp7,c1 + γp10,c1)

(c1 → γp8,c1 + γp14,c1)(c1 → γp8,c1 + γp15,c1)

(c1 → γp10,c1 + γp14,c1)(c1 → γp10,c1 + γp15,c1)

(c2 → γp1,c2 + γp2,c2)(c2 → γp1,c2 + γp3,c2)(c2 → γp1,c2 + γp9,c2)(c1 → γp1,c1 + γp13,c1)

(c2 → γp2,c2+γp9,c2)(c2 → γp2,c2+γp10,c2)(c2 → γp2,c2+γp11,c2)(c1 → γp2,c1+γp13,c1)

(c2 → γp3,c2+γp9,c2)(c2 → γp3,c2+γp10,c2)(c2 → γp3,c2+γp11,c2)(c2 → γp3,c2+γp13,c2)

(c2 → γp9,c2 + γp10,c2)(c2 → γp9,c2 + γp11,c2)(c2 → γp10,c2 + γp13,c2)(c2 → γp11,c2 +

γp13,c2)

136

(c4 → γp1,c4 + γp2,c4)(c4 → γp1,c4 + γp9,c4)(c4 → γp2,c4 + γp9,c4)(c4 → γp2,c4 + γp10,c4)

(c4 → γp9,c4 + γp10,c4)

Implicant Cost :

(γp0,c0 → p0)(γp1,c0 → p1)(γp1,c1 → p1)(γp1,c2 → p1)(γp1,c3 → p1)(γp1,c4 → p1)

(γp2,c1 → p2)(γp2,c2 → p2)(γp2,c4 → p2)(γp3,c2 → p3)(γp4,c0 → p4)

(γp5,c1 → p5)(γp6,c1 → p6)(γp7,c0 → p7)(γp7,c1 → p7)(γp7,c3 → p7)

(γp8,c1 → p8)(γp8,c2 → p8)(γp8,c4 → p8)(γp9,c1 → p9)(γp9,c2 → p9)(γp9,c4 → p9)

(γp10,c1 → p10)(γp10,c2 → p10)(γp10,c4 → p10)(γp11,c2 → p11)(γp12,c2 → p12)

(γp13,c2 → p13)(γp14,c1 → p14)(γp15,c1 → p15)

Selecting compatibles {s0, s1} and {s1, s2} gives two state-mapping choices in

〈 0 s′1 〉, as observed earlier. The sub-optimal 4-RGPI cover {p1, p7, p9, p11} corresponds to

choosing s′1. Our method instead �nds the minimum cover {p1, p7, p11}, with 3 RGPI's,

which corresponds to the optimum state-mapping of s′0.

Example 4.25 The following example demonstrates that Optimist, which considers

non-minimum cardinality state covers, forms the optimum solution which other methods

cannot �nd. Speci�cally, a reduction of M by a minimum-cardinality state cover (as

other methods would require) results in a sub-optimal logic cover.

M 00 01 11 10

s0 s2, 1 s1, 0 s1,− s0, 0

s1 s2, 0 s1,− s1,− −,−

s2 s2,− s1, 1 s1, 1 s0, 1

Prime compatibles:

{s0} and {s1, s2}.

M′ 00 01 11 10

s′0 s′1, 1 s′1, 0 s′1,− s′0, 0

s′1 s′1, 0 s′1, 1 s′1, 1 s′0, 1

M, reduced via

{s0} and {s1, s2}.

The minimum logic covers for these two machines are shown below, forM on the

137

left (RGPI's), and forM′ on the right (instantiated RGPI's):

p1 : 〈00 s0, s2 s2 1〉 p′1 : 〈0− s′0, s
′
1 s′1 0〉

p2 : 〈−1 s0, s1, s2 s1 0〉 p′2 : 〈00 s′0 s′1 1〉

p3 : 〈10 s0, s1, s2 s0 0〉 p′3 : 〈−1 s′1 s′1 1〉

p4 : 〈00 s0, s1, s2 s2 0〉 p′4 : 〈10 s′0, s
′
1 s′0 0〉

p5 : 〈− − s2 − 1〉 p′5 : 〈11 s′0, s
′
1 s′1 1〉

p′6 : 〈10 s′1 s′0 1〉

It is not hard to show that these two state and logic covers represent two distinct

solutions to the covering constraints.

Optimist produces the optimum (unreduced) implementation M, with cover

p1, . . . , p5 and the 3 original states s0, s1 and s2. Consider p5, which is selected in

the cover. Its use is critical to forming the minimum cover, since it covers all the ON-set

minterms of the output in s2. In contrast, p5 cannot be used in the reduced machineM′,

since it cannot be mapped over s′1. As a result, in M′, 2 RGPI's are needed to cover

the output's ON-set minterms in s2. Our method therefore �nds the minimum cover

based on the selection of compatible {s2}, and discards the sub-optimal solution based

on {s1, s2}.

It is important to observe that the minimum logic cover (Optimist's solution)

could only be formed when using the non-prime compatibles ({s1} and {s2}). Moreover,

using these non-prime compatibles in turn necessitates the formation of a non-minimum

cardinality state cover. Both of these abilities are unique to Optimist; previously ex-

isting tools consider only minimum-cardinality state covers of prime compatibles. Thus,

Optimist produces the optimum solution, which existing tools cannot �nd.

138

4.8 Theoretical Results

This section presents the major theoretical results regarding Optimist's method for

optimal state minimization. First, it is established that every solution to the binate con-

straints constitutes a valid pair of a reduced machine and logic cover (after instantiation).

Second, the optimality of the method is proven.

4.8.1 Correctness

The proof of correctness of the Optimist method has two parts. First, it is shown that

a solution to the binate constraints describes a valid reduced machine, by verifying that

the selected set of compatibles always forms a closed state cover. Second, the selected set

of RGPI's is shown always to correspond to a proper symbolic logic cover for the given

reduced machine.

Lemma 4.26 Any solution to the constraints of section 4.5 describes a valid state cover.

Proof: The unate constraints of part 1 are precisely the state covering constraints

of Grasselli. Since all constraints must be satis�ed by any solution, the set of selected

compatibles forms a state cover. 2

Lemma 4.27 Any solution to the constraints of section 4.5 describes a valid state map-

ping for the given state cover.

Proof: All state covering constraints in part 1 have been satis�ed, by Lemma 4.26.

Hence, for each (unate) state covering constraint, a column corresponding to some com-

patible (say, ci) must have been selected. In the associated reduced state s′i, there is at

least one state mapping choice for each reduced total state. Now, the constraints of part 2

contain one clause for each total state identifying all RGPI's that cover the next-state

minterm, of the form ci → γpj1 ,ci + · · ·+ γpjn ,ci. The selection of ci now necessitates the

139

selection of one of the γpj ,ci.

By the de�nition of the part 2 constraints, each γpj,ci identi�es an RGPI pj that contains

the given reduced total state. By construction, pj 's next-state �eld (say, ck) also covers

the implied compatible in every total state it contains. Choosing γpj ,ci guarantees that

pj will be instantiated so as to span ci, thereby implicitly de�ning a state mapping to ck

in that total state.

Finally, the constraints of part 4 (implicant incompatibility) ensure that no two RGPI's

which disagree on next-state are made to overlap in any reduced total state. Hence, the

state mapping is consistent. 2

Lemma 4.28 Any solution to the constraints of section 4.5 describes a closed state

cover.

Proof: Given that all states are covered, and that a valid (implicit) state mapping has

been chosen, we must establish that the implied compatible (if any) has been selected in

all total states.

In the proof of Lemma 4.27, it was noted that every next-state minterm in the reduced

machine is covered by the selection of some γpj ,ci. Now, choosing γpj ,ci forces the selection

of pj , by virtue of a constraint in part 5, of the form γpj ,ci → pj. Finally, for each RGPI

implementing next-state, there exists a constraint in part 4 of the form pj → ck, which

can now only be satis�ed by choosing ck. Thus, the state cover is closed, since the implied

compatible in every total state has been selected. 2

Theorem 4.29 Any solution to the constraints of section 4.5 describes a valid reduced

machine.

Proof: This follows directly from Lemmas 4.26, 4.27, and 4.28. 2

Denote the reduced machine identi�ed by a given solution to the constraints (as described

140

above) asM′. Likewise, for a given RGPI p, denote the instantiation of p onM′ as p′,

according to the de�nition of section 4.6.

Proving that the constraint solution embodies a logic cover forM′ requires that

we establish some relationships between RGPI's and the set of implicants onM′.

Lemma 4.30 Every RGPI p maps onto a (possibly empty) implicant for any reduced

machineM′
, under a consistent γ assignment.

By �consistent γ assignment�, we mean an assignment of γp,ci variables that does not

cause p′ to span any row ofM′ for which the state mapping is inconsistent with NS(p′).

Proof: p by construction does not hit the OFF-set of any output of M to which it

contributes, and contributes only to compatible next-states. p′ can only span a reduced

state s′ if p spanned the entire compatible c corresponding to s. Clearly, then, p′ does

not hit the OFF-set of any output to which it contributes inM′. Moreover, a consistent

γ assignment excludes from PS(p′) any state s′ for which NS(p′) is incompatible with

the chosen state mapping in some contained input column. Thus, p′ implements the

unique next-state consistent with the chosen state mapping throughout p′ (or else p′ has

an empty PS �eld, and is an empty product). Therefore, p′ does not hit the OFF-set of

the next-state (if any) to which it contributes. Hence p′ is an implicant ofM′. 2

Theorem 4.31 Any solution to the constraints of section 4.5 identi�es a selection of

RGPI's which, when instantiated, implementsM′
.

Proof: The functional covering constraints of part 2 directly enumerate and cover the

ON-set minterms in M′, row by row. Thus, some RGPI p has been selected to cover

each minterm m′ inM′ (by assigning γp,cm to 1). What remains to be proven is that p's

instantiation, p′, covers m′. This follows from the basis for an RGPI's quali�cation in

the covering clause for m′. Speci�cally, because p spans the given input column in which

m′ resides, spans the entire compatible set of states, and because γp,cm was assigned 1, p′

141

will cover m′. 2

Theorem 4.32 A solution to the constraints of section 4.5 always exists.

Proof: Because the bulk of the constraints (parts 1 through 3 and part 5) represent a

monotonic set of implications, they can always be satis�ed, as long as:

(i) there exists at least one compatible to cover each state,

(ii) there exists, for any given minterm of any reduced row inM′, at least one RGPI

which satis�es the covering requirement of part 2, and

(iii) the non-monotonic constraints (part 4) always leave some solution accessible.

The �rst requirement is true, assuming that a reasonable set of compatibles (e.g. prime,

maximal, or all) is used.

The following discussion demonstrates point (ii) above. Although it examines

a single output, it applies equally to both next-state and multiple outputs, mutatis

mutandis.

Each ON-set minterm in M′ derives from one or more ON-set minterms in M.

In particular, ON-set minterm m′ inM′ in reduced state s′i derives from (at least) one

ON-set minterm m in M in some unminimized state s ∈ ci that s′i covers. Moreover,

because every state in M must be covered inM′, every minterm inM maps onto (at

least9) one minterm inM′. Hence, given that every minterm m inM is covered by at

least one RGPI, we need only show that one of these RGPI's will cover m′ inM′ after

instantiation (under an assignment of the associated γpj,ci to 1).

We now construct such an RGPI. For ON-set minterm m, construct an RGI p0

whose extent is the total state in which m resides, and which covers m. Now, any reduced

minterm m′ inM′ deriving from m resides in a reduced state s′i corresponding to some

9possibly more than one, due to state splitting

142

compatible ci. From the above, p0 can be expanded into all states in ci, yielding an RGI

pc. Now, if pc is maximal in its present-state �eld, it is an RGPI; otherwise, choose any

RGPI containing pc. It is easy to see that the result, p, contains m′ after instantiation.

It is important to note that the RGPI so constructed may not be an RGPI seed

� it always spans a single input column and may thus not be maximal in the input

dimension. This re�ects the fact that solutions are not always available using RGPI

seeds alone.

Finally, the constraints of part 4 (implicant incompatibility) assert the inconsis-

tency of instantiating pairs of RGPI's that enforce di�erent state mappings over the same

reduced total state. However, for any reduced total state, at least one RGPI exists that

is consistent with any given valid state mapping and spans only that input column (e.g.

the RGPI constructed above). Clearly a cover for M′ can be built solely from such

column-wide RGPI's, restricting the assignment of γpj,ci so that only one RGPI spans

any given reduced row in a given column. Such a cover clearly satis�es the consistency

constraints of part 4, since only one RGPI contains any total state.2

Non-prime Instantiated Covers A subtle issue arises regarding instantiated logic

covers: the instantiation process described in Section 4.6 does not guarantee a prime

symbolic logic cover for the reduced machine M′. Rather, it guarantees an exactly-

minimum cardinality cover, possibly using non-primes. In particular, a given set of

RGPI's and a given valid selection of γp,c variables may result in non-prime implicants

after instantiation. This will occur if, say, γp1,ca is selected to cover some ON-set minterm

in ca and p1 is consistent with the next-state
10 of another state cb, but γp1,cb

is not selected

because the ON-set minterms of cb were already covered. So, although under Optimist's

cost model, the cost of the solution does not increase when selecting a γp,c for an already-

selected RGPI p, it may not contribute to the satisfaction of any additional constraints.

10and, obviously, with its outputs as well

143

As we will see in the next section, this e�ect does not interfere with the optimality

of logic covers corresponding to minimum-cost solutions to the binate constraints. (The

next section will show that any prime cover of any M′ has an image on M consisting

of RGPI's.) A prime cover of identical cardinality can always be derived using, e.g., the

Expand step of Espresso [118] as a post-processing step.

4.8.2 Optimality

We now prove that the Optimist method yields an optimum result under the input

encoding model. That is, the reduced machine selected by Optimist has a minimum-

cardinality logic cover over all possible reduced machines and all possible input encodings.

In order to establish the optimality of the Optimist method, we show that any

symbolic prime cover (under the input encoding model) on any reduced machineM′ can

be formed by the instantiation of some solution to the binate constraints. Given this fact,

since the cost function of our binate covering problem is the number of selected RGPI's,

any reduced machineM′ possessing a minimum-cardinality logic cover corresponds to a

minimum-cost solution to the binate constraints.

Optimist is optimal only within the context of the input encoding model. In

particular, input encoding limits Optimist's grasp of logic covers onM′ to those which

treat each symbolic next-state as a distinct function [40]. Logic covers that share product

terms in the implementation of two or more next-states (e.g., as are captured by the

output encoding model [42]) can not be expressed directly within the present Optimist

framework.11 Nonetheless, input encoding has proven an e�ective model for a variety of

practical problems.

The proof consists of several parts. First, it is shown that any symbolic prime

implicant on any valid reduced machine can be formed by the instantiation of some RGPI.

Next, we show that any valid state cover satis�es the binate constraints of section 4.5.

11This might require, e.g., RGPI's whose next-state �elds contain incompatible states (or groups of

compatible states).

144

Finally, we show that there exists a set of RGPI's that map onto the given prime cover,

and materialize the assignment of γpj ,ci that satis�es both the functional covering and

implicant incompatibility constraints.

Note that, although the sequel makes frequent reference to a �reduced machine�,

nowhere does it depend on reduction (i.e., state merging) actually taking place. Thus,

the original machineM itself quali�es as a solution to the constraints.12

Lemma 4.33 Any symbolic prime implicant p′ on a valid reduced machineM′
is mapped

onto by at least one RGPI, under an appropriate γ assignment.

Proof: By construction. Given p′ = 〈IN ′, PS ′, NS ′, OUT ′〉 (where NS ′ speci�es a sin-

gle next-state) onM′, we form the product p̃ onM thusly: p̃ = 〈IN, PS, NS, OUT 〉,

where

IN = IN ′

OUT = OUT ′

NS = the unique compatible corresponding to NS ′, or φ, if NS ′ = φ

PS =
⋃
i
{ci | ci corresponds to s′i ∈ PS ′}

By de�nition, the prime implicant p′ has maximal input, output, present state,

and next-state �elds, with respect toM′. Clearly, p̃ is an RGI: it does not hit the OFF-

set of any output to which it contributes (or else said OFF-set minterm would imply a

mirroring OFF-set minterm inM′), and its next-state �eld consists of compatible states.

Now, maximally expand p̃ in the present-state dimension, so that any further expansion

would cause it to hit an OFF-set minterm for some output, or an ON-set minterm for

some other next-state. The result, p, is an RGPI (though likely not an RGPI seed).

Finally, under the (partial) γ assignment

12that is, when all compatibles are used; singleton compatibles are often not prime

145




γp,ci = 1, ∀ci such that ci ⊆ PS(p̃)

γp,ci = 0, otherwise

p maps onto p′.2

Lemma 4.34 Any reduced machineM′
and any prime symbolic cover Π′

for it represent

a solution to the binate constraints of section 4.5.

Proof: The state cover corresponding to M′ satis�es the constraints of part 1. The

constraints of part 2 enumerate the ON-set mintermsm′ in each row inM′. Each of these

minterms is covered by some member p′ of Π, and is also represented by some constraint

in part 2. Using the construction of Lemma 4.33, construct RGPI p from implicant p′.

Under the assignment γp,cm = 1, the part 2 constraint is clearly satis�ed. Whatever state

mapping is in e�ect in that total state inM′, the corresponding next-state must also be

a state ofM′ (or else M′ is not a valid reduction ofM). Now, given that the ON-set

minterm m′ of this next-state (say s′j) is covered by p′, p contributes to the corresponding

compatible (say cj). Thus, the only means of satisfying the part 3 implication constraint

(p → cj) is by selecting cj. Likewise, given the selection of γp,cm, the part 5 constraint

(γp,cm → p) must be satis�ed by selecting p, so that the RGPI p does in fact appear in

the logic cover. Finally, forM′ to be a valid reduction ofM, it must be consistently state

mapped. That is, for each total state τ ′ in M′, there is a well-de�ned next-state. All

members p′ of Π′ that contain τ ′ and implement next-state must agree with the chosen

next-state. Clearly, then, the RGPI's p that are constructed from these p′ will not dis-

agree on next-state either, and hence the implicant incompatibility constraints of part 4

are satis�ed. 2

146

Theorem 4.35 Any minimum-cost solution to the binate constraints of section 4.5 iden-

ti�es a minimum-cardinality symbolic logic cover ofM′
under the input encoding model.

Proof: By contradiction. Suppose there is a minimum-cardinality cover Π′ which is

lower than that of any solution to the constraints. Then either there is no corresponding

RGPI cover Π (impossible given Lemma 4.34), or the solution has greater cardinality

(also impossible, given that Π is derived from Π′, one-for-one, and that the cost of any

solution to the binate constraints is the cardinality of the set of selected RGPI's). 2

4.9 E�cient RGPI Generation

This section �rst presents an algorithm for RGPI seed generation that is more e�cient

than the one described earlier. The algorithm is then generalized to produce the complete

set of RGPI's.

In essence, both of these new algorithms recast the task of RGPI generation as

an instance of ordinary prime implicant generation over an expanded domain (i.e., with

additional variables). As a result, existing highly-optimized tools can be used to generate

RGPI's much more e�ciently.

4.9.1 E�cient RGPI Seed Generation

This section describes an e�cient algorithm for RGPI seed generation that vastly out-

performs the k-cube algorithm of Section 4.4. The technique used here is similar to that

used for GPI generation [1], but is signi�cantly di�erent, owing to the unique nature of

RGPI's.

The algorithm proceeds roughly as follows. First, it transforms the original �ow

table into an mvi function C, whose prime implicants can be trivially transformed to the

�ow table's RGPI seeds. Next, a standard prime implicant generation algorithm, such

147

as that provided by Espresso-Exact [118], is applied to C. The prime implicants of C

then undergo a simple transformation to recover the RGPI seeds.

The method described below deviates from that of GPI generation in two respects.

First, recall that whereas GPI's can contribute to any combination of next-states13,

RGPI's can contribute only to compatible next-states. Thus, products are added to the

speci�cation of C to indicate the incompatibility of certain states. Second, C is represented

as a characteristic function, for reasons described below.

Transformation of the Next-State Field

The following describes a simple transformation invented by Devadas et al. [1], which

ensures that the next-state �eld behaves as needed during prime implicant generation.

If the next-state �eld is 1-hot encoded as usual for input encoding, it will not

behave as needed during prime implicant generation. In particular, since each next-state

is treated by input encoding as a distinct function, the ON-set minterms of any given

next-state function are in the OFF-sets of every other next-state. Hence, no product

can contribute to more than one next-state function. However, GPI's (and RGPI's) can

by de�nition contribute to one or more states. Thus, the straightforward application of

prime implicant generation to the standard mvi function used by input encoding would

fail to generate RGPI's.

The solution is to represent the next-state �eld in positional-cube notation and

then negate it bit-wise (a so-called �1-cold� encoding). Under this negation, a product

spanning several total states �nds in each total state an OFF-set point for the corre-

sponding speci�ed next-state. Hence, it can contribute to all but the set of speci�ed

next-states. After reversing the negation, the desired product, which contributes to all

speci�ed states, is retrieved.

13because the relationship of the state codes is derived by a later step

148

A Characteristic Function for RGPI Seed Generation

We now describe in detail the form of the function C passed to the prime implicant

generator.

C takes the form of a characteristic function
14 that captures M's functional be-

haviour, as well as its state incompatibility relation. Characteristic functions have proven

to be a powerful means for representing and manipulating sets, particularly when imple-

mented using ordered binary decision diagrams (OBDD's). [16].

Here, a characteristic function is necessary because the validity of merging a given

pair of implicants is predicated on a non-local condition: the compatibility of the re-

spective next-states. This condition cannot be detected by inspecting the implicants

themselves.

The characteristic function C has two sets of products in its description:

1. Products describing the functional behaviour ofM

(a) Products describing the ON-set of the outputs and next-state

(b) Products describing the OFF-set of the outputs and next-state

2. Products asserting the incompatibility of various state pairs

The following sections describe each of these sets of products in turn.

Functional Speci�cation of M

First, each product in the speci�cation ofM (e.g. in cube-table format) is transformed

as follows:

〈IN PS NS OUT 〉 ⇒ 〈IN PS NS OUT 1〉
14A Boolean function C is said to be a characteristic function for the set S over domain D when,

∀x ∈ D, C(x) = 1 i� x ∈ S.

149

In other words, the value of C is 1 for all products in the expanded domain consistent

with the ON-set of the speci�ed behaviour ofM.

Next, for each product in the speci�cation of M, a product is added for each

output having a 0 value. The added products specify that any product intersecting that

portion of the input space and implementing the given output hits the OFF-set of that

output, and hence is in the characteristic function's OFF-set:

〈IN PS NS OUT 〉 ⇒ 〈IN PS ∗ OUToff 0〉

where OUToff is 1 for some output having a 0 value, and 0 for all other outputs. Note that

the don't-care entry for next-state (shown as a ∗) is in fact a �eld of 1's, the representation

of a full literal for an mvi variable in positional-cube notation.

A similar set of products is added to constrain the next-state �eld. These products

are somewhat di�erent, however, because RGPI's are allowed to contribute to two or more

compatible next-states. As a result, valid RGPI's frequently span total states for which

the speci�ed next-state si is a subset of the RGPI's next-state �eld NS. The RGPI thus

appears to hit the OFF-set of the other next-states (those in the set NS − {si}).

The proper condition for the next-state �eld is as follows: a product is invalid

if it contains a given total state, and contributes to next-state, but not to the speci�ed

next-state. In e�ect, this would violate the standard state closure requirement. Hence,

the added products have the form:

〈IN PS NS OUT 〉 ⇒ 〈IN PS NSon ∗ 0〉

where NSon is 1 for the speci�ed next-state, 0 for some other next-state and 1 for all

others.

150

State Incompatibility

The second set of products consists of one product for each incompatible state pair, of

the form:

〈∗ ∗ NSinc ∗ 0〉

where NSinc has 0's in the bit positions corresponding to the incompatible pair of states,

and −'s elsewhere (respecting the positional-cube notation for NS). Thus, any product

contributing to these incompatible states15 is in the OFF-set of the characteristic function,

and does not belong to the set of RGPI seeds.

Example 2 Figure 4.6 shows a cube-table format speci�cation of an FSM taken from [1],

along with the corresponding characteristic function used for RGPI seed generation.

Those products corresponding directly to products in the original speci�cation are shown

in bold. The sole incompatible state pair { {s0, s2} } is represented by the �nal OFF-set

product in the characteristic function's description.

Standard e�cient techniques for the generation of prime implicants (e.g. Espresso-

Exact [118]) are then applied to the characteristic function.

Recovering the RGPI Seeds from C

To �rst order, the RGPI seeds of M are trivially retrieved from the prime implicants

of C by reversing the transformation applied in step one. In particular, for each prime

implicant of C, the characteristic function output (the trailing bit) is dropped, and the

next-state �eld is un-negated.

However, two issues must be dealt with in order to arrive at the complete set of

RGPI seeds. First, the primes that are generated always contribute to the minimum pos-

sible number of next-states, namely, the set of next-states speci�ed in all total states that

15after re-interpreting the negation of the next-state �eld

151

M 0 1

s0 s0, 0 s2, 0
s1 s1, 0 s1,−
s2 s1,− s0, 1

0 s0 s0 0

1 s0 s2 0

0 s1 s1 0

1 s1 s1 -

0 s2 s1 -

1 s2 s0 1

0 100 011 0 1

0 100 111 1 0

0 100 101 * 0

0 100 110 * 0

1 100 110 0 1

1 100 111 1 0

1 100 011 * 0

1 100 101 * 0

0 010 101 0 1

0 010 111 1 0

0 010 011 * 0

0 010 110 * 0

1 010 101 - 1

1 010 011 * 0

1 010 110 * 0

0 001 101 - 1

0 001 011 * 0

0 001 110 * 0

1 001 011 1 1

1 001 101 * 0

1 001 110 * 0

* * 010 * 0

Figure 4.6: Cube-table speci�cation and corresponding characteristic function used in

fast RGPI seed generation

152

the prime contains. As a result, RGPI seeds which (validly) contribute to a proper super-

set of that set of states are not present. These are trivially generated by an �elaboration�

post-processing step.

Second, it may occur that a prime implicant of the characteristic function is don't-

care for a given output. This happens when the corresponding region of the table con-

sisted solely of don't-care points for that output. In this case, an RGPI seed with either a

0 or 1 for that output would be consistent with the original �ow table. Given the choice,

the post-processing step arbitrarily chooses 1.

4.9.2 E�cient RGPI Generation

We now generalize the method of the previous section to generate all RGPI's.

The essential di�erence between RGPI seeds and RGPI's is that RGPI's with dif-

ferent input �elds are considered distinct. Therefore, the primes of the characteristic

function that is used must likewise maintain this distinction. The distinction is accom-

plished by augmenting the characteristic function with pseudo-outputs that mirror the

input �eld, analogous to a technique employed by Devadas et al. [1] for fast generation

of GPI's for state encoding.16

4.10 Experimental Results

We now present the results of a number of experimental trials pitting Optimist against

the de facto state minimization tool, Stamina.

Optimist was implemented in C++ and run under MkLinux. Scherzo [30] was

used to solve the core binate covering problem, and Espresso [118] was used to generate

prime implicants for the RGPI characteristic function as described in section 4.9.

Results for a number of FSM's, including several from the MCNC '91 benchmark

16In that method the technique is actually applied to the present-state �eld, not the input �eld.

153

suite, appear in table 4.1, using only prime compatibles. For each FSM, the number

of inputs, unminimized states, outputs and prime compatible are shown. Two sets of

Optimist runs were done; one using only RGPI seeds, and another using all RGPI's.

For each run, the number of RGPI's used, the number of covering constraints, the run-

time, number of symbolic products after mvi minimization, and number of minimized

states is given. For comparison, Stamina [62] was used to minimize the same tables.

Table 4.1 shows the results when using only prime compatibles. Optimist breaks

even with Stamina in product count in 7 of the 11 examples. In two examples, Opti-

mist's solution has a better product count than Stamina. An outstanding result for

the two FSM's bbsse and sse shows the power of optimal state assignment coupled with

optimal state mapping, with an 85% reduction in product count.

Frequently, Optimist chooses a larger set of reduced states than does Stamina,

even when no gain in product cardinality results. E.g., in the case of bbara, Optimist's

state cover has 7 states compared to Stamina's 4. This occurs because Optimist uses

a single-tiered cost function which does not incorporate state cover cardinality. This

problem would be solved by using a binate solver capable of handling two-tiered cost

functions.

Comparing the use of RGPI seeds versus all RGPI's, in no case did using all RGPI's

produce any bene�t. On the other hand, for these trials, run-time complexity was not

increased appreciably either. In fact, generally the numbers of RGPI's and constraints

was relatively close for most runs. This may suggest that the complexity of these FSMs

was largely dominated by their next-state, rather than their output behaviour.

Table 4.2 shows a parallel set of runs, this time using all compatibles. Stamina

results are identical to those shown in table 4.1, and are repeated only for convenience.

Clearly the run-time complexity of this set of trials is much higher than the previous set.

As a result, three examples that were solvable using prime compatibles are not solvable

by Optimist in a reasonable amount of time when using all compatibles. In most cases,

154

F
S
M

O
P
T
IM
IS
T

S
T
A
M
IN
A

S
E
E
D
S

A
L
L

R
G
P
I
's

n
a
m
e

i/
s
/
o

p
c

R
G
P
I
s

c
o
n
s

t
im
e

p
r
o
d

m
s

R
G
P
I
s

c
o
n
s

t
im
e

p
r
o
d

m
s

p
r
o
d

m
s

m
in
s
t

1
/
2
/
3

2

1
3

5
4

<
1

6

2

1
6

6
6

<
1

6

2

6

2

li
o
n
9

2
/
3
/
1

5

7
9

2
2
7

2

8

4

8
1

2
4
3

3

8

4

8

2

li
s
o
m

1
/
5
/
1

5

2
8

1
3
0

<
1

4

5

2
8

1
3
0

<
1

4

5

4

2

b
b
a
r
a

4
/
1
0
/
2

7

7
5

3
5
8

3

2
5

7

1
6
0

5
0
1

1
1

2
5

7

2
5

4

b
b
s
s
e

7
/
1
6
/
7

1
3

6
6

3
7
0
4

1
9
2

3
1

†

1
3

8
5

3
7
8
8

2
3
0

3
1

†

1
3

2
0
8

1
3

b
e
e
c
o
u
n
t

3
/
7
/
4

7

1
4
5

9
7
9

1
2
4
0

1
0

7

1
7
0

1
0
3
8

1
0

1
0

7

1
0

3

o
p
u
s

5
/
1
0
/
6

9

3
3

1
3
2
0

8

1
9

9

3
3

1
3
2
0

8

1
9

9

1
9

5

s
2
7

4
/
6
/
1

5

2
5

3
0
4

1

1
7

5

4
3

4
2
1

1

1
7

5

1
7

4

s
8

4
/
5
/
1

1

2
0
7

2
4
5

7
6

1

1

3
0
8

3
7
4

1
1
0

1

1

4

1

s
s
e

7
/
1
6
/
7

1
3

6
6

3
7
0
4

1
7
6

3
1

1
3

8
5

3
7
8
8

2
4
6

3
1

1
3

2
0
8

1
3

t
r
a
in
1
1

2
/
1
1
/
1

1
7

3
1
8

3
8
0
2

3
3
1
8

6

1
1

‡

-

-

-

7

2

† Sub-optimal results due to necessity of using heuristic mode in binate solver

‡ Failed to produce a solution in a reasonable amount of time

Table 4.1: Results of minimization by Optimist using prime compatibles

155

the bottleneck was in the binate solver. In only two cases did resorting to the binate

solver's heuristic mode help. Interestingly, considerable variation appears to be present

in the complexity of the binate covering problem. For example, Scherzo readily solves

one problem having over one million constraints (that of sse), and yet has problems with

far fewer constraints in other cases.

4.11 Conclusions and Future Work

This chapter has presented the �rst method for optimal state minimization which directly

and accurately targets logic complexity, achieving a provably exact optimum result under

input encoding. The method is computationally expensive, however, and would bene�t

greatly from heuristic and inexact variations. Unlike other methods, Optimist provides

several opportunities to reduce complexity while retaining the strong minimization frame-

work, e.g. by using prime or maximal compatibles, RGPI seeds only, or by employing

heuristic binate solvers. For more e�cient exact solution, recent innovations in implicit

methods [31, 70] hold particular promise. With all of these choices, this method o�ers a

framework encompassing a spectrum of solutions.

A limitation to the current work is the large size of the RGPI set. Initial investi-

gation suggests cases where the set can be pruned, while still guaranteeing an optimum

solution. Similarly, it appears possible that compatibles may be pruned as well. These

are important areas for further research.

Although this work presents only limited benchmarks, future experimentation

should prove the method competitive with existing methods (e.g. STAMINA, SMAS) by

o�ering improved results in exchange for longer run-times. Finally, it is anticipated that

an extension to output encoding will yield a de�nitive solution to the problem of optimal

state minimization.

156

F
S
M

O
P
T
IM
IS
T

S
T
A
M
IN
A

S
E
E
D
S

A
L
L

R
G
P
I
's

n
a
m
e

i/
s
/
o

a
c

R
G
P
I
s

c
o
n
s

t
im
e

p
r
o
d

m
s

R
G
P
I
s

c
o
n
s

t
im
e

p
r
o
d

m
s

p
r
o
d

m
s

m
in
s
t

1
/
2
/
3

4

3
0

2
2
3

<
1

5

3

3
7

2
6
5

3

5

3

6

2

li
o
n
9

2
/
3
/
1

2
0

2
6
3

1
4
8
2
9

6
6

8

1
6

2
7
1

1
4
9
5
9

7
6

8

1
8

8

2

li
s
o
m

1
/
5
/
1

5

2
8

1
3
0

<
1

4

5

2
8

1
3
0

<
1

4

5

4

2

b
b
a
r
a

4
/
1
0
/
2

2
1

2
5
0

2
2
1
3

1
7

2
6

†

1
9

5
3
5

3
8
8
4

4
2

3
6

†

2
1

2
5

4

b
b
s
s
e

7
/
1
6
/
7

9
7

3
8
7

4
6
0
9
5

‡

-

-

1
9
4
9

3
1
1
3
0
0

‡

-

-

3
0

7

b
e
e
c
o
u
n
t

3
/
7
/
4

1
1

2
0
4

4
4
3
6

1
2
4
0

1
4

†

1
1

2
5
0

6
2
2
9

2
8

1
4

†

1
1

1
0

3

o
p
u
s

5
/
1
0
/
6

1
1

6
6

2
0
5
5

8

1
9

1
1

2
2
0

3
8
6
3

1
2

1
9

1
1

1
9

5

s
2
7

4
/
6
/
1

7

4
6

6
1
2

1

1
7

7

1
1
7

1
3
1
2

4

1
7

7

1
7

4

s
8

4
/
5
/
1

3
1

1
6
4
7

1
4
3
1
6
7
6

7
6

1

1

2
2
0
4

1
7
3
2
4
9
5

‡

-

-

4

1

s
s
e

7
/
1
6
/
7

9
7

3
8
7

4
6
0
9
5

‡

-

-

‡

-

-

-

-

2
0
8

1
3

t
r
a
in
1
1

2
/
1
1
/
1

1
7

‡

-

-

-

-

‡

-

-

-

-

7

2

† Sub-optimal results due to necessity of using heuristic mode in binate solver

‡ Failed to produce a solution in a reasonable amount of time

Table 4.2: Results of minimization by Optimist using all compatibles

157

Chapter 5

State Minimization for Exactly

Optimum Two-Level Output Logic

In this chapter, the optimal state minimization method of the previous chapter is ex-

tended to encompass output-targetted state minimization for synchronous FSM's. In

essence, the method of this chapter narrows Optimist's focus to the complexity of the

output logic, in order to obtain stronger results. Useful in its own right, this new state

minimization method will further serve as a foundation for a similar method for asyn-

chronous burst-mode machines in the next chapter.

This chapter makes two fundamental contributions. First, it presents a variation

of Optimist, Optimisto, that is the �rst algorithm to produce exactly minimum car-

dinality two-level output logic over all possible state minimizations, state encodings, and

logic minimizations. The second contribution is an interesting new theoretical result:

the unminimized machine always possesses a minimum-cardinality two-level output logic

implementation.

In the context of these two results, this chapter o�ers two choices: that of per-

forming no reduction at all (useful if output logic is the sole interest), or using the

constraint-satisfaction method to reduce next-state complexity (by performing state re-

158

duction), while guaranteeing exactly minimum-cardinality output logic. Last, it brie�y

explores the opportunities presented by the use of the output-targetted framework with

alternative cost functions.

5.1 Introduction

Optimist was a �rst attempt to address the global optimization issue broadly for

technology-independent logic synthesis, by attacking the problem of optimal state min-

imization for incompletely speci�ed FSM's. The problem was de�ned as selecting the

reduced machine that has the best two-level logic implementation over all possible state

minimizations and input encodings. To this end, Optimist breaks with traditional ap-

proaches by performing state minimization and state encoding concurrently, using a

powerful new form of symbolic logic minimization. However, it is an exact solution only

under an input encoding model.

This chapter thus makes two signi�cant contributions to the body of state mini-

mization research.

First, it presents a new synthesis method: Optimisto, an extension to the basic

Optimist approach, which targets output-logic. The method produces two-level output

logic having exactly minimum cardinality over all possible state minimizations, state

encodings, and logic minimizations. Unlike the original Optimist algorithm, which is

exact only under the input encoding model [40], this new method is the �rst exact solution

to the optimal state minimization problem that is independent of the encoding model.

Additionally, it has signi�cantly less computational complexity than Optimist.

Second, this chapter o�ers a novel theoretical result: the unminimized machine

itself possesses exactly minimum-cardinality two-level output logic, over all possible min-

imizations and encodings. In other words, state minimization can never reduce two-level

output logic cardinality. That is, the best cardinality solution for output logic can always

be obtained on the unminimized state machine.

159

In this context, we propose two choices with regard to optimal state minimization.

The �rst is to perform no state reduction at all, which is useful when output logic car-

dinality is of paramount importance. In this case, output logic is exactly optimum, but

no attempt is made to minimize next-state complexity via state reduction. The second

alternative is to use Optimisto's binate constraint satisfaction method. The advan-

tage of this method is that it can simultaneously guarantee exactly minimum-cardinality

two-level output logic while reducing next-state complexity by performing state mini-

mization. In fact, the latter choice can support a variety of cost functions, while the

unminimized machine is exactly optimum with respect to only one cost function (output

logic cardinality).

Although output-targetted minimization may be of somewhat limited utility in

some synchronous applications, it serves as a foundation for the method of Chapter 6

for burst-mode asynchronous machines. In that context, it optimizes the key parameter

determining asynchronous system performance � output latency.

The organization of the chapter is as follows. First, Section 5.2 presents the binate

constraint satisfaction framework for output-targetted state minimization, in detail. The

method is illustrated in full detail with a simple but interesting example in Section 5.3.

Next, Section 5.4 demonstrates the method's soundness and optimality, and also proves

the novel theoretical result regarding the unminimized machine. Then, a discussion of

various cost functions and their interpretation within the constraint satisfaction frame-

work appears in Section 5.5. Experimental results are presented in Section 5.6, in which

the constraint satisfaction method is compared to Stamina, the de facto state minimiza-

tion CAD tool. Finally, some concluding remarks are made in Section 5.7.

160

5.2 Output-Targetted State Minimization for Synchro-

nous FSM's

We now present an enhancement to the basic method of the previous chapter, extending

the core theoretical framework to output-targetted state minimization for synchronous

FSM's. This represents the �rst truly exact result for optimal state minimization that is

independent of an encoding model.

This chapter, like its predecessors, restricts attention to the common subclass of

NDFSM's known as incompletely-speci�ed FSM's (ISFSM's) where, for each total state

〈i, s〉, the next-state δ(i, s) is either a singleton state or else is completely unspeci�ed

(denoted δ(i, s) = S). Likewise, it is assumed that the output λ(i, s) is either a single

value or is unspeci�ed.

5.2.1 Overview of Problem Formulation

The input encoding model provides a framework for symbolic logic minimization that we

apply in a novel way to the output logic of an ISFSM. In particular, our new method

captures both state reduction and two-level output logic minimization.

Figure 5.1 illustrates the abstract �ow of the approach. We start with the ISFSM

(a), and extract from it the symbolic function representing its output behaviour (b), by

discarding the next-state function. The problem is then modeled as a search, through

the space of all valid reduced machines, for a machine having an exactly minimum-

cardinality symbolic cover for the output functions. Having found such a machine (c),

a straightforward input encoding problem now exists for the outputs, as described in

Section 2.4.1 One can thus derive an encoding, and instantiate the symbolic cover,

resulting in a binary cover for the outputs of exactly minimum cardinality over all possible

1In fact, we already have the symbolic logic cover, so that symbolic logic minimization need not be

performed again.

161

M 0 1

s0 s0, 0 s2, 0
s1 s1, 0 s1,−
s2 s1,− s0, 1

(a) An ISFSMM

λ(M) 0 1

s0 0 0
s1 0 −
s2 − 1

(b) Output behaviour ofM

λ(M′) 0 1

s′0 = {s0, s1} 0 0
s′1 = {s1, s2} 0 1

(c) Output behaviour ofM′

Figure 5.1: An ISFSM, its output behaviour, and a reduced machine

state reductions and encodings.

With the above as an intuitive framework, our method proceeds as follows. First,

it strips the ISFSM down to its output behaviour. It then subjects the symbolic func-

tion (b) to a form of mvi logic minimization over the reduced machine, driven by the

construction of a reduced machine that satis�es both classic state covering and state

closure constraints. In essence, it constructs the reduced machine a row at a time, form-

ing portions of the logic cover as it goes. The goal is thus a reduced machine having a

minimum-cost symbolic output logic cover over all possible state reductions. The result

is a valid reduced machine, along with a globally minimum-cardinality output cover.

5.2.2 Overview of Method

We now give an overview of the output-targetted method, Optimisto, which shares the

Optimist framework described in Chapter 4.

First, two sets of covering objects are generated from the unreduced machine

M. In particular, an ordinary set of state compatibles is generated, according to the

classic compatibility relation [60]. Second, unlike the RGPI's of Optimist, here an

ordinary set of symbolic prime implicants is generated, for the outputs only ; no next-

state implicants are generated. Like the original method, these primes are formed on

the unreduced machine. These symbolic primes are actually used to cover output ON-

set minterms in various reduced machine states. This is made possible by a strong

relationship (established in Section 5.4) between symbolic implicants on the unreduced

162

and reduced machines.

Next, binate covering constraints are generated, using the given sets of state com-

patibles and symbolic primes. The covering constraints fall into two categories: (i) classic

state reduction requirements (identical to those in [60]), and (ii) new logic covering con-

straints for the outputs of the reduced machine. As a result, state minimization and

symbolic logic minimization are performed simultaneously. Optimisto's constraints are

far simpler than those used by Optimist.

The constraints are solved using a binate solver (such as Scherzo [30]), under a

cost model that targets logic cardinality (identical to that of Optimist). The result is

a closed state cover and a selection of symbolic primes having minimum cardinality over

all valid state reductions.

Using the selected state compatibles and output primes, a symbolic cover for the

reduced machine is formed by a straightforward instantiation process. This process maps

the selected output primes one-for-one onto a set of symbolic implicants on the reduced

machine. The result constitutes a logic cover for the outputs of the reduced machine.

At this point, the method is complete. The reduced machine, M′, can then be

passed to a state encoding tool, such as Kiss or Nova, to produce a binary implementa-

tion for the reduced machine. Alternatively, input encoding constraints can be generated

directly from the instantiated symbolic cover, and an encoding generated, with the same

result.

The proposed method is signi�cantly simpler than the original method. Here, the

next-state is considered only insofar as is necessary to ensure a correctly reduced FSM.

Therefore, only classic state minimization constraints are required. Speci�cally, since a

closed state cover guarantees the existence of a correct next-state implementation, the

method needs only to ensure that a normal closed state cover is found. Notably, this focus

allows us to ignore the issue of optimal state mapping, which is the source of considerable

complexity in the basic Optimist method.

163

Because the new method borrows extensively from the original Optimist frame-

work, in the sequel we sketch only the requisite changes to those steps which need them:

symbolic prime generation and constraint generation.

5.2.3 Symbolic Primes

The symbolic implicants used by the output-targetted method are greatly simpli�ed from

the RGPI's used by the base Optimist algorithm. In particular, a normal set of symbolic

prime implicants is generated on the unreduced machine. Speci�cally, we generate prime

implicants that implement only outputs (output PI's). No implicants are generated for

next-state.

Thus we can use normal synchronous CAD tools, e.g., Espresso [118], to generate

all necessary symbolic prime implicants from the unreduced machineM. Additionally,

unlike the original method, no smaller cubes need to be generated; ordinary primes su�ce.

However, just as in Optimist, symbolic implicants are generated once onM but can be

used to cover all possible reduced machines.

The restriction to outputs and the exclusive use of ordinary primes together dras-

tically reduce the number of symbolic primes from that required by the base method.

5.2.4 Binate Constraints

This section describes the binate constraints used for output-targetted state minimiza-

tion, a much simpler set than that used by the base Optimist method. In fact, where

the original method has 5 constraint sets (state covering, functional covering, closure,

implicant incompatibility, and implicant cost), the output-targetted method has only

3 constraint sets. Of these, two sets are exactly the classic state minimization con-

straints [60]. Beyond those, only functional covering constraints are required.

164

Constraint Variables

The variables in the covering problem and their assigned costs are:

variable description cost

ci select compatible ci for state cover 0

pi select symbolic prime pi for symbolic logic cover 1

As mentioned in Section 5.2.3, prime implicants are su�cient to guarantee opti-

mality; no smaller cubes are necessary. Hence, the γ variables of the base method (which

restrict the present-state extent of instantiated implicants) are likewise eliminated.

Constraint Clauses

The following paragraphs presents in detail the three sets of constraints needed for output-

targetted state minimization.

1. State Covering

Each unreduced state must be covered by a selected state compatible. This is

precisely the classic state covering constraint of Grasselli [60].

∀ states s ofM

ci1 + ci2 + · · ·+ ciN

where s ∈ cik .

For example, in the table of Section 5.3, state s0 can only be covered by c0; hence

the state covering constraint for s0 is simply (c0). State s1, on the other hand,

is contained in two compatibles, namely, c1 and c2. Hence, the corresponding

constraint is (c1 + c2).

2. Functional Covering

Each output ON-set minterm of M′ must be covered by a selected output prime

implicant. The ON-set minterms ofM′ in a given reduced state are identi�ed and

covered, once that reduced state (i.e. compatible) is selected.

165

∀ compatibles c∏
m′∈c c + p1 + p2 + · · ·+ pN

where pi contains both m′ and c.

Here, m′ refers to an ON-set minterm of some output in some row of the reduced

machineM′. Each clause ensures that some prime implicant pi will be selected to

cover m′.

As with Optimist, although the minterms m′ in row c of the reduced machine are

not explicitly available, they can be easily derived from the minterms ofM. Let

i ∈ I be any input column. m′ is then an ON-set minterm of output function λj

in reduced machineM′ i�, for some reduced state s ∈ c, the output λj = 1.

Example: For instance, in the example of Section 5.3, upon selecting compatible

c1 = {s1, s2}, the output ON-set minterm in column 01 deriving from the minterm

in s2 must be covered. Note that output prime p5 does not span all of c1, and is

thus not a candidate. In fact, only p3 will su�ce. The resulting covering constraint

is (c1 + p3).

On the other hand, consider selecting compatible c0 = {s0}. This necessitates

covering the minterm in column 00 deriving from the ON-set minterm in s0. Only

output prime p1 spans c0 and column 00; hence it is the sole candidate. The

resulting constraint is (c0 + p1).2

3. State Closure

The selected set of compatibles must be closed. This is the classic state closure

constraint due to Grasselli [60].

∀ compatibles c∏
c′∈P (c) c+ ci1 + ci2 + · · ·+ ciN

where P (c) is the implied set of c, c′ is a member of that set, and cij ⊇ c′.

Note that, for the example of Section 5.3, there are no non-trivial implications, and

hence, no closure constraints.

166

We now qualitatively sketch the di�erences between the original Optimist constraints

and the constraints for the proposed output-targetted method.

Clearly, state covering requirements do not change. Functional covering con-

straints, however, are simpli�ed in two ways. First, constraints for covering output

minterms use implicants (pi variables) directly, whereas the base Optimist constraints

used γ variables. Second, functional covering constraints for next-state are eliminated.

In their place, we substitute an ordinary set of state closure constraints [60], to ensure

the existence of a valid next-state implementation. Finally, both implicant incompatibil-

ity and implicant cost constraints can be removed: the former set ensured a consistent

state mapping; the latter simpli�ed cost function computation. So, we are left with 3

constraint sets: state covering, functional covering, and state closure.

5.2.5 Constraint Solution

As in Optimist, the above constraints are all unate and binate. Hence, an e�cient

general-purpose binate solver (Coudert's Scherzo [30]) is used to solve these constraints.

The result is a set of selected state compatibles, and a set of selected symbolic output

implicants.

5.2.6 Symbolic Implicant Instantiation

Given a solution to the binate constraints, the selected output implicants are instantiated,

thereby producing an output cover for the reduced FSMM′. The instantiation process

here is much simpler than that in base Optimist, since there are no γ variables. Instead,

we use a trivial mapping which we call the �Natural Mapping�.

We illustrate the Natural Mapping with a simple example.

Example 5.1 Consider the instantiation of the output prime implicant p0 = 〈00 s0, s2〉

from the table of Section 5.3, under the closed state cover { s′0 = {s0}, s′1 = {s1, s2} }. The

167

present state of p′0 consists of those reduced states that correspond to selected compatibles

that are completely contained in PS(p0) = {s0, s2}, namely, {s′0}. Thus, p′0 = 〈00 s′0〉.

Roughly, the Natural Mapping works as follows. Each selected output prime implicant

p is mapped, one-for-one, onto a corresponding output implicant p′ of M′. The input

and output �elds of the instantiated implicant p′ are identical to that of p. The present

state �eld of p′, however, is �lled with the states ofM′ corresponding to those selected

compatibles that are contained by PS(p).

More formally, we de�ne the Natural Mapping of an output product p = 〈I PS O〉

on the unreduced machine M onto a reduced machine M′ to be the product p′ =

〈I PS ′ O〉, where PS ′ = {s′i, ∀s′i such that ci ⊆ PS}.

The Natural Mapping ensures that all instantiated products are in fact implicants

of the reduced machineM′. In essence, it excludes from the instantiated present-state of

p′ any reduced state that contains OFF-set minterms for some output that p′ implements.

In the above example, s′1 is excluded from PS(p′0), because the corresponding compatible,

{s1, s2}, is not contained in PS(p0) = {s0, s2}. More speci�cally, the OFF-set minterm

at 〈00 s1〉, which prevents the expansion of p0 into s1, produces an OFF-set minterm in

the reduced machine M′ at 〈00 s′1〉. Thus, because p0 cannot be made to span s1, its

image onM′, p′0, cannot be allowed to span any reduced state which derives from s1 (in

this case, s′1). In other words, were we to include s′1 in PS(p′0), p
′
0 would no longer be an

implicant.

The Natural Mapping makes use of this principle, and gives rise to the following

extremely useful Lemma.

Lemma 5.2 Any symbolic output product p which is an implicant of M is also an im-

plicant of any corresponding reduced machine M′
when instantiated under the Natural

Mapping.

Proof: Intuitively, the Natural Mapping assumes the primality of p, and conservatively

168

excludes from PS(p′) any reduced state suspected of containing an OFF-set minterm for

some output of p′ within the region of p′. In particular, since p is an implicant ofM, any

state that p spans has no OFF-set minterms. Thus, if PS(p) ⊇ c for some compatible

c, then the reduced state s′ corresponding to c does not contain an OFF-set minterm in

any input column spanned by p. Thus, it is safe to include s′ in PS(p′), and the Natural

Mapping does so. In other words, p′ is an implicant ofM′. 2

The above Lemma allows output prime implicants that are generated on the unreduced

machine to be used to cover ON-set minterms in the reduced machine.

5.2.7 Method Summary

In sum, the output-targetted method proceeds as follows. First, normal output prime

implicants are generated on the unreduced machine M. Next, binate constraints are

generated, consisting of (i) classic state reduction constraints, and (ii) functional covering

constraints for the outputs. The constraints are solved, producing a set of selected

state compatibles and symbolic output prime implicants. Finally, the selected symbolic

implicants are instantiated, resulting in an exactly minimum-cardinality symbolic logic

cover for the outputs.

5.3 Example

The following simple example illustrates the operation of each step of the method. Specif-

ically, it �rst lists all generated state compatibles. Next, the symbolic output prime

implicants, are shown. Then, the three sets of binate constraints are given. Finally, the

optimum solution and a sub-optimum solution to the constraints are shown, along with

the instantiated symbolic logic implementations.

The example below demonstrates the advantage of the proposed method over

standard state minimization methods, such as Stamina. The optimum solution for this

169

table is in fact the unminimized machine, M, which Stamina ignores, since Stamina

requires a minimum-cardinality state cover. The example also underscores our theoretical

result (given in Section 5.4) that the unminimized machine always has a minimum-

cardinality two-level logic cover.

M 00 01 11 10

s0 s2, 1 s1, 0 s1,− s0, 0

s1 s2, 0 s1,− s1,− −,−

s2 s2,− s1, 1 s1, 1 s0, 1

The prime compatibles for M are c0 = {s0} and c1 = {s1, s2}. The complete

set of compatibles used by our algorithm includes the remaining non-prime compatibles,

namely, c2 = {s1} and c3 = {s2}.

The output prime implicants, generated by Espresso on the unreduced machine,

are as follows: p1 : 〈00 s0, s2〉, p2 : 〈11 s0, s1, s2〉, p3 : 〈−1 s1, s2〉, p4 : 〈1 − s1, s2〉, and

p5 : 〈− − s2〉.

The constraints generated by our algorithm are as follows:

State Covering: (one constraint per unreduced state)

(c0)(c1 + c2)(c2 + c3)

The �rst constraint ensures that s0 is covered (which can only be done using c0);

the second ensures that s1 is covered, and so on.

Functional Covering: (one constraint per minterm per reduced state)

(c0+p1)(c1+p3)(c1+p2+p3+p4)(c1+p4)(c3+p3+p5)(c3+p2+p3+p4+p5)(c3+p4+p5)

The �rst constraint ensures that the output ON-set minterm in reduced total state

〈00 {s0}〉 is covered, which can only be accomplished using p1. The second constraint

covers the ON-set minterm in total state 〈01 {s1, s2}〉. Note that there are no ON-set

minterms in c2 = {s1}; hence no covering constraints are needed for that reduced state.

State Closure:

There are no non-trivial closure requirements, since the implied sets of all com-

170

patibles are empty.

Our method chooses a minimum-cost solution consisting of the state compati-

ble cover {c0, c2, c3} and the prime implicant pair {p1, p5}. Interestingly, this solution

performs no state merges (i.e. it choosesM itself), and uses non-prime compatibles.

For the original machineM, corresponding to the selection of compatibles {c0, c1, c2},

the minimum output logic cover, {p1, p5} trivially maps onto itself under the Natural

Mapping. Clearly it covers all ON-set minterms ofM.

Stamina, on the other hand, requires prime compatibles and a minimum-cardinality

state cover, and hence chooses the reduced machineM′ below, corresponding to the state

cover {c0, c1}. This choice requires the more expensive output cover with the 3 products

{p1, p3, p4}.2

M′ 00 01 11 10

s′0 s′1, 1 s′1, 0 s′1,− s′0, 0

s′1 s′1, 0 s′1, 1 s′1, 1 s′0, 1

In summary, our method generates the best solution, which has 2 output implicants

and 3 states, while Stamina produces a solution having 3 output implicants and 2

states. Notably, our solution uses no state reduction at all, and further, uses non-prime

compatibles. Neither of these two options is available to Stamina, demonstrating the

power of our method.

5.4 Theoretical Results

This section demonstrates the soundness and optimality of our output-targetted optimal

state minimization method. First, it shows that any solution to the above binate con-

straints yields a valid reduced machine and a valid output logic cover. Then, it shows that

our method yields a (possibly) reduced machine with minimum output logic cardinality

over all possible state minimizations and encodings.

171

In the process, we prove an interesting and useful theoretical result in Section 5.4.2.

A minimum-cardinality output logic cover for the unreduced machine itself has minimum

cardinality across all possible state minimizations and encodings. A consequence of this

is that state reduction can never reduce output logic complexity. (In fact, state reduction

can actually increase output logic complexity, as Hartmanis et al. observed [64].)

Although the unminimized machine always possesses minimum-cardinality output

logic, and requires no computation to derive, it is not always the ideal choice. In partic-

ular, it is not necessarily optimum under cost functions other than logic cardinality. For

example, it is well-known that state reduction often helps simplify the next-state logic.2

Thus, an optimum solution under a cost function incorporating, e.g., both output and

next-state logic complexity, may require state reduction.

With these observations in mind, the constraint-satisfaction framework presented

in Section 5.2 o�ers a powerful alternative method that is capable of addressing sev-

eral cost functions. In particular, it is capable of reducing next-state logic complexity,

while guaranteeing exactly minimum-cardinality two-level output logic. As such, several

alternative cost functions are discussed in more detail in Section 5.5.

5.4.1 Correctness of the Constraint-Satisfaction Method

The soundness of our procedure is demonstrated in several steps. First, we show that

any solution to the binate constraints of Section 5.2.4 yields a valid reduced machine.

Next, we establish a relationship between the minterms ofM and the minterms ofM′,

and use it to relate functional covering onM to that onM′. Finally, we prove that a

solution to the binate constraints also produces a valid logic cover for the outputs.

Theorem 5.3 Any solution to the binate constraints of Section 5.2.4 identi�es a valid

reduced machineM′
.

2This is of course the classic motivation for state minimization.

172

Proof: Obvious, since the constraints of parts 1 and 3 are precisely the constraints of

Grasselli [60]. Since any solution to the constraints satis�es every constraint, the selected

compatibles form a closed state cover. 2

Lemma 5.4 Each ON-set or OFF-set output minterm m′
of reduced machineM′

is the

image of one or more output minterms m ofM.

Proof: Each ON-set or OFF-set minterm m′ of M′ resides in some reduced state s′,

and is the result of merging one or more minterms {m} in the unreduced states that

merged to produce s′. Thus, if m′ is in the ON-set of an output ofM′, then one of {m}

must also have been an ON-set minterm. 2

Lemma 5.5 If output implicant p onM appears in a functional covering constraint for

an output minterm m′
ofM′

, it covers m′
when instantiated under the Natural Mapping.

Proof: p appears in the given part 2 constraint i� its present-state �eld contains the

compatible (row) c in which m′ resides. Now, m′ only exists once c is selected. Hence, c's

selection implies that p's present-state �eld will be instantiated so as to span the reduced

row corresponding to c. 2

Theorem 5.6 Any solution to the binate constraints of Section 5.2.4 identi�es a valid

output logic cover for the reduced machineM′
.

Proof: This follows from the above two Lemmas, and from the fact that every output

minterm in a reduced row has a covering constraint in part 2 that must be satis�ed once

the corresponding row has been selected. Also, note that because the set of implicants

used is the set of output prime implicants, every minterm m inM is covered by some p.

As a result, every functional covering constraint has at least one prime appearing on the

173

right-hand side, and is thus satis�able. 2

5.4.2 Optimality of the Unminimized Machine

This section demonstrates that the unminimized machineM itself has the best possible

two-level output logic cover, over all possible state minimizations and encodings. The

burden of the proof lies in �nding for every prime cover of any given reduced machine

M′, a corresponding cover forM of identical cardinality that maps onto it.

Lemma 5.7 To every output implicant p′ on some reduced machine M′
there corre-

sponds at least one implicant p onM which Naturally Maps onto p′.

Proof: By construction. For p′ = 〈I PS ′ O〉, construct the product p = 〈I PS O〉,

where PS is the union of all the compatibles corresponding to states s′ in PS ′. Obviously,

there are no OFF-set minterms inside p′ for any output in O (or p′ would not be an

implicant ofM′). Here, there must be no OFF-set minterms inside p for any output in

O. Hence, p is an implicant ofM. Further, p Naturally Maps onto p′. 2

From the above, given any output logic cover Π′ for some reduced machineM′, we can

construct, member-wise, a set of implicants (call it Π) onM.

Lemma 5.8 Π is a cover forM.

Proof: Every ON-set minterm m inM has at least one corresponding ON-set minterm

m′ in M′ (or else M′ is not a valid reduction of M). Now, for every m′ in M′, there

exists an implicant p′ ∈ Π′ that covers it. Let p be the implicant in Π that corresponds to

p′. Since p′ contains m′, p′ spans a reduced state s′ which contains the unreduced state

s in which m lies. Hence, p contains m, by the above construction. 2

174

Theorem 5.9 The unminimized machineM possesses a two-level logic cover which has

minimum cardinality across all possible state minimizations and encodings.

Proof: Follows from the above Lemmas, since, for every output cover Π′ for any re-

duced machineM′, we can construct a cover ofM of identical cardinality. 2

5.4.3 Optimality of the Constraint-Satisfaction Method

The proof here is straightforward. Because any solution to the binate constraints rep-

resents a valid reduced machine and output logic cover, we need only establish thatM

itself is a minimum-cost solution to our constraints.

Lemma 5.10 The unminimized machineM, along with any minimum-cardinality out-

put logic cover for it, represent a minimum-cost solution to the binate constraints of

Section 5.2.4.

Proof: ClearlyM satis�es the state covering constraints of part 1. Also, since a single-

ton state compatible can have no non-trivial state implications,M satis�es the closure

constraints of part 3. Finally, the functional covering constraints of part 2 are monotonic,

so that there is always a solution, as long as there exists an implicant to cover any given

output minterm. Because we form ordinary output primes on the unreduced machine,

there is always a prime to cover any given minterm. So M is a solution to the binate

constraints. That M and its minimum logic cover constitute a minimum-cost solution

follows directly from the cost function (logic cover cardinality). 2

Theorem 5.11 A minimum-cost solution to the constraints of Section 5.2.4 identi�es

a reduced machine having an exactly minimum-cardinality two-level logic cover for its

outputs.

175

Proof: This result follows from Theorem 5.9 (the optimality of the unminimized ma-

chine), along with the above Lemma 5.10. Note that a minimum-cost solution to the

constraints may in fact be a reduced machine, but it will have precisely the same cost as

that of the unminimized machine. 2

5.5 Cost Function

This section brie�y examines the role of the cost function in our constraint-satisfaction

framework of Section 5.2.4, and suggests some alternatives. These alternatives underscore

the usefulness of the constraint-satisfaction framework, even over the trivial method

suggested by Theorem 5.9 (that of no performing no state reduction).

The cost function directs binate constraint satisfaction, by instructing the solver

to prune less desirable solutions, namely, those having higher cost. Given the two sets of

decision variables ({pi} and {ci}), one can form 4 distinct cost functions. We consider

the behaviour of the above framework, under each of following cost assignments:

cost(pi) cost(ci) interpretation of minimum-cost solution

0 1 minimum-cardinality state cover

1 0 minimum-cardinality logic cover

1 1 (secondary) minimum-cardinality state cover over all solutions

having minimum-cardinality logic cover

1 (secondary) 1 minimum-cardinality logic cover over all solutions

having minimum-cardinality state cover

Of the four alternatives, the �rst two are simple one-tiered cost functions. The

third and fourth cost functions require a binate solver that can accommodate a two-tiered

cost structure. I.e., the solver must be able to �nd a solution having lowest second-tier

176

cost among all solutions of lowest �rst-tier cost.3

Under the �rst cost function, Optimist would behave as Stamina does (although

at higher computational complexity, since functional covering constraints must be sat-

is�ed, but have no impact on the cost). The second is simply the previously-described

cost model for output-targetted Optimist: output logic cardinality.

The third choice, minimum-cardinality logic cover over all solutions having minimum-

cardinality state covers, seems especially useful. It exactly minimizes state cover cardinal-

ity, under the requirement of a minimum-cardinality output logic cover over all possible

state reductions. In other words, out of all solutions having exactly minimum output

logic cardinality, it �nds one with the fewest states. We hope to provide experimental

results using such a cost function in the near future.

The fourth alternative, minimum-cardinality logic cover over all solutions having

minimum-cardinality state covers, is useful in situations where next-state complexity is

of greater importance than that of the output logic. For example, in applications where

�ip-�ops are expensive, this cost function addresses the primary cost, while still o�ering

low output logic complexity. Speci�cally, of all solutions having the fewest states, this

cost function �nds one with exactly minimum logic cardinality.

5.6 Experimental Results

The Optimisto algorithm has been implemented and incorporated into the Optimist

tool. Table 5.1 shows the experimental results for a number of benchmark machines,

including several taken from the MCNC '91 suite. For each FSM, we give the number

of inputs, states and outputs, as well as the number of prime compatibles and the total

number of all compatibles. Finally, the number of minimized states and output products

is given for Optimisto in both runs and for Stamina.

The experimental set-up is as follows. Stamina was run using default parameters,

3Such a solver is trivially derived from a standard one-tiered solver such as Scherzo.

177

i.e., exact minimization and heuristic state mapping, and with an option which displays

the two-level symbolic cover after minimization with Espresso [118]. Optimisto was

run as described above, twice; �rst using only prime compatibles, and again, using all

compatibles. Run-times for all examples but tma were under 2 seconds; tma required less

than 1 minute in both modes.

Generally, Optimisto achieves the same or slightly better cardinality than does

Stamina. In one case, however, the improvement is quite dramatic: for tma, Optimisto

achieves a solution with less than 50% of Stamina's product count.

In several cases, e.g. ex3, Optimisto chooses a signi�cantly larger state cover

(i.e. number of minimized states) than does Stamina. This is sometimes simply an

artifact of the binate solver's algorithm, coupled with Optimisto's cost metric, product

cardinality. Because selecting an additional compatible does not directly a�ect the cost

of the binate constraint solution, the solver can choose to do so, even if a smaller state

cover would su�ce. A two-tiered cost function, in which the primary cost is product

cardinality and the secondary cost is state cover cardinality, would more properly model

the combined cost of output and next-state logic complexity.

5.7 Conclusions and Future Work

This chapter extends Optimist's formulation, resulting in the �rst state minimization

method that precisely targets output logic. It o�ers two fundamental choices for state

minimization. First, it proposes the startling choice of performing no reduction at all.

Surprisingly, this yields exactly minimum-cardinality output logic over all state reduc-

tions, state encodings, and two-level logic minimizations. Second, it provides a novel

binate constraint-satisfaction framework, based on the framework used by Optimist in

the previous chapter.

Interestingly, this second method has far lower computational complexity than

does Optimist. At the same time, it supports a set of four useful cost functions, unlike

178

OPTIMIST STAMINA

prime compats all compats

design i/s/o #pc #ac min st prod min st prod min st prod

minstateex 2/3/1 2 4 2 3 3 2 2 3

bbara 4/10/2 7 21 7 6 7 6 7 6

beecount 3/7/4 7 11 7 6 5 6 4 6

ex3 2/10/2 91 195 11 4 14 4 5 4

ex7 2/10/2 57 135 7 3 9 3 4 4

lion9 2/9/1 5 20 4 1 4 1 4 1

opus 5/10/6 9 11 9 12 9 12 9 13

s27 4/6/1 5 7 5 6 5 6 5 6

s8 4/5/1 1 31 1 1 1 1 1 1

tma 7/20/6 20 35 19 11 20 6 18 13

train11 2/11/1 17 85 5 1 5 1 4 1

Table 5.1: Results of minimization with both Optimisto and Stamina

the �rst choice (that of performing no reduction). As a result, the constraint-satisfaction

method also suits applications requiring the best possible output logic and desiring re-

duction in next-state logic complexity.

The Optimisto constraint satisfaction algorithm was implemented, and experi-

mental results for one cost function (logic cardinality) demonstrate a signi�cant reduction

in logic complexity over Stamina, for certain machines. Run-times are a fraction of that

of Optimist, and rarely exceeded two seconds for the benchmark suite used.

Given a binate solver capable of handling two-tiered cost functions, the current

implementation could accomodate the other cost functions described in Section 5.5. Ex-

ploring the trade-o�s in these choices is an interesting area for future work.

179

Chapter 6

OPTIMISTA: Output-Only OPTIMIST

for Burst-Mode Asynchronous State

Machines

This chapter builds on the results of the previous chapter to form Optimista, a method

for output-targetted state minimization for burst-mode asynchronous machines.

The chapter makes two contributions. First, it presents the only known method for

optimal state minimization of asynchronous machines of any form. Moreover, this method

produces exactly minimum cardinality two-level hazard-free output logic over all possible

state minimizations, state encodings, and logic minimizations. The second contribution

is an interesting theoretical result, analogous to one from the previous chapter: the

unminimized machine always possesses minimum-cardinality two-level hazard-free output

logic.

Like the previous chapter, then, this chapter o�ers two choices: that of performing

no reduction at all (useful when output logic is the sole interest), or using Optimista

to reduce next-state complexity (by performing state reduction), while simultaneously

guaranteeing exactly minimum-cardinality hazard-free output logic.

180

Output-targetted optimization is even more e�ective for asynchronous machines

than it is for synchronous machines. This is the case because it addresses the key per-

formance parameter for systems of asynchronous machines: output latency. In an asyn-

chronous system, the input-to-output latency typically dominates performance, since

state changes are not bound to a clock period. In practice, state changes are usually

non-critical (see, e.g., [86]), and can therefore safely proceed in parallel with the propa-

gation and processing of output changes.

Optimista borrows the framework and spirit of Optimisto, adapting them to

accommodate the unique requirements of burst-mode asynchronous synthesis. Just as

Chasm's input encoding model made signi�cant extensions to its synchronous counter-

part in order to guarantee correct and optimal results, soOptimista signi�cantly extends

the basic objects (compatibles, symbolic implicants, and binate constraints) used by the

Optimisto framework.

This chapter proceeds as follows. First, the problem domain is presented in Sec-

tion 6.1 and compared with the related problems addressed by Minimalist and Opti-

mist. State mapping gives rise to unique problems in the asynchronous domain, and is

discussed in Section 6.2. Next, the �ow of the method is described in Section 6.3. Each

step in the �ow is presented in detail in subsections 6.4 through 6.9. One class of binate

covering constraints is particularly complex, and is treated separately in detail in Sec-

tion 6.7. The soundness and optimality of the method are demonstrated in Section 6.10.

More e�cient algorithms for a key sub-step are presented in Section 6.11. Experimental

results for a variety of industrial benchmark burst-mode circuits are given in Section 6.12.

Finally, some concluding remarks are made in Section 6.13.

6.1 Problem Search Space

This section compares the problem solved Optimista with the problems solved by two

other state minimization methods: Optimisto, described in Chapter 5, and Minimal-

181

ist, described in Chapter 7. These comparisons highlight the unique challenges that

Optimista faces. In particular, although Optimisto solves the optimal state minimiza-

tion problem, it does so in a di�erent domain (synchronous synthesis) than Optimista.

On the other hand, Minimalist solves the classic state minimization problem (ignoring

logic complexity), but does so in the same domain as Optimista.

We start by reiterating the basic problem requirements for burst-mode synthesis.

As detailed in Chapter 2, the following are necessary and su�cient conditions for a correct

burst-mode Hu�man implementation:

• Freedom from essential hazards

• A critical race-free encoding

• Hazard-free output and next-state logic

6.1.1 Comparison to OPTIMIST

Because the above correctness requirements are more stringent than their synchronous

counterparts, there are several key di�erences between the Optimista method and the

Optimisto method presented in Chapter 5. Speci�cally, Optimista must:

1. use a di�erent compatibility relation

2. use a di�erent type of symbolic implicants

3. perform state mapping

4. constrain the state mapping

Each of these di�erences is addressed in the following paragraphs.

The standard synchronous compatibility relation cannot be used, as its use does

not always permit a hazard-free logic implementation. The set of compatibles used by

Optimista is thus smaller than those de�ned by the standard synchronous compatibility

relation. This smaller set does not by itself guarantee a hazard-free implementation.

182

However, it does exclude an entire class of compatibles that can easily be determined to

not permit any hazard-free logic implementation.

Output logic must be hazard-free; therefore, the symbolic implicants used must

be dynamic hazard-free (DHF). Fortunately, ordinary DHF-primes (as described in Sec-

tion A.7) su�ce, as we will later show.

Interestingly, unlike the case in the previous chapter, state mapping must be per-

formed in order to de�ne output logic covering requirements. This is due to state map-

ping's a�ect on the present-state extent of output required cubes in the vertical portion

of speci�ed transitions.

Finally, state mapping must be constrained to ensure a hazard-free logic implemen-

tation for the next-state. This contrasts with synchronous machines, for which correct

next-state logic can be synthesized for any state mapping.

6.1.2 Comparison to MINIMALIST's State Minimization Method

This section compares the standard state minimization algorithm used by Minimalist

(described in Chapter 7) with the logic-optimal algorithm of Optimista.

Because Optimista targets two-level output logic optimality, it is di�erent from

Minimalist's method in several ways. Speci�cally, Optimista must:

1. use a di�erent compatibility relation

2. perform logic (functional) covering

3. perform state mapping

Each of these di�erences is discussed in the following paragraphs.

First, the compatibility relation used by Optimista is less conservative than that

used by the standardMinimalist state minimization method. This is necessary because

Minimalist's basic state compatibility relation discards candidate compatibles on the

183

basis of whether a �canonical logic cover� [108] is hazard-free. It ignores hazard-free

logic covers of any other form. Thus, although perfectly safe, it may discard too many

compatibles, thereby missing state covers that yield optimum output logic.

Second, unlike the Minimalist method, which simply attempts to minimize the

number of states, Optimista searches for a closed state cover also having minimum-

cardinality two-level output logic. Thus, in order to �nd a logic-optimum solution, Op-

timista performs logic covering simultaneously with state covering, where Minimalist

which simply performs a standard binate covering to �nd a closed state cover.1

Third, Optimista must choose state mappings carefully, because of their e�ect

on the output logic. In fact, Minimalist only handles state partitions, so that there is

no �exibility in state mapping.

6.2 The Challenge of State Mapping for OPTIMISTA

This section explores the challenges of state mapping that arise from the correctness

requirements for burst-mode implementations.

We now describe a trivial extension of the synchronous solution that might ap-

pear to be a plausible solution to the asynchronous problem, but in fact fails. In this

approach, a set of DHF compatibles (say, those de�ned by Uclock [108]) is formed, and

DHF output primes are generated on the unreduced machine. Then, the constraint satis-

faction framework of the previous chapter is used, with simple modi�cations to functional

covering constraints as needed to re�ect hazard-free logic minimization.

In this candidate approach, functional covering constraints might be modi�ed

as follows. We start from the burst-mode speci�cation with its set of speci�ed input

transitions. For each transition, we identify a corresponding transition in the reduced

machine. This �reduced transition� gives rise to one or more required cubes in the reduced

1Technically, it currently only performs unate state covering, relegating state closure to a post-

processing check.

184

machine. For each of these, a constraint is generated to ensure its covering by some DHF

output prime.

In fact, such an approach fails, for several reasons. This failure stems from the

requirement of a hazard-free logic implementation for both outputs and next-state, and

from the strictures of burst-mode operation. In particular, there are three issues:

1. Hazard-free output covering requirements

2. Existence of hazard-free next-state logic

3. Proper burst-mode operation

These issues are explored in the following sub-sections.

6.2.1 Hazard-Free Output Covering

The trivial approach fails, because producing hazard-free output logic necessitates the

consideration of state mapping. This is due to the fact that the vertical (state change)

portion of a speci�ed transition gives rise to required cubes for static-1 output transitions.

These output required cubes span both the source and destination states. Thus, the

destination state must be chosen for the extent of the required cubes to be known. In

other words, each required cube's shape is dependent on the state mapping chosen for

the given transition.

6.2.2 Existence of Hazard-Free Next-state Logic

This section gives a simple example to show that certain combinations of state mappings

conspire to prevent hazard-free logic covering for next-state. In particular, under certain

state mappings, some required cubes for next-state have no covering DHF implicant.

The problem is addressed by the state mapping incompatibility constraints described in

Section 6.6.

185

δ
t2,Sj’,Si’

δ
t3,Si’,Si’

Si’

Sj’

�����
�����
�����

�����
�����
�����

t1

Sj’ = 1Sj’ = 0

Si’

t3

Si’

required cube for Sj’

required cube expanded to
contain start point of t2

Sj’ = 1Sj’ = 0

t2

δ
t1,Si’,Sj’

OFF-set intersection for Sj’

Figure 6.1: Flow table fragment and state mapping precluding a hazard-free cover

Example 6.1 Consider the state mapped transitions in the �ow table fragment of Fig-

ure 6.1. The required cube for S ′
j of transition t is not covered by any DHF implicant.

This is due to the presence of the privileged cube in S ′
j for the unstable transition t2, and

to the OFF-set point for S ′
j belonging to the stably-mapped transition t3.

6.2.3 Proper Burst-Mode Operation

This section describes a subtle problem that stems from the interaction of state mapping

and proper burst-mode operation.

The problem arises as follows. Burst-mode operation, as described in Chapter 2,

requires the machine to remain stable throughout the entire input burst. Thus, state

mapping must be uniform throughout the horizontal portion (the so-called stable points)

of a speci�ed transition, and, further, must be stable.

Example 6.2 Consider the speci�ed transition from 〈000 S ′
i〉 to

〈
011 S ′

j

〉
in the �ow

table fragment of Figure 6.2. If the stable points in total states 〈001 S ′
i〉 and 〈010 S ′

i〉

were unstably mapped (i.e. to some state other than S ′
i), the machine would take an

unintended transition to another state in the middle of the input burst. The implemen-

tation would thus violate proper burst-mode behaviour: the machine must remain stable

186

SIC sub-transition
specified transition

Legend:

Si’ Si’

000 001 011 010 110 101

Sj’

111 100

t

S?? S??

Figure 6.2: State mapping in the stable points of a speci�ed transition

Sj’

t2

t1

Si’ Si’ Si’ Sj’S??

illegal!!

Sj’

Figure 6.3: State mapping of an embedded exit point

throughout the entire input burst.

As a result, we are only free to choose a state mapping at transition exit points.

In the previous example, only the exit point at 〈010 S ′
i〉 has a state mapping choice.

It follows that in some cases, we must further constrain the state mapping for

the exit point of a speci�ed transition. In particular, the state mapping must be stable

if state reduction causes that exit point to coincide with the stable point of another

speci�ed transition.

Example 6.3 For example, consider Figure 6.3. Transition t1 from S ′
i to S ′

j contains

transition t2, also originating in S ′
i. Because the t2's exit point lies within the stable

portion of t1, t2 must be stably state mapped. Otherwise, the machine will undergo an

invalid state transition in the middle of the input burst for t1.

187

The solution to this problem is to restrict the state mapping appropriately for such

an embedded transition. In particular, we must exclude all unstable mapping alternatives

from the set of valid state mappings for that transition. If a stable mapping is not an

alternative, then no valid state mapping exists. In this case, the given compatible can

be excluded from the set of candidate compatibles. Otherwise, as is done in Optimista,

it can be pruned when the binate solver detects the absence of a valid state mapping in

the state mapping constraint (see Section 6.6).

6.3 Method Flow

We now give an overview of Optimista, which shares the framework of Optimisto,

described in Chapter 5.

First, two sets of covering objects are generated from the original burst-mode

speci�cation. In particular, a set of state compatibles is generated, using the classic

synchronous compatibility relation [60], followed by a �ltering step. Then, an ordinary

set of DHF symbolic output prime implicants is formed. These primes are formed on the

unreduced machine. DHF implicants can be used to cover the reduced machine because

of a relationship between implicants on the unreduced and reduced machines analogous

to that present in the synchronous case. Again, no next-state implicants are generated.

Next, binate covering constraints are generated, using the given state compatibles

and DHF primes. Covering constraints for Optimista are considerably more complex

than those of the previous chapter. They fall into four categories: classic state reduction

requirements (like those in [60]), state mapping, hazard-free logic covering requirements

for the outputs of the reduced machine, and constraints to ensure the existence of a

hazard-free implementation for the next-state.

The binate constraints are solved using Scherzo [30], under a cost model that tar-

gets logic cardinality. The result is a closed state cover, a state mapping, and a selection

of DHF symbolic primes having minimum cardinality over all valid state reductions.

188

Using the selected state compatibles, state mappings, and output primes, a sym-

bolic cover for the reduced machine is formed using the Natural Mapping of Chapter 5.

The result is a hazard-free logic cover for the outputs of the reduced machine.

At this point, the method is complete. The reduced machine can then be passed

to a burst-mode state assignment tool, such as Chasm, to produce a hazard-free binary

implementation. Just as in Chapter 5, hazard-free input encoding constraints can al-

ternatively be generated directly from the instantiated symbolic cover, and an encoding

generated.

In summary, the Optimista algorithmic �ow is as follows:

1. Generate state compatibles

2. Generate symbolic prime implicants

3. Generate binate covering constraints

4. Solve constraints

5. Generate an instantiated reduced table

Sections 6.4 through 6.9 detail each of the above steps for Optimista.

6.4 State Compatible Generation

This section �rst describes the requirements on the set of compatibles to be used, and

then describes the means by which they are generated.

The goal of the following analysis is to identify the set of compatibles that, when

used, guarantee the existence of hazard-free logic. We show that a tight de�nition of this

set is not easily calculable. Instead, we propose a two-step solution. First, we identify

a set of restrictions that are necessary but insu�cient, and use this to prune the set of

189

compatibles. Second, we indicate how the remaining conditions are folded into a later

step: binate constraint generation.

A simple example demonstrates a problem with hazard-free logic caused by indis-

criminate state merges. Next, the problem is analyzed to precisely identify the hazardous

conditions. Unfortunately, it is shown that a pairwise compatibility relation cannot di-

rectly generate the appropriate set of state compatibles. The approach used by Opti-

mista instead employs a standard synchronous pairwise compatibility relation, followed

by a �ltering step.

The compatibility relation has an impact on the existence of hazard-free logic

because state merges can introduce unavoidable logic hazards. This is illustrated by the

following example.

Example 6.4 Figure 6.4 illustrates the situation for a four-input, single-output machine.

The Karnaugh map depicts the output function in a reduced state which results from

merging 3 states {s1, s2, s3}, containing transitions {t1, t2, t3}, respectively. We ignore

the next-state, as it does not a�ect the analysis of horizontal output transitions.

Note that the required cube corresponding to static-1 transition t1 illegally intersects

dynamic transition t2's privileged cube, at minterm 0000. The state merge leaves no way

to expand t1 to contain t2's start point at 0100 without causing an intersection with t3's

OFF-set cube.

It is possible to use the standard synchronous compatibility relation and defer a

check for the existence of a hazard-free cover to the binate covering step. However, in or-

der to reduce computational complexity, Optimista uses a more restrictive compatibility

relation instead.

Uclock's compatibility relation cannot be used for the present problem. Uclock

de�nes a compatibility relation that avoids all function and logic hazards, but only for

a speci�c form of logic cover [108]. This �canonical� form is simply a single-output cover

consisting of the required cubes of the unminimized machine. In short, the compatibil-

190

00

01

10

11

01 11 1000

cd

ab

0

1

1

1 0

1

0
t3

t1

t2

required cube

privileged cube

Figure 6.4: Karnaugh map for output function in reduced state s′ = {s1, s2, s3}.

ity relation expresses su�cient but not necessary conditions for hazard-freedom. Thus,

Uclock's relation is too restrictive forOptimista's purposes, since it focuses on a single

form of cover, thereby missing opportunities for better output logic.

There are �ve conditions that imply the incompatibility of a state set. The �rst

four relate to logic hazard-freedom, and the last, to the aforementioned requirement of

stably state mapping all of a transition's stable points.

1. Absence of a hazard-free cover for horizontal output transitions

2. Absence of a hazard-free cover for vertical output transitions (for all possible state

mappings)

3. Absence of a hazard-free cover for horizontal next-state transitions (for all possible

state mappings)

4. Absence of a hazard-free cover for vertical next-state transitions (for all possible

state mappings)

5. Absence of a stable state mapping for some exit point which lies in the horizontal

portion of another transition

191

In general, no hazard-free cover exists when some required cube r exists which a) illegally

intersects a privileged cube p and b) cannot be expanded to contain p's start point without

hitting the OFF-set.

Of the �ve conditions, Optimista directly detects only one: the �rst condition.

This condition is readily detected without overly complicated analysis. The other con-

ditions are folded into the covering constraints, so as to let the binate solver do the

remaining analysis.

One issue remains: the generation of the new set of compatibles. In general, it is

more e�cient to generate the set of compatibles from a pairwise incompatibility relation

(as is typically done for the synchronous case), rather than to identify the compatibles

one by one. However, no pairwise relation can capture all of the incompatibilities of even

the �rst kind above. We illustrate this problem with an example.

Example 6.5 Returning to the example of Figure 6.4, observe that, although merging

states s1 and s2 produces no unsatis�able hazard-free covering requirements, adding s3

to the state set does. In fact, it is not possible to derive the set of compatibles satisfying

condition 1 above from a set of incompatible state pairs.

Optimista therefore generates state compatibles using the standard synchronous pair-

wise incompatibility relation, and prunes the resulting set using Algorithm 8. This al-

gorithm assumes the set of DHF output-primes on the unreduced machine are already

available. Without loss of generality, we only show the analysis for a single output.

6.5 Symbolic Prime Implicant Generation

This section de�nes the set of symbolic implicants used by Optimista.

Optimista uses ordinary DHF output primes for symbolic hazard-free logic min-

imization. In particular, DHF output primes can be used to cover the �reduced required

cubes� for the reduced machine's outputs. We will show in Section 6.9 that the Nat-

192

Algorithm 8 Compatible �ltering algorithm for Optimista

function filter_compatibles(C) {

C ′ ← C;

for each compatible c ∈ C ′ {

for each transition t originating in unreduced state s ∈ c {

for each horizontal required output cube r of t {

if no DHF prime contains r′ and spans c {

// No hazard-free cover for r exists

C ′ ← C ′ − {c};
} } } } }

ural Mapping can be used to instantiate these primes, without further regard for logic

hazards.

6.6 Binate Constraint Generation

This section �rst presents the decision variables in the covering problem, and then

presents the constraint categories, each in its own subsection.

6.6.1 Constraint Variables

The following table describes each of the decision variables involved in the binate covering

constraints, and shows their assigned cost in the covering problem.

variable description cost

ci select compatible ci for the state cover 0

δt,ci,cj map the exit point of transition t in reduced state ci to cj 0

pi select symbolic DHF prime pi for the symbolic logic cover 1

193

6.6.2 Constraint Roadmap

There are six types of constraints, summarized below. Subsequent subsections cover each

type in detail.

1. State covering Cover each state with at least one compatible

2. State mapping Choose a destination state for each transition exit point

3. State mapping coherency Choose at most one state for each state mapping choice

4. Functional covering (for output logic only)

• Horizontal transitions: conditional on the selection of a reduced state

• Vertical transitions: conditional on the selection of a state mapping for the

transition's exit point

5. State closure The set of selected compatibles must be closed

6. State mapping incompatibility Ensure the existence of hazard-free next-state logic

In several cases, clauses are shown in implicative form, e.g., a → b, to emphasize the

conditional nature of the constraint. This form is exactly equivalent to the standard

binate form a+ b.

6.6.3 State Covering

This set of constraints ensures that each unreduced state is covered by selecting some

compatible that contains it. These constraints are identical to the state covering con-

straints in Optimisto and Grasselli's classic formulation [60].

∀ unreduced states s ofM

ci1 + ci2 + · · ·+ cin

where {ci} is the set of compatibles that contain s.

194

6.6.4 State Mapping

This set of constraints ensures that the exit point of each speci�ed transition in the

reduced machine is state-mapped appropriately. This is accomplished by selecting for

transition t′ci
a single destination state s′j = cj from the set of valid choices. A set

of decision variables {δt,ci,cj} is associated with each speci�ed reduced transition t′ci
in

reduced state ci, one for each valid state mapping choice cj for that transition's exit

point.

∀ compatibles c For each candidate compatible/reduced state

∀ speci�ed transitions t ofM such that PS(t) ∈ c

For each transition tc corresponding to some t of M

c → δt,c,c′1
+ δt,c,c′2

+ · · ·+ δt,c,c′n

where {c′} are the compatibles which cover exitPoint(t).

The clause is conditional on the selection of compatible c, since only then does the

transition tc exist in the reduced machine.

As described in Section 6.1.1, if exitPoint(t) ∈ stablePoints(t′) for some t′ lying in

c, then the only valid choice is δt,c,c (which makes t a stable transition). Otherwise, non-

burst-mode operation will result for t′. If in addition, c /∈ {c′}, so that stable mapping is

not an option, then no state mapping is valid. In that case, the clause becomes simply

(c), which can only be satis�ed by not selecting compatible c.

6.6.5 State Mapping Coherency

This set of constraints ensures that at most one state mapping is selected for each reduced

transition. It is necessary, because the set of N state mapping choices {cj} for reduced

transition tci is �encoded� in N distinct binary decision variables {δt,ci,cj}. Thus, without

the following constraints, more than one may be selected. To enforce the choice of a

single mapping {δt,ci,cj}, the following set of simple pairwise disjointness constraints is

195

added.

∀ compatibles c For each candidate compatible/reduced state

∀ speci�ed transitions t ofM such that PS(t) ∈ c

For each transition tc corresponding to some t ofM

∀ distinct pairs of state mapping variables 〈δt,c,ca, δt,c,cb
〉 for tc

δt,c,ca + δt,c,cb
Select at most one state mapping for tc

6.6.6 Functional Covering

This set of constraints e�ectively selects a set of DHF primes so as to functionally im-

plement the outputs.

These constraints are a simple extension of the functional covering constraints

of Chapters 4 and 5. However, in order to perform hazard-free covering, two essential

di�erences arise. First, DHF prime implicants are used, and second, required cubes (cf.

minterms) must be covered. The required cubes are identi�ed reduced row by reduced

row, just as the ON-set minterms were derived in Optimist.

The next-state functions are not covered, since output logic quality is the sole

cost metric. Instead, as mentioned earlier, the sole requirement for the next-state is to

guarantee the existence of a hazard-free logic implementation for it. This is ensured

by appropriately constraining the state mapping, an assurance provided by the state

mapping incompatibility constraints, shown later in this chapter.

The following paragraphs deal with functionally covering the required cubes of a)

horizontal and b) vertical portions of the speci�ed transitions, respectively.

Horizontal Transitions

This section describes the constraints necessary to ensure the functional covering of the

outputs in the horizontal portion of speci�ed transitions.

196

State mapping is not needed to functionally cover required cubes in horizontal

transitions. Since the horizontal (stable) portion of each speci�ed transition must be

stably state-mapped, all required cubes for the outputs during horizontal transitions are

completely de�ned irrespective of any state mapping choices. Hence, functional covering

of the required cubes outputs can be likewise performed without regard to state mapping.

Consequently, the following constraint clauses do not depend on δ variables.

∀ compatibles c For each possible reduced state

∀speci�ed transitions t ofM such that PS(t) ∈ c

For each transition tc corresponding to some tof M

∀ horizontal required cubes r of t

c → p1 + p2 + · · ·+ pN

where {pi} is the set of DHF primes which a) contribute to the output, b) contain

c, and c) contain r.

The horizontal required cubes {r} are the required cubes of the transition tc de-

scribed in Section A.7. Speci�cally, they consist of the transition supercubes for all 1→ 1

output transitions, along with the maximal ON-set sub-cubes for all 1 → 0 and 0 → 1

output transitions.

This constraint is conditional on the selection of compatible c, since the reduced

transition tc only exists if compatible c is selected.

Each functional covering constraint for horizontal transitions always contains at

least one eligible DHF prime. This is because any compatibles which have unsatis�able

covering constraints for horizontal output required cubes is pruned by the compatible

�ltering step described in Section 6.4. (The same can not be said of the �vertical functional

covering constraints� that follow.)

197

Vertical Transitions

This section describes the constraints necessary to ensure the functional covering of the

outputs in the vertical (state change) portion of speci�ed transitions.

Unlike the case for horizontal transitions, state mapping is needed to functionally

cover required cubes in vertical transitions. The shape of the required cubes for a static-1

vertical transition is de�ned in part by the state mapping chosen for the transition's exit

point. In particular, if the next-state is mapped unstably, the required cube spans 2

states; otherwise, it spans only 1. As a result, we employ decision variables to record

the state mapping decision made for each transition exit point. These variables are then

used in forming the functional covering constraints for the exit points.

∀ compatibles c For each possible �reduced state�

∀speci�ed transitions t ofM such that PS(t) ∈ ct

For each transition tc corresponding to some tof M

∀state mapping choices δt,c,c′ For each choice of destination state

∀ vertical required cubes r of t when the exit point of t is mapped to c′

δt,c,c′ → p1 + p2 + · · ·+ pN

where {pi} is the set of DHF primes which a) contribute to the output, b) span

both c and c′, and c) contain r.

The vertical required cubes {r} consist solely of the vertical transition supercubes

of all 1 → 1 output transitions. Recall that all vertical output transitions are static,

i.e., either static-0 or static-1. Only the latter kind has any required cubes. Note that

no constraint clause is generated for case where the transition is stably mapped (i.e.

δt,c,c), since in that case, the vertical portion of the transition collapses. This is because

functional covering of the horizontal transition performed above takes care of all required

cubes.

This constraint is conditional on the selection of state mapping variable δt,c,c′, since

198

the given vertical required cubes only exist if state mapping choice δt,c,c′ is selected.

6.6.7 State Closure

This set of constraints ensures that the selected set of state compatibles, along with the

chosen state mappings, is closed, in the classical sense.

Given the discussion in Section 6.1.1, the only non-unique state implications arise

from vertical transitions. Hence, state mapping, as performed above using δ variables,

along with the following connective clauses, guarantees state closure.

∀ variables δt,ca,cb
For each state mapping choice

δt,ca,cb
→ cb If cb is chosen as the destination state, must select it as well

The above constraints guarantee state closure because:

• The only total states for which there is a choice are the speci�ed transitions' exit

points

• All other total states have only trivial implications (i.e. they imply only the reduced

state in which they reside)

• All transitions' exit points are state mapped

6.6.8 State Mapping Incompatibility

State mapping incompatibility constraints ensure the existence of a hazard-free logic im-

plementation for next-state, by disallowing those combinations of state mapping choices

for which no hazard-free logic implementation exists. This is an important but subtle

problem, and is analyzed in detail in the following section.

199

6.7 State Mapping Incompatibility Constraints

This section describes the process by which state mapping incompatibility constraints

are generated.

The basic goal of this set of constraints is to guarantee the existence of a hazard-

free logic implementation for the next-state. This is an issue because certain combinations

of state mappings prevent the hazard-free covering of the next-state. Thus, this section

analyzes the problem in detail to determine necessary and su�cient conditions under

which a hazard-free cover fails to exist. These conditions are then used as the basis for

a set of binate constraints, which are generated using a pair of algorithms.

The problem arises as follows. Hazard-free covering is a unate process; therefore,

a hazard-free cover fails to exist if and only if no DHF implicant covers a particular

required cube. For this to be the case, the required cube, along with all implicants that

contain it, must illegally intersect some privileged cube. Now, state mapping determines

the presence and shape of privileged cubes for speci�c next-states for a given transition.

For example, suppose the valid state mappings of transition t in reduced row s′1 are s′1,

s′2 and s′3. The stable choice s′1 results in no privileged cubes at all, while the choice

s′2 results in privileged cubes for s′1 and s′2, but not for s′3, and so on. Such privileged

cubes may cause intersecting implicants to be dynamic-hazardous, and thereby prevent

the covering of a given required cube.

The simple solution is to constrain the state mapping. In particular, we generate

a set of constraints which captures the precise conditions for the existence of hazard-free

next-state logic. There are two basic types of constraints: 1) constraints which restrict

the state mappings of transitions in a single state, and 2) constraints which restrict the

state mappings of transitions in two states.

Clearly, the set of all state mapping combinations across all possible state re-

ductions can be very large. However, the set of combinations actually examined can

be greatly pruned, by means of careful case analysis and by exploiting the structure of

200

the problem. For example, the following analysis takes care to focus attention on those

situations which can actually occur in proper burst-mode speci�cations.

The structure of the remainder of the section is as follows. First, a number of

basic facts are presented, which begin the case analysis.

6.7.1 Basic Elements in the Case Analysis

We now present several facts regarding burst-mode operation and state reduction which

will help in the case analysis to follow.

An essential issue throughout the case analysis is that the type of transition a given

next-state function experiences is de�ned in part by the state mapping of the transition's

exit point. Consider the transition of Figure 6.5, for instance. The candidate next-states

are S ′
i and S ′

j; each choice has a di�erent e�ect on the next-state function S ′
i, as shown

in Figures 6.6 and 6.7. The �rst choice, S ′
i, represents a stable mapping, which yields a

1 → 1 transition for S ′
i and a 0 → 0 for S ′

j . The result is a single required cube for

S ′
i, and no privileged cubes. The alternative state mapping, S ′

j , instead causes the S ′
i

function to undergo a 1 → 0 transition, and S ′
j to undergo a 0 → 1 transition. In this

event, there are two privileged cubes: one for S ′
i, and another (trivial) one for S ′

j , along

with a vertical required cube for S ′
j .

State mapping can collapse an unstable transition having a privileged cube into a

stable transition having no privileged cube.

Since Optimista does not generate DHF implicants for the next-state functions,

the following analysis constructs DHF implicants (not necessarily primes) on-the-�y, if

possible, to verify the existence of a hazard-free cover for that cube.

Before proceeding with the analysis, we give the following de�nition and lemmas.

De�nition 6.6 A privileged cube is non-trivial i� it contains an ON-set point other than

the corresponding transition's start point.

201

δ
t,Si’,??

Si’ = { s0, s1 }

Sj’ = { s1, s2 }

Si’

t

{ s1 }

Si’ = ?Si’ = 1

Figure 6.5: A speci�ed transition with two possible state mappings

δ
t,Si’,Sj’

Si’ = { s0, s1 } Si’

t

Sj’ = { s1, s2 }

required cube for Si’

Si’

Sj’ = 0
Si’ = 1Si’ = 1

Sj’ = 0

Figure 6.6: One possible state mapping for the transition of Figure 6.5

δ
t,Si’,Sj’

Si’ = { s0, s1 }

Sj’ = { s1, s2 }

Si’

t

Sj’

Sj’ = 1Sj’ = 0

Sj’

privileged cube for

Si’ = 1 Si’ = 0

Si’ and Sj’
Si’ = 0
Sj’ = 1

Figure 6.7: Another possible state mapping for the transition of Figure 6.5

202

Lemma 6.7 The privileged cubes for the destination state of an unstably-mapped tran-

sition are always trivial.

As shown in Figure 6.7, the destination state's sole ON-set minterm is at the transition

exit point.

Corollary 6.8 Only the source state of an unstable transition possesses a non-trivial

privileged cube.

These facts prove useful because trivial privileged cubes can never be illegally intersected

by an implicant. Thus, the analysis need only concern itself with illegal intersections with

the source state privileged cube.

The following lemmas help to limit the scope of state mapping choices which need

to be examined.

Lemma 6.9 Determining covering requirements for a horizontal next-state transition t′

in s′i requires state mapping information only for transitions originating in the source

state s′i.

Proof: Any implicant used to cover a horizontal required cube r corresponding to t′

only needs to span s′i. Meanwhile, transitions t′′ originating in any distinct state s′j never

have privileged cubes spanning s′i, and hence cannot interfere with covering r. Further,

their vertical portions can only interfere when t′′ is state-mapped to s′i (else there is no

intersection), and only by virtue of an OFF-set cube for s′i which prevents expansion to

include the start point of t′. However, state-mapping t′′ to s′i implies that s′i has ON-set

points throughout the vertical portion of t′′. 2

The next lemma extends the previous one, further pruning the search space.

Lemma 6.10 Determining the feasibility of covering a horizontal next-state required cube

only requires knowing which transitions have been unstably mapped.

203

With the above in mind, we now proceed to the analysis of the four sources of next-state

covering requirements in the reduced machine.

In the sequel, we refer to the stable state at the source of a given speci�ed transition

as the source state. Likewise, the destination state is the target state of the speci�ed

transition.

Clearly, the required cubes of both the source and destination state functions must

be covered. This gives rise to the following taxonomy of covering requirements:

1. Horizontal required cubes

(a) for the source state

(b) for the destination state

2. Vertical required cubes (present only if the transition is mapped unstably)

(a) for the source state

(b) for the destination state

Each of the four cases is examined, in turn, in the following subsections. First, the

covering requirements are identi�ed, and any impossible situations noted. Following

this, two simple algorithms are shown, one for the horizontal cases, and another for the

vertical cases. Later, Section 6.11 presents a pair of optimized algorithms that have

reduced run-time complexity and generate fewer, less restrictive constraints.

6.7.2 Horizontal Required Cubes for the Source State

We now analyze the covering requirements for the source state in the horizontal portion

of the speci�ed transition.

Figures 6.8 and 6.9 depict the situation involved in covering required cubes for

the reduced source state s′i in the horizontal portion of a speci�ed transition t. If the

204

Si’

δ
t,Si’,Si’

required cube expanded to

required cube for Si’

Si’ = 1

t’’

t
Si’ = 0Si’ = 1

contain start point

Si’ = 1

Figure 6.8: Horizontal required cubes for the source state in a stably-mapped transition

exit point of t is stably mapped, a single required cube (the supercube of t) results, as

shown in Figure 6.8. There are no privileged cubes in this case. If t is unstably mapped,

as shown in Figure 6.9, one or more smaller required cubes results (the maximal ON-set

sub-cubes of t).

In the case of both stable and unstable mappings, the only possible interference

with hazard-free covering arises from the presence of privileged cubes in s′i. Now, privi-

leged cubes for s′i in s′i can only result from unstable transitions in s′i. Thus, Algorithm 9

only needs to map the source state in order to determine the feasibility of covering the

source-state required cubes.

6.7.3 Horizontal Required Cubes for the Destination State

We now analyze the covering requirements for the destination state in the horizontal

portion of the speci�ed transition.

We show that no constraints need to be generated relative to the horizontal re-

quired cubes of the reduced destination state s′j. Note that when t is stably mapped, all

states s′j other than s′i undergo a 0 → 0 transition, and there are no required cubes for s′j .

(I.e., the destination state is s′i itself.) If, however, t is unstably mapped, the destination

state s′j undergoes a 0→ 1 horizontal transition. The result is a trivial privileged cube,

as shown in Figure 6.10. The sole maximal ON-set cube (a minterm) is subsumed by the

205

Sj’

Si’

δ
t,Si’,Sj’

δ
t’,Sj’,Si’

required cube expanded to

required cube for Si’

Si’ = 1

t’’

t
Si’ = 0Si’ = 1

contain start point

Si’ = 0
t’

Si’ = 0

Si’ = 0

Si’ = 1

Figure 6.9: Horizontal required cubes for the source state in an unstably-mapped tran-

sition

corresponding static-1 vertical transition supercube, as shown.

6.7.4 Generating Horizontal State Mapping Incompatibility Con-

straints

This section presents a �naive� algorithm for identifying incompatible state mappings on

behalf of required cubes in the horizontal portion of a speci�ed transition.

We summarize the above analysis, as follows. First, we need only generate state

mapping incompatibility constraints for horizontal required cubes involving the source

state. Second, all constraints concerning source-state required cubes can be generated

by considering state mapping combinations for the source state alone.

All �relevant� transitions must be state mapped in order to determine the location

of the various privileged cubes. Hence, the following algorithm enumerates each complete

combination of state mappings (for all transitions originating in the source state), and

generates a constraint for each one that has no hazard-free cover for some required cube.

The set of relevant transitions can be pruned by even more careful case analysis.

An optimized algorithm that embodies such an analysis is presented in Appendix B as

206

Sj’

Si’

δ
t,Si’,Sj’

required cube for Sj’

maximal ON-set cube for Sj’
(degenerate)

t

Sj’ = 1Sj’ = 0

Sj’ = 1

Figure 6.10: Required cubes for the reduced destination state in the horizontal portion

of a speci�ed transition

Algorithm 11.

Procedurally, we verify the existence of a suitable DHF implicant in each case by

attempting its construction on-the-�y. This is necessary, since no DHF prime implicants

are generated a priori for next-state. In fact, it does not appear possible to improve

on this method. In particular, it would be impossible to generate a single set of such

implicants a priori on the unreduced machine (analogous to the output DHF-primes).

The next-state function is only well-de�ned after state mapping; hence, many sets of

implicants, each targetting a particular reduced state and state mapping combination,

would result.

The algorithm proceeds as follows. First, the outermost loop selects a reduced

row (a compatible). Then, every combination of state mappings for all of the speci�ed

transitions in this row are enumerated. For each combination, the required cubes of each

speci�ed transition are identi�ed. A covering implicant is then formed for each required

cube, if possible. Speci�cally, the procedure attempts to use the required cube to cover

itself, and expands it as necessary to avoid illegal intersections with any privileged cubes.

If at any point the product hits the OFF-set, it is no longer an implicant. When that hap-

pens, no hazard-free cover exists for that required cube. In that event, an incompatibility

constraint is generated which outlaws that particular state mapping combination.

207

Algorithm 9 Identifying incompatible state mappings with respect to horizontal re-

quired cubes

identifyHorizontalIncompatibilities() // Unoptimized version

{
// Horizontal portion done separately since it only requires state

// mapping source state transitions.

for each compatible c/s′ { // Select a reduced row

for all state mappings of the transitions in c {

for each transition t in c { // Select a specified transition in c
for each horizontal required cube r of t {

// Try to cover r
p′ := r; // Start by using r itself

// N.B. The only non-trivial privileged cubes in s′ are for

// s′ itself: the horizontal portions of t are always stable

while p′ illegally intersects a priv cube of t′ in s′ {

p′ := p′ expanded to contain start(t′);
// OFF-set(s′) is defined wrt state mapping of s′

if p′ intersects OFF-set of s′ {

disallow this mapping set (generate a constraint);

continue with the next state mapping;

}

} } } } }

}

208

6.7.5 Vertical Required Cubes for the Source State

This section examines the covering requirements for the source state in the vertical por-

tion of the speci�ed transition.

Vertical required cubes can never exist for the source state of any speci�ed transi-

tion. In particular, when the transition exit point is stably mapped, no state change takes

place, and hence there is no vertical transition. The only required cube in that case is a

single horizontal cube. If, on the other hand, the exit point is unstably mapped, the ver-

tical portion of the transition speci�es the destination state as the next-state throughout.

In other words, the source state undergoes a 0 → 0 transition in the vertical portion,

and thus has no required cubes.

6.7.6 Vertical Required Cubes for the Destination State

Finally, we examine the covering requirements for the destination state in the vertical

portion of a speci�ed transition.

Figure 6.10 shows that any implicant covering these vertical required cubes must

avoid illegal intersections with privileged cubes arising from unstable transitions in the

destination state s′j alone. This is true in part because there can never be non-trivial

privileged cubes for s′j in any state other than s′j.

At the same time, an implicant of s′j must by de�nition not intersect the OFF-set

of s′j. Now, the OFF-set of s
′
j is simply de�ned as the union of the ON-sets of all other

states. In particular, this OFF-set has three components:

1. the vertical portion of unstable transitions leaving s′j (part of the ON-set of the

corresponding destination state. [The existence of such an unstable transition in

turn depends on the state-mapping of its exit point.]

2. stable transitions in s′i, and

3. unstable transitions leaving s′i which do not target s′j.

209

Sj’

Si’

δ
t’,Sj’,Si’

δ
t,Si’,Sj’

required cube for Sj’

required cube expanded to
contain start point

t

Sj’ = 0 Sj’ = 0

Sj’ = 0

Sj’ = 1

t’’

t’

Sj’ = 1

Sj’ = 0

Sj’ = 1

Figure 6.11: Required cubes for the reduced destination state in the vertical portion of

a speci�ed transition

The above conditions constitute the OFF-set intersection described as �hits OFF-set of s′d�

in the algorithm below.

6.7.7 Generating Vertical State Mapping Incompatibility Con-

straints

The above analysis suggests a �naive� algorithm for generating state mapping incom-

patibility constraints on behalf of required cubes in the vertical portion of a speci�ed

transition.

Like the horizontal case, all �relevant� transitions must be state mapped in order

to determine the location of the various privileged cubes. Hence, the following algorithm

enumerates each complete combination of state mappings (for all transitions originating

in the source and destination states), and generates a constraint for each one that has

no hazard-free cover for some required cube.

Again, the set of relevant transitions can be pruned by even more careful case anal-

ysis. An optimized algorithm that embodies such an analysis is presented in Appendix B

210

as Algorithm 13.

The algorithm proceeds as follows. First, the outermost loop selects a reduced row

(a compatible). Then, every combination of state mappings for all speci�ed transitions

in this row are enumerated. For each combination, the required cubes of each speci�ed

transition are identi�ed. Unlike the horizontal case, a non-trivial required cube only

exists if the transition is unstably mapped. A covering implicant is then formed for each

required cube, if possible. Speci�cally, the procedure �rst attempts to use the required

cube to cover itself, and then expands it as necessary to avoid illegal intersections with

any privileged cubes. If at any point the product hits the OFF-set, it is no longer an

implicant. Unlike the horizontal case, the OFF-set is de�ned in part by mappings of

transitions in the destination state, s′d. If an OFF-set intersection occurs, no hazard-

free cover exists for that required cube. In that event, an incompatibility constraint is

generated which outlaws that particular state mapping combination.

6.8 Binate Constraint Solution

As with Optimisto, once all constraints are generated, the constraints are solved by

a standard binate solver. The solution to the constraints results in a selection of state

compatibles, a selection of state mappings for each speci�ed transition in the reduced

machine, and a minimum-cardinality selection of DHF output prime implicants. The

current implementation uses Scherzo, a highly-tuned binate solving package developed

by Coudert [30].

6.9 Instantiation

This section describes the instantiation process, the means by which a unique reduced

machine and hazard-free output cover are derived from the original speci�cation, using

the selected set of state compatibles, state mappings, and DHF output primes.

211

Algorithm 10 Identifying incompatible state mappings with respect to vertical required

cubes

identifyVerticalIncompatibilities()

{

for each compatible c/s′ {

for each combination of state mappings of the transitions in c {

M := {〈t, destt〉, ∀t in c}; // M records the chosen state mappings

for each transition t in c {

s′d := M(t); // Find chosen destination state s′d for t under M.

// If s′d �= s′, t is unstable. Therefore, there is a non-trivial

// vertical required cube r to cover for s′d.

if s′d �= s′ {

// Note that r spans both s′ and s′d. Note also that

// priv cubes and OFF-set of s′d are defined only wrt

// the set of state mappings.

Implicant p′ := r;

while p′ illegally xsects priv cube of t′ in s′ or s′d {

p′ := supercube(p′, start(t′)); // Make p′ contain start point

if p′ hits OFF-set of s′d { // Must consider mappings in s′d
disallow this mapping set (generate a constraint);

continue with next state mapping set for c;

}

} } } } }

}

212

First, we establish that dynamic hazard-freedom is preserved under the Natural

Mapping of Section 4.3.5. This result allows Optimista to use ordinary DHF output

prime implicants that are formed on the unreduced machine as the candidate symbolic

output implicants for covering the reduced machine.

Optimista's goal is a minimum-cardinality hazard-free SOP output logic cover;

hence, any implicant used must clearly be DHF for the selected reduced machine. The

following theorem proves that all DHF output primes on the unreduced machine remain

DHF on any reduced machine, under the Natural Mapping of Section 4.3.5.

Theorem 6.11 A DHF output prime implicant p is DHF for any reduced machine, after

instantiation under the Natural Mapping.

DHF prime p does not illegally intersect any dynamic transition in any unreduced state

which it spans, by de�nition.2 Every output transition t′ of the reduced machine M ′ is

the image of some unique speci�ed output transition t of M , and is the same kind (0→ 0,

0 → 1, etc.) as t. The Natural Mapping instantiates p's present-state �eld only with

compatibles it completely spans. So, p′ illegally intersects the privileged cube of some

transition t′ of M ′ i� p also illegally intersects t.

We now describe the instantiation procedure for the burst-mode machine. This is

a deterministic process, since both the output and next-state behaviour of the reduced

machine are dependent solely on the selected compatibles and state mappings.

Given the unreduced machine as a two-part representation, consisting of a func-

tional speci�cation of output and state behaviour (identical in form to a synchronous

�ow table) along with a set of speci�ed input transitions, the reduced machine is derived

in two parts, as follows. First, the functional speci�cation is transformed using the se-

lected set of state compatibles and state mappings, just as a synchronous machine would

be instantiated. Next, the speci�ed input transitions are instantiated, in a one-to-many

transformation. Speci�cally, each input transition t in an unreduced state s is trans-

2considering privileged cubes of outputs to which p does not contribute as never intersecting p

213

formed to a set of one or more speci�ed transitions {t′c}, one for each selected compatible

c containing s. The destination state for each transition is de�ned by the chosen state

mapping (δt,c,c′) for that particular transition/compatible pair.

Technically, the resulting machine is not a valid burst-machine speci�cation, be-

cause state merging can result in intra-state transitions having non-empty output bursts,

violating the unique entry point criterion. However, the machine conforms to proper

burst-mode behaviour in all respects.

The selected DHF output prime implicants are instantiated using the Natural

Mapping de�ned in Section 4.3.5, to produce a hazard-free two-level output logic cover

for the given reduced machine.

6.10 Theoretical Results

This section demonstrates the soundness and optimality of Optimista. First, we show

that any solution to the above binate constraints yields a valid reduced machine and a

valid output logic cover. Then, we show that our method yields a (possibly) reduced

machine with minimum hazard-free output logic cardinality over all possible state mini-

mizations and encodings.

In the process, we prove in Section 6.10.2 an interesting and useful theoretical

result. A minimum-cardinality hazard-free output logic cover for the unreduced machine

itself has minimum cardinality across all possible state minimizations and encodings. A

consequence of this is that state reduction can never reduce output logic complexity.

Although the unminimized machine always gives the optimum solution for output

logic cardinality, it does not necessarily do so under other cost functions. For example,

it is well-known that state reduction often helps simplify the next-state logic.3 Thus,

obtaining an optimum solution under a cost function incorporating, e.g., both output

logic and state cardinality, may require that state reduction be performed.

3This is of course the classic motivation for state minimization.

214

6.10.1 Correctness of OPTIMISTA

Optimista's soundness is demonstrated in several steps. First, it is shown that any

solution to the binate constraints of Section 6.6 yields a valid reduced machine. Next, we

establish a relationship between the minterms of M and the minterms of M′, and use

that to relate functional covering onM to that onM′. Finally, we prove that a solution

to the binate constraints also produces a valid hazard-free logic cover for the outputs.

Theorem 6.12 Any solution to the binate constraints of Section 6.6 identi�es a valid

reduced machineM′
.

Proof: The constraints of part 1 are precisely the state covering constraints of Gras-

selli [60]. Since any solution to the constraints satis�es every constraint, the selected

compatibles form a state cover. Next, as observed earlier, only the transition exit points

in a burst-mode machine have non-trivial state implications. Now, each transition in

each reduced state has a corresponding state mapping constraint (for its exit point) in

part 2, which is �enabled� when (is conditional on) selection of that reduced state. Hence,

the exit point of each transition in each selected reduced state is state mapped. The con-

straints of part 3 ensure that only a single state mapping is selected, and that burst-mode

behaviour is maintained. Finally, given the selected state mapping for any given transi-

tion, the constraints of part 5 ensure that the corresponding next-state is also selected.

Thus, state closure is guaranteed. 2

Lemma 6.13 Each output required cube r′ of reduced machineM′
is the image of some

required cube r ofM.

Proof: Each required cube r′ ofM′ belongs to some speci�ed transition t′ originating

in some reduced state s′. Now, each transition t′ ofM′ is the image in s′ of some unique

speci�ed transition t ofM originating in an unminimized state s. s is contained by the

215

compatible c to which s′ corresponds. r′ belongs to either the horizontal or the vertical

portion of t′. If horizontal, r′ spans s′ and will correspond to a unique horizontal required

cube of t spanning s. If vertical, r′ spans s′ and some s′2, where s′2 is a state covering the

destination state of t. Thus, r′ corresponds to a unique vertical required cube of t. 2

Lemma 6.14 If DHF output prime p onM appears in a functional covering constraint

for a required cube r′ ofM′
, p covers r′ when instantiated under the Natural Mapping.

Proof: r′ belongs to either the horizontal or the vertical portion of some transition t′. If

r′ is horizontal, p appears in the given part 4 constraint i� its present-state �eld contains

the compatible (row) c in which r′ resides. Now, the existence of r′ is dependent upon c's

selection. Further, c's selection implies that p's present-state �eld will be instantiated so

as to span the reduced row corresponding to c. Thus, p′ contains r′. If on the other hand

r′ is vertical, then p appears in the part 4 constraint i� its present-state �eld contains the

compatibles (rows) in which the source and destination states of t′ reside. In this case,

the existence of r′ depends on the selection of the source state and the state mapping of

the exit point of t′ to the given destination state of t′. Thus, under the Natural Mapping,

p contains both the source and destination states. So, p covers r′. 2

Theorem 6.15 Any solution to the binate constraints of Section 6.6 identi�es a valid

hazard-free output logic cover for the reduced machineM′
.

Proof: This follows from the above two Lemmas, and from the fact that every output

required cube for a given reduced speci�ed transition has a covering constraint in part 4

that must be satis�ed once the corresponding reduced source state has been selected and

the exit point state mapped. Also, note that because the set of implicants used is the set

of DHF output prime implicants, every output required cube r inM is covered by some

p (see also [102]). As a result, every functional covering constraint has at least one DHF

216

output prime appearing on the right-hand side, and is thus satis�able. 2

6.10.2 Optimality of the Unminimized Machine

This section demonstrates that the unminimized machineM itself has the best possible

two-level hazard-free output logic cover, over all possible state minimizations and encod-

ings. The burden of the proof lies in �nding for every prime hazard-free cover of any

given reduced machine M′, a corresponding cover for M of identical cardinality that

maps onto it.

Lemma 6.16 To every DHF output prime implicant p′ on some reduced machine M′

there corresponds at least one DHF output prime implicant p onM which Naturally Maps

onto p′.

Proof: By construction. For p′ = 〈I PS ′ O〉, construct the product p = 〈I PS O〉,

where PS is the union of all the compatibles corresponding to states s′ in PS ′. The

analysis used in Lemma 5.7 for the synchronous case applies here, proving both that p′ is

an implicant ofM′ and that p Naturally Maps onto p′. However, it must also be shown

that p is dynamic hazard-free forM.

The speci�ed transitions t in M map one-to-many onto speci�ed transitions t′ in M′.

Further, if output o undergoes a transition of a certain type (static-0, static-1, 0 → 1,

1 → 0) for t in M, o undergoes the same type of transition for all corresponding t′

in M′. So, a dynamic transition t (for output o) in M induces one or more dynamic

transitions t′ (for output o) inM′. Now, recall that all dynamic output transitions are

horizontal for a plain burst-mode speci�cation with early output changes.

Consider a dynamic transition t′ and the corresponding transition t inM. t′ originates

in some reduced state s′; t originates in some unreduced state s. t′ has a privileged cube

pc′ spanning only s′, while t has a privileged cube pc spanning only s. Note that s lies

217

in the compatible corresponding to s′.

Now, p′ is DHF for M′ (given) ; hence p′ does not illegally intersect pc′. I.e., either p′

does not intersect pc′ at all, or p′ contains the start point of pc′. More speci�cally, there

are three cases:

1. p′ contains start(pc′) ⇒ p contains start(pc)

2. p′ does not intersect IN(pc′) ⇒ p does not intersect IN(pc)

3. p′ does not span s′ ⇒ ??? p does not span s ???

In the �rst two cases, we see that p is DHF with respect to transition t.

In the last case, we cannot immediately conclude that p does not span s even though p′

does not span s′. In particular, if state s was split, p′ may span another state s′2 which

corresponds to a compatible containing s. However, we can make the following claim:

If cases 1 or 2 above apply to one t′/s′, then they apply to all t′/s′ corresponding to

t/s, and therefore p is DHF for t. Otherwise, for p′ to be DHF, it must be DHF for all

transitions inM′, and case 3 must apply to every t′/s′. If that is true, then p′ does not

span any s′ corresponding to s, so that p does not span s, and again p is DHF for t. 2

From the above, given any output logic cover Π′ for some reduced machineM′, we can

construct, member-wise, a set of implicants (call it Π) onM.

Lemma 6.17 Π is a hazard-free output cover forM.

Proof: Π consists solely of DHF output implicants, and hence is dynamic hazard-free.

We need only prove that Π covers all required cubes of all transitions inM.

218

For every speci�ed transition t′ ofM′ there is a corresponding transition t ofM. Con-

versely, for every t there is at least one t′.

The required cubes of t′ fall into two categories: horizontal and vertical. Horizontal re-

quired cubes span only a single state s′; vertical required cubes span both s′ and some

destination state s′2. For each, there is a corresponding horizontal (resp. vertical) re-

quired cube r of t spanning s (resp. s and some s2). Note that s′ (resp. s′2) corresponds

to a compatible containing s (resp. s2).
4

Now, for any horizontal required cube r′ of t′, there is a p′ ∈ Π′ that contains it. It is

easy to see that the corresponding p ∈ Π contains r.

For any vertical required cube r′ of t′, there is a p′ ∈ Π′ containing it. r′ spans s′ and

some s′2, while r spans s and some s2. Since state s′ covers s and state s′2 covers s2 (given

a valid state mapping), p contains both s and s2. Clearly, then, p contains r.

In short, if Π′ covers the required cubes of t′ ∈ M′, then Π covers the required cubes of

the corresponding t. Since every t has a corresponding t′, and Π′ covers all t′, then Π

covers all t ∈M as well. 2

Theorem 6.18 The unminimized machine M possesses a two-level hazard-free output

logic cover which has minimum cardinality across all possible state minimizations and

encodings.

Proof: This follows from Lemma 6.17, since, for every hazard-free output logic cover

Π′ for any reduced machineM′, we can construct a hazard-free output cover forM of

identical cardinality. 2

4For s2/s′2, this is true becauseM′ must embody a valid state mapping as well as a valid state cover.

219

6.10.3 Optimality of OPTIMISTA

The proof here is straightforward. Because any solution to the binate constraints repre-

sents a valid reduced machine and hazard-free output logic cover, we need only establish

thatM itself is a minimum-cost solution to our constraints.

Lemma 6.19 The unminimized machineM, along with any minimum-cardinality hazard-

free output logic cover C for it, represent a minimum-cost solution to the binate constraints

of Section 6.6.

Proof: Clearly M satis�es the state covering constraints of part 1. M also satis�es

the state mapping constraints of part 2. In particular, the clauses corresponding to uns-

elected compatibles are trivially satis�ed. Now, the remaining part 2 clauses correspond

to the original speci�ed transitions in each state (the singleton compatibles). A clause

for transition t from state ssrc to sdst always has sdst as a candidate state mapping.

Hence, the clause is satis�ed by selecting δt,ssrc,sdst
; that is, by mapping t's exit point

to sdst (which is precisely whatM does). Next,M makes a single choice for each state

mapping, and so satis�es the constraints of part 3. Also, having selected δt,ssrc,sdst
and

sdst,M also satis�es the closure constraints of part 5. Finally, the functional covering

constraints of part 4 are monotonic, so that there is always a solution, as long as there

exists an implicant to cover any given output minterm. Because we make use of all DHF

output primes formed on M, there is always a prime to cover any given required cube

(see [102]). Likewise, all possible DHF prime covers are accessible as solutions to the

constraints of part 4. Hence,M and the given logic cover C are a solution to the binate

constraints. ThatM and C constitute a minimum-cost solution follows directly from the

cost function (logic cover cardinality) in use. 2

Theorem 6.20 A minimum-cost solution to the constraints of Section 6.6 identi�es a

reduced machine having an exactly minimum-cardinality two-level hazard-free logic cover

220

for its outputs.

Proof: This result follows from Theorem 6.18 (the optimality of the unminimized ma-

chine), along with the Lemma 6.19 above. 2

6.11 E�cient Generation and Pruning of State Map-

ping Incompatibility Constraints

It is possible to form recursive versions of Algorithms 9 and 10 which state map transitions

�on demand�. Such algorithms incrementally form a covering DHF implicant (if possible)

for a given required cube by expanding the required cube to form a candidate covering

implicant, and stopping once the implicant is determined to be dynamic hazard-free. As

they do so, they state-map transitions on-the-�y only in the region of interest, i.e., in the

input columns spanned by the candidate implicant. As a result, they avoid examining

state mapping alternatives for transitions that are disjoint from the region of interest,

which can have no impact on hazard-free covering of the given required cube. Appendix B

presents a pair of such algorithms.

6.12 Experimental Results

This section presents experimental results obtained using the current implementation of

Optimista. First, the experimental set-up is described, and then the results are shown

and analyzed.

Results were obtained for a suite of industrial benchmark burst-mode speci�ca-

tions. All circuits come from the same suite used in Chapter 7.6 to evaluateMinimalist.

Each experiment was run as follows. First, the burst-mode speci�cation is trans-

lated to a form that Optimista can read (a Berkeley PLA �le and a transition speci�ca-

221

tion �le). Next, Stamina is used to generate prime compatibles, using a PLA-to-KISS2

translator. Finally, Optimista is run, taking the PLA, transition �les, and prime com-

patibles as input. Optimista internally uses Hfmin to generate the DHF output prime

implicants, and calls Scherzo to solve the underlying binate covering problem. For

comparison,Minimalist is also run on the same designs, using no fed-back outputs, the

output-disjoint logic implementation style, and a cost function of product count.

Table 6.1 summarizes the experimental results. First, the number of inputs, un-

minimized states, and outputs are shown. Next, the number of prime and all compatibles

are given, along with the number of DHF output prime implicants. Then, two sets of

columns describe the results from two pairs of trial runs of Optimista. The �rst set

of the pair shows the results of minimization using only pruned prime compatibles; the

second, the results of minimization using all compatibles. In each case, the number of

binate constraints, minimized (chosen) states, output products, and total run time are

shown.

A limited set of trial runs was performed. Optimista does as well asMinimalist

in each case, but no better. This suggests that either there is no room for improvement in

these circuits, or thatMinimalist's state minimization happens to be doing particularly

well. As seen in the Minimalist benchmarks of Chapter 7, however, some of the most

impressive gains come from the larger designs, which o�er more latitude for optimization.

We expect that runs on larger designs for Optimista will turn in equally good results.

Again, as in Chapters 4 and 5, some increase in the number of minimized states

is observed, even though no bene�t is seen in logic cardinality. Thus, Optimista results

would clearly bene�t from the use of a two-tiered cost function.

6.13 Conclusions and Future Work

This chapter extends the output-targetted framework of Optimisto to address optimal

state minimization for burst-mode asynchronous state machines. Like the previous chap-

222

c
o
m
p
a
t
s

O
p
t
im
is
t
a

(
p
r
im
e
c
o
m
p
s
)

O
p
t
im
is
t
a

(
a
ll
c
o
m
p
s
)

M

in
im
a
l
is
t

d
e
si
g
n

i/
s/
o

p
r
im
e

a
ll

D
H
F
-P
I
's

c
o
n
s

m
s

p
r
o
d
s

s
e
c

c
o
n
s

m
s

p
r
o
d
s

s
e
c

m
s

p
r
o
d
s

d
m
e
-e

3
/
8
/
3

5

2
8

9

8
7

5

4

1

2
1
2
2

†

-

-

3

4

d
m
e
-f
a
s
t
-e

3
/
8
/
3

4

2
0

1
1

5
8

4

8

1

6
9
4

9

6

8

4

6

p
s
c
s
i-
ir
c
v

4
/
6
/
3

3

1
1

1
0

4
3

3

8

1

2
0
1

7

8

1

4

8

p
s
c
s
i-
t
r
c
v

4
/
6
/
3

3

1
1

8

4
3

3

6

1

1
8
0

1
0

6

1

3

6

p
s
c
s
i-
t
s
e
n
d

4
/
1
0
/
3

6

1
5

1
6

7
7

6

1
0

2

1
8
7

9

1
0

1

7

1
0

p
s
c
s
i-
t
s
e
n
d
-b
m

4
/
1
0
/
4

6

1
4

1
1

7
2

6

9

1

1
7
1

1
3

9

2

7

9

s
b
u
f-
r
e
a
d
-c
t
l

3
/
7
/
3

3

1
9

1
1

5
4

3

5

1

8
0
7

†

-

-

5

3

s
b
u
f-
s
e
n
d
-c
t
l

3
/
8
/
3

4

1
4

1
1

6
2

-

-

-

3
6
5

6

7

1

7

4

‡ Constraint solution failed to produce a solution in a reasonable amount of time

Table 6.1: Experimental results for Optimista on some industrial benchmark speci�ca-

tions

223

ter, it makes two contributions. First, it o�ers a binate constraint satisfaction method,

which is the �rst optimal state minimization method for asynchronous state machines

of any form. This new method precisely targets output logic, producing exactly mini-

mum cardinality two-level hazard-free output logic over all possible state minimizations,

state encodings, and logic minimizations. This is particularly advantageous for burst-

mode machines, since it addresses the key performance parameter for systems of such

machines: output latency. The second contribution is an interesting theoretical result,

analogous to one from the previous chapter: the unminimized machine always possesses

minimum-cardinality two-level hazard-free output logic.

It o�ers two fundamental choices for state minimization. First, it proposes the

startling choice of performing no reduction at all. Surprisingly, this yields exactly minimum-

cardinality output logic over all state reductions, state encodings, and two-level logic

minimizations. Second, it provides a novel binate constraint-satisfaction framework,

based on the framework used by Optimist in the previous chapter. Interestingly, this

second method has far lower computational complexity than base Optimist. At the

same time, it supports a set of four useful cost functions, unlike the �rst choice (that

of performing no reduction). As a result, the constraint-satisfaction method also suits

applications requiring the best possible output logic and desiring reduction in next-state

logic complexity.

The constraint satisfaction algorithm was implemented, and experimental results

obtained for both Optimista and Minimalist. While the experimental results do

not demonstrate a reduction in logic complexity over Minimalist, we expect to see

reductions in an expanded set of experiments. This is an area for future work.

The present method does not handle fed-back outputs; such an extension would be

of considerable interest. In particular, this might provide better reduction in next-state

complexity, while retaining an optimum output logic implementation.

Like the previous chapter, a binate solver capable of handling two-tiered cost

224

functions would allow Optimista to accomodate other cost functions. Exploring the

trade-o�s in these choices is another interesting area for future work.

225

Chapter 7

MINIMALIST: An Extensible Toolkit

and Framework for Asynchronous

Burst-Mode Synthesis

Minimalist is a new extensible environment for the synthesis and veri�cation of burst-

mode asynchronous �nite-state machines. Minimalist embodies a complete technology-

independent synthesis path, with state-of-the-art exact and heuristic asynchronous syn-

thesis algorithms, e.g. optimal state assignment (Chasm), two-level hazard-free logic

minimization (Hfmin, Espresso-HF, and Impymin), and synthesis-for-testability.

Unlike other asynchronous synthesis packages, Minimalist also o�ers many op-

tions: literal vs. product optimization, single- vs. multi-output logic minimization, using

vs. not using fed-back outputs as state variables, and exploring varied code lengths

during state assignment, thus allowing the designer to explore trade-o�s and select the

implementation style which best suits the application.

Minimalist benchmark results demonstrate its ability to produce implementa-

tions with an average of 34% and up to 48% less area, and an average of 11% and

up to 37% better performance, than the best existing package [150]. Our synthesis-for-

226

testability method guarantees 100% testability under both stuck-at and robust path delay

fault models, requiring little or no overhead. Minimalist also features both command-

line and graphic user interfaces, and supports extension via well-de�ned interfaces for

adding new tools. As such, it is easily augmented to form a complete path to technology-

dependent logic.

7.1 Introduction

While asynchronous circuits have undergone a renaissance by signi�cant renewed inter-

est in the last decade, their promises � reduced power, increased performance, and

robustness � have only begun to be fully realized [150][29][98][74][120][73][78][126][80].

Although several of these methods have been e�ective, several synthesis steps still lack

optimal solutions or practical tools. Likewise, a lack of well-integrated and extensible

environments within which to embed these tools leaves designers without a smooth syn-

thesis path. By contrast, the synchronous community possesses a wealth of such tools

and environments, both commercial (e.g., Synopsis', Cadence's and ViewLogic's) and

academic [51], which bene�ts both researchers and end-users.

Thus, Minimalist makes contributions on several fronts:

• An integrated synthesis path consisting of state-of-the-art asynchronous synthesis

algorithms:

� Chasm, the �rst general optimal state encoding tool for asynchronous ma-

chines, providing both exact and �xed-length modes, and which can produce

exactly-minimum output logic, a key parameter in asynchronous system per-

formance

� Hfmin, the only exact hazard-free symbolic two-level logic minimizer, sup-

porting both single- and multi-output implementations

227

� Impymin, a new implicit exact hazard-free two-level logic minimizer, capable

of solving all available benchmark problems in under 15 minutes, including

several previously unsolvable problems

� Espresso-HF, a very fast new heuristic hazard-free two-level logic minimizer,

which typically produces optimal or near-optimal results in under 3 seconds

� Synthesis for testability, yielding 100%-testable multi-level implementations

under either stuck-at or robust path delay fault models, with little or no area

overhead

• In contrast to existing synthesis paths, Minimalist provides a single synthesis

path able to produce implementations in a variety of styles (e.g., single-output vs.

multi-output, using vs. not using fed-back outputs as state variables, exploring

various state code lengths) under various cost functions, allowing the exploration

of design trade-o�s

• The �rst complete and practical technology-independent synthesis path for burst-

mode circuits using fast optimal algorithms

• An easily-usable environment with a software framework which can readily incor-

porate new tools

Minimalist currently supports widely-used plain burst-mode [101][132] speci�cations.

Extended burst-mode speci�cations [155] will be supported in a forthcoming release.

Also, Optimista, described in Chapter 6, has not yet been integrated into the Mini-

malist synthesis path.

228

7.2 Background and Overview

7.2.1 Technical Comparison: Burst-Mode Synthesis Toolkits

This section brie�y reviews two previous burst-mode asynchronous synthesis systems,

and compares them to Minimalist.

The Uclock [102] system is a nearly complete path from plain burst-mode spec-

i�cations to two-level logic. It incorporates a safe, exact state minimization algorithm,

and the �rst exact hazard-free single-output logic minimization algorithm [105]. Unlike

Minimalist, however, it o�ers no automated method for state encoding or multi-output

logic minimization.1 Further, its Lisp implementation and slow algorithms for state

minimization and logic minimization severely limit its usefulness. Finally, it does not

allow fed-back outputs, missing an opportunity to signi�cantly reduce implementation

complexity.

The 3D system, presented in [150][153][152], also synthesizes two-level implemen-

tations, but accepts extended burst-mode speci�cations � a larger class of speci�cations

than either Uclock or Minimalist (at present) handle. Unlike Uclock, 3D uses fed-

back outputs; unlike Minimalist, their use is not an option: it is required. In contrast

to Minimalist, it uses heuristic greedy state minimization and encoding algorithms.

It also always performs exact single-output logic minimization (using Hfmin [55]), to

produce reasonably high-performance implementations. Even so, none of its methods

(save Hfmin) o�ers any guarantee of optimality; benchmarks show that Minimalist's

algorithms give better results.

Finally, whereas both Uclock and 3D support only a single implementation style

and one cost function, Minimalist supports multiple implementation styles and cost

functions. Minimalist thus allows designers to explore various trade-o�s and choose

the implementation which best suits their application.

1In practice, critical race-free codes for Uclock were produced manually, possibly using auxiliary

programs.

229

7.2.2 Comparative Summary: MINIMALIST vs. Previous Tools

The following table provides an overview of the choices available in the most important

dimensions of the solution space for Minimalist and the two competing burst-mode

synthesis toolkits, 3D and Uclock. Each dimension is correlated with the relevant

operating mode or tool option, which will be de�ned later in this chapter.

synthesis fed-back outputs state min code length type of logic cost

package (machine impl. (constr. sat. (logic impl. function

style) mode) style)

Uclock no-fed-back only exact one solution single-output only products

3D fed-back only heuristic one solution single-output only literals†

Minimalist both both many solutions single-output, both

(variable code multi-output, or

length) output-disjoint

† In the original 3D implementation, the sole cost function was product count.

7.3 MINIMALIST Framework

The Minimalist framework consists of several key pieces: core data structures, a class

and algorithm library, and an extensible interpreter, implemented in roughly 45,000 lines

of C++ (including several of the core tools, e.g. Hfmin and Chasm).

TheMinimalist framework incorporates a simple set of C++ classes to represent

the original burst-mode speci�cation. Early synthesis steps such as state minimization

and state encoding simply transform or place annotations on these structures. As a

result, additional steps or transformations are easily accommodated.

To assist in implementing new synthesis algorithms, Minimalist o�ers class li-

braries for manipulating both asynchronous burst-mode speci�cations, two-level logic

(hazard- and non-hazard-free), dichotomies, unate and binate covering problem instances,

230

arbitrary-length bitstrings, and the like. To facilitate interfacing to external programs,

a small number of basic translators to common formats (e.g. Berkeley PLA or BLIF) is

incorporated.

Finally, Minimalist provides a shell-like interpreter, extensible with commands

written in C or C++. The interpreter supports user-de�ned shell functions, on-line help,

command- and �lename-completion, variables, control constructs (loops, conditionals),

arithmetic, external process invocation, input/output redirection, and the like. Also,

functionality can be augmented by dynamically-loaded code, without having to re-link

the executable.

The result is a uniquely �exible, potent context for integrating synthesis tools,

that we �nd lacking in existing packages [102][150].

7.4 MINIMALIST Tools

7.4.1 State Minimization

Minimalist includes two new and very e�cient algorithms for exact state minimization.

In contrast, the 3D method uses a heuristic greedy minimization algorithm. Therefore, in

this section, we will focus on a more direct comparison: theMinimalist exact algorithms

and an earlier exact state minimization algorithm found in Uclock.

Minimalist improves signi�cantly on Uclock's state minimization approach in

two ways � (i) by allowing outputs to be fed back as inputs, and (ii) by dramatically

reducing run-time complexity.

Minimalist o�ers two new exact state minimization algorithms: 1) for imple-

mentations without fed-back outputs (loosely based on Uclock's method), and 2) for

implementations with fed-back outputs. The latter is the �rst exact algorithm for state

minimization that handles fed-back outputs. Thus, it supports two machine imple-

mentation styles. As mentioned earlier, fed-back outputs can dramatically reduce the

231

implementation's logic complexity.2 In particular, their use allows merging certain states

which would otherwise be incompatible. Minimalist makes use of this fact by relaxing

Uclock's compatibility relation. In fact, several benchmark speci�cations collapse into

a single state using the new relation, whereas Uclock's relation results in 2 or more

states.

Second, Minimalist improves run-time by several orders of magnitude over the

Uclock method. Uclock uses an expensive algorithm to generate maximal compati-

bles. In contrast, Minimalist uses a simple transformation which allows it to generate

maximal compatibles using a fast unate prime generation algorithm instead. In addition,

both Uclock and Minimalist (currently) approximate the binate covering step by

a unate one followed by a closure check.3Uclock, however, employs Petrick's method

to solve the unate problem, while Minimalist employs a state-of-the-art tool, min-

cov [117]. The combination of these two algorithmic enhancements reduce the run-time

of state minimization by two or more orders of magnitude. To date we have encountered

only one speci�cation for which state minimization requires more than a few seconds,

whereas run-times of many minutes were common for Uclock. For such large speci�ca-

tions, both of Minimalist's algorithms also feature an approximate mode which further

reduces run-time.

7.4.2 CHASM

For state encoding, Minimalist uses Chasm, the �rst exact method for input encoding

of multiple-input change asynchronous machines. Chasm has many operating modes.

One highlight is that its �exact mode� can be used to produce exactly optimum two-level

output logic, over all critical race-free encodings, thus optimizing the key performance

parameter for asynchronous networks (output latency). Its approximate mode also gives

2See the benchmark results.
3We have yet to see the closure check fail, due in part to the manner in which the set of state

compatibles is re�ned to a partition.

232

signi�cant reductions in overall implementation cost.

Chasm, as described in Chapter 3, loosely follows the �ow of the Kiss [40]method

for input encoding of synchronous machines. Several signi�cant modi�cations are required

to handle asynchronous machines. There are three steps. First, symbolic hazard-free

logic minimization is performed. Second, a set of encoding constraints is generated,

which properly subsumes both classic synchronous Kiss (�face embedding�) optimality

constraints and asynchronous critical race-free [137] constraints. The constraints are in

the form of generalized dichotomies [137] (not face embedding constraints). Finally, the

constraints are solved. For constraint solution, Chasm has two modes: (i) an exact

mode, which uses dichot [122], and (ii) an approximate mode, using Nova's [146]

simulated annealing engine. The approximate mode, as in Nova, attempts to solve

as many constraints as possible, under the restriction of a �xed code-length; it has the

advantage that it may reduce next-state logic complexity.

For Minimalist, Chasm has been extended in several new ways.

First, Chasm is now being applied to implementations with fed-back outputs.

Speci�cally, we have proven that Chasm requires no modi�cation to properly encode

implementations with fed-back outputs. A modi�ed functional speci�cation is provided

as input, which simply identi�es the primary outputs as fed-back inputs. The symbolic

two-level logic minimizer then forms a symbolic cover on this new function.

Second, Chasm can now target three logic implementation styles: (i) multi-

output (where outputs and next-state may share products), (ii) output-disjoint (where

products are shared among outputs, but not between outputs and next-state), and

(iii) single-output (where no product terms are shared across any outputs). The moti-

vation is that the �single-output style� is most suitable for performance-optimal designs:

each output is individually optimized. Note that, in asynchronous machines (unlike syn-

chronous), output latency is often the key parameter to overall system performance in

a network of interacting machines. The �multi-output style� is most suitable for area-

233

optimal designs, since it uses maximal sharing of logic. Finally, the �output-disjoint style�

is a balanced compromise.

For modes (ii) and (iii), a novel feature of Chasm is that it produces exactly opti-

mum two-level output logic, over all critical race-free encodings. This result holds, because

the optimal output-only state encoding problem is a true �input encoding problem�, unlike

the more general optimal state encoding problem (which is an approximation).

Finally, Chasm now targets two distinct cost functions: (i) product cardinality,

and (ii) literal count, at the symbolic level. It does the latter by performing weighted

unate covering during symbolic logic minimization. This technique is only a heuristic,

however, because the literal count of the �nal binary cover can only be estimated. In

practice, the heuristic nonetheless yields signi�cant reduction in literal count.

7.4.3 HFMIN

After state minimization and encoding,Minimalist performs two-level hazard-free logic

minimization. This step is normally performed using Hfmin, the �rst exact multi-output

symbolic hazard-free two-level logic minimization tool.

Hfmin, as reported in [55], uses Espresso to generate ordinary prime implicants,

then re�nes them as needed to dynamic hazard-free (DHF) primes [105], and �nally,

performs a unate covering step using Mincov [118], covering required cubes[105] in lieu

of minterms. Hfmin's use of such highly-optimized algorithms for sub-steps allows it to

readily handle most minimization problems we have encountered.

Hfmin has also been enhanced forMinimalist with the ability to produce output-

disjoint4 and single-output covers, and the ability to minimize literal count. Output-

disjoint and single-output covers are formed by generating a suitable set of prime impli-

cants before DHF re�nement takes place. The rest of the algorithm proceeds unchanged.

To minimize literal count, Hfmin performs a weighted unate covering step where

4products are shared among outputs, but not between outputs and next-state

234

prime implicants are assigned weights according to their literal count. In addition,Hfmin

now supports a limited post-processing step that further reduces literal count. This step

is similar in spirit to the make-sparse operation of Espresso [118]. A single pass is

made over each selected prime implicant, removing output literals as long as the result

remains a valid (hazard-free) cover. The input portion is then expanded, if possible.

Unlike make-sparse, our current method makes no guarantee that the resulting product

is maximally expanded. Nonetheless, despite its simplicity, the operation often yields

signi�cant reductions in literal count.

Hfmin is now widely used in several other burst-mode CAD packages, including

the 3D method [150] and ACK [74]. It has also been used as part of the asynchronous

tool suite at Intel Corporation, where it has been applied in the design of a high-speed

experimental asynchronous Instruction-Length Decoder (see [21]).

7.4.4 ESPRESSO-HF

For very large problems which Hfmin is unable to solve in reasonable time,Minimalist

o�ers Espresso-HF [134], a new fast heuristic two-level logic minimizer. Espresso-HF

uses an algorithm loosely based on Espresso (but substantially di�erent from it), to solve

problems with up to 32 inputs and 33 outputs. On benchmark examples, Espresso-HF

can �nd very good covers � at most 3% larger than a minimum-size cover � in less than

105 seconds. For typical examples, Espresso-HF obtains an exact or near-exact result

in under 3 seconds.

Currently, Espresso-HF only implements multi-output minimization targetting

product cardinality, and so it is normally used only for designs which exceed Hfmin's

capacity. However, output-disjoint or single-output minimization can easily be imple-

mented by a trivial modi�cation of the code, and will be available in future releases of

Minimalist.

235

7.4.5 IMPYMIN

Impymin [135] is a new state-of-the-art fully-implicit exact two-level hazard-free logic

minimizer. It greatly exceeds the capacity of previous exact tools (e.g. Hfmin), mini-

mizing very large multi-output functions, including some for which no exact result had

previously been obtained. Run-times are typically under 16 seconds. The most di�cult

problem available, with 32 inputs and 33 outputs, had never before been solved exactly,

but required only 813 seconds using Impymin.

Both Espresso-HF and Impymin can solve all currently-available benchmark

examples, including several which have not been previously solved. For larger exam-

ples that can be solved by Hfmin, these two minimizers are typically several orders of

magnitude faster.

7.4.6 Synthesis-for-Testability

Minimalist incorporates a recent method [107] for synthesis-for-testability targetting

multi-level logic. The method produces circuits that are both hazard-free and 100%

testable under either stuck-at or robust path delay fault models, with little or no overhead.

First, it uses a novel two-level hazard-free logic minimization algorithm which minimizes

the number of redundant cubes, as well as the number of non-prime cubes. (The tool

currently operates only in single-output mode.) This helps maximize testability without

using additional inputs. If not yet completely testable, the circuit is converted to a

multi-level form which is completely testable (if possible). If still not completely testable

(rarely the case), controllable inputs are added, yielding 100% testable logic. Finally,

hazard- and testability-preserving multi-level transformations are used to reduce the area

of the resulting circuit. The area overhead is typically zero, and in all cases is less than

10% [107].

236

7.4.7 Veri�er

Minimalist features a simple tool to verify that a given logic implementation (produced

by any method) realizes the speci�ed burst-mode behaviour, independent of the partic-

ular state merges or encoding which have been performed. The veri�er simulates the

implementation's response to each speci�ed input burst, and compares it to the speci�-

cation; any mismatches of output or state at the end of the burst and any logic hazards

are reported. Although each burst is considered only once, the analysis that is performed

accounts for all possible interleavings of individual input changes. Since the veri�er needs

to traverse each edge in the speci�cation's state graph only once, this tool is eminently

practical even for very large speci�cations � the time required is never more than a few

seconds. Currently, veri�cation of only two-level AND/OR implementations is provided.

However, the framework allows for veri�cation of multi-level implementations as well (us-

ing the 9-valued algebra developed by Kung [75]), which will be completely supported in

the near future. Also, the current version of the veri�er does not detect output changes

made after partial input bursts. Finally, being a purely combinational veri�er, it does

not verify the one-sided timing constraints also needed to ensure correct operation [19].

Such a capability may be added in a future release.

7.5 A Synthesis Session

A transcript of a typical synthesis session follows. For more details on the Minimalist

command set, see Appendix C.

$ MinShell # Start the MINIMALIST shell

minimalist> help # Show list of commands

assign-states break call cd

continue define echo expr

for help if impymin-logic

make-testable min-logic min-states pwd

237

quit read-spec set set-encoding

set-state-cover show-encoding show-logic source

verify-logic while write-flow write-instant

write-spec write-symbolic write-trans

minimalist> pwd # Show current directory

/u/minimalist/demo

minimalist> ls # Run 'ls'

bin ex lib

minimalist> ls ex

dme-e dram-ctrl pe-send-ifc scripts stetson

dme-fast-e hp-ir pscsi scsi-iccd92

minimalist> cd ex/dme-e # Move to another directory

minimalist> ls

dme-e.bms

minimalist> help read-spec # Show syntax of 'read-spec'

read-spec [-v] <file> [<spec-var>]

Read the Burst-Mode specification in <file> and store it in <spec-var>,

or, if <spec-var> is not specified, 'theSpec'.

minimalist> read-spec dme-e.bms # Read the Burst-Mode specification

Specification passed validity check.

Specification has 3 inputs, 3 outputs, and 8 states.

minimalist> plot_graph -b dme-e.bms

[... a window displays the burst-mode graph; press Ctrl-Q to dismiss ...]

minimalist> min-states # Perform state minimization

*** Performing state minimization... ***

State cover: { { S0 S1 S4 }, { S2 S3 }, { S5 S6 S7 } }

Machine has 3 states after minimization.

minimalist> assign-states -F # Assign states with a CRF encoding

No encoding style specified; defaulting to critical race-free

*** Performing state assignment... ***

Invoking 'chasm' as 'chasm -C DME_E-F.func DME_E-F.trans'

*** Machine encoded by CHASM ***

State S0': 11

238

State S1': 10

State S2': 00

minimalist> min-logic -F -L # Produce the logic implementation

*** Performing logic minimization... ***

Invoking 'hfmin -P -C -l -S -o DME_E-FL.sol DME_E-FL.pla DME_E-FL.btrans'

*** Final PLA ***

PLA file for machine DME_E-FL

.i 8

.o 5

.ilb LIN RIN UIN LOUT_i ROUT_i UOUT_i Y0 Y1

.ob y0 y1 LOUT ROUT UOUT

.type fr

.p 7

10-----1 00010

-01----1 00010

-0-----1 01000

10-----0 10100

00----1- 11000

--0---1- 10000

-01----0 00001

.e

Number of products: 7 Total lits: 28

Number of products implementing outputs: 4 Lits in output products: 17

Lits in products implementing next-state: 16 Avg lits per output: 5.66667

Result stored in 'DME_E-FL.sol'.

minimalist> verify-logic -F -L # Verify the implementation

Using logic implementation stored in 'DME_E-FL.sol'.

*** Starting Burst-Mode machine simulation. ***

*** Implementation verified successfully! ***

minimalist> plot_graph -p DME_E-FL.sol # Display the implementation

[... a window displays the 2-level logic; press Ctrl-Q to dismiss ...]

Run the above synthesis steps using a script

minimalist> source ../scripts/script-FBO.MOL-CRF dme-e.bms

239

[... same results as above, without interaction ...]

minimalist> quit

7.6 Experimental Results

This section compares synthesis results using Minimalist to those using the preeminent

burst-mode asynchronous synthesis paths, namely 3D [150] and Uclock [102]. We high-

light Minimalist's unique ability to support various cost metrics and implementation

styles by showing several di�erent experiments. For each, we indicate the cost function

which we target, and the corresponding settings of Minimalist's modes.

7.6.1 Experimental Set-up

The benchmark suite consists of 23 burst-mode circuits, including several industrial de-

signs, as well as a number of large asynchronous machines (e.g., see sc-control and

oscsi). The circuits it-control, rf-control, sc-control, and sd-control are part

of a low-power infrared controller designed at HP Labs as part of the Stetson project [86].

pe-send-ifc and sbuf-xxx-ctl, also from HP Labs, are part of a high-performance

adaptive routing chip, used in the May�y parallel processing system [132]. Several others

(e.g. the scsi-xxx and pscsi-xxx suites) come from a high-performance asynchronous

SCSI controller designed by Yun while at AMD [154]. A DRAM controller circuit for

Motorola 68K processors [150], dram-ctrl, completes the suite.

All Minimalist results are the best of a very small number of trials using �xed-

length encodings. Generally, near-minimum code lengths are used. Here, minimum

length refers to the smallest length su�cient for a critical-race free encoding, which is

necessary to ensure correct operation. However, as demonstrated below, a trade-o� exists,

whereby signi�cantly wider encodings sometimes o�er better output logic at the expense

of added next-state logic complexity. Hence, the results below occasionally make use of

240

somewhat longer codes.

Run-times for the complete synthesis path are comparable for all tools (Minimalist,

3D, and Uclock), ranging from under 1 second to several minutes for the largest designs.

7.6.2 Performance-Oriented Comparison with 3D

The �rst experiment (shown in Table 7.1) shows synthesis results using bothMinimalist

and 3D for a performance-oriented implementation.

For asynchronous burst-mode machines, the metric that best approximates per-

formance is output latency. In an asynchronous system, the input-to-output latency

typically determines a machine's performance, as well as overall system performance.

State changes are not bound to a clock period, and in practice are usually non-critical

(see [86]).

Based on the above observation, we now indicate the settings of the various modes

of Minimalist for this experiment. In the context of technology-independent two-level

logic, the cost function that most reasonably approximates output latency is the average

number of literals per output. When comparing two results for the same machine (so

that the number of outputs is �xed), this cost is equivalent to total output literal

count, so this is used instead.

Roughly half of the Minimalist results in this set of runs make use of the fed-

back output machine implementation style. Table 7.1 identi�es the particular style

chosen for each design in the column labelled 'FBO'. Minimalist is directed to use the

single-output logic implementation style, and the literal count cost function. This

combination of modes best minimizes average output literal count. This cost function

also allows for a fair comparison to 3D, which produces single-output logic with minimal

literal count. Finally, the encoding step uses �xed-length constraint satisfaction

mode, attempted under several code lengths.

The Minimalist script in Figure 7.1 summarizes the selected modes. The script

241

define syn_FBO_so_lit { specFile codeLen } { # Single-output, optimize lit count

read-spec $specFile

min-states -F

assign-states -F -s -L -O -l $codeLen

min-logic -F -s -L

verify-logic -F -s -L

}

call syn_FBO_so_lit dram-ctrl.bms $codelength

Figure 7.1: Performance-oriented synthesis script for Minimalist

is parameterized by code length, using the variable $codeLen, and proceeds as follows.

First, the speci�cation is read from a �le and checked for validity. Next, the machine is

subjected to exact state minimization using fed-back outputs.5 The states are encoded

using Chasm, with the fed-back output ('-F'), single-output ('-s'), literal-count ('-L'),

and �xed-length ('-l') �ags. The �nal two-level logic is then synthesized using Hfmin,

again passing the single-output and literal-count �ags. Finally, the resulting logic is

veri�ed using the algorithm sketched in Section 7.4. The script was run in batch mode

several times. The run having the lowest output literal count over 1-3 code lengths near

the minimum is reported.

The 3D results were obtained using the 3D tool on the Unix platform. UnlikeMin-

imalist, 3D embodies a hard-wired synthesis path, and produces a single deterministic

result. Speci�cally, 3D �rst performs heuristic state minimization, followed by heuristic

state encoding, and �nally, exact two-level single-output logic synthesis using Hfmin,

targetting total literal count. Thus, a single run for each design gives the reported (and

the only possible) result.

Table 7.1 summarizes the comparison. Minimalist synthesis results demonstrate

an average reduction of 11% in output literals, with the best being a 37% reduction for

sd-control. This savings is frequently accompanied by a reduction in total literal count

5A nearly identical script exists in which all steps do not make use of fed-back outputs.

242

as well, with larger designs such as stetson-p1 and oscsi among the most impressive

gains (38% and 25%, respectively). However, in exchange forMinimalist's simpli�cation

in output logic, an increase in total literal count is occasionally observed (see for example

pe-send-ifc and pscsi-tsend).

Clearly, Minimalist's gains come in part from its ability to explore wider encod-

ings. In fact, in 12 of the 23 designs, the best result is seen at a longer code length than

3D uses. The greatest improvement overall, in sd-control, is seen at a signi�cantly

longer code length � 7 bits vs. 3D's 3 bits. For two designs, Minimalist chooses a

shorter encoding than 3D: dram-ctrl (whose 0-bit encoding is enabled by the use of

fed-back outputs), and oscsi (where 3D curiously uses 7 bits, despite no gain in out-

put literals and a considerable increase in overall logic complexity). For the remaining

examples, Minimalist achieved its best result at the same code length as 3D.

7.6.3 Area-Oriented Comparison with 3D

Our second experiment (also shown in Table 7.1) shows the results of an area-oriented

comparison of Minimalist and 3D.

The cost metric that best approximates area for technology-independent two-level

logic is total literal count; hence, total literal count is used in this comparison.

Based on the above observation, we now indicate the settings of the various modes

of Minimalist for this experiment. The vast majority of the Minimalist results in

this set of runs use the fed-back output machine implementation style. Again, the

table identi�es the particular style chosen for each design. Throughout, Minimalist

is directed to use the multi-output logic implementation style, and the literal count

cost function, which best minimizes total literal count. Finally, the encoding step uses

�xed-length constraint satisfaction mode.

These runs were obtained using a script identical to that of Figure 7.1, but using

the multi-output logic implementation style. In particular, the single-output ('-s') �ag

243

3
D

M
IN
IM
A
L
IS
T

p
e
r
fo
r
m
a
n
c
e
(
s
in
g
le
-o
u
t
p
u
t
)

a
r
e
a
(
m
u
lt
i-
o
u
t
p
u
t
)

d
e
si
g
n

i/
s
/
o

s
b
it
s

p
r
o
d
s

li
ts

o
u
tl
it
s

F
B
O

s
b
it
s

p
r
o
d
s

li
t
s

o
u
tl
it
s

F
B
O

s
b
it
s

p
r
o
d
s

li
ts

d
r
a
m
-c
t
r
l

7
/
1
2
/
6

1

2
1

7
1

5
7

√

0

1
7

5
7

5
7

√

0

1
4

5
1

p
s
c
s
i-
ir
c
v

4
/
6
/
3

2

1
3

4
4

3
0

3

1
4

4
6

2
6
*

3

1
0

3
8
*

p
s
c
s
i-
t
r
c
v

4
/
6
/
3

1

1
0

3
5

3
0

2

1
3

4
3

2
7

√

1

7

3
0

p
s
c
s
i-
is
e
n
d

4
/
9
/
3

4

3
1

1
0
5

4
4

6

3
1

1
1
1

3
8

√

3

1
8

6
7

p
s
c
s
i-
t
s
e
n
d

4
/
1
0
/
3

4

2
2

7
7

4
1

7

3
1

1
1
6

3
5

√

3

1
8

6
6

p
s
c
s
i-
t
r
c
v
-b
m

4
/
7
/
4

2

1
8

5
8

4
5

√

2

1
7

5
8

4
3

√
2

1
1

4
5

p
s
c
s
i-
t
s
e
n
d
-b
m

4
/
1
0
/
4

3

2
4

8
6

4
3

7

3
1

1
1
8

4
3

√
3

1
6

6
3

s
b
u
f-
r
e
a
d
-c
t
l

3
/
7
/
3

1

7

2
2

1
7

2

9

2
6

1
5

√
1

6

2
1

s
b
u
f-
s
e
n
d
-c
t
l

3
/
8
/
3

2

1
7

5
1

3
2

3

1
4

4
1

2
4

2

1
1

3
6

p
e
-s
e
n
d
-i
fc

5
/
1
1
/
3

2

2
4

8
9

5
6

5

3
2

1
3
6

5
5

√

3

1
8

8
8

s
c
s
i-
is
e
n
d
-b
m

5
/
1
0
/
4

2

2
6

8
7

5
9

√

2

2
3

7
6

5
6

√

2

1
7

6
3

s
c
s
i-
is
e
n
d
-c
s
m

5
/
8
/
4

2

2
2

6
6

4
4

2

1
8

5
3

4
1

2

1
2

4
9

s
c
s
i-
t
r
c
v
-b
m

5
/
1
0
/
4

2

2
4

7
8

5
0

√

2

2
2

7
1

5
0

√

2

1
7

6
4

s
c
s
i-
t
r
c
v
-c
s
m

5
/
8
/
4

2

2
1

6
4

4
2

2

1
8

5
2

4
0

2

1
2

4
6

s
c
s
i-
t
s
e
n
d
-b
m

5
/
1
1
/
4

2

2
8

9
2

6
7

4

2
4

8
6

4
8

3

1
9

7
5

s
c
s
i-
t
s
e
n
d
-c
s
m

5
/
1
0
/
4

2

2
0

5
7

4
1

6

2
4

7
5

3
4

√

2

1
4

5
2

it
-c
o
n
t
r
o
l

5
/
1
0
/
7

1

2
1

7
3

5
6

√

1

1
9

6
8

5
6

√

1

1
3

5
4

r
f-
c
o
n
t
r
o
l

6
/
1
2
/
5

2

1
2

4
4

3
4

5

1
5

6
7

3
0

√

2

1
1

4
3

s
c
-c
o
n
t
r
o
l

1
3
/
3
3
/
1
4

3

1
2
2

5
1
2

3
0
1

√

3

9
3

3
5
9

2
7
5

√

3

5
3

2
6
7

s
d
-c
o
n
t
r
o
l

8
/
2
7
/
1
2

4

5
0

2
1
7

1
5
5

√

7

4
3

1
6
0

9
8

√

4

2
8

1
2
5

s
t
e
t
s
o
n
-p
1

1
3
/
3
3
/
1
4

3

8
7

3
7
1

2
0
9

√

3

6
1

2
3
2

1
7
9

√

3

4
5

1
9
9

s
t
e
t
s
o
n
-p
2

8
/
2
5
/
1
2

4

4
6

1
9
4

1
4
8

√
4

4
5

1
7
7

1
3
0

√

4

3
0

1
4
0

o
s
c
s
i

1
0
/
4
5
/
5

7

1
2
9

5
2
9

1
8
7

√
4

8
9

3
9
5

1
8
5

√

4

6
5

3
3
4

T
o
ta
l

5
8

7
9
5

3
0
2
2

1
7
8
8

8
2

7
0
3

2
6
2
3

1
5
8
5

5
5

4
6
5

2
0
1
6

D
i�
w
r
t
3
D

-

-

-

-

+
4
1
.4
%

-1
1
.6
%

-1
3
.2
%

-1
1
.4
%

-5
.2
%

-4
1
.5
%

-3
3
.3
%

244

was removed from the state encoding and logic minimization steps. Again, the cost

function used was total literal count.

As shown in Table 7.1, Minimalist's term-sharing across outputs and next-state

provides for signi�cant reductions in total area. Minimalist's results for the area-

targetted run show an average reduction of 33% in total literal count over 3D, the best

being 48% for sc-control. For all designs, Minimalist achieved strictly better results

than 3D. Although these runs did not target product count directly, they o�er similarly

dramatic reductions by that metric as well. An average of 42% improvement is observed,

the best being 57% for sc-control. Again,Minimalist's results are strictly better than

3D in every case.

Unlike the performance-targetted runs, the code length used byMinimalist rarely

exceeded that of 3D (only 3 times out of 23 designs), and never by more than 1 bit. In

fact, Minimalist uses slightly fewer total state bits over the entire benchmark suite

than does 3D, by roughly 5%.

7.6.4 Area-Oriented Comparison with UCLOCK

The �nal comparison, in Table 7.2, shows synthesis results for Uclock (as reported

in [55]) and Minimalist.

For a fair and interesting comparison, we plugged some of the Minimalist tools

into the Uclock path, to isolate and highlight two di�erences: (i) machine implemen-

tation style (choice of fed-back vs. no fed-back outputs), and (ii) state minimization al-

gorithms. Even though Uclock does not use any optimal state assignment algorithms,

we attached Chasm and Hfmin as a back end, to isolate these front-end di�erences.

We also limited Minimalist to the only logic minimization modes that are available in

Uclock: the cost function is product cardinality, and the logic implementation style

is multi-output.

Table 7.2 shows the experimental results. In bothMinimalist and the �improved�

245

Uclock, reported results are the best of several �xed-length trials at or near the min-

imum code length. The majority of the Minimalist results use the fed-back output

machine implementation style.

Not surprisingly, many Minimalist and Uclock results are nearly identical,

since the operating modes are very similar. However, Minimalist's use of fed-back

outputs achieves signi�cant gains in several cases (e.g., dram-ctrl and scsi-isend-bm).

In addition, Minimalist obtains synthesis results in several cases where Uclock failed

to complete, again due in part toMinimalist's more capable state minimizationmethod.

A performance-oriented comparison to Uclock (like the above comparison to 3D)

is possible, but is omitted, due to space considerations.

7.6.5 Optimal Encoding for Output-Targetted Synthesis

The experiment shown in Table 7.3 explores the e�ect onMinimalist results of ignoring

the optimality of next-state. In particular, Chasm is instructed to form an encoding so as

to ensure a critical race-free implementation, while imposing no further constraint on the

next-state implementation. This has the bene�t of allowing the constraint satisfaction

engine to concentrate attention on the optimality of the output logic. In this mode, the

input encoding model, which precisely models output logic, is used to best advantage.

For comparison, a �base� set of runs was also performed, in which the only di�er-

ence from the aforementioned runs is that Chasm is instructed to generate optimality

constraints for next-state as usual. In both sets of runs, the cost metric used is total

literal count, which most nearly approximates output literal count.

The settings of the various Minimalist modes for this experiment are as follows.

Most of the Minimalist results in this set of runs use the fed-back output machine

implementation style. Once again, the table identi�es the particular style chosen for each

design. Throughout, Minimalist is directed to use the output-disjoint logic imple-

mentation style, and the literal count cost function, which best minimizes total literal

246

UCLOCK MINIMALIST

design in/state/out sbits prods lits FBO sbits prods lits

dram-ctrl 7/12/6 2 22 -
√

0 14 71

pscsi-ircv 4/6/3 2 9 - 2 9 41

pscsi-trcv 4/6/3 1 10 -
√

1 7 32

pscsi-isend 4/9/3 3 17 -
√

3 17 80

pscsi-tsend 4/10/3 3 18 -
√

3 16 86

pscsi-trcv-bm 4/7/4 2 12 -
√

2 12 53

pscsi-tsend-bm 4/10/4 † † -
√

3 16 84

sbuf-read-ctl 3/7/3 2 7 -
√

1 6 23

sbuf-send-ctl 3/8/3 2 11 - 2 11 47

pe-send-ifc 5/11/3 3 18 -
√

3 18 118

scsi-isend-bm 5/10/4 2 21 -
√

2 15 92

scsi-isend-csm 5/8/4 2 12 -
√

2 12 62

scsi-trcv-bm 5/10/4 2 18 - 2 18 99

scsi-trcv-csm 5/8/4 2 12 - 2 12 61

scsi-tsend-bm 5/11/4 3 17 - 3 17 101

scsi-tsend-csm 5/10/4 2 14 -
√

2 13 77

it-control 5/10/7 3 15 -
√

1 13 61

rf-control 6/12/5 3 13 -
√

2 11 45

sc-control 13/33/14 † † -
√

4 56 458

sd-control 8/27/12 5 29 -
√

4 28 182

stetson-p1 13/33/14 4 53 -
√

3 42 317

stetson-p2 8/25/12 4 31 - 4 28 173

oscsi 10/45/5 † † -
√

4 64 487

Total 52 359+??? - 55 325+136 200

Di� wrt UCLOCK - - - +5.8% -9.5% -

† Failed to complete within a reasonable time

Table 7.2: An area-oriented comparison of Minimalist and Uclock

247

count. For the �base runs� (the middle columns of Table 7.3), the complete constraint

generation mode was used, while for the experimental runs (the right-hand columns of

Table 7.3), the output-only constraint generation mode was used. Finally, for those

machines for which exact constraint satisfaction requires a longer code length than

that required for a critical race-free implementation, the encoding step uses �xed-length

constraint satisfaction mode. For all other machines, the exact constraint satisfaction

mode was used.

These runs were obtained using a script identical to that of Figure 7.1, but using

the output-disjoint logic implementation style. In particular, the single-output ('-s')

�ag was replaced by the output-disjoint ('-d') �ag in the state encoding and logic

minimization steps. Also, in the experimental runs, Chasm was passed the no-next-

state ('-S') �ag. Again, the cost function used was total literal count.

As shown in Table 7.3, neither method has a clear advantage. Although bypass-

ing next-state optimality constraints achieves a noticeable average gain in next-state

literal count, the distribution is varied. For some designs, the base case wins (see

pscsi-trcv-bm), while for others, the trials with no next-state optimality constraints

wins (see pscsi-isend or pscsi-tsend). However, in those cases where NONSOPT

wins by a signi�cant margin, the key di�erence was in fact the use of fed-back outputs.

7.6.6 Exploring Varying Code Lengths

This section brie�y shows the e�ect on the synthesis results for a single design when

varying code length in Minimalist.

Because a simple cost metric often fails to capture an application's cost completely,

Minimalist better assists the designer in �nding the point which best �ts the applica-

tion, by providing the opportunity to explore trade-o�s. For example, Table 7.4 shows

an interesting trade-o� involving code length, arising from two competing tendencies.

Output logic tends to improve, while next-state logic tends to grow, with increasing code

248

M
IN
IM
A
L
IS
T

�b
a
se
�

M
IN
IM
A
L
IS
T

�N
O
N
S
O
P
T
�

n
e
x
t
-s
t
a
t
e

o
u
t
p
u
t
s

n
e
x
t
-s
t
a
t
e

o
u
t
p
u
t
s

d
e
si
g
n

in
/
s
t
a
t
e
/
o
u
t

F
B
O

s
b
it
s

p
r
o
d
s

li
ts

p
r
o
d
s

li
ts

F
B
O

s
b
it
s

p
r
o
d
s

li
ts

p
r
o
d
s

li
ts

p
s
c
s
i-
ir
c
v

4
/
6
/
3

3

6

2
0

8

2
6

3

8

2
4

8

2
6

p
s
c
s
i-
t
r
c
v

4
/
6
/
3

3

7

2
4

6

2
1

3

7

2
4

6

2
1

p
s
c
s
i-
is
e
n
d

4
/
9
/
3

7

1
8

7
0

1
1

3
8

√

4

1
0

3
5

1
1

3
9

p
s
c
s
i-
t
s
e
n
d

4
/
1
0
/
3

6

1
7

6
8

1
0

3
5

√

4

7

2
6

1
0

3
7

p
s
c
s
i-
t
r
c
v
-b
m

4
/
7
/
4

√

2

6

1
9

9

3
5

3

7

2
5

9

3
4

p
s
c
s
i-
t
s
e
n
d
-b
m

4
/
1
0
/
4

6

1
6

6
2

9

3
6

√

3

1
0

3
6

9

3
6

s
b
u
f-
r
e
a
d
-c
t
l

3
/
7
/
3

2

4

1
1

5

1
5

2

4

1
1

5

1
5

s
b
u
f-
s
e
n
d
-c
t
l

3
/
8
/
3

3

6

1
7

7

2
3

3

6

1
7

7

2
3

p
e
-s
e
n
d
-i
fc

5
/
1
1
/
3

3

1
4

6
0

1
1

5
0

4

1
4

5
9

1
1

4
9

s
c
s
i-
is
e
n
d
-b
m

5
/
1
0
/
4

√

2

6

2
0

1
5

5
1

√
2

6

2
0

1
5

5
1

s
c
s
i-
is
e
n
d
-c
s
m

5
/
8
/
4

3

6

1
9

1
2

3
9

2

6

1
6

1
2

4
1

s
c
s
i-
t
r
c
v
-b
m

5
/
1
0
/
4

√

2

7

2
4

1
3

4
8

√

2

7

2
1

1
3

4
8

s
c
s
i-
t
r
c
v
-c
s
m

5
/
8
/
4

2

4

1
2

1
1

3
8

2

4

1
2

1
1

3
8

s
c
s
i-
t
s
e
n
d
-b
m

5
/
1
1
/
4

4

1
0

4
0

1
3

4
6

4

9

4
5

1
3

4
6

s
c
s
i-
t
s
e
n
d
-c
s
m

5
/
1
0
/
4

6

1
0

4
6

1
0

3
1

5

1
1

3
9

1
0

3
1

it
-c
o
n
t
r
o
l

5
/
1
0
/
7

√

1

3

1
2

1
1

4
5

√

1

3

1
2

1
1

4
5

r
f-
c
o
n
t
r
o
l

6
/
1
2
/
5

5

1
0

3
7

7

3
0

3

9

3
1

7

3
2

s
d
-c
o
n
t
r
o
l

8
/
2
7
/
1
2

√

6

1
6

6
0

2
1

9
2

√

7

1
4

5
6

2
1

8
6

s
t
e
t
s
o
n
-p
2

8
/
2
5
/
1
2

√

4

1
4

4
7

2
5

1
1
8

√

5

1
6

5
4

2
1

8
8

T
o
ta
l

7
0

1
8
0

6
6
8

2
1
4

8
1
7

6
2

1
5
8

5
6
3

2
1
0

7
8
6

D
i�
w
r
t
b
a
se

-

-

-

-

-

-

-1
4
%

-1
2
%

-1
6
%

-2
%

-4
%

† Comparison meaningless: encoding required 0 (FBO) or 1 (non-FBO) bits.

Table 7.3: E�ect of focusing optimality constraints on output logic in Minimalist

249

design i/s/o sbits outprods outlits nsprods nslits totprods totlits

scsi-tsend-csm 5/10/4 3 14 37 9 24 23 61

� � 4 14 36 7 26 21 62

� � 5 13 35 10 34 23 69

� � 6 13 34 11 41 24 75

Table 7.4: E�ect of varying code length on synthesis results for a single design

length.

For these runs, the design scsi-tsend-csm is synthesized using the performance-

oriented script, but targetting the fed-back output machine implementation style. Code

length is varied from 3 (the minimum needed to ensure a critical race-free encoding) to

6 (one less than the code length resulting when Chasm uses its exact, rather than its

�xed-length, mode).

As the results show, the output logic complexity decreases as the code length

increases, in exchange for a more expensive next-state implementation. This re�ects the

fact that Chasm's input encoding model is exact for outputs, but is only approximate

for next-state. Speci�cally, the �xed-length constraint satisfaction method favors neither

output nor next-state constraints [55]. Thus, longer codes tend to satisfy a greater

number of both kinds of constraints. So, output logic complexity decreases, because

the corresponding constraints precisely model logic optimality. However, the next-state,

whose constraints are less accurate, experiences an increase in logic complexity.

Without the ability to explore such trade-o�s, a designer is forced to choose what-

ever single point in the solution space the synthesis path chooses. For example, suppose

a synthesis path always chose to minimize output literal count. Given the results in Ta-

ble 7.4, this would force the designer to accept an 8% decrease in output logic complexity,

in exchange for a 71% increase in next-state logic complexity, which might be intolerable.

Minimalist's ability to explore such trade-o�s is unique among burst-mode synthesis

toolkits.

250

7.7 Conclusion

Minimalist distinguishes itself in several respects. First, it integrates a suite of state-

of-the-art algorithms for asynchronous burst-mode synthesis. Second, benchmark results

demonstrate the e�ectiveness of the synthesis path on a large number of examples. Third,

its support for multiple implementation styles and cost functions allows it to accommo-

date a variety of applications. In particular, the Minimalist tool chain provides well-

optimized implementations using fed-back outputs which are guaranteed correct. Finally,

its software framework provides both a potent end-user environment and the extensibility

to allow it to encompass technology-dependent synthesis and other down-stream tasks. In

short, Minimalist represents a �rst-of-a-kind environment for asynchronous synthesis,

with signi�cant contributions in algorithms, quality of results, and extensibility.

251

Chapter 8

Conclusions

We now give a synopsis of the main contributions of the thesis, and describe some promis-

ing avenues for future research and CAD tool development.

This thesis makes two fundamental contributions to the synthesis of asynchronous

burst-mode controllers. First, it o�ers a trio of synthesis and optimization algorithms

for asynchronous machines: Hfmin, Chasm, and Optimista. Each of these is a �rst-

of-a-kind algorithm, embodied in a useful CAD tool that is applicable to a wide range

of practical burst-mode designs. Experimental results indicate a signi�cant improvement

over existing algorithms. In their output-only modes, all three also guarantee exactly

optimum two-level output logic. In all of its modes, Chasm is exact under the input

encoding model.

Second, the thesis o�ers an extensible CAD package, called Minimalist, which

includes a complete technology-independent asynchronous synthesis path. Coupled with

Hfmin, Chasm and tools for state minimization and veri�cation, Minimalist consti-

tutes a uniquely �exible and potent environment for burst-mode synthesis and veri�ca-

tion. Minimalist also incorporates new tools such as ImpyMin (a fast implicit two-level

hazard-free logic minimizer), Espresso-HF (a fast heuristic two-level hazard-free logic

minimizer) and synthesis-for-testability. Experimental results demonstrate Minimal-

252

ist's strength as a synthesis system.

Additionally, this thesis contributes new algorithms which address two previously-

unsolved problems in synchronous sequential synthesis. Both algorithms solve the optimal

state minimization problem for synchronous �nite state machines. The �rst algorithm,

Optimist, represents the �rst exact solution to optimal state minimization under an in-

put encoding model. The second algorithm, Optimisto, which focuses on output logic,

achieves exactly minimum-cardinality output logic over all state minimizations, encod-

ings, and two-level logic minimizations. These results are truly exact, independent of

any encoding model. Although developed as a foundation for the asynchronous method,

both algorithms provide signi�cant reductions in logic cardinality for certain machines.

An interesting theoretical result was also introduced, which proves that the unminimized

machine itself possesses exactly minimum-cardinality output logic. This result answers

a previously open research question. As such, the unminimized machine can be used

directly in applications where output logic complexity is the primary cost metric. (A

similar result for asynchronous burst-mode machines is derived in the presentation on

Optimista.)

Several areas remain for future work.

First, state encoding and state minimization (as embodied in Chasm and Opti-

mista, respectively) would both bene�t from more powerful symbolic hazard-free logic

minimization methods. Speci�cally, the symbolic minimization methods should be made

to target technology-dependent realizations (e.g. complex-gate logic), as well as more

general multi-level logic implementations. Such methods would produce logic that tar-

gets certain cost functions more accurately. For example, multi-level logic typically has an

advantage in area over two-level logic, while complex gate implementations often exhibit

better performance or lower power than two-level logic.

Second, theMinimalist package as a whole would be even more widely applicable

if it accepted a larger class of asynchronous speci�cations. One particularly useful class

253

of speci�cations is known as extended burst-mode (XBM) [153]. XBM speci�cations are

more expressive than the �plain� burst-mode speci�cations addressed by this thesis. In

particular, XBM provides two additional features: (i) sampling signal levels (cf. waiting

for input events), and (ii) concurrent input and output changes. XBM's additional

features necessitate modular changes to each of Minimalist's algorithms. For instance,

Minimalist's state minimization method would need to be modi�ed to ensure that state

merges do not introduce hazards for XBM's unique transition types. Chasm's symbolic

hazard-free two-level logic minimization and constrained encoding steps must likewise be

modi�ed to handle these more general XBM transitions. However, Hfmin requires no

modi�cation; it is already in use in the 3D synthesis path for XBM designs.

Third, Minimalist's value would be signi�cantly increased by incorporating tim-

ing analysis and more stringent functional veri�cation methods. Timing analysis is par-

ticularly important for asynchronous systems using burst-mode, because they operate

in fundamental mode. That is, they make assumptions regarding the environment's re-

sponse time. Thus any timing constraints imposed on the environment by the given

burst-mode controller must be calculated, and surrounding circuitry must be checked

for compliance. Again, these additions are easily incorporated in modular fashion into

Minimalist's extensible framework.

Finally, most of the algorithms presented herein (most notably Optimist and Op-

timista) would be signi�cantly improved by faster implementations based on implicit

methods. Implicit methods use binary decision diagrams (BDD's) [16] to e�ciently rep-

resent and manipulate very large sets of objects. The term �implicit� here derives from

the use of a characteristic function of a set as an implicit representation of that set. Im-

plicit methods have been very successfully applied to classic state minimization [70] and

two-level logic minimization [30], among other key CAD problems. The use of implicit

algorithms has been shown to greatly reduce run-time, while simultaneously enlarging

the class of problems that can be solved practically.

254

Appendix A

Multiple-Valued Hazard-free Logic

Minimization

A.1 Multiple-Valued Functions and Hazards

This section presents a theoretical formulation for the exact minimization of two-level

hazard-free logic with symbolic inputs.

The following material assumes basic familiarity with the terminology of multiple-

valued logic minimization (refer to [118]).

A.2 Circuit Model

This formulation considers combinational circuits having arbitrary �nite gate and wire

delays (unbounded wire delay model [106]). A pure delay model is assumed (see [139]).

255

A.3 Multiple-Valued Multiple-Input Changes

This section generalizes the notions of multiple-input changes and transition cubes from

the binary domain [106] to the multiple-valued domain.

De�nition A.1 (Multiple-valued transition cube) Amultiple-valued transition

cube is a cube with a start point and an end point. Let A and B be two minterms

in a multiple-valued domain D. The multiple-valued transition cube, denoted as [A,B],

from A to B has start point A and end point B and contains all minterms that can be

reached during a transition from A to B. More formally, if A and B are described by

products, with i-th literals A
SAi
i and B

SBi
i , respectively, then the i-th literal for the product

of T = [A,B] is the literal T
SAi

∪SBi
i .

De�nition A.2 (Multiple-valued open transition cube) The multiple-valued

open transition cube [A,B) from A to B is de�ned as: [A,B]− {B}.

De�nition A.3 (Multiple-valued input transition) A multiple-valued input

transition or multiple-valued multiple-input change from input state A to B is

described by transition cube [A,B].

An intermediate stateX ∈ [A,B] is potentially reachable during the input transition from

A to B if for all variables Xi, the corresponding literal Xi is either equal to Ai or Bi. A

multiple-input change speci�es what variables are permitted to change value and what

the corresponding starting and ending values are. Input variables are assumed to change

simultaneously. (Equivalently, since inputs may be skewed arbitrarily by wire delays,

inputs can be assumed to change monotonically in any order and at any time.) Once a

multiple-input change occurs, no further input changes may occur until the circuit has

stabilized. An input transition occurs during a transition interval, tI ≤ t ≤ tF , where

inputs change at time tI and the circuit returns to a steady state at time tF .

256

t1

t2

00 01 11 10

1

1 0

10

10

0

xy

A

B

C

D

0

0 0

0 0 0

00

Figure A.1: A multiple-valued input function and two multiple-valued transitions

De�nition A.4 (Static and dynamic transitions) An input transition from input

state A to B for a multiple-valued function f is a static transition if f(A) = f(B); it

is a dynamic transition if f(A) �= f(B).

Example A.5 Figure A.1 depicts an mvi function with a symbolic variable over the set

S = {A,B,C,D} and two mvi transitions. One, t1, is dynamic; the other, t2, is static.

The corresponding multiple-valued transition cubes are also shown.

In this framework, we consider only static and dynamic transitions where f is fully

de�ned; that is, for every X ∈ [A,B], f(X) ∈ {0, 1}.

A.4 Multiple-Valued Function Hazards

A function f which does not change monotonically during an input transition is said to

have a function hazard in the transition.

De�nition A.6 (Static function hazard) A multiple-valued function f contains a

static function hazard for the input transition from A to C if and only if: (1)

f(A) = f(C), and (2) there exists some input state B ∈ [A,C] such that f(A) �= f(B).

257

t1

t2

00 01 11 10

0

10

00

0

xy

A

B

C

D

0

0 1

0 1 0

00

0

1

Figure A.2: A multiple-valued function exhibiting both static and dynamic function

hazards

De�nition A.7 (Dynamic function hazard) A multiple-valued function f contains

a dynamic function hazard for the input transition from A to D if and only if: (1)

f(A) �= f(D); and (2) there exist a pair of input states, B and C, such that (a) B ∈ [A,D]

and C ∈ [B,D], and (b)f(B) = f(D) and f(A) = f(C).

Example A.8 Figure A.2 illustrates both static and dynamic function hazards for a

multiple-valued function. Static-0 transition t1 passes through a transient 1 value at

total state 〈A, 11〉, while dynamic transition t2 passes through a transient 1 value at

total state 〈C, 11〉.

If a transition has a function hazard, no multiple-valued implementation of the

function is guaranteed to avoid a glitch during the transition, assuming arbitrary gate

and wire delays. Therefore, we consider only transitions which are free of function hazards

(cf. [106]).

258

A.5 Multiple-Valued Logic Hazards

If f is free of function hazards for a transition from input A to B, an implementation

may still have hazards due to possible delays in the logic realization. Here, we extend no-

tions of static and dynamic logic hazards to multiple-valued functions. To do so, we will

provide these de�nitions in terms of an abstract multiple-valued sum-of-products

implementation. That is, each multiple-valued product term in the multiple-valued

cover is implemented as a single multiple-valued AND gate. The circuit output is imple-

mented as a Boolean OR gate that combines the AND gates.

De�nition A.9 (Static (Dynamic) logic hazard) A multiple-valued cover circuit im-

plementing multiple-valued function f contains a static (dynamic) logic hazard for

the input transition from minterm A to minterm B if and only if: (1) f(A) = f(B)

(f(A) �= f(B)), and (2) for some assignment of delays, the circuit's output is not mono-

tonic during the transition interval.

That is, a static logic hazard occurs if f(A) = f(B) = 1 (0), but the circuit's output

makes an unexpected 1→ 0→ 1 (0→ 1→ 0) transition. A dynamic logic hazard occurs

if f(A) = 1 and f(B) = 0 (f(A) = 0 and f(B) = 1), but the circuit's output makes an

unexpected 1→ 0→ 1→ 0 (0→ 1→ 0→ 1) transition.

A.6 Problem Abstraction

The hazard-free multiple-valued minimization problem can now be stated as follows.

Given a multiple-valued function f , and a set, T , of speci�ed function-hazard-free multiple-

valued (static and dynamic) input transitions of f , �nd a minimal-cost multiple-valued

cover of f that is free of logic hazards for every speci�ed input transition t ∈ T .

259

A.7 Symbolic Hazard-Free Minimization

In this section, we present the exact minimization algorithm for producing a hazard-free

multiple-valued cover used by Hfmin. While the standard multiple-valued minimization

problem without considerations for hazards has been adequately addressed before [118],

the corresponding problem in the context of asynchronous synthesis and hazard-free

synthesis has not yet been addressed. We �rst state the conditions that the cover must

satisfy in order to ensure hazard-freeness. These conditions will lead to a notion of

multiple-valued dynamic-hazard-free (DHF-) prime implicants. Using these

prime implicants, a constrained covering step must be solved to select a hazard-free

cover. These issues are addressed in the sequel.

A.7.1 Conditions for a Hazard-Free Transition

We now describe conditions to ensure that a sum-of-products implementation is hazard-

free for a given input transition. Assume that [A,B] is the transition cube corresponding

to a function-hazard-free transition from input state A to B for a multi-valued combi-

national function f . In the following discussion, we assume that C is any multi-valued

cover of f . The following lemmas present necessary and su�cient conditions to ensure

that a multi-valued AND-OR implementation of f has no logic hazards for the given

transition. The following results are extensions from the binary case [106].

Lemma A.10 If f has a 0 → 0 transition in cube [A,B], then the implementation is

free of logic hazards for the input change from A to B.

Lemma A.11 If f has a 1 → 1 transition in cube [A,B], then the implementation is

free of logic hazards for the input change from A to Bif and only if[A,B] is contained in

some cube of cover C.

260

The conditions for the 0→ 1 and 1→ 0 cases are symmetric. Without loss of generality,

we consider only a dynamic 1 → 0 transition, where f(A)=1 and f(B)=0. (A 0 → 1

transition from A to B has the same hazards as a 1→ 0 transition from B to A.)

Lemma A.12 If f has a 1 → 0 transition in cube [A,B], then the implementation is

free of logic hazards for the input change from A to Bif and only if every cube c ∈ C

intersecting [A,B] also contains A.

Lemma A.11 requires that in a 1 → 1 transition, some product holds its value at 1

throughout the transition. Lemma A.12 ensures that no product will glitch in the middle

of a 1 →0 transition: all products change value monotonically during the transition. In

each case, the implementation will be free of hazards for the given transition.

An immediate consequence of Lemma A.12 is that, if a dynamic transition is free

of logic hazards, then every static sub-transition will be free of logic hazards as well:

Lemma A.13 If f has a 1→ 0 transition from input state A to B which is hazard-free

in the implementation, then, for every input state X ∈ [A,B) where f(X) = 1, the

transition subcube [A,X] is contained in some cube of cover C.

Lemma A.14 If f has a 1→ 0 transition from input state A to B which is hazard-free

in the implementation, then for every input state X ∈ [A,B) where f(X) = 1, the static

1→ 1 transition from input state A to X is free of logic hazards.

Lemmas A.11 and A.13 are used to de�ne the covering requirement for a hazard-free tran-

sition. The cube [A,B] in Lemma A.11 and the maximal subcubes [A,X] in Lemma A.13

are called required cubes. These cubes de�ne the ON-set of the function in a transition.

Each required cube must be contained in some cube of cover C to ensure a hazard-free

implementation. This property can be more formally stated as follows.

De�nition A.15 (Required cube) Given a multiple-valued function f , and a set, T ,

of speci�ed function-hazard-free multiple-valued input transitions of f , every cube [A,B] ∈

261

t2

00 01 11 10

0

11

10

0

xy

A

B

C

D

0

0 1

1 0

01

1

0

1

Required Cubes:

Privileged Cubes:
t1

Figure A.3: Transitions in a multiple-valued function and their privileged and required

cubes

T corresponding to a static 1→ 1 transition, and every maximal subcube [A,X] ⊂ [A,B]

where f is 1 and [A,B] ∈ T is a dynamic 1→ 0 transition, is called a required cube.

Lemma A.12 constrains the cubes which may be included in a cover C. Each 1 → 0

transition cube is called a privileged cube, since no cube c in the cover may intersect

it unless c contains its start point. If a cube intersects a privileged cube but does not

contain its start point, it illegally intersects the privileged cube and may not be included

in the cover. This property can be more formally stated as follows.

De�nition A.16 (Privileged cube) Given a multiple-valued function f , and a set,

T , of speci�ed function-hazard-free multiple-valued input transitions of f , every cube

[A,B] ∈ T corresponding to a dynamic 1→ 0 transition is called a privileged cube.

Example A.17 Figure A.3 shows a multiple-valued function and two transitions, along

with their required and privileged cubes.

262

A.7.2 Hazard-Free Covers

A hazard-free cover of function f is a cover of f whose multi-valued AND-OR implemen-

tation is hazard-free for a given set of speci�ed input transitions. The following theorem

describes all hazard-free covers for function f for a set of multiple-input transitions. (It

is assumed below that the function is de�ned for all speci�ed transitions; the function is

unde�ned for all other input states.)

Theorem A.18 [Hazard-free covering]A sum-of-products C is a hazard-free cover for

function f for all speci�ed input transitions if and only if:

(a.) No cube of C intersects the OFF-set of f ;

(b.) Each required cube of f is contained in some cube of C; and

(c.) No cube of C intersects any privileged cube illegally.

Conditions (a) and (c) in Theorem A.18 determine the implicants which may appear in

a hazard-free cover of a Boolean function f . Condition (b) determines the covering re-

quirement for these implicants in a hazard-free cover. Therefore, Theorem A.18 precisely

characterizes the covering problem for hazard-free two-level logic.

In general, the covering conditions of Theorem A.18 may not be satis�able for an

arbitrary Boolean function and set of transitions (cf. [139, 106]). This case occurs if

conditions (b) and (c) cannot be satis�ed simultaneously.

A.7.3 Exact Hazard-Free Multiple-Valued Minimization

Many exact logic minimization algorithms, such as Espresso-MV-Exact [118], are based

on the Quine-McCluskey algorithm [91]. The Espresso-MV-Exact algorithm solves the

two-level multiple-valued minimization problem in three steps:

1. Generate multiple-valued prime implicants;

2. Construct prime implicant table;

263

3. Generate minimum cover of this table.

Here, we extend an existing exact hazard-free two-level minimizer [106] to multi-valued

functions. Theorem A.18(a) and (c) determine the implicants which may appear in a

hazard-free cover of a multiple-valued function f . Such implicants will be calledmultiple-

valued dynamic-hazard-free (DHF-) implicants. They are de�ned as follows:

De�nition A.19 (Multiple-valued DHF-implicants) A multiple-valued DHF-

implicant is an implicant which does not intersect any privileged cube of f illegally. A

multiple-valued DHF-prime implicant is a multiple-valued DHF-implicant contained

in no other multiple-valued DHF-implicant. An essential multiple-valued DHF-

prime implicant is a multiple-valued DHF-prime implicant which contains a required

cube contained in no other multiple-valued DHF-prime implicant.

By Theorem A.18(c), only multiple-valued DHF-implicants may appear in a

hazard-free cover. Theorem A.18(b) determines the covering requirement for a hazard-

free cover of f : every required cube of f must be covered, that is, contained in some

cube of the cover. Thus, the two-level hazard-free logic minimization problem is to �nd

a minimum cost cover of a function using only multiple-valued DHF-prime implicants

where every required cube is covered.

The modi�ed hazard-free multiple-valued minimization algorithm is as follows:

1. Generate multiple-valued DHF-prime implicants;

2. Construct multiple-valued DHF-prime implicant table;

3. Generate a minimum cover of this table.

These steps are detailed below.

264

A.7.4 Generation of Multiple-Valued DHF-Prime Implicants

Multiple-valued DHF-prime implicants for function f are generated in two steps. The new

algorithm follows the approach described in [106], but extended to multiple-valued func-

tions. First, ordinary multiple-valued prime implicants of f are generated from the re-

quired cubes (which de�nes the ON-set) and the OFF-set, using existing algorithms [118].

Second, these prime implicants are transformed into multiple-valued DHF-prime impli-

cants by iterative re�nement. The new algorithm, mvi-PI-to-DHF-PI, checks each im-

plicant p for illegal intersection with any multiple-valued privileged cube, q. If such an

intersection occurs, the implicant is reduced in all possible ways to avoid intersection. In

particular, p is replaced by the set {p1, . . . , pn} of maximal subcubes of p which do not

intersect q (i.e., ∀i ∈ {1, . . . , n}, pi ∩ q = φ). Note that, in the multi-valued framework,

reduction is uniformly performed across both input and output spaces. Such reduced

implicants may have remaining, or new, illegal intersections with other privileged cubes.

The process continues until only DHF-implicants remain. Non-prime DHF-implicants are

removed by a check for single-cube containment. Likewise, empty products, a possibility

after certain reductions, are removed as well.

In addition to Hfmin's basic multi-output operating mode, Hfmin also supports

several modes that provide somewhat di�erent logic structures. For example, single-

output minimization produces logic covers in which no product contributes to more than

one output. Likewise, output-disjoint minimization produces covers in which each prod-

uct may implement either one or more binary outputs, or the symbolic next-state, but

not both. This variety of modes permits exploration of trade-o�s between area and

performance.

These additional modes are implemented by simply restricting the set of multiple-

valued prime implicants fed to the iterative re�nement step. In particular, for single-

output minimization, mv-primes are generated for each output in isolation, and the

sets of primes are combined in the obvious way afterward. Likewise, for output-disjoint

265

minimization, primes for the binary outputs are generated in one batch, and symbolic

next-state primes in another, and results are again combined. In all modes, the iterative

re�nement process itself, as well as all subsequent steps, remain unchanged.

A.7.5 Generation of the DHF-Prime Implicant Table

A multiple-valued DHF-prime implicant table is constructed for the given function. The

rows of the table are labelled with the multiple-valued DHF-prime implicants. The

columns are labelled with the required cubes, which must be covered. The table sets

up the two-level hazard-free logic minimization problem.

To perform literal optimization, the rows of the table (corresponding to the DHF

primes) are assigned integral weights. The cost of a given set of DHF primes is simply

the sum of the weights of the individual primes.

The weight assigned to each DHF prime is as follows:

cost(p) = # of non− full input literals in p+# of 1′s in output �eld of p

This formula captures the number of inputs to the AND gate corresponding to the DHF

prime p, along with the number of inputs to OR gates to which p is connected.

Example A.20 Implicant 〈01−−, 101〉 for a 3-output function on B4 has cost 2+2 = 4.

For multiple-valued variables, the cost used approximates the number of non-full binary

literals after encoding that mvi variable. Speci�cally, the weight of a multiple-valued

literalX
SXi
i is (|SXi|−Si), where Si is the set describing the domain of Xi. This expresses

the fact that the more valuesXi spans, the closer to a don't-care it is, and the fewer binary

literals in the encoded representation will be required. E.g., an mvi �eld containing all

1's corresponds to a don't-care, and is assigned a 0 weight. Conversely, a �eld containing

a single 1 will require non-full literals in all N bits of the encoded form.

266

Example A.21 Implicant 〈01 − −, 101101, 101〉 for a 3-output function on B4 × S,

where S = {0, . . . , 5}, has cost 2 + (6− 4) + 2 = 6.

A.7.6 Generation of a Minimum Cover

The multiple-valued DHF-prime implicant table describes a standard unate covering

problem. It is solved using an existing algorithm, Mincov [118].

For a simple heuristic covering, Hfmin exposes the quasi-exact mode of Mincov,

which returns the �rst solution found, rather than iterating until a minimum-cost cover

is found. This mode has proven useful in certain cases.

A.7.7 Multiple-Output Minimization

As in Espresso-MV-Exact [118], multiple-output functions are handled by making the

output parts into a single N-valued MV variable, where N is the number of outputs. The

transformation is straightforward and is described in [118]. Using this transformation, the

symbolic hazard-free multiple-valued minimization procedure can be used to minimize

multiple-output functions.

267

Appendix B

E�cient Generation of State Mapping

Incompatibility Constraints

This appendix presents a pair of optimized recursive algorithms used by Optimista

to generate state mapping incompatiblity constraints more e�ciently than the naive

algorithms given in Chapter 6.

It is possible to form recursive versions of Algorithms 9 and 10 which state map

transitions �on demand�. Such algorithms incrementally form a covering DHF implicant

(if possible) for a given required cube by expanding the required cube to form a candidate

covering implicant, and stopping once the implicant is determined to be dynamic hazard-

free. As they do so, they state-map transitions on-the-�y only in the region of interest,

i.e., in the input columns spanned by the candidate implicant. As a result, they avoid

examining state mapping alternatives for transitions that are disjoint from the region of

interest, which can have no impact on hazard-free covering of the given required cube.

Appendix B presents a pair of such algorithms.

The recursive algorithms have several advantages over their naive counterparts.

First, the brute-force enumeration of state mapping combinations is largely avoided,

so that generation is computationally less expensive. Second, the number of constraints

268

generated is signi�cantly smaller, which eases constraint solution. Finally, each constraint

identi�es a (related) class of invalid state mapping combinations. Consequently, each

constraint has fewer disjunctive terms (i.e., it state maps fewer speci�ed transitions). By

comparison, the naive algorithm generates constraints each of which identi�es a single

invalid combination (which state maps all transitions in one or more reduced states).

It is important to realize that the set of constraints generated by the recursive

algorithms is exactly equivalent to the set generated by the previous �naive� algorithms,

however, it is more compact. In e�ect, each constraint generated by the recursive algo-

rithms may correspond to several constraints as generated by the naive algorithms.

As in the �naive� case, the optimized recursive generation of these constraints is

accomplished by a pair of algorithms. The �rst algorithm examines hazard-free covers for

required cubes belonging to the horizontal portion of a speci�ed transition. The second

algorithm does the same, but for required cubes in the vertical portion of a speci�ed

transition. The following sections present the two algorithms in turn.

B.1 Horizontal Required Cubes

A recursive version of Algorithm 9 appears in two parts as Algorithms 11 and 12. As

described above, this version maps transitions �on demand�, so as to limit the binding of

state mappings to the region of interest.

The outermost two loops of this algorithm are identical, as they identify the spec-

i�ed transitions in the various reduced machine rows.

In addition to on-demand state mapping, this algorithm makes use of another key

observation: the location and shape of the required and privileged cubes for each unstable

mapping of a given speci�ed transition are identical. Thus, the algorithm can determine

the suitability of all unstable mappings in a single analysis. When the unstable mappings

of a given transition are determined to be invalid (in combination with other mappings),

a single constraint is generated that e�ectively disallows each unstable mapping.

269

Once a speci�ed transition in the reduced machine is identi�ed, its required cubes

are determined, and for each, a call to horizontalRecur() is made. This recursive

routine is the heart of the algorithm, and determines whether the given required cube

can be covered. In essence, it maintains a candidate covering implicant, which is expanded

as needed to avoid illegal intersections with privileged cubes for transitions in the source

state. The initial candidate implicant is the required cube itself.

Algorithm 11 Optimized identi�cation of incompatible state mappings with respect to

horizontal required cubes

identifyHorizontalIncompatibilities() // Recursive optimized version

{

// N.B.: The only required cubes in the horizontal portion of a transition

// belong to the source state itself.

for each compatible c/s′ {

TransitionList T := {transitions t | PS(t) ∈ c};
for each transition t in T {

// Map t to define the required cubes that must be covered.

// We must consider both stable and unstable mappings of t.

// In the recursion, we examine only transitions that can be unstably

// mapped, since they are the only transitions which can interfere

// with HF covering. T ′ contains exactly this set.

TransitionList T ′ := T −{t}−{transitions t′ | t′ can be unstably mapped};

if t can be stably mapped

horizontalRecur(s′, r, φ, T ′);// Cover the sole required cube

if t can be unstably mapped {

for each horizontal required cube r of t { // Maximal sub-cubes

// Start off the recursion by trying to use r itself to cover r,
// and expand as necessary (and possible) to avoid illegal

// intersections. Note that r, {t}, and T ′ satisfy

// horizontalRecur()'s entry conditions.

horizontalRecur(s′, r, {t}, T ′);

}

} } }

}

270

Algorithm 12 Part II of Algorithm 11

// This version is optimized knowing that req'd/priv cubes in the horizontal

// portion of specified transitions are completely defined given whether the

// transition is un/stably mapped. All unstable mappings are equivalent.

//

horizontalRecur(State s′, Cube p, TransitionList T̃, TransitionList T)
// s′: the reduced state having some horizontal required cube r
// p: an implicant covering the required cube r of state s′

// T̃: a set of transitions originating in s′ which are unstably mapped

// T: unmapped transitions originating in s′ which are not yet mapped

{

// Entry conditions:

// - all transitions in T̃ are unstably mapped

// - p does not intersect the OFF-set of any transition in T̃
// - p contains start pt of all t ∈ T̃ (hence no illegal xsections wrt T̃)
// - no transition in T has been mapped

for each transition t ∈ T intersecting p { // p illegally xsects t?
// When t is stably mapped, it contributes neither priv cube nor OFF-set

// pts for s′, and hence can't interfere with HF covering. So, consider

// only unstably mapping t. All unstable mappings of t have the same

// OFF-set/priv cubes. N.B.: Every t ∈ T can be unstably mapped.

TransitionList T ′ := T − {t}; // We handle t, one way or another.

TransitionList T̃ ′ := T̃ ∪ {t}; // Add t to unstably-mapped transitions.

Cube p′ := p;

// N.B.: t is mapped unstably, so it has a privileged cube for s′.
if p′ does not contain start(t) { // An illegal intersection

p′ := supercube(p′, start(t)); // Make p′ contain the start pt of t.
} // else p′ contains start(t), hence no illegal intersection.

// Two things may have happened:

// - p′ was expanded, and only now hits OFF-set of a mapped transition.

// - t is freshly mapped (unstably), and p′ intersects the OFF-set of t.
// Either way, we must now check for an OFF-set intersection.

// N.B.: The OFF-set check is optimized knowing whether p was actually

// expanded. If p wasn't expanded, only check for intersection

// with t's exit pt. Otherwise, check p wrt all t̃ ∈ T̃ ′.
if hitsOFFset(p′, s′, T̃ ′) {

// Generate constraint to disallow any set of mappings that unstably

// maps all t̃ ∈ T̃ ′. Mapping any single t̃ stably does the trick.

generate the constraint c +
{∑

t∈T̃ ′ δt,c,c

}
// N.B.: Mapping sets more specific than this can't be HF either, so

// bypass the recursive call below.

} else {

// p′ doesn't hit the OFF-set of, nor illegally intersect the priv

// cube of, any mapped transition. So, the entry conditions hold.

horizontalRecur(s′, p′, T̃ ′, T ′);
} } }

271

B.2 Vertical Required Cubes

A recursive version of Algorithm 10 appears as Algorithm 13, Algorithm 14, and Algo-

rithm 16. Like its horizontal counterpart, it maps transitions �on demand�, so as to limit

the binding of state mappings to the region of interest.

This algorithm is driven by �rst mapping transitions in the destination state.

This is based in part on the observation that there is no need to examine combinations of

source-state transition mappings. In particular, since source-state transitions contribute

only OFF-set points for s′d, they never cause the expansion of the candidate implicant p.

Moreover, if the candidate implicant p intersects the OFF-set of s′d, then it must intersect

OFF-set points of at least one mapped transition, say, t. Clearly, then, it would hit t's

OFF-set points regardless of the state mappings of any other source-state transition.

The algorithm thus expands p as needed to avoid illegal intersections, and in-

crementally state-maps destination-state transitions that intersect p. As it goes, the

algorithm performs OFF-set intersection tests with respect to the mapped transitions in

the destination state. When there are no remaining illegal intersections, a �nal OFF-set

intersection test is performed by state mapping each intersecting transition in the source

state.

Like the optimized horizontal algorithm, this algorithm also makes use of the

equivalence of all unstable state mappings with respect to hazard-free covering.

272

Algorithm 13 Optimized identification of incompatible state mappings with

respect to vertical required cubes

identifyVerticalIncompatibilities() // Top-level �driver� routine

{

for each compatible c/s′ {

TransitionList Ts := { transitions t | PS(t) ∈ c};
for each transition t in Ts {

TransitionList T ′
s := Ts − {t};

// Only unstable mappings result in vertical required cubes.

// Each mapping yields 1 required cube for a unique next-state.

for each unstable mapping δt,c,c′ of the exit point of t {

MappingList Ms := {δt,c,c′};
s′d := the reduced (next-) state corresponding to c′;

// In the recursion, stably-mapped transitions originating

// s′d never interfere with HF covering. Hence, we examine

// only transitions in s′d which can be unstably mapped. Td

// contains exactly this set.

TransitionList Td :=
{t | PS(t) ∈ c′ and t has an unstable mapping};

// There is a single vertical required cube r, for s′d,
// spanning both s′ and s′d. Start off the recursion by

// trying to use r itself to cover r, and expand as

// necessary (and possible) to avoid illegal intersections.

checkDestMappings(s′d, r, Ms, T ′
s, Td);

}

} } }

273

Algorithm 14 Part II of Algorithm 13

checkDestMappings(State s′d, Implicant p, MappingList Ms, TransitionList Ts,

MappingList Md, TransitionList Td)

// s′d: the reduced state having some horizontal required cube r
// p: an implicant covering the required cube r of state s′d
// Ms: the state mapping choice made for the root transition in s′

// Ts: unmapped transitions originating in s′

// Md: state mapping choices made for transitions originating in s′d
// Td: unmapped transitions originating in s′d

{

// Entry conditions:

// - There exists a set of mappings of the transitions in Ts for which

// p does not hit any transition's OFF-set.

// - p does not intersect the OFF-set of any mapped transition in Md

// - p does not illegally intersect any mapped transition

// - no transition in Ts (resp. Td) has been mapped

// The following examines transitions in Td and mappings in Md. It

// has been optimized knowing the kinds of transitions for next-state

// function sd that are possible when starting in present-state sd.

pick some t ∈ Td which intersects p;

// Does p illegally intersect the privileged cube of t?
TransitionList T ′

d := Td − {t}; // Take care of t, one way or another.

// Do a recursion using T ′
d without mapping t, which explores mappings of

// subsets of Td which do not constrain t.
checkDestMappings(s′d, p, Ms, Ts, Md, T ′

d);

// If t is stably mapped, it will contribute neither a priv cube nor OFF-set

// pts for s′d, and hence can not interfere with hazard-free covering. We

// thus examine only unstable mappings of t. Now, all unstable mappings of t
// are equivalent wrt hazard-free covering, because they all share the same

// privileged cubes and start points. Hence, we need not examine each one

// individually, but rather perform a single analysis which effectively

// considers them all.

//

// N.B.: t̂ is �root� transition in s′ whose required cube we're covering.

MappingList M ′
d := Md ∪ {δt,c,c′}; // c′ represents any unstable mapping of t

// ...continued...

274

Algorithm 15 Part II of Algorithm 13, completed

// checkDestMappings(), continued...

//

// N.B.: M ′
d maps t unstably, so t has a privileged cube for s′d.

if p does not contain start(t) { // Must expand p
Cube p′ := supercube(p, start(t)); // Make p′ contain start pt of t.

// At this point, p′ does not illegally intersect any transition in M ′
d

if hitsOFFset(p′, s′d, M ′
d) { // Full-blown xsection test with all of M ′

d

if t cannot be mapped stably // Always a problem with t

generate constr. δ
t̂,s′,s′

d

∨


 ∑

δt,s′
d

,∗∈Md

δt,s′
d
,s′

d


 // Don't constrain t

else // Must map t to s′d to avoid problems

generate constr. δ
t̂,s′,s′

d

∨


 ∑

δt,s′
d

,∗∈Md

δt,s′
d
,s′

d


 ∨ δt,s′

d
,s′

d

} else { // p does not hit the OFF-set of anything in M ′
d

if not checkSrcMappings(s′d, p′, Ms, Ts, M ′
d)

// checkSrcMappings() indicates a problem with M ′
d itself, so bypass

// the recursive call.

else

checkDestMappings(s′d, p′, Ms, Ts, M ′
d, T ′

d);

}

} else { // p contained start(t), hence no illegal intersection.

if hitsOFFset(p, s′d, t) { // Simpler test: Md still ok since p unexpanded

if t cannot be mapped stably // Always a problem with t

generate constr. δ
t̂,s′,s′

d

∨


 ∑

δt,s′
d

,∗∈Md

δt,s′
d
,s′

d


 // Don't constrain t

else // Must map t to s′d to avoid problems

generate constr. δ
t̂,s′,s′

d

∨


 ∑

δt,s′
d

,∗∈Md

δt,s′
d
,s′

d


 ∨ δt,s′

d
,s′

d

} else { // p does not hit the OFF-set of anything in M ′
d

// Unlike the above, p was not expanded to avoid illegal intersection,

// so there is no need to check for OFF-set intersections with source

// state transitions. All is ok, so proceed to check other t ∈ T ′
d.

checkDestMappings(s′d, p, Ms, Ts, M ′
d, T ′

d);

}

} }

275

Algorithm 16 Part III of Algorithm 13

// N.B.: The OFF-set of s′d consists of the stable pts of xsitions in s′, (the

// maximal sub-cubes of transitions unstably mapped by Ms and the entire

// supercube of transitions stably mapped by Ms), along with the exit points of

// transitions unstably mapped by Md.

checkSrcMappings(State s′d, Implicant p, MappingList Ms, TransitionList Ts,

MappingList Md)

// s′d: the reduced state having some horizontal required cube r
// p: an implicant covering the required cube r of state s′d
// Ms: state mapping choice made for the root transition in s′

// Ts: unmapped transitions originating in s′

// Md: state mapping choices made for transitions originating in s′d
{

// Entry conditions:

// - p does not intersect the OFF-set of any mapped transition in Ms or Md

// - p does not illegally intersect any transition

// - no transition in Ts has been mapped

TransitionList Tp := {transitions t ∈ Ts | t intersects p};

// The transitions Tp can be treated singly. p hits the OFF-set of Tp iff p
// hits the OFF-set of some transition tp ∈ Tp. Further, we never expand

// p on behalf of a transition in Ts: we only expand p in order to avoid

// illegal intersections, and transitions in Ts never contribute non-trivial

// privileged cubes. Hence, p's shape is dependent solely on Td and Md,

// which are not modified by this routine. As a result, we need not examine

// combinations of transitions in Tp. Rather, we examine mappings of each

// transition in turn.

// ...continued...

276

Algorithm 17 Part III of Algorithm 13, continued

// checkSrcMappings(), continued...

//

for each transition t ∈ Tp { // p intersects t; does it hit OFF-set of t?

// Whether t is stably or unstably mapped, it contributes OFF-set points

// for s′d, which can interfere with hazard-free covering. We thus examine

// both stable and unstable mappings of t. However, since t originates in

// s′, it never produces a non-trivial priv cube for s′d.
//

// As in the horizontal algorithm, we optimize the checking using a case

// analysis. There are 3 possible cases:

//

// 1) t is mapped stably (to s′). A single OFF-set cube spans all of t.
// 2) t is mapped unstably, to a destination state other than s′d.
// Again, a single OFF-set cube results, which spans all of t.
// 3) t is mapped unstably to s′d. The maximal sub-cubes of t (that exclude

// the end point) are all OFF-set cubes.

//

// Hence, there are only two cases: {1,2} and 3. Using this observation, Ms

// becomes a set of binary variables, one per t ∈ Ts. Each says whether

// t was mapped to s′d or not. Note that the only case which allows a

// HF cover is case 3, iff p only contains the exit point and no other

// minterm in t. So, we simply check for that. Thus:

//

// a) If case 3 can't occur (if t can't be mapped to s′d), then there is

// always a problem with t. In this case, we generate a constraint

// disallowing Md but placing no constraint on the mapping of t.
// b) If case 3 can occur but p contains some point other than the exit

// pt of t (i.e. a stable pt of t), there will always be a problem

// with t. We then generate the same constraint as in a).

// c) If case 3 can occur but p contains only the exit point of t, then

// a problem only exists if t is not mapped to s′d. We nominally

// generate a set of constraints disallowing Md ∪ {δt,c,c′} for each

// c′ �= s′d. In practice, we generate a single constraint saying

// that if Md is used, then t must be mapped to s′d.
// d) If s′d (case 3 above) is the only possible mapping, a HF cover

// always exists; simply proceed with the next transition in Tp.

//

// N.B.: t̂ is �root� transition in s′ whose required cube we're covering.

if t cannot be mapped to s′d or p contains a stable point of t { // a) and b)

generate constr. δ
t̂,s′,s′

d

∨
{∑

δt,s′
d

,∗∈Md

δt,s′
d
,s′

d

}
return false; // Always a problem with t -- forget examining rest of Tp

} else if t can be mapped to some state other than s′d { // c)

generate constr. δ
t̂,s′,s′

d

∨
{∑

δt,s′
d

,∗∈Md
δt,s′

d
,s′

d

}
∨δt,s′,s′

d
// Must map to s′d

} // else case d) applies -- no constraint, continue with next t ∈ Tp.

// ...continued...

277

Algorithm 18 Part III of Algorithm 13, completed

// ...continued...

//

// The above short-circuit that returns before scanning all of Tp prevents

// the generation of some unnecessarily �large� constraints; however, it

// still allows some such constraints to slip by. Specifically, if we only

// discover that Md (cf. Md ∪ {δt,c,c′}) is bad while examining some t
// after the first in Tp, we may generate constraints on behalf of

// transitions preceding t like Md ∪ {δt,c,c′} ⊃Md. We could prevent

// this by deferring the generation of constraints until we have scanned

// all of Tp or found one t which has no valid mapping. Doing so would

// entail keeping track of those t for which we would have generated a

// constraint. As it is now, the short-circuit will prevent at least some

// redundant constraints from being generated.

}

return true; // Every transition in Tp had some way to map and still cover r.
}

It would be possible to construct another version which maps transitions in the source

state incrementally, rather than re-mapping all the source state transitions each time

p has been expanded to contain the start point of some intersecting destination state

privileged cube. To avoid such redundant mapping/checking of source state transitions,

we would record the source state transition mapping and make a recursive call to continue

examining destination state transition mappings. As a result, the source/dest mapping

routines would be mutually recursive. It is not clear that such a version would be enough

faster to warrant the additional complexity.

278

Appendix C

MINIMALIST Shell and Command Set

The following lists show the current set of Minimalist commands. First, a set of generic

commands (not related to burst-mode synthesis), such as control-�ow constructs, are

shown. The set of burst-mode synthesis-related commands are given next. For brevity's

sake, options �ags are omitted.

Users can add their own commands by either de�ning functions (using define),

or by dynamically loading a C/C++ library that binds their commands directly into

Minimalist at run-time. Additionally, any external program (e.g. ls, espresso, vi)

can be invoked from within the Minimalist shell.

The Minimalist command interpreter also supports variable substitution (e.g.

$foo) and command substitution (e.g. set foo `pwd`, or �back-quoting� in shell par-

lance). Other common shell features such as input/output redirection, piping, and so on

are expected in a future release.

Generic Commands

break Break out of innermost loop

call <func-name> [<arg> ...] Call a named function

cd [<directory>] Change directory

279

continue Continue with next iteration of innermost loop

define [<func-name> [{ <argName> ... } { <body> }]]

Define a named function

echo <arg> ... Echo words to stdout

expr <expression> Evaluate a numeric expression

for <init-expr> <cond-expr> <update-expr> <body> For loop

help [<command> ...] Print help on commands

if <cond> then <then-part> [else <else-part>] If/then/else

pwd Print current working directory

quit Quit MINIMALIST

set [<varname> [<value>]] Set or query a variable's value

source <source-file> [<arg> ...] Execute a MINIMALIST script

while <cond-expr> <body> While loop

Synthesis Commands

assign-states Assign an encoding (e.g. using CHASM)

impymin-logic Minimize logic using IMPYMIN

make-testable Derive testable logic

min-logic Perform HF logic minimization using HFMIN

min-states Perform state reduction

plot_qt Plot a burst-mode spec or PLA file

read-spec <file> Read a burst-mode specification

set-encoding <encoding1> ... <encodingN> Manually specify an encoding

set-state-cover <compatible> ... [<new-spec-var>]

Manually specify a state cover

show-encoding Show the current encoding

show-logic [<PLA-file>] Show the binary logic implementation

verify-logic [<start-Code>] [<PLA-file>]

Verify the current logic implementation

280

write-flow [<file>] Write a nicely-formatted flow table

write-instant [<PLA-file>]

Write out a PLA file for the instantiated machine

write-spec [<file>] Write out the burst-mode specification

write-symbolic [<file>] Write a symbolic PLA or KISS2 file

write-trans [<trans-file>]

Write a description of the specified transitions

Many of the above synthesis commands allow the following option �ags:

-F: Use outputs as fed-back state variables

-L: Minimize total literal count (default is to minimize product count)

-d: Produce logic in which outputs are implemented disjointly from next-state

-s: Produce logic in which each output and state bit is implemented separately (no shared

products)

281

Bibliography

[1] P. Ashar, S. Devadas, and A.R. Newton. Sequential Logic Synthesis. Kluwer Aca-

demic, 1992.

[2] M.J. Avedillo, J.M. Quintana, and J.L. Huertas. New approach to the state reduc-

tion in imcompletely speci�ed sequential machines. IEEE ISCAS, pages 440�443,

1990.

[3] M.J. Avedillo, J.M. Quintana, and J.L. Huertas. A new method for the state

reduction of imcompletely speci�ed �nite sequential machines. EDAC, pages 552�

556, 1990.

[4] M.J. Avedillo, J.M. Quintana, and J.L. Huertas. Smas: A program for the con-

current state reduction and state assignment of �nite state machines. In ISCAS,

pages 1781�1784, 1991.

[5] R. Bartlett, K. A. Brayton, G. D. Hachtel, R. M. Jacoby, C. R. Morrison, R. L.

Rudell, and A. Sangiovanni-Vincentelli. Multilevel logic minimization using implicit

don't cares. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, CAD-7(6):723�740, June 1988.

[6] J. Beister. A uni�ed approach to combinational hazards. IEEE Trans. on Com-

puters, C-23(6), 1974.

282

[7] M. Benes, A. Wolfe, and S. M. Nowick. A high-speed asynchronous decompression

circuit for embedded processors. In Advanced Research in VLSI. IEEE Computer

Society Press, September 1997.

[8] L. Benini and G. De Micheli. State assignment for low power dissipation. IEEE

Journal of Solid-State Circuits, 30(3):258�268, March 1995.

[9] Kees van Berkel. Handshake Circuits: an Asynchronous Architecture for VLSI Pro-

gramming, volume 5 of International Series on Parallel Computation. Cambridge

University Press, 1993.

[10] Kees van Berkel, Ronan Burgess, Joep Kessels, Ad Peeters, Marly Roncken, and

Frits Schalij. Asynchronous circuits for low power: A DCC error corrector. IEEE

Design & Test of Computers, 11(2):22�32, Summer 1994.

[11] M. T. Bohr. Interconnect scaling � the real limiter to high performance ulsi. In

Proceedings of IEEE Electron Devices Meeting, pages 241�242. IEEE Computer

Society Press, 1995.

[12] D. Brand and V. Iyengar. Timing analysis using a functional relationship. In Proc.

International Conf. Computer-Aided Design (ICCAD), pages 126�129, 1986.

[13] R. Brayton and C. McMullen. The decomposition and factorization of boolean

expressions. In Proc. International Symposium on Circuits and Systems, pages

49�54, 1982.

[14] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang. MIS: A multiple-

level logic optimization system. IEEE Transactions on Computer-Aided Design,

CAD-6(6):1062�1081, November 1987.

[15] Erik Brunvand. Translating Concurrent Communicating Programs into Asyn-

chronous Circuits. PhD thesis, Carnegie Mellon University, 1991.

283

[16] R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Transactions on Computers, C-35(8):677�691, August 1986.

[17] Steven M. Burns. Performance Analysis and Optimization of Asynchronous Cir-

cuits. PhD thesis, California Institute of Technology, 1991.

[18] N.L.V. Calazans. Boolean constrained encoding: A new formulation and a case

study. In ICCAD-1994, pages 702�706, 1994.

[19] Supratik Chakraborty, David L. Dill, Kenneth Y. Yun, and Kun-Yung Chang. Tim-

ing analysis for extended burst-mode circuits. In Proc. International Symposium on

Advanced Research in Asynchronous Circuits and Systems. IEEE Computer Society

Press, April 1997.

[20] V. L. Chi. Salphasic distribution of clock signals for synchronous systems. IEEE

Transactions on Computers, C-43(5):597�602, 1994.

[21] W.-C. Chou, P.A. Beerel, R. Ginosar, R. Kol, C.J. Myers, S. Rotem, K. Stevens,

and K.Y. Yun. Average-case optimized technology mapping of one-hot domino

circuits. In Proc. Int. Symp. Adv. Research in Async. Ckts. and Sys., pages 80�91,

March 1998.

[22] T.-A. Chu, N. Mani, and C. K. C. Leung. An e�cient critical race-free state

assignment technique for asynchronous �nite state machines. In Proc. ACM/IEEE

Design Automation Conference, pages 2�6. IEEE Computer Society Press, 1993.

[23] Tam-Anh Chu. Synthesis of Self-Timed VLSI Circuits from Graph-Theoretic Spec-

i�cations. PhD thesis, MIT Laboratory for Computer Science, June 1987.

[24] Tam-Anh Chu. Automatic synthesis and veri�cation of hazard-free control circuits

from asynchronous �nite state machine speci�cations. In Proc. International Conf.

284

Computer Design (ICCD), pages 407�413. IEEE Computer Society Press, October

1992.

[25] M.J. Ciesielski, J.J. Shen, and M. Davio. A uni�ed approach to input-output

encoding for fsm state assignment. In DAC, 1991.

[26] Wesley A. Clark. Macromodular computer systems. In AFIPS Conference Proceed-

ings: 1967 Spring Joint Computer Conference, volume 30, pages 335�336, Atlantic

City, NJ, 1967. Academic Press.

[27] J. Cong and L. He. An e�cient approach to simultaneous transistor and intercon-

nect sizing. In ICCAD, 1996.

[28] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Com-

plete state encoding based on the theory of regions. In Proc. International Sympo-

sium on Advanced Research in Asynchronous Circuits and Systems, pages 36�47.

IEEE Computer Society Press, 1996.

[29] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Synthesizing petri

nets from state-based models. In ICCAD, pages 164�171, 1995.

[30] O. Coudert and J.C. Madre. New ideas for solving covering problems. In DAC,

pages 641�646, 1995.

[31] O. Coudert and J.C. Madre. New ideas for solving covering problems. In DAC,

pages 641�646, 1995.

[32] M. Damiani and G. De Micheli. Don't care speci�cations in combinational and

synchronous logic circuits. IEEE Transactions on Computer-Aided Design, CAD-

12(3):365�388, March 1993.

[33] J. Darringer, W. Joyner, L. Berman, and L. Trevillyan. LSS: A logic synthesis

through local transformations. IBM J. Res. Develop., 25(4):272�280, 1981.

285

[34] P.K. Datta, S.K. Bandyopadhyay, and A.K. Choudhury. A graph theoretic ap-

proach for state assignment of asynchronous sequential machines. International

Journal of Electronics, 65(6):1067�1075, 1988.

[35] A. Davis, B. Coates, and K. Stevens. Automatic synthesis of fast compact self-

timed control circuits. In 1993 IFIP Working Conference on Asynchronous Design

Methodologies, Manchester, England, March 1993.

[36] A. Davis and S. M. Nowick. An introduction to asynchronous circuit design. In

A. Kent and J. G. Williams, editors, Encyclopedia of Computer Science and Tech-

nology, volume 38, pages 231�286. Marcel Dekker, Inc., 1997.

[37] A. L. Davis. A data-driven machine architecture suitable for VLSI implementation.

In Proceedings of the Caltech Conference on Very Large Scale Integration, pages

479�494, January 1979.

[38] G. De Micheli. Symbolic design of combinational and sequential logic circuits

implemented by two-level logic macros. IEEE Trans. on CAD, CAD-5(4):597�616,

October 1986.

[39] G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill, 1994.

[40] G. De Micheli, R.K. Brayton, and A. Sangiovanni-Vincentelli. Optimal state as-

signment for �nite state machines. IEEE Trans. on CAD, CAD-4(3):269�285, July

1985.

[41] Mark E. Dean. STRiP: A Self-Timed RISC Processor Architecture. PhD thesis,

Stanford University, 1992.

[42] S. Devadas and K. Keutzer. Validatable nonrobust delay-fault testable circuits via

logic synthesis. IEEE Transactions on Computer-Aided Design, CAD-11(12):1559�

1573, December 1992.

286

[43] S. Devadas, K. Keutzer, S. Malik, and A. Wang. Veri�cation of asynchronous

interface circuits with bounded wire delays. In Proc. International Conf. Computer-

Aided Design (ICCAD), pages 188�195. IEEE Computer Society Press, November

1992.

[44] S. Devadas, H.-K. Ma, A.R. Newton, and A. Sangiovanni-Vincentelli. MUSTANG:

State assignment of �nite state machines targeting multi-level logic implementa-

tions. IEEE Trans. on CAD, CAD-7(12):1290�1300, December 1988.

[45] S. Devadas and A.R. Newton. Exact algorithms for output encoding, state assign-

ment, and four- level boolean minimization. IEEE Trans. on CAD, CAD-10(1):13�

27, January 1991.

[46] David L. Dill. Trace Theory for Automatic Hierarchical Veri�cation of Speed-

Independent Circuits. ACM Distinguished Dissertations. MIT Press, 1989.

[47] Jo Ebergen and Sylvain Gingras. A veri�er for network decompositions of

command-based speci�cations. In Proc. Hawaii International Conf. System Sci-

ences, volume I. IEEE Computer Society Press, January 1993.

[48] Jo C. Ebergen. A formal approach to designing delay-insensitive circuits. Dis-

tributed Computing, 5(3):107�119, 1991.

[49] E.B. Eichelberger. Hazard detection in combinational and sequential switching

circuits. IBM J. Res. Develop., 9(2):90�99, 1965.

[50] D. W. Dobberpuhl et al. A 200-mhz 64-bit dual-issue cmos microprocessor. Digital

Technical Journal, 4(4):35�50, 1993.

[51] E.M. Sentovich et al. Sequential circuit design using synthesis and optimization.

In Proc. Int. Conf. Computer Design, October 1992.

287

[52] J. Hartmanis et al. Some dangers in state reduction of sequential machines. Infor-

mation and Control, pages 252�260, September 1962.

[53] P.D. Fisher and S.-F. Wu. Race-free state assignments for synthesizing large-scale

asynchronous sequential logic circuits. IEEE Trans. on Computers, 42(9):1025�

1034, September 1993.

[54] R.M. Fuhrer, B. Lin, and S.M. Nowick. Algorithms for the optimal state assignment

of asynchronous state machines. In 1995 Conference on Advanced Research in VLSI,

pages 59�75, 1995.

[55] R.M. Fuhrer, B. Lin, and S.M. Nowick. Symbolic hazard-free minimization and

encoding of asynchronous �nite state machines. In ICCAD, 1995.

[56] R.M. Fuhrer and S.M. Nowick. Optimist: State minimization for optimal 2-level

logic implementation. In ICCAD-1997, 1997.

[57] S. B. Furber, J. D. Garside, P. Riocreux, and S. Temple. Amulet2e: An asyn-

chronous embedded controller. Proceedings of the IEEE, February 1999.

[58] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. W.H. Freeman, 1979.

[59] M. K. Gowan, L. L. Biro, and D. B. Jackson. Power considerations in the de-

sign of the alpha 21624 microprocessor. In Proc. ACM/IEEE Design Automation

Conference, pages 726�731. IEEE Computer Society Press, 1998.

[60] A. Grasselli and F. Luccio. A method for minimizing the number of internal states

in incompletely speci�ed sequential networks. IEEE TEC, EC-14:350�359, June

1965.

[61] G. Hachtel, R. Jacoby, K. Keutzer, and C. Morrison. On properties of alge-

braic transformations and the synthesis of multifault-irredundant circuits. IEEE

288

Transactions on Computer-Aided Design of Integrated Circuits and Systems, CAD-

11(3):313�321, March 1992.

[62] G. Hachtel, J.K. Rho, F. Somenzi, and R. Jacoby. Exact and heuristic algorithms

for the minimization of incompletely speci�ed state machines. IEEE Trans. on

CAD, CAD-13(2):167�177, February 1994.

[63] G. D. Hachtel, M. Hermida, A. Pardo, M. Poncino, and F. Somenzi. Re-encoding

sequential circuits to reduce power dissipation. In Proc. International Conf.

Computer-Aided Design (ICCAD), pages 70�73. IEEE Computer Society Press,

1994.

[64] J. Hartmanis and R.E. Stearns. Algebraic Structure Theory of Sequential Machines.

Prentice-Hall, 1966.

[65] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[66] S. Hong, R. Cain, and D. Ostapko. MINI: A heuristic approach for logic minimiza-

tion. IBM J. Res. Develop., 18:443�458, 1974.

[67] D. A. Hu�man. The synthesis of sequential switching circuits. In E. F. Moore,

editor, Sequential Machines: Selected Papers. Addison-Wesley, 1964.

[68] D. A. Hu�man. The synthesis of sequential switching circuits. In E. F. Moore,

editor, Sequential Machines: Selected Papers. Addison-Wesley, 1964.

[69] Sasan Iman and Massoud Pedram. Two level logic minimization for low power. In

Proceedings of the 1995 IEEE/ACM International Conference on Computer-Aided

Design, 1995.

[70] T. Kam, T. Villa, R.K. Brayton, and A. Sangiovanni-Vincentelli. A fully implicit

algorithm for exact state minimization. In DAC, 1994.

289

[71] K. Keutzer. Dagon: Technology mapping and local optimization. In Proc.

ACM/IEEE Design Automation Conference, pages 341�347, 1987.

[72] Kurt Keutzer, Luciano Lavagno, and Alberto Sangiovanni-Vincentelli. Synthesis

for testability techniques for asynchronous circuits. In Proc. International Conf.

Computer-Aided Design (ICCAD), pages 326�329. IEEE Computer Society Press,

November 1991.

[73] Michael Kishinevsky, Alex Kondratyev, Alexander Taubin, and Victor Varshavsky.

Concurrent Hardware: The Theory and Practice of Self-Timed Design. Series in

Parallel Computing. John Wiley & Sons, 1994.

[74] Prabhakar Kudva, Ganesh Gopalakrishnan, and Hans Jacobson. A technique for

synthesizing distributed burst-mode circuits. In DAC, 1996.

[75] D.S. Kung. Hazard-non-increasing gate-level optimization algorithms. In ICCAD,

1992.

[76] P.N. Lam, H.F. Li, and S.C. Leung. Optimization of state encoding in distributed

circuits. IEEE Trans. on CAD, 13(5):581�588, May 1994.

[77] L. Lavagno, C. Moon, R. Brayton, and A. Sangiovanni-Vincentelli. Solving the

state assignment problem for signal transition graphs. In Proc. ACM/IEEE Design

Automation Conference, pages 568�572. IEEE Computer Society Press, June 1992.

[78] Luciano Lavagno and Alberto Sangiovanni-Vincentelli. Algorithms for Synthesis

and Testing of Asynchronous Circuits. Kluwer Academic Publishers, 1993.

[79] C. Leiserson and J. Saxe. Retiming synchronous circuitry. Algorithmica, 6:5�35,

1991.

290

[80] B. Lin and S. Devadas. Synthesis of hazard-free multi-level logic under multiple-

input changes from binary decision diagrams. IEEE Transactions on CAD,

14(8):974�985, August 1995.

[81] B. Lin and A.R. Newton. Synthesis of multiple level logic from symbolic high-level

description languages. In IFIP Conference on VLSI, pages 187�196, August 1989.

[82] B. Lin and F. Somenzi. Minimization of symbolic relations. In ICCAD-1990, pages

88�91, 1990.

[83] C.N. Liu. A state variable assignment method for asynchronous sequential switch-

ing circuits. JACM, 10:209�216, April 1963.

[84] J. Lou, A.H. Salek, and M. Pedram. An exact solution to simultaneous technology

mapping and linear placement problem. In ICCAD, 1997.

[85] S. Malik, E.M. Sentovitch, R.K. Brayton, and A. Sangiovanni-Vincentelli. Retiming

and resynthesis: Optimizing sequential networks with combinational techniques. In

Proc. Hawaii International Conf. System Sciences, pages 397�406, 1990.

[86] A. Marshall, B. Coates, and P. Siegel. The design of an asynchronous communica-

tions chip. Design and Test, June 1994.

[87] A.J. Martin. Programming in VLSI: From communicating processes to delay-

insensitive circuits. In C.A.R. Hoare, editor, Developments in Concurrency and

Communication, UT Year of Programming Institute on Concurrent Programming,

pages 1�64. Addison-Wesley, Reading, MA, 1990.

[88] Alain J. Martin. Programming in VLSI: From communicating processes to delay-

insensitive circuits. In C. A. R. Hoare, editor, Developments in Concurrency and

Communication, UT Year of Programming Series, pages 1�64. Addison-Wesley,

1990.

291

[89] Alain J. Martin, Steven M. Burns, T. K. Lee, Drazen Borkovic, and Pieter J.

Hazewindus. The design of an asynchronous microprocessor. In Charles L. Seitz,

editor, Advanced Research in VLSI: Proceedings of the Decennial Caltech Confer-

ence on VLSI, pages 351�373. MIT Press, 1989.

[90] E. McCluskey. Minimization of boolean functions. Bell System Technical Journal,

35:1417�1444, 1956.

[91] E.J. McCluskey. Logic Design Principles. Prentice-Hall, 1986.

[92] P. McGeer and R. Brayton. Integrating Functional and Temporal Domains in Logic

Design. Kluwer Academic Publishers, 1991.

[93] P. McGeer, J. Sanghavi, R. Brayton, and A. Sangiovanni-Vincentelli. ESPRESSO-

SIGNATURES: A new exact minimizer for logic functions. In Proc. ACM/IEEE

Design Automation Conference, pages 618�621. IEEE Computer Society Press,

June 1993.

[94] C. E. Molnar, T.-P. Fang, and F. U. Rosenberger. Synthesis of delay-insensitive

modules. In Henry Fuchs, editor, 1985 Chapel Hill Conference on Very Large Scale

Integration, pages 67�86. CSP, Inc., 1985.

[95] J. Monteiro, J. Rinderknecht, S. Devadas, and A. Ghosh. Optimization of com-

binational and sequential logic circuits for low power using precomputation. In

Advanced Research in VLSI, pages 430�444, 1995.

[96] David E. Muller and W. S. Bartky. A theory of asynchronous circuits. In Proceed-

ings of an International Symposium on the Theory of Switching, pages 204�243.

Harvard University Press, April 1959.

292

[97] David E. Muller and W. S. Bartky. A theory of asynchronous circuits. In Proceed-

ings of an International Symposium on the Theory of Switching, pages 204�243.

Harvard University Press, April 1959.

[98] C. J. Myers, T. G. Rokicki, and T. H.-Y. Meng. Automatic synthesis and veri-

�cation of gate-level timed circuits. Technical Report CSL-TR-94-652, Stanford

University, January 1995.

[99] M. Nemani and F.N. Najm. High-level area and power estimation for vlsi circuits.

In ICCAD, 1997.

[100] L. S. Nielsen and J. Sparso. Designing asynchronous circuits for low power: An i�r

�lter bank for a digital hearing aid. Proceedings of the IEEE, February 1999.

[101] S.M. Nowick. Automatic synthesis of burst-mode asynchronous controllers. Tech-

nical report, Stanford University, 1993. Ph.D. Thesis.

[102] S.M. Nowick and B. Coates. Uclock: Automated design of high-performance un-

clocked state machines. In ICCD, 1994.

[103] S.M. Nowick and D.L. Dill. Automatic synthesis of locally-clocked asynchronous

state machines. In ICCAD, 1991.

[104] S.M. Nowick and D.L. Dill. Synthesis of asynchronous state machines using a local

clock. In ICCD, 1991.

[105] S.M. Nowick and D.L. Dill. Exact two-level minimization of hazard-free logic with

multiple-input changes. In ICCAD, 1992.

[106] S.M. Nowick and D.L. Dill. Exact two-level minimization of hazard-free logic with

multiple-input changes. IEEE Transactions on CAD, 14(8):986�997, August 1995.

293

[107] S.M. Nowick, N.K. Jha, and F. Cheng. Synthesis of asynchronous circuits for

stuck-at and robust path delay fault testability. In VLSI-Design-1995, January

1995.

[108] S.M. Nowick, K.Y. Yun, and D.L. Dill. Practical asynchronous controller design.

In ICCD, 1992.

[109] M. Paull and S. Unger. Minimizing the number of states in incompletely speci�ed

sequential switching functions. IRE Trans. on Elec. Comp., EC-8:356�367, Sept.

1959.

[110] J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice-Hall, 1981.

[111] R. Puri, 1995. Private communication.

[112] R. Puri and J. Gu. Area e�cient synthesis of asynchronous interface circuits. In

Proc. International Conf. Computer Design (ICCD), pages 212�216. IEEE Com-

puter Society Press, 1994.

[113] W. Quine. The problem of simplifying truth functions. American Mathematical

Monthly, 59:521�531, 1952.

[114] A. Raghunathan, S. Dey, and N.K. Jha. Register-transfer level estimation tech-

niques for switching activity and power consumption. In ICCAD, 1996.

[115] M. Rem, J. L. A. van de Snepscheut, and J. T. Udding. Trace theory and the de�-

nition of hierarchical components. In Proceedings of the Third Caltech Conference

on VLSI, pages 225�239. CSP Inc., 1983.

[116] T. Rokicki and C. Myers. Automatic veri�cation of timed circuits. In Proc. Interna-

tional Workshop on Computer Aided Veri�cation, pages 468�480. Springer-Verlag,

1994.

294

[117] R. Rudell. Logic synthesis for VLSI design. Technical Report UCB/ERL M89/49,

Berkeley, 1989.

[118] R. Rudell and A. Sangiovanni-Vincentelli. Multiple valued minimization for PLA

optimization. IEEE Trans. on CAD, CAD-6(5):727�750, Sept. 1987.

[119] R. Rudell and A. Sangiovanni-Vincentelli. Multiple-valued optimization for PLA

optimization. IEEE Trans. on CAD, 6(5):727�750, September 1987.

[120] J. Rutten and M. Berkelaar. Improved state assignments for burst mode �nite

state machines. In Proc. International Symposium on Advanced Research in Asyn-

chronous Circuits and Systems. IEEE Computer Society Press, April 1997.

[121] A. Saldanha, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. Satisfaction

of input and output encoding constraints. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 13(5):589�602, May 1994.

[122] A. Saldanha, T. Villa, R.K. Brayton, and A. Sangiovanni-Vincentelli. A framework

for satisfying input and output encoding constraints. In DAC, 1991.

[123] T. Sasao. Input-variable assignment and output phase optimization of pro-

grammable logic arrays. IEEE Transactions on Computers, C-33:879�894, October

1984.

[124] G. Saucier. Next-state equations of asychronous sequential machines. IEEE Trans.

on Computers, EC-21(4):397�399, April 1972.

[125] G. Saucier. State assignment of asynchronous sequential machines using graph

techniques. IEEE Trans. on Computers, C-21(3):282�288, March 1972.

[126] M. Sawasaki, C. Ykman, and B. Lin. Externally hazard-free implementations of

asynchronous control circuits. IEEE Trans. on CAD, CAD-16(6), August 1997.

295

[127] C.L Seitz. System timing. In Carver A. Mead and Lynn A. Conway, editors,

Introduction to VLSI Systems, chapter 7. Addison-Wesley, 1980.

[128] Chuan-Jin Shi and Janusz A. Brzozowski. An e�cient algorithm for constrained

encoding and its applications. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 12(12):1813�1826, December 1993.

[129] P. Siegel, G. De Micheli, and D. Dill. Automatic technology mapping for generalized

fundamental-mode asynchronous designs. In Proc. ACM/IEEE Design Automation

Conference, pages 61�67, June 1993.

[130] K. Singh, A. Wang, R. Brayton, and A. Sangiovanni-Vincentelli. Timing optimiza-

tion of combinational logic. In Proc. International Conf. Computer-Aided Design

(ICCAD), pages 282�285, 1988.

[131] Jan L. A. van de Snepscheut. Trace Theory and VLSI Design, volume 200 of Lecture

Notes in Computer Science. Springer-Verlag, 1985.

[132] K.S. Stevens, S.V. Robison, and A.L. Davis. The post o�ce - communication

support for distributed ensemble architectures. In Sixth International Conference

on Distributed Computing Systems, 1986.

[133] C.-J. Tan. State assignments for asynchronous sequential machines. IEEE Trans.

on Computers, C-20(4):382�391, April 1971.

[134] M. Theobald and S.M. Nowick. Espresso-hf: A heuristic hazard-free minimizer for

two-level logic. In DAC, June 1996.

[135] M. Theobald and S.M. Nowick. An implicit method for hazard-free two-level logic

minimization. In Proc. Int. Symp. Adv. Research in Async. Ckts. and Sys., March

1998.

296

[136] H. Touati, H. Savoy, B. Lin, R. Brayton, and A. Sangiovanni-Vincentelli. Implicit

state enumeration of �nite state machines using bdds. In Proc. International Conf.

Computer-Aided Design (ICCAD), pages 130�133, 1990.

[137] J.H. Tracey. Internal state assignments for asynchronous sequential machines. IEEE

Trans. on Elec. Comp., EC-15:551�560, August 1966.

[138] Chi-Ying Tsui, Massoud Pedram, Chih-Ang Chen, and Alvin M. Despain. Low

power state assignment targeting two- and multi-level logic implementations. In

Proceedings of the 1994 IEEE/ACM International Conference on Computer-Aided

Design, pages 82�87, 1994.

[139] S.H. Unger. Asynchronous Sequential Switching Circuits. New York: Wiley-

Interscience, 1969.

[140] C.H. van Berkel and R.W.J.J. Saeijs. Compilation of communicating processes into

delay-insensitive circuits. In ICCD. IEEE Computer Society Press, 1988.

[141] K. van Berkel, M. Josephs, and S. M. Nowick. Scanning the technology: Applica-

tions of asynchronous circuits. Proceedings of the IEEE, February 1999.

[142] H. van Gageldonk, D. Baumann, K. van Berkel, D. Gloor, A. Peeters, and

G. Stegmann. An asynchronous low-power 80c51 microcontroller. Proceedings of

the IEEE, February 1999.

[143] P. Vanbekbergen, F. Catthoor, G. Goossens, and H. De Man. Optimized synthesis

of asynchronous control circuits from graph-theoretic speci�cations. In ICCAD,

1990.

[144] P. Vanbekbergen, B. Lin, G. Goossens, and H. de Man. A generalized state assign-

ment theory for transformations on signal transition graphs. In Proc. International

297

Conf. Computer-Aided Design (ICCAD), pages 112�117. IEEE Computer Society

Press, November 1992.

[145] T. Villa, T. Kam, R.K. Brayton, and A. Sanviovanni-Vincentelli. Synthesis of

Finite State Machines: Logic Optimization. Kluwer Academic Publishers, 1997.

[146] T. Villa and A. Sangiovanni-Vincentelli. NOVA: State assignment of �nite state

machines for optimal two-level logic implementations. In DAC, pages 327�332,

1989.

[147] T. Villa and A. Sangiovanni-Vincentelli. NOVA: state assignment of �nite state ma-

chines for optimal two-level logic implementation. IEEE Trans. on CAD, 9(9):905�

924, Sept. 1990.

[148] Ted E. Williams and Mark A. Horowitz. A zero-overhead self-timed 160ns 54b

CMOS divider. IEEE Journal of Solid-State Circuits, 26(11):1651�1661, November

1991.

[149] S. Yang and M. Cieselski. Optimum and suboptimum algorithms for input encoding

and its relationship to logic minimization. IEEE Transactions on Computer-Aided

Design, CAD-10(1):4�12, January 1991.

[150] K. Yun, D. Dill, and S.M. Nowick. Synthesis of 3D asynchronous state machines.

In ICCD, 1992.

[151] K. Y. Yun, A. E. Dooply, J. Arceo, P. A. Beerel, and V. Vakilotojar. The design

and veri�cation of a high-performance low-control-overhead asynchronous di�eren-

tial equation solver. In Proc. International Symposium on Advanced Research in

Asynchronous Circuits and Systems. IEEE Computer Society Press, April 1997.

[152] Kenneth Y. Yun. Synthesis of Asynchronous Controllers for Heterogeneous Sys-

tems. PhD thesis, Stanford University, August 1994.

298

[153] K.Y. Yun and D.L. Dill. Automatic synthesis of 3D asynchronous �nite-state ma-

chines. In ICCAD, 1992.

[154] K.Y. Yun and D.L. Dill. A high-performance asynchronous scsi controller. In

ICCD, 1995.

[155] K.Y. Yun, D.L. Dill, and S.M. Nowick. Practical generalizations of asynchronous

state machines. In EDAC, 1993.

