

Victor	Aladjev,	Vjacheslav	Vaganov

Extension	of	Mathematica	system
functionality
Tallinn	–	2015

Extension	of	Mathematica	system	functionality:	Victor	Aladjev,	Vjacheslav	Vaganov.–
Tallinn:	TRG	Press,	563	p.,	2015

Systems	of	computer	mathematics	find	more	and	more	broad	application	in	a	number	of
natural,	economical	and	social	fields.	These	systems	are	rather	important	tools	for
scientists,	teachers,	researchers	and	engineers,	very	well	combining	symbolical	methods
with	advanced	computing	methods.	One	of	leaders	among	means	of	this	class	undoubtedly
is	theMathematica	system.	The	book	focuses	on	one	important	aspect–modular
programming	supported	byMathematica.	The	given	aspect	is	of	particular	importance	not
only	for	appendices	but	also	above	all	it	is	quite	important	in	the	creation	of	the	user
means	that	expand	the	most	frequently	used	standard	means	of	the	system	and/or	eliminate
its	shortcomings,	or	complement	the	new	facilities.

Software	tools	presented	in	the	book	contain	a	number	of	rather	useful	and	effective
methods	ofprocedural	andfunctional	programming	inMathematica	system	that	extend	the
system	software	and	allow	sometimes	much	more	efficiently	and	easily	to	program	the
objects	for	various	purposes	first	of	all	wearing	system	character.	The	above	software
tools	rather	essentially	dilate	theMathematica	functionality	and	can	be	useful	enough	for
programming	of	many	applications	above	all	of	system	character.	Furthermore,	the	book	is
provided	with	freeware	packageAVZ_Package	containing	more	than680	procedures,
functions,	global	variables	and	other	program	objects.	The	present	book	is	oriented	on	a
wide	enough	range	of	users	of	systems	of	the	computer	mathematics,	teachers	and
students	of	universities	at	courses	of	computer	science,	mathematics	and	other
natural–science	disciplines.

In	the	course	of	preparation	of	the	present	book	the	license	releases8÷	10	of
theMathematica	system	provided	byWolfram	Research	Inc.	have	been	used.
©	Victor	Aladjev,	Vjacheslav	Vaganov.	All	rights	reserved.	Printed	by	CreateSpace,	An
Amazon.com	Company

Contents

Preface	5
Chapter	1.	Additional	means	in	interactive	mode	of	theMathematica	13
Chapter	2.	Additional	tools	of	processing	of	expressions	in	the	Mathematica	software	26
Chapter	3.	Additional	means	of	processing	of	symbols	and	string	structures	in
theMathematica	system	58
Chapter	4.	Additional	means	of	processing	of	sequences	and	lists	in	the	Mathematica

software	81
Chapter	5.	The	additional	means	expanding	the	standardMathematica	functions,	or	its
software	as	a	whole	101
5.1.	The	control	branching	structures	and	cyclic	structures	in	the	Mathematica	system	123
5.2.	The	cyclic	control	structures	of	theMathematica	system	127
Chapter	6.	Problems	of	procedural	programming	in	theMathematica	software	130
6.1.	Definition	of	procedures	in	theMathematica	software	130
6.2.	Definition	of	the	user	functions	and	pure	functions	in	software	of	theMathematica
system	146
6.3.	Means	of	testing	of	procedures	and	functions	in	theMathematica	software	154
6.4.	Headings	of	procedures	and	functions	in	theMathematica	system	182
6.5.	Formal	arguments	of	procedures	and	functions;	the	means	of	processing	them	in
theMathematica	software	207
6.6.	Local	variables	of	modules	and	blocks;	the	means	of	manipulation	by	them	in
theMathematica	software	235
6.7.	Global	variables	of	modules	and	blocks;	the	means	of
manipulation	by	them	in	theMathematica	software	259
6.8.	Attributes,	options	and	values	by	default	for	the	arguments	of	the	user	blocks,
functions	and	modules;	additional	means
of	processing	of	them	in	theMathematica	system	275
6.9.	Some	additional	facilities	for	operating	with	blocks,	functions	and	modules	in
theMathematica	software	292
Chapter	7.	Means	of	input–output	of	theMathematica	354
7.1.	Means	of	theMathematica	for	work	with	internal	files	354
7.2.	Means	of	theMathematica	system	for	work	with	external	files	369
7.3.	Means	of	theMathematica	system	for	processing	of	attributes	of	directories	and
datafiles	385
7.4.	Additional	means	of	processing	of	datafiles	and	directories	396
7.5.	Certain	special	means	of	processing	of	datafiles	and	directories	420
Chapter	8.	The	manipulations	organization	with	the	user	packages	in	theMathematica
software	431
8.1.	Concept	of	the	context,	and	its	use	in	the	software	of	the
Mathematica	system	432
8.1.1.	Interconnection	of	contexts	and	packages	in	the	software	of	theMathematica	system
437
8.2.	Definition	of	the	user	packages,	and	their	usage	in	the
Mathematica	software	440
8.3.	Additional	means	of	operating	with	packages	in	theMathematica	473
8.4.	The	organization	of	the	user	software	in	theMathematica	system	534
8.5.	A	package	for	theMathematica	system	550
References	553

Monographs,	textbooks	and	books	on	computer	science,
theory	of	general	statistics,	cellular	automata	theory	and
computer	mathematics	systems,	prepared	and	published	by	members	of	the	Baltic
Branch	during1995	–	2015	558

About	the	Authors	563	Mathematica	2,	5	÷	10	–	trademarks	of	Wolfram	Research	Inc.

Preface

Systems	of	computer	mathematics	(SCM)	find	more	and	more	wide	application	in	a
number	of	natural,	economical	and	social	sciences	such	as:informatics,	chemistry,
mathematics,	physics,	technologies,	education,	economics,	sociology,	etc.	Such	systems
asMathematica,	Maple,	REDUCE,	MuPAD,	Derive,	Magma,	Axiom,	Maxima,	GAP,
MathPiper	and	others	are	more	and	more	demanded	for	learning	of	the	mathematically
oriented	disciplines,	in	various	scientific	researches	and	technologies.	These	systems	are
the	main	tools	for	teachers,	scientists,	researchers,	and	engineers.	Researches	on	the	basis
of	technology	SCM,	as	a	rule,	well	combine	algebraic	methods	with	advanced	computing
methods.	In	this	sense	ofSCM	–	interdisciplinary	area	between	informatics	and
mathematics	in	which	researches	are	concentrated	on	development	of	algorithms	for
algebraical(symbolical)	and	numerical	calculations	and	data	processing,	and	on	creation	of
programming	languages	along	with	program	environment	for	realization	of	this	kind	of
algorithms	and	tasks	of	different	purpose	which	are	based	on	them.
Solution	of	applied	user	problems	in	one	or	the	other	field	of	appendices	is	supported
bypackages	of	applied	programs	(PAPor	simply	packages)	of	special,	highly	specialized
or	general	purpose.	Classification	and	characteristic	of	such	class	of	software	can	be	found
in	our	previous	books	[3–5].	Naturally,	the	qualified	user	well	owning	one	of	effective
programming	languages(for	example,	Basic,	C,	Fortran,	PL/1,	Pascal,	Lisp,	Prolog,	etc.)
in	a	number	of	cases	for	the	solution	of	own	tasks	can	independently	write	and	debug	a
separate	program	or	a	complex	of	programs	allowing	to	realize	algorithm	of	its	tasks	on	a
personal	computer.	In	some	cases	such	approach	can	be	more	effective,	than	use	for	these
purposes	of	ready	software	since	the	software	developer	at	the	same	time	well	owns
specifics	of	the	solved	task	and	conditions	of	its	operation.	However,	such	approach
demands	as	a	rule	of	serious	costs	and	at	present	abundance	of	various	type	and	purpose	of
means	for	a	personal	computer	becomes	considerably	inexpedient.	At	the	same	time,
developed	PAP	are	supplied	with	own	builtin	programming	language	of	one	or	other	level
of	complexity	allowing	to	program	the	whole	tasks	or	their	separate	fragments	which	may
be	in	the	environment	of	a	package	are	inefficiently,	inexpedient,	and	in	some	cases	and	is
impossible	to	realize	by	the	standard	means	of	a	package.

This	book	is	devoted	to	the	class	of	software	called	by	systems	of	computer	mathematics
which,	first	of	all,	are	intended	for	the	solution	of	problems	of	mathematical	character,
and,	first	of	all,	to	leaders	in	this	class	to	systems	Mathematica	andMaple.	Moreover,	only
the	indirect	attention	concerning	comparison	of	systems	on	certain	separate	moments	is
paid	to	the	second	system	whereas	quite	developed	their	comparative	analysis	can	be
found	in	our	books	[28-30].	At	that,	much	attention	was	paid	both	on	experience	with
described	means,	and	features	of	their	usage,	and	also	recommendations	for	the	user
following	from	them.	As	far	as	possible,	the	most	effectivetechnique	of	application	of
these	means	for	the	solution	of	those	or	other	applied	user	tasks	have	been	offered.
Moreover,	in	book	[33]	we	presented	an	excursus	in	history	of	computer	algebra	systems
that	represents	a	certain	interest	for	the	user	of	this	class	of	software.	Rather	detailed
characteristic	of	this	series	of	books	can	be	found,	in	particular,	in	[30-33]	and	in	the
present	book	isn’t	considered.	Our	operating	experience	withsystems	of	computer	algebra,

first	of	all,Mathematica	andMaple	allowed	not	only	to	carry	out	a	comparative	analysis	of
these	means,	to	reveal	deficiencies	inherent	to	them,	and	also	to	create	a	number	of	the
means	expanding	their	functionality	and	eliminating	their	some	defects.	All	these
questions	including	questions	ofterminological	character	with	various	extent	of	detailing
have	been	considered	in	a	series	of	our	books	and	papers	[1-48].

The	Mathematica	system	along	with	the	above–mentionedMaple	system	is	one	of	the
most	known	and	popularSCM,	it	contains	a	rather	large	number	of	functions	for	providing
as	symbolical	transformations,	and	for	numerical	calculations.	TheMathematica	system
for	today	is	multipurpose	means	that	includes	a	large	number	of	opportunities	for	the
solution	of	quite	wide	range	of	problems.	Naturally,	for	these	means	can`t	be	given	a
rather	full	analysis	within	the	framework	of	the	given	book.	Furthermore,	the	target	of	the
book	consists	in	other–	in	the	book	the	attention	is	focused	only	on	one	aspect	of	system–
opportunities	of	her	program	environment	for	solution	of	special	problems	of	mass	and
system	character.

This	aspect	has	the	special	importance	not	only	for	solution	of	applied	tasks	but	above	all
it	is	quite	important	at	creation	of	the	software	expanding	often	used	system	means	and/or
eliminating	their	defects,	or	supplementing	the	system	with	new	means.	In	this	context
possibilities	of	built–in	language	of	the	system	on	creation	of	such	kind	of	procedures	or
functions	are	of	special	interest.	So,	programming	in	the	system	is	a	multifaceted	subject
and	in	it	we	focus	attention	only	on	questions	of	realization	of	procedures/functions	that
represent	main	program	objects	both	for	the	most	often	used	means	of	the	user,	and	for	the
means	expanding	and	improving	standard	system	means	in	the	system	software,	i.e.
realized	by	means	of	the	built–in	language	of	the	system(Mathlanguage).	In	this	context	it
is	also	possible	to	estimate	in	quite	full	measure	theMathematica	system	software,	without
regarding	to	some	subjective	moments,	first	of	all,	the	user	preferences	and	habits.
Naturally,	these	moments	play	a	rather	essential	part	for	the	user	which	has	a	certain
experience	of	work	with	program	languages	of	procedural	type	whereas	for	a	beginner
they	stand	not	so	sharply	because	of	lack	of	such	experience.	So,	considering	orientation
of	the	given	book,	for	conscious	acquaintance	with	its	contents	the	knowledge
ofMathlanguage	at	the	level	above	the	initial	is	supposed,	for	example,	within	the	works
[29-33,51,52,55,57,60,62,64,66,71].	Since	the10th	versionMath–language	is	called	as
Wolfram	Language	what,	in	our	opinion,	is	result	of	certain	painful	ambitions	similar	to
those	that	are	associated	with	book”A	New	Kind	of	Science”	along	with	a	fair	share	of
self–	advertisement	of	allegedly	new	means.
The	given	book	affects	a	rather	extensive	material	onMathematica	software	in	the	context
of	its	opportunities	inprocedural	andfunctional	programming.	Meanwhile,	main	purpose
of	this	book	laid	aside	the	questions	which	are	of	interest,	first	of	all,	to	readers	who	are	in
own	activity	at	the	first	stages	of	an	mastering	of	theMathematica	system.	For	beginners	it
is	recommended	to	address	oneself	to	the	corresponding	editions	whose	list	is	rather
extensive,	above	all,	the	English-language.	TheMathematica	system	is	considered	and	in
Russian–language	literature,	however	English–language	editions,	in	our	opinion,	are
represented	to	us	more	preferable.	In	general,	it	is	possible	to	familiarize	oneself	with
literature	on	the	websitewww.wolfram.com/books,	quite	useful	sources	can	be	found	in	the
represented	references,	including	a	rather	useful	references	in	theInternet.
Thus,	the	given	book	represents	a	certain	set	of	the	selected	system	problems	whose

purpose	not	only	to	expand	or	make	more	effective	theMathematica	system,	but	also	to
give	certain	help	to	those	users	of	theMathematica	who	would	like	to	move	from	the
user’s	level	to	a	level	of	the	programmer	or	to	those	who	when	usingMathematica	already
faced	some	its	restrictions	and	want	to	improve	its	program	environment.	At	that,	the
skilledMathematica	programmers	probably	will	also	be	able	to	find	for	themselves	in	our
book	a	rather	useful	information	and	of	applied	character,	and	to	reflection.	Therefore
illumination	only	of	some	questions	essence	without	their	rather	detailed	discussion,
certain	nuances	and	consideration	of	adjacent	questions	that	are	often	interesting	and
important	per	se	often	takes	place.	Moreover,	the	system	means	presented	in	the	book	can
be	used	as	rather	useful	means	at	developing	own	applications	in	the	environment
ofMathematica.	In	our	opinion,	an	analysis	of	the	source	codes	of	the	means	presented	in
this	book	which	use	both	effective,	and	nonstandard	methods	of	programming	along	with
quite	certain	practical	interest	will	allow	to	master	the	environment	of	Mathematica
system	more	deeply.	For	convenience	of	their	use	in	the	given	quality	the	reader	has
possibility	of	free	download	ofAVZ_Package	package	forMathematica	system	of
versions8÷10	which	contains	these	means	[48].	The	means	considered	throughout	the
present	book	answer	fully	the	main	goal	of	the	offered	book	which	can	be	characterized	by
the	following2	main	directions,	namely:

(1)	representation	of	a	number	of	useful	enough	means	of	system	character	that	expand
and	supplement	standard	means	of	theMathematica	system;	(2)	illustration	on	their
example	of	receptions	and	methods,	enough	useful	inprocedural	andfunctional
programming,	along	with	a	number	of	essential	enough	features	of	this	paradigm	of
programming	in	the	conditions	of	the	program	environment	of	theMathematica	system.
Here	is	quite	appropriate	to	note	a	quite	natural	mechanism	of	formation	of	own	software
means	of	the	user	working	in	some	program	environment.	In	course	of	programming	of
one	or	other	means,	or	the	whole	project	a	certain	situation	is	quite	real	when	is	rather
expedient	to	program	some	additional	tools	that	are	absent	among	standard	means,	either
they	are	more	effective,	or	they	are	more	convenient	than	standard	means.	In	many
important	cases	the	applicability	of	these	means	can	have	mass	enough	character,	allowing
to	form	program	toolkit	of	quite	wide	range	of	applicability.

Exactly	in	many	respects	thanks	to	thedescribed	mechanism	we	have	created	quite	famous
libraryUserLib	forMaple	along	with	packageAVZ_Package	forMathematica	which
contain	more	than850	and680	means	respectively	[47,48].	All	above-mentioned	means	are
supplied	withFreeWare	license	and	have	open	program	code.	Such	approach	to
programming	of	many	projects	both	inMathematica,	and	inMaple	also	substantially
promoted	emergence	of	a	number	of	system	means	from	above–mentioned	library	and
package,	when	development	of	software	for	simplification	of	its	realization	revealed
expediency	of	definition	of	the	new	accompanying	tools	of	system	character	that	are	rather
frequently	used	both	in	applied	and	in	system	programming.	So,	openness	of
theAVZ_Package	package	code	allows	both	to	modify	the	means	containing	in	it,	and	to
program	on	their	basis	own	means,	or	to	use	their	components	in	various	appendices.	In
our	opinion,	tasks	and	means	of	their	realization	inMathematica	which	are	presented	in
the	above	package	can	be	rather	useful	at	deeper	mastering	of	system	and	in	a	number	of
cases	will	allow	to	simplify	rather	significantly	programming	of	appendices	in	it,	first	of
all,	the	system	problems.	At	that,	the	methodological	considerations	represented	in	our

previous	books	[29-33]	fully	remain	in	force	and	relative	to	the	present	book.
Means	ofAVZ_Package	package	have	different	complexity	of	organization	and	used
algorithms;	in	certain	cases,	they	use	effective	and	nonstandard	receptions	of
programming	inMathematica.	The	given	means	can	be	used	as	individually(for	the
decision	of	various	problems	or	for	creation	on	their	basis	of	new	means),	and	in	structure
ofAVZ_Package	package	extending	standard	tools	of	theMathematica,	eliminating	a
number	of	its	defects	and	mistakes,	raising	its	compatibility	relatively	to	its	releases	and
raising	effectiveness	of	programming	of	problems	inMathematica.	A	tool	represented	in
the	book	is	supplied	with	description	and	explanations,	contains	the	source	code	and	the
more	typical	examples	of	its	application.	As	required,	a	description	has	supplied	by
necessary	considerations,	concerning	peculiarities	of	program	execution	in
theMathematica	environment.
The	given	book	considers	certain	principal	questions	ofprocedure–functional
programming	inMathematica,	not	only	for	the	decision	of	various	applied	problems,	but,
first	of	all,	for	creation	of	the	software	expanding	frequently	used	facilities	of	the	system
and/or	eliminating	their	defects	or	expanding	the	system	with	new	facilities.	The	software
presented	in	this	book	contains	a	series	of	useful	and	effective	receptions	of	programming
inMathematica	system,	and	extends	its	software	which	enables	more	simply	and
effectively	to	programme	in	the	systemMathematica	the	problems	of	various	purpose.	The
represented	monograph,	is	mostly	for	people	who	want	the	more	deep	understanding	in
the	Mathematica	programming,	and	particularly	those	Mathematica	users	who	would	like
to	make	a	transition	from	the	user	to	a	programmer,	or	perhaps	those	who	already	have
certain	limited	experience	inMathematica	programming	but	want	to	improve	their
possibilities	in	the	system.	Whereas	the	expertMathematica	programmers	will	also
probably	find	an	useful	enough	information	for	yourself.

At	that,	it	should	be	noted	that	the	source	codes	of	means	given	in	this	book	contain	calls
of	non–standard	tools	that	didn’t	find	reflection	in	the	present	book	in	a	number	of	cases,
but	are	presented	in	our	package[48].	Therefore,	their	detailed	analysis	requires
acquaintance	with	these	tools,	at	least,	at	the	level	of	usages	on	them.	Meanwhile,	the
main	algorithm	of	many	means	of	the	presented	book	is	rather	well	looked	through	and
without	acquaintance	with	similar	means	while	real	use	of	these	means	perhaps	only	after
loading	of	this	package	into	the	current	session.	Along	with	the	illustrative	purposes	the
means	represented	in	this	monograph	quite	can	be	used	and	as	enough	useful	means
extending	the	programMathematica	environment	that	rather	significantly	facilitate
programming	of	a	wide	range	of	the	problems	first	of	all	having	the	system	character.	Our
experience	of	conducting	of	the	master	classes	of	various	level	in	systems
andMathematica,	andMaple	confirms	expediency	of	application	in	common	with
standard	means	of	both	systems	and	some	user	tools	created	in	the	course	of	programming
of	appendices.	Tools	represented	in	the	book	increase	the	range	and	efficiency	of	usage	of
Mathematica	on	Windows	platform	owing	to	the	innovations	in	three	basic	directions,
namely:(1)elimination	of	a	series	of	basic	defects	and	shortcomings,	(2)extending	of
capabilities	of	a	series	of	standard	tools,	and(3)replenishment	of	the	system	by	new	means
which	increase	capabilities	of	its	program	environment,	including	the	means	which
improve	the	level	of	compatibility	of	releases7	–	10.	At	last,	with	organization	of	the	user
software	and	programming	of	large-scale	systems	inMathematica	software	along	with	our
standpoint	on	a	question:	Mathematica	orMaple?	the	interested	reader	can	familiarize	in

[29–33].	At	last,	a	number	of	means	represented	in	the	above	books	is	intended	for	a
extension	of	standard	means	of	the	systemsMathematica	andMaple	along	with
elimination	of	their	shortcomings	and	mistakes.	These	means	not	only	more	accurately
accent	distinctions	of	both	systems,	but	also	their	problems	of	common	character.	And	in
this	relation	they	allow	to	look	from	different	points	of	view	on	these	or	other	both
advantages,	and	shortcomings	of	both	systems.	In	the	present	book	we	present	a	number
of	means	of	similar	type	concerning	theMathematica	system.	At	that,	it	should	be	noted
that	a	mass	optimization	of	procedures	have	not	been	performed,	procedures	in	many
cases	have	been	written,	as	they	say	on’sheet‘;	on	the	other	hand,	numerous	procedures
have	been	optimized	using	both	the	standard	means	and	newly	created	tools	of	system
character.	In	this	context	here	there	is	a	magnificent	experimental	field	for	increasing	of
professionalism	of	the	user	at	operating	with	theMathematica	software.

Inclusion	of	source	codes	of	the	procedures	and	functions	presented	in	this	book	with	their
short	characteristic	directly	in	the	book	text	allows	to	work	with	them	without	computer,
considering	a	habit	of	considerable	number	of	the	users	of	the	senior	generation	to	operate
with	program	listings	before	exit	to	the	computer	what	in	a	series	of	cases	promoted	better
programming	in	due	time	at	programming	in	batch	mode.	In	our	opinion,	skill	to	operate
with	program	listings	is	a	rather	important	component	of	the	programmer	culture,	allowing
better	to	feel	the	used	program	environment.	In	a	certain	measure	it	is	similar	to
possession	of	the	musician	by	the	sheet	music.

Moreover,	many	listings	of	the	represented	means	have	a	rather	small	size,	allowing	to
analyze	them	outside	of	theMathematica	environment	in	the	assumption	that	the	reader	is
sufficiently	familiar	with	its	software.	Now,	at	mass	existence	of	personal	computers	of
various	type	the	mentioned	visual	analysis	of	the	program	listings	was	replaced	with	the
mode	of	interactive	programming,	however	it’s	not	the	same,	and	in	the	first	case	the
process	of	programming	seems	to	us	more	better	and	efficient.	Meanwhile,	even	tools	with
small	source	code	often	are	useful	enough	at	programming	of	various	applications,	in
particular,	of	system	character.	Whereas	others	demand	for	the	understanding	of	serious
enough	elaboration,	including	acquaintance	with	our	packageAVZ_Package	[48].

As	shows	our	experience,	the	programming	in	the	above	mode	slightly	more	slowly,	than
directly	on	the	computer,	however	it	allows	to	concentrate	our	better	on	an	object	of
programming	and	it	is	better	to	think	over	a	problem	and	a	way	of	its	decision,	rather,	than
method	of	its	decision	in	the	so-called	interactive	mode.	Even	in	the	presence	of
thepersonal	computer	(PC)	we	got	used	thebasic	skeleton	of	a	program	to	write	on	paper
and	only	then	to	pass	to	debugging	onto	the	personal	computer	in	the	interactive	mode.	So,
in	our	opinion,	such	approach	allows	to	write	programs	more	thoughtfully;	at	that,
following	the	old	habit	to	write	optimal	enough	codes	for	their	subsequent	performance	on
quite	limited	computing	resources	of	the	computers20–30	years	ago.	However,	in	many
respects	this	is	matter	of	habit,	however	you	shouldn’t	forget	that	the	old	isn’t	always
worse	than	new	one	and,	getting	new	opportunities,	we,	often,	lose	the	old	skills	important
for	work.	Here	and	in	this	case,	having	received	very	convenient	means	of
communication,	we,	sometimes,	lose	sight	of	efficiency	of	a	program	code,	creating	it
without	especial	difficulties	in	the	interactive	mode	with	the	only	purpose	to	receive	the
demanded	result,	often,	ignoring	quality.

Of	course,	there	is	no	only	best	way	of	creation	of	еру	programs.	Different	technologies
and	paradigms	are	required	for	the	programming	of	different	problems	and	their	levels	of
complexity.	So,	in	the	elementary	cases	is	quite	enough	of	the	knowing	of	elements	of
structural	writing	of	programs.	While	for	creation	of	complex	program	projects	is	required
not	only	to	be	fluent	in	a	programming	language	in	rather	full	volume,	but	also	to	have
notion	of	the	principles	of	elaboration	and	debugging	of	programs,	opportunities	of	both
standard	and	other	libraries	of	one	or	the	other	software,	etc.

As	a	rule,	than	the	problem	is	more	complex,	the	more	time	is	required	for	mastering	of
the	tools	necessary	for	its	decision.	In	this	context	the	software
(procedures/functions/global	variables)	which	is	presented	in	the	present	book	contain	a
number	of	rather	useful	and	effective	methods	of	programming	in	theMathematica
environment	and	extends	its	program	environment,	they	give	opportunity	more	simply	and
effective	to	program	different	problems.	These	means	in	the	process	of	application	of
theAVZ_Package	package	are	updated,	taking	into	account	both	the	new	means,	and	the
optimization	of	already	existing	means.	In	many	problems	of	different	purpose	the
package	AVZ_Package	showed	itself	as	a	rather	effective	toolkit.	The	package	on	the
freeware	conditions	is	attached	to	the	present	book	[48].

Chapter	1.	Additional	means	in	interactive	mode	of	the
Mathematicasystem

Further	we	will	distinguish	two	main	operating	modes	with	Mathematica	–	interactive
andprogram.	Under	the	first	mode	step-by-step	performance	with	aMathematica
document,	i.e.	from	an	inputIn[n]	up	to	outputOut[n]	will	be	understood	while	under
theprogram	mode	the	operating	within	ablock	or	amodule	is	understood.	In	the	present
chapter	some	additional	means	rather	useful	at	work	withMathematica	in	interactive	mode
are	considered.	In	the	course	of	operating	ininteractive	mode	in	many	cases	there	is	a	need
of	use	of	earlier	calculated	expressions	in	the	previousIn-paragraphs.	For	this	purpose
the%koperator	{%,	%%,	%%	…	%%(ktimes)}	serves	which	defines	return	of	the	last,
penultimate	andkth	previous	result	of	calculations	in	the	current	session.	In	addition,	it
should	be	noted	that%–operators	in	systems	Mathematica	andMaple	are	conceptually
various.	Though,	having	various	real	areas	of	applicability	inMathematica	andMaple,	at
the	same	time%–	operators	possess	both	the	shortcomings,	and	essential	advantages	[28-
33].	TheMathematica	supports2	rather	useful	predetermined	global	variables:
$Line–defines	number	of	the	lastInparagraph	of	the	current	session;
$HistoryLength–defines	number	of	the	previous	paragraphsInandOutkept	in	the	current
session.
Moreover,	these	variables	allow	redefinitions	by	simple	assignment	of	new	values.
For$HistoryLength	variable	value	by	default	is	theinfinity(∞);	but	using	smaller
installations	for	the	variable,	it	is	possible	significantly	to	save	the	size	ofRAM	required
forMathematica	system.	In	turn,	global	variable	$Line1	unlike	the	standard	global
variable$Line	determines	total	number	ofOutparagraphs	of	the	current	session,	including
results	of	calculation	of	the	user	packages	loaded	into	the	session	from	files	of	formats
{”cdf“,	“nb”}.

In[500]	:=	$Line1	:=	Block[{a	=	””,	c	=	“Out[“,	k	=	1},	For[k,	k	<	Infinity,	k++,	a	=

ToString[Out[k]];	If[a	==	c	<>	ToString[k]	<>	“]”,	Return[k]]];	k]
In[501]:=	$Line1
Out[501]=	2014
In[502]:=	$Line
Out[502]=	502
The	above	fragment	represents	source	code	and	examples	of	application.	So,	after	loading
of	the	user	package	the	values	of	variables$Line1	and$Line	can	differ	rather	significantly:
thefirst	defines	total	number	of	the	keptOut–	paragraphs,	while	thesecond–	number	of
really	receivedOut–paragraphs	in	the	current	session	of	theMathematica.
In	a	whole	series	of	cases	of	work	with	large	documents	there	is	expediency	of	deleting
from	the	current	session	of	earlier	usedOutparagraphs	with	the	results	unnecessary	in	the
future.	This	operation	is	provided	by	the	simple	ClearOut	procedure,	whose
callClearOut[x]	returnsnothing	and	at	the	same	time	deletesOutparagraphs	with	numbers
determined	by	a	whole	positive	number	or	their	listx.	The	following	fragment	represents
source	code	of	the	procedure	with	a	typical	example	of	its	application.	This	procedure	in
some	cases	also	provides	allocation	of	additional	memory	in	work	area	of	system	which	in
case	of	large	documents	is	quite	significant.

In[2520]:=	ClearOut[x_	/;	PosIntQ[x]	||	PosIntListQ[x]]	:=
Module[{a	=	Flatten[{x}],	k	=	1},	Unprotect[Out];	For[k,	k	<=	Length[a],	k++,
Out[a[[k]]]	=.];	Protect[Out];]

In[2521]	:=	{Out[1508],	Out[1510],	Out[1511],	Out[1515]}
Out[2521]=	{42,	78,	2014,	480}
In[2522]:=	ClearOut[{1508,	1510,	1511,	1515}]
In[2523]:=	{Out[1508],	Out[1510],	Out[1511],	Out[1515]}
Out[2523]=	{%1508,	%1510,	%1511,	%1515}

At	that,	call	of	used	functionPosIntQ[x]	orPosIntListQ[x]	returnsTrue	ifx	–	a	positive
number	or	a	list	positive	numbers	accordingly;	otherwise,False	is	returned.	These
functions	are	located	in	our	packageAVZ_Package	[48];	at	that,	many	means	represented
below	also	use	means	of	this	package.

On	the	other	hand,	in	certain	cases	of	work	in	the	interactive	mode	a	need	of	replacement
ofOutparagraphs	onto	other	contents	arises	that	rather	simple	ReplaceOut	procedure
implements,	whose	successful	callReplaceOut[x,	y]	returnsnothing,at	the	same	time
carrying	out	replacement	of	contents	of	the	existingOut–paragraphs	which	are	determined
by	a	whole	positive	or	their	listx,	by	new	expressions	defined	by	ay–argument.	The	call
assumes	parity	of	factual	arguments	ofx	andy;	otherwise,	callReplaceOut[x,	y]	is	returned
unevaluated.	The	following	fragment	represents	source	code	ofReplaceOut	procedure
with	typical	examples	of	its	usage.

In[2025]	:=	AgnAvzVsv	=	80
Out[2025]=	80
In[2026]:=	ReplaceOut[x_	/;	PosIntQ[x]	||	PosIntListQ[x],	y___]	:=

Module[{a	=	Flatten[{x}],	b	=	Flatten[{y}],	k	=	1},	If[b	!=	{},	If[Length[a]	!=
Length[b],	Defer[ReplaceOut[x,	y]],	Unprotect[Out];	For[k,	k	<=	Length[a],	k++,
Out[a[[k]]]	=	b[[k]]];	Protect[Out]];	,

ClearOut[x]]]	In[2027]:=	ReplaceOut[2025,	480]
In[2028]:=	Out[2025]
Out[2028]=	480
In[2029]:=	ReplaceOut[2025]
In[2030]:=	Out[2025]
Out[2030]=	%2025

Moreover,	the	callReplaceOut[x]	deletes	contents	ofOut–paragraphs	that	are	defined	by
argumentx,	generalizing	the	previousClearOut	procedure.

Definition	of	variables	in	Mathematica.	Like	the	majority	of	programming	languages
inMathematica	system	for	expressions	the	names(identifiers)	are	used,	giving	possibility
in	the	future	to	address	to	such	named	expressions	on	their	names.	So,	on	the	operator“=”
theimmediate	assignment	to	one	or	several	names	of	the	demandedexpression	is	made
whereas	on	the	operator	“x:=”–	thepostponed	assignment.	Distinction	of	both	types	of
assignment	is	supposed	well	known	to	the	reader.	For	definition	of	assignment	type	that
has	been	applied	to	a	name	a	simple	enough	procedureDefOp	can	be	used	whose
callDefOp[x]	returns	the	type	in	string	format	of	assignment	applied	to	the	namex	coded
also	in	string	format,	namely:(1)	“Undefined”	–	a	name	x	isn’t	defined,	(2)	“=”	–
theimmediate	assignment	has	been	applied	to	a	name	x,	(3)	“:=”	–	thepostponed
assignment	has	been	applied	to	a	namex.	In[2040]:=	DefOp[x_	/;	StringQ[x]	&&
SymbolQ[x]	||

SymbolQ[ToExpression[x]],	y___]	:=	Module[{a	=	ToString[Definition[x]],	b	=	{y},	c,
d},	If[a	==	“Null”,	Return[“Undefined”],	c[h_]	:=	StringTake[a,
{Flatten[StringPosition[a,	h]][[2]]	+	1,–1}]];	If[SuffPref[a,	x	<>	”	=	“,	1],	d	=	“=”,	d	=
“:=”];	If[b	!=	{}&&	!	HowAct[y],	y	=	c[d]];	d]	In[2041]:=	v	=	78;	g	=	66;	s	:=	46;	Kr	=
18;	Art	:=	25;	Res	:=	a	+	b	+	c;

In[2042]	:=	Map[DefOp,	{“v”,	“g”,	“s”,	“Kr”,	“Art”,	“Res”,	“Avz”}]	Out[2042]=
{“=”,	“=”,	“:=”,	“=”,	“:=”,	“:=”,	“Undefined”}
In[2043]:=	Clear[y];	{DefOp[“Art”,	y],	y}
Out[2043]=	{“:=”,	“25”}
In[2044]:=	Clear[y];	{DefOp[“Res”,	y],	y}
Out[2044]=	{“:=”,	“a+	b+	c”}
In[2945]:=	Map[DefOpt,	{“Kr”,	“Res”}]
Out[2045]=	{”Kr=	18“,	“Res:=	a+	b+	c”}

While	call	DefOp[x,	y]	through	optional	second	argumenty	–	an	undefined	variable–
returns	an	expression	appropriated	to	a	namex.	The	value	which	has	been	assigned	to	a
variablex	remains	associated	with	it	until	its	removal	on“x=	.	“,	or	on	the	functionsClear,
ClearAll,	Remove,	or	its	redefinition.	The	fragment	above	represents	source	code	of	the
procedure	with	examples.	For	evaluation	of	assignments	theMath–language	hasDefinition
function	whose	callDefinition[x]	returns	all	definitions	ascribed	to	a	namex	along	with
ourDefOpt	procedure(see	fragment	above)	which	is	considered	in	the	present	book	below.
Along	with	this	procedure	also	other	means	of	return	of	definitions	are	considered.

In	a	number	of	cases	arises	a	necessity	of	cleaning	of	variables	of	the	current	session	from
the	values	received	as	a	result	of	dynamic	generation.	For	this	purpose	it	is	possible	to	use

the	mechanism	consisting	in	accumulation	in	a	list	of	values	of	variables	which	should	be
removed	from	the	current	session	subsequently,	or	be	cleared	from	the	values	and
attributes.	For	this	purpose	can	be	used	a	function	whose	callClearValues[w]	returns	the
empty	list,	at	the	same	time	deleting	all	variables	having	values	from	the	listw	from	the
current	session;	whereas	the	callClearValues[w,	y]	with	the	second	optional	argumenty
–any	expression–	returns	the	empty	list,	however	such	variables	are	only	cleared	of	values
and	attributes	without	removal	from	the	current	session.	The	following	fragment
represents	source	code	of	theClearValues	function	along	with	typical	examples	of	its
usage.

In[2070]:=	ClearValues[x_	/;	ListQ[x],	y___]	:=	Select[Map[If[{y}==	{},	Remove,
ClearAll],	Select[Names[“`*”],	MemberQ[x,	ToExpression[#]]	&]],	#	!=	“Null”	&]

In[2071]	:=	{a	=	42,	b	=	80,	c	:=	75,	d	=	480,	h5	:=	67,	Kr	=	18,	Art	=	x	+	Sin[y]}
Out[2071]=	{42,	78,	Null,	460,	Null,	17,	78+	Sin[2013]}
In[2072]:=	ClearValues[{42,	78,	75,	480,	67,	18,	x	+	Sin[y]}]
Out[2072]=	{}
In[2073]:=	Names[“`*”]
Out[2073]=	{”ClearValues“,	“Avz“,	“g“,	“Res“,	“s”}
In[2075]:=	{a	=	42,	b	=	78,	c	:=	75,	d	=	460,	h5	:=	66,	Kr	=	17,	Art	=	x	+	Sin[y]}
Out[2075]=	{42,	75,	Null,	450,	Null,	16,	x+	Sin[y]}
In[2076]:=	ClearValues[{42,	78,	75,	460,	66,	17,	x	+	Sin[y]},	78]	Out[2076]=	{}
In[2077]:=	Names[“`*”]
Out[2077]=	{”a“,	“Art“,	“b“,	“c“,	“ClearValues“,	“d“,	“h5“,	“Kr”}	In[2210]:=
VarsValues[x_	/;	ListQ[x]]	:=	Select[Names[“`*”],

MemberQ[x,	ToExpression[#]]	&]	In[2211]:=	{a	=	42,	b	=	78,	c	:=	75,	d	=	480,	h5	:=
67,	Kr	=	18,	Art	=	x	+	Sin[y]}:	In[2212]:=	VarsValues[{42,	78,	75,	480,	67,	18,	x	+
Sin[y]}]
Out[2212]=	{”a“,	“Art“,	“b“,	“c“,	“d“,	“h5“,	“Kr”}
In	the	second	part	of	the	fragment	theVarsValues	function	is	represented,	whose
callVarsValues[x]	returns	the	list	of	variables	in	string	format	which	have	values	from	a
listx.	Both	functions	represent	a	certain	interest	during	the	work	in	interactive	mode	of	the
current	session.	The	recommendations	about	use	of	these	functions	can	be	found	in	our
book	[33].
In	some	cases	on	the	basis	of	a	certain	value	is	required	to	determine	names	to	which	in
the	current	session	this	value	was	ascribed.	The	given	problem	is	solved	by	the	procedure
whose	callNvalue[x]	returns	the	list	of	names	in	string	format	with	a	preset	valuex.	At
that,	the	procedure	gives	only	those	global	variables	whose	values	have	been	received	in
the	current	session	in	Inparagraphs.	In	the	absence	of	such	names	the	procedure	call
returns	the	empty	list,	i.e.	{}.	The	following	fragment	presents	source	code	and	example
of	usage	of	theNvalue	procedure.
In[2725]:=	Nvalue[x_]	:=	Module[{a	=	{},	b	=	Names[“`*”],	k	=	1},

For[k,	k	<=	Length[b],	k++,	If[ToExpression[b[[k]]]	==	x,	AppendTo[a,	b[[k]]],
Next[]]];	Select[a,	!	SuffPref[#,	“Global`”,	1]	&]

In[2726]	:=	{Ag,	Av,	Art,	Kr,	V,	$Ar,	Vs,	$Kr,	G}=	{72,	67,	18,	25,	78,	480,	Null,	2014,
a*b};	Map[Nvalue,	{72,	67,	18,	25,	78,	480,	Null,	2014,	a*b}]

Out[2726]=	{{”Ag”},{”Av”},{”Art”},{”Kr”},{”V”},{“$Ar”},{”Vs”},{“$Kr”},{”G”}}

The	Nvalue1	procedure	is	an	extension	offunctionality	of	the	aboveNvalue	procedure.
The	callNvalue1[x]	returns	the	list	of	names	of	variables	in	the	string	format	to	which	in
the	current	session	a	valuex	has	been	ascribed.	In	the	next	fragment	the	source	code
ofNvalue1	with	examples	are	presented.

In[4334]	:=	Nvalue1[x_]	:=	Module[{a	=	{},	b	=	Select[Names[“*”],	StringFreeQ[#,
“$”]	&],	c,	k	=	1},	While[k	<=	Length[b],	c	=	ToExpression[“Attributes[”	<>
ToString1[b[[k]]]	<>	“]”];	If[!	MemberQ[c,	Protected],	AppendTo[a,	b[[k]]],	Null];
k++];

Select[a,	ToExpression[#]	===	x	&]]	In[4335]:=	{x,	y,	z,	t,	h,	g,	w,	s}=	{45,	78,	25,	18,
18,	18,	18,	18};	Nvalue1[18]	Out[4335]=	{”Art“,	“g“,	“h“,	“s“,	“t“,	“u“,	“w”}
Meanwhile,	theNvalue1	has	not	quite	satisfactory	time	characteristics	as	its	algorithm	is
based	on	the	analysis	of	all	active	objects	of	both	the	user	ones,	and	the	system	ones.
For	definition	of	the	values	ascribed	to	variables,	the	procedureWhatValue	is	quite	useful
whose	callWhatValue[x]	returns	value	ascribed	to	a	variable	x;	on	an	undefined	variablex
the	list	of	format	{”Undefined“,x}	is	returned	while	on	a	system	variablex	the	list	of
format	{”System“,x},	and	on	a	local	variablex	the	list	of	format	{”Local“,x},	is	returned.
The	following	fragment	represents	source	code	of	theWhatValue	along	with	examples	of
its	usage.	In[2844]:=	WhatValue[x_]	:=	If[SystemQ[x],	{“System”,	x},

If[!	SameQ[Definition2[ToString[x]][[1]],	ToString[x]],	{“Local”,	x},	{“Undefined”,
x}]]	In[2845]:=	Ag[x_]:=	Module[{},	x^2];	Sv[x_]:=	Block[{a},	a+x];	F[x_,	y_]:=	x*y
In[2846]:=	Map[WhatValue,	{480	+	78*#	&,	hg,	Sin,	Ag,	Sv,	78,	a*b,	F,	Gs}]
Out[2846]=	{{”Undefined“,	480+78#1&},	{”Undefined“,hg},	{”System“,	Sin},
{”Local“,	Ag},	{”Local“,	Sv},	{”Undefined“,	78},	{”Undefined“,	a*b},	{”Local“,	F},
{”Undefined“,	Gs}}

In[2847]	:=	M	=	Module[{avz},	avz];	WhatValue[M]
Out[2847]=	{”Local“,	avz$50551}
The	callClear[x1,	…,	xn]	of	the	standard	function	clears	symbols	{x1,	…,	xn},	excepting
symbols	withProtected-attribute.	As	a	useful	generalization	of	the	functionsClear
andClearAll	the	procedureClear1	can	be	considered	whose	callClear1[h,“x1”,	…,	“xn”]
returnsNull,	i.e.	nothing,	clearing	at	condition	h=1	the	symbols	{x1,	x2,	…,	xn}	with
saving	of	all	their	attributes	and	options	while	ath=	2,	clearing	symbols	{x1,	x2,	…,	xn}	as
from	expressions	ascribed	to	them,	and	from	all	attributes	and	options.	The	fragment
below	represents	source	code	ofClear1	along	with	examples	of	its	usage.

In[2958]	:=	Clear1[x_	/;	MemberQ[{1,	2},	x],	y___]	:=	Module[{a	=	{y},	b,	c,	d,	k	=
1},	If[y	===	{},	Null,	For[k,	k	<=	Length[a],	k++,	b	=	a[[k]];	d	=
Quiet[ToExpression[“Attributes[”	<>	ToString1[b]	<>	“]”]];
ToExpression[“Quiet[ClearAttributes[”	<>	ToString1[b]	<>	“,	”	<>	ToString[d]	<>
“]”	<>	“;	Clear”	<>	If[x	==	1,	””,	“All”]	<>	“[”	<>

ToString1[b]	<>	“]]”]];	If[x	==	2,	Null,	Quiet[Check[ToExpression[“SetAttributes[”
<>	ToString1[b]	<>	“,	”	<>	ToString[d]	<>	“]”],	$Failed]]]]]	In[2959]:=	S[x_]	:=	x^2;
SetAttributes[S,	{Listable,	Protected}];	Clear[“S”];

Clear	::wrsym:	Symbol	S	is	Protected.	>>

In[2960]:=	Clear1[1,	S]
In[2961]:=	Definition[S]
Out[2961]=	Attributes[S]=	{Listable,	Protected}
In[2962]:=	Clear1[2,	S]
In[2963]:=	Definition[S]
Out[2963]=	Null

As	a	rather	simple	and	useful	tool	the	UnDef	procedure	serves,	whose	call	UnDef[x]
returnsTrue	if	a	symbolx	isn’t	defined,	andFalse	otherwise.	While	callUnDef[x,	y]	with
the	second	optional	argument–an	undefined	variable–	returnsHead1[x]	value	throughy,
whereHead1	is	an	useful	generalization	of	standard	functionHead	considered	below.	At
that,	in	a	number	of	cases	of	procedural	programming	theUnDef	appears	as	a	quite	useful
tool	also.	The	fragment	represents	source	code	ofUnDef	with	examples	of	its	usage.

In[2490]	:=	UnDef[x_,	y___]	:=	Module[{a	=	{y},	b	=	Quiet[Check[Head1[x],	True]]},
If[a	!=	{}&&	!	HowAct[y],	y	=	b];	If[b	===	“SetDelayed	||	TagSetDelayed”,	True,
False]]	In[2491]:=	x	=	78;	y	=	{a,	b};	z	=	a	+	b;	Map[UnDef,	{t,	h,	x,	y,	z,	760}]
Out[2491]=	{True,	True,	False,	False,	False,	False}

In[2492]	:=	A[x_	/;	UnDef[x]]	:=	Block[{a},	a	=	480;	a];	y	:=	2014;	{A[y],	A[78]}
Out[2492]=	{A[2014],	A[78]}
In[2493]:=	L	=	{a,	b,	c,	d,	h,	g,	p,	v,	w};	Select[L,	UnDef[#]	&]	Out[2493]=	{a,	b,	c,	d,
p,	v,	w}
In[2494]:=	M[x_]	:=	x;	{UnDef[M,	t],	t}
Out[2494]=	{False,	“Function”}

Right	there	it	is	appropriate	to	note	that	on	examples	of	UnDef1,	UnDef2,	UnDef3–
theUnDef	procedure	modifications–	basic	distinction	between	procedures	of	the
types”Module”	and”Block”	is	illustrated	[28-33].	Therefore	the	type	of	procedure	should
be	chosen	rathercircumspectly,	giving	a	certain	priority	to	procedures	ofModule-type.	In
addition,	as	theenclosed	procedures	the	procedures	ofModule–type	are	used,	as	a	rule.
In	a	number	of	cases	exists	a	need	of	definition	of	a	context	of	an	arbitrary	symbol.	This
problem	is	solved	by	a	simple	enough	procedure,	whose	call	Affiliate[x]	returns	the
context	for	an	arbitrary	symbolx	given	in	the	string	format	whereas”Undefined”	is
returned	on	a	symbol,	completely	undefinite	for	the	current	session.	At	that,
under”completely	undefinite”	is	understood	as	a	concrete	expression,	and	a	symbol	for	the
first	time	used	in	the	current	session.	The	fragment	below	represents	source	code	of	the
given	procedure	and	examples	of	its	usage,	including	examples	explaining	the	essence	of
the	concept”completely	undefinite“.

In[80]:=	Affiliate[x_	/;	StringQ[x]]	:=	Module[{a	=	Quiet[Context[x]]},	If[ToString[a]
===	“Context[”	<>	x	<>	“]”,	“Undefined”,

If[MemberQ[Contexts[],	a]	&&	ToString[Quiet[DefFunc[x]]]]	==	“Null”	||
Attributes[x]	===	{Temporary},	“Undefined”,	a]]]	In[81]:=	G	=	67;	Map[Affiliate,
{“ProcQ1”,	“Sin”,	“G”,	“Z”,	“Affiliate”}]	Out[81]=	{”AladjevProcedures`”,
“System`”,	“Global`”,	“Undefined“,

“	AladjevProcedures`”}
In[82]:=	{V,	G	=	72,	67};	Map[Affiliate,	{“V”,	“G”,	“80”,	“Sin[18]”,	“Q”,	“Map”}]

Out[82]=	{”Undefined“,	“Global`”,	“Undefined“,	“Undefined“,	“Undefined“,

“System`”}

The	call	WhatObj[x]	of	a	quite	simple	procedure	returns	value	depending	on	location	of
axsymbol	activated	in	the	current	session,	namely:”System”	a	system	function;”CS”	–	a
symbol	whose	definition	has	been	defined	in	the	current	session;”Undefined”	–	an
undefinite	symbol;”Context’”	–	a	context	defining	a	package	loaded	into	the	current
session	and	containing	definition	ofxsymbol;	ifx	has	a	type	other	thanSymbol,	the
procedure	call	is	returned	as	unevaluated.	The	following	fragment	represents	source	code
ofWhatObj	procedure	along	with	examples	of	its	usage.

In[2139]	:=	WhatObj[x_	/;	SymbolQ[x]]:=	Module[{a	=	Quiet[Context[x]],	t},	If[a
===	“System`”,	“System”,	If[a	===	“Global`”,	If[MemberQ[{$Failed,	“Undefined”},
PureDefinition[x]],	“Undefined”,	“CS”],	a]]]

In[2140]:=	w[x_]	:=	Block[{},	x];	Map[WhatObj,	{Sin,	a/b,	ProcQ,	t78,	h6,	w}]
Out[2140]=	{”System“,	WhatObj[a/b],	“AladjevProcedures`”,	“Undefined“,
“Undefined“,	“CS”}

For	testing	of	symbols	to	which	expressions	are	ascribed,	2	simple	functions	HowAct
andSymbolQ	are	defined.	The	first	of	them	correctly	tests	the	fact	ofdefiniteness	of	a
variable	in	the	current	session,	however	on	local	variables	of	procedures	the	call
ofHowAct	returnsTrue	irrespective	of	existence	for	them	of	values.	On	the	other	hand,	on
undefinite	local	variables	ofblocks	the	HowAct	returnsFalse.	The	callSymbolQ[x]	of
simple	though	rather	useful	function	returnsTrue	ifx	is	a	symbol,	andFalse	otherwise.
Function	is	used	in	a	number	of	tools	presented	in	the	present	book.	The	following
fragment	represents	source	codes	of	both	functions	with	examples	of	their	usage.

In[2020]	:=	HowAct[x_]	:=	If[Quiet[Check[ToString[Definition[x]],	True]]	===
“Null”,	False,	If[Quiet[ToString[Definition[x]]]	===	“Attributes[”	<>	ToString[x]	<>
“]	=	{Temporary}“,	False,	True]]

In[2021]:=	SymbolQ[x_]	:=	!	SameQ[Quiet[Check[ToExpression[“Attributes[”	<>
ToString[x]	<>	“]”],	$Failed]],	$Failed]

In[2022]	:=	Map[HowAct,	{80,	IAN,	“RANS”,	Cos,	Args,	TestArgsTypes,	Label,
HowAct,	a	+b,	Agn}]
Out[2022]=	{True,	False,	True,	True,	True,	True,	True,	True,	True,	False}
In[2023]:=	Map[SymbolQ,	{80,	IAN,	“RANS”,	Cos,	Args,	Label,	HowAct}]
Out[2023]=	{False,	True,	True,	True,	True,	True,	True,	True}
In	certain	cases	theSymbolQ1	function,	being	of	a	modification	of	function	SymbolQ	can
be	useful,	whose	callSymbolQ1[x]	returnsTrue	ifx	is	asingle	symbol,	andFalse	otherwise
[33].	In	[33]	certain	features	of	usage	ofHowAct	for	testing	of	definiteness	of	local
variables	of	procedures	can	be	found.	In	a	number	of	cases	exists	a	need	of	removal	from
the	current	session	of	a	certain	active	object	having	the	appropriated	value	with	possibility
of	its	subsequent	restoration	in	the	current	or	other	session.	The	given	problem	is	solved
by	the	function	whose	callActRemObj[x,y]	depending	on	a	value	{“Act”,	“Rem”}	of	the
second	actual	argument	deletes	an	object	given	by	his	name	in	string	format	from	the
current	session	or	activates	it	in	the	current	or	other	session	respectively.	The	fragment
below	represents	source	code	of	theActRemObj	procedure	along	with	examples	of	its

usage.

In[647]	:=ActRemObj[x_	/;	StringQ[x],	y_	/;	MemberQ[{“Act”,	“Rem”},	y]]	:=
Module[{a	=	$HomeDirectory	<>	“\”	<>	x	<>	“.$ArtKr$”,	b,	c	=
ToString[Definition4[x]]},	If[c	===	“$Failed”,	$Failed,	If[HowAct[x]	&&	y	==
“Rem”,	b	=	OpenWrite[a];	WriteString[b,	c];	Close[b];	ClearAllAttributes[x];
Remove[x];	“Remove”,	If[!	HowAct[x]	&&	y	==	“Act”,	If[FileExistsQ[a],

b	=	OpenRead[a];	Read[b];	Close[b];	DeleteFile[a];	“Activate”,
Return[Defer[ActRemObj[x,	y]]]]]]]]	In[648]:=	F	:=	{72,	67,	47,	18,	25};
SetAttributes[F,	Protected];	Definition[F]	Out[648]=	Attributes[F]=	{Protected}

F	:=	{72,	67,	47,	18,	25}
In[649]:=	ActRemObj[“F”,	“Rem”];
Out[649]=	“Remove”
In[650]=	Definition[F]
Out[650]=	Null
In[651]:=	ActRemObj[“F”,	“Act”];
Out[651]=	“Activate”
In[652]=	Definition[F]
Out[652]=	Attributes[F]=	{Protected}

F	:=	{72,	67,	47,	18,	25}
In[653]:=	A[x_]	:=	Module[{a=480},	x+a];	A[x_,	y_]	:=	Module[{a=80},	x+y+a]
In[654]:=	{A[100],	A[100,	200]}

Out[654]	=	{580,	380}
In[655]:=	ActRemObj[“A”,	“Rem”];	Definition[A]
Out[655]=	Null
In[656]:=	ActRemObj[“A”,	“Act”];	{A[100],	A[100,	200]}
Out[656]=	{590,	380}

Successful	removal	of	an	object	from	the	current	session	returns	“Remove”	whereas	its
restoration	in	the	current	session	returns”Activate“.	If	a	datafile	containing	definition	of	a
removed	objectx,	wasn’t	found	in	system	catalog	$HomeDirectory,	the	call
ofActRemObj	procedure	is	returnedunevaluated;	on	an	inadmissible	argumentx	the
callActRemObj[x,	y]	returns$Failed.

System	Maple	has	a	rather	usefulrestart	command	which	causes	theMaple	kernel	to	clear
itsinternal	memory	so	that	systemMaple	actsalmost	as	if	just	started.	While
theMathematica	system	has	no	similar	means	in	interactive	mode.	The	next	procedure	to
a	certain	extent	compensates	for	thisdeficiency.	The	callRestart[]	returnsnothing,	deleting
from	thecurrent	session	all	objects	defined	in	it.	Moreover,	from	the	given	list	are
excluded	the	objects	whose	definitions	are	in	the	downloaded	packages.	While	the
callRestart[x]	with	optional	argumentx	–	a	context	or	their	list	defining	the	user	packages
that	have	been	loaded	in	the	current	session–	also	returns	nothing,	additionally	deleting
from	the	current	session	all	objects	whose	definitions	are	contained	in	the	mentioned	user
packages.	The	following	fragment	represents	source	code	of	theRestart	procedure	along
with	examples	of	its	application.

In[2450]:=	Restart[x___]	:=	Module[{},	Map[{Quiet[ClearAttributes[#,	Protected]],

Quiet[Remove[#]]}&,	Names[“`*”]];	If[{x}!=	{},	Quiet[Map[Remove[#	<>	“*”]	&,
Flatten[{x}]]]]]

In[2451]	:=	F	:=	{72,	67,	47,	18,	25};	SetAttributes[F,	Protected];	Sv	=	47;	a	:=	6;
A[x_]	:=	Module[{a	=	480},	x+a];	A[x_,	y_]	:=	Module[{a	=	80},	x*y*a];
In[2452]:=	Restart[“AladjevProcedures`”]
In[2453]:=	Map[Definition,	{F,	A,	Map13,	HowAct,	Sv,	a,	ActUcontexts}]
Out[2453]=	{Null,	Null,	Null,	Null,	Null,	Null,	Null]}

Moreover,	the	system	objects	are	not	affected	by	the	Restart.	In	a	number	of	cases	the
function	seems	a	rather	useful,	allowing	to	substantially	restore	an	initial	state	of	the
current	session	and	to	save	internal	memory	of	system	too.

Means	of	work	with	sequential	structures.	Sequences	of	expressions(simply	sequences)	in
the	environment	of	many	languages	are	formed	on	the	basis	of	thecomma	operator“,”	and
form	a	certain	base	for	definition	of	many	types	of	data(inquiries	of
procedures,lists,sets,indexes,etc.).	At	that,	inMathematica	system	the	given	structure	as	an
independent	one	is	absent,	and	instead	of	it	the	list	structure	protrudes;	some	programming
languages	adhere	to	the	same	concept.	In	this	context	a	number	of	simple	enough	means
has	been	created	that	ensure	operating	with	the	objectSeq[x]	defining	a	sequence	of
elementsx.	So,	the	procedure	callSeqToList[x]	provides	converting	ofSeq–	objectx	into
the	list,	the	procedure	callListToSeq[x]	provides	converting	of	a	listx	intoSeq–object,	the
procedure	callSeqIns[x,	y,	z]	returns	the	result	of	inserting	inSeq–objectx	of	an	arbitrary
elementy(list,	Seq–object,expression,	etc.)	according	to	the	given	positionz(z<=	0
–beforex,	z	>=Length[x]–after	x,differently–after	az–position	inx),	the	procedure
callSeqToString[a,	b,…]	returns	the	list	of	arguments	in	string	format,	whereas	the
callSeqUnion[x,	y,…]	returns	result	of	merge	of	an	arbitrary	number	of	sequences.	Means
for	manipulating	withSeq-objects	can	be	rather	widely	expanded,	providing	the	user	with
rather	useful	program	tools.	In	a	certain	relation	these	tools	allow	to	solve	the	problem	of
compatibility	with	other	tools,	for	example,	with	the	Maple	system	[28-33].
Meanwhile,	theMathematica	system	provides	the	functionSequence[a,…]	that	defines	a
sequence	of	arguments	which	are	automatically	transferred	to	a	block,	function	or	module.
In	this	context	the	callSequenceQ[s]	provides	testing	of	the	objects	that	are	created	on	the
basis	of	theSequence	function	returningTrue	if	as–object	is	defined	by	this	function,
andFalse	otherwise;	moreover,	the	name	ofs–object	is	coded	in	string	format	[33].	On	the
basis	of	the	standardSequence	function	it	is	possible	to	create	quite	simple	tools	ensuring
working	with	sequential	structures	similarly	to	theMaple	system;	these	functions	along
with	the	considered	ones	in	[28-33]	are	rather	useful	in	work	with	objects	of
type”sequence“,	whose	structure	isn’t	supported	by	theMathematica	and	for	work	with
which	system	has	no	standard	means.	The	callSequence[x1,	x2,	…,	xn]	of	the	standard
function	defines	a	sequence	of	actual	argumentsxj(j=1..n),	transferred	to	a	function.
Meanwhile,	with	objects	of	type”sequence”	theMathematica	system	can	work	mediately,
in	particular,	on	the	basis	of	the	list	structures.	In	this	regard	for	expansion	of
standardSequence	function	onto	list	structures	theSequences	procedure	is	defined,	whose
callSequences[x]	provides	insert	in	a	function	of	arguments	x	given	by	a	sequence	or	a
list;	as	a	simplified	variant	ofSequences	theSq	function	serves.	The	following	fragment
represents	source	codes	of	function	Sq	along	with	theSequences	procedure,	including
their	applications.

In[3495]:=	Sequences[x__]	:=	Module[{a	=	Flatten[{x}],	b,	c},
b	=	“Sequence[”	<>	ToString[a]	<>	“]”;	a	=	Flatten[StringPosition[b,	{”{“,	“}”}]];
ToExpression[StringReplace[b,	{StringTake[b,	{a[[1]],	a[[1]]}]–>	””,	StringTake[b,
{a[[–1]],	a[[–1]]}]–>	””}]]]

In[3496]	:=	{F[Sequence[{x,y,z}]],	F[Sequences[{x,y,z}]],	F[Sequences[x,y,z]]}
Out[3496]=	{F[{x,	y,	z}],	F[x,	y,	z],	F[x,	y,	z]}
In[3497]:=	Sq[x_List]	:=	ToExpression[“Sequence[”	<>

StringTake[ToString1[x],	{2,–2}]	<>	“]”]	In[3498]:=	Plus[Sq[{72,	66,	56,	47,	25,	18}]]
Out[3498]=	284
In[3499]:=	G[a,	b,	c,	Sequences[x,	y,	z]]
Out[3499]=	G[a,	b,	c,	x,	y,	z]
At	work	with	sequential	structures	a	rather	useful	is	a	procedure,	providing	converting	of
strings	of	a	special	format	into	lists,	and	vice	versa.	The	call	ListStrList[x]	on	a	listx=	{a,
b,	…}	returns	a	strings	of	the	format”ahbh…”,	whilex=	ListStrList[s]	whereh=
FromCharacterCode[2].	In	case	of	absence	in	asstring	ofhsymbol	the	callListStrList[s]
returns	the	strings.	Fragment	represents	source	code	of	the	procedure	along	with	examples
its	usage.	In[2604]:=	ListStrList[x_	/;	StringQ[x]	||	ListQ[x]]	:=

Module[{a	=	FromCharacterCode[2]},	If[StringQ[x]	&&	!	StringFreeQ[x,	a],
Map[ToExpression,	StringSplit[x,	a]],	If[ListQ[x],	StringTake[StringJoin[
Mapp[StringJoin,	Map[ToString1,	x],	a]],	{1,–2}],	x]]]

In[2605]	:=	L	=	ListStrList[{Avz,	72,	Agn,	67,	Art,	25,	Kr,	18,	Vsv,	47}]	Out[2605]=
“Avz	72	Agn	67	Art	25	Kr	18	Vsv	47”
In[2606]:=	ListStrList[ListStrList[{Avz,	72,	Agn,	67,	Art,	25,	Kr,	18,	Vsv,	47}]]
Out[2606]=	{Avz,	72,	Agn,	67,	Art,	25,	Kr,	18,	Vsv,	47}

Chapter	2.	Additional	means	of	processing	of	expressions	in
theMathematicasoftware

A	number	of	useful	means	of	processing	of	the	expressions	supplementing	standard	means
ofMathematica	system	is	presented	in	the	present	chapter.	Analogously	to	the	most
software	systems	the	Mathematica	understands	everything	with	what	it	manipulates
as”expression”(graphics,lists,formulas,	strings,modules,functions,numbers	of	various
type,etc.).	And	although	all	these	expressions	at	first	sight	rather	significantly
differ,Mathematica	represents	them	in	so–called	full	format.	And	only	the	postponed
assignment”:=”	has	no	full	format.	For	the	purpose	of	definition	of	heading(the	type
defining	it)	of	an	expression	the	standardHead	function	is	used,	whose	callHead[expr]
returns	the	heading	of	an	expressionexpr,	for	example:

In[6]:=	Map[Head,	{Map,	Sin,	80,	a+b,	Function[{x},	x],	G[x],	S[6],	x*y,	x^y}]
Out[6]=	{Symbol,	Symbol,	Integer,	Plus,	Function,	G,	S,	Times,	Power}

For	more	exact	definition	of	headings	we	created	an	useful	modification	of	the
standardHead	function	in	the	form	of	theHead1	procedure	expanding	its	opportunities,	for
example,	it	concerns	testing	of	operations	ofpostponed	calculations	when	on	them	the
valuesSetDelayed||TagSetDelayed,	blocks,	functions,	modules	are	returned.	The

callHead1[x]	returns	the	heading	of	an	expressionx	in	the	context
{Block,Function,Module,PureFunction,System,
SetDelayed||TagSetDelayed,Symbol,Head[x]}.	The	fragment	represents	source	code	of
theHead1	procedure	with	examples	of	its	application	comparatively	with	theHead
function	as	it	is	illustrated	by	examples	of	the	next	fragment,	on	which	functional
distinctions	of	both	means	are	rather	evident.

In[2160]	:=	Head1[x_]	:=	Module[{a,	b,	c	=	Quiet[Check[Attributes[x],	{}]]},
If[Quiet[SystemQ[x]],	OptRes[Head1,	System],	If[c	!=	{},	ClearAllAttributes[x]];	b	=
Quiet[StringSplit[ToString[Definition[x]],	“\n	\n”]];	a	=	If[!	SameQ[b,	{}]	&&	b[[–1]]
==	“Null”,	If[Head[x]	==	Symbol,	Symbol,	SetDelayed||TagSetDelayed],
If[PureFuncQ[x],	PureFunction,	If[Quiet[Check[FunctionQ[x],	False]],	Function,
If[BlockQ[x],	Block,	If[BlockModQ[x],	Module,	Head[x]]]]]];	{OptRes[Head1,	a],
Quiet[SetAttributes[x,	c]]}[[1]]]]	In[2161]:=	G	:=	S;	Z[x_]	:=	Block[{},	x];	F[x_]	:=	x;
Map[Head,	{ProcQ,	Sin,	6,	a+b,	#	&,	G,	Z,	Function[{x},	x],	x*y,	x^y,	F}]

Out[2161]	=	{Symbol,	Symbol,	Integer,	Plus,	Function,	Symbol,	Symbol,	Function,
Times,	Power,	Symbol}
In[2162]:=	Map[Head1,	{ProcQ,	Sin,	6,	a	+	b,	#	&,	G,	Z,	Function[{x},	x],	x*y,	x^y,
F}]
Out[2162]=	{Module,	System,	Integer,	Plus,	PureFunction,	Symbol,	Block,	PureFunction,
Times,	Power,	Function}

So,	the	Head1	procedure	has	a	quite	certain	meaning	for	more	exact(relative	to	system
standard)	classification	of	expressions	according	to	their	headings.	On	many	expressions
the	calls	ofHead1	procedure	andHead	function	are	identical	whereas	on	a	number	their
calls	significantly	differ.	The	concept	of	expression	is	the	important	unifying	principle	in
the	system	havingidentical	internal	structure	that	allows	to	confine	a	rather	small	amount
of	the	basic	operations.	Meanwhile,	despite	identical	basic	structure	of	expressions,	the
Mathematica	system	provides	a	set	of	various	functions	for	work	both	with	an	expression
in	general,	and	with	its	separate	components.

Means	of	testing	of	correctness	of	expressions.	Mathematica	has	a	number	of	the	means
providing	testing	ofcorrectness	of	syntax	of	expressions	among	which	only	two	functions
are	available	to	the	user,	namely:
SyntaxQ[“x“]–returns	True,ifx	–a	syntactic	correct	expression;otherwise	False	is
returned;
SyntaxLength	[“x”]–returns	the	numberpof	symbols,since	the	beginning	of	a
string“x”that	defines	syntactic	correct	expressionStringTake[“x“,{1,p}];at	that,	in
casep>	StringLength[“x“]the	system	declares	that	whole	string“x”is	correct,	demanding
continuation.
In	our	opinion,	it	isn’t	very	conveniently	in	event	of	software	processing	of	expressions.
Therefore	extensions	in	the	form	of	theSyntaxQ1	function	and	SyntaxLength1	procedure
whose	source	codes	along	with	examples	of	their	application	are	represented	below.

In[2029]	:=	SyntaxQ1[x_	/;	StringQ[x]]	:=	If[Quiet[ToExpression[x]]	===	$Failed,
False,	True]
In[2030]:=	Map[SyntaxQ1,	{“(a+b/”,	“d[a[1]]	+	b[2]”}]
Out[2030]=	{False,	True}

In[2031]:=	SyntaxLength1[x_	/;	StringQ[x],	y___]	:=	Module[{a	=	””,	b	=	1,	d,	h	=	{},
c	=	StringLength[x]},

While[b	<=	c,	d	=	Quiet[ToExpression[a	=	a	<>	StringTake[x,	{b,	b}]]];	If[!	SameQ[d,
$Failed],	h	=	Append[h,	StringTrim[a]]];	b++];	h	=	DeleteDuplicates[h];	If[{y}!=
{}&&	!	HowAct[{y}[[1]]],	{y}=	{h}];

If[h	==	{},	0,	StringLength[h[[–1]]]]]

In[2437]	:=	{SyntaxLength1[“d[a[1]]	+	b[2]”,	g],	g}
Out[2437]=	{14,	{”d“,	“d[a[1]]“,	“d[a[1]]+	b“,	“d[a[1]]+	b[2]”}}
In[2438]:=	SyntaxLength1[“d[a[1]]	+	b[2]”]
Out[2438]=	14

The	call	SyntaxLength1[x]	returns	the	maximum	numberp	of	position	in	a	stringx	such
thatToExpression[StringTake	[x,	{1,	p}]]–	a	syntactic	correct	expression,otherwise0	is
returned;	the	callSyntaxLength1[x,	y]	through	the	second	optional	argumenty–an
undefinite	variable–	additionally	returns	the	list	of	substrings	of	a	stringx	representing
correct	expressions.

Means	of	processing	of	expressions	at	the	level	of	their	components.	Means	of	this	group
provide	quite	effective	differentiated	processing	ofexpressions.	The	combined	symbolical
architecture	ofMathematica	gives	the	possibility	of	direct	generalization	of	the	element-
oriented	list	operations	onto	arbitrary	expressions,	supporting	operations	both	on	separate
terms,	and	on	sets	of	terms	at	the	given	levels	in	trees	of	expressions.	Without	going	into
details	into	all	means	supporting	work	with	components	of	expressions,	we	will	give	only
the	main	from	them	that	have	been	complemented	by	our	means.	Whereas	with	more
detailed	description	of	standard	means	of	this	group,	including	admissible	formats	of
coding,	it	is	possible	to	get	acquainted	or	in	the	Help,	or	in	the	corresponding	literature	on
theMathematica	system,	for	example,	in	works	[51,52,60,66,71].
The	callVariables[p]	of	standard	function	returns	the	list	of	all	independent	variables	of	a
polynomialp,	while	its	application	to	an	arbitrary	expression	has	certain	limitations.
Meanwhile	for	receiving	all	independent	variables	of	an	expressionx	it	is	quite	possible	to
use	quite	simple	function	whose	call	UnDefVars[x]	returns	the	list	of	all	independent
variables	of	an	expression	x.Unlike	theUnDefVars	function,	the	callUnDefVars1[x]
returns	the	list	of	all	independent	variables	in	string	format	of	an	expressionx.	Source
codes	of	both	functions	with	examples	of	their	application	are	given	below	in	the
comparative	context	withVariables	function.	In	some	cases	the	mentioned	functions	have
certain	preferences	relative	to	standardVariables	function.

In[2024]	:=	UnDefVars[x_]	:=	Select[OP[x],	Quiet[ToString[Definition[#]]]	==	“Null”
&]
In[2025]:=	UnDefVars[(x^2–y^2)/(Sin[x]	+Cos[y])	+a*Log[x+y+z–G[h,	t]]]
Out[2025]=	{a,	G,	h,	t,	x,	y,	z}
In[2026]:=	Variables[(x^2–y^2)/(Sin[x]	+	Cos[y])	+	a*Log[x	+	y	+z–G[h,	t]]]
Out[2026]=	{a,	x,	y,	Cos[y],	Log[x+	y+	z–	G[h,	t]],	Sin[x]}
In[2027]:=	UnDefVars1[x_]	:=	Select[ExtrVarsOfStr[ToString[x],	2],	!	SystemQ[#]	&]
In[2028]:=	Map[UnDefVars1,	{a+b,	a*Sin[x]*Cos[y],	{a,	b},	a*F[h,	g,	s]+	H}]
Out[2028]=	{{”a“,	“b”},	{”a“,	“x“,	“y”},	{”a“,	“b”},	{”a“,	“F“,	“g“,	“h“,	“s”}}

The	call	Replace[x,	r	{,w}]	of	standard	function	returns	result	of	application	of	a	ruler	of
the	forma→b	or	the	list	of	such	rules	for	transformation	of	an	expressionx	as	a	whole;
application	of	the3rd	optional	argumentw	defines	application	of	rulesr	to	parts	ofw–level
of	an	expressionx.	Meanwhile,	the	standard	Replace	function	has	a	number	of	restrictions
some	from	which	the	procedure	considerably	obviates,	whose	callReplace1[x,	r]	returns
the	result	of	application	of	rulesr	to	all	or	selective	independent	variables	of	an
expressionx.	In	case	of	detection	by	the	procedureReplace1	of	empty	rules	the	appropriate
message	is	printed	with	the	indication	of	the	list	of	those	rulesr	which	were	empty,	i.e.
whose	left	parts	aren’t	entered	into	the	list	of	independent	variables	of	an	expressionx.
Fragment	below	represents	source	code	ofReplace1	with	examples	of	its	application;	at
that,	comparison	with	result	of	application	of	theReplace	function	on	the	same	expression
is	given.

In[2052]	:=	Replace1[x_,	y_	/;	ListQ[y]	&&	DeleteDuplicates[Map[Head,	y]]	==
{Rule}||	Head[y]	==	Rule]	:=	Module[{a	=	x//FullForm//ToString,	b	=	UnDefVars[x],
c,	p,	l,	h	=	{},	r,	k	=1,	d	=	ToStringRule[DeleteDuplicates[Flatten[{y}]]]},	p	=
Mapp[RhsLhs,	d,	“Lhs”];	c	=	Select[p,	!	MemberQ[Map[ToString,	b],	#]	&];	If[c	!=
{},	Print[“Rules	”	<>	ToString[Flatten[Select[d,	MemberQ[c,	RhsLhs[#,	“Lhs”]]	&]]]
<>	”	are	vacuous”]];	While[k	<=	Length[d],	l	=	RhsLhs[d[[k]],	“Lhs”];	r	=
RhsLhs[d[[k]],	“Rhs”];	h	=	Append[h,	{“[”	<>	l–>	“[”	<>	r,	”	”	<>	l–>	”	”	<>	r,	l	<>
“]”–>	r	<>	“]”}];	k++];	Simplify[ToExpression[StringReplace[a,	Flatten[h]]]]]

In[2053]	:=	X	=	(x^2–y^2)/(Sin[x]	+	Cos[y])	+	a*Log[x	+	y];	Replace[X,	{x–>	a	+	b,
a–>	80,	y–>	Cos[a],	z–>	Log[t]}]
Out[2053]=	a	Log[x+	y]+	(x^2–	y^2)/(Cos[y]+	Sin[x])
In[2054]:=	Replace1[X,	{x–>	a+b,	a–>	80,	y–>	Cos[a],	z–>	Log[t],	t–>	c+d}];	Rules
{z–>	(Log[t]),	t–>	(c+	d)}	are	vacuous
Out[2054]=	80	Log[a+	b+	Cos[a]]+	((a+	b)^2–	Cos[a]^2)/(Cos[Cos[a]]+	Sin[a+	b])
In[2055]:=	Replace1[X,	{x–>	a	+	b,	a–>	80,	y–>	Cos[a]}]
Out[2055]=	80	Log[a+	b+	Cos[a]]+	((a+	b)^2–	Cos[a]^2)/(Cos[Cos[a]]+	Sin[a+	b])

In	certain	cases	at	conversions	of	expressions	by	means	of	substitutions	the	necessity	of
converting	into	string	format	of	the	left	and	right	parts	of	rules	“a→b”	arises.	The	given
problem	is	solved	by	rather	simpleToStringRule	procedure,	whose	callToStringRule[x]
returns	the	rule	or	the	list	of	rulesx,	whose	left	and	right	parts	have	string	format;	at	that,
its	right	part	is	taken	in	parentheses.	So,	this	procedure	is	used	by	the
above–presentedReplace1	procedure.	The	procedure	ToStringRule1	is	similar	to
ToStringRule,	but	the	right	parts	of	the	result	is	not	taken	into	parentheses.	The	next
fragment	represents	source	code	of	theToStringRule	with	examples	of	its	usage.

In[2723]	:=ToStringRule[x_	/;	ListQ[x]&&	DeleteDuplicates[Map[Head,	x]]	==
{Rule}||	Head[x]	==	Rule]	:=	Module[{a	=	Flatten[{x}],	b	=	{},	c,	k	=	1},	While[k	<=
Length[a],	c	=	a[[k]];	b	=	Append[b,	ToString[RhsLhs[c,	“Lhs”]]–>	“(”	<>
ToString[RhsLhs[c,	“Rhs”]]	<>	“)”];	k++];	If[ListQ[x],	b,	b[[1]]]]

In[2724]	:=	{ToStringRule[a–>	b],	ToStringRule[{a–>	b,	c–>	d,	m–>	n}]}	Out[2724]=
{”a”–>	“(b)“,	{”a”–>	“(b)“,	“c”–>	“(d)“,	“m”–>	“(n)”}}	The	callLevel[x,	n]	of	standard
function	returns	list	of	all	subexpressions	of	an	expressionx	at	levels	from1	ton.	As	an
useful	generalization	of	function	is	procedure	whose	callLevels[x,	h]	returns	the	list	of	all

subexpressions	for	an	expressionx	at	all	its	possible	levels	while	through	the	second
argument	h	–	an	independent	variable–	the	maximum	number	of	levels	of	expression	x	is
returned.	Generally	speaking,	the	following	defining	relation	takes	place	Levels[x,
h]≡Level[x,	Infinity],	however	in	case	of	theLevels	the	procedure	additionally
returnsmaximum	level	of	an	expressionx.	While	the	procedure	callExprOnLevels[x]
returns	the	enclosed	list,	whose	elements	are	the	lists	of	subexpressions	of	an	expressionx
which	are	located	on	each	of	its	levels	from	thefirst	to	thelast.	The	fragment	below
represents	source	codes	of	both	procedures	with	examples	of	their	application	in	a
comparative	context	with	theLevel	function	with	the	secondInfinity–argument.

In[2868]:=	Levels[x_,	h_	/;	ToString[Definition[h]]	==	“Null”]	:=	Module[{a	=	{},	b,	k
=	1},	While[k	<	Infinity,	b	=	Level[x,	k];	If[a	==	b,	Break[],	a	=	b];	k++];	h	=	k–1;	a]

In[2869]	:=	{Levels[(x^2–y^2)/(Sin[x]+Cos[y])+a*Log[x+y+z–G[h,	t]],	g],	g}
Out[2869]=	{{a,	x,	y,	z,–1,	h,	7,	G[h,	7],–G[h,	7],	x+y+z–	G[h,	7],	Log[x+y+	z–	G[h,	7]],
a	Log[x+	y+	z–	G[h,	7]],	x,	2,	x^2,–1,	y,	2,	y^2,–y^2,	x^2–	y^2,	y,	Cos[y],	x,	Sin[x],
Cos[y]+	Sin[x],–1,	1/(Cos[y]+Sin[x]),	(x^2–	y^2)/	(Cos[y]+	Sin[x])},	6}
In[2870]:=	Level[(x^2–y^2)/(Sin[x]+Cos[y])+a*Log[x+y+z–G[h,	t]],	Infinity]
Out[2870]=	{a,	x,	y,	z,–1,	h,	7,	G[h,	7],–G[h,	7],	x+	y+	z–	G[h,	7],	Log[x+y+	z–	G[h,	7]],
a	Log[x+	y+	z–	G[h,	7]],	x,	2,	x^2,–1,	y,	2,	y^2,–y^2,	x^2–	y^2,	y,	Cos[y],	x,	Sin[x],
Cos[y]+	Sin[x],–1,	1/(Cos[y]+	Sin[x]),	(x^2–	y^2)/	(Cos[y]+	Sin[x])}

In[2879]:=	ExprOnLevels[x_]	:=	Module[{a	={},	k	=	1},	While[k	<=	Depth[x],	a	=
Append[a,	MinusList[Level[x,	k],	Level[x,	k–1]]];	k++];	a[[1	;;–2]]]

In[2880]	:=	X	=	(x^2–y^2)/(Sin[x]	+	Cos[y])	+	a*Log[x	+	y	+	z–G[h,	t]];	In[2880]:=
ExprOnLevels[X]
Out[2880]=	{{a	Log[x+	y+	z–	G[h,	t]],	(x^2–	y^2)/(Cos[y]+	Sin[x])},	{a,	Log[x+	y+	z–
G[h,	t]],	x^2–	y^2,	1/(Cos[y]+	Sin[x])},	{x+	y+	z–	G[h,	t],	x^2,–y^2,	Cos[y]+	Sin[x],–1},
{x,	y,	z,	x,	2,–1,	y^2,	Cos[y],	Sin[x],–1},	{G[h,	t],	y,	2,	y,	x,–1},	{h,	t}}
Relative	to	the	aboveLevels	procedure	the	standardDepth	function	defines	on	the	same
expression	the	maximum	number	of	levels	more	on1,	namely:	In[3790]:=	Clear[t];
{Levels[a	+	b	+	c^2,	t],	t,	Depth[a	+	b	+	c^2]}	Out[3790]=	{{a,	b,	c,	2,	c^2},	2,	3}
The	standardFreeQ	function	provides	testing	of	entries	into	an	expression	of
subexpressions	while	a	simple	FreeQ1	procedure	significantly	expands	theFreeQ
function,	providingbroader	testing	of	entries	into	an	expression	of	subexpressions.	The
callFreeQ1[x,	y]	returnsTrue	if	an	expressionx	doesn’t	contain	subexpressionsy,
otherwiseFalse	is	returned.	TheFreeQ2	function	expands	theFreeQ	function	additionally
onto	the	list	as	the2nd	argument.	At	that,	the	callFreeQ2[x,p]	returnsTrue	if	an
expressionx	doesn’t	contain	subexpressionp	or	subexpressions	from	a	listp,
otherwiseFalse	is	returned.	The	fragment	represents	source	codes	ofFreeQ1	andFreeQ1
with	examples	of	their	application	in	a	comparative	context	with	theFreeQ	function.

In[2202]	:=	FreeQ1[x_,	y_]	:=	Module[{h},	Quiet[FreeQ[Subs[x,	y,	h	=
Unique[“ArtKr”]],	h]]]
In[2203]:=	{FreeQ1[a/Sqrt[x],	Sqrt[x]],	FreeQ[a/Sqrt[x],	Sqrt[x]]}
Out[2203]=	{False,	True}
In[2204]:=	{FreeQ1[{Sqrt[x],	18,	25},	Sqrt[x]],	FreeQ[{Sqrt[x],	18,	25},	Sqrt[x]]}
Out[2204]=	{False,	False}

In[2250]:=	FreeQ2[x_,	p_]	:=	If[ListQ[p],	If[DeleteDuplicates[Map10[FreeQ,	x,	p]]
===	{True},	True,	False],	FreeQ[x,	p]]
In[2251]:=	L	=	{a,	b,	c,	d,	f,	g,	h};	{FreeQ[L,	{a,	d,	h}],	FreeQ2[L,	{a,	d,	h}]}
Out[2251]=	{True,	False}
In[2252]:=	{FreeQ[Cos[x]*Ln[x],	{Sin,	Ln}],	FreeQ2[Cos[x]*Ln[x],	{Sin,	Ln}]}
Out[2252]=	{True,	False}

Using	the	FullForm	function	providing	representation	of	expressions	in	the	full	form	can
be	received	a	rather	useful	procedure	solving	the	replacement	problem	in	expressions	of
the	given	subexpressions.	The	callReplace3[x,y,z]	returns	the	result	of	replacement	in	an
arbitrary	expressionx	of	all	entries	of	subexpressionsy	into	it	onto	expressionsz;	as
procedure	arguments	{y,	z}	separate	expressions	or	their	lists	can	be	used.	At	that,	in	case
of	arguments	{y,z}	in	the	form	of	the	list,	for	them	the	common	length	determined	by	the
relationMin[Map[Length,	{y,	z}]]	is	chosen,	allowing	to	avoid	the	possible	especial	and
erroneous	situations,	but	with	the	printing	of	the	appropriate	diagnostic	information	as
illustrates	an	example	below.	The	next	fragment	represents	source	code	of	the	procedure
with	examples	of	its	usage.

In[2062]	:=	Replace3[x_,	y_,	z_]	:=	Module[{a	=	Flatten[{y}],	b	=	Flatten[{z}],	c,	t	=
x,	k	=	1},	c	=	Min[Map[Length,	{a,	b}]];	If[c	<	Length[a],	Print[“Subexpressions	”
<>	ToString1[a[[c	+	1	;;–1]]]	<>	”	were	not	replaced”]];	For[k,	k	<=	c,	k++,	t	=
Subs[t,	a[[k]],	b[[k]]]];	t]

In[2063]	:=	Replace3[x^2	+	Sqrt[1/a^2	+	1/a–Sin[1/a]],	1/a,	Cos[h]]	Out[2063]=	x^2+
Sqrt[1/a^2+	Cos[h]–	Sin[Cos[h]]]
In[2064]:=	Replace3[1/(1	+	1/a)	+	Cos[1/a	+	Sin[1/a]]*(c	+	1/a)^2,	1/a,	F[h]	+	d]
Out[2064]=	1/(1+	d+	F[h])+	Cos[d+	F[h]+	Sin[d+	F[h]]]	(c+	d+	F[h])^2	In[2065]:=
Replace3[x^2	+	Sqrt[1/a^2	+	1/a–Sin[1/a]],	{1/a,	1/b,	1/c},	Cos[h]]

Subexpressions	{b^(–1),	c^(–1)}	were	not	replaced
Out[2065]=	x^2+	Sqrt[1/a^2+	Cos[h]–	Sin[Cos[h]]]

In	some	cases	exists	necessity	to	execute	the	exchange	of	values	of	variables	with	the
corresponding	exchange	of	all	them	attributes.	So,	variablesx	and	y	having	values72	and67
should	receive	values42	and47	accordingly	with	the	corresponding	exchange	of	all	their
attributes.	The	procedureVarExch	solves	the	given	problem,	returningNull,	i.e.	nothing.
The	list	of	two	names	of	variables	in	string	format	which	exchange	by	values	and
attributes	or	the	nested	list	ofListList–type	acts	as	the	actual	argument;	anyway	all
elements	of	pairs	have	to	be	definite,	otherwise	the	call	returnsNull	with	print	of	the
corresponding	diagnostic	message.

On	the	other	hand,	the	call	Rename[x,	y]	in	the	regular	mode	returnsNull,	i.e.	nothing,
providing	replacement	of	a	namex	of	some	defined	object	onto	a	namey	with	preservation
of	all	attributes	of	this	object.	At	that,	the	name	x	is	removed	from	the	current	session	by
means	of	functionRemove.	But	if	y–argument	defines	a	name	of	a	defined	object	or	an
undefined	name	with	attributes,	the	procedure	call	is	returned	unevaluated.	If	the	first
argument	x	is	illegal	for	renaming,	the	procedure	call	returnsNull,	i.e.	nothing;	at	that,
theRename	procedure	successfully	processes	also	objects	of	the	same	name	of	the
type“Block”,	“Function”	or“Module”.	TheRename1	procedure	is	a	quite	useful

modification	of	the	above	procedure,	being	based	on	procedure	Definition2	[33].	The
callRename1[x,	y]	is	similar	to	the	callRename[x,	y]	whereas	the	callRename1[x,	y,	z]
with	the	third	optionalz–argument–an	arbitrary	expression–	performs	the	same	functions
as	the	callRename1[x,	y]	without	change	of	an	initial	objectx.
TheVarExch1	procedure	is	a	version	of	the	above	procedureVarExch	and	is	based	on
usage	of	theRename	procedure	and	global	variables;	it	admits	the	same	type	of	the	actual
argument,	but	unlike	the	second	procedure	the	callVarExch1[L]	in	case	of	detection	of
undefinite	elements	of	a	listL	or	its	sublists	is	returnedunevaluated	without	print	of	any
diagnostic	message.	In	the	fragment	below,	the	source	codes	of	the	proceduresRename,
Rename1,	VarExch	andVarExch1	along	with	examples	of	their	usage	are	represented.

In[2545]:=	VarExch[L_List	/;	Length[L]	==	2||	ListListQ[L]	&&	Length[L[[1]]]	==	2]
:=	Module[{Kr,	k=1},

Kr[p_List]	:=	Module[{a	=	Map[Attributes,	p],	b,	c,	m,	n},
ToExpression[{“ClearAttributes[”	<>	StrStr[p[[1]]]	<>	“,”	<>	ToString[a[[1]]]	<>
“]”,	“ClearAttributes[”	<>	StrStr[p[[2]]]	<>	“,”	<>	ToString[a[[2]]]	<>	“]”}]	;	{b,	c}=
ToExpression[{“ToString[Definition[”	<>	StrStr[p[[1]]]	<>	“]]”,
“ToString[Definition[”	<>	StrStr[p[[2]]]	<>	“]]”}];	If[MemberQ[{b,	c},	“Null”],
Print[VarExch::“Both	arguments	should	be	defined	but	uncertainty	had	been
detected:	“,	p];	Return[],	Null];	{m,	n}=	Map4[StringPosition,	Map[StrStr,	{b,	c}],
{”	:=	“,	”	=	“}];

{	n,	m}=	{StringTake[b,	{1,	m[[1]][[1]]–1}]	<>	StringTake[c,	{n[[1]][[1]],–1}],
StringTake[c,	{1,	n[[1]][[1]]–1}]	<>	StringTake[b,	{m[[1]][[1]],–1}]};
ToExpression[{n,	m}];	Map[ToExpression,	{“SetAttributes[”	<>	StrStr[p[[1]]]	<>	“,”
<>

ToString[a[[2]]]	<>	“]”,	“SetAttributes[”	<>	StrStr[p[[2]]]	<>	“,”	<>	ToString[a[[1]]]
<>	“]”}]];	If[!	ListListQ[L],	Kr[L],	For[k,	k	<=	Length[L],	k++,	Kr[L[[k]]]]];]
In[2546]:=	Agn	=	67;	Avz	:=	72;	Art	:=	25;	Kr	=	18;	SetAttributes[“Agn”,

Protected];	SetAttributes[“Art”,	{Protected,	Listable}]	In[2547]:=	Map[Attributes,
{“Agn”,	“Avz”,	“x”,	“y”,	“Art”,	“Kr”}]	Out[2547]=	{{Protected},	{},	{},	{},	{Listable,
Protected},	{}}
In[2548]:=	VarExch[{{“Avz”,	“Agn”},	{“x”,	“y”},	{“Art”,	“Kr”}}]

VarExch	::Both	arguments	should	be	defined	but	uncertainty	had	been	detected:	{x,	y}
In[2549]:=	{Avz,	Agn,	Art,	Kr}
Out[2549]=	{67,	72,	18,	25}
In[2550]:=	Map[Attributes,	{“Agn”,	“Avz”,	“Art”,	“Kr”}]
Out[2550]=	{{},	{Protected},	{},	{Listable,	Protected}}

In[2551]:=	Rename[x_String	/;	HowAct[x],	y_	/;	!	HowAct[y]]	:=	Module[{a,	c,	d,	b	=
Flatten[{PureDefinition[x]}]},

If[!	SameQ[b,	{$Failed}],	a	=	Attributes[x];	c	=	ClearAllAttributes[x];	d	=
StringLength[x];	c	=	Map[ToString[y]	<>	StringTake[#,	{d	+	1,–1}]	&,	b];
Map[ToExpression,	c];	Clear[x];	SetAttributes[y,	a]]]	In[2552]:=	fm	=	“Art_Kr”;
SetAttributes[fm,	{Protected,	Listable}];

{	fm,	Attributes[fm]}
Out[2552]=	{”Art_Kr“,	{Listable,	Protected}}
In[2553]:=	Rename[“fm”,	Tampere]
In[2554]:=	{Tampere,	Attributes[Tampere],	fm}
Out[2554]=	{”Art_Kr“,	{Listable,	Protected},	fm}

In[2557]:=	VarExch1[L_List	/;	Length[L]	==	2	||	ListListQ[L]	&&	Length[L[[1]]]	==
2]	:=	Module[{Art,	k	=	1,	d},

Art[p_List]	:=	Module[{a	=	Quiet[Check[Map[Attributes,	p],	$Aborted]],	b,	c,	m,
n},	If[a	==	$Aborted,	Return[Defer[VarExch1[L]]],	Null];	If[HowAct[Art],	b	=
Art;	Clear[Art];	m	=	1,	Null];	If[HowAct[Kr],	c	=	Kr;	Clear[Kr];	n	=	1,
Null];

ToExpression[{“ClearAttributes[”	<>	StrStr[p[[1]]]	<>	“,”	<>	ToString[a[[1]]]	<>
“]”,	“ClearAttributes[”	<>	StrStr[p[[2]]]	<>	“,	”	<>	ToString[a[[2]]]	<>	“]”}];
ToExpression[{“Rename[”	<>	StrStr[p[[1]]]	<>	“,”	<>	“Art”	<>	“]”,

“Rename[”	<>	StrStr[p[[2]]]	<>	“,”	<>	“Kr”	<>	“]”	}];	ToExpression[“Clear[”	<>
StrStr[p[[1]]]	<>	“,”	<>	StrStr[p[[2]]]	<>	“]”];	ToExpression[{“Rename[”	<>
StrStr[“Kr”]	<>	“,”	<>	p[[1]]	<>	“]”,

“Rename[”	<>	StrStr[“Art”]	<>	“,”	<>	p[[2]]	<>	“]”}];	Map[ToExpression,
{“SetAttributes[”	<>	StrStr[p[[1]]]	<>	“,”	<>	ToString[a[[2]]]	<>	“]”,
“SetAttributes[”	<>	StrStr[p[[2]]]	<>	“,”	<>	ToString[a[[1]]]	<>	“]”}];	If[m	==	1,
Art	=	b,	Null];	If[n	==	1,	Kr	=	c,	Null];];	If[!	ListListQ[L],	Art[L],	For[k,	k	<=
Length[L],	k++,	Art[L[[k]]]]]]

In[2558]	:=	Agn	=	67;	Avz	:=	72;	Art	:=	25;	Kr	=	18;	SetAttributes[“Agn”,	Protected];
SetAttributes[“Art”,	{Protected,	Listable}];
In[2559]:=	Map[Attributes,	{“Agn”,	“Avz”,	“Art”,	“Kr”}]
Out[2559]=	{{Protected},	{},	{Listable,	Protected},	{}}
In[2560]:=	{Art,	Kr}=	{80,	480};	VarExch1[{{“Agn”,	“Avz”},	{“x”,	“y”},
{“Art”,	“Kr”}}]
In[2561]:=	{{Agn,	Avz,	Art,	Kr},	Map[Attributes,	{“Agn”,	“Avz”,	“Art”,	“Kr”}]}
Out[2561]=	{{480,	80,	18,	25},	{{},	{Protected},	{},	{Listable,	Protected}}}
In[2562]:=	{x,	y,	Art,	Kr}
Out[2562]=	{x,	y,	Art,	Kr}

In[2572]:=	Rename1[x_String	/;	HowAct[x],	y_	/;	!	HowAct[y],	z___]	:=

Module[{a	=	Attributes[x],	b	=	Definition2[x][[1	;;–2]],	c	=	ToString[y]},	b	=
Map[StringReplacePart[#,	c,	{1,	StringLength[x]}]	&,	b];	ToExpression[b];
ToExpression[“SetAttributes[”	<>	c	<>	“,	”	<>	ToString[a]	<>	“]”];	If[{z}==	{},
ToExpression[“ClearAttributes[”	<>	x	<>	“,	”	<>	ToString[a]	<>	“];	Remove[”	<>	x
<>	“]”],	Null]]

In[2574]	:=	x	:=	480;	y	=	480;	SetAttributes[x,	{Listable,	Protected}]	In[2575]:=
Rename1[“x”,	Trg42]
In[2576]:=	{x,	Trg42,	Attributes[“Trg42”]}
Out[2576]=	{x,	480,	{Listable,	Protected}}

In[2577]:=	Rename1[“y”,	Trg47,	80]
In[2578]:=	{y,	Trg47,	Attributes[“Trg47”]}
Out[2578]=	{480,	480,	{}}

Usage	in	procedures	of	global	variables,	in	a	number	of	cases	will	allow	to	simplify
programming,	sometimes,	significantly.	This	mechanism	sufficient	in	detail	is	considered
in	[33].	Meantime,	the	mechanism	of	global	variables	inMathematica	isn’t	universal,
quite	correctly	working	in	case	of	evaluation	of	definitions	of	procedures	containingglobal
variables	in	the	current	session	in	theInput–paragraph;	whereas	in	general	case	it	isn’t
supported	when	the	loading	in	the	current	session	of	the	procedures	containing	global
variables,	in	particular,	fromnb–files	with	the	subsequent	activation	of	their	contents.

For	elimination	of	a	similar	situation	the	procedure	has	been	offered,	whose
callNbCallProc[x]	reactivates	a	block,	function	or	modulex	in	the	current	session,	whose
definition	was	in	a	nb–file	loaded	into	the	current	session,	with	return	ofNull,	i.e.	nothing.
So,	the	callNbCallProc[x]	reactivates	in	the	current	session	all	definitions	of	blocks,
functions,	modules	with	the	same	namex	and	with	various	headings.	All	these	definitions
have	to	be	loaded	previously	from	somenbfile	into	the	current	session	and	activated	by	the
function“Evaluate	Notebook”	of	theGUI.	The	fragment	below	represents	source	code	of
theNbCallProc	procedure	with	example	of	its	usage	for	the	aboveVarExch1	procedure
which	uses	the	global	variables.

In[2415]	:=	NbCallProc[x_	/;	BlockFuncModQ[x]]	:=	Module[{a	=
SubsDel[StringReplace[ToString1[DefFunc[x]],	“\n	\n”–>	“;”],	“`”	<>	ToString[x]	<>
“`”,	{“[“,	“,”},–1]},	Clear[x];	ToExpression[a]]

In[2416]:=	NbCallProc[VarExch1]

The	performed	verification	convincingly	demonstrates	that	the	VarExch1	procedure
containing	the	global	variables	and	loaded	from	thenb–file	with	subsequent	its
activation(by”Evaluate	Notebook”),	is	carried	out	absolutely	correctly	and	with	correct
functioning	of	the	mechanism	of	global	variables	restoring	the	values	after	an	exit	from
theVarExch1	procedure.NbCallProc	has	a	number	of	rather	interesting	appendices,	above
all,	if	necessary	of	use	of	the	procedures	activated	in	theInput–paragraph	of	the	current
session.

In	certain	cases	before	updating	of	definitions	of	objects	(procedure,function,
variable,etc.)	it	is	necessary	to	check	existence	for	them	ofProtected-attribute	that	simple
function	provides;	the	callProtectedQ[x]	returnsTrue	if	an	object	x	hasProtected-attribute,
andFalse	otherwise.	A	correct	expression	can	act	as	argument;	source	code	ofProtectedQ
with	examples	are	presented	below.

In[2430]:=	ProtectedQ[x_]	:=	If[MemberQ[Attributes1[x],	Protected],	True,	False]

In[2431]	:=	g	=	80;	Protect[g];	Map[ProtectedQ,	{Sin,	Protect,	AVZ,	HowAct,	480,
Map,	“g”}]
Out[2431]=	{True,	True,	False,	False,	False,	True,	True}
The	list	structure	is	one	of	basic	inMathematica	in	even	bigger	degree,	than	atMaple.
AndMaple,	and	in	even	bigger	degree	of	theMathematica	have	a	quite	developed	set	of
means	of	processing	of	the	list	structures.	One	of	such	important	enough	tools	is	the
converting	of	expressions	into	lists;	forMaple	such	means	has	the	formconvert(Exp,	list)

whereasMathematica	of	similar	means	has	no,	and	procedureToList	can	be	in	this
quality.	The	procedure	callToList[Exp]	returns	the	result	of	converting	of	an
expressionExp	into	the	list.	At	that,	in	case	of	a	stringExp	theExp	is	converted	into	the
symbol–	by–symbol	list,	in	case	of	a	listExp	the	listExp	is	returned	whereas	in	other	cases
the	converting	is	based	on	the	standardMap	function.	The	following	fragment	represents
source	code	of	theToList	with	examples	of	its	usage.

In[2370]	:=	ToList[expr_]	:=	Module[{a,	b,	c	=	{},	d,	k	=	1,	n},
If[StringQ[expr],	Characters[expr],	If[ListQ[expr],	expr,	a	=
ToString[InputForm[Map[b,	expr]]];	d	=	StringSplit[a,	ToString[b]	<>	“[“];

For[k,	k	<=	Length[d],	k++,	n	=	d[[k]];	c	=	Append[c,	StringTake[n,	{1,
Flatten[StringPosition[n,	“]”]][[–1]]–1}]]];	ToExpression[c]]]]	In[2371]:=
ToList[(a*Sin[x]	+	g[b])/(c	+	d)	+	(d	+	c)/(Cos[y]	+	h)]

Out[2371]	=	{(c+	d)/(h+	Cos[y]),	(g[b]+	a	Sin[x])/(c+	d)}
In[2372]:=	ToList[“qwertyuiopasdfgh”]
Out[2372]=	{”q“,	“w“,	“e“,	“r“,	“t“,	“y“,	“u“,	“i“,	“o“,	“p“,	“a“,	“s“,	“d“,	“f“,	“g“,
“h”}	In[2373]:=	ToList[{a,	b,	c,	d,	e,	f,	g,	h,	a,	v,	z,	a,	g,	n,	A,	r,	t,	K,	r}]	Out[2373]=	{a,
b,	c,	d,	e,	f,	g,	h,	a,	v,	z,	a,	g,	n,	A,	r,	t,	K,	r}

Maple	has	two	useful	means	of	manipulation	with	expressions	of	the	type
{range,equation,inequality,relation},	whose	callslhs(Exp)	andrhs(Exp)	return	theleft	and
theright	parts	of	an	expressionExp	respectively.	More	precisely,	the	calllhs(Exp),
rhs(Exp)	returns	the	valueop(1,Exp),	op(2,Exp)	respectively.	WhereasMathematica	has
no	similar	useful	means.	The	given	deficiency	is	compensated	by	theRhsLhs	procedure,
whose	source	code	with	examples	of	use	are	given	below.	The	callRhsLhs[x,y]	depending
on	a	value	{”Rhs“,	“Lhs”}	of	the	second	argumenty	returns	right	or	left	part	of	an
expressions	x	respectively	relatively	to	the	operatorHead[x],	while	the	callRhsLhs[x,y,	t]
in	addition	through	an	undefined	variablet	returns	the	operatorHead[x]	concerning	whom
splitting	of	the	expressionx	onto	left	and	right	parts	was	made.	TheRhsLhs	procedure	can
be	a	rather	easily	modified	in	the	light	of	expansion	of	the	analyzed	operatorsHead[x].

In[2700]:=	RhsLhs[x_,	y__]	:=	Module[{a	=	Head[x],	b	=	{x,	y},	d,	c	=	{{Greater,
“>”},	{GreaterEqual,	“>=”},	{And,	“&&”},

{	Or,	“||”},	{LessEqual,	“<=”},	{Unequal,	“!=”},	{Rule,	“–>”},	{Less,	“<”},	{Plus,
{“+”,	“–”}},	{Power,	“^”},	{Equal,	“==”},	{Span,	“;;”},	{NonCommutativeMultiply,
“**”},	{Times,	{“*”,	“/”}}}},	If[!	MemberQ[Flatten[c],	a],	Return[Defer[RhsLhs1[x,
y]]],	d	=	Level[x,	1]];	If[Length[b]	>	2	&&	!	HowAct[b[[3]]],
ToExpression[ToString[b[[3]]]	<>	”	=	”	<>	ToString1[Flatten[Select[c,	#[[1]]	===	a
&]]]],	Null];	If[b[[2]]	==	“Lhs”,	d[[1]],	If[b[[2]]	==	“Rhs”,	d[[2]],	Defer[RhsLhs1[x,
y]]]]]

In[2701]	:=	Mapp[RhsLhs,	{a	>	b,	a+b,	a^b,	a*b,	a–>	b,	a	<=	b,	a||b,	a	&&	b},	“Rhs”]
Out[2701]=	{b,	b,	b,	b,	b,	b,	b,	b}
In[2702]:=	{RhsLhs[a	||	b,	“Rhs”,	w],	w}
Out[2702]=	{b,	{Or,	“||”}}
In[2703]:=	{RhsLhs[(a	+	b)*d	->	c,	“Lhs”,	x],	x}
Out[2703]=	{(a+	b)	d,	Rule}

In[2704]:=	{RhsLhs[80	;;	480,	“Rhs”,	s],	s}
Out[2704]=	{480,	Span}

Maple	has	means	of	testing	of	expressions	for	the	following	types,	namely:	{`!`,	`*`,	`+`,
`.`,	`::`,	`<`,	`<=`,	`<>`,	`=`,	`@`,	`@@`,	`^`,	`||`,	`and`,	`or`,	`xor`,	`implies`,	`not`}

In	Mathematica	the	means	of	such	quite	wide	range	are	absent	and	in	this	connexion	the
procedure,	whose	the	callTwoHandQ[x]	returnsTrue	if	an	expressionx	has	one	of	the
following	types

{“+”,	“>=”,	“<=”,	“&&”,	“||”,	“–“,	“^”,	“**”,	“<”,	“==”,	“!=”,	“>”,	“–>”}

and	False	otherwise,	is	given	below;	moreover,	if	the	callTwoHandQ[x,	y]	returnsTrue,
through	the2nd	optional	argumenty	–an	undefinite	variable–	the	type	of	an	expressionx	is
returned.	The	following	fragment	represents	source	code	of	theTwoHandQ	procedure
along	with	examples	of	its	usage.

In[2937]	:=	TwoHandQ[x__]	:=	Module[{a	=	ToString[InputForm[{x}[[1]]]],	b	=
{“+”,	“>=”,	“<=”,	“&&”,	“||”,	“–“,	“^”,	“**”,	“<”,	“==”,	“!=”,	“>”,	“–>”},	c,	d	=
{x}},	c	=	StringPosition[a,	b];	If[StringFreeQ[a,	“–>”]	&&	StringFreeQ[a,	“>=”]	&&
Length[c]	>	2||Length[c]	==	0,	False,	If[Length[d]	>	1	&&	!	HowAct[d[[2]]]	&&	!
ProtectedQ[d[[2]]],	ToExpression[ToString[d[[2]]]	<>	“=”	<>	ToString[Head[{x}
[[1]]]]],	Return[Defer[TwoHandQ[x]]]];	True]]

In[2938]	:=	{TwoHandQ[a3	<=	w,	h],	h}
Out[2938]=	{True,	LessEqual}
In[2939]:=	{TwoHandQ[a–>	b,	t],	t}
Out[2939]=	{True,	Rule}
In[2940]:=	{TwoHandQ[a	!=	b,	p],	p}
Out[2940]=	{True,	Unequal}
In[2941]:=	Clear[z];	{TwoHandQ[a	<	b	&&	c,	z],	z}
Out[2941]=	{True,	And}
In[2942]:=	Clear[p];	{TwoHandQ[a	||	b	+	c,	p],	p}
Out[2942]=	{True,	Or}

In	Maple	the	type	of	indexed	expressions	is	defined	while	inMathematica	similar	means
are	absent.	For	elimination	of	this	drawback	we	represented	a	number	of	procedures
eliminating	this	defect.	Among	them	it	is	possible	to	note	such	procedures	asArrayInd,
Ind,	Index,	IndexedQ,	IndexQ	and	Indices	[30-33,48].	In	particular,	the	callIndexQ[x]
returnsTrue,	ifx	–	any	indexed	expression,	andFalse	otherwise;	at	that,	the	argumentx	is
given	in	string	format	where	under	theindexed	is	understood	an	arbitrary	expression	whose
thereduced	form	completed	by	the	index	bracket“]]”.	At	that,	the	call	Indices[x]	returns
the	index	component	of	an	indexed	expressionx	given	in	string	format,	otherwise	the	call
is	returned	unevaluated.	In	the	same	place	rather	in	details	the	questions	of	processing	of
the	indexed	expressions	are	considered.	In	some	cases	these	means	simplify	programming.
In	particular,	on	the	basis	of	the	previous	proceduresToList	andInd	theOP	procedure	is
programmed	whose	callOP[x]	returns	the	list	ofatomic	elements	composing	an
expressionx.	The	following	fragment	represents	source	code	of	theOP	along	with	typical
examples	of	its	usage.

In[2620]	:=	OP[exp_]	:=	Module[{a	=	ToString[InputForm[expr]],	b	=	{},	c,	d,	k,	h},

If[StringTake[a,	{–1,–1}]	==	“]”,	a	=	Flatten[Ind[expr]],	a	=
DeleteDuplicates[Quiet[ToList[expr]]]];	Label[ArtKr];	d	=	Length[a];

For[k	=	1,	k	<=	Length[a],	k++,	h	=	a[[k]];	c	=	Quiet[ToList[h]];
If[MemberQ[DeleteDuplicates[c],	$Failed],	AppendTo[b,	Ind[h]],	AppendTo[b,	c]]];
a	=	DeleteDuplicates[Flatten[b]];	If[d	==	Length[a],	Sort[a],	b	=	{};	Goto[ArtKr]]]

In[2621]	:=	OP[Sqrt[(a	+	b)/(c	+	d)]	+	Sin[x]*Cos[y]]
Out[2621]=	{–1,	1/2,	a,	b,	c,	Cos,	d,	Sin,	x,	y}
In[2622]:=	OP[(Log[(a	+	b)/(c	+	d)]	+	Sin[x]*Cos[y])/(G[h,	g,	t]–w^2)]	Out[2622]=
{–1,	2,	a,	b,	c,	Cos,	d,	g,	G,	h,	Log,	Sin,	t,	w,	x,	y}
In[2623]:=	Map[OP,	{{Sin[x]},	G[h,	g,	t],	A[m,	p]/G[t,	q]}]
Out[2623]=	{{Sin,	x},	{g,	G,	h,	t},	{–1,	A,	G,	m,	p,	q,	t}}

In	Mathematica	there	is	no	direct	equivalent	ofop–function	ofMaple,	but	it	can	be
defined	within	axiomatics	of	the	systems	by	the	next	procedure	that	in	a	number	of	cases
is	rather	convenient	at	programming	of	appendices:

In[2672]:=	Op[x_]	:=	Module[{a,	b},	a	=	{};	If[ListQ[x],	a	=	x,
Do[a	=	Insert[a,	Part[x][[b]],	–1],	{b,	Length[x]}]];	a]

In[2673]	:=	Op[Sin[x]	+	Cos[x]]
Out[2673]=	{Cos[x],	Sin[x]}
In[2674]:=	Op[{1,	2,	3,	4,	5,	6,	7,	8,	9}]
Out[2674]=	{1,	2,	3,	4,	5,	6,	7,	8,	9}
In[2675]:=	Op[Sqrt[a	+	b]	+	Sin[x]–c/d]
Out[2675]=	{Sqrt[1+	a],–(c/d),	Sin[x]}
In[2676]:=	Op[(x	+	y*Cos[x])/(y	+	x*Sin[y])]
Out[2676]=	{x+	y	Cos[x],	1/(y+	x	Sin[y])}
In[2677]:=	Map[Op,	{Sin[x],	Cos[a	+	b],	1/(a	+	b)}]
Out[2677]=	{{x},	{a+	b},	{a+	b,–1}}

It	is	simple	to	be	convinced	that	the	received	results	of	calls	ofOp	procedure	areidentical
to	similar	calls	ofopfunction	inMaple,	taking	into	account	that	Mathematica	doesn’t
support	structure	of	type”sequence”	which	is	replaced	with	the	list.	TheOp	procedure	is	a
rather	useful	in	programming.	In	a	number	of	appendices	the	undoubted	interest	presents	a
certain	analog	ofMaple–процедурыwhattype(x)	that	returns	the	type	of	an	expressionx
which	is	one	of	basicMaple–types.	The	procedure	of	the	same	name	acts	as	a	similar
analog	inMathematica	whose	callWhatType[x]	returns	type	of	an	objectx	of	one	of	basic
types	{”Module“,	“DynamicModule“,	“Block“,	“Real“,	“Complex“,	“Integer“,
“Rational“,	“Times“,	“Rule“,	“Power“,	“Alternatives“,	“And“,	“List“,	“Plus“,
“Condition“,	“StringJoin“,	“UndirectedEdge“,	…}.	The	following	fragment	represents
source	code	of	the	procedure	with	examples	of	its	application	for	identification	of	types	of
various	objects.

In[2869]:=	WhatType[x_	/;	StringQ[x]]	:=	Module[{b	=	t,	d,	c	=	$Packages,	a	=
Quiet[Head[ToExpression[x]]]},

If[a	===	Symbol,	Clear[t];	d	=	Context[x];	If[d	==	“Global`”,	d	=
Quiet[ProcFuncBlQ[x,	t]];	If[d	===	True,	Return[{t,	t	=	b}[[1]]],

Return[{“Undefined”,	t	=	b}[[1]]]],	If[d	==	“System`”,	Return[{d,	t	=	b}[[1]]],
Null]],	Return[{ToString[a],	t	=	b}[[1]]]];	If[Quiet[ProcFuncBlQ[x,	t]],

If[MemberQ[{“Module”,	“DynamicModule”,	“Block”},	t],	Return[{t,	t	=	b}[[1]]],	t	=
b;	ToString[Quiet[Head[ToExpression[x]]]]],	t	=	b;	“Undefined”]]

In[2870]	:=	t	=	480;	x	=	80;	y	:=	42.47;	z	=	a	+	b;	J[x_]:=x;	Map[WhatType,	{“Kr”,
“x”,	“y”,	“z”,	“ProcQ”,	“Sin”,	“F[r]”,	“WhatType”,	“J”}]
Out[2870]=	{”Undefined“,	“Integer“,	“Real“,	“Plus“,	“Module“,	“System`”,	“F“,
“Module“,	“Function”}
In[2871]:=	Map[WhatType,	{“a^b”,	“a**b”,	“3	+	5*I”,	“{42,	47}“,	“a&&b”}]
Out[2871]=	{”Power“,”NonCommutativeMultiply“,”Complex“,”List“,	“And”}
In[2872]:=	Map[WhatType,	{“a_/;	b”,	“a	<>	b”,	“a	<–>	b”,	“a|b”}]
Out[2872]=	{”Condition“,	“StringJoin“,	“UndirectedEdge“,	“Alternatives”}

However,	it	should	be	noted	that	the	WhatType	procedure	doesn’t	support	exhaustive
testing	of	types,	meantime	on	its	basis	it	is	simple	to	expand	the	class	of	the	tested	types.

The	ReplaceAll	function	ofMathematica	has	very	essential	restrictions	in	relation	to
replacement	of	subexpressions	relatively	already	of	very	simple	expressions	as	it	is
illustrated	below.	As	an	alternative	for	this	function	can	be	offered	theSubs	procedure
which	is	functionally	equivalent	to	the	above	standardReplaceAll	function,	however
which	is	relieved	of	a	number	of	its	shortcomings.	The	procedure	callSubs[x,	y,	z]	returns
result	of	substitutions	in	an	expressionx	of	entries	of	subexpressionsy	onto	expressionsz.
At	that,	ifx	–	an	arbitrary	correct	expression,	then	as	thesecond	andthird	arguments
defining	substitutions	of	the	formaty–>z,	an	unary	substitution	or	their	list	coded	in	the
formy≡{y1,	y2,…,	yn}	andz≡{z1,	z2,…,	zn}	appear,	determining	a	list	of	substitutions	{y1
–>z1,	y2	–>z2,…,	yn	–>zn}	which	are	carried	out	consistently	in	the	order	defined	at
theSubs	procedure	call.	The	following	fragment	represents	and	source	code	of	theSubs
procedure,	and	a	number	of	bright	examples	of	its	usage	on	those	expressions	and	with
those	types	of	substitutions	where	theSubs	procedure	surpasses	the	standardReplaceAll
function	ofMathematica.	These	examples	very	clearly	illustrate	advantages	of	theSubs
procedure	before	the	similar	system	means.

In[2968]:=	Subs[x_,	y_,	z_]	:=	Module[{d,	k	=	2,	subs},	subs[m_,	n_,	p_]	:=
Module[{a,	b,	c,	h,	t},	If[!	HowAct[n],	m	/.	n–>	p,	{a,	b,	c,	h}=

First[{Map[ToString,	Map[InputForm,	{m,	n,	p,	1/n}]]}];	t	=
Simplify[ToExpression[StringReplace[StringReplace[a,	b–>	“(”	<>	c	<>	“)”],	h–>
“1/”	<>	“(”	<>	c	<>	“)”]]];	If[t	===	m,	m	/.	n–>	p,	t]]];	!	ListQ[y]	&&	!	ListQ[z],
subs[x,	y,	z],	If[ListQ[y]	&&	ListQ[z]	&&	Length[y]	==	Length[z],	d	=	subs[x,	y[[1]],
z[[1]]];	For[k,	k	<=	Length[y],	k++,	d	=	subs[d,	y[[k]],	z[[k]]]];	d,	Defer[Subs[x,	y,
z]]]]]]	In[2969]:=	(c	+	x^2)/x^2	/.	x^2–>	a

Out[2969]	=	(a+	c)/x^2
In[2970]:=	Subs[(c	+	x^2)/x^2,	x^2,	a]
Out[2970]=	(a+	c)/a
In[2971]:=	(c	+	b^2)/x^2	/.	x^2–>	Sqrt[z]
Out[2971]=	(b^2+	c)/x^2
In[2972]:=	Subs[(c	+	b^2)/x^2,	x^2,	Sqrt[z]]

Out[2972]=	(b^2+	c)/Sqrt[z]
In[2973]:=	(a	+	x^2)/(b	+	a/x^2)	/.	x^2–>	Sqrt[a	+	b]
Out[2973]=	(a+	Sqrt[a+	b])/(b+	a/x^2)

In[2974]	:=	Subs[(a	+	x^2)/(b	+	a/x^2),	x^2,	Sqrt[a	+	b]]
Out[2974]=	(a+	Sqrt[a+	b])/(b+	a/Sqrt[a+	b])
In[2975]:=	(a	+	x^2)/(b	+	1/x^2)	/.	x^2–>	Sqrt[a	+	b]
Out[2975]=	(a+	Sqrt[a+	b])/(b+	1/x^2)
In[2976]:=	Subs[(a	+	x^2)/(b	+	1/x^2),	x^2,	Sqrt[a	+	b]]
Out[2976]=	(a+	Sqrt[a+	b])/(b+	1/Sqrt[a+	b])
In[2977]:=	Replace[1/x^2	+	1/y^3,	{{x^2–>	a	+	b},	{y^3–>	c	+	d}}]	Out[2977]=
{1/x^2+	1/y^3,	1/x^2+	1/y^3}
In[2978]:=	Subs[1/x^2	+	1/y^3,	{x^2,	y^3},	{a	+	b,	c	+	d}]
Out[2978]=	1/(a+	b)+	1/(c+	d)
In[2979]:=	Replace[Sqrt[Sin[1/x^2]+Cos[1/y^3]],{{x^2–>a*b},{y^3–>	c*d}}]
Out[2979]=	{Sqrt[Cos[1/y^3]+	Sin[1/x^2]],	Sqrt[Cos[1/y^3]+	Sin[1/x^2]]}	In[2980]:=
Subs[Sqrt[Sin[1/x^2]	+	Cos[1/y^3]],	{x^2,	y^3},	{a*b,	c*d}]	Out[2980]=	Sqrt[Cos[1/(c
d)]+	Sin[1/(a	b)]]
In[2981]:=	With[{x	=	a	+	c,	y	=	b},	Module[{},	x^2	+	y]]
Out[2981]=	b+	(a+	c)^2
In[2982]:=	With[{x^2	=	a	+	c,	y	=	b},	Module[{},	x^2	+	y]]

With	::lvset:	Local	variable	specification	{x^2=a+c,y=b}	contains…	Out[2982]=
With[{x^2=	a+	c,	y=	b},	Module[{},	x^2+	y]]
In[2983]:=	Subs[Module[{},	x^2	+	y],	{x,	y},	{a	+	c,	b}]
Out[2983]=	b+	(a+	c)^2
In[2984]:=	Subs[Module[{},	x^2	+	y],	{x^2,	y},	{a	+	c,	b}]
Out[2984]=	a+	b+	c
In[2985]:=	Replace[(a	+	x^2/y^3)/(b	+	y^3/x^2),	{{y^3–>	m},	{x^2–>	n}}]
Out[2985]=	{(a+	x^2/y^3)/(b+	y^3/x^2),	(a+	x^2/y^3)/(b+	y^3/x^2)}	In[2986]:=
Subs[(a	+	x^2/y^3)/(b	+	y^3/x^2),	{y^3,	x^2},	{m,	n}]	Out[2986]=	n	(a	m+	n)/(m	(m+
b	n))

In[2987]:=	Df[x_,	y_]	:=	Module[{a},	If[!	HowAct[y],	D[x,	y],
Simplify[Subs[D[Subs[x,	y,	a],	a],	a,	y]]]]

In[2988]	:=	Df[(a	+	x^2)/(b	+	a/x^2),	x^2]
Out[2988]=	(a^2+	2	a	x^2+	b	x^4)/(a+	b	x^2)^2
In[2989]:=	Df[(x	+	Sqrt[y])/(y	+	2*Sqrt[y])^2,	Sqrt[y]]
Out[2989]=	(–4	x–	2	Sqrt[y]+	y)/((2+	Sqrt[y])^3	y^(3/2))
In[2990]:=	D[(x	+	Sqrt[y])/(y	+	2*Sqrt[y])^2,	Sqrt[y]]

General	::ivar:	Sqrt[y]	is	not	a	valid	variable.	>>
Out[2990]=	∂√y	((x+	Sqrt[y])/(y+	2	Sqrt[y])^2)
In[2991]:=	Df[(x	+	Sqrt[a	+	Sqrt[x]])/(d	+	2*Sqrt[x])^2,	Sqrt[x]]	Out[2991]=	((d+	2
Sqrt[x])/Sqrt[a+	Sqrt[x]]–	8	(Sqrt[a+	Sqrt[x]]+	x))/(2	(d+

2	Sqrt[x])^3)
In[2992]:=	Df[(x	+	Sqrt[x	+	b])/(d	+	2*Sqrt[x	+	b])^2,	Sqrt[x	+	b]]	Out[2992]=	(d–	2	(2

x+	Sqrt[b+	x]))/(d+	2	Sqrt[b+	x])^3

In[2993]	:=	ReplaceAll1[x_,	y_,	z_]:=	Module[{a,b,c},	If[!	HowAct[y],	x	/.	y–>z,	c	=
If[MemberQ[{Plus,	Times,	Power},	Head[z]],	“(”	<>	ToString[InputForm[z]]	<>	“)”,
ToString[z]];	{a,	b}=	Map[ToString,	Map[InputForm,	{x,	y}]];	If[StringLength[b]
==	1,	ReplaceAll[x,	y–>	z],	ToExpression[StringReplace[a,	b–>	c]]]]]

In[2994]	:=	{ReplaceAll[c/x^2+x^2,	x^2–>	t],	ReplaceAll[(1+c/x^2)/(b+x^2),	x^2–>
t]}
Out[2994]=	{t+	c/x^2,	(1+	c/x^2)/(b+	t)}
In[2995]:=	{ReplaceAll1[c/x^2+x^2,	x^2,	a+b],	ReplaceAll1[(1	+	c/x^2)/(b	+	x^2),
x^2,	c+d]}
Out[2995]=	{a+	b+	c/(a+	b),	(1+	c/(c+	d))/(b+	c+	d)}

In[2996]:=	Df1[x_,	y_]	:=	Module[{a,	b,	c	=	“$$Sart25$$Kr18$$”},	If[!	HowAct[y],
D[x,	y],

{	a,	b}=	Map[ToString,	Map[InputForm,	{x,	y}]];
Simplify[ToExpression[StringReplace[ToString[InputForm[
D[ToExpression[StringReplace[a,	b–>	c]],	ToExpression[c]]]],	c–>	b]]]]]

In[2997]:=	Df2[x_,	y_]	:=	Module[{a},	If[!	HowAct[y],	D[x,	y],
Simplify[ReplaceAll1[D[ReplaceAll1[x,	y,	a],	a],	a,	y]]]]	In[2998]:=	Df1[(x	+	Sqrt[a	+
Sqrt[x]])/(d	+	2*Sqrt[x])^2,	Sqrt[x]]	Out[2998]=	((d+	2	Sqrt[x])/Sqrt[a+	Sqrt[x]]–	8
(Sqrt[a+	Sqrt[x]]+	x))/(2(d+

2	Sqrt[x])	^3)
In[2999]:=	Df2[(x	+	Sqrt[a	+	Sqrt[x]])/(d	+	2*Sqrt[x])^2,	Sqrt[x]]	Out[2999]=	((d+	2
Sqrt[x])/Sqrt[a+	Sqrt[x]]–	8	(Sqrt[a+	Sqrt[x]]+	x))/(2(d+

2	Sqrt[x])^3)
In[3000]:=	Df2[(a/x^2	+	1/x^2)/(c/x^2	+	1/x^2),	1/x^2]
Out[3000]=–(((a–	c)	x^2)/(1+	c)^2)

In[3001]	:=	Df1[(a/x^2	+	1/x^2)/(c/x^2	+	1/x^2),	1/x^2]
Out[3001]=–(((a–	c)	x^2)/(1+	c)^2)
In[3002]:=	Df[(a/x^2	+	1/x^2)/(c/x^2	+	1/x^2),	1/x^2]
Out[3002]=–((2	(a–	c)	x^6)/(1+	c	x^4)^2)
In[3003]:=	Df2[(a	+	b)/(Sin[x]	+	Cos[x]),	Sin[x]	+	Cos[x]]
Out[3003]=–((a+	b)/(Cos[x]+	Sin[x])^2)
In[3004]:=	Df2[Cos[x]/(Sin[x]	+	Cos[x]),	Cos[x]]
Out[3004]=	Sin[x]/(Cos[x]+	Sin[x])^2

A	simple	enough	example	of	the	previous	fragment	illustrates	application	of	theSubs
procedure	in	realization	of	theDf	procedure	whose	callDf[x,y]	provides	differentiation	of
an	expressionx	on	any	its	subexpressiony,	and	rather	significantly	expands	the	standardD
function;	the	examples	illustrate	some	opportunities	of	theDf	procedure.	At	the	end	of	the
above	fragment	theReplaceAll1	procedure	functionally	equivalent	to	standardReplaceAll
function	is	presented,	which	relieves	a	number	of	shortages	of	the	second.	Then	on	the
basis	of	the	proceduresReplaceAll1	andStringReplace	some	variants	of	theDf	procedure,
namely	the	proceduresDf1	andDf2	that	use	a	number	of	useful	methods	of	programming

are	represented.	At	the	same	time,	they	in	some	cases	are	more	useful	than	theDf
procedure	what	rather	visually	illustrate	the	examples	given	above.	At	that,	the
proceduresDf,	Df1	andDf2	rather	significantly	expand	the	standard	functionD.	The
fragment	represents	source	codes	of	the	above	procedures	and	certain	examples	of	their
application	where	they	surpass	the	standard	functionsD,	ReplaceAll,	Rule	andWith	of
theMathematica	system.

Receiving	of	similar	expansion	as	well	for	the	standard	Integrate	function	which	has
rather	essential	restrictions	on	usage	of	arbitrary	expressions	as	integration	variables	is
represented	quite	natural	to	us.	Two	variants	of	such	expansion	in	the	form	of	the	simple
proceduresInt	andInt1	that	are	based	on	the	previousSubs	procedure	have	been	proposed
for	the	given	purpose,	whose	source	codes	and	examples	of	application	are	represented
below.

In[2841]:=	Int[x_,	y_]	:=	Module[{a},	If[!	HowAct[y],	Integrate[x,	y],
Simplify[Subs[Integrate[Subs[x,	y,	a],	a],	a,	y]]]]

In[2842]	:=	Int1[x_,	y_]	:=	Module[{a},	If[!	HowAct[y],	Integrate[x,	y],
Simplify[ReplaceAll1[Integrate[ReplaceAll1[x,	y,	a],	a],	a,	y]]]]	In[2843]:=
{Int[Sin[a+1/x^2]+c/x^2,	1/x^2],	Int1[Sin[a+1/x^2]+c/x^2,	1/x^2]}	Out[2843]=
{–Cos[a+	1/x^2]+	c	Log[1/x^2],	c/x^4–	Cos[a+	1/x^2]}	In[2844]:=	{Int[Sin[n/x^2]	+
m/x^2,	x^2],	Int1[Sin[n/x^2]	+	m/x^2,	x^2]}	Out[2844]=	{–n	CosIntegral[n/x^2]+	m
Log[x^2]+	x^2	Sin[n/x^2],

–	n	CosIntegral[n/x^2]+	m	Log[x^2]+	x^2	Sin[n/x^2]}	In[2845]:=
Int1[(a*x^2+b/x^2)/(c*x^2+d/x^2),	x^2]
Out[2845]=	(a	x^2)/c+	((b	c–	a	d)	ArcTan[(Sqrt[c]	x^2)/Sqrt[d]])/(c^(3/2)

Sqrt[d])
In[2846]:=	Integrate[(a*x^2	+	b/x^2)/(c*x^2	+	d/x^2),	x^2]
Integrate::ilim:	Invalid	integration	variable	or	limit(s)	in	x^2.	>>	Out[2846]=
Integrate[(b/x^2+	a*x^2)/(d/x^2+	c*x^2),	x^2]

Meanwhile,	a	simple	enough	Subs1	function	can	be	considered	as	a	certain	extension	and
complement	of	the	previous	Subs	procedure.	The	function	callSubs1[x,	{y,	z}]	returns	the
result	of	replacement	of	all	occurrences	of	an	subexpressiony	of	an	expressionx	onto	an
expressionz;at	that,	the	function	call	qua	of	the	second	argument	allows	both	the
simple2–element	list,	and	the	list	ofListList–type.	The	function	callSubs1Q[x,y]
returnsTrue	if	a	call	Subs1[x,	y]	is	allowable,	andFalse	otherwise.	The	fragment	below
represents	source	codes	of	functionsSubs1	andSubs1Q	with	examples	of	their	usage.

In[2700]:=	Subs1[x_,	y_	/;	ListQ[y]	&&	Length[y]	==	2	||	ListListQ[y]]	:=
ToExpression[StringReplace[ToString[FullForm[x]],	Map[ToString[FullForm[#
[[1]]]]–>	ToString[FullForm[#[[2]]]]	&,	If[ListListQ[y],	y,	{y}]]]]	In[2703]:=
Subs1[(a/b	+	d)/(c/b	+	h/b),	{{1/b,	t^2},	{d,	590}}]	Out[2703]=	(590+	at^2)/(c	t^2+
ht^2)
In[2718]:=	Subs1Q[x_,	y_]	:=	SameQ[x,	Subs1[Subs1[x,	y],	If[ListListQ[y],
Map[Reverse,	y],	Reverse[y]]]]	In[2719]:=	Subs1Q[(a/b	+	d)/(c/b	+	h/b),	{{1/b,	t^2},
{d,	90}}]	Out[2719]=	True

In[2732]	:=	Integrate2[x_,	y__]	:=	Module[{a,	b,	d,	c	=	Map[Unique[“gs”]	&,

Range[1,	Length[{y}]]]},	a	=	Riffle[{y},	c];	a	=	If[Length[{y}]	==	1,	a,	Partition[a,
2]];	d	=	Integrate[Subs1[x,	a],	Sequences[c]];	{Simplify[Subs1[d,	If[ListListQ[a],
Map[Reverse,	a],	Reverse[a]]]],	Map[Remove,	c]}[[1]]]

In[2733]	:=	Integrate2[(a/b	+	d)/(c/b	+	h/b),	1/b,	d]
Out[2733]=	(d	((2	a)/b+	d	Log[1/b]))/(2	(c+	h))
In[2734]:=	Integrate2[x^2*y,	x,	y]
Out[2734]=	(x^3	y^2)/6
In[2735]:=	Integrate2[1/b,	1/b]
Out[2735]=	1/(2b^2)
In[2736]:=	Integrate2[(a/b	+	d)/(c/b	+	h/t),	1/b,	1/t]
Out[2736]=–((c	t(–2	a	b	h+	a	c	t+	4	b	c	d	t)+	2	(b	h+	c	t)(a	b	h–	a	c	t–	2	b	c	d	t)*

Log[c/b	+	h/t])/(4	b^2	c^2	h	t^2))
In[2737]:=	Integrate2[Sqrt[a	+	Sqrt[c	+	d]*b],	Sqrt[c	+	d]]
Out[2737]=	(2	(a+	bSqrt[c+	d])^(3/2))/(3	b)
In[2738]:=	Integrate2[(a/b	+	d^2)/(c/b	+	h/b),	1/b,	d^2]
Out[2738]=	(2	a	d^2+	b	d^4	Log[1/b])/(2	b	c+	2	b	h)
In[2739]:=	Integrate2[(a*x^2	+	b/x^2)/(c*x^2	+	d/x^2),	x^2,	d/x^2]	Out[2739]=	(–c
x^4	(4	b	c–	2	a	d+	a	c	x^4)+	2	(d+	c	x^4)	(2	b	c–	a	d+	a	c	x^4)*

Log[(d+	c	x^4)/x^2])/(4	c^2	x^4)
In[2743]:=	Diff1[x_,	y__]	:=	Module[{a,	b,	d,	c	=	Map[Unique[“gs”]	&,

Range[1,	Length[{y}]]]},	a	=	Riffle[{y},	c];	a	=	If[Length[{y}]	==	1,	a,	Partition[a,
2]];	d	=	D[Subs1[x,	a],	Sequences[c]];	{Simplify[Subs1[d,	If[ListListQ[a],
Map[Reverse,	a],	Reverse[a]]]],	Map[Remove,	c]}[[1]]]

In[2744]	:=	Diff1[(a*x^2	+	b/x^2)/(c*x^2	+	d/x^2),	x^2,	d/x^2]	Out[2744]=	(x^4	(2	b
c–	a	d+	a	c	x^4))/(d+	c	x^4)^3
In[2745]:=	Diff1[c	+	a/b,	c	+	a/b]
Out[2745]=	1
In[2746]:=	Diff1[(c	+	a/b)*Sin[b	+	1/x^2],	a/b,	1/x^2]
Out[2746]=	Cos[b+	1/x^2]
In[2747]:=	Diff1[(c	+	a/b)*Sin[d/c	+	1/x^2],	1/c,	a/b,	1/x^2]	Out[2747]=–d	Sin[d/c+
1/x^2]
On	the	basis	of	the	previousSubs1	function	an	useful	enough	procedure	has	been	realized,
whose	callIntegrate2[x,	y]	provides	integrating	of	an	arbitrary	expressionx	on	the
subexpressions	determined	by	a	sequencey.	At	that,	the	procedure	with	the	returned	result
by	means	ofSimplify	function	performs	a	sequence	of	algebraic	and	other	transformations
and	returns	the	simplest	form	it	finds.	The	previous	fragment	presents	source	code	of
theIntegrate2	procedure	along	with	typical	examples	of	its	usage.	While	the	procedure
call	Diff1[x,	y]	that	is	also	realized	on	the	basis	of	theSubs1	function	returns	the
differentiation	result	of	an	arbitrary	expressionx	on	the	generalized	{y,z,	…}	variables
which	can	be	an	arbitrary	expressions.	The	result	is	returned	in	the	simplified	form	on	the
basis	of	theSimplify	function.	The	previous	fragment	represents	source	code	of	theDiff1
procedure	with	examples	of	its	usage.

The	represented	variants	of	realization	of	the	tools	Df,	Df1,	Df2,	Diff1,	Int,	Int1,

Integrate2,	ReplaceAll1,	Subs	andSubs1	illustrate	various	receptions	rather	useful	in	a
number	of	problems	of	programming	in	theMathematica	system	and,	first	of	all,	in
problems	of	the	system	character.	Moreover,	the	above	means	rather	essentially	extend	the
appropriate	system	means.

The	next	fragment	represents	the	means	having	both	independent	value,	and	a	number	of
useful	appendices	in	programming.	Two	useful	functions	used	in	the	subsequent
procedures	of	the	fragment	preface	this	fragment.	The	callListRulesQ[x]	returnsTrue	ifx
is	the	list	of	rules	of	the	forma	–>b,	andFalse	otherwise.	Whereas	theMap17	function
generalizes	the	standard	Map	function	onto	case	of	the	list	of	rules	as	itssecond	actual
argument.	The	callMap17[F,	{{a	–>b,c	–>d,	…}]	whereF	–	the	symbol	returns	the	result
of	the	format	{F[a]–>F[b],F[c]–>F[d],	…}	without	demanding	any	additional
explanations	in	view	of	its	transparency.
Whereas	the	procedure	callDiff[x,	y,	z,	…]	returns	result	of	differentiation	of	an
expressionx	on	the	generalized	variables	{x,y,	z,	…}	that	are	arbitrary	expressions.	The
result	is	returned	in	the	simplified	view	on	the	basis	of	the	Simplify	function.	The
procedure	callIntegral1[x,y,	z,…]	returns	result	of	integrating	of	an	expression	x	on	the
generalized	variables	{x,	y,	z,	…}	which	are	arbitrary	expressions.	The	result	is	returned	in
the	simplified	view	on	the	basis	of	the	standardSimplify	function.	The	next	fragment
represents	the	source	codes	of	the	above	meansListRulesQ,	Map17,	Diff	andIntegral1
along	with	typical	examples	of	their	application.

In[3321]:=	ListRulesQ[x_List]	:=	DeleteDuplicates[Map[RuleQ[#]	&,	Flatten[x]]]
===	{True}

In[3322]	:=	ListRulesQ[{a–>	b,	c–>	d,	t–>	g,	w–>	v,	h}]
Out[3322]=	False
In[3323]:=	ListRulesQ[{a–>	b,	c–>	d,	t–>	g,	w–>	v,	h–>	90}]	Out[3323]=	True

In[3324]:=	Map17[x_,	y_	/;	RuleQ[y]	||	ListRulesQ[y]]	:=
If[RuleQ[y],	Map[x,	y],	Map[Map[x,	#]	&,	y]]

In[3325]	:=	Map17[F,	a–>	b]
Out[3325]=	F[a]–>	F[b]
In[3326]:=	Map17[F,	{a–>	b,	c–>	d,	t–>	g,	w–>	v,	h–>	90}]
Out[3326]=	{F[a]–>F[b],	F[c]–>F[d],	F[t]–>F[g],	F[w]–>F[v],	F[h]–>F[90]}

In[3432]	:=	Diff[x_,	y__]	:=	Module[{c	={},	d	={},	b	=	Length[{y}],	t	=	{},	k	=	1,	h	=
x,	n	=	g,	a	=	Map[ToString,	Map[InputForm,	{y}]]},	Clear[g];	While[k	<=	b,
AppendTo[c,	Unique[g]];	AppendTo[d,	ToString[c[[k]]]];	AppendTo[t,	a[[k]]–>
d[[k]]];	h	=	ToExpression[StringReplace[ToString[h	//	InputForm],	t[[k]]]];	h	=	D[h,
c[[k]]];	h	=	ReplaceAll[h,	Map[ToExpression,	Part[t[[k]],	2]–>	Part[t[[k]],	1]]];	k++];
g	=	n;	Map[Clear,	c];	Simplify[h]]

In[3433]	:=	Diff[Sin[x^2]*Cos[1/b^3],	1/b^3,	x^2]
Out[3433]=–Cos[x^2]*Sin[1/b^3]
In[3434]:=	Diff[(a	+	b)/(c	+	d),	a	+	b,	c	+	d]
Out[3434]=–(1/(c+	d)^2)
In[3435]:=	Diff[(a	+	b)	+	m/(c	+	d),	a	+	b,	1/(c	+	d)]
Out[3435]=	0

In[3436]:=	Diff[1/Sqrt[a	+	b]*(a	+	b)	+	Tan[Sqrt[a	+	b]	+	c],	Sqrt[a+b],	a+b]
Out[3436]=	(Sec[Sqrt[a+	b]+	c]^2*Tan[Sqrt[a+	b]+	c])/Sqrt[a+	b]	In[2257]:=
Integral1[x_,	y__]	:=	Module[{d	=	{},	t	=	{},	k	=	1,	h	=	x,	n	=	g,

a	=	Map[ToString,	Map[InputForm,	{y}]],	c	=	{},	b	=	Length[{y}]},	Clear[g];
While[k	<=	b,	AppendTo[c,	Unique[g]];	AppendTo[d,	ToString[c[[k]]]];	AppendTo[t,
a[[k]]–>	d[[k]]];	h	=	ToExpression[StringReplace[ToString[h	//	InputForm],	t[[k]]]];
h	=	Integrate[h,	c[[k]]];	h	=	ReplaceAll[h,	Map[ToExpression,	Part[t[[k]],	2]–>
Part[t[[k]],	1]]];	k++];	g	=	n;	Map[Clear,	c];	Simplify[h]]

In[2258]	:=	g	=	90;	Integral1[Sin[x^2]	+	Cos[1/b^3],	1/b^3,	x^2]
Out[2258]=–(Cos[x^2]/b^3)+	x^2*Sin[1/b^3]
In[2259]:=	Integral1[Sin[x]	+	Cos[x],	x]
Out[2259]=–Cos[x]+	Sin[x]
In[2260]:=	Integral1[(Sin[x]	+	Cos[y])*z,	x,	y,	z]
Out[2260]=	(–(1/2))*z^2*(y*Cos[x]–	x*Sin[y])
In[2261]:=	Integral1[(a	+	b)/(c	+	d),	a	+	b,	c	+	d]
Out[2261]=	(1/2)*(a+	b)^2*Log[c+	d]
In[2262]:=	Integral1[(a	+	b)	+	m/(c	+	d),	a	+	b,	1/(c	+	d)]
Out[2262]=	(1/2	(a+	b)^2+	((a+	b)	m)/(c+	d))/(c+	d)
In[2263]:=	Integral1[(a	+	b)/(c	+	d),	a	+	b,	c	+	d,	c	+	d]
Out[2263]=	1/2	(a+	b)^2	(c+	d)	(–1+	Log[c+	d])

Thus,	the	procedures	Diff	andIntegral1	have	the	certain	limitations	that	at	usage	demand
the	corresponding	wariness;	some	idea	of	such	restrictions	is	illustrated	by	the	following
very	simple	example,	namely:

In[3322]	:=	Diff[(a	+	b*m)/(c	+	d*n),	a	+	b,	c	+	d]
Out[3322]=–(m/((c+	d)^2*n))
In[3323]:=	Integral1[(a	+	b*m)/(c	+	d*n),	a	+	b,	c	+	d]
Out[3323]=	((a+	b)^2*m*Log[c+	d])/(2*n)

With	the	view	of	elimination	of	these	shortcomings	two	modifications	of	the
functionsReplace	andReplaceAll	in	the	form	of	the	proceduresReplace4	andReplaceAll2
have	been	created	respectively.	These	procedures	expand	standard	means	and	allow	to
code	the	previous	two	proceduresIntegral1	andDiff	with	wider	range	of	correct
appendices	in	the	context	of	use	of	the	generalized	variables	of	differentiation	and
integration.	The	procedure	call	Replace4[x,a	–>	b]	returns	the	result	of	application	to	an
expressionx	of	a	substitutiona	–>	b,	when	as	its	left	part	an	arbitrary	expression	is
allowed.	At	absence	in	the	expressionx	of	occurrences	of	subexpressiona	the	initial
expressionx	is	returned.	Unlike	previous,	the	callReplaceAll2[x,	r]	returns	result	of
application	to	an	expressionx	of	a	ruler	or	consecutive	application	of	rules	from	the	listr;
as	the	left	parts	of	rules	any	expressions	are	allowed.	In	the	following	fragment	the	source
codes	of	the	proceduresReplaceAll2	andReplace4	along	with	typical	examples	of	their
usage	are	presented.

In[2445]:=	Replace4[x_,	r_	/;	RuleQ[r]]	:=	Module[{a,	b,	c,	h},

{	a,	b}=	{ToString[x	//InputForm],	Map[ToString,	Map[InputForm,	r]]};	c	=
StringPosition[a,	Part[b,	1]];	If[c	==	{},	x,	If[Head[Part[r,	1]]	===	Plus,	h	=	Map[If[(#

[[1]]	===	1||	MemberQ[{”	“,	“(“,	“[“,	“{”},	StringTake[a,	{#[[1]]–1,	#[[1]]–1}]])	&&
(#[[2]]	===	StringLength[a]	||	MemberQ[{”	“,	“)”,	“]”,	“}“,	“,”},	StringTake[a,	{#
[[2]]	+	1,	#[[2]]	+	1}]]),	#]	&,	c],	h	=	Map[If[(#[[1]]	===	1	||	!
Quiet[SymbolQ[StringTake[a,	{#[[1]]–1,	#[[1]]–1}]]])	&&	(#[[2]]	===
StringLength[a]||	!	Quiet[SymbolQ[StringTake[a,	{#[[2]]	+	1,	#[[2]]	+	1}]]]),	#]	&,	c]];
h	=	Select[h,	!	SameQ[#,	Null]	&];	ToExpression[StringReplacePart[a,	“(”	<>	Part[b,
2]	<>	“)”,	h]]]]	In[2446]:=	Replace4[(c	+	d*x)/(c	+	d	+	x),	c	+	d–>	a	+	b]

Out[2446]	=	(c+	d*x)/(a+	b+	x)
In[2447]:=	Replace[Sqrt[a	+	b*x^2*d	+	c],	x^2–>	a	+	b]
Out[2447]=	Sqrt[a+	c+	b*d*x^2]
In[2448]:=	Replace4[Sqrt[a	+	b*x^2	*d	+	c],	x^2–>	a	+	b]
Out[2448]=	Sqrt[a+	c+	b*(a+	b)*d]

In[2458]:=	ReplaceAll2[x_,	r_	/;	RuleQ[r]	||	ListRulesQ[r]]	:=	Module[{a	=	x,	k	=	1},
If[RuleQ[r],	Replace4[x,	r],	While[k	<=	Length[r],	a	=	Replace4[a,	r[[k]]];	k++];	a]]

In[2459]	:=	ReplaceAll[Sqrt[a	+	b*x^2*d	+	c],	{x^2–>	a	+	b,	a	+	c–>	avz}]	Out[2459]=
Sqrt[avz+	b*d*x^2]
In[2460]:=	ReplaceAll2[Sqrt[a	+	b*x^2	*d	+	c],	{x^2–>	a	+	b,	a	+	c–>	avz}]
Out[2460]=	Sqrt[avz+	b*(a+	b)*d]
In[2461]:=	ReplaceAll2[x*y*z,	{x–>	42,	y–>	90,	z–>	500}]
Out[2461]=	1	890	000
In[2462]:=	ReplaceAll2[Sin[a	+	b*x^2*d	+	c*x^2],	x^2–>	a	+	b]	Out[2462]=	Sin[a+
(a+	b)*c+	b*(a+	b)*d]

In[2488]	:=	Difff[x_,	y__]	:=	Module[{a=x,	a1,	a2,	a3,	b	=	Length[{y}],	c={},	d,	k	=	1,
n	=	g},	Clear[g];	While[k	<=	b,	d	=	{y}[[k]];	AppendTo[c,	Unique[g]];	a1	=
Replace4[a,	d–>	c[[k]]];	a2	=	D[a1,	c[[k]]];	a3	=	Replace4[a2,	c[[k]]–>	d];	a	=	a3;
k++];	g	=	n;	Simplify[a3]]	In[2489]:=	Difff[(a	+	b)/(c	+	d	+	x),	a	+	b,	c	+	d]

Out[2489]	=–(1/(c+	d+	x)^2)
In[2490]:=	Difff[(a	+	b*m)/(c	+	d*n),	a	+	b,	c	+	d]
Out[2490]=	0
In[2588]:=	Integral2[x_,	y__]	:=	Module[{a	=	x,	a1,	a2,	a3,	b	=	Length[{y}],

c	=	{},	d,	k	=	1,	n	=	g},	Clear[g];	While[k	<=	b,	d	=	{y}[[k]];	AppendTo[c,	Unique[g]];
a1	=	Replace4[a,	d–>	c[[k]]];	a2	=	Integrate[a1,	c[[k]]];	a3	=	Replace4[a2,	c[[k]]–>	d];
a	=	a3;	k++];	g	=	n;	Simplify[a3]]	In[2589]:=	Integral2[(a	+	b*m)/(c	+	d*n),	a	+	b,	c	+
d]

Out[2589]	=	((a+	b)*(c+	d)*(a+	b*m))/(c+	d*n)
In[2590]:=	Integral2[Sqrt[a	+	c	+	b*(a	+	b)*d],	a	+	c,	a	+	b]
Out[2590]=	(2/3)*(a+	b)*(a+	c+	a*b*d+	b^2*d)^(3/2)
In[2591]:=	Integral2[Sqrt[a	+	c	+	h*g	+	b*d],	c	+	h,	b*d]
Out[2591]=	(2/3)*(c+	h)*(a+	c+	b*d+	g*h)^(3/2)
In[2592]:=	Integral2[(a	+	c	+	h*g	+	b*d)/(c	+	h),	c	+	h,	b*d]
Out[2592]=	(1/2)*b*d*(2*a+	2*c+	b*d+	2*g*h)*Log[c+	h]
In[2593]:=	Integral2[(c	+	h*m)/(c	+	h),	c	+	h*m]
Out[2593]=	(c+	h*m)^2/(2*(c+	h))

On	the	basis	of	the	procedure	Replace4	the	proceduresDiff	andIntegral1	can	be	expanded
the	proceduresDiff	andIntegral1.	The	callDifff[x,y,z,…]	returns	result	ofdifferentiation	of
an	arbitrary	expressionx	on	thegeneralized	variables	{y,	z,	h,	t,	…}	that	are	any
expressions.	The	result	is	returned	in	the	simplified	form	on	the	basis	of	the
standardSimplify	function.	Whereas	the	callIntegral2[x,y,z,…]	returns	result
ofintegration	of	an	expressionx	on	the	generalized	variables	{y,	z,	h,	t,	…}	that	are
arbitrary	expressions.	The	result	is	returned	in	the	simplified	form	on	the	basis	of
theSimplify	function.	In	the	following	fragment	the	source	codes	of	the	above	means	with
examples	of	application	are	represented.	The	means	given	above	are	rather	useful	in	many
cases	of	manipulations	with	algebraic	expressions	that	are	based	on	a	system	of	rules,
including	their	symbolical	differentiation	and	integration	on	the	generalized	variables	that
are	arbitrary	algebraic	expressions.	TheSEQ	procedure	serves	as	some	analog	of	the	built-
inseq	function	of	the	same	name	of	theMaple	system,	generating	sequences	of	values.	The
call	SEQ[x,	y,	z]	returns	the	list	of	valuesx[y]	wherey	changes	withinz=m;;n,	or
withinz=m;;n;;p	withp	step;	at	that,	values	{m,n,	p}	can	accept	only	positive	numerical
values;	atm	<=	n	a	valuep	is	considered	positive	value,	otherwise	negative.	Of	examples
of	the	next	fragment	the	principle	of	formation	of	the	list	of	values	depending	on	the
format	of	the3rd	argument	is	well	visually	looked	through.	In	case	of	zero	or	negative
value	of	the3rd	argument	a	call	SEQ[x,y,	z]	is	returned	unevaluated.	The	next	fragment
represents	source	code	of	theSEQ	procedure	along	with	typical	examples	of	its	usage.

In[2334]:=	SEQ[x_,	y_	/;	SymbolQ[y],	z_	/;	Head[z]	==	Span]	:=

Module[{a	=	ToString[z],	b	=	{},	c,	d	=	ToString[y],	p},	c	=
ToExpression[StringSplit[a,	”	;;	“]];	If[DeleteDuplicates[Map[NumberQ,	c]]	!=
{True}||	DeleteDuplicates[Map[Positive,	c]]	!=	{True},	Return[Defer[Seq[x,	y,	z]]],
If[Length[c]	>	2	&&	c[[3]]	==	0,	Return[Defer[Seq[x,	y,	z]]],	If[c[[1]]	<=	c[[2]],	p	=	1,
p	=	2]]];	For[y	=	c[[1]],	If[p	==	1,	y	<=	c[[2]],	y	>=	c[[2]]–If[p	==	1	&&	Length[c]	==	2
||	p	==	2	&&	Length[c]	==	2,	0,	c[[3]]–1]],	If[Length[c]	==	2,	If[p	==	1,	y++,	y––],	If[p
==	1,	y	+=	c[[3]],	y–=	c[[3]]]],	b	=	Append[b,	x]];	{ToExpression[“Clear[”	<>	d	<>
“]”],	b}[[2]]]

In[2335]	:=	SEQ[F[k],	k,	18	;;	25]
Out[2335]=	{F[18],	F[19],	F[20],	F[21],	F[22],	F[23],	F[24],	F[25]}	In[2336]:=	SEQ[F[t],
t,	1	;;	75	;;	8]
Out[2336]=	{F[1],	F[9],	F[17],	F[25],	F[33],	F[41],	F[49],	F[57],	F[65],	F[73]}	In[2337]:=
SEQ[F[t],	t,	100	;;	95]
Out[2337]=	{F[100],	F[99],	F[98],	F[97],	F[96],	F[95]}
In[2338]:=	SEQ[F[t],	t,	42.71	;;	80	;;	6.47]
Out[2338]=	{F[42.71],	F[49.18],	F[55.65],	F[62.12],	F[68.59],	F[75.06]}	In[2339]:=
SEQ[F[k],	k,	42	;;	71	;;–6]
Out[2339]=	SEQ[F[k],	k,	42;;	71;;–6]
The	callExprsInStrQ[x,	y]	of	an	useful	procedure	returnsTrue	if	a	stringx	contains	correct
expressions,	andFalse	otherwise.	While	through	the	second	optional	argumenty	–an
undefinite	variable–	a	list	of	expressions	that	are	in	x	is	returned.	The	next	fragment
represents	source	code	of	theExprsInStrQ	procedure	along	with	typical	examples	of	its
usage.

In[2360]	:=	ExprsInStrQ[x_	/;	StringQ[x],	y___]	:=	Module[{a	=	{},	c	=	1,	d,	j,	b	=
StringLength[x],	k	=	1},	For[k	=	c,	k	<=	b,	k++,	For[j	=	k,	j	<=	b,	j++,	d	=
StringTake[x,	{k,	j}];	If[!	SymbolQ[d]	&&	!	SameQ[Quiet[Check[ToExpression[d],
$Failed]],	$Failed],	a	=	Append[a,	d]]];	c++];	a	=	Mapp[StringTrim1,
Mapp[StringTrim1,	Map[StringTrim,	a],	“+”,	””],	“–“,	””];	a	=
DeleteDuplicates[Map[StringTrim,	Select[a,	!	SymbolQ[ToExpression[#]]	&&	!
NumericQ[ToExpression[#]]	&]]];	If[a	==	{},	False,	If[{y}!=	{}&&	!	HowAct[{y}
[[1]]],	{y}=	{a}];	True]]

In[2361]	:=	ExprsInStrQ[“a	(c	+	d)–b^2	=	Sin[x]	h”]
Out[2361]=	True
In[2362]:=	{ExprsInStrQ[“a	(c	+	d)–b^2	=	Sin[x]	h”,	t],	t}
Out[2362]=	{True,	{”a*(c+	d)“,	“a*(c+	d)–	b“,	“a*(c+	d)–	b^2“,	“(c+	d)“,

“	(c+	d)–	b“,	“(c+	d)–	b^2“,	“c+	d“,	“b^2“,	“Sin[x]“,	“Sin[x]	h“,	“in[x]“,	“in[x]	h“,
“n[x]“,	“n[x]	h”}}
In[2363]:=	{ExprsInStrQ[“n*(a+c)/c	“,	h1],	h1}
Out[2363]=	{True,	{”n*(a+c)“,	“n*(a+c)/c“,	“(a+c)“,	“(a+c)/c“,	“a+c”}}

In	a	whole	series	of	problems	of	manipulation	with	expressions,	including	differentiation
and	integration	on	the	generalized	variables,	the	question	of	definition	of	structure	of	an
expression	through	subexpressions	entering	in	it	including	any	variables	is	topical	enough.
The	given	problem	is	solved	by	theExprComp	procedure,	whose	the	callExprComp[x]
returns	the	set	of	all	subexpressions	composing	expressionx,	whereas	the
callExprComp[x,	z],	where	the	second	optional	argumentz	–an	undefined	variable–
throughz	in	addition	returns	the	nested	list	of	subexpressions	of	an	arbitrary	expression	x
on	levels,	since	the	first	level.	The	next	fragment	represents	source	code	of	theExprComp
procedure	with	examples	of	its	use.	The	code	contains	means	from	[48]	such	asHowAct,
Mapp,	StringTrim1	andSymbolQ.	In[3329]:=	ExprComp[x_,	z___]	:=	Module[{a	=
{x},	b,	h	=	{},	F,	q,	t	=	1},

F[y_List]	:=	Module[{c	=	{},	d,	p,	k,	j	=	1},	For[j	=	1,	j	<=	Length[y],	j++,	k	=	1;
While[k	<	Infinity,	p	=	y[[j]];	a	=	Quiet[Check[Part[p,	k],	$Failed]];	If[a	===	$Failed,
Break[],	If[!	SameQ[a,	{}],	AppendTo[c,	a]]];	k++]];	c];	q	=	F[a];	While[q	!=	{},
AppendTo[h,	q];	q	=	Flatten[Map[F[{#}]	&,	q]]];	If[{z}!=	{}&&	!	HowAct[z],	z	=
Map[Select[#,	!	NumberQ[#]	&]	&,	h]];	Sort[Select[DeleteDuplicates[Flatten[h],

Abs[#1]	===	Abs[#2]	&],	!	NumberQ[#]	&]]]

In[3330]	:=	ExprComp[(1/b	+	Cos[a	+	Sqrt[c	+	d]])/(Tan[1/b]–1/c^2)]	Out[3330]=	{a,
1/b,	b,–(1/c^2),	c,	d,	Sqrt[c+	d],	c+	d,	a+	Sqrt[c+	d],	Cos[a+	Sqrt[c+	d]],	1/b+	Cos[a+
Sqrt[c+	d]],	Tan[1/b],	1/(–(1/c^2)+	Tan[1/b]),–(1/c^2)+	Tan[1/b]}
In[3331]:=	ExprComp[(1/b	+	Cos[a	+	Sqrt[c	+	d]])/(Tan[1/b]–1/c^2),	g]
Out[3331]=	{a,	1/b,	b,–(1/c^2),	c,	d,	Sqrt[c+	d],	c+	d,	a+	Sqrt[c+	d],	Cos[a+	Sqrt[c+	d]],
1/b+	Cos[a+	Sqrt[c+	d]],	Tan[1/b],	1/(–(1/c^2)+	Tan[1/b]),–(1/c^2)+	Tan[1/b]}
In[3332]:=	g
Out[3332]=	{{1/b+	Cos[a+	Sqrt[c+	d]],	1/(–(1/c^2)+	Tan[1/b])},	{1/b,	Cos[a+	Sqrt[c+
d]],–(1/c^2)+	Tan[1/b]},
{b,	a+	Sqrt[c+	d],–(1/c^2),	Tan[1/b]},	{a,	Sqrt[c+	d],	1/c^2,	1/b},	{c+	d,	c,	b},	{c,	d}}

An	arbitrary	expression	can	be	formed	by	means	of	arithmetic	operators	of	types:	Plus
(‘+’,	‘–’),	Times	(‘*’,	/),	Power	(‘^’),	Indexed(indexes)	orFunction	(function).	At	that,
expressiona	–	b	has	type“+”	with	operands	{a,	–b};	while	expressiona/b	–	the	type“*”
with	operands	{a,	b^(–1)};	expressiona^b	has	type“^”	with	operands	{a,	b};
expressiona[b]	has	the“Function”	type	while	expressiona[[b]]	has	the“Indexed”	type.	In
this	sense	it	is	possible	to	use	a	certainindicatorCost	for	estimation	of	complexity	of
calculation	of	arbitrary	expressions.	TheCost	is	defined	as	a	polynomial	from	variables
which	are	names	of	the	abovethree	operators,Indexed	andFunction	with	non–negative
integer	coefficients.	The	Cost	procedure	provides	calculation	of	indicator;	its	source	code
with	examples	of	use	represents	the	following	fragment.	At	creation	of	the	source	code	the
functionSequences	from	[48]	has	been	used.

In[2455]	:=	Cost[x_]	:=	Module[{f	=	{Plus,	Times,	Power,	Indexed,	Function},	a	=
ToString[InputForm[x]],	b	=	{{“+”,	“–”},	{“*”,	“/”},	“^”},	c,	d	=	{},	h,	k	=	1,	j,	t},
If[StringFreeQ[a,	Flatten[{b,	“[“}]],	0,	c	=	Map[StringCount[a,	#]	&,	b];	While[k	<=
3,	h	=	c[[k]];	If[h	!=	0,	AppendTo[d,	{f[[k]],	h}]];	k++];	If[Set[b,	StringCount[a,	“[[“]]
>	0,	AppendTo[d,	{f[[4]],	b}]];	t	=	StringPosition[a,	“[“];	If[t	!=	{},	t	=	Map[#[[1]]	&,
t];	t	=	Select[Map[If[StringTake[a,	{#–1,	#–1}]	!=	“[”	&&	StringTake[a,	{#	+	1,	#	+
1}]	!=	“[“,	#]	&,	t],	!	SameQ[#,	Null]	&]];	If[t	!=	{},	AppendTo[d,	{f[[5]],
Length[t]}]];	b	=	StringPosition[a,	“(–“];	{t,	b,	h}=	{0,	Map[#[[1]]	&,	b],
StringLength[a]};	For[k	=	1,	k	<=	Length[b],	k++,	c	=	””;	For[j	=	b[[k]],	j	<=	h,	j++,
c	=	c	<>	StringTake[a,	{j,	j}];	If[StringCount[c,	“{“]	===	StringCount[c,	“}“],	f	=
Quiet[Check[ToExpression[c],	$Failed]];	If[f	===	$Failed,	Continue[],	If
[NumberQ[f],	t	=	t	+	1]];	Break[]]]];	d	=	If[t	!=	0	&&	d[[1]][[1]]	===	Plus,	d[[1]][[2]]
=	d[[1]][[2]]–t;	d,	d];	Plus[Sequences[Map[#[[2]]*#[[1]]	&,	d]]]]]	In[2456]:=
Cost[z^(h*n–2)	+	t^3]

Out[2456]	=	3*Plus+	2*Power+	Times
In[2457]:=	Cost[(z^(h*n–2)	+	t^3)/(x*y	+	c)]
Out[2457]=	4*Plus+	2*Power+	3*Times
In[2458]:=	Map[Cost,	{42.47,	80*d	+	p^g,	AvzAgnVsv}]
Out[2458]=	{0,	Plus+	Power+	Times,	0}
In[2459]:=	Cost[(z^(h*n[80]–2)	+	t^3)/(x*y	+	c[480])]
Out[2459]=	2*Function+	4*Plus+	2*Power+	3*Times
In[2460]:=	Cost[(a	+	Sin[–a	+	v]	+	x[b[[–80	;;	480]]])	//	Quiet]
Out[2460]=	2*Function+	Indexed+	4*Plus

The	procedure	call	Cost[x]	returns	an	indicatorCost	of	the	above	format	for	an	arbitrary
algebraic	expressionx;	at	absence	forx	of	operators	is	returned	zero.	At	that,	the	procedure
is	a	rather	simply	disaggregated	relative	to	the	calculation	of	number	of	operatorsPlus.
Means	of	the	present	chapter	are	rather	useful	and	are	located	in	our
packageAVZ_Package	[48].

Chapter	3.	Additional	means	of	processing	of	symbols	and	string
structures	in	theMathematicasystem

Without	taking	into	account	the	fact	that	Mathematica	has	rather	large	set	of	means	for

work	with	string	structures,	necessity	of	means	that	are	absent	in	the	system	arises.	Some
of	such	means	are	presented	in	the	given	chapter;	among	them	are	available	both	simple,
and	more	difficult	which	appeared	in	the	course	of	programming	of	problems	of	different
purpose	asadditional	functions	and	procedures	simplifying	or	facilitating	the
programming.	Examples	of	the	present	chapter	illustrate	formalization	ofprocedures	in	the
Mathematica	which	reflects	its	basic	elements	and	principles,	allowing	by	taking	into
account	this	material	to	directly	start	creation,	at	the	beginning,	of	simple	procedures	of
different	purpose	which	are	based	on	processing	of	string	structures.	Here	only	the
procedures	of	so–called“system”	character	intended	for	processing	of	string	structures	are
considered	which,	however,	represent	also	the	most	direct	applied	interest	for
programming	of	various	appendices.	Moreover,	procedures	and	functions	that	have	quite
foreseeable	volume	of	source	code	that	allows	to	carry	out	their	rather	simple	analysis	are
presented	here.	Their	analysis	can	serve	as	rather	useful	exercise	for	the	reader	both	who
is	beginning	programming	inMathematica,	and	already	having	rather	serious	experience
in	this	direction.	Later	we	will	understand	under“system”	means	the	actually	system
means,	and	our	means	oriented	on	mass	application.	At	that,	it	should	be	noted	that	string
structures	are	of	special	interest	not	only	as	basic	structures	with	which	the	system	and	the
user	operate,	but	also	as	a	base,	in	particular,	of	dynamic	generation	of	the	objects
inMathematica,	including	procedures	and	functions.	Themechanism	of	suchdynamic
generation	is	quite	simple	and	rather	in	details	is	considered	in	[28-33],	whereas	examples
of	its	application	can	be	found	in	examples	of	source	codes	of	means	of	the	present	book.
Below	we	will	present	a	number	of	useful	means	for	processing	of	strings	in
theMathematica	system.

So,	the	call	SuffPref[S,	s,	n]	provides	testing	of	a	stringS	regarding	to	begin	(n	=	1),	to
finish(n	=	2)	by	a	substring	or	substrings	from	the	lists,	or(n	=	3)	be	limited	from	both
ends	by	substrings	froms.	At	establishment	of	this	fact	theSuffPref	procedure	returnsTrue,
otherwiseFalse	is	returned.	While	the	callStrStr[x]	of	simple	function	provides	return	of
an	expressionx	different	from	string,	in	string	format,	and	a	double	string	otherwise.	In	a
number	of	cases	theStrStr	function	is	useful	enough	in	work	with	strings,	in	particular,
with	the	standardStringReplace	function.	The	fragment	below	represents	source	codes	of
the	above	means	along	with	examples	of	their	application.

In[2510]:=	StrStr[x_]	:=	If[StringQ[x],	“"”	<>	x	<>	“"”,	ToString[x]]	In[2511]:=
Map[StrStr,	{“RANS”,	a	+	b,	IAN,	{72,	67,	47},	F[x,y]}]	Out[2511]=	{“"RANS"”,	“a+
b“,	“IAN“,	“{72,	67,	47}“,	“F[x,	y]”}	In[2512]:=	SuffPref[S_String,	s_	/;	StringQ[s]	||
ListQ[s]	&&	DeleteDuplicates[Map[StringQ,	s]]	==	{True},	n_	/;	MemberQ[{1,	2,	3},
n]]	:=

Module[{a,	b,	c,	k	=	1},	If[StringFreeQ[S,	s],	False,	b	=	StringLength[S];	c	=
Flatten[StringPosition[S,	s]];	If[n	==	3	&&	c[[1]]	==	1	&&	c[[–1]]	==	b,	True,	If[n	==
1	&&	c[[1]]	==	1,	True,

If[n	==	2	&&	c[[–1]]	==	b,	True,	False]]]]]

In[2513]	:=	SuffPref[“IAN_RANS_RAC_REA_90_500”,	“90_500”,	2]	Out[2513]=
True
In[2514]:=	SuffPref[“IAN_RANS_RAC_REA”,	{“IAN_RANS”,	“IAN_”},	1]
Out[2514]=	True

In[2515]:=	SuffPref[“IAN_RANS_R_REAIAN”,	{“IAN_RANS”,	“IAN”},	3]
Out[2515]=	True

The	call	Spos[x,	y,	p,	d]	calculates	number	of	position	of	the	first	entrance	of	a	symboly
into	a	stringx	to	theleft	(d=0)	or	to	theright	(d=1)	from	the	given	positionp.	If	substringy
doesn’t	enter	into	stringx	in	the	specified	direction	concerning	positionp,	the	call	of
theSpos	returns	zero.	Otherwise,	the	call	Spos[x,	y,	p,	dir]	returns	number	of	a	position	of
the	first	entrance	ofy	intox	string	to	the	left(dir	=	0)	or	to	the	right(dir	=	1)	from	the	given
positionp;	in	addition,	number	of	position	is	counted	from	the	beginning	of	stringx.	The
Spos	processes	the	main	erroneous	situations,	returning	on	themFalse.	The	following
fragment	represents	source	code	of	theSpos	with	examples	of	its	application.	A	number	of
means	ofAVZ_Package	[48]	use	this	procedure.

In[820]:=	Spos[x_String,	y_String,	p_Integer,	d_Integer]	:=	Module[{a,	b,	c},
If[StringFreeQ[x,	y],	Return[0],

If[StringLength[y]	>	1	||	dir	!=	0	&&	dir	!=	1,	Return[False],	b	=	StringLength[x]]];
If[p	<	1||p	>	b,	False,	If[p	==	1	&&	dir	==	0,	c	=	0,	If[p	==	b	&&	dir	==	1,	c	=	0,
If[dir	==	0,	For[a	=	p,	a	>=	1,	a–=	1,
If[StringTake[x,	{a}]	==	y,	Return[a],	c]],

For[a	=	p,	a	<=	b,	a	+=	1,	If[StringTake[x,	{a}]	==	y,	Return[a],	c]]]]]];	If[a	==	0	||	a
==	b	+	1,	0,	a]]
In[821]:=	Q:=	“AV80RAN480IN2014”;	{Spos[Q,	“A”,	10,	0],	Spos[Q,	“4”,	3,	1],
Spos[Q,	“0”,	1,	1],	Spos[Q,	“Z”,	19,	0],	Spos[Q,	“W”,	19,	0],	Spos[Q,	“P”,	1,	1]}

Out[821]=	{6,	8,	4,	0,	0,	0}

In	a	number	of	cases	the	possibilities	of	the	standard	functions	Replace	and
StringReplace	are	insufficient.	In	this	connection	the	procedure,	whose	call
StringReplace2[S,	s,	E]	returns	the	result	of	replacement	of	all	entries	into	a	stringS	of	its
substringss	onto	an	expressionE	has	been	created;	at	that,	the	replaced	substringss
shouldn’t	be	limited	by	letters.	If	the	stringS	doesn’t	contain	occurrences	ofs,	the
procedure	call	returns	the	initial	stringS	while	on	the	empty	stringS	the	empty	string	is
returned.	In	a	sense	the	procedure	StringReplace2	combines	possibilities	of	the	above
system	functions.	The	following	fragment	represents	source	code	of	theStringReplace2
procedure	along	with	typical	examples	of	its	usage.

In[2267]:=	StringReplace2[S_	/;	StringQ[S],	s_	/;	StringQ[s],	Exp_]	:=	Module[{b,	c,
d,	k	=	1,	a	=	Join[CharacterRange[“A”,	“Z”],

CharacterRange[“a”,	“z”]]	},	b	=	Quiet[Select[StringPosition[S,	s],	!	MemberQ[a,
StringTake[S,	{#[[1]]–1,	#[[1]]–1}]]	&&	!	MemberQ[a,	StringTake[S,	{#[[2]]	+	1,	#
[[2]]	+	1}]]	&]];	StringReplacePart[S,	ToString[Exp],	b]]

In[2268]	:=	StringReplace2[“Length["abSin[x]"]	+	Sin[x]	+	ab–Sin[x]*6”,	“Sin[x]”,
“a^b”]
Out[2268]=	“Length["abSin[x]"]+	a^b+	ab–	a^b*6”
In[2269]:=	StringReplace2[“Length["abSin[x]"]	+	Cos[x]	+	ab–Cos[x]*6”,	“abSin[x],
“a^b”]
Out[2269]=	“Length["a^b"]+	Cos[x]+	ab–	Cos[x]*6”

In	addition	to	the	standardStringReplace	function	and	theStringReplace2	procedure	in	a
number	of	cases	the	procedureStringReplace1	is	provided	as	useful.	The
callStringReplace1[S,	L,	P]	returns	result	of	substitution	in	a	stringS	of	substrings	from
the	listP	instead	of	its	substrings	determined	by	positions	of	the	nested	listL
ofListList–type.	The	next	fragment	represents	source	code	of	theStringReplace1
procedure	with	examples	of	its	usage.

In[2331]:=	StringReplace1[S_	/;	StringQ[S],	L_	/;	ListListQ[L]	&&	Length[L[[1]]]
==	2	&&	MatrixQ[L,	IntegerQ]	&&	Sort[Map[Min,	L]][[1]]	>=	1,	P_	/;	ListQ[P]]	:=
Module[{a	=	{},	b,	k	=	1},

If[Sort[Map[Max,	L]][[–1]]	<=	StringLength[S]	&&	Length[P]	==	Length[L],	Null,
Return[Defer[StringReplace1[S,	L,	P]]]];	For[k,	k	<=	Length[L],	k++,	b	=	L[[k]];	a	=
Append[a,	StringTake[S,	{b[[1]],	b[[2]]}]–>	ToString[P[[k]]]]];	StringReplace[S,	a]]
In[2332]:=	StringReplace1[“avz123456789agn”,	{{4,	7},	{8,	10},	{11,	12}},

{	”	RANS	“,	Tampere,	Sqrt[(a	+	b)*(c	+	d)]}]
Out[2332]=	“avz	RANS	TampereSqrt[(a+	b)	(c+	d)]agn”
For	operating	with	strings	theSubsDel	procedure	represents	a	quite	certain	interest	whose
callSubsDel[S,	x,	y,	p]	returns	result	of	removal	from	a	string	S	of	all	substrings	which	are
limited	on	the	right(at	the	left)	by	a	substringx	and	at	the	left(on	the	right)	by	the	first	met
symbol	in	string	format	from	the	listy;	moreover,	search	ofysymbol	is	done	to	the	left(p	=
–1)	or	to	the	right	(p	=	1).	In	addition,	the	deleted	substrings	will	contain	a	substringx
since	one	end	and	the	first	symbol	met	fromy	since	other	end.	Moreover,	if	in	the	course	of
search	the	symbols	from	the	listy	weren’t	found	until	end	of	the	stringS,	the	rest	of	the
initial	stringS	is	removed.	The	fragment	represents	source	code	of	theSubsDel	procedure
with	examples	of	its	use.	Procedure	is	used	by	a	number	of	means	from	ourAVZ_Package
package	[48].	In[2321]:=	SubsDel[S_	/;	StringQ[S],	x_	/;	StringQ[x],	y_	/;	ListQ[y]
&&

DeleteDuplicates[Map[StringQ,	y]]	==	{True}&&
Plus[Sequences[Map[StringLength,	y]]]	==	Length[y],	p_	/;	MemberQ[{–1,	1},	p]]	:=
Module[{b,	c	=	x,	d,	h	=	StringLength[S],	k},	If[StringFreeQ[S,	x],	Return[S],	b	=
StringPosition[S,	x][[1]]];	For[k	=	If[p	==	1,	b[[2]]	+	1,	b[[1]]–1],	If[p	==	1,	k	<=	h,	k
>=	1],	If[p	==	1,	k++,	k––],	d	=	StringTake[S,	{k,	k}];	If[MemberQ[y,	d]	||	If[p	==	1,	k
==	1,	k	==	h],	Break[],

If[p	==	1,	c	=	c	<>	d,	c	=	d	<>	c];	Continue[]]];	StringReplace[S,	c–>	””]]

In[2322]	:=	SubsDel[“12345avz6789”,	“avz”,	{“8”},	1]
Out[2322]=	“1234589”
In[2323]:=	SubsDel[“12345avz6789”,	“avz”,	{“8”,	9},	1]
Out[2323]=	SubsDel[”12345avz6789“,	“avz“,	{”8“,	9},	1]
In[2324]:=	SubsDel[“123456789avz6789”,	“avz”,	{“5”},	1]
Out[2324]=	“123456789”

While	the	procedure	call	SubDelStr[x,	L]	provides	removal	from	a	stringx	of	all
substrings	which	are	limited	by	numbers	of	the	positions	given	by	the	listL	ofListList–type
from	two–element	sublists.	On	incorrect	tuples	of	the	actual	arguments	the	procedure	call
is	returned	unevaluated.	The	following	fragment	represents	source	code	of	the	procedure

with	examples	of	its	use.

In[2826]:=	SubDelStr[x_	/;	StringQ[x],	L_	/;	ListListQ[L]]	:=
Module[{k	=	1,	a	=	{}},	If[!	L	==	Select[L,	ListQ[#]	&&	Length[#]	==	2	&]	||	L[[–1]]
[[2]]	>	StringLength[x]	||	L[[1]][[1]]	<	1,

Return[Defer[SubDelStr[x,	L]]],	For[k,	k	<=	Length[L],	k++,	a	=	Append[a,
StringTake[x,	L[[k]]]–>	””]];	StringReplace[x,	a]]]

In[2827]	:=	SubDelStr[“123456789abcdfdh”,	{{3,	5},	{7,	8},	{10,	12}}]	Out[2827]=
“1269dfdh”
In[2828]:=	SubDelStr[“123456789abcdfdh”,	{{3,	5},	{7,	8},	{10,	12},	{40,	42}}]
Out[2828]=	SubDelStr[”123456789abcdfdh“,	{{3,	5},	{7,	8},	{10,	12},	{40,	42}}]

For	receiving	of	substrings	of	a	string	which	are	given	by	their	positions	of	end	and
beginning,Mathematica	possesses	theStringTake	function	having	6	formats.	However,	in
a	number	of	cases	is	more	convenient	a	receiving	the	sublines	limited	not	by	positions,	but
the	list	of	substrings.	For	this	purpose	two	functionally	identical	proceduresStringTake1
andStringTake2	serve	[48].	The	callStringTake{1|2}[x,y]	returns	the	list	of	substrings	of
a	stringx	that	are	limited	by	their	substringsy;	as	the	second	argument	can	be	both	an
expression,	and	their	list.	The	following	fragment	represents	source	code	of
theStringTake2	procedure	along	with	typical	examples	of	its	usage.

In[2751]:=	StringTake2[x_	/;	StringQ[x],	y_]	:=	Module[{b	=	{},	k	=	1,	a	=
Map[ToString,	Map[InputForm,	y]]},

For[k,	k	<=	Length[a],	k++,	b	=	Append[b,	ToString1[a[[k]]]	<>	“–>”	<>	“","”]];
StringSplit[StringReplace[x,	ToExpression[b]],	“,”]]

In[2752]	:=	StringTake2[“ransianavzagnvsvartkr”,	{ian,	agn,	art}]	Out[2752]=
{”rans“,	“avz“,	“vsv“,	“kr”}
In[2753]:=	StringTake2[“ransianavzagnvsvartkr”,	{ian,	480,	art,	80}]	Out[2753]=
{”rans“,	“avzagnvsv“,	“kr”}
In[2754]:=	StringTake2[“ransianavzagnvsvartkr”,	{ran,	ian,	agn,	art,	kr}]
Out[2754]=	{”s“,	“avz“,	“vsv”}

For	work	with	strings	the	following	procedure	is	rather	useful,	whose	call	InsertN[S,	L,	n]
returns	result	of	inserting	into	a	stringS	after	its	positions	from	a	listn	of	substrings	from	a
listL;	in	casen=	{<	1|≥	StringLength[S]}	a	substring	is	located	before	stringS	or	in	its	end
respectively.	It	is	supposed	that	the	actual	argumentsL	andn	may	contain	various	number
of	elements,	in	this	case	the	excess	elementsn	are	ignored.	At	that,	processing	of	a	string	S
is	carried	out	concerning	the	list	of	positions	for	insertionsm	determined	according	to	the
following	relationm	=DeleteDuplicates[Sort[n]].	The	call	with	inadmissible	arguments	is
returned	unevaluated.	The	next	fragment	represents	source	code	of	theInsertN	procedure
with	examples	of	its	usage.

In[2583]	:=	InsertN[S_String,	L_	/;	ListQ[L],	n_	/;	ListQ[n]	&&	Length[n]	==
Length[Select[n,	IntegerQ[#]	&]]]	:=	Module[{a	=	Map[ToString,	L],	d	=
Characters[S],	p,	b,	k	=	1,	c	=	FromCharacterCode[2],	m	=
DeleteDuplicates[Sort[n]]},	b	=	Map[c	<>	ToString[#]	&,	Range[1,	Length[d]]];	b	=
Riffle[d,	b];	p	=	Min[Length[a],	Length[m]];	While[k	<=	p,	If[m[[k]]	<	1,

PrependTo[b,	a[[k]]],	If[m[[k]]	>	Length[d],	AppendTo[b,	a[[k]]],	b	=	ReplaceAll[b,	c
<>	ToString[m[[k]]]–>	a[[k]]]]];	k++];	StringJoin[Select[b,	!	SuffPref[#,	c,	1]	&]]]

In[2584]	:=	InsertN[“123456789Rans_Ian”,	{Ag,	Vs,	Art,	Kr},	{6,	9,	3,	0,	3,	17}]
Out[2584]=	“Ag123Vs456Art789KrRans_Ian”
In[2585]:=	InsertN[“123456789”,	{a,	b,	c,	d,	e,	f,	g,	h,	n,	m},	{4,	2,	3,	0,	17,	9,	18}]
Out[2585]=	“a12b3c4d56789efg”

Contrary	to	the	previous	procedure	the	procedure	DelSubStr[S,	L]	provides	removal	from
a	stringS	of	substrings,	whose	positions	are	given	by	the	list	L;	the	listL	has	nesting0	or1,
for	example,	{{3,	4},	{7},	{9}}	or	{1,	3,	5,	7,	9}	[48].	Earlier	it	was	already	noted	that
certain	functional	facilities	ofMathematica	need	to	be	reworked	both	for	purpose	of
expansion	of	scope	of	application,	and	elimination	of	shortcomings.	It	to	the	full	extent
concerns	such	a	rather	important	function	asToString[x]	that	returns	the	result	of
converting	of	an	arbitrary	expressionx	intostring	format.	This	standard	procedure
incorrectly	converts	expressions	into	string	format,	that	contain	string	subexpressions	if	to
code	them	in	the	standard	way.	By	this	reason	we	definedToString1[x]	procedure
returning	result	of	correct	converting	of	an	arbitrary	expressionx	into	string	format.	The
next	fragment	presents	source	code	of	theToString1	procedure	with	examples	of	its
application.	In	a	number	of	appendices	this	procedure	is	popular	enough.
In[2720]:=	ToString1[x_]	:=	Module[{a	=	“$Art25Kr18$.txt”,	b	=	””,	c,	k	=	1},

Write[a,	x];	Close[a];	For[k,	k	<	Infinity,	k++,	c	=	Read[a,	String];	If[SameQ[c,
EndOfFile],	Return[DeleteFile[Close[a]];	b],	b	=	b	<>	StrDelEnds[c,	”	“,	1]]]]

In[2721]	:=	Kr[x_]	:=	Module[{a	=	“ArtKr”,	b	=	”	=	“},	a	<>	b	<>	ToString[x]]
In[2722]:=	ToString[Definition[Kr]]
Out[2722]=	“Kr[x_]	:=	Module[{a=	ArtKr,	b=	=	},	a<>b<>ToString[x]]”	In[2723]:=
ToExpression[%]

ToExpression	::sntx:	Invalid	syntax	in	or	before”Kr[x_]:=	Module[{a=	…”.	Out[2723]=
$Failed
In[2724]:=	ToString1[Definition[Kr]]
Out[2724]=	“Kr[x_]:=	Module[{a=	"Art_Kr",	b=	"	=	"},

StringJoin[a,	b,	ToString[x]]]”
In[2725]:=	ToExpression[%];	Kr[80]
Out[2725]=	“Art_Kr=	80”
In[2748]:=	ToString2[x_]	:=	Module[{a},	If[ListQ[x],
SetAttributes[ToString1,	Listable];	a	=	ToString1[x];	ClearAttributes[ToString1,
Listable];	a,	ToString1[x]]]

In[2749]	:=	ToString2[a	+	b/72–Sin[480.80]]
Out[2749]=	“0.13590214677436363+	a+	b/72”
In[2750]:=	ToString2[{{72,	67},	{47,	{a,	b,	{x,	y},	c},	52},	{25,	18}}]	Out[2750]=
{{”72“,	“67”},	{”47“,	{”a“,	“b“,	{”x“,	“y”},	“c”},	“52”},	{”25“,	“18”}}

Immediate	application	of	the	ToString1	procedure	allows	to	simplify	rather	significantly
the	programming	of	a	number	of	problems.	At	that,	examples	of	the	previous	fragment
visually	illustrate	application	of	both	means	on	the	concrete	example,	emphasizing
advantages	of	our	procedure.	Whereas	theToString2	procedure	expands	the	previous

procedure	onto	lists	of	any	level	of	nesting.	So,	the	callToString2[x]	on	an	argumentx,
different	from	the	list,	is	equivalent	to	the	callToString1[x],	while	on	a	listx	is	equivalent
to	the	callToString1[x]	that	is	endowed	withListable–attribute.	Source	code	of
theToString2	with	examples	of	its	usage	ended	the	given	fragment.

The	next	fragment	represents	rather	useful	procedure,	whose	call	SubStr[S,	p,a,	b,	r]
returns	a	substring	of	a	stringS	which	is	limited	at	the	left	by	the	first	symbol	other	than
symbola	or	other	than	symbols	from	the	lista,	and	on	the	right	is	limited	by	symbol	other
thanb	or	other	than	symbols	from	a	listb.	Meanwhile,	through	argumentr	in	case	of	a
erroneous	situation	the	corresponding	message	diagnosing	the	arisen	error	situation	is
returned.	A	value	of	argumentp	must	be	in	interval1..	StringLength[S].	The	following
fragment	represents	source	code	and	examples	of	usage	of	this	procedure.

In[2379]	:=	SubStr[S_/;	StringQ[S],	p_/;	IntegerQ[p],	a_	/;	CharacterQ[a]	||	ListQ[a]
&&	DeleteDuplicates[Map[CharacterQ,	a]]	==	{True},	b_	/;	CharacterQ[b]	||
ListQ[b]	&&	DeleteDuplicates[Map[CharacterQ,	b]]	==	{True},	r_	/;	!	HowAct[r]]
:=	Module[{c	=	Quiet[StringTake[S,	{p,	p}]],	k,	t},	If[p	>=	1	&&	p	<=
StringLength[S],

For[k	=	p	+	1,	k	<=	StringLength[S],	k++,	t	=	StringTake[S,	{k,	k}];

If[If[CharacterQ[b],	t	!=	b,	!	MemberQ[b,	t]],	c	=	c	<>	t;	Continue[],	Break[]]];	For[k
=	p–1,	k	>=	1,	k––,	t	=	StringTake[S,	{k,	k}];	If[If[CharacterQ[a],	t	!=	a,	!
MemberQ[a,	t]],	c	=	t	<>	c;	Continue[],	Break[]]];	c,	r	=	“Argument	p	should	be	in
range	1..”	<>	ToString[StringLength[S]]	<>	”	but	received	”	<>	ToString[p];
$Failed]]

In[2380]	:=	SubStr[“12345abcd480e80fg6789sewrt”,	14,	“3”,	“r”,	Error]	Out[2380]=
“45abcd480e80fg6789sew”
In[2382]:=	SubStr[“12345abcdefg6789sewrt”,	25,	“0”,	“x”,	Error]	Out[2382]=	$Failed
In[2383]:=	Error
Out[2383]=	“Argument	p	should	be	in	range	1..21	but	received	25”	In[2384]:=
SubStr[“12345ab3c480def80gr6789sewrt”,	7,	“3”,	“r”,	Err]	Out[2384]=
“45ab3c480def80g”

In	a	number	of	cases	of	processing	of	expressions	the	problem	of	excretion	of	one	or	the
other	type	of	expressions	from	strings	is	quite	topical.	In	this	relation	a	certain	interest	the
procedureExprOfStr	represents	whose	source	code	with	examples	of	its	usage	represents
the	following	fragment.	The	call	ExprOfStr[w,	n,	m,	L]	returns	result	of	extraction	from	a
stringw	limited	by	itsnth	position	and	the	end,	of	the	first	correct	expression	on	condition
that	search	is	doneon	the	left	(m=–1)/on	the	right	(m=1)	from	the	given	position,
furthermore	a	symbol,	next	or	previous	behind	the	found	expression	must	belong	to	the
listL.	The	call	is	returned	in	string	format;	in	the	absence	of	a	correct	expression$Failed	is
returned,	while	procedure	call	on	inadmissible	arguments	is	returned	unevaluated.

In[2675]:=	ExprOfStr[x_	/;	StringQ[x],	n_	/;	IntegerQ[n]	&&	n	>	0,	m_	/;
MemberQ[{–1,	1},	m],	L_	/;	ListQ[L]]	:=

Module[{a	=	””,	b,	k},	If[n	>=	StringLength[x],	Return[Defer[ExprOfStr[x,	n,	m,
L]]],	Null];	For[k	=	n,	If[m	==–1,	k	>=	1,	k	<=	StringLength[x]],	If[m	==–1,	k––,
k++],	If[m	==–1,	a	=	StringTake[x,	{k,	k}]	<>	a,	a	=	a	<>	StringTake[x,	{k,	k}]];	b	=

Quiet[ToExpression[a]];	If[b	===	$Failed,	Null,	If[If[m	==–1,	k	==	1,	k
==StringLength[x]]||	MemberQ[L,	Quiet[StringTake[x,	If[m	==–1,	{k–1,	k–1},	{k	+
1,	k	+	1}]]]],	Return[a],	Null]]];	$Failed]

In[2676]	:=	P[x_,	y_]	:=	Module[{a,	P1},	P1[z_,	h_]	:=	Module[{n},	z^2	+	h^2];	x*y	+
P1[x,	y]]
In[2677]:=	x	=	ToString1[Definition[P]];	{ExprOfStr[x,	44,	1,	{”	“,	“;”,	“,”}],
ExprOfStr[x,	39,–1,	{”	“,	“;”,	“,”}]}
Out[2677]=	{”Module[{n},	z^2+	h^2]“,	“P1[z_,	h_]”}
In[2679]:=	ExprOfStr[x,	10,	1,	{”	“,	“;”,	“,”}]
Out[2679]=	$Failed
In[2680]:=	ExprOfStr[“12345678;F[(a+b)/(c+d)];	AV_2014”,	10,	1,	{“^”,	“;”}]
Out[2680]=	“F[(a+	b)/(c+	d)]”

The	ExprOfStr1	procedure	represents	an	useful	enough	modification	of	the	previous
procedure;	its	callExprOfStr1[x,n,p]	returns	a	substring	of	a	string	x,	that	is	minimum	on
length	and	in	which	a	boundary	element	is	a	symbol	inn–th	position	of	stringx,	containing
a	correct	expression.	At	that,	search	of	such	substring	is	done	fromn–th	position	to	the
right	and	until	the	end	of	stringx(p=1),	and	from	the	left	fromnth	position	of	string	to	the
beginning	of	the	string(p=–1).	In	case	of	lack	of	such	substring	the	call	returns$Failed
while	on	inadmissible	arguments	the	call	is	returned	unevaluated	[48].	In[3148]:=	x	=
“123{a+b},	F[c+d+Sin[a+b]]”;	ExprOfStr1[x,	25,–1]	Out[3148]=	“F[c+d+Sin[a+b]]”
In[3149]:=	x	=	“123{a+b},	[c+d]”;	ExprOfStr1[x,	15,–1]
Out[3149]=	$Failed
In[3150]:=	x	=	“123{a+b},	[c+d]”;	ExprOfStr1[x,	17,–1]
Out[3150]=	ExprOfStr1[”123{a+b},	[c+d]“,	17,–1]

In	a	certain	relation	to	the	ExprOfStr	procedure	also	theExtrExpr	procedure	adjoins,
whose	callExtrExpr[S,	N,	M]	returns	a	correct	expression	in	string	format	which	is
contained	in	a	substring	of	a	stringS	limited	by	positions	with	numbersN	andM.	At	lack	of
a	correct	expression	the	empty	list,	i.e.	{}	is	returned	[48].
In[2622]:=	ExtrExpr[“z=(Sin[x+y]	+	Log[x])+G[x,y];”,	4,	13]
Out[2622]=	“Sin[x+	y]”
In[2623]:=	ExtrExpr[“z=(Sin[x+y]	+	Log[x])+F[x,y];”,	1,	21]

Out[2623]	=	“Log[x]+	Sin[x+	y]”
In[2624]:=	ExtrExpr[“z	=	(Sin[x	+	y]	+	Log[x])	+	F[x,	y];”,	1,	36]	Out[2624]=	“F[x,	y]+
Log[x]+	Sin[x+	y]”

The	ExtrExpr	procedure	is	rather	useful	in	a	number	of	appendices,	which	are	connected,
first	of	all,	with	extraction	of	expressions	from	strings.	The	string	structure	is	one	ofbasic
structures	inMaple	and	inMathematica,	for	ensuring	work	with	which	both	systems	have
a	number	of	the	effective	enough	means.	However,	ifMaple	along	with	a	rather	small	set
of	the	built-	in	means	has	an	expanded	set	of	means	from	theStringTools	module	and	a
number	of	means	from	our	library	[47],Mathematica	in	this	regard	has	less	representative
set	of	means.	Meanwhile,	the	set	of	its	standard	means	allows	to	program	enough	simply
the	lackingMaple–analogs,	and	other	means	of	processing	of	strings.	Our	means	of	this
orientation	are	represented	in	[48].

Unlike	the	StringFreeQ	function,	the	procedure	callStringDependQ[x,	y]	returnsTrue,	if
a	stringx	contains	entries	of	a	substringy	or	all	substrings	given	by	the	listy,	andFalse
otherwise.	Whereas	the	callStringDependQ[x,	y,	z]	in	the	presence	of	the	third	optional
argument–an	undefinite	variable–	throu	it	in	addition	returns	the	list	of	substrings	that
don’t	have	entries	into	a	stringx.	The	following	fragment	represents	source	code	of	the
procedure	StringDependQ	along	with	typical	examples	of	its	usage.

In[2611]	:=	StringDependQ[x_	/;	StringQ[x],	y_	/;	StringQ[y]||ListStrQ[y],	z___]	:=
Module[{a	=	Map[StringFreeQ[x,	#]	&,	Flatten[{y}]],	b	=	{},	c	=	Length[y],	k	=	1},
If[DeleteDuplicates[a]	==	{False},	True,	If[{z}!=	{}&&	!	HowAct[z],	z	=
Select[Flatten[y],	StringFreeQ[x,	#]	&]];	False]]

In[2612]	:=	{StringDependQ[“abcd”,	{“a”,	“d”,	“g”,	“s”,	“h”,	“t”,	“w”},	t],	t}
Out[2612]=	{False,	{”g“,	“s“,	“h“,	“t“,	“w”}}
In[2613]:=	{StringDependQ[“abgschtdw”,	{“a”,	“d”,	“g”,	“s”,	“h”,	“t”,	“w”},	j],	j}
Out[2613]=	{True,	j}

In	a	number	of	tasks	of	strings	processing,	there	is	a	need	of	replacement	not	simply	of
substrings	but	substrings	limited	by	the	given	substrings.	The	procedure	solves	one	of
such	tasks,	its	callStringReplaceS[S,s1,	s2]	returns	the	result	ofsubstitution	into	a	stringS
instead	of	entries	into	it	of	substrings	s1	limited	by	strings“x”	on	the	left	and	on	the	right
from	the	specified	lists	L	andR	respectively,	by	substringss2(StringLength[“x”]=	1);	at
absence	of	such	entries	the	procedure	call	returnsS.	The	following	fragment	represents
source	code	of	theStringReplaceS	procedure	with	an	example	of	its	usage.

In[2691]:=	StringReplaceS[S_	/;	StringQ[S],	s1_String,	s2_String]	:=

Module[{a	=	StringLength[S],	b	=	StringPosition[S,	s1],	c	=	{},	k	=	1,	p,	L	=
Characters[“`!@#%^&*(){}:"\/|<>?~–=+[];:’.,	1234567890”],	R	=
Characters[“`!@#%^&*(){}:"\/|<>?~=[];:’.,	“]},	If[b	==	{},	S,	While[k	<=	Length[b],
p	=	b[[k]];	If[Quiet[(p[[1]]	==	1	&&	p[[2]]	==	a)	||	(p[[1]]	==	1	&&	MemberQ[R,
StringTake[S,	{p[[2]]	+	1,	p[[2]]	+	1}]])||	(MemberQ[L,	StringTake[S,	{p[[1]]–1,
p[[1]]–1}]]	&&	MemberQ[R,	StringTake[S,	{p[[2]]	+	1,	p[[2]]	+	1}]])||	(p[[2]]	==	a
&&	MemberQ[L,	StringTake[S,	{p[[1]]–1,	p[[1]]–1}]])],	c	=	Append[c,	p]];	k++];
StringReplacePart[S,	s2,	c]]]

In[2692]:=	StringReplaceS[“abc&	c	+	bd6abc–abc78*abc”,	“abc”,	“xyz”]	Out[2692]=
“xyz&	c+	bd6xyz–	abc78*xyz”

The	given	procedure,	in	particular,	is	a	rather	useful	means	at	processing	of	definitions	of
blocks	and	modules	in	respect	of	operating	with	their	formal	arguments	and	local
variables.

In	a	number	of	cases	at	processing	of	strings	it	is	necessary	to	extract	from	them	the
substrings	limited	by	the	symbol	{”},	i.e.”strings	in	strings“.	This	problem	is	solved	by
the	procedure,	whose	callStrFromStr[x]	returns	the	list	of	such	substrings	that	are	in	a
stringx;	otherwise,	the	callStrFromStr[x]	returns	the	empty	list,	i.e.	{}.	The	following
fragment	represents	source	code	of	the	procedure	along	with	typical	examples	of	its
application.

In[3050]	:=	StrFromStr[x_	/;	StringQ[x]]	:=	Module[{a	=	“"”,	b,	c	=	{},	k	=	1},	b	=

DeleteDuplicates[Flatten[StringPosition[x,	a]]];	For[k,	k	<=	Length[b]–1,	k++,	c	=
Append[c,	ToExpression[StringTake[x,	{b[[k]],	b[[k	+	1]]}]]];	k	=	k	+	1];	c]

In[3051]	:=	StrFromStr[“12345"678abc"xyz"48080"mnph”]	Out[3051]=	{”678abc“,
“910”}
In[3052]:=	StrFromStr[“123456789”]
Out[3052]=	{}
Unlike	the	standardStringSplit	function,	the	callStringSplit1[x,y]	performs	semantic
splitting	of	a	stringx	by	a	symboly	onto	elements	of	the	returned	list.	In	this	case	the
semantics	is	reduced	to	the	point	that	in	the	returned	list	only	those	substrings	of	the
stringx	which	contain	correct	expressions	are	placed;	for	lack	of	such	substrings	the
procedure	call	returns	the	empty	list.	TheStringSplit1	procedure	appears	as	a	quite	useful
means,	in	particular,	at	programming	of	means	of	processing	of	headings	of	blocks,
functions	and	modules.	The	comparative	analysis	ofStringSplit	andStringSplit1	speaks
well	for	the	last.	The	next	fragment	represents	source	code	of	the	procedure	StringSplit1
along	with	typical	examples	of	its	application.

In[2950]:=	StringSplit1[x_	/;	StringQ[x],	y_	/;	StringQ[y]	||
StringLength[y]	==	1]	:=

Module[{a	=	StringSplit[x,	y],	b,	c	=	{},	d,	p,	k	=	1,	j	=	1},	d	=	Length[a];	Label[G];
For[k	=	j,	k	<=	d,	k++,	p	=	a[[k]];	If[!	SameQ[Quiet[ToExpression[p]],	$Failed],
AppendTo[c,	p],	b	=	a[[k]];	For[j	=	k,	j	<=	d–1,	j++,	b	=	b	<>	y	<>	a[[j	+	1]];	If[!
SameQ[Quiet[ToExpression[b]],	$Failed],	AppendTo[c,	b];	Goto[G],	Null]]]];	c]

In[2951]	:=	StringSplit[“x_String,	y_Integer,	z_/;	MemberQ[{1,2,3,4,5},	z]||
IntegerQ[z],	h_,	s_String,	c_	/;	StringQ[c]	||	StringLength[c]	==	1”,	“,”]
Out[2951]=	{”x_String“,	“y_Integer“,	“z_/;MemberQ[{1“,”2“,”3“,”	4“,”5}“,	“z]
||IntegerQ[z]“,	“	h_”,	“	s_String“,	“	s_	/;	StringQ[y]||StringLength[y]==	1”}
In[2952]:=	StringSplit1[“x_String,	y_Integer,	z_/;	MemberQ[{1,2,3,4,5},	z]||
IntegerQ[z],	h_,	s_String,	c_	/;	StringQ[c]	||	StringLength[c]	==	1”,	“,”]
Out[2952]=	{”x_String“,	“	y_Integer“,	“	z_/;	MemberQ[{1,	2,	3,	4,	5},	z]||
IntegerQ[z]“,	“	h_”,	“s_String“,	“h_	/;	StringQ[y]||	StringLength[y]==	1”}

A	number	of	the	problems	dealing	with	processing	of	strings	do	theSubsStr	procedure	as
a	rather	useful,	whose	callSubsStr[x,	y,	h,	t]	returns	result	of	replacement	in	a	stringx	of
all	entries	of	substrings	formed	byconcatenation	(on	the	right	att=1or	at	the	left	att=0)	of
substringsy	with	strings	from	a	list	h,	onto	strings	from	the	listh	respectively.	At
impossibility	of	carrying	out	replacement	the	initial	stringx	is	returned.	TheSubsStr
procedure	appears	as	a	useful	means,	for	example,	at	programming	of	means	of	processing
of	the	body	of	procedure	in	string	format	that	containslocal	variables.	Whereas	the
callSubsBstr[S,	x,	y]	returns	the	list	of	all	nonintersecting	substrings	in	a	stringS	that	are
limited	by	symbolsx	andy,	otherwise	the	empty	list,	i.e.	{}	is	returned.	The	following
fragment	represents	source	codes	of	procedures	SubsStr	andSubsBstr	along	with
examples	of	their	usage.

In[2209]:=	SubsStr[x_	/;	StringQ[x],	y_	/;	StringQ[y],	h_	/;	ListQ[h],	t_	/;
MemberQ[{0,	1},	t]]	:=	Module[{a	=	Map[ToString,	h],	b},

If[StringFreeQ[x,	y],	Return[x],	b	=	If[t	==	1,	Map3[StringJoin,	y,	a],

Mapp[StringJoin,	a,	y]]];	If[StringFreeQ[x,	b],	Return[x],	StringReplace[x,
Map9[Rule,	b,	h]]]]

In[2210]	:=	SubsStr[“Module[{a$	=	$CallProc,	b$,	c$},	x	+	StringLength[y]	+	b$*c$;
b$–c$;	a$]”,	“$”,	{“,”,	“]”,	“[“,	“}“,	”	“,	“;”,	“*”,	“^”,	“–”},	1]
Out[2210]=	“Module[{a=	$CallProc,b,c},x+StringLength[y]+b*c;	b–c;	a]”

In[2438]:=	SubsBstr[S_	/;	StringQ[S],	x_	/;	CharacterQ[x],
y_	/;	CharacterQ[y]]	:=	Module[{a	=	{},	c,	h,	n,	m,	s	=	S,	p,	t},	c[s_,	p_,	t_]	:=
DeleteDuplicates[Map10[StringFreeQ,	s,{p,	t}]]	==	{False};

While[c[s,	x,	y],	n	=	StringPosition[s,	x,	1][[1]][[1]];	s	=	StringTake[s,	{n,–1}];	m	=
StringPosition[s,	y,	1];	If[m	==	{},	Return[],	m	=	m[[1]][[1]]];	AppendTo[a,	h	=
StringTake[s,	{1,	m}]];	s	=	StringReplace[s,	h–>	””];	Continue[]];	a]

In[2439]	:=	SubsBstr[“123452333562675243655”,	“2”,	“5”]
Out[2439]=	{”2345“,	“23335“,	“2675“,	“24365”}
In[2440]:=	SubsBstr[“123452333562675243655”,	“9”,	“5”]
Out[2440]=	{}

The	following	procedure	SubStrSymbolParity	presents	undoubted	interest	at	processing
of	definitions	of	the	blocks/functions/modules	given	in	string	format.	The
callSubStrSymbolParity[x,	y,	z,	d]	with	four	arguments	returns	the	list	of	substrings	of	a
stringx	that	are	limited	by	one-character	stringsy,	z(y	≠	z);	at	that,	search	of	such	substrings
in	the	stringx	is	done	fromleft	to	right(d=0),	and	from	right	to	left(d=1).	While
callSubStrSymbolParity[x,	y,	z,	d,	t]	with	the	fifth	optional	argument–a	positive
numbert>0	–	provides	search	in	substring	ofx	that	is	limited	by	a	positiont	and	the	end	of
stringx	atd=0,	and	by	the	beginning	of	stringx	andt	atd=1.	In	case	of	receiving	of
inadmissible	arguments	the	procedure	call	is	returned	unevaluated,	while	at	impossibility
of	extraction	of	the	demanded	substrings	the	procedure	call	returns$Failed.	This	procedure
is	a	rather	useful	means,	in	particular,	at	the	solution	of	problems	of	extraction	in
definitions	of	procedures	of	the	list	of	local	variables,	headings	of	procedures,	etc.	The
fragment	represents	source	code	of	theSubStrSymbolParity	procedure	with	examples	of
its	application

In[2533]:=	SubStrSymbolParity[x_	/;	StringQ[x],	y_	/;	CharacterQ[y],	z_	/;
CharacterQ[z],	d_	/;	MemberQ[{0,	1},	d],	t___	/;	t	==	{}||	PosIntQ[{t}[[1]]]]	:=

Module[{a,	b	=	{},	c	=	{y,	z},	k	=	1,	j,	f,	m	=	1,	n	=	0,	p,	h},	If[{t}==	{},	f	=	x,	f	=
StringTake[x,	If[d	==	0,	{t,	StringLength[x]},	{1,	t}]]];	If[Map10[StringFreeQ,	f,	c]
!=	{False,	False}||	y	==	z,	Return[],	a	=	StringPosition[f,	If[d	==	0,	c[[1]],	c[[2]]]]];
For[k,	k	<=	Length[a],	k++,	j	=	If[d	==	0,	a[[k]][[1]]	+	1,	a[[k]][[2]]–1];	h	=	If[d	==	0,
y,	z];	While[m	!=	n,	p	=	Quiet[Check[StringTake[f,	{j,	j}],	Return[$Failed]]];	If[p	==
y,	If[d	==	0,	m++,	n++];

If[d	==	0,	h	=	h	<>	p,	h	=	p	<>	h],	If[p	==	z,	If[d	==	0,	n++,	m++];	If[d	==	0,	h	=	h	<>
p,	h	=	p	<>	h],	If[d	==	0,	h	=	h	<>	p,	h	=	p	<>	h]]];	If[d	==	0,	j++,	j––]];

AppendTo[b,	h];	m	=	1;	n	=	0;	h	=	””];	b]

In[2534]	:=	SubStrSymbolParity[“12345{abcdfgh}67{rans}8{ian}9”,	“{“,	“}“,	0]
Out[1534]=	{”{abcdfgh}“,	“{rans}“,	“{ian}”}

In[2535]:=	SubStrSymbolParity[“12345{abcdfg}67{rans}8{ian}9”,	“{“,	“}“,	0,	7]
Out[2535]=	{”{rans}“,	“{ian}”}
In[2536]:=	SubStrSymbolParity[“12345{abcdfgh}67{rans}8{ian}9”,	“{“,	“}“,	1]
Out[2536]=	{”{abcdfgh}“,	“{rans}“,	“{ian}”}
In[2537]:=	SubStrSymbolParity[“12345{abfgh}67{rans}8{ian}9”,	“{“,	“}“,	1,	25]
Out[2537]=	{”{abfgh}“,	“{rans}”}
In[2538]:=	SubStrSymbolParity[“12345{abch}67{rans}8{ian}9”,	“{“,	“}“,	1,–80]
Out[2538]=	SubStrSymbolParity[”12345{abch}67{rans}8{ian}9“,	“{“,	“}“,1,–80]
Meanwhile,	in	many	cases	it	is	quite	possible	to	use	a	simpler	and	reactive	version	of	this
procedure,	whose	callSubStrSymbolParity1[x,	y,	z]	with3	factual	arguments	returns	the
list	of	substrings	of	a	stringx	that	are	limited	by	one-character	strings	{y,z}(y≠z);	at	that,
search	of	such	substrings	is	done	from	left	to	right.	In	the	absence	of	the	desired	substrings
the	procedure	call	returns	the	empty	list,	i.e.	{}.	The	following	fragment	represents	source
code	of	theSubStrSymbolParity1	procedure	along	with	examples	of	its	usage.

In[2023]	:=	SubStrSymbolParity1[x_	/;	StringQ[x],	y_	/;	CharacterQ[y],	z_	/;
CharacterQ[z]]	:=	Module[{c	=	{},	d,	k	=	1,	j,	p,	a	=
DeleteDuplicates[Flatten[StringPosition[x,	y]]],	b	=
DeleteDuplicates[Flatten[StringPosition[x,	z]]]},

If[a	==	{}||	b	==	{},	{},	For[k,	k	<=	Length[a],	k++,	p	=	StringTake[x,	{a[[k]],
a[[k]]}];	For[j	=	a[[k]]	+	1,	j	<=	StringLength[x],	j++,	p	=	p	<>	StringTake[x,	{j,	j}];
If[StringCount[p,	y]	==	StringCount[p,	z],	AppendTo[c,	p];	Break[]]]];	c]]

In[2024]	:=	SubStrSymbolParity1[“Definition2[Function[{x,	y},	x*Sin[y]]”,	“{“,	“}“]
Out[2024]=	{”{x,	y}”}
In[2025]:=	SubStrSymbolParity1[“G[x_String,	y_,	z_/;	ListQ[z]]:=	Block[{},
{x,y,z}]”,	“[“,	“]”]
Out[2025]=	{”[x_String,	y_,	z_/;	ListQ[z]]“,	“[z]“,	“[{},	{x,	y,	z}]”}

The	following	simple	enough	procedure	is	a	very	useful	modification	of	the
SubStrSymbolParity1	procedure;	its	callStrSymbParity[S,	s,	x,	y]	returns	a	list,	whose
elements	are	substrings	of	a	stringS	that	have	formatsw	format	on	condition	of	parity	of
the	minimum	number	of	entries	into	a	substringw	of	symbolsx,y	(x≠y).	In	the	absence	of
such	substrings	or	identity	of	symbols	x,y,	the	call	returns	the	empty	list,	i.e.	{}.	The
following	fragment	represents	source	code	of	theStrSymbParity	procedure	with	examples
of	its	usage.

In[2175]:=	StrSymbParity[S_	/;	StringQ[S],	S1_	/;	StringQ[S1],	x_	/;	StringQ[x]	&&
StringLength[x]	==	1,	y_	/;	StringQ[y]	&&	StringLength[y]	==	1]	:=

Module[{b	=	{},	c	=	S1,	d,	k	=	1,	j,	a	=	StringPosition[S,	S1]},	If[x	==	y	||a	==	{},	{},
For[k,	k	<=	Length[a],	k++,	For[j	=	a[[k]][[2]]	+	1,	j	<=	StringLength[S],	j++,	c	=	c
<>	StringTake[S,	{j,	j}];	If[StringCount[c,	x]	!=	0	&&	StringCount[c,	y]	!=	0	&&
StringCount[c,	x]	===	StringCount[c,	y],	AppendTo[b,	c];	c	=	S1;	Break[]]]]];	b]

In[2176]	:=	StrSymbParity[“12345[678]9[abcd]”,	“34”,	“[“,	“]”]
Out[2176]=	{”345[678]”}
In[2177]:=	StrSymbParity[“12345[6[78]9”,	“34”,	“[“,	“]”]
Out[2177]=	{}

In[2178]:=	StrSymbParity[“12345[678]9[ab34cd[x]34[a,	b]”,	“34”,	“[“,	“]”]
Out[2178]=	{”345[678]“,	“34cd[x]“,	“34[a,	b]”}

Procedures	SubStrSymbolParity,	SubStrSymbolParity1	&	StrSymbParity	are	rather
useful	tools,	in	particular,	at	processing	of	definitions	of	modules	and	blocks	given	in
string	format.	These	procedures	are	used	by	a	number	of	means	of	theAVZ_Package
package	[48].

The	SubsStrLim	procedure	presents	a	quite	certain	interest	for	a	number	of	appendices
which	rather	significantly	use	procedure	of	extraction	from	the	strings	of	substrings	of	a
quite	certain	format.	The	next	fragment	represents	source	code	of	theSubsStrLim
procedure	along	with	examples	of	its	usage.

In[2542]	:=	SubsStrLim[x_	/;	StringQ[x],	y_	/;	StringQ[y]	&&
StringLength[y]	==	1,	z_	/;	StringQ[z]	&&	StringLength[z]	==	1]	:=	Module[{a,	b	=x
<>	FromCharacterCode[6],	c	=y,	d	={},	p,	j,	k	=	1,	n,	h},	If[!	StringFreeQ[b,	y]	&&	!
StringFreeQ[b,	z],	a	=StringPosition[b,	y];

n	=	Length[a];	For[k,	k	<=	n,	k++,	p	=	a[[k]][[1]];	j	=	p;
While[h=Quiet[StringTake[b,{j+1,	j+1}]];	h	!=	z,	c=c	<>h;	j++];	c=c	<>z;
If[StringFreeQ[StringTake[c,	{2,–2}],	{y,	z}],	AppendTo[d,	c]];	c	=	y]];

Select[d,	StringFreeQ[#,	FromCharacterCode[6]]	&]]

In[2543]	:=	SubsStrLim[“1234363556aaa36”,	“3”,	“6”]
Out[2543]=	{”36“,	“3556“,	“36”}
In[2544]:=	SubsStrLim[DefOpt[“SubsStrLim”],	“{“,	“}“]
Out[2544]=	{”{}“,	“{j+	1,	j+	1}“,	“{2,–2}“,	“{y,	z}”}
In[2545]:=	SubsStrLim[“1234363556aaa363”,	“3”,	“3”]
Out[2545]=	{”343“,	“363“,	“3556aaa3“,	“363”}

The	call	SubsStrLim[x,y,z]	returns	the	list	of	substrings	of	a	stringx	that	are	limited	by
symbols	{y,	z}	provided	that	these	symbols	don’t	belong	to	these	substrings,	excepting
their	ends.	In	particular,	theSubsStrLim	procedure	is	a	quite	useful	means	at	need	of
extracting	from	of	definitions	of	functions,	blocks	and	modules	given	in	string	format	of
some	components	composing	them	that	are	limited	by	certain	symbols,	at	times,
significantly	simplifying	a	number	of	procedures	of	processing	of	such	definitions.
Whereas,	the	call	SubsStrLim1[x,	y,	z]	of	the	procedure	that	is	an	useful	modification	of
the	previousSubsStrLim	procedure,	returns	the	list	of	substrings	of	a	stringx	that	are
limited	by	symbols	{y,z}	provided	that	these	symbols	or	don’t	enter	into	substrings,
excepting	their	ends,	or	along	with	their	ends	have	identical	number	of	entries	of	pairs	{y,
z}	[48],	for	example:

In[2215]	:=	SubsStrLim1[“art[kr[xyz]sv][rans]80[[480]]”,	“[“,	“]”]	Out[2215]=
{”[kr[xyz]sv]“,	“[xyz]“,	“[rans]“,	“[[480]]“,	“[480]”}
In[2216]:=	SubsStrLim1[“G[x_]	:=	Block[{a	=	80,	b	=	480,	c	=	2014},

(a^2	+	b^3	+	c^4)*x]”,	“	{“,	“}“]
Out[2216]=	{”{a=	80,	b=	480,	c=	2014}”}
The	mechanism	of	string	patterns	is	quite	often	used	for	extraction	of	some	structures
from	text	strings.	In	a	certain	degree	the	the	given	mechanism	we	can	quite	consider	as	a

special	programming	language	of	text	structures	and	strings.	The	mechanism	of	string
patterns	provides	a	rather	serious	method	to	make	various	processing	of	string	structures.
At	that,	acquaintance	with	special	languages	of	processing	of	strings	in	many	cases	allows
to	determine	string	patterns	by	the	notation	of	regular	expressions	which	are	determined	in
theMathematica	system	on	the	basis	of	theRegularExpression	function.	The	interested
reader	is	sent	to	[60,71]	or	to	the	reference	on	the	system.	In	this	light	theRedSymbStr
procedure	is	represented	as	a	quite	useful	means	whose	callRedSymbStr[x,y,z]	returns
result	ofreplacement	of	all	substrings	consisting	of	a	symboly,	of	a	stringx	onto	a	symbol
or	a	stringz.	In	case	of	lack	of	occurrences	ofy	inx,	the	procedure	call	returns	the	initial
stringx.	The	fragment	represents	source	code	of	the	procedure	with	examples	of	use.
In[2202]:=	RedSymbStr[x_/;	StringQ[x],	y_	/;	SymbolQ1[y],	z_String]	:=

Module[{a	=	StringPosition[x,	y],	b},	If[StringFreeQ[x,	y],	x,	b	=	Map[#[[1]]	&,	a]];
b	=	Sort[DeleteDuplicates[Map[Length,	Split[b,	#2–#1	==	1	&]]],	Greater];	b	=
Mapp[Rule,	Map3[StringMultiple,	y,	b],	z];

In[2203]	:=	RedSymbStr[“a	b	c	d	ef	Out[2203]=	“a	b	c	d	ef	gh	x	y	z”	In[2204]:=
RedSymbStr[“a	b	c	d	ef	Out[2204]=	“abcdefghxyz”
In[2205]:=	RedSymbStr[“a	b	c	d	ef	Out[2205]=
“aGGGbGGGcGGGdGGGefGGGghGGGxGGGyGGGz”	In[2206]:=	RedSymbStr[“a	b
c	d	ef	gh	x	y	z”,	“x”,	“GGG”]	Out[2206]=	“a	b	c	d	ef	gh	GGG	y	z”

So,	the	strings	generated	by	earlier	considered	ToString1	procedure	can	be	called
asStringStrings(strings	of	strings,	or	the	nested	strings)	as	in	the	case	of	lists;	a	quite
simple	function	can	be	used	for	their	testing,	whose	the	call	StringStringQ[x]	returnsTrue
if	an	expressionx	represents	a	string	of	type	StringStrings,	andFalse	otherwise.	In	a	certain
sense	ToString1	procedure	generates	the	nested	strings	analogously	to	the	nested	lists,	and
the	level	of	nesting	of	a	stringx	can	be	determined	by	the	simple	procedure	whose	call
StringLevels[x]	returns	the	nesting	level	of	a	stringx	provided	that	the	zero	level
corresponds	to	the	standard	string,	i.e.	a	string	of	the	form“hhh…	h”.	The	fragment	below
represents	source	codes	of	functionStringStringQ	and	procedureStringLevels	along	with
typical	examples	of	their	usage.

In[2237]:=	StringStringQ[x_]	:=	If[!	StringQ[x],	False,	If[SuffPref[x,	“"”,	1]	&&
SuffPref[x,	“"”,	2],	True,	False]]

In[2238]	:=	Map[StringStringQ,	{“"vsvartkr"”,	“vsv\art\kr”,	a	+	b,
“"\"vsv\art\kr\""”}]
Out[2238]=	{True,	False,	False,	True}

In[2703]:=	StringLevels[x_	/;	StringQ[x]]	:=	Module[{a	=	x,	n	=–1},
While[StringQ[a],	a	=	ToExpression[a];	n++;	Continue[]];	n]	In[2704]:=
Map[StringLevels,	{“agn”,	“"vsv"”,	“"\"art\""”,	rans}]	Out[2704]=	{0,	1,	2,
StringLevels[rans]}
For	the	purpose	ofsimplification	of	programming	of	a	number	of	procedures	proved	useful
to	define	the	procedure,	whose	callSubsPosSymb[x,	n,	y,	z]
StringReplace[x,	b]]	gh	x	y	z”,	”	“,	”	“]
gh	x	y	z”,	”	“,	””]
gh	x	y	z”,	”	“,	“GGG”]

returns	a	substring	of	a	string	x	which	is	limited	on	the	right(at	the	left)	by	a	positionn,	and
at	the	left(on	the	right)	by	a	symbol	from	a	listy;	in	addition,	search	in	stringx	is	done	from
left	to	right(z=0)	and	from	right	to	left(z=1).	The	procedure	call	on	inadmissible	arguments
is	returned	unevaluated.	The	following	fragment	represents	source	code	of
theSubsPosSymb	procedure	along	with	typical	examples	of	its	usage.

In[2942]	:=	SubsPosSymb[x_	/;	StringQ[x],	n_	/;	PosIntQ[n],	y_	/;	ListQ[y]&&
DeleteDuplicates[Map[CharacterQ,	y]]	==	{True},	z_	/;	z	==	0||z	==	1]	:=	Module[{a
=	””,	k	=	n,	b},	If[n	>	StringLength[x],	Return[Defer[SubsPosSymb[x,	n,	y,	z]]],
While[If[z	==	0,	k	>=	1,	k	<=	StringLength[x]],	b	=	StringTake[x,	{k,	k}];	If[!
MemberQ[y,	b],	If[z	==	0,	a	=	b	<>	a,	a	=	a	<>	b],	Break[]];	If[z	==	0,	k––,	k++]];	a]]

In[2943]	:=	SubsPosSymb[“123456789abcdfght”,	5,	{“g”},	1]
Out[2943]=	“56789abcdf”
In[2944]:=	SubsPosSymb[“123456789abcdfght”,	16,	{“z”},	0]
Out[2944]=	“123456789abcdfgh”

The	rather	simple	procedure	ListStrToStr	represents	undoubted	interest	at	processing	of
lists	in	string	format,	more	precisely,	the	callListStrToStr[x]	where	argumentx	has	format
{“a”,	“b”,	…}	convertsx	into	string	of	format	“a,b,	c,	…”,	if	the	procedure	call	uses	only
an	arbitrary	actual	argumentx;	if	the	procedure	call	uses	an	arbitrary	expression	as	the
second	argument,	the	call	returns	a	string	of	format“abcde…”.	The	following	fragment
represents	source	code	of	theListStrToStr	procedure	along	with	examples	of	its	usage.

In[3828]:=	ListStrToStr[x_	/;	ListQ[x]	&&
DeleteDuplicates[Map[StringQ,	x]]	==	{True},	p___]	:=

Module[{a	=	””},	If[{p}==	{},	Do[a	=	a	<>	x[[k]]	<>	“,	“,	{k,	Length[x]}];
StringTake[a,	{1,–3}],	StringJoin[x]]]	In[3829]:=	ListStrToStr[{“a”,	“b”,	“c”,	“d”,
“h”,	“t”,	“k”,	“Art”,	“Kr”,	“Rans”}]	Out[3829]=	“a,	b,	c,	d,	h,	t,	k,	Art,	Kr,	Rans”
In[3830]:=	ListStrToStr[{“a*b”,”*”,“t[x]”,”–“,”(c–d)”,”*”,	“j[y]”,	”	==”,	“6”},	6]
Out[3830]=	“a*b*t[x]–	(c–	d)*j[y]==	6”

The	following	procedure	is	a	rather	useful	means	for	ensuring	of	converting	of	strings	of	a
certain	structure	into	lists	of	strings.	In	particular,	such	tasks	arise	at	processing	of	formal
arguments	and	local	variables.	This	problem	is	solved	rather	effectively	by	theStrToList
procedure,	providing	converting	of	strings	of	format”{xxxxxxxx	….	x}”	into	the	list	of
strings	received	from	a	string”xxxxxxxx	….	x”	parted	by	comma	symbols“,”.	In	absence
in	an	initial	string	of	both	limiting	symbols	{”{“,	“}”}	the	string	is	converted	into	the	list
of	symbols	according	to	the	callCharacters[“xxxxx	…	x“].	The	next	fragment	represents
source	code	of	theStrToList	procedure	with	examples	of	its	use.

In[2190]	:=	StrToList[x_/;	StringQ[x]]	:=	Module[{a,	b={},	c	=	{},	d,	h,	k	=	1,	j,	y	=
If[StringTake[x,	{1,	1}]	==	“{”	&&	StringTake[x,	{–1,–1}]	==	“}“,	StringTake[x,
{2,–2}],	x]},	a	=	DeleteDuplicates[Flatten[StringPosition[y,	“=”]]	+	2];	d	=
StringLength[y];	If[a	==	{},	Map[StringTrim,	StringSplit[y,	“,”]],	While[k	<=
Length[a],	c	=	””;	j	=	a[[k]];	For[j,	j	<=	d,	j++,	c	=	c	<>	StringTake[y,	{j,	j}];	If[!
SameQ[Quiet[ToExpression[c]],	$Failed]	&&	(j	==	d	||	StringTake[x,	{j	+	1,	j	+	1}]
==	“,”),	AppendTo[b,	c–>	ToString[Unique[ArtKr$]]];	Break[]]];	k++];	h	=
Map[StringTrim,	StringSplit[StringReplace[y,	b],	“,”]];	Mapp[StringReplace,	h,

RevRules[b]]]]

In[2191]	:=	StrToList[“Kr,	a	=	80,	b	=	{x,	y,	z},	c	=	{n,	m,	{42,	47,	67}}“]	Out[2191]=
{”Kr“,	“a=	80“,	“b=	{x,	y,	z}“,	“c=	{n,	m,	{42,	47,	67}}”}	In[2192]:=	StrToList[“{a,	b
=	80,	c	=	{m,	n}}“]
Out[2192]=	{”a“,	“b=	80“,	“c=	{m,	n}”}
In[2193]:=	Map[StrToList,	{”{a,	b,	c,	d}“,	“a,	b,	c,	d”}]
Out[2193]=	{{”a“,	“b“,	“c“,	“d”},	{”a“,	“b“,	“c“,	“d”}}

In[2194]:=	RevRules[x_	/;	RuleQ[x]	||	ListQ[x]	&&
DeleteDuplicates[Map[RuleQ,	x]]	==	{True}]	:=	Module[{a	=	Flatten[{x}],	b},	b	=
Map[#[[2]]–>	#[[1]]	&,	a];	If[Length[b]	==	1,	b[[1]],	b]]

In[2195]	:=	RevRules[{x–>	a,	y–>	b,	z–>	c,	h–>	g,	m–>	n}]
Out[2195]=	{a–>	x,	b–>	y,	c–>	z,	g–>	h,	n–>	m}
The	above	procedure	is	intended	for	converting	of	strings	of	format”{x…x}”	or”x…x”
into	the	list	of	strings	received	from	strings	of	the	specified	format	that	are	parted	by
symbols“=”	and/or	comma“,”.	Fragment	examples	quite	visually	illustrate	the	principle	of
performance	of	the	procedure	along	with	formats	of	the	returned	results.	Moreover,	the
fragment	is	ended	by	a	quite	simple	and	useful	procedure,	whose	callRevRules[x]	returns
the	rule	or	list	of	rules	that	are	reverse	to	the	rules	determined	by	an	argumentx	–	a	rule	of
formata	–>	b	or	their	list.	TheRevRules	is	essentially	used	by	theStrToList.

The	next	means	are	useful	at	work	with	string	structures.	The	procedure	call	StringPat[x,
y]	returns	the	string	expression	formed	by	strings	of	a	listx	and	objects	{“_”,	“__”,
“___”};	the	call	returnsx	ifx	–	a	string.	The	procedure	call	StringCases1[x,y,	z]	returns
the	list	of	the	substrings	in	a	stringx	that	match	a	string	expression,	created	by	the
callStringPat[x,y].	Whereas	the	function	callStringFreeQ1[x,y,	z]	returnsTrue	if	no
substring	in	a	stringx	matches	a	string	expression,	created	by	the	callStringPat[x,	y],
andFalse	otherwise.	In	the	fragment	below,	source	codes	of	the	abovethree	means	with
examples	of	their	usage	are	represented.

In[2583]	:=	StringPat[x_	/;	StringQ[x]	||	ListStringQ[x],
y_	/;	MemberQ[{“_”,	“__”,	“___”},	y]]	:=	Module[{a	=	””,	b},
If[StringQ[x],	x,	b	=Map[ToString1,	x];	ToExpression[StringJoin[Map[#	<>	“~~”	<>
y	<>	“~~”	&,	b[[1	;;–2]]],	b[[–1]]]]]]

In[2584]:=	StringPat[{“ab”,	“df”,	“k”},	“__”]
Out[2584]=	“ab”	~~	__	~~	“df”	~~	__	~~	“k”

In[2585]	:=	StringCases1[x_	/;	StringQ[x],	y_	/;	StringQ[y]||ListStringQ[y],	z_	/;
MemberQ[{“_”,	“__”,	“___”},	z]]	:=	Module[{b,	c	=	””,	d,	k	=	1},
Sort[Flatten[Map[DeleteDuplicates,	If[StringQ[y],	{StringCases[x,	y]},
{StringCases[x,	StringPat[y,	z],	Overlaps–>	All]}]]]]]

In[2587]:=	StringCases1[“abcdfghkaactabcfgfhkt”,	{“ab”,	“df”,	“k”},	“___”]
Out[2587]=	{”abcdfghk“,	“abcdfghkaactabcfgfhk”}

In[2588]	:=	StringFreeQ1[x_	/;	StringQ[x],	y_	/;	StringQ[y]||ListStringQ[y],	z_	/;
MemberQ[{“_”,	“__”,	“___”},	z]]	:=	If[StringQ[y],	StringFreeQ[x,	y],
If[StringCases1[x,	y,	z]	==	{},	True,	False]]	In[2589]:=

StringFreeQ1[“abcfghkaactabcfghkt”,	{“ab”,	“df”,	“k”},	“___”]	Out[2589]=	True

In[2590]:=	StringFreeQ1[“abcdfghkaactabcfghkt”,	{“ab”,	“df”,	“k”},	“___”]
Out[2590]=	False

The	above	means	are	used	by	a	number	of	means	of	AVZ_Package	package,	enough
frequently	essentially	improving	the	programming	algorithms	that	deal	with	string
expressions.

Both	the	system	means,	and	our	means	of	processing	of	strings	represented	in	the	present
book	form	effective	tools	for	processing	of	objects	of	the	given	type.	The	above	means	of
processing	of	string	structures	similar	to	means	of	Maple	have	been	based	as	on	rather
widely	used	standard	means	of	system	Mathematica,	and	on	our	means	presented	in	the
present	book,	very	clearly	demonstrating	relative	simplicity	of	programming
inMath–language	of	the	means	similar	to	means	ofMaple	as	its	main	competitor.	At	that,
existence	inMathematica	of	rather	developed	set	of	means	for	operating	with	string
patterns	allows	to	create	effective	and	developed	systems	of	processing	of	string	structures
which	by	many	important	indicators	surpass	possibilities	ofMaple.	Furthermore,	the
means	of	processing	of	string	structures	which	have	been	programmed	in
theMathlanguage	not	only	are	more	effective	at	temporal	relation,	but	also
theMathematica	system	for	their	programming	has	the	advanced	functional	means,
including	rather	powerful	mechanism	of	string	patterns	allowing	to	speak	about	a	pattern
type	of	programming	and	providing	developed	means	of	processing	of	strings	on	the	level
which	not	significantly	yield	to	specialized	languages	of	text	processing.

So,	our	experience	of	usage	of	both	systems	for	programming	of	means	for	operating	with
string	structures	showed	that	standard	means	ofMaple	by	many	essential	indicators	yield
to	the	means	of	the	same	type	of	theMath–	language.	For	problems	of	this	type
theMathlanguage	appears	simpler	not	only	in	connection	with	more	developed	means,	but
also	a	procedural	and	functional	paradigm	allowing	to	use	mechanism	of	pure	functions.
So,	the	present	chapter	represents	a	number	of	the	means	expanding	the	standard	facilities
of	system	that	are	oriented	on	work	with	string	structures.	These	and	other	means	of	this
type	are	located	in	our	package	[48].	At	that,	their	correct	use	assumes	that	this	package	is
uploaded	into	the	current	session.

Chapter	4.	Additional	means	of	processing	of	sequences	and	lists	in
theMathematicasoftware

At	programming	of	many	appendices	the	usage	not	of	separate	expressions,	but	their	sets
formed	in	the	form	of	lists	is	expedient.	At	such	organization	instead	of	calculations	of
separate	expressions	there	is	an	opportunity	to	do	the	demanded	operations	as	over	lists	in
a	whole–unified	objects–	and	over	their	separate	elements.	Lists	of	various	types	represent
important	and	one	of	the	most	often	used	structures	inMathematica.	InMathematica
system	many	functions	have	theListable–attribute	saying	that	an	operator	or	block,
function,	moduleF	with	this	attribute	are	automatically	applicable	to	each	element	of	the
list	used	respectively	as	their	operand	or	argument.	The	call	ListableQ[x]	of	simple
function	returnsTrue	ifx	hasListable–attribute,	and	False	otherwise	[48].	Meanwhile,	a
number	of	the	operations	havingListable-	attribute	requires	compliance	on	length	of	the

lists	operands,	otherwise	the	corresponding	erroneous	situations	are	initiated.	With	the
view	of	removal	of	this	shortcoming	theListOp	procedure	has	been	offered	whose	the	call
ListOp[x,	y,	z]	returns	the	list	whose	elements	are	results	of	application	of	a
procedure/functionz	to	the	corresponding	elements	of	listsx	andy;	at	that,	in	case	of
various	lengths	of	such	lists	the	procedure	is	applied	to	both	lists	within	their	common
minimum	length,	without	causing	faulty	situationns.	TheListOp	procedure	substantially
supposes	the	pure	functions	as	the3rd	argument	what	considerably	allows	to	expand	a
class	of	functions	as	the3rd	argument.	In	principle,Listable–attribute	can	be	ascribed	to
any	procedure	/	function	of	arity1,	providing	its	correct	call	on	a	list	as	the	actual
argument,	as	the	following	simple	example	illustrates,	namely:

In[2450]	:=	{G[{a,	b,	c,	d,	h}],	SetAttributes[G,	Listable],	G[{a,	b,	c,	d,	h}]}
Out[2450]=	{G[{a,	b,	c,	d,	h}],	Null,	{G[a],	G[b],	G[c],	G[d],	G[h]}}	At	the	formal	level
for	a	block,	function	or	moduleF	of	arity1	it	is	possible	to	note	the	following	defining
relation,	namely:

Map[F,	{a,	b,	c,	d,	…}]≡	{F[a],F[b],F[c],F[d],	…}

where	in	the	left	part	the	procedureF	can	be	both	withListable	attribute,	and	without	it
whereas	in	the	right	part	the	existence	of	theListable	attribute	for	a	block,	module	or	a
functionF	is	supposed.	At	that,	for	blocks,	functions	or	modules	without	theListable
attribute	for	receiving	its	effect	the	systemMap	function	is	used.	For	ensuring	existence	of
theListable	attribute	for	a	block	/	function/module	the	simpleListableC	procedure	can	be
rather	useful	[48].	TheMathematica	system	at	manipulation	with	the	list	structures	has
certain	shortcomings	among	which	impossibility	of	direct	assignment	to	elements	of	a	list
of	expressions	is,	as	the	following	simple	example	illustrates:	In[2412]:=	{a,	b,	c,	d,	h,	g,
s,	x,	y,	z}[[10]]	=	90

Set	::setps:	{a,b,c,d,h,g,s,x,y,z}	in	the	part	assignment	is	not	a	symbol.>>	Out[2412]=	90
In[2413]:=	z
Out[2413]=	z
In	order	tosimplify	the	implementation	of	procedures	that	use	similar	direct	assignments	to
the	list	elements,	theListAssignP	procedure	is	used,	whose	callListAssignP[x,	n,	y]
returns	the	updated	value	of	a	listx	which	is	based	on	results	of	assignment	of	a	valuey	or
the	list	of	values	to	elementsn	of	the	listx	wheren	–	one	position	or	their	list.	Moreover,	if
the	listsn	andy	have	different	lengths,	their	common	minimum	value	is	chosen.
TheListAssignP	expands	functionality	of	theMathematica,	doing	quite	correct
assignments	to	the	list	elements	what	the	system	fully	doesn’t	provide.	Fragment	below
represents	source	code	of	theListAssignP	along	with	examples	of	its	usage.

In[2693]:=	ListAssignP[x_	/;	ListQ[x],	n_	/;	PosIntQ[n]||PosIntListQ[n],	y_]	:=
Module[{a	=	DeleteDuplicates[Flatten[{n}]],	b	=	Flatten[{y}],	c,	k	=	1},

If[a[[–1]]	>	Length[x],	Return[Defer[ListAssignP[x,	n,	y]]],	c	=	Min[Length[a],
Length[b]]];	While[k	<=	c,	Quiet[Check[ToExpression[ToString[x[[a[[k]]]]]	<>	”	=	”
<>	ToString1[If[ListQ[n],	b[[k]],	y]]],	Null]];	k++];	If[NestListQ1[x],	x[[–1]],	x]]

In[2694]	:=	Clear[x,	y,	z];	ListAssignP[{x,	y,	z},	3,	500]
Out[2694]=	{x,	y,	500}
In[2695]:=	Clear[x,	y,	z];	ListAssignP[{x,	y,	z},	{2,	3},	{73,	67}]

Out[2695]=	{x,	73,	67}
In[2696]:=	Clear[x,	y,	z];	ListAssignP[{x,	y,	z},	3,	{42,	72,	2015}]	Out[2696]=	{42,	72,
2015}
Along	with	theListAssignP	procedure	expediently	to	in	addition	determine	simple
function	whose	callListStrQ[x]	returnsTrue	if	all	elements	of	a	listx
–	expressions	in	string	format,	andFalse	otherwise.	The	following	fragment	represents
source	code	of	theListStrQ	function	with	an	example	of	its	use.

In[2599]	:=	ListStrQ[x_	/;	ListQ[x]]	:=	Length[Select[x,	StringQ[#]	&]]	==	Length[x]
&&	Length[x]	!=	0
In[2600]:=	Map[ListStrQ,	{{“a”,	“b”,	“a”,	“b”},	{“a”,	“b”,	a,	“a”,	b},	{“A”,	“K”}}]
Out[2600]=	{True,	False,	True}

The	following	procedure	is	useful	enough	in	procedural	programming,	its
callListAssign[x,y]	provides	assignment	of	values	of	a	listx	to	the	generated	variables
ofy$nnn	format,	returning	the	nested	list,	whose	the	first	element	determines	list	of	the
generated	“y$nnn”	variables	in	string	format,	whereas	the	second	defines	the	list	of	the
values	assigned	to	them	from	the	listx.	The	ListAssign	procedure	is	of	interest,	first	of	all,
in	problems	of	the	dynamical	generation	of	variables	with	assigning	values	to	them.	The
fragment	below	represents	source	code	of	the	procedure	along	with	an	example	of	its
usage.

In[2221]	:=	ListAssign[x_	/;	ListQ[x],	y_	/;	SymbolQ[y]]	:=	Module[{a	={},	b},	Do[a	=
Append[a,	Unique[y]],	{k,	Length[x]}];	b	=	Map[ToString,	a];
ToExpression[ToString[a]	<>	“=”	<>	ToString1[x]];	{b,	a}]

In[2222]:=	ListAssign[{47,	25,	18,	67,	72},	h]
Out[2222]=	{{”h$533“,	“h$534“,	“h$535“,	“h$536“,	“h$537”},	{47,	25,	18,	67,	72}}

In	the	Mathematica	for	grouping	of	expressions	along	with	simple	lists	also	more
complex	list	structures	in	the	form	of	the	nested	lists	are	used,	whose	elements	are	also
lists(sublists).	In	this	connection	the	lists	ofListList–type,	whose	elements–	sublists
ofidentical	length	are	of	special	interest.	For	simple	lists	the	system	has	the	testing
function;	whose	callListQ[x]	returnsTrue,	if	x	–	a	list,	andFalse	otherwise.	While	for
testing	of	thenested	lists	we	defined	the	useful	enough	functionsNestListQ,	NestListQ1,
NestQL,	ListListQ	[33,	48].	These	means	are	quite	often	used	as	a	part	of	the	testing
components	of	headings	of	procedures	and	functions	both	from	ourAVZ_Package	package
[48],	and	in	various	blocks,	functions	and	modules,	first	of	all,	that	are	used	in	problems	of
the	system	character	[28-33].
In	addition	to	the	above	testing	functions	some	useful	functions	of	the	same	class	that	are
quite	useful	in	programming	of	means	to	processing	of	the	list	structures	of	any
organization	have	been	created	[33,48].	Among	them	can	be	noted	testing	means	such
asBinaryListQ,	IntegerListQ,	ListNumericQ,	ListSymbolQ,	PosIntQ,	PosIntListQ,
ListExprHeadQ.	In	particular,	the	call	ListExprHeadQ[v,h]	returnsTrue	if	a	listv
contains	only	elements	meeting	the	conditionHead[a]=h,	andFalse	otherwise.	In	addition,
the	testing	means	process	all	elements	of	the	analyzed	list,	including	all	its	sublists	of	any
level	of	nesting.	The	next	fragment	represents	source	code	of	theListExprHeadQ
function	along	with	typical	examples	of	its	usage.

In[2576]:=	ListExprHeadQ[x_/;	ListQ[x],	h_]	:=
Length[x]==Length[Select[x,	Head[#]===h&]]

In[2577]	:=	{ListExprHeadQ[{a	+	b,	c–d},	Plus],	ListExprHeadQ[{a*b,	c/d},	Times],
ListExprHeadQ[{a^b,	(c+a)^d},	Power]}
Out[2577]=	{True,	True,	True}

The	above	means	are	often	used	at	programming	of	the	problems	oriented	on	processing
of	list	structures.	These	and	other	means	of	the	given	type	are	located	in	our	package	[48].
In	addition,	their	correct	usage	assumes	that	the	package	is	uploaded	into	the	current
session.
The	usefulSelectPos	function	provides	the	choice	from	a	list	of	elements	by	their	given
positions.	The	callSelectPos[x,y,z]	returns	the	list	with	elements	of	a	listx,	whose	numbers
of	positions	are	different	from	elements	of	a	listy	(atz=1)	whereas	atz=2	the	list	with
elements	of	the	listx	whose	numbers	of	positions	coincide	with	elements	of	the	integer
listy	is	returned.	Fragment	below	represents	source	code	of	the	function	with	examples	of
its	usage.

In[2696]:=	SelectPos[x_	/;	ListQ[x],	y_	/;	ListQ[y]	&&

DeleteDuplicates[Map[IntegerQ[#]	&&	#	>	0	&,	y]]	==	{True},	z_	/;	MemberQ[{1,
2},	z]]	:=	Select[x,	If[If[z	==	2,	Equal,	Unequal]	[Intersection[Flatten[Position[x,	#]],
y],	{}],	False,	True]	&]

In[2697]	:=	SelectPos[{a,b,c,d,e,f,g,h,m,n,p},	{1,3,5,7,9,11,13,15,17,19,21},	2]
Out[2697]=	{a,	c,	e,	g,	m,	p}
In[2698]:=	SelectPos[{a,b,c,d,e,f,g,h,m,n,p},	{1,3,5,7,9,11,13,15,17,19,21},	1]
Out[2698]=	{b,	d,	f,	h,	n}
It	must	be	kept	in	mind	that	numbers	of	positions	of	the	listy	outside	the	range	of	positions
of	elements	of	the	listx	are	ignored,	without	initiating	an	erroneous	situation	what	is
convenient	for	ensuring	continuous	execution	of	appendices	without	processing	of	the
situations.
For	the	solution	of	a	number	of	the	problems	dealing	with	the	nested	lists,	in	certain	cases
can	arise	problems	which	aren’t	solved	by	direct	standard	means,	demanding	in	similar
situations	of	programming	of	tasks	by	means	which	are	provided	byMathematica.	It	quite
visually	illustrates	an	example	of	the	task	consisting	in	definition	of	number	of	elements
different	from	the	list,	at	each	level	of	nesting	of	a	list	and	simple	list(level	of	nesting0),
and	the	nested.	This	problem	is	solved	by	procedure	whose	call	ofElemLevelsN[x]	returns
the	nested	list	whose	elements	are	the	two–element	lists	whose	first	element	determines
the	nesting	level	while	the	second–	number	of	elements	of	this	level	with	the	type	different
fromList.	ProcedureElemLevelsL	is	an	useful	modification	of	the	above	procedure
[33,48].	The	following	fragment	represents	source	codes	of	the	both	procedures	with
examples	their	usage.

In[2733]	:=	ElemLevelsN[x_	/;	ListQ[x]]	:=	Module[{a=x,	c={},	m=0,	n,	k=0},
While[NestListQ1[a],	n	=	Length[Select[a,	!	ListQ[#]	&]];	AppendTo[c,	{k++,	n–m}];
m	=	n;	a	=	Flatten[a,	1];	Continue[]];	Append[c,	{k++,	Length[a]–m}]]	In[2734]:=	L	=
{a,b,a,{d,c,s},a,b,{b,c,{x,y,{v,g,z,{90,{500,{},72}},a,k,a},z},b},c,b};	In[2735]:=
ElemLevelsN[L]

Out[2735]	=	{{0,	7},	{1,	6},	{2,	3},	{3,	6},	{4,	1},	{5,	2},	{6,	0}}
In[2736]:=	Map[ElemLevelsN,	{{},	{a,b,c,d,r,t,y,c,s,f,g,h,72,90,500,s,a,q,w}}]
Out[2736]=	{{{0,	0}},	{{0,	19}}}

In[2874]:=	ElemLevelsL[x_	/;	ListQ[x]]	:=	Module[{a=x,	c={},	m={},	n,	k=0},
While[NestListQ1[a],	n	=	Select[a,	!	ListQ[#]	&];

AppendTo[c,	{k++,	MinusList[n,	m]}];	m	=	n;	a	=	Flatten[a,	1];	Continue[]];
Append[c,	{k++,	MinusList[a,	m]}]]	In[2875]:=	ElemLevelsL[L]
Out[2875]=	{{0,	{a,	b,	a,	a,	b,	c,	b}},	{1,	{d,	s}},	{2,	{x,	y,	z}},	{3,	{v,	g,	k}},

{4,	{90}},	{5,	{500,	72}},	{6,	{}}}

The	following	procedure	provides	return	of	all	possible	sublists	of	a	nested	list.	The
callSubLists[x]	returns	the	list	of	all	possible	sublists	of	the	nested	listx,	taking	into
account	their	nesting.	At	that,	if	the	listx	is	simple,	the	call	SubLists[x]	returns	the	empty
list,	i.e.	{}.	The	following	fragment	represents	source	code	of	theSubLists	procedure	with
examples	of	its	application.

In[2339]:=	SubLists[x_	/;	ListQ[x]]	:=	Module[{a,	b,	c	=	{},	k	=	1},

If[!	NestListQ1[x],	{},	a	=	ToString[x];	b	=	DeleteDuplicates[Flatten[StringPosition[a,
“{“]]];	While[k	<=	Length[b],	AppendTo[c,	SubStrSymbolParity1[StringTake[a,
{b[[k]],–1}],	“{“,	“}“][[1]]];	k++];	DeleteDuplicates[ToExpression[c[[2	;;–1]]]]]]

In[2340]	:=	L	=	{a,b,a,{d,c,s},a,b,{b,c,{x,y,{v,g,z,{80,{480,{},72}},a,k,a},	},b},c,b};
In[2341]:=	SubLists[Flatten[L]]
Out[2341]=	{}
In[2342]:=	SubLists[L]
Out[2342]=	{{d,	c,	s},	{b,	c,	{x,	y,	{v,	g,	z,	{80,	{480,	{},	72}},	a,	k,	a}},	b},

{x,	y,	{v,	g,	z,	{80,	{480,	{},	72}},	a,	k,	a}},	{v,	g,	z,	{80,	{480,	{},	72}},	a,	k,	a},	{80,
{480,	{},	72}},	{480,	{},	72},	{}}
In[2343]:=	SubLists[{a,	b,	{c,	d,	{g,	h,	{g,	s}},	{n,	m}},	{80,	480}}]	Out[2343]=	{{c,	d,
{g,	h,	{g,	s}},	{n,	m}},	{g,	h,	{g,	s}},	{g,	s},	{n,	m},	{80,	480}}

Means	of	operating	with	levels	of	a	nested	list	are	of	special	interest.	In	this	context	the
following	means	can	be	rather	useful.	As	one	of	such	means	the	MaxLevel	procedure	can
be	considered	whose	callMaxLevel[x]	returns	the	maximum	nesting	level	of	a	listx(in
addition,	the	nesting	level	of	a	simple	listx	is	supposed	equal	to	zero).	At	that,
theMaxNestLevel	procedure	is	aequivalent	version	of	the	previous	procedure.	While	the
callListLevels[x]	returns	the	list	of	nesting	levels	of	a	listx;	in	addition,	for	a	simple	list	or
empty	list	the	procedure	call	returns	zero.	The	following	fragment	represents	source	codes
of	the	above	procedures	along	with	typical	examples	of	their	usage.

In[2562]:=	MaxLevel[x_	/;	ListQ[x]]	:=	Module[{a	=	x,	k	=	0},
While[NestListQ1[a],	k++;	a	=	Flatten[a,	1];	Continue[]];	k]

In[2563]	:=	Map[MaxLevel,	{{a,b},	{a,	{b,c,d}},	{{{a,b,c}}},	{a,	{{c,	{d},
{{h,g}}}}}}]	Out[2563]=	{0,	1,	2,	4}
In[2564]:=	MaxLevel[{a,	b,	c,	d,	f,	g,	h,	s,	r,	t,	w,	x,	y,	z}]
Out[2564]=	0

In[2581]:=	ListLevels[x_	/;	ListQ[x]]	:=	Module[{a	=	x,	b,	c	=	{},	k	=	1},	If[!
NestListQ1[x],	{0},	While[NestListQ1[a],	b	=	Flatten[a,	1];	If[Length[b]	>=
Length[a],	AppendTo[c,	k++],	AppendTo[c,	k]];	a	=	b;	Continue[]];	c]]

In[2582]	:=	ListLevels[{a,	b,	c,	d,	f,	g,	h,	s,	r,	t,	w,	x,	y,	z}]
Out[2582]=	{0}
In[2583]:=	ListLevels[{a,b,c,	{d,f,	g,	{h,	s,	{z,y,g},	r},	t},	w,	{x,	{{{a,b,c}}},	y},	z}]
Out[2583]=	{1,	2,	3,	4}

In[586]:=	MaxNestLevel[L_	/;	ListQ[L]]	:=	Module[{a=Flatten[L],	b=L,	c=0},
While[!	a	==	b,	b	=	Flatten[b,	1];	c	=	c	+	1];	c]

In[2587]	:=	L	=	{{a,	{b,	{m,	{x,	y,	{p,	q,	{g,	2014}}},	n},	x},	c,	{{{{{{{67,
72}}}}}}}}};	Map[MaxNestLevel,	{L,	{a,	b,	c}}]
Out[2587]=	{8,	0}

Moreover,	between	the	above	means	the	following	defining	relations	take	place,	namely:
Flatten[x]≡Flatten[x,	MaxLevel[x]]	MaxLevel[x]≡ListLevels[x][[–1]]

The	next	rather	useful	procedure	of	work	with	lists	has	structural	character,	first	of	all,	for
the	nested	lists.	Generally	speaking,	the	callElemOnLevels[x]	returns	the	nested	list
whose	elements	are	sublists	whose	first	elements	are	levels	of	a	nested	listx	while	the
others–	elements	of	these	levels.	For	lack	of	elements	on	levelj	the	sublist	has	the	form
{j};	the	callElemOnLevels[x]	on	a	simple	listx	returns	{0,	x},	i.e.	the	simple	list	has	the
nesting	level0.	In	the	following	fragment	the	source	code	of	theElemOnLevels	procedure
and	typical	examples	of	its	usage	are	represented.

In[2736]:=	ElemOnLevels[x_List]	:=	Module[{a,	b,	c,	d,	p	=	0,	k,	j	=	1},	If[!
NestListQ1[x],	Flatten[{0,	x}],	{a,	c,	d}=	{x,	{},	{}};

While[NestListQ1[a],	b	=	{p++};	For[k	=	1,	k	<=	Length[a],	k++,	If[!	ListQ[a[[k]]],
AppendTo[b,	a[[k]]];	AppendTo[c,	k]]];	AppendTo[d,	b];	a	=	Flatten[Delete[a,
Map[List,	c]],	1];	{b,	c}=	{{},	{}};	j++];	AppendTo[d,	Flatten[{p++,	a}]]]]

In[2737]:=	ElemOnLevels[{a,	b,	{c,	d,	{f,	h,	d},	s,	{p,	w,	{n,	m,	r,	u},	t}},	x,y,z}]

Out[2737]	=	{{0,	a,	b,	x,	y,	z},	{1,	c,	d,	s},	{2,	f,	h,	d,	p,	w,	t},	{3,	n,	m,	r,	u}}	In[2738]:=
ElemOnLevels[{a,	b,	c,	d,	f,	h,	d,	s,	p,	w,	n,	m,	r,	u,	t,	x,	y,	z}]	Out[2738]=	{0,	a,	b,	c,	d,
f,	h,	d,	s,	p,	w,	n,	m,	r,	u,	t,	x,	y,	z}
In[2739]:=	ElemOnLevels[{{{a,	b,	c,	d,	f,	h,	d,	s,	p,	w,	n,	m,	r,	u,	t,	x,	y,	z}}}]
Out[2739]=	{{0},	{1},	{2,	a,	b,	c,	d,	f,	h,	d,	s,	p,	w,	n,	m,	r,	u,	t,	x,	y,	z}}	In[2740]:=
Map[ElemOnLevels,	{{{{}}},	{},	{{{{{}}}}}}]
Out[2740]=	{{{0},	{1},	{2}},	{0},	{{0},	{1},	{2},	{3},	{4}}}

For	assignment	of	the	same	value	to	the	variables	can	be	used	a	very	simple
constructionx1	=	x2	=	…	=	a1,	while	for	assignment	to	variables	of	different	values	can	be
used	construction	{x1,x2,	x3,	…}={a1,	a2,	a3,	…}	provided	that	lengths	of	both	lists
areidentical,	otherwise	the	erroneous	situation	arises.	In	order	to	eliminate	this
shortcoming	the	procedure	callListsAssign[x,	y]	can	be	used,	returning	result	of
assignment	of	values	of	a	listy	to	a	listx.

In[2766]:=	ListsAssign[x_	/;	ListQ[x],	y_/;	ListQ[y]]	:=	Module[{b,	c,	d	=	{},	a	=

Min[Map[Length,	{x,	y}]],	k	=	1},

If[a	==	0,	Return[x],	Off[Set::setraw];	Off[Set::write];	Off[Set::wrsym]];	While[k	<=
a,	{b,	c}=	{x[[k]],	y[[k]]};	AppendTo[d,	b	=	c];	k++];	x	=	{Sequences[d[[1	;;	a]]],
Sequences[x[[a	+	1	;;–1]]]};	On[Set::setraw];	On[Set::write];	On[Set::wrsym];	x]

In[2767]	:=	L	=	{x,	80,	a	+	b,	Sin,	t,	s};	P	=	{a,	b,	c,	w,	72};	ListsAssign[L,	P]
Out[2767]=	{a,	80,	a+	b,	Sin,	72,	s}
In[2768]:=	{x,	y,	z,	h,	g,	w,	t}=	{a,	b,	c}

Set	::shape:	Lists	{x,	y,	z,	h,	g,	w,	t}	and	{a,	b,	c}	are	not	the	same	shape.	>>	Out[2768]=
{a,	b,	c}
In[2769]:=	ListsAssign[{x,	y,	z,	h,	g,	w,	t},	{a,	b,	c}];	{x,	y,	z}
Out[2769]=	{a,	b,	c}

In[2770]:=	ListAppValue[x_List,	y_]	:=	Quiet[x	=	PadLeft[{},	Length[x],	y]]
In[2771]:=	x	=	80;	ListAppValue[{x1,	y,	z,	h,	g,	w,	t},	72];	{x1,	y,	z,	h,	g,	w,	t,	x}
Out[2771]=	{72,	72,	72,	72,	72,	72,	72,	80}

Thus,	the	call	ListsAssign[x,	y]	returns	the	listx	updated	by	assignments;	at	that,	the
procedure	processes	the	erroneous	and	special	situations	caused	by	the	assignmentsx=y.
While	the	callListAppValue[x,y]	provides	assignment	of	the	same	valuey	to	elements	of	a
listx.	The	previous	fragment	represents	source	codes	of	the	above	means	along	with
examples	of	their	application.

The	next	procedure	is	intended	for	grouping	of	elements	of	a	list	according	to	their
multiplicities.	The	callGroupIdentMult[x]	returns	the	nested	list	of	the	following	format,
namely:

{{{n1},	{x1,	x2,…,	xa}},	{{n2},	{y1,	y2,…,	yb}},	…,	{{nk},	{z1,	z2,…,	zc}}}

where	{	xi,yj,	…,	zp}–	elements	of	a	listx	and	{n1,n2,	…,nk}–	multiplicities
corresponding	to	them	{i=	1..a,	j	=	1..b,	…,	p	=	1..c}.	The	following	fragment	represents
source	code	of	the	procedure	along	with	examples	of	its	usage.	In[2997]:=
GroupIdentMult[x_List]	:=	Module[{a	=	Gather[x],	b},

b	=	Map[{DeleteDuplicates[#][[1]],	Length[#]}&,	a];	b	=	Map[DeleteDuplicates[#]
&,	Map[Flatten,	Gather[b,	SameQ[#1[[2]],	#2[[2]]]	&]]];	b	=	Map[{{#[[1]]},	Sort[#[[2
;;–1]]]}&,	Map[Reverse,	Map[If[Length[#]	>	2,	Delete[Append[#,	#[[2]]],	2],	#]	&,
b]]];	b	=	Sort[b,	#1[[1]][[1]]	>	#2[[1]][[1]]	&];	If[Length[b]	==	1,	Flatten[b,	1],	b]]
In[2998]:=	L	=	{a,	c,	b,	a,	a,	c,	g,	d,	a,	d,	c,	a,	c,	c,	h,	h,	h,	h,	h};

In[2999]	:=	GroupIdentMult[L]
Out[2999]=	{{{5},	{a,	c,	h}},	{{1},	{b,	g}},	{{2},	{d}}}
In[3000]:=	GroupIdentMult[{a,	a,	a,	a,	a,	a,	a,	a,	a,	a,	a,	a,	a,	a,	a,	a,	a,	a,	a}]
Out[3000]=	{{19},	{a}}
In[3001]:=	GroupIdentMult[RandomInteger[42,	72]]
Out[3001]=	{{{5},	{15,	19}},	{{4},	{36}},	{{3},	{7,	9,	25,	29,	34,	38,	39,	40}},

{{2},	{1,	6,	8,	11,	12,	13,	27,	30,	35,	37}}	,
{{1},	{0,	2,	3,	4,	5,	14,	16,	17,	18,	20,	22,	24,	33,	41}}}
In[3002]:=	GroupIdentMult[{}]

Out[3002]=	{}

At	that,	elements	of	the	returned	nested	list	are	sorted	in	decreasing	order	of	multiplicities
of	groups	of	elements	of	the	initial	listx.

At	processing	of	list	structures	the	task	of	grouping	of	elements	of	the	nested	lists
ofListList–type	on	the	basis	ofn–th	elements	of	their	sublists	represents	a	quite	certain
interest.	This	problem	is	solved	by	the	following	procedure,	whose	callListListGroup[x,
n]	returns	the	nested	list–	result	of	grouping	of	aListList–listx	according	ton–th	element	of
its	sublists.	The	next	fragment	represents	source	code	of	the	procedure	along	with
examples	of	its	usage.

In[2369]:=	ListListGroup[x_	/;	ListListQ[x],	n_	/;	IntegerQ[n]	&&	n	>	0]	:=
Module[{a	=	{},	b	=	{},	k	=	1},

If[Length[x[[1]]]	<	n,	Return[Defer[ListListGroup[x,	n]]],	For[k,	k	<=	Length[x],
k++,	AppendTo[b,	x[[k]][[n]]];	b	=	DeleteDuplicates[Flatten[b]]]];	For[k=1,	k	<=
Length[b],	k++,	AppendTo[a,	Select[x,	#[[n]]	==	b[[k]]&]]];	a]

In[2370]	:=	ListListGroup[{{80,	2},	{480,	6},	{18,	2},	{25,	2},	{72,	6}},	2]	Out[2370]=
{{{80,	2},	{18,	2},	{25,	2}},	{{480,	6},	{72,	6}}}
In[2371]:=	ListListGroup[{{80,	2},	{480,	6},	{18,	2},	{25,	2},	{72,	67}},	6]	Out[2371]=
ListListGroup[{{80,	2},	{480,	6},	{18,	2},	{25,	2},	{72,	67}},	6]

Whereas,	on	inadmissible	factual	arguments	the	procedure	call	is	returned	as	an
unevaluated.	The	given	procedure	is	quite	often	used	at	processing	of	the	long	lists
containing	the	repeating	elements.

The	following	procedure	expands	the	standardMemberQ	function	onto	the	nested	lists,	its
callMemberQ[x,y]	returnsTrue	if	an	expressiony	belongs	to	any	nesting	level	of	a	listx,
andFalse	otherwise.	Whereas	the	call	with	the	third	optional	argumentz	–	an	undefinite
variable–	in	addition	throughz	returns	the	list	ofListList–type,	the	first	element	of	each	its
sublist	defines	a	level	of	the	listx	whereas	the	second	defines	quantity	of	elementsy	on	this
level	provided	that	the	main	output	isTrue,	otherwisez	remains	undefinite.	The	following
fragment	represents	source	code	of	the	procedure	along	with	the	most	typical	examples	of
its	application.

In[2532]:=	MemberQL[x_	/;	ListQ[x],	y_,	z___]	:=	Module[{b,	a	=
ElemOnLevels[x]},	If[!	NestListQ[a],	a	=	{a},	Null];	b	=	Map[If[Length[#]	==	1,	Null,
{#[[1]],	Count[#[[2	;;–1]],	y]}]	&,	a];	b	=	Select[b,	!	SameQ[#,	Null]	&&	#[[2]]	!=	0
&];	If[b	==	{},	False,	If[{z}!=	{}&&	!	HowAct[z],	z	=	b,	Null];	True]]

In[2533]	:=	MemberQL[{a,	b,	{c,	d,	{f,	h,	d},	s,	{p,	w,	{n,	m,	r,	u},	t}},	x,	y,	z},	d]
Out[2533]=	True
In[2534]:=	MemberQL[[{a,	b,	{c,	d,	{f,h,d},	s,	{p,	w,	{n,m,r,u},	t}},	x,	y,	z},	d,	z]
Out[2534]=	True
In[2535]:=	z
Out[2535]=	{{1,	1},	{2,	1}}
In[2536]:=	MemberQL[{a,	b},	d,	z]
Out[2536]=	False

The	call	ListToString[x,	y]	returns	result	of	converting	into	an	unified	string	of	all

elements	of	a	listx,	disregarding	its	nesting,	that	are	parted	by	a	string	y;	whereas	a	stringx
is	converted	into	the	list	of	the	substrings	of	a	stringx	parted	by	a	stringy.	The	following
fragment	represents	source	code	of	the	ListToString	procedure	along	with	typical
examples	of	its	usage.

In[2813]:=	ListToString[x_	/;	ListQ[x]	||	StringQ[x],	y_	/;	StringQ[y]]	:=	Module[{a,	b
=	{},	c,	d,	k	=	1},

If[ListQ[x],	a	=	Flatten[x];	For[k,	k	<	Length[a],	k++,	c	=	a[[k]];	AppendTo[b,
ToString1[c]	<>	y]];	a	=	StringJoin[Append[b,	ToString1[a[[–1]]]]],	a	=
FromCharacterCode[14];	d	=	a	<>	StringReplace[x,	y–>	a]	<>	a;	c	=
Sort[DeleteDuplicates[Flatten[StringPosition[d,	a]]]];	For[k	=	1,	k	<	Length[c],	k++,
AppendTo[b,	StringTake[d,	{c[[k]]	+	1,	c[[k	+	1]]–1}]]];	ToExpression[b]]]

In[2814]	:=	ListToString[{a	+	b,	{“Agn”,	67},	Kr,	18,	Art,	25,	“RANS”,
{{{Avz||72}}}},	“&”]
Out[2814]=	“a+	b&"Agn"&67&Kr&18&Art&25&"RANS"&Avz||72”
In[2815]:=	ListToString[“a	+	b&"Agn"&67&Kr&18&Art&25&Avz	||	72”,	“&”]
Out[2815]=	{a+	b,	“Agn“,	67,	Kr,	18,	Art,	25,	Avz||	72}

In	a	number	of	cases	exists	necessity	to	carry	out	assignments	of	expressions,	whose
number	isn’t	known	in	advance	and	which	is	defined	in	the	course	of	some	calculations,
for	example,	of	cyclic	character,	to	the	variables.	The	problem	is	solved	by	a	rather
simpleParVar	procedure.	The	callParVar[x,y]	provides	assignment	of	elements	of	a	listy
to	a	list	of	variables	generated	on	the	basis	of	a	symbolx	with	return	of	the	list	of	these
variables	in	the	string	format.	The	given	procedure	is	rather	widely	used	in	problems
dealing	with	generating	of	in	advance	unknown	number	of	expressions.	Fragment	below
represents	source	code	of	theParVar	procedure	with	an	example	of	its	use.

In[2610]	:=	ParVar[x_	/;	SymbolQ[x],	y_	/;	ListQ[y]]	:=	Module[{a={},	b,	k=1},
For[k,	k	<=	Length[y],	k++,	AppendTo[a,	Unique[x]]];	b	=	ToString[a];	{b,
ToExpression[b	<>	“=”	<>	ToString1[y]]}[[1]]]	In[2611]:=	W	=	ParVar[GS,	{72,	67,
47,	25,	18}]

Out[2611]	=	“{GS$2660,	GS$2661,	GS$2662,	GS$2663,	GS$2664}”	In[2612]:=
ToExpression[W]
Out[2612]=	{72,	67,	47,	25,	18}

In	a	number	of	problems	dealing	with	lists	exists	necessity	of	calculation	of	difference
between2	listsx	andy	which	is	defined	as	a	list,	whose	elements	are	included	into	a	listx,
but	don’t	belong	to	a	listy.	For	solution	of	the	task	the	following	procedure	is	used.	The
callMinusLists[x,y,1]	returns	result	of	subtraction	of	a	listy	from	a	listx	that	consists	in
deletion	in	the	listx	of	all	occurrences	of	elements	from	the	listy.	Whereas	the
callMinusLists[x,y,	2]	returns	result	of	subtraction	of	a	listy	from	a	listx	which	consists	in
parity	removal	from	the	listx	of	entries	of	elements	from	the	listy,	i.e.	the	number	of	the
elements	deleted	from	the	listx	strictly	correspond	to	their	number	in	the	listy.	The
following	fragment	represents	source	code	of	theMinusLists	procedure	along	with	typical
examples	of	its	usage.

In[2980]	:=	MinusLists[x_	/;	ListQ[x],	y_	/;	ListQ[y],	z_	/;	MemberQ[{1,2},	z]]:=
Module[{a,	b,	c,	k	=	1,	n},	If[z	==	1,	Select[x,	!	MemberQ[y,	#]	&],	a	=	Intersection[x,

y];	b	=	Map[Flatten,	Map[Flatten[Position[x,	#]	&],	a]];	c	=	Map[Count[y,	#]	&,	a];	n
=	Length[b];	For[k,	k	<=	n,	k++,	b[[k]]	=	b[[k]][[1	;;	c[[k]]]]];	c	=	Map[GenRules[#,
Null]	&,	b];	Select[ReplacePart[x,	Flatten[c]],	!	SameQ[#,	Null]	&]]]

In[2981]	:=	MinusLists[{a,	b,	c,	a,	d,	a,	b,	b,	a,	e,	c,	c},	{a,	n,	b,	b,	b,	a,	d,	c},	2]
Out[2981]=	{a,	a,	e,	c,	c}
In[2982]:=	MinusLists[{a,	b,	c,	a,	d,	a,	b,	b,	a,	e,	c,	c},	{a,	n,	b,	b,	b,	a,	d,	c},	1]
Out[2982]=	{e}

To	the	given	procedure	two	means	of	MinusList	andMinusList1	directly	adjoin	which	are
of	interest	as	auxiliary	means	at	realisation	of	a	number	of	our	procedures	[33,48],	and
also	independent	interest	at	processing	of	lists.	At	programming	of	a	number	of
procedures	of	access	to	datafiles	has	been	detected	expediency	of	creation	of	a	certain
procedure	useful	also	in	other	appendices.	So,	in	this	context	the	procedurePosSubList
has	been	created,	whose	callPosSubList[x,	y]	returns	a	nested	list	ofinitial	andfinal
elements	for	entry	into	a	simple	listx	of	a	tuple	of	elements	specified	by	a	listy.	The
following	fragment	represents	source	code	of	thePosSubList	procedure	and	typical
examples	of	its	application.

In[2260]:=	PosSubList[x_	/;	ListQ[x],	y_	/;	ListQ[y]]	:=	Module[{d,	a	=	ToString1[x],
b	=	ToString1[y],	c	=	FromCharacterCode[16]},	d	=	StringTake[b,	{2,–2}];

If[!	StringFreeQ[a,	d],	b	=	StringReplace[a,	d	–>	c	<>	“,”	<>
StringTake[ToString1[y[[2	;;–1]]],	{2,–2}]];	Map[{#,	#	+	Length[y]–1}&,
Flatten[Position[ToExpression[b],	ToExpression[c]]]],	{}]]

In[2261]	:=	PosSubList[{a,	a,	b,	a,	a,	a,	b,	a,	x,	a,	b,	a,	y,	z,	a,	b,	a},	{a,	b,	a}]
Out[2261]=	{{2,	4},	{6,	8},	{10,	12},	{15,	17}}
In[2262]:=	PosSubList[{a,	a,	b,	a,	a,	a,	b,	a,	x,	y,	z,	a,	b,	a},	{a,	x,	a,	b,	c}]	Out[2262]=
{}

The	similar	approach	once	again	visually	illustrates	incentive	motives	and	prerequisites
for	programming	of	the	user	tools	expanding	theMathematica	software.	Many	of	means
of	ourAVZ_Package	package	appeared	exactly	in	this	way	[28-33,48].

The	procedures	Gather1	andGather2	a	little	extend	the	standard	function	Gather1,	being
rather	useful	in	a	number	of	appendices.	The	callGather1[L,	n]	returns	the	nested	list
formed	on	the	basis	of	the	listL	ofListList–type	by	means	of	grouping	of	sublists	ofL	by
itsn-th	element.	While	callGather2[L]	returns	either	the	simple	list,	or	the	list
ofListList–type	which	defines	only	multiple	elements	of	a	listL	with	their	multiplicities.
At	absence	of	multiple	elements	inL	the	procedure	call	returns	the	empty	list,	i.e.	{}	[48].
In[2472]:=	L	=	{{42,	V,	1},	{47,	G,	2},	{64,	S,	1},	{69,	V,	2},	{64,	G,	3},	{44,	S,	2}};

Gather1[L,	3]
Out[2472]=	{{{42,	V,	1},	{64,	S,	1}},	{{47,	G,	2},	{69,	V,	2},	{44,	S,	2}},	{{64,	G,	3}}}
In[2473]:=	Gather2[{“a”,	480,	“a”,	80,	“y”,	80,	“d”,	“h”,	“c”,	“d”,	80,	480}]
Out[2473]=	{{”a“,	2},	{480,	2},	{80,	3},	{”d“,	2}}
The	following	group	of	means	serves	for	ensuring	sorting	of	lists	of	various	type.	Among
them	can	be	noted	such	asSortNL,	SortNL1,	SortLpos,	SortLS,	SortNestList.	So,	the
callSortNL1[x,	p,	b]	returns	result	of	sorting	of	a	listx	of	theListList-type	according	to
elements	in	ap-position	of	its	sublists	on	the	basis	of	their	unique	decimal	codes,	andb	=

{Greater|Less}.	Whereas	the	call	SortNestList[x,p,y]	returns	result	of	sorting	of	a
nestednumeric	orsymbolical	listx	by	apth	element	of	its	sublists	according	to	the	sorting
functionsLess,	Greater	for	numerical	lists,	andSymbolGreater,SymbolLess	for	symbolical
lists.	In	both	cases	a	nested	list	with	nesting	level1	as	actual	argumentx	is	supposed,
otherwise	an	initial	listx	is	returned.	At	that,	in	case	ofsymbolical	lists	the	comparison	of
elements	is	done	on	the	basis	of	their	codes.	The	next	fragment	represents	source	code	of
the	procedure	with	examples	of	its	use.

In[2738]:=	SortNestList[x_	/;	NestListQ[x],	p_	/;	PosIntQ[p],	y_]	:=

Module[{a	=	DeleteDuplicates[Map[Length,	x]],	b},	b	=
If[SameQ[DeleteDuplicates[Map[ListNumericQ,	x]],	{True}]	&&
MemberQ[{Greater,	Less},	y],	y,	If[SameQ[DeleteDuplicates[Map[ListSymbolQ,	x]],
{True}]	&&	MemberQ[{SymbolGreater,	SymbolLess},	y],	y],
Return[Defer[SortNestList[x,	p,	y]]]];	If[Min[a]	<=	p	<=	Max[a],	Sort[x,	b[#1[[p]],
#2[[p]]]	&],	Defer[SortNestList[x,	p,	y]]]]

In[2739]	:=	SortNestList[{{42,	47,	67},	{72,	67,	47},	{25,	18}},	2,	Greater]	Out[2739]=
{{72,	67,	47},	{42,	47,	67},	{25,	18}}
In[2740]:=	SortNestList[{{“a”,	Avz,	b},	{x4,	Agn67,	y3},	{V72,	G67},	{R,	Ian}},

2,	SymbolGreater]
Out[2740]=	{{x4,	Agn67,	y3},	{”a“,	Avz,	b},	{R,	Ian},	{V72,	G67}}

At	that,	at	programming	of	the	SortNestList	procedure	for	the	purpose	of	expansion	of	its
applicability	both	onto	numeric,	and	symbolical	nested	lists	it	was	expedient	to	define
three	new	functions,	namelySymbolGreater	and	SymbolLess	as	analogs	of	the
operationsGreater	andLess	respectively,	and	the	function	whose	callListSymbolQ[x]
returningTrue,	if	all	elements	of	a	listx,	including	its	sublists	of	an	arbitrary	nesting	level
have	theSymbol-type,	otherwise	the	call	of	theListSymbolQ	function	returnsFalse	[28-
33,48].

The	PartialSums[x]	procedure	of	the	same	name	with	theMaple-procedure,	similarly
returns	the	list	of	the	partial	sums	of	elements	of	a	listx	with	one	difference	that	at	coding
of	symbolx	instring	format	the	callPartialSums[x]	updates	the	initial	listx	in	situ.	The
fragment	represents	source	code	of	the	PartialSums	procedure	along	with	typical
examples	of	its	usage.

In[2317]:=	PartialSums[L_	/;	ListQ[L]	||	StringQ[L]	&&
ListQ[ToExpression[L]]]	:=

Module[{a	=	{},	b	=	ToExpression[L],	k	=	1,	j},	For[k,	k	<=	Length[b],	k++,
AppendTo[a,	Sum[b[[j]],	{j,	k}]]];	If[StringQ[L],	ToExpression[L	<>	”	=	”	<>
ToString[a]],	a]]

In[2318]	:=	PartialSums[{1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11,	12,	13,	14,	15,	16,	17,	18}]
Out[2318]=	{1,	3,	6,	10,	15,	21,	28,	36,	45,	55,	66,	78,	91,	105,	120,	136,	153,	171}
In[2319]:=	GS	=	{1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11,	12,	13,	14,	15,	16,	17,	18};

PartialSums[“GS”];	GS
Out[2319]=	{1,	3,	6,	10,	15,	21,	28,	36,	45,	55,	66,	78,	91,	105,	120,	136,	153,	171}
In[2320]:=	SV	=	{a,	b,	c,	d,	e,	f};	PartialSums[“SV”];	SV

Out[2320]=	{a,	a+b,	a+b+c,	a+b+c+d,	a+b+c+d+e,	a+b+c+d+e+f}

In	a	number	of	cases	exists	a	need	of	generation	of	the	list	of	variables	in	the
formVk(k=1..n),	whereV	–	a	name	andn	–	a	positive	integer.	The	standard
functionsCharacterRange	andRange	ofMathematica	don’t	solve	the	given	problem
therefore	for	these	purposes	it	is	rather	successfully	possible	to	use	the	proceduresRange1,
Range2,	Range3	andRange3,	whose	source	codes	along	with	typical	examples	of	their
usage	can	be	found	in	[32,48].	The	call	Range1[J1,	Jp]	returns	the	list	of	variables	in
shape	{J1,	J2,	J3,	…,	Jp};	at	that,	the	actual	arguments	are	coded	in$xxx_yyyN	format(N
=	{0..p|1..p})	while	the	callRange2[J,	p]	returns	a	list	of	variables	in	standard	form,
providing	arbitrariness	in	choice	of	identifier	of	a	variableJ,	namely:	{J1,	J2,	J3,	…,	Jp};
from	other	party,	the	callRange3[J,	p]	returns	the	list	in	form	{J1_,	J2_,	J3_,	…,	Jp_}
whereJ	–	an	identifier	andp	–	an	integer.	At	last,	procedureRange4	combines	standard
functionsRange	andCharacterRange	with	expansion	of	opportunities	of	the	second
function.	More	detailed	description	of	the	above	procedures	ofRange	type	with	their
source	codes	can	be	found	in	[28-33,48].	Whereas	some	typical	examples	of	their	usage
are	given	below,	namely:

In[2420]:=	Range1[$Kr_Art1,	$Kr_Art6]
Out[2420]=	{$Kr_Art1,	$Kr_Art2,	$Kr_Art3,	$Kr_Art4,	$Kr_Art5,	$Kr_Art6}

In[2421]	:=	Range2[Kr,	12]
Out[2421]=	{Kr1,	Kr2,	Kr3,	Kr4,	Kr5,	Kr6,	Kr7,	Kr8,	Kr9,	Kr10,	Kr11,	Kr12}	In[2422]:=
Range3[h,	12]
Out[2422]=	{h1_,	h2_,	h3_,	h4_,	h5_,	h6_,	h7_,	h8_,	h9_,	h10_,	h11_,	h12}	In[2423]:=
Range4[42,	72,	2]
Out[2423]=	{42,	44,	46,	48,	50,	52,	54,	56,	58,	60,	62,	64,	66,	68,	70,	72}	The	next	group
of	facilities	serves	for	expansion	of	the	standardMemberQ	function,	and	its	means	are
quite	useful	in	work	with	list	structures.	So,	the	MemberQ1	procedure	in	a	certain	degree
expands	the	standardMemberQ	function	onto	the	nested	lists	while	theMemberQ2
procedure	expands	the	same	function,	taking	into	account	number	of	entries	of	an
expression	into	a	list	[33,48].	The	callMemberQ1[L,x,	y]	returnsTrue	ifx	is	an	element	of
any	nesting	level	of	a	listL(provided	that	a	simple	list	has	nesting	level0);otherwise	False
is	returned.	In	case	of	return	ofTrue	through,	the	third	argumenty	the	call	returns	the	list	of
levels	of	the	listL	that	contain	occurrences	ofx.	While	the	callMemberQ2[L,x,y]
returnsTrue	ifx	–	an	element	of	a	listL;	otherwise	False	is	returned.	At	that,	at	return
ofTrue,	through	the3rd	argumenty	the	number	of	entries	ofx	into	the	listL	is	returned.	The
callMemberQ3[x,y]	returnsTrue	if	all	elements	of	a	listy	belong	to	a	listx	excluding
nesting,	and	False	otherwise.	Whereas	the	callMemberQ3[x,	y,	t]	with	the	third	optional
argument–an	expression–	returnsTrue,	if	the	listy	–	a	sublist	of	the	listx	at	arbitrary	nesting
level,	andFalse	otherwise.	At	last,	the	callMemberQ4[x,y]	returnsTrue	if	at	leastone
element	of	a	listy	or	an	elementy	belongs	to	a	list	x,	andFalse	otherwise.	If	there	the3rd
optional	argumentz,True	is	returned	only	in	case	of	number	of	occurrences	of	elementsy
not	smaller	thanz.	In	addition	to	the	above	means	the	following2	simple	means	represent	a
quite	certain	interest.	The	callMemberT[L,x]	returns	total	number	of	occurrences	of	an
expressionx	into	a	listL	whereas	the	callMemberLN[L,	x]	returns	the	list	ofListList-type
whoseeach	sublist	determines	number	of	nesting	level	of	the	listL	by	its	first	element,	and
number	of	occurrences	of	an	expressionx	into	this	nesting	level	by	its	second	element.

Thus,	the	facilitiesMemberQ1,	MemberQ2,	MemberQ3	andMemberQ4	along	with	the
meansMemberT	andMemberLN	are	useful	enough	in	processing	of	lists.	In	principle,
these	means	allow	a	number	of	interesting	modifications	significantly	broadening	the
sphere	of	their	application.	Source	codes	of	all	mentioned	means	of	so–
calledMember–group	with	examples	of	their	use	can	be	found	in	[28-33,48].	The	system
considers	a	list	as	the	object	allowing	multiple	occurrences	into	it	of	elements	and	keeping
the	order	of	elements	which	has	been	given	at	its	definition.	For	determination	of
multiplicity	of	the	elements	entering	a	list	it	is	possible	to	use	the	functionMultEntryList,
whose	callMultEntryList[x]	returns	theListList–list;	the	first	element	of	its	sublists
defines	an	element	of	a	listx,	whereas	the	second	element	determines	its	multiplicity	in	the
listx	regardless	of	its	nesting.	Source	code	of	the	function	with	typical	examples	of	its	use
can	be	found	in	[33,48],	for	example:

In[2720]:=	MultEntryList[{“a”,b,“a”,c,h,72,g,	{“a”,b,c,g,72},	g,	h,	{72,g,h,72}}]
Out[2720]=	{{”a“,	3},	{b,	2},	{c,	2},	{h,	3},	{72,	4},	{g,	4}}

Unlike	2	standard	functionsSplit	andSplitBy	the	procedure	callSplit1[x,y]	splits	a	listx
into	sublists	consisting	of	its	elements	that	are	located	between	occurrences	of	an	element
or	elements	of	a	listy.	Ify	don’t	belong	to	the	list	x,	the	initial	listx	is	returned.	The
following	fragment	represents	source	code	of	theSplit1	procedure	along	with	typical
examples	of	its	usage.

In[2746]:=	Split1[x_List,	y_]	:=	Module[{a,	b,	c	=	{},	d,	h,	k	=	1},	If[MemberQ3[x,	y]
||	MemberQ[x,	y],	a	=	If[ListQ[y],

Sort[Flatten[Map[Position[x,	#]	&,	y]]],	Flatten[Position[x,	y]]];	h	=	a;	If[a[[1]]	!=	1,
PrependTo[a,	1]];
If[a[[–1]]	!=	Length[x],	AppendTo[a,	Length[x]]];	d	=	Length[a];	While[k	<=	d–1,
AppendTo[c,	x[[a[[k]]	;;	If[k	==	d–1,	a[[k	+	1]],	a[[k	+	1]]–1]]]];	k++];	If[h[[–1]]	==
Length[x],	AppendTo[c,	{x[[–1]]}]];	c,	x]]

In[2747]	:=	Split1[{a,	a,	a,	b,	a,	b,	c,	d,	a,	b,	a,	b,	c,	d,	a,	b,	d},	a]	Out[2747]=	{{a},	{a},
{a,	b},	{a,	b,	c,	d},	{a,	b},	{a,	b,	c,	d},	{a,	b,	d}}	In[2748]:=	Split1[{a,	b,	a,	b,	c,	d,	a,	b,
a,	b,	c,	d,	a,	b,	d},	{a,	c,	d}]	Out[2748]=	{{a,	b},	{a,	b},	{c},	{d},	{a,	b},	{a,	b},	{c},	{d},
{a,	b,	d},	{d}}	In[2749]:=	Split1[{a,	b,	a,	b,	c,	d,	a,	b,	a,	b,	c,	d,	a,	b,	d},	{x,	y,	z}]
Out[2749]=	{a,	b,	a,	b,	c,	d,	a,	b,	a,	b,	c,	d,	a,	b,	d}

If	during	the	work	in	the	interactive	mode	diagnostic	messages	have	a	quite	certain	sense,
in	the	software	mode(continuous)	of	execution,	for	example,	of	procedures	the	messages
concerning	especial	situations	don’t	have	a	sense,	complicating	software	processing	of
such	situations.	In	this	context	it	is	more	natural	to	identify	a	special	situation	by	return	of
a	conveniently	processed	expression,	for	example,$Failed.	The	following	procedure	can
serve	as	an	example.	The	successful	callElemsList[x,	y]	returns	the	elements	of	a	listx
depending	on	list	of	their	positions	given	by	a	listy.	The	listy	format	in	the	general	case	has
the	view	{n1,	…,	nt,	{m1	;	…	;	mp}},	returning	elements	of	a	listx	according	to	a
standard	relationx[[n1]]	…	[[nt]][[m1	;…;	mp]].	At	that,	the	argumenty	allows	the
following	formats	of	the	coding	{n1,	…,	nt},	{{m1	;	…	;	mp}},	{};	whose	results	of	use
are	given	in	the	following	fragment	along	with	source	code	of	theElemsList	procedure.

In[3378]:=	ElemsList[x_/;	ListQ[x],	y_/;	ListQ[y]]	:=	Module[{c	=	””,	k	=	1,	a	=

Select[y,	!	ListQ[#]	&],	b	=	Select[y,	ListQ[#]	&]},	If[a	==	{}&&	b	==	{},	x,
If[a	==	{},	Quiet[Check[ToExpression[ToString[x]	<>	“[[”	<>
StringTake[ToString[b],	{3,–3}]	<>	“]]”],	$Failed]],	If[b	==	{},	c	=	ToString[x];

While[k	<=	Length[a],	c	=	c	<>	“[[”	<>	ToString[a[[k]]]	<>	“]]”;	k++];
Quiet[Check[ToExpression[c],	$Failed]],	c	=	ToString[x];
While[k	<=	Length[a],	c	=	c	<>	“[[”	<>	ToString[a[[k]]]	<>	“]]”;	k++];
Quiet[Check[ToExpression[c	<>	“[[”	<>	StringTake[ToString[b],	{3,–3}]	<>	“]]”],
$Failed]]]]]]

In[3379]	:=	L	=	{{avz,	agn,	vsv,	art,	kr},	{d,e,f,g,h,	{18,25,47,52,67,72}},	{g,h,j}};
In[3380]:=	ElemsList[{},	{}]
Out[3380]=	{}
In[3381]:=	ElemsList[L,	{}]
Out[3381]=	{{avz,	agn,	vsv,	art,	kr},	{d,e,f,g,h,	{18,	25,	47,	52,	67,	72}},	{g,h,j}}
In[3382]:=	ElemsList[L,	{{1	;;	3}}]
Out[3382]=	{{avz,	agn,	vsv,	art,	kr},	{d,e,f,g,h,	{18,	25,	47,	52,	67,	72}},	{g,h,j}}
In[3383]:=	ElemsList[L,	{2,	6,	{3	;;–1}}]
Out[3383]=	{47,	52,	67,	72}
In[3384]:=	ElemsList[L,	{2,	6,	5}]
Out[3384]=	67
In[3385]:=	ElemsList[L,	{2,	80.480,	5}]
Out[3385]=	$Failed

In[3386]	:=	L[[2]][[6]][[3	;;	0]]
Part::take:	Cannot	take	positions	3	through	0	in	{18,25,47,52,67,72}.	>>
Out[3386]=	{18,	25,	47,	52,	67,	72}[[3;;	0]]
In[3387]:=	ElemsList[L,	{2,	6,	{3	;;	0}}]
Out[3387]=	$Failed

The	following	two	procedures	expand	the	system	means	oriented	on	work	with	list
structures,	giving	a	possibility	to	simplify	programming(in	certain	cases	rather
significantly)	of	a	number	of	problems	that	use	the	lists.	The	following	fragment
represents	source	codes	of	procedures	along	with	examples	of	their	application.	The
callReduceList[L,x,z,t]	returns	the	result	of	reducing	of	elements	of	a	listL	that	are
determined	by	a	separate	element	x	or	their	list	to	a	multiplicity	determined	by	a	separate
elementz	or	their	list.	If	elements	ofx	don’t	belong	to	the	listL,	the	procedure	call	returns
the	initial	listL.	At	that,	ifLength[z]	<	Length[x]	a	listz	is	padded	on	the	right	by1	to	the
list	lengthx.	In	addition,	thefourth	argumentt	defines	direction	of	reducing	in	the	listL(on
the	left	att	=	1and	on	the	right	att	=	2).	While	the	callSplitList[L,x]	returns	result
ofsplitting	of	a	listL	onto	sublists	by	an	element	or	elementsx;	at	that,	dividersx	are
removed	from	the	result.	If	elementsx	don’t	belong	to	the	listL,	the	procedure	call	returns
the	initial	listL.	In	a	number	of	cases	both	procedures	are	rather	claimed.	A	number	of
means	from	ourAVZ_Package	package	rather	essentially	use	the	mentioned
proceduresReduceList	andSplitList	[48].	These	means	arose	in	the	result	of	programming
of	other	our	certain	means.

In[2520]:=	ReduceList[L_	/;	ListQ[L],	x_,	z_,	t_	/;	MemberQ[{1,	2},	t]]	:=

Module[{a	=	Map[Flatten,	Map[Position[L,	#]	&,	Flatten[{x}]]],	b	=	{},	m	=
Flatten[{x}],	n	=	Flatten[{z}],	k	=	1},	n	=	If[Length[m]	>	Length[n],	PadRight[n,
Length[m],	1],	n];	For[k,	k	<=	Length[a],	k++,	If[Length[a[[k]]]	>=	n[[k]],
AppendTo[b,	a[[k]]],	Null]];	For[k	=	1,	k	<=	Length[a],	k++,	a[[k]]	=	If[t	==	1,	a[[k]]
[[1	;;	Length[a[[k]]]–n[[k]]]],	a[[k]][[–Length[a[[k]]]	+	n[[k]]	;;–1]]]];
Select[ReplacePart[L,	GenRules[Flatten[a],	Null]],	!	SameQ[#,	Null]	&]]

In[2521]:=	ReduceList[{f,	d,	d,	d,	d,	d,	f,	f,	f,	f,	f,	d},	{d,	f},	3,	2]	Out[2521]=	{f,	d,	d,	d}

In[2522]	:=	ReduceList[{f,	d,	d,	d,	d,	d,	f,	f,	f,	f,	f,	d},	{d,	f},	3,	1]	Out[2522]=	{d,	d,	f,
d}
In[2523]:=	ReduceList[{a,	f,	b,	c,	f,	d,	f,	d,	f,	f,	f,	g},	{d,	f},	{1,	2},	1]	Out[2523]=	{a,	b,
c,	d,	f,	f,	g}
In[2524]:=	ReduceList[{f,	f,	a,	b,	c,	d,	d,	f,	f,	f,	g,	f},	{d,	f},	{1,	2},	2]	Out[2524]=	{f,	f,
a,	b,	c,	d,	g}
In[2525]:=	L	=	{a,	a,	a,	b,	b,	b,	b,	c,	c,	c,	c,	c,	d,	d,	d,	d,	d,	d,	e,	e,	e,	e,	e,	e,	e};
In[2526]:=	ReduceList[L,	DeleteDuplicates[L],	{1,	2,	3,	4,	5},	1]	Out[2526]=	{a,	b,	b,	c,
c,	c,	d,	d,	d,	d,	e,	e,	e,	e,	e}

In[3340]:=	SplitList[L_/;	ListQ[L],	x_]	:=	Module[{a	=	Flatten[{x}],	c,	d,	h,	b	=
ToString[Unique[“$a”]]},	c	=	Map[ToString[#]	<>	b	&,	a];	d	=
StringJoin[Map[ToString[#]	<>	b	&,	L]];

h	=	Select[StringSplit[d,	c],	#	!=	””	&];	h	=	Map[StringReplace[#,	b–>	“,”]	&,	h];	h	=
ToExpression[Map[“{”	<>	StringTake[#,	{1,–2}]	<>	“}”	&,	h]];	Remove[b];
If[Length[h]	==	1,	h[[1]],	h]]

In[3341]	:=	SplitList[{f,	f,	a,	b,	c,	d,	p,	p,	d,	p,	d,	f,	f,	f,	g,	f},	{d,	f}]	Out[3341]=	{{a,	b,
c},	{p,	p},	{p},	{g}}
In[3342]:=	SplitList[{f,	f,	a,	b,	c,	d,	p,	d,	f,	f,	f,	g,	f},	{h,	f}]
Out[3342]=	{{a,	b,	c,	d,	p,	d},	{g}}

A	number	of	the	additional	means	expanding	the	Mathematica	software,	in	particular,	for
effective	enough	programming	of	problems	of	manipulation	with	list	structures	of	various
organization	is	presented	in	the	given	present	chapter.	These	and	other	our	means	of	the
given	orientation	are	presented	a	quite	in	details	in	[28-33,48].	In	general,Mathematica
provides	the	mass	of	useful	and	effective	means	of	processing,	except	already	the
mentioned,	of	the	list	structures	and	objects	that	are	based	on	structures	of	the	given	type.
Being	additional	tools	for	work	with	lists–basic	structures	inMathematica	–	these	tools
are	rather	useful	in	a	number	of	applications	of	various	purpose.	Meanwhile,	other	means
which	can	be	used	quite	successfully	at	processing	lists	of	various	format	are	also
represented	in	the	book.	A	number	of	means	were	already	considered	above,	others	will	be
considered	below	along	with	tools	that	are	directly	not	associated	with	lists,	but	quite
accepted	for	work	with	separate	formats	of	lists.

Chapter	5.	The	additional	means	expanding	the	standard
Mathematicafunctions,	or	its	software	as	a	whole

The	string	and	list	structures	–	some	of	the	most	important	inMathematica	system,	they

both	are	considered	in	the	previoustwo	chapters	in	the	context	of	means,	additional	to	the
system	means,	without	regard	to	a	large	number	of	the	standard	functions	of	processing	of
structures	of	this	type.	Naturally,	here	it	isn’t	possible	to	consider	all	range	of	system
functions	of	this	type,	sending	the	interested	reader	to	the	help	information
onMathematica	or	to	the	corresponding	numerous	literature.	It	is	possible	to	find	many	of
these	editions	on	the	web-sitehttp://www.wolfram.com/books.	Having	presented	the
means	expanding	the	standardMathematica	software	in	the	context	of	processing	ofstring
andlist	structures	in	the	present	chapter	we	will	present	the	means	expanding
theMathematica	which	are	oriented	on	processing	of	other	types	of	objects.	First	of	all,
we	will	present	a	number	of	means	of	bit–	by–bit	processing	of	arbitrary	symbols.
TheBits	procedure	quite	significantly	uses	functionBinaryListQ,	providing	a	number	of
useful	functions	during	of	work	with	symbols.	On	the	tuple	of	actual	arguments<x,	p>,
wherex	–	a1–symbolical	string(character)	andp	–	an	integer	in	the	range0..8,	the
callBits[x,p]	returns	binary	representation	ofx	in	the	form	of	list,	ifp=0,	andpth	bit	of	such
representation	of	a	symbol	x	otherwise.	Whereas	on	a	tuple	of	the	actual	arguments<x,p>,
wherex	–	a	nonempty	binary	list	of	length	no	more	than8	andp	=	0,	the	procedure	call
returns	a	symbol	corresponding	to	the	given	binary	listx;	in	other	cases	the	callBits[x,p]	is
returned	as	unevaluated.	The	following	fragment	represents	source	code	of	theBits
procedure	along	with	examples	of	its	usage.

In[2819]:=	Bits[x_,	P_/;	IntegerQ[P]]	:=	Module[{a,	k},	If[StringQ[x]	&&
StringLength[x]	==	1,	If[1	<=	P	<=	8,

PadLeft[IntegerDigits[ToCharacterCode[x][[1]],	2],	8][[P]],	If[P	==	0,
PadLeft[IntegerDigits[ToCharacterCode[x][[1]],	2],	8],	Defer[Bits[x,	P]]]],
If[BinaryListQ[x]	&&	1	<=	Length[Flatten[x]]	<=	8,	a	=	Length[x];
FromCharacterCode[Sum[x[[k]]*2^(a–k),	{k,	1,	a}]],	Defer[Bits[x,	P]]]]]

In[2820]	:=	Map9[Bits,	{“A”,	“A”,	{1,0,0,0,0,0,1},	“A”,	{1,1,1,1,0,1}},	{0,2,0,9,0}]
Out[2820]=	{{0,	1,	0,	0,	0,	0,	0,	1},	1,	“A“,	Bits[”A“,	9],	“=”}
If	the	previousBits	procedure	provides	rathersimple	processing	of	symbols,	the	following2
proceduresBitSet1	andBitGet1	provide	the	expanded	bit–	by–bit	information	processing
like	ourMaple	procedures.	In	theMaple	we	created	a	number	of	procedures(Bit,	Bit1,
xbyte,	xbyte1,	xNB)	that	provide	bit-by-bit	information	processing	[47];	Mathematica
also	has	similar	means,	in	particular,	the	callBitSet[n,	k]	returns	the	result	of	setting	of1
into	ak–th	position	of	binary	representation	of	an	integer	n.	The	following	fragment
represents	procedure,	whose	callBitSet1[n,p]	returns	result	of	setting	into	positions	of
binary	representation	of	an	integern	that	are	determined	by	the	first	elements	of	sublists	of
a	nested	listp,	{0|1}–	values;	at	that,	in	case	of	non-nested	listp	the	value	replacement	only
in	a	single	position	of	integern	is	made.	TheBitSet1	procedure	is	included
inAVZ_Package	package	[48].

In[2338]:=	BitSet1[n_	/;	IntegerQ[n]	&&	n	>=	0,	p_	/;	ListQ[p]]	:=

Module[{b	=	1,	c,	d,	h	=	If[ListListQ[p],	p,	{p}],	a	=
ToExpression[Characters[IntegerString[n,	2]]]},	If[ListListQ[h]	&&
Length[Select[h,	Length[#]	==	2	&&	IntegerQ[#[[1]]]	&&	IntegerQ[#[[2]]]	&&
MemberQ[{0,	1},	#[[2]]]	&]]	==	Length[h],	Null,	Return[Defer[BitSet1[n,	p]]]];
For[b,	b	<=	Length[h],	b++,	{c,	d}=	{h[[b]][[1]],	h[[b]][[2]]};	If[c	<=	Length[a],	a[[c]]

=	d,	Null]];	Sum[a[[k]]*2^(Length[a]–k),	{k,	Length[a]}]]	In[2339]:=	{BitSet1[480,
{{3,1},{6,0},{9,1}}],	BitSet1[80,{4,0}],	BitSet1[80,{7,1}]}	Out[2339]=	{481,	80,	81}

In[2340]	:=	BitSet1[480,	{{3,	1},	{6,	0},	{9,	2}}]
Out[2340]=	BitSet1[480,	{{3,	1},	{6,	0},	{9,	2}}]
In[89]:=	BitGet1[x___,	n_	/;	IntegerQ[n]	&&	n	>=	0,	p_	/;	IntegerQ[p]	&&

p	>	0||ListQ[p]]:=	Module[{b	=	1,	c	=	{},	d,	h	=	If[ListQ[p],	p,	{p}],	a	=
ToExpression[Characters[IntegerString[n,	2]]]},	For[b,	b	<=	Length[a],	b++,	c	=
Append[c,	If[MemberQ[h,	b],	a[[b]],	Null]]];	If[!	HowAct[x],	x	=	Length[a],	Null];
Select[c,	ToString[#]	!=	“Null”	&]]	In[90]:=	{BitGet1[h,80,{1,5,7}],	h,	BitGet1[47,
{1,5,7}],	BitGet1[p,480,{1,3,5}],	p}	Out[90]=	{{1,	0,	0},	7,	{1,	1},	{1,	1,	0},	9}

Examples	of	application	of	the	proceduresBitSet1	andBitGet1	very	visually	illustrate	the
told.	It	should	be	noted	that	theBitSet1	procedure	functionally	expands	the	standard
functionsBitSet	andBitClear	ofMathematica	system,	whereas	the	procedureBitGet1
functionally	extands	the	standard	functions	BitGet	andBitLength	of	the	system.	The
callBitGet1[n,	p]	returns	the	list	of	bits	in	the	positions	of	binary	representation	of	an
integern	that	are	defined	by	a	listp;	in	addition,	in	case	of	an	integerp	the	bit	in	a	positionp
of	binary	representation	of	integern	is	returned.	While	the	callBitGet1[x,n,p]	through	a
symbolx	in	addition	returns	number	of	bits	in	the	binary	representation	of	an	integern.
Examples	of	the	previous	fragment	very	visually	illustrate	the	aforesaid	without	any
additional	explanations.
In	theMathematica	thetransformation	rules	are	generally	determined	by	the	Rule
function,	whose	the	callRule[a,b]	returns	the	transformation	rule	in	the	formata	–>b.
These	rules	are	used	in	transformations	of	expressions	by	the	following
functionsReplaceAll,	Replace,	ReplaceRepeated,	ReplacePart,	StringReplaceList,
StringCases,	StringReplace	which	use	either	one	rule,	or	their	list	as	simple	list,
andListList-list.	Fordynamic	generation	of	such	rules	theGenRules	procedure	can	be	quite
useful,	whose	the	callGenRules[x,	y]	depending	on	a	type	of	its	arguments	returns	single
rule	or	list	of	rules;	the	callGenRules[x,	y,	z]	with	the	third	optional	argumentz	–	any
expression–	returns	the	list	with	single	transformation	rule	or	the	nested	list	ofListList–
type.	Depending	on	the	coding	format,	the	procedure	call	returns	result	in	the	following
format,	namely:
(1)	GenRules[{x,	y,	z,…},a]⇒	{x	–>	a,	y	–>	a,	z	–>	a,…}
(2)	GenRules[{x,	y,	z,…},a,	h]	⇒	{{x	–>	a},	{y	–>	a},	{z	–>	a},	…}	(3)	GenRules[{x,	y,
z,…},	{a,	b,	c,…}]⇒	{x	–>	a,	y	–>	b,	z	–>	c,…}	(4)	GenRules[{x,	y,	z,…},	{a,	b,	c,…},h]
⇒	{{x	–>	a},	{y	–>	b},	{z	–>	c},	…}	(5)	GenRules[x,	{a,	b,	c,…}]⇒	{x	–>	a}
(6)	GenRules[x,	{a,	b,	c,…},h]	⇒	{x	–>	a}
(7)	GenRules[x,	a]⇒	{x	–>	a}
(8)	GenRules[x,	a,	h]⇒	{x	–>	a}
TheGenRules	procedure	is	useful,	in	particular,	when	in	some	procedure	it	is	necessary	to
dynamically	generate	the	transformation	rules	depending	on	conditions.The	following
fragment	represents	source	code	of	theGenRules	procedure	with	most	typical	examples	of
its	usage	on	all	above–mentioned	cases	of	coding	of	its	call.

In[4040]:=	GenRules[x_,	y_,	z___]	:=	Module[{a,	b	=	Flatten[{x}],	c	=
Flatten[If[ListQ	/@	{x,	y}==	{True,	False},

PadLeft[{},	Length[x],	y],	{y}]]},	a	=	Min[Length	/@	{b,	c}];	b	=	Map9[Rule,	b[[1	;;
a]],	c[[1	;;	a]]];	If[{z}==	{},	b,	b	=	List	/@	b;	If[Length[b]	==	1,	Flatten[b],	b]]]

In[4041]:=	{GenRules[{x,	y,	z},	{a,	b,	c}],	GenRules[x,	{a,	b,	c}],

GenRules[{x,	y},	{a,	b,	c}],	GenRules[x,	a],	GenRules[{x,	y},	a]}	Out[4041]=	{{x–>a,
y–>b,	z–>c},	{x–>a},	{x–>a,	y–>b},	{x–>a},	{x–>a,	y–>a}}	In[4042]:=	{GenRules[{x,
y,	z},	{a,	b,	c},	72],	GenRules[x,	{a,	b,	c},	42],

GenRules[x,a,6],	GenRules[{x,y},{a,b,c},47],	GenRules[{x,y},a,67]}	Out[4042]=
{{{x–>	a},	{y–>	b},	{z–>	c}},	{x–>	a},	{{x–>	a},	{y–>	b}},	{x–>	a},	{{x–>	a},	{y–>
a}}}
In[4043]:=	GenRules[x_,	y_,	z___]	:=	Module[{a,	b},	b	=	If[ListQ[x]	&&

!	ListQ[y],	a	=	Map[Rule[#,	y]	&,	x],	If[ListQ[x]	&&	ListQ[y],	a	=	Map9[Rule,	x,	y],
{x–>	Flatten[{y}][[1]]}]];	b	=	If[{z}!=	{},	SplitBy[b,	Head[#]	&	==	Rule],	b];
If[NestListQ[b]	&&	Length[b]	==	1,	b[[1]],	b]]

In[4044]	:=	{GenRules[{x,	y,	z},	{a,	b,	c}],	GenRules[x,	{a,	b,	c}],	GenRules[{x,	y},
{a,	b,	c}],	GenRules[x,	a],	GenRules[{x,	y},	a]}
Out[4044]=	{{x–>	a,	y–>	b,	z–>	c},	{x–>	a},	Map9[Rule,	{x,	y},	{a,	b,	c}],	{x–>	a},
{x–>	a,	y–>	a}}
In[4045]:=	{GenRules[{x,	y,	z},	{a,	b,	c}],	GenRules[x,	{a,	b,	c}],	GenRules[{x,	y,	z},
{a,	b,	c}],	GenRules[x,	a],	GenRules[{x,	y},	a]}
Out[4045]=	{{x–>	a,	y–>	b,	z–>	c},	{x–>	a},	{x–>	a,	y–>	b,	z–>	c},	{x–>	a},	{x–>	a,	y–>
a}}
In[4046]:=	{GenRules[{x,	y,	z},	{a,	b,	c},	72],	GenRules[x,	{a,	b,	c},	42],	GenRules[x,
a,	6],	GenRules[{x,	y},	a,	67]}
Out[4046]=	{{{x–>	a},	{y–>	b},	{z–>	c}},	{x–>	a},	{x–>	a},	{{x–>	a},	{y–>	a}}}

In[2457]:=	GenRules2[x_	/;	ListQ[x],	y_]	:=	If[ListQ[y],
Map[Rule[x[[#]],	y[[#]]]	&,	Range[1,	Min[Length[x],	Length[y]]]],	Map[Rule[x[[#]],
y]	&,	Range[1,	Length[x]]]]	In[2458]:=	{GenRules2[{x,	y,	z},	{a,	b,	c}],
GenRules2[{x,	y,	z},	h],	GenRules2[{x,	y,	z},	{a,	b}],	GenRules2[{x,	y,	z},	{a,	b,	c,
d}]}	Out[2458]=	{{x–>	a,	y–>	b,	z–>	c},	{x–>	h,	y–>	h,	z–>	h},	{x–>	a,	y–>	b},	{x–>	a,
y–>	b,	z–>	c}}

The	GenRules	procedure	of	the	same	name	that	is	functionally	equivalent	to	the	initial
procedure	is	given	as	an	useful	modification	provided	that	lists	x	andy	astwo	first
arguments	have	identical	length.	The	simpleGenRules2	function	which	depending	on	type
of	thesecond	argument	generates	the	list	of	transformation	rules	of	the	above	formats(1)
and(3)	respectively	finishes	the	fragment	as	illustrate	very	transparent	examples.	In	certain
cases	these	means	allows	quite	significantly	to	reduce	source	code	of	the	programmable
procedures.	Some	means	of	our	package	essentially	use	these	means	[48].

Along	with	the	considered	transformation	rules	of	the	forma–>b	the	system	allows	use
also	of	thedelayed	rules(RuleDelayed)	of	the	forma:>b	ora:→b	which	are	realized	only	at
the	time	of	their	application.	In	the	rest	they	are	similar	to	the	already	considered
transformation	rules.	For	generation	of	list	of	transformation	rules	of	similar	type	can	be
used	theGenRules	procedure	presented	above	for	which	theRule	function	is	replaced	by
theRuleDelayed	function,	or	can	be	used	its	modificationGenRules1	adapted	onto	usage

of	one	or	other	function	by	the	corresponding	coding	of	the	third	argument	at	thecall
GenRules1[x,y,	h,	z],	wherex,	y,	z	–	arguments	completely	similar	to	the	arguments	of	the
same	name	of	the	procedureGenRules	whereas	the	thirdh	argument	determines	the	mode
of	generation	of	the	list	of	the	usual	or	delayed	rules	on	the	basis	of	the	received
value“rd”(delayed	rule)	or“r”	(simple	rule).	The	next	fragment	represents	a	source	code
of	theGenRules1	procedure	along	with	the	most	typical	examples	of	its	usage.

In[2623]:=	GenRules1[x_,	y_,	h_	/;	h	==	“r”	||	h	==	“rd”,	z___]	:=	Module[{a,	b	=
Flatten[{x}],	c	=	Flatten[If[Map[ListQ,	{x,	y}]	==

{	True,	False},	PadLeft[{},	Length[x],	y],	{y}]]},	a	=	Min[Map[Length,	{b,	c}]];	b	=
Map9[If[h	==	“r”,	Rule,	RuleDelayed],	b[[1	;;	a]],	c[[1	;;	a]]];	If[{z}==	{},	b,	b	=
Map[List,	b];	If[Length[b]	==	1,	Flatten[b],	b]]]

In[2624]:=	GenRules1[{x,	y,	z},	{a,	b,	c},	“r”,	480]
Out[2624]=	{{x–>	a},	{y–>	b},	{z–>	c}}

In[2625]	:=	GenRules1[{x,	y,	z},	{a,	b,	c},	“rd”,	80]
Out[2625]=	{{x:→	a},	{y:→	b},	{z:→	c}}
In[2626]:=	GenRules1[{x,	y,	z},	a,	“r”]
Out[2626]=	{x–>	a,	y–>	a,	z–>	a}
In[2627]:=	GenRules1[{x,	y,	z},	a,	“rd”]
Out[2627]=	{x:→	a,	y:→	a,	z:→	a}
In[2628]:=	GenRules1[{x,	y},	{a,	b,	c,	d},	“rd”,	480]
Out[2628]=	{{x:→	a},	{y:→	b}}
In[2629]:=	GenRules1[x,	a,	“rd”,	80]
Out[2629]=	{x:→	a}

Considering	the	importance	of	the	mapfunction,	sinceMaple	10,	the	option	`inplace`,
admissible	only	at	usage	of	this	function	with	rectangularrtable–	objects	at	renewing	these
objects	in	situ	was	defined.	Whereas	for	objects	of	other	type	this	mechanism	isn’t
supported	as	certain	examples	from	[25–27]	illustrate.	For	the	purpose	of	disposal	of	this
shortcoming	we	offered	a	quite	simpleMapInSitu	procedure	[27,47].	Along	with	it	the
similar	means	and	forMathematica	in	the	form	of	two	functionsMapInSitu
andMapInSitu1	together	with	theMapInSitu2	procedure	have	been	offered.	The
following	fragment	represents	source	codes	of	the	above	means	with	typical	examples	of
their	application.

In[2650]:=	MapInSitu[x_,	y_/;	StringQ[y]]	:=	ToExpression[y	<>	“=”	<>
ToString[Map[x,	ToExpression[y]]]]

In[2651]	:=	y	=	{a,	b,	c};	h	=	{{4.2,	7.2},	{4.7,	6.7}};
{MapInSitu[G,	“y”],	MapInSitu[Sin,	“h”]}

Out[2651]	=	{{G[a],	G[b],	G[c]},	{{–0.871576,	0.793668},	{–0.999923,	0.40485}}}
In[2652]:=	{y,	h}
Out[2652]=	{{G[a],	G[b],	G[c]},	{{–0.871576,	0.793668},	{–0.999923,	0.40485}}}
In[2653]:=	{H,	G}=	{{8.48,	47.67,	18.25},	{7.8,	47.67,	18.25}}
Out[2653]=	{0.810367,–0.519367,–0.564276}

In[2654]	:=	MapInSitu1[x_,	y_]	:=	ToExpression[ToString[Args[MapInSitu,	80]]	<>

“=”	<>	ToString[Map[x,	y]]]
In[2655]:=	y	=	{{80.42,	25.57},	{80.45,	80.89}};	MapInSitu1[Sin,	y]
Out[2655]=	{{–0.95252,	0.423458},	{–0.942959,–0.711344}}
In[2656]:=	y
Out[2656]=	{–0.942959,–0.711344}
In[2657]:=	MapInSitu2[x_,	y_]	:=	Module[{a	=	Map[x,	y],	b	=	ToString[y],	h,	d	=	{},
k	=	1,	c	=	Select[Names[“`*”],	StringFreeQ[#,	“$”]	&]},	For[k,	k	<=	Length[c],	k++,	h
=	c[[k]];	If[ToString[ToExpression[h]]	===	b,	d	=	Append[d,	h],	Null]];	For[k	=	1,	k
<=	Length[d],	k++,	h	=	d[[k]];	ToExpression[h	<>	”	=	”	<>	ToString[a]]];	a]
In[2658]:=	MapInSitu2[Sin,	{7.4,	47.67,	18.25}]
Out[2658]=	{0.998543,–0.519367,–0.564276}
In[2659]:=	{H,	G}
Out[2659]=	{{0.810367,–0.519367,–0.564276},{0.998543,–0.519367,–0.564276}}	With
the	mechanisms	used	byMaple–процедуройMapInSitu	andMath–	functionsMapInSitu
of	the	same	name	andMapInSitu1	can	familiarize	in	[25-33,47,48].	Means	MapInSity	for
both	systems	are	characterized	by	the	prerequisite,	that	thesecond	argument	at	their	call
points	out	on	an	identifier	in	string	format	to	which	a	certain	value	has	been	ascribed
earlier	and	that	is	updated	in	situ	after	its	processing	by	the	function	{map|Map}.	The
callMapInSitu1[x,y]	provides	assignment	to	all	identifiers	to	which	in	the	current	session
the	values	coinciding	with	value	of	the	second	argument	y	have	been	ascribed,	of	the	result
of	the	call	ofMap,	updating	their	values	in	situ.	Anyway,	the	calls	of	these	procedures
returnMap[x,	y]	as	a	result.	The	previous	fragment	represents	source	codes	of	all	these
procedures	and	typical	examples	of	their	usage.
The	standardPart	function	is	quite	useful	at	analysis	and	processing	of	the	expressions	in
addition	to	theHead	function,	allowingsix	formats	of	coding	[60].	Between	the
functionsHead,	Level	andPart	some	useful	relations	take	place	that	can	be	used	for
problems	of	testing	of	expressions,	in	particular,	Part[Ex,	0]≡Head[Ex],	Level[Ex,	1]
[[1]]≡Part[Ex,	1],	Level[Ex,Infinity]≡	Level[Ex,	–1],	whereEx	–	an	arbitrary	expression,
etc.	The	given	means	can	be	used	quite	successfully	for	testing	and	processing	of
expressions.	So,	the	following	fragment	represents	source	code	of	the	procedure,	whose
the	call	Decomp[x]	returns	the	list	of	all	unique	atomic	components	of	an	arbitrary
expressionx,	includingnames	of	variables,	functions,	procedures,	operations	along	with
constants.	This	procedure	significantly	uses	the	above	functions	Level	andHead;	usage	of
the	functionsHead,	Level	andPart	in	a	number	of	functions	and	procedures	of	the
package	[48]	proved	their	effectiviness.	In[2417]:=	Decomp[x_]	:=	Module[{c	=
DeleteDuplicates[Flatten[Level[x,	Infinity]],	Abs[#1]	===	Abs[#2]	&],	b	=	{},	k},
Label[ArtKr];
For[k	=	1,	k	<=	Length[c],	k++,	b	=	Append[b,	If[AtomQ[c[[k]]],	c[[k]],
{Level[c[[k]],–1],	Head[c[[k]]]}]]];	b	=	DeleteDuplicates[Flatten[b],	Abs[#1]	===
Abs[#2]	&];	If[c	==	b,	Return[b],	c	=	b;	b	=	{};	Goto[ArtKr]]]

In[2418]:=	Decomp[{6*Cos[x]–n*Sin[y]/(Log[h]–b),	ProcQ[c,	d]}]	Out[2418]=	{6,	x,
Cos,	Times,–1,	n,	b,	h,	Log,	Plus,	Power,	y,	Sin,	c,	d,	ProcQ}

The	following	procedure	makes	grouping	of	the	expressions	that	are	given	by	argumentL
according	to	their	types	defined	by	theHead1	procedure;	at	that,	a	separate	expression	or
their	list	is	coded	as	an	argumentL.	The	call	of	GroupNames[L]	returns	simple	list	or

nested	list,	whose	elements	are	lists,	whosefirst	element–	an	objecttype	according	to
theHead1	procedure	while	the	others–	expressions	of	this	type.	The	fragment	represents
source	code	of	theGroupNames	with	examples	from	which	the	format	of	the	result	that	is
returned	by	the	procedure	is	visible	quite	transparently.

In[2486]:=	GroupNames[L_]	:=	Module[{a	=	If[ListQ[L],	L,	{L}],	c,	d,	p,	t,	b	=
{{“Null”,	“Null”}},	k	=	1},

For[k,	k	<=	Length[a],	k++,	c	=	a[[k]];	d	=	Head1[c];	t	=	Flatten[Select[b,	#[[1]]	===
d	&]];	If[t	==	{},	AppendTo[b,	{d,	c}],	p	=	Flatten[Position[b,	t]][[1]];
AppendTo[b[[p]],	c]]];	b	=	b[[2	;;–1]];	If[Length[b]	==	1,	Flatten[b],	b]]	In[2487]:=
GroupNames[{Sin,	Cos,	ProcQ,	Locals2,	80,	Map1,	StrStr,	67/42,	Avz,	Nvalue1,	a	+
b}]

Out[2487]	=	{{System,	Sin,	Cos},	{Module,	ProcQ,	Locals2,	Map1,	Nvalue1},	{Integer,
80},	{Function,	StrStr},	{Rational,	67/42},	{Symbol,	Avz},	{Plus,	a+b}}	In[2488]:=
GroupNames[Head1]
Out[2488]=	{Module,	Head1}

In[2489]	:=	L	=	GroupNames[Names[“*”]]
Out[2489]=	{{Global`System,	“\[FormalA]“,	…,	“CallPacket”},	{Function,	“AcNb“,
…,	“$ProcName”},
{String,	“ActionMenu“,	…,	“GroebnerBasis”},
{Module,	“ActiveProcess“,	…,	“WhichN”},
{System,	“CanberraDistance“,	…,	“$VersionNumber”}}
In[2490]:=	Map[Length,	L]–1
Out[2490]=	{594,	548,	90,	500,	6817}

In	particular,	from	2	last	examples	of	theGroupNames	usage	follows,	that	names	of	the
current	session	belong	to	five	groups,	namely:Global’System,	Function,	String,	Module
andSystem,	the	number	of	elements	in	which	is	594,	548,	90,	500	and6817	respectively.
Meanwhile,	for	receiving	this	result	a	considerable	time	expenditure	are	needed,	due	to	the
need	of	testing	of	a	large	number	of	means	of	the	current	session.
In	addition	to	theGroupNames	procedure	a	certain	interest	can	present	and	a	rather	simple
procedure,	whose	callLocObj[x]	returns	the	three–element	list	whosefirst	element	defines
an	objectx,	thesecond	element	determines	its	type	in	the	context	{“Module”,
“SFunction”(system	function),	“Expression”,	“Function”},	while	thethird	element–	its
location	in	the	context	{“Global”–	the	current	session,“System”	–	a	kernel
orMathematica	library,“Context”	–	a	system	or	user	package	that	has	been	loaded	into
the	current	session	and	which	contains	definition	of	the	objectx}.	The	following	fragment
represents	source	code	of	the	procedure	and	the	most	typical	examples	of	its	usage.

In[2244]	:=	LocObj[x_]	:=	Module[{a	=	Head1[x],	b},
b[y_]	:=	StringTake[Context[y],	{1,–2}];	If[a	==	“Module”,	{x,	“Module”,	b[x]},	If[a
==	“Function”,	{x,	“Function”,	b[x]},	If[SystemQ[x],	{x,	“SFunction”,	b[x]},

{x,	“Expression”,	“Global”}]]]]	In[2245]:=	Map[LocObj,	{PureDefinition,	ProcQ,
StrStr,	Sin,	a	+	b,	500}]	Out[2245]=	{{PureDefinition,	“Module“,
“AladjevProcedures”},

{ProcQ	,	“Module“,	“AladjevProcedures”},	{StrStr,	“Function“,	“AladjevProcedures”},

{Sin,	“SFunction“,	“System”},
{a+	b,	“Expression“,	“Global”},	{500,	“Expression“,	“Global”}}	While	the
callNames1[]	returns	the	nested	returns	the	nestedelement	list	whose1st	element	defines
the	list	of	names	of	procedures,	the2nd	element–	the	list	of	names	of	functions,	the3rd
element–	the	list	of	names	whose	definitions	have	been	evaluated	in	the	current	session
whereas	the4th	element	determines	the	list	of	other	names	associated	with	the	current
session.	The	fragment	represents	source	code	of	theNames1	procedure	along	with	an
application	example.

In[2545]:=	Names1[x___	/;	{x}==	{}]	:=	Module[{c	=	1,	d,	h,	b	=	{{},	{},	{},	{}},	a	=
Select[Names[“`*”],	StringTake[#,	{1,	1}]	!=	“$”	&]},

While[c	<=	Length[a],	d	=	a[[c]];	If[ProcQ[d],	AppendTo[b[[1]],	d],
If[Quiet[Check[QFunction[d],	False]],	AppendTo[b[[2]],	d],	h	=
ToString[Quiet[DefFunc[d]]];	If[!	SameQ[h,	“Null”]	&&	h	==	“Attributes[”	<>	d	<>
“]	=	{Temporary}“,	AppendTo[b[[3]],	d]],	AppendTo[b[[4]],	d]]];	c++];	b]	In[2546]:=
Names1[]

Out[2546]=	{{”Bt“,	“Mas“,	“Names1“,	“W”},	{”F“,	“G”},	{”Art25$”,	“Kr18”},	{}}

The	Names1	procedure	is	a	rather	useful	means	in	a	number	of	appendices,	in	particular,
in	some	questions	of	the	procedural	programming,	in	certain	relations	expanding	the
standardNames	function	ofMathematica.	Though,	during	work	in	the	current	session,	the
execution	of	theNames1	procedure	demands	the	increasing	time	expenditure,	assuming	its
circumspect	usage.

The	call	RemoveNames[]	provides	removal	from	the	current	session	of	the	names,	whose
types	are	other	than	procedures	and	functions,	and	whose	definitions	have	been	evaluated
in	the	current	session;	moreover,	the	names	are	removed	so	that	aren’t	recognized
byMathematica	any	more.	The	call	RemoveNames[]	along	with	removal	of	the	above
names	from	the	current	session	returns	the	nestedsession	returns	the	nestedelement	list
whose	first	element	determines	the	list	of	names	of	procedures,	whereas	the	second
element–	the	list	of	names	of	functions	whose	definitions	have	been	evaluated	in	the
current	session.	The	following	fragment	represents	source	code	of	theRemoveNames	with
typical	examples	of	its	usage.

In[2565]:=	RemoveNames[x___]	:=	Module[{a	=	Select[Names[“`*”],
ToString[Definition[#]]	!=	“Null”	&],	b},	ToExpression[“Remove[”	<>
StringTake[ToString[MinusList[a,	Select[a,	ProcQ[#]||!
SameQ[ToString[Quiet[DefFunc[#]]],	“Null”]||	Quiet[Check[QFunction[#],	False]]
&]]],	{2,–2}]	<>	“]”];	b	=	Select[a,	ProcQ[#]	&];	{b,	MinusList[a,	b]}]

In[2566]	:=	{Length[Names[“`*”]],	RemoveNames[],	Names[“`*”]}	Out[2566]=	{80,
{{”Ar“,	“Kr“,	“Rans”},	{”Ian”}},	{”Ar“,	“Kr“,	“Rans“,	“Ian”}}	In[2567]:=
RemoveNames[]
Out[2567]=	{{”Art“,	“Kr“,	“Rans”},	{”Ian”}}
In[2568]:=	RemoveNames[]
Out[2568]=	{{”M“,	“M1“,	“M2”},	{”F“,	“F42“,	“F47“,	“$LoadContexts”}}

The	RemoveNames	procedure	is	a	rather	useful	means	in	some	appendices	connected
with	cleaning	of	the	workingMathematica	area	from	definitions	of	non–used	symbols.

The	given	procedure	confirmed	a	certain	efficiency	in	management	of	random	access
memory.
Using	our	procedures	and	functions	such	asDefFunc3,	HeadPF,	ToString1,	SymbolQ
andPrefixQ,	it	is	possible	to	obtain	the	more	developed	means	of	testing	of	program
objects	of	theMathematica;	theObjType	procedure	acts	as	a	similar	means.	The
callObjType[x]	returns	the	type	of	an	objectx	in	the	context	{Function,Module,Block	or
DynamicModule},	in	other	cases	the	type	of	an	expression	assigned	in	the	current	session
to	a	symbolx	by	assignment	operators	{:=,	=}	is	returned.	The	following	fragment
represents	source	code	of	theObjType	procedure	along	with	typical	application	examples.

In[2220]:=	ObjType[x_]	:=	Module[{a,	b,	c,	d	=	{},	h},
If[ToString1[HeadPF[x]]	===	“HeadPF[”	<>	ToString1[x]	<>	“]”	||

SymbolQ[HeadPF[x]],	Return[Head[x]],	b	=	{ToString1[DefFunc[x]]};	c	=
Length[b]];	Do[AppendTo[d,	h	=	StringSplit[b[[k]],	”	:=	“];	{h[[1]],
If[PrefixQ[“Module[{“,	h[[2]]],	Module,

If[PrefixQ[“Block[{“,	h[[2]]],	Block,	If[PrefixQ[“Function[“,	h[[2]]],	Function,
If[PrefixQ[“DynamicModule[{“,	h[[2]]],	DynamicModule,	{Function,
Head[ToExpression[h[[2]]]]}]]]]}];	Flatten[d,	1]]

In[2221]	:=	Sv[x_,	y_]	:=	x	+	y;	G[x_]	:=	Block[{},	x^2];	V[x_]	:=	If[EvenQ[x],	x,
2*x];	V[x_,	y_]	:=	Block[{a	=	If[PrimeQ[x],	NextPrime[y]]},	a*(x	+	y)];
In[2222]:=	Map[ObjType,	{ObjType,	80,	a	+	b,	ProcQ}]

Out[2222]	=	{{”ObjType[x_]“,	Module},	Integer,	Plus,	{”ProcQ[x_]“,	Module}}
In[2223]:=	Map[ObjType,	{Sv,	G,	V}]
Out[2223]=	{{”Sv[x_,	y_]“,	{Function,	Plus}},	{”G[x_]“,	Block},

{	“V[x_,	y_]“,	Block},	{”V[x_]“,	{Function,	Times}}}	In[2224]:=	ObjType[DefFunc3]
Out[2224]=	{”DefFunc3[x_	/;	BlockFuncModQ[x]]“,	Module}
In[2225]:=	F	:=	Function[{x,	y},	x	+	y];	{F[80,	480],	ObjType[F]}	Out[2225]=	{	560,
Function}
In[2226]:=	F1	:=	#1	*	#2	&;	{F1[80,	480],	ObjType[F1]}
Out[2226]=	{38400,	Function}
In[2227]:=	Map[ObjType,	{HeadPF,	StrStr}]
Out[2227]=	{{”Head1[x_]“,	Module},	{”StrStr[x_]“,	{Function,	String}}}	In[2228]:=
Agn	:=	“4247679886”;	Avz	=	2014;	Map[ObjType,	{Agn,	Avz}]	Out[2228]=	{String,
Integer}

Here	is	quite	appropriate	to	make	one	explanation	:	theObjType	procedure	carries	to
theFunction	type	not	only	especially	functional	objects,	but	also	definitions	of	the
formatName[x_,y_,	z_,	…]:	=Expression;	in	this	case	the	call	returns	the	list	of	the
following	format,	namely:	{“Name[x_,y_,z_,…]”,	{Function,Head[Expression]}}.	Due
to	the	aforesaid	theObjType	procedure	is	represented	to	us	as	a	rather	useful	means	at
testing	of	objects	of	various	type	in	the	current	session	in	problems	of	procedural
programming.

In	a	number	of	cases	exists	an	urgent	need	of	determination	of	the	program	objects	and
their	types	activated	directly	in	the	current	session.	The	problem	is	solved	by
theTypeActObj	procedure,	whose	callTypeActObj[]	returns	the	nested	list,	whose

sublists	in	string	format	by	the	first	element	contain	types	of	active	objects	of	the	current
session,	whereas	other	elements	of	the	sublist	are	names	corresponding	to	this	type;	at
that,	the	types	recognized	by	the	system,	or	the	types	of	expressions	determined	by	us,	in
particular,	{`Procedure`,`Function`}	can	act	as	a	type.	In	a	certain	sense	theTypeActObj
procedure	supplements	the	ObjType	procedure.	The	following	fragment	represent	source
code	of	the	procedure	with	examples	of	its	application.

In[2787]	:=	TypeActObj[]	:=	Module[{a	=	Names[“`*”],	b	={},	c,	d,	h,	p,	k	=1},
Quiet[For[k,	k	<=	Length[a],	k++,	h	=	a[[k]];	c	=	ToExpression[h];	p	=
StringJoin[“0”,	ToString[Head[c]]];	If[!	StringFreeQ[h,	“$”]	||	(p	===	Symbol	&&
“Definition”[c]	===	Null),	Continue[],	b	=	Append[b,	{h,	If[ProcQ[c],	“0Procedure”,
If[Head1[c]	===	Function,	“0Function”,	p]]}]]]];	a	=	Quiet[Gather1[Select[b,	!
#1[[2]]	===	Symbol	&],	2]];	a	=
ToExpression[StringReplace[ToString1[DeleteDuplicates	/@	Sort	/@	Flatten	/@	a],
“AladjevProcedures`TypeActObj`”–>	””]];	Append[{},	Do[a[[k]][[1]]	=
StringTake[a[[k]][[1]],	{2,–1}],	{k,	Length[a]}]];	a]

In[2788]	:=	TypeActObj[]
Out[2788]=	{{”Symbol“,	“A“,	“B“,	“g“,	“H3“,	“m“,	“n“,	“PacletFind“,	“System“,
“Procedure”},	{”Procedure“,	“As“,	“Kr”},	{”Function“,	“G“,	“V”},	{”List“,	“xyz”}}
In[2789]:=	TypeActObj[]
Out[2789]=	{{”String“,	“Agn”},	{”Symbol“,	“atr“,	“F2“,	“F47“,	“M“,	“Sv“,	“V”},

{”Integer“,	“Avz”},	{”Function“,	“F“,	“F1”},
{”Procedure“,	“G“,	“M2“,	“M3“,	“M4“,	“M5“,	“RemoveNames”}}

In	the	context	of	use	of	the	standard	functions	Nest	andMap	for	definition	of	new	pure
functions	on	the	basis	of	available	ones,	it	is	possible	to	offer	a	procedure	as	an	useful
generalization	of	the	standardMap	function,	whose	callMapp[F,	E,	x]	returns	result	of
application	of	a	function/procedureF	to	an	expressionE	with	transfer	to	it	of	the	actual
arguments	determined	by	a	tuple	of	expressionsx	which	can	be	and	empty.	In	case	of	the
empty	tuplex	the	identityMap[F,	E]≡Mapp[F,	E]	takes	place.	As	formal	arguments	of	the
standard	functionMap[f,g]	act	the	namef	of	a	procedure/function	whereas	as	thesecond
argument–	an	arbitrary	expressiong,	to	whose	operands	of	the	first	level	is	appliedf.	The
following	fragment	represents	source	code	of	the	Mapp	procedure	along	with	typical
examples	of	its	usage.

In[2634]	:=	Mapp[f_	/;	ProcQ[f]||SysFuncQ[f]||SymbolQ[f],	Ex_,	x___]	:=	Module[{a
=	Level[Ex,	1],	b	=	{x},	c	=	{},	h,	g	=	Head[Ex],	k	=	1},	If[b	==	{},	Map[f,	Ex],	h	=
Length[a];	For[k,	k	<=	h,	k++,	AppendTo[c,	ToString[f]	<>	“[”	<>	ToString1[a[[k]]]
<>	“,	”	<>	ListStrToStr[Map[ToString1,	{x}]]	<>	“]”]];
g[Sequences[ToExpression[c]]]]]	In[2635]:=	Mapp[F,	{a,	b,	c},	x,	y,	z]
Out[2635]=	{F[a,	x,	y,	z],	F[b,	x,	y,	z],	F[c,	x,	y,	z]}

In[2636]	:=	Mapp[F,	a	+	b	+	c,	x,	y,	z]
Out[2636]=	F[a,	x,	y,	z]+	F[b,	x,	y,	z]+	F[c,	x,	y,	z]
In[2637]:=	Mapp[F,	(m	+	n)/(g	+	h)	+	Sin[x],	a,	b,	c]
Out[2637]=	F[(m+	n)/(g+	h),	a,	b,	c]+	F[Sin[x],	a,	b,	c]
In[2638]:=	Mapp[StringPosition,	{“11123”,	“33234”},	{“2”,	“3”,	“23”}]	Out[2638]=

{{{4,	4},	{4,	5},	{5,	5}},	{{1,	1},	{2,	2},	{3,	3},	{3,	4},	{4,	4}}}	In[2639]:=
Mapp[StringReplace,	{“123525”,	“2595”},	{“2”–>	“V”,	“5”–>	“G”}]	Out[2639]=
{”1V3GVG“,	“VG9G”}
In[2640]:=	Map[F,	{{a,	b},	{c,	d,	e}}]
Out[2640]=	{F[{a,	b}],	F[{c,	d,	e}]}
In[2641]:=	Mapp[F,	{{a,	b},	{c,	d,	e}},	x,	y,	z]
Out[2641]=	{F[{a,	b},	x,	y,	z],	F[{c,	d,	e},	x,	y,	z]}
In[2642]:=	Mapp[ProcQ,	{Sin,	ProcQ,	Mapp,	PureDefinition,	SysFuncQ}]
Out[2642]=	{False,	True,	True,	True,	False}

In[2653]:=	Mapp1[f_	/;	SymbolQ[f],	L_	/;	ListQ[L]]	:=	Module[{b,	a	=	Attributes[f]},
SetAttributes[f,	Listable];	b	=	Map[f,	L];	ClearAllAttributes[f];	SetAttributes[f,	a];
b]

In[2654]	:=	Map[F,	{{a,	b,	c},	{x,	y,	{c,	d,	{h,	k,	t}}}}]
Out[2654]=	{F[{a,	b,	c}],	F[{x,	y,	{c,	d,	{h,	k,	t}}}]}
In[2655]:=	Mapp[F,	{{a,	b,	c},	{x,	y,	{c,	d,	{h,	k,	t}}}}]
Out[2655]=	{F[{a,	b,	c}],	F[{x,	y,	{c,	d,	{h,	k,	t}}}]}
In[2656]:=	Mapp1[F,	{{a,	b,	c},	{x,	y,	{c,	d,	{h,	k,	t}}}}]
Out[2656]=	{{F[a],	F[b],	F[c]},	{F[x],	F[y],	{F[c],	F[d],	{F[h],	F[k],	F[t]}}}}

We	will	note	that	realization	of	algorithm	of	theMapp	procedure	is	based	on	the	following
relation,	namely:
Map[F,	Expr]≡Head[Expr][Sequences[Map[F,Level[Expr,1]]]]

Whose	rightness	follows	from	definition	of	the	system	functionsHead,	Map,	Level,	and
also	of	theSequences	procedure	considered	in	the	present	book.	The	following	simple
example	rather	visually	illustrates	the	aforesaid:

In[4942]	:=	Map[F,	(m	+	n)/(g	+	h)	+	Sin[x]]	==	Head[(m	+	n)/(g	+	h)	+	Sin[x]]
[Sequences[Map[F,	Level[(m	+	n)/(g	+	h)	+	Sin[x],	1]]]]
Out[4942]=	True
The	given	relation	can	be	used	and	at	realization	of	cyclic	structures	for	the	solution	of
problems	of	other	directionality,	including	programming	on	the	basis	of	use	of	mechanism
of	thepure	functions.	While	theMapp	procedure	in	some	cases	rather	significantly
simplifies	programming	of	various	tasks.	TheListable	attribute	for	a	functionF	determines
that	the	functionF	will	be	automatically	applied	to	elements	of	the	list	that	acts	as	its
argument.	Such	approach	can	be	used	rather	successfully	in	a	number	of	cases	of
realization	of	blocks,	functions	and	modules.

In	particular,	in	this	context	a	rather	simple	Mapp1	procedure	is	of	interest,	whose
callMapp1[x,	y]	unlike	the	callMap[x,	y]	of	the	standard	function	returns	result	of
applying	of	a	block,	function	or	a	modulex	to	all	elements	of	a	listy,	regardless	of	their
location	on	list	levels.	The	previous	fragment	represents	source	code	of	theMapp1
procedure	with	comparative	examples	relative	to	the	systemMap	function.

Meanwhile,	for	a	number	of	functions	and	expressions	the	Listable-attribute	doesn’t	work,
and	in	this	case	the	system	provides2	special	functionsMap	andThread	that	in	a	certain
relation	can	quite	be	referred	to	the	structural	means	that	provide	application	of	functions
to	parts	of	expressions.	In	this	conexion	we	created	group	of	enough	simple	and	at	the

same	time	useful	procedures	and	functions,	so-calledMapmeans	which	enough
significantly	expand	the	systemMap	function.	Two	means	of	this	group–	the	procedures
Mapp	andMapp1	that	have	a	number	of	applications	in	means	of	package	AVZ_Package
[48]	have	already	been	presented	above,	we	will	present	also	other	means	of
thisMap–group.	The	following	fragment	represents	source	codes	of	means	of	this	group
with	typical	examples	of	their	application	that	on	the	formal	level	rather	visually	illustrate
results	of	calls	of	these	means	on	correct	factual	arguments.	Similar	representation	allows
to	significantly	minimize	descriptions	of	means	when	on	the	basis	of	formal	results	of
calls	it	is	quite	simple	to	understand	an	essence	of	each	means	ofMap–group.

In[2625]:=	Map1[x_	/;	ListQ[x]	&&
SameQ[DeleteDuplicates[Map[SymbolQ[#]	&,	x]],	{True}],	y_List]	:=
Map[Symbol[ToString[#]][Sequences[y]]	&,	x]	In[2626]:=	Map1[{F,	G,	H,	V},	{x,	y,
z,	h,	p,	t}]
Out[2626]=	{F[x,y,z,h,p,	t],	G[x,y,z,h,p,t],	H[x,y,z,h,p,t],	V[x,y,z,h,p,t]}

In[2627]	:=	Map2[F_	/;	SymbolQ[F],	c_	/;	ListQ[c],	d_	/;	ListQ[d]]	:=
Map[Symbol[ToString[F]][#,	Sequences[d]]	&,	c]
In[2628]:=	Map2[F,	{a,	b,	c,	d,	e,	g},	{x,	y,	z,	p,	q,	h}]
Out[2628]=	{F[a,	x,	y,	z,	p,	q,	h],	F[b,	x,	y,	z,	p,	q,	h],	F[c,	x,	y,	z,	p,	q,	h],	F[d,	x,	y,	z,	p,
q,	h],	F[e,	x,	y,	z,	p,	q,	h],	F[g,	x,	y,	z,	p,	q,	h]}
In[2629]:=	Map3[f_	/;	SymbolQ[f],	g_,	l_	/;	ListQ[l]]	:=
Map[Symbol[ToString[f]][g,	#]	&,	l]
In[2630]:=	Map3[F,	H,	{x,	y,	z,	h,	p,	h,	m,	n}]
Out[2630]=	{F[H,x],	F[H,y],	F[H,z],	F[H,h],	F[H,p],	F[H,h],	F[H,m],	F[H,n]}

In[2631]	:=	Map4[F_	/;	SymbolQ[F],	L_/;	ListQ[L],	x_]	:=
Map[Symbol[ToString[F]][#,	x]	&,	L]
In[2632]:=	Map4[F,	{a,	b,	c,	d,	h,	g,	m,	n},	x]
Out[2632]=	{F[a,	x],	F[b,	x],	F[c,	x],	F[d,	x],	F[h,	x],	F[g,	x],	F[m,	x],	F[n,	x]}

In[2633]:=	Map5[F_,	L_	/;	NestListQ[L]]	:=	Map[F[Sequences[#]]	&,	L]	In[2634]:=
Map5[S,	{{x1,	y1,	z1,	t1},	{x2,	y2,	z2},	{x3,	y3},	{x4,	y4,	z4,	t4,	m,	n}}]

Out[2634]	=	{S[x1,	y1,	z1,	t1],	S[x2,	y2,	z2],	S[x3,	y3],	S[x4,	y4,	z4,	t4,	m,	n]}
In[2635]:=	F[x_,	y_,	z_,	h_]	:=	a[x]*b[y]*d[z]*g[z]–c[x,	y,	z]
In[2636]:=	Map5[F,	{{x1,	y1,	z1,	t1},	{x2,	y2,	z2},	{x3,	y3},	{x4,	y4,	z4,	t4,	m,	n}}]
Out[2636]=	{–c[x1,	y1,	z1]+	a[x1]	b[y1]	d[z1]	g[z1],	F[x2,	y2,	z2],	F[x3,	y3],

F[x4,	y4,	z4,	t4,	m,	n]}

In[2637]	:=	Map6[F_	/;	PureFuncQ[F],	L_	/;	ListListQ[L]]	:=	Module[{a,	h,	p,	b	=
Length[L],	c	=	Length[L[[1]]],	d	=	{},	k	=	1},	h	=	StringTake[ToString[F],	{1,–4}];
For[k,	k	<=	b,	k++,	a	=	{};	AppendTo[d,	StringReplace[h,	Flatten[{For[p	=	1,	p	<=	c,
p++,	AppendTo[a,	“#”	<>	ToString[p]–>	ToString[L[[k]][[p]]]]],	a}][[2	;;–1]]]]];
ToExpression[d]]

In[2638]	:=	Map6[a[#1]*b[#2]*d[#3]*g[#4z]–c[#1,	#2,	#3]	&,	{{x1,	y1,	z1,	t1},	{x2,	y2,
z2,	t2},	{x3,	y3,	z3,	t3},	{x4,	y4,	z4,	t4}}]
Out[2638]=	{–c[x1,	y1,	z1]+	a[x1]	b[y1]	d[z1]	g[t1],–c[x2,	y2,	z2]+a[x2]	b[y2]	d[z2]
g[t2],–c[x3,	y3,	z3]+	a[x3]	b[y3]	d[z3]	g[t3]–c[x4,	y4,	z4]+	a[x4]	b[y4]	d[z4]	g[t4]}

In[2639]:=	Map7[x__	/;	DeleteDuplicates[Map[SymbolQ,	{x}]]	===	{True},	y_	/;
ListQ[y]]	:=	Map[FunCompose[Reverse[Map[Symbol,	Map[ToString,	{x}]]],	#]	&,	y]
In[2640]:=	Map7[F,	G,	H,	{a,	b,	c,	d,	h}]

Out[2640]=	{F[G[H[a]]],	F[G[H[b]]],	F[G[H[c]]],	F[G[H[d]]],	H[G[F[h]]]}	In[2641]:=
Map7[Sin,	Sqrt,	N,	{18,	25,	47,	67,	72,	480}]
Out[2641]=	{–0.891682,–0.958924,	0.541709,	0.945597,	0.807261,	0.0821536}

In[2642]:=	Map8[x__	/;	DeleteDuplicates[Map[SymbolQ,	{x}]]	===	{True},	y_	/;
ListQ[y]]	:=	Map[Symbol[ToString[#]][Sequences[y]]	&,	{x}]	In[2643]:=	Map8[x,	y,
z,	h,	g,	{a,	b,	c,	d}]
Out[2643]=	{x[a,	b,	c,	d],	y[a,	b,	c,	d],	z[a,	b,	c,	d],	h[a,	b,	c,	d],	g[a,	b,	c,	d]}	In[2644]:=
Map9[F_	/;	SymbolQ[F],	x_	/;	ListQ[x],	y_	/;	ListQ[y]]	:=	If[Length[x]	==	Length[y],
Map13[F,	{x,	y}],	Defer[Map9[F,	x,	y]]]

In[2645]	:=	Map9[F,	{a,	b,	c,	d,	g,	p},	{x,	y,	z,	h,	s,	w}]
Out[2645]=	{F[a,	x],	F[b,	y],	F[c,	z],	F[d,	h],	F[g,	s],	F[p,	w]}
In[2646]:=	Map9[Rule,	{“72a”,	“67g”,	“47s”,	“80b”},	{“a”,	“b”,	“c”,	“d”}]
Out[2646]=	{”72a”–>	“a“,	“67g”–>	“b“,	“47s”–>	“c“,	“80b”–>	“d”}	In[2647]:=
Map9[Rule,	{a,	b,	c,	d,	m,	p},	{x,	y,	z,	t,	n,	q}]
Out[2647]=	{a–>	x,	b–>	y,	c–>	z,	d–>	t,	m–>	n,	p–>	q}
In[2648]:=	Map9[Plus,	{a,	b,	c,	d,	g,	p,	u},	{x,	y,	z,	h,	s,	w,	t}]
Out[2648]=	{a+	x,	b+	y,	c+	z,	d+	h,	g+	s,	p+	w,	u+	t}

In[2649]:=	Map10[F_	/;	SymbolQ[F],	x_,	L_	/;	ListQ[L],	y___]	:=
Map[Symbol[ToString[F]][x,	#,	Sequences[{y}]]	&,	L]

In[2650]	:=	Map10[F,	x,	{a,	“b”,	c,	d},	y,	“z”,	h]
Out[2650]=	{F[x,a,y,	“z“,h],	F[x,	“b“,	y,	“z“,	h],	F[x,	c,	y,	“z“,h],	F[x,d,	y,	“z“,h]}
In[2651]:=	Map10[F,	“x”,	{a,	“b”,	c,	d,	f,	g}]
Out[2651]=	{F[”x“,	a],	F[”x“,	“b”],	F[”x“,	c],	F[”x“,	d],	F[”x“,	f],	F[”x“,	g]}	In[2652]:=
Map10[SuffPref,	“C:\89b8fc17cbdce3\	mxdwdrv.dll”,	{“.nb”,

“.m”,	“.dll”,	“.cdf”},	2]
Out[2652]=	{False,	False,	True,	False}

In[2653]	:=	Map11[x_/;	SymbolQ[x],	y_/;	ListQ[y],	z_]	:=	(If[ListQ[#1],	(x[#1,	z]	&)
/@	#1,	x[#1,	z]]	&)	/@	y
In[2654]:=	Map11[G,	{x,	y,	z,	m,	n,	g},	t]
Out[2654]=	{G[x,	t],	G[y,	t],	G[z,	t],	G[m,	t],	G[n,	t],	G[g,	t]}

In[2655]:=	Map12[F_	/;	SymbolQ[F],	x_	/;	NestListQ1[x]]	:=	Module[{c,	a	=
ToString1[x],	b	=	ToString[F]	<>	“@”},	c	=	StringReplace[a,	{”{”–>	“{”	<>	b,	“,	“–>
“,”	<>	b}];	c	=	StringReplace[c,	b	<>	“{”–>	“{“];	ToExpression[c]]	In[2656]:=
Map12[F,	{{a,	b,	c},	{x,	y,	z},	h,	{m,	{{“p”}},	n,	p,	{{{x,	“y”}}}}}]	Out[2656]=
{{F[a],	F[b],	F[c]},	{F[x],	F[y],	F[z]},	F[h],	{F[m],	{{F[”p”]}},	F[n],

F[p]	,	{{{F[x],	F[y]}}}}}
In[2657]:=	Map12[ToString1,	{{a,	b,	c},	{x,	y,	z},	“h”,	{m,	{“x”},	n,	p}}]	Out[2657]=
{{”a“,	“b“,	“c”},	{”x“,	“y“,	“z”},	“"h"”,	{”m“,	{“"x"”},	“n“,	“p”}}

In[2658]:=	Map13[x_	/;	SymbolQ[x],	y_	/;	ListListQ[y]]	:=	Module[{k,	j,	a	=

Length[y],	b	=	Length[y[[1]]],	c	=	{},	d	=	{}},

For[k	=	1,	k	<=	b,	k++,	For[j	=	1,	j	<=	a,	j++,	AppendTo[c,	y[[j]][[k]]]];	AppendTo[d,
Apply[x,	c]];	c	=	{}];	d]	In[2659]:=	Map13[F,	{{a,	b,	c,	s},	{x,	y,	z,	g},	{m,	n,	p,	w}}]
Out[2659]=	{F[a,	x,	m],	F[b,	y,	n],	F[c,	z,	p],	F[s,	g,	w]}
In[2660]:=	Map13[ProcQ,	{{ProcQ}}]
Out[2660]=	{True}
In[2661]:=	Map13[Plus,	{{a,	b,	c,	g,	t},	{x,	y,	z,	g,	t},	{m,	n,	p,	h,	g}}]	Out[2661]=	{a+
m+	x,	b+	n+	y,	c+	p+	z,	2	g+	h,	g+	2	t}
In[2662]:=	G[x_,	y_]	:=	x	+	y;	Map13[G,	{{a,	b,	c},	{x,	y,	z},	{m,	n,	p}}]	Out[2662]=
{G[a,	x,	m],	G[b,	y,	n],	G[c,	z,	p]}
In[2663]:=	Map13[G,	{{a,	b,	c,	g,	h},	{x,	y,	z,	t,	v}}]
Out[2663]=	{a+	x,	b+	y,	c+	z,	g+	t,	h+	v}
In[2664]:=	Map14[x_	/;	SymbolQ[x],	y_	/;	ListQ[y],	z_,	t___]	:=

Module[{a	=	Map[x[#,	z]	&,	y]},	If[{t}==	{},	a,	Map[ToString,	a]]]

In[2665]	:=	Map14[G,	{a,	b,	c,	d,	f,	g,	h},	Kr]
Out[2665]=	{G[a,	Kr],	G[b,	Kr],	G[c,	Kr],	G[d,	Kr],	G[f,	Kr],	G[g,	Kr],	G[h,	Kr]}
In[2666]:=	Map14[G,	{a,	b,	c,	d,	f,	g},	Kr,	500]
Out[2666]=	{”G[a,Kr]“,	“G[b,Kr]“,	“G[c,Kr]“,	“G[d,Kr]“,	“G[f,Kr]“,	“G[g,Kr]”}

In[2667]:=	Map14[G,	{},	Kr,	90]
Out[2667]=	{}
In[2668]:=	Map15[x__	/;	SameQ[DeleteDuplicates[Map[SymbolQ,	{x}]],	{True}],	y_]
:=	Map[#[y]	&,	{x}]

In[2669]	:=	Map15[TableForm,	MatrixForm,	{{1,	V,	72},	{2,	G,	67},	{3,	S,	47},	{4,	A,
25},	{5,	K,	18}}]	1	V	72	1	V	72
2	G	67	2	G	67
3	S	47	,	3	S	47
4	A	25	4	A	25

Out[2669]	=	5	K	18	5	K	18
In[2670]:=	Map15[F,	G,	H,	P,	Q,	X,	Y,	(a	+	b)]
Out[2670]=	{F[a+	b],	G[a+	b],	H[a+	b],	P[a+	b],	Q[a+	b],	X[a+	b],	Y[a+	b]}

In[2671]:=	Map16[f_/;	SymbolQ[f],	l_/;	ListQ[l],	x___]	:=	Quiet[(f[#1,
FromCharacterCode[6]]	&)	/@	l	/.	FromCharacterCode[6]–>	Sequence[x]]
In[2672]:=	Map16[F,	{x,	y,	z,	t},	h,	m,	p]
Out[2672]=	{F[x,	h,	m,	p],	F[y,	h,	m,	p],	F[z,	h,	m,	p],	F[t,	h,	m,	p]}	In[2673]:=
Map17[x_,	y_	/;	RuleQ[y]	||	ListRulesQ[y]]	:=
If[RuleQ[y],	Map[x,	y],	Map[Map[x,	#]	&,	y]]	In[2674]:=	Map17[F,	{a–>	b,	c–>	d,	t–>
g,	w–>	v,	h–>	80}]
Out[2674]=	{F[a]–>F[b],	F[c]–>F[d],	F[t]–>F[g],	F[w]–>F[v],	F[h]–>F[80]}

The	previous	fragment	represents	source	codes	of	means	of	the	above	Map–	group	with
examples	of	their	usages,	from	which	the	structure	of	the	results	returned	by	them	is	quite
visually	visible.	Without	increasing	essence,	we	will	give	only	short	explanations
concerning	means	of	the	given	group.	For	example,	the	following	calls

Map1[{F,	G,	H,	…},	{x,	y,…}],	Map2[F,	{a,	b,…},	{x,	y,…}],	Map3[F,	H,	{x,	y,…}]

return	respectively	lists	of	the	following	format,	namely:

{F[x,	y,…],G[x,	y,…],H[x,	y,…],	…};	{F[a,	x,	y,...],F[b,	x,	y,…],F[c,	x,	y,…],	…};	{F[H,
x],F[H,	y],F[H,	z],F[H,	h],	…,F[H,	g],F[H,	m],F[H,	n],	…}.

The	call	Map4[x,	y,	z]	returns	result	in	the	format	{x[a1,z],x[a2,z],x[a3,z],	…},	wherey	=
{a1,	a2,	a3,	…}.	Whereas	two	proceduresMap5	andMap6	expand	action	of	the	system
functionMap	onto	cases	of	classical	and	pure	functions	with	any	number	of	arguments.
The	callMap7[F,	G,	…,	V,{a,	b,	…,	v}]	where	F,G,…,V	–	symbols	and	{a,b,c,…,v}–	the
list	of	arbitrary	expressions,	returns	result	of	the	following	format,	namely:

{	F[G[…V[a]]]]…],F[G[…V[b]]]]	…],F[G[…V[c]]]]	…],…,F[G[…V[v]]]]…]}	without
demanding	any	additional	explanations	in	view	of	transparency.

Quite	certain	interest	is	represented	by	quite	simple	Map8	function,	whose	callMap8[F,
G,	H,	…,	V,	{a,	b,	…,	v}],	where	toF,	G,	…,	V	–	symbols	whereas	{a,	b,	c,	…,	v}–	the	list
of	arbitrary	expressions,	returns	result	of	the	format:

{F[a,	b,	c,	…,	v],G[a,	b,	c,	…,	v],H[a,	b,	c,	…,	v],	…,V[a,	b,	c,	…,	v]}

without	demanding	any	additional	explanations	in	view	of	transparency	;	at	that,	theMap8
function	is	rather	useful	means,	in	particular,	at	organization	of	comparisons	of	results	of
the	calls	of	functionally	similar	blocks/functions	/modules	on	identical	tuples	of	the	actual
arguments.	While	the	callMap9[x,	{a,b,…,v},	{a1,b1,…,v1}]	wherex	–	the	symbol,	{a,b,c,
…,v}	and	{a1,b1,c1,…,v1}	are	lists	of	the	arbitrary	expressions	of	identical	length,	returns
result	of	the	following	format,	namely:

{x[a,	a1],x[b,	b1],x[c,	c1],x[d,	d1],	…,x[v,	v1]}

The	call	Map10[F,	x,	{a,	b,	…,	v},c1,	c2,	…,	cn],	whereF	–	a	symbol,x	and	{a,	b,	c,	…,
v}–	an	expression	and	lists	of	expressions	respectively,c1,	c2,	…,	cn	–	optional	arguments,
returns	result	of	the	following	format,	namely:

{F[x,	a,	c1,	c2,…],F[x,	b,	c1,	c2,…],F[x,	c,	c1,	c2,…],	…,F[x,	v,	c1,	c2,…]}

The	Map12	procedure	generalizes	the	standardMap	function	onto	a	case	of	a	nested	list	as
its	second	actual	argument.	The	callMap12[F,	{{a,	b,	c,…,	v},	{a1,	b1,	c1,…,	v1},	…,p,
…,	{ap,	bp,	h,	cp,…,	vp}}]	whereF	–	a	symbol,	and	the	second	argument–	the	nested	list
of	arbitrary	expressions,	returns	result	of	the	following	format,	namely:

{Map[F,	{a,	b,	c,…,	v}],	Map[F,	{a1,	b1,	c1,…,	v1}],	…,F[p],	…,	Map[F,	{ap,	bp,	h,
cp,…,	vp}]}

Whereas	the	Map13	procedure	generalizes	the	standardMap	function	onto	case	of	a	list
ofListList-type	as	itssecond	actual	argument.	The	procedure	call	Map13[F,	{{a,	b,	c,	…,
v},	{a1,	b1,	c1,	…,	v1},	…,	{ap,	bp,	cp,	…,	vp}}]	whereF	–

a	symbol,	and	the	second	argument–	the	list	ofListList-type	of	expressions,	returns	result
of	the	following	format,	namely:
{F[a,	a1,	a2,	…,	ap],F[b,	b1,	b2,	…,	bp],F[c,	c1,	c2,	…,	cp],	…,F[v,	v1,	v2,	…,	vp]}

In	case	of	an	undefinite	symbol	x	the	concept	ofarity	is	ignored;	meanwhile,	if	an	actual
argumentx	defines	procedure	or	function	of	the	user,	the	call	of	Map13	is	returned
unevaluated	ifarityx	is	other	than	length	of	sublists	ofy.	The	callMap14[F,	{a,	b,	c,	…,

v},y]	whereF	–	a	symbol,	the	second	argument	is	a	list	of	any	expressions	andy	–	an
arbitrary	expression,	returns	result	of	the	following	format,	namely:

{F[a,	y],F[b,	y],F[c,	y],F[d,	y],	…,F[v,	y]}

At	that,	an	use	at	the	call	Map14[F,	{a,	b,	c,	…,	v},y,	t]	of	optional4th	actual	argument–	an
arbitrary	expression–	returns	result	of	the	following	format,	namely:

{“F[a,	y]“,	“F[b,	y]“,	“F[c,	y]“,	“F[d,	y]“,	…,	“F[v,	y]”}	The	callMap15[x1,x2,	x3,	…,
xp,	t]	wherexj	–	symbols,	andt	–	an	arbitrary	admissible	expression,	returns	result	of	the
following	format,	namely:	{x1[t],x2[t],x3[t],x4[t],x5[t],	…,xp[t]}

The	call	Map16[F,	{a,	b,	…,	v},c1,	c2,	…,	cn]	whereF	–	a	symbol	whereas	{a,	b,	c,	…,
v}–	a	list	of	arbitrary	expressions,	andc1,	c2,	…,	cn	–	optional	arguments	accordingly–
returns	the	list	of	the	following	format,	namely:

{F[a,	c1,	c2,	…],	F[b,	c1,	c2,	…],	F[c,	c1,	c2,	…],	…,	F[v,	c1,	c2,	…]}	At	last,	the
callMap17[F,	{a	–>	b,	c	–>	d,	…}]	whereF	–	a	symbol	while	{a	–>	b,	c	–>	d,	…}–	a	list
of	rules	returns	the	list	of	the	following	format,	namely:	{F[a]–>	F[b],	F[c]–>	F[d],	…}

without	demanding	any	additional	explanations	in	view	of	its	transparency.	The	seventeen
means,	represented	above,	form	so-calledMap–group	which	rather	significantly	expands
functionality	of	standard	functionMap	of	the	system.	From	the	presented	information	the
formats	of	the	returned	results	of	calls	of	the	above	means	are	quite	transparent,	without
demanding	any	additional	explanations.	Means	ofMapgroup	in	a	number	of	cases	allow	to
simplify	programming	of	procedures	and	functions,	significantly	extending	the
standardMap	function.	TheAVZ_Package	package	also	use	these	tools.	It	is	rather
expedient	to	programmatically	process	all	special	and	erroneous	situations	arising	in	the
course	of	calculation	for	that	theMathematica	has	quite	enough	means	in	theInput-mode
whereas	at	procedural	processing	of	such	situations	the	question	is	slightly	more	difficult.
For	this	reason	theTry	function	which	represents	a	certain	analog	oftry–sentence	ofMaple
system	whose	mechanism	is	very	effective	in	theInput–mode	and	at	a	procedural
processing	of	special	and	erroneous	situations	when	erroneous	and	special	situations
without	any	serious	reason	don’t	lead	to	a	procedure	completion	without	returning	the
corresponding	diagnostic	messages	has	been	offered.	The	fragment	below	represents
source	code	of	theTry	function	along	with	examples	of	its	typical	application.

In[2458]	:=	G::norational	=	“actual	argument	`1`	is	not	rational”	Out[2458]=	“actual
argument`1`	is	not	rational”
In[2459]:=	G[x_]	:=	If[Head[x]	===	Rational,	Numerator[x]^9	+

Denominator[x]^9,	Message[G::norational,	x];	Defer[G[x]]]	In[2460]:=	G[42.73]
G::norational:	actual	argument	42.73`	is	not	rational	Out[2460]=	G[42.73]

In[2461]	:=	Try[x_	/;	StringQ[x],	y_]	:=	Quiet[Check[ToExpression[x],	{y,
$MessageList}]]
In[2462]:=	Try[“G[42/73]”,	“Res”]
Out[2462]=	59	278	258	092	117	385
In[2463]:=	Try[“G[42.73]”,	“Res”]
Out[2463]=	{”Res“,	{G::norational}}
In[2464]:=	Try[“1/0”,	“Error”]

Out[2464]=	{”Error“,	{Power::infy}
In[2465]:=	Ag[x_Integer,	y_Integer]	:=	Module[{a	=	Try[ToString[x]	<>	“/”	<>
ToString[y],	“Error”]},	If[ListQ[a],	If[a[[1]]	===	“Error”,	{x,	y,	a[[2]]}],	x/y]]
In[2466]:=	Ag[80,	480]
Out[2466]=	1/6
In[2467]:=	Ag[80,	0]
Out[2467]=	{80,	0,	{Power::infy}}

First	of	all,	for	illustration	of	operating	of	the	function	Try[x,	y]	the	message	with
name”G::norational”	that	is	used	by	simple	functionG[x]	in	case	of	its	call	on	argumentx
different	from	a	rational	number.	Such	call	outputs	this	message	with	return	of	the
unevaluated	call(at	that,only	simplifications	of	an	expressionxcan	be	done).	TheTry
function	is	similar	totry–clause	ofMaple,	providing	processing	ofx	depending	on
themessages	initiated	by	evaluation	ofx.	Furthermore,	it	is	necessary	to	note	that	all
messages	initiated	by	such	evaluation	of	an	expressionx,	should	be	activated	in	the	current
session.	The	call	of	the	function	has	the	following	format,	namely:

Try[“x–expression”,y}}]

where	the	first	argumentx	defines	an	expressionx	in	string	format	whereas	thesecond
argument	defines	the	message	associated	with	a	possible	special	or	erroneous	situation	at
calculation	of	expressionx.	In	case	evaluation	of	an	expressionx	is	correct,	the	result	of	its
evaluation(for	example,the	procedure	call)	is	returned,	otherwise	the	nested	list	of	the
format	{y,	{Mes}}	is	returned	whereMes	defines	the	system	message	generated	as	a	result
of	processing	of	a	erroneous	or	special	situation	by	the	system.	The	functionTry	proved
itself	as	a	rather	convenient	means	for	processing	of	special	and	erroneous	situations	at
programming	of	a	number	of	applied	and	system	problems.	For	the	rather	experienced
users	of	theMathematica	system	the	codes	of	the	illustrative	examples	and	means	of	this
section	are	quite	transparent	and	of	any	special	additional	explanations	don’t	demand.

5.1.	The	control	branching	structures	and	cyclic	structures	in	the
Mathematicasystem

Rather	difficult	algorithms	of	calculations	and/or	control	algorithms	(first	of	all)	can’t	use
especiallyconsequent	schemes,	including	various	constructions	changing	consequent	order
of	an	algorithm	execution	depending	on	these	or	those	conditions:conditional
andunconditional	transitions,	cycles,	branchings	(the	structures	of	such	type	in	a	number
of	cases	are	called	ascontrol	structures).	In	particular,	for	the	organization	of	the	control
structures	of	the	branching	type	theMath–language	ofMathematica	has	rather	effective
tool	provided	with	theIf–function	having	three	formats	of	coding	[28-33,60].	In	a	number
of	cases	a	simpleIff	procedure	from	number	of	arguments	from1	ton	that	generalizes	the
standardIf	function	is	quite	useful	tool;	it	is	very	convenient	at	number	of	arguments,
starting	with1,	what	is	convenient	in	cases	when	calls	of	theIff	function	are	generated	in	a
certain	procedure	automatically,	simplifying	processing	of	erroneous	and	special	situations
arising	by	a	call	of	such	procedure	on	number	of	arguments	from	range2..4.	The	following
fragment	represents	source	code	of	theIff	procedure	with	an	example.	At	that,	it	must	be
kept	in	mind	that	all	actual	arguments	ofy,	since	the	second,	are	coded	in	string	format	in

order	to	avoid	their	premature	calculation	at	the	callIff[x,	…]	when	the	actual	arguments
are	being	calculated/simplified.

In[2745]	:=	Iff[x_,	y__	/;	StringQ[y]]	:=	Module[{a	=	{x,	y},	b},	b	=	Length[a];	If[b	==
1||b	>=	5,	Defer[Iff[x,	y]],	If[b	===	2,	If[x,	ToExpression[y]],

If[b	==	3,	If[x,	ToExpression[y],	ToExpression[a[[3]]]],	If[b	==	4,	If[x,
ToExpression[a[[2]]],	ToExpression[a[[3]]],	ToExpression[a[[4]]]],	Null]]]]]

In[2746]:=	a	=	{};	For[k=1,	k<=73,	k++,	Iff[PrimeQ[k],	“AppendTo[a,	k]”]];	a
Out[2746]=	{2,	3,	5,7,11,	13,17,	19,	23,	29,	31,37,	41,43,	47,53,	59,	61,	67,	71,	73}

So,	the	functionIf	represents	the	most	typical	instrument	for	ensuring	of	the	branching
algorithms.	In	this	context	it	should	be	noted	thatIf–means	of	the	Maple	andMathematica
are	considerably	equivalent,	however	readability	of	difficult	enough	branching	algorithms
realized	byif–offers	of	theMaple	system	is	being	perceived	slightly	more	clearly.	In
particular,Maple	allows	the	conditionalif–offer	of	the	following	format,	namely:

iflc1	then	v1	elif	lc2	then	v2	elif	lc3	then	v3	elif	lc4	then	v4…else	vk	end	if

where	jthlcj–	a	logical	condition	andvj–	an	arbitrary	expression,	whose	sense	is	rather
transparent	and	considered,	for	example,	in	books	[25-27,49].	This	offer	is	very
convenient	at	programming	of	a	number	of	conditional	structures.	For	determination	of
similar	structure	in	Mathematica	the	IFk	procedure	whose	source	code	along	with
examples	of	usage	represents	the	following	fragment	can	be	used,	namely:

In[2340]	:=	IFk[x__]	:=	Module[{a	=	{x},	b,	c	=	””,	d	=	“If[“,	e	=	“]”,	h	=	{},	k	=	1},	b
=	Length[a];	If[For[k,	k	<=	b–1,	k++,	AppendTo[h,	b	>=	2	&&	ListQ[a[[k]]]	&&
Length[a[[k]]]	==	2]];	DeleteDuplicates[h]	!=	{True},	Return[Defer[Ifk[x]]],	k	=	1];
For[k,	k	<=	b–1,	k++,	c	=	c	<>	d	<>	ToString[a[[k]][[1]]]	<>	“,”	<>	ToString[a[[k]]
[[2]]]	<>	“,”];	c	=	c	<>	ToString[a[[b]]]	<>	StringMultiple[e,	b–1];	ToExpression[c]]

In[2341]	:=	IFk[{a,	b},	{c,	d},	{g,	s},	{m,	n},	{q,	p},	h]
Out[2341]=	If[a,	b,	If[c,	d,	If[g,	s,	If[m,	n,	If[q,	p,	h]]]]]
In[2342]:=	IFk[{False,	b},	{False,	d},	{False,	s},	{True,	n},	{False,	p},	h]	Out[2342]=
n
In[2343]:=	IFk[{False,	b},	{False,	d},	{False,	s},	{False,	n},	{g,	p},	h]	Out[2343]=	If[g,
p,	h]

In[2060]	:=	IFk1[x__]	:=	Module[{a	={x},	b,	c	=	””,	d	=	“If[“,	e	=	“]”,	h	=	{},	k	=	1},	b
=	Length[a];	If[For[k,	k	<=	b–1,	k++,	AppendTo[h,	b	>=	2	&&	ListQ[a[[k]]]	&&
Length[a[[k]]]	==	2]];	DeleteDuplicates[h]	!=	{True},	Return[Defer[Ifk1[x]]],	{h,	k}=
{{},	1}];	If[For[k,	k	<=	b–1,	k++,	AppendTo[h,	a[[k]][[1]]]];	Select[h,	!
MemberQ[{True,	False},	#]	&]	!=	{},	Return[Defer[Ifk1[x]]],	k	=	1];	For[k	=	1,	k	<=
b–1,	k++,	c	=	c	<>	d	<>	ToString[a[[k]][[1]]]	<>	“,”	<>	ToString[a[[k]][[2]]]	<>	“,”];	c
=	c	<>	ToString[a[[b]]]	<>	StringMultiple[e,	b–1];	ToExpression[c]]

In[2061]	:=	IFk1[{False,	b},	{False,	d},	{False,	s},	{False,	n},	{g,	p},	h]	Out[2061]=
IFk1[{False,	b},	{False,	d},	{False,	s},	{False,	n},	{g,	p},	h]	In[2062]:=	IFk1[{False,	b},
{False,	d},	{False,	s},	{True,	n},	{False,	p},	h]	Out[2062]=	n
In[2063]:=	IFk1[{a,	b},	{c,	d},	{g,	s},	{m,	n},	{q,	p},	h]
Out[2063]=	IFk1[{a,	b},	{c,	d},	{g,	s},	{m,	n},	{q,	p},	h]

In[2065]:=	IFk1[{True,	b}]
Out[2065]=	IFk1[{True,	b}]
In[2066]:=	IFk1[{False,	b},	Agn]
Out[2066]=	Agn

The	call	of	the	IFk	procedure	uses	any	number	of	the	actual	arguments	more	than	one;	the
arguments	use	the	the	arguments	use	theelement	lists	of	the	format	{lcj,	vj},	except	the
last.	Whereas	the	last	actual	argument	is	a	correct	expression;	at	that,	a	testing	oflcj	on
Boolean	type	isn’t	done.	The	call	of	theIFk	procedure	on	a	tuple	of	correct	actual
arguments	returns	the	result	equivalent	to	execution	of	the	correspondingMapleif–offer
[25-27].
At	that,	theIFk1	procedure	is	an	useful	extension	of	the	previous	procedure	which
unlikeIFk	allows	only	Boolean	expressions	as	the	actual	arguments	lcj,	otherwise
returning	the	unevaluated	call.	In	the	rest,	the	proceduresIFk	andIFk1	are	functionally
identical.	Thus,	similarly	to	theif–offer	ofMaple	system	the	proceduresIFk	andIFk1	are
quite	useful	at	programming	of	the	branching	algorithms	of	various	types.	With	that	said,
the	above	procedures	IFk	andIFk1	are	provided	with	a	quite	developed	mechanism	of
testing	of	the	factual	arguments	transferred	at	the	procedure	call	whose	algorithm	is	easily
seen	from	source	code.	Now,	using	the	described	approach	fairly	easy	to	program
inMath–language	an	arbitrary	construction	ofMaple–language	describing	the	branching
algorithms	[28-33].
To	a	certain	degree	it	is	possible	to	refer	toIf–constructions	also	theWhich–	function	of
the	following	format

Which[lc1,	w1,	lc2,	w2,	lc3,	w3,…,lck,	wk]
that	returns	result	of	evaluation	of	thefirstwj–expression	for	which	Boolean
expressionlcj(j=1..k)	acceptsTrue	value,	for	example:

In[2735]	:=	G[x_]	:=	Which[–Infinity	<=	x	<	80,	Sin[x],	80	<=	x	<	480,	Cos[x],	480	<=
x	<=	Infinity,	x^2]
In[2736]:=	{G[67],	G[80.480],	G[480],	G[2014],	G[–18.06]}
Out[2736]=	{Sin[67],	0.361044,	230400,	4056196,	0.710041}

The	example	illustrates	definition	of	a	piecewise	–defined	function	through	theWhich
function.	If	some	of	the	evaluated	conditionslcj	doesn’t	return	{True|False}	the	function
call	is	returned	unevaluated	while	in	case	ofFalse	value	for	all	conditionslcj(j=1..k)	the
function	call	returnsNull,	i.e.	nothing.	At	dynamic	generation	of	aWhich–object	a
simpleWhichN	procedure	can	be	rather	useful	which	allows	any	even	number	of
arguments	similar	to	the	Which–function,	otherwise	returning	result	by	unevaluated.	In
the	rest,	the	WhichN	is	similar	to	theWhich	function;	the	following	fragment	represents
source	code	of	the	procedure	along	with	typical	examples	of	its	usage.

In[4731]:=	WhichN[x__]	:=	Module[{a	=	{x},	c	=	“Which[“,	d,	k	=	1},	d	=

Length[a];	If[OddQ[d],	Defer[WhichN[x]],	ToExpression[For[k,	k	<=	d,	k++,	c	=	c
<>	ToString[a[[k]]]	<>	“,”];	StringTake[c,	{1,–2}]	<>	“]”]]]	In[4732]:=	WhichN[a,	b,
c,	d,	f,	g,	h,	r]
Out[4732]=	Which[a,	b,	c,	d,	f,	g,	h,	r]
In[4733]:=	f	=	80;	WhichN[False,	b,	f	==	80,	SV,	g,	h,	r,	t]

Out[4733]=	SV

The	above	procedures	IFk,	IFk1	andWhich	represent	a	quite	certain	interest	at
programming	a	number	of	applications	of	various	purpose,	first	of	all,	of	the	system
character.

5.2.	The	cyclic	control	structures	of	theMathematicasystem

So,	one	of	the	main	cyclic	structures	of	the	system	is	based	on	the	function	For	that	has
the	following	general	format	of	coding,	namely:
For[a,<lc>,	b,<Body	of	a	cyclic	construction>]

Since	the	given	a,	the	body	of	a	construction	which	contains	offers	ofMath-	language,
with	cyclicincrement	of	a	cyclic	variable	on	a	magnitudeb	so	long	as	a	logical
condition(lc)	doesn’t	acceptTrue	is	cyclically	calculated.	Simple	example	of	usage	of	this
function	is	represented	below,	namely:

In[2942]	:=	For[k	=	1;	h	=	1,	k	<	10000,	k	=	k	+	1,	h	=	h^2	+	80*h	+	k;	If[k	<	5,
Continue[],	Print[h];	Break[]]]
994450	659	746	015	592	932	434	074	712	430

For	continuation	of	a	Forcycle	and	exit	from	it	the	control	wordsContinue	andBreak
serve	respectively	as	it	very	visually	illustrates	a	simple	example	above.	While	other	quite
widely	used	means	in	theMathematica	system	for	organization	of	cyclic	calculations	is
theDo	function	that	hasfive	formats	of	coding	whose	descriptions	with	examples	can	be
found	in	books	[28-33,60].	Meantime,	unlike	theMaple	system	theMathematica	system
has	no	analog	of	very	useful	cyclic	constructions	of	types(1.b)	and(1.d)	[27]	that	allow	to
execute	cyclical	calculations	at	subexpressions	of	a	certain	expression	what	provides
possibility	on	their	basis	to	program	quite	interesting	constructions	as	illustrate	simple
fragments	[25-27].	In	this	context	we	will	represent	the	procedure	whose	callDO[x,y,j]
returns	the	list	of	results	of	cyclic	calculation	of	an	expressionx	on	a	cycle	variablej	which
accepts	values	from	theOp[y]	list.	The	construction	in	a	certain	relation	is	analog	of	the
cyclic	construction	for_in	for	theMaple	system	[25-27,47].

In[2274]	:=	DO[x_,	y_,	k_]	:=	Module[{a	=	x,	b	=	Op[y],	c,	d	=	1,	R	=	{}},	c	:=
Length[b]	+	1;	While[d	<	c,	R	=	Insert[R,	a	/.	k–>	b[[d]],–1];	a	:=	x;	d++];	R]
In[2275]:=	DO[k^2	+	Log[k],	f[g[a,	b],	h[c,	d,	e,	j,	k,	l]],	k]
Out[2275]=	{g[a,	b]^2+	Log[g[a,	b]],	h[c,	d,	e,	j,	k,	l]^2+Log[h[c,	d,	e,	j,	k,	l]]}

In	our	books	[28	-33]	the	reciprocal	functional	equivalence	of	both	systems	is	quite
visually	illustrated	when	the	most	important	computing	constructions	of	theMathematica
system	with	this	or	that	efficiency	are	simulated	by	the	Maple	constructions	and	vice
versa.	Truly,	in	principle,	it	is	a	quite	expected	result	because	the	builtin	languages	of	both
systems	areuniversal	and	in	this	regard	with	one	or	the	other	efficiency	they	can	program
any	algorithm.	But	in	the	temporary	relation	it	is	not	so	and	at	using	of	cyclic	structures	of
large	enough	nesting	level	theMaple	can	have	very	essential	advantages	before
Mathematica.	For	confirmation	we	will	give	a	simple	example	of	a	cyclical	construction
programmed	both	in	theMaple,	and	theMathematica.

The	results	speak	for	themselves	–	if	inMaple11	the	execution	of	a	certain	construction

requires7.800	s,	thenMathematica10	for	execution	of	the	same	construction	requires
already49.358	s,	i.e.	approximately6.3	times	more(the	estimations	have	been	obtained	on
PCDell	Optiplex	3020,i5–4570	3.2	GHz	with	64–bit	Windows	7	Professional).
Furthermore,	with	growth	of	depth	of	nesting	and	range	of	a	cycle	variable	at
implementation	of	cyclic	constructions	this	difference	rather	significantly	grows.

>	t	:=	time():	for	k1	to	10	do	for	k2	to	10	do	for	k3	to	10	do	for	k4	to	10	do	for	k5	to
10	do	for	k6	to	10	do	for	k7	to	10	do	for	k8	to	10	do	80	end	do	end	do	end	do	end	do
end	do	end	do	end	do	end	do:	time()–t;	#	(Maple	11)

7.800
In[2693]:=	n	=	10;	t	=	TimeUsed[];	For[k1	=	1,	k1	<=	n,	k1++,	For[k2	=	1,	k2	<=	n,
k2++,
For[k3	=	1,	k3	<=	n,	k3++,
For[k4	=	1,	k4	<=	n,	k4++,
For[k5	=	1,	k5	<=	n,	k5++,
For[k6	=	1,	k6	<=	n,	k6++,
For[k7	=	1,	k7	<=	n,	k7++,

For[k8	=	1,	k8	<=	n,	k8++,	80]]]]]]]];	TimeUsed[]	–t	Out[2693]=	49.358
Naturally,	the	received	values	are	determined	by	the	main	resources	of	the	computer
however	on	identical	resources	this	basic	relation	retains.	From	the	given	example	follows
theMaple	uses	more	effective	algorithms	in	the	temporary	relation	for	realization	of
cyclical	constructions	of	large	nesting	depth	and	range	of	cycle	variable,	than	it	takes
place	for	its	main	competitor
–	theMathematica	systems	even	of	its	latest	version10.1.0.0.	A	number	of	interesting
enough	comparisons	relative	to	estimates	of	time	characteristics	of	performance	of	mass
means	of	processing	and	calculations	is	represented	in	our	books	[25-27].	Of	these
comparisons	follows,	that	according	to	time	characteristics	theMaple	system	in	certain
cases	is	more	preferable	than	the	Mathematica	system	what	in	each	concrete	case
supposes	the	corresponding	comparative	analysis.

Among	special	types	of	cyclic	control	structures	in	the	Mathematica	system	it	is	possible
to	note	a	series	of	interesting	enough	ones,	some	of	them	have	various	level	of	analogy
with	similar	means	of	theMaple	system	[27,28-33].	However	in	general,	means
ofMathematica	system	are	more	preferable	at	generation	of	the	nested	expressions	and,
first	of	all,	of	pure	functions	that	play	especially	essential	part	in	problems	of	functional
programming	in	the	Mathematica	system.	At	comparative	consideration	of	the	control
structures	ofbranching	andcycle	that	are	supported	by	both	systems,	two	main	groups	have
been	distinguished,	namely:basic	andadditional	resources	of	providing	the	specified
control	structures.	So,	theif	offer	of	theMaple	system	and	the	If	function	of
theMathematica	system	represent	the	most	typical	means	of	ensuring	of	the	branching
algorithms.	At	operating	with	both	means	a	point	of	view	has	been	formed,	the	means	are
being	represented	as	substantially	equivalent,	however	these	means	realized	by	theif
clause	of	theMaple	for	rathercomplex	branching	algorithms	are	being	slightlymore	simply
perceived	in	sence	of	readability.	In	other	respects	it	is	very	difficult	to	give	preference	to
any	of	these	control	means	and	in	this	relation	both	leading	systems	can	quite	be
considered	as	equivalent.

Chapter	6.	Problems	of	procedural	programming	in	the
Mathematicasoftware

Procedural	programming	is	one	of	basic	paradigms	of	theMathematica	that	in	quite
essential	degree	differs	from	the	similar	paradigm	of	well–known	traditional	procedural
programming	languages.	The	given	circumstance	is	the	cornerstone	of	a	number	of	the
system	problems	relating	to	a	question	of	procedural	programming	in	Mathematica.
Above	all,	similar	problems	arise	in	the	field	of	distinctions	in	realization	of	the	above
paradigms	in	the	Mathematica	and	in	the	environment	of	traditional	procedural
languages.	Along	with	it,	unlike	a	number	oftraditional	andbuilt-in	languages	thebuilt-
inMathlanguage	has	no	a	number	of	useful	enough	means	for	work	with	procedural
objects.	Some	such	means	are	represented	in	our	books	[28-33]	andAVZ_Package
package	[48].	A	number	of	the	tasks	connected	with	such	means	is	considered	in	the
present	chapter,	previously	having	discussed	the	concept	of`procedure`	inMathematica	as
bases	of	its	procedural	paradigm.	At	that,	means	of	analysis	of	this	section	concern	only
the	user	procedures	and	functions	because	definitions	of	all	system
functions(unlike,say,from	the	Maple)	from	the	user	are	hidden,	i.e.	are	inaccessible	by
standard	means	of	theMathematica	system.

6.1.	Definition	of	procedures	in	theMathematicasoftware

Procedures	in	theMathematica	system	formally	represent	functional	objects	of	following
two	simple	formats,	namely:
M[x_/;Testx,y_/;Testy,	…]	{:=	|	=}Module[{locals},Procedure	Body]
B[x_/;Testx,y_/;Testy,	…]	{:=	|	=}Block[{locals},Procedure	Body]

i.e.,	the	procedures	of	both	types	represent	functions	from	two	arguments	–	body	of	a
procedure(Body)	andlocal	variables	(locals).	Local	variables–	the	list	of	names,	perhaps,
with	the	initial	values	which	are	attributed	to	them.	These	variables	have	local	character
concerning	procedure,	i.e.	their	values	aren’t	crossed	with	values	of	the	symbols	of	the
same	name	outside	of	the	procedure.	All	other	variables	in	procedure	have	global
character,	dividing	area	of	variables	of	theMathematica	current	session.
Thus,	in	definition	of	procedures	it	is	possible	to	distinguish	five	following	component,
namely:

–	procedure	name	(Min	the	first	procedure	definition);
–	procedure	heading(M[x_/;Testx,y_/;Testy,	…]in	the	both	procedures	definitions);
–procedural	brackets	(Module[…]orBlock[…]);
–local	variables(list	of	local	variables	{locals};can	be	empty);
–	procedure	body;can	be	empty.

Above	all,	it	should	be	noted	the	following	very	important	circumstance.	If	in	the
traditional	programming	languages	the	identification	of	an	arbitrary	procedure/function	is
made	according	to	itsname,	in	case	ofMathlanguage	identification	is	made	according	to
itsheading.	The	circumstance	is	caused	by	that	the	definition	of	a	procedure/function
inMathlanguage	is	made	by	the	manner	different	from	traditional	[28-33].	Simultaneous
existence	of	the	procedures/functions	of	the	same	name	with	various	headings	in	the	given

situation	is	admissible	as	it	illustrates	the	following	fragment,	namely:
In[2434]	:=	M[x_,	y_]	:=	Module[{},	x	+	y];	M[x_]	:=	Module[{},	x^2];	M[y_]	:=
Module[{},	y^3];	M[x___]	:=	Module[{},	{x}]
In[2435]:=	Definition[M]
Out[2435]=	M[x_,	y_]:=	Module[{},	x+	y]
M[y_]:=	Module[{},	y^3]
M[x___]:=	Module[{},	{x}]
In[2436]:=	{M[480,	80],	M[80],	M[42,	47,	67,	25,	18]}
Out[2436]=	{560,	512000,	{42,	47,	67,	25,	18}}
In[2437]:=	G[x_Integer]	:=	Module[{},	x];	G[x_]	:=	Module[{},	x^2];	G[480]
Out[2437]=	480

At	the	call	of	a	procedure/function	of	the	same	name	from	the	list	is	chosen	the	one,
whose	formal	arguments	of	the	heading	correspond	to	the	factual	arguments	of	the	call,
otherwise	the	call	is	returned	byunevaluated,	except	forsimplifications	of	the	actual
arguments	according	to	the	standard	system	agreements.	Moreover,	at	compliance	of
formal	arguments	of	heading	with	the	actual	ones	a	procedurex	is	caused,	whose	definition
is	above	in	the	list	returned	at	theDefinition[x]	call;	in	particular,	whose	definition	has
been	calculated	in	theMathematica	current	session	by	the	first.
Further	is	being	quite	often	mentioned	about	return	of	result	of	the	call	of	a
function/procedure	by	unevaluated,	it	concerns	both	the	standard	system	means,	and	the
user	means.	In	any	case,	the	call	of	a	procedure/function	on	aninadmissible	tuple	of	actual
arguments	is	returned	by	unevaluated,	except	for	standard	simplifications	of	the	actual
arguments.	In	this	connection	the	UnevaluatedQ	procedure	providing	testing	of	a	certain
procedure/function	regarding	of	return	of	its	call	unevaluated	on	a	concrete	tuple	of	the
factual	arguments	has	been	programmed.	The	callUnevaluatedQ[F,x]	returnsTrue	if	the
callF[x]	is	returned	unevaluated,	andFalse	otherwise;	in	addition,	on	an	erroneous
callF[x]”ErrorInNumArgs”	is	returned.	The	fragment	below	represents	source	code	of	the
UnevaluatedQ	procedure	with	examples	of	its	usage.	Procedure	represents	a	certain
interest	for	program	processing	of	results	of	calls	of	procedures	and	functions.

In[3246]	:=	UnevaluatedQ[F_	/;	SymbolQ[F],	x___]	:=
Module[{a	=	Quiet[Check[F[x],	“e”,	F::argx]]},	If[a	===	“e”,	“ErrorInNumArgs”,
If[ToString1[a]===ToString[F]<>”[”	<>	If[{x}==	{},	””,
ListStrToStr[Map[ToString1,	{x}]]	<>	“]”],	True,	False]]]

In[3247]	:=	{UnevaluatedQ[F,	x,	y,	z],	UnevaluatedQ[Sin,	x,	y,	z]}	Out[3247]=	{True,
“ErrorInArgs”}
In[3248]:=	{UnevaluatedQ[Sin,	48080],	UnevaluatedQ[Sin,	480.80],

UnevaluatedQ[Sin]}
Out[3248]=	{True,	False,	“ErrorInNumArgs”}

Meanwhile,	the	standard	Definition	function	in	the	case	of	the	procedures/	functions	of
the	same	name	in	a	number	of	cases	is	of	little	use	for	solution	of	tasks	which	are
connected	with	processing	of	definitions	of	such	objects.	Above	all,	it	concerns	the
procedures	whose	definitions	are	located	in	the	user	packages	loaded	into	the	current
session	ofMathematica	as	illustrates	a	simple	example	of	receiving	definition	of

theSystemQ	procedure	[48]:

In[3247]:=	Definition[“SystemQ”]
Out[3247]=	SystemQ[AladjevProcedures`SystemQ`S_]:=

If[Off[“Definition“::”ssle”];	!
ToString[”Definition”[AladjevProcedures`SystemQ`S]]===	Null&&
SysFuncQ1[AladjevProcedures`SystemQ`S],	On[”Definition“::”ssle”];	True,
On[”Definition“::”ssle”];	False]	The	callDefinition[x]	of	the	standard	function	in	a
number	of	cases	returns	the	definition	of	some	objectx	with	the	context	corresponding	to	it
what	at	quite	large	definitions	becomes	bad	foreseeable	and	less	acceptable	for	the
subsequent	program	processing	as	enough	visually	illustrates	the	previous	example.
Moreover,	the	name	of	object	or	its	string	format	also	can	act	as	an	actual	argument.	For
elimination	of	this	shortcoming	we	defined	a	number	of	means	allowing	to	obtain
definitions	of	procedures/functions	in	a	certain	optimized	format.	As	such	tools	it	is
possible	to	note	such	asDefOptimum,	Definition1,	Definition2,	Definition3,
Definition4,	DefFunc,	DefFunc1,	DefFunc2,	DefFunc3	andDefOpt.	These	means	along
with	some	others	are	presented	in	books	[28-33]	and	included	in	theAVZ_Package
package	[48].	The	following	fragment	represents	source	codes	of	the	most	used	of	them.

In[2470]:=	Definition2[x_	/;	SameQ[SymbolQ[x],	HowAct[x]]]	:=	Module[{a,	b	=
Attributes[x],	c},

If[SystemQ[x],	Return[{“System”,	Attributes[x]}],	Off[Part::partw]];
ClearAttributes[x,	b];	Quiet[a	=	ToString[InputForm[Definition[x]]];
Mapp[SetAttributes,	{Rule,	StringJoin},	Listable];	c	=	StringReplace[a,
Flatten[{Rule[StringJoin[Contexts1[],	ToString[x]	<>	“`”],	””]}]];	c	=	StringSplit[c,
“\n	\n”];	Mapp[ClearAttributes,	{Rule,	StringJoin},	Listable];	SetAttributes[x,	b];	a
=	AppendTo[c,	b];	If[SameQ[a[[1]],	“Null”]	&&	a[[2]]	==	{},	On[Part::partw];
{“Undefined”,	Attributes[x]},	If[SameQ[a[[1]],	“Null”]	&&	a[[2]]	!=	{}&&	!
SystemQ[x],	On[Part::partw];	{“Undefined”,	Attributes[x]},	If[SameQ[a[[1]],
“Null”]	&&	a[[2]]	!=	{}&&	a[[2]]	!=	{},	On[Part::partw];	{“System”,	Attributes[x]},
On[Part::partw];	a]]]]]

In[2471]:=	Definition2[SystemQ]
Out[2471]=	{”SystemQ[S_]:=	If[Off[MessageName[Definition,	"ssle"]];

!	ToString[Definition[S]]===	Null&&	SysFuncQ1[S],	On[MessageName[Definition,
"ssle"]];	True,	On[MessageName[Definition,"ssle"]];	False]”,	{}}	In[2472]:=
Definition2[Tan]

Out[2472]=	{”System”,	{Listable,	NumericFunction,	Protected}}
In[2473]:=	Definition2[(a	+	b)/(c	+	d)]
Out[2473]=	Definition2[(a+	b)/(c+	d)]
In[2502]:=	Definition3[x_	/;	SymbolQ[x],	y_	/;	!	HowAct[y]]	:=	Module[{a	=
Attributes[x],	b	=	Definition2[x]},

If[b[[1]]	==	“System”,	y	=	x;	{“System”,	a},	b	=	Definition2[x][[1	;;–2]];
ClearAttributes[x,	a];	If[BlockFuncModQ	[x,	y],	ToExpression[b];	SetAttributes[x,
a];	Definition[x],	SetAttributes[x,	a];	Definition[x]]]]

In[2503]:=	Definition3[SystemQ,	y]
Out[2503]=	SystemQ[S_]:=	If[Off[”Definition“::”ssle”];
!	ToString[”Definition”[S]]===	Null&&	SysFuncQ1[S],

On[“Definition“::”ssle”];	True,	On[”Definition“::”ssle”];	False]	In[2504]:=	y
Out[2504]=	“Function”
In[2505]:=	Definition3[Sin,	z]
Out[2505]=	Attributes[Sin]=	{Listable,	NumericFunction,	Protected}	In[2506]:=	z
Out[2506]=	Sin

In[2598]	:=	Definition4[x_	/;	StringQ[x]]	:=	Module[{a},
a	=	Quiet[Check[Select[StringSplit[ToString[InputForm[Quiet[Definition[x]]]],
“\n”],	#	!=	”	”	&&	#	!=	x	&],	$Failed]];	If[a	===	$Failed,	$Failed,	If[SuffPref[a[[1]],
“Attributes[“,	1],	a	=	AppendTo[a[[2	;;–1]],	a[[1]]]]];	If[Length[a]	!=	1,	a,	a[[1]]]]

In[2599]:=	W	=	80;	G	:=	480;	Map[Definition4,	{“W”,	“G”,	“72”,	“a	+	b”,	“If”}]
Out[2599]=	{”W=	80“,	“G:=	480“,	$Failed,	$Failed,	“Attributes[If]=	{HoldRest,
Protected}”}
In[2600]:=	A[x_]	:=	Module[{a=90},	x+a];	A[x_,	y_]	:=	Module[{a=6},	x+y+a];

A[x_,	y_List]	:=	Block[{},	{x,	y}];	A[x_Integer]	:=	Module[{a	=	480},	x	+	a];	A	:=	{a,
b,	c,	d,	h};	SetAttributes[A,	{Flat,	Listable,	Protected}];	In[2601]:=	Definition4[“A”]
Out[2601]=	{”A:=	{a,	b,	c,	d,	h}“,	“A[x_Integer]:=	Module[{a=	480},	x+	a]“,

“A[x_]:=	Module[{a=	90},	x+	a]“,	“A[x_,	y_List]:=	Block[{},	{x,	y}]“,	“A[x_,	y_]:=
Module[{a=	6},	x+	y+	a]“,	“Attributes[A]=

{Flat	,	Listable,	Protected}”}
A	number	of	functional	means	ofMath–language	as	the	actual	arguments	assume	only
objects	of	the	types	{Symbol,String,HoldPattern[Symbol]}	what	in	some	cases	is	quite
inconvenient	at	programming	of	problems	of	different	purpose.	In	particular,
theDefinitionDefinition	33].	For	the	purpose	of	expansion	of	theDefinition	function	on
the	types,	different	from	the	mentioned	ones,	theDefinition1	procedure	can	be	used,
whose	callDefinition1[x]	returns	definition	of	an	objectx	in	string	format,	“Null”	ifx	isn’t
defined,	otherwise$Failed	is	returned.	A	fragment	in	[28,33]	represents	the	procedure	code
with	typical	examples	of	its	application	from	which	certain	advantages	of	theDefinition1
concerning	theDefinition	are	quite	visually	visible.	TheDefinition1	procedure	has	been
realized	with	use	of	ourToString1	procedure	[28]	that	unlike	the	standardToString
function	provides	correct	converting	of	expressions	in	string	format.	TheDefinition1
procedure	processes	the	main	special	and	erroneous	situations.	Meanwhile,	theDefinition1
procedure	doesn’t	rid	the	returned	definitions	from	contexts	and	is	correct	only	for	objects
with	unique	names.	Moreover,	in	case	of	the	multiple	contexts	theDefinition1	procedure
call	returns	definitions	with	a	context	that	answers	the	last	user	package	loaded	into	the
current	session.	On	system	functions,	theDefinition1	procedure	call	returns”Null“.	As	an
expansion	of	theDefinition1	procedure	theDefinition2	procedure	represented	by	the
previous	fragment	can	serve.	The	given	procedure	uses	our	meansContexts1,	HowAct,
Mapp,	SymbolQ	andSystemQ	considered	in	the	present	book	and	in	[28-33].	These
means	are	rather	simple	and	are	used	in	our	means	enough	widely	[48].

Unlike	previous	procedure	Definition1,	theDefinition2	procedure	rids	the	returned

definitions	from	contexts,	and	is	correct	for	program	objects	with	unique	names.
TheDefinition2	call	on	system	functions	returns	the	nested	list,	whose	first	element–
“System“,	whereas	the	second	element–	the	list	of	attributes	ascribed	to	a	factual
argument.	On	a	function	or	procedure	of	the	userx	the	callDefinition2[x]	also	returns	the
nested	list,	whose	first	element
–	theoptimized	definition	ofx(in	the	sense	of	absence	of	contexts	in	it),	whereas	the	second
element–	the	list	of	attributes	ascribed	tox;	in	their	absence	the	empty	list	acts	as	the
second	element	of	the	returned	list.	In	the	case	ofFalse	value	on	a	test	ascribed	to	formal
argumentx,	the	callDefinition2[x]	will	be	returnedunevaluated.	Analogously	to	the
previous	procedure,	the	procedure	Definition2	processes	the	mainspecial	anderroneous
situations.	In	addition,	Definition1	andDefinition2	return	definitions	of	objects	in	string
format.	The	callDefinition3[x,	y]	returns	the	optimum	definition	of	a	procedure	or	a
functionx,	while	through	the	second	argumenty	–an	undefined	variable–	the	type	ofx	in	a
context	{”Procedure“,	“Function“,	“Procedure&Function”}	is	returned	ifx	is	a	procedure
or	function,	on	system	functions	the	procedure	call	returns	the	list	{”Function“,
{Attributes}}	while	thru	the	second	argument	y	thefirst	argument	is	returned;	at
inadmissibility	of	thefirst	argumentx	the	call	is	returned	unevaluated,	i.e.Definition[x].

The	call	Definition4[x]	in	a	convenient	format	returns	the	definition	of	an	objectx	whose
name	is	coded	in	the	string	format,	namely:(1)	on	a	system	functionx	its	attributes	are
returned,(2)	on	the	user	block,	function,	module	the	call	returns	the	definition	of	objectx	in
string	format	with	the	attributes,	options	and/or	values	by	default	for	formal	arguments
ascribed	to	it(if	such	are	available),	(3)	the	call	returns	the	definition	of	an	objectx	in
string	format	for	assignments	by	operators	{“:=”,	“=”},	and(4)	in	other	cases	the
procedure	call	returns$Failed.	The	procedure	has	a	number	of	interesting	appendices	at
programming	of	various	system	appendices.
The	followingDefOpt	procedure	represents	a	quite	certain	interest	that	in	a	number	of
cases	is	more	acceptable	than	theDefinition	function	along	with	our	proceduresDefFunc,
DefFunc1,	DefFunc2	andDefFunc3	considered	in	[28-33,48]	that	are	also	intended	for
obtaining	definitions	of	procedures	and	functions	in	the	convenient	form	acceptable	for
processing.	The	following	fragment	represents	source	code	of	the	procedure	with
examples	of	its	use.

In[2342]	:=	DefOpt[x_	/;	StringQ[x]]	:=	Module[{a	=	If[SymbolQ[x],	If[SystemQ[x],	b
=	“Null”,	ToString1[Definition[x]],	“Null”]],	b,	c},	If[!	SameQ[a,	“Null”],	b	=
Quiet[Context[x]]];	If[!	Quiet[ContextQ[b]],	“Null”,

c	=	StringReplace[a,	b	<>	x	<>	“`”–>	””];	ToExpression[c];	c]]

In[2343]	:=	DefOpt[“SystemQ”]
Out[2343]=	SystemQ[S_]:=	If[Off[MessageName[Definition,	“ssle”]];	!
ToString[Definition[S]]===	Null&&	SysFuncQ1[S],	On[MessageName[Definition,
“ssle”]];	True,	On[MessageName[Definition,”ssle”]];	False]

In[2344]	:=	DefFunc[$TypeProc]
Out[2344]=	Attributes[$Failed]=	{HoldAll,	Protected}
In[2345]:=	DefOpt[“$TypeProc”]
Out[2345]=	“$TypeProc:=	CheckAbort[If[$Art24$Kr17$	=

Select[{Stack[Module]	,	Stack[Block],	Stack[DynamicModule]},	#1!=	{}&];
If[$Art24$Kr17$	==	{},	Clear[$Art24$Kr17$];	Abort[],	$Art24$Kr17$	=
ToString[$Art24$Kr17$[[1]][[1]]]];	SuffPref[$Art24$Kr17$,	"Block[{",	1],
Clear[$Art24$Kr17$];	"Block",	If[SuffPref[$Art24$Kr17$,
"Module[{",	1]&&	!StringFreeQ[$Art24$Kr17$,	"DynamicModule"],
Clear[$Art24$Kr17$];	"DynamicModule",	Clear[$Art24$Kr17$];	"Module"]],	$Failed]”

In[2346]:=	Map[DefOpt,	{“If”,	“Sin”,	“Goto”,	“a	+	b”,	“80”,	480}]	Out[2346]=	{Null,
Null,	Null,	Null,	Null,	DefOpt[480]}

On	the	other	hand,	our	some	procedures	are	unsuitable	in	case	of	necessity	of	receiving
definitions	of	a	number	of	procedural	variables,	in	particular,	$TypeProc	as	some
illustrate	examples	in	[33].	And	only	the	procedure	call	DefOpt[x]	returns	definition	of	an
arbitrary	objectx	in	an	optimum	format	irrespective	of	type	of	the	user	objectx.	At	that,	the
callDefOpt[x]	not	only	returns	an	optimum	form	of	definition	of	an	objectx	in	string
format,	but	also	evaluates	it	in	the	current	session	what	in	a	number	of	cases	is	useful
enough;	at	the	procedure	call	the	name	of	the	objectx	is	coded	in	the	string	format;	while
on	the	system	functions	and	other	string	expressions	the	call	DefOpt[x]	returns”Null“.	At
the	same	time	it	must	be	kept	in	mind	that	the	DefOpt	is	inapplicable	to	the	procedures	/
functions	of	the	same	name,	i.e.	having	several	definitions	with	different	headings.	The
previous	fragment	represents	source	code	of	theDefOpt	procedure	with	examples	of	its
usage.

The	OptDefinition	procedure	is	an	interesting	enough	modification	of	the	previous
procedure;	its	source	code	with	examples	of	usage	represents	the	following	fragment.	The
call	OptDefinition[x]	returns	the	definition	of	a	procedure	or	a	functionx	optimized	in	the
above	sense	i.e.	without	context	associated	with	the	user	package	containing	the	procedure
or	functionx.

In[3298]	:=	OptDefinition[x_	/;	Quiet[ProcQ[x]	||	FunctionQ[x]]]	:=	Module[{c	=
$Packages,	a,	b,	d,	h	=	Definition2[x]},	{a,	b}=	{h[[1	;;–2]],	h[[–1]]};
ClearAllAttributes[x];	d	=	Map[StringJoin[#,	ToString[x]	<>	“`”]	&,	c];

ToExpression[Map[StringReplace[#,	GenRules[d,	””]]	&,	a]];	SetAttributes[x,	b];
Definition[x]]

In[3299]	:=	SetAttributes[ToString1,	{Listable,	Protected}];
Definition[ToString1]
Out[3299]=	Attributes[ToString1]=	{Listable,	Protected}
ToString1[AladjevProcedures`ToString1`x_]:=
Module[{AladjevProcedures`ToString1`a=	“$Art23Kr15$.txt“,
AladjevProcedures`ToString1`b=	””,	AladjevProcedures`ToString1`c,
AladjevProcedures`ToString1`k=	1},
Write[AladjevProcedures`ToString1`a,
AladjevProcedures`ToString1`x];
Close[AladjevProcedures`ToString1`a];
For[AladjevProcedures`ToString1`k,
AladjevProcedures`ToString1`k<	\[Infinity],	AladjevProcedures`ToString1`k++,
AladjevProcedures`ToString1`c=

Read[AladjevProcedures`ToString1`a,	String];	If[AladjevProcedures`ToString1`c===
EndOfFile,	Return[DeleteFile[
Close[AladjevProcedures`ToString1`a]];	AladjevProcedures`ToString1`b],
AladjevProcedures`ToString1`b=	AladjevProcedures`ToString1`b<>
StrDelEnds[AladjevProcedures`ToString1`c,	”	“,	1]]]]
In[3300]:=	OptDefinition[ToString1]
Out[3300]=	Attributes[ToString1]=	{Listable,	Protected}
ToString1[x_]:=	Module[{a=	“$Art25Kr18$.txt“,	b=	””,	c,	k=	1},	Write[a,	x];	Close[a];
For[k,	k<	∞,	k++,	c=	Read[a,	String];	If[c===	EndOfFile,	Return[DeleteFile[Close[a]];
b],	b=	b<>	StrDelEnds[c,	”	“,	1]]]]

It	is	necessary	to	pay	attention	to	use	of	the	GenRules	procedure	providing	generation	of
the	list	of	transformation	rules	for	providing	of	replacements	in	a	string	definition	of	an
objectx.	In	a	number	of	cases	such	approach	is	a	rather	effective	at	strings	processing.
TheDefOptimum	procedure	realized	in	a	different	manner	is	full	analog	of	the	previous
procedure,	whose	callDefOptimum[x]	returns	the	definition	of	a	function	or	procedurex
optimized	in	the	respect	that	it	doesn’t	contain	acontext	of	the	user	package	containing
definition	of	the	procedure/function	x.	The	following	fragment	represents	source	code	of
this	procedure	with	a	typical	example	of	its	usage.

In[2245]	:=	SetAttributes[OptDefinition,	{Listable,	Protected}];
Definition[OptDefinition]
Out[2245]=	Attributes[OptDefinition]=	{Listable,	Protected}
OptDefinition[x_	/;	ProcQ[x]||	FunctionQ[x]]:=	Module[{a=	Definition2[x][[1;;–2]],	b=
Definition2[x][[–1]],	AladjevProcedures`OptDefinition`c=	$Packages,
AladjevProcedures`OptDefinition`d,
AladjevProcedures`OptDefinition`h},
ClearAllAttributes[ToString1];
AladjevProcedures`OptDefinition`d=(#1<>	(ToString[x]<>	“`”)&)/@
AladjevProcedures`OptDefinition`c;
ToExpression[(StringReplace[#1,
GenRules[AladjevProcedures`OptDefinition`d,	””]]&)/@	a];	SetAttributes[x,	b];
“Definition”[x]]
In[2246]:=	DefOptimum[x_	/;	Quiet[ProcQ[x]	||	FunctionQ[x]]]	:=	Module[{a,	c,	k	=
1,	b	=	“Art$Kr.txt”,	d	=	Context[x],	f	=	Attributes[x]},	ClearAttributes[x,	f];	Save[a	=
ToString[x],	x];	For[k,	k	<	Infinity,	k++,	c	=	Read[a,	String];	If[SameQ[c,
EndOfFile],	Break[],	Write[b,	StringReplace[c,	d	<>	ToString[x]	<>	“`”–>	””]]]];
Map[Close,	{a,	b}];	Get[b];	Map[DeleteFile,	{a,	b}];	SetAttributes[x,	f];
Definition[x]]
In[2247]:=	DefOptimum[OptDefinition]
Out[2247]=	Attributes[OptDefinition]=	{Listable,	Protected}
OptDefinition[x_	/;	Quiet[ProcQ[x]||	FunctionQ[x]]]:=	Module[{c=	$Packages,	a,	b,	d,	h=
Definition2[x]},	{a,	b}=	{h[[1;;–2]],	h[[–1]]};	ClearAllAttributes[x];	d=	(#1<>
(ToString[x]<>	“`”)&)/@	c;	ToExpression[(StringReplace[#1,	GenRules[d,	””]]&)/@	a];
SetAttributes[x,	b];	“Definition”[x]]

In[2500]:=	DefOpt1[x_]	:=	Module[{a	=	ToString[x],	b,	c},
If[!	SymbolQ[a],	$Failed,	If[SystemQ[x],	x,

If[ProcQ[a]||FunctionQ[a],	b	=	Attributes[x];	ClearAttributes[x,	b];	c	=
StringReplace[ToString1[Definition[x]],	Context[a]	<>	a	<>	“`”–>	””];
SetAttributes[x,	b];	c,	$Failed]]]]

In[2501]	:=	DefOpt1[StrStr]
Out[2501]=	“StrStr[x_]:=	If[StringQ[x],	"<>x<>",	ToString[x]]”	In[2502]:=
Map[DefOpt1,	{a	+	b,	72,	Sin}]
Out[2502]=	{$Failed,	$Failed,	Sin}

The	algorithm	of	the	above	DefOptimum	procedure	is	based	on	saving	of	the	current
definition	of	a	block/function/modulex	in	anASCII	format	file	with	the	subsequent	its
converting	into	thetxt–datafile	containing	definition	of	the	objectx	without	occurrences	of
a	package	context	in	which	definition	of	this	object	is	located.	Whereupon	the	result
datafile	is	loaded	by	means	of	theGet	function	into	the	current	session	of	theMathematica
with	return	of	the	optimized	definition	of	the	objectx.

Meanwhile,	the	last	DefOpt1	procedure	of	the	previous	fragment	is	seemed	as	effective
enough	for	receiving	of	definition	of	the	user	procedure/function	in	optimized	format	in
the	above	sense,	i.e.	without	context.	The	procedure	callDefOpt1[x]	on	a	system
functionx	returns	its	name,	on	an	user	function	or	procedure	returns	its	optimized	code	in
string	format	whereas	on	other	values	of	argumentx$Failed	is	returned.	The	previous
fragment	represents	source	code	of	the	procedureDefOpt1	along	with	examples	of	its
usage.	For	a	number	of	appendices,	including	appendices	of	system	character,	the
standardDefinition	function	seems	as	important	enough	means	whose	call	Definition[x]
returns	the	definition	of	an	objectx	with	attributes	ascribed	to	it;	in	the	absence	of
definition	theNull,	i.e.	nothing,	or	the	ascribed	attributes	to	an	undefined	symbolx	is
returned,	namely:

Attributes[x]	=The	list	of	attributes	ascribed	to	a	symbol	x	As	very	visually	illustrate	the
following	simple	examples,	namely:

In[2839]:=	SetAttributes[h,	Listable];	Definition[h]
Out[2839]=	Attributes[h]=	{Listable}

In[2840]	:=	Definition[Sin]
Out[2840]=	Attributes[Sin]=	{Listable,	NumericFunction,	Protected}	Meanwhile,	on	the
other	hand,	many	problems	of	processing	of	objects	are	based	strictly	speaking	on	their
definitions	in	their	pure	form.	Therefore	the	allotment	of	definition	of	an	arbitrary	objectx
in	pure	form	can	be	provided,	in	particular,	by	means	of2	mechanisms	whose	essence	is
explained	by	the	examples	in	[28-33]	by	means	of	the	proceduresDef	andDef1;	definition
of	the	procedureDef1	gives	the	following	example,	namely:

In[2526]:=	Def1[x_	/;	StringQ[x]]	:=	Module[{a},	If[!	SymbolQ[x]	||	SystemQ[x],
$Failed,	a	=	Definition2[x][[1	;;–2]];	If[Length[a]	==	1,	a[[1]],	a]]]

In[2527]	:=	B[x_]	:=	x;	B[x_,	y_]	:=	Module[{a,	b,	c},	x	+	y];
B[x_	/;	IntegerQ[x]]	:=	Block[{a,	b,	c,	d},	x]
In[2528]:=	SetAttributes[B,	{Protected}];	Attributes[B]
Out[2528]=	{Protected}
In[2529]:=	Def1[“B”]
Out[2529]=	{”B[x_	/;	IntegerQ[x]]:=	Block[{a,	b,	c},	x]“,

“B[x_]:=	x“,	“B[x_,	y_]:=	Module[{a,	b,	c,	d},	x+	y]”}
In[2530]:=	Definition[B]
Out[2530]=	Attributes[B]=	{Protected}
B[x_	/;	IntegerQ[x]]:=	Block[{},	x]}
B[x_]:=	x
B[x_,	y_]:=	Module[{},	x+	y]

In	event	of	an	object	x	of	the	same	name	the	procedure	callDef1[x]	returns	the	list	of	the
optimized	definitions	of	the	objectx	in	string	format	without	the	attributes	ascribed	to	it.
Ifx	defines	an	unique	name,	the	call	returns	the	optimized	definition	of	the	objectx	in
string	format	without	the	attributes	ascribed	to	it.	The	name	of	an	objectx	is	given	in	string
format;	in	addition,	on	unacceptable	values	of	argumentx$Failed	is	returned.
An	extension	of	the	standardAttributes	function	is	represented	by	simple	procedure,
whose	callAttributes1[x,	y,	z,	t,	…]	unlike	standard	function	on	objectsx,	y,	z,	t,	…,	that
differ	from	admissible	ones,	returns	the	empty	list,	i.e.	{},	without	output	of	any	error
messages	what	in	a	number	of	cases	more	preferably	from	standpoint	of	processing	of
erroneous	situations.	While	on	admissible	objectsx,	y,	z,	…	the	callAttributes1[x,	y,	z,	…]
returns	the	list	of	the	attributes	ascribed	to	objectsx,	y,	z,	…	The	following	fragment
represents	source	code	of	the	procedure	along	with	typical	examples	of	its	usage.

In[2796]:=	Attributes1[x__]	:=	Module[{a=
Map[Quiet[Check[Attributes[#],	{}]]	&,	{x}]},	If[Length[a]	==	1,	a[[1]],	a]]

In[2797]	:=	L	:=	{42,	47,	67,	25,	18};	SetAttributes[L,	{Flat,	Protected,	Listable}]
In[2798]:=	Attributes1[L[[5]],	Sin,	ProcQ]
Out[2798]=	{{},	{Listable,	NumericFunction,	Protected},	{}}
In[2799]:=	Attributes1[72,	a	+	b,	Attributes1,	While,	If]
Out[2799]=	{{},	{},	{},	{HoldAll,	Protected},	{HoldRest,	Protected}}

The	Attributes1	procedure	is	a	rather	useful	tool	in	a	number	of	appendices.	Means	of
processing	of	the	attributes	specific	to	procedures/functions	in	the	form	of
proceduresAttributesH	andDefAttributesH	are	presented	below.

As	it	was	noted	above,	the	strict	differentiation	of	the	blocks,	functions	and	modules	in
theMathematica	is	carried	out	not	by	means	of	their	names	as	it	is	accepted	in	the
majority	of	known	programming	languages	and	systems,	but	by	means	of	theirheadings.
For	this	reason	in	a	number	of	cases	of	the	advanced	procedural	programming,	the
important	enough	problem	of	the	organization	of	mechanisms	of	the	differentiated
processing	of	such	objects	on	the	basis	of	their	headings	arises.	A	number	of	such	means	is
presented	in	the	present	book,	here	we	will	determine	two	means	ensuring	work	with
attributes	of	objects	on	the	basis	of	their	headings.	The	following	fragment	represents
source	codes	of2	meansDefAttributesH	andAttributesH	along	with	typical	examples	of
their	usage.
The	callDefAttributesH[x,	y,	z,	p,	h,	…]	returnsNull,	i.e.	nothing,	assigning	{y=	“Set”}	or
deleting	{y	=	“Clear”}	the	attributes	determined	by	arguments	{z,p,	h,	…}	for	an	object
with	headingx.	Whereas	in	attempt	of	assigning	or	deleting	of	an	attribute,	nonexistent	in
the	current	version	of	the	system,	the	procedure	call	returns	the	list	whose1st	element
is$Failed,	whereas	the2nd	element–	the	list	of	the	expressions	different	from	the	current
attributes.	At	that,	the	callAttributesH[x]	returns	the	list	of	attributes	ascribed	to	an	object

with	headingx.	An	useful	function	whose	callClearAllAttributes[x,	y,	z,	…]	returnsNull,
i.e.	nothing,	canceling	all	attributes	ascribed	to	the	symbolsx,	y,	z,	…	completes	the	given
fragment.

In[2880]:=	DefAttributesH[x_	/;	HeadingQ[x],
y_	/;	MemberQ[{“Set”,	“Clear”},	y],	z___]	:=

Module[{a},	If[AttributesQ[{z},	a	=	Unique[g]],	ToExpression[y	<>	“Attributes[”	<>
HeadName[x]	<>	“,	”	<>	ToString[{z}]	<>	“]”],	{$Failed,	a}]]

In[2881]	:=	M[x__]	:=	Module[{},	{x}];	M[x__,	y_]	:=	Module[{},	{x}];	M[x___,	y_,
z_]	:=	x	+	y	+	z
In[2882]:=	DefAttributesH[“M[x___,	y_,	z_]”,	“Set”,	Flat,	Protected,	Listable]
In[2883]:=	Attributes[M]
Out[2883]=	{Flat,	Listable,	Protected}
In[2884]:=	DefAttributesH[“M[x___,	y_,	z_]”,	“Set”,	AvzAgn]
Out[2884]=	{$Failed,	{AvzAgn}}

In[2930]:=AttributesH[x_	/;	HeadingQ[x]]	:=
Attributes1[Symbol[HeadName[x]]]	In[2972]:=	AttributesH[“M[x___,	y_,	z_]”]
Out[2972]=	{Flat,	Listable,	Protected}
In[2973]:=	ClearAllAttributes[x__]	:=
Map[Quiet[ClearAttributes[#,	Attributes[#]];]	&,	{x}][[1]]

In[2974]	:=	SetAttributes[G,	{Flat,	Protected}];	SetAttributes[V,	{Protected}]
In[2975]:=	Map[Attributes,	{G,	V}]
Out[2975]=	{{Flat,	Protected},	{Protected}}
In[2976]:=	ClearAllAttributes[G,	V];	Attributes[G]
Out[2976]=	{}

The	represented	means	equally	with	Attributes1	andSetAttributes1	[33,48]	of	work	with
attributes	that	are	most	actual	for	objects	of	the	type	{Function,	Block,Module},	in	some
cases	are	rather	useful.	At	that,	these	means	can	be	used	quite	effectively	at	programming
and	other	means	ofdifferent	purpose,	first	of	all,	of	means	of	the	system	character.

The	mechanism	of	the	Mathematica	attributes	is	quite	effective	tool	both	for	protection	of
objects	against	modifications,	and	for	management	of	a	mode	of	processing	of	arguments
at	calls	of	blocks,	functions	and	modules.	So,	by	means	of	assignment	to	a	procedure	or
function	of	theListable	attribute	can	be	specified	that	this	procedure	or	function	has	to	be
applied	automatically	to	all	actual	arguments	as	for	a	list	elements.	In	the	following
fragment	the	simple	procedure	is	presented,	whose	callCallListable[x,	y]	returns	the	list
of	valuesMap[x,Flatten	[{y}]],	wherex	–	a	block,	function	or	module	from	one	formal
argument,	andy	–	the	list	or	sequence	of	the	actual	arguments	that	can	be	and	empty.	The
fragment	represents	source	code	and	the	most	typical	examples	of	usage	of
theCallListable	procedure.

In[2977]:=	ToString[{a,	b,	c	+	d,	72,	x*y,	(m	+	n)*Sin[p–t]}]
Out[2977]=	“{a,	b,	c+	d,	72,	x	y,	(m+	n)	Sin[p–	t]}”
In[2978]:=	CallListable[x_	/;	SystemQ[x]	||	BlockFuncModQ[x],	y___]	:=	Module[{a
=	Attributes[x]},	If[MemberQ[a,	Listable],	x[Flatten[{y}]],	SetAttributes[x,
Listable];	{x[Flatten[{y}]],	ClearAttributes[x,	Listable]}[[1]]]]

In[2979]	:=	CallListable[ToString,	{a,	b,	c	+	d,	80,	x*y,	(m	+	n)*Sin[p–t]}]	Out[2979]=
{”a“,	“b“,	“c+	d“,	“80“,	“x	y“,	“(m+	n)	Sin[p–	t]”}
In[2980]:=	CallListable[ToString,	a,	b,	c	+	d,	480,	x*y,	(m	+	n)*Sin[p–t]]	Out[2980]=
{”a“,	“b“,	“c+	d“,	“480“,	“x	y“,	“(m+	n)	Sin[p–	t]”}
In[2981]:=	CallListable[ToString]
Out[2981]=	{}

The	approach	used	by	theCallListable	procedure	is	quite	effective	and	can	be	used	in	a
number	of	the	appendices	programmed	in	theMathematica.

In	conclusion	of	this	section	some	useful	means	for	receiving	the	optimized	definitions	of
procedures/functions	are	in	addition	represented.	So,	the	call	DefFunc[x]	provides	return
of	theoptimized	definition	of	anx–object	whose	definition	is	located	in	the	user	package
ornb-document	and	which	has	been	loaded	into	the	current	session.	At	that,	the	namex
should	define	an	object	without	any	attributes	and	options;	otherwise	the	erroneous
situation	arises.	The	fragment	below	represents	source	code	of	theDefFunc	procedure
with	typical	examples	of	its	usage.

In[2461]:=	DefFunc[x_	/;	SymbolQ[x]	||	StringQ[x]]	:=
Module[{a	=	GenRules[Mapp[StringJoin,	{“Global`”,	Context[x]},

ToString[x]	<>	“`”],	””],	b	=	StringSplit[ToString[InputForm[Definition[x]]],	“\n
\n”]},	ToExpression[Map[StringReplace[#,	a]	&,	b]];	Definition[x]]	In[2462]:=
Definition[ListListQ]
Out[2462]=	ListListQ[AladjevProcedures`ListListQ`L_]:=

If[AladjevProcedures`ListListQ`L!=	{}&&
ListQ[AladjevProcedures`ListListQ`L]&&
Length[Select[AladjevProcedures`ListListQ`L,	ListQ[#1]&&	Length[#1]==
Length[AladjevProcedures`ListListQ`L[[1]]]&]]==

Length[AladjevProcedures	`ListListQ`L],	True,	False]	In[2463]:=	DefFunc[ListListQ]
Out[2463]=	ListListQ[L_]:=	If[L!=	{}&&	ListQ[L]&&

Length[Select[L,	ListQ[#1]&&	Length[#1]==	Length[L[[1]]]&]]==	Length[L],	True,
False]

Naturally,	the	standard	Definition	function	also	is	suitable	for	receiving	of	definition	of	an
object	activated	in	the	current	session,	but	in	case	of	amfile	or	anb–document	exists	an
essential	distinction	as	is	well	illustrated	by	the	return	of	definition	of	theListListQ
function	fromAVZ_Package	package	[48]	by	means	of	both	theDefinition	function,	and
ourDefFunc	procedure.	In	the	second	case	the	obtained	definition	is	essentially	more
readably,	first	of	all,	for	large	source	codes	of	procedures	and	functions.	With	procedures
DefFunc1,	DefFunc2	andDefFunc3	which	are	quite	useful	versions	of	the	aboveDefFunc
procedure,	the	interested	reader	can	familiarize	oneself	in	[28-33];	the	means	are
presented	and	in	our	package	[48].	These	means	also	are	functionally	adjoined	by	the
ToDefOptPF	procedure	and	the	OptRes	function	[28,48].	Meanwhile,	theToDefOptPF
procedure	is	inefficient	for	a	case	when	the	user	packages	with	identical	contexts	have
been	loaded	into	the	current	session	[33].	We	for	the	similar	purposes	widely	use	the
above	Definition2	procedure.

Withal,	having	provided	loading	of	the	user	package	for	instance	UPackage	by	the
callLoadMyPackage[“…	\UPackage.mx”,	Context],	all	definitions	containing	in	it	will
be	in	the	optimized	format,	i.e.	they	will	not	contain	the	context	associated	with
theUPackage	package.	At	that,	processing	of	means	of	a	package	loaded	thus	will	be
significantly	simpler.	TheLoadMyPackage	procedure	is	considered	in	appropriate
section.	In	the	subsequent	sections	of	the	presented	book	the	means	of	manipulation	with
the	main	components	of	definitions	of	the	user	procedures	and	functions	are	considered.

6.2.	Definition	of	the	user	functions	and	pure	functions	in	software	of
theMathematicasystem

First	of	all,	we	will	notice	that	so	–calledfunctional	programming	isn’t	any	discovery
ofMathematica	system,	and	goes	back	to	a	number	of	software	means	that	appeared	long
before	the	above	system.	In	this	regard	we	quite	pertinently	have	focused	slightly	more	in
details	the	attention	on	theconcept	of	functional	programming	in	a	historical	context	[30-
33].	Whereas	here	we	only	will	note	certain	moments	characterizing	specifics	of	the
paradigm	of	functional	programming.	We	will	note	only	that	the	foundation	offunctional
programming	has	been	laid	approximately	at	the	same	time,	asimperative	programming
that	is	the	most	widespread	now,	i.e.	in	the30th	years	of	the	last	century.A.	Church(USA)–
the	author	ofλ–calculus	and	one	of	founders	of	the	concept	of	Homogeneous
structures(Cellular	Automata)	in	connection	with	his	works	in	the	field	of	infinite	abstract
automata	and	mathematical	logic	along	withH.	Curry(England)	andM.
Schönfinkel(Germany)	that	have	developed	the	mathematical	theory	ofcombinators,	with
good	reason	can	be	considered	as	the	main	founders	of	mathematical	foundation	of
functional	programming.	At	that,functional	programming	languages,	especiallypurely
functional	ones	such	asHope	andRex,	have	largely	been	used	in	academical	circles	rather
than	in	commercial	software	development.	While	prominent	functional	programming
languages	such	asLisp	have	been	used	in	industrial	and	commercial	applications.	Today,
functional	programming	paradigm	is	also	supported	in	somedomain-specific	programming
languages	for	example	byMathlanguage	of	theMathematica	system.	From	rather	large
number	of	languages	of	functional	programming	it	is	possible	to	note	the	following
languages	which	exerted	a	great	influence	on	progress	in	this	field,	namely:	Lisp,	Scheme,
ISWIM,	familyML,	Miranda,	Haskell,	Clean,	etc.	[33].	By	and	large,	if	theimperative
languages	are	based	on	operations	of	assignment	and	cycle,	thefunctional	languages	on
recursions.	From	advantages	of	functional	languages	can	be	noted	the	following	the	most
important,	namely:
–programs	on	functional	languagess	as	a	rule	are	much	shorter	and	simpler	than	their
analogs	on	imperative	languages;
–almost	all	modern	functional	languages	are	strictly	typified	ensuring	the	safety	of
programs;strict	typification	allows	to	generate	more	effective	code;
–in	a	functional	language	the	functions	can	be	transferred	as	an	argument	to	other
functions	or	are	returned	as	result	of	their	call;
–in	the	pure	functional	languages	(which	aren’t	allowing	by–effects	for	functions)	there	is
no	an	operator	of	assigning,	objects	of	such	language	can’t	be	modified	and	deleted,	it	is
only	possible	to	create	new	objects	by	decomposition	and	synthesis	of	the	existing	ones.	In
pure	functional	languages	all	functions	are	free	from	by-effects.	Meanwhile,	functional

languages	can	imitate	the	certain	useful	imperative	properties.	Not	all	functional
languages	are	pure	forasmuch	in	many	cases	the	admissibility	of	by–effects	allows	to
essentially	simplify	programming.	However	today	the	most	developed	functional
languages	are	as	a	rule	pure.	With	many	interesting	enough	questions	concerning	a	subject
of	functional	programming,	the	reader	can	familiarize	oneself,	for	example,	in	[74].	While
with	quite	interesting	critical	remarks	on	functional	languages	and	possible	ways	of	their
elimination	it	is	possible	to	familiarize	oneself	in	[28-33,75].

A	series	of	concepts	and	paradigms	are	specific	for	functional	programming	and	are	absent
inimperative	programming.	Meanwhile,	many	programming	languages,	as	a	rule,	are
based	on	several	paradigms	of	programming,	thus	imperative	programming	languages	can
quite	use	and	concepts	offunctional	programming.	In	particular,	as	an	important	enough
concept	are	so–called	pure	functions,	whose	result	of	performance	depends	only	on	their
factual	arguments.	Such	functions	possess	certain	useful	properties	a	part	of	which	it	is
possible	to	use	for	optimization	of	program	code	and	parallelization	of	calculations.
Questions	of	realization	of	certain	properties	of	pure	functions	in	the	environment	of
imperativeMaple–language	have	been	considered	in	[28-33].	In	principle,	there	are	no
special	difficulties	for	programming	in	the	functional	style	in	languages	that	aren’t	the
functional.	TheMath–language	professing	the	mixed	paradigm	of	functional	and
procedural	programming	supports	functional	programming,	then	theMaple–language
professing	the	concept	of	especially	procedural	programming	at	the	same	time	only	allows
certain	elements	of	functional	programming.

However,	first	of	all	a	few	words	about	the	system	functions,	i.e.	functions	belonging
properly	to	the	Math–language	and	its	environment.	Generally	speaking,	to	call	these
system	tools	by	functions	is	not	entirely	correct	since	realization	of	many	of	them	is	based
on	the	procedural	organization,	but	we	stopped	on	such	terminology	inherent	actually	to
the	system.	So,	theMathematica	system	has	very	large	number	of	the	built-in	functions,	at
the	same	time	it	provides	simple	enough	mechanisms	for	definition	of	the	user	functions.
In	the	simplest	case	a	certain	functionF	with	several	formal	argumentsx,	y,	z,	…	has	the
following	very	simple	format,	namely:

F[x_,y_,z_,…]	{:=|=}an	expression	dependent	on	variables	x,	y,	z,…	as	a	rule

So,	F[x_]:=x^3+80	defines	the	functionF(x)=x^3+80	in	standardmathematical	notation;
the	call	of	such	function	on	concrete	actual	argument	is	defined	as	F[x],	in	particular,	as
illustrates	the	following	simple	example,	namely:	In[2442]:=	F[x_]	:=	x^3	+	90;	F[500]
Out[2442]=	125000090

For	receiving	of	definition	of	an	arbitrary	function	(and	not	only	functions,but	an	arbitrary
definition	on	the	basis	of	operator	of	postponed“:=”or	immediate“=”	assignments),
excepting	the	built–in	functions,	serve	the	built–inDefinition	function	along	with	our
means	considered	in	the	previous	section,	allowing	to	receive	the	optimized	definitions	in
the	above	sense	of	as	procedures	and	functions.	We	will	consider	briefly	elements	of
functional	programming	in	theMathematica	in	whose	basis	the	concept	of	thepure
function	lays.	So,	thepure	functions–	one	of	the	basic	concepts	offunctional	programming
that	is	a	component	of	all	programming	system	in	theMathematica	in	general.	Further,
the	questions	relating	to	this	component	will	be	considered	in	more	detail,	here	we	will
define	only	the	basic	concepts.	In	theMathematica	pure	functions	are	defined	as	follows.

A	pure	function	in	the	environment	of	the	Mathematica	has	the	following	three	formats
of	coding,	namely:

Function[x,	Function	body]	–a	pure	function	with	one	formal	argumentx;

Function[{x1,x2,	…,xp},Function	body]	–a	pure	function	with	formal	argumentsx1,	x2,
…,xp;
(Function	body)&	–a	pure	function	with	formal	arguments#,#1,#2,…,	#n.

At	that,	at	using	of	the	third	format	that	is	often	called	as	short	form	of	pure	function	for
its	identification	theampersand	(&)	serves	whose	absence	causes	either	erroneous
situations	or	incorrect	results	at	impossibility	to	identify	the	demanded	pure	function.	The
reader	familiar	with	formal	logic	or	theLisp	programming	language	can	simply	identify
pure	functions	with	unnamed	functions	orλ–expressions.	Moreover,	the	pure	functions	are
rather	close	to	mathematical	concept	of	operators.	In	definition	of	apure	function
so–called	substitutes(#)	of	variables	are	used,	namely:

#	–the	first	variable	of	a	pure	function;
#n	–	n–th	variable	of	a	pure	function;
##	–sequence	of	all	variables	of	a	pure	function;
##n	–sequence	of	variables	of	a	pure	function	starting	withn–th	variable.

At	application	of	pure	functions,	unlike	traditional	functions	and	procedures,	there	is	no
need	to	designate	their	names,	allowing	to	code	their	definitions	directly	in	points	of	their
call	that	is	caused	by	that	the	results	of	the	calls	of	pure	functions	depend	only	on	values
of	the	actual	arguments	received	by	them.	So,	selection	from	a	listW	of	the	elements
meeting	certain	conditions	and	elementwise	application	of	a	function	to	elements	of	a	list
can	be	carried	out	by	constructions	of	the	formatSelect[W,	Test[#]	&]	andMap[F[#]	&,W]
respectively	as	illustrates	the	following	simple	example,	namely:

In[2341]	:=	Select	[{a,	72,	75,	42,	g,67,Art,	Kr,	2015,	s,47,500},	IntegerQ[#]	&]
Out[2341]=	{72,	75,	42,	67,	2015,	47,	500}
In[2342]:=	Map[(#^2	+	#)	&,	{1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11,	12}]
Out[2342]=	{2,	6,	12,	20,	30,	42,	56,	72,	90,	110,	132,	156}

At	using	of	the	short	form	of	a	pure	function	it	is	necessary	to	be	careful	at	its	coding
because	the	ampersand	has	quite	low	priority.	For	example,	the	expression#1+	#2–	#3+
#2&	withoutparentheses	is	correct	while,	generally	speaking,	they	are	obligatory,	in
particular,	at	using	of	apure	function	as	the	right	part	of	a	transformation	rule	as	illustrates
very	simple	example:	In[2392]:=	{a	/.	a–>	#1	+	#2	+	#3	&,	a	/.	a–>	(#1	+	#2	+	#3	&)}
Out[2392]=	{a	/.	a–>	#1+	#2+	#3&,	#1+	#2+	#3&}
In[2393]:=	{Replace[a,	a–>	#1*#2*#3	&],	a	/.	a–>	(#1*#2*#3	&)}

Replace::reps:	{a–>	#1#2#3&}	is	neither	a	list	of	replacement	rules	nor	a	valid	dispatch
table,	and	so	cannot	be	used	for	replacing.	>>	Out[2393]=	{Replace[a,	a–>	#1#2#3&],
#1#2#3&}

In	combination	with	a	number	of	functions,	in	particular,	Map,	Select	and	some	others	the
using	of	pure	functions	is	rather	convenient,	therefore	the	question	of	converting	from
traditional	functions	into	pure	functions	seems	a	quite	topical;	for	its	decision	various
approaches,	including	creation	of	the	program	converters	can	be	used.	We	used	pure

functions	a	rather	widely	at	programming	of	a	number	of	problems	of	different	types	of
the	applied	and	the	system	character	[28-33,48].

The	following	procedure	provides	converting	of	a	function	determined	by	the	formatG[x_,
y_,	…]:	=W(x,	y,	…)	into	pure	function	of	any	admissible	format,	namely:	the
callFuncToPure[x]	returns	the	pure	function	that	is	an	analog	of	a	functionx	of	the	third
format,	whereas	the	callFuncToPure[x,	p]	wherep	–	any	expression,	returns	pure	function
of	thetwo	first	formats.	The	fragment	below	represents	source	code	of	theFuncToPure
procedure	along	with	typical	examples	of	its	usage.

In[2822]	:=	FuncToPure[x_	/;	QFunction[ToString[x]],	y___]	:=	Module[{d,	t,	a	=
HeadPF[x],	b	=	Map[ToString,	Args[x]],	c	=	Definition2[x][[1]],	k	=	1,	h,	g	=	{},	p},	d
=	Map[First,	Mapp[StringSplit,	b,	“_”]];	p	=	StringTrim[c,	a	<>	”	:=	“];	h	=	“Hold[”
<>	p	<>	“]”;	{t,	h}=	{Length[b],	ToExpression[h]};	While[k	<=	t,	AppendTo[g,	d[[k]]
<>	“–>	#”	<>	ToString[k]];	k++];	h	=	ToString1[ReplaceAll[h,	ToExpression[g]]];	g	=
StringTake[h,	{6,–2}];	ToExpression[If[{y}!=	{},	“Function[”	<>	If[Length[b]	==	1,
StringTake[ToString[d],	{2,–2}],	ToString[d]]	<>	“,	”	<>	p	<>	“]”,	g	<>	”	&”]]]

In[2823]	:=	G[x_Integer,	y_Integer,	z_Real]	:=	z*(x	+	y)	+	Sin[x*y*z];	FuncToPure[G]
Out[2823]=#3	(#1+	#2)	+	Sin[#1#2#3]&
In[2824]:=	G[x_Integer,	y_Integer,	z_Real]	:=	z*(x	+	y)	+	Sin[x*y*z];	FuncToPure[G,
80]
Out[2824]=	Function[{x,	y,	z},	z*(x+	y)+	Sin[x*y*z]]
In[2825]:=	V[x_	/;	IntegerQ[x]]	:=	If[PrimeQ[x],	True,	False];
Select[{47,	72,	25,	18,	480,	13,	7,	41,	561,	2,	123,	322,	17,	23},	FuncToPure[V]]
Out[2825]=	{47,	13,	7,	41,	2,	17,	23}
In[2826]:=	{S[x_]	:=	x^2	+	23*x	+	16;	FuncToPure[S,	47],	FuncToPure[S][80]}
Out[2826]=	{Function[x,	x^2+	23*x+	16],	8256}

However,	at	using	of	the	FuncToPure	procedure	for	converting	of	a	certain	traditional
function	into	pure	function	it	must	be	kept	in	mind	a	number	of	the	essential	enough
moments.	First,	the	resultant	pure	function	won’t	have	attributes,	options	and	initial	values
of	arguments	along	with	logic	tests	for	admissibility	of	the	actual	arguments.	Secondly,	a
converting	automatically	doesn’t	do	the	resultant	function	as	a	pure	function	if	a	original
traditional	function	such	wasn’t,	i.e.	result	of	the	procedure	call	should	depend	only	on	the
obtained	actual	arguments.	A	number	of	useful	means	of	operating	with	pure	functions
will	be	considered	in	the	book	slightly	below.
On	the	other	hand,	the	following	procedure	in	a	certain	measure	is	inverse	to	the	previous
procedure,	its	callPureToFunc[x,	y]	wherex	–	definition	of	a	pure	function,	andy	–	an
unevaluated	symbol–	returnsNull,	i.e.	nothing,	providing	converting	of	definition	of	a	pure
functionx	into	the	evaluated	definition	of	equivalent	function	with	a	namey.	In	addition,	on
inadmissible	actual	arguments	the	procedure	call	is	returned	unevaluated.	The	fragment
below	represents	source	code	of	the	procedure	with	an	example	of	its	usage.

In[2525]:=	PureToFunc[x_	/;	PureFuncQ[x],	y_	/;	!	HowAct[y]]	:=

Module[{a	=	Map[ToString,	OP[x]],	b,	c,	d,	k	=	1},	b	=	Select[a,	StringTake[#,	{1,	1}]
==	“#”	&];	d	=	Map[StringReplace[#,	“#”–>	“x”]	&,	b];	c	=	ToString[y]	<>	“[“;
For[k,	k	<=	Length[b],	k++,	c	=	c	<>	d[[k]]	<>	“_,”];	c	=	StringTake[c,	{1,–2}]	<>	“]

:=	“;	ToExpression[StringTake[c	<>	StringReplace[ToString1[x],	GenRules[b,	d]],
{1,–4}]]]

In[2526]	:=	PureToFunc[#4*(#1	+	#2)/(#3–#4)	+	#1*#4	&,	Gs]	In[2527]:=
Definition[Gs]
Out[2527]=	Gs[x1_,	x2_,	x3_,	x4_]:=	(x4	(x1+	x2))/(x3–	x4)+	x1	x4

Unlike	FuncToPure	the	callModToPureFunc[x]	provides	the	converting	of	a	module	or
blockx	into	pure	function	under	following	conditions:(1)	the	module/blockx	can’t	have
local	variables	or	all	local	variables	should	have	initial	values;(2)	the	module/blockx	can’t
have	active	global	variables,	i.e.	variables	for	which	in	an	arbitrary	objectx	assignments
are	done;(3)	formal	arguments	of	the	returned	function	don’t	save	tests	for	their
admissibility;	(4)	the	returned	function	inherits	attributes	and	options	of	an	objectx.	The
fragment	below	represents	procedure	code	with	examples	of	its	application.

In[2428]	:=	ModToPureFunc[x_	/;	QBlockMod[x]]	:=	Module[{a,	c,	d,	p,	j,	t,	Atr	=
Attributes[x],	O	=	Options[x],	n	=	“$$$”	<>	ToString[x],	b	=
Flatten[{PureDefinition[x]}][[1]],	k	=	1,	q	=	{}},	ToExpression[“$$$”	<>	b];	c	=
LocalsGlobals1[Symbol[n]];	a	=	Args[Symbol[n],	80];	d	=
StringReplace[PureDefinition[n],	HeadPF[n]	<>	”	:=	“–>	””,	1];
ToExpression[“ClearAll[”	<>	n	<>	“]”];	If[c[[3]]	!=	{},	Return[{$Failed,	“Globals”,
c[[3]]}]];	c	=	Map[{#,	ToString[Unique[#]]}&,	Join[a,	c[[1]]]];	While[k	<=	Length[c],
p	=	c[[k]];	d	=	StringReplaceS[d,	p[[1]],	p[[2]]];	k++];	d	=	ToString[ToExpression[d]];
t	=	Map[ToString,	UnDefVars[ToExpression[d]]];

t	=	Map[StringTake[#,	{1,	If[StringFreeQ[#,	“$”],–1,	Flatten[StringPosition[#,	“$”]]
[[1]]–1]}]	&,	t];	k	=	1;	While[k	<=	Length[t],	j	=	1;	While[j	<=	Length[c],	If[t[[k]]	==
c[[j]][[2]],	AppendTo[q,	c[[j]][[1]]]];	j++];	k++];	k	=	1;	While[k	<=	Length[c],	p	=
c[[k]];	d	=	StringReplaceS[d,	p[[2]],	p[[1]]];	k++];	If[p	=	MinusList[q,	a];	p	!=	{},
{$Failed,	“Locals”,	p},	ToExpression[“ClearAll[”	<>	n	<>	“]”];	n	=	“$$$”	<>
ToString[x];	ToExpression[n	<>	”	:=	Function[”	<>	ToString[a]	<>	“,	”	<>	d	<>	“]”];
If[Atr	!=	{},	ToExpression[“SetAttributes[”	<>	n	<>	“,”	<>

ToString[Atr]	<>	“]”]];	If[O	!=	{},	ToExpression[“SetOptions[”	<>	n	<>	“,”	<>
ToString[O]	<>	“]”]];	n]]	In[2429]:=	B[x_,	y_]	:=	Block[{a,	b	=	80,	c,	d},	(a	+	b	+	c)*(x
+	y	+	d)];	B1[x_,	y_]	:=	Block[{a	=	480,	b	=	80,	c	=	72},	(a	+	b	+	c)*(x	+	y)];

SetAttributes[B1,	{Protected,	Listable}];	B2[x_,	y_]	:=	Block[{a	=	480,	b	=	80},	h	=	(a
+	b)*(x	+	y);	t	=	42];	B3[x_,	y_]	:=	Block[{a	=	480,	b,	c},	h	=	(a	+	b	+	c)*(x	+	y);	g	=
67];	B4[x_,	y_]	:=	Block[{a	=	480,	b	=	80},	h	=	(a	+	b)*(x	+	y);	t	=	z];	B5[x_,	y_]	:=
Module[{a	=	480,	b,	c,	d	=	80},	(a	+	b)*(c	+	d)]

In[2430]	:=	ModToPureFunc[B]
Out[2430]=	{$Failed,	“Locals“,	{”a“,	“c“,	“d”}}
In[2431]:=	ModToPureFunc[B1]
Out[2431]=	“$$$B1”
In[2432]:=	Definition[“$$$B1”]
Out[2432]=	Attributes[$$$B1]=	{Listable,	Protected}

$$$B1:=	Function[{x,	y},	632*(x+	y)]

In[2433]	:=	ModToPureFunc[B2]
Out[2433]=	{$Failed,	“Globals“,	{”h“,	“t”}}
In[2434]:=	ModToPureFunc[B3]
Out[2434]=	{$Failed,	“Globals“,	{”h“,	“g”}}
In[2435]:=	ModToPureFunc[B4]
Out[2435]=	{$Failed,	“Globals“,	{”h“,	“t”}}
In[2436]:=	ModToPureFunc[B5]
Out[2436]=	{$Failed,	“Locals“,	{”b“,	“c”}}
In[2437]:=	A[m_,	n_,	p_	/;	IntegerQ[p],	h_	/;	PrimeQ[h]]	:=

Module[{a	=	42.80},	h*(m+n+p)/a]	In[2438]:=	ModToPureFunc[A]
Out[2438]=	“$$$A”
In[2439]:=	Definition[“$$$A”]
Out[2439]=	$$$A:=	Function[{m,	n,	p,	h},	0.0233645*h*(m+	n+	p)]	In[2440]:=	M[x_,	y_
/;	StringQ[y]]	:=	Module[{a,	b	=	80,	c	=	6,	d},	a*x	+	b*y]	In[2441]:=	SetAttributes[M,
Protected];	ModToPureFunc[M]	Out[2441]=	{$Failed,	“Locals“,	{”a“,	“d”}}
In[2442]:=	G[x_]	:=	Module[{a	=	90,	b	=	500},	a	+	b];	ModToPureFunc[G];

Definition[$$$G]
Out[2442]=	$$$G:=	Function[{x},	590]

A	successful	call	ModToPureFunc[x]	returns	the	name	of	the	resultant	pure	function	in
the	formToString	[Unique[x]],	otherwise	procedure	call	returns	the	nested	list	of	the
format	{$Failed,	{”Locals”|”Globals”},	{list	of	variables	in	string	format}}	whose	the
first	element$Failed	determines	inadmissibility	of	converting,second	element–	the	type	of
the	variables	that	were	as	a	reason	of	it	while	the	third	element–	the	list	of	variables	of	this
type	in	string	format.	At	that,	the	name	of	a	block	or	module	should	be	as	the	actual
argumentx,	otherwise	the	procedure	call	is	returned	unevaluated.	Along	with	standard
means	the	procedure	in	very	essential	degree	uses	our	proceduresHeadPF,
Args,LocalsGlobals1,	ClearAllMinusList,	PureDefinition,	StringReplaceS,
QBlockMod,	UnDefVars	that	are	considered	in	the	present	book	and	in	considered	in	the
present	book	and	in	33],	that	allowed	to	considerably	simplify	programming	of	this
procedure.	These	means	and	at	programming	some	other	appendices	are	rather	useful.	In
general,	it	must	be	kept	in	mind	that	the	mechanism	of	thepure	functions	composes	a	core
of	the	paradigm	offunctional	programming	inMathematica.

6.3.	Means	of	testing	of	procedures	and	functions	in	the
Mathematicasoftware

Having	defined	procedures	of	two	types	(ModuleandBlock)	and	functions,	includingpure
functions,	at	the	same	time	we	have	no	standard	means	for	identification	of	objects	of	the
given	types.	In	this	regard	we	created	a	series	of	means	that	allow	to	identify	objects	of	the
specified	types.	In	the	present	section	non–standard	means	for	testing	of	procedural	and
functional	objects	are	considered.	We	will	note	that	theMathematica–	a	rather	closed
system	in	contradistinction,	for	example,	to	its	main	competitor–	theMaple	system	in
which	perusal	of	source	codes	of	its	software	that	are	located	both	in	the	main	and	in
auxiliary	libraries	is	admissible.	While	theMathematica	system	has	no	similar

opportunity.	In	this	connexion	the	software	presented	below	concerns	only	to	the	user
functions	and	procedures	loaded	into	the	current	session	from	a	package(m–or
themx–file),	or	a	document(nb–file;also	may	contain	a	package)	and	activated	in	it.
It	is	known	that	for	providing	a	modularity	of	the	software	the	procedures	are	rather
widely	used	that	in	the	conditions	of	theMathematica	system	the	modular	and	block
constructions	provide.	Both	a	module(Module),	and	a	block(Block)	provide	the	closed
domain	of	variables	which	is	supported	via	the	mechanism	of	local	variables.	Procedures
on	the	basis	of	both	modular,	and	block	structure	provide,	in	general,	a	rather	satisfactory
mechanism	of	the	modularity.	Above	we	attributed	the	modular	and	block	objects	to	the
procedure	type,	but	here	not	everything	so	unambiguously	and	that	is	why.	In	procedural
programming	a	procedure	represents	some	kind	of	so–called	“black	box”	whose	contents
is	hidden	from	the	external	software	with	which	it	interacts	only	through	arguments	and
global	variables(if	they	are	used	by	a	procedure	body).	Whereas	action	domain	of	the	local
variables	is	limited	by	a	procedure	body	only,	without	crossing	with	the	variables	of	the
same	name	outside	of	procedure.	Meanwhile,	between	procedures	ofmodular	andblock
types	exists	a	rather	essential	distinction	which	is	based	on	mechanisms	of	local	variables
that	are	used	by	both	types	of	procedures.	In	brief	the	essence	of	such	distinction	consists
in	the	following.
Traditional	programming	languages	at	work	with	variables	use	mechanism	“lexical
scope“,	which	is	similar	to	the	modular	mechanism	inMathematica,	while	the	modular
mechanism	is	similar	to”dynamic	scope”	that	is	used,	for

example,	in	the	symbolic	languages	like	Lisp.	So,	if	lexical	scope	considers	the	local
variables	connected	with	a	module,	dynamic	scope	considers	the	local	variables	connected
only	with	a	concrete	segment	of	history	of	a	block	execution.	In	books	[28-33]	the
question	of	preference	of	procedures	on	the	basis	of	modular	structure,	than	on	the	basis	of
block	structure	is	considered	in	details.	Meanwhile,	the	block	procedures	are	often
convenient	in	case	of	organization	of	various	interactive	calculations.	Thus,	generally,
supposing	existence	of	procedures	of	the	above	two	types(modularandblock)	in	the
Mathematica	software,	for	ensuring	reliability	it	is	recommended	to	use	the	procedures
ofModule	type.	Distinctions	of	procedures	on	both	basics	can	be	illustrated	with	the
following	typical	examples,	namely:

In[2254]	:=	B[x_]	:=	Block[{a,	b,	c,	d},	x*(a	+	b	+	c	+	d)]
In[2255]:=	{a,	b,	c,	d}=	{42,	47,	67,	6}
Out[2255]=	{42,	47,	67,	6}
In[2256]:=	{B[100],	a,	b,	c,	d}
Out[2256]=	{16200,	42,	47,	67,	6}
In[2257]:=	B[x_]	:=	Block[{a	=	80,	b	=	480,	c,	d},	x*(a	+	b	+	c	+	d)]	In[2258]:=
{B[100],	a,	b,	c,	d}
Out[2258]=	{63300,	42,	47,	67,	6}
In[2259]:=	M[x_]	:=	Module[{a	=	80,	b	=	480,	c,	d},	x*(a	+	b	+	c	+	d)]	In[2260]:=
{M[100],	a,	b,	c,	d}
Out[2260]=	{100	(560+	c$75395+	d$75395),	42,	47,	67,	6}
In[2261]:=	{a,	b,	c,	d}=	{42,	47,	18,	25};
In[2262]:=	B2[x_]	:=	Block[{a,	b,	c,	d},	{a,b,c,d}=	{72,67,80,480};	Plus[a,b,c,d]]
In[2263]:=	{B2[100],	{a,	b,	c,	d}}

Out[2263]=	{699,	{42,	47,	18,	25}}

From	the	presented	fragment	follows,	if	local	variables	of	a	modular	object	aren’t	crossed
with	domain	of	values	of	the	variables	of	the	same	name	that	are	external	in	relation	to	it,
the	absolutely	other	picture	takes	place	in	a	case	with	local	variables	of	a	block	object,
namely:	if	initial	values	or	values	are	ascribed	toall	local	variables	of	such	object	in	its
body,	they	save	effect	in	the	object	body;	those	variables	of	object	to	which	such	values
weren’t	ascribed	accept	values	of	the	variables	of	the	same	name	that	are	external	in
relation	to	the	block	object.	So,	at	fulfillment	of	the	listed	conditions	themodular	and

block	objects	relative	to	local	variables(and	in	general	as	procedural	objects)	can	quite	be
considered	as	equivalent.	Naturally,	told	remains	in	force	also	for	block	objects	with
empty	lists	of	local	variables.	Specified	reasons	have	been	laid	to	the	basis	of	an	algorithm
programmed	by	theRealProcQ	procedure	represented	by	the	following	fragment.

In[2347]:=	RealProcQ[x_]	:=	Module[{a,	b	=	”	=	“,	c,	d,	p},

If[!	ProcQ[x],	False,	If[ModuleQ[x],	True,	a	=	Locals1[x];	c	=	PureDefinition[x];	d	=
Map[#[[1]]–1	&,	StringPosition[c,	b]];	p	=	Map[ExprOfStr[c,	#,–1,	{”	“,	“{“,	“[“}]	&,
d];	p	=	DeleteDuplicates[Flatten[Map[StrToList,	p]]];	If[p	==	a,	True,	False]]]]

In[2348]	:=	B1[x_]	:=	Block[{a	=	80,	b	=	480,	c	=	72,	d	=	42},	x*(a	+	b	+	c	+	d)];
RealProcQ[B1]
Out[2348]=	True
In[2349]:=	M2[x_]	:=	Block[{a	=	80,	b	=	480,	c,	d},	{c,	d}=	{42,	47};x*a*b*c*d];
RealProcQ[M2]
Out[2349]=	True
In[2350]:=	M3[x_]	:=	Block[{a	=	80,	b	=	48,	c,	h},	h	=	72;	x*h];	RealProcQ[M3]
Out[2350]=	False

Experience	of	usage	of	the	RealProcQ	procedure	confirmed	its	efficiency	at	testing
objects	of	the	type”Block”	that	are	considered	as	real	procedures.	At	that,	we	will
understand	an	object	of	type	{Module,Block}	as	areal	procedure	which	in
theMathematica	software	is	functionally	equivalent	to	aModule,	i.e.	is	some	procedure	in
its	classical	understanding.	The	callRealProcQ[x]	returnsTrue	if	the	symbolx	defines
aModule	or	aBlock	which	is	equivalent	to	aModule,	andFalse	otherwise.	At	that,	it	is
supposed	that	a	certain	block	is	equivalent	to	a	module	if	all	its	local	variables	have	initial
values	or	some	local	variables	have	initial	values	while	others	obtain	values	by	the
operator	“=”	in	the	block	body.	The	procedure	along	with	the	standard	means	uses	as	well
proceduresProcQ,	Locals1,	ModuleQ,	ExprOfStr,	StrToList	which	are	considered	in	the
present	book	and	in	[33].	From	all	our	means	solving	the	problem	of	testing	of
theprocedural	objects,	the	aboveRealProcQ	procedure	with	the	greatest	possible
reliability	identifies	the	procedure	in	its	classical	understanding;	in	addition,	the	procedure
can	be	of	type	{Module,	Block}.	In	some	cases	in	addition	to	the	above	means	of	testing
of	theMath-objects	a	rather	useful	and	quite	simple	procedure	can	be	used	whose
callBlockQ[x]	returnsTrue	if	the	symbolx	defines	a	block	object,	andFalse	otherwise.	The
following	fragment	represents	source	code	of	theBlockQ	procedure	along	with	the	most
typical	examples	of	its	usage.

In[2377]	:=	BlockQ[x_]	:=	Module[{b,	a	=	If[SymbolQ[x],

Flatten[{PureDefinition[x]}][[1]],	$Failed]},	If[MemberQ[{$Failed,	“System”},	a],
False,

b	=	Mapp[StringJoin,	{”	:=	“,	”	=	“},	“Block[{“];	If[SuffPref[a,	Map3[StringJoin,
HeadPF[x],	b],	1],	True,	False]]]	In[2378]:=	Sv[x_]	:=	Module[{},	y	:=	72;	z	:=	67;	{y,
z}];
Agn[x_]	:=	Block[{a	=	80},	a*x];	Kr[x_]	:=	Block[{y	=	a,	h	=	b},

(y^2	+	h^2)*x];	Art[x_]	:=	Module[{a	=	72},	x*a]	In[2379]:=	Map[BlockQ,	{Sv,	Kr,
Agn,	Art,	a	+	b,	90}]
Out[2379]=	{False,	True,	True,	False,	False,	False}

In[2380]:=	BlockQ1[x_Symbol]	:=	If[TestBFM[x]	===	“Block”,	True,	False]
In[2381]:=	Map[BlockQ1,	{Sv,	Kr,	Agn,	Art,	80}]
Out[2381]=	{False,	True,	True,	False,	BlockQ1[80]}
In[2382]:=	ModuleQ1[x_Symbol]:=	If[TestBFM[x]===”Module“,True,False]
In[2383]:=	Map[ModuleQ1,	{Sv,	Kr,	Agn,	Art,	90}]
Out[2383]=	{True,	False,	False,	True,	ModuleQ1[90]}

In[2384]	:=	ModuleQ2[x_]	:=	Module[{b,	a	=	If[SymbolQ[x],
Flatten[{PureDefinition[x]}][[1]],	$Failed]},	If[MemberQ[{$Failed,	“System”},	a],
False,

b	=	Mapp[StringJoin,	{”	:=	“,	”	=	“},	“Module[{“];	If[SuffPref[a,	Map3[StringJoin,
HeadPF[x],	b],	1],	True,	False]]]

The	above	fragment	is	completed	by	an	example	with	the	simple	BlockQ1	function	which
is	functionally	equivalent	to	the	previousBlockQ	procedure	and	is	based	on	ourTestBFM
procedure;	this	fragment	represents	also	not	less	simpleModuleQ1	function	whose
callModuleQ1[x]	returnsTrue	if	the	symbolx	defines	a	modular	structure,	andFalse
otherwise.	The	result	of	the	procedure	callModuleQ2[x]	is	analogous	to	the
callModuleQ1[x].	We	will	note,	the	previous	means	of	testing	of	objects	of	type
{Module,Block,	Function}	support	only	single	objects,	but	not	objects	of	the	same	name,
i.e.	for	each	such	object	in	the	current	session	ofMathematica	system	the	only	definition
should	be	activated.	Therefore	the	means	of	testing	of	objects	in	independence	from
number	of	the	definitions	standing	behind	them	are	of	special	interest.	Such	problem	is
solved	by	the	followingFuncBlockModQ	procedure,	whose	result	of	a
callFuncBlockModQ[x,	y]	returnsTrue,	ifx	–	the	symbol	defines	an	object	of	type
{Function,Module,Block};	at	that,	in	the	presence	for	the	symbolx	of	several	definitions
theTrue	is	returned	only	if	all	its	definitions	generate	an	object	of	the	same	type.	Whereas
through	the	second	argumenty	–an	undefinite	variable–	an	object	type	in	the	context	of
{”Function“,	“Block“,	“Module”}	is	returned.	If	symbolx	defines	an	object	of	the	same
name	whose	definitions	are	associated	with	subobjects	of	different	types,	the	procedure
callFuncBlockModQ[x,y]	returnsFalse	while	thru	the	2nd	argumenty	“Multiple”	is
returned.	The	following	fragment	represents	source	code	of	theFuncBlockModQ
procedure	along	with	the	most	typical	examples	of	its	usage.

In[2654]:=	FuncBlockModQ[x_	/;	SymbolQ[x],	y_	/;	!	HowAct[y]]	:=	Module[{b,	c,
m,	n,	a	=	PureDefinition[x]},

If[MemberQ[{“System”,	$Failed},	a],	False,	a	=	Flatten[{a}];	b	=

Flatten[{HeadPF[x]}];	c	=	Join[Mapp[StringJoin,	b,	”	:=	“],	Mapp[StringJoin,	b,	”	=
“]];	c	=	GenRules[c,	””];	c	=	StringReplace[a,	c];	{m,	n}=	Map[Length,	{Select[c,
SuffPref[#,	“Block[{“,	1]	&],	Select[c,	SuffPref[#,	“Module[{“,	1]	&]}];	If[Length[a]
==	m,	y	=	“Block”;	True,

If[Length[a]	==	n,	y	=	“Module”;	True,
If[m	+	n	==	0,	y	=	“Function”;	True,	y	=	“Multiple”;	False]]]]]

In[2655]	:=	Sv[x_]	:=	Module[{},	y	:=	72;	z	:=	667;	{y,	z}];
Agn[x_]	:=	Block[{a	=	80},	a*x];	B[x_]	:=	Block[{a,	b,	c,	d},	x*(a	+	b	+	c	+	d)];	B[x_,
y_]	:=	Block[{},	x	+	y];	M[x_]	:=	Module[{a,	b,	c,	d},	x*(a	+	b	+	c	+	d)];	M[x_,	y_]	:=
Module[{},	x	+	y];	V[x_]	:=	Module[{a,	b,	c,	d},	x*(a	+	b	+	c	+d)];	V[x_,	y_]	:=
Block[{},	x	+	y];	F[x_,	y_]	:=	x	+	y;	F[x_,	y_,	z_]	:=	x	+	y	+	z

In[2656]:=	{FuncBlockModQ[Sv,	y],	y}

Out[2656]	=	{True,	“Module”}
In[2657]:=	{FuncBlockModQ[B,	y1],	y1}
Out[2657]=	{True,	“Block”}
In[2658]:=	{FuncBlockModQ[M,	y2],	y2}
Out[2658]=	{True,	“Module”}
In[2659]:=	{FuncBlockModQ[V,	y3],	y3}
Out[2659]=	{False,	“Multiple”}
In[2660]:=	{FuncBlockModQ[While,	y4],	y4}
Out[2660]=	{False,	y4}
In[2661]:=	{FuncBlockModQ[F,	y4],	y4}
Out[2661]=	{True,	“Function”}

This	procedure	along	with	standard	means	uses	also	our	means	GenRules,	HeadPF,
HowAct,	Mapp,	PureDefinition,	SuffPref	andSymbolQ	that	are	considered	in	this	book
and	in	[32,33].	Below,	other	means	of	testing	of	the	objects	of	type	{”Function“,”Block“,
“Module”}	will	be	presented	too,	though	already	the	above	means	allow	to	considerably
solve	the	given	problem.

Insofar	as	procedures	of	both	types	(Module,	Block)	along	with	functions	of	the	user	are
basic	objects	of	procedural	programming	in	theMathematica	then	a	very	important
problem	of	creation	of	means	for	testing	of	belonging	of	an	object	to	the	type	{Module,
Block,	Function}	exists.	The	next	fragment	represents	theTestBFM	procedure	that	is
successfully	solving	this	problem.

In[2620]:=	TestBFM[x_]	:=	Module[{a	=	Flatten[{PureDefinition[x]}],	b,	d,	h,	p,	k,	j,
t	=	{}},

If[MemberQ[{$Failed,	“System”},	a[[1]]],	Return[$Failed],	b	=
Flatten[{HeadPF[x]}];	For[k	=	1,	k	<=	Length[a],	k++,	d	=	a[[k]];	p	=	Map[b[[k]]	<>
#	&,	{”	:=	“,	”	=	“}];	h	=	StringReplace[d,	{p[[1]]–>	””,	p[[2]]–>	””},	1];
If[SuffPref[h,	“Module[{“,	1],	t	=	AppendTo[t,	“Module”],	If[SuffPref[h,	“Block[{“,
1],	t	=	AppendTo[t,	“Block”],

If[SuffPref[h,	“DynamicModule[{“,	1],
t	=	AppendTo[t,	“DynamicModule”],	t	=	AppendTo[t,	“Function”]]]]]];	If[Length[t]

==	1,	t[[1]],	t]]

In[2621]	:=	M[x_]	:=	x;	M[x_,	y_]	:=	Module[{},	x	+	y];
M[x_,	y_,	z_]	:=	Block[{},	x	+	y	+	z];
In[2622]:=	PureDefinition[M]
Out[2622]=	{”M[x_]:=	x“,	“M[x_,	y_]:=	Module[{},	x+y]“,
“M[x_,	y_,	z_]:=	Block[{},	x+y+z]”}
In[2623]:=	TestBFM[M]
Out[2623]=	{”Function“,	“Module“,	“Block”}
In[2624]:=	Map[TestBFM,	{a	+	b,	avz,	Sin,	SuffPref,	For,	2015}]
Out[2624]=	{$Failed,	$Failed,	$Failed,	“Module“,	$Failed“,	$Failed}

The	procedure	call	TestBFM[x]	returns	the	type	of	a	functional,	modular	or	block	objectx
in	format“Function”,“Module”,	“DynamicModule”,	“Block”,	whereas	on	argumentx	of
other	type	the	procedure	call	returns$Failed.	At	that,	if	an	argumentx	defines	an	object	of
the	same	name,	the	procedure	call	TestBFM[x]	returns	the	list	of	types	of	the	subobjects
composing	it,	having	bijection	with	the	list	of	definitions	returned	by	the
callPureDefinition[x].

At	that,	the	following	procedure	can	appear	as	an	useful	enough	means	of	testing	of
objects,	its	callProcFuncBlQ[x,	y]	returnsTrue	ifx	is	a	procedure,	function	or	block,
otherwiseFalse	is	returned.	Moreover,	at	return	ofTrue,	thru	argumenty	–an	undefinite
variable–	axobject	type	is	returned	{”Block“,	“Module“,	“DynamicModule“,	“Function“,
“PureFunction”},	otherwise	the2nd	argument	remains	undefinite.	The	next	fragment
represents	source	code	of	the	procedure	along	with	the	most	typical	examples	of	its	usage.

In[3178]:=	ProcFuncBlQ[x_,	y_	/;	!	HowAct[y]]	:=

Module[{a	=	ToString[HeadPF[x]],	b	=	ToString[y]	<>	”	=	“,	c	=	PureDefinition[x]},
If[ListQ[c],	False,	If[SuffPref[a,	“HeadPF[“,	1],	If[SuffPref[a,	”	&]”,	2],	y	=
“PureFunction”;	True,	False],	If[HeadingQ[a],
If[SuffPref[c,	a	<>	”	:=	Module[{“,	1],	y	=	“Module”;	True,	If[SuffPref[c,	a	<>	”	:=
Block[{“,	1],	y	=	“Block”;	True,	If[SuffPref[c,	a	<>	”	:=	DynamicModule[{“,	1],

y	=	“DynamicModule”;	True,	y	=	“Function”;	True]]],	False]]]]	In[3179]:=	Dm[]	:=
DynamicModule[{x},	{Slider[Dynamic[x]],	Dynamic[x]}]

In[3180]	:=	DPOb[]	:=	Module[{a	=	80,	b	=	67,	c	=	18,	d	=	25},	Plus[a,	b,	c,	d]]
In[3181]:=	B[x_]	:=	Block[{a},	a	=	x];	G	:=	Function[500	+	90*#	&];	In[3182]:=
Clear[g,	g1,	g2,	g3,	g4,	g5];	{ProcFuncBlQ[Dm,	g],

ProcFuncBlQ[DPOb,	g1],	ProcFuncBlQ[B,	g2],	ProcFuncBlQ[G,	g3],
ProcFuncBlQ[500	+	90*#	&,	g4],	ProcFuncBlQ[500,	g5]}	Out[3182]=	{True,	True,
True,	True,	True,	False}
In[3183]:=	{g,	g1,	g2,	g3,	g4,	g5}
Out[3183]=	{”DynamicModule“,	“Module“,	“Block“,	“PureFunction“,	“PureFunction“,
g5}
In[3184]:=	ClearAll[t];	F[x_]	:=	500	+	90*x;	{ProcFuncBlQ[F,	t],	t}	Out[3184]=	{True,
“Function”}

It	should	be	noted	that	this	procedure	is	correctly	executed	only	on	objects	of	the	above

type	provided	that	they	have	the	single	definitions,	otherwise	returning	theFalse.	The
procedure	along	with	standard	means	uses	also	our	meansHeadingQ,	HeadPF,	HowAct,
PureDefinition	andSuffPref	that	are	considered	in	the	present	book	and	in	our	previous
books	[32,33].

As	it	was	already	noted	above,	in	general	case	between	procedures	of	types	“Module”
and”Block”	exist	principal	enough	distinctions	which	don’t	allow	a	priori	to	consider	a
block	structure	as	a	full	procedure.	Such	distinctions	are	based	on	various	used
mechanisms	of	local	variables	as	it	was	visually	illustrated	with	examples	slightly	above.
It	is	possible	to	give	more	complex	examples	of	similar	distinctions	[30-33].	Therefore	the
type	of	a	procedure	should	be	chosen	rather	circumspectly,	giving	preference	to
procedures	of	the	type”Module“.	Therefore,	theBlockToModule	procedure	can	be	usefull
enough,	whose	callBlockToModule[x]	returnsNull,	providing	converting	of	a	procedure
of	the	type”Block”	into	procedure	of	the	type”Module“.	The	fragment	below	represents
source	code	of	theBlockToModule	procedure	along	with	typical	examples	of	its	usage.

In[2468]	:=	BlockToModule[x_Symbol]	:=	Module[{b,	c,	d,	h	=	{},	k	=	1,	n,	m,	a	=
Definition2[x]},	If[ListQ[a]	&&	a[[1]]	==	“System”	||	UnevaluatedQ[Definition2,	x],
$Failed,	b	=	a[[–1]];	ClearAllAttributes[x];	c	=	a[[1	;;–2]];	d	=	Flatten[{HeadPF[x]}];
For[k,	k	<=	Length[d],	k++,	{n,	m}=	{c[[k]],	d[[k]]};	If[SuffPref[n,	{m	<>	”	:=
Block[{“,	m	<>	”	=	Block[{”},	1],	AppendTo[h,	StringReplace[n,	“Block[{”–>
“Module[{“,	1]],	AppendTo[h,	n]]];	Map[ToExpression,	h];	SetAttributes[x,	b]]]

In[2469]	:=	V[x_]	:=	Module[{a,	b},	x*(a	+	b)];	V[x_,	y_]	:=	Block[{},	x	+	y];	V[x__]
:=	{x}
In[2470]:=	Options[V]	=	{agn–>	67,	asv–>	47};
SetAttributes[V,	{Protected,	Listable}]
In[2471]:=	Definition2[V]
Out[2471]=	{”V[x_]:=	Module[{a,	b},	x*(a+b)]“,	“V[x_,	y_]:=	Block[{},	x+y]“,
“V[x__]:=	{x}“,	“Options[V]=	{agn–>	67,	asv–>	47}“,	{Listable,	Protected}}
In[2472]:=	BlockToModule[V]
In[2473]:=	Definition2[V]
Out[2473]=	{”V[x_]:=Module[{a,	b},	x*(a+b)]“,	“V[x_,	y_]:=Module[{},	x+y]“,
“V[x__]:=	{x}“,	“Options[V]=	{agn–>	67,	asv–>	47}“,	{Listable,	Protected}}
In[2474]:=	G[x_]	:=	Block[{},	x^2];	G[x_,	y_]	=	Block[{},	x	*	y];	G[x__]	:=	Block[{},
{x}]
In[2475]:=	Options[G]	=	{ian–>	80,	rans–>	480};
SetAttributes[G,	{Protected,	Listable}]
In[2476]:=	Definition2[G]
Out[2476]=	{”G[x_]:=Block[{},x^2]“,	“G[x_,	y_]=x*y“,	“G[x__]:=Block[{},	{x}]“,
“Options[G]=	{ian–>	80,	rans–>	480}“,	{Listable,	Protected}}
In[2477]:=	BlockToModule[G];	Definition2[G]
Out[2477]=	{”G[x_]:=Module[{},	x^2]“,	“G[x_,	y_]=x*y“,	“G[x__]:=Module[{},	{x}]“,
“Options[G]=	{ian–>	80,	rans–>	480}“,	{Listable,	Protected}}

The	call	BlockToModule[x]	returnsNull,	i.e.	nothing,	simultaneously	with	converting	of	a
procedurex	ofblock	type	into	the	procedure	ofmodular	type	of	the	same	name	with
preservation	of	all	attributes	and	options	of	a	source	procedure	of	block	type.	Moreover,

several	definitions	ofmodules,blocks	or/	andfunctions	also	can	be	associated	with	an
objectx,	however	the	procedure	callBlockToModule[x]	provides	converting	only	ofblock
components	of	the	objectx	intomodular	structures.	The	above	examples	quite	visually
illustrate	the	aforesaid.
Due	to	the	mechanism	of	the	global	variables	used	by	blocks	and	modules	it	is	necessary
to	make	certain	explanations.	In	this	context	it	is	possible	to	distinguish	two	types	of
global	variables–	passive	andactive	ones.	Passive	global	variables	are	characterized	by
that,	they	are	only	used	by	an	object,	without	changing	their	values	outside	of	the	object.
While	the	assignment	of	values	by	means	of	operators	{“:=”,”=”}	foractive	global
variables	is	done	in	an	object	body,	changing	their	values	and	outside	of	the	object.	In
view	of	the	above	the	active	global	variables	are	of	interest	at	processing	of	blocks	and
modules,	and	procedures	in	general.	A	number	of	our	means	processing	the	objects	of	this
type	whose	definitions	contain	the	active	global	variables	consider	the	specified
circumstance,	carrying	out	processing	of	objects	of	the	type	{”Module”,”Block”}	so	that
not	to	change	values	ofactive	global	variables	used	by	them	outside	of	their	scope.	In	this
relation	the	proceduresBlockQ,	ModuleQ,BlockFuncModQ,BlockModQ	given	below
are	rather	indicative.

The	call	BlockFuncModQ[x]	returnsTrue,	ifx	–	a	symbol	defining	a	typical	(with
heading)	function,	block	or	module,	andFalse	otherwise.	While	the	call
BlockFuncModQ[x,	y]	on	condition	of	the	main	return	ofTrue	through	the	2nd	optional
argumenty	–an	undefinite	variable–	returns	type	of	an	objectx	in	the	context	of
{”Block“,”Function“,	“Module”}.	On	the	other	hand,	the	call	BlockModQ[x]
returnsTrue,	ifx	–	symbol	defining	a	block	or	module,	and	False	otherwise.	Whereas	the
callBlockModQ[x,	y]	on	condition	of	the	main	return	ofTrue	through	optional	argumenty
–an	undefinite	variable–	returns	type	of	an	objectx	in	the	context	of	{”Block“,”Module”}.
The	fragment	below	submits	source	codes	of	the	proceduresBlockModQ
andBlockFuncModQ	along	with	the	most	typical	examples	of	their	usage.

In[2612]:=	BlockFuncModQ[x_,	y___]	:=	Module[{b,	c,
a	=	Flatten[{PureDefinition[x]}][[1]]},

If[MemberQ[{$Failed,	“System”},	a],	False,	b	=	StringSplit[a,	{”	:=	“,	”	=	“},	2];
If[StringFreeQ[b[[1]],	“[“],	False,	c	=	If[SuffPref[b[[2]],	“Module[{“,	1],	“Module”,
If[SuffPref[b[[2]],	“Block[{“,	1],	“Block”,	“Function”]];	If[{y}!=	{}&&	!	HowAct[y],
y	=	c];	True]]]

In[2613]	:=	M[x_,	y_]	:=	Module[{a	=	80,	b	=	480},	x*y*a*b];
F[x_]	:=	x;	B[_]	:=	Block[{},	x]
In[2614]:=	{BlockFuncModQ[M,	y],	y}

Out[2614]	=	{True,	“Module”}
In[2615]:=	{BlockFuncModQ[F,	y1],	y1}
Out[2615]=	{True,	“Function”}
In[2616]:=	{BlockFuncModQ[B,	y2],	y2}
Out[2616]=	{True,	“Block”}

In[2639]:=	BlockModQ[x_,	y___]	:=	Module[{s	=	FromCharacterCode[6],	a	=
Flatten[{PureDefinition[x]}][[1]],	b,	c},

If[MemberQ[{$Failed,	“System”},	a],	False,	b	=	StringReplace[a,	{”	:=	“–>	s,	”	=
“–>	s},	1];	b	=	StringTake[b,	{Flatten[StringPosition[b,	s]][[1]]	+	1,–1}];	c	=
If[SuffPref[b,	“Module[{“,	1],	“Module”,	If[SuffPref[b,	“Block[{“,	1],	“Block”]];
If[{y}!=	{}&&	!	HowAct[y],	y	=	c];	If[c	===	Null,	False,	True]]]

In[2640]	:=	{BlockModQ[M,	y3],	y3}
Out[2640]=	{True,	“Module”}
In[2641]:=	{BlockModQ[F,	y4],	y4}
Out[2641]=	{False,	Null}
In[2642]:=	{BlockModQ[B,	y5],	y5}
Out[2642]=	{True,	“Block”}

From	the	aforesaid	follows,	at	programming	of	the	means	that	manipulate	with	objects	of
the	type	{”Block“,	“Module”}	and	which	use	global	variables,	it	is	necessary	to	consider
possibility,	what	in	the	course	of	the	call	of	these	means	for	their	global	variables	the
assignments	are	done	what	can	conflict	with	values	of	variables	of	the	same	name	which
have	been	received	in	the	current	session	earlier.	Naturally,	in	general,	that	isn’t	so
essential	for	the	reason	that	by	a	call	of	such	objects,	theglobal	variables	used	by	them	and
so	will	receive	values	if	is	being	not	envisaged	the	contrary.	In	order	to	avoid	possible
misunderstanding	a	procedure	has	to	provide	saving	of	values	of	global	variables	which
have	been	received	by	them	up	to	the	procedure	call	with	restoration	them	at	exit	from	the
procedure.	Simple	example	illustrates	a	mechanism	of	saving	of	values	of	a	variabley	of
the	current	session	that	is	used	as	global	variable	of	a	simple	procedureKr,	namely:
In[2495]:=	Kr[x_]	:=	Module[{a	=	90,	b	=	y},	y	=	500;	{a	+	y	+	x,	y	=	b}[[1]]]
In[2496]:=	y	=	42;	{Kr[100],	y}

Out[2496]=	{690,	42}

Functions	of	the	Mathematica	system	have	a	number	of	interesting	means	for	support	of
work	with	dynamic	objects.	We	recall	that	dynamic	module	DynamicModule[{x,y,	z,
…},W]	represents	an	object	that	supports	the	same	local	status	for	variablesx,y,	z,	…	in	the
course	of	evaluation	of	all	dynamic	objects	of	aW	body.	The	variables	specified
inDynamicModule	by	default	have	values	throughout	all	current	session.	At	that,	the
dynamic	object	can	act	not	only	directly	as	an	expression,	but	also,	in	particular,	as
coordinate	in	a	graphic	primitive,	as	an	object	of	type”slider“,	as	a	setting	for	an	option.
Meanwhile,	unlike	thestandard	module	thedynamic	module	directly	doesn’t	allow	to
receive	its	definition	by	the	standardDefinition	function,	only	our	proceduresDefinition2
andPureDefinition	allow	to	solve	this	problem	as	it	illustrates	the	following	fragment,
namely:

In[2760]	:=	Dm[x_,	y_	/;	PrimeQ[y]]	:=	DynamicModule[{a	=	90,	b	=	500},	a	+	b*(x	+
y)];	Definition[Dm]
Out[2760]=	Dm[x_,	y_	/;	PrimeQ[y]]:=	a$$	+	b$$	(x+	y)
In[2761]:=	Definition2[Dm]
Out[2761]=	{”Dm[x_,	y_	/;	PrimeQ[y]]:=	DynamicModule[{a=	90,	b=	500},	a+	b*(x+
y)]“,	{}}
In[2762]:=	PureDefinition[Dm]
Out[2762]=	“Dm[x_,	y_	/;	PrimeQ[y]]:=	DynamicModule[{a=	90,	b=	500},	a+	b*(x+
y)]”

In[2799]:=	ModuleQ[x_Symbol,	y___	/;	y	==	Null	||	SymbolQ[y]	&&	!	HowAct[y]]	:=
Module[{a	=	PureDefinition[x],	b},

If[ListQ[a]	||a	==	“System”	||	a	===	$Failed,	False,	b	=	HeadPF[x];	If[SuffPref[a,	b
<>	”	:=	”	<>	“Module[{“,	1],	If[{y}!=	{},	y	=	“Module”];	True,

If[SuffPref[a,	b	<>”	:=	”	<>	“DynamicModule[{“,	1],	If[{y}!=	{},	y	=
“DynamicModule”];	True,	False]]]]

In[2800]	:=	{ModuleQ[Dm,	t],	t}
Out[2800]=	{True,	“DynamicModule”}
In[2801]:=	V[x_]	:=	Module[{a,	b},	x*(a	+	b)];	{ModuleQ[V,	t1],	t1}	Out[2801]=
{True,	“Module”}
In[2802]:=	V[x_,	y_]	:=	Block[{},	x	+	y];	V[x__]	:=	{x};	{ModuleQ[V,	t2],	t2}

Out[2802]	=	{False,	t2}
In[2803]:=	{ModuleQ[Sin,	t2],	t2}
Out[2803]=	{False,	t2}
In[2804]:=	{ModuleQ[500,	t2],	t2}
Out[2804]=	{ModuleQ[500,	t2],	t2}

The	rather	useful	ModuleQ	procedure	completes	the	given	fragment	whose
callModuleQ[x]	returnsTrue	if	an	objectx,	given	by	a	symbol,	is	a	module,	andFalse
otherwise;	while	the	callModuleQ[x,y]	with	the	second	optional	argumenty	–an	undefinite
variable–	throughy	returns	module	typex	in	the	context	{”Module“,	“DynamicModule”}.
At	that,	the	procedure	call	on	a	tuple	of	incorrect	actual	arguments	is	returned	unevaluated.
In	other	cases	the	call	ModuleQ[x,	y]	returns	theFalse.	The	procedure	along	with	standard
means	uses	also	our	meansHeadPF,	HowAct,	PureDefinition,	SymbolQ,	SuffPref	that
are	considered	in	this	book	and	in	[32,33].	Meanwhile,	several	essential	enough	moments
concerning	theModuleQ	procedure	should	be	noted.	First	of	all,	theModuleQ	procedure
is	oriented	on	a	modular	objectx	which	has	single	definition,	returningFalse	on	the	objects
of	the	same	name.	Moreover,	the	procedure	algorithm	assumes	that	the	definition	of	a
modular	objectx	is	based	on	the	operator	ofpostponed	assignment“:=”,	but	not	on	the
operator	“=”	of	theimmediate	assignment	because	in	the	latter	case	the	objectx	will	be
distinguished	by	the	standardDefinition	function	and	our	testing	means	as	a	function.	In
our	opinion,	theModuleQ	is	rather	useful	in	programming	of	various	type	of	problems	and
first	of	all	the	system	character.

For	testing	of	objects	onto	procedural	type	we	proposed	a	number	of	means	among	which
it	is	possible	to	note	such	asProcQ,	ProcQ1,	ProcQ2.	The	call	ProcQ[x]	provides	testing
of	an	objectx	be	as	a	procedural	object	{”Module“,	“Block”},	returning	accordinglyTrue
orFalse;	whereas	theProcQ1	procedure	is	a	useful	enough	modification	of	theProcQ
procedure,	its	callProcQ1[x,	t]	returnsTrue,	ifx	–	an	object	of	typeBlock,Module
orDynamicModule,	and	“Others”	orFalse	otherwise;	at	that,	the	type	of	objectx	is
returned	through	the	actual	argumentt	–an	undefinite	variable.	Source	codes	of	the
mentioned	procedures,	their	description	along	with	the	most	typical	examples	of	their
application	are	presented	in	our	books	[30-33]	and	inAVZ_Package	package	[48].	A
number	of	receptions	used	at	their	creation	can	be	useful	enough	in	practical
programming.	The	aboveProcQ	procedure	is	quite	fast,	processes	attributes	and	options,

however	has	certain	restrictions,	first	of	all,	in	case	of	objects	of	the	same	name	[33].	The
fragment	below	represents	source	codes	of	both	procedures	along	with	typical	examples	of
their	usage.

In[2492]:=	ProcQ[x_]	:=	Module[{a,	atr	=	Quiet[Attributes[x]],	b,	c,	d,	h},	If[!
SymbolQ[x],	False,	If[SystemQ[x],	False,

If[UnevaluatedQ[Definition2,	x],	False,	If[ListQ[atr]	&&	atr	!=	{},
ClearAllAttributes[x]];	a	=	Quiet[SubsDel[ToString[InputForm[Definition[x]]],	“`”
<>	ToString[x]	<>	“`”,	{“[“,	“,”,	”	“},–1]];	Quiet[b	=	StringTake[a,	{1,	First[
First[StringPosition[a,	{”	:=	Block[{“,”	:=Block[{”}]–1]]}];	c	=	StringTake[a,	{1,
First[

First[StringPosition[a,	{”	:=	Module[{“,”	:=Module[{”}]–1]]}];	d	=	StringTake[a,	{1,
First[First[StringPosition[a,	{”	:=	DynamicModule[{“,	”
:=DynamicModule[{”}]–1]]}]];	If[b	===	ToString[HeadPF[x]],	SetAttributes[x,	atr]];
True,	If[c	===	ToString[HeadPF[x]],	SetAttributes[x,	atr]];	True,	If[d	===
ToString[HeadPF[x]],	SetAttributes[x,	atr]];	True,	SetAttributes[x,	atr]];	False]]]]]]]

In[2493]:=	Map[ProcQ,	{Sin,	a	+	b,	ProcQ1,	ProcQ,	73,	UnevaluatedQ}]	Out[2493]=
{False,	False,	True,	True,	False,	True}

In[2620]	:=	ProcQ1[x_,	y___	/;	y	==	Null	||	SymbolQ[y]	&&	!	HowAct[y]]	:=
Module[{a	=	Quiet[Check[Flatten[{PureDefinition[x]}],	$Failed]],	b	=
StringLength[ToString[x]],	c,	g	=	ToString[Unique[“agn”]],	h	=	{},	p	=	$$$72,	k	=	1,	t
=	{}},	If[SubsetQ[{$Failed,	“System”},	a],	False,	For[k,	k	<=	Length[a],	k++,
Clear[$$$72];	ToExpression[g	<>	StringTake[a[[k]],	{b	+	1,–1}]];	AppendTo[h,	c	=
ProcQ[g]];	BlockFuncModQ[g,	$$$72];	AppendTo[t,	If[c	&&	$$$72	==	“Function”,
“DynamicModule”,	$$$72]];	Clear[g];	g	=	ToString[Unique[“agn”]]];	$$$72	=	p;
Clear[“$$$72”,	g];	If[{y}!=	{},	y	=	{h,	t},	Null];	If[DeleteDuplicates[h]	==	{True},
True,	False]]]	In[2621]:=	V[x_]	:=	Module[{a,	b},	x*(a	+	b)];	V[x_,	y_]	:=	Block[{},	x
+	y];	V[x__]	:=	{x};	{ProcQ1[V,	y],	y}

Out[2621]=	{False,	{{True,	True,	False},	{”Module“,	“Block“,	“Function”}}}
In[2622]:=	G[x_]	:=	Module[{a	=	73},	a*x^2];	G[x_,	y_]	:=	Module[{},	x*y];	G[x__]
:=	Module[{a	=	90,	b	=	500},	Length[{x}]+	a*b];	{ProcQ1[G,	u],	u}	Out[2622]=
{True,	{{True,	True,	True},	{”Module“,	“Module“,	“Module”}}}	In[2686]:=
ProcBMQ[x_	/;	BlockModQ[x],	y___]	:=
Module[{a,	b,	c	=	”	=	“,	d,	p},	If[!	SingleDefQ[x],

“Object	<”	<>	ToString[x]	<>	“>	has	multiple	definitions”,	If[ModuleQ[x],	True,	{a,
b}=	{PureDefinition[x],	Locals1[x]};	d	=	Map[#[[1]]–1	&,	StringPosition[a,	c]];	p	=
Map[ExprOfStr[a,	#,–1,	{”	“,	“{“,	“[“}]	&,	d];	p	=
DeleteDuplicates[Flatten[Map[StrToList,	p]]];	If[{y}!=	{},	y	=	MinusList[b,	p],	Null];
If[p	==	b,	True,	False]]]]

In[2687]	:=	P[x_]	:=	Block[{a	=	90,	b	=	500,	c,	d,	h,	g},	h	=	(a	+	b)*x;	h^2];
{ProcBMQ[P,	q],	q}
Out[2687]=	{False,	{”c“,	“d“,	“g”}}
In[2688]:=	T[x_]	:=	Block[{a	=	6,	b	=	8,	c,	d,	h,	g},	{c,	d,	h,	g}=	{1,	2,	3,	4}];
{ProcBMQ[T,	v],	v}

Out[2688]=	{True,	{}}
In[2689]:=	G[x_]	:=	Block[{a,	b},	x];	G[x_,	y_]	:=	Block[{a,	b},	x	+	y];	ProcBMQ[G]
Out[2689]=	“Object<G>	has	multiple	definitions”

In[2690]:=	SingleDefQ[x_]	:=	If[ListQ[PureDefinition[x]]	||	MemberQ[{$Failed,
“System”},	PureDefinition[x]],	False,	True]

In[2691]	:=	G[x_]	:=	Block[{},	x];	G[x_,	y_]	:=	Block[{a},	x*y];	SingleDefQ[G]
Out[2691]=	False
In[2692]:=	a[x_]	:=	x;	a[x_,	y_]	:=	x/y;	Map[SingleDefQ,	{73,	c/b,	If,	ProcQ,	a}]
Out[2692]=	{False,	False,	False,	True,	False}

In	this	context	we	created	the	ProcQ1	procedure	that	generalizes	theProcQ	procedure,
first	of	all,	in	case	of	the	objects	of	the	same	name.	The	previous	fragment	represents
source	code	of	theProcQ1	procedure	with	examples	of	its	most	typical	application.	The
callProcQ1[x]	returnsTrue	if	the	symbolx	defines	a	procedural	object	of	the	type
{Block,Module,DynamicModule}	with	unique	definition	along	with	an	object	consisting
of	their	any	combinations	with	different	headings(the	objects	of	the	same	name).
Moreover,	in	case	of	a	separate	object	or	an	objectx	of	the	same	nameTrue	is	returned	only
when	all	its	components	is	procedural	objects	in	the	sense	stated	above,	i.e.	they	have	a
type	{Block,DynamicModule,Module}.	Meanwhile,	the	procedure	call	ProcQ1[x,	y]	with
the2nd	optional	argumenty	–an	undefinite	variable–	thru	it	returns	simple	or	the	nested	list
of	the	following	format,	namely:

{{a1,	a2,	a3,	a4,	…,	ap},	{b1,	b2,	b3,	b4,	…,	bp}}

where	aj∈{True,False}	whereasbj∈{”Block“,	“DynamicModule“,	“Function“,
“Module”};	at	that,	between	elements	of	the	above	sublists	exists	one-to-one
correspondence	while	pairs	{aj,bj}(j=1..p)	correspond	to	subobjects	of	the	objectx
according	to	their	order	as	a	result	of	the	callDefinition[x].

The	ProcQ1	procedure	is	rather	widely	used	and	is	useful	enough	in	many	appendices,	it
differs	from	the	previousProcQ	procedure	in	the	following	context,	namely:(1)quite
successfully	processes	the	objects	of	the	same	name,	(2)	defines	procedurality	in	case	of
the	objects	of	the	same	name,whose	subobjects	are	blocks	or	functions.	The	procedure
along	with	standard	means	significantly	uses	as	well	our	means	such	asHowAct,
PureDefinition,	SymbolQ,	ProcQ,	BlockFuncModQ	that	are	considered	in	the	present
book	and	in	[28-33].	At	last,	the	above	fragment	is	completed	by	theProcBMQ	procedure
whose	callProcBMQ[x]	with	one	argument	returnsTrue,	if	a	block	or	a	modulex	–	areal
procedure	in	the	above	context,	andFalse	otherwise;	the	procedure	call	ProcBMQ[x,y]
with	the	second	optional	argumenty	–an	undefinite	variable–	returns	thru	it	the	list	of	local
variables	of	the	blockx	in	string	format	which	have	no	initial	values	or	for	which	in	a	body
of	the	blockx	the	assignments	of	values	weren’t	made.	We	will	note,	theProcBMQ
procedure	is	oriented	only	on	one-defined	objects	whose	definitions	are	unique	while	the
message	“Object	<x>	has	multiple	definitions”	is	returned	on	objectsx	of	the	same	name.
The	procedure	along	with	standard	means	uses	also	our	meansExprOfStr,	BlockModQ,
ModuleQ,	PureDefinition,	Locals1,	SingleDefQ,	MinusList,	StrToList	that	are
considered	in	this	book	and	in	[30-33].	In	particular,	the	procedure	significantly	uses
rather	simple	and	very	useful	function,	whose	callSingleDefQ[x]	returnsTrue	if	the	actual

argumentx	defines	a	name	of	a	procedure,	a	block	or	a	function	having	single	definition;
in	other	cases	the	function	call	returnsFalse.	The	above	fragment	contains	source	code	of
the	SingleDefQ	function	with	the	most	typical	examples	of	its	application.	In	addition	to
our	means	testing	procedural	objects,	we	will	note	the	simple	procedure,	whose
callUprocQ[x]	returnsFalse	if	an	objectx	isn’t	procedure	or	is	object	of	the	same	name,
and	the2–element	list	otherwise;	in	this	case	itsfirst	element	isTrue	while	thesecond–	a
type	{”DynamicModule“|”Block“|	“Module”}	of	the	objectx.	On	functions	the2-element
list	of	the	format	{False,	“Function”}	is	returned.	On	inadmissible	factual	argumentx	the
procedure	call	is	returned	unevaluated.	The	following	fragment	represents	source	code	of
theUprocQ	procedure	along	with	typical	examples	of	its	application.

In[2515]:=	UprocQ[x_	/;	SymbolQ[x]]	:=	Module[{a	=	Unique[“agn”],	b},
If[SingleDefQ[x],	b	=	ProcQ1[x,	a];	{b,	a[[2]][[1]]},	False]]

In[2516]	:=	a[x_]	:=	x^3;	Dm[]	:=	DynamicModule[{x},	{Slider[Dynamic[x]],
Dynamic[x]}];	P[x_]	:=	Block[{a	=	90,	b	=	500,	h},	h	=	a*b*x;	h^2]
In[2517]:=	Map[UprocQ,	{ProcQ,	P,	Dm,	73,	a}]
Out[2517]=	{{True,	“Module”},	{True,	“Block”},	{True,	“DynamicModule”},
UprocQ[73],	{False,	“Function”}}

Having	considered	the	main	means	of	testing	of	procedural	objects	that	are	absent	among
standard	means	of	theMathematica	system	it	is	reasonable	to	consider	the	means	similar
to	them	for	testing	of	thefunctional	objects	where	under	functional	means	we	will
understand	objects	whose	definitions	have	the	following	format,	namely:

F	[x_	/;Testx,y_	/;Testy,z_	/;Testz,…]	:=W(x,	y,	z,	…)	or	pure	functions	of	one	of	the
following	formats,	namely:

Function[Body]or	short	formBody&(formal	arguments#(#1),	#2,	#3,etc.)	Function[x,
Body]–a	pure	function	with	single	formal	argumentx	Function[{x1,	x2,	…},Body]–a	pure
function	with	formal	arguments	{x1,	x2,	…}

We	will	give	some	simple	examples	onto	these	types	of	functions,	namely:

In[2325]	:=	y	:=	Function[{x,	y},	x	+	y];	y1	=	Function[{x,	y},	x	+	y];	z	:=	#1	+	#2	&;
z1	=	#1	+	#2	&;	F[x_,	y_]	:=	x	+	y
In[2326]:=	{y[80,	480],	y1[80,	480],	z[80,	480],	z1[80,	480],	F[80,	480]}

Out[2326]=	{560,	560,	560,	560,	560}

On	objects	of	the	above	functional	type	the	calls	of	procedures	ProcQ1	and	ProcQ
returnFalse,	therefore	for	testing	of	functional	type	and	other	means	considered	below	are
offered.	However,	first	of	all,	we	will	consider	means	testing	the	system	functions,	i.e.
functions	of	theMath–language	along	with	its	environment.	By	and	large,	these	system
tools	are	called	byfunctions	not	entirely	correctly,	because	implementation	of	many	of
them	is	based	on	the	procedural	organization,	meanwhile,	we	stopped	on	the	given
terminology,	inherent	actually	to	the	system.	And	in	this	regard	it	is	possible	to	present
means	of	testing	of	the	system	functions,	besides	that,	the	testing	of	objects	regarding	to
be	standard	functions	of	theMathematica	system	in	a	number	of	important	enough
problems	arises	need.	In	this	regard	a	simple	enough	functionSysFuncQ	solves	the	given
problem;	its	callSysFuncQ[x]	returns	True	if	an	objectx	is	astandard	function	of

theMathematica	system	andFalse	otherwise;	whereas	simpleSysFuncQ1	function	is	a
functionally	equivalent	modification	of	the	previousSysFuncQ	procedure.	The	following
fragment	represents	source	codes	of	the	above	means	with	examples	of	their	usage.

In[2419]:=	SysFuncQ[x_]	:=	If[UnevaluatedQ[Definition2,	x],	False,

If[SameQ[Definition2[x][[1]],	“System”],	True,	False]]	In[2420]:=	Map[SysFuncQ,
{Sin,	Tan,	While,	If,	Do,	ProcQ,	6,	Length,	a/b}]	Out[2420]=	{True,	True,	True,	True,
True,	False,	False,	True,	False}	In[3037]:=	SysFuncQ1[x_]	:=
MemberQ[Names[“System`*”],	ToString[x]]

In[3038]:=	Map[SysFuncQ1,	{Sin,	Tan,	While,	If,	Do,	ProcQ,	6,	Length,	a/b}]
Out[3038]=	{True,	True,	True,	True,	True,	False,	False,	True,	False}

We	will	consider	means	of	testing	of	the	user	functional	objects,	the	first	of	which	is	the
procedureQFunction	that	is	the	most	general	means	of	testing	of	objectsx	of	the
functional	type,	whose	callQFunction[x]	returnsTrue	on	a	traditional	functionx
andx–objects,	generated	by	the	functionCompile,	andFalse	otherwise.	At	that,	the
construction	of	formatJ[x_,	y_,	…]	{:=	|	=}	J(x,	y,	…)	is	understood	as	the	traditional
function.	The	fragment	represents	source	code	of	theQFunction	procedure	with	examples
of	its	usage.	At	that,	the	given	procedure	along	with	standard	means	uses	and	our	means
such	as	HeadPF,Definition2,	SymbolQ,	Map3,	SuffPref,	ToString1	andToString3	that
are	considered	in	the	present	book	and	in	[28-33].	In	particular,	simple	ToString3	function
is	presented	right	there	and	its	callToString3[x]	serves	for	converting	of	an	expressionx	in
stringInputForm	format.	This	function	has	a	number	of	useful	enough	appendices.

In[2393]:=	QFunction[x_]	:=	Module[{a	=	Quiet[Definition2[x][[1]]],	b	=
ToString3[HeadPF[x]]},

If[!	SingleDefQ[x],	False,	If[SameQ[a,	x],	False,	If[SuffPref[Quiet[ToString1[a]],
“CompiledFunction[“,	1],	True,	If[SuffPref[b,	“HeadPF[“,	1],	False,	b	=
Map3[StringJoin,	b,	{”	:=	“,	”	=	“}];	If[MemberQ[{SuffPref[StringReplace[a,	b	–>
””],	“Module[“,	1],	SuffPref[StringReplace[a,	b	–>	””],	“Block[“,	1]},	True],	False,
True]]]]]]

In[2394]	:=	V	:=	Compile[{{x,	_Real},	{y,	_Real}},	x/y];	Kr	:=	(#1^2	+	#2^4)	&;	Art
:=	Function[{x,	y},	x*Sin[y]];	GS[x_	/;	IntegerQ[x],	y_	/;	IntegerQ[y]]	:=	Sin[75]	+
Cos[42];	Sv[x_	/;	IntegerQ[x],	y_	/;	IntegerQ[y]]	:=	x^2	+	y^2;	S	:=	Compile[{{x,
_Integer},	{y,	_Real}},	(x	+	y)^3];

In[2395]	:=	Map[QFunction,	{V,	S,	Art,	Kr,	Pi,	42.72,	GS,	Sv}]	Out[2395]=	{True,
True,	False,	False,	False,	False,	True,	True}
In[2396]:=	G[x_Integer,	y_Real,	z_Real]	:=	x*y^2	+	z
In[2397]:=	Map[QFunction,	{#1*#2*#3	&,	Function[{x,y,z},	x*y*z],G,ProcQ}]
Out[2397]=	{False,	False,	True,	False}

In[2571]:=	ToString3[x_]	:=	StringReplace[ToString1[x],	“"”	–>	””]	In[2576]:=
ToString3[#1^2	+	#2^4	&]
Out[2576]=	“#1^2+	#2^4&	“

In[2642]	:=	QFunction1[x_]	:=	Module[{a,	c	=	ToString[Unique[“agn”]],	b,	p,	d	=	{},
k	=	1},	If[UnevaluatedQ[Definition2,	x],	False,	If[SysFuncQ[x],	False,	a	=

Definition2[x][[If[Options[x]	==	{},	1	;;	–2,	1	;;	–3]]];	For[k,	k	<=	Length[a],	k++,	p	=
c	<>	ToString[k];	ToExpression[p	<>	a[[k]]];	AppendTo[d,	If[QFunction[b	=	p	<>
ToString[x]],	True,	False]];	ToExpression[“ClearAll[”	<>	b	<>	“]”]];	Clear[c];
If[DeleteDuplicates[d]	==	{True},	True,	False]]]]	In[2643]:=	F[x_]	:=	x^2;	F[x_,	y_]	=
x	+	y;	F	:=	Compile[{{x,	_Real},	{y,	_Real}},	(x	+	y)^2];	F	=	Compile[{{x,	_Real},	{y,
_Real}},	(x	+	y)^2];

In[2644]	:=	Map[QFunction1,	{“Sin”,	“F”,	“Art”,	“V”,	“Kr”,	“GS”,	“Sv”,	“S”}]
Out[2644]=	{False,	True,	False,	True,	False,	True,	True,	True}
In[2645]:=	G[x_]	:=	x;	SetAttributes[G,	Protected];

{	QFunction[G],	QFunction1[“G”]}	Out[2645]=	{True,	True}
In[2646]:=	{Map[QFunction,	{Art,	Kr}],	Map[QFunction1,	{“Art”,	“Kr”}]}
Out[2646]=	{{False,	False},	{False,	False}}
In[2647]:=	Sv[x_]	:=	x;	Sv[x_,	y_]	:=	x+y;	{QFunction[Sv],	QFunction1[“Sv”]}
Out[2647]=	{False,	True}

However,	the	QFunction	procedure,	successfully	testing	functional	objects	which	are
determined	both	by	the	traditional	functions	with	headings	and	generated	by	the
standardCompile	function	doesn’t	processpure	functions;	at	that,	this	procedure	doesn’t
process	also	thefunctional	objects	of	the	same	name	as	visually	illustrate	the	last	example
of	the	previous	fragment.	While	theQFunction1	procedure	solves	the	given	problem,
whose	source	code	is	represented	in	the	second	part	of	the	previous	fragment.	The
procedure	call	QFunction1[x]	returnsTrue	on	a	traditional	functionx	and	an	objectx,	that
has	been	generated	by	theCompile	function,	andFalse	otherwise;	moreover,	on	an	objectx
of	the	same	nameTrue	is	returned	only	if	all	its	components	are	traditional	functions
and/or	are	generated	by	theCompile	function.	At	that,	the	callQFunction1[x]	assumes
coding	of	factualx	argument	in	string	format.	Both	procedures	enough	effectively	process
options	and	attributes	of	the	tested	objects.	Meanwhile,	both	theQFunction1	procedure,
and	the	QFunction	procedure	can’t	correctly	test,	generally	speaking,pure	functions	as
quite	visually	illustrate	examples	of	the	previous	fragment.

Along	with	the	above	types	of	functions	the	Mathematica	system	uses	also	theCompile
function	intended	for	compilation	of	functions	which	calculate	numerical	expressions	at
certain	assumptions.	TheCompile	function	has	the	following	four	formats	of	coding,	each
of	which	is	oriented	on	separate	type	of	compilation,	namely:

Compile[{x1,	x2,	…},J]–compiles	a	function	for	calculation	of	an	expressionJin	the
assumption	that	all	values	of	argumentsxj	{j=1,2,…}have	numerical	character;
Compile[{{x1,	t1},	{x2,	t2},	{x3,	t3},	…},J]–compiles	a	function	for	calculation	of	an
expressionJin	the	assumption	that	all	values	of	argumentsxjhave	accordingly	typetj	{j=	1,
2,	3,	…};
Compile[{{x1,p1,w1},	{x2,p2,w2},	…},J]–compiles	a	function	for	calculation	of	an
expressionJin	the	assumption	that	values	of	argumentsxjare	rankswjof	an	array	of
objects,each	of	which	corresponds	to	apjtype	{j=	1,	2,	3,	…};	Compile[s,J,	{{p1,pw1},
{{p2,pw2},	…}]–compiles	a	function	for	calculation	of	an	expressionJin	the	assumption
that	its	subexpressionsswhich	correspond	to	the	pjtemplates	have	thepwjtypes	accordingly
{j	=	1,	2,	3,	…}.

The	Compile	function	processes	procedural	and	functional	objects,	matrix	operations,
numerical	functions,	functions	of	work	with	lists,	etc.Compile	function	generates	a	special
objectCompiledFunction.	The	callCompile[…,	Evaluate[exp]]	is	used	to	specify	thatexp
should	be	evaluated	symbolically	before	compilation.

For	testing	of	this	type	of	functions	a	rather	simple	CompileFuncQ	function	can	be
supposed	whose	callCompileFuncQ[x]	returnsTrue	ifx	represents	a	Compile	function,
andFalse	otherwise.	The	following	fragment	represents	source	code	of	the	function	with
the	most	typical	examples	of	its	usage.

In[2367]	:=	V	:=	Compile[{{x,	_Real},	{y,	_Real}},	x*y^2];	Kr	:=	(#1*#2^4)	&;	Art	:=
Function[{x,	y},	x*Sin[y]];	H[x_]	:=	Block[{},	x];	H[x_,	y_]	:=	x	+	y;
SetAttributes[“H”,	Protected];	P[x__]	:=	Plus[Sequences[{x}]];	GS[x_	/;	IntegerQ[x],
y_	/;	IntegerQ[y]]	:=	Sin[78]	+	Cos[42];	Sv[x_	/;	IntegerQ[x],	y_	/;	IntegerQ[y]]	:=
x^2	+	y^2;	Sv	=	Compile[{{x,	_Integer},	{y,	_Real}},	(x	+	y)^6];

S	:=	Compile[{{x,	_Integer},	{y,	_Real}},	(x	+	y)^3];	G	=	Compile[{{x,	_Integer},	{y,
Real}},	(x	+	y)];	P[x]	:=	Module[{},	x]

In[2368]	:=	CompileFuncQ[x_]	:=
If[SuffPref[ToString[InputForm[Definition2[x]]],
“Definition2[CompiledFunction[{“,	1],	True,	False]

In[2369]	:=	Map[CompileFuncQ,	{Sv,	S,	G,	V,	P,	Art,	Kr,	H,	GS,	ProcQ}]	Out[2369]=
{True,	True,	True,	True,	False,	False,	False,	False,	False,	False}	In[2370]:=
Map[CompileFuncQ,	{80,	avz,	a	+	b,	Sin,	While,	42.72}]	Out[2370]=	{False,	False,
False,	False,	False,	False}
TheCompileFuncQ	procedure	expands	possibilities	of	testing	of	functional	objects	in
theMathematica	system,	representing	quite	certain	interest,	first	of	all,	for	problems	of
system	programming.
ThePureFuncQ	function	presented	below	is	oriented	for	testing	of	the	pure	functions,	its
callPureFuncQ[f]	returnsTrue	iff	defines	apure	function,	and	False	otherwise.	The
fragment	represents	source	code	of	the	function	along	with	examples	of	its	typical	usage.

In[2385]	:=	PureFuncQ[f_]	:=	Quiet[StringTake[ToString[f],	{–3,–1}]	==	”	&	”	&&	!
StringFreeQ[ToString[f],	“#”]	||	SuffPref[ToString[InputForm[f]],	“Function[“,	1]]

In[2386]	:=	Map[PureFuncQ,	{#1	+	#2	&,	Function[{x,	y,	z},	x+y],	G,	ProcQ}]
Out[2386]=	{True,	True,	False,	False}
In[2387]:=	Map[PureFuncQ,	{Sin,	F,	Art,	V,	Kr,	GS,	Sv,	S}]
Out[2387]=	{False,	False,	True,	False,	True,	False,	False,	False}	In[2388]:=	Z	:=
Function[{x,	y,	z},	x	+	y	+	z];	SetAttributes[Z,	Protected]	In[2389]:=	{PureFuncQ[Z],
Attributes[Z]}
Out[2389]=	{True,	{Protected}}

In[2390]:=	FunctionQ[x_]	:=	If[StringQ[x],	PureFuncQ[ToExpression[x]]||
QFunction1[x],	PureFuncQ[x]||QFunction[x]

In[2391]	:=	Map[FunctionQ,	{“G”,	“ProcQ”,	“Function[{x,	y,	z},	x	+	y*z]	“,	“#1	+
#2*#3	&”}]
Out[2391]=	{True,	False,	True,	True}

In[2392]:=	Map[FunctionQ,	{“V”,“S”,“Art”,“Kr”,“Pi”,“42.72”,“GS”,“Sv”,“F”}]
Out[2392]=	{True,	True,	True,	True,	False,	False,	True,	True,	True}
In[2393]:=	Map[QFunction,	{V,	S,	Art,	Kr,	Pi,	42.72,	GS,	Sv,	F}]
Out[2393]=	{True,	True,	False,	False,	False,	False,	True,	True,	True}

The	simple	enough	FunctionQ	function	completes	the	previous	fragment;	its
callFunctionQ[x]	returnsTrue	if	an	objectx	is	a	function	of	any	type	of	both	traditional,
and	pure,	andFalse	otherwise.	In	addition,	the	namex	of	an	object	can	be	coded	both	in
symbolical,	and	in	string	formats;	in	the	second	case	correct	testing	of	an	objectx	is
supported,	permitting	multiplicity	of	its	definitions,	i.e.	the	objectx	can	be	of	the	same
name	in	the	above-mentioned	sense.	It	must	be	kept	in	mind	that	the	means	of	testing	that
are	represented	above	refers	to	the	testing	means	of	the	user	functions,	and	aren’t	intended
for	standard	functions	of	theMathematica	system,	returning	on	them,	as	a	rule,False.	So,
a	number	of	means	for	the	differentiated	identification	of	the	user	functions	of	and
traditional,	and	pure	functions	has	been	determined,	in	particular,	procedures	and
functionsFunctionQ,	QFunction,	QFunction1	andPureFuncQ	respectively.	Thus,	these
means	provide	strictdifferentiation	of	such	basic	element	offunctional	andprocedural
programming,	asfunction.	These	and	means	similar	to	them	are	useful	enough	in	applied
and	system	programming	in	the	environment	of	theMathematica	system.

Meantime,	here	it	is	necessary	to	make	one	very	essential	remark	once	again.	As	it	was
already	noted,	unlike	the	majority	of	the	known	languagesMathlanguage	identifies
procedures	and	functions	not	on	their	names,	but	on	the	headings,	allowing	not	only	the
procedures	of	the	same	name	with	different	headings,but	also	their	combinations	with
functions.	Therefore	the	question	of	testing	of	program	objects	in	context	of	type
{Procedure,	Function}	isn’t	so	unambiguous.	The	means	of	testing	presented	above
{ProcQ,	QFunction1,	FunctionQ,PureFuncQ,etc.}	allow	as	argumentx	an	object	or
only	with	one	heading	or	thefirst	object	returned	by	the	system	callDefinition[x]	as	it	was
illustrated	above.	At	that,	for	on	objects	of	the	same	name	the	calls	of	a	series	of	means,
considered	above	returnTrue	only	in	a	case	when	the	definitions	composing	them	are
associated	with	subobjects	of	the	same	type.

In	this	connection	it	is	very	expedient	to	define	some	testing	procedure	that	determines
belonging	of	an	objectx	to	a	group	{Block,	CompiledFunction,	Function,	Module,
PureFunction,	ShortPureFunction}.	As	one	of	similar	approaches	it	is	possible	to	offer
procedure,	whose	callProcFuncTypeQ[x]	returns	the	list	of	format	{True,	{t1,t2,…,tp}}	if
a	simple	objectx	or	subobjects	of	an	objectx	of	the	same	name	whose	namex	is	coded	in
string	format	have	the	typestj	from	the	set
{CompiledFunction,PureFunction,ShortPureFunction,	Block,Function,Module},
otherwise	the	list	of	format	{False,	x,	“Expression”}	or	{False,	x,	“System”}	is	returned.
In	the	case	of	an	objectx	of	the	same	name	a	sublist	of	types	{t1,	t2,	…,	tp}(j=1..p)	of
subobjects	composingx	is	returned;	whereas“System”	and“Expression”	determines	a
system	functionx	and	an	expressionx	respectively.	So,	theProcFuncTypeQ	procedure	can
be	applied	as	a	group	test	for	belonging	of	an	objectx	to	the	above	types.	The	following
fragment	represents	source	code	of	theProcFuncTypeQ	procedure	with	the	most	typical
examples	of	its	usage.

In[2528]:=	ProcFuncTypeQ[x_	/;	StringQ[x]]	:=	Module[{a,	b,	d	=	{},	k	=	1,	p},

If[ShortPureFuncQ[x],	{True,	“ShortPureFunction”},
If[SuffPref[x,	“Function[{“,	1],	{True,	“PureFunction”},
If[UnevaluatedQ[Definition2,	x],	{False,	x,	“Expression”},

If[SysFuncQ[x],	{False,	x,	“System”},
a	=	Definition2[x][[If[Options[x]	==	{},	1	;;–2,	1	;;–3]]];	For[k,	k	<=	Length[a],	k++,
b	=	Flatten[{HeadPF[x]}];	b	=	Flatten[Map[Map3[StringJoin,	#,	{”	:=	“,	”	=	“}]	&,
b]];	p	=	StringReplace[a[[k]],	GenRules[b,	””],	1];

If[SuffPref[p,	{“Compile[{“,	“CompiledFunction[{”},	1],
AppendTo[d,	“CompiledFunction”],	If[SuffPref[p,	“Block[{“,	1],	AppendTo[d,
“Block”],
If[SuffPref[p,	“Module[“,	1],	AppendTo[d,	“Module”],	If[SuffPref[p,	“Function[{“,
1],	AppendTo[d,	“PureFunction”],	If[ShortPureFuncQ[p],	AppendTo[d,
“ShortPureFunction”],	If[PureFuncQ[ToExpression[x]],	AppendTo[d,
“PureFunction”],	AppendTo[d,	“Function”]]]]]]]];	{True,	d}]]]]]

In[2529]	:=	V	:=	Compile[{{x,	_Real},	{y,	_Real}},	(x^3	+	y)^2];	Sv[x_]	:=
Module[{},	x];	Art	:=	Function[{x,	y},	x*Sin[y]];	GS[x_	/;	IntegerQ[x],	y_	/;
IntegerQ[y]]	:=	Sin[x]	+	y;	Sv[x_	/;	IntegerQ[x],	y_	/;	IntegerQ[y]]	:=	x^2	+	y^2;	Sv	=
Compile[{{x,	_Integer},	{y,	_Real}},	(x	+	6*y)^6];

S	:=	Compile[{{x,	_Integer},	{y,	_Real}},	(x	+	y)^3];	Kr	:=	(#1*#2^4)	&;	G	=
Compile[{{x,	_Integer},	{y,	_Real}},	(x	+	y)];	H[x_]	:=	Block[{a},	x];	H[x_,	y_]	:=	x	+
y;	SetAttributes[“H”,	Protected]

In[2530]	:=	ProcFuncTypeQ[“Sv”]
Out[2530]=	{True,	{”CompiledFunction“,	“Module“,	“Function”}}	In[2531]:=
ProcFuncTypeQ[“H”]
Out[2531]=	{True,	{”Block“,	“Function”}}
In[2532]:=	ProcFuncTypeQ[“G”]
Out[2532]=	{True,	{”CompiledFunction”}}

In[2533]	:=	A[x_,	y_]	:=	x	+	y;	A[x_]	:=	x;	ProcFuncTypeQ[“A”]	Out[2533]=	{True,
{”Function“,	“Function”}}
In[2534]:=	ProcFuncTypeQ[“Art”]
Out[2534]=	{True,	{”PureFunction”}}
In[2535]:=	ProcFuncTypeQ[“Function[{x,	y},	x+y]”]
Out[2535]=	{True,	“PureFunction”}
In[2536]:=	ProcFuncTypeQ[“Kr”]
Out[2536]=	{True,	{”ShortPureFunction”}}
In[2537]:=	ProcFuncTypeQ[“a+g+s*#&”]
Out[2537]=	{True,	“ShortPureFunction”}
In[2538]:=	ProcFuncTypeQ[“GS”]
Out[2538]=	{True,	{”Function”}}
In[2539]:=	ProcFuncTypeQ[“S”]
Out[2539]=	{True,	{”CompiledFunction”}}

In[2543]:=	ShortPureFuncQ[x_]	:=
PureFuncQ[ToExpression[If[StringQ[x],	x,	ToString[x]]]]	&&

StringTake[StringTrim[ToString[If[StringQ[x],	ToExpression[x],	ToString[x]]]],
{–1,–1}]	==	“&”

In[2544]	:=	Map[ShortPureFuncQ,	{“a+g+s*#&”,	Kr,	“Kr”,	a	+	g	+	s*#	&}]
Out[2544]=	{True,	True,	True,	True}
In[2545]:=	ProcFuncTypeQ[“2015”]
Out[2545]=	{False,	“2015“,	“Expression”}
In[2546]:=	ProcFuncTypeQ[“While”]
Out[2546]=	{False,	“While“,	“System”}

Along	with	the	ProcFuncTypeQ	procedure	the	above	fragment	represents	a	simple	and
useful	enough	function,	whose	callShortPureFuncQ[x]	returns	True	ifx	determines	a	pure
function	in	short	format,	andFalse	otherwise.	In,	particular,	this	function	is	used	by
theProcFuncTypeQ	procedure	too.	In	a	number	of	applications	of	both	the	applied,	and
system	character	which	are	connected	withprocessing	of	procedures	and	functions
theProcFuncTypeQ	procedure	is	a	rather	effective	testing	group	means.

For	identification	of	functional	objects	(traditionalandpurefunctions)	in	the	Mathematica
system	exist	quite	limited	means	that	are	based	only	on	calls	of	the	system
functionsPart[x,	0]	andHead[x]	which	return	the	headings	of	an	expressionx;	at	that,	on
pure	functionsFunction	is	returned,	whereas	on	the	traditional	functionsSymbol	is
returned	as	a	simple	enough	fragment	a	rather	visually	illustrates,	namely:

In[2905]	:=	G[x_Integer,	y_Real,	z_Real]	:=	x*y^2	+	z
In[2906]:=	Map[Head,	{#1*#2*#3	&,	Function[{x,	y,	z},	x	+	y*z],	G,	ProcQ}]
Out[2906]=	{Function,	Function,	Symbol,	Symbol}
In[2907]:=	Mapp[Part,	{#1*#2*#3	&,	Function[{x,	y,	z},	x*y*z],	G,	ProcQ},	0]
Out[2907]=	{Function,	Function,	Symbol,	Symbol}
In[2908]:=	Map[PureFuncQ,	{#1*#2	&,	Function[{x,	y,	z},	x*y*z],	G,	ProcQ}]
Out[2908]=	{True,	True,	False,	False}
In[2909]:=	Map[QFunction,	{#1*#2	&,	Function[{x,	y,	z},	x/y*z],	G,	ProcQ}]
Out[2909]=	{False,	False,	True,	False}
In[2910]:=	Map[FunctionQ,	{#1*#2	&,	Function[{x,	y,	z},	x*y*z],	G,	ProcQ}]
Out[2910]=	{True,	True,	True,	False}
In[2911]:=	{m,	n}=	{#1	+	#2*#3	&,	Function[{x,	y},	x*y]};	Map[Head,	{m,	n}]
Out[2911]=	{Function,	Function}
In[2912]:=	{Mapp[Part,	{m,	n},	0],	Map[QFunction,	{m,	n}]}
Out[2912]=	{{Function,	Function},	{False,	False}}
In[2913]:=	{Map[FunctionQ,	{m,	n}],	Map[PureFuncQ,	{m,	n}]}	Out[2913]=	{{True,
True},	{True,	True}}

In	this	context	the	Head2	procedure	seems	as	an	useful	enough	means	that	is	a
modification	of	theHead1	procedure	and	that	is	based	on	the	previous	ProcFuncTypeQ
procedure	and	the	standardHead	function.	The	procedure	callHead2[x]	returns	the
heading	or	the	type	of	an	objectx,	given	in	string	format.	In	principle,	thetype	of	an	object
can	quite	be	considered	as	aheading	in	its	broad	understanding.	TheHead2	procedure
serves	to	such	problem	generalizing	the	standardHead	function	and	returning	the	heading
of	an	expressionx	in	the	context	of	{Block,	CompiledFunction,	Function,	Module,
PureFunction,	ShortPureFunction,	Symbol,	System,Head[x]}.	The	examples	of	use	of

both	means	on	the	same	list	of	the	tested	objects	that	in	a	number	of	cases	confirm
preference	of	theHead2	procedure	are	given	as	a	comparison.	The	following	fragment
represents	source	code	of	theHead2	procedure	and	the	most	typical	examples	of	its	use.
Whereas	theHead3	function	presented	here	expands	the	system	functionHead	and	our
proceduresHead1,	Head2	upon	condition,	that	a	tested	expressionx	is	considered	apart
from	the	sign;	distinction	is	visually	illustrated	by	results	of	the	call	of	these	means	on	the
identical	actual	arguments.	In	general,	the	function	callHead3[x]	is	similar	to	the
procedure	callHead1[x].

In[2651]:=	Head2[x_]	:=	Module[{b,
a	=	Quiet[Check[ProcFuncTypeQ[ToString[x]],	{Head[x]}]]},	If[SameQ[a[[–1]],
“System”],	“System”,
If[SameQ[a[[–1]],	“Expression”],	Head[x],	If[ListQ[a],	b	=	a[[–1]]];	If[Length[b]	==
1,	b[[1]],	b]]]]

In[2652]	:=	Map[Head2,	{“#1	+	#2*#3&”,	“Function[{x,	y,	z},	x+y*z]”,	“G”,
“ProcQ”,	“a	+	b”,	“{x,	y,	z}“,	“"ransian"”,	Avz,	While}]
Out[2652]=	{”ShortPureFunction“,	“PureFunction“,	{”Block“,	“Block“,	“Module”},
“Module“,	String,	String,	String,	Symbol,	“System”}
In[2653]:=	Map[Head2,	{“V”,	“Art”,	“G”,	“ProcQ”,	“GS”,	“Sv”,	“S”,	“H”,	“Agn”,
80,	42.47,	Kr}]
Out[2653]=	{”CompiledFunction“,	“PureFunction“,	{”CompiledFunction“,	“Function”},
“Module“,	“Function“,	{”CompiledFunction“,	“Module“,	“Function”},
“CompiledFunction“,	{”Block“,	“Function”},	String,	Integer,	Real,
“ShortPureFunction”}
In[2654]:=	Map[Head,	{“V”,	“Art”,	“G”,	“ProcQ”,	“GS”,	“Sv”,	“S”,	“H”,	“Agn”,	80,
42.47,	Kr}]
Out[2654]=	{CompiledFunction,	Function,	CompiledFunction,	Symbol,	Symbol,
CompiledFunction,	CompiledFunction,	Symbol,	Symbol,	Integer,	Real,	Function}

In[2655]:=	Head3[x_]	:=	Symbol[If[Part[x,	1]	===–1,	Head1[–1*x],	Head1[x]]]
In[2656]:=	{Head[Sin[–a	+	b]],	Head2[Sin[–a	+	b]],	Head3[Sin[–a	+	b]]}	Out[2656]=
{Times,	Times,	Sin}

At	last,	quite	natural	interest	represents	the	question	of	existence	of	the	user	procedures
and	functions	activated	in	the	current	session.	The	solution	of	the	given	question	can	be
received	by	means	of	the	procedure	whose	procedure	callActBFMuserQ[]	returnsTrue	if
such	objects	in	the	current	session	exist,	andFalse	otherwise;	meanwhile,	meanwhile,	the
callActBFMuserQ[x]	thru	optional	argumentx	–	an	undefinite	variable–	returns
the2–element	nested	list	whose	the	first	element	contains	name	of	the	user	object	in	string
format	while	the	second	defines	list	of	its	types	in	string	format	respectively.	The	fragment
presents	source	code	of	theActBFMuserQ	and	examples	of	its	use.

In[2570]	:=	ActBFMuserQ[x___	/;	If[{x}==	{},	True,	If[Length[{x}]	==	1	&&	!
HowAct[x],	True,	False]]]	:=	Module[{b	=	{},	c	=	1,	d,	h,	a	=	Select[Names[“`*”],	!
UnevaluatedQ[Definition2,	#]	&]},	For[c,	c	<=Length[a],	c++,	h	=
Quiet[ProcFuncTypeQ[a[[c]]]];

If[h[[1]],	AppendTo[b,	{a[[c]],	h[[–1]]}],	Null]];	If[b	==	{},	False,	If[{x}!=	{},	x	=

If[Length[b]	==	1,	b[[1]],	b]];	True]]

In[2571]	:=	V	:=	Compile[{{x,	_Real},	{y,	_Real}},	(x^3	+	y)^2];
Art	:=	Function[{x,	y},	x*Sin[y]];	Kr	:=	(#1^2	+	#2^4)	&;	GS[x_	/;	IntegerQ[x],	y_	/;
IntegerQ[y]]	:=	Sin[80]	+	Cos[42];

G	=	Compile[{{x,	_Integer},	{y,	_Real}},	x*y];	P[x_,	y_]	:=	Module[{},	x*y]	H[x_]	:=
Block[{},	x];	H[x_,	y_]	:=	x	+	y;	SetAttributes[“H”,	Protected]	P[x_]	:=	Module[{},
x];	P[y_]	:=	Module[{},	y];
P[x__]	:=	Plus[Sequences[{x}]];	P[x___]	:=	Plus[Sequences[{x}]];	P[y_	/;	PrimeQ[y]]
:=	Module[{a	=	“Agn”},	y];	T42[x_,	y_,	z_]	:=	x*y*z	P[x_	/;	StringQ[x]]	:=
Module[{},	x];	P[x_	/;	ListQ[x]]	:=	Module[{},	x];	R[x_]	:=	Module[{a	=	500},	x*a];
GSV	:=	(#1^2	+	#2^4	+	#3^6)	&

In[2572]	:=	ActBFMuserQ[]
Out[2572]=	True
In[2573]:=	{ActBFMuserQ[t],	t}
Out[2573]=	{True,	{{”Art“,	{”PureFunction”}},	{”G“,	{”CompiledFunction”}},

{	“GS“,	{”Function”}},	{”H“,	{”Block“,	“Function”}},	{”P1“,	{”Function”}},	{”W“,
{”Function”}},	{”R“,	{”Module”}},	{”Kr“,	“ShortPureFunction”},	{”V“,
{”CompiledFunction”}},	{”P“,	{”Module“,	“Module“,	“Module“,	“Module“,	“Module“,

“Function“,	“Function”},	{”T42“,	{”Function”}},	{”GSV“,	“ShortPureFunction”}}}}

At	that,	the	given	procedure	along	with	standard	means	uses	and	our	means	such
asDefinition2,	HowAct,	ProcFuncTypeQ	andUnevaluatedQ	that	are	considered	in	the
present	book	and	in	[28-33].	The	procedure	is	represented	as	a	rather	useful	means,	first	of
all,	in	the	system	programming.

6.4.	Headings	of	procedures	and	functions	in	the	Mathematicasystem

In	many	contexts,	it	is	not	necessary	to	know	the	exact	value	of	an	arbitrary	expression;	it
suffices	to	know	that	the	given	expression	belongs	to	a	certain	broad	class,	or	group,	of
expressions	which	share	some	common	properties.	These	classes	or	groups	are	known
astypes.	IfT	represents	a	type,	then	an	expression	is	of	typeT	if	it	belongs	to	the	class	thatT
presents.	For	example,	an	expression	is	said	to	be	of	typeInteger	if	it	belongs	to	the
definite	class	of	expressions	denoted	by	the	type	nameInteger,	which	is	the	set	of	integers.
Many	procedures	and	functions	use	the	types	to	direct	the	flow	of	control	in	algorithms	or
to	decide	whether	an	expression	is	a	valid	input.	For	example,	the	behavior	of	a	function
or	a	procedure	generally	depends	on	the	types	of	its	actual	arguments.	At	that,	the	result	of
a	number	of	operations	is	defined	by	type	of	their	arguments.	Thetype	–	fundamental
concept	of	the	theory	of	programming,	defining	an	admissible	set	of	values	or	operations
which	can	be	applied	to	such	values	and,	perhaps,	also	a	way	of	realization	of	storage	of
values	and	performance	of	operations.

Any	objects	with	which	the	programs	operate,	belong	to	certain	types.	The	concept	of	data
type	in	programming	languages	of	high	level	appeared	as	absolutely	natural	reflection	of
that	fact	that	the	data	and	expressions	which	are	processed	by	a	program	can	have	various
sets	of	admissible	values,	be	stored	in	RAM	of	the	computer	in	different	ways,	be

processed	by	different	commands	of	the	processor.	At	that,	the	type	of	any	object	can	be
defined	in	2	ways,	namely:	by	a	set	of	all	values	belonging	to	this	type,	or	by	a	certain
predicate	function	defining	object	belonging	to	this	type.	Advantages	from	use	of	types	of
objects	are	reduced	to	three	highlights:(1)	protection	against	errors	of	assignment,
incorrect	operations	along	with	inadmissible	factual	arguments	passed	to	a
procedure/function;(2)	the	standardization	provided	by	agreements	on	the	types	supported
by	the	majority	of	the	programming	systems,(3)	documenting	of	software	in	many
respects	becomes	simpler	at	use	of	the	standard	typification	of	the	objects	and	data	used	in
them.	In	the	modern	languages	of	programming	are	used	several	systems	of	typification	a
brief	characteristic	of	which	can	be	found	in	[33]	whereas	more	in	detail	it	is	possible	to
familiarize	oneself	with	them	in	a	number	of	books	on	modern	programming	systems.
Considering	importance	of	typification	of	language	objects,	this	aspect	is	considered	by	us
and	concerningMathematica	system	in	books	[28-33].	In	particular,	in	our	book	[30]
enough	in	details	from	point	of	view	of	development	of	the	mechanism	of	typification
bothMathematica	andMaple	systems	are	considered	as	computer	mathematics	systems
which	are	the	most	developed	and	popular	for	today.

Unlike	209	types,	for	example,	of	theMaple	11	which	are	tested	by	the`type`
procedure(apart	from	a	considerable	enough	set	of	the	user	types	connected	to	the
Mapleby	means	of	our	library	[47]),	theMathematica	9	has	only60	testingQ–	functions
whose	names	have	the	formNameQ,	for	example,	callSyntaxQ[x]	returnsTrue	if	the
contents	of	stringx	is	a	correctMathematica–expression,	andFalse	otherwise.	In	a	certain
measure	to	this	function	theToExpression	function	adjoins	that	evaluates	all	expressions
which	are	in	the	argument	of	string	format	with	return	ofNull.	By	results	of	their
performance	the	given	functions	can	be	considered	as	testing	tools	of	correctness	of	the
expressions	that	are	in	a	string.	At	that,	if	in	the	first	case	we	receive	value	{True,False},
in	the	second	case	the	correctness	can	be	associated	with	return	ofNull.	In	this	context
theToExpression	function	in	a	certain	relation	is	similar	to	the	`parse`	procedure	of
theMaple	system	[10,14-16,21,25-27].	If	necessary,	the	user	can	also	create	own	functions
with	names	of	the	formNameQ	which	will	significantly	expand	the	range	of	similar
standard	system	tools.	Below,	this	question	largely	is	detailed	on	specific	examples	of
such	means.

Coding	of	definitions	of	types	directly	in	headings	of	procedures/functions	takes	place
only	for	theMathematica	system,	allowing	in	the	call	point	of	a	procedure/function
without	execution	of	it	and	without	appeal	to	external	tools	to	execute	testing	for	an
admissibility	of	the	actual	arguments	received	by	the	procedure/function.	Such	approach
increases	efficiency	of	execution	of	a	procedure/function,	doing	it	by	the	more	mobile.
The	given	approach	is	especially	convenient	in	the	case	where	the	type	posesses	highly
specialized	character	or	its	definition	is	described	by	small	and	a	rather	clear	program
code.	Indeed,	in	a	number	of	cases	the	inclusion	of	definitions	of	the	testing	means
directly	into	headings	is	very	conveniently.	So,	this	approach	is	used	rather	widely	in
means	from	theAVZ_Package	package	[48].	In	general,	this	approach	allows	to	typify
quite	in	details	in	many	important	applied	data;	its	essence	rather	visually	illustrates	the
following	simple	fragment,	namely:

In[2524]	:=	ArtKr[x_	/;	{T[z_]	:=	If[z	<=	80	&&	z	>=	8,	True,	False],	T[x]}[[2]],	y_	/;
StringQ[y]	&&	!	SuffPref[y,	{“avz”,	“agn”,	“vsv”},	1]]	:=	Module[{a	=	72,	b	=	67},	y

<>	”	=	”	<>	ToString[x	+	a	+	b]]

In[2525]	:=	{T[6],	Map7[ArtKr,	Sequences,	{{72,	“h”},	{42,	“j”},	{50,	“avagvs”}}],
T[6]}
Out[2525]=	{T[6],	{”h=	211“,	“j=	181“,	“avagvs=	189”},	False}
In[2526]:=	Definition[T]
Out[2526]=	T[z_]:=	If[z<=	80&&	z>=	8,	True,	False]

The	example	of	simple	ArtKr	procedure	of	the	modular	type	quite	visually	illustrates
opportunities	on	the	organization	of	typified	testing	of	the	actual	arguments	of	the
procedure	when	definition	of	a	typeT	is	given	directly	in	heading	of	the	procedure	and	is
activated	at	once	after	the	first	call	ofArtKr	procedure.	Many	of	means	ofAVZ_Package
package	use	similar	approach	in	own	organization	[48].

On	the	assumption	of	the	general	definition	of	a	procedure,	in	particular,	of	modular	type
M[x_/;Testx,y_/;Testy,	…]	:=	Module[{locals},Procedure	body]

and	of	that	fact	that	concrete	definition	of	the	procedure	is	identified	not	by	itsname,	but
itsheading	we	will	consider	a	set	of	the	useful	enough	means	which	provide	the	various
manipulations	with	headings	of	procedures	and	functions,	and	play	a	very	important	part
in	procedural	programming	and,	first	of	all,	programming	of	problems	of	the	system
character.	Having	defined	such	object	rather	useful	in	many	appendices	as	theheading	of	a
procedure/function	in	the	form”Name[The	list	of	formal	arguments	with	the	testing	means
ascribed	to	them]“,	quite	naturally	arises	the	question	of	the	creation	of	means	for	a
testing	of	objects	regarding	their	relation	to	the	type	`Heading`.	It	is	possible	to	represent
theHeadingQ	procedure	as	a	such	tool	whose	source	code	with	examples	of	its	use	is
represented	by	the	following	fragment.	The	procedure	callHeadingQ[x]	returnsTrue	if	an
objectx,	given	in	string	format,	can	be	considered	as	a	syntactic	correct	heading;	otherwise
False	is	returned;	in	case	of	inadmissible	argumentx	the	callHeadingQ[x]	is	returned
unevaluated.	TheHeadingQ	procedure	is	rather	essentially	used	in	a	series	of	means	from
theAVZ_Package	package	[48].

In[3385]:=	HeadingQ[x_	/;	StringQ[x]]	:=	Module[{a,	b,	c,	k	=	1,	m	=	True,	n	=
True},	If[StringTake[x,	{–1,–1}]	==	“]”	&&

StringCount[x,	{“[“,	“]”}]	==	2	&&	!	StringFreeQ[StringReplace[x,	”	“–>	””],	“[]”],
Return[m],	If[!	StringFreeQ[RedSymbStr[x,	“_”,	“_”],	“[_]”],	Return[!	m]]];
Quiet[Check[ToExpression[x],	Return[False]]];
If[DeleteDuplicates[Map3[StringFreeQ,	x,	{“[“,	“]”}]]	===	{False},	c	=
StringPosition[x,	“[“][[1]][[2]];	If[c	==	1,	Return[False],	a	=	StringTake[x,	{c,–1}]],
Return[False]];	b	=	StringPosition[a,	“[“][[1]][[1]];	c	=	StringPosition[a,	“]”][[–1]]
[[1]];	a	=	“{”	<>	StringTake[a,	{b	+	1,	c–1}]	<>	“}“;	a	=	Map[ToString,
ToExpression[a]];

If[DeleteDuplicates[Mapp[StringFreeQ,	a,	“_”]]	=={False},	Return[True]];	If[{c,
a}==	{2,	{}},	Return[True],	If[a	==	{}||	StringTake[a[[1]],	{1,	1}]	==	“_”,
Return[False],	For[k,	k	<=	Length[a],	k++,	b	=	a[[k]];

If[StringReplace[b,	“_”–>	””]	!=	””	&&	StringTake[b,	{–1,–1}]	==	“_”	||	!
StringFreeQ[b,	“_	“]	||	!	StringFreeQ[b,	“_:”]||!	StringFreeQ[b,	“_.”],	m	=	True,	n	=

False]]];	m	&&	n]]

In[3386]	:=	{HeadingQ[“D[x_,	y_/;	ListQ[y],	z_:75,	h_]”],
HeadingQ[“D[x_,	y_,	z_:75,	h_]”],
HeadingQ[“D[x_,	y_/;	ListQ[y],	z_:75,	_]”]}

Out[3386]=	{True,	True,	True}
In[3387]=	{HeadingQ[“D[x_,	y_/;	ListQ[y],	z_:75,	h]”],

HeadingQ[“[x_,	y_/;	ListQ[y],	z:75]”]	}
Out[3387]=	{False,	False}
In[3388]:=	{HeadingQ[“g[]”],	HeadingQ[“t[x__]”],	HeadingQ[“p[x__]”],

HeadingQ[“h[_]”]	}
Out[3388]=	{True,	True,	True,	False}
In[3389]:=	{HeadingQ[“D[_,	x_]”],	HeadingQ[“Z[x__]”],

HeadingQ[“Q[x___]”]}
Out[3389]=	{True,	True,	True}

In[3390]	:=	{HeadingQ[“D[x_,	y_/;	ListQ[y],	z_:75,	h]”],
HeadingQ[“V[x_,	y_/;ListQ[y],	z_.]”]}
Out[3390]=	{False,	True}

At	that,	the	given	procedure	along	with	standard	means	uses	and	our	means	such
asRedSymbStr,	Map3	andMapp	which	are	considered	in	the	present	book	and	in	[28-33].
The	procedure	is	represented	as	a	rather	useful	means,	first	of	all,	in	system	programming,
for	example,	at	testing	of	objects	types	in	definitions	of	procedures	and	functions	similarly
to	the	meansHead1	and	Head2,	considered	in	the	present	book	too.
The	followingHeadingQ1	procedure	represents	a	very	useful	expansion	of	the
aboveHeadingQ	procedure	concerning	its	opportunity	of	testing	of	the	headings	onto	their
correctness.	The	procedure	callHeadingQ1[x]	returns	True	if	the	actual	argumentx,	given
in	string	format,	can	be	considered	as	a	syntactically	correct	heading;	otherwiseFalse	is
returned.	The	next	fragment	represents	source	code	of	theHeadingQ1	procedure	and
examples	of	its	use.

In[2512]	:=	HeadingQ1[x_	/;	StringQ[x]]	:=	Module[{b,	c	=	{},	d,	h	=	“F”,	k	=	1,	a	=
Quiet[StringTake[x,	{Flatten[StringPosition[x,	“[“,	1]][[1]]+	1,–2}]]},
If[StringFreeQ[x,	“[“],	False,	b	=	StringSplit1[a,	“,”];	For[k,	k	<=	Length[b],	k++,	d
=	b[[k]];	c	=	Append[c,	If[StringFreeQ[d,	“_”],	False,	If[MemberQ[ToString	/@
{Complex,	Integer,	List,	Rational,	Real,	String,	Symbol},	StringTake[d,
{Flatten[StringPosition[d,	“_”]][[–1]]	+	1,–1}]],	True,	HeadingQ[h	<>	“[”	<>	d	<>
“]”]]]]];	If[DeleteDuplicates[c]	==	{True},	True,	False]]]

In[2513]	:=	Map[HeadingQ1,	{“H[s_String,x_/;StringQ[x],y_]”,
“T[x_,y_/;ListQ[y],z_List]”,
“V[x_,	y_/;	ListQ[y]&&Length[L]	==	90]”,	“E[x__,	y_/;	ListQ[y],	z___]”}]

Out[2513]	=	{True,	True,	True,	True}
In[2514]:=	{Map[HeadingQ,	{“H[s_Integer]”,	“G[n_Integer,L_List]”,
“G[n___Integer]”}],	Map[HeadingQ1,	{“H[s_Integer]”,	“G[n_Integer,L_List]”,
“G[n___Integer]”}]}

Out[2514]=	{{True,	True,	True},	{True,	True,	True}}
In	addition	to	the	system	means	theHeadingQ1	procedure	uses	procedure	StringSplit1
that	represents	an	useful	generalization	of	the	system	function	StringSplit.	It	should	be
noted	that	regardless	of	the	correct	testing	of	quite	wide	type	of	headings,	meanwhile,	the
procedureHeadingQ	along	with	the	HeadingQ1	not	has	comprehensive	character	because
of	a	series	of	features	of	syntactical	control	ofMath–language.	That	the	following	simple
example	very	visually	illustrates,	from	which	follows,	that	the	system	testing	means
perceive	incorrect	headings	as	correct	expressions.

In[2567]	:=	ToExpression[“W[x__/;_StringQ[x]]”]
Out[2567]=	W[x__/;	_StringQ[x]]
In[2568]:=	SyntaxQ[“W[x__/;_StringQ[x]]”]
Out[2568]=	True

At	the	same	time	two	these	procedures	are	rather	useful	in	many	cases.	Meanwhile,	on	the
basis	of	ourArgsTypes	procedure	serving	for	testing	of	formal	arguments	of	a
function/procedure	which	has	been	activated	in	the	current	session	perhaps	further
expansion	of	the	testing	opportunities	of	the	HeadingQ1,	allowing	in	certain	cases	to
expand	types	of	the	correctly	tested	headings	of	procedures/functions.	Meanwhile,	here	it
is	possible	to	tell	only	about	expansion	of	opportunities	at	certain	cases,	but	not	about
expansion	as	a	whole.	The	fragment	below	represents	source	code	of	theHeadingQ2
procedure	along	with	the	most	typical	examples	of	its	usage.
In[2942]:=	HeadingQ2[x_	/;	StringQ[x]]	:=

Module[{a,	b,	c,	d	=	ToString[Unique[“agn”]]},	{a,	b}=	Map[DeleteDuplicates,
Map[Flatten,	Map3[StringPosition,	x,	{“[“,	“]”}]]];	If[StringLength[x]	==	b[[–1]]
&&	SymbolQ[c	=	StringTake[x,	{1,	a[[1]]–1}]],	Quiet[Check[ToExpression[

StringReplace[x,	c	<>	“[”	–>	d	<>	“[“,	1]	<>	”	:=	72”],	False]];	c	=	Map[SyntaxQ,
ArgsTypes[d]];	ToExpression[“Remove[”	<>	d	<>	“]”];	If[DeleteDuplicates[c]	===
{True},	True,	False],	False]]

In[2943]:=	Map8[HeadingQ1,	HeadingQ2,	{“V[x__/_String]”}]

Out[2943]	=	{True,	False}
In[2944]:=	Map8[HeadingQ1,	HeadingQ2,	{“V[x_/;	StringQ[x]]”}]	Out[2944]=	{True,
True}
In[2945]:=	Map[HeadingQ2,	{“F[x_/;	StringQ[x]]”,	“F[x/;	StringQ[x]]”,

“F[x;	StringQ[x]]”,	“F[x_	/_	StringQ[x]]”,	“F[x_//;	StringQ[x]]”,	“F[x_;	y_;	z_]”}]
Out[2945]=	{True,	True,	True,	False,	False,	True}
In[2946]:=	Map[HeadingQ1,	{“F[x_/;	StringQ[x]]”,	“F[x/;	StringQ[x]]”,
“F[x;	StringQ[x]]”,	“F[x_/_	StringQ[x]]”,
“F[x_//;	StringQ[x]]”,	“F[x_;	y_;	z_]”}]	Out[2946]=	{True,	False,	False,	True,	False,
True}
In[2947]:=	Map[HeadingQ,	{“F[x_/;	StringQ[x]]”,	“F[x/;	StringQ[x]]”,	“F[x;
StringQ[x]]”,	“F[x_/_	StringQ[x]]”,	“F[x_//;	StringQ[x]]”,	“F[x_;	y_;	z_]”}]
Out[2947]=	{True,	False,	False,	True,	False,	True}
In[2948]:=	Map[#[“F[x_/_	StringQ[x]]”]	&,	{HeadingQ,	HeadingQ1}]	Out[2948]=
{True,	True}

In[2949]:=	Map[#[“F[x_/_	StringQ[x]]”]	&,	{HeadingQ2,	HeadingQ3}]	Out[2949]=
{False,	False}
In[2950]:=	Map[#[“F[x_/_StringQ[x]]”]	&,	{HeadingQ,	HeadingQ1}]	Out[2950]=
{True,	True}
In[2951]:=	Map[#[“F[x_/_StringQ[x]]”]	&,	{HeadingQ2,	HeadingQ3}]	Out[2951]=
{False,	False}

Analogously	to	the	procedures	HeadingQ	andHeadingQ1,	the	procedure
callHeadingQ2[x]	returnsTrue	if	actual	argumentx,	set	in	string	format,	can	be	considered
as	a	syntactically	correct	heading;	otherwiseFalse	is	returned.	At	that,	the	examples
presented	in	the	above	fragment	of	applications	of	the	proceduresHeadingQ,	HeadingQ1
andHeadingQ2	quite	visually	illustrate	distinctions	between	their	functionality.	The	group
of	these	means	includes	also	theHeadingQ3	procedure	that	in	the	functional	relation	is
equivalent	to	theHeadingQ2	procedure;	its	callHeadingQ3[x]	returnsTrue	if	an	actual
argumentx,	set	in	string	format,	can	be	considered	as	a	syntactically	correct	heading;
otherwise,	the	call	returnsFalse.	At	the	same	time	between	pairs	of	procedures
{HeadingQ[x],HeadingQ1[x]}&	{HeadingQ2[x],HeadingQ3[x]}	principal	distinctions
exist,	in	particular,	on	the	headings	{F[x_/_StringQ[x]],	F[x_	/	_StringQ[x]}	the	first	pair
returnsTrue	while	the	second	pair	returns	False	as	a	quite	visually	illustrates	the	above
fragment.	It	is	also	necessary	to	note	that	the	first	pair	of	testing	functions	is	more
high–speed	what	is	very	essential	at	their	use	in	real	programming.	Meanwhile,
considering	similar	and	some	other	unlikely	encoding	formats	of	the	headings	of	functions
and	procedures,	the	represented	four	proceduresHeadingQ[x],	HeadingQ1[x],
HeadingQ2[x]	andHeadingQ3[x]	can	be	considered	as	rather	useful	testing	means	in
modular	programming.	At	that,	from	experience	of	their	use	and	their	temporary
characteristics	it	became	clear	that	it	is	quite	enough	to	be	limited	oneself	only	by
proceduresHeadingQ[x],	HeadingQ1[x]	that	cover	rather	wide	range	of	erroneous	coding
of	the	headings.	Furthermore,	taking	into	account	the	mechanism	ofparse	of	expressions
for	their	correctness	that	theMathematica	system	uses,	creation	of	comprehensive	tools	of
testing	of	the	headings	is	very	unlikely.	Naturally,	it	is	possible	to	use	non–standard
receptions	for	receiving	the	testing	means	for	the	headings	having	a	rather	wide	set	of
deviations	from	the	standard,	however	such	outlay	do	not	pay	off	by	the	received	benefits.

The	following	procedure	serves	as	an	useful	enough	means	at	manipulating	with
procedures	and	functions,	its	callHeadPF[x]	returns	heading	in	string	format	of	a	block,
module	or	function	with	a	namex	activated	in	the	current	session,	i.e.	of	function	in	its
traditional	understanding	with	heading.	While	on	other	values	of	argumentx	the	call	is
returned	unevaluated.	Meanwhile,	the	problem	of	definition	of	headings	is	actual	also	in
the	case	of	the	objects	of	the	above	type	of	the	same	name	which	have	more	than	one
heading.	In	this	case	the	procedure	callHeadPF[w]	returns	the	list	of	headings	in	string
format	of	the	subobjects	composing	an	objectw	as	a	whole.	The	following	fragment
represents	source	code	of	theHeadPF	procedure	along	with	the	most	typical	examples	of
its	usage.

In[2942]	:=	HeadPF[x_	/;	BlockFuncModQ[x]]	:=	Module[{b,	c=	ToString[x],	a	=
Select[Flatten[{PureDefinition[x]}],	!	SuffPref[#,	“Default[“,	1]	&]},	b	=
Map[StringTake[#,	{1,	Flatten[StringPosition[#,	{”	:=	“,	”	=	“}]][[1]]–1}]	&,	a];
If[Length[b]	==	1,	b[[1]],	b]]

In[2943]:=	G[x_,	y_]	:=	x*Sin[y]	+	y*Cos[x];	s[]	:=	90*x;	g	:=	500	In[2944]:=
Map[HeadPF,	{G,	s,	Sin,	2015,	g}]

Out[2944]	=	{”G[x_,	y_]“,	“s[]“,HeadPF[Sin],	HeadPF[2015],	HeadPF[500]}	In[2945]:=
Map[HeadPF,	{If,	Tan,	Log,	True,	G,	“Infinity”,	For,	Do,	ProcQ}]	Out[2945]=
{HeadPF[If],	HeadPF[Tan],	HeadPF[Log],	HeadPF[True],

“	G[x_,	y_]“,	HeadPF[”Infinity”],	HeadPF[For],	HeadPF[Do],	“ProcQ[x_]”}	In[2946]:=
M[x_	/;	x	==	“avzagn”]	:=	Module[{a},	a*x];	M[x_,	y_,	z_]	:=	x*y*z;	M[x_	/;
IntegerQ[x],	y_String]	:=	Module[{a,	b,	c},	x];	M[x_String]	:=	x;	M[x_,	y_]	:=
Module[{a,	b,	c},	“abc”;	x	+	y];	In[2947]:=	HeadPF[M]

Out[2947]=	{”M[x_	/;	x==	"avzagn"]“,	“M[x_,	y_,	z_]“,
“M[x_	/;	IntegerQ[x],	y_String]“,	“M[x_String]“,	“M[x_,	y_]”}

So,	the	call	HeadPF[x]	returns	the	heading	in	string	format	of	an	object	with	a	namex	of
the	type	{block,function,module}	which	has	been	activated	in	the	current	session.	At	that,
for	an	objectx	which	has	several	various	headings,	the	callHeadPF[x]	returns	the	list	of
the	headings	whose	order	fully	meets	the	order	of	the	definitions	returned	by	the	function
callDefinition[x].	In	this	regard	testing	of	an	objectx	regarding	to	be	of	the	same	name	is
enough	actually;	theQmultiplePF	procedure	solves	the	problem	whose	source	code	along
with	typical	examples	of	its	usage	the	following	fragment	represents.

In[2780]:=	QmultiplePF[x_,	y___]	:=
Module[{a	=	Flatten[{PureDefinition[x]}]},	If[MemberQ[{{“System”},	{$Failed}},
a],	False,	If[{y}!=	{}&&	!	HowAct[y],	y	=	If[Length[a]	==	1,	a[[1]],	a]];	True]]

In[2781]	:=	M[x_	/;	x	==	“avzagn”]	:=	Module[{a,	b,	c},	x];	M[x_String]	:=	x;	M[x_,
y_,	z_]	:=	x*y*z;	M[x_List,	y_]	:=	Block[{a},	Length[x]	+	y]	M[x_	/;	IntegerQ[x],
y_String]	:=	Module[{a,	b,	c},	x];	M[x_,	y_]	:=	Module[{a,	b,	c},	“abc”;	x	+	y];
In[2782]:=	QmultiplePF[M]

Out[2782]	=	True
In[2783]:=	{QmultiplePF[M,	s],	s}
Out[2783]=	{True,	{”M[x_	/;	x==	"avzagn"]:=	Module[{a,	b,	c},	x]“,

“	M[x_String]:=	x“,	“M[x_,	y_,	z_]:=	x*y*z“,	“M[x_List,	y_]:=	Block[{a,	b,	c},	"abc";
Length[x]+	y]“,	“M[x_	/;	IntegerQ[x],	y_String]:=	Module[{a,	b,	c},	x]“,	“M[x_,	y_]:=
Module[{a,	b,	c},	"abc";	x+	y]”}}

In[2784]	:=	Map[QmultiplePF,	{M,	90,	Avz,	Sin,	If,	a	+	b}]
Out[2784]=	{True,	False,	False,	False,	False,	False}
The	procedure	callQmultiplePF[x]	returnsTrue,	ifx	–	an	object	of	the	same
name(block,function,module),	andFalse	otherwise.	While	the	procedure	call
QmultiplePF[x,y]	with	the2nd	optional	argumenty	–an	indefinite	variable–	returns
throughy	the	list	of	definitions	of	all	subobjects	with	a	namex.	The	QmultiplePF
procedure	realization	significantly	uses	the	earlier	considered	PureDefinition	procedure,
and	also	ourHowAct	function.	In	a	number	of	cases	theQmultiplePF	procedure	despite
the	relative	simplicity	is	a	rather	convenient	means	at	testing	of	objects	of	the	specified
types.

At	testing	of	objects	often	arises	necessity	of	allotment	among	them	of	the	system

functions;	this	problem	is	solved	by	simple	function,	whose	the	call	SystemQ[x]
returnsTrue	if	an	objectx	is	a	system	function,	i.e.	is	defined	by	builtin	language	of
theMathematica,andFalse	otherwise.	The	function	very	simply	is	defined	directly	on	the
basis	of	the	standard	functionsDefinition,	Names	andToString.	The	following	fragment
represents	source	code	of	the	SystemQ	function	with	typical	examples	of	its	application.
In	a	number	of	appendices	the	given	function	represents	quite	certain	interest	and,	first	of
all,	giving	opportunity	quite	effectively	to	differentiate	means.

In[2975]:=	SystemQ[S_]	:=	If[Off[Definition::ssle];
!	ToString[Definition[S]]	===	Null	&&	MemberQ[Names[“System`*”],	ToString[S]],
On[Definition::ssle];	True,	On[Definition::ssle];	False]

In[2976]	:=	Map[SystemQ,	{90,	G,	Sin,	Do,	While,	False,	ProcQ,	a/b^2,	M}]
Out[2976]=	{False,	False,	True,	True,	True,	True,	False,	False,	False}	Above	all,
theSystemQ	function	is	often	used	in	the	headings	of	procedures	and	functions,	testing	the
actual	arguments	for	admissibility.	In	addition	to	theSystemQ	function	it	makes	sense	to
present	an	useful	enough	function	whose	callLangHoldFuncQ[x]	returnsTrue	ifx	–	a
basic	function	ofMath–	language,	andFalse	otherwise.	At	that,	underbasic	function	is
understood	a	system	function	with	one	of	the	attributes	ascribed	to	it,	namely:HoldFirst,
HoldAll	orHoldRest.	The	function	is	represented	as	a	quite	useful	means	in	the	case	of
necessity	of	more	accurate	differentiation	of	software.	The	next	fragment	represents
source	code	of	theLangHoldFunc	function	along	with	examples	of	its	most	typical	usage.
In[2299]:=	LangHoldFuncQ[x_]	:=	If[SystemQ[x]	&&

Intersection[Quiet[Check[Attributes[x],	False]],	{HoldAll,	HoldFirst,	HoldRest}]	!=
{},	True,	False]

In[2300]	:=	Map[LangHoldFuncQ,	{If,	Goto,	Do,	Sin,	Rule,	Break,	While,	Switch,
Which,	For}]
Out[2300]=	{True,	False,	True,	False,	False,	False,	True,	True,	True,	True}

For	a	series	of	problems	of	system	character	the	LangHoldFuncQ	function	allows	to
differentiate	the	set	of	all	system	functions	of	theMath–language	according	to	the
specified	feature.

Right	there	pertinently	to	note	some	more	means	linked	with	the	HeadPF	procedure.	So,
theHeadings	procedure–	an	useful	enough	expansion	of	the	HeadPF	procedure	in	the
case	of	the	blocks/functions/modules	of	the	same	name	but	with	various	headings.
Generally	the	callHeadings[x]	returns	the	nested	list	whose	elements	are	the	sublists
defining	respectively	headings	of	subobjects	composing	an	objectx;	thefirst	elements	of
such	sublists	defines	the	types	of	subobjects	whereas	others	define	theheadings
corresponding	to	them.	The	next	fragment	represents	source	code	of	theHeadings
procedure	along	with	the	most	typical	examples	of	its	usage.

In[2385]	:=	Headings[x_	/;	BlockFuncModQ[x]]	:=	Module[{n,	d,	h,	p,	t,	k	=1,	c	=
{{“Block”},	{“Function”},	{“Module”}},	a	=	Flatten[{PureDefinition[x]}]},	While[k
<=	Length[a],	d	=	a[[k]];	n	=	ToString[Unique[“agn”]];	ToExpression[n	<>	d];
ClearAll[p];	h	=	HeadPF[t	=	n	<>	ToString[x]];	d	=	StringTake[h,	{StringLength[n]	+
1,	–1}];	BlockFuncModQ[t,	p];	If[p	==	“Block”,	AppendTo[c[[1]],	d],	If[p	==
“Function”,	AppendTo[c[[2]],	d],	AppendTo[c[[3]],	d]]];	ToExpression[“Remove[”	<>

t	<>	“,”	<>	n	<>	“]”];	k++];	c	=	Select[c,	Length[#]	>	1	&];	If[Length[c]	==	1,	c[[1]],
c]]	In[2386]:=	M[x_	/;	SameQ[x,	“avz”],	y_]	:=	Module[{a,	b,	c},	y];	M[x_,	y_,	z_]	:=	x
+	y	+	z;	L1[x_,	y_]	:=	Block[{a,	b,	c},	x	+	y];

M[x_	/;	x	==	“avz”]	:=	Module[{a,	b,	c},	x];	L[x_]	:=	x;	M[x_	/;	IntegerQ[x],
y_String]	:=	Module[{a,	b,	c},	x];	M[x_,	y_]	:=	Module[{a,	b,	c},	“agn”;	x	+	y];
M[x_String]	:=	x;	M[x_	/;	ListQ[x],	y_]	:=	Block[{a,	b,	c},	“agn”;	Length[x]	+	y];

In[2387]:=	Headings[M]
Out[2387]=	{{”Block“,	“M[x_	/;	ListQ[x],	y_]”},	{”Function“,	“M[x_,	y_,	z_]“,

“	M[x_String]”},	{”Module“,	“M[x_	/;	x===	"avz",	y_]“,	“M[x_	/;	x==	"avz"]“,	“M[x_
/;	IntegerQ[x],	y_String]“,	“M[x_,	y_]”}}	In[2388]:=	V1[x_]	=	x;	Map[Headings,	{L,
L1,	80,	Sin,	agn,	V1}]	Out[2388]=	{{”Function“,	“L[x_]”},	{”Block“,	“L1[x_,	y_]”},
Headings[80],

Headings[Sin]	,	Headings[agn],	{”Function“,	“V1[x_]”}}	In[2389]:=	G[x_]	:=	x;
Headings[G]
Out[2389]=	{”Function“,	“G[x_]”}
In[2390]:=	h	=	80;	P[x_]	:=	Module[{a	=	80,	b	=	480},	h	=	(a	+	b)*x;	h^2];

{Headings[P],	h}
Out[2390]=	{{”Module“,	“P[x_]”},	80}

On	x	arguments	different	from	the	block/function/module,	the	procedure	callHeadings[x]
is	returned	unevaluated.	This	tool	is	of	interest,	first	of	all,	from	the	programmer
standpoint.	In	a	number	of	the	appendices	which	use	the	procedural	programming,
theHeadings	procedure	is	useful	enough.	At	that,	the	given	procedure	along	with	standard
means	uses	and	our	means	such	asBlockFuncModQ,	PureDefinition	andHeadPF	that
are	considered	in	the	present	book	and	in	[28-33].	Examples	of	the	previous	fragment	very
visually	illustrate	structure	of	the	results	returned	by	the	given	procedure.

In	a	number	of	the	appendices	which	widely	use	procedural	programming,	a	rather	useful
is	theHeadingsPF	procedure	which	is	an	expansion	of	the	previous	procedure.	Generally
the	procedure	callHeadingsPF[]	returns	the	nested	list,	whose	elements	are	the	sublists
defining	respectively	headings	of	functions,	blocks	and	modules	whose	definitions	have
been	evaluated	in	the	current	session;	the	first	element	of	each	such	sublist	defines	an
object	type	in	the	context	of	{”Block“,”Module“,	“Function”}	while	the	others	define	the
headings	corresponding	to	it.	The	procedure	call	returns	thesimple	list	if	any	of	sublists
doesn’t	contain	headings;	at	that,	if	in	the	current	session	the	evaluations	of	definitions	of
objects	of	thespecified	three	types	weren’t	made,	the	procedure	call	returns	theempty	list.
At	that,	the	procedure	call	with	any	arguments	is	returned	unevaluated.	The	fragment
below	represents	source	code	of	theHeadingsPF	procedure	along	with	examples	of	its
typical	usage.

In[2913]	:=	HeadingsPF[x___	/;	SameQ[x,	{}]]	:=	Module[{a	=	{},	d	=	{},	k	=	1,	b,	c	=
{{“Block”},	{“Function”},	{“Module”}},	t},
Map[If[Quiet[Check[BlockFuncModQ[#],	False]],	AppendTo[a,	#],	Null]	&,
Names[“`*”]];	b	=	Map[Headings[#]	&,	a];	While[k	<=	Length[b],	t	=	b[[k]];
If[NestListQ[t],	d	=	Join[d,	t],	AppendTo[d,	t]];	k++];	Map[If[#[[1]]	==	“Block”,
c[[1]]	=	Join[c[[1]],	#[[2	;;	–1]]],	If[#[[1]]	==	“Function”,	c[[2]]	=	Join[c[[2]],	#[[2	;;	–

1]]],	c[[3]]	=	Join[c[[3]],	#[[2	;;	–1]]]]]	&,	d];	Select[c,	Length[#]	>	1&]’	If[Length[c]
==	1,	c[[1]],	c]]

In[2914]	:=	M[x_	/;	SameQ[x,	“avz”],	y_]	:=	Module[{a,	b,	c},	y];	L1[x_]	:=	x;	M[x_,
y_,	z_]	:=	x	+	y	+	z;	L[x_,	y_]	:=	x	+	y;
M[x_	/;	x	==	“avz”]	:=	Module[{a,	b,	c},	x];
M[x_	/;	IntegerQ[x],	y_String]	:=	Module[{a,	b,	c},	x];	M[x_,	y_]	:=	Module[{a,	b,	c},
“agn”;	x	+	y];	M[x_String]	:=	x;	M[x_	/;	ListQ[x],	y_]	:=	Block[{a,	b,	c},	“agn”;
Length[x]	+	y];

F[x_	/;	SameQ[x,	“avz”],	y_]	:=	{x,	y};	F[x_	/;	x	==	“avz”]	:=	x	In[2915]:=
HeadingsPF[]
Out[2915]=	{{”Block“,	“M[x_	/;	ListQ[x],	y_]”},

{	“Function“,	“F[x_/;	x===	"avz",	y_]“,	“F[x_/;	x==	"avz"]“,	“L[x_,	y_]“,	“L1[x_]“,
“M[x_,	y_,	z_]“,	“M[x_String]”},
{”Module“,	“M[x_	/;	x===	"avz",	y_]“,	“M[x_,	y_]“,
“M[x_	/;	x==	"avz"]“,	“M[x_	/;	IntegerQ[x],	y_String]”}}

Reloading	of	the	system	without	activation	of	the	user	means	of	the	specified
three	types	(Block,	Function,	Module)

In[2490]:=	HeadingsPF[]
Out[2490]=	{}

In[2491]	:=	V[x_,	y_]	:=	v*y;	F[x_String]	:=	x	<>“avz”;	G[x_]	:=	x^2;	L[y_]	:=	y
In[2492]:=	HeadingsPF[]
Out[2492]=	{”Function“,	“F[x_String]“,	“G[x_]“,	“L[y_]“,	“V[x_,	y_]”}

At	that,	the	given	procedure	along	with	standard	means	uses	and	our	tools	such
asBlockFuncModQ,	Headings	andNestListQ	that	are	considered	in	the	present	book	and
in	[28-33].	Examples	of	the	previous	fragment	enough	visually	illustrate	structure	of	the
results	returned	by	the	procedure.	But	it	must	be	kept	in	mind	that	performance	of	the
procedure	directly	depends	on	stage	of	the	current	session	when	theHeadingsPF
procedure	has	been	called	and	how	many	definitions	for	the	user	means	of	the	type
{Function,Module,	Block}	were	calculated	in	theMathematica	current	session.

In	certain	problems	of	processing	of	the	headings	at	times	arises	the	question	of	evaluation
of	thename	of	a	heading	whose	decision	a	very	simple	function	gives	whose
callHeadName[x]	returns	the	name	of	a	headingx	in	the	string	format	provided	that	the
heading	is	distinguished	by	procedureHeadingQ	orHeadingQ1	as	a	syntactically	correct
heading,	i.e.	the	callHeadingQ[x]	or	HeadingQ1[x]	returnsTrue;	otherwise,	the	function
callHeadName[x]	will	be	returned	unevaluated.	The	following	fragment	represents	source
code	of	theHeadName	function	along	with	typical	examples	of	its	usage.

In[2645]	:=	HeadName[x_	/;	HeadingQ[x]	||	HeadingQ1[x]]	:=	StringTake[x,	{1,
StringPosition[x,	“[“,	1][[1]][[1]]–1}]
In[2646]:=	Map[HeadName,	{“V[x_/;	StringQ[x]]”,	“G[x_String]”,	“S[x_/;
IntegerQ[x]]”,	“Kr[x_/;	StringQ[x],	y__]”,	“Art[]”}]
Out[2646]=	{”V“,	“G“,	“S“,	“Kr“,	“Art”}

In[2647]:=	Map[HeadName,	{“V[j_;	StringQ[j]]”,	“S[j/;	IntegerQ[j]]”}]
Out[2647]=	{HeadName[”V[j_;StringQ[j]]”],HeadName[”S[j/;IntegerQ[j]]”]}

In	some	cases	of	procedural	programming,	for	example,	in	case	of	necessity	of	insertion	of
calls	of	procedures/functions	on	the	basis	of	their	headings	into	structures	of	string	type,
theHeadToCall	procedure	is	represented	as	a	quite	useful	tool,	whose	callHeadToCall[h]
in	string	format	returns	the	call	of	a	procedure/function	on	the	basis	of	its	heading
on`pure`formal	arguments	(i.e.	without	the	tests	for	an	admissibility	ascribed	to	them),
whereh	–	admissible	heading	of	a	procedure/function.	The	following	fragment	represents
source	code	of	theHeadToCall	procedure	along	with	examples	of	its	usage.

In[2511]	:=	HeadToCall[j_	/;	HeadingQ[j]]	:=	Module[{a	=	HeadName[j],	b},	b	=	“{”
<>	StringTake[StringReplace[j,	a	<>	“[“–>	””,	1],	{1,–2}]	<>	“}“;	b	=
Select[StrToList[b],	!	StringFreeQ[#,	“_”]	&];	b	=	Map[StringTake[#,	{1,
Flatten[StringPosition[#,	“_”]][[1]]–1}]	&,	b];	a	<>	“[”	<>	StringTake[ToString[b],
{2,–2}]	<>	“]”]

In[2512]	:=	HeadToCall[“G[x_,	y_/;	StringQ[y],	z_/;	MemberQ[{0,	1,	2},	z],
t_Symbol,	h_/;	IntegerQ[h],	z__,	p___]”]
Out[2512]=	“G[x,	y,	z,	t,	h,	z,	p]”
In[2513]:=	HeadToCall[“V[x_List,	y_/;	PrimeQ[y]	&&	y	<	90,	z_/;	!	HowAct[z],
t_Integer,	z__,	p___]”]
Out[2513]=	“V[x,	y,	z,	t,	z,	p]”

At	that,	it	must	be	kept	in	mind	that	the	procedure	call	returns	also	optional	arguments	of
the	studied	heading.

In	the	light	of	possibility	of	existence	in	the	current	session	of	Mathematica	of	the
procedures	of	the	same	name	with	different	headings	the	problem	of	removal	from	the
session	of	a	procedure	with	concrete	heading	represents	a	certain	interest;	this	problem	is
solved	by	the	procedureRemProcOnHead,	whose	source	code	along	with	examples	of
usage	are	represented	below.

In[2437]:=	RemProcOnHead[x_	/;	HeadingQ[x]	||	HeadingQ1[x]	||	ListQ[x]	&&
DeleteDuplicates[Map[HeadingQ[#]	&,	x]]	==	{True}]	:=

Module[{b,	c,	d,	p,	a	=	HeadName[If[ListQ[x],	x[[1]],	x]]},	If[!
MemberQ[Names[“`*”]||!	HowAct[a],	a],	$Failed,	b	=	Definition2[a];	c	=	b[[1	;;–2]];
d	=	b[[–1]];	ToExpression[“ClearAttributes[”	<>	a	<>	“,”	<>	ToString[d]	<>	“]”];	y	=
Map[StandHead,	Flatten[{x}]];	p	=	Select[c,	!	SuffPref[#,	x,	1]	&];
ToExpression[“Clear[”	<>	a	<>	“]”];	If[p	==	{},	“Done”,	ToExpression[p];
ToExpression[“SetAttributes[”	<>	a	<>	“,”	<>	ToString[d]	<>	“]”];	“Done”]]]

In[2438]	:=	M[x_	/;	SameQ[x,	“avz”],	y_]	:=	Module[{a,	b,	c},	y];	L1[x_]	:=	x;	M[x_,
y_,	z_]	:=	x	+	y	+	z;	L[x_,	y_]	:=	x	+	y;
M[x_	/;	x	==	“avz”]	:=	Module[{a,	b,	c},	x];
M[x_	/;	IntegerQ[x],	y_String]	:=	Module[{a,	b,	c},	x];	M[x_,	y_]	:=	Module[{a,	b,	c},
“agn”;	x	+	y];	M[x_String]	:=	x;	M[x_	/;	ListQ[x],	y_]	:=	Block[{a,	b,	c},	“agn”;
Length[x]	+	y];	F[x_	/;	SameQ[x,	“avz”],	y_]	:=	{x,	y};	F[x_	/;	x	==	“avz”]	:=	x

In[2439]	:=	Definition[M]

Out[2439]=	M[x_	/;	x===	“avz“,	y_]:=	Module[{a,	b,	c},	y]
M[x_,	y_,	z_]:=	x+	y+	z
M[x_	/;	x==	“avz”]:=	Module[{a,	b,	c},	x]
M[x_	/;	IntegerQ[x],	y_String]:=	Module[{a,	b,	c},	x]	M[x_	/;	ListQ[x],	y_]:=	Block[{a,
b,	c},	“agn“;	Length[x]+	y]	M[x_,	y_]:=	Module[{a,	b,	c},	“agn“;	x+	y]
M[x_String]:=	x
In[2440]:=	RemProcOnHead[{“M[x_,y_,z_]”,	“M[x_	/;ListQ[x],y_]”}]
Out[2440]=	“Done”
In[2441]:=	Definition[M]
Out[2441]=	M[x_	/;	x===	“avz“,	y_]:=	Module[{a,	b,	c},	y]
M[x_	/;	x==	“avz”]:=	Module[{a,	b,	c},	x]
M[x_	/;	IntegerQ[x],	y_String]:=	Module[{a,	b,	c},	x]	M[x_,	y_]:=	Module[{a,	b,	c},
“agn“;	x+	y]
M[x_String]:=	x
In[2530]:=	G[x_,	y_	/;	IntegerQ[y]]	:=	x	+	y
In[2531]:=	RemProcOnHead[“G[x_,y_	/;IntegerQ[y]]”]
Out[2531]=	“Done”
In[2532]:=	Definition[G]
Out[2532]=	Null
In[2533]:=	Definition[F]
F[x_	/;	x===	“avz“,	y_]:=	{x,	y}
F[x_	/;	x==	“avz”]:=	x
In[2534]:=	RemProcOnHead[“F[x_	/;x=="avz"]”]
Out[2534]=	“Done”
In[2535]:=	Definition[F]
Out[2535]=	F[x_	/;	x===	“avz“,	y_]:=	{x,	y}
In[2541]:=	V[x_]	:=	Module[{},	x^6];	V[x_Integer]	:=	x^2;	Definition[V]
Out[2541]=	V[x_Integer]:=	x^2
V[x_]:=	Module[{},	x^6]
In[2542]:=	{RemProcOnHead[“V[x_Integer]”],	RemProcOnHead[“V[x_]”]}
Out[2542]=	{”Done“,	“Done”}
In[2543]:=	Definition[V]

Out[2543]	=	Null
In[2544]:=	Map[RemProcOnHead,	{“L[x_,	y_]”,	“L1[x_]”}]
Out[2544]=	{”Done“,	“Done”}
In[2545]:=	{Definition[L1],	Definition[L]}
Out[2545]=	{Null,	Null}

In[2508]:=	StandHead[x_	/;	HeadingQ[x]	||	HeadingQ1[x]]	:=

Module[{a	=	HeadName[x],	b},	b	=	StringReplace[x,	a	<>	“[“–>	””,	1];	b	=
ToString1[ToExpression[“{”	<>	StringTake[b,	{1,–2}]	<>	“}“]];	a	<>	“[”	<>
StringTake[b,	{2,–2}]	<>	“]”]

In[2509]	:=	StandHead[“V[x_,y_Integer,z_/;StringQ[z]]”]
Out[2509]=	“V[x_,	y_Integer,	z_	/;	StringQ[z]]”
In[2510]:=	StandHead[“F[x_/;x==="avz",y_]”]

Out[2510]=	“F[x_	/;	x===	"avz",	y_]”

The	successful	call	of	the	procedure	RemProcOnHead[x]	returns	“Done”,	having
removed	from	the	current	session	a	procedure/function	or	their	list	with	heading	or
accordingly	with	list	of	the	headingsx	that	are	given	in	the	string	format;	at	that,	on
inadmissible	factual	argumentx	the	procedure	call	returns$Failed	or	is	returned
unevaluated.	At	the	same	time,	the	remaining	subobjects	with	the	name	of	the	objectx
which	have	been	processed	by	the	procedureRemProcOnHead	save	and	options,	and
attributes,	except	in	the	case	when	the	objectx	is	removed	completely.	At	that,	it	is
necessary	to	do	2	remarks,	namely:(1)	the	means	of	this	fragment	that	are	used	as
examples	have	only	formally	correct	code,	no	more,	and(2)	heading	in	the	procedure
callRemProcOnHead[x]	is	coded	according	to	the	formatToString1[x].

The	previous	fragment	contains	source	code	of	the	RemProcOnHead	with	examples	of
its	usage	along	with	control	of	the	obtained	results.	It	must	be	kept	in	mind	that	realization
of	algorithms	of	a	number	of	the	procedures	that	significantly	use	the	headings	requires
the	coding	of	headings	in	the	format	corresponding	to	the	system	agreements	at	evaluation
of	definitions	of	a	procedure/function/block.	For	automation	of	representation	of	aheading
in	the	standard	format	theStandHead	procedure	can	be	quite	useful	whose	source	code
along	with	examples	of	its	application	completes	the	previous	fragment.	The	procedure
callStandHead[h]	returns	the	heading	of	a	block/	procedure/function	in	the	format
corresponding	to	thesystem	agreements	at	evaluation	of	its	definition.

So,	if	in	the	Maple	the	identifier	of	a	procedure/function	is	its	name,	then	in
theMathematica	system	this	function	is	carried	out	by	its	heading,	i.e.	the	construction	of
kind“Name[List	of	formal	arguments]”	that	it	is	necessary	to	consider	at	programming	of
means	for	processing	of	the	specified	objects.	Therefore	theNames	function	needs	to	be
applied	in	combination	with	the	Definition	function	because	the	first	returns	only	the
names	of	procedures	and	functions	and	tells	nothing	about	existence	in	the	current	session
of	the	user	procedures/functions	of	the	same	name	with	different	headings	as	nice
illustrates	the	following	simple	fragment,	namely:

In[2620]	:=	G[x_]	:=	Module[{a	=	90},	x^2	+	a];
G[x_	/;	PrimeQ[x]]	:=	Module[{a	=	90},	x	+	a];
V[x_	/;	ListQ[x]]	:=	Module[{},	Length[x]];
V[x_]	:=	Module[{},	x^2]

In[2621]	:=	Select[Names[“`*”],	ProcQ1[#]	&]
Out[2621]=	{”G“,	“V”}
In[2622]:=	Definition[G]

Out[2622]	=	G[x_	/;	PrimeQ[x]]:=	Module[{a=	90},	x+	a]
G[x_]:=	Module[{a=	90},	x^2+	a]
In[2623]:=	Definition[V]
Out[2623]=	V[x_	/;	ListQ[x]]:=	Module[{},	Length[x]]
V[x_]:=	Module[{},	x^2]

In[2624]:=	MdP[x___]	:=	Module[{b	=	{},	c,	d,
a	=	Select[Names[“`*”],	BlockFuncModQ[#]	&]},	d	=	Flatten[Map[ToString,	{x}]];

a	=	If[a	==	{},	{},	If[d	==	{},	a,	If[MemberQ4[a,	d],	Intersection[a,	d],	{}]]];	If[a	==

{},	$Failed,	c	=	Map[AppendTo[b,	{#,	Length[Flatten[{PureDefinition[#]}]]}]	&,	a]
[[-1]];	If[Length[c]	>	1,	c,	c[[1]]]]]

In[2625]:=	MdP[]
Out[2625]=	{{”G“,	2},	{”V“,	2}}

In[2626]	:=	MdP[G,	V,	H]
Out[2626]=	{{”G“,	2},	{”V“,	2}}
In[2627]:=	Clear[G,	V];	MdP[]
Out[2627]=	$Failed
In[2628]:=	MdP[G1,	V1,	H]
Out[2628]=	$Failed
In[3502]:=	MdP[]
Out[3502]=	{{”F“,	2},	{”G“,	2},	{”L“,	1},	{”L1“,	1},	{”M“,	7}}

The	previous	fragment	defines	the	procedure,	whose	call	MdP[x]	returns	a
simple2–element	list,	in	which	the	first	element–	an	object	name	in	string	format	and	the
second	element–	number	of	headings	with	such	name(ifx	defines	a
procedure/function/block	activated	in	the	current	session;in	the	absence	of	similar
object$Failed	is	returned);	the	nested	list	whose2–element	sublists	have	the	structure
described	above(if	an	objectxdefines	the	list	of	the	modules/	functions/blocks	activated	in
the	current	session),	the	nested	list	of	the	previous	format(ifxis	empty,defining	the	list	of
all	functions/blocks/modules	activated	in	the	current	session);	in	the	absence	of	the
functions/modules/blocks	activated	in	the	current	session	the	callMdP	returns$Failed.	At
that,	the	procedure	along	with	standard	means	uses	and	our	means	such
asBlockFuncModQ,	PureDefinition	andMemberQ4	which	are	considered	in	the	present
book	and	in	[28-33].	Examples	of	the	previous	fragment	rather	visually	illustrate	structure
of	the	results	returned	by	the	given	procedure.

As	it	was	already	noted,	the	current	session	may	contain	several	different	definitions	of	a
procedure/function/block	with	the	same	name	which	differ	only	at	the	level	of	their
headings.	The	procedure	callDefinition2[x]	in	an	optimum	format	returns	the	list	of	all
definitions	in	string	format	of	a	block/	procedure/function	with	a	namex,	accompanying	it
with	options	and	the	list	of	the	attributes	that	are	ascribed	to	a	symbolx.	According	to	the
system	agreements	the	procedures/functions/blocks	of	thesame	name	have	the	same
ascribed	options	and	attributes	as	illustrates	the	following	fragment:

In[3389]	:=	G[x_,	y_]	:=	x^2*y^2
In[3390]:=	Options[G]	=	{Art–>	25,	Kr–>	18};
In[3391]:=	SetOptions[G,	Art–>	25,	Kr–>	18]
Out[3391]=	{Art–>	25,	Kr–>	18}

In[3392]	:=	Definition2[G]
Out[3392]=	{”G[x_,	y_]:=	x^2*y^2“,	“Options[G]:=	{Art–>	25,	Kr–>	18}“,	{}}
In[3393]:=	G[x_]	:=	x^2;	G[x_,	y_,	z_]	:=	x	+	y	+	z;

SetAttributes[G,	{Protected,	Listable}]
In[3394]:=	Definition2[G]
Out[3394]=	{”G[x_,	y_]:=	x^2*y^2“,	“G[x_]:=	x^2“,	“G[x_,	y_,	z_]:=	x+y+z“,

“Options[G]:=	{Art–>	25,	Kr–>	18}“,	{Listable,	Protected}}	In[3395]:=	DefOnHead[x_

/;	HeadingQ[x]]	:=	Module[{a,	b,	c,	d,	h	=	RedSymbStr[StringReplace[StandHead[x],
“,”–>	“,	“],	”	“,	”	“]},	a	=	HeadName[h];	b	=	Definition2[ToExpression[a]];

c	=	Select[b,	SuffPref[#,	Map3[StringJoin,	h,	{”	:=	“,	”	=	“}],	1]	&];	d	=	Select[b,
SuffPref[#,	Quiet[Map3[StringJoin,	“Options[”	<>	a	<>	“]”,	{”	=	“,	”	:=	“}]],	1]	&];
If[MemberQ[b,	“Undefined”],	$Failed,

If[d	==	{},	AppendTo[c,	b[[–1]]],	Join[c,	{d[[1]],	b[[–1]]}]]]]	In[3396]:=
DefOnHead[“G[x_,y_,z_]”]
Out[3396]=	{”G[x_,	y_,	z_]:=	x+	y+	z“,	“Options[G]:=	{Art–>	24,	Kr–>	17}“,

{Listable	,	Protected}}
In[3397]:=	DefOnHead[“G[x_,y_]”]
Out[3397]=	{”G[x_,	y_]:=	x^2*y^2“,	“Options[G]:=	{Art–>	24,	Kr–>	17}“,

{Listable	,	Protected}}
In[3398]:=	DefOnHead[“G[x_]”]
Out[3398]=	{”G[x_]:=	x^2“,	“Options[G]:=	{Art–>	24,	Kr–>	17}“,

{Listable,	Protected}}

For	receiving	of	definition	of	a	procedure/function/block	x	with	the	given	heading(the
main	identifier)	a	number	of	means	one	of	which	is	presented	by	the	previous	fragment	is
created;more	precisely	theDefOnHead	procedure	whose	callDefOnHead[j]	returns	the
list	whose	thefirst	element–	definition	in	string	format	of	a	procedure/function/block	with
the	given	headingj(or	the	list	of	definitions	for	the	subobjects	of	the	same	name)	whereas
other	elements	are	options(if	they	are)	and	list	of	attributes	ascribed	to	the	function/block/
procedurex.	At	that,	the	following	defining	relationHeadName[j]	=x	takes	place.	As	a
whole,	it	is	recommended	to	use	a	certain	unique	name	for	each	definition,	for	providing
of	such	possibility	the	system	functionsClear	and	ClearAll	can	be	used	at	modifications
of	means	if	their	headings	change.	Thus,	at	the	call	of	a	procedure/function/block	from	the
list	of	definitions	of	its	subobjects	a	definition	with	the	heading	corresponding	to	the
actual	arguments,	i.e.	that	are	admissible	for	formal	arguments	with	the	ascribed	tests	for
an	admissibility	is	chozen.	Moreover,	a	heading	of	the	formatG[x_,	y_,	z_,	…]	has	the
minimum	priority	among	the	headings	of	other	formats	irrespective	of	the	evaluation	order
in	the	current	session	of	definitions	of	procedures/functions/blocks	of	the	same	name	as
very	visually	illustrates	the	following	rather	simple	fragment,	namely:

In[2863]	:=	G[x_,	y_]	:=	StringJoin[x,	y]	<>	“RansIan”
In[2864]:=	G[x_Integer,	y_Integer]	:=	x	+	y
In[2865]:=	G[x_String,	y_Integer]	:=	y*StringLength[x]
In[2866]:=	Definition2[G]
Out[2866]=	{”G[x_Integer,	y_Integer]:=	x+	y“,	“G[x_String,	y_Integer]:=

y	*StringLength[x]“,
“G[x_,	y_]:=	StringJoin[StringJoin[x,	y],	"RansIan"]“,	{}}	In[2867]:=	{G[80,	90],
G[“AvzAgnVsvArtKr”,	500]}
Out[2867]=	{170,	7000}
In[2868]:=	G[“AvzAgnVsvArtKr”,	“Tallinn”]
Out[2868]=	“AvzAgnVsvArtKrTallinnRansIan”
In[2869]:=	G[x_,	y___]	:=	If[{y}==	{},	x^2,	{y}=	{x};	x^2];	G[500]	Out[2869]=	250

000
In[2870]:=	G[“90”,	“500”]
Out[2870]=	“90500RansIan”
In[2871]:=	ClearAll[G]
In[2872]:=	G[x_]	:=	x^2;	G[x_,	y_	/;	!	HowAct[y]	===	Null]	:=	{y	=	x,	x^2}[[2]]
In[2873]:=	Definition2[G]
Out[2873]=	{”G[x_]:=	x^2“,	“G[x_,	y_	/;	!HowAct[y]===	Null]:=

{y=	x,	x^2}[[2]]“,	{}}

Above,	it	was	already	noted	that	in	the	most	cases	is	expedient	to	use	only	one	definition
of	a	procedure/function/block,	that	at	times	quite	significantly	simplifies	its	processing.
Meanwhile,	in	certain	cases	is	quite	convenient	the	usage	of	a	number	of	the
procedures/functions/blocks	of	the	same	name,	for	example,	for	the	purpose	of
simplification	of	their	program	realization.	So,	realization	of	theG	function	from
undefinite	number	of	formal	arguments	of	the2nd	part	of	the	previous	fragment	can	serve
as	an	example.	Definition	of	twoG	functions	covering	all	cases	of	the	functionG	in	some
cases	allows	to	simplify	realization.	In	this	example	such	simplification	isn’t	so	obvious
since	it	only	illustrates	reception	while	in	case	of	rather	complex	procedures	which	in	the
body	have	to	execute	processing	of	undefinite	quantity	of	the	received	actual	arguments
such	approach	can	be	very	effective.

As	it	was	noted	above,	generally	the	user	procedure	/function/block	can	has	both	the
ascribed	attributes,	and	options.	At	that,	some	of	earlier	considered	means	were	based,
mainly	on	the	call	of	ourDefinition2[x]	of	our	procedure	returning	the	list	whose	last
element	contains	the	list	ofattributes	ascribed	to	symbolx	whereas	the	sublist
ofDefinition2[x][[1;;–2]]	contains	definitions	of	a	procedure/function/block	together	with
options	if	those	exist.	The	next	PureDefinition	procedure	solves	the	problem	of	receiving
ofpure	definitions	of	a	procedure/function/block	without	options	and	the	ascribed
attributes.

In[2826]:=	G[x_]	:=	x;	G[x_,	y_	/;	!	HowAct[y]	===	Null]	:=	{y	=	x,	x^2}[[2]]
In[2827]:=	Options[G]	=	{Art–>	25,	Kr–>	18};

SetOptions[G,	Art	–>	25,	Kr–>	18]
Out[2827]=	{Art–>	25,	Kr–>	18}
In[2828]:=	SetAttributes[G,	{Listable,	Protected}];	Definition2[G]	Out[2828]=
{”G[x_]:=x“,	“G[x_,	y_	/;	!HowAct[y]===	Null]:=	{y=	x,	x}[[2]]“,

“Options[G]:=	{Art–>	25,	Kr–>	18}“,	{Listable,	Protected}}	In[2834]:=
PureDefinition[x_,	t___]	:=	Module[{b,	c,	d,
h	=	ToString[x]	<>	”	/:	Default[“,	a	=	If[UnevaluatedQ[Definition2,	x],	$Failed,
Definition2[x]]},

If[a	===	$Failed,	Return[$Failed]];	b	=	a[[1	;;	–2]];	c	=	If[SuffPref[b[[–1]],
Map3[StringJoin,	“Options[”	<>	ToString[x]	<>	“]”,	{”	=	“,	”	:=	“}],	1],	b[[1	;;–2]],
b];	If[{t}!=	{}&&	!	HowAct[t],	d	=	MinusList[a,	c];	Join[If[Length[d]	>	1,	d,
Flatten[d]],	Select[a,	SuffPref[#,	h,	1]	&]]];	c	=	Select[c,	!	SuffPref[#,	h,	1]	&];
If[Length[c]	==	1,	c[[1]],	c]]

In[2835]:=	{PureDefinition[G,	t],	t}

Out[2835]=	{{”G[x_]:=x“,	“G[x_,	y_	/;	!HowAct[y]===Null]:=	{y=x,x}[[2]]”},

{	“Options[G]:=	{Art–>	25,	Kr–>	18}“,	{}}}
The	procedure	callPureDefinition[x]	returns	definition	in	string	format	or	their	list	of	a
block/function/modulex	without	options,	ascribed	attributes	and	values	by	default	for
formal	arguments	while	the	callPureDefinition[x,	t]	with	the	second	optional	argumentt	–
an	undefinite	variable–	through	it	returns	the	list	of	the	options,	attributes	and	values	by
default	attributed	to	symbolx.	In	the	case	of	inadmissible	argumentx	the	procedure	call
returns	$Failed,	including	also	a	call	on	theCompile	functions.	The	fragment	above
represents	source	code	of	thePureDefinition	procedure	with	examples	of	its	application.
ThePureDefinition	procedure	is	represented	as	useful	tool	in	various	processings	of
definitions	of	blocks/functions/modules.	Procedure	is	rather	widely	used	in	series	of
means	of	our	packageAVZ_Package	[48].

The	concept	of	the	Mathematica	allows	existence	of	a	few	blocks,	functions	or
procedures,	of	the	same	name	that	are	identified	by	theirheadings	but	not	names.
Operating	with	these	objects	is	supported	by	a	number	of	the	means	presented	in	the	given
book	and	in	the	packageAVZ_Package	[48].	In	this	connection	the
procedureExtrProcFunc	represents	a	certain	interest,	whose	callExtrProcFunc[h]	returns
an	unique	name	of	a	generated	block/function/	procedure	that	in	the	list	of	definitions	has
a	headingh;	otherwise,$Failed	is	returned.	The	procedure	is	characteristic	in	that	leaves
all	definitions	of	a	symbolHeadName[h]	without	change.	At	that,	the	returned	object
saves	all	options	and	attributes	ascribed	to	the	symbolHeadName[h].	The	following
fragment	represents	source	code	of	theExtrProcFunc	procedure	along	with	the	most
typical	examples	of	its	application.

In[2860]	:=	ExtrProcFunc[x_	/;	HeadingQ[x]]	:=	Module[{a	=	StandHead[x],	c,	d,	b	=
HeadName[x],	g,	p},	c	=	Definition2[ToExpression[b]];	If[c[[1]]	==	“Undefined”,
$Failed,	d	=	Select[c,	SuffPref[#,	a	<>	”	:=	“,	1]	&];	c	=	ToString[Unique[b]];	If[d	!=
{},	ToExpression[c	<>	d[[1]]];	g	=	AttrOpts[b];	p	=	c	<>	b;	Options[p]	=	g[[1]];
SetOptions[p,	g[[1]]];	ToExpression[“SetAttributes[”	<>	p	<>	“,”	<>	ToString[g[[2]]]
<>	“]”];	Clear[c];	p,	Clear[c];	$Failed]]]

In[2861]:=	H[x_]	:=	x^2;	H[x_,	y_]	:=	x	+	y;	H[x_,	y_,	z_]	:=	x	+	y	+	x;	H[x_Integer]
:=	x;	H[x_,	y_Integer]	:=	x	+	y;	H[x_String]	:=	x	<>	“Agn”

Options[H]	=	{Art–>	25,	Kr–>	18};	SetOptions[H,	{Art–>	25,	Kr–>	18}];
SetAttributes[H,	{Listable,	Protected}]	In[2862]:=	Definition2[H]

Out[2862]	=	{”H[x_Integer]:=	x“,	“H[x_String]:=	StringJoin[x,	"Agn"]“,	“H[x_]:=
x^2“,	“H[x_,	y_Integer]:=	x+	y“,	“H[x_,	y_]:=	x+	y“,	“H[x_,	y_,	z_]:=	x+	y+	x“,
“Options[H11H]=	{Art–>	25,	Kr–>	18}“,	{Listable,	Protected}}

In[2863]	:=	ExtrProcFunc[“H[x_,y_,z_]”]
Out[2863]=	“H11H”
In[2864]:=	Definition[“H11H”]
Out[2864]=	Attributes[H11H]=	{Listable,	Protected}

H11H[x	_,	y_,	z_]:=	x+	y+	x
Options[H11H]=	{Art–>	25,	Kr–>	18}
In[2865]:=	ExtrProcFunc[“H[x_,y_,z_String]”]

Out[2865]=	$Failed
In[2866]:=	ExtrProcFunc[“H[x_String]”]
Out[2866]=	“H12H”
In[2867]:=	Definition[“H12H”]
Out[2867]=	Attributes[H12H]=	{Listable,	Protected}
H12H[x_String]:=	x<>	“Agn”
Options[H12H]=	{Art–>	25,	Kr–>	18}
In[2868]:=	H12H[“AvzAgnVsvArtKr”]
Out[2868]=	“AvzAgnVsvArtKrAgn”
In[2869]:=	H11H[42,	2014,	72]
Out[2869]=	2098

In[3543]:=	AttrOpts[x_	/;	BlockFuncModQ[x]]	:=	Module[{b,	c,	d,	a	=
Definition2[x]},	b	=	a[[–1]];	c	=	Select[a,	SuffPref[#,“Options[”	<>	ToString[x]	<>
“]”,	1]	&];	If[c	==	{},	d	=	c,	d	=	StringSplit[c[[1]],	”	:=	“][[2]]];	{ToExpression[d],	b}]

In[3544]	:=	AttrOpts[H]
Out[3544]=	{{Art–>	25,	Kr–>	18},	{Listable,	Protected}}
In[3545]:=	Sv[x_,	y_]	:=	x^2	+	y^2;	AttrOpts[Sv]
Out[3545]=	{{},	{}}
At	that,	the	procedure	along	with	standard	means	uses	and	our	means	such	asHeadingQ,
Definition2,	HeadName,	StandHand,	SuffPref	andAttrOpts	which	are	considered	in	the
present	book	and	in	[28-33].	Moreover,	the	last	AttrOpts	procedure	completes	the
previous	fragment.	The	procedure	call	AttrOpts[x]	returns	the2-element	nested	list
whosefirst	element	determines	options	whereas	thesecond	element	defines	the	list	of	the
attributes	ascribed	to	a	symbolx	of	type	{Block,Funcion,Module}.	On	a	symbolx	without
options	and	attributes	ascribed	to	it,	the	callAttrOpts[x]	returns	{{},	{}}.	Examples	of	the
previous	fragment	rather	visually	illustrate	structures	of	the	results	that	are	returned	by
both	the	procedureExtrProcFunc,	and	theAttrOpts.

At	that,	in	definition	of	the	ExtrProcFunc	procedure	one	artificial	reception	essential	in
practical	programming	has	been	used.	So,	direct	application	of	our	and	standard	means
{Attributes,	ClearAllAttributes,	SetAttributes}	for	processing	of	attributes	in	body	of	a
procedure	in	certain	cases	doesn’t	give	of	the	desired	result	therefore	it	is	necessary	to	use
special	constructions	the	organization	of	which	is	rather	transparent	and	doesn’t	demand
any	special	explanations.	The	reception	represented	in	source	code	of	theExtrProcFunc
procedure	from	the	previous	fragment	is	used	in	some	other	means	that	are	represented	in
the	present	book	and	in	our	packageAVZ_Package	[48].	So,	the
procedureRemProcOnHead,	considered	above,	also	significantly	uses	the	given
reception.

The	call	ActBFM[]	of	the	next	rather	simple	function	returns	the	list	ofnames	in	string
format	of	the	user	blocks,	functions	and	modules,	whose	definitions	have	been	activated	in
the	currentMathematica	session.	The	next	fragment	represents	source	code	of	the
function	along	with	an	example	of	its	usage.

In[2824]	:=	ActBFM[]	:=	Select[Names[“Global`*”],	!	TemporaryQ[#]	&&
BlockFuncModQ[#]	&]
In[2825]:=	ActBFM[]

Out[2825]=	{”ActBFM“,	“Agn“,	“Avz“,	“B“,	“f“,	“F“,	“M“,	“Name“,	“RansIan”}
The	aboveActBFM	function	has	a	number	of	interesting	enough	appendices
at	programming	of	various	problems,	first	of	all,	of	the	system	character.	In
particular,	theActBFM	function	plays	a	rather	essential	part	at	search	of	the
user	objects,	whose	definitions	have	been	evaluated	in	the	current	session	of
theMathematica	system.

6.5.	Formal	arguments	of	procedures	and	functions;	the	means	of
processing	them	in	theMathematicasoftware

Having	considered	in	the	previous	two	sections	the	means	of	manipulation	with
definitions	of	blocks/functions/modules,	and	also	their	headings,	we	pass	to	consideration
of	means	whose	scope	of	interests	includes	a	number	of	important	problems	connected
with	manipulation	by	formal	arguments	that	compose	headings	of	definitions	of	the	user
procedures	and	functions.	At	that,	these	components	are	extremely	important	and	their
total	absence	in	headings	doesn’t	allow	system	in	general	to	consider	objects	with	similar
headings	as	procedures	or	functions.	In	the	previous	section	the	means	of	processing
ofheadings	of	procedures/blocks/functions	have	been	considered	from	which
procedureHeadingQ1	in	the	best	way	tests	an	arbitrary	string	as	a	heading	what	very
visually	illustrates	the	following	simple	example:	In[2546]:=	Map[HeadingQ1,	{“G[]”,
“G[]”,	“G[]”}]
Out[2546]=	{False,	False,	False}
In[2547]:=	G[]	:=	x;	{FunctionQ[G],	Clear[G]}[[1]]
Out[2547]=	False
In[2548]:=	G[x_	/;	SameQ[{x},	{}]]	:=	x;	FunctionQ[G]
Out[2548]=	True
In[2549]:=	HeadingQ[“G[x_	/;	SameQ[{x},	{}]]”]
Out[2549]=	True
In[2550]:=	G[x___]	:=	{x};	G[]
Out[2550]=	{}
In[2551]:=	{HeadingQ[“G[x___]”],	HeadingQ1[“G[x___]”]}
Out[2551]=	{True,	True}
Of	the	represented	example	follows,	that	strings	of	the	type“G[]”	can’t	be	considered	as
syntactic	correct	headings,	and	definitions	on	their	basis	can’t	be	considered	as	procedures
or	functions.	Meanwhile,	in	case	of	necessity	to	define	procedures	or	functions	whose
calls	make	sense	on	the	empty	list	of	actual	arguments,	it	is	possible	to	code	theirheadings
as	it	is	stated	above;	in	this	case	our	means	identify	them	properly.	Further	consideration
of	means	of	manipulation	with	formal	arguments	of	procedures,	blocks	and	functions
assumes	short	introduction	into	templates	concept;	in	more	detail	the	given	question	is
considered	in	help	on	the	system	and,	in	particular,	in	book	[33].	Templates(patterns)	are
used	in	theMathematica	for	representation	of	the	classes	of	expressions.	Very	simple
example	of	a	template	is	an	expression	h[x_]	that	represents	a	class	of	expressions	of
typeh[any	expression].	As	the	prerequisite	of	introduction	of	the	concept”Template”	into
theMathematica	the	fact	served,	what	many	enough	operations	support	work	not	only
with	separate	expressions	but	also	with	templates	representing	the	whole	classes	of
expressions.	So,	in	particular,	it	is	possible	to	use	the	templates	in	rules	of	transformation

for	the	indicating	of	that	how	properly	to	transform	classes	of	expressions.	The	templates
can	be	used	for	calculation	of	positions	of	all	expressions	in	some	certain	class	along	with
a	number	of	other	applications	of	the	sufficiently	developed	templates	mechanism.

The	basic	identifier	that	defines,	practically,	all	templates	in	Mathematica	is	the“_”
symbol(symbol	of	underlining)	that	is	being	ascribed	to	some	symbol	on	the	right.	In	this
case	theMathematica	system	considers	such	symbol	as	any	admissible	expression	used	as
its	value.	The	callHead[x]	of	the	earlier	mentioned	function	on	a	patternx	returnsPattern
while	the	callPatternQ[x]	of	very	simple	function	returnsTrue	ifx	–	a	template,	andFalse
otherwise:

In[2570]:=	PatternQ[x_]	:=	If[Head[x]	===	Pattern,	True,	False]	In[2571]:=
Map18[{PatternQ,	Head},	{agn_,	_,	_a	_,	x_,	_^_,	avz___,	__}]	Out[2571]=	{{True,
False,	False,	True,	False,	True,	False},
{Pattern,	Blank,	Times,	Pattern,	Power,Pattern,	BlankSequence}}	In[2572]:=	Map18[x_
/;	ListQ[x]	&&	DeleteDuplicates[Map[SymbolQ[#]	&,	x]]	==	{True},	y_	/;	ListQ[y]]
:=	Map[Map[#,	y]	&,	x]	In[2573]:=	Map18[{X,	Y,	Z},	{a,	b,	c}]
Out[2573]=	{{X[a],	X[b],	X[c]},	{Y[a],	Y[b],	Y[c]},	{Z[a],	Z[b],	Z[c]}}

Along	with	the	PatternQ	function	and	comparative	examples	for	it	and	the	standardHead
function	the	previous	fragment	represents	quite	simple	and	usefulMap18	function	in	many
appendices	in	addition	to	the	represented	means	of	theMap–group.	The	callMap18[x,	y],
wherex	–	the	list	{x1,	x2,	…,	xn}	of	symbols	andy	–	the	list	{y1,	y2,	…,	yp}	of	any
expressions,	returns	the	nested	list	of	the	following	format,	namely:

{{x1[y1],x1[y2],	…,x1[yp]},	{x2[y1],x2[y2],…,x2[yp]},	…,	{xn[y1],xn[y2],	…,xn[yp]}}

The	result	returned	by	the	function	call	Map18[x,	y]	is	transparent	enough	and	of	ant
special	explanations	doesn’t	demand.	In	principle,	it	is	possible	to	place	the“_”	symbol	in
any	place	of	an	expression,	defining	thus	the	pattern	corresponding	to	some	group	of	the
expressions	received	by	replacement	of	this	symbol	by	any	expression.	Several	simple
enough	examples	of	patterns	are	given	below,	namely:

h	[x_]–heading	of	a	block/function/procedurehwith	one	formal	argumentxwhere	x	–an
arbitrary	expression;
h[x_,y_]–heading	of	a	block/function/procedurehwith	two	formal	argumentsx,	ywherex,y
–arbitrary	expressions;
h[x_,x_]–heading	of	a	block/function/procedurehwith	two	identical	arguments	xwherex
–an	arbitrary	expression;
x^n_–defines	an	arbitrary	expressionxin	an	arbitrary	degreen;
x_^n_–defines	an	arbitrary	expressionxin	an	arbitrary	degreen;
x_	+y_	+z_–определяет	сумму	трех	произвольных	выраженийx,	yиz;
{x_,y_,z_}–determines	the	list	of	three	arbitrary	expressionsx,	yandz;	90x_^y_	+500
x_*y_	+z_–defines	an	expression	with	five	patterns.

Basic	patterns	in	theMathematica	are	the	following	three	patterns,	namely:	_orBlank[](in
the	full	form)–the	pattern	defining	an	arbitrary	expression;

_	torBlank[t](in	the	full	form)–the	pattern	defining	an	arbitrary	expression	with	a
headingt;
__(2symbols“_”)	orBlankSequence[](in	the	full	form)–the	pattern	defining	an	arbitrary

expression	or	sequence	of	arbitrary	expressions;
__torBlankSequence[t](in	the	full	form)–the	pattern	determining	an	arbitrary	expression
or	sequence	of	arbitrary	expressions	with	a	headingheach;	___(3symbols“_”)
orBlankNullSequence[](in	the	full	form)–the	pattern	that	determines	absence	of
expressions,or	sequence	of	arbitrary	expressions;	___torBlankNullSequence[t](in	the	full
form)–the	pattern	which	determines	absence	of	expressions,or	sequence	of	arbitrary
expressions	with	headingteach.

At	that,	in	the	full	form	the	expressions	containing	patterns	of	types	{	“___”,	“__”,	“_”}
are	represented	in	the	formats	illustrated	by	the	next	example:	In[2500]:=
Map[FullForm,	{x_,	x__,	x___}]
Out[2500]=	{Pattern[x,	Blank[]],	Pattern[x,	BlankSequence[]],

Pattern[x	,	BlankNullSequence[]]}
The	simple	enoughExprPatternQ	function	provides	testing	of	an	expression	regarding
existence	in	it	of	patterns	of	types	{“_”,	“__”,	“___”},	whose	the	call	ExprPatternQ[x]
returnsTrue	if	an	expressionx	contains	at	least	one	of	the	patterns	{“_”,	“__”,	“___”},
andFalse	otherwise.	The	next	fragment	represents	source	code	of	theExprPatternQ
function	with	typical	examples	of	its	use:

In[2502]:=	ExprPatternQ[x_]	:=	!	StringFreeQ[ToString[FullForm[x]],
{“BlankSequence[]”,	“BlankNullSequence[]”,	“Blank[]”}]	In[2503]:=
Map[ExprPatternQ,	{a*Sin[x],	6	x_^y_+a	x_*y_,	x_^y_,	x__,	z___}]	Out[2503]=
{False,	True,	True,	True,	True}

The	user	has	possibility	to	create	patterns	for	expressions	with	an	arbitrary	structure,
however	the	most	widespread	way	of	use	of	templates	is	a	block/	function/procedure
definition	when	formal	arguments	are	specified	in	its	heading.	At	that,	the	coding	of
formal	arguments	without	the	above	patterns	doesn’t	allow	to	consider	these	objects	as	the
blocks/functions/procedures	as	illustrates	a	simple	enough	example:

In[2589]	:=	G[x,	y]	:=	x^2	+	y^2;	G1[x_,	y_]	:=	x^2	+	y^2
In[2590]:=	{G[90,	500],	G1[90,	500]}
Out[2590]=	{G[90,	500],	258100}

Once	again	it	is	necessary	to	emphasize	that	patterns	in	the	Mathlanguage	represent
classes	of	expressions	with	the	given	structure	when	one	pattern	corresponds	to	a	certain
expression	and	if	the	structure	of	pattern	coincides	with	structure	of	an	expression,	i.e.	by
a	filling	of	the	patterns	it	is	possible	to	receive	an	expression.	Moreover,	even	two
expressions,	mathematically	equivalent,	can’t	be	presented	by	the	same	template	if	they
don’t	have	the	same	structure.	For	example,	expression(a	+	b)^2	is	equivalent	to
expression	a^2+2*a*b	+	b^2	however	these	expressions	aren’t	equivalent	at	the	level	of
patterns	representing	them,	for	the	reason,	that	both	have	various	full	form	as	illustrates	a
simple	example:

In[2507]:=	FullForm[(a	+	b)^2]
Out[2507]//FullForm=

Power[Plus[a	,	b],	2]
In[2508]:=	FullForm[a^2	+	2*a*b	+	b^2]
Out[2508]//FullForm=

Plus[Power[a	,	2],	Times[2,	a,	b],	Power[b,	2]]
The	fact	that	patterns	define	structure	of	expressions,	is	very	important	for	the	solution	of
the	problem	of	determination	of	the	transformation	rules	of	changing	of	structure	of
expressions	without	change	of	their	mathematical	equivalence.	The	system	has	not	other
general	criterion	which	would	allow	to	define	equivalence	of	two	expressions.	For
realization	of	algorithm	of	the	comparison	of	expressions	the	system	uses	reduction	them
upto	the	full	form	determined	by	theFullForm	function.	In	the	reference	on
theMathematica	a	number	of	important	mechanisms	of	creation	of	patterns	for	a	quite
wide	class	of	expressions	is	discussed	while	in	other	manuals	the	receptions	used	by
theMathematica	for	the	purpose	of	expansion	and	restriction	of	classes	of	expressions
represented	by	patterns	are	being	considered.	For	definition	of	the	expressions	coinciding
with	the	given	pattern	it	is	possible	to	apply	theCases	function	allowing	five	coding
formats	[68];	so,	the	callCases[a,p]	according	to	the	first	format	returns	the	elements-
expressions	of	a	lista	that	are	structurally	corresponded	to	a	patternp	as	very	visually
illustrates	the	following	simple	example,	namely:
In[2610]:=	Cases[{a+b*c^5,	5+6*y^7,	a+b*p^m,	a+b*m^(–p)},	a+b*x_^n_]
Out[2610]=	{a+	b	c^5,	a+	b	p^m,	a+	b	m^–p}

Meanwhile,	without	being	distracted	by	details,	we	only	will	note	that	the	Mathematica
has	a	number	of	the	functions	providing	the	functioning	with	expressions	at	the	level	of
the	patterns	representing	them	as	in	general,	and	at	the	level	of	the	subexpressions
composing	them;	furthermore,	the	reader	can	familiarize	oneself	with	these	means,	in
particular,	in	[51,60,65,68,71].

As	it	was	noted,	it	is	possible	to	apply	the	Cases	function	for	determination	of	the
expressions	coinciding	with	a	givenpattern,	however	not	all	problems	of	expressions
comparison	with	patterns	are	solved	by	the	standard	means.	For	solution	of	the	problem
inbroader	aspect	theEquExprPatt	procedure	can	be	rather	useful	whose
callEquExprPatt[x,p]	returnsTrue	if	an	expressionx	corresponds	to	a	given	patternp,
andFalse	otherwise.	The	fragment	below	represents	source	code	of	the	procedure	with
examples	of	its	application.

In[3395]	:=	EquExprPatt[x_,	y_	/;	ExprPatternQ[y]]	:=	Module[{c,	d={},	j,	t,	v	={},	k
=	1,	p,	g	={},	s	={},	a	=Map[FullForm,	Map[Expand,	{x,	y}]],	b	=	Mapp[MinusList,
Map[OP,	Map[Expand,	{x,	y}]],	{FullForm}],	z	=	SetAttributes[ToString,	Listable],
w},	{b,	c}=	ToString[{b,	a}];	p	=	StringPosition[c[[2]],	{“Pattern[“,	“Blank[]]”}];

While[k	=	2*k–1;	k	<=	Length[p],	AppendTo[d,	StringTake[c[[2]],	{p[[k]][[1]],	p[[k	+
1]][[2]]}]];	k++];	{t,	k}=	{ToExpression[d],	1};	While[k	<=	Length[t],
AppendTo[v,	StringJoin[ToString[Op[t[[k]]]]]];	k++];	v	=	ToString[v];	v	=
Map13[Rule,	{d,	v}];	v	=	StringReplace[c[[2]],	v];	b	=Quiet[Mapp[Select,	b,	!
SystemQ[#]	||

BlockFuncModQ[ToString[#]]	&]];	{b,	k,	j}=	{ToString[b],	1,	1};	While[k	<=
Length[b[[1]]],	z	=	b[[1]][[k]];	AppendTo[g,	{“[”	<>	z	<>	“,”–>	“[w”,	”	”	<>	z	<>	“,”–
>	”	w”,	“[”	<>	z	<>	“]”–>	“[w]”,	”	”	<>	z	<>	“]”–>	”	w]”}];	k++];	While[j	<=
Length[b[[2]]],	z	=	b[[2]][[j]];	AppendTo[s,	{“[”	<>	z	<>	“,”–>	“[w”,	”	”	<>	z	<>	“,”–
>	”	w”,	“[”	<>	z	<>	“]”–>	“[w]”,	”	”	<>	z	<>	“]”–>	”	w]”}];	j++];
ClearAttributes[ToString,	Listable];	z	=	Map9[StringReplace,	{c[[1]],	v},

Map[Flatten,	{g,	s}]];	SameQ[z[[1]],	StringReplace[z[[2]],
Join[GenRules[Flatten[Map[#	<>	“,”	&,	Map[ToString,	t]]],	“w”],
GenRules[Flatten[Map[#	<>	“]”	&,	Map[ToString,	t]]],	“w]”],

GenRules[Flatten[Map[#	<>	“)”	&,	Map[ToString,	t]]],	“w)”]]]]]

In[3396]	:=	EquExprPatt[a*Sin[x]–5*b*c^5,	a*Sin[x]–5*b*x_^n_]	Out[3396]=	True
In[3397]:=	EquExprPatt[a*Sin[x]–5*b*c^5,	90*Sin[x]–500*b*x_^n_]	Out[3397]=
True
In[3398]:=	EquExprPatt[a^2	+	2*a*b	+	b^2,	(x_	+	y_)^2]
Out[3398]=	True
In[3399]:=	Mapp[EquExprPatt,	{a	+	b*c^5,	5	+	6*y^7,	a	+	b*p^m,

a	+	b*m^p	},	a	+	b*x_^n_]
Out[3399]=	{True,	True,	True,	True}
In[3400]:=	Mapp[Cases,	{{a	+	b*c^5},	{5	+	6*y^7},	{a	+	b*p^m},

{a	+	b*m^p}},	a	+	b*x_^n_]

Out[3400]	=	{{a+	b	c^5},	{},	{a+	b	p^m},	{a+	b	m^p}}
In[3401]:=	EquExprPatt1[a^2	+	2*a*b	+	b^2,	(a	+	b)^2]
Out[3401]=	True

At	that,	the	definition	of	the	EquExprPatt	along	with	standard	means	uses	and	our	means
such	asExprPatternQ,Map9,	Map13,	Mapp,	MinusList,	Op,	OP,	ProcQ,	QFunction,
SystemQ,	which	are	considered	in	the	present	book	and	in	[28-33].	The	last	examples	of
the	fragment	illustrate	as	well	the	more	ample	opportunities	of	theEquExprPatt
procedure	concerning	the	standard	Cases	function.	As	the	algorithm	of	the	procedure	is
based	on	presentation	of	expressions	and	patterns	in	the	full	form(FullForm),	in	principle,
as	the	second	argument	of	theEquExprPatt	procedure	it	is	possible	to	apply	any
expression,	having	encoded	the	second	argument	asy_	in	definition	of	the	EquExprPatt,
having	modified	it	in	the	EquExprPatt1	procedure	different	from	theEquExprPatt	only
by	this	condition.	In	this	case	it	is	possible	to	test	two	any	expressions	regarding
theirstructural	equivalence	what	represents	a	quite	important	question	in	a	number	of
tasks	of	the	expressions	analysis.	Note,	in	realization	of	the	procedure	a	quite	useful
reception	of	temporary	endowing	of	the	systemToString	function	byListable–attribute	is
used.	In	[33]	the	questions	of	manipulations	with	patterns	are	considered	in	detail.

Determination	of	types	of	expression	in	patterns.	For	this	purpose	it	is	quite	possible	to
use	headings	of	expressionsw(they	are	determined	by	the	function	callHead[w]),	which
define	their	main	essence.	So,	the	patterns_h	andx_h	will	represent	expressions	with	a
headingh,	the	next	headings	from	which	are	the	most	often	used,	namely:

x_h	–	an	expression	x	with	heading	h:
x_Integer	–an	expressionxwith	headingInteger(integer)
x_Real	–an	expressionxwith	headingReal(real	number)

x	_Complex	–an	expressionxwith	headingComplex(complex	number)	x_List	–an
expressionxwith	headingList(list)
x_String	–an	expressionxwith	headingString(string)
x_Symbol	–an	expressionxwith	headingSymbol(symbol)

x_Plus	–an	expressionxwith	headingPlus(addition,subtraction)	x_Times	–an
expressionxwith	headingTimes(product,division)	x_Power	–an	expressionxwith
headingPower(power)

In	principle,	any	admissible	heading	can	act	as	some	heading	as	a	part	of	a	pattern.	We
will	give	examples	of	such	patterns,	namely:

In[2415]	:=	G[x_Plus]	:=	x^2;	S[x_Power]	:=	x^2;	{G[90],	G[a	+	b],	S[500],	S[a^b],
G[c–d],	5^(–1)}
Out[2415]=	{G[90],	(a+	b)^2,	S[500],	a^(2	b),	(c–	d)^2,	1/5}

Meanwhile,	in	certain	cases	of	standardly	defined	headings	isn	‘t	enough	for	assignment
of	patterns,	quite	naturally	bringing	up	the	question	of	addition	to	their	list	of	the	headings
determined	by	the	user.	Since	for	evaluation	of	a	heading,	the	standardHead	function	is
used,	therefore	naturally	to	modify	this	function	regarding	testing	by	it	of	wider	class	of
the	headings.	For	this	purpose	theRepStandFunc	procedure	has	been	determined,	whose
the	call	RepStandFunc[x,y,	z]	returns	the	call	of	a	functiony	of	the	same	name	with	a
standard	functiony	and	whose	definition	is	given	in	string	format	by	the	argumentx,	on	the
listz	of	its	actual	arguments.	At	the	same	time	such	call	of	theRepStandFunc	procedure	is
once–only	in	the	sense	that	after	the	call	the	initial	state	of	a	standard	functiony	is	restored.
The	following	fragment	presents	source	code	of	theRepStandFunc	procedure	and
examples	of	its	application	and	of	testing	of	aftereffect	of	result	of	its	call;	along	with	that,
in	other	part	of	the	fragment	the	means	illustrating	the	aforesaid	are	presented.

In[3380]	:=	RepStandFunc[x_/;	StringQ[x],	y_/;	SymbolQ[y],	z_/;	ListQ[x]]	:=
Module[{c,	d,	b	=	Attributes[y],	a	=	ToString[y]	<>	“.mx”},	DumpSave[a,	y];
ClearAllAttributes[y];	Clear[y];	ToExpression[x];	d	=	y[Sequences[z]];	Clear[y];
Get[a];	SetAttributes[y,	b];	DeleteFile[a];	d]

In[3381]	:=	x	=	“Sin[x_,	y_,	z_]	:=	x^2	+	y^2	+	z^2”;
RepStandFunc[x,	Sin,	{73,	90,	500}]
Out[3381]=	263	429
In[3382]:=	x	=	“Sin[x_]	:=	x^5”;	RepStandFunc[x,	Sin,	{47}]
Out[3382]=	229	345007
In[3383]:=	Definition[Sin]
Out[3383]=	Attributes[Sin]=	{Listable,	NumericFunction,	Protected}
In[3384]:=	Sin[73.50090]
Out[3384]=–0.947162

In[3390]	:=	Headd	:=	“Head[x_]	:=	Module[{b	=	{ListListQ,	ProcQ,	SystemQ,
NestListQ,	QFunction},	c	=	{ListList,	Procedure,	System,	NestList,	Function},	h	=
SetAttributes[SetAttributes,	Listable],	d	=	90,	k	=	1},	SetAttributes1[c,	Protected];
Quiet[For[k	=	1,	k	<=	Length[b],	k++,	If[b[[k]][x],	d	=	c[[k]];	Break[]]]];
ClearAttributes[SetAttributes,	Listable];	If[d	===	90,	x[[0]],	d]]”

In[3391]	:=	RepStandFunc[Headd,	Head,	{{{a},	{b,	c},	{d}}}]
Out[3391]=	NestList
In[3392]:=	Definition[Head]
Out[3392]=	Attributes[Head]=	{Protected}
In[3393]:=	Head[{{a},	{b,	c},	{d}}]

Out[3393]=	List
In[3394]:=	G[h_NestList]	:=	Length[h]
In[3395]:=	G[{{a},	{b},	{c},	{d,	t},	{f},	{g},	{v}}]
Out[3395]=	G[{{a},	{b},	{c},	{d,	t},	{f},	{g},	{v}}]
In[3396]:=	G[h_List]	:=	Length[h]
In[3397]:=	G[{{a},	{b},	{c},	{d,	t},	{f},	{g},	{v}}]
Out[3397]=	7
In[3398]:=	ClearAllAttributes[Head];	Clear[Head];	ToExpression[Headd]	In[3399]:=
G[h_ListList]	:=	Length[h]
In[3400]:=	G[{{a},	{b},	{c},	{d,	t},	{f},	{g},	{v}}]
Out[3400]=	7

In[3795]:=	SetAttributes1[x_,	y_]	:=
ToExpression[“SetAttributes[SetAttributes,	Listable];
SetAttributes[”	<>	ToString[x]	<>	“,	”	<>	ToString[y]	<>	“];
ClearAttributes[SetAttributes,	Listable]”]

In[3796]	:=	t	=	{x,	y,	z};	SetAttributes1[t,	Listable];
Map[Attributes,	Flatten[{t,	SetAttributes}]]
Out[3796]=	{{Listable},	{Listable},	{Listable},	{HoldFirst,	Protected}}

In	the	previous	fragment	a	string	structureHeadd	has	been	presented	which	represents
definition	of	theHead	procedure	of	the	same	name	with	standard	Head	function	with
expansion	of	functionality	of	the	last.	As	an	example	the	callRepStandFunc[Headd,
Head,	{{{a},{b,c},{d}}}]	is	presented	whose	result	is	a	modification	of	theHead(Headd)
function	whose	once-only	application	to	a	list	ofNestList–type	returns	the	headingNestList
on	such	list,	whereas	theHead	function	on	this	list	returns	the	headingList.	Modifications
of	the	Head	procedure	in	string	structureHeadd	are	quite	simple(by	an	appropriate
extension	of	the	lists	represented	by	local	variablesbandc),	in	principle	allowing	to	expand
the	list	of	headings	arbitrarily	widely.	However,	these	headings	aren’t	distinguished	by
theMathematica	as	components	of”x_h”	patterns	as	the	fragment	example	with
functionG	very	visually	illustrates.	Moreover,	this	result	takes	place	both	at	using	of
theRepStandFunc	procedure,	and	at	theprolonged	replacement(for	the	duration	of
theMathematicacurrent	session)	of	the	standardHead	function	by	its	modification	which
is	located	in	string	structureHeadd.	As	a	result	of	similar	procedure	theMathematica
restart	is	required	for	recovery	of	the	original	version	of	theHead	function	if	before,	it
wasn’t	kept	in	a	datafile	ofmx–format	from	which	it	could	be	loaded	into	the	current
session	as	that	theRepStandFunc	procedure	does.	At	that	it	is	supposed	that	a
block/procedure/function	replacing	a	standard	functionx	shouldn’t	contain	calls	of	the
initial	functionx;	otherwise,	emergence	of	the	special	or	erroneous	situations	up	to	the
looping	is	a	quite	real,	demanding	the	restart	of	theMathematica	system.
At	last,	theSetAttributes1	function	completes	the	previous	fragment;	its	call
SetAttributes1[x,y]	expands	the	standardSetAttributes	function	onto	the	form	of
presentation	of	thefirst	argumentx,	for	which	theindexed	variables,	lists,	etc.	can	be	used,
for	example,	providing	the	ascribing	of	attributesy	to	elements	of	a	listx.	Meanwhile,	the
above	mechanism	ofonce-only	use	of	the	substitutes	of	the	same	name	of	standard
functions	in	certain	cases	is	rather	effective	method,	however	prolongation	of	such
substitutes	on	the	current	session	can	cause	conflict	situations	with	its	functions	that

significantly	use	originals	of	the	replaced	means.	So,	the	given	mechanism	should	be	used
a	rather	circumspectly.

The	question	of	processing	of	the	formal	arguments	with	good	reason	can	be	considered	as
the	first	problem	relating	to	the	calculation	of	tuple	of	formal	arguments	of	the	user
functions/modules/blocks	that	have	been	activated	in	the	current	session	directly	or	on	the
basis	of	download	of	the	packages	containing	their	definitions.	In	the	previous	works	[30-
33,48]	certain	means	for	the	solution	of	this	task	have	been	offered	in	the	form	of	the
procedures	Args,	Args0,	Args1,	Args2,	below	we	will	present	similar	means	in	narrower
assortment	and	with	the	improved	functional	characteristics.	First	of	all,	as	a	very	useful
means,	we	will	present	theArgs	procedure	whose	callArgs[x]	returns	the	list	of	formal
arguments	of	the	user	module/block/functionx.	The	following	fragment	represents	sourse
code	of	theArgs	procedure	with	the	most	typical	examples	of	its	usage.

In[2322]	:=	V	:=	Compile[{{x,	_Real},	{y,	_Real}},	(x^3	+	y)^2];
Kr	:=	(#1^2	+	#2^4–90*#3)	&;	H[x_]	:=	Block[{},	x];	Art	:=	Function[{x,	y},
x*Sin[y]];	P[y_]	:=	Module[{},	y];	P[x__]	:=	Plus[Sequences[{x}]];	H[x_,	y_]	:=	x	+	y;
GS[x_	/;	IntegerQ[x],	y_	/;	IntegerQ[y]]	:=	Sin[90]	+	Cos[42];	Sv[x_	/;	IntegerQ[x],	y_
/;	IntegerQ[y]]	:=	x^2	+	y^2;	Sv	=	Compile[{{x,	_Integer},	{y,	_Real}},	(x	+	y)^6];	S
:=	Compile[{{x,	_Integer},	{y,	_Real}},	(x	+	y)^3];
G	=	Compile[{{x,	_Integer},	{y,	_Real}},	(x	+	y)];
T	:=	Compile[{{x,	_Real}},	(x	+	y)];	SetAttributes[H,	Protected];

In[2323]:=	Args[P_,	z___]	:=	Module[{a,	b,	c,	d	=	{},	k	=	1,	Vt},	If[CompileFuncQ[P]
||	BlockFuncModQ[P],

Vt[y_/;	ListQ[y]]	:=	Module[{p	=	1,	q	=	{},	t},	While[p	<=	Length[y],	q	=	Append[q,
t	=	ToString[y[[p]]];	StringTake[t,	{1,	StringPosition[t,	“_”][[1]][[1]]–1}]];	p++];	q];
If[CompileFuncQ[P],

a	=	StringSplit[ToString[InputForm[Definition2[P]]],	“\n	\n”][[1]];	b	=
Quiet[SubStrSymbolParity1[a,	“{“,	“}“]];	b	=	Select[b,	!	StringFreeQ[#,	“_”]||!
StringFreeQ[a,	”	Function[”	<>	#]	&];	b	=	Mapp[StringSplit,	b,	“,	“];

b	=	Mapp[StringReplace,	b,	{”{”–>	””,	“}”–>	””}];	b	=	Mapp[Select,	b,
StringFreeQ[#,	“Blank$”]	&];	c	=	b[[2]];

For[k,	k	<=	Length[c],	k++,	d	=	Append[d,	c[[k]]	<>	b[[1]][[k]]]];	d	=
ToExpression[d];
If[{z}==	{},	d,	Flatten[Map[Vt,	{d}]]],
If[BlockFuncModQ[P],	a	=	Flatten[{HeadPF[P]}];

For[k,	k	<=	Length[a],	k++,	d	=	Append[d,
If[{z}!=	{},	Vt[ToExpression[“{”	<>	StringTake[a[[k]],	{StringLength[ToString[P]]	+
2,–2}]	<>	“}“]],	ToExpression[“{”	<>	StringTake[a[[k]],	{StringLength[ToString[P]]
+	2,–2}]	<>	“}“]]]];	If[Length[d]	==	1,	d[[1]],	d],
a	=	StringTake[StringReplace[ToString[InputForm[Definition2[P]]],	“Definition2[“–
>	””,	1],	{1,–2}];	If[SuffPref[a,	“Function[{“,	1],
b	=	SubStrSymbolParity1[a,	“{“,	“}“];	b	=	Select[b,	!	StringFreeQ[a,	“Function[”	<>
#]	&][[1]];	a	=	StringSplit[StringTake[b,	{2,–2}],	“,	“],	a	=	StringReplace[a,	“#”–>
“$$$$$”];	a	=	Map[ToString,	UnDefVars[ToExpression[a]]];	Map[ToString,

ToExpression[Mapp[StringReplace,	a,	“$$$$$”–>	“#”]]]]]],	$Failed]]

In[2324]	:=	Map[Args,	{V,	S,	Sv,	T}]
Out[2324]=	{{x_Real,y_Real},{x_Integer,y_Real},{x_Integer,y_Real},{x_Real}}
In[2325]:=	Mapp[Args,	{V,	S,	Sv,	T},	gs]
Out[2325]=	{{”x“,	“y”},	{”x“,	“y”},	{”x“,	“y”},	{”x”}}
In[2326]:=	Map[Args,	{H,	P,	GS}]
Out[2326]=	{{{x_},{x_,y_}},{{y_},{x__}},{x_/;	IntegerQ[x],y_/;	IntegerQ[y]}}
In[2327]:=	Mapp[Args,	{H,	P,	GS},	gs]
Out[2327]=	{{{”x”},	{”x“,	“y”}},	{{”y”},	{”x”}},	{”x“,	“y”}}
In[2328]:=	Map[Args,	{Art,	Kr}]
Out[2328]=	{{”x“,	“y”},	{“#1“,	“#2“,	“#3”}}
In[2329]:=	Mapp[Args,	{Art,	Kr},	gs]
Out[2329]=	{{”x“,	“y”},	{“#1“,	“#2“,	“#3”}}
In[2330]:=	Map[Args,	{avz,	50090,	a	+	b}]
Out[2330]=	{$Failed,	$Failed,	$Failed}

In[2556]:=	Args1[x_	/;	BlockFuncModQ[x]]	:=	Module[{b	=	1,	c	=	{},	d,	p,	t,	a	=
Flatten[{PureDefinition[x]}]},	For[b,	b	<=	Length[a],	b++,	t	=
ToString[Unique[“agn”]];	p	=	t	<>	ToString[x];	ToExpression[t	<>	a[[b]]];	d	=
Unique[“avz”];

AppendTo[c,	{Args[p],	BlockFuncModQ[p,	d];	d}];	d	=	ToUpperCase[d];
ToExpression[“Clear[”	<>	p	<>	“,”	<>	t	<>	“,”	<>	d	<>	“]”]];	If[Length[c]	==	1,
c[[1]],	c]]

In[2557]	:=	Args1[H]
Out[2557]=	{{{x_},	“Block”},	{{x_,	y_},	“Function”}}
In[2558]:=	Args1[GS]
Out[2558]=	{{x_	/;	IntegerQ[x],	y_	/;	IntegerQ[y]},	“Function”}	In[2559]:=	Args1[P]
Out[2559]=	{{{y_},	“Module”},	{{x__},	“Function”}}

At	that,	the	format	of	the	result	returned	by	a	callArgs[x]	is	defined	by	type	of	an	objectx,
namely:

–	the	list	of	formal	arguments	with	the	types	ascribed	to	them	is	returned	on	theCompile
function;
–	the	list	of	formal	arguments	with	the	tests	for	an	admissibility	of	the	actual	arguments
ascribed	to	them	or	without	them	is	returned	on	{module,	block,	typical	function};	at	that,
theArgs	procedure	processes	the	situation”objects	of	the	same	name	with	various
headings“,	returning	the	nested	list	of	the	formal	arguments	concerning	all	subobjects
composing	an	objectx	in	the	order	that	is	determined	by	the	callDefinition2[x];
–	the	list	of	slots	{#1,…,#n}	in	string	format	of	formal	arguments	is	returned	on	pure
function	in	short	format	while	for	standard	pure	function	the	list	of	formal	arguments	in
string	format	is	returned.

Moreover,	the	call	Args[Wg,	h]	with	the	second	optional	argumenth	–any	admissible
expression	or	any	their	sequence	–	returns	the	result	similar	to	the	call	with	the	first
argument,	with	that	difference	that	all	formal	arguments	are	encoded	in	string	format,	but
without	types	ascribed	to	arguments	and	tests	for	admissibility.	On	an	inadmissible	actual

argument	the	callArgs[x]	returns$Failed.	Told	very	visually	is	looked	through	in	the
examples	which	are	represented	in	the	previous	fragment.
At	that,	the	definition	of	theArgs	along	with	standard	means	uses	and	our	means	such	as
BlockFuncModQ,	CompileFuncQ,	Definition2,	SuffPref,	HeadPF,	Mapp,
SubStrSymbolParity1	andUnDefVars	that	are	considered	in	the	present	book	and	in	[28-
33].	This	procedure	is	used	quite	widely,	first	of	all,	in	problems	of	system	programming
in	theMathematica,	significantly	expanding	the	above–mentioned	proceduresArgs,
Args0,	Args1,	Args2.	In	the	same	context	we	will	note	that	a	number	of	the	means
presented	in	[32]	are	absent	in	the	present	book	because	of	replacement	their	by	more
quick–	acting	and	functionally	developed	means;	like	this,	theArgsProc	procedure	whose
functions	are	overlapped	by	theArgs	procedure.

The	Args1	procedure	completes	the	previous	fragment,	whose	callArgs1[x]	returns	simple
or	the	nested	list,	whose	elements	are2–element	lists,	whose	first	element	represents	the
list	of	formal	arguments	with	the	types	and	tests,	ascribed	to	them	while	the	second–	an
object	type	in	the	context	{”Module“,	“Block”,”Function”}.	As	argumentx	the	objects	on
whichBlockFuncModQ[x]	returnsTrue	are	allowed.	On	an	unacceptable	argumentx	the
procedure	call	Args1[x]	is	returned	unevaluated.
TheArgsBFM	procedure	is	quite	useful	means	in	addition	to	the	procedures	Args
andArgs1;	it	is	intended	for	evaluation	of	formal	arguments	of	a	block/	function/module.
The	next	fragment	represents	source	code	of	the	procedure	ArgsBFM	along	with	typical
examples	of	its	usage.

In[2396]	:=	ArgsBFM[x_	/;	BlockFuncModQ[x],	y___]	:=	Module[{b,	c=	{},	p,	a	=
Flatten[{HeadPF[x]}],	d	=	{},	n	=	ToString[x]	<>	“[“,	k	=	1},	b	=
Map[ToExpression[“{”	<>	StringTake[#,	{StringLength[n]	+	1,–2}]	<>	“}“]	&,	a];	c
=	Map[Map[ToString,	#]	&,	b];	While[k	<=	Length[c],	p	=	c[[k]];	AppendTo[d,
Map[StringTake[#,	{1,	Flatten[StringPosition[#,	“_”]][[1]]–1}]	&,	p]];	k++];	If[{y}!=
{}&&	!	HowAct[y],	y	=	c];	d]

In[2397]	:=	G[x_	/;	IntegerQ[x],	y_	/;	IntegerQ[y]]	:=	x	+	y;	G[x_,	y__]	:=	x	+	y;	G[x_,
y_	/;	IntegerQ[y],	z_]	:=	x	+	y	+	z;	G[x_Integer,	y__]	:=	x	+	y;	G[x_	/;	x	==	{42,	47,
67},	y_	/;	IntegerQ[y]]	:=	Length[x]	+	y;	G[x_	/;	IntegerQ[x]]	:=	x

In[2398]:=	ArgsBFM[G]
Out[2398]=	{{”x“,	“y”},	{”x“,	“y“,	“z”},	{”x“,	“y”},	{”x“,	“y”},	{”x“,	“y”},	{”x”}}

In[2399]	:=	ArgsBFM[G,	gs]
Out[2399]=	{{”x“,	“y”},	{”x“,	“y“,	“z”},	{”x“,	“y”},	{”x“,	“y”},	{”x“,	“y”},	{”x”}}
In[2400]:=	gs
Out[2400]=	{{”x_	/;	IntegerQ[x]“,	“y_	/;	IntegerQ[y]”},

{	“x_”,	“y_	/;	IntegerQ[y]“,	“z_”},	{”x_Integer“,	“y__”},	{”x_	/;	x==	{42,	47,	67}“,	“y_
/;	IntegerQ[y]”},	{”x_”,	“y__”},	{”x_	/;	IntegerQ[x]”}}

The	procedure	call	ArgsBFM[x]	returns	the	list	offormal	arguments	in	string	format	of	a
block/function/modulex	whereas	the	callArgsBFM[x,	y]	with	the	second	optional
argumenty	–an	undefinite	variable–	in	addition	returns	thru	it	the	list	of	formal	arguments
of	the	block/function/modulex	with	the	tests	for	admissibility	in	string	format	that	are
ascribed	to	them.

The	next	ArgsTypes	procedure	serves	for	testing	of	the	formal	arguments	of	a
block/function/module	activated	in	the	current	session.	The	procedure	callArgsTypes[x]
returns	the	nested	list,	whose2–element	sublists	in	string	format	define	names	of	formal
arguments	and	their	admissible	types(and	in	a	broader	sense	the	tests	for	their
admissibility	along	with	initial	values	by	default)	respectively.	At	absence	for	an	argument
of	type	it	is	defined	as“Arbitrary”	that	is	characteristic	for	arguments	ofpure	functions	and
arguments	without	the	tests	and/or	initial	values	ascribed	to	them,	and	also	which	have
format	patterns	{“__”,	“___”}.	The	following	fragment	represents	source	code	of	the
ArgsTypes	procedure	along	with	typical	examples	of	its	usage.

In[2775]	:=	V	:=	Compile[{{x,	_Real},	{y,	_Real}},	(x^3	+	y)^2];
Kr	:=	(#1^2	+	#2^4–90*#3)	&;	H[x_]	:=	Block[{},	x];	Art	:=	Function[{x,	y},
x*Sin[y]];	H[x_,	y_]	:=	x	+	y;	P[x__]	:=	Plus[Sequences[{x}]];	GS[x__]	:=	x;
P[x_	/;	StringQ[x],	y_]	:=	StringLength[x];
GS[x_	/;	IntegerQ[x],	y_	/;	IntegerQ[y]]	:=	Sin[90]	+	Cos[42];	Sv[x_	/;	IntegerQ[x],	y_
/;	IntegerQ[y]]	:=	x^2	+	y^2;	Sv	=	Compile[{{x,	_Integer},	{y,	_Real}},	(x	+	y)^6];	S
:=	Compile[{{x,	_Integer},	{y,	_Real}},	(x	+	y)^3];
G	=	Compile[{{x,	_Integer},	{y,	_Real}},	(x	+	y)];
P[y_]	:=	Module[{},	y];	P[x__]	:=	Plus[Sequences[{x}]];	T	:=	Compile[{{x,	_Real}},
(x	+	y)];	GS[x_,	y_String]	:=	{x,	y}	In[2776]:=	ArgsTypes[x_	/;	CompileFuncQ[x]	||
BlockFuncModQ[x]]	:=

Module[{a	=	Args[x],	c	=	{},	d	=	{},	k	=	1},	If[CompileFuncQ[x],	a	=
Mapp[StringSplit,	Map[ToString,	a],	“_”];	If[Length[a]	==	1,	a[[1]],	a],
If[PureFuncQ[x],	a	=	Map[{#,	“Arbitrary”}&,	a];	If[Length[a]	==	1,	a[[1]],	a],
SetAttributes[ToString,	Listable];	a	=	Map[ToString,	a];	ClearAttributes[ToString,
Listable];	a	=	If[NestListQ[a],	a,	{a}];	For[k,	k	<=	Length[a],	k++,	c	=	Append[c,

Mapp[StringSplit,	Mapp[StringSplit,	a[[k]],	“_	/;	“],	{“___”,	“__”,	“_”}]]];	c;	For[k	=
1,	k	<=	Length[c],	k++,	d	=	Append[d,	Map[Flatten,	c[[k]]]]];	c	=	{};	For[k	=	1,	k	<=
Length[d],	k++,	c	=	Append[c,	Map[If[Length[#]	==	1,	{#[[1]],	“Arbitrary”},	{#[[1]],
StringReplace[#[[2]],	“\”–>	””]}]	&,	d[[k]]]]];	c	=	Map[If[Length[#]	==	1,	#[[1]],	#]	&,
c];	If[Length[c]	==	1,	c[[1]],	c]]]]

In[2777]	:=	Map[ArgsTypes,	{GS,	Args}]
Out[2777]=	{{{{”x“,	“IntegerQ[x]”},	{”y“,	“IntegerQ[y]”}},
{{”x“,	“Arbitrary”},	{”y“,	“String”}},	{”x“,	“Arbitrary”}},	{{”P“,	“Arbitrary”},	{”z“,
“Arbitrary”}}}
In[2778]:=	ArgsTypes[P]
Out[2778]=	{{{”x“,	“StringQ[x]”},	{”y“,	“Arbitrary”}},
{”y“,	“Arbitrary”},	{”x“,	“Arbitrary”}}
In[2779]:=	Map[ArgsTypes,	{Art,	Kr}]
Out[2779]=	{{{”x“,	“Arbitrary”},	{”y“,	“Arbitrary”}},
{{”#1“,	“Arbitrary”},	{”#2“,	“Arbitrary”},	{”#3“,	“Arbitrary”}}}
In[2780]:=	Map[ArgsTypes,	{V,	Sv,	S,	G,	T}]
Out[2780]=	{{{”x“,	“Real”},	{”y“,	“Real”}},	{{”x“,	“Integer”},	{”y“,	“Real”}},	{{”x“,
“Integer”},	{”y“,	“Real”}},
{{”x“,	“Integer”},	{”y“,	“Real”}},	{”x“,	“Real”}}

Moreover,	the	ArgsTypes	procedure	successfully	processes	the	mentioned
situation”objects	of	the	same	name	with	various	headings“,	returning	the	nested
2–element	lists	of	formal	arguments	concerning	the	subobjects	composing	an	objectx,	in
the	order	determined	by	theDefinition	function.	And	in	this	case2–element	lists	have	the
format,	represented	above	whereas	for	objects	with	empty	list	of	formal	arguments	the
empty	list	is	returned,	i.e.	{}.	Unlike	ArgsTypes	of	the	same	name	[29,30]	the	given
procedure	processes	blocks/	modules/functions,	includingpure	functions	andCompile
functions.	At	that,	the	callArgsTypes[x]	on	an	illegal	argumentx	is	returned	unevaluated.
Multiple	patterns	of	formatsx__	andx___	allow	to	determine	any	number	of	admissible
factual	arguments	of	a	block/function/module;	at	that,	if	the	first	pattern	defines	not	less
than	one	argument,	the	second	pattern	allows	absence	of	the	actual	arguments.	The
mentioned	patterns	formats	of	formal	arguments	allow	to	determine	the	objects	of	the
specified	type,	allowing	any	number	of	the	actual	arguments	at	their	calls.	This
circumstance	is	the	basis	for	programming	of	the	means	that	define	arity	of	the	user
block/function/	module,	i.e.	number	of	the	actual	arguments	allowed	at	the	object	calls	of
a	specified	type	that	doesn’t	cause	special(unevaluated	calls)	or	the	erroneous	situations
caused	by	discrepancy	between	number	of	the	received	factual	arguments	and	of
admissible	at	determining	of	an	object.	The	question	of	calculation	of	arity	of	the	user
block/function/module	is	rather	important	in	many	appendices	and,	first	of	all,	of	system
character,	butMathematica	has	no	means	for	its	solution	therefore	certain	procedures	for
the	solution	of	the	question	have	been	created	such	asArity,	Arity1,	Arity2,	ArityM,
ArityPF	that	solve	this	problem	with	one	or	another	degree	of	generality	[30-32].	The	next
fragment	presents	source	code	of	theArity	procedure	that	generalizes	all	above–mentioned
means	solving	the	arity	problem	along	with	examples	of	its	more	typical	applications.

In[2565]	:=	V	:=	Compile[{{x,	_Real},	{y,	_Real}},	(x^3	+	y)^2];
Kr	:=	(#1^2	+	#2^4–500*#3)	&;	H[x_,	y_]	:=	x	+	y;	Art	:=	Function[{x,	y},	x*Sin[y]];
H[x_]	:=	Block[{},	x];	P[x__]	:=	Plus[Sequences[{x}]];	SetAttributes[H,	Protected];
GS[x_	/;	IntegerQ[x],	y_	/;	IntegerQ[y]]	:=	Sin[500]	+	Cos[42];	Sv[x_	/;	IntegerQ[x],
y_	/;	IntegerQ[y]]	:=	x^2	+	y^2;	Sv	=	Compile[{{x,	_Integer},	{y,	_Real}},	(x	+	y)^6];
S	:=	Compile[{{x,	_Integer},	{y,	_Real}},	(x	+	y)^3];
G	=	Compile[{{x,	_Integer},	{y,	_Real}},	(x	+	y)];
P[y_]	:=	Module[{},	y];	T	:=	Compile[{{x,	_Real}},	(x	+	y)];	Vs[x_	/;	SameQ[{x},	{}]]
:=	{x};	W[x_]	:=	x;	W[x_,	y_]	:=	x	+	y;	W[x_,	y_,	z_,	t_]	:=	Module[{},	x*y*z*t;
W[x_,	y_Integer]	:=	x	+	y

In[2566]	:=	Arity[P_	/;	SystemQ[P]	||	CompileFuncQ[P]	||	PureFuncQ[P]
||BlockFuncModQ[P]]	:=	Module[{a},	If[SystemQ[P],	“System”,	a	=	Args[P];
Mapp[SetAttributes,	{ToString,	StringFreeQ},	Listable];	a	=	Map[ToString,	a];	a	=
Map[If[DeleteDuplicates[StringFreeQ[#,	“__”]]	===	{True},	Length[#],
“Undefined”]	&,	If[NestListQ[a],	a,	{a}]];	Mapp[ClearAttributes,	{ToString,
StringFreeQ},	Listable];	If[Length[a]	==	1,	a[[1]],	a]]]

In[2567]	:=	Map[Arity,	{V,	S,	Sv,	T}]
Out[2567]=	{2,	2,	2,	1}
In[2568]:=	Map[Arity,	{H,	P,	GS}]
Out[2568]=	{{1,	2},	{1,	“Undefined”},	2,	1}
In[2569]:=	Map[Arity,	{Art,	Kr,	ProcQ,	Sin,	For}]

Out[2569]=	{2,	3,	1,	“System“,	“System”}
In[2570]:=	Map[Arity,	{avz,	500,	a	+	b}]
Out[2570]=	{Arity[avz],	Arity[500],	Arity[a+	b]}
In[2571]:=	Arity[W]
Out[2571]=	{4,	2,	1,	2}

In[2666]:=	Arity1[P_	/;	SystemQ[P]	||	CompileFuncQ[P]	||	PureFuncQ[P]	||
BlockFuncModQ[P]]	:=

Module[{a},	If[SystemQ[P],	“System”,	a	=	Args[P];	a	=	Mapp1[ToString,	a];	a	=
Map[If[DeleteDuplicates[StringFreeQ[#,	“__”]]	===	{True},	Length[#],
“Undefined”]	&,	If[NestListQ[a],	a,	{a}]];	If[Length[a]	==	1,	a[[1]],	a]]]	In[2667]:=
Map[Arity1,	{V,	S,	Sv,	T}]

Out[2667]	=	{2,	2,	2,	1}
In[2668]:=	Map[Arity1,	{H,	P,	GS}]
Out[2668]=	{{1,	2},	{1,	“Undefined”},	2,	1}
In[2669]:=	Map[Arity1,	{Art,	Kr,	ProcQ,	Sin,	For}]
Out[2669]=	{2,	3,	1,	“System“,	“System”}
In[2670]:=	Arity1[W]

Out[2670]	=	{4,	2,	1,	2}
In[2671]:=	Map[Arity1,	{avz,	500,	a	+	b}]
Out[2671]=	{Arity1[avz],	Arity1[500],	Arity1[a+	b]}

On	blocks	/functions/modules	with	undefinite	number	of	arguments	the	call	Arity[x]
returns”Undefined”,	on	the	system	functions	the	callArity[x]	returns	“System”	while	on
the	objects	having	the	fixed	number	of	actual	arguments	their	number	is	returned,	in	other
cases	the	call	is	returned	unevaluated.	We	will	note	that	theArity	procedure	processes	the
special	situation”objects	of	the	same	name	with	various	headings“,	returning	the	list	of
arities	of	subobjects	composing	an	objectx.	At	that,	between	this	list	and	the	list	of
definitions	of	subobjects	which	is	returned	on	the	callDefinition[x]	there	is	one–to–one
correspondence.	The	definition	of	theArity	procedure	along	with	standard	means	uses	and
our	means	such	asArgs,	BlockFuncModQ,	CompileFuncQ,	Mapp,	SystemQ,
PureFuncQ,	NestListQ	that	are	considered	in	the	present	book	and	in	[28-33].	Moreover,
at	programming	of	theArity	in	the	light	of	simplification	of	its	algorithm	is	expedient	for
the	period	of	a	procedure	call	to	ascribe	to	the	system	functionsToString	andStringFreeQ
the	attribute	Listable,	allowing	to	considerably	reduce	source	code	of	theArity.	At	last,
theArity1	procedure–a	rather	effective	equivalent	analog	ofArityprocedure–	completes
the	previous	fragment.

The	ArityBFM	procedure	defining	arity	of	objects	of	type	{module,	classical	function,
block}	serves	as	quite	useful	addition	to	the	proceduresArity	and	Arity1.	The	following
fragment	represents	source	code	of	theArityBFM	and	the	most	typical	examples	of	its
usage.

In[2474]:=	ArityBFM[x_	/;	BlockFuncModQ[x]]	:=	Module[{b,	a	=
Flatten[{HeadPF[x]}]},	b	=	Map[If[!	StringFreeQ[#,	{“__”,	“___”}],	“Undefined”,

Length[ToExpression[“	{”	<>	StringTake[StringReplace[#,	ToString[x]	<>	“[“–>	””,
1],	{1,–2}]	<>	“}“]]]	&,	a];	If[Length[b]	==	1,	b[[1]],	b]]	In[2475]:=	G[x_	/;

IntegerQ[x],	y_	/;	IntegerQ[y]]	:=	x	+	y;

G[x_Integer,	y__]	:=	x*y;	G[x_,	y_	/;	IntegerQ[y],	z_]	:=	x	+	y	+	z;	G[x_,	y__]	:=	x	+	y;
G[x_	/;	IntegerQ[x]]	:=	x;
G[x_	/;	x	==	{42,	47,	67},	y_	/;	IntegerQ[y]]	:=	Length[x]	+	y;	In[2476]:=
ArityBFM[G]
Out[2476]=	{2,	3,	“Undefined“,	2,	“Undefined“,	1}
In[2477]:=	S[x_,	y_]	:=	x*y;	V[x__]	:=	{x};	Map[ArityBFM,	{S,	V}]	Out[2477]=	{2,
“Undefined”}
In[2478]:=	V[a_,	b_,	c_,	d_,	h_]	:=	N[h*(3*a*b	+	(c–b)*d	+	(d–a)*c)/3000]	In[2479]:=
{V[25,	18,	47,	72,	67],	ArityBFM[V]}
Out[2479]=	{126.116,	{5,	“Undefined”}}

The	procedure	call	ArityBFM[x]	returnsarity(number	of	arguments)	of	an	objectx	of
type	{block,	function,	module};	at	that,	a	function	of	classical	type	is	understood	as
functionx,	i.e.	some	function	withheading.	In	the	presence	in	heading	of	formal	arguments
with	patterns	{“__”,“___”}	arity	is	defined	as	undefinite(”Undefined”)	because	arity	is
understood	as	a	real	number	of	the	factual	arguments,	admissible	at	a	call	of	an	objectx
which	in	that	case	can	be	undefinite.	At	that,	on	objectsx	of	type,	different	from	the
specified,	the	procedure	call	is	returned	unevaluated.

Like	the	Maple	system,	theMathematica	system	doesn’t	give	a	possibility	to	test
inadmissibility	of	all	actual	arguments	in	a	block/function/module	in	a	point	of	its	call,
interrupting	its	call	already	on	thefirst	inadmissible	actual	argument.	Meanwhile,	in	view
of	importance	of	definition	of	allinadmissible	actual	arguments	only	for	one	pass,
theTestArgsTypes	procedure	solving	this	important	enough	problem	and	presented	in	our
book	[30]	and	package	AVZ_Package	[48]	has	been	created.	At	that,	the	emergence	of
new	means	and	updating	of	our	existing	functional	means	allows	to	update	also	and	the
given	means,	presented	by	the	procedure	of	the	same	name.	The	following	fragment
presents	source	code	of	theTestArgsTypes	procedure	along	with	one	its	useful
modificationTestArgsTypes1	and	examples	of	their	usage.

In[2760]:=	TestArgsTypes[P_	/;	ModuleQ[P]	||	BlockQ[P]	||

QFunction[P],	y_]	:=	Module[{c,	d	=	{},	h,	k	=	1,	a	=	Map[ToString,	Args[P]],	b	=
ToString[InputForm[y]]},	ClearAll[“$TestArgsTypes”];	If[!	SuffPref[b,	ToString[P]
<>	“[“,	1],	Return[y],	c	=	Map[ToString1,	ToExpression[“{”	<>	StringTake[b,
{StringLength[ToString[P]]	+	2,–2}]	<>	“}“]]];	If[Length[a]	!=	Length[c],
$TestArgsTypes	=	“Quantities	of	formal	and	factual	arguments	are	different”;
$Failed,	For[k,	k	<=	Length[a],	k++,	d	=	Append[d,	ToExpression[“{”	<>	c[[k]]	<>
“}”	<>	”	/.	”	<>	a[[k]]	<>	“–>	True”]]];	d	=	Map[If[ListQ[#],	#[[1]],	#]	&,	d];	h	=
Flatten[Map3[Position,	d,	Cases[d,	Except[True]]]];	h	=	Map[{#,	If[ListQ[d[[#]]],
Flatten[d[[#]],	1],	d[[#]]]}&,	h];	$TestArgsTypes	=	If[Length[h]	==	1,	h[[1]],	h];
$Failed]]

In[2761]	:=	P[x_,	y_String,	z_	/;	If[z	===	90,	True,	False]]	:=	{x,	y,	z}	In[2762]:=
TestArgsTypes[P,	P[agn,	“ArtKr”,	90]]
Out[2762]=	{agn,	“ArtKr“,	90}
In[2763]:=	TestArgsTypes[P,	P[x,	y,	z]]

Out[2763]=	$Failed
In[2764]:=	$TestArgsTypes
Out[2764]=	{{2,	y},	{3,	z}}
In[2765]:=	TestArgsTypes[P,	P[x,	y,	z,	h]]
Out[2765]=	$Failed
In[2766]:=	$TestArgsTypes
Out[2766]=	“Quantities	of	formal	and	factual	arguments	are	different”	In[2767]:=
TestArgsTypes[P,	P[x,	“y”,	{500}]]
Out[2767]=	$Failed
In[2768]:=	$TestArgsTypes
Out[2768]=	{3,	{500}}
In[2769]:=	TestArgsTypes[P,	P[x,	a	+	b,	{500}]]
Out[2769]=	$Failed
In[2770]:=	$TestArgsTypes
Out[2770]=	{{2,	a+	b},	{3,	{500}}}

In[2771]:=	VS[x_,	n_	/;	IntegerQ[n],	y_,	z_/;	StringQ[z],	L_	/;	ListQ[L]	&&
MemberQ[{{0},	{1},	{0,	1}},	Sort[DeleteDuplicates[Flatten[L]]]]]	:=

Block[{},	L[[StringLength[y	<>	z]	+	n]]]	In[2772]:=	VS[6,–4,	“A”,	“vz”,	{0,	{1,	0,	1},
{1,	0,	0,	0,	1,	1,	1,	0,	0,	1}}]

Out[2772]	=	{1,	0,	0,	0,	1,	1,	1,	0,	0,	1}
In[2773]:=	VS[6,	7.2,	A,	“vz”,	{0,	{1,	0,	1},	{1,	0,	0,	0,	1,	1,	1,	0,	0,	1}}]	Out[2773]=
VS[6,	7.2,	A,”vz“,	{0,	{1,	0,	1},	{1,	0,	0,	0,	1,	1,	1,	0,	0,	1}}]	In[2774]:=
TestArgsTypes[VS,	VS[9,	7.2,	A,	“v”,	{0,	{1,	0,	1},{1,	0,	1,	1,	0,	1}}]]

Out[2774]	=	$Failed
In[2775]:=	$TestArgsTypes
Out[2775]=	{2,	7.2}
In[2776]:=	TestArgsTypes[VS,	VS[9,	7.2,	A,	vz,	{0,	{1,	0,	1},	{2,	0,	0,	0,	7,	2}}]]
Out[2776]=	$Failed
In[2777]:=	$TestArgsTypes
Out[2777]=	{{2,	7.2},	{4,	vz},	{5,	{0,	True,	2,	0,	0,	0,	7,	2}}}
In[2778]:=	TestArgsTypes[VS,	VS[9,	0,	“A”,	“v”,	{0,	{1,	0,	0,1},	{1,	0,	1,	0,	1}}]]
Out[2778]=	{1,	0,	0,	1}
In[2779]:=	$TestArgsTypes
Out[2779]=	$TestArgsTypes

In[2862]:=	TestArgsTypes1[P_	/;	ModuleQ[P]	||	BlockQ[P]	||

QFunction[P],	y_]	:=	Module[{c,	d	=	{},	h,	k	=	1,	n,	p,	w,	w1,	a	=
Quiet[ArgsTypes[P]],	g	=	Map[ToString1,	Args[P]],	b	=	ToString[InputForm[y]]},	a
=	Map[{#[[1]],	StringReplace[#[[2]],	“\\”–>	””]}&,	a];	ClearAll[“$TestArgsTypes”,
“$$Art$Kr$$”];	If[!	SuffPref[b,	ToString[P]	<>	“[“,	1],	Return[y],	c	=
Map[ToString1,	ToExpression[“{”	<>	StringTake[b,	{StringLength[ToString[P]]	+
2,–2}]	<>	“}“]]];	If[Length[a]	!=	Length[c],	Return[$TestArgsTypes	=	“Quantities	of
formal	and	factual	arguments	are	different”;	$Failed],	w	=	Map[StringTake[#,	{1,
StringPosition[#,	“_”][[1]][[1]]–1}]	&,	g];	w1	=	Map[ToString,	Unique[w]];	While[k

<=Length[w],	ToExpression[w1[[k]]	<>	”	=	”	<>	w[[k]]];	k++];	Map[ClearAll,	w];
For[k	=	1,	k	<=	Length[a],	k++,	p	=	a[[k]];	If[p[[2]]	===	“Arbitrary”,	d	=	Append[d,
True],

If[StringFreeQ[g[[k]],	”	/;	“],

If[ToExpression[“Head[”	<>	c[[k]]	<>	“]	===	”	<>	p[[2]]],	d	=	Append[d,	True],	d	=
Append[d,	False]],	$$Art$Kr$$	=	ToExpression[p[[1]]];	n	=	ToExpression[{p[[1]]	<>
”	=	”	<>	c[[k]],	p[[2]]}];	ToExpression[p[[1]]	<>	”	=	”	<>	“$$Art$Kr$$”];	If[n[[–1]],	d
=	Append[d,	True],	d	=	Append[d,	False]]]]]];	h	=
DeleteDuplicates[Flatten[Map3[Position,	d,	Cases[d,	Except[True]]]]];	h	=	Map[{#,
If[ListQ[c[[#]]],	Flatten[c[[#]],	1],	c[[#]]]}&,	h];	$TestArgsTypes	=	If[Length[h]	==	1,
h[[1]],	h];	k	=	1;	While[k	<=	Length[w],	ToExpression[w[[k]]	<>	”	=	”	<>	w1[[k]]];
k++];	ClearAll[“$$Art$Kr$$”];	$Failed]

In[2863]	:=	TestArgsTypes1[P,	P[x,	a	+	b,	{500}]]
Out[2863]=	$Failed
In[2864]:=	$TestArgsTypes
Out[2864]=	{{2,	“a+	b”},	{3,	“{500}”}}
In[2865]:=	TestArgsTypes1[P,	P[agn,	“ArtKr”,	90]]
Out[2865]=	{agn,	“ArtKr“,	90}
In[2866]:=	TestArgsTypes1[P,	P[x,	y,	z,	h]]
Out[2866]=	$Failed
In[2867]:=	$TestArgsTypes
Out[2867]=	“Quantities	of	formal	and	factual	arguments	are	different”	In[2868]:=
TestArgsTypes1[P,	P[x,	y,	z]]
Out[2868]=	$Failed
In[2869]:=	$TestArgsTypes
Out[2869]=	{{2,	“y”},	{3,	“z”}}
In[2870]:=	TestArgsTypes1[VS,	VS[9,	7.2,	A,	vz,	{0,	{1,	0,	1},	{2,	0,	1,	5,	6,	2}}]]
Out[2870]=	$Failed
In[2871]:=	$TestArgsTypes
Out[2871]=	{{2,	“7.2”},	{4,	“vz”},	{5,	“{0,	{1,	0,	1},	{2,	0,	1,	5,	6,	2}}”}}

In[2920]	:=	TestArgsTypes2[x_	/;	ModuleQ[x]||BlockQ[x]||QFunction[x],	y__]	:=
Module[{a	=	Quiet[ArgsTypes[x]],	b	=	Map[ToString1,	{y}],	c	=	{y},	d	=	{},	k	=	1,
p},	If[Length[c]	!=	Length[a],

“Quantities	of	formal	and	factual	arguments	are	different”,	For[k,	k	<=	Length[c],
k++,	p	=	a[[k]];
AppendTo[d,	If[p[[2]]	===	“Arbitrary”,	True,	If[SymbolQ[p[[2]]],
ToString[Head[c[[k]]]]	===	p[[2]],

ToExpression[StringReplace[p[[2]],	{“[”	<>	p[[1]]	<>	“]”–>	“[”	<>	b[[k]]	<>	“]”,	”	”
<>	p[[1]]	<>	”	“–>	”	”	<>	b[[k]]	<>	”	“,	”	”	<>	p[[1]]	<>	“]”	->	”	”	<>	b[[k]]	<>
“]”}]]]]]];

If[MemberQ[d,	False],	Partition[Riffle[{y},	d],	2],	{True,	x[y]}]]]

In[2921]	:=	TestArgsTypes2[VS,	90,	50]
Out[2921]=	“Quantities	of	formal	and	factual	arguments	are	different”	In[2922]:=	F[x_,

y_String,	z_Integer,	t_	/;	ListQ[t]]	:=

Module[{},	x*z	+	StringLength[y]*Length[t]]	In[2923]:=	TestArgsTypes2[F,	90,	500,
72,	a	+	b]
Out[2923]=	{{90,	True},	{500,	False},	{72,	True},	{a+	b,	False}}
In[2924]:=	TestArgsTypes2[F,	50,	“Agn”,	500,	{r,	a,	n,	s}]
Out[2924]=	{True,	25012}
In[2925]:=	TestArgsTypes2[P,	x,	y,	z]
Out[2925]=	{{x,	True},	{y,	False},	{z,	False}}

In[2932]:=	TrueCallQ[x_	/;	BlockFuncModQ[x],	y__]	:=
Quiet[Check[If[UnevaluatedQ[x,	y],	False,	x[y];	True],	False]]

In[2933]	:=	TrueCallQ[VS,	9,	7.2,	A,	vz,	{0,	{1,	0,	1},	{2,	0,	1,	5,	6,	2}}]	Out[2933]=
False
In[2934]:=	TrueCallQ[P,	x,	y,	z,	h]
Out[2934]=	False
In[2935]:=	TrueCallQ[VS,	9,	7.2,	A,	“vz”,	{0,	{1,	0,	1},	{1,	0,	0,	0,	1,	1,	1,	0,	0,	1}}]
Out[2935]=	False
In[2936]:=	TrueCallQ[P,	agn,	“ArtKr”,	90]
Out[2936]=	True

Call	of	the	above	procedure	TestArgsTypes[x,	x[…]]	processes	a	procedure	x	call	in	way
that	returns	result	of	a	procedure	callx[…]	in	case	of	absence	of	inadmissible	actual
arguments	and	equal	number	of	the	factual	and	formal	arguments	in	a	point	of	procedure
callx;	otherwise$Failed	is	returned.	At	that	through	the	global	variable$TestArgsTypes
the	nested	list	is	returned,	whose	two-element	sublists	define	the	set	of	inadmissible	actual
arguments,	namely:	thefirst	element	of	a	sublist	defines	number	of	inadmissible	actual
argument	while	thesecond	element–	its	value.	At	discrepancy	of	number	of	formal
arguments	to	number	of	actual	arguments	through$TestArgsTypes	the	appropriate
diagnostic	message	is	returned,	namely:”Quantities	of	formal	and	factual	arguments	are
different“.

Meanwhile,	for	simplification	of	the	testing	algorithm	realized	by	the	above	procedure	it	is
supposed	that	formal	arguments	of	a	certain	procedurex	are	typified	by	the	pattern“_”	or
by	construction“Argument_/;Test”.	Moreover,	it	is	supposed	that	theunevaluated
procedure	callx	is	caused	by	discrepancy	of	types	of	the	actual	arguments	to	the	formal
arguments	or	by	discrepancy	of	their	quantities	only.	So,	the	question	of	testing	of	the
actual	arguments	is	considered	at	the	level	of	the	heading	of	a	block/function/module	only
for	a	case	when	their	number	is	fixed.	If	a	procedure/function	allows	optional	arguments,
their	typifying	assumes	correct	usage	of	any	expressions	as	the	actual	values,	i.e.	the	type
of	the	format“x_”	is	supposed.	In	this	regard	at	necessity,	their	testing	should	be	made	in
the	body	of	a	procedure/function	as	it	is	illustrated	by	useful	enough	examples	in	[32].	So,
at	difficult	enough	algorithms	of	check	of	the	received	actual	arguments	onto	admissibility
it	is	recommended	to	program	them	in	thebody	of	blocks/modules	what	is	more
appropriate	as	a	whole.

Meanwhile,	as	an	expansion	of	theTestArgsTypes	procedure	the	possibility	of	testing	of
theactual	arguments	ontoadmissibility	on	condition	of	existence	in	headings	of	formal

arguments	of	types	{“x__”,	“x___”}	can	be	considered.	The	receptions,	used	in
theTestArgsTypes1	procedure	which	is	one	useful	modification	of	the
aboveTestArgsTypes	procedure	is	a	rather	perspective	prerequisite	for	further	expansion
of	functionality	of	these	means.	A	result	of	callTestArgsTypes1[x,x[…]]	is	similar	to	the
callTestArgsTypes[x,x[…]]	only	with	difference	that	values	of	inadmissible	actual
arguments	are	given	in	string	format.	At	that	without	reference	to	smaller	reactivity	of
thesecond	procedure,	the	algorithm	used	at	its	programming	is	rather	interesting	for	a
number	of	applications,	first	of	all,	of	system	character;	its	analysis	can	be	a	rather	useful
to	the	interested	reader	who	wishes	to	learnMath–language	more	deeply.	This	remark
concerns	some	other	means	of	the	present	book.

Meanwhile,	it	must	be	kept	in	mind	that	use	by	procedures	TestArgsTypes
andTestArgsTypes1	of	the	global	variable$TestArgsTypes	through	which	information	on
the	inadmissible	actual	arguments	received	by	a	testedblock/	procedure	at	its	calls	is
returned,	should	be	defined	in	the	user’s	package	that	contains	definitions	of	these
procedures,	i.e.	to	be	predetermined,	otherwise	diagnostic	information	isn’t	returned	thru
it.	It	can	be	done,	for	example,	by	means	of	inclusion	in	theAVZ_Package	package	of	the
following	block:

Begin[“`$TestArgsTypes`”]
$TestArgsTypes	=	50090
End[]

with	obligatory	providing	a	reference(usage)	for	this	variable,	for	example,	of	the	kind:
$TestArgsTypes::usage	=	“The	global	variable	$TestArgsType	defined	by	the
proceduresTestArgsTypes	andTestArgsTypes1.”

This	remark	should	be	considered	at	programming	of	the	procedures	which	use	the
global$–variables	for	additional	return	of	results,	i.e.	such	variables	should	be	initiated,	in
particular,	in	a	package	containing	the	definitions	of	means	with	their	usages.

In	some	cases	the	TestArgsTypes2	procedure	which	is	a	modification	of	the	previous
proceduresTestArgsTypes	andTestArgsTypes1	is	a	rather	useful	means;	the
callTestArgsTypes2[P,	y],	whereP	–	a	block,	function	with	the	heading,	or	module,	andy	–
a	nonempty	sequence	of	the	actual	arguments	passed	to	theP,	returns	the	list	of	the	format
{True,P[y]}	if	all	argumentsy	are	admissible;	the	call	returns	the	nested	list	whose
elements	are	the	call	returns	the	nested	list	whose	elements	areelement	sublists	whose
first	element	defines	an	actual	argument	whereas	the	second	element	defines	its
admissibility	{True,False};	at	last,	in	case	of	discrepancy	of	quantities	of	formal	and
actual	arguments	the	next	message	is	returned:	“Quantities	of	formal	and	factual
arguments	are	different“.	The	above	fragment	contains	source	code	of	theTestArgsTypes2
procedure	with	examples.

At	last,	in	contrast	to	the	above	proceduresTestArgsTypes	TestArgsTypes2	that	provide
the	differentiated	testing	of	the	actual	arguments	received	by	a	tested	object	for	their
admissibility,	the	simple	functionTrueCallQ	provides	testing	of	correctness	of	the	call	of
an	object	of	type	{Block,Function,Module}	as	a	whole;	the	callTrueCallQ[x,	arg]
returnsTrue	if	the	callx[arg]	is	correct,	andFalse	otherwise.	At	that,	the	lack	of	the	fact	of
the	unevaluated	call,	and	lack	of	the	special	or	erroneous	situations	distinguished

byMathematica	is	understood	as	a	correctness	of	the	call.	The	source	code	of	the	function
with	typical	examples	of	its	use	completes	the	previous	fragment.	It	is	necessary	to	note
the	interesting	possibilities	of	further	development	of	the	procedures
TestArgsTypes–TestArgsTypes2	in	a	number	of	the	important	directions,	in	particular,	in
case	of	variable	number	of	the	actual	arguments,	which	we	leave	to	the	interested	reader.
To	the	procedures	TestArgsTypes	–	TestArgsTypes2	and	the	TrueCallQ	function	in	a
certain	degree	theTestArgsCall	procedure	adjoins	whose	call	allows	to	allocate	definitions
of	a	block/function	or	a	module	on	which	the	call	with	the	given	actual	arguments	is	quite
correct.	The	following	fragment	represents	source	code	of	theTestArgsCall	procedure
with	typical	examples	of	its	application.

In[2889]:=	TestArgsCall[x_	/;	BlockFuncModQ[x],	y___]	:=	Module[{d,	p,	h	=	{},	k	=
1,	a	=	Flatten[{PureDefinition[x]}],	b	=	Flatten[{HeadPF[x]}],	c	=	“$$$”,	n	=
ToString[x]},

While[k	<=	Length[b],	d	=	c	<>	n;	ToExpression[c	<>	b[[k]]	<>	“:=90”];	p	=
Symbol[d][y];	ToExpression[“Clear[”	<>	d	<>	“]”];	If[p	===	90,	AppendTo[h,
a[[k]]]];	k++];	If[Length[h]	==	1,	h[[1]],	h]]

In[2890]	:=	G[x_	/;	IntegerQ[x],	y_	/;	IntegerQ[y]]	:=	x	+	y;
G[x_Integer,	y__]	:=	x	+	y;	G[x_,	y__]	:=	x+y;
G[x_,	y_	/;	IntegerQ[y],	z_]	:=	x+y+z;	G[x_	/;	IntegerQ[x]]	:=	x;	G[x_	/;	x	==	{42,	47,
67},	y_	/;	IntegerQ[y]]	:=	Length[x]	+	y;

In[2891]	:=	TestArgsCall[G,	19.42,	90]
Out[2891]=	“G[x_,	y__]:=	x+	y”
In[2892]:=	V[x_	/;	IntegerQ[x],	y_	/;	IntegerQ[y]]	:=	x	+	y;

TestArgsCall[V,	19.42,	90]	Out[2892]=	{}
In[2893]:=	TestArgsCall[Avz,	19.42,	90]
Out[2893]=	TestArgsCall[Avz,	19.42,	90]

The	procedure	call	TestArgsCall[x,	y]	returns	a	definition	or	the	definitions	list	of	a
block/function/modulex	on	which	the	call	with	the	tuple	of	actual	argumentsy	is	correct,
i.e.	their	types	correspond	to	admissible	types	of	the	formal	arguments.	Otherwise,	the
procedure	call	returns	the	empty	list,	i.e.	{};	on	inadmissible	argumentx,	different	from	a
block/function	module,	the	call	is	returned	unevaluated.

Whereas	the	procedure	call	TestFactArgs[x,	y]	returns	the	list	fromTrue	and	False	that
defines	who	of	the	actual	arguments	determined	by	a	sequencey	will	be	admissible	in	the
callx[y],	wherex	–	an	object	name	with	a	heading	(block,function,module).	The	procedure
assumes	equal	number	of	the	formal	and	actual	arguments	defined	by	a	sequencey,	along
with	existence	for	an	objectx	of	the	fixed	number	of	arguments;	otherwise,	the
callTestFactArgs	returns$Failed.	The	next	fragment	represents	source	code	of	the
procedure	TestFactArgs	along	with	typical	examples	of	its	usage.

In[2535]:=	TestFactArgs[x_	/;	ProcQ[x]	||	QFunction[x],	y__]	:=

Module[{b,	c	=	{},	d,	p	=	{y},	k	=	1,	a	=	Flatten[{HeadPF[x]}][[1]]},	b	=
StrToList[“{”	<>	StringTake[a,	{StringLength[ToString[x]]	+	2,–2}]	<>	“}“];	b	=
Map[StringSplit[#,	“_”]	&,	b];	If[Length[b]	==	Length[p]	&&	StringFreeQ[a,	“__”],

While[k	<=	Length[b],	d	=	b[[k]];	If[Length[d]	==	1,	AppendTo[c,	True],

If[Length[d]	==	2	&&	SymbolQ[d[[2]]],	AppendTo[c,	Head[p[[k]]]	===
Symbol[d[[2]]]],
If[SuffPref[d[[2]],	”	/;	“,	1],
AppendTo[c,	ToExpression[StringReplace3[StringTake[d[[2]],	{5,–1}],	d[[1]],
ToString[p[[k]]]]]]]]];	k++];	c,	$Failed]]

In[2536]	:=	VGS[x_,	y_Integer,	z_	/;	ListQ[z]]	:=	Flatten[{x,	y,	z}]	In[2537]:=
TestFactArgs[VGS,	avz,	72,	{g,	s,	a,	k}]
Out[2537]=	{True,	True,	True}
In[2538]:=	TestFactArgs[VGS,	42,	ag,	a	+	b]
Out[2538]=	{True,	False,	False}
In[2539]:=	TestFactArgs[VGS,	42,	ag,	a	+	b,	500]
Out[2539]=	$Failed

The	TestFactArgs	procedure	is	a	generalization	of	theCheckArgs	procedure	of	theMaple
system	in	case	of	determination	of	admissibility	of	the	factual	arguments	for	the
blocks/functions/modules.	The	presented	tools	of	testing	of	the	factual	arguments	at	calls
of	procedures	can	be	useful	enough	at	the	organization	of	robust	program	systems	of	a
rather	large	size.	In	particular,	these	means	allow	rather	effectively	beforehand	to	test	the
correctness	of	the	procedures	calls	on	those	or	other	tuples	of	factual	arguments.

6.6.	Local	variables	of	modules	and	blocks;	the	means	of	manipulation	by
them	in	theMathematicasoftware

Having	considered	in	the	previous	two	sections	the	means	of	manipulation	with
definitions	of	the	blocks/functions/modules	along	with	their	headings,	we	move	on	to
consideration	of	means	whose	circle	of	interests	includes	the	problems	linked	with
manipulation	with	the	following	major	component	of	definitions	of	blocks	and	modules–
thelocal	variables.	So,	this	component	defines	the	first	leading	variable	in	a	block/module
definition,	as	a	function	from	two	variables–	the	list	of	local	variables,	and	its	body.	Local
variables	take	place	only	for	procedural	objects(ModuleandBlock)	ofMathlanguage
whereas	for	functions	such	concept	is	absent.	Thelocal	variables	have	only	a	module	body
as	an	area	of	their	action,	without	crossing	with	the	variables	of	the	same	name	outside	of
its	environment.	Meanwhile,	namely	between	objects	of	types	of	{BlockandModule}
there	is	very	essential	distinction	that	is	based	on	mechanisms	of	local	variables	which	are
used	by	both	types	of	objects	and	which	are	considered	in	[30-33]	enough	in	detail.	In
view	of	the	importance	of	the	given	component	for	which	theMathematica	has	no	tools	of
manipulation	it	is	very	desirable	to	have	similar	means.	Meanwhile,	pre	has	the	meaning
to	consider	the	given	component	of	modules	and	blocks	in	more	detail.
First	of	all,	as	for	admissibility	of	thelocal	variables	for	traditional	functions.	The
statement	about	their	inadmissibility	isn’t	absolutely	right,	namely.	The	local	variables
shouldn’t	have	crossing	with	the	variables	of	the	same	name,	outside	of	the	body	of	an
object	in	which	they	are	defined.	Using	the	given	postulate,	on	the	basis	of	an	artificial
reception	it	is	possible	to	solve	also	this	problem.	Basic	principle	of	this	reception	is
presented	on	a	simple	example.

In[2617]:=	PrevNextVar[x_	/;	SymbolQ[x],	t_	/;	IntegerQ[t],	y___]	:=	Module[{a	=
ToString[x],	b,	c	=	{},	d,	k,	n},	b	=	Characters[a];	n	=	Length[b];

For[k	=	n,	k	>=	1,	k	––,	If[IntegerQ[ToExpression[b[[k]]]],	AppendTo[c,	b[[k]]],	d	=
StringJoin[b[[1	;;	k]]];	Break[]]];	k	=	ToExpression[c	=	StringJoin[Reverse[c]]];
If[SameQ[k,	Null]	||	{y}==	{}&&	k–t	<=	0,	x,	If[c	==	””,	x,	ToExpression[d	<>
ToString[k	+	If[{y}!=	{},	t,–t]]]]]]	In[2618]:=	PrevNextVar[avz1942,	2,	5]
Out[2618]=	avz1944

In[2619]	:=	PrevNextVar[avz1942,	2]
Out[2619]=	avz1940
In[2620]:=	PrevNextVar[ab90xyz,	5]
Out[2620]=	ab90xyz
In[2621]:=	G[x_,	y_]	:=	{ListAssignP[{Unique[“a”]},	1,	72],

ListAssignP[{Unique[“b”]},	1,	67],	PrevNextVar[Unique[“a”],	2]*x	+
PrevNextVar[Unique[“b”],	2]*y}[[–1]]	In[2622]:=	G[90,	500]
Out[2622]=	39	980

Above	all,	we	will	need	the	PrevNextVar	procedure	for	a	special	processing	of	the
symbols	of	the	format<symbol><integer>	which	end	with	an	integer.	The	procedure
callPrevNextVar[x,	t]	on	a	symbolx	of	the	mentioned	format	<symbol><integer>	returns
the	symbol	of	the	format<symbol><integer	–	t>	while	the	callPrevNextVar[x,t,	h]
whereh	–	an	arbitrary	expression	returns	symbol	of	the	format<symbol><integer+	t>.	At
condition`integer	–	t	<=	0`	or	in	case	of	the	formatx	different	from	the	mentioned	the
source	symbolx	is	returned.	The	previous	fragment	represents	source	code	of	the
procedure	with	examples	of	its	usage.	The	given	procedure	represents	as	independent
interest,	and	is	essentially	used	for	solution	of	the	problem	of	local	variables	in	case	of
definition	of	the	user	traditional	functions.

For	solution	of	the	problem	of	use	of	local	variables	for	functions	along	with	the
previousPrevNextVar	procedure	ourListAssignP	procedure	providing	assignment	of	a
value	to	a	list	element	with	the	given	number,	and	system	Unique	function	generating	the
symbols	new	for	the	current	session	every	time	at	its	call	are	used.	The	general	format	of
definition	of	a	function	with	local	variables	can	be	presented	as	follows.

F[x_,	y_,	…]	:=	{ListAssignP[{Unique[“a1”]},1,	b1],
ListAssignP[{Unique[“a2”]},1,	b2],
===========================
ListAssignP[{Unique[“at”]},1,	bt],

BODY[x,	y,	…,PrevNextVar[Unique[“a1”],j],	…,
PrevNextVar[Unique[“at”],j]}[[–1]];	j	=	kt	(k=1..n)

According	to	the	above	format,	a	function	is	defined	in	the	form	of	the	list,	whose	firstt
elements	define	the	local	variables	with	initial	values	ascribed	to	them	whereas	the	body
of	this	function	is	a	certain	function	from	formal	arguments	and	local	variables	whose
each	encoding	has	the	following	view	PrevNextVar[Unique[“ap”],j],j	=	kt(k=1..n),
wheren	–	number	of	usages	of	a	local	variable“ap”	in	the	function	body.	At	that,	the	last
element	of	such	list	determines	result	of	the	call	of	a	function	given	in	similar	format	as
very	visually	illustrates	example	of	theG	function	of	the	previous	fragment.	So,	еhe

described	artificial	reception	allows	to	use	local	variables	in	functions,	however	their
opportunities	are	rather	limited.	At	that,	each	call	of	function	of	this	kind	generates	the
mass	of	variables	which	aren’t	crossed	with	the	previous	variables	of	the	current	session,
but	they	can	enough	significantly	litter	the	area	of	variables	of	the	current	session;	in	this
the	reader	can	rather	simply	make	sure	by	the	means	of	callNames[”’*”].	Therefore,	the
artificial	possibility	of	use	of	local	variables	by	functions,	and	the	expedience	of	this	is	not
entirely	the	same.	Meanwhile,	the	presented	reception	can	be	a	rather	useful	at
programming	of	certain	problems,	first	of	all,	of	system	character.	Blocks	and	modules	in
theMathematica	function	as	follows.	At	each	call	of	a	module	for	its	local	variables	the
new	symbols	determining	their	names,	unique	in	the	current	session	are	generated.	Each
local	variable	of	a	module	is	identified	by	a	symbol	of	the	formName$num	whereName	–
the	name	of	alocal	variable	determined	in	a	module,	andnum	–	its	current	number	in	the
current	session.	At	that,	the	number	is	defined	by	variable$ModuleNumber	as	it	illustrates
the	following	rather	simple	fragment,	namely:

In[2572]	:=	G[x_,	y_,	z_]	:=	Module[{a,	b,	c},	h	=	a*x	+	b*y	+	c*z;	{h,	a,	b,
Symbol[“a”	<>	“$”	<>	ToString[$ModuleNumber–1]]}]
In[2573]:=	{$ModuleNumber,	G[72,	67,	47],	$ModuleNumber}
Out[2573]=	{4477,	{72	a$4477+	67	b$4477+	47	c$4477,	a$4477,	b$4477,	a$4477},
4478}
In[2574]:=	{$ModuleNumber,	G[72,	67,	47],	$ModuleNumber}
Out[2574]=	{4479,	{72	a$4479+	67	b$4479+	47	c$4479,	a$4479,	b$4479,	a$4479},
4480}
In[2575]:=	G[x_,	y_,	z_]	:=	Block[{a,	b,	c},	h	=	a*x	+	b*y	+	c*z;	{h,	a,	b,	Symbol[“a”
<>	“$”	<>	ToString[$ModuleNumber–1]]}]
In[2576]:=	{$ModuleNumber,	G[72,	67,	47],	$ModuleNumber}

Out[2576]	=	{2386,	{72	a+	67	b+	47	c,	a,	b,	a$4480},	4480}
In[2577]:=	n	=	1;	While[n	<=	3,	Print[$ModuleNumber];	n++]	4489
4489
4489
In[2578]:=	{$ModuleNumber,	$ModuleNumber}
Out[2578]=	{4490,	4490}

Of	the	given	example	the	principle	of	assignment	of	current	numbers	to	the	local	variables
quite	accurately	is	traced	at	each	new	reference	to	a	module	containing	them.	Also	from
the	fragment	follows	that	increase	of	the	current	numbers	for	local	variable	blocks	at	their
calls	isn’t	done	in	view	of	different	mechanisms	of	processing	of	modules	and	blocks.	At
that,	on	condition	of	knowledge	of	the	current	numbering	for	local	variables	of	a	module
there	is	an	opportunity	to	dynamically	receive	their	values	outside	of	the	module	after
each	its	call	as	illustrates	the	following	rather	simple	and	very	evident	fragment,	namely:

In[2555]:=	S[x_,	y_]	:=	Module[{a	=	$ModuleNumber–1,
b	=	$ModuleNumber–1,	c	=	$ModuleNumber–1},	h	:=	a*x	+	b*y	+	c;

{	h,	Symbol[“a$”	<>	ToString[$ModuleNumber–1]],	Symbol[“b$”	<>
ToString[$ModuleNumber–1]],	Symbol[“c$”	<>	ToString[$ModuleNumber–1]],	a	b,
c}]	In[2556]:=	S[77,	67]

Out[2556]	=	{347420,	2396,	2396,	2396,	5740816,	2396}
In[2557]:=	g	:=	{a$2397,	b$2397,	c$2397}
In[2558]:=	S[72,	67]
Out[2558]=	{338520,	2418,	2418,	2418,	5846724,	2418}
In[2559]:=	d	:=	{g,	{a$2419,	b$2419,	c$2419}}
In[2560]:=	S[72,	67]
Out[2561]=	{339500,	2425,	2425,	2425,	5880625,	2425}
In[2562]:=	{d,	{a$2426,	b$2426,	c$2426}}
Out[2562]=	{{{2396,	2396,	2396},	{2418,	2418,	2418}},	{2425,	2425,	2425}}

Thus,	the	user	has	opportunity	to	work	with	the	local	variables	and	outside	of	a	module
containing	them,	i.e.	as	a	matter	of	fact	at	the	level	of	the	global	variables	what	in	certain
cases	can	be	used	quite	effectively	at	programming	of	the	different	problems	and,	first	of
all,	of	problems	of	system	character.

In[2587]:=	Kr[x_,	y_]	:=	Module[{a,	b},	h	:=	a*x	+	b*y;	{{a,	b,	h},	h}]

In[2588]	:=	Kr[18,	25]
Out[2588]=	{{a$2436,	b$2436,	18	a$2436+	25	b$2436},	18	a$2436+	25	b$2436}
In[2589]:=	%[[1]][[1]]^2	+	Take[%[[1]],	{2,	2}]^2
Out[2589]=	{a$2436^2+	b$2436^2}

In[2590]:=	Kr[x_,	y_]	:=	Module[{a,	b},	a	=	96;	b	=	89;	h	:=	a*x	+	b*y;	Print[{“a$”
<>	ToString[$ModuleNumber–1],	“b$”	<>	ToString[$ModuleNumber–1]}];
{Symbol[“a$”	<>	ToString[$ModuleNumber–1]],	Symbol[“b$”	<>
ToString[$ModuleNumber–1]]}]	In[2591]:=	Kr[18,	25]

{a	$2446,	b$2446}
Out[2591]=	{96,	89}
In[2592]:=	%[[1]]^2	+	%[[–1]]^2
Out[2592]=	17	137

The	previous	simple	fragment	rather	visually	illustrates	the	aforesaid.	As	a	rule,	the	user
shouldn’t	operate	with	values	of	local	variables	outside	of	the	module;	meanwhile,	in	case
of	work	with	a	module	in	the	dialogue	mode	or	at	using	for	monitoring	of	a	module
performance	of	a	function,	for	example,	Trace	these	local	variables	are	visualized.
Moreover,	such	opportunity	can	be	used	for	non–standard	calculations,	only	the	effect
from	it	is	completely	defined	by	experience	and	skills	of	the	user,	his	knowledge	of	the
system.	In	theMaple	system	the	similar	explicit	mechanism	of	operating	with	the	local
variables	outside	of	procedures	is	absent	though	the	similar	mechanism	can	be	realized	by
some	special	receptions,	in	particular,	on	the	basis	of	so-called	method	of“disk	transits”
[22].	However,	such	approach	does	variables	of	a	procedure	asreally	local	variables	with
the	scope	limited	by	the	procedure.	In	this	case	local	variables	are	inaccessible	outside	of
the	procedure,	what	in	certain	respects	it	is	possible	to	consider	as	some	prerequisite	for
definition	of	a”black	box”	and	quite	natural	transition	to	the	paradigm	of	the	modular
organization	in	programming.

In	some	cases	it	is	necessary	to	generate	object	names	that	are	unique	to	the	current
session.	For	this	purpose,	the	afore–mentionedUnique	function	is	designed,	that	generates
the	names	without	the	attributes	ascribed	to	them.	At	that,	for	ensuring	of	uniqueness	of

the	generated	symbols	each	call	of	the	Unique	function	provides	an	increment	for	a	value
of	the	system	variable	$ModuleNumber.	The	mechanism	of	functioning	of	theUnique	is
similar	to	the	mechanism	of	generating	of	names	for	local	variables	of	a	module.	The
simple	example	illustrates	one	of	approaches	to	software	realization	of	the	Unique	by
means	of	theUn	procedure,	whose	source	code	with	examples	are	given	below,	while
useful	procedureUnique2	completes	the	fragment;	the	callUnique2[x,y]	returns	an	unique
name	in	string	format	that	depends	on	thesecond	argument	or	its	absence,	at	the	same	time
ascribing	to	the	name	an	arbitrary	valuex.

In[2555]:=	Un[x___]	:=	Module[{a},

If[{x}==	{},	Symbol[“$”	<>	ToString[$ModuleNumber]],	a[y_]	:=	If[StringQ[y],
Symbol[y	<>	ToString[$ModuleNumber]],	If[Head[y]	==	Symbol,
Symbol[ToString[y]	<>	“$”	<>	ToString[$ModuleNumber]],	y]];	If[ListQ[x],	Map[a,
Flatten[x]],	a[x]]]]

In[2556]:=	{Un[],	Un[S],	Un[“G”],	Un[{x,	y,	z}],	Un[V]}
Out[2556]=	{$1063,	S$1064,	G1065,	{x$1066,	y$1066,	z$1066},	V$1067}

In[2570]	:=	Unique1[x_,	y___]	:=	Module[{a	=	Unique[y],	b},	b	=	ToString[a];
ToExpression[ToString[a]	<>	“=”	<>	ToString1[x]];	b]
In[2571]:=	{Unique1[90,	agn],	Unique1[500]}
Out[2571]=	{”agn$1086“,	“$27”}
In[2572]:=	ToExpression[{“agn$1086”,	“$27”}]
Out[2572]=	{90,	500}
By	the	standard	call?Name	it	is	possible	to	obtaininformation	on	all	symbols
with	the	givenName	that	have	been	generated	inmodules	or	by	theUnique
function	as	illustrates	the	following	very	simple	fragment,	namely:

In[2699]:=	n	=	1;	Clear[x,	y,	z];	While[n	<	5,	Unique[{x,	y,	z}];	n++]	In[2700]:=	?x*

▼Global	`
x$4602
▼AladjevProcedures`
x	x$	x$6012	x$6013	x$6014	x$6015	Thus,	the	names	generated	by	the	module	behave	in
the	same	way,	as	other	names	concerning	calculations.	However,	these	names	have	the
temporary	character	which	defines,	that	they	have	to	be	completely	removed	from	the
system	in	the	absence	of	need	for	them.	Therefore,	the	majority	of	thenames	generated	in
modules	will	be	removed	after	performance	of	these	modules.	Only	names	returned	by
modules	explicitly	remain.	Moreover,	outside	of	modules	their	local	variables	remain
undefinite	even	if	in	the	modules	they	received	initial	values.	Meanwhile,	it	must	be	kept
in	mind	that	usage	of	the	names	of	the	formname$nnn	is	the	agreement	of
theMathematica	for	the	local	variables	generated	by	modules.	Thus,	in	order	to	avoid	any
conflict	situations	with	names	of	the	specified	form	the	user	isn’t	recommended	to	use
names	of	such	format	in	own	programs.	It	must	be	kept	in	mind	that	the	variables
generated	by	modules	are	unique	only	during	the	current	session.	The	mechanism	of	use
oflocal	variables	at	the	call	of	a	module	is	considered	rather	in	details	in	[30].	The	local
variables	of	modules	allow	assignment	to	them	of	initial	values	in	the	form	of	any
expressions,	including	expressions,	whose	values	can	depend	on	the	actual	arguments

received	at	a	module	call	or	from	external	variables,	for	example:
In[2943]:=	G[x_,	y_]	:=	Module[{a	=	If[PrimeQ[x],	NextPrime[y],	If[PrimeQ[y],
NextPrime[x],	z]]},	a*(x	+	y)]	In[2944]:=	z	=	90;	{G[7,	500],	G[6,	18],	G[72,	67]}
Out[2944]=	{255021,	2	160,	10	147}
Meanwhile,	at	the	level	of	the	local	variables	not	exists	of	any	opportunity
immediate(without	execution	of	offers	of	the	body	of	a	procedure)	of	an	exit	from	the
procedure,	for	example,	in	case	of	calculation	of	the	initial	expressions	ascribed	to	the
local	variables	as	it	illustrates	simple	enough	fragment,	the	exception	is	the	use	of	the
callAbort[]	that	initiates	return	by	the	procedure	the	value$Aborted:
In[2487]:=	G[x_,	y_]	:=	Module[{a	=	If[PrimeQ[x],	NextPrime[y],	Return[x]]},	a*(x	+
y)]
In[2488]:=	G[90,	500]
Out[2488]=	53	100
In[2489]:=	G[x_,	y_]	:=	Module[{a	=	If[PrimeQ[x],	NextPrime[y],	Defer[G[x]]]},	a*(x
+	y)]
In[2490]:=	G[90,	500]

Out[2490]=	590	G[90]

In[2491]	:=	G[x_,	y_]	:=	Module[{a	=	If[PrimeQ[x],	NextPrime[y],	Abort[]]},	a*(x	+
y)]
In[2492]:=	G[90,	500]
Out[2492]=	$Aborted

The	concept	of	modules	in	the	context	of	the	mechanism	of	local	variables	quite	closely	is
adjoined	the	objects	ofblock	type,	whose	organization	has	the	following	kind,	namely:

Block[{a,	b,	c,…},Body]–	Body	is	evaluated,	using	local	values	for	variables	{a,	b,	c,
…};
Block[{a	=	a0,	b	=	b0,	c	=	c0,…},Body]–	Body	at	initial	values	for	variables	{a,	b,	c,…}
localized	in	the	block	is	evaluated.

In	modular	structure	local	variables	are	such	by	definition	whereas	in	block	structure	the
variables,	defined	as	local,	operates	only	within	the	block.	At	that,	if	to	them	in	the	block
aren’t	ascribed	values,	they	accept	values	of	the	variables	of	the	same	name	that	are
external	with	respect	to	the	block,	while	in	case	of	assignment	of	values	by	it	in	the	block,
values	of	the	variables	of	the	same	name	outside	of	the	block	remain	without	change.
Therefore,	by	this	circumstance	the	mechanisms	of	local	variables	of	modules	and	blocks
enough	significantly	differ.
For	this	reason,	speaking	about	procedures	of	types	{“Module”,	“Block”},	we	have	to
analyze	block	objects	regarding	character	of	their	local	variables,	namely:	lack	of	local
variables	or	existence	for	each	local	variable	of	initial	value	says	that	this	object	can	be
considered	as	the	procedure	that	receives	at	a	call	an	information	only	from	the	actual
arguments.	On	such	principle	our	tests	considered	here	and	in	our	books	[30-32]	for	check
of	a	block	to	be	as	an	actual	procedure	are	built.	Thus,	the	general	rule	for	a	block
structure	is	defined	by	the	principle–	the	variables	located	outside	of	a	block,	until	the
block	and	after	the	block,	save	the	values,	acting	in	relation	to	the	block	asglobal	variables
whereas	in	the	block	the	variables	of	the	same	name	can	arbitrarily	change	the	values
according	to	the	demanded	algorithm.	As	it	was	noted	above,	the	local	variableb	in	a

structureModule[{b},Body]	correlates	with	a	unique	symbol	that	is	modified	every	time
when	the	given	module	is	used;	the	given	symbol	differs	from	the	global	nameb.	Whereas
the	variableb	in	a	structureBlock[{b},Body]	is	global	variable	outside	of	the	block,	it	in
the	course	of	performance	of	the	block	can	accept	any	values	but	by	exit	from	the	block
restores	a	value	that	it	had	on	entrance	to	the	block.	If	in	case	of	aModule–construction
thelocal	variables	in	such	procedure	body	are	especially	temporary,	in
aBlock–construction	they	aren’t	considered	as	such.	Without	going	into	detail,	we	only
will	note	that	for	providing	of	the	robustness	of	procedures	it	is	recommended	to	program
them,	generally,	on	the	basis	ofModuleconstructions,	or	on	the	basis	ofBlockconstructions
for	which	there	are	no	local	variables	or	all	local	variables	have	initial	values.

Meanwhile,	it	should	be	noted,	within	of	modular	structure	a	mechanism	of	localization	of
global	variables	can	be	quite	realized	similarly	to	mechanism	used	in	a	block	structure;
two	variants	have	been	offered	in	[32].	Moreover,	also	other	variants	of	realization	of	the
mechanism	of	localization	of	global	variables	that	are	used	by	blocks,	and	on	the	basis	of
other	approaches	one	of	which	is	considered	in	[30]	are	possible.	In	this	regard	quite
appropriate	to	note,	that	there	is	quite	simple	and	universal	mechanism	of	work	with
global	variables	in	the	body	of	procedures	keeping	their	values	at	the	time	of	an	entrance
to	procedure	and	of	an	exit	from	it.	Formally	its	essence	can	be	presented	visually	on	the
basis	of	the	following	rather	simple	scheme:

h=	x;	G[x_,	y_,	…]	:=	Module[{b	=	h,	…},Body<h,	…,	{h	=	b,	Res}[[–1]]>]

Suppose,	outside	of	the	body	of	a	procedure	G	theglobal	variableh,	used	in	the	procedure
as	alocal	variable,	received	a	valuex.	The	local	variableb	of	the	procedureG	receivesx	as
an	initial	value,	keeping	it	upto	each	potential	exit	from	the	procedure.	In	the	future,	the
algorithm	realized	by	procedure	body	can	use	the	variableh	arbitrarily,	and	only	each
possible	exit	from	the	procedureG	along	with	return	of	a	result(Res)	has	to	provide
assignment	to	variableh	of	its	initial	valuex	upto	exit	from	the	procedure.	A	quite	simple
example	rather	visually	illustrates	the	described	mechanism	of	use	of	global	variables	in	a
procedure	body	at	the	local	level,	namely:

In[2517]	:=	h	=	90;	P[x_]	:=	Module[{a	=	h,	R},	h	=	6;	R	=	h*x;	{h	=	a,	R}[[–1]]]
In[2518]:=	{P[500],	h}
Out[2518]=	{3000,	90}
Thus,	the	block	constructions	allow	to	determine	effectively”environment”	in	which	it	is
temporarily	possible	to	change	values	of	global	variables;	global	variables	are	used	by	a
block	body	as	local	variables,	and	only	on	exit	from	the	block	they	restore	own	values
upto	entrance	to	the	block.	In	the	general	understanding,	the	block	structures	serve	as
certain“fields”	of	the	current	session	in	which	the	values	changes	of	the	variables	located
outside	of	these	areas	without	change	of	their	values	outside	of	such	areas	is	admissible,
i.e.	some	kind	oflocalization	of	global	variables	of	the	current	session	in	certain	fields	of
computing	space	in	general	is	provided.	The	given	possibility	was	used	rather	effectively
in	a	number	of	means	composing	ourAVZ_Package	package	[48].	At	that,	the	block
structure	is	implicitly	used	in	realization	of	a	number	of	theMathematica	functions,
e.g.Do,	Table,	Product,	Sum,	etc.,	mainly,	of	iterative	type	for	localization	of	variables	of
indexing	as	visually	illustrates	a	very	simple	example,	namely:
In[2520]:=	n	:=	90;	{{Sum[n^2,	{n,	18}],	n},	{Product[n,	{n,	25}],	n}}	Out[2520]=

{{2109,	90},	{15511	210	043	330	985	984	000	000,	90}}	As	a	rule,	the	system	considers
any	variable,	determined	by	the	user	in	the	current	session	if	the	opposite	isn’t	specified	as
a	global	variable.	However,	in	certain	cases	is	required	to	localize	a	global	variable	for
some	period,	that	the	block	structure	quite	successfully	allows	to	make.	At	the	same	time
it	should	be	noted	once	again,	the	variables	localized	in	a	block	only	then	are	ноу	local
variables	if	in	the	block	the	values	are	ascribed	to	them;	otherwise	their	values	in	the
block	willcoincide	with	values	of	the	variables	of	the	same	name	that	are	external	relative
to	the	block.	Thus,	if	for	a	localized	variable	in	a	block	an	initial	value	wasn’t	defined,	real
localization	for	such	variable	isn’t	made.	Thus,	in	certain	cases	it	makes	sense	to	create
procedural	objects	on	a	basis	of	both	the	modular,	and	the	block	organization.	Therefore,
in	a	general	sense	underprocedural	objects	in	theMathematica	system	it	is	quite	possible
to	consider	the	objects,	created	as	on	the	basis	of	the	modular,	and	block	organizations	on
condition	of	fulfillment	by	the	block	organization	of	the	mentioned	conditions–	absence
for	it	of	the	local	variables	or	existence	for	each	local	variable	of	an	initial	value.	We	will
represent	some	means	of	manipulation	with	local	variables	of	modules	and	blocks	playing
essential	enough	part	in	various	problems	of	procedural	programming.	First	of	all,	it	is
very	desirable	to	have	the	means	for	determination	of	local	variables	of	blocks	and
modules	which	are	absent	among	standard	means	of	theMathematica	system.	As	the
similar	means,	it	is	possible	to	consider	Locals	procedure	whose	source	code	with
examples	of	usage	the	following	fragment	represents.	This	procedure	is	intended	for
evaluation	of	the	local	variables	of	the	user	blocks	and	modules.

In[2538]	:=	M[x_,	y_]	:=	Module[{a	=	90,	b	=	500},	(x	+	y)*(a	+	b)];	M[x_]	:=	x;
M[x_/;	IntegerQ[x]]	:=	Block[{},	x^2];	M[x_Integer,	y_	/;	ListQ[y]]	:=	Block[{a,	b	=
90},	x^2];

P[x__]	:=	Module[{a	=	h,	R},	h	=	90;	R	=	h*x;	{h	=	a,	R}[[–1]]]

In[2539]	:=	Locals[x_	/;	BlockFuncModQ[x],	R___]	:=	Module[{c,	d	=	{},	p,	t,	a	=
Flatten[{PureDefinition[x]}],	b	=	Flatten[{HeadPF[x]}],	k	=	1,	Sg},	Sg[y_String]	:=
Module[{h	=	1,	v	=	{},	j,	s	=	””,	z	=	StringLength[y]–1},	Label[avz];	For[j	=	h,	j	<=	z,
j++,	s	=	s	<>	StringTake[y,	{j,	j}];	If[!	SameQ[Quiet[ToExpression[s]],	$Failed]	&&
StringTake[y,	{j	+	1,	j	+	1}]	==	“,”,	AppendTo[v,	s];	h	=	j	+	3;	s	=	””;	Goto[avz]]];
AppendTo[v,	s	<>	StringTake[y,	{–1,–1}]];	Map[If[Quiet[StringTake[#,	{1,	2}]]	===
“,	“,	StringTake[#,	{3,–1}],	#]	&,	v]];	c	=	Flatten[Map[Map3[StringJoin,	#,	{”	:=	“,	”
=	“}]	&,	b]];	c	=	Map[StringReplace[#,	Map[Rule[#,	””]	&,	c]]	&,	a];	For[k,	k	<=
Length[a],	k++,	p	=	c[[k]];	If[SuffPref[p,	“Module[{“,	1],	t	=	8,

If[SuffPref[p,	“Block[{“,	1],	t	=	7,	t	=	0;	AppendTo[d,	“Function”]]];	If[t	!=	0,
AppendTo[d,	SubStrSymbolParity1[StringTake[p,	{t,–1}],	“{“,	“}“][[1]]]];
Continue[]];	d	=	Map[StringReplace[#,	{”{”–>	“{$$90$$”,	“,	“–>	“,	$$90$$”,

“=	”	–>	“=	$$90$$”}]	&,	d];	d	=	Map[If[MemberQ[{“Function”,	“{}”},	#],	#,
Sg[StringTake[#,	{2,–2}]]]	&,	d];	d	=	Map[If[FreeQ[Quiet[ToExpression[#]],

$Failed],	#,	StringJoin1[#]]	&,	d];	d	=	Map[If[#	===	{””},	“{}“,	#]	&,

Mapp[StringReplace,	d,	{“$$90$$”–>	””,	“\”–>	””}]];	Map[Remove,
Names[“`$$90$$*”]];	d	=	If[Length[d]	==	1,	Flatten[d],	d];	If[{R}!=	{}&&	!
HowAct[R],	If[d	===	{”{}”},	R	=	{},	{b,	k,	R}=	{d,	1,	{}};	While[k	<=	Length[b],	p	=

b[[k]];	AppendTo[R,	If[MemberQ[{”{}“,

“Function”	},	p],	p,	If[StringQ[p],	If[StringFreeQ[p,	”	=	“],	{p,	“No”},	StringSplit[p,
”	=	“]],	Map[If[StringFreeQ[#,	”	=	“],	{#,	“No”},	StringSplit[#,	”	=	“]]	&,	p]]]];	k++];
R=	If[NestListQ[R]	&&	Length[R]==1,	R[[1]],	R]]];	If[d	==={”{}”},	{},	d]]

In[2540]	:=	Locals[M]
Out[2540]=	{{”a“,	“b=	90”},	{”a=	90“,	“b=	500”},	“{}“,	“Function”}	In[2541]:=
Locals[P]
Out[2541]=	{”a=	h“,	“R”}
In[2542]:=	Map[Locals,	{ModuleQ,	Definition2,	Locals}]
Out[2542]=	{{”a=	PureDefinition[x]“,	“b”},	{”a“,	“b=	Attributes[x]“,	“c”},

{”c“,	“d=	{}“,	“p“,	“t“,	“a=	Flatten[{PureDefinition[x]}]“,	“b=	Flatten[{HeadPF[x]}]“,
“k=	1“,	“Sg”}}

In[2543]:	=	G[x_,	y_]	:=	Module[{a	=	If[PrimeQ[x],	NextPrime[y],	If[PrimeQ[y],
NextPrime[x],	z]]},	a*(x	+	y)];	Locals[G]
Out[2543]=	{”a=	If[PrimeQ[x],	NextPrime[y],	If[PrimeQ[y],
NextPrime[x],	z]]”}
In[2544]:=	Locals[P,	t]
Out[2544]=	{”a=	h“,	“R”}
In[2545]:=	t
Out[2545]=	{{”a“,	“h”},	{”R“,	“No”}}
In[2546]:=	Locals[M,	t1]
Out[2546]=	{{”a“,	“b=	90”},	{”a=	90“,	“b=	500”},	“{}“,	“Function”}
In[2547]:=	t1
Out[2547]=	{{{”a“,	“No”},{”b“,	“90”}},	{{”a“,	“90”},{”b“,	“500”}},	“{}“,
“Function”}
In[2548]:=	Z[x_]	:=	x;	Z[x_,	y_]	:=	x	+	y;	Z[x_,	y_,	z_]	:=	x	+	y	+	z;	Locals[Z,	t2]
Out[2548]=	{”Function“,	“Function“,	“Function”}
In[2549]:=	t2
Out[2549]=	{”Function“,	“Function“,	“Function”}
In[2550]:=	Locals[G,	t3]
Out[2550]=	{”a=	If[PrimeQ[x],	NextPrime[y],
If[PrimeQ[y],	NextPrime[x],	z]]”}
In[2551]:=	t3
Out[2551]=	{”a“,	“If[PrimeQ[x],	NextPrime[y],
If[PrimeQ[y],	NextPrime[x],	z]]”}
In[2552]:=	B[x_]	:=	Module[{a},	x];	{Locals[B,	t4],	t4}
Out[2552]=	{{”a”},	{”a“,	“No”}}
In[2553]:=	V[x_]	:=	Module[{a,	b,	c,	d},	x];	Locals[V,	t5]
Out[2553]=	{”a“,	“b“,	“c“,	“d”}
In[2554]:=	t5
Out[2554]=	{{”a“,	“No”},	{”b“,	“No”},	{”c“,	“No”},	{”d“,	“No”}}
In[2555]:=	B1[x_]	:=	Module[{},	x];	{Locals[B1,	t6],	t6}
Out[2555]=	{{},	{}}

The	presented	Locals	procedure	on	functionality	covers	both	the	procedure	of	the	same

name,	and	theLocals1	procedure	that	are	considered	in	[30-32].	The	procedure
callLocals[x]	returns	the	list	whose	elements	in	string	format	represent	local	variables	of	a
block	or	a	modulex	together	with	their	initial	values.	While	the	callLocals[x,	y]	with	the
second	optional	argumenty	–	an	undefinite	variable–	provides	in	addition	return	throughy
or	of	the	simple	or	of	the	simple	element	list,	or	the	list	ofListListtype	withtype
withelement	sublists	whosefirst	elements	determine	names	of	local	variables	of	a
block/modulex	in	string	format,	whereas	the	second	element–	the	initial	values,	ascribed
to	them	in	string	format;	absence	of	initial	values	is	defined	by	the“No”	symbol.	If	an
objectx	has	no	local	variables,	the	procedure	callLocals[x,	y]	returns	empty	list,	i.e.	{},	the
same	result	is	returned	thru	the	second	optional	argumenty.	Moreover,	on	typical	function
the	call	of	the	procedure	returns“Function”.	The	procedure	is	widely	used	in	problems	of
manipulation	bylocal	variables.

In[2352]:=	StringJoin1[x_	/;	ListQ[x]	&&
DeleteDuplicates[Map[StringQ,	x]]	==	{True}]	:=	Module[{a	=	x,	b	=	Length[x],	c	=
””,	k	=	1},	While[k	<=	b–1,	c	=	c	<>	a[[k]]	<>	“,	“;	k++];	c	<>	a[[–1]]]

In[2353]	:=	StringJoin1[{“Avz”,	“Agn”,	“Vsv”,	“Art”,	“Kr”}]
Out[2353]=	“Avz,	Agn,	Vsv,	Art,	Kr”
In[2354]:=	StringJoin1[{“Avz”,	90,	x	+	y,	“Art”,	Sin}]
Out[2354]=	StringJoin1[{”Avz“,	90,	x+	y,	“Art“,	Sin}]
The	definition	of	theLocals	procedure	along	with	standard	means	uses	and	our	means	such
asBlockFuncModQ,	PureDefinition,	SuffPref,	HowAct,	HeadPF,	Mapp,	Map3,
NestListQ,	SubStrSymbolParity1	considered	in	the	present	book	and	in	[28-33].	At	that,
for	realization	of	this	procedure	along	with	the	mentioned	means	the	expediency	became
clear	to	define	a	simple	StringJoin1	procedure	for	the	purpose	of	special	processing	of
strings	lists	which	is	a	modification	of	the	standardStringJoin	function.	The	procedure
callStringJoin1[x]	returns	result	of	consecutive	concatenation	of	the	string	elements	of	a
listx	that	are	separated	by	commas	as	very	visually	illustrates	a	example	of	the	previous
fragment	with	source	code	of	this	procedure.	The	StringJoin1	procedure	belongs	to	group
of	the	means	operating	with	string	structures,	however	it	is	considered	exactly	here	in	the
context	of	theLocals	procedure;	the	given	procedure	has	a	rather	wide	range	of
appendices.	Meanwhile,	in	certain	cases	it	is	required	to	define	only	the	list	of	names	of
local	variables	irrespectively	from	the	initial	values	ascribed	to	them.	The	Locals1
procedure	replacing2	former	proceduresLocals1	andLocals2	[30]	can	be	used	for	this
purpose.	The	callLocals1[x]	returns	the	list	of	names	in	string	format	of	local	variables	of
a	block	or	a	modulex;	in	case	of	absence	of	local	variables	for	an	objectx	the	procedure
call	returns	theempty	list,	i.e.	{}.	Furthermore,	in	case	of	an	object	of	the	same	namex
which	contains	the	subobjects	of	the	same	name	withdifferent	headings	a	nested	list	is
returned	whose	elements	are	bijective	with	subobjectsx,	according	to	their	order	at
application	of	thePureDefinition	procedure	to	the	objectx.	The	following	fragment
represents	source	code	of	the	Locals1	procedure	along	with	the	most	typical	examples	of
its	usage.

In[2587]	:=	Locals1[x_	/;BlockFuncModQ[x]]	:=	Module[{a,	b	={},	c,	k	=1,	kr},
kr[y_List]	:=	Module[{d	=	{},	v	=	Flatten[y],	j	=	1},	While[j	<=	Length[v]/2,
AppendTo[d,	v[[2*j–1]]];	j++];	d];	ClearAll[a];	Locals[x,	a];	If[NestListQ1[a],	For[k,
k	<=	Length[a],	k++,	c	=	a[[k]];	AppendTo[b,	If[MemberQ[{”{}“,	“Function”},	c],	c,

kr[c]]]];

If[StringQ[PureDefinition[x]],	Flatten[b],	b],	kr[a]]]	In[2588]:=	Locals1[P]
Out[2588]=	{”a“,	“R”}

In[2589]	:=	Locals1[G]
Out[2589]=	{”a”}
In[2590]:=	Locals1[M]
Out[2590]=	{{”a“,	“b”},	{”a“,	“b”},	“{}“,	“Function”}

For	examples	of	this	fragment	the	means,	given	in	the	fragment	above,	that	represents
theLocals	procedure,	have	been	used.	Right	there	we	will	note	that	theLocals1	procedure
represents	one	of	the	most	effective	means	in	the	problems	of	processing	of	local	variables
of	blocks	and	modules.

As	one	more	useful	means	of	this	kind	it	is	possible	to	note	also	the	Locals2	procedure
that	should	be	preceded	by	the	procedure,	in	many	cases	useful	and	intended	for	testing	of
the	objects	of	the	same	name	which	have	several	definitions	of	various	type.	The
procedure	callQBlockMod[x]	returnsTrue	if	definitions	of	an	objectx	have	type
{Module,Block},	andFalse	otherwise.	This	procedure	assumes	that	in	the	presence	among
definitions	ofx	of	the	definitions	of	other	type,	such	object	in	general	can’t	be	considered
by	the	object	of	type	{Module,Block}.	It	allows	to	allocate	from	the	objects	of	the	same
name	the	objects	of	type	{Module,	Block}.	The	fragment	represents	source	code	of
theQBlockMod	procedure	with	examples	of	its	typical	use.

In[2585]	:=	M[x_,	y_]	:=	Module[{a	=	90,	b	=	500},	(x	+	y)*(a	+	b)];	M[x_]	:=	x;	A[m_,
n_]	:=	Module[{a	=	42.72,	b	=	{m,	n=90}},	h*(m+n+p)/(a+b)];	A[m_]	:=	Block[{a	=
42.72,	b	=	{m,	n	=	90},	q,	t},	h*(m+n+p)/(a+b)]

In[2586]	:=	QBlockMod[x_]	:=	Module[{a	=	Flatten[{PureDefinition[x]}],	b,	c	=
True,	k	=	1},	If[MemberQ[{“System”,	$Failed},	a[[1]]],	False,	b	=
Flatten[{HeadPF[x]}];	While[k	<=	Length[a],	If[!	SuffPref[StringReplace[a[[k]],
b[[k]]	<>	”	:=	“–>	””,	1],	{“Module[{“,	“Block[{”},	1],	c	=	False;	Break[]];	k++];	c]]

In[2587]	:=	A[x_]	:=	Block[{},	x^3];	QBlockMod[M]
Out[2587]=	False
In[2588]:=	Map[QBlockMod,	{ProcQ,	A,	ToString1,	StrStr,	500,	Sin}]	Out[2588]=
{True,	True,	True,	False,	False,	False}

In	the	context	of	the	previous	QBlockMod	procedure	the	followingLocals2	procedure	on
objectsx	of	the	type	{Module,	Block}	returns	the	nested	list	of	their	local	variables	in
string	format	without	initial	values	assigned	to	them	if	the	objectx	contains	several
definitions,	otherwise	simple	list	is	returned.	The	following	fragment	represents	the
procedure	code	along	with	examples	of	its	usage;	these	examples	are	tooken	from	the
previous	fragment.

In[2710]	:=	Locals2[x_	/;	QBlockMod[x]]	:=	Module[{c={},	d,	p,	h={},	k=1,	j=1,	a	=
Flatten[{PureDefinition[x]}],	b	=	Flatten[{HeadPF[x]}]},	While[k	<=	Length[a],
AppendTo[c,	d	=	StringReplace[a[[k]],	Mapp[Rule,	Map[b[[k]]	<>	”	:=	”	<>	#	&,
{“Module[“,	“Block[“}],	””],	1];	Quiet[SubStrSymbolParity[d,	“{“,	“}“,	1][[–1]]]];
k++];	While[j	<=	Length[c],	p	=	c[[j]];	p	=	Map[ToString,

ToExpression[StringReplace[p,	{“,	“–>	“$$90$$,	“,	”	=	“–>	“$$90$$–>	“}]]];	p	=
If[Length[p]	==	1,	p[[1]],	p];	p	=	Map[If[StringFreeQ[#,	“–>	“],
StringReplace[#,”$$90$$”–>	””],	StringReplace[StringTake[#,	{1,
Flatten[StringPosition[#,	“–>	“]][[1]]–1}],	””$$90$$”–>	””]]	&,	p];	AppendTo[h,	p];
j++];	If[Length[h]	==	1,	h[[1]],	h]]	In[2711]:=	Locals2[A]

Out[2711]	=	{{”a“,	“b”},	{”a“,	“b”},	{”a“,	“b“,	“q“,	“t”}}
In[2712]:=	Locals2[M]
Out[2712]=	Locals2[M]

In	a	number	of	cases	there	is	a	need	of	dynamic	extension	of	the	list	of	local	variables	for
a	block/module	that	is	activated	in	the	current	session,	without	change	of	the	object	code
on	the	storage	medium.	TheExpLocals	procedure	presented	by	the	following	fragment
solves	the	problem.	So,	the	procedure	callExpLocals[x,	y]	returns	the	list	of	local
variables	in	string	format	with	the	initial	values	ascribed	to	them	on	which	local	variables
of	an	objectx	are	expanded.	At	that,	generally	speaking	this	list	can	be	less	than	a	listy
given	at	the	procedure	call(or	at	all	empty)	because	the	variables	that	are	available	in	the
objectx	as	formal	arguments	or	local	variables	are	excluded	from	it.

In[2757]:=	ExpLocals[P_	/;	ModuleQ[P]	||	BlockQ[P],	L_	/;	ListQ[L]	&&
DeleteDuplicates[Map[StringQ,	L]]	==	{True}]	:=	Module[{a	=
Flatten[{PureDefinition[P]}][[1]],	b	=	Locals1[P],	c	=	Args[P,	90],	d,	p,	p1,	h,	Op	=
Options[P],	Atr	=	Attributes[P]},

Quiet[d	=	Map[If[StringFreeQ[#,	{”	=	“,	“=”}],	#,	StringSplit[#,	{”	=	“,	“=”}][[1]]]	&,
L];	p	=	Locals[P];	h	=	MinusList1[d,	Flatten[{b,	c}]];	If[h	==	{},	Return[{}]];	h	=
Flatten[Map[Position[d,	#]	&,	h]];	d	=	Join[p,	c	=	Map[L[[#]]	&,	h]];
ToExpression[“ClearAllAttributes[”	<>	ToString[P]	<>	“]”];	ClearAll[P];
ToExpression[StringReplace[a,	ToString[p]–>	ToString[d],	1]]];	If[Op	!=	{},
SetOptions[P,	Op]];	SetAttributes[P,	Atr];	c]

In[2758]:=	Avz[x_]	:=	Module[{a	=	90,	b,	c},	a	+	x^2];
SetAttributes[Avz,	Protected];	Agn[x_]	:=	Module[{},	{x}];

Z[x_	/;	IntegerQ[x]]	:=	Module[{a,	b,	c,	d},	{a,	b,	c,	d}[[x]]]	In[2759]:=
ExpLocals[Agn,	{“x”,	“a	=	c	+	d”,	“b”,	“Art	=	25”,	“Sv”,	“Kr	=	18”}]	Out[2760]=
{”a=	c+	d“,	“b“,	“Art=	25“,	“Sv“,	“Kr=	18”}
In[2761]:=	Definition[Agn]
Out[2761]=	Agn[x_]:=	Module[{a=	c+	d,	b,	Art=	25,	Sv,	Kr=	18},	{x}]	In[2762]:=
ExpLocals[Avz,	{“x”,	“a	=	c+d”,	“b”,	“Art	=	25”,	“Sv”,	“Kr	=	18”}]	Out[2762]=
{”Art=	24“,	“Sv“,	“Kr=	16”}
In[2763]:=	Definition[Avz]
Out[2763]=	Attributes[Avz]=	{Protected}

Avz[x	_]:=	Module[{a=	90,	b,	c,	Art=	25,	Sv,	Kr=	18},	a+	x^2]	In[2764]:=
ExpLocals[Avz,	{“x”,	“a	=	c+d”,	“b”,	“Art	=	25”,	“Sv”,	“Kr	=	18”}]	Out[2764]=	{}
In[2765]:=	ExpLocals[Z,	{“m	=	90”,	“n	=	500”,	“p	=	72”}]
Out[2765]=	{”m=	90“,	“n=	500“,	“p=	72”}
In[2766]:=	Definition[Z]
Out[2766]=	Z[x_	/;	IntegerQ[x]]:=	Module[{a,	b,	c,	d,	m=90,	n=500,	p=72},

{a,	b,	c,	d}[[x]]]

The	above	fragment	contains	source	code	of	the	ExpLocals	procedure	with	examples	of
its	application	to	very	simple	proceduresAgn,	Avz	andZ	for	the	purpose	of	extension	of
their	list	of	local	variables	the	part	of	which	has	initial	values;	at	that,	in	the	second
procedure	the	list	of	local	variables	is	the	empty	whereas	for	the	first	procedure	there	is	a
nonempty	crossing	of	the	joint	list	of	formal	arguments	and	local	variables	with	the	list	of
variables	on	which	it	is	necessary	to	expand	the	list	of	local	variables	of	the	procedure.	If
the	joint	list	coincides	with	a	listy,	the	procedure	call	returns	the	empty	list,	i.e.	{},	without
changing	an	initial	objectx	in	the	current	session.	It	must	be	kept	in	mind	that	elements	of
the	listy	need	to	be	coded	in	string	format	in	order	to	avoid	assignment	of	values	to	them
of	variables	of	the	same	name	of	the	current	session	and/or	calculations	according	to
initial	values	ascribed	to	them.	The	result	of	a	modification	of	an	initial	objectx	preserves
options	and	attributes	of	the	initial	objectx.

It	is	known	that	activation	in	the	current	session	of	a	module	or	a	block	in	the	field	of
names	of	variables	of	the	system	adds	all	their	local	variables	as	illustrates	a	simple
example,	namely:

In[2582]	:=	Mb[x_]	:=	Block[{Art	=	25,	Kr	=	18,	Sv	=	47},	x];	Mb[90];	In[2583]:=
B[x_]	:=	Block[{Art1	=	25,	Kr1	=	18,	Sv1	=	47},	x];	B[500];	In[2584]:=	Names[“`*”]
Out[2584]=	{”Art“,	“Art1“,	“B“,	“Kr“,	“Kr1“,	“Mb“,	“Sv“,	“Sv1”}	Therefore,
economical	use	of	the	local	variables	is	quite	important	problem.	Meanwhile,	in	the	course
of	programming	of	blocks/modules	quite	really	emersion	of	so-calledexcess	local
variables.	TheRedundantLocals	procedure	which	is	based	on	theProcBMQ	procedure,	in
a	certain	degree	solves	this	problem.	The	following	fragment	represents	source	code	of	the
procedure.

In[2571]:=	RedundantLocals[x_	/;	BlockFuncModQ[x]]	:=	Module[{a,	b,	c,	p,	g,	k	=
1,	j,	v,	t	=	{},	z	=	””},

{	a,	b}=	{PureDefinition[x],	Locals1[x]};	If[StringQ[a],
If[b	==	{},	True,	p	=	Map[#[[1]]	&,	StringPosition[a,	{”}=	“,	“}:=	“}]];	p	=	Select[p,	!
MemberQ[{”{"}“,	”	"}”},	StringTake[a,	{#–2,	#}]]	&];

c	=	Map[Map3[StringJoin,	#,	{”	:=	“,	”	=	“}]	&,	b];	g	=	Select[b,	StringFreeQ[a,
Map3[StringJoin,	#,	{”	:=	“,	”	=	“}]]	&];	While[k	<=	Length[p],	v	=	p[[k]];
For[j	=	v,	j	>=	1,	j––,	z	=	StringTake[a,	{j,	j}]	<>	z;

If[!	SameQ[Quiet[ToExpression[z]],	$Failed],	AppendTo[t,	z]]];	z	=	””;	k++];	t	=
MinusList[g,	Flatten[Map[StrToList,	t]]];	If[t	=={},	t,	p	=	Select[Map[”	“<>	#	<>”[”
&,	t],	!	StringFreeQ[a,	#]&];	g	={};	For[k	=	1,	k	<=	Length[p],	k++,	v	=
StringPosition[a,	p[[k]]];	v	=	Map[#[[2]]	&,	v];	z	=	StringTake[p[[k]],	{2,–2}];	c	=	1;
For[j	=	c,	j	<=	Length[v],	j++,

For[b	=	v[[j]],	b	<=	StringLength[a],	b++,	z	=	z	<>	StringTake[a,	{b,	b}];	If[!
SameQ[Quiet[ToExpression[z]],	$Failed],	AppendTo[g,	z];	c	=	j	+	1;	z	=
StringTake[p[[k]],	{2,–2}];	Break[]]]]];	MinusList[t,	Map[HeadName[#]	&,	Select[g,
HeadingQ1[#]	&]]]]],	“Object	<”	<>	ToString[x]	<>	“>	has	multiple	definitions”]]

In[2572]	:=	Map[RedundantLocals,	{ProcQ,	Locals1,	RedundantLocals}]	Out[2572]=

{{”h”},	{”a”},	{}}
In[2573]:=	Vsv[x_,	y_]	:=	Module[{a,	b,	c	=	90,	d,	h},	b	=	500;

d[z_]	:=	z^2	+	z	+	500;	h[t_]	:=	Module[{},	t];	d[c	+	b]	+	x	+	y	+	h[x*y]]	In[2574]:=
RedundantLocals[Vsv]
Out[2574]=	{”a”}
In[2575]:=	Map[RedundantLocals,	{ProcQ,	Globals,	RedundantLocals,

Locals,	Locals1}]
Out[2575]=	{{”h”},	{},	{},	{},	{”a”}}
In[3384]:=	RedundantLocalsM[x_	/;	BlockFuncModQ[x]]	:=	Module[{d,	b	=	{},	k	=
1,	c	=	ToString[Unique[“g”]],	a	=	Flatten[{PureDefinition[x]}]},

While[k	<=	Length[a],	d	=	c	<>	ToString[x];	ToExpression[c	<>	a[[k]]];	AppendTo[b,
If[QFunction[d],	“Function”,	RedundantLocals[d]]];	ToExpression[“ClearAll[”	<>	d
<>	“]”];	k++];	Remove[c];	If[Length[b]	==	1,	b[[1]],	b]]

In[3385]	:=	Vsv[x_,	y_]	:=	Module[{a,	b,	c=90,	d,	h},	b=500;	d[z_]	:=	z*x+500;	h[t_]
:=	Module[{},	t];	d[c+b]+x+y+h[x*y]];	Vsv[x_,	y_,	z_]	:=	Module[{a,	b,	c=90,	d,	h},
a=6;	d[p_]	:=	z+p+500;	h[t_]	:=	Module[{},	t];	d[c+b]+x+y+h[x*y*z]];	Vsv[x_]	:=	x
In[3386]:=	RedundantLocalsM[Vsv]

Out[3386]	=	{{”a”},	{”b”},	“Function”}
The	procedure	callRedundantLocals[x]	returns	the	list	of	local	variables	in	string	format
of	a	block	or	a	modulex	which	the	procedure	considers	excess	variables	in	the	context,
what	both	the	initial	values,	and	the	values	in	body	of	the	objectx	weren’t	ascribed	to
them,	or	these	variables	aren’t	names	of	the	internal	functions	or	modules/blocks	defined
in	body	of	the	objectx.	At	that,	the	local	variables,	used	as	an	argument	at	the	call	of	one
or	the	other	function	in	the	body	of	an	objectx(in	particular,it	takes	place	for	ourLocals1
procedure	that	uses	the	callLocals[x,	a]in	which	thru	the2nd	optional	argument	a	–an
undefinite	variable–return	of	additional	result	is	provided)	also	can	get	in	such	list.	We
will	note,	that	the	given	procedure	like	the	previousProcBMQ	procedure	is	oriented	on
single	objects,	whose	definitions	are	unique	while	on	the	objects	of	the	same	name	the	call
prints	the	message”Object<x>has	multiple	definitions“.	Meanwhile,	unlike	the
previousProcBMQ	procedure,	the	RedundantLocals	procedure	quite	successfully
processes	also	objects	containing	in	their	bodies	the	definitions	of	typical	functions(with
headings),	modules	and	blocks.	However,	the	considering	of	this	moment	as	a	certain
shortcoming	of	theProcBMQ	procedure	isn’t	quite	competent,	discussion	of	that	can	be
found	in	our	books	[32,33].

The	RedundantLocalsM	procedure	completes	the	previous	fragment,	this	procedure
expands	theRedundantLocals	onto	the	objects	of	the	same	name.	The
callRedundantLocalsM[x]	on	a	single	object	{Block,	Module}	is	similar	to	the
callRedundantLocals[x]	whereas	on	a	traditional	function”Function”	is	returned;	on	an
objectx	of	the	same	name	{block,traditional	function,module}	the	list	of	results	of
application	of	theRedundantLocals	to	all	subobjects	of	the	objectx	is	returned.
Meanwhile,	results	of	calls	of	the	above	procedures	RedundantLocals
andRedundantLocalsM	suggest	the	additional	analysis	of	an	objectx	concerning	the
excess	local	variables,	i.e.	these	procedures	can	be	considered	as	rather	effective	means	for

the	preliminary	analysis	of	the	blocks/modules	regarding	an	exception	of	excess	local
variables.	As	shows	our	experience,	in	most	important	cases	the	results	of	use	of	the
procedures	RedundantLocals	andRedundantLocalsM	can	be	considered	as	ultimate,
without	demanding	any	additional	researches	of	an	analyzed	object.

At	that,	in	the	Mathematica	system	the	evaluation	of	definitions	of	modules	and	blocks
containing	the	duplicated	local	variables	is	made	quite	correctly	without	initiation	of	any
erroneous	or	special	situations	which	arise	only	at	the	time	of	a	call	of	a	block	and	a
module,	initiating	erroneous	situation	of	Block::dup	andModule::dup	respectively,	with
return	of	the	block/module	call	unevaluated.	Meanwhile,	the	mechanism	of	identification
of	aduplicated	local	variableh	isn’t	clear	because	in	the	list	of	local	variables	in	definition
of	theProc	procedureat	first	the	variablesa	andd	are	located	as	rather	visually	illustrates
the	following	quite	simple	fragment.	For	the	purpose	of	definition	of	the	fact	of
duplication	of	local	variables	in	definitions	of	objects	like	block	or	module	that	are
activated	in	the	current	session,	the	procedure	has	been	created,	whose
callDuplicateLocalsQ[x]	returnsTrue	in	case	of	existence	in	definition	of	a	procedurex	of
duplication	of	local	variables,	otherwiseFalse	is	returned.	At	that,	in	case	of	return	ofTrue
thru	the2nd	optional	argument	y–an	undefinite	variable–	simple	list	or	list	ofListList-type
is	returned	whose	elements	define	names	of	the	duplicated	local	variables	with
multiplicities	of	their	entries	into	the	list	of	local	variables.	The	next	fragment	represents
source	code	of	theDuplicateLocalsQ	procedure	and	examples	of	its	usage.

In[2560]	:=	Proc[x__]	:=	Module[{a,	y,	d={x},	h,	c,	h,	d,	a=6,	h=2,	с=7,	a},	a*d]
In[2561]:=	Proc[90,	500]
Module::dup:	Duplicate	local	variableh	found	in	local	variable	specification

{a	,	y,	d=	{90,	500},	h,	c,	h,	d,	a=	6,	h=	2,	с=	7,	a}>>	Out[2561]=	Module[{a,	y,	d=	{90,
500},	h,	c,	h,	d,	a=	6,	h=	2,	с=	7,	a},	a*d]	In[2562]:=	Blok[x__]	:=	Block[{a,	y,	d	={x},	h,
c,	h,	d,	a	=	6,	h	=2,	с	=	7,	a},	a*d]	In[2563]:=	Blok[90,	500]
Block::dup:	Duplicate	local	variableh	found	in	local	variable	specification

{a,	y,	d=	{90,	500},	h,	c,	h,	d,	a=	6,	h=	2,	с=	7,	a}>>	Out[2563]=	Block[{a,	y,	d=	{90,
500},	h,	c,	h,	d,	a=	6,	h=	2,	с=	7,	a},	a*d]	In[2564]:=	DuplicateLocalsQ[P_	/;
BlockModQ[P],	y___]	:=	Module[{a,	b	=	Locals1[P]},

If[b	==	{},	False,	b	=	If[NestListQ[b],	b[[1]],	b];	a	=	Select[Gather2[b],#[[2]]	>	1	&];
If[a	==	{},	False,	If[{y}!=	{}&&	!	HowAct[y],	y	=	a];	True]]]	In[2565]:=
{DuplicateLocalsQ[Proc,	y],	y}

Out[2565]	=	{True,	{{”a“,	3},	{”d“,	2},	{”h“,	3}}}
In[2566]:=	B[x_,	y_]	:=	Module[{a	=	6},	a*x*y];	{DuplicateLocalsQ[B,	t],	t}
Out[2566]=	{False,	t}

In[2590]	:=	Proc[x_]	:=	Module[{a,	y,	d	={x},	h,	c,	h,	d,	a	=6,	h	=	2,	c	=	7,	a},	a*d];
Proc1[x_]	:=	Module[{},	{x}];	Proc2[x_]	:=	Module[{a,	a	=	500},	a*x];	Blok42[x_]	:=
Block[{a,	y,	d	=	{x},	h,	c,	h,	d,	a=6,	h=2,	c=7,	a},	a*d];

In[2591]	:=	DuplicateLocals[x_	/;	BlockModQ[x]]	:=	Module[{a	=	Locals1[x]},	a	=
Select[Map[{#,	Count[a,	#]}&,	DeleteDuplicates[a]],	#[[2]]	>	1	&];
a=Sort[a,	ToCharacterCode[#1[[1]]][[1]]	<	ToCharacterCode[#2[[1]]][[1]]	&];
If[Length[a]	>	1	||	a	==	{},	a,	a[[1]]]]

In[2592]:=	DuplicateLocals[Proc]
Out[2592]=	{{”a“,	3},	{”c“,	2},	{”d“,	2},	{”h“,	3}}
In[2593]:=	DuplicateLocals[Proc1]
Out[2593]=	{}
In[2594]:=	DuplicateLocals[Proc2]

Out[2594]	=	{”a“,	2}
In[2595]:=	DuplicateLocals[Blok42]
Out[2595]=	{{”a“,	3},	{”c“,	2},	{”d“,	2},	{”h“,	3}}

The	DuplicateLocals	procedure	completes	the	previous	fragment,	its	call
DuplicateLocals[x]	returns	the	simple	or	the	nested	list	the	first	element	of	a	list	or
sublists	of	which	defines	a	name	in	string	format	of	a	multiple	local	variable	of	a
block/modulex	while	the	second	defines	its	multiplicity.	In	the	absence	of	multiple	local
variables	the	empty	list,	i.e.	{}	is	returned.	In	this	regard	a	certain	interest	a	procedure
presents	whose	callDelDuplLocals[x]	returns	thename	of	a	module/blockx,	reducing
itslocal	variables	of	the	same	name	to1	with	activation	of	the	updated	definitionx	in	the
current	session.	Whereas	the	callDelDuplLocals[x,	y]	with	the	second	optional	argumenty
–	an	undefinite	variable–	throughy	returns	the	list	of	excess	local	variables.	At	that,	first	of
all	onlysimple	local	variables(without	initial	values)	are	reduced.	This	procedure	well
supplements	the	previousDuplicateLocals	procedure.	The	next	fragment	represents	source
code	of	theDelDuplLocals	procedure	along	with	examples	of	its	typical	usage.

In[2657]	:=	Ag[x_,	y_]	:=	Module[{a,	b,	b	=	90,	c,	b	=	73,	c	=	500,	c,	d},	(a*b	+	c*d)*(x
+	y)];	Av[x_]	:=	Block[{a	=	90,	a	=	500},	a*x];
In[2658]:=	As[x_]	:=	Module[{a,	b,	c,	a,	c},	x]
In[2659]:=	SetAttributes[Ag,	{Protected,	Listable}];	Art[x_]	:=	Module[{},	x]
In[2660]:=	DelDuplLocals[x_	/;	BlockModQ[x],	y___]	:=	Module[{b	=	{},	d,	c	=	{},	a
=	Locals[x],	p},	If[a	=={},	x,	d	=Attributes[x];	ClearAttributes[x,	d];
Map[If[StringFreeQ[#,	“=”],	AppendTo[b,	#],	AppendTo[c,	#]]	&,	a];	b	=
DeleteDuplicates[b];	c	=	DeleteDuplicates[Map[StringSplit[#,	”	=”,	2]&,	c],	#1[[1]]==
#2[[1]]&];	p	=	Map[#[[1]]	&,	c];	b	=	Select[b,	!	MemberQ[p,	#]	&];	c	=
Map[StringJoin[#[[1]],	”	=	“,	#[[2]]]	&,	c];	b	=	StringRiffle[Join[b,	c],	“,	“];	p	=
PureDefinition[x];	ToExpression[StringReplace[p,	StringRiffle[a,	“,	“]–>	b,	1]];
SetAttributes[x,	d];	If[{y}!=	{}&&	!	HowAct[y],	y	=	MinusList[a,	StrToList[b]],
Null];	x]]

In[2661]	:=	DelDuplLocals[Ag]
Out[2661]=	Ag
In[2662]:=	Definition[Ag]
Out[2662]=	Attributes[Ag]=	{Listable,	Protected}

Ag[x	_,	y_]:=	Module[{a,	d,	b=	90,	c=	500},	(a	b+	c	d)	(x+	y)]	In[2663]:=
DelDuplLocals[Av]
Out[2663]=	Av
In[2664]:=	Definition[Av]
Out[2664]=	Av[x_]:=	Block[{a=	90},	a	x]
In[2665]:=	DelDuplLocals[As]
Out[2665]=	As

In[2666]:=	Definition[As]
Out[2666]=	As[x_]:=	Module[{a,	b,	c},	x]
In[2667]:=	DelDuplLocals[Ag,	t]
Out[2667]=	Ag
In[2668]:=	t
Out[2668]=	{”b“,	“c“,	“b=	73“,	“c”}

Procedure	provides	processing	of	the	objects	having	single	definitions,	but	it	is	easily
generalized	to	the	objects	of	the	same	name.	The	fragment	below	represents	the	procedure
expanding	the	previous	procedure	on	a	case	of	the	blocks	and	modules	of	the	same	name.
The	procedure	callDelDuplLocalsM	is	completely	analogous	to	a	procedure
callDelDuplLocals[x,	y].

In[2717]	:=	Ag[x_,	y_]	:=	Module[{a,	b,	b	=	90,	c,	b	=	73,	c	=	500,	c,	d},	(a*b	+	c*d)*(x
+	y)];	Ag[x_]	:=	Block[{a,	b,	b	=	90,	c,	c	=	500},	a*b*c*x]
In[2718]:=	Ag[x_,	y_,	z_]	:=	Module[{a	=	73,	a,	b,	b	=	90,	c	=	500,	c},	a*x	+	b*y	+
c*z];	SetAttributes[Ag,	{Protected,	Listable}]
In[2719]:=	Definition[Ag]
Out[2719]=	Attributes[Ag]=	{Listable,	Protected}
Ag[x_,	y_]:=	Module[{a,	b,	b=90,	c,	b=73,	c=500,	c,	d},	(a	b+	c	d)(x+	y)]	Ag[x_]:=
Block[{a,	b,	b=	90,	c,	c=	500},	a	b	c	x]
Ag[x_,	y_,	z_]:=	Module[{a=	73,	a,	b,	b=	90,	c=	500,	c},	ax+	b	y+	c	z]

In[2720]	:=	DelDuplLocalsM[x_	/;	BlockModQ[x],	y___]	:=	Module[{b,	d,	p,	a	=
Flatten[{PureDefinition[x]}],	h	=	ToString[x],	c	=	{},	z	=	{}},	If[Length[a]	==	1,
DelDuplLocals[x,	y],	If[{y}!=	{}&&	!	HowAct[y]	||	{y}===	{},	b	=	Attributes[x];
ClearAttributes[x,	b],	Return[Defer[DelDuplLocalsM[x,	y]]]];	Map[{AppendTo[c,	d
=	ToString[Unique[“vgs”]]],	ToExpression[StringReplace[#,	h	<>	“[“–>	d	<>	“[“,
1]]}&,	a];	p	=	Map[PureDefinition[#]	&,	Map[{DelDuplLocals[#,	y],
Quiet[AppendTo[z,	y]],	Clear[y]}[[1]]	&,	c]];	ToExpression[Map[StringReplace[#,
GenRules[Map[#	<>	“[”	&,	c],	h	<>	“[“],	1]	&,	p]];	SetAttributes[x,	b];
Map[Remove[#]	&,	c];	If[{y}!=	{},	y	=	z,	Null];	x]]

In[2721]	:=	DelDuplLocalsM[Ag,	w]
Out[2721]=	Ag
In[2722]:=	Definition[Ag]
Out[2722]=	Attributes[Ag]=	{Listable,	Protected}

Ag[x	_,	y_]:=	Module[{a,	b,	b=90,	c,	b=73,	c=500,	c,	d},	(a	b+	c	d)(x+	y)]	Ag[x_]:=
Block[{a,	b,	b=	90,	c,	c=	500},	a	b	c	x]
Ag[x_,	y_,	z_]:=	Module[{a=	73,	a,	b,	b=	90,	c=	500,	c},	ax+	b	y+	c	z]

In[2623]:=	w
Out[2623]=	{{”b“,	“c“,	“b=	73“,	“c”},	{”b“,	“c”},	{”a“,	“b“,	“c”}}

The	above	tools	play	rather	essential	part	at	debugging	modules	and	blocks	of	rather	large
size,	allowing	on	the	first	stages	to	detect	the	duplicatedlocal	variables	of	the	same	name
and	provide	their	reducing	to	one.

6.7.	Global	variables	of	modules	and	blocks;	the	means	of	manipulation

by	them	in	theMathematicasoftware

Concerning	the	Mapleprocedures	theMathematicaprocedures	have	more	limited
opportunities	both	relative	to	the	mechanism	of	the	global	variables,	and	on	return	of
results	of	the	performance.	If	in	case	of	aMapleprocedure	an	arbitrary	variable	has	been
declared	inglobal–section	of	the	description,	or	which	didn’t	receive	values	in	the	body	of
a	procedure	on	the	operator	of	assignment“:=”,or	on	the	systemassign	procedure(upto
releaseMaple	11)	is	considered	as	a	global	variable,	then	in	aMathematica–procedure	all
those	variables	which	are	manifestly	not	defined	as	local	variables	are	considered	as	the
global	variables.	The	following	example	rather	visually	illustrates	the	aforesaid,	namely:

In[2678]	:=	Sv[x_]	:=	Module[{},	y	:=	72;	z	=	67;	{y,	z}]
In[2679]:=	{y,	z}=	{42,	47};	{Sv[2015],	y,	z}
Out[2679]=	{{72,	67},	72,	67}
Therefore,	any	redefinition	in	aMathematicaprocedure(module	or	block)	of	aglobal
variableautomatically	redefines	the	variable	of	the	same	name	outside	of	the	procedure,
what	demands	significantly	bigger	attentiveness	for	the	purpose	of	prevention	of	possible
special	and	undesirable	situations	than	in	a	similar	situation	with	theMapleprocedures.
Thus,	the	level	of	providing	the	robustness	of	software	in	theMathematica	at	using	of	the
procedures	is	represented	to	us	a	little	lower	of	the	mentioned	level	of	theMaple	system.	It
should	be	noted	thatMathematica	allows	definition	of	global	variables	of	the	procedures
by	means	of	a	quite	simple	reception	of	modification	of	the	mechanism	of	testing	of	the
actual	arguments	at	the	time	of	a	procedure	call	as	it	quite	visually	illustrates	the	following
very	simple	fragment,	namely:

In[2543]	:=	Art[x_	/;	If[!	IntegerQ[x],	h	=	90;	True,	h	=	500;	True],	y_]	:=	Module[{a
=	2015},	x	+	y	+	h	+	a]
In[2544]:=	{Art[90,	500],	Art[18.25,	500]}
Out[2544]=	{3105,	2623.25}
In[2545]:=	Kr[x_,	y_]	:=	Module[{a	=	If[IntegerQ[x],	90,	500]},	x	+	y	+	a]
In[2546]:=	{Kr[15.5,	500],	Kr[90,	500]}
Out[2546]=	{1015.5,	680}

In[2547]	:=	Sv[x_,	y_]	:=	Module[{a	=	If[IntegerQ[x]	&&	PrimeQ[y],	90,	500]},	x	+	y
+	a]
In[2548]:=	{Sv[90,	500],	Kr[18,	555]}
Out[2548]=	{1090,	663}
In[2549]:=	H[x_:	90,	y_,	z_]	:=	Module[{},	x	+	y	+	z]
In[2550]:=	{H[220,	250,	540],	H[220,	250],	H[540]}
Out[2550]=	{1010,	560,	H[540]}

In	a	number	of	cases	this	mechanism	is	a	rather	useful	while	for	the	Maple	the	similar
modification	of	the	mechanism	of	testing	of	types	of	the	factual	arguments	at	the	time	of	a
procedures	call	is	inadmissible.	Naturally,	the	similar	mechanism	is	allowed	and	forMaple
when	an	algorithm	defined	in	the	form	of	a	test(Boolean	function)	of	arguments	is	coded
not	in	the	heading	of	a	procedure,	but	it	is	defined	by	a	separate	type	with	its	activation	in
the	current	session.	In	such	case	the	standard	formatx::test	is	used	for	a	testing	of
axargument.	By	natural	manner	we	can	define	also	the	initial	values	of	local	variables	in	a

point	of	a	procedure	call	depending	on	received	values	of	its	actual	arguments	as	illustrate
two	examples	of	the	previous	fragment.	At	last,	if	theMaple	system	doesn’t	allow
assignment	of	valuesby	default	to	intermediate	arguments	of	a	procedure,
theMathematicasystem	allows	that	rather	significantly	expands	possibilities	of
programming	of	procedures;the	last	example	of	the	previous	fragment	gives	a	certain
illustration	to	the	told.
Meanwhile,	it	must	be	kept	in	mind	that	at	using	of	the	mechanism	ofreturn	through
global	variables	the	increased	attentiveness	is	required	in	order	to	any	conflict	situations
with	the	global	variables	of	the	same	name	outside	of	procedures	does	not	arise.	Since	the
procedures	as	a	rule	will	be	repeatedly	used	in	various	sessions,	the	return	through	global
variables	is	inexpedient.	However,	to	some	extent	this	problem	is	solvable	at	using,	in
particular,	of	the	special	names	whose	probability	of	emergence	in	the	current	session	is
extremely	small,	for	example,	on	the	basis	of	theUnique	function.	In	case	of	creation	of
certain	procedures	of	our	packageAVZ_Package	[48]	the	similar	approach	for	return	of
results	through	global	variables	was	used.	In	certain	cases	this	approach	is	quite	effective.

Analogously	to	the	case	of	local	variables	the	question	of	determination	of	existence	in	a
procedure	of	global	variables	represents	undoubted	interest;	in	the	first	case	the	problem	is
solved	by	the	proceduresLocals	andLocals1	considered	above,	in	the	second–	by	means	of
two	proceduresGlobals	and	Globals1.	So,	as	a	natural	addition	toLocals1	the	procedure
whose	the	call	Globals[x]	returns	the	list	ofglobal	variables	in	string	format	of	a
procedure	x	acts.	The	next	fragment	represents	source	code	of	theGlobals	procedure	along
with	the	most	typical	examples	of	its	usage.

In[2522]:=	Globals[P_	/;	ProcBMQ[P]]	:=	Module[{c,	d	=	{},	p,	g	=	{},	k	=	1,	b	=
ToString1[DefFunc[P]],	a	=	If[P	===	ExprOfStr,	{},	Sort[Locals1[P]]]},

If[a	==	{},	Return[{}],	c	=	StringPosition[b,	{”	:=	“,	”	=	“}][[2	;;–1]]];	For[k,	k	<=
Length[c],	k++,	p	=	c[[k]];
AppendTo[d,	ExprOfStr[b,	p[[1]],–1,	{”	“,	“,”,	“"”,	“!”,	“{”}]]];	For[k	=	1,	k	<=
Length[d],	k++,	p	=	d[[k]];	If[p	!=	“$Failed”	&&	p	!=	”	“,	AppendTo[g,
If[StringFreeQ[p,	{”{“,	“}”}],	p,	StringSplit[StringReplace[p,	{”{”–>	””,	“}”–>
””}]],	“,”]],	Null]];	g	=	Flatten[g];	d	=	{};	For[k	=	1,	k	<=	Length[g],	k++,	p	=	g[[k]];
AppendTo[d,	If[StringFreeQ[p,	{“[“,	“]”}],	p,
StringTake[p,	{1,	Flatten[StringPosition[p,	“[“]][[1]]–1}]]]];	g	=	d;	d	=	{};	For[k	=	1,
k	<=	Length[g],	k++,	p	=	g[[k]];	AppendTo[d,	StringReplace[p,	{“,”–>	””,	”	“–>
””}]]];	d	=	Sort[Map[StringTrim,	DeleteDuplicates[Flatten[d]]]];	Select[d,	!
MemberQ[If[ListListQ[a],	a[[1]],	a],	#]	&]]

In[2523]:=	Sv[x_,	y_]	:=	Module[{a,	b	=	90,	c	=	500},	a	=	(x^2	+	y^2)/(b	+	c);	{z,	h}=
{a,	b};	t	=	z	+	h;	t];	GS[x_]	:=	Module[{a,	b	=	90,	c	=	42},

Kr[y_]	:=	Module[{},	y^2	+	Sin[y]];	a	=	x^2;	{z,	h,	p}=	{a,	b,	18};	t	=	z	+
h*Kr[18]–Cos[x	+	Kr[90]];	t];	Ar[x_]	:=	Module[{a,	b	=	90,	c	=	42,	Kr,	z},	Kr[y_]	:=
Module[{},	y^2	+	Sin[y]];	a	=	x^2;	{z,	h,	p}=	{a,	b,	18};	t	=	z	+	h*Kr[18]–Cos[x	+
Kr[90]];	t]

In[2524]	:=	Map[Globals,	{Locals1,	Locals,	Globals,	ProcQ,	ExprOfStr,	GS,	DefFunc,
Sv,	Ar}]

Out[2524]=	{{”d“,	“j“,	“v”},{”h“,	“R“,	“s“,	“v“,	“z”},	{},{},	{},	{”h“,”Kr“,	“p“,	“t“,
“z”},	{},	{”h“,	“t“,	“z”},	{”h“,	“p“,	“t”}}

The	definition	of	the	Globals	procedure	along	with	standard	tools	uses	and	our	means
such	asProcBMQ,	DefFunc,	ExprOfStr,	Locals1,	ToString1	and	ListListQ	considered
in	the	present	book	and	in	[28-33].	It	should	be	noted	that	the	procedure	callGlobals[P]
the	objects	names	of	a	procedure	body	to	which	assignments	by	operators	{“:=”,	“=”}	are
made	and	which	differ	from	local	variables	of	a	main	procedureP	understands	as	the
global	variables.	Therefore,	the	situation	when	alocal	variable	of	a	subprocedure	in	a
certain	procedureP	can	be	defined	by	the	callGlobals[P]	as	a	global	variable	as	it	visually
illustrates	an	example	of	application	of	theGlobals	procedure	to	our	proceduresLocals
andLocals1	containing	the	nested	subproceduresSg	andKr	respectively	is	quite	possible.
In	that	case	some	additional	research	is	required,	or	theGlobals	can	be	expanded	and	to
this	case,	interesting	as	a	rather	useful	exercise.	For	the	solution	of	the	given	problem,	in
particular,	it	is	possible	to	use	the	proceduresLocals1	andGlobals	in	combination	with
theMinusList	procedure	[48].

One	of	simple	enough	variants	of	the	generalization	of	the	Globals(based	on	theGlobals)
onto	case	of	the	nested	procedures	can	be	presented	by	a	quite	simple	procedureGlobals1,
whose	callGlobals1[x]	returns	the	list	of	global	variables	in	string	format	of	a	procedurex;
at	that,	actual	argumentx	can	be	as	a	procedure	that	isn’t	containing	in	the	body	of
subprocedures	of	various	level	of	nesting,	and	a	procedure	containing	such	subprocedures.
Also	some	others	interesting	and	useful	in	practical	programming,	the	approaches	for	the
solution	of	this	problem	are	possible.	The	following	fragment	represents	source	code	of
theGlobals1	procedure	along	with	examples	of	its	usage.

In[3116]	:=	Globals1[P_	/;	ProcQ[P]]	:=	Module[{a	=	SubProcs[P],	b,	c,	d	={}},	{b,
c}=	Map[Flatten,	{Map[Locals1,	a[[2]]],	Map[Globals,	a[[2]]]}];
MinusList[DeleteDuplicates[c],	b]]

In[3117]	:=	Map[Globals1,	{Locals1,	Locals,	Globals,	ProcQ,	ExprOfStr,	GS,
DefFunc,	Sv,	Ar}]
Out[3117]=	{{},{”R”},{},{},{},{”h“,Kr“,”p“,”t“,”z”},{},{”h“,”t“,”z”},{”h“,”p“,”t”}}
In[3118]:=	P[x_,	y_]	:=	Module[{a,	b,	P1,	P2},	P1[z_,	h_]	:=	Module[{m,	n},	T	=	z^2	+
h^2;	T];	P2[z_]	:=	Module[{P3},	P3[h_]	:=	Module[{},	Q	=	h^4;	Q];	P3[z]];	V	=
x*P2[x]	+	P1[x,	y]	+	P2[y];	V];	P1[x_]	:=	Module[{},	{c,	d}=	{90,	500};	c*d	+	x];
Map[Globals1,	{P,	P1}]

Out[3118]=	{{”Q“,	“T“,	“V”},	{”c“,	“d”}}
In[3119]:=	Sv[x_,	y_]	:=	Module[{a,	b	=	90,	c	=	500},	a	=	(x^2	+	y^2)/(b	+	c);	{z,	h}=
{a,	b};	t	=	z	+	h;	gs	=	t^2];	Globals1[Sv]	Out[3119]=	{”gs“,	“h“,	“t“,	“z”}

In[3120]	:=	LocalsGlobals[x_	/;	ProcQ[x]]	:=	{Locals[x],	Globals1[x]};
LocalsGlobals[Sv]
Out[3120]=	{{”a“,	“b=	90“,	“c=	500”},	{”gs“,	“h“,	“t“,	“z”}}

In	particular,	the	first	example	is	presented	for	comparison	of	results	of	calls	of	the
proceduresGlobals	andGlobals1	on	the	same	tuple	of	arguments;	so,	if	in	the	first	case	as
the	global	variables	of	subprocedures	were	defined,	in	the	second	such	variables	as	global
don’t	act	any	more.	The	function	call	LocalsGlobals[x]	returns	the	nested	list,	whose	the

first	element–	the	list	of	localvariables	with	initial	values	if	such	variables	exist	in	string
format	while	the	second	element	defines	the	list	of	global	variables	of	a	procedure(block
or	module)x.	TheExtrNames	procedure	is	presented	as	a	quite	useful	means	at	working
with	procedures,	its	initial	code	with	examples	of	application	is	represented	by	the
following	fragment,	namely:

In[2720]	:=	ExtrNames[x_	/;	ProcQ[x]]	:=	Module[{a=BlockToMоdule[x],	b,	c,	d,	f,	p
=	{},	g,	k	=	1},	{f,	a}=	{ToString[Locals[x]],	Locals1[x]};	{b,	c}=	{HeadPF[x],
PureDefinition[x]};	g	=	StringReplace[c,	{b	<>	”	:=	Module[“–>	””,	ToString[f]	<>	“,
“–>	””}];	d	=	Map[If[ListQ[#],	#[[1]],	#]	&,	StringPosition[g,	{”	:=	“,	”	=	“}]];	For[k,
k	<=	Length[d],	k++,	AppendTo[p,	ExtrName[g,	d[[k]],–1]]];	p	=	Select[p,	#	!=	””&];
{a,	Complement[a,	p],	Complement[p,	a]}]

In[2721]	:=	GS[x_]	:=	Block[{a	=	90,	b,	c},	b	=	500;	c	=	6;	x	=	a	+	b	+	c;	x]	In[2722]:=
ExtrNames[GS]
Out[2722]=	{{”a“,	“b“,	“c”},	{”a”},	{”x”}}
In[2723]:=	ExtrNames[ProcQ]
Out[2723]=	{{”a“,	“atr“,	“b“,	“c“,	“d“,	“h”},	{”atr“,	“h”},	{}}
In[2724]:=	ExtrNames[ExtrNames]
Out[2724]=	{{”a“,	“f“,	“b“,	“c“,	“d“,	“p“,	“g“,	“k”},	{”a“,	“b“,	“c“,	“f“,	“k”},	{}}
In[2727]:=	Globals2[x_	/;	ProcQ[x]||ModuleQ[x]||BlockQ[x]]	:=

ExtrNames[x][[3]]

In[2728]	:=	GS[h_]	:=	Module[{a	=	90,	b,	c},	b	=	500;	c	=	6;	x	=	a	+b	+	c;	x	+	h]
In[2729]:=	VG[h_]	:=	Block[{a	=	90,	b,	c},	b	=	500;	c	=	6;	x	=	a	+b	+	c;	y	=	h^2]
In[2730]:=	Map[Globals2,	{GS,	VG,	ProcQ,	Tuples1,	TestArgsTypes,

LoadFile}]
Out[2730]=	{{”x”},{”x“,	“y”},{},{”Res”},{“$TestArgsTypes”},{“$Load$Files$”}}

The	procedure	call	ExtrNames[x]	returns	the	nested3–element	list,	whose	first	element
defines	the	list	of	all	local	variables	of	a	procedurex	in	string	format,	thesecond	element
defines	the	list	of	local	variables	of	the	procedure	x	in	string	format	to	which	in	the
procedure	bodyx	are	ascribed	the	values	whereas	thethird	element	defines	the	list	of	global
variables	to	which	in	the	procedure	bodyx	are	ascribed	the	values	by	operators
{”:=“,”=”}.	A	rather	simpleGlobals2	function	completes	the	fragment,	the	function	is
based	on	the	previous	procedure	and	in	a	certain	degree	expands	possibilities	of	the
considered	proceduresGlobals	andGlobals1	onto	procedures	of	any	type;	the	function
callGlobals2[x]	returns	the	list	of	names	in	string	format	of	the	global	variables	of	a
procedurex.

Nevertheless,	the	previous	means	which	are	correctly	testing	existence	at	a	module/block
of	the	global	variables	defined	by	assignments	by	operators	{”:=“,	“=”},	aren’t	effective
in	cases	when	definitions	of	the	tested	modules/	blocks	use	assignments	of	type	{a,	b,	…}
{=	|:=}	{a1,	b1,	…}	ora[[k]]	{=	|:=}b,	simply	ignoring	them.	The	given	defect	is
eliminated	by	theLocalsGlobals1	procedure,	whose	callLocalsGlobals1[x]	returns	the
nested3–element	list	whosefirst	sublist	contains	names	in	string	format	of	thelocal
variables,	the	second	sublist	containslocal	variables	withinitial	values	in	string	format,	and
thethird	sublist–global	variables	in	string	format	of	a	block/modulex.	On	argumentx	of

type	different	fromblock/module,	a	procedure	call	is	returned	unevaluated.	The	fragment
below	represents	source	code	of	the	procedure	LocalsGlobals1	procedure	along	with
typical	examples	of	its	usage.

In[2483]	:=	LocalsGlobals1[x_	/;	QBlockMod[x]]	:=	Module[{c	=	””,	d,	j,	h	={},	k	=	1,
p,	G,	L,	a	=	Flatten[{PureDefinition[x]}][[1]],	b	=	Flatten[{HeadPF[x]}][[1]]},	b	=
StringReplace[a,	{b	<>	”	:=	Module[“–>	””,	b	<>	”	:=	Block[“–>	””},	1];	While[k	<=
StringLength[b],	d	=	StringTake[b,	{k,	k}];	c	=	c	<>	d;	If[StringCount[c,	“{“]	==
StringCount[c,	“}“],	Break[]];	k++];	b	=	StringReplace[b,	c	<>	“,”–>	””,	1];	L	=	If[c
==	“{}“,	{},	StrToList[StringTake[c,	{2,–2}]]];	d	=	StringPosition[b,	{”	:=	“,	”	=	“}];
d	=	(#1[[1]]–1	&)	/@	d;	For[k	=	1,	k	<=	Length[d],	k++,	c	=	d[[k]];	p	=	””;	For[j	=	c,	j
>=	1,	j––,	p	=	StringTake[b,	{j,	j}]	<>	p;	If[!	Quiet[ToExpression[p]]	===	$Failed	&&
StringTake[b,	{j–1,	j–1}]	==	”	“,	AppendTo[h,	p];	Break[]]]];	G	=
Flatten[(If[StringFreeQ[#1,	“{“],	#1,	StrToList[StringTake[#1,	{2,–2}]]]	&)	/@
(StringTake[#1,	{1,	Quiet[Check[Flatten[StringPosition[#1,	“[“]][[1]],	0]]–1}]	&)	/@
h];	b	=	(If[StringFreeQ[#1,	”	=	“],	#1,	StringTake[#1,	{1,	Flatten[StringPosition[#1,	”
=	“]][[1]]–1}]]	&)	/@	L;	d	=	DeleteDuplicates[Flatten[(StringSplit[#1,	“,	“]	&)	/@
MinusList[G,	b]]];	d	=	Select[d,	!	Quiet[SystemQ[#1]]	&&	!	MemberQ[Flatten[{“\”,
“#”,	“"”,	””,	“+”,	“–“,	ToString	/@	Range[0,	9]}],	StringTake[#1,	{1,	1}]]	&];
{Select[b,	!	MemberQ[ToString	/@	Range[0,	9],	StringTake[#1,	{1,	1}]]	&],	L,
MinusList[d,	b]}]

In[2484]:=	M[x_,	y_]	:=	Module[{a	=	90,	b	=	500,	c	=	{v,	r}},	h	=	x*y*a*b;	m	=	72;	t
:=	(a+b);	g[[6]]	=	73;	t[z_]	:=	a;	{g,	p}=	{67,	72};

{	k,	j}:=	{42,	72};	x+y];	{h,	m,	t,	g,	p,	k,	j}=	{1,	2,	3,	4,	5,	6,	7};	{LocalsGlobals1[M],
{h,	m,	t,	g,	p,	k,	j}}	Out[2484]=	{{{”a“,	“b“,	“c”},	{”a=	90“,	“b=	500“,	“c=	{v,	r}”},
{”h“,	“m“,	“t“,	“g“,	“p“,	“k“,	“j”}},	{1,	2,	3,	4,	5,	6,	7}}

In[2485]	:=	Sv[x_,	y_]	:=	Module[{a,	b	=	90,	c	=	{n,	m}},	a	=	(x^2	+	y^2)/(b+c);	{z,
h}=	{a,	b};	t	=	z	+	h;	gs	=	t^2];	LocalsGlobals1[Sv]
Out[2485]=	{{”a“,	“b“,	“c”},	{”a“,	“b=	90“,	“c=	{n,	m}”},	{”z“,	“h“,	“t“,	“gs”}}
In[2486]:=	Vt[x_,	y_]	:=	Module[{a,	b	=	90,	c	={n,	m,	{42,	72}}},	a	=(x^2+y^2)/	(b	+
c);	{z,	h}=	{a,	b};	t	=	z	+	h;	gs	=	t^2];	LocalsGlobals1[Vt]
Out[2486]=	{{”a“,	“b“,	“c”},{”a“,	“b=90“,	“c={n,m,{42,72}}”},{”z“,	“h“,	“t“,	“gs”}}

In[2495]:=	LocalsGlobalsM[x_	/;	QBlockMod[x]]	:=	Module[{b	=	“$$90$”,	c,	d	=	{},
k	=	1,	a	=	Flatten[{PureDefinition[x]}]},

While[k	<=	Length[a],	c	=	b	<>	ToString[x];	ToExpression[b	<>	a[[k]]];	AppendTo[d,
LocalsGlobals1[c]];	ToExpression[“Clear[”	<>	c	<>	“]”];	k++];	If[Length[d]	==	1,
d[[1]],	d]]

In[2496]:=	M[x_,	y_]	:=	Module[{a	=	90,	b	=	500,	c},	h	=	x*y*a*b;	m	=	72;	t	:=	(a	+
b);	g[[6]]	=	73;	t[z_]	:=	a;	{g,	p}=	{67,	72};	x	+	y];

M[x_]	:=	Block[{a,	b},	y	=	x];	M[x__]	:=	Block[{a,	b},	{y,	z}:=	{a,	b}];	P1[x_]	:=
Module[{a,	b	=	{90,	500}},	{c,	d}=	{p,	q};	{a,	b,	h,	g}=	{42,	47,	67,	78};	c*d	+	x]
In[2497]:=	LocalsGlobalsM[M]

Out[2497]	=	{{{”a“,	“b“,	“c”},	{”a=90“,	“b=500“,	“c”},	{”h“,	“m“,	“t“,	“g“,	“p“,	“k“,

“j”}},	{{”a“,	“b”},	{”a“,	“b”},	{”y”}},	{{”a“,	“b”},	{”a“,	“b”},	{”y“,	“z”}}}
In[2498]:=	LocalsGlobalsM[P1]
Out[2498]=	{{”a“,	“b”},	{”a“,	“b=	{90,	500}”},	{”c“,	“d“,	“h“,	“g”}}

Meanwhile,	the	LocalsGlobals1	procedure	correctly	works	only	with	the	blocks/modules
having	unique	definitions,	i.e.	with	the	objects	other	than	objects	of	the	same	name.
Whereas	theLocalsGlobalsM	procedure	expands	theLocalsGlobals1	procedure	onto	case
of	the	blocks/modules	of	the	same	name;	the	procedure	callLocalsGlobalsM[x]	returns
the	list	of	the	nested	returns	the	list	of	the	nested	element	lists	of	the	format	similar	to	the
format	of	results	of	return	on	the	callsLocalsGlobals1[x]	whose	elements	are	biunique
with	subobjects	ofx,	according	to	their	order	at	application	to	the	objectx	of
thePureDefinition	procedure.	On	arguments	x	of	the	type	different	from	block/module,
the	procedure	callLocalsGlobalsM[x]	is	returned	unevaluated.	Source	code	of
theLocalsGlobalsM	procedure	along	with	examples	of	its	use	complete	the	previous
fragment.	Meanwhile,	it	must	be	kept	in	mind	that	the	returned	list	of	global	variables
doesn’t	contain	multiple	names	though	the	identical	names	and	can	belong	to	objects	of
various	type	as	very	visually	illustrates	the	first	example	to	theLocalsGlobals1	procedure
in	the	previous	fragment	in	which	the	symbol“t”	acts	as	a	global	variable	twice.	Indeed,
the	simple	example	below	very	visually	illustrates	the	aforesaid,	namely:

In[2538]:=	t[z_]	:=	z;	t	:=	(a	+	b);	Definition[t]
Out[2538]=	t:=	(a+	b)
t[z_]:=	z

Therefore	carrying	out	the	additional	analysis	regarding	definition	of	types	of	the	global
variables	used	by	the	tested	block/module	in	event	of	need	is	required.	Definition	of
theLocalsGlobals1	procedure	along	with	standard	means	uses	and	our	means	such
asHeadPF,	QBlockMod,	PureDefinition,	MinusList,	StrToList,	SystemQMinusList,
StrToList,	SystemQ	33].	The	procedure	has	a	number	of	applications	at	programming	of
various	problems,	first	of	all,	of	the	system	character.

Above	we	determined	so	-calledactive	global	variables	as	global	variables	to	which	in	the
objects	of	type	{Block,Module}	the	assignments	are	done	while	we	understand	the	global
variables	different	from	arguments	as	thepassive	global	variables,	whose	values	are	only
used	in	objects	of	the	specified	type.	In	this	regard	means	that	allow	to	evaluate	the
passive	global	variables	for	the	user	blocks	and	modules	are	being	represented	as	very
interesting.	One	of	similar	means–	theBlockFuncModVars	procedure	that	solves	even
more	general	problem.The	next	fragment	represents	source	code	of	the	procedure
BlockFuncModVars	along	with	the	most	typical	examples	of	its	usage.

In[2337]:=	BlockFuncModVars[x_	/;	BlockFuncModQ[x]]	:=	Module[{d,	t,	c	=
Args[x,	90],	a	=	If[QFunction[x],	{},	LocalsGlobals1[x]],	s	={“System”},	u	=
{“Users”},	b	=	Flatten[{PureDefinition[x]}][[1]],	h	={}},

d	=	ExtrVarsOfStr[b,	2];	If[a	==	{},	t	=	Map[If[Quiet[SystemQ[#]],	AppendTo[s,	#],
If[BlockFuncModQ[#],	AppendTo[u,	#],	AppendTo[h,	#]]]	&,	d];	{s,	u	=	Select[u,	#	!=
ToString[x]	&],	c,	MinusList[d,	Join[s,	u,	c,	{ToString[x]}]]},
Map[If[Quiet[SystemQ[#]],AppendTo[s,	#],	If[BlockFuncModQ[#],	AppendTo[u,	#],
AppendTo[h,	#]]]	&,	d];	{Select[s,	!	MemberQ[{“$Failed”,	“True”,	“False”},	#]	&],

Select[u,	#	!=	ToString[x]	&&	!	MemberQ[a[[1]],	#]	&],	c,	a[[1]],	a[[3]],	Select[h,	!
MemberQ[Join[a[[1]],	a[[3]],	c,	{“System”,	“Users”}],	#]	&]}]]	In[2338]:=	A[m_,	n_,
p_	/;	IntegerQ[p],	h_	/;	PrimeQ[h]]	:=	Module[{a	=	6},	h*(m+n+p)/a	+
StringLength[ToString1[z]]/(Cos[c]	+	Sin[d])]

In[2339]:=	BlockFuncModVars[A]
Out[2339]=	{{”System“,	“Cos“,	“IntegerQ“,	“Module“,	“PrimeQ“,	“Sin“,

“	StringLength”},	{”Users“,	“ToString1”},	{”m“,	“n“,	“p“,	“h”},	{”a”},	{},	{”c“,	“d“,
“z”}}
In[2340]:=	BlockFuncModVars[StringReplaceS]
Out[2340]=	{{”System“,	“Append“,	“Characters“,	“If“,	“Length“,	“MemberQ“,

“Module“,	“Quiet“,	“StringLength“,	“StringPosition“,	“StringQ“,	“StringReplacePart“,
“StringTake“,	“While”},	{”Users”},

{	“S“,	“s1“,	“s2”},	{”a“,	“b“,	“c“,	“k“,	“p“,	“L“,	“R”},	{},	{}}	In[2341]:=
BlockFuncModVars[BlockFuncModVars]
Out[2341]=	{{”System“,	“AppendTo“,	“Flatten“,	“If“,	“Join“,	“MemberQ“,

“	Module“,	“Quiet“,	“Select“,	“ToString”},	{”Users“,	“Args“,	“BlockFuncModQ“,
“ExtrVarsOfStr“,	“LocalsGlobals1“,	“MinusList“,	“PureDefinition“,	“QFunction“,
“SystemQ”},	{”x”},

{	“d“,	“t“,	“c“,	“a“,	“s“,	“u“,	“b“,	“h”},	{},	{}}
In[2342]:=	BlockFuncModVars[LocalsGlobals1]
Out[2342]=	{{”System“,	“Append“,	“Block“,	“Break“,	“Check“,

“	DeleteDuplicates“,	“Flatten“,	“For“,	“If“,	“Length“,	“MemberQ“,	“Module“,	“Quiet“,
“Range“,	“Select“,	“StringCount“,	“StringFreeQ“,	“StringJoin“,	“StringLength“,
“StringPosition“,	“StringReplace“,	“StringSplit“,	“StringTake“,	“ToExpression“,
“ToString“,	“While”},	{”Users“,	“HeadPF“,	“MinusList“,	“PureDefinition“,
“QBlockMod“,	“StrToList“,	“SystemQ”},{”x”},{”c“,	“d“,	“j“,	“h“,	“k“,	“p“,	“G“,	“L“,
“a“,	“b”},{},{}}

In[2343]:=	BlockFuncModVars[StrStr]
Out[2343]=	{{”System“,	“If“,	“StringJoin“,	“StringQ“,	“ToString”},	{”Users”},	{”x”},
{}}

The	procedure	call	BlockFuncModVars[x]	returns	the	nested	returns	the	nestedelement
list,	whosefirst	element–	the	list	of	thesystem	functions	used	by	a	block/module	x,	whose
first	element	is“System”	while	other	names	are	system	functions	in	string	format;	the
second	element–	the	list	of	the	user	means	used	by	the	block/modulex,	whose	first	element
is“Users”	whereas	the	others	define	names	of	means	in	string	format;	the	third	element
defines	the	list	of	formal	arguments	in	string	format	of	the	block/modulex;	the	fourth
element–	the	list	of	local	variables	in	string	format	of	the	block/modulex;the	fifth	element
–	the	list	of	active	global	variables	in	string	format	of	the	block/modulex;	at	last,	the	sixth
element	determines	the	list	ofpassive	global	variables	in	string	format	of	the
block/modulex.	While	on	a	user	functionx	the	procedure	call	BlockFuncModVars[x]
returns	the	nested	nestedelement	list,	whose	first	element
–	the	list	of	the	system	functions	used	by	a	functionx,	whose	first	element	is	“System”

while	other	names	are	system	functions	in	string	format;	the2nd	element–	the	list	of	the
user	means	used	by	the	functionx,	whose	the	first	element	is“Users”	whereas	the	others
determine	names	of	means	in	string	format;	the	third	element	defines	the	list	of	formal
arguments	in	the	string	format	of	the	functionx;	the	fourth	element–	the	list	of	global
variables	in	string	format	of	the	functionx.	The	given	procedure	provides	the	structural
analysis	of	the	user	blocks/functions/modules	in	the	following	contexts:(1)	the	used
system	functions,	(2)the	user	means,active	in	the	current	session,	(3)the	formal	arguments,
(4)the	local	variables,	(5)the	active	global	variables,	and(6)the	passive	local	variables.
The	given	means	has	a	number	of	interesting	enough	appendices,	first	of	all,	of	the	system
character.

The	next	procedure	belongs	to	group	of	the	means	processing	the	strings,	however,	it	is
presented	exactly	here	as	it	is	very	closely	connected	with	the	previous	procedure;	along
with	other	our	means	it	is	the	cornerstone	of	the	algorithm	of	the	BlockFuncModVars
procedure.	The	following	fragment	represents	source	code	of	theBlockFuncModVars
procedure	along	with	the	most	typical	examples	of	its	usage.

In[2478]	:=	ExtrVarsOfStr[S_/;	StringQ[S],	t_	/;	MemberQ[{1,	2},	t],	x___]	:=
Module[{k,	j,	d	=	{},	p,	a	=	StringLength[S],	q	=	Map[ToString,	Range[0,	9]],	h	=	1,	c
=	””,	L	=	Characters[“`!@#%^&*(){}:"\/|<>?~–=+[];:’.,	1234567890”],	R	=
Characters[“`!@#%^&*(){}:"\/|<>?~=[];:’.,	“]},	Label[G];	For[k	=	h,	k	<=	a,	k++,	p
=	StringTake[S,	{k,	k}];	If[!	MemberQ[L,	p],	c	=	c	<>	p;	j	=	k	+	1;	While[j	<=	a,	p	=
StringTake[S,	{j,	j}];	If[!	MemberQ[R,	p],	c	=	c	<>	p,	AppendTo[d,	c];	h	=	j;	c	=””;
Goto[G]];	j++]]];	AppendTo[d,	c];	d	=	Select[d,	!	MemberQ[q,	#]	&];	d	=
Select[Map[StringReplace[#,	{“+”–>	””,	“–”–>	””,	“_”–>	””}]	&,	d],	#	!=	””	&];	d	=
Flatten[Select[d,	!	StringFreeQ[S,	#]	&]];	d	=	Flatten[Map[StringSplit[#,	“,	“]	&,	d]];

If[t	==	1,	Flatten,	Sort][If[{x}!=	{},	Flatten,	DeleteDuplicates]	[Select[d,	!
MemberQ[{“\”,	“#”,	””},	StringTake[#,	{1,	1}]]	&]]]]

In[2479]	:=	A[m_,	n_,	p_	/;	IntegerQ[p],	h_	/;	PrimeQ[h]]	:=
Module[{a	=	42.78},	h*(m	+	n	+	p)/a]
In[2480]:=	ExtrVarsOfStr[Flatten[{PureDefinition[A]}][[1]],	2]
Out[2480]=	{”a“,	“A“,	“h“,	“IntegerQ“,	“m“,	“Module“,	“n“,	“p“,	“PrimeQ”}
In[2481]:=	G[x_,	y_	/;	IntegerQ[y]]	:=	Module[{a,	b	=	Sin[c	+	d],	h},	z	=	x	+	y;	V[m]	+
Z[n]]
In[2482]:=	ExtrVarsOfStr[PureDefinition[G],	1,	90]
Out[2482]=	{”G“,	“x“,	“y“,	“IntegerQ“,	“y“,	“Module“,	“a“,	“b“,	“Sin“,	“c“,	“d“,	“h“,
“z“,	“x“,	“y“,	“V“,	“m“,	“Z“,	“n”}
In[2483]:=	V[x_,	y_	/;	PrimeQ[y]]	:=	Block[{a,	b	=	73/90,	c	=	m*n},	If[x	>	t	+	w,	x*y,
S[x,	y]]]
In[2484]:=	ExtrVarsOfStr[PureDefinition[V],	2]
Out[2484]=	{”a“,	“b“,	“Block“,	“c“,	“If“,	“m“,	“n“,	“PrimeQ“,	“S“,	“t“,	“V“,	“w“,	“x“,
“y”}
In[2485]:=	F[x_]	:=	a*x	+	Sin[b*x]	+	StringLength[ToString1[x	+	c]];
BlockFuncModVars[F]
Out[2485]=	{{”System“,	“Sin“,	“StringLength”},	{”Users“,	“ToString1”},	{”x”},	{”a“,
“b“,	“c”}}

In[2486]:=	ExtrVarsOfStr[“G[x_]	:=	Module[{Vg,	H73},
Vg[y_]	:=	Module[{},	y^3]]”,	1]
Out[2486]=	{”G“,	“x“,	“Module“,	“Vg“,	“H73“,	“y”}
In[2487]:=	ExtrVarsOfStr[“(a	+	b)/(c	+	d)	+	Sin[c]*Cos[d	+	h]”,	2]
Out[2487]=	{”a“,	“b“,	“c“,	“Cos“,	“d“,	“h“,	“Sin”}
In[2488]:=	ExtrVarsOfStr[“(a	+	b)/(c	+	d)	+	Sin[c]*Cos[d	+	h]”,	2,	90]
Out[2488]=	{”a“,	“b“,	“c“,	“c“,	“Cos“,	“d“,	“d“,	“h“,	“Sin”}

The	procedure	call	ExtrVarsOfStr[S,	t]	att=2	returns	the	sorted	and	att=1	unsorted	list	of
variables	in	string	format,	which	managed	to	extract	from	a	stringS;	in	the	absence	of
similar	variables	the	empty	list,	i.e.	{}	is	returned.	The	procedure	callExtrVarsOfStr[S,t,
x]	with	the3rd	optional	argumentx	–	an	arbitrary	expression–	returns	the	list	of	the
variables	included	in	a	stringS	without	reduction	of	their	multiplicity	to1.	Along
withstandard	mechanism	of	local	variables	theMathematica	system	allows	use	of
mechanism	of	the	global	variables	of	the	current	session	in	the	body	of	procedures	as	the
local	variables.	Experience	of	use	of	the	procedure	confirms	its	high	reliability	in	an
extraction	of	variables;	the	procedure	is	quite	simply	adjusted	onto	the	special	situations
arising	in	the	course	of	its	work.	For	correct	application	of	theExtrVarsOfStr	procedure	it
is	supposed	that	an	expressionExp,	defined	in	a	stringS	is	in	theInputForm–format,	i.e.S
=ToString[InputForm[Exp]].	This	procedure	is	effectively	used	at	manipulations	with
definitions	of	the	user	blocks,	functions,	procedures.	So,	in	the
previousBlockFuncModVars	procedure	it	is	used	very	significantly.In	general,	procedure
can	be	used	for	the	analysis	of	algebraic	expressions	too.

A	quite	useful	reception	of	ensuring	use	of	the	global	variables	which	isn	‘t	changing
values	of	the	variables	of	the	same	name	outside	of	a	procedure	body	was	already	given
above.	In	addition	to	earlier	described	reception,	we	will	present	the	procedure	automating
this	process	of	converting	at	the	time	of	performance	of	an	arbitrary	procedure	of	global
variables	to	local	variables	of	this	procedure.	The	similar	problem	arises,	in	particular,	in
the	case	when	it	is	required	to	execute	a	procedure	having	the	global	variables	without
changing	their	values	outside	of	the	procedure	and	without	change	of	source	code	of	the
procedure	in	the	current	session.	In	other	words,	it	is	required	to	execute	a	procedure	call
with	division	of	domains	of	definition	of	global	variables	of	the	current	session	of	the
system	and	global	variables	of	the	same	name	of	the	procedure.	Whereas	in	other	points	of
a	procedure	call	such	restrictions	aren’t	imposed.

The	GlobalToLocal	procedure	solves	the	task,	whose	callGlobalToLocal[x]	provides
converting	of	definition	of	a	procedurex	into	definition	of	the$$$x	procedure	in	which
allglobal	variables	of	the	initial	procedurex	are	included	into	the	tuple	oflocal
variables;the	procedure	call	returns	a	procedure	name	activated	in	the	current	session
which	has	no	global	variables.	Whereas	the	callGlobalToLocal[x,	y]	with	thesecond
optional	argumenty	–an	undefinite	variable–	in	addition	through	it	returns	the	nested	list
whosefirst	element	is	sublist	of	local	variables	and	thesecond	element	is	sublist	of	global
variables	of	a	procedurex.	The	procedure	in	a	number	of	cases	solves	the	problem	of
protection	of	variables,	external	in	relation	to	a	procedurex.	The	following	fragment
represents	source	code	of	theGlobalToLocal	procedure	with	the	most	typical	examples	of
its	usage.

In[2526]:=	GlobalToLocal[x_	/;	QBlockMod[x],	y___]	:=	Module[{b,	c,	a	=
LocalsGlobals1[x]},

If[Intersection[a[[1]],	a[[3]]]	==	a[[3]]	||	a[[3]]	==	{},	x,	b	=	Join[a[[2]],
MinusList[a[[3]],	a[[1]]]];	c	=	“$$$”	<>	StringReplace[PureDefinition[x],
ToString[a[[2]]]–>	ToString[b],	1];	If[{y}!=	{}&&	!	HowAct[y],	y	=	{a[[1]],	a[[3]]}];
ToExpression[c];	Symbol[“$$$”	<>	ToString[x]]]]

In[2527]:=	GS[x_]	:=	Module[{a,	b	=	90,	c	=	{m,	n}},	Kr[y_]	:=	Module[{},	y^2	+
Sin[y]];	a	=	x^2;	{z,	h,	p}=	{a,	b,	5};	t	=	z	+	h*Kr[6]–Cos[x	+	Kr[9]];	t]

In[2528]	:=	GlobalToLocal[GS]	Out[2528]=	$$$GS
In[2529]:=	Definition[$$$GS]	Out[2529]=	$$$GS[x_]:=	Module[{a,	b=	90,	c=	{m,	n},
Kr,	z,	h,	p,	t},

Kr[y	_]:=	Module[{},	y^2+	Sin[y]];	a=	x^2;	{z,	h,	p}=	{a,	b,	5};	t=	z+	h	Kr[6]–	Cos[x+
Kr[9]];	t]	In[2530]:=	{GlobalToLocal[GS,	y],	y}
Out[2530]=	{$$$GS,	{{”a“,	“b“,	“c”},	{”Kr“,	“z“,	“h“,	“p“,	“t”}}}
In[2531]:=	LocalsGlobals1[$$$GS]
Out[2531]=	{{”a“,	“b“,	“c“,	“Kr“,	z“,	“h“,	“p“,	“t”},	{”a“,	“b=	90“,	“c=	{m,	n}“,

“Kr“,	“z“,	“h“,”p“,	“t”},	{}}

The	algorithm	used	by	the	GlobalToLocal	procedure	is	rather	simple	and	consists	in	the
following.	In	case	of	absence	for	a	procedurex	of	the	global	variables	the	namex	is
returned;	otherwise,	on	the	basis	of	definition	of	the	x	procedure,	the	definition	of
procedure	with	name$$$x	which	differs	from	the	initial	procedure	only	in	that	that	the
global	variables	of	thex	procedure	are	included	into	a	tuple	of	local	variables	of	the
procedure$$$x	is	formed.	Whereat,	this	definition	is	activated	in	the	current	session	with
return	of	the	name$$$x,	allowing	to	carry	out	the$$$x	procedure	in	the	current	session
without	change	of	values	of	global	variables	of	the	current	session.

At	the	same	time	the	problem	of	converting	of	a	block	or	a	module	x	into	an	object	of	the
same	type	in	whichglobal	variables	are	included	in	tuple	of	the	local	variables	of	the
returned	objectx	of	the	same	name	with	both	the	same	attributes,	and	options	is	of	interest.
TheGlobalToLocalM	procedure	solves	this	problem;	the	fragment	below	represents
source	code	of	the	procedure	GlobalToLocalM	along	with	typical	examples	of	its
application.

In[2651]	:=	GlobalToLocalM[x_	/;	QBlockMod[x]]	:=	Module[{d,	h	=	“$$$”,	k	=	1,	n,
p	=	{},	b	=	Attributes[x],	c	=	Options[x],	a	=	Flatten[{PureDefinition[x]}]},	While[k
<=	Length[a],	d	=	a[[k]];	n	=	h	<>	ToString[x];	ToExpression[h	<>	d];
GlobalToLocal[Symbol[n]];	AppendTo[p,	PureDefinition[“$$$”	<>	n]];
ToExpression[“ClearAll[”	<>	n	<>	“]”];	k++];	ClearAllAttributes[x];	ClearAll[x];
ToExpression[Map[StringReplace[#,”$$$$$$”–>	””,	1]	&,	p]];	SetAttributes[x,	b];
If[c	!=	{},	SetOptions[x,	c]];]

In[2652]	:=	A[x_]	:=	Block[{},	g	=	x;	{m,	n}=	{90,	6}];	A[x_,	y_]	:=	Module[{},	h	=	x
+	y;	z	=	h*x];	SetAttributes[A,	{Listable,	Protected}];	GlobalToLocalM[A]
In[2653]:=	Definition[A]

Out[2653]	=	Attributes[A]=	{Listable,	Protected}

A[x_]:=	Block[{g,	m,	n},	g=	x;	{m,	n}=	{6,	9}]
A[x_,	y_]:=	Module[{h,	z},	h=	x+	y;	z=	h*x]

In[2654]:=	GS[x_]	:=	Module[{a,	b	=	500,	c	=	{m,	n}},	Kr[y_]	:=	Module[{},	y^2	+
Sin[y]];	a	=	x^2;	{z,	h,	p}=	{a,	b,	18};	t	=	z	+	h*Kr[18]–Cos[x	+	Kr[90]];	t];

GS[x_,	y_]	:=	Block[{a,	b	=	{90,	500},	c},	z	=	x	+	y;	d	=	Art];	SetAttributes[GS,
{Protected}];	GlobalToLocalM[GS]	In[2655]:=	Definition[GS]
Out[2655]=	Attributes[GS]=	{Protected}

GS[x	_]:=	Module[{a,	b=	500,	c=	{m,	n},	Kr,	z,	h,	p,	t},	Kr[y_]:=	Module[{},	y^2+
Sin[y]];	a=	x^2;	{z,	h,	p}=	{a,	b,	18};	t=	z+	h*Kr[18]–	Cos[x+	Kr[90]];	t]
GS[x_,	y_]:=	Block[{a,	b=	{90,	500},	c,	z,	d},	z=	x+	y;	d=	Art]

In[2656]	:=	GSV[x_]	:=	Module[{a,	b	=	500,	c	=	{m,	n}},	Kr[y_]	:=	Module[{},	y^2	+
Sin[y]];	a	=	x^2;	{z,	h,	p}=	{a,	b,	18};	t	=	z	+	h*Kr[18]	+	Cos[x	+	Kr[500]];	w	=	t^2];
GSV[x_,	y_]	:=	Block[{a,	b	={90,	50},	c},	z	=	x	+y;	d	=Art;	t	=Length[b]*z];
SetAttributes[GSV,	{Protected}];	GlobalToLocalM[GSV]	In[2657]:=	Definition[GSV]

Out[2657]	=	GSV[x_]:=	Module[{a,	b=	500,	c=	{m,	n},	Kr,	z,	h,	p,	t,	w},	Kr[y_]:=
Module[{},	y^2+	Sin[y]];	a=	x^2;	{z,	h,	p}=	{a,	b,	18};	t=	z+	hKr[18]+	Cos[x+	Kr[500]];
w=	t^2]
GSV[x_,	y_]:=	Block[{a,	b=	{90,	500},	c,	z,	d,	t},	z=x+	y;	d=Art;	t=	Length[b]*z]

The	procedure	call	GlobalToLocalM[x]	returnsNull,	i.e.	nothing,	herewith	converting	a
block	or	a	modulex	into	the	objectx	of	the	same	type	and	with	the	same	attributes	and
options	in	which	theglobal	variables(if	they	were)	of	the	initial	object	receive	thelocal
status.	In	the	case	of	the	objects	of	the	same	namex	the	procedure	call	provides	correct
converting	of	all	components	of	the	object	determined	by	various	definitions.	The
fragment	examples	rather	visually	clarify	the	sense	of	similar	converting.

It	must	be	kept	in	mind,	our	package	AVZ_Package	[48]	contains	a	number	of	other	tools
for	the	analysis	of	the	procedures	regarding	existence	in	them	of	local	and	global
variables,	and	also	for	manipulation	witharguments,local	andglobal	variables	of	objects	of
the	types	{Block,	Function,	Module}.	Means	for	work	withlocal	andglobal	variables
which	are	presented	here	and	in	[48]	are	quite	useful	in	procedural	programming	in
theMathematica	system.

Meantime,	it	must	be	kept	in	mind	that	a	series	of	tools	of	theAVZ_Package	package	can
depend	on	a	version	of	theMathematica	system,	despite	the	a	rather	high	level
ofprolongation	of	the	builtinMath–language	of	the	system.	Therefore	in	some	cases	a
certain	tuning	of	separate	means	of	the	package	onto	the	current	version	of	the	system	can
be	demanded,	what	in	principle	for	the	rather	experienced	user	shouldn’t	cause	special
difficulties.	At	that,	similar	tuning	can	be	demanded	even	in	case	of	passing	from	one
operation	platform	onto	another,	for	example,	withWindows	XP	ontoWindows	7.

6.8.	Attributes,	options	and	values	by	default	for	the	arguments	of	the
user	blocks,	functions	and	modules;	additional	means	of	processing	of
them	inMathematica

The	Mathematica	system	provides	the	possibility	of	assignment	to	variable,	in	particular,
to	names	of	blocks,	functions	or	modules	of	the	certain	special	attributes	defining	their
different	properties.	So,	theListable	attribute	for	a	functionW	defines,	that	the	functionW
will	be	automatically	applied	to	all	elements	of	the	list	which	acts	as	its	argument.	The
current	tenth	version	of	theMathematica	system	has19	attributes	of	various	purpose,the
work	with	them	is	supported	by3	functions,	namely:	Attributes,	ClearAttributes	and
SetAttributes	whose	formats	are	discussed,	for	example,	in	[30-33].	These3	functions
provide	such	operations	as:(1)	return	of	the	list	of	the	attributes	ascribed	to	an	objectx;(2)
deletion	of	all	or	separate	attributes	ascribed	to	an	objectx;	(3)	a	redefinition	of	the	list	of
the	attributes	ascribed	to	an	objectx.	Meanwhile,	in	a	number	of	cases	of	these	means	it
isn’t	enough	or	they	are	not	so	effective.	Therefore,	we	offered	a	number	of	means	in	this
direction	which	expand	the	above	standardMathematica	means.

Above	all,since	eventuallynewMathematica	versions	quite	can	both	change	the	standard
set	of	attributes	and	to	expand	it,	the	problem	of	testing	of	an	arbitrary	symbol	to	be	qua	of
an	admissible	attribute	is	quite	natural.	The	AttributesQ	procedure	solves	the	given
problem	whose	callAttributesQ[x]	returnsTrue,	ifx	–	the	list	of	admissible	attributes	of
the	current	version	of	the	system,	andFalse	otherwise.	Moreover,	the	callAttributesQ[x,
y]	with	the2nd	optional	argumenty	–an	undefinite	variable–	returns	through	it	the	list	of
elements	of	the	listx	which	aren’t	attributes.	The	following	fragment	represents	source
code	of	the	procedure	with	typical	examples	of	its	usage.

In[2550]:=	AttributesQ[x_List,	y___]	:=	Module[{a,	b	=	{}},
Map[If[Quiet[Check[SetAttributes[a,	#],	$Failed]]	===	$Failed,	AppendTo[b,	#]]	&,
x];	If[b	!=	{},	If[{y}!=	{}&&	!	HowAct[y],	y	=	b];	False,	True]]	In[2551]:=
{AttributesQ[{Listable,	Agn,	Protected,	Kr,	Art},	h],	h}	Out[2551]=	{False,	{Agn,	Kr,
Art}}
In[2552]:=	{AttributesQ[{Protected,	Listable,	HoldAll},	g],	g}	Out[2552]=	{True,	g}
The	given	means	is	quite	useful	in	a	number	of	system	appendices,	at	that,	expanding	the
testing	means	of	theMathematica	system.

Definitions	of	the	user	blocks,	functions	and	modules	in	the	Mathematica	system	allow
qua	of	conditions	and	initial	values	for	formal	arguments,	and	initial	values	for	local
variables	to	use	rather	complex	constructions	as	the	following	simple	fragment	illustrates,
namely:

In[4173]:=	G[x_Integer,	y_	/;	{v[t_]	:=	Module[{},	t^2],	If[v[y]	>	2015,	True,	False]}
[[2]]]	:=	Module[{a	=	{g[z_]	:=	Module[{},	z^3],	If[g[x]	<	2015,	73,	90]}[[2]]},
Clear[v,	g];	x*y	+	a]

In[4174]	:=	{a,	b}=	{500,	90};	{G[42,	73],	G[42,	500],	G[0,	0]}
Out[4174]=	{3156,	21090,	G[0,	0]}
In[4175]:=	Map[PureDefinition,	{v,	g}]
Out[2565]=	{”v[t_]:=	Module[{},	t^2]“,	$Failed}

In[4176]:=	G[x_Integer,	y_	/;	{v[t_]	:=	Module[{},	t^2],	If[v[a]	>	2015,	True,	False]}
[[2]]]	:=	Module[{a	=	{g[z_]	:=	Module[{},	z^3],

If[g[b]	<	2015,	71,	90]	}[[2]]},	x*y	+	a]	In[4177]:=	{a,	b}=	{460,	71};	{G[42,	71],	G[42,
460],	G[0,	0]}

Out[4177]=	{3072,	19410,	90}
In[4178]:=	Map[PureDefinition,	{v,	g}]
Out[4178]=	{”v[t_]:=	Module[{},	t^2]“,	“g[z_]:=	Module[{},	z^3]”}	For	possibility	of
use	of	sequence	of	offers,	including	as	well	definitions	of	procedures,	as	a	condition	for	a
formal	argumenty	and	initial	value	for	the	local	variablea	the	reception	that	is	based	on	the
list	has	been	used	in	the	previous	fragment.	The	sequences	of	offers	were	defined	as
elements	of	lists	with	value	of	their	last	element	ascondition	andinitial	value	respectively.
At	that,	if	in	body	of	the	main	procedureG	a	cleaning	of	symbolsv	andg	from	their
definitions	wasn’t	done,	the	proceduresv	andg	will	be	available	in	the

current	session,	otherwise	not.	The	given	question	is	solved	depending	on	an	objective,	the
previous	fragment	illustrates	the	told.	The	above	reception	can	be	applied	rather
effectively	for	programming	of	means	of	the	different	purpose	what	illustrates	a	number	of
the	procedures	represented	in	[28-33].	The	mechanisms	of	typification	of	formal
arguments	of	the	user	functions,	blocks	and	modules	enough	in	details	are	considered	in
[30-33].	Meanwhile,	along	with	the	mechanism	of	typification	of	formal	arguments,	the
system	Mathematica	has	definition	mechanisms	for	formal	arguments	of	values	by
default,	i.e.	values	that	receive	the	corresponding	factual	arguments	at	their	absence	at	the
calls.	However,	the	system	mechanism	of	setting	of	values	by	default	assumes	definition
of	such	values	before	evaluation	of	definitions	of	blocks,functions	and	modules	on	the
basis	of	the	standardDefault	function	whose	format	supports	installation	of	various	values
by	default	serially	for	separate	formal	arguments	or	of	the	same	value	for	all	arguments.
The	next	fragment	represents	the	procedureDefaults1[F,	y]	that	provides	the	setting	of
expressions	as	values	by	default	for	the	corresponding	formal	arguments	of	any	subtuple
of	a	tuple	of	formal	arguments	of	the	user	block,	function,	moduleF	that	is	defined	by
the2–element	listy(the	first	element–number	of	position	of	an	argument,the	second	element
is	an	expression).	For	several	values	by	default	the	listy	hasListListtype	whose	sublists
have	the	above	format.	The	procedure	successfully	works	with	the	user	block,	function	or
module	F	of	the	same	name,	processing	only	the	first	subobject	from	the	list	of	the
subobjects	which	are	returned	at	the	callDefinition[F].	The	procedure	call	returns$Failed,
or	is	returned	unevaluated	in	special	situations.	The	next	fragment	represents	source	code
of	theDefaults	procedure	with	examples	of	its	typical	usage.

In[2640]:=	Defaults[x_	/;	BlockFuncModQ[x],	y_	/;	ListQ[y]	&&	Length[y]	==	2	||
ListListQ[y]	&&

DeleteDuplicates[Map[IntegerQ[#[[1]]]	&,	y]]	==	{True}]	:=	Module[{a	=
Flatten[{Definition2[x]}],	atr	=	Attributes[x],	q,	t,	u,	b	=	Flatten[{HeadPF[x]}][[1]],	c
=	Args[x],	d,	p,	h	=	{},	k	=	1,	g	=	If[ListListQ[y],	y,	{y}]},	If[Max[Map[#[[1]]&,	y]]
<=	Length[c]&&	Min[Map[#[[1]]&,	y]]	>=	1,	c	=	Map[ToString,	If[NestListQ[c],
c[[1]],	c]];	q	=	Map[#[[1]]	&,	y];	d	=	StringReplace[a[[1]],	b–>	””,	1];	While[k	<=
Length[q],	p	=	c[[q[[k]]]];	t	=	StringSplit[p,	“_”];	If[MemberQ[q,	q[[k]]]],	u	=
If[Length[t]	==	2,	t[[2]]	=	StringReplace[t[[2]],	”	/;	“–>	””];
If[Quiet[ToExpression[“{”	<>	t[[1]]	<>	“=”	<>	ToString[y[[k]][[2]]]	<>	“,”	<>	t[[2]]
<>	“}“]][[2]]	||	Quiet[Head[y[[k]][[2]]]	===	Symbol[t[[2]]]],	True,	False],	True];	If[u,
c[[q[[k]]]]	=	StringTake[p,

{1,	Flatten[StringPosition[p,	“_”]][[2]]}]	<>	“.”]];	k++];

ClearAllAttributes[x];	ClearAll[x];	k	=	1;	While[k	<=	Length[q],
ToExpression[“Default[”	<>	ToString[x]	<>	“,	”	<>	ToString[q[[k]]]	<>	“]”	<>	”	=	”
<>

ToString1[y[[k]][[2]]]];	k++];	ToExpression[ToString[x]	<>	“[”	<>
StringTake[ToString[c],	{2,–2}]	<>	“]”	<>	d];	Map[ToExpression,	MinusList[a,
{a[[1]]}]];	SetAttributes[x,	atr],	$Failed]]

In[2641]	:=	G[x_,	y_	/;	IntegerQ[y]]	:=	x+y;	G[x_,	y_,	z_]	:=	x*y*z;	G[x_,	y_,	z_,	h_]
:=	x*y*z*h
In[2642]:=	SetAttributes[G,	{Listable,	Protected,	Flat}]
In[2643]:=	Defaults[G,	{{2,	500},	{1,	90}}]
In[2644]:=	Definition[G]
Out[2644]=	Attributes[G]=	{Flat,	Listable,	Protected}
G[x_.,	y_.]:=	x+	y
G[x_,	y_,	z_]:=	x	y	z
G[x_,	y_,	z_,	h_]:=	x	y	z	h
G	/:	Default[G,	1]=	90
G	/:	Default[G,	2]=	500
In[2645]:=	{G[42,	47],	G[73],	G[]}
Out[2645]=	{89,	573,	590}
In[2646]:=	ClearAllAttributes[G];	ClearAll[G];
G[x_,	y_	/;	IntegerQ[y]]	:=	x	+	y;	G[x_,	y_,	z_]	:=	x*y*z;	G[x_,	y_,	z_,	h_]	:=	x*y*z*h
In[2647]:=	SetAttributes[G,	{Listable,	Protected,	Flat}]
In[2648]:=	Defaults[G,	{2,	90}]
In[2649]:=	Definition[G]
Out[2649]=	Attributes[G]=	{Flat,	Listable,	Protected}
G[x_,	y_.]:=	x+	y
G[x_,	y_,	z_]:=	x	y	z
G[x_,	y_,	z_,	h_]:=	x	y	z	h
G	/:	Default[G,	2]=	90
In[2650]:=	Defaults[G,	{1,	500}]
In[2651]:=	Definition[G]
Out[2651]=	Attributes[G]=	{Flat,	Listable,	Protected}
G[x_.,	y_.]:=	x+	y
G[x_,	y_,	z_]:=	x	y	z
G[x_,	y_,	z_,	h_]:=	x	y	z	h
G	/:	Default[G,	1]=	500
G	/:	Default[G,	2]=	90
In[2652]:=	{G[],	G[72,	67],	G[500]}
Out[2652]=	{590,	139,	1000}

The	successful	call	Defaults[G,	y]	returnsNull,	i.e.	nothing,	carrying	out	all	settingsy	of
values	by	default	for	formal	arguments	of	a	block,	function	or	moduleG.	It	is	necessary	to
emphasize	once	again	that	in	case	of	an	object	G	of	the	same	name	the	callDefaults[G,y]
processes	only	the	first	subobject	from	the	list	of	subobjects	which	is	returned	on	the
callDefinition[G].	And	this	is	a	rather	essential	remark	since	the	assignment	mechanism	to
formal	arguments	ofG	of	values	by	default	for	case	of	an	object	of	the	same	name,	using

theDefault	function,	is	other	than	ascribing	for	objects	of	such	type,	in	particular,	of	the
attributes.	In	the	latter	case	the	attributes	are	ascribed	to	all	subobjects	of	an	objectG	of	the
same	name	whereas	for	values	by	default	the	mechanism	is	valid	only	concerning	thefirst
subobject	from	the	list	of	the	subobjects	returned	on	the	callDefinition[G].This
mechanism	is	realized	as	by	the	standard	reception	with	use	of	the	callDefault[G,n]
=default	with	template	definition	fornth	formal	argument	of	an	objectG	in	the	form“_.”
and	by	the	callDefaults[G,	{n,	default}]	as	it	rather	visually	illustrates	the	following
fragment,	namely:

In[2673]	:=	Clear[V];	Default[V,	2]	=	90;	V[x_,	y_.]	:=	{x,	y};
V[x_,	y_.,	z_,	h_]	:=	{x,	y,	z,	h}
In[2674]:=	Definition[V]
Out[2674]=	V[x_,	y_.]:=	{x,	y}
V[x_,	y_.,	z_,	h_]:=	{x,	y,	z,	h}
V	/:	Default[V,	2]=	90
In[2675]:=	{V[500],	V[42,	47,	67]}
Out[2675]=	{{500,	90},	{42,	90,	47,	67}}
In[2676]:=	Clear[V];	Default[V,	2]	=	90;	V[x_,	y_.]	:=	{x,	y};
V[x_,	y_,	z_,	h_]	:=	{x,	y,	z,	h}	In[2677]:=	Definition[V]
Out[2677]=	V[x_,	y_.]:=	{x,	y}
V[x_,	y_,	z_,	h_]:=	{x,	y,	z,	h}
V	/:	Default[V,	2]=	90
In[2678]:=	{V[500],	V[42,	47,	67]}
Out[2678]=	{{500,	90},	V[42,	47,	67]}
In[2679]:=	Clear[V];	V[x_,	y_]	:=	{x,	y};	V[x_,	y_,	z_,	h_]	:=	{x,	y,	z,	h};	Defaults[V,
{2,	90}]	In[2680]:=	Definition[V]
Out[2680]=	V[x_,	y_.]:=	{x,	y}
V[x_,	y_,	z_,	h_]:=	{x,	y,	z,	h}
V	/:	Default[V,	2]=	90
In[2681]:=	{V[500],	V[42,	47,	67]}
Out[2681]=	{{500,	90},	V[42,	47,	67]}

While	the	DefaultsM	procedure	expands	the	previousDefaults	procedure	onto	case	of	the
objects	of	the	same	name	of	type	{Block,	Function,	Module}.	The	successful	procedure
callDefaultsM[G,	y]	returnsNull,	i.e.	nothing,	at	that,	carrying	out	all	settings	of	values	by
defaulty	for	formal	arguments	of	a	block,	function	or	moduleG.	At	that,	for	an	object	of
the	same	nameG	of	the	specified	types	the	settings	of	values	by	defaulty	for	formal
arguments	of	all	subobjects	of	the	objectG	are	carried	out.	The	next	fragment	represents
source	code	of	theDefaultsM	procedure	with	typical	examples	of	its	usage.

In[2556]:=	DefaultsM[x_	/;	BlockFuncModQ[x],	y_	/;	ListQ[y]	&&	Length[y]	==	2	||
ListListQ[y]	&&

DeleteDuplicates[Map[IntegerQ[#[[1]]]	&,	y]]	==	{True}]	:=	Module[{ArtKr,	atr	=
Attributes[x],	q,	k	=	1,
a	=	Flatten[{PureDefinition[x]}],	g	=	If[ListListQ[y],	y,	{y}]},	ClearAllAttributes[x];
ClearAll[x];	q	=	Map[#[[1]]	&,	g];	While[k	<=	Length[g],	ToExpression[“Default[”
<>	ToString[x]	<>	“,	”	<>	ToString[g[[k]][[1]]]	<>	“]”	<>	”	=	”	<>	ToString1[g[[k]]

[[2]]]];	k++];	ArtKr[s_String,	def_List]	:=	Module[{n	=	Unique[AVZ],	b,	c,	d,	t,	j=	1,
h},	h	=	ToString[n]	<>	ToString[x];	ToExpression[ToString[n]	<>	s];	b	=	HeadPF[h];
d	=	StringReplace[PureDefinition[h],	b–>	””];	c	=	Select[Map[ToString,	Args[h]],	#
!=	“$Failed”	&];	While[j	<=	Length[c],	If[MemberQ[q,	j],	t	=	c[[j]];	c[[j]]	=
StringTake[t,	{1,	Flatten[StringPosition[t,	“_”]][[2]]}]	<>	“.”];	j++];
ToExpression[ToString[x]	<>	“[”	<>	StringTake[ToString[c],	{2,–2}]	<>	“]”	<>	d];
ClearAll[h,	n]];	k	=	1;	While[k	<=	Length[a],	ArtKr[a[[k]],	g];	k++];	SetAttributes[x,
atr]]	In[2557]:=	G[x_,	y_,	z_Integer]	:=	x	+	y	+	z;	G[x_,	y_]	:=	x	+	y;	G[x_]	:=
Block[{},	x];	G[x_,	y_,	z_,	h_]	:=	Module[{},	x*y*z*h];	SetAttributes[G,	{Flat,
Protected,	Listable}];
In[2558]:=	DefaultsM[G,	{{2,	90},	{3,	500}}]
In[2559]:=	Definition[G]
Out[2559]=	Attributes[G]=	{Flat,	Listable,	Protected}
G[x_]:=	Block[{},	x]
G[x_,	y_.]:=	x+	y
G[x_,	y_.,	z_.]:=	x+	y+	z
G[x_,	y_.,	z_.,	h_]:=	Module[{},	x	y	z	h]
G	/:	Default[G,	2]=	90
G	/:	Default[G,	3]=	500
In[2550]:=	{G[56],	G[42,	47],	G[47,	18,	25]}
Out[2550]=	{56,	89,	90}
TheDefaultsM	procedure	provides	a	rather	useful	expansion	of	standard	means	of	this
type,	supporting	as	the	single	objects	of	type	{Block,	Function,	Module},	and	the	objects
of	the	same	name	as	evidently	illustrate	examples	of	the	previous	fragment.
It	is	necessary	to	focus	attention	on	one	rather	important	point	once	again.	As	it	was
already	noted	earlier,	the	procedures	can	be	defined	on	the	basis	of	constructions	of	the
types	{Module,	Block}.	However,	proceeding	from	certain	considerations,	it	is	generally
recommended	to	give	preference	to	the	constructions	of	theModule	type	because	in	a
number	of	cases(this	question	has	been	considered	slightly	above	and	in	[30-33]in	details)
the	constructions	of	theBlock	type	are	carried	out	incorrectly,	without	output	of	any
diagnostic	messages.	As	an	illustration	we	will	give	an	example	of	realization	of	the
Default1	procedure	which	concerns	the	theme	of	values	by	default,	on	the	basis	of	two
types	of	constructions–	on	the	basis	ofModule	andBlock.	The	procedure	callDefault1[x,
y,	z]	returnsNull,	i.e.	nothing,	providing	settings	of	the	values	by	default	determined	by	a
listz	for	arguments	of	an	objectx,	whose	positions	are	given	by	a	listy	ofPosIntListтипа	for
ablock/function/	modulex.	The	next	fragment	from	the	standpoint	of	formalization
represents	almost	identical	realizations	of	definition	of	theDefault1	procedure	on	the	basis
of	constructions	andModule,	andBlock.	And	if	the	first	realization	is	carried	out	quite
correctly	regardless	of	names	of	local	variables,	then	the	correctness	of	the	second,
generally	speaking,	depends	on	crossing	of	a	list	of	names	of	local	variables	with	a	list	of
values	by	default	for	arguments,	in	particular,	of	a	function	as	quite	visually	illustrates	the
following	fragment	in	case	when	the	local	variablea	exists	in	addition	and	in	the	list	of
values	by	default	for	simple	functionG.	The	following	fragment	represents	source	codes
along	with	corresponding	typical	examples.
In[3792]:=	Default1[x_Symbol,	y_	/;	PosIntListQ[y],	z_List]	:=	Module[{k	=	1,	a	=
Min[Map[Length,	{y,	z}]]},	While[k	<=	a,	Default[x,	y[[k]]]	=	z[[k]];	k++];]

In[3793]:=	Default1[G,	{1,	2},	{a,	b}];	G[x_.,	y_.]	:=	{x,	y};
Clear[Default1];	DefaultValues[G]
Out[3793]=	{HoldPattern[Default[G,	1]]:>a,	HoldPattern[Default[G,	2]]:>	b}	In[3794]:=
Default1[x_Symbol,	y_	/;	PosIntListQ[y],	z_List]	:=	Block[{k	=	1,	a	=
Min[Map[Length,	{y,	z}]]},	While[k	<=	a,	Default[x,	y[[k]]]	=	z[[k]];	k++];]
In[3795]:=	ClearAll[G];	Default1[G,	{1,	2},	{a,	b}];	G[x_.,	y_.]	:=	{x,	y};
DefaultValues[G]
Out[3795]=	{HoldPattern[Default[G,	1]]:>2,	HoldPattern[Default[G,	2]]:>	b}	In[3796]:=
Default1[x_Symbol,	y_	/;	PosIntListQ[y],	z_List]	:=	Module[{k	=	1,	h	=
Min[Map[Length,	{y,	z}]]},	While[k	<=	h,	Default[x,	y[[k]]]	=	z[[k]];	k++];]
In[3797]:=	Default1[G,	{1,	2},	{a,	b}];	G[x_.,	y_.]	:=	{x,	y};
Clear[Default1];	DefaultValues[G]

Out[3797]	=	{HoldPattern[Default[G,	1]]:>a,	HoldPattern[Default[G,	2]]:>	b}	In[3798]:=
Default1[x_Symbol,	y_	/;	PosIntListQ[y],	z_List]	:=	Block[{k	=	1,	h	=
Min[Map[Length,	{y,	z}]]},	While[k	<=	h,	Default[x,	y[[k]]]	=	z[[k]];	k++];]
In[3799]:=	ClearAll[G];	Default1[G,	{1,	2},	{a,	b}];	G[x_.,	y_.]	:=	{x,	y};

DefaultValues[G]
Out[3799]=	{HoldPattern[Default[G,	1]]:>a,	HoldPattern[Default[G,	2]]:>	b}

Thus,	the	mechanisms	of	local	variables	used	by	procedures	on	the	basis	of	Module
andBlock,	generally,	aren’t	identical.	Consequently,	in	general	it	is	necessary	to	give
preference	to	definition	of	the	procedures	on	the	basis	of	a	Module	construction,	however,
taking	into	account	the	aforesaid	there	are	very	many	cases	when	both	types	of	the
organization	of	the	procedures	are	equivalent,	demanding	the	preliminary	analysis
concerning	the	existence	of	such	equivalence.	The	given	question	rather	in	details	is
considered	in	[33].	In	general,	for	definition	of	the	procedures	we	recommend	to	use
structures	on	the	basis	ofModule	in	order	to	avoid	need	of	carrying	out	the	additional
analysis	on	procedurality	and	universality	in	all	cases	of	appendices.

For	determination	of	values	by	default	for	formal	arguments	of	a	function/	block/module	it
is	possible	to	use	both	the	meansDefaults,	DefaultsM	and	Default,	and	directly	in	their
headings	on	the	basis	of	constructions	of	the	format“x_:expression”,	or	by	combining
both	specified	methods.	However,	the	systemDefaultValues	function	returns	the	settings
of	values	by	default,	executed	only	by	means	of	the	standardDefault	function,	for
example:

In[2269]	:=	Default[G5,	2]	=	90;	G5[x_,	y_:	500,	z_:	42]	:=	{x,	y,	z};
DefaultValues[G5]
Out[2269]=	{HoldPattern[Default[G5,	2]]:>	90}
In[2270]:=	G5[Agn]
Out[2270]=	{Agn,	500,	42}
In[2271]:=	Default[S4,	2]	=	90;	S4[x_,	y_.,	z_:	42]	:=	{x,	y,	z};
DefaultValues[S4]
Out[2271]=	{HoldPattern[Default[S4,	2]]:>	90}
In[2272]:=	S4[Avz]
Out[2272]=	{Avz,	90,	42}

At	that,	if	for	argument	a	value	by	default	has	been	defined	and	viaDefault,	and	directly	in
heading	by	a	construction“_:”,	then	the	second	way	has	the	maximum	priority	as	it	very
visually	illustrates	the	previous	example	with	theG5	function.	Meanwhile,	the
standardDefaultValues	function	possesses	serious	enough	shortcomings.	First	of	all,	the
given	function	doesn’t	reflect	the	values	by	default	defined	in	a	block/function/module
heading,	and	only	set	through	theDefault	function.	However	generally	it	is	incorrect
because	for	arguments	the	assignment	of	values	by	default	as	through	theDefault	function,
and	directly	in	headings	is	admissible;	at	that,	the	priority	belongs	exactly	to	the	second
method	what	often	can	contradict	result	of	a	call	of	the	DefaultValues	function	as	it	is
illustrated	with	the	previous	examples.

For	elimination	of	similar	shortcomings	the	DefaultValues1	procedure	has	been
programmed,	whose	the	callDefaultValues1[x]	returns	the	list	of	the	format	{{N1}:>V1,
…,	{Np}:>Vp},	whereNj	andVj(j=1..p)	define	numbers	of	positions	of	formal	arguments
in	the	heading	of	a	block/function/module,	and	values	by	default	ascribed	to	them
respectively,	regardless	of	method	of	their	definition,	taking	into	account	the	priority(the
setting	of	values	by	default	in	headings	of	blocks/functions/modules	has	the	highest
priority).	The	following	fragment	represents	source	code	of	theDefaultValues1	procedure
with	the	most	typical	examples	of	its	usage.

In[3079]	:=	DefaultValues1[x_	/;	BlockFuncModQ[x]]:=	Module[{d	={},	h,	k,	a	=
{SetAttributes[String,	Listable]},	b	=	Map[ToString,	Args[x]],	c	=	Map[ToString,
DefaultValues[x]]},	ClearAttributes[ToString,	Listable];	If[b	!=	{},	For[a	=	1,	a	<=
Length[b],	a++,	h	=	b[[a]];	If[!	StringFreeQ[h,	“_:”],

AppendTo[d,	ToExpression[“	{”	<>	ToString[a]	<>	“}:>	”	<>	StringTake[h,
{Flatten[StringPosition[h,	“_:”]][[2]]	+	1,–1}]]]]]];	If[c	!=	{},	If[c	!=	{},	c	=
ToExpression[Mapp[StringReplace,	Mapp[StringReplace,	c,
{“HoldPattern[Default[”	<>	ToString[x]–>	“{“,	“]]”–>	“}”}],	{”{,	“–>	“{“,	“{}”–>
“{2015}”}]]];	h	=	c[[1]][[1]];	If[Op[h]	==	{2015},	a	=	{};	For[k	=	1,	k	<=	Length[b],
k++,	AppendTo[a,	ToExpression[ToString[{k}]	<>	”	:>	”	<>	ToString[c[[1]][[2]]]]]];	c
=	a];	If[PosIntListQ[h]	&&	Length[h]	>	1,	a	=	{};	b	=	h;	For[k	=	1,	k	<=	Length[b],
k++,	AppendTo[a,	ToExpression[ToString[{k}]	<>	”	:>	”	<>	ToString[c[[1]][[2]]]]]];	c
=	a]];	If[d	==	{}&&	c	==	{},	Return[{}],

c	=	Sort[Join[d,	c],	Op[#1][[1]][[1]]	<=	Op[#2][[1]][[1]]	&]];	{k,	h}=	{1,	{}};	While[k
<=	Length[c]–1,	AppendTo[h,	If[Op[c[[k]]][[1]]	==	Op[c[[k	+	1]]][[1]],	k	+	1]];	k++];
Select[ReplacePart[c,	Mapp[Rule,	Select[h,	#	!=	“Null”	&],	Null]],	!	SameQ[#,	Null]
&]]

In[3080]	:=	Default[G]	=	500;	G[x_,	y_.,	z_:	90]	:=	{x,	y,	z};
DefaultValues1[G]
Out[3080]=	{{1}:>	500,	{2}:>	500,	{3}:>	90}
In[3081]:=	Default[S2,	2,	3]	=	90;	S2[x_,	y_.,	z_]	:=	{x,	y,	z};
DefaultValues1[S2]
Out[3081]=	{{1}:>	90,	{2}:>	90}
In[3082]:=	Default1[S3,	{1,	2,	3},	{42,	47,	25}];	S3[x_:	500,	y_.,	z_.]	:=	{x,	y,	z};
DefaultValues1[S3]
Out[3082]=	{{1}:>	500,	{2}:>	47,	{3}:>	25}

In[3083]:=	Default[S4,	2]	=	2015;	S4[x_:	500,	y_:	47,	z_:	42]	:=	{x,	y,	z};
DefaultValues1[S4]
Out[3083]=	{{1}:>	500,	{2}:>	47,	{3}:>	42}
In[3084]:=	Default[S5,	2]	=	90;	S5[x_,	y_:	500,	z_:	42]	:=	{x,	y,	z};	DefaultValues1[S5]
Out[3084]=	{{2}:>	500,	{3}:>	42}
In[3085]:=	Default1[V3,	{1,2,3,4},	{a,	b,	c,	d}];	V3[x_.,	y_.,	z_.,	t_.]	:=	{x,y,z,t};
DefaultValues1[V3]
Out[3085]=	{{1}:>	a,	{2}:>	b,	{3}:>	c,	{4}:>	d}
In[3086]:=	Default1[V4,	{1,	2,	3,	4},	{a,	b,	c,	d}];	V4[x_.,	y_:	90,	z_.,	t_:	500]	:=	{x,	y,
z,	t};	DefaultValues1[V4]
Out[3086]=	{{1}:>	a,	{2}:>	90,	{3}:>	c,	{4}:>	500}
Definition	of	theDefaultValues1	procedure	along	with	the	standard	means	uses	our	means
such	asArgs,	BlockFuncModQ,	Mapp,	PosIntListQ	andOp	that	are	considered	in	the
present	book	and	in	[28-33].	Thus,	our	procedure	DefaultValues1	rather	significantly
expands	the	possibilities	of	the	standard	DefaultValues	function,and	quite	it	replaces	on
condition	of	existence	of	the	packageAVZ_Package	[48]	uploaded	into	the
currentMathematica	session.

Considering	existence	of	2	admissible	mechanisms	of	assignment	of	values	by	default	to
formal	arguments	of	the	blocks,	functions	and	modules,	the	problem	of	definition	of	this
kind	of	values	for	objects	of	the	specified	type	represents	quite	certain	interest.	In	this
connexion	theDefaultsQ	procedure	solves	the	given	problem	whose	callDefaultsQ[x]
returnsTrue	if	definitions	of	blocks,	functions	or	modulesx	contain	values	by	default	for
their	formal	arguments,	andFalse	otherwise.	Whereas	the	procedure	callDefaultsQ[x,y]
where	the	second	argumenty	–an	undefinite	variable–	in	addition	throughy	returns	the	list
of	the	used	types	of	values	by	default	{“_.”,	“_:”}.	The	next	fragment	represents	source
code	of	theDefaultsQ	procedure	along	with	the	most	typical	examples	of	its	usage.

In[2776]:=	DefaultsQ[x_	/;	BlockFuncModQ[x],	y___]	:=	Module[{c	=	{},	d,	a	=
Args[x],	b	=	{“_.”,	“_:”},	k	=	1},	a	=	Map[ToString,	If[NestListQ[a],	a[[1]],	a]];

While[k	<=	Length[a],	d	=	a[[k]];	If[!	StringFreeQ[d,	b[[1]]],	AppendTo[c,	b[[1]]],
If[!	StringFreeQ[d,	b[[2]]],	AppendTo[c,	b[[2]]]]];	k++];	If[c	==	{},	False,	If[{y}!=
{}&&	!	HowAct[y],	y	=	DeleteDuplicates[Flatten[c]]];	True]]	In[2777]:=
PureDefinition[G]

Out[2777]	=	{”G[x_.,	y_.]:=	x+	y“,	“G[x_,	y_,	z_]:=	x*y*z“,
“G[x_,	y_,	z_,	h_]:=	x*y*z*h”}
In[2778]:=	{DefaultsQ[G,	t],	t}
Out[2778]=	{True,	{“_.”}}
In[2779]:=	Default[S,	1]	=	90;	S[x_.,	y_:	500,	z_]	:=	x	+	y	+	z;
Kr[x_,	y_,	z_]	:=	Block[{},	x*y*z]
In[2780]:=	{Map9[DefaultsQ,	{S,	Kr},	{v1,	v2}],	{v1,	v2}}
Out[2780]=	{{True,	False},	{{“_.”,	“_:”},	v2}}
Along	with	attributes	and	values	by	default	for	formal	arguments	of	a	block,	function	or
module,	these	objects	can	use	the	mechanism	ofoptions.	First	of	all,	the	mechanism
ofoptions	is	rather	widely	used	by	the	system	means.	So,	for	a	number	of	functions	in
theMathematica	system(in	particular,	thePlot	function),	the	options	available	both	for

installation,	and	for	redefinition	are	ascribed.	The	system	supports	the	general	mechanisms
for	work	with	such	options.	The	call	Options[G]	returns	the	list	of	the	current	settings	in
the	format	{a	–>a1,b	–>b1,	…}	for	all	options	of	a	block,	function	or	moduleG	while	the
callOptions[G,	h]	returns	the	current	setting	for	an	optionh.	In	turn,	the
callSetOptions[G,a	–>a2,b	–>b2,	…]	provides	a	reinstalling	of	values	for	options	{a,b,с,
…}	of	a	block/function/moduleG	which	remains	active	up	to	the	next	reinstalling	in	the
current	session.	While	the	function	callSystemOptions[]	returns	a	list	of	the	current
settings	for	all	preinstalled	internaloptions	andsuboptions	of	the	system.	The	given	settings
are	defined	as	the	used	platform,	and	in	certain	cases	also	by	the	current	session	of	the
Mathematica.	Thus,	for	receiving	quantity	of	all	system	options	and	their	quantities	in	the
context	as	the	groups	of	options,	and	the	separate	options,	the	following
procedureCountOptions	whose	source	code	along	with	the	most	typical	examples	of	its
usage	are	given	below	is	used,	namely:

In[3252]	:=	CountOptions[h___]	:=	Module[{a	=	SystemOptions[],	b	=	{},	d,	c	=	1,	k},
While[c	<=	Length[a],	d	=	a[[c]];	AppendTo[b,	If[ListQ[Part[d,	2]],	{Part[d,	1],
Length[Part[d,	2]]},	d]];	c++];	b	=	Flatten[Gather[b,	Head[#1]	==	Head[#2]	&],	1];
If[{h}==	{},	b,	If[HowAct[h],	Defer[CountOptions[h]],	d	=	0;	Do[If[ListQ[b[[k]]],	d	=
d	+	b[[k]][[2]],	d	=	d	+	1],	{k,	Length[b]}]];	{h}=	{d};	b]]	In[3253]:=	CountOptions[]

Out[3253]	=	{{”AlgebraicsOptions”,8},{”AlgebraicThreadThroughHeads”,16},	…,
“ZeroTestMaxPrecision”–>	5000.,	“ZeroTestNumericalPrecision”–>	80.}	In[3254]:=
CountOptions[g];	g
Out[3254]=	417

The	call	CountOptions[]	returns	the	nested	list	whose	elements	are	the	lists	and	separate
options.	The	list	as	the	first	element	contains	a	name	of	group	of	options,	whereas	the
second	element–	number	of	options	in	this	group.	While	the	callCountOptions[p]	in
addition	thru	argumentp	–an	undefinite	variable–	returns	total	of	the	preset
systemoptions/suboptions.	Furthermore,	settings	for	a	concrete	system	optionp	can	be
redefined	by	the	function	call	SetSystemOptions[p	–>value],	however	except	for	separate
cases,	it	is	not	desirable	in	order	to	avoid	the	possibleconflicts	with	the	system	settings.	At
that,	theMathematica	system	doesn’t	support	operations	of	removal	of	the	options,
therefore	in	the	following	fragment	we	present	theDeleteOptsAttr	procedure,	decisive	the
given	problem.

The	procedure	call	DeleteOptsAttr[x]	returnsNull,	i.e.	nothing,	canceling	for	a	symbolx
the	options	ascribed	to	it.	While	the	callDeleteOptsAttr[x,	y],	returningNull,	i.e.	nothing,
cancels	both	the	options,	and	the	attributes	that	are	ascribed	to	a	symbolx,	wherey	–	an
arbitrary	expression.	The	following	fragment	represents	source	code	of
theDeleteOptsAttr	procedure	with	the	most	typical	examples	of	its	usage.

In[2576]	:=	G[x_,	y_]	:=	x^2	+	y^2;	Options[G]	=	{Art–>	25,	Kr–>	18}	Out[2576]=
{Art–>	25,	Kr–>	18}
In[2577]:=	SetOptions[G,	Art–>	25,	Kr–>	18]
Out[2577]=	{Art–>	25,	Kr–>	18}
In[2578]:=	SetAttributes[G,	{Protected,	Listable}]
In[2579]:=	Definition2[G]
Out[2579]=	{”G[x_,	y_]:=	x^2+	y^2“,	“Options[G]:=	{Art–>	25,	Kr–>	18}“,

{Listable,	Protected}
In[2580]:=	DeleteOptsAttr[x_	/;	BlockFuncModQ[x],	y___]	:=	Module[{b,	a	=
Definition2[x],	c	=	“Options[”	<>	ToString[x]	<>	“]”},	b	=	a[[–1]];
ClearAllAttributes[x];	ClearAll[x];	ToExpression[Select[a,	StringFreeQ[ToString[#],
c]	&]];	If[{y}==	{},	If[b	!=	{},	SetAttributes[x,	b]]]]

In[2581]	:=	DeleteOptsAttr[G]
In[2582]:=	Definition2[G]
Out[2582]=	{”G[x_,	y_]:=	x^2+	y^2“,	{Listable,	Protected}}
In[2583]:=	Vs[x_,	y_]	:=	x^2	+	y^2;	Options[Vs]	=	{v–>	72,	g–>	67};	In[2584]:=
SetOptions[Vs,	{v–>	72,	g–>	67}];	SetAttributes[Vs,	Protected]	In[2585]:=
Definition2[Vs]
Out[2585]=	{”Vs[x_,	y_]:=	x^2+	y^2“,	“Options[Vs]:=	{v–>	71,	g–>	66}“,

{Protected}}
In[2586]:=	DeleteOptsAttr[Vs,	590]
In[2587]:=	Definition2[Vs]
Out[2587]=	{”Vsv[x_,	y_]:=	x+	y“,	{}}

At	that,	it	must	be	kept	in	mind	that	the	given	procedure	isn	‘t	applicable	to	the	standard
system	functions,	returning	on	them	the	unevaluated	call	as	it	well	illustrates	the	following
example,	namely:

In[2618]	:=	{DeleteOptsAttr[Sin,	90],	DeleteOptsAttr[Sin]}
Out[2618]=	{DeleteOptsAttr[Sin,	78],	DeleteOptsAttr[Sin]}
For	certain	built–inMathematica	functions,	for	examplePlot,	are	ascribed	the	options
whose	values	can	be	redetermined.	At	that,	if	at	a	function	call	the	values	for	its
admissible	options	aren’t	defined,	then	for	them	values	by	default	are	used.	The	function
callOptions[F,op]	allows	to	obtain	values	by	default	for	an	optionop	of	a	functionF,	for
example:

In[2620]	:=	Options[Plot,	{PlotLabel,	FrameStyle,	PlotStyle,	PlotRange,
ColorOutput}]
Out[2620]=	{PlotLabel–>	None,	FrameStyle–>	{},	PlotStyle–>	Automatic,	PlotRange–>
{Full,	Automatic},	ColorOutput–>	Automatic}

The	mechanism	of	options	which	is	supported	by	the	Mathematica	can	be	successfully
used	in	development	of	both	the	applications	of	various	type,	and	a	separate	software.	The
interested	reader	can	familiarize	oneself	with	this	mechanism	more	in	details	in	rather
well–developed	help–base	of	the	Mathematica	system,	or	in	books	[31-33,52,61,59].

In	conclusion	of	the	present	section	we	in	brief	will	stop	on	application	of	transformations
rules	to	the	procedures.	The	mechanism	of	transformations	rules	supported	by	the	system
remains	in	force	not	only	for	symbols	but	for	algebraic	expressions	too.	In	principle,	this
mechanism	can	be	adapted	onto	an	arbitrary	expression.	Moreover,	as	an	essential	enough
property	of	this	mechanism	it	is	possible	to	note	the	circumstance	that	allows	to	use	and
the	patterns,	and	the	symbolic	constructions,	for	example:

In[2837]:=	Sin[x^2]^2	+	Cos[y	+	h]^2	/.{x^2–>	x,	y	+	h–>	x}

Out[2837]	=	Cos[x]^2+	Sin[x]^2

In[2838]:=	Sin[a	+	b*c]*(Sin[x^2]	+	Cos[y	+	h])	/.	{Sin[_]–>	x,	Cos[_]–>	y}
Out[2838]=	x	(x+	y)
Thus,	between	purely	symbolic	transformations	rules	and	rules	that	include	the	patterns,	in
particular,”_”	there	is	one	fundamental	difference	which	is	considered	in	details	in	the
books	[31-33].	The	more	detailed	description	of	mechanisms	of	programming	of	the
patterns	for	transformations	rules	of	an	arbitrary	expression	can	be	found	in	the	reference
on	theMathematica.	At	the	same	time	the	system	doesn’t	dispose	the	mechanism	of
application	of	transformations	rules	to	procedures	and	for	this	purpose	the	procedure	can
be	offered,	whose	callReplaceProc[x,	t]	returns	the	definition	in	string	format	of	the
procedure–	result	of	application	to	a	procedurex	of	rules	of	transformationst(one	rule	or
their	list);	at	that,	those	rules	are	excluded	from	rulest,	whose	left	parts	coincide	with
formal	arguments	of	the	procedurex.	The	next	fragment	represents	source	code	of	the
procedure	with	examples	of	its	use	along	with	the	simple	testing	function	whose
callRuleQ[x]	returns	True,	ifx	–	a	transformation	rule,	andFalse	otherwise.	In
theReplaceProc	procedure	definition	the	given	function	is	used	in	its	heading.

In[2859]	:=	RuleQ[x_]	:=	If[MemberQ[{Rule,	RuleDelayed},	Head[x]],	True,	False]
In[2860]:=	Map[RuleQ,	{a–>	b,	c–>	d+h,	Sin,	a+b,	ProcQ,	a	:>	b,	c	:>	d+h}]
Out[2860]=	{True,	True,	False,	False,	False,	True,	True}

In[2861]	:=	ReplaceProc[x_	/;	ProcQ[x],
r_	/;	DeleteDuplicates[Map[RuleQ,	Flatten[{r}]]]	==	{True}]	:=	Module[{a	=
Definition2[x],	b	=	HeadPF[x],	c,	d	=	Flatten[{r}]},

c	=	ToExpression[“Hold[”	<>	StringTrim[a[[1]],	b	<>	”	:=	“]	<>	“]”];	d	=	Select[d,	!
MemberQ[Args1[x],	ToString[Part[#,	1]]]	&];	c	=	ToString1[ReplaceAll[c,	d]];	b	<>	”
:=	”	<>	StringTake[c,	{6,–2}]]

In[2862]	:=	ArtKr[x_	/;	IntegerQ[x],	y_	/;	StringQ[y]]	:=
Module[{a	=	StringLength[y],	b	=	90,	ab	=	500},	(a	+	x)*(b	+	y)	+	ab]
In[2863]:=	ReplaceProc[ArtKr,	{a–>	Art,	b–>	Kr,	y–>	42,	x–>	500}]
Out[2863]=	“ArtKr[x_	/;	IntegerQ[x],	y_	/;	StringQ[y]]:=	Module[{Art=	StringLength[y],
Kr=	90,	ab=	500},	(Art+	500)*(Kr+	42)+	ab]”	It	makes	sense	to	stop	on	one	moment
useful	for	programming.	Supra,	a	number	of	procedures	which	return	additional	result
through	argument–	an	undefinite	variable–	were	considered.	However	such	mechanism
requires	or	of	choice	of	some	undefinite	variable	in	the	current	session,	demanding
generally	of	its	cleaning	in	the	absence	of	need	for	it,	or	saving	of	value	of	a	certain
variable	with	subsequent	its	cleaning	in	a	procedure	and	restoration	of	an	initial	value
before	any	exit	from	the	procedure.	Meanwhile,	for	this	purpose	the	similar	mechanism
which	is	based	on	theUniqueV	procedure	can	be	used,	whose	callUniqueV[x,y]	returns	a
name	in	string	format“xn”	of	an	unique	variable	of	the	current	session	to	which	valuey
was	ascribed,	wherex	–	a	symbol,n	–	an	integer	andy	–	an	arbitrary	expression.	Further
theUniqueV	procedure	is	used	for	ensuring	of	return	of	additional	result	by	simple
procedureA6	through	an	unique	variable.	The	fragment	is	rather	transparent	and	of	any
special	additional	explanations	doesn’t	demand.

In[2571]:=	UniqueV[x_	/;	SymbolQ[x],	y_]	:=
Module[{a	=	ToString[Unique[ToString[x]]]},	ToExpression[a	<>	”	=	”	<>
ToString1[y]];	a]

In[2572]	:=	UniqueV[“agn”,	50090]
Out[2572]=	“agn20”
In[2573]:=	agn20
Out[2573]=	50	090
In[2579]:=	A6[x_,	y___]	:=	Module[{a	=	90,	b	=	500},

If[{y}==	{},	a*x,	{a*x,	UniqueV[“ag”,	b*x]}]]	In[2580]:=	{A6[73],	A6[42,	6]}
Out[2580]=	{6570,	{3780,	“ag68”}}
In[2581]:=	ag68
Out[2581]=	21	000

Below,	a	number	of	tools	providing	higher	level	of	procedural	programming	in
theMathematica	system	will	be	represented;	which	in	a	certain	degree	were	wafted	by
similar	means	of	theMaple	system	and	by	other	systems	of	procedural	programming.	It
should	be	noted	that	the	values	by	default	for	system	attributes	and	options	given	in	the
present	section,	and	in	the	book	as	a	whole	concern	theMathematica	system	of	version10.
In	the	following	Mathematica	versions	there	can	quite	be	certain	differences.

6.9.	Some	additional	facilities	for	operating	with	blocks,	functions	and
modules	in	theMathematicasoftware

If	the	previous	sections	of	the	head	represent	main	means	of	work	with	an	object	of	the
type	{Block,	Function,	Module},	the	present	section	represents	additional,	but	quite
important	means	of	work	in	a	number	of	appendices	with	objects	of	this	type.	Meanwhile,
having	the	basic	purpose,	these	means	can	be	functionally	crossed	with	means	represented
in	the	previous	sections	of	this	head.	It	should	not	cause	any	particular	surprise	because
the	similar	situation	takes	place	pretty	often	among	means,	practically,	of	any	software
system.	And	still	the	means	of	the	present	section	have	a	little	more	specific	character	and
aren’t	so	sought	after	as	means	of	the	previous	sections.	At	the	same	time,	ascribing	them
to	this	section	in	a	certain	degree	has	conditional	character	and	is	caused	by	our
experience	of	their	usage.

First	of	all,	again	we	will	return	to	the	question	of	syntactic	correctness	of	a	block	and
module.	Examples	of	two	types	of	syntactic	mistakes	at	definition	of	the	procedures	of
types	{Module,	Block}	are	presented	below,	that	aren’t	distinguished	by	the	system	at
evaluation	of	their	definitions,	and	in	some	cases	even	at	a	call	of	such	procedures.	At	that,
repeated	calls	of	procedures	of	theModuletype	as	very	much	demonstrate	the	fragment
examples,	yield	formally	correct	results.	For	testing	of	procedures	of	both	types	regarding
theirsyntactic	correctness	in	the	above	context	theSyntCorProcQ	procedure	has	been
offered,	whose	source	code	along	with	typical	examples	of	its	use	the	following	fragment
represents,	namely:

In[5081]	:=	Art[x_,	y_]	:=	Module[{a,	b},];	Art1[x_,	y_]	:=	Module[{a,	b}]	In[5082]:=
Kr[x_,	y_]	:=	Block[{a,	b},];	Kr1[x_,	y_]	:=	Block[{a,	b}]	In[5083]:=	{Art[90,	500],
Art1[90,	500]}
Module::argr:	Module	called	with	1	argument;2	arguments	are	expected.	>>	Out[5083]=
{Null,	Module{a,	b}]}
In[5084]:=	{Art[90,	500],	Art1[90,	500]}

Out[5084]=	{Null,	Module[{a,	b}]}
In[5085]:=	{Kr[90,	500],	Kr1[90,	500]}

Block::argr:	Block	called	with	1	argument;	2	arguments	are	expected.	>>	Out[5085]=
{Null,	Block[{a,	b}]}
In[5086]:=	SyntCorProcQ[x_	/;	BlockModQ[x]]	:=	Module[{d,	h,	c	=	Kr,	b	=
PureDefinition[x],	a	=	HeadPF[x]},

ClearAll[Kr];	Kr	=	ProcFuncTypeQ[ToString[x]][[2]][[1]];	h	=
Quiet[Check[Locals2[x],	Locals1[x]]];	h	=	If[h	===	{},	“{}“,	ToString[h]];	d	=	a	<>	”
:=	”	<>	Kr	<>	“[”	<>	h;	d	=	StringReplace[b,	d–>	””,	1];	Kr	=	c;	!
MemberQ[{“]”,	“,	Null]”},	d]]

In[5087]	:=	Map[SyntCorProcQ,	{ProcQ,	Kr,	Kr1,	Art,	Art1}]
Out[5087]=	{True,	False,	False,	False,	False}
In[5088]:=	KrArt[x_,	y_,	z_]	:=	Module[{a,	b,	c},	90	+	x	+	y	+	z]	In[5089]:=
Map[SyntCorProcQ,	{Locals,	Mapp,	BlockToModule,	KrArt}]	Out[5089]=	{True,
True,	True,	True}
In[5090]:=	Map[SyntCorProcQ,	{Art2,	Do,	If,	500}]
Out[5090]=	{SyntCorProcQ[Art2],	SyntCorProcQ[Do],	SyntCorProcQ[If],

SyntCorProcQ[500]}

The	procedure	call	SyntCorProcQ[x]	returnsTrue	if	the	definition	of	a	block	or	modulex
activated	in	the	current	session	is	syntactic	correct	in	the	above	context,	otherwiseFalse	is
returned.	Ifx	–	not	a	block	or	module,	the	call	is	returned	unevaluated.	The	definition	of
theSyntCorProcQ	procedure	along	with	the	standard	means	uses	our	means	such
asProcFuncTypeQ,	Locals2,	BlockModQ,PureDefinition	andHeadPF	that	are
considered	in	the	present	book	and	in	[28-33].	In	a	number	of	problems	of	procedural
programming,	first	of	all,	of	system	character,	the	procedure	is	useful	enough.	In	a	number
of	applications	of	system	character	it	is	desirable	for	the	user	block,	function	or	module	to
have	information	regarding	use	by	it	of	means	in	the	context	{system	means,user	means}.
TheSysUserSoft	procedure	solves	this	problem,	whose	the	callSysUserSoft[x]	generally
returns	the	nested2–	element	list,	whose	first	element	contains2–element	sublists,	whose
the	first	element–	the	name	in	string	format	of	a	system	function,	and	the	second	element–
its	multiplicity,	while	the	second	element	of	the	list	also	contains	2–element	sublists,
whose	first	element–	the	name	in	string	format	of	the	user	means(block,function,module),
and	the	second	element–	its	multiplicity.	In	the	absence	for	an	objectx	means	of	the
specified	types	the	procedure	call	SysUserSoft[x]	returns	the	empty	list,	i.e.	{}.	At	that,	if
the	type	of	the	actual	argumentx	is	different	from(Block,	Function,	Module),	then	the
procedure	callSysUserSoft[x]	is	returned	unevaluated.	The	next	fragment	represents
source	code	of	the	procedure	along	with	typical	examples	of	its	usage.

In[2580]	:=	SysUserSoft[x_	/;	BlockFuncModQ[x]]	:=	Module[{b,	s	={},	u	={},	h	=
Args[x,	6],	c,	a	=	Flatten[{PureDefinition[x]}][[1]],	d	=	If[QFunction[x],	{},
LocalsGlobals1[x]]},	b	=	ExtrVarsOfStr[a,	2,	90];	c	=	Select[b,	!
MemberQ[Flatten[{ToString[x],	h,	“True”,	“False”,	“$Failed”,	Quiet[d[[1]]],
Quiet[d[[3]]]}],	#]	&];	Map[If[Quiet[SystemQ[#]],	AppendTo[s,	#],
If[BlockFuncModQ[#],	AppendTo[u,	#]]]	&,	c];	c	=	Map[Gather,	{s,	u}];	c	=

{Map[Flatten[#]	&,	Map[{#,	Length[#]}&,	c[[1]]]],	Map[Flatten[#]	&,	Map[{#,
Length[#]}&,	c[[2]]]]};	c	=	{Map[DeleteDuplicates[#]	&,	c[[1]]],
Map[DeleteDuplicates[#]	&,	c[[2]]]};	If[Flatten[c]	==	{},	{},	c]]

In[2581]	:=	A[m_,	n_,	p_	/;	IntegerQ[p],	h_	/;	PrimeQ[h]]	:=	Module[{a	=	73},	h*(m	+
n	+	p)/a	+	StringLength[ToString1[z]]/(Cos[c]	+	Sin[d])]
In[2582]:=	SysUserSoft[A]
Out[2582]=	{{{”Cos“,	1},	{”IntegerQ“,	1},	{”Module“,	1},	{”PrimeQ“,	1},	{”Sin“,	1},
{”StringLength“,	1}},	{{”ToString1“,	1}}}
In[2583]:=	SysUserSoft[SysUserSoft]
Out[2583]=	{{{”AppendTo“,	2},	{”DeleteDuplicates“,	2},	{”Flatten“,	5},	{”Gather“,	1},
{”If“,	4},	{”Length“,	2},	{”MemberQ“,	1},	{”Module“,	1},	{”Quiet“,	3},	{”Select“,	1},
{”ToString“,	1}},	{{”Args“,	1},	{”BlockFuncModQ“,	2},	{”ExtrVarsOfStr“,	1},
{”LocalsGlobals1“,	1},	{”PureDefinition“,	1},	{”QFunction“,	1},	{”SystemQ“,	1}}}
In[2584]:=	G[x_]	:=	x^2	+	90*x	+	500;	SysUserSoft[G]
Out[2584]=	{}
In[2585]:=	F[x_]	:=	a*x	+	Sin[b*x]	+	StringLength[ToString1[x	+	c]];	SysUserSoft[F]

Out[2585]	=	{{{”Sin“,	1},	{”StringLength“,	1}},	{{”ToString1“,	1}}}	In[2586]:=
SysUserSoft[QFunction]
Out[2586]=	{{{”Block“,	1},	{”CompiledFunction“,	1},	{”If“,	5},	{”MemberQ“,	1},

{	“Module“,2},{”Quiet“,2},{”StringJoin“,1},{”StringReplace“,2}},	{{”Definition2“,	1},
{”HeadPF“,	2},	{”Map3“,	1},	{”SingleDefQ“,	1},
{”SuffPref“,	4},	{”ToString1“,	1},	{”ToString3“,	1}}}

As	showed	our	expirience,	theSysUserSoft	procedure	is	rather	useful	in	the	structural
analysis	of	the	user	software	of	types	{Block,	Function,	Module}.

In	some	cases	the	RenBlockFuncMod	procedure	is	a	rather	interesting	tool	of
manipulation	by	the	blocks,	functions	or	modules	of	the	same	name.	The	procedure
callRenBlockFuncMod[x,	y]	returns	a	new	name	of	a	function/	block/modulex	in	string
format	determined	by	the	formatUnique[y]<>H,	wherey	–	a	symbol,	whereasH	–	one	of
symbols	{“B”,	“F”,	“M”}	depending	on	type	of	an	objectx	or	of	type	of	its	subobject
composing	it	in	case	of	the	objectx	of	the	same	name.	At	that,	an	objectx	is	removed	from
the	current	session	whereas	the	result	of	such	renaming	keeps	options	and	attributes	of	the
source	objectx.	The	fragment	represents	source	code	of	the	procedure	along	with	typical
examples	of	its	usage.

In[2526]:=	Pr[x_,	y_String,	z_	/;	If[z	===	90,	True,	False]]	:=	{x,	y,	z};	Pr[x_,	y_	/;
StringQ[y],	z_	/;	If[z	===	90,	True,	False]]	:=

Module[{},	{x,	y,	z}];	SetAttributes[Pr,	Protected];	Pr1[x_,	y_String,	z_	/;	If[z	===
90,	True,	False]]	:=	{x,	y,	z};	SetAttributes[Pr1,	{Protected,	Listable}]

In[2527]:=	RenBlockFuncMod[x_	/;	BlockFuncModQ[x],	y_Symbol]	:=

Module[{t	=	{},	h,	a	=	Options[x],	b	=	Attributes[x],	k	=	1,	n,	c	=
Flatten[{PureDefinition[x]}],	d	=	Flatten[{HeadPF[x]}]},	For[k,	k	<=	Length[c],	k++,
h	=	StringReplace[c[[k]],	StringJoin[d[[k]],	”	:=	“]–>	””];	h	=	If[SuffPref[h,
“Module[{“,	1],	“M”,	If[SuffPref[h,	“Block[{“,	1],	“B”,	“F”]];	n	=

ToString[Unique[y]]	<>	h;	AppendTo[t,	n];	ToExpression[StringReplace[c[[k]],
ToString[x]	<>	“[“–>	n	<>	“[“,	1]];	If[a	!=	{},	ToExpression[“SetOptions[”	<>	n	<>	“,
”	<>	ToString[a]	<>	“]”]];	If[b	!={},	ToExpression[“SetAttributes[”	<>	n	<>	“,	”	<>
ToString[b]	<>”]”]]];	ClearAllAttributes[x];	ClearAll[x];	If[Length[t]	==	1,	t[[1]],	t]]

In[2528]	:=	RenBlockFuncMod[Pr1,	Sv]
Out[2528]=	“Sv$66130F”
In[2529]:=	Definition[“Sv$66130F”]
Out[2529]=	Attributes[Sv$66130F]=	{Listable,	Protected}

Sv	$66130F[x_,	y_String,	z_	/;	If[z===	90,	True,	False]]:=	{x,y,z}	In[2530]:=
RenBlockFuncMod[Pr,	Sv]
Out[2530]=	{”Sv$66731F“,	“Sv$66733M”}
In[2531]:=	Definition[“Sv$66731F”]
Out[2531]=	Attributes[Sv$66731F]=	{Protected}

Sv	$66731F[x_,	y_String,	z_	/;	If[z===	90,	True,	False]]:=	{x,y,z}	In[2532]:=
Definition[Sv$66733M]
Out[2532]=	Attributes[Sv$66733M]=	{Protected}

Sv	$66733M[x_,	y_String,	z_	/;	If[z===	90,	True,	False]]:=	Module[{},	{x,	y,	z}]
In[2533]:=	Map[Definition,	{Pr,	Pr1}]
Out[2533]=	{Null,	Null}

The	RenBlockFuncMod	procedure	is	most	of	all	convenient	in	case	of	need	of
differentiating	of	an	objectx	of	the	same	name	onto	the	single	subobjects	composing	it.
In	certain	cases	at	the	procedures	calls	which	are	in	the	user’s	package(files	of	the	types
{“cdf”,“m”,	“mx”})	that	is	uploaded	into	the	current	session,	their	local	variables,
including	local	variables	of	thenested	procedures,	in	the	field	of	theMathematica
variables	are	associated	with	the	context	ascribed	to	the	given	package.	This	mechanism
the	more	in	details	here	isn’t	considered.	It	also	concerns	the	symbolical	results	returned
by	a	procedure	of	this	package	through	such	local	variables.	In	this	case	the	symbolical
result	accepts	the	following	standard	format,	namely:

<Context	ascribed	to	a	package>`<Procedure	name>`Result

For	the	purpose	ofelimination	of	the	similar	situation	and	receiving	so-called	reduced
result	(that	contains	no	formsa`b`)	that	is	significantly	better	adapted	for	the	subsequent
processing,	to	a	result	returned	by	a	procedure	of	the	user	package,	can	be	applied
theReductRes	function	whose	callReductRes[x,	a]	returns	the	reduced	resulta	returned
by	a	procedurex	of	the	user	package	that	has	been	loaded	into	the	current	session.	The	next
fragment	represents	both	variants	of	theHead1	procedure	without	usage	and	with	usage	of
such	mechanism	with	an	illustration	of	results	of	the	call	of	both	procedures.	The	received
results	rather	visually	illustrate	a	basic	distinction	arising	from	the	mechanism	of
reduction	of	results	on	the	basis	of	the	presentedReductRes	function.	The	following
fragment	represents	source	code	of	the	function.

In[3282]:=	ReductRes[x_	/;	SymbolQ[x],	y_]	:=	ToExpression[
StringReplace[ToString[y],	Context[x]	<>	ToString[x]	<>	“`”–>	””]]

In[3283]	:=	ReductRes[Head1,	AladjevProcedures`Head1`System]	Out[3283]=	System

In[3284]:=	Map[Head,	{ProcQ,	Sin,	90,	a+b,	Function[{x,	y},	x+y],	G[x],	J[6],

Head1	}]
Out[3284]=	{Symbol,	Symbol,	Integer,	Plus,	Function,	G,	J,	Symbol}	In[3285]:=
Map[Head1,	Map[ToString,	{ProcQ,	Sin,	90,	a	+	b,

Function[{x,	y},	x	+	y],	G[x],	J[6],	Head1}]]	Out[3285]=	{”Module“,	“System“,
“Integer“,	“Plus“,	“PureFunction“,	“G“,	“J“,

“	Module”}
In[3286]:=	Head1[a	:=	b]
Out[3286]=	AladjevProcedures`Head1`System

The	following	useful	Avg	procedure	is	internal,	i.e.	the	procedure	callAvg[]	makes	sense
only	in	the	body	of	other	procedure,	returning	a	list	of	nesting	{1|2}	whose	elements
define	the2–element	lists	whose	first	elements	define	local	variables	in	string	format	of	a
procedure,	external	in	relation	to	theAvg	whereas	the	second–	their	initial	values	in	string
format;	at	that,	lack	of	the	initial	value	is	coded	by	the	symbol“None”.	In	case	of	more
than	one	local	variable	theListList–list	is	returned,	whose	sublists	have	the	above	format.
At	absence	for	external	procedure	of	local	variables	the	procedure	callAvg[]	returns	the
empty	list–	{}.	The	callAvg[]	outside	of	other	procedure	doesn’t	make	special	sense,
returning	the	list	of	the	above	format	for2local	variables	{a,	b}	of	theAvg	procedure	as
visually	illustrates	the	following	fragment.

In[2723]:=	Avg[]	:=	Module[{b,
a	=	ToString[ToExpression[ToString[InputForm[Stack[_][[1]]]]]]},	a	=	If[!
SuffPref[a,	{“Module[“,	“Block[“},	1],	“Module[{},”	<>	a	<>	“]”,	a];

a	=	StringReplace[a,	“$”	–>	””];	a	=	StringReplace[a,	If[SuffPref[a,	“Block[“,	1],
“Block[“,	“Module[“]–>	””,	1];	a	=	SubStrSymbolParity1[a,	“{“,	“}“][[1]];	If[a	==
“{}“,	{},	b	=	StrToList[StringTake[a,	{2,–2}]];	b	=	Map[StringSplit[#,	”	=	“]	&,	b];
Map[If[Length[#]	==	1,	{#[[1]],	“None”},	#]	&,	b]]]

In[2724]	:=	Z[m_,	n_,	p_	/;	IntegerQ[p]]	:=	Module[{h,	x	=	90,	y	=	{a,	b}},	m+	n	+	p;
h	=	Avg[];	h]
In[2725]:=	Z[73,	90,	500]
Out[2725]=	{{”h“,	“None”},	{”x“,	“90”},	{”y“,	“{a,	b}”}}
In[2726]:=	G[m_,	n_,	p_	/;	IntegerQ[p]]	:=	Module[{a,	b	=	73,	c,	d	=	90},	d	=	Avg[];	m
+	n	+	p;	d]
In[2727]:=	G[t,	p,	500]
Out[2727]=	{{”a“,	“None”},	{”b“,	“73”},	{”c“,	“None”},	{”d“,	“90”}}
In[2728]:=	A[m_,	n_,	p_	/;	IntegerQ[p],	h_	/;	PrimeQ[h]]	:=	Module[{a	=	500.90,	b,	c,
t,	q,	d	=	73,	z	=	47},	b	=	Avg[];	m	+	n	+	p	+	h;	m*n;	b]
In[2729]:=	A[x,	y,	42,	47]
Out[2729]=	{{”a“,	“460.78”},	{”b“,	“None”},	{”c“,	“None”},	{”t“,	“None”},	{”q“,
“None”},	{”d“,	“73”},	{”z“,	“47”}}
In[2730]:=	B[m_,	n_,	p_,	h_	/;	PrimeQ[h]]	:=	Module[{a	=	500.90,	b,	c	=	{h,	p},	t,	q,	d
=	73,	z	=	p*t,	s},	b	=	Avg[];	m	+	n	+	p	+	h;	m*n;	b]
In[2731]:=	B[x,	y,	42,	47]
Out[2731]=	{{”a“,	“500.90”},	{”b“,	“None”},	{”c“,	“{47,	42}”},	{”t“,	“None”},	{”q“,

“None”},	{”d“,	“73”},	{”z“,	“42	t”},	{”s“,	“None”}}
In[2732]:=	T[m_,	n_,	p_,	h_	/;	PrimeQ[h]]	:=	Module[{},	m*n*p*h;	Avg[]];	T[25,	18,
42,	47]
Out[2732]=	{}
In[2733]:=	Avg[]
Out[2733]=	{{”b“,	“None”},
{”a“,	“ToString[ToExpression[ToString[Stack[_][[1]]]]]”}}

The	previous	fragment	represents	source	code	of	the	Avg	procedure	with	examples	of	its
usage	for	receiving	in	the	body	of	a	procedure	of	the	list	of	its	local	variables.	It	should	be
noted	that	a	number	of	system	means	of	our	packageAVZ_Package	[48]	use	theAvg
procedure.

Here	once	again	quite	pertinently	to	note	the	important	circumstance,	that	the	blocks,
functions,	modules	differ	by	their	headings	as	it	was	repeatedly	illustrated	above.	At	that,
at	the	call	of	an	object	of	this	type	the	first	of	the	complete	list	of	the	subobjects	of	the
same	name	determined	by	the	standard	Definition	function	is	choosen	on	which	the	tuple
of	the	actual	arguments	is	admissible.	This	circumstance	should	be	considered	at
programming	and	it	has	been	considered	by	us	at	programming	of	a	number	of	means	of
our	packageAVZ_Package	[48].	Moreover,	as	objects	of	the	same	name	can	be	as	objects
of	type	{Block,	Function,	Module},	and	in	combination	with	objects	of	other	types,	in	a
number	of	cases	at	calculations	with	such	objects,	causing	special	or	erroneous	situations.
For	elimination	from	the	objects	of	the	same	name	of	subobjects	of	types	different	from
{Block,Function,	Module}	a	quite	simple	procedure	serves	whose	callProcCalls[w]
returnsNull,	i.e.	nothing,	deleting	from	the	list	of	the	object	of	the	same	namew(win	string
format)	of	subobjects	of	types,	different	from	{Block,	Function,	Module}.	The	following
fragment	represents	source	code	of	theProcCalls	procedure	along	with	the	most	typical
examples	of	its	usage.

In[2780]	:=	A[x_]	:=	Module[{a	=	50},	x	+	a];	A[x_,	y_]	:=	Module[{a	=	90},	x	+	y	+
a];	A[x_,	y_List]	:=	Block[{},	{x,	y}];	A[x_Integer]	:=	Module[{a	=	42},	x	+	a];	A	:=
{a,	b,	c,	d,	h};	SetAttributes[A,	{Flat,	Listable,	Protected}]	In[2781]:=	Definition[A]

Out[2781]	=	Attributes[A]=	{Flat,	Listable,	Protected}
A:=	{a,	b,	c,	d,	h}
A[x_Integer]:=	Module[{a=	42},	x+	a]
A[x_]:=	Module[{a=	50},	x+	a]
A[x_,	y_List]:=	Block[{},	{x,	y}]
A[x_,	y_]:=	Module[{a=	90},	x+	y+	a]

In[2782]:=	ProcCalls[x_/;	StringQ[x]]	:=
Module[{a	=	Select[StringSplit[ToString[InputForm[Definition[x]]],	“\n”],

#	!=	”	”	&&	#!=	x	&&	!	SuffPref[#,	x	<>	”	:=	“,	1]	&]},	If[SuffPref[a[[1]],
“Attributes[“,	1],	AppendTo[a[[2	;;–1]],	a[[1]]]];	ClearAttributes[x,	Protected];
Clear[x];	Map[ToExpression,	a];]

In[2783]	:=	ProcCalls[“A”]
In[2784]:=	Definition[A]
Out[2784]=	Attributes[A]=	{Flat,	Listable,	Protected}

A[x	_Integer]:=	Module[{a=	42},	x+	a]
A[x_]:=	Module[{a=	50},	x+	a]
A[x_,	y_List]:=	Block[{},	{x,	y}]
A[x_,	y_]:=	Module[{a=	90},	x+	y+	a]

In[2785]:=	ScanLikeProcs[x_:	{}]	:=	Module[{b	=	{},	c	=	{},	d,	h,	k	=	1,	a	=
Select[Names[“`*”],	StringFreeQ[#,	“$”]	&&

Quiet[Check[BlockFuncModQ[#],	False]]	&]},	Off[Definition::ssle];	If[a	==	{},
Return[{}],	For[k,	k	<=	Length[a],	k++,	d	=	Definition2[a[[k]]][[1	;;–2]];	If[Length[d]
>	1,	AppendTo[b,	Map[StringTake[#,	{1,	Flatten[StringPosition[#,	”	:=	“]][[1]]–1}]
&,	d]];

AppendTo[c,	a[[k]]]]]];	On[Definition::ssle];	If[!	HowAct[x],	x	=	b,	Null];	c]

In[2786]	:=	G[x_]	:=	Module[{a	=	500},	x^2	+	a];	G[x_	/;	PrimeQ[x]]	:=	Module[{a	=
90},	x	+	a];	G[x_,	y_]	:=	Module[{},	x	+	y];	G[x_,	y_	/;	ListQ[y],	z_]	:=	Module[{},	x	+
Length[y]	+	z]

In[2787]	:=	V[x_]	:=	Module[{},	x];	V[x_	/;	ListQ[x]]	:=	Module[{},	Length[x]]
In[2788]:=	{ScanLikeProcs[],	ScanLikeProcs[Sv],	Sv}
Out[2788]=	{{”A“,	“G“,	“V”},	{”A“,	“G“,	“V”},	{{”A[x_Integer]“,	“A[x_,	y_List]“,

“A[x_,	y_]“,	“A[x_]”},	{”G[x_	/;	PrimeQ[x]]“,	“G[x_]“,	“G[x_,	y_]“,	“G[x_,	y_	/;
ListQ[y],	z_]”},	{”V[x_	/;	ListQ[x]]“,	“V[x_]”}}}

In	addition	to	the	previous	procedure	for	the	purpose	of	determination	of	the	blocks,
functions,	modules	of	the	same	name	of	the	current	session	of	the	system	a	quite	simple
procedure	is	intended	whose	the	callScanLikeProcs[]	returns	the	list	of	the
blocks/functions/modules	of	the	same	name	that	are	activated	in	the	current	session	while
as	a	result	of	the	callScanLikeProcs[b]	in	addition	thru	an	undefinite	variableb	the	list	of
headings	in	string	format	of	objects	of	the	specified	type	is	returned.	The	previous
fragment	represents	source	code	of	theScanLikeProcs	procedure	along	with	examples	of
its	use.	In	certain	appendices	these	means	are	rather	useful,	above	all,	at	elaboration	of	the
system	means	for	manipulations	with	procedures.

In	a	number	of	cases	thestructural	analysis	of	objects	of	type	{Block,	Module,	Function}
represents	the	undoubted	interest.	In	connection	with	this	the	next	StructProcFunc
procedure	providing	a	certain	structural	analysis	of	objects	of	this	type	was	created.	The
fragment	below	represents	theStructProcFunc	procedure	whose	callStructProcFunc[x]
returns	simple	or	nested	list	whose	elements	depending	on	type	{“Block”,	“Module”,
“Function”}	of	an	actual	argumentx	have	format	{Type,Heading,Locals,Body}	for
{“Block”,	“Module”}	and	{Type,Heading,Body}	for“Function”;	furthermore,	qua	of	the
function	is	understood	an	objectx	such	asBlockFuncModQ[x]	=True.	This	fragment
represents	source	code	of	the	procedure	along	with	examples	of	its	usage	off	which	the
format	of	the	result	returned	by	the	procedure	is	highly	obvious.

In[3223]	:=	StructProcFunc[x_	/;	BlockFuncModQ[x]]	:=	Module[{c,	d,	h={},	p,	k	=
1,	t,	b	=	Flatten[{HeadPF[x]}],	a	=	Flatten[{PureDefinition[x]}]},	c	=
Map9[StringReplace,	a,	Map[StringJoin[#,	”	:=	“]–>	””	&,	b]];	While[k	<=
Length[b],	d	=	c[[k]];	If[SuffPref[d,	“Module[{“,	1],	t	=	“Module”,

If[SuffPref[d,	“Block[{“,	1],	t	=	“Block”,	t	=	””]];	If[t	!=	””,	AppendTo[h,	{t,	b[[k]],	p
=	SubStrSymbolParity1[d,	“{“,	“}“][[1]];

StrToList[p],	StringReplace[StringTake[d,	{1,–2}],	t	<>	“[”	<>	p	<>	“,	“–>	””]}],
AppendTo[h,	{“Function”,	b[[k]],	StringReplace[d,	b[[k]]	<>	”	:=	“–>	””]}]];	k++];
If[Length[h]	==	1,	h[[1]],	h]]

In[3224]	:=	Agn[x_]	:=	Block[{a	=	90,	b	=500},	x^2*a*b];	Agn[x_,	y_]	:=	x+y
In[3225]:=	Agn[x_,	y_,	z_]	:=	Module[{a	=	90},	a*(x	+	y	+	z)]
In[3226]:=	StructProcFunc[Agn]
Out[3226]=	{{”Block“,	“Agn[x_]“,	{”a=	90“,	“b=	500”},	“x^2*a*b”},

{	“Function“,	“Agn[x_,	y_]“,	“x+	y”},
{”Module“,	“Agn[x_,	y_,	z_]“,	{”a=	90”},	“a*(x+	y+	z)”}}	In[3227]:=	Avz[x__]	:=
Module[{a	=6,	b	=	Stack[_]},	a+x;	b;	$InBlockMod]	In[3228]:=	StructProcFunc[Avz]
Out[3228]=	{”Module“,	“Avz[x__]“,	{”a	=	6“,	“b=	Stack[_]”},
“a+	x;	b;	$InBlockMod”}
For	the	purpose	of	elimination	of	ambiguity	of	the	modules,	functions	and	blocks	of	the
same	name	it	is	recommended	to	apply	standard	means	to	the	cleaning	of	the	current
session	off	concrete	definitions,	using	the	cancellation	of	theProtectedattribute	for	them	if
it	is	necessary.	For	cleaning	of	symbols	off	the	ascribed	values	theMathematica	has	three
functionsClear,	ClearAll	andRemove	that	are	considered,	for	example,	in	[32].	However,
the	given	functions	demand	the	concrete	designation	of	the	symbols	that	are	subject	to	the
cleaning	off	the	ascribed	expressions.	Whereas	the	following	fragment	represents	source
code	of	theClearCS	procedure	with	examples	of	its	usage	whose	callClearCS[ClearAll]
returnsNull,	i.e.	nothing,	clearing	all	symbols	and	off	the	ascribed	values	received	by	them
in	the	current	session,	and	off	attributes,	messages	and	values	by	default,	associated	with
such	symbols;	while	the	callClearCS[Remove]	returnsNull,	i.e.	nothing,	deleting	from	the
field	of	names	of	the	system	all	symbols	that	received	values	in	the	current	session	of
theMathematica	system.

In[2640]:=	ClearCS[x_	/;	MemberQ[{ClearAll,	Remove},	x]]	:=	Module[{a	=
Join[Names[“Global`*”],	{“a”,	“b”,	“c”,	“d”,	“h”,	“k”,	“p”,	“S”,	“x”,	“y”}]},
Quiet[Mapp[ClearAttributes,	a,	Protected]];	Quiet[Map[x,	a]];]	In[2641]:=	{x,	y,	z,
g,	h}=	{42,	73,	47,	68,	2015};	ClearCS[Remove];	{x,y,z,g,h}	Out[2641]=	{Removed[x],
Removed[y],	Removed[z],	Removed[g],	Removed[h]}
In[2642]:=	{x,	y,	z,	g,	h}=	{42,	73,	47,	68,	2015};	ClearCS[ClearAll];

{	x,	y,	z,	g,	h}
Out[2642]=	{x,	y,	z,	g,	h}
In[2643]:=	G[x_]	:=	Module[{a	=	90},	x^2	+	a];	V[x_]	:=	Module[{},	x^2];

G[x_	/;	PrimeQ[x]]	:=	Module[{a	=	500},	x	+	a];
V[x_	/;	ListQ[x]]	:=	Module[{},	Length[x]]
In[2644]:=	ClearCS[ClearAll];	Map[Definition,	{G,	V}]
Out[2644]=	{Null,	Null}

In	certain	appendices	the	ClearCS	procedure	appears	as	an	useful	enough	means,	in	many
respects	providing	recovery	of	initial	status	of	the	current	session.	The	procedure	is	used
by	some	means	of	package	AVZ_Package,	carrying	out	the	function	of	preliminary

cleaning	of	the	current	session.	In	the	problems	of	formal	processing	of	functional
expressions	theExpArgs	procedure	represents	a	quite	certain	interest	whose
callExpArgs[G,{x,y,	…}]	provides	extension	of	the	list	of	formal	arguments	of	a	module,
function	or	blockG	onto	the	list	of	arguments	{x,	y,	z,	…}	to	the	right	concerning	a	tuple
of	formal	arguments	of	the	objectG	with	return	ofNull	value,	i.e.	nothing,	and	with
activation	in	the	current	session	of	the	updated	definition	of	the	objectG.	The	expansion	of
a	tuple	of	formal	arguments	is	made	for	objectG	only	onto	variables	from	the	list	{x,	y,
…}	which	aren’t	its	formal	arguments	or	local	variables;	otherwise	expansion	isn’t	made.
List	elements	{x,	y,	z,	…}	onto	updating	can	be	symbols	in	string	format	along	with	names
of	formal	arguments	with	tests	foradmissibility	of	the	corresponding	actual	arguments
ascribed	to	them.	At	that,	the	procedure	callExpArgs[G,	x]	on	inadmissible	objectG,	in
particular,	on	a	system	function	or	on	theempty	listx	is	returned	unevaluated.	The
following	fragment	represents	source	code	of	theExpArgs	procedure	along	with	some
most	typical	examples	of	its	usage.

In[2547]	:=	A[x_]	:=	Module[{a	=	6},	x*a];	A[x_,	y_]	:=	Module[{a	=	7},	x*y*a];
A[x_,	y_List]	:=	Block[{},	{x,	y}];	A[x_Integer]	:=	Module[{a	=	5},	x*a];
SetAttributes[A,	{Flat,	Listable,	Protected}];	Art[x_,	y_	/;	PrimeQ[y]]	:=	Module[{a
=	2,	b	=	6},	Length[Join[x,	y]]*a*b]

In[2548]:=	ExpArgs[f_	/;	BlockFuncModQ[f],	x_	/;	ListQ[x]	&&
DeleteDuplicates[Map[!	StringFreeQ[ToString[#],	“_”]	||

StringQ[#]	&,	x]]	==	{True}]	:=	Module[{a,	b,	c,	d,	t,	h,	g={},	k	=	1},	a	=
Flatten[{Definition4[ToString[f]]}];	b	=	Args[f,	90];	b	=	If[NestListQ[b],	b[[1]],	b];	d
=	Locals1[f];	d	=	If[NestListQ[d],	d[[1]],	d];

c	=	Flatten[{HeadPF[f]}][[1]];	t	=	Map[ToString,	x];	h	=	Map[#[[1]]	&,
Map[StringSplit[#,	“_”]	&,	t]];	b	=	Join[b,	d];	While[k	<=	Length[h],	If[!
MemberQ[b,	h[[k]]],	d	=	t[[k]];	AppendTo[g,	If[StringFreeQ[d,	“_”],	d	<>	“_”,	d]]];
k++];	If[g	==	{},	Return[],	g	=	ToString[g];	d	=	StringTake[c,	{1,–2}]	<>	“,	”	<>
StringTake[g,	{2,–2}]	<>	“]”;	ClearAllAttributes[f];	ClearAll[f];	a[[1]]	=
StringReplace[a[[1]],	c–>	d,	1];	Map[ToExpression,	a]];]	In[2549]:=	ExpArgs[Art,
{“x”,	“z_”,	“h”,	p_	/;	String[p],	c_String,	h_	/;	ListQ[h]	&&	Length[h]	>=	90}]
In[2550]:=	Definition[Art]

Out[2550]	=	Art[x_,	y_	/;	PrimeQ[y],	z_,	h_,	p_	/;	String[p],h_	/;	ListQ[h]&&
Length[h]>=	90]:=	Module[{a=	2,	b=	6},	Length[Join[x,	y]]	a	b]
In[2551]:=	ExpArgs[Art,	{“x”,	“z_”,	“h”,	p_	/;	String[p],	c_Integer,	h_	/;	ListQ[h]
&&	Length[h]	>=	90}]
In[2552]:=	Definition[Art]
Out[2552]=	Art[x_,	y_	/;	PrimeQ[y],	z_,	h_,	p_	/;	String[p],	c_String,	h_	/;	ListQ[h]&&
Length[h]>=	90]:=	Module[{a=	2,	b=	6},	Length[Join[x,	y]]	a	b]
In[2553]:=	ExpArgs[A,	{“x”,	“z_”,	“h”,	p_	/;	String[p],	c_Integer,	h_	/;	ListQ[h]	&&
Length[h]	>=	90}]
In[2554]:=	Definition[A]
Out[2554]=	Attributes[A]=	{Flat,	Listable,	Protected}
A[x_Integer,	z_,	h_,	p_	/;	String[p],	c_Integer,	h_	/;	ListQ[h]&&	Length[h]>=	90]:=
Module[{a=	5},	x	a]	A[x_]:=	Module[{a=	6},	x	a]

A[x_,	y_List]:=	Block[{},	{x,	y}]
A[x_,	y_]:=	Module[{a=	7},	x	y	a]
In[2555]:=	ExpArgs[A,	{“x”,	“z_”,	“h”,	p_	/;	String[p],	c_Integer,	h_	/;	ListQ[h]	&&
Length[h]	>=	90}]
In[2556]:=	Definition[A]
Out[2556]=	Attributes[A]=	{Flat,	Listable,	Protected}
A[x_Integer,	z_,	h_,	p_	/;	String[p],	c_Integer,	h_	/;	ListQ[h]	&&	Length[h]>=	90]:=
Module[{a=	5},	x	a]	A[x_]:=	Module[{a=	6},	x	a]
A[x_,	y_List]:=	Block[{},	{x,	y}]
A[x_,	y_]:=	Module[{a=	7},	x	y	a]

Definition	of	the	ExpArgs	procedure	along	with	the	standard	means	uses	a	series	of	our
means	such	asArgs,	BlockModQ,	ClearAllAttributes,	HeadPF,	Definition4,	Locals1,
NestListQ	that	are	considered	in	the	present	book	and	in	[33].	TheExpArgs	procedure	has
a	series	of	rather	interesting	appendices,	first	of	all,	applications	of	the	system	character.

The	next	fragment	represents	the	useful	procedural	variable	$ProcType	that	has	been
implemented	by	a	simple	function	on	the	basis	of	the	systemStack	function	and	making
sense	only	in	the	body	of	a	block	or	module,	returning	type	{Block,	Module}	in	string
format	of	an	object	containing	it.	Outside	of	objects	of	the	specified	type	the	variable
accepts	the”ToString”	value	which	doesn’t	have	especial	meaning.	The	next	fragment
represents	source	code	of	the$ProcType	variable	along	with	some	typical	examples	of	its
usage.	The	$ProcType	variable	has	a	number	of	rather	useful	appendices	of	the	applied
and	the	system	character.

In[2562]:=	$ProcType	:=	ToString[Stack[][[1]]]

In[2563]	:=	Agn[x_,	y_]	:=	Block[{a	=	90,	b	=	500,	c	=	$ProcType},	a	+	b	+	c;
{$ProcType,	c}]
In[2564]:=	Agn[42,	47]
Out[2564]=	{”Block“,	“Block”}
In[2565]:=	Agn[x_,	y_]	:=	Module[{a	=	90,	b	=	500,	c	=	$ProcType},	a	+	b	+	c;
{$ProcType,	c}]
In[2566]:=	Agn[42,	47]
Out[2566]=	{”Module“,	“Module”}
In[2567]:=	Agn[x_,	y_]	:=	Module[{c	=	$ProcType,	a	=	90,	b	=	500},	a	+	b	+	c;
{$ProcType,	c}]
In[2568]:=	Agn[42,	47]
Out[2568]=	{”Module“,	“Module”}
In[2569]:=	$ProcType
Out[2569]=	“ToString”

To	the	previous	procedural	variable	another	procedural	variable	$TypeProc	directly
adjoins	which	is	also	used	only	in	the	body	of	a	block	or	module	of	any	type.	The
variable$TypeProc	receives	value	of	type	in	string	format	of	an	objectG	which	contains	it,
in	the	context	{“Block”,	“DynamicModule”,	“Module”};	outside	of	a	block	or	module
the	variable	receives$Failed	value	as	clearly	illustrates	the	fragment	representing	source
code	of	the	procedural	variable$TypeProc	along	with	examples	of	its	most	typical	usage.

In[2572]	:=	$TypeProc	:=	CheckAbort[If[$a25k18$	=Select[{Stack[Module],
Stack[Block],	Stack[DynamicModule]},	#	!=	{}&];	If[$a25k18$	==	{},
Clear[$Art24$Kr17$];	Abort[],	$a25k18$	=	ToString[$a25k18$[[1]][[1]]]];
SuffPref[$a25k18$,	“Block[{“,	1],	Clear[$a25k18$];	“Block”,	If[SuffPref[$a25k18$,
“Module[{“,	1]	&&	!	StringFreeQ[$a25k18$,	“DynamicModule”],	Clear[$a25k18$];
“DynamicModule”,	Clear[$a25k18$];	“Module”]],	$Failed]

In[2573]	:=	M[x_]	:=	Module[{a	=	90,	b	=	500,	c	=	$TypeProc},	c];	M[73]	Out[2573]=
“Module”
In[2574]:=	G[x_]	:=	Module[{a	=	6,	b	=7,	c},	c	=a*b*x;	c^2;	$TypeProc];	G[73]
Out[2574]=	“Module”
In[2575]:=	B[x_]	:=	Block[{a	=	90,	b	=	500,	c	=	$TypeProc},	c];	B[68]	Out[2575]=
“Block”
In[2576]:=	DM[x_]	:=	DynamicModule[{a,	c	=	$TypeProc},	x;	c];	DM[68]	Out[2576]=
“DynamicModule”
In[2577]:=	$TypeProc
Out[2577]=	$Failed
In[2578]:=	F[x_	/;	ListQ[x]]	:=	Append[Select[x,	OddQ[#]	&],	$TypeProc];

F[{68,	73,	47,	18}]
Out[2578]=	{73,	47,	$Failed}
In	certain	cases	of	procedural	programming	the$TypeProc	variable	along	with
the$ProcType	variable	are	useful	enough	facilities.

To	the	previous	procedural	variables	the	$CallProc	variable	directly	adjoins	whose	call
returnscontents	in	string	format	of	the	body	of	a	block	or	module	which	contains	it	at	the
time	of	a	call.	At	that,	for	a	module	the	body	with	local	variables	with”$”	symbols
ascribed	to	them	while	for	a	block	its	body	in	the	standard	format	are	returned.	The	call	of
the	given	variable	outside	of	a	block	or	module	returns”StringTake[ToString1[Stack[_]
[[1]]],{10,	2}]“.The	next	fragment	represents	source	code	of	the	procedural
variable$CallProc	along	with	the	typical	examples	of	its	usage.

In[2584]:=	$CallProc	:=	StringTake[ToString1[Stack[_][[1]]],	{10,–2}]

In[2585]	:=	M[x_,	y_	/;	StringQ[y]]	:=	Module[{a	=	$CallProc,	b,	c},
x*StringLength[y];	a]
In[2586]:=	M[6,	“vak”]
Out[2586]=	“Module[{a$	=	$CallProc,	b$,	c$},	6*StringLength["vak"];	a$]”
In[2587]:=	B[x_,	y_	/;	PrimeQ[y]]	:=	Block[{a	=	$CallProc,	b},	x	+	y;	a]	In[2588]:=
B[500,	17]
Out[2588]=	“Block[{a=	$CallProc,	b},	500+	17;	a]”
In[2589]:=	$CallProc
Out[2589]=	“StringTake[ToString1[Stack[_][[1]]],	{10,–2}]”

The	procedural	variable	$CallProc	provides	possibility	of	processing	of	the	body	of	a
block	or	a	module,	containing	it,	within	the	confines	of	the	given	object,	presenting	a
certain	interest	for	a	number	of	applications,	first	of	all,	of	the	system	character.

Use	of	means	of	preservation	of	definitions	in	the	ASCII	format	files	allows	to	program
quite	effective	and	useful	means	of	the	analysis	of	the	structural	organization	of	the	user

blocks,	functions	and	modules.	The	next	fragment	represents	source	code	of
theCompActPF	procedure	along	with	the	typical	examples	of	its	application,	whose
callCompActPF[x]	returns	the	nested2–	element	list	whose	the	first	element	defines	the
list	of	all	blocks,functions	or	modules	that	enter	in	the	definition	of	a
block/function/modulex,	including	x	whereas	the	second	element	defines	the	list	of
headings	in	string	format	of	these	means.	At	that,	the	lists	include	only	the	user	means
whose	definitions	were	activated	in	the	current	session	of	theMathematica	system;
moreover,	for	the	calls	which	enter	into	an	objectx,are	added	respectively	and	all	their
calls	onto	the	full	depth	of	nesting.

In[5134]:=	G[x_]	:=	Module[{},	a*x	+	b];	G1[x_]	:=	a*x	+	b	+	V[x,	90];	S[y_]	:=
Module[{},	y^2	+	90];	S1[y_]	:=	y^2	+	G[y];	V[x_,	y_]	:=	Module[{G,	S},	G[x]	+
S[y^2]];	V1[x_,	y_]	:=	G1[x]	+	S1[y^2]	+	h*Sin[x*y]	+	v*Cos[x*y]

In[5135]	:=	CompActPF[x_	/;	BlockFuncModQ[x]]	:=	Module[{b	={},	c	=””,	d,	a	=
ToDefOptPF[x],	f	=	ToString[x]	<>	“.txt”,	h	=	””},	Put[FullDefinition[x],	f];
Quiet[While[!	SameQ[h,	EndOfFile],	h	=	Read[f,	String];	If[h	!=	”	“,	c	=	c	<>	h;
If[HeadingQ[d	=StringTake[c,{1,	Flatten[StringPosition[c,	”	:=	“]][[1]]–1}]],
AppendTo[b,	d];	c	=	””];	Continue[]]]];	DeleteFile[Close[f]];	{Map[HeadName,	b],
b}]

In[5136]:=	CompActPF[V1]

Out[5136]	=	{{”V1“,	“G1“,	“V“,	“G“,	“S“,	“S1”},	{”V1[x_,	y_]“,	“G1[x_]“,	“V[x_,
y_]“,	“G[x_]“,	“S[y_]“,	“S1[y_]”}}
In[5137]:=	CompActPF[V]
Out[5137]=	{{”V“,	“G“,	“S”},	{”V[x_,	y_]“,	“G[x_]“,	“S[y_]”}}

In[5138]	:=	CompActPF1[x_	/;	BlockFuncModQ[x]]	:=	Module[{d	=	{},	k	=	1,	b	=
Args[x,	90],	a	=	Flatten[{PureDefinition[x]}][[1]],	c	=	Locals1[x],	p},	{b,	c}=
{If[NestListQ[b],	b[[1]],	b],	If[NestListQ[c],	c[[1]],	c]};	a	=	Select[ExtrVarsOfStr[a,
2],	!	MemberQ[Flatten[{ToString[x],	Join[b,	c,	{“Block”,	“Module”}]}],	#]	&];
While[k	<=	Length[a],	p	=	a[[k]];	AppendTo[d,	If[BlockFuncModQ[p],	{p,
HeadPF[p]},	If[SystemQ[p],	{p,	“System”},	{p,	“Undefined”}]]];	k++];	a	=
Map[Flatten,	Gather[d,	!	StringFreeQ[#1[[2]],	“_”]	&&	!	StringFreeQ[#2[[2]],	“_”]
&]];	b	=	Map[Flatten,	Gather[a,	#1[[2]]	==“System”	&&	#2[[2]]==	“System”	&]];	d
=	Map[Flatten,	Gather[b,	#1[[2]]	==	“Undefined”	&&	#2[[2]]	==	“Undefined”	&]];
Map[If[#[[–1]]	==	“System”,

Prepend[MinusList[#,	{“System”}],	“System”],	If[#[[–1]]	==	“Undefined”,
Prepend[MinusList[#,	{“Undefined”}],	“Undefined”],	#]]	&,	d]]	In[5139]:=
CompActPF1[V1]
Out[5139]=	{{”System“,	“Cos“,	“Sin”},	{”G1“,	“G1[x_]“,	“S1“,	“S1[y_]”},

{	“Undefined“,	“h“,	“v”}}
In[5140]:=	CompActPF1[V]
Out[5140]=	{}
In[5141]:=	Z[x_/;	StringQ[x],	z_	/;	!	HowAct[x]]	:=	Block[{a	=	Sin[x]},

Cos[a]	+	StringLength[x]]	In[5142]:=	CompActPF1[Z]
Out[5142]=	{{”System“,	“Cos“,	“Sin“,	“StringLength”},

{”HowAct“,	“HowAct[x_]”}}

We	will	note,	that	for	effective	processing	of	the	saved	complete	definitions	of	functions,
blocks	and	modules	in	definition	of	theCompActPF	procedure	the	procedure	has	been
used,	whose	the	callToDefOptPF[x]	optimizes	the	definition	of	the	user	block,	function	or
modulex	in	the	current	session.	The	truth,	for	optimization	of	definitions	there	are	also
other	means	considered	in	the	book	above.	A	quite	useful	modification	of	theCompActPF
procedure	completes	the	previous	fragment	whose	the	callCompActPF1[x]	returns	the
nested	list	whose	elements	represent	sublists	of	the	following	format:

–	sublist	with	the	first	element“System”	defines	calls	of	system	functions	in	definition	of	a
block,	function	or	modulex;
–	sublist	with	the	first	element“Undefined”	defines	names	of	objects	which	aren’t
included	into	the	list	of	arguments	and	local	variables	of	a	function,	block	or	modulex;
–	sublist	of	a	format	different	from	above-mentioned	contains	the	user	pairs
{block/function/module,	its	heading},	whose	calls	are	available	in	definition	of	an	objectx.

The	CompActPF1	procedure	is	an	useful	means	in	a	number	of	applications,	first	of	all,
of	the	system	character,	providing	the	structural	analysis	of	the	user	means	of	the	types
{Block,	Function,	Module}.

As	it	is	well	known	[25],	the	Maple	system	has	a	number	of	the	procedural
variables(where	under	procedural	variables	are	understood	the	variables	making	sense
only	in	the	body	of	a	block	or	module	and	receiving	values	about	components	of	the	object
containing	them)	which	provide,	in	particular,	the	possibility	to	receive	the	list	of	formal
arguments	of	the	block	or	module	in	its	body	at	a	call.	Whereas	in	theMathematica
system	similar	means	are	absent	though	in	many	cases	represent	quite	certain	interest.
Some	means	of	this	kind	for	Mathematica	are	given	above.	It	is	simple	to	notice	that
means	of	theMaple	in	this	respect	are	more	developed,	than	similar	means	of
theMathematica,	that	in	some	cases	rather	significantly	simplifies	procedural
programming.

A	block	or	module	provide	four	main	mechanisms	of	return	of	results	of	its	call:(1)
through	thelast	offer	of	the	body,	(2)	on	the	basis	ofReturn	function,	(3)	through	global
variables,	and(4)	through	formal	arguments.	The	given	question	was	considered	enough	in
detail	in	our	books	[25-33].	The	following	fragment	on	the	example	of	rather	simple
procedureP	very	visually	illustrates	a	mechanism	of	return	of	any	number	of	results
through	argumentz	–	the	tuple	of	undefinite	variables.	At	that,	for	simplification	of
assignment	of	the	returned	results	to	elements	of	a	listz	a	simple	and	at	the	same	time
useful	functionAssignL	is	used.

In[2550]:=	P[x_,	y_,	z___	/;	DeleteDuplicates[Map[!	HowAct[#]	&,	{z}]]	==	{True}]
:=	Module[{a	=	90,	b	=	500,	c	=	72},

If[x*y	>	500,	AssignL[{z}[[1]],	a];	AssignL[{z}[[2]],	b];	AssignL[{z}[[3]],	c]];	(x	+
y)*(a	+	b	+	c)]	In[2551]:=	P[42,	47,	m,	n,	p]
Out[2551]=	58	918
In[2552]:=	{m,	n,	p}
Out[2552]=	{90,	500,	72}
In[2553]:=	First[{x,	y,	z}]	=	90

Set	::write:	Tag	First	in	First[{x,	y,	z}]	is	Protected.	>>	Out[2553]=	90
In[2554]:=	{x,	y,	z}
Out[2554]=	{x,	y,	z}
In[2555]:=	{x,	y,	z}[[2]]	=	90

Set	::setps:	{x,	y,	z}	in	the	part	assignment	is	not	a	symbol.	>>	Out[2555]=	90
In[2556]:=	{x,	y,	z}
Out[2556]=	{x,	y,	z}

In[2557]:=	AssignL[x_,	y_,	z___]	:=	Quiet[If[{z}!=	{},	x	:=	y,	x	=	y]]

In[2558]	:=	AssignL[{x,	y,	z}[[2]],	90]
Out[2558]=	90
In[2559]:=	{x,	y,	z}
Out[2559]=	{x,	90,	z}
In[2560]:=	AssignL[{a1,	a2,	a3,	a4,	a5,	a6}[[3	;;	5]],	{72,	47,	67}]
Out[2560]=	{72,	47,	67}
In[2561]:=	{a1,	a2,	a3,	a4,	a5,	a6}
Out[2561]=	{a1,	a2,	72,	47,	67,	a6}
In[2562]:=	AssignL[{{a,	b},	{c,	d}}[[1,	2]],	90,	Delayed]
In[2563]:=	{{a,	b},	{c,	d}}
Out[2563]=	{{a,	90},	{c,	d}}
In[2564]:=	AssignL[{{a,	b},	{c,	d}}[[1,	2]],	90,	Delayed]
Ot[2564]=	$Failed
The	function	callAssignL[x,	y]	provides	correct	assignment	to	elements(to	all	or	the	given
elements)	of	an	arbitrary	expression	or	expressions	from	the	listy,	modeling	assignments
on	the	basis	of	constructions	of	the	format	{x,	y,	z,…}[[n]]=	Expr	and	{x,	y,	z,…}[[n	;;
p]]=	{Exn,Exn+1,	…,Exp}	and	to	them	similar	which	the	system	doesn’t	support	while	the
function	callAssignL[x,	y,	j]	wherej	–	an	expression–	provides	the	correct	delayed
assignments	of	the	above-stated	kind,	as	visually	illustrates	the	previous	fragment.	At	that,
the	function	call	on	inadmissible	appointments	returns$Failed.	As	it	was	already	noted
earlier	and	it	was	used	in	some	procedures,	in	the	Mathematica	along	with	the	simple
procedures	which	aren’t	containing	in	the	body	of	definitions	of	other	procedures	the	use
of	the	so–callednested	procedures,	i.e.	of	such	procedures	whose	definitions	are	in	body	of
other	procedures	is	allowed.	The	nesting	level	of	such	procedures	is	defined	by	only	a	size
of	working	field	of	the	system.	In	this	regard	rather	interesting	problem	of	definition	of	the
list	of	subprocedures	whose	definitions	are	in	the	body	of	an	arbitrary	procedure	of	the
type	{Block,	Module}	arises.	The	SubProcs	procedure	successfully	solves	the	problem
whose	callSubProcs[x]	returns	the	nested2-element	list	ofListList-type	whosefirst	element
defines	the	sublist	of	headings	of	blocks	and	modules	composing	a	main	procedure	x
whereas	thesecond	element	defines	the	sublist	of	the	generated	names	of	blocks	and
modules	composing	a	main	procedurex	including	procedurex	itself,	and	that	are	activated
in	the	current	session	ofMathematica	system.	The	following	fragment	represents	source
code	of	theSubProcs	procedure	along	with	the	most	typical	examples	of	its	application.

In[2525]	:=	SubProcs[P_	/;	BlockModQ[P]]	:=	Module[{b,	c	=	{},	d,	t,	h,	k	=	1,	p	=	{},
g	=	{},	a	=	Flatten[{PureDefinition[P]}][[1]]},	b	=	StringPosition[a,	{“]	:=	Block[{“,
“]	:=	Module[{”}];	For[k,	k	<=	Length[b],	k++,	d	=	b[[k]];	AppendTo[p,

ExprOfStr[a,	d[[1]],–1,	{”	“,	“,”,	“;”}]];	AppendTo[c,	h	=	ExprOfStr[a,	d[[1]],–1,	{”
“,	“,”,	“;”}]	<>	”	:=	”	<>	ExprOfStr[a,	d[[1]]	+	5,	1,	{”	“,	“,”,	“;”}];	t	=
Flatten[StringPosition[h,	“[“]];	h	=	Quiet[StringReplacePart[h,	ToString[
Unique[ToExpression[StringTake[h,	{1,	t[[1]]–1}]]]],	{1,	t[[1]]–1}]];	AppendTo[g,
StringTake[h,	{1,	Flatten[StringPosition[h,	“[“]][[1]]–1}]];	h]];	Map[ToExpression,
c];	{p,	Map[ToExpression,	g]}]

In[2526]:=	P[x_,	y_]	:=	Module[{a,	b,	B,	P1,	P2},	P1[z_,	h_]	:=
Module[{m,	n},	z+h];	B[h_]	:=	Block[{},	h];	P2[z_]	:=	Module[{P3},

P3[h_]	:=	Module[{},	h];	P3[z]];	x*P2[x]	+	P1[x,	y]	+	P2[y]]	In[2527]:=	P[90,	500]
Out[2527]=	9190
In[2528]:=	SubProcs[P]
Out[2528]=	{{”P[x_,	y_]“,	“P1[z_,	h_]“,	“B[h_]“,	“P2[z_]“,	“P3[h_]”},

{P	$60501,	P1$60506,	B$60510,	P2$60515,	P3$60519}}	In[2529]:=
DefFunc[P2$60515]
Out[2529]=	P2$1247[z_]:=	Module[{P3},	P3[h_]:=	Module[{},	h];	P3[z]]

Thus,	between	elements	of	sublists	of	the	returned	nested	list	the	one-to-one
correspondence	takes	place.	The	definition	of	theSubProcs	procedure	along	with	the
standard	means	uses	a	number	of	our	means	such	asBlockModQ,	ExprOfStr,
PureDefinition	which	are	considered	in	the	present	book	and	in	[28–33].	The	procedure
allows	a	number	of	interesting	enough	expansions.

The	quite	useful	SubProc1	procedure	provides	testing	of	a	block/modulex	regarding
existence	in	its	definition	of	the	blocks/modules.	The	procedure	callSubProcs1[x]
depending	on	existence	of	an	objectx	of	the	same	name	with	various	headings	or	with	one
heading	returns	the	nested	or	simple	list;	at	that,	thefirst	elements	of	the	list	or	sublists
define	headings	of	an	objectx	while	thesecond	define	number	of	blocks/modules	that	enter
into	definition	of	the	objectx	with	the	corresponding	headings.	If	the	objectx	not	a	block,
function,	module,	the	procedure	callSubProcs1[x]	is	returned	unevaluated.	The	fragment
represents	source	code	of	the	procedure	with	the	most	typical	examples	of	its	use.
TheSubProcs1	procedure	can	be	quite	simply	expanded	onto	extraction	of	all
subprocedures	of	a	procedurex.

In[2532]	:=	SubProcs1[x_	/;	BlockFuncModQ[x]]	:=	Module[{b	={},	c,	d,	k	=	1,	a	=
Flatten[{PureDefinition[x]}]},	For[k,	k	<=	Length[a],	k++,	c	=	a[[k]];	d	=
StringPosition[c,	{“]	:=	Module[{“,	“]	:=	Block[{”}];	If[d	==	{},	Continue[]];
AppendTo[b,	{StringTake[c,	{1,	d[[1]][[1]]}],	Length[d]–1}]];	If[Length[b]	==	1,
Flatten[b],	b]]

In[2533]	:=	G[x_,	y_,	z_]	:=	x	+	y	+	z;	G[x_]	:=	Module[{V,	H},	V[y_]	:=	Module[{},
y^3];	H[z_]	:=	Module[{},	z^4];	x	+	V[x]	+H[x]];	G[x_,	z_]	:=	Module[{V,	H,	P},
V[t_]	:=	Module[{},	t^3	+	t^2	+	500];	H[t_]	:=	Module[{},	t^4];	P[h_]	:=	Module[{a	=
90},	a^2	+	h^2];

x	+	V[x]	+	H[z]*P[x]];

H[t_]	:=	Module[{P},	P[h_]	:=	Module[{a	=	90},	a^2	+	h^2];	x	+	P[x]]	In[2534]:=
SetAttributes[G,	{Protected,	Listable}];	{G[2015],	G[2015,	73]}	Out[2534]=	{16	493

608	406	015,	115	541	459	232	440}
In[2535]:=	SubProcs1[G]
Out[2535]=	{{”G[x_]“,	2},	{”G[x_,	z_]“,	3}}
In[2536]:=	SubProcs1[H]
Out[2536]=	{”H[t_]“,	1}
In[2537]:=	SubProcs1[90]
Out[2537]=	SubProcs1[90]
In[2538]:=	P[x_	/;	{j[b_]	:=	Module[{},	b^2],	If[EvenQ[x],	True,	False]}[[2]]]	:=

Module[{a	=	{c[d_]	:=	Module[{},	d]}},	{j[x],	c[x]}]	In[2539]:=	P[2014]
Out[2539]=	{4056196,	2014}
In[2540]:=	Map[Definition1,	{j,	c}]
Out[2540]=	{”j[b_]:=	Module[{},	b^2]“,	“c[d_]:=	Module[{},	d]”}

Very	simple	example	illustrating	some	admissible	mechanisms	of	definition	of	heading
and	local	variables	of	a	block/module	that	are	enough	useful	for	procedural	programming
completes	this	fragment.	These	mechanisms	are	used	also	by	a	number	of	the	means
composing	our	packageAVZ_Package	[48]	while	theSubProcs2	procedure	represents	a
quite	essential	expansion	of	theSubProcs1	procedure.	The	following	fragment	represents
source	code	of	theSubProcs2	procedure	along	with	examples	of	its	typical	usage.

In[2386]	:=	G[x_]	:=	Module[{V,	H},	Vg[y_]	:=	Module[{},	y^3];	H72[z_]	:=
Module[{},	z^4];	x	+	Vg[x]	+	H72[x]];	G[x_,	z_]	:=	Module[{Vt,	H,	P},	Vt[t_]	:=
Module[{},	t^3	+	t^2	+	500];	H[t_]	:=	Module[{},	t^4];	P[h_]	:=	Module[{a	=	90},
a^2	+	h^2];	x	+	Vt[x]	+	H[z]*P[x]];

H[t_,	z_]	:=	Module[{P},	P[h_]	:=	Module[{a	=	90},	a^2	+h*z];	t	+P[t]];	F[x_,	y]	:=	x
+	y;	SetAttributes[G,	{Protected,	Listable}];	{G[2015],	G[2015,	73]}	Out[2386]=	{16
493	608	406	015,	115	541	459	232	440}
In[2387]:=	SubProcs2[y_,	z___]	:=	Module[{n	=	{},	m=1,	SB,
v	=	Flatten[{PureDefinition[y]}]},

If[BlockFuncModQ[y],	SB[x_String]	:=	Module[{b	=	“Module[“,	c,	d,	h,	g	=	””,	t,	k,
p,	q,	j,	s,	w,	a	=	Map[#[[1]]	&,	StringPosition[x,	“Module[{“]]},	If[a	==	{},	Return[]];
If[Length[a]	==	1,	Return[$Failed],	d	=	Map[#–5	&,	a]];	c	=	{StringTake[x,	{1,
d[[1]]}]};	For[k	=	Length[a],	k	>	1,	k––,	h	=	b;	g	=	””;	t	=	””;	For[j	=	a[[k]]	+	7,	j	<
Infinity,	j++,	h	=	h	<>	StringTake[x,	{j,	j}];	If[SameQ[Quiet[Check[ToExpression[h],
“Error”]],	“Error”],	Continue[],	For[j	=	d[[k]],	j	>	1,	j––,	g	=	StringTake[x,	{j,	j}]	<>
g;	If[SameQ[Quiet[Check[ToExpression[g],	“Error”]],	“Error”],	Continue[],
Break[]]];	While[j	>	1,	p	=	StringTake[x,	{j,	j}];	If[!	SameQ[p,	”	“],	t	=	p	<>	t,
Break[]];	j––];	p	=	StringPosition[x,	”	”	<>	t	<>	“[“][[1]];	s	=
Flatten[SubStrSymbolParity1[StringTake[x,	{p[[1]],–1}],	“[“,	“]”]];	w	=	1;	While[w
<=	Length[s]–1,	q	=	s[[w]];	If[!	StringFreeQ[q,	“_”],	s	=	t	<>	q	<>	”	:=	Module”	<>
s[[w	+	1]];	Break[]];	w++];	AppendTo[c,	s];	Break[]]]];	c];	For[m,	m	<=	Length[v],
m++,	AppendTo[n,	SB[v[[m]]]]];	n	=Select[n,	!	SameQ[#,	Null]	&];	If[n	=={},
$Failed,	n	=If[Length[n]==	1,	n[[1]],	n];	If[{z}!=	{},	ToExpression[n]];	n],	$Failed]]

In[2388]:=	SubProcs2[G,	90]
Out[2388]=	{{”G[x_]“,	“H72[z_]:=	Module[{},	z^4]“,	“Vg[y_]:=	Module[{},	y^3]”},

{”G[x_,	z_]“,	“P[h_]:=	Module[{a=	90},	a^2+	h^2]“,	“H[t_]:=	Module[{},	t^4]“,
“Vt[t_]:=	Module[{},	t^3+	t^2+	500]”}}

In[2389]	:=	{H72[90],	Vg[500],	P[26],	H[18],	Vt[67]}
Out[2389]=	{65	610	000,	125	000	000,	8	776,	104	976,	305	752}
In[2390]:=	SubProcs2[H]
Out[2390]=	{{”H[t_,	z_]“,	“P[h_]:=	Module[{a=	90},	a^2+	h*z]”},	$Failed}	In[2391]:=
Map[SubProcs2,	{F,	500}]
Out[2391]=	{$Failed,	$Failed}

The	call	SubProcs2[y]	depending	on	an	unique	procedurey	or	of	the	same	name	with
various	headings,	returns	simple	or	nested	list.	For	the	returned	list	or	sublists	the	first
element	is	the	procedurey	heading,	while	the	others
–	definitions	in	string	format	of	subprocedures	of	theModule	type	that	enter	into	they
definition.	In	absence	fory	of	subprocedures	of	the	specified	type	or	in	the	case	of	type	of
argumenty,	different	fromModule,	the	procedure	callSubProcs2[y]	returns$Failed.	In	case
of	the	second	optional	argument	z	–an	arbitrary	expression–	the	callSubProcs3[y,	z]
returns	the	similar	result	with	simultaneous	activation	of	these	subprocedures	in	the
current	session.	TheSubProcs3	procedure	is	further	expansion	of	theSubProcs2
procedure;	its	callSubProcs3[y]	differs	from	a	callSubProcs2[y]	by	the	following	two
moments,	namely:(1)	the	user	block,	function	or	module	can	act	as	a	factual	argumenty,
and(2)	the	returned	list	as	the	first	element	contains	heading	of	objecty	whereas	other
elements	of	the	list	represent	definitions	of	functions,	blocks	and	modules	in	string	format
entering	into	definitiony.	In	case	of	an	objecty	of	the	same	name,	the	returned	list	will	be
the	nested	list,	sublists	of	which	have	the	above–mentioned	format.	At	that,	the
callSubProcs3[y,	z]	with	the	second	optional	argumentz	–	an	arbitrary	expression–	returns
the	above	list	and	at	the	same	time	activates	in	the	current	session	all	objects	of	the	above
type,	that	enter	intoy.	The	fragment	represents	source	code	of	the	procedure	along	with
typical	examples	of	its	usage.

In[2630]:=	G[x_]	:=	Module[{Vg,	H72},Vg[y_]	:=	Module[{},y^3];	H72[z_]	:=
Module[{},	z^4];	x	+	Vg[x]	+	H72[x]];	G[x_,	z_]	:=	Module[{Vt,	H,	P},

Vt[t_]	:=	Module[{},	t^3	+	t^2	+	500];	H[t_]	:=	Module[{},	t^4];	P[h_]	:=	Module[{a
=	90},	a^2	+Cos[h^2]];	Sin[x]	+	Vt[x]+	H[z]*P[x]];	H[t_]	:=	Module[{P},	P[h_]	:=
Module[{a	=	90},	a^2*h^2];	Cos[t]*P[t]];	F[x_,	y_]	:=	Sin[x	+	y]	+	Cos[x–y];	V[x_]	:=
Block[{a,	b,	c},	a[m_]	:=	m^2;	b[n_]	:=	n	+	Sin[n];	c[p_]	:=	Module[{},	p];
a[x]*b[x]*c[x]];	SetAttributes[G,	{Protected,	Listable}]

In[2631]:=	SubProcs3[y_,	z___]	:=	Module[{u	=	{},	m	=	1,	Sv,
v	=	Flatten[{PureDefinition[y]}]},	If[BlockFuncModQ[y],

Sv[S_String]	:=	Module[{a	=	ExtrVarsOfStr[S,	1],	b,	c	=	{},	d,	t	=	2,	k	=	1,	cc	=	{},	n,
p,	j,	h	=	{StringTake[S,	{1,	Flatten[StringPosition[S,	”	:=	“]][[1]]–1}]}},	a	=	Select[a,
!	SystemQ[Symbol[#]]	&&	!	MemberQ[{ToString[G]},	#]	&];	b	=	StringPosition[S,
Map[”	”	<>	#	<>	“[”	&,	a]];	p	=	Select[a,	!	StringFreeQ[S,	”	”	<>	#	<>	“[“]	&];	b	=
Flatten[Map[SubStrSymbolParity1[StringTake[S,	{#[[1]],–1}],	“[“,	“]”]	&,	b]];	For[j
=	1,	j	<=	Length[p],	j++,	n	=	p[[j]];	For[k	=	1,	k	<=	Length[b]–1,	k++,	d	=	b[[k]];	If[!
StringFreeQ[d,	“_”]	&&	StringTake[b[[k	+	1]],	{1,	1}]	==	“[“,	AppendTo[c,	Map[n

<>	d	<>	”	:=	”	<>	#	<>	b[[k+1]]	&,	{“Block”,	“Module”}]]]]];	c	=
DeleteDuplicates[Flatten[c]];	For[k	=	1,	k	<=	Length[c],	k++,	d	=	c[[k]];	If[!
StringFreeQ[S,	d],	AppendTo[h,	d],	AppendTo[cc,	StringTake[d,	{1,
Flatten[StringPosition[d,	”	:=	“]][[1]]–1}]]]];	{h,	cc}=	Map[DeleteDuplicates,	{h,
cc}];	p	=	Map[StringTake[#,	{1,	Flatten[StringPosition[#,	“[“]][[1]]}]	&,	h];	cc	=
Select[Select[cc,	!	SuffPref[#,	p,	1]	&],	!	StringFreeQ[S,	#]	&];	If[cc	==	{},	h,	For[k	=
1,	k	<=	Length[cc],	k++,	p	=	cc[[k]];	p	=	StringCases[S,	p	<>	”	:=	”	~~	__	~~	“;	“];
AppendTo[h,	StringTake[p,	{1,	Flatten[StringPosition[p,	“;”]][[1]]–1}]]]];
Flatten[h]];	For[m,	m	<=	Length[v],	m++,	AppendTo[u,	Sv[v[[m]]]]];	u	=	Select[u,	!
SameQ[#,	Null]	&];	u	=	If[Length[u]	==	1,	u[[1]],	u];	If[{z}!=	{},	ToExpression[u]];	u,
$Failed]]	In[2632]:=	SubProcs3[G]
Out[2632]=	{{”G[x_]“,	“Vg[y_]:=	Module[{},	y^3]“,	“H72[z_]:=	Module[{},

z	^4]”},	{”G[x_,	z_]“,	“Vt[t_]:=	Module[{},	t^3+	t^2+	500]“,	“H[t_]:=	Module[{},
t^4]“,	“P[h_]:=	Module[{a=	90},	a^2+	Cos[h^2]]”}}	In[2633]:=	SubProcs3[H]
Out[2633]=	{”H[t_]“,	“P[h_]:=	Module[{a=	90},	a^2*h^2]”}
In[2634]:=	SubProcs3[F]
Out[2634]=	{”F[x_,	y_]”}
In[2635]:=	SubProcs3[V]
Out[2635]=	{{”V[x_	/;	ListQ[x]]”},	{”V[x_]“,	“c[p_]:=	Module[{},	p]“,

“	a[m_]:=	m^2“,	“b[n_]:=	n+	Sin[n]”},	{”V[x_,	y_]”}}	In[2636]:=	SubProcs3[V,	500]
Out[2636]=	{{”V[x_	/;	ListQ[x]]”},	{”V[x_]“,	“c[p_]:=	Module[{},	p]“,

“	a[m_]:=	m^2“,	“b[n_]:=	n+	Sin[n]”},	{”V[x_,	y_]”}}	In[2637]:=	{V[90],	a[42],	b[47],
c[67]}
Out[2637]=	{729000	(90+	Sin[90]),	1764,	47+	Sin[47],	67}

If	a	function	with	heading	acts	as	an	object	y,	only	its	heading	is	returned;	the	similar
result	takes	place	and	in	case	of	an	objecty	that	doesn’t	contain	subobjects	of	the	above
type	whereas	on	an	objecty	different	from	the	user	block,	function	or	module,	the	call	of
theSubProcs3	returns$Failed.

In	some	cases	there	is	a	necessity	of	definition	for	a	block	and	module	of	the	subobjects	of
the	type	{Block,Function,	Module}.	The	callSubsProcQ[x,	y]	returnsTrue	ify	is	a	global
active	subobject	of	an	objectx	of	the	above	type,	andFalse	otherwise.	But	as
theMath–objects	of	the	given	type	differ	not	by	names	as	that	is	accepted	in	the	majority
of	programming	systems,	but	by	headings	then	through	the3rd	optional	argument	the
procedure	call	returns	the	nested	list	whose	sublists	asfirst	element	contain	headings	with	a
name	x	while	thesecond	element	contain	the	headings	of	subobjects	corresponding	to	them
with	a	namey.	On	the	first2	arguments	{x,y}	of	the	types,	different	from	specified	in	a
procedure	heading,	the	procedure	callSubsProcQ[x,	y]	returnsFalse.	The	next	fragment
represents	source	code	of	theSubsProcQ.

In[2650]:=	SubsProcQ[x_,	y_,	z___]	:=	Module[{a,	b,	k	=	1,	j	=	1,	Res	=	{}},
If[BlockModQ[x]	&&	BlockFuncModQ[y],	{a,	b}=	Map[Flatten,
{{Definition4[ToString[x]]},	{Definition4[ToString[y]]}}];

For[k,	k	<=	Length[b],	k++,	For[j,	j	<=	Length[a],	j++,	If[!	StringFreeQ[a[[j]],
b[[k]]],	AppendTo[Res,	{StringTake[a[[j]],	{1,	Flatten[StringPosition[a[[j]],	”	:=	“]]

[[1]]–1}],	StringTake[b[[k]],	{1,	Flatten[StringPosition[b[[k]],	”	:=	“]][[1]]–1}]}],
Continue[]]]];	If[Res	!=	{},	If[{z}!=	{}&&	!	HowAct[z],	z	=	If[Length[Res]	==	1,
Res[[1]],	Res];	True],	False],	False]]

In[2651]:=	V[x_]	:=	Block[{a,	b,	c},	a[m_]	:=	m^2;	b[n_]	:=	n	+	Sin[n];	c[p_]	:=
Module[{},	p];	a[x]*b[x]*c[x]];	c[p_]	:=	Module[{},	p];

V[x_,	y_]	:=	Module[{a,	b,	c},	a[m_]	:=	m^2;	b[n_]	:=	n	+	Sin[n];	c[p_]	:=
Module[{},	p];	a[x]*b[x]*c[x]];	c[p_]	:=	Module[{},	p];	p[x_]	:=	x;	SetAttributes[V,
Protected]

In[2652]	:=	{SubsProcQ[V,	c,	g67],	g67}
Out[2652]=	{True,	{{”V[x_]“,	“c[p_]”},	{”V[x_,	y_]“,	“c[p_]”}}}
In[2653]:=	SubsProcQ[V,	Avz]
Out[2653]=	False
In[2654]:=	SubsProcQ[Sin,	h]
Out[2654]=	False
In[2655]:=	SubsProcQ[p,	c]
Out[2655]=	False

In	principle,	on	the	basis	of	the	above	five	means	{	SubProcs	÷	SubProcs3,	SubsProcQ}
it	is	possible	to	program	a	number	of	useful	enough	means	of	operating	with	expressions
of	the	types	{Block,	Module}.

In	a	certain	regard	the	procedural	variable	$ProcName	which	is	used	only	in	the	body	of	a
procedure	activated	in	the	current	session	is	of	interest;	the	variable	returns	the	list	whose
first	element	determines	a	name	whereas	the	second	element–	the	heading	in	string	format
of	the	procedure	containing	it.	Moreover,	for	providing	of	the	given	possibility	in	a	list	of
local	variables	of	a	procedure	containing$ProcName	variable	it	is	necessary	to	encode	the
expression	of	the	type$$NameProc$$	=“Procedure_Name”,	otherwise	the	procedure	call
as	a	value	of	variable$ProcName	returns“UndefinedName”.	The	following	fragment
represents	source	code	of	the	procedural	variable	$ProcName	along	with	typical	examples
of	its	usage.

In[2530]:=	$ProcName	:=	Module[{d	=	“$$ArtKr$$”,	a,	b,	c,	t	=	””,	k},	a	=
ToString1[Stack[_]];	d	=	Flatten[StringPosition[a,	d]][[1]];	b	=
Flatten[StringPosition[a,	“$$NameProc$$”]][[1]];

If[b	>	d	||	ToString[b]	==	””,	Return[“UndefinedName”],	k	=	b];	For[k	=	b,	k	<=	d,
k++,	c	=	StringTake[a,	{k,	k}];	If[MemberQ[{“,”	,	“}”},	c],	Break[],	t	=	t	<>	c;
Continue[]]];	{b	=	ToExpression[ToExpression[StringSplit[t,	“=”][[2]]]],
HeadPF[b]}]

In[2531]	:=	Avz[x_,	y_,	z_]	:=	Module[{$$NameProc$$	=	“Avz”,	b},	b	=	$ProcName;
x+y+z;	b]
In[2532]:=	Agn[x_,	y_,	z_]	:=	Module[{b,	$$NameProc$$	=	“Agn”},	x+y+z;	b	=
$ProcName;	b]
In[2533]:=	Ian[x_,	y_,	z_]	:=	Module[{b,	c,	h},	x+y+z;	b	=	$ProcName;	b]
In[2534]:=	Agn[47,	67,	72]
Out[2534]=	{Agn,	“Agn[x_,	y_,	z_]”}
In[2535]:=	Avz[47,	67,	72]

Out[2535]=	{Avz,	“Avz[x_,	y_,	z_]”}
In[2536]:=	Ian[47,	67,	72]
Out[2536]=	“UndefinedName”

This	variable	in	a	certain	degree	was	wafted	by	the	procedural	“procname”	variable	of
theMaple	system	which	plays	quite	essential	part,	first	of	all,	in	procedural	programming
of	various	problems	of	the	system	character.

The	BFMSubsQ	procedure	represents	a	quite	certain	interest;	the	procedure
callBFMSubsQ[x]	returns	the	list	of	format	{True,	Heading}	if	definition	of	the	user
block	or	modulex	contains	definitions	of	blocks,	functions	and/or	modules,	otherwise	the
list	{False,	Heading}	is	returned.	In	case	of	an	object	of	the	same	namex	of	the	above
type	the	call	returns	the	nested	list	whose	sublists	have	the	specified	format.	On	an	objectx
of	a	type,	different	from	{Block,	Module},	the	procedure	call	returnsFalse.	At	that,	the
procedure	call	BFMSubsQ[x,	y]	with	the2nd	optional	argumenty	–an	undefinite	variable–
throughy	returns	the	list	of	format	{Heading,	N}	whereN	defines	number	of	blocks,
functions	and	modules	that	enter	into	a	subobject	with	the	heading	Heading	of	an	object
of	the	same	namex.	The	following	fragment	represents	source	code	of	theBFMSubsQ
procedure	along	with	a	number	of	the	most	typical	examples	of	its	usage.

In[2545]:=	G[x_]	:=	Module[{Vg,H7},	Vg[y_]	:=	Module[{},	y^3];	H7[z_]	:=
Module[{},	z^4];	x+Vg[x]	+	H7[x]];

G[x_,	z_]	:=	Module[{Vt,	H,	P},	Vt[t_]	:=	Module[{},	t^3	+	t^2];	H[t_]	:=
Module[{},	t^4];	P[h_]	:=	Module[{a	=	6},	a^2	+	Cos[h^2]];
Sin[x]+Vt[x]+H[z]*P[x]];	H[t_]	:=	Module[{P},	P[h_]	:=	Module[{a	=6},	a^2	+	h]];
T[x_]	:=	Block[{a},	a[y_]	:=	y^2;	x	+	a[500]];	T[x_,	y_]	:=	Module[{a	=	6},	x*y	+	a*
Cos[t]	+	P[t]];	F[x_,	y_]	:=	Sin[x/y]	+	Cos[x*y];	SetAttributes[G,	{Protected,
Listable}]

In[2546]	:=	BFMSubsQ[x_,	y___]	:=	Module[{a,	b,	c,	d	=	{},	k	=1,	p,	h,	g	={}},	If[!
BlockModQ[x],	False,
{a,	b}=	Map[Flatten,	{{PureDefinition[x]},	{HeadPF[x]}}];

For[k,	k	<=	Length[a],	k++,	p	=	a[[k]];	p	=	StringReplace[p,	b[[k]]	<>	”	:=	“–>	””,	1];
c	=	Select[ExtrVarsOfStr[p,	1],	!	SystemQ[#]	&];	h	=	Flatten[Map[StrSymbParity[p,
”	”	<>	#,	“[“,	“]”]	&,	c]];	h	=	Select[h,	SuffPref[#,	Map[StringJoin[”	”	<>#	<>	“[“]	&,
c],	1]	&&	!	StringFreeQ[#,	“_”]	&];	AppendTo[g,	{b[[k]],	Length[h]}];	AppendTo[d,
{If[h	!=	{},	True,	False],	b[[k]]}]];	If[{y}!=	{}&&	!	HowAct[y],	y	=	g];	If[Length[d]
==	1,	d[[1]],	d]]]

In[2547]	:=	BFMSubsQ[H]
Out[2547]=	{True,	“H[t_]”}
In[2548]:=	BFMSubsQ[G]
Out[2548]=	{{True,	“G[x_]”},	{True,	“G[x_,	z_]”}}
In[2549]:=	BFMSubsQ[T]
Out[2549]=	{{True,	“T[x_]”},	{False,	“T[x_,	y_]”}}
In[2550]:=	Map[BFMSubsQ,	{F,	90,	Agn,	Sin}]
Out[2550]=	{False,	False,	False,	False}
In[2551]:=	BFMSubsQ[G,	g]

Out[2551]=	{{True,	“G[x_]”},	{True,	“G[x_,	z_]”}}
In[2552]:=	g
Out[2552]=	{{”G[x_]“,	2},	{”G[x_,	z_]“,	3}}
The	definition	of	theBFMSubsQ	procedure	along	with	the	standard	means	uses	a	number
of	our	means	such	asBlockModQ,	PureDefinition,	HeadPF,	HowAct,	ExtrVarsOfStr,
StrSymbParity,	SuffPref	andSystemQ	which	are	considered	in	the	present	book	and	in
[30,33].	The	procedure	generalizes	and	expands	the	above	proceduresSubProcsQ	÷
SubProcsQ3	andSubsProcQ;	theBFMSubsQ	procedure	is	useful	enough	in	a	number	of
the	appendices	connected	with	processing	of	procedures	of	type	{Module,	Block}	and,
first	of	all,	of	the	system	character.

On	the	basis	of	the	proceduresBlockModQ,	HeadPF,	Mapp,	PureDefinition
andSubStrSymbolParity1	that	are	considered	in	the	present	book,	also	the
usefulProcBody	procedure	has	been	programmed	whose	callProcBody[x]	returns	the
body	in	string	format	of	the	user	block,	module	and	functionx	with	heading.	The
procedure	successfully	processes	also	the	objects	of	the	same	namex,	returning	the	list	of
bodies	of	subobjects	composing	objectx.	The	following	fragment	represents	source	code
of	theProcBody	procedure	along	with	typical	examples	of	its	usage.

In[2093]	:=	ProcBody[x_	/;	BlockFuncModQ	[x]]	:=	Module[{c,	p,	d	={},	k	=1,	a	=
Flatten[{PureDefinition[x]}],	b	=	Flatten[{HeadPF[x]}]},	While[k	<=	Length[a],	p	=
a[[k]];	c	=Mapp[Rule,	Map[b[[k]]<>”	:=”	<>	#&,	{“Block[“,	“Module[“,	””}],	””];	c
=	StringReplace[p,	c,	1];	AppendTo[d,	If[BlockModQ[x],
StringTake[StringReplace[c,	SubStrSymbolParity1[c,	“{“,	“}“][[1]]	<>	“,	“–>	””,	1],
{1,–2}],	c]];	k++];	If[Length[d]	==	1,	d[[1]],	d]]

In[2094]	:=	Art[x_,	y_,	z_]	:=	Module[{a=x+y+z,	c	={m,	n},	b	=	90},	a^2+a+b]
In[2095]:=	ProcBody[Art]
Out[2095]=	“a^2+	a+	b”
In[2096]:=	T[x_]	:=	Block[{a},	a[y_]	:=	y^2;	x	+	a[90]];

T[x_,	y_]	:=	Module[{a	=	500},	x*y	+	a]
In[2097]:=	ProcBody[T]
Out[2097]=	{”a[y_]:=	y^2;	x+	a[90]“,	“x*y+	a”}
In[2098]:=	F[x_,	y_]	:=	x	+	y	+	x*y;	F[x]	:=	Sin[x]	+	x*Cos[x];	ProcBody[F]
Out[2098]=	{”Sin[x]+	x*Cos[x]“,	“x+	y+	x*y”}
TheProcBody	procedure	plays	a	rather	essential	part	in	a	number	of	tasks	of	the
procedural	programming	dealing	with	various	manipulations	with	definitions	of	functions
and	procedures	of	type	{Block,	Module}	along	with	components	composing	them.
In	a	number	of	the	tasks	caused	by	a	processing	of	string	representation	of	definitions	of
the	user	procedures	and	blocks	the	questions	of	partition	of	this	representation	onto2	main
components–	the	procedure	body	and	its	frame	with	the	final	procedural	bracket“]”	a
certain	interest	can	represent.	In	this	context	and	thePartProc	procedure	can	be	quite
useful.	Procedure	callPartProc[x]	returns	the	two–element	list,	whose	first	element	in
string	format	represents	a	procedure	frame	with	the	final	procedural	bracket“]”;	the	place
of	the	body	of	a	procedure	is	taken	by	the	substring“Procedure	Body”	whereas	the	second
element	of	the	list	in	string	format	represents	a	procedure	bodyx.	Furthermore,	as	a
procedure	frame	the	construction	of	the	format“Heading	:=	Module[{locals},	…]”	is

understood.	In	the	case	of	erroneous	situations	the	procedure	call	is	returned	unevaluated
or	returns	$Failed.The	next	fragment	represents	source	code	of	thePartProc	procedure
along	with	typical	examples	of	its	usage.

In[2049]:=	PartProc[P_	/;	BlockModQ[P]]	:=	Module[{a	=	ProcBody[P]},
{StringReplace[PureDefinition[P],	a–>	“Procedure	Body”,	1],	a}]

In[2050]	:=	Kr[x_,	y_,	z_]	:=	Module[{a	=	x	+	y	+	z,	b	=	90},	b*a	+	a^2	+	b];
PartProc[Kr]
Out[2050]=	{”Kr[x_,	y_,	z_]:=	Module[{a=	x+	y+	z,	b=	90},
Procedure	Body]“,	“b*a+	a^2+	b”}

In[2054]:=	ReplaceProcBody[x_	/;	BlockModQ[x],	y_	/;	StringQ[y]]	:=
ToExpression[StringReplace[PureDefinition[x],	ProcBody[x]–>	y]]	In[2055]:=
ReplaceProcBody[Kr,	“b*(x	+	y	+	z)”];	Definition[Kr]	Out[2055]=	Kr[x_,	y_,	z_]:=
Module[{a=	x+	y+	z,	b=	90},	b*(x+	y+	z)]

A	quite	simpleReplaceProcBody	function	completes	the	previous	fragment;	the
callReplaceProcBody[x,	y]	returnsNull,	providing	replacement	of	the	body	of	a	block	or
modulex	by	a	new	bodyy	that	is	given	in	string	format.	Furthermore,	the	updated	objectx
is	activated	in	the	current	session.	Both	thePartProc	procedure,	and	theReplaceProcBody
function	are	based	on	the	aboveProcBody	procedure.	Exactly	the	given	circumstance
provides	a	quite	simple	algorithm	of	these	means.

Except	the	means	considered	in	[28,30	-33]	a	number	of	means	for	operating	with
subprocedures	is	presented,	here	we	will	represent	a	useful	procedure	that	analyzes	the
blocks/modules	regarding	presence	in	their	definitions	of	subobjects	of	type
{Block,Module}.	The	procedure	callSubsProcs[x]	returns	generally	the	nested	list	of
definitions	in	string	format	of	allsubobjects	of	the	type	{Block,	Module}	whose
definitions	are	in	the	body	of	an	objectx	of	type	{Block,	Module}.	At	that,	the	first	sublist
defines	subobjects	ofModule–type,	the	second	sublist	defines	subobjects	ofBlock–type.	In
the	presence	of	only	one	sublist	the	simple	list	is	returned	while	in	the	presence	of
the1–element	simple	list	its	element	is	returned.	At	lack	ofsubobjects	of	the	above	type	the
callSubsProcs[x]	returns	the	empty	list,	i.e.	{}	while	on	an	objectx,	different	from	a	block
or	module,	the	callSubsProcs[x]	is	returned	unevaluated.	The	following	fragment
represents	source	code	of	theSubsProcs	procedure	with	the	most	typical	examples	of	its
usage.

In[2580]:=	SubsProcs[x_	/;	BlockModQ[x]]	:=	Module[{d,	s	=	{},	g,	k	=	1,	p,	h	=	””,	v
=	1,	R	=	{},	Res	=	{},	a	=	PureDefinition[x],	j,	m	=	1,	n	=	0,	b	=	{”	:=	Module[{“,	”	:=
Block[{”},	c	=	ProcBody[x]},

For[v,	v	<=	2,	v++,	If[StringFreeQ[c,	b[[v]]],	Break[],	d	=	StringPosition[c,	b[[v]]]];
For[k,	k	<=	Length[d],	k++,	j	=	d[[k]][[2]];	While[m	!=	n,	p	=	StringTake[c,	{j,	j}];
If[p	==	“[“,	m++;	h	=	h	<>	p,	If[p	==	“]”,	n++;	h	=	h	<>	p,	h	=	h	<>	p]];	j++];
AppendTo[Res,	h];	m	=	1;	n	=	0;	h	=	””];	Res	=	Map10[StringJoin,	If[v	==	1,	”	:=
Module[“,	”	:=	Block[“],	Res];	g	=	Res;	{Res,	m,	n,	h}=	{{},	1,	0,	“]”};	For[k	=	1,	k
<=	Length[d],	k++,	j	=	d[[k]][[1]]–2;	While[m	!=	n,	p	=	StringTake[c,	{j,	j}];	If[p	==
“]”,	m++;	h	=	p	<>	h,	If[p	==	“[“,	n++;	h	=	p	<>	h,	h	=	p	<>	h]];	j––];	AppendTo[Res,
h];	s	=	Append[s,	j];	m	=	1;	n	=	0;	h	=	“]”];	Res	=	Map9[StringJoin,	Res,	g];	{g,	h}=

{Res,	””};	Res	=	{};	For[k	=	1,	k	<=	Length[s],	k++,	For[j	=	s[[k]],	j	>=	1,	j––,	p	=
StringTake[c,	{j,	j}];	If[p	==	”	“,	Break[],	h	=	p	<>	h]];	AppendTo[Res,	h];	h	=	””];
AppendTo[R,	Map9[StringJoin,	Res,	g]];	{Res,	m,	n,	k,	h,	s}=	{{},	1,	0,	1,	””,	{}}];	R
=	If[Length[R]	==	2,	R,	Flatten[R]];	If[Length[R]	==	1,	R[[1]],	R]]

In[2581]	:=	P[x_,	y_]	:=	Module[{Art,	Kr,	Gs,	Vg,	a},	Art[c_,	d_]	:=	Module[{b},	c	+
d];	Vg[h_]	:=	Block[{p	=	90},	h^3	+	p];	Kr[n_]	:=	Module[{},	n^2];	Gs[z_]	:=
Module[{},	x^3];	a	=	Art[x,	y]	+	Kr[x*y]*Gs[x	+	y]	+	Vg[x*y]]

In[2582]	:=	P[90,	500]
Out[2582]=	1	567	350	000	000	668
In[2583]:=	SubsProcs[P]
Out[2583]=	{{”Art[c_,	d_]:=	Module[{b},	c+	d]“,	“Kr[n_]:=	Module[{},	n^2]“,

“	Gs[z_]:=	Module[{},	x^3]”},	{”Vg[h_]:=	Block[{p=	90},	h^3+	p]”}}	In[2584]:=	H[t_]
:=	Module[{P},	P[h_]	:=	Module[{a	=	90},	a*h];	Cos[t]+	P[t]]	In[2585]:=
SubsProcs[H]
Out[2585]=	“P[h_]:=	Module[{a=	90},	a*h]”

The	SubsProcs	procedure	can	be	rather	simply	expanded,	in	particular,	for	determination
of	nesting	levels	of	subprocedures,	and	also	onto	unnamed	subprocedures.	TheSubsProcs
procedure	significantly	uses	also	our	means	BlockModQ,	Map10,	Map9,	ProcBody,
PureDefinition	considered	above.

Moreover,	in	connection	with	the	problem	of	nesting	of	blocks	and	modules	essential
enough	distinction	between	definitions	of	the	nested	procedures	in	the
systemsMathematica	andMaple	takes	place.	So,	in	theMaple	system	the	definitions	of
subprocedures	allow	use	of	lists	of	the	formal	arguments	identical	with	the	main	procedure
containing	them,	whereas	in	the	system	Mathematica	similar	combination	is
inadmissible,	causing	in	the	course	of	evaluation	of	definition	of	the	main	procedure
erroneous	situations	[30-33].	Generally	speaking,	the	given	circumstance	causes	certain
inconveniences,	demanding	special	attentiveness	in	process	of	programming	of	the	nested
procedures.	In	a	certain	measure	the	similar	situation	arises	and	in	the	case	of	crossing	of
lists	of	formal	arguments	of	the	main	procedure	and	the	local	variables	of	its
subprocedures	whereas	that	is	quite	admissible	in	theMaple	system	[10-22,25-27].	In	this
context	theSubsProcs	procedure	can	be	applied	quite	successfully	and	to	the	procedures
containing	subprocedures	of	type	{Block,	Module},	on	condition	of	nonempty	crossing	of
the	list	of	the	formal	arguments	of	the	main	procedure	along	with	the	list	of	local	variables
of	its	subprocedures.

The	following	procedure	provides	return	of	the	list	of	all	blocks,	functions	and	modules	of
the	user	packages	uploaded	into	the	current	session,	along	with	other	active	objects	of	the
specified	types.	The	next	fragment	represents	source	code	of	theProcsAct	procedure	along
with	examples	of	its	usage.

In[2526]	:=	ProcsAct[]	:=	Module[{a	=	Names[“*”],	b	=	Names[“System`*”],	c,	d	=
{},	k	=	1,	j,	h,	t,	g	=	{{“Module”},	{“Block”},	{“DynamicModule”},	{“Function”},
{“Others”}}},

c	=	Select[a,	!	MemberQ[b,	#]	&];	c	=	Select[c,	ToString[Definition[#]]	!=	“Null”	&&
ToString[Definition[#]]	!=	“Attributes[”	<>	ToString[#]	<>	“]	=	{Temporary}”	&&	!

MemberQ[{ToString[#]	<>	”	=	{Temporary}“,	ToString[#]	<>	”	=	{Temporary}”},
ToString[Definition[#]]]	&];	For[k,	k	<=	Length[c],	k++,	h	=	c[[k]];	ClearAll[t];
Quiet[ProcQ1[Symbol[h],	t]];	If[t	===	“Module”,	AppendTo[g[[1]],	h],

If[t	===	“Block”,	AppendTo[g[[2]],	h],
If[t	===	“DynamicModule”,	AppendTo[g[[3]],	h],
If[QFunction[h],	AppendTo[g[[4]],	h],	AppendTo[g[[5]],	h]]]]]];	g]

In[2527]	:=	ProcsAct[]
Out[2527]=	{{“Module”,	“ActBFMuserQ“,	“ActCsProcFunc“,	“ActiveProcess“,
“ActRemObj“,	“Adrive“,	“Adrive1“,	“Affiliate“,	“Aobj“,	“Args“,	“ArgsBFM“,
“ArgsTypes“,	…},
{“Block”},
{“DynamicModule”},
{“Function”,”AssignL“,	“Attributes1“,	“AttributesH“,	“BinaryListQ“,	“BlockQ1“,
“ComplexQ“,	“ContextActQ“,	“ContextFromFile“,	“ContextQ“,	“CopyDir“,	…},
{“Others”,	“AcNb“,	“ActUcontexts“,	“ClearOut“,	“CloseAll“,	“CsProcsFuncs“,	…}}

The	procedure	call	ProcsAct[]	returns	the	nested	five-element	list,	sublists	of	which
define	by	thefirst	element	the	types	of	objects	in	the	context	{“Block”,
“Module”,”DynamicModule”,“Function”,“Others”}	that	are	activated	in	the	current
session	while	other	elements	define	names	of	objects	corresponding	to	thefirst	element	of
type.	Meanwhile,	it	should	be	noted	theperformance	of	theProcsAct	procedure	quite
significantly	depends	on	quantity	of	both	the	user	means	and	the	system	means	activated
in	the	current	session.	Again	it	should	be	noted	that	in	theMathematicaprocedureslocal
variables	initially	aren’t	considered	as	undefinite;	however,	is	possible	to	give	them	the
status	undefinite	in	the	body	of	a	procedure	what	visually	illustrates	the	following	rather
transparent	example,	namely:

In[2547]	:=	A[x___]	:=	Module[{a,	b,	c},	b	=	{Attributes[a],	Definition[a]};
ClearAll[a];	c	=	{Attributes[a],	Definition[a]};	{b,	c}]
In[2548]:=	A[]
Out[2548]=	{{{Temporary},	Null},	{{},	Null]}}

Such	reception	is	used	and	in	the	ProcsAct	procedure,	providing	return	of	the	type	of	an
objecth	through	thesecond	argumentt	–an	undefinite	variable–	at	the	callProcQ1[h,	t].	In
general,	theProcsAct	procedure	represents	quite	certain	interest	for	certain	appendices
above	all	in	procedural	programming	of	problems	of	the	system	character.

The	next	fragment	represents	rather	useful	function	NamesProc,	whose	call	NamesProc[]
returns	the	sorted	list	of	names	of	the	user	modules,	functions	and	blocks	activated	in	the
current	session.	In	certain	cases	theNamesProc	function	can	appear	as	a	rather	useful
means.	The	next	fragment	represents	source	code	of	theNamesProc	function	with	typical
examples	of	its	usage.

In[3617]	:=	NamesProc[]	:=	Select[Sort[Names[“`*”]],
Quiet[BlockFuncModQ[#]]&&	ToString[Definition[#]]	!=	“Null”	&&
ToString[Definition[#]]	!=	“Attributes[”	<>	ToString[#]	<>	“]	=	{Temporary}”	&&	!
MemberQ[{ToString[#]	<>”	=	{Temporary}“,

ToString[#]	<>	”	=	{Temporary}”},	ToString[Definition[#]]]&]	In[3618]:=

NamesProc[]
Out[3618]=	{A,	Art,	Df,	F,	G,	H,	Kr,	NamesProc,	ProcQ,	Spos,	Subs,	Uprocs}

As	one	more	example	we	will	present	the	Uprocs	procedure	which	is	quite	useful	in	the
practical	relation	and	also	illustrates	an	approach	to	a	certain	expansion	of	the
standardMathematica	means.	The	procedure	callUprocs[]	returns	simple	or	the	nested
list.	In	the	first	case	in	the	current	session	the	user	procedures	of	any	of2	types
{Block,Module}	have	been	not	activated,	while	in	the	second	case	the	list	elements
returned	by	theUprocs	procedure	areareelement	sublists	whose	first	elements	define
names	of	the	user	blocks/	modules	activated	in	the	current	session,	the	second	define	their
headings	in	string	format,	the	third	elements	define	type	of	procedures	{Block|Module}.
The	following	fragment	represents	source	code	of	theUprocs	procedure	and	the	most
typical	example	of	its	usage.

In[2448]	:=	Gs[x_]	:=	Block[{a,	b,	c},	Evaluate[(a*x	+	x^b)/c]]
In[2449]:=	S[x_]	:=	Block[{y	=	a,	h	=	b},	G[Pi/2,	y*x]]
In[2450]:=	S[x_]	:=	Module[{y	=	a,	h	=	b},	G[Pi/2,	y*x]]
In[2451]:=	S[x_,	y_]	:=	Block[{z	=	a,	h	=	b},	G[Pi/2,	(y*x)/z]]
In[2452]:=	Bl[y_]	:=	Block[{h	=	z},	G[Pi/2,	y]]
In[2453]:=	MM[x_,	y_]	:=	Module[{},	x	+	y]

In[2454]:=	Uprocs[]	:=	Module[{a,	b,	c,	d,	h,	g,	k,	t1,	t2},
a	:=	“_$Art25_Kr18$_.txt”;	{c,	g}=	{{},	{}};	Save[a,	“`*”];	b	:=	Map[ToString,
Flatten[DeleteDuplicates[ReadList[a,	String]]]];

For[k	=	1,	k	<=	Length[b],	If[StringCount[First[b[[{k}]]],	”	:=	Module[{“]	!=	0	&&
StringTake[First[b[[{k}]]],	{1}]	!=	”	”	||	StringCount[First[b[[{k}]]],	”	:=	Block[{“]
!=	0	&&	StringTake[First[b[[{k}]]],	{1}]	!=	”	“,	AppendTo[c,	First[b[[{k}]]]],	Null];
k	=	k	+	1];	For[k	=	1,	k	<=	Length[c],	d	=	Quiet[First[c[[{k}]]]];	h	=
Quiet[Symbol[StringTake[d,	First[First[StringPosition[d,	“[“]]]–1]]];	t1	=
If[StringCount[d,	”	:=	Module[{“]	!=	0,	Module,	Block];

t2	=	Quiet[StringTake[d,	Last[First[StringPosition[d,	“]”]]]]];	If[BlockModQ[h],
AppendTo[g,	{h,	t2,	t1}],	Null];	k	=	k	+	1];	DeleteFile[a];	g]	In[2455]:=	Uprocs[]
Out[2455]=	{{Bl,	“Bl[y_]“,	Block},	{Gs,	“Gs[x_]“,	Block},	{H,	“H[t_]“,	Module},

{P,	“P[x_,	y_]“,	Module},	{MM,	“MM[x_,	y_]“,	Module}}

The	procedure	call	ExtrCall[z,	y]	returnsTrue	if	the	user	block,	function	or	moduley
contains	the	calls	of	a	block/function/modulez,	otherwiseFalse	is	returned.	If	the	call	as	an
argumentz	defines	the	list	of	names	of	blocks/	functions/modules,	the	sublist	of	names
fromz	of	blocks/functions/modules	whose	calls	enter	into	an	objecty	is	returned.	In	the
case	if	the	first	optional	argumentz	is	absent,	then	the	callExtrCall[y]	returns	the	list	of	the
system	means	whose	calls	enter	into	definition	of	the	user	function,	block,	module	y.	The
following	fragment	represents	source	code	of	theExtrCall	procedure	along	with	the	most
typical	examples	of	its	usage.

In[2547]:=	ExtrCall[z___,	y_	/;	BlockFuncModQ[y]]	:=	Module[{b,	p,	g,	x,	a	=
Join[CharacterRange[“A”,	“Z”],	CharacterRange[“a”,	“z”]]},

If[{z}==	{},	p	=	PureDefinition[y];	If[ListQ[p],	Return[$Failed]];	g	=

ExtrVarsOfStr[p,	2];
g	=	Select[g	=	Map[”	”	<>	#	<>	“[”	&,	g],	!	StringFreeQ[p,	#]	&];
g	=	Select[Map[If[SystemQ[p	=StringTake[#,	{2,–2}]],	p]&,	g],	!	SameQ[#,	Null]	&];
If[Length[g]	==	1,	g[[1]],	g],	b[x_]	:=	Module[{c	=	DefFunc3[ToString[y]],	d,	h,	k	=	1,
t	=	{}},	h	=	StringPosition[c,	ToString[x]	<>	“[“];	If[h	==	{},	Return[False],	d	=
Map[First,	h];	For[k,	k	<=	Length[d],	k++,	AppendTo[t,	If[!	MemberQ[a,
StringTake[c,	{d[[k]]–1,	d[[k]]–1}]],	True,	False]]]];	t[[1]]];	If[!	ListQ[z],	b[z],
Select[z,	b[#]	&]]]]

In[2548]	:=	Map3[ExtrCall,	Run,	{Attrib,	SearchDir,	SearchFile,	Df,	Uprocs}]
Out[2548]=	{True,	True,	True,	False,	False}
In[2549]:=	ExtrCall[{Run,	Write,	Read,	If,	Return},	Attrib]
Out[2549]=	{Run,	Read,	If,	Return}
In[2550]:=	Map[ExtrCall,	{BlockFuncModQ,	ExtrCall}]
Out[2550]=	{{”Flatten“,	“FromCharacterCode“,	“If“,	“Module“,	“StringTake“,
“StringReplace”},	{”Append“,	“CharacterRange“,	“For“,	“If“,	“Join“,	“Length“,
“Module“,	“Return“,	“Select“,	“StringJoin“,	“StringPosition“,	“StringTake”}}	The
definition	of	theExtrCall	procedure	along	with	thestandard	means	uses	a	number	of	our
tools	such	asBlockFuncModQ,	PureDefinition,	SystemQ,	DefFunc3	andExtrVarsOfStr
which	are	considered	in	the	present	book	and	in	[30,33].	TheExtrCall	procedure	has	a
series	of	useful	enough	appendices,	first	of	all,	in	the	problems	of	system	character.
Meanwhile,	it	must	be	kept	in	mind	that	theExtrCall	procedure	correctly	processes	only
unique	objects,	but	not	objects	of	the	same	name	by	returning	on	them$Failed.

In	addition	to	earlier	presentedTestArgsTypes	procedure	providing	the	call	of	a	specified
block,	function,	module	in	such	manner	that	returns	result	of	this	procedure	call	in	the
absence	of	inadmissible	actual	arguments	or	the	list	consisting	off	values	{True,False}
whose	order	corresponds	to	an	order	of	the	actual	arguments	at	a	call	of	the	tested	object
of	the	specified	type	the	TestProcCalls	procedure	is	of	a	certain	interest.	The
callTestProcCalls[x,y]	returns	the	nested	list	whose	elements	have	format
{j,”n”,True|False}	where	j	–	the	ordinal	number	of	a	formal	argument,“n”	–	a	formal
argument	in	the	string	format,	{True|False}–	value	which	determines	admissibility(True)
or	inadmissibility(False)	of	an	actual	value	determined	by	a	listy	and	received	by	a	formal
argument	{j,	n}	in	a	point	of	the	call	of	an	objectx.	Furthermore,	it	is	supposed	that	an
objectx	defines	thefixed	number	of	formal	arguments	andlengths	of	lists	defining	formal
arguments	andy	are	identical,	otherwise	the	procedure	call	returns$Failed.

In[5057]:=	TestProcCalls[x_	/;	BlockFuncModQ[x],	y_	/;	ListQ[y]]	:=

Module[{d,	p,	a	=	Args[x],	b	=	{},	r,	c	=	“_	/;	“,	k	=	1,	v},	a	=	Map[ToString1,
If[NestListQ[a],	a[[1]],	a]];	If[Length[a]	!=	Length[y]	||	MemberQ[Map[!
StringFreeQ[#,	“__”]	&,	a],	True],	$Failed,	v	=	If[NestListQ[v	=	Args[x,	90]],	v[[1]],
v];	For[k,	k	<=	Length[a],	k++,	p	=	a[[k]];	AppendTo[b,	If[StringTake[p,	{–1,–1}]	==
“_”,	True,	If[!	StringFreeQ[p,	c],	d	=	StringSplit[p,	c];	r	=	ToExpression[d[[1]]];
{ToExpression[{d[[1]]	<>	“=”	<>	ToString1[y[[k]]],	d[[2]]}][[2]],	ToExpression[d[[1]]
<>	“=”	<>	ToString[r]]}[[1]],	d	=	StringSplit[p,	“_”];	ToString[Head[y[[k]]]]	==
d[[2]]]]]];	{k,	d}=	{1,	Partition[Riffle[v,	b],	2]};	While[k	<=	Length[d],
PrependTo[d[[k]],	k];	k++];	d]]	In[5058]:=	TestProcCalls[SuffPref,

{“IAN_RANS_RAC_90_73”,	“90_73”,	2}]	Out[5058]=	{{1,	“S“,	True},	{2,	“s“,	True},
{3,	“n“,	True}}

In[5059]	:=	TestProcCalls[SuffPref,	{“IAN_RANS_RAC_90_73”,	50.90,	7.3}]
Out[5059]=	{{1,	“S“,	True},	{2,	“s“,	False},	{3,	“n“,	False}}
In[5060]:=	F[x_String,	y_	/;	IntegerQ[y]]	:=	{x,	y};	TestProcCalls[F,	{6,	“avz”}]
Out[5060]=	{{1,	“x“,	False},	{2,	“y“,	False}}

The	previous	fragment	presents	source	code	of	the	TestProcCalls	procedure	with
examples	of	its	usage.	The	procedure	callTestProcCalls[x]	successfully	processes	the
unique	objects	and	the	objects	of	the	same	name,	at	that	in	the	second	case	thefirst
subobject	from	the	list	returned	by	the	callDefinition[x]	is	processed.	At	checking	of
values	on	admissibility	in	the	case	of	a	formal	argument	of	format“arg_/;Test(arg)”	is
required	previously	to	calculatearg	and	only	then	to	check	a	logical	valueTest(arg).
However	this	operation	in	body	of	theTestProcCalls	procedure	updatesarg	outside	of	the
procedure	what	in	general	is	inadmissible.	Therefore	for	elimination	of	this	situation	a
quite	simple	reception(that	can	be	easily	seen	from	the	presented	procedure	code)	without
redefinition	of	global	variables	of	the	current	session	that	have	the	same	name	with	formal
arguments	of	the	tested	objectx	of	the	type	stated	above	has	been	used.	This	approach	to
the	organization	of	algorithm	of	the	procedure	quite	answers	the	concept	of	the	robust
programming.	At	that,	theTestProcCalls	procedure	allows	a	series	of	modifications	useful
enough	for	procedural	programming	in	theMathematica	system.

In	contrast	to	the	previous	procedures	the	next	ProcActCallsQ	procedure	tests	existence
in	the	user	block,	function	or	module	x	the	existence	of	calls	of	the	user	means	active	in
the	current	session	that	are	provided	by	usages.	The	procedure	callProcActCallsQ[x]
returnsTrue	if	definition	of	a	module,	block,	functionx	contains	the	calls	of	tools	of	the
similar	type,	otherwiseFalse	is	returned.	Moreover,	thru	the	second	optional	argumenty
–an	undefinite	variable–	the	procedure	callProcActCallsQ[x,	y]	returns	the	list	of	the	user
software	whose	calls	are	in	definition	of	a	block,	function	or	a	modulex.

In[5070]	:=	ProcActCallsQ[x_	/;	BlockFuncModQ[x],	y___]	:=	Module[{a,	b,	c	=	{},
d,	k	=	1,	h	=	“::usage	=	“},	Save[b	=	“Art26$Kr18”,	x];	For[k,	k	<	Infinity,	k++,	d	=
Read[b,	String];	If[SameQ[d,	EndOfFile],	Break[],	If[!	StringFreeQ[d,	h],
AppendTo[c,	StringSplit[StringTake[d,	{1,	Flatten[StringPosition[d,	h]][[1]]–1}],	”	/:
“][[1]]]]]];	DeleteFile[Close[b]];	c	=	Select[c,	SymbolQ[#]	&];	b	=	If[MemberQ[c,
ToString[x]],	Drop[c,	1],	c];	If[{y}!=	{}&&	!	HowAct[{y}[[1]]],	{y}=	{b}];	If[b	==	{},
False,	True]]

In[5071]	:=	{ProcActCallsQ[ProcQ,	h],	h}
Out[5071]=	{True,	{”SymbolQ“,	“SystemQ“,	“UnevaluatedQ“,	“ToString1“,
“StrDelEnds“,	“SuffPref“,	“ListStrToStr“,	“Definition2“,	“HowAct“,	“Mapp“,
“SysFuncQ“,	“Sequences“,	“Contexts1“,	“ClearAllAttributes“,	“SubsDel“,	“HeadPF“,
“BlockFuncModQ“,	“PureDefinition“,	“Map3“,	“MinusList”}}
In[5072]:=	{ProcActCallsQ[ToString1,	s],	s}
Out[5072]=	{True,	{”StrDelEnds“,	“SuffPref”}}
In[5073]:=	G[x_String,	y_	/;	!	HowAct[y]]	:=	If[StringLength[x]	==	90,	y	=	x,	y	=	x	<>
“500”];	{ProcActCallsQ[G,	Gs],	Gs}
Out[5073]=	{True,	{”HowAct”}}

In[5074]:=	{ProcActCallsQ[StrStr,	Sv],	Sv}
Out[5074]=	{False,	{}}
In[5075]:=	{ProcActCallsQ[ProcActCallsQ,	Gsv],	Gsv}
Out[5075]=	{True,	{”BlockFuncModQ“,	“PureDefinition“,	“UnevaluatedQ“,
“SymbolQ“,	“ToString1“,	“StrDelEnds“,	“SuffPref“,	“ListStrToStr“,	“Definition2“,
“HowAct“,	“SystemQ“,	“Mapp“,	“ProcQ“,	“ClearAllAttributes“,	“SubsDel“,
“Sequences“,	“HeadPF“,	“SysFuncQ“,	“Contexts1“,	“Map3“,	“MinusList”}}
In[5076]:=	F[x_]	:=	If[NestListQ[x],	x,	ToString1[x]]
In[5077]:=	{ProcActCallsQ[F,	v],	v}
Out[5077]=	{True,	{”NestListQ“,	“ToString1“,	“StrDelEnds“,	“SuffPref”}}

The	previous	fragment	gives	source	code	of	the	ProcActCallsQ	procedure	along	with
some	typical	examples	of	its	usage.	The	procedure	is	of	interest	at	the	structural	analysis
of	the	user	blocks/functions/modules;	furthermore,	the	exhaustive	analysis	belongs	only	to
the	user	means	active	in	the	current	session	of	the	system	and	provided	by	the	standard
usages.
In	certain	cases	the	question	of	definition	of	all	tools	used	by	the	user	block,	function,
module	that	are	activated	in	the	current	session	including	means	for	which	the	usages	are
missing	represents	a	certain	interest.	This	problem	is	solved	by	theProcContent	procedure
which	provides	the	analysis	of	an	activated	objectx	of	the	above	type	with	a	correct
heading,	concerning	the	existence	in	its	definition	of	the	user	means	both	internal,	and
external,	that	are	supplied	with	an	usage	or	without	it.	The	procedure	callProcContent[x]
returns	the	nested3–element	list	whose	first	element	defines	the	name	of	a
block/function/modulex,	the	second	element	defines	the	list	of	names	of	all	external
blocks,	functions	or	modules	used	by	the	objectx	whereas	the	third	element	defines	the	list
of	names	of	the	internal	blocks,	functions	or	modules	defined	in	the	body	ofx.	The
following	fragment	represents	source	code	of	theProcContent	procedure	along	with
typical	examples	of	its	usage.

In[5080]	:=	Kr[x_,	y_]	:=	Plus[x,	y];	Art[x_]	:=	Module[{a	=	90,	b	=	500,	c	=
ToString1[x],	d,	g},	c	=	Kr[a,	b];	d[y_]	:=	Module[{},	y];	g[z_]	:=	Block[{},	z	+	90];
c];	V[x_]	:=	Module[{c	=	StrStr[x],	d,	g},	G[a,	b];	d[y_]	:=	Module[{},	y];	g[z_]	:=
Block[{},	z];	c]

In[5081]:=	ProcContent[x_	/;	BlockFuncModQ[x]]	:=	Module[{a,	f,	b	=	SubProcs[x]
[[1]]},	f[y_]	:=	Module[{a1	=	“$Art2618Kr$”,	b1	=	””,	c	=	{y},	d,	h	=	””,	p},

Save[a1,	y];	While[!	SameQ[b1,	EndOfFile],	b1	=	Read[a1,	String];	If[!	MemberQ[{”
“,	“EndOfFile”},	ToString[b1]],	h	=h	<>	ToString[b1];	Continue[],	d	=
Flatten[StringPosition[h,	”	:=	“,	1]]];	If[d	==	{},	h	=	””;	Continue[],	p	=
StringTake[h,	{1,	d[[1]]–1}];	If[!	SameQ[Quiet[ToExpression[p]],	$Failed],
AppendTo[c,	StringTake[p,	{1,	Flatten[StringPosition[p,	“[“,	1]][[1]]–1}]];	h	=	””,
Null]]];	a1	=	Map[ToExpression,	{DeleteFile[Close[a1]],	c}[[2]]];
DeleteDuplicates[a1]];	a	=	f[x];	{x,	If[Length[a]	>	1,	a[[2	;;–1]],	{}],	If[Length[b]	>	1,
Map[ToExpression,	Map[HeadName,	b[[2	;;–1]]]],	{}]}]

In[5082]	:=	ProcContent[V]
Out[5082]=	{V,	{StrStr,	G,	HowAct},	{d,	g}}
In[5083]:=	ProcContent[Art]

Out[5083]=	{Art,	{ToString1,	StrDelEnds,	SuffPref,	Kr},	{d,	g}}	In[5084]:=
ProcContent[ToString1]
Out[5084]=	{ToString1,	{StrDelEnds,	SuffPref},	{}}}
In[5085]:=	V[x_]	:=	Module[{a	=	5,	b	=	6,	c,	d,	g,	Gt},	c	=	Gt[a,	b];	d[y_]	:=
Module[{},	y];	g[z_]	:=	Block[{a	=	6,	b	=9},	z/73];	ToString1[x]	<>	StrStr[x]]

In[5086]:=	ProcContent[V]
Out[5086]=	{V,	{ToString1,	StrDelEnds,	SuffPref,	StrStr},	{d,	g}}

At	that,	the	ProcContent	procedure	along	with	standard	functions	enough	essentially	uses
the	proceduresBlockFuncModQ,	SubProcs	together	with	a	simple	function,	whose
callHeadName[x]	returns	the	name	of	a	headingx	in	string	format.	These	means	were
considered	in	the	present	book	above.

The	function	call	ProcFuncCS[]	returns	the	nested	three-element	list	whose	sublists
define	names	in	string	format	according	of	the	user	blocks,modules	and	functions,	whose
definitions	were	evaluated	in	the	current	session.	The	next	fragment	represents	source
code	of	theProcFuncCS	function	together	with	a	typical	example	of	its	usage.

In[2532]:=	ProcFuncCS[]	:=	Quiet[Map3[Select,Names[“`*”],	{BlockQ[#]	&,
FunctionQ[#]	&,	ModuleQ[Symbol[#]]	&}]]

In[2533]	:=	G[x_String,	y_	/;	!	HowAct[y]]	:=	If[StringLength[x]	==	90,	y	=	x,	y	=	x
<>	“500”];	GS[x_]	:=	Block[{a	=	90,	b	=	500},	x];	F[x_]	:=	If[NestListQ[x],	x,
ToString1[x]];	GG[y_]	:=	Module[{a	=	90,	b	=	500,	c	=	2015,	d	=	{42,	47,	67}},	y];
ProcFuncCS[]	Out[2533]=	{{”GS”},	{”F“,	“G”},	{”GG”}}

The	operator	HeadCompose[a,	b,	c,	d]	which	was	in	the	previous	releases	of	the
system(now	the	operator	isn’t	documented)	returns	the	composition	of	the	identifiers	in
the	form	given	below,	namely:

In[2545]	:=	HeadCompose[G,	x,	y,	z]
Out[2545]=	G[x][y][z]
Such	form,	for	example,	can	be	useful	in	various	functional	transformations.	The	given
operator	can	be	useful	enough	also	at	the	organization	of	the	user	functions,	allowing	to
transfer	in	quality	of	theactual	values	for	their	formal	arguments	the	headings	of	functions
along	with	their	formal	arguments.	At	the	same	time,	this	tool	in	general	doesn’t	represent
an	especial	interest	what	induced	its	bringing	outside	the	system.	On	the	other	hand,	it	is
possible	to	represent	a	certain	analog	of	this	tool	which	has	significantly	larger	applied
interest,	namely	theFunCompose	procedure	whose	callFunCompose[L,	x]	allows	to
create	the	nested	functions	from	the	listL	of	functions,	modules	or	blocks	from	an
expression	given	by	its	second	argumentx.	The	following	a	quite	simple	fragment	rather
visually	illustrates	the	aforesaid.

In[2551]:=	FunCompose[t_	/;	ListQ[t],	x_]	:=	Module[{a,	k	=	2},	a	=	t[[1]]@x;	For[k,
k	<=	Length[t],	k++,	a	=	t[[k]]@a];	a]

In[2552]	:=	FunCompose[{F,	G,	H,	T,	W,	Q,	V,	U},	Sin[z]]
Out[2552]=	F[G[H[T[W[Q[V[U[Sin[z]]]]]]]]]
In[2553]:=	{FunCompose[{Sin,	Cos,	Log},	9.42],	FunCompose[{Sin,	Cos,

Tan,	Sqrt},	500.90]}

Out[2553]=	{–0.0000114144,	0.786906}

For	organization	of	transfer	of	identifiers	of	functions	as	the	actual	values	it	is	possible	to
use	constructions,	for	example,	of	the	following	rather	simple	formats,	namely:
In[2555]:=	F[x_]	:=	x^3;	SV[z_]	:=	F@z	+	z^3;	VSV[Id_,	z_]	:=

Module[{},	Id@(z^2	+	6)];	{VSV[F,	h],	SV[45]}
Out[2555]=	{(6+	h^2)^3,	182250}
along	with	a	number	of	similar	useful	enough	constructions.
For	temporary	removal	from	the	current	session	of	theMathematica	system	of	the	user
blocks,	functions	or	modules	quite	usefulDelRestPF	procedure	serves	whose	source	code
along	with	typical	examples	of	usage	represents	the	following	fragment.

In[2579]:=	F[x_]	:=	x^3;	SV[z_]	:=	F@z	+	z^3;	VSV[Id_,	z_]	:=	Module[{},	Id@(z^2
+	6)];	F[x_,	y_]	:=	x	+	y;	SetAttributes[F,	{Protected,	Listable}];	SetAttributes[SV,
Listable]

In[2580]	:=	DelRestPF[r_	/;	MemberQ[{“d”,	“r”},	r],	x___]	:=	Module[{b,	c,	p,	f	=
“$Art26Kr18$.mx”,	a	=	Quiet[Select[{x},	BlockFuncModQ[#]	&]],	k	=	1},	If[r	==
“d”,	b	=	Map[Definition2,	a];	Save[f,	b];	Map[ClearAllAttributes,	a];	Map[Remove,
a];,	c	=	Get[f];	DeleteFile[f];	For[k,	k	<=	Length[c],	k++,	p	=	c[[k]];
ToExpression[p[[1	;;–2]]];	ToExpression[“SetAttributes[”	<>	StringTake[p[[1]],	{1,
Flatten[StringPosition[p[[1]],	“[“]][[1]]–1}]	<>	“,”	<>	ToString[p[[–1]]]	<>	“]”]]]]
In[2581]:=	DelRestPF[“d”,	F,	SV,	VSV]
In[2582]:=	Map[Definition2,	{F,	SV,	VSV}]

Out[2582]	=	{Definition2[F],	Definition2[SV],	Definition2[VSV]}	In[2583]:=
DelRestPF[“r”]
In[2584]:=	Map[Definition2,	{F,	SV,	VSV}]
Out[2584]=	{{”F[x_]:=	x^3“,	“F[x_,	y_]:=	x+	y“,	{Listable,	Protected}},

{”SV[z_]:=	F[z]+	z^3“,	{Listable}},
{”VSV[Id_,	z_]:=	Module[{},	Id[z^2+	6]]“,	{}}}

In[2585]	:=	DelRestPF1[r_	/;	MemberQ[{“d”,	“r”},	r],	f_/;	StringQ[f],	x___]	:=
Module[{a	=Quiet[Select[{x},	BlockFuncModQ[#]	&]],	b,	c,	p,	k	=	1},	If[r	==	“d”,	b
=	Map[Definition2,	a];	Save[f,	b];	Map[ClearAllAttributes,	a];	Map[Remove,	a];,	c	=
Get[f];	DeleteFile[f];	For[k,	k	<=	Length[c],	k++,	p	=	c[[k]];	ToExpression[p[[1	;;–
2]]];	ToExpression[“SetAttributes[”	<>	StringTake[p[[1]],	{1,
Flatten[StringPosition[p[[1]],	“[“]][[1]]–1}]	<>	“,”	<>	ToString[p[[–1]]]	<>	“]”]]]]

In[2586]	:=	DelRestPF1[“d”,	“C:\Temp\Tallinn”,	F,	SV,	VSV]	In[2587]:=
Map[Definition2,	{F,	SV,	VSV}]
Out[2587]=	{Definition2[F],	Definition2[SV],	Definition2[VSV]}	In[2588]:=
DelRestPF1[“r”,	“C:\Temp\Tallinn”]
In[2589]:=	Map[Definition2,	{F,	SV,	VSV}]
Out[2589]=	{{”F[x_]:=	x^3“,	“F[x_,	y_]:=	x+	y“,	{Listable,	Protected}},

{”SV[z_]:=	F[z]+	z^3“,	{Listable}},
{”VSV[Id_,	z_]:=	Module[{},	Id[z^2+	6]]“,	{}}}

The	procedure	call	DelRestPF[“d”,	x,	y,	…]	returnsNull,	i.e.nothing,	deleting	from	the

current	session	the	user	blocks,	functions	and/or	modules	{x,	y,	…}	while	the	subsequent
callDelRestPF[“r”]	returnsNull,	i.e.nothing,	restoring	their	availability	in	the	current
session	or	in	other	session	with	preservation	of	the	options	and	attributes	ascribed	to	them.
The	procedure	is	quite	useful	in	a	number	of	applications,	first	of	all,	of	system	character.
Moreover,	the	procedure	is	oriented	onto	work	only	with	one	list	of	objects,	creating	only
a	fixed	file	with	the	saved	objects.	Meanwhile,	a	very	simple	modification	of	the
procedure	provides	its	expansion	onto	any	number	of	lists	of	the	user	blocks,	functions
and	modules,	allowing	temporarily	to	delete	them	at	any	moments	from	the	current
session	with	the	subsequent	their	restoration	in	the	current	session	or	other	session	of	the
system.	So,	the	previous	fragment	is	completed	by	one	of	similar	useful	modifications
which	has	a	number	of	useful	appendices	of	the	system	character.
The	procedure	callDelRestPF1[“d”,w,	x,	y,	z,…]	returnsNull,	i.e.	nothing,	deleting	from
the	current	session	the	user	blocks,	functions	and/or	modules	{x,	y,	z,	…}	with	saving	of
them	in	a	datafilew,	whereas	the	subsequent	call	DelRestPF1[“r”,w]	returnsNull,	i.e.
nothing,	restoring	their	availability	in	the	current	session	or	in	other	session	from	the
datafilew	with	preservation	of	the	options	and	attributes	ascribed	to	them.

The	built	–inMath–language	for	programming	of	the	branching	algorithms	along	with
the“If”	offer	allows	use	of	unconditional	transitions	on	the	basis	of	theGoto	function
which	is	encoded	in	the	formGoto[h],	unconditionally	passing	control	into	a	point	defined
by	the	constructionLabel[h].	As	a	rule,	theGoto	function	is	used	in	procedural
constructions,	however	unlike	the	built–ingoto–function	of	theMaple	system	it	can	be
used	also	in	the	input	constructions	of	theMathematica	system.	Moreover,	as	aLabel	any
correct	expression	is	allowed,	including	also	sequence	of	expressions	whose	the	last
expression	defines	actually	label;	at	that,	theLabel	concerning	a	module	can	be	both	the
global	variable,	and	the	local	variable.	Meanwhile,	in	order	to	avoid	possible
misunderstandings,	theLabel	is	recommended	to	be	defined	as	a	local	variable	because	the
globalLabel	calculated	outside	of	a	module	is	always	acceptable	for	the	module,	however
calculated	in	the	module	body	quite	can	distort	calculations	outside	of	the	module.	At	that,
multiplicity	of	occurrences	of	identicalGoto–functions	into	a	procedure	is	quite	naturally
and	is	defined	by	the	realized	algorithm	while	with	the	corresponding	tags	Label	the
similar	situation,	generally	speaking,	is	inadmissible;	at	that,	it	is	not	recognized	at
evaluation	of	a	procedure	definition	and	even	at	a	stage	of	its	performance,	often
substantially	distorting	the	planned	task	algorithm.	In	this	case	only	point	of	a	module
body	which	is	marked	by	the	first	such	Label	receives	the	control.	Moreover,	it	must	be
kept	in	mind	that	lack	of	a	Label[a]	for	the	corresponding	callGoto[a]	in	a	block	or
module	at	a	stage	of	evaluation	of	its	definitions	isn’t	recognized,	however	only	at	the
time	of	performance	with	the	real	appeal	to	suchGoto[a].	The	interesting	examples
illustrating	the	told	can	be	found	in	our	books	[28-33].

In	this	connection	the	GotoLabel	procedure	can	represent	a	certain	interest	whose
callGotoLabel[P]	allows	to	analyse	a	procedureP	on	the	subject	of	formal	correctness	of
use	ofGoto-functions	andLabel	tags	corresponding	to	them.	The	procedure
callGotoLabel[P]	returns	the	nested3–element	list	whose	first	element	defines	the	list	of
allGoto-functions	used	by	a	moduleP,	the	second	element	defines	the	list	of	all	tags(without
their	multiplicity),	the	third	element	defines	the	list,	whose	sublists	defineGoto-functions
with	the	tags	corresponding	to	them(at	that,as	the	first	elements	of	these	sublists	the	calls

of	theGoto-functions	appear,whereas	multiplicities	of	functions	and	tags	remain).	The
following	fragment	represents	source	code	of	theGotoLabel	procedure	along	with	typical
examples	of	its	usage.

In[2540]	:=	GotoLabel[x_	/;	BlockModQ[x]]	:=	Module[{b,	c	=	{{},	{},	{}},	d,	p,	a	=
Flatten[{PureDefinition[x]}][[1]],	k	=	1,	j,	h,	v	=	{},	t},	b	=	ExtrVarsOfStr[a,	1];	b	=
DeleteDuplicates[Select[b,	MemberQ[{“Label”,	“Goto”},#]	&]];	If[b	==	{},	c,	d	=
StringPosition[a,	Map[”	”	<>	#	<>	“[”	&,	{“Label”,	“Goto”}]];	t	=	StringLength[a];
For[k,	k	<=	Length[d],	k++,	p	=	d[[k]];	h	=	””;	j	=	p[[2]];	While[j	<=	t,	h	=	h	<>
StringTake[a,	{j,	j}];	If[StringCount[h,	“[“]	==	StringCount[h,	“]”],	AppendTo[v,
StringTake[a,	{p[[1]]	+	1,	p[[2]]–1}]	<>	h];	Break[]];	j++]];	h	=	DeleteDuplicates[v];
{Select[h,	SuffPref[#,	“Goto”,	1]	&],	Select[h,	SuffPref[#,	“Label”,	1]	&],
Gather[Sort[v],	#1	==	StringReplace[#2,	“Label[“–>	“Goto[“,	1]	&]}]]

In[2541]:=	ArtKr[x_	/;	IntegerQ[x]]	:=	Module[{prime,	agn},	If[PrimeQ[x],	Goto[9;
prime],	If[OddQ[x],	Goto[agn],	Goto[Sin]]];	Label[9;	prime];	Print[x^2];	Goto[Sin];
Print[NextPrime[x]];	Goto[Sin];	Label[9;	prime];	Null]	In[2542]:=	Kr[x_	/;
IntegerQ[x]]	:=	Module[{prime,	agn,	y},
If[PrimeQ[x],	Goto[prime],	If[OddQ[x],	Goto[agn],	Goto[agn]]];

Label[9;	prime];	y	=	x^2;	Goto[agn];	Label[agn];	y	=	NextPrime[x];	Label[agn];	y]
In[2543]:=	GotoLabel[ArtKr]
Out[2543]=	{{”Goto[9;prime]“,	“Goto[agn]“,	“Goto[Sin]”},{”Label[9;prime]”},

{{	“Goto[9;	prime]“,	“Label[9;	prime]“,”Label[9;	prime]”},	{”Goto[agn]”},
{”Goto[Sin]“,	“Goto[Sin]“,	“Goto[Sin]”}}}	In[2544]:=	GotoLabel[Kr]
Out[2544]=	{{”Goto[prime]“,	“Goto[agn]”},	{”Label[9;	prime]“,	“Label[agn]”},

{{	“Goto[agn]“,	“Goto[agn]“,	“Goto[agn]“,	“Label[agn]“,	“Label[agn]”},
{”Goto[prime]”},	{”Label[9;	prime]”}}}	In[2545]:=	Map[GotoLabel,	{GotoLabel,
TestArgsTypes,	}]
Out[2545]=	{{{},	{},	{}},	{{},	{},	{}}}
In[2546]:=	Map[GotoLabel,	{SearchDir,	StrDelEnds,	OP,	BootDrive}]	Out[2546]=
{{{},	{},	{}},	{{},	{},	{}},	{{”Goto[ArtKr]”},	{”Label[ArtKr]”},

{{”Goto[ArtKr]“,	“Label[ArtKr]”}}},	{{”Goto[avz]”},	{”Label[avz]”},	{{”Goto[avz]“,
“Goto[avz]“,	“Goto[avz]“,	“Label[avz]”}}}

We	will	note	that	existence	of	a	nested	list	with	the	third	sublist	containing
Goto–functions	without	tags	corresponding	to	them,	in	the	result	returned	by	a
callGotoLabel[P]	not	necessarily	speaks	about	existence	of	the	function	callsGoto[x]	for
which	not	exists	a	tagLabel[x].	It	can	be,	for	example,	in	the	case	of	generation	of	a	value
depending	on	some	condition.

In[2550]	:=	Av[x_Integer,	y_Integer,	p_	/;	MemberQ[{1,	2,	3},	p]]	:=	Module[{},
Goto[p];	Label[1];	Return[x	+	y];
Label[2];	Return[N[x/y]];
Label[3];	Return[x*y]]

In[2551]	:=	Map[Av[500,	90,	#]	&,	{1,	2,	3,	4}]
Out[2551]=	{590,	5.55556,	45000,	Av[500,	90,	4]}

In[2552]:=	GotoLabel[Av]
Out[2552]=	{{”Goto[p]”},	{”Label[1]“,	“Label[2]“,	“Label[3]”},	{{”Goto[p]”},

{”Label[1]”},	{”Label[2]”},	{”Label[3]”}}}

For	example,	according	to	simple	example	of	the	previous	fragment	the	call
GotoLabel[Av]	contains	{”Goto[p]”}	in	thethird	sublist	what,	at	first	sight,	it	would	be
possible	to	consider	as	a	certain	impropriety	of	the	corresponding	call	ofGoto-function.
However,	all	the	matter	is	that	a	value	of	the	actualpargument	in	the	callAv[x,	y,	p]	and
defines	a	tag,	really	existing	in	definition	of	this	procedure,	i.e.	aLabel[p].	Thus,
theGotoLabel	procedure	only	at	the	formal	level	analyzes	existence	ofGoto-
functions,”incorrect”	from	its	point	of	view	along	with”excess”	tags.	Whereas	refinement
of	the	results	received	on	the	basis	of	a	callGotoLabel[P]	lies	on	the	user,	first	of	all,	by
means	of	analysis	of	accordance	of	source	code	of	aP	procedure	to	the	correctness	of	the
required	algorithm.

The	structured	paradigm	of	programming	doesn	‘t	assume	use	in	programs	of	thegoto-
constructions	allowing	to	transfer	control	from	bottom	to	top.	At	the	same	time,	in	a
number	of	cases	the	use	ofGoto–function	is	effective,	in	particular,	at	needing	of
embedding	into	theMathematica	environment	of	a	program	which	uses	unconditional
transitions	on	the	basis	of	thegoto-offer.	For	example,Fortran–programs	can	be	adduced
as	a	quite	typical	example	that	are	very	widespread	in	the	scientific	appendices.	From	our
experience	follows,	that	the	use	ofGoto–function	allowed	significantly	to	simplify	the
embedding	into	theMathematica	environment	of	a	number	of	rather	large
Fortran–programs	relating	to	engineering	and	physical	applications	which	very	widely
use	thegoto–constructions.	Right	there	it	should	be	noted	that	from	our	standpoint
theGoto-function	of	theMathematica	system	is	more	preferable,	thangoto–function	of
theMaple	system	in	respect	of	efficiency	in	the	light	of	application	inprocedural
programming	of	various	appendices,	including	appendices	of	the	system	character.

As	it	was	already	noted,	the	Mathematica	allows	existence	of	the	objects	of	the	same
name	with	various	headings	which	identify	objects,	but	not	their	names.	The
standardDefinition	function	and	our	proceduresDefinition2,	PureDefinition,	and	others
by	name	of	an	object	allow	to	receive	definitions	of	all	active	subobjects	in	the	current
session	with	identical	names,	but	with	various	headings.	Therefore	there	is	quite	specific
problem	of	removal	from	the	currentMathematica	session	not	of	all	objects	with	a
concrete	name,	but	only	subobjects	with	concrete	headings.
TheRemovePF	procedure	solves	this	problem;	its	callRemovePF[x]	returns	Null,	i.e.
nothing,	providing	removal	from	the	current	session	of	the	objects	with	headingsx	which
are	determined	by	the	factual	argumentx(a	heading	in	string	format	or	their	list).	In	the
case	of	the	incorrect	headings	determined	by	an	argumentx,	the	callRemovePF[x]	is
returned	unevaluated.	The	given	procedure	is	quite	useful	in	procedural	programming.	The
fragment	below	represents	source	code	of	theRemovePF	procedure	along	with	examples
of	its	typical	usage	for	removal	of	subobjects	at	the	objects	of	the	same	name.

In[2620]:=	RemovePF[x_	/;	HeadingQ1[x]	||	ListQ[x]	&&
DeleteDuplicates[Map[HeadingQ1,	x]]	==	{True}]	:=

Module[{b,	c	=	{},	d,	p,	k	=	1,	j,	a	=	DeleteDuplicates[Map[HeadName,

Flatten[{x}]]]},	b	=Map[If[UnevaluatedQ[Definition2,	#],	{“90”,{}},
Definition2[#]]&,	a];	For[k,	k	<=	Length[a],	k++,	p	=	b[[k]];	AppendTo[c,
Select[Flatten[{p[[1	;;–2]],	“SetAttributes[”	<>	a[[k]]	<>	“,	”	<>	ToString[p[[–1]]]	<>
“]”}],	!	SuffPref[#,	x,	1]	&]]];	Map[ClearAllAttributes,	a];	Map[Remove,	a];
Map[ToExpression,	c];	a	=	Definition2[b	=	HeadName[x]];	If[a[[1]]	===
“Undefined”,	ToExpression[“ClearAttributes[”	<>	b	<>	“,”	<>	ToString[a[[2]]]	<>
“]”],	Null]]]

In[2621]	:=	M[x_	/;	SameQ[x,	“avz”],	y_]	:=	Module[{a,	b,	c},	y];	F[x_,	y_Integer]	:=
x	+	y;	F[x_,	y_]	:=	x	+	y;	F[x_,	y_,	z_]	:=	x	+	y	+	z;	M[x_	/;	x	==	“avz”]	:=	Module[{a,
b,	c},	x];	M[x_,	y_,	z_]	:=	x	+	y	+	z;

M[x_	/;	IntegerQ[x],	y_String]	:=	Module[{a,	b,	c},	x];	M[x_,	y_]	:=	Module[{a,	b,
c},	“agn”;	x	+	y];	M[x_String]	:=	x;	M[x_	/;	ListQ[x],	y_]	:=	Block[{a,	b,	c},	“agn”;
Length[x]	+	y];

SetAttributes[M,	Protected];	SetAttributes[F,	Listable]	In[2622]:=	Definition[M]
Out[2622]=	Attributes[M]=	{Protected}

“	M[x_	/;	x===	"avz",	y_]:=	Module[{a,	b,	c},	y]”	“M[x_	/;	x==	"avz"]:=	Module[{a,	b,
c},	x]”
“M[x_,	y_,	z_]:=	x+	y+	z”
“M[x_	/;	IntegerQ[x],	y_String]:=	Module[{a,	b,	c},	x]”	“M[x_	/;	ListQ[x],	y_]:=
Block[{a,	b,	c},	"agn";	Length[x]+	y]”	“M[x_,	y_]:=	Module[{a,	b,	c},	"agn";	x+	y]”
“M[x_String]:=	x”

In[2623]:=	Definition[F]

Out[2623]	=	Attributes[F]=	{Listable}
“F[x_,	y_Integer]:=	x+	y”
“F[x_,	y_]:=	x+	y”
“F[x_,	y_,	z_]:=	x+	y+	z”

In[2624]	:=	RemovePF[{“M[x_,	y_]”,	“F[x_,	y_,	z_]”,	“M[x_String]”,	“M[x_,	y_,
z_]””,	“F[x_,	y_Integer]”,	“v[t_]”}]
In[2625]:=	Definition[M]
Out[2625]=	Attributes[M]=	{Protected}
“M[x_	/;	x===	"avz",	y_]:=	Module[{a,	b,	c},	y]”	“M[x_	/;	x==	"avz"]:=	Module[{a,	b,
c},	x]”
“M[x_	/;	IntegerQ[x],	y_String]:=	Module[{a,	b,	c},	x]”	“M[x_	/;	ListQ[x],	y_]:=
Block[{a,	b,	c},	"agn";	Length[x]+	y]”
In[2626]:=	Definition[F]
Out[2626]=	Attributes[F]=	{Listable}
“F[x_,	y_]:=	x+	y”
In[2627]:=	Definition[F]
Out[2627]=	Null

For	ensuring	of	correct	uploading	of	the	user	block/function/modulex	in	the	current
session	on	condition	of	possible	need	of	additional	reloading	in	the	current	session	also	of
non-standard	blocks/functions/modules	whose	calls	are	used	in	such	objectx,
theCallsInProc	procedure	can	be	useful	enough,	whose	callCallsInProc[x]	returns	the	list

of	all	standard	functions,	external	and	internal	blocks/functions/modules,	whose	calls	are
used	by	an	objectx	of	the	specified	type.	The	following	fragment	represents	source	code	of
the	CallsInProc	procedure	along	with	the	typical	examples	of	its	usage.

In[2660]	:=	CallsInProc[P_	/;	BlockFuncModQ[P]]	:=	Module[{b,	c	={},	k	=	1,	a	=
ToString[FullDefinition[P]],	TN},	TN[S_/;	StringQ[S],	L_	/;	ListQ[L]	&&

Length[Select[L,	IntegerQ[#]	&]]	==Length[L]	&&	L	!=	{}]	:=	Module[{a1	=	””,	c1,
b1	=	{},	k1,	p	=	1},	For[p,	p	<=	Length[L],	p++,	For[k1	=	L[[p]]–1,	k1	!=	0,	k1––,	c1	=
StringTake[S,	{k1,	k1}];	a1	=	c1	<>	a1;	If[c1	===	”	“,	a1	=	StringTake[a1,	{2,–1}];
If[Quiet[Check[Symbol[a1],	False]]	===	False,	a1	=	””;	Break[],	AppendTo[b1,	a1];
a1	=	””;	Break[]]]]];	b1];	b	=	TN[a,	b	=	DeleteDuplicates[Flatten[StringPosition[a,
“[“]]]][[2	;;–1]];	b	=	Sort[DeleteDuplicates[Select[b,	StringFreeQ[#,	“`”]	&&	!
MemberQ[{“Block”,	ToString[P],	“Module”},	#]	&&	ToString[Definition[#]]	!=
“Null”	&]]];	k	=	Select[b,	SystemQ[#]	&];	c	=	MinusList[b,	Flatten[{k,
ToString[P]}]];	{k,	c,	DeleteDuplicates[Map[Context,	c]]}]

In[2661]:=	CallsInProc[StringDependQ]
Out[2661]=	{{”Attributes“,	“Flatten“,	“If“,	“Length“,	“ListQ“,	“Select“,

“	StringFreeQ“,	“StringQ”},	{”HowAct“,	“ListStrQ”},	{”AladjevProcedures`”}}
In[2662]:=	G[x_]	:=	ToString1[x];	CallsInProc[G]

Out[2662]	=	{{”Close“,	“DeleteDuplicates“,	“Flatten“,	“For“,	“If“,	“MemberQ“,
“Read“,	“Return“,	“StringLength“,	“StringQ“,	“StringTake“,	“StringTrim“,	“While“,
“Write”},	{”StrDelEnds“,	“SuffPref“,	“ToString1”},	{”AladjevProcedures`”}}

The	procedure	call	CallsInProc[x]	returns	the	nested3–element	list	whose	the	first
element	defines	the	list	of	standard	functions,	the	second	element	defines	the	list	of
external	and	internal	functions,	blocks	and	modules	of	the	user,	whose	calls	uses	an
objectx	whereas	the	third	element	defines	the	list	of	contexts	which	correspond	to	the	user
means	and	which	are	used	by	the	objectx.	TheCallsInProc	procedure	represents	essential
interest	for	analysis	of	the	user	means	regarding	existence	of	calls	in	them	of	both	the	user
tools,	and	the	system	software.

For	operating	with	procedures	and	functions,	whose	definitions	have	been	evaluated	in	the
current	session,	a	simpleCsProcsFuncs	function	is	a	rather	useful	means	whose
callCsProcsFuncs[]	returns	the	list	of	blocks,	functions	and	modules,	whose	definitions
were	evaluated	in	the	current	session.	The	fragment	represents	source	code	of	the	function
with	an	example	of	its	use.

In[2719]	:=	CsProcsFuncs[]	:=	Select[CNames[“Global`”],	ProcQ[#]	||	FunctionQ[#]
&]
In[2720]:=	CsProcsFuncs[]
Out[2720]=	{”A“,	“ArtKr“,	“Av“,	“B“,	“H72“,	“Kr“,	“V“,	“Vg“,	“W”}	Naturally,	the
given	list	doesn’t	include	the	procedures	and	functions	from	the	packages	uploaded	into
the	current	session,	of	both	system	means,	and	user	means	for	the	reason	that	similar
means	are	associated	with	contexts	of	the	corresponding	packages.	Moreover,	due	to	the
necessity	of	analysis	of	a	quite	large	number	of	means	of	the	current	session	the
performance	of	this	function	can	demand	noticeable	temporary	expenses.
TheCsProcsFuncs1	procedure	is	a	rather	useful	modification	of	the	previous	function

whose	callCsProcsFuncs1[]	returns	the	nested	list	whose	elements	define	lists	whosefirst
elements	define	means	similarly	to	theCsProcsFuncs	function	while	thesecond	elements–
multiplicities	of	their	definitions.	The	following	fragment	represents	source	code	of
theCsProcsFuncs1	procedure	along	with	typical	examples	of	its	usage.

In[2532]:=	CsProcsFuncs1[]	:=	Module[{a	=	CsProcsFuncs[],	b,	c},	b	=
Map[Definition2,	ToExpression[a]];	c	=	Quiet[Mapp[Select,	b,	StringFreeQ[#1,
ToString[#1]	<>	“Options[”	<>	ToString[#1]	<>	“]	:=	“]	&]];	Select[Map9[List,	a,
Map[Length,	c]],	!	MemberQ[#,	“CsProcsFuncs1”]	&]]	In[2533]:=	CsProcsFuncs1[]
Out[2533]=	{{”LocalVars“,	1},	{”V“,	4},	{”W“,	2},	{”Z“,	2},	{”Art“,	6},	{”Kr“,	4}}

Analogously	to	the	CsProcsFuncs	function,	the	callCsProcsFuncs1[]	of	the	previous
procedure	because	of	necessity	of	analysis	of	a	quite	large	number	of	the	means	which	are
activated	in	the	current	session	can	demand	enough	noticeable	temporary	expenses.
The	next	procedureActCsProcFunc	is	a	means	rather	useful	in	the	practical	relation,	its
callActCsProcFunc[]	returns	the	nested	two–element	list	whose	elements	are	sublists	of
variable	length.	The	first	element	of	thefirst	sublist–	“Procedure”	while	others	define
the2–element	lists	containing	names	of	the	procedures	with	their	headings	activated	in	the
current	session.	Whereas	the	first	element	of	thesecond	sublist–	“Function”	whereas
others	determine	the	2–element	lists	containing	names	of	the	functions	with	their	headings
which	were	activated	in	the	current	session.	At	that,	the	procedures	can	contain	in	own
composition	both	the	blocks,	and	the	modules.	The	following	fragment	represents	source
code	of	theActCsProcFunc	procedure	along	with	the	most	typical	examples	of	its	usage.

In[2742]	:=	ActCsProcFunc[]	:=	Module[{a	=	Names[“Global`*”],	h	=	{},	d,	t,	b	=
{“Procedure”},	c	=	{“Function”},	k	=	1,	v},	Map[If[TemporaryQ[#]	||	HeadPF[#]
===	#,	Null,	AppendTo[h,	ToString[t	=	Unique[“g”]]];	v	=	BlockFuncModQ[#,	t];	If[v
&&	MemberQ[{“Block”,	“Module”},	t],	AppendTo[b,	{#,	HeadPF[#]}],	If[v	&&	t
===	“Function”,	AppendTo[c,	{#,	HeadPF[#]}]]]]	&,	a];	Map[Remove,	h];	{b,	c}]

In[2743]	:=	TemporaryQ[x_]	:=	If[SymbolQ[x],	MemberQ[{“Attributes[”	<>
ToString[x]	<>	“]	=	{Temporary}“,	“Null”},	ToString[Definition[x]]],	False]
In[2744]:=	Map[TemporaryQ,	{gs47,	gs,	a	+	b}]

Out[2744]	=	{True,	True,	False}
In[2745]:=	g[x_]	:=	Module[{},	x];	s[x_,	y_]	:=	Block[{},	x	+	y];	v[x_]	:=	x;	n[x_]	:=	x;
vs[x_,	y_]	:=	x	+	y;	gs[x_]	:=	x^2;	hg[x___]	:=	Length[{x}];	hh[x_,	y_]	:=	x^2	+	y^2;
nm[x_,	y_]	:=	Module[{},	x*y];	ts[x_Integer]	:=	Block[{a	=	72},	x	+	a];	w[x_]	:=	x;
w[x_,	y_]	:=	x*y;
In[2746]:=	ActCsProcFunc[]
Out[2746]=	{{”Procedure“,{”g“,	“g[x_]”},{”nm“,	“nm[x_,y_]”},	{”s“,	“s[x_,y_]”},
{”ts“,	“ts[x_Integer]”}},
{”Function“,	{”gs“,	“gs[x_]”},{”hg“,	“hg[x___]”},{”hh“,	“hh[x_,y_]”},	{”n“,	“n[x_]”},
{”TemporaryQ“,	{”TemporaryQ[x_/;SymbolQ[x]]“,	“TemporaryQ[x_]”}},	{”v“,
“v[x_]”},	{”vs“,	“vs[x_,	y_]”},	{”w“,	{”w[x_]“,	“w[x_,	y_]”}}}}
In[2747]:=	A[___]	:=	Module[{a,	b	=	590},	Map[TemporaryQ,	{a,	b}]];	A[]
Out[2747]=	{True,	False}

The	given	procedure	materially	uses	the	TemporaryQ	function,	whose	call

TemporaryQ[x]	returnsTrue	if	a	symbolx	defines	the	temporary	variable,	andFalse
otherwise.	In	particular,	for	a	local	variablex	without	initial	value	the	callTemporaryQ[x]
returnsTrue.	TheTemporaryQ	function	is	useful	in	many	appendices,	above	all	of	the
system	character.	The	previous	fragment	represents	source	code	of	the	function	with
typical	examples	of	its	usage.	Analogously	to	the	meansCsProcsFuncs
andCsProcsFuncs1	the	procedure	callActCsProcFunc	because	of	necessity	of	analysis	of
a	quite	large	number	of	the	means	which	are	activated	in	the	current	session	can	demand
enough	noticeable	temporary	expenses.	Concerning	theActCsProcFunc	procedure	it
should	be	noted	that	it	provides	return	only	of	blocks,	functions,	modules	whosedefinitions
have	been	evaluated	in	theInput–paragraph	mode	without	allowing	to	receive	objects	of
this	type	which	were	loaded	into	the	current	session	in	theInput–paragraph	mode,	in
particular,	as	a	result	of	uploading	of	the	user	package	by	means	of	theLoadMyPackage
procedure	as	visually	illustrate	the	last	examples	of	the	previous	fragment.	The	reason	for
this	is	that	this	objects	are	associated	with	thecontext	of	a	package	containing	them	but	not
with	the	context“Global`”.

As	it	was	noted	above,	the	strict	differentiation	of	objects	in	environment	of
theMathematica	is	carried	out	not	by	theirnames,	but	by	theirheadings.	For	this	reason	in
a	number	of	cases	of	procedural	programming	the	problem	of	organization	of	mechanisms
of	the	differentiated	processing	of	such	objects	on	the	basis	of	their	headings	arises.
Certain	such	means	is	presented	in	the	present	book,	here	we	will	definetwo	procedures
ensuring	the	differentiated	operating	with	attributes	of	such	objects.	Unlike	theRename
procedure,	the	RenameH	procedure	provides	in	a	certain	degree	selective	renaming	of	the
blocks,	functions,	modules	of	the	same	name	on	the	basis	of	their	headings.	The	successful
callRenameH[x,y]	returnsNull,	i.e.	nothing,	renaming	an	object	with	a	headingx	onto	a
namey	with	saving	of	attributes;	at	that,	the	initial	object	with	headingx	is	removed	from
the	current	session.

In[2563]:=	RenameH[x_	/;	HeadingQ1[x],	y_	/;	!	HowAct[y],	z___]	:=

Module[{c,	a	=	HeadName[x],	d	=	StandHead[x],	b	=	ToExpression[“Attributes[”	<>
HeadName[x]	<>	“]”]},	c	=	Flatten[{PureDefinition[a]}];	If[c	==	{$Failed},	$Failed,
If[c	==	{},	Return[$Failed],	ToExpression[“ClearAllAttributes[”	<>	a	<>	“]”]];
ToExpression[ToString[y]	<>	DelSuffPref[Select[c,	SuffPref[#,	d	<>	”	:=	“,	1]	&][[1]],
a,	1]];	If[{z}==	{},	RemProcOnHead[d]];	If[!	SameQ[PureDefinition[a],	$Failed],
ToExpression[“SetAttributes[“<>	ToString[a]	<>	“,”	<>	ToString[b]	<>	“]”]];
ToExpression[“SetAttributes[”	<>	ToString[y]	<>	“,”	<>	ToString[b]	<>	“]”];]]
In[2564]:=	M[x_	/;	SameQ[x,	“avz”],	y_]	:=	Module[{a,	b,	c},	y];	M[x_,	y_]	:=
Module[{a,	b,	c},	“agn”;	x	+	y];	M[x_String]	:=	x;

M[x_	/;	ListQ[x],	y_]	:=	Block[{a,	b,	c},	“agn”;	Length[x]	+	y];	SetAttributes[M,
Protected]	In[2565]:=	RenameH[“M[x_,y_]”,	V]
In[2566]:=	Definition[V]
Out[2566]=	Attributes[V]=	{Protected}

V[x	_,	y_]:=	Module[{a,	b,	c},	“agn“;	x+	y]
In[2567]:=	Definition[M]
Out[2567]=	Attributes[M]=	{Protected}

M[x	_	/;	x===	“avz“,	y_]:=	Module[{a,	b,	c},	y]
M[x_	/;	ListQ[x],	y_]:=	Block[{a,	b,	c},	“agn“;	Length[x]+	y]	M[x_String]:=	x

In[2568]	:=	RenameH[“M[x_String]”,	S,	90]
In[2569]:=	Definition[S]
Out[2569]=	Attributes[S]=	{Protected}

S[x	_String]:=	x
In[2570]:=	Definition[M]
Out[2570]=	Attributes[M]=	{Protected}

M[x	_	/;	x===	“avz“,	y_]:=	Module[{a,	b,	c},	y]
M[x_	/;	ListQ[x],	y_]:=	Block[{a,	b,	c},	“agn“;	Length[x]+	y]	M[x_String]:=	x

At	that,	the	procedure	call	RenameH[x,	y,	z]	with	the3rd	optional	argument	z	–an
arbitrary	expression–	renames	an	object	with	headingx	onto	a	namey	with	saving	of	the
attributes;	meanwhile,	the	object	with	headingx	remains	active	in	the	current	session.	On
an	inadmissible	tuple	of	factual	arguments	the	procedure	call	returns$Failed	or	returned
unevaluated.	The	previous	fragment	represents	source	code	of	theRenameH	procedure
along	with	the	most	typical	examples	of	its	usage.

In	a	number	of	the	procedures	intended	for	processing	of	definitions	or	calls	of	other
procedures/functions,	the	problem	ofidentification	of	the	call	format,	i.e.	format	of
typeF[args]	whereF	–	the	name	of	a	procedure/function	and	args	–	the	tuple	of	formal	or
factual	arguments	is	a	rather	topical.	The	next	fragment	represents	source	code	of
theCallQ	procedure	along	with	typical	enough	examples	of	its	usage.

In[2540]	:=	CallQ[x_]	:=	Module[{b,	c,	a=ToString[If[Quiet[Part[x,	1]]	===–1,	Part[x,
1]*x,	x]]},	b	=	Flatten[StringPosition[a,	“[“]];	If[b	==	{},	False,	c	=	b[[1]];
If[SymbolQ[StringTake[a,	{1,	c–1}]]	&&	StringTake[a,	{c	+	1,	c	+	1}]	!=	“[”	&&
StringTake[a,–1]	==	“]”,	True,	False]]]	In[2541]:=	CallQ[A[x,	y,	z]]

Out[2541]	=	True
In[2542]:=	Map[CallQ,	{Sin[–90],	Sin[9.0]}]
Out[2542]=	{True,	False}

In[2543]	:=	FormalArgs[x_]	:=	Module[{a,	b	=	Quiet[Part[x,	1]]},	If[CallQ[x],	a	=
ToString[If[b	===–1,	Part[x,	1]*x,	x]];	ToExpression[“{”	<>	StringTake[a,
{Flatten[StringPosition[a,	“[“]][[1]]	+	1,–2}]	<>	“}“],	$Failed]]

In[2544]	:=	Map[FormalArgs,	{Agn[x,	y,	x],	Sin[–a	+	b],
Agn[x_	/;	StringQ[x],	y_Integer,	z_]}]
Out[2544]=	{{x,	y,	x},	{a–	b},	{x_	/;	StringQ[x],	y_Integer,	z_}}
In[2545]:=	Map[FormalArgs,	{Agn[],	a	+	b,	90,	{a,	b,	c}}]
Out[2545]=	{{},	$Failed,	$Failed,	$Failed}

The	procedure	call	CallQ[x]	up	to	a	sign	returnsTrue	ifx	is	an	expression	of	the
formatF[args]	whereF	–	name	of	a	procedure/function	andargs	–	tuple	of	the	actual
arguments,	andFalse	otherwise.	The	aboveCallQ	procedure	is	of	interest	as	a	testing
means	for	checking	of	the	actual	arguments	of	objects	for	their	admissibility.	While	the
procedure	callFormalArgs[x]	returns	the	list	of	formal	arguments	of	a	headingx
irrespectively	off	definition	ascribed	to	it;	on	aninadmissible	headingx$Failed	is	returned.

The	previous	fragment	represents	source	code	of	the	procedure	along	with	an	example	of
its	usage.

In	the	Maple	system	in	problems	of	procedural	programming	theprocedural	“procname”
variable	is	rather	useful,	whose	use	in	the	body	of	a	procedure	allows	to	receive	the
heading	of	procedure	in	a	point	of	its	call.	The	variable	is	useful	enough	at	realization	of
some	special	mechanisms	of	processing	in	procedures	what	was	rather	widely	used	by	us
for	programming	of	system	means	expanding	the	software	of	theMaple	system	[10-22,25-
27,47].	Similar	means	in	theMathematica	system	are	absent,	meanwhile,	means	of	similar
character	are	useful	enough	at	realization	of	the	procedural	paradigm	of	the	system.	As
one	useful	means	of	this	type	it	is	quite	possible	to	consider	the	$InBlockMod	variable
whose	call	in	the	body	of	a	block	or	module	in	string	format	returns	source	code	of	an
object	containing	it	without	a	heading	in	a	point	of	its	call.	The	next	fragment	adduces
source	code	of	the$InBlockMod	variable	along	with	examples	of	its	typical	usage.

In[2550]:=	StringReplace3[S_/;	StringQ[S],	x__]	:=	Module[{b	=	S,	c,	j	=	1,	a	=
Map[ToString,	{x}]},	c	=	Length[a];	If[OddQ[c],	S,	While[j	<=	c/2,	b	=
StringReplace2[b,	a[[2*j–1]],	a[[2*j]]];	j++];	b]]

In[2551]	:=	StringReplace3[“Module[{a$	=	78,	b$	=	90,	c$	=72},	xb$;	a$*b$*6;
(a$+b$+c$)*(x+y);	aa$]”,	“a$”,	“a”,	“b$”,	“b”,	“c$”,	“c”]
Out[2551]=	“Module[{a=	78,	b=	90,	c=	72},	xb$;	a*b*6;	(a+b+c)*(x+y);	aa$]”

In[2552]	:=	$InBlockMod	:=	Quiet[Check[StringTake[If[Stack[Block]	!=	{},
ToString[InputForm[Stack[Block][[1]]]],	If[Stack[Module]	!=	{},
StringReplace3[ToString[InputForm[Stack[Module][[1]]]],
Sequences[Riffle[Select[StringReplace[StringSplit[
StringTake[SubStrSymbolParity1[ToString[InputForm[Stack[Module][[1]]]],	“{“,
“}“][[1]],	{2,–2}],	”	“],	“,”–>	””],	StringTake[#,–1]	==	“$”	&],	Mapp[StringTake,
Select[StringReplace[StringSplit[StringTake[
SubStrSymbolParity1[ToString[InputForm[Stack[Module][[1]]]],	“{“,	“}“][[1]],
{2,–2}],	”	“],	“,”–>	””],	StringTake[#,–1]	==	“$”	&],	{1,–2}]]]]],	$Failed],	{10,–2}],
Null]]

In[2553]:=	Avz[x_]	:=	Block[{a	=	6,	b	=50,	c	=$InBlockMod},	Print[c];	a*b*x]
In[2554]:=	Avz[42]

“	Block[{a=	6,	b=	50,	c=	$InBlockMod},	Print[c];	a*b*42]”	Out[2554]=	12	600
In[2555]:=	Agn[x_]	:=	Module[{a=6,	b=50,	c=$InBlockMod},	Print[c];	a*b*x]
In[2556]:=	Agn[47]

“Module[{a=	6,	b=	50,	c=	$InBlockMod},	Print[c];	a*b*47]”	Out[2556]=	14	100
In[2557]:=	Avs[x_]	:=	Module[{a	=	$InBlockMod,	b	=	50,	c	=	500},	Print[a];
b*c*x^2]:	Avs[500]

“	Block[{a=	$InBlockMod,	b=	50,	c=	500},	Print[a];	b*c*500^2]	Out[2557]=	6	250	000
000
In[2558]:=	Av[x_]	:=	Module[{a	=	$InBlockMod,	b	=	50,	c	=	500},	Print[a];

b*c*x^2]:	Av[660]	“Module[{a=	$InBlockMod,	b=	50,	c=	500},	Print[a];	b*c*660^2]”
Out[2558]=	10	890	000	000

In[2559]:=	$InBlockMod
In[2560]:=	G[x_,	y_]	:=	{x	+	y,	$InBlockMod}:G[42,	47]
Out[2560]=	{89,	Null}

At	that,	for	realization	of	algorithm	of	the	above	variable	theStringReplace3	procedure
which	is	an	expansion	of	theStringReplace2	procedure	is	rather	significantly	used.	Its
source	code	with	examples	of	application	is	presented	in	the	beginning	of	the	previous
fragment.	The	callStringReplace3[W,x,	x1,	y,	y1,	z,	z1,	…]	returns	the	result	of
substitution	into	a	stringW	of	substrings	{x1,	y1,	z1,…}	instead	of	all	occurrences	of
substrings	{x,	y,	z,…}	accordingly;	in	the	absence	of	such	occurrences	the	call	returns	an
initial	stringW.	This	procedure	appears	as	a	very	useful	tool	of	processing	of	string
constructions	which	contain	expressions,	expanding	possibilities	of	the	standard	means.	At
using	of	the	procedural	variable$InBlockMod	it	must	be	kept	in	mind	that	it	makes	sense
only	in	the	body	of	a	procedure	of	type	{Block,	Module},	returning	nothing,	i.e.Null,	in
other	expressions	or	in	anInput–paragraph	as	visually	illustrate	examples	of	application	of
the	variable$InBlockMod	in	the	previous	fragment.	At	that	it	must	be	kept	in	mind	in
order	to	avoid	of	misunderstanding	the	call	of	the	variable$InBlockMod	is	recommended
to	do	at	the	beginning	of	procedures,	for	example,	in	area	of	local	variables.

The	next	procedure	is	useful	for	operating	with	blocks/functions/modules.	The	procedure
callFullUserTools[x]	returns	the	list	of	names,	that	enter	in	definition	of	the	active	user
block/function/modulex;	in	addition,	the	first	element	of	the	list	is	a	context	of	these	tools.
Whereas	in	a	case	of	tools	with	various	contexts	a	call	returns	the	nested	list	of	sublists	of
the	above	format.	In	turn,	a	procedure	callFullUserTools[x,	y]	thru	the	optional	argumenty
–	an	undefinite	variable–	returns2–element	list	whose	thefirst	element	defines	list	of	tools
withoutusages,	and	thesecond	element	definesunidentified	tools.	The	next	fragment
represents	source	code	of	the	procedure	with	examples.

In[2718]:=	FullUserTools[x_	/;	BlockFuncModQ[x],	y___]	:=	Module[{a,	b,	c,	d,	p	=
{},	n	=	{}},	Save[Set[a,	ToString[x]	<>	“.txt”],	x];	b	=	ReadString[a];	DeleteFile[a];	c
=	StringSplit[b,	“\r\n	\r\n”];

b	=	Select[c,	!	StringFreeQ[#,	“::usage	=	"”]	&];	d	=	MinusList[c,	b];	c	=
Map[StringSplit[#,	”	/:	“,	2][[1]]	&,	b];	d	=	Map[StringSplit[#,	”	:=	“][[1]]	&,	d];
Quiet[Map[If[HeadingQ[#],	AppendTo[p,	HeadName[#]],	AppendTo[n,	#]]	&,	d]];
{a,	p}=	{Join[c,	p],	MinusList[c,	p]};	b	=	Map[MinusList[#,	{ToString[x]}]	&,	{a,
p}][[1]];	b	=	DeleteDuplicates[Map[{#,	Context[#]}&,	b]];	b	=	Gather[b,	#1[[2]]	==
#2[[2]]	&];	b	=	Map[Sort[DeleteDuplicates[Flatten[#]]]	&,	b];	d	=	Map[Sort[#,
ContextQ[#1]	&]	&,	b];	d	=	Map[Flatten[{#[[1]],	Sort[#[[2	;;–1]]]}]	&,	d];	d	=
If[Length[d]	==	1,	d[[1]],	d];	If[{y}!=	{}&&	!	HowAct[y],	y	=	{p,	n};	d,	d]]

In[2719]:=	FullUserTools[UnevaluatedQ]
Out[2719]=	{”AladjevProcedures`”,	“ListStrToStr“,	“StrDelEnds“,	“SuffPref“,
“SymbolQ“,	“ToString1”}
In[2720]:=	F[x_,	y_]	:=	Module[{a	=	90,	b	=	500,	c},	a*b*x*y;	c	=	ToString1[c]];

Sv[x_,	y_]	:=	x*y;	G[x_,	y_]	:=	Module[{},	{ToString1[x*y],	F[x]	+	Sv[x,	y]}]
In[2721]:=	FullUserTools[G]
Out[2721]=	{{”AladjevProcedures`”,	“StrDelEnds“,	“SuffPref“,	“ToString1”},

{”Global`”,	“F“,	“Sv”}}

Unlike	theFullUserTools	procedure	theFullToolsCalls	procedure	provides	the	analysis	of
the	user	block,	function	or	module	regarding	existence	in	its	definition	of	calls	of	both	the
user	and	the	system	means.	The	procedure	call	FullToolsCalls[x]	returns	the	list	of	names,
whose	calls	are	in	definition	of	the	active	user	block/function/modulex;	in	addition,	the
first	element	of	the	list	is	a	context	of	these	tools.	While	in	case	of	means	with	different
contexts	the	procedure	call	returns	the	nested	list	of	sublists	of	the	above	format.	In	case	of
absence	in	ax	definition	of	the	user	or	system	calls	the	procedure	call	FullToolsCalls[x]
returns	the	empty	list,	i.e.	{}.

In[2920]	:=	FullToolsCalls[x_	/;	BlockFuncModQ[x]]	:=	Module[{b,	c	=	{},	d,	a	=
Flatten[{PureDefinition[x]}][[1]],	k	=	1,	g	=	{},	p,	j,	n},	b	=	Gather[Map[#[[1]]	&,
StringPosition[a,	“[“]],	Abs[#1–#2]	==	1	&];	b	=	Flatten[Select[b,	Length[#]	==	1	&]];
For[k,	k	<=	Length[b],	k++,	n	=	””;	For[j	=	b[[k]]–1,	j	>=	0,	j––,	If[SymbolQ[p	=
Quiet[StringTake[a,	{j}]]]	||	IntegerQ[Quiet[ToExpression[p]]],	n	=	p	<>	n,
AppendTo[c,	n];	Break[]]]];	c	=	MinusList[c,	Join[Locals[x],	Args[x,	90],	{“Block”,
“Module”}]];	c	=	Map[{#,	Quiet[Context[#]]}&,	MinusList[c,	{ToString[x]}]];

b	=	Map[Sort[DeleteDuplicates[Flatten[#]]]	&,	c];	d	=	Map[Flatten,
Gather[Map[Sort[#,	Quiet[ContextQ[#1]]	&]	&,	b],	#1[[1]]	==	#2[[1]]	&]];	d	=
Map[Flatten[{#[[1]],	Sort[#[[2	;;–1]]]}]	&,	Map[DeleteDuplicates,	d]];	d	=
If[Length[d]	==	1,	d[[1]],	d];	Select[d,	!	Quiet[SameQ[#[[1]],	Context[””]]]	&]]

In[2921]	:=	AH[x_]	:=	(Sv[x]	+	GSV[x,	90,	500])*Sin[x]	+	Z[[a]]	+	Art[x]/Kr[x]
In[2922]:=	FullToolsCalls[AH]
Out[2922]=	{{”Tallinn`”,	“Sv”},	{”RansIan`”,	“GSV”},	{”System`”,	“Sin”},

{	“Global`”,	“Art“,	“Kr”}}
In[2923]:=	FullToolsCalls[UnevaluatedQ]
Out[2923]=	{{”AladjevProcedures`”,	“ListStrToStr“,	“SymbolQ”},

{”System`”,	“Check“,	“If“,	“Module“,	“Quiet“,	“StringJoin“,	“ToString”}}	Unlike	the
previous	procedure	theFullToolsCallsM	procedure	provides	the	above	analysis	of	the	user
block,	function	or	module	of	the	same	name.

In[2954]	:=	FullToolsCallsM[x_	/;	BlockFuncModQ[x]]	:=	Module[{b,	c	=	{},	a	=
Flatten[{PureDefinition[x]}],	k	=	1,	n	=	ToString[x]},	If[Length[a]	==	1,
FullToolsCalls[x],	For[k,	k	<=	Length[a],	k++,	b	=	ToString[Unique[“sv”]];
ToExpression[StringReplace[a[[k]],	n	<>	“[“–>	b	<>	“[“,	1]];	AppendTo[c,
FullToolsCalls[b]];	Quiet[Remove[b]]];	c	=	Map[If[NestListQ[#]	&&	Length[#]	==	1,
#[[1]],	#]	&,	c];	Map[If[!	NestListQ[#]	&&	Length[#]	==	1,	{},	If[!	NestListQ[#]	&&
Length[#]	>1,	#,	Select[#,	Length[#]>	1	&]]]	&,	c]]]

In[2955]	:=	Ah[x_]	:=	(Sv[x]+	GSV[x,	90,	500])*Sin[x]	+	Z[[a]]	+	Art[x]/Kr[x];
Ah[x_Integer]	:=	Block[{a	=	90},	ToString1[a*Cos[x]]];	Ah[x_String]	:=	Module[{a
=“6”},	ToString1[x	<>a]],	FullToolsCallsM[Ah]	Out[2956]=	{{”System`”,	“Cos”},
{”System`”,	“StringJoin”},	{{”Tallinn`”,	“Sv”},

{	“RansIan`”,	“GSV”},	{”System`”,	“Sin”},	{”Global`”,	“Art“,	“Kr”}}}	In[2957]:=
G[x_,	y_,	z_]	:=	Module[{},	x*y*z];	G[x_]	:=	Module[{a	=	6},	x/a]	In[2958]:=

FullToolsCallsM[G]
Out[2958]=	{{},	{}}
In[2958]:=	ProcQ[x_,	y_]	:=	Block[{a=0,	b=1},	ToString1[a*Sin[x]+b*Cos[y]]]
In[2959]:=	FullToolsCallsM[ToString1]
Out[2959]=	{{”System`”,	“Close“,	“DeleteFile“,	“For“,	“If“,	“Read“,	“Return“,

“	StringJoin“,	“Write”},	{”AladjevProcedures`”,	“StrDelEnds”}}	In[2960]:=	Avz[x_]	:=
Module[{a	=	90},	StrStr[x]	<>	ToString[a]]	In[2961]:=	Map[#[Avz]	&,
{FullToolsCalls,	FullToolsCallsM}]	Out[2961]=	{{{”System`”,	“StringJoin“,
“ToString”},	{”AladjevProcedures`”,

“StrStr”}},	{{”System`”,	“StringJoin“,	“ToString”},	{”AladjevProcedures`”,	“StrStr”}}}

The	procedure	call	FullToolsCallsM[x]	returns	the	nested	list	of	results	of	application	of
theFullToolsCalls	procedure	to	subobjects(blocks,functions,	modules)	that	compose	an
object	of	the	same	namex.	The	order	of	elements	in	the	returned	list	corresponds	to	an
order	of	definitions	of	the	subobjects	returned	by	the	callDefinition[x].	Whereas,	the
procedure	callAllCalls[x]	returns	the	nested	list	of	sublists	containing	the	full	form	of	calls
entering	in	definitions	ofsubobjects	that	compose	an	object	of	the	same	name	or	asimple
objectx.	The	order	of	elements	in	the	returned	list	corresponds	to	an	order	of	definitions	of
the	subobjects	returned	by	the	callDefinition[x].

In[2840]	:=	AllCalls[x_	/;	BlockFuncModQ[x]]	:=	Module[{a1,	ArtKr,	k1,	b1,	c1	=	{},
d1,	m	=	ToString[x]},	a1	=	Flatten[{PureDefinition[x]}];	ArtKr[y_]	:=	Module[{a	=
Flatten[{PureDefinition[y]}][[1]],	b,	c	=	{},	d,	k,	g	=	{},	p,	j,	n},	b	=	Gather[Map[#
[[1]]	&,	StringPosition[a,	“[“]],	Abs[#1–#2]	==	1	&];	b	=	Flatten[Select[b,	Length[#]
==	1	&]];	For[k	=	1,	k	<=	Length[b],	k++,	n	=	””;	For[j	=	b[[k]]–1,	j	>=	0,	j––,
If[SymbolQ[p	=	Quiet[StringTake[a,	{j}]]]	||	IntegerQ[Quiet[ToExpression[p]]],	n	=	p
<>	n,	AppendTo[c,	n];	Break[]]]];	For[k	=	1,	k	<=	Length[b],	k++,	For[j	=	b[[k]],	j	<=
StringLength[a],	j++,	SubStrSymbolParity1[StringTake[a,	{j,	StringLength[a]}],	“[“,
“]”][[1]];	AppendTo[g,	SubStrSymbolParity1[StringTake[a,	{j,	StringLength[a]}],
“[“,	“]”][[1]]];	Break[]]];	n	=	Select[Map[StringJoin[#]	&,	Partition[Riffle[c,	g],	2]],	#
!	=	HeadPF[y]	&];	If[FunctionQ[y],	n,	n[[2	;;–1]]]];	If[Length[a1]	==	1,	ArtKr[x],
For[k1	=	1,	k1	<=	Length[a1],	k1++,	b1	=	ToString[Unique[“v”]];
ToExpression[StringReplace[a1[[k1]],	m	<>	“[“–>	b1	<>	“[“,	1]];	AppendTo[c1,
ArtKr[b1]];	Quiet[Remove[b1]]];	c1]]

In[2841]	:=	AH[x_]	:=	(Sv[x]	+GSV[x,	90,	500])*Sin[x]+	Z[[a]]	+	Art[x]/Kr[x];
AH[x_Integer]	:=	Block[{a	=	90},	ToString1[a*Cos[x]]];	AH[x_String]	:=
Module[{a=“500”},	ToString1[x	<>a]];	AH1[x_]	:=	(Sv[x]+GSV[x,90,500])*	Sin[x]	+
Z[[a]]	+	Art[x]/Kr[x];	F[x_,	y_]	:=	x	+	y

In[2842]:=	AllCalls[AH]
Out[2842]=	{{”ToString1[a*Cos[x]]“,	“Cos[x]”},	{”ToString1[StringJoin[x,	a]]“,

“	StringJoin[x,	a]”},	{”Sv[x]“,	“GSV[x,	90,	500]“,	“Sin[x]“,	“Art[x]“,	“Kr[x]”}}
In[2843]:=	AllCalls[F]
Out[2843]=	{}
In[2844]:=	AllCalls[AH1]
Out[2844]=	{”Sv[x]“,	“GSV[x,	90,	500]“,	“Sin[x]“,	“Art[x]“,	“Kr[x]”}

On	that	the	presentation	of	tools,	serving	for	processing	of	the	user	objects,	is	completed;
at	that,	some	tools	accompanying	them	are	considered	below	or	were	already	considered
above.	Classification	of	our	tools	has	in	a	certain	measure	a	subjective	character	that	is
caused	by	their	basic	use	or	frequency	of	usage	at	programming	of	the	means	represented
in	the	given	book	and	in	a	number	of	important	applications	of	the	applied	and	the	system
character.	These	means	are	mainly	used	at	programming	of	the	system	tools.

Chapter	7.	Means	of	input–output	of	theMathematica

The	Mathematica	language	being	the	built–in	programming	language	that	first	of	all	is
oriented	onto	symbolical	calculations	and	processing	has	rather	limited	facilities	for	data
processing	which	first	of	all	are	located	in	external	memory	of	the	computer.	In	this	regard
the	language	significantly	concedes	to	the	traditional	programming	languagesC++,	Basic,
Fortran,	Cobol,	PL/1,	ADA,	Pascal,	etc.	At	the	same	time,	being	oriented,	first	of	all,
onto	solution	of	tasks	in	symbolic	view,	theMathematica	language	provides	a	set	of	tools
for	access	to	datafiles	that	can	quite	satisfy	a	rather	wide	range	of	the	users	of
mathematical	applications	of	theMathematica.	In	this	chapter	the	means	of	access	to
datafiles	are	considered	rather	superficially	owing	to	the	limited	volume,	extensiveness	of
this	theme	and	purpose	of	the	present	book.	The	reader	who	is	interested	in	means	of
access	to	datafiles	of	theMathematica	system	quite	can	appeal	to	documentation
delivered	with	the	system.	At	the	same	time,	for	the	purpose	of	development	of	methods
of	access	to	file	system	of	the	computer	we	created	a	number	of	rather	effective	means	that
are	represented	in	theAVZ_Package	package	[48].	Whereas	in	the	present	chapter	the
attention	is	oriented	on	the	means	expanding	standard	means	of	the	Mathematica	system
for	ensuring	work	with	files	of	the	computer.	Some	of	them	are	rather	useful	to	practical
application	in	the	environment	of	theMathematica	system.

7.1.	Means	of	theMathematicafor	work	with	internal	files

Means	of	Mathlanguage	provide	access	of	the	user	to	files	of	several	types	which	can	be
conditionally	divided	into	two	large	groups,	namely:internal	andexternal	files.	During	the
routine	work	the	system	deals	with3	various	types	of	internal	files	from	which	we	will
note	the	files	having	extensions	{“nd”,	“m”,	“mx”},	their	structure	is	distinguished	by	the
standard	system	means	and	which	are	important	enough	already	on	the	first	stages	of	work
with	system.	Before	further	consideration	we	will	note	that	the	concept	of	thefile	qualifier
(FQ)	defining	the	full	path	to	the	required	file	in	file	system	of	the	computer	or	to	its
subdirectory,practically,	completely	coincides	with	similar	concept	for	already
mentionedMaple	system	excepting	that	if	in	the	Maple	forFQ	the	format	of	type	{string,
symbol}	is	allowed	whereas	forFQ	in	theMathematica	system	thestring–type	format	is
admissible	only.

The	call	Directory[]	of	the	system	function	returns	an	active	subdirectory	of	the	current
session	of	the	system	whereas	the	callSetDirectory[x]	returns	a	directoryx,	doing	it	active
in	the	current	session;	at	that,	as	anactive	(current)	directory	is	understood	the	directory
whose	files	are	processed	by	means	of	access	if	only	their	names,	but	not	full	paths	to
them	are	specified.	At	that,	defining	at	the	callSetDirectory[x]	the

system$UserDocumentsDirectory	variable	as	a	factualx–argument,	it	is	possible	to
redefine	the	user	current	subdirectory	by	default.	Meanwhile,	theSetDirectory	function
allows	only	real–life	subdirectories	as	the	argument,	causing	on	nonexistent	directories	the
erroneous	situation	with	returning$Failed.	On	the	other	hand,	a	rather	simpleSetDir
procedure	provides	possibility	to	determine	also	nonexistent	subdirectories	as	the	current
subdirectories.	The	procedure	callSetDir[x]	on	an	existing	subdirectoryx	does	it	current
while	a	nonexistent	subdirectory	is	previously	created	and	then	it	is	defined	by	the	current
subdirectory.	At	that,	if	the	factualxargument	at	the	callSetDir[x]	is	determined	by	a	chain
without	name	of	theIO	device,	for	example,”aa\…\bb”,	then	a	chain	of	the
subdirectoriesDirectory[]	<>	“aa\…\bb”	is	created	that	determines	a	full	path	to	the
created	current	subdirectory.	The	next	fragment	represents	source	code	of	theSetDir
procedure	along	with	the	most	typical	examples	of	its	usage.

In[2531]	:=	Directory[]
Out[2531]=	“C:\Users\Aladjev\Documents”
In[2532]:=	SetDirectory[“E:\AVZ_Package”]

SetDirectory	::cdir:	Cannot	set	current	directory	to	E:\AVZ_Package.	>>	Out[2532]=
$Failed
In[2533]:=	SetDirectory[$UserDocumentsDirectory]
Out[2533]=	“C:\Users\Aladjev\Documents”
In[2534]:=	SetDirectory[]
Out[2534]=	“C:\Users\Aladjev”

In[2535]	:=	SetDir[x_/;	StringQ[x]]	:=	Module[{a},	If[StringLength[x]	==	1	||
StringLength[x]	>=	2	&&	StringTake[x,	{2,	2}]	!=	“:”,
Return[Quiet[SetDirectory[Quiet[CreateDirectory[

StringReplace[Directory[]	<>	“\”	<>	x,	“\\”	–>	“\”]]]]]],	Null];	a	=
Quiet[CreateDirectory[StringTake[x,	1]	<>	“:\”]];	If[a	===	$Failed,	Return[$Failed],
Null];	Quiet[Check[If[DirectoryQ[x],	SetDirectory[x],
SetDirectory[CreateDirectory[x]]],	Null]];	Directory[]]

In[2536]	:=	SetDir[“C:\Temp\111\222\333\444\555\666\777”]	Out[2536]=
“C:\Temp\111\222\333\444\555\666\777”	In[2537]:=
SetDir[“H:\111\222\333\444\555\666\777\888”]	Out[2537]=	$Failed
In[2538]:=	Directory[]
Out[2538]=	“C:\Temp\111\222\333\444\555\666\777”	In[2539]:=	SetDir[“kr\6”]
Out[2539]=	“C:\Temp\111\222\333\444\555\666\777\kr\6”	In[2540]:=
SetDir[“E:\AVZ_Package”]
Out[2540]=	“E:\AVZ_Package”

In[2541]	:=	Adrive[]	:=	Module[{a,	b,	c,	d,	k	=	1},
{a,	b}=	{CharacterRange[“A”,	“Z”],	{}};	For[k,	k	<=	26,	k++,	c	=	a[[k]]	<>	“:\”;

d	=	Quiet[CreateDirectory[c]];	If[d	===	$Failed,	Null,	AppendTo[b,	StringTake[d,
1]]]];	Sort[b]]	In[2542]:=	Adrive[]
Out[2542]=	{”C“,	“D“,	“E“,	“F“,	“G”}

Meanwhile,	in	attempt	of	definition	of	a	nonexistent	directory	as	the	current	directory	the
emergence	of	a	situation	is	quite	real	when	as	aIO	device	has	been	specified	a	device

which	at	the	moment	isn’t	existing	in	the	system	or	inaccessible.	Therefore	rather	actually
to	have	the	means	allowing	to	verify	availability	ofIO	devices	in	the	system.	In	this	regard
theAdrive	procedure	solves	this	problem,	whose	callAdrive[]	returns	the	list	of	logical
names	in	string	format	ofIO	devices,	available	at	the	moment.	The	given	procedure	is	an
analog	of	the	procedure	of	the	same	name	for	theMaple	system	[47],	the	last	part	of	the
previous	fragment	represents	source	code	of	theAdrive	procedure	with	an	example	of	its
usage.	Both	procedures	of	the	previous	fragment	are	useful	enough	at	programming	in
theMathematica	system	of	various	means	of	access	to	the	datafiles.
The	followingAdrive1	procedure	expands	the	aboveAdrive	procedure	and	returns
thereturns	theelement	nested	list	whose	first	element	represents	the	list	with	names	in
string	format	of	all	active	direct	access	devices	whereas	the	second	element	represents	the
list	with	names	in	string	format	of	all	inactive	direct	access	devices	of	the	computer.	The
next	fragment	represents	source	code	of	theAdrive1	procedure	along	with	a	typical
example	of	its	usage.

In[2560]	:=	Adrive1[]	:=	Module[{a	=	CharacterRange[“A”,	“Z”],	b	=	{},	c	=	1,	d,	p	=
{},	h,	t	=	“$Art26$Kr18$”},	For[c,	c	<=	26,	c++,	d	=	a[[c]]	<>	“:\”;	If[DirQ[d],
AppendTo[b,	a[[c]]];	h	=	Quiet[CreateDirectory[d	<>	t]];	If[h	===	$Failed,
Continue[],	DeleteDirectory[d	<>	t];	AppendTo[p,	a[[c]]];	Continue[]]]];	{p,
MinusList[b,	p]}]

In[2561]:=	Adrive1[]
Out[2561]=	{{”C“,	“D“,	“G”},	{”A“,	“E”}}
In[2562]:=	SetDir1[x_	/;	StringQ[x]]	:=	Module[{a	=	SetDir[x],	b,	c,	k},

If[!	SameQ[a,	$Failed],	a,	k	=	1;	b	=	Adrive[];	c	=	Map[FreeSpaceVol,	b];	While[k	<=
Length[b],	PrependTo[c[[k]],	b[[k]]];	k++];	c	=	SortNL1[c,	2,	Greater];
SetDir[StringJoin[c[[1]][[1]],	StringTake[x,	{2,–1}]]]]]

In[2563]:=	SetDir1[“G:\Galina/Svetla\ArtKr/Tampere\Tallinn”]	Out[2563]=
“C:\Galina/Svetla\ArtKr/Tampere\Tallinn”

At	last,	theSetDir1	procedure	presented	at	the	end	of	the	previous	fragment	expands
theSetDir	procedure	onto	the	case	when	attempt	to	create	a	chain	of	directories	meets	the
especial	situation	caused	by	lack	of	the	demanded	device	on	which	creation	of	this	chain
of	subdirectories	was	planned.	In	the	absence	of	such	device	of	direct	access	the	procedure
callSetDir1[x]	returns	the	created	chain	of	subdirectories	on	a	device	having	the	greatest
possible	volume	of	available	memory	among	all	active	devices	of	direct	access	in	the
current	session	of	theMathematica	system.

Files	with	documents	which	in	one	of	11	formats	by	the	chain	of	command	“File	–>
{Save	As|Save}”	of	theGUI(the	most	used	formats“nb”,	“m”)	are	saved,	the	files	with
theMathematica–objects	saved	by	theSave	function	(input	format),	and	datafiles
withMathematica	packages(format“m”,	“mx”)	belong	to	the	internal	files.	These	files
represent	quite	certain	interest	at	the	solution	of	many	problems	demanding	both	the
standard	methods,	and	the	advanced	methods	of	programming.	For	standard	support	of
operating	with	them	theMathematica	system	has	a	number	of	means	whereas	for	ensuring
expanded	work	with	similar	datafiles	a	set	of	means	can	be	created,	some	of	which	are
considered	in	the	present	book	and	also	have	been	included	to	our	AVZ_Package	package

[48].	At	that,	files	of	any	of	thespecified	formats	with	the	definitions	of	objects	saved	in
them	by	theSave	function	as	a	result	of	uploading	of	these	files	by	theGet	function	into
the	subsequent	sessions	of	the	system	provide	availability	of	these	objects.

It	is	rather	simple	to	be	convinced	that	the	datafiles	created	by	means	of	the	Save	function
contain	definitions	of	objects	inInput	Mathematica–format	irrespective	of	extension	of	a
datafile	name.	It	provides	possibility	of	rather	simple	organization	of	processing	of	such
datafiles	for	various	appendices.	In	particular,	on	the	basis	of	structure	of	such	datafiles	it
is	possible	without	their	uploading	into	the	current	session	to	obtain	lists	of	names	of	the
objects	which	are	in	them.	For	this	purpose	theNobj	procedure	can	be	used,	whose
callNobj[x,y]	returns	the	list	of	names	of	the	objects	in	string	format	which	have	been
earlier	saved	in	a	datafilex	by	means	of	theSave	function	while	through	thesecond	actual
argumenty	the	list	of	headings	in	string	format	of	these	objects	is	returned.	Such	decision
is	rather	essential	since	in	a	datafile	can	be	objects	of	the	same	name	with	various
headings,	exactly	that	identify	uniqueness	of	an	object.

At	that,	can	arise	a	need	not	to	upload	by	means	of	the	Get	function	into	the	current
session	completely	a	file	which	has	been	earlier	created	by	means	of	theSave	function
with	activation	of	all	objects	containing	in	it,	but	to	upload	the	objects	containing	in	the
file	selectively,	i.e.	to	create	a	kind	of	libraries	of	the	user	means.	Concerning	the	packages
created	by	means	of	a	chain“File	→Save	As→Mathematica	Package	(*.m)”	of	theGUI
commands,	the	given	problem	can	be	solved	by	means	of	theAobj	procedure,	whose
callAobj[x,	y]	makes	active	in	the	current	session	all	objects	with	a	namey	fromm–file	x
which	has	been	earlier	created	by	the	above	chain	of	theGUI	commands.	The	fragment
below	represents	source	codes	of	the	above	proceduresAobj	andNobj	along	with	the	most
typical	examples	of	their	usage.

In[2626]:=	Art1	:=	#^2	&;	Art2	=	#^3	&;	Art3	:=	#^4	&;	Art4	=	#^5	&;	Art	:=	26;	Kr
=	18;	Agn[y_]	:=	67;	Avz[x_]	:=	90*x	+	500;

SetAttributes[Avz,	{Listable,	Protected}]	In[2627]:=	Save[“C:/Temp/Obj.m”,
{Adrive,	SetDir,	Art1,	Art2,	Art3,	Art4,	Art,	Nobj,	Kr,	Agn,	Avz}]

In[2628]	:=	Nobj[x_	/;	FileExistsQ[x]	&&	StringTake[x,–2]	==	“.m”,	y_	/;	!
HowAct[y]]	:=	Module[{a,	b,	c,	d,	p,	h,	t,	k	=	1},	If[FileExistsQ[x]	&&
MemberQ[{“Table”,	“Package”},

Quiet[FileFormat[x]]],	{a,	b,	d,	h}=	{OpenRead[x],	{},	“90”,	{}};	While[!	SameQ[d,
“EndOfFile”],	d	=	ToString[Read[a,	String]];	If[!	SuffPref[d,	”	“,	1],	If[!
StringFreeQ[d,	“::usage	=	"”],	AppendTo[b,	StringSplit[StringTake[d,	{1,
Flatten[StringPosition[d,	“::usage”]][[1]]–1}],	”	/:	“][[1]]],	p	=
Quiet[Check[StringTake[d,	{1,	Flatten[StringPosition[d,	{”	:=	“,	”	=	“}]][[1]]–1}],
$Failed]];	If[!	SameQ[p,	$Failed],	If[SymbolQ[p]&&	StringFreeQ[p,	{”	“,	“{“,	“`”}]||
StringFreeQ[p,	{”	“,	“{“,	“`”}]	&&	HeadingQ1[p]	===	True,	AppendTo[b,	p]]]]];
k++];	Close[a];	b	=	Sort[DeleteDuplicates[b]];	h	=	Select[b,	!	SymbolQ[#]	&];	t	=
Map[If[SymbolQ[#],#,	HeadName[#]]	&,	h];	b	=	MinusList[b,	h];	b	=
Sort[DeleteDuplicates[Join[b,	t]]];	y	=	MinusList[Sort[DeleteDuplicates[Join[h,
Select[Map[If[!	UnevaluatedQ[HeadPF,	#],	HeadPF[#]]	&,	b],	!	SameQ[#,	Null]
&]]]],	b];	b,	$Failed]]

In[2629]	:=	Clear[ArtKr];	Nobj[“C:\Temp\Obj.m”,	ArtKr]	Out[2629]=	{”Adrive“,
“Agn“,	“Art“,	“Art1“,	“Art2“,	“Art3“,	“Art4“,	“Avz“,	“BlockFuncModQ“,
“ClearAllAttributes“,	“Contexts1“,	“Definition2“,	“HeadingQ“,	“HeadingQ1“,
“HeadName“,	“HeadPF“,	“HowAct“,	“Kr“,	“ListStrToStr“,	“Map3“,	“Mapp“,
“MinusList“,	“Nobj“,	“ProcQ“,	“PureDefinition“,	“RedSymbStr“,	“Sequences“,
“SetDir“,	“StrDelEnds“,	“StringMultiple“,	“StringSplit1“,	“SubsDel“,	“SuffPref“,
“SymbolQ“,	“SymbolQ1“,	“SysFuncQ“,	“SystemQ“,	“ToString1“,	“UnevaluatedQ”}
In[2630]:=	ArtKr
Out[2630]=	{”Adrive[]“,	“Agn[y_]“,	“Avz[x_]“,	“BlockFuncModQ[x_,	y___]“,
“ClearAllAttributes[x__]“,	“Contexts1[]“,	“Definition2[x_	/;	SymbolQ[x]===
HowAct[x]]“,	“HeadingQ1[x_/;	StringQ[x]]“,	“HeadingQ[x_/;	StringQ[x]]“,
“HeadName[x_	/;	HeadingQ[x]||	HeadingQ1[x]]“,	“HowAct[x_]“,
===
“ToString1[x_]“,	“UnevaluatedQ[F_	/;	SymbolQ[F],	x___]”}

In[2650]:=	Aobj[x_	/;	FileExistsQ[x]	&&	StringTake[x,–2]	==	“.m”,	y_	/;	SymbolQ[y]
||	ListQ[y]	&&

DeleteDuplicates[Map[SymbolQ[#]	&,	y]]	==	{True}]	:=	Module[{a,	b	=	“(*”,	c	=
“*)”,	d	=	$AobjNobj,	p	=	{Read[x,	String],	Close[x]}[[1]],	h	=	Mapp[StringJoin,
Map[ToString,	Flatten[{y}]],	“[“],	k,	j,	g,	s,	t	=	{},	v	=	{}},	If[p	!=	“(*	::Package::	*)”,
$Failed,	a	=	ReadFullFile[x];	If[StringFreeQ[a,	d],	$Failed,	a	=	StringSplit[a,	d][[2
;;–1]];	a	=	Map[StringReplace[#,	{b–>	””,	c–>	””}]	&,	a];	a	=	Select[a,	SuffPref[#,	h,
1]	&];	For[k	=	1,	k	<=	Length[h],	k++,	g	=	h[[k]];	For[j	=	1,	j	<=	Length[a],	j++,	s	=
a[[j]];

c	=	StrSymbParity[s,	g,	“[“,	“]”];	c	=	If[c	==	{},	False,
HeadingQ1[Quiet[ToString[ToExpression[c[[1]]]]]]	||	HeadingQ[c[[1]]]];
If[SuffPref[s,	g,	1]	&&	c,	AppendTo[t,	s];	AppendTo[v,	StringTake[g,	{1,–2}]]]]];
Map[ToExpression,	t];	If[v	!={},	Print[“Software	for	”	<>	ToString[v]	<>	”	is
downloaded”],	Print[“Software	for	”	<>	ToString[Flatten[{y}]]	<>	”	was	not
found”]]]]]

In[2651]	:=	Art1[]	:=	#^2	&
In[2652]:=	Art2[]	=	#^3	&;
In[2653]:=	Art3[]	:=	#^4	&
In[2654]:=	Art4[]	=	#^5	&;
In[2655]:=	Art[]	:=	26
In[2656]:=	Kr[]	=	18;
In[2657]:=	Agn[y_]	:=	67
In[2658]:=	Avz[x_]	:=	90*x	+	500
In[2659]:=Aobj[“c:/tmp/Obj.m”,	{Art1,	Art2,	Art3,	Art4,	Art,	Kr,	Agn,	Avz}]

Software	for	{Nobj	,	Avz,	Agn,	ArtKr,	Sv}	is	downloaded
In[2659]:=Aobj[“C:/Tmp/Obj.m”,	{Nobj90,	Avz500,	Agn67,	Vsv47}]
Software	for	{Nobj90,	Avz500,	Agn67,	Vsv47}	was	not	found	In[2660]:=
Map[PureDefinition,	{Art1,	Art2,	Art3,	Art4,	Art,	Kr,	Agn,	Avz}]	Out[2660]=
{”Art1[]:=	#1^2&	“,	“Art2[]=	#1^3&	“,	“Art3[]:=	#1^4&	“,	“Art4[]=	#1^5&	“,
“Art[]:=	26“,	“Kr[]=	18“,	“Agn[y_]:=	67“,	“Avz[x_]:=	90*x+	500”}

The	top	part	of	the	previous	fragment	represents	a	saving	in	a	m–file	of	the
Mathematica–objects	from	this	fragment	and	the	objects	given	a	little	above	in	the	same
section.	Further	the	source	code	of	theNobj	procedure	and	an	example	of	its	application	is
represented.	Right	there	it	should	be	noted	that	performance	of	theNobj	procedure	will
demand	certain	temporary	expenses.	At	that,	if	the	main	result	of	the	procedure
callNobj[x,	y]	contains	the	list	of	names	in	string	format	of	the	means	contained	in	a	filex,
thru	the	secondy	argument	the	headings	of	the	means	possessing	them	are	returned.

Whereas	the	second	part	of	the	fragment	represents	source	code	of	the	Aobj	procedure
with	an	example	of	its	use	for	activization	in	the	current	session	of	the	objects	{Art1,	Art2,
Art3,	Art4,	Art,	Kr,	Agn,	Avz}	which	are	in	am–file	which	is	earlier	created	by	means	of
chain“File→Save	As→Mathematica	Package	(*.m)”	of	theGUI	commands.	Verification
confirms	availability	of	the	specified	objects	in	the	current	session.	Moreover,	as	the2nd
argumenty	at	the	procedure	callAobj	the	separate	symbol	or	their	list	can	be.	Besides	that
is	supposed,	before	saving	in	am–datafilex	all	definitions	of	objects	in	the	current
document	should	have	headings	and	be	evaluated	in	separate	Input–paragraphs.	The
successful	callAobj[x,	y]	returnsNull,	i.e.	nothing	with	output	of	the	message	concerning
those	means	which	were	uploaded	from	am-datafilex	or	which	are	absent	in	the	datafile.
The	proceduresNobj	andAobj	process	the	main	erroneous	situations	with	returning	on
them	the	value$Failed.	Both	procedures	can	be	extended	by	means	of	replenishment	their
by	new	useful	enough	functions.
The	followingAobj1	procedure	is	a	rather	useful	extension	of	the	previous	Aobj
procedure.	Like	theAobj	procedure	theAobj1	procedure	also	is	used	for	activation	in	the
current	session	of	the	objects	which	are	in	am–datafile	which	is	earlier	created	by	means
of	chain“File→Save	As→Mathematica	Package(*.m)”	of	theGUI	commands.	The
successful	callAobj1[x,	y]	returns	Null,	i.e.	nothing	with	output	of	the	messages
concerning	those	means	that	were	uploaded	from	amfilex	and	that	are	absent	in	the
datafile.	Moreover,	as	thesecond	argumenty	at	the	procedure	callAobj1	the	separate
symbol	or	their	list	can	be.	Besides	that	is	supposed,	before	saving	in	am–datafilex	all
definitions	of	objects	in	the	saved	document	should	be	evaluated	inseparate
Input–paragraphs	on	the	basis	of	delayed	assignments	however	existence	of	headings	not
required.	Right	there	it	should	be	noted	that	for	ability	of	correct	processing	of	them–files
created	in	the	specified	manner	the	predetermined	$AobjNobj	variable	is	used,	that
provides	correct	processing	of	the	datafiles	containing	the	procedures,	in	particular,Aobj
andAobj1.	The	next	fragment	represents	source	code	of	theAobj1	procedure	along	with
the	most	typical	examples	of	its	usage.

In[2672]:=	Aobj1[x_	/;	FileExistsQ[x]	&&	StringTake[x,	-2]	==	“.m”,	y_	/;
SymbolQ[y]	||	ListQ[y]	&&

DeleteDuplicates[Map[SymbolQ[#]	&,	y]]	==	{True}]	:=	Module[{a,	c	=	“*)(*”,	d	=
$AobjNobj,	k,	t	=	{},	g	=	{},	h	=	Map[ToString,	Flatten[{y}]],	p,	j	=	1,	v},	a	=
StringSplit[ReadFullFile[x],	d][[2	;;–1]];	a	=	Map[StringTake[#,	{3,–3}]	&,	a];	For[j,
j	<=	Length[h],	j++,	p	=	h[[j]];

For[k	=	1,	k	<=	Length[a],	k++,
If[SuffPref[a[[k]],	Map[StringJoin[p,	#]	&,	{“[“,	“=”,	“:”}],	1],	AppendTo[t,
StringReplace[a[[k]],	c–>	””]];	AppendTo[g,	p],	Null]]];	v	=	{t,	MinusList[h,	g]};

If[v[[1]]	!=	{},	ToExpression[v[[1]]];
Print[“Software	for	”	<>	ToString[g]	<>	”	is	downloaded”],	Null];
If[v[[2]]	!=	{},	Print[“Software	for	”	<>
ToString[v[[2]]]	<>	”	was	not	found”],	Null]]	In[2673]:=	Aobj1[“Obj42.m”,	{Nobj90,
Avz500,	Agn67,	Vsv47}]

Software	for	{Nobj90,	Avz500,	Agn67,	Vsv47}	was	not	found	In[2674]:=
Aobj1[“Obj42.m”,	{Art1,	Art2,	Art3,	Art4,	Art,	Agn,	Avz,	Rans,

IAN,	Rae,	Nobj	}]
Software	for	{Art1,Art2,Art3,Art4,Art,Agn,Avz,Nobj}	is	downloaded	Software	for	{Rans,
IAN,	Rae}	was	not	found

There	is	a	number	of	other	rather	interesting	procedures	for	ensuring	work	with	files	of
theMathematicaInput–format	whose	names	have	extensions	{“nb”,“m”,	“txt”},	etc.	All
such	means	are	based	on	the	basis	of	analysis	of	structure	of	the	contents	of	files	returned
by	access	functions,	in	particular,	ReadFullFile.	Some	of	them	gives	a	possibility	to
create	the	rather	effective	user	libraries	containing	definitions	of
theMathematica–objects.	These	and	some	other	means	have	been	implemented	as	a	part
of	the	special	package	supporting	the	releases8	÷	10	of	theMathematica	system	[48].	The
part	of	these	means	will	be	considered	in	the	present	book	slightly	below.	Certain	remarks
should	be	made	concerning	theSave	function	which	saves	the	objects	in	a	given	file	in
theAppendmode;	at	that,	undefinite	symbols	in	the	datafile	are	not	saved	without	output	of
any	messages,	i.e.	theSave	call	returnsNull,	i.e.	nothing.	Meanwhile,	at	saving	of	a
procedure	or	a	function	with	a	nameAvz	in	a	datafile	by	means	of	theSave	function	in	the
datafile	all	active	objects	of	the	same	nameAvz	in	the	current	session	with	different
headings–the	identifiers	of	their	originality–	are	saved	too.	For	elimination	of	this
situation	a	generalization	of	theSave	function	concerning	possibility	of	saving	of	objects
with	concrete	headings	is	offered.	So,	theSave1	procedure	solves	the	given	problem	whose
source	code	along	with	typical	examples	of	its	usage	are	represented	by	the	following
fragment.

In[2742]	:=	A[x_]	:=	x^2;	A[x_,	y_]	:=	x+y;	A[x_,	y_,	z_]	:=	x+y+z;	A[x__]	:=	{x};
DefFunc3[A]
Out[2742]=	{”A[x_]:=	x^2“,	“A[x_,	y_]:=	x+	y“,	“A[x_,	y_,	z_]:=	x+	y+	z“,	“A[x__]:=
{x}”}

In[2743]:=	Save1[x_	/;	StringQ[x],
y_	/;	DeleteDuplicates[Map[StringQ,	Flatten[{y}]]][[1]]]	:=	Module[{Rs,	t	=
Flatten[{y}],	k	=	1},

Rs[n_,	m_]	:=	Module[{b,	c	=	ToString[Unique[b]],	a	=	If[SymbolQ[m],	Save[n,	m],
If[StringFreeQ[m,	“[“],	$Failed,

StringTake[m,	{1,	Flatten[StringPosition[m,	“[“]][[1]]–1}]]]},	If[a	===	Null,
Return[],	If[a	===	$Failed,	Return[$Failed],	If[SymbolQ[a],	b	=	DefFunc3[a],
Return[$Failed]]]];	If[Length[b]	==	1,	Save[n,	a],	b	=	Select[b,	SuffPref[#,	m,	1]	&]];
If[b	!=	{},	b	=	c	<>	b[[1]],	Return[$Failed]];	ToExpression[b];	a	=	c	<>	a;
ToExpression[“Save[”	<>	ToString1[n]	<>	“,”	<>	ToString1[a]	<>	“]”];
BinaryWrite[n,	StringReplace[ToString[StringJoin[Map[FromCharacterCode,

BinaryReadList[n]]]],	c–>	””]];	Close[n];];	For[k,	k	<=	Length[t],	k++,	Rs[x,	t[[k]]]]]

In[2744]	:=	Save1[“rans_ian.m”,	{“A[x_,	y_,	z_]”,	“A[x__]”}]
In[2745]:=	Clear[A];	DefFunc3[A]
Out[2745]=	DefFunc3[A]
In[2746]:=	<<	“rans_ian.m”
In[2747]:=	B[x_]	:=	x^2;	DefFunc3[A]
Out[2747]=	{”A[x_,	y_,	z_]:=	x+	y+	z“,	“A[x__]:=	{x}”}
In[2748]:=	Agn	=	67;	Save1[“Avz.m”,	{“A[x_,	y_,	z_]”,	“B”,	“A[x__]”,	“Agn”}]
In[2749]:=	Clear[A,	B,	Agn];	Map[DefFunc3,	{A,	B,	Agn}]
Out[2749]=	{DefFunc3[A],	DefFunc3[B],	Agn}
In[2750]:=	<<	“Avz.m”
Out[2750]=	67
In[2751]:=	DefFunc3[A]
Out[2751]=	{”A[x_,	y_,	z_]:=	x+	y+	z“,	“A[x__]:=	{x}”}
In[2752]:=	{DefFunc3[“B”],	Agn}
Out[2752]=	{{”B[x_]:=	x^2”},	67}

The	procedure	call	Save1[x,	y]	saves	in	a	datafile	defined	by	the	first	factual	argumentx,
the	definitions	of	the	objects	determined	by	the	second	factual	argumenty	–the	name	of	an
active	object	in	the	current	session	or	its	heading	in	string	format,or	their	combinations	in
the	list	form.	So,	theSave1	procedure	can	be	used	as	the	standardSave	function,	and
solving	a	saving	problem	of	the	chosen	objects	activated	in	the	current	session	in	the
datafiledifferentially	on	the	basis	of	their	headings.	Thus,	the	successful	procedure	call
returnsNull,	carrying	out	the	demanded	savings;	otherwise$Failed	or	unevaluated	call	are
returned.	The	previous	fragment	represents	results	of	application	of	the	Save1	procedure
for	a	selective	saving	in	datafiles	of	the	objects	which	have	been	activated	in
theMathematica	current	session.	In	a	number	of	cases	the	procedureSave1	represents
undoubted	interest.
In	a	number	of	cases	there	is	an	urgent	need	of	saving	in	a	datafile	of	a	state	of	the	current
session	with	possibility	of	its	subsequent	restoration	by	means	of	uploading	of	the	datafile
into	current	session	different	from	the	previous	session.	In	this	context,
theSaveCurrentSession	andRestoreCS	procedures	are	rather	useful	for	saving	and
restoration	of	a	state	of	the	current	session	respectively.So,	the	procedure
callSaveCurrentSession[]	saves	a	state	of	the	Mathematica	current	session	in
them–file”SaveCS.m”	with	returning	of	the	name	of	a	target	datafile.	While	the
callSaveCurrentSession[x]	saves	a	state	of	theMathematica	current	session	in	am–filex
with	returning	of	the	name	of	the	target	datafilex;	at	that,	if	a	datafilex	has	not
extension“m”	then	this	extension	is	added	to	thex–string.	The	procedure	callRectoreCS[]
restores	theMathematica	current	session	that	has	been	previously	stored	by	means	of
theSaveCurrentSession	procedure	in	datafile”SaveCS.m”	with	returning	theNull,	i.e.
nothing.	While	the	callRectoreCS[x]	restores	theMathematica	current	session	that	has
been	previously	stored	by	means	of	the	procedure	SaveCurrentSession	in	am–datafilex
with	returning	theNull,	i.e.	nothing.	In	absence	of	the	above	datafile	the	procedure	call
returns$Failed.	The	next	fragment	represents	source	codes	of	the	above	procedures	along
with	typical	examples	of	their	usage.

In[2742]:=	SaveCurrentSession[x___String]	:=	Module[{a	=	Names[“*”],	b	=

If[{x}==	{},	“SaveCS.m”,	If[SuffPref[x,	“.m”,	2],	x,	x	<>	“.m”]]},

Save1[b,	a];	b]	In[2743]:=	SaveCurrentSession[“Tallinn”]
Out[2743]=	“Tallinn.m”

In[2744]:=	RestoreCS[x___String]	:=	Module[{a	=	If[{x}==	{},	“SaveCS.m”,
If[FileExtension[x]	==	“m”,	x,	$Failed]]},	If[a	===	$Failed,	$Failed,	On[General];
Quiet[Get[a]];	Off[General]]]

In[2745]	:=	RestoreCS[“Tallinn.m”]
In[2746]:=	RestoreCS[“AvzAgnVsv.m”]
Out[2746]=	$Failed
So,	the	presented	tools	are	rather	useful	in	a	case	when	is	required	to	create	copies	of
current	sessions	at	certain	moments	of	work	with	the	system.	TheDumpSave	function
serves	as	other	tool	for	saving	of	definitions	of	the	objects	in	datafiles,	creating	datafiles	of
binary	format	that	is	optimized	for	input	into	theMathematica	system.	Names	of	datafiles
of	this	format	have	extension“mx”,	and	analogously	to	the	previous	format	they	can	be
loaded	into	the	current	session	by	theGet	function.	Unlike	theSave	function,	the	call	of
theDumpSave	function	returns	the	list	of	names	and/or	definitions	of	the	objects	saved	in
amx–file.	Meanwhile,	it	must	be	kept	in	mind	a	very	essential	circumstance	that	the
datafiles	created	by	means	of	theDumpSave	function	not	only	are	most	optimum	for	input
intoMathematica,	but	also	can’t	be	loaded	on	a	computing	platform	different	from	the
platform	on	that	they	were	created.	Many	interesting	examples	of	application	of	the
function	DumpSave	can	be	found	in	[30-33],	some	from	them	will	be	presented	and	a
little	below.	Thus,	it	is	necessary	to	work	with	datafiles	of	binary	format	only	in	the	case
when	their	usage	in	rather	broad	aspect	isn’t	planned,	i.e.	in	the	sense	this	format	has
obviously	internal	character,	without	providing	of	the	portability	of	the	created	means.

In	a	number	of	cases	there	is	a	necessity	of	loading	into	the	current	session	of	datafiles	of
types	{nb,	m,	mx,	txt}	or	datafiles	of	theASCII	format	without	name	extension	which	are
located	in	one	of	directories	of	file	system	of	the	computer;	moreover,	having	a	full	name
of	datafile	we	may	not	have	certain	information	concerning	its	location	in	file	system	of
the	computer.	In	this	context	theLoadFile	procedure	solves	this	problem,	whose	source
code	and	typical	examples	of	its	application	the	following	fragment	represents.

In[2575]:=	LoadFile[F_	/;	StringQ[F]]	:=	Module[{a,	b,	c},
If[!	MemberQ[{“nb”,	“m”,	“mx”,	“txt”,	””},	FileExtension[F]],

Return[“File	<”	<>	F	<>	“>	has	an	inadmissible	type”],	a	=	Flatten[{FindFile[F]}];	a
=	If[a	===	{$Failed},	SearchFile[F],	a];	$Load$Files$	=	a];	If[a	==	{},	Return[“File
<”	<>	F	<>	“>	has	not	been	found”],	Quiet[Check[Get[$Load$Files$[[1]]],	c	=
{$Failed},	{Syntax::sntxc,	Syntax::sntxi}]];	If[c	===	{$Failed},

“File	<”	<>	$Load$Files$[[1]]	<>	“>	has	inadmissible	syntax”,	“File	<”	<>
$Load$Files$[[1]]	<>	“>	has	been	loaded;	\n$Load$Files$	defines	the	list	with	full
paths	to	the	found	files.”],	Return[“File	<”	<>	F	<>	“>	has	not	been	found”]]]
In[2576]:=	LoadFile[“Obj42.m”]
Out[2576]=	“File<C:\aladjev\mathematica\Obj42.m>	has	been	loaded;

$	Load$Files$	defines	the	list	with	full	paths	to	the	found	files.”	In[2577]:=	$Load$Files$
Out[2577]=	{”C:\users\aladjev\mathematica\Obj42.m”}	In[2578]:=

LoadFile[“AvzAgn.m”]
Out[2578]=	“File<C:\Mathematica\AvzAgn.m>	has	been	loaded;

$	Load$Files$	defines	the	list	with	full	paths	to	the	found	files.”	In[2579]:=	$Load$Files$
Out[2579]=	{”C:\Mathematica\AvzAgn.m”}
In[2580]:=	LoadFile[“Obj47.m”]
Out[2580]=	“File<Obj47.m>	has	not	been	found”

The	procedure	call	LoadFile[w]	uploads	into	the	current	session	a	data	file	given	by	its
namew	and	with	an	extension	{m,nb,	mx,	txt}	or	at	all	without	extension.	Moreover,	at
finding	of	the	list	of	datafiles	with	an	identical	name	w	uploading	of	the	first	of	the	list
with	return	of	the	corresponding	message	is	made,	while	thru	the	global$Load$Files$
variable	the	procedure	returns	the	list	of	allw	datafiles	found	in	search	process.	The
procedure	processes	the	main	erroneous	and	especial	situations,	including	syntax	of	the
found	datafile,	unacceptable	for	theGet	function.	In	the	case	of	lack	ofw	datafiles	through
the$Load$Files$	variable	the	empty	list,	i.e.	{}	is	returned.	A	rather	simple	and	in	certain
cases	the	usefulMathematicaDF	procedure	completes	this	section,	its
callMathematicaDF[]	returns	the	list	ofListList–	type,	whose	two–element	members	by
thefirst	elements	contain	type	of	the	elements	ofMathematica	file	system	whereas	by
thesecond	elements	contain	quantity	of	elements	of	this	type.	At	that,“NoExtension”
defines	datafiles	without	extension,“Dir”	defines	directories	while	the	others	defines	type
of	extension	of	a	datafile.	The	following	fragment	represents	source	code	of	the
MathematicaDF	procedure	along	with	a	typical	example	of	its	application	concerning	the
systemMathematica10.

In[2982]	:=	MathematicaDF[]	:=	Module[{a	=	“Art26$Kr18$”,	b	={},	c	=	””,	d},
Run[“Dir	”	<>	”	/A/B/S	”	<>	StrStr[$InstallationDirectory]	<>	”	>	”	<>	a];	While[!
SameQ[c,	EndOfFile],	c	=	Read[a,	String];	Quiet[If[DirectoryQ[c],	AppendTo[b,
“Dir”],	If[FileExistsQ[c],	d	=	FileExtension[c];	AppendTo[b,	If[d	===	””,
“NoExtension”,	d]],	AppendTo[b,	“NoFile”]]]]];	DeleteFile[Close[a]];	Map[{#[[1]],
Length[#]}&,	Gather[b,	#1	===	#2	&]]]	In[2983]:=	MathematicaDF[]

Out[2983]	=	{{”CDCode“,	1},	{”CreationID“,	3},	{”PatchLevel“,	1},	{”VersionID“,	1},
{”Dir“,	2076},	{”exe“,	169},	{”m“,	3477},	{”nb“,	13355},	{”gen“,	46},
{”NoExtension“,	993},	{”cfs“,	42},	{”jar“,	168},	{”cmd“,	2},	{”vbs“,	2},	{”sh“,	6},
{”pbs“,	1},	{”json“,	3},	==
{”sln“,	1},	{”cache“,	3},	{”Cache“,	1},	{”resources“,	1},	{”vb“,	1},	{”cl“,	31},	{”py“,
2},	{”so“,	4},	{”jnilib“,	2},	{”poly“,	2},	{”node“,	1},	{”cmap“,	1},	{”cset“,	1},	{”rws“,
1},	{”kbd“,	1},	{”ini“,	1},	{”msg“,	1}}

In[2984]:=	Plus[Sequences[Map[#[[2]]	&,	%]]]
Out[2984]=	27	931

At	last,	the	procedure	call	OpSys[]	returns	the	type	of	operational	platform.	The	procedure
is	useful	in	certain	appendices	above	all	of	system	character.	The	fragment	represents
source	code	of	the	procedure	with	an	example.

In[5334]:=	OpSys[]	:=	Module[{a	=	ToString[Unique[“s”]],	b},	Run[“SystemInfo	>”
<>	a];	b	=	StringTrim[StringTake[ReadList[a,

String][[2]],	{9,–1}]];	DeleteFile[a];	b]	In[5335]:=	OpSys[]

Out[5335]=	“Microsoft	Windows	7	Professional”

On	that	the	representation	of	access	means	to	the	system	files	is	completed,	and	means	of
operating	with	external	datafiles	will	be	presented	in	the	next	section.	Meanwhile,	the
represented	means	of	processing	of	system	datafiles	in	a	number	of	cases	represent	a	quite
certain	interest,	first	of	all,	for	various	applications	of	the	system	character.	So,	certain
means	of	theAVZ_Package	package	use	the	above	means	[48].

7.2.	Means	of	theMathematicasystem	for	operating	with	external	datafiles

According	to	such	quite	important	indicator	as	means	of	access	to	datafiles
theMathematica	system,	in	our	opinion,	possesses	a	number	of	advantages	in	comparison
with	theMaple	system.	First	of	all,Mathematica	carries	out	automatic	processing	of
hundreds	of	formats	of	data	and	their	subformats	on	the	basis	of	the	unified	usage	of
symbolical	expressions.	For	each	specific	format	the	correspondence	between	internal	and
external	representation	of	a	format	is	determined,	using	the	general	mechanism	of	data
elements	of	the	Mathematica	system.	For	todayMathematica10	as	a	whole	supports
many	various	formats	of	datafiles	for	different	purposes,	their	list	can	be	received	by
means	of	the	predetermined	variables$ImportFormats(the	imported	files)
and$ExportFormats(the	exported	files)	in	quantities172	and144	respectively.	While	the
basic	formats	of	datafiles	are	considered	rather	in	details	in	[33].

By	the	function	call	FileFormat[x]	an	attempt	to	define	an	input	format	for	a	datafile
given	by	a	namex	in	string	format	is	made.	In	the	case	of	existence	for	a	datafilex	of	name
extension	theFileFormat	function	is,	almost,	similar	to	theFileExtension	function,
returning	the	available	extension,	except	for	the	case	of	packages(m–datafiles)	when
instead	of	extension	the	datafile	type	“Package”	is	returned.	Meanwhile,	in	some	cases
the	format	identification	is	carried	out	incorrectly,	in	particular,	the	attempt	to	test
adoc–file	without	an	extension	returns“XLS”,	ascribing	it	to	the	datafiles	created	byExcel
95/	97/2000/XP/2003	that	is	generally	incorrect.

In[2557]	:=	Map[FileFormat,	{“AVZ_Package_1.nb”,	“AVZ_Package_1.m”}]
Out[2557]=	{”NB“,	“Package”}
In[2558]:=	FileFormat[“D:\AVZ_Package\Art1”]
Out[2558]=	“Text”
In[2559]:=	FileExtension[“D:\AVZ_Package\Art1”]
Out[2559]=	””
In[2560]:=	FileFormat[“Art1”]

FileFormat	::nffil:	File	not	found	during	FileFormat[Art1].	>>	Out[2560]=	$Failed
In[2561]:=	FileFormat[“D:\AVZ_Package\AVZ_Package_1”]

FileFormat	::nffil:	File	not	found	during
FileFormat[D:\AVZ_Package\AVZ_Package_1].	>>	Out[2561]=	$Failed
In[2562]:=	Map[FileFormat,	{“C:/AVZ_P”,	“C:/AVZ_P1”,	“C:/Temp/Der”}]
Out[2562]=	{”NB“,	“Package“,	“XLS”}
In[2563]:=	FileFormat[“C:\Temp\Der.doc”]
Out[2563]=	“DOC”

In[2564]:=	FileFormat1[x_	/;	StringQ[x]]	:=	Module[{a},	If[FileExistsQ[x],	{x,
FileFormat[x]},	a	=	SearchFile[x];	If[a	==	{},	{},	a	=	Map[{#,	FileFormat[#]}&,	a];
If[Length[a]	==	1,	a[[1]],	a]]]]

In[2565]	:=	FileFormat1[“AVZ_Package.m”]
Out[2565]=	{{”C:\Users\Mathematica\AVZ_Package.m“,	“Package”},
{”C:\Temp\Mathematica\AVZ_Package.m“,	“Package”},
{”C:\Mathematica\AVZ_Package.m“,	“Package”},
{”D:\Temp\Mathematica\AVZ_Package.m“,	“Package”}}
In[2566]:=	FileFormat1[“Z123456789”]
Out[2566]=	{}
In[2567]:=	FileFormat1[“C:\Users\Mathematica\AVZ_Package.m”]
Out[2567]=	{”C:\Users\Mathematica\AVZ_Package.m“,	“Package”}
In[2610]:=	Map[FileFormat,	{“C:/“,	“C:\”}]
General::cdir:	Cannot	set	current	directory	to$RL69B50.	>>	General::cdir:	Cannot	set
current	directory	to$RRMBM4A.>>
==
General::stop:	Further	output	of	General::dirdep	will	be	suppressed	during	this
calculation.	>>
Out[2610]=	{”KML“,	“KML”}

In[2611]:=	FileFormat2[x_	/;	StringQ[x]]	:=	Module[{a,	b	=	{},	c,	k	=	1},
If[StringLength[x]	==	3,

If[MemberQ[{“:/”,	“:\”},	StringTake[x,–2]]	&&	MemberQ[Adrive[],
ToUpperCase[StringTake[x,	1]]],	Return[“Directory”],	Null],	If[DirectoryQ[x],
Return[“Directory”],	a	=	SearchFile[x]];

If[a	==	{},	Return[{}],	For[k,	k	<=	Length[a],	k++,	c	=	a[[k]];	AppendTo[b,	{c,
FileFormat[c]}]]]];	If[Length[b]	==	1,	b[[1]],	b]]

In[2612]	:=	Map[FileFormat2,	{“C:/“,	“C:\”,	“C:/Temp”,	“C:\Temp”}]	Out[2612]=
{”Directory“,	“Directory“,	“Directory“,	“Directory”}	In[2613]:=
FileFormat2[“Obj47.m”]
Out[2613]=	{{”C:\Users\Aladjev\Mathematica\Obj47.m“,	“Package”},

{”D:\AVZ_Package\Obj47.m“,	“Package”}}

Moreover,	by	the	function	callFileFormat[x]	an	attempt	to	define	the	format	of	a	datafilex
is	made,	that	is	located	only	in	the	subdirectories	determined	by$Path	variable	otherwise
returning$Failed	with	print	of	the	appropriate	message	as	illustrates	an	example	of	the
previous	fragment.	For	elimination	of	similar	situation	the	simple	enoughFileFormat1
procedure	is	offered	that	expands	the	possibilities	of	the	standardFileFormat	function,	and
uses	the	SearchFile	procedure	which	will	be	presented	a	little	below.	The	procedure
callFileFormat1[x]	returns	the	simple	or	nested	list,first	element	of	a	simple	list	defines
the	full	path	to	a	datafilex	while	thesecond	element–	its	format	that	is	recognized	by
theFileFormat	function;	at	that,	the	required	datafile	can	be	located	in	any	directory	of
file	system	of	the	computer;	absence	of	a	datafilex	initiates	the	return	of	the	empty	list,	i.e.
{}.	Moreover,	at	finding	several	datafiles	with	an	identical	name	the	nested	list	whose
sublists	have	the	specified	format	is	returned.	The	previous	fragment	represents	source

code	of	theFileFormat1	procedure	along	with	typical	examples	of	its	usage.	In	some
cases	theFileFormat1	procedure	is	more	preferable	than	standard	FileFormat	function.

As	it	is	noted	above,	the	call	FileFormat[F]	tries	to	define	anImportformat	for	import	of	a
datafile	orURL	corresponding	to	argumentF;	meanwhile,	on	main	directories	of	external
memory(disk,flash	memory,etc.)	the	call	causes	erroneous	situation;	at	that,	the	function
recognizes	only	the	datafiles	which	are	in	the	directories	determined	by$Path	variable;	for
elimination	of	the	last	situation	theFileFormat1	procedure	above	has	been	offered
whereas	the	procedure	can	be	quite	simply	extended	for	the	purpose	of	elimination	and
thefirst	situation.	TheFileFormat2	procedure	was	programmed	on	the	basis	of
theFileFormat1	procedure,	this	procedure	correctly	processes	the	main	directories,
inaccessible	or	nonexistent	devices	of	the	external	memory,	and	also	datafiles	from
directories	of	file	system	of	the	computer.	The	previous	fragment	represents	source	code
of	the	procedure	with	typical	examples	of	its	usage.	Thus,	earlier	presentedFileFormat1
procedure	provides	check	of	format	of	the	datafiles	which	are	located	in	directories	of	file
system	of	the	computer	irrespectively	from	their	presence	in	the$Path	variable.	While	the
FileFormat2	procedure	in	addition	correctly	processes	also	main	directories	of	external
memory,	bearing	in	mind	the	important	circumstance	that	they	are	the	key	elements	of	file
system	of	the	computer.	Indeed,	examples	of	the	previous	fragment	visually	illustrate	that
the	function	callFileFormat[x]	on	main	directory	of	a	volumex	returns“KML”	format	that
is	theGIS	standard	format	which	serves	for	storage	of	cartographical	information	instead
of	the	Directory	format.	The	callFileFormat2[x]	eliminates	this	defect	with	return	on
similar	objects“Directory”	while	in	other	situations	a	callFileFormat2[x]	is	equivalent	to
a	callFileFormat1[x].

At	last,	a	version	of	the	standard	FileFormat	function	attempts	to	identify	a	datafile	type
without	extension,	being	based	on	information	of	the	creator	of	the	datafile	that	is
contained	in	the	contents	of	the	datafile.	TheFileFormat3	procedure	rather	accurately
identifies	datafiles	of	the	following	often	used	types	{DOC,	PDF,	ODT,	TXT,	HTML}.	At
that,	concerning	theTXT	type	the	verification	of	a	datafile	is	made	in	the	latter	case,
believing	that	the	datafile	of	this	type	has	to	consist	only	of	symbols	with	the	following
decimal	codes:

0	÷	127	–	ASCIIsymbols
1	÷	31	–the	controlASCIIsymbols
32	÷	126	–the	printedASCIIsymbols
97	÷	122	–letters	of	the	Latin	alphabet	in	the	lower	register
129	÷	255	–	Latin–1symbols	ofISO
192	÷	255	–letters	of	the	European	languages

The	procedure	call	FileFormat3[x]	returns	the	type	of	a	datafile	given	by	a	name	or	a
classifierx;	at	that,	if	the	datafile	has	an	extension,	it	relies	as	the	extension	of	the	datafile.
Whereas	the	callFileFormat3[x,	y]	with	the	second	optional	argument–an	arbitrary
expressiony	–	in	the	case	of	datafile	without	extension	returns	its	full	name	with	the
extension	defined	for	it,	at	the	same	time	renaming	the	datafilex,	taking	into	account	the
calculated	format.	The	fragment	below	represents	source	code	of	theFileFormat3
procedure	along	with	the	most	typical	examples	of	its	usage.

In[2554]:=	FileFormat3[x_	/;	FileExistsQ[x],	t___]	:=	Module[{b,	c,	a	=

FileExtension[x]},	If[a	!=	””,	ToUpperCase[a],
c	=	If[Quiet[StringTake[Read[x,	String],	{1,	5}]]	===	“%PDF–“,

{	Close[x],	“PDF”}[[–1]],	Close[x];	b	=	ReadFullFile[x];	If[!	StringFreeQ[b,
“MSWordDoc”],	“DOC”,
If[!	StringFreeQ[b,	“.opendocument.textPK”],	“ODT”,	If[!	StringFreeQ[b,
{“!DOCTYPE	HTML	“,	“text/html”}],	“HTML”,	If[MemberQ3[Range[0,	255],
DeleteDuplicates[Flatten[Map[

ToCharacterCode[#]	&,	DeleteDuplicates[Characters[b]]]]]],	“TXT”,	Undefined]]]]];
If[{t}!=	{},	Quiet[Close[x]];	RenameFile[x,	x	<>	“.”	<>	c],	c]]]

In[2555]	:=	Map[FileFormat3,	{“C:\Temp.Burthday”,	“C:\Temp.cinema”,
“C:/Temp/ransian”,	“C:/Temp/Book_Grodno”,	“C:/Temp/Math_Trials”}]
Out[2555]=	{”DOC“,	“TXT“,	“HTML“,	“PDF“,	“DOC”}
In[2556]:=	FileFormat3[“C:/Temp/Math_Trials”,	500]
Out[2556]=	“C:\Temp\Math_Trials.DOC”

Using	the	algorithm	implemented	by	the	FileFormat3	procedure	it	is	rather	simple	to
modify	it	for	testing	of	other	types	of	datafiles	whose	full	names	have	no	extension.	That
can	be	rather	useful	in	the	processing	problems	of	the	datafiles.	In	a	certain	relation
theFormat3	procedure	complements	the	standardFormat	function	along	with	the
proceduresFormat1	andFormat2.

The	Mathematica	provides	effective	enough	system–independent	access	to	all	aspects	of
datafiles	of	any	size.	For	ensuring	operations	of	opening	and	closing	of	datafiles	the
following	basic	functions	of	access	are	used,	namely:	OpenRead,	OpenWrite,
OpenAppend,	Close.	Moreover,	the	name	or	full	path	to	a	datafile	in	string	format	acts	as
the	only	formal	argument	of	the	first	three	functions;	at	that,	the	function	callOpenWrite[]
without	factual	arguments	is	allowed,	opening	a	new	datafile	located	in	the	subdirectory
intended	for	temporary	files	for	writting.	Whereas	theClose	function	closes	a	datafile
given	by	its	name,	full	path	or	aStream–object.	In	attempt	to	close	the	closed	or
nonexistent	file	the	system	causes	an	erroneous	situation.	For	elimination	of	such
situation,	undesirable	in	many	cases,	it	is	possible	to	use	very	simpleCloses	function
providing	the	closing	of	any	datafile	including	a	closed	or	nonexistent	datafile,	without
output	of	any	erroneous	messages	with	returningNull,	i.e.	nothing,	but,	perhaps,	the	name
or	full	path	to	the	closed	datafile,	for	example:

In[2351]	:=	Close[“D:/Math_myLib/test72.txt”]
General::openx:	D:/Math_myLib/test72.txt	is	not	open.	>>
Out[2351]=	Close[”D:/Math_myLib/test72.txt”]

In[2352]	:=	Closes[x_]	:=	Quiet[Check[Close[x],	Null]]
In[2353]:=	Closes[“D:/Math_myLib/test72.txt”]

An	object	of	the	following	rather	simple	format	is	understood	as	theStream-	object	of
functions	of	access	ofOpenRead,	OpenWrite	andOpenAppend:
{OutputStream|InputStream}[<Datafile>,	<Logical	IO	channel>]

By	the	function	call	Streams[]	the	list	ofStreamobjects	of	datafiles	opened	in	the	current
session	including	system	files	is	returned.	For	obtaining	the	list	ofStream-objects	of

datafiles,different	from	the	system	files	it	is	possible	to	use	the	function	callStreamsU[].

In[2642]	:=	Streams[]
Out[2642]=	{OutputStream[”stdout“,	1],	OutputStream[”stderr“,	2]}	In[2643]:=	S1	=
OpenRead[“C:/Temp/Math_Trials.doc”]
Out[2643]=	InputStream[”C:/Temp/Math_Trials.doc“,	163]
In[2644]:=	S2	=	OpenWrite[“C:\Temp/Book_Grodno.pdf”]	Out[2644]=
OutputStream[”C:\Temp/Book_Grodno.pdf“,	164]	In[2645]:=	Streams[]
Out[2645]=	{OutputStream[”stdout“,	1],	OutputStream[”stderr“,	2],

InputStream[“C:/Temp/Math_Trials.doc“,	163],
OutputStream[”C:\Temp/Book_Grodno.pdf“,	164]}	In[2646]:=	OpenWrite[]
Out[2646]=	OutputStream[”C:\Users\Aladjev\AppData\Local\
Temp\m-e88a7f8c-339f-42e2-8da9-b6bd16e6cd50“,	165]

In[2647]	:=	StreamsU[]	:=	Select[Streams[],	!	MemberQ[{“[stdout”,	“[stderr”},
StringTake[ToString[#1],	{13,	19}]]	&]	In[2648]:=	StreamsU[]
Out[2648]=	{InputStream[”C:/Temp/Math_Trials.doc“,	163],

OutputStream[“C:\Temp/Book_Grodno.pdf“,	164],
OutputStream[”C:\Users\Aladjev\AppData\Local\	Temp\m-e88a7f8c-339f-42e2-8da9-
b6bd16e6cd50“,	165]}

In[2649]	:=	Close[“C:\Temp/Book_Grodno.pdf”]
Out[2649]=	“C:\Temp/Book_Grodno.pdf”
In[2650]:=	StreamsU[]
Out[2650]=	{InputStream[”C:/Temp/Math_Trials.doc“,	163],

OutputStream[”C:\Users\Aladjev\AppData\Local\	Temp\m-e88a7f8c-339f-42e2-8da9-
b6bd16e6cd50“,	165]}	In[2658]:=	CloseAll[]	:=	Map[Close,	StreamsU[]]
In[2659]:=	CloseAll[]
Out[2659]=	{”C:/Temp/Math_Trials.doc“,	“C:\Users\Aladjev\

AppData	\Local\Temp\m-e88a7f8c-339f-42e2-8da9-b6bd16e6cd50”}	In[2660]:=
Streams[]
Out[2660]=	{OutputStream[”stdout“,	1],	OutputStream[”stderr“,	2]}

It	must	be	kept	in	mind	that	after	the	termination	of	work	with	an	opened	datafile,	it
remains	opened	up	to	its	obvious	closing	by	theClose	function.	For	closing	of	all	channels
and	datafiles	opened	in	the	current	session	of	the	system,	excepting	system	files,	it	is
possible	to	apply	quite	simpleCloseAll	function,	whose	callCloseAll[]	closes	all
mentioned	open	both	channels	and	datafiles	with	return	of	the	list	of	datafiles.

Similar	to	the	Maple	system	theMathematica	system	also	has	opportunity	to	open	the
same	datafile	on	different	streams	and	in	various	modes,	using	different	coding	of	its	name
or	path	using	alternative	registers	for	letters	or/	and	replacement	of	separators	of
subdirectories“\”	on”/“,	and	vice	versa	at	opening	of	datafiles.	The	simple	fragment	below
illustrates	application	of	this	approach	for	opening	of	the	same	datafile	on	two	different
channels	on	reading	with	the	subsequent	alternating	reading	of	records	from	it.

In[2534]:=	F	=	“C:\Mathematica\AvzAgn”;	{S,	S1}=	{OpenRead[F],
OpenRead[If[UpperCaseQ[StringTake[F,	1]],	ToLowerCase[F],	ToUpperCase[F]]]}

Out[2534]	=	InputStream[”C:\Mathematica\AvzAgn.m“,	118],
InputStream[”c:\mathematica\avzagn.m“,	119]}
In[2535]:=	t	=	{};	For[k	=	1,	k	<=	3,	k++,	AppendTo[t,	{Read[S],	Read[S1]}]]
Out[2535]=	{”RANS1“,	“RANS1“,	“RANS2“,	“RANS2“,	“RANS3“,	“RANS3”}

Meanwhile,	it	must	be	kept	in	mind	that	the	special	attention	at	opening	of	the	same
datafile	ondifferent	channels	is	necessary	and,	above	all,	at	various	modes	of	access	to	the
datafile	in	order	to	avoid	of	the	possible	especial	and	erroneous	situations,	including
distortion	of	data	in	the	datafile.	Whereas	in	certain	cases	this	approach	at	operating	with
large	enough	datafiles	can	give	quite	notable	temporal	effect	along	with	simplification	of
certain	algorithms	of	data	processing	which	are	in	datafiles.	The	interesting	enough
examples	of	usage	of	the	given	approach	can	be	found	in	our	books	[30-33].

Similar	to	the	Maple	system	theMathematica	system	has	very	useful	means	for	work
with	the	pointer	defining	the	current	position	of	scanning	of	a	file.	The	following	functions
provide	such	work,	namely:	StreamPosition,	Skip,	SetStreamPosition,	Find.	The
functionsStreamPosition,	SetStreamPosition	allow	to	make	monitoring	of	the	current
position	of	the	pointer	of	an	open	datafile	and	to	establish	for	it	a	new	position
respectively.	Moreover,	on	the	closed	or	nonexistent	datafiles	the	calls	of	these	functions
cause	erroneous	situations.	Reaction	to	the	status	of	a	datafile	of	theSkip	function	is
similar,	while	the	function	callFind	opens	a	stream	on	reading	from	a	datafile.	The	sense
of	the	presented	functions	is	rather	transparent	and	in	more	detail	it	is	possible	to
familiarize	with	them,	for	instance,	in	[30,33].	In	connection	with	the	told	arises	the
question	of	definition	of	the	status	of	a	datafile–	opened,	closed	or	doesn’t	exist.	In	this
regard	theFileOpenQ	procedure	can	be	quite	useful,	whose	source	code	with	examples	of
application	represents	the	next	fragment	together	with	an	example	of	usage	of	the
standardSkip	function.

In[2542]	:=	FileOpenQ[F_	/;	StringQ[F]]	:=	Module[{A,	a	=	FileType[F],	b,	d,	x	=
inputstream,	y	=	outputstream,	c	=	Map[ToString1,	StreamsU[]],	f	=
ToLowerCase[StringReplace[F,	“\”–>	“/”]]},	A[x_]	:=	Module[{a1	=	ToString1[x],

b1	=	StringLength[ToString[Head[x]]]},	ToExpression[“{”	<>	StrStr[Head[x]]	<>	“,”
<>

StringTake[a1,	{b1	+	2,–2}]	<>	“}“]];	If[MemberQ[{Directory,	None},	a],
Return[$Failed],	Clear[inputstream,	outputstream];	d	=
ToExpression[ToLowerCase[StringReplace[ToString1[Map[A,	StreamsU[]]],	“\\”–>
“/”]]];	a	=	Select[d,	#[[2]]	===	f	&];	If[a	==	{},	{inputstream,	outputstream}=	{x,	y};
False,	a	=	{ReplaceAll[a,	{inputstream–>	“read”,	outputstream–>	“write”}],
{inputstream,	outputstream}={x,	y}}[[1]]]];	If[Length[a]	==	1,	a[[1]],	a]]

In[2543]	:=	OpenRead[“C:\Temp\cinema.txt”];	Write[“rans.ian”];
Write[“C:\Temp/Summ.doc”];	Write[“C:\Temp/Grin.pdf”]
In[2544]:=	Map[FileOpenQ,	{“rans.ian”,	“C:\Temp\Grin.pdf”,
“C:\Temp/Summ.doc”,	“C:\Temp/cinema.txt”}]
Out[2544]=	{{”write“,	“rans.ian“,	85},	{”write“,	“c:/temp/grin.pdf“,	87},	{”write“,
“c:/temp/summ.doc“,	86},	{”read“,	“c:/temp/cinema.txt“,	84}}
In[2545]:=	Map[FileOpenQ,	{“C:\Temp\Books.doc”,	“C:\Books.doc”}]

Out[2545]=	{{},	$Failed}

The	procedure	call	FileOpenQ[F]	returns	the	nested	list	{{R,	F,	Channel},…}	if	a
datafileF	is	open	on	reading/writing(R=	{“read”|“write”}),F	defines	actually	the
datafileF	in	the	stylized	format(LowerCase+all“\”are	replaced	on”/”)	whileChannel
defines	the	logical	channel	on	which	the	datafileF	in	the	mode	specified	by	the	first
element	of	the	listR	was	open;	if	datafileF	is	closed,	the	empty	list	is	returned,	i.e.	{},	if
datafileF	is	absent,	then$Failed	is	returned.	At	that,	the	nested	list	is	used	with	the
purpose,	that	the	datafileF	can	be	opened	according	to	syntactically	various	file	specifiers,
for	example,	“Agn47”	and”AGN47“,	allowing	to	carry	out	its	processing	in	the	different
modes	simultaneously.
TheFileOpenQ1	procedure	is	an	useful	enough	extension	of	theFileOpenQ	procedure
considered	above.	The	procedure	callFileOpenQ1[F]	returns	the	nested	list	of	the	format
{{R,	x,	y,…,z},	{{R,	x1,	y1,…,z1}}	if	a	datafileF	is	open	for	reading	or	writing(R	=
{“in”|“out”}),	andF	defines	the	datafile	in	any	format(Register+“/”	and/or“\”);	if	the
datafileF	is	closed	or	is	absent,	the	empty	list	is	returned,	i.e.	{}.	Moreover,	sublists	{x,y,
…,	z}	and	{x1,	y1,	…,	z1}	define	datafiles	or	full	paths	to	them	that	are	open	for	reading
and	writing	respectively.	Moreover,	if	in	the	current	session	all	user	datafiles	are	closed,
except	system	files,	the	callFileOPenQ1[x]	on	an	arbitrary	stringx	returns	$Failed.	The
datafiles	and	paths	to	them	are	returned	in	formats	which	are	defined	in	the	list	returned	by
the	function	callStreams[],irrespective	of	the	format	of	the	datafileF.	The	following
fragment	presents	source	code	of	the	FileOpenQ1	procedure	along	with	typical	examples
of	its	usage.

In[2615]	:=	FileOpenQ1[F_	/;	StringQ[F]]	:=	Module[{a	=	StreamFiles[],	b,	c,	d,	k	=
1,	j},	If[a	===	“AllFilesClosed”,	Return[False],	c	=	StringReplace[ToLowerCase[F],
“/”–>	“\”];	b	=	Mapp[StringReplace,	Map[ToLowerCase,	a],	“/”–>	“\”]];	For[k,	k	<=
2,	k++,	For[j	=	2,	j	<=	Length[b[[k]]],	j++,	If[Not[SuffPref[b[[k]][[j]],	c,	2]	||
SuffPref[b[[k]][[j]],	“\”	<>	c,	2]],	a[[k]][[j]]	=	Null;	Continue[],	Continue[]]]];	b	=
Mapp[Select,	a,	!	#	===	Null	&];	b	=	Select[b,	Length[#]	>	1	&];	If[Length[b]	==	1,
b[[1]],	b]]

In[2616]	:=	OpenWrite[“Kherson.doc”];	OpenWrite[“C:/Temp/Books.doc”];
OpenWrite[“RANS”];	OpenRead[“C:/Temp\Cinema.txt”];
Read[“C:/Temp\Cinema.txt”,	Byte];

In[2617]	:=	CloseAll[];	FileOpenQ1[“AvzAgnArtKrSv”]
Out[2617]=	False
In[2618]:=	Map[FileOpenQ1,	{“Kherson.doc”,	“C:/Temp\Books.doc”,

“RANS”,	“C:/Temp\Cinema.txt”,	“Agn”}]	Out[2618]=	{{”out“,	“Kherson.doc”},
{”out“,	“C:/Temp\Books.doc”},	{”out“,	“RANS”},	{”in“,	“C:/Temp\Cinema.txt”},	{}}
In[2619]:=	Map[FileOpenQ1,	{“Kherson.doc”,	“C:/Temp\Books.doc”,	“RANS”,
“C:/Temp\Cinema.txt”,	“Agn”}]	Out[2619]=	{{”write“,	“kherson.doc“,	1458},
{”write“,	“c:/temp/books.doc“,	1459},	{”write“,	“rans“,	1460},	{”read“,
“c:/temp/cinema.txt“,	1461},	$Failed}

So,	functions	of	access	Skip,	Find,	StreamPosition	andSetStreamPosition	provide	quite
effective	tools	for	rather	thin	manipulation	with	datafiles	and	in	combination	with	a

number	of	other	functions	of	access	they	provide	the	user	with	the	standard	set	of
functions	for	processing	of	datafiles,	and	give	opportunity	on	their	base	to	create	own
tools	allowing	how	to	solve	specific	problems	of	work	with	datafiles,	and	in	a	certain
degree	to	extend	standard	opportunities	of	the	system.	A	number	of	similar	means	is
presented	and	in	the	present	book,	and	in	ourAVZ_Package	package	[48].	In	addition	to
the	represented	standard	operations	of	datafiles	processing,	a	number	of	other	means	of
the	package	rather	significantly	facilitates	effective	programming	of	higher	level	at	the
solution	of	many	problems	of	datafiles	processing	and	management	of	the	system.
Naturally,	the	consideration	rather	in	details	of	earlier	presented	tools	of	access	todatafiles
and	the	subsequent	tools	doesn’t	enter	purposes	of	the	present	book	therefore	we	will
present	relatively	them	only	short	excursus	in	the	form	of	a	brief	information	with	some
comments	on	the	represented	means.
Among	standard	means	of	the	datafiles	processing,	the	following	functions	can	be	noted,
namely:	FileNames–	depending	on	the	coding	format	returns	the	list	of	full	paths	to	the
datafiles	and/or	directories	contained	in	the	given	directory	onto	arbitrary	nesting	depth	in
file	system	of	the	computer.	While	the	functionsCopyFile,	RenameFile,	DeleteFile	serve
forcopying,renaming	andremoval	of	the	given	datafiles	accordingly.	Except	listed	means
for	work	with	datafiles	theMathematica	has	a	number	of	rather	useful	functions	that	here
aren’t	consideredbut	with	which	the	interested	reader	can	familiarize	in	reference	base	of
the	system	or	in	the	corresponding	literature	[55,60,64].	Along	with	the	above
functionsOpenRead,	OpenWrite,	Read,	Write,	Skip	andStreams	of	the	lowest	level	of
access	to	datafiles,	the	functionsGet,	Put,	Export,Import,	ReadList,	BinaryReadList,
BinaryWrite,	BinaryRead	are	not	less	important	for	support	of	access	to	datafiles	which
support	operations	of	reading	and	writing	of	data	of	the	required	format.	With	these	means
along	with	a	whole	series	of	rather	interesting	examples	and	features	of	their	use,	at	last
with	certain	critical	remarks	to	their	address	the	reader	can	familiarize	in	[30-33].
Meantime,	these	tools	of	access	together	with	already	considered	means	and	means
remaining	without	our	attention	form	a	rather	developed	system	of	effective	processing	of
datafiles	of	various	formats.

On	the	other	hand,	along	with	actually	processing	of	the	internal	contents	of	datafiles,
theMathematica	has	a	number	of	means	for	search	of	files,	their	testing,	work	with	their
names,	etc.	We	will	list	only	some	of	them,	namely:	FindFile,	FileExistsQ,
FileNameDepth,	FileNameSplit,	ExpandFileName,	FileNameJoin,	FileBaseName,
FileNameTake.	With	the	given	means	along	with	a	whole	series	of	rather	interesting
examples	and	features	of	their	use,	at	last	with	certain	critical	remarks	to	their	address	the
reader	can	familiarize	in	[30-33].	In	particular,	as	it	was	noted	earlier,	theFileExistsQ
function	like	some	other	functions	of	access	in	the	course	of	search	is	limited	only	to	the
directories	defined	in	the	predetermined$Path	variable.	For	the	purpose	of	elimination	of
this	shortcoming	simple	enoughFileExistsQ1	procedure	has	been	offered.	The	next
fragment	represents	source	code	of	theFileExistsQ1	procedure	along	with	typical
examples	of	its	usage.

In[2534]:=	FileExistsQ1[x__	/;	StringQ[{x}[[1]]]]	:=	Module[{b	=	{x},	a	=
SearchFile[{x}[[1]]]},	If[a	==	{},	False,	If[Length[b]	==	2	&&	!	HowAct[b[[2]]],
ToExpression[ToString[b[[2]]]	<>”	=”	<>ToString1[a]],	Null];	True]]	In[2535]:=
{FileExistsQ1[“Mathematica.doc”,	t],	t}

Out[2535]=	{True,	{”C:\Mathematica\Mathematica.doc“,

“	E:\Mathematica\Mathematica.doc”}}
In[2536]:=	FileExistsQ[“Books.doc”]
Out[2536]=	False
In[2537]:=	FileExistsQ1[“Books.doc”]
Out[2537]=	True
In[2538]:=	FileExistsQ1[“Book_avz.doc”]
Out[2538]=	False

The	procedure	call	FileExistsQ1[x]	with	one	actual	argument	returnsTrue	if	x	determines
a	datafile,	really	existing	in	the	file	system	of	the	computer	and	False	otherwise;	whereas
the	callFileExistsQ1[x,	y]	in	addition	through	the	actual	argumenty	–an	undefinite
variable–	returns	the	list	of	full	paths	to	the	found	datafilex	if	the	main	result	of	the	call
isTrue.

The	previous	procedure	enough	essentially	uses	the	SearchFile	procedure	providing
search	of	the	given	datafile	in	file	system	of	the	computer.	At	that,	the	procedure
callSearchFile[f]	returns	the	list	of	paths	to	a	datafilef	found	within	file	system	of	the
computer;	in	the	case	of	absence	of	the	required	file	f	the	procedure	callSearchFile[f]
returns	the	empty	list,	i.e.	{}.	We	will	note,	the	procedureSearchFile	essentially	uses	the
standardRun	function	of	the	Mathematica	system	that	is	used	by	a	number	of	tools	of
ourAVZ_Package	package	[48].	The	fragment	below	represents	source	code	of
theSearchFile	procedure	along	with	typical	examples	of	its	usage.

In[2532]:=	SearchFile[F_	/;	StringQ[F]]	:=	Module[{a,	b,	f,	dir,	h	=
StringReplace[ToUpperCase[F],	“/”–>	“\”]},	{a,	b,	f}=	{Map[ToUpperCase[#]	<>
“:\”	&,	Adrive[]],	{},

ToString[Unique[“d”]]	<>	“.txt”	};	dir[y_	/;	StringQ[y]]	:=	Module[{a,	b,	c,	v},
Run[“Dir	”	<>	“/A/B/S	”	<>	y	<>	”	>	”	<>	f];	c	=	{};	Label[b];

a	=	StringReplace[ToUpperCase[ToString[v	=	Read[f,	String]]],	“/”–>	“\”];	If[a	==
“ENDOFFILE”,	Close[f];	DeleteFile[f];

Return[c],	If[SuffPref[a,	h,	2],	If[FileExistsQ[v],	AppendTo[c,	v]];	Goto[b],
Goto[b]]]];	For[k	=	1,	k	<=	Length[a],	k++,	AppendTo[b,	dir[a[[k]]]]];	Flatten[b]]

In[2533]:=	SearchFile[“AVZ_Package.nb”]
Out[2533]=	{”C:\Users\Aladjev\Mathematica\AVZ_Package.nb“,

“	E:\AVZ_Package\AVZ_Package.nb”}
In[2534]:=	SearchFile[“init.m”]
Out[2534]=	{”C:\Program	Files\Wolfram	Research\Mathematica\10.0

\	AddOns\Applications\AuthorTools\Kernel\init.m“,
==	“C:\Users\All
Users\Mathematica\Kernel\init.m”}

In[2535]	:=	Length[%]
Out[2535]=	100
In[2536]:=	SearchFile[“Mathematica.doc”]

Out[2536]=	{”C:\Mathematica\Mathematica.doc“,

“	E:\Mathematica\Mathematica.doc”}
In[2537]:=	SearchFile[“AVZ_AGN_VSV_ART_KR.590”]
Out[2537]=	{}
In[2538]:=	SearchFile[“Cinema.txt”]
Out[2538]=	{”C:\Temp\Cinema.txt”}

In[2587]:=	SearchFile1[x_	/;	StringQ[x]]	:=	Module[{a,	b,	c,	d,	f	=	{},	k	=	1},
If[PathToFileQ[x],	If[FileExistsQ[x],	x,	{}],	a	=	$Path;	f
=Select[Map[If[FileExistsQ[#	<>	“\”	<>	ToUpperCase[x]],	#,

“Null”]	&,	a],	#	!=	“Null”	&];	If[f	!=	{},	f,	d	=	Map[#	<>	“:\”	&,	Adrive[]];	For[k,	k
<=	Length[d],	k++,	a	=	Quiet[FileNames[“*”,	d[[k]],	Infinity]];	f	=	Join[f,
Select[Map[If[FileExistsQ[#]	&&	SuffPref[ToUpperCase[#],	“\”	<>ToUpperCase[x],
2],	#,	“Null”]&,	a],	#	!=	“Null”	&]]];	If[f	==	{},	{},	f]]]]

In[2588]	:=	SearchFile1[“BirthDay.doc”]
Out[2588]=	{”C:\Temp\Birthday.doc“,
“E:\ARCHIVE\MISCELLANY\	Birthday.doc“,	“E:\Temp\Birthday.doc”}
In[2589]:=	SearchFile1[“Cinema.txt”]
Out[2589]=	{”C:\Program	Files\Wolfram	Research\Mathematica\10.0
\SystemFiles\Links”}
In[2590]:=	SearchFile1[“C:\Mathematica\Tuples.doc”]
Out[2590]=	“C:\Mathematica\Tuples.doc”

The	SearchFile1	procedure	which	is	a	functional	analog	of	theSearchFile	procedure
completes	the	previous	fragment.	The	callSearchFile[F]	returns	the	list	of	full	paths	to	a
datafileF	found	within	file	system	of	the	computer;	in	the	case	of	absence	of	the	required
fileF	the	procedure	callSearchFile[F]	returns	the	empty	list,	i.e.	{}.	Unlike	the	previous
procedure	theSearchFile1	procedure	seeks	out	a	datafile	in3	stages:(1)	if	the	required
datafile	is	given	by	the	full	path	onlyexistence	of	the	concrete	datafile	is	checked,	at
detection	the	full	path	to	it	is	returned,(2)	search	is	done	in	the	list	of	the	directories
determined	by	the	predetermined$Path	variable,(3)	search	is	done	within	all	file	system	of
the	computer.	The	procedureSearchFile1	essentially	uses	the	procedureAdrive	that	is
used	by	a	number	of	our	means	of	access	[48].	It	should	be	noted	that	speed	of	both
procedures	generally	very	essentially	depends	on	the	sizes	of	file	system	of	the	computer,
first	of	all,	if	a	required	datafile	isn’t	defined	by	the	full	path	and	isn’t	in	the	directories
determined	by	the$Path	variable.	Moreover,	in	this	case	the	search	is	done	even	in	the
Windows“C:\$Recycle.Bin”	directory.

Along	with	means	of	processing	of	external	datafiles	the	system	has	also	the	set	of	useful
enough	means	for	manipulation	with	directories	of	both	the	Mathematica,	and	file	system
of	the	personal	computer	in	general.	We	will	list	only	some	of	these	important	functions,
namely:
DirectoryQ[D]–the	call	returns	True	if	a	stringDdefines	an	existing	directory,	and	False
otherwise;unfortunately,the	standard	procedure	at	coding”/”at	the	end	of	the
stringDreturns	False	irrespective	of	existence	of	the	tested	directory;a	quite
simpleDirQprocedure	eliminates	the	defect	of	this	standard	means.

In[2602]:=	DirQ[d_	/;	StringQ[d]]	:=	DirectoryQ[StringReplace[d,	“/”–>	“\”]]

In[2603]	:=	Map1[{DirectoryQ,	DirQ},	{“C:/Mathematica\”}]	Out[2603]=	{True,
True}
In[2604]:=	Map1[{DirectoryQ,	DirQ},	{“C:/Mathematica/”}]
Out[2604]=	{False,	True}
In[2605]:=	Map1[{DirectoryQ,	DirQ},	{“C:/Mathematica”}]
Out[2605]=	{True,	True}

DirectoryName[W]–the	call	returns	a	path	to	a	directory	containing	datafileW;
moreover,ifWis	a	real	subdirectory,the	chain	of	subdirectories	to	it	is	returned;at
that,taking	into	account	the	file	concept	that	identifies	datafiles	and	subdirectories,	and
the	circumstance	that	the	callDirectoryName[W]doesn’t	consider	the	actual	existence
ofW,similar	approach	in	a	certain	measure	could	be	considered	justified,	but	on	condition
of	taking	into	account	of	reality	of	a	tested	pathWsuch	approach	causes	certain	questions.
Therefore	from	this	standpoint	a	quite	simpleDirName	procedure	which
returns“None”ifWis	a	subdirectory,the	path	to	a	subdirectory	containing
datafileW,and$Failedotherwise	is	offered.	Moreover,search	is	done	within	all	file	system
of	the	computer,but	not	within	only	system	of	subdirectories	determined	by	the
predetermined$Pathvariable.

In[2605]:=	DirName[F_/;	StringQ[F]]	:=	If[DirQ[F],	“None”,
If[!	FileExistsQ1[F],	$Failed,	Quiet[Check[FileNameJoin[FileNameSplit[F][[1;–2]]],
“None”]]]]

In[2606]	:=	Map[DirectoryName,	{“C:/Temp/Cinema.txt”,	“C:/Temp”}]	Out[2606]=
{”D:\MathMyLib\”,	“D:\”}
In[2607]:=	Map[DirName,	{“C:/Temp/Cinema.txt”,	“C:/Temp”,	“G:\”}]	Out[2607]=
{”Temp“,	“None“,	$Failed}

CreateDirectory[d]–the	call	creates	the	given	directorydwith	return	of	the	path	to
it;meanwhile	this	tool	doesn’t	work	in	the	case	of	designation	of	the	nonexistent	device	of
external	memory	(disk,flash	card,etc.)	therefore	we	created	a	rather	simple
CDirprocedure	which	resolves	this	problem:the	procedure	callCDir[d]creates	the	given
directorydwith	return	of	the	full	path	to	it;in	the	absence	or	inactivity	of	the	device	of
external	memory	the	directory	is	created	on	a	device	from	the	list	of	active	devices	of
external	memory	that	has	the	maximal	volume	of	available	memory	with	returning	of	the
full	path	to	it:

In[2612]:=	CDir[d_	/;	StringQ[d]]	:=	Module[{a},
Quiet[If[StringTake[d,	{2,	2}]	==	“:”,	If[MemberQ[a,	StringTake[d,	1]],

CreateDirectory[d],	a	=	Adrive[];	CreateDirectory[Sort[a,	FreeSpaceVol[#1]
>=FreeSpaceVol[#2]	&][[1]]<>	StringTake[d,	{2,–1}]]],	CreateDirectory[d]]]]

In[2613]	:=	CreateDirectory[“G:\Temp\GSV/ArtKr”]
CreateDirectory::nffil:	File	not	found	during	CreateDirectory…	>>
Out[2613]=	$Failed
In[2614]:=	CDir[“G:\Temp\GSV/ArtKr”]
Out[2614]=	“G:\Temp\GSV\ArtKr”
In[2615]:=	CDir[“A:/Temp\AVZ\Tallinn\IAN\Grodno/Kherson”]

Out[2615]=	“C:\Temp\AVZ\Tallinn\IAN\Grodno\Kherson”

CopyDirectory	[d1,	d2]–the	function	call	completely	copies	ad1directory	into	a
d2directory,however	in	the	presence	of	the	accepting	directoryd2the	function	call
CopyDirectory[d1,d2]causes	an	erroneous	situation	with	return	of$Failedthat	in	a
number	of	cases	is	undesirable.For	the	purpose	of	elimination	of	such	situation	a	rather
simpleCopyDirfunction	can	be	offered,which	in	general	is	similar	to	the
standardCopyDirectoryfunction,but	with	the	difference	that	in	the	presence	of	the
accepting	directoryd2thed1directory	is	copied	as	a	subdirectory	of	thed2with	returning	of
the	full	path	to	it,for	example:

In[2625]	:=	CopyDirectory[“C:/Mathematica”,	“C:/Temp”]
CopyDirectory::filex:	Cannot	overwrite	existing	file	C:/Temp.	>>
Out[2626]=	$Failed

In[2626]:=	CopyDir[d_	/;	StringQ[d],	p_	/;	StringQ[p]]	:=	CopyDirectory[d,
If[DirQ[p],	p	<>	“\”	<>	FileNameSplit[d][[–1]],	p]]	In[2627]:=
CopyDir[“C:/Mathematica”,	“C:/Temp”]
Out[2627]=	“C:\Temp\Mathematica”

DeleteDirectory[W]–the	call	deletes	from	file	system	of	the	computer	the	given
directoryWwith	return	Null,i.e.	nothing,regardless	of	attributes	of	the	directory
(Archive,Read–only,Hidden,System).Meanwhile,such	approach,in	our	opinion,	isn’t	quite
justified,relying	only	on	the	circumstance	that	the	user	is	precisely	sure	that	he
deletes.While	in	the	general	case	there	has	to	be	an	insurance	from	removal,	for
example,of	the	datafiles	and	directories	having	such	attributes	as	Read-only	(R),	Hidden
(H)	and	System	(S).To	this	end,for	example,it	is	possible	before	removal	of	an	element	of
file	system	to	previously	check	up	its	attributes	what	useful	enough	Attribprocedure
considered	in	the	following	section	provides.

The	reader	can	familiarize	with	other	useful	enough	means	of	processing	of	datafiles	and
directories	in	reference	base	on	theMathematica	system	and,	in	particular,	in	such
editions,	as	[28-33,51-53,60,62,64,71].

7.3.	Means	of	theMathematicasystem	for	processing	of	attributes	of
directories	and	datafiles

The	Mathematica	system	has	no	means	for	work	with	attributes	of	datafiles	and
directories	what,	in	our	opinion,	is	a	rather	essential	shortcoming,	first	of	all,	at	creation	on
its	basis	of	various	data	processing	systems.	By	the	way,	similar	means	are	absent	also	in
theMaple	system	therefore	we	created	for	it	a	set	of	procedures	{Atr,F_atr,	F_atr1,
F_atr2}	[47]	which	have	solved	the	given	problem.	The	means	represented	below	solve
the	similar	problem	for	theMathematica	system	too.	The	following	fragment	represents
theAttrib	procedure	providing	processing	of	attributes	of	datafiles	and	directories.

In[2670]	:=	Attrib[F_	/;	StringQ[F],	x_	/;	ListQ[x]	&&
DeleteDuplicates[Map3[MemberQ,	{”–A”,	“–H”,	“–S”,	“–R”,	“+A”,	“+H”,	“+S”,
“+R”},	x]]	==	{True}||	x	==	{}||x	==	“Attr”]	:=	Module[{a,	b	=	“attrib	“,	c,	d	=	”	>	“,
h	=	“attrib.exe”,	p,	f,	g,	t,	v},

a	=	ToString[v	=	Unique[“ArtKr”]];	If[Set[t,	LoadExtProg[“attrib.exe”]]	===
$Failed,	Return[$Failed],	Null];	If[StringLength[F]	==	3	&&	DirQ[F]	&&

StringTake[F,	{2,	2}]	==	“:”,	Return[“Drive	”	<>	F],	If[StringLength[F]	==	3	&&
DirQ[F],	f	=	StandPath[F],
If[FileExistsQ1[StrDelEnds[F,	“\”,	2],	v],	g	=	v;
f	=	StandPath[g[[1]]];	Clear[v],

Return[“<”	<>	F	<>	“>	is	not	a	directory	or	a	datafile”]]]];	If[x	===	“Attr”,	Run[b
<>	f	<>	d	<>	a],
If[x	===	{},	Run[b	<>	“–A–H–S–R	”	<>	f	<>	d	<>	a],

Run[b	<>	StringReplace[StringJoin[x],	{“+”–>	”	+”,	“–”–>	“–”}]	<>	”	”	<>	f	<>	d	<>
a]]];

If[FileByteCount[a]	==	0,	Return[DeleteFile[a]],
d	=	Read[a,	String];	DeleteFile[Close[a]]];	h	=	StringSplit[StringTrim[StringTake[d,

{	1,	StringLength[d]–StringLength[f]}]]];	Quiet[DeleteFile[t]];	h	=	Flatten[h	/.
{“HR”–>	{“H”,	“R”},	“SH”–>	{“S”,	“H”},	“SHR”–>	{“S”,	“H”,	“R”},	“SRH”–>
{“S”,	“R”,	“H”},	“HSR”–>	{“H”,	“S”,	“R”},	“HRS”–>	{“H”,	“R”,	“S”},	“RSH”–>
{“R”,	“S”,	“H”},	“RHS”–>	{“R”,	“H”,	“S”}}];

If[h	===	{“File”,	“not”,	“found”,	“–”}||
MemberQ[h,	“C:\Documents”],	“Drive	”	<>	f,	{h,	g[[1]]}]]

In[2671]	:=	Attrib[“C:\Temp\Cinema.txt”,	{“+A”,	“+S”,	“+R”}]	In[2672]:=
Attrib[“Cinema.txt”,	{“+A”,	“+S”,	“+R”}]
In[2673]:=	Attrib[“C:\Temp\Cinema.txt”,	“Attr”]
Out[2673]=	{{”A“,	“S“,	“R”},	“C:\Temp\Cinema.txt”}
In[2674]:=	Attrib[“Cinema.txt”,	“Attr”]
Out[2674]=	{{”A“,	“S“,	“R”},	“C:\Program	Files\Wolfram	Research\

Mathematica	\10.0\Cinema.txt”}	In[2675]:=	Attrib[“C:\Temp\Cinema.txt”,	{}]
In[2676]:=	Attrib[“C:\Temp\Cinema.txt”,	“Attr”]
Out[2676]=	{{},	“C:\Temp\Cinema.txt”}
In[2677]:=	Attrib[“C:\”,	“Attr”]
Out[2677]=	“Drive	C:\”
In[2678]:=	Attrib[“G:\”,	“Attr”]
Out[2678]=	“<G:\>	is	not	a	directory	or	a	datafile”
In[2679]:=	Attrib[“RANS.IAN”,	“Attr”]
Out[2679]=	{{”A”},	“C:\Users\Aladjev\Documents\rans.ian”}

In[2680]	:=	Attrib[“RANS.IAN”,	{“+A“,	“+S“,	“+H“,	“+R”}]
In[2681]:=	Attrib[“RANS.IAN”,	“Attr”]
Out[2681]=	{{”A“,	“S“,	“H“,	“R”},

“	C:\Users\Aladjev\Documents\rans.ian”}	In[2682]:=	Attrib[“RANS.IAN”,	{”–S”,	“–
R”,	“–H”}]
In[2683]:=	Attrib[“RANS.IAN”,	“Attr”]
Out[2683]=	{{”A”},	“C:\Users\Aladjev\Documents\rans.ian”}	In[2684]:=
Attrib[“c:/temp\”,	“Attr”]

Out[2684]=	{{},	{”C:\Temp”}}
In[2685]:=	Attrib[“c:/temp\”,	{”+A”}]
In[2686]:=	Attrib[“c:/temp\”,	“Attr”]
Out[2686]=	{{”A”},	“C:\Temp”}

The	successful	procedure	call	Attrib[f,”Attr“]	returns	the	list	of	attributes	of	a	given
datafile	or	directoryf	in	the	contextArchive(“A”),	Read–only(“R”),	Hidden(“H”)
andSystem(“S”).	At	that,	also	other	attributes	inherent	to	the	system	datafiles	and
directories	are	possible;	thus,	in	particular,	on	the	main	directories	of	devices	of	external
memory“Drive	f”,	while	on	a	nonexistent	directory	or	datafile	the	message“f	isn’t	a
directory	or	datafile”	is	returned.	At	that,	the	call	is	returned	in	the	form	of	the	list	of	the
format	{x,	y,	…,	z,	F}	where	the	last	element	determines	a	full	path	to	a	datafile	or
directoryf;	the	datafiles	and	subdirectories	of	the	same	name	can	be	in	various	directories,
however	processing	of	attributes	is	made	only	concerning	the	first	datafile/	directory	from
the	list	of	the	objects	of	the	same	name.	If	the	full	path	to	a	datafile/directoryf	is	defined	as
the	first	argument	of	theAttrib	procedure,	specifically	only	this	object	is	processed.	The
elements	of	the	returned	list	that	precede	its	last	element	determine	attributes	of	a	processed
directory	or	datafile.	The	procedure	callAttrib[f,	{}]	returnsNull,	i.e.	nothing,	canceling
all	attributes	for	a	processed	datafile/directoryf	whereas	the	procedure	call	Attrib[f,	{“x”,
“y”,…,	“z”}]	wherex,	y,	z∈{“–A”,	“–H”,	“–S”,	“–R”,	“+A”,	“+H”,	“+S”,	“+R”},	also
returnsNull,	i.e.	nothing,	setting/cancelling	the	attributes	of	the	processed
datafile/directoryf	determined	by	the	second	argument.	At	impossibility	to	execute
processing	ofattributes	the	procedure	callAttrib[f,x]	returns	the	corresponding	messages.
TheAttrib	procedure	allows	to	carry	out	processing	of	attributes	of	both	the	file,	and	the
directory	located	in	any	place	of	file	system	of	the	computer.	This	procedure	is	represented
to	us	as	a	rather	useful	means	for	operating	with	file	system	of	the	computer.	In	turn,	the
followingAttrib1	procedure	in	many	respects	is	similar	to	the	Attrib	procedure	both	in
the	functional,	and	in	the	descriptive	relation,	but	theAttrib1	procedure	has	certain
differences.	The	successful	procedure	call	Attrib[f,”Attr“]	returns	the	list	of	attributes	in
string	format	of	a	directory	or	datafilef	in	the	contextArchive	(“A”),Read-only
(“R”),Hidden	(“H”),System	(“S”).	The	procedure	callAttrib1[f,{}]	returnsNull,	i.e.
nothing,	canceling	all	attributes	for	the	processed	datafile/directoryf	whereas	the
procedure	call	Attrib1[f,{“x”,	“y”,…,	“z”}]	wherex,	y,	z∈{“–A”,	“–H”,	“–S”,	“–R”,
“+A”,	“+H”,	“+S”,	“+R”},	also	returnsNull,	i.e.	nothing,	setting/cancelling	the	attributes
of	the	processed	datafile/directoryf	determined	by	the	second	argument,	while
callAttrib1[f,	x,	y]	with	the3rd	optional	argumenty	–an	expression–	in	addition	deletes	the
program	file“attrib.exe”	from	the	directory	determined	by	the	callDirectory[].	The
following	fragment	represents	source	code	of	the	Attrib1	procedure	along	with	the	most
typical	examples	of	its	usage.

In[2670]	:=	Attrib1[F_	/;	StringQ[F],	x_	/;	ListQ[x]	&&
DeleteDuplicates[Map3[MemberQ,{“–A”,	“–H”,	“–S”,	“–R”,	“+A”,	“+H”,	“+S”,
“+R”},	x]]	==	{True}||x	==	{}||	x	==	“Attr”,	y___]	:=	Module[{a	=	“$ArtKr$”,	b	=
“attrib	“,	c,	d	=	”	>	“,	h	=	“attrib.exe”,

p,	f,	g	=	Unique[“agn”]	},	If[LoadExtProg[“attrib.exe”]	===	$Failed,
Return[$Failed],	Null];	If[StringLength[F]	==	3	&&	DirQ[F]	&&	StringTake[F,	{2,
2}]	==	“:”,

Return[“Drive	”	<>	F],	If[StringLength[F]	==	3	&&	DirQ[F],	f	=	StandPath[F],
If[FileExistsQ1[StrDelEnds[StringReplace[F,	“/”	–>	“\”],	“\”,	2],	g];

f	=	StandPath[g[[1]]];	Clear[g],

Return[“<”	<>	F	<>	“>	is	not	a	directory	or	a	datafile”]]]];	If[x	===	“Attr”,	Run[b
<>	f	<>	d	<>	a],
If[x	===	{},	Run[b	<>	“–A–H–S–R	”	<>	f	<>	d	<>	a],

Run[b	<>	StringReplace[StringJoin[x],	{“+”–>	”	+”,	“–”–>	“–”}]	<>	”	”	<>	f	<>	d	<>
a]]];

If[FileByteCount[a]	==	0,	Return[DeleteFile[a]],
d	=	Read[a,	String];	DeleteFile[Close[a]]];	h	=	StringSplit[StringTrim[StringTake[d,
{1,	StringLength[d]–StringLength[f]}]]];	Quiet[DeleteFile[f]];

If[{y}!=	{},	DeleteFile[Directory[]	<>	“\”	<>	“attrib.exe”],	Null];	h	=	Flatten[h	/.
{“HR”–>	{“H”,	“R”},	“SH”–>	{“S”,	“H”},	“SHR”–>	{“S”,	“H”,	“R”},	“SRH”–>
{“S”,	“R”,	“H”},	“HSR”–>	{“H”,	“S”,	“R”},	“HRS”–>	{“H”,	“R”,	“S”},	“RSH”–>
{“R”,	“S”,	“H”},	“RHS”–>	{“R”,	“H”,	“S”}}];

If[h	===	{“File”,	“not”,	“found”,	“–”}||	MemberQ[h,	“C:\Documents”],	“Drive	”	<>
f,	h]]

In[2671]	:=	Mapp[Attrib1,	{“C:/tmp/a	b	c”,	“C:/tmp/I	a	n.doc”},	{“+A”,	“+R”}]
Out[2671]=	{Null,	Null}
In[2672]:=	Mapp[Attrib1,	{“C:/tmp/a	b	c”,	“C:\tmp\I	a	n.doc”},	“Attr”]	Out[2672]=
{{”A“,	“R”},	{”A“,	“R”}}
In[2673]:=	Attrib1[“G:\Temp\Cinema.txt”,	“Attr”]
Out[2673]=	{”A“,	“S“,	“R”}
In[2674]:=	Attrib1[“G:\Temp\Cinema.txt”,	{}]
In[2675]:=	Attrib1[“G:\Temp\Cinema.txt”,	“Attr”]
Out[2675]=	{}

Both	procedures	essentially	use	our	procedures	LoadExtProg,	StrDelEnds,	StandPath,
FileExistsQ1	andDirQ	along	with	usage	of	the	standardRun	function	and	theAttrib
function	of	theMS	DOS	operating	system.	At	that,	the	possibility	of	removal	of
the“attrib.exe”	program	file	from	the	directory	which	is	defiined	by	the	callDirectory[]
after	a	call	of	theAttrib1	procedure	leaves	fileMathematica	system	unchanged.	So,	in
implementation	of	both	procedures	the	systemRun	function	was	enough	essentially	used,
that	has	the	following	coding	format,	namely:

Run[s1,…,	sn]–in	the	basic	operational	system	(for	example,	MS	DOS)	executes	a
command	formed	from	expressionssj(j=1..n)	which	are	parted	by	blank	symbols	with
return	of	code	of	success	of	the	command	completion	in	the	form	of	an	integer.	As	a
rule,theRunfunction	doesn’t	demand	of	an	interactive	input,but	on	certain	operational
platforms	it	generates	text	messages.To	some	extent	theRunfunction	is	similar	to	the
functions	{system,	ssystem}of	theMaplesystem.In	[33]rather	interesting	examples	of
application	of	theRunfor	performance	in	the	environment	of	theMathematicawith	theMS
DOScommands	are	represented.

We	will	note	that	usage	of	the	Run	function	illustrates	one	of	useful	enough	methods	of

providing	the	interface	with	the	basic	operational	platform,	but	heretwo	very	essential
moments	take	place.	Above	all,	the	function	on	some	operational	platforms(for
example,Windows	XP	Professional)	demands	certain	external	reaction	of	the	user	at	an	exit
from	theMathematica	environment	into	an	operational	environment,	and	secondly,	a	call
by	means	of	theRun	function	of	functions	or	the	systemDOS	commands	assumes	their
existence	in	the	directories	system	determined	by	the$Path	variable	since	otherwise
Mathematica	doesn’t	recognize	them.	In	particular,	similar	situation	takes	place	in	the
case	of	usage	of	the	externalDOS	commands,	for	this	reason	in	realization	of	the
proceduresAttrib	andAttrib1	that	thru	theRun	function	use	the	externalattrib	command
ofDOS	system,	a	connection	to	system	of	directories	of$Path	of	the	directories	containing
the“attrib.exe”	utility	has	been	provided	whereas	for	internal	commands	of	theDOS	it
isn’t	required.

So,	at	using	of	the	internal	dir	command	ofDOS	system	of	an	extension	of	the	list	of
directories	defined	by	the$Path	isn’t	required.	At	the	same	time,	on	the	basis	of
standardreception	on	the	basis	of	extension	of	the	list	defined	by	the$Path	variable
theMathematica	doesn’t	recognize	the	externalDOS	commands.	In	this	regard	a	rather
simple	procedure	has	been	created	whose	successful	callLoadExtProg[x]	provides	search
in	file	system	of	the	computer	of	a	programx	given	by	the	full	name	with	its	subsequent
copying	into	the	subdirectory	defined	by	the	callDirectory[].	The	successful	procedure
call	LoadExtProg[x]	searches	out	a	datafilex	in	file	system	of	the	computer	and	copies	it
into	the	directory	defined	by	the	function	callDirectory[],returning	Directory[]<>”\”<>x
if	the	datafile	already	was	in	this	subdirectory	or	has	been	copied	into	this	directory.	In
addition	the	first	directory	containing	the	found	datafilex	supplements	the	list	of	the
directories	determined	by	the	predetermined$Path	variable.	Whereas	the	procedure
callLoadExtProg[x,	y]	with	the	second	optional	argumenty	–an	undefinite	variable–	in
addition	throughy	returns	the	list	of	all	full	paths	to	the	found	datafilex	without	a
modification	of	the	directories	list	determined	by	the	predetermined$Path	variable.	In	the
case	of	absence	of	opportunity	to	find	a	required	datafilex	$Failed	is	returned.	The
following	fragment	represents	source	code	of	the	LoadExtProg	procedure	with	examples
of	its	application,	in	particular,	for	uploading	into	the	directory	defined	by	the	the	function
callDirectory[]	of	a	copy	of	external“attrib.exe”	command	ofMS	DOS	with	check	of	the
result.

In[2566]	:=	LoadExtProg[x_	/;	StringQ[x],	y___]	:=	Module[{a	=	Directory[],	b	=
Unique[“agn”],	c,	d,	h},	If[PathToFileQ[x]	&&	FileExistsQ[x],	CopyFileToDir[x,
Directory[]],	If[PathToFileQ[x]	&&	!	FileExistsQ[x],	$Failed,	d	=	a	<>	“\”	<>	x;
If[FileExistsQ[d],	d,	h	=	FileExistsQ1[x,	b];
If[h,	CopyFileToDir[b[[1]],	a];
If[{y}==	{},	AppendTo[$Path,

FileNameJoin[FileNameSplit[b[[1]]][[1	;;–2]]]],	y	=	b];	d,	$Failed]]]]]

In[2567]	:=	LoadExtProg[“C:\attrib.exe”]
Out[2567]=	$Failed
In[2568]:=	LoadExtProg[“attrib.exe”]
Out[2568]=	“C:\Users\Aladjev\Documents\attrib.exe”	In[2569]:=
FileExistsQ[Directory[]	<>	“\”	<>	“attrib.exe”]

Out[2569]=	True
In[2570]:=	LoadExtProg[“tlist.exe”]
Out[2570]=	$Failed
In[2571]:=	LoadExtProg[“tasklist.exe”,	t]
Out[2571]=	“C:\Users\Aladjev\Documents\tasklist.exe”	In[2572]:=	t
Out[2572]=	{”C:\WINDOWS\System32\tasklist.exe“,

“	C:\WINDOWS\SysWOW64\tasklist.exe“,
“C:\WINDOWS\winsxs\amd64_microsoft\–windows–
tasklist_31bf3856ad364e35_6.1.7600.16385_none_	843823d87402ab36\tasklist.exe“,
“C:\WINDOWS\winsxs\x86_microsoft–windows–
tasklist_31bf3856ad364\e35_6.1.7600.16385_none_	28198854bba53a00\tasklist.exe”}
In[2573]:=	Attrib1[“C:\Temp\Cinema.txt”,	“Attr”]
Out[2573]=	{”A“,	“S“,	“R”}

Therefore,	in	advance	by	means	of	the	call	LoadExtProg[x]	it	is	possible	to	provide
access	to	a	necessary	datafilex	if,	of	course,	it	exists	in	file	system	of	the	computer.	Thus,
using	theLoadExtProg	procedure	in	combination	with	the	systemRun	function,	it	is
possible	to	carry	out	a	number	of	very	useful	{exe|com}-programs	in	the	environment	of
theMathematica–	the	programs	of	different	purpose	which	are	absent	in	file	system
ofMathematica	thereby	significantly	extending	the	functionality	of	the	software	of
theMathematica	system	that	can	be	quite	demanded	by	wide	range	of	various	appendices.

The	above	LoadExtProg	procedure	along	with	ourFileExistsQ1	procedure	also	uses
theCopyFileToDir	procedure	whose	the	callCopyFileToDir[x,y]	provides	copying	of	a
datafile	or	directoryx	into	a	directoryy	with	return	of	the	full	path	to	the	copied	datafile	or
directory.	If	the	copied	datafile	already	exists,	it	isn’t	updated	if	the	target	directory
already	exists,	the	directoryx	is	copied	into	its	subdirectory	of	the	same	name.	The	next
fragment	represents	source	code	of	theCopyFileToDir	procedure	with	examples	of	its
usage.

In[2557]:=	CopyFileToDir[x_	/;	PathToFileQ[x],	y_	/;	DirQ[y]]	:=	Module[{a,	b},
If[DirQ[x],	CopyDir[x,	y],	If[FileExistsQ[x],	a	=	FileNameSplit[x][[–1]];
If[FileExistsQ[b	=	y	<>	“\”	<>	a],	b,	CopyFile[x,	b]],	$Failed]]]

In[2558]	:=	CopyFileToDir[“C:\Temp\Cinema.txt”,	“C:\Mathematica”]	Out[2558]=
“C:\Mathematica\Cinema.txt”
In[2559]:=	CopyFileToDir[“C:\Temp”,	“C:\Mathematica\Temp”]	Out[2559]=
“C:\Mathematica\Temp\Temp”
In[2560]:=	CopyFileToDir[“C:\Temp\Gefal.htm”,	“C:\Mathematica”]	Out[2560]=
“C:\Mathematica\Gefal.htm”

The	given	procedure	has	a	variety	of	appendices	in	problems	of	processing	of	file	system
of	the	computer.

In	conclusion	of	the	section	a	rather	useful	procedure	is	represented	which	provides	only
two	functions–	(1)	obtaining	the	list	of	the	attributes	ascribed	to	a	datafile	or	directory,
and(2)	removal	of	all	ascribed	attributes.	The	call	Attribs[x]	returns	the	list	of	attributes	in
string	format	which	are	ascribed	to	a	datafile	or	directoryx.	On	the	main	directories	of
volumes	of	direct	access	the	procedure	callAttribs	returns$Failed.	While	the

callAttribs[x,	y]	with	the	second	optional	argumenty	–an	expression–	deletes	all	attributes
which	are	ascribed	to	a	datafile	or	directoryx	with	returning	at	a	successful	call0.	The
following	fragment	represents	source	code	of	the	procedure	along	with	the	most	typical
examples	of	its	usage.

In[2660]:=	Attribs[x_	/;	FileExistsQ[x]	||	DirectoryQ[x],	y___]	:=	Module[{b,	a	=
StandPath[x],	c	=“attrib.exe”,	d	=ToString[Unique[“g”]],	g},

If[DirQ[x]	&&	StringLength[x]	==	3	&&	StringTake[x,	{2,	2}]	==	“:”,	$Failed,	g[]	:=
Quiet[DeleteFile[Directory[]	<>”\”	<>	c]];	If[!	FileExistsQ[c],	LoadExtProg[c]];

If[{y}==	{},	Run[c	<>	”	”	<>	a	<>	”	>	“,	d];	g[];	b	=
Characters[StringReplace[StringTake[Read[d,	String],	{1,–StringLength[a]–1}],	”	“–
>	””]];	DeleteFile[Close[d]];	b,	a	=	Run[c	<>	“–A–H–R–S	”	<>	a];	g[];	a]]]

In[2661]	:=	Attribs[“C:\Temp\Avz”]
Out[2661]=	{”A“,	“S“,	“H“,	“R”}
In[2662]:=	Map[Attribs,	{“C:/“,	“E:\”}]
Out[2662]=	{$Failed,	$Failed}
In[2663]:=	Attribs[“C:/Temp/Agn/aaa	bbb	ccc”]
Out[2663]=	{”A“,	“R”}
In[2664]:=	Attribs[“C:/Temp/Agn/Elisa.pdf”]
Out[2664]=	{”R”}
In[2665]:=	Attribs[“C:/Temp/Agn/Vsv\G	r	s	u.doc”]
Out[2665]=	{”A“,	“R”}
In[2666]:=	Attribs[“C:/Temp/Agn/Vsv\G	r	s	u.doc”,	90]
Out[2666]=	0
In[2667]:=	Attribs[“C:/Temp/Agn/Vsv\G	r	s	u.doc”]
Out[2667]=	{}

It	should	be	noted	that	as	argument	x	the	usage	of	an	existing	datafile,	full	path	to	a
datafile,	or	a	directory	is	supposed.	At	that,	the	file“attrib.exe”	is	removed	from	the
directory	defined	by	the	callDirectory[]	after	a	call	of	the	procedure.	TheAttribs
procedure	is	enough	fast-acting,	supplementing	the	proceduresAttrib	andAttrib1.
TheAttribs	procedure	is	effectively	applied	in	programming	of	certain	means	of	access	to
elements	of	file	system	of	the	computer	at	processing	their	attributes.	Thus,	it	should	be
noted	once	again	that	theMathematica	has	no	standard	means	for	processing	of	attributes
of	datafiles	and	directories	therefore	the	offered	proceduresAttrib,	Attrib1	and	Attribs	in
a	certain	measure	fill	this	niche.

So,	the	declared	possibility	of	extension	of	the	system	of	directories	which	is	defined	by
the$Path	variable,	generally	doesn’t	operate	already	concerning	the	externalDOS
commands	what	well	illustrates	both	consideration	of	the	above	our
proceduresAttrib,Attrib1,LoadExtProg	and	an	example	with	the	external“tlist”
command	that	is	provided	display	of	all	active	processes	of	the	current	session
withWindowsXPProfessional	system,	namely:

In[2565]	:=	Run[“tlist”,	”	>	“,	“C:\Temp\tlist.txt”]
Out[2565]=	1
In[2566]:=	LoadExtProg[“tlist.exe”];

Run[“tlist”,	”	>	“,	“C:\Temp\tlist.txt”]	Out[2566]=	0

0	System	Process	4	System
488	smss.exe

520	avgchsvx.exe
676	csrss.exe
716	winlogon.exe
760	services.exe
772	lsass.exe
940	ati2evxx.exe
960	svchost.exe
1016	svchost.exe
1092	svchost.exe
1240	svchost.exe
1300	vsmon.exe
1368	ati2evxx.exe	1656	explorer.exe	1680	ctfmon.exe
212	spoolsv.exe
348	svchost.exe
392	avgwdsvc.exe
660	jqs.exe
1168	svchost.exe
1448	MsPMSPSv.exe	Program	Manager	1548	AVGIDSAgent.exe
2204	avgnsx.exe
2284	avgemcx.exe
2852	alg.exe
3600	zlclient.exe
3764	avgtray.exe
3884	vprot.exe
3936	Skype.exe
4056	AVGIDSMonitor.exe	3316	AmplusnetPrivacyTools.exe	2256
FreeCommander.exe	–	2248	WINWORD.EXE
4348	avgrsx.exe
4380	avgcsrvx.exe
5248	Mathematica.exe
FreeCommander
Mathematica_Book–Microsoft	Word

Wolfram	Mathematica	10.0	–	[Running.AVZ_Package.nb]	4760	MathKernel.exe
4080	javaw.exe
4780	cmd.exe
4808	tlist.exe
C:\WINDOWS\system32\cmd.exe

The	first	example	of	the	previous	fragment	illustrates,	that	the	attempt	by	means	of
theRun	function	to	execute	the	externaltlist	command	ofDOS	completes
unsuccessfully(return	code1)	whereas	a	result	of	the	procedure
callLoadExtProg[“tlist.exe“]	with	search	and	download	into	the	directory	defined	by	the

callDirectory[]	of	the“tlist.exe”	file,	allows	to	successfully	execute	by	means	of	theRun
the	external	command	tlist	with	preservation	of	result	of	its	performance	in	thetxtfile
whose	context	is	presented	in	the	text	by	the	shaded	area.

Meanwhile,	use	of	external	software	on	the	basis	of	the	Run	function	along	with
possibility	of	extension	of	functionality	of	theMathematica	causes	a	rather
seriousportability	question.	So,	the	means	developed	by	means	of	this	technique	with	use
the	externalDOS	commands	are	subject	to	influence	of	variability	of	theDOS	commands
depending	on	version	of	a	basic	operating	system.	In	a	number	of	cases	it	demands	a
certain	adaptation	of	the	software	according	to	a	basic	operating	system.

7.4.	Additional	means	of	processing	of	datafiles	and	directories	of	file
system	of	the	computer

This	section	represents	means	of	processing	of	datafiles	and	directories	of	file	system	of
the	computer	that	supplement	and	in	certain	cases	and	extend	means	of	the	previous
section.	Unlike	the	system	functionsDeleteDirectory	andDeleteFile	the
followingDelDirFile	procedure	removes	a	directory	or	datafilex	from	file	system	of	the
computer,	returningNull,	i.e.	nothing.	At	that,	the	procedure	callDelDirFile[x]	with	one
argumentx	is	analogous	to	a	callDeleteFile[x]	orDeleteDirectory[x]	depending	on	the
type	of	argument	x	–	a	datafile	or	directory.	Whereas	the	callDelDirFile[x,	y]	with	the
second	optional	argumenty	–an	arbitrary	expression–	deletes	a	datafile	or	a	catalog	even	if
datafilex	or	elements	of	directoryx	of	file	system	of	the	computer	have	theRead-only
attribute;	in	that	case	before	its	removal	the	attributes	of	an	elementx	are	cancelled,
providing	correct	removal	of	the	elementx	what	unlike	the	system	means	expands
opportunities	for	removal	of	elements	of	file	system	of	the	computer.	The	procedure
eccentially	uses	our	procedures	Attribs,	DirQ,	StandPath.	The	following	fragment
represents	source	code	of	theDelDirFile	procedure	along	with	examples	of	its	most	typical
usage.

In[2560]:=DelDirFile[x_	/;	StringQ[x]	&&	DirQ[x]||FileExistsQ[x],	y___]:=
Module[{c,	f,	a	=	{},	b	=	””,	k	=	1},	If[DirQ[x]	&&	If[StringLength[x]	==	3	&&
StringTake[x,	{2,	2}]	==	“:”,	False,	True],

If[{y}=={},	Quiet[DeleteDirectory[x,	DeleteContents–>	True]],	a	=	{};	b	=	””;	c	=
StandPath[x];	f	=	“$Art2618Kr$”;	Run[“Dir	”	<>	c	<>	”	/A/B/OG/S	>	”	<>	f];
Attribs[c,	90];	For[k,	k	<	Infinity,	k++,	b	=	Read[f,	String];	If[SameQ[b,	EndOfFile],
DeleteFile[Close[f]];	Break[],	Attribs[b,	90]]];	DeleteDirectory[x,	DeleteContents–>
True]],	If[FileExistsQ[x],	If[{y}!={},	Attribs[x,	90]];	Quiet[DeleteFile[x]],	$Failed]]]

In[2561]:=	DelDirFile[“F:\”]
Out[2561]=	$Failed

In[2562]	:=	DeleteFile[“C:\Temp\Excel11.pip”]
DeleteFile::privv:	Privilege	violation	during	DeleteFile…	>>
Out[2562]=	$Failed
In[2563]:=	DelDirFile[“C:\Temp\Excel11.pip”,	90]
In[2564]:=	FileExistsQ[“C:\Temp\Excel11.pip”]
Out[2564]=	False

In[2565]:=	Map1[{DirectoryQ,	Attribs},	{“C:\Temp\Agn”}]
Out[2565]=	{True,	{”A“,	“S“,	“H“,	“R”}}
In[2566]:=	DelDirFile[“C:\Temp\Agn”]
Out[2566]=	$Failed
In[2567]:=	DelDirFile[“C:\Temp\Agn”,	500]
In[2568]:=	DirectoryQ[“C:\Temp\Agn”]
Out[2568]=	False

Meanwhile,	before	representation	of	the	following	means	it	is	expedient	to	determine	one
rather	useful	procedure	whose	essence	is	as	follows.	As	it	was	already	noted	above,	a	file
qualifier	depends	both	on	a	register	of	symbols,	and	the	used	dividers	of	directories.	Thus,
the	same	datafile	with	different	qualifiers“C:\Temp\agn\cinema.txt”
and“C:/temp\agn/cinema.txt”	opens	intwo	various	streams.	Therefore	its	closing	by
means	of	the	standard	Close	function	doesn’t	close	the“cinema.txt”	datafile,	demanding
closing	of	all	streams	on	which	it	was	earlier	open.	For	solution	of	the	given	problem
theClose1	procedure	presented	by	the	next	fragment	has	been	determined.

In[2580]	:=	Streams[]
Out[2580]=	{OutputStream[”stdout“,	1],	OutputStream[”stderr“,	2]}	In[2581]:=
Read[“C:/Temp\cinema.txt”];	Read[“C:/Temp/Cinema.txt”];

Read[“C:	/Temp\cinema.txt”];	Read[“c:/temp/birthday.doc”];
Read[“C:/temp\BirthDay.doc”];
In[2582]:=	Streams[]
Out[2582]=	{OutputStream[”stdout“,	1],	OutputStream[”stderr“,	2],
InputStream[”C:/Temp\cinema.txt“,	1697],
InputStream[”C:/Temp/Cinema.txt“,	1700],
InputStream[”c:/temp/birthday.doc“,	1705],
InputStream[”C:/temp\BirthDay.doc“,	1706]}
In[2583]:=	Close[“C:/Temp\cinema.txt”]
Out[2583]=	“C:/Temp\cinema.txt”

In[2584]	:=	Streams[]
Out[2584]=	{OutputStream[”stdout“,	1],	OutputStream[”stderr“,	2],
InputStream[”C:/Temp/Cinema.txt“,	1700],
InputStream[”c:/temp/birthday.doc“,	1705],
InputStream[”C:/temp\BirthDay.doc“,	1706]}

In[2585]:=	Close1[x___String]	:=	Module[{a	=	Streams[][[3	;;–1]],	b	=	{x},	c	=	{},	k	=
1,	j},

If[a	==	{}||	b	==	{},	{},	b	=	Select[{x},	FileExistsQ[#]	&];	While[k	<=	Length[a],	j	=
1;	While[j	<=	Length[b],	If[ToUpperCase[StringReplace[a[[k]][[1]],	{“\”–>	””,	“/”–>
””}]]	==	ToUpperCase[StringReplace[b[[j]],	{“\”–>	””,	“/”–>	””}]],	AppendTo[c,
a[[k]]]];	j++];	k++];	Map[Close,	c];	If[Length[b]	==	1,	b[[1]],	b]]]

In[2586]	:=	Close1[“C:/Temp\cinema.txt”,	“C:/temp\BirthDay.doc”]	Out[2586]=
{”C:/Temp\cinema.txt“,	“C:/temp\BirthDay.doc”}	In[2587]:=	Streams[]
Out[2587]=	{OutputStream[”stdout“,	1],	OutputStream[”stderr“,	2]}	In[2588]:=	Close1[]
Out[2588]=	{}

In[2589]:=	Close1[“C:/Temp\cinema.txt”,	“C:/temp\BirthDay.doc”]	Out[2589]=	{}
In[2590]:=	Close1[“C:/Temp\Agn/Cinema.txt”,	AvzAgnVsvArtKr]	Out[2590]=
Close1[”C:/Temp\Agn/Cinema.txt“,	AvzAgnVsvArtKr]	In[2591]:=	Closes[x_]	:=
Quiet[Check[Close[x],	Null]]
In[2591]:=	Closes[“C:\Temp\Svetlana\Kherson\Cinema.txt”]

In[2667]	:=	Close2[x___String]	:=	Module[{a	=	Streams[][[3	;;–1]],	b	=	{},	c,	d	=
Select[{x},	StringQ[#]	&]},	If[d	==	{},	{},	c[y_]	:=	ToLowerCase[StringReplace[y,
“/”–>	“\”]];	Map[AppendTo[b,	Part[#,	1]]	&,	a];

d	=	DeleteDuplicates[Map[c[#]	&,	d]];

Map[Close,	Select[b,	MemberQ[d,	c[#]]	&]]]]	In[2668]:=	Close2[]
Out[2668]=	{}

In[2669]:=	Close2[“C:/Temp\cinema.txt”,	“C:/temp\BirthDay.doc”]	Out[2669]=
{”C:/Temp\cinema.txt“,	“C:/Temp/Cinema.txt“,

“	c:/temp/birthday.doc“,	“C:/temp\BirthDay.doc”}	In[2670]:=	Streams[]
Out[2670]=	{OutputStream[”stdout“,	1],	OutputStream[”stderr“,	2]}

The	procedure	call	Close1[x,	y,	z,	…]	closes	all	off	really–existing	datafiles	in	a	list	{x,	y,
z,	…}	irrespective	of	quantity	of	streams	on	which	they	have	been	opened	by	various	files
qualifiers	with	returning	their	list.	In	other	cases	the	call	on	admissible	actual	arguments
returns	the	empty	list,	i.e.	{}	whereas	on	inadmissible	actual	arguments	a	call	is	returned
unevaluated.	The	previous	fragment	represents	source	code	of	theClose1	procedure	with
examples	of	its	usage.	In	end	of	the	fragment	the	simpleCloses	function	and	theClose2
procedure	are	presented.	The	function	callCloses[x]	returns	nothing,	closing	a	datafilex,
including	the	closed	and	empty	datafiles	without	output	of	any	erroneous	messages.	In
certain	appendices	this	function	is	quite	useful.	The	procedureClose2	is	a	functional
analog	of	the	above	procedureClose1.	The	procedure	callClose2[x,y,	z,	…]	closes	all	off
really–existing	datafiles	in	a	list	{x,y,	z,	…}	irrespective	of	quantity	of	streams	on	which
they	have	been	opened	by	various	files	qualifiers	with	returning	their	list.	In	other	cases
the	call	on	admissible	actual	arguments	returns	the	empty	list,	i.e.	{}	whereas	on
inadmissible	actual	arguments	a	call	is	returned	unevaluated.	The	previous	fragment
represents	source	code	of	theClose2	procedure	with	examples	of	its	usage.	In	a	number	of
appendicesClose1	andClose2	are	quite	useful.

The	following	DelDirFile1	procedure–	an	useful	enough	extension	of	the	DelDirFile
procedure	on	case	of	open	datafiles	in	addition	to	theRead-only	attribute	of	both	the
separate	datafiles,	and	the	datafiles	being	in	the	deleted	directory.	The	callDelDirFile1[x]
is	equivalent	to	the	callDelDirFile[x,	y],	providing	removal	of	a	datafile	or	directoryx
irrespective	of	openness	of	a	separate	datafilex	and	theRead-only	attribute	ascribed	to	it,
or	existence	of	similar	datafiles	in	a	directoryx.The	fragment	below	represents	source	code
of	theDelDirFile1	procedure	along	with	typical	examples	of	its	usage.

In[2725]	:=	DelDirFile1[x_	/;	StringQ[x]	&&	FileExistsQ[x]	||	DirQ[x]	&&
If[StringLength[x]==	3	&&	StringTake[x,	{2,	2}]	==	“:”,	False,	True]]	:=	Module[{a
=	{},	b	=	””,	c	=	StandPath[x],	d,	f	=	“$Art590Kr$”,	k	=	1},	If[DirQ[x],	Run[“Dir	”
<>	c	<>	”	/A/B/OG/S	>	“<>f];	Attribs[c,	90];	For[k,	k	<	Infinity,	k++,	b	=	Read[f,
String];	If[SameQ[b,	EndOfFile],	DeleteFile[Close[f]];	Break[],

Attribs[b,	90];	Close2[b]]];	DeleteDirectory[x,	DeleteContents–>	True],	Close2[x];
Attribs[x,	90];	DeleteFile[x]]]

In[2726]	:=	Map[Attribs,	{“C:/Temp\Agn/Cinema.txt”,
“C:/Temp\Agn/BirthDay.doc”,	“C:/Temp\Agn”}]
Out[2726]=	{{”A“,	“S“,	“H“,	“R”},	{”A“,	“S“,	“H“,	“R”},	{”A“,	“S“,	“H“,	“R”}}
In[2727]:=	Read[“C:/Temp\Agn/Cinema.txt”];
Read[“C:/Temp\Agn/BirthDay.doc”];
In[2728]:=	Streams[]
Out[2728]=	{OutputStream[”stdout“,	1],	OutputStream[”stderr“,	2],
InputStream[”C:/Temp\Agn/Cinema.txt“,	131],
InputStream[”C:/Temp\Agn/BirthDay.doc“,	132]}
In[2729]:=	DelDirFile1[“C:/Temp\Agn”]
In[2730]:=	Streams[]
Out[2730]=	{OutputStream[”stdout“,	1],	OutputStream[”stderr“,	2]}
In[2731]:=	DirQ[“C:\Temp\Agn”]
Out[2731]=	False
In[2732]:=	Attribs[“C:\GrGu_Books\Cinema.TXT”]
Out[2732]=	{”A“,	“S“,	“H“,	“R”}
In[2733]:=	Read[“C:\GrGu_Books\cinema.TXT”];
In[2734]:=	Streams[]
Out[2734]=	{OutputStream[”stdout“,	1],	OutputStream[”stderr“,	2],
InputStream[”C:\GrGu_Books\cinema.TXT“,	149]}
In[2735]:=	DelDirFile1[“C:\GrGu_Books\cinema.TXT”]
In[2736]:=	FileExistsQ[“C:\GrGu_Books\cinema.TXT”]
Out[2736]=	False

The	means	representing	quite	certain	interest	at	working	with	file	system	of	the	computer
as	independently,	and	as	a	part	of	means	of	processing	of	the	datafiles	and	directories
complete	this	section.	They	are	used	and	by	a	series	of	means	of	ourAVZ_Package
package	[48].	In	particular,	at	working	with	files	theOpenFiles	procedure	can	be	rather
useful,	whose	callOpenFiles[]	returns	the2–element	nested	list,	whose	the	first	sublist
with	the	first“read”	element	contains	full	paths	to	the	datafiles	opened	on	reading	whereas
the	second	sublist	with	the	first“write”	element	contains	full	paths	to	the	files	opened	on
writing	in	the	current	session.	In	the	absence	of	such	datafiles	the	procedure	call	returns
the	empty	list,	i.e.	{}.	Whereas	the	callOpenFiles[x]	with	one	actual	argumentx	–a
datafile	classifier–	returns	result	of	the	above	format	relative	to	the	open	datafilex
irrespective	of	a	format	of	coding	of	its	qualifier.	Ifx	defines	a	closed	or	nonexistent
datafile	then	the	procedure	call	returns	the	empty	list,	i.e.	{}.	The	fragment	below
represents	source	code	of	the	procedure	along	with	rather	typical	examples	of	its	use.

In[2628]	:=	OpenFiles[x___String]	:=	Module[{a	=	Streams[][[3	;;–1]],	b,	c,	d,	h1	=
{“read”},	h2	=	{“write”}},	If[a	==	{},	{},	d	=	Map[{Part[#,	0],	Part[#,	1]}&,	a];	b	=
Select[d,	#[[1]]	==	InputStream	&];

c	=	Select[d,	#[[1]]	==	OutputStream	&];	b	=	Map[DeleteDuplicates,

Map[Flatten,	Gather[Join[b,	c],	#1[[1]]	==	#2[[1]]	&]]];	b	=	Map[Flatten,
Map[If[SameQ[#[[1]],	InputStream],	AppendTo[h1,	#[[2	;;–1]]],	AppendTo[h2,	#[[2

;;–1]]]]	&,	b]];	If[{x}==	{},	b,	If[SameQ[FileExistsQ[x],	True],	c	=	Map[Flatten,

Map[{#[[1]],	Select[#,	StandPath[#]	===	StandPath[x]	&]}&,	b]];	If[c	==	{{“read”},
{“write”}},	{},	c	=	Select[c,	Length[#]	>	1	&];	If[Length[c]	>	1,	c,	c[[1]]],	{}]]]]]

In[2629]	:=	OpenFiles[]
Out[2629]=	{{”read“,	“C:/Temp\cinema.txt“,	“C:/Temp/Cinema.txt“,
“c:/temp/birthday.doc“,	“C:/temp\BirthDay.doc“,	“C:/GrGu_Books/Birthday1.doc”},
{”write“,	“C:\GrGu_Books\Birthday1.doc”}}
In[2630]:=	OpenFiles[“AvzArnVsvArtKr”]
Out[2630]=	{}
In[2631]:=	OpenFiles[“C:\Temp\Cinema.txt”]
Out[2631]=	{”read“,	“C:/Temp\cinema.txt“,	“C:/Temp/Cinema.txt”}

In[2632]:=	OpenFiles[“C:\GrGu_Books/Birthday1.doc”]
Out[2632]=	{{”read“,	“C:/GrGu_Books/Birthday1.doc”},
{”write“,	“C:\GrGu_Books\Birthday1.doc”}}

At	that,	as	the	full	path	it	is	understood	or	really	full	path	to	a	datafile	in	file	system	of	the
computer,	or	itsfull	name	if	it	is	located	in	the	current	directory	determined	by	the	function
callDirectory[].

As	the	procedure	similar	to	the	OpenFiles,	the	following	procedure	can	be	used,	whose
callStreamFiles[]	returns	the	nested	list	from	two	sublists,	the	first	sublist	with	the
first“in”	element	contains	full	paths/names	of	the	files	opened	on	the	reading	while	the
second	sublist	with	the	first“out”	element	contains	full	paths/names	of	the	datafiles
opened	on	the	recording.	Whereas	in	the	absence	of	the	open	datafiles	the	procedure
callStreamFiles[]	returns	“AllFilesClosed”.	The	next	fragment	presents	source	code	of
theOpenFiles	procedure	along	with	some	typical	examples	of	its	usage.

In[2555]	:=	StreamFiles[]	:=	Module[{a	=	Map[ToString1,	StreamsU[]],	b	={},	w	=
{“out”},	r	=	{“in”},	c,	k	=	1},	If[a	==	{},	Return[“AllFilesClosed”],	For[k,	k	<=
Length[a],	k++,	c	=	a[[k]];	If[SuffPref[c,	“Out”,	1],	AppendTo[w,	StrFromStr[c]],
AppendTo[r,	StrFromStr[c]]]]];	c	=	Select[Map[Flatten,	{r,	w}],	Length[#]	>	1	&];
If[Length[c]	==	1,	c[[1]],	c]]

In[2556]:=	StreamFiles[]
Out[2556]=	{{”in“,	“C:/Temp\cinema.txt“,	“C:/Temp/Cinema.txt“,

“	c:/temp/birthday.doc“,	“C:/temp\BirthDay.doc”},	{”out“,
“C:\GrGu_Books\Birthday1.doc”}}
In[2557]:=	Close[“C:\GrGu_Books\Bithday1.doc”]
Out[2557]=	“C:\GrGu_Books\Birthday1.doc”
In[2558]:=	StreamFiles[]
Out[2558]=	{”in“,	“C:/Temp\cinema.txt“,	“C:/Temp/Cinema.txt“,

“	c:/temp/birthday.doc“,	“C:/temp\BirthDay.doc”}	In[2559]:=	CloseAll[];	StreamFiles[]
Out[2559]=	“AllFilesClosed”

In[2560]	:=	Read[“Book_3.doc”];
In[2561]:=	StreamFiles[]
Out[2561]=	{”in“,	“Book_3.doc”}

In	a	number	of	cases	at	work	with	datafiles	the	following	procedure	can	be	very	useful,
whose	callIsFileOpen[f]	returnsTrue	if	a	datafilef	determined	by	a	name	or	full	path	is
open	andFalse	otherwise.	If	the	argumentf	doesn’t	define	an	existing	datafile	the
procedure	call	is	returned	unevaluated.	While	the	callIsFileOpen[f,h]	with	the	second
optional	argumenth	–an	undefinite	variable–	returns	throughh	the	nested	list	whose
elements	are	sublists	of	the	format	{{“read”|“write”},	{The	list	of	streams	on	which	the
datafilefis	open	on	reading|recording}}	if	the	main	result	isTrue.	The	fragment	below
represents	source	code	of	theIsFileOpen	procedure	along	with	examples	of	its	usage.

In[2550]:=	IsFileOpen[F_	/;	FileExistsQ[Ff],	h___]	:=
Module[{a	=	OpenFiles[F]},	If[a	==	{},	False,	If[{h}!=	{}&&	!	HowAct[h],	h	=	a,
Null];	True]]

In[2551]	:=	OpenWrite[“C:/temp/cinema.doc”];
OpenRead[“C:/temp\cinema.doc”];
In[2552]:=	Streams[]
Out[2552]=	{OutputStream[”stdout“,	1],	OutputStream[”stderr“,	2],
OutputStream[”C:/temp/cinema.doc“,	84],
InputStream[”C:/temp\cinema.doc“,	85]}
In[2553]:=	IsFileOpen[“C:/Temp\Cinema.doc”,	t90]
Out[2553]=	True
In[2554]:=	t90
Out[2554]=	{{”read“,	{”C:/temp/cinema.doc”}},
{”write“,	{”C:/temp\cinema.doc”}}}
In[2555]:=	Read[“C:/temp/birthday.doc”];
In[2556]:=	IsFileOpen[“C:\temp\BirthDay.doc”,	h500]
Out[2556]=	True
In[2557]:=	h500
Out[2557]=	{”read“,	{”C:/temp/birthday.doc”}}
In[2558]:=	CloseAll[];	IsFileOpen[“C:\temp\BirthDay.doc”]
Out[2558]=	False
The	following	quite	simple	procedure	is	represented	as	a	rather	useful	tool	at	operating
with	file	system	of	the	computer,	whose	the	callDirEmptyQ[d]	returnsTrue	if	a	directoryd
is	empty,	otherwiseFalse	is	returned.	Moreover,	the	callDirEmptyQ[d]	is	returned
unevaluated	ifd	isn’t	areal	directory.	The	following	fragment	presents	source	code	of
theDirEmptyQ	procedure	with	typical	enough	examples	of	its	usage.

In[2602]:=	DirEmptyQ[d_	/;	DirQ[d]]	:=	Module[{a	=	“$DirFile$”,	b,	c,	p	=
StandPath[StringReplace[d,	“/”–>	“\”]],	h	=	”	0	File(s)	“},	b	=	Run[“Dir	”	<>	p	<>
If[SuffPref[p,	“\”,	2],	””,	“\”]	<>	“*.*	>	”	<>	a];	If[b	!=	0,	$Failed,	Do[c	=	Read[a,
String],	{6}]];	DeleteFile[Close[a]];	!	StringFreeQ[c,	h]]

In[2603]	:=	Map[DirEmptyQ,	{“C:\Mathematica/Avz”,	“C:/temp”,	“C:\”,
“c:/Mathematica”,	“Rans”,	“c:/Mathematica/Avz/Agn/Art/Kr”}]
Out[2603]=	{False,	False,	False,	False,	DirEmptyQ[”Rans”],	True}
In[2604]:=	DirEmptyQ[“C:\Mathematica/Avz/Agn/Art/Kr/“]
Out[2604]=	True
In[2605]:=	Map[DirEmptyQ,	{“C:\Mathematica/Avz”,	“C:/Temp/”,	“C:/”}]

Out[2605]=	{False,	False,	False}
In[2606]:=	DirEmptyQ[“C:\Program	Files	(x86)”]
Out[2606]=	False

At	that	in	addition	to	the	previousDirEmptyQ	procedure	the	procedure	call	DirFD[j]
returns	the	two-element	nested	list	whose	the	first	element	defines	the	list	of	subdirectories
of	the	first	nesting	level	of	a	directoryj	whereas	the	second	element–	the	list	of	datafiles	of
a	directoryj;	if	a	directoryj	is	empty,	the	procedure	call	returns	the	empty	list,	i.e.	{}.	The
fragment	below	presents	source	code	of	theDirFD	procedure	along	with	examples	of	its
usage.

In[2575]	:=	DirFD[d_	/;	DirQ[d]]	:=	Module[{a	=”$DirFile$”,	b	={{},{}},	c,	h,	t,	p	=
StandPath[StringReplace[d,	“/”–>	“\”]]},	If[DirEmptyQ[p],	Return[{}],	Null];	c	=
Run[“Dir	”	<>	p	<>	”	/B	”	<>	If[SuffPref[p,	“\”,	2],	””,	“\”]	<>	“*.*	>	”	<>a];	t
=Map[ToString,	ReadList[a,	String]];	DeleteFile[a];	Map[{h	=	d	<>	“\”	<>	#;
If[DirectoryQ[h],	AppendTo[b[[1]],	#],	If[FileExistsQ[h],	AppendTo[b[[2]],	#],
Null]]}&,	t];	b]	In[2576]:=	DirFD[“C:/Program	Files/Wolfram
Research/Mathematica/10.1	\Documentation\English\Packages”]

Out[2576]	=	{{”ANOVA“,	“Audio“,	“AuthorTools“,	“BarCharts“,	“Benchmarking“,
“BlackBodyRadiation“,	“Calendar“,	“Combinatorica“,	“Compatibility“,
“ComputationalGeometry“,	“ComputerArithmetic“,	“Developer“,	“EquationTrekker“,
“ErrorBarPlots“,	“Experimental“,	“FiniteFields“,	“FourierSeries“,
“FunctionApproximations“,	“Geodesy“,	“GraphUtilities“,	“HierarchicalClustering“,
“Histograms“,	“HypothesisTesting“,	“LinearRegression“,	“MultivariateStatistics“,
“Music“,	“NonlinearRegression“,	“Notation“,	“NumericalCalculus“,
“NumericalDifferentialEquationAnalysis“,	“PhysicalConstants“,	“PieCharts“,
“PlotLegends“,	“PolyhedronOperations“,	“Polytopes“,	“PrimalityProving“,
“Quaternions“,
“RegressionCommon“,	“ResonanceAbsorptionLines“,	“Splines“,	“StandardAtmosphere“,
“StatisticalPlots“,	“Units“,	“VariationalMethods“,	“VectorAnalysis“,	“VectorFieldPlots“,
“WorldPlot“,	“XML”},	{}}

In[2577]	:=	Length[%[[1]]]
Out[2577]=	48
In[2578]:=	DirFD[“C:\Program	Files”]
Out[2578]=	{{”Common	Files“,	“Dell	Inc“,	“DVD	Maker“,	“Extras“,

“	File	Association	Helper“,	“Intel“,	“Internet	Explorer“,	“MSBuild“,	“Nitro“,	“Realtek“,
“Reference	Assemblies“,	“Softland“,	“Windows	Defender“,	“Windows	Journal“,
“Windows	Mail“,	“Windows	Media	Player“,	“Windows	NT“,	“Windows	Photo	Viewer“,
“Windows	Portable	Devices“,	“Windows	Sidebar“,	“Wolfram	Research“,	“Intel”},	{}}

In[2579]	:=	DirFD[“C:\Temp”]
Out[2579]=	{{”Dialog_files”},	{”aaa.txt“,	“Addresses_for_book.doc“,	“Books.doc“,
“Books.mht“,	“Birthday.doc“,	“cinema.doc“,	“Cinema.txt“,	“Dialog.htm“,	“ISSN
Application	form.pdf“,	“Math_Trials.DOC“,	“potencial.txt“,	“regcleaner.exe”}}

In	particular,	in	an	example	of	the	previous	fragment	the	list	of	directories	with
documentation	on	the	packages	delivered	with	theMathematica10.1.0

system	is	returned.	Thus,	with	release10.1.0	of	theMathematica	system48
packages	of	different	purpose	which	is	rather	simply	seen	from	the	name	of	the
subdirectories	containing	them	are	being	delivered.

In	addition	to	theDirFD	procedure	theDirFull	procedure	represents	a	quite	certain
interest,	whose	callDirFull[d]	returns	the	list	of	all	full	paths	to	the	subdirectories	and	files
contained	in	a	directoryd	and	its	subdirectories;	the	first	element	of	this	list–	the
directoryd.	While	on	an	empty	directoryd	the	callDirFull[d]	returns	the	empty	list,	i.e.	{}.
The	fragment	below	represents	source	code	of	theDirFull	procedure	along	with	examples
of	its	usage.

In[2595]:=	DirFull[x_	/;	DirQ[x]]	:=	Module[{a	=	“$Art26Kr18$”,	c,	b	=
StandPath[StringReplace[x,	“/”–>	“\”]]},	If[DirEmptyQ[x],	{},	Run[“Dir	/S/B/A	“,	b,
”	>	“,	a];	c	=	Map[ToString,	ReadList[a,	String]];	DeleteFile[a];	Prepend[c,	b]]]

In[2596]	:=	DirFull[“C:\Mathematica\avz\agn/Art/Kr”]
Out[2596]=	{}
In[2597]:=	DirFull[“C:\Users\Aladjev\DownLoads”]
Out[2597]=	{”c:\users\aladjev\downloads“,

“	c:\users\aladjev\downloads\Book_Grodno.doc“,
“c:\users\aladjev\downloads\CuteWriter.exe“,	“c:\users\aladjev\downloads\desktop.ini“,
“c:\users\aladjev\downloads\IMG_0389.MOV“,
“c:\users\aladjev\downloads\Mathematica_10.1.0_WIN.zip”}

In	addition	to	theDirFull	procedure	the	callTypeFilesD[d]	of	the	procedure	TypeFilesD
returns	the	sorted	list	of	types	of	the	files	located	in	a	directory	d	with	returning
of”undefined”	on	datafiles	without	of	a	name	extension.	At	that,	the	datafiles	located	in
the	directoryd	and	in	all	its	subdirectories	of	an	arbitrary	nesting	level	are	considered.
Moreover,	on	the	empty	directoryd	the	procedure	callTypeFilesD[d]	returns	the	empty	list,
i.e.	{}.	The	following	fragment	represents	source	code	of	theTypeFilesD	procedure	along
with	typical	enough	examples	of	its	usage.

In[5180]	:=	TypeFilesD[x_	/;	DirQ[x]]	:=	Module[{a	=	“$Art26Kr18$”,	d	=	{},	c,	p,	b
=	StandPath[StringReplace[x,	“/”–>	“\”]]},	If[DirEmptyQ[x],	{},	Run[“Dir	/S/B/A	“,
b,	”	>	“,	a];	c	=	Map[ToString,	ReadList[a,	String]];	DeleteFile[a];

Sort[Select[DeleteDuplicates[Map[If[DirectoryQ[#],	Null,	If[FileExistsQ[#],	p	=
ToLowerCase[ToString[FileExtension[#]]];	If[!	SameQ[p,	””],	p,	“undefined”]],
Null]&,	c]],	!	SameQ[#,	Null]	&]]]]

In[5181]:=	TypeFilesD[“c:\temp\”]
Out[5181]=	{”txt“,	“doc“,	“mht“,	“htm“,	“pdf“,	“exe“,	“jpg“,	“js“,	“css“,	“png“,

“	gif“,	“php“,	“json“,	“undefined“,	“query“,	“xml”}
In[5182]:=	TypeFilesD[“C:/Tallinn\Grodno/Kherson”]
Out[5182]=	{}
In[5183]:=	TypeFilesD[“C:\Mathematica”]
Out[5183]=	{”css“,	“doc“,	“gif“,	“htm“,	“jpg“,	“js“,	“json“,	“pdf“,	“png“,	“tmp”}
In[5184]:=	TypeFilesD[“C:\Program	Files	(x86)\Maple	11”]	Out[5184]=	{”access“,
“afm“,	“bfc“,	“cfg“,	“cpl“,	“csv“,	“dat“,	“del“,	“dll“,

“	dtd“,	“ent“,	“err“,	“exe“,	“gif“,	“hdb“,	“html“,	“ico“,	“ind“,	“ini“,	“ja“,	“jar“,	“jpg“,
“jsa“,	“lib“,	“lic“,	“mat“,	“mla“,	“mod“,	“mw“,	“pf“,	“policy“,	“properties“,	“security“,
“src“,	“template“,	“ttf“,	“txt“,	“undefined“,	“vec“,	“wav“,	“xls“,	“xml“,	“xsd“,	“xsl”}

The	FindFile1	procedure	serves	as	useful	extension	of	the	standardFindFile	function,
providing	search	of	a	datafile	within	file	system	of	the	computer.	The	procedure
callFindFile1[x]	returns	a	full	path	to	the	found	datafilex,	or	the	list	of	full	paths(if
datafilexis	located	in	different	directories	of	file	system	of	the	computer),	otherwise	the
call	returns	the	empty	list,	i.e.	{}.	While	the	call	FindFile1[x,	y]	with	thesecond	optional
argumenty	–full	path	to	a	directory–	returns	a	full	path	to	the	found	datafilex,	or	the	list	of
full	paths	located	in	the	directoryy	and	its	subdirectories.	The	fragment	below	represents
source	code	of	theFindFile1	procedure	along	with	typical	examples	of	its	usage.

In[2550]:=	FindFile1[x_	/;	StringQ[x],	y___]	:=	Module[{c,	d	=	{},	k	=	1,	a	=	If[{y}!=
{}&&	PathToFileQ[y],	{y},	Map[#	<>	“:\”	&,	Adrive[]]],	b	=	“\”	<>
ToLowerCase[x]},	For[k,	k	<=	Length[a],	k++,

c	=	Map[ToLowerCase,	Quiet[FileNames[“*”,	a[[k]],	Infinity]]];	d	=	Join[d,	Select[c,
SuffPref[#,	b,	2]	&&	FileExistsQ[#]	&]]];	If[Length[d]	==	1,	d[[1]],	d]]

In[2551]:=	FindFile1[“Letter_5_02_15.doc”]

Out[2551]	=	{”C:\Temp\Letter_5_02_15.doc“,	“F:\Letter_5_02_15.doc”}	In[2552]:=
FindFile1[“Cinema.txt”,	“C:\Temp”]
Out[2552]=	“c:\temp\cinema.txt”
In[2553]:=	FindFile1[“Cinema.txt”]
Out[2553]=	{”C:\GrGU_Books\Cinema.txt“,	“C:\Program	Files\

Wolfram	Research	\Mathematica\10.1\Cinema.txt“,	“C:\Program	Files\Wolfram
Research\Mathematica\10.1
\SystemFiles\Cinema.txt“,	“C:\Temp\Cinema.txt“,	“E:\CD_Book\Cinema.txt”}
In[2554]:=	FindFile1[“AvzAgnVsvArtKr”]
Out[2554]=	{}
In[2555]:=	t	=	TimeUsed[];	FindFile1[“Book_3.doc”];	TimeUsed[]–t	Out[2555]=	5.928
In[2556]:=	t	=	TimeUsed[];	FileExistsQ1[“Book_3.doc”];	TimeUsed[]–t	Out[2556]=
5.335

In	particular,	2	last	example	of	the	previous	fragment	indicate,	theFindFile1	in	many
respects	is	functionally	similar	to	theFileExistsQ1	procedure	but	it	in	thetemporary
relation	is	somewhat	less	fast-acting	in	the	same	file	system	of	the	computer.

It	is	possible	to	give	the	SearchDir	procedure	as	one	more	quite	indicative	example,
whose	callSearchDir[d]	returns	the	list	of	all	paths	in	file	system	of	the	computer	which
are	completed	by	a	subdirectoryd;	in	case	of	lack	of	such	paths	the	procedure
callSearchDir[d]	returns	the	empty	list,	i.e.	{}.	In	combination	with	the
proceduresFindFile1	andFileExistsQ1	theSearchDir	procedure	is	useful	at	working	with
file	system	of	the	computer,	as	confirms	their	usage	for	the	solution	of	tasks	of	similar
type.	The	following	fragment	represents	source	code	of	theSearchDir	procedure	with
examples	of	its	use.

In[2595]:=	SearchDir[d_	/;	StringQ[d]]	:=	Module[{a	=	Adrive[],	c,	t	=	{},	p,	b	=	“\”

<>ToLowerCase[StringTrim[d,	(“\”|”/”)	…]]<>	“\”,	g	=	{},	k	=	1,	v},

For[k,	k	<=	Length[a],	k++,	p	=	a[[k]];	c	=	Map[ToLowerCase,	Quiet[FileNames[“*”,
p	<>	“:\”,	Infinity]]];	Map[If[!	StringFreeQ[#,	b]	||	SuffPref[#,	b,	2]	&&	DirQ[#],
AppendTo[t,	#],	Null]	&,	c]];	For[k	=1,	k	<=	Length[t],	k++,	p	=	t[[k]]<>”\”;	a	=
StringPosition[p,	b];	If[a	==	{},	Continue[],	a	=	Map[#[[2]]	&,	a];
Map[If[DirectoryQ[v	=	StringTake[p,	{1,	#–1}]],	AppendTo[g,	v],	Null]	&,	a]]];
DeleteDuplicates[g]]

In[2596]	:=	SearchDir[“AvzAgnVsvArtKr”]
Out[2596]=	{}
In[2597]:=	SearchDir[“\Temp/“]
Out[2597]=	{”c:\temp“,	“c:\users\aladjev\appdata\local\temp“,

“	c:\windows\assembly\nativeimages_v2.0.50727_32\temp“,
“c:\windows\assembly\nativeimages_v2.0.50727_64\temp“,
“c:\windows\assembly\nativeimages_v4.0.30319_32\temp“,
“c:\windows\assembly\nativeimages_v4.0.30319_64\temp“,
“c:\windows\assembly\temp“,	“c:\windows\temp“,
“c:\windows\system32\driverstore\temp“,
“c:\windows\winsxs\temp”}

In[2598]	:=	SearchDir[“Mathematica”]
Out[2598]=	{”c:\mathematica“,	“c:\programdata\mathematica“,	“c:\program
files\wolfram	research\mathematica“,	“c:\program	files\wolfram
research\mathematica\10.1	\addons\packages\	guikit\src\mathematica“,
“c:\users\aladjev\appdata\local\mathematica“,
“c:\users\aladjev\appdata\roaming\mathematica“,	“c:\users\aladjev\mathematica“,
“c:\users\all	users\mathematica“,	“e:\mathematica”}

It	is	once	again	expedient	to	note	that	the	mechanism	of	objects	typification	which
theMathematica	system	has,	is	a	significantly	inferior	to	the	similar	mechanism	of
theMaple	system,	but	only	relatively	to	the	built-in	types	of	testing	of	objects.	Meanwhile,
and	means	of	theMathematica	system	allow	to	test	types	of	the	most	important	objects.
So,	the	systemFileType	function	provides	the	checking	be	a	directory	or	a	datafile	as
illustrates	the	following	simple	enough	examples,	namely:

In[3742]	:=	FileType[“D:\Math_myLib”]
Out[3742]=	Directory
In[3743]:=	FileType[“D:\Math_myLib\ArtKr.mx”]

Out[3743]	=	File
In[3744]:=	FileExistsQ[“D:\Math_myLib\ArtKr.mx”]
Out[3744]=	True
In[3745]:=	FileExistsQ[“D:\Math_myLib”]
Out[3745]=	True

In	the	mean	time,	these	means	yield	to	our	procedures	isFile	andisDir	for	theMaple
system,	providing	testing	of	datafiles	and	directories	respectively	[47].	Thus,	theisFile
procedure	not	only	tests	the	existence	of	a	datafile,	but	also	the	mode	of	its	opening,	what
in	certain	cases	is	very	important.	There	are	other	interesting	enough	means	for	testing	of

the	state	of	directories	and	datafiles,	including	their	types	[25,47].	On	the	other	hand,
theMathematica	system	posesses	theFileExistsQ	function	that	returnsTrue	if	a	tested
object	is	a	datafile	or	directory	what	fromstandpoint	of	file	system	of	the	computer	is	quite
correctly	while	for	the	user	working	with	datafiles	it	is	not	the	same	what	rather	visually
illustrates	the	following	very	simple	example,	namely:	In[2645]:=	F	:=
“C:\Mathematica”;	If[FileExistsQ[F],	OpenRead[F];

Read[F],	Message[F::file,	“file	is	absent”]]	OpenRead::noopen:	Cannot	open
C:\Mathematica.>>	Read::openx:	C:\Mathematica	is	not	open.	>>

Out[2645]=	Read[”D:\Mathematica”]

Check	by	means	of	the	FileExistsQ	function	defines	existence	of	the	datafile	F(though
instead	of	it	the	directory	is	specified),	then	the	attempt	to	open	this	datafileF	on	the
reading	with	the	subsequent	reading	its	first	logical	record	are	done,	but	both	these
procedures	of	access	are	completed	with	return	of	erroneous	diagnostics.	Therefore	for
this	purpose	it	is	necessary	to	use	the	testing	functionIsFile	combining	the
functionsFileExistsQ	andDirectoryQ	or	somewhat	more	complex	organized	procedure
whose	callFileQ[f]	returns	True	if	the	stringf	defines	a	real–existing	datafile,	andFalse
otherwise.	The	FileQ	procedure	serves	sooner	for	a	some	illustration	of	development	tools
of	the	procedures	oriented	on	working	with	file	system	of	the	computer.	The	fragment
represents	source	codes	of	both	means	with	examples	of	their	use.

In[2622]	:=	IsFile[x_]	:=	If[FileExistsQ[x],	If[!	DirectoryQ[x],	True,	False],	False];
Map[FileType,	{“c:\mathem”,	“c:\mathem\ap.doc”}]
Out[2622]=	{Directory,	File}

In[2623]	:=	FileQ[f_	/;	StringQ[f]]	:=	Module[{d	=	Adrive[],	s	=	{},	k	=	1,	a	=
ToLowerCase[StringReplace[Flatten[OpenFiles[]],	“\\”–>	“/”]],	b	=
ToLowerCase[StringReplace[Directory[],	“\”–>	“/”]],

c	=	ToLowerCase[StringReplace[f,	“\”	–>	“/”]]},
For[k,	k	<=	Length[d],	k++,	AppendTo[s,	d[[k]]	<>	“:”]];	If[StringLength[c]	<	2	||

!	MemberQ[ToLowerCase[s],	StringTake[c,	{1,	2}]],	c	=	b	<>”/”	<>c,	Null];
If[DirQ[c],	False,	If[MemberQ[a,	c],	True,
If[Quiet[OpenRead[c]]	===	$Failed,	False,	Close[c];	True]]]]

In[2624]:=	Map[FileQ,	{“c:/Temp/Cinema.txt”,	“Book_3.doc”,	“E:/Art.Kr”}]
Out[2624]=	{True,	True,	False}
For	the	differentiated	testing	of	files	theFileType	function	is	used	too:

In[2552]	:=	Map[FileType,	{“c:/Mathematica”,	“c:/Mathematica/ap.doc”}]
Out[2552]=	{Directory,	File}
TheMathematica	system	has	also	some	other	similar	testing	means	oriented	on
processing	of	elements	of	file	system	of	the	computer.	A	number	of	such	functions	has
been	considered	slightly	above	along	with	our	means.	So,	the	following	fragment
represents	procedure,	whose	callEmptyFileQ[f]	returns	True	if	a	datafilef	is	empty,
andFalse	otherwise.

In[2640]	:=	EmptyFileQ[f_	/;	StringQ[f],y___]	:=	Module[{a,	b,	c,	d	={},	k	=1},
If[FileExistsQ[f],	b	=	{f},	c	=	Art26Kr18;	ClearAll[Art26Kr18];	a	=	FileExistsQ1[f,

Art26Kr18]];	If[!	a,	Return[$Failed],	b	=	Art26Kr18;	Art26Kr18	=	c];	While[k	<=
Length[b],	AppendTo[d,	Quiet[Close[b[[k]]]];	If[Quiet[Read[b[[k]]]]	===	EndOfFile,
Quiet[Close[b[[k]]];	True],	Quiet[Close[b[[k]]]];	False]];	k++];	d	=If[Length[d]==1,
d[[1]],	d];	If[{y}!=	{},	{d,	If[Length[b]	==	1,	b[[1]],	b]},	d]]

In[2641]	:=	Map[EmptyFileQ,	{“c:/temp/cinema.txt”,	“c:/temp/cinema.doc”}]
Out[2641]=	{False,	True}
In[2642]:=	EmptyFileQ[“cinema.txt”]
Out[2642]=	{False,	True,	False,	False,	False,	True,	False}

In[2643]	:=	EmptyFileQ[“C:\Cinema.txt”,	90]
Out[2643]=	{{False,	True,	False,	False,	False,	True,	False},
“C:\GrGU_Books\Cinema.txt“,	“C:\Mathematica\Cinema.txt“,	“C:\Program
Files\Wolfram	Research\Mathematica\10.1\	Cinema.txt“,	“C:\Program	Files\Wolfram
Research\	Mathematica\10.1\SystemFiles\Links\Cinema.txt“,	“C:\Temp\Cinema.txt“,
“E:\Cinema.txt“,
“E:\CD_Book\Cinema.txt”}}
In[2644]:=	EmptyFileQ[“Appendix.doc”,	90]
Out[2644]=	$Failed
In[2645]:=	EmptyFileQ[“E:\Cinema.txt”,	500]
Out[2645]=	{True,	“E:\Cinema.txt”}

If	a	datafile	f	is	absent	in	file	system	of	the	computer,	the	callEmptyFileQ[f]	returns
the$Failed.	Moreover,	if	in	the	course	of	search	of	the	datafilef	its	multiplicity	in	file
system	of	the	computer	is	detected,	all	datafiles	from	list	of	the	found	datafiles	are	tested,
including	also	datafiles	that	are	located	in	theRecycle	Bin	directory.	At	that,	the	procedure
callEmptyFileQ[f,y]	with	two	actual	arguments	where	optional	argumenty	–	an
expression,	returns	the	nested2–element	list	whose	first	sublist
definesemptiness/nonemptiness	(True|False)	of	the	datafilef	in	the	list	of	datafiles	of	the
same	name	whereas	the	second	sublist	defines	full	paths	to	the	datafilesf	of	the	same
name.	At	that,	between	both	sublists	the	one–to–one	correspondence	takes	place.	The
previous	fragment	represents	both	source	code,	and	the	typical	examples	of	usage	of
theEmptyFileQ	procedure.

The	FindSubDir	procedure	provides	search	of	the	full	paths	that	contain	a	subdirectoryx
given	by	a	full	name	in	file	system	of	the	computer	or	in	file	system	of	the	given	devices
of	direct	access	that	are	determined	by	names	in	string	format.	The	procedure
callFindSubDir[x]	returns	the	list	offull	paths	within	all	file	system	of	the	computer,
while	the	callFindSubDir[x,	y,	z,…]–	within	only	file	system	of	the	devices	{y,	z,…}.	The
next	fragment	represents	source	code	of	theFindSubDir	procedure	with	examples	of	its
application.

In[2542]	:=	FindSubDir[x_	/;	StringQ[x],	y___]	:=	Module[{b	=	{},	c	=	””,	p,	t,	k	=	1,
a	=	If[{y}==	{},	Adrive[],	{y}],	f	=	“Art26Kr18.txt”,	h	=	ToLowerCase[x]},	While[k
<=	Length[a],	Run[“Dir	“,	a[[k]]	<>	“:\”,	”	/B/S/L	>	“<>f];	While[!	SameQ[c,
“EndOfFile”],	c	=	ToString[Read[f,	String]];

t	=	FileNameSplit[c];	p	=	Flatten[Position[t,	h]];	If[p	!={}&&
DirectoryQ[FileNameJoin[t[[1;;	p[[1]]]]]],	AppendTo[b,	c]];	Continue[]];	Closes[f];	c

=	””;	k++];	{DeleteFile[f],	b}[[2]]]

In[2543]	:=	FindSubDir[“Dell	Inc”]
Out[2543]=	{”c:\program	files\dell	inc“,	“c:\program	files\dell	inc\	dell	edoc	viewer“,
“c:\program	files\dell	inc\dell	edoc	viewer\	eddy.ini“,	“c:\program	files\dell	inc\dell	edoc
viewer\	edocs.exe“,	“c:\program	files\dell	inc\dell	edoc	viewer\	helppaneproxy.dll“,
“c:\program	files\dell	inc\dell	edoc	viewer\interop.helppane.dll“,	“c:\program	files\dell
inc\dell	edoc	viewer\sweepdocs.exe”}
In[2544]:=	FindSubDir[“Dell	Inc”,	“F”]
Out[2544]=	{}
In[2545]:=	FindSubDir[“AVZ_Package”,	“C”,	“E”]
Out[2545]=	{”e:\avz_package“,	“e:\avz_package\avz_package.cdf“,
“e:\avz_package\avz_package.m“,
“e:\avz_package\avz_package.mx“,
“e:\avz_package\avz_package.nb”}

The	following	FilesDistrDirs	procedure	in	a	certain	degree	bears	structural	character	for	a
directory	given	by	the	actual	argument	of	the	procedure.	The	callFilesDistrDirs[x]	returns
the	nested	list	whose	elements–	sublists	of	the	following	format	{dir_p,	f1,	f2,	f3,…,	fn},
wheredir_p	–	a	directoryx	and	all	its	subdirectories	of	any	nesting	level,	whereasf1,	f2,	f3,
…,	fn	–	names	of	the	datafiles	located	in	this	directory.	The	following	fragment	represents
source	code	of	theFilesDistrDirs	procedure	along	with	an	example	of	its	usage.

In[2555]	:=	FilesDistrDirs[x_	/;	DirQ[x]]	:=	Module[{a	=	{},	b,	d,	g,	h	=	{},	t,	c	=
FromCharacterCode[17],	f	=	“$Art26Kr18$”,	k	=	1},	Run[“Dir	”	<>	StandPath[x]
<>	”	/A/B/OG/S	>	”	<>	f];

For[k,	k	<	Infinity,	k++,	b	=	Read[f,	String];	If[SameQ[b,	EndOfFile],
DeleteFile[Close[f]];	Break[],	AppendTo[a,	b]]];	b	=	Gather[PrependTo[a,
StringReplace[x,	“/”–>	“\”]],	DirQ[#1]	===	DirQ[#2]	&];	d	=
{Sort[Map[StringJoin[#,	“\”]	&,	b[[1]]],	StringCount[#1,	“\”]	>=	StringCount[#2,
“\”]	&],	Quiet[Check[b[[2]],	{}]]};	a	=	Map[ToLowerCase,	Flatten[d]];	For[k	=	1,	k
<=	Length[d[[1]]],	k++,	t	=	ToLowerCase[d[[1]][[k]]];	AppendTo[h,	g	=	Select[a,
SuffPref[#,	t,	1]	&&	StringFreeQ[StrDelEnds[#,	t,	1],	“\”]	&]];	a	=	MinusList[a,	g]];
a	=	{};	For[k	=	1,	k	<=	Length[h],	k++,	b	=	h[[k]];	AppendTo[a,	{b[[1]],
Map[StrDelEnds[#,	b[[1]],	1]	&,	b[[2	;;–1]]]}]];	Map[Flatten[#]	&,	a]]

In[2556]:=	FilesDistrDirs[“C:\GrGU_Books”]
Out[2556]=	{{”c:\grgu_books\avz_package\”,	“avz_package.m“,

“	avz_package.mx“,	“avz_package.nb“,	“avz_package.cdf”},	{”c:\grgu_books\”,
“birthday.doc“,	“cinema.txt“,	“general_statistics.pdf“,	“general_statistics_cover.pdf“,
“iton14_5.pdf“,	“school.pdf”}}

The	rather	simple	PathToFileQ	function	is	useful	at	working	with	files	and	directories,
whose	callPathToFileQ[x]	returnsTrue	ifx	defines	a	potentially	admissible	full	path	to	a
directory	or	datafile,	andFalse	otherwise.	The	next	fragment	represents	source	code	of	the
function	with	an	example	of	its	use.

In[2555]:=	PathToFileQ[x_	/;	StringQ[x]]	:=	If[StringLength[x]	>=	3,
If[MemberQ[Join[CharacterRange[“a”,	“z”],	CharacterRange[“A”,	“Z”]],

StringTake[x,	1]]	&&	StringTake[x,	{2,	2}]	==	“:”	&&	And[Map3[StringFreeQ,	x,
{“/”,	“\”}]]	!={True,	True},	True,	False],	False]

In[2556]	:=	Map[PathToFileQ,	{“C:”,	“C:/”,	“G:/AVZ_Package”,	“H:\agn”,
“C:/Temp”,	“C:/Temp\Mathematica”,	“C:/GrSU_Books”}]
Out[2556]=	{False,	True,	True,	True,	True,	True,	True}

Considering	the	circumstance,	that	the	ideology	of	the	file	organization	of	the	computer
quite	allows	in	a	number	of	cases	of	work	with	tools	of	access	to	identify	datafiles	and
directories,	this	function	is	represented	as	an	useful	enough	tool	for	both	types	of	elements
of	file	system	of	the	computer.	In	a	number	of	cases	arises	a	necessity	of	reading	out	of	a
datafile	entirely,	excluding	from	its	contents	the	symbols“\r\n”–	carriage	return	and	line
feed.	The	following	ReadFullFile	procedure	quite	successfully	solves	this	problem.	The
procedure	callReadFullFile[f]	returns	contents	of	a	datafilef	with	replacement	of	its
symbols“\r\n”	onto	symbols””;	if	the	datafilef	is	absent	in	file	system	of	the	computer,	the
procedure	call	returns	the$Failed.	Whereas	the	callReadFullFile[f,	y]	in	addition	through
the	second	optional	argumenty	–an	undefinite	variable–	returns	a	full	name	or	a	full	path
to	the	datafilef;	at	that,	ify	is	a	string,	theny	replaces	in	the	returned	contents	of	the
datafilef	all	symbols“\r\n”	onto	the	stringy.	The	following	fragment	represents	source
code	of	the	procedure	along	with	examples	of	its	usage.

In[2554]	:=	ReadFullFile[f_	/;	StringQ[f],	y___]	:=	Module[{a,	b	=	$Art6Kr$},
If[FileExistsQ[f],	a	=	f,	ClearAll[$Art6Kr$];	If[!	FileExistsQ1[f,	$Art6Kr$],
Return[$Failed],	a	=	$Art6Kr$[[1]]]];	$Art6Kr$	=	b;	StringReplace[StringJoin[Map[
FromCharacterCode,	BinaryReadList[a]]],	“\r\n”–>	If[{y}!={},	If[StringQ[y],	y,	If[!
HowAct[y],	y	=a;	””,	””]],	””]]]

In[2555]	:=	ReadFullFile[“Cinema.txt”,	t]
Out[2555]=	“http://100trav.com/ochishhenie-sosudov.html?utm_source=
directadvert&utm_medium=ochishhenie-sosudov.html&utm_campaign=	directadvert.ru
http://www.worldlento4ka.com/russkiye-serialy/
http://www.worldlento4ka.com/7820-cherta-2014.html–	5
http://www.worldlento4ka.com/7830-ment-v-zakone-9-2014.html”
In[2556]:=	t
Out[2556]=	“C:\GrGU_Books\Cinema.txt”
In[2557]:=	ReadFullFile[“AvZAgnVsvArtKr.doc”]
Out[2557]=	$Failed
In[2558]:=	ReadFullFile[“DataFile.txt”]
Out[2558]=	“AvzAgnVsvArtKrRansIan2015”
In[2559]:=	ReadFullFile[“DataFile.txt”,	”	|	“]
Out[2559]=	“Avz|	Agn|	Vsv|	Art|	Kr|	Rans|	Ian|	2015|	“	Once	again	it	is	necessary	to
remind	that	all	elements	of	file	system	of	the	computer	should	be	coded	with
theseparators	determined	by	the	predefined	$PathnameSeparator	variable,	by	default	as	a
separator	thedouble	backslash	“\”	is	used.	Meanwhile,	in	theMathematica	system	in
general	the	double	backslash“\”	and	the	slash”/”	are	distinguished	as	separators,	namely:
if	the	double	backslash	plays	a	part	of	standard	separator	of	elements	of	file	system	of	the
computer,	then	the	slash	can	also	quite	carry	out	this	function,	excepting	a	case	when	the
slash	is	coded	at	the	end	of	a	chain	of	directories	or	at	its	use	in	a	call	of	theRun	function

as	a	whole.	For	elimination	of	the	first	situation	we	created	the	simpleDirQ	function
considered	above.

In[2567]	:=	Map[DirectoryQ,	{“C:\Program	Files	(x86)/Maple	11/”,	“C:/Program
Files	(x86)/Maple	11\”,	“C:/Program	Files	(x86)/Maple	11”}]
Out[2567]=	{False,	True,	True}
In[2568]:=	Map[DirQ,	{“C:\Program	Files	(x86)/Maple	11/”,	“C:/Program	Files
(x86)/Maple	11\”,	“C:/Program	Files	(x86)/Maple	11”}]
Out[2568]=	{True,	True,	True}

At	that,	the	call	SetPathSeparator[x]	of	a	simple	procedure	makes	setting	of	a
separator“\”	or”/”	for	paths	to	datafiles/directories	for	a	period	of	the	current	session	with
returning	of	a	newseparator	in	string	format	as	the	next	simple	enough	fragment	rather
visually	illustrates.

In[2642]:=	$PathnameSeparator
Out[2642]=	“\”
In[2643]:=	SetPathSeparator[x_	/;	MemberQ[{“/”,	“\”},	x]]	:=	Module[{},
Unprotect[$PathnameSeparator];	$PathnameSeparator	=	x;
SetAttributes[$PathnameSeparator,	Protected]]

In[2644]	:=	{SetPathSeparator[“/”];	$PathnameSeparator,
SetPathSeparator[“\”];	$PathnameSeparator}
Out[2644]=	{”/“,	“\”}

In[2645]	:=	StandPath[x_	/;	StringQ[x]]	:=	Module[{a,	b	=	””,	c,	k	=	1},
If[MemberQ[Flatten[Outer[StringJoin,	CharacterRange[“a”,	“z”],	{“:/“,	“:\”}]],	c	=
ToLowerCase[x]],	StringReplace[c,	“/”	–>	“\”],

If[PathToFileQ[x],	a	=	FileNameSplit[
StringReplace[ToLowerCase[ToLowerCase[x]],	“/”	–>	“\”]];

For[k,	k	<=	Length[a],	k++,	c	=	a[[k]];	If[!	StringFreeQ[c,	”	“],	b	=	b	<>	StrStr[c]	<>
“\”,	b	=	b	<>	c	<>	“\”]];	StringTake[b,	{1,	–2}],	ToLowerCase[x]]]]

In[2646]	:=	StandPath[“C:/Program	Files\Wolfram
Research/Mathematica/10.1/“]
Out[2646]=	“c:\"program	files"\"wolfram	research"\	mathematica\10.1
In[2647]:=	Map[StandPath,	{“C:/“,	“C:\”,	“E:/”}]
Out[2647]=	{”c:\”,	“c:\”,	“e:\”}
In[2648]:=	StandPath[“AvzAgnVsvArtKt.TXT”]
Out[2648]=	“avzagnvsvartkt.txt”

So,	for	the	Mathematica	system	in	most	cases	similar	to	theMaple	system	is	also	possible
to	use	both	types	of	separators	of	elements	of	a	file	system,	however	the	told	concerns
only	toWindows	system,	for	other	platforms	the	differences	that	in	a	number	of	cases	are
essential	enough	for	programming	are	possible.	As	it	was	noted	above,	using	different
formats	for	names	of	the	datafiles	and	full	paths	to	them,	we	obtain	an	opportunity	to	open
the	same	physical	datafile	in	different	streams,	that	in	certain	cases	provides	at	times
simplification	of	processing	of	datafiles.	Meanwhile,	in	certain	cases	similar	opportunity
complicates	the	algorithms	linked	with	processing	of	datafiles,	for	example,	a	datafile

created	on	the	basis	of	one	format	of	name	generally	won’t	be	recognized	by	standard
means	on	the	basis	of	another	format:	In[2652]:=	Write[“RANS_IAN.txt”];
Close[“Rans_Ian.txt”]

General	::openx:	Rans_Ian.txt	is	not	open.	>>
Out[2652]=	Close[”Rans_Ian.txt”]
In[2653]:=	Close[“RANS_IAN.txt”]
Out[2653]=	“RANS_IAN.txt”

Thus,	correct	use	of	datafiles	names	and	paths	to	them	assumes,	generally,	work	with	the
same	format,	as	it	illustrates	the	above	example.	Therefore	as	a	quite	simple	reception
allowing	to	unify	names	of	datafiles/directories	and	paths	to	them	it	is	possible	to	offer	the
following	standard–the	symbols	that	compose	names	of	datafiles	and	paths	to	them	are
coded	in	the	lower	case	whereas	as	separators	the	double	backslashes“\”are	used.

This	problem	is	solved	successfully	by	quite	simple	procedures	StandPath
andFileDirStForm,	the	source	code	of	the	first	procedure	with	examples	of	application
are	represented	in	the	previous	fragment.	So,	the	procedure	call	StandPath[x]	in	the
above	standardized	format	returns	a	datafile,	directory	or	full	paths	to	them.	Moreover,
theStandPath	procedure	for	testing	of	an	admissibility	of	an	argumentx	as	a	real	path	uses
thePathToFileQ	function	presenting	independent	interest	and	providing	the	correctness	of
processing	of	the	paths	containing	gap	symbols.	So,	the	usage	by	theDirFD	procedure	of
theStandPath	procedure	allows	to	obtain	quite	correctly	contents	of	any	directory	of	file
system	of	the	computer	which	contains	gap	symbols	and	on	which	theDir	command
ofDOS	system	doesn’t	yield	result	as	very	visually	the	simple	examples	illustrate	[30-33].
TheStandPath	procedure	can	be	used	rather	effectively	at	development	of	different	means
of	access	in	file	system	of	the	computer;	moreover,	the	procedure	is	used	by	a	number	of
means	of	access	to	the	datafiles	that	are	considered	in	the	present	book	along	with	the
means	represented	in	theAVZ_Package	package	[48].

The	Mathematica	system	has	two	standard	functionsRenameDirectory	and	RenameFile
for	ensuringrenaming	of	directories	and	datafiles	of	file	system	of	the	computer
respectively.	Meanwhile,	from	the	point	of	view	of	the	file	concept	these	functions	would
be	very	expedient	to	be	executed	by	uniform	means	because	in	this	concept	directories	and
datafiles	are	in	many	respects	are	identical	and	their	processing	can	be	carried	out	by	the
same	means.	At	the	same	time	the	mentioned	standard	functions	and	onrestrictions	are
quite	identical,	namely:	for	renaming	of	namex	of	an	element	of	file	system	onto	a	new
namey	the	element	with	the	namey	has	to	be	absent	in	the	system,	otherwise$Failed	with	a
diagnostic	message	are	returned.	Moreover,	if	asy	only	a	new	name	without	full	path	to	a
new	elementy	is	coded,	its	copying	into	the	current	directory	is	made;	in	case	of	a
directoryx	it	with	all	contents	is	copied	into	the	current	directory	under	a	new	namey.
Therefore,	similar	organization	is	rather	inconvenient	in	many	respects,	what	stimulated	us
to	determine	for	renaming	of	directories	and	datafiles	the	uniformRenDirFile	procedure
which	provides	renaming	of	an	elementx(directory	or	datafile)	in	situ	with	preservation	of
its	type	and	all	its	attributes;	at	that,	as	argumenty	a	new	name	of	the	elementx	is	used.
Therefore	the	successful	procedure	call	RenDirFile[x,	y]	returns	the	full	path	to	a
renamed	elementx.	In	the	case	of	existence	of	an	elementy	the
message”Directory/datafile<y>	already	exists”	is	returned.	In	other	unsuccessful	cases	the

procedure	call	returns	the$Failed	or	is	returned	unevaluated.	The	next	fragment	represents
source	code	of	the	RenDirFile	procedure	along	with	examples	of	its	most	typical	usage.

In[2632]:=	RenDirFile[x_	/;	FileExistsQ[x]	||	DirectoryQ[x],
y_	/;	StringQ[y]]	:=	Module[{b	=	StandPath[StringTrim[x,	{“/”,	“\”}]],	a	=
If[FileExistsQ[x],	RenameFile,	RenameDirectory],

c	=	StandPath[StringTrim[y,	{“/”,	“\”}]]},	If[PathToFileQ[b]	&&	PathToFileQ[c]
&&	FileNameSplit[b][[1	;;–2]]	==	FileNameSplit[c][[1	;;–2]],	Quiet[Check[a[b,	c],
“Directory/datafile	<”	<>	y	<>”>	already	exists”]],	If[PathToFileQ[b]	&&	!
PathToFileQ[c],

Quiet[Check[a[b,	FileNameJoin[Append[FileNameSplit[b][[1	;;–2]],	StringReplace[c,
{“/”–>	””,	“\”–>	””}]]]],	“Directory/datafile	<”	<>	y	<>	“>	already	exists”]],	If[!
PathToFileQ[b]	&&	!	PathToFileQ[c],	Quiet[Check[a[b,	StringReplace[c,	{“/”–>	””,
“\”–>	””}]],	“Directory/datafile	<”	<>	y	<>	“>	already	exists”]],	$Failed]]]]

In[2633]	:=	RenDirFile[“C:/Temp\Books.doc”,	“Books_GrSU.doc”]	Out[2633]=
“c:\temp\books_grsu.doc”
In[2634]:=	RenDirFile[“C:/Temp/Noosphere	Academy”,	“Rans_Ian”]	Out[2634]=
“c:\temp\rans_ran”
In[2635]:=	RenDirFile[“C:\Temp/Kino	Online.txt”,	“Cinema	Online.txt”]	Out[2635]=
“c:\temp\cinema	online.txt”
In[2636]:=	RenDirFile[“RANS_IAN.txt”,	“ArtKr.txt”]
Out[2636]=	“C:\Users\Aladjev\Documents\artkr.txt”
In[2637]:=	RenDirFile[“RANS_IAN.txt”,	“ArtKr.txt”]
Out[2637]=	RenDirFile[”RANS_IAN.txt“,	“ArtKr.txt”]
In[2638]:=	RenDirFile[“C:/Temp\agn”,	“Agn”]
Out[2638]=	“Directory/datafile<Agn>	already	exists”
In[2639]:=	RenDirFile[“C:/Temp\Avz.doc”,	“Agn.doc”]
Out[2639]=	“c:\temp\agn.doc”

The	special	tools	of	processing	of	files	and	directories	are	considered	below.

7.5.	Certain	special	means	of	processing	of	datafiles	and	directories

In	the	given	section	some	special	tools	of	processing	of	directories	and	files	are
represented;	in	certain	cases	they	can	be	useful	enough.	So,	removal	of	a	datafile	in	the
current	session	is	made	by	means	of	the	standardDeleteFile	function	whose
callDeleteFile[{x,y,z,…}]	returnsNull,	i.e.	nothing	in	case	of	successful	removal	of	the
given	datafile	or	their	list,	and$Failed	otherwise.	At	that,	in	the	list	of	datafiles	only	those
are	deleted	that	have	noProtected–	attribute.	Moreover,	this	operation	doesn’t	save	the
deleted	datafiles	in	the	systemRecycle	Bin	directory,	that	in	certain	cases	is	extremely
undesirable,	first	of	all,	in	the	light	of	possibility	of	their	subsequent	restoration.	The	fact
that	the	system	functionDeleteFile	is	based	on	theDos	commandDel	that	according	to
specifics	of	this	operating	systemimmediately	deletes	a	datafile	from	file	system	of	the
computer	without	its	preservation,	that	significantly	differs	from	similar	operation	of
theWindows	system	that	by	default	saves	the	deleted	datafile	in	the	specialRecycle	Bin
directory.

For	elimination	of	similar	shortcoming	the	DeleteFile1	procedure	has	been	offered,	whose
source	code	with	examples	of	application	are	represented	by	the	fragment	below.	The
successful	procedure	callDeleteFile1[x]	returns0,	deleting	datafiles	given	by	an	argumentx
with	saving	them	in	theRecycle	Bin	directory	of	theWindows	system.	Meanwhile,	the
datafiles	removed	by	means	of	procedure	callDeleteFile1[x]	are	saved	inRecycle	Bin
directory,	however	they	are	invisible	to	viewing	by	the	system	means,	for	example,	by
means	ofMs	Explorer,	complicating	cleaning	of	the	given	system	directory.	Whereas	the
procedure	callDeleteFile1[x,	t]	with	the2nd	optional	argument	t	–an	undefinite	variable–
thru	it	in	addition	returns	the	list	of	datafiles	which	for	one	reason	or	another	were	not
removed.	At	that,	in	the	systemRecycle	Bin	directory	a	copy	only	of	the	last	deleted
datafile	always	turns	out.	This	procedure	is	oriented	onWindows	XP	andWindows	7,
however	it	can	be	spread	to	other	operational	platforms.	The	fragment	below	represents
source	code	of	theDeleteFile1	procedure	along	with	some	examples	of	its	usage.

For	restoration	from	the	system	directory	Recycler	Bin	of	the	packages	that	were	removed
by	means	of	theDeleteFile1	procedure	on	theWindows	XP	platform,
theRestoreDelPackage	procedure	providing	restoration	from	the	system
directoryRecycler	Bin	of	such	packages	has	been	offered	[30,48].	The	successful
callRestoreDelPackage[F,	“Context’”],	where	the	first	argument	F	determines	the	name
of	a	file	of	the	format	{“cdf”,	“m”,	“mx”,	“nb”}	that	is	subject	to	restoration	whereas	the
second	argument–	the	context	associated	with	a	package	returns	the	list	of	full	paths	to	the
restored	files,	at	the	same	time	by	deleting	from	the	directoryRecycler	Bin	the	restored
datafiles	with	the	necessary	package.	At	that,	this	means	is	supported	on	theWindows	XP
platform	while	on	theWindows	7	platform	theRestoreDelFile	procedure	is	of	a	certain
interest,	restoring	datafiles	from	the	directoryRecycler	Bin	that	earlier	were	removed	by
means	of	theDeleteFile1	procedure.

The	successful	call	RestoreDelFile[F,r],	where	the	first	argumentF	defines	the	name	of	a
datafile	or	their	list	that	are	subject	to	restoration	whereas	the	second	argument	determines
the	name	of	a	target	directory	or	full	path	to	it	for	the	restored	datafiles	returns	the	list	of
paths	to	the	restored	datafiles;	at	the	same	time,	the	deleting	of	the	restored	files	from	the
directoryRecycler	Bin	isn’t	done.	In	the	absence	of	the	requested	files	in	the
directoryRecycler	Bin	the	procedure	call	returns	the	empty	list,	i.e.	{}.	It	should	be	noted
that	only	nonempty	datafiles	are	restored.	If	the	second	argumentr	determines	a	directory
name	in	string	format,	but	not	the	full	path	to	it,	a	target	directory	r	is	created	in	the	active
directory	of	the	current	session.	The	next	fragment	represents	source	code	of	the
procedure	along	with	examples	of	its	usage.

On	the	other	hand,	for	removal	from	the	Recycle	Bin	directory	of	datafiles	saved	by
means	of	theDeleteFile1	procedure	on	theWindows	XP	platform,	the	procedure	is	used
whose	callClearRecycler[]	returns0,	deleting	files	of	the	specified	type	from	the
systemRecycle	Bin	directory	with	saving	in	it	of	the	datafiles	removed	by	means
ofWindows	XP	or	its	appendices.	At	last,	theDick	Cleanup	command	inWindows	XP	in
some	cases	completely	does	not	clear	the	systemRecycler	directory	from	files	what
successfully	does	the	procedure	call	ClearRecycler[“ALL”],	returning	0	and	providing
removal	of	all	datafiles	from	the	systemRecycler	directory.	In	[30,48]	it	is	possible	to
familiarize	with	source	code	of	theClearRecycler	procedure	and	examples	of	its	usage.
On	theWindows	7	platform	theClearRecyclerBin	procedure	provides	removal	from	the

systemRecycler	directory	of	all	directories	and	datafiles	or	only	of	those	that	are	caused	by
theDeleteFile1	procedure.	The	successful	procedure	callClearRecyclerBin[]	returnsNull,
i.e.	nothing,	and	provides	removal	from	the	systemRecycle	Bin	directory	of	directories
and	datafiles	that	are	caused	by	theDeleteFile1	procedure.	While	the	procedure
callClearRecyclerBin[x],	wherex	–a	some	expression–	also	returnsNull,	i.e.	nothing,	and
provides	removal	from	the	systemRecycle	Bin	directory	of	all	directories	and	datafiles
whatever	the	cause	of	their	appearance	in	the	given	directory.	At	that,	the	procedure	call
on	theemptyRecycler	directory	returns	$Failed.	The	fragment	below	represents	source
code	of	the	procedure	along	with	typical	examples	of	its	usage.

In[2552]	:=	DeleteFile1[x_	/;	StringQ[x]||ListQ[x],	y___]	:=	Module[{d,	p,	t,	a	=
Map[ToString,	Flatten[{x}]],	b,	c	=	$ArtKr$},	b	=	If[!	StringFreeQ[Ver[],	”	XP	“],
FilesDistrDirs[BootDrive[][[1]]	<>	“:\Recycler”][[1]],	p	=	90;	ClearAll[$ArtKr$];
If[FileExistsQ1[“$recycle.bin”,	$ArtKr$],	d	=	$ArtKr$[[1]],	Return[$Failed]];	b	=
SortBy[Select[Flatten[FilesDistrDirs[d]],	DirectoryQ[#]	&],	Length[#]	&][[2]]];
$ArtKr$	=	c;	c	=	Map[StandPath,	Map[If[StringFreeQ[#,	“:”],	Directory[]	<>	“\”	<>
#,	#]	&,	a]];	t	=	Map[Run[“Copy	/Y	”	<>	#	<>	”	”	<>	If[p	==	90,	b	<>
FileNameSplit[#][[–1]],	b[[1]]]]	&,	c];	t	=	Position[t,	1];	c	=	If[t	!=	{},	MinusList[c,	b	=
Extract[c,	t]],	Null];	If[t	!=	{}&&	{y}!=	{}&&	!	HowAct[y],	Quiet[y	=	b],	Quiet[y	=
{}]];	Map[{Attrib[#,	{}],	Quiet[DeleteFile[#]]}&,	c];	0]

In[2553]	:=	DeleteFile1[{“Buthday1.doc”,	“c:/Mathematica\desktop1.ini”,
“C:/Temp/Agn/cinema.txt”,	“Help.txt”,	“Cinema.txt”,	“copy.txt”},	t67]
Out[2553]=	0
In[2554]:=	t67
Out[2554]=	{”c:\temp\agn\cinema.txt“,
“c:\users\aladjev\documents\help.txt“,
“c:\users\aladjev\documents\cinema.txt“,	“c:\users\aladjev\documents\copy.txt”}

In[2555]	:=	DeleteFile1[{“AvzKr.m”,	“AgnArt.nb”}]
Out[2555]=	0
In[2556]:=	DeleteFile1[“C:/Documents	and	Settings/Cinema	Online.txt”]	Out[2556]=
0

In[2642]:=	RestoreDelFile[f_	/;	StringQ[f]	||	ListQ[f],	r_	/;	StringQ[r]]	:=

Module[{b	=	ToString[Unique[“ag”]],	c,	p	=	$ArtKr$,	t	=	Map[StandPath,
Flatten[{f}]],	h},	ClearAll[$ArtKr$];	If[FileExistsQ1[“$recycle.bin”,	$ArtKr$],	d	=
$ArtKr$[[1]];	$ArtKr$=	p,	Return[$Failed]];	Run[“Dir	”	<>	d	<>	“/B/S/L	>	”	<>	b];
If[EmptyFileQ[b],	$Failed,	Quiet[CreateDirectory[r]];	c	=	ReadList[b,	String]];
DeleteFile[b];	h[x_,	y_]	:=	If[FileExistsQ[x]	&&	SuffPref[x,	“\”	<>	y,	2],
CopyFileToDir[x,	StandPath[r]],	“Null”];	c	=	Select[Flatten[Outer[h,	c,	t]],	!
SameQ[#,	“Null”]	&]]

In[2643]	:=	RestoreDelFile[{“Books.txt”,	“History.doc”},	“restore”]	Out[2643]=	{}
In[2644]:=	RestoreDelFile[{“Cinema.txt”,	“Buthday.doc”},	“restore”]	Out[2644]=
{”restore\buthday.doc“,	“restore\cinema.txt”}
In[2645]:=	RestoreDelFile[“Cinema.txt”,	“c:/Temp/restore”]
Out[2645]=	{”c:\temp\restore\cinema.txt”}

In[2646]:=	RestoreDelFile[{“Cinema.txt”,	“Buthday.doc”,	“Grodno1.doc”,

“Copy.txt”},	“C:/restore”]
Out[2646]=	{”C:\restore\buthday.doc“,	“C:\restore\cinema.txt“,	“C:\restore\copy.txt”}
In[2660]:=	ClearRecyclerBin[x___]	:=	Module[{a,	c	=	$ArtKr$,	d,	p,	b	=
ToString[Unique[“ag”]]},	ClearAll[$ArtKr$];

If[!	FileExistsQ1[“$recycle.bin”,	$ArtKr$],	$Failed,	d	=	StandPath[$ArtKr$[[1]]];
$ArtKr$	=	c;	Run[“Dir	”	<>	d	<>	“/B/S/L	>	”	<>	b];	p	=	ReadList[b,	String];
DeleteFile[b];	If[p	==	{},	Return[$Failed],	Map[If[{x}==	{},	If[SuffPref[a	=
FileNameSplit[#][[–1]],	“$”,	1]	||	a	===	“desktop.ini”,	Null,	Attrib[#,	{}];
If[FileExistsQ[#],	Quiet[Check[DeleteFile[#],	DeleteDirectory[#,	DeleteContents–>
True]]],	Quiet[Check[DeleteDirectory[#,	DeleteContents–>	True],	DeleteFile[#]]]]],
If[FileNameSplit[#][[–1]]	==	“desktop.ini”,	Null,	Attrib[#,	{}];

If[DirQ[#],	Run[“RD	/S/Q	”	<>	#],	Run[“Del	/F/Q	”	<>	#]]]]&,	p];]]]

In[2661]	:=	ClearRecyclerBin[]
In[2662]:=	ClearRecyclerBin[500]
In[2663]:=	ClearRecyclerBin[]
Out[2663]=	$Failed

The	given	tools	rather	essentially	expand	the	functions	of	the	Mathematica	software	of
restoration	of	datafiles	of	any	type	and	directories,	removed	by	means	ofWindows,	its
applications,	our	procedureDeleteFile1	along	with	effective	enough	cleansing	of	the
systemRecycle	Bin	directory.

Meanwhile,	a	number	of	tools	of	processing	of	datafiles	and	directories	was	based	on
theBootDrive	procedure	which	is	correct	forWindows	2000|2003|	NT|XP	while
sinceWindows7,it	is	necessary	to	use	theBootDrive1	function	whose	source	code	with	an
example	is	given	below.	The	callBootDrive1[]	returns	the3–element	list,	whose	first
element–homedrive,	the	second–the	system	catalog,	the	third	element–type	of	the	current
operating	system.

In[4842]	:=	BootDrive1[]	:=	Mapp[Part,	GetEnvironment[{“SystemDrive”,
“SystemRoot”,	“OS”}],	2]
In[4843]:=	BootDrive1[]
Out[4843]=	{”C:”,	“C:\Windows“,	“Windows_NT”}
Furthermore,	this	function	can	be	used	for	an	operation	system,	supported
by	theMathematica.	At	that	the	type	of	an	operating	system	in	some	cases
by	the	callGetEnvironment[]	is	returned	incorrectly;	the	presented	example
concernsWindows	7,	butWindows_NT	has	been	received.

Values	of	the	global	variables	$System,	$SystemID	and$OperatingSystem	define	the
strings	describing	the	current	operational	platform.	Meanwhile,	in	a	number	of	cases	the
specification	of	the	current	operational	platform	represented	by	them	can	be	insufficient,
in	that	case	it	is	possible	to	use	the	PCOS	procedure,	whose	callPCOS[]	returns
the2–element	list,	whose	first	element	determines	the	name	of	the	computer	owner,
whereas	the	second	element–	the	type	of	an	operating	platform.	The	fragment	below
represents	source	code	of	thePCOS	procedure	along	with	an	example	of	its	usage.

In[2593]:=	{$System,	$SystemID,	$OperatingSystem}
Out[2593]=	{”Microsoft	Windows	(64-bit)“,	“Windows-x86-64“,	“Windows”}
In[2594]:=	PCOS[]	:=	Module[{a	=	ToString[Unique[“agn”]],	b},

Run[“SYSTEMINFO	>	”	<>	a];	b	=	Map[StringSplit[#]	&,	ReadList[a,	String][[1	;;
2]]];	DeleteFile[a];	b	=	Map[#[[3	;;–1]]	&,	b];	{b[[1]][[1]],
StringReplace[ListToString[b[[2]],	”	“],	“"”–>	””]}]	In[2595]:=	PCOS[]

Out[2595]=	{”ALADJEV–PC“,	“Microsoft	Windows	7	Professional”}

The	next	useful	procedure	bears	the	general	character	at	operating	with	the	devices	of
direct	access	and	are	useful	enough	in	a	number	of	applications,	first	of	all,	of	the	system
character.	The	next	procedure	to	a	great	extent	is	an	analog
ofMaple–procedureVol_Free_Space	which	returns	a	volume	of	free	memory	on	devices
of	direct	access.	The	callFreeSpaceVol[x]	depending	on	type	of	an	actual	argumentx
which	should	define	the	logical	name	in	string	format	of	a	device,	returns	simple	or	the
nested	list;	elements	of	its	sublists	determine	a	device	name,	a	volume	of	free	memory	on
the	volume	of	direct	access,	and	the	unit	of	its	measurement	respectively.	In	the	case	of
absence	or	inactivity	of	the	devicex	the	procedure	call	returns	the	message”Device	is	not
ready“.	The	next	fragment	represents	source	code	of	theFreeSpaceVol	procedure	along
with	typical	examples	of	its	usage.

In[2590]:=	FreeSpaceVol[x_	/;	MemberQ3[Join[CharacterRange[“a”,	“z”],
CharacterRange[“A”,	“Z”]],	Flatten[{x}]]]	:=

Module[{a	=	ToString[Unique[“ag”]],	b,	c	={},	d	=	Flatten[{x}],	k	=1,	t},	For[k,	k	<=
Length[d],	k++,	t	=	d[[k]];	b	=	Run[“Dir	/S	”	<>	t	<>	“:\”	<>	”	>	”	<>	a];	If[b	!=	0,
AppendTo[c,	{t,	“Drive	is	not	ready”}],	b	=	ReadList[a,	String][[–1]];	b	=
StringSplit[b][[–3	;;–1]];	AppendTo[c,	{t,
ToExpression[StringJoin[Select[Characters[b[[1]]],	IntegerQ[ToExpression[#]]	&]]],
b[[2]]}]]];	DeleteFile[a];	If[Length[c]	==	1,	c[[1]],	c]]

In[2591]	:=	FreeSpaceVol[“c”]
Out[2591]=	{”c“,	442106667008,	“bytes”}
In[2592]:=	FreeSpaceVol[{“c”,	“d”,	“e”,	“a”}]
Out[2592]=	{{”c“,	442106667008,	“bytes”},	{”d“,	0,	“bytes”},

{”e“,	9890848768,	“bytes”},	{”a“,	“Drive	is	not	ready”}}

The	following	procedure	facilitates	the	solution	of	the	problem	of	use	of	the
externalMathematica	programs	or	operational	platform.	The	procedure	call
ExtProgExe[x,	y,	h]	provides	search	in	file	system	of	the	computer	of	a	{exe|	com}	file
with	the	program	with	its	subsequent	execution	on	parametersy	of	the	command	string.
Both	argumentsx	andy	should	be	encoded	in	string	format.	Successful	performance	of	the
given	procedure	returns	the	full	path	to“$TempFile$”	datafile	ofASCII–format	containing
result	of	execution	of	a	programx,	and	this	datafile	can	be	processed	by	means	of	standard
means	on	the	basis	of	its	structure.	At	that,	in	case	of	absence	of	the	datafile	with	the
demanded	programx	the	procedure	call	returns$Failed	while	at	using	of	the	third	optional
argumenth	–an	arbitrary	expression–	the	datafile	with	the	programx	uploaded	into	the
current	directory	determined	by	the	call	Directory[],	is	removed	from	this	directory;	also
the	datafile“$TempFile$”	is	removed	if	it	isempty	or	implementation	of	the	programx	was

terminated	abnormally.	The	fragment	below	represents	source	code	of	theExtProgExe
procedure	along	with	typical	examples	of	its	usage.

In[2558]:=	ExtProgExe[x_	/;	StringQ[x],	y_	/;	StringQ[y],	h___]	:=	Module[{a	=
“$TempFile$”,	b	=	Directory[]	<>	“\”	<>	x,	c},

Empty::datafile	=	“Datafile	$TempFile$	is	empty;	the	datafile	had	been	deleted.”;
If[FileExistsQ[b],	c	=	Run[x,	”	“,	y,	”	>	“,	a],	c	=	LoadExtProg[x];

If[c	===	$Failed,	Return[$Failed]];	c	=	Run[x,	”	“,	y,	”	>	“,	a];	If[{h}!=	{},
DeleteFile[b]]];	If[c	!=	0,	DeleteFile[a];	$Failed,	If[EmptyFileQ[a],	DeleteFile[a];
Message[Empty::datafile],	Directory[]	<>	“\”	<>	a]]]

>aladjev	>aladjev	>aladjev	>aladjev	>aladjev	>aladjev	>aladjev	>aladjev	>aladjev
>aladjev	>aladjev	>aladjev	console	console	console	console	console	console	console
console	console	console	console	console

In[2559]	:=	ExtProgExe[“HostName.exe”,	””,	1]
Out[2559]=	“C:\Users\Aladjev\Documents\$TempFile$”	In[2560]:=
ExtProgExe[“Rans_Ian.exe”,	””,	1]
Out[2560]=	$Failed
In[2561]:=	ExtProgExe[“tasklist.exe”,	”	/svc	“,	1]
Out[2561]=	“C:\Users\Aladjev\Documents\$TempFile$”	In[2562]:=
ExtProgExe[“systeminfo.exe”,	””,	1]
Out[2562]=	“C:\Users\Aladjev\Documents\$TempFile$”	In[2563]:=
Select[Map[StringTake[#,	{3,–1}]	&,	ReadList[Directory[]	<>

“\”	<>	“$TempFile$”,	String]],	#	!=	””	&]

Out[2563]	=	{”ALADJEV–PC“,	“Microsoft	Windows	7	Professional“,	“Microsoft
Corporation“,	“Multiprocessor	Free“,	“Aladjev“,	“Microsoft“,	“00371-OEM-8992671-
00524“,	“9.08.2014,	21:45:35“,	“6.03.2015,	14:03:18“,	“Dell	Inc.“,	“OptiPlex	3020“,
“x64-based	PC“,	“Dell	Inc.	A03,	14.04.2014“,	“C:\Windows“,	“C:\Windows\system32“,
“en-us;	English	(US)“,	“\Device\HarddiskVolume2“,	“et;	Estonian“,
“(UTC+02:00)	Helsinki,	Kyiv,	Riga,	Sofia,	Tallinn,	Vilnius“,	“C:\pagefile.sys“,
“WORKGROUP“,	“\ALADJEV–PC”}

In[2564]	:=	ExtProgExe[“qprocess.exe”,	“*”]
Out[2564]=	“C:\Users\Aladjev\Documents\$TempFile$”	In[2565]:=	k	=	1;	h	=	””;
While[!	SameQ[h,	EndOfFile],

h	=	Read[“$TempFile$”,	String];

Print[h];	k++];	Close[“$TempFile$”];	1	1772	taskhost.exe
1	1864	dwm.exe
1	1900	explorer.exe
1	2252	rtkngui64.exe
1	2272	ravbg64.exe
1	2308	igfxtray.exe
1	2316	hkcmd.exe
1	2344	igfxpers.exe
1	2352	igfxsrvc.exe

1	2408	fahwindow.exe
1	2424	avg-secure-s…
1	2816	skype.exe
>aladjev	>aladjev	>aladjev	>aladjev	>aladjev	>aladjev	>aladjev	>aladjev	>aladjev
>aladjev	>aladjev	>aladjev	>aladjev	>aladjev	>aladjev	>aladjev	>aladjev	>aladjev
>aladjev	>aladjev	EndOfFile	console	console	console	console	console	console	console
console	console	console	console	console	console	console	console	console	console	console
console	console	1	2956	iusb3mon.exe	1	2972	avgui.exe
1	3020	ishelper.exe	1	3104	ctfmon.exe
1	3948	firefox.exe
1	2416	plugin-conta…	1	4704	flashplayerp…	1	4768	flashplayerp…	1	1832	vprot.exe
1	2644	mathematica.exe	1	2304	mathkernel.exe	1	4436	mathkernel.exe	1	2032
totalcmd64.exe	1	4276	winword.exe	1	4208	splwow64.exe	1	3372	notepad.exe	1	3716
notepad.exe	1	4956	cmd.exe
1	4344	conhost.exe
1	4440	qprocess.exe

At	last,	the	next	procedure	provides	search	in	the	given	directory	of	chains	of
subdirectories	and	datafiles	containing	a	stringx	as	own	components.	The
callDirFilePaths[x,	y]	returns	the2–element	list	whose	first	element	is	a	list	of	full	paths
to	subdirectories	of	a	directoryy	which	contain	componentsx	whereas	the	second	element
is	the	list	of	full	paths	to	datafiles	whose	names	coincide	with	a	stringx.

In[3642]	:=	DirFilePaths[x_	/;	StringQ[x],	y_:	BootDrive1[][[1]]<>”*.*”]	:=
Module[{c	=	{},	h,	d	=	{},	b	=	ToString[Unique[“avz”]],	a	=
StringTrim[StandStrForm[x],	“\”]},	Run[“DIR	/A/B/S	”	<>	StandPath[y]	<>	”	>	”	<>
b];	h	=	ReadList[b,	String];	DeleteFile[b];	Map[If[!	StringFreeQ[StandPath[#],	{“\”
<>	a	<>	“\”,	“\”	<>	a}],	If[DirectoryQ[#],	AppendTo[c,	#],	AppendTo[d,	#]],	Null]&,
h];	{c,	d}]	In[3643]:=	DirFilePaths[“cinema.txt”,	“c:\Temp/”]
Out[3643]=	{{},	{”c:\temp\Cinema.txt”}}

In[3644]	:=	DirFilePaths[“CuteWriter.exe”,	“C:/Users/Aladjev/“]	Out[3644]=	{{},
{”c:\users\aladjev\Downloads\CuteWriter.exe”}}	In[3645]:=
DirFilePaths[“CuteWriter.exe”]
Out[3645]=	{{},	{”C:\Users\Aladjev\Downloads\CuteWriter.exe”}}

In	the	absence	of	the	second	optional	argument	y	the	procedure	call	instead	of	it
supposesBootDrive1[][[1]]	<>	“*.*”.	The	previous	fragment	presents	source	code	of	the
procedure	with	some	examples	of	its	use.	In	certain	cases	of	access	to	file	system	the
given	procedure	is	an	useful	enough	means.

In	a	number	of	problems	of	processing	of	file	system	of	the	computer	along	with	work
with	datafiles	the	followingVolDir	procedure	can	present	quite	certain	interest.	The
procedure	callVolDir[x]	returns	the	nested2–element	list,	whosefirst	element	determines
the	volume	occupied	by	a	directoryx	in	bytes	whereas	thesecond	element	determines	the
size	of	free	space	on	a	hard	disk	with	the	given	directory.	Whereas	procedure
callDirsFiles[x]	returns	the	nested2–element	list,	whose	first	element	defines	the	list	of
directories	contained	in	a	directoryx,	includingx,	and	the	second	element	defines	the	list	of
all	datafiles	contained	in	the	given	directory.	The	following	fragment	represents	source

codes	of	the	above	procedures	with	examples	of	their	use.

In[3625]:=	VolDir[x_	/;	DirectoryQ[x]	||
MemberQ[Map[#	<>	“:”	&,	Adrive[]],	ToUpperCase[x]]]	:=

Module[{a	=	ToString[Unique[“agn”]],	b,	c,	d	=	StandPath[x]},	b	=	Run[“DIR	/S	”
<>	d	<>	”	>	”	<>	a];	If[b	!=	0,	$Failed,	c	=	Map[StringTrim,	ReadList[a,	String][[–2
;;–1]]]];	DeleteFile[a];	c	=	Map[StringTrim,	Mapp[StringReplace,	c,	{“ÿ”–>	””,
“bytes”–>	””	,	“free”–>	””}]];	ToExpression[Map[StringSplit[#][[–1]]	&,	c]]]
In[3628]:=	Map[VolDir,	{“c:/users/aladjev/downloads”,	“e:/avz_package”}]
Out[3628]=	{{2129356859,	442634944512},	{5944994,	9888374784}}

In[3655]:=	DirsFiles[x_	/;	DirectoryQ[x]	||
MemberQ[Map[#	<>	“:”	&,	Adrive[]],	ToUpperCase[x]]]	:=	Module[{a
=ToString[Unique[“ag”]],	b	={x},	c	={},	d	=StandPath[x],	f},

If[Run[“DIR	/A/B/S	”	<>	d	<>	”	>	”	<>	a]	!=	0,	$Failed,	f	=	ReadList[a,	String];
DeleteFile[a];	Map[If[DirectoryQ[#],	AppendTo[b,	#],	If[FileExistsQ[#],	AppendTo[c,
#],	Null]]	&,	f];	{b,	c}]]

In[3656]:=	DirsFiles[“C:\users\Aladjev\downloads”]
Out[3656]=	{{”c:\users\Aladjev\downloads”},	…,
“c:\users\aladjev\downloads\Mathematica_10.1.0_WIN.zip”}}	By	the	by,	it	should	be
noted	that	at	processing	of	the	list	structures	of	rather	large	size	the	unpredictable
situations	are	quite	possible	[30-33].

So,	the	means	presented	in	the	given	chapter	sometimes	rather	significantly	simplify
programming	of	the	tasks	dealing	with	file	system	of	the	computer.	Along	with	that	these
means	extend	functional	means	of	access,	illustrating	a	number	of	useful	enough	methods
of	programming	of	problems	of	similar	type.	These	means	in	a	number	of	cases	very
significantly	supplement	the	standard	access	means	supported	by	system,	facilitating
programming	of	a	number	of	very	important	appendices	dealing	with	the	datafiles	of
various	format.	Our	experience	of	programming	of	the	access	means	that	extend	the
similar	means	of	the	systemsMaple	andMathematica	allows	to	notice	that	basic	access
means	of	theMathematica	system	in	combination	with	itsglobal	variables	allow	to
program	more	simply	and	effectively	the	user`s	original	access	means.	Moreover,	the
created	access	means	possess	sometimes	by	the	significantly	bigger	performance	in
relation	to	the	similar	means	developed	in	the	environment	of	the	Maple	software.	So,	in
the	environment	of	the	Mathematica	system	it	is	possible	to	solve	the	problems	linked
with	rather	complex	algorithms	of	processing	of	datafiles	while	in	the	environment	of
theMaple	system,	first	of	all,	in	case	of	large	enough	datafiles	the	efficiency	of	such
algorithms	leaves	much	to	be	desired.	In	a	number	of	appendices	the	means,	presented	in
the	present	chapter	along	with	other	similar	means	from	our	package	[48]	are	represented
as	rather	useful,	by	allowing	at	times	to	essentially	simplify	programming.	Meanwhile,	it
must	be	kept	in	mind,	a	whole	series	of	the	means	that	are	based	on	theRun	function	and
theDOS	commands	generally	can	be	nonportable	onto	other	versions	of	the	system	and	an
operational	platform,	demanding	the	corresponding	adaptation	onto	appropriate	new
conditions.

Chapter	8.	The	manipulations	organization	with	the	user	packages	in
theMathematicasoftware

Similarly	to	the	well	-developed	software	theMathematica	is	the	extendable	system,	i.e.
in	addition	to	the	built–in	means	that	quite	cover	requirements	of	quite	wide	range	of	the
users,	the	system	allows	to	program	those	means	that	absent	for	the	specific	user	in
environment	of	the	built-in	language,	and	also	to	extend	and	correct	standard	means.
Moreover,	the	user	can	find	the	missing	means	which	are	not	built-in,	in	the	numerous
packages	both	in	the	packages	delivered	with	theMathematica,	and	separately	existing
packages	for	various	applied	fields.	The	question	consists	only	in	finding	of	a	package
necessary	for	a	concrete	case	containing	definitions	of	the	functions,modules	and	other
objects	demanded	for	an	application	programmed	in	the	system.	Apackage	has	the
standard	organization	and	contains	definitions	of	various	objects,	somehow	the	functions,
procedures,	variables,	etc.,	that	solve	well–	defined	problems.	In	return	theMathematica
system	provides	a	standard	set	of	packages	whose	composition	is	defined	by	the	concrete
version	of	the	system.	For	receiving	of	composition	of	the	packages	that	are	delivered	with
the	current	release	of	theMathematica	it	is	possible	to	use	the	procedure,	whose	the
callMathPackages[]	returns	the	list	of	names	of	packages,	whose	names	with	a	certain
confidence	speak	about	their	basic	purpose.	Whereas	the	callMathPackages[x]	with
optional	argumentx	–an	undefinite	variable–	provides	through	it	in	addition	return	of	the
three–element	list	whose	first	element	defines	the	current	release	of	theMathematica
system,	the	second	element–	type	of	the	license	and	the	third	element–	a	deadline	of	action
of	the	license.	The	following	fragment	represents	source	code	of	the	procedure	along	with
examples	of	its	most	typical	usage.

In[2590]:=	MathPackages[h___]	:=	Module[{c	=	$InstallationDirectory,	b,	a	=
“$Kr18Art26$”,	d},	d	=	Run[“Dir	”	<>	StandPath[c]	<>	“/A/B/O/S	>
$Kr18Art26$”];

If[d	!=	0,	$Failed,	d	=	ReadList[a,	String];	DeleteFile[a];	b	=	Map[If[!	DirectoryQ[#]
&&	FileExtension[#]	==	“m”,	FileBaseName[#],	“Null”]	&,	d];	b	=	Select[b,	#	!=
“Null”	&];	b	=	MinusList[DeleteDuplicates[b],	{“init”,	“PacletInfo”}];	If[{h}!=
{}&&	!	HowAct[h],	h	={$Version,	$LicenseType,
StringJoin[StringSplit[StringReplace[DateString[$LicenseExpirationDate],	”	“–>	“*
“],	“*”][[1	;;–2]]]}]];	Sort[b]]

In[2591]	:=	MathPackages[]
Out[2591]=	{”AbelianGroup“,	“AbortProtect“,	“Abs“,	“AbsoluteDashing“,
“AbsoluteOptions“,	“AbsolutePointSize“,	“AbsoluteThickness“,	“AbsoluteTime“,
“accessodbc“,	“AccountData“,	…………………,
………………………………………………………………….……..	“WriteDemo“,
“WriteString“,	“Wronskian“,	“WSDL“,	“XBox“,	“XGRID“,	“XML“,	“XMLElement“,
“XMLObject“,	“XMLSchema“,	“Xnor“,	“Xor“,	“ZapfDingbats“,	“ZernikeR“,
“ZeroTest“,	“Zeta“,	“ZetaZero“,	“Zip“,	“ZipfDistribution“,	“ZTest“,	“ZTransform”}
In[2592]:=	Length[%]
Out[2592]=	2563
In[2593]:=	MathPackages[Sv];	Sv

Out[2593]=	{”10.1.0	for	Microsoft	Windows	(64-bit)	(March	24,	2015)“,	“Professional“,
“Wed	21	Oct”}
From	the	given	fragment	follows	that	the	Mathematica	system	of	version	10.1
contains2563	packages	oriented	on	various	appendices,	including	the	packages	of	strictly
system	purpose.	Before	use	of	means	that	are	contained	in	a	certain	applied	package,	this
package	should	be	previously	uploaded	into	the	current	session	by	means	of	the	function
callGet[Package].

8.1.	Concept	of	the	context,	and	its	use	in	the	software	of
theMathematicasystem

The	context	concept	has	been	entered	into	the	program	environment	of	the	system	for
organization	of	operation	with	symbols	which	represent	various
objects(modules,functions,packages,variables	and	so	on),	in	particular,	in	order	to	avoid
the	possible	conflicts	with	the	symbols	of	the	same	name.	The	main	idea	consists	in	that
that	thefull	name	of	an	arbitrary	symbol	consists	of	two	parts,	namely:	a	context	and	a
short	name,	i.e.	the	full	name	of	some	object	has	the	next	format:“context’short	name”
where	the	symbol<’>	(backquote)	carries	out	the	role	of	some	marker	identifying	a
context	in	the	software	of	the	system.	For	example,Avzagn’Vsv	represents	a	symbol	with
the	context	Avzagn	and	with	short	nameVsv.	At	that,	with	such	symbols	it	is	possible	to
execute	various	operations	as	with	usual	names;	furthermore,	the	system	considersaaa’xyz
andbbb’xyz	as	various	symbols.	The	most	widespread	use	of	context	consists	in	its
assignment	to	functionally	identical	or	semantically	connected	symbols.	For	example,

AladjevProcedures`StandPath,	AladjevProcedures`MathPackages

the	procedures	StandPath	andMathPackages	belong	to	the	same	group	of	the	means
associated	with“AladjevProcedures’”	context	that	is	ascribed	to	ourAVZ_Package
package	[48].	The	current	context	is	defined	any	moment	of	the	system	session,	the
context	is	in	the	global	variable$Context:	In[2562]:=	$Context
Out[2562]=	“Global`”

In	the	current	Mathematica	session	the	current	context	by	default	is	defined	as“Global’”.
While	the	global	variable$ContextPath	determines	the	list	of	contexts	after	the
variable$Context	for	search	of	a	symbol	entered	into	the	current	session.	It	is	possible	to
reffer	to	symbols	from	the	current	context	simply	by	their	short	names;	at	that,	if	this
symbol	is	crossed	with	a	symbol	from	the	list	determined	by	the$ContextPath	variable,
the	second	symbol	will	be	used	instead	of	a	symbol	from	the	current	context,	for	example:
In[2563]:=	$ContextPath
Out[2563]=	{”AladjevProcedures`”,	“TemplatingLoader`”,	“PacletManager`”,

“System`”,	“Global`”}
Whereas	the	callsContext[x]	andContexts[]	return	the	context	ascribed	to	a	symbolx	and
the	list	of	all	contexts	of	the	current	session	respectively:

In[2564]	:=	Context[ActUcontexts]
Out[2564]=	“AladjevProcedures`”
In[2565]:=	Contexts[]

Out[2565]=	{”AladjevProcedures`”,	“AladjevProcedures`ActBFMuserQ`”,
“AladjevProcedures`ActRemObj`”,	“AladjevProcedures`ActUcontexts`”,	…,
===
“WSMLink`”,	“XML`”,	“XML`MathML`”,	“XML`MathML`Symbols`”,

“	XML`NotebookML`”,	“XML`Parser`”,	“XML`RSS`”,	“XML`SVG`”}	At	that,	by
analogy	with	file	system	of	the	computer,	contexts	quite	can	be	compared	with	directories.
It	is	possible	to	determine	the	path	to	a	datafile,	specifying	a	directory	containing	it	and	a
name	of	the	datafile.	At	the	same	time,	the	current	context	can	be	quite	associated	with	the
current	directory	to	datafiles	of	which	can	be	referenced	simply	by	their	names.
Furthermore,	like	file	system	the	contexts	can	have	hierarchical	structure,	in	particular:

“Visualization`VectorFields`VectorFieldsDump`”	.	So,	the	path	of	search	of	a	context	of
symbols	in	theMathematica	system	is	similar	to	a	path	of	search	of	program	files.	At	the
beginning	of	the	session	the	current	context	by	default	is“Global’”,	and	all	symbols
entered	into	the	session	will	be	associated	with	this	context,	except	for	the	built–in
symbols,	for	example,Do,	which	are	associated	with	context“System’”.	The	path	of	search
of	contexts	by	default	includes	contexts	for	system–defined	symbols.	Whereas	for	the
symbols	removed	by	means	of	the	Remove	function,	the	context	can’t	be	defined,	for
example:
In[2565]:=	Avz	:=	500;	Context[“Avz”]
Out[2565]=	“Global`”
In[2566]:=	Remove[“Avz”];	Context[“Avz”]

Context	::notfound:	Symbol	Avz	not	found.	>>
Out[2566]=	Context[”Avz”]
At	using	of	the	contexts	there	is	no	guarantee	that	two	symbols	of	the	same	name	are
available	in	various	contexts.	Therefore	theMathematica	defines	as	a	maximum	priority
the	priority	of	choice	of	that	symbol	with	this	name,	whose	context	is	the	first	in	the	list
which	is	defined	by	the	global	variable	$ContextPath.	Therefore,	for	the	placement	of
such	context	in	the	beginning	of	the	specified	list	it	is	possible	to	use	the	following	simple
construction:	In[2568]:=	$ContextPath
Out[2568]=	{”AladjevProcedures`”,	“TemplatingLoader`”,	“PacletManager`”,

“	System`”,	“Global`”}
In[2569]:=	PrependTo[$ContextPath,	“RansIanAvz`”]
Out[2569]=	{”RansIanAvz`”,	“AladjevProcedures`”,	“TemplatingLoader`”,

“	PacletManager`”,	“System`”,	“Global`”}
In[2570]:=	$ContextPath
Out[2570]=	{”RansIanAvz`”,	“AladjevProcedures`”,	“TemplatingLoader`”,

“	PacletManager`”,	“System`”,	“Global`”}
The	next	rather	useful	procedure	provides	assignment	of	the	given	context	to	adefinite
orundefinite	symbol.	The	procedure	callContextToSymbol1[x,	y,	z]	returnsNull,	i.e.
nothing,	providing	assignment	of	a	certainy	context	to	a	symbolx;	at	that,	the	third
optional	argumentz	–	the	string,	defining	forx	the	usage;	at	its	absence	for	anundefinite
symbolx	the	usage–	empty	string,	i.e.””,	while	for	adefinite	symbolx	the	usage	has
view”Help	onx“.	The	next	fragment	presents	source	code	of	theContextToSymbol1

procedure	along	with	the	most	typical	examples	of	its	usage.

In[2725]:=	ContextToSymbol1[x_	/;	AladjevProcedures`SymbolQ[x],	y_	/;
AladjevProcedures`ContextQ[y],	z___]	:=

Module[{a,	b	=	ToString[x]},	Off[General::shdw];	a	=
StringReplace[“BeginPackage["AvzAgnVsvArtKr`"]\n
90::usage=73\nBegin["`90`"]\n500\nEnd[]\nEndPackage[]”,	{“AvzAgnVsvArtKr`”	-
>	y,	“73”–>	If[AladjevProcedures`PureDefinition[x]	===	$Failed,	“""”,	If[{z}!=
{}&&	StringQ[z],	AladjevProcedures`ToString1[z],
AladjevProcedures`ToString1[“Help	on	”	<>	b]]],	“90”–>	b,	“500”–>
If[AladjevProcedures`PureDefinition[x]	===	$Failed,	b,
AladjevProcedures`PureDefinition[x]]}];	Remove[x];	ToExpression[a];
On[General::shdw]]

In[2726]	:=	Sv[x_]	:=	Module[{a	=	90,	b	=	500},	(a	+	b)*x^2]
In[2727]:=	Context[Sv]
Out[2727]=	“Global`”
In[2728]:=	ContextToSymbol1[Sv,	“Agn`”]
In[2729]:=	Sv[73]
Out[2729]=	3	144	110
In[2730]:=	?Sv

Help	on	Sv
In[2731]:=	Vsv[x_]	:=	Module[{a	=	500},	a*x]
In[2732]:=	ContextToSymbol1[Vsv,	“Tampere`”,	“Help	on	module	Vsv.”]	In[2733]:=
Context[Vsv]
Out[2733]=	“Tampere`”
In[2734]:=	ArtKr[x_]	:=	Module[{a	=	90,	b	=	500},	(a	+	b)*x]

In[2734]	:=	ContextToSymbol1[ArtKr,	“AladjevProcedures`”,	“Help	on	module
ArtKr.”]
In[2735]:=	DumpSave[“C:/Users/Aladjev\Mathematica\Tampere.mx”,
“AladjevProcedures`”]
Out[2735]=	{”AladjevProcedures`”}
A	new	current	session	with	the	Mathematica	system
In[3354]:=	Get[“C:\Users\Aladjev\Mathematica\Tampere.mx”]
In[3355]:=	??	ArtKr
Help	on	module	ArtKr.
Art[x_]:=Module[{a=90,b=500},(a+b)	x]
In[3356]:=	PureDefinition[Rans]
Out[3356]=	$Failed
In[3357]:=	ContextToSymbol1[Rans,	“AgnVsv`”]
In[3358]:=	Context[Rans]
Out[3358]=	“AgnVsv`”
In[3359]:=	$Packages
Out[3359]=	{”AgnVsv`”,	“HTTPClient`”,	“HTTPClient`OAuth`”,	…,
“AladjevProcedures`”,	“Tampere`”,	“Agn`”,	…}
In[3360]:=	$ContextPath

Out[3360]=	{”AgnVsv`”,	“AladjevProcedures`”,	“Tampere`”,	“Agn`”,	…}

At	that	along	with	possibility	of	assignment	of	the	given	context	to	symbols
theContextToSymbol1	procedure	is	an	useful	enough	means	for	extension	by	new	means
of	the	user	package	contained	in	amxfile.	The	technology	of	similar	updating	is	as	follows.
On	thefirst	step	a	filex	ofmxformat	with	the	user’s	package	havingy	context	is	uploaded
into	the	current	session	by	the	function	callGet[x].	Then,	in	the	same	session	the	definition
of	a	new	means	f	with	its	usageu	which	describes	the	given	means	is	evaluated.	At	last,	by
the	procedure	callContextToSymbol1[f,y,u]	the	assignment	of	ay	context	to	the	symbolf
along	with	its	usageu	is	provided.	Moreover,	the	usageu	can	be	directly	coded	in	the
procedure	call,	or	be	determined	by	a	certain	string	u.	At	last,	by	the	function
callDumpSave[x,	y]	the	saving	in	themx–filex	of	all	objects	havingy	context	is	provided.
Similar	approach	provides	a	rather	effective	mechanism	of	updating	in	the	context	of
bothdefinitions	andusages	of	the	means	entering	the	user’s	package	which	is	located	in
amx–file.	Yet,	the	approach	is	limited	by	packages	located	in	datafiles	ofmx–format.	As	a
result	the	symbols	with	the	sameshort	name	whose	contexts	are	located	in	the	list	defined
by	the$ContextPath	variable	further	from	the	beginning,	are	inaccessible	for	access	to
them	by	means	of	their	short	names.	Therefore	for	access	to	them	it	is	necessary	to	use	full
names	of	the	following	format	“Context’Name”;	furthermore,	at	entering	into	the	current
session	of	the	new	symbolsoverlapping	the	symbols	of	the	same	name	of	the
list$ContextPath	the	corresponding	message	is	output.	Interesting	enough	questions	in
this	context	are	considered	enough	in	details	in	our	books	[30-33].

8.1.1.	Interconnection	of	contexts	and	packages	in	the	software	of
theMathematicasystem

The	packages	are	one	of	the	main	mechanisms	of	theMathematica	extension	which
contain	definitions	of	the	new	symbols	intended	for	use	both	outside	of	a	package	and	in
it.	These	symbols	can	correspond,	in	particular,	to	the	new	functions	or	objects	determined
in	a	package	that	extend	the	functional	Mathematica	possibilities.	At	that,	according	to
the	adopted	agreement	all	new	symbols	entered	in	some	package	are	placed	in	a	context
whose	name	is	connected	with	the	name	of	the	package.	At	uploading	of	a	package	into
the	current	session,	the	given	context	is	added	into	the	beginning	of	the	list	determined	by
the	global	variable$ContextPath.	As	a	rule,	for	ensuring	of	association	of	a	package	with
a	context	the	constructionBeginPackage[“x’”]	coded	at	its	beginning	is	used.	At
uploading	of	a	package	into	the	current	session	the	context“x’”	will	update	the	current
values	of	the	global	variables	$Context	and$ContextPath.	Thus,	ourAVZ_Package
package	[48]	contains	BeginPackage[“AladjevProcedures’”]	and	at	its	uploading,	the
values	of	the	specified	variables	accept	the	following	view,	namely:

In[2571]:=	$ContextPath
Out[2571]=	{”AladjevProcedures`”,	“TemplatingLoader`”,	“PacletManager`”,

“	System`”,	“Global`”}
In[2572]:=	MemberQ[Contexts[“*”],	“AladjevProcedures`”]
Out[2572]=	True
In[2573]:=	$Packages

Out[2573]=	{”HTTPClient`”,”HTTPClient`OAuth`”,

“	HTTPClient`CURLInfo`”,	“HTTPClient`CURLLink`”,	“JLink`”,
“DocumentationSearch`”,	“AladjevProcedures`”,	“GetFEKernelInit`”,
“TemplatingLoader`”,	“ResourceLocator`”,	“PacletManager`”,	“System`”,	“Global`”}

In[2574]:=	CNames[x_	/;	ContextQ[x],	y___]	:=	Module[{b,
a	=	Names[StringJoin[x,	“*”]]},	b	=	Select[a,
Quiet[ToString[Definition[ToString[#1]]]]	!=	“Null”	&];

If[{y}!=	{}&&	PureDefinition[y]	===	$Failed,	y	=	Sort[DeleteDuplicates[Select[a,
PureDefinition[#]	===	$Failed	&]]]];	Select[b,	Attributes[#]	!=	{Temporary}&&
ToString[Definition[#]]	!=	“Null”	&]]

In[2575]	:=	CNames[“AladjevProcedures`”]
Out[2575]=	{”AcNb“,	“ActBFMuserQ“,	“ActCsProcFunc“,	“ActRemObj“,
“ActUcontexts“,	“AddMxFile“,	“Adrive“,	“Adrive1“,	“Affiliate“,	“Aobj“,	“Aobj1“,
“Args“,	“Args1“,	“ArgsBFM“,	“ArgsTypes“,	…
………………………………………………………………………..	“WhatType“,
“WhatValue“,	“WhichN“,	“XOR1“,	“$CallProc“,	“$InBlockMod“,	“$Line1“,
“$Load$Files$”,	“$ProcName“,	“$ProcType“,	“$TestArgsTypes“,	“$TypeProc“,
“$UserContexts”}
In[2576]:=	Length[%]
Out[2576]=	683
In[2577]:=	CNames[“AladjevProcedures`”,	h];	h
Out[2577]=	{”a“,	“b“,	“c“,	“d“,	“h“,	“k“,	“p“,	“S“,	“x“,	“y“,	“z”}
In[2578]:=	CNames[“System`”]
Out[2578]=	{”AASTriangle“,	“AbelianGroup“,	“AbortKernels“,	“AbortProtect“,	“Abs“,
…,	“$Urgent“,	“$UserBaseDirectory“,	“$UserName“,	“$Version“,	“$VersionNumber”}

At	that,	in	the	above	fragment	instead	of	return	of	the	complete	list	defined	by	the
callContexts[”*”]	to	save	space	only	testing	of	existence	in	it	of	the	specified	context	is
done.	From	the	full	list	defined	by	the	callContexts[“*”]	can	be	easily	noticed	that	in	it
along	with	this	context	exist	elements	of	a	type	“AladjevProcedures’Name’”	that
determine	full	names	of	all	objects	whose	definitions	are	located	in	theAVZ_Package
package	[48].	While	theCNames	procedure	presented	in	the	previous	fragment	allows	to
differentially	obtain	the	lists	of	all	short	names	in	a	package	with	the	given	context	of	both
the	definitions	existing	in	it,	and	undefinite	from	the	standpoint	of	the	current	session.	So,
the	callCNames[x]	returns	the	list	of	all	short	names	in	package	with	a	contextx,	that	have
definitions	in	it;	whereas	the	callCNames[x,	y]	in	addition	through	argumenty	–an
undefinite	variable–	returns	the	list	of	all	undefinite	short	names	in	the	package	with	a
contextx.	Along	with	that,	the	analysis	of	the	list,	returned	thru	optional	argumenty
provides	additional	possibility	of	check	of	contents	of	the	package	relative	to	definiteness
of	all	objects	contained	in	it.	TheCNames	procedure	provides	an	easy	way	of	the
differentiated	analysis	of	contents	of	the	packages	formalized	in	the	form	of
theMathematica	documents	of	the	formats	{“nb”,	“cdf”}.	The	mechanism	of	contexts
has	a	number	of	rather	essential	features	that	need	to	be	taken	into	account	during	the
work	in	the	environment	of	the	system,	first	of	all,	at	use	of	the	procedural	paradigm.
These	features	are	considered	rather	in	details	in	[33].	In	particular,	after	uploading	of	a

package	into	the	current	session	all	its	objects	will	be	associated	with	a	context	ascribed	to
the	package	while	the	objects	of	the	same	name,	whose	definitions	are	evaluated	in	the
current	Mathematica	session	are	associated	with	the	context“Global’”.	For	definition
ofcontexts	of	symbols	theContextDef	procedure	can	be	used,	whose	callContextDef[x]
returns	the	list	of	the	contexts	associated	with	an	arbitrary	symbolx.	If	symbolx	isn’t
associated	with	any	context,	the	empty	list	is	returned,	i.e.	{}.	The	following	fragment
represents	source	code	of	the	ContextDef	procedure	along	with	typical	examples	of	its
usage.

In[3325]	:=	Get[“GSV.mx”]
In[3326]:=	BeginPackage[“RansIan`”]
GSV::usage	=	“help	on	GSV.”
Begin[“`GSV`”]
GSV[x_,	y_,	z_]	:=	Module[{a	=	6},	x*y*z	+	a]
End[]
EndPackage[]
Out[3326]=	“RansIan`”
Out[3327]=	“help	on	GSV.”
Out[3328]=	“RansIan`GSV`”

In[3332]:=	GSV[x_Integer,	z_Integer]	:=	Module[{a	=	90},	(x	+	z)*a]	In[3333]:=
ContextDef[x_	/;	SymbolQ[x]]	:=	Module[{a	=	$ContextPath,	b	=	ToString[x],	c,	d,	k,
j	=	1},

While[j	<=	2,	c	=	{};	k	=	1;	Quiet[While[k	<=	Length[a],	d	=	a[[k]]	<>	b;	If[!
SameQ[ToString[ToExpression[“Definition[”	<>	d	<>	“]”]],	“Null”],	AppendTo[c,
d]];	k++]];	j++];	c]

In[3334]	:=	ContextDef[GSV]
Out[3334]=	{”RansIan`GSV“,	“avzransian500`GSV“,	“Global`GSV”}	In[3335]:=
ProcQ[x_,	y_]	:=	x*y
In[3336]:=	ContextDef[ProcQ]
Out[3336]=	{”RansIan`ProcQ“,	“AladjevProcedures`ProcQ”}
In[3337]:=	Definition[avzransian500`ProcQ]
Out[3337]=	ProcQ[x_,	y_]:=	x*y
In[3338]:=	Definition[“Global`GSV”]
Out[3338]=	Global`GSV[x_Integer,	z_Integer]:=	Module[{a=	90},	(x+	z)*a]	In[3339]:=
Definition[“RansIan`GSV”]
Out[3339]=	RansIan`GSV[RansIan`GSV`x_,	RansIan`GSV`y_,

RansIan	`GSV`z_]:=	Module[{RansIan`GSV`a=	6},
RansIan`GSV`x*RansIan`GSV`y*RansIan`GSV`z+	RansIan`GSV`a]	In[3340]:=
$ContextPath
Out[3340]=	{”avzransian500`”,	“RansIan`”,	“AladjevProcedures`”,
“TemplatingLoader`”,	“PacletManager`”,	“System`”,	“Global`”}

Thus,	at	using	of	the	objects	of	the	same	name,	generally	speaking,	to	avoid
misunderstandings	it	is	necessary	to	associate	them	with	the	contexts	which	have	been
ascribed	to	them.

8.2.	Definition	of	the	user	packages,	and	their	usage	in
theMathematicasoftware

The	global	variable$Packages	defines	the	list	of	the	contexts	corresponding	to	all
packages	uploaded	into	the	current	session,	for	example:

In[2569]	:=	$Packages
Out[2569]=	{”AladjevProcedures`”,	“GetFEKernelInit`”,	…,	“Global`”}	In[2570]:=	Get[
“C:\Avz_Package\Aladjev.m”];	$Packages	Out[2570]=	{”Aladjev`”,
“AladjevProceduresAndFunctions`”,	…,	“Global`”}	As	it	was	already	noted,	each
uploading	of	a	new	package	into	the	current	session	adds	the	context	corresponding	to	it	to
the	beginning	of	the	list	that	is	determined	by	the	global$Packages	variable.	Generally
speaking,	in	the	presence	of	the	loaded	packages	their	means	it	is	quite	possible	to
consider	as	means	at	the	level	of	the	built–in	means	of	theMathematica	system.	In	effect,
quite	essential	number	of	functions	of	theMathematica	system	was	realized	in	the	form	of
packages.	Meanwhile,	in	the	majority	of	versions	of	the	system	preliminary	uploading	of
packages	for	receiving	access	to	means,	contained	in	them	is	required.	The	majority	of
theMathematica	versions	is	provided	with	a	standard	set	of	packages	which	contain
definitions	of	very	large	number	of	functions.	For	their	use,	as	a	rule,	the	appropriate
packages	it	is	necessary	to	upload	professedly	into	the	current	session.Mathematica	has
the	mechanism	of	both	preliminary	loading,	and	automatic	loading	of	packages	as	needed.
Meanwhile	here	one	very	essential	circumstance	takes	place,	namely:	the	help	on	such
package	means	aren’t	reflected	in	the	help	Mathematica	system,	and	it	can	be	received,
for	example,	by	the	call?Name.	Similar	organization	is	completely	inconvenient,	in
particular,	significantly	conceding	to	the	mechanism	of	organization	of	the	helpMaple
system	[27].	The	main	forms	of	preservation	of	definitions	of	the	objects	are	a	document
(notebook)	and	a	package(package)	that	are	located	in	datafiles	of	formats	{cdf,	nb}	and
{m,	mx}	respectively.	At	the	same	time	between	them	there	is	a	certain	distinction.	If
uploading	of	the	first	into	the	current	session	allows	to	work	with	it	as	the	document(look
over,execute,edit,save),	then	the	package	is	intended	only	for	uploading	into	the	current
session.	At	that,	documents	partially	or	completely	can	be	considered	as	the	packages.	In
particular,	for	convenience	of	work	with	theAVZ_Package	package	it	is	presented	inthree
main	platform–independent	formats,	namely	{cdf,	nb,	m}.	It	should	be	noted	that	binary
datailes	of	themxformat	optimized	for	fast	uploading	into	the	current	session	are
nonportable	both	between	versions	of	theMathematica	system,	and	between	operational
platforms.

A	package	uploading	into	the	current	session.	Generally,	a	typical	package	is	provided
with	two	types	of	symbols	determining	as	theexported	symbols,	and	symbols	forinternal
usage.	For	distinction	these	symbols	are	associated	with	different	contexts.	The	standard
reception	consists	in	definition	of	the	exported	symbols	in	a	context	with	the	nameName’
which	corresponds	to	the	package	name.	Then,	at	uploading	of	a	package	it	supplements
the	list	defined	by	the	global$ContextPath	variable	for	providing	of	the	call	of	the
symbols	which	are	in	this	context	by	theirshort	names.	While	the	definitions	of	all
symbols	intended	for	internal	use	are	located	in	a	context	with	a	name	Package’Private’
that	isn’t	added	to	the	list$ContextPath,	without	allowing	to	get	access	to	the	symbols	of
such	context	by	their	short	names.	As	a	rule,	for	setting	of	contexts	of	a	package	and

global	variables$ContextPath	and	$Context	the	standard	sequence	of	functions	in	the
package	is	used:
BeginPackage[“Package`”]–the	setting	for	a	package	of	the	current	context	“Package’”;
F1::usage	=	“Help”–the	help	on	the	exportedF1symbol;further	allows	to	receive	the	help
by	means	of	calls?F1andInformation[F1];
F2::usage	=	“Help”–the	help	on	the	exportedF2symbol;further	allows	to	receive	the	help
by	means	of	calls?F2andInformation[F2];
===
Begin[“`Private`”]–the	setting	of	the	context“‘Private’”for	local	symbols;
F1[args]	:=Definition1;…–definitions	of	local	and	global	symbols	of	package;
F2[args]	:=Definition2;…–definitions	of	local	and	global	symbols	of	package;
===
End[]
EndPackage[]–the	closing	bracket	of	the	package;simultaneously	adding	the
context“Package’”to	the	beginning	of	the	list	of$ContextPath	at	package	uploading	into
the	current	session.

The	previous	fragment	at	the	same	time	represents	the	typical	scheme	of	a	package.	The
package	given	below	serves	as	an	illustration	of	filling	of	this	scheme,	namely:

In[2565]	:=	BeginPackage[“Tallinn`”]
G::usage	=	“Function	G[x,	y]:=	73*x^2+	67*y+	47+	S[x,	y].”	Begin[“`Private`”]
S[x_,	y_]	:=	x^3	+	y^3
G[x_	/;	IntegerQ[x],	y_Integer]	:=	73*x^2	+	67*y	+	47	+	S[x,	y]	End[]
EndPackage[]

Out[2565]	=	“Tallinn`”
Out[2566]=	“Function	G[x,	y]:=	73*x^2+	67*y+	47+	S[x,	y].”	Out[2567]=
“Tallinn`Private`”
Out[2570]=	“Tallinn`Private`”
In[2572]:=	{S[90,	500],	G[90,	500]}
Out[2572]=	{S[90,	500],	126353847}
In[2573]:=	$ContextPath
Out[2573]=	{”Tallinn`”,	“AladjevProcedures`”,	“TemplatingLoader`”,

“	PacletManager`”,	“System`”,	“Global`”}
In[2574]:=	$Context
Out[2574]=	“Tallinn`”
In[2575]:=	Information[S]
Out[2575]=	Tallinn`S
In[2576]:=	Information[G]
Out[2576]=	Function	G[x,	y]:=	73*x^2+	67*y+	47+	S[x,	y].

G[Tallinn	`Private`x_/;	IntegerQ[Tallinn`Private`x],	Tallinn`Private`y_Integer]:=	73
Tallinn`Private`x^2+	67	Tallinn`Private`y+	47+
Tallinn`Private`S[Tallinn`Private`x,	Tallinn`Private`y]

In[2577]	:=	Tallinn`Private`S[90,	500]
Out[2577]=	125	729000

In[2578]:=	$Packages
Out[2578]=	{”Tallinn`”,	“AladjevProcedures`”,	“HTTPClient`OAuth`”,

“	HTTPClient`CURLInfo`”,	“HTTPClient`CURLLink`”,	“HTTPClient`”,
“GetFEKernelInit`”,	“TemplatingLoader`”,	“ResourceLocator`”,	“PacletManager`”,
“System`”,	“Global`”}

We	will	note	that	the	definition	of	help	(usage)	for	the	means	exported	by	a	package
serves	as	a	certain	kind	of	indicator	what	exactly	these	means	are	exported	by	a	package
whereas	definitions	of	means	without	usages	define	local	symbols	which	outside	of	the
package	are	invisible,	however	they	can	be	used	by	bothlocal,	andglobal	symbols	of	the
package.	Such	organization	is	simpler	and	in	some	cases	is	a	little	more	preferable.	So	the
organizational	scheme	of	a	package	can	be	simplified,	having	assumed	rather	simple	view,
represented	by	the	following	fragment.	The	fragment	visually	illustrates	the	principle	of
formation	of	a	package	taking	into	account	the	made	remarks.

BeginPackage[“Package`”]–the	setting	for	a	package	of	the	current	context	“Package’”;
F::usage	=“Help”	–the	help	on	the	exportedFsymbols;further	allows	to	receive	the	help
by	means	of	calls?FandInformation[F];
Begin[“`F`”]–the	setting	of	a	context“‘F’”for	a	global	symbol;
F[Formal	args]	=Definition	F;…–definitions	of	global	package	symbols;
V[Formal	args]	=Definition	V;…–definitions	of	local	package	symbols;
===
End[]
EndPackage[]–the	closing	bracket	of	the	package;simultaneously	adding	the
context“Package’”to	the	beginning	of	the	list	of$ContextPath	at	package	uploading	into
the	current	session.

Thus,	programming	of	a	package	can	be	simplified	by	means	of	definition	of	local
variables	without	usages	corresponding	to	them	while	all	exports	of	the	package	are
defined	by	the	usages	corresponding	to	them	as	illustrates	the	following	simple	enough
fragment,	namely:

In[2590]	:=	BeginPackage[“Tallinn73`”]
G6::usage	=	“Function	G73[x,	y]	:=	72*x^2	+	67*y	+	47	+	S6[x,	y].”	Begin[“`G6`”]
S6[x_,	y_]	:=	x^4	+	y^4
G6[x_	/;	IntegerQ[x],	y_Integer]	:=	72*x^2	+	67*y	+	47	+	S6[x,	y]	End[]
EndPackage[]

Out[2590]	=	“Tallinn`”
Out[2591]=	“Function	G6[x,	y]:=	72*x^2+	67*y+	47+	S6[x,	y].”	Out[2592]=
“Tallinn`G6`”
Out[2593]=	“Tallinn`G6`”
In[2595]:=	{S6[90,	500],	G6[90,	500]}
Out[2595]=	{S6[78,	460],	62566226747}
In[2596]:=	$ContextPath
Out[2596]=	{”Tallinn73`”,	“Tallinn`”,	“AladjevProcedures`”,

“	TemplatingLoader`”,	“PacletManager`”,	“System`”,	“Global`”}	In[2597]:=	$Packages
Out[2597]=	{”Tallinn73`”,	“Tallinn`”,	“AladjevProcedures`”,

“HTTPClient`OAuth`”,	“HTTPClient`CURLInfo`”,	“HTTPClient`CURLLink`”,
“HTTPClient`”,	“GetFEKernelInit`”,	“TemplatingLoader`”,	“ResourceLocator`”,
“PacletManager`”,	“System`”,	“Global`”}

In[2598]	:=	Information[S6]
Global`S6
In[2598]:=	Information[G6]
Function	G6[x,	y]:=	72*x^2+	67*y+	47+	S6[x,	y].
G6[Tallinn73`G6`x_/;	IntegerQ[Tallinn73`G6`x],
Tallinn73`G6`y_Integer]:=	72	Tallinn73`G6`x^2+
67	Tallinn73`G6`y+	47+	Tallinn73`G6`S6[Tallinn73`G6`x,	Tallinn73`G6`y]

So,	the	call	Context[x]	of	the	standard	function	returns	a	context	associated	with	a
symbolx.	Meanwhile,	rather	interesting	question	is	determination	of	them–file	with	a
package	containing	the	given	context.	The	procedure	call	FindFileContext[x]	returns	the
list	of	full	paths	tom–files	with	the	packages	containing	the	given	contextx;	in	the	absence
of	such	datafiles	the	procedure	call	returns	the	empty	list,	i.e.	{}.	At	that,	the
callFindFileContext[x,	y,	z,	…]	with	optional	arguments	{y,z,	…}–	the	names	in	string
format	of	devices	of	external	memory	of	direct	access–	provides	search	of	required	files
on	the	specified	devices	instead	of	search	in	all	file	system	of	the	computer	in	case	of	a
procedure	call	with	one	actual	argument.	The	search	of	the	requiredmfiles	is	done	also	in
theRecycle	Bin	directory	of	theWindows	system	as	that	very	visually	illustrates	an
example	of	the	next	fragment.	It	must	be	kept	in	mind	that	search	within	all	file	system	of
the	computer	can	demand	enough	essential	temporal	expenditure.The	next	fragment
represents	source	code	of	theFindFileContext	procedure	along	with	typical	examples	of
its	usage.

In[2600]	:=	FindFileContext[x_	/;	ContextQ[x],	y___]	:=	Module[{b	={},	c	=	””,	d	=
StringJoin[“BeginPackage[“,	StrStr[x],	“]”],	s	=	{},	k	=	1,	j	=	1,	a	=	If[{y}==	{},
Adrive[],	{y}],	f	=	“$Kr18_Art26$.txt”},

While[k	<=	Length[a],	Run[“Dir	“,	StringJoin[a[[k]],	“:*.*”],	StringJoin[”	/A/B/O/S
>	“,	f]];	While[!	c	===	EndOfFile,	c	=	Read[f,	String];	If[!	DirQ[c]	&&
FileExtension[c]	==	“m”,	AppendTo[b,	c]];	j++];	c	=	””;	j	=	1;	k++];	k	=	1;	While[k
<=	Length[b],	c	=	ToString[ReadFullFile[b[[k]]]];	If[!	StringFreeQ[c,	d],
AppendTo[s,	b[[k]]]];	k++];	DeleteFile[Close[f]];	s]

In[2601]	:=	FindFileContext[“Tallinn`”]
Out[2601]=	{”C:\AVZ_Package\Tallinn.m”}
In[2602]:=	FindFileContext[“AladjevProcedures`”]
Out[2602]=	{”C:\GrGU_Books\AVZ_Package\AVZ_Package.m“,

“	C:\Users\Aladjev\Mathematica\AVZ_Package.m”}	In[2603]:=
FindFileContext[“AvzAgnSvetArtKr`”,	“F”]
Out[2603]=	{}
In[2604]:=	FindFileContext[“AladjevProcedures`”]
Out[2604]=	{”C:\$RECYCLE.BIN\S-1-5-21-2596736632-989557747-

1273926778	-1000\AVZ_Package.m“,
“C:\GrGU_Books\AVZ_Package\AVZ_Package.m“,

“C:\Users\Aladjev\Mathematica\AVZ_Package.m”}

For	definition	of	the	status	of	existence	of	a	context	(absent	context,a	current	context
without	file,a	current	context	with	am–file,inactive	context	with	am–file)	the
followingFindFileContext1	procedure	can	be	used,	whose	source	code	with	typical
examples	of	usage	represents	the	following	fragment,	namely:

In[2608]:=	FindFileContext1[x_	/;	ContextQ[x]]	:=

Module[{a	=	FindFileContext[x],	b	=	If[MemberQ[$Packages,	x],	“Current”,	{}]},
If[a	!=	{}&&	!	SameQ[b,	{}],	{b,	a},	If[a	!=	{}&&	SameQ[b,	{}],	a,	If[a	==	{}&&	!
SameQ[b,	{}],	b,	{}]]]]

In[2609]	:=	FindFileContext1[“Tallinn`”]
Out[2609]=	“Current”
In[2610]:=	FindFileContext1[“AladjevProcedures`”]
Out[2610]=	{”Current“,	{”C:\$RECYCLE.BIN\S-1-5-21-2596736632-

989557747	-1273926778-1000\AVZ_Package.m“,
“C:\GrGU_Books\AVZ_Package\AVZ_Package.m“,
“C:\Users\Aladjev\Mathematica\AVZ_Package.m”}}

In[2611]:=	FindFileContext1[“Aladjev`”]
Out[2611]=	{”f:\avz_package\aladjev.m”}

In[2612]	:=	FindFileContext1[“RansIanRacRea`”]
Out[2612]=	{}
In[2613]:=	FindFileContext1[“PacletManager`”]
Out[2613]=	{”Current“,	{”C:\Program	Files\Wolfram	Research\

Mathematica\10.1\SystemFiles\Autoload\	PacletManager\PacletManager.m”}}
Depending	on	the	status	of	a	contextx	the	callFindFileContext1[x]	returns	the	following
result,	namely:

–	{”Current“,	{m–files}}–the	current	contextxlocated	in	the	indicatedm–files;
–”Current”–the	current	contextx,not	associated	withm–files;
–	{m–files}–the	contextxis	located	inm–files,but	not	in	the$Packageslist;
–	{}–the	contextxis	formally	correct,but	not	actual.

As	an	essential	enough	addition	to	the	above	procedures	FindFileContext
andFindFileContext1	is	theContextInFile	procedure	providing	search	of	datafiles	of	the
types	{cdf,m,	mx,	nb,	tr}	containing	definitions	of	packages	with	the	given	context.	The
procedure	callContextInFile[x,y]	returns	the	list	of	full	paths	to	datafiles	of	the	indicated
types	containing	definitions	of	packages	with	a	contextx.	At	that,	search	is	executed	in	a
directory,	defined	by	the	second	optional	argumenty;	in	its	absence	the	search	of	datafiles
is	executed	in	the“C:\”	directory.	Return	of	the	empty	list,	i.e.	{},	determines	absence	of
the	sought-for	datafiles	in	the	given	path	of	search.	The	fragment	below	represents	source
code	of	the	procedure	with	examples	of	its	usage.

In[2578]:=	ContextInFile[x_	/;	ContextQ[x],	y___]	:=	Module[{b,	d,	h,	Tav,	c	=
“$Art26Kr18$”},	If[{y}!=	{}&&	DirectoryQ[y],

Run[“DIR	”	<>	StandPath[y]	<>	“/A/B/O/S	>	$Art26Kr18$”],	Run[“DIR	C:\

/A/B/O/S	>	$Art26Kr18$”]];	d	=	ReadList[c,	String];	DeleteFile[c];

Tav[t_	/;	ListQ[t]]	:=	Module[{m,	v	=	{},	k,	z,
a	=	“BeginPackage[”	<>	ToString1[x]	<>	“]”},

Map[If[FileExistsQ[#]	&&	MemberQ[{“cdf”,	“nb”,	“m”,	“mx”,	“tr”},
FileExtension[#]],	If[MemberQ[{“tr”,	“m”},	FileExtension[#]]	&&	!
StringFreeQ[ReadFullFile[#],	a],	AppendTo[v,	#],	If[MemberQ[{“cdf”,	“nb”},
FileExtension[#]],	{m,	h,	k}=	{0,	””,	1};	For[k,	k	<	Infinity,	k++,	h	=	Read[#,	String];
If[h	===	EndOfFile,	Close[#];	Break[],	If[!	StringFreeQ[h,	“BeginPackage”]	&&	!
StringFreeQ[h,	x],	m	=	90;	Close[#];	Break[],	Continue[]]]];	If[m	==	90,	AppendTo[v,
#],	Null],	If[FileExtension[#]	==	“mx”,

z	=	StringPosition[ReadFullFile[#],	{“CONT”,	“ENDCONT”}];	If[!
StringFreeQ[StringTake[ReadFullFile[#],	{z[[1]][[1]],	z[[2]][[1]]}],	”	”	<>	x	<>	”	“];
AppendTo[v,	#],	Null]]]],	Null]	&,	t];	v];	Tav[d]]

In[2579]	:=	ContextInFile[“AladjevProcedures`”,
“C:\Users\Aladjev\Mathematica”]
Out[2579]=	{”c:\users\aladjev\mathematica\AVZ_Package.cdf“,
“c:\users\aladjev\mathematica\AVZ_Package.m“,
“c:\users\aladjev\mathematica\AVZ_Package.mx“,
“c:\users\aladjev\mathematica\AVZ_Package.nb”}
In[2580]:=	ContextInFile[“ArtKrSvetGal`”]
Out[2580]=	{}
In[2581]:=	ContextInFile[“AladjevProcedures`”,	“E:\”]
Out[2581]=	{”e:\users\aladjev\mathematica\AVZ_Package.cdf“,
“e:\users\aladjev\mathematica\AVZ_Package.m“,
“e:\users\aladjev\mathematica\AVZ_Package.mx“,
“e:\users\aladjev\mathematica\AVZ_Package.nb”}
In[2582]:=	ContextInFile[“PacletManager`”,	“C:\Program	Files\	Wolfram
Research\Mathematica\10.1\SystemFiles\Autoload”]
Out[2582]=	{”c:\program	files\wolfram	research\mathematica\10.1
\systemfiles\autoload\PacletManager\PacletManager.m”}

The	procedures	FindFileContext,	FindFileContext1	andContextInFile	are	rather	useful
during	the	operating	with	packages.	Meanwhile,	realization	of	search	of	files	with	the
given	context	within	all	file	system	of	the	computer,	as	a	rule,	can	demand	enough
essential	time	costs.	Below,	some	other	useful	procedures	for	work	with	packages	and
their	contexts	will	be	represented.	In	a	sense	the	proceduresContextMfile
andContextNBfile	are	inverse	to	the	procedures	FindFileContext,	FindFileContext1,
ContextInFile,	their	successful	calls	ContextMfile[x]	and	ContextNBfile[x]	return	the
context	associated	with	the	package	which	is	located	in	a	datafile	of	formatsm	and	{nb,
cdf}	accordingly;	the	datafile	is	given	by	means	of	name	or	full	path	to	it.	The	next
fragment	presents	source	codes	of	the	proceduresContextMfile	andContextNBfile	along
with	the	most	typical	examples	of	their	usage.

In[2570]	:=	ContextMfile[x_	/;	FileExistsQ[x]	&&	FileExtension[x]	==	“m”]	:=
Module[{b,	a	=	ReadFullFile[x],	c},	b	=	SubsString[a,	{“BeginPackage["”,	“"]”}];	c

=	If[b	!=	{},	StringTake[b,	{14,–2}]];	If[b	===	{},	$Failed,	c	=	Flatten[StringSplit[c,
“,”]];	c	=	Select[Quiet[ToExpression[c]],	ContextQ[#]	&];	If[Length[c]	>	1,	c,	c[[1]]]]]

In[2571]	:=	ContextMfile[“c:\users\aladjev\mathematica\	AVZ_Package.m”]
Out[2571]=	“AladjevProcedures`”
In[2572]:=	ContextMfile[“D:\AVZ_Package\RansIan.m”]
Out[2572]=	$Failed
In[2573]:=	ContextMfile[“C:/AVZ_Package/AVZ_Package_1.m”]
Out[2573]=	“AladjevProcedures`”
In[2574]:=	ContextMfile[“C:/temp\A	A	A\Aladjev.m”]
Out[2574]=	“Aladjev`”
In[2575]:=	ContextMfile[$InstallationDirectory	<>
“\SystemFiles\Kernel\Packages\GraphEdit.m”]
Out[2575]=	“GraphEdit`”

In[2580]:=	ContextNBfile[x_	/;	FileExistsQ[x]	&&	MemberQ[{“cdf”,	“nb”},
FileExtension[x]]]	:=	Module[{a	=	””},

While[!	SameQ[a,	EndOfFile],	a	=	Read[x,	String];	If[!	StringFreeQ[a,
“BeginPackage”],	a	=	Quiet[ToExpression[ToExpression[StringSplit[a,	“,”][[3]]]]];
Break[]];	Continue[]];	Close[x];	If[!	ContextQ[a]	||	SameQ[a,	EndOfFile],	$Failed,	a]]
In[2581]:=	ContextNBfile[“D:\AVZ_PACKAGE\AVZ_Package.nb”]	Out[2581]=
“AladjevProcedures`”

In[2582]	:=	ContextNBfile[“D:\AVZ_PACKAGE\Book_3.nb”]	Out[2582]=	$Failed
In[2583]:=	ContextNBfile[“D:\AVZ_PACKAGE\AVZ_Package.cdf”]	Out[2583]=
“AladjevProcedures`”
In[2584]:=	ContextNBfile[“C:/AVZ_Package/AVZ_Package_1.nb”]	Out[2584]=
“AladjevProcedures`”
In[2585]:=	ContextNBfile[“C:/Temp/A	A	A\AVZ_Package.nb”]	Out[2585]=
“AladjevProcedures`”

Thus,	the	ContextNBfile	procedure	similar	to	theContextMfile	procedure	completes	the
previous	fragment,	but	it	is	oriented	onto	the	user’s	packages	located	in	datafiles	of	the
format	{“cdf”,	“nb”}	whose	internal	organization	differs	from	the	organization	ofm–files
with	packages.	The	procedure	call	ContextNBfile[x]	returns	the	context	associated	with
the	package	which	is	located	in	a	datafilex	of	the	format	{“cdf”,	“nb”}	that	is	given	by
means	of	a	name	or	full	path	to	it.	If	datafilex	doesn’t	contain	a	context,	the	procedure	call
ContextNBfile[x]	returns	$Failed.	Both	procedures	have	a	number	of	important	enough
appendices	at	work	with	datafiles	containing	packages.

On	the	basis	of	the	ContextMfile	procedure	for	testing	of	system	packages	(m–files)	that
are	located	in	the	directory	defined	by$InstallationDirectory	variable
theSystemPackages	procedure	has	been	created	whose	procedure	callSystemPackages[]
returns	the	list	in	which2–element	sublists	have	the	format	{Package,its	context}	while	the
callSystemPackages[x]	thru	optional	argumentx	–an	undefinite	variable–	in	addition
returns	the	list	of	the	system	packages	which	aren’t	possessing	contexts,	i.e.	are	used	for
internal	needs	of	theMathematica	system.	The	next	fragment	represents	source	code	of
the	SystemPackages	procedure	along	with	typical	examples	of	its	usage.

In[2678]:=	SystemPackages[y___]	:=	Module[{a,	b},
a	=	FileNames[“*.m”,	$InstallationDirectory,	Infinity];	b	=
Quiet[DeleteDuplicates[Map[{FileBaseName[#],

ContextMfile[#]	}&,	a]]];	b	=	Select[b,	#	!=	{}&];	If[{y}!=	{}&&	!	HowAct[y],	y	=
Select[Map[If[SameQ[#[[2]],	$Failed],	#[[1]]]	&,	b],	!	SameQ[#,	Null]	&]];	Select[b,	!
SameQ[#[[2]],	$Failed]	&]]

In[2679]:=	SystemPackages[]
Out[2679]=	{{”Common“,	{”AuthorTools`Common`”,
“AuthorTools`MakeProject`”}},
{”DiffReport“,	{”AuthorTools`DiffReport`”,

“	AuthorTools`Common`”}},
{”Experimental“,	“AuthorTools`Experimental`”},
{”ExportNotebook“,	{”AuthorTools`ExportNotebook`”,

“	AuthorTools`Common`”}},…,
==	{”WebpTools“,
“WebpTools`”},	{”WebServices“,	“WebServices`”},

{	“DateString“,	“XMLSchema`DateString`”},
{”XMLSchema“,	“XMLSchema`”}}
In[2680]:=	Length[%]
Out[2680]=	282
In[2681]:=	SystemPackages[Sv];	Sv
Out[2681]=	{”AstronomyConvenienceFunctionsLoader“,
“AstronomyConvenienceFunctions“,	“PacletInfo“,	“Default“,
“init“,	“DataDropClientLoader“,	“DataDropClient“,	…,
==
“DLL“,	“InstallNET“,	“JLinkCommon“,	“MakeNETObject“,
“MathKernel“,	“NETBlock“,	“NET“,	“TerraService“,
“WebServicesNavigator“,	“Implementation“,	“WSDL”}	In[2682]:=	Length[%]
Out[2682]=	2318
In[2683]:=	t	=	TimeUsed[];	SystemPackages[Kr];	Kr;	TimeUsed[]–t	Out[2683]=
18.315
In[2684]:=	Length[FileNames[“*.*”,	$InstallationDirectory,	Infinity]]	Out[2684]=	24
793

In[2768]	:=	t	=	TimeUsed[];	a	=	FileNames[“*.*”,	“C:\”,	Infinity];	TimeUsed[]–t
General::dirdep:	Cannot	get	deeper	in	directory	tree:	C:\Documents…>>
General::cdir:	Cannot	set	current	directory	to	PerfLogs.	>>
General::cdir:	Cannot	set	current	directory	to	cache.	>>
General::dirdep:	Cannot	get	deeper	in	directory	tree:C:\ProgramData…>>	General::stop:
Further	output	of	General::dirdep	will	be	suppressed	during	this	calculation.	>>
General::cdir:	Cannot	set	current	directory	to	Favorites.	>>
General::stop:	Further	output	of	General::cdir	will	be	suppressed	during	this	calculation.
>>
Out[2768]=	2.371

In[2769]:=	t	=	TimeUsed[];	Run[“DIR	C:\	/A/B/O/S	>	$Art26Kr18$”];	TimeUsed[]–t
Out[2769]=	0.015
In[2770]:=	Length[a]
Out[2770]=	165	672
In[2771]:=	t	=	””;	For[k	=	1,	k	<	Infinity,	k++,	If[t	===	EndOfFile,	Break[],	t	=
Read[“$Art26Kr18$”,	String];	Continue[]]];	k
Out[2771]=	191	242

Inasmuch	as,	in	particular,	the	directory	containing	the	systemMathematica	10
contains24793	datafiles	of	different	types,	their	testing	demands	certain	time	needs	as
illustrates	an	example	of	the	previous	fragment.	At	the	same	time	it	must	be	kept	in	mind
that	in	a	view	of	the	told,	the	access	to	internal	packages	of	theMathematica	system	by
means	of	themechanism	of	contexts	is	impossible.	Here	quite	appropriate	to	make	one
rather	essential	remark.

Meanwhile,	the	ContextMfile	procedure	provides	search	only	of	the	first	context	in
am–file	with	a	package	whereas	generally	multiple	contexts	can	be	associated	with	a
package.	The	nextContextMfile1	procedure	provides	the	solution	of	this	question	in	case
of	multiple	contexts.	The	procedure	call	ContextMfile1[x]	returns	the	list	of	the	contexts
or	single	context	associated	with	a	datafilex	of	formats	{“m”,“tr”},	in	case	of	lack	of
contexts	the	empty	list,	i.e.	{}	is	returned.	Furthermore,	the	additionaltr–format	allows	to
carry	out	search	of	contexts	in	the	system	datafiles	containing	contexts.	Moreover,	in
caseFileExistsQ[x]	=False	the	search	of	a	datafilex	is	done	in	file	system	of	the	computer
as	a	whole.	Whereas	theActUcontexts	procedure	provides	obtaining	of	the	list	ofcontexts
of	the	current	session	that	are	associated	with	the	user	packages.
The	procedure	callActUcontexts[]	for	obtaining	of	the	list	uses	an	algorithm	that	is	based
on	the	analysis	of	system	datafiles	of	formats	{“m”,	“tr”},	while	the	callActUcontexts[x]
where	optional	argumentx	is	arbitrary	expression,	is	based	on	the	search	of	system
datafiles	of	the	view”StringTake[Context,	{1,–2}]<>{“m”,	“tr”}”.	If	the	first	algorithm
is	more	universal,	whereas	the	second	significantly	more	high–speed.	TheReadFullFile1
function	used	by	theContextMfile1	procedure,	is	an	useful	modification	of
theReadFullFile	procedure.	Whereas	the	procedure	callSysContexts[]	returns	the	list	of
all	system	contexts,	and	the	function	callSystemSymbols[]	returns	all	system	symbols.
The	fragment	below	represents	source	codes	of	the	above	means	along	with	examples	of
their	typical	usage.

In[2600]:=	ContextMfile1[x_	/;	MemberQ[{“m”,	“tr”},	FileExtension[x]]]	:=

Module[{b	=	“BeginPackage[“,	c,	d,	a	=	ReadFullFile1[If[FileExistsQ[x],	x,
Flatten[{FindFile1[x]}][[1]]]]},	If[a	===	{},	{},	c	=	StringPosition[a,	b];	If[c	==	{},	{},
d	=	SubStrToSymb[StringTake[a,	{Flatten[c][[2]],–1}],	1,	“]”,	1];	d	=
StringReplace[StringTake[d,	{2,–2}],	{”{”–>	””,	“}”–>	””}];	d	=	Map[ToExpression,
StrToList[d]];	If[Length[d]	==	1,	d[[1]],	d]]]]	In[2601]:=
ContextMfile1[“DocumentationSearch.m”]

Out[2601]	=	{”DocumentationSearch`”,	“ResourceLocator`”}
In[2602]:=	ContextMfile1[“IanRans.m”]
Out[2602]=	{}
In[2603]:=	ContextMfile1[“AVZ_Package.m”]

Out[2603]=	“AladjevProcedures`”

In[2620]:=	SubStrToSymb[x_	/;	StringQ[x],	n_	/;	IntegerQ[n],	y_	/;	StringQ[y]	&&	y
!=	””,	p_	/;	MemberQ[{0,	1},	p]]	:=

Module[{a,	b	=	StringLength[x],	c,	d,	k},	If[n	<=	0	||	n	>=	b	||	StringFreeQ[x,	y],
$Failed,	c	=	StringTake[x,	{n}];	For[If[p	==	0,	k	=	n–1,	k	=	n	+	1],	If[p	==	0,	k	>=	1,	k
<=	b],	If[p	==	0,	k––,	k++],	If[Set[d,	StringTake[x,	{k}]]	!=	y,	If[p	==	0,	c	=	d	<>	c,	c	=
c	<>	d],	Break[]]];	If[k	<	1	||	k	>	b,	$Failed,	If[p	==	0,	c	=	y	<>	c,	c	=	c	<>	y]]]]
In[2620]:=	SubStrToSymb[“85123456786”,	7,	“8”,	0]
Out[2620]=	“8512345”

In[2740]	:=	SubStrToSymb[“85123456786”,	7,	“2”,	1]
Out[2740]=	$Failed
In[2620]:=	SubStrToSymb[“85123456786”,	1,	“6”,	1]
Out[2620]=	“85123456”

In[2649]:=	ActUcontexts[x___]	:=	Module[{c,	d	=	{},	k,	j,
a	=	MinusList[$Packages,	{“System`”,	“Global`”}],	b	=	FileNames[{“*.m”,	“*.tr”},
$InstallationDirectory,	Infinity]},

c	=	DeleteDuplicates[Map[StringTake[#,	{1,	Flatten[StringPosition[#,	“`”]][[1]]}]	&,
a]];	If[{x}=={},	For[k	=1,	k	<=	Length[c],	k++,	For[j	=	1,	j	<=	Length[b],	j++,
If[FileBaseName[b[[j]]]	<>	“`”	==	c[[k]]	||	MemberQ[ContextMfile1[b[[j]]],	c[[k]]],
AppendTo[d,	c[[k]]];	Break[]]]];	MinusList[c,	d],	c	=	Map[StringTake[#,	{1,–2}]	&,
c];	For[k	=	1,	k	<=	Length[c],	k++,	For[j=	1,	j	<=	Length[b],	j++,
If[FileBaseName[b[[j]]]	==	c[[k]],

AppendTo[d,	c[[k]]];	Break[]]]];	MinusList[c,	d]]]	In[2650]:=	ActUcontexts[590]
Out[2650]=	{”Tallinn`”,	“Grodno`”,	“AladjevProcedures`”}
In[2656]:=	ReadFullFile1[x_	/;	FileExistsQ[x]]	:=
StringReplace[Quiet[Check[ReadString[x],	””]],	“\r\n”–>	””]	In[2657]:=
ReadFullFile1[“C:\Temp\Cinema.txt”]
Out[2657]=	http://www.worldlento4ka.com/russkiye-serialy/

In[2670]	:=	SysContexts[]:=	Module[{a	=	Contexts[],	b	=	ActUcontexts[590]},
Select[a,	!	SuffPref[#,	b,	1]	&]]
In[2671]:=	SysContexts[]
Out[2671]=	{”Algebra`”,	“Algebraics`Private`”,	“Algebra`Polynomial`”,…..,	“XML`”,
“XML`MathML`”,	“XML`MathML`Symbols`”,	“XML`NotebookML`”,	“XML`Parser`”,
“XML`RSS`”,	“XML`SVG`”}

In[2672]:=	Length[%]
Out[2672]=	753
In[2694]:=	SystemSymbols[]	:=	Module[{a	=	Names[“*”],
b	=	Join[Map[FromCharacterCode,	Range[63488;	63596]],	CNames[“Global`”]],	c	=
ActUcontexts[590]},	MinusList[a,	Join[b,	Flatten[Map[CNames[#]	&,	c]]]]]
In[2695]:=	h	=	SystemSymbols[];	Length[h]
Out[2695]=	6016

It	should	be	noted	that	the	above	ContextMfile1	procedure	for	the	purpose	of	increase	of

performance	significantly	uses	theSubStrToSymb	procedure	which	belongs	to	means	of
processing	of	string	expressions.	The	procedure	callSubStrToSymb[x,	n,	y,	p]	returns	a
substring	of	a	stringx	bounded	on	the	left(p=	1)	by	a	positionn	and	the	first	occurrence	of
a	symboly,	and	on	the	right(p=	0)	by	a	positionn	and	the	first	occurrence	of	a	symboly,	i.e,
at	p	=	0	andp	=	1	the	search	of	the	symboly	is	done	right	to	left	and	left	to	right
accordingly.	Moreover,	in	a	case	of	absence	at	search	of	a	required	symboly	the	procedure
callSubStrToSymb[x,	n,	y,	p]	returns$Failed,	while	in	other	especial	cases	the	procedure
call	is	returned	unevaluated.	At	that,	the	given	procedure	along	with	the	above–mentioned
application	has	enough	much	of	other	interesting	appendices	at	processing	of	various
string	expressions.

The	Mathematica	system	posesses	theFileNames	function	which	allows	to	obtain	the	list
of	datafiles	of	the	given	type	in	the	specified	directories	of	file	system	of	the	computer.	In
particular,	ourSystemPackages	procedure	uses	this	function	for	obtaining	ofm–files	with
system	packages.	Meanwhile,	in	the	means	considered	earlier	for	operating	with	datafiles
and	directories	the	constructions	of	type“Run[DIR	…..]”	were	generally	used	and	that	is
why.	First,	in	the	case	of	large	number	of	the	tested	files	the	considerable	volume	ofRAM
is	required	while	on	the	basis	of	the	specified	construction	the	list	of	datafiles	is	output
into	aHD	datafile.	Secondly–	the	specified	construction	demands	smaller	time	expenses
concerning	theFileNames	function;	at	last,	the	function	call	on	the	main	system	directory
causes	erroneous	situations,	not	allowing	to	receive	the	complete	list	of	the	datafiles
contained	in	it.	The	last	examples	of	the	previous	fragment	illustrate	the	given	reasons.
For	receiving	access	to	package	tools	it	is	necessary	that	package	containing	them	was
uploaded	into	the	current	session,	and	the	list	determined	by	the	$ContextPath	variable
has	to	include	the	context	corresponding	to	the	given	package.	A	package	can	be	loaded	in
any	place	of	the	current	document	by	the	function	callGet[“context’”]	or	by	the	function
callNeeds[“context’”]	to	determine	uploading	of	a	package	if	thecontext	associated	with
the	package	is	absent	in	the	list	defined	by	the$Packages	variable.	In	the	case	if	package
begins	withBeginPackage[“Package’”],	at	its	loading	into	the	lists	defined	by	the
variables$ContextPath	and$Packages	only	the	context“Package’”	is	placed,	providing
access	to	exports	of	the	package	and	system	tools.	If	the	package	uses	means	of	other
packages,	the	given	package	should	begin	with	BeginPackage[“Package’”,
{“Package1’”,	…,	“Package2’”}]	with	indication	of	the	list	of	the	contexts	associated
with	such	packages.	It	allows	to	include	in	addition	in	lists	of$ContextPath
and$Packages	the	demanded	contexts.	With	features	of	uploading	of	packages	the	reader
can	familiarize	in	[33].

A	package	similarly	to	the	procedures	allows	a	nesting;	at	that,	in	the	system	all
subpackages	composing	it	are	distinguished	and	registered.	Moreover,	the	objects
determined	both	in	the	main	package,	and	in	its	subpackages	are	fully	accessible	in	the
current	session	after	uploading	of	the	nested	package	as	quite	visually	illustrates	the
following	very	simple	fragment.	Meanwhile,	for	performance	of	the	aforesaid	it	is
necessary	to	redefine	the$ContextPath	variable	after	uploading	of	the	nested	package,
having	added	all	contexts	of	subpackages	of	the	main	package	to	the	list	determined	by	the
variable:

In[2567]	:=	BeginPackage[“Kiev`”]
W::usage	=	“Help	on	W.”

Begin[“`W`”]
W[x_Integer,	y_Integer]	:=	x^2	+	y^2
End[]
BeginPackage[“Kiev1`”,	{“Kiev`”}]
W1::usage	=	“Help	on	W1.”
Begin[“`W1`”]
W1[x_Integer,	y_Integer]	:=	x*y	+	W[x,	y]
End[]
EndPackage[]
EndPackage[]

Out[2567]	=	“Kiev`”
Out[2568]=	“Help	on	W.”
Out[2569]=	“Kiev`W`”
Out[2571]=	“Kiev`W`”
Out[2572]=	“Kiev1`”
Out[2573]=	“Help	on	W1.”
Out[2574]=	“Kiev1`W1`”
Out[2576]=	“Kiev1`W1`”
In[2578]:=	$ContextPath
Out[2578]=	{”Kiev1`”,	“Kiev`”,	“System`”}
In[2579]:=	$Packages
Out[2579]=	{”Kiev1`”,	“Kiev`”,	“AladjevProcedures`”,	“GetFEKernelInit`”,

“	TemplatingLoader`”,	“ResourceLocator`”,	“PacletManager`”,	“System`”,	“Global`”}
In[2580]:=	CNames[“Kiev`”]
Out[2580]=	{”W”}
In[2581]:=	CNames[“Kiev1`”]
Out[2581]=	{”W1”}
In[2582]:=	{W[42,	73],	W1[42,	73]}
Out[2582]=	{7093,	10159}
In[2583]:=	Definition[W]
Out[2583]=	W[Kiev`W`x_Integer,	Kiev`W`y_Integer]:=	Kiev`W`x^2+	Kiev`W`y^2
In[2584]:=	Definition[W1]
Out[2584]=	W1[Kiev`W1`x_Integer,	Kiev`W1`y_Integer]:=
Kiev`W1`x	Kiev`W1`y+	W[Kiev`W1`x,	Kiev`W1`y]

After	evaluation	of	definition	of	the	user	package	of	any	nesting	level	it	can	be	saved	in
datafiles	of	the	following	three	system	formats,	namely:

F.nb	–	a	datafile	with	the	standard	document(notebook)	of	theMathematica	system;
moreover,	there	is	a	possibility	of	converting	of	such	datafiles	into	datafiles	of9	formats,
including	formats	{“cdf”,	“m”};
F.m	–	a	datafile	with	a	package	of	source	format	of	theMathematica	system;	F.mx	–	a
datafile	with	a	package	inDumpSave	format	of	theMathematica	system;	this	datafile	is
optimized	under	the	used	operational	platform(as	a	rule,	Windows,	MacOSX,	Linux).

As	it	was	already	noted	above,	the	objects	defined	in	the	main	package	and	in	its
subpackages	are	fully	accessible	in	the	current	session	after	uploading	of	the	main	package

into	it,	and	also	redefinition	of$ContextPath	variable	by	means	of	addition	into	the	list
determined	by	it,	of	all	contexts	associated	with	subpackages	of	the	main	package.	In	this
context	theToContextPath	procedure	automates	the	given	task,	whose
callToContextPath[x]	provides	updating	of	contents	of	the	current	list	determined
by$ContextPath	variable	by	means	of	adding	to	its	end	of	all	contexts	of	am–filex
containing	simple	or	nested	package.	So,	the	following	fragment	represents	source	code	of
the	ToContextPath	procedure	along	with	a	typical	example	of	its	usage.

In[5127]	:=	ToContextPath[x_	/;	FileExistsQ[x]	&&	FileExtension[x]	==	“m”]	:=
Module[{c,	a	=	ReadFullFile[x],	b	=	“BeginPackage[“},	c	=	StrSymbParity[a,	b,	“[“,
“]”];	Map[If[!	StringFreeQ[#,	{“`"]”,	“`"}]”}],	StringTake[#,	{14,–2}]]	&,	c];	c	=
ToExpression[Flatten[Map[StringSplit[#,	“,”]	&,	c]]];	c	=
DeleteDuplicates[Map[If[ListQ[#],	#[[1]],	#]	&,	c]];	$ContextPath	=
DeleteDuplicates[Join[$ContextPath,	c]];	$ContextPath]

In[5128]:=	ToContextPath[“C:\AVZ_Package\Kiev.m”]
Out[5128]=	{”AladjevProcedures`”,	“TemplatingLoader`”,	“PacletManager`”,
“System`”,	“Global`”,	“Kiev`”,	“Kiev1`”}

The	successful	procedure	call	ToContextPath[x]	returns	the	updated	value
for$ContextPath	variable.	Taking	into	account	the	told,	it	is	recommended	to	make
uploading	of	a	nested	packagex(m–file)	into	the	current	session	by	means	of	the	next	pair
of	calls,	namelyGet[x];	ToContextPath[x],	providing	access	to	all	means	of	the
packagex.

By	the	function	call	Get[“Name’”]	theMathematica,first	of	all,	does	attempt
automatically	to	upload	the	version	of	the“Name.mx”	file	that	is	optimized	for	the	current
platform	if	such	file	isn’t	found,	the	attempt	is	done	to	upload	the“Name.m”	file	which
contains	the	code	portable	to	other	platforms.	At	that,	it	is	supposed	that	am–file	with
some	package	should	be	in	one	of	the	directories	defined	by	the	systemPath	variable.	If	a
directory	name	is	used,	attempt	to	read	the“init.m”	datafile	intended	for	setting	of
packages	of	the	directory	is	done.	For	providing	the	mode	of	automatic	loading	of
packages	the	systemDeclarePackage	function	is	used.	At	the	same	time	for	removal	of
symbols	of	some	context,	more	precisely,	exports	of	a	package	with	this	context,	the
callRemovePackage[“Name’”]	of	our	procedure	is	used.

As	it	was	noted	earlier,	for	each	exported	object	of	a	certain	package	for	it	it	is	necessary
to	determine	anusage.	As	a	result	of	uploading	of	such	package	into	the	current	session	all
itsexports	will	be	available	while	thelocal	objects,	located	in	a	section,	in
particularPrivate,	will	be	inaccessible	in	the	current	session.	For	testing	of	a	package
loaded	into	the	current	session	or	unloaded	package	which	is	located	in	am–file	regarding
existence	in	it	of	global	and	local	objects	the	following	procedureDefInPackage	can	be
used,	whose	call	DefInPackage[x],	wherex	defines	a	datafile	or	full	path	to	it,	or	the
context	associated	with	the	package	returns	the	nested	list,	whose	the	first	element	defines
the	package	context,	the	second	element–	the	list	of	local	variables	while	the	third
element–	the	list	of	global	variables	of	the	packagex.	If	the	argumentx	doesn’t	define	a
package	or	a	context,	the	callDefInPackage[x]	is	returned	unevaluated.	In	case	of	an
unusable	contextx	the	procedure	call	returns$Failed.	The	fragment	represents	source	code
of	theDefInPackage	procedure	along	with	the	most	typical	examples	of	its	usage.

In[2582]	:=	BeginPackage[“Kherson`”]
Gs::usage	=	“Help	on	Gs.”
Ga::usage	=	“Help	on	Ga.”
Vgs::usage	=	“Help	on	Vgs.”
Begin[“`Private`”]
W[x_,	y_]	:=	x	+	y
Vt[y_]	:=	y	+	Sin[y]
Sv[x_]	:=	x^2	+	23*x	+	16
End[]
Begin[“`Gs`”]
Gs[x_Integer,	y_Integer]	:=	x^2	+	y^2
End[]
Begin[“`Ga`”]
Ga[x_Integer,	y_Integer]	:=	x*y	+	Gs[x,	y]
End[]
Begin[“`Vgs`”]
Vgs[x_Integer,	y_Integer]	:=	x*y
End[]
EndPackage[];

Out[2582]	=	“Kherson`”
Out[2583]=	“Help	on	Gs.”
Out[2584]=	“Help	on	Ga.”
Out[2585]=	“Help	on	Vgs.”
Out[2586]=	“Kherson`Private`”
Out[2590]=	“Kherson`Private`”
Out[2591]=	“Kherson`Gs`”
Out[2593]=	“Kherson`Gs`”
Out[2594]=	“Kherson`Ga`”
Out[2595]=	“Kherson`Ga`”
Out[2596]=	“Kherson`Vgs`”
Out[2598]=	“Kherson`Vgs`”
In[2599]:=	Map[FunctionQ,	{Ga,	Gs,	Vgs,	W,	Vt,	Sv}]
Out[2599]=	{True,	True,	True,	False,	False,	False}
In[2600]:=	BeginPackage[“Kherson1`”]

Gs1::usage	=	“Help	on	Gs1.”
Ga1::usage	=	“Help	on	Ga1.”
Begin[“`Gs1`”]
Gs1[x_Integer,	y_Integer]	:=	x^2	+	y^2
End[]
Begin[“`Ga1`”]
Ga1[x_Integer,	y_Integer]	:=	x*y	+	Gs1[x,	y]
End[]
EndPackage[];

In[2640]:=	StringDependAllQ[s_String,	a_	/;	StringQ[a]	||	ListQ[a]	&&	!
MemberQ[Map[StringQ,	a],	False]]	:=	DeleteDuplicates[Map[StringFreeQ[s,	#]	&,

If[StringQ[a],	{a},	a]]]	==	{False}

In[2641]	:=	Map3[StringDependAllQ,	“abcnq”,	{{“a”,“n”,“q”},	{“a”,“x”,“y”}}]
Out[2641]=	{True,	False}
In[2642]:=	Map[!	StringFreeQ[“abcnq”,#]	&,	{{“a”,“b”,“n”,“q”},	{“a”,“x”,“y”}}]
Out[2642]=	{True,	True}

In[2778]:=	StringDependQ1[x_	/;	StringQ[x],	y_	/;	ListStringQ[y]]	:=

Module[{a	=	x,	b,	k	=	1},	For[k,	k	<=	Length[y],	k++,	b	=	Flatten[StringPosition[a,
y[[k]]]];	If[b	!=	{},	a	=	StringTake[a,	{b[[2]]	+	1,–1}],	Return[False]]];	True]

In[2779]	:=	Map3[StringDependQ1,	“11abc222dcd3333xy44z6”,	{{“11”,	“222”,
“333”},	{“11”,	“22222”,	“333”},	{“333”,	“44”,	“6”}}]
Out[2779]=	{True,	False,	True}

In[2858]	:=	MfilePackageQ[x_]	:=	If[FileExistsQ[x]	&&	FileExtension[x]	==	“m”,
StringDependAllQ[ReadFullFile[x],	{“(*	::Package::	*)”,	“(*	::Input::	*)”,	“::usage”,
“BeginPackage["”,	“EndPackage[]”}],	False]

In[2859]	:=	MfilePackageQ[“C:\AVZ_Package\AVZ_Package_1.m”]	Out[2859]=	True
In[2860]:=	Map[MfilePackageQ,	{“C:\AVZ_Package\66.nb”,	“Av.agn”}]	Out[2860]=
{False,	False}

In[2915]:=	DefInPackage[x_	/;	MfilePackageQ[x]	||	ContextQ[x]]	:=	Module[{a,	b	=
{“Begin["`”,	“`"]”},	c	=	“BeginPackage["”,	d,	p,	g,	t,	k	=	1,	f,	n	=	x},	Label[Avz];
If[ContextQ[n]	&&	Contexts[n]	!=	{},	f	=	“$Kr18Art26$”;

Save[f,	x];	g	=	FromCharacterCode[17];	t	=	n	<>	“Private`”;	a	=	ReadFullFile[f,	g];
DeleteFile[f];	d	=	CNames[n];	p	=	SubsString[a,	{t,	g}];	p	=
DeleteDuplicates[Map[StringCases[#,	t	~~	Shortest[___]	~~	“[”	<>	t	~~	Shortest[___]
~~	”	:=	“]	&,	p]];	p	=	Map[StringTake[#,	{StringLength[t]	+	1,
Flatten[StringPosition[#,	“[“]][[1]]–1}]&,	Flatten[p]];	{n,	DeleteDuplicates[p],	d},
If[FileExistsQ[n],	a	=	ReadFullFile[n];	f	=	StringTake[SubsString[a,	{c,	“`"]”}],
{15,–3}][[1]];	If[MemberQ[$Packages,	f],	n	=f;	Goto[Avz]];	b	=StringSplit[a,	“*)(*”];
d	=	Select[b,	!	StringFreeQ[StringReplace[#,	”	“–>	””],	“::usage=”]	&];	d	=
Map[StringTake[#,	{1,	Flatten[StringPosition[#,	“::”]][[1]]–1}]&,	d];	p	=
DeleteDuplicates[Select[b,	StringDependAllQ[#,	{“Begin["`”,	“`"]”}]	&]];	p	=
MinusList[Map[StringTake[#,	{9,–4}]	&,	p],	{“Private”}];	t	=
Flatten[StringSplit[SubsString[a,	{“Begin["`Private`"]”,	“End[]”}],	“*)(*”]];	If[t	==
{},	{f,	MinusList[d,	p],	p},

g	=	Map[StringReplace[#,	”	”	–>	””]	&,	t[[2	;;–1]]];	g	=	Select[g,	!	StringFreeQ[#,
“:=”]	&];	g	=	Map[StringTake[#,

{1,	Flatten[StringPosition[#,	“:”]][[1]]–1}]	&,	g];	g	=
Map[Quiet[Check[StringTake[#,	{1,	Flatten[StringPosition[#,	“[“]][[1]]–1}],	#]]	&,
g];	{f,	g,	d}],	$Failed]]]

:=	DefInPackage[“Kherson1`”]	In[2916]
Out[2916]=	{”Kherson1`”,	{},	{”Ga1“,	“Gs1”}}}
In[2917]:=	DefInPackage[“C:\AVZ_Package\Kiev.m”]

Out[2917]=	{”Kiev`”,	{},	{”W“,	“W1”}}
In[2918]:=	DefInPackage[“C:\AVZ_Package\Kherson1.m”]	Out[2918]=
{”Kherson1`”,	{”W1“,	“Vt1“,	“Sv1”},	{”Gs1“,	“Ga1“,	“Vgs1”}}	In[2919]:=
DefInPackage[“C:\AVZ_Package\Kherson.m”]	Out[2919]=	{”Kherson`”,	{”Vt“,	“Sv“,
“W”},	{”Ga“,	“Gs“,	“Vgs”}}	In[2920]:=	DefInPackage[“Kherson`”]
Out[2920]=	{”Kherson`”,	{”Vt“,	“Sv“,	“W”},	{”Ga“,	“Gs“,	“Vgs”}}

For	simplification	of	the	DefInPackage	procedure	algorithm	the	expediency	of	additional
definition	of2	simple	enough	functions	came	to	light,	namely.	TheStringDependAllQ
function	expands	the	construction!StringFreeQ	if	is	required	a	testing	of	belonging	to	a
string	of	all	substrings	from	the	given	list.	The	callStringDependAllQ[s,	x]	returnsTrue
only	in	the	case	if	a	string	x	is	substring	of	a	strings,	or	each	string	from	the	listx	belongs
to	a	strings.

Whereas	the	procedure	call	StringDependQ1[x,	y]	returnsTrue	if	a	stringx	contains	an
occurrence	of	a	chain	of	the	substrings	determined	by	a	listy	of	strings	and	in	the	order
defined	by	their	order	in	the	listy,otherwiseFalse	is	returned.	The	given	procedure	has	a
number	of	important	applications.	At	last,	the	function	callMfilePackageQ[x]	returnsTrue
only	in	the	case	if	the	stringx	defines	a	real	datafile	ofmformat	that	is	the	standard
package.	The	previous	fragment	represents	source	codes	of	both	functions	along	with
examples	of	their	usage.	It	is	supposed	that	local	symbols	of	a	package	are	in	its
sectionPrivate,	that	is	quite	settled	agreement.	Meanwhile,	qua	of	the	local	objects	of	a
package	act	as	well	those	for	which	usages	aren’t	defined.	So,	theDefInPackage
procedure	successfully	processes	the	packages	with	other	names	of	local	sections	or
without	such	sections	at	all,	i.e.	definitions	of	local	symbols	are	located	in	a	package
arbitrarily.	We	leave	the	analysis	of	algorithm	of	the	procedure	as	an	useful	exercise	for
the	interested	reader.

In	a	number	of	cases	there	is	a	need	of	full	removal	from	the	current	session	of	the
package	uploaded	into	it.	Partially	the	given	problem	is	solved	by	the	standard
functionsClear	andRemove	however	they	don’t	clear	the	lists	that	are	defined	by
variables$Packages,	$ContextPath	and	by	the	callContexts[]	off	the	package
information.	This	problem	is	solved	by	theRemovePackage	procedure	whose
callRemovePackage[x]	returnsNull,	i.e.	nothing,	at	that,	completely	removing	from	the
current	session	a	package	determined	by	a	contextx,	including	all	exports	of	the	packagex
and	respectively	updating	the	specified	system	lists.	The	following	fragment	represents
source	code	of	theRemovePackage	procedure	with	the	most	typical	examples	of	its	usage.

In[2820]:=	RemovePackage[x_	/;	ContextQ[x]]	:=	Module[{a	=	CNames[x],	b	=
ClearAttributes[{$Packages,	Contexts},	Protected]},

Quiet[Map[Remove,	a]];	$Packages	=	Select[$Packages,	StringFreeQ[#,	x]	&];
Contexts[]	=	Select[Contexts[],	StringFreeQ[#,	x]	&];

SetAttributes[{$Packages,	Contexts},	Protected];	$ContextPath	=
Select[$ContextPath,	StringFreeQ[#,	x]	&];]	In[2821]:=	$ContextPath
Out[2821]=	{”Kherson1`”,	“Kherson`”,	“AladjevProcedures`”,

“	TemplatingLoader`”,”PacletManager`”,	“System`”,	“Global`”}	In[2822]:=	$Packages
Out[2822]=	{”Kherson1`”,	“Kherson`”,	“AladjevProcedures`”,

“GetFEKernelInit`”,	“TemplatingLoader`”,	“ResourceLocator`”,	“PacletManager`”,
“System`”,	“Global`”}

In[2823]	:=	Contexts[]
Out[2823]=	{”AladjevProcedures`”,	“AladjevProcedures`ActBFMuserQ`”,
“AladjevProcedures`ActRemObj`”,	“AladjevProcedures`ActUcontexts`”,
“AladjevProcedures`AddMxFile`”,	“AladjevProcedures`Adrive1`”,	……}
In[2824]:=	RemovePackage[“Kherson1`”]
In[2825]:=	$Packages
Out[2825]=	{”Kherson`”,	“AladjevProcedures`”,	“GetFEKernelInit`”,
“TemplatingLoader`”,	“ResourceLocator`”,	“PacletManager`”,	“System`”,	“Global`”}
In[2826]:=	Map[PureDefinition,	{“Ga1”,	“Gs1”}]
Out[2826]=	{$Failed,	$Failed}

Meanwhile,	it	should	be	noted	that	the	packages	uploaded	into	the	current	session	can
have	the	objects	of	the	same	name;	about	that	the	corresponding	messages	are	output.	Qua
of	an	active	object	acts	the	object	whose	context	is	in	the	list$Packages	earlier,	that	quite
visually	illustrates	the	next	fragment	with	theRemovePackage	procedure	usage.	In	this
regard	the	procedure	call	RemovePackage[x]	deletes	a	package	with	the	given	contextx.

In[2587]	:=	BeginPackage[“Pac1`”]
W::usage	=	“Help	on	W.”
Begin[“`W`”]
W[x_Integer,	y_Integer]	:=	x^2	+	y^2
End[]
EndPackage[]

Out[2587]	=	“Pac1`”
Out[2588]=	“Help	on	W.”
Out[2589]=	“Pac1`W`”
Out[2591]=	“Pac1`W`”
In[2593]:=	BeginPackage[“Pac2`”]

W::usage	=	“Help	on	W.”
Begin[“`W`”]
W[x_Integer,	y_Integer]	:=	x^3	+	y^3
End[]
EndPackage[]

Out[2593]	=	“Pac2`”
W::shdw:	Symbol	W	appears	in	multiple	contexts	{Pac2`,Pac1`};	definitions..
Out[2594]=	“Help	on	W.”
Out[2595]=	“Pac2`W`”
Out[2597]=	“Pac2`W`”
In[2599]:=	$Packages
Out[2599]=	{”Pac2`”,	“Pac1`”,	“HTTPClient`”,	“HTTPClient`OAuth`”,

“	HTTPClient`CURLInfo`”,	“HTTPClient`CURLLink`”,	“JLink`”,
“DocumentationSearch`”,	“AladjevProcedures`”,
“GetFEKernelInit`”,	“TemplatingLoader`”,	“ResourceLocator`”,	“PacletManager`”,

“System`”,	“Global`”}

In[2600]	:=	W[90,	500]
Out[2600]=	125	729000
In[2601]:=	Definition[W]
Out[2601]=	W[Pac2`W`x_Integer,	Pac2`W`y_Integer]:=	Pac2`W`x^3+

Pac2	`W`y^3	In[2602]:=	RemovePackage[“Pac1`”]
In[2603]:=	W[90,	500]
Out[2603]=	125	729000
In[2604]:=	Definition[W]
Out[2604]=	W[Pac2`W`x_Integer,	Pac2`W`y_Integer]:=	Pac2`W`x^3+

Pac2	`W`y^3	In[2605]:=	RemovePackage[“Pac2`”]
In[2606]:=	Definition[W]
Out[2606]=	Null
In[2607]:=	$Packages
Out[2607]=	{”HTTPClient`”,	“HTTPClient`OAuth`”,

“	HTTPClient`CURLInfo`”,	“HTTPClient`CURLLink`”,	“JLink`”,
“DocumentationSearch`”,	“AladjevProcedures`”,
“GetFEKernelInit`”,	“TemplatingLoader`”,	“ResourceLocator`”,	“PacletManager`”,
“System`”,	“Global`”}

A	convenient	enough	way	of	packages	saving	is	represented	by	the	system	DumpSave
function,	whose	callDumpSave[F,	x]	returns	the	contextx	of	a	package	saved	in	a	binary
datafileF	in	format	optimized	for	its	subsequent	uploading	into	theMathematica	system.
A	package	saved	in	the	described	way	is	loaded	into	the	current	session	by	means	of	the
function	callGet[F]	with	automatic	activation	ofall	definitions	contained	in	it;	at	that,
onlythose	datafiles	are	correctly	uploaded	which	were	saved	on	the	same	computing
platform	by	theDumpSave	function	of	theMathematica	system.

Concerning	the	datafiles	of	mxformat	with	the	user	packages	an	interesting	and	useful
problem	of	definition	of	thecontext	andobjects,	whose	definitions	are	in	the	datafile	of	the
given	type,	without	its	uploading	into	the	current	session	arises.	TheContMxFile
procedure,	whose	source	code	with	typical	examples	of	use	are	presented	by	the	fragment
below,	solves	this	problem.

In[2664]	:=	DumpSave[“AVZ_Package.mx”,	“AladjevProcedures`”]	Out[2664]=
{”AladjevProcedures`”}
In[2665]:=	DumpSave[“Kherson1.mx”,	“Kherson1`”]
Out[2665]=	{”Kherson1`”}
In[2666]:=	DumpSave[“Kiev.mx”,	“Kiev`”]
Out[2666]=	{”Kiev`”}

In[2667]:=	ContMxFile[x_	/;	FileExistsQ[x]	&&	FileExtension[x]	==	“mx”,	y___]	:=
Module[{a	=	ReadFullFile[x],	b	=	“CONT”,	c	=	“ENDCONT”,	d	=	“`”,	h,	t},

h	=	Flatten[StringPosition[a,	{b,	c}]][[1	;;	4]];	h	=	StringReplace[StringTake[a,
{h[[2]]	+	1,	h[[3]]–2}],	“.10”–>	””];	h	=	StringJoin[Select[Characters[h],
SymbolQ[#]&]]	<>	d;	If[h	==	””,	{},	If[MemberQ[$Packages,	h]	&&	{y}!=	{},	{h,

CNames[h]},	If[!	MemberQ[$Packages,	h]	&&	{y}!=	{},	Quiet[Get[x]];	{{h,
CNames[h]},	RemovePackage[h]}[[1]],	t	=	SubsString[a,	{h,	“`”}];	t	=	Select[t,	!
MemberQ[ToCharacterCode[#],	0]	&];	{h,	Sort[DeleteDuplicates[
Map[StringReplace[#,	{h–>	””,	“`”–>	””}]	&,	t]]]}]]]]

In[2668]	:=	ContMxFile[“Kiev1.mx”]
Out[2668]=	{”Kiev1`”,	{”W“,	“W1“,	“W2“,	“W3”}}
In[2669]:=	ContMxFile[“Kiev1.mx”,	90]
Out[2669]=	{”Kiev1`”,	{”W“,	“W1”}}

In[2670]	:=	ContMxFile[“E:\AVZ_Package\AVZ_Package.mx”]	Out[2670]=
{”AladjevProcedures`”,	{”ActBFMuserQ“,	“ActRemObj“,	“ActUcontexts“,
“AddMxFile“,	“Adrive1“,	“Affiliate“,	“Aobj“,	“Args“,	“ArgsBFM“,	“ArgsTypes“,
“Arity“,	“ArityBFM“,	…}}
In[2671]:=	Length[%[[2]]]
Out[2671]=	425
In[2672]:=	ContMxFile[“Tallinn.mx”]
Out[2672]=	{”Grodno`”,	{”Gs“,	“Gs1“,	“Vgs“,	“Vgs1”}}

The	procedure	callContMxFile[x]	returns	the	nested	list	whosefirst	element	defines	the
context	associated	with	the	package	contained	in	amx–datafilex	while	thesecond	element
determines	the	list	of	names	in	string	format	of	all	objects	of	this	package	irrespectively
from	existence	for	them	of	usages,	i.e.	of	both	local,	and	global	objects.	While	the
procedure	callContMxFile[x,y],	where	argumenty	–an	arbitrary	expression–	returns	the
nested	list	of	similar	structure,	but	with	that	difference	that	its	second	element	defines	the
list	of	names	of	the	objects	of	this	package	that	are	supplied	with	usages,	i.e.	only	of	the
global	objects.	Withal,	it	should	be	noted	thatContMxFile	procedure	presented	in	the
previous	fragment	is	intended	for	usage	with	themx–files	created	on	platformWindows
XP/7	Professional,	its	use	for	other	platforms	can	demand	the	appropriate	adaptation.	The
reason	of	it	consists	in	that	the	algorithm	of	theContMxFile	procedure	is	based	on	an
analysis	of	structure	ofmx–files	that	depends	on	platform	used	at	creation	of	such
datafiles.	The	following	procedureContMxFile1	is	an	useful	enough	modification	of	the
previousContMxFile	procedure	which	also	uses	an	analysis	of	structure	of	mx–files
which	depends	on	platform	used	at	creation	of	such	datafiles.	The	procedure	call
ContMxFile1[x]	returns	the	nested	list	whose	first	element	defines	the	context	associated
with	the	package	contained	in	amx–datafilex	while	thesecond	element	determines	the	list
of	names	in	string	format	of	all	objects	of	this	package	irrespectively	from	existence	for
them	of	usages,	i.e.	local	and	global	objects.	Furthermore,	similarly	to	the
previousContMxFile	procedure	the	returned	names	determine	objects	whose	definition
returned	by	the	callDefinition	contains	the	context.	At	that,	is	supposed	that	a	filex	is
recognized	by	theFileExistsQ	function.	The	procedure	algorithm	enough	essentially	uses
the	function	whose	callStrAllSymbNumQ[x]	returnsTrue	if	a	stringx	contains	only
symbols	and/or	integers,	andFalse	otherwise.	The	fragment	below	represents	source	codes
of	both	means	along	with	examples	of	its	typical	usage.

In[2769]	:=	ContMxFile1[x_	/;FileExistsQ[x]	&&	FileExtension[x]	==“mx”]:=
Module[{a	=	ReadFullFile[x],	b	=	“CONT”,	c	=	“ENDCONT”,	d,	h,	t},	h	=
Flatten[StringPosition[a,	{b,	c}]][[1	;;	4]];	h	=	StringReplace[StringTake[a,	{h[[2]]	+

1,	h[[3]]–2}],	“.10”–>	””];	h	=	StringJoin[Select[Characters[h],	SymbolQ[#]	&]]	<>
“`”;	If[h	==	””,	{},	d	=	StringPosition[a,	h][[2	;;–1]];	d	=	Map[StringTrim[#,	“`”]	&,
Map[SubStrToSymb[a,	#[[2]]	+	1,	“`”,	1]	&,	d]];	{h,	Sort[Select[d,
StrAllSymbNumQ[#]	&]]}]]

In[2770]	:=	ContMxFile1[“c:\users\mathematica\avz_package.mx”]	Out[2770]=
{”AladjevProcedures`”,	{”ActBFMuserQ“,	“ActCsProcFunc“,	“ActRemObj“,
“ActUcontexts“,	“AddMxFile“,	“Adrive1“,	…,	“WhatType“,	“WhichN“,	“XOR1“,
“$ProcName“,	“$TypeProc”}}
In[2771]:=	Length[%[[2]]]
Out[2771]=	427

In[2772]:=	StrAllSymbNumQ[x_	/;	StringQ[x]]	:=
!	MemberQ[Map[SymbolQ[#]	||Quiet[IntegerQ[ToExpression[#]]]	&,	Characters[x]],
False]	In[2773]:=	Map[StrAllSymbNumQ,	{“PosListTest1”,	“BitGet`”}]	Out[2773]=
{True,	False}

The	procedures	ContMxFile	andContMxFile1	adjoin	the	procedure,	whose
callPackageMxCont[x]	returns	the	context	of	amx–filex;	the	procedure	call
PackageMxCont[x,	y]	thru	the2nd	optional	argument–an	undefinite	variable	y	–	returns
the	nested	list	whosefirst	element	defines	the	list	oflocal	symbols	whereas	thesecond
element	defines	the	list	ofglobal	symbols	of	the	package	that	contained	in	themx–filex
[33,48].	Onmx–files	without	context	orlocal/	global	symbols	the	procedure
callPackageMxCont[x]	returns$Failed	or	the	empty	list	accordingly,	i.e.	{},	for	example:
In[2728]:=	{PackageMxCont[“E:\Avz_package\Avz_package.mx”,	s],	s}	Out[2728]=
{”AladjevProcedures`”,	{{},	{”AcNb“,	“ActBFMuserQ“,	“ActCsProcFunc“,
“ActRemObj“,	“ActUcontexts“,	“AddMxFile“,	“Adrive“,	“Adrive1“,	“Affiliate“,
“Aobj“,	“Aobj1“,	“Args“,	…..}}}

In[2729]	:=	Length[%[[2]][[2]]]
Out[2729]=	684
In[2730]:=	{PackageMxCont[“PureDefinition.mx”,	s1],	s1}
Out[2730]=	{$Failed,	s1}

The	procedure	also	is	oriented	on	the	platform	Windows	XP	Professional	in	general,
however	onWindows	7	correctly	returns	the	list	of	global	symbols.	In	particular,	for	the
platformWindows	7	Professional	the	algorithm	of	the	previousContMxFile	procedure	is
modified	in	the	corresponding	manner,	taking	into	account	the	internal	structure	of
themx–datafiles	created	on	the	specified	platform.	This	algorithm	is	realized	by	the
procedureContMxW7,	whose	callContMxW7[x]	returns	the	nested	list	whose	first
element	defines	the	context	connected	with	the	package	contained	in	amxfilex	whereas	the
second	element	defines	the	list	of	names	in	string	format	ofall	global	objects	of	the
package	whose	definitions	contains	a	context	ascribed	to	the	package.	Whereas	on
amx–file	without	context	the	procedure	call	returns$Failed.	At	that,	is	supposed	that	a
filex	is	recognized	by	theFileExistsQ	function.	The	fragment	below	represents	source
code	of	theContMxW7	procedure	along	with	typical	examples	of	its	usage.

In[2633]	:=	ContMxW7[x_	/;	FileExistsQ[x]	&&	FileExtension[x]	==	“mx”]	:=
Module[{a	=	FromCharacterCode[Select[BinaryReadList[x],	#	!=	0	&]],	b	=

“CONT”,	c	=	“ENDCONT”,	d	=	“`”,	h,	t,	g	=	{},	k,	f,	n},	h	=	StringPosition[a,	{b,	c}]
[[1;;	2]];	If[h[[1]]–h[[2]]	==	{–3,	0},	$Failed,	t	=	StringTrim[StringTake[a,	{h[[1]][[2]]
+	2,	h[[2]][[1]]–2}]];	a	=	StringTake[a,	{h[[2]][[2]]	+	1,–1}];	f	=	StringPosition[a,	t];
Map[{c	=	””,	For[k	=	#[[2]]	+	1,	k	<=	StringLength[a],	k++,	n	=	StringTake[a,	{k,
k}];	If[n	==	d,	Break[],	c	=	c	<>	n]];	If[StringFreeQ[c,	StringTake[t,	{1,–2}]],
AppendTo[g,	c],	Null]}&,	f];	{t,	Select[Sort[g],	StrAllSymbNumQ[#]	&]}]]

In[2634]	:=	ContMxW7[“c:/users/aladjev/mathematica/AVZ_Package.mx”]
Out[2634]=	{”AladjevProcedures`”,	{”ActBFMuserQ“,	“ActRemObj“,	“ActUcontexts“,
“AddMxFile“,	“Adrive1“,	“Affiliate“,	“Aobj“,	“Aobj1“,	“Args“,	“Args1“,	“ArgsBFM“,
“ArgsTypes“,	“Arity“,	…,	“VizContentsNB“,	“VizContext“,	“WhatObj“,	“WhatType“,
“WhichN“,	“XOR1“,	“$ProcName“,	“$TypeProc”}}

In[2635]	:=	Length[%[[2]]]
Out[2635]=	427
In[2636]:=	ContMxW7[“C:\users\mathematica\PureDefinition.mx”]	Out[2636]=
$Failed

Unlike	the	above	procedures	ContMxFile	andContMxFile1,	the	following	ContMxFile2
procedure	is	based	on	another	algorithm	whose	essence	is	as	follows.	First	of	all	the
existence	in	amxfilex	of	a	package	is	checked;	at	its	absence$Failed	is	returned.	Then
upload	in	the	current	session	of	a	package	containing	in	themxfilex	is	checked.	At	positive
result	the	required	result	without	unloading	of	a	packagex	is	returned,	otherwise	the
required	result	with	unloading	of	a	package	is	returned.	In	both	cases	a
callContMxFile2[x]	returns	the2–element	list,	whose	first	element	determines	a	package
context	whereas	the	second–	the	list	of	names	in	string	format	of	means,	contained	in	the
package.	The	procedure	essentially	uses	theIsPackageQ	procedure.

In[2878]	:=	ContMxFile2[x_	/;	FileExistsQ[x]	&&	FileExtension[x]	==“mx”]:=
Module[{a	=	$Packages,	b	=	“AvzAgnVsvArtKr`”,	c,	h,	g,	d	=	Unique[“ag”]},	h	=
ToString[d];	g	=	IsPackageQ[x,	d];

If[g	===	$Failed,	$Failed,
If[g	===	True,	{d,	AladjevProcedures`CNames[d],

ToExpression[“Remove[”	<>	h	<>	“]”]	},
ToExpression[“InputForm[BeginPackage["AvzAgnVsvArtKr`"];	EndPackage[]]”];
Off[General::shdw];	Get[x];	c	=	$Packages[[1]];

b	=	{c,	AladjevProcedures`CNames[c]};	AladjevProcedures`RemovePackage[c];
On[General::shdw];	b]]]

In[2879]	:=	ContMxFile2[“c:\users\	mathematica\avz_package.mx”]	Out[2879]=
{”AladjevProcedures`”,	{”AcNb“,	“ActBFM“,	“ActBFMuserQ“,…,	“$TestArgsTypes“,
“$TypeProc“,	“$UserContexts”}}

In[2880]:=	Length[%[[2]]]
Out[2880]=	684
In[2918]:=	IsPackageQ[x_	/;	FileExistsQ[x]	&&	FileExtension[x]	==	“mx”,	y___]	:=
Module[{a	=	ReadFullFile[x],	b	=	“CONT”,	c	=	“ENDCONT”,	d,	g	=	$Packages},

If[!	StringContainsQ[a,	“CONT”	~~	__	~~	“ENDCONT”],	$Failed,	d	=

StringPosition[a,	{b,	c}][[1	;;	2]];	d	=	StringTake[a,	{d[[1]][[2]]	+	1,	d[[2]][[1]]–1}];	d
=Select[Map[If[!	StringFreeQ[d,	#],	#,	Null]	&,	g],	!	SameQ[#,	Null]&];	If[{y}!=
{}&&	!	HowAct[y],	y	=	If[d	==	{},	{},	d[[1]]],	Null];	If[d	!=	{},	True,	False]]]

In[2919]	:=	{IsPackageQ[“c:\users/mathematica/avz_package.mx”,	y6],	y6}
Out[2919]=	{True,	“AladjevProcedures`”}
In[2920]:=	IsPackageQ[“PureDefinition.mx”]
Out[2920]=	$Failed
In[2921]:=	IsPackageQ[“c:\users/aladjev\mathematica\Tallinn.mx”]	Out[2921]=	False

The	IsPackageQ	procedure	is	intended	for	testing	of	anymxfile	regarding	existence	of	the
user’s	package	in	it	along	with	upload	of	such	package	into	the	current	session.	The	call	of
theIsPackageQ[x]	procedure	returns$Failed	if	themx–file	doesn’t	contain	a	package,True
if	the	package	which	is	in	the	mx–filex	is	loaded	into	the	current	session,	andFalse
otherwise.	Moreover,	the	procedure	callIsPackageQ[x,	y]	through	the	second	optional
argument	y	–	an	undefinite	variable–	returns	the	context	associated	with	the	package
uploaded	into	the	current	session.	In	addition,	is	supposed	that	a	datafilex	is	recognized	by
the	testing	functionFileExistsQ,	otherwise	the	procedure	call	is	returned	unevaluated.	The
previous	fragment	represents	source	codes	of	both	proceduresContMxFile2
andIsPackageQ	along	with	more	typical	examples	of	their	usage.

Meanwhile,	the	DumpSave	function	has	one	rather	essential	shortcoming,	namely:	it
saves	contexts	which	are	only	formally	contexts,	i.e.	correspond	to	them	only	by	the
format.	In	this	connection	theDumpSaveP	function	is	more	preferable,	whose
callDumpSaveP[f,	x]	provides	saving	in	a	datafilef	of	the	package	with	a	contextx	on
condition	that	this	package	contains	the	global	symbols;	otherwise	theDumpSaveP
function	call	returns$Failed.	The	fragment	represents	source	code	of	the	function	and
examples	of	its	usage.

In[3342]:=	PackageQ[x_	/;	ContextQ[x]]	:=	If[CNames[x]	!=	{},	True,	False]
In[3343]:=	DumpSaveP[f_/;	StringQ[f],	x_	/;	ContextQ[x]]:=	If[PackageQ[x],
DumpSave[f,	x],	$Failed]

In[3344]	:=	DumpSave[“AVZ_Package.mx”,	“AladjevProcedures`”]	Out[3344]=
{”AladjevProcedures`”}
In[3345]:=	RemovePackage[“AladjevProcedures`”]
In[3346]:=	Map[Definition,	{ProcQ,	RemovePackage,	Mapp,	Map14,	Map6,

Definition2,	StrStr,	ContextQ,	Cnames,	ToString1	}]	Out[3346]=	{Null,	Null,	Null,
Null,	Null,	Null,	Null,	Null,	Null,	Null}	In[3347]:=	Get[“AVZ_Package.mx”]
In[3348]:=	Definition[StrStr]
Out[3348]=	StrStr[x_]:=	If[StringQ[x],	“\””	<>	x<>	“\””,	ToString[x]]	In[3349]:=
PackageQ[“AvzAgnVsvArtKr`”]
Out[3349]=	False
In[3350]:=	DumpSave[“AvzAgnVsvArtKr.mx”,	“AvzAgnVsvArtKr`”]	Out[3350]=
{”AvzAgnVsvArtKr`”}
In[3351]:=	DumpSaveP[“AvzAgnVsvArtKr.mx”,	“AvzAgnVsvArtKr`”]	Out[3351]=
$Failed

The	DumpSaveP	function	qua	of	the	test	for	an	admissibility	of	the	second	argument	uses

logical	function	whose	callPackageQ[x]	returnsTrue	ifx	–	a	package	containing	global
symbols,	andFalse	otherwise.	Naturally,	package	without	global	symbols	of	any	interest
doesn’t	represent.	Really,	according	to	the	system	agreements	the	package	has	to	define
global	symbols	without	that	the	package	can’t	be	considered	as	such.	In	this	connection
the	function	callDumpSaveP[f,	x],	wherex	isn’t	a	package,	returns$Failed,	allowing	to
process	situations	of	this	type	very	simply	programmatically.	So,	despite	a	formal
correctness	of	definition	of	packages	without	the	global	symbols	ormx–files	without
context,	a	testing	of	actual	packages	which	are	uploaded	into	the	current	session	is
necessary	what	a	simple	function	does,	whose	callPackages[]	returns	the	list	of	contexts
of	the	actual	packages	that	are	loaded	into	the	current	session	[33,48].	The	next	section
considers	some	additional	means	for	operating	with	the	user	packages.

8.3.	Additional	means	of	operating	with	the	user	packages	in
theMathematicasoftware

Means	of	the	Mathematica	for	operating	with	datafiles	can	be	subdivided	intotwo	groups
conditionally:	the	means	supporting	the	work	with	datafiles	which	are	automatically
recognized	at	the	address	to	them,	and	the	means	supporting	the	work	with	any	datafiles.
This	theme	is	quite	extensive	and	is	in	more	detail	considered	in	[30-33,52,60,64],	here
some	additional	means	of	work	with	the	datafiles	containing	the	user’s	packages	will	be
considered.

Since	means	of	access	to	files	of	formats,	even	automatically	recognized	by
theMathematica,	don’t	solve	a	number	of	important	enough	problems,	the	user	is
compelled	to	program	own	means	on	the	basis	of	standard	tools	and	perhaps	with	use	of
own	means.	Qua	of	an	useful	example	we	will	give	the	DefFromPackage	procedure
whose	callDefFromPackage[x]	returns	the3–	element	list,	whose	first	element	is
definition	in	string	format	of	a	symbolx	whose	context	is	different	from
{“Global’”,“System’”},	the	second	element	defines	its	usage	whereas	the	third	element
defines	attributes	of	the	symbol.	At	that,	on	the	symbols	associated	with2	specified
contexts,	the	procedure	call	returns	only	the	list	of	their	attributes.	The	fragment	below
represents	source	code	of	theDefFromPackage	procedure	with	examples	of	its	usage.

In[2742]	:=	DefFromPackage[x_	/;	SymbolQ[x]]	:=	Module[{a	=	Context[x],	b	=	””,	c
=	””,	p,	d	=	ToString[x],	k	=	1,	h},	If[MemberQ[{“Global`”,	“System`”},	a],
Return[Attributes[x]],	h	=	a	<>	d;	ToExpression[“Save[”	<>	ToString1[d]	<>	“,”	<>

ToString1[h]	<>	“]”]];	For[k,	k	<	Infinity,	k++,	c	=	Read[d,	String];	If[c	===	”	“,
Break[],	b	=	b	<>	c]];	p	=	StringReplace[RedSymbStr[b,	”	“,	”	“],	h	<>	“`”–>	””];	{c,
k,	b}=	{””,	1,	””};	For[k,	k	<	Infinity,	k++,	c	=	Read[d,	String];	If[c	===	”	”	||	c	===
EndOfFile,	Break[],	b	=	b	<>	If[StringTake[c,	{–1,–1}]	==	“\”,	StringTake[c,	{1,–2}],
c]]];	DeleteFile[Close[d]];	{p,	StringReplace[b,	”	/:	”	<>	d–>	””],	Attributes[x]}]
In[2743]:=	DefFromPackage[StrStr]
Out[2743]=	{StrStr[x_]:=	If[StringQ[x],	StringJoin[“"”,	x,	“"”],	ToString[x]],

StrStr	::usage=	“The	call	StrStr[x]	returns	an	expression	x	in	string	format	if	x	is	different
from	string;	otherwise,	the	double	string	obtained	from	an	expression	x	is	returned.”,	{}}

In[2744]	:=	DefFromPackage[AvzAgn]

Out[2744]=	{}
In[2745]:=	SetAttributes[Ian,	{Listable,	Protected}];	DefFromPackage[Ian]
Out[2745]=	{Listable,	Protected}
In[2746]:=	DefFromPackage[Cos]
Out[2746]=	{Listable,	NumericFunction,	Protected}

The	DefFromPackage	procedure	serves	for	obtaining	of	full	information	on	a	symbolx
whose	definition	is	located	in	the	user	package	uploaded	into	the	current	session.	Unlike
the	standard	functionsFilePrint	andDefinition	this	procedure,	first,	doesn’t	print,	but
returns	specified	information	completely	available	for	the	subsequent	processing,	and,
secondly,	this	information	is	returned	in	an	optimum	format.	At	that,	in	a	number	of	cases
the	output	of	definition	of	a	symbol	that	is	located	in	an	active	package	by	the	standard
means	is	accompanied	with	a	context	associated	with	the	package	that	not	only
complicates	its	viewing,	but	also	the	subsequent	processing.	Result	of
theDefFromPackage	call	obviates	this	problem	too.	The	algorithm	realized	by	this
procedure	is	based	on	an	analysis	of	structure	of	a	datafile	received	in	result	of	saving	of	a
context“y’x”,	wherex	–	a	symbol	at	the	procedure	callDefFromPackage[x]	and“y’”	–	a
context,	associated	with	the	uploaded	package	containing	the	definition	of	symbolx.	In
more	detail	the	algorithm	realized	by	theDefFromPackage	procedure	is	seen	from	its
source	code.

As	the	second	example	developing	the	algorithm	of	the	previous	procedure	in	the	light	of
application	of	functions	of	access	it	is	possible	to	represent	a	rather	usefulFullCalls
procedure	whose	the	callFullCalls[x]	returns	the	list	whose	first	element	is	the	context
associated	with	a	package	uploaded	into	the	current	session	whereas	its	other	elements–
the	symbols	of	this	package	that	are	used	by	the	user	procedure	or	functionx,	or	nested	list
of	sublists	of	this	type	at	using	byx	of	symbols(names	of	procedures/functions)	from
several	packages.	The	source	code	of	the	procedure	along	with	typical	examples	of	its
usage	are	represented	in	the	following	fragment.

In[3435]	:=	FullCalls[x_	/;	ProcQ[x]	||	FunctionQ[x]]	:=	Module[{a	={},	b,	d,	c	=
“::usage	=	“,	k	=	1},	Save[b	=	ToString[x],	x];	For[k,	k	<	Infinity,	k++,	d	=	Read[b,
String];	If[d	===	EndOfFile,	Break[],	If[StringFreeQ[d,	c],	Continue[],	AppendTo[a,
StringSplit[StringTake[d,	{1,	Flatten[StringPosition[d,	c]][[1]]–1}],	”	/:	“][[1]]]]]];	a	=
Select[a,	SymbolQ[#]	&];	DeleteFile[Close[b]];	a	=	Map[{#,	Context[#]}&,
DeleteDuplicates[a]];	a	=	If[Length[a]	==	1,	a,	Map[DeleteDuplicates,	Map[Flatten,
Gather[a,	#1[[2]]	===	#2[[2]]	&]]]];	{d,	k}=	{{},	1};	While[k	<=	Length[a],	b	=
Select[a[[k]],	ContextQ[#]	&];	c	=	Select[a[[k]],	!	ContextQ[#]	&];	AppendTo[d,
Flatten[{b,	Sort[c]}]];	k++];	d	=	MinusList[If[Length[d]	==	1,	Flatten[d],	d],
{ToString[x]}];	If[d	==	{Context[x]},	{},	d]]

In[3436]	:=	FullCalls[StrStr]
Out[3436]=	{}
In[3437]:=	G[x_]	:=	StrStr[x]	<>	“RansIan50090”;	FullCalls[G]	Out[3437]=
{”AladjevProcedures`”,	“StrStr”}
In[3438]:=	F[x_/;	IntegerQ[x],	y_/;	IntegerQ[y]]	:=	x^2	+	y^2;	FullCalls[F]
Out[3438]=	{}
In[3439]:=	FullCalls[ProcQ]

Out[3439]=	{”AladjevProcedures`”,	“BlockFuncModQ“,	“ClearAllAttributes“,

“	Contexts1“,	“Definition2“,”HeadPF“,	“HowAct“,	“ListStrToStr“,	“Map3“,	“Mapp“,
“MinusList“,	“PureDefinition“,	“Sequences“,	“StrDelEnds“,	“SubsDel“,	“SuffPref“,
“SymbolQ“,	“SysFuncQ“,	“SystemQ“,	“ToString1“,	“UnevaluatedQ”}

In[3440]	:=	FullCalls[Attribs]
Out[3440]=	{”AladjevProcedures`”,	“Adrive“,	“CopyDir“,	“CopyFileToDir“,	“DirQ“,
“FileExistsQ1“,	“HowAct“,	“LoadExtProg“,	“Map3“,	“PathToFileQ“,	“SearchFile“,
“StandPath“,	“StrDelEnds“,	“StrStr“,	“SuffPref“,	“SymbolQ“,	“ToString1”}
In[3441]:=	GS[x_	/;	RuleQ[x],	y_	/;	StringQ[y]]	:=
ArtKr[StringLength[StringReplace[y,	x]],	500]	+	Vgs[StringLength[y],	90];
FullCalls[GS]	Out[3441]=	{{”AladjevProcedures`”,	“RuleQ”},	{”Kherson`”,	“ArtKr“,
“Vgs”}}	In[3442]:=	GS[“Avz”–>	“2015”,	“AgnAvzVsvArtKr”]
Out[3442]=	7604

Thus,	the	procedure	call	FullCalls[x]	provides	possibility	of	testing	of	the	user	procedure
or	function,	different	from	standard	means,	regarding	use	by	it	of	means	whose	definitions
are	in	packages	uploaded	into	the	current	session.	In	development	of	this	procedure
theFullCalls1	procedure	can	be	offered	whose	source	code	along	with	rather	typical
examples	of	its	usage	are	represented	by	the	following	fragment.

In[2661]	:=	FullCalls1[x_	/;	ProcQ[x]	||	FunctionQ[x]]	:=	Module[{a	=	{},	b,	c	=	””,	d,
k	=	1,	n,	p},	Save[b	=	ToString[x],	{x,	c}];	For[k,	k	<	Infinity,	k++,	d	=	Read[b,
String];

If[d	===	EndOfFile,	Break[],
If[d	!=	”	“,	c	=	c	<>	d,
If[n	=	Flatten[StringPosition[c,	”	:=	“]];	n	!=	{},	If[Quiet[HeadingQ[p	=
StringTake[c,	{1,	n[[1]]–1}]]],

AppendTo[a,	Quiet[HeadName[StringTake[c,	{1,	n[[1]]–1}]]]]]];	c	=	””]]];
DeleteFile[Close[b]];	{b	=	FullCalls[x],	Select[MinusList[a,	{ToString[x]}],	!
MemberQ[Flatten[b],	#]	&]}]

In[2662]	:=	ArtKr[x_Integer,	y_Integer]	:=	Module[{},	N[Sqrt[x^2	+	y^2]]];
Vgs[x_Integer,	y_Integer]	:=	N[Sin[x]	+	Cos[y]];	GS[x_	/;	RuleQ[x],	y_/;	StringQ[y]]
:=

ArtKr[StringLength[StringReplace[y,	x]],	90]+	Vgs[StringLength[y],	500];
In[2663]:=	FullCalls1[GS]
Out[2663]=	{{”AladjevProcedures`”,	“RuleQ”},	{”ArtKr“,	“ArtKr“,	“Vgs”}	In[2664]:=
FullCalls1[StrStr]
Out[2664]=	{{},	{}}
In[2665]:=	FullCalls1[ProcQ]
Out[2665]=	{{”AladjevProcedures`”,	“BlockFuncModQ“,

“	ClearAllAttributes“,	“Contexts1“,	“Definition2“,	“HeadPF“,	“HowAct“,
“ListStrToStr”,”Map3“,	“Mapp“,	“MinusList“,	“PureDefinition“,	“Sequences“,
“StrDelEnds“,	“SubsDel“,	“SuffPref“,	“SymbolQ“,	“SysFuncQ“,	“SystemQ“,
“ToString1“,	“UnevaluatedQ”},	{}}

The	FullCalls1	procedure	tests	procedure/functionx	regarding	use	by	it	of	both	package
means,	and	the	other	means,	other	than	the	standard	means.	In	particular,	the
callFullCalls1[x]	returns	the	nested	list	whosefirst	element	corresponds	to	result	of	the
callFullCalls[x]	while	thesecond	element	defines	the	list	of	names	of	the	means	used	byx,
excluding	the	means	belonging	to	the	uploaded	user	packages.	Meanwhile,	it	must	be	kept
in	mind	that	both	procedures	process	only	the	means	used	byx	which	are	determined	by
the	mechanism	of	the	delayed	calculations.	Spreading	of	these	procedures	onto	the
mechanism	of	immediate	calculations	of	any	special	difficulties	doesn’t	cause,	and	such
extension	can	present	an	useful	enough	exercitation	to	the	interested	reader.	We	proceeded
from	the	fact	that	the	definition	of	both	the	procedures,	and	the	functions	on	a	number	of
fairly	significant	reasons	it	is	advisable	to	determine	by	the	mechanism	of	delayed
calculations.	At	that,	both	proceduresFullCalls	andFullCalls1	are	quite	useful	at
programming	a	number	of	appendices.	Right	there	quite	pertinently	to	note	that	theSave
function	used	in	realization	of	the	proceduresFullCalls	andFullCalls1	can	be	quite	useful
for	the	organization	of	libraries	of	the	user	tools.	Indeed,	the	callSave[f,	{a,	b,	…}]	saves
in	a	datafilef	of	the	text	format	all	definitions	not	only	of	objects	with	names	{a,	b,	c,	…},
but	also	all	definitions	of	means	with	which	the	specified	objects	are	connected	at	all
levels	of	theirstructural	tree.	At	the	same	time,	the	function	call	writes	into	datafile	in
theAppend	mode,	leaving	the	datafile	closed.	Moreover,	the	created	datafile	is	easily
edited	by	simple	text	editors,	allowing	rather	simply	to	create	software	for	its	editing
(deleting	of	objects,addition	of	objects,replacement	of	objects,etc.).	For	uploading	of
similar	library	into	the	current	session	the	function	callGet[f]	is	enough,	having	provided
access	to	all	means	whose	definitions	were	earlier	saved	in	the	datafilef.	The	given
question	is	considered	rather	in	details	in	[30-33].	In	a	number	of	cases	there	is	a	need	for
uploading	into	the	current	session	of	theMathematica	system	not	entirely	of	a	package,
but	only	the	separate	means	contained	in	it,	for	example,	of	a	procedure/function,	or	their
list.	In	the	following	fragment	the	procedure	is	represented,	whose	procedure	call
ExtrOfMfile[x,	y]	returnsNull,	i.e.	nothing,	uploading	in	the	current	session	the
definitions	only	of	those	means	that	are	determined	by	argumenty	and	are	located	in	a
datafilex	ofm–format.	At	that,	in	case	of	existence	in	them–	file	of	several	means	of	the
same	name,	the	last	is	uploaded	into	the	current	session.	While	the	callExtrOfMfile[x,	y,
z]	with	the	third	optional	argument	z	–an	undefinite	variable–	in	addition	throughz	returns
the	list	of	definitions	of	meansy	which	are	located	in	them–filex.	In	case	of	absence	in
am–filex	of	meansy	the	procedure	call	returns$Failed.	The	next	fragment	represents
source	code	of	theExtrOfMfile	procedure	along	with	examples	of	its	usage.

In[2572]:=	ExtrOfMfile[f_	/;	FileExistsQ[f]	&&	FileExtension[f]	==	“m”,	s_	/;
StringQ[s]	||	ListQ[s],	z___]	:=

Module[{Vsv,	p	=	{},	v,	m},	m	=	ReadFullFile[f];	If[StringFreeQ[m,
Map[“(*Begin["`”	<>	#	<>	“`"]*)”	&,	Map[ToString,	s]]],	$Failed,	Vsv[x_,	y_]	:=
Module[{a	=	m,	b	=	FromCharacterCode[17],	c	=	FromCharacterCode[24],	d	=
“(*Begin["`”	<>	y	<>	“`"]*)”,	h	=	“(*End[]*)”,	g	=	{},	t},	a	=	StringReplace[a,	h–>	c];
If[StringFreeQ[a,	d],	$Failed,	While[!	StringFreeQ[a,	d],	a	=	StringReplace[a,	d–>	b,
1];	t	=	StringTake[SubStrSymbolParity1[a,	b,	c][[1]],	{4,–4}];	t	=	StringReplace[t,
{“(*”–>	””,	“*)”–>	””}];	AppendTo[g,	t];	a	=	StringReplace[a,	b–>	””,	1];
Continue[]];	{g,	ToExpression[g[[–1]]]}]];	If[StringQ[s],	v	=	Quiet[Check[Vsv[f,	s]

[[1]],	$Failed]],	Map[{v	=	Quiet[Check[Vsv[f,	#][[1]],	$Failed]],	AppendTo[p,	v]}&,
Map[ToString,	s]]];	If[{z}!={}&&	!	HowAct[z],	z	=If[StringQ[s],	v,	p]];]]

In[2573]	:=	ExtrOfMfile[“C:\AVZ_Package\Kiev.m”,	“W”]	In[2574]:=
ExtrOfMfile[“C:\AVZ_Package\Kiev.m”,	“W”,	w]	In[2575]:=	{W[73,	68,	90],	w}
Out[2575]=	{18053,	{”W[x_Integer,	y_Integer]:=	x^2+	y^2“,

“	W[x_Integer,	y_Integer,	z_Integer]:=	x^2+y^2+z^2“,
“W[x_Integer,y_Integer,z_Integer]:=	x^3+y^3+z^3”}}	In[2576]:=
ExtrOfMfile[“C:/AVZ_Package/Kiev.m”,	{“W”,	“W1”,	“GS”},	w2]	In[2576]:=	w2

Out[2576]	=	{{”W[x_Integer,	y_Integer]:=	x^2+	y^2“,
“W[x_Integer,	y_Integer,	z_Integer]:=	x^2+	y^2+	z^2“,	“W[x_Integer,	y_Integer,
z_Integer]:=	x^3+	y^3+	z^3”},

{	“W1[x_Integer,	y_Integer]:=	x*y+	W[x,	y]”},	$Failed}	In[2577]:=
ExtrOfMfile[“C:/Temp/Kiev.m”,	{“AgnVsvArtKr”,	“Avz”}]	Out[2577]=	$Failed
In[2578]:=	Remove[StrStr]
In[2578]:=	Definition[StrStr]
Out[2578]=	Null
In[2579]:=	{ExtrOfMfile[“c:/users/aladjev/mathematica/AVZ_Package.m”,

“StrStr”,	G],	G}
Out[2579]=	{Null,	{”StrStr[x_]:=	If[StringQ[x],	"\""<>x<>"\"",

ToString[x]]	“}}
In[2580]:=	Definition[StrStr]
Out[2580]=	StrStr[x_]:=	If[StringQ[x],	“\””	<>	x<>	“\””,	ToString[x]]

It	should	be	noted	that	this	procedure	can	be	quite	useful	in	case	of	need	of	recovery	in	the
current	session	of	the	damaged	means	without	uploading	of	the	user	packages	containing
their	definitions.

The	DefFromM	procedure	directly	adjoines	to	theExtrOfMfile	procedure,	whose
callDefFromM[x,	y]	returns	definition	of	an	object	with	a	namey	that	is	located	in	a
datafilex	ofm–format	with	package	while	the	procedure	call	DefFromM[x,y,	z],	wherez	–
an	arbitrary	expression,	in	addition	evaluates	this	definition	in	the	current	session,	making
the	objecty	available.	In	order	to	simplification	of	algorithm	of	theDefFromM	procedure
theSubListsMin	procedure	is	used,	in	general	useful	at	operating	with	lists.	The	procedure
callSubListsMin[L,x,	y,	t]	returns	the	sublists	of	a	listL	that	are	limited	by	elements	{x,y}
and	have	the	minimum	length;	att	=	“r”	selection	is	executed	from	left	to	right,	and	att
=“l”	from	right	to	left.	Whereas	the	procedure	call	SubListsMin[L,	x,	y,	t,	z]	with
optionalfifth	argumentz-arbitrary	expression-	returns	sublists	without	the	limiting
elements	{x,	y}.	The	following	fragment	represents	source	codes	of	both	procedures	with
examples	of	their	usage.

In[2742]:=	SubListsMin[L_/;	ListQ[L],	x_,	y_,	t_	/;	MemberQ[{“r”,	“l”},	t],	z___]	:=
Module[{a,	b,	c,	d	=	{},	k	=	1,	j},	{a,	b}=	Map[Flatten,	Map3[Position,	L,	{x,	y}]];

If[a	==	{}||	b	==	{}||	a	==	{}&&	b	==	{}||	L	==	{},	{},	b	=	Select[Map[If[If[t	==	“r”,
Greater,	Less][#,	a[[1]]],	#]	&,	b],	!	SameQ[#,	Null]	&];	For[k,	k	<=	Length[a],	k++,	j
=	1;	While[j	<=	Length[b],	If[If[t	==	“r”,	Greater,	Less][b[[j]],	a[[k]]],	AppendTo[d,

If[t	==	“r”,	a[[k]]	;;	b[[j]],	b[[j]]	;;	a[[k]]]];	Break[]];	j++]];	d	=	Sort[d,	Part[#1,
2]–Part[#1,	1]	<=	Part[#2,	2]–Part[#2,	1]	&];	d	=	Select[d,	Part[#,	2]–Part[#,	1]	==
Part[d[[1]],	2]–Part[d[[1]],	1]	&];	d	=	Map[L[[#]]	&,	d];	d	=	If[{z}!=	{},	Map[#[[2
;;–2]]	&,	d],	d];	If[Length[d]	==	1,	Flatten[d],	d]]]

:=	SubListsMin[{a,	b,	a,	c,	d,	q,	v,	d,	w,	j,	k,	d,	h,	f,	d,	h},	a,	h,	“r”,	90]In[2743]
Out[2743]=	{c,	d,	q,	v,	d,	w,	j,	k,	d}
In[2744]:=	SubListsMin[{h,	g,	a,	b,	h,	a,	c,	d,	a,	q,	h,	v,	w,	a,	j,	k,	d,	h,	f,	d,	h},

a,	h,	“r”]	Out[2744]=	{{a,	b,	h},	{a,	q,	h}}
In[2745]:=	SubListsMin[{h,	g,	a,	b,	h,	a,	c,	d,	a,	q,	h,	v,	w,	j,	k,	d,	h,	f,	d,	h},

a,	h,	“r”,	500]	Out[2745]=	{{b},	{q}}
In[2746]:=	SubListsMin[{h,	g,	a,	b,	h,	a,	c,	d,	a,	q,	h,	v,	w,	j,	k,	d,	h,	f,	d,	h},

a,	h,	“l”]	Out[2746]=	{h,	g,	a}
In[2747]:=	SubListsMin[{h,	g,	a,	b,	h,	a,	c,	d,	a,	q,	h,	v,	w,	j,	k,	d,	h,	f,	d,	h},

a,	h,	“l”,	500]	Out[2747]=	{g}
In[2749]:=	DefFromM[x_	/;	FileExistsQ[x]	&&	FileExtension[x]	==	“m”,	y_	/;
SymbolQ[y],	z___]	:=	Module[{a	=	ReadList[x,	String],	b,	c,	d},

{	b,	c}=	{“(*Begin["`”	<>	ToString[y]	<>	“`"]*)”,	“(*End[]*)”};	d	=
StringJoin[Map[StringTake[#,	{3,–3}]	&,	Flatten[SubListsMin[a,	b,	c,	“r”,	90]]]];
If[{z}!=	{},	ToExpression[d];	d,	d]]

In[2750]	:=	DefFromM[“AVZ_Package.m”,	StrStr];	Definition[StrStr]	Out[2750]=
StrStr[x_]:=	If[StringQ[x],	“\””	<>	x<>	“\””,	ToString[x]]	Being	based	on	the	approach,
used	in	the	previousExtrOfMfile	procedure,	and	also	on	the	mechanism	of	string	patterns,
we	receive	useful	procedure	which	provides	receiving	of	the	list	of	means,	whose
definitions	are	located	in	the	user	package(m–file).	The	procedure	callContentOfMfile[f]
returns	the	list	of	names	in	string	format	of	all	means,	whose	definitions	are	located	in	a
package(m–file)	determined	by	argumentf.	In	absence	in	them–file	of	definitions	of	tools
in	thestandard	package	format	the	procedure	call	returns	the	empty	list,	i.e.	{}.	The
following	fragment	represents	source	code	of	the	ContentOfMfile	procedure	along	with
typical	examples	of	its	usage.

In[2830]:=	ContentOfMfile[f_	/;	FileExistsQ[f]	&&	FileExtension[f]	==

“m”]	:=	Module[{b,	a	=	ReadFullFile[f]},	b	=	StringSplit[a,	{“(*”,	“*)”}];	b	=
Select[b,	!	StringFreeQ[#,	{“Begin["`”,	“`"]”}]	&&	StringFreeQ[#,
“BeginPackage[“]	&];	b	=	Flatten[Map[StringCases[#,	“"`”	~~	__	~~	“`"”]	&,	b]];	b
=	DeleteDuplicates[Map[StringTake[#,	{3,–3}]	&,	b]];	Sort[Select[b,	StringFreeQ[#,
{“=”,	“,”,	“`”,	“[“,	“]”,	“(“,	“)”,	“^”,	“^”,	“;”,	“{“,	“}“,	“\”,	“/”}]	&]]]

:=	ContentOfMfile[“C:\AVZ_Package\Kiev.m”]	In[2841]
Out[2841]=	{”W“,	“W1”}
In[2842]:=	ContentOfMfile[“AVZ_Package.m”]
Out[2842]=	{”AcNb“,	“ActBFMuserQ“,	“ActCsProcFunc“,	“ActRemObj“,

“	ActUcontexts“,	“AddMxFile“,	“Adrive“,	“Adrive1“,	“Affiliate“,	“Aobj“,	“Aobj1“,
“Args“,	“Args1“,	“ArgsBFM“,	“ArgsTypes“,	…..,	“$InBlockMod“,	“$Line1“,

“$Load$Files$”,	“$ProcName“,	“$ProcType“,	“$TestArgsTypes“,	“$TypeProc“,
“$UserContexts”}

In[2843]:=	Length[%]
Out[2843]=	683

The	previous	ContentOfMfile	procedure	can	be	simplified	and	reduced	to	a	function,
usingSubsString	function	providing	the	allocation	of	substrings	from	a	string	on	condition
ofsatisfaction	of	the	allocated	substrings	to	the	set	conditions.	The	procedure
callSubsString[s,	{a,	b,	c,	d,	…}]	returns	the	list	of	substrings	of	a	strings	that	are	limited
by	substrings	{a,	b,	c,	d,	…}	whereas	the	procedure	callSubsString	[s,	{a,	b,	c,	d,	e,
…},p]	with	the	third	optional	argumentp	–a	pure	function	in	short	format–	returns	the	list
of	substrings	of	a	strings	that	are	limited	by	substrings	{a,b,	c,	d,	…},	meeting	the
condition	determined	by	a	pure	functionp.	While	the	procedure	callSubsString[s,	{a,	b,	c,
d,	…},p]	with	the3rd	optional	argumentp	–an	arbitrary	expression	which	different	from
pure	function–	returns	a	list	of	substrings	limited	by	substrings	{a,	b,	c,	d,	…},	with
removed	prefixes	and	suffixes	{a,	b,	c,	d,	…}[[1]]	and	{a,	b,	c,	d,	…}[[-1]]	accordingly.	In
absence	in	a	strings	of	at	least	one	of	substrings	{a,	b,	c,	d,	…}	the	procedure	call	returns
the	empty	list.	Using	theSubsString	procedure,	it	is	rather	simple	to	modify
theContentOfMfile	procedure	in	the	form	ofContentOfMfile1	function	whose	source
code	with	source	code	ofSubsString	procedure	along	with	certain	examples	of	their
typical	usage	the	following	fragment	represents.

In[3215]	:=	SubsString[s_/;	StringQ[s],	y_/;	ListQ[y],	pf___]	:=	Module[{b,	c,	a	=	””,
k	=	1},	If[Set[c,	Length[y]]	<	2,	s,	b	=	Map[ToString1,	y];	While[k	<=	c–1,	a	=	a	<>
b[[k]]	<>	“~~	Shortest[__]	~~	“;	k++];	a	=	a	<>	b[[–1]];	b	=	StringCases[s,
ToExpression[a]];	If[{pf}!=	{}&&	PureFuncQ[pf],	Select[b,	pf],	If[{pf}!=	{},
Map[StringTake[#,	{StringLength[y[[1]]]	+	1,
–StringLength[y[[–1]]]–1}]	&,	b],	Select[b,	StringQ[#]	&]]]]]

In[3216]	:=	SubsString[“adfghbffgxbavzgagngbArtggbKgrg”,	{“b”,“g”},
StringFreeQ[#,	“f”]	&]
Out[3216]=	{”bavzg“,	“bArtg“,	“bKg”}
In[3217]:=	SubsString[“adfghbffgxbavzgagngbArtgbKrg”,	{“b”,	“g”}]
Out[3217]=	{”bffg“,	“bavzg“,	“bArtg“,	“bKrg”}
In[3218]:=	SubsString[“abcxxxxx42345abcyyyyy42345”,	{“ab”,	“42”},	90]
Out[3218]=	{”cxxxxx“,	“cyyyyy”}

In[3227]:=	ContentOfMfile1[f_	/;	FileExistsQ[f]	&&	FileExtension[f]	==	“m”]	:=
Sort[DeleteDuplicates[Select[Map[StringTake[#,	{9,–4}]	&,

SubsString[ReadFullFile[f],	{“Begin["`”,	“`"]”}]],	StringFreeQ[#,	{“=”,	“,”,	“`”,	“[“,
“]”,	“(“,	“)”,	“^”,	“;”,	“{“,	“}“,	“\”,	“/”}]	&]]]	In[3228]:=
ContentOfMfile1[“C:\Temp\AVZ_Package\Kherson.m”]	Out[3228]=	{”W“,	“W1”}
In[3229]:=	ContentOfMfile1[“AVZ_Package.m”]
Out[3229]=	{”AcNb“,	“ActBFMuserQ“,	“ActCsProcFunc“,	“ActRemObj“,

“	ActUcontexts“,	“AddMxFile“,	“Adrive“,	“Adrive1“,	“Affiliate“,	“Aobj“,	“Aobj1“,
“Args“,	“Args1“,	“ArgsBFM“,	“ArgsTypes“,	…..,	“$InBlockMod“,	“$Line1“,
“$Load$Files$”,	“$ProcName“,	“$ProcType“,	“$TestArgsTypes“,	“$TypeProc“,

“$UserContexts”}

In[3230]:=	Length[%]
Out[3230]=	683

In	general	it	should	be	noted	that	the	Mathematica	system	posesses	a	rather	developed
mechanism	ofstring	patterns	which	allows	to	program	developed	means	of	processing	of
various	string	structures.

The	two	procedures	below	are	quite	useful	at	manipulations	with	a	package	that	is	located
in	amx–file.	So,	the	procedure	callContextMXfile[x]	returns	the	context	associated	with
the	user’s	package	which	is	located	in	amx–file	x.	Meanwhile,	uploading	of	themx–file
into	the	current	session	isn’t	made.	TheMxToTxt	procedure	allows2	÷	4	actual	arguments.
The	procedure	call	MxToTxt[x,	y]	returnsNull,	i.e.	nothing,	saving	in	a	datafiley
oftxt–format	and	in	the	current	session	all	definitions	of	a	package	which	is	located	in	a
mx–file.	At	that,	all	definitions	of	the	filex	are	saved	in	an	optimum	format	(without	the
context	associated	with	package).	If	the	callMxToTxt[x,	y,	z],	since	the	third	argument,
contains	optional	argument“Del”,	the	packagex	isn’t	loaded	into	the	current	session,
otherwise	all	its	definitions	are	saved	in	the	current	session	in	optimum	format.	If	at	the
procedure	call	the	arguments,	starting	with	the	third,	contain	an	undefinite	variable,
through	it	the	list	of	all	objects	whose	definitions	are	located	in	a	filex	with	the	user
package	is	returned.	The	following	fragment	represents	source	codes	of	the	mentioned
procedures	together	with	them	associated,	and	the	examples	of	their	usage.

In[2825]:=	ContextMXfile[x_	/;	FileExistsQ[x]	&&	FileExtension[x]	==	“mx”]	:=
Module[{a,	c,

Flatten[Map7[Range,	Sequences,	{{48,	57},	{65,	90},	{96,	122}}]]},	a
=BinaryReadList[x];	a	=	a[[1;;	If[Length[a]	>=500,	500,	Length[a]]]];	c	=
Flatten[Map3[PosSubList,	a,	{{67,	79,	78,	84},	{69,	78,	68,	67,	79,	78,	84}}]];
If[Length[c]	<	5,	$Failed,	FromCharacterCode[Select[a[[c[[2]]	+1	;;	c[[5]]–1]],
MemberQ[b,	#1]	&]]]]

In[2826]:=	ContextMXfile[“F:\AVZ_Package\AVZ_Package.mx”]	Out[2826]=
“AladjevProcedures`”

In[2827]	:=	ContextFromFile[x_/;	StringQ[x]]	:=	If[Quiet[FileExistsQ[x]]	&&
MemberQ[{“m”,	“nb”,	“mx”,	“cdf”},	FileExtension[x]],
Quiet[ToExpression[StringJoin[“Context”,	ToUpperCase[If[FileExtension[x]	==
“cdf”,	“nb”,	FileExtension[x]]],	“file[“,	ToString1[x],	“]”]]],	$Failed]

In[2828]	:=	Map[ContextFromFile,	{“E:\Temp/Kherson.m”,	“Package.nb”,
“C:\Users\Aladjev\Mathematica\AVZ_Package.mx”}]
Out[2828]=	{”Kherson`”,	“AladjevProcedures`”,	“AladjevProcedures`”}

In[2829]:=	MxToTxt[x_	/;	FileExistsQ[x]	&&	FileExtension[x]	==	“mx”,	y_	/;
StringQ[y],	z___]	:=	Module[{b,	c,	a	=	ContextMXfile[x]},

LoadMyPackage[x,	a];	b	=	CNames[a];	Map[{Write[y,	Definition[#]],	Write[y]}&,
b];	Close[y];	If[MemberQ[{z},	“Del”],	RemovePackage[a]];	c	=	Select[{z},	!
HowAct[#]	&&	!	SameQ[#,	“Del”]	&];	If[c	!=	{},	ToExpression[ToString[c[[1]]]	<>
“=”	<>	ToString[b]]];]

BeginPackage[“Kherson`”]
Gs::usage	=	“Function	Gs[x,	y]	:=	73*x^2	+	68*y	+	47	+	S[x,	y].”	G::usage	=
“Function	G[x,	y]	:=	N[Sin[x]	+	Cos[y]]	+	S[x,	y].”	V::usage	=	“Function	S[x_,	y_]	:=
x^2	+	y^2.”
Begin[“`Private`”]
V[x_,	y_]	:=	x^2	+	y^2
Gs[x_	/;	IntegerQ[x],	y_	/;	IntegerQ[y]]	:=	73*x^2	+	68*y	+	47	+	V[x,	y]	G[x_	/;
IntegerQ[x],	y_	/;	IntegerQ[y]]	:=	N[Sin[x]	+	Cos[y]]	+	V[x,	y]

End[]
EndPackage[]
In[2830]:=	$Packages

Out[2830]	=	{”AladjevProcedures`”,	“ResourceLocator`”,	“PacletManager`”,	“System`”,
“Global`”}
In[2831]:=	ContextMXfile[“Kherson.mx”]
Out[2831]=	“Kherson`”
In[2832]:=	MxToTxt[“Kherson.mx”,	“Kherson.txt”]
In[2833]:=	$Packages
Out[2833]=	{”Kherson`”,	“AladjevProcedures`”,	“GetFEKernelInit`”,
“TemplatingLoader`”,	“ResourceLocator`”,	“PacletManager`”,	“System`”,	“Global`”}
In[2834]:=	MxToTxt[“Kherson.mx”,	“Kherson.txt”,	g];	g
Out[2834]=	{G,	Gs,	V}
In[2835]:=	$Packages
Out[2835]=	{”Kherson`”,	“AladjevProcedures`”,	“GetFEKernelInit`”,
“TemplatingLoader`”,	“ResourceLocator`”,	“PacletManager`”,	“System`”,	“Global`”}
In[2836]:=	MxToTxt[“Kherson.mx”,	“Kherson.txt”,	“Del”]
In[2837]:=	$Packages
Out[2837]=	{”AladjevProcedures`”,	“GetFEKernelInit`”,
“TemplatingLoader`”,	“ResourceLocator`”,	“PacletManager`”,	“System`”,	“Global`”}
In[2838]:=	MxToTxt[“Kherson.mx”,	“Kherson.txt”,	t,	“Del”];	t
Out[2838]=	{G,	Gs,	V}
In[2839]:=	$Packages
Out[2839]=	{”AladjevProcedures`”,	“GetFEKernelInit`”,
“TemplatingLoader`”,	“ResourceLocator`”,	“PacletManager`”,	“System`”,	“Global`”}

The	MxToTxt	procedure	has2	rather	useful	modificationsMxToTxt1	and	MxToTxt2	with
which	it	is	possible	to	familiarize	in	[30-33,48].	In	particular,	on	the	basis	of	the
proceduresMxToTxt	÷	MxToTxt2	it	is	possible	to	create	quite	effective	and	simple
libraries	of	the	user	means	with	system	of	their	maintaining.	The	similar	organization	is
rather	habitual	for	the	users	having	experience	in	traditional	programming	systems.

The	next	equivalent	procedures	ContextFromMx	andContextFromMx1	use	different
algorithms;	their	calls	on	amx–file	return	a	context	ascribed	to	the	user	package,	at	a
context	absence$Failed	is	returned.	The	fragment	below	presents	source	codes	of	these
procedures	and	an	auxiliary	function	along	with	typical	examples	of	their	usage.	The
function	callStringFreeQ2[x,	{a1,	a2,	a3,	…}]	returnsTrue	if	all	substrings	{a1,	a2,	a3,
…}	are	absent	in	a	string	x,	andFalse	otherwise.

In[2770]:=	ContextFromMx[x_	/;	FileExistsQ[x]	&&	FileExtension[x]	==

“mx”]	:=	Module[{d	=	Map[FromCharacterCode,	Range[2,	27]],	a	=
StringJoin[Select[Characters[ReadString[x]],	SymbolQ[#]	||	IntegerQ[#]	||	#	==	“`”
&]],	b},	If[StringFreeQ2[a,	{“CONT”,	“ENDCONT”}],	$Failed,	b	=	StringCases1[a,
{“CONT”,	“ENDCONT”},	“___”];	If[b	==	{},	$Failed,	StringReplace[b,
Flatten[{GenRules[d,	””],	“ENDCONT”–>	””,	“CONT”–>	””}]][[1]]]]]

In[2771]:=	ContextFromMx[“c:\users/aladjev/mathematica/Tallinn.mx”]	Out[2771]=
“Grodno`”
In[2772]:=	ContextFromMx1[x_	/;	FileExistsQ[x]	&&	FileExtension[x]	==

“mx”]	:=	Module[{d	=	Map[FromCharacterCode,	Range[2,	27]],	a	=
StringJoin[Select[Characters[ReadString[x]],	SymbolQ[#]	||	IntegerQ[#]	||	#	==	“`”
&]],	b},	If[StringFreeQ2[a,	{“CONT”,	“ENDCONT”}]	||	StringCases1[a,	{“CONT”,
“ENDCONT”},	“___”]	==	{},	$Failed,	b	=	StringPosition[a,	{“CONT”,
“ENDCONT”}];	If[b	=={},	$Failed,	StringReplace[StringTake[a,	{b[[1]][[1]],	b[[2]]
[[2]]}],	Flatten[{GenRules[d,	””],	“ENDCONT”–>	””,	“CONT”–>	””}]]]]]

In[2773]:=	ContextFromMx1[“c:/users/aladjev/mathematica/Tallinn.mx”]
Out[2773]=	“Grodno`”
:=	StringFreeQ2[x_	/;	StringQ[x],	y_	/;	StringQ[y]	||	ListQ[y]	&&In[2774]
DeleteDuplicates[Map[StringQ[#]	&,	y]]	==	{True}]	:=	!
MemberQ[Map[StringFreeQ[x,	#]	&,	Flatten[{y}]],	False]

In[2775]	:=	StringFreeQ2[“12tvArthsnm3p45k6r78hKr9”,	{“a”,	“b”,	“c”,	“d”}]
Out[2775]=	True
It	should	be	noted	that	both	procedures	operates	on	platformsWindowsXP	Professional
andWindows7Professional.	Moreover	performance	of	procedures	is	higher	if	they	are
applied	to	amx–file	created	on	the	current	platform.	In	view	of	distinctions	of	themx–files
created	on	different	platforms	there	is	a	natural	expediency	of	creation	of	the	means
testing	anymx–file	regarding	a	platform	in	which	it	was	created	in	virtue	of	theDumpSave
function.	The	followingTypeWinMx	procedure	is	one	of	such	means.	The	procedure	call
TypeWinMx[x]	in	string	format	returns	the	type	of	operating	platform	on	which
amx–filex	was	created;	correct	result	is	returned	for	case	ofWindows	platform,	while	on
other	platforms$Failed	is	returned.	This	is	conditioned	by	lack	of	a	possibility	to	carry	out
debugging	on	other	platforms.	The	next	fragment	represent	source	code	of	the	procedure
with	examples	of	its	use.

In[2785]	:=	TypeWinMx[x_	/;	FileExistsQ[x]	&&	FileExtension[x]	==	“mx”]:=
Module[{a,	b,	c,	d},	If[StringFreeQ[$OperatingSystem,	“Windows”],	$Failed,	a	=
StringJoin[Select[Characters[ReadString[x]],	SymbolQ[#]
||Quiet[IntegerQ[ToExpression[#]]]	||#	==	“–”	&]];	d	=	Map[FromCharacterCode,
Range[2,	27]];	b	=	StringPosition[a,	{“CONT”,	“ENDCONT”}];	If[b[[1]][[2]]	==
b[[2]][[2]],

c	=	StringCases1[a,	{“Windows”,	“ENDCONT”},	“___”],	b	=	StringPosition[a,
{“Windows”,	“CONT”}];	c	=	StringTake[a,	{b[[1]][[1]],	b[[2]][[2]]}]];	c	=
StringReplace[c,	Flatten[{GenRules[d,	””],

“ENDCONT”–>	””,	“CONT”–>	””}]];	If[ListQ[c],	c[[1]],	c]]]

In[2786]	:=	TypeWinMx[“ProcQ.mx”]
Out[2786]=	“Windows-x86-64”
In[2787]:=	TypeWinMx[“AVZ_Package_1.mx”]
Out[2787]=	“Windows”
In[2788]:=	TypeWinMx[“AVZ_Package.mx”]
Out[2788]=	“Windows-x86-64”

The	call	DumpSave[x,	y]	returns	the	list	of	contextsy	of	objects	or	objects	with	definitions
that	were	ostensibly	unloaded	into	amx–filex	irrespective	of	existence	ofdefinitions	for
these	objects	or	theircontexts	in	the	list	defined	by$ContextPath	variable,	without
allowing	to	make	program	processing	of	results	ofDumpSave	calls.	At	that,	the	result	of
theDumpSave	call	can’t	be	tested	programmatically	and	elimination	of	this	situation	is
promoted	by	a	procedure,	whose	successful	call	DumpSave1[x,	y]	returns	the	nested	list
whosefirst	element	defines	the	path	to	a	filex	ofmx–format(if	necessary,the	“mx”extension
is	ascribed	to	the	datafile)	while	thesecond	element	defines	the	list	of	objects	and/or
contexts	from	the	list	defined	byy	whose	definitions	are	unloaded	into	the	datafilex.	In	the
absence	of	objects(the	certain	symbols	and/or	contexts	existing	in	the	list	defined	by
the$ContextPathvariable)	which	were	defined	by	argumenty,	theDumpSave1	call
returns$Failed.	The	next	fragment	represents	source	codes	of	the	procedure	along	with
other	means,	useful	at	processing	of	datafiles	ofmx–format,	and	contexts	of	symbols.

In[3120]:=	DumpSave1[x_,	y_]	:=	Module[{a,	b,	c},

If[StringQ[x],	If[FileExtension[x]	==	“mx”,	c	=	x,	c	=	x	<>	“.mx”];	a	=	Flatten[{y}];	b
=	Select[a,	(ContextQ[#]	&&	MemberQ[$ContextPath,	#])	||	!	MemberQ[{””,
“Null”},	Quiet[ToString[Definition[#]]]]	&];	If[b	!=	{},	{c,	Flatten[DumpSave[c,	b]]},
$Failed],	$Failed]]

In[3121]:=	DumpSave1[“AVZ_Package42.mx”,	{“Art`”,	“Kr`”,	GS}]	Out[3121]=
$Failed

In[3124]	:=	ReplaceSubLists[x_/;	ListQ[x],	y_	/;	RuleQ[y]	||	ListRulesQ[y]]	:=
Module[{a,	f,	d	=	FromCharacterCode[2015]},	f[z_/;	ListQ[z]]	:=
StringJoin[Map[ToString1[#]	<>	d	&,	z]];	a	=	Map[f[Flatten[{#[[1]]}]]–>	f[Flatten[{#
[[2]]}]]	&,	Flatten[{y}]];	ToExpression[StringSplit[StringReplace[f[x],	a],	d]]]

In[3125]	:=	ReplaceSubLists[{a,	b,	c,	“d”,	m,	x,	b,	c},	{{b,	c}–>	{x,	y},	a–>	{m,	n},
“d”–>	“90”}]
Out[3125]=	{m,	n,	x,	y,	“90“,	m,	x,	x,	y}

In[3128]:=	SubsList[x_/;	ListQ[x],	y_,	z_]	:=	Module[{b,	c,
a	=	FromCharacterCode[2015]},	b	=	StringJoin[Map[ToString1[#]	<>	a	&,	x]];	c	=
Map[StringJoin[Map[ToString1[#]	<>	a	&,	Flatten[{#1}]]]	&,	{y,	z}];	c	=
ToExpression[StringSplit[SubsString[b,	{c[[1]],	c[[2]]}],	a]];	If[Length[c]	==	1,	c[[1]],
c]]	In[3129]:=	SubsList[{a,	b,	c,	d,	x,	y,	x,	b,	c,	n,	a	+	b,	x,	y,	z},	{b,	c},	{x,	y}]
Out[3129]=	{{b,	c,	d,	x,	y},	{b,	c,	n,	a+	b,	x,	y}}
In[3146]:=	ContextToSymbol[x_/;	SymbolQ[x],	y_	/;	ContextQ[y],	z_	/;	StringQ[z]]	:=
Module[{b	=	Flatten[{PureDefinition[x]}],	a	=	If[FileExtension[z]	==	“mx”,	z,	z	<>
“.mx”]},	If[b	===	{$Failed},	$Failed,	AppendTo[$ContextPath,	y];
Quiet[ToExpression[Map[y	<>	#	&,	b]]];	{a,	DumpSave[a,	y]}]]

In[3147]	:=	Art[x_]	:=	Module[{a	=	6},	x	+	a];
ContextToSymbol[Art,	“Veeroja`”,	“AgnAvz”]
Out[3147]=	{”AgnAvz.mx“,	{”Veeroja`”}}

In[3150]	:=	ContextRepMx[x_	/;	FileExistsQ[x]&&	FileExtension[x]	==“mx”,	y_	/;
ContextQ[y]]	:=	Module[{a	=	ContextMXfile[x],	b,	c,	d,	h,	n,	m,	f},	a	=	If[SameQ[a,
$Failed],	“None”,	a];	b	=	ReadList[x,	Byte];	c	=	Map[ToCharacterCode,
{“Windows”,	“ENDCONT”}];	f	=	ToString[Unique[]]	<>	“.mx”;
ContextToSymbol[d,	y,	f];	h	=	ReadList[f,	Byte];	n	=	SubsList[b,	c[[1]],	c[[2]]];	m	=
SubsList[h,	c[[1]],	c[[2]]];	DeleteFile[f];	h	=	ReplaceSubLists[b,	n–>	m];	f	=
FileNameSplit[x];	f	=	FileNameJoin[AppendTo[f[[1	;;–2]],	“$”	<>	f[[–1]]]];
BinaryWrite[f,	h];	Close[f];	{f,	a,	y}]

In[3151]:=	ContextRepMx[“Kherson.mx”,	“Grodno`”]
Out[3151]=	{“$Kherson.mx“,	“Kherson`”,	“Grodno`”}
In[3154]:=	ContextSymbol[x_/;	SymbolQ[x]]	:=
Select[Map[If[MemberQ[CNames[#],	ToString[x]]	||	MemberQ[CNames[#],	#	<>
ToString[x]],	#]	&,	DeleteDuplicates[$ContextPath]],	!	SameQ[#1,	Null]	&]

In[3155]	:=	Map[ContextSymbol,	{G,	Gs,	ProcQ,	Sin}]
Out[3155]=	{{”Kherson`”},	{”Grodno`”},	{”AladjevProcedures`”},	{”System`”}}	So,
the	previous	fragment	represents	as	the	main,	and	supportive	means	of	processing
ofmx–files	and	contexts.	The	procedure	callReplaceSubLists[x,	y]	returns	the	result	of
replacement	of	elements(including	adjacent)	of	a	listx	on	the	basis	of	a	rule	or	list	of
rulesy;	moreover,	lists	can	be	as	parts	of	rules.	Whereas	the	procedure	callSubsList[x,	y,	z]
returns	the	list	of	sublists	of	the	elements	of	a	listx	that	are	limited	by	elements	{y,z};	qua
of	elements	{y,	z}	can	be	lists	too.	If	any	of	elements	{y,	z}	doesn’t	belongx,	the	procedure
call	returns	theempty	list,	i.e.	{}.	The	presented	proceduresReplaceSubLists	and	SubsList
along	with	processing	of	lists	are	of	interest	for	assignment	tomx–	files	of	a	context	in	its
absence.

Whereas	the	procedure	call	ContextToSymbol[x,y,	z]	returns	the	list	of	the	format	{z,
{y}},	ascribing	to	a	certain	symbolx	a	contexty	with	saving	of	its	definition	in	amx–filez.
In	particular,	the	given	means	is	quite	useful	in	the	case	of	necessity	of	saving	of	objects
inmx–files	with	a	context.	On	the	basis	of	three	proceduresReplaceSubLists,	SubsList
andContextToSymbol	the	procedure	which	provides	replacement	of	contexts	inmx–files
without	their	uploading	into	the	current	session	has	been	created.	So,	the	procedure	call
ContextRepMx[x,y]	provides	replacement	of	the	context	of	amx–filex	by	a	new	contexty,
returning	the	list	of	the	format	{File,	h,	y}	whereFile	–	the	file	with	result	of	such
replacement,h	–	an	old	context	or“None”	–	if	it	wasn’t,	andy	–	a	new	context.	Whereas
the	function	callContextSymbol[x]	returns	the	context	associated	with	a	symbolx.

At	calculation	of	definition	of	a	symbol	x	in	the	current	session	the	symbol	will	be
associated	with	the“Global’”	context	that	remains	at	its	unloading	intomxfile	by	means	of
theDumpSave	function.	While	in	some	cases	there	is	a	need	of	saving	of	symbols	inmx-
files	with	other	contexts.	The	procedure	DumpSave2	solves	the	given	problem	whose
callDumpSave2[f,x,y]	returns	nothing,	unloading	into	amx–filef	the	definition	of	a
symbol	or	their	listx	that	have	context“Global’”	withy	context.	The	fragment	below
represents	source	code	of	theDumpSave2	procedure	along	with	examples	of	its	usage.

In[3222]	:=	DumpSave2[x_	/;	FileExtension[x]==	“mx”,	y_	/;	SymbolQ[y]||	ListQ[y]
&&	DeleteDuplicates[Map[SymbolQ[#]	&,	y]]=={True},	z_	/;	ContextQ[z]]	:=
Module[{b,	c,	a	=	Flatten[Select[Map[PureDefinition[#]	&,	Flatten[{y}]],	!	SameQ[#,
$Failed]	&]]},	Map[ToExpression[z	<>	#]	&,	a];	AppendTo[$ContextPath,	z];	c	=
Map[z	<>	ToString[#]	&,	Flatten[{y}]];	AppendTo[c,	$ContextPath];	DumpSave[x,
c];]

In[3223]	:=	Agn[x_]	:=	x;	Agn[x_,	y_]	:=	x	+	y;	Agn[x_Integer]	:=	x	+	500	In[3224]:=
Avz[x_]	:=	x^2;	Avz[x_,	y_]	:=	90*(x+y);	Avz[x_Integer]	:=	x+500	In[3225]:=
Map[ContextSymbol,	{Agn,	Avz}]
Out[3225]=	{{”Global`”},	{”Global`”}}
In[3226]:=	DumpSave2[“Tallinn.mx”,	{Agn,	Avz},	“Rans`”]
In[3227]:=	Clear[Avz,	Agn];	Map[PureDefinition,	{Agn,	Avz}]	Out[3227]=	{$Failed,
$Failed}
In[3228]:=	Get[“Tallinn.mx”];	PureDefinition[Rans`Agn]
Out[3228]=	{”Rans`Agn[x_Integer]:=	x+	500“,	“Rans`Agn[x_]:=	x“,

“	Rans`Agn[x_,	y_]:=	x+	y”}
In[3229]:=	Ian`Agn[x_,	y_]	:=	x	+	y;	PrependTo[$ContextPath,	“Ian`”]	Out[3229]=
{”Ian`”,	“AladjevProcedures`”,	“TemplatingLoader`”,

“	PacletManager`”,	“System`”,	“Global`”,	“Rans`”}
In[3230]:=	ContextSymbol[Agn]
Out[3230]=	{”Ian`”,	“Rans`”}
In[3231]:=	DumpSave[“Tampere.mx”,	“Ian`”];
In[3232]:=	$ContextPath	=	MinusList[$ContextPath,	{“Ian`”}];

PureDefinition[Agn]
Out[3232]=	$Failed
In[3233]:=	Get[“Tampere.mx”];	CNames[“Ian`”]
Out[3233]=	{”Agn”}
In[3234]:=	ContextMXfile[“Tampere.mx”]
Out[3234]=	“Ian`”
In[3235]:=	PureDefinition[Agn]
Out[3235]=	“Agn[x_,	y_]:=	x+	y”

The	previous	fragment	is	completed	by	examples	illustrating	the	principle	of	saving	of
objects,	whose	definitions	are	evaluated	in	the	current	session,	inmx–files	with	the	given
context.	This	principle	was	used	at	programming	of	the	procedures	endowing	a	symbol	by
a	context.
As	it	was	noted	earlier,	the	objects	of	the	same	name	have	various	headings	therefore	in
certain	cases	arises	a	question	of	their	more	exact	identification.	The	next	procedure
provides	one	of	such	approaches,	trying	to	associate	the	components	composing	such
objects	with	the	contexts	ascribed	to	them.	At	the	heart	of	the	procedure	algorithm	lies	a
principle	of	creation	for	separate	components	of	an	object	of	the	same	name	of	packages
inm–files	with	the	unique	contexts	ascribed	to	them.	Then,	having	removed	an	objectx	of
the	same	name	from	the	current	session,	by	means	of	uploading	of	thesemfiles	into	the
current	session	we	have	opportunity	of	access	to	components	of	the	objectx	of	the	same
name	through	a	construction	of	the“Context’x”	format.	The	fragment	below	represents

souce	code	of	theDiffContexts	procedure	along	with	typical	examples	of	its	usage.

In[2630]	:=	DiffContexts[x_	/;	SymbolQ[x]	&&	!	UnevaluatedQ[HeadPF,	x],	y___]	:=
Module[{a	=	{“(*BeginPackage[".12`"]*)”,	“(*.0f::usage=""”	<>	“*)”,
“(*Begin["`.06`"]*)”,	“(*.04*)”,	“(*End[]*)”,	“(*EndPackage[]*)”},

b	=	Map[FromCharacterCode,	{18,	15,	6,	4}],	c	=	Definition2[x][[1	;;–2]],	d,	h	=
ToString[x],	k	=	1,	j,	t	=	{},	p,	f	=	{},	z},	If[Length[c]	<	2,	Context[x],	z	=	HeadPF[x];
Clear[x];	For[k,	k	<=	Length[c],	k++,	d	=	{};	For[j	=	1,	j	<=	Length[a],	j++,
AppendTo[d,	StringReplace[a[[j]],	{b[[1]]–>	h	<>	ToString[k],	b[[2]]–>	h,	b[[3]]–>	h,
b[[4]]–>	c[[k]]}]]];	AppendTo[t,	p	=	h	<>	ToString[k]	<>	“.m”];	AppendTo[f,	{h	<>
ToString[k]	<>	“`”,	z[[k]]}];	Map[{BinaryWrite[p,	ToCharacterCode[#][[3	;;–3]]],
BinaryWrite[p,	{32,	10}]}&,	d];	Close[p];	Get[p]];	If[{y}!=	{},	Map[DeleteFile,	t],
Null];	Reverse[f]]]

In[2631]	:=	T[x_]	:=	x;	T[x_,	y_]	:=	x*y;	T[x_,	y_,	z_]	:=	x*y*z
In[2632]:=	DiffContexts[T]
Out[2632]=	{{”T3`”,	“T[x_,	y_,	z_]”},	{”T2`”,	“T[x_,	y_]”},	{”T1`”,	“T[x_]”}}
In[2633]:=	Definition[“T1`T”]
Out[2633]=	T1`T[T1`T`x_]:=	T1`T`x
In[2634]:=	Definition[“T2`T”]

Out[2634]	=	T2`T[T2`T`x_,	T2`T`y_]:=	T2`T`x*T2`T`y
In[2635]:=	Definition[“T3`T”]
Out[2635]=	T[T3`T`x_,	T3`T`y_,	T3`T`z_]:=	T3`T`x*T3`T`y*T3`T`z	In[2636]:=
Definition[T]
Out[2636]=	T[T3`T`x_,	T3`T`y_,	T3`T`z_]:=	T3`T`x*T3`T`y*T3`T`z	In[2637]:=
$Packages
Out[2637]=	{”T3`”,	“T2`”,	“T1`”,	“AladjevProcedures`”,	“GetFEKernelInit`”,

“	TemplatingLoader`”,	“ResourceLocator`”,	“PacletManager`”,	“System`”,	“Global`”}
In[2638]:=	DiffContexts[T,	500]
Out[2639]=	{”T3`”,	“T2`”,	“T1`”}
In[2639]:=	Definition[“T1`T”]
Out[2639]=	T1`T[T1`T`x_]:=	T1`T`x
In[2640]:=	FileExistsQ[“T1.m”]
Out[2640]=	False
In[2641]:=	T3`T[73,	68,	48]
Out[2641]=	238	272

The	procedure	call	DiffContexts[x]	returns	the	nested	list	ofListList–type	whose	sublists
by	thefirst	element	definecontext	while	the	second	element	defineheading	of	a	certain
component	of	an	object	of	the	same	namex	in	the	format	{{“xn’”,“cn’”},	…,	{“x2’”,
“c2’”},	{“x1’”,	“c1’”}}	whose	order	is	defined	by	order	of	the	contexts	in	the	list	defined
by	the$Packages	variable,	where	n	–	number	of	components	of	the	object	of	the	same
namex.	Moreover,	the	datafiles“xj.m”	with	the	packages	with	components	definitions
composing	the	object	of	the	same	namex	remain	in	the	current	directory	of	the	session
(j=1..n).	At	the	same	time	the	procedure	callDiffContexts[x,	y]	with	the2nd	argumenty
–an	arbitrary	expression–	returns	the	above	result,	removing	the	intermediatem-files.

Whereas	onx	objects	different	from	objects	of	the	same	name	the	procedure
callDiffContexts[x]	returns	the	context	of	an	objectx.	A	certain	interest	is	represented	by
theNamesCS	procedure	whose	the	call	NamesCS[P,	Pr,	Pobj]	returnsNull,	i.e.	nothing
while	thru	three	arguments	P,	Pr,	Pobj	–undefinite	variables–	are	respectively	returned	the
list	of	contexts	corresponding	to	the	packages	uploaded	into	the	current	session,	the	list	of
the	user	procedures,	whose	definitions	are	activated	in	theInputparagraph	of	the	current
session,	and	the	nested	list,	whose	sublists	in	the	main	have	various	length	and	are
structurally	formatted	as	follows:
–the	first	element	of	a	sublist	defines	the	context	corresponding	to	a	package	which	was
uploaded	in	the	current	session	of	theMathematicasystem	at	the	time	of	the
NamesCSprocedure	call;
–all	subsequent	elements	of	this	sublist	define	objects	of	this	package	which	in	the	current
session	of	theMathematicasystem	were	made	active.

The	following	fragment	represent	source	code	of	theNamesCS	procedure	along	with	a
typical	example	of	its	usage.
In[2593]:=	NamesCS[P_	/;	!	HowAct[P],	Pr_	/;	!	HowAct[Pr],
Pobj_	/;	!	HowAct[Pobj]]	:=

Module[{b	=	Contexts[],	c	=	$Packages,	d,	k	=	1,	p,	n,	m,	h,	a	=
Quiet[Select[Map[ToExpression,	Names[“`*”]],	ProcQ[#]	&]]},	{P,	Pr}=	{c,	a};	c	=
Map[List,	c];	For[k,	k	<=	Length[b],	k++,	For[p	=	1,	p	<=	Length[c],	p++,	n	=	b[[k]];
m	=	c[[p]][[1]];	If[n	===	m,	Null,	If[SuffPref[n,	m,	1],	d	=	StringReplace[n,	b–>	””];
If[d	==	””,	Null,	c[[p]]	=	Append[c[[p]],	ToExpression[StringTake[StringReplace[n,
b–>	””],	{1,–2}]]]]],	Continue[]]]];	c	=	Map[DeleteDuplicates,	c];	For[k	=	1,	k	<=
Length[c],	k++,	h	=	c[[k]];	If[Length[h	==	1],	h	=	Null,	h	=	Select[h,	StringQ[#]	||
ToString[Quiet[DefFunc[#]]]	!=	“Null”	&]]];	Pobj	:=	Select[c,	Length[#]	>	1	&&	!	#
===	Null	&];	Pobj	=	Mapp[Select,	Pobj,	If[!	StringQ[#],	True,	If[StringTake[#,–1]	==
“`”,	True,	False]]	&];]

In[2594]	:=	NamesCS[P,	Pr,	Pobj]
In[2595]:=	{P,	Pr}
Out[2595]=	{{”Grodno`”,	“Tallinn`”,	“Kiev1`”,	“Kiev`”,	“AladjevProcedures`”,

“	GetFEKernelInit`”,	“TemplatingLoader`”,	“ResourceLocator`”,	“PacletManager`”,
“System`”,	“Global`”},	{}}
In[2596]:=	Pobj
Out[2596]=	{{“Kherson`”,	Ga,	Gs,	Private,	Vgs},
{“AladjevProcedures`”,	ActBFMuserQ,	ActRemObj,	…,	{“ResourceLocator`”,
Private},

{	“PacletManager`”,	Collection`Private,	Private,	…},	{“QuantityUnits`”,	Private},
{“WebServices`”,	Information},
{“System`”,	BesselParamDerivativesDump,	BinaryReadDump}}

Moreover,	the	list	returned	through	Pobj–argument	contains	only	sublists,	whose
corresponding	packages	have	objects	that	have	been	activated	in	the	currentMathematica
session.

While	the	call	Npackage[x]	of	very	simple	function	returns	the	list	of	names	in	string

format	of	all	objects	whose	definitions	are	located	in	ax	package	activated	in	the	current
session.	In	case	of	inactivity	in	the	current	session	of	the	packagex	or	in	case	of	its
absence	the	function	callNpackage[x]	returns	$Failed.	So,	the	following	fragment
represents	source	code	of	theNpackage	function	along	with	typical	examples	of	its	usage.

In[2684]:=	Npackage[x_/;	StringQ[x]]	:=	If[MemberQ[Contexts1[],	x],
Sort[Select[Names[x	<>	“*”],	StringTake[#,–1]	!=	“$”	&&	ToString[Definition[#]]	!=
“Null”	&]],	$Failed]

In[2685]	:=	Npackage[“AladjevProcedures`”]
Out[2685]=	{”AcNb“,	“ActBFMuserQ“,	“ActCsProcFunc“,	“ActRemObj“,
“AddMxFile“,	“Adrive“,	“Adrive1“,	“Affiliate“,	“Aobj“,	…,	“$CallProc“,
“$InBlockMod“,	“$Line1“,	“$ProcName“,	“$ProcType“,	“$TestArgsTypes“,
“$TypeProc“,	“$UserContexts”}
In[2686]:=	Npackage[“Tallinn`”]
Out[2686]=	$Failed

The	ContOfContex	procedure	also	is	represented	as	a	rather	interesting	tool	whose
callContOfContex[x]	returns	the	nested	two-element	list	whose	first	element	defines	the
sublist	of	all	names	in	string	format	of	means	of	the	user	package	with	a	contextx
whosedefinitions	in	the	current	session	are	returned	by	theDefinition	function	with	thex
context	included	in	them	whereas	the	second	element	defines	the	sublist	of	all	names	in
string	format	of	means	of	the	package	with	thex	context	whose	definitions	in	the	current
session	are	returned	by	theDefinition	function	without	contextx.	The	fragment	below
represents	source	code	of	theContOfContex	procedure	with	an	example	of	its	use
concerning	the	context“AladjevProcedures’”	that	is	associated	with	theAVZ_Package
package	[48].	At	the	end	of	the	fragment	thelength	of	both	sublists	of	the	returned	result	is
calculated	along	with	random	inspection	by	means	of	theDefinition	function	of	definitions
of	means	from	both	sublists.	From	the	received	estimation	follows,	the	length	of	the	first
sublist	of	means	of	the	above	package	whosedefinitions	in	the	current	session	are	returned
by	theDefinition	function	along	with	the	context	is	significantly	longer.

In[2705]:=	ContOfContext[x_	/;	ContextQ[x]]	:=	Module[{b	=	{},	c	=	{},	h,	a	=
Select[CNames[x],	#	!=	“a”	&],	k	=	1},

If[a	==	{},	$Failed,	While[k	<=	Length[a],	h	=	a[[k]];
If[StringFreeQ[StringReplace[ToString[Definition4[h]],	“\n	\n”–>	””],	x	<>	h	<>
“`”],	AppendTo[c,	h],	AppendTo[b,	h]];	k++];	{b,	c}]]

In[2706]:=	ContOfContext[“AladjevProcedures`”]
Out[2706]=	{{”ActBFMuserQ“,	“ActRemObj“,	“AddMxFile“,	“Adrive1“,

“	Affiliate“,	“Aobj“,	“Aobj1“,	“Args“,	“Args1“,	“ArgsBFM“,	……},	{”AcNb“,
“ActCsProcFunc“,	“Adrive“,	“Attributes1“,	“Avg“,
“BlockQ“,	“BlockQ1“,	“CALL“,…,”$Load$Files$”,	“$ProcName“,
“$ProcType“,”$TestArgsTypes“,”$TypeProc“,”$UserContexts”}}	In[2707]:=
Map[Length,	%]
Out[2707]=	{425,	259}
In[2708]:=	Definition[“DirName”]
Out[2708]=	DirName[AladjevProcedures`DirName`F_	/;

StringQ[AladjevProcedures`DirName`F]]:=	If[DirQ[AladjevProcedures`DirName`F],
“None“,	If[!	FileExistsQ1[AladjevProcedures`DirName`F],	$Failed,
Quiet[Check[FileNameJoin[FileNameSplit[AladjevProcedures`DirName`F][[1;–2]]],
“None”]]]]	In[2709]:=	Definition[“StrStr”]
Out[2709]=	StrStr[x_]:=	If[StringQ[x],	StringJoin[“"”,	x,	“"”],	ToString[x]]	In[2710]:=
ContOfContext[“AladjevProceduresAndFunctions`”]	Out[2710]=	$Failed

In[2716]:=	LoadPackage[x_	/;	FileExistsQ[x]&&	FileExtension[x]	==	“mx”]:=
Module[{a},	Quiet[ToExpression[“Off[shdw::Symbol]”];	Get[x];	a	=
ToExpression[“Packages[][[1]]”];

ToExpression[“LoadMyPackage[”	<>	“"”	<>	x	<>	“"”	<>	“,”	<>	“"”	<>	a	<>	“"”	<>
“]”];	ToExpression[“On[shdw::Symbol]”]]]

In[2717]	:=	LoadPackage[“C:\Users\Mathematica\AVZ_Package.mx”]	In[2718]:=
Definition[“DirName”]
Out[2718]=	DirName[F_	/;	StringQ[F]]:=	If[DirQ[F],	“None“,

If[!	FileExistsQ1[F],	$Failed,	Quiet[Check[FileNameJoin[FileNameSplit[F][[1;–2]]],
“None”]]]]

On	inactive	contexts	x	the	procedure	callsContOfContext[x]	return$Failed	while	in	other
cases	the	procedure	call	is	returned	unevaluated.	Qua	of	one	of	possible	appendices	of	the
given	procedure	it	is	possible	to	note	problems	that	deal	with	source	codes	of	software	of
the	user	packages.	Forelimination	of	similar	distinction	theLoadPackage	procedure
completing	the	previous	fragment	can	be	used.	The	procedure	callLoadPackage[x]
returnsNull,	i.e.	nothing,	loading	the	user	package	contained	in	a	datafilex	of	themxformat
into	the	current	session	of	theMathematica	with	activation	ofall	definitions	which	contain
in	it	in	a	mode	similar	to	the	mode	of	theInputparagraph	of	theMathematica	system.

Qua	of	useful	addition	to	the	ContOfContex	procedure,	theNamesContext	procedure	can
be	quite	considered,whose	callNamesContext[x]	returns	the	list	of	names	in	string	format
of	program	objects	of	the	current	session	that	are	associated	with	a	contextx.	In	case	of
absence	of	this	context	the	empty	list,	i.e.	{}	is	returned.	If	thex	value	is	different	from	a
context	the	procedure	call	is	returned	unevaluated.	The	following	fragment	represents
source	code	of	theNamesContext	procedure	along	with	typical	examples	of	its	usage.

In[2840]:=	NamesContext[x_	/;	ContextQ[x]]	:=	Module[{b,	c	=	{},	k	=	1,	h,	a	=
Names[x	<>	“*”]},

While[k	<=	Length[a],	b	=	a[[k]];	h	=	ToString[ToExpression[“Definition[”	<>	b	<>
“]”]];	If[h	!=	“Null”	&&	h	!=	“Attributes[”	<>	b	<>	“]={Temporary}”	&&	!
SuffPref[b,	“a$”,	1],	AppendTo[c,	a[[k]]]];	k++];	c]	In[2841]:=
NamesContext[“AladjevProcedures`”]
Out[2841]=	{”AcNb“,	“ActBFMuserQ“,	“ActCsProcFunc“,	“ActRemObj“,

“	AddMxFile“,	“Adrive“,	“Adrive1“,	“Affiliate“,	“Aobj“,	…,	“$CallProc“,
“$InBlockMod“,	“$Line1“,	“$ProcName“,	“$ProcType“,	“$TestArgsTypes“,
“$TypeProc“,	“$UserContexts”}

In[2842]	:=	Length[%]
Out[2842]=	684

In[2843]:=	NamesContext[“Global`”]
Out[2843]=	{”Art“,	“G“,	“Gal“,	“Kr“,	“Global`LoadPackage“,	“NamesContext”}
In[2844]:=	Length[%]
Out[2844]=	6
In[2845]:=	NamesContext[“System`”]
Out[2845]=	{“\[FormalA]“,	“\[FormalB]“,	“\[FormalC]“,	“\[FormalD]“,

“\	[FormalE]“,	“\[FormalF]“,	“\[FormalG]“,	“\[FormalH]“,	…	,	“$UserName“,
“$Version“,	“$VersionNumber“,	“$WolframID“,	“$WolframUUID“,	“\
[SystemsModelDelay]”}

In[2846]	:=	Length[%]
Out[2846]=	5167
In[2847]:=	NamesContext[“Tallinn`”]
Out[2847]=	{}

The	procedure	call	Contexts1[]	that	is	a	simple	modification	of	theContexts	function
which	provides	testing	of	an	arbitrary	string	for	admissibility	qua	of	asyntactically	correct
context	returns	the	list	of	contexts	corresponding	to	packages	whose	components	have
been	activated	in	the	current	session.	The	following	fragment	represents	source	code	of
theContexts1	procedure	with	a	typical	example	of	its	usage.

In[2920]:=	Contexts1[]	:=	Module[{a	=	{},	b	=	Contexts[],	c,	k	=	1},	For[k,	k	<=
Length[b],	k++,	c	=	b[[k]];	If[Length[DeleteDuplicates[Flatten[StringPosition[c,
“`”]]]]	==	1	&&	StringTake[c,	{–1,–1}]	==	“`”,	AppendTo[a,	c],	Next[]]];	a]

In[2921]	:=	Contexts1[]
Out[2921]=	{”AladjevProcedures`”,	“Algebra`”,	“AlphaIntegration`”,	……}	In[2922]:=
Length[%]
Out[2922]=	184
In	some	cases	exists	the	problem	of	definition	of	them–files	containing	the	definition	of
some	object	active	in	the	current	session.	The	given	problem	is	successfully	solved	by	the
procedure	whose	callFindFileObject[x]	returns	the	list	of	datafiles	containing	definition
of	an	objectx,	including	the	usage;	in	the	absence	of	suchm–files	the	procedure	call	returns
the	empty	list,	i.e.	{}.	The	procedure	callFindFileObject[x,	y,	z,	…]	with	optional
arguments	{y,	z,	…}	qua	of	which	the	names	in	string	format	of	devices	of	direct	access
are	defined,	provides	search	ofm-files	on	the	specified	devices	instead	of	search	in	all	file
system	of	the	computer	by	the	procedure	call	with	one	argument.	The	next	fragment
represents	source	code	of	theFindFileObject	procedure	along	with	some	typical	examples
of	its	usage.

In[4363]:=	FindFileObject[x_	/;	!	SameQ[ToString[DefOpt[ToString[x]]],

“Null”],	y___]	:=	Module[{b	=	{},	c	=	””,	s	=	{},	d,	k	=	1,	a	=	If[{y}==	{},	Adrive[],
{y}],	f	=	“ArtKr”,	h	=	“(*Begin["`”	<>	ToString[x]	<>	“`"]*)”,	p	=	“(*”	<>
ToString[x]	<>	“::usage=”,	t},	While[k	<=	Length[a],	Run[“Dir	“,	a[[k]]	<>	“:\”,	”
/B/S/L	>	“<>f];	While[!	SameQ[c,	“EndOfFile”],	c	=	ToString[Read[f,	String]];
If[StringTake[c,	{–2,–1}]	==	“.m”,	AppendTo[b,	c]];	Continue[]];	Quiet[Close[f]];	c	=
””;	k++];	k	=	1;	While[k	<=	Length[b],	If[Select[ReadList[b[[k]],	String],	!
StringFreeQ[#,	h]	&&	StringFreeQ[#,	p]	&]	!=	{},	AppendTo[s,	b[[k]]]];	k++];

{DeleteFile[f],	s}[[2]]]

In[4364]	:=	FindFileObject[ProcQ,	“D”]
Out[4364]=	{”d:\grgu_books\avz_package\avz_package.m“,
“d:\temp\aladjev\documents\avz_package.m“,
“d:\temp\aladjev\mathematica\avz_package.m”}
In[4365]:=	Mapp[FindFileObject,	{Mapp,	AvzAgn}]
Out[4365]=	{{”c:\grgu_books\avz_package\avz_package.m“,
“c:\users\aladjev\documents\avz_package.m“,
“c:\users\aladjev\mathematica\avz_package.m“,	“e:\avz_package\avz_package.m”},
FindFileObject[AvzAgn]}
So,	for	identification	of	means	of	the	user	package	whose	definitions	in	the	current	session
contain	contextual	references,	the	following	procedure	can	be	used,	whose
callDefWithContext[x]	returns	the	returns	theelement	nested	list:	its	first	element	defines
the	list	of	names	of	means	of	the	package	loaded	from	amfilex	whose	definitions	don’t
contain	contextual	references	whereas	the	second	element–	the	list	of	names	of	means	of
the	package	whose	definitions	contain	the	contextual	references.	The	following	fragment
represents	source	code	of	the	procedure	and	examples	of	its	usage	prior	to	the	procedure
call	ReloadPackage1	and	after	it	that	is	rather	illustratively.

In[2982]	:=	DefWithContext[x_	/;	FileExistsQ[x]	&&	FileExtension[x]	==	“m”]	:=
Module[{a	=	ContextMfile[x],	b,	c	={},	d	={}},	b	=	CNames[a];
Map[If[StringFreeQ[Definition4[#],	a<>#	<>”`”],	AppendTo[c,	#],

AppendTo[d,	#]]	&,	b];	{c,	d}]

In[2983]	:=	DefWithContext[“C:\Mathematica\AVZ_Package.m”]	Out[2983]=
{{”AcNb“,	“ActCsProcFunc“,	“Adrive“,	“Attributes1“,	“Avg“,	“BlockQ“,	“BlockQ1“,
“CALL“,	“CDir“,	“ClearAllAttributes“,	…,	“$CallProc“,	“$InBlockMod“,	“$Line1“,
“$Load$Files$”,	“$ProcType“,	“$TestArgsTypes“,	“$UserContexts“},	{”ActBFMuserQ“,
“ActRemObj“,	“AddMxFile“,	“Adrive1“,	“Affiliate“,	“Aobj“,	“Aobj1“,	“Args“,
“Args1“,	“ArgsBFM“,	….,	“WhatType“,	“WhichN“,	“XOR1“,	“$ProcName“,
“$TypeProc”}}
In[2984]:=	Map[Length,	%]
Out[2984]=	{258,	425}
In[2985]:=	ReloadPackage1[“C:\Mathematica\AVZ_Package.m”]
In[2986]:=	d	=	DefWithContext[“C:\Mathematica\AVZ_Package.m”];
In[2987]:=	Map[Length,	d]
Out[2987]=	{683,	0}

From	the	given	fragment	follows	that	more	than	62.2%	of	definitions	of	the	means	of
ourAVZ_Package	package	uploaded	into	the	current	session,	that	are	received	by	means
of	the	function	callDefinition[x]	will	contain	context	references	of	the
format“AladjevProcedures’x’”.

At	uploading	of	the	user	package	into	the	current	session	its	context	will	be	located	in	the
list	determined	by	the$Packages	variable	while	at	attempting	to	receive	definitions	of	its
means	by	means	of	theDefinition	function	some	such	definitions	will	contain	the	context
associated	with	this	package.	First	of	all,	such	definitions	are	much	less	readable,	but	not

this	most	important.	For	software	that	is	based	on	optimum	format	and	using	similar
definitions,	in	the	process	of	working	with	them	the	erroneous	situations	are	possible	as	it
was	already	noted	above.	For	the	purpose	of	receiving	definitions	of	tools	of	the	user
package	inoptimal	format	theLoadMyPackage	procedure	can	be	used.	The	procedure
callLoadMyPackage[x,	y]	at	the	very	beginning	of	the	current	session	of
theMathematica	returnsNull,	i.e.nothing,	loading	the	user	packagex	withy	context
ascribed	to	it,	with	the	subsequent	reevaluation	of	definitions	of	its	means,	providing	the
optimal	format	of	these	definitions.

In[2593]:=	LoadMyPackage[x_	/;	FileExistsQ[x]	&&	FileExtension[x]	==	“mx”,	y_]
:=	Module[{a,	Cn,	Ts,	k	=	1},

Ts[g_]	:=	Module[{p	=	“$Art26Kr18$.txt”,	b	=	””,	c,	d,	v	=	1},	Write[p,	g];	Close[p];
While[v	<	Infinity,	c	=	Read[p,	String];	If[SameQ[c,	EndOfFile],	Close[p];
DeleteFile[p];	Return[b],	b	=	b	<>	c];	Continue[]]];	Cn[t_]	:=	Module[{s	=
Names[StringJoin[t,	“*”]],	b},

b	=	Select[s,	Quiet[ToString[Definition[ToString[#1]]]]	!=	“Null”	&]];	Quiet[Get[x]];
a	=	Cn[y];	While[k	<=	Length[a],
Quiet[ToExpression[StringReplace[StringReplace[Ts[ToExpression[“Definition[”	<>
a[[k]]	<>	“]”]],	y–>	””],	a[[k]]	<>	“`”–>	””]]];	k++]]

In[2594]	:=	LoadMyPackage[“AVZ_Package.mx”,	“AladjevProcedures`”]	In[2595]:=
Definition[“ContextQ”]
Out[2595]=	ContextQ[x_]:=	StringQ[x]&&	StringLength[x]>	1&&	Quiet[

SymbolQ[Symbol[StringTake[x,	{1,–2}]]]]&&StringTake[x,	{–1,–1}]==”`”

The	previous	fragment	adduces	source	code	of	LoadMyPackage	procedure	with	an
example	of	its	application.	Similar	approach	is	recommended	to	be	used	at	uploading	of
the	user	package,	saved	in	a	datafile	ofmx–format,	for	elimination	of	the	specified
undesirable	moments	and	for	simplification	of	programming	with	use	of	its	means,	and
also	for	extension	of	the	system	on	the	basis	of	its	means.	Furthermore,	the	procedure
callLoadMyPackage[x,y]	with	the	noted	purposes	can	be	executed	and	in	the	presence	of
the	loaded	user	packagex	withy	context.	So,	saving	of	a	package	in	themx–file	with	its
subsequent	uploading	in	each	new	session	by	theGet	function,	providing	access	to	all
package	means	with	receiving	their	definitions	in	an	optimized	format(in	the
above–mentioned	sense)	is	the	most	effective.

In	the	course	of	operating	in	the	current	session	with	means	of	an	uploaded
package(fromm–file)	situations	when	certain	of	its	activated	means	for	one	reason	or
another	are	removed	from	the	current	session	or	are	distorted	are	quite	real.	For	their
restoration	theReloadPackage	procedure	can	be	used.

In[2992]	:=	ReloadPackage[x_	/;	FileExistsQ[x]	&&	FileExtension[x]==“m”,
y___List,	t___]	:=	Module[{a	=	NamesMPackage[x],	b	=	ContextMfile[x],	c
=”$Art26Kr18$.txt”,	p,	k	=	1,	d	=	If[{y}!=	{},	ToExpression[Map14[StringJoin,
Map[ToString,	y],	“[“,	90]],	{}]},	Put[c];	While[k	<=Length[a],	p	=a[[k]];
PutAppend[StringReplace[ToString1[ToExpression[“Definition[”	<>	p	<>	“]”]],	b	<>
p	<>	“`”–>	””],	c];	k++];	If[d	==	{},	ToExpression[“Clear[”	<>
StringTake[ToString[a],	{2,–2}]	<>	“]”],	Null];	While[b	!=	“EndOfFile”,	b	=

ToString[Read[c]];	If[b	===	“EndOfFile”,	Break[]];

If[d	==	{},	Quiet[ToExpression[b]];	Continue[],	If[If[{t}==	{},	MemberQ,	!
MemberQ]

[d,	StringTake[b,	{1,	Quiet[StringPosition[b,	“[“,	1][[1]][[1]]]}]],
Quiet[ToExpression[b]];	Break[],	Continue[]]]];	Close[c];	DeleteFile[c]]

In[2993]	:=	ReloadPackage[“C:\Mathematica\AVZ_Package.m”]	In[2994]:=
Definition[StrStr]
Out[2994]=	StrStr[x_]:=	If[StringQ[x],	“\””	<>	x<>	“\””,	ToString[x]]	In[2995]:=
Clear[StrSts];	Definition[StrStr]
Out[2995]=	Null
In[2996]:=	ReloadPackage[“C:\Mathematica\AVZ_Package.m”]	In[2994]:=
Definition[StrStr]
Out[2994]=	StrStr[x_]:=	If[StringQ[x],	“\””	<>	x<>	“\””,	ToString[x]]	The	successful
procedure	callReloadPackage[x]	returns	nothing,	providing	in	the	current	session	the
activation	of	all	means	of	a	package	that	is	located	in	am–filex	as	though	their	definitions
were	calculated	in	an	input	stream.	If	the	callReloadPackage[x,y]	contains	the	second
optionaly-argument	qua	of	which	the	list	of	names	is	used,	the	reboot	is	made	only	for	the
package	means	with	the	given	names.	At	the	same	time	the	callReloadPackage[x,y,t]	in
addition	with	the3rd	optional	argument	wheret	–an	arbitrary	expression,	also	returns
nothing,	providing	reboot	in	the	current	session	of	all	means	of	the	packagex,	excluding
only	means	with	the	names	given	in	the	listy.	The	previous	fragment	represents	source
code	of	theReloadPackage	procedure	with	typical	examples	of	its	usage.	In	particular,	it
is	illustrated	that	reboot	of	a	package	provides	more	compact	output	of	definitions	of	the
means	that	are	contained	in	it,	i.e.	the	output	of	definitions	is	made	in	a	so-calledoptimal
format(without	contexts).	The	following	fragment	represents	source	code	of
theReloadPackage1	procedure,	functionally	equivalent	toReloadPackage	procedure,
along	with	typical	examples	of	its	usage.
In[4436]:=	ReloadPackage1[x_	/;	FileExistsQ[x]&&	FileExtension[x]==	“m”,

y_:	0,	t_:	0]	:=	Module[{a	=	NamesMPackage[x],	b	=	ReadFullFile[x],	c,	d	=
Map[ToString,	Flatten[{y}]]},	c	=	Flatten[Map[SubsString[b,	{“*)(*Begin["`”	<>	#
<>	“`"]*)(*”,	“*)(*End[]*)”},	90]	&,	a]];	c	=	Map[StringReplace[#,	“*)(*”–>	””]	&,
c];	Map[If[d	==	{“0”},	Quiet[ToExpression[#]],	If[ListQ[y],	If[{t}==	{0},
If[MemberQ[d,

StringTake[#,	Flatten[StringPosition[#,	{“[“,	”	:=”,	“=”}]][[1]]–1]],	ToExpression[#],
If[!	MemberQ[d,	StringTake[#,	Flatten[StringPosition[#,	{“[“,	”	:=”,	“=”}]][[1]]–1]],

ToExpression[#]]]]]]	&,	c];]	In[4437]:=	Map[Clear,	{StrStr,	Map2}]
Out[4437]=	{Null,	Null}
In[4438]:=	Definition[StrStr]
Out[4438]=	Null
In[4439]:=	Definition[Map2]
Out[4439]=	Null

In[4440]	:=	ReloadPackage1[“C:\Mathematica\AVZ_Package.m”,	{StrStr,	Map2}]
In[4441]:=	Definition[StrStr]

Out[4441]=	StrStr[x_]:=	If[StringQ[x],	“"”	<>	x<>	“"”,	ToString[x]]
In[4442]:=	Definition[Map2]
Out[4442]=Map2[F_	/;	SymbolQ[F],	c_	/;	ListQ[c],	d_	/;	ListQ[d]]:=
(Symbol[ToString[F]][#1,	Sequences[d]]&)	/@	c

The	successful	procedure	call	ReloadPackage1[x]	returnsnothing,	providing	in	the
current	session	the	activation	of	all	means	of	a	package	that	is	located	in	am–filex	as
though	their	definitions	were	calculated	in	an	input	stream.	If	the
callReloadPackage1[x,y]	contains	thesecond	optionaly-argument	qua	of	which	the	list	of
names	is	used,	the	reboot	is	made	only	for	the	package	means	with	the	given	names.
Furthermore,	the	callReloadPackage1[x,y,	t]	in	addition	with	the3rd	optional	argument
wheret	–an	arbitrary	expression,	also	returns	nothing,	providing	reboot	in	the	current
session	of	all	means	of	the	packagex,	excluding	only	means	with	the	names	given	in	the
listy.	At	that,	similar	toReloadPackage	procedure	theReloadPackage1	procedure,	in
particular,	also	provides	output	of	definitions	in	theoptimal	format	in	the	above	sense.	The
given	modification	is	of	interest	from	the	standpoint	of	the	approaches	used	in	it.	Such
approach	allows	to	get	rid	of	contextual	links	in	definitions	of	the	functions/procedures
loaded	into	the	current	session	from	the	user	package.	At	that,	with	methods	of	uploading
of	the	user	packages	into	the	current	session	it	is	possible	to	familiarize	enough	in	details
in	[33].

As	it	was	noted	earlier,	in	the	result	of	uploading	into	the	current	session	of	the	user
package	from	a	file	of	format	{m,	nb}	with	its	subsequent	activation	an	essential	part	of
definitions	of	its	means	received	by	the	call	of	standard	Definition	function	will	include
contextual	links	of	the“Context’x’”	format,	wherex	–	a	name	of	means	and“Context”	–	a
context	ascribed	to	the	given	package.	Means	of	identification	of	those	objects	of	the	user
package	whose	definitions	have	contextual	references	are	presented	above.	However	these
means	suppose	that	the	analyzed	package	isactivated	in	the	current	session.	Whereas	the
next	procedure	provides	the	similar	analysis	of	an	unuploaded	package	located	in	a
datafile	ofmx–format.	The	fragment	below	represents	source	code	of	theMxPackNames
procedure	with	an	example	of	its	usage.	The	procedure	callMxPackNames[x]	returns	the
list	of	names	of	objects	in	string	format	of	anb–filey	that	is	analog	of	amx–filex,	whose
definitions	in	case	of	uploading	of	the	datafiley	into	the	current	session	with	subsequent
activation	the	systemDefinition	function	will	return	with	contextual	links	of	the
above–mentioned	format.

In[3235]	:=	MxPackNames[x_	/;	FileExistsQ[x]	&&	FileExtension[x]	==	“mx”]	:=
Module[{b,	c,	d,	g	=	{},	k,	j,	a	=	FromCharacterCode[Select[
ToCharacterCode[ReadFullFile[x]],	#	>	31	&]]},	b	=	StringPosition[a,	{“CONT”,
“ENDCONT”}][[1	;;	2]];	b	=	StringTake[a,	{b[[1]][[2]]	+	2,	b[[2]][[1]]–1}];	b	=
Map[#[[2]]	+	1	&,	StringPosition[a,	b][[2	;;–1]]];	For[k	=	1,	k	<=	Length[b],	k++,	c	=
””;

For[j	=	b[[k]],	j	<	Infinity,	j++,	d	=	StringTake[a,	{j,	j}];	If[d	==	“`”,	Break[],	c	=	c	<>
d]];	AppendTo[g,	c]];	Sort[g][[2	;;–1]]]	In[3236]:=
MxPackNames[“C:\Mathematica\AVZ_Package.mx”]	Out[3236]=	{”ActBFMuserQ“,
“ActRemObj“,	“AddMxFile“,	“Adrive1“,

“	Affiliate“,	“Aobj“,	“Aobj1“,	“Args“,	“Args1“,	“ArgsBFM“,	…	,

===
“VarExch1“,	“Ver“,	“VizContentsNB“,	“VizContext“,	“WhatObj“,
“WhatType“,	“WhichN“,	“XOR1“,	“$ProcName“,	“$TypeProc”}	In[3237]:=	Length[%]
Out[3237]=	427
In[3238]:=	N[427*100/Length[CNames[“AladjevProcedures`”]],	3]	Out[3238]=	62.3

Examples	of	the	previous	fragment	once	again	confirm	that	the	quantity	of	means	of
ourAVZ_Package	package,	uploaded	into	the	current	session	from	the	nb–file,	whose
definitions	received	by	theDefinition	function	contain	contextual	references,	more
than62%.

The	question	of	obtaining	the	list	of	names	of	objects	whose	definitions	with	their	usages
are	located	in	a	package	being	in	a	datafile	of	format	{m,	nb}	is	represented	interesting
enough.	At	that,	it	is	supposed	that	uploading	of	a	package	into	the	current	session	isn’t
obligatory.	Such	problem	is	solved	by	quite	useful	procedure,	whose	callPackNames[x]
returns	the	list	of	names	of	the	above	objects	in	a	package,	being	in	a	datafilex	of	format
{m,	nb}.	The	next	fragment	represents	source	code	of	thePackNames	procedure	with	an
example	of	its	application	to	theAVZ_Package	package	which	is	located	in	ASCII
datafiles“AVZ_Package.m”	and“AVZ_Package.nb”	[48].

In[2872]	:=	PackNames[x_	/;	FileExistsQ[x]	&&
MemberQ[{“m”,	“nb”},	FileExtension[x]]]	:=	Module[{a	=	ReadFullFile[x],	b,	c	={},
d	=	””,	k	=	1,	j,	h},	If[FileExtension[x]	==	“m”,

a	=	Select[DeleteDuplicates[Map[StringTake[#,	{5,–1}]	&,	SubsString1[a,	{“*)(*”,
“::usage=”},	StringFreeQ[#,	”	“]	&,	0]]],	#	!=	””	&];	Sort[Select[a,	StringFreeQ[#,
“(*”]	&]],	b	=	Quiet[SubsString1[a,	{“RowBox[{	RowBox[{	RowBox[{“,	“"::"”,
“"usage"}]”},	StringQ[#]	&,	0]];	b	=	Map[StringTake[#,	{2,–8}]	&,	b];
Sort[Map[If[SymbolQ[#],	#]	&,	b]]]]

In[2873]	:=	PackNames[“C:\Mathemstica\AVZ_Package.m”]	Out[2873]=	{”AcNb“,
“ActBFMuserQ“,	“ActCsProcFunc“,	“ActRemObj“,	“Adrive“,	“Adrive1“,	“Affiliate“,
“Aobj“,	“Aobj1“,	“Args“,	“ArgsBFM“,	“ArgsTypes“,	“Arity“,	“Arity1“,	“ArityBFM“,
…..}
In[2874]:=	Length[%]
Out[2874]=	657
In[2875]:=	PackNames[“C:\Mathematica\AVZ_Package.nb”]
Out[2875]=	{”AcNb“,	“ActBFMuserQ“,	“ActCsProcFunc“,	“ActRemObj“,	“Adrive“,
“Adrive1“,	“Affiliate“,	“Aobj“,	“Aobj1“,	“Args“,	“ArgsBFM“,	“ArgsTypes“,	“Arity“,
“Arity1“,	“ArityBFM“,	…..}
In[2876]:=	Length[%]
Out[2876]=	677

It	should	be	noted	that	the	algorithm	of	PackNames	procedure	significantly	uses
theSubsString1	procedure	that	is	theSubsString	procedure	extension,	being	of	interest	in
programming	of	the	tasks	connected	with	processing	of	strings.	The	procedure
callSubsString1[s,y,f,t]	returns	the	list	of	substrings	of	a	strings	that	are	limited	by
substrings	of	a	listy;	at	that,	if	a	testing	pure	function	acts	as	argumentf,	the	returned	list
will	contain	only	the	substrings	satisfying	this	test.	Moreover,	att	=	1	the	returned

substrings	are	limited	to	ultra	substrings	of	the	listy	whereas	att	=	0	substrings	are	returned
without	the	limiting	ultra	substrings	of	the	listy.	At	last,	in	the	presence	of	the	fifth
optional	argumentr	–an	arbitrary	expression–	search	of	substrings	in	a	string	s	is	done
from	right	to	left,	that	as	a	whole	simplifies	algorithms	of	search	of	the	required
substrings.	The	following	fragment	represents	source	code	of	theSubsString1	procedure
along	with	some	typical	examples	of	its	usage.

In[2770]	:=	SubsString1[s_/;	StringQ[s],	y_/;	ListQ[y],	pf_/;	PureFuncQ[pf],	t_	/;
MemberQ[{0,	1},	t],	r___]	:=	Module[{c,	h,	a	=	””,	b	=	Map[ToString1,	y],	d	=	s,	k	=
1},	If[Set[c,	Length[y]]	<	2,	s,

If[{r}!=	{},	b	=	Map[StringReverse,	Reverse[b]];	d	=	StringReverse[s]]];	While[k	<=
c–1,	a	=	a	<>	b[[k]]	<>	“~~	Shortest[__]	~~	“;	k++];	a	=	a	<>	b[[–1]];	h	=
StringCases[d,	ToExpression[a]];	If[t	==	0,	h=Map[StringTake[#,
{StringLength[b[[1]]]–1,
–StringLength[b[[–1]]]+1}]	&,	h]];	If[PureFuncQ[pf],	h	=	Select[h,	pf]];

If[{r}!=	{},	Reverse[Map[StringReverse,	h]],	h]]

In[2771]	:=	SubsString1[“12345#xyzttmnptttabc::usage=45678”,	{“#”,	“::usage=4”},
0,	0]
Out[2771]=	{”xyzttmnptttabc”}
In[2772]:=	SubsString1[“2345#xaybz::usage=5612345#xm90nyz::usage=
590#AvzAgn::usage=500”,	{“#”,	“::usage=”},	0,	0]
Out[2772]=	{”xaybz“,	“xm90nyz“,	“AvzAgn”}
In[2773]:=	SubsString1[“12345#xyz::usage=45612345#x90yz::usage=500#
Avz::usage=590”,	{“#”,	“::usage=”},	0,	1]
Out[2773]=	{“#xyz::usage=”,	“#x90yz::usage=”,	“#Avz::usage=”}
In[2774]:=	SubsString1[“12345#xyz::usage=45612345#x590yz::usage=500
#Avz::usage=590”,	{“#”,	“::usage=”},	LetterQ[#]	&,	0]
Out[2774]=	{”xyz“,	“Avz”}

Here,	in	connection	with	the	aforesaid	it	is	quite	appropriate	to	raise	a	quite	important
question	concerning	the	global	variables	defined	by	a	procedure.	According	to	agreements
of	procedural	programming,	a	variable	defined	in	a	procedure	qua	ofglobal	variable	is
visible	outside	of	the	procedure,	i.e.	can	change	own	value	both	in	the	procedure,	and
outside	of	it,	more	precisely,	field	of	its	definition	is	the	current	session	as	a	whole.	In
principle,	the	given	agreement	is	fair	and	for	the	current	session	of	theMathematica
system,	but	with	very	essential	stipulations	that	are	discussed	in	[30,33]	with	interesting
enough	examples.	If	a	certain	procedure	defining	global	variables	has	been	activated	in
theInput–stream,	the	above	agreement	is	valid.	Meanwhile,	if	such	procedure	is	located	in
a	datafile	of	format	{m|nb},	then	thesubsequent	uploading	of	such	datafile	into	the	current
session	makes	active	all	means	contained	in	the	datafile,	making	them	available,	however
the	mechanism	of	global	variables	as	a	whole	doesn’t	work.	In	our	work	[33]	an	approach
eliminating	defects	of	the	mechanism	of	global	variables	is	represented.

For	providing	the	mechanism	of	global	variables	(including),	a	rather	useful
LoadNameFromM	procedure	was	created	whose	callLoadNameFromM[f,	n]	provides
uploading	and	activation	in	the	current	session	of	a	proceduren	or	their	list	saved	in	a

datafilef	of	them–format	with	a	package.

In[2588]:=	LoadNameFromM[F_	/;	FileExistsQ[F]	&&	FileExtension[F]	==

“m”	&&	StringTake[ToString[ContextFromFile[F]],	–1]	==	“`”,	p_	/;	StringQ[p]	||
ListStringQ[p]]	:=	Module[{a	=ReadFullFile[F],	b	={},	c	=”*)(*End[]*)”,	d,	h	=
Flatten[{p}]},	b	=Map[SubsString[a,	{“(*Begin["`”	<>	#	<>	“`"]*)(*”,	c},	90]	&,	h];
b	=	If[Length[b]	==	1,	Flatten[b],	Map[#[[1]]	&,	b]];	Map[ToExpression,
Map[StringReplace[#,	“*)(*”–>	”	“]	&,	b]];]

In[2589]	:=	LoadNameFromM[“C:\Temp\AVZ_Package.m”,	“StrStr”]	In[2590]:=
Definition[StrStr]
Out[2590]=	StrStr[x_]:=	If[StringQ[x],	“\””	<>	x<>	“\””,	ToString[x]]

The	previous	fragment	represents	source	code	of	the	given	procedure	with	an	example	of
its	usage.	This	procedure	in	a	certain	relation	is	adjoined	also	the	nextExtrPackName
procedure.	The	algorithm	of	the	procedure	is	based	on	analysis	of	internal	structure	of	a
file	ofm–format	with	the	user	package.	The	successful	procedure	callExtrPackName[f,w]
returnsNull,	i.e.	nothing,	with	simultaneous	return	of	the	evaluated	definition	of	an
objectw	which	is	contained	in	amfilef	with	the	user	package,	making	the	definition
available	in	the	current	session.	If	the	format	of	a	datafilef	is	other	thanm-format,	the
procedure	call	returns$Failed,	whereas	in	absence	in	a	filef	of	the	requested	objectw	the
procedure	callExtrPackName[f,w]	returns	the	corresponding	message.	The	fragment
below	represents	source	code	of	theExtrPackName	procedure	along	with	some	typical
examples	of	its	usage.

In[2883]	:=	ExtrPackName[F_	/;	StringQ[F],	N_	/;	StringQ[N]]	:=	Module[{a,	b,	c,	d,
Art,	Kr},	If[FileExistsQ[F]	&&	FileExtension[F]	==	“m”	&&
StringTake[ToString[ContextFromFile[F]],–1]	==	“`”,	a	=	OpenRead[F],
Return[$Failed]];	If[Read[a,	String]	!=	“(*	::Package::	*)”,	Close[a];	$Failed,	{c,	d}=
{””,	StringReplace[“(*Begin["`Z`"]*)”,	“Z”–>	N]}];	Label[Art];	b	=	Read[a,	String];
If[b	===	EndOfFile,	Close[a];	Return[“Definition	of	”	<>	N	<>	”	is	absent	in	file	<”
<>	F	<>	“>”],	Null];	If[b	!=	d,	Goto[Art],	Label[Kr];	b	=	StringTake[Read[a,	String],
{3,–3}];	c	=	c	<>	b	<>	”	“;	If[b	==	“End[]”,	Close[a];
Return[ToExpression[StringTake[c,	{1,–8}]]],	Goto[Kr]]]]

In[2884]	:=	ExtrPackName[“F:\Mathematica\AVZ_Package.m”,	“Df”]	In[2885]:=
ExtrPackName[“F:\Mathematica\AVZ_Package.m”,	“Subs”]	In[2886]:=
ExtrPackName[“F:\Mathematica\AVZ_Package.m”,	“ArtKr”]	Out[2886]=
“Definition	of	ArtKr	is	absent	in	file<F:\Mathematica\

AVZ	_Package.m>”
In[2887]:=	ExtrPackName[“C:\Temp\AVZ_Package_6.m”,	“ProcQ”]	Out[2887]=
$Failed
In[2888]:=	Df[(Sin[1/x^2]	+	Cos[1/x^2])/x^2,	1/x^2]
Out[2888]=	x^2	(–	(–1+	x^2)	Cos[1/x^2]–	(1+	x^2)	Sin[1/x^2])	In[2889]:=
Subs[(Sin[1/x^2]	+	Cos[1/x^2])/x^2,	1/x^2,	h]
Out[2889]=	(Cos[h]+	Sin[h])/h
In[2890]:=	ExtrPackName[“C:\Temp\Tallinn.m”,	“Gs”];	Definition[Gs]	Out[2890]=
Gs[x_	/;	IntegerQ[x],	y_	/;	IntegerQ[y]]:=	x^2+	y^2

The	given	procedure	provides	activation	in	the	current	session	of	a	concrete	function	or
procedure	which	is	located	in	am–file	without	uploading	of	the	datafile	completely.	By
functionality	the	given	procedure	is	crossed	with	the	LoadNameFromM	procedure
considered	above,	however	possesses	certain	additional	useful	opportunities.
As	a	rule,	enough	many	of	the	user	packages	contain	in	own	structure	the	variables	of
several	types	which	appear	at	their	uploading	into	the	current	session	of	the	system.	For
definition	of	such	variables	the	procedure	can	be	used,	whose	call	UserPackTempVars[x]
returns	the	three–element	nested	list	where	thefirst	sublist	determines	theundefinite
variables	associated	with	the	package	defined	by	a	contextx,	the	second	sublist	defines
thetemporary	variables	associated	with	the	package	and	having	names	of	format“Name$”
while	thethird	sublist	defines	symbols	of	the	format“Name$Integer”	that	in	the	current
session	aren’t	distinguished	as	symbols.	The	following	fragment	represents	source	code	of
the	given	procedure	with	an	example	of	its	usage.

In[2684]:=	UserPackTempVars[x_	/;	ContextQ[x]]	:=	Module[{a	=	{},	p,	b	=	{},	d	=
{},	c	=	Names[x	<>	“*”],	h	=	{}},

Quiet[Map[{p	=	Definition2[#],	If[UnevaluatedQ[Definition2,	#],	AppendTo[d,	#],
If[p[[2]]	==	{}&&	p[[1]]	==	“Undefined”,	AppendTo[a,	#],	If[p[[2]]	==	{Temporary},
AppendTo[b,	#],	6]]]}&,	c]];	Map[{p	=	Flatten[StringPosition[#,	“$”]],	If[p[[–1]]	==
StringLength[#],	AppendTo[a,	#],	If[IntegerQ[ToExpression[StringTake[#,	{p[[–1]]	+
1,	StringLength[#]}]]],	AppendTo[h,	#]]]}&,	b];	{d,	a,	h}]

In[2685]:=	UserPackTempVars[“AladjevProcedures`”]
Out[2685]=	{{”a“,	“b“,	“c“,	“h“,	“k“,	“p“,	“S“,	“x“,	“y”},	{”a$”,	“b$”,	“c$”,	“d$”,
“h$”,	“k$”,	“Op$”,	“p$”,	“S$”,	“x$”,	“y$”},
{”a$30755“,	“b$30755“,	“c$30755“,	“d$30755“,	“p$30755”}}

In[2695]	:=	$UserContexts	:=
Select[Map[If[Flatten[UserPackTempVars[#][[2	;;	3]]]	!=	{},	#]	&,	Select[$Packages,
!	MemberQ[{“Global`”,	“System`”},	#]	&]],

!	SameQ[#,	Null]	&]	In[2696]:=	$UserContexts
Out[2696]=	{”AladjevProcedures`”}
Definition	of	the	global	variable$UserContexts	defining	a	list	of	contexts	of

the	user	packages	uploaded	into	the	current	session	completes	the	previous	fragment.	At
that,	the	variable	determines	only	contexts	of	the	packages	that	generate	in	the	current
session	the	variables	of	two	types	represented	above	according	to	theUserPackTempVars
procedure.	Depending	on	a	state	of	the	current	session	the	execution	of	the
above–mentioned2	means	can	demand	certain	temporal	expense.

Qua	of	an	addition	to	the	above	means	the	NamesNbPackage	procedure	can	present	a
certain	interest,	whose	callNamesNbPackage[W]	returns	the	list	of	names	in	string	format
of	all	means	which	are	located	in	a	datafileW	ofnb–format	with	a	package	and	that	are
supplied	with“usages”.	The	next	fragment	represents	source	code	of
theNamesNbPackage	procedure	with	an	example	of	its	application	tonb–file
withAVZ_Package	package.	While	the	procedure	callNamesNbPackage1[W](the
procedure	is	an	effective	enough	modification	of	the	previous	procedure)	returns	the
similar	list	ofnames	in	string	format	of	all	means	which	are	located	in	a	datafileW

ofnb–format	with	a	package;	it	is	supposed	that	all	means	are	provided	with“usages”;	in
the	absence	of	such	means	the	empty	list,	i.e.	{}	is	returned.

In[2628]	:=	NamesNbPackage[f_	/;	IsFile[f]	&&	FileExtension[f]==	“nb”	&&	!
SameQ[ContextFromFile[f],	$Failed]]	:=	Module[{Res	=	{},	Tr},	Tr[x_	/;	StringQ[x]]
:=Module[{c,	d,	h,	g	=	“"::"”,	v	=	“"="”,	p	=	“"usage"”,	a	=	OpenRead[x],	s	=	”
RowBox[{”},	Label[c];	d	=	Read[a,	String];

If[d	===	EndOfFile,	Close[a];	Return[Res],	Null];
If[DeleteDuplicates[Map3[StringFreeQ,	d,	{s,	g,	p,	v}]]	==	{False}&&	SuffPref[d,	s,
1],	h	=	Flatten[StringPosition[d,	g]];	AppendTo[Res,	StringTake[d,	{12,	h[[1]]–3}]];
Goto[c],	Goto[c]]];

Map[ToExpression,	Sort[Tr[f]]]]

In[2629]	:=	NamesNbPackage[“C:\Mathematica\AVZ_Package.nb”]	Out[2629]=
{”AcNb“,	“ActBFMuserQ“,	“ActCsProcFunc“,	“ActRemObj“,	“AddMxFile“,	“Adrive“,
“Adrive1“,	“Affiliate“,	“Aobj“,	…..}

In[2630]	:=	NamesNbPackage1[f_	/;IsFile[f]&&FileExtension[f]==“nb”&&	!
SameQ[ContextFromFile[f],	$Failed]]	:=	Module[{c,	d,	g	=	“::”,	a	=	OpenRead[f],	p
=	“usage”,	v	=	“=”,	Res	=	{},	s	=	”	RowBox[{”},	Label[c];	d	=	Read[a,	String];	If[d
===	EndOfFile,	Close[a];

Return[Sort[Map[ToExpression,	Res]]],	If[DeleteDuplicates[Map3[StringFreeQ,	d,
{s,	g,	p,	v}]]	==	{False}&&	SuffPref[d,	s,	1],	AppendTo[Res,
StringReplace[StringSplit[d,	“,”][[1]],	s–>	””]];	Goto[c]];	Goto[c]]]

In[2631]=	NamesNbPackage1[“C:\Mathematica\AVZ_Package.nb”]	Out[2631]=
{”AcNb“,	“ActBFMuserQ“,	“ActCsProcFunc“,	“ActRemObj“,

“	AddMxFile“,	“Adrive“,	“Adrive1“,	“Affiliate“,	“Aobj“,	…..}	In[2632]:=	Length[%]
Out[2632]=	677

The	next	NamesMPackage	procedure	represents	an	analog	of	two	previous
proceduresNamesNbPackage	andNamesNbPackage1,	oriented	on	a	case	of	the	user
packages	located	in	datafiles	ofm–format.	Successful	procedure	callNamesMPackage1[x]
returns	the	list	of	names	in	string	format	of	means	which	are	located	in	a	datafilex
ofm–format	with	a	package;	it	is	supposed	that	all	means	are	provided	with“usages”;	in
the	absence	of	such	means	the	empty	list,	i.e.	{}	is	returned.	The	following	fragment
represents	source	code	of	theNamesMPackage	procedure	with	an	example.	This
procedure	well	supplements	the	proceduresNamesNbPackage	andNamesNbPackage1.

In[3342]	:=	NamesMPackage[f_	/;	IsFile[f]	&&	FileExtension[f]	==	“m”	&&	!
SameQ[ContextFromFile[f],	$Failed]]	:=	Module[{c,	d,	Res	=	{},	s	=	“::usage="”,	a	=
OpenRead[f]},	Label[c];	d	=	Read[a,	String];	If[SuffPref[d,	“(*Begin["`”,	1]	||

d	===	EndOfFile,	Close[a];	Return[Sort[DeleteDuplicates[Res]]],	If[SuffPref[d,	“(*”,
1]	&&	!	StringFreeQ[d,	s],	AppendTo[Res,	StringTake[d,	{3,
Flatten[StringPosition[d,	s]][[1]]–1}]];	Goto[c],	Goto[c]]]]

In[3343]:=	NamesMPackage[“C:\AVZ_Package\AVZ_Package_1.m”]	Out[3343]=
{”AcNb“,	“ActBFMuserQ“,	“ActCsProcFunc“,	“ActRemObj“,

“	AddMxFile“,	“Adrive“,	“Adrive1“,	“Affiliate“,	“Aobj“,	…..	,	“WhichN“,	“XOR1“,
“$AobjNobj“,	“$CallProc“,	“$InBlockMod“,	“$Line1“,	“$Load$Files$”,	“$ProcName“,
“$ProcType“,	“$TestArgsTypes“,	“$TypeProc“,	“$UserContexts”}

In[3344]:=	Length[%]
Out[3344]=	682

The	ContextFromFile	function	presented	in	the	above	fragment	generalizes	3
proceduresContextMfile,	ContextMXfile	andContextNBfile,	returning	the	context
associated	with	the	packages	saved	in	datafiles	of	format	{cdf,m,	mx,	nb},	and$Failed
otherwise.

The	question	of	extraction	of	definitions	of	functions	and	procedures	from	an	unuploaded
package	which	is	located	in	a	datafile	ofm–format	is	rather	actual.	In	this	regard	we	will
present	a	procedure	which	solves	this	problem	for	the	package,	located	in	a	datafile	of
format	{“cdf”,“nb”}.	The	principal	organization	of	a	datafile	of	these	formats	with	a
package	is	represented	at	the	beginning	of	the	next	fragment	that	is	used	and	as	one	of
examples.	This	package	is	previously	saved	in	a	datafile	of	format	{“cdf”,	“nb”}	by	a
chain	of	the	commands“File→Save	As”	of	theGUI(Graphic	User	Interface).

BeginPackage[“Grodno`”]
Gs::usage	=	“Help	on	Gs.”
Ga::usage	=	“Help	on	Ga.”
Vgs::usage	=	“Help	on	Vgs.”
GSV::usage	=	“Help	on	GSV.”
Begin[“`Private`”]
Sv[x_]	:=	x^2	+	26*x	+	18
End[]
Begin[“`Gs`”]
Gs[x_Integer,	y_Integer]	:=	x^2	+	y^2
End[]
Begin[“`Ga`”]
Ga[x_Integer,	y_Integer]	:=	x*y	+	Gs[x,	y]
End[]
Begin[“`Vgs`”]
Vgs[x_Integer,	y_Integer]	:=	x*y
End[]
Begin[“`GSV`”]
GSV[x_Integer,	y_Integer]	:=	Module[{a	=	90,	b	=	500,	c	=	2015},

x*y	+	Gs[x,	y]*(a+b+c)]	+a*Sin[x]/(b+c)*Cos[y]	End[]
EndPackage[]
In[2669]:=	ExtrFromNBfile[x_	/;	FileExistsQ[x]	&&	MemberQ[{”cdf“,”nb”},

FileExtension[x]],	n_/;	StringQ[n]]	:=	Module[{a	=	ToString[InputForm[Get[x]]],	b	=
“`”	<>	n	<>	“`”,
c	=	“RowBox[List[RowBox[List[“,	k},	a	=	StringReplace[a,	{“"\
[IndentingNewLine]"”–>	””,	“"\n"”–>	””}];	If[StringFreeQ[a,	b],	$Failed,	a	=
StringTake[a,	{Flatten[StringPosition[a,	b]][[1]]	+	1,–1}];	a	=	StringTake[a,

{Flatten[StringPosition[a,	c]][[1]],–1}];	c	=	StringTake[a,	{1,
Flatten[StringPosition[a,
“RowBox[List["End",”]][[1]]–1}];	For[k	=	StringLength[c],	k	>=	1,	k––,	c	=
StringTake[c,	{1,	k}];	If[!	SameQ[Quiet[ToExpression[c]],	$Failed],	Break[]]];	c	=
Quiet[ToString[InputForm[ToExpression[c]]]];	c	=	StringReplace[c,	{“\(“–>	””,	“\)”–
>	””}];	If[SuffPref[c,	“RowBox[{“,	1]	&&	SuffPref[c,	“,	Null}]”,	2],	StringTake[c,
{9,–9}]];	If[SuffPref[c,	“RowBox[{“,	1],	$Failed,	Quiet[Check[ToExpression[c],
Return[$Failed]]];	c]]]

In[2670]:=	ExtrFromNBfile[“C:/Mathematica/AVZ_Package.nb”,	“StrStr”]
Out[2670]=	“StrStr[x_]:=	If[StringQ[x],	"\""	<>	x<>	"\"",

ToString[x]]	“
In[2671]:=	ExtrFromNBfile[“C:/Mathematica/AVZ_Package.cdf”,	“StrStr”]
Out[2671]=	“StrStr[x_]:=	If[StringQ[x],	"\""	<>	x<>	"\"",

ToString[x]]
In[2672]:=	ExtrFromNBfile[“C:\Mathematica\Grodno.nb”,	“GSV”]	Out[2672]=
“GSV[x_Integer,	y_Integer]:=	Module[{a=	90,	b=	500,

c	=	2015},	x*y+	Gs[x,	y]*(a+	b+	c)]+	a*Sin[x]/(b+	c)*Cos[y]”	The	successful	procedure
callExtrFromNBfile[x,	y]	returns	the	definition	of	an	object	in	the	string	format	with	a
namey	given	in	string	format	from	an	unuploaded	datafilex	of	format	{“cdf”,“nb”},	at	the
same	time	activating	this	definition	in	the	current	session;	otherwise,	the	call
returns$Failed.	Qua	of	an	useful	property	of	this	procedure	is	the	circumstance	that	a
datafilex	not	require	of	uploading	into	the	currentMathematica	session.

The	next	ExtrFromMfile	procedure	is	specific	complement	of	the	previous
ExtrFromNBfile	procedure,	providing	extraction	of	definitions	of	functions	and
procedures	along	with	their	usages	from	an	unuploaded	package	that	is	located	in	a
datafile	ofm–format.	The	procedure	callExtrFromMfile[x,y]	returns	the	definition	of	an
object	in	the	string	format	with	a	name	or	list	of	their	namesy	given	in	string	format	from
an	unuploaded	filex	ofmformat,	at	the	same	time	activating	these	definitions	and	usages
corresponding	to	them	in	the	current	session;	otherwise,	the	call	returns	empty	list,	i.e.	{}.
The	following	fragment	represents	source	code	of	theExtrFromMfile	procedure	along
with	typical	examples	of	its	usage.

In[2608]	:=	ExtrFromMfile[x_	/;	FileExistsQ[x]	&&	FileExtension[x]	==	“m”,	y_	/;
SymbolQ[y]	||	ListQ[y]	&&	DeleteDuplicates[Map[SymbolQ,	y]]	==	{True}]	:=
Module[{a	=	ReadString[x],	b,	c,	d,	d1,	n},	b	=	StringSplit[a,	{“(**)”,	“(*	::Input::
*)”}];	b	=	Map[If[!	StringFreeQ[#,	{“::usage=”,	“BeginPackage["”,	“End[]”}],	#,
Null]	&,	b];	b	=	Select[b,	!	SameQ[#,	Null]	&];	c	=Map[ToString,	Flatten[{y}]];	d	=
Map[“Begin["`”	<>#	<>	“`"]”	&,	c];	d1	=	Map[“(*”	<>	#	<>	“::usage=”	&,	c];	b	=
Select[b,	!	StringFreeQ[#,	Join[d,	d1]]	&];	b	=	Map[StringTake[#,	{3,–5}]	&,	b];

c	=	Map[If[SuffPref[#,	d1,	1],	StringTake[#,	{3,–1}],	n	=	StringReplace[#,
GenRules[d,	””]];	n	=	StringReplace[n,	“*)\r\n(*”–>	””];

StringTake[n,	{3,–6}]]	&,	b];	ToExpression[c];	c]

In[2609]	:=	ExtrFromMfile[“C:/Temp/AVZ_Package.m”,	{StrStr,	HowAct}]

Out[2609]=	{”HowAct::usage="The	call	HowAct[Q]	returns	the	value	True	if	Q	is	an
object	active	in	the	current	session,	and	the	False	otherwise.	In	many	cases	the	procedure
HowAct	is	more	suitable	than	standard	function	ValueQ,	including	local	variables	in
procedures.“,	“StrStr::usage="The	call	StrStr[x]	returns	an	expression	x	in	string	format	if
x	is	different	from	string;	otherwise,	the	double	string	obtained	from	an	expression	x	is
returned.“,

“	StrStr[x_]:=If[StringQ[x],"\""<>x<>"\"",ToString[x]]“,
“HowAct[x_]:=If[Quiet[Check[ToString[Definition[x]],True]]==="Null",
False,If[Quiet[ToString[Definition[P]]]==="Attributes["<>ToString[x]	<>"]=
{Temporary}",False,True]]”}

In[2610]	:=	ExtrFromMfile[“C:\Temp\AVZ_Package.m”,	StrStr]	Out[2610]=
{”StrStr::usage="The	call	StrStr[x]	returns	an	expression	x	in	string	format	if	x	is
different	from	string;	otherwise,	the	double	string	obtained	from	an	expression	x	is
returned.“,
“StrStr[x_]:=If[StringQ[x],"\""<>x<>"\"",ToString[x]]”}

The	problem	of	editing	of	a	package	that	is	located	in	a	mfile	is	interesting	enough;	the
followingRedMfile	procedure	solves	the	given	problem	whose	source	code	with	typical
examples	of	use	represents	the	following	fragment.

In[2864]:=	PosListTest[l_List,	p_	/;	PureFuncQ[p]]	:=	Module[{a	={},	k	=	1},	While[k
<=Length[l],	If[Select[{l[[k]]},	p]!={},	AppendTo[a,	k]];	k++];	a]	In[2865]:=
PosListTest[{1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	18,	26},	EvenQ[#]	&]	Out[2865]=	{2,	4,	6,	8,	10,
11,	12}
In[2866]:=	RedMfile[x_	/;	FileExistsQ[x]	&&	FileExtension[x]	==	“m”,	p_	/;
SymbolQ[p],	r_	/;	MemberQ[{“add”,	“delete”,	“replace”},	r]]	:=

Module[{a	=	ReadList[x,	String],	d	=	ToString[p],	h,	save,	b	=	“(*Begin["`”	<>
ToString[p]	<>	“`"]*)”,	c	=	“(*End[]*)”},	If[MemberQ[!	ContentOfMfile[x],
ToString[p]]	&&	r	==	“delete”	||	MemberQ[{“add”,	“replace”},	r]&&	!
(ProcQ[p]||QFunction[p]),	$Failed,	save[q_]	:=	Module[{f,	k	=	1},	f	=
DirectoryName[x]	<>	FileBaseName[x]	<>	“$.m”;	While[k	<=	Length[q],
WriteString[f,	q[[k]],	“\n”];	k++];	Close[f]];	If[!	MemberQ[a,	“(*	::Package::	*)”],
$Failed,

If[r	===	“delete”,	h	=	Select[a,	SuffPref[#,	“(*”	<>	d	<>	“::usage”,	1]	&];
If[h	==	{},	x,	a	=	Select[a,	!	SuffPref[#,	“(*”	<>	d	<>	“::usage”,	1]	&];	d	=
SubListsMin[a,	b,	c,	“r”];	d	=	MinusList[a,	d];	save[d]],	If[r	===	“add”	&&	Select[a,
SuffPref[#,	“(*”	<>	d	<>	“::usage=”,	1]	&]	==	{}	&&	Head[p::usage]	==	String	&&
(ProcQ[p]	||	FunctionQ[p]),	h	=	PosListTest[a,	SuffPref[#,	{“(*BeginPackage[“,
“(*EndPackage[]”},	1]	&];	a	=	Insert[a,	“(*”	<>	d	<>	“::usage=	”	<>
ToString1[p::usage]	<>	“*)”,	h[[1]]	+	1];	a	=	Flatten[Insert[a,	{“(*Begin["`”	<>	d	<>
“`"]*)”,	“(*”	<>	PureDefinition[p]	<>	“*)”,	“(*End[]*)”},	h[[2]]	+	1]];	save[a],	If[r
===	“replace”	&&	Head[p::usage]	==	String	&&	(ProcQ[p]	||	FunctionQ[p]),	h	=
PosListTest[a,	SuffPref[#,	“(*Begin["`”	<>	d	<>	“`"]*)”,	1]	&];	If[h	==	{},	$Failed,
a[[h[[1]]	;;	h[[1]]	+	2]]	=	{“(*Begin["`”	<>	d	<>	“`"]*)”,	“(*”	<>	PureDefinition[p]	<>
“*)”,	“(*End[]*)”};	h	=	PosListTest[a,	SuffPref[#,	“(*”	<>	d	<>	“::usage=”,	1]	&];

a[[h[[1]]]]	=	“(*”	<>	d	<>	“::usage=	”	<>	ToString1[p::usage]	<>	“*)”;
save[Flatten[a]]]]],	x]]]]

(*	::Package::	*)	Contents	of	the	initial	m–file	(*	::Input::	*)
(*BeginPackage[“Grodno`”]*)
(*Gs::usage	=	“Help	on	Gs.”*)
(*Vgs::usage	=	“Help	on	Vgs.”*)
(*Begin[“`Gs`”]*)
(*Gs[x_Integer,	y_Integer]	:=	x^2	+	y^2*)
(*End[]*)
(*Begin[“`Vgs`”]*)
(*Vgs[x_Integer,	y_Integer]	:=	x*y*)
(*End[]*)
(*EndPackage[]*)

In[2867]	:=	Avz[x_]	:=	Module[{},	x^2	+	90];	Vgs[x_,	y_]	:=	x^2	+	y^2	In[2868]:=
Avz::usage	=	“Help	on	Avz.”;	Vgs::usage	=	“Help	on	Vgs_1.”;	In[2869]:=
RedMfile[“C:\Mathematica\Grodno.m”,	Vgs,	“delete”]	Out[2869]=
“C:\Mathematica\Grodno$.m”
(*	::Package::	*)	Contents	of	m–file	after	the	operation	“delete”	(*	::Input::	*)
(*BeginPackage[“Grodno`”]*)
(*Gs::usage	=	“Help	on	Gs.”*)
(*Begin[“`Gs`”]*)
(*Gs[x_Integer,	y_Integer]	:=	x^2	+	y^2*)
(*EndPackage[]*)
In[2870]:=	RedMfile[“C:\Mathematica\Grodno.m”,	Avz,	“add”]	Out[2870]=
“C:\Mathematica\Grodno$.m”

(*	::Package::	*)	Contents	of	m–file	after	the	operation	“add”	(*	::Input::	*)
(*BeginPackage[“Grodno`”]*)
(*Avz::usage	=	“Help	on	Avz.”*)
(*Gs::usage	=	“Help	on	Gs.”*)
(*Vgs::usage	=	“Help	on	Vgs.”*)
(*Begin[“`Gs`”]*)
(*Gs[x_Integer,	y_Integer]	:=	x^2	+	y^2*)
(*End[]*)
(*Begin[“`Vgs`”]*)
(*Vgs[x_Integer,	y_Integer]	:=	x*y*)
(*End[]*)
(*Begin[“`Avz`”]*)
(*Avz[x_]	:=	Module[{},	x^2	+	90]*)
(*End[]*)
(*EndPackage[]*)

In[2871]	:=	RedMfile[“C:\Mathematica\Grodno.m”,	Vgs,	“replace”]	Out[2871]=
“C:\Mathematica\Grodno$.m”
(*	::Package::	*)	Contents	of	m–file	after	the	operation	“replace”	(*	::Input::	*)
(*BeginPackage[“Grodno`”]*)

(*Gs::usage	=	“Help	on	Gs.”*)
(*Vgs::usage	=	“Help	on	Vgs_1.”*)
(*Begin[“`Gs`”]*)
(*Gs[x_Integer,	y_Integer]	:=	x^2	+	y^2*)
(*End[]*)
(*Begin[“`Vgs`”]*)
(*Vgs[x_,	y_]	:=	x^2	+	y^2*)
(*End[]*)
(*EndPackage[]*)
In[2872]:=	RedMfile[“C:\Mathematica\Grodno.m”,	Gs,	“add”]	Out[2872]=
“C:\Mathematica\Grodno$.m”
In[2873]:=	RedMfile[“C:\Mathematica\Grodno.m”,	GsArtKr,	“add”]	Out[2873]=
$Failed

First	of	all,	the	previous	fragment	is	preceded	by	a	rather	simple	procedure,	whose
callPosListTest[l,p]	returns	the	list	of	positions	of	a	listl	that	satisfy	the	test	defined	by	a
pure	functionp.	Further	it	is	supposed	that	a	datafilex	ofm–format	structurally	corresponds
to	the	standard	file	with	a	package;	an	example	of	such	datafile	ofm–format	is	given	in	the
first	shaded	area	of	the	previous	fragment.	The	procedure	callRedMfile[x,n,y]	returns	the
full	path	to	am–file,	whoseFileBaseName	has	viewFileBaseName[x]	<>”$”	which	is	a
result	of	application	to	an	initialm–file	of	an	operationy	concerning	its	object	determined
by	a	namen,	namely:
“delete”	–	from	ax	datafile	the	usage	and	definition	of	object	with	an	name	are	removed,
the	initial	datafile	doesn’t	change;	if	such	object	in	the	datafile	is	absent,	the	full	path	to
the	initial	datafile	is	returned;
“add”	–	usage	and	definition	of	object	with	an	name	are	added	into	ax	file	whereas	the
initial	datafile	doesn’t	change;	if	such	object	in	the	file	already	exists,	the	full	path	to	the
initial	datafilex	is	returned;
“replace”	–	usage	and	definition	of	object	with	an	name	are	replaced	in	ax	file	while	the
initial	datafile	doesn’t	change;	if	such	object	in	a	file	is	absent,	$Failed	is	returned.

If	an	initial	datafile	x	has	structure,	different	from	specified,	the	procedure	call
returns$Failed;	at	that,	successful	performance	of	the	operations“add”	and“replace”
requires	preliminary	evaluation	in	the	current	session	of	the	constructionn::usage	along
with	definition	for	objectn	as	illustrate	example	of	the	previous	fragment.	At	that,	if	an
objectn	is	undefined	the	procedure	call	returns$Failed.	In	general	the	procedure	allows	a
number	of	interesting	extensions	and	modifications	which	we	leave	to	the	interested
reader.

Absolutely	other	situation	if	necessary	to	update	an	object	from	a	package	which	is
located	in	a	datafile	ofmx–format.	In	this	case	the	next	scheme	can	be	used,	namely:	on
thefirst	step	the	function	callGet[x]	uploads	into	the	current	session	a	datafilex
ofmx–format	with	a	package	what	provides	the	availability	of	all	means	contained	in	it.
While	on	thesecond	step	the	usage	and	definition	of	an	object(function	or	procedure)
which	should	be	subjected	to	updating	along	with	result	of	a	concrete	call	of	this	object
are	checked.	On	the	following	step	from	the	current	session	by	means	of	theClear
function	the	demanded	object	is	removed	and	for	it	a	new	usage	is	defined.	Then,	a	new
definition	for	the	object	whose	all	parameters,	including	local	variables	and	formal

arguments,	will	be	linked	with	a	package	context	is	calculated,	accepting	the	following
format,	namely:

Context_from_File`Object_Name`Variable_of_New_Definition

Then	by	means	of	the	function	call	DumpSave[y,	“Context’”]	definitions	of	all	objects	of
the	current	session	that	are	supplied	with	a	context“Context’”,	together	with	their	usages
are	saved	in	a	new	filey	ofmx–format.	At	last,	the	final	stage	in	a	new	current	session	tests
the	correctness	of	the	received	datafiley	ofmx–format	with	the	package–	of	a	result	of
modification	of	an	initial	datafilex	ofmx–format	with	a	package.	With	rather	obvious
changes	the	above	algorithm	quite	successfully	works	and	in	case	of	modification	of
datafiles	ofmx–format	with	a	package	on	the	basis	of	operations	of	addition	and	removal.
The	represented	algorithm	is	a	rather	simple,	however	has	a	shortcoming	if	necessary	to
modify	a	datafile	ofmx–format	with	a	package	by	means	of	quite	large	source	codes	of
objects;	for	similar	case	a	reception	described	in	[30-33]	can	be	used.	Meanwhile,	it	must
be	kept	in	mind,	the	represented	algorithm	of	modification	ofmx–files	with	packages
belongs	to	a	case	when	files	ofmx–format	belong	to	the	same	operational	platform,	as	their
planned	modification.

The	following	RedMxFile	procedure	provides	automation	of	a	modification	of	datafiles
ofmx–format	which	is	considered	above.	The	callRedMxFile[x,	y,	r,	f]	returns	the	full
path	to	amx–datafile,	whoseFileBaseName	has	view	FileBaseName[x]	<>”$”	that	is	a
result	of	application	to	an	initialmx–file	of	an	operationr	concerning	its	object	determined
by	a	namey,	namely:	“delete”	–	from	ax	datafile	the	usage	and	definition	of	object	with	ay
name	are	removed,	the	initial	datafile	doesn’t	change;	if	such	object	in	the	datafile	is
absent,	the	full	path	to	the	initial	datafile	is	returned;
“add”	–	usage	and	definition	of	object	with	ay	name	are	added	into	ax	file	whereas	the
initial	datafile	doesn’t	change;	if	such	object	in	the	file	already	exists,	the	full	path	to	the
initial	datafilex	is	returned;	the	fourth	argumentf	defines	amx–file	containing	a	package
with	the	usage	and	definition	of	the	supplemented	objecty;
“replace”–	usage	and	definition	of	object	with	ay	name	are	replaced	in	ax	file	while	the
initial	datafile	doesn’t	change;	if	such	object	in	a	file	is	absent,	the	full	path	to	the	initial
datafilex	is	returned;	thefourth	argumentf	defines	amx–file	containing	a	package	with	the
usage	and	definition	of	the	addedy	object.	At	that,	if	an	objecty	is	undefined	the	procedure
call	returns$Failed.	Thus,	return	of	thepath	to	an	updated	datafile”x$.mx”	serves	as	an
indicator	of	success	of	theRedMxFile	procedure	call.	At	that,	successful	performance	of
the	operations”add”	and”replace”	requires	preliminary	evaluation	in	the	current	session
of	a	constructiony::usage	along	with	definition	for	an	object	y;	if	an	objecty	is	undefined
the	procedure	call	returns$Failed.	Source	code	of	the	procedureRedMxFile	along	with
some	typical	examples	of	its	usage	the	following	fragment	represents.

In[2632]:=	RedMxFile[x_	/;	FileExistsQ[x]	&&	FileExtension[x]	==	“mx”,	y_	/;
StringQ[y]	&&	SymbolQ[y],	r_	/;	MemberQ[{“add”,

“delete”,	“replace”	},	r],	f___]	:=	Module[{a,	c,	c1	=	ContextFromFile[x],	c2,	save,	t},
If[!	(ProcQ[y]||QFunction[y]),	$Failed,	Get[x];	a	=	CNames[c1];	save[z_]	:=
Module[{p	=DirectoryName[z]	<>	FileBaseName[z]	<>”$.mx”},
ToExpression[“DumpSave[”	<>	ToString1[p]	<>	“,”	<>	ToString1[c1]	<>	“]”];	p];
If[r	==	“delete”	&&	MemberQ[a,	y],	Unprotect[y];	ClearAll[y];	c	=	save[x];

RemovePackage[c1];	c,	If[r	==	“replace”	&&	MemberQ[a,	y]	&&	{f}!=	{}&&
FileExistsQ[f]	&&	FileExtension[f]	==	“mx”,

c2	=	ContextFromFile[f];	Get[f];	c	=	ToString1[Definition[y]];	Map[Clear,
Mapp[StringJoin,	$ContextPath,	y]];	Quiet[ToExpression[c1	<>	StringReplace[c,	c2–
>	c1]]];	ToExpression[c1	<>	y	<>	“::usage	=	”	<>	ToString1[Help]];	c	=	save[x];
Map[RemovePackage,	{c1,	c2}];	c,	If[r	==	“add”	&&	{f}!=	{}&&	FileExistsQ[f]	&&

FileExtension[f]	==	“mx”	&&	!	MemberQ[a,	y],	c2	=	ContextFromFile[f];	Get[f];	c	=
ToString1[Definition[y]];	Quiet[Map[Remove,	Mapp[StringJoin,	$ContextPath,	y]]];
Quiet[ToExpression[c1	<>	StringReplace[c,	c2–>	c1]]];	ToExpression[c1	<>	y	<>
“::usage	=	”	<>	ToString1[Help]];	c	=	save[x];	Map[RemovePackage,	{c1,	c2}];	c,
x]]]]

In[2633]	:=	RedMxFile[“C:\Mathematica\Grodno.mx”,	“GSV”,	“delete”]	Out[2633]=
“C:\Mathematica\Grodno$.mx”
In[2634]:=	Get[“C:\Mathematica\Grodno$.mx”]
In[2635]:=	CNames[ContextFromFile[“C:\Mathematica\Grodno$.mx”]]	Out[2635]=
{”Ga“,	“Gs“,	“Vgs”}
In[2636]:=	Help	=	“A	new	help	on	GSV.”
Out[2636]=	“A	new	help	on	GSV.”
In[2637]:=	RedMxFile[“C:\Mathematica\Grodno.mx”,	“GSV”,	“replace”,

“C:\Mathematica\GSV.mx”]
Out[2637]=	“C:\Mathematica\Grodno$.mx”
In[2638]:=	Get[“C:\Mathematica\Grodno$.mx”]
In[2639]:=	?GSV

A	new	help	on	GSV.
In[2640]:=	Definition[“GSV”]
Out[2640]=	GSV[x_Integer,	y_,	z_Integer]:=	Module[{a=	90},	(x*y)*a]	In[2641]:=	Help
=	“Help	on	GSV1.”
Out[2641]=	“Help	on	GSV1.”

In[2642]	:=	RedMxFile[“C:\Mathematica\Grodno.mx”,	“GSV1”,	“add”,
“C:\Mathematica\GSV1.mx”]
Out[2642]=	“C:\Mathematica\Grodno$.mx”
In[2643]:=	Get[“C:\Mathematica\Grodno$.mx”]
In[2644]:=	CNames[ContextFromFile[“C:\Mathematica\Grodno$.mx”]]
Out[2644]=	{”Ga“,	“Gs“,	“GSV“,	“GSV1“,	“Vgs”}
In[2645]:=	?GSV1
Help	on	GSV1.
In[2646]:=	DefFunc[GSV1]
Out[2646]=	GSV1[x_Integer,	y_]:=	Module[{a=	47},	x*y*a]

So,	for	providing	of	the	operation	“add”	or“replace”	a	datafile	ofmx-format	with	a
package	should	be	previously	created	that	contains	definition	of	an	object	used	for
updating(replacement,addition)	of	a	mainmx-datafile	with	the	package.	At	the	same	time
it	must	be	kept	in	mind	that	both	updating	and	updatedmx–files	have	to	be	created	on	the
same	operational	platform.	At	that,	qua	of	the	result	of	a	procedure	call	both	packages	are

removed	from	the	current	session.	In	general,	theRedMxFile	procedure	allows	a	number
of	extensions	which	we	leave	to	the	interested	reader.	Meanwhile,	it	should	be	noted,	this
procedure	in	a	number	of	the	relations	is	based	on	receptions,	artificial	for	the	standard
procedural	paradigm	providing	correct	procedure	calls	in	the	environment	of	the	system
dependent	on	its	version.

A	quite	useful	procedure	provides	converting	of	a	package	located	in	a	file	ofmx–format
into	a	file	ofm–format.	The	callMxFileToMfile[x,y]	returns	the	path	to	a	datafiley	which	is
the	result	of	converting	of	amx–filex	with	a	package	into	a	datafiley	ofm–format.	At	that,
the	procedure	call	deletes	the	above	packagesx,	y	from	the	current	session.	The	next
fragment	represents	source	code	of	the	procedure	with	an	example	of	application,	whereas
with	the	examples	of	the	contents	of	the	initial	and	converted	datafilesx,y	with	the	package
the	interested	reader	can	familiarize	in	our	books	[30–33].

In[2672]	:=	MxFileToMfile[x_	/;	FileExistsQ[x]	&&	FileExtension[x]	==“mx”,	y_	/;
StringQ[y]	&&	FileExtension[y]	==	“m”]	:=	Module[{a	=	ContextFromFile[x],	b,	c,	k
=	1},	Get[x];	b	=	CNames[a];	WriteString[y,	“(*	::Package::	*)”,	“\n”,	“(*	::Input::
*)”,	“\n”,	“(*BeginPackage["”	<>	a	<>	“"]*)”,	“\n”];	While[k	<=	Length[b],	c	=b[[k]]
<>	“::usage”;	WriteString[y,	“(*”	<>	c	<>	”	=	”	<>

ToString1[ToExpression[a	<>	c]],	“*)”,	“\n”];	k++];	k	=	1;	While[k	<=	Length[b],	c	=
b[[k]];	WriteString[y,	“(*Begin["`”	<>	c	<>	“`"]*)”,	“\n”,	“(*”	<>	PureDefinition[a
<>	c]	<>	“*)”,	“\n”,	“(*End[]*)”,	“\n”];	k++];	WriteString[y,	“(*EndPackage[]*)”,
“\n”];

Map[{Clear1[2,	a	<>	#	<>	“::usage”],	Clear1[2,	a	<>	#]}&,	b];	$ContextPath	=
MinusList[$ContextPath,	{a}];	Close[y]]	In[2673]:=
MxFileToMfile[“C:\Mathematica\Grodno.mx”,	“Tallinn.m”]	Out[2673]=	“Tallinn.m”

While	the	MfileToMx	procedure	provides	converting	of	a	package	located	in	a	datafile
ofm–format	into	a	datafile	ofmx–format.	The	procedure	call	MfileToMx[x]	returns	the
path	to	a	datafile	that	is	the	result	of	converting	of	am–filex	with	a	package	into	a	file
ofmx–format,	whose	name	coincides	with	the	name	of	the	initial	datafilex	with
replacement	of	the	extension“m”	on“mx”.	Moreover,	the	procedure	call	deletes	a
packagex	from	the	current	session	if	upto	theMfileToMx	procedure	call	the	datafile
wasn’t	loaded,	and	otherwise	no.	The	next	fragment	represents	source	code	of
theMfileToMx	procedure	along	with	a	typical	example	of	its	usage.

In[2721]	:=	MfileToMx[x_	/;	FileExistsQ[x]	&&	FileExtension[x]	==	“m”]	:=
Module[{a	=	ContextFromFile[x],	b,	d,	c	=	ToString1[x	<>	“x”]},
If[MemberQ[$ContextPath,	a],	ToExpression[“DumpSave[”	<>	c	<>	“,”	<>
ToString1[a]	<>	“]”];	x	<>	“x”,	b	=	ReadList[x,	String];	d	=
Select[Map[StringReplace[#,	{“(*”–>	””,	“*)”–>	””}]	&,	b[[3	;;–1]]],	#	!=	””	&];
Quiet[ToExpression[d]];	ToExpression[“DumpSave[”	<>	c	<>	“,”	<>	ToString1[a]	<>
“]”];	Map[Clear1[2,	a	<>	#]	&,	CNames[a]];	$ContextPath	=
MinusList[$ContextPath,	{a}];	x	<>	“x”]];	In[2722]:=
MfileToMx[“C:\Mathematica\Rans_Ian.m”]

Out[2722]	=	“C:\Mathematica\Rans_Ian.mx”
This	procedure	represents	a	certain	interest	in	a	number	of	appendices.

The	question	of	documenting	of	the	user	package	is	an	important	enough	its	component;	at
that,	absence	in	a	package	of	usage	for	an	object	contained	in	it	does	such	object	as
inaccessible	at	uploading	the	package	into	the	current	session.	So,	description	of	each
object	of	the	user	package	has	to	be	supplied	with	the	correspondingusage.	At	the	same
time	it	must	be	kept	in	mind	that	mechanism	ofdocumenting	of	the	user	libraries	in
theMaple	system	is	much	more	developed,	than	similar	mechanism	ofdocumenting	of	the
user	package	in	theMathematica	system.	Thus,	if	the	mechanism	of	formation	of	the	user
libraries	in	theMaple	is	simple	enough,	providing	simple	documenting	of	library	means
and	providing	access	both	to	means	of	library,	and	to	their	references	at	the	level	of	the
system	means,	in	theMathematica	system	the	similar	mechanism	is	absent.	Receiving	of
the	usage	concerning	ax	package	tool	is	possible	only	by	means	of	calls?x
orInformation[x]	provided	that	a	package	has	been	uploaded	into	the	current	session.
Meanwhile,	in	case	the	package	contains	enough	many	means,	for	obtaining	the	usages
concerning	the	demanded	means	it	is	necessary	to	be	sure	in	their	existence,	first	of	all.
The	nextPackageUsages	procedure	can	be	rather	useful	to	these	purposes,	whose	source
code	along	with	examples	of	its	usage	are	represented	below.

In[5313]	:=PackageUsages[x_	/;FileExistsQ[x]&&FileExtension[x]==“m”]:=
Module[{a	=	StringSplit[ReadString[x],	{“(**)”,	“*)\r\n(*”}],	b,	c,	d,	f},	b	=	Select[a,
!	StringFreeQ[#,	{“::usage=”,	“::usage	=	“}]	&];	c	=	FileNameSplit[x];	d	=
FileBaseName[c[[–1]]]	<>	“.txt”;	f	=	FileNameJoin[Join[c[[1	;;–2]],	{d}]];
Map[{WriteString[f,	StringReplace[#,	“::usage”–>	””]],	WriteString[f,	“\n\n”]}&,
b];	Close[f]]

In[5314]	:=	PackageUsages[“AVZ_Package.m”,	“AVZ_Package_Usages.txt”]
Out[5314]=	“AVZ_Package_Usages.txt”
In[5315]:=	PackageUsages[“C:\users\aladjev/mathematica/Tallinn.m”]	Out[5315]=
“C:\users\aladjev\mathematica\Tallinn.txt”	Gs=	“Help	on	Gs.”
Rans=	“Help	on	Rans.”
Vgs=	“Help	on	Vgs.”
The	procedure	callPackageUsages[x]	returns	the	path	to	a	datafile	in	which	the
extension“m”	of	a	datafilex	is	replaced	on“txt”;	the	received	datafile	contains	usages	of
the	user	package	formed	standardly	in	the	form	of	anb–	document(see	above)	with	the
subsequent	its	saving	in	am–filex	by	means	of	chain	of	the	commands“File	–>	Save	As”
of	theGUI.	The	information	on	the	specific	package	tooly	has	the	formaty	=	“Help	on	y”.
The	receivedtxt–	file	allows	to	look	through	easily	its	contents	regarding	search	of
necessary	means	of	the	user	package.

For	testing	of	contents	of	a	datafile	of	mx–format	with	the	user	package	in	the	context	of
names	of	means	whose	definitions	are	located	in	this	datafile,	theNamesFromMx
procedure	is	a	rather	useful	means.	The	procedure	call	NamesFromMx[x]	returns	the	list
of	names	in	string	format	of	tools	whose	definitions	are	located	inx	datafile	ofmx–format
with	the	user	package.	If	the	given	package	wasn’t	loaded	into	the	current	session,	the
procedure	call	leaves	it	unloaded.	Fragment	below	represents	source	code	of	the	procedure
NamesFromMx	along	with	typical	examples	of	its	usage.

In[5190]:=	NamesFromMx[x_	/;	FileExistsQ[x]	&&	FileExtension[x]	==	“mx”]	:=
Module[{a	=	ContextFromFile[x],	b},	If[MemberQ[$ContextPath,	a],	CNames[a],

Get[x];	b	=	CNames[a];	Map[Close1[2,	a	<>	#]	&,	b];	$ContextPath	=
MinusList[$ContextPath,	{a}];	b]]

In[5191]	:=	NamesFromMx[“C:\Mathematica\AVZ_Package.mx”]	Out[5191]=
{”AcNb“,	“ActBFMuserQ“,	“ActCsProcFunc“,	“ActRemObj“,	“AddMxFile“,	“Adrive“,
“Adrive1“,	“Affiliate“,	“Aobj“,	“Aobj1“,	“Args“,	“Args1“,	“ArgsBFM“,	“ArgsTypes“,
“Arity“,	……}
In[5192]:=	Length[%]
Out[5192]=	684
In[5193]:=	NamesFromMx[“C:\Temp\Mathematica\Grodno.mx”]
Out[5193]=	{”Ga“,	“Gs“,	“GSV“,	“Vgs”}
In[5194]:=	$ContextPath
Out[5194]=	{”AladjevProcedures`”,	“PacletManager`”,	“QuantityUnits`”,
“WebServices`”,	“System`”,	“Global`”}
In[5195]:=	Definition[GSV]
Out[5195]=	Null
While	theNamesFromMx1	procedure	unlike	theNamesFromMx	procedure	doesn’t
demand	for	obtaining	the	list	ofnames,	whose	definitions	are	located	in	amx–file	with	the
user	package,	real	uploading	into	the	current	session	of	this	datafile.	The	procedure
callNamesFromMx1[x]	returns	the	list	ofnames	of	means	whose	definitions	are	located	in
a	x	datafile	ofmx–format	with	the	user	package.	The	fragment	below	represents	source
code	of	the	procedure	NamesFromMx1	along	with	some	typical	examples	of	its	usage.

In[3570]:=	NamesFromMx1[x_	/;	FileExistsQ[x]	&&	FileExtension[x]	==

“mx”]	:=	Module[{c,	d	=	{},	p,	h	=	””,	k	=	1,	j,	m,	n,	a	=	ContextFromFile[x],	b	=
ToString[ReadFullFile[x]]},	b	=	StringJoin[Map[FromCharacterCode,
Select[ToCharacterCode[b],	#	>	32	&&	#	<	128	&]]];	{n,	m}=	Map[StringLength,	{a,
b}];	c	=	Map[#[[1]]	+	n	&,	StringPosition[b,	a]][[2	;;–1]];	While[k	<=	Length[c],	For[j
=	c[[k]],	j	<=	m,	j++,	p	=	StringTake[b,	{j,	j}];	If[p	==	“`”,	AppendTo[d,	h];	h	=	””;
Break[],	h	=	h	<>	p]];	k++];	Sort[MinusList[Select[d,	SymbolQ[#]	&],	{“Private”}]]]

In[3571]	:=	NamesFromMx1[“C:\Temp\Mathematica\Kiev.mx”]	Out[3571]=	{”Art“,
“Avz“,	“GSV”}
In[3572]:=	Length[NamesFromMx1[“C:\Temp\AVZ_Package.mx”]]	Out[3572]=	428

At	that,	the	procedure	call	NamesFromMx1[x]returns	only	those	names	of	means	whose
definitions	received	by	means	of	theDefinition	contain	the	context	associated	with	a
package	contained	in	amx–filex.	Whereas	on	the	other	side	certain	modifications	of
theNamesFromMx1	procedure	allow	to	obtain	more	complete	list	of	names	of	means
whose	definitions	withcontext	are	located	in	a	datafilex	ofmx–format	with	a	package.	The
next	fragment	presents	one	of	such	modifications	qua	of	which	the	procedure	acts,	whose
callNamesFromMx2[x]	returns	the	list	of	names	in	string	format	of	means,	whose
definitions	are	located	in	amx–file	with	package.	Along	with	sourse	code	of	the	procedure
the	examples	of	its	usage	are	presented.	Meanwhile,	the	both	procedures	demand	enough
considerable	temporary	expenses	on	datafiles	ofmx–format	with	a	package	of	rather	large
size.

In[3584]:=	NamesFromMx2[x_	/;	FileExistsQ[x]	&&	FileExtension[x]	==

“mx”]	:=	Module[{a	=	ToString[ReadFullFile[x]],	b},	b	=
Select[ToCharacterCode[a],	#	==	255	||	(#	>	31	&&	#	<	123	&&	!
MemberQ[Flatten[{Range[37,	47],	Range[91,	95]}],	#])	&];	b	=	ReduceList[b,	255,	1,
1];	b	=	Select[Quiet[SplitList[b,	96]],	#	!=	{}&];

b	=	Quiet[Map[FromCharacterCode,	b]];	b	=	DeleteDuplicates[Select[b,	SymbolQ[#]
&]];	Sort[Select[b,	!	MemberQ[{“Private”,	“System”},	#]	&&	StringFreeQ[#,
{StringTake[ContextFromFile[x],	{1,–2}],	“ÿ”}]	&]]]

In[3585]	:=	NamesFromMx2[“C:\Temp\Mathematica\Kiev.mx”]	Out[3585]=	{”Art“,
“Avz“,	“GSV”}
In[3586]:=	Length[NamesFromMx2[“C:\Temp\AVZ_Package.mx”]]	Out[3586]=	438

For	the	purpose	of	reduction	of	temporary	expenses,	the	above	algorithm	of
theNamesFromMx2	procedure	can	be	modified,	using	the	following	means	extending
theMathematica	system.	TheMap11	function	considered	above,	and	procedureSplitList1,
given	by	the	fragment	below,	act	as	such	means.

In[5173]	:=	SplitList1[x_/;ListQ[x],	y_/;	ListQ[y],	z_/;	ListQ[z]]	:=	Module[{c,	a	=
Map12[ToString,	{x,	y,	z}],	b	=	ToString[Unique[“$”]]},	c	=	Map11[StringJoin,	a,	b];
c	=	Map[StringJoin,	c];	c	=	SubsString1[c[[1]],	{c[[2]],	c[[3]]},	StringQ[#]	&,	0];
ToExpression[Map11[StringSplit,	c,	b]]]

In[5174]	:=	SplitList1[{x,	y,	z,	a,	b,	c,	d,	p,	m,	n,	p,	x,	y,	z,	42,	47,	67,	90,	m,	n,	p},	{x,	y,
z},	{m,	n,	p}]
Out[5174]=	{{a,	b,	c,	d,	p},	{42,	47,	67,	90}}
In[5174]:=	SplitList1[{x,	y,	z,	a,	b,	c,	d,	p,	x,	y,	z,	42,	47,	67},	{x,	y,	z},	{m,	n,	p}]
Out[5174]=	{}

The	procedure	call	SplitList1[x,	y,	z]	returns	the	sublists	of	a	listx	which	are	limited	by	its
sublistsy	andz	excepting	the	limiting	sublistsy	andz.	In	the	absence	of	such	sublists	the
empty	list,	i.e.	{}	is	returned.	Along	with	that	the	given	procedure	extends	the
above–mentionedSplitList	procedure.	As	it	was	noted,	theMathematica	system	has	a
large	enough	number	of	the	global	variables	that	describe,	for	example,	characteristics	of
the	system,	an	operating	platform,	the	full	paths	to	its	main	directories	along	with	a
number	of	other	indicators	of	current	state	of	the	system.	Thus,	the	user	has	a	quite	real
possibility	quite	effectively	to	develop	own	means,	including	the	means	that	extend	the
possibilities	of	the	system	itself.	In	reality,	on	the	basis	of	a	number	of	such	global
variables	and	a	number	of	enough	developed	tools	it	is	possible	to	develop	the	original
means;	at	that,	the	development	of	their	analogs	in	theMaple	system	often	demands	the
more	essential	efforts	and	non–standard	approaches.	Our	experience	in	the	given	direction
confirms	the	told.	Some	quite	simple	examples	were	given	in	[25-27]	and,	most	often,
they	concerned	the	means	of	access.	Considerable	interest	for	the	advanced	programming
in	the	system	also	the	problem	of	definition	of	a	name	of	the	current	document	{mwsfile,
nbfile}	represents.	In	theMaple	system	for	this	purpose	themwsname	procedure	whose
development	demanded	a	certain	non-standard	approach	was	created.	Whereas	the
development	of	similar	means	for	theMathematica	appeared	much	simpler,	what	the	next
rather	simpleNbName	procedure	illustrates,	whose	source	code	with	examples	of	usage
are	represented	by	the	following	fragment.

In[3743]:=	NbName[]	:=	Module[{a,	b,	c,	d,	k	=	1},
{a,	d}=	{ToString[Notebooks[]],	{}};

{	b,	c}=	Map3[StringPosition,	a,	{“<<”,	“>>”}];	While[k	<=	Length[b],	AppendTo[d,
StringTake[a,	{b[[k]][[2]]	+	1,	c[[k]][[1]]–1}]];	k++];	Select[d,	SuffPref[#,	“.nb”,	2]
&]]

In[3744]:=	NbName[]
Out[3744]=	{”Search.nb“,	“LoadF.nb“,	“ActiveProcs.nb“,	“Int.nb“,	“Ver.nb”}
In[3745]:=	AcNb[]	:=	StringSplit[NotebookFileName[],	{“\”,	“/”}][[–1]]	In[3746]:=
AcNb[]
Out[3746]=	“AVZ_Package.nb”

The	procedure	call	NbName[]	returns	the	list	ofnb–documents	which	have	been	loaded
into	the	current	session;	at	that,	their	order	in	the	list	is	defined	by	order	of	their	uploading
into	the	current	session	so,	that	the	first	element	defines	the	currentnb–document.	In	turn,
the	callAcNb[]	of	rather	simple	function	returns	the	name	of	the	current	document	or	a
package	which	has	been	earlier	saved	in	a	datafile	of	thenb–format.

For	convenience	of	uploading	of	a	package	into	the	current	session	theNeed	procedure
generalizing	in	a	certain	degree	the	standardNeeds	function	can	be	used.	The	source	code
of	theNeed	procedure	along	with	examples	of	its	usage	are	represented	by	the	following
fragment.

In[2672]	:=	Need[x__]	:=	Module[{a	=	Directory[],	c,	p,	d	=	{x}[[1]],	f,	b	=
If[Length[{x}]	>	1	&&	StringQ[{x}[[2]]],	{x}[[2]],	“Null”]},	If[!	ContextQ[d],
$Failed,
If[b	==	“Null”,	Quiet[Check[Get[d],	$Failed]],

If[b	!=	“Null”&&	!	MemberQ[{“m”,	“mx”},	FileExtension[b]],	$Failed,
If[MemberQ[$Packages,	d],	True,	CopyFile[b,	f	=	a	<>	“\”	<>	StringTake[d,	{1,–2}]
<>	“.”	<>	FileExtension[b]];	Get[f];	DeleteFile[f];	True]]]]]

In[2673]	:=	Need[“Grodno`”,	“C:\mathematica\Grodno.mx”]	Out[2673]=	True
In[2674]:=	$Packages
Out[2674]=	{”Grodno`”,	“AladjevProcedures`”,	“GetFEKernelInit`”,

“	ResourceLocator`”,	“PacletManager`”,	“System`”,	“Global`”}	In[2675]:=
Definition[Vgs]
Out[2675]=	Vgs[x_/;	IntegerQ[x],	y_/;	IntegerQ[y]]:=	x*y

The	procedure	call	Need[x]	loads	a	package	that	corresponds	to	ax	context	into	the	current
session	provided	that	the	corresponding	datafile	of	format	{“m”|“mx”}	is	located	in	one
of	the	directories	determined	by	the	system	variable$Path	with	returnTrue;	otherwise,	the
call	returns$Failed.	Whereas	the	procedure	callNeed[x]	loads	a	package	that	corresponds
to	ax	context	into	the	current	session	provided	that	the	corresponding	datafile	of	format
{“m”|“mx”}	is	located	or	in	one	of	the	directories	determined	by	the	system
variable$Path,	or	is	determined	by	argumenty	with	returnTrue;	otherwise,	the	call
returns$Failed.	So,	having	created	anb–document	with	definitions	of	objects,	having
supplied	them	with	usages	with	its	subsequentevaluation	andpreservation	by	means	of
function	{Save|DumpSave}	in	a	file	of	format	{“m”|“mx”}	respectively,	we	have	a

possibility	in	the	subsequent	sessions	to	upload	it	into	the	current	session	by	means	of
theNeeds	function	or	the	Need	procedure	with	receiving	access	to	the	program	objects
contained	in	it.	Moreover,	for	the	purpose	of	increase	of	efficiency	of	uploading	of	a
package	it	is	recommended	to	use	a	file	ofmx-format	in	which	it	was	earlier	saved	by
means	of	the	callDumpSave[x]	where	the	argumentx	determines	thecontext	associated
with	the	saved	package.	With	questions	of	uploading	of	the	user	packages	into	the	current
session	along	with	rather	useful	recommendations	the	interested	reader	can	familiarize	in
[28,30-33].	In	particular,	it	should	be	noted	the	undesirability	of	use	of	identical	contexts
for	the	user	packages,	leading	in	some	cases	to	unpredictable	results,	but	not	all	so
negatively.	For	example,	such	approach	can	be	used	for	replenishment	of	a	datafile	ofmx–
format	with	a	package	by	new	means	as	the	earlier	consideredRedMxFile	procedure	as
the	nextAddMxFile	procedure	illustrates.

In[4222]:=	AddMxFile[x_	/;	FileExistsQ[x]	&&	FileExtension[x]	==	“mx”,	y_	/;
FileExistsQ[y]	&&	FileExtension[y]	==	“mx”,	z_	/;	FileExtension[z]	==	“mx”]	:=

Module[{a	=	ContextFromFile[x],	b	=	ContextFromFile[y],	c	=	90},	If[a	!=	b,
$Failed,	If[MemberQ[$ContextPath,	a],	c	=	500;	Quiet[Get[y]],	Quiet[{Get[x],
Get[y]}]];	ToExpression[“DumpSave[”	<>	ToString1[z]	<>	“,”	<>	ToString1[a]	<>
“]”];	If[c	==	90,	Map[Clear1[2,	a	<>	#]	&,	CNames[a]];	Quiet[$ContextPath	=
MinusList[$ContextPath,	{a}]]]];	z]

In[4223]	:=	AddMxFile[“Tallinn.mx”,	“Grodno.mx”,	“Rans.mx”]	Out[4223]=
“Rans.mx”
In[4224]:=	Get[“Rans.mx”]
In[4225]:=	$Packages
Out[4225]=	{”Grodno`”,	“AladjevProcedures`”,	“GetFEKernelInit`”,

“	ResourceLocator`”,	“PacletManager`”,	“System`”,	“Global`”}	In[4226]:=
CNames[“Grodno`”]
Out[4226]=	{”Avz“,	“GSV“,	“GSV1“,	“Gs“,	“Gs1“,	“Vgs“,	“Vgs1”}	In[4227]:=
PureDefinition[Vgs1]
Out[4227]=	“Vgs1[x_	/;	IntegerQ[x],	y_	/;	IntegerQ[y]]:=	x*y”

In[4230]:=	SaveInMx[x_	/;	FileExtension[x]	==	“mx”,	y_	/;	SymbolQ[y]	||

ListQ[y]	&&	DeleteDuplicates[Map[SymbolQ[#]	&,	y]]	=={True},	z_	/;	ContextQ[z]]
:=	Module[{b,	a	=	Flatten[Select[Map[PureDefinition[#]	&,	Flatten[{y}]],	!	SameQ[#,
$Failed]	&]]},	Map[ToExpression[z	<>	#]	&,	a];	AppendTo[$ContextPath,	z];
DumpSave[x,	z];]

In[4227]	:=	Agn[x_,	y_]	:=	Module[{a	=	90},	a*(x	+	y)];	Agn[x_]	:=	x	+	500	In[4228]:=
SaveInMx[“Grodno.mx”,	{Avz,	Agn},	“Grodno`”];
In[4229]:=	$ContextPath	=	MinusList[$ContextPath,	{“Grodno`”}];

Clear[Avz,	Agn];	Get[“Grodno.mx”]
In[4230]:=	PureDefinition[Agn]
Out[4230]=	{”Agn[x_,	y_]:=	Module[{a=90},	a*(x+y)]“,	“Agn[x_]:=	x+500”}

The	previous	fragment	represents	source	code	of	the	AddMxFile	procedure	that	uses	the
mechanism	of	contexts	[28,30-33],	whose	callAddMxFile[x,y,z]	returns	the	path	to	a

datafilez	–	result	of	supplement	of	a	datafilex	by	tools	of	a	datafiley;	all	datafiles
havemxformat	while	thefirst2	datafiles	contain	the	packages	with	the	same	context.	At
that,	if	the	first	package	is	uploaded	into	the	current	session,	then	the	second	packagey	also
remains	uploaded;	otherwise,	the	first2	packages	are	unloaded	from	the	current	session.
While	the	procedure	callSaveInMx[x,	y,	z]	returns	nothing,	saving	in	amx–filex	withz
context	the	definition	of	a	symbol	or	list	of	symbolsy	which	have	the	context“Global’”.
TheSaveInMx	procedure	to	a	certain	extent	supplements	earlier	represented	means	of	the
same	plan.

In	a	number	of	cases	exists	a	need	of	testing	of	a	file	regarding	that	whether	it	contains	a
package.	The	given	problem	is	solved	by	quite	simple	function,	whose
callPackageFileQ[x]	returnsTrue	if	argumentx	defines	a	datafile	of	formats	{“cdf”,“mx”,
“m”,	“nb”}	with	a	package,	otherwiseFalse	is	returned.

In[2542]:=	PackageFileQ[x_]	:=	If[StringQ[x]	&&	FileExistsQ[x]	&&
MemberQ[{“cdf”,	“m”,	“mx”,	“nb”},	FileExtension[x]],

If[SameQ[ContextFromFile[x],	$Failed],	False,	True],	False]	In[2543]:=
Map[PackageFileQ,	{“gru.mx”,	“pack.m”,	“pack.nb”,	“pack.cdf”}]	Out[2543]=
{True,	True,	True,	True}
The	previous	fragment	represents	source	code	of	thePackageFileQ	function

along	with	examples	of	its	usage.	The	given	function	turned	out	as	an	useful	means	for	a
number	of	means	of	our	packageAVZ_Package	[48].

At	last,	for	convenience	of	loading	of	the	user	package	located	in	a	mx–filex	into	the
current	session	theLoadPackage	procedure	can	be	used,	whose	call	LoadPackage[x]
returnsNull,	i.e.	nothing,	uploading	the	package	into	the	current	session	with	activation	of
all	definitions	which	are	contained	in	it	in	the	mode	similar	to	the	mode
ofInput–paragraph,	i.e.	in	an	optimal	format	in	the	above	sense(without	package	context).
The	fragment	below	represents	source	code	of	theLoadPackage	procedure	with	examples
of	its	usage.

In[3422]	:=	LoadPackage[x_	/;	FileExistsQ[x]	&&
FileExtension[x]	==	“mx”]	:=	Module[{a},
Quiet[ToExpression[“Off[shdw::Symbol]”];	Get[x];	a	=	ToExpression[“Packages[]
[[1]]”];	ToExpression[“LoadMyPackage[”	<>	“"”	<>

x	<>	“"”	<>	“,”	<>	“"”	<>	a	<>	“"”	<>	“]”];	ToExpression[“On[shdw::Symbol]”]]]

In[3423]	:=	LoadPackage[“C:\Temp\Mathematica\AVZ_Package.mx”]	In[3424]:=
Definition[StrStr]
Out[3424]=	StrStr[x_]:=	If[StringQ[x],	“"”	<>	x<>	“"”,	ToString[x]]

Meanwhile	it	must	be	kept	in	mind,	in	case	of	uploading	in	a	described	way	into	the
current	session	of	other	user	package	the	availability	in	the	current	session
ofAVZ_Package	package	or	the	activatedLoadPackage	procedure	is	required.	The	given
means	is	very	convenient	at	processing	of	definitions	of	the	package	tools	in	the	above
optimized	format,	i.e.	without	a	context.

Tools,	presented	in	this	chapter	along	with	other	tools	of	our	AVZ_Package	[48]	allow	to
solve	a	number	of	important	problems	of	processing	of	the	user	packages	which	are

located	in	datafiles	of	formats	{“cdf”,	“mx”,	“m”,	“nb”}.	TheAVZ_Package	package
represents	toolbox	oriented	on	the	wide	enough	circle	of	appendices	including	the	system
ones.	The	package	represents	also	quite	certain	interest	from	standpoint	of	useful
approaches	and	receptions	used	at	programming	a	number	of	the	means	entering	it,
including	tools	for	non–standard	processing	of	the	user	packages.

8.4.	The	organization	of	the	user	software	in	the	Mathematicasystem

The	Mathematica	no	possess	comfortable	enough	tools	of	the	organization	of	the	user
libraries	as	in	the	case	of	theMaple,	creating	certain	difficulties	at	the	organization	of	the
user	software	developed	in	its	environment.	For	saving	of	definitions	of	objects	and	results
of	calculations	theMathematica	uses	datafiles	of	various	organization.	At	that,	datafiles	of
text	format	which	not	only	are	easily	loaded	into	the	current	session,	in	general	are	most
often	used,	but	also	are	convenient	enough	for	processing	by	other	known	means,	for
example,	word	processors.	Moreover,	the	text	format	provides	a	simple	portability	on
other	computing	platforms.	One	of	the	main	prerequisites	of	saving	in	datafiles	is
possibility	of	use	of	definitions	and	their	usages	of	the	Mathematicaobjects	in	the
subsequent	sessions	of	the	system.	At	that,	with	questions	of	standard	saving	of
objects(modules,functions,usages,etc.)	the	interested	reader	can	familiarize	in	details	in
[28-33,51-53,60,62,64,67],	some	of	them	were	considered	in	the	present	book	in	the
context	of	organization	of	packages	whereas	here	we	represent	simple	means	of
organization	of	the	user	libraries	in	theMathematica	system.

Meanwhile,	here	it	is	expedient	to	make	a	number	of	very	essential	remarks	on	usage	of
the	above	system	means.	First,	the	mechanism	of	processing	of	erroneous	and	especial
situations	represents	a	rather	powerful	instrument	of	programming	practically	of	each
quite	complex	algorithm.	However,	in	theMathematica	system	such	mechanism	is
characterized	by	a	number	of	essential	shortcomings,	for	example,	successfully	using	in
theInput–mode	the	mechanism	of	output	of	messages	about	erroneous	situations	{Off,
On},	in	thebody	of	procedures	such	mechanism	generally	speaking	doesn’t	work	as
illustrates	the	following	rather	simple	fragment,	namely:

In[2602]	:=	Import[“D:\Math_myLib\ArtKr_2015.m”]
Import::nffil:	File	not	found	during	Import.	>>
Out[2602]=	$Failed
In[2603]:=	Off[Import::nffil]
In[2604]:=	Import[“D:\Math_myLib\ArtKr_2015.m”]
Out[2604]=	$Failed

In[2605]:=	On[Import::nffil]
In[2606]:=	F[x_]	:=	Module[{a},	Off[Import::nffil];	a	:=	Import[x];
On[Import::nffil];	a]
In[2607]:=	F[“D:\Math_myLib\ArtKr_2015.m”]
Import::nffil:	File	not	found	during	Import.	>>
Out[2607]=	$Failed

So,	at	creation	of	complex	enough	procedures	in	which	is	required	to	solve	questions	of
blocking	of	output	of	a	number	of	erroneous	messages,	means	of	theMathematica	system

are	presented	to	us	as	insufficiently	developed	means.	The	interested	reader	can
familiarize	with	other	peculiarities	of	the	specified	system	means	in	[28-33].	Now	we	will
present	certain	approaches	concerning	the	organization	of	the	simple	user	libraries	in
theMathematica	system.	Some	of	them	can	be	useful	in	practical	work	with
theMathematica.

In	view	of	the	scheme	of	the	organization	of	library	considered	in	[22,25	–27]	concerning
theMaple	with	organization	different	from	the	main	library,	we	will	present	realization	of
similar	user	library	for	a	case	of	theMathematica	system.	On	thefirst	step	in	file	system	of
the	computer	a	directory,	let	us	say,	“С:\Math_myLib”	is	created	which	will
containtxt–files	with	definitions	of	the	user	procedures/functions	along	with	their	usages.
In	principle,	it	is	possible	to	place	any	number	of	definitions	into	suchtxt–files,	however	in
this	case	it	is	previously	necessary	to	call	a	procedure	whosename	coincides	with	name	of
thetxt–file,	whereupon	in	the	current	session	all	procedures/	functions	whose	definitions
are	located	in	the	datafile	along	with	usages	are	available.	That	is	really	convenient	in	the
case	when	in	a	single	datafile	are	located	the	main	procedure	and	all	means	accompanying
it,	excluding	the	standard	system	means.

On	the	second	step	the	procedures/functions	together	with	their	usages	are	created	and
debugged	with	their	subsequent	saving	in	the	required	datafile	of	a	library	subdirectory,
for	example:

In[2601]:=	NF[x_]	:=	Sin[x]*Cos[x];	ArtKr[x_,	y_]	:=	Sqrt[Sin[x]	+	90*NF[y]]
In[2602]:=	NF::usage	=	“Help	on	NF.”;	Rans::usage	=	“Help	on	Rans.”;

Rans[x_]:=	Module[{},	x^2];	ArtKr::usage	=	“Help	on	function	ArtKr.”;	In[2603]:=
CreateDirectory[“C:\Math_myLib”];
In[2604]:=	Save[“C:\Math_myLib\Userlib.txt”,	{NF,	ArtKr,	“NF::usage”,
“ArtKr::usage”,	“Rans::usage”,	Rans}]

In[2605]	:=	Clear[NF,	ArtKr,	Rans];	ArtKr::usage	=	””;	NF::usage	=	””;	In[2606]:=	?
ArtKr
In[2607]:=	Definition[ArtKr]
Out[2607]=	Null
In[2608]:=	Get[“C:\Math_myLib\NF.txt”];
In[2609]:=	Definition[ArtKr]
Out[2609]=	ArtKr[x_,	y_]:=	Sqrt[Sin[x]+	47	NF[y]]
In[2610]:=	?ArtKr

Help	on	function	ArtKr.

To	save	the	definitions	and	usages	in	datafiles	of	txt–format	perhaps	in	two	ways,	namely:
(1)	by	the	function	callSave,	saving	the	previously	evaluated	definitions	and	usages	in	a
datafile	given	by	its	first	argument	as	illustrates	the	previous	fragment;	at	that,	saving	is
made	in	theappend-mode,	or(2)	by	creatingtxt–files	with	names	of	objects	and	their
usages	whose	contents	are	formed	by	means	of	a	simple	word	processor,	for
example,Notepad.	At	that,	by	means	of	theSave	function	we	have	possibility	to	create
libraries	of	the	user	means,	located	in	an	arbitrary	directory	of	file	system	of	the	computer.

The	next	fragment	presents	the	CallSave	procedure	whose	callCallSave[x,	y,	z]	returns
the	result	of	the	cally[z]	of	a	procedure/functiony	on	a	listz	of	factual	arguments	passed

they	provided	that	object	definitiony	with	usage	are	located	in	atxt–filex	that	has	been
earlier	created	by	theSave	function.	If	an	object	with	the	given	namey	is	absent	in	a
datafilex,the	procedure	call	returns$Failed.	If	a	datafilex	contains	definitions	of	several
procedures	or	functions	of	the	same	namey,	the	procedure	call	is	executed	relative	to	their
definition	whoseformal	arguments	correspond	to	a	listz	ofactual	arguments.	Ify	defines	the
list,	the	call	returns	the	names	list	of	all	means	contained	inx.	The	following	fragment
represents	source	code	of	the	procedureCallSave	along	with	examples	of	its	usage	relative
to	the	concrete	datafile	created	by	means	of	the	standardSave	function.

In[3582]	:=	NF[x_]	:=	Sin[x]*Cos[x];	ArtKr[x_,	y_]	:=	Sqrt[Sin[x]	+	90*NF[y]]
NF::usage	=	“Help	on	NF.”;	Rans::usage	=	“Help	on	Rans.”;	Rans[x_]	:=	Module[{},
x^2];	Rans[x_,	y_]	:=	Module[{},	x	+	y];	ArtKr::usage	=	“Help	on	ArtKr.”;

In[3583]	:=	Save[“C:\Math_myLib\Userlib.txt”,	{NF,	ArtKr,	“NF::usage”,
“ArtKr::usage”,	“Rans::usage”,	Rans}]
In[3584]:=	Clear[ArtKr,	NF,	Rans];	NF::usage	=	””;	ArtKr::usage	=	””;	Rans::usage
=	””;

In[3585]:=	CallSave[x_	/;	FileExistsQ[x],	y_	/;	SymbolQ[y]	||	ListQ[y],	z_	/;	ListQ[z]]
:=	Module[{b,	c,	d,	nf,	u,	p,	t,	v,	n,	a	=
StringReplace[StringTake[ToString[InputForm[ReadString[x]]],

{	2,–2}],	“\r\n\r\n”–>	“\r\n	\r\n”],	s	=	Map[ToString,	Flatten[{y}]]},	b	=StringSplit[a,
“\r\n	\r\n”];	n	=	Select[b,	StringFreeQ[#,	”	/:	“]&];	nf[g_]	:=	StringTake[g,	{1,
Flatten[StringPosition[g,	“[“,	1]][[1]]–1}];	c	=	Select[b,	SuffPref[#,	p	=
Flatten[{Map4[StringJoin,	s,	“[“],	Map4[StringJoin,	s,	”	/:	“]}],	1]	&];	{d,	u,	t,	v}=
{{},	{},	Map[#	<>	”	/:	”	&,	s],	{}};	Map[If[SuffPref[#,	t,	1],	AppendTo[u,

DelSuffPref[StringReplace[StringTrim[#,	t],	“\”	–>	””],	“rn”,	2]],	AppendTo[d,	#]]	&,
c];	Map[ToExpression,	{d,	u}];	If[d	==	{},	$Failed,	If[Length[d]	==	1,
Symbol[nf[d[[1]]]][Sequences[z]],	If[Length[DeleteDuplicates[Map[nf[#]	&,	d]]]	==	1,
Map[Symbol[nf[#]][Sequences[z]]	&,	d][[1]],	Map[nf[#]	&,	n]]]]]

In[3586]	:=	CallSave[“C:\Math_myLib\Userlib.txt”,	{NF,	ArtKr,	Rans},	{90,	500}]
Out[3586]=	{”NF“,	“ArtKr“,	“Rans“,	“Rans”}
In[3587]:=	CallSave[“C:\Math_myLib\Userlib.txt”,	ArtKr,	{90,	500}]
Out[3587]=	Sqrt[Sin[90]+	90	Cos[500]Sin[500]]
In[3588]:=	CallSave[“C:\Math_myLib\Userlib.txt”,	NF,	{90,	500}]
Out[3588]=	NF[90,	500]
In[3589]:=	CallSave[“C:\Math_myLib\Userlib.txt”,	ArtKr,	{500}]
Out[3589]=	ArtKr[500]
In[3590]:=	CallSave[“C:\Math_myLib\Userlib.txt”,	NF,	{500}]
Out[3590]=	Cos[500]	Sin[500]

In[3591]	:=	CallSave[“C:\Math_myLib\Userlib.txt”,	Rans,	{500}]	Out[3591]=	250	000
In[3592]:=	CallSave[“C:\Math_myLib\Userlib.txt”,	Rans,	{90,	500}]	Out[3592]=	590
In[3593]:=	?ArtKr

Help	on	ArtKr.
In[3594]:=	CallSave[“C:\Math_myLib\Userlib.txt”,	Art,	{90,	500}]	Out[3594]=
$Failed

In[3600]:=	Save2[x_	/;	StringQ[x],	y_	/;	SymbolQ[y]	||	ListQ[y]]	:=	If[FileExistsQ[x],
Save[x,	“\r\n	\r\n”];	Save[x,	y],	Save[x,	y]]

In[3601]	:=	Avz[x_,	y_,	z_]	:=	Module[{a	=	500,	b	=	90},	a*b*x*y*z];	Avz::usage	=
“Help	on	Avz.”	;
In[3602]:=	Save2[“C:/Math_myLib\Userlib.txt”,	{Avz,	“Avz::usage”}]
In[3603]:=	Clear[Avz];	Avz::usage	=	””;
In[3604]:=	?Avz
Help	on	Avz.
In[3605]:=	CallSave[“C:\Math_myLib\Userlib.txt”,	Avz,	{73,	90,	500}]
Out[3605]=	147	825000	000

Meantime,	the	CallSave	procedure	provides	the	call	of	a	necessary	function	or	procedure
which	is	located	in	atxt–file	created	by	means	of	the	standard	Save	function;	at	that,	such
user	library	rather	reminds	an	archive	because	doesn’t	allow	the	updating.	Whereas	for
extension	of	such	libraries	by	new	tools	it	is	necessary	to	use	the	simpleSave2	function,
whose	callSave2	[x,	y]	append	to	a	datafilex	the	definitions	of	the	means	given	by	a	name
or	their	listy	in	the	format	convenient	for	the	subsequent	processing	by	a	number	of
means,	in	particular,	by	theCallSave	procedure.	In	the	previous	fragment	a	source	code	of
theSave2	function	with	examples	of	its	use	are	represented.	Thus,	the	similar	organization
of	the	user	library	provides	a	simple	mode	of	its	maintaining	whereas	theCallSave
procedure	allows	extensions	on	rather	broad	circle	of	functions	of	operating	with	the	user
library.	In	particular,	the	principle	of	modification	of	text	datafiles	with	definitions	and
usages	of	the	procedures/functions	not	only	is	very	simple,	but	allows	to	keep	history	of
modifications	of	definitions	of	library	means	also	that	in	a	number	of	cases	is	rather
actual.	In	our	opinion,	the	represented	approach	quite	can	be	used	for	the	organization	of
simple	and	effective	user	libraries	of	traditional	type.

The	mentioned	simple	approach	to	the	organization	of	the	user	means	in	the	Mathematica
system	is	only	one	of	possible	methods,	giving	opportunity	of	creation	of	own	libraries	of
procedures/functions	with	access	to	them	at	the	level	of	the	system	means.	The	interested
reader	can	familiarize	with	these	questions	more	in	details,	for	example,	in	our	books
[30–33].

Qua	of	other	rather	useful	approach	we	will	present	theCALLmx	procedure	whose	call
provides	saving	in	library	directory	of	definitions	of	objects	and	their	usages	in	the	form
ofmx–datafiles	with	possibility	of	their	subsequent	loading	into	the	current	session.	The
fragment	below	represents	source	code	of	theCALLmx	procedure	along	with	some	typical
examples	of	its	usage.

In[4650]:=	NF[x_]	:=	Sin[x]*Cos[x]	+	x^3
In[4651]:=	ArtKr[x_,	y_]	:=	Sqrt[42*Sin[x]	+	47*Cos[y]]	+	x*y

In[4652]	:=	CALLmx[y_,	z_	/;	MemberQ[{1,	2},	z],	d___]	:=	Module[{c	=	{},	h,	k	=	1,
s,	a	=If[{d}=={},	Directory[],	If[StringQ[d]	&&	DirectoryQ[d],	d,	Directory[]]],	b	=
Map[ToString,	If[ListQ[y],	y,	{y}]]},	If[z	==1,	While[k	<=Length[b],	s	=	b[[k]];	h	=	a
<>”\”	<>	s	<>	“.mx”;	If[!	MemberQ[{“Null”,	$Failed},	Definition4[s]],
ToExpression[“DumpSave[”	<>ToString1[h]	<>	“,”	<>	ToString[s]	<>	“]”];
AppendTo[c,	s]];	k++];	Prepend[c,	a],	While[k	<=	Length[b],	s	=	b[[k]];	h	=	a	<>	“\”

<>	s	<>	“.mx”;	If[FileExistsQ[h],	Get[h];	AppendTo[c,	s]];	k++];	c]]

In[4653]	:=	NF::usage	=	“Help	on	NF”;	ArtKr::usage	=	“Help	on	ArtKr”;	In[4654]:=
CALLmx[{NF,	ArtKr,	“NF::usage”,	“ArtKr::usage”},	1]	Out[4654]=
{”C:\Users\Aladjev\Documents“,	“NF“,	“ArtKr”}	In[4655]:=	Clear[NF,	ArtKr,]
In[4656]:=	CALLmx[{NF,	ArtKr},	2]
Out[4656]=	{”NF“,	“ArtKr”}
In[4657]:=	AGN	=	Sqrt[NF[42.47]^2	+	ArtKr[19.89,	19.96]^4]
Out[4657]=	180	710.0
In[4658]:=	?ArtKr

Help	on	ArtKr.
The	procedure	callCALLmx[y,	1,	d]	returns	the	list	whose	the	first	element	defines	library
directory	while	the	others–	names	of	objects	from	argument	y(a	separate	name	or	their
list)	whose	definitions	are	evaluated	in	the	current	session;	in	the	presence	of	the
evaluated	usages	for	objects	they	are	saved	in	a	datafile	too;	the	optional	argumentd
determines	a	directory	in	which	the	evaluated	definitions	of	objects	and	their	usagesy	in
the	form	ofmx–files	with	the	names“Name.mx”	whereName	is	the	names	of	the	objects
defined	by	argumenty	will	be	located;	in	case	of	absence	of	argumentd	as	a	library
directory	a	directory	determined	by	the	callDirectory[]	is	choosen.	Whereas	the
callCALLmx[y,2,	d]	provides	loading	into	the	current	session	of	objects	whose	names	are
defined	by	an	argumenty	from	a	library	directory	defined	by	the	third	argumentd;	in	its
absenceDirectory[]	directory	is	supposed.	At	that,	it	should	be	noted	that	in	one	datafile	is
most	expedient	to	place	only	the	main	procedure	and	functions	associated	with	it,
excepting	references	on	the	standard	functions.	It	allows	to	form	procedural	files	enough
simply.

It	is	possible	to	present	the	UserLib	procedure	which	supports	a	number	of	useful
functions	as	one	more	rather	simple	example	of	maintaining	the	user	libraries.	The
procedure	callUserLib[W,	f]	provides	a	number	of	important	functions	on	maintaining	of
a	simple	user	library	located	in	a	datafileW	of	txt–format.	Qua	of	the	second	actual
argument	off	the	two-element	list	acts	for	which	admissible	pairs	of	values	of	elements
can	be,	namely:

{	“names”,	“list”}–return	of	the	list	of	objects	names,whose	definitions	are	located	in	a
library	datafile;in	case	of	the	empty	datafile	the	call	is	returned	unevaluated;
{“print”,“all”}–output	to	the	screen	of	full	contents	of	a	library	datafileW;in	the	case	of
the	empty	datafile	the	procedure	call	is	returned	unevaluated;	{“print”,	“Name”}–output
to	the	screen	of	definition	of	an	object	with	the	name	Namewhose	definition	is	in	a	library
datafileW;in	case	of	the	empty	datafile	the	call	is	returned	unevaluated;in	the	absence	in	a
library	datafileWof	the	demanded	means	the	procedure	call	returns	Null,i.e.	nothing,in
such	case	the	procedure	call	prints	the	message	of	the	following	kind“Nameis	absent	in
LibraryW”;	{“add”,	“Name”}–saving	in	a	library	datafileWin	the	append-mode	of	an
object	with	a	nameName;the	definition	of	a	saved	means	has	to	be	previously	evaluated	in
the	current	session	in	theInput–mode;
{“load”,	“all”}–uploading	into	the	current	session	of	all	means	whose	definitions	are	in	a
library	fileW;in	case	of	the	empty	datafile	the	call	is	returned	unevaluated;	{“load”,
“N”}–uploading	into	the	current	session	of	an	object	with	nameNwhose	definition	is	in	a

library	fileW;in	the	case	of	the	empty	datafile	the	procedure	call	is	returned
unevaluated;in	the	absence	in	a	library	datafileWof	a	demanded	tool	the	procedure	call
returns	Null,i.e.	nothing,in	such	case	the	procedure	call	prints	the	message	of	the
following	kind“Nis	absent	in	LibraryW”.

In	other	cases	the	UserLib	procedure	call	is	returned	unevaluated.	There	is	a	good
opportunity	to	extend	the	procedure	with	a	number	of	useful	enough	functions	such	as:
deletion	from	a	library	of	definitions	with	usages	of	the	specified	means	or	their	obsolete
versions,	etc.	With	the	given	procedure	is	possible	to	familiarize	more	in	details,	for
example,	in	[30–33,48].

The	list	structure	of	theMathematica	system	allows	to	rather	easily	simulate	the	operating
with	structures	of	other	systems	of	computer	mathematics,	for	example,	theMaple	system.
So,	in	theMaple	system	the	tabular	structure	as	one	of	the	most	important	structures	is
used	which	is	rather	widely	used	both	for	the	organization	of	data	structures,	and	for	the
organization	of	the	libraries	of	software.	The	similar	tabular	organization	is	widely	used
for	the	organization	of	package	modules	of	theMaple	along	with	a	number	of	tools	of
ourUserLib	library	[47].	For	simulation	of	the	main	operations	with	the	tabular
organization	similar	to	theMaple	system,in	theMathematica	system	theTable1	procedure
can	be	used.	The	procedure	callTable1[L,x]	considers	a	listL	of	theListList	type,
whose2–element	{x,	y}	sublists	correspond	to	an	{index,	entry}	of	theMaple	tables
respectively	as	the	table.	As	the	secondx	argument	can	be(1)	a	list	{a,	b},(2)	a	word
{“index”|“entry”}	along	with	an	expression	of	other	type(3).	The	procedure	callTable1[L,
x]	returns	the	list	ofListList–type	received	from	an	initial	listL	as	follows.

In	the	case	(1)	in	the	presence	inL	of	a	sublist	with	the	first	elementa	it	is	replaced	onto	a
list	{a,	b},	otherwise	it	supplementsL;	if	the	argumentx	has	view	{a,	Null},	in	the
presence	inL	of	a	sublist	with	the	first	elementa	the	sublist	is	removed.	For	the	case(2)	the
list	{indices|entries}	accordingly	of	a	listL	is	returned,	whereas	in	the	case(3)	the
procedure	call	returns	an	entry	for	axindex	if	such	in	this	table	really	exists.	On	other
tuples	of	the	actual	arguments	the	procedure	call	Table1[x,	y]	returns	$Failed.	The
following	fragment	represents	source	code	of	theTable1	procedure	together	with	the	most
typical	examples	of	its	usage.	The	represented	examples	of	theTable1	procedure	usage
very	visually	illustrate	its	functionality.

In[4412]	:=	Table1[L_/;	ListListQ[L],	x_]	:=	Module[{a	=	{},	c	=	L,	d	=	{},	k	=	1,	b	=
Length[L]},	If[ListListQ[L]	&&	Length[L[[1]]]	==	2,	For[k,	k	<=	b,	k++,
AppendTo[a,	L[[k]][[1]]];	AppendTo[d,	L[[k]][[2]]]];	{a,	d}=	Map[DeleteDuplicates,
{a,	d}];	If[x	===	“index”,	a,

If[x	===	“entry”,	d,
If[ListQ[x]	&&	Length[x]	==	2,
If[!	MemberQ[a,	x[[1]]],	AppendTo[c,	x],

Select[Map[If[#1[[1]]	===x[[1]]	&&	!	SameQ[x[[2]],	Null],	x,	If[#[[1]]===x[[1]]	&&
x[[2]]	===	Null,	Null,	#]]	&,	L],	!	SameQ[#,	Null]&]],	Quiet[Check[Select[Map[If[#
[[1]]	===	x,	#[[2]]]&,	L],	!	SameQ[#,	Null]	&][[1]],	$Failed]]]]],	$Failed]]

In[4413]	:=	Tab1	:=	{{a,	a73},	{b,	b42},	{c,	c47},	{Kr,	d18},	{Art,	h26}}	In[4414]:=
Table1[Tab1,	“entry”]

Out[4414]=	{a73,	b42,	c47,	d18,	h26}
In[4415]:=	Table1[Tab1,	“index”]
Out[4415]=	{a,	b,	c,	Kr,	Art}
In[4416]:=	Table1[Tab1,	{ArtKr,	2015}]
Out[4416]=	{{a,	a73},	{b,	b42},	{c,	c47},	{Kr,	d18},	{Art,	h26},	{ArtKr,	2015}}
In[4417]:=	Table1[Tab1,	{Kr,	2015}]
Out[4417]=	{{a,	a73},	{b,	b42},	{c,	c47},	{Kr,	2015},	{Art,	h26}}
In[4418]:=	Table1[Tab1,	Art]
Out[4418]=	h26
In[4419]:=	Table1[Vsv,	ArtKr]
Out[4419]=	$Failed
In[4420]:=	Table1[Tab1,	{Vsv,	Agn}]
Out[4420]=	{{a,	a73},	{b,	b42},	{c,	c47},	{Kr,	d18},	{Art,	h26},	{Vsv,	Agn}}

On	the	basis	of	the	tabular	organization	supported	by	the	Table1	procedure	it	is	rather
simply	possible	to	determine	the	user	libraries.	Qua	of	one	of	such	approaches	we	will
present	an	example	ofLibBase	library	whose	structural	organization	has	format	of
theListList	list	and	whose	elements	have	length	two.	The	principled	kind	of	such	library	is
given	below,	namely:

LibBase	:=	{{Help,	{“O1::usage	=	"Help	on	O1",	…,
“On::usage	=	"Help	on	On"}},
{O1,PureDefinition[O1]},	{O2,PureDefinition[O2]},…,	{On,PureDefinition[On]}}

The	first	element	of	the	two	–element	first	sublist	of	theLibBase	list	isHelp	whereas	the
second	represents	the	usages	list	in	string	format	for	all	objects,	whose	definitions	are	in
theLibBase	library;	at	that,	their	actual	presence	in	the	library	isn’t	required.	Other
elements	of	theLibBase	library––element	sublists	of	format	{Oj,	PureDefinition[Oj]},
whereOj	–	ajobject	name,	and	PureDefinition[Oj]–	its	definition,	presented	in	string
optimal	format.	The	following	fragment	represents	theTabLib	procedure	supporting
work	with	the	aboveLibBase	library	along	with	concrete	examples	that	rather	visually
clarify	the	essence	of	such	maintenance.

In[5248]:=	LibBase	:=	{{Help,	{“NF::usage	=	"Help	on	function	NF."”,
“ArtKr::usage	=	"Help	on	function	ArtKr."”}},

{	NF,	“NF[x_,	y_]	:=	x	+	y”},	{ArtKr,	“ArtKr[x_,	y_]	:=	Sqrt[26*x	+	18*y]”}}
In[5249]:=	DumpSave[“LibBase.mx”,	LibBase]
Out[5249]=	{{Help,	{”NF::usage=	"Help	on	function	NF."”,

“	ArtKr::usage=	"Help	on	function	ArtKr."”}},	{NF,	“NF[x_,	y_]:=	x+	y”},
{ArtKr,	“ArtKr[x_,	y_]:=	Sqrt[26*x+	18*y]”}}

In[5250]	:=	TabLib[Lib_	/;	FileExistsQ[Lib]	&&	FileExtension[Lib]	==	“mx”,	x_,
y___]	:=	Module[{a	=	Get[Lib],	b,	c},	If[MemberQ[{“index”,	“entry”},	x],
Table1[LibBase,	x],	Map[ToExpression,	LibBase[[1]][[2]]];	If[ListQ[x]	&&	Length[x]
==	2,	c	=	If[SameQ[x[[2]],	Null],	x,	{x[[1]],	PureDefinition[x[[1]]]}];	b	=
Table1[LibBase,	c];	If[!	SameQ[b,	$Failed],	LibBase	=	b;
ToExpression[“DumpSave[”	<>	ToString1[Lib]	<>	“,”	<>

“LibBase]”]],	If[StringQ[x]	&&	!	StringFreeQ[x,	“::usage	=	“],	c	=

Quiet[LibBase[[1]][[2]]	=	AppendTo[LibBase[[1]][[2]],	x];	LibBase	=
ReplacePart[LibBase,	{1,	2}–>	c];	ToExpression[“DumpSave[”	<>	ToString1[Lib]	<>
“,”	<>	“LibBase]”],	If[Table1[LibBase,	x]	===	$Failed,	$Failed,	b	=	Table1[LibBase,
x];	If[!	SameQ[b,	$Failed],	ToExpression[b];	x[y]],	$Failed]]]]]

In[5251]	:=	Clear[LibBase];	TabLib[“LibBase.mx”,	“index”]
Out[5251]=	{Help,	NF,	ArtKr}
In[5252]:=	TabLib[“LibBase.mx”,	“entry”]
Out[5252]=	{{”NF::usage=	"Help	on	function	NF."”,

“	ArtKr::usage=	"Help	on	function	ArtKr."”},
“NF[x_,	y_]:=	x+	y“,	“ArtKr[x_,	y_]:=	Sqrt[26*x+	18*y]”}	In[5253]:=	NF[x_]	:=
Sin[x]*Cos[x]	+	x^3
In[5254]:=	ArtKr[x_,	y_]	:=	42*Sin[x]	+	47*Cos[y]	+	x*y
In[5255]:=	TabLib[“LibBase.mx”,	{ArtKr,	PureDefinition[ArtKr]}]	Out[5255]=
{{{Help,	{”NF::usage="Help	on	function	NF."”,	“ArtKr::usage="Help	on	function
ArtKr."”}},	{ArtKr,	“ArtKr[x_,	y_]:=	42*Sin[x]+	47*Cos[y]+	x*y”}}}	In[5256]:=
TabLib[“LibBase.mx”,	{NF,	PureDefinition[NF]}]
Out[5256]=	{{{Help,	{”NF::usage="Help	on	function	NF."”,	“ArtKr::usage="Help	on
function	ArtKr."”}},	{NF,	“NF[x_]:=	Sin[x]*Cos[x]+	x^3”},
{ArtKr,	“ArtKr[x_,	y_]:=	42*Sin[x]+47*Cos[y]+x*y”}}}	In[5257]:=
TabLib[“LibBase.mx”,	“index”]
Out[5257]=	{Help,	ArtKr,	NF}
In[5258]:=	Clear[ArtKr,	LibBase,	NF]
In[5259]:=	TabLib[“LibBase.mx”,	ArtKr,	90.42,	590.2015]
Out[5259]=	53	374.4
In[5260]:=	TabLib[“LibBase.mx”,	NF,	500.2015]
Out[5260]=	1.25151*10^8
In[5261]:=	TabLib[“LibBase.mx”,	ArtKr]
Out[5261]=	ArtKr[]
In[5262]:=	TabLib[“LibBase.mx”,	{NF,	Null}]
Out[5262]=	{{{Help,	{”NF::usage=	"Help	on	function	NF."”,	“ArtKr::usage="Help	on
function	ArtKr."”}},	{ArtKr,	“ArtKr[x_,	y_]:=	42*Sin[x]+47*Cos[y]+x*y”}}}
In[5263]:=	TabLib[“LibBase.mx”,	Avz42]
Out[5263]=	$Failed

In[5264]	:=	TabLib[“LibBase.mx”,	“Avz::usage	=	"Help	on	object	Avz."”]
Out[5264]=	{{{Help,	{”NF::usage="Help	on	function	NF."”,	“ArtKr::usage="Help	on
function	ArtKr."”,	“Avz::usage=	"Help	on	object	Avz."”}},	{ArtKr,	“ArtKr[x_,	y_]:=
42*Sin[x]+	47*Cos[y]+x*y”}}}
In[5265]:=	LibBase
Out[5265]=	{{{Help,	{”NF::usage="Help	on	function	NF."”,	“ArtKr::usage="Help	on
function	ArtKr."”,	“Avz::usage=	"Help	on	function	Avz."”}},	{ArtKr,	“ArtKr[x_,	y_]:=
42*Sin[x]+	47*Cos[y]+x*y”}}}
In[5266]:=	??NF
Help	on	function	NF.
NF[x_]:=	Sin[x]Cos[x]+	x^3
In[5267]:=	?ArtKr

Help	on	function	ArtKr.

The	main	operations	with	the	library	organized	thus	are	supported	by	the	TabLib
procedure	whose	source	code	with	examples	of	use	are	represented	by	the	previous
fragment.	The	procedure	callTabLib[x,y]	depending	on	the	second	argumenty	returns	or
the	current	contents	of	the	library	which	is	in	amx-filex,	or	names	of	the	objects	that	are	in
the	library,	or	their	definitions,	namely:

TabLib[x,	“index“]–	returns	the	list	of	objects	names	whose	definitions	are	in	a	libraryx,
including	the	nameHelp	of	help	base	of	the	library;	TabLib[x,“entry”]–	returns	the	list	of
objects	definitions	that	are	contained	in	a	libraryx,	including	also	the	help	baseHelp	of	the
library;	TabLib[x,	{N,	Df}]–	returns	the	contents	of	a	libraryx	after	its	extension	by	a	new
definitionDf	of	an	object	with	a	nameN	ifDf	is	different	fromNull;	at	that,	obsolete
definition	ofN–object	is	updated;
TabLib[x,{N,	Null}]–	returns	the	contents	of	a	libraryx	as	a	result	ofremoval	from	it	of
definition	of	an	object	with	a	nameN;	at	that,	its	usage	remains;	TabLib[x,N,	y,	z,	…]–
returns	the	result	of	callN[y,	z,	…]	of	an	objectN	from	a	libraryx;	if	the	objectN	is	absent
in	the	library,$Failed	is	returned;	TabLib[x,N]–	ifN	–	usage	on	an	objectN,	it
supplements	the	help	base	of	a	libraryx	with	return	of	the	updated	contents	of	the	library.
In	other	cases	the	procedure	call	returns$Failed	or	is	returned	unevaluated.	Qua	of	a
certain	initial	libraryLibBase	intended	for	filling	its	by	necessary	contents	aListList-list	of
the	above	format	is	used.	An	initial	libraryLibBase	should	be	defined	before	the	first
procedure	callTabLib.	Naturally,	for	real	use	of	theTabLib	procedure	qua	of	a	ready
software	for	the	organization	of	the	user	libraries	it	demands	an	extension	of	the
functionality,	meantime,	it	is	presented	as	an	illustrative	example	of	one	of	possible
approaches	to	the	solution	of	a	task	of	the	organization	of	the	user	software.	We	leave	this
task	for	the	interestedMathematica	user	as	a	rather	useful	practice.	In	principle,	the
presented	library	organization	provided	by	theTabLib	procedure	and	that	is	based	on	the
tabular	organization	which	is	supported	by	theTable1	procedure	represents	a	certain
analog	of	aMaple–package	of	tabular	type.	The	represented	library	has	only	a	basic	set	of
functions	which	meanwhile	provides	its	quite	satisfactory	functioning.	Meanwhile,	on	the
basis	of	the	offered	approach	quite	really	to	create	the	fast	rather	small	libraries	of	the	user
procedures	and	functions	that	will	be	very	convenient	in	operation.	At	that,	the	similar
quite	simple	means	can	serve	as	good	tools	formaintenance	of	the	libraries	of	the	user
procedures/functions	that	have	a	text	format,	and	that	are	simply	edited	by	usual	word
processors,	for	example,Notepad.	The	interested	reader	can	develop	own	means	of	the
library	organization	in	the	Mathematica	software,	using	approaches	offered	by	us	along
with	others.	However,	exists	a	problem	of	the	organization	of	convenient	help	bases	for
the	user	libraries.	A	number	of	approaches	in	this	direction	can	be	found	in.	In	particular,
on	the	basis	of	the	list	structure	supported	by	the	system	it	is	rather	simply	possible	to
determine	help	bases	for	the	user	libraries.	On	this	basis	as	one	of	such	approaches	an
example	of	theBaseHelp	procedure	has	been	represented,	whose	structural	organization
has	the	list	format	[30-33].

Meanwhile,	it	is	possible	to	create	the	help	bases	on	the	basis	of	the	packages	containing
usages	on	means	of	the	user	library	which	are	saved	in	datafiles	ofmx–format.	At	that,	for
complete	library	it	is	possible	to	create	only	one	helpmx–file,	uploading	it	as	required	into
the	current	session	by	means	of	theGet	function	with	receiving	in	the	subsequent	of	access

to	allusages	that	are	in	the	datafile.	The	nextUsages	procedure	can	represent	a	quite
certain	interest	for	the	organization	of	a	help	database	for	the	user	libraries.	This	procedure
provides	maintaining	a	help	base	irrespective	of	a	library	that	is	rather	convenient	in	a
number	of	cases	of	organization	of	the	user	software.	The	fragment	below	represents
source	code	of	theUsages	procedure	along	with	the	most	typical	examples	of	its	usage.

In[3600]	:=	G::usage	=	“Help	on	function	G.”;
V::usage	=	“Help	on	function	V.”;
S::usage	=	“Help	on	function	S.”;
Art::usage	=	“Help	on	procedure	Art.”;
Kr::usage	=	“Help	on	procedure	Kr.”;

In[3601]	:=	Usages[x_/;	StringQ[x],	y___]	:=	Module[{a,	b,	h	=	””},	If[!
FileExistsQ[x],	Put[x]];
If[{y}==	{}&&	!	EmptyFileQ[x],	While[!	SameQ[h,	EndOfFile],

Quiet[ToExpression[h	=	Read[x,	Expression]]]];	Close[x];,	If[{y}==	{}&&
EmptyFileQ[x],	$Failed,

If[Quiet[Check[ListQ[y],	False]]	&&{y}!={}&&	ListSymbolQ[y],	a	=
DeleteDuplicates[Select[y,	Head[#::usage]	===	String	&]];
If[a	!=	{},	PutAppend[Sequences[Map[ToString[#]	<>	“::usage	=	”	<>	“"”	<>
#::usage	<>	“"”	&,	a]],	x],	$Failed],	If[!	Quiet[Check[ListQ[y],	False]],	b	=
DeleteDuplicates[Reverse[ReadList[x,	Expression]]];	Put[Sequences[Select[b,	!
SuffPref[#1,	Map[ToString[#]	<>	“::usage”	&,	Flatten[{y}]],	1]	&]],	x],	$Failed]]]]]

In[3602]:=	Usages[“C:/MathLib/HelpBase.m”,	{Art,	Kr,	G,	V,	Art,	Kr,	Vsv}]

A	new	session	with	the	Mathematica	system

In[2216]:=	Usages[“C:\MathLib\HelpBase.m”]
In[2217]:=	?G

Help	on	function	G	.
In[2218]:=	Information[V]
Help	on	function	V.
In[2219]:=	?S
Help	on	function	S.
In[2220]:=	?Art
Help	on	procedure	Art.
For	initial	filling	of	a	help	database	in	the	current	session	all	known	usages	on	means	that
are	planned	on	inclusion	into	the	user	library	are	evaluated	as	illustrates	the
firstInput–paragraph	of	the	previous	fragment.	Then	by	the	procedure	callUsages[x,	y]	the
saving	in	ax–file	of	theASCII	format	of	all	usages	relating	to	software	tools	that	are
defined	by	a	listy	is	provided.	At	that,	saving	is	executed	in	theappend–mode	into	the	end
of	thex–file;	if	the	specified	datafilex	is	absent,	the	emptyx–file	is	created.	While	the
procedure	callUsages[x,	y,	z,	…]	where	arguments,	since	the	second,	represent	names	{y,z,
…}	of	software	tools,	deletes	from	the	help	database	the	usages	on	these	means.	At	last,
the	procedure	callUsages[x]	activates	all	usages	containing	in	help	databasex	in	the

current	session,	doing	themavailable	irrespectively	from	existence	of	the	means	described
by	these	usages.	The	successful	call	of	theUsages	procedure	returnsNull,	i.e.	nothing;
otherwise,	value$Failed	is	returned,	in	particular,	in	the	case	of	a	callUsages[x]	at	the
absent	or	empty	datafilex.	The	presented	approach	is	represented	as	a	rather	convenient.
At	that,	the	history	of	modifications	of	a	datafilex	is	saved	while	qua	of	active	usage	the
last	usage	supplementing	the	datafile	acts.

For	receiving	usages	on	means	that	are	in	packages,	it	is	possible	to	use	the	UsagesMNb
procedure,	whose	source	code	along	with	typical	examples	of	usage,	are	represented	by
the	following	fragment.

In[4242]:=	UsagesMNb[x_	/;	FileExistsQ[x]	&&	MemberQ[{“m”,	“nb”},
FileExtension[x]]]	:=	Module[{a,	b,	c},	If[FileExtension[x]	==	“m”,	a	=
Select[ReadList[x,	String],	!	StringFreeQ[#,	“::usage=”]	&];	a	=	Map[StringTake[#,
{3,–3}]	&,	a];

a	=	Map[If[SymbolQ[StringTake[#,	{1,	Flatten[StringPosition[#,	“::usage=”]]
[[1]]–1}]],	#]	&,	a];	Select[a,	!	SameQ[#,	Null]	&],	c	=	“$.m”;	b	=
ContextFromFile[x];	ToExpression[“Save[”	<>	StrStr[c]	<>	“,	”	<>	StrStr[b]	<>	“]”];
b	=	Select[Quiet[ReadList[“$.m”,	Expression]],	!	MemberQ[{Null,	{Temporary}},	#]
&];	DeleteFile[“$.m”];	b]]

In[4243]:=	UsagesMNb[“C:\users/aladjev/mathematica/avz_package.mx”]
Out[4243]=	UsagesMNb[”C:\users/aladjev/mathematica/avz_package.mx”]

In[4244]	:=	UsagesMNb[“C:\users/aladjev/mathematica/avz_package.m”]	Out[4244]=
{”UprocQ::usage="The	call	UprocQ[x]	returns	False	if	x	is	not	a	procedure;	otherwise,
two-element	list	of	the	format	{True,	{"Module"|	"Block"|"DynamicModule"}}	is
returned.",	……}
In[4245]:=	UsagesMNb[“C:/users/aladjev/mathematica/avz_package.nb”]	Out[4245]=
{”The	call	Names1[]	returns	the	nested	4-element	list,	whose	the	first	element	defines	the
list	of	names	of	the	procedures,	the	second–	the	list	of	names	of	functions/modules,	the
third	element–	the	list	of	names	whose	definitions	have	been	evaluated	in	the	current
session	of	the	system,	while	the	fourth	element	determines	the	list	of	other	names
associated	with	the	current	session.“,	……}

The	procedure	call	UsagesMNb[x]	returns	the	usages	list	on	software	of	the	user	package
which	is	in	a	datafilex	of	format	{“m”,	“nb”};	these	usages	are	returned	in	string	format.
At	that,	for	a	datafilex	ofmformat	the	usages	list	containing	a	prefix“Name::usage=”	is
returned	while	for	a	datafilex	ofnb–	format	the	usages	list	without	such	prefix	is	returned.
Furthermore,	if	for	a	package	from	a	datafilex	ofm–format	its	uploading	into	the	current
session	isn’t	required,	then	for	a	package	from	a	datafilex	ofnbformat	its	uploading	is
required.	Unlike	the	proceduresHelpPrint,	HelpBasePac	theUsagesMNb	procedure
provides	possibility	of	both	perusal	of	help	databases	of	the	user	packages,	and	their
processing.

At	last,	the	call	of	the	simple	function	Usages1[x]	provides	the	output	of	all	usages
describing	the	means	contained	in	the	user	package	associated	with	a	contextx.	The
following	fragment	represents	source	code	of	theUsages1	function	along	with	a	typical
example	of	its	usage.

In[2699]:=	Usages1[x_	/;	ContextQ[x]]	:=	DeleteDuplicates[Map[{Print[#],
ToExpression[“?”	<>	#]}&,	CNames[x]]][[1]]

In[2700]	:=	Usages1[“AladjevProcedures`”]
“AcNb”
The	call	AcNb[]	returns	full	name	of	the	current	document	earlier	saved	as	a	nb–file.

===	The	above
example	illustrates	the	format	returned	by	a	function	call.

8.5.	A	package	for	theMathematicasystem

The	computer	mathematics	has	found	application	in	many	fields	of	science	such	as
physics,	mathematics,	education,	computer	sciences,	engineering,	chemistry,
computational	biology,	technology,	etc.	Computer	mathematics	systems(CMS)	such
asMathematica	are	becoming	more	and	more	popular	in	teaching,	research	and	industry.
So,	researchers	use	knownMathematica	system	as	an	essential	enough	means	for	solving
problems	related	to	their	various	investigations.	The	system	is	ideal	tool	for	formulating,
solving,	and	exploring	various	mathematical	models.	Its	symbolic	manipulation	facilities
extend	greatly	over	a	range	of	the	problems	that	can	be	solved	with	its	help.	Educators	in
universities	and	colleges	have	revitalized	traditional	curricula	by	introducing	problems
and	exercises	that	widely	use	theMathematica’s	interactive	mathematics	and	physics.
While	students	can	concentrate	on	the	more	fundamental	concepts	rather	than	on	various
plural	tedious	algebraic	manipulations.	Finally,	engineers	and	experts	in	industries	use	the
system	Mathematica	as	an	efficient	tool	replacing	many	traditional	resources	such	as
reference	books,	spreadsheets,	calculators,	and	programming	languages.	These	users
easily	solve	mathematical	problems,	creating	various	projects	and	consolidating	their
computations	into	professional	report.	Meanwhile,	our	experience	with
systemMathematica	of	releases8	÷	10	enabled	us	not	only	to	estimate	its	advantages	in
regard	to	other	similarCMS,	above	all	the	Maple	system,	but	has	also	revealed	a	number
of	faults	and	shortcomings	which	were	eliminated	by	us.	In	particular,Mathematica	does
not	support	a	number	of	functions	important	for	procedural	programming	and	datafiles
processing.	As	a	result,	theAVZ_Package	package	oriented	on	the	solution	of	the	above
problems	was	created	[33,48].	The	given	package	contains	more	than680	means	which
eliminate	restrictions	of	a	number	of	standard	means	of	theMathematica,	and	expand	its
software	environment	with	new	means.	In	this	context,	the	package	can	serve	as	a	certain
additional	tool	of	modular	programming,	especially	useful	in	the	numerous	applications
where	certain	nonstandard	evaluations	have	to	accompany	programming.	At	that,	means
presented	in	the	given	package	have	a	direct	relationship	to	certainprincipal	questions	of
procedure–functional	programming	inMathematica,	not	only	for	the	decision	of	applied
problems,	but,	first	of	all,	for	creation	of	software	extending	frequently	used	facilities	of
the	system	and/or	eliminating	their	defects	or	extending	the	system	with	new	facilities.
The	software	presented	in	this	package	contains	a	series	of	rather	useful	and	effective
receptions	of	programming	in	theMathematica	system,	and	extends	its	software	which
allows	in	the	system	to	programme	the	problems	of	various	purpose	more	simply	and
effectively.	The	additional	means	composing	the	above	package	embrace	the	next	sections
of	theMathematica	system,	namely:

–	additional	means	in	interactive	mode	of	theMathematicasystem
–additional	means	of	processing	of	expressions	in	theMathematicasystem
–additional	means	of	processing	of	symbols	and	strings	in	theMathematica
–additional	means	of	processing	of	sequences	and	lists	in	theMathematica
–additional	means	extending	the	standardMathematicafunctions	or	its	software	as	a
whole	(control	structures	branching	and	cycle,etc.)
–definition	of	procedures	in	theMathematicasoftware
–definition	of	the	user	functions	and	pure	functions	in	theMathematicasoftware
–means	of	testing	of	procedures	and	functions	in	theMathematicasoftware
–headings	of	procedures	and	functions	in	theMathematicasoftware
–formal	arguments	of	procedures	and	functions;
–local	variables	of	modules	and	blocks;means	of	their	processing
–global	variables	of	modules	and	blocks;means	of	their	processing
–attributes,options	and	values	by	default	for	arguments	of	the	user	blocks,	functions	and
modules;additional	means	of	their	processing
–some	useful	additional	means	for	processing	of	blocks,functions	and	modules
–additional	means	of	the	processing	of	internalMathematicadatafiles
–additional	means	of	the	processing	of	externalMathematicadatafiles
–additional	means	of	the	processing	of	attributes	of	directories	and	datafiles
–additional	and	some	special	means	of	processing	of	datafiles	and	directories
–additional	means	of	operating	with	packages	and	contexts	ascribed	to	them
–organization	of	the	user	software	in	theMathematicasystem.

This	package,	is	mostly	for	people	who	want	the	more	deep	understanding	in
theMathematica	programming,	and	particularly	those	theMathematica	users	who	would
like	to	make	a	transition	from	a	user	to	a	programmer,	or	perhaps	those	who	already	have
some	limited	experience	inMathematica	programming	but	want	to	improve	their
possibilities	in	the	system.	Expert	Mathematica	programmers	will	probably	find	an	useful
information	too.	The	archiveAVZ_Package.zip	with	the	given	package	that	owns	the
license	FreeWare	can	be	freely	downloaded	from	the	web-site	presented	in	[48].	The
package	contains4	datafiles,	namely:AVZ_Package.cdf,	AVZ_Package.mx,
AVZ_Package.m,	AVZ_Package.nb.	In	particular,	for	perusal	of	the	package	it	is	possible
to	use	or	datafileAVZ_Package_1.cdf	with	theCDF	Player,	or	file	AVZ_Package_1.m
with	a	word	processor,	for	example,Notepad.	Such	approach	allows	to	satisfy	the	user	on
various	operation	platforms(Mac	OS	X,	Windows,	Linux,	Linux	ARM).	The	package
contains	more	than680	tools	that	eliminate	restrictions	of	a	number	of	standard	functions
of	the	system,	and	extend	its	software	with	new	means.	In	this	context,	this	package	can
serve	as	a	tool	of	programming,	especially	useful	in	numerous	applications,	where	certain
nonstandard	evaluations	have	to	accompany	programming.	At	that,	the	memory	size,
demanded	for	theAVZ_Package	package	in	the	Mathematica10.1.0.0(on
Windows7Pro,ver.	6.1.7601)	yields	the	next	result:	In[1]:=	MemoryInUse[]
Out[1]=	28	784	392
In[2]:=	Get[“C:\Users\Aladjev\Mathematica\AVZ_Package.mx”]	In[3]:=
MemoryInUse[]
Out[3]=	40724	272
In[4]:=	N[(%–%%%)/1024^2]
Out[4]=	11.3868

i.e.	in	theMathematica	ourAVZ_Package	package	demands	more11.4	MB,	whereas
quantity	of	software	whose	definitions	are	located	in	this	package,	at	the	moment	of	its
uploading	into	the	current	session	of	theMathematica	system	is	available	on	the	basis	of
the	following	very	simple	calculations:	In[1]:=
Get[“C:\Users\Aladjev\Mathematica\AVZ_Package.mx”]	In[2]:=
Length[CNames[“AladjevProcedures`”]]
Out[2]=	684
At	that	it	must	be	kept	in	mind	that	debugging	of	means	of	the	package	was	carried	out	on
the	basis	ofMathematica	of	version10,	and	partially	on	the	basis	of	version9.	Therefore	in
some	cases	there	can	be	certain	slips	at	their	performance	that	are	rather	simply
eliminated.	Unfortunately,	regardless	of	sufficient	stability	of	the	built–inMath–language,
upon	transition	from	the	younger	version	of	theMathematica	to	more	senior	a	certain
adjustment	can	be	needed.	As	a	rule,	similar	adjustment	for	the	used	version	of	the	system
Mathematica	isn’t	very	complex.

References

1.	Aladjev	V.Z.,	Hunt	Ü.,	Shishakov	M.L.Mathematics	on	Personal	Computer.–	Gomel:
BELGUT	Press,	1996,	498	p.,	ISBN	34206140233(in	Russian).
2.Aladjev	V.Z.,	Shishakov	M.L.Introduction	into	Mathematical	Package	Mathematica
2.2.–	Moscow:	Filin	Press,	1997,	363	p.,(in	Russian).
3.Aladjev	V.Z.,	Hunt	Ü.J.,	Shishakov	M.L.Basics	of	Computer	Informatics:	Textbook.–
Tallinn:	Russian	Academy	of	Noosphere&	TRG,	1997,	396	p.
4.Aladjev	V.Z.,	Hunt	Ü.J.,	Shishakov	M.L.Basics	of	Computer	Informatics:	Textbook.–
Moscow,	Filin	Press,	1998,	496	p.,	ISBN	5895680682(in	Russian).
5.Aladjev	V.Z.,	Hunt	Ü.J.,	Shishakov	M.L.Basics	of	Computer	Informatics:
Textbook,Second	edition.–	Moscow,	Filin	Press,	1999,	545	p.(in	Russian).
6.Aladjev	V.Z.,	Vaganov	V.A.,	Hunt	Ü.J.,	Shishakov	M.L.Introduction	into	Environment
of	Mathematical	PackageMaple	V.–	Minsk:	International	Academy	of	Noosphere,	1998,
452	p.,	ISBN	1406425698(in	Russian).
7.Aladjev	V.Z.,	Vaganov	V.A.,	Hunt	Ü.J.,	Shishakov	M.L.Programming	in	Environment
of	Mathematical	PackageMaple	V.–	Minsk–Moscow:	Russian	Ecology	Academy,	1999,
470	p.,	ISBN	4101212982(in	Russian).
8.Aladjev	V.Z.,	Bogdevicius	M.A.Solution	of	Physical,Technical	and	Mathematical
Problems	withMaple	V.–	Tallinn–Vilnius,	TRG,	1999,	686	p.
9.Aladjev	V.Z.,	Vaganov	V.A.,	Hunt	Ü.J.,	Shishakov	M.L.Workstation	for
Mathematician.–	Tallinn–Gomel–Moscow:	Russian	Academy	of	Natural	Sciences,	1999,
608	p.,	ISBN	3420614023(in	Russian	with	English	summary).
10.Aladjev	V.Z.,	Shishakov	M.L.Workstation	of	Mathematician.–	Moscow:	Laboratory	of
Basic	Knowledge,	2000,	752	p.,	ISBN	5932080523(in	Russian).
11.Aladjev	V.Z.,	Bogdevicius	M.A.	Maple	6:Solution	of	Mathematical,	Statistical,Physical
and	Engineering	Problems.–	Moscow:	Laboratory	of	Basic	Knowledge,	2001,850	p.,
ISBN	593308085X(in	Russian	with	English	summary).
12.Aladjev	V.Z.,	Bogdevicius	M.A.Special	Questions	of	Operation	in	Software
Environment	of	the	Mathematical	PackageMaple.–	Vilnius:	International	Academy	of
Noosphere&	Vilnius	Gediminas	Technical	Univ.,	2001,	208	p.

13.Aladjev	V.Z.,	Bogdevicius	M.A.InteractiveMaple:Solution	of	Statistical,
Mathematical,Engineering	and	Physical	Problems.–	Tallinn:	International	Academy	of
Noosphere,	2001–2002,	CD	with	Booklet,	ISBN	9985927710.

14.	Aladjev	V.Z.,	Vaganov	V.A.,	Grishin	E.P.Additional	Software	Means	of	Mathematical
PackageMapleof	releases6and7.–	Tallinn:	International	Academy	of	Noosphere,	2002,
314	p.+	CD,	ISBN	9985927737(in	Russian).	15.Aladjev	V.Z.Effective	Operation	in
Mathematical	PackageMaple.–	Moscow:	Laboratory	of	Basic	Knowledge,	2002,	334	p.,
ISBN	593208118Х.	16.Aladjev	V.Z.,	Liopo	V.A.,	Nikitin	A.V.Mathematical
PackageMaplein	Physical	Modeling.–	Grodno:	Grodno	State	University,	2002,	416	p.
17.Aladjev	V.Z.,	Vaganov	V.A.Computer	Algebra	SystemMaple:A	New	Software	Library.–
Tallinn:	International	Academy	of	Noosphere,	the	Baltic	Branch,	2002,	CD	with	Booklet,
ISBN	9985927753(in	Russian).	18.Aladjev	V.Z.,	Bogdevicius	M.A.,	Prentkovskis	O.V.A
New	Software	for	Mathematical	PackageMapleof	Releases6,	7and8.–	Vilnius:	Vilnius
Gediminas	Technical	University&	International	Academy	of	Noosphere,	2002,	404	p.,
ISBN	9985927745,	9986055652(in	Russian	with	extended	English	summary).	19.Aladjev
V.Z.,	Vaganov	V.A.Systems	of	Computer	Algebra:A	New	Software	Toolbox	forMaple.–
Tallinn:	International	Academy	of	Noosphere,	the	Baltic	Branch,	2003,	270	p.,	ISBN
9985927761(in	Russian	with	English	summary).	20.Aladjev	V.Z.,	Bogdevicius	M.,
Vaganov	V.A.Systems	of	Computer	Algebra:	A	New	Software	Toolbox	forMaple.Second
edition.–	Tallinn:	Intern.	Academy	of	Noosphere,	2004,	462	p.,	ISBN	9985927788(in
Russian).
21.Aladjev	V.Z.Computer	Algebra	Systems:A	New	Software	Toolbox	for	the	Maple.–	CA:
Palo	Alto:	Fultus	Corporation,	2004,	575	p.,	ISBN	1596820004.	22.Aladjev	V.Z.Computer
Algebra	Systems:A	New	Software	Toolbox	forMaple.CA:	Palo	Alto:	Fultus	Corporation,
2004,	Acrobat	eBook,	ISBN	1596820152.	23.Aladjev	V.Z.	et	al.Electronic	Library	of
Books	and	Software	for	Scientists,	Experts,Teachers	and	Students	in	Natural	and	Social
Sciences.–	CA:	Palo	Alto:	Fultus	Corporation,	2005,	CD,	ISBN	1596820136(in	Russian
and	English).	24.Aladjev	V.Z.,	Bogdevicius	M.A.	Maple:Programming,Physical	and
Engineering	Problems.–	Palo	Alto:Fultus	Corp.,	2006,	404	p.,	ISBN	1596820802,	eBook,
ISBN	1596820810,	http://writers.fultus.com/aladjev/index.html	25.Aladjev
V.Z.Computer	Algebra	Systems.Maple:Art	of	Programming.–	Moscow:	BINOM	Press,
2006,	792	p.,	ISBN	5932081899(in	Russian).	26.Aladjev	V.Z.Foundations	of
programming	inMaple:Textbook.–	Tallinn:	International	Academy	of	Noosphere,	2006,
300	p.,(pdf),	ISBN	998595081X.

Can	be	freevely	from	website	http://www.aladjev-maple.narod.ru.	27.Aladjev	V.Z.,	Boiko
V.K.,	Rovba	E.A.Programming	and	Applications	Elaboration	inMaple.–	Grodno:	GRSU,
Tallinn:	International	Academy	of	Noosphere,	2007,	456	p.,	ISBN	9789854178912,	ISBN
9789985950821.	28.Aladjev	V.Z.,	Vaganov	V.A.Modular	Programming:	Mathematica	vs
Maple,and	vice	versa.–	CA:	Palo	Alto,	Fultus	Corporation,	2011,	418	p.	29.Aladjev	V.Z.,
Bezrukavyi	A.S.,	Haritonov	V.N.,	Hodakov	V.E.	Programming:	MapleorMathematica?–
Ukraine:	Herson,	Oldi–Plus	Press,	2011,	474	p.,	ISBN	9789662393460(in	Russian	with
English	summary).	30.Aladjev	V.Z.,	Boiko	V.K.,	Rovba	E.A.Programming	in	the	Packages
MathematicaandMaple:Comparative	Aspect.–	Belarus:	Grodno,	Grodno	State	University,
2011,	517	p.,	ISBN	9789855154816(in	Russian).	31.Aladjev	V.Z.,	Grinn	D.S.,	Vaganov
V.A.The	extended	functional	means	for	the	packageMathematica.–	Ukraine:	Kherson:

Oldi–Plus	Press,	2012,	404	p.,	ISBN	9789662393590(in	Russian	with	extended	English
summary).	32.Aladjev	V.Z.,	Grinn	D.S.Extension	of	functional	environment	of	the	system
Mathematica.–	Ukraine:	Kherson:	Oldi–Plus	Press,	2012,	552	p.,	ISBN
9789662393729(in	Russian	with	extended	English	summary).
33.Aladjev	V.Z.,	Grinn	D.S.,	Vaganov	V.A.The	selected	system	problems	in
Mathematicasoftware.–	Ukraine:	Kherson:	Oldi–Plus	Press,	2013,	556	p.,	ISBN
9789662890129(in	Russian	with	extended	English	summary).	34.Aladjev	V.Z.,
Bogdevicius	M.Use	of	packageMaplefor	solution	of	physical	and	engineering	problems//
Int.	Conf.Transbaltica-99.–	Vilnius:	Technics	Press.	35.Aladjev	V.Z.,	Hunt	U.Workstation
for	mathematicians//	Conf.Transbaltica-

99	.–	Vilnius:	Technics	Press,	April	1999.
36.Aladjev	V.Z.,	Hunt	U.Workstation	for	mathematicians//Conf.«Perfection	of
Mechanisms	of	Management»,	Institute	of	Modern	Knowledge,	Grodno,	1999.	37.Aladjev
V.Z.,	Shishakov	M.Programming	in	packageMaple//2nd	Int.	Conf.

«	Computer	Algebra	in	Fundamental	and	Applied	Researches	and	Education».–
Byelorussia:	Minsk,	1999.
38.Aladjev	V.Z.,	Shishakov	M.L.A	Workstation	for	mathematicians//2nd	Conf.	«Computer
Algebra	in	Fundamental	and	Applied	Researches	and	Education».–	Byelorussia:	Minsk,
1999.
39.Aladjev	V.Z.,	Shishakov	M.L.,	Trokhova	T.А.Educational	computer	laboratory	of	the
engineer//	Proc.	8th	Byelorussia	Math.	Conf.,	Minsk,	2000.	40.Aladjev	V.Z.	et
al.Modelling	in	software	environment	of	the	mathematical	packageMaple//	Int.	Conf.	on
Math.	Mod.МКММ–2000.–	Herson,	2000.	41.Aladjev	V.Z.,	Shishakov	M.L.,	Trokhova
T.A.A	workstation	for	solution	of	systems	of	differential	equations//3rd	International	Conf.
«Differential	Equations	and	Applications».–	Saint–Petersburg,	Russia,	2000.
42.Aladjev	V.Z.,	Shishakov	M.L.,	Trokhova	T.A.Computer	laboratory	for	engineering
researches//	Int.	Conf.ACA-2000.–	Saint–Petersburg,	Russia,	2000	43.Aladjev	V.Z.,
Bogdevicius	M.,	Hunt	U.J.A	Workstation	for	mathematicians	/	Lithuanian
Сonf.TRANSPORT–2000.–	Vilnius:	Technics	Press,	April	2000.	44.Aladjev	V.Z.Computer
Algebra//	Alpha,	№1.–	Grodno:	GRSU,	2001.	45.Aladjev	V.Z.Modern	computer	algebra
for	modeling	of	the	transport	systems	//	Intern.	Conf.TRANSBALTICA–2001.–	Vilnius:
Technics	Press,	April	2001.	46.Aladjev	V.Z.Computer	Algebra	SystemMaple:A	New
Software	Library//	International	Conference«Computer	Algebra	Systems	and	Their
Applications»,	Saint–Petersburg,	Russia,	2003.
47.Aladjev	V.Z.A	LibraryUserLib6789for	systemMaple.–The	library	can	be	freely
downloaded	from	websitehttp://yadi.sk/d/P1FQaYmW619C7.	48.Aladjev	V.Z.A
packageAVZ_Packagefor	systemMathematica.–Package	can	be	freely	downloaded	from
websitehttp://yadi.sk/d/G9HBFqTILiAAC.	49.Aladjev	V.Z.Modular	programming:
MapleorMathematica	–A	subjective	standpoint/Intern.	school«Mathematical	and
computer	modeling	of	fundamental	objects	and	phenomena	in	systems	of	computer
mathematics»,	ed.Y.	G.	Ignat’ev.–	Kazan:	Kazan	Univ.	Press,	2014,	pp.	18–32.
50.Nelson	H.F.	Beebe.A	Bibliography	of	Publications	about	theMapleSymbolic	Algebra
Language.–	Salt	Lake	City:	Univ.	of	Utah,	Dept.	of	Mathem.,	2010.	51.Arantes	R.D.A
Computational	Reference	Guide	on	Experimental	Mathematics,Algorithmic	Number
Theory	and	Symbolic	Computing.–	Rio	de	Janeiro:	Federal	University,	Caixa	Postal

11502,	220022–970,	2004.	52.Mangano	S.Mathematica	Cookbook.–	CA:	Sebastopol:
O’Reilly	Media,	Inc.,	2010,	ISBN–13:	9780596520991,	ISBN–10:	0596520999,	828	p.
53.Wellin	P.et	al.An	Introduction	to	Programming	withMathematica,3rd	ed.–	Cambridge
University	Press,	2005,	550	p.,	ISBN	0521846781.	54.Sisson	P.College	Algebra,2nded.–
Hawkes	Learning	Systems,	2008.

55.	Gregor	J.,Tier	J.Discovering	Mathematics:A	Problem–Solving	Approach	to
Mathematical	Analysis	withMathematicaandMaple.–	Springer,	2010,	254	p.
56.Alberty	R.Applications	ofMathematica.–	Wiley	Press,	2011,	456	p.
57.Shiskowski	K.,	Frinkle	K.Principles	of	Linear	Algebra	withMathematica.–

Wiley	,	ISBN	9780470637951,	2011,	616	p.
58.Kilian	A.Programmieren	mit	WolframMathematica.–	Springer,	2010.
59.Hollis	S.CalcLabs	withMathematicafor	Multivariable	Calculus.–	Brooks/	Cole,
ISBN–13:	9780840058133,	ISBN–10:	0840058136,	2012,	274	p.
60.Annong	Xu.Introduction	to	Scientific	Computing:Numerical	Analysis	With
Mathematica.–	China	Machine	Press,	2010,	ISBN	9787111310914.
61.Core	Language:Tutorial	Collection.–	Wolfram	Research	Inc.,	2008,	358	p.
62.Hastings	K.J.Introduction	to	Probability	withMathematica.–	CRC	Press,
2009,	ISBN	9781420079388,	465	p.
63.Wellin	P.R.Programming	withMathematica:An	Introduction,	2013.
64.Koberlein	B.,	Meisel	D.Astrophysics	through	Computation:With	MathematicaSupport,
ISBN	9781107010741,	2013.
65.Boccara	N.Essentials	ofMathematica:With	Applications	to	Mathematics	and	Physics.–
Springer,	ISBN	9780387495132,	2007.
66.Shifrin	L.	MathematicaProgramming:An	Advanced	Introduction.–	Brunel	University,
2008,http://www.mathprogramming-intro.org/2008.
67.Wagon	S.	Mathematica®in	Action:Problem	Solving	Through	Visualization	and
Computation,	3rd	ed.,	2010,	574	p.,	ISBN	9780387754772.
68.Bunker	G.	MathematicaQuickstart.–	Illinois	Inst.	of	Technology,	2010.
69.Mathematica	9documentation	center:complete	reference	forMathematica	9,
http://reference.wolfram.com/mathematica/guide/Mathematica.html.
70.http://www.haskell.org	–	Web-site	concerning	functional	programming
71.Wadler	P.	Why	no	one	uses	functional	languages//	ACM	Notices,	1998.
72.The	fourth	international	seminar	and	international	school«Mathematical	and	computer
modeling	of	fundamental	objects	and	phenomena	in	systems	of	computer
mathematics»/Ed.Prof.Yu.	G.	Ignat’ev.–	Kazan:	Kazan	Univ.	Press,	2014,	ISBN
9785000193082,	126	p.
73.The	international	scientifically–practical	conferenceITES–2014/Ed.Prof.Yu.	G.
Ignat’ev.–	Kazan:	Foliant	Press,	2014,	ISBN	9785905576409,	298	p.

Monographs,	textbooks,	books	and	papers	on	Computer	Science,	Theory	of
General	Statistics,	Cellular	Automata	Theory	and	Computer	Mathematics
Systems,	prepared	and	published	by	members	of	the	Baltic	Branch	during
1995	–	2015	(Publications	are	grouped	according	to	their	primary	purpose)
Classical	Cellular	Automata	(Homogeneous	Structures)

1.	Aladjev	V.Z.,	Hunt	Ü.J.,	Shishakov	M.L.	Questions	of	Mathematical	Theory	of	the
Classical	Homogeneous	Structures	(Cellular	Automata).–	Gomel:	BELGUT	Press,	1996,
151	p.,	ISBN	5063560785(in	Russian	with	English	summary)	2.	Aladjev	V.Z.,Hunt	Ü.,
Shishakov	M.L.Mathematical	Theory	of	the	Classical	Homogeneous	Structures	(Cellular
Automata).–	Tallinn–Gomel:	TRG&	VASCO	&	Salcombe	Eesti	Ltd.,	1998,	300	p.,	ISBN
9063560789(in	Russian	with	extended	English	summary)
3.	Aladjev	V.Z.,	Boiko	V.K.,	Rovba	E.A.Classical	Homogeneous	Structures:	Theory	and
Applications.–	Belarus:	Grodno:	Grsu,	Tallinn:	International	Academy	of	Noosphere,
2008,	488	p.,	ISBN	9789855150207,	9789985950845	(in	Russian	with	extended	English
summary)
4.	Aladjev	V.Z.Classical	Homogeneous	Structures:Cellular	Automata.–	USA:	Palo	Alto:
Fultus	Corporation,	2009,	536	p.,	159682137X(in	Russian)	5.	Aladjev	V.Z.Classical
Homogeneous	Structures:Cellular	Automata.–	USA:	Palo	Alto:	Fultus	Corporation,	2009,
536	p.,	Adobe	Acrobat	eBook(pdf),	ISBN	9781596821385(in	Russian	and	English)
6.	Aladjev	V.Z.,	Grinn	D.S.,	Vaganov	V.A.Classical	Homogeneous	Structures:
Mathematical	Theory	and	Applications.–	Ukraine:	Kherson:	Oldi–Plus	Press,	2014,	ISBN
9789662890358,	520	p.
7.	Aladjev	V.Z.Classical	Cellular	Automata:Mathematical	Theory	and	Applica–	tions.–
Germany:	Saarbrücken:	Scholar`s	Press,	2014,	ISBN–10:	3639713451,	ISBN–13:
9783639713459,	EAN:	9783639713459,	520	p.

General	Statistics

8.	Aladjev	V.Z.,	Veetõusme	R.A.,	Hunt	Ü.J.	General	Theory	of	Statistics:Text–	book.–
Tallinn:	TRG	&	SALCOMBE	Eesti	Ltd.,	1995,	201	p.,	ISBN	1995146428	(in	Russian
with	extended	English	summary)

9.	Aladjev	V.Z.,	Hunt	Ü.J.,	Shishakov	M.L.	Course	of	General	Theory	of	Statis–
tics:Textbook.	Belarus:	Gomel:	BELGUT	Press,	1995,	201	p.,	ISBN	1995146429	(in
Russian	with	extended	English	summary)
10.	Aladjev	V.Z.Interactive	Course	of	General	Theory	of	Statistics.–	Tallinn:	International
Academy	of	Noosphere,	the	Baltic	Branch,	2001,	CD	with	Booklet,	ISBN	9985608666(in
Russian	with	extended	English	summary)	11.	Aladjev	V.Z.,	Haritonov	V.N.General	Theory
of	Statistics.	USA:	Palo	Alto:	Fultus	Corporation,	2004,	256	p.,	ISBN	1596820128.
12.	Aladjev	V.Z.,	Haritonov	V.N.General	Theory	of	Statistics.	USA:	Palo	Alto:	Fultus
Corporation,	2004,	Adobe	Acrobat	eBook,	ISBN	1596820160.	13.	Aladjev	V.Z.,
Haritonov	V.N.General	Theory	of	Statistics.	USA:	Palo	Alto:	Fultus	Corporation,	2006,
256	p.,	ISBN	1596820861,	Adobe	Acrobat	eBook	(pdf),	ISBN	1596820810(in	Russian
with	extended	English	summary)	14.	Aladjev	V.Z.,	Vaganov	V.A.General	Statistics.–
Tallinn:	International	Academy	of	Noosphere,	the	Baltic	Branch,	eBook,(pdf),	2014,	259
p.,	ISBN	9789985950876.

Computer	Mathematical	Systems

15	Aladjev	V.Z.,	Hunt	Ü.J.,	Shishakov	M.	Mathematics	on	Personal	Computer.Belarus:
Gomel:	BELGUT	Press,	1996,	498	p.,	ISBN	34206140233(in	Russian	with	extended

English	summary)
16	Aladjev	V.Z.,	Shishakov	M.L.Introduction	into	Mathematical	Package	Mathematica
2.2.–	Moscow:	Filin	Press,	1997,	363	p.,	ISBN	5895680046(in	Russian	with	extended
English	summary)
17.	Aladjev	V.Z.,	Vaganov	V.A.,	Hunt	Ü.J.,	Shishakov	M.L.Introduction	into	Environment
of	Mathematical	PackageMaple	V.–	Belarus:	Minsk:	International	Academy	of
Noosphere,	the	Baltic	Branch,	1998,	452	p.,	ISBN	1406425698(in	Russian	with	extended
English	summary)
18	Aladjev	V.Z.,	Vaganov	V.A.,	Hunt	Ü.J.,	Shishakov	M.L.Programming	in	Environment
of	Mathematical	PackageMaple	V.–	Minsk–Moscow:	Russian	Ecology	Academy,	1999,
470	p.,	ISBN	4101212982(in	Russian	with	extended	English	summary)
19.	Aladjev	V.Z.,	Bogdevicius	M.A.Solution	of	Physical,	Technical	and	Mathematical
Problems	withMaple	V.–	Tallinn–Vilnius,	TRG,	1999,	686	p.,	ISBN	9986053986(in
Russian	with	extended	English	summary)

20.	Aladjev	V.Z.,	Vaganov	V.A.,	Hunt	Ü.J.,	Shishakov	M.L.	Workstation	for
Mathematician.–	Tallinn–Minsk–Moscow:	Russian	Academy	of	Natural	Sciences,	1999,
608	p.,	ISBN	3420614023(in	Russian	with	English	summary)	21.	Aladjev	V.Z.,	Shishakov
M.L.Workstation	of	Mathematician.–	Moscow:	Laboratory	of	Basic	Knowledge,	2000,
752	p.+	CD,	ISBN	5932080523(in	Russian	with	extended	English	summary)
22.	Aladjev	V.Z.,	Bogdevicius	M.A.	Maple	6:Solution	of	Mathematical,
Statistical,Engineering	and	Physical	Problems.–	Moscow:	Laboratory	of	Basic
Knowledge,	2001,	850	p.+	CD,	ISBN	593308085X(in	Russian	with	extended	English
summary)
23.	Aladjev	V.Z.,	Bogdevicius	M.A.Special	Questions	of	Operation	in	Environment	of	the
Mathematical	PackageMaple.–	Vilnius:	International	Academy	of	Noosphere,	the	Baltic
Branch	&	Vilnius	Gediminas	Technical	University,	2001,	208	p.+	CD	with	Library,	ISBN
9985927729(in	Russian	with	extended	English	summary)
24.	Aladjev	V.Z.,	Bogdevicius	M.A.InteractiveMaple:Solution	of	Statistical,
Mathematical,Engineering	and	Physical	Problems.–	Tallinn:	International	Academy	of
Noosphere,	the	Baltic	Branch,	2001–2002,	ISBN	9985927710.	25.	Aladjev	V.Z.,	Vaganov
V.A.,	Grishin	E.P.Additional	Software	of	Mathema–	tical	PackageMapleof
releases6and7.–	Tallinn:	International	Academy	of	Noosphere,	the	Baltic	Branch,	2002,
314	p.+	CD	with	Library,	ISBN	9985–	9277–3–7(in	Russian	with	extended	English
summary)
26.	Aladjev	V.Z.Effective	Operation	in	Mathematical	Package	Maple.–	Moscow:
Laboratory	of	Basic	Knowledge,	2002,	334	p.+	CD,	ISBN	593208118Х(in	Russian	with
extended	English	summary)
27.	Aladjev	V.Z.,	Liopo	V.A.,	Nikitin	A.V.Mathematical	PackageMaplein	Physical
Modeling.–	Grodno:	Grodno	State	University,	2002,	416	p.,	ISBN	3093318313(in	Russian
with	extended	English	summary)
28.	Aladjev	V.Z.,	Vaganov	V.A.Computer	Algebra	SystemMaple:A	New	Software
Library.–	Tallinn:	International	Academy	of	Noosphere,	the	Baltic	Branch,	2002,	CD	with
Booklet,	ISBN	9985927753.
29.	Aladjev	V.Z.,	Bogdevicius	M.A.,	Prentkovskis	O.V.A	New	Software	for	Mathematical
PackageMapleof	releases6,	7and8.	Vilnius:	Vilnius	Gediminas	Technical	University	and
International	Academy	of	Noosphere,	the	Baltic	Branch,	2002,	404	p.,	ISBN	9985927745,

9986055652.

30.	Aladjev	V.Z.,	Vaganov	V.A.	Systems	of	Computer	Algebra:A	New	Software	Toolbox
forMaple.–	Tallinn:	International	Academy	of	Noosphere,	the	Baltic	Branch,	2003,	270
p.+	CD,	ISBN	9985927761.
31.	Aladjev	V.Z.,	Bogdevicius	M.,	Vaganov	V.A.Systems	of	Computer	Algebra:	A	New
Software	Toolbox	forMaple.Second	edition.–	Tallinn:	International	Academy	of
Noosphere,	the	Baltic	Branch,	2004,	462	p.,	ISBN	9985927788.	32.	Aladjev
V.Z.Computer	Algebra	Systems:A	New	Software	Toolbox	for	Maple.–	USA:	Palo	Alto:
Fultus	Corporation,	2004,	575	p.,	ISBN	1596820004.	33.	Aladjev	V.Z.Computer	Algebra
Systems:A	new	software	toolbox	forMaple.–	USA:	Palo	Alto:	Fultus	Corp.,	2004,	Adobe
Acrobat	eBook,	ISBN	1596820152	34.	Aladjev	V.Z.,	Bogdevicius	M.A.
Maple:Programming,Physical	and	Engineering	Problems.–	USA:	Palo	Alto:	Fultus
Corporation,	2006,	404	p.,	ISBN	1596820802,	Adobe	Acrobat	eBook(pdf),	ISBN
1596820810.	35.	Aladjev	V.Z.Computer	Algebra	Systems.Maple:Art	of	Programming.–
Moscow:	BINOM	Press,	2006,	792	pp.,	ISBN	5932081899(in	Russian	with	extended
English	summary)
36.	Aladjev	V.Z.Foundations	of	programming	inMaple:Textbook.–	Tallinn:	International
Academy	of	Noosphere,	2006,	300	p.,(pdf),	ISBN	998595081X,	9789985950814(in
Russian	with	extended	English	summary)
37.	Aladjev	V.Z.,	Boiko	V.K.,	Rovba	E.A.Programming	and	applications	elaboration
inMaple:Monograph.–	Belarus:	Grodno:	Grsu,	Tallinn:	International	Academy	of
Noosphere,	2007,	456	p.,	ISBN	9789854178912,	ISBN	9789985950821(in	Russian	with
extended	English	summary)	38.	Aladjev	V.Z.,	Vaganov	V.Modular	programming:
MathematicavsMaple,	and	vice	versa.–	USA,	CA:	Palo	Alto:	Fultus	Corporation,	2011,
ISBN	9781596822689,	418	p.
39.	Aladjev	V.Z.,	Bezrukavyi	A.,	Haritonov	V.N.,	Hodakov	V.Programming:
SystemMapleorMathematica?–	Ukraine:	Kherson,	Oldi–Plus	Press,	2011,	ISBN
9789662393460,	474	p.(in	Russian	with	extended	English	summary)	40.	Aladjev	V.Z.,
Boiko	V.K.,	Rovba	E.Programming	in	systemMathematica	andMaple:A	Comparative
Aspect.Belarus:	Grodno,	Grodno	State	University,	2011,	517	p.(in	Russian	with	extended
English	summary)
41.	Aladjev	V.Z.,	Grinn	D.S.,	Vaganov	V.A.The	extended	functional	means	for
systemMathematica.–	Ukraine:	Kherson:	Oldi–Plus	Press,	2012.

42.	Aladjev	V.Z.,	Grinn	D.S.	Extension	of	functional	environment	of	system
Mathematica.–	Ukraine:	Kherson:	Oldi–Plus	Press,	2012,	ISBN	978–966–
2393–72–9,	552	p.(in	Russian	with	extended	English	summary)
43.	Aladjev	V.Z.,	Grinn	D.S.,	Vaganov	V.A.The	selected	system	problems	in	software
environment	of	systemMathematica.–	Ukraine:	Kherson:	Oldi–Plus	Press,	2013,	ISBN
9789662393729,	556	p.(in	Russian	with	English	summary)
44.	Aladjev	V.Z.,	Vaganov	V.A.Extension	of	theMathematicasystem	functionality.–
Estonia:	Tallinn,	TRG	Press,	2015,	ISBN	9789985950883,	563	p.

Computer	Science

45.	Aladjev	V.Z.,	Hunt	Ü.J.,	Shishakov	M.L.	Basics	of	Computer	Informatics:	Textbook.–

Tallinn–Gomel:	Russian	Academy	of	Noosphere	&	TRG,	1997,
396	p.,	ISBN	5140642545(in	Russian	with	extended	English	summary)
46.	Aladjev	V.Z.,	Hunt	Ü.J.,	Shishakov	M.L.Basics	of	Computer	Informatics:	Textbook.–
Moscow,	Filin	Press,	1998,	496	p.,	ISBN	5895680682(in	Russian	with	extended	English
summary)
47.	Aladjev	V.Z.,	Hunt	Ü.J.,	Shishakov	M.L.Basics	of	Computer	Informatics:	Textbook,
Second	edition.–	Moscow:	Filin	Press,	1999,	545	p.(in	Russian	with	extended	English
summary)

Scientific	Reports	and	Collection	of	Papers

48.	Aladjev	V.Z.,	Hunt	Ü.J.,	Shishakov	M.L.	Scientific–research	Activity	of	the	Tallinn
Research	Group:Scientific	Report	over	a	period	1995–1998.–	Tallinn–	Gomel–	Moscow:
TRG	&	VASCO,	1998,	80	p.,	ISBN	1406429856(in	Russian	with	extended	English
summary)
49.	Aladjev	V.Z.	et	al.Electronic	Library	of	Books	and	Software	for	Scientists,
Experts,Teachers	and	Students	in	Natural	and	Social	Sciences.–	USA:	Palo	Alto:	Fultus
Corporation,	2005,	CD,	ISBN	1596820136(in	Russian	and	English)	50.	Aladjev
V.Z.Modular	programming:	MapleorMathematica	–A	subjective	standpoint	/Intern.
school«Mathematical	and	computer	modeling	of	fundamental	objects	and	phenomena	in
systems	of	computer	mathematics»,	ed.Y.	G.	Ignat’ev.–	Kazan:	Kazan	University	Press,
2014,	pp.	18–32.

About	the	Authors

Professor	Aladjev	V.Z.	was	born	onJune	14,1942	in	the	townGrodno	(West	Byelorussia).
Now,	he	is	the	First	vice–president	of	theInternational	Academy	of	Noosphere	(IAN),	and
academician–secretary	of	Baltic	branch	of	theIAN	whose	scientific	results	have	received
international	recognition,	first,	in	the	field	of	Cellular	Automata	theory.Aladjev	V.Z.	is
known	for	the	works	on	computer	mathematical	systems	too.	He	is	full	member	of	a
number	of	the	Russian	and	International	Academies.	Prof.	Dr.AladjevV.Z.	is	the	author	of
more	than500	scientific	publications,	including90	books	and	monographs,	published	in
many	countries.	He	participates	as	a	member	of	the	organizing	committee	and/or	a	guest
lecturer	in	many	international	scientific	forums	in	mathematics	and	cybernetics.
InMay,2015	Prof.Aladjev	V.Z.	was	awarded	byGold	medal“European	Quality”	of	the
European	scientific	and	industrial	consortium(ESIC)	for	works	of	scientific	and	applied
character.

Dr.	Vaganov	V.A.	was	born	onFebruary	2,1946	inPrimorye	Territory	(Russia).
NowVaganov	V.A.	is	the	proprietor	of	the	firmsFortex	andSinfex,	engaging	of	problems	of
delivery	of	industrial	materials	to	the	firms	of	the	Estonian	republic.	SimultaneouslyV.A.
Vaganov	is	the	executive	director	of	the	Baltic	branch	of	theIAN.Vaganov	V.A.	is	known
enough	for	the	investigations	on	automation	of	economical	and	statistical	works.	Result
was	a	series	of	the	scientifical	and	applied	works	published	in	Republican	editions	and	at
All–	Union	conferences.	Dr.Vaganov	V.A.	is	the	honorary	member	of	theIAN	and	the
author	of	more	than60	scientific	publications,	including10	books.

==

©	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or	transcribed,	in
any	form	or	by	any	means	electronic,	mechanical,	recording,	photocopying,	or	otherwise.
Software	described	in	this	book	is	furnished	under	the	license	agreement	and	may	be	used
or	copied	only	in	accordance	with	the	agreement.	The	source	codes	of	software	presented
in	the	book	are	protected	by	Copyrights	and	at	use	of	any	of	them	the	reference	to	the
book	and	the	appropriate	software	is	required.	Usage	of	the	enclosed	software	is	subject	to
the	license	agreement	and	software	can	be	used	in	noncommercial	purposes	only	with
reference	to	the	present	book.

