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Preface

This second edition of the book Exploring Scanning Probe Microscopy with Math-
ematica is a revised and extended version of the first edition. It consists of
a collection of self-contained, interactive, computational examples from the
fields of scanning tunneling microscopy, scanning force microscopy, and re-
lated technologies, using Mathematica notebooks. It was written in Mathematica
version 5.1 as a series of notebooks and was then translated into the TEX type-
setting language. The software includes the code belonging to each chapter of
the book. The files can be run independently of each other on any platform
that supports Mathematica versions 5 and higher.

The main motivation for writing a book such as this arises from often-
encountered situations where published models in the field of scanning
probe microscopy require prior knowledge of other theoretical results. The
reader of such material, therefore, needs to track down other publications
that sometimes use different notations. A self-consistent, self-contained pre-
sentation would therefore be a real time-saver. A second motivation is the
time-consuming effort required to code models that contain subtleties that are
not easy to spot. The code presented in this book, being self-contained, allevi-
ates this problem. A third motivation is associated with the benefit of working
interactively with a live mathematical model and being able to change the
values of its parameters. The computational results, which might range over
unanticipated values, could provide better insight into the intricacies of a
given problem than, say, reading plain text and browsing through several ex-
amples. The advantage of this book is that it provides an active approach to
the study of and research in scanning probe microscopy.

This book can be used at several levels. At the first level, the reader can
use the text, equations, figures, and examples for each case as one would with
any other technical textbook. At a more advanced level, the reader who is
familiar with the Mathematica programming language can download the code
for each example from the attached CD and modify the different parameters
to suit his particular needs. At the most advanced level, the reader can modify
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the programs by using more advanced theoretical treatments that either he or
others in the field have developed.

This book consists of 20 chapters divided into five topics of interest in
the field of scanning probe microscopy. (I) An introductory chapter contain-
ing technical discussions on how to run the code belonging to each chapter;
(II) chapters dealing with atomic force microscopy that describe the mechani-
cal properties of cantilevers, atomic force microscope tip–sample interactions,
and cantilever vibration characteristics; (III) chapters on the theory and appli-
cations of tunneling phenomena consisting of metal–insulator–metal tunnel-
ing, Fowler–Nordheim field emission, scanning tunneling spectroscopy and
Coulomb blockade; (IV) chapters on the density of states in arbitrary dimen-
sions and electrostatics; (V) chapters dealing with near-field optics, scanning
thermal conductivity microscopy, Kelvin probe microscopy, and anharmonic
Raman scattering in nanocrystals.

All of the computer code presented in this book has already been used to
model topics of interest at the Scanning Probe Microscopy Laboratory, College
of Optical Sciences, University of Arizona. Because modeling of phenomena
in atomic force microscopy, scanning tunneling microscopy, and related topics
has been an ever-expanding activity, a large body of literature is available to
the investigator. Nevertheless, some of these models require powerful com-
puters or involve complicated code with elaborate theoretical considerations,
neither of which are compatible with a book such as this. Also, models that do
not belong to the mainstream of atomic force microscopy and scanning tun-
neling microscopy, or those whose range of validity has yet to be established,
were not included in this book. It was decided that for this second edition
only a small selected number of topics of high interest and wide applicability,
whose coding is sufficiently simple, will be added to the first edition. Future
editions will improve upon the topics discussed in this book and add new
ones.

Most of the concepts presented in each chapter have already appeared in the
literature either in detail or as brief comments. Some new insights, details, ex-
planations, and examples, however, are introduced in practically each chapter
of this book. These were made possible by the very fact that this book is about
the mathematical modeling of the various topics, where numerical examples
can be generated by the reader interactively.

The first chapter is an introduction that explains style conventions and
presents a common list of units, and physical and material constants used in
all the chapters of the book. Also included is the description of how the plots
in this book have been produced. The second topic of the book treats atomic
force microscopy in three chapters on cantilevers, two chapters on tip–sample
interactions, and three chapters on modes of operation. Chapter 2, Uniform
Cantilevers, presents the mechanical properties of uniform cantilevers hav-
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ing a solid, rectangular section. In particular, the bending and twisting of the
cantilevers, and their resonance frequencies and characteristic functions are
discussed. Chapter 3, Cantilever Conversion Tables, deals with uniform can-
tilevers having a rectangular or circular section. It makes possible to obtain
one pair of the five parameters characterizing these cantilevers, such as length,
radius or width, thickness, spring constant, and resonance frequency, in terms
of the other three parameters. Chapter 4, V-Shaped Cantilevers, presents the
linear and angular spring constants of these cantilevers, and their resonance
frequencies and characteristic functions. Tip–Sample Adhesion is the topic of
Chapter 5. Here, the interaction between the tip of an atomic force micro-
scope and a sample in terms of a Johnson–Kendall–Roberts (JKR) adhesion
model and a Lennard–Jones potential is described. The double-valued tip–
sample contact force as a function of the indentation radius, with the resultant
creation of a neck as the tip is pulled out of the sample, is also presented.
Chapter 6, Tip–Sample Force Curves, treats the interaction between tip and
sample as arising only from a Lennard–Jones potential, yielding a hystere-
sis loop on tip–sample approach and retraction. Chapter 7, Free Vibrations,
models the cantilever as a driven, damped, linear oscillator, where the ampli-
tude and phase of vibration are given as a function of the driving frequency
and quality factor. Chapter 8, Noncontact Mode, describes the dependence
of the resonance frequency, amplitude, and phase of vibration of a cantilever
on the tip–sample force. It is shown that an approximate analytical solution
involving the tip–sample force derivative yields an order of magnitude esti-
mate for electric, magnetic, and atomic tip–sample forces. Chapter 9, Tapping
Mode, presents the amplitude and phase of vibration of the cantilever and
the tip–sample indentation force in terms of an attractive Lennard–Jones and
repulsive indentation forces. As an example, the displacement, indentation,
velocity, force, and pressure associated with tapping on soft and hard samples
are presented.

The third topic of the book deals with scanning tunneling microscopy
(STM). Metal–Insulator–Metal Tunneling is discussed in Chapter 10, where
the basic principles of tunneling are presented together with a set of examples.
The model considers a metal–insulator–metal (MIM) structure with two sim-
ilar plane parallel metal electrodes that can be readily extended to dissimilar
metals. A general tunneling equation is presented, and approximate solutions
that include the image potential for small and large voltages are given. Chap-
ter 11, Fowler–Nordheim Tunneling, describes the field emission, or tunnel-
ing, of electrons through a metal–oxide–semiconductor (MOS) structure. Also
presented are the oscillations in the tunneling current due to resonance effects
of electrons traveling in the conduction band of the oxide. Scanning Tunnel-
ing Spectroscopy is the topic of Chapter 12, presenting a code that can be used
to process a scanning tunneling microscope current against voltage data and
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generate plots of i(v), ∂i/∂v, and the logarithmic derivative ∂ ln i/∂ ln v. Ultra-
high vacuum scanning tunneling microscopy of C60 molecules chemisorbed
on a Si(100)–2× 2 surface is used as an example to illustrate the power of this
spectroscopic technique. Chapter 13, Coulomb Blockade, describes the princi-
ples of single-electron transistors, using an approximate model that replicates
a tunneling current against the applied voltage of five experimental cases cited
in the literature.

The fourth topic of the book consists of three chapters describing phe-
nomena encountered in scanning probe microscopy where structures on the
nanometer scale are being fabricated and characterized. Chapter 14, Density of
States, presents the density of electronic states of large bodies in arbitrary di-
mensions, and quantum wells, quantum wires, and cubic and spherical quan-
tum dots. Chapter 15, Electrostatics, presents exact and approximate sphere–
plane and sphere–sphere capacitances together with the electrostatic force be-
tween a conducting sphere and a conducting plane, applicable to situations
where the probing tip is a conductor. Chapter 16, Near-Field Optics, discusses
the Bethe–Bouwkamp solution to light diffracted by a circular aperture and
presents plots of electric fields and intensities in the near and far field. Chap-
ter 17 to Chapter 20 have been added to the first edition.

Chapter 17, Constriction and Boundary Resistance, summarizes recent re-
sults of thermal and electrical resistances due to (a) constriction of flow of
phonons and electrons through a narrow aperture, and (b) boundaries be-
tween two media. Chapter 18, Scanning Thermal Conductivity Microscopy,
describes thermal flow from a laser-heated cantilever into two paths; in one
path the flow through the tip and into the sample is controlled by the thermal
conductivities of the tip–sample interface and the sample, and in the other
path the flow is toward the base of the cantilever. By using a metal-coated
cantilever one can get a map of the thermal conductivity across a sample from
the thermal bending of the coated cantilever. Chapter 19, Kelvin Probe Mi-
croscopy, describes the operation of a cantilever driven by the application of
a tip–sample voltage at a frequency ω in the presence of a dc tip–sample con-
tact potential difference (CPD). While the ac voltage drives the cantilever at
2ω, the CPD gives rise to a vibration at ω. The external dc voltage between
the tip and the sample, required to null the vibration at ω, is a measure of
the CPD. Chapter 20 describes anharmonic Raman scattering in nanocrystals,
a topic of much interest lately where a metal-coated tip of an atomic force mi-
croscope is used to generate local Raman enhancement by several orders of
magnitude.

To use the book efficiently, the reader should read the papers cited at the
end of each chapter. They provide a short introduction to the subject matter,
present the main ideas, and offer references to relevant topics. Excellent books
on the field of scanning tunneling microscopy, atomic force microscopy, and
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related topics are readily available. They can serve as powerful tools in using
the different topics discussed in this book. Comments from the users of the
material presented in this book will be invaluable in making a second edition
more accurate, efficient, and useful.

The two editions of this book took about 3 years to write, but the ideas, the
methods used to present them, and the implementation of the code and its
testing took many more years. All of this work was made possible by Gerd
Binnig and Heinrich Rohrer, the fathers of scanning tunneling microscopy,
and Gerd Bininig, Calvin Quate, and Christopher Gerber, the fathers of atomic
force microscopy. The able help, inspiration, and encouragement received dur-
ing this period of time from Todd G. Ruskell, Richard K. Workman, Xiaowei
Yao, Charles A. Peterson, Jeffery P. Hunt, Guanming Lai, Robert D. Grober,
Dong Chen, Ralph Richard, Brendan Mc Carthy, Ranjan Grover, and Pramod
Khulbe were indispensable indeed. The work on the two editions of this book
was kindly supported by partial funding from the National Science Founda-
tion, Office of Naval Research, Ballistic Missile Defense Office, National Aero-
nautics and Space Administration, Department of Energy, National Institute
of Science and Technology, and IBM, Veeco, EMC, Motorola, and NanoChip
corporations.

Special thanks are also due to the editors of Wiley and to Margaret Regan
for their able editing effort.

Tucson, August 2006 Dror Sarid
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1
Introduction

1.1
Style

The style of the first edition of this book, which carries the same title as this
second edition, consisted of a mixture of TEX-like equations and equations
generated by Mathematica computational output, interwoven between each
other. There were two reasons for this choice of style. The first reason is that at
the time when the first edition was written, the newest version of Mathematica
was version 2.2, which was limited in its ability to produce as an output the
traditional form of equations. It was found necessary, therefore, to print most
of the equations using TEX. This new edition of the book is using Mathematica
version 5.2, whose text form is close enough to TEX to make the equations ap-
pear similar to the traditional form. The second, and more important reason
for having equations printed in a combination of TEX and Mathematica compu-
tational output was the belief that the reader will benefit from having the code
running the simulations in each chapter transparent to him. Consequently, the
text was interwoven with the segments of the chapter’s code, making it easy
to modify each segment “on the run.”

After 6 years of using this book as both a research and a teaching resource,
it became apparent that the code and the text should be completely separated.
There were two reasons for the need of this separation. The first reason stems
from the fact that expertise in both Mathematica and scanning probe microcopy
(SPM) is not as prevalent among the SPM community as originally thought.
The second and more important reason for the need of this separation is based
on the fact that the styles required for coding and composing text are very
different. It is much easier to compose the code that runs a chapter without
having to pay attention to the demands required by composing a text. In con-
trast, it is much easier to compose the text without having to be limited by the
shortcomings of the style of the Mathematica computational output.

Exploring Scanning Probe Microscopy with MATHEMATICA, Second Edition.  Dror Sarid
Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40617-3
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This second edition of the book has 20 chapters, each of which consists of
three components. The first component, titled Mathematica Preparation, is a
code that is common to all the chapters in this book. This code, as will be
described in detail, is a collection of bits of information needed by the specific
code belonging to all the chapters. This code is attached to the code associated
with each of the chapters. The second component is the code that is specific
to each chapter. This code generates the tables and figures appearing in the
chapters using typical parameters. These parameters can be changed within
a reasonable range, generating new tables and figures. Although there is no
text embedded in the code, it is clear what is the function of each Mathematica
instruction it contained when read together with its associated text. The third
component consists of the printed text of the chapters of the book that contains
no code at all. The equations appearing in this component are renditions of the
Mathematica code that were rearranged to appear close to the TEX form.

By dividing each chapter into these three components, one gains several
advantages that were proven time and again to be extremely useful in both
research and teaching. Having the first component shared by all the chap-
ters insures a common style to the parameters, tables, and figures. Having
the code of each chapter separated from its text makes it easier to develop re-
search ideas and test them based only on the merit of the results presented
by table and figures. Following this method requires no attention to a clear
presentation of computational results. After the code is developed, one can
compose a code-free text with traditionally recognized equations, making the
presentation of scientific arguments clear and simple.

1.2
Mathematica Preparation

1.2.1
General

The first step in running the code belonging to each chapter consists of Clear-
ing previous computational results and turning off comments addressing us-
age of similar names for different routines. The code belonging to each chapter
may require the use of several Packages, all of which will therefore be loaded.
The code uses a standard notation of Units for numerical calculations. To facil-
itate algebraic solutions, we use a numerical subroutine, NSub, as a replace-
ment rule for all the Physical constants used in the chapters. Thus, one can de-
velop a model of a physical problem and obtain algebraic results. By using the
replacement rule, the results are rendered numerically. A collection of material
constants used or can be used in the code includes Young’s modulus, E, Pois-
son’s ratio, ν, Mass density, ρ, Electric conductivity and resistivity, σe and ρe,
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respectively, Thermal conductivity, κ, and Thermal expansion, α. To each of
these the designated material name is appended. To shorten the code of the
figures in the book, we use a Plotting Style and options that contain the most
common plotting commands. These options include General option, Option
for solid lines, Option for dashed lines, and Simple option. The Mathematica
Preparation code is included in the code of each chapter.

1.2.2
Example

Figure 1.1 is an example of plots of three functions, sin x, sin 2x and sin 3x,
using the option opt1. The code sets the minimum and maximum values of the
horizontal and vertical axes, has a frame label that reads a given parameter,
a = 2.345 6, for example, and uses Epilog to have text embedded in the figure
that reads a given parameter. The presented values of the parameters can also
be controlled by IntegerPart .
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Fig. 1.1 An example of a figure using the option opt1.
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1.3
Recommended Books

1.3.1
Mathematica Programming Language

The following is a selected list of books on the Mathematica programming lan-
guage that can be used both as a teaching and a refresher tool.

1 Stephen Wolfram, Mathematica, A System for Doing Mathematics by Computer, 2nd Edition,
Addison-Wesley, Reading, MA, 1991.

2 R. E. Crandall, Mathematica for the Sciences, Addison-Wesley, Reading, MA, 1991.

3 N. Blachman, Mathematica: A Practical Approach, Prentice Hall Series in Innovative Technol-
ogy, Prentice Hall, Englewood Cliffs, NJ, 1992.

4 W. T. Shaw and J. Tigg, Applied Mathematica: Getting Started, Getting It Done, Addison-Wesley,
Reading, MA, 1994.

5 S. Kaufmann, Mathematica as a Tool: An Introduction with Practical Examples, Birkhauser, Basel,
1994.

6 T. B. Bahder, Mathematica for Scientists and Engineers, Addison-Wesley, Reading, MA, 1995.

7 P. P. Tam, A Physicist’s Guide to Mathematica, Academic Press, New York, 1997.

8 B. F. Torrence and E. A. Torrence, The Student’s Introduction to Mathematica: A Handbook for
Precalculus, Calculus, and Linear Algebra, Cambridge University Press, Cambridge, 1999.

9 S. Wagon, Mathematica in Action, Springer, Telos, 2000.

10 M. H. Hoft and H. F. W. Hoft, Computing with Mathematica, Academic Press, New York, 2002.

11 S. Wolfram, Mathematica Book, 5th Edition, Cambridge University Press, Cambridge, 2003.

12 C. -K. Cheung, et al., Getting Started with Mathematica, 2nd Edition, Wiley, New York, 2003.

13 G. Baumann, Mathematica for Theoretical Physics: Classical Mechanics and Nonlinear Dynamics,
Springer, New York, 2005.

14 M. Trott, The Mathematica Guidebook for Programming, Springer, Berlin, 2004.
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1.3.2
Scanning Probe Microscopies

The literature on scanning probe microscopies, which grew almost exponen-
tially in the past decade, includes papers, review articles, and books. Of these
we selected a list of those books that cover the topics dealt with in this book.

1 R. J. Behm, N. Garcia, and H. Rohrer, eds., Scanning Tunneling Microscopy and Related Meth-
ods, NATO ASI Series E 184, Kluwer, Dordrecht, 1990.

2 D. Sarid, Scanning Force Microscopy with Applications to Electric, Magnetic, and Atomic Forces,
Oxford University Press, New York, 1991.

3 H.-J. Guntherodt and R. Wiesendanger, eds., Scanning Tunneling Microscopy I, Springer Series
in Surface Sciences 20, Springer, New York, 1992.

4 R. Wiesendanger and H. J. Guntherodt, eds., Scanning Tunneling Microscopy II, Springer Se-
ries in Surface Sciences 28, Springer, New York, 1992.

5 R. Wiesendanger and H. J. Guntherodt, eds., Scanning Tunneling Microscopy III, Springer
Series in Surface Sciences 29, Springer, New York, 1993.

6 Ph. Avouris, ed., Atomic and Nanometer-Scale Modification of Materials: Fundamentals and Ap-
plications, NATO ASI Series E 239, Kluwer, Dordrecht, 1993.

7 C. Julian Chen, Introduction to Scanning Tunneling Microscopy, Oxford University Press, New
York, 1993.

8 D. W. Pohl and D. Courjon, eds., Near Field Optics, NATO ASI Series E 242, Kluwer, Dor-
drecht, 1993.

9 D. Sarid, Scanning Force Microscopy with Applications to Electric, Magnetic, and Atomic Forces,
Revised Edition, Oxford University Press, New York, 1994.

10 R. Wiesendanger, Scanning Probe Microscopy and Spectroscopy, Methods and Application, Cam-
bridge University Press, Cambridge, 1994.

11 Y. Martin, ed., Scanning Probe Microscopes, Design and Applications, SPIE Milestone Series,
Volume MS 107, 1995.

12 M. A. Paesler and P. J. Moyer, Near-Field Optics, Wiley, New York, 1996.

13 S. N. Magonov and M.H. Whangbo, Surface Analysis with STM and AFM, Experimental and
Theoretical Aspects of Image Analysis, VCH, New York, 1996.

14 D. Sarid, Exploring Scanning Probe Microscopy with Mathematica, Wiley, NY, 1997.

15 C. Bai, Scanning Tunneling Microscopy and Its Applications, New York, Springer, 2000.

16 S. Morita, R. Wiesendanger, and E. Meyer, Noncontact Atomic Force Microscopy, Springer,
New York, 2002.

17 Ernst Meyer, Hans J. Hug, and Roland Bennewitz, Scanning Probe Microscopy: The Lab on a Tip,

Springer, New York, 2004.
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2
Uniform Cantilevers

Highlights

1. Effects of bending, buckling, and twisting
2. Displacement and slope
3. Linear and angular spring constants
4. Resonance frequencies and characteristic functions

Abstract

The mechanical properties of cantilevers used in atomic force microscopy
(AFM) play a key role in determining their ability to perform specific tasks.
In particular, the bending, buckling, and twisting of the cantilevers, and their
resonance frequencies and characteristic functions have to be optimized for
samples with a given stiffness and for different scanning speeds. This chap-
ter treats uniform cantilevers having a rectangular section and presents their
properties both algebraically and numerically.

2.1
Introduction

Figure 2.1 shows the geometry of a typical uniform, rectangular-section can-
tilever used in atomic force microscopy (AFM), and a sample that is in contact
with the sharp apex of the tip fabricated close to the free end of the cantilever.
The cantilever body is positioned along the x̂ direction, its tip, located at a
distance δ from the free end of the cantilever, points in the −ẑ direction, and
the surface of the sample is in the x̂–ŷ plane. The cantilever length, width,
and thickness, and the tip height are denoted by L, w, d, and ht, respectively.
In the following, the subscripts associated with the various parameters and
functions denote the directions x̂, ŷ, and ẑ along which particular forces act.
For the calculations presented in this chapter, we will ignore δ since it is much
smaller than L. The cantilever is usually mounted at an angle of approximately
12.5° relative to the sample, to prevent contact between its base and elevated

Exploring Scanning Probe Microscopy with MATHEMATICA, Second Edition.  Dror Sarid
Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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structures across the surface of the sample. For simplicity, this angle will be
ignored in future calculations without any meaningful loss of accuracy. When
the AFM operates in the contact mode, the cantilever is lowered toward the
surface of the sample until the tip–sample force that acts in the ẑ direction, Fz,
reaches a prescribed value determined by the cantilever bending.

Fig. 2.1 A schematic diagram of a uniform, rectangular-section
cantilever and its tip.

During the raster-scanning process of the AFM, the tip of the cantilever is
dragged across the surface of the sample in the x̂ or ŷ direction. There are
two forces acting on the tip when it is scanned along either direction. The
first force, Fz, that acts in the ẑ direction is common to both scan directions.
It is associated with the rise and fall of the tip as it scans along topographic
features. This force will give rise to a bending of the cantilever. For scanning
in the x̂ direction, there is also a tip–sample friction force, Fx, that acts in the
x̂ direction, which buckles the cantilever. When the tip is scanned in the ŷ di-
rection, it encounters not only the topographically related force, Fz, but also a
friction force, Fy, that acts in the ŷ direction and twists the cantilever. Under
the bending and buckling actions, the cantilever develops a curvature across
its body that is directed along the ŷ axis, whose slope is denoted by θz(x) and
θx(x), respectively. The bending and buckling of the cantilever also give rise
to a displacement along its body, δz(x) and δx(x), both in the ẑ direction. Un-
der a twisting action, the curvature of the cantilever is along the x̂ axis with a
slope denoted by φy(x).

The AFM is using a laser diode to monitor the deflection of the cantilever
during the scanning process. The beam of the laser is incident on the can-
tilever from which it is reflected into a quadrant photodiode. The resultant
photocurrents, which depend on the slope of the cantilever at the point of in-
cidence, are monitored and processed by a computer. The pair of quadrants
positioned along the ẑ axis respond to the bending and buckling slopes of
the cantilever, while those positioned along the ŷ axis respond to the twisting
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slope. The AFM can distinguish between the bending- and buckling-induced
slopes of the cantilever by performing a scan in the x̂ direction followed by a
scan in the−x̂ direction. These two scan directions produce different apparent
topographic images because the friction force in each case will either be added
to or subtracted from the true topographic contribution. The topographic im-
ages obtained by scanning in the x̂ and ŷ directions, however, are generated
by the quadrant pairs positioned along the x̂ and ŷ axes, respectively, and can
therefore be independently interpreted.

It is important to recognize that the cantilever interacts with the surface of
the sample by forces acting on its tip which is located at a distance δ from its
free end. The laser beam, in contrast, is incident at a particular point across
the cantilever, not necessarily at its free end. The position of the laser spot
on the cantilever depends on the particular AFM model and cantilever make.
Therefore, for a proper interpretation of the bending of a given cantilever, one
has to know both its deflection, generated by the tip–sample forces, and its
slope at a particular point from which the beam of the laser is deflected.

In the following we treat the bending, buckling, and twisting of the can-
tilever when the AFM operates in the contact mode, and the resonance fre-
quencies of the cantilever with their associated characteristic functions when
the AFM operates in the noncontact mode.

The theory presented in this chapter is accompanied by numerical exam-
ples that relate to two types of cantilevers. For all the examples presented
in this chapter, the figures describe plots associated with Fi = 10 (solid line),
20 (dashed line), and 30 nN (dotted line), where i = x, y, or z. The first example
uses the parameters of an all-silicon, uniform, rectangular-section cantilever
having a sharp tip fabricated at its free end. The parameters of this cantilever
are given in Table 2.1.

Table 2.1 The parameters of an all-silicon, uniform, rectangular-
section cantilever having a sharp tip fabricated at its free end.

L = 0.2 mm
w = 50 µm
d = 1 µm

ht = 5 µm
δ = 5 µm
E = 179 GN/m2

ρ = 2330 kg/m3

The second, less-used, yet important cantilever is an all-metal, uniform,
rectangular-section cantilever fabricated from a flattened wire made of a
platinum–iridium alloy. One end of such a hand-made cantilever is soldered
to a small metal base, and the other is chemically etched and bent to form
a sharp tip. Although such a cantilever is hard to mass-produce, it excels in
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applications where the local electric conductivity of a sample is probed, be-
cause it is robust, resists ablation, and remains conducting under ambient
conditions. The parameters of this cantilever are given in Table 2.2.

Table 2.2 The parameters of a uniform, rectangular-section cantilever
made of PtIr having a sharp tip fabricated at its free end.

L = 2.5 mm
w = 100 µm
d = 20 µm

ht = 500 µm
δ = 10 µm
E = 240 GN/m2

ρ = 21 620 kg/m3

2.2
Bending Due to Fz

2.2.1
General Equations

Consider a cantilever that scans a sample in an arbitrary direction in the x̂–
ŷ plane, where the tip–sample force, Fz, generates a displacement, δz(x). The
slope of the cantilever, R, in terms of its Young’s modulus E, its area moment
of inertia, Iz, and the bending moment, Mz(x), is given by

1
R

=
Mz

EIz
. (2.1)

On the other hand, the curvature, R, of a general function and in particular of
δz(x), is given by

1
R

=
∂2

∂x2 δz(x)[
1 +

(
∂

∂x δz(x)
)2

]3/2 . (2.2)

Equating the two expressions for R and assuming a small curvature, leads to
the equation of bending of the cantilever,

∂2

∂x2 δz(x) =
Mz(x)

EIz
. (2.3)

The bending moment, Mz, associated with the neutral axis of the cantilever,
which is induced by the force Fz, is

Mz(x) = (L− x)Fz . (2.4)
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The axial moment of inertia of the cantilever, Iz, associated with the axis that
passes along its centroid, is

Iz =
∫

A
z2 �A =

∫ d/2

−d/2

∫ w/2

−w/2
z2 �x �z , (2.5)

where �A = �x �z is an element of area. The integration in Eq. (2.5) yields

Iz =
wd3

12
. (2.6)

Inserting Eq. (2.4) and Eq. (2.6) into Eq. (2.3) gives an explicit, second-order
differential equation that relates the displacement of the cantilever to the
bending force,

∂2

∂x2 δz(x) = 12
L− x
Ewd3 Fz . (2.7)

Equation (2.7) will form the basis to the modeling of the response of the can-
tilever to Fz.

2.2.2
Slope

The slope of the cantilever at a point x along its length, θz(x), is obtained by
integrating Eq. (2.7),

θz(x) = 6
(2L− x)x

Ewd3 Fz , (2.8)

which, at the free end of the cantilever, where x = L, gives

θz(L) = 6
L2

Ewd3 Fz . (2.9)

2.2.3
Angular Spring Constant

We define the angular spring constant of the cantilever, kθz(x), as the ratio of
the force acting on its tip and the resultant slope of the cantilever at the point x,

kθz(x) =
∣∣∣∣ Fz

θz(x)

∣∣∣∣ . (2.10)

Inserting Eq. (2.9) into Eq. (2.10) yields

kθz(x) =
Ewd3

6(2L− x)x
. (2.11)
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For x = L, one obtains a particular value of the angular spring constant,

kθz =
Ewd3

6L2 . (2.12)

2.2.4
Displacement

The local displacement of the cantilever in the ẑ direction, δz(x), is obtained
by integrating the slope, Eq. (2.8), which yields

δz(x) =
2x2(3L− x)

Ewd3 Fz . (2.13)

At the free end of the cantilever, where x = L, the slope is

δz(L) =
4L3

Ewd3 Fz . (2.14)

2.2.5
Linear Spring Constant

The cantilever linear spring constant, kz, is defined as the ratio of the force
acting on its tip to the resultant displacement at x = L,

kz =
∣∣∣∣ Fz

δz(L)

∣∣∣∣ . (2.15)

The linear spring constant of the cantilever determines (a) its displacement for
a given tip–sample force and (b) its resonance frequency, as will be discussed
later. Inserting Eq. (2.13) into Eq. (2.15) yields

kz =
Ewd3

4L3 . (2.16)

Note the strong dependence of kz on the thickness, d, and the length, L, of
the cantilever. Remember that tip–sample forces always act on the tip of the
cantilever, while the beam of the laser is incident at some point x along its
body. It is therefore of interest to examine the ratio of the angular and linear
spring constants, given by the function ξz(x),

ξz(x) =
kθz(x)

kz
. (2.17)

Inserting Eq. (2.11) and Eq. (2.16) into Eq. (2.17) gives

ξz(x) =
3(2L− x)x

2L3 . (2.18)
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The function ξz(x) is used by the software of the AFM to calibrate the tip–
sample force using the specifications of the particular cantilever in use.

2.2.6
Numerical Example: Si

We can now present numerical examples for the response of the Si cantilever
to a force acting in the ẑ direction. Figure 2.2 shows the slope of the cantilever,
θz(x), as a function of the distance x from its base for Fz = 10 (solid line),
20 (dashed line), and 30 nN (dotted line). The angular spring constant of the
cantilever, kθz , is depicted in the figure. Note that the slope is the steepest next
to the base of the cantilever, where it is most likely to break.
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Fig. 2.2 The slope of the Si cantilever, θz(x), as a function of the dis-
tance x from its base, for a tip–sample force acting in the ẑ direction for
Fz = 10 (solid line), 20 (dashed line), and 30 nN (dotted line).

Figure 2.3 shows the displacement of the Si cantilever, δz(x) as a function
of the distance x from its base for Fz = 10 (solid line), 20 (dashed line), and
30 nN (dotted line). Here, the linear spring constant of the cantilever, kz, is
depicted in the figure.

Figure 2.4 shows the ratio of the angular and linear spring constants of the
Si cantilever, ξz(x), as a function of the distance x from its base.

2.2.7
Numerical Example: PtIr

The second example treats the response of the PtIr cantilever to a force act-
ing in the ẑ direction. Figure 2.5 shows the slope of the cantilever, θz(x), as a
function of the distance x from its base for a tip–sample force acting in the ẑ
direction for Fz = 10 (solid line), 20 (dashed line), and 30 nN (dotted line). The
angular spring constant of the cantilever, kθz , is depicted in the figure. Note
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Fig. 2.3 The displacement of the Si cantilever, δz(x), as a function of
the distance x from its base, for a tip–sample force acting in the ẑ di-
rection for Fz = 10 (solid line), 20 (dashed line) and 30 nN (dotted line).
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Fig. 2.4 The ratio of the angular and linear spring constants of the Si
cantilever, ξz(x), as a function of the distance x from its base, for a
tip–sample force acting in the ẑ direction.

that, as in the Si cantilever, here too the slope is the steepest next to the base of
the cantilever, where it is most likely to break.

Figure 2.6 shows the displacement of the cantilever, δz(x), as a function of
the distance x from its base, for a tip–sample force acting in the ẑ direction
for Fz = 10 (solid line), 20 (dashed line), and 30 nN (dotted line). The angular
spring constant of the cantilever, kθz , is depicted in the figure.

Figure 2.7 shows the ratio of the angular and linear spring constants of the
PtIr cantilever, ξz(x), as a function of the distance x from its base.
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Fig. 2.5 The slope of the PtIr cantilever, θz(x), as a function of the dis-
tance x from its base, for a tip–sample force acting in the ẑ direction,
for Fz = 10 (solid line), 20 (dashed line), and 30 nN (dotted line).

0 0.5 1 1.5 2 2.5

x �mm�

0

2

4

6

8

10

∆
z
�n

m
�

Bending due to Fz

P
tI

r

kz � 3.07 N�m

Fig. 2.6 The displacement of the PtIr cantilever, δz(x), as a function
of the distance x from its base, for a tip–sample force acting in the
ẑ direction, for Fz = 10 (solid line), 20 (dashed line), and 30 nN
(dotted line).
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Fig. 2.7 The ratio of the angular and linear spring constants of the PtIr
cantilever, ξz(x), as a function of the distance x from its base, for a
tip–sample force acting in the ẑ direction.
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2.3
Buckling Due to Fx

2.3.1
General Equations

Consider now the tip of a cantilever that scans a sample in the x̂ direction and
ignore the normal tip–sample force, Fz. The scanning will give rise to a tip–
sample friction force, Fx, in the x̂ direction. The equation of buckling in this
case is

∂2

∂x2 δx(x) =
Mx

EIx
. (2.19)

Here, Mx, which is the buckling moment induced by the force Fx, is

Mx = htFx , (2.20)

where ht is the tip height. The axial moment of inertia, Ix, is the same as that
for Fx,

Ix =
1

12
wd3 . (2.21)

Inserting Eqs. (2.20) and (2.21) into Eq. (2.19) yields an explicit, second-order
differential equation relating the displacement of the cantilever to the buckling
force,

∂2

∂x2 δx(x) = 12
1

Ewd3 htFx . (2.22)

Equation (2.22) will form the basis of the modeling of the response of the can-
tilever to the force Fx.

2.3.2
Slope

The slope of the cantilever at a point x along its length, θx(x), is obtained by
integrating Eq. (2.22),

θx(x) = 12
x

Ewd3 htFx . (2.23)

which, at x = L, gives

θx(L) = 12
L

Ewd3 htFx . (2.24)

2.3.3
Angular Spring Constant

The cantilever angular spring constant, kθx (x), is the ratio of the force acting
on its tip to the resultant slope of the cantilever at the point x,
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kθx =
∣∣∣∣ Fx

θx(x)

∣∣∣∣ . (2.25)

Inserting Eq. (2.23) into Eq. (2.25) yields

kθx =
1

12
Ewd3

htL
. (2.26)

2.3.4
Displacement

The displacement of the cantilever in the x̂ direction, δx(x), is obtained by
integrating its slope, Eq. (2.23),

δx(x) = 6
x2

Ewd3 htFx . (2.27)

2.3.5
Linear Spring Constant

The cantilever linear spring constant, kx, is defined as the ratio of the force
acting on its tip to the resultant displacement at x = L,

kx =
∣∣∣∣ Fx

δx(L)

∣∣∣∣ . (2.28)

Inserting Eq. (2.27) into Eq. (2.28) yields

kx =
1
6

Ewd3

htL2 . (2.29)

Note the strong dependence of kx on the thickness and length of the can-
tilever. The ratio of the angular and linear spring constants, given by the func-
tion ξx(x), is

ξx(x) =
kθx (x)

kx
. (2.30)

Inserting Eq. (2.26) and Eq. (2.29) into Eq. (2.30) gives

ξx(x) =
2x
L2 . (2.31)

2.3.6
Numerical Example: Si

We can now present numerical examples for the response of the Si cantilever
to a force acting in the x̂ direction. Figure 2.8 shows the slope of the cantilever,
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θx(x), as a function of the distance x from its base for Fx = 10 (solid line),
20 (dashed line), and 30 nN (dotted line). The angular spring constant of the
cantilever, kθx , is depicted in the figure.
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Fig. 2.8 The slope of the Si cantilever, θx(x), as a function of the dis-
tance x from its base, for a tip–sample force acting in the x̂ direction
for Fx = 10 (solid line), 20 (dashed line), and 30 nN (dotted line).

Figure 2.9 shows the displacement of the Si cantilever, δx(x), as a function
of the distance x from its base for Fx = 10 (solid line), 20 (dashed line), and
30 nN (dotted line). Here, the linear spring constant of the cantilever, kx, is
depicted in the figure.
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Fig. 2.9 The displacement of the Si cantilever, δx(x) as a function
of the distance x from its base, for a tip–sample force acting in the x̂
direction for Fx = 10 (solid line), 20 (dashed line), and 30 nN (dotted
line).

Figure 2.10 shows the ratio of the angular and linear spring constants of the
Si cantilever, ξx(x), as a function of the distance x from its base.
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Fig. 2.10 The ratio of the angular and linear spring constants of the
Si cantilever, ξx(x), as a function of the distance x from its base, for a
tip–sample force acting in the x̂ direction.

2.3.7
Numerical Example: PtIr

The second example treats the response of the PtIr cantilever to a force acting
in the x̂ direction. Figure 2.11 shows the slope of the cantilever, θx(x), as a
function of the distance x from its base for Fx = 10 (solid line), 20 (dashed
line), and 30 nN (dotted line). The angular spring constant of the cantilever,
kθx , is depicted in the figure.
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Fig. 2.11 The slope of the PtIr cantilever, θx(x), as a function of the
distance x from its base, for a tip–sample force acting in the x̂ direc-
tion, for Fx = 10 (solid line), 20 (dashed line), and 30 nN (dotted line).

Figure 2.12 shows the displacement of the cantilever, δx(x), as a function
of the distance x from its base for Fx = 10 (solid line), 20 (dashed line), and
30 nN (dotted line). The angular spring constant of the cantilever, kθx , is de-
picted in the figure.
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Fig. 2.12 The displacement of the PtIr cantilever, δx(x), as a function
of the distance x from its base, for a tip–sample force acting in the
x̂ direction.

Figure 2.13 shows the ratio of the angular and linear spring constants of the
PtIr cantilever, ξx(x), as a function of the distance x from its base.
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Fig. 2.13 The ratio of the angular and linear spring constants of the
PtIr cantilever, ξx(x), as a function of the distance x from its base, for
a tip–sample force acting in the x̂ direction.

2.4
Twisting Due to Fy

2.4.1
General Equation

The bending moment, T, associated with the neutral axis of the cantilever
which is induced by the force Fy, is

T = htFy . (2.32)
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It can be shown that for very thin cantilevers, namely for d � w, the polar
moment of inertia, J, can be approximated by

J =
wd3

3
. (2.33)

To calculate the effect that Fy has on the shape of the cantilever, one also needs
to know the shear modulus of its material, G, given by

G =
E

2(1 + ν)
, (2.34)

where ν is Poisson’s ratio for the cantilever’s material.

2.4.2
Slope

It can be shown that the slope of the cantilever at a point x along its length,
φy(x), is given by

φy(x) =
Tx
GJ

. (2.35)

Inserting Eqs. (2.32) to (2.34) into Eq. (2.35) yields

φy(x) =
6htx(1 + ν)

Ewd3 Fy , (2.36)

which, at the free end of the cantilever, where x = L, gives

φy(L) =
6htL(1 + ν)

Ewd3 Fy . (2.37)

2.4.3
Angular Spring Constant

The cantilever angular spring constant, kφy(x), is defined as the ratio of the
force acting on its tip and the resultant slope of the cantilever at the point x,

kφy =
∣∣∣∣ Fy

φy(L)

∣∣∣∣ . (2.38)

Inserting Eq. (2.37) into Eq. (2.38) yields

kφy =
Ewd3

6htL(1 + ν)
. (2.39)
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2.4.4
Numerical Example: Si

We can now present numerical examples for the response of the Si cantilever to
a force acting in the ŷ direction. Figure 2.14 shows the slope of the cantilever,
φy(x), as a function of the distance x from its base for Fy = 10 (solid line),
20 (dashed line), and 30 nN (dotted line). The angular spring constant of the
cantilever, kφy(L), is depicted in the figure.
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Fig. 2.14 The slope of the Si cantilever, φy(x), as a function of the
distance x from its base, for a tip–sample force acting in the ŷ direction
for Fy = 10 (solid line), 20 (dashed line), and 30 nN (dotted line).

2.4.5
Numerical Example: PtIr

The second example treats the response of the PtIr cantilever to a force acting
in the ŷ direction. Figure 2.15 shows the slope of the cantilever, φy(x), as a
function of the distance x from its base for Fy = 10 (solid line), 20 (dashed
line), and 30 nN (dotted line). The angular spring constant of the cantilever,
kφy , is depicted in the figure.

2.5
Vibrations

2.5.1
Bending Resonance Frequencies

It is important to know the resonance frequency of a given cantilever, since it
sets the upper limit to the scanning speed of an atomic force microscope. In the
following discussions, we neglect the influence of the mass of the tip and of
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Fig. 2.15 The slope of the PtIr cantilever, θz(x), as a function of the
distance x from its base, for a tip–sample force acting in the ŷ direction
for Fy = 10 (solid line), 20 (dashed line), and 30 nN (dotted line).

any cantilever metal coating on the resonance frequency. The time-dependent
equation of the displacement of a uniform section cantilever, δz(x, t), neglect-
ing damping effects, is given by the differential equation

ρA
∂2

∂t2 δz(x, t) + EIz
∂4

∂x4 δz(x, t) = 0 . (2.40)

Here, t denotes time, ρ is the mass density of the cantilever material, Iz and
E its axial moment of inertia and Young’s modulus, respectively, and A its
cross-section area. For harmonic motion, Eq. (2.40) reduces to

−ω2ρAδz(x, t) + EIz
∂4

∂x4 δz(x, t) = 0 , (2.41)

where ω is the driving radial frequency. The solution to this equation, subject
to the boundary conditions of a vibrating cantilever, yields a set of resonance
frequencies determined by the secular equation

cos ξi cosh ξi + 1 = 0 , (2.42)

where i is the order of the harmonics, ξi = κiL, and

κ4
i =

ω2
i ρ

EIz
. (2.43)

The resonance frequencies, fi, are readily given by

fi =
1

2π

(
ξi

L

)2
√

EIz

ρA
, (2.44)
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which, for our case, yields

fi =
1

4π

(
ξi

L

)2

d

√
E
3ρ

. (2.45)

Note that for a body with a mass m, suspended by a spring with a spring
constant k, the resonance frequency is given by

f =
1

2π

√
k
m

. (2.46)

However, the cantilever behaves as a distributed mass, for which the reso-
nance frequency, f1, can be approximated by

f1 ≈
1

2π

√
kz

0.24ρwdL
. (2.47)

The approximate resonance frequency, Eq. (2.47), and the first three exact
resonance frequencies, Eq. (2.45), for the Si and PtIr cantilevers, are given in
Table 2.3. It is important to note that the higher harmonic frequencies are not
multiples of the first order one.

Table 2.3 The first three resonance frequencies for the Si and PtIr
cantilevers.

fi(kHz)

i ξi PtIr Si

1 Approx. 1.731 86 35.593 7
1 1.875 1 1.722 3 35.397 2
2 4.694 09 10.793 5 221.83
3 7.854 76 30.222 621.132

2.5.2
Characteristic Functions

The shape of the vibrating cantilever, described by a characteristic function as-
sociated with a particular resonance frequency, is treated in detail in Ref. [4].
The coefficients of the polynomials that represent these characteristic func-
tions are given by a set of parameters, c1,i and c2,i, given by

c1,i =
sin(ξi)− sinh(ξi)
cos(ξi) + cosh(ξi)

(2.48)
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and

c2,i =
ξi

L
. (2.49)

The resulting shape of the amplitude of the vibrating cantilever, δz(x, t), is
given by

δz,i(x) = cos(c2,ix)− cosh(c2,ix) + c1,i[sin(c2,ix)− sinh(c2,ix)] . (2.50)

The time-dependent shape of the cantilever is the product of the characteristic
functions and sin(ωt). The characteristic functions for the first three harmon-
ics are shown in Figures 2.16 and 2.17 for the Si and PtIr cantilevers, respec-
tively. The solid, dashed, and dotted lines in these figures refer to cantilever
oscillations at f1, f2, and f3, respectively. Note that a cantilever can obtain a
shape which is a linear combination of different characteristic functions, de-
pending on the initial conditions and the driving force. For all practical pur-
poses, however, for as long as the cantilever is far away from a surface and
its amplitude of vibration is much smaller than its length, its motion can be
considered to be linear in distance and driving force.
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Fig. 2.16 The characteristic functions of the first three harmonics for
the Si cantilever.

2.6
Summary of Results

A summary of the equations for the deflection, linear spring constant, slope,
and angular spring constants of uniform, rectangular-section cantilevers is
given in Table 2.4.
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Fig. 2.17 The characteristic functions of the first three harmonics for
the PtIr cantilever.

Table 2.4 A summary of the equations for the deflection, linear spring
constant, slope, and angular spring constants of uniform, rectangular-
section cantilevers.

Bending Buckling Twisting

δz(x) =
2(3L− x)x2Fz

Ed3w
δx(x) =

6x2Fxht

Ed3w
φy(x) =

6x(1− ν)Fyht

Ed3w

kz =
Ed3w
4L3 kx =

Ed3w
6L2ht

kφy =
Ed3w

6L(1− ν)ht

θz(x) =
6(2L− x)xFz

Ed3w
θx(x) =

12xFxht

Ed3w

kθz =
Ed3w
6L2 kθx =

Ed3w
12Lht

� Exercises for Chapter 2

1. Why is it important to know the resonance frequency of a cantilever when
it operates in the contact mode, namely, when it is not vibrated?

2. For which applications is it important to know the linear spring constant
and for which is the angular spring constant important?

3. Calculate the spring constants and resonance frequencies for commercially
available cantilevers.
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3
Cantilever Conversion Tables

Highlights

1. Cantilevers having circular, square, and rectangular sections
2. Conversion tables among the various parameters of each type of

cantilever

Abstract

Work in scanning probe microscopy may require the use of uniform can-
tilevers made of silicon or silicon nitride having rectangular sections, or metal-
lic cantilevers made of wires having circular or square sections. For each type
of cantilever, one can write down two coupled equations in terms of the can-
tilever parameters: Young’s modulus, mass density, length, width, thickness
(or radius), spring constant, and resonance frequency. The solution to these
equations makes it possible to obtain an expression for each one of these para-
meters in terms of the others. The chapter presents tables of conversion among
the parameters of each type of cantilever together with numerical examples.

3.1
Introduction

An atomic force microscope usually employs commercially available can-
tilevers made of silicon or silicon nitride whose thickness is constant and
whose width is either constant or has a triangular shape. For experiments
involving electric conductivity, one may choose to employ cantilevers made
of metallic wires having circular or square sections, shown in Figure 3.1. The
spring constant, k, and the resonance frequency, f , of these cantilevers have
to be tailored to a given application that involves the mechanical property
of a sample and the speed of scanning. This chapter provides conversion ta-
bles for cantilevers having circular, square, and rectangular sections. Each ta-
ble presents the value of one parameter characterizing the mechanical prop-
erties of the particular cantilever in terms of the other parameters. For can-
tilevers having a circular section, the parameters belong to the set {L, r, k, f },

Exploring Scanning Probe Microscopy with MATHEMATICA, Second Edition.  Dror Sarid
Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40617-3
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where L and r are the length and radius of the cantilever, respectively (see
Figure 3.1). For cantilevers having a square section, the parameters belong
to the set {L, w, k, f }, where L and w are the length and width (thickness)
of the cantilever, respectively. The accompanied code calculates the value of
each of the parameters belonging to each set in terms of two other parame-
ters. For cantilevers having a rectangular section, the parameters belong to
the set {L, w, d, k, f }, where L, w, and d are the length, width, and thickness of
the cantilever, respectively. Numerical values for typical parameter sets and
for Young’s modulus, E, and the mass density, ρ, are also presented, making
the conversion tables a useful tool for optimizing the operation of atomic force
microscopes.

Fig. 3.1 Schematic diagrams of uniform cantilevers having (a) circular
and (b) rectangular sections.

3.2
Circular Cantilever

The spring constant of a cantilever made of a metallic wire with a circular
section is

k =
3π

4
E

r4

L3 , (3.1)

and its resonance frequency, in terms of k, is

f =
1
π

√
k

πρr2L
. (3.2)

Note that we have used the resonance frequency of a distributed load and
approximated it by using 1/4 rather than 0.24 in the square root. Replacing k
in Eq. (3.2) with its value given by Eq. (3.1), yields the value of f in terms of L
and r,

f =
1

2π

√
3E
ρ

r
L2 . (3.3)
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Next, define two material-related constants, c1 and c2, by

c1 =
1

2π

√
3E
ρ

(3.4)

and

c2 =
3π

4
E . (3.5)

Selecting a given cantilever material dictates the values of c1 and c2. The
resonance frequency and spring constant can therefore be written in terms of
c1 and c2 as

f = c1
r

L2 (3.6)

and

k = c2
r4

L3 , (3.7)

respectively, by the two equations

kL3 = c2r4 (3.8)

and

f L2 = c1r , (3.9)

which involve the parameter set {L, r, k, f }. The solution of these two equa-
tions gives the value of each parameter in terms of two others. The six permu-
tations for all the unique pairs of these parameters yield Table 3.1, where each
parameter is expressed in terms of two other parameters.

As an example, one can choose the four parameters given in Table 3.2 for a
cantilever made of PtIr. The code accompanying this chapter, which generated
Table 3.1, calculates two out of the four parameters given by the list {L, r, k, f },
once the other two parameters are given by a replacement rule.

3.3
Square Cantilever

The spring constant of a cantilever made of a metallic wire having a square
section is

k =
1
4

E
w4

L3 , (3.10)
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Table 3.1 The permutations for all the unique pairs of parameters
belonging to the set {L, r, k, f }, where each parameter is expressed
in terms of the others. As an example, we choose the four parameters
given in Table 3.2, and a cantilever made of PtIr.

f (L, r) =
rc1

L2 k(L, r) =
r4c2

L3

f (k, r) =
c1

(
k
c2

)2/3

r5/3 L(k, r) = r4/3
( c2

k

)1/3

f (L, k) =
c1

(
k
c2

)1/4

L5/4 r(L, k) = L3/4
(

k
c2

)1/4

L( f , k) =
(

c1

f

)4/5 (
k
c2

)1/5

r( f , k) =
(

c1

f

)3/5 (
k
c2

)2/5

k( f , r) = r5/2
(

f
c1

)3/2

c2 L( f , r) =
√

rc1

f

k( f , L) =
f 4L5c2

c4
1

r( f , L) =
f L2

c1

Table 3.2 The parameters of the cantilever made of a PtIr wire having
a circular section.

E = 240 GN/m2

ρ = 21 620 kg/m3

L = 644.933 µm
r = 4.809 39 µm
k = 1 N/m
f = 10 kHz

and its resonance frequency is

f =
1
π

√
k

ρw2L
. (3.11)

Replacing k in Eq. (3.11) with its value given by Eq. (3.10), yields the value
of f in terms of L and w,

f =
1

2π

√
E
ρ

w
L2 . (3.12)

Next, define two material constants, c1 and c2, by

c1 =
1

2π

√
E
ρ

(3.13)
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and

c2 =
E
4

. (3.14)

Selecting a given cantilever material dictates the values of c1 and c2. The
resonance frequency and spring constant can therefore be written in terms of
c1 and c2 as

f = c1
w
L2 (3.15)

and

k = c2
w4

L3 , (3.16)

respectively. We can now write the two equations

kL3 = c2w4 (3.17)

and

f L2 = c1w , (3.18)

which involve the parameter set {L, w, k, f }. The solution of these two equa-
tions gives the value of each parameter in terms of the other two. The six per-
mutations for all the unique pairs of these parameters yield Table 3.3, where
each parameter is expressed in terms of the other two parameters.

As an example, one can choose the four parameters given in Table 3.4 for
a cantilever made of PtIr. The code accompanying this chapter, which gen-
erated Table 3.3, calculates two out of the four parameters given by the list
{L, w, k, f }, once the other two parameters are given by a replacement rule.

3.4
Rectangular Cantilever

The spring constant of a cantilever having a rectangular section is

k =
1
4

E
wd3

L3 , (3.19)

and its resonance frequency is

f =
1
π

√
k

ρwdL
. (3.20)
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Table 3.3 The permutations for all the unique pairs belonging to the
set {L, w, k, f }, where each parameter is expressed in terms of the
other three parameters.

f (L, w) =
wc1

L2 k(L, w) =
w4c2

L3

f (k, w) =
c1

(
k
c2

)2/3

w5/3 L(k, w) = w4/3
( c2

k

)1/3

f (L, k) =
c1

(
k
c2

)1/4

L5/4 w(L, k) = L3/4
(

k
c2

)1/4

L( f , k) =
(

c1

f

)4/5 (
k
c2

)1/5

w( f , k) =
(

c1

f

)3/5 (
k
c2

)2/5

k( f , w) = w5/2
(

f
c1

)3/2

c2 L( f , w) =
√

wc1

f

k( f , L) =
f 4L5c2

c4
1

w( f , L) =
f L2

c1

Table 3.4 The parameters of the cantilever made of a PtIr wire having
a square section.

E = 240 GN/m2

ρ = 21 620 kg/m3

L = 650.908 µm
w = 8.485 18 µm
k = 1 N/m
f = 10 kHz

Replacing k in Eq. (3.20) with its value given by Eq. (3.19), yields the value
of f in terms of L and d,

f =
1

2π

√
E
ρ

d
L2 . (3.21)

Next, using the constants c1 and c2, Eqs (3.13) and (3.14), to describe the
resonance frequency and spring constant, yields

f = c1
d
L2 (3.22)

and

k = c2
wd3

L3 . (3.23)

We can now write the two equations
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kL3 = c2wd3 (3.24)

and

f L2 = c1d , (3.25)

which involve the parameter set {L, d, w, k, f }. The solution of these two equa-
tions gives the value of each parameter in terms of the others. The six permu-
tations for all the unique pairs of these parameters yield Table 3.3, where each
parameter is expressed in terms of the other two. The permutations for all
the unique pairs of these parameters yield Table 3.5, where each parameter is
expressed in terms of the other three parameters.

Table 3.5 The permutations for all the unique pairs belonging to the
set {L, d, w, k, f }, where each parameter is expressed in terms of the
others.

f (d, w, L) =
dc1

L2 k(d, w, L) =
d3wc2

L3

f (k, d, w) =
c1

(
k

wc2

)2/3

d
L(k, d, w) = d

( wc2

k

)1/3

f (k, L, d) =
dc1

L2 w(k, L, d) =
kL3

d3c2

L(k, d, f ) =

√
dc1

f
w(k, d, f ) =

k
(

c1
d f

)3/2

c2

k(d, f , w) = w
(

d f
c1

)3/2

c2 L(d, f , w) =

√
dc1

f

k( f , L, w) =
f 3L3wc2

c3
1

d( f , L, w) =
f L2

c1

w(k, f , L) =
kc3

1
f 3L3c2

d(k, f , L) =
f L2

c1

L(k, f , w) =
c1

(
k

wc2

)1/3

f
d(k, f , w) =

c1

(
k

wc2

)2/3

f

As an example, one can choose the five parameters given in Table 3.6 for a
cantilever made of silicon.

The correctness of the equations given in Table 3.5 is verified by using the
parameters given in Table 3.6, as shown in Table 3.7.

� Exercises for Chapter 3

1. Make a conversion table for a cantilever having a triangular section.
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Table 3.6 The parameters of the silicon cantilever having a rectangu-
lar section.

E = 179 GN/m2

ρ = 2330 kg/m3

L = 200 µm
w = 50 µm
d = 1 µm
k = 0.279 687 N/m
f = 34.8746 kHz

Table 3.7 Verification of the correctness of the equations given in
Table 3.5 by using the parameters given in Table 3.6

f (d, w, L) = 34 874.6 k(d, w, L) = 0.279 687

f (k, d, w) = 34 874.5 L(k, d, w) = 0.000 2

f (k, L, d) = 34 874.6 w(k, L, d) = 0.000 049 999 9

L(k, d, f ) = 0.000 2 w(k, d, f ) = 0.000 049 999 8

k(d, f , w) = 0.279 688 L(d, f , w) = 0.000 2

k( f , L, w) = 0.279 689 d( f , L, w) = 1× 10−6

w(k, f , L) = 0.000 049 999 7 d(k, f , L) = 1× 10−6

L(k, f , w) = 0.000 2 d(k, f , w) = 9.999 98× 10−7

2. Add to the conversion tables a parameter representing the point mass of a
tip at the end of the cantilever.
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4
V-Shaped Cantilevers

Highlights

1. Effects of bending and buckling
2. Displacement and slope
3. Linear and angular spring constants
4. Resonance frequencies and characteristic functions

Abstract

We dealt previously with the mechanical properties of uniform cantilevers
having a rectangular section. The second types of cantilevers, also extensively
used in atomic force microscopy, are V-shaped with a uniform thickness. The
bending and buckling of these V-shaped cantilevers, their resonance frequen-
cies, and their characteristic functions are presented in this chapter both alge-
braically and numerically.

4.1
Introduction

Figure 4.1 shows a typical solid, V-shaped cantilever having a constant thick-
ness that is extensively used in atomic force microscopy. The purpose of us-
ing V-shaped cantilevers, rather than uniform, rectangular-section ones, is to
minimize buckling and twisting effects due to tip–sample friction forces. The
geometry of the V-shaped cantilever, shown in Figure 4.1, has its length along
the x̂ direction with its tip pointing in the −ẑ direction, and the sample sur-
face positioned in the x̂–ŷ plane. The cantilever thickness, width, and length
are denoted by d, B, and L, respectively, L1 is the length of its recess, and w is
the width of each of its two arms. Note that for L1 = 0, one obtains a trian-
gular cantilever having no recess, while for L1 < L, the recess can be either a
triangle or a trapezoid whose short side is denoted by w1. The height of the tip
and the distance of its center from the free end of the cantilever are denoted by

Exploring Scanning Probe Microscopy with MATHEMATICA, Second Edition.  Dror Sarid
Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40617-3
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ht and δ, respectively. The operation of the V-shaped cantilever and the defin-
itions and notations of its slope, displacement, and angular and linear spring
constants are similar to those whose section is rectangular, as described in the
previous chapter. In the following sections we treat the bending and buck-
ling of the cantilever due to the tip–sample forces Fy and Fz that act in the ŷ
and ẑ directions, respectively. Unlike uniform cantilevers, here it is important
to account for the position of the tip, δ, because the free end of the cantilever
is a sharp point. The numerical results presented in this chapter will be asso-
ciated with Fi = 10 (solid line), 20 (dashed line), and 30 nN (dotted line), for
i = y and z. The resonance frequencies of the cantilever with their associated
characteristic functions are presented for the case where the AFM operates in
the noncontact mode.

Fig. 4.1 A schematic diagram of a uniform V-shaped cantilever.

A V-shaped cantilever can be viewed as a combination of a triangle attached
by two uniform arms to a base. Such a description enables one to arrive at an
approximate solution to the response of the cantilever to the tip–sample forces.
This solution is obtained by combining the results for a triangular-shaped can-
tilever with those for two uniform ones. The chapter is therefore divided into
two parts: the first part deals with a triangular-shaped cantilever, denoted by
the subscript “T,” and the second one deals with the V-shaped cantilever, de-
noted by “V.” The theory presented in this chapter is accompanied by nu-
merical examples that relate to these two types of cantilevers. The geometry
and material properties of the V-shaped cantilever, which also pertain to the
triangular-shaped one, are given in Table 4.1.
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Table 4.1 The parameters of the V-shaped cantilever.

L = 202 µm
L1 = 116 µm
B = 205 µm
w = 40.2 µm
d = 0.54 µm

ht = 3.5 µm
δ = 7.1 µm
E = 179 GN/m2

ρ = 2330 kg/m3

4.2
Bending Due to Fz: Triangular Shape

4.2.1
General Equations

The geometry of the cantilever considered in this section and the next one
is a triangle that is similar to the one shown in Figure 4.1, except that the
recess is eliminated. We consider a tip, positioned at a distance δ from the
free end of the cantilever, that scans a sample in an arbitrary direction in the
x̂–ŷ plane. Let a bending force, Fz, act on the tip in a direction perpendicular to
the cantilever body in the ẑ direction. Here, δzT(x) denotes the displacement of
the cantilever in the ẑ direction at a point x along its body, where the subscript
denotes the direction of this force. The force Fz in this case arises from changes
in the local topography of the sample, which, during the scanning process,
raises or lowers the tip, thus either relaxing or stressing the cantilever. The
bending moment at a point x along the length of the cantilever, MzT(x), due
to the force, Fz, acting on the tip, is

MzT(x) = (L− x)Fz . (4.1)

In contrast to the case of a uniform cantilever, the axial moment of inertia
for a triangular cantilever, IzT(x), is not constant but is rather a function of x,

IzT(x) = (L− x)
Bd3

12L
. (4.2)

The equation of bending for this case is

∂2

∂x2 δzT(x) =
MzT(x)
EIzT(x)

. (4.3)

Inserting Eq. (4.1) and Eq. (4.2) into Eq. (4.3) yields an explicit, second-
order differential equation that relates the displacement of the cantilever to



4.2 Bending Due to Fz: Triangular Shape 59

the bending force,
∂2

∂x2 δzT(x) =
12L

EBd3 Fz . (4.4)

Equation (4.4) will form the basis of the modeling of the response of the
triangular cantilever to Fz.

4.2.2
Slope

The slope of the cantilever, θzT(x), is obtained by integrating Eq. (4.4),

θzT(x) =
12Lx
EBd3 Fz . (4.5)

Note that the slope is linear in x because Eq. (4.1) and Eq. (4.2) have a similar
functional form. At x = L− δ, one obtains

θzT(L− δ) = 12
L(L− δ)

EBd3 Fz . (4.6)

4.2.3
Angular Spring Constant

We define an angular spring constant, kθzT
(x), as the ratio of the force acting

on the tip to the resultant slope of the cantilever at the point x,

kθzT
(x) =

∣∣∣∣ Fz

θzT(x)

∣∣∣∣ . (4.7)

Inserting Eq. (4.5) into Eq. (4.7) yields

kθzT
(x) =

EBd3

12Lx
. (4.8)

For x = L − δ, one obtains a particular value of the angular spring con-
stant, kθzT

,

kθzT
=

EBd3

12L(L− δ)
. (4.9)

4.2.4
Displacement

The displacement of the cantilever in the ẑ direction, δzT(x), is obtained by
integrating its slope, Eq. (4.5),

δzT(x) =
6Lx2

EBd3 Fz . (4.10)
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At x = L− δ, the displacement is

δzT(L− δ) =
6L(L− δ)2

EBd3 Fz . (4.11)

4.2.5
Linear Spring Constant

The cantilever linear spring constant, kzT , is defined as the ratio of the force
acting on its tip to the resultant displacement at x = L− δ,

kzT =
∣∣∣∣ Fz

δzT(L− δ)

∣∣∣∣ . (4.12)

Inserting Eq. (4.11) into Eq. (4.12) yields

kzT =
Bd3E

6L(L− δ)2 . (4.13)

Note the strong dependence of kzT on the thickness and length of the can-
tilever and on the value of δ. Remember that tip–sample forces always act at
a distance δ away from the cantilever’s free end, while the beam of the AFM
laser diode is incident at another point, x. It is therefore of interest to examine
the ratio of the angular and linear spring constants, ξzT(x),

ξzT(x) =
kθzT

(x)

kzT

. (4.14)

Inserting Eq. (4.9) and Eq. (4.13) into Eq. (4.14) gives

ξz(x) =
(L− δ)2

2x
. (4.15)

Equation (4.15) can be used to calibrate the operation of the AFM in terms
of the position x at which the laser beam is incident on the cantilever.

4.2.6
Numerical Examples

We now present numerical examples for the response of the cantilever to a
force acting in the ẑ direction. Figure 4.2 shows the slope of the cantilever,
θzT(x), as a function of the distance x from its base for Fz = 10 (solid line),
20 (dashed line), and 30 nN (dotted line). The angular spring constant of the
cantilever, kθzT

, is depicted in the figure. Note that the slope is constant along
the length of the cantilever.
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Fig. 4.2 The slope of the triangular cantilever, θzT (x), as a function of
the distance x from its base for Fz = 10 (solid line), 20 (dashed line),
and 30 nN (dotted line). The angular spring constant, kθzT

, is depicted
in the figure.
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Fig. 4.3 The displacement of the triangular cantilever, δzT (x), as
a function of the distance x from its base for Fz = 10 (solid line),
20 (dashed line), and 30 nN (dotted line). The linear spring con-
stant, kzT , is depicted in the figure.

Figure 4.3 shows the displacement of the cantilever, δzT(x), as a function of
the distance x from its base. The angular spring constant of the cantilever, kθzT

,
is depicted in the figure.

Figure 4.4 shows the ratio of the linear and angular spring constants of the
triangular cantilever, ξzT(x), as a function of the distance x from its base. This
function is used by the software of the AFM to calibrate the tip–sample force
using the specifications of the particular cantilever in use.
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Fig. 4.4 The ratio of the linear and angular spring constants of the
triangular cantilever, ξzT (x), as a function of the distance x from its
base.

4.3
Buckling due to Fx: Triangular Shape

4.3.1
General Equations

Consider now the case where the tip of the cantilever scans a sample in
the x̂ direction and ignore the normal tip–sample force, Fz. The scanning will
give rise to a tip–sample friction force, Fx, acting in the x̂ direction. The resul-
tant buckling moment, MxT , is

MxT = htFx . (4.16)

The axial moment of inertia, Iz(x), is the same as that for the bending case,

IxT(x) = (L− x)
Bd3

12L
. (4.17)

The equation of buckling in this case is

∂2

∂x2 δxT(x) =
MxT

EIxT(x)
. (4.18)

Inserting Eq. (4.16) and Eq. (4.17) into Eq. (4.18) yields an explicit, second-
order differential equation relating the displacement of the cantilever to the
buckling force,

∂2

∂x2 δxT(x) =
12L

EBd3(L− x)
htFx . (4.19)

Equation (4.19) will form the basis of the modeling of the response of the
triangular cantilever to Fx.
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4.3.2
Slope

The slope of the cantilever at a point x along its length, θxT(x), is obtained by
integrating Eq. (4.19),

θxT(x) =
12L

EBd3 log
[

L
L− x

]
htFx , (4.20)

which diverges at x = L. For x = L− δ, however, one obtains

θxT(L− δ) =
12L

EBd3 log
[

L
δ

]
htFx , (4.21)

4.3.3
Angular Spring Constant

The cantilever angular spring constant, kθxT
(x), is the ratio of the force acting

on its tip to the resultant slope of the cantilever at the point x,

kθxT
=

∣∣∣∣ Fx

θxT(L− δ)

∣∣∣∣ . (4.22)

Inserting Eq. (4.20) into Eq. (4.22) yields

kθxT
(x) =

EBd3

12htL log
( L

L−x

) . (4.23)

For x = L− δ, one obtains the particular value of the angular spring con-
stant, kθxT

,

kθxT
=

EBd3

12htL log
( L

δ

) . (4.24)

4.3.4
Displacement

The displacement of the cantilever in the x̂ direction, δxT(x), is obtained by
integrating its slope, Eq. (4.20), yielding

δxT(x) =
12L

EBd3

[
x + (x− L) log

(
L

L− x

)]
htFx . (4.25)

At x = L− δ, the displacement is

δxT(L− δ) =
12L

EBd3

[
L− δ− δ log

(
L
δ

)]
htFx . (4.26)
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4.3.5
Linear Spring Constant

The cantilever linear spring constant, kxT , is defined as the ratio of the force
acting on its tip to the resultant displacement at x = L− δ,

kxT =
∣∣∣∣ Fx

δxT(L− δ)

∣∣∣∣ . (4.27)

Inserting Eq. (4.25) into Eq. (4.27) yields

kxT =
EBd3

12htL
[
L− δ− δ log

( L
δ

)] . (4.28)

Note the strong dependence of kxT on the thickness and length of the can-
tilever and on the value of δ. The ratio of the angular and linear spring con-
stants, ξxT(x), is

ξxT(x) =
kθxT

(x)

kxT

. (4.29)

Inserting Eqs. (4.24) and (28) into Eq. (4.29) gives

ξxT(x) =
log

( L
L−x

)
L− δ− δ log

( L
δ

) . (4.30)

4.3.6
Numerical Examples

The slope of the triangular cantilever, θxT(x), as a function of the distance x
from its base for Fx = 10 (solid line), 20 (dashed line), and 30 nN (dotted line)
is shown in Figure 4.5. The linear spring constant, kxT , is depicted in the figure.

Figure 4.6 shows the displacement of the triangular cantilever, δxT(x), as a
function of the distance x from its base for Fx = 10 (solid line), 20 (dashed
line), and 30 nN (dotted line). The value of the angular spring constant, kxT , is
depicted in the figure.

Figure 4.7 shows the ratio of the linear and angular spring constants of the
triangular cantilever, ξxT(x), as a function of the distance x from its base. This
function is used by the software of the AFM to calibrate the tip–sample force
using the specifications of the particular cantilever in use.
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Fig. 4.5 The slope of the triangular cantilever, θxT (x), as a function of
the distance x from its base for Fx = 10 (solid line), 20 (dashed line),
and 30 nN (dotted line). The linear spring constant, kxT , is depicted in
the figure.
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Fig. 4.6 The displacement of the triangular cantilever, δxT (x), as
a function of the distance x from its base for Fx = 10 (solid line),
20 (dashed line), and 30 nN (dotted line). The linear spring con-
stant, kxT , is depicted in the figure.
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Fig. 4.7 The ratio of the linear and angular spring constants of the
triangular cantilever, ξxT (x), as a function of the distance x from its
base.
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4.4
Bending due to Fz: V Shape

4.4.1
General Equations

The next two sections deal with a V-shape cantilever, shown in Figure 4.1,
that has a finite recess. Here, a bending force Fz acts on the tip in a direction
perpendicular to the cantilever body. Let δzV(x) denote the displacement of the
cantilever in the ẑ direction at a point x along its body. The bending moment
at a point x along the length of the cantilever, MzV(x), is given by

MzV(x) = (L− x)Fz . (4.31)

In contrast to the case of a triangular cantilever, the solution to the V-shaped
one is more difficult, and requires an approximation to obtain a simple analyt-
ical expression. The approach will be to decompose the V-shaped cantilever
into two components, one in the form of a triangle and the other in the form
of two uniform arms. The first component is realized in the range 0 < x < L1
and the second one in the range L1 < x < L, denoted by the subscripts 1 and 2,
respectively. The axial moment of inertia for the first component is given by
considering the two arms as two parallel uniform cantilevers, for which the
axial moment of inertia, Iz1 , is

Iz1 =
wd3

6
. (4.32)

The equation of motion for 0 < x < L1 is therefore

∂2

∂x2 δz1(x) =
MzV(x)

EIz1

, (4.33)

which, by using Eqs. (4.31) and (4.32), is given by

∂2

∂x2 δz1(x) = 6
L− x
Ewd3 Fz . (4.34)

The axial moment of inertia for L1 < x < L is

Iz2(x) =
(L− x)Bd3

12L
. (4.35)

The equation of bending for this range is

∂2

∂x2 δz2(x) =
MzV(x)
EIz2(x)

. (4.36)

Inserting Eqs. (4.31) and (4.35) into Eq. (4.36) yields

∂2

∂x2 δz2(x) =
12L

EBd3 Fz . (4.37)
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Equation (4.34) and Eq. (4.37) will form the basis of the modeling of the
response of the V-shaped cantilever to Fz.

4.4.2
Slope

The slope of the cantilever, θzV(x), for 0 < x < L1, is obtained by integrating
Eq. (4.34),

θz1(x) =
3(2L− x)x

Ewd3 Fz . (4.38)

For L1 < x < L, the slope, θz2(x), is obtained by adding the contribution of
θz1(L1) to the integral of Eq. (4.37),

θz2(x) = θz1(L1) +
∫ x

L1

MzV(x)
EIz2(x)

�x . (4.39)

Using Eqs. (4.31), (4.35), and (4.38) in Eq. (4.39) results in

θz2(x) = 3
B(2L− L1)L1 + 4Lw(x− L1)

EwBd3 Fz . (4.40)

Consequently, the slope across the whole cantilever, namely for 0 < x < L,
denoted by θzV(x), takes the form of Eq. (4.38) or Eq. (4.40), depending on their
range of applicability.

4.4.3
Angular Spring Constant

The angular spring constant, kθz2
(x), is given by the ratio of the force acting

on the tip to the resultant slope of the cantilever at the point x,

kθzV
(x) =

∣∣∣∣ Fz

θzV(x)

∣∣∣∣ . (4.41)

The point x at which the laser diode beam is incident on the cantilever is
usually in the range L1 < x < L− δ. In this case, one obtains for kθzV

(x), after
inserting Eq. (4.40) into Eq. (4.41),

kθzV
(x) =

1
3

EwBd3

B(2L− L1)L1 + 4Lw(x− L1)
. (4.42)

4.4.4
Displacement

For the range 0 < x < L1, the displacement, δz1(x), is obtained by integrating
Eq. (4.38),
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δz1(x) =
(3L− x)x2

Ewd3 Fz . (4.43)

For L1 < x < L, the displacement is obtained by adding the contribution of
δz1(L1) to the integral of Eq. (4.40),

δz2(x) = δz1(L1) +
∫ x

L1

θz2(x) �x . (4.44)

Using Eqs. (4.40) and (4.43) into Eq. (4.44), one obtains

δz2(x) =
6Lw(L1 − x)2 + BL1(−3LL1 + 2L2

1 + 6Lx− 3L1x)
EwBd3 Fz . (4.45)

4.4.5
Linear Spring Constant

The linear spring constant, kzV, is defined by

kzV =
∣∣∣∣ Fz

δzz(L− δ)

∣∣∣∣ (4.46)

which, upon using Eq. (4.45), gives

kzV =
EwBd3

6Lw(−L + L1 + δ)2 + BL1[6L2 − 6L(L1 + δ) + L1(2L1 + 3δ)]
. (4.47)

Note the strong dependence of kzV on the thickness and length of the can-
tilever. The ratio of the angular and linear spring constants, ξzV(x), is

ξzT(x) =
kθzT

(x)

kzT

. (4.48)

Inserting Eqs. (4.42) and (4.47) into Eq. (4.48) gives

ξzV(x) =
6Lw(−L + L1 + δ)2 + BL1[6L2 − 6L(L1 + δ) + L1(2L1 + 3δ)]

3[B(2L− L1)L1 + 4Lw(x− L1)]
.

(4.49)

4.4.6
Numerical Examples

The slope of the V-shaped cantilever, θzV(x), is shown in Figure 4.8 as a func-
tion of the distance x from its base for Fz = 10 (solid line), 20 (dashed line),
and 30 nN (dotted line). Here, the angular spring constant, kθzV

, is depicted in
the figure.
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Fig. 4.8 The slope of the V-shaped cantilever, θzV (x), as a function of
the distance x from its base for Fz = 10 (solid line), 20 (dashed line),
and 30 nN (dotted line). The angular spring constant, kθzV

, is depicted
in the figure.
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Fig. 4.9 The displacement of the V-shaped cantilever, δzV (x), as
a function of the distance x from its base for Fz = 10 (solid line),
20 (dashed line), and 30 nN (dotted line). The linear spring con-
stant, kzV , is depicted in the figure.

The displacement of the V-shaped cantilever, δzV(x), is shown in Figure 4.9
as a function of the distance x from its fixed point, for a tip–sample force acting
in the ẑ direction. The linear spring constant, kzV, is depicted in the figure.

Figure 4.10 shows the ratio of the linear and angular spring constants of the
V-shaped cantilever, ξzV(x), as a function of the distance x from its base.



70 4 V-Shaped Cantilevers

0 50 100 150
x �Μm�

0

2

4

6

8

Ξ
z V
�m

ra
d
�n

m
�

V shape

F
z

Fig. 4.10 The ratio of the linear and angular spring constants of the
triangular cantilever, ξzV (x), as a function of the distance x from its
base.

4.5
Buckling Due to Fx: V Shape

4.5.1
General Equations

In this case, the bending moment, MxV(x), due to the force Fx, is

MxV = htFx . (4.50)

The axial moment of inertia for the range 0 < x < L1 is

Ix1 =
wd3

6
. (4.51)

The equation of buckling for this range is therefore

∂2

∂x2 δx1(x) =
MxV

EIx1

, (4.52)

which, using Eqs. (4.50) and (4.51), yields

∂2

∂x2 δx1(x) =
6

Ewd3 htFx . (4.53)

For the range L1 < x < L, the axial moment of inertia is

Ix2(x) =
1

12

(
1− x

L

)
Bd3 . (4.54)

The equation of buckling for this range is

∂2

∂x2 δx2(x) =
MxV

EIx2(x)
. (4.55)
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Inserting Eqs. (4.50) and (4.54) into Eq. (4.55) yields

∂2

∂x2 δx2(x) =
12L

EBd3(L− x)
htFx . (4.56)

4.5.2
Slope

The slope, θx1(x), for the range 0 < x < L1 is obtained by integrating
Eq. (4.56),

θx1(x) =
6x

Ewd3 htFx . (4.57)

For L1 < x < L, the slope, θx2(x), is obtained by adding the contribution of
θx1(L1) to the integral of Eq. (4.56),

θx2(x) = θx1(L1) +
∫ x

L1

MxV(x)
EIx2(x)

�x . (4.58)

The resultant integration, using Eqs. (4.50), (4.54), and (4.57), is

θx2(x) = 6
[

L1

Ewd3 +
2L(x− L1)

EBd3(x− L1)
log

(
L− L1

L− x

)]
Fxht . (4.59)

Note that the slope is a logarithmic function of x and is linear with ht.

4.5.3
Angular Spring Constant

The angular spring constant, kθxV
(x), is the ratio of the force acting on the tip

to the resultant slope of the cantilever at the point x,

kθxV
(x) =

∣∣∣∣ Fx

θxV(x)

∣∣∣∣ . (4.60)

For the range L1 < x < L− δ, one can use Eq. (4.59) to obtain

kθxV
(x) =

EwBd3

6BhtL1 + 12htLw log
( L−L1

L−x

) . (4.61)

4.5.4
Displacement

For the range 0 < x < L1, the displacement, δx1(x), is obtained by integrating
Eq. (4.57),

δx1(x) =
3x2

Ewd3 htFx . (4.62)
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For L1 < x < L, the displacement is obtained by adding the contribution of
δx1(L1) to the integral of Eq. (4.59),

δx2(x) = δx1(L1) +
∫ x

L1

θx2(x) �x . (4.63)

Using Eqs. (4.59) and (4.62) into Eq. (4.63) yields

δx2(x) =
3

EwBd3

[
BL1(2x− L1) + 4Lw(x− L1)

− 4Lw(L− x) log
(

L− L1

L− x

)]
htFx . (4.64)

4.5.5
Linear Spring Constant

The cantilever linear spring constant, kxV, is defined as the ratio of the force
acting on its tip to the resultant displacement at x = L− δ,

kxV =
∣∣∣∣ Fx

δx2(L− δ)

∣∣∣∣ , (4.65)

which, upon using Eq. (4.64), yields

kxV =
(Bd3Ew)

3ht
[
4Lw(L− L1 − δ)− BL1(−2L + L1 + 2δ)− 4Lwδ log

( L−L1
δ

)] .

(4.66)
Note the strong dependence of kxV on the thickness and length of the can-

tilever and on the value of δ. The ratio of the angular and linear spring con-
stants, ξxV(x), is

ξxV(x) =
kθxV

(x)

kxV

. (4.67)

Inserting Eqs. (4.61) and (4.66) into Eq. (4.67) gives

ξxV(x) =
4Lw(L− L1 − δ)− BL1(−2L + L1 + 2δ)− 4Lwδ log

( L−L1
δ

)
2BL1 + 4Lw log

( L−L1
L−x

) . (4.68)

4.5.6
Numerical Examples

The slope of the V-shaped cantilever, θxV(x), is shown in Figure 4.11 as a func-
tion of the distance x from its base for Fx = 10 (solid line), 20 (dashed line),
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Fig. 4.11 The slope of the V-shaped cantilever, θxV (x), as a function
of the distance x from its base for Fx = 10 (solid line), 20 (dashed line),
and 30 nN (dotted line). The angular spring constant, kθxV

, is depicted
in the figure.

and 30 nN (dotted line). The angular spring constant, kθxV
, is depicted in the

figure.
The displacement of the V-shaped cantilever, δxV(x), is shown in Figure 4.12

as a function of the distance x from its base for Fx = 10 (solid line), 20 (dashed
line), and 30 nN (dotted line). The linear spring constant, kxV, is depicted in
the figure.
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Fig. 4.12 The displacement of the V-shaped cantilever, δxV (x), as
a function of the distance x from its base for Fx = 10 (solid line),
20 (dashed line), and 30 nN (dotted line). The linear spring con-
stant, kxV , is depicted in the figure.

Figure 4.13 shows the ratio of the linear to the angular spring constants of
the triangular cantilever, ξxV(x), as a function of the distance x from its base.
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Fig. 4.13 The ratio of the linear to the angular spring constants of the
triangular cantilever, ξxV (x), as a function of the distance x from its
base.

4.6
Vibrations

4.6.1
Resonance Frequencies

It is important to know the resonance frequency of a given cantilever, since it
sets the upper limit to the scanning speed of an atomic force microscope. In
the following discussions we neglect the influence of the mass of the tip and
of any cantilever metal coating on the resonance frequency of the cantilever.
The time-dependent equation of motion of the V-shaped cantilever, δzV(x, t),
neglecting damping effects, is given by the differential equation

∂2

∂x2

[
EIzV(x)

∂2

∂x2 δz(x, t)
]

+ ρAV(x)
∂2

∂t2 δzV(x, t) = 0 , (4.69)

subject to the boundary conditions at the two ends of the cantilever. Here, t
denotes time, ρ is the mass density of the cantilever material, IzV and E its
axial moment of inertia and Young’s modulus, respectively, and AV(x) its
cross-section area. The solution is conveniently obtained using the variational
method that equates the kinetic and potential energies of the cantilever. To that
end, we construct two matrices, a1n,m and a2n,m , where (n, m) = 1, 2, and 3,

a1n,m = E
∫ L1

0

1
6

wd3∂{x,2}xn+1∂{x,2}xm+1 �x , (4.70)

and

a2n,m = E
∫ L

L1

1
12

Bd3(1− x/L)∂{x,2}xn+1∂{x,2}xm+1 �x , (4.71)
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and add these two,

an,m = a1n,m + a2n,m . (4.72)

The value of the matrix an,m is given in Table 4.2.

Table 4.2 The values of the matrix an,m, multiplied by 1016, where
(n, m) = 1, 2, and 3.

⎛
⎝ 1.0023 0.000 249 175 5.605 67× 10−8

0.000 249 175 8.408 51× 10−8 0
5.605 67× 10−8 0 0

⎞
⎠

Next, we construct the matrices b1n,m and b2n,m , where (n, m) = 1, 2, and 3,

b1n,m = ρ
∫ L1

0
2wdxn+1xm+1 �x , (4.73)

and

b2n,m = ρ
∫ L

L1

Bd
(

1− x
L

)
xn+1xm+1 �x , (4.74)

and add these two,

bn,m = b1n,m + b2n,m . (4.75)

The value of the matrix bn,m is given in Table 4.3.

Table 4.3 The value of the matrix bn,m multiplied by 1027, where
(n, m) = 1, 2, and 3.

⎛
⎝ 2.751 56 0.000 405 112 6.211 16× 10−8

0.000 405 112 6.211 16× 10−8 0
6.211 16× 10−8 0 0

⎞
⎠

Finally, we obtain the angular resonance frequencies of the cantilever, ωi =
2π fi, by calculating the roots of the determinant

[an,m −ω2
i bn,m] = 0 . (4.76)

The first three resonance frequencies, depicted in Table 4.4, show that they
are not multiples of each other.
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Table 4.4 The first three resonance frequencies of the V-shaped can-
tilever.

f1 = 24.805 9 kHz
f2 = 139.971 kHz
f3 = 510.982 kHz

4.6.2
Characteristic Functions

The shape of the vibrating cantilever is obtained from the three matrices, mi,
defined by Ref. [3]

mi = an,m −ω2
i bn,m . (4.77)

The vectors that form the basis for the null space of the matrix mi (see Ta-
ble 4.5) serve as the coefficients of the polynomials, Vi, that describe the shape
of the free-vibrating cantilever, δzi (x),

δzi (x) = Vi,1x2 + Vi,2x3 + Vi,3x4 . (4.78)

Table 4.5 The vectors that form the basis for the null space of the
matrices mi, for i = 1, 2, and 3.

⎛
⎝2.476 86× 10−7x2 − 0.000 820 266x3 + 1x4

4.0381× 10−8x2 − 0.000 431 064x3 + 1x4

1.681 72× 10−8x2 − 0.000 267 393x3 + 1x4

⎞
⎠

The resultant shape of the free-vibrating cantilever, δzi (x), where i = 1, 2,
and 3, is shown in Figure 4.14. Note that the curve belonging to the lowest
frequency is scaled down by a factor of 10.
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Fig. 4.14 The characteristic functions of the first three harmonics for
the V-shaped cantilever.



Exercises for Chapter 4 77

The solid, dashed, and dotted lines in Figure 4.14 refer to cantilever oscilla-
tions at ω1, ω2, and ω3, respectively. Note that a cantilever can obtain a shape
which is a linear combination of different characteristic functions, depending
on the initial conditions and the driving force. For all practical purposes, how-
ever, for as long as the cantilever is far away from a surface and its amplitude
of vibration is much smaller than its length, its motion can be considered to
be linear in distance and driving force.

� Exercises for Chapter 4

1. Using the code in this chapter, reproduce the numerical values quoted for
the variety of cantilever materials and geometries in Refs. [1] to [3].

2. Calculate and code the twisting spring constant of a V-shaped cantilever.
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5
Tip–Sample Adhesion

Highlights

1. Johnson–Kendall–Roberts (JKR) adhesion model
2. Indentation and hysteresis loop

Abstract

The interaction between the tip of an atomic force microscope and the sur-
face of a sample is modeled as a combination of adhesion and Lennard–Jones
forces. Analytical expressions relating the indentation, d, the contact radius, r,
and the contact force, F, are presented and plotted for typical experimental
values. Maximum permissible values for the parameters characterizing the
adhesion are also calculated and plotted. The contribution of indentation and
adhesion forces to the contact pressure and its distribution across the contact
area are demonstrated. Finally, the hysteresis loop describing the total force as
a function of the tip–sample distance on approach and retraction is presented
and discussed.

5.1
Introduction

The interaction between the tip and the sample of an atomic force microscope
can involve a variety of forces derived from electric, magnetic, and atomic in-
teractions for the noncontact regime, and from atomic, indentation, adhesion,
and capillary interactions for the contact regime. In this chapter we limit the
interactions for the noncontact regime to the Lennard–Jones force, and for the
contact regime to the indentation and adhesion forces. The analytical expres-
sions of these forces, which are relatively simple, have been widely employed
in the literature. It is important to note, however, that the indentation and ad-
hesion forces were developed for macroscopic bodies containing a large num-
ber of atoms. For microscopic bodies, the theory is only approximate, and has
to be viewed as a general guide to what might be expected to happen when

Exploring Scanning Probe Microscopy with MATHEMATICA, Second Edition.  Dror Sarid
Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40617-3
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only a few atoms belonging to the tip and sample interact. Nevertheless, the
material presented here should be useful in describing the main features as-
sociated with the tip–sample interaction, forming a basis that the reader can
later expand to include more refined models and other forces.

Figure 5.1 shows two spheres whose curvature matches those of the apex
of the tip and possibly that of the surface of a sample, Rtip and Rsample, re-
spectively. Note that Rsample will usually be infinite. Applying an external,
downward-pointing force, Fex, to the tip will push it into the sample, form-
ing an indentation whose depth and radius are denoted by d and r, respec-
tively. When the external force is pointing upward, the tip is pulled out of the
sample, and for a limited range, a neck connecting these two together will be
formed. The neck will have a maximum height and radius denoted by ds and
rs respectively. For a larger force, the neck can no longer be supported by ad-
hesion forces, whereupon it will break and the two spheres will be separated.
The total tip–sample force consists of the sum of Lennard–Jones, indentation,
and adhesion forces. This total force, which is a function of the tip–sample
separation, s, yields a hysteresis loop because the adhesion is a double-valued
function of s. This chapter presents analytical solutions to the functional de-
pendence of the different parameters involved in the tip–sample interaction
together with numerical examples.

Fig. 5.1 A schematic diagram of two spheres whose curvature rep-
resents those of the AFM tip and of the sample, R1 and R2, respec-
tively. The tip–sample interactions for (a) approaching and (b) retract-
ing cases are depicted.
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The parameters associated with the tip–sample indentation, adhesion, and
Lennard–Jones forces used in this chapter are given in Table 5.1. Here, Ei and
νi are Young’s modulus and Poisson’s ratio of the tip and sample material,
respectively, σ is a typical interatomic distance, and AH is Hamaker’s constant.

Table 5.1 The parameters associated with the tip–sample adhesion
and Lennard–Jones potential.

Rtip = 100 nm
Rsample = 100 µm

Etip = 179 GN/m2

Esample = 1 GN/m2

νtip = 0.28 µm
νsample = 0.3 µm

σ = 0.4125 nm
AH = 0.0135 aJ

The effective tip–sample radius of curvature, R, is defined by the radii of
curvature of the tip and sample, Rtip and Rsample, respectively,

R =
1

1/Rtip + 1/Rsample
. (5.1)

The Derjaguin approximation for the adhesion force, Fad, acting between
two spheres separated by a distance s � R is

Fad = 2πRW(s) . (5.2)

Here, W is the energy per unit area of two flat surfaces separated by the
same distance s. The surface energy, γ, which is the energy required to remove
two flat surfaces from contact to infinity is

γ =
1
2

W(0) . (5.3)

The value of γ, in terms of Hamaker’s constant, is

γ =
AH

24πD2
0

, (5.4)

where D0 can be approximated by

D0 =
σ

2.5
(5.5)

using a typical interatomic distance, σ. The numerical values of D0, γ, and
W1,2 are given in Table 5.2.

The Hertzian adhesion model that treats rigid bodies has been extended to
deformable ones by Johnson, Kendall, and Roberts (JKR). The JKR model will
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Table 5.2 The numerical values of D0, γ, and W1,2.

D0 = 0.165 nm
γ = 6.576 65 mJ/m2

W1,2 = 13.1533 mJ/m2

be used to calculate the functional dependence of the tip–sample indentation,
radius of contact, and contact force on each other. In this model, the elastic
moduli, κ, of the two spheres representing the tip and sample are

κtip =
1− ν2

tip

πEtip
, (5.6)

for the tip, and

κsample =
1− ν2

sample

πEsample
, (5.7)

for the sample. The effective elastic modulus of the two spheres, κeff, in terms
of κi, is

κeff = κtip + κsample . (5.8)

The numerical values of κtip, κsample, and κeff are given in Table 5.3.

Table 5.3 The numerical values of the elastic moduli κtip, κsample,
and κeff.

κtip = 0.001 638 85m2/nN
κsample = 0.289 662m2/nN

κeff = 0.291 301m2/nN

5.2
Indentation

The following three sections calculate the tip–sample contact radius as a func-
tion of the contact force, r = r(F), the tip–sample indentation as a function of
the contact radius, d = d(r), and the indentation as a function of the contact
force, d = d(F).

5.2.1
Contact Radius and Contact Force

The contact radius between two spheres, r, as a function of the tip–sample
contact force, F, is
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r3 =
3π

4
κeffR

(
F + q +

√
q2 + 2qF

)
, (5.9)

where

q = 3πRW1,2 . (5.10)

Alternatively, the contact radius can be expressed by

r =
[

R
k

(
F + q +

√
q2 + 2qF

)]1/3

, (5.11)

where

k =
4

3πκeff
. (5.12)

For W1,2 = 0, and in the absence of an external force, the tip will rest on the
surface of the sample, while for W1,2 > 0, it will embed itself inside the sam-
ple at such a depth that the attractive adhesion force will equal the repulsive
indentation force. Under these conditions, the radius of contact, r0, is

r0 =
(

6πR2W1,2

k

)1/3

. (5.13)

Note that the depth of penetration of the tip into the sample, relative to the
effective radius R, is quite small. One can now apply an external force to pull
the tip from inside the sample back to its surface. Pulling the tip farther away
from the surface of the sample will result in the creation of a neck connecting
the tip with the sample. The neck will keep growing until the adhesion force
can no longer sustain it, whereupon the neck will break. The tip–sample at-
tractive force at the point of separation, Fs, is obtained by equating the cubic
root in Eq. (5.11) to zero, yielding

Fs = −3
2

πRW1,2 . (5.14)

The radius of the neck at separation, rs, is

rs = − r0

41/3 . (5.15)

Table 5.4 shows the numerical values of r0, rs and Fs.
Figure 5.2 shows the contact radius, r, as a function of the contact force, F, in

the range ±Fs, where the solid and dashed lines refer to the cases where W1,2
is finite and zero, respectively.

Consider first the case where W1,2 = 0, shown by the dashed line in Fig-
ure 5.2. Here, the radius of contact is finite only for a tip–sample repulsive
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Table 5.4 The numerical values of r0, rs, and Fs.

r0 = 11.94 nm
rs = 7.52 nm
Fs = −6.19 nN
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Fig. 5.2 The contact radius, r, as a function of the contact force, F.
The solid and dashed lines refer to the cases where W1,2 is finite and
zero, respectively.

(positive) force, which is pointing upward in the geometry shown in Fig-
ure 5.1. For the case where W1,2 > 0, however, the radius of contact is finite
not only for a positive tip–sample force, as in the previous case, but also for a
negative force which is attractive, up to Fs. This is the force required to keep
the tip separated from the sample by generating a connecting neck.

5.2.2
Indentation and Contact Radius

We now calculate the tip–sample indentation, d, as a function of the radius of
contact, r. The indentation, according to the JKR model, is given by

d = − r2

R
+

2
3

r3/2
0
R

√
r . (5.16)

Figure 5.3 shows the indentation, d, as a function of the radius of contact, r,
in the range ±Fs, where the solid and dashed lines refer to the cases where
W1,2 is finite and zero, respectively. The feature observed at r = rs is associated
with the breaking of the neck connecting the tip with the sample.

Note that a finite W1,2 increases the indentation for a given radius of con-
tact. Note also that the indentation can only be negative for a vanishing W1,2,
whereas it can attain a positive value for a finite W1,2 in the form of a neck.
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Fig. 5.3 The indentation, d, as a function of the radius of contact, r.
The solid and dashed lines refer to the cases where W1,2 is finite and
zero, respectively.

For the case where W1,2 is finite, the radius of contact at which the indentation
vanishes, namely, when the height of the neck is zero, will be denoted by r1.
The numerical values of r1, d0, and ds are given in Table 5.5.

Table 5.5 The numerical values of r1, d0, and ds.

r1 = 9.11 nm
d0 = −0.47 nm
ds = 0.19 nm

Note that d0, ds, and W1,2 vanish together. The negative value of d0 means
that in the absence of a contact force, the tip embeds itself inside the sample.
The positive value of ds denotes the length of the tip–sample “neck” before it
breaks.

5.2.3
Indentation and Contact Force

We can now combine the results obtained in the last two sections and get the
dependence of the indentation, d, on the contact force, F, shown in Figure 5.4
for the range ±Fs. Here, the solid and dashed lines refer to the cases where
W1,2 is finite and zero, respectively. Note the feature observed at F = Fs and
d = ds associated with the breaking of the neck connecting the tip with the
sample.

First consider the case where W1,2 = 0, shown by the dashed line, in which a
repulsive (positive) tip–sample force is related to a (negative) indentation, us-
ing the geometry shown in Figure 5.1. The dashed line goes to zero abruptly
at F = 0, at which point the tip rests on the surface of the sample. However,
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Fig. 5.4 The indentation, d, as a function of the contact force, F. The
solid and dashed lines refer to the cases where W1,2 is finite and zero,
respectively.

for the case where W1,2 is finite, the solid line extends to both positive and
negative values of F, and is mostly lower than the dashed line. Table 5.6 sum-
marizes the results obtained up to now for the case were W1,2 > 0.

Table 5.6 Summary of the indentation results.

r (nm) d (nm) F (nN)

d = ds 7.52 0.19 −6.19
d = 0 9.11 0 −5.5
F = 0 11.94 −0.47 0

5.3
Inverted Functions

It will be useful to invert the functional dependence obtained in the last three
sections and calculate the tip–sample contact radius as a function of the con-
tact force, F = F(r), the tip–sample indentation as a function of the contact ra-
dius, r = r(d), and the indentation as a function of the contact force, F = F(d).

5.3.1
Contact Force and Contact Radius

The contact force, F, in terms of the radius of contact, r, is obtained by invert-
ing Eq. (5.11),

F =
kr3

R
−

√
2kq
R

r3/2 , (5.17)
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which, for a vanishing W1,2, becomes

F0 =
kr3

R
. (5.18)

Figure 5.5 is a plot of the contact force, F, as a function of the contact ra-
dius, r, in which the solid and dashed lines refer to the cases where W1,2 is
finite and zero, respectively.
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Fig. 5.5 The contact force, F, as a function of the contact radius, r.
The solid and dashed lines refer to the cases where W1,2 is finite and
zero, respectively.

5.3.2
Contact Radius and Indentation

Figure 5.6 shows the contact radius, r, as a function of the indentation, d, ob-
tained by numerically inverting Eq. (5.16). The solid and dashed lines refer to
the cases where W1,2 is finite and zero, respectively.

5.3.3
Contact Force and Indentation

Now that we have inverted both Eqs (5.11) and (5.16), we can determine the
contact force as a function of the indentation. This will be accomplished by
using the force as a function of the radius of contact, and the radius of con-
tact as a function of the indentation. Figure 5.7 shows the contact force, F, as
a function of the indentation, d, where the solid and dashed lines refer to the
cases where W1,2 is finite and zero, respectively. The figure shows that a fi-
nite value for W1,2 is lowering the force for a given indentation. Also, for a
vanishing W1,2, the range across which the force is finite, is limited to d < 0.
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Fig. 5.6 The contact radius, r, as a function of the indentation, d. The
solid and dashed lines refer to the cases where W1,2 is finite and zero,
respectively.
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Fig. 5.7 The contact force, F, as a function of the indentation, d. The
solid and dashed lines refer to the cases where W1,2 is finite and zero,
respectively.

5.3.4
Limits of Adhesion Parameters

In the absence of an external force, the tip–sample surface energy will “suck”
the tip into the surface until the surface tension equals the indentation force.
The maximum value of the adhesion energy, W1,2,max, that will generate a con-
tact radius as large as the effective radius, R, obtained from Eq. (5.11), is given
by

W1,2,max =
1

6π
Rk , (5.19)

and shown in Figure 5.8.
The maximum value for Hamaker’s constant, AHmax , for this case,

AHmax = 2D2
0Rk , (5.20)



88 5 Tip–Sample Adhesion

0 20 40 60 80 100

R �nm�

0

2

4

6

W
1
,2

,m
a
x
�J
�m

2
�

Fig. 5.8 The surface energy, W1,2, as a function of the radius, R.

is shown in Figure 5.9 as a function of R.
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Fig. 5.9 The maximum value of Hamaker’s constant, AHmax , as a
function of the radius, R.

5.4
Contact Pressure

The contact pressure, P, across the indented surface is given by

P =
3kr

2πR

√
1− x2 − 1√

1− x2

√
3kW1,2

2πr
, (5.21)

where r/r0 < x < r/r0. Clearly, the second term on the right-hand side di-
verges for x = 1, a region where a more subtle theory is required.
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5.4.1
Maximum Contact Pressure

Let us first explore the dependence of the maximum tip–sample contact pres-
sure, Pmax, realized at x = 0, on the radius of contact, r. Using Eq. (5.21), we
obtain

Pmax =
3kr

2πR
−

√
3kW1,2

2πr
. (5.22)

Figure 5.10 shows Pmax as a function of the scaled radius of contact, r/r0, in
the range 0.1 < r/r0 < 2. The solid and dashed lines refer to the cases where
W1,2 is finite and zero, respectively.
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Fig. 5.10 The maximum tip–sample pressure, Pmax, as a function of
the scaled radius of contact, r/r0. The solid and dashed lines refer to
the cases where W1,2 is finite and zero, respectively.

One observes that the effect of the adhesion is more prominent for smaller
radii. The two contributions on the left-hand side of Eq. (5.22) will be equal
for a radius of contact, rp, given by

rp =
(

2π

3
R2W1,2

k

)1/3

. (5.23)

5.4.2
Distribution of Contact Pressure

The distribution of the contact pressure, P, across the semispherical tip–
sample indentation, Eq. (5.21), is shown in Figure 5.11, for a radius of contact
given by r = r0. Here, x is in the range −0.6r0 < x < 0.6r0. The solid and
dashed lines refer to the cases where W1,2 is finite and zero, respectively.
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Fig. 5.11 The distribution of the pressure, P, as a function of the posi-
tion, x, in the range −0.6r0 < x < 0.6r0. The solid and dashed lines
refer to the cases where W1,2 is finite and zero, respectively.

5.5
Lennard–Jones Potential

We will need to choose a model for the interaction between the tip and the
sample when they are not in contact. We choose the Lennard–Jones model
that presents the tip–sample potential energy, WLJ, by

WLJ =
AHR
6σ

[
1

210

(
σ

s

)7

− σ

s

]
, (5.24)

where σ is a typical interatomic distance and s is a measure of the tip–sample
distance. The factor on the right-hand side is the magnitude of the potential
in terms of AH and R, and the term in the bracket, on the right-hand side,
describes the shape of the potential. The Lennard–Jones force, FLJ, is obtained
from the potential by taking the negative of its derivative in respect to s,

FLJ = −∂sWLJ , (5.25)

which yields

FLJ =
AHR
6σ

(
σ7

30s8 −
σ

s2

)
. (5.26)

Let sF0 and sFmindenote the values of s at which the force vanishes and at
which it obtains its minimum value, respectively. In the following, it will be
convenient to (a) define a shifted tip–sample distance, d = s + sF0 , and (b) as-
sume that FLJ vanishes for d < 0. Figure 5.12 shows the modified Lennard–
Jones force as a function of the shifted tip–sample distance, d. From now on
we will refer to the modified Lennard–Jones force as the Lennard–Jones force.
Note that for d > 0, the force is negative, and by convention, attractive.
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Fig. 5.12 The modified Lennard–Jones force, FLJ, as a function of the
shifted tip–sample distance, d.

5.6
Total Force and Indentation

The total tip–sample force, Ftotal, is obtained by combining the indentation,
adhesion, and Lennard–Jones forces. The combined force, when plotted as a
function of d, exhibits a hysteresis loop because the adhesion is not a single-
valued function due to the formation of the neck. It is quite different when the
tip approaches the sample from a large distance and is then pushed into it,
relative to when the tip is pulled out of the sample until it is separated from it.
The discussion will now follow the different parts of the hysteresis loop, after
which they will all be combined together.

5.6.1
Push-in Region

For the push-in region, we start by positioning the tip far away from the
surface of the sample, after which it is moved toward the sample until it
“touches” its surface, and finally, it is pushed into the sample, indenting it.

5.6.2
Push-in Region in the Absence of Adhesion

In the absence of adhesion, the tip indents the sample only for d < 0, where the
force is given by Eq. (5.18), while for d > 0, the force is due to the Lennard–
Jones force, Eq. (5.26), as shown in Figure 5.13. As expected, the force is at-
tractive for d > 0 and repulsive for d < 0. Note the abrupt change in the
derivative of the force as it “touches” the surface of the sample. Also note that
the repulsive part of the force will have a larger slope for stiffer tip and sample
materials.
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Fig. 5.13 The Lennard–Jones and indentation forces as a function of
d in the absence of adhesion.

5.6.3
Push-in Region in the Presence of Adhesion

In this case, once the tip “touches” the surface, the tip–sample surface energy
will “suck” it into the sample until the indentation force will equal the adhe-
sion force, both given by Eq. (5.17). Figure 5.14 shows the combined Lennard–
Jones, indentation, and adhesion forces as a function of d. In contrast to Fig-
ure 5.13, here the force undergoes an abrupt change as the tip “touches” the
surface of the sample and is then “sucked” into it. At this point there is still a
finite attractive force that will decrease as the indentation force grows, until it
equals the adhesion force. Pushing the tip deeper into the sample will result
in a repulsive force. As before, there is an abrupt change in the derivative of
the force as it “touches” the surface of the sample, and the repulsive part of
the force will have a larger slope for stiffer tip and sample materials.
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Fig. 5.14 The combined Lennard–Jones, indentation, and adhesion
forces as a function of d, in the presence of adhesion.
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5.6.4
Pull-out Region

For the pull-out region, we start with a tip that is already embedded inside the
sample, and move it toward its surface, after which it is moved away from the
sample. A neck will develop between the tip and the sample once d becomes
positive, until it can no longer be sustained by the surface energy, upon which
it will break. At this point the attractive Lennard–Jones potential will take
over.

5.6.5
Pull-out Region in the Absence of Adhesion

In the absence of adhesion, the tip indents the sample for negative values
of d, and the force follows the expressions obtained before. For positive val-
ues of d, the force will be solely due to the attractive Lennard–Jones potential.
The plot of the force in this case will be identical to that of Figure 5.13, as the
adhesion is a single-valued function for a vanishing W1,2.

5.6.6
Pull-out Region in the Presence of Adhesion

The tip in this case is partially embedded inside the sample, where a repulsive
force acts on it. As the tip approaches the surface of the sample, the repulsive
force decreases, and at a given point it vanishes after which it becomes attrac-
tive. The attractive force is finite not only at d = 0 but also up to d = ds, where
the tip–sample neck finally breaks. At this point the force will be due only to
the attractive Lennard–Jones potential. The plot of the force in this case will
be identical to that of Figure 5.14, since the adhesion is now a double-valued
function for a finite W1,2.

5.6.7
Hysteresis Loop

Figure 5.15 shows the hysteresis loop describing the complete push-in (solid
line) and pull-out (dashed line) processes experienced by the tip in a full cycle,
which is a combination of Figures 5.13 and 5.14. Note that this hysteresis loop
cannot be directly viewed by experiments with an atomic force microscope
because the tip is mounted on a cantilever that has a finite spring constant.
We have not taken into account the elastic force associated with the bending
of the cantilever to which the tip is attached, a topic that will be dealt with in
the next chapter.
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Fig. 5.15 The hysteresis loop describing the complete push-in (solid
line) and pull-out (dashed line) processes experienced by the tip in a
full cycle.

� Exercises for Chapter 5

1. Change the sample material and run the code of this chapter using the new
parameters.

2. Compare and discuss the current and new figures and, in particular, their
respective hysteresis loops.

3. Repeat Problem 1, but this time change Hamaker’s constant from its value
AH to AH/10.
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6
Tip–Sample Force Curve

Highlights

1. Hysteresis loop of tip–sample approach and retraction
2. Snap-in and snap-out positions
3. Hysteresis loop area and Hamaker’s constant

Abstract

The interaction between the tip of an atomic force microscope and a sample is
modeled by using the elastic properties of a cantilever and the Lennard–Jones
potential, neglecting adhesion and indentation forces. Analytical and numeri-
cal solutions for the resultant energy, force, and force derivative, together with
their extrema, are derived. The hysteresis loop observed on approach and re-
traction of the tip at and from the sample is presented and total energy con-
siderations are discussed. It is shown that the area enclosed by the hysteresis
loop is proportional to the square of Hamaker’s constant.

6.1
Introduction

An atomic force microscope consists of a cantilever with a sharp tip at its end
that is brought into close proximity to the surface of a sample. One can fix the
position of the sample and mount the cantilever base on an x–y–z scanner, a
configuration used in “stand-alone” systems aimed at probing large samples.
Alternatively, one can mount the sample on a scanner and fix the position of
the base of the cantilever, as is conveniently employed in the design of most
atomic force microscopes that probe small samples. We will be using the first
geometry, which is shown schematically in Figure 6.1, noting that the model-
ing will produce the same results if we use the other geometry. The stationary
sample is assumed to be at “ground” level, positioned at g = 0. The base of
the cantilever, at a position u, is mounted on a bimorph that controls its height

Exploring Scanning Probe Microscopy with MATHEMATICA, Second Edition.  Dror Sarid
Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40617-3
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relative to the sample. The presence of a tip–sample force will bend the can-
tilever, deflecting the position of the tip, s, from its original position, u. The
deflection of the cantilever, d, will therefore be given by d = s− u. In a real ex-
periment, the tip–sample force may involve contributions from atomic, adhe-
sion, and indentation forces, to name only a few. However, the salient features
of an atomic force microscope can be obtained quite accurately by modeling
the tip–sample interaction using only a Lennard–Jones potential.

The main topic discussed in this chapter will concern the deflection of the
cantilever as a function of the bimorph position, namely d = d(u). Note that
the value of u is computer controlled and the value of d is measured using op-
tical deflection or interferometric methods. Clearly, the tip–sample distance, s,
is determined by both u and d. For convenience, however, the modeling will
use s as a free parameter so that the plot of d = d(u) will be accomplished by
using a parametric plot of d(s) against u(s) for a particular range of s values.
The operation of the atomic force microscope, in the so-called contact mode,
will usually start by having the base of the cantilever placed far enough from
the sample such that the tip does not interact with it. A mechanical motor will
then lower the base, decreasing the tip–sample distance, until a slight can-
tilever deflection is monitored by the AFM. At this point, the AFM motor will
stop, and the computer-controlled bimorph will take over, moving the can-
tilever base closer to the sample. The downward deflection of the cantilever
is continuously monitored as its tip approaches the sample. At a particular
point, denoted by uin, the tip will snap into the surface of the sample. Moving
the base of the cantilever even closer to the surface of the sample will decrease
the cantilever deflection, which eventually will change direction. When the
base of the cantilever is pulled away from the sample, the deflection of the
cantilever again changes directions, and at a given point, denoted by uout, the
tip will snap out from the surface of the sample. The cantilever at this point
is still bent downward under the influence of the tip–sample force. However,
when the base of the cantilever is retracted far enough from the sample, the
deflection of the cantilever will vanish.

Tracing this deflection as a function of the bimorph position yields a force
curve resembling a hysteresis loop that characterizes the operation of the
contact-mode atomic force microscope. Analysis of the cantilever, tip and sam-
ple interactions shed light on the significance of the “snap-in” and “snap-out”
points. The calculation of the area enclosed under the hysteresis loop indi-
cates that one can measure Hamaker’s constant from experimentally obtained
force curves. By augmenting the modeling presented in this chapter so that
it also includes adhesion and indentation forces, one can obtain information
regarding the “stickiness” and “softness” of the sample, respectively.

The parameters of the system, which are typical to those of a commercial
AFM, are given in Table 6.1.
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u
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g

Sample

CantileverBase Tip

Fig. 6.1 Schematic diagram of the cantilever, tip, and sample. Here,
the surface of the sample, which is stationary, is positioned at g. The
position of the base of the cantilever is at u, while the position of the tip
is at s.

Table 6.1 The parameters of the systems.

R = 10 nm
σ = 0.35 nm

AH = 0.425 aJ
k = 0.5 N/m

6.2
Tip–Sample Interaction

6.2.1
Lennard–Jones Potential

Of the several forces a tip may encounter when placed in the vicinity of a sam-
ple, we consider only the one derived from the Lennard–Jones potential, W,
given by

W =
AHR
6σ

[
1

210

(σ

s

)7
− σ

s

]
. (6.1)

The first term on the right-hand side is the magnitude of the potential in
terms of Hamaker’s constant, AH, and tip radius, R. The second term on the
right-hand side describes the shape of the potential in terms of the tip–sample
distance, s, and a typical atomic distance, σ. The potential vanishes at a dis-
tance, sW0 ,

sW0 =
1

2101/6 σ , (6.2)

and obtains its minimum value, Wmin,

Wmin = −301/6

7
AHR

σ
, (6.3)

at a distance, sWmin ,
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sWmin =
1

301/6 σ . (6.4)

Table 6.2 gives the values of sW0 , sWmin , and Wmin for the parameters pre-
sented in Table 6.1.

Table 6.2 The values of sW0 , sWmin , and Wmin for the parameters pre-
sented in Table 6.1.

sW0 = 0.143 559 nm
sWmin = 0.198 555 nm
Wmin = −3.0578 aJ

Figure 6.2 shows the tip–sample Lennard–Jones potential, W, as a function
of the tip–sample distance, s. Note that the potential, in the region described
by Figure 6.2, is attractive and by convention negative.
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Fig. 6.2 The Lennard–Jones potential, W, as a function of the tip–
sample distance, s.

6.2.2
Lennard–Jones Force

The Lennard–Jones force, F, is obtained from the potential by taking the neg-
ative of its derivative with respect to s,

F =
AHR
6σ2

(
σ2

s2 −
1

30
σ8

s8

)
. (6.5)

The force vanishes at sF0 ,

sF0 =
1

301/6 σ , (6.6)
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and obtains its minimum value, Fmin,

Fmin = −1
8

(
15
2

)1/3 AHR
σ2 , (6.7)

at sFmin ,

sFmin =
(

2
15

)1/6

σ . (6.8)

Table 6.3 gives the value of sF0 , sFmin , and Fmin for the parameters presented
in Table 6.1.

Table 6.3 The value of sF0 , sFmin , and Fmin for the parameters pre-
sented in Table 6.1.

sF0 = 0.198 555 nm
sFmin = 0.250 164 nm
Fmin = −8.488 87 nN

Figure 6.3 shows the Lennard–Jones force, F, as a function of the tip–sample
distance, s. The tip–sample force, in the region described by Figure 6.3, is at-
tractive and by convention negative.
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Fig. 6.3 The Lennard–Jones force, F, as a function of the tip–sample
distance, s.

6.2.3
Lennard–Jones Force Derivative

The tip–sample Lennard–Jones force derivative, F′ = ∂F/∂s, is an important
function because it determines whether the tip will or will not “snap” into the
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sample on approach. F′ is obtained from the force F by taking its derivative
with respect to s,

F′ =
AHR
3σ3

(
σ3

s3 −
2

15
σ9

s9

)
, (6.9)

which vanishes at sF′

sF′0
=

(
2
15

)1/6

σ . (6.10)

F′ obtains its maximum value, F′max

F′max =
√

10
9

AHR
σ3 , (6.11)

at sF′max
,

sF′max
=

(
2
5

)1/6

σ . (6.12)

Table 6.4 gives the values of sF′0
, sF′min

, and F′min for the parameters presented
in Table 6.1.

Table 6.4 The values of sF′0
, sF′min

, and F′min for the parameters pre-
sented in Table 6.1.

sF′0
= 0.250 164 nm

sF′max
= 0.300 431 nm

F′max = 34.829 1 N/m

Figure 6.4 shows the Lennard–Jones force derivative, F′, as a function of the
tip–sample distance s. Note that the force derivative in the region described in
Figure 6.4 is positive, and may obtain values smaller or greater than the spring
constant, k, of the cantilever.

6.2.4
Morse Potential

Some calculations appearing in the literature that deal with the tip–sample
force involved in scanning tunneling microscopy use a Morse, rather than a
Lennard–Jones potential. The Morse force, FM, is given by

FM = c1
[
�−2c2(s−s2) − 2�−c2(s−s2)

]
. (6.13)

It is instructive to find the coefficients c1 and c2 such that the position and
value of the minimum of this force are the same as those belonging to the
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Fig. 6.4 The Lennard–Jones force derivative, F′, as a function of the
tip–sample distance, s.

Lennard–Jones force. These two coefficients are given in terms of the parame-
ters of the Lennard–Jones potential by

c1 = −AHR
6σ2

[
1

30

(
15
2

)8/6

−
(

15
2

)1/3]
, (6.14)

and

c2 = − ln(2)
σ

[
301/6 −

(
2

15

)1/6]
. (6.15)

Table 6.5 gives the values of the coefficients c1 and c2 of the Morse force.

Table 6.5 The values of the coefficients c1 and c2 of the Morse force.
The position and value of the minimum of this force are the same as
those belonging to the Lennard–Jones force.

c1 = 8.488 87 nN
c2 = 13.4308 Gm

Figure 6.5 shows both the Lennard–Jones (dashed line) and Morse (solid
line) forces, F, as a function of the tip–sample distance, s. Note that the range
of the Morse force is considerably shorter than that of the Lennard–Jones force.

6.3
Hysteresis Loop

We now discuss the physics associated with the hysteresis loop obtained by
plotting the deflection of the cantilever, d, as a function of the position of its
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Fig. 6.5 The Morse (solid line) and Lennard–Jones (dashed line)
force, F, as a function of the tip–sample distance, s.

base, u. First, the base of the cantilever, which is attached to a bimorph, is
moved down until the tip of the cantilever makes contact with the surface
of the sample. Then, the base is moved up until the tip looses contact with
this surface. We will follow these two motions and find that they produce a
hysteresis loop with two distinctive points, one where the tip snaps into the
sample and the other one where it snaps out.

6.3.1
Snap-in and Snap-out Points

To obtain a hysteresis loop, the value of the spring constant of the cantilever, k,
has to be smaller than the maximum value of the tip–sample force deriva-
tive, F′max. To characterize the tip–sample interaction, we plot the deflection of
the cantilever, d, as a function of the position of its base, u. Mathematically,
it is much simpler to use s as a free parameter and employ a parametric plot
of u(s) against d(s), where

u = s− F
k

(6.16)

and

d =
F
k

. (6.17)

Note that u is controlled by the AFM electronics, while both d and s are
determined by the parameters of the system. There are two points where the
function d is found to be discontinuous. These are given by the snap-in and
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snap-out values of s, obtained by solving

F′(ssnap) = k . (6.18)

Since the Lennard–Jones potential is a seventh-order polynomial, we must
sort out the two proper solutions, sin and sout, from which the values of uin
and uout, and din and dout, are calculated. Table 6.6 presents a summary of the
numerical values of the six parameters associated with the snap-in and snap-
out points. These parameters will be used to describe the hysteresis loop.

Table 6.6 The numerical values of the six parameters associated with
the snap-in and snap-out points.

s (nm) u (nm) d (nm)

Snap-in 1.415 02 2.122 54 −0.707 524
Snap-out 0.250 396 17.228 −16.977 6

6.3.2
Calculated Hysteresis Loop

The parametric plot of u(s) against d(s), using s as the free parameter, is shown
in Figure 6.6, where the filled disk on the right-hand side denotes the posi-
tion of the cantilever base far away from the surface of the sample. The func-
tion d(u) is observed to be double valued, which does not present a realistic
picture of what one expects to observe experimentally during the approach
and retraction of the base of the cantilever. To understand the plot shown in
Figure 6.6, we (a) dissect it into segments associated with different processes
occurring during the cantilever-sample approach and retraction, and (b) re-
draw it so that it resembles an experimentally measured hysteresis loop. This
will be done in the next section where the snap-in and snap-out points are de-
scribed. Figure 6.6 describes the situation where the bimorph moves the base
of the cantilever from a point far away from the sample, denoted in the figure
by a filled disk, toward the sample.

6.3.3
Observed Hysteresis Loop

Let us now recalculate the plot shown in Figure 6.6, which will be denoted as
the hysteresis loop, as it would appear in an experiment, breaking it into sev-
eral segments and discussing the physics associated with each one. The first
segment of the hysteresis loop, shown in Figure 6.7, describes the situation
where the bimorph moves the base of the cantilever from a point far away
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Fig. 6.6 The parametric plot of u(s) against d(s), using s as the free
parameter.

from the sample toward its surface. Since at a large distance the tip–sample
force can be neglected, the cantilever does not deflect so that d(u) is a constant.
The resultant horizontal curve to the left of the filled disk will eventually start
dropping down as the tip is drawn toward the sample. The continuous mo-
tion of the tip toward the sample will end abruptly at sin, at which point the
force derivative equals the spring constant.
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Fig. 6.7 The observed hysteresis loop: from far away to just before the
snap-in point.

Once the tip–sample distance s reaches the value sin, the force derivative
will overpower the cantilever’s spring constant, and the tip will snap into
the surface of the sample. The second segment of the hysteresis loop, shown
in Figure 6.8, is therefore a straight vertical line, depicted by a downward
pointing arrow.
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Fig. 6.8 The observed hysteresis loop: from far away to just after the
snap-in point.

In Figure 6.8 we plot the calculated position of the head of the arrow, where
the tip “touches” the surface of the sample. This position is found by solv-
ing u(s) = uin. Up to now the cantilever deflected downward because s < u.
As the bimorph continues to move the base of the cantilever ever closer to
the sample, the cantilever deflection will decrease until it vanishes when the
Lennard–Jones force vanishes. After passing this point the cantilever will de-
flect upward, since now s > u. The segment of the hysteresis loop describing
this process is shown in Figure 6.9 by the straight, diagonal line starting from
the head of the arrow. Suppose now that the bimorph starts to retract, pulling
up the base of the cantilever. The tip will still be in contact with the sample for
as long as the tip–sample force derivative is larger than the restoring force of
the cantilever.
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Fig. 6.9 The observed hysteresis loop: from far away to the minimum
tip–sample distance.
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The fourth segment, shown in Figure 6.10 together with the previous three,
is a diagonal line that partially retraces the previous diagonal line. However,
the new line continues diagonally downward to a point where the tip will
snap out of the sample.
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Fig. 6.10 The observed hysteresis loop: from far away to just before
the snap-out point.

The snap-out will occur when the tip–sample force derivative decreases be-
low the spring constant. This is described in Figure 6.11 by the arrow pointing
upward. Here, again, we have to solve u(s) = sout to get the appropriate point
at which the snap-out process ends. The head of the arrow will now meet the
almost horizontal line, as shown in Figure 6.11, and a further retraction of the
bimorph will trace this line to the right, while an approach will retrace it to
the left. Figure 6.11 describes the observed hysteresis loop obtained by the tip
approaching the sample with a subsequent withdrawal.
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Fig. 6.11 The observed hysteresis loop: from far away to just after the
snap-out point.
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To better understand the response of the cantilever to the Lennard–Jones
potential, we plot in Figure 6.12 the functions F(s), (solid line), −u(s) (dashed
line), and d(s) (dotted line). For large values of s, namely, when the tip is far
away from the surface of the sample, both the Lennard–Jones force and the
deflection of the cantilever are negligible, and their respective curves overlap.
Also, u and s, in this range, have a linear relationship, since the tip moves
down together with the base of the cantilever. At close proximity to the surface
of the sample, however, where s becomes very small, the curves associated
with u and s merge. In this range, the three curves exhibit a similar shape
because of the smallness of s.
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Fig. 6.12 The functions F(s) (solid line), −u(s) (dashed line), and
d(s) (dotted line), showing their similar shape.

6.4
Evaluation of Hamaker’s Constant

We will now show that one can obtain the value of Hamaker’s constant, AH,
from the experimentally observed area enclosed by the hysteresis loop, Ah. To
that end, we first evaluate the magnitude of the various parameters associated
with the segments shown in Figure 6.11, which are given in Table 6.7.

Table 6.7 The magnitude of the various parameters associated with
the segments shown in Figure 6.11.

sout − sin = −1.164 62 nm
uout − uin = 15.1055 nm
dout − din = −16.2701 nm
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A good approximation to the area enclosed by the hysteresis loop, shown
in Figure 6.11, is readily given by noting that it resembles a triangle,

Ah =
1
2
(dout − din)(uout − uin) . (6.19)

Table 6.8 gives the value of Hamaker’s constant, AH, the area enclosed by
the hysteresis loop, Ah, and the ratio Ah/A2

H. This ratio will stay almost con-
stant for a large range of values of Hamaker’s constant, because the Lennard–
Jones potential is linear in AH. Consequently, the value of the parameters as-
sociated with the snap-in and snap-out processes, dout − din and uout − uin,
will each scale with AH, so that AH ∝ A2

h.

Table 6.8 Hamaker’s constant, AH, the area enclosed by the hystere-
sis loop, Ah, and the ratio Ah/A2.

AH = 0.425 aJ
Ah = 122.884 nm2

Ah/A2
H = 680.326 m/aJ

6.5
Animation

Figure 6.13 shows a time-elapsed series of cantilever–tip–sample positions
generated by using the parameters given in Table 6.1. Here, the sample is mov-
ing up and down, and the cantilever responds to the tip–sample force. Note
that at stage 1 the cantilever is pushed up by the sample, while it is pulled
down by the attractive tip–sample forces at stages 2–7, and at stage 8 the can-
tilever snaps back to its neutral position. A live animation is presented in the
code belonging to this chapter.

� Exercises for Chapter 6

1. Modify the parameters in Table 6.1 and discuss the resultant snap-in and
snap-out points of the various hysteresis loops.

2. Modify the parameters in Table 6.1 and check the relationship between the
area enclosed by several hysteresis loops and the product of the tip radius
and Hamaker’s constant.
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Fig. 6.13 A time-elapsed series of cantilever-tip–sample positions.
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7
Free Vibrations

Highlights

1. Transient and steady-state solutions to the equation of motion of a free
cantilever

2. Phase, amplitude, and energy of the vibration as a function of frequency
and damping

Abstract

The vibration of the cantilever of an atomic force microscope, in the absence
of a tip–sample force, is modeled as a driven, damped, linear oscillator. For
simplicity, the oscillator is modeled as a point mass suspended on a spring
mounted on a vibrating bimorph. Analytical and numerical solutions are pre-
sented for the response of the cantilever in the vicinity of its resonance fre-
quency. In particular, the amplitude and phase of vibration as a function of
frequency and damping are presented together with phase diagrams.

7.1
Introduction

This is the first in a series of three chapters dealing with the vibration of the
cantilever of an atomic force microscope. This chapter treats the cantilever as
a driven, damped, linear oscillator, neglecting tip–sample forces. The next two
chapters extend these discussions to the cases where the tip of the cantilever
interacts with the surface of a sample, but does not contact it, and where the
tip touches the surface intermittently.

Figure 7.1 is a schematic diagram of the cantilever mounted on a bimorph
that vibrates at a given amplitude and frequency, a and f , respectively. The
cantilever attached to it will respond by vibrating with an amplitude and
phase given by A and φ, respectively, that depend on its mass, m, spring
constant, k, quality factor associated with its damping, Q, and resonance fre-
quency, f0. If the amplitude of the vibrating cantilever is small enough, one

Exploring Scanning Probe Microscopy with MATHEMATICA, Second Edition.  Dror Sarid
Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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can approximate its response by using an equivalent point mass suspended
by a spring mounted on a vibrating bimorph. Special emphasis is given to
the response of the cantilever operating at its resonance frequency and at a
frequency that is at the steepest slope of its resonance curve. The equation of
motion of this system is solved both analytically and numerically.

Fig. 7.1 A schematic diagram of a driven cantilever.

The four parameters that dictate the operation of the vibrating cantilever,
a, k, f0, and Q, which will be used in the examples, are given in Table 7.1. Note
that the values of Q and f are much smaller than those of typical cantilevers.
However, using these values makes it easier to explore the response of the
cantilever, without any loss of accuracy. Unless specifically stated, we will use
the value of Q given in Table 7.1.

Table 7.1 The four parameters that dictate the operation of the vibrat-
ing cantilever, a, k, f0, and Q.

a = 1 nm
k = 1 N/m

f0 = 10 Hz
Q = 5

7.2
Equation of Motion

We start by deriving the equation of motion of a driven cantilever whose tip
is far enough from the surface of a sample such that tip–sample forces can be
neglected. Let u denote the vibration of the bimorph driving the cantilever,

u(t) = u0 + a�−�ωt , (7.1)

where u0 is the bimorph average position, ω = 2π f , and t is time. The resul-
tant vibration of the cantilever at its free end will be denoted by

z(t) = z0 + z(t) , (7.2)
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where z0 is its average position. The equation of motion of a point mass, m,
representing the vibrating cantilever, is

F0 = m
∂2

∂t2 z(t) + γ
∂

∂t
z(t) + k(z(t)− u) . (7.3)

Here, γ is a damping (loss) coefficient proportional to the velocity of the
cantilever, given later in terms of Q, and F0 is a constant force. Note that in a
real experiment, where the cantilever and tip are surrounded by a fluid (gas
or liquid), both the effective mass of the cantilever and its damping constant
are functions of the tip–sample distance. Here, however, we neglect such an
effect. Inserting Eqs. (7.1) and (7.2) into Eq. (7.3) yields

F0 = m
∂2

∂t2 z(t) + γ
∂

∂t
z(t) + k[z0 + z(t)− u0 − a�−�ωt] . (7.4)

For a vanishing F0, we get
z0 = u0 , (7.5)

and Eq. (7.4) reduces to

m
∂2

∂t2 z(t) + γ
∂

∂t
z(t) + kz(t) = ak�−�ωt . (7.6)

Recall that the resonance frequency of a lossless cantilever, for which γ = 0,
is

ω0 =
√

k/m , (7.7)

and that for a lossy cantilever, γ and Q are related by

Q = mω0/γ . (7.8)

Using Eq. (7.7) and Eq. (7.8) in Eq. (7.6) yields the equation of motion

∂2

∂t2 z(t) +
ω0

Q
∂

∂t
z(t) + ω2

0z(t) = aω2
0�
−�ωt , (7.9)

which will be first solved analytically and then numerically by using the pa-
rameters given in Table 7.1.

7.3
Analytical Solution

7.3.1
Equation of Motion

We will now solve the equation of motion analytically, find an expression for
the frequency-dependent response of the cantilever, and use it to plot a typ-
ical case. First, consider the case of a free, lossless cantilever that oscillates
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harmonically. For a vanishing value of a and an infinite value of Q, Eq. (7.9)
reduces to

∂2

∂t2 z(t) + ω2
0z(t) = 0 . (7.10)

The solution for z is readily obtained as

z = �−�ω0t . (7.11)

Next, consider the case of a free, lossy cantilever having a finite Q. Equa-
tion (7.9) will now reduce to

∂2

∂t2 z(t) +
ω0

Q
∂

∂t
z(t) + ω2

0z(t) = 0 . (7.12)

Assume that the motion of the cantilever, z, can be described by

z = �pt . (7.13)

Inserting Eq. (7.13) into Eq. (7.12) yields

p2 + p
ω0

Q
+ ω2

0 = 0 , (7.14)

and solving for p gives

p = −ω0

2Q
− ω0

2Q

√
1− 4Q2 . (7.15)

For 4Q2 > 1, which is always the case, Eq. (7.15) can be written in terms of
real and imaginary parts as

p = −�ω0

√
1− 1

4Q2 −
ω0

2Q
. (7.16)

The imaginary part of p gives the resonance frequency of the freely oscillat-
ing, lossy cantilever, ω1,

ω1 = ω0

√
1− 1

4Q2 , (7.17)

and the real part of p gives the decay of the vibrations, so that the solution to
Eq. (7.12) yields

z = �−�ω1t�−
1

2Q ω0t . (7.18)

7.3.2
Steady-State Regime

We will now solve the general equation of motion of the driven, lossy can-
tilever, Eq. (7.9). Assume now that the amplitude of vibration of the can-
tilever, z, can be described by

z = A�−�ωt , (7.19)
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where A is a complex amplitude. Inserting Eq. (7.19) into Eq. (7.9) and can-
celling common factors leads to

A
(

1− x2 − �x 1
Q

)
= a , (7.20)

where x = ω/ω0. Solving for A yields

A =
aQ

Q(1− x2)− �x , (7.21)

with its absolute value, A0, given by

A0 =
aQ√

Q2(1− x2)2 + x2
. (7.22)

As expected, A0 is a function of ω, ω0, and Q, and is proportional to the
amplitude of vibration of the bimorph, a.

7.3.3
Bimorph–Cantilever Phase

The phase of the vibration of the cantilever, φ, relative to that of the driving
bimorph, is obtained from the ratio of the imaginary and real components
of A,

φ = arctan
[

1
Q

( 1
x − x

)]
. (7.23)

We can also write A0 in terms of sin φ, as

A0 = aQ
1
x

sin φ , (7.24)

where

sin φ =
1√

1 + Q2
(

x− 1
x

)2
. (7.25)

Figure 7.2 shows the bimorph–cantilever phase, φ, as a function of the nor-
malized frequency x = ω/ω0, for Q = 1 (solid line), Q = 5 (dashed line), and
Q = 10 (dotted line). Note that the steepness of the curve reflects the mag-
nitude of Q. Note also that for frequencies well below resonance φ → 0, at
resonance φ = π/2, and far above resonance φ → π.
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Fig. 7.2 The bimorph–cantilever phase, φ, as a function of the normal-
ized frequency x = ω/ω0, for Q = 1 (solid line), Q = 5 (dashed line),
and Q = 10 (dotted line).

7.3.4
Q-Dependent Resonance Frequency

The finite value of Q modifies the resonance frequency of the driven cantilever
from ω0 to ωm, given by

ωm =

√
1− 1

2Q2 ω0 . (7.26)

Table 7.2 gives the resonance frequencies of the free and lossless, free and
lossy, and driven and lossy cantilevers, ω0, ω1 and ωm, respectively, together
with their respective amplitudes, A0, for Q = 5.

Table 7.2 The resonance frequencies of the free and lossless, free
and lossy, and driven and lossy cantilevers, ω0, ω1 and ωm, respec-
tively, together with their respective amplitudes, A0.

ω0 ω1 ωm

ω 62.831 9 62.516 9 62.200 4
A0 5 5.018 86 5.025 19

Figure 7.3 shows the Q-dependent, normalized resonance frequency, ωm/ω0,
for the range 5 < Q < 15.

One observes that decreasing Q will lower the resonance frequency, albeit
by a rather small value.
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Fig. 7.3 The scaled resonance frequency, ωm/ω0, as a function of Q.

7.3.5
Frequency-Dependent Amplitude

The frequency-dependent amplitude of vibration of the cantilever, A0, as a
function of the normalized frequency, ω/ω0, for Q = 1 (solid line), Q =
5 (dashed line), and Q = 10 (dotted line), is shown in Figure 7.4. Here, the peak
of the resonance curve, marked by a vertical line, is somewhat below ω = ω0,
because Q is finite. Note that the below- and above-resonance regions are
dominated by the spring constant of the cantilever and its mass, respectively.
On resonance, however, the peak is determined by the quality factor Q.
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Fig. 7.4 The frequency-dependent amplitude of vibration, A0, as a
function of the scaled resonance frequency, ω/ω0, for Q = 1 (solid
line), Q = 5 (dashed line), and Q = 10 (dotted line).
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7.3.6
Frequency at the Steepest Slope

Operating at one of the two frequencies defined by the steepest slope of the
resonance curve is of experimental importance. The reason for it is that at
these frequencies, the amplitude of vibration is most sensitive to changes in
the tip–sample force, as will discussed in the next chapter. An approximate
value for these frequencies, widely used in the literature, is given by ωm1 =
ω0(1− 0.35/Q) and ωm2 = ω0(1 + 0.35/Q). Table 7.3 gives the ωm1 /ω0 and
ωm2 /ω0 together with their exact value.

Table 7.3 The normalized frequencies ωm1 /ω0 and ωm2 /ω0 together
with their exact value.

ωm1 /ω0 ωm2 /ω0

Exact 57.841 7 66.722 7
Approximate 58.433 6 67.230 1

Note that the exact and approximate solutions do not agree for small values
of Q, such as Q = 5. However, for larger values of Q, for example, Q = 50, the
agreement is good.

7.3.7
Average Power

The average power delivered to the vibrating cantilever by the externally
driving force, Pav, is obtained by time averaging the velocity and force prod-
uct. Here, the average of a cycle yields

Pav =
1
2

akA0ω sin φ , (7.27)

where sin φ accounts for the angle between the driving force and the response
of the cantilever. Figure 7.5 shows the average power, Pav, as a function of the
normalized frequency ω/ω0 for Q = 10 (solid line), Q = 20 (dashed line), and
Q = 30 (dotted line).

7.4
Numerical Solutions

7.4.1
Equation of Motion

We are now in a position to code the general solution of the equation of mo-
tion of the cantilever in the presence of the tip–sample force. The equation of
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Fig. 7.5 The frequency-dependent average power, Pav, as a func-
tion of the scaled frequency, ω/ω0, for Q = 10 (solid line), Q =
20 (dashed line), and Q = 30 (dotted line).

motion can be written as two first-order differential equations, one given by

z′2(t) = −ω0

Q
z2(t)−ω2

0 [z1(t)− a sin(ωt)] , (7.28)

where z1(t) = z(t), and the other given by z2(t) = z′1(t). By solving these
two coupled equations as interpolation functions, we obtain the numerical
solution to the response of the cantilever to the driving bimorph.

7.4.2
Transient Regime

Figure 7.6 shows the transient regime of the vibrations of the cantilever in the
first 2Q cycles, for ω = ω0, together with their envelope (solid line) as given
by Eq. (7.18).

It is instructive to compare the vibrations of the cantilever for ω = ω0 with
the π/2 phase-shifted vibrations of the bimorph, shown in Figure 7.7, as a
function of time, t. Note that the amplitude of vibrations of the bimorph has
been multiplied by aQ.

Figure 7.7 confirms that the vibration of the cantilever on resonance indeed
lags behind that of the bimorph by π/2.

7.4.3
Bimorph–Cantilever Phase Diagram

Figure 7.8 shows the bimorph–cantilever phase diagram for 2Q cycles, ob-
tained as a parametric plot with the common variable t. The phase of the vi-
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Fig. 7.6 The transient vibrations of the cantilever and their envelope
(solid and dashed lines).
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Fig. 7.7 The shifted, transient vibration of the cantilever and the vibra-
tion of the bimorph (dashed line) for ω = ω0.

brations of the cantilever, relative to those of the bimorph driving it, evolves
to an almost steady state after only 2Q cycles. The perfectly circular contour
of the phase plot after 2Q cycles implies that the vibrations is well behaved.

7.4.4
Displacement–Velocity Phase Diagram

It is instructive to observe the cantilever displacement–velocity phase dia-
gram, where z(t) and ∂z(t)/∂t are parametrically plotted using t as the com-
mon variable. The plot shown in Figure 7.9 demonstrates again that the vibra-
tions are well behaved.
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Fig. 7.8 The bimorph–cantilever phase diagram.
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Fig. 7.9 The displacement–velocity phase diagram.

� Exercises for Chapter 7

1. Calculate and plot the amplitude and phase of vibration of the cantilever
for a range of parameters a, k, f0, and Q.

2. Repeat Problem 1 but now use the frequencies at the steepest slope of the
resonance curve.
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8
Noncontact Mode

Highlights

1. Transient and steady-state solutions to the equation of motion
2. Phase and amplitude of vibration as a function of frequency

Abstract

The vibration of the cantilever of an atomic force microscope, in the presence
of a tip–sample force, is modeled as a driven, damped, nonlinear oscillator.
The dependence of the resonance frequency, amplitude, and phase of vibra-
tion of the cantilever on the tip–sample force is solved numerically and an-
alytically and a comparison between the two is presented using typical pa-
rameters. It is shown that an approximate analytical solution, involving the
tip–sample force derivative, can be used to model effects of tip–sample elec-
tric, magnetic, and atomic forces.

8.1
Introduction

The previous chapter treated the basic properties of a free cantilever, excited
by a vibrating bimorph and placed far away from a sample. Here we treat
the case where the tip of the cantilever is brought into close proximity to the
surface of a sample, yet does not make contact with it. The tip–sample force,
modeled by a Lennard–Jones potential, will therefore always stay in the at-
tractive regime. An AFM whose tip position is limited to this regime is con-
sidered to operate in the noncontact mode. A schematic diagram of the tip–
sample interaction given in Figure 8.1 shows a bimorph, cantilever, tip, and
sample, all vibrating at a frequency f . The bimorph vibrates with an ampli-
tude a, and the cantilever with an amplitude A and phase φ relative to that of
the bimorph. The vibration of the cantilever depends on its spring constant k,
resonance frequency f0, quality factor Q, tip–sample force F, and tip–sample
average spacing sset. The equation of motion of the cantilever in the presence

Exploring Scanning Probe Microscopy with MATHEMATICA, Second Edition.  Dror Sarid
Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40617-3



8.1 Introduction 123

of the tip–sample force, is presented and solved analytically and numerically
using the parameters given in Table 8.1. The solution to the equation of mo-
tion of the driven cantilever, in the transient- and steady-state regimes, is dis-
cussed in terms of the amplitude and phase of vibration. Expanding the solu-
tion in powers of the tip displacement, and using the first-order term in the
analytical solution, highlights the importance of the role of the first derivative
of the force, F′, in modifying the effective spring constant of the cantilever,
k1 = k − F′. For an attractive Lennard–Jones force, for which F′ is positive,
k1 < k, resulting in a decrease of the resonance frequency of the cantilever.
The case where the repulsive regime of the force has to be taken into account
will be dealt with in the next chapter.

Fig. 8.1 A schematic diagram of the vibrating cantilever, its tip, and a
sample.

Table 8.1 The amplitude of vibration of the cantilever, a, its spring
constant, k, quality factor, Q, resonance frequency, f0, and average
tip–sample spacing, sset.

a = 0.1 nm
k = 10 N/m

Q = 20
f0 = 100 kHz
f = 100 kHz

sset = 3 nm

The tip–sample and the Lennard–Jones potential are characterized by the
radius of the tip, R, a typical interatomic spacing, σ, and Hamaker’s con-
stant, AH, given in Table 8.2.

Table 8.2 The the radius of the tip, R, a typical interatomic spacing, σ,
and Hamaker’s constant, AH.

R = 10 nm
σ = 0.34 nm

AH = 1 aJ
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8.2
Tip–Sample Interaction

8.2.1
Lennard–Jones Potential

This section is a summary of a more comprehensive discussion of the tip–
sample Lennard–Jones potential presented in Chapter 6. The purpose of in-
cluding it here is to make this chapter self-contained. The Lennard–Jones po-
tential, W, is given by

W =
AHR
6σ

[
1

210

(
σ

s

)7

− σ

s

]
, (8.1)

The first term on the right-hand side is the magnitude of the potential in
terms of A and R, and the second one describes the shape of the potential. The
Lennard–Jones force, F, is obtained from the potential by taking the negative
of its derivative with respect to s

F =
AHR
6σ2

(
σ2

s2 −
σ8

30s8

)
, (8.2)

which vanishes at sF0

sF0 =
1

301/6 σ . (8.3)

The Lennard–Jones force as a function of the tip–sample spacing, s, is shown
in Figure 8.2.
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Fig. 8.2 The Lennard–Jones force, F, as a function of the tip– sample
spacing, s.

The tip–sample force in the region shown in Figure 8.2 is attractive, and by
convention negative. It has been shown in Chapter 6 that on approach, the tip
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will snap into the sample if the cantilever spring constant is larger than the
tip–sample force derivative, F′, given by

F′ =
AHR
3σ3

(
σ3

s3 −
2

15
σ9

s9

)
. (8.4)

The force derivative vanishes at sF′0
,

sF′0
=

(
2
15

)1/6

σ , (8.5)

and obtains its maximum value at sF′max
,

sF′max
=

(
2
5

)1/6

σ . (8.6)

Its value at this point, F′max, is

F′max =
√

10
9

AR
σ3 . (8.7)

The parameters given in Table 8.1 and Table 8.2 generate a force derivative
whose maximum is larger than the spring constant, as shown in Figure 8.3. On
approach, therefore, the tip will snap into the sample at a spacing for which
F′ = k, shown as a horizontal line in the figure.
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Fig. 8.3 The Lennard–Jones force derivative, F′, as a function of the
tip–sample spacing, s, and the spring constant of the cantilever, k,
shown by a horizontal line.

The results of these calculations yield the values of sF0 , sF′0
, F′max, and sF′max

,
given in Table 8.3.
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Table 8.3 The values of sF0 , sF′0
, F′max and sF′max

using Table 8.1 and
Table 8.2.

sF0 = 0.192 882 nm
sF′0

= 0.243 016 nm
F′max = 0.243 016 nm
sF′max

= 0.291 847 nm

8.2.2
The Equation of Motion

Let us start by characterizing the tip–sample force, as derived from a Lennard–
Jones potential. We first formulate the equation of motion of a cantilever
whose tip experiences this force and solve the equation numerically (no exact
analytical solution exists). Finally, we analyze the resulting features character-
izing the vibration of the cantilever. It was shown in the previous chapter that
the cantilever reaches almost a steady state in its vibration after about 2Q cy-
cles. We will therefore stop the numerical calculations at this value. Table 8.4
gives the number of cycles, their period, and the duration of the calculation.

Table 8.4 The number of cycles, their period, and the duration of the
calculation.

Cycles = 40
Period = 10 µs

Duration = 400 µs

We are now in a position to code the general solution of the equation of
motion of the cantilever in the presence of the tip–sample force. The equation
of motion can be written as two first-order differential equations, one given
by

z′2(t) = −ω0

Q
z2(t)−ω2

0 [z1(t)− a sin(ωt)] , (8.8)

where z1(t) = z(t), and the other given by z2(t) = z′1(t). By solving these
two coupled equations as interpolation functions, we obtain the numerical
solution to the response of the cantilever to the driving bimorph.

8.2.3
Numerical Solution of the Equation of Motion

Before analyzing the numerical solution, which is given as an interpolation
function, it is useful to recall the analytical solution to the vibration of a driven
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cantilever, zfree, with no tip–sample forces,

zfree(t) = zset + aQ
(

1− �−
ω0
2Q t

)
sin(ω0t− π/2) . (8.9)

Note that here the phase of zfree is shifted by −π/2. The interesting parts
of the numerical and analytical solutions appear in the transient- and steady-
state regimes, which will be described in the following sections. The numerical
solutions, z (solid line), and the shifted analytical solution, zfree (dashed line),
for the transient vibration regime, are shown in Figure 8.4 for a tip–sample
spacing s = sset. It is observed that these two solutions overlap each other for
the first few cycles.
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Fig. 8.4 The numerical solutions, z (solid line), and the shifted analyti-
cal solution, zfree (dashed line), for the first five cycles.

Let us now compare z and zfree for the steady-state regime in the last two
cycles. The comparison of z (solid line) and zfree (dashed lines) in the steady-
state regime is shown in Figure 8.5. Here we observe that the presence of the
tip–sample force produces a shift in the phase of the z relative to that of zfree,
a topic that will be investigated in the following sections.

To further explore the phase of vibration of the cantilever, we produce a
parametric plot of z against zfree, shown in Figure 8.6. If these two functions
were in phase, the curve would produce a straight diagonal line. However, the
presence of a finite tip–sample force gives rise to a phase shift between these
two vibrations, as evidenced here by the elliptical curve.

The phase diagram of z against v = z′(t) is shown in Figure 8.7 for the
steady-state regime. Here, the parametric plot yields an almost perfect circle,
indicating the “good behavior” of the vibration of the cantilever, namely, that
it follows an almost harmonic motion.
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Fig. 8.5 A comparison of z and zfree for the steady–state regime in the
last two cycles.
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Fig. 8.6 The phase diagram of z against zfree in the last two cycles.
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Fig. 8.7 The displacement–velocity phase diagram in the last two
cycles.
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8.2.4
Approximate Analytical Solution of the Equation of Motion

Assume that the tip of the cantilever vibrates far enough from the sample
such that the tip–sample force it experiences can be considered as only a small
perturbation to the force-free case. One can expand the tip–sample force in
powers of the tip displacement, and use the first-order term in the analytical
solution to the motion of the cantilever. In this section, we solve the equation
of motion analytically using a first-order perturbation, and compare the so-
lution to the numerically exact one. Let the bimorph driving the cantilever
vibrate according to

u = u0 + a��ωt , (8.10)

where u0 is its average position. Let the vibration of the tip be

z = z0 + z(t) , (8.11)

where z0 is the average position of the tip, and expand the nonuniform tip–
sample force, F, around z0,

F =
∞

∑
n=0

F(n)(z− z0)n . (8.12)

The assumption here is that the variation of the force along the excursion of
the vibrating tip is small enough to justify a first-order perturbation solution.
To first order, one can rewrite Eq. (8.12) as

F = F0 + F′z(t) , (8.13)

where both F0 and F′ are evaluated at z0. The equation of motion, therefore,
becomes

mz′′(t) +
mω0

Q
z′(t) + k(z− u) = F0 + F′z(t) . (8.14)

Inserting Eqs. (8.10), (8.11), and (8.13) into Eq. (8.14) yields

mz′′(t) +
mω0

Q
z′(t) + k

[
z0 + z(t)− u0 − a��ωt] = F0 + F′z(t) . (8.15)

At equilibrium,
F0 = k(z0 − u0) , (8.16)

and Eq. (8.15) reduces to

mz′′(t) +
mω0

Q
z′(t) + k1z(t) = ak��ωt , (8.17)

where

k1(z) = k− F′(z) . (8.18)
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The resonance frequency of a lossless cantilever, ω1, for which Q → ∞,
determined by k1 rather than by k, is given by

ω1 =
√

k1/m . (8.19)

Inserting Eq. (8.19) into Eq. (8.17) leads to

z′′(t) +
ω0

Q
z′(t) + ω2

1z(t) = aω2
0�
�ωt , (8.20)

where both ω0 and ω1 are included. We will now solve Eq. (8.20) analytically
for the steady-state regime and explore its properties. Previously, the force
derivative, F′, was a function of z. We now wish to use it as a variable and
analyze the effective spring constant k1 in conjunction with the resonance fre-
quency ω1,

k1(F′) = k− F′ . (8.21)

Assume now that
z(t) = A��ωt , (8.22)

so that Eq. (8.20) becomes

−Aω2 + �A
ωω0

Q
+ A

k1

k
ω2

0 = aω2
0 . (8.23)

The steady state, complex solution of the equation of motion, A, is given by

A =
akQω2

0

−kQω2 + �kωω0 − F′Qω2
0 + kQω2

0
, (8.24)

which yields the amplitude of vibration of the cantilever, A0,

A0 =
akQω2

0√
k2ω2ω2

0 + (kQω2 + F′Qω2
0 − kQω2

0)2
. (8.25)

Using Eq. (8.19) and Eq. (8.21) in Eq. (8.25) leads to

A0 =
aQ√

ω2

ω2
0

+ Q2
(

ω2

ω2
0
− k1

k

)2
. (8.26)

The phase between the vibration of the bimorph and the cantilever, ∆φ, is
obtained from the ratio of the imaginary and real components of A,

∆φ = arctan
(

kωω0

kQ(ω2 −ω2
0) + F′Qω2

0

)
, (8.27)
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which, on resonance, becomes

∆φ1 = arctan
(

k
QF′

)
. (8.28)

Recall now the frequencies for which the resonance curve is the steepest,
namely, at ωm1 and ωm2 , given in Chapter 7 by

ωm1 = ω0(1− 0.35/Q) (8.29)

and

ωm2 = ω0(1 + 0.35/Q) . (8.30)

Figure 8.8 shows the phase of vibration of the cantilever, ∆φ, as a function
of the tip–sample spacing, s, for ω = ω0 (solid line), ω = ωm1 (dashed line),
and ω = ωm2 (dotted line). For a large spacing, and for ω = ω0, we find that
∆φ → 90° , as expected. Also, the phases for ω = ωm1 and for ω = ωm2 are
larger and smaller than the phase for ω = ω0, respectively.
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Fig. 8.8 The phase of vibration of the cantilever, ∆φ, as a function of
the tip–sample spacing, s, for ω = ω0 (solid line), ω = ωm1 (dashed
line), and ω = ωm2 (dotted line).

Figure 8.9 shows the normalized amplitude of vibration of the cantilever, A/
(aQ), as a function of the force derivative, F′, for ω = ω0 (solid line), ω =
ωm1 (dashed line), and ω = ωm2 (dotted line), in the range −0.1k < F′ < 0.1k.
It should be noted that the effect of the force derivative, during one cycle of
vibration, is larger when the tip is at its smallest distance to the sample than
when it is at its largest distance. It is therefore not clear exactly at what value
of s should we evaluate the force derivative. Nevertheless, we can conclude
that using the approximate analytical solution, where k is replaced by k− F1,
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gives a reasonable approximation of the effect that the tip–sample force has
on the vibration of the cantilever. One can therefore employ this approxima-
tion to model the response of the cantilever to atomic, electric, and magnetic
tip–sample forces, by using their derivatives with respect to the tip–sample
spacing.
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Fig. 8.9 The normalized amplitude of vibration of the can-
tilever, A/(aQ), as a function of the force derivative, F′, for ω =
ω0 (solid line), ω = ωm1 (dashed line), and ω = ωm2 (dotted line).

� Exercises for Chapter 8

1. Calculate and plot the amplitude and phase of vibration of the cantilever
for a range of parameters a, k, f , Q, f , and F′.

2. Calculate and plot the case where the sample is vibrated by a bimorph,
causing the cantilever to vibrate via the tip–sample force derivative.
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9
Tapping Mode

Highlights

1. Transient and steady-state solutions to the general equation of motion
2. Tapping amplitude and phase relative to those of a free cantilever
3. Tip–sample indentation force, and pressure

Abstract

The operation of a tapping mode atomic force microscope is analyzed nu-
merically in terms of an attractive tip–sample Lennard–Jones potential and a
repulsive indentation force. The results yield the amplitude and phase of the
tapping cantilever, and the tip–sample indentation depth, force, and pressure.

9.1
Introduction

This chapter treats the case in which a cantilever is mounted on a bimorph
and is vibrated close to its resonance frequency, inducing it to tap on the sur-
face of a sample. While the previous chapter treated only an attractive tip–
sample force, here we introduce also a tip–sample repulsive force that indents
the sample. A schematic of the tip–sample interaction in the tapping mode is
presented in Figure 9.1; it shows a bimorph vibrating at a frequency f and
amplitude a, and a cantilever vibrating with an amplitude A and phase φ. The
amplitude and phase of vibration of the cantilever in this case depend on its
spring constant k, resonance frequency f0, quality factor Q, and tip–sample
force F, as well as on the equilibrium position of the cantilever above the sam-
ple, sset, which is controlled by the operator of the atomic force microscope.
The indentation force, which is repulsive, limits the amplitude of vibration
of the cantilever and modifies its phase of vibration. This mode of operation,
dubbed the tapping mode, is modeled as a driven, nonlinear, damped oscilla-
tor, for which no analytical solution exists. As a first approximation, however,
one can use a model of a nearly harmonic grazing-impact oscillator whose

Exploring Scanning Probe Microscopy with MATHEMATICA, Second Edition.  Dror Sarid
Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40617-3
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analytic solution is well known. For a general solution, however, one has to
solve the equation of motion numerically, obtaining vibration characteristics
that depend strongly on the set of parameters that define the system. In this
chapter, we model the tip and sample as a sphere and a plane, respectively,
that interact via an attractive Lennard–Jones force and a repulsive indentation
force. The equation of motion is defined and a numerical solution given for
the transient and steady-state regions obtained. The dependence of the ampli-
tude and phase of vibration of the cantilever on the tip–sample distance and
sample softness are derived and discussed. A summary of the results of the
numerical calculations uses the parameters of the cantilever and tip, given in
Table 9.1, and the parameters of the sample and the electronics of the AFM,
given in Table 9.2. It is important to note that on resonance, the tip will tap
the surface only if sset < aQ, while for larger values of sset, the operation will
be in the noncontact mode. The tip–sample interaction is characterized by the
radius of the tip, R, Young’s modulus and Poisson’s ratios of the tip and sam-
ple, Ei and νi, respectively, a typical interatomic distance, σ, and Hamaker’s
constant, AH.

Fig. 9.1 A schematic diagram of a cantilever tapping on the surface of
a sample.

Table 9.1 The parameters of the cantilever and the tip.

k = 20 N/m
Q = 100 Hz
R = 10 nm

Note that Young’s moduli of the sample and tip are denoted by the sub-
scripts 1 and 2, respectively, given by EPol and νPol, and ESi and νSi, respec-
tively. One can choose the operating frequency to be, for example, at reso-
nance, f0, or at the lower or higher side of the steepest slope of the resonance
curve, f− and f+, respectively. These three frequencies, given in Table 9.3,
were calculated using the parameters given in Table 9.1. For the examples in
this chapter, we choose to operate at the lower side of the steepest slope of the
resonance curve.
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Table 9.2 The parameters of the sample and the electronics of the
AFM.

AH = 0.1 aJ
σ = 0.34 nm

ESi = 179 GN/m2

νSi = 0.28
EPol = 1 GN/m2

νPol = 0.3
a = 1 nm

sset = 75 nm

Table 9.3 The operating frequency at resonance, f0, and at the lower
and higher side of the steepest slope of the resonance curve, f−
and f+, respectively.

f− = 99.65 kHz
f0 = 100 kHz

f+ = 100.35 kHz

9.2
Lennard–Jones Potential

This section is a summary of a more comprehensive discussion of the tip–
sample Lennard–Jones potential presented in Chapter 6. The purpose of in-
cluding it here is to make this chapter self-contained. The Lennard–Jones po-
tential, W, is given by

W =
AHR
6σ

[
1

210

(
σ

s

)7

− σ

s

]
. (9.1)

The first term on the right-hand side is the magnitude of the potential in
terms of AH and R, and the second one describes the shape of the potential.
The Lennard–Jones force, F, obtained from the potential by taking the negative
of its derivative with respect to s,

F =
AHR
6σ

(
σ

s2 −
σ7

30s8

)
, (9.2)

vanishes at sF0 , which is given by

sF0 =
1

301/6 σ . (9.3)

The tip–sample force in the region shown in Figure 9.2 is attractive, and, by
convention, negative. It has been shown in Chapter 6 that on approach, the
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tip will snap into the sample if the cantilever spring constant is larger than the
tip–sample force derivative, F′,

F′ =
AHR
3σ3

(
σ3

s3 −
2

15
σ9

s9

)
. (9.4)

The force derivative vanishes at sF′0
, which is given by

sF′0
=

(
2
15

)1/6

σ , (9.5)

and obtains its maximum value at sF′max
, which is given by

sF′max
=

(
2
5

)1/6

σ . (9.6)

The value of the force derivative at this point, F′max, is

F′max =
√

10
9

AHR
σ3 . (9.7)

The parameters given in Table 9.1 and Table 9.2 generate a force derivative
whose maximum is larger than the spring constant. On approach, therefore,
the tip will snap into the sample at a distance for which F′ = k. The results of
these calculations yield the values of sF0 , sF′0

, F′max, and sF′max
, given in Table 9.4.

Table 9.4 The value of sF0 , sF′0
, F′max, and sF′max

.

sF0 = 0.192 882 nm
sF′0

= 0.243 016 nm
F′max = 0.243 016 nN
sF′max

= 0.291 847 nm

9.3
Indentation Repulsive Force

The elastic moduli of the tip and the sample, κi, given by

κi =
1− ν2

i
πEi

, (9.8)

generate the tip–sample effective elastic modulus, κeff,

κeff = κ1 + κ2 . (9.9)
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Instead of κeff, it will be convenient to use a stiffness parameter, ks, given by

ks =
4

3πκeff
. (9.10)

9.4
Total Tip–Sample Force

We can now combine the Lennard–Jones force for s > sF0 , Eq. (9.2), with the
indentation force, Fin,

Fin = ks
√

R(sF0 − s)3/2 , (9.11)

for s < sF0 , and get the total force, Ftotal, shown in Figure 9.2. The parameters
used in this figure and subsequent ones are for a silicon tip and a typical poly-
mer sample. To demonstrate the effect of tip–sample stiffness, we use in the
figure the three values, ks, 5ks, and 10ks, showing their respective ascending
slopes. Note that the derivative of the force at s = sF0 is discontinuous, since
at this point the tip hits the sample and starts indenting it.
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Fig. 9.2 The total tip–sample force, Ftotal, as a function of the dis-
tance, s, for ks, 4ks, and 10ks, in ascending slope. In this example, the
tip is made of silicon and the sample is a typical polymer.

9.5
General Solution

The equation of motion of the bimorph-driven cantilever in the presence of
the total force is given by

∂2

∂t2 z(t) +
ω0

Q
∂

∂t
z(t) + ω2

0 [z(t)− sset − a sin(ωt)] =
ω2

0
k

Ftotal[z(t)] , (9.12)
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with

ω0 = 2π f0 . (9.13)

The general solution of the equation of motion can be derived by solving
two first-order, coupled differential equations, one given by

z′2(t) = −ω0

Q
z2(t)−ω2

0 [z1(t)− a sin(ωt)] , (9.14)

where z1(t) = z(t), and the other given by z2(t) = z′1(t). It was shown be-
fore that the vibration of the cantilever approaches a steady state in about
2Q cycles, at which stage we will therefore terminate the numerical solution
of Eq. (9.12). Before analyzing the numerical solution, which is given as an in-
terpolation function, it is useful to recall the analytical solution to the motion
of a driven cantilever in the absence of a tip–sample force, zfree,

zfree = sset +
aQ√

x2 + Q2(1− x2)2

(
1− �−

ω
2Q t) sin[ωt + φfree] , (9.15)

where the phase, φfree, is given by

φfree = arctan
[

1
Q(1/x− x)

]
, (9.16)

and where
x = ω/ω0 . (9.17)

We shall now present the solutions associated with the transient and steady-
state regimes of the tapping and compare them with those of the vibration of
the free cantilever.

9.6
Transient Regime

Figure 9.3 shows the solution to the vibration of the tapping cantilever in the
transient regime, z (solid line), and to the free cantilever, zfree (dashed line).
The difference between the two curves stems from the fact that the boundary
conditions for the tapping cantilever are somewhat different than those for the
free one. In contrast to operation in the noncontact mode, here the vibration of
the cantilever, shown by the solid curve, is limited by tapping on the sample.
Because the system is highly nonlinear, a somewhat chaotic behavior may en-
sue, and it will take quite a few oscillations before settling down to an almost
orderly behavior. Note, however, that conditions exist under which the oscil-
lations do become highly chaotic and do not settle down. Let us now compare
z and zfree in the steady-state regime in the last two of the 2Q cycles.
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Fig. 9.3 The numerical (solid line) and analytical solutions (dashed
line) for the transient vibration regime.

9.7
Steady-State Regime

A comparison of z (solid line) and zfree (dashed line) in the steady-state regime
is shown in Figure 9.4. Here, the presence of the tip–sample force during tap-
ping produces a shift in the phase and amplitude of the numerical solution of
z relative to that of zfree, a topic that will be further investigated in the next
sections.
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Fig. 9.4 A comparison of z (solid line) and zfree (dashed line) in the
steady-state regime.
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9.8
Tapping Phase Diagram

To further explore the phase of vibration of the cantilever, we produce a para-
metric plot of z against zfree, shown in Figure 9.5. Had z and zfree been in phase,
the curve would have been a straight line inclined at an angle of 45°. However,
the presence of a finite tip–sample force during tapping gives rise to a phase
shift between these two curves as evidenced here by the elliptical shape of the
plot.
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Fig. 9.5 A parametric plot of z against zfree.

9.9
Displacement–Velocity Phase Diagram

The displacement–velocity phase diagram is shown in Figure 9.6 for the last
three cycles of the numerical calculation. Here, the parametric plot yields an
almost perfect circle, indicating the good behavior of the vibration of the can-
tilever, namely its being an almost harmonic motion. It may happen, though,
that a particular set of parameters will give rise to a chaotic behavior that will
be manifested by a spiral rather than by a closed circle.

9.10
Numerical Value of the Phase Shift

A method for evaluating the phase of vibration of the tapping cantilever rela-
tive to the free one is to find the zero crossing of their velocities, v and vfree, re-
spectively. Figure 9.7 shows v (solid line) and vfree (dashed line), respectively.
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Fig. 9.6 The displacement–velocity phase diagram.

We can find the phase of vibration of the tapping cantilever, φ, relative to that
of the free cantilever by measuring the lag between these two zero crossings.
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Fig. 9.7 A comparison of v (solid line) and vfree (dashed line) in the
steady-state regime.

The displacement, z, for the last calculated cycle, shown in Figure 9.8, is
found to be an almost harmonic function, with no apparent distortions due to
the tapping on the sample.

The velocity, v, for the last calculated cycle is shown in Figure 9.9. The veloc-
ity, on the other hand, may show a small “glitch” when it crosses every other
zero, namely this occurs when the motion of the tip is stopped by the sample.
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Fig. 9.8 The displacement, z, for the last calculated cycle.

0 0.2 0.4 0.6 0.8 1

n �cycles�

�0.04

�0.02

0

0.02

0.04

v
�m
�s

e
c
�

Fig. 9.9 The velocity, v, for the last calculated cycle.

Note that when operating on resonance, the tapping of the tip on the sam-
ple will decrease the amplitude of vibration, increase the average position of
the tip, and shift the phase from zero to a negative value, as expected from
a repulsive indentation force. However, when operating off resonance, the
amplitude of vibration may increase or decrease relative to that of the free
cantilever, since the tapping increases the resonance frequency of the tapping
cantilever. The resultant phase may therefore be either positive or negative.
The indentation, d, for the last calculated cycle is shown in Figure 9.10.

The total force, Ftotal, for the last calculated cycle is shown in Figure 9.11.
The indentation of the sample only lasts a short time relative to a full cycle,

and appears as a series of pulses when observing a large number of cycles.
Likewise, the force, which is proportional to the derivative of the velocity,
appears as a series of pulses pointing mainly upward, since it is mostly repul-
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Fig. 9.10 The indentation in the last calculated cycle.
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Fig. 9.11 The total force, Ftotal, in the last calculated cycle.

sive. Because of adhesion forces, there may sometimes be small spikes around
both the indentation and force pulses, as observed in Figure 9.11. By changing
the sample from a soft material, a polymer, to a hard one, for example silicon,
one finds that the indentation of the sample by the tip becomes shallower. The
indentation force, on the other hand, becomes larger, as expected. Obviously,
one must take the elastic properties of the sample into account when modeling
an atomic force microscope that operates in the tapping mode. It is of interest
to probe the maximum radius, rmax, and pressure, Pmax, of the indentation,
which are given by

rmax =
(

RFmax

ks

)1/3

(9.18)
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and

Pmax =
3

2π

(
ks

R

)2/3

F1/3
max , (9.19)

where Fmax has been obtained numerically from Figure 9.11.

9.11
Summary of Results

The key results obtained in this chapter are given in Table 9.5, where the val-
ues to the left- and right-hand side of the arrows correspond to the free and
tapping cantilevers, respectively.

Table 9.5 The key results obtained in this chapter.

Free Tapping

f = 99.65 kHz
A = 82.1635 → 77.4094 nm
zav = 75 → 75.0072 nm
φ = 0 → −4.345 57 deg
dmax = −2.595 12 nm
rmax = 5.094 23 nm
Pmax = 0.354 403 GPa

Note that when operating on resonance, the tapping of the tip on the sample
will decrease the amplitude of vibration, increase the average position of the
tip, and shift the phase from zero to a negative value, as expected from a re-
pulsive indentation force. However, when operating off resonance, the ampli-
tude of vibration may increase or decrease relative to that of the free cantilever,
since the tapping increases the resonance frequency of the tapping cantilever.
The resultant phase may, therefore, be either positive or negative.

� Exercises for Chapter 9

1. Calculate and plot the amplitude and phase of vibration of the cantilever
for the two other frequencies, f− and f+, and for tapping on a Si sample.

2. Calculate and plot the case where the sample is vibrated by a bimorph,
causing the cantilever to vibrate via the tip–sample force derivative.
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10
Metal–Insulator–Metal Tunneling

Highlights

1. General equations for metal–insulator–metal tunneling with and
without an image potential

2. Tunneling current for small and large voltage approximations.
3. Barrier width and height

Abstract

The exponential dependence of electron tunneling cross-section on the thick-
ness of the insulator of a metal–insulator–metal (MIM) structure is at the heart
of scanning tunneling microscopy, because it makes tunneling sensitive to
sub-angstrom changes in this thickness. The basic principles of this effect are
presented in this chapter together with a set of examples that illustrate the
role the different parameters play in determining the tunneling current. The
model considers a MIM structure with two similar plane-parallel metal elec-
trodes that can be readily extended to dissimilar metals. A general tunneling
equation is presented, and approximate solutions for small and large voltages
are given. Next, the image potential experienced by a tunneling electron in the
insulator is introduced, and its effect on the tunneling current computed and
compared to the small and large voltage approximations. Finally, the concept
of an apparent barrier height is discussed, and the role of the image potential
in lowering it is addressed.

10.1
Introduction

A tunneling current will flow between two plane-parallel metal electrodes
separated by a thin insulator, when a bias is impressed between them. There
is a large body of literature that addresses this important problem, in which
a variety of approaches and approximations have been used. The model pre-
sented in this chapter uses the theory of Simmons [1], which yields two widely

Exploring Scanning Probe Microscopy with MATHEMATICA, Second Edition.  Dror Sarid
Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40617-3



10.1 Introduction 147

used equations for the tunneling current, one for the small voltage regime, rel-
evant to scanning tunneling microscopy, and one for the large voltage regime,
relevant to the so-called Fowler–Nordheim field emission. A typical energy di-
agram for a metal–insulator–metal structure with a triangular barrier is shown
in Figure 10.1. The figure shows two similar metal electrodes having a barrier
height φ = 4 eV relative to that of the insulator. Here, the thickness of the in-
sulator is 1 nm, and the biases across it are (a) v = 1 V and (b) v = 5 V. Note
that the Fermi level of the left-hand side electrode is kept at zero potential,
while that of the right-hand side electrode is at a positive bias, so that the elec-
trons tunnel to the right. In the following sections, we will find the general
equations for tunneling with and without an image potential, the small and
large voltage approximations for the tunneling, and obtain the effective bar-
rier width and height. Table 10.1 shows the notations for the parameters used
in this chapter. The notations for the parameters used in this chapter are given
as follows:

e positive electron charge

me mass of electron in insu-
lator

φ metal–insulator barrier
height

φ̄ metal–insulator mean
barrier height

s insulator width

x1 and x2 limits of barrier at the
Fermi level of metals

∆s = x1 − x2 effective barrier width

v bias across insulator

F field across insulator

vi image potential

v bias across insulator

εr relative dielectric con-
stant of insulator

J tunneling current
density

The metal–insulator barrier height, φ, and the relative dielectric constant of
the insulator, εr, are given in Table 10.1:

Table 10.1 The metal–insulator barrier height, φ, and the relative di-
electric constant of the insulator, εr.

φ/e (eV) εr

4 5

Figure 10.1 is a schematic energy diagram associated with two identical
metal electrodes separated by a 1-nm-thick insulator, for an applied bias of
(a) v = 1 V and (b) v = 5 V. Here, x denotes the position across the structure,
and M and I denote metal and insulator, respectively.
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Fig. 10.1 The metal–insulator barrier height, φ, associated with two
identical metals separated by a 1-nm-thick insulator, for an applied
bias of (a) v = 1 V and (b) v = 5 V. Here, x denotes the position
across the structure, and M and I denote the metal and insulator, re-
spectively.

10.2
Tunneling Current Density

10.2.1
General Solution

The general solution to the tunneling current density, Jg, across the thin insu-
lator shown in Figure 10.1, can be obtained by using the WKB approximation,

Jg =
e

2πh∆s2

(
φ̄�−A∆s

√
φ̄ − (ev + φ̄)�−A∆s

√
ev+φ̄

)
, (10.1)

where

A =
4π
√

2me

h
. (10.2)

Note that a factor β of order unity, appearing in Ref. [1], has been neglected.
The general solution requires a model for the average barrier height, φ̄, and
width, ∆s, which can be approximated for two cases, one when the applied
bias across the insulator is much smaller than the barrier height, and the other
when it is much larger. These two approximations can then be compared to
the general solution using typical parameters.

10.2.2
Small Voltage Approximation

Here we consider the case where v < φ/e, as shown in Figure 10.1(a)
for a bias v = 1 V. One observes that the width of the barrier does not
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change, ∆s = s, but its average height decreases to φ̄ = φ − ev/2. The gen-
eral solution for this case, Jgsmall,

Jgsmall = Jg

(
v, s, φ− ev

2

)
, (10.3)

can be approximated by Jsmall,

Jsmall =
√

2meφ

(
e
h

)2 v
s
�
−4πs

√
2meφ

h , (10.4)

which is widely used in modeling scanning tunneling microscopy. The general
and approximate solutions, Jgsmall (solid line) and Jsmall (dashed line), shown
in Figure 10.2 for ∆s = 1 nm, are in good agreement for 0 V < v < 0.8 V.
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Fig. 10.2 The general and approximate solutions to the tunneling cur-
rent density, Jgsmall (solid line) and Jsmall (dashed line), as a function
of v , for s = 1 nm.

A comparison of Jgsmall (solid line) and Jsmall (dashed line) for v = 1 V,
depicted in Figure 10.3, shows an agreement in the range of 0.9 nm < s <
1.1 nm.

We find that the approximate solution for the small voltage regime fits the
general solution rather well, which is the reason why it has been widely used
in the literature to model the operation of the scanning tunneling microscope.

10.2.3
Large Voltage Approximation

Next, consider the case where v > φ/e, as shown in Figure 10.1(b), for a
bias v = 5 V. In this case, both the width and average height of the barrier,
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Fig. 10.3 The general and approximate solutions to the tunneling cur-
rent density, Jgsmall (solid line) and Jsmall (dashed line), as a function
of s, for v = 1 V.

which are functions of the applied bias, can be approximated by ∆s = s φ/(ev)
and φ̄ = φ/2, respectively. The general solution for this case, Jglarge,

Jglarge = Jg[v, sφ/(ev), φ/2] , (10.5)

can be approximated by Jlarge,

Jlarge =
e3

8πhφ

v2

d2 �
− d

v
8πφ3/2√2me

3eh , (10.6)

where F = v/s. Note that s does not appear explicitly in Eq. (10.6). Equa-
tion (10.5) is the so-called Fowler–Nordheim field-emission equation, which
will be dealt with in the next chapter. The general and approximate solutions
to the tunneling current density, Jglarge (solid line) and Jlarge (dashed line), are
shown in Figure 10.4, where s = 1 nm. Figure 10.4 shows that the two tunnel-
ing currents are in good agreement for 4 V < v < 5 V.

A comparison of Jglarge (solid line) and Jlarge (dashed line) for v = 1 V,
depicted in Figure 10.5, show that they are in good agreement in the range
of 0.9 nm < s < 1.1 nm.

10.3
The Image Potential

The previous results have ignored the fact that a tunneling electron in the
insulator senses an image potential, vi, due to the presence of the two metal
electrodes bounding the insulator. The image potential is given by
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Fig. 10.4 The general and approximate solutions to the tunneling cur-
rent density, Jglarge (solid line) and Jlarge (dashed line), as a function of

v , for s = 1 nm.
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Fig. 10.5 The general and approximate solutions to the tunneling cur-
rent density, Jglarge (solid line) and Jlarge (dashed line), as a function of

s , for v = 1 V.

vi =
e

4πε0εr

[
1

2x
+

∞

∑
n=1

(
ns

(ns)2 − x2 −
1
ns

)]
, (10.7)

where x is the position of the electron inside the insulator whose width is s.
A good approximation to vi is obtained by

vi = − gs
x(s− x)

, (10.8)

where
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g =
1.15e ln 2
8πε0εr

. (10.9)

Note that the effect of the image potential is quite dramatic when the elec-
tron is in the center of the barrier, namely for x = s/2. The exact effect that the
image potential has on the barrier height will now be presented.

10.4
Barrier with an Image Potential

10.4.1
The Barrier

The barrier height in the presence of the image potential, φi, is given by

φi = φ− evx
s

+ evi . (10.10)

We shall first explore the dependence of φi on the bias v for s = 1 nm.
Figure 10.6 shows φi as a function of the position inside the insulator, x, for
v = 0 V (solid line), 3 V (dashed line), and 6 V (dotted line). One observes that
increasing v, while keeping s fixed, decreases both the height and the width of
the barrier.
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Fig. 10.6 The barrier height, φi, as a function of the position inside the
insulator, x , for s = 1 nm, and for v = 0 V (solid line), 3 V (dashed
line), and 6 V (dotted line).

Next, we explore the dependence of φi on the bias v for v = 5 V. Fig-
ure 10.7 shows φi as a function of the position inside the insulator, x, for s =
0.9 nm (solid line), 1 nm (dashed line), and 1.1 nm (dotted line). One observes
that increasing s, while keeping v fixed, decreases both the height and the
width of the barrier.
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Fig. 10.7 The barrier height, φi, as a function of the position inside the
insulator, x , for v = 5 V, and for s = 0.9 nm (solid line), 1 nm (dashed
line), and 1.1 nm (dotted line).

Now that we have calculated the shape of the barrier, we can go to the next
step and calculate its width.

10.4.2
The Barrier Width

The width of the barrier is obtained by solving for the two zero crossings of
φi as a function of v and s. The two crossings are denoted by xi1 and xi2 , and
the barrier width by ∆xi = xi2 − xi1 . Figure 10.8 depicts the barrier width as a
function of v, for s = 1 nm.
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Fig. 10.8 The barrier width, ∆xi as a function of bias, v, for s = 1 nm.
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Figure 10.9 depicts the barrier width as a function of s, for v = 5 V, showing
a linear dependence on s.
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Fig. 10.9 The barrier width, ∆xi, as a function of s , for v = 5 V.

These results will now be applied to the evaluation of the average barrier
height, used in Eq. (10.1).

10.4.3
Average Barrier Height

The average barrier height, φ̄i, is

φ̄i =
1

∆xi

∫ φi2 (v,s)

φi1
(v,s)

φi(v, s, x) �x . (10.11)

Figure 10.10 shows the v-dependence of φ̄i for s = 1 nm, where the effect
of v on φ̄i is observed to be large.

Figure 10.11 shows the s-dependent average barrier height, φ̄i, for v = 5 V,
where the effect of s is observed to be small.

10.5
Comparison of the Barriers

The barrier height, φ, associated with two identical metals separated by a 1-
nm-thick insulator, for applied biases of (a) v = 1 V and (b) v = 5 V, is shown
in Figure 10.12. Here, x denotes the position across the structure, and M and I
denote the metal and insulator, respectively. The figure shows the height of the
barriers φ, φi, and φ̄i, as a function of the position across the MIM structure, x,
for s = 1 nm and v = 5 V.
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Fig. 10.10 The average barrier height, φ̄i, as a function of v.
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Fig. 10.11 The average barrier height, φ̄i, as a function of s.

�0.5 0 0.5 1 1.5 2

x �nm�

�6

�4

�2

0

2

4

Φ
�V
�

M

Φ

�v

Φ�v

I M

Φ
��

i

Fig. 10.12 The height of the barriers φ, φi, and φ̄i, as a function of the
position across the MIM structure, x, for s = 1 nm and v = 5 V.
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Now that we have found the dependence of both ∆s and φ̄i on s and v, we
can calculate the general tunneling current given by Eq. (10.1).

10.6
The General Solution with an Image Potential

The v- and s-dependent tunneling current density that takes into account the
image potential, Jgi

, is obtained from the general solution, Jg, by incorporating
the barrier width and average height, ∆xi and φ̄i,

Jgi
= Jg(v, ∆xi, φ̄i) . (10.12)

Figure 10.13 depicts the logarithm of the tunneling resistance, log(v/J), as a
function of v, for v/Jgi

(solid line), v/Jgsmall (dashed line), and v/Jglarge (dot-
ted line), for s = 1 nm.
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Fig. 10.13 The logarithm of the tunneling resistance, log(v/J), as
a function of v, for v/Jgi (solid line), v/Jgsmall (dashed line), and
v/Jglarge (dotted line), for s = 1 nm.

The dashed and dotted lines show the resistivity as a function of v, for a
fixed s, in the small bias regime (left-hand side) and large bias regime (right-
hand side) approximations, respectively, with no image potential. The solid
line depicts the resistivity in the presence of the lowered and narrowed barrier
due to the image potential. This resistivity is obviously smaller than the ones
that exclude the image potential. Note that if one metal electrode is replaced
by a semiconductor, then the tunneling electron in the insulator will encounter
only a single rather than multiple images inside the metallic electrode. Conse-
quently, the role of the image potential will be drastically reduced.
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10.7
Apparent Barrier Height

By measuring the tunneling current as a function of s for a fixed v, in the small
bias approximation, one can obtain an apparent barrier height, φapp, as shown,
for example, in Ref. [3]. To that end, we write Eq. (10.4) as

Jsmall = J0�
−2κs , (10.13)

where

J0 =
√

2meφapp
e2

h2
v
s

, (10.14)

and

κ =
2π

√
2meφapp

h
. (10.15)

Here, κ is the k-vector of an electron in the insulator. Neglecting the small
dependence of J0 on s, yields

κ = −1
2

∂s ln Jsmall , (10.16)

from which we get

φapp =
2

me

(
h

4π

)2

. (10.17)

An important question often encountered in scanning tunneling microscopy
is whether Eq. (10.17) is a good approximation if we include the effect of the
image potential. To answer this question, we take the logarithmic derivative
of the general tunneling equation, Eq. (10.12), where the image potential has
been taken into account. Figure 10.14 is a plot of the average (solid line) and
apparent (dashed line) barrier heights as a function of v, for s = 1 nm.

The apparent barrier height is found to be higher than the average barrier
height. Figure 10.15 is a plot of the apparent barrier height as a function of s,
showing that for v = 1 V, it decreases very little as s increases.

We found for a metal–insulator–metal structure that the apparent bar-
rier height, φapp, is higher than the average barrier height, φ̄i. For a metal–
insulator–semiconductor structure, however, the apparent barrier height is
much closer to the average barrier height because the image potential in this
case can be practically neglected. Note also that the results obtained here
assumed plane-parallel conducting electrodes. For scanning tunneling mi-
croscopy, where one of the electrodes is a sharp tip, the electric fields are not
uniform, resulting in a modified image potential and therefore a modified
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Fig. 10.14 The average (solid line) and apparent (dashed line) barrier
height, φ, as a function of v.
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Fig. 10.15 The apparent barrier height, φapp, as a function of s.

shape of the barrier. The results obtained in this section can serve as a guide
when using the calculated value of ∂ ln i/∂s to determine the apparent barrier
height.

� Exercises for Chapter 10

1. Extend the model to two dissimilar metals.
2. Consider a spherical STM tip and a plane metal substrate.
3. Use the tip–sample electric field distribution to calculate the barrier height.
4. Show that it is easier to tunnel out of the tip of an STM than into it.
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11
Fowler–Nordheim Tunneling

Highlights

1. Tunneling current density
2. Oxide field and applied field
3. Tunneling oscillations and their average

Abstract

Fowler–Nordheim (FN) field emission, or tunneling, of electrons through a
metal–oxide–semiconductor (MOS) structure is a powerful tool used to char-
acterize oxide films whose thickness is on the order of several nanometers.
A schematic band diagram of a biased MOS structure is presented, together
with a list of notations for the various parameters used in the modeling. Next,
the tunneling equation is discussed in detail and plotted by using typical ex-
perimental parameters. Oscillations in the tunneling current due to resonance
effects of electrons traveling in the conduction band of the oxide are computed
and plotted, first using a simple monoenergetic beam of electrons, and second
by averaging over all the relevant electronic energies.

11.1
Introduction

Figure 11.1 is a schematic band diagram of a metal–oxide–silicon system in
the Fowler–Nordheim (FN) bias range. The grounded metal and biased silicon
electrodes, shown on the left and right-hand sides of the figure, respectively,
are separated by a nm-thick silicon oxide. An externally applied bias, vapp, tilts
the valence and conduction bands of the oxide downward so that the distance
the electrons travel in their conduction band, Lcb, becomes finite, defining the
onset of the FN tunneling regime. The electrons have real wave vectors in
the metal and in the silicon. In the oxide, however, the wave vector of the
electrons is real only in the region denoted by Lcb and imaginary in the rest
of the oxide. Note that the Fermi level of the silicon in Figure 11.1 is shown
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as being in between the valence and conduction bands. The definitions of the
parameters used in this chapter are given as follows:

e positive electron charge

φSi workfunction of silicon

φm workfunction of metal

meff effective electron mass in the
oxide

vapp externally applied bias

v bias across the oxide

d oxide layer thickness

F field across the oxide

κ imaginary wave vector of elec-
trons in the oxide

κ1 real wavevector of electrons in
the oxide

k real wavevector of electrons in
the silicon

EFm metal Fermi level

EFs silicon Fermi level

Ecb energy of the conduction band
of silicon

Evb energy of the valence band of
silicon

En energy of electrons below the
metal Fermi level

Lcb the distance electrons travel in
the oxide conduction band

δφ metal-silicon barrier height
difference

Table 11.1 gives typical values of barrier heights of selected materials, φ,
useful for the modeling presented in this chapter.

Table 11.1 Typical values of the barrier height, φ, of selected materi-
als.

Material φ (eV)

Au 4.2
Si 4.2
Cr 3.51
Al 3.17
Pt 3.01
W 3.5
Mg 2.3

11.2
Fowler–Nordheim Current Density

In the previous chapter we treated the case of tunneling current densities flow-
ing between two plane-parallel metal electrodes separated by a thin insulator,
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Fig. 11.1 Schematic band diagram of a metal–oxide–silicon system in
the FN bias range.

in the large voltage regime. We will now address the tunneling currents in
a MOS structure under similar bias conditions. Here, the tunneling current
density, J,

J = B0F2�−C0/F , (11.1)

is given in terms of the field across the oxide, F = v/d. The two parameters B0
and C0 in Eq. (11.1) can be obtained from experimentally derived properties
of the three media composing the MOS structure. The FN tunneling current
density, as given by Eq. (11.1), will now be discussed in some detail and typ-
ical values of the parameters B0 and C0 presented. We start by considering
the imaginary wave vector of an electron in the oxide layer, κ, which, in the
parabolic approximation, is given by

κ =
2π

√
2meffφ

h
. (11.2)

The WKB approximation yields the coefficient C0 of Eq. (11.1) as an aver-
aged wave vector,
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C0 =
2
e

∫ φ

0
κ �φ . (11.3)

The integration gives an explicit expression for C0 in terms of the effective
mass of the tunneling electrons, meff, and the barrier height, φ,

C0 =
8πφ3/2√2meff

3eh
. (11.4)

The same approximation also gives the coefficient B0 of Eq. (11.1),

B0 =
e3

8πh̄φ
. (11.5)

Equation (11.4) and Eq. (11.5) can now be inserted into Eq. (11.1), yielding
the tunneling current density J,

J =
e3

8πφh
v2

d2 �
− d

v
8πφ3/2

3eh
√

2meff , (11.6)

which is identical to Eq. (11.6) in the previous chapter. To evaluate Eq. (11.6),
one needs to use the parameters associated with the particular choice of a
MOS structure which will be given in the next section.

11.3
Numerical Example

As an example, consider an oxide layer with a thickness d = 3 nm and area
A = 100 nm2, which yield a tunneling current of 105 pA when a bias of 8 V
is applied across it. The applied bias differs from the bias across the oxide
by about 1 V, because of the different Fermi levels of the metal and the sili-
con. According to Eq. (11.6), this choice of current leaves two unknowns, φ

and meff. Since Eq. (11.5) is exponential in both, we have to be quite careful in
the choice of one to determine the other. Suppose we know that meff = 0.8 me,
where me is the electronic mass. The metal–oxide barrier height, φx, which
yields J = 105 A/m2, given in Table 11.2, is reasonable for the chosen parame-
ters.

A plot of J for a bias in the range of 5 V < v < 8 V is depicted in Figure 11.2,
for the parameters given in Table 11.2. Note the limited range of bias voltages
that is experimentally accessible before the current becomes too large, damag-
ing the oxide film.
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Table 11.2 The experimental metal–oxide barrier height, φx, such that
J = 105 A/m2.

meff = 0.8 me

d = 3 nm
A = 100 nm2

v = 8 V
Jx = 105 A/m2

φx = 3.829 eV
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Fig. 11.2 The current density, J, as a function of the bias, v.

11.4
Oxide Field and Applied Field

Let the metal be grounded so that its potential is zero, and let the external bias
be applied to the silicon side of the MOS structure. There is a built-in potential
between the metal and the silicon, δφ, due to the difference in their barrier
heights,

δφ = φ− φSi , (11.7)

which the externally applied bias, vapp, must first overcome. The actual bias
across the oxide, v, is therefore given by

v = vapp − δφ . (11.8)

The field across the oxide, F, in terms of the applied bias, vapp, is now given
by

F = v/d . (11.9)
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11.5
Oscillation Factor

The theoretical and experimental observations of oscillations in the tunneling
current as a function of applied voltage have been discussed in the literature,
and modeled by assuming a purely trapezoidal barrier without image charge
effects. Despite the crude assumptions involved in this theory, the experimen-
tal data were shown to fit it quite well. The oscillating FN tunneling current
density, Josc, is given as a product of J and a multiplicative factor b,

Josc = bJ(v, En) , (11.10)

where En is the energy of the tunneling electrons relative to the Fermi level
of the metal. The factor b, for monoenergic electrons and for a constant En, is
given by

b =
b0

AiryAi(−k1Lcb)2 +
( k1

k

)2 AiryAi′(−k1Lcb)2
. (11.11)

Here, AiryAi and AiryAi′ are the Airy function and its derivative, respec-
tively, and b0 = 0.08 is an arbitrary factor that normalizes b so that its average
is around unity. The wave vector of electrons propagating in the conduction
band of the oxide, k1, is given by

k1 =
(

8π2meffev
dh2

)1/3

. (11.12)

The distance the electrons propagate in the conduction band of the ox-
ide, Lcb, calculated geometrically for the trapezoidal barrier of Figure 11.1,
is

Lcb = d− (φ + En)
e

d
v

. (11.13)

Here, En is the energy of the tunneling electrons relative to the metal’s Fermi
energy EF, such that En is positive for electrons with energy below EF. The
wave vector of electrons propagating in the silicon, k, is given by

k =
2π

√
2meff(φ + ev− Ecb)

h
. (11.14)

Table 11.3 gives the values of k1, k, and Lcb for a bias of v = 8 V applied
across the oxide.

Figure 11.3 shows b(v, 0) (solid line) and b(v, 0.2 eV) (dashed line) as a func-
tion of v. Note that for a larger value of En, the electrons have less energy and
will therefore require a higher bias to express a given resonance. The oscillat-
ing current, Josc, can now be written as a product of two factors.

Figure 11.4 depicts J (solid line) and Josc (dashed line) as a function of v,
demonstrating that their difference is large enough to be observed experimen-
tally.
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Table 11.3 The values of k1, k, and Lcb, for a bias of v = 8 V applied
across the oxide.

k1 = 3.825 71 1/nm
k = 13.461 1/nm

Lcb = 1.563 95 nm
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Fig. 11.3 The oscillations of b(v, 0) (solid line) and
b(v, 0.2 eV) (dashed line) as a function of v.

Instead of using the function b to describe the current oscillations, one may
use the function G given by
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Fig. 11.4 The current densities J (solid line) and Josc (dashed line) as
a function of v.
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G = −v
d

ln

(
Josc(v, 0)

B0
( v

d

)2

)
, (11.15)

which is shown in Figure 11.5 in terms of F = v/d. By choosing a different set
of parameters, one observes that the oscillations that go through local minima
and maxima are very sensitive not only to the oxide thickness but also to the
effective mass of the tunneling electrons and to the height of the metal–oxide
barrier.
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Fig. 11.5 G as a function of F, using a parametric plot.

11.6
Averaged Oscillations

To calculate actual tunneling currents, we must integrate b over all the ener-
gies for which oscillations take place. This weighted average b̄ (see Figure 11.6)
is given by

b̄ = C2

∫ ev−φSi

0
b(v, En)�−C2(φ,v)En �En , (11.16)

where C2 is given by

C2 =
C0d
φv

. (11.17)

Note that the integration is from the metal Fermi level to the bottom level
of the oxide band edge. The averaging is responsible for the decay in the os-
cillation amplitude at larger fields. Note that for a given value of En, b̄ will
differ somewhat from b in both amplitude and periodicity. Since the exact pa-
rameters involved in the modeling of these two oscillating functions are not
known exactly, one may also use b for a comparative study of different MOS
structures.
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Fig. 11.6 The averaged current oscillations, b̄, as a function of v.

11.7
Effective Tunneling Area

We have calculated in this chapter the density of the tunneling current. Exper-
imentally, however, one measures the current itself, so the effective tunneling
area has to be determined. For a plane-parallel structure, where the diameter
of the electrodes is much larger than the oxide thickness, it is straightforward
to figure out this area. If, however, the metal electrode is the conducting tip
of an atomic force microscope, then one has to resort to a more complicated
procedure. The simplest method for estimating the effective contact area is
obviously to associate it with the smallest resolvable feature in a FN map, ob-
tained by scanning the tip across a sample, and measuring the tip–sample bias
required to maintain a constant tunneling current. It is also possible to model
the effective area using the contact area between a deformable metallic sphere
representing the tip and the deformable oxide surface. To that end, one has to
measure the force acting between the tip and the sample with a conducting tip
AFM. To calculate the effective area, Aeff, we consider only FN emission from
that part of the tip that is in contact with the oxide surface. The tip–sample
contact radius, rc, is given by

r3
c =

3
4
(κ1 + κ2)FtsRtip , (11.18)

as shown in a previous chapter. Here, Fts is the tip–sample force, Rtip the ra-
dius of the tip apex, and

κi =
1− νi

Ei
, (11.19)

where Ei and νi are Young’s moduli and Poisson’s ratios of the tip and sample,
respectively. The effective area for tunneling is then given by



Exercises for Chapter 11 169

Aeff = πr2
c . (11.20)

For example, a tungsten tip with Rtip = 50 nm and a force of several hun-
dreds of nN yields an approximate contact area with a silicon oxide surface of
the order of 10 nm2. It is clear that a meaningful FN map can only be obtained
if the effective area remains constant along the scanning area, a situation that
can be approximated by operating the AFM in both constant force and con-
stant current modes.

� Exercises for Chapter 11

1. Use the model with other relevant parameters and explore the meaning of
the computational results.

2. Test experimental FN current densities reported in the literature using the
above theory.

3. Calculate effective contact areas of a sphere–plane system using relevant
elastic properties and forces encountered in atomic force microscopy.
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12
Scanning Tunneling Spectroscopy

Highlights

1. Plots of i, ∂i/∂v, and ∂ ln i/∂ ln v as a function of v
2. Spectroscopy of C60 molecules

Abstract

Scanning tunneling microscopy (STM) has been a powerful tool in mapping
local density of states (LDOS) across conducting surfaces. It has been shown
that the logarithmic derivative of the tunneling current with respect to the
tip–sample voltage, termed scanning tunneling spectroscopy (STS), yields an
LDOS that is practically independent of the tip–sample distance. The logarith-
mic derivative, which is a unitless quantity, has been widely used to generate
STS data. The code in this chapter can be used to process raw STM tunnel-
ing current vs. voltage data, presented in the form of a list, to generate plots
of i, ∂i/∂v, and ∂ ln i/∂ ln v as a function of v. As an example, the code uses
experimental i(v) data, obtained by an ultrahigh vacuum STM, of C60 mole-
cules chemisorbed on a Si(100)–2× 1 surface, and compares it to the theory
presented in this chapter.

12.1
Introduction

Tunneling phenomena in metal–insulator–semiconductor (MIS) structures
differ from those obtained in metal–insulator–metal (MIM) structures, because
of (a) the absence of an image potential, (b) the presence of surface states, and
(c) the modification of the semiconductor electronic structure in the presence
of a metal tip. As a result of these differences, i(v) data obtained by STS con-
tain a wealth of information about the surface of a probed semiconductor
that requires special processing. The following sections deal with the analysis
of tunneling current data that lead to an STS curve reflecting the LDOS of
the probed semiconductor. This chapter provides a code that processes a list
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of experimentally obtained current vs. voltage data points, generating plots
of i, ∂i/∂v, and ∂ ln i/∂ ln v. The logarithmic derivative is shown to reflect the
LDOS of the probed surface of the semiconductor, as described in Ref. [1] to
Ref. [3], while Ref. [4] is the source of the experimental results used in the
examples. A schematic diagram of a scanning tunneling microscope, shown
in Figure 12.1, depicts an atomically sharp tip mounted on a piezoelectric
tube (PZT), separated by a subnanometer spacing from C60 molecules de-
posited on a sample. The application of a tip–C60 molecule voltage gives rise
to a tunneling current between these two.

Fig. 12.1 A schematic diagram of a scanning tunneling microscope.

A general equation for the tunneling current, i, as a function of the tip–
sample voltage, v, is given by

i =
4πe

h̄

∫ ∞

−∞
�E|Mm,n|2[ fF(EF − ev + E)− fF(EF + E)]ρ(E , EF) , (12.1)

where EF is the Fermi level, E denotes the energy of the tunneling electrons,
and M is the tip–sample tunneling matrix element, given by

Mm,n =
h̄

2me

∫
Σ
(χ∗m∇ψn − ψ∗m∇χn) �S . (12.2)

Here, ψ and χ are the tip and sample wavefunctions, respectively, and the
integration is on a surface, Σ, separating the tip and sample. Also, the Fermi
function, fF, given by

fF =
1

1 + �
E−EF+ev

KBT

. (12.3)

where KB is Boltzmann’s constant, is depicted in Figure 12.2.
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Fig. 12.2 The Fermi function, fF, for T = 4.2 K (solid line),
77 K (dashed line), and 300 K (dotted line).

The total density of states of the system, composed of the STM tip and the
surface of the sample, ρ, is the product of their respective densities of states,
ρt and ρs, and is given by

ρ(E , EF, v) = ρs(E , EF, v)ρt(E , EF, v) . (12.4)

12.2
Fermi–Dirac Statistics

We shall first assess the role the Fermi–Dirac statistics plays in limiting the res-
olution of STS measurements at different temperatures. We will use the three
experimentally convenient temperatures – liquid helium (4.2 K), liquid nitro-
gen (77 K), and ambient (300 K) – to demonstrate the behavior of the Fermi
function, Eq. (12.3). Figure 12.2 shows the Fermi function, fF, for each of these
three temperatures. Here, the sharpest distribution is obtained at lowest tem-
perature. The tip–sample bias voltage, vb, determines the window opened for
tunneling between E = 0 and E = vb, while the Fermi function determines its
sharpness. Only states within this window contribute to the tunneling current,
albeit with unequal weight.

Figure 12.3 shows the window for vb = 1 V under ambient conditions. Note
that at T = 0, the window will have absolutely sharp side walls. Note also that
at low enough temperatures, the width of the side walls can be approximated
by ∆E = 4KBT. At elevated temperatures, however, the width of the side walls
will be considerably larger. This width can be obtained directly by convoluting
the Fermi function with itself, yielding the function fc,

fc(ε, EF, T) = fF(ε, EF, T)[1− fF(ε, EF, T)] . (12.5)
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Fig. 12.3 The window determined by the Fermi function, fF, for T =
4.2 K (solid line), 77 K (dashed line), and 300 K (dotted line).

The convolution function, depicted in Figure 12.4, for the three tempera-
tures used before, demonstrates that the narrowest distribution, shown by the
solid line, is obtained at the lowest temperature. For ambient conditions, how-
ever, the width of the side walls is roughly 0.1 eV, limiting the energy resolu-
tion of the STM.
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Fig. 12.4 The convolution function for T = 4.2 K (solid line),
77 K (dashed line), and 300 K (dotted line).

12.3
Feenstra’s Parameter

Assume now that experimentally obtained STS features have a width larger
than that which is determined by the Fermi function. Under such conditions,
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one can neglect the Fermi functions and approximate the tunneling current, i,
by

i ∝
4πe

h̄

∫ ev

0
|M|2ρ(E , EF, v) �E . (12.6)

A further simplification occurs if the matrix elements and the tip density of
states are independent of v. In this case the tunneling current takes an even
simpler form,

i ∝
4πe

h̄

∫ ev

0
ρ(E , EF, v) �E . (12.7)

The sample density of states, ρs, can now be readily obtained from the tun-
neling current by taking the derivative of the current with respect to the tip–
sample voltage,

ρs ∝
∂i
∂v

. (12.8)

In practice, however, the matrix element depends on both the tip–sample
bias and distance, s. As a result, plotting Eq. (12.8) as a function of voltage
yields curves that depend on s. A good approximation to the density of states
of the sample, which yields s-independent STS features, was proposed by
Feenstra. This approximation is given by the logarithmic derivative of the tun-
neling current with respect to v,

ρs ∝
∂ ln i
∂ ln v

. (12.9)

It was found experimentally that Eq. (12.9) works well for metals and
narrow-gap semiconductors, as discussed in Ref. [1].

12.4
Scanning Tunneling Spectroscopy

12.4.1
STS Data File

To demonstrate the utility of Eq. (12.9), we present experimental i(v) data,
obtained by an ultrahigh vacuum STM, of C60 molecules chemisorbed on a
Si(100)–2× 1 surface, and compare it to the theory presented in this chapter.
The file contained in the code accompanying this chapter is in the form of a list
of N current points, i, for a voltage range of −3 V < v < 3 V. Table 12.1 gives
the value of N, the minimum and maximum values of the current (in arbitrary
units), imin and imax, respectively, and the maximum difference ∆imax.
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Table 12.1 Statistics of the experimentally obtained i(v) data points.

N = 240
imin = −102 434 386
imax = 107 218 587

∆imax = 209 652 973

12.4.2
Data Processing

Because experimental data are usually noisy, we chose to perform a moving
average across five data points. It is also convenient to normalize the averaged
data and get a new set of current data whose range is around unity, as given
in Table 12.2, with the same notation as that of Table 12.1.

Table 12.2 Statistics of the averaged i(v) data list.

N = 240
imin = −0.611 91
imax = 0.388 09

∆imax = 1

12.5
Spectroscopic Data

Figure 12.5 shows the current, i, as a function of v, after performing a moving
average across five data points.
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Fig. 12.5 The averaged current, i, as a function of v.
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The current derivative, ∂i/∂v, as a function of v, obtained after performing
a moving average across 11 data points, is shown in Figure 12.6.
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Fig. 12.6 The current derivative, ∂i/∂v, as a function of v.

Finally, we calculate ∂ ln i/∂ ln v = (v/i)∂i/∂v as a function of v, which will
be presented in the next section. The logarithmic derivative will be referred to
as the LDOS of the surface of the sample, based on Eq. (12.9).

12.6
Comparison of STS Results

This section compares the experimental LDOS, obtained by a UHV scanning
tunneling microscope, of C60 molecules adsorbed on Si(100)–(2 × 1), with
energy levels of free C60 molecules. The results of the C60 energy-level cal-
culations, based on the self-consistent-field discrete variational method, also
agree with experimental results using X-ray photoemission spectra. Choos-
ing the vacuum level as the zero of the energy scale, the calculations show
that the highest occupied level, hu, is at −6.04 eV, below which are two
closely spaced levels, gg and hg, at −7.22 eV and −7.34 eV, respectively. The
lowest unoccupied level, t1u, is at −4.36 eV, above which is the level t1g at
−3.3 eV. Experimental scanning tunneling spectroscopic results of C60 mole-
cules, chemisorbed on a Si(100)–(2× 1) surface, yield peaks at 2.0 eV, 1.1 eV,
−0.7 eV, and a broad peak at −2.3 eV. The “Fermi level” of a chemisorbed C60
molecule clearly shifts as it is adjusted to that of the substrate. We find that
a shift of the energy levels of the free C60 molecule by 5.25 eV, given in Ta-
ble 12.3, yields a good agreement with the experimentally-obtained STS data,
shown in Figure 12.7. Here, the peaks at the bottom are the convoluted Fermi
functions, under ambient conditions, at the appropriate free C60 energy lev-
els. For this example, the linewidth of the observed spectra is larger than that
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which is determined by the temperature-dependent Fermi functions. Note the
similarity between the calculated energy levels of the free C60 molecules and
the STS curve.

Table 12.3 Free C60 energy-level calculations, based on the self-
consistent-field discrete variational method.

Assignment energy (eV)

t1g = 1.97
t1u = 0.94
hu =−0.75
hg =−1.92
gg =−2.04
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Fig. 12.7 The designation of the energy levels (top), the logarithmic
derivative of the current (center), and the peaks of the convoluted
Fermi functions (bottom).

� Exercises for Chapter 12

1. Find other examples in the literature where calculated energy levels fit ex-
perimental STS curves.

2. Consider 0-, 1-, 2-, and 3-dimensional systems and figure out the expected
STS curves.
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13
Coulomb Blockade

Highlights

1. Electrostatic energies and tunneling rates of a Coulomb staircase
2. Comparison of experiment and theory using an STM
3. Temperature, charge, and bias effects on the operation of an SET

Abstract

Nanometer-scale structures exhibiting Coulomb blockade and Coulomb stair-
case effects are in the frontier of electronics technology, being candidates to re-
place conventional transistors. A detailed theory of these effects and their ex-
perimental observation by scanning tunneling microscopy is given in Ref. [1]
to Ref. [3]. This chapter presents an approximate model that takes into account
temperature, charge, and bias effects, and reproduces the experimental results
reported in these references.

13.1
Introduction

A schematic diagram of a system exhibiting Coulomb blockade (CB) and
Coulomb staircase (CS) effects is shown in Figure 13.1(a), and an electronic
circuit used to model these effects is shown in Figure 13.1(b). Figure 13.1(a)
depicts the apex of a scanning tunneling microscope tip, modeled as a sphere,
that hovers on top of a conducting spherical nanostructure that is separated
from the surface of a flat conducting sample. The nanostructure is small
enough that adding or removing a single electron from it will change its elec-
trostatic energy by an amount that is larger than its thermal energy. Such a
structure is called a quantum dot (QD) because of the 3D quantum confine-
ment of its electronic wave functions whose energy levels are discrete. In
the following sections, however, we will assume that the distances separat-
ing these energy levels can be ignored because they are much smaller than
the QD charging energy. Now let the STM tip and the sample be connected to

Exploring Scanning Probe Microscopy with MATHEMATICA, Second Edition.  Dror Sarid
Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40617-3



180 13 Coulomb Blockade

terminals A and B of Figure 13.1, respectively, between which a dc bias, vAB,
is applied. The QD, however, is free to assume its own potential depending
on the terminals’ bias and its own charge. Suppose now that the tip–QD and
QD–sample distances are small enough that the bias gives rise to tunneling
of electrons among these three bodies. This current is controlled by tunneling
resistances, denoted by R1 and R2 in Figure 13.1(b).

The electrons, as they enter and leave the QD, will raise and lower its po-
tential relative to that of the terminals. Suppose that the capacitance of the
QD is small enough that adding a single electron to it will raise its potential,
vQD, such that vQD > vAB. Since such a situation is energetically unfavorable,
tunneling through the QD will be blocked. The resumption of the tunneling
current, therefore, will require an increase of the bias to satisfy vAB > vQD.
This effect, which has been observed experimentally, is called the Coulomb
blockade. The same argument follows if two electrons reside in the quantum
dot, in which case it is required that vAB > 2vQD. Repeating this argument
to a larger number of electrons residing in the QD leads to a situation where
the tunneling current, as a function of the applied bias, will resemble a stair-
case. This effect, called the Coulomb staircase, demonstrates that tunneling is
blocked for as long as the applied bias is not large enough to overcome the
Coulomb blockade associated with n electrons residing in the QD. It is also
possible to externally influence the potential of the quantum dot by coupling
it to an extra capacitor or resistor, and thus control the bias required to over-
come the Coulomb blockade. Here one obtains the so-called single-electron
transistor, or SET. As the following examples demonstrate, observation of the
CB, CS, and SET effects requires that the system’s capacitances be at most sev-
eral atto Farad, and the tunneling resistances larger than several mega Ohm.
The following sections present an approximate model of the Coulomb block-
ade and Coulomb staircase effects, using the parameters given in Ref. [1] to
Ref. [3], that reproduces their reported experimental results. In addition, the
effect of temperature on the Coulomb staircase effect is also modeled and
demonstrated by an example. To fully understand the model presented in this
chapter, however, the reader is advised to consult these references.

13.2
Capacitance

Figure 13.1 shows two capacitors, C1 and C2, representing the capacitance
of the tip–QD and QD–sample geometries, respectively. Such a representa-
tion would be correct if the tip–QD–sample structure consisted of two par-
allel plane capacitors that share one electrode. In that case the tip–sample
capacitance could be neglected because the electric fields belonging to one
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Fig. 13.1 A schematic diagram of a single-electron transistor (a: left-
hand side) and its electric circuit representation (b: right-hand side).

capacitor do not penetrate into the other. For the tip–QD–sample geometry,
however, one cannot obtain the capacitance of the whole system from that of
each capacitor separately, since the electric fields in such a geometry surround
both structures. Strictly speaking, one has to solve the three-body capacitance
self-consistently to obtain the appropriate components of the capacitance as-
sociated with the tip–QD and QD–sample geometries. Nevertheless, we will
approximate the total capacitance using the solutions to the isolated sphere–
plane and sphere–sphere capacitances, as has been done extensively in the
literature. The exact solution to the capacitance of a sphere–plane configura-
tion is well known and can be coded concisely. For a sphere–sphere configu-
ration, however, the solution is quite lengthy and executing the code is time
consuming. However, as will be shown in Chapter 15, one can obtain a fairly
accurate expression for the sphere–sphere capacitance that will execute much
faster than the exact one.

13.2.1
Sphere–Plane Capacitance

It will be helpful to get a feel for the radii of the tip and the quantum dot,
and the tip–dot and dot–sample separations required for enabling a Coulomb
blockade effect. To that end, we present equations for sphere–plane and
sphere–sphere capacitance together with several examples. An approximate
solution to the sphere–plane capacitance, Csp, is

Csp = 2πε0r[ln(s/r) + ln(2) + 23/20] , (13.1)

where r and s are the radius of the sphere and its separation from the surface of
a sample, respectively. Figure 13.2 shows Csp as a function of s for r = 10 (solid
line), 20 (dashed line), and 30 nm (dotted line).
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Fig. 13.2 The approximate sphere–plane capacitance, Csp, as a func-
tion of their separation, s, for r = 10 (solid line), 20 (dashed line), and
30 nm (dotted line).

13.2.2
Sphere–Sphere Capacitance

An approximate solution to the sphere–sphere capacitance, Css, where r1 and
r2 are the radii of the spheres and s is their separation, can be written in terms
of Csp as

Css(r1, r2, s) = γCsp(r, γs) , (13.2)

where

γ =
1

1 + rmin/rmax
. (13.3)

Here, rmin and rmax are the smaller and larger of the two radii, respectively,
where r and s are the radius of the sphere and its separation from the surface
of a sample, respectively. Figure 13.3 shows Css as a function of sphere–sphere
separation, s, for r1 = r2 = 10 (solid line), r1 = r2/2 = 10 (dashed line), and
r1 = r2/3 = 10 nm (dotted line).

13.3
Quantum Considerations

Let us now briefly review some of the parameters associated with the transfer
of a single electron into a quantum dot.

(a) A quantized unit of resistance, RQ, is

RQ =
πh̄
2e2 . (13.4)
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Fig. 13.3 The approximate capacitance between two spheres, Css, as
a function of their separation, s, for r1 = r2 = 10 (solid line), r1 =
r2/2 = 10 (dashed line), and r1 = r2/3 = 10 nm (dotted line).

(b) The thermal energy, Eth, at a given temperature, T, is

Eth = KBT . (13.5)

(c) The change in the charging energy of a capacitor, due to a single electron
entering (+) or leaving it (−), δE±c , is

δE±c =
e2

2C
. (13.6)

(d) The time constant, τ, associated with charging and discharging of an RC
circuit is

τ = RC . (13.7)

(e) The quantum noise voltage,VQ, of an RC circuit is

VQ =
h̄

eRC
. (13.8)

(f) The frequency associated with the number of tunneling electrons per sec-
ond, f , is

f =
i
e

, (13.9)

which is related to the tunneling rates, γ.
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13.4
Requirements and Approximations

The requirements for observing the Coulomb blockade and staircase effects
are quite simple. First, the change in energy, δE±c , due to the addition or re-
moval of a single electron from the quantum dot, must be large enough such
that thermal excitations are below the CB threshold,

Eth � δE±c . (13.10)

A second requirement is that the tunneling resistances, R1 and R2, be larger
than the quantum resistance,

R12 � RQ , (13.11)

so that the quantum noise voltage is smaller than the CB threshold. As an
example, consider the parameters given in Table 13.1 that yield the results
shown in Table 13.2. We find that for the chosen parameters, both thermal
fluctuations and quantum noise are indeed below δE±c , which makes it possi-
ble to observe the CB and CS effects in a system with such parameters.

Table 13.1 The parameters used as an example to assess the feasi-
bility of observing a Coulomb effect.

T = 300 K
C = 1 aF
R = 10 MΩ
i = 1 nA

Table 13.2 The parameters of a system that can exhibit the Coulomb
effect.

RQ = 6.453 19 kΩ
Eth = 25.8522 mV
δEc = 80.1089 mV

τ = 10 ps
vQ = 65.8211 µV

f = 6.241 51 GHz

13.5
Coulomb Blockade and Coulomb Staircase

A great simplification in the theory of the CB and CS effects occurs if the con-
dition

R2 � R1 (13.12)
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is met, regardless of which of the two resistances is the larger one. This is
usually satisfied anyway, since it is difficult to experimentally construct two
identical STM junctions. This condition means that the junction with the high-
est resistance dictates the rate at which electrons tunnel in and out of the QD.
Consequently, one can now use a simple analytic expression for the total tun-
neling rate, without having to involve quantum statistical considerations that
are quite cumbersome.

13.5.1
Electrostatic Energy Due to the Charging of the Quantum Dot

Let the total charge on the quantum dot, Q, consist of n electrons plus an
effective charge, Q0, due to the difference in the work functions of the media
comprising our system,

Q = ne−Q0 . (13.13)

The electrostatic energy associated with increasing (+) or decreasing (−)
the number of electrons in the quantum dot by 1, denoted by δE±c , is

δE±c =
(Q± e)2 −Q2

2(C1 + C2)
. (13.14)

Note that here the two capacitors in Figure 13.1(b) appear to be in parallel
rather than in series.

13.5.2
Electrostatic Energy Due to the Applied Bias

The electrostatic energies acquired by the capacitors C1 and C2 of Figure 13.1(b),
∆Ev1 and ∆Ev2 , respectively, due to the bias applied between terminals A and
B, are

δE±v1
= ± eC2

C1 + C2
v (13.15)

and

δE±v2
= ± eC1

C1 + C2
v . (13.16)

13.5.3
Total Electrostatic Energy

The total electrostatic energy acquired by the capacitors C1 and C2, δE±1 and
δE±2 , respectively, is the sum of the charge and bias contributions. This energy
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is obtained by using Eq. (13.14) to Eq. (13.16), which yield

δE±1 =
e2

C1 + C2

[
1
2
±

(
n− Q0

e

)
± C2

e
v
]

(13.17)

and

δE±2 =
e2

C1 + C2

[
1
2
±

(
n− Q0

e

)
∓ C2

e
v
]

. (13.18)

Here, Q0 accounts for a spurious charge residing in the QD.

13.6
Tunneling Rates

Let γ±1 and γ±2 denote the rates at which electrons tunnel through the tip–
QD and QD–sample capacitors, C1 and C2, respectively, where the positive
and negative signs refer to the direction of the tunneling. It can be shown that
under the conditions stated by Eq. (13.10) to Eq. (13.12), the tunneling rates
simplify to

γ±1 = − δE±1
e2R1

(13.19)

and

γ±2 = − δE±2
e2R2

, (13.20)

for δE±i < 0, and vanish otherwise.

13.7
Tunneling Current

The assumption that R2 � R1 leads to the result that the integer number of
electrons residing in the quantum dot at any given time, n, satisfies

−C2v + Q0 −
e
2
≤ n ≤ −C2v + Q0 +

e
2

. (13.21)

It can be shown that the tunneling current, i, flowing between terminals A
and B, is

i = i0

(
Floor

[−C2v + Q0 + e
2

e

]
, v

)
, (13.22)
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where the brackets denote the integer part (Floor), and i0 is given by

i0 = e[γ+
2 (n, 1, v)− γ−1 (n,−1, v)] . (13.23)

We can now choose the six parameters imax, Q0, C1, C2, R1, and R2, and plot
the tunneling current as a function of the applied bias. For a proper choice of
parameters, and at a low enough temperature, the resultant i(v) curves should
exhibit the Coulomb blockade and Coulomb staircase effects.

13.8
Examples

It is instructive to use examples from the literature where the theory presented
in this chapter has been applied and compared to experiment. The follow-
ing five such examples are taken from Ref. [1] and Ref. [2], reproducing their
results. Note that in all the examples, R2 � R1, while the capacitances are
comparable in magnitude. The following calculates the maximum voltage,
vmax, n1, n2, and nmax, all of which are used to generate the plots presented
in the following five examples.

vmax = imax(R1 + R2) , (13.24)

n1 = Floor[(−C2vmax + Q0 + e/2)/e] , (13.25)

n2 = Floor[(−C2vmax + Q0 − e/2)/e] , (13.26)

and

nmax = max{n1, n2} . (13.27)

13.8.1
Example 1

This example uses the parameters given in Table 13.3 that generate the para-
meters given in Table 13.4.

Table 13.3 The parameters given in the first example.

imax = 1200 pA
Q0 = −0.096 e
C1 = 13.6 aF
R1 = 0.3 MΩ
C2 = 4.05 aF
R2 = 29.3 MΩ
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Table 13.4 The parameters calculated in the first example.

nmax = 1 e
Eth = 0.361 93 mV
δEc = 4.538 75 mV

τ = 0.118 665 ns
vQ = 0.161 326 mV

Figure 13.4 shows the Coulomb staircase generated in the first example that
demonstrates two abrupt Coulomb staircases separated by a narrow Coulomb
blockade, and a background of i(v) slopes.
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Fig. 13.4 The Coulomb staircase generated by the first example.

13.8.2
Example 2

This example uses the parameters given in Table 13.5 that generate the para-
meters given in Table 13.6.

Table 13.5 The parameters given in the second example.

imax = 750 pA
Q0 = −0.005 e
C1 = 1.64 aF
R1 = 2 MΩ
C2 = 3.28 aF
R2 = 39.2 MΩ
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Table 13.6 The parameters calculated in the second example.

nmax = 1 e
Eth = 0.361 93 mV
δEc = 16.2823 mV

τ = 0.128 576 ns
vQ = 0.200 674 mV

Figure 13.5 shows the Coulomb staircase generated in the second exam-
ple that demonstrates two abrupt Coulomb staircases separated by a wide
Coulomb blockade and a background of i(v) slopes.
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Fig. 13.5 The Coulomb staircase generated by the second example.

13.8.3
Example 3

This example uses the parameters given in Table 13.7 that generate the para-
meters given in Table 13.8.

Table 13.7 The parameters given in the third example.

imax = 10 900 pA
Q0 = −0.119 e
C1 = 0.938 aF
R1 = 1.7 MΩ
C2 = 0.734 aF
R2 = 16.6 MΩ
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Table 13.8 The parameters calculated in the third example.

nmax = 1 e
Eth = 0.361 93 mV
δEc = 47.912 mV

τ = 0.012 184 4 ns
vQ = 0.412 775 mV

Figure 13.6 shows the Coulomb staircase generated in the third example
that demonstrates two abrupt Coulomb staircases separated by a Coulomb
blockade, and a background of i(v) slopes.
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Fig. 13.6 The Coulomb staircase generated by the third example.

13.8.4
Example 4

This example uses the parameters given in Table 13.9 that generate the para-
meters given in Table 13.10.

Table 13.9 The parameters given in the fourth example.

imax = 550 pA
Q0 = 0 e
C1 = 2 aF
R1 = 34.9 MΩ
C2 = 4.14 aF
R2 = 132 MΩ
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Table 13.10 The parameters calculated in the fourth example.

nmax = 2 e
Eth = 0.361 93 mV
δEc = 13.047 mV

τ = 0.546 48 ns
vQ = 0.009 429 95 mV

Figure 13.7 shows the Coulomb staircase generated in the fourth exam-
ple that demonstrates four abrupt Coulomb staircases separated by a narrow
Coulomb blockade, and a background of i(v) slopes.
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Fig. 13.7 The Coulomb staircase generated by the fourth example.

13.8.5
Example 5

This example uses the parameters given in Table 13.11 that generate the para-
meters given in Table 13.12.

Table 13.11 The parameters given in the fifth example.

imax = 65 pA
Q0 = 0 e
C1 = 1 aF
R1 = 1 MΩ
C2 = 100 aF
R2 = 100 MΩ
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Table 13.12 The parameters calculated in the fifth example.

nmax = 4 e
Eth = 0.361 93 mV
δEc = 0.793 157 mV

τ = 10 ns
vQ = 0.658 211 mV

Figure 13.8 shows the Coulomb staircase generated in the fifth example that
demonstrates eight abrupt Coulomb staircases separated by narrow Coulomb
blockades.
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Fig. 13.8 The Coulomb staircase generated by the fifth example.

Note that these five examples are in good agreement with the experimental
results obtained in Ref. [1] and Ref. [2].

13.9
Temperature Effects

13.9.1
Parameters

The theory presented in the last sections can be broadened to encompass the
effect of temperature, T, and a possible external resistor, Rx, capacitor, Cx,
chemical potential difference among the bodies of the SET, vx, and spurious
charge residing in the QD as described in Ref. [3]. Table 13.13 gives typical
parameters chosen to demonstrate the effect of all these parameters on the
operation of an SET.
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Table 13.13 The parameters chosen for the examples demonstrating
temperature effects.

T = 2 K
Q0 = 0.3 e
C1 = 0.1 aF
R1 = 1 MΩ
R2 = 100 MΩ
C2 = 100 aF
Cx = 1 aF
vx = 20 mV

13.9.2
Very High Temperature Operation

Let ilinear denote the current flowing through the sum of the two resistors of
Figure 13.1(b) due to a bias v.

ilinear = v/(R1 + R2) . (13.28)

Figure 13.9, which shows the current as a function of the bias, will be used to
demonstrate that the SET, at elevated temperatures, behaves as a linear circuit.
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Fig. 13.9 The current, iLinear, through R1 + R2 as a function of the
bias, v.

13.9.3
Very Low Temperature Operation

At a very low temperature, T0, the change in the charging energy of a capacitor
due to a single electron entering (+) or leaving (−) it, Ec, is

Ec =
e2

2(C1 + C2 + Cx)
. (13.29)
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The total electrostatic energy, δE±1 and δE±2 , acquired by the two capacitors,
C1 and C2, respectively, is the sum of the charge and bias contributions. This
energy is obtained by using Eq. (13.14) to Eq. (13.16), which yield

δE±1 (n, v) =
e2

[
1
2 ±

(
n + Q0−vxCx

e

)
∓ C2

e v
]

C1 + C2 + Cx
(13.30)

and

δE±2 (n, v) =
e2

[
1
2 ∓

(
n + Q0−vxCx

e

)
∓ (C1+Cx)

e v
]

C1 + C2 + Cx
. (13.31)

Let r±0,1 and r±0,2 denote the rates at which electrons tunnel through the tip–
QD and QD–sample capacitors, C1 and C2, respectively. Here the positive and
negative signs refer to the direction of the tunneling. It can be shown that
under the conditions stated by Eq. (13.10) to Eq. (13.12), the tunneling rates
simplify to

r±0,1(n, v) =
−δE±1 (n, v)

e2R1
(13.32)

and

r±0,2(n, v) =
−δE±2 (n, v)

e2R2
, (13.33)

both of which are set to zero for positive δE±i . It can also be shown that the
tunneling current, iT0 , flowing between terminals A and B, is given by

iT0(n, v) = i0,3(n, v)
[

Floor
(

C2v−Q0 + Cxvx + e
2

e

)
, v

]
, (13.34)

where

i0,3(n, v) = e[r±0,2(n, v)− r∓0,2(n, v)] . (13.35)

Figure 13.10 shows the current, iT0 , as a function of bias, v, for the low
temperature case. The operation of the SET here demonstrates a number of
Coulomb staircases separated by Coulomb blockades.

13.9.4
Finite Temperature Operation

For a finite temperature, we have to take into account the Bose–Einstein occu-
pation number, and the tunneling rates, Eq. (13.32) and Eq. (13.33), become
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Fig. 13.10 A low-temperature SET demonstrates a number of
Coulomb staircases separated by Coulomb blockades.

r±1 (n, v) = − δE±1 (n, v)

e2R1

(
1− �

δE±1 (n,v)
KBT

) (13.36)

and

r±2 (n, v) = − δE±2 (n, v)

e2R2

(
1− �

δE±1 (n,v,Q0)
KBT

) . (13.37)

The temperature-dependent statistical function, �, which describes the
number of electrons for a given bias is

�(n, v) =

[
∏n−1

i=−nmax
x(i, v)

][
∏nmax

i=n+1 y(i, v)
]

∑nmax
j=−nmax

{[
∏

j−1
i=−nmax

x(i, v)
][

∏nmax
i=j+1 y(i, v)

]} . (13.38)

Here,

x(n, v) = r±1 (n, v) + r∓2 (n, v) (13.39)

and

y(n, v) = r∓1 (n, v) + r±2 (n, v) . (13.40)

Figure 13.11 depicts the statistical function, �, as a function of the number
of electrons, n, for a particular bias, vtest, as an example. The figure shows that
at this bias the only occupied state is for n = 2.

Finally, the tunneling current, i, is given by

i(v) =
nmax

∑
n=−nmax

e[r±2 (n, v)− r∓2 (n, v)] .�(n, v) (13.41)



196 13 Coulomb Blockade

�3 �2 �1 0 1 2 3

n

0

0.2

0.4

0.6

0.8

�

v
te

s
t
�

3
.8

4
5
2
3

m
V

Fig. 13.11 The statistical function, �, as a function of the number of
electrons, n, for a bias vtest.

Figure 13.12 shows the tunneling current, i, for very low (straight line), finite
(dots), and very high temperatures (staircase) as a function of bias, v. Note that
the dots will approach the straight line as the temperature is elevated.
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Fig. 13.12 The tunneling current, i, for very low (straight line), fi-
nite (dots), and very high temperatures (staircase) as a function of v.

� Exercises for Chapter 13

1. Check whether the model reproduces the experimental results cited in the
references.



References 197

2. Choose your own parameters for Rj and Cj, i = 1, 2, and for Q0, and T,
and check whether the temperature and quantum noise are small enough
to makes it possible to observe the CB and CS phenomena.

3. Extend the modeling so that it can handle a finite temperature.
4. Model the action of a single-electron transistor by controlling Q0.
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14
Density of States

Highlights

1. Density of states of large bodies for fractional dimensions
2. Density of states of quantum wells and quantum wires
3. Density of states of cubical and spherical quantum dots
4. Electron interband optical transitions near van Hove critical points

Abstract

The density of electronic states of solid bodies is a concept that is frequently
encountered in the field of scanning probe microscopy in which structures
on the nanometer scale are probed. The number of electronic states and their
density is given for arbitrary dimension. The only equations we use are the
volume of a sphere in a continuous dimension, and the energy of an elec-
tron in the parabolic approximation. Mathematica uses these two equations to
generate the density of states of large bodies in three dimensions, quantum
wells, quantum wires, and finds cubical and spherical quantum dots. Electron
interband optical transitions near van Hove critical points are treated using
fractional dimensions.

14.1
Introduction

The electronic density of states (DOS) of a solid body, ρ, plays a major role
in solid-state physics, since it controls the possible interactions the body can
have with its environment. In particular, for scanning tunneling microscopy
applications, tunneling of electrons into or out of a body requires that it have
available empty or filled states, respectively. For a body whose size in the x̂, ŷ,
and ẑ axes is large relative to an atomic diameter, the density of states is a
smooth function of the energy. However, if the geometry of the body is such
that along at least one axis its size is only several atomic units, the density of
states as a function of energy exhibits a particular structure. The DOS enters

Exploring Scanning Probe Microscopy with MATHEMATICA, Second Edition.  Dror Sarid
Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40617-3
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explicitly into the equations that govern the tunneling of electrons into or out
of a given body. It is therefore important to calculate it for typical geometries
encountered in the field of scanning tunneling microscopy. This chapter opens
with a treatment of a volume in a d-dimensional space, where d is a real, posi-
tive number. The results are then applied to the calculation of the DOS of bod-
ies in one, two, and three dimensions. Next, the DOS of a quantum well and
a quantum wire, which are three-dimensional bodies confined along one and
two axes, respectively, are discussed. Finally, the case of a quantum dot, which
is a three-dimensional body confined along all the three axes and has a cubi-
cal or spherical geometry, is treated. The results presented here, which take
into account spin degeneracy, are scaled to a volume V = Ld, where d is the
dimensionality of the body and L = 1 nm. Also treated are electron interband
optical transitions near van Hove critical points using fractional dimensions.
Schematic diagrams of (a) three-dimensional, (b) two-dimensional, (c) one-
dimensional, and (d) zero-dimensional bodies are shown in Figure 14.1.

Fig. 14.1 Schematic diagrams of (a) three-dimensional, (b) two-
dimensional, (c) one-dimensional and (d) zero-dimensional bodies.

14.2
Sphere in Arbitrary Dimensions

The volume, Vs, of a sphere with radius r in a d-dimensional space is

Vs =
rdπd/2

Γ[d/2 + 1]
. (14.1)

Here, Γ is the Gamma function and d a real, positive number, not necessarily
an integer. Equation (14.1) agrees with the well-known results for 0-, 1-, 2-,
and 3-dimensional spaces, given in Table 14.1. Figure 14.2 shows an example
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of the volume of two spheres, one with a radius r = 1.1 (solid line) and the
other with a radius r = 1.2 (dashed line), as a function of the continuous
dimension d. We see that on increasing r, the volume of the spheres reaches a
maximum at a larger value of d, and that the volume equals unity for d = 0.
Driven by curiosity, we figure out the dimension, dmax, at which the volume
obtains its maximum value for a given radius r. For example, for r = 1.1, we
get dmax = 6.5809.
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Fig. 14.2 The volume of two spheres, Vs, one with a radius r =
1.1 (solid line) and the other with a radius r = 1.2 (dashed line) as
a function of the continuous dimension d.

Let As be the area of a sphere with radius r in a d-dimensional space, where
d is a real, positive number. The area is obtained from the volume by taking
its derivative with respect to r. The solid angle, θs, subtended by this sphere,
is obtained by dividing the area of the sphere by rd−1. Table 14.2 is a summary
of the results obtained up to now for 1-, 2-, and 3-dimensions.

Table 14.1 The volume, Vs, area, As, and solid angle, θs, for a sphere
in 1-, 2-, and 3-dimensions.

d = 1 d = 2 d = 3

Vs 2r πr2 4πr3

3

As 2 2πr 4πr2

θs 2 2π 4π
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14.3
Density of States in Arbitrary Dimensions

Using Eq. (14.1), we will now calculate the total number and density of states
as a function of the energy of electrons for a body in a d-dimensional space.
We will find that for integer dimensions, the results agree with the well-known
expressions obtained in solid-state physics. Finally, we will plot the density of
states as a function of a continuous dimension.

The volume in a d-dimensional k-space, Vk, is obtained by replacing r with
k in Eq. (14.1), which yields

Vk =
kdπd/2

Γ[d/2 + 1]
. (14.2)

The energy of an electron in the parabolic approximation, E , is

E =
h̄2k2

2me
. (14.3)

Inverting Eq. (14.3) yields the energy-dependent k-vector, denoted by kE , in
terms of the energy,

kE =
√

2meE
h̄

. (14.4)

The total number of k states, nk, per unit volume in a d-dimensional space
with dense k values, is

nk =
kd

2d/2−1πd/2Γ(d/2 + 1)
. (14.5)

Here, a factor of 2 is included to account for the spin degeneracy, 1/(2π)d

is the number of k states per unit spatial volume, and Vk is the volume in k-
space. Equation (14.5) gives the number of states, nk, in terms of k. The number
of states in terms of the energy, nk,E , is obtained by replacing k with kE

nkE =
√

2meE
2d/2−1πd/2h̄dΓ(d/2 + 1)

. (14.6)

To find the density of states, ρ, we take the derivative of nkE with respect to
the energy E

ρ =
d(meE)d/2

(2π)d/2h̄d√EΓ
(
1 + d

2

) . (14.7)

It is instructive to check the density of states per unit volume, obtained for
a d-dimensional space, where d = 1, 2, and 3.

The density of states, ρ, as a function of energy, E , for the d = 1, 2, and 3,
using L = 1 nm, is shown in Figure 14.3.
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Table 14.2 The density of states per unit volume, ρ, for d = 1, 2,
and 3.

d = 1 d = 2 d = 3

ρ

√
2
√

me

π
√
E h̄

me

πh̄2

√
2
√
Em3/2

e

π2 h̄3
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Fig. 14.3 The density of states (not to scale), ρ, as a function of the
energy, E , for d = 1 (solid line), 2 (dashed line), and 3 (dotted line).

The descending, flat, and ascending curves belong to the 1-, 2-, and 3-
dimensional cases, respectively. The density of states as a function of both the
energy, E , and the continuous dimension, d, is shown in Figure 14.4.
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Fig. 14.4 The density of states, ρ, as a function of both the energy, E ,
and the continuous dimension, d.
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14.4
Density of States in Confined Structures

We will now treat three-dimensional bodies confined in one, two, and three
dimensions, namely, quantum wells, quantum wires, and quantum dots. The
first two bodies will have a finite density of states along the direction in which
they are not confined, and discrete states in the direction in which they are
confined. The quantum dots, on the other hand, will have only discrete states
in all the three directions.

14.4.1
Quantum Wells

Let the quantum well have a thickness s along its confined direction, along
which its energy states are discrete. The density of states along the unconfined
directions, ρ2, however, is two-dimensional. Now, the density of states of this
body will have to equal that of a three-dimensional body at particular states
where their k-vectors coincide.

ρ2 =
L
s

me

πh̄2 Floor
[√

2meE
πh̄

s
]

. (14.8)

Figure 14.5 shows the density of states of a quantum well and of a three-
dimensional body. Note that the staircase structure, associated with the quan-
tum well, contacts that of the three-dimensional body at discrete points.
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Fig. 14.5 The density of states, ρ, of a three-dimensional body (solid
line) and a quantum well (dashed line) as a function of energy, E .
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14.4.2
Quantum Wires

Let the quantum wire have a thickness, s, in each of its confined directions.
This thickness dictates that in these directions its energy states are discrete.
The density of states along the unconfined direction, ρ1, is one-dimensional.
Now, the density of states of this body will have to equal that of a three-
dimensional body at particular states where their k-vectors coincide. Using
the function Floor[x] that gives the greatest integer less than or equal to x, will
accomplish this task, yielding

ρ1 =
L2

s2

√
2me/E
πh̄

Floor
[

meE
πh̄2 s2

]
. (14.9)

Figure 14.6 shows the density of states of a three-dimensional body (solid
line) and a quantum wire (dashed line) as a function of energy, E . Note that
the structure of the quantum wire contacts that of the three-dimensional body
at discrete points.
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Fig. 14.6 The density of states of a three-dimensional body (solid line)
and a quantum wire (dashed line) as a function of energy, E .

14.4.3
Cubical Quantum Dots

We will now consider a cubical quantum dot whose size, Lc, is small enough
such that it can support only a discrete, rather than a continuous, number of
electronic states, En. As the size of the quantum dot grows, the energy levels
will start merging, eventually building up into a semicontinuous density of
states. The energy levels for this structure, enumerated by n, are obtained by
considering the energy of an electron in the parabolic approximation, replac-
ing the k-vector by nπ/Lc, and multiplying the energy by 3 to account for the
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three degrees of freedom in three-dimensional space,

En =
3π2h̄2

2meL2
c

n2 . (14.10)

Figure 14.7 shows the energy levels of an electron in the cubical quantum
dot, En, for n = 1− 3. The lowest energy level is shown by the solid line, with
ascending curves for higher energies. Note that as the size Lc increases, the
energy levels develop into a semicontinuous density of states.
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Fig. 14.7 The energy levels, En, of a cubical quantum dot as a func-
tion of Lc.

14.4.4
Spherical Quantum Dots

We will now consider a spherical quantum dot whose radius, R, is small
enough such that it can support only a discrete, rather than a continuous,
number of electronic states ([1], p. 337). The first six energy levels of the quan-
tum dot, En, as a function of its radius will now be calculated. As with the
cubical quantum dot, here too we find that as the radius of the quantum dot
increases, the energy levels merge into a semi continuous density of states.
The solution to Schrodinger’s equation for a single electron,

− h̄2

2me
∇2ψs(r) = Esψs(r) , (14.11)

subject to the spherically symmetric boundary condition

ψs(R) = 0 , (14.12)
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where |r| < R, is given by

ψs =
21/2

R3/2

j1(αn,�r/R)
j1+�(αn,�)

Y�,m(Ω) . (14.13)

Here, j1 is a spherical Bessel function of order 1 and Y�,m is a spherical har-
monic. For the boundary conditions of ψs to be satisfied, it is required that

j1(αn,�) = 0 . (14.14)

The first six zeros of j1(αn,�) are given in Table 14.3 for a particular choice
of (n, �).

Table 14.3 The first six zeros of j1(αn,�) for a particular choice of
(n, �).

(0, 1) (0, 2) (0, 3) (1, 1) (1, 2) (1, 3)
3.141 59 6.283 19 9.424 78 4.493 41 7.725 25 10.9041

Figure 14.8 shows the energy levels of an electron in the spherical quan-
tum dot, En,�, as a function of its radius, R, using the six functions listed in
Table 14.3. The lowest energy level is shown by the solid line, with ascending
curves referring to higher energies. Note that as the radius R increases, the
energy levels develop into a semicontinuous density of states.
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Fig. 14.8 The energy levels of a spherical quantum dot, E , as a func-
tion of its radius, R, with ascending curves referring to higher energies.

To compare the energy levels of the spherical and cubical quantum dots,
we consider a cube whose volume equals that of a sphere, namely L3

c =
(4/3)πR3. The ratio of the energies of their first level is found to be 0.866 173,
quite close to unity.
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14.5
Interband Optical Transitions and Critical Points

Differentiation and integration to arbitrary order have been a topic of much in-
terest for decades, and applications to many fields of science have been found
very useful [3]. The common term for such operations, differintegration, im-
plies that one can formulate an operator, Dq = dq/dxq, whose parameter q
determines whether it will differentiate or integrate a function f (x). More-
over, q does not have to be an integer, but rather can assume fractional and
even complex values. Among several definitions of such an operator is the
one defined along the Riemann–Liouville integral, given by

dq f (x)
d(x− a)q =

1
Γ(−q)

∫ x

a

f (y)
(x− y)q+1 �y , (14.15)

for q < 0, which can be extended to q > 0 by using

dq f (x)
d(x− a)q =

dn

dxn
1

Γ(n− q)

∫ x

a

f (y)
(x− y)q−n+1 �y , (14.16)

with n > 0. Equations (14.15) and (14.16) are mathematical operators whose
validity can be justified by pure logical arguments. The notion of a fractional
space, treated in the previous sections, is by far more complicated as it re-
quires, for example, an explanation of the meaning of boundary conditions in
such a space. These, and similar arguments, will not be dealt here.

In this section we give an example of how differintegration can be put to
use in solving a physical problem. Consider the optical properties associated
with electron interband transitions in an anisotropic solid in the vicinity of
van Hove critical points. The Bloch electrons in this solid can be treated as if
they were an isotropic electron gas residing in a fractional space of order α.
The joint density of states here, ρe, is

ρe =
2

Γ(α/2)

(
mvc

2πh̄2

)α/2

(E − Eg)d/2−1 , (14.17)

where E is the optical energy, Eg the band gap and mvc the effective mass of the
electron. The dielectric constant of the solid, ε(h̄ω), associated with allowed
interband transitions near a critical point, in terms of ρe(E), is

ε(h̄ω) =
C

(h̄ω)2

∫
ρe(E)

ρe(E)
E − h̄ω− �γ �E , (14.18)

where ω is the optical radial frequency, C an electronic transition matrix ele-
ment, and γ a broadening factor. Combining Eqs (14.17) and (14.18) yields

ε(h̄ω) ∝
�r−α

(h̄ω)2Γ(α/2)

∫ Eg (Eg − E)α/2−1

E − h̄ω− �γ �E , (14.19)
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where r is the type of the critical point. Within the spirit of Eq. (14.15), we can
write Eq. (14.19) around h̄ω ∼ Eg as

ε(k)(h̄ω) ∝ �r−αD−α/2 1
Eg − h̄ω− �γ , (14.20)

where the derivative is in respect to Eg. Performing the differintegration yields

ε(h̄ω) ∝ �r−αΓ(2− α/2)
∫ Eg−h̄ω−�γ

td/2−2 �t . (14.21)

Equation (14.21) gives the dielectric function, ε, for an α-dimensional solid.
The integral of Eq. (14.21), for r = 0 and α = 0, 1, 2, and 3, is given in Table 14.4,
where x = (h̄ω− Eg)/γ.

Table 14.4 ε as a function of x = (h̄ω − Eg)/γ, for r = 0 and α = 0,
1, 2, and 3.

α ε

0 − 1
�+ x

1
�
√

π√
�+ x

2 −ln(�+ x)

3 2�
√

π
√
�+ x

Figure 14.9 shows �(ε) and 
(ε) as a function of x for α = 0, 1, 2, and 3.
To demonstrate the utility of Eq. (14.21), we also give ε as a function of

x = (h̄ω− Eg)/γ, for r = 0 and α = 1.5 and 2.5.

Table 14.5 ε as a function of x = (h̄ω − Eg)/γ, for r = 0 and α = 1.5
and 2.5.

α ε

1.5 2.563
1 + �

(�+ x)0.25

2.5 2.5636
1 + �

(�+ x)0.25

Figure 14.10 shows �(ε) and 
(ε) as a function of x for α = 1.5 and 2.5, rel-
evant to a solid in a fractional dimension. There are many other cases where
differintegration can help solve problems associated with spaces having frac-
tional dimensions.
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Fig. 14.9 �(ε) and 
(ε) as a function of x for d = 0, 1, 2, and 3.

� Exercises for Chapter 14

1. Compare the first five energy levels of cubical and spherical quantum dots.
2. Calculate the density of states in continuous d-dimensions, taking into ac-

count the Fermi functions at a finite temperature.
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Fig. 14.10 �(ε) and 
(ε) as a function of x for α = 3/2 and 5/2.
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15
Electrostatics

Highlights

1. Exact and approximate sphere–plane and sphere–sphere capacitances
2. Electrostatic force between a conducting sphere and a conducting plane

Abstract

Scanning probe microscopy often requires solutions to the capacitance of a
conducting sphere next to a conducting plane, and of two conducting spheres
next to each other. We will obtain exact solutions to the capacitance of these
bodies together with faster running, approximate solutions.

15.1
Introduction

It is often convenient to model the apex of a sharp conducting tip of a scan-
ning probe microscope by a sphere, and the flat conducting sample by a plane.
There are also cases where the tip scans over a conducting convex object that
can also be modeled as a sphere. The electrostatic interaction between the tip
and sample, which plays a major role in scanning probe microscopy in de-
termining the tunneling current and electrostatic force, can then be modeled
using sphere–plane and sphere–sphere geometries. We will use the method
of images to obtain solutions to geometries consisting of a point charge and
a plane, a point charge and a sphere, a sphere and a plane, and finally two
spheres. We will obtain the electrostatic fields and equipotentials for all but
the last case together with typical examples that treat nanometer-scale struc-
tures. We will also find exact solutions to the capacitance of sphere–plane and
sphere–sphere geometries together with numerical examples. We can then
study a particular case by using a replacement rule in the code that we can
later modify if necessary. To speed up the computations, we will develop ap-
proximate solutions and test their range of validity. The fast-running approx-
imate solutions will be sufficient because radii and distances associated with

Exploring Scanning Probe Microscopy with MATHEMATICA, Second Edition.  Dror Sarid
Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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geometries encountered in scanning probe microscopy can only be crudely
estimated from experimental results.

15.2
Isolated Point Charge

We will solve electrostatic problems by the method of images which uses a
collection of isolated point charges to obtain exact solutions involving finite-
size conducting bodies. We start therefore by treating the case of a point charge
and use the results as building blocks for the solution of the more complicated
cases. The potential, vpoint, surrounding an isolated point charge, Q, located
at the axes’ origin, is given as a function of distance, r, by

vpoint =
1

4πε0

Q
r

. (15.1)

For simplicity of plotting, we will ignore the first factor on the right-hand
side of Eq. (15.1) and assume that Q = 1. The field, Epoint, surrounding the
point charge, is obtained from the gradient of the potential by

Epoint = −∇vpoint . (15.2)

The two-dimensional plots of the field lines (a) and equipotentials (b) of an
isolated point charge are shown in Figure 15.1.

�1.5�1�0.5 0 0.5 1 1.5

�1.5

�1

�0.5

0

0.5

1

1.5

�a�

�2 �1 0 1 2

�2

�1

0

1

2

�b�

Fig. 15.1 The field lines (a) and equipotentials (b) of an isolated point
charge.

15.3
Point Charge and Plane

We now place an infinite, grounded conducting plane at a distance d below
a point charge, as shown in Figure 15.2(a), and use the method of images
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to solve for the field and potential surrounding these two bodies. The point
charge will induce an image Qi = −Q at a position s = −2d, to satisfy the
condition that the plane must be an equipotential. We can therefore replace
the conducting plane by its image charge and solve for the field and poten-
tial using only the real and induced charges. The two-dimensional plots of the
field lines (a) and equipotentials (b) of the point charge and plane are shown
in Figure 15.2. In contrast to the previous case, the equipotentials and field
lines now have only an axial symmetry in the three-dimensional space. Note
that the field lines at the surface of the plane are at a right angle, and that the
solutions to the field and potential are valid only outside the conducting body.
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Fig. 15.2 The field lines (a) and equipotentials (b) of a point charge in
the vicinity of a conducting plane.

15.4
Point Charge and Sphere

We now replace the conducting plane of Figure 15.2(a) with a conducting,
grounded sphere centered at −d, as shown in Fig. 15.3(a), and use the method
of images to solve for the field and potential surrounding these two bodies
([1], p. 150). The point charge will induce an image Qi at a position si inside
the sphere, to satisfy the condition that its surface must be an equipotential.
We can therefore replace the conducting sphere by the image charge and solve
for the field and potential using only the real and induced charges. Using geo-
metrical considerations dictates that the position and magnitude of the image
induced by the real charge, si and Qi, be given by

si = d− R2

d
(15.3)
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and

Qi = −Q
R
d

. (15.4)

The two-dimensional plots of the field lines (a) and equipotentials (b) of
a point charge and a conducting sphere are shown in Figure 15.3. Here, the
potential produces a circle of radius R centered at −d, as expected, and the
field lines are perpendicular to the surface of the sphere–sphere in a three-
dimensional space. As noted before, the solution to the field and potential are
valid only outside the conducting body.
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Fig. 15.3 The field lines (a) and equipotentials (b) of a point charge in
the vicinity of a conducting sphere.

15.5
Isolated Sphere

The field and potential surrounding an isolated conducting sphere with ra-
dius R and charge Q are identical to those of a point charge for distances r
such that r > R. However, inside the sphere, the potential is finite and con-
stant, and the field vanishes. Now the capacitance of a conducting body is
defined as the ratio of its charge to the potential it produces. Therefore, if the
charge of the body is known, we can find the capacitance of the body by eval-
uating its potential. The self-capacitance of an isolated sphere, Csphere, with
radius R, is given by

Csphere = 4πε0R . (15.5)

As an example, note that a sphere with a radius of 1 nm has a capacitance of
0.111 aF. Such a capacitance is so small that adding to it a single electron will
already change its potential by v = 0.69 V. This raises an interesting question,
which is, what happens to the potential of such a sphere if we try to charge
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it through a tunneling process by applying a bias that is smaller than v. This
important issue was discussed in detail in the chapter dealing with Coulomb
blockade.

15.6
Sphere and Plane

Let us now place a conducting sphere with radius R at the axes’ origin, and
a conducting, grounded plane at −d, as shown in Figure 15.4(a). Our plan is
to solve for the potential and field surrounding these two bodies, using the
results obtained in the previous sections. Specifically, we use the solutions ob-
tained with a point charge next to a plane and a point charge next to a sphere,
and keep track of the magnitude and location of the real and induced charges.
The potential generated by these charges, outside the conducting bodies, can
then be calculated.

15.6.1
Position of Charges Inside the Sphere

The procedure starts by placing a unit charge at the axes’ origin, which will
make the surface of the sphere an equipotential. This charge will then induce
an image having the same magnitude but opposite sign in the conducting half-
space bounded above by the plane. The combination of these two will make
the plane an equipotential, but the surface of the sphere will no longer be an
equipotential. To improve the accuracy of the solution, so that both the sur-
face of the sphere and the plane become equipotentials, we continue adding
images of images iteratively, until the process converges to a close enough ap-
proximation for the actual potential of the sphere and plane. The position of
the charges inside the sphere, up to three iterations, is shown in Table 15.1.

Table 15.1 The position of the charges inside a sphere positioned
next to a conducting plane, up to three iterations.

{
0,

R2

2d
,

R2

2d− R2

2d

}
(15.6)
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15.6.2
Magnitude of Charges Inside the Sphere

Table 15.2 gives the magnitude of the charges associated with their respective
positions, presented in Table 15.1. Note that the magnitude of the real charge
is unity and that the position of the image inside the sphere is at R/2d.

Table 15.2 The magnitude of the charges inside a sphere positioned
next to a conducting plane, up to three iterations.

{
1,

R
2d

,
R2

4d2
(
1− R2

4d2

)
}

(15.7)

15.6.3
Position of Charges Outside the Sphere

The position of the charges in the conducting half-space bounded above by
the plane is given in Table 15.3. Note, for example, that the charge placed at
the axes’ origin induces its first image at a distance of 2d below the x̂ axis.

Table 15.3 The position of the charges outside a sphere positioned
next to a conducting plane, up to three iterations.

{
2d, 2d− R2

2d
, 2d− R2

2d− R2

2d

}
(15.8)

15.6.4
Magnitude of Charges Outside the Sphere

The magnitude of the charges associated with their respective positions, as
shown in Table 15.3, is given in Table 15.4. Clearly the position and magnitude
of the images given by the first two elements in the four lists reproduce the
results obtained in the sections dealing with the point charge next to a plane
and a point charge next to a sphere.
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Table 15.4 The magnitude of the charges outside a sphere positioned
next to a conducting plane, up to three iterations.

{
−1,− R

2d
,− R2

4d2
(
1− R2

4d2

)
}

(15.9)

15.6.5
Potential and Field

Figure 15.4 shows the field lines (a) and equipotentials (b) of a conducting
sphere next to a conducting plane. Note that the equipotential at the surface
of the plane is not a straight line because we have not taken enough iterations.
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Fig. 15.4 The field lines (a) and equipotentials (b) of a conducting
sphere next to a conducting plane.

15.6.6
Potential Along the Axis of Symmetry

Figure 15.5 shows the potential of a conducting sphere next to a conducting
plane along the axis of symmetry for which x = 0.

15.7
Capacitance

The exact solution to the capacitance of a conducting sphere with radius R, Csp,
whose surface is separated from a conducting plane by a distance s, can be
obtained by summing up the potential generated by all the charges, real and
induced, as done before.
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Fig. 15.5 The potential of a conducting sphere next to a conducting
plane along the axis of symmetry for which x = 0.

15.7.1
Sphere–Plane Capacitance

The exact solution to the sphere–plane capacitance, Csp (Figure 15.6), is

Csp = 4πε0R sinh α
∞

∑
n=1

1
sinh(nα)

, (15.10)

where

α = ln

(
s
R

+

√
s2

R2 +
2s
R

+ 1

)
. (15.11)

For s < R, one can approximate Csp using

Csp ∼ 2πε0R[ln(s/R) + ln(2) + 23/20] . (15.12)

15.7.2
Example

15.8
Two Spheres

Consider now two conducting spheres with radii R1 and R2 whose surfaces
are separated by a distance s. The exact solution to the potential and field of
these two bodies, using the method of images, is quite lengthy and will not be
given here. However, the code for their capacitance, Css(R1, R2, s), is relatively
short and will be used in the following section.
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Fig. 15.6 The sphere–plane capacitance, Csp, as a function of their
separation, s.

15.8.1
Capacitance: Exact Solution

The capacitance of the two spheres is calculated by using all the building
blocks obtained in the previous sections and will be given here without
proof [2]. The solution is given in terms of an infinite series, and one has
to choose the number of terms, n, in the summation that will yield a solution
that is accurate enough. Usually, the range 10 < n < 20 will be sufficient.

15.8.2
Capacitance: Approximate Solution

The approximate solution to a sphere–sphere capacitance, Cssa, can be written
in terms of Csp by

Cssa (R1, R2, s) = γCsp(Rmin, γs) , (15.13)

where Rmin and Rmax are the smaller and larger of the two radii, and γ is

γ =
1

1 + Rmin/Rmax
(15.14)

15.8.3
Example

To compare the exact and approximate solutions to the sphere–sphere capac-
itance, we choose two cases. In the first case, shown in Figure 15.7(a), where
R1 = R2 = 100 nm, the exact and approximate solutions are practically iden-
tical. In the second case, shown in Figure 15.7(b), where R1 = 100 nm and
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R2 = 10 nm, the exact and approximate solutions are quite close as well. The
approximate solution reproduces the exact one when one of the radii of the
spheres is much larger than the other, and when they are equal. The simplic-
ity of the approximate solution, therefore, merits its use.
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Fig. 15.7 The sphere–sphere capacitance, Csp, as a function of their
separation, s, for (a) R1 = R2 = 100 nm and (b) R1 = 100 nm and
R2 = 10 nm.

15.9
Electrostatic Force

The capacitance of a conducting tip of a scanning probe microscope, placed
next to a flat conducting sample, can be approximated by that of a conducting
sphere placed next to a conducting plane. Applying a bias v between these
two bodies gives rise to an electrostatic force, Fsp, given by

Fsp = −1
2

∂

∂s
Cspv2 . (15.15)

Figure 15.8 shows the electrostatic force, Fsp, exerted on a sphere with radius
R = 25 (solid line) and 100 nm (dashed line), separated from a flat, conduct-
ing plane by a distance s, with a bias of v = 1 V applied between these two.
Note that the electrostatic force plays an important role in scanning tunneling
microscopy and conducting-tip atomic force microscopy, and may have to be
taken in account.

� Exercises for Chapter 15

1. Use the method of images to show that Eq. (15.6) and Eq. (15.7) yield the
proper value for the sphere–plane capacitance.
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Fig. 15.8 The sphere–plane electrostatic force, Fsp, as a function of
their separation, s, for R = 25 nm (solid line) and 100 nm (dashed
line).

2. Verify that the solution of the two-sphere capacitance reproduces the
sphere–plane capacitance if one of the radii is much larger than the other,
and if they are equal.

3. Calculate, code, and plot the potential and field for a sphere–sphere geom-
etry.

References

1 P. Lorrain and D. Corson, Electromagnetic Fields and Waves, 2nd Edition, W. H. Freeman, San
Francisco, 1970.

2 Guanming Lai, private communication.



222

16
Near-Field Optics

Highlights

1. Bethe–Bouwkamp solution to light diffracted by a circular aperture in a
perfectly conducting screen

2. Plots of electric fields and radiation intensities in the near- and far-field
3. Electric fields across a hexagonal array of subwavelength apertures

Abstract

Near-field scanning optical microscopy (NSOM) is concerned with an elec-
tromagnetic wave diffracted by a subwavelength aperture with radius a po-
sitioned at the end of a metal-coated fiber or hollow pipette. This chapter
presents a simplified situation in which a plane, linearly polarized electro-
magnetic wave is incident normally on a circular aperture in a perfectly con-
ducting screen. The diffraction of this wave, whose wavelength is λ, from the
aperture whose radius a is smaller than λ, is presented in two regions. The
first, which is based on the radiation of a magnetic dipole, is applicable for
aperture–sample distances z such that z > a. The second, originally derived
by Bethe and Bouwkamp, is applicable for 0 < z < a. Expressions for the
associated electric and magnetic fields and radiation intensities are presented
for both regions together with plots of interest. Finally, electric fields across a
hexagonal array of subwavelength apertures, fabricated in a perfect conduc-
tor, are calculated and plotted.

16.1
Introduction

In a typical near-field scanning optical microscope (NSOM), light is guided
inside a metal-coated fiber or a hollow pipette that are terminated by a sub-
wavelength aperture. The aperture, which is in the x̂–ŷ plane, is placed at a
distance z < a away from the surface of a sample across which it is raster
scanned. The light diffracted by the aperture interacts with a subwavelength

Exploring Scanning Probe Microscopy with MATHEMATICA, Second Edition.  Dror Sarid
Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40617-3
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area across a sample. The interaction can involve, for example, absorption of
the light diffracted by the aperture by opaque features across the sample, or
excitation of fluorescing molecules adsorbed across the sample. In both cases,
the far-field radiation emanating from the sample and detected by a photode-
tector, produces a subwavelength-resolution image of these features.

The unique characteristics of NSOM include (a) a high concentration of
optical radiation in a subwavelength region that provides a high signal-
to-noise ratio image relative to that obtained by conventional optical mi-
croscopy, and (b) the generation of near-field radiation with an altered state of
polarization, in contrast to conventional optical microscopy whose state of po-
larization stays unchanged. Bethe’s original solution to the problem of electro-
magnetic fields diffracted by a small circular aperture, followed by the work of
Bouwkamp, assumes a perfectly conducting plane, and therefore neglects skin
effects. In their theory, the incident electromagnetic fields generate oscillating
currents at the circumference of the aperture, whose radiation fields interfere
with the incident field. The theory shows that the resultant radiation in the
far field is dipolar in nature. In proximity to the aperture, namely for z < a,
the diffracted electromagnetic fields from an x̂-polarized incident field are
found to differ from those obtained using Kirchoff’s method. In particular,
the diffracted fields have not only the original plane polarized component of
the incident field, but also components in the two other directions that decay
farther away from the aperture. A manifestation of the polarization character-
istics was demonstrated by Betzig, who used an NSOM to excite fluorescing
molecules across the surface of a sample. An extension of Bethe–Bouwkamp
solution was given by Grober using Fourier optics, a method that enables
one to determine the diffracted fields away from the aperture, from a known
solution at the aperture plane.

This chapter presents the far-field solution to the electromagnetic fields
in terms of magnetic dipole radiation and the near-field solution of Bethe
and Bouwkamp. Electric and magnetic fields, Poynting vectors, and intensi-
ties are given for both cases and plots of interest presented. Finally, electric
fields across a hexagonal array of subwavelength apertures, fabricated in a
perfect conductor, are calculated and plotted. Analysis of the distribution of
these fields sheds light on a variety of interaction such as Raman and fluores-
cence, for example, that can take place between a sharp, conducting tip of an
AFM and molecular species across the surface of a sample. We will be using
Gaussian, rather than MKSA units for ease of making contact with the work
cited in the literature. A typical choice of experimental parameters, given in
Table 16.1, will be used in all the example presented in this chapter.
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Table 16.1 A typical choice of experimental parameters used in all the
examples presented in this chapter.

λ = 500 nm
a = 50 nm

16.2
Far-Field Solution

16.2.1
Vector Potential

As noted in the Bethe–Bouwkamp theory, the far-field radiation of light dif-
fracted by a circular aperture with radius a can be modeled as that generated
by an oscillating magnetic dipole whose moment, m0, is

m0 = − 2
3π

a3H0 . (16.1)

Here, H0 is the magnetic field of the incident light, which we assume to be
equal to unity. The dipole is positioned in the aperture’s x̂–ŷ plane, pointing
along the ŷ direction, which is perpendicular to the direction of polarization
of the light incident on the aperture. The vector potential of the magnetic di-
pole, Ad, is given by

Ad =
{

0, 0,
��(kr−ωt)

r2 m0(1− �kr) sin θ

}
. (16.2)

using the spherical coordinate system {r̂, θ̂, φ̂}. It will be convenient to rewrite
Ad in terms of an amplitude, Ad,0

Ad,0 = m0

√
1 + k2r2 sin θ , (16.3)

and phase

ψ = kr−ωt + arctan(−kr) . (16.4)

16.2.2
Electric Field

The electric field generated by the oscillating magnetic dipole, Ed, is obtained
from Ad using

Ed = −1
c

d
dt

Ad , (16.5)
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with an amplitude, Ed,0, given by

Ed,0 =
{

0, 0,
ωm0

√
1 + k2r2

cr2 sin θ

}
. (16.6)

The electric field, in Cartesian coordinates, is clearly in the x̂–ẑ plane. Trans-
forming the electric field from spherical to Cartesian coordinate systems yields
its three Cartesian components

Ed,x = sin φEd , (16.7)

Ed,z = cos φEd , (16.8)

and

Ed,y = 0 . (16.9)

16.2.3
Electric Vector Field in the x̂–ẑ Plane

Figure 16.1 shows the electric field, Ed, radiated by the magnetic dipole in the
x̂–ẑ plane at a distance y = a. The electric field vectors, as expected, are circu-
lating around the direction of the magnetic dipole which is in the ŷ direction.
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Fig. 16.1 The electric field, Ed, radiated by the magnetic dipole in the
x̂–ẑ plane at a distance y = a.

16.2.4
Electric Vector Field in the x̂–ŷ Plane

Figure 16.2 shows the electric field radiated by the magnetic dipole in a plane
parallel to that of the aperture and at a distance z = a. Here the electric field
lines are along the x̂ direction, as expected.
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Fig. 16.2 The electric field, Ed, radiated by the magnetic dipole in a
plane parallel to that of the aperture at a distance z = a.

Using a density plot of field components is (literally) illuminating, for it
gives a feel for the light diffracted by the aperture. Figure 16.3 is a density
plot of |Ed,x| in the aperture’s x̂–ŷ plane at a distance z = a showing a round
pattern.
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Fig. 16.3 A density plot of |Ed,x | in the aperture’s x̂–ŷ plane at a dis-
tance z = a.

Figure 16.4 is a density plot of |Ed,z| in the aperture’s x̂–ŷ plane at a distance
z = a, showing two distinct lobes.

16.2.5
Magnetic Field

The magnetic field, Hd, is obtained from the curl of the vector potential, Ad,
by
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Fig. 16.4 A density plot of |Ed,x | in the aperture’s x̂–ŷ plane at a dis-
tance z = a.

Hd = curl Ad . (16.10)

The three Cartesian components of Hd are

Hd,x =
2m0

√
1 + k2r2 cos θ

r3 , (16.11)

Hd,y =
m0(1− �k3r3) sin θ

r3
√

1 + k2r2
, (16.12)

and

Hd,z = 0 . (16.13)

16.2.6
Poynting Vector and Intensity

The Poynting vector, Sd, obtained from the cross product of the electric and
magnetic fields, Ed and Hd, respectively, is

Sd =
c

4π
[Ed × Hd] . (16.14)

The intensity of the radiation, Id, is obtained by the scalar product of the
Poynting vector with itself and taking the square root of the product,

Id =
√

Sd · Sd . (16.15)

Recall that the aperture is in the x̂–ŷ plane and that the electric field of the
normally incident light is polarized in the x̂ direction, resulting in a magnetic
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Fig. 16.5 The intensity of the radiation pattern of the magnetic di-
pole, Id, at a radius r away from the aperture.

moment pointing in the ŷ direction. Figure 16.5 shows the intensity of the radi-
ation pattern of the magnetic dipole, Id, at a radius r away from the aperture,
which vanishes along the ŷ axis.

16.2.7
Intensity in the x̂–ẑ Plane

The intensity of the radiation of the magnetic dipole, Id, projected onto the
x̂–ẑ plane, at a distance y = a, is shown in Figure 16.6, clearly indicating that
it vanishes along the ŷ axis.
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Fig. 16.6 A density plot of the intensity of the radiation of the magnetic
dipole, Id, projected onto the x̂–ẑ plane at a distance y = a.
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16.2.8
Intensity in the x̂–ŷ Plane

The intensity of the radiation of the magnetic dipole, Id, projected onto the
x̂–ŷ plane, at a distance z = a, is shown in Figure 16.7.
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Fig. 16.7 A density plot of the intensity of the radiation of the magnetic
dipole, Id, projected onto the x̂–ŷ plane, at a distance y = a.

Figure 16.1 to Fig. 16.7 showed the electric field components and intensity
of the radiation of the magnetic dipole that model the far-field region of light
diffracted by the circular aperture. We will now treat the radiation emanating
from the aperture in the near-field region, using the Bethe–Bouwkamp solu-
tion.

16.3
Near-Field Solution

16.3.1
Transformation

The electric and magnetic fields in the near-field region, namely, in the range
0 < z < λ/10, were derived by Bethe and Bouwkamp. Bouwkamp, in his
derivation, used an oblate–spheroidal coordinate system defined by three
variables, a, u, and v. These are related to x, y, and z by

x = a
√

(1− u2)(1 + v2) cos φ , (16.16)

y = a
√

(1− u2)(1 + v2) sin φ , (16.17)

and

z = auv . (16.18)
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It will be handy to present Bouwkamp’s results in a Cartesian coordi-
nate system, which is readily accomplished by solving for a function f such
that {a, u, v} = f {x, y, z}.

16.3.2
Electric Field

The three Cartesian components of the electric field diffracted by the aper-
ture, Ed, were given by Bethe and Bouwkamp as

Ea,x = kz− 2
π

kau
(

1 + v arctan v +
1

3(u2 + v2)
+

x2 − y2

3a2(u2 + v2)(1 + v2)2

)
,

(16.19)

Ea,y = − 4
3π

kxyu
a(u2 + v2)(1 + v2)2 , (16.20)

and

Ea,z =
4

3π

kxv
(u2 + v2)(1 + v2)

. (16.21)

The parameters u and v can be eliminated through the use of the function f
for plotting purposes.

16.3.3
Electric Field in the x̂–ŷ Plane

Figure 16.8 shows |Ea,x|, which is parallel to the aperture’s plane, for three
distances, (a) z = a/100, (b) z = a/10, and (c) z = a.

Note that the shape of the field shown in Figure 16.8(c) resembles that which
is produced by a dipole radiation in the far field. The square of the fields at
the center of Figure 16.8(a–c), given in Table 16.2, show that they do not have
an obvious dependence on the distance z.

Table 16.2 The square of the fields at the center of Figure 16.8(a–c).

z |Ea,x |2

a/100 0.277 81
a/10 0.223 888
a 0.023 258 5

Figure 16.9 shows |Ea,y|, which is parallel to the aperture’s plane, for the
same three distances used in Figure 16.8.
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Fig. 16.8 Density plots of |Ea,x | for three distances, z = a/100 (top),
z = a/10 (center), and z = a (bottom).
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Fig. 16.9 Density plots of |Ea,y|, for the same three distances used in
Figure 16.8.
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Here, we cannot compare the fields to those produced by the dipole
whose radiation does not have a component in this direction. Figure 16.10
shows |Ea,z|, which is parallel to the aperture’s plane, for the same three dis-
tances used in Figure 16.8.

Figure 16.8 to Figure 16.10 are useful when probing the excitation of mole-
cules adsorbed on the surface of a sample by a near-field microscope. The
unique shape of these fields will, therefore, play a major role in the efficiency
of excitation of such molecules, as shown by Betzig.

16.3.4
Magnetic Field

The three cartesian component of the magnetic field diffracted by the aper-
ture, Hd, were given by Bethe and Bouwkamp as

Ha,x = − 4
π

xyv
a2(u2 + v2)(1 + v2)2 , (16.22)

Ha,y = 1− 2
π

(
arctan v +

v
u2 + v2

)
+

2
π

(x2 − y2)v
a2(u2 + v2)(1 + v2)2 , (16.23)

and

Ha,z = − 4
π

ayu
a2(u2 + v2)(1 + v2)

. (16.24)

The parameters u and v can be eliminated through the use of the function f
for plotting purposes.

16.3.5
Poynting Vector and Intensity

The Poynting vector, Sa, is defined in terms of Ea and Ha by the vector product

Sa =
c

4π
[Ea × Ha] . (16.25)

The radiation intensity, Ia, is the absolute value of the Poynting vector,

Ia = |Sa| . (16.26)

Figure 16.11 shows Ia in a plane parallel to the aperture for three distances,
(a) z = a/100, (b) z = a/10, and (c) z = a.

The maximum value of Ia in Figure 16.11(a–c) are given in Table 16.3, and as
before, there is no simple relationship between the intensity and the distance.
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Fig. 16.10 The density plots of |Ea,z|, for the same three distances
used in Figure 16.8.
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Fig. 16.11 Density plots of the radiation intensity, Ia, parallel to the
aperture’s plane for three distances, (a) z = a/100, (b) z = a/10, and
(c) z = a.



236 16 Near-Field Optics

Table 16.3 The maximum value of Ia in Figure 16.11(a–c) for three
distances, (a) z = a/100, (b) z = a/10, and (c) z = a.

z Ia

a/100 12.4142
a/10 9.860 47
a 0.661 048

16.4
Discussion of the Models

16.4.1
Electric Field

The main deficiency in the solution of the diffracted electromagnetic fields
presented in this chapter is that we did not take into account the skin depth
of the conducting screen surrounding the aperture. The predicted intensity
of the diffracted light will therefore not be accurate for apertures whose ra-
dius is of the order of the skin depth, namely about 12.5 nm. Nevertheless, the
lack of a better analytic solution that does take into account the skin depth
has made the solution offered by Bethe and Bouwkamp the tool of choice
for analyzing near-field optical microscopy. It is of interest to compare the
near- and far-field solutions at a distance of z = a = λ/10, for example. Fig-
ure 16.12 and Figure 16.13 show (a) |Ed,x| (solid line) and |Ea,x| (dashed line),
and (b) |Ed,z| (solid line) and |Ea,z| (dashed line), respectively, at y = 0 along
the x̂ direction. We find that while the magnitude of the fields at x = 0 are
close in their value, their shapes and widths differ somewhat.

�2 �1 0 1 2

x �a�

0.01

0.02

0.03

0.04

0.05

�E
x
�

Fig. 16.12 |Ed,x | (solid line) and |Ea,x | (dashed line) at y = 0 and
z = λ/10 along the x̂ direction.
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Fig. 16.13 |Ed,z| (solid line) and |Ea,z| (dashed line) at y = 0 and
z = λ/10 along the x̂ direction.

16.4.2
Intensity

Figure 16.14 shows the radiated intensity from a magnetic dipole, Id, (solid
line) and an aperture, Ia, (dashed line) at y = 0 along the x̂ direction.
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Fig. 16.14 The radiated intensity from a magnetic dipole, Id, (solid
line) and an aperture, Ia, (dashed line) at y = 0 along the x̂ direction.

As in Figures 16.12 and 16.13, the results at x = 0 are similar in both models,
while the near-field solution yields a wider curve. It is instructive to note that
the total intensity diffracted by the aperture, Ia, is

Ia =
c

27π2 k4a6(4H2
a + E2

a) , (16.27)

while the ratio of the transmitted to the incident intensities per unit area, T, is
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T =
64π2

27

(
a
λ

)4

. (16.28)

Note that Ia ∝ a6 while T ∝ a4, because the latter assumes an incident inten-
sity that has the same area as that of the aperture. We already mentioned that
at z = λ/10, the Bethe–Boukamp solution differs from that of a magnetic di-
pole. Clearly, the near-field solution is applicable only for z < a, while the far-
field solution is applicable only for z > λ. A general solution to the diffracted
fields in terms of Fourier optics, developed by Grober, covers the whole range
of aperture–sample distances, and in particular it bridges the gap between the
near- and far-field solutions in the range a < z < λ. The coding of his general
solution, which is somewhat similar to the one presented in this chapter, is left
as an exercise.

16.5
Scattered Electric Fields Around Patterned Apertures

Figure 16.15 is a schematic of two hexagonal arrays of subwavelength aper-
tures, fabricated in a perfect conductor, rotated at an angle of φ = π/12 rela-
tive to each other and to an incident beam of light polarized in the x̂ direction.

Fig. 16.15 A schematic of a two hexagonal arrays of subwavelength
apertures, fabricated in a perfect conductor, rotated at an angle of φ =
π/12 relative to each other and to an incident beam of light polarized
in the x̂ direction.

Figure 16.16 and Figure 16.17 show the scattered electric fields Ex, Ey,
and Ez, and the total field, ET = Ex + Ey + Ez, for an x̂-polarized beam of light
that is incident normally on the hexagonal apertures shown in Figure 16.15 on
the left- and right-hand side, respectively. The fields are shown at a distance
z = a/100, a/10, and a. The distribution of the fields differs because of the
different symmetries of the hexagonal structures relative to the polarization
of the light. In each case, however, the total field in these two cases is the same
for z > a.
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Fig. 16.16 The scattered electric fields Ex, Ey, and Ez, and the total
field, ET = Ex + Ey + Ez, for an x̂-polarized beam of light that is inci-
dent normally on the hexagonal apertures shown in Figure 16.15 on
the left-hand side. The fields are shown at a distance z = a/100, a/10,
and a.



240 16 Near-Field Optics

�3�2�1 0 1 2 3

x�d

�3
�2
�1

0
1
2
3

y
�d

ET

z
�

0
.0

1
a

�3�2�1 0 1 2 3

x�d

�3
�2
�1

0
1
2
3

y
�d

ET

z
�

0
.1

a

�3�2�1 0 1 2 3

x�d

�3
�2
�1

0
1
2
3

y
�d

ET

z
�

1
. a

�3�2�1 0 1 2 3

x�d

�3
�2
�1

0
1
2
3

y
�d

Ez

z
�

0
.0

1
a

�3�2�1 0 1 2 3

x�d

�3
�2
�1

0
1
2
3

y
�d

Ez

z
�

0
.1

a

�3�2�1 0 1 2 3

x�d

�3
�2
�1

0
1
2
3

y
�d

Ez

z
�

1
. a

�3�2�1 0 1 2 3

x�d

�3
�2
�1

0
1
2
3

y
�d

Ey

z
�

0
.0

1
a

�3�2�1 0 1 2 3

x�d

�3
�2
�1

0
1
2
3

y
�d

Ey

z
�

0
.1

a

�3�2�1 0 1 2 3

x�d

�3
�2
�1

0
1
2
3

y
�d

Ey

z
�

1
. a

�3�2�1 0 1 2 3

x�d

�3
�2
�1

0
1
2
3

y
�d

Ex

z
�

0
.0

1
a

�3�2�1 0 1 2 3

x�d

�3
�2
�1

0
1
2
3

y
�d

Ex

z
�

0
.1

a

�3�2�1 0 1 2 3

x�d

�3
�2
�1

0
1
2
3

y
�d

Ex

z
�

1
. a

Fig. 16.17 The scattered electric fields Ex, Ey, and Ez, and the total
field, ET = Ex + Ey + Ez, for an x̂-polarized beam of light that is
incident normally on the hexagonal apertures shown in Figure 16.15
on the right-hand side. The fields are shown at a distance z = a/100,
a/10, and a.
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� Exercises for Chapter 16

1. Transform the fields, Poynting vectors, and intensities to MKSA units.
2. Calculate the fields, Poynting vectors, and intensities for a beam of light

having circular, rather than linear polarization.
3. Extend the Bethe–Bouwkamp model to the range a < z < λ, using Fourier

optics [5].
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17
Constriction and Boundary Resistance

Highlights

1. Electrical properties of metals modeled as a free electron gas
2. Electrical and thermal constriction resistance
3. Electrical and thermal boundary resistance

Abstract

Many metals behave as a free electron gas and their electrical and thermal
characteristics can be described by simple equations that reproduce experi-
mental results rather accurately. Results for these characteristics are presented
in figures where the values for Cu, Al, and Pt are depicted. A model for elec-
trical transport through a constriction for the whole range of Knudsen num-
bers is presented together with examples. The effect of a diffuse-mismatch-like
boundary on the transport of electrons is given, and the results are found to be
identical to those of transport through a high Knudsen number constriction.
Several important questions regarding the results presented in this chapter are
raised and left to the reader for further exploration.

17.1
Introduction

This chapter describes the electrical and thermal properties of metals that are
modeled like a free electron gas. The second section starts with the connec-
tion between electrical and thermal conductivities, κ and σ, respectively, made
through the Wiedemann–Franz law using the Lorenz number, NLorenz. Next,
the Fermi velocity, vF, temperature, TF, and k-vector, kF, are presented, fol-
lowed by the definitions of the number of electrons per volume, Ne, and the
electronic density of states per volume, De. Finally, the mean free path, �, the
ratio of �/σ, and the electronic heat capacitance per volume, Ce, are described.
Each of these concepts is accompanied by a figure that describes its depen-
dence on the Fermi energy, EF, given in units of eV. The three metals, Cu, Al,

Exploring Scanning Probe Microscopy with MATHEMATICA, Second Edition.  Dror Sarid
Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40617-3
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and Pt are used extensively throughout this chapter as typical examples that
cover the range of Fermi energies of most other metals.

The third section deals with the case where two semi-infinite metallic media
are separated by a barrier having a round conducting aperture with radius r.
When a voltage is applied between these two media, the resulting current is
constricted to flow through the aperture. The resistance due to the presence
of the constriction is a strong function of the Knudsen number, K = �/r. For
small values of K, the current is in the Maxwell regime, which is proportional
to the radius of the constriction. For large values of K, the current is in the
Sharvin regime, which is proportional to the area of the constriction. An ap-
proximate solution makes it possible to obtain an analytical expression for the
electrical resistance for intermediate values of K that can be applied also to
thermal resistance.

The fourth section deals with two semi-infinite media whose thermal en-
ergies are mediated by phonons. These media are separated by a continuous
boundary that acts as a totally diffuse scatterer of phonons. Phonons belong-
ing to each medium, when incident on this boundary, are scattered isotrop-
ically in all directions, including the adjacent medium. The transmission
through such a boundary is described by the diffuse mismatch model (DMM),
which is contrasted from the elastic mismatch model (EMM), where phonons
obey acoustic Fresnel equations. While the EMM model applies to very low
temperatures, the DMM model is more applicable to higher temperatures.
When a temperature difference is applied between these two media, the ther-
mal heat flux from one medium to the other encounters a resistance on passage
through the boundary. The diffuse mismatch model for phonons can also be
applied to two semi-infinite metallic media whose thermal energy is mediated
by electrons. The expressions for the thermal and electrical resistances due to
the boundary are presented in terms of the Fermi energy of each medium.
Both these resistances are proportional to the area of the barrier that separates
the two semi-infinite media. The results of this section are accompanied by
figures applicable to Cu, Al, and Pt.

It is interesting that the expressions for the thermal and electrical Sharvin
resistances are identical to those of the boundary resistance described by the
diffuse mismatch model. In other words, for a given area of a constriction sep-
arating two semi-infinite metallic media, in the large Knudsen limit, the ther-
mal and electrical resistances act exactly as that of a diffuse scattering bound-
ary. A discussion of this result is presented in the fifth section of this chapter.
The end of the chapter contains a set of exercises and a list of references, re-
spectively.

The results obtained in this chapter can be used, for example, when ana-
lyzing the injection of electrical or thermal currents from the tip of an AFM
into a metallic or dielectric sample. In particular, the voltage and temperature
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drop across a tip–sample constricted boundary yield values that have to be
taken into account when designing a variety of systems, such as a thermal
conductivity microscope and probe data storage.

17.2
A Metal as a Free Electron Gas

17.2.1
Lorenz Number, NLorenz, and the Wiedemann–Franz Law

The Lorenz number, NLorenz, defined by

NLorenz =
π2

3
K2

B
e2 , (17.1)

gives the ratio between the thermal and electrical conductivities of metals,

κ = NLorenzσT . (17.2)

Here, KB is Boltzmann’s constant, e the electron charge, and T the temper-
ature. This ratio, which is called the Weidemann–Franz law, is quite constant
for many metals. As an example, Table 17.1 gives the Wiedemann–Franz ratio,
κ/(σT), for Cu, Al, and Pt at room temperature.

Table 17.1 The Wiedemann–Franz ratio, κ/(σT), together with the
experimentally observed values for Cu, Al, and Pt.

NLorenz Cu Al Pt
κ

σT
(10−8 W Ω/K2) 2.443 03 2.23 2.44 2.51

17.2.2
Fermi Velocity, vF

The Fermi velocity, vF, given by

vF =

√
2eEF

me
, (17.3)

is shown in Figure 17.1 as a function of the Fermi energy, eEF. Note that ap-
propriate values for Cu, Al, and Pt are depicted in this figure.
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Fig. 17.1 The Fermi velocity, vF, as a function of the Fermi en-
ergy, eEF.

17.2.3
Fermi Temperature, TF

The Fermi temperature, TF, given by

TF =
eEF

KB
, (17.4)

is shown in Figure 17.2 as a function of the Fermi energy, EF. Note that TF
does not represent an actual temperature; rather it is used as a parameter in
calculations.
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Fig. 17.2 The Fermi temperature, TF, as a function of the Fermi en-
ergy, EF.
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17.2.4
Fermi k-Vector, kF

The Fermi k-vector, kF, given by

kF =
2π

h

√
2meeEF , (17.5)

is shown in Figure 17.3 as a function of the Fermi energy, EF.
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Fig. 17.3 The Fermi k-vector, kF, as a function of the Fermi en-
ergy, EF.

17.2.5
Electron Density, Ne

The number of electrons per unit volume, Ne, given by

Ne =
8
√

2πm3/2
e

h3
2
3
(eEF)3/2 , (17.6)

is shown in Figure 17.4 as a function of the Fermi energy, EF.

17.2.6
Mean Free Path, �

The mean free path of electrons, �, is given in terms of vF and Ne by

� = σ
mevF

Nee2 . (17.7)

In terms of EF and σ, it is given by

� =
3

16π

h3

e2me

1
eEF

σ . (17.8)
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Fig. 17.4 The number of electrons per unit volume, Ne, as a function
of the Fermi energy, EF.

Note that in the presence of defects and boundaries, the effective mean free
path, �eff, follows the Matthiessen rule,

1
�eff

=
1
�

+
1

�defect
+

1
�boundary

. (17.9)

17.2.7
Ratio of �/σ

The ratio �/σ, in terms of vF and Ne, is given by

�

σ
=

mevF

Nee2 . (17.10)

In terms of EF, it is given by

�

σ
=

3
16π

h3

e2me

1
eEF

, (17.11)

and is shown in Figure 17.5.

17.2.8
Electronic Density of States, De

The electronic density of states per volume, De, in terms of EF, is given by

De =
1

2π2

(
8π2me

h2

)3/2

(eEF)1/2 . (17.12)
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Fig. 17.5 The ratio �/σ as a function of the Fermi energy, EF.

17.2.9
Electronic Specific Heat, Ce

The electronic specific heat, Ce, is given in terms of De by

Ce =
π2

3
DeK2

BT , (17.13)

and in terms of Ne and TF is given by

Ce =
1
2

π2NeKB
T
TF

. (17.14)

In terms of EF, it is given by

Ce =
8
√

2π3

3
K2

Bm3/2
e

h3 T(eEF)1/2 , (17.15)

and is shown in Figure 17.6 as a function of EF.

17.3
Constriction Resistance

17.3.1
Electrical Resistance in the Maxwell Limit

Consider two semi-infinite metallic media separated by a thin nonconducting
barrier having a round aperture (point contact) with radius r, shown in Fig-
ure 17.7. The barrier, at which reflection of electrons is assumed, will constrict
the electrons to flow through the aperture. The electrical resistance due to this
constriction, RM, in the diffusive regime – namely, the regime where the mean
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Fig. 17.6 The electronic specific heat, Ce, as a function of the Fermi
energy, EF.

free path of the elastically colliding electrons, �, is much smaller than r – was
solved by Maxwell. The driving force acting on the electrons in the vicinity
of the constriction varies across the media, generating a distributed electri-
cal resistance. The integral of this distributed resistance (spreading or contact
resistance), across which a voltage drop develops, is given by

RM =
1
σ

1
2r

, (17.16)

for the case in which the two media have the same electrical conductivities, σ.
Note that RM is inversely proportional to the radius, rather than the area of
the constriction. Note also that RM is independent of the thickness of the two
bounding media because the major contribution to its value comes from the
volume close to the constriction. If the two media have different electrical con-
ductivities, given by σ1 and σ2, one uses the replacement

σ → 2
1/σ1 + 1/σ2

. (17.17)

In a metal, RM is given in terms of �, EF, and r by

RM =
3

16π

h3

e2me

1
eEF�

1
2r

, (17.18)

for identical media. For dissimilar media, one uses the replacement

EF� → 2
1

EF1
�1

+ 1
EF2 �2

. (17.19)

It should be noted that Eq. (17.16) applies to phonons as well, for which
κ replaces σ and � refers to their mean free path. Figure 17.8 shows RM as a
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Fig. 17.7 A schematic diagram of two semi-infinite metallic media hav-
ing electrical conductivities σ1 and σ2, separated by a thin nonconduct-
ing barrier (denoted by two thick solid lines) having a round aperture
with radius r. The two media are held at the voltages V1 and V2, result-
ing in a current flow, i. The direction and length of the arrows indicate
the direction of the flow of electrons and the magnitude of their mean
free path, respectively. Note that here the mean free path � is much
smaller than r.

function of the radius of the constriction for identical bounding media. Here,
the solid, dashed, and dotted lines refer to Cu, Al, and Pt media, respectively.

It is important to find out the minimum thickness of each medium for which
Eq. (17.16) (for electron or phonons) is valid. To that end, consider a perfectly
conducting disk with radius r contacting a metallic cladding film with thick-
ness h and electrical conductivity σc, which is deposited on a semi-infinite
substrate with electrical conductivity σs. The electrical resistance of this struc-
ture, Rcs, in terms of the parameter K1 given by
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Fig. 17.8 The Maxwell spreading resistance, RM, as a function of the
radius of the constriction, r. Here, the solid, dashed, and dotted lines
refer to Cu, Al, and Pt media, respectively.

K1 =
1− σs

σc

1 + σs
σc

, (17.20)

is given by

Rcs =
1

πσcr

∫ ∞

0

1 + K1�−2ζhc/r

1− K1�−2ζhc/r J1(ζ)
sin ζ

ζ2 �ζ , (17.21)

where J1(ζ) is the Bessel function of the first kind. Suppose the electrical con-
ductivity of the substrate is much larger than that of the cladding. In this case,
a plot of Rcs as a function of hc/r, shown in Figure 17.9, describes the depen-
dence of Rcs on h. It is observed that a fully developed Maxwell constriction
resistance requires that hc > 10r. For hc < 10r, one gets that Rcs < RM, an
important consideration when calculating electrical and thermal point contact
resistances.

Consider now the same case as before but here the substrate is Pt. The
constriction resistance, Rcs, as a function of hc/r, shown in Figure 17.10 by
the solid line, will continuously change from the value associated with a Pt
medium (dashed line) to that of an Al medium (dotted line).

17.3.2
Electrical Resistance in the Sharvin Limit

We now consider the same geometry as that of Figure 17.1, except that now
the mean free path, �, is much larger than the radius of the constriction. The
electrical constriction resistance for this case was obtained by Sharvin from
the difference between the number of particles striking it from each medium.
This resistance, denoted by RS, is given in terms of �, σ, and r, by



252 17 Constriction and Boundary Resistance

0 2 4 6 8 10

hc�r

0

1

2

3

4

5

6

7

R
c
s
�

�

Electrical constriction

A
l
c
la

d
d

in
g

Fig. 17.9 The electrical resistance, Rcs, as a function of hc/r. Here, a
perfectly conducting disk with radius r is contacting a metallic cladding
film with thickness hc and electrical conductivity σc, which is deposited
on a semi-infinite substrate with electrical conductivity σs � σc.
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Fig. 17.10 The electrical resistance, Rcs, as a function of hc/r, for an
Al cladding film on a Pt substrate (solid line). The dashed and dotted
lines refer to the electrical resistance of Pt and Al, respectively.

RS =
4
3

�

σ

1
πr2 (17.22)

for identical bounding media. As for the Maxwell regime, here too one re-
places σ with κ for the case where thermal energy is mediated by phonons,
and � refers to the phonons mean free path. Note that for the metallic case,
(a) the electrons cross the constriction ballistically, and (b) RS is inversely pro-
portional to the area, rather than to the radius of the constriction. It is inter-
esting to note that RS has the same value as that of a cylindrical resistor with
radius r and length 4�/3, and has therefore a constant value for a medium
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Fig. 17.11 A schematic diagram similar to that of Figure 17.1, except
that here the mean free path, �, is much larger than the radius r of the
constriction.

whose thickness h > �. As for the Maxwell regime, here too RS is independent
of the thickness of the two bounding media provided that h > �, because the
major contribution to its value comes from the volume close to the constric-
tion. For dissimilar media, one uses the replacement

�

σ
→ 1

2

(
�1

σ1
+

�2

σ2

)
. (17.23)

The electrical conductance per unit area, GS, in terms of � and σ, is given by

GS =
3
4

σ

�
(17.24)

for the same bounding media, while for dissimilar media one uses the replace-
ment
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σ

�
→ 2

�1
σ1

+ �2
σ2

. (17.25)

The electrical resistance, in terms of EF and r, is

RS =
1

4π

h3

e2me

1
eEF

1
πr2 (17.26)

for the same bounding media, while for dissimilar media one uses the replace-
ment

EF →
2

1/EF1 + 1/EF1

. (17.27)

Gs, in terms of EF is

GS = 4π
e2me

h3 eEF (17.28)

for the same bounding media, while for dissimilar media one uses the replace-
ment given in Eq. (17.27). Figure 17.12 shows the Sharvin spreading resis-
tance, RS, as a function of the radius of the constriction, r, for identical bound-
ing media. Here, the solid, dashed, and dotted lines refer to Cu, Al, and Pt
media, respectively.
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Fig. 17.12 The Sharvin spreading resistance, RS, as a function of the
radius of the constriction, r. Here, the solid, dashed, and dotted lines
refer to Cu, Al, and Pt media, respectively.

17.3.3
Combined Electrical Resistance

The solution to the spreading resistance due to a constriction for any value
of K, denoted by Rc, can be approximated by the scaling function, γc, given
by

γc =
1 + 0.83�/r
1 + 1.33�/r

. (17.29)
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Figure 17.13 shows γc for the range 0 � �/r � 10. For �/r = 0 and for
�/r = ∞ one obtains γc = 1 and 0.626, respectively.
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Fig. 17.13 The function γc as a function of �/r.

The spreading resistance, R, using γc, is given by

R = γcRM + RS . (17.30)

Rc, in terms of �, σ and r, is

R =
γe

σ

1
2r

+
4
3

�

σ

1
πr2 (17.31)

for the same bonding media, while for dissimilar media one uses the replace-
ments

γe

σ
→ 1

2

(
γe1

σ1
+

γe2

σ2

)
(17.32)

and Eq. (17.23). R in terms of �, EF, and r is given by

R =
1

4π

h3

e2me

(
3
4

γe

eEF�

1
2r

+
1

eEF

1
πr2

)
(17.33)

for the same bounding media, while for dissimilar media one uses the replace-
ment

γe

EF�
→ 1

2

(
γe1

EF1�1
+

γe2

EF2�2

)
. (17.34)

Figure 17.14 shows the constriction resistance, R, as a function of the radius
of the constriction, r, for identical bounding media. Here, the solid, dashed,
and dotted lines refer to Cu, Al, and Pt media, respectively.

The radius at which the contributions from the scaled Maxwell resistance
equals the Sharvin resistance, rc, is given in Table 17.2.
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Fig. 17.14 The constriction resistance, R, as a function of the radius
of the constriction, r, for identical bounding media. Here, the solid,
dashed, and dotted lines refer to Cu, Al, and Pt media, respectively.

Table 17.2 The radius rc at which the contributions from the scaled
Maxwell and the Sharvin resistances equal each other.

Pt Al Cu

rc (nm) 10.3008 15.4985 41.7313

17.4
Boundary Resistance

17.4.1
Thermal Boundary Resistance of General Media

We will now treat a case in which a temperature gradient is applied between
two bounding semi-infinite media, as shown in Figure 17.15. These two me-
dia are separated by a thin boundary that has no constriction but rather acts
diffusely to scatter phonons or electrons incident on it in all directions, in-
cluding the adjacent medium. In the following, we use the diffuse mismatch
model (DMM), first developed for phonons, with a temperature-consistent de-
finition. Here, the equivalent temperature of all phonons on each side is con-
sidered. The transmissivity, Ti,j, where i and j refer to each side of the semi-
infinite media, is given by

Tij =
Cjvj

C1v1 + C2v2
. (17.35)

where Cj and vj denote the heat capacity per unit volume and group velocity
of the phonons belonging to each medium, respectively. The thermal bound-
ary resistance, Rb, for a given area A = πr2, in terms of Tij, is given by
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Fig. 17.15 A schematic diagram of two semi-infinite media having
thermal conductivities κ1 and κ2, separated by a diffusing boundary
(denoted by a thick solid line) with thickness h. The two media are
held at temperatures T1 and T2, resulting in a heat flow �Q/ �t. The
direction and length of the arrows indicate the direction of the flow of
the electrons and the magnitude of their mean free path, respectively.
Here, ∆T1, ∆T2, and ∆TB refer to the temperature drop across the top
and bottom media, and across the diffusing boundary, respectively.

Rb = 4
1− 1

2 (T12 + T21)
T21C2v2

1
πr2 . (17.36)

Inserting the value of Tij in Rb gives

Rb = 2
C1v1 + C2v2

C1v1C2v2

1
πr2 . (17.37)

Note that the classical expression given by the diffuse mismatch model
yields a value that is twice that of Eq. (17.37). However, one should employ
Eq. (17.37) for the case in which heat conductivity of two media separated by
a diffusing boundary is calculated, because it takes into account the totality of
the diffused phonons. Using the expression for the heat conductivity, κi,

κi =
1
3

Civi�i . (17.38)
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yields the final expression for the thermal boundary resistance for identical
media in terms of �, κ, and r,

Rb =
4
3

�

κ

1
πr2 . (17.39)

For dissimilar media, one uses the replacement

�

κ
→ 1

2

(
�1

κ1
+

�2

κ2

)
. (17.40)

17.4.2
Thermal Boundary Resistance of Metallic Media

From now on, we consider the thermal and electrical resistance of two semi-
infinite metallic media separated by a diffusing boundary, for which thermal
energy is mediated by electrons. The thermal boundary resistance for identical
media, in terms of T, EF and r, is given by

Rb =
3

4π3
h3

meK2
BT

1
eEF

1
πr2 . (17.41)

For dissimilar media, one uses the replacement given in Eq. (17.27). The
thermal boundary conductance per unit area, Gb, for identical media, in terms
of � and κ, is

Gb =
3
4

κ

�
. (17.42)

For dissimilar media, one uses the replacement

κ

�
→ 2

�1
κ1

+ �2
κ2

. (17.43)

The thermal boundary conductance per unit area, Gb, for identical media,
in terms of T and EF, is

Gb =
4π3

3
meK2

BT
h3 eEF . (17.44)

For dissimilar media, one uses the replacement given in Eq. (17.27). Fig-
ure 17.16 shows the boundary resistance, Rb, as a function of r for identical
bounding media. Here, the solid, dashed, and dotted lines refer to Cu, Al, and
Pt media, respectively.

One can also define an admittance per unit area for a degenerate electron
gas, Y , by

Y = CevF , (17.45)
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Fig. 17.16 The boundary resistance, Rb, as a function of r. Here, the
solid, dashed, and dotted lines refer to Cu, Al, and Pt media, respec-
tively.

where vF and Ce are given by Eq. (17.3) and Eq. (17.13), respectively. The re-
sulting expression for Y ,

Y =
16π3

3
meK2

BT
h3 eEF , (17.46)

is shown in Figure 17.17.
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Fig. 17.17 The admittance per unit area, Y , as a function of the Fermi
energy, EF.

The thermal boundary conductance per unit area, Gb, for identical media,
in terms of Y , is given in the diffuse mismatch model by

Gb =
1
4
Y . (17.47)
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For dissimilar media, in accordance with Eq. (17.37), one uses the replace-
ment

Y → 2
1/Y1 + 1/Y2

. (17.48)

The thermal boundary conductance per unit area, Gb, for identical media, in
terms of T and EF, using Eq. (17.46) and Eq. (17.47), is identical to that given
by Eq. (17.44). Figure 17.18 shows the conductance per area, Gb, as a function
of EF, for identical bounding media.
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Fig. 17.18 The conductance per area, Gb, as a function of the Fermi
energy, EF.

17.4.3
Electrical Boundary Resistance of Metallic Media

It is useful to note that to transform metallic thermal resistance,R, to electrical
resistance, R, one uses

R = RTNLorenz , (17.49)

yielding

Rb = RS =
1

4π

h3

e2me

1
eEF

1
πr2 . (17.50)

To transform metallic thermal conductance per unit area, G, to electrical con-
ductance per unit area, G, one uses

G = G/(TNLorenz) , (17.51)
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yielding

Gb = Gs = 4π
e2me

h3 eEF . (17.52)

We find, therefore, that for metals, the equations for the constriction resis-
tance and for the conductance per unit area for � � r are identical to those
of a boundary under diffuse mismatch conditions. Note that the Sharvin and
boundary resistances do not include the contributions to the resistance from
the bounding media.

The modeling presented in this chapter is currently a hot topic that is be-
ing investigated by several groups both theoretically and experimentally. The
references given at the end of this chapter are only a small selection from a
large body of literature covering these topics. As a summary, Table 17.3 gives
the numerical value of all the properties calculated in this chapter for Cu, Al,
and Pt. These values are close to those found in the literature; that may vary
somewhat depending on the quality of the probed media and the experimen-
tal methods used in the measurements.

Table 17.3 The numerical values of all the properties calculated in this
chapter for Cu, Al, and Pt.

Cu Al Pt Units

σ 58.8 36.5 9.6 106 1/mΩ
κ 420.896 261.27 68.7177 W/m K
EF 7 11.7 4.63 eV
vF 1.569 19 2.0287 1.276 19 106 m/s
TF 81.2311 135.772 53.7286 103 K
Ne 8.410 88 18.1749 4.524 45 1028 1/m3

kF 13.5546 17.5239 11.0237 109 1/m
� 38.9295 14.4579 9.609 26 nm
Ce 70.5464 T 91.205 T 57.3741 T J/m3 K
Y 0.1107 T 0.185 028 T 0.073 220 4 T 109 W/m2 K
Gb 0.027 675 1 T 0.046 257 T 0.018 305 1 T 109 W/m2 K
Gb 1.132 82 1.893 42 0.749 277 1015 W/m2 K

� Exercises for Chapter 17

1. What is the physical nature of RS and Rb?
2. In the presence of both a Sharvin-type restriction and a DMM-type bound-

ary, does one add their individual contributions or are they one and the
same?

3. What role do the thicknesses of the constriction and the boundary play?
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4. What exactly is the nature of a DMM-type boundary?
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18
Scanning Thermal Conductivity Microscopy

Highlights

1. Thermal resistance of a cantilever, tip, sample, and tip–sample interface
2. Mechanical and thermal bending of a cantilever
3. Theory of operation of scanning thermal conductivity microscopy

Abstract

This chapter describes an implementation of an atomic force microscope
(AFM) that can map thermal conductivity features across a sample with a
high spatial resolution. The microscope employs a single-side, metal-coated
cantilever, which acts as a bimetallic strip, together with a heating laser whose
beam is focused on the cantilever’s free end, on the opposite side of its tip.
Subtracting the topography obtained by the unheated and heated cantilever
yields a map of thermal conductivity across the surface of a sample. The chap-
ter presents the theory of operation of the microscope that was found to be in
agreement with experimental results obtained on a silicon sample patterned
with oxide features.

18.1
Introduction

Local thermal properties of materials play an important role in many applica-
tions where characterizing heat dissipation from nanostructures is essential.
Consider, for example, the semiconductor industry which is currently experi-
encing a need for an increasing density and speed of operation of transistors
in processors and solid-state storage chips. Heat dissipation is becoming a
limiting factor as these devices shrink in size, requiring better tools that are
able to characterize thermal conductivity of nanoscale structures. As a fur-
ther example, consider the next generation of hard disk drives, whose bits
are expected to shrink to such a small size that their magnetic properties ap-
proach the super-paramagnetic limit. Overcoming this limit requires a dra-

Exploring Scanning Probe Microscopy with MATHEMATICA, Second Edition.  Dror Sarid
Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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matic increase in the coercivity of their magnetic material, which in turn will
make them resistant to switching by conventional magnetic heads. There is
currently an intense research effort to reduce the coercivity of these bits by
heating them during the write process using near-field optics. Understand-
ing the thermal response of nanoscale electronic devices and magnetic bits is
therefore of scientific and technical importance, requiring new approaches to
thermal conductivity measurements.

Characterization of thermal properties of a sample has been actively pur-
sued using a variety of interactions that can take place between the apex of a
tip of a cantilever and the surface of a sample. Examples of such tip–sample
interactions include (a) temperature-dependent contact potential difference
(CPD), (b) Raman scattering, (c) temperature dependence of the reflectivity of
a cantilever, (d) bimetal effect that bends a one-side, metal-coated cantilever,
and (e) a submicron thermocouple fabricated on the apex of a tip. Among
these interactions, the most sensitive one is the bimetal effect that can yield a
bending sensitivity of up to 10 nm/µW of power injected into the free end of
a one-side, metal-coated cantilever.

This chapter presents a novel implementation of this effect using an AFM
that yields thermal conductivity features across the surface of a sample. This
microscope, dubbed κ-AFM and shown schematically in Figure 18.1, employs
such a cantilever together with a heating laser that enables one to scan the
same area on a sample with an unheated and heated cantilever. As will be
discussed later, while the low-power monitoring laser of the AFM is focused
somewhere along the cantilever, the high-power heating laser is focused on
the free end of the cantilever, opposite the tip side. In (a), the tip of the can-
tilever is not in contact with the sample, and the HeNe laser beam is focused
on the free end of the cantilever. The absorbed light heats up the cantilever and
bends it. In (b), the tip makes contact with a feature whose thermal conductiv-
ity is high. As a result, the cantilever cools down and its curvature is reduced.
Conversely, when the tip contacts a feature whose thermal conductivity is low,
the curvature of the cantilever increases, as shown in (c). The κ-AFM, like any
conventional AFM, does not measure the position of the free end of a bent
cantilever, but rather the slope of the cantilever at the point where the moni-
toring laser is focused. This slope is obtained from the differential photocur-
rent generated by a quadrant photodiode, upon which the reflected beam of
the monitoring laser is incident. The role of the electronic feedback (EFB) of an
AFM is to maintain this differential photocurrent constant at a predetermined
value as the tip raster scans across a sample. The EFB accomplishes this task
by changing the position of the base of the cantilever, relative to that of the
sample, using a piezotube or a voice coil. Operating the AFM with feedback,
therefore, keeps the bending of the cantilever constant during the imaging
process. The topography of the sample is obtained from the signal that drives
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the piezotube or voice coil, which reflects the local height of the sample under
the tip.

Fig. 18.1 A schematic diagram of the κ-AFM showing a conventional
SPM equipped with a one-side, metal-coated cantilever and an addi-
tional heating laser incident on the free end of the cantilever, on the
opposite side of its tip.

Consider now the effect that the heating laser has on the operation of the κ-
AFM. The heating laser will inject a constant thermal power, P = Pin, into the
free end of the cantilever whose tip is in good thermal contact with a sample.
Part of the thermal power will flow from the free end of the cantilever into
its base, while the rest will flow through the tip into the sample. The circuit
that describes the thermal flow, shown in Figure 18.2, consists of the thermal
resistors corresponding to the cantilever, Rc, the tip, Rt, and the sample, Rs.
Note that Rc is in parallel with Rt which is in series with Rs. Because a con-
stant thermal power feeds the circuit during the operation with the heated
cantilever, changes in Rs will change the total thermal resistance of the cir-
cuit, modifying the temperature of the cantilever. This change in temperature
modifies the cantilever slope, thus distorting the observed local topographic
features relative to those observed with the unheated cantilever. This distor-
tion in topography is a function of the local thermal conductivity of the sam-
ple. In a typical use of the κ-AFM, a sample is imaged twice, first with the
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unheated and next with the heated cantilever. As will be explained in detail in
the following sections, the difference between these two images yields a map
of thermal conductivity features across the surface of the sample.

Fig. 18.2 A schematic diagram showing the injected thermal power,
Pin, flowing into the thermal resistors comprising the cantilever, Rc, in
parallel with that of the tip, Rt = Rtip, which is in series with that of the
tip–sample point contact, Rs.

The notations relating to the geometry of the cantilever consist of its length,
�c, width, wc, and thickness, hc. For the tip, the notations consist of its height,
ht, the half angle of the cone that models its shape, θt, and its apex radius, rt.
The numerical values of these parameters, used in the examples, are given in
Table 18.1 and Table 18.2.

Table 18.1 The cantilever length, �c, width, wc, and thickness, hc.

�c = 444 µm
wc = 51 µm
hc = 1.9 µm
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Table 18.2 The tip height, ht, the half angle of the cone that models its
shape, θt, and its apex radius, rt.

ht = 17.5 µm
θt = 15 deg
rt = 30 nm

18.2
Theory of Thermal Response

18.2.1
Electrical and Thermal Circuits

Before embarking on an analysis of the thermal circuit depicted in Figure 18.2,
it is worthwhile to recount the analogy between electric and thermal circuits.
The self-explanatory items in Table 18.3 denote length, area, and volume by
�, A, and V , respectively, and mass density and specific heat by ρm and Cp,
respectively.

Table 18.3 The analogy between electrical and thermal circuits. The
self-explanatory items denote length, area, and volume by �, A, and
V , respectively, and mass density and specific heat by ρm and Cp,
respectively.

Electric Thermal

Charge Qe Heat Qth

Current i Laser power Pth = ∂Q
∂t

Potential v Temperature T

Resistivity ρe Resistivity ρth

Resistance Re = ρe
�
A Resistance Rth = ρth

�
A

Capacitance Ce = ∂Qe
∂v Heat capacity Cth = ∂Qth

∂T

Analysis of the thermal circuit shown in Figure 18.2, considering the anal-
ogy between electric and thermal circuits, leads to the conclusion that the sen-
sitivity of the κ-AFM to thermal conductivity features across a sample will be
optimized by employing a cantilever–tip system such that the ratio of Rt/Rc
is made as large as practically possible, while maintaining the ratio Rt/Rs
as small as possible. The reason for this choice is that a large portion of the
thermal power injected into the free end of the cantilever should be diverted
through the tip into the sample, rather than into its base. For a cantilever–
tip system made of the same material, a preferred choice is a long, thin and
narrow structure made of silicon. Silicon has a large, albeit temperature de-
pendent thermal conductivity, κSi, that strikes a good balance between Rc, Rt,
and Rs. To calculate the thermal response of the cantilever, tip, and sample,
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it is necessary to use the temperature dependent thermal resistivity of sili-
con, ρSi = 1/κSi, given by ρSi = ρ0 + ρT∆T, where ρ0 = 194/29 900 m K/W,
ρT = 1/29 900 m/W, and ∆T is the temperature above ambient (20 °C).

18.2.2
Cantilever Thermal Resistance and Temperature

The temperature, ∆Tc, along a laser-heated cantilever, whose tip is not in con-
tact with a sample, at a point z away from its base, is obtained from the solu-
tion of

∂

∂z
∆Tc = P

ρSi

wchc
(18.1)

given by

∆Tc =
ρ0

ρT
(�P ρT

hcwc
z − 1) . (18.2)

Figure 18.3 shows the temperature across the cantilever, ∆Tc, as a function
of the injected power, P, where the solid and dashed lines refer to the inclu-
sion or exclusion of the temperature dependence of the thermal resistivity of
silicon, respectively. As observed in Figure 18.3, it is important to include the
temperature dependence for P > 1 mW.
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Fig. 18.3 The temperature across the cantilever, ∆Tc, as a function of
the injected thermal power, P. The solid and dashed lines refer to the
inclusion or exclusion of the temperature dependence of the thermal
resistivity of silicon, respectively.

Figure 18.4 shows the temperature along the cantilever, ∆Tc, as a function
of z for P = 0.1 mW (solid line), 0.5 mW (dashed line), and 2 mW (dotted line).
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Fig. 18.4 The temperature along the cantilever, ∆Tc, as a function of
z, for P = 0.1 mW (solid line), 0.5 mW (dashed line), and 2 mW (dot-
ted line). Here the cantilever base is at z = 0 µm, and z = 444 µm
corresponds to the position of the tip.

Note that the base of the cantilever is at z = 0, and that for moderate values of
P, the curves in Figure 18.3 and Figure 18.4 are almost linear.

18.2.3
Tip–Sample Thermal Resistance

The tip–sample contact area serves as a constriction through which thermal
energy flows from a heated tip into the sample. The thermal resistance due to
this constriction, Rs, is the sum of the Maxwell and Sharvin resistances (see
Chapter 17), given by

Rs =
1
κ

1
4rt

(
γc +

16
3π

�ph

rt

)
, (18.3)

where �ph is the mean free path of the phonons (mfp), and γc is a scaling
function given by

γc =
1 + 0.83�ph/rt

1 + 1.33�ph/rt
. (18.4)

Note that rt is an effective tip–sample thermal contact radius determined
by the apex of the bare tip, the metal coating, and by the surrounding liquid
meniscus. In the case presented here, the effective tip radius is taken to be
30 nm, which is the sum of its radius of curvature (∼ 10 nm) and its metal
coating (∼ 20 nm).
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18.2.4
Tip Thermal Resistance and Temperature

The tip geometry can be modeled as that of a truncated silicon cone whose
thermal resistivity, ρt, is temperature dependent. The temperature along the
tip, ∆Tt, at a height h above its apex, can be obtained from the solution of the
differential equation

∂

∂h
∆Tt = Ptρt

1
π(rt + h tan θ)2 . (18.5)

Here, h = 0 is the position of the apex of the tip, h = ht is the position
of the base of the tip and Pt is the power injected into the tip. Note that the
temperature of the tip apex is assumed to be equal to that at the top of the
sample, leading to the boundary condition

∆Tt|h=0 = PtRs . (18.6)

We will discuss this assumption in the context of interface thermal resis-
tance at the end of this chapter. Figure 18.5 shows the linear (dashed line) and
nonlinear (solid line) temperature across the silicon tip whose apex is in con-
tact with a silicon sample, ∆Tt + ∆Ts, as a function of the injected power into
the tip, Pt.
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Fig. 18.5 The linear (dashed line) and nonlinear (solid line) tempera-
ture across the tip and sample, ∆Tt + ∆Ts, as a function of the power
injected into the tip, Pt.

Figure 18.6 shows the linear (dashed line) and nonlinear (solid line) temper-
ature along the tip height, h, for Pt = 0.02 mW, where the apex of the tip is at
h = 0. Note that most of the temperature drops in the vicinity of the apex of
the tip. At ambient temperatures, Eq. (18.2) yields the linear thermal resistance
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of the tip, Rt,

Rt = ρt
1

πrt

1
tan θ + rt

ht

, (18.7)

which, for rt � ht and θ = 51.854°, reverts to the constriction resistance in the
Maxwell limit (see Chapter 17). The solution to the thermal circuit presented
in Figure 18.2 can be obtained by assuming that the temperature across the
cantilever equals the sum of the temperatures across the tip and the sample.

0 0.2 0.4 0.6 0.8 1

h �Μm�

70

80

90

100

110

120

130

140

�
T

t
�
�

T
s
�K
�

Fig. 18.6 The linear (dashed line) and nonlinear (solid line) tempera-
ture along the tip height, h, for Pt = 0.02 mW, where the apex of the tip
is at h = 0.

Figure 18.7 shows the temperature across the cantilever, ∆Tc, as a func-
tion of the thermal conductivity of the sample for an injected thermal power
of 1.68 mW. The solid and dashed lines refer to the cases where the thermal
conductivity of silicon is temperature dependent and independent, respec-
tively. One observes (a) the importance of incorporating the temperature de-
pendence of the thermal conductivity of silicon into the solution of the ther-
mal circuit, and (b) that the range of thermal conductivity values in Figure 18.7
covers most media of practical interest.

18.3
Thermal and Mechanical Cantilever Bending

18.3.1
Mechanical Bending

The principle of operation of the κ-AFM is based on the interplay between
the mechanically and thermally induced bending of a heated, one-side, metal
coated cantilever. The maximum value of the mechanically induced bending
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Fig. 18.7 The linear (dashed line) and nonlinear (solid line) solution
to the temperature rise, ∆Tc, of a cantilever whose tip is in thermal
contact with a sample, as a function of the sample’s thermal conductiv-
ity, κs.

of a cantilever, δymax, derives from the force exerted on its tip, Fmax, is given
in terms of the cantilever spring constant, k, by

Fmax = kδymax . (18.8)

The mechanically induced bending of the cantilever, δym, at a distance z
away from its base, is

δym = − kδymax

6Ec Ir
z2(z− 3�c) . (18.9)

Here, Ec and Ir = wch3
c/12 are Young’s modulus of the cantilever and its

moment of inertia, respectively. Differentiating Eq. (18.9) yields the slope as-
sociated with the mechanically induced bending, δθm,

δθm = − kδymax

2Ec Ir
z(z− 2�c) . (18.10)

18.3.2
Thermal Bending

The thermally induced bending of a one-side, metal-coated cantilever, δyth, is
obtained from the solution of the differential equation

∂2

∂z2 δyth = 6(αf − αc)
hf + hc

h2
f K

∆Tc , (18.11)



18.3 Thermal and Mechanical Cantilever Bending 273

where αf and αc are the coefficients of thermal expansion of the metal film and
the cantilever, respectively. The constant K is given by

K = 4 + 6
hc

hf
+ 4

(
hc

hf

)2

+
Ec

Ef

(
hc

hf

)3

+
Ef

Ec

hf

hc
, (18.12)

where Ef and hf are the Young’s modulus and thickness of the metal film coat-
ing the cantilever, respectively. A simplified solution of Eq. (18.11) can be writ-
ten as

δyth, linear = P(αf − αc)(hc + hf)
z3

h2
f K(κchc + κfhf)wc

, (18.13)

where κf and κc are the thermal conductivities of the metal and the cantilever,
respectively. The derivative of Eq. (18.13), that yields the thermal slope of the
cantilever, δθth, linear, is

δθth, linear = 3P(αf − αc)(hc + hf)
z2

h2
f K(κchc + κfhf)wc

. (18.14)

The mechanically induced bending (solid line) and nonlinear thermally in-
duced bending (dashed line) of the cantilever, for the same total bending, us-
ing the parameters given in Table 18.4, are shown in Figure 18.8. Note that the
steepest slopes of the mechanically and thermally induced bending are next
to the cantilever’s base and free end, respectively.

Table 18.4 Thermal expansion of the cantilever and the metal film,
αc and αf, respectively, Young’s modulus of the cantilever, Ec, and the
metal film thickness, hf.

αc = 2.6 µm/mK
αf = 8.8 µm/mK
Ec = 179 GN/m2

hf = 20 nm

18.3.3
Combined Solution

One can now use Eq. (18.8) to Eq. (18.14) to analyze the operation of the κ-AFM
in terms of the interplay between the mechanically and thermally induced
bending of the cantilever. Consider initially the response of the EFB of the κ-
AFM to an unheated cantilever. As the tip is engaged, the cantilever is bent
mechanically until it reaches a predetermined set-point dictated by the oper-
ator of the system. Figure 18.9 shows the shape of the cantilever before (solid
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Fig. 18.8 The mechanically induced bending (dashed line) and ther-
mally induced bending (solid line) of the cantilever, δy, for the same
value of the total bending, showing the difference in their slopes along
the length of the cantilever.

line) and after (dashed line) engagement, where the fixed base of the cantilever
is at z = 0 µm, and the positions of the tip for both cases, denoted by V. For
simplicity, we chose the position of the sample and tip apex to be both fixed at
δy = 0 µm. Note that the initial slope of the cantilever depicted in Figure 18.9
is much smaller than when it is mounted in an AFM.
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Fig. 18.9 The mechanically induced bending of the free, unheated
cantilever, δy, as a function of position z, before (solid line) and af-
ter (dashed line) tip–sample engagement. The positions of the tip are
denoted by V.

Consider now the operation of the κ-AFM while the laser is heating the
cantilever. As the tip of the cantilever scans over regions of varying thermal
conductivities, the temperature of the cantilever changes due to the variance
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in heat transfer into the sample. Thus, the thermal bending of the cantilever
changes, which the EFB of the κ-AFM compensates for. This compensation
will slightly distort the topography measured by the κ-AFM, as compared to
that which is obtained in the unheated case. To understand how this affects
the topography measured by the κ-AFM, one has to solve for the combined
mechanical and thermal interactions subject to two boundary conditions. The
first boundary condition dictates that the tip be in contact with the sample at
all times, namely, is fixed at δy = 0. This condition is satisfied if one initially
fixes the EFB set-point at such a value that the cantilever is sufficiently bent
by the mechanical force so it can compensate for any subsequent thermally
induced bending. The second boundary condition dictates that the slopes of
the unheated and heated cantilever, at the point from which the monitoring
laser is reflected, are kept at the same value by the EFB. The scaled position of
the point where the monitoring laser is focused, is denoted by η. Here, η = 0
and 1 denote points at the fixed (z = 0) and free ends (z = �c) of the cantilever,
respectively.

The solution to this double boundary condition problem will now be ap-
plied to the cases where the tip of the cantilever is in contact with a silicon
sample and with its oxide features, whose thermal conductivity κ is 1 mK/W.
For simplicity, we assume that both of these are physically at δy = 0. In real-
ity, however, the silicon sample may have oxide features as high as 1 µm, yet,
to a good approximation, the results of the analysis presented here have been
found experimentally to be independent of the topographic features of such
features.

18.4
Results

18.4.1
Tip-Side Coating, Upward Thermal Bending: Si and SiO2

Figure 18.10 describes the different contributions to the bending of a tip-side
coated cantilever where the laser beam is focused halfway along the cantilever,
i.e. at η = 0.5. Shown are the mechanically induced bending of the unheated
cantilever (A), the thermally induced (B) and mechanically induced (C) bend-
ing components of the heated cantilever and their sum, (D), all for an injected
thermal power of 1.68 mW. The solid and dashed lines refer to the silicon
and its oxide features, respectively. Note that to maintain a fixed slope at the
halfway point, the mechanical bending, when the tip is on the oxide feature,
is necessarily large enough to compensate for the thermal bending.
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Fig. 18.10 The bending of the unheated, tip-side metal-coated can-
tilever (A), the thermally induced (B) and mechanically induced (C)
bending components of the heated cantilever and their sum, (D), all
for an injected thermal power of 1.68 mW. The solid and dashed lines
refer to the silicon sample and its oxide features, respectively.

Figure 18.11 is an expanded view of the area denoted by O in Figure 18.10,
showing the positions of the base of the cantilever for the silicon sample and
its oxide features, denoted by D(Si) and D(SiO2), respectively.
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Fig. 18.11 An expanded view of the area denoted by O in Fig-
ure 18.10, where the total bending of the heated cantilever, up to
10 µm away from its base, is shown together with the position of the
base of the cantilever for the silicon sample and its oxide features,
D(Si) and D(SiO2), respectively. Note that the tip is in contact with the
sample at δy = 0.

The most important result obtained in this chapter, namely, that a heated
cantilever senses the apparent, rather than the physical height of features hav-
ing different thermal conductivities, derives from the requirement that the
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double boundary conditions discussed before is satisfied. This can be accom-
plished only by having the κ-AFM EFB lower the base of the cantilever as the
tip moves from regions of high thermal conductivity to regions of low thermal
conductivity. The conclusion of this analysis is that while the oxide features are
physically at the same height as those of the silicon sample, they appear to the
heated cantilever to be lower by∼ 9 nm, resulting in a topographic distortion.
Subtracting the topography obtained with the cold and hot cantilever yields,
therefore, a map of the thermal conductivity features cross the sample.

Figure 18.12 shows the slopes associated with the components of the bend-
ing shown in Figure 18.10. One observes that the slope at η = 0.5, for the
unheated and heated cantilever, are indeed maintained by the EFB for both
the silicon sample and its oxide features.
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Fig. 18.12 The slope of the unheated (A) and heated (D) tip-side
coated cantilever with the same notations as those of Figure 18.10.
The solution of the double boundary condition problem indeed posi-
tions the slope at the point where the monitoring laser beam is incident
on the cantilever, denoted by X, at the same value for the unheated
and heated cantilever for both the silicon sample and its oxide features.

18.4.2
Top-Side Coating, Downward Thermal Bending: Si and SiO2

Similarly, Figure 18.13 describes the different contributions to the bending of
a top-side coated cantilever, where η = 0.5, with the same notations as those
of Figure 18.10.

Figure 18.14 is an expanded view of the area denoted by O in Figure 18.13.
As before, the proper solution of the double boundary condition problem po-
sitions the tip, denoted by V, for the unheated and heated cantilever, and for
both the silicon and silicon oxide samples at δy = 0. Note that in contrast
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Fig. 18.13 The bending of the unheated and heated top-side coated
cantilever with the same notations as those of Figure 18.10. As before,
the solution of the double boundary condition problem positions the tip,
denoted by V, for the unheated and heated cantilever and for both the
silicon and silicon oxide samples at δy = 0.

to the tip-side coated cantilever, the oxide features now appear to be higher,
rather than lower, although by the same amount of ∼ 9 nm.
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Fig. 18.14 An expanded view of the area denoted by O in Fig-
ure 18.13, where the total bending of the heated cantilever, up to
10 µm away from its base, is shown together with the position of the
base of the cantilever for the silicon sample and its oxide features,
D(Si) and D(SiO2), respectively. Note that the tip is in contact with the
sample at δy = 0.

Figure 18.15 shows the slopes associated with the components of the bend-
ing shown in Figure 18.13. One observes that the slope at η = 0.5 for the
unheated and heated cantilever are indeed maintained by the EFB for both
the silicon sample and its oxide features.
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Fig. 18.15 The slopes of the unheated, top-side, metal-coated can-
tilever (A), the thermally induced (B) and mechanically induced (C)
slope components of the heated cantilever and their sum, (D). The
solid and dashed lines refer to the silicon sample and its oxide fea-
tures, respectively. Note that the slope at η, denoted by X, is main-
tained for the unheated and heated cantilever.

18.4.3
Tip- and Top-Side Coating η-Dependent Apparent Height

Figure 18.16 shows the apparent height of the oxide features relative to the
silicon sample, ∆Si − ∆SiO2 , obtained with a heated cantilever, as a function
of η. The tip-side coated cantilever (solid line) yields an apparent height dif-
ference that is the negative of the one obtained with the top-side coated can-
tilever (dashed line). As noted before, the thermal bending of the cantilever
is dominant near the tip while the mechanical bending is dominant next to
its base. Thus there will be a point at which these two cancel each other out,
and a change in the thermal bending will be compensated for exactly by an
equal and opposite change in the mechanical bending. This value is dictated
by the interplay of the mechanically and thermally induced slopes of a given
cantilever.

18.4.4
Tip- and Top-Side Coating κ-Dependent Apparent Height

Finally, Figure 18.17 shows the apparent height difference, obtained with a
cold and hot cantilever, as a function of the thermal conductivity of a sample,
κs, relative to a sample with κs = 1. One observes that the response of the
κ-AFM is most sensitive at lower thermal conductivities, where variations in
the thermal conductivity will have a most pronounced effect on the cantilever
temperature. However, throughout the range of conductivities shown, which
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Fig. 18.16 The apparent height of the oxide features relative to the
silicon sample, ∆SiO2 − ∆Si, obtained with a heated cantilever, as a
function of η. The tip-side coated cantilever (solid line) yields an appar-
ent height difference that is the negative of the one obtained with the
top-side coated cantilever (dashed line).

encompass most materials of interest, the response is sufficient to ensure good
differentiation between regions of differing thermal conductivities.
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Fig. 18.17 The magnitude of the apparent height difference, obtained
with a cold and hot cantilever, as a function of the thermal conductivity
of a sample, κs, relative to a sample with κs = 1.

� Exercises for Chapter 18

1. Change the parameters of the rectangular cantilever, tip, and metal film
and analyze the results obtained in this chapter.
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2. Repeat the calculation using different values of �ph in Eq. (18.3) and
Eq. (18.4) and discuss the results.
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19
Kelvin Probe Force Microscopy

Highlights

1. Tip–sample and cantilever–sample capacitance derivatives
2. Harmonic expansion of tip–sample electrostatic forces
3. Measurement of contact potential difference and its thermal limitation

Abstract

Models for tip–sample and cantilever–sample capacitance derivatives are pre-
sented together with numerical examples using typical parameters. The ap-
plication of a tip–sample voltage consisting of both dc and ac components
generates electrostatic forces at the first and second harmonics of the applied
voltage. The harmonic expansion of these electrostatic forces shows that a tip–
sample contact potential difference can be measured by tuning the applied dc
voltage such that the force at the first harmonic vanishes. The lower bound to
the measurement of the contact potential difference due to the thermal excita-
tion of the cantilever is shown to be minimal.

19.1
Introduction

A Kelvin probe is an instrument that can measure the contact potential dif-
ference (CPD), ∆Φ, between the exposed surfaces of two samples of inter-
est. Commercial Kelvin probes, which employ mm-scale electrodes, are too
large for probing nm-scale structures. Kelvin probe force microscopy (KPFM),
a derivative of atomic force microscopy (AFM), can provide CPD values with
nm-scale spatial resolution. Kelvin probe and KPFM systems employ tech-
niques that are similar in concept, yet vary subtly in the way they measure
CPD. The key difference between these two techniques is that the Kelvin probe
measures displacement currents while the KPFM measures tip–sample elec-
trostatic forces. Specifically, the Kelvin probe employs two plane-parallel elec-
trodes – the sample, which is stationary, and a reference electrode, which is

Exploring Scanning Probe Microscopy with MATHEMATICA, Second Edition.  Dror Sarid
Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40617-3
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vibrated with an amplitude ∆δ and angular frequency ω. The inter-electrode
modulated capacitance, CKP, is given by

CKP = ε0
A

δ
(
1 + ∆δ

δ sin ωt
) , (19.1)

where A is the area of each electrode, δ the sample–electrode mean spacing,
and ε0 the dielectric constant of free space. For ∆δ/δ � 1, Eq. (19.1) reduces
to

CKP = ε0
A
δ

(
1− ∆δ

δ
sin ωt

)
. (19.2)

A dc voltage, vdc, applied between these two electrodes, gives rise to a
charge, Q, given by

Q = CKP(∆Φ− vdc) . (19.3)

The displacement current, iKP = ∂Q/∂t, up to a phase, is given by

iKP ∝ ε0
A
δ2 ω(∆Φ− vdc)∆δ sin ωt . (19.4)

In contrast, the KPFM, shown schematically in Figure 19.1, employs a con-
ducting cantilever with a sharp tip at its end that is placed in close proximity
to the sample. The application of dc and ac voltages, vdc and vac, respectively,
in the presence of the contact potential difference between the tip and the sam-
ple, results in an electrostatic force that vibrates the tip at the applied angular
frequency, ω. We will show that the AFM photodiode which detects the vibra-
tion of the cantilever, generates a photocurrent, iKPFM, given by

iKPFM ∝ ε0
r
δ

1
k
(∆Φ− vdc)vac sin ωt . (19.5)

Here, r is the radius of the apex of the tip, and k the spring constant of
the cantilever. For both systems, therefore, the external bias that nulls the cur-
rent equals the contact potential difference. Note that in spite of the fact that
the spatial distribution of the electric fields between the two electrodes differs
markedly for the two systems, the value of the nulling external bias, vdc = ∆Φ,
should be the same. Note also that the sensitivities of a Kelvin Probe and of a
KPFM are proportional to ω and 1/k, respectively. Thus, high frequencies and
soft cantilevers increase the sensitivities of these two systems, respectively. In
the following we will analyze the operation of Kelvin probe force microscopy
and give numerical examples that shed light on the magnitude of the relevant
parameters.

The parameters describing the geometry of the AFM cantilever, given in Ta-
ble 19.1, consist of its Young’s modulus, mass density, length, width, thickness,
and angle of inclination relative to the sample, E, ρ, L, w, d, and φ, respectively.
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Fig. 19.1 A schematic diagram of the Kelvin probe force microscope.

Table 19.1 The cantilever’s Young’s modulus, mass density, length,
width, thickness, and angle of inclination relative to the sam-
ple, E, ρ, L, w, d, and φ, respectively.

E = 179 GN/m2

ρ = 2330 kg/m3

L = 125 µm
w = 35 µm
d = 1 µm
φ = 15 deg

The tip, attached to the free end of the cantilever, has a height ht, apex ra-
dius r, and cone angle θ, given in Table 19.2.

Table 19.3 gives the resonance frequency and spring constant of the can-
tilever, f0 and k, respectively, derived from Table 19.1, and the quality factor, Q,
the system electronic bandwidth, B, and the tip–sample ac driving voltage, vac.

Table 19.2 The tip height ht, apex radius rt, and angle θ.

ht = 15 µm
rt = 40 nm
θ = 10 deg
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Table 19.3 The resonance frequency and spring constant of the can-
tilever, f0 and k, quality factor, Q, the system electronic bandwidth, B,
and the tip–sample ac driving voltage, vac.

f0 = 89.27 kHz
k = 0.801 N/m

Q = 300
B = 1 Hz

vac = 2 V

Finally, the Hamaker constant, AH, and the chemical potential differ-
ence, ∆Φ, both associated with the tip–sample materials, are given in Ta-
ble 19.4.

Table 19.4 The Hamaker constant, AH, and the chemical potential
difference, ∆Φ, associated with the tip–sample materials.

AH = 0.1 aJ
∆Φ = 0.75 V

19.2
Capacitance Derivatives

19.2.1
Tip–Sample Capacitance Derivative

Modeling the operation of the Kelvin probe force microscope involves the
derivative of the capacitance of the probe–sample structure which consists
of contributions from the cantilever and its tip. The following presents an
accurate model for the contribution of the cantilever and three approximate
models for the contribution of the tip. The simplest model for the tip–sample
capacitance, Ct, replaces the tip by a sphere whose radius, rt, equals that of the
apex of the tip. Ct is given by the expansion

Ct, a = 4πε0rt

∞

∑
n=1

sinh(α)
sinh(nα)

, (19.6)

where α is

α = ln

(
1 +

δ

rt
+

√
δ2

r2
t

+ 2
δ

rt

)
, (19.7)

and δ is the tip–sample spacing. The derivative of Eq. (19.6), ∂Ct/∂δ, is most
conveniently performed numerically. However, one can obtain a rough ap-
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proximation to this derivative using

∂

∂δ
Ct = 2πε0

rt

δ
. (19.8)

In another model, the structure of the whole tip is taken as a cone whose
apex forms part of a sphere. The resulting derivative of the capacitance of
such a tip–sample structure, ∂Ct,b/∂δ, is

∂

∂δ
Ct,b = 2πε0

r2
t (1− sin θ)

δ(δ + rt(1− sin θ))
+

λ2

2πε0
ln

[
(2δ sec θ + rt)2

4δ sec θ(δ sec θ + rt)

]
, (19.9)

where

λ =
2πε0

arcsinh(1/ tan θ)
. (19.10)

Here, θ is the half angle of the cone representing the tip and ht the cone
height. Examples of the three models that describe the tip–sample capaci-
tance derivative, ∂Ct/∂δ, as a function of δ, are shown in Figure 19.2 for the
range rt/10 < δ < r. In this figure, the solid, dashed, and dotted lines refer
to ∂Ct/∂δ, ∂Ct,a/∂δ, and ∂Ct,b/∂δ, respectively. The three curves deviate from
each other by up to a factor of 2. However, as will be shown later, their exact
value drops out of the calculation of the performance of the Kelvin probe. We
will, therefore, choose the simplest model, namely, that given by Eq. (19.8).
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Fig. 19.2 Numerical examples of the tip–sample capacitance deriva-
tive, ∂Ct/∂δ, as a function of δ using the three models given in the text.
The solid, dashed, and dotted lines refer to the three models described
in the text.
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19.2.2
Cantilever–Sample Capacitance Derivative

The derivative of the cantilever–sample capacitance, Cc, is given by

∂

∂δ
Cc = ε0

wL sin φ

φ(ht + δ + L sin φ)(ht + δ)
, (19.11)

where L and w are the cantilever length and width, respectively, and φ is the
angle of inclination of the cantilever relative to the sample. The cantilever–
sample capacitance will be much larger than that of the tip–sample, unless
the tip is close enough to the sample. It is important, therefore, to find out the
range of tip–sample spacing, δ, such that the latter will dominate. Figure 19.3
shows the capacitance derivative of the tip–sample (solid line) and cantilever–
sample structures, using Eq. (19.8) and Eq. (19.11), respectively. The latter is
observed to be practically constant for the chosen range of δ values. The figure
also depicts the value of δx for which these two capacitance derivatives are
equal.
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Fig. 19.3 The capacitance derivatives of the tip–sample (solid line)
and cantilever–sample structures. The latter is practically constant for
the chosen range of δ values. The figure also depicts the value of δx
for which these two capacitance derivatives are equal.

19.3
Measurement of Contact Potential Difference

19.3.1
Tip–Sample and Cantilever–Sample Electrostatic Forces

The electrostatic energy, Wv, associated with a capacitor with capacitance, C,
charged to a given voltage, v, is
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Wv =
1
2

Cv2 , (19.12)

and the electrostatic force derived from this energy, Fv, is

Fv = −∂W
∂δ

. (19.13)

We will now use Eq. (19.8) as representing the tip–sample capacitance deriv-
ative, and consider the case where the force acts on the tip of a cantilever
whose spring constant is k. Consider now an unbent cantilever whose tip is
separated from a sample by a spacing δ, and apply a voltage, v, between the
tip and a sample. The resulting electrostatic force will bend the cantilever, re-
ducing δ to δ− Fv/k. The force in this case can be obtained from the implicit
function

Fv = πε0
rt

δ− Fv/k
v2 , (19.14)

whose solution is

Fv =
kδ

2

(
1−

√
1− 4πε0rt

v2

kδ2

)
. (19.15)

The critical voltage, vc, at which the electrostatic force will overpower the
cantilever bending force, is obtained by equating the square root in Eq. (19.10)
to zero, yielding

vc =

√
kδ2

4πε0rt
. (19.16)

Applying a tip–sample voltage larger than vc will therefore cause the tip to
snap into the sample. The bending of the cantilever, ∆c, given by

∆c = δ− Fv

k
(19.17)

is shown in Figure 19.4 as a function of v, where the solid, dashed, and dotted
lines refer to cantilevers with k, 0.75k, and 0.5k, respectively.

For the case where

4πε0rt
v2

kδ2 � 1 , (19.18)

the electrostatic force can be approximated by

Fv = πε0
rt

δ
v2 . (19.19)

It is of interest to compare the electrostatic force to the van der Waals
force, FvdW, acting between the tip and the sample,

FvdW = −AHrt

6δ2 . (19.20)
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Fig. 19.4 The bending of the cantilever, ∆c, as a function of v,
for k (solid line), 0.75k (dashed line), and 0.5k (dotted line).

Figure 19.5 shows Fv (solid line) and FvdW (dashed line) as a function of δ for
v = 1 V. In a practical case, the van der Waals force can therefore be ignored
unless one operates at too small spacings and too small voltages.
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Fig. 19.5 Fv (solid line) and FvdW (dashed line) as a function of δ for
v = 1 V.

19.3.2
Harmonic Expansion of Tip–Sample Force

The operation of a Kelvin probe force microscope requires the application of
both dc and ac voltages between the tip and the sample. The total voltage,
given by

v = (∆Φ− vdc) + vac sin(ωt) (19.21)
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consists of a component vac at an angular frequency ω and a component vdc
which will be used to null ∆φ. Inserting Eq. (19.21) into Eq. (19.19) and using

sin2(ωt) =
1− cos(2ωt)

2
, (19.22)

yields the following three components of the force, Fv, one at dc,

Fdc = −1
2

∂C
∂δ

[
(∆Φ− vdc)2 +

1
2

v2
ac

]
, (19.23)

a second one at ω

Fω = −∂C
∂δ

(∆Φ− vdc)vac sin(ωt) , (19.24)

and a third one at 2ω,

F2ω =
∂C
∂δ

1
4

v2
ac cos(2ωt) . (19.25)

The component at ω can be rewritten as

Fω = −∂C
∂δ

vac, effective sin(ωt) , (19.26)

where

vac, effective = (∆Φ− vdc)vac , (19.27)

is an effective ac voltage that can be nulled by tuning vdc. We can now insert
Eq. (19.8) into Eq. (19.23) to Eq. (19.25) and obtain the electrostatic deflection
of the cantilever, ∆,

∆ =
Fv

k
. (19.28)

The resultant three deflection components are

∆dc = −1
2

ε0π
r

kδ

[
(∆Φ− vdc)2 +

1
2

v2
ac

]
(19.29)

at dc,

∆ω = −ε0π
r

kδ
(∆Φ− vdc)vac sin(ωt) (19.30)

at ω, and

∆2ω =
1
4

ε0π
r

kδ
v2

ac cos(2ωt) (19.31)
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Fig. 19.6 The temporal response of the tip to the applied
force, ∆c,dc (solid line), ∆c,ω (dashed line), and ∆c,2ω (dotted line).

at 2ω. It is important to note that δ is a fixed tip–sample spacing that exists
before the application of Fv. Figure 19.6 shows the temporal response of the
tip of the cantilever to the applied force, ∆dc (solid line), ∆ω (dashed line), and
∆2ω (dotted line). Note that although the amplitude of vibration of the tip at
ω is small, it can be readily detected using lock-in techniques.

19.3.3
Thermal Noise Limitations

It is useful to assess noise contributions when measuring low level signals,
such as ∆c, ω. To calculate the minimum observable value of ∆Φ, consider the
rms amplitude of the thermal vibration of a cantilever, ∆th,

∆th =

√
2KBTB
πkQ f0

. (19.32)

Equating ∆ω to ∆th in Eq. (19.30) leads to the minimum detectable value
of ∆Φ, given by

∆Φmin =
1

vacε0

δ

rt

√
2KBTkB
π3Q f0

. (19.33)

Table 19.5 gives the values of ∆th and ∆Φmin for a tip–sample spacing
δ = δx. One observes that thermal noise limitation of the contact potential
difference, which is in the range 0.1 V < ∆Φ < 1 V, can be made negligible by
choosing proper parameters of the system, such as those given in Table 19.1 to
Table 19.4.
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Table 19.5 The values of ∆th and ∆Φmin for δ = δx.

∆th = 0.011 080 1 pm
∆Φmin = 0.062 854 2 mV

� Exercises for Chapter 19

1. Explore the results obtained in this chapter for several parameter ranges
and discuss the numerical results.

2. Code the operation of a nonresonant dynamic force microscope as a Kelvin
probe and explore the results for several parameter ranges.
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20
Raman Scattering in Nanocrystals

Highlights

1. Temperature dependence of Raman lineshape, linewidth, and frequency
shift in a bulk silicon crystal

2. Temperature and size dependence of Raman lineshape, linewidth, and
frequency shift in a silicon nanocrystal

Abstract

This chapter describes a model of temperature-dependent Raman scattering
in a silicon crystal. The model is based on four-phonon anharmonic processes
associated with the Raman active LO phonons of silicon. The model is pre-
sented in three stages that advance in their level of complexity. First, the tem-
perature dependence of Stokes and anti-Stokes lineshape, linewidth and fre-
quency shift of a silicon crystal are considered, and the ratio of their intensity
discussed in terms of thermometry. Next, the model is extended to include
size-dependent effects of spherical crystallites on room-temperature Raman
scattering. Finally, the model is extended further to include also temperature-
dependent effects. The final model can be used to analyze Raman scattering
in nanostructures obtained by a variety of scanning probe microscopes.

20.1
Introduction

Inelastic scattering of light in a crystalline sample provides information about
the optical modes of vibration at the center of its Brillouin zone. The scat-
tered light, termed Raman scattering, consists of two spectra whose frequen-
cies differ from that of the incident light, ω0, as shown in Figure 20.1. The
spectrum whose frequency is below that of the incident light, the Stokes com-
ponent, has an intensity that is independent of the temperature of the sample.
Its linewidth and line center, however, are temperature dependent due to four-
phonon anharmonic processes associated with Raman-active LO phonons [1].

Exploring Scanning Probe Microscopy with MATHEMATICA, Second Edition.  Dror Sarid
Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40617-3
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The spectrum whose frequency is above that of the incident light, the anti-
Stokes component, is similar to that of the Stokes component, except that
its intensity is also temperature dependent. Both the Stokes and anti-Stokes
spectra in a crystal exhibit a Lorentzian shape, and the ratio of their inten-
sity yields the temperature of the probed crystal. However, to use the ratio
as a thermometer for an absorbing crystal such as silicon, one has to correct
the measured ratio by taking into account the absorption of the incident light
and the Stokes and anti-Stokes components, and their different Raman cross
sections. The corrected ratio can then be used to accurately measure the tem-
perature of a silicon crystal in the range of 150 K to above 1000 K. When the
size of a spherical silicon crystal is reduced to below 30 nm, the lineshape of
the Raman spectra starts to deviate from a Lorentzian shape. Studies of Ra-
man scattering in polycrystalline silicon show that the reduction in size of a
monocrystal exhibits a size-confinement effect that 1. produces an asymmet-
ric lineshape, 2. broadens the linewidth, and 3. shifts the line center to lower
frequencies. A model that accounts for these effects, taking place at room tem-
perature, yields the spectra of a monocrystal as a function of its size [2]. An
extension of this model that includes temperature effects was used to explain
Raman spectra of cluster-deposited nanogranular silicon films [3]. Each one of
these three models is presented together with numerical examples that shed
light on the role of temperature and nanocrystal size.

Fig. 20.1 A basic energy diagram of Raman scattering depicting the
Stokes and anti-Stokes components.
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20.2
Raman Scattering in Bulk Silicon Crystals as a Function of Temperature

20.2.1
Introduction

In this first section we treat an anharmonic model of Raman scattering in a
silicon crystal whose size is larger than, say, 30 nm [1]. The range of frequen-
cies, ωmin < ω < ωmax, and temperatures, T1 < T < T2, used in the exam-
ples, are given in Table 20.1. Here and in the other two models presented in
the next two sections, the frequencies are presented in units of cm−1, which
are converted in the code to units of Hz using the factor g.

Table 20.1 The conversion factor, g, and the range of frequen-
cies, ωmin < ω < ωmax, and temperatures, T1 < T < T2, used
in the examples.

g = 188.365 GHz/cm−1

ωmin = 460 cm−1

ωmax = 540 cm−1

T1 = 200 K
T2 = 1200 K

20.2.2
Linewidth and Frequency Shift

A four-phonon Raman scattering process yields a Lorentzian-shaped spec-
trum for both the Stokes and anti-Stokes components. The temperature-
dependent full-width at half maximum, Γ, of the Lorentzian is given by

Γ = A
(

1 +
2

x− 1

)
+ B

(
1 +

3
y− 1

+
3

(y− 1)2

)
, (20.1)

where

x = �
h̄gω0
2KBT , (20.2)

and

y = �
h̄gω0
3KBT . (20.3)

The temperature-dependent frequency shift of the peak of the Lorentzian,
describing both the Stokes and anti-Stokes components, ∆, is given by

∆ = C
(

1 +
2

x− 1

)
+ D

(
1 +

3
y− 1

+
3

(y− 1)2

)
. (20.4)
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The total frequency shift of the Stokes and anti-Stokes, Ω, relative to the
frequency of the incident light, is given by

Ω = ω0 + ∆ . (20.5)

Here, A, B, C, and D are the best-fit constants derived from experimental
results. The examples for a silicon crystal, presented in this section, use the
parameters given in Table 20.2.

Table 20.2 The experimental best-fit parameters used for the exam-
ples.

ω0 = 528 cm−1

A = 1.295 cm−1

B = 0.105 cm−1

C = −2.96 cm−1

D = −0.174 cm−1

The room temperature value of the functions x and y, the frequency shifts
∆ and Ω, and the linewidth Γ are given in Table 20.3.

Table 20.3 The room temperature value of the functions x and y, the
frequency shifts ∆ and Ω, and the linewidth Γ.

x = 6.680 35
y = 3.547 04
∆ = −4.4616 cm−1

Ω = 523.538 cm−1

Γ = 2.028 19 cm−1

Figure 20.2 shows (a) the frequency shift, Ω, and (b) the linewidth, Γ, as a
function of temperature, T, both showing a dramatic change. Note that when
the temperature increase, the linewidth naturally broadens and the frequency
shift decreases due to softening of the acoustic modes of the crystal.

20.2.3
Spectra

The normalized lineshape of the Stokes, IS, in terms of Γ and Ω, is given by

IS =
(Γ/2)2

(ω−Ω)2 + (Γ/2)2 . (20.6)

The lineshape of the anti-Stokes, IaS, in terms IS, is given by

IaS = IS�
− h̄gω0

KBT , (20.7)
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Fig. 20.2 (a) The frequency shift, Ω, and (b) the linewidth, Γ, as a
function of the temperature, T.

where the temperature dependence is given by the Bose–Einstein occupation
number. Figure 20.3 shows the Raman spectra at the temperatures of (a) 200 K
and (b) 1200 K, where the solid and dashed lines refer to the Stokes and anti-
Stokes components, respectively. Note that the Stokes components in both fig-
ures are normalized to unity, and that the anti-Stokes is frequency shifted so it
is superimposed on the Stokes.
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Fig. 20.3 Raman spectra at (a) 200 K and (b) 1200 K, where the solid
and dashed lines refer to the Stokes and anti-Stokes components,
respectively.

The experimentally observed ratio of the intensity of the anti-Stokes and
Stokes components, (IaS/IS)exp, has to be corrected for the different absorp-
tion coefficients and Raman cross sections associated with the three frequen-
cies involved. The corrected ratio, that takes these effects into account, can be
written as

IS

IaS
=

αI + αaS

αI + αS

(
ωS

ωaS

)3 S(ω0, ωS)
S(ω0, ωaS)

�
h̄gω0
KBT (20.8)

where αI, αS, and αaS are the absorption coefficients at the incident light
and the Stokes and anti-Stokes components, respectively, and S(ω0, ωS) and
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S(ω0, ωaS) are the Raman cross sections of the Stokes and anti-Stokes com-
ponents. Here, ω0, ωS, and ωaS refer to the frequencies of the incident light
and the Stokes and anti-Stokes components, respectively. The corrected ex-
perimental ratio should fit the theoretical one, given in Figure 20.4.
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Fig. 20.4 The ratio of the intensity of the anti-Stokes and Stokes com-
ponents, IaS/IS, as a function of the temperature, T.

20.3
Raman Spectra in Nanocrystals at Room Temperature

20.3.1
Introduction

This section extends the anharmonic model presented in the previous section
by including spherical silicon crystals with a size-confinement effect, albeit
at room temperature [2]. This model, which has been applied successfully to
samples of polycrystalline silicon, will be accompanied by examples using fre-
quencies in the range of ωmin < ω < ωmax, given in Table 20.4.

Table 20.4 The range of frequencies, ωmin < ω < ωmax, used in the
examples.

ωmin = 480 cm−1

ωmax = 540 cm−1

T = 300 K
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20.3.2
Linewidth and Frequency Shift

The linewidth, Γ, in this model, is considered to be independent of the size, d,
of the spherical silicon nanocrystal. The Stokes frequency shift, Ω, which does
depend on d, is introduced through the phonon dispersion relation

Ω =
√

105[C0 + cos(πk/2)] , (20.9)

where C0 is an experimentally obtained best-fit constant, k is the phonon wave
vector in units of 2π/a0, and a0 is the silicon lattice constant. Table 20.5 gives
the silicon lattice constant and the value of Γ and C0. Also given is the value
of the frequency shift for a large-size crystal where k = 0, which is denoted by
Ω(0).

Table 20.5 The silicon lattice constant, a0, the best-fit value of Γ and
C0, and the calculated value of Ω(0).

a0 = 0.5483 nm
Γ = 3.6 cm−1

C0 = 1.714 cm−1

Ω(0) = 520.961 cm−1

20.3.3
Spectra

The normalized lineshape of the Stokes component, given by IS in terms
of Γ, Ω, and d, is given by

IS =
∫ 1

0

�
−
(

k d
2a0

)2

(ω−Ω)2 + (Γ/2)2 4πk2 �k , (20.10)

where the maximum value of k is 1. Figure 20.5 shows the normalized Stokes
spectra in a nanocrystal with a size d (solid line) and in a bulk crystal (dashed
line), both at 300 K. One observes that significant size-confinement effects exist
in Raman scattering in a nanocrystal that exhibit (a) an asymmetric lineshape,
(b) broadening of the linewidth, and (c) shifting the line center to lower fre-
quencies.

The room temperature frequency shift in a bulk crystal, Ωbulk, and in the
nanocrystal, Ωnanocrystal, and their respective linewidth, Γbulk and Γnanocrystal,
are given in Table 20.6, all of which are large enough to be measurable quan-
tities.
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Fig. 20.5 The normalized Stokes spectra in a nanocrystal with a
size d (solid line) and in a bulk crystal (dashed line), both at 300 K.

Table 20.6 The nanocrystal size, d, the room temperature frequency
shift for a bulk crystal, Ωbulk, and for a crystallite, Ωnanocrystal, and
their respective linewidth, Γbulk and Γnanocrystal.

d = 5 nm
Ωbulk = 520.97 cm−1

Ωnanocrystal = 517.68 cm−1

Γbulk = 3.6 cm−1

Γnanocrystal = 15.48 cm−1

20.4
Raman Spectra in Nanocrystals as a Function of Temperature

20.4.1
Introduction

The model presented in this section, which is a combination of the ones pre-
sented in the first two sections, enables one to calculate Raman scattering as
a function of both the size of a spherical silicon nanocrystal and the tempera-
ture [3]. This model, which has been applied successfully to samples of cluster-
deposited nanogranular silicon films, will be accompanied by examples using
frequencies in the range ωmin < ω < ωmax, and temperatures in the range
T1 < T < T2, given in Table 20.7.
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Table 20.7 The range of frequencies, ωmin < ω < ωmax, and temper-
atures, T1 < T < T2, used in the examples.

ωmin = 400 cm−1

ωmax = 540 cm−1

T1 = 300 K
T2 = 1200 K

20.4.2
Linewidth and Frequency Shift

The modeling starts by considering the k-dependent phonon dispersion rela-
tion used in the previous section, which will now be denoted by ∆k,

∆k =
√

105[C0 + cos(πk/2)] , (20.11)

where k is the phonon wavevector in units of 2π/a0, and a0 is the silicon lattice
constant. The reason for this new notation is that in contrast to the previous
model, here ∆k is not the total frequency shift of the Raman spectrum but
rather one of two contributions to the shift. ∆k will now used to obtain the
linewidth, Γ, which formally is similar to the one given in the first model,
namely,

Γ = A
(

1 +
2

x− 1

)
+ B

(
1 +

3
y− 1

+
3

(y− 1)2

)
. (20.12)

However, the functions x and y, which are now both temperature and size
dependent, are given by

x = �
h̄g∆k
2KBT , (20.13)

and

y = �
h̄g∆k
3KBT . (20.14)

The second contribution to the frequency shift of the Raman spectrum, ∆k,T ,
is given by

∆k,T = C
(

1 +
2

x− 1

)
+ D

(
1 +

3
y− 1

+
3

(y− 1)2

)
, (20.15)

with the total shift, Ω, being

Ω = ∆k + ∆k,T . (20.16)

Table 20.8 gives the silicon lattice constant a0 and the best-fit value of the
parameters used in the examples.
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Table 20.8 The silicon lattice constant, a0, and the experimental best-
fit parameters used in the examples.

a0 = 0.5483 nm
C0 = 1.7 cm−1

A = 1.683 cm−1

B = 0.136 cm−1

C = −3.996 cm−1

D = −0.235 cm−1

Table 20.9 Room temperature value of the functions x and y.

x = 3.476 43 cm−1

y = 2.294 86 cm−1

The room temperature value of the functions x and y is given in Table 20.9.

20.4.3
Spectra

The normalized lineshape of the Stokes component, IS, in terms of Γ, Ω, d,
and T, is given by

IS =
∫ 1

0

�−
(

k d
2a

)2

(ω−Ω)2 + (Γ/2)2 4πk2 �k , (20.17)

where the maximum value of k is 1. Figure 20.6 shows the normalized Raman
Stokes spectra in a spherical silicon nanocrystal with a size d (solid line) and
in a bulk crystal (dashed line), both at a temperature T denoted in the figure,
and in a bulk silicon crystal at T = 300 (dotted line). In addition to the results
obtained in the previous chapter, here both size confinement and temperature
effects contribute to the Raman scattering in a nanocrystal that exhibit (a) an
asymmetric lineshape, (b) broadening of the linewidth, and (c) shifting the
line center to lower frequencies.

The nanocrystal size, d, the room temperature frequency shift in a bulk crys-
tal, Ωbulk, and in the nanocrystal, Ωnanocrystal, and their respective linewidth,
Γbulk and Γnanocrystal are given in Table 20.10, all large enough to be measurable
quantities.
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Fig. 20.6 The normalized Raman Stokes spectra in a nanocrystal
with a size d (solid line) and in a bulk crystal (dashed line), both at a
temperature T denoted in the figure, and in a bulk silicon crystal at
T = 300 (dotted line).

Table 20.10 The spherical nanocrystal size, d, the Raman Stokes shift
in a bulk crystal, Ωbulk, and in a nanocrystal, Ωnanocrystal, and their
respective linewidth, Γbulk and Γnanocrystal, both at 900 K.

d = 10 nm
Ωbulk = 490.73 cm−1

Ωnanocrystal = 488.2 cm−1

Γbulk = 13.65 cm−1

Γnanocrystal = 16.81 cm−1

� Exercises for Chapter 20

1. Code and plot the linewidth of the Stokes component of the Raman spectra
of a nanocrystal as a function of its size and as a function of temperature.

2. Code and plot the ratio of the anti-Stokes and Stokes components of the
Raman spectra of a nanocrystal as a function of its size and as a function
of temperature.

3. Code and plot the effect of the shape of a nanocrystal on its Raman spec-
tra [4].
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Index

a
angular spring constant see can-

tilevers, angular spring constant
apparent barrier height see

metal–insulator–metal tunnel-
ing, apparent barrier height

applied field see Fowler–
Nordheim tunneling, applied
field

average barrier height see metal–
insulator–metal tunneling, aver-
age barrier height

average power see free vibra-
tions, average power

averaged oscillations see Fowler–
Nordheim tunneling, averaged
oscillations

b
barrier height with image poten-

tial see metal–insulator–metal
tunneling, barrier height with
image potential

barrier width see metal–
insulator–metal tunneling, bar-
rier width

bending see cantilevers, bending
blockade see coulomb blockade,

blockade
boundary resistance 256

buckling see cantilevers, buck-
ling

bulk crystals 295

c
cantilevers
– angular spring constant 31, 36,

41, 63, 71
– bending 30, 66
– buckling 36, 62, 70
– characteristic functions 44, 76
– circular 49
– conversion 48
– displacement 32, 37, 59, 63, 67,

71
– linear spring constant 32, 37,

59, 60, 64, 68
– rectangular 27
– resonance frequencies 42, 74
– slope 31, 36, 41, 59, 63, 67, 71
– square 50
– triangular 58, 62
– twisting 40
– V-shape 56
– vibrations 42, 74
capacitance see electrostatics, ca-

pacitance
capacitance derivatives see

Kelvin probe force microscopy,
capacitance derivatives
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characteristic functions see can-
tilevers, characteristic functions

charges inside the sphere see
electrostatics, charges inside the
sphere

charges outside the sphere see
electrostatics, charges outside the
sphere

circular see cantilevers, circular
confined structures see density

of states, density of states in con-
fined structures

constriction and boundary resis-
tance

– combined electrical resistance
254

– constriction resistance 242, 248
– electronic density 246
– electronic density of states 247
– Maxwell limit 248
– Sharvin limit 251
constriction and bounday resis-

tance
– boundary resistance 256
– electrical boundary resistance

260
– electronic specific heat 248
– Fermi k-vector 246
– Fermi temperature 245
– Fermi velocity 244
– free electron gas 244
– general media 256
– Lorenz number 244
– mean free path 246
– ratio of �/σ 247
– thermal boundary resistance

256
– Wiedemann–Franz law 244
constriction resistance 248
contact force see tip–sample, con-

tact force
contact potential difference 282

contact pressure see tip–sample,
contact pressure

contact radius see tip–sample,
contact radius

conversion see cantilevers, con-
version

coulomb blockade
– blockade 179
– capacitance 180
– electrostatic energy 185
– quantum considerations 182
– quantum dot 185
– requirements and approxima-

tions 184
– staircase 184
– temperature effects 192
– tunneling current 186
– tunneling rates 186
coulomb staircase see coulomb

blockade, staircase
critical points see density of

states, critical points
cubical quantum dots see density

of states, cubical quantum dots
current density see Fowler–

Nordheim tunneling, current
density

d
density of states 198
– critical points 207
– cubical quantum dots 204
– density of states in confined

structures 203
– intraband optical transitions

207
– quantum wells 203
– quantum wires 204
– sphere in arbitrary dimensions

199
– spherical quantum dots 205
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displacement see cantilevers, dis-
placement

downward thermal bending see
scanning thermal conductivity
microscopy, downward thermal
bending

e
effective tunneling area see

Fowler–Nordheim tunneling,
effective tunneling area

electric field see near field optics,
electric field

electrical and thermal circuits see
scanning thermal conductivity
microscopy, electrical and ther-
mal circuits

electrical boundary resistance
260

electronic density see constric-
tion and boundary resistance,
electronic density

electronic density of states see
constriction and boundary resis-
tance, electronic density of states

electronic specific heat see con-
striction and bounday resistance,
electronic specific heat

electrostatic energy see coulomb
blockade, electrostatic energy

electrostatic force see electrostat-
ics, electrostatic force

electrostatics
– charges outside the sphere 216
– electrostatic force 220
– isolated point charge 212
– isolated sphere 214
– point charge and plane 212
– point charge and sphere 213
– potential and field 217
– sphere–plane 218
– two spheres 218

f
far-field solution see near field

optics, far-field solution
Feenstra’s parameter see scan-

ning tunneling spectroscopy,
Feenstra’s parameter

Fermi k-vector see constriction
and bounday resistance, Fermi
k-vector

Fermi temperature see constric-
tion and bounday resistance,
Fermi temperature

Fermi velocity see constriction
and bounday resistance, Fermi
velocity

Fermi–Dirac statistics see scan-
ning tunneling spectroscopy,
Fermi–Dirac statistics

force curve see tip–sample, force
curve

Fowler–Nordheim tunneling
– applied field 164
– averaged oscillations 167
– current density 161
– effective tunneling area 168
– oscillation area 165
– oxide field 164
free electron gas see constric-

tion and bounday resistance, free
electron gas

free vibrations
– analytical solution 112
– average power 117
– equation of motion 112, 117
– numerical solution 117
– phase 114
– Q dependent resonance 115
– steady state 119
– steepest slope 117
frequency shift see Raman scat-

tering, frequency shift
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h
Hamaker constant see tip–

sample, Hamaker constant
hysterisis see tip–sample, hyster-

isis

i
image potential see metal–

insulator–metal tunneling, image
potential

indentation see tip–sample, in-
dentation

interaction see tip–sample, inter-
action

intraband optical transitions see
density of states, intraband opti-
cal transitions

inverted functions see tip–
sample, inverted functions

isolated point charge see electro-
statics, isolated point charge

k
Kelvin probe force microscopy
– capacitance derivatives 285
– harmonic expansion of tip–

sample force 289
– thermal noise limitations 291

l
large voltage approximation see

metal–insulator–metal tunneling,
large voltage approximation

Lennard–Jones see tip–sample,
Lennard–Jones

linear spring constant see can-
tilevers, linear spring constant

linewidth see Raman scattering,
linewidth

Lorenz number see constriction
and bounday resistance, Lorenz
number

m
magnetic field see near field op-

tics, magnetic field
Maxwell limit see constric-

tion and boundary resistance,
Maxwell limit

mean free path see constriction
and bounday resistance, mean
free path

mechanical bending see scan-
ning thermal conductivity mi-
croscopy, mechanical bending

metal–insulator–metal tunneling
– apparent barrier height 157
– barrier height with image poten-

tial 152
– barrier width 153
– comparison of barriers 154
– general solution 148
– image potential 150
– large voltage approximation

149
– small voltage approximation

148
– tunneling current density 148

n
nanocrystals see Raman scatter-

ing, nanocrystals
near field optics
– far-field solution 224
– intensity 237
– magnetic field 226
– near-field solution 229
– patterned apertures 238
– Poynting vector 227
– transformation 229
– vector potential 224
near field optics, electric field

224
near-field solution see near field

optics, near-field solution
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noncontact mode 122

o
oscillation area see Fowler–

Nordheim tunneling, oscillation
area

oxide field see Fowler–Nordheim
tunneling, oxide field

p
patterned apertures see near

field optics, patterned apertures
phase diagram see tapping

mode, phase diagram
phase shift see tapping mode,

phase shift
point charge and plane see elec-

trostatics, point charge and plane
point charge and sphere see

electrostatics, point charge and
sphere

potential and field see electrosta-
tics, potential and field

Poynting vector see near field
optics, Poynting vector

pull-out see tip–sample, pull-out
push-in see tip–sample, push-in

q
quantum consdirations see

coulomb blockade, quantum
considerations

quantum wells see density of
states, quantum wells

quantum wires see density of
states, quantum wires

r
Raman scattering
– frequency shift 295, 299, 301
– linewidth 295, 299, 301
– nanocrystals 298, 300
– spectra 296, 299, 300, 302

– temperature 300
ratio of �/σ see constriction and

bounday resistance, ratio of �/σ

rectangular see cantilevers, rec-
tangular

resonance frequencies see can-
tilevers, resonance frequencies

s
scanning thermal conductivity

microscopy
– downward thermal bending

277
– electrical and thermal circuits

267
– mechanical bending 271
– thermal bending 271, 272
– thermal resistance 268–270
– thermal response 267
– upward thermal bending 275
scanning tunneling spectroscopy
– data processing 175
– Feenstra’s parameter 173
– Fermi–Dirac statistics 172
– spectroscopy 174
– STS data file 175
Sharvin limit see constric-

tion and boundary resistance,
Sharvin limit

slope see cantilevers, slope
small voltage approximation see

metal–insulator–metal tunneling,
small voltage approximation

snap-in see tip–sample, snap-in
snap-out see tip–sample, snap-

out
spectra see Raman scattering,

spectra
sphere–plane see electrostatics,

sphere–plane
square see cantilevers, square
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steady state see tapping mode,
steady state

steepest slope see free vibrations,
steepest slope

t
tapping mode
– general solution 137
– indentation 136
– phase diagram 140
– phase shift 140
– steady state 139
– transient regime 138
thermal bending see scan-

ning thermal conductivity mi-
croscopy, thermal bending

thermal boundary resistance 256
thermal noise limitations see

Kelvin probe force microscopy,
thermal noise limitations

thermal resistance see scan-
ning thermal conductivity mi-
croscopy, thermal resistance

thermal response see scan-
ning thermal conductivity mi-
croscopy, thermal response

tip–sample
– contact force 81, 84–86
– contact pressure 88
– contact radius 81, 83, 85, 86
– force curve 95, 96
– Hamaker constant 107
– hysterisis 101

– indentation 81, 83, 84, 91
– interaction 97
– inverted functions 85
– Lennard–Jones 97
– pull-out 93
– push-in 91
– snap-in 102
– snap-out 102
triangular see cantilevers, trian-

gular
tunneling current density see

metal–insulator–metal tunneling,
tunneling current density

tunneling rates see coulomb
blockade, tunneling rates

twisting see cantilevers, twisting

u
upward thermal bending see

scanning thermal conductivity
microscopy, upward thermal
bending

v
V-shape see cantilevers, V-shape
vector potential see near field

optics, vector potential
vibrations see cantilevers, vibra-

tions

w
Wiedemann–Franz law see con-

striction and bounday resistance,
Wiedemann–Franz law


