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Preface

This text is meant to be a hands-on lab manual that can be used in class every
day to guide the exploration of linear algebra. Most lab exercises consist of two
separate sections, explanations of material with integrated exercises, and theo-
rems and problems.

The exercise sections integrate problems, technology, Mathematica R© visu-
alization, and Mathematica CDFs that allow students to discover the theory
and applications of linear algebra in a meaningful and memorable way.

The intention of the theorems and problems section is to integrate the the-
oretical aspects of linear algebra into the classroom. Instructors are encouraged
to have students discover the truth of each of the theorems and proofs, to help
their students move toward proving (or disproving) each statement, and to al-
low class time for students to present their results to their peers. If this course
is also serving as an introduction to proofs, we encourage the professor to in-
troduce proof techniques early on as the theorem and problems sections begin
in Lab 3.

There are a total of 81 theorems and problems introduced throughout the
labs. There are, of course, many more results, and users are encouraged to make
conjectures followed by proofs throughout the course.

In addition, each chapter contains a project set that consists of application-
driven projects that emphasize the material in the chapter. Some of these
projects are extended in follow-up chapters, and students should be encouraged
to use many of these projects as the basis for further undergraduate research.

ix
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Matrix Operations

Lab 0: An Introduction to Mathematica R©

Introduction

Mathematica is a computer algebra system. Mathematica only recognizes cer-
tain commands that are relative to this program. Therefore you must type the
commands as you see them. Mathematica is also case sensitive which means
that if you see uppercase you must type uppercase and if you see lowercase you
must type lowercase.

In order to process a command after typing it, hit the enter in the numer-
ical key pad on the far right of your keyboard or Shift+Enter. Mathematica
runs commands similar to other computing languages with a compiler called
the Kernel. If you close Mathematica and come back to your work later, the
Kernel does not remember your previous work, and thus any command that
you wish to use you will have to reevaluate.

At any point if you are having difficulties, use the Help menu; it is very
helpful.

For each lab, you will have to open a new Mathematica document and type
all solutions in this document. So let’s begin there.

Open a new Mathematica document. Put your cursor over your Mathemat-
ica document, you should notice that your cursor looks like a horizontal line
segment. This signifies that you are in an area where you can start a new cell.
If your cursor is vertical then you are currently in a cell that is already started.
A cell is a work area and within a cell the format is uniform. In addition, to
mathematics (which is called input and output in Mathematica) you can also
type text in Mathematica. However, you cannot mix text and input in the same
cell.

Start your first cell by typing Lab 0, then click\highlight on the cell block
on the far right of the cell. In the Tool bar choose Format, Style, Title.

1



2 Exploring Linear Algebra

Exercises:

a. Start a new cell (go below your title until you see a horizontal cursor and
then click) and put your name. Change this cell to a Subsection.

b. Start a new cell and make sure that your new cell is in Input format.

c. In your new cell, Type: x=6 and then evaluate the cell by hitting
Shift+Enter or the Enter on the Numeric Keypad.

d. Now Type: x=6; and evaluate. What is the difference between the output
in part c. and the output here? In each case Mathematica stores 6 in the
variable x.

e. Type: x+5 and evaluate the cell.

f. Type: Print[“x+5=”, x+5] and evaluate. Which x+5 in the print state-
ment actually produces the value 11?

Basic Programming in Mathematica

In this section, we will assume a basic understanding of programming. (Mathe-
matica is based on the programming language C.) We will discuss Tables, For
Loops, and If-Then Statements here. Again, the Help menu is very helpful in
this regard as well.

If you wish to create a Table of data which is related to some function, then
the Table function is appropriate. For example, if we wish to create a Table of
10 points with values {x,x2} where x is the integers from -1 to 9, we would type
Table[{i,i2},{i,− 1,9}]. In general type:

Table[{coordinates},{increment variable, start, end}]
If you wish to access or set a value in the ith position in a table,

Type: TableName[[i]]

The structure of a For Loop is:

For[start, test, body statements; incrementing statement]

All statements in the body of the For Loop must be separated by semicolons. To
type special characters such as ≤,≥, �= and others that will be needed through-
out the text use the Basic Math Assistant Palette. Palettes can be found on the
Tool Bar.
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Exercises:

a. Create a table named Table1 with entries equal to 4i, where i goes between
1 and 6.

b. Type and evaluate Table1[[5]] to determine the 5th entry of Table 1.

c. Type and evaluate the following code and determine what it does.
A = Table[0,{i,1,5},{j,1,5}];
For[i = 1,i ≤ 5,
A[[i,i]] = 1;
i = i+ 1];
Print[A]

The structure of the If-Then Statement in Mathematica is:

If[condition, t, f ]

This statement gives t if the condition is True and f if the condition is False.
It is possible to write an If statement as well as

If[condition, t].

When stating conditions in your If-Then statement you may have to test an
equality. Here we have to distinguish in Mathematica between == and =. When
you use the “=”, single equals, this is an assignment where you are assigning
a value. If you use the “==”, double equals, Mathematica interprets this as a
condition or test and returns True or False. A double equals should be used to
test equality in an if-then condition.

Exercises:

a. Type and evaluate the following code and determine what it does.
A = Table[0,{i,1,5},{j,1,5}];
For[j = 1,j ≤ 5,
For[i = 1,i ≤ 5,
A[[i,i]] = 1;
If [i < j,A[[i,j]] = 2];
i = i+ 1];
j = j + 1];
Print[A]

In the above code, we call the the pair of For Loops a Nested For Loop
because one is inside the other.

b. Write a nested for loop, with incremental variables i and j, which incorpo-
rates an if statement that creates a 5× 5 table, A, whose entries are 1 when
i = 1 or j = 1. All other entries of A should be zero.
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Lab 1: Matrix Basics and Operations

Introduction

A matrix is a rectangular array of numbers. The numbers in the array are called

the entries of the matrix. A =

(
1 2 3
4 5 6

)
is a matrix.

The general form is

⎛
⎜⎜⎜⎜⎜⎝

a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
a31 a32 a33 . . . a3n
...

...
. . .

. . .
...

an1 an2 an3 . . . ann

⎞
⎟⎟⎟⎟⎟⎠

.

Defining a Matrix in Mathematica

Example: To define the matrix A above, type A={{1,2,3},{4,5,6}}.

If at any point you want to see a matrix, such as matrix A, in matrix form
type MatrixForm[The Name of the Matrix] or right click on the cell, to
highlight it, and choose Convert To, Traditional Form. Another way to insert
a matrix is to use the tools and click on Insert, Table\Matrix, and then choose
the size of your matrix.

A = {{1, 2, 3}, {4, 5, 6}};
MatrixForm[A]

(
1 2 3
4 5 6

)

To find the dimensions of a matrix in Mathematica,

Type: Dimensions[The Name of the Matrix]

Exercises:

a. Define the matrix B =

⎛
⎝ 3 4

6 7
9 10

⎞
⎠ .

b. Find the dimensions of the matrices A and B.

c. Explain what the dimensions of a matrix are telling you about the matrix.
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Operations on Matrices

Adding Two Matrices

To add two matrices together, Type :
The Name of the Matrix1 + The Name of the Matrix2

Exercises:

a. Find the sum A + B. You should get an error, explain why you think an
error occurred.

b. Define matrix M =

(
4 5 1
−1 3 2

)
. Find A +M and M + A. Is addition

of matrices commutative?

c. Explain the process of matrix addition. What are the dimensions of the sum
matrix. How would you take the difference of two matrices?

Scalar Multiplication

To multiply a matrix by a constant c,

Type : c The Name of the Matrix

Exercise: Multiply matrix A by the scalar 4. Is multiplication of a scalar from
the left the same as multiplication of a scalar from the right? (i.e., does 4 A =
A 4?)

Multiplying Two Matrices

To multiply two matrices together, Type:
The Name of the Matrix1. The Name of the Matrix2

Be very careful here, A*B does not produce the correct matrix, you must
use . to symbolize multiplication.

Exercises:

a. Multiply matrix A on the right by matrix B.

b. Go to http://demonstrations.wolfram.com/MatrixMultiplication/ and try
some examples of matrix multiplication. Then describe the multiplication
process.

c. Multiply matrix A on the left by matrix B. Was your description of the
multiplication process correct? What are the dimensions of this matrix?

d. Multiply matrix A on the right by matrix M. You should get an error, explain
why an error occurred.
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e. Is matrix multiplication commutative? What has to be true about the dimen-
sions of two matrices in order to multiply them together?

The Transpose and Trace of a Matrix

The transpose of a matrix, A is denoted AT . To take the transpose of a matrix,

Type : Transpose[The Name of the Matrix]

Exercises:

a. Take the transpose of matrix A and describe the transpose operation.

b. What are the dimensions of the matrix AT ?

c. What is (AT )T ?

d. Calculate (A+M)T . Does this equal AT +MT ?

e. Calculate (AB)T . Does this equal ATBT ?

f. Calculate BTAT . What is this equal to?

g. Calculate (3A)T . What is this equal to?

h. In the above exercises, you explored properties of the transpose of a ma-
trix. Write down conjectures on the properties that you observed about the
transpose.

If the number of rows of a matrix is the same as the number of columns in
that matrix we call the matrix a square matrix. The trace of a square matrix
A, tr(A), is a mapping taking a square matrix to a real number. To take the
trace of a square matrix

Type: Tr[The Name of the Matrix]

Define matrix U =

⎛
⎝ 1 2 3

4 5 0
0 2 −1

⎞
⎠ and V =

⎛
⎝ 1 0 0

4 3 0
0 0 2

⎞
⎠ .

Exercises:

a. Calculate tr(U) and tr(V ) and describe the trace operation.

b. Calculate tr(U + V ). Does this equal tr(U) + tr(V )?

c. Calculate tr(UT ). Does this equal tr(U)?

d. Calculate tr(U.V ). Does this equal tr(U)tr(V )?

e. Calculate V.U and tr(V.U). Note that U.V �= V.U , but does tr(U.V ) =
tr(V.U)?
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Lab 2: A Matrix Representation of Linear Systems

Introduction

You may remember back to the time when you were first learning algebra and
your favorite math teacher challenged you to find a solution for x and y in a
system with 2 equations with 2 unknown variables, such as 2x + 5y = 7 and
4x+ 2y = 10. How did you do it?

My money is on solving for one variable in one equation, and substituting
into the other. Or maybe you multiplied the first equation by a constant and
subtracted the second from the first to solve, and then the story goes on. This
method is fine and actually how we too will do it except in terms of matrices.
The algorithm that we will use is called Gaussian Elimination (or Gauss Jordan
Elimination).

Exercise: How many solutions are there to a system with 2 equations and 2
unknowns (in general)? How would you visualize these solutions?

A linear system in variables x1, x2,...,xk is of the form

a11x1 + a12x2 + ...+ a1kxk = b1

a21x1 + a22x2 + ...+ a2kxk = b2

a31x1 + a32x2 + ...+ a3kxk = b3
...

...
. . .

. . .
...

am1x1 + am2x2 + ...+ amkxk = bm

and can be written as the matrix equation

⎛
⎜⎜⎜⎜⎜⎝

a11 a12 a13 . . . a1k
a21 a22 a23 . . . a2k
a31 a32 a33 . . . a3k
...

...
. . .

. . .
...

am1 am2 am3 . . . amk

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

x1

x2

x3

...
xk

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

b1
b2
b3
...
bm

⎞
⎟⎟⎟⎟⎟⎠

.

In the lab below, you will find all of the terms that you will need in order
to move forward with Gaussian Elimination (or Gauss Jordan Elimination).
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The Identity Matrix

The n × n identity matrix In =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

. . .
...

0 0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎠
. This matrix has 1’s

down the “main diagonal” and 0’s everywhere else. The command for the n×n
Identity Matrix is, IdentityMatrix[n].

Row Echelon Form of a Matrix

A matrix is in row echelon form if
1) The first non-zero entry in each row is a one, called a leading one
2) Rows of all zeros are at the bottom of the matrix
3) All entries below leading ones are zeros
4) If i < j, the leading one in row i is to the left of the leading one in row j.

In addition, the matrix is in reduced row echelon form if
5) each column with a leading one has only zeros everywhere else.

Exercises:

a. Use Mathematica to create a 4× 4 Identity Matrix.

b. Given the system 2x+5y = 7 and 4x+2y = 10, create a coefficient matrix,
A, using the coefficients of the variables.

c. Find the reduced row echelon form of A, type RowReduce[A].

So how do we think about getting A into row echelon (Gaussian Elimina-
tion) or reduced row echelon form (Gauss Jordan Elimination)? We perform
elementary row operations to the original matrix. And with every elementary
row operation there is a corresponding elementary matrix.

Elementary Row Operations and the Corresponding Elemen-
tary Matrices

There are only three possible elementary row operations.

1. Swap two rows in a matrix. If you swap two rows in a 2×2 matrix, start

with I2 =

(
1 0
0 1

)
and perform this operation to get elementary matrix

E1 =

(
0 1
1 0

)
.

2. Multiply a row by a nonzero scalar (constant), k1. If you multiply
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row two in a 2 × 2 matrix by k1 = − 1
8 , start with I2 =

(
1 0
0 1

)
and

perform this operation to get elementary matrix E2 =

(
1 0
0 − 1

8

)
.

3. Add a nonzero multiple k2 of a row to another row. If you add
a multiple k2 = −2 of row one to row two in a 2 × 2 matrix, start with

I2 =

(
1 0
0 1

)
and perform this operation to get elementary matrix E3 =(

1 0
−2 1

)
.

Exercises: Define A =

(
2 5
4 2

)
.

a. Calculate E1.A, how is your new matrix related to A?

b. Calculate E2.A, how is your new matrix related to A?

c. Calculate E3.A, how is your new matrix related to A?

d. Calculate E5.E4.E2.E3.A, where E4 =

(
1 −5
0 1

)
and E5 =

(
1
2 0
0 1

)
,

what is special about the matrix that you get?

e. Create a vector b with entries equal to the constants in the original system

(2x+ 5y = 7 and 4x+ 2y = 10), b =

(
7
10

)
and calculate E5.E4.E2.E3.b.

If your original system is Ax = b what is the new system after you perform
the above operations? Use this to solve the original system of equations.

f. Choose another b and write down the system of equations, what is the solu-
tion to this system?

g. Let M =

⎛
⎝ 1 2 0

0 0 3
0 1 0

⎞
⎠. Find elementary row operations and their corre-

sponding elementary matrices such that when M is multiplied on the left by
these matrices, the resulting matrix is I3.

h. Solve the system x+ 2y = 4, 3z = 6, y = 8.

i. Let M =

⎛
⎝ 1 2 0

0 1 3
0 2 6

⎞
⎠. What is the reduced row echelon form of M? Solve

the system x+ 2y = 4, y + 3z = 6, 2y + 6z = 18.

j. Solve the system x+ 2y = 4, y+ 3z = 6, 2y+ 6z = 12 and discuss how your
result could be related to the reduced row echelon form of M .
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Lab 3: Powers, Inverses, and Special Matrices

Introduction

A square matrix is a n× n matrix.

If A is a square matrix and if a matrix B of the same size can be found such that
AB = BA = I, then A is said to be invertible or nonsingular and B is called
the inverse of A. If no such matrix B can be found, then A is said to be singular .

Powers of Matrices

Define the matrix A =

⎛
⎝ 1 2 0

2 1 0
0 1 −2

⎞
⎠ , B =

⎛
⎝ 1 −1

9 3
0 4

⎞
⎠ ,

M =

⎛
⎝ 1 2 3

0 5 6
7 8 9

⎞
⎠ and P =

⎛
⎝ 1 4 0

2 5 0
3 6 0

⎞
⎠.

To determine the mth power of a matrix

Type: MatrixPower[The Name of the Matrix,m]

Exercises:

a. Calculate A2. Is this the same as squaring all the entries in A? What is
another way to express A2?

b. Calculate B2. An error occurred, determine why this error occurred. What
property has to hold true in order to take the power of a matrix?

c. Determine what matrix A0 is equal to.

d. Do the laws of exponents appear to hold for matrices? ArAs = A(r+s) and
(Ar)s = Ars? Check these by example.

Inverse of a Matrix

To determine the inverse of a matrix

Type: Inverse[The Name of the Matrix]

Exercises:

a. Find the inverse of A, A−1. What are the dimensions of A−1? What does
AA−1 equal? A−1A?
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b. Determine what matrix (A−1)−1 is equal to.

c. Calculate (AM)−1, (MA)−1, A−1M−1, M−1A−1. Which of these matrices
are equal?

d. Property : (AT )−1 = (A−1)T . Using the properties you have learned so far,
which of the following are equal : ((AM)T )−1, ((MA)T )−1, (A−1)T (M−1)T ,
(M−1)T (A−1)T ?

e. Find the inverse of P , P−1. Can you explain why an error occurs? Note
that the error is related to the matrix being singular.

Special Matrices

A square matrix, A, is symmetric if A = AT .

A square matrix, A, is diagonal, if Aij = 0 if i �= j.

A square matrix, A, is upper triangular if Aij = 0 when i > j and is lower
triangular if Aij = 0 when i < j.

Exercises:

a. Determine what type of matrices A + AT and M + MT are and make a
conjecture about a property related to your findings.

b. Define Q =

(
1 0
2 3

)
what type of matrix is QT ? What type of matrix is

Q−1?

c. Find Q2 and Q3, what type of matrix is Qk for any integer k?

Theorems and Problems

For each of these statements, either prove that the statement is true or find a
counter example that shows it is false.

Theorem 1. The inverse of an elementary matrix is an elementary matrix.
Theorem 2. If A is invertible then the reduced row echelon form of A is I.
Theorem 3. If the reduced row echelon form of A is I then A is invertible.
Theorem 4. A is a square invertible matrix if and only if A can be written as
the product of elementary matrices.
Problem 5. If A is invertible then Ak is invertible for any integer k.
Theorem 6. If A and B are matrices of the same size then A and B are in-
vertible if and only if AB is invertible.
Problem 7. If A is symmetric so is AT .
Problem 8. If A is a symmetric invertible matrix then A−1 is symmetric.
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Problem 9. If A and B are symmetric matrices of the same size then A + B
is symmetric.
Problem 10. If A and B are symmetric matrices of the same size then AB is
symmetric.
Problem 11. If A is a square matrix then A+AT is symmetric.
Problem 12. The sum of upper triangular matrices is upper triangular.
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Lab 4: Graph Theory and Adjacency Matrices

Basics of Graph Theory

A graph consists of vertices and edges. Each edge connects two vertices and we
say that these two vertices are adjacent . An edge and a vertex on that edge are
called incident . Given two vertices in a graph v1 and v2, the sequence of edges
that are traversed in order to go from vertex v1 to vertex v2 is called a path
between v1 and v2. Note that there is not necessarily an unique path between
vertices in a graph.

A graph can be represented by an adjacency matrix where the ijth entry of
the adjacency matrix represents the adjacency between vertex i and vertex j.
If vertex i and vertex j are adjacent then the ijth entry is 1, otherwise it is 0.

It is also important to note that there are directed graphs and undirected
graphs . A directed graph’s edges are represented by arrows, and the edges of a
directed graph can only be traversed in the direction that the arrow is pointing,
similar to a one way street. Here adjacency can also be recognized as being one
directional. In an undirected graph, an edge is represented by a line segment
and thus adjacency is symmetric.

v1

v2v3

v4

FIGURE 1.1

Exercises:

a. Using the graph in Figure 1.1, create the adjacency matrix, A.

b. What type of special matrix is A?

c. To create a graph in Mathematica using your adjacency matrix, type :

AdjacencyGraph[The Name of the Matrix].
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Create the graph affiliated with adjacency matrix A using this command.

d. How many 1-step paths are there between vertex 1 and vertex 4? How many
2-step paths are there between vertex 1 and vertex 4?

e. Calculate A2 and discuss how you can determine the number of 2-step paths
between vertex 1 and vertex 4 using A2.

f. The entries of the sum of what matrices would tell you how many paths of
3-steps or less go between vertex 1 and vertex 4?

An Application to Hospital Placements in Ghana

FIGURE 1.2: Map of Ghana

The country of Ghana has national hospitals located in three of its major
cities, Accra, Cape Coast, and Techinan. However many of its citizens from
rural villages and small cities can never make it to these city hospitals based
on road conditions and other infrastructure issues.

You are a member of the urban health and planning committee for Ghana
and would like to strategically place a 5th hospital in one of the cities of Dum-
bai, Damgo, Sunyani or Kumasi so that all of the villages in the graphical
representation of the map below can get to a national hospital without passing
through more than one additional city. Again the black cities are the cities for
a proposed hospital, gray have no hospital and there is no proposal to place one
there, and white represents a city with a national hospital.
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FIGURE 1.3: A graphical representation of the towns

Exercises:

a. Is it currently possible to accomplish the goal of all of the villages in the
map having access to a national hospital without passing through more than
one additional city? If not what is the maximum number of cities that would
have to be traversed in order for the entire population to get to a current
hospital? Justify your answer using your knowledge of adjacency matrices
and the graph in Figure 1.3.

b. What is the minimum number of additional hospital that can be placed in
a proposed city so that people in all of the villages and cities in the graph
representation of the map above can go to an adjacent city or through at most
one other city in order to reach a national hospital? Justify your answer with
alterations to your adjacency matrix.
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Lab 5: Permutations and Determinants

Permutations

Given a set of elements, S, a permutation is an ordering of the elements of S.
The demonstration

FIGURE 1.4

http://demonstrations.wolfram.com/PermutationNotations/ shows the permu-
tations as they relate to vertices on a graph. Use this demonstration to answer
the following questions.

Example: Setting the number length (number of vertices) to 2. There are two

notations used to represent the permutations:

(
1 2
2 1

)
and (12). Both of these

representations say that the element in the 1st position goes to the 2nd position

and the element in the 2nd position goes to position 1. Similarly,

(
1 2
1 2

)
and
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(1)(2) leave the elements in the 1st and 2nd positions.

Exercises:

a. Using the demonstration, write the permutations of 3 elements, how many
are there?

b. How many permutations of 4 elements do you think there are?

c. Using http://demonstrations.wolfram.com/SignedDeterminantTerms/

FIGURE 1.5

set the size to 2 and step through the terms (the determinant of a 2 × 2
is the sum of these terms), discuss how the terms shown here relate to
permutations of 2 elements.
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d. What do you think that the formula for a 3 × 3 determinant will look like?
Use your knowledge of permutations on 3 elements to argue your answer
and then check your argument with the SignedDeterminant demonstration.

e. Changing the numbers in

FIGURE 1.6

http://demonstrations.wolfram.com/33DeterminantsUsingDiagonals/
you can see a trick for doing determinants of 3× 3 matrices. Can you state
a quick and easy way for doing 2× 2 determinants?

Determinants

The determinant of a matrix A is denoted |A| or det(A). To calculate

Type: Det[The Name of the Matrix]
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Exercises: Define A =

⎛
⎝ 2 2 0

2 1 0
0 1 −2

⎞
⎠ , B =

(
2 4
4 8

)
,

M =

⎛
⎝ 1 2 3

0 5 6
7 8 9

⎞
⎠ , P =

(
1 4
2 5

)
, V =

⎛
⎝ 1 0 0

4 3 0
0 0 2

⎞
⎠ , and

W =

⎛
⎝ 5 0 0

0 4 0
0 0 −1

⎞
⎠.

a. In Lab 3, we explored the inverse of matrix A. Determine the determinant
of A and A−1 and discuss how they are related.

b. Determine the determinant of B and whether or not B invertible? What do
you conjecture about the determinant of matrices that are not invertible?

c. Find det(I2) and det(I3). Based on these two calculations, what can you
conjecture about the value of det(In).

d. Determine det(AT ) and discuss how this value is related to det(A).

e. Determine det(2A), det(2P ), det(3A), det(3P ) and discuss how they relate
to det(A) and det(P ).

f. We already discovered that matrix multiplication is not commutative, use
matrix A and M to decide if det(A.M) = det(M.A).

g. We know that matrix addition is commutative, use matrix A and M to
decide if det(A+M) = det(M +A).

h. Is det(A+M) = det(A) + det(M)?

i. Matrix V is a lower triangular matrix and matrix W is a diagonal ma-
trix(and thus also triangular), find the determinants of V and W and dis-
cuss how to find determinants of triangular matrices.

j. Calculate (tr(P ))2−tr(P 2)
2 and (tr(M))3−3tr(M2)tr(M)+2tr(M3)

6 and determine
how these quantities relate to det(P ) and det(M) respectively.

The quantities in part (j) are applications of the Cayley–Hamilton Theorem
applied to 2× 2 and 3× 3 matrices.

Determinants of Elementary Matrices as They Relate to In-
vertible Matrices

Exercises: Define E1 =

(
1
2 0
0 1

)
, E2 =

(
1 0
−4 1

)
, and

E3 =

⎛
⎝ 0 1 0

1 0 0
0 0 1

⎞
⎠.
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a. If E1 is an elementary matrix representing the operation of multiplying a
row by a non-zero scalar, k = 1

2 , find det(E1). Make a conjecture about how
this operation on a matrix effects the determinant of the matrix.

b. If E2 is an elementary matrix representing the operation of adding a multiple
of a row to another row, find det(E2). Make a conjecture about how this
operation on a matrix effects the determinant of the matrix.

c. If E3 is an elementary matrix representing the operation of switching two
rows in a matrix, find det(E3). Make a conjecture about how this operation
on a matrix effects the determinant of the matrix.

Theorems and Problems

For each of these statements, either prove that the statement is true or find a
counter example that shows it is false.

Thereom 13. If det(A) is not 0 then A is invertible.
Theorem 14. If A is invertible then det(A) is not 0.
Problem 15. If A and B are invertible matrices of the same size then A + B
is invertible.
Theorem 16. If A is a square matrix then det(A) = det(AT ).
Theorem 17. A and B are invertible matrices if and only if AB is invertible.
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Lab 6: 4× 4 Determinants and Beyond

In Lab 5, we discussed how to take the determinant of 2×2 and 3×3 matrices but
what if you have larger matrices for which you have to take the determinant?
One technique for finding determinants of larger matrices is called Cofactor
Expansion.

Let’s Use Cofactor Expansion to find the determinant ofA =

⎛
⎜⎜⎝

1 1 0 0
1 2 1 0
2 1 3 1
0 0 1 4

⎞
⎟⎟⎠ .

To Do (Cofactor expansion) :

1. First choose a row or column of your matrix to expand upon. Any row or
column will work but as you will see, choosing the row or column with the
most 0’s is the best choice.

2. Each entry in the matrix has a minor associated with it. The minor as-
sociated with entry i,j is the determinant of the matrix, Mij , that is
left when the ith row and jth column are eliminated. So for example,

M11 = det

⎛
⎝ 2 1 0

1 3 1
0 1 4

⎞
⎠.

3. The determinant of a n × n matrix, with ijth entry aij , when expanding
about row i is

∑n
j=1(−1)(i+j)aijMij and when expanding about column j

is
∑n

i=1(−1)(i+j)aijMij .

Exercises:

a. Calculate M41, M42, M43, and M44 of A.

b. Use your minors M41 through M44 to find the determinant of A.

c. Expand about column 1 to find the determinant of A.

d. Define B =

⎛
⎜⎜⎝

1 1 0 0
0 1 1 0
0 −1 3 1
0 0 1 4

⎞
⎟⎟⎠ and P =

⎛
⎜⎜⎝

1 1 0 0
0 1 1 0
0 0 1 4
0 0 0 −15

⎞
⎟⎟⎠. Use cofac-

tor expansion to find |B| and your knowledge of upper triangular matrices
from Lab 3 to find |P |.

e. Determine elementary matrices E1, E2 and E3 such that
E3.E2.E1.B = P .
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f. In Lab 5, you conjectured about how row operations affect determinant, use
that knowledge along with properties of determinants to find |B|.
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Project Set 1

Project 1: Lights Out

The 5× 5 Lights Out game is a 5× 5 grid of lights where all adjacent lights are
connected. Buttons are adjacent if they are directly touching vertically or hori-
zontally (not diagonally). In the Lights Out game, all buttons can be in one of
two states, on or off. Pressing any button changes the state of that button and
all adjacent buttons. The goal of this project is to create a matrix representa-
tion of the Lights Out game where all lights start on and need to be turned off.
A picture of the Lights Out game with buttons labeled can be found in Table 1.1.

TABLE 1.1
5x5 Lights Out Grid

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

a. Note that since in the Lights Out game a button changes its own state when
pressed, a button is adjacent to itself. Create the adjacency matrix, M , for
the 5× 5 game in Table 1.1.

b. A row vector is a 1 × n matrix and a column vector is a n × 1 matrix. If i
is the initial state vector, what would the column vector i look like? Recall
the goal is to determine if all lights can be turned off, starting with all lights
on. (Use 0 for off and 1 for on).

c. If f is the final state vector, determine f .

d. Write up your findings and supporting mathematical argument.

Project 2: Traveling Salesman Problem

Joe’s Pizzeria wishes to send a single driver out from its main store which will
make 4 deliveries and return to the store at the end of the route.

a. A weighted adjacency matrix is an adjacency matrix whose entries represent
the weights of the edges between two adjacent vertices. For example, the
weights in Figure 1.7 represent the time it takes to travel from one site,
vertex, to another site. Create a weighted adjacency matrix, A, with the
Joe’s Pizzeria as vertex 1. Aij should represents the time traveled by the
driver between site i and site j.
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FIGURE 1.7: Map of delivery sites and Joe’s Pizzeria denoted by a star

b. As mentioned before, the driver should start and end at the pizzeria while
stopping at each of the delivery sites. The time of one such path is A12 +
A23+A34+A45+A51. Calculate the time that the driver travels if it travels
on this path. This path is using the off diagonal of A.

c. Other paths can easily be explored by looking at permutations of the rows
of the matrix A. How many permutations are there?

d. The command Permutations[The Name of the Matrix] will create a
list of all matrices which are permutations of the rows of A. Permuta-
tions[A][[1]] should be A.

IfB=Permutations[A][[2]], use the off diagonal ofB to determine another
route that the driver can take and the time that the truck takes to traverse
this route.

e. Write a small for loop with the permutation command to find the path that
gives the quickest route. Write up your findings and supporting mathemat-
ical argument.

Project 3: Paths in Nim

http : // demonstrations.wolfram.com/CountingPathsThroughAGrid/
The demonstration above shows the number of paths (limited to a length of r)
between point A in row 1 and B in row r in the game of Nim with n rows. Your
problem is to determine a matrix representation to determine the number of
paths shown in this demonstration.

a. If you did not care how long the path is from point A to point B (that
is, the length is not limited by the number of rows, r), determine a matrix
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FIGURE 1.8: The Nim Board

representation to count the number of 2-step paths, 3-step paths, and k-step
paths. For simplicity allow n, the total number of rows in Nim, to be fixed
at 5.

b. Make a conjecture about the number of k-step paths between a point A in
row 1 and point B when B is position (row,column) = (r,c) when there are
5 rows and in general n rows in the Nim game.

c. Using what you found, create a representation limiting the length of the
path between A and B, as in the demonstration.

Project 4: Gaussian Elimination of a Square Matrix

Project 4 requires some programming in Mathematica. A small sample program
is provided below which retrieves a matrix, A, and divides the first row by a11.

A = Input[“Please input a square matrix”];
n = Dimensions[A][[1]];
temp = A[[1,1]];
For[j = 1,j <= n,A[[1,j]] = A[[1,j]]/temp; j = j + 1];
Print[MatrixForm[A]];

a. Create a program (assuming that rows need not be swapped for Gaussian
Elimination– that is assume no 0’s will show up on the main diagonal) to get
any square matrix A in row echelon form. Since we are only doing Gaussian
Elimination of square matrices here, you may want to include an if-then
statement that checks that the matrix is square.

b. Create a program where swaps are allowed to get any square matrix A in
row echelon form.
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c. Create a program where swaps are allowed to get any square matrix A in
reduced row echelon form.

Project 5: Sports Ranking

In the 2013 season, the Big Ten football games in Table 1.2 occurred with W
representing the winner. The question is how to rank these teams based on
these games. The dominance matrix, A, is a matrix of zeros and ones where
Ai,j = 1 if teams i and j played and team i won and Ai,j = 0 otherwise.

TABLE 1.2
2013 Big Ten Results

Michigan State W – Indiana Michigan State W – Purdue
Michigan State W – Illinois Michigan State W – Iowa
Indiana W – Penn State Penn State W – Michigan
Iowa W – Minnesota Iowa W – Northwestern
Michigan W – Minnesota Michigan W – Indiana
Minnesota W – Northwestern Minnesota W – Wisconsin
Minnesota W – Nebraska Nebraska W – Purdue
Nebraska W – Illinois Ohio State W– Wisconsin
Ohio State W – Penn State Ohio State W – Iowa
Ohio State W – Northwestern Wisconsin W – Illinois
Wisconsin W – Northwestern Wisconsin W – Purdue

a. Create the dominance matrix and determine all one step dominances for
each team and one and two step dominances for each team combined.

b. Rank-order the teams by number of victories and by dominance.

c. Consider the dominance rankings of Minnesota and Michigan State. How is
it possible that Minnesota has a higher dominance ranking than Michigan
State while Minnesota has fewer victories than Michigan State?

d. Given that many times in a league every team does not necessarily play every
other team, would ranking victories or dominance seem more reasonable for
national rankings? How might one incorporate the score of the game into
the dominance ranking as well?

Project 6: Archaeological Similarities, Applying Seriation

In archaeology, seriation is a relative dating method in which assemblages or
artifacts from numerous sites, in the same culture, are placed in chronological
order. Most data that is collected is binary in nature where if an artifact, or
record, possesses an identified trait, the artifact would be assigned a one for
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that trait and a zero otherwise.

In this project, there are 4 artifacts and 5 traits, Artifact A has Traits 1,2,
and 4. Artifact B has Traits 1,3,4 and 5, Artifact C has Traits 1, 2, 3, and 4,
and Artifact D has Traits 1,4 and 5.

a. Create a binary matrix, M , with rows representing artifacts and columns
representing traits that the artifacts may possess.

b. S = M.MT is called the similarity matrix. Find the similarity matrix and
describe what Si,i and Si,j where i �= j represent.

c. D = N − S where N is a matrix with all entries equal to n, where n is the
number of traits. D is called the dissimilarity matrix. Many researchers who
use seriation techniques attempt to find an ordering that minimizes some
cost function. One cost function of interest is the number of dissimilarities.
The dissimilarity between artifact i and artifact j isDi,j , so the dissimilarity
cost of an ordering of m artifacts 1,2,3, . . . ,m is D(1,2,3, . . . ,m) = D1,2 +
D2,3 +D3,4 + · · ·+Dm−1,m. Find the dissimilarity matrix using matrix M
and the dissimilarity cost for the ordering of artifacts {A,B,C,D}.

d. Find the dissimilarity cost for the ordering of artifacts {A,C,B,D}. How
many unique orderings of these artifacts are there? Explore these different
orderings and determine the ordering that minimizes the dissimilarity cost.

Project 7: Edge-Magic Graphs

A graph is called edge-magic if the edges can be labeled with positive integer
weights such that (i) different edges have distinct weights, and (ii) the sum of
the weights of edges incident to each vertex is the same; this sum is called the
magic constant.

FIGURE 1.9
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a. For the graph in Figure 1.9, create a system of linear equations that would
determine the edge weights if the magic constant is 8.

b. Use your system from part a. to determine a solution, edge weights, that
produce a magic constant of 8. Recall that all edge weights must be nonzero.

c. The graph in Figure 1.9 is called the complete graph with 6 vertices, denoted
K6. In a complete graph with n vertices, denoted Kn, each pair of vertices
is adjacent. Make a conjecture about edge-magic properties of Kn.
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Invertibility

Lab 7: Singular or Nonsingular?
Why Singularity Matters

Introduction

Many topics that we discuss throughout this course will relate to the invertibil-
ity of a matrix. In Lab 3, we investigated some basic properties of matrices that
were nonsingular, invertible, versus those that were singular, not invertible. In
this lab, we will further look at inverses of matrices, how to calculate inverses
and how to use them to solve systems of equations.

So far in the labs, you may have noticed that there are many topics that are
related. For example how many different things can you think of at this point
that are equivalent to saying that a square matrix, A, is invertible?

If A is an n× n matrix then the following are equivalent:

1. A is invertible.

2. |A| �= 0.

3. The reduced row echelon form of A is In.

Finding Inverses

As we saw, in Lab 3, Mathematica has built in functions for calculating inverses
of matrices but let’s look at how you would calculate an inverse.

If A is an n × n invertible matrix, to find the inverse, augment A with In,
(A|In), and perform elementary row operations, or left multiply A with elemen-
tary matrices, until the left hand side is In. At this point you have found the
inverse of A on the right hand side, (In|A−1).

Exercises:

a. Define B = (A|I3) where A =

⎛
⎝ 2 2 0

2 1 0
0 1 −2

⎞
⎠.

29
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b. Define E1 =

⎛
⎝

1
2 0 0
0 1 0
0 0 1

⎞
⎠ and calculate E1.B. What row operation does

E1 perform on B?

c. Continue to find elementary matrices, E2, . . . , Ek−1,Ek (these are not
unique) such that Ek.Ek−1. . . . E2.E1.B = (I|A−1). Another way to inter-
pret this is that Ek.Ek−1. . . . E2.E1.A = I.

d. Write A as a product of elementary matrices.

Using Inverses to Solve Systems of Linear Equations

In Lab 2, we used Gaussian Elimination (or Gauss Jordan Elimination) to solve
the system Ax = b. We can also use our knowledge that A−1A = AA−1 = I to
solve the system if A is invertible. Note x = A−1Ax = A−1b.

Thus if A is invertible the system Ax = b has exactly one solution x = A−1b.

Exercises:

a. Determine if A =

⎛
⎝ 1 2 0

0 1 3
1 2 6

⎞
⎠ is invertible and use A−1 to solve the

system Ax = b where b =

⎛
⎝ 7

10
0

⎞
⎠.

b. Using matrix A from part a. and A−1, solve the system Ax =

⎛
⎝ 0

0
0

⎞
⎠ .

Part b. represents a special type of linear system. If the constants in the
linear system are all 0 we call the linear system a homogeneous linear system.
Homogeneous systems always have at least one solution. What is it?

The name of this solution is called the trivial solution.

Theorems and Problems

For each of these statements, either prove that the statement is true or find a
counter example that shows it is false.

Problem 18. The inverse of a nonsingular upper triangular matrix is upper
triangular.
Problem 19. The inverse of a nonsingular diagonal matrix is diagonal.
Problem 20. |A−1| = 1

|A| .
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Theorem 21. A is invertible if and only if A can be written as a product of
elementary matrices.
Theorem 22. If A is an n × n invertible matrix then the system Ax = b has
exactly one solution for all n× 1 vectors b.
Theorem 23. If A is an n×n matrix and the system Ax = b is consistent (has
at least one solution) for all n× 1 vectors b then A is invertible.

Problem 24. If ad− bc �= 0 then

(
a b
c d

)−1

= 1
(ad−bc)

(
d −b
−c a

)
.

Theorem 25. A is an n×n invertible matrix if and only if the system Ax = 0
has only the trivial solution.

What can you add now to your list of statements that is equivalent to the state-
ment A is invertible?

If A is an n× n matrix the following are equivalent statements:

1. A is invertible.

2. |A| �= 0.

3. The reduced row echelon form of A is In.

4. A can be written as a product of elementary matrices.

5. The system Ax = b has exactly one solution for all n× 1 vectors b.

6. The system Ax = 0 has only the trivial solution.
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Lab 8: Mod It Out, Matrices with Entries in Zp

Integers Modulo p

All of the matrices that we have been dealing with thus far have entries that
are real numbers with addition and scalar multiplication defined as traditional
addition and scalar multiplication of the reals. But what if we only work with
integers and redefine addition and scalar multiplication?

If x and y are integers, we say that x and y are congruent modulo p, written
x ≡ y(modp), if x − y is an integer multiple of p, where p is an integer. For
example,

0 and 6 are congruent modulo 3, 0 ≡ 6(mod3) since 0-6 is an integer multiple
3,
12 and 7 are congruent modulo 5, 12 ≡ 7(mod5) since 12-7 is an integer multiple
5,
-1 and 6 are congruent modulo 7, −1 ≡ 6(mod7) since -1-6 is an integer multiple
7.

Exercises:

a. To calculate y(modp), type Mod[y,p]. Use this command to find 1 (mod3),2
(mod 3),3 (mod 3),and 4(mod 3).

b. What integer answers can occur when you do Mod 3? What about Mod 5?

c. The set of integers that can occur Mod 3 is called the Integers Mod 3 or Z3

and similarly those that can occur Mod 5 are called Integers Mod 5 (or Z5).
Write the elements of Z3 and Z5 in set notation.

Additive and Multiplicative Inverses in Zp

When dealing with real numbers we think of the additive identity as 0 since
for all real numbers x, x + 0 = x. We also denote the additive inverse as −x
where x+(−x) = 0. If 0 is the additive identity in modular arithmetic let’s find
additive inverses.

Example: In Z3, 1 + 2 ≡ 0(mod3) so 1 and 2 are additive inverses in Z3.

In the reals, the multiplicative inverse is 1 since x · 1 = 1 · x = x. We also
denote the multiplicative inverse of x as 1

x in the reals since x · 1
x = 1. 1 is

also the multiplicative identity in modular arithmetic so how do we think of
multiplicative inverses in Zp?
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Example: In Z3, 1 · 1 ≡ 1(mod3) and 2 · 2 ≡ 1(mod3) so 1 is its own multi-
plicative inverse and 2 is its own multiplicative inverse in Z3.

Note that if p is not prime, the elements of Zp may not have a multiplica-
tive inverse. For example, in Z6, 2 · 0 ≡ 0(mod6), 2 · 1 ≡ 2(mod6), 2 · 2 ≡
4(mod6), 2 · 3 ≡ 0(mod6), 2 · 4 ≡ 2(mod6), 2 · 5 ≡ 4(mod6) and thus 2 does not
have a multiplicative inverse in Z6.

Exercises:

a. Find the additive inverses of all elements of Z5.

b. Find the multiplicative inverses of all of the none zero elements of Z5.

Matrices with Entries in Zp

When adding two matrices, multiplying two matrices, multiplying a matrix by
a scalar, or finding the determinant of a matrix, do these calculations as if the
entries are in the reals and then convert the values to integers modulo p, where
p is an integer.

Examples:(
1 2
3 4

)
+

(
5 6
7 8

)
=

(
6 8
10 12

)
≡
(

0 2
1 0

)
(mod3).

(
1 2
3 4

)
·
(

5 6
7 8

)
=

(
19 22
43 50

)
≡
(

1 1
1 2

)
(mod3).

2

(
1 2
3 4

)
=

(
2 4
6 8

)
≡
(

2 1
0 2

)
(mod3).

det

(
1 2
3 4

)
= −2 ≡ 1(mod3).

Elementary row operations are the same on matrices with entries in integers
modulo p as they are with entries which are real. Keep the following points in
mind:

1. Use additive inverses modulo p when adding a multiple of a row to another
row to get zeros everywhere except where leading ones are located.

2. Use multiplicative inverses modulo p when trying to make a number the
leading one in a row.

3. When multiplying a row by a scalar the scalars that you should use are
those that are in Zp.

Example: Find A−1 =

(
1 2
1 1

)−1

. Since det

(
1 2
1 1

)
�≡ 0(mod3) we know

the matrix is invertible modulo 3.
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1. Augment the matrix (A|I2) =
(

1 2 1 0
1 1 0 1

)
.

2. Take 2×Row 1 + Row 2 =⇒
(

1 2 1 0
3 5 2 1

)
≡
(

1 2 1 0
0 2 2 1

)
(mod3).

3. 2×Row 2=⇒
(

1 2 1 0
0 4 4 2

)
≡
(

1 2 1 0
0 1 1 2

)
(mod3).

4. Row 2 + Row 1=⇒
(

1 3 2 2
0 1 1 2

)
≡
(

1 0 2 2
0 1 1 2

)
(mod3) and

A−1 =

(
2 2
1 2

)
.

Exercises: To find the inverse of a matrix modulo p,

Type Inverse[The Name of the Matrix,Modulus → p]

a. Is

(
1 2
1 1

)
invertible modulo 5? Is it invertible modulo 7?

b. Solve the system Ax = b, where A =

(
1 2
1 1

)
and b =

(
4
1

)
modulo 5.

Solve the same system modulo 7.
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Lab 9: It’s a Complex World

Introduction

In Lab 8, we explored invertibility using modular arithmetic. Here we will be
exploring the idea of matrices with entries which are complex numbers.

A complex number z = a+ bi has a real part a and complex part b multi-
plied by i where

√−1 = i. Use I in Mathematica. Every complex number has a
complex conjugate. The complex conjugate of z = a+ bi is z = a− bi.

Note that z · z = a2 + b2 is called the magnitude of z.

If a matrix has complex entries, A =

(
2 + 3i 7− 8i
5− i 2

)
, the complex con-

jugate of A is A =

(
2− 3i 7 + 8i
5 + i 2

)
.

Define A from above and B =

(
i 1
0 −i

)
.

Exercises: To calculate the conjugate transpose, the complex conjugate and
transpose, of a matrix,

Type ConjugateTranspose[The Name of the Matrix]

Use this command for the following exercises.

a. Calculate A
T
.

b. What matrix is A equal to?

c. Does A+B = A+B?

d. Does AB = A.B?

Eigenvalues

For each n× n matrix A, we can calculate the eigenvalues of A by finding the
values for λ such that Ax = λx. The λ′s are the eigenvalues for A and each
eigenvalue has a corresponding eigenvector x.

Another way to find the eigenvalues is to solve for λ in the characteristic
equation |A− λI| = 0.

Exercises: To calculate the eigenvalues of a matrix,

Type Eigenvalues[The Name of the Matrix]
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a. Find the eigenvalues of

(
2 0
0 3

)
. Use your result to make a conjecture

about the values of eigenvalues of any diagonal matrix in general.

b. Make a conjecture about the values of eigenvalues of singular matrices. If
you are unsure, try some examples.

c. Calculate the eigenvalues of A =

(
1 4
2 3

)
and the eigenvalues of AT .

What is the relationship between the eigenvalues of these two matrices?

d. Calculate the eigenvalues of A =

(
1 −i
2i i

)
and the eigenvalues of A

T
.

What is the relationship between the eigenvalues of these two matrices? Ex-
plain why you saw similar properties in this question and part c.

e. A square matrix A is called Hermitian if A
T

= A. Give an example of a
Hermitian matrix with complex entries.

f. Using your example from e., what can you conjecture about the eigenvalues
of Hermitian matrices?

g. A square matrix A is called Unitary if A
T
A = AA

T
= I. Give an example

of a unitary matrix with complex entries.

h. Using your example for g., what can you conjecture about the eigenvalues of
unitary matrices? If you are uncertain try a few more examples.

Theorems and Problems

For each of these statements, either prove that the statement is true or find a
counter example that shows it is false.

Problem 26. |A| = |A|.
Problem 27. If A is invertible,then (A)−1 = A−1.
Problem 28. If c is a complex number, then cA = cA.
Problem 29. The eigenvalues of a diagonal matrix are the entries on the main
diagonal.
Theorem 30. All eigenvalues of Hermitian matrices are real numbers.
Theorem 31. The complex conjugate of a Hermitian matrix is a Hermitian
matrix.
Theorem 32. A is Unitary if and only if A−1 = A

T
.
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Lab 10: Declaring Independence: Is It Linear?

Linear Combinations

If S = {v1,v2, . . . ,vm} is a set of vectors and there exists scalars k1,k2, . . . ,km
such that vector w = k1v1 + k2v2 + · · ·+ kmvm, we say that w can be written
as a linear combination of v1,v2, . . . ,vm.

If vi is in Rn, we can think of the above definition of linear combination as⎛
⎜⎜⎜⎝

w1

w2

...
wm

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

v11 v21 v31 . . . vm1

v12 v22 v32 . . . vm2

...
...

. . .
. . .

...
v1m v2m v3m . . . vmm

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

k1
k2
...
km

⎞
⎟⎟⎟⎠ where wi is the ith

entry of vector w and vij is the jth entry of vi.

So determining if w can be written as a linear combination of v1,v2, . . . ,vm is
equivalent to determining if there is a solution to the system Ax = w, where x
is the vector of values ki and the ith column of A is the vector vi. If no solution
exists then w cannot be written as a linear combination of v1,v2, . . . ,vm.

Exercises:

a. Can the vector w = (1,2,3) be written as a linear combination of v1 =
(1,0,0), v2 = (0,1,0), and v3 = (0,1,0)?

b. Can the vector w = (1,2,3) be written as a linear combination of v1 =
(1,1,2), v2 = (5,6,0), and v3 = (9,10,− 2)?

Linear Independence

If S = {v1,v2, . . . ,vm} is a set of vectors, we say that S is linearly independent
if the homogeneous system 0 = k1v1 + k2v2 + · · · + kmvm has only the trivial
solution. Otherwise we say that the set is linearly dependent.

Exercises:

a. Give an example of a set of vectors in R2 that is linear dependent.

b. To visualize the set of vectors {{1,1,1},{1,2,3},{2,4,5}} in R3 type the follow-
ing command. Once you evaluate this command, you can grab the diagram
to rotate your view. Type
Graphics3D[{{Blue,Arrow[Line[{{0,0,0},{1,1,1}}]]},{Red,Arrow[Line[
{{0,0,0},{1,2,3}}]]},{Green,Arrow[Line[{{0,0,0},{2,4,5}}]]},{Yellow,
Opacity[.4],Polygon[{{0,0,0},{2,2,2},{2,4,6},{0,0,0}}]}},AspectRatio→ 1]
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FIGURE 2.1

Is the set of vectors in Figure 2.1 linearly independent or linearly dependent?
How would we visualize three linearly dependent vectors in R3?

c. Is the set of functions {1, sin2(x), cos2(x)} linearly independent? Explain
your answer.

d. How can we use techniques similar to those used to determine if a set in
Rn is linearly independent to determine if a set in M2,2, the set of 2 × 2
matrices, is linearly independent?

e. Determine if the set {
(

1 −1
2 0

)
,

(
1 0
0 2

)
,

(
2 0
0 1

)
,

(
2 −1
0 1

)
} is

linearly independent.

Span

A set of vectors, S, is said to span V if every vector in V can be written as a
linear combination of vectors in S. For example, every vector in R2 looks like
an ordered pair (a,b) and can written as a linear combination of the vectors in
the set {(1,0),(0,1)}. (a,b) = a(1,0) + b(0,1).
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Exercises:

a. Graphically represent the span of the vector (1,2).

b. Graphically represent the span of the set of vectors {(1,2),(4,5)}.
c. If you create a matrix with the vectors of a set as the rows (or columns) of

your matrix, how would you determine if the vectors span R2?

d. Does {(1,2),(4,5)} span R2? If so we say span({(1,2),(4,5)}) = R2.

e. Does span({(1,2),(4,5)}) = span({(2,3),(4,5)})? How would you determine
if these spans are equal?

f. Does {
(

1 −1
2 0

)
,

(
1 0
0 2

)
,

(
2 0
0 1

)
,

(
2 −1
0 1

)
} span M2,2?

Theorems and Problems

For each of these statements, either prove that the statement is true or find a
counter example that shows it is false.

Theorem 33. If A is invertible then the rows of A are linearly independent.
Theorem 34. If A is invertible then the columns of A are linearly independent.
Problem 35. A set of vectors with only two vectors in it is linearly dependent
if one is a scalar multiple of the other.
Problem 36. A set of vectors is linear dependent if it contains the zero vector.
Theorem 37. If A is an n× n invertible then the rows of A span Rn.
Theorem 38. If A is an n× n invertible then the columns of A span Rn.
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Project Set 2

Project 1: Lights Out

The 5× 5 Lights Out game was introduced in Project Set 1 where you created
the adjacency matrix, initial state vector, and final state vector. Recall that the
goal of this game is, if all lights start on, to turn all lights off. We will move
toward finding a solution to this problem.

TABLE 2.1
5x5 Lights Out Grid

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

a. It does not matter what order buttons are pushed, so imagine that all of
the buttons you are going to push will be pushed all at once. A push vector
p can be created, where 0 represents a button which is not pushed and 1
a button which is pushed. Create a push vector where buttons 1,8, and 25
are pushed and all others are not.

b. With M as the adjacency matrix, what does M.p represent in general?
Calculate M.p using the vector p from part a. Is this push vector a solution
to the 5× 5 Lights Out game?

c. The goal is to find a solution (i.e. a push vector) such that M.p + i = f
with the initial state vector, i, and final state vector, f , that you defined in
Project Set 1. Do you think that the game has a solution and if so, what is
it?

d. Now assume that the buttons in the 5×5 Lights Out game can take on three
states, 0,1, and 2, and the goal of the game is to go from an initial state of
all lights in state 0 and end with all lights in state 1. How will your process
in finding a solution change with this new version of the game? Does this
game have a solution and if so what is it?

e. Write up your findings and supporting mathematical argument.

Project 2: Hill Ciphers

A cipher is a coding system. In this project we introduce a basic cipher called
Hill Ciphering. In Hill Ciphering, each letter is represented by a number. We
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will also add into the coding some punctuation, see below.

A B C D E F G H I J K L M N O P Q
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R S T U V W X Y Z . ?
17 18 19 20 21 22 23 24 25 26 27 28

Enciphering : To encipher a message, choose a 2×2 matrix which is invertible
modulo 29, called your encryption matrix. You then must separate your mes-
sage into 2× 1 vectors which will then be multiplied by your encryption matrix
modulo 29. If your code has an odd number of letters then repeat the last letter.

Deciphering: In order to decipher a code, you need to be given a 2 × 2 de-
cryption matrix. This is the matrix that the code was enciphered with modulo
29. Thus in order to decipher the code you will have to separate the message
into 2 × 1 vectors which will then be multiplied by the inverse of the decryp-
tion matrix modulo 29. To see examples of encryption and decryption see the
following demonstration.

http://demonstrations.wolfram.com/HillCipherEncryptionAndDecryption/

FIGURE 2.2



42 Exploring Linear Algebra

a. Create a 2×2 matrix which is invertible modulo 29 and a message that you
would like to encipher.

b. Encipher your message from part a.

c. Use the decryption matrix

(
1 4
13 6

)
to decipher the code MLS?AJGN.LHP

d. Write up your findings and supporting mathematical argument.

Project 3: Leontief Closed Production Model

In a Closed Economy Leontief Model, each industry has a production level pi,
and each industry i has a consumption level for product j, cij . If the economy
is balanced, the total production of each industry must be equal to its total
consumption and thus producing a linear system of equations.

c11p1 + c12p2 + ...+ c1kpk = p1

c21p1 + c22p2 + ...+ c2kpk = p2

c31p1 + c32p2 + ...+ c3kpk = p3
...

...
. . .

. . .
...

cm1p1 + cm2p2 + ...+ cmkpk = pm.

Thus the goal is to find the amount of production that maintains the econ-
omy, solving for p in Cp = p. One can think of this also as finding the eigenvector
associated with eigenvalue 1; more explanation on this to come in later labs.
The matrix C is called the consumption or input-output matrix.

The Problem: According to the United Nations International Merchandise
Trade Statistics, each of the following countries, China, India, and Singapore,
provides large amounts of exports to the others. Table 2.2 shows the units of
trade between countries that we will use for this problem.

TABLE 2.2
Trade between China, India, and Singapore

Consumption Country China India Singapore
China 0.46 0.2 0.58
India 0.36 0.7 0.13

Singapore 0.18 0.1 0.29

Assuming a closed economy between these three countries, what ratio of
commodities should each country produce in order to keep the economy stable?
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Project 4: Modeling Influenza

At Malady College, a college campus of 5000 students, the spread of influenza
is rampant. In this problem, we will call each student either susceptible or in-
fected with influenza, and if the student is not infected they are susceptible.
During any given year, the percentage of the U.S. population that will get the
flu, on average, each year is between 5% and 20%. At Malady, if a student is
not infected with influenza the chance that they will catch the flu on any given
day is 16%, and if a student has the flu the chance that they will recover and
return to susceptible on any given day is 40%.

a. Create a matrix, A, (called the transition matrix ) whose columns represent
the current state a student, either susceptible or infected, may be in and
whose rows represent the state of a student, either susceptible or infected,
tomorrow, and where Aij is the probability of a student going from current
state j today to state i tomorrow.

b. If 100 students have the flu initially, how many students have the flu on the
second day? How many students have the flu on the tenth day?

c. How many days does it take for the number of students with the flu to
stabilize?

d. How many students have the flu initially if there are 1400 students with the
flu on the third day?

Project 5: Diagonalization of a Square Matrix

An n × n matrix A is diagonalizable if there exists matrix P such that D =
P−1AP , and D is a diagonal matrix. In addition, matrix A is diagonalizable if it
has n linearly independent eigenvectors. The n linear independent eigenvectors
are the n columns of P . Create a program that determines if any square matrix
A is diagonalizable and diagonalizes A if it is diagonalizable.

Project 6: Balancing Chemical Equations

In a chemical equation for a reaction, the substances reacting (the reactants) are
on the left side of the equation with an arrow pointing to the substances being
formed on the right side of the equation (the products). The law of conservation
of mass states that no atoms can be created or destroyed in a chemical reaction,
so the number of atoms that are present in the reactants in a chemical reaction
has to balance the number of atoms that are present in the products of that reac-
tion. Thus, in order to write a correct chemical equation, we must balance all of
the atoms on the left side of the reaction with the atoms on the right side. Each
of the reactants and products has a vector affiliated with it, where the number
of atoms of each element present are the entries of the individual vectors. For
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example in the unbalanced equation x1N2 + x2H2 −→ x3NH3, we wish to find
x1, x2, and x3 that balance the equation. We define each reactant\product in
terms of a vector representing the numbers of atoms of each element in the
compound.

x1

(
1
0

)
+ x2

(
0
2

)
= x3

(
1
3

)
.

There are two ways to solve this system

1. This is equivalent to solving the system Cx = 0 where C is the coefficient

matrix

(
1 0 −1
0 2 −3

)
. Here since C is not square it is not invertible but we

can choose x3 = t and then x2 = 3
2 t and x1 = t and letting x3 = 2 to get

balanced equation is 2N2 + 3H3 −→ 2NH3.

2. Define coefficient matrix C =

(
1 0
0 2

)
and b =

(
1
3

)
then

(
x1

x2

)
=

det(C)C−1b =

(
2
3

)
and x3 = det(C) = 2.

Now it is your turn to try it.

a. Balance equation FeCl2 + Na3(PO4) −→ Fe3(PO4)2 + NaCl by solving
the system Cx = 0 where C is the coefficient matrix.

b. Balance the x1Cu2S+x2O2 −→ x3Cu+x4SO2 by creating a 3×3 coefficient

matrix C and solve the system Cx = b with

⎛
⎝ x1

x2

x3

⎞
⎠ = det(C)C−1b and

x4 = det(C).

Project 7: Magic Squares

A magic square is an arrangement of positive integers in a square grid, where
the numbers in each row, in each column, and the numbers in the main diag-
onals, all add up to the same number. This sum is called the magic constant.
An n×n magic square is called normal if it contains the number 1 through n2.
n× n magic squares can be written as linear combinations of the permutation
matrices of In.

The magic square in Table 2.3 is normal and has a magic constant of 15.

a. Find all of the permutation matrices of I3

b. Are the permutation matrices that you found in part a. linearly indepen-
dent?
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TABLE 2.3
Magic Square

2 7 6
9 5 1
4 3 8

c. Defining the constant in front of the permutation matrix

p6 =

⎛
⎝ 0 0 1

0 1 0
1 0 0

⎞
⎠ to be 3, determine a linear combination of the permu-

tation matrices in part a. that generate the magic square in Figure 2.3.

d. Using your linear combination from part c, and only altering the scalar
multiple of p6, write a small for loop to determine other magic squares,
which are not necessarily normal.
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Vector Spaces

Lab 11: Vector Spaces and Subspaces

Introduction

Let V be a nonempty set of objects on which two operations are defined: addi-
tion and scalar multiplication. If the following properties hold for all u, v, and
w in V and all scalars k and l, then V is a vector space.

1. (Closure under addition) If u and v are in V then u+ v is in V .

2. (Closure under scalar multiplication) If u is in V then ku is in V .

3. (Commutativity) u+ v = v + u.

4. (Associativity) u+ (v + w) = (u+ v) + w.

5. (Additive identity) An additive identity, usually represented by 0, exists and
is in V .

6. (Additive inverse) If u is in V then −u is in V .

7. k(u+ v) = ku+ kv.

8. (k + l)u = ku+ lv.

9. k(lu) = (kl)u.

10. 1u = u.

Exercises: Let V = R2 and u = (u1,u2), v = (v1,v2) in V . Define addition as
u+ v = (u1 + v1,v2) and scalar multiplication as ku = (ku1,ku2).

a. If u = (1,1) and v = (1,2). Find u+ v. Is u+ v in V ?

b. If the additive identity is the vector, v, in R2 such that u+ v = u, for all u
in R2, under the defined addition, is there a additive identity?

c. Is V a vector space under the defined addition and scalar multiplication?

47
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Let V = M2,2 where M2,2 is all 2 × 2 matrices. If u =

(
u1 u2

u3 u4

)
and

v =

(
v1 v2
v3 v4

)
. Define addition as u+ v =

(
u1 + v1 u2 + v2
u3 + v3 u4 + v4

)
and scalar

multiplication as ku =

(
ku1 0
0 ku3

)
.

d. If u =

(
1 2
3 4

)
and k = 4. Find ku. Is ku in V ?

e. What is the additive identity in V ?

f. Calculate 1u under the defined scalar multiplication.

g. Is V a vector space under the defined addition and scalar multiplication?

h. Give an example of a set and a defined addition and scalar multiplication
that is a vector space.

i. Give an example of a set and a defined addition and scalar multiplication
that violates closure under scalar multiplication.

Subspaces

If W is a nonempty subset of a vector space V , then W is a subspace of V if
under the operations of V

1. W is closed under addition and

2. W is closed under scalar multiplication.

Exercises:

a. Give an example of a subspace of M2,2 under matrix multiplication and
scalar multiplication.

b. Find the general solution of the homogeneous system Ax = 0 where A =(
1 2
2 4

)
. Is the set of solutions (called the solution set) to this system a

subspace of R2 under addition and scalar multiplication of vectors?

c. Let u1 = 1, u2 = cos(x), and u3 = sin(x) be three vectors in the vector space
V defined as the set of continuous functions. Is 4u1+5u2 in V ? Determine
if the set of linear combinations of u1, u2, and u3 is a subspace of V .
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Theorems and Problems

For each of these statements, either prove that the statement is true or find a
counter example that shows it is false.

Problem 39. If V is the set of 2 × 2 invertible matrices then V is a vector
space under matrix addition and scalar multiplication of matrices.
Problem 40. The set of 2× 2 symmetric matrices under matrix addition and
scalar multiplication of matrices is a vector space.
Problem 41. If V is a vector space with u1 and u2 vectors in V then a1u1 +
a2u2 + b1u+ b2u2 = (a1 + b1)u1 + (a2 + b2)u2 for any scalars a1, a2, b1, and b2
are scalars.
Problem 42. If A is a n × n matrix, then the solution set to Ax = 0 is a
subspace of Rn.
Problem 43. If A is a n× n matrix, then the set of linear combinations of the
rows of A is a subspace of Rn.
Thereom 44. If S = {v1,v2,..., vn} is a set of vectors in vector space V , then
the set of all linear combinations of vectors in S is a subspace of V .
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Lab 12: Basing It All on Just a Few Vectors

Introduction

Recall that a set S spans a vector space V if every vector in V can be written
as a linear combination of vectors in S. A set S is a basis for a vector space V
if 1) S spans V and 2) S is linearly independent.

The dimension of a vector space V , dim(V ), is the number of vectors in
a basis. If a basis for a vector space, V , consists of only the 0 vector then
dim(V ) = 0. If the number of basis vectors for a vector space is finite we call
the vector space finite dimensional , otherwise we call the vector space infinite
dimensional .

Note that a basis for a vector space is not unique; however two different
bases for the same vector space will contain the same number of vectors. In ad-
dition, if two vector spaces have the same basis then they are the same vector
space.

Exercises: Let V = R3.

a. Give an example of a set of vectors in R3 that spans V but is not linearly
independent.

b. Give an example of a set of vectors in R3 that is linearly independent but
that does not span V .

c. One basis for R3 is S = {(1,0,0),(0,1,0),(0,0,1)}, give another example of a
basis for R3.

d. What is the dimension of Rn?

Nullspace

In Lab 11, we found that the general solution, solution set, of the homogeneous

system Ax = 0 where A =

(
1 2
2 4

)
, is a subspace of R2. The solution set to

Ax = 0 is called the Nullspace of A. To find a basis for the nullspace of a matrix

Type: NullSpace[The Name of the Matrix]

The dimension of the nullspace of a matrix A is called the nullity of A.
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Exercises: Define A =

(
1 2
2 4

)
, B =

⎛
⎝ 1 2 3

4 5 6
0 1 2

⎞
⎠, and

M =

⎛
⎝ 1 0 5 0

0 1 3 −1
−2 0 1 4

⎞
⎠.

a. Find a basis for the nullspace of A and the nullity of A.

b. Find a basis for the nullspace of B and the nullity of B.

c. From parts a. and b. make a conjecture about the nullspace and nullity of
invertible matrices.

d. Compare the nullity of A with the nullity of AT and the nullity of B with
the nullity of BT .

e. Note that matrix M is not square but we can still find a basis for the
nullspace of M , so find a basis for the nullspace of M and the nullity of
M .

Rowspace and Columnspace

The rowspace of A is the set of vectors that can be written as linear combina-
tions of the rows of A. The dimension of the rowspace of A is the rank of A,
rank(A). Similarly the columnspace of A is the set of vectors that can be written
as linear combinations of the columns of A. The dimension of the columnspace
of A is also the rank(A).

The vectors of a basis for the rowspace of A are the nonzero rows of A in
reduced row echelon form. Unlike the rows of A, the columns of A are affected
by row operations. So to find the vectors of a basis for the columnspace of A,
put A in reduced row echelon form and then identify the columns with the
leading ones. The corresponding columns in the original A will create a basis
for the columnspace of A.

Exercises: Using matrices A,B, and M from above

a. Find a basis for the rowspace of A and rank(A).

b. Determine rank(A) + nullity(A).

c. Determine if the basis for the rowspace of A from part a. spans R2.

d. If a n × n matrix is invertible make a conjecture about the relationship
between the rowspace of the matrix and Rn.

e. Would a similar result to that in d. hold for the columnspace of a n × n
invertible matrix? If you are unsure try finding the columnspace of A.
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e. Find a basis for the rowspace and columnspace of M .

f. Determine rank(M) + nullity(M).

g. Make a conjecture about the sum of the rank and nullity of a square matrix.
What is the sum of the rank and nullity of a matrix in general?

Theorems and Problems

For each of these statements, either prove that the statement is true or find a
counter example that shows it is false.

Theorem 45. A is invertible if and only if the nullspace of A = �0 and
Nullity(A) = 0.
Theorem 46. An n × n matrix A is invertible if and only if the rowspace of
A = Rn and rank(A) = n.
Problem 47. If A is a m× n matrix then rank(A) + nullity(A) = m.
Problem 48. rank(A) = rank(AT ).

Now how many different statements can you think of that are equivalent to
saying that a square matrix, A, is invertible?

If A is an n× n matrix the following are equivalent statements:

1. A is invertible.

2. |A| �= 0.

3. The reduced row echelon form of A is In.

4. A can be written as a product of elementary matrices.

5. The system Ax = b has exactly one solution for all n× 1 vectors b.

6. The system Ax = 0 has only the trivial solution.

7. The nullspace of A = �0 and Nullity(A) = 0.

8. The rowspace of A = Rn, the columnspace of A = Rn, and rank(A) = n.
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Lab 13: Linear Transformations

Introduction

A transformation T : V −→ W is a mapping between vector spaces V and W .
The transformation is a linear transformation if and only if
T (�0) = �0, T (v1 + v2) = T (v1) + T (v2) for all vectors v1 and v2 in V , and
T (kv) = kT (v) for all v in V and scalar k.

We will be working with transformations of the form T (x) = Ax. We call
the matrix A the standard matrix .

Basic Linear Transformations and
Standard Matrices

Exercises:

a. Change the values of a and\or d in
http://demonstrations.wolfram.com/ChangeTheDogMatrixTransformations/
to reflect the dog over the x axis, y axis, and then the origin. What are the
standard matrices for each of these three transformations?

FIGURE 3.1

b. Change the values of a and d, leaving b = c = 0, in the demonstration to
stretch the dog in both the x and y direction. A dilation is when the dog is
stretched and a contraction is when the dog is shrunk. What values of a and
d relate to a dilation of the dog?
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c. What would the standard matrix look like if you wanted to reflect the dog
over the line y = x?

d. A projection onto an axis or a line is done by dropping a perpendicular line
segment from each point on the image to the line that you are projecting
onto. What should the dog look like if you project onto the xaxis? What
about if you project onto the yaxis? Use the demonstration to determine
what standard matrices produce these images.

e. Use http://demonstrations.wolfram.com/2DRotationUsingMatrices/ to de-
termine the standard matrix affiliated with rotating counterclockwise 45 de-
grees.

FIGURE 3.2

f. The standard matrix affiliated with composition of transformations TA ◦
TB(x) is A.B. Calculate the standard matrix affiliated with the following se-
quence of transformations 1) Reflect over y=x, 2) Rotating counterclockwise
45 degrees, and 3)dilating (scaling factor) by a factor of 3/2. Then use
http://demonstrations.wolfram.com/LinearTransformationsAndBasicComputerGraphics/

to visualize the composition. Note that you can change the position of the
original graphic to see what happens under different initial conditions. Also
note that the order that transformations are performed matters.

One to One Transformations

A transformation is one to one if T (v1) = T (v2) implies v1 = v2.

Exercise: Think about the transformations that you explored above, rotation,
reflection, projection, dilation, and contraction, which transformations are one
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FIGURE 3.3

to one? How is the determinant of the standard matrix related to whether the
transformation is one to one?

Transformations from Rn → Rm

So far we have only seen a few special transformations from R2 → R2. We can
also explore other transformations.

The kernel of transformation T is the set of vectors that T maps to �0. That
is x is in the kernel of T if T (x) = �0. The dimension of the kernel is called the
nullity of T, nullity(T ).

If T : V → W then the range of transformation T is the set of vectors y
in W such that T (x) = y for some x in V . The dimension of the range of T is
called the rank of T, rank(T ).

Exercises:

a. Define the transformation T : R2 → R2 as T (x1, x2) = (x1 − x2, 2x1 + x2).
Find a basis for kernel of T , nullity(T ), a basis for the range of T and
rank(T ).

b. Define the transformation TA : R3 → R3 as
TA(x1,x2,x3) = (x1+x2, 2x2, x1−x3). What is the standard matrix affiliated
with TA? Is TA a one to one transformation?

c. Describe the relationship between kernel of TA and the nullspace of A and
between range of TA and the rowspace of A from part b.
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Theorems and Problems

For each of these statements, either prove that the statement is true or find a
counter example that shows it is false.

In all of the following statements, TA : Rn → Rn is defined by multiplication
by the n× n standard matrix A.

Theorem 49. TA is one to one if and only if A is invertible.
Theorem 50. If A is an invertible matrix then the kernel of TA = Rn.
Theorem 51. If A is an invertible matrix then nullity(TA) = �0.
Problem 52. If T1 : Rn → Rm and T2 : Rm → Rp are two linear transforma-
tions then T2 ◦ T1 is a linear transformation.
Problem 53. T1(x1,x2) = (x1 + k1,x2 + k2) is a linear transformation where
k1 and k2 are nonzero scalars. (This transformation represents translation.)
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Lab 14: Eigenvalues and Eigenspaces

Introduction

Recall that given a square matrix A we can calculate the eigenvalues of A by
finding the values for λ such that Ax = λx. The λ’s are the eigenvalues for A
and each eigenvalue has a corresponding eigenvector x.

Given λ, its corresponding eigenvector, x, can be found by solving for x in
Ax = λx. Note that in fact there will be infinitely many solutions to this system
and thus we can discuss the eigenvectors in terms of a basis for the eigensystem
corresponding to λ.

Another way to find the eigenvalues is to solve for λ in the characteristic
equation |A− λI| = 0.

A n × n matrix has n eigenvalues (counting algebraic multiplicity). The
algebraic multiplicity of λ is its multiplicity as a root of the characteristic poly-
nomial. The geometric multiplicity of an eigenvalue λ is the dimension of the
eigenspace associated to λ.

To find the eigenvalues of a matrix,

Type Eigenvalues[The Name of the Matrix].

To find the eigenvalues of a matrix with the corresponding eigenvectors,

Type Eigensystem[The Name of the Matrix].

Exercises: Let A =

⎛
⎝ 1 2 3

0 5 6
0 0 0

⎞
⎠ , B =

⎛
⎝ 1 2 3

0 5 6
0 0 5

⎞
⎠ , and

M =

(
1 2
2 4

)
.

a. Find the eigenvalues of A, B, and M .

b. Make a conjecture about the values of the eigenvalues of singular matrices.

c. Find a basis for the eigenspace for each of the eigenvalues for matrices B
and M . Note that a basis for the eigenspace affiliated with an eigenvalue
consists of the eigenvectors affiliated with that eigenvalue.

d. Are the eigenvectors of M linearly independent? Explain your answer.

e. Compare the sum of the eigenvalue of M with the trace of M . How are they
related?
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f. Compare the product of the eigenvalue of M with the determinant of M .
How are they related?

g. The eigenvectors of B are linear dependent. Make a conjecture about the
property of B that causes this to be true.

h. To find the characteristic polynomial for a matrix type:
CharacteristicPolynomial[Name of the Matrix, x].
Find the characteristic polynomial for B.

i. The roots of the characteristic polynomial for a matrix are the eigenvalues of
the matrix. Use the characteristic polynomial from h. to find the eigenvalues
of B.

j. If p(x) is the characteristic polynomial in h., p(x) = 0 is the characteristic
equation, determine p(B) keeping in mind that if there is a constant term,
k, in the characteristic polynomial, p(x), that term is kI in p(B). What
property do you notice when computing p(B)?

Cayley–Hamilton Theorem

In part j. above you may have noticed that p(B) = 0, where 0 is the zero-matrix.
In general, if A is an n×n matrix and p(x) is the characteristic polynomial for
A, then p(A) results in the zero-matrix.

You may recall seeing the Cayley–Hamilton Theorem in Lab 5 relate the
trace of a matrix with its determinant. Here we will see how it can be used to
find the inverse of a matrix. If A is an n× n invertible matrix then

A−1 =
(−1)n−1

det(A)
(An−1 + cnA

n−1 + cn−1A
n−2 · · ·+ c1I)

where the characteristic polynomial of A = An + cn−1A
n−1 + · · · + c1A +

(−1)ndet(A)I.

Exercise: Use the Cayley–Hamilton Theorem to find B−1.

Theorems and Problems

For each of these statements, either prove that the statement is true or find a
counter example that shows it is false.

Theorem 54. A is invertible if and only if all its eigenvalues are nonzero.
Problem 55. If λ is an eigenvalue for A then 1

λ is an eigenvalue for A−1.
Problem 56. If λ is an eigenvalue for A then λk is an eigenvalue for Ak.
Problem 57. If λ is an eigenvalue for A then λ is an eigenvalue for AT .
Problem 58. The eigenvalues of a triangular matrix (upper or lower) are the
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entries on the main diagonal.
Problem 59. If A is an n×n matrix with n distinct eigenvalues then all of the
corresponding eigenvectors are linearly independent.
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Lab 15: Markov Chains: An Application of Eigenvalues

Introduction

This is a discrete modeling technique for modeling systems that undergo tran-
sitions between a finite (or countable) number of states. Each Markov chain has
a corresponding transition matrix . The transition matrix, M , is a probability
matrix, where Mi,j is the probability of going from state j to state i. That is,
M is of the form

NewState 1
2
3

⎛
⎜⎜⎜⎜⎝

Preceding State
1 2 3

0.05 0.7 0.46
0.75 0.2 0.12
0.2 0.1 0.42

⎞
⎟⎟⎟⎟⎠ .

It is sometimes helpful in a Markov chain to visualize the system with a state
diagram, with arrows between states representing the transitions (and weights
representing the probability of that transition).

FIGURE 3.4: Example of a state diagram

In addition to the transition matrix, each Markov chain has an initial vector
which is a vector typically consisting of initial total populations in each state
or a fraction of the total population in each state.

Exercises:

a. Type and evaluate the Mathematica command below,
Manipulate[M = {{.05, .7, .46}, {.75, .2, .12}, {.2, .1, .42}};x0 = {{100}, {0},
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{0}};BarChart[MatrixPower[M,k].x0], {k, 0, 20, 1}]
then click the + next to the k slider so that you can step through the an-
imation. Identify the transition matrix, M , and the initial vector in the
animation.

b. Describe what M.x0 represent. What does Mk.x0 represent?

c. For what value of k does the system appear to become stable?

d. Type and evaluate the Mathematica command below which shows only the
population of state 1 after k steps. For what value of k does this state’s
population appear to stabilize?
Manipulate[M = {{.05, .7, .46}, {.75, .2, .12}, {.2, .1, .42}};x0 = {{100}, {0},
{0}};ListP lot[Table[{i,(MatrixPower[M, i].x0)[[1, 1]]}, {i, 1, k}],
P lotRange → All, Joined → True], {k, 2, 20, 1}]
The transition matrix has a dominant eigenvalue, which is the largest eigen-

value in magnitude. A Markov chain has a stable solution if the dominant
eigenvalue has a magnitude of 1.

Exercises: The inhabitants of a vegetarian-prone community agree on the fol-
lowing rules

1. Only one out of six people will eat meat the next day if they eat meat today.

2. A person who eats no meat one day will flip a fair coin and eat meat on the
next day if and only if a head appears.

If 80% of the population eat meat on the first day, in the long run, what per-
centage of the population will eat meat each day?

a. Construct the transition matrix for this problem.

b. If 80% of the population eat meat on the first day, then the initial population
vector is (.8,.2). Graph the percent of the population that will eat meat versus
time for the first 10 days and interpret this graph. (Hint : Use ListPlot to
graph individual points, (time, meat eating population %))

c. Find the steady state vector for this problem using the graph and interpret
your results.

d. Find the eigenvalues and eigenvectors of the transition matrix.

e. Using the eigenvector corresponding to the eigenvalue of magnitude one,
create a percentile vector. In order to make this vector a percentile state
vector, the total of the two values should equal one. What scalar do you
need to multiply this vector by in order to make it a percentile state vector?
What does this vector represent?
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Project Set 3

Project 1: Computer Graphics

The purpose of this exercise is to introduce you to the topic of linear transfor-
mation as they relate to computer graphics.

a. Create a list of points that when attached will create a block letter graphic
representing your first initial. Graph the letter you created. An example is
below.
TMatrix := {{3, 1}, {3, 6}, {1, 6}, {1, 7}, {6, 7}, {6, 6}, {4, 6},
{4, 1}, {3, 1}};
Initial := TMatrix;
BlockInitial := Polygon[Initial];
Show[Graphics[BlockInitial], Axes → True]

b. Create a standard matrix that would transform your original graphic into
a graphic that is 4 times larger along the x axis and 1/2 as large along the
y axis. Graph the transformed graphic and make sure to use your standard
matrix in your solution.

c. Create a translation that would move your original graphic 6 to the right
and 3 units up. Graph the transformed graphic.

d. Create a standard matrix that will reflect your original graphic about the
origin. Graph the transformed graphic and make sure to use your standard
matrix in the solution.

e. Create a sequence of transformations that will reflect the original graphic
over the line y = 6. Graph the transformed graphic.

f. Create a sequence of transformations that will reflect your original graphic
about the point (2,3). Graph the transformed graphic.

Project 2: Fractals

A fractal is an iterative system defined by a set of rules. In this project, you
will start with F0 as the polygon and the rule is Fi = (Fi)

1∪(Fi)
2∪(Fi)

3 where
(Fi)

1 = A(Fi−1) + b1, (Fi)
2 = A(Fi−1) + b2, (Fi)

3 = A(Fi−1) + b3, where A is
a contraction matrix and b1, b2, and b3 are translations.

The program below generates the first two steps in Sierpinski’s Triangle.
Alter the program, integrating a for loop, to generate the first 8 iterations
(pictures shown in Figure 3.5).

A =

(
1
2 0
0 1

2

)
; b1 =

(
1
4

1
4

1
4

1
4

0 0 0 0

)
; b2 =

(
3
4

3
4

3
4

3
4

0 0 0 0

)
;
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FIGURE 3.5: The first 8 iterations of Sierpinski’s Triangle

b3 =

(
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

)
;

Triangle := {{1/2, 0}, {1, 1}, {3/2, 0}, {1/2, 0}};
Initial := Triangle;
BlockInitial = Polygon[Initial];
Show[Graphics[BlockInitial], Axes → True, P lotRange→ {{0, 2}, {0, 2}}]
Block1 = Transpose[A.T ranspose[Initial] + b1];
Block2 = Transpose[A.T ranspose[Initial] + b2];
Block3 = Transpose[A.T ranspose[Initial] + b3];
Initial = Partition[Join[Block1, Block2, Block3], 4];
BlockInitial = Polygon[Initial];
Show[Graphics[BlockInitial], Axes → True, P lotRange→ {{0, 2}, {0, 2}}]

Project 3: Genetics

A certain trait is determined by a specific pair of genes, each of which may be
two types, say R or r. An individual may have:

1. RR combination (dominant)

2. Rr or rR, considered equivalent genetically (hybrid)

3. rr combination (recessive)

Offspring inherit one gene of the pair from each parent. Genes inherited from
each parent are selected at random, independently of each other. This deter-
mines probability of occurrence of each type of offspring.
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In this project, we will be looking at tongue rolling. Tongue rolling, the abil-
ity to roll the tongue, is a dominant trait (R), while non-rolling is recessive (r).
At each generation someone of unknown genetic makeup mates with a hybrid.

So the possibilities at each generation are RR, Rr, and rr. In the community
of Lolly, 50% of the current generation, 0th generation, are RR and 50% are Rr.

a. If at the 0th generation, the parents are RR and Rr what is the probability
that the offspring is Rr?

b. What would the transition matrix look like from the previous generation to
the next generation? What would the initial vector look like?

c. What would be the percent of RR, Rr and rr in the next generation?

d. What percentage of the 4th generation in Lolly are in each state (genetic
makeup for tongue rolling)?

e. In the long run, many generations, what will the percent of people in each
state be in Lolly? How could we have determined this through inspection
using eigenvalues and eigenvectors of the transition matrix?

f. Write up your findings and supporting mathematical argument.

Project 4: Tree Harvesting

61% of the state of North Carolina is forestland. Loblolly pine is the most im-
portant commercial timber in the southeastern United States. Over 50% of the
standing pine in the southeast is loblolly. This is an easily seeded, fast-growing
member of the yellow pine group. On an average site, the loblolly would reach
55-65 feet in 25 years. Thinning of loblolly pine farms should start around 15-20
years.

The goal of this problem is to determine the number of trees to harvest.
Let’s say that we have planted loblolly pines in our plantation for the past 15
years and thus there are trees at a variety of heights, which we will put into
categories, p1, p2, . . . pn. After 15 years we wish to thin our plantation and thus
will harvest trees from each category. The matrix that represents the growth
rates is called the growth matrix and is of the form

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1− g1 0 0 . . . 0 0
g1 1− g2 0 . . . 0 0
0 g2 1− g3 0 0 0
...

...
. . .

. . .
...

...
0 0 . . . 0 1− gn−1 0
0 0 . . . 0 gn 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.
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a. At the 15 year marker, the beginning of harvesting,

x =

⎛
⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

⎞
⎟⎟⎟⎟⎠ represents the number of trees in each category. Assuming the

growth is calculated such that the growth matrix G transitioning from one
year to the next is

G =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0.75 0.4 0 0 0
0 0.6 0.5 0 0
0 0 0.5 0.6 0
0 0 0 0.4 1

⎞
⎟⎟⎟⎟⎠ ,

what does Gx represent? From the matrix G you might note that 75% of
trees in category 1 move to category 2 in a year (time period), what might
the farmer be doing to make the (1,1) entry of G equal to 1?

b. Suppose hi is the fraction of the ith category that will be harvested at the
end of each year, and we let H be the diagonal matrix whose entries are the
hi’s. What does HGx represent? What does Gx−HGx represent?

c. Assume that x1 = 100, if H =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0.1 0 0 0
0 0 0.1 0 0
0 0 0 0.2 0
0 0 0 0 0.8

⎞
⎟⎟⎟⎟⎠, use G and H

to determine how to maintain a sustainable tree farm. What does the 0 in
the (1,1) entry of H represent?

d. Describe how your solution in c. is related to the concept of eigenvalues and
eigenvectors.

Project 5: Sports Ranking

In Project Set 1, we looked at ranking the teams in the Big Ten using powers
of matrices.

In this project, will be working with a preference matrix, A, where ai,j =
wi,j/ni, wi,j is the number of times team i beats team j and ni is number of
games played by team i.

a. Create the preference matrix, A, for the Big Ten games played.

b. Determine the ranking vector r such that Ar = λr, where λ is the eigenvalue
of largest magnitude. In this ranking, the strength of a team is proportional
to its score.
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Michigan State W – Indiana Michigan State W – Purdue
Michigan State W – Illinois Michigan State W – Iowa
Indiana W – Penn State Penn State W – Michigan
Iowa W – Minnesota Iowa W – Northwestern
Michigan W – Minnesota Michigan W – Indiana
Minnesota W – Northwestern Minnesota W – Wisconsin
Minnesota W – Nebraska Nebraska W – Purdue
Nebraska W – Illinois Ohio State W– Wisconsin
Ohio State W – Penn State Ohio State W – Iowa
Ohio State W – Northwestern Wisconsin W – Illinois
Wisconsin W – Northwestern Wisconsin W – Purdue

c. Discuss how you might integrate the strength of schedule into the matrix A
and explain why you believe this will better the ranking.

Similar techniques to these are used in the Google Page Rank and other searches
with weights given to links instead of wins.

Project 6: Seriation and the Fiedler Vector

In Project Set 1, we introduced the idea of seriation applied to archaeology,
where we ordered artifacts based on minimizing dissimilarities. This technique
required looking at m permutations of the original artifact-trait matrix, where
m is the number of artifacts. Other techniques must be explored if the number
of artifacts is larger than 12.

The technique presented here guarantees a minimum ordering only if a per-
mutation matrix can be found that when applied to the artifact-trait matrix
eliminates all of the embedded zeros. This is not very practical, but the the
technique does a decent job of ordering even if not all embedded zeros can be
removed.

Given an m × m symmetric matrix S and a diagonal matrix D such that
Di,i =

∑m
j=1 Si,j for 1 ≤ i ≤ m, the Laplacian of S is L = D − S. The

eigenvector associated with the second smallest eigenvalue of L, the Fiedler
value, is the Fiedler vector. The permutation which puts the the Fiedler vector
in increasing order is the ordering of the artifacts.

In this example, we wish to order pieces of music, presented in Figure 3.6,
based on their traits. The goal is to determine which musical pieces are most
similar based on these traits.

a. This technique requires a binary matrix(a matrix of zeros and ones). Use
the raw data from Figure 3.6 to create a song-trait matrix. In order to do
so, use the following values to determine whether to assign a zero or a one to
each raw data value. In the crescendo category, assign a 0 for raw data less
than 8 and assign a 1 otherwise, and we’ll call 8 the cut off for this category.
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FIGURE 3.6: Raw data for 20 #1 Billboard Hit choruses

Use cutoffs of 2 for decrescendos, 22 for staccato, 10 for portamento, 109
for tempo, and 4 for intervals.

b. Find the similarity matrix related to the binary song-trait matrix from a.
(see Project Set 1 for more information on similarity matrices.)

c. Find the Laplacian, L and the eigensystem affiliated with L.

d. Determine the Fiedler value, the Fiedler vector, and the ordering of the
musical pieces.

e. Those musical pieces that are close together in the ordering are most similar
in their traits. Interpret your results, are there songs from the same artist
close together in the ordering? Are there other traits that you would add to
the study to get stronger results if you furthered the study?
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Project 7: Hamming Codes

With each of our daily lives today filled with the need for technology, the need
for safe and accurate data transmission is essential. In this project, we will dis-
cuss a way to detect whether a binary message has been altered from its original
state through the transmission process and possible addition of noise. Noise in
a binary message may make a value of 0 into a 1 or visa versa.

One way to check if the message has changed is for the sender to add a single
parity check bit to the end of the message. This single bit would be a binary
number which would make the full message have even parity.

Example If a 4-bit message is 1011 then the sent message with the single parity
bit would be the 5-bit message 10111 since the sum of the digits is 4 ≡ 0(mod2)
and thus the number has even parity.

In this project, we will be working with Hamming Code error correction
which finds and corrects a single error transmission using multiple parity check
bits. As you can see from the example above, parity check bits are appended
to the end of the message. The set of binary messages with their appended
parity check bits form a vector space, H5, under modulo-2 addition and scalar
multiplication. Using our example above, 10111 is a vector in the vector space
of 5-bit messages under modulo-2 addition and scalar multiplication.

a. Add the two vectors 10111 and 10010 in H5.

b. Determine a basis for H5 and the dimension of H5.

Hamming Codes require the addition of 3 parity check bits in order to correct
a single transmission error. Let x1, x2, x3, and x4 be the 4 binary values in the
original message and x5, x6 and x7 be the 3 parity check bit values, where

x1 + x2 + x4 + x5 ≡ 0(mod2),

x1 + x3 + x4 + x6 ≡ 0(mod2),

x2 + x3 + x4 + x7 ≡ 0(mod2).

For any received message mr, the product Amr is called the syndrome vector.

c. Write the 4 bit message 1011 with the three parity changes (thus a 7-bit
message).

d. Write the above equations as a homogeneous system A�x = �0. A is called
the parity check matrix.

e. Denote the set of codes �x, or code space, C4, find a basis for C4. What is
the dimension of C4?



Vector Spaces 69

f. The parity check matrix A will help check to determine if the message
was received correctly. If a message, mr is received correctly then Amr ≡
�0(mod2). If the message you received is mr = {0,1,1,1,0,0,1} was it received
correctly? How do we know that the message mr = {0,0,1,0,1,1,0} was
transmitted incorrectly?

g. In order to detect and correct the message mr = {0,0,1,0,1,1,0} that was
transmitted incorrectly, inspect the syndrome vector and determine which
equations, from the homogeneous system, have an error. This can be done
by identifying which entries in the syndrome vector are nonzero modulo
2. (Recall a correct transmission will produce all zeros modulo 2 in the
syndrome vector.)

h. Example: If Equation 1, x1 + x2 + x4 + x5 ≡ 0(mod2), is incorrect then
either x1, x2, or x4 are incorrect. If Equation 1 is correct then x1, x2, and
x4 are correct.

Using your results from g. determine which single bit, x1, x2, x3, or x4, is
incorrect?





4

Orthogonality

Lab 16: Inner Product Spaces

Introduction

An inner product on set V is a function that maps ordered pairs (x,y) from
V ×V (that is x and y are elements of V ) to a number < x,y > while satisfying
the following properties:

1. For all v in V , < v,v > ≥ 0 and < v,v >= 0 if and only if v = �0.

2. For all u, v, and w in V , < u,v + w >=< u,v > + < u,w >.

3. For all u and v in V and scalar k,

< ku,v >=< u,kv >= k < u,v > .

4. For all u and v in V , < u,v >= < v,u >.

A vector space with a defined inner product is called an inner product space.

The Euclidean Inner Product in Rn is defined as

< u,v >= u1v1 + u2v2 + u3v3 + · · ·+ unvn

where u = {u1,u2,u3, · · · ,un} and v = {v1,v2,v3, · · · ,vn} are in Rn.

Use the Euclidean inner product in R2, also called the dot product, for the
following exercises. To calculate the Euclidean inner product, < u,v >, Type
u.v

Exercises: Let u = (3,2), v = (2,0), and w = (0,2) be vectors in R2.

a. Determine < u,v >.

b. The length, also called the norm or magnitude, of a vector u is ||u|| =√
< u,u >. To calculate ||u||, type Norm[u]. Determine ||u||.

c. A vector is said to be a unit vector if its magnitude is 1. Are u,v, or w unit
vectors? What scalar can you multiply vector v by to make it a unit vector?

71
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d. We think of orthogonality as perpendicularity in R2, are v and w orthogonal?
In general, two vectors u and v are orthogonal if < u,v >= 0. Are v and w
orthogonal using this definition?

More about Orthogonality

A set is called orthogonal if each pair of vectors in the set is orthogonal. If in
addition every vector in the set has a magnitude of 1, then the set is called
orthonormal . An orthonormal basis is a basis for a vector space which is or-
thonormal.

If V1 is a subset of V , then the orthogonal complement of V1 is the set of all
vectors in V that are orthogonal to every vector in V1.

Exercises:

a. Give an example of an orthonormal basis of R3.

b. For any U =

(
u1 u2

u3 u4

)
and V =

(
v1 v2
v3 v4

)
in M2,2, define the inner

product as < U,V >= u1v1+u2v2+u3v3+u4v4. Find an orthonormal basis
for M2,2 under this inner product.

c. Find a basis for the nullspace of A =

⎛
⎝ 1 2 3

4 5 6
7 8 9

⎞
⎠ and a basis for the

rowspace or A. Are the nullspace of A and the rowspace of A orthogonal
complements?

d. Determine if the nullspace of AT and the columnspace of A are orthogonal
complements.

Gram–Schmidt Process

The Gram–Schmidt Process is a numerical technique for finding an orthonormal
set of vectors that spans an inner product space, usually Rn.

The algorithm in Rn

1. Start with n linearly independent vectors {v1, v2, · · · , vn}.
2. Let u1 = v1 and e1 = u1

||u1|| .

3. Project v2 onto u1, proju1v2 = <u1,v2>
||u1||2 u1.

4. Define u2 = v2 − proju1v2 and e2 = u2

||u2|| .

5. In general, un = vn −∑n−1
i=1 projuivn and en = un

||un|| .
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Instability of the Algorithm

Although Mathematica does not have the same issues with precision that other
traditional programming languages have, the Gram–Schmidt Process is an algo-
rithm that can have issues with instability. We will simulate this in the exercises
below. The commands used below, N[value] converts a value to the numerical
value and Chop[value, lowerbound] rounds a value less than the lowerbound
to zero.

Exercises:

a. {v1 = (1,2,2),v2 = (4,5,6),v3 = (8,9,1)} is a set of linearly independent
vectors in R3. Use the Gram–Schmidt process and v1, v2, and v3 to find an
orthonormal set of vectors {e1,e2,e3} that span R3.

b. S = {{1,10−7,10−7},{1,10−7,0},{1,0,10−7}} is a linearly independent set
of vectors in R3. Use the Gram–Schmidt process with the vectors in S, as
described by the algorithm to find the set of vectors {e1,e2,e3}. Check to
make sure that {e1,e2,e3} is an orthonormal set of vectors.

c. Use S from part b. and the Gram–Schmidt process to find vectors {e1,e2,e3}.
This time at each calculation change your values to numerical values and
use the command Chop[N [value],10−7] to change the level of precision. This
command rounds all values less than 10−7 to 0. Are the vectors {e1,e2,e3}
the same as those that you found in part b.? Determine if this new set
{e1,e2,e3} is an orthonormal set of vectors.

Theorems and Problems

For each of these statements, either prove that the statement is true or find a
counter example that shows it is false.

Theorem 60. If u and v are orthogonal vectors in V then

||u+ v|| = ||u||+ ||v||.

Theorem 61. If u and v are vectors in V then

| < u,v > | ≤ ||u||||v||.
Theorem 62. If u and v are vectors in V then ||u+ v|| ≤ ||u||+ ||v||.
Problem 63. If u and v are vectors in V then

||u+ v||2 + ||u− v||2 = 2(||u||2 + ||v||2).

Theorem 64. If {v1,v2, · · · ,vn} is an orthonormal set of vectors in V , then
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||k1v1 + k2v2 + · · · knvn||2 = |k1|2 + |k2|2 + · · ·+ |kn|2.
Theorem 65. Every orthonormal set of vectors is linearly independent.
Problem 66. If T : Rn → Rn is the linear transformation defined by left mul-
tiplication of the n × n matrix A and vector v is in the range of T then v is
orthogonal to the nullspace of A.
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Lab 17: The Geometry of Vector and Inner Product
Spaces

Triangle Inequality

There are many properties of inner product spaces that we will explore in this
lab. We begin by exploring the Triangle Inequality.

Exercises: If V = R2 with the Euclidean inner product,

a. Using the demonstration http://www.demonstrations.wolfram.com/
SumOfTwoVectors/ choose several different magnitudes\lengths and posi-

FIGURE 4.1

tions for the solid red and blue vector (which we will call u and v), and note
both ||u|| + ||v|| and ||u + v||, the magnitude of the purple vectors. Which
quantity is always larger?

b. Determine vectors u and v such that ||u||+ ||v|| = ||u+ v||.
c. If V is the vector space of continuous functions on [−1,1] and < f,g >=∫ 1

−1
f(x)g(x)dx, if f(x) = x2 and g(x) = x compute ||f(x)||, ||g(x)|| and
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||f(x) + g(x)||. To find the integral of f(x) on the interval [a,b] type

Integrate[f(x),{x,a,b}]

.

d. Do you find the same property in the example in c. as you did in a.? Use

FIGURE 4.2

the demonstration http://demonstrations.wolfram.com/
TriangleInequalityForFunctions/ to explore the triangle inequality with func-
tions further.

Cauchy–Schwarz Inequality

Exercises: If V = R2 with the Euclidean inner product,

a. Use the demonstration http://demonstrations.wolfram.com/
TheCauchySchwarzInequalityForVectorsInThePlane/ and drag the vector u
to a variety of positions while noting both ||u|| · ||v|| and | < u, v > |. In
general, which quantity did you observe to be larger?

b. Determine the angle between u and v when ||u|| · ||v|| = | < u, v > |.
c. If V is the vector space of continuous functions on [−1,1] and < f,g >=∫ 1

−1
f(x)g(x)dx, if f(x) = x2 and g(x) = x does the Cauchy–Schwarz In-

equality, ||f || · ||g|| ≥ | < f,g > |, hold?
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FIGURE 4.3

d. Use the demonstration http://demonstrations.wolfram.com/
CauchySchwarzInequalityForIntegrals/ to visualize the Cauchy–Schwarz In-
equality for other functions.

FIGURE 4.4

Change of Coordinates of a Vector

Recall that a basis for a vector space is not unique. If B1 and B2 are bases
for the same vector space V and v1 is a vector in V written in terms of the
vectors in basis B1, we should also be able to write v1 in terms of the the ba-
sis vectors in B2. We call this a change of coordinates from basis B1 to basis B2.

If B1 = {v1,v2 · · · ,vn} and B2 = {u1,u2, · · · ,un} are two distinct bases for
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Rn, each of the vectors in B2 can be written as a linear combination of vectors
in B1.

For example, for ui in B2, ui = k1v1+k2v2+ · · ·+knvn where k1,k2, · · · , kn
are scalars. And thus you will see in changing from basis B1 to basis B2 there
are n equations. The matrix of scalar constants resulting from this change of
basis is called the change of coordinates matrix.

Exercises:

a. The standard basis for R2 is {{1,0},{0,1}}. The set S1 = {{1,2},{−1,2}} is
also a basis for R2. Write each of the basis vectors in S1 as a linear combi-
nation of the standard basis vectors and determine the change of coordinates
matrix.

b. The vector

(
1
−1

)
=

(
1 0
0 1

)(
1
−1

)
. Rewrite {1,− 1} relative to the

basis S1 using the change of coordinates matrix in part a.

c. S2 = {{1,2},{−2,1}} is also a basis for R2. Find the change of coordinates
matrix from S1 to S2 and use the matrix to write {1, − 1} relative to the
basis S2.

FIGURE 4.5

In the demonstration http://demonstrations.wolfram.com/
CoordinatesOfAPointRelativeToABasisIn2D/ set the basis vectors, red and blue
arrows, to the standard basis vectors and the u coordinate to 1 and the v



Orthogonality 79

coordinate to -1, these are the coordinates of the point. (Be sure that x-y coord
is checked.)

d. Change the vectors so that they are {1,2} and {−1,2}, what are the new co-
ordinates of the point? These should be the same as the result from b. Note
that if you check the box marked u-v grid, the coordinate system affiliated
with S1 can be seen.
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Lab 18: Orthogonal Matrices, QR Decomposition, and
Least Squares Regression

Introduction

An orthogonal matrix is a square matrix whose column vectors are vectors of
magnitude 1 and are pairwise orthogonal (in addition the row vectors are vec-
tors of magnitude 1 and are pairwise orthogonal).

Exercises:

a. Define A =

(
1 0
0 1

)
, B =

(
1
2

√
3
2

−
√
3
2

1
2

)
, and M =

(
1 2
−2 1

)
. Which

of these matrices are orthogonal matrices?

b. What is the determinant of each of the orthogonal matrices in part a?

QR Decomposition of Matrices

The QR Decomposition is the decomposition of a matrix A = QR into the
product of a orthogonal matrix, Q, and an upper triangular matrix, R. Below
we apply the Gram–Schmidt process to create a QR Decomposition for real
matrix A.

Assume that the columns, a1, a2, · · · , an, ofA are the vectors v1, v2, v3, · · · , vn,
in the Gram–Schmidt algorithm. Follow the general rule that
un = vn −∑n−1

i=1 (projuivn) and en = un

||un|| , where e1, e2, · · · , en will be the

columns of the orthogonal matrix Q. The upper triangular matrix R is defined
as

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

< e1,a1 > < e1,a2 > < e1,a3 > . . . < e1,an >
0 < e2,a2 > < e2,a3 > . . . < e2,an >
0 0 < e3,a3 > . . . < e3,an >
0 0 0 . . . < e4,an >
...

...
...

. . .
...

0 0 0 . . . < en,an >

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Exercises:

a. Define A =

⎛
⎝ 1 4 8

2 5 9
2 6 1

⎞
⎠. Use the Gram–Schmidt Process to find Q and

R.

b. Is the QR Decomposition applicable to only square matrices A? To find the
QR Decomposition using Mathematica type:

QRDecomposition[The Name of the Matrix]



Orthogonality 81

Note that QT is

QRDecomposition[The Name of the Matrix][[1]]
and

R=QRDecomposition[The Name of the Matrix][[2]].

Use this command to find the QR Decomposition of

(
1 2 3
4 5 6

)
.

Application to Linear Regression

The goal in Least Squares Linear Regression is to fit a linear function
to a data set while minimizing the sum of the residuals squared. Use
http://demonstrations.wolfram.com
/LeastSquaresCriteriaForTheLeastSquaresRegressionLine/ to see how the sum
of squares (or residuals squared) are affected by the choice of line fitting the
given data.

FIGURE 4.6

Exercise: Discuss how the problem of finding a line y = b+ ax to fit the given
data {(x1,y1),(x2,y2), · · · ,(xn,yn)} can be modeled with the overdetermined
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system

⎛
⎜⎜⎜⎜⎜⎝

1 x1

1 x2

1 x3

...
...

1 xn

⎞
⎟⎟⎟⎟⎟⎠
(

b
a

)
=

⎛
⎜⎜⎜⎜⎜⎝

y1
y2
y3
...
yn

⎞
⎟⎟⎟⎟⎟⎠
. We will refer to this system in the form

Ax = b.

To find the solution (the coefficients for the line), calculate the QR Decom-
position of the matrix A, Ax = QRx = b, So x = R−1QT b.

Example: In March 2013, NPR reported that Dunkin’ Donuts plans to change
its recipes setting a goal of using only 100% sustainable palm oil in making its
donuts. The production of palm oil has contributed to large deforestation of
rainforests throughout the world as well as issues of erosion and flooding that
directly affects the livelihood and lifestyle of the local communities surrounding
the rainforest. In addition, the land clearing of Indonesia, which is the largest
contributor to the palm oil industry, was 80% illegal in 2008 and has been di-
rectly linked to the fate of the wild orangutan.

In this project, we will explore the progression of land clearing for palm oil
plantations and its effects on the Sumatran orangutan population.

One can see that there are 7 data points and one of the goals of this project
is to fit the best fit line to y = b1x+ b0 to the data in Table 4.1. Thus we have
an over determined system with 6 equations and 2 unknowns when we put the
points into the linear function. In finding the best fit line, we wish to find the
line that minimizes the sum of the squared errors.

TABLE 4.1
Orangutan Population versus Palm Oil Plantations

Year Total Hectares of Sumatran Orangutan
Palm Oil Plantations Population in Indonesia

2000 4,158,077 13,500
2001 4,713,431 11,245
2002 5,067,058 10,254
2003 5,283,557 8,700
2004 5,566,635 7,500
2005 5,950,349 7,200
2006 6,250,460 6,000
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Exercises:

a. Plot the hectares of palm oil plantations versus the population of the Suma-
tran orangutan in Indonesia.

b. Use the method described above, with QR Decomposition to determine a line
to fit to the data. Plot this line with the data on the same graph.

Least Squares Regression Take 2

We explored linear regression with QR Decomposition above. Here we will ex-
plore other methods for finding a “best fit line.” Recall the goal is to minimize
the sum of the squared residuals.

4.0� 106 4.5� 106 5.0� 106 5.5� 106 6.0� 106
0

2000

4000

6000

8000

10 000

12 000

14 000

FIGURE 4.7

Define the data as �b and the estimation line as A�x. Thus the projA�x
�b repre-

sent the residual error, �r. So �r is orthogonal to the columnspace of A, AT�r = 0.
Also �r = �b−A�x.

Thus AT (�b−A�x) = 0. Solving for �x, AT�b = ATA�x and �x = (ATA)−1AT�b.

Exercises:

a. Using the data set for the hectares of palm oil plantations versus the Suma-
tran orangutan population in Indonesia, from Table 4.1, calculate the “best
fit line” using the equation for �x above.

b. Graph the data and the line that you calculated.
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c. Compare your results with the “best fit line” using QR Decomposition. Ex-
plain why you get the same results.

Theorems and Problems

For each of these statements, either prove that the statement is true or find a
counter example that shows it is false.

Problem 67. If A is an orthogonal square matrix then AT = A−1.
Problem 68. If A is an orthogonal square matrix then |A| = 1.
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Lab 19: Symmetric Matrices and Quadratic Forms

Introduction

Recall that a square matrix, A, is symmetric if A = AT . Also recall that a square
matrix A is diagonalizable if there exists a matrix P such that D = P−1AP ,
where D is a diagonal matrix. In order to diagonalize A, find the eigenvalues of
A and the basis for the eigenspace associated with each eigenvalue. The matrix
P has columns which are the basis vectors and P diagonalizes A if these vectors
are linearly independent.

Just as the basis vectors for an eigenspace are not unique, the matrix P that
diagonalizes A is not unique.

Exercises:

a. Let A =

⎛
⎝ 3 2 −1

2 3 −1
−1 −1 4

⎞
⎠ . Determine if A is diagonalizable. If it is diag-

onalizable, use the eigenvectors to determine the matrix P that diagonalizes
A.

b. If v1, v2, v3 are the eigenvectors, calculate v1 · v2, v1 · v3, and v2 · v3. What
property do the eigenvectors have? Is this property true for all matrices? Is
it true for all symmetric matrices?

c. Normalize the eigenvectors of A and use these vectors of length one as the
columns of a new matrix P . Determine if this new P diagonalizes A. In
this case, since A is symmetric, P−1 = PT and thus PTAP = D and A is
orthogonally diagonalizable.

Quadratic Forms

A quadratic form is a function on Rn where QA(x) = xTAx, or
QA(x1,x2,x3, · · · ,xn) =

∑
i≤j aijxixj , and A is a symmetric matrix. The matrix

A is called thematrix for the form. Note QA(�0) = 0. For exampleQA : R2 → R2

defined by QA(x1,x2) = x2
1 + 2x1x2 + x2

2 is a quadratic form.

Exercises:

a. Is QA(x1,x2) = x2
1 + 2x1x2 + x2

2 a linear transformation?

b. If x = (x1,x2), write QA(x1,x2) = x2
1 + 2x1x2 + x2

2 in terms of x, xT and

the matrix A =

(
1 1
1 1

)
.
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Change of Variables in Quadratic Forms

If x is a variable vector in Rn then a change of variables can be represented
by x = Py, where P is an invertible matrix and y is a new variable vector
in Rn. A change of variables in a quadratic form QA(x) = xTAx looks like
QA(y) = (Py)TA(Py) = (yT )(PTAP )y. Since A is symmetric QA(y) = yTDy
where D is a diagonal matrix with the eigenvalues of A as the entries on the
diagonal.

Exercises:

a. Determine the quadratic form with matrix for the form

A =

⎛
⎝ 3 2 −1

2 3 −1
−1 −1 4

⎞
⎠.

b. Diagonalize A using its normalized eigenvectors to create P and determine
the quadratic form related to this change of variables.

c. Let A =

(
1 1
1 1

)
and diagonalize A using its normalized eigenvectors to

create P and determine the quadratic form related to this change of vari-
ables.

d. If x = R3 the cross-product terms are x1x2, x1x3, x2x3 and similarly if
x = R2 the cross-product term is x1x2, what property related to the cross-
product terms do the quadratic forms resulting in the change of variables in
parts b. and c. have that the original quadratic forms do not?

Principal Axes Theorem

Let A be a symmetric matrix. Then there exists a change of variables x = Py
that transforms the quadratic form into a quadratic form with no cross-product
terms. The columns of P are called the principal axes in the change of variables.

Example: Let QA(x,y) = 3x2 − 4xy + 3y2 with the matrix for the form A =(
3 −2
−2 3

)
. The eigenvalues of A are 1 and 5. Let

P =

(
− 1√

2
1√
2

1√
2

1√
2

)
. The the new quadratic form is

QA(x,y) = 5x2 + y2.

We can geometrically visualize this change of variables. The original
quadratic form has a rotated axis where the quadratic form with a diagonal
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matrix for the form has the standard axes seen in Figure 4.8. To produce the
graph is Figure 4.8, type:

ContourP lot[{3x2−4xy+3y2 == 10, 5x2+y2 == 10, y−x == 0, y+x ==
0}, {x,−4, 4}, {y,−4, 4}]}.

�4 �2 0 2 4

�4

�2

0

2

4

FIGURE 4.8

Properties of Quadratic Forms

A quadratic form is positive definite if QA(�x) > 0 for all �x �= �0 and negative
definite if QA(�x) < 0 for all �x �= �0. If QA(�x) takes on both positive and nega-
tive values then it is called indefinite. A quadratic form is called semipositive
definite if it never takes on negative values. Similarly it is called seminegative
definite if it never takes on positive values.

Exercises:

a. Give an example of a positive definite quadratic form on R2.

b. Give an example of a negative definite quadratic form on R3.

c. Find the eigenvalues of the matrix for the form, A, in your examples in a.
and b. What do you conjecture about the sign of the eigenvalues of A?

A real symmetric n× n matrix, A, is called
1) positive definite if xTAx > 0 for all x in Rn,
2) semipositive definite if xTAx ≥ 0 for all x in Rn,
3) negative definite if xTAx < 0 for all x in Rn and
4) seminegative definite if xTAx ≤ 0 for all x in Rn.
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Exercises:

a. Type ContourP lot[x2+y2 == 1,{x,−1,1},{y,−1,1}] to graph QA(x1,x2) =
x2
1 + x2

2 when QA(x1,x2) = 1. Is the matrix for the form, A, positive or
negative definite? How does this relate to the shape of the graph?

b. Use http://demonstrations.wolfram.com/ConicSectionsEquationsAndGraphs/
to look at the graph of QA(x1,x2) = ax2

1 + bx2
2 when QA(x1,x2) = 1 where

FIGURE 4.9

a and b are constants. For each behavior difference that you discover write
down the matrix for the form A and calculate the eigenvalues for each A.

c. What eigenvalues determine an ellipse and which determine a hyperbola?

d. Determine whether the curve 2x2+10xy−y2 = 1 is an ellipse or hyperbola.
What is the matrix for the form (possibly not symmetric) affiliated with this
conic section when you complete the square?

e. Use the ContourPlot command to plot QA(x,y) = 2x2 + 10xy − y2. Does
this function have a saddle point, global maximum, or global minimum?
Where is this point located? (Note: If QA(x) = xTAx and A is invertible
then x = (0,0) is the only critical point and thus is the saddle point, global
maximum or global minimum.)
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Theorems and Problems

For each of these statements, either prove that the statement is true or find a
counter example that shows it is false.

Theorem 69. If A is symmetric then any two eigenvectors of A are orthogonal.
Theorem 70. If A is symmetric then A is orthogonally diagonalizable.
Problem 71. If Q(x1,x2,x3, · · · ,xn) is a quadratic form with all real coefficients
then it is positive definite if and only if

Q(x1,x2,x3, · · · ,xn) = x2
1 + x2

2 + x2
3 + · · ·+ x2

n.

Theorem 72. A quadratic form Q is positive definite if and only if the eigen-
values of the coefficient matrix A are all positive.
Theorem 73. If A is a positive or negative definite matrix then A is invertible.
Problem 74. If A is a symmetric 2 × 2 matrix with eigenvalues λ1 ≥ λ2 and
QA is the quadratic form defined by QA(x) = xTAx, then the conic section
defined by QA(x) = 1 is
(1) an ellipse if λ1 ≥ λ2 > 0,
(2) a hyperbola if λ1 > 0 > λ2,
(3) the empty set if 0 ≥ λ1 ≥ λ2 and
(4) two parallel lines if λ1 > λ2 = 0.
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Project Set 4

Project 1: Lights Out

The 5× 5 Lights Out game was explored in Project Set 1 and 2 where you cre-
ated the adjacency matrix, initial state vector, final state vector, and solutions.
In Project Set 2, your final exploration was to look at the 5 × 5 Lights Out
game where the buttons can take on three states, 0, 1, and 2, and the goal of
the game is to go from an initial state of all lights in state 0 and end with an
initial state of all lights in state 1.

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

a. Look back at your solution to Project Set 2, Project 1, part d. Which games
have invertible adjacency matrices that quickly lead to solutions? If the
adjacency matrix was not invertible for any game, did the game have a
solution? If not, why did you believe that they did not have solutions?

b. If the 5×n game has a matrix, M , that is not invertible modulo 3, you may
have determined that there was no solution. We will explore this further.
Choose an n such that the adjacency matrix, M , for the 5× n game is not
invertible modulo 3 and determine a basis for the nullspace of M .

c. Recall that if there is a solution, the goal is to determine a push vector p
such that Mp+ i = f where i = �0 and f = �1. Another way to think about
this problem is that we wish to determine p such that �1 is in the range of the
transformation defined by multiplying by the standard matrix M . Restate
this statement in terms of the rowspace of M .

d. Restate the statement in c. in terms of the nullspace of M .

e. For the 5× n game that you chose in part b., calculate the Euclidean inner
product of each nullspace vector with �1 modulo 3. Based on these results,
does the game have a solution?

f. When you find a 5×n game with 3 colors that does have a solution, to find
the exact solution type:

s = LinearSolve[M,f,Modulus→ 3].

g. To visualize your solution from part f. type:
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soln = Table[0, {i, 1, 5}, {j, 1, n}];
For[i = 1, i <= 5,

For[j = 1, j <= n,

soln[[i, j]] = s[[j + (i − 1) ∗ (n)]];
j = j + 1];

i = i+ 1];

MatrixP lot[soln]

h. Continue to explore which 5 × n games with 3 colors have solutions based
on this new knowledge and write up your results.

Project 2: Linear Regression

In Lab 18, you learned several ways to determine a “best fit” line for the data
related to hectares of oil palm plantations and the population of Sumatran
orangutans in Indonesia.

a. Use the same ideas to fit a quadratic function to the data in Lab 18(Hint:
Think about what the matrix A should be).

b. Use the same ideas to fit a cubic function to the data in Lab 18.

c. One way to determine the best estimation is to calculate the error of your
estimates. There are several errors that you can calculate. Let ŷ(xi) is the
approximate y value given by plugging the x value xi into the model\ func-
tion, and bi is the exact y value corresponding to the value xi given by the
data.

The maximum error, denoted ||ŷ − b||∞ is the maximum difference in mag-
nitude between the exact data and the approximation, max1≤i≤n |ŷi − bi|,
where n is the number of data points. The l2 error denoted ||ŷ − b||2 =√∑n

i=1(ŷi − bi)2. Finally the relative l2 error can be found by√∑
n
i=1(ŷi−bi)2√∑

n
i=1 b2i

. Use these ideas to discuss which estimation (line, quadric,

or cubic) is the best model for this data.

Project 3: Cosine Transforms

Consider the graphic of the green tree frog call in Figure 4.10. The frog call
looks periodic like a cos(x) or sin(x) but there is not any one function of the
form cos(kx) or sin(kx), with k ∈ R that can describe the call.
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FIGURE 4.10: Green tree frog sound wave
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FIGURE 4.11: Cosine graphs over sound wave

a. By inspection of the period of the repetitions in the call, determine k1, k2
and k3, where cos(k1x), cos(k2x) and cos(k3x) are shown in Figure 4.11.

b. Graph cos(k1x), cos(k2x), cos(k3x) and cos(k1x)+cos(k2x)+cos(k3x), from
part a. Which function is the best approximation to the frog call?

c. A set of functions f1(x),f2(x), . . . ,fn(x) are linearly independent if and only
if the

Wronskian =

∣∣∣∣∣∣∣∣∣

f1(x) f2(x) . . . fn(x)
f ′
1(x) f ′

2(x) . . . f ′
n(x)

...
...

. . .
...

f
(n−1)
1 (x) f

(n−1)
2 (x) . . . f

(n−1)
n (x)

∣∣∣∣∣∣∣∣∣
is not equal to 0 for all x ∈ R. Determine if the functions cos(k1x), cos(k2x)
and cos(k3x) from part a. are linearly independent.
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d. We can write a continuous function f(x) as an infinite series of cosine
functions called the Fourier Cosine Series on the interval −L ≤ x ≤ L,
f(x) =

∑∞
n=0 An cos

(
nπx
L

)
. The coefficients An are constant real numbers.

The set of continuous functions is a vector space, based on the Fourier Co-
sine Series, describe a basis for the vector space of continuous functions on
the interval −L ≤ x ≤ L.

e. Define the inner product on functions which are continuous from -1 to 1 as

< f,g >=

∫ 1

−1

f(x)g(x)dx.

Is the basis {1, cos(πx), cos(2πx), · · · , cos(kπx), · · · } for any integer k an
orthogonal basis? Is it an orthonormal basis?

The green tree frog call is recorded as a discrete set of data so we cannot write
it as a Fourier Cosine Series, but when we collect data with noise we can use
the Discrete Fourier Cosine Transform to try to get rid of the noise.

Project 4: The Hadamard Product on Matrices

For two matrices A and B of the same size, the Hadamard product A ◦ B is
defined as (A ◦B)ij = aij · bij .

Define A =

(
1 −2
−2 4

)
, B =

(
1 3
3 9

)
, and M =

( −1 1
2 −2

)
.

a. Calculate A ◦B. Note that A ∗B in Mathematica calculates the Hadamard
product between A and B.

b. Calculate A ◦ (B +M) and A ◦B +A ◦M . Are they equal?

c. Is the Hadamard product commutative, A ◦B = B ◦A?
d. If A1 is an upper triangular matrix and A2 is any matrix of the same size

as A1, determine what type of matrix results in A1 ◦A2.

e. Is M2,2 under the Hadamard product, representing the defined matrix ad-
dition, and traditional scalar multiplication a vector space?

f. Which of the matrices A, B and\or M are positive definite? Find the
Hadamard product of those matrices which are positive definite and de-
termine if the resulting matrix has any special qualities.

g. The pth Hadamard power of a matrix A has (i,j)th entry equal to apij . Is the

pth Hadamard power of a positive definite matrix positive definite?

h. Do similar results to those found in parts g. and h. hold for negative definite
matrices?

i. Summarize your findings about the Hadamard product.
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Project 5: Hadamard Matrices and Image Compression

A Hadamard matrix, H , is a n× n matrix whose entries are either -1 or 1 such
that HHT = nI.

a. Give an example of a 2× 2 Hadamard matrix, H1, that is invertible.

b. Give an different example of a Hadamard matrix, H2, such that tr(H2) = 0.

c. Write a short Mathematica code to generate all 2 × 2 Hadamard matrices
and then use MatrixPlot to generate a visualization of them.

d. Using the Euclidean inner product for R2, find the inner product between
the columns, and rows, of each of the 2 × 2 Hadamard matrices. What
property do these Hadamard matrices have?

e. Change your program slightly to find and visualize 3×3 Hadamard matrices.
Keep in mind it is possible that for some value of n, there are no n × n
Hadamard matrices.

f. If H1 from part a. is a 2 × 2 Hadamard matrix, are the 4 × 4 matrix

(
H1 H1

−H1 H1

)
and the 8 × 8 matrix

⎛
⎜⎜⎝

H1 H1

−H1 H1

H1 H1

−H1 H1

−H1 −H1

H1 −H1

H1 H1

−H1 H1

⎞
⎟⎟⎠

Hadamard matrices? If so, plot H1, the 4 × 4, and 8 × 8 matrix to see a
pattern.

Image compression is the process of taking a high quality image and, for the
sake of transfer or storage, reducing the size of the image, getting rid of any
redundancies. In order to do this, one must first determine what part of the
image is most important to the image quality. One way to determine this is
through the use of Hadamard matrices, or Hadamard transformations.

We show a 1-D example here, using the Hadamard transformation matrix

A = 1√
2

(
1 1
−1 1

)
.

g. If the original image vector is �v =

(
v1
v2

)
=

(
4
6

)
, use the transformation

matrix A to transform �v, and determine which component v1 or v2 is more
significant based on their transformed size.

In 2-D, instead of using columns of 1’s and -1’s in A we use images created by
Hadamard matrices. For example, a 2 × 2 image would be transformed using
transformation matrix
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Matrix Decomposition with Applications

Lab 20: Singular Value Decomposition (SVD)

Introduction

Although rarely tackled at the undergraduate level, SVD is extremely useful,
particularly in statistics and signal processing. In Lab 19, we looked at square
matrices that are diagonalizable and orthogonally diagonalizable. An impor-
tant fact about the diagonalization is the resulting diagonal matrix contains
the eigenvalues of the original matrix on the main diagonal. However, not all
matrices are diagonalizable. In this case you may look at singular value decom-
position (SVD). If A is a m×n matrix, singular values, σj , are the square roots
of the eigenvalues for the matrix ATA.

The term singular value relates to the distance of the given matrix to a sin-
gular matrix. The idea behind SVD is that every matrix A, can be decomposed
into the product U

∑
V T where U and V are orthogonal matrices and

∑
ii = σi

and
∑

ij = 0 otherwise.

Recall from Lab 19 that all symmetric matrices are orthogonally diagonal-
izable. Thus for all matrices A, ATA is symmetric, we can find an orthogonal
matrix P such that ATA = PDPT .

SVD is extremely unique in that it can be found for all matrices and it can
be used to find the best\ optimal k-rank approximation of a matrix.

Calculating the SVD

The SVD for a m× n matrix A, A = U
∑

V T where
U is a m×m orthogonal matrix whose columns form an orthonormal basis for
Rm, V is a n× n orthogonal matrix whose columns form an orthonormal basis
for Rn, and

∑
is a n×m matrix such that

∑
ii = σi.

Since all symmetric matrices are orthogonally diagonalizable, we can find

97
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an orthogonal matrix P such that

ATA = PDPT = V
∑

UTU
∑

V T = V

⎛
⎜⎜⎜⎝

σ2
1 0 0 0
0 σ2

2 0 0

0 0
. . . 0

0 0 0 σ2
n

⎞
⎟⎟⎟⎠V T

and

AAT = U
∑

V TV
∑

UT = U

⎛
⎜⎜⎜⎝

σ2
1 0 0 0
0 σ2

2 0 0

0 0
. . . 0

0 0 0 σ2
m

⎞
⎟⎟⎟⎠UT .

Note also that ATAvi = σ2
i vi, AA

Tui = σ2
i ui, and Avi = σiui.

Example: Find the SVD of A =

(
1 2 3
0 0 0

)
.

ATA =

⎛
⎝ 1 2 3

2 4 6
3 6 9

⎞
⎠ with eigenvalues 14, 0, and 0.

Using normalized eigenvectors of ATA, define V =

⎛
⎜⎝

1√
14

− 3√
10

− 2√
5

2√
14

0 1√
5

3√
14

1√
10

0

⎞
⎟⎠.

Similarly use the normalized eigenvectors of AAT =

(
14 0
0 0

)
to define

U =

(
1 0
0 1

)
. Finally define

∑
=

( √
14 0 0
0 0 0

)
.

Exercise: Find the SVD for

(
1 1
0 0

)
.

Orthogonal Grids: Visualizing SVD

Here we look at a visualization of singular values. We begin by visualizing the
transformation with square matrices. Just as we have learned how to apply
linear transformations to vectors in R2, we can explore what happens if we
apply those same transformations to the Cartesian grid. If the transformed grid
lines remain orthogonal then we call this transformed grid an orthogonal grid .

The following demonstration shows linear transformations affect the orthog-
onality of grid lines.

Exercises:

a. Use http://demonstrations.wolfram.com/OrthogonalGrids/
to determine if rotation or dilation alone change the orthogonality of the
grid.
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FIGURE 5.1: Orthogonal grids

b. Setting a = 2, b = 1, c = 0, and d = 2, determine the approximate angle
of rotation, θ, that produces an orthogonal grid with axes defined by the red
vectors in the demonstration. (Keep in mind that the angle of rotation is
reported in radians). This particular transformation is called a sheer trans-
formation.

For the following exercises use the demonstration

http://demonstrations.wolfram.com/SingularValue

c. Denote the original (blue) vectors, in the demonstration, as v1 and v2, using
the same sheer transformation described in b., determine the approximate
lengths of the transformed (red) vectors, Mv1 and Mv2, when the sheer grid
axes are orthogonal. These lengths are called the singular values, σ1 and σ2,
of M .

d. Vectors u1 and u2 are orthonormal vectors in the direction of Mv1 and Mv2
respectfully when Mv1 and Mv2 are orthogonal. Find u1 and u2.

Orthogonal Components of a Vector

The orthogonal components of a vector v = vw + vw⊥ where vw in W and
vw⊥ in W⊥, the orthogonal component to W . Given an orthonormal basis
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FIGURE 5.2: Singular values related to sheer transformation

{v1,v2, · · · ,vn} for W , vw = (v1 · v)v1 + (v2 · v)v2 + · · ·+ (vn · · · v)vn.

Using the theory above, for any vector x, x = (v1 ·x)v1 +(v2 ·x)v2 and thus
Mx = M(v1 · x)v1 +M(v2 · x)v2 = u1σ1(v1 · x) + u2σ2(v2 · x).

Noting that for any two vectors u and w, u · w = uTw, we can say that
Mx = u1σ1(v

T
1 x) + u2σ2(v

T
2 x).

More generally M = U
∑

V T where U is a matrix whose columns are the
vectors u1 and u2,

∑
ii = σi and

∑
ij = 0 otherwise, and V is a matrix whose

columns are the vectors v1 and v2. This is called the singular value decomposi-
tion of M .

Exercise: Using your results from c. and d. above, determine U ,
∑

, and V

such that U
∑

V T = M where M is the shear matrix

(
k 1
0 k

)
, k = 2.

Relating Eigenvalues and Singular Values

Recall that an eigenvector, x, is the solution to (A − λI)x = 0, where λ is an
eigenvalue and A is a square matrix. This system of homogeneous equations has
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a solution precisely when A − λI is singular. We have gone into detail about
eigenvalues and the corresponding eigenvectors of square matrices in Lab 14,
but is there a similar concept for matrices which are not square?

In general, eigenvalues and singular values are not related except when the
matrix is symmetric. If a matrix A is symmetric then its singular values are the
absolute values of its eigenvalues.

Note also that if A is symmetric that the eigenvectors of A are the same as
the eigenvectors of ATA and AAT and thus the normalized eigenvectors of A
can be used to define V and U .

Exercises: Define A =

(
25 15
15 25

)
.

a. Determine the eigenvalues and singular values of A. Use the singular values
to define

∑
.

b. Find the eigenvectors of A and determine V and U .

Application to Data Imaging: Reducing Noisy

SVD is regularly used to smooth out noisy data in such problems as imaging.
Essentially by not including all of the singular values in the singular value de-
composition, one can begin to eliminate the noise in a data set.

Exercises:

a. Define the data set, data = {{0,1,0,1,0,1,0,1,0,1},{1,0,1,0,
1,0,1,0,1,0},{0,1,0,1,0,1,0,1,0,1},{1,0,1,0,1,0,1,0,1,0},
{0,1,0,1,0,1,0,1,0,1},{1,0,1,0,1,0,1,0,1,0},{0,1,0,1,0,1
,0,1,0,1},{1,0,1,0,1,0,1,0,1,0},{0,1,0,1,0,1,0,1,0,1},{1,
0,1,0,1,0,1,0,1,0}}; and Type Image[data] to see the data set without
noise.

b. Define a noisy data set , noisy=Table[data[[i,j]]+RandomReal[
{-.2,.2}],{i,1,10},{j,1,10}]; and use the Image command to visualize the
noisy data set. This noisy data set will be your matrix M for the SVD
algorithm. The noisy data set is the original data with some random noise
added in.

c. Define M = noisy, and Type SingularValueList[M] to see a list of all
of the singular values for M . Determine the dominant singular values (and
even more importantly the number of dominant singular values). These will
be the ones that you will include in your SVD to reduce the noise in the
data.
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d. Type {u,w,v}=SingularValueDecomposition[M,n], where n is the
number of dominant singular values you wish to include in the SVD (deter-
mined in part c.). Note here the matrices for the SVD will be stored in u,w,
and v. Multiply u.w.vT to find an improved data set with reduced noise. Use
the Image command to visualize this improved data.

SVD is also applied extensively to the study of linear inverse problems and
is useful in the analysis of regularization methods such as that of Tikhonov. It
is widely used in statistics where it is related to principal component analysis
and in signal processing and pattern recognition.
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Lab 21: Cholesky Decomposition and Its Application to
Statistics

LU Decomposition and Doolittle Decomposition

The LU Decomposition algorithm is used to write a square matrix, A, as a
product of a lower and an upper triangular matrix. The applications of both
the LU and Cholesky Decomposition will be discussed later on in the lab.

Recall from Lab 2, that we can perform elementary row operations on a
matrix by multiplying the matrix by elementary matrices. The steps of the LU
Decomposition of matrix A are to

1. Determine elementary matrices to transform A into an upper triangular
matrix. That is find E1, E2, · · · , Ek such that Ek · · ·E2E1A = U .

2. Write A = (Ek · · ·E2E1)
−1U = LU where L = (Ek · · ·E2E1)

−1.

If A is also symmetric, then LU = A = AT = (LU)T = UTLT . Thus
U(LT )−1 = L−1UT = D, and U = DLT , where D is a diagonal matrix. Thus
if A is symmetric we can find L and D such that A = LDLT . This is called the
Doolittle Decomposition of A.

If A is Hermitian (Lab 9), then LU = A = A
T
= LU

T
= U

T
L
T
. Therefore

U(L
T
)−1 = L

−1
U

T
= D and we can write A = LDL

T
.

Exercises:

a. Define A =

(
2 1
1 2

)
. Find the LU Decomposition and the Doolittle De-

composition of A using the algorithm above.

b. Define B =

(
2 1 + 2i

1− 2i 4

)
. Find the LU Decomposition and the

Doolittle Decomposition of B.

To use Mathematica for the LU Decomposition of an n× n matrix, type:

lu = LUDecomposition[The Name of the Matrix][[1]];

l = lu SparseArray[{i , j }/; j < i → 1, {n, n}] + IdentityMatrix[n];

u = lu SparseArray[{i , j }/; j >= i → 1, {n, n}];

If all of the entries in D are positive (and thus A is positive definite) then
we can find the Cholesky Decomposition of A.
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The Cholesky Decomposition Algorithm

If A is symmetric with real entries or Hermitian and if A is positive definite
(Lab 19) then there exists a lower triangular matrix with nonnegative diagonal
entries such that A = LL. L is considered to be the square root of A. This
decomposition of the matrix A is called the Cholesky Decomposition.

It is helpful to note that a matrix is positive definite if and only if all of its
eigenvalues are positive.

The Cholesky Decomposition Algorithm:

1. Write A = LL
T
as

(
a11 A21

T

A21 A22

)
=

(
l11 0
L21 L22

)(
l11 L21

T

0 L22
T

)
and

l11 =
√
a11.

2. In general for real matrices lii =
√
aii −

∑i−1
j=1 l

2
ij and

lik = 1
lkk

(aik −
∑k−1

j=1 lijlkj) for i > k.

For Hermitian Matrices lii =
√
aii −

∑i−1
j=1 lijlij and

lik = 1
lkk

(aik −
∑k−1

j=1 lijlkj) for i > k.

The Cholesky Decomposition is more efficient than the LU Decomposition
Algorithm for symmetric matrices and is a modified form of Gaussian Elimina-
tion.

Exercises: Let A =

(
2 1
1 2

)
and B =

(
2 1 + 2i

1− 2i 4

)
.

a. Determine if A positive definite.

b. Use the algorithm above to find the Cholesky Decomposition of A.

c. Determine if B is positive definite. If B is positive definite find the Cholesky
Decomposition of B.

d. What is the relationship between the Cholesky Decomposition and the Doolit-
tle Decomposition?

To use Mathematica for the Cholesky Decomposition, type:

u = CholeskyDecomposition[The Name of the Matrix].
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Generating Random Correlated Data Using Cholesky Decom-
position

The goal in this section is to see one way that decomposition of matrices applies
to statistics, particularly related to the generation of correlated data.

The covariance matrix captures the variance and linear correlation in mul-
tivariable data. Covariance is a measure of how much m data sets (of size N)
change together. The variance, σi, in the ith data set is shown on the main
diagonal. The covariance matrix,

Cov =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∑ x2
1

N

∑ x1x2

N

∑ x1x3

N . . .
∑ x1xm

N∑ x2x1

N

∑ x2
2

N

∑ x2x3

N . . .
∑ x2xm

N∑ x3x1

N

∑ x3x2

N

∑ x2
3

N . . .
∑ x3xm

N
...

...
...

. . .
...∑ xmx1

N

∑ xmx2

N

∑ xmx3

N . . .
∑ x2

m

N

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Notice that the covariance matrix is a symmetric matrix.

Many times when you are analyzing data, it is common to have to work
with lots of variables. Sometimes these variables are redundant (or related) and
that there are only a few true sources (or variables of relevance) of information
in the data. It is an analyst’s job to determine those sources.

The correlation matrix is directly related to the covariance matrix, as it
lists the correlation coefficients between two random variables i and j in the
ijth entry; however the main diagonal entries will have a value of 1 representing
a full positive linear correlation between a variable and itself.

Exercises:

a. The data that is in Table 5.1 is International Monetary Fund (IMF) data for
6 world regions related to GDP and distribution of GDP. Find the covariance
matrix related to the given variables. Type Var[data set name] to find the
variance of a data set and Covariance[data set 1, data set 2] to find
the covariance between data set 1 and data set 2.

b. The entries of the correlation matrix, Cor, are directly related to the covari-

ance matrix. Cor[[i,j]] = Cov[[i,j]]
σiσj

. Find the correlation matrix for the data

above.

The correlation between two variables x and y, or correlation coefficient,
will always be between -1 and 1. If the correlation coefficient is close to 1 then
we say that there is a positive linear correlation, that is, when one variable
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TABLE 5.1
IMF Data

GDP Investment Gross Volume of
Current % of GDP National Exports of
Prices Savings Goods

% of GDP % of GDP
Central and 1844.682 21.222 17.005 4.802

Eastern Europe
Commonwealth of 2658.841 24.362 27.591 4.081
Independent States
Developing Asia 12324.727 41.891 42.972 4.424

ASEAN 5 1935.796 29.827 30.624 2.822
Latin America 5765.563 21.442 19.549 3.456

and the Caribbean
Middle East, North 3422.987 24.964 36.157 3.885
Africa, Afghanistan,

and Pakistan

increases the other variable increases.

If the correlation coefficient is close to -1 then we say that there is a nega-
tive linear correlation, and thus when one of the variables increases the other
will decrease. If the correlation coefficient is close to 0 then there is no linear
correlation.

c. Using your correlation matrix from part b. find the correlation coefficient
between the Investment % of the GDP and the Gross national savings % of
the GDP and interpret the results.

d. Find the correlation coefficient between Investment % of GDP and Volume
of exports of goods and interpret this result.

e. Find the Cholesky Decomposition of the correlation matrix from part b. Type
u=CholeskyDecomposition[The Name of the Matrix].

In the next few exercises, we will use the Cholesky Decomposition of the
correlation matrix to find a list of correlated data. Note that the correlation of
the data is also dependent on the strength of correlation among the variables
in your matrix. Therefore, a set of variables which are significantly correlated
would produce even more dramatic results than those from this example. We
will start with a random set of data and then use the decomposition to correlate
it.

f. Generate a random table of 1200 real data points, example Type:

r=Table[Table[Random[Real, {-1,1}],{i,1,6},{j,1,200}];
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and plot the data using ListPlot[Flatten[r]].

g. Using Matrix u, from part d., calculate r.u to get your correlated data. To
see a graph of this data Type:

ListPlot[Flatten[r.u]]

If the correlated data (r.u) is actually more linearly correlated, you will see
a less random and more linear behavior in this second plot.
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Lab 22: Jordan Canonical Form

Introduction

A Jordan Block is of the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λ 1 0 0 0 0
0 λ 1 0 0 0
0 0 λ 1 0 0
...

...
...

. . .
. . .

...
0 0 0 0 λ 1
0 0 0 0 0 λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

A square matrix A is in Jordan canonical form,indexJordan canonical form or
Jordan normal form, if there are Jordan block matrices Ji, i = 1, 2, · · · , k such
that

A =

⎛
⎜⎜⎜⎜⎜⎝

J1 0 0 0 0
0 J2 0 0 0
0 0 J3 0 0
...

...
...

. . .
...

0 0 0 0 Jk

⎞
⎟⎟⎟⎟⎟⎠

.

Similar to diagonalizing a matrix, we say that a matrix, A, is in a Jordan
canonical form—( J if there is a matrix P such that
J = P−1AP .

Generalized Eigenvectors

If a matrix A is not diagonalizable it may be because the algebraic multiplicity
of one or more eigenvalues is greater than 1 and the eigenvectors are linearly
dependent. We can however find the Jordan canonical form of A using general-
ized eigenvectors.

If matrix A has eigenvalue λ with algebraic multiplicity k, then vector v is a
generalized eigenvector of rank k associated with λ if and only if (A−λI)kv = 0
and (A− λI)k−1v �= 0. If matrix A has eigenvalue λ with algebraic multiplicity
k then there are k linearly independent generalized eigenvectors associated with
λ. Note that a generalized eigenvector of rank 1 is the same as an eigenvector.

Example: Let A =

⎛
⎝ 2 3 1

0 2 −1
0 0 2

⎞
⎠. A has eigenvalue λ = 2 with algebraic

multiplicity 3. Compute the original eigenvector, v1 = {1,0,0}.

To find the generalized eigenvector of rank 2, we use the original eigenvec-
tor v1 to solve (A − 2I)2v2 = 0. Note that we wish to solve (A − 2I)2v2 =
(A− 2I)v1 = 0 or (A− 2I)v2 = v1 and thus v2 = {0, 13 ,0}.
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Similarly, to find the generalized eigenvector of rank 3, solve (A−2I)3v3 = 0
or (A− 2I)v3 = v2, v3 =

{
0, 19 ,− 1

3

}
.

Thus P =

⎛
⎝ 1 0 0

0 1
3

1
9

0 0 − 1
3

⎞
⎠ and P−1AP =

⎛
⎝ 2 1 0

0 2 1
0 0 2

⎞
⎠ which is the

Jordan canonical form of A. We call v1, v2, and v3 the chain of generalized
eigenvectors associated with λ = 2.

To find the Jordan canonical form of a matrix using Mathematica, type:

JordanDecomposition[The Name of the Matrix][[2]].

Exercises:

a. Let A =

⎛
⎜⎜⎝

1 2 3 4
0 1 7 8
0 0 6 12
0 0 0 6

⎞
⎟⎟⎠, is A diagonalizable?

b. A may not be diagonalizable but may be “almost” diagonalizable in its Jor-
dan canonical form. Determine the generalized eigenvectors and the Jordan
canonical form of A.

c. Determine how the values in the Jordan canonical blocks relate to eigenval-
ues of A.

d. Find the Jordan canonical form of A2 and relate it to the Jordan canonical
form of A.

e. Find the Jordan canonical form of eA and relate it to the Jordan canonical
form of A.

The Minimal Polynomial

Cayley–Hamilton’s Theorem tells us that if a square matrix A has character-
istic equation p(x) = 0 then p(A) = 0. The minimal polynomial affiliated with
matrix A, pm(x) is a unique monic, strictly increasing or strictly decreasing,
polynomial of least degree such that pm(A) = 0.

If λ1,λ2, · · · ,λk are distinct eigenvalues of A with si as the largest Jordan
block affiliated with λi then the minimal polynomial is degree

∑
si.

Example: For A =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
1 −1 1 0
1 −1 1 1

⎞
⎟⎟⎠. A has characteristic polynomial
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p(x) = (x− 1)4 and Jordan canonical form

⎛
⎜⎜⎝

1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠. Since the largest

Jordan block affiliated with λ = 1 is a 3×3 block, the the minimal polynomial is
degree 3. In this case notice that p(A) = (A−I)4 = 0 and pm(A) = (A−I)3 = 0.

Exercises: Let A =

⎛
⎜⎜⎝

1 2 3 4
0 1 7 8
0 0 6 12
0 0 0 6

⎞
⎟⎟⎠ and B =

⎛
⎜⎜⎝

4 0 0 0
2 2 3 0
−1 0 2 0
1 0 1 2

⎞
⎟⎟⎠ .

a. Find the characteristic polynomial of A and determine the degree of the
minimal polynomial affiliated with A.

b. Find the characteristic polynomial and minimal polynomial for B.

Theorems and Problems

For each of these statements, either prove that the statement is true or find a
counter example that shows it is false.

Problem 75: Let A be a 5 × 5 matrix with two distinct eigenvalues λ of
multiplicity 3 and μ of multiplicity 2. Determine all possible Jordan canonical
forms of A up to permutations of the Jordan blocks.

Problem 76: If the Jordan canonical form of A is

⎛
⎜⎜⎜⎜⎜⎝

J1 0 0 0 0
0 J2 0 0 0
0 0 J3 0 0
...

...
...

. . .
...

0 0 0 0 Jk

⎞
⎟⎟⎟⎟⎟⎠

then the Jordan canonical form of Am is

⎛
⎜⎜⎜⎜⎜⎝

Jm
1 0 0 0 0
0 Jm

2 0 0 0
0 0 Jm

3 0 0
...

...
...

. . .
...

0 0 0 0 Jm
k

⎞
⎟⎟⎟⎟⎟⎠

.

Problem 77: If the Jordan canonical form of A is

⎛
⎜⎜⎜⎜⎜⎝

J1 0 0 0 0
0 J2 0 0 0
0 0 J3 0 0
...

...
...

. . .
...

0 0 0 0 Jk

⎞
⎟⎟⎟⎟⎟⎠
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then the Jordan canonical form of eA is

⎛
⎜⎜⎜⎜⎜⎝

eJ1 0 0 0 0
0 eJ2 0 0 0
0 0 eJ3 0 0
...

...
...

. . .
...

0 0 0 0 eJk

⎞
⎟⎟⎟⎟⎟⎠

.

Theorem 78: If A is invertible then the Jordan canonical blocks of A−1 are
the same as those for A.
Theorem 79: The chain of generalized eigenvectors, v1,v2, · · · , vk associated
with λ are linearly independent.
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Project Set 5

Project 1: Singular Value Decomposition in Text Analysis

We will be analyzing the following quotes for clusters of similarities using SVD.

Quote 1: Education is the most powerful weapon which you can use to change
the world. (Mandela)
Quote 2: Education is not the filling of a pail, but the lighting of a fire. (Yeats)
Quote 3: Education is not preparation for life; education is life itself. (Dewey)
Quote 4: Real knowledge is to know the extent of one’s ignorance. (Confucius)
Quote 5: Intelligence is the ability to adapt to change. (Hawkings)
Quote 6: It always seems impossible until it’s done. (Mandela)
Quote 7: You must be the change you wish to see in the world. (Gandhi)
Quote 8: Information is not knowledge. (Einstein)

a. Create a matrix, A, with quotes as the rows and the possible words (all
words without repeats in the 8 quotes) representing the columns. Ai,j =
Frequency of word j in quote i. For example if “the” is the word represented
in column 3 then A1,3 = 2.

b. Calculate the Singular Value Decomposition of A using only the first two
singular values. Plot the points {u[[i,1]],u[[i,2]]} using ListPlot and look for
quotes that are close together\clustered.

c. This is a small data set. In order to see how to apply SVD to clustering,
discuss other places where these methods may be applicable.

Project 2: The Collatz Problem

Let f(k) =

{
3k+1

2 , when k is odd,
k
2 , when k is even.

The Collatz conjecture is that for each natural number k, the sequence

k, f(k), (f ◦ f)(k), (f ◦ f ◦ f)(k), · · ·

contains the number 1.

For each natural number n, the n × n Collatz matrix An has entries

aij =

{
1 if i = f(j),

0 otherwise.

Define the graph Gn as the directed graph with adjacency matrix An. A
chain in Gn is an ordered list of distinct vertices S = {v1, v2, · · · , vm} such
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that f(vi) = vi+1, for 1 ≤ i < m and f(vm) �= v1.

A cycle in Gn is a chain where f(vm) = v1. The length of the chain or cycle
is equal to m.

a. Find A2, A3, A4.

b. Explore An for larger values of n and make a conjecture about the charac-
teristic equation of An.

c. For n ≥ 2, make a conjecture about the number of Jordan blocks for the
eigenvalue 0 of the matrix An.

d. For n ≥ 2, make a conjecture about the maximum length of a cycle in Gn.

Project 3: Generalized Inverses

Throughout this course we have only discussed the inverse of a square matrix.
(Recall that a square invertible matrix, A, satisfies AA−1 = I and A−1A = I.)
If A is a m×n matrix, where m and n are distinct, A is not invertible. However
it may be possible to find a matrix B such that ABA = A. We call this matrix,
B, the pseudoinverse, or generalized inverse, of A. The generalized inverse of A
is denoted A+. Note that the generalized inverse is not unique.

If m ≥ n then the inverse of ATA exists and A+ = (ATA)−1AT . (Here
A+A = I holds.)

If m ≤ n then the inverse of AAT exists and A+ = AT (AAT )−1. (Here
AA+ = I holds.)

Although we only discussed LU decomposition in terms of square matrices,
the LU decomposition can be found for non-square matrices.

Given a m× n matrix A with rank r, there exists a factorization (which we
call the LU decomposition) A = PrLUPc where Pr is an m ×m permutation
matrix, L a m× r lower triangular matrix, U an r×n upper triangular matrix,
and Pc is a n× n permutation matrix.

The structure of L =

( L1

L2

)
where L1 is a r× r lower triangular invertible

matrix. The structure of U is (U1,U2) where U1 is a r × r upper triangular

invertible matrix. A+ = PT
c

( U−1
1 L−1

1 0
0 0

)
PT
r .
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a. Use your knowledge of the LU decomposition of square matrices to find the

LU decomposition of A =

⎛
⎝ 2 1 2 1

2 1 3 2
4 2 6 8

⎞
⎠.

b. Use your LU decomposition from part a. to find A+.

c. What might a Cholesky decomposition look like for a non-square matrix.
Make a conjecture about Cholesky decomposition for non-square matrices
and use your ideas to find this decomposition of A.

d. Discuss how to find a generalized inverse of a non-square matrix using your
Cholesky decomposition from c.

e. Type PseudoInverse[The Name of the Matrix] to find a generalized
inverse for A. When the matrix is not square this command uses SVD to
calculate the inverse.

f. We have seen many instances where finding the inverse of a square matrix
was important, give a few examples of where it may be important to find
the generalized inverse of a matrix.

g. Compare your results in b., d., and e. and write a summary of your findings.

Project 4: Singular Value Decomposition and Music Genomics

In Project Set 3, we discussed seriation\ordering, of musical pieces based on
similarities and the Fiedler vector. The study of how musical pieces and artists
influence each other is called music genomics . In this project, we apply singular
value decomposition to our study of music genomics. The problem will use the
data from Project Set 3, Project 6, Figure 3.6.

Use your binary data that you created in Project Set 3, Project 6 part a. or
create the data set based on the description given in part a. of that project.

a. Create the similarity matrix, S, described in part b. of Project Set 3, Project
6 and compute the singular value decomposition of S keeping only the 2
largest singular values. Type:

{u,w,v} = SingularV alueDecomposition[S,2].

b. With 20 songs in the data set, the matrix u will be a 20 × 2 matrix. The
rows of u are the new coordinates for each of the songs, si, based on this
decomposition. Plot the new coordinates of the songs to see which songs are
closest together based on the SVD algorithm. Note that you might want to
create a labeling of the songs before plotting them. To do this type:
markers = Table[i, {i, 1, 20}];
ListP lot[Table[{{u[[i, 1]], u[[i, 2]]}}, {i, 1, 20}], P lotMarkers→ markers]
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c. Let us now assume that there is one song s1 that we wish to compare with
all of the others. We will use the cosine distance from the new coordinates
of s1, Michael Jackson’s Beat It, to rank the original songs. The distance
from s1 to si is di = s1·si

||s1||·||si|| . Find di for each song, other than s1 and

rank the songs based on how close they are to s1.

d. It is possible that an artist has been influenced by Michael Jackson but not
his song Beat It. Define q1 as the average of the new coordinates for s1
and s11, both Michael Jackson songs. Find the distance from each song to
q1, di =

q1·si
||q1||·||si|| and rank the songs based on how close they are to q1.
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Applications to Differential Equations

Lab 23: Linear Differential Equations

System of Linear Differential Equations

What is a differential equation?

A differential equation is an equation that relates a function with its deriva-
tives of different orders.

A system of first order linear differential equations is of the form

x′
1 = a11(t)x1 + a12(t)x2 + a13(t)x3 + · · ·+ a1n(t)xn + f1(t)

x′
2 = a21(t)x1 + a22(t)x2 + a23(t)x3 + · · ·+ a2n(t)xn + f2(t)

x′
3 = a31(t)x1 + a32(t)x2 + a33(t)x3 + · · ·+ a3n(t)xn + f3(t)

...
...

...
...

. . .
...

...

x′
n = an1(t)x1 + an2(t)x2 + an3(t)x3 + · · ·+ ann(t)xn + fn(t),

where x1(t), x2(t), · · · , xn(t) are functions of some parameter t. This differential
equation can be written in the fundamental form

⎛
⎜⎜⎜⎜⎜⎝

x1

x2

x3

...
xn

⎞
⎟⎟⎟⎟⎟⎠

′

=

⎛
⎜⎜⎜⎜⎜⎝

a11(t) a12(t) a32(t) ... a1n(t)
a21(t) a22(t) a23(t) ... a2n(t)
a31(t) a32(t) a33(t) ... a3n(t)

...
...

...
. . .

...
am1(t) am2(t) am3(t) ... amn(t)

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

x1

x2

x3

...
xn

⎞
⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎜⎝

f1(t)
f2(t)
f3(t)
...

fn(t)

⎞
⎟⎟⎟⎟⎟⎠

.

A differential equation may have an associated initial condition, when t = 0
as well. The general solution of a differential equation is not affiliated with an
initial solution and is a family of solutions, where a particular solution is affili-
ated with a particular initial condition. If the differential equation is of the form
x′ = Ax then we say that the differential equation is a homogeneous system.

117
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Basic Examples

In order to solve the differential equation x′ = λx, think of a function whose
derivative is a scalar λ times the original function. The general solution is
x(t) = Ceλt, if the initial condition is x(0) = 1, the particular solution is
x(t) = eλt.

Exercise: Find the solution to x′ = Ax where A =

(
1 0
0 .5

)
, x =

(
x1

x2

)
.

Determine the particular solution, x1(t) and x2(t), with initial conditions
x1(0) = .5 and x2(0) = .5. Plot the solution Type:
x1[t ] := Solution Function for x1;
x2[t ] := Solution Function for x2;
ListP lot[Table[{x1[t],x2[t]},{t,0,1,.1}]]

We call this system uncoupled because the differential equations related to
x1 and x2 are not dependent on one another. We will see some coupled systems
below.

Visualizing General Solutions

Recall the First Derivative test (from Calc 1).

Given a function f(x)
1) if d

dxf(x) > 0 then f(x) is increasing,

2) if d
dxf(x) < 0 then f(x) is decreasing and

3) if d
dxf(x) = 0 then x is a critical value of f(x).

We use this information to draw a vector field, called a phase portrait , show-
ing general solutions to a differential equation.

Exercises:

a. Use the http://demonstrations.wolfram.com/
HomogeneousLinearSystemOfCoupledDifferentialEquations/
to visualize the solution to the system x′ = Ax, where

A =

(
1 0
0 .5

)
. You will have to click on the point of the initial condition

to see the particular solution.

b. Determine how the eigenvalues, affiliated with matrix A, are incorporated
into the solution to the system of differential equations.

c. Given that diagonal matrix A =

(
a 0
0 d

)
, determine the general solution

to x′ = Ax.
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FIGURE 6.1

d. Now let’s explore some coupled systems. For x′ = Ax when A =(
0 −1
.5 .25

)
the general solution looks like x = Ceλt, where λ is the eigen-

values of A. Find λ and determine the general solution.

e. Euler’s formula says that eix = cos(x) + i sin(x). Use Euler’s formula to
rewrite the particular solution to part d. when x1(0) = .5 and x2(0) = .5.

f. Given your solution

x1 = C1(e
Re[λ1 ] cos(Im[λ1t]) + ieRe[λ1] sin(Im[λ1t]))

where Re[λ1] represents the real part of λ1 and Im[λ1] represents the imag-
inary part of λ1. To see a visual representation of this solution Type:
ListP lot[Table[{C1e

Re[λ1]{Cos[Im[λ1]t],C1e
Re[λ1]Sin[Im[λ1]t]},{t,−10,2,.1}]]

g. Determine values for a, b, c, and d that would produce circular solution
curves.

For another visualization see http://demonstrations.wolfram.com/
UsingEigenvaluesToSolveAFirstOrderSystemOfTwoCoupledDifferen/
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FIGURE 6.2

Applying the Jordan Canonical Form to a Homogeneous Sys-
tem of Differential Equations

Let x′ = Jx be a differential equation where k× k Jordan block J is associated
with eigenvalue λ. Then the solution to x′ = Jx is

x(t) = eλt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 t t2

2!
t3

3! ... tk−1

(k−1)!

0 1 t t2

2! ... tk−2

(k−2)!

0 0 1 t ... tk−3

(k−3)!

...
...

. . .
. . .

. . .
...

0 0 ... 0 1 t
0 0 0 ... 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

C

where C =

⎛
⎜⎜⎜⎝

c1
c2
...
ck

⎞
⎟⎟⎟⎠ is a vector of arbitrary constants.

If the system of differential equations is x′ = Ax where A is not in Jordan
canonical form, we can use the Jordan canonical form of A, J = P−1AP , to
solve the system.

The idea behind this is that x′ = Ax, x′ = PJP−1x and thus (P−1x)′ =
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J(P−1x). If y = P−1x the system becomes y′ = Jy and the techniques above
can be used to find y. Then x = Py.

Exercises:

a. Let J =

⎛
⎝ 2 1 0

0 2 1
0 0 2

⎞
⎠ be a Jordan block associated with λ = 2. Solve

x′ = Jx where x(0) =

⎛
⎝ 1

0
0

⎞
⎠.

b. Solve the system x′ = Ax, where A =

⎛
⎝ 2 3 1

0 2 −1
0 0 2

⎞
⎠. Use the Jordan

canonical form of A to find the solution to the system of differential equa-
tions.
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Lab 24: Higher-Order Linear Differential Equations

Introduction

A general nth order linear differential linear equation is of the form G(t) =
Pn(t)x

(n) + P(n−1)(t)x
n−1 + · · ·+ P2(t)x

′′ + P1(t)x
′ + P0(t)x.

Let’s look at converting a certain type of higher order linear differential
equation into a system of first-order equations. We will be looking specifically
at higher order linear homogeneous differential equations with Pn(t) = 1.

Let x1 = x, x2 = x′ = x′
1, · · · , xn = x(n−1) = x′

n−1, then the nth order
homogeneous equation becomes the system

⎛
⎜⎜⎜⎜⎜⎝

x1

x2

...
xn−1

xn

⎞
⎟⎟⎟⎟⎟⎠

′

=

⎛
⎜⎜⎝

0 1 0 ... 0
0 0 1 ... :
: : : : 1

−P0(t) −P1(t) −P2(t) ... −Pn−1(t)

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

x1

x2

...
xn−1

xn

⎞
⎟⎟⎟⎟⎟⎠

.

We will designate this system as x′ = Ax. Recall that Ceλt is a so-
lution to x′ = Ax. If an eigenvalue, λ, of A has multiplicity k, then
C1e

λt, C2te
λt, C3t

2eλt, · · · , Ck−1t
k−2eλt and Ckt

k−1eλt are solutions to x′ =
Ax.

In addition if x1(t) and x2(t) are solutions to x′ = Ax then so is (x1+x2)(t).

Exercises:

a. Rewrite the homogeneous third-order linear differential equation x(3)−4x′′+
4x′ = 0 as a system of first-order equations.

b. Find the eigenvalues and characteristic equation of A.

c. Use the eigenvalues to find a general solution to the differential equation
from part a.

d. Rewrite the fourth-order linear differential equation

x(4) + 8x′′ + 16x = 0

as a system of first-order equations. Then use the eigenvalues to find a
general solution to the differential equation.
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Applying Cramer’s Rule to Solve Nonhomogeneous Systems

Cramer’s Rule

If A is a square n× n invertible matrix, the solution to Ax = b is

x1 =
|A1|
|A| , x2 =

|A2|
|A| , · · · , xn =

|An|
|A|

where Ai is the n×n matrix created by replacing the ith column of A with the
vector b.

Solving Nonhomogeneous nth-Order Linear Order Systems Using
Cramer’s Rule

The fundamental form for the differential equations

x(3) − 2x′′ − 21x′ − 18x = 0

is

⎛
⎝ x1

x2

x3

⎞
⎠

′

=

⎛
⎝ 0 1 0

0 0 1
18 21 2

⎞
⎠
⎛
⎝ x1

x2

x3

⎞
⎠, denoted x′ = Ax.

Matrix A has the characteristic equation (−6+r)(1+r)(3+r) = 0 and thus
the general solution is x(t) = C1e

−3t + C2e
−t + C3e

6t.

If the ith component of the general solution to the homogeneous solution
is denoted yi, then the solution to the nonhomogeneous system of differential
x(3) − 2x′′ − 21x′ − 18x = 0 is of the form Xp(t) = u1y1 + u2y2 + u3y3.

It is important to note that, in this process, we assume that u′
1y1 + u′

2y2 +
u′
3y3 = 0 and u′

1y
′
1 + u′

2y
′
2 + u′

3y
′
3 = 0.

Thus X ′
p(t) = u1y

′
1+u2y

′
2+u3y

′
3 and X ′′

p (t) = u1y
′′
1 +u2y

′′
2 +u3y

′′
3 . Plugging

all of these equations back into the original differential equations we get

u1(y
(3)
1 − 2y′′1 − 21y′1 − 18y1) + u2(y

(3)
2 − 2y′′2 − 21y′2 − 18y2)+

u3(y
(3)
3 − 2y′′3 − 21y′3 − 18y3) + u′

1(y
′′
1 ) + u′

2y
′′
2 + u′

3y
′′
3 = t.

Since y1, y2, and y3 are all solutions to the original homogeneous equation,
the above equation becomes

u′
1y

′′
1 + u′

2y
′′
2 + u′

3y
′′
3 = t.

The goal becomes to find u1, u2 and u3 satisfying u′
1y1 + u′

2y2 + u′
3y3 = 0,

u′
1y

′
1 + u′

2y
′
2 + u′

3y
′
3 = 0, and u′

1y
′′
1 + u′

2y
′′
2 + u′

3y
′′
3 = t.

In order to find Xp(t) the goal is to find u1, u2, and u3 such that
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⎛
⎝ y1 y2 y3

y′1 y′2 y′3
y′′1 y′′2 y′′3

⎞
⎠
⎛
⎝ u1

u2

u3

⎞
⎠

′

=

⎛
⎝ 0

0
t

⎞
⎠. This is of the form Ax′ = b.

Exercises:

a. For the system x(3) − 2x′′ − 21x′ − 18x = t, determine y1, y2 and y3.

b. Determine A in the system Ax′ = b affiliated with the differential equation
in part a. and use Cramer’s Rule to solve for u′

1, u
′
2, and u′

3.

c. Use your solution for u1, u2 and u3 in part b. and integrate each component
to find u1, u2, and u3.

d. Use your results from a. to find the particular solution to the non-
homogeneous system Xp(t) = u1y1 + u2y2 + u3y3.

e. Find the general solution to the nonhomogeneous system which is x(t) +
Xp(t), where x(t) is the solution to x(3) − 2x′′ − 21x′ − 18x = 0.

Theorems and Problems

For each of these statements, either prove that the statement is true or find a
counter example that shows it is false.

Problem 80. A linear combination of solutions to the differential equation
x′ = Ax is also a solution.
Problem 81. If an eigenvalue, λ, of A has multiplicity k, then
C1e

λt, C2te
λt, C3t

2eλt, · · · , Ck−1t
k−2eλt and Ckt

k−1eλt are solutions to x′ =
Ax.
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Lab 25: Phase Portraits, Using the Jacobian Matrix to
Look Closer at Equilibria

Given the system of differential equations

x′
1 = f1(x1, x2, x3, · · · , xn)

x′
2 = f2(x1, x2, x3, · · · , xn)

x′
3 = f3(x1, x2, x3, · · · , xn)

...

x′
n = fn(x1, x2, x3, · · · , xn).

The Jacobian matrix , A, has entries Aij =
∂

∂xj
fi.

To find ∂
∂xj

fi using Mathematica type:

D[fi,xj ].

Nullclines and Equilibrium points

The nullclines of a system are the curves determined by solving fi = 0 for any
i. The equilibrium points of the system, or the fixed points of the system, are
the point(s) where the nullclines intersect.

The equilibrium point is said to be hyperbolic if all eigenvalues of the Jaco-
bian matrix have non-zero real parts. In a two dimensional system, a hyperbolic
equilibrium is called a node when both eigenvalues are real and of the same sign.
If both of the eigenvalues are negative then the node is stable, or a sink, and
unstable when they are both positive, or a source.

A hyperbolic equilibrium is called a saddle when eigenvalues are real and of
opposite signs.

When eigenvalues are complex conjugates then the equilibrium point is
called a spiral point, or focus. This equilibrium point is stable when the eigen-
values have a real part which is negative and unstable when they have positive
real part.
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FIGURE 6.3: http : //www.scholarpedia.org/article/Equilibrium

Exercises:

a. Determine the Jacobian matrix associated with the system

x′ = −2x− y, y′ = −x− y.

b. Find the equilibrium points of the system and the eigenvalues of the Jacobian
matrix in part a. and use Figure 6.3 to determine the type(s) of equilibrium
points that are present in the system.

FIGURE 6.4
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c. Use http://demonstrations.wolfram.com/
VisualizingTheSolutionOfTwoLinearDifferentialEquations/ to visualize how
the equilibrium point(s) behave. Describe the behavior that you see.

d. Determine the Jacobian matrix associated with the system

x′ = x+ 2y, y′ = −2x+ y.

Find the equilibrium points of the system and the eigenvalues of the Jacobian
matrix to determine the type of equilibrium points that are present in the
system.

e. Use http://demonstrations.wolfram.com/
UsingEigenvaluesToSolveAFirstOrderSystemOfTwoCoupledDifferen/ to vi-
sualize how the equilibrium point(s) behave. Describe the behavior that you
see.

FIGURE 6.5

f. Given the nonlinear system of differential equations,

x′ = x(4 − 2x− y), y′ = y(5− x− y).

Determine the Jacobian matrix for this system.

g. Determine the nullclines and equilibrium points of the system in part e.

h. Find the Jacobian matrix of the system, in part e., at each of the equilib-
rium points. Then find the eigenvalues of each of these Jacobian matrices
to determine what type of equilibrium points are present in the system.
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Project Set 6

Project 1: Predator Prey Model

This system of nonlinear differential equations models the populations of two
species in a closed system, one species is the predator (ex. shark) and one is
the prey (ex. fish). If x(t) denotes the prey population and y(t) the predator
population, the model is of the form:

dx

dt
= x(a− αy),

dy

dt
= −y(c− γx),

where a and c are growth parameters and α and γ are interaction parameters.

FIGURE 6.6: Visualizing the predator prey behavior

a. Determine what happens to the system in the absence of prey and in the
absence of the predator.

b. Find the equilibrium points (in terms of a, c, α, and γ) and the Jacobian
matrix at each equilibrium points.

c. Determine the behaviors of the solutions at each of the equilibrium points.

d. Choose a set of parameters (values for a, c, α, and γ) and write a synopsis
of the solution curves related to these parameters. You may want to explore
different initial conditions when exploring the solution curves as well. Use
demonstration http://demonstrations.wolfram.com/PredatorPreyModel/
to help you visualize what is happening with your parameters.
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Project 2: Lorenz Equations Applied to Finance

The Lorenz system of nonlinear differential equations,

dx

dt
= σ(y − x),

dy

dt
= x(ρ− z),

dz

dt
= xy − βz,

sometimes represents chaotic behavior in different disciplines.

The nonlinear chaotic financial system can be described similarly with the
system

(Equation 1)
dx

dt
=

(
1

b
− a

)
x+ z + xy,

(Equation 2)
dy

dt
= −by − x2,

(Equation 3)
dz

dt
= −x− cz,

where x represents interest rate in the model, y represents the investment de-
mand, and z is the price exponent. In addition, the parameter a represents sav-
ings, b represents per-investment cost, and c represents elasticity of demands of
commercials.

We will explore this system in two different parts.

a. Looking only at Equations 1 and 2, find the equilibrium point(s) when
ab ≥ 1 and use the Jacobian matrix to determine what type of equilibrium
point(s) are present.

b. Looking only at Equations 1 and 2, find the equilibrium point(s) when
ab < 1 and use the Jacobian matrix to determine what type of equilibrium
point(s) are present.

c. Looking only at Equations 2 and 3, find the equilibrium point(s) when x = 0
and use the Jacobian matrix to determine what type of equilibrium point(s)
are present.

d. Looking only at Equations 2 and 3, find the equilibrium point(s) when x �= 0
and use the Jacobian matrix to determine what type of equilibrium point(s)
are present.

e. Set the parameters a = 0.00001, b = 0.1, and c = 1. Graph the solution by
finding the numerical solution to the system, Type:
s = NDSolve[{x′[t] == (1/b− a)x[t] + z[t] + x[t]y[t],
y′[t] == −by[t]− (x[t])2,z′[t] == −x[t]− cz[t],
x[0] == .1,y[0] == .2,z[0] == .3},{x,y,z},{t,0,200}];
ParametricP lot3D[Evaluate[{x[t],y[t],z[t]}/.s],{t,0,200}]
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f. Write an analysis of the graph of the solution based on your analysis in
parts a-d. If you wish to see the graph as it moves through time Type:
ParametricP lot3D[Evaluate[{x[t],y[t],z[t]}/.s],{t,0,200},
ColorFunction → Function[{x,y,z,t},Hue[t]]]

Project 3: A Damped Spring System

In this spring system, the spring has an object of mass m at the end. The
damped spring can be modeled with the differential equation

m
d2x

dt2
+ b

dx

dt
+ kx = 0

where k > 0 represents the spring constant and the second term is the damp-
ening term in the system.

a. Convert the equation to a system of first order linear equations.

b. Determine the eigenvalues of the associated matrix and use these values to
find a general solution for the damped spring system.

c. Choose values for b, k, and m such that b2−4km > 0 and explore the graph
of the solution. Explain the behavior of the spring based on the graph.

d. Choose values for b, k, and m such that b2−4km = 0 and explore the graph
of the solution. Explain the behavior of the spring based on the graph.

e. Choose values for b, k, and m such that b2−4km < 0 and explore the graph
of the solution. Explain the behavior of the spring based on the graph.

FIGURE 6.7: Solution curves for systems with a forced oscillator
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f. Set the amplitude=0 and explore the different values for the mass, m, spring
constant, k, and damping constant, b in
http://demonstrations.wolfram.com/ForcedOscillatorWithDamping/.
Be sure to look both at the phase portrait and position graph so you can
compare the results to those found in parts c. through e.

Project 4: Romeo and Juliet

Researchers have studied how to model the romance between Romeo and Juliet
with a coupled system of differential equations. The main question in this study
is how will this romance change throughout time. The two variables in this study
are r(t), which is the love\hate of Romeo toward Juliet at time t and j(t), which
is the love\hate of Juliet toward Romeo at time t.

Note that if j(t) > 0 then Juliet loves Romeo at time t, if j(t) = 0 then
Juliet’s feelings toward Romeo are neutral at time t and if j(t) < 0 then Juliet
hates Romeo at time t.

Romeo’s and Juliet’s feelings for each other depend upon their partner’s feel-
ings and thus in the differential equation model, you will find interaction terms
with interaction constants, p1 and p2. In addition, the rate at which Juliet’s love
is changing is dependent on the current amount of love that she possesses for
him. The rate at which Romeo’s love for Juliet changes is also dependent on his
current feelings. Producing the following model with the relationship between
Romeo and Juliet,

j′ = c1j + p1r,

r′ = c2r + p2j.

a. If c1 = .5, c2 = .5, p1 = −.5 and p2 = .6. Find the eigenvalues of the
Jacobian matrix and determine the type of equilibrium point that is present
in the system. With an initial condition of j(0) = 1, r(0) = 1, interpret what
will happen to Romeo and Juliet’s relationship in the long run.

b. If c1 = −.5, c2 = .5, p1 = −.5 and p2 = .6. Find the eigenvalues of the
Jacobian matrix and determine the type of equilibrium point that is present
in the system. With an initial condition of j(0) = 1, r(0) = 1, interpret what
will happen to Romeo and Juliet’s relationship in the long run.

To visualize what is happening in part b. Type:
s = NDSolve[{x′[t] == −.5x[t]− .5y[t], y′[t] == .5y[t] + .6x[t],
x[0] == 1, y[0] == 1}, x, y, {t, 0, 50}];
ParametricP lot[Evaluate[{x[t], y[t]}/.s], {t, 0, 50}]
c. Explore the parameters c1, c2, p1 and p2 and initial conditions and determine

values which will allow Romeo and Juliet’s love to live forever.
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Project 5: Modeling Epidemics

Using differential equations to model epidemics has been ongoing since the
1920s. The model that we will work with in this project is a stochastic differen-
tial equation model, predicting the probability of a behavior, and was proposed
in 1964 by Bailey as a simple epidemic model.

dpj
dt

= (j + 1)(n− j)pj+1(t)− j(n− j + 1)pj(t), when 0 ≤ j ≤ n− 1,

dpj
dt

= −npn(t), when j = n

where n is the total size of the population and pj is the probability that there
are j susceptible members of the community still unaffected by the epidemic.

a. If we write the system as x′ = Ax, find A in terms of the above system.

b. If n = 5, determine the eigenvalues of A and their corresponding eigenvec-
tors.

c. Find the Jordan canonical form, J , of A from part b. Type,

JordanDecomposition[A][[1]].

d. Again using the matrix A from part b. type,

JordanDecomposition[A][[2]]

to get the matrix S where S.J.S−1. How are the eigenvalues from part b.
related to the columns of the matrix S?

e. Use the Jordan canonical form of A from part c. to determine a solution to
the system of differential equations with initial condition p5(0) = 1.
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