

EXPLORING

ABSTRACT ALGEBRA

WITH
MATHEMATICA®

Allen C. Hibbard

Kenneth M. Levasseur

EXPLORING

ABSTRACT ALGEBRA

WITH
MATHEMATICA ®

EXIRA
MATERIALS

extras.springer.com

Allen C. Hibbard
Department of Mathematics and Computer Science
Central College
Pella, IA 50219
USA

Kenneth M. Levasseur
Department of Mathematics and Computer Science
University of Massachusetts Lowell
Lowell, MA 01854
USA
Library of Congress Cataloging-in-Publication Data
Hibbard, Allen C.

Exploring abstract algebra with Mathematica I Allen C. Hibbard,
Kenneth M. Levasseur.

p. cm.
Includes bibliographical references and index.
ISBN 978-0-387-98619-7 ISBN 978-1-4612-1530-1 (eBook)
DOI 10.1007/978-1-4612-1530-1
1. Mathematica (Computer file) 2. Algebra, Abstract-Data

processing. 1. Levasseur, Kenneth M. II. Title.
QA162.H52 1998
512'.02'028553042--dc21 98-41141

Printed on acid-free paper.

Additional material to this book can be downloaded from hHp://extras.springer.com

© 1999 Springer Science+Business Media New York
Originally published by Springer-Verlag New York, loc. in 1999
TELOS®, The Electronic Library of Science, is an imprint of Springer-Verlag New York, Inc.

This Work consists of a printed book and a CD-ROM packaged with the book, both of which are protected by
federal copyright law and intemational treaty. The book may not be translated or copied in whole or in part without
the written permission ofthe publisher Springer Science+Business Media, ILC.
except for brief excerpts in connection with reviews or scholarly analysis. For copyright information regard-
ing the CD-ROM, please consult the printed information packaged with the CD-ROM in the back of this publica­
tion, and which is also stored as a ''readme" file on the CD-ROM. Use of the printed version of this Work in con­
nection with any form of information ~torage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known, or hereinafter developed, other than those uses expressly granted in the CD­
ROM copyright notice and disclaimer information, is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not
especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchan­
dise Marks Act, may accordingly be used freely by anyone. Where those designatioos appear io the book and
Sprioger-Verlag was aware ofa trademark c1aim, the designations follow the capitalization style used by the manu­
facturer.

Mathematica is a registered trademark ofWolfram Research, loc.

Production managed by Steven Pisaoo; manufacturiog supervised by Jacqui Ashri.
Photocomposed pages prepared from the authors' Mathematica files.

987654321

ISBN 978-0-387-98619-7

Preface

• What is Exploring Abstract Algebra with Mathematica?

Exploring Abstract Algebra with Mathematica is a learning environment for
introductory abstract algebra built around a suite of Mathematica packages enti­
tled AbstractAlgebra. These packages are a foundation for this collection of
twenty-seven interactive labs on group and ring theory. The lab portion of this
book reflects the contents of the Mathematica-based electronic notebooks con­
tained in the accompanying CD-ROM. Students can interact with both the printed
and electronic versions of the material in the laboratory and look up details and
reference information in the User's Guide. Exercises occur in the stream of the
text of labs, providing a context in which to answer. The notebooks are designed
so that the answers to the questions can either be entered into the electronic
notebook or written on paper, whichever the instructor prefers. The notebooks
support versions 2.2 and 3.0-4.0 and are compatible with all platforms that run
Mathematica.

This work can be used to supplement any introductory abstract algebra text and is
not dependent on any particular text. The group and ring labs have been cross­
referenced against some of the more popular texts. This information can be found
on our web site at http://www . central. edu/eaarn. htrnl (which is also
mirrored at http://www . urnl. edu/Dept/Math/eaarn/eaarn. htrnl). If
your favorite text isn't on our list, it can be added upon request by contacting
either author. The AbstractAlgebra packages and the electronic documenta­
tion files are freely available for downloading from our web page, as are a variety
of other resources (including useful palettes and ideas for further exploration). As
we add new functionality to the packages or supplement the documentation files,

vi Preface

updates will be made available at this web site and users are encouraged to sign
up there to be notified when updates are posted .

• More about the AbstractAlgebra packages

The AbstractAlgebra packages provide the Mathematica programming code
to work with structures in abstract algebra. Currently, the packages are capable of
handling most of the types of objects encountered in a first-year undergraduate
abstract algebra course. This includes working with (finite) groups, rings, fields,
and morphisms and functions related to each of these objects. There are a large
number of built-in groups (including such standard groups as Zn, Un (units of
Zn), Sn, Dn, as well as direct products and quotients of these) and rings (including
Zn' Boolean rings, and lattice rings, as well as polynomial, matrix, and function
extension rings). One can also create functions between groups or rings and
investigate if these are morphisms. Documentation for these packages forms the
second half of this book. After an introductory chapter, there is a chapter for
working with groups, one for rings and one for morphisms. A final chapter
focuses on other functions built into the packages. This portion of the book is
intended to be a reference for working with the AbstractAlgebra packages .

• More about the Mathematica labs

Exploring Abstract Algebra with Mathematica is intended for anyone trying to
learn (or teach) abstract algebra. This course is often challenging because of its
formal and abstract nature. While some people are quite adept at thinking
abstractly, many are helped by also thinking visually or geometrically. To this
end, where possible, the Mathematica labs are designed to appeal to the visualiza­
tion of various algebraic ideas (as pioneered by Ladnor Geissinger in his software
package Exploring Small Groups). Additionally, the nature of the Mathematica
notebooks encourages an exploratory environment in which one can make and test
conjectures. Viewing the notebooks as interactive texts allows an environment
that cannot be replicated by lecture alone. While many of the labs are designed to
prepare the way for in-class discussion/lecture, they can also be used to extend
examples seen in class.

There is no assumption about being able to program in Mathematica; users only
need to know the basic concepts of using Mathematica, which are reviewed in
Lab 0 Getting Started with Mathematica (found in Appendix B). Every lab starts
with a set of goals as well as the prerequisites. Most labs are independent, though

Preface vii

a few assume some experience with a previous lab. Although Part I of this book
contains the 14 group labs followed by Part II containing the 13 ring labs, the ring
labs can just as easily be used first by those who prefer to do rings first (as one of
us does). Questions are interspersed throughout the lab at the points where it is
natural to ask them. As with any text, one does not need to complete every ques­
tion in every lab. While the length of the labs varies from 40 minutes to 90 min­
utes, they typically require about 60 minutes. (Of course, this is a function of how
many of the questions are answered.) For adopters of the book, there are provi­
sions for suggested minimal questions to be assigned, as well as listing which
ones can be considered optional. Partial solutions are also available for instructors
upon request (bye-mailing either author).

The enclosed CD-ROM contains all the labs (as Mathematica notebooks), the
User's Guide, the AbstractAlgebra packages, and a number of palettes (for
users of version 3.0 or higher-to facilitate the use of the labs and the implementa­
tion of the packages). While a copy of Mathematica is necessary to perform any
evaluations, several versions of the read-only MathReader are also included on
the CD-ROM. Instructions can be found both on the CD-ROM and in Appendix A
for installation of the packages, documentation files, and lab notebooks. Except
for the group and ring labs (and some palettes), the materials on the CD-ROM are
also on our web site. (The web site also has notebooks containing just the ques­
tions that students can use as "answer sheets," as well as other resources.)

" Acknowledgments

We would like to thank the many people who have provided us with support for
this project. This includes Stan Seltzer and Connie Elson (both at Ithaca College),
whose NSF-sponsored workshop initially brought us together in 1992 to work on
this project. We appreciate being involved with the Interactive Mathematics Text
Project (IBMlMANNSF funded) which provided encouragement and support for
several summers in the early years of this project. We are thankful to Wolfram
Research, Inc., for providing technical tools, support staff, and the opportunity to
participate in their Visiting Scholars program. In particular, Brett Barnhart, Andre
Kuzniarek, and Paul Wellin were helpful on numerous occasions. We appreciate
the ongoing support of our institutions, Central College and University of Massa­
chusetts Lowell. Furthermore, we appreciate our students for their patience while
testing these labs, and particularly Rochelle Rucker and Michael Thompson for
their steadfast assistance in testing, editing, proofing, and converting notebooks.
We are pleased with the folks at Springer-Verlag who helped bring this project to
a conclusion, particularly Keisha Sherbecoe for her attention to details and Steven

viii Preface

Pisano for his expertise and helpfulness. We also appreciate Stan Wagon (Macal­
ester College) for initially encouraging the publication of this project with
Springer-Verlag. Our indebtedness also goes to the number of testers of the
packages and labs, particularly to Eric Gossett (Bethel College) and John Kiehl
(Soundtrack Recording Studios), as well as reviewers Tom Halverson (Macalester
College) and Garry Helzer (University of Maryland). Finally, we would like to
thank our families who have supported us throughout this project; Al particularly
appreciates his daughter Christina who provided constant companionship at his
desk while working, and Ken appreciates his wife Karen, and children, Joe,
Kathryn, and Matt for their encouragement.

Al Hibbard
hibbarda@central.edu

Ken Levasseur
Kenneth_Levasseur@uml.edu

Contents

Preface v

PART I GroupLabs
1 Using Symmetry to Uncover a Group................................. 3

Getting started? Begin here • A symmetry of an equilateral triangle •
Are there other symmetries? • Multiplying the transformations • Are
there any commuters? • Is it always bad to be closed-minded? • We
should try to find our identity • Is it perverse to not have an inverse?
• Should we associate together? • What else? • Let's group it all
together

2 Determining the Symmetry Group of a Given Figure 11
Symmetries and how to find them • Your turn

3 Is This a Group?... 17
When do we have a group? • Your turn

4 Let's Get These Orders Straight... 20
Order of g and its inverse • Distribution of the orders of elements in
Zn • Another look at orders • What is P(I g 1= n) for g E Zn? •
More questions about Un

5 Subversively Grouping Our Elements................................ 32
When do we have a subgroup? • Subgroups of Zn • P(H < G) for a
random subset H of G = Zn • Necessary elements for full closure •
Subgroups of Un

x Contents

6 Cycling Through the Groups.. 45
What, when, how, and why about cyclic groups • Cyclicity of
Zm EB Zn • Structure of intersections of subgroups of Z

7 Permutations ... 53
What is a permutation? • Computations with permutations •
Applications of permutations • Questions about permutations

8 I somorphisms... 64
What is an isomorphism? • Creating Morphoids • Seeing
isomorphisms

9 A utomorphisms 74
Automorphisms on Zn • Inner automorphisms

10 Direct Products.. 81
What is a direct product? • Order of an element in a direct product •
When is a direct product of cyclic groups cyclic? • Isomorphisms
among Un groups

11 Cosets.. 88
Cosets, left and right • Properties of cosets

12 Normality and Factor Groups.. 95
Normal subgroups • Making a new group • Factor groups

13 Group Homomorphisms 101
What is a group homomorphism? • The kernel and image •
Properties that are preserved by homomorphisms • The kernel is
normal • The First Homomorphism Theorem • The alternating
group-parity as a morphism

14 Rotational Groups of Regular Polyhedra.......................... 111
The rotational group of the tetrahedron • Further exercises

Contents xi

PART II Ring Labs
1 Introduction to Rings and Ringoids 119

Getting started? Begin here • Ringoids and rings • Properties of
rings • Additional exercises

2 Introduction to Rings, Part 2.. 127
Units and zero divisors • Integral domains • Fields • Additional
exercises

3 An Ideal Part of Rings .. 134
What is the ideal part of a ring? • Ideals factor into other ring
properties

4 What Does Zbl/(a + b i) Look Like? 140
Example 1 • Example 2

5 Ring Homomorphisms 148
Morphoids on rings • Ring homomorphisms • The kernel and
image • The kernel is an ideal • One-rule Morphoids • The
Chinese Remainder Theorem

6 Polynomial Rings .. 156
Introduction to polynomials • Divide and conquer

7 F aetoTing and I rreducibility ... 167
Introduction to factoring and irreducibility • Some techniques on
testing the irreducibility of polynomials • More polynomials for
practice • Toolbox of theorems • Final perspective

8 Roots of Unity.. 182
Introduction • A closer look-graphically • Another
look-algebraically

9 Cyclotomic Polynomials .. 190
Introduction • Search for gn(x) • Some properties of <l>n(x)

xii Contents

10 Quotient Rings of Polynomials ... 200
Polynomials over a field • A homomorphism based on
Polynomial Remainder • Defining a quotient ring of
polynomials • The PolynomialRemainder function () is indeed a
homomorphism • Is Va field? • Is V what we claimed?

11 Quadratic Field Extensions .. 209
The general problem • An extension of Z3 using Mathematica •
Theorems motivated from this lab

12 Factoring in Z['v'd) ... 215
Introduction to divisibility • Associates, irreducibility, and norms •

Units in Z[Y'd] • Factoring 46 in Z[n] · Is Z[H] a UFD?

13 Finite Fields .. 227
Creation of finite fields • Finite field theorems and illustrations

PART III User's Guide
1 Introduction to AbstractAlgebra................................ 237

Packages in AbstractAlgebra • Basic structures used in
AbstractAlgebra • How to use a Mode • Using Visual
mode with "large" elements • How to change the Structure

2 Groupoids... 252
Forming Groupoids • Structure of Groupoids • Testing the
defining properties of a group • Built-in groupoids • Uses of the
Cayley table • Building other structures • Other group properties

3 Ringoids.. 321
Forming Ringoids • Structure of Ringoids • Testing properties
of a ring • Built-in Ringoids • Using Cayley tables • Building
other structures • Extension ringoids • Polynomials over a ringoid •
Matrices over a ringoid • Functions on a ringoid • Finite fields

4 Morphoi ds.. 393
Forming Morphoids • Structure of Morphoids • Built-in
Morphoids • Properties • Kernel, Image, and
Inverselmage • Automorphisms • Visualizing Morphoids

Contents xiii

5 Additional Functionality ... 414
Global variables and options • Working with permutations and

cycles • Working in Z[v'd] • Miscellaneous functions

Appendix A.. 447
Installation instructions • References

Appendix B-Lab 0 Getting Started with Mathematica 450
The In's and Out's of evaluating Mathematica expressions • Some
syntax basics • Help • Using Mathematica to learn a mod idea •
Divide and conquer • It all adds up

I ndex.. 459

Part I

Group Labs

zeal x + y Z[4] x + y

Group Lab 1

Using Symmetry to Uncover a

Group

III 1.1 Prerequisites

None.

III 1.2 Goals

In this lab, we try to discover some of the basic properties of a group by consider­
ing the symmetries of a regular triangle.

III 1.3 Getting started? Begin here

In most of the labs in Exploring Abstract Algebra with Mathematica, one needs to
first read in the Mathematica packages necessary to provide the functionality
within the lab. This is done using a Needs statement. (By opening the
AbstractAlgebra'Master' package, all the functions in the AbstractAl­
gebra packages are made available.) On opening this notebook, you were
probably asked, "Do you want to automatically evaluate all the initialization cells
in the Notebook?" If you answered affirmatively, then you do not need to evaluate
the following cell (but it doesn't hurt to do so). If you answered negatively, then
you need to evaluate this cell.

4 Group Lab 1

Needs[nAbstractAlgebra'Master'n];
SwitchStructureTo[Group];

1.4 A symmetry of an equilateral triangle

Suppose we consider an equilateral triangle with its vertices labeled with the
numbers 1, 2, and 3. (Evaluate the cell, but do not worry about the parameters 3,
{l, 2, 3}, and "D.")

triangle = Showl'igure[3, {1, 2, 3}, nDn];

We might think about how we can "move" this triangle so that after the
"movement," it appears as if it was not moved at all, except for a new ordering of
the labels on the vertices. For example, suppose we draw an imaginary line from
the vertex labeled 3 perpendicularly to the side opposite and then reflect the
triangle in (across) this line. (Evaluate the following cell.)

Show [triangle, Epilog -+ {Blue, Line [{ {O, -1. 5}, {O, 2.0}}]}];

After reflecting the triangle across the blue line, we have the following result
(evaluate).

ShowPermutation [{1 -+ 2, 2 -+ 1, 3 -+ 3}]

This reflection is an example of a (geometric) transformation called a symmetry.
Note that there are changes in the location of the vertices: vertex 1 went to the
previous location of vertex 2, vertex 2 went to vertex 1, and vertex 3 went back to
itself. This is called a permutation of the vertices. One way to represent this
permutation in Mathematica is by

{1--72, 2 --71, 3 --73}.

Note that even though vertex 3 went to itself, it needs to be included in the permu­
tation list. Observe that braces are used to contain the whole list. Let's denote this
first permutation by p [1] . (Yes, evaluate it.)

Clear[p]
p[l] = {1-+2, 2-+1, 3-+3}

1.5 Are there other symmetries?

What other symmetries (permutations) are there? Let's label each of the others
p [2] , p [3] , and so on and create the rules to form them. (Note that the rule
symbol -> is a hyphen followed by a greater-than sign; if you hit the escape key
before and after typing ->, the result is --7.) As you discover each permutation,

Using Symmetry to Uncover a Group 5

type p [k] = {l -7 x, 2 -7 y, 3 -7 Z }, where you supply appropriate
values for k, x, y, and z. We give you one more.

p[2] = {1-+2, 2-+3, 3-+1}

To test if p [k] is really a valid permutation of this triangle and to see the result
geometrically, type ShowPermutation [p [k]].

ShowPermutation[p[2]]

Note that the permutation {l -7 2, 2 -7 3, 3 -7 l} can also be determined
by considering only the second "coordinates" of each rule (x -7 y), since the first
coordinates are always the same for each permutation. Here is a matrix view of
this permutation.

PermutationMatrix[{l-+ 2, 2 -+ 3, 3 -+ l}]

Note how each column represents a rule of the form x -7 y. Therefore, the list
{2,3,1}canalsobeusedtorepresentp[2] = {l -72,2 -73,3 -71}.
So one could type

p[2] = {2, 3, l}

and then

ShowPermutation[p[2]]

would give the same result. (You have been evaluating each input cell as you read
along, right?)

The function ShowPermutation is set up to accept either notation.

Q1. Describe geometrically what the permutation p [2] does to the triangle.

Q2. How many other symmetries of the triangle (in permutation form) can you
find? Label them p [3] and so on as indicated above, and test each one (with
ShowPermutation) to see if the symmetry does what you thought. As you
define each p [k] , place in (* comments *) (or in a text-type cell) a geometric
description of what the symmetry does to the triangle.

Q3. How many (distinct and unique) symmetries have you found altogether
(including p [1] and p [2])?

6 Group Lab 1

1.6 Multiplying the transformations

Now we would like to know the interrelationships, if any, between these various
symmetries. For instance, suppose we first applied the symmetry given by permuta
tion p [1] and then followed this with the symmetry given by p [2] . What would
the figure look like? Is there a permutation in your list that would give this
"product?"

Q4. Take a moment and see if you can figure out what the product of p [1]
followed by p [2] would be. If you have an answer, how did you come up with
it?

In Group Lab 7 we wi11learn more of the details of how we "multiply" permuta­
tions, but for now just assume that it can be done and allow Mathematica to do it
for you. We use the function Mul tiplyPermutations to do this. (If you do
know how to do this, we assume the product works from right to left.) For ques­
tion 4, evaluate the following to obtain the result. (First we review the definitions
of the permutations p [2] and p [1] .)

pel]
p[2]

prod = HultiplyPe:rmutations [p [2] , P [1], Mode ~ Textual]

This yields the permutation that is the product of p [1] followed by p [2] . (Note
the order of the arguments in MultiplyPermutations.) Now evaluate the
following cell.

ShowPe:rmutation[prod]

This draws the original triangle and the triangle resulting from the product of
p [1] followed by p [2] . How does the second triangle compare to the first and
how does the answer given for prod (which should have been {3, 2, I}) relate to
the transformation that changes the first triangle into the second?

Q5. Does the permutation given by {3, 2, I} represent a symmetry of the trian­
gle? If so, describe the symmetry geometrically. Is it among the list of permuta­
tions you found in question 2?

1.7 Are there any commuters?

Evaluate the following.

Using Symmetry to Uncover a Group 7

IlUltiplyPermutations[p[l], p[2], Mode -+ Textual]

Q6. Did you get the same result as when you did Mul tiply­
Permu ta t ions [p [2] I p [1]]? Why or why not? What does this say
about the operation of multiplying permutations? Can you think of a mathemati­
cal term used to describe this?

III 1.8 Is it always bad to be closed-minded?

Now we want to set up a complete "multiplication" table of all possible products,
as we did with addition and multiplication when a student in elementary school.
Set up your table as follows.

p[l] p[2] p[3]
p[1]

p[2]

p[3]

The top row and left column simply act as labels for the table. The body of the
table is filled in by multiplying the row entries by the column entries. For exam­
ple, the entry in row 3 and column 2 can be obtained by evaluating

IlUltiplyPermutations[p[3], p[2]]
(* note that this product only makes sense if

you have already defined p[3] as a permutation *)

Note the order: the entry in position (i, j) (row i, column J) results from first
performing the permutation corresponding to the one in column j followed by the
one in row i, but when one enters this into the function MultiplyPermuta­
tions, the order is reversed. (You might wonder why this is the case. It will
become clearer when you study permutations in more detail, but for now consider
as a hint that a permutation is really a function and mUltiplying permutations is
actually composing functions, usually done from right to left.)

Q7. Complete the table (using p [i] notation for each product, where possible).

If you find that you obtain a product that is not in your original list, perhaps you
need to look over your list and possibly make changes to it. Eventually, your list
should terminate and the result of the product of any two should be one that is

8 Group Lab 1

already in your list. In this case, the members in the body of the table should
consist of only the elements listed in the column or row headings. We then say
that the set of elements (symmetries of the triangle, as represented by the permuta­
tions, in this case) is said to be closed under this product.

~ 1.9 We should try to find our identity

Q8. When we consider addition of real numbers, we have r + 0 = 0 + r = r for
all real numbers r. Similarly, with multiplication of real numbers, we have
r * 1 = 1 * r = r. Does an analogous situation occur with the symmetries of the
triangle? Is there any symmetry (say, permutation p [j]) which, when followed
by another symmetry (p [i]), yields the product consisting of simply the
second symmetry (p [i]) (i.e., Mul tiplyPermutations [p [i] I

P [j]] = p [i])? If so, what is this p [j] and what is special about it? Do
we have a name for such objects as 0, 1, and p [j] ?

1.10 Is it perverse to not have an inverse?

In section 1.9 we found an identity (or should have found one) that takes every
vertex of the triangle back to itself (i.e., leaves the triangle unchanged). Recall
that with addition of real numbers, since 0 is the additive identity, for any real
number r, there is another real number called -r such that r+ (-r) = (-r) + r = O.
Similarly, with multiplication of real numbers, for any r,* 0, there exists 1- such

r
that r* 1- = 1- * r = 1 (and recall that 1 is the multiplicative identity). r r

Q9. Given a symmetry (permutation) p [i] , is there another symmetry p [j]
such that MultiplYPermutations [p [i] I p [j]] yields this identity
found above? If so, then we say that p [j] is the inverse of p [i] (and p [i] is
the inverse of p [j]). Does every symmetry found (when answering question
7) have an inverse? For each of the symmetries, determine the inverse (where
possible). Below, list the elements and their corresponding inverses? Any
observations?

1.11 Should we associate together?

Again, appealing to addition and multiplication of real numbers, recall that

(a + b) + c = a + (b + c) and (a b) c = a (b c)

Using Symmetry to Uncover a Group 9

for all real numbers a, b, and c. These equations say that both addition and mul­
tiplication of real numbers satisfy the associative property.

Another question one might ask is whether we have associativity of permutations.
In other words, is it true that Mul tiplyPermutations [p [i), Mul tiply­
Permutations[p[j], p[k]]] = MultiplyPermutations[Multi­
plYPermutations [p [i], p [j]], p [k]] for all i, j, and k? This is
comparable to asking if a + (b + c) = (a + b) + c. (Convince yourself of this.)
Following is the Mathematica code to determine this. You have a choice of
checking every possibility or you can choose to do a certain number of random
checks. Do one test or the other. (If you check every possibility, there are 63 =
216 tests in this case. Do you know why?)

• Test every possibility

To do the following test, it is assumed that you found exactly six permutations
(which is how many there are) and that you have defined them in the variables
p[1],p[2], ... p[5],p[6].

as soc = True;
Do[temp = multiplyPermutations[p[i], NUltiplYPermutations[

p[j], p[k]]] === multiplyPermutations[
NUl tiplyPermutations [p [i], p [j]], p [k]];

as soc = And[assoc, temp], {i, 6}, {j, 6},
{k, 6}];

as soc

• Test a random number of times

To do the following test, it is assumed that you found exactly six permutations
(which is how many there are) and that you have defined them in the variables
p[1],p[2], ... p[5],p[6].

checkThisMany = 32;
randfn[_] := Randam[Znteger, {1, 6}]
assoc = True;
Do[index1 = randfn[1]; index2 = randfn[2];

index3 = randfn[3]; temp = NUltiplyPermutations[p[index1],
NUl tiplyPermutations [p [index2], p [index3]]] - -­

NUltiplyPermutations[NUltiplyPermutations[
p[index1], p[index2]], p[index3]];

as soc = And[assoc, temp],
{checkThisMany}];
assoc

10 Group Lab 1

• Now the question

Q10. Do you think that mUltiplication of these symmetries (permutations) is
associative? Why or why not?

1.12 What else?

QU. What other observations, if any, can you make from these explorations?

1.13 Let's group it all together

The collection of the six symmetries of the triangle-you found all six,
right?-with the product of one transformation followed by another (but here
viewed as six permutations with multiplication of the permutations) is an example
of a set with a binary operation. Below is a formal definition of what we have
been investigating.

Given a set G and an operation *, we call G a group if it meets the following
conditions.

1. The set is closed under this operation (i.e., g * h is in G for all g
and h in G).

2. Among the elements there exists an identity (i.e., there exists
an e in G such that e * g = g * e = g for all g in G).

3. Each element has an inverse among the set of elements (i.e.,
for all g in G, there exists h in G such that g * h = h * g = e).

4. The operation is associative (i.e., j * (g * h) = (f * g) * h for all
j, g, and h in G).

Furthermore, if we have g * h = h * g for all g and h in G, we call G a commutative
(or Abelian) group. We will be studying the properties of groups in this course.

Q12. Is the set of six symmetries (permutations) with the operation of following
one transformation by another (i.e., mUltiplying the permutations) an example
of a group? Why or why not? Is it Abelian? Why or why not?

Q13. Determine another example of a set with an operation that is a group?

Group Lab 2

Determining the Symmetry Group

of a Given Figure

2.1 Prerequisites

Though not absolutely necessary, it would be useful if you completed Group Lab
1 before attempting this lab.

2.2 Goals

In this lab, we continue to look at symmetries. We resume where Group Lab 1 left
off. The goal is to find the complete list of symmetries (via permutations) for a
variety of (more or less) random figures. When "complete," this list should be the
"symmetry group" of the object.

~ 2.3 Symmetries and how to find them

To start this lab, the following package needs to be read into Mathematica.

Needs[nAbstractAlgebra'Haster'n];
SwitchStructureTo[Group];

Consider the following array of figures.

12 Group Lab 2

4 1 9 •
7 2

• 3 2 5 4
4 1 5 •

4 \

• 3

When we look for the "symmetry group" of anyone of these objects, we look for
a complete list of symmetries for the object. (Technically, a symmetry of an
object F is an isometry 7r that maps F onto itself, with distances being preserved.
Since an isometry is actually a function, the "natural" way of combining symme­
tries is to use function composition.)

Symmetries can come in several varieties. They often involve rotations about a
certain point (the "center") through some angle. For example, if we rotate the
figure at the upper left about the center of the rectangle (where the diagonals
intersect) through an angle of 180°, the figure is placed back onto itself. Note that
the figure does NOT include the colored and labeled dots used to mark the verti­
ces; these are only tags to help coordinate the movements. With this rotation,
observe that vertices 1 and 3 are interchanged, as are vertices 2 and 4. We can
describe this by

{1 -7 3, 2 -7 4, 3 -7 1, 4 -7 2}

or, in block permutation notation,

PermutationMatrix [{ 1 -+ 3, 2 -+ " 3 -+ 1, , -+ 2}]

or, as you may recall from the last lab, {3, 4, 1, 2}, which constitutes the second
coordinates or row of the representations above. Each of these is a representation
for the permutation of the vertices that corresponds to the described rotational
symmetry. Thus, we can say that the permutation {3, 4, 1, 2} represents one of
the symmetries of this figure. (What are the others?)

Consider the rectangle again. If we imagine a horizontal line parallel to the base
and through the center and consider it a line of reflection, then we have another
common type of symmetry: the reflection. In this case, we could also describe the
symmetry by what happens to the vertices. We would say that

Determining the Symmetry Group of a Given Figure 13

{1 -7 2, 2 -7 1, 3 -7 4, 4 -7 3}

or

Permutatiollllatrix[{1 ... 2, 2 ... 1, 3 ... 4, 4 ... 3}]

or {2, 1, 4, 3} describes the permutation of the vertices that corresponds to this
reflectional symmetry.

There are several questions you may ask yourself. Is every symmetry either a
rotation or a reflection? (You might consider the case of a finite object, such as
the rectangle in the figure, in contrast with an infinite object, such as an infinitely
long wall-papered wall.) You might also wonder if every object has both rota­
tional and reflectional symmetries. For this, consider the lower right figure, which
has extra "wings" off the edges.

• 2.3.1 Getting started

Evaluate the following cell to see the figure you will first consider.

firstfig = ShowOne [Lab2]

Your task is to determine the symmetry group for this figure, using permutations
as the elements. In other words, as in the first lab, you are to determine the symme­
tries (transformations) in the form of permutations that will move the figure onto
itself.

As before, you may express your permutations in either the form {a, b, c, ... } or
the form {1 -7 a, 2 -7 b, 3 -7 C, ••• }. Also, as in Group Lab 1, use p [1]

{a, b, c , ... } or p [1] = {1 -7 a, 2 -7 b, 3 -7 C, ••• } to define your
first permutation, p [2] for your second, and so on.

Following is a list of functions that can be used for bookkeeping and testing while
determining the permutations in the symmetry group of a figure. At the end of this
section is a button that will bring up a palette to make working with these func­
tions a bit easier.

• 2.3.2 Functions/variables to use in this lab

From Group Lab 1, you may already be familiar with how the functions ShowPer
mutation and MultiplyPermutations work; to refresh yourself, simply
type? followed by the command.

? ShowPermutation

14 Group Lab 2

?MUltiplypermutatians

What follows is a short description of the other functions that can be used in this
lab.

Type ShowOne [Lab2] to get a figure with which to work.

?ShowOne

If you are fully confident that p [i] is indeed a permutation of the vertices and is
a symmetry of the figure, then type AddPermToGroup [p [i]] , which will add
it to the list of all your symmetries.

? AddPermToGroup

DropPermFromGroup [p [i]] removes the permutation p [i] from the
accumulated list of symmetries.

?DropPermFromGroup

To see the list of symmetries accumulated thus far by the previous two functions,
~pe MySymmetryGroup.

MySymmetryGroup

If you have a permutation p [i] that you believe is asymmetry, but you want to
check to be sure, type TestPermutationQ[p[i]] and either True or
False will be returned.

?TestPermutationQ

To determine whether the accumulated permutations (as found in MySymmetry­
Group) are all proper elements of the symmetry group of the figure, calling
GoodGroupElementsQ [] answers with True or False.

?GoodGroupElementsQ

When you believe that you have found all the symmetries and have added them to
MySymmetryGroup via AddPermToGroup, then you may check to see if
your group is correct (complete) by typing CompleteGroupQ [] , which will
return True or False and possibly additional information.

? C~leteGroupQ

If you get stuck trying to think of what other possible permutations might yield a
symmetry, ~pe ShowPossiblePermutations [n] (n being the number of
vertices if a regular n-gon is shown, or 2 if a zee or rectangle is shown). You are
given a list of all possible permutations.

Determining the Symmetry Group of a Given Figure 15

?ShowPossiblePermutatioDs

ShowPossiblePermsAsRules [n] is the same as the last function except
that the permutations are listed as rules, which may be helpful in using the
RestrictList function described below.

?ShowPossiblePermsAsRules

RestrictList [r] can be used to restrict the list produced by ShowPossi­
blePermsAsRules when you know that you want one vertex to go to another
specific vertex but want to explore what can happen with the other vertices. Note
that r should be in the form i ~ j, {i ~ j}, or as a list of either of these.

? RestrictList

It is easy to forget this list of functions. By typing AvailableFunctions
(after evaluating the following), you can have the list of names always available.

Availablel'uDctioDs : = {ShowPermutatioD, IlultiplyPermutatioDs,
Showone, AddPermToGroup, DropPermPromGroup,
nM¥SymmatryGroupn, TestPermutationQ, GoodGroupBlementsQ,
CompleteGroupQ, ShowPossiblePermutatioDs,
ShowPossiblePermsAsRules, RestrictList};

AvailableFunctions

As an alternative to typing the functions just described, there is a palette specifi­
cally designed for this lab. This also includes a tool that makes the specification of
permutations easier. Click here to use this palette .

• 2.4 Your turn

To see the figure again for the first exercise, evaluate the following cell. (Note:
You should have already viewed it once when evaluating firstfig = Show­
One [Lab2] in the section 2.3.1.)

firstfig[[1]] II Show;

Ql. Using the information found in section 2.3.2, determine the complete list of
all the symmetries (in the form of permutations) for the given figure. Use p [i]

notation for each one (or ppp [i] if used by one of the functions described
above). Show all work in establishing this list. (Or show your work with the
Permutation Specifier, found in a palette for this lab.)

AvailableFuDctioDs
(* evaluate to be reminded what functions are available *)

16 Group Lab 2

Q2. Use the function Mul tiplyPermutations as in the Group Lab 1 to
determine the Cayley table for the symmetry group of this figure. (Multiply­
Permutations [p [i] I P [j]] determines the permutation of p [j]
followed by p [i] .)

Q3. Repeat the steps in questions 1 and 2 with secondfig.

Clear[p, ppp]
secondfig = ShowOne [Lab2]

AvailableFunctions
(* evaluate to be reminded what functions are available *)

Q4. Repeat the steps in questions 1 and 2 again.

Clear[p, ppp]
thirdfig = ShowOne [Lab2]

Group Lab 3

Is This a Group?

• 3.1 Prerequisites

To complete this lab, you should have already seen the definition of a group and
become familiar with the basic group properties: being closed, having an identity,
inverses, and associativity (and commutativity).

• 3.2 Goals

Does a set of elements and some operation on the elements form a group? This lab
explores a number of pairs consisting of a set and an operation. A Cayley table for
the set and operation is presented and the user is asked which of the defining
properties of a group hold for this pair.

• 3.3 When do we have a group?

We know that before we can call a set with an operation a group, it must satisfy
certain properties. Namely, the set must be closed under the operation, there must
be an identity element, each element must have an inverse, and the operation
needs to be associative. Our goal is to determine which, if any, of the above
properties hold when presented a set with an operation. Before we begin, we need
to read in the Mathematica code used in this lab.

18 Group Lab 3

Needs[nAbstractAlgebra'Master'R);
SwitchStructureTo[GrOup);

When you evaluate ShowOne [Lab3] to obtain the first problem, you will be
shown something like this.

ShowOne [Lab3)

The alleged group consists of the set of elements
{4, 0, 1, 3, 2} and the operator is myPower. This is case
15. Below is the Cayley table for this
alleged group.

" 2 4 1 3 0

2 4 16 2 8 1

4 16 256 4 64 1

1 1 1 1 1 1

3 9 81 3 27 1

0 0 0 0 0 lIne

Note that the Cayley table may have the elements (in the headings) in a different
order than that in the written description. (Before making the table, they are
randomized-for this lab only.) The properties of closure, identity, and inverses
should be readily observable from this Cayley table. Associativity is a little more
difficult. We will use a function that randomly tests for associativity, testing 25
triples by default. Since what is shown is identified as "case 15," the argument to
our function is LG [15] (for Lab Groupoid 15.). Evaluate the following cell.

RandomAssociativeQ[LG(15)]

If you wish to change the number of tests, add this number as the second argu­
ment:

RandomAssociativeQ[LG[15],30]

Is This a Group? 19

WI 3.4 Your turn

Ql. Use ShowOne [Lab3] to bring up an alleged group. With careful examina­
tion of the Cayley table, you should be able to answer the following. (Also
indicate the "case number" of the alleged group.)

(a) Determine if the set is closed under the given operation. If so, why is it,
and if not, why not?

(b) Determine if there is an identity element. If so, state it, and if not, why
not?

(c) Determine the inverse of each element, where one exists.

(d) Use the associativity test to make a conjecture whether the operation is
associative or not. (Remember to specify the particular case number in the
argument of LG [] .)

(e) Although not a required property to be a group, determine if this opera­
tion is commutative.

(f) Finally, determine whether the set with the operation is indeed a group.
(Guess, if you are not fully convinced about the associativity.)

ShOWOne [Lab3]

Q2. Repeat the instructions in question 1. (Again, indicate the "case number" of
the alleged group for this question.)

ShOWOne [Lab3]

Q3. Repeat the instructions in question 1. (Again, indicate the "case number" of
the alleged group for this question.)

ShOWOne [Lab3]

Q4. Repeat the instructions in question 1. (Again, indicate the "case number" of
the alleged group for this question.)

ShOWOne[Lab3]

Group Lab 4

Let's Get These Orders Straight

4.1 Prerequisites

To complete this lab you should be familiar with the basic definition of a group.
You should also be familiar with the definition of the order of an element in a
group. (Recall that the order of an element g of a finite group G is the least
positive integer k such that gk is equal to the identity of G.)

~ 4.2 Goals

In this lab, we look at issues regarding the order of groups and their elements.
First we consider the relationship between the order of g and the order of the
inverse of g. We then look at the distribution of the orders of elements in Zn,
followed by an inspection of which elements share a common order. We then
begin an exploration regarding the probability that an arbitrary element of Zn will
generate the whole group. Finally, we consider the order of the group Un (the
multiplicative units of Zn) and try to find an expression for this order in terms of
n.

4.3 Order of g and its inverse

Suppose we consider any group G and take a random element g from G. The issue
we would like to consider is how the order of g, denoted 1 g I, compares with the
order of its inverse, 1 g-l I.

Let's Get These Orders Straight 21

For this section of the lab, the groups we consider come from the following list:
Zn (1 < n < 31), Un (2 < n < 41), Dn (1 < n < 8), GaussianUni ts ({± 1, ±i},
under multiplication), and In tegerUni ts ({ ± I}, under multiplication).

The function ShowOne [Lab4] presents a random group G from the preceding
list and then chooses a random element g from the chosen group. First, we read in
the Mathematica code needed for this lab; evaluate the following two cells.

Needs["AbstractAlgebra'Master'II];
SwitchStructureTo[Group];
SetOptions [ListPlot, PlotStyle -+ RGBColor [0, 0, 1]];

{G, g} = ShowOne [Lab']
op = Operation [G] ;

This gives a random group G and an element g in G; we have also defined op as a
variable for the group operation.

We now wish to determine the order of g in G. We can do this by successively
applying the operation to g.

op[g, g]

This calculates g2. To calculate g3, apply op to g and the last result (indicated by
%).

op[g, %]

To calculate g4, apply op to g and the last result (%), and so on.

op[g, %]

Ql. For the group G given above, determine the order of the element g. Also
record your group G and element g.

Let's pick another group and element.

{G, g} = ShowOne [Lab']

As an alternative, one can use the ElementToPower function that calculates gn
for any integer n.

ElementToPower[G, g, 2]

The following calculates the first 6 powers; adjust the range of the table accord­
ingly to determine 1 g I.

Table[ElementToPower[G, g, k], {k, 1, 6}]

22 Group Lab 4

Q2. What is the order of g in this case? (Record your group G and element g.)

We can also use the following function to calculate the order. Since it is important
to know how to calculate orders, be sure you answer questions 1 and 2 "by hand"
before confirming your answer with this function.

Order[G, g]

Q3. For the given group G, determine the inverse of the element g in the group.
(You are expected to do this without using Mathematica.)

Just as it is important to be able to determine orders through calculations, it is also
important to be able to determine ("by hand") the inverse of an element. The
following command can be used to confirm your answer to the last question, but
evaluate it only after you have found an answer.

invg = Grouplnverse [G, g]

Now let's ask Mathematica to help us calculate the order of the inverse.

Order[G, invg]

Q4. In this case, what is the relationship between the order of g and the order of
its inverse? Record g and g's inverse.

Let's try this again. First we pick out a group and an element.

{G, g} = ShowOne [Lab']

Next determine the order of g in G (without Mathematica) and then use the
following to confirm your answer.

Order[G, g]

Now determine the inverse of g and confirm with the following.

invg = Grouplnverse [G, g]

Finally, calculate the order of the inverse and compare it to the order of g itself.

Order [G, invg]

Q5. In this case, what is the relationship between the order of g and the order of
its inverse? Since the pair (G, g) you investigated was randomly generated,
include in your answer the group G, elements g and g-l, and the orders of g and

-1 g .

Let's Get These Orders Straight 23

Let's generate some more data. The output from the following cell might take a
little time to compute. It will consist of a list of several groups, a random element
from each group, the inverse of the element, and the orders of the element and its
inverse.

TableForm[Table [{G. g} = ShowOne [Lab'. Verbal -+ False];
{GroupoidName [G]. g. invg = GroupInverse [G. g].
Order [G. g]. Order [G. invg]}. {20}]. TableHeadings -+

{None. {ngroupll. "gn. "g-l n. II I 9 I". II I g-l I \n"}}.

TableSpacing -+ {O. 5. 3}]

Q6. Make a conjecture about the relationship between the order of an element
in a group and the order of its inverse.

I Q7. Try to prove your conjecture .

• 4.4 Distribution of the orders of elements in Zn

We now pick a random index n between 20 and 60 and consider the group Zn.

n = Random [Integer. {20. 60}]

G = Z [n]

Let's take a random element from Zn and find its order. Making a table, we will
do this experiment with 20 trials.

numTrials = 20;
TableForm[Table [g = RandomElement [G];

{g. Order[G. gil, {numTrials}].
TableHeadings -+ {None. {ngn. n I 9 I \n"}}.
TableSpacing -+ {O. 5. 3}]

Record, either here or on your paper, both the index n used and all the different
orders (appearing in the second column); at this point, we only want to record
which orders occur for a given index n.

Now repeat this experiment with a new group by evaluating the following cell. In
the unlikely event that you get the same index, evaluate the cell again to get a new
valueforn.

n = Random [Integer. {20. 60}];
G = Z [n]
numTrials = 20;

24 Group Lab 4

TableForm [Table [g = RandomElement [G] ;
{g, Order [G, g]}, {numTrials}],

TableHeadings -+ {None, {"g", II I g I \n"}},
TableSpacing -+ {O. 5, 3}]

Record both the index n and the orders that appear. Keep evaluating this input cell
until you can answer question 8.

Q8. Given a positive integer n, what can you say about the orders of the ele­
ments of Zn ? State your conclusion formally in the form of a conjecture.

~ 4.5 Another look at orders

In section 4.4, we considered the relationship between I g I and I G I for elements
g from some group G = Zn. Now that the relationship is determined, we wish to
consider the frequencies of various orders. In other words, how frequently does a
particular order occur, once we know that it does occur? For the moment, we will
still consider G = Zn. Let's pick an arbitrary index for this group.

n = Random [Integer, {8, 50}]

G = Z [n]

Evaluate the following command.

ShowGroupOrders[Z[n]];

If these graphics are hard to read, you may wish to enlarge them. (To do so, click
once on the graphic to select it and then drag from the lower right corner until the
graphic is sufficiently enlarged.)

A word of explanation is in order. The first graph, a ListPlot, consists of a
graphical representation of what was accomplished in section 4.4. Along the
horizontal axis are the elements in Zn and along the vertical axis are the orders
the elements can take. For each element in G, there is a dot at the height corre­
sponding to the order of that element.

The second graph is a bar chart showing the frequencies with which the orders
occur. Along the bottom are the different orders of elements in the group, and the
height of the bar corresponds with how many elements in the group have that
particular order.

Consider another example.

n = Random [Integer, {8, 50}]

G = Z [n]
ShowGroupOrders[G];

Let's Get These Orders Straight 25

Evaluate this cell a few more times until you can answer the following question.

Q9. Consider Zn when n is composite. (If n is prime, the graphs are trivially
simple.) What can you say about the frequencies of the orders? What can you
say about the shape of the frequency histogram (second graph)? What can you
say about the ListPlot?

Try the following, which executes the same commands but looks at the group Un
(the elements in Zn that have multiplicative inverses, with the group operation
being multiplication mod n).

Do[ShowGroupOrders[U[i]], {i, 14, 20}];

QI0. Reconsider what you answered in question 9. Are any of your answers
specific to Zn, not holding here with Un? Are any still true with Un?

With the preceding work, we worried not about which but about how many ele­
ments lead to various orders. Now we wish to focus on which elements. Evaluate
the following.

n = Randam[Integer, {8, 50}]
CollectOrders[OrderOfAllElements[Z[n]]] //ColumnFor.m

Here we pick a random integer n and then pairs of the form {k, A} are returned,
where k is an order that occurs in the group Zn and A is the set of all elements in
Zn that have this order k. Study the output. Try evaluating the cell again. And
again. And again, until you can answer the following questions.

QU. What relationship is there among the elements in the set A when a given
pair {k, A} is the output? Can you formalize a relationship in the form of a
(generalized) conjecture?

Q12. For a given pair {k, A}, what relationships are there between the elements
in the set A and k and n? Can you formalize a relationship in the form of a
(generalized) conjecture?

• 4.6 What is P(I g I = n) for g E lLn ?

Let's pick a random group Zn for n in {15, 16, ... ,40}.

n = Randam[Integer, {IS, 40}]
G = Z [n]

26 Group Lab 4

Of all the elements in this group, how many of them have order n? Think about it.
How many do you think?

Using the function Orders, n pairs are returned, each taking the form {g, I g n,
an element and its order.

?Orders

orders = Orders [G]

From this list, we select those whose second coordinate is equal to n (the order of
the group Zn).

nIsOrder = Select [orders, #1[2] == n &:]

How many have this order? Length will find out.

howMany = Length [nIsOrder]

To calculate the ratio, we can do the following.

N[hOwMany]
n

Let's record our results. What information is really significant to record? How
about the index n and the percentage found in the last result? Record this some­
where. Now let's do this again, but compact all the steps in one cell.

n = Random [Integer, {5, 'O}]
G = Z [n]
orders = OrderOfAllElements [G]

nIsOrder = Select [orders, #1[2] == n &:]
howMany = Length [nIsOrder]

N[howMany)
n

Or if you are a real Mathematica nerd, you might combine it as follows (output is
{n, percentage D.

n = Random[Integer, {5, 'O}];
{n, N[Length[Select[OrderOfAllElements[Z[n]],

(# [[2]] == n) &:]] / n]}

The advantage of the last method is that it is a little quicker and easier to put in a
loop if one wants to repeat it a number of times (say, 15). Depending on your
computer and the indices n that will be chosen, the following may take some time.
Recall that the output is of the form {n,p} where p is the percentage of elements
in Zn that have have order n.

Let's Get These Orders Straight 27

numTrials = 15;
percents = Table[n = Randam[Integer, {5, 'O}];

{n, N[Length[Select[OrderOfAllElements[Z[n]],
(#[[2]] ==n) &]] In]}, {numTrials}] II union

ListPlot [percents, PlotRange -+ {O, 1},
AxesOrigin -+ {Min [Transpose [percents] [lD] - 1, O},
PlotStyle -+ {RGBColor[O, 0, 1], PointSize[0.015]}];

Q13. Look at the ListPlot, as well as the data above. Which integers yield
high percentages? Which yield low percentages? Can you give any explanation
for this phenomenon?

Let's calculate the overall average (arithmetic mean).

mean =
Apply [Plus, Transpose [percents] [[2]]] I Length [percents]

Now let's consider calculating the percentages for all Zn up to n = 25. (The watch
means that it would take some time if you were to evaluate the next cell; instead,
simply open it up to look at the preevaluated output.)

~ percents = Table [
{n, N[Length[Select[OrderOfAllElements[Z[n]],
(#[[2]] == n) &]] In]}, {n, 2, 25}]

ListPlot[percents,
PlotRange -+ {O, 1}, AxesOrigin -+ {O, O}];

As well as the percentages from n = 26 to n = 40:

~ percents = Table [
{n, N[Length[Select[OrderOfAllElements[Z[n]],
(#[[2]] ==n) &]] In]}, {n, 26, 'O}]

ListPlot[percents,
PlotRange -+ {O, 1}, AxesOrigin -+ {26, O}];

Q14. Make one or more conjectures about the probability that a random ele­
ment g of Zn has order n (and thus will generate the whole group). You may
wish to specialize, having your conjecture depend on n. Consider the cells that
follow.

Now let's consider prime indices.

~ percents = Table [n = Prime [j] ;
{n, N[Length[Select[OrderOfAllElements[Z[n]],
(#[[2]]==n)&]]/n]}, {j, 1, 20}]

ListPlot[percents,
PlotRange -+ {O, 1}, AxesOrigin -+ {O, O}];

28 Group Lab 4

How about looking at indices that are squares?

~ percents = Table [n = j2;
{n, N[Length[Select[OrderOfAllBlements[Z[n]],
(# [[2]] = = n) &:]] In]}, { j, 2 , 13 }]

ListPlot[percents,
PlotRange ~ {O, 1}, AxesOrigin ~ {O, O}];

Or powers of two?

~ percents = Table [n = 2 j ;

{n, N[Length[Select[OrderOfAllBlements[Z[n]],
(#[[2]] ==n) &:]] In]}, {j, 1, 5}]

ListPlot[percents,
PlotRange ~ {O, 1}, AxesOrigin ~ {O, O}];

Or multiples of two?

~ percents = Table [n = 2 j;
{n, N[Length[Select[OrderOfAllBlements[Z[n]],
(#[[2]]==n)&:]]/n]), {j, 1, 2S}]

ListPlot[percents,
PlotRange ~ {O, 1}, AxesOrigin ~ {O, O}];

Or powers of three?

~ percents = Table [n = 3 A j ;
{n, N[Length[Select[OrderOfAllBlements[Z[n]],
(#[[2]] == n) &:]] In]}, {j, 1, 4}]

ListPlot[percents,
PlotRange ~ {O, 1}, AxesOrigin ~ {O, O}];

Q15. Do you wish to change any of your conjectures? Can you prove any of
them?

• 4.7 More questions about Un

What is the order of the group Un, as a function of n? Below is a list of the orders
I Un I for n from I to 60, followed by a ListPlot ofthe same orders.

data = Table [Size [U[n]], {n, 1, 50}]
ListPlot[data];

Q16. Why does the ListPlot seem to be limited to the lower triangle of the
rectangle? What values are making the "diagonal?"

Let's Get These Orders Straight 29

Let's now change the form of what we observe. Instead of simply making a list of
the orders, we divide the order of the group by the index n and then plot these
values.

#1
data = Map:Ind.exed [&:, data]

First[#2]

ListPlot [data, AxesOrigin -+ {O, O}, PlotRange -+ {O, 1}];

Q17. Does this look at all familiar? Have you seen this before?

Let's continue our investigation into the order of Un by considering various types
of integers n. For example, when n is prime we get

datal = Table [n = Prime [p] ;
{n, Size[u[n]]}, {p, 1, 40}]

data2 = Table [n = Prime [p] ;
{n, Size [U [nll In}, {p, 1, 40}];

Show[GraphicsArray[{ListPlot[datal, DisplayFunction -+
:Identity, Ticks -+ {Table[50i, {i, 1, 4}], Automatic}],
ListPlot[data2, DisplayFunction -+

:Identity, PlotRange -+ {O, 1},
Ticks -+ {Table [50 i, {i, 1, 4}], Automatic}]}],
DisplayFunction -+ $DisplayFunction];

The first plot reflects the orders of Un for prime n (horizontal axis is n and vertical
is I Un I). The second plot has the vertical axis being I ~n I (again, for prime n).
We use just the latter type of plot in what follows.

When n is a power of two we get

max = 8;
datal = Table [n = 2P ;

{n, Size [U [n]] }, {p, 1, max}]
data2 = Table[n = 2 "p;

{n, Size [U [nll In}, {p, 1, max}]
ListPlot[data2, PlotRange -+ {O, 1}, AxesOrigin -+ {O, O}];

When n is a power of three we get

max = 8;
datal = Table [n = 3P ;

{n, Size[U[n]]}, {p, 1, max}]

data2 = Table[n = 3"p;
{n, Size[U[nll In}, {p, 1, max}]

ListPlot [data2, PlotRange -+ {O, 1}, AxesOrigin -+. {O, O}];

30 Group Lab 4

Q18. The following code shows similar results for powers of 4. Evaluate it.
Then change it to powers of 5, 6, 7, 8, 9, and so on until you can make some
kind of conjecture. Can you prove it? (max is the number of terms to compute;
you may wish to reduce max to 5 for larger values.)

powersOf = 4;
max = 6;
datal = Table [n = powersOfP ;

{n, Size[U[n]]}, {p, 1, max}]
data2 = Table [n = powersOfP ;

{n, Size[U[n]] In}, {p, 1, max}]
ListPlot[data2, PlotRange ~ {O, 1}, AxesOrigin ~ {O, O}];

Now consider multiples of three.

datal = Table[n = 3p;
{n, Size[U[n]]}, {p, 1, 40}]

data2 = Table[n = 3 p;
{n, Size[U[n]] In}, {p, 1, 40}];

Show[GraphicsArray[{ListPlot[datal, DisplayFunction ~
Identity,
Plot Style ~ {RGBColor[O, 0, 1], PointSize[0.025]}],

ListPlot[data2, DisplayFunction ~ Identity,
AxesOrigin ~

{O, O}, PlotRange ~ {O, 1},
PlotStyle ~ {RGBColor[O, 0, 1],

PointSize[0.025]}]}], DisplayFunction ~
$DisplayFunction];

If the graphs appear a little small, click on the graph, then move the mouse to the
lower right comer. When the cursor is a double arrow (facing NW and SE), then
press down and drag to an appropriate size.

Q19. Can you see any dichotomy in the immediately preceding graphs?
Describe it and try to explain why it exists. Look at the data used to generate
the plots. (In particular, consider factoring some of the indices.)

Let's try multiples of two.

multiplesOf = 2;
max = 60;
datal = Table [n = multiplesOf * p;

{n, Size[U[n]]}, {p, 1, max}]
data2 = Table[n = multiplesOf *p;

{n, Size [U [n]] In}, {p, 1, max}];
Show[GraphicsArray[{ListPlot[datal, DisplayFunction ~

Identity,
PlotStyle ~ {RGBColor[O, 0, 1], PointSize[0.025]}],

Let's Get These Orders Straight 31

ListPlot[data2, DisplayFunction ~ Identity,
AxesOrigin ~

{O, O}, PlotRange ~ {O, 1},
PlotStyle ~ {RGBColor[O, 0, 1],

PointSize[0.025]}]}], DisplayFunction ~
$DisplayFunction];

Q20. Change mul tiplesOf to 5, 6, 7, 8, 9, and so on until you can make
some kind of conjecture. (Again, max indicates the number of terms that are
calculated; you may wish to modify it.) Can you provide any proof?

Q21. What is the order of Un? Give as complete an answer as possible, even if
you don't have all the cases covered.

Group Lab 5

Subversively Grouping Our

Elements

5.1 Prerequisites

To complete this lab, you should be familiar with the definition of a subgroup of a
group.

5.2 Goals

What constitutes a subgroup? What elements are necessary before a set can be
considered a subgroup? What do the subgroups of Zn look like? What about the
subgroups of Un? What is the probability that a randomly chosen subset of ele­
ments from Zn will actually be a subgroup? What elements of Zn guarantee
closure to the full group? These are some of the questions that are explored in this
lab.

5.3 When do we have a subgroup?

In Group Lab 3, we considered when a set with an operation on the set forms a
group. In this lab, we consider when a subset of a group is a group in its own right
(when using the operation from the parent set).

Subversively Grouping Our Elements 33

First let's consider a random group Zn for n in [6, 20]. To define this group, we
need to first read in the Mathematica package that defines Zn and the other
functions that we will be using.

Needs["AbstractAlgebra'Master'I];
SwitchStructureTo[Group];

n = Random [Integer, {6, 20}]

G = Z [n]

Next we pick a random integer m, less than n, and then choose this many elements
from G and put them in a set that we call H.

m = Random [Integer, {l, Floor [N [-{i;.]] }]
H = RandomElements [G, m, Replacement -+ False]

The question we would like to pursue first is whether this set H forms a subgroup
of G, and if not, how we can make one with it.

Q1. In this case, is H a subgroup of G? Justify your answer. (Indicate the group
G and subset H that were chosen.)

Now use the following command to confirm your answer to question 1.

SubgroupQ [H, G]

Simply knowing whether it is true or false if H is a subgroup of G is of limited
value. We would also like to know how to make H become a subgroup (by adding
certain elements, if necessary). Let's look at a Cayley table where we focus on the
elements of H.

SubgroupQ[H, G, Mode -+ Visual]

Note that the elements colored red are in G but not in H.

Q2. The presence of red elements (if any) indicates that the set H does not
satisfy which property relative to the operation in G?

What would happen if we modified H to include some (or all) of the elements that
were sums of elements in H, but not already in H (namely, the red elements)? In
the variable labeled ElementsToAdd, add the elements (between {}) you
would like to join to H to see if you can make H a subgroup of G.

ElementsToAdd = {};
H = union [Join [H, ElementsToAdd]]
SubgroupQ[H, G, Mode -+ Visual];

34 Group Lab 5

Q3. By deleting the previous elements in the list ElementsToAdd and
replacing them with new ones, keep modifying the code until you have enlarged
H to become a subgroup. You will know that you are done if there are no
longer any red elements. (You may have enlarged H to become G itself.) What
is your subgroup H? (Also, what was your group G?)

Let's try this again.

n = Random [J:nteger, {6, 20}];
G = Z [n]

m = Random [J:nteger, {1, Floor [N [.yn]]}]
H = RandomElements [G, m, Replacement -+ False]
SubgroupQ[H, G, Mode -+ Visual];

Q4. As before, keep modifying the following code until you have enlarged H to
become a subgroup. What is your subgroup H? (Also, what was your group G
and the original H?)

Elements'l'oAdd = {};
H = union[Join[H, Elements'l'oAdd]]
SubgroupQ[H, G, Mode -+ Visual];

Once you feel comfortable knowing how to enlarge H to make it a subgroup, you
can ask Mathematica to do that part and you can focus on related issues. We call
the new subgroup of G formed from the set H the closure of H in G and we can
use the Closure command.

Let's try this with a new group.

n = Random[J:nteger, {6, 20}];
G = Z [n]

m = Random [J:nteger, {1, Floor [N [.yn]] }]
H = RandomElements [G, m, Replacement -+ False]

If all we want is to determine the closure of H, we use the following.

Closure [G, H]

(Apply SortGroupoid to this result if you want to see the elements ordered.) If
we ever want to know what else we can do with a function, it is often useful to ask
for information about the function:

?Closure

Let's try a few of these variations.

Subversively Grouping Our Elements 35

Closure [G, H, Reportl:terations -+ True]

Note that this returns the closure of H first, followed by the number of iterations
and the results of each iteration. Let's consider another option.

Closure [G, H, Mode -+ visual]

This simply shows the same information visually. These graphics can now be
animated, if desired. (To do so, double-click on one of the graphics and adjust the
motion with the arrow keys.) If we do not want to see all the graphics at once, we
can try the following.

Closure [G, H, Mode -+ Visual, Staged -+ True] ;

To see the next stage, evaluate the following.

NextStage[Closure];

Or to see a previous stage, try

PreviousStage[Closure];

Either of these last two commands can be repeatedly cycled. Test yourself one
more time; evaluate the following.

n = Random [l:nteger, {6, 20}]
G = Z [n]

m = Random [l:nteger, {1, Floor[N[Vn]] }]

H = RandomElements [G, m, Replacement -+ False]
Closure [G, H, Mode -+ Visual, Staged -+ True] ;

You should know which elements need to be added. Now predict which elements
will be colored red, if any, in the next iteration. When you think you know,
evaluate the following. Keep doing this until you have found the closure of H.

NextStage[Closure];

Q5. You may have noticed that sometimes the closure becomes the whole
group. There are many questions related to this to think about, some of which
we consider in this lab. Here is one with which to start. If we let H(n) be the
size of the closure of H at the nth iteration (so H(1) = I H I), how big does H(n)
have to become before we can be certain that the closure of H will be all of G?
You may wish to evaluate the following cell a number of times to gain some
insights.

36 Group Lab 5

n = Random [Integer, {6, 30}];
G = Z [n]

m = Random [Integer, {1, Floor[N[~]]}];

H = RandomElements[G, m, Replacement ~ False]
Closure [G, H, ReportIterations ~ True] / / Last / / Last / /

ColumnForm

III 5.4 Subgroups of Zn

Let's pick a random group Zn, where n is in [6, 30].

n = Random [Integer, {6, 30}]

G = Z [n]

What are the subgroups of this group G = Zn? One naive way of exploring this
would be to pick a random set of elements and look at the closure, which we have
seen always results in a subgroup. If we repeat this enough times, we might find
all the subgroups of the group. Let's try it. Evaluate the following three to five
times.

m = Random [Integer, {1, Floor[N[~]]}];
H = RandomElements [G, m, Replacement ~ False]
Closure [G, H, Sort True]

You may notice that the full group is often returned. Suppose we try restricting
the number of elements in H to one or two. Try evaluating the following a number
of times.

m = Random [Integer, {1, 2}];

H = RandomElements [G, m, Replacement ~ False]
Closure [G, H, Sort ~ True]

Q6. What do you think are the subgroups of Zn for the n with which you have
been working? (Also indicate what n you were given.)

Let's get a new group and try this again.

n = Random [Integer, {6, 30}]

G = Z [n]

m = Random [Integer, {1, 2}];

H = RandomElements [G, m, Replacement ~ False]
Closure [G, H, Sort ~ True]

Subversively Grouping Our Elements 37

Q7. What group did you get this time? What do you think are the subgroups for
this group?

• 5.5 P(H < G) for a random subset H of G = lLn

Suppose we consider the group '£:12. Recall that if H is a subgroup of G, we
sometimes denote this by H < G. If we choose a random set of elements, H, from
the elements of G, what is the probability that H is indeed a subgroup of G
(denoted P(H < G))? In this section, we pursue this question (and modifications
of it, using other indices n in .£:n).

G=Z[12]

First we start with I H I = 1. Evaluate the following to determine the results of
randomly choosing one element 30 different times to see if it forms a subgroup of
G.

sizeOfH = 1;
TableForm[
Table [{H = RandomElements [G, sizeOfH, Replacement -+ False] ,

SubgroupQ[H, G]}, {30}], TableDepth-+2,
TableHeadings -+ {None, {"H", "(H < G) ?\n"}}]

Q8. Out of the 30 attempts, how many yielded a subgroup? What did you
expect to happen? What would you expect to happen if 100 people did this
experiment and each ran the loop for 1000 times instead of 30? Justify your
answer. You should have an answer for P(H < '£:12) for H = {g} for some g in
'£:12·

Next we consider the case when I H 1= 2. Evaluate the following to determine the
results of choosing two elements (40 times) to see if the subset forms a subgroup
ofG.

sizeOfH = 2;
TableForm[

Table [{H = RandomElements [G, sizeOfH, Replacement -+ False],
SubgroupQ[H, G]}, {40}], TableDepth-+2,

TableHeadings -+ {None, {"H", "(H < G) ?\n"}}]

If you didn't get a True, try evaluating this cell again (which will not guarantee a
True but may be worth trying, in some cases).

38 Group Lab 5

Q9. How many successes did you have? (That is, how many times did you get
True?) Which pair of elements yielded a subgroup, if any? Is there any (other)
subset of size two that will (also) be a subgroup? Why or why not? Given a
random set H of two elements from Z 12, what do you think is the probability
that H will be a subgroup (i.e., P(H < Z12»?

Next we consider the case when I H 1= 3. Evaluate the following to determine the
results of choosing three elements (40 times) to see if the subset forms a subgroup
ofG.

sizeOfH = 3;
TableForm[
Table [{H = RandomElements [G, sizeOfH, Replacement ~ False] ,

SubgroupQ [H, G]}, {40}], TableDepth ~ 2,
TableHeadings ~ {None, {"H", "(H < G) ?\nn}}]

If you didn't get a True, try evaluating this cell again. (Again, no guarantee.)

QI0. How many successes did you have? Which triple of elements yielded a
subgroup, if any? Is there any (other) subset of size three that will (also) be a
subgroup? Why or why not? Given a random set H consisting of three elements
of Z12, what is P(H < Z12)?

Next we consider the case when I H I = 4. Evaluate the following to determine the
results of choosing four elements (40 times) to see if the subset forms a subgroup
ofG.

sizeOfH = 4;
TableForm[
Table [{H = RandomElements [G, sizeOfH, Replacement ~ False] ,

SubgroupQ [H, G]}, {40}], TableDepth ~ 2,
TableHeadings~ {None, {nHn, n(H < G)?\nn}}]

If you didn't get a True, evaluate again until you do, keeping track of how many
attempts were made. If you get tired of doing this and think you know what you
should expect, you can quit.

Next we consider the case when I H 1= 5. Evaluate the following to determine the
results of choosing five elements (40 times) to see if the subset forms a subgroup
ofG.

sizeOfH = 5;
TableForm[

Table [{H = RandomElements [G, sizeOfH, Replacement ~ False] ,
SubgroupQ [H, G]}, {40}], TableDepth ~ 2,

TableHeadings ~ {None, {nHn, n (H < G) ?\n"}}]

Subversively Grouping Our Elements 39

Keep trying to get True or stop when you think you know what is likely to
happen. Keep increasing the order of H and evaluating the cell until you can
answer the following question.

QU. Given G = Z12, what are the different possible orders of the subgroups of
G? Also, how many subgroups are there of each order?

Q12. Now suppose we have G = ZlO. What are the orders of the subgroups of
G and how many subgroups are there of each order? Use the following cell if
you want to do some experimenting.

G=Z[10];

sizeOfH = 1;

TableForm[
Table [{H = RandomElements [G, sizeOfH, Replacement -+ False] ,

SubgroupQ [H, G]}, {40}], TableDepth -+ 2,

TableHeadings-+ {None, {"H", "(H < G)?\n"}}]

Q13. Now suppose we have G = Zll. What are the orders of the subgroups of
G and how many are there of each order? Use the following cell if you want to
do some experimenting.

G = Z [11] ;

sizeOfH = 1;
TableForm[

Table [{H = RandomElements [G, sizeOfH, Replacement -+ False] ,
SubgroupQ[H, G]}, {40}], TableDepth-+2,

TableHeadings -+ {None, {"H", II (H < G) ?\n"}}]

Q14. Summarize your findings by writing a conjecture about the subgroup
structure of Zn. How might you prove your answer?

Q15. Given G = Zn and a subset H of G with I H I = m, what is P(H < G)?

Q16. Look back at the subgroups you found for Z 12. Starting with the
subgroup(s) of order 2 and working up, what can you say about the
relationship(s), if any, between the order of the subgroup, the elements of Z12,

and the actual elements in the subgroup?

Q17. Do you think the results summarized in question 14 pertain only to Zn or
are they valid for other groups (either some or all) as well? Try the following to
help you think about this question.

40 Group Lab 5

G=U[20]
sizeOfH = 2;
TableForm[
Table [{H = RandomElements [G, sizeOfB, Replacement ... False] ,

SubgroupQ [H, G]}, {'O}], TableDepth ... 2,
TableHeadings ... {None, {nHn, n (H < G) ?\nn}}]

III 5.6 Necessary elements for full closure

Suppose we focus on the group Z 10 as an example in thinking about the question
of what elements must be in a set H to guarantee that we have the closure of H be
the entire group.

First we define G.

G = Z[10]

Then we look at a table of random sets H with one or two elements, with their
closure.

TableForm[Table [m = Random [Integer, {I, 2}];
{H = RanciomElements [G, m, Replacement ... False] ,
Elements[Closure[G, H, Sort ... True]]}, {25}],

TableHeadings ... {None, {"H D , "closure of H\n"}},
TableSpacing'" {O. 5, 3}, TableDepth ... 2]

Q18. Partition the elements of ZIO into three classes: (1) those whose presence
in H cause the closure of H to be the full group, (2) those whose presence in H
do NOT cause the closure of H to be the full group, and (3) the elements you
are not sure about.

Consider another example, Zs.

G=Z[8]
TableForm[Table[m = Ranciom[Integer, {I, 2}];

{H = RanciomElements [G, m, Replacement ... False] ,
Elements [Closure [G, H, Sort ... True]]}, {25}],

TableHeadings ... {None, {nH", nclosure of H\n"}},
TableSpacing'" {O. 5, 3}, TableDepth ... 2]

Q19. Repeat question 18 with the results of Zs.

Finally, consider another example, Z 12 .

Subversively Grouping Our Elements 41

G = Z[12]
ColumnFo~[Table[m = Random[Xnteger, {1, 2}];

{R = RandomElements[G, m, Replacement ~ False],
Elements[Closure[G, R, Sort ~ True]]}, {2S}]]

Q20. Consider the results of the last three examples. If H = {g, h} is a subset of
Zn and the closure of H is all of Zn, what can you conclude about the relation­
ship between at least one of g or h and the number n?

• 5.7 Subgroups of Un

For a quick review of the group Un, let's view the frrst 20 groups where n runs
from 1 to 20.

ColumnFo~[Table[{n, Elements[U[n]]}, {n, 1, 20}]]

From this it should be clear how many elements are in each group listed here (and
if you answered all the questions from Group Lab 4, you perhaps know the order
of Un as a function of n for any n). What about the subgroups of Un? Since we
know that the trivial subgroup consisting of the identity is always a subgroup, as
is the full group, we can ignore them. Therefore, the first group to consider for
nontrivial subgroups is Us. (Why?) Furthermore, we know that any subgroup
must have the identity, so we can be sure that 1 will be in any subgroup.

Let's look at the possible subgroups of Us by first considering all the nonidentity
elements. (Recall what the complement of a set is and that 1 is the identity.)

els = Complement [Elements [U [5]], {1}]

These are the elements from which we need to consider all possible subsets. The
function KSubsets (from DiscreteMath' Cornbinatorica) does this job.

?KSubsets

We will make a table of all possible subsets of length 1, 2, ... up to one less than
the length of els, which is 2 (= 3 - 1) in this case. (We have deleted the
identity 1 from els, and we know that the full group is a subgroup, so we search
for sets of length up to two less than the size of the group.)

Table [KSubsets [els, i), {i, Length[els] - 1}]

There are too many levels of braces, so we remove one level.

Flatten[%, 1]

42 Group Lab 5

Now we want to join the identity back into each one. These are now candidates
for being (proper) subgroups.

Bsets = Map[Join[{l}, #] &:, %]

The next step is to test them by mapping the SubgroupQ function on each one.

subgroups = Map[SubgroupQ[#, U[5]] &:, Bsets]

It is easier to see which are subgroups if we match up the sets with these results.

Transpose [{Bsets, subgroups}] / / MatrixForm

Q21. What can you say about the order of the element 2? What about 3? What
about 4? Do you think Us is cyclic or not? Justify your answer.

Now let's put all the steps above into one compact function that gives the final
output.

FindNontrivialSubgroupsOfun[n_Znteger?Positive] .-
Module[{els, Bsets, subgroups},

els = Complement[Elements[U[n]], {1}];
Bsets = Flatten[
Table [KSubsets [els, i], {i, Length[els] -1}], 1];
Bsets = Map [Join [I, {1}] &:, Bsets];
subgroups = Map[SubgroupQ[#, U[n]] &:, Bsets];
Transpose [{Bsets, subgroups}] / / MatrixForm

It is time to test it on the next index, n = 6.

FindNontrivialSubgroupsOfun[6]

Q22. What happened? Was there a mistake made in the coding? Think about
this. Why was there no output?

What about n = 7?

FindNontrivialSubgroupsOfUn[7]

We see many False conclusions. Why? Can we be more efficient in our search
for subgroups? How many elements are there in U7?

Elements [U [7]] / / Length

Perhaps through some previous experiences, in this lab, a previous lab, or class­
work, you have become aware that if we have a subgroup, its order must be a
divisor of the order of the group. This is an important result, called Lagrange's
Theorem, which will be proven later.

Subversively Grouping Our Elements 43

What are the divisors of 6? It is easy in this case, but here is how Mathematica
can be asked.

divs = Divisors [6]

Now let's gather all the actual "HSets" our function generates.

t8D\P =
FindBontrivialSubgroupsOfun[7] [[1]] II Transpose II First

Since we really have questions about only those of orders 2 and 3 (why?), let's
select just them.

Select[t8D\P, MemberQ[{2, 3}, Length [#1]] &:]

Now we can test them as subgroups. The last several steps are implemented in a
new version of our function.

Clear[FindNontrivialSubgroupsOfun];

FindNontrivialSubgroupsOfun[n_Integer?Positive] :=

Module[{els, Hsets, subgroups, divs},
els = Complement[Elements[U[n]], {1}];
Hsets = Flatten[
Table[KSubsets[els, i], {i, Length[els] -1}], 1];
Hsets = Map[Join[#, {1}] &:, Hsets];
Hsets =

Select[Hsets, MemberQ[Complement[Divisors[Order[U[n]]],
{1, n}], Length[#]] &:];

subgroups = Map[SubgroupQ[#, U[n]] &:, Hsets];
Transpose [{Hsets, subgroups}] /I MatrixForm

Now we try it again.

FindBontrivialSubgroupsOfun[7]

Q23. Do you think U7 is cyclic? Why or why not?

FindBontrivialsubgroupsOfUD[8]

Q24. Do you think Us is cyclic? Why or why not?

FindNontrivialSubgroupsOfun[9]

Q25. Do you think U9 is cyclic? Why or why not?

FindBontrivialSubgroupsOfUD[10]

44 Group Lab 5

Q26. Do you think UIO is cyclic? Why or why not?

If you are willing to wait a little while, try the following.

FindNoDtrivialSubgroupsOfUD[ll]

I Q27. Why does this take so long?

We can also use a more general function that determines the actual subgroups for
any (finite) group (given enough time, memory, and disk space). Here we try it on

U20·

Subgroups[U[20]]

Q28. Do you think U20 is cyclic? Why or why not?

Group Lab 6

Cycling Through the Groups

6.1 Prerequisites

Other than familiarity with the basic definitions related to a group, there are no
prerequisites.

III 6.2 Goals

We first look at what it means for a group to be cyclic and try to determine the
generators when it is. We try to classify the cyclicity of the groups 71.n , Dn , and
Un and determine the set of generators when they are cyclic. Next we consider the
case when the direct product of 71.m and 71.n yields a cyclic group. Finally, we look
at some of the cyclic subgroups of the infinite additive group of integers, 71..

III 6.3 What, when, how, and why about cyclic groups

We need to read in the Master package inside the AbstractAlgebra direc­
tory to conduct this lab.

Needs["AbstractAlgebra'Master'"];
SwitchStructureTo[Group];

Recall that we say a group G is cyclic if there exists an element g in G such that
G = {t IkE 71.}. In this case, we call g a generator of G and denote this relation-

46 Group Lab 6

ship by (g) = G. Which groups, if any, are cyclic? First let's consider a random
group Zn, for n in [6, 14].

n = Random [Integer, {6, 14}]
G = Z [n]

Is this group cyclic? How can we find out? Recalling the definition of being
cyclic (which was written for multiplicative groups), we need to see if there is an
element g in G such that the set of multiples of g constitutes the whole group.
Let's generate multiples of each element and find out if G is cyclic. Note that
since our group G is finite with order n, we need to consider only a finite number
of mUltiples.

Q1. Why is it true that we need to consider only a finite number of multiples?
Explain your answer.

So let's take a look at some multiples of each of the elements in G.

els = Blements [G]
'l'ablel'orm[
multiples = 'l'able [j els[iD, {I, n}, {j, n}], 'l'ableReadings-+

{'l'able["multiples of "<>'l'oString[i] <>":", {I, 0, n-l}],
None}, 'l'ableSpacing-+ {0.5, 1}]

Whoops! These don't all look like elements in G. What did we forget?

'l'ablel'orm[IIap[IIod[#l, n] &, multiples], 'l'ableReadings-+
{'l'able["multiples of "<>'l'oString[i] <>":n, {i, 0, n-l}],
None}, 'l'ableSpacing-+ {0.5, 1}]

The first list of numbers represents multiples of 0, the second list represents
multiples of 1, the third list has the multiples of 2, and so on; the last row repre­
sents multiples of n - 1.

Q2. Do any of these lists represent G? Is G cyclic? What had you expected? If
G is cyclic, what are the generators? Does this list of generators surprise you?
(Record the group G that was given to you.)

We can get similar results by using a function called SubgroupGenerated.

'l'able[Blements[SUbgroupGenerated[G, g]],
{g, 0, n - 1}] / / ColWllDl'orm

? SubgroupGenerated

Let's focus on G = Z 12 for the moment. (If this is the group that was randomly
generated for you, pardon the redundancy.)

Cycling Through the Groups 47

G = Z [12]

Does the element 5 generate the whole group? Let's find out.

SubgroupGenerated[G, 5]

The list, as given, is the order in which the elements are generated. To see this
with a little more explanation, try the following:

SubgroupGenerated[G, 5, Mode -+ Textual]

A visual perspective might also be useful. Evaluate the following cell and then
double-click on any graphic cell (perhaps closing the enclosing cell bracket first)
and then adjust the speed by typing a number from 1 (slow) to 9 (fast). Or you can
step through the animation with the (up/down) arrow keys.

SubgroupGenerated[G, 5, Mode -+ Visual];

What follows is another visual way of seeing the subgroup generated by 5. In this
case, the colors indicate the order in which the mUltiples (powers) occur, follow­
ing the rainbow; the key at the bottom helps by listing the element in the colored
box and the multiple (power) above it.

SubgroupGenerated[G, 5, Mode -+ Visual2]

These illustrations show that indeed Z 12 is cyclic. If there is a Thomas in the
crowd, he/she can also try

CyclicQ [Z [12]]

It is interesting to know not only whether a group is cyclic but what elements
generate the whole group. Try the following.

OrderOfAllElements [G, Mode -+ Textual]

Q3. What are the generators of Z12? How do you know? Justify your answer.

We can also approach the question visually:

OrderOfAllElements [G, Mode -+ visual]

Q4. Look at this table. What observations can you make? Can you explain any
of these observations?

Now let's consider the group Z 15.

G = Z[15]

48 Group Lab 6

QS. Determine if Z15 is cyclic. If so, specify the generators; if not, explain why
not.

I Q6. What about Z17?

Let's check out the cyclicity of some other Zn.

TableForm[Table[{n, CyclicQ[z[n]]}, {n, 2, 25}],
TableSpacing ... {O. 5, 2},
TableHeadings ... {None, {"nn, "cyclic?\nn}}]

Q7. What conclusion can you infer about the cyclicity of Zn? Prove your
statement, if you can.

Q8. For an arbitrary n, what elements are the generators of Zn ? You should be
able to be very specific with a description here. Can you also specify (as a
function of n), the number of generators for Zn?

Let's think about some other groups. What about the dihedral family?

CyclicQ[Dihedral[l]]

CyclicQ[Dihedral[2]]

Or if you wish to see this visually, try

OrderOfA11Elements [Dihedral [2], Mode ... visual]

OrderOfAllE1ements [Dihedral [3], Mode ... Visual]

OrderOfAllElements [Dihedral [4], Mode ... Visual]

Table allows us to quickly look at a few more examples

TableForm [Table [{n, CyclicQ [Dihedral [n]] }, {n, 5, 8}]]

Q9. What do you suppose is true about Dn being cyclic? Justify your answer.
Can you prove it?

What about the group Un? Let's consider a few examples.

OrderOfAllElements [U [15], Mode ... Visual]

OrderOfAllElements [U [14], Mode ... Visual]

OrderOfAllElements [U [13], Mode ... Visual]

Cycling Through the Groups 49

I Ql0. Is Un cyclic for all n? Why or why not?

Considering only whether Un is cyclic or not, we can use Table and CyclicQ.
The following is already generated-do not evaluate the cell again.

TableForm[
PartitioD[Table[{D, CyclicQ[u[n]]}, {D, 3, 52}], 10] II
Transpose,

TableSpaciDg ... {O. 5, 1.5}, TableDepth ... 2]
(* already evaluated - simply open up *)

{3, True}
{4, True}
{5, True}
{6, True}
{7, True}
{8, False}
{9, True}
{10, True}
{ll, True}
{12, False}

{13, True}
{14, True}
{15, False}
{l6, False}
{17, True}
{18, True}
{19, True}
{20, False}
{21, False}
{22, True}

{23, True}
{24, False}
{25, True}

{26, T~e}
{27, T e}
{28, Fa se}
{29, Tr E)}
{30, False}
{31, True}
{32, False}

{33, False}
{34, True}
{35, False}
{36, False}
{37, True}
{38, True}
{39, False}
{40, False}
{41, True}
{42, False}

{43, True}
{44, False}
{45, False}
{46, True}
{47, True}
{48, False}
{49, True}
{50, True}
{51, False}
{52, False}

Here is another list that is also already generated-do not evaluate the cell again.

TableForm[
Partition[Table[{n, CyclicQ[U[D]]}, {n, 53, 10'}], 10] II
Transpose,

TableSpacing ... {O. 5, 1.5}, TableDepth ... 2]
(* already evaluated - simply opeD up *)

{53, True} {63, False} {73, True} {83, True}
{54, True} {64, False} {74, True} {84, False}
{55, False} {65, False} {75, False} {85, False}
{56, False} {66, False} {76, False} {86, True}
{57, False} {67, True} {77, False} {87, False}
{58, True} {68, False} {78, False} {88, False}
{59, True} {69, False} {79, True} {89, True}
{60, False} {70, False} {80, False} {90, False}
{61, True} {71, True} {81, True} {91, False}
{62, True} {72, False} {82, True} {92, False}

{93, False}
{94, True}
{95, False}
{96, False}
{97, True}
{98, True}
{99, False}
{100, False}
{101, True}
{l02, False}

Qll. For what values of n is Un cyclic? (Think about the answer-you do not
need to list the values.) Can you see any patterns? What conclusions can you
draw?

• 6.4 Cyclicity of Zm ED Zn

We are familiar with the Zn groups. Suppose we consider prunng up two
(possibly the same) Zn groups and making a new group from the pairs. For

50 Group Lab 6

example, consider 7L2 and 7L3 and form all pairs (x, y) where the x comes from 7L2
and the y comes from 7L3: G = {(x, y) I x E 7L2 Ay E 7L3}. What are the elements in
G? This is called the direct sum (also called direct product) of 7L2 and 7L3, denoted
here simply by 7L2 $ 7L3.

Elements[DirectSum[Z[2], Z[3]]]

Note that all the first elements in the pairs are either ° or 1 and the second ele­
ments are 0, 1, or 2, exactly as specified. So what operation do we use? There is a
"natural" one to consider. Suppose (x, y) and (a, b) are generic elements. Then we
say (x,y)+(a,b)=«x+a)mod2,(y+b)mod3). In other words, we treat each
dimension (component or coordinate) as we did before joining them, using the
operation of the contributing group for that part.

Q12. Do some calculations in this setting.
a. (0, 1) + (1, 0) = ?
b. (1, 1) + (1, 1) = ?
c. (1,0) + (1, 2) = ?
d. (0, 1) + (0, 2) = ?

Consider the Cayley table of the group.

CayleY'l'able [Directsum[Z [2], Z [3]], Mode -+ Visual];

Since the elements do not fit very well in the limited space in the table, we use the
Key to guide us.

Q13. Check your answers to the previous question. Were they right? Is this
group Abelian? Why? What is the identity? Is the group cyclic? How do you
know?

So when is 7Lm $ 7Ln cyclic? The following produces a table for various m and n
(and is already evaluated-simply open it up).

Flatten[Table[G = Directsum[z[m], Zen]];
{m, n, CyclicQ[G]}, {m, 2, 7}, {n, 2, 7}], 1] II

Partition[l, 4] &: II TableForm[l,
TableHeadings -+ {Hone, {n{m,n, cyclic?}\nn}},
TableSpacing -+ {O. 5, 2}, TableDepth -+ 2] &:

(* already evaluated - simply open it up *)

{m,n, cyclic?}

{2, 2, False}
{2, 6, False}
{3, 4, True}
{4, 2, False}
{ 4, 6, False}

{2, 3, True}
{2, 7, True}
{3, 5, True}
{4, 3, True}
{4, 7, True}

{2, 4, False}
{3, 2, True}
{3, 6, False}
{4, 4, False}
{5, 2, True}

{2, 5, True}
{3, 3, False}
{3, 7, True}
{4, 5, True}
{5, 3, True}

{5, 4, True}
{6, 2, False}
{6, 6, False}
{7, 4, True}

{5, 5, False}
{6, 3, False}
{6, 7, True}
{7, 5, True}

Cycling Through the Groups 51

{5, 6, True}
{6, 4, False}
{7, 2, True}
{7, 6, True}

{5, 7, True}
{6, 5, True}
{7, 3, True}
{7, 7, False}

Q14. Give a conjecture about the necessary conditions for Zm $ Zn to be
cyclic. How might a proof go?

III 6.5 Structure of intersections of subgroups of Z

For any integer m, the subgroup (m) is a cyclic subgroup of the integers Z. Given
two such subgroups, (m) and (n), we know that the intersection of these two
subgroups is another subgroup (as is the intersection of any two subgroups from
the same group). Furthermore, we know that it is another subgroup of the form
(p).

Q15. Why must this intersection look like (p) for some integer p?

Let's look at some examples. Since these subgroups are all infinite, all we can do
is look at a finite swath, but this should be sufficient to build our intuition. Con­
sider H = (4) and K = (10):

leftADdRight = 15;
H = 'l'able[' i, {I, -leftADdRight, leftADdRight}]

It = 'l'able [10 i, {i, -leftAndRight, leftAndRight}]

Q16. What does the intersection appear to be? What connection, if any, is there
between your answer and the fact that H = (4) and K = (1O)?

Consider H = (4) and K = (11):

leftADdRight = 22;
B = 'l'able [' i, {i, -leftADdRight, leftAndRight}]

It = 'l'able [11 i, {i, -leftADdRight, leftAndRight}]

Q17. What does the intersection appear to be? What connection, if any, is there
between your answer and the fact that H = (4) and K = (II)?

Consider H = (4) and K = (12).

52 Group Lab 6

1eftAndRight = 15;
H = 'l'ab1e[4 i, {i, -leftAndRight, 1eftAndRight}]

K = 'l'ab1e [12 i, {i, -leftAndRight, 1eftAndRight}]

Q18. What does the intersection appear to be? What connection, if any, is there
between your answer and the fact that H = (4) and K = (12)?

Q19. Can you give a conjecture? Test it with a few more examples. Try to
prove it.

Group Lab 7

Permutations

• 7.1 Prerequisites

To complete this lab, you should have a good understanding of functions, includ­
ing "right to left" composition. You do not need to complete any previous labs to
attempt this one .

• 7.2 Goals

We look at the notion of a permutation and how a group can be formed with
permutations. Additionally, we look at properties of permutations and consider
different ways of rewriting a permutation to gain insights regarding products and
orders .

• 7.3 What is a permutation?

We need to read in the following Mathematica code to work through this lab.

Needs["AbstractAlgebra'Ma,ster'n);
SwitchStructureTo[Group);

What is a permutation? Suppose we had five colored squares labeled 1 through 5.

RandamcoloredSquares[5);

54 Group Lab 7

Suppose further that we decide we wish to change the order in which these
squares appear. Let's say we want square 1 to go to the second location, square 2
to the third location, square 3 to the first, square 4 to the fifth, and square 5 to the
fourth.

PermuteColoredSquares [{1 -+ 2, 2 -+ 3, 3 -+ 1, 4 -+ 5, 5 -+ 4}] ;

Note how the first square went to the second location (l ---7 2), the second square
went to the third position (2 ---7 3), the third square went to the first position (3 ---7

1), and so on. Here we say that the second row of squares is a permutation of the
squares in the first row. Technically, a permutation of a set X is a function g from
X to X that is both one-to-one and onto. In the case above, we could define
g: X ---7 X by g(l) = 2, g(2) = 3, g(3) = 1, g(4) = 5, and g(5) = 4, where
X = {I, 2, 3,4, 5}. This is often represented by a matrix.

PermutationMatrix[{1-+2, 2-+3, 3-+1, 4-+5, 5-+4}]

Note that the domain occurs in the first row and the corresponding range elements
in the second row. (Note also that the range, or second row in the matrix, is NOT
the same as the numbers in the second row of labeled squares. There is a connec­
tion, however; can you see it?)

Since permutations are functions, we can combine two permutations by using
function composition; this is shown in section 7.4. Using this binary operation, the
set of all permutations of a set X is called the permutation group of the set X. If X
is the set of integers {l, 2, ... n}, then we call this group the symmetric group oj
degree n (denoted Sn). If the set X is some other collection of n elements, we can
simply (re)label the elements 1 through n and still consider the group of permuta­
tions as the symmetry group Sn.

III 7.4 Computations with permutations

Suppose we have two permutations.

p= {1-+2, 2-+4, 3-+3, 4-+5, 5-+1}
q= {1-+5, 2-+4, 3-+1, 4-+2, 5-+3}

We can view each permutation as a matrix.

PermutationMatrix[p]
PermutationMatrix[q]

To perform the product of p followed by q (note the order here and below), it may
help to think of p and q as side-by-side matrices.

SideBySideMatrices [q, p]

Permutations SS

Observe that q is on the left and p is on the right. We start by first considering the
right-hand side. Observe that p maps 1 to 2. Since q follows p, we note that q
takes 2 to 4. Therefore, the composition of p followed by q takes 1 to 2 to 4, or
simply 1 to 4. Let's try another. Note that p takes 5 to the element 1 and that q
takes the element 1 to the element 5. Therefore the composition of p followed by
q takes 5 to 1 to 5 (and thus 5 is said to be fixed under this composition). The
complete product is shown by

permutationMatrix[MultiplyPe~utations[q, p]]

Q1. Suppose that we are given two permutations s and t defined by
s = {I ~ 2, 2 ~ 3, 3 ~ 1, 4 ~ 4} and t = {I ~ 2, 2 ~ 3, 3 ~ 4, 4 ~ I}. Determine
the two compositions, s followed by t and t followed by s (indicating which is
which). First do your work on paper and then verify it using the Mathematica
functions. What property does S4 not have?

When we viewed the permutation p in matrix form, it looked like

PermutationMatrix[p]

You may have noticed that this form always has the top row as the first consecu­
tive n integers, and the bottom row captures the images of the top row under the
function defined by the permutation. Therefore, it is really the bottom row that
holds the important information. Consequently, we frequently refer to a permuta­
tion by simply using the bottom row.

MultiplyPe~utations[{2, 3, 1, 4}, {4, 2, 3, 1}, Mode-+'l'extual]

Q2. Determine the product of {2, 3, 4, 1} followed by {I, 3, 2, 4}.

Consider the following permutation and its illustration using colored squares.

p = {3, 1, 2, 5, 4, 6}
ShowColoredPermut&tion[p];

Study the permutation (and/or its colored representation). Note that elements in
the set {l, 2, 3} permute among themselves, as do the elements in the sets {4,5}
and {6}. In particular, note that we have p(l) = 3, p(p(1» = p(3) = 2, and
p(p(p(1))) = p(p(3» = p(2) = 1. Therefore, these elements cycle through as 1 ~ 3
~ 2 ~ 1. We say that the (ordered) subset {l, 3, 2} is a cycle of the permutation p.
Furthermore, {4,5} and {6} are also cycles. The standard way to denote these
cycles is by the notation (1, 3, 2), (4, 5), and (6) respectively. (Often the commas
are dropped, if only single digits are used.) Since Mathematica allows parentheses
to be used only as grouping symbols (and not delimeters), we use Cycle [1,
3, 2] to denote the cycle (1,3,2); the leading word Cycle should make it

56 Group Lab 7

clear that a cycle is under discussion, not a permutation. Frequently it is conve­
nient to rewrite permutations into disjoint cycles. (The three cycles (1, 3,2), (4, 5)
and (6) are said to be disjoint since the intersection of any pair is empty.) The
following command does this.

ToCycles[p]

The following takes us back.

FromCycles[%]

The cycle (3, 2, 5,4, 1) is different from the permutation {3, 2, 5, 4, 1}. Study the
following until you see how these differ.

Per.mutationMatrix[{3, 2, 5, 4, l}]
(* viewing the per.mutation *)

Per.mutationMatrix[FromCycles[{Cycle[3, 2, 5, 4, 1]}]]
(* viewing the cycle;
the output is the cycle converted to a per.mutation *)

Read your text for further details about working with cycles; in particular, deter­
mine how to multiply permutations represented in cycle notation.

Q3. Suppose the permutation p is given as a product of disjoint cycles as
p = (1, 2, 5)(3, 6)(4) and q is given by q = (2, 5, 6)(3, 1,4). Determine the
product of p followed by q.

~ 7.5 Applications of permutations

You may recall working with permutations in Group Labs 1 and 2. There, we had
figures such as the following.

ShowFigure[4, {1, 2, 3, 4}, "DII];

In those labs, you were supposed to find all the symmetries of a figure and deter­
mine the group of symmetries. You may realize now that this figure's group of
symmetries consists of four rotations and four reflections, the dihedral group D4 .

Using Ro t to represent the lowest -order rotation (900 in this case) and Re f for
any reflection, the group is given by

Dihedral [4]

This representation of D4 is useful in some contexts. However, viewing it in terms
of the permutations of the four vertices to accomplish these symmetries might be
more useful at the moment, as well as a reminder of what we did in earlier labs.

Permutations 57

G = Dihedral [4, Form Permutations]

Let's look at just the elements.

els = Elements[G]

Q4. As we already know, D4 consists of four rotations and four reflections.
Match up the elements when using the Rot and Ref form with the elements
corresponding to permutations.

Now let's randomly choose one of these permutations and show the result of
applying it to our figure.

ShowPermutation[els[Random[Integer, {1, 8}]]]

Consider the permutation

p = {1, 2, 4, 3}

and its effect on our square:

ShowPermutation[p]

What symmetry is this? Note that vertices 1 and 2 both stayed fixed. A rotation
fixes only one point (which one?), so this cannot be a rotation. A reflection moves
all points except those on the line of reflection. But using a line of reflection
through vertices 1 and 2 would not land this square back onto itself again. Further­
more, it would not transpose vertices 3 and 4. Therefore, this is not a symmetry of
the square. So what is it? It is just a permutation of the vertices that can not be
obtained by asymmetry.

Recall that we use S4 to denote the group of all permutations of four objects. This
group is given below.

Symmetric [4]

How many elements are there in S4? The order of a group is precisely that num­
ber.

Order[Symmetric[4]]

Q5. For any given n, what is the order of Sn? Why?

• 7.6 Questions about permutations

Consider the following permutation.

S8 Group Lab 7

p1 = {3, 1, 2, 5, 4, 6}

We might want to know how to write this as a product of disjoint cycles. This is
something you want to learn how to do without the computer, but for now, let's
use Mathematica.

ToCycles [p1]

Since there are three cycles, let's call them a, b, and c.

{a, b, c} = ToCycles [p1]

Recall that cycle notation is not to be read in the same way as a permutation. We
can determine the permutation for anyone of these.

ToPe~utation[a, 6]
ToPe~utation[b, 6]
ToPe~utation[c, 6]

The second parameter (6) is used to indicate that we want to think of these cycles
as permutations living inside S6 (i.e., permutations of length 6). Without this we
get slightly different results.

ToPermutation[a]
ToPermutation[b]

As usual, when a new function is encountered, it is good to learn more about it.

? ToPermutation

Since the cycles a, b, and c are really permutations in S6, it makes sense to multi­
ply them.

MUltiplyCycles [a, b]
MUltiplyCycles [b, a]

Here's a shortcut for multiplying cycles.

a@b
b@a

What happens if we multiply two cycles from another permutation? Evaluate the
following lines of code until you get a cycle representation consisting of at least
two cycles, each of which has length at least 2.

p2 = RandomPermutation[9]
ToCycles[p2]

Q6. Multiply the two cycles by hand. Confirm your work with Mathematica.
Record the cycles you multiplied.

Permutations S9

Consider the following permutation in Sg.

q= {1, 2, 3,4,5,7,6, 8}

Let's view this in matrix form.

PermutationNatrix[q]

It is clear that the only "action" in the permutation is that 6 goes to 7 and 7 goes to
6; everything else goes to itself. What happens when we view this using cycles?

'roCycles[q]

Q7. Give a reasonable explanation why the cycles (1), (2), (3), (4), and (5) are
omitted in this list of cycles. Additionally, explain why (8) is included.

When do two cycles commute? Try the following.

Cycle[2, 3, 4] @ Cycle [5, 6]
Cycle[5, 6] @ Cycle [2, 3, 4]

Cycle[2, 3, 4] @ Cycle[3, 6]
Cycle[3, 6] @ Cycle [2, 3, 4]

The following picks a random permutation from S6, converts it to cycles, and then
grabs the first cycle and calls it a. This is repeated to obtain b. These are then
multiplied, in both orders (a * b and b * a).

a = First ['roCycles [RandomPermutation[6]]]
b = First ['roCycles [RandomPermutation[6]]]
IlUltiplyCycles [a, b]
MultiplyCycles [b, a]

Q8. Keep evaluating this code until you can make a conjecture regarding when
two cycles will commute. (Evaluate it five times at a minimum.)

Let's pick a cycle from some permutation in S6.

a = First ['reCycles [RandomPermutation [6]]]

What is the order of this element? (Recall that the order of an element g in a finite
group G is the least positive integer n such that gn is the identity of the group. In
S6, the identity is {l, 2, 3,4,5, 6}.)

OrderofElement [8 [6], 'roPermutation[a, 6]]

Let's try it again.

60 Group Lab 7

a = First [ToCycles [RandomPermutation [6]]]
OrderOfElement[S[6], ToPer.mutation[a, 6]]

Q9. Keep evaluating this code until you can make a conjecture regarding the
order of a cycle. How might a proof go?

Now that we know how to find the order of any cycle, and we know that all
permutations can be written as a product of disjoint cycles, let's see if we can
determine the order of an arbitrary permutation.

p = RandomPermutation[7]
ToCycles[p]
OrderOfElement[S[7], p]
(* read the following question *)

QI0. Why do you think this first warning message is given?

We try again, following the instructions.

p = RandomPer.mutation [7]
ToCycles[p]
OrderOfElement [S [7, :IndexLimi t -+ 7] , p]

Qll. Keep evaluating this code until you can make a conjecture regarding the
order of a permutation. Make sure you get some permutations with two or more
cycles before forming a conjecture.

Now we want to think about permutations in terms of 2-cycles (not to be confused
with bicycles-here we mean cycles of length two), which are also called transpo­
sitions. Before continuing on that thread, an observation needs to be made, if not
already observed. Note that when a permutation is given in cycle notation, some­
times singleton cycles (cycles of length 1) show up.

ToCycles[{2, 1, 3}]

In this case, the permutation can really be thought of just as the transposition
(1, 2) since the I-cycle (3) really acts like the identity permutation-the three
goes to itself and everything is fixed! Keep this in mind as we continue.

First we pick a random permutation, convert it to cycles, and pick one of the
cycles at random. The code in the next cell might look a little confusing, but it is
set up to give a cycle with length at least three.

long = False;
While [! long,

Permutations 61

a = First [Randomize [ToCycles [p = RandomPermutation [7]]]] ;
long = Length [a] :it 3]

a

Now we convert this cycle to a product of transpositions. It is important to note
that these transpositions are not disjoint.

transp = ToTranspositions [a]

If we multiply these cycles together,

HultiplyCycles[transp]

we get a permutation as the output, so we can convert it back to cycle notation.

ToCycles[%]

This should be where we started out. Therefore, converting to transpositions is a
safe operation and one that can be undone by multiplying them out. What can be
obtained by writing a cycle as a product of transpositions? Let's pick two random
cycles from two random permutations, convert them to a product of transposi­
tions' and look at the number of transpositions obtained from each cycle.

a = First [Randomize [ToCycles [RandomPermutation [7]]]]
b = First [Randomize [ToCycles [RandomPermutation [7]]]]

transpa = ToTranspositions [a]
transpb = ToTranspositions [b)

Length [transpa]
Length [transpb]

Next, we form the product of the two cycles we found and convert it back to cycle
notation. We want to convert this list of cycles to transpositions, so we apply the
function ToTransposi tions to each cycle in the list (this is what the second
line does). Since this result has extra levels of {} 's, we "flatten" out the unneces­
sary levels and then count how many are in the list.

ToCycles[HultiplyCycles[a, b)]
MaP[ToTranspositions, %]

Flatten[%, 1]
Length[%]

Compare this length with the two lengths above it. We look at this process again,
this time suppressing all output except the counts.

62 Group Lab 7

a = First [Randomize [ToCycles [RandomPermutation [7]]]] ;
b = First [Randomize [ToCycles [RandomPermutation [7]]]] ;
transpa = 'l'o'l'ranspositions [a];
transpb = To'l'ranspositions [b] ;
Length [transpa]
Length [transpb]

prodCyc = ToCycles[MUltiplyCycles[a, b]];
trans = Map['l'O'l'ranspositions, prodCyc];
Flatten [trans, 1] / / Length

The fIrst value is the number of transpositions in the fIrst cycle, the second value
is the number of transpositions in the second cycle, and the third value is the
number of transpositions in the product of the two cycles.

Q12. Keep evaluating this code until you can make a conjecture regarding a
relationship between the number of transpositions in the product (the last
number) and the number of transpositions in the two factors. Hint: Do not try to
be too specific.

There is another function we can apply to permutations, the Pari ty function.
Let's see how this works.

p = RandomPermutation[7]
'l'o'l'ranspositions[p]

Length[%]
Parity[p]

Q13. Keep evaluating this code until you can make a conjecture regarding a
relationship between the number of transpositions in a permutation and its
parity.

Now let's resume our pursuit that preceded question 12. Here we pick random
cycles a and b, form the product, and call it p. We convert each of these to transpo­
sitions and count them; the first triple is the number of transpositions of each in
the list {a, b, pl. Then we also calculate the parity of each, reflected in the second
triple.

a = First [Randomize ['l'oCycles [RandomPermutation [7]]]] ;
b = First [Randomize ['l'oCycles [RandomPermutation [7]]]] ;
transpa = 'l'o'l'ranspositions [a] ;
transpb = 'l'o'l'ranspositions [b];
p = MUltiplyCycles [a, b];
ToTranspositions[p];

Permutations 63

{Length [transpa] , Length [transpb] , Length[%]}
{Parity [ToPermutation [a, 7]],
Parity[ToPermutation[b, 7]], Parity[p]}

The output is {# transpositions in a, # transpositions in b, # transpositions in a * b}
followed by {parity of a, parity of b, parity of a * b}.

Q14. Keep evaluating this code until you can make a conjecture regarding a
relationship between the parity of a product and the parity of its factors. Now
go back to questions 12 and 13 and see if you have any changes to make; if so,
state them here.

A permutation with parity 1 is called an even permutation and if the parity is -1,
we call it an odd permutation. Two functions test evenness and oddness of permu­
tations.

p = RandomPermutation[6]

OddPermutationQ[p]
EveDPermutationQ[p]

Q15. Using your knowledge about sums of odd and even integers and how
products result from various combinations of -1 and 1, do you see any connec­
tion between parity and the number of transpositions? If you do, state it.

Group Lab 8

Isomorphisms

• 8.1 Prerequisites

To complete this lab, you should be familiar enough with the basic properties of
groups to be able to compare the various pairs of groups that you will be asked to
examine. No previous labs are necessary .

• 8.2 Goals

This lab explores the notion of isomorphisms. First we define an isomorphism and
then we see how one can be constructed. Next we explore when two groups are
isomorphic .

• 8.3 What is an isomorphism?

Before beginning, we read in the necessary code for this lab.

Needs[nAbstractAlgebra'Haster'"];
switchStructureTo[Group];

Let's consider two groups, GI and G2.

Clear[G]
Gl = U[10]
G2 =Z[4]

Isomorphisms 65

An important question in abstract algebra (and in mathematics in general) is
"When are two objects the 'same' by some appropriate measurement?" In this
case, are groups GI and G2 the same? Clearly they have different elements and
different operations, so they are not identical. They do, however, both have four
elements and in this way they are the same. Therefore, we can construct a one-to­
one, onto function (bijection) from GI to G2. In fact, there are 24 different ways
of setting up such functions.

Q1. Explain how one comes up with 24 different bijections from GI to G2 •

How many functions (bijections or not) are there from GI to G2 ?

If we consider only the number of elements (four in each, in our case), we ignore
a large portion of the richness of groups and we ignore the operation altogether.
Since each group has a special element, the identity, it may be reasonable to want
to match these up.

Groupldentity[Gl]

Groupldentity[G2]

Thus, if we want to define a function f: GI ~ G2 that somehow illustrates
"sameness," we might want to define f(1) = O.

Clear[f]
f [1] = 0

Q2. With this assumption, how many different bijections are there from GI to
G2?

We need three more matches to make a bijection. Consider the element 3 in GI.
To what should it be mapped? Is there any special property related to 3 that
should also exist with the element in G2 to which it will be mapped? What about
the order of 3?

OrderOfElement [Gl , 3]

It would seem reasonable to want to map 3 to an element in G2 of the same order.
What are the orders of the elements in G2 ?

OrderofAllBlements[~]

If the output is not clear, ask about the function:

? OrderOfAllElements

So we see that the two elements 1 and 3 in G2 both have order 4. (Of course, you
may have already known this; we are illustrating a general process we might
take.) Suppose we map 3 in GI to 1 in G2.

66 Group Lab 8

f[3] = 1

Q3. With this assumption, now how many different bijections are there from G1

to G2?

Since we are mapping 3 to 1, it might be reasonable to map the inverse of 3 in GI
to the inverse of 1 in G2. (Again, you should already know the results of the
following; we are illustrating a general procedure.)

GroupInverse [G1 , 3]
GroupInverse [G2 , 1]

So we map 7 in G1 to 3 in G2.

f[7] = 3

Since 1 g 1 = 1 g-l I, we know that the orders in this assignment match. The two
remaining elements are put together by default.

f [9] = 2

Do the orders match in this case?

OrderOfElement [G1 , 9]

OrderOfElement[G2 ,2]

Indeed. If all we care about is whether orders match up, we are done and we
might call these two groups the same. There might be other issues to consider,
however. In G1 , when we multiply 7 by 9 we get 3.

Clear [op]

OPl = Operation [Gd ;

OPl [7, 9]

Let's review our definition of I:

?f

We see that 7 is mapped to 3 and 9 is mapped to 2. What happens if we add 3 (the
image of 7) and 2 (the image of 9) in G2? Surely we get 1.

OP2 = Operation[G2];

OP2 [3, 2]

More important, observe that 1 = 3 + 2 = 1(7) + 1(9) but also 1 = 1(3) = 1(7 * 9).
In other words,

1(7 * 9) = 1(7) + 1(9).

Isomorphisms 67

Note that on the left-hand side, the operation inside the parentheses is taking place
inside G1 (the domain of f), while the operation on the right-hand side is taking
place inside G2. In this case, we say f is "operation preserving" for the elements 7
and 9. What about other pairs? We can make a table and check all possibilities:

els = Elements [G1]

Table [£ [OPl [e1s[iD, els[jD]] == oP2 [£ [els[iD], £ [els[jD]] ,
{i, 4}, {j, 4}]

Or if you want to see more details:

ListOperationPreservingElements [£, G1 , G2]

This shows that the function f is operation preserving for all the elements in G1.

This is when algebraists are satisfied with calling two groups Gl and G2 the same:
there exists a bijection f : Gl -7 G2 that is operation-preserving in the sense that

f(x* y) = f(x) * f(y)

for all elements x and y in G1 (with the understanding that on the left-hand side
the operation taking place between x and y is the operation in Gl and the opera­
tion taking place on the right-hand side between f(x) and f(y) is taking place in
G2). In such a case, the two groups are said to be isomorphic and the defining
function f is said to be an isomorphism.

Q4. Change Gl to Us and determine whether Us and Z4 are isomorphic. If so,
provide the isomorphism; if not, indicate why not. (Clear [f] before begin­
ning.)

• 8.4 Creating Morphoids

In previous labs, we have used a structure called a Groupoid when we worked
with groups. Now we use a structure called a Morphoid to work with mor­
phisms, including homomorphisms and isomorphisms. Recall from the previous
section that an isomorphism f between two groups is a bijective (one-to-one and
onto) mapping such that f(x * y) = f(x) * f(y) for all elements x and y in the
domain. If we relax the condition that f is bijective and require only the
"operation-preserving" part, we have a homomorphism. A Morphoid is a struc­
ture that has the potential of being a homomorphism (and therefore potentially
also an isomorphism).

Recall that our function f was defined as follows.

68 Group Lab 8

Clear[f]
f[l] = 0;
f[3] = 1;
f[7] = 3;
f[9] = 2;

We can use FormMorphoid to create a Morphoid based on f.

func1 = FOrmMorphoid[f, U[10], Z [4]]

Alternatively we can set up a list of rules that are equivalent to f.

rules = Map [Rule [I, f [#]] 50, Elements [U [10]]]

The FormMorphoid function can also handle a list of rules to create a Mor­
phoid.

func1alt = FOrmMorphoid[rules, U[10], Z [4]]

The two Morphoids funcl and funclal t appear to be different, but they are
really the same. Morphoids can be defined either by a list of rules or a function.
If the underlying correspondences between the elements of the Groupoids are
the same, the Morphoids are considered to be equal.

EqualMorphoidQ[func1, func1alt]

We already know that funcl is an isomorphism. Let's set this knowledge aside
for the moment (for the sake of learning how to use some of the available tools in
situations where we don't know if we have an isomorphism). What we want to
know is whether, for any given pair of elements in Gl, the operations are pre­
served?

First we will take a specific pair, 9 and 3.

PreservesQ [func 1, { 9, 3}, Mode -+ vi sual]

In this case, we see that f(9 * 3) does equal f(9) + f(3), since 9 * 3 is 7 in G1 and
the image of 7 is 3, which happens to be the sum of 2 (the image of 9) and I (the
image of 3). Note that the operation in G1 is multiplication (hence, *), whereas it
is addition in G2 (and so + is used).

Let's pick two random elements and check out whether the operations of G1 and
G2 are preserved under the Morphoid funcl (based on f).

{g, h} = RandomElements[Gu 2]

PreservesQ [func1, {g, h}, Mode -+ visual]

Q5. Evaluate the two lines of code again several times. Do you find any case
where the operations were not preserved? Why or why not?

Isomorphisms 69

Note that PreservesQ is used when one wishes to explore whether a function is
operation preserving for a particular pair of elements. More generally, we are
interested in doing this for all possible pairs. The function MorphismQ does this
for us. Here we use it in the Visual mode; pairs that are preserved are colored at
their point of intersection in the table.

MorphismQ[funcl, Mode -+ Visual]

We can also check to see if funcl is an isomorphism as well as a homomor­
phism.

IsomorphismQ[funcl]

In case one begins to think that having a homomorphism happens naturally, let's
take a look at an example where not all the elements preserve the operation. We
define a Morphoid func2 that has Z4 as its domain and Zs for its codomain,
and the rule to get from the domain to the codomain is to take an element from
Z4, add 1, and then reduce this result mod 5.

func2=FOrmMorphoid[Mod[#1+1, 5] &:, Z[4], Z[5]]

Now let's check out which elements preserve the operations.

MorphismQ [func2, Mode -+ Visual]

We see that some do and some do not. In particular, since the entry at the intersec­
tion of the row headed by 1 and the column headed by 2 is not colored, func2 is
not operation-preserving for the pair (1, 2). Let's look at this in detail.

PreservesQ[func2, {1, 2}, Mode-+visual]

Q6. Explain in your own words how and why this failed. Why were the opera­
tions not preserved?

As you work with homomorphisms in greater detail, you will learn about the
kernel and the image of a homomorphism. For the two Morphoids created here,
we illustrate how to obtain the kernel and image.

Kl = Kernel [funcl]
Il = Image [funcl]

K2 = Kernel [func2]
I2 = Image [func2]

The operations of these Groupoids are as follows.

70 Group Lab 8

Q7. Which of the four (the two kernels and the two images) are groups? Justify
your answer.

~ 8.5 Seeing isomorphisms

Often, by looking at appropriate data, one can almost literally "see" an isomor­
phism at hand. Here we look at some examples .

• 8.5.1 Example 1

Consider the example with which we first started.

G1 =U[10]

G2 = Z[4]

Let's look at the Cayley tables of these two groups.

CayleyTable [{G1 , G2}, Mode -+ Visual] ;

We have shown that these two groups were isomorphic. Shouldn't their Cayley
tables be identical? Think about why they are not. Perhaps if we ordered the
elements in the second table in the order corresponding to the first (via our isomor­
phism), we might obtain different results.

CayleyTable [{ {G1 }, {G2 , TheSet -+ {O, 1, 3, 2}}}, Mode -+ Visual];

This looks better. Now the isomorphism is clear.

• 8.5.2 Example 2

We now consider UIO and another group of order four.

G1 = U[10]
G2 = U[12]

Are these two isomorphic?

CayleyTable [{G1 , G2 }, Mode -+ visual] ;

Certainly the two tables do not look alike, but we know that this does not necessar­
ily mean that the two groups are not isomorphic. Below we rearrange the elements
of UIO.

CayleyTable[{{G1 , TheSet-+ {1, 9, 3, 7}}, {G2 }}, Mode-+Visual];

Isomorphisms 71

Q8. Try other arrangements for the elements in UlO until you show that the two
groups are isomorphic or conclude that they are not isomorphic. If they are
isomorphic, describe how the isomorphism map works; if they are not isomor­
phic, explain why not .

• 8.5.3 Example 3

We now consider the group D2 and its Cayley table.

G1 = Dihedral [2]
CayleyTable [G1 • Mode -+ visual] ;

We have seen several other groups of order four. Find one that is isomorphic to
D2. Define it and then show the Cayley tables side by side.

CayleyTable [{G1 • G2}. Mode -+ Vi sual]

If the elements in G2 are not arranged to properly reflect the isomorphism, do so
below.

CayleyTable [{ {Gd. {Gu TheBet -+ {}}}. Mode -+ Visual]

Q9. What is the other group to which D2 is isomorphic and what are the details
of the isomorphism? (Specify which elements are mapped to which.)

• 8.5.4 Example 4

Following are several groups of order six.

SL22 = FormGroupoid [
{{{O. l}. {l. OJ}. {{O. l}. {l. l}}. {{l. OJ. {O. l}}.
{{l. oJ. {l. l}}. {{l. l}. {o. l}}. {{l. l}. {l. OJ}}.

Mod[#1.#2. 2] &:. WideElements -+ True.
GroupoidName -+ n SL [2. 2] n] ;

(* two-b¥-two matrices with deter.minant
1 and entries from Z2 *)

G1 = U[9]

G2 =Z[6]
G3 = Symmetric [3]
G, = Dihedral [3]
Gs = SL22
G6 = DirectBum[Z[2]. Z[3]]

72 Group Lab 8

Are any of these isomorphic to one another? Here are some tools you may wish to
use.

CayleyTable [{G1 , G2 , G3 , G" Gs , G6 }, Mode -+ Visual] ;
(* After evaluating this,
you may wish to enlarge the graphic by
selecting it and then dragging from a corner. *)

TableForm[
OrderOfAllElements [{G1 , G2, G3 , G" Gs , G6 }], TableDepth -+ 1]

OrderOfAllElements [{G1 , G2 , G3 , G" Gs , G6 }, Mode -+ Textual] ;

? GroupCenter

Map [GroupCenter, {G1 , G2 , G3 , G" Gs , G6 }] II ColumnForm

?CommutatorSubgroup

Map[Elements[CommutatorSubgroup[#]] &,
{G1 , G2 , G3 , G" Gs , G6 }] I I ColumnForm

QI0. If groups HI and H2 are isomorphic, we denote this by HI = H2. For
every pair (Gi , G j) of groups in {GI, G2 , G3, G4, Gs, G6}, determine whether

Gi = Gj. Note: There are "six-choose-two" -(~)- such pairs to consider.

Qll. You probably found that D3 was isomorphic to at least one of the other
groups. Below, we use the variable otherGroup to denote the group you had
in mind; change G4 to the group you have in mind and evaluate the following
cell. You now see the list of elements in your chosen group. Between the {} on
the right-hand side of orderedElementsOfOtherGroup, place the
elements of your chosen group matched up according to the elements of D3 .

After double-checking your ordering, evaluate the cell and the cell that defines
the rules for this isomorphism, as well as the Morphoid f itself. Now use the
tools illustrated earlier and verify that f is indeed an isomorphism (assuming
that you correctly found an isomorphic group).

otherGroup = G,
Elements [otherGroup]
Elements[Dihedral[3]]

Isomorphisms 73

orderedElementsOfOtherGroup = {}

rules = Transpose [{Elements [Dihedral [3]] ,
orderedElementsOfOtherGroup}] /. {x_, y_} : > x -+ y

f = FormMorphoid [rules, Dihedral [3], otherGroup]

Q12. Consider the set H = {l, Rot, Rot2 }, which is a subgroup of D3 • What is
the image of H under /1 (You may wish to use the following line.) Is this also a
subgroup of the image of D3 1

r.m&ge[f, {I, Rot, Rot2 }]

Group Lab 9

Automorphisms

1119.1 Prerequisites

To complete this lab, you should have completed Group Lab 8.

III 9.2 Goals

This lab continues the exploration of isomorphisms begun in Group Lab 8. In this
lab, we look at a collection of isomorphisms from a group to itself and ask what
kind of structure, if any, might be present.

III 9.3 Automorphisms on Zn

Before beginning, we read in the necessary code for this lab.

Needs[nAbstractAlgebra'Haster'n];
SwitchStructureTo[Group];

In Group Lab 8 we considered questions such as "Is U12 isomorphic to U10 (or
other groups besides U1O)?" Consider the group Z12. We never asked "Is Z12
isomorphic to Z12 (i.e., itself)?" Why not ask this? Is the answer obvious? On the
one hand, since isomorphisms indicate that two groups are the "same" in some
sense, if two groups are identical (as in this case), we should certainly expect
them to be isomorphic.

Automorphisms 75

Indeed, Z12 is isomorphic to itself. Which isomorphism (map) will show this? Try
the identity function that takes every element to itself. All the properties hold.
Since we are mapping from Z 12 to itself, we call this kind of isomorphism an
automorphism. We illustrate the use of the identity function.

Clear[f]
f1 = FormMorphoid[Identity, Z [12], Z [12]]

I somorphi smQ [f1]

We can see the details of this Morphoid by looking at the rules used in its
definition.

ToRules [f1]

A more important question to ask at this time is whether there are any other
automorphisms besides the identity map. We know that we must map 0 to O.
(Why?) What about the element 5? Since it is a generator and has order 12, to
what must it be mapped? Clearly it needs to go to another generator, if we wish to
preserve orders. So it could be mapped to 1,5, 7, or 11.

Let x be any other element of Z 12. Since 5 is a generator, x = n 5 = 5 + 5 + ... + 5
(n summands) for some integer n. To what should we map x? Suppose our func­
tion is f. Then,

f(x) = f(5 + 5 + ... + 5) = f(5) + f(5) + ... + f(5)

with n summands in both instances. This should indicate that once we know
where 5 is mapped, we know where every element is mapped.

Ql. Explain this last statement (in such a way that would convince a classmate
who may not have heard this yet).

Since we know we can send the generator 5 to anyone of the four generators, let's
make a function for each possibility. Below we use a function called Automor­
phi sm that allows us to specify a rule as a generator and build the complete
morphism from that single piece of information. Asking for more information
about a function is always a good idea.

? Automorphism

We can also get further information by specifying the Textual mode of Auto­
morphism.

f2 = Automorphism[Z [12], 5 -+ 1, Mode -+ Textual]

Instead of checking to see if fl and hare morphisms, we can check whether they
are isomorphisms directly with IsomorphismQ.

76 Group Lab 9

I somorphismQ [f1]

IsomorphismQ[fa]

Let's create our last two automorphisms and check them.

f3 = Automorphism[Z[12], 5-+7]
IsomorphismQ [f3, Cautious -+ True]

f, = Automorphism[Z[12], 5 -+ 11]
IsomorphismQ [f" Cautious -+ True]

We now have four automorphisms. What can we do with these functions? Is this
set of four functions anything special? What would happen if we follow one by
another (i.e., compose the functions)? In particular, what do we get if we follow
h by 13?

First, define E 1 s to be the elements of the group .z 12 under consideration.

Els = Elements [Z[12]]

We want the output of h to be the input for 13, so let's evaluate h at the set Els.

fa [Els]

This maps h over each element in Els. We could also have h mapped onto each
element by using the Map command.

f20Utput = Map [fa, Els]

Now we use this as input for h.

Map[f3, f2OUtput]

Now the question is which function, if any, has the same output (in this order)
when mapped over Els? Let's try each one.

Map[f 1 , Els]
Map [f21 Els]
Map [f31 Els]

Map [f" Els]

Great! The function 14 has the same images as the images of h followed by h.
But what does this mean?

Q2. What is the relationship, if any, between h, !3, and 14 ?

Q3. Modify the steps above and determine the result of taking h followed by
14' Which function, if any, does this yield?

Automorphisms 77

Q4. Where are we going with all this? What seems to be lurking around the
corner (i.e., Mathematica computation)?

Suppose we try to automate all this work. First we define our list of automor­
phisms but redefine 11 using Automorphism, converting it into a rules-based
Morphoid. (This is necessary to form a Groupoid of Morphoids.)

£1 = Automorphism[Z [12], 5 ... 5]

automorphislllS = {£1' £2' £3' £4}

We can operate on these automorphisms with the function MorphoidComposi­
tion.

? MorphoidC~osition

If we want to know 14 followed by 13, we use the following. (Notice that the
ordering is from right to left.)

MorphoidComposition[£3' £,]

Or 11 followed by 14:

MorphoidC~osition[£" £1]

The next question we might ask concerns a Cayley table. First we need to turn this
set and operation into a Groupoid. We will call it Automorphisms.

Automorphisms =
FormGroupoid[automorphisms, MorphoidC~osition[#1, #2] &,

WideElements ... 'l'rue, Keyl'ol:1ll ... OUtputFol:1ll]

Now for the moment for which we have all been waiting:

Cayley'l'able [Automorphisms, Mode ... Visual];

Q5. Does this appear to be a group? Why? Is there an identity? If so, what is it;
if not, why not? Since this is of order four, to what familiar group is this isomor­
phic?

All the work above is automated in the function AutomorphismGroup.

?AutomorphismGroup

Let's change our modulus from 12 to 10 and see what kind of group we get.

G = AutomorphismGroup [Z [10]]

Now take a look at its Cayley table.

78 Group Lab 9

CayleyTable [G, Mode -+ Visual];

I Q6. To what familiar group is this isomorphic?

Let's try one more.

G = AutomorphismGroup[Z[14]];
CayleyTable [G, Mode -+ visual] ;

Q7. To what familiar group is this isomorphic?

1119.4 Inner automorphisms

We have seen how we obtain all the automorphisms on a cyclic group. If the
group is not cyclic, the question is a bit harder. There are certain automorphisms,
however, that are easy to generate for any group.

Let G be any group and g by any element in G. Consider the function
fg : G -7 G defined by fg(h) = g h g-l. We call g h g-1 the conjugate of h by g and
the process of applying fg to an element is called conjugation.

Q8. If the group G is Abelian, what happens when we conjugate h by g? What
is the map fg in this case?

Consider the group G = D4 and let's try conjugating some elements using the
function ElementConjugate.

Dihedral [4]
(* recall Rot is the element

corresponding to the lowest order rotation,
90° in this case, and Ref is any reflection *)

?ElementConjugate

ElementConjugate [Dihedral [4], Rot3 , Rot]

ElementConjugate [Dihedral [4], Ref, Rot]

We can speed this up by looking at all the conjugates at once.

ConjugatingElement = Rot;
TableForm [Transpose [{els = Elements [Dihedral [4]], Map [

ElementConjugate[Dihedral [4], #1, ConjugatingElement] '"
els] }], TableHeadings -+ {None,

{nhn, "h conjugated by "<>ToString[ConjugatingElement] <>
"\nn}}, TableSpacing-+ {0.5, 5}]

Automorphisms 79

Q9. Which elements were not changed when they were conjugated by Rot? Is
there anything special about this set?

What if we conjugate by Re f?

ConjugatingElement = Ref;
TableForm[Transpose[

{Elements[Dihedral[4]], (ElementConjugate[Dihedral[4], #1,
ConjugatingElement] &) /@Elements[Dihedral[4]]}],

TableHeadings -+ {None, {"h", "h conjugated by "<>
ToString[ConjugatingElement] <>"\n"}},

TableSpacing -+ {O. 5, 5}]

For each element g in a group G, there is a conjugation function fg (that takes an
element to its conjugation by g). Note that fg is a function from G to G and
therefore a candidate for being an automorphism. In fact, each of these functions
is an automorphism and is called an inner automorphism of G induced by g. We
can use Mathematica to help us construct them.

?InnerAutomorphism

Clear[f]
f1 = InnerAutomorphism [Dihedral [4], Rot2]

Let's look at some details of this function. One way of seeing the action is to map
f1 onto the elements of the group.

Map [fll Elements [Dihedral [4]]]

Is fl really an automorphism?

I somorphi smQ [f1]

Suppose we call fz the inner automorphism induced by Rot3 .

f2 = InnerAutomorphism[Dihedral[4], Rot3]

Map[f2, Elements[Dihedral[4]]]

Since f1 and h are functions, it is legitimate to ask about the composition. Will
this be another inner automorphism? If so, which one? Perhaps we should try to
find all the inner automorphisms by mapping the InnerAutomorphism func­
tion onto the elements of the group.

funcs = Map [InnerAutomorphism[Dihedral [4], #] &,

Elements[Dihedral[4]]]

Now let's map each of these onto the elements of the group to see if any of these
functions are the same.

80 Group Lab 9

images = Ma.p [Ma.p [I, Elements [Dihedral [4]]] &:, tunes]

QI0. By looking at this list, would you say that any of these functions are the
same? If so, which ones?

Sorting this list, we remove any duplicates.

Union [images]

At this stage, you should be able to match up each of these lists with those in
images and likewise determine the inner automorphisms with which they are
associated. We put all of this (and more) together in one function.

G = InnerAutomorphismGroup[Dihedral [4]]

The elements of this Groupoid are suppressed until we ask for them.

Elements[G]

Let's look at the details of the second element.

MorphoidRules[Elements[G] [2]]

Here is the Cayley table for this group.

CayleyTable [G, Mode -t Visual] ;

Qll. You now know about the different groups of order four. To what
(common) group is G isomorphic?

Consider the following groups.

It = InnerAutomorphismGroup [Dihedral [5]];
CayleyTable [It, Mode -t visual] ;

L = InnerAutomorphismGroup [Dihedral [6]] ;
CayleyTable [L, Mode -t Visual, ShowKey -t False] ;

Q12. Make a conjecture about the inner automorphism group of Dn?

Group Lab 10

Direct Products

III 10.1 Prerequisites

To complete the last section of this lab, you should have completed the lab on
isomorphisms (Group Lab 8).

III 10.2 Goals

This lab explores the direct product of two groups. First we define the concept of
a direct product and how to determine its order. Next we determine the order of an
element in a direct product. We also consider when a direct product might be
cyclic, given that its factors are cyclic. Finally, we consider when U groups are
isomorphic to direct products of other U groups.

III 10.3 What is a direct product?

In abstract algebra, when an object (such as a group) is being studied, there are a
couple of natural questions that are often asked: (1) When does a subset still have
the algebraic properties of the parent set? (2) Can we take two (or more) objects
and combine them to build a new one with similar properties? (We pursue a third
natural question in Group Lab 12.)

Since we have already spent some time looking at subgroups, we now consider
the second question. Let's consider two groups, Gl and G2, as defined below.
First we read in code from the AbstractAlgebra packages.

82 Group Lab 10

Needs ["AbstractAlgebra' Master' "] ;
SwitchStructureTo[Group];

Gl = U[10]
G2 = Z [4]

How can we combine them to form a new group where both Gl and G2 can be
viewed as "subgroups" in some sense? From linear algebra, we know what it
means to view vectors as ordered pairs and then use component-wise addition, so
perhaps we can implement a similar strategy.

What we want to do is form all ordered pairs of the form (x, y) where x is
obtained from G 1 and y is obtained from G2. The set of all these ordered pairs can
be given a group structure by considering the operation defined by
(x, y)(a, b) = (x a, y b), where the operation in the first component on the right­
hand side takes place in G 1 and in G2 in the second component. We call this
group the direct product of G 1 and G2. We denote this direct product by G 1 x G2.

G = DirectProduct [Gl, G2]

Q1. Here we see there are 16 elements. If I Gl I = n and I G2 I = m, what is the
order of the direct product Gl x G2 ? Why?

Let's look at another direct product.

H = DirectProduct [U[10], Z [2]]

As we have seen in the past, studying the Cayley table of a group can reveal
significant information. Study the following.

CayleyTable [H, Mode -+ Visual];

Q2. What observations can you make about the group H? Can you "see" any
subgroups? Can you identify the order of any elements? Is this Abelian? What
other observations can you make?

~ 10.4 Order of an element in a direct product

We continue to use the same G as in section 10.3. (Evaluate the following only if
you have changed your definition of G.)

G = DirectProduct [U [10], Z [4]]

Let's pick a random element from G.

Direct Products 83

? RandomElament
(* if you are not sure how RandomElement works. try this *)

g = RandomElement [G. SelectFrom Nonldentity]

What is the order of this element?

OrderOfElement [G. g]

Now let's determine the order of each component in its respective group. That is,
we would like to know the order (in G1) of the ftrst component of g and the order
(in G2) of the second component of g. In Mathematica, one uses g[[k]] to obtain
the kth component of a list, so here we use g [1] and g [2] to ftnd the coordi­
nates of gin G1 and G2 respectively.

OrderOfElement [{ {Gl. g[l]}. {G2. g[2]}}]

Recall that the ftrst number is the order of the ftrst coordinate of g in the group Gl
and the second number is the order of the second coordinate of g in the group G2.
Let's look at a table and see if we can come to any conclusions.

TableForm[
Table [g = RandomElement [G. SelectFrom Nonldentity] ;

{g. OrderOfElement [G. g].
OrderOfElament [{ {Gl. First [g]}. {G2. Last [g]}}]}. {8}].

TableDepth 2. TableHeadings
{None. {ng = {x. y}". nlgln. n{lxl. Iyl}\n"}}.

TableSpacing {O. 5. 3}]

Q3. Evaluate the cell at least one more time. Make a conjecture about a relation­
ship between the order of the element g = {x, y} in G1 xG2 and the orders I x I
and Iyl.

Change the groups Gl and G2 to some other groups (use Z, U, Symmetric,
Dihedral or any other groups you might know).

Clear [Gl. G2]

Gl= (* <--- fill in your group here *)

G2 = (* <--- fill in your group here *)

G = DirectProduct [Gl. G2];
Elaments[G]

84 Group Lab 10

TableForm[
Table [g = RandomElement [G, SelectFrom -+ NonIdentity];

{g, OrderOfElement[G, g],
OrderOfElement[{{Gl, First[g]}, {G2, Last[g] }}]}, {S}],

TableDepth -+ 2, TableHeadings-+
{None, pg = {x, y}", "Igl", "{lxi, Iyl}\n"}}]

Q4. Test your conjecture from question 3. Does it still hold? What are your
groups Gl and G2 in your direct product? Try this again by changing groups
(again listing your component groups). State your final conjecture. How might
you prove it?

~ 10.5 When is a direct product of cyclic groups cyclic?

Consider the following two groups and their direct product.

Gl = Z[6]
G2=Z[4]
G = DirectProduct [Gl, G2]

We know that both G1 and G2 are cyclic; what about G?

CyclicQ [{Gl, G2, G}]

In this case, we see that G is not cyclic. Let's make a table of some random
indices for Zm and Zn and then consider the cyclicity of the direct product
Zm xZn. (The following is already evaluated; just open up the cell.)

~ numberToSample = 6;
TableForm[Table [n = Random [Integer, {2, 10}];

m=Random[Integer, {2, 11}]; {m, n,
CyclicQ[DirectProduct[Z[m], Z[n]]]}, {numberToSample}],

TableHeadings-+ {None, {"mn, nnn, "Z ..)(Zn cyclic?\n"}}]

m n :Em x :En cyclic?

7 10 True

2 2 False

6 3 False

7 3 True

10 3 True

8 3 True

Direct Products 85

Q5. By either repeating the preceding code or substituting values for m and n
below, try enough examples until you can make a conjecture about a relation­
ship between m and n that will guarantee that the direct product Zm xZn IS

cyclic.

m=7

n=8
CyclicQ[DirectProduct[Z[ml, Z[nlll

Q6. Give a reasonable explanation why your conjecture makes sense.

• What are the generators of a cyclic direct product?

One of the examples you may have tested, Z4 xZs, turns out to be cyclic. A
natural question to ask concerns the generators of this cyclic group. Before you
evaluate the following cell, think about what the list of generators might be.

?CyclicGenerators

CyclicGenerators[DirectProduct[Z[41, Z[5111

Q7. What is another example of indices m and n for which Zm xZn is cyclic?
Without using Mathematica, determine the generators for this group. Test
yourself using Mathematica.

Fill in values for nand m for which the direct product is cyclic.

m=4

n=5
CyclicGenerators[DirectProduct[Z[ml, Z[nlll

I Q8. When is Zm x Zn isomorphic to Zm n ?

~ 10.6 Isomorphisms among Un groups

Consider the following, where we form the groups Um, Un, Umn and the direct
product Um x Un.

m = 5;
n = 4;

Gl = U[m]
G2 = U[n]

86 Group Lab 10

G = DirectProduct [Gl, G2]

U[m * n]

Note that Urnn and Urn x Un have the same number of elements.

Length [Elements [U[m * n]]] ==
Length[Elements[DirectProduct[U[m], U[n]]]]

Suppose we define a function from Urnn to Urn X Un. To do so, we need to make
sure that the image of any element lands in Urn x Un, which means that the first
component must be in Urn and the second in Un. The following function is one
way to accomplish this.

Clear[f]
f [x_] : = {Mod [x, m], Mod [x, n]}

What is the image of this function on Urn n ?

Map [f, Elements [U [m * n]]]

How does this compare to the elements of Urn x Un?

SameSetQ[%, Elements[DirectProduct[U[m], U[n]]]]

Thus, we see that we have the same set of elements. Could this possibly be an
isomorphism? First, let's set up a Morphoid.

func = FormMorphoid [f, U [m * n], DirectProduct [U [m] , U [n]]]

Since we see that the map is onto (and one-to-one), what we really need to do is
check to see if it is a morphism.

MorphismQ[func, Mode -+ visual]

Indeed. We have an isomorphism. Is there anything special about the m and n we
chose? Let's try some random values and see what happens.

numberToSample = 6;
Off[Morphoid::dff];
TableForm [Table [m = Random [Integer, {2, 10}];

n=Random[Integer, {2, 10}]; G1 =U[m]; G2 =U[n];
G = DirectProduct [G1 , G2]; H = U[mn]; Clear[f];
f [x_] : = {Mod [x, m], Mod [x, n]}; {m, n, IsomorphismQ [

FormMorphoid [f, U [m n], DirectProduct [U [m], U [n]]] ,
Cautious -+ True] }, {numberToSample}],

TableHeadings -+ {None, {nm", "n", "isomorphic?\nn}}]
On[Morphoid::dff];

Direct Products 87

Q9. By either repeating the preceding code or substituting values for n and m
below, try enough examples until you can make a conjecture about a relation­
ship between nand m that will guarantee that the direct product of Un and U m
is isomorphic to U m n .

n=

m=
Clear[f];
f [x_] : = {Mod [x, m] I Mod [x, n]};
IsomorphismQ[

FOrmMorphoid [f I U [m n] I DirectProduct [U [m] I U [n]]]]

QI0. Is U30 isomorphic to U2 x U3 x U5 ? Why or why not? If so, set up an
isomorphism; if not, explain why not.

QU. Is 1'.30 isomorphic to 1'.2 x1'.3 x1'.5? Why or why not? If so, set up an
isomorphism; if not, explain why not.

Q12. Is 1'.mn isomorphic to 1'.m x1'.n? Set up an isomorphism when it is and
explain why not when it is not.

Group Lab 11

Cosets

III 11.1 Prerequisites

This lab is self-contained. No prior labs need to be completed to attempt this one,
but familiarity with the basic groups such as Zn, Un and Dn is helpful.

III 11.2 Goals

This lab explores the notion of cosets. We wi11look at how cosets are determined,
the different types of cosets, and some of the properties of cosets.

III 11.3 eosets, left and right

Suppose we start with some group G, say the dihedral group of order 8, D4 • First
we read in the necessary Mathematica code.

Needs["AbstractAlgebra'Master'n];
SwitchStructureTo[GrOup];

G = Dihedral [']

Now consider a subgroup of G, say H = {l, Rot2}, consisting of the identity and
the 1800 rotation (when we view D4 as the symmetries of the square).

H = {1, Rot 2 }

Cosets 89

We would like to take another element g from G and multiply it by all the ele­
ments in H. Suppose we choose one of the reflections, say Ref. Before multiply­
ing, we need to first choose on which side to multiply Ref, since this group is not
Abelian. We also need to find a way of calculating this product in Mathematica.

If we have a function f of two variables (such as f(x, y) = x2 + y2) and we want
to hold one variable fixed and let the other roam over some fixed set, we can use
the Map function as follows.

Clear [f, x, y]

f [x_, y _] : = x2 + Y
lIap[f[2, #] &:, {-2, -1, 0, 1, 2}]

The expression f [2 , #] & indicates that all the elements in the list
{-2, -1, 0, 1, 2} should, one at a time, be placed in for the # and then f can be
properly evaluated with the two arguments (the first always being 2, in this
example). Think about what the following will return; don't evaluate it until you
have made some (educated) guess.

Map[f[#, 1] &:, {-2, -1, 0, 1, 2}]

We will use this mapping principle to calculate our product of Ref times the
elements in H. First we need the group's operation, which is a function of two
variables. The following allows us to use op as a short name for the operation.
(The semicolon suppresses the actual definition, since its details are not impor­
tant.)

op = O,peration[G];
(* the ; suppresses output, so do not expect any *)

Now we will use op to do the calculations, placing Ref on the left (as the first
operand).

IIap [op [Ref, #] &:, H]

This result is called the left coset of H in G containing g (where H = {l, Rot2 } and
g = Ref). In general, we denote the left coset of H in G containing g by the nota­
tion g H. This coset is the set {g * h I h E H} . We define the right coset of H in G
containing g in a similar fashion: H g = {h * g I h E H}. (Note that when a group is
written additively, we denote these cosets by g + H and H + g.) We can calculate
the right coset in a similar fashion.

Map[op[#, Ref] &:, H]
(* note that Ref is now the second, or right, operand *)

Observe that, in this case, the right coset and the left coset are the same. Suppose
we use a new element, g = Rot2 Ref.

90 Group Lab 11

A technical Mathematica note might be useful here, since in Mathematica we
enter Rot2 Ref as Rot A 2 ** Ref. In Mathematica, multiplication is denoted
either by juxtaposition, 6 7, or by using the asterisk, 6 * 7.

67

6 * 7

Clear[g, h]
g*h
h*g

Note that both g * h and h * g return g h. In other words, by default Mathematica
assumes that the multiplication * is commutative and the elements are returned in
some canonical order (alphabetically in this case). To force a noncommutative
multiplication we use **.

Now let's try calculating the left coset of H in G containing Rot2 Ref.

Ilap[op[Rot2 uRef, #1] &:, H]

Note that this is the same result (as sets they don't need to be in the same order) as
the left coset of H in G containing Ref.

Q1. Calculate both the left and right cosets of H in G containing Rot. Are they
the same?

Since this is a somewhat awkward way of calculating co sets (though it conveys
exactly what is happening), let's use another method. We have functions Left­
Coset and RightCoset that give us what we want.

LeftCoset [G, H, Rot2 ** Ref]
RightCoset [G, H, Rot 2 ** Ref]

?LeftCoset

Suppose we consider another group, say Zg, and let H = {O, 2, 4, 6}.

G = Z [8]
H = {O, 2, 4, 6}
SubgroupQ [H, G]

(SubgroupQ is a function that one can use to test to see if a set is truly a sub­
group or not. We want to make sure that H is a subgroup before we try making
cosets.)

Let's try some cosets.

LeftCoset [G, H, 0]
LeftCoset [G, H, 1]

For a little more information, try the Textual mode.

LeftCoset [G, H, 1, Mode -+ 'l'extual]

Here is the last coset from another perspective:

LeftCoset [G, H, 1, Mode -+ Visual]

Cosets 91

To get all the cosets, we can use our Map function and map the LeftCoset
function across the whole set of elements of G.

Map [LeftCoset [G, H, I] Eo, Elements [G]]

This can be understood better, perhaps, by viewing both the coset and the element
that generates the coset; try the following.

Map [{I, LeftCoset [G, H, I]} Eo, Elements [G]] II ColumnForm

Q2. What observations can you make about these cosets? If you can't think of
anything, try the following (but try to think of something first).

Map [{I, Sort [LeftCoset [G, H, I]]} Eo, Elements [G]] II
ColumnForm

Now compare the left cosets and the right cosets of H = {a, 2, 4, 6} in G = Zg.

'l'ableForm[
Map[{I, LeftCoset[G, H, I], RightCoset[G, H, I]} Eo,

Elements[G]], 'l'ableHeadings -+

{None, {"gO, "g+Rn, "H+g\n"}}, 'l'ableDepth -+ 2]

In each row, the first element is the element that we are mUltiplying by (adding to,
in this case) the set H. (This element is usually called a coset representative.) The
second item is the left coset and the third is the corresponding right coset.

Q3. What observations can you make about the relationship between these left
and right cosets?

Lest you jump to a false conclusion, let's consider another example.

G = Symmetric [3]
H = {{I, 2, 3}, {I, 3, 2}}
SubgroupQ [H, G]

Now that we know that H is a subgroup of G, we can consider the various left and
right cosets.

92 Group Lab 11

TableForm[
Map[{#, LeftCoset[G, H, I], RightCoset[G, H, I]} &,
Elements[G]], TableHeadings ~
{None, {"gO, "gH", "Hg\n"}}, TableDepth ~ 2]

Q4. What observations can you make about the relationship between these left
and right cosets?

III 11.4 Properties of cosets

Let's look for some common properties among the three collections of co sets is
section 11.3.

G = Dihedral[4];
H = {I, Rot"2};
TableForm[

Map[{#, LeftCoset[G, H, I], RightCoset[G, H, I]} &,
Elements[G]], TableHeadings ~
{None, {"g", "gH", "Hg\nn}}, TableDepth ~ 2]

G = Z[8];
H = {O, 2, 4, 6};
TableForm[

Map[{#, LeftCoset[G, H, I], RightCoset[G, H, I]} &,
Elements[G]], TableHeadings ~
{None, {"g", "gH", "Hg\n"}}, TableDepth ~ 2]

G = Symmetric[3];
H = {{I, 2, 3}, {I, 3, 2}};

TableForm[
Map[{#, LeftCoset[G, H, I], RightCoset[G, H, I]} &,
Elements[G]], TableHeadings ~
{None, {"gO, "gH", "Hg\n"}}, TableDepth ~ 2]

For each of the following questions, consider the preceding examples and see if
you can provide an answer. (Note that in the following questions we use g H and
H g generically, independent of whether the group G writes the co sets additively
or multiplicatively.)

Q5. Recall that when we talk about the left (or right) coset of H in G containing
g, we call the element g the coset representative of g H (or H g). Does it appear
that g is one of the elements in g H and H g? Why or why not?

Cosets 93

Q6. As you look at the cosets above, when is it the case that g H or H g actually
is the set H? Why is this the case?

Q7. Pick any two elements x and y in G. What can you say about the two cosets
x H and y H (or, for that matter, the corresponding right cosets)? Justify your
answer.

Q8. How many (different) cosets are there for a given group G and subgroup
H? Why is this the case?

Q9. Although there is only limited evidence (you could produce more, how­
ever), what can you say about when the left coset g H might be equal to the
right coset H g?

QI0. When is the left coset g H (or right coset H g) a subgroup of G? Are there
any conditions that guarantee it?

Let's consider two more examples of cosets. Instead of using the Map function to
get cosets, we can use the functions LeftCosets and RightCosets

? LeftCosets

G=tJ[35];
H = {4, 16, 29, 11, 9, 1};
SubgroupQ [H, G]

LeftCosets [G, H]
RightCosets [G, H]

G=Z[35];
H = {5, 10, 15, 20, 25, 30, O};
SubgroupQ [H, G]

LeftCosets [G, H]
RightCosets [G, H]

QU. For both of the preceding groups, count the number of cosets (either left
or right), and calculate the orders of Hand G. Now offer a conjecture.

Q12. Suppose G = Z and H = 2 Z, the even integers. Verify that H is a sub­
group of G. Describe the coset 3 + H.

94 Group Lab 11

Q13. Suppose G = Z and H = 5 Z, the multiples of 5. Suppose x and y are the
scores of two opponents playing table tennis. There is a change of service
whenever the sum of the scores x and y is a multiple of 5 (and so in H). Each
score belongs to one of the following cosets: H, 1 + H, 2 + H, 3 + H or 4 + H.
(Why?) Is there any relationship between the coset to which x belongs and the
one to which -y belongs at the time of the change of service? Can you give a
reasonable explanation for it?

Q14. Suppose G = U5 xZ4 and H = H2, 2}, {4, OJ, {3, 2}, {l, O}} is a subgroup.
Determine the other left cosets by hand. See if you can use Mathematica to
confirm your answer.

Group Lab 12

Normality and Factor Groups

• 12.1 Prerequisites

Before attempting this lab you should complete Group Lab 11 (on cosets) .

• 12.2 Goals

After defining a normal subgroup, we try to make some sense of finding an
operation to act on cosets. This leads to the development of the quotient or factor
group. We conclude by illustrating why normality is important in constructing the
factor group .

• 12.3 Normal subgroups

Suppose we start out, as we did in the last lab, with the dihedral group of order 8,
D4. First we read in the code needed for this lab.

Needs["AbstractAlgebra'Kaster'n];
SwitchStructureTo[Group];

G = Dihedral [4]

Now consider a subgroup of G, say H = {I, Rot2 }, consisting of the identity and
the 1800 rotation.

H = {l, Rot2 }

96 Group Lab 12

In Group Lab 11 we saw that on some occasions a left coset was the same as a
right coset. Will this happen in this case? Following is a table consisting of a
column of the elements of G followed by the elements in the left and right cosets
of H in G containing g.

TableForm[
Map[{I, LeftCoset[G, H, I], RightCoset[G, H, I]} &,

Elements[G]], TableDepth ~ 2,
TableHeadings ~ {None, {"gR, "gHn, "Hg\n"}}]

Q1. Would you say that every left coset g H is equal to the right coset H g?
Why or why not?

Consider another example. Suppose we have G = U 40.

G=tJ[40]

Let H be the subgroup (13).

H = SubgroupGenerated[G, 13]

Let's check out the left cosets g H and the right co sets H g (same g). This time we
will let Mathematica do the checking of equality. (Note that we sort the two
cosets before comparing for equality. Why is this done?)

TableForm[
Map[{I, LeftCoset[G, H, I], RightCoset[G, H, I], Sort [

LeftCoset[G, H, I]] === Sort[RightCoset[G, H, I]]} &,
Elements[G]], TableDepth ~ 2, TableHeadings ~
{None, {"gR, ngH",

"Hg", "= ?\nn}}]

We repeat this with G = S3 and H = ({1, 3, 2}).

G = Symmetric [3]
H = SubgroupGenerated[G, {1, 3, 2}]

TableForm[
Kap[{I, LeftCoset[G, H, I], RightCoset[G, H, I], Sort [

LeftCoset[G, H, I]] === Sort[RightCoset[G, H, I]]} &,
Elements[G]], TableDepth ~ 2, TableHeadings ~
{None, {"gn, ngH",

nHg", "= ?\n"}}]

Here we note that four of the left cosets are not equal to their corresponding right
cosets. So we have evidence that equality of left and right co sets is not a general
property for all groups or subgroups. This leads to a definition: Given a subgroup
H of a group G, if g H = H g for all gin G, we say H is a normal subgroup of G.
We can use the function NormalQ to test for normality of a subgroup.

Normality and Factor Groups 97

NormalQ [H, G]

Note that if we change H to a different subgroup of G we may obtain normality.

NormalQ[SubgroupGenerated[G, {2, 3, i}], G]

Furthermore, note the index ofthis subgroup in G (i.e., the number of cosets).

Index[G, SubgroupGenerated[G, {2, 3, i}]]

An exercise in group theory is to show that any subgroup H whose index in G is 2
will always be normal in G. Let's try some other groups.

NormalQ [{O, '}, z [8]]
NormalQ [SubgroupGenerated [U[52] , 15], U[52]]
NormalQ [SubgroupGenerated [Dihedral ['], Ref], Dihedral [']]

Q2. Suppose G is an Abelian group. What can you say about the normality of
any subgroup H of G? Why?

Q3. Suppose G = 7..5 x U6. Let H = «(2, 5). Is H normal in G? Give an answer
and justification and then check using Mathematica (recalling that Direct­
Product is used to obtain the desired direct product).

III 12.4 Making a new group

Let's consider the group G = 7..8 and H = {a, 4} and investigate the cosets that
arise.

G = Z [8]

H={O,'}

Consider the following four cosets. (Recall that the coset g H is written g + H
when the group is written additively.)

O+H
l+H
2+H
3+H
(* if you think Mathematica

knows what it is doing here,

understanding cosets, you are mistaken - try 5 + H *)

98 Group Lab 12

Q4. Why are these the only cosets considered? In other words, why aren't both
left cosets and right cosets considered? Additionally, what about the cosets
4+H, 5 +H, 6+H and 7 +H?

Suppose we consider these four cosets and think about a way in which we might
combine (operate on) any two of them. What might it mean to add two cosets, say
2 + H and 3 + H? As alluded to, Mathematica doesn't really (yet) know how to
add these cosets.

(2 + H)

(3 + H)

(2 + H) + (3 + H)
Mod[(2 + H) + (3 + H), 8]

Even reducing these mod 8 is not right. What might it mean to "add" {2, 6} and
{3, 7}? Suppose we try all possible sums and then reduce mod 8.

{2+3, 2+7,6+3, 6+7}

Reduce mod 8:

Mod[%, 8]

Finally, remove duplicates.

union[%]

Note that this is really 5 + H (as well as 1 + H). Note also that 2 + 3 = 5. Since
2 + H could have been written as 6 + H, one might wonder if interchanging them
would affect how we "add" these cosets. As will likely be proved in your class, it
does not. In fact, given any group G and any normal subgroup N of G, the set of
all (left) cosets {g N I g E G} forms a group under the operation
(g N)(hN) = (g h) N (shown multiplicatively here-additively it would be written
(g + N) + (h + N) = (g + h) + N). This new group is called the factor group of G
by H, or the quotient group of G by H. This is frequently denoted G / H.

PactorGroup [G, H]
QuotientGroup [G, H]

? QuotientGroup

Q5. Try adding a few of these co sets (as elements of the factor group). On
scratch paper, you may wish to make the Cayley table for the group G / H. To
what group is this isomorphic?

Normality and Factor Groups 99

III 12.5 Factor groups

Maybe you thought about making the Cayley table with Mathematica. (If not,
why not?) Let's do so.

G=Z[8];

H={O,4};
CayleyTable [QuotientGroup [G, H]]

Of course, there is also the pretty version.

gr1 = CayleyTable [QuotientGroup [G, H],
Mode -+ visual, OUtput -+ Graphics] ;

Observe that the elements in the group table are the left co sets of H = to, 4} in
Zs. Just as a reminder, here they are.

LeftCosets [G, H]

I Q6. To what group is Zs / to, 4} isomorphic?

Here is a visual way of seeing how these cosets interact with each other.

gr2 = LeftCosets[G, H, Mode -+ visual, OUtput -+ Graphics];

Putting these two graphics together, we obtain the following.

Show [GraphicsArray [{gr1, gr2}]];

Q7. What observations can you make from considering these two tables?
Include an accounting of the coloring of both tables and the "blocking"
(coloring by "chunks") in the second table.

Recall that the subgroup H = ({1, 3, 2}) is not normal in S3.

NormalQ [SubgroupGenerated [S [3], {1, 3, 2}], S [3]]

How do the left co sets interact in this case?

LeftCosets[S[3],
SubgroupGenerated[S [3], {1, 3, 2}], Mode -+ Visual]

100 Group Lab 12

Q8. Before we can form the factor group, the subgroup must be normal. What
goes wrong when the subgroup is not normal? Consider the preceding visualiza­
tion and answer this question. Focus, in particular, on the last four columns and
try to determine why the coloration does not occur in square blocks there. Give
specific explanations for the coloring in the last four columns.

Next we consider the same group and subgroup but focus on the right cosets.

RightCosets[S[3],
SUbgroupGeDerated [S [3], {1, 3, 2}], lIode -+ Visual]

Q9. Explain why the last four rows occur as they do. Provide explicit details.

QI0. Determine another subgroup H of some group G that is not normal in G.
Define them below. Now consider the left and right co sets visually, using the
cell below your definitions.

G =
B =
No:caalQ[G, H]

LeftCosets[G, H, Mode -+ Visual]
RightCosets[G, H, Hode -+ visual]

Now let's consider two more examples of normal subgroups and the correspond­
ing products of cosets.

G = U[16]
H = SubgroupGenerated[G, 3]
No:caalQ[B, G]

LeftCosets[G, B, Hode -+ Visual]

G = Z[6]
H = {O, 3}
No:caalQ[H, G]

LeftCosets[G, B, Hode -+ Visual]

Qll. For these normal subgroups, why did we only look at the visual representa­
tion of the left cosets (and not the right cosets)?

Q12. Make a summary statement regarding why normality is a requirement for
a quotient group to be a coherent, well-defined structure.

Group Lab 13

Group Homomorphisms

11113.1 Prerequisites

The reader should be familiar with isomorphisms (Group Lab 8) and cosets
(Group Lab 11).

11113.2 Goals

This lab explores the concept of group homomorphisms. The ultimate goal is an
understanding of the relationship between the domain, kernel, and image of a
homomorphism through the Fundamental Theorem of Group Homomorphisms.

11113.3 What is a group homomorphism?

Note on terminology: The terms homomorphism and morphism are used synony­
mously in algebra. Since the former is somewhat more prevalent in textbooks, we
use it here, but in the interest of using shorter names where possible, we use the
latter in our Mathematica code.

A homomorphism from a group (G, *) into a group (H, #) is a function from G
into H that preserves the operations between the two groups (* and # respec­
tively). That is, if f is a homomorphism, then for all values of x and y in G,

f(x * y) = f(x) # f(y)·

102 Group Lab 13

You should be familiar with the one-to-one, onto variety of these functions, called
isomorphisms. Recall that the existence of an isomorphism between two groups
establishes that the two groups are "equal" in an algebraic sense. The automor­
phisms on a group (isomorphisms from a group to itself) help us to categorize
groups. Homomorphisms provide us with yet another tool in exploring groups.

Before continuing, we first read in the code used in this lab.

Needs["AbstractAlgebra'Master'I];
SwitchStructureTo[Group];

To review the notion of preserving an operation, we start by looking at two
functions from the group of integers modulo 12 into the group of integers modulo
6. Again we use objects called Morphoids and the function FormMorphoid to
create them. The first function adds 3 to each element of z: l2 and then takes the
residue modulo 6 (reduces it mod 6). The second adds 6 before taking the residue
modulo 6.

f = FormMorphoid [Mod [II + 3, 6] &:, Z [12], Z [6]]

9 = FormMorphoid [Mod [11 + 6, 6] &:, Z [12], Z [6]]

Next we see if either function preserves the operations between the two groups for
a specific pair of elements, say 5 and 9. We use the Visual mode of Pre­
servesQ to help visualize the process. First f.

preservesQ [f, {S, 9}, Mode -+ Visual]

The operations are not preserved: f (5 + 9) *" f (5) + f (9). So, with this single
example, we see that f is not a homomorphism. Now we look at g. (Note: The
visual mode displays the name of any function generically as f, but here g is the
function we are examining.)

PreservesQ [g, {S, 9}, Mode -+ visual]

For the pair (5,9), g acts like a homomorphism. Does g satisfy this property for
all pairs in Z:12? We can use MorphismQ to test all pairs.

MorphismQ[g, Mode -+ Visual]

If g is replaced with f in this cell, an opposite color pattern results.

Ql. There is a simpler way to define g than the function we used. Can you
describe it?

Group Homomorphisms 103

III 13.4 The kernel and image

The kernel and image of a homomorphism are special subsets worthy of consider­
ation. The kernel is a subset of the domain and the image is a subset of the
codomain .

• 13.4.1 The kernel

The kernel of a group homomorphism is the set of elements in the domain that
map onto the identity of the codomain. Recall that g is a homomorphism.

Kernel [g]

The Kernel function returns a Groupoid, which we know by now does not in
itself imply that it is a group (or a subgroup of the domain)

Q2. In this case, is the kernel a group (i.e., a subgroup of Z12)?

Let's look at some more kernels. Consider the following Morphoids.

f2 = FormMorphoid [Mod [#1, S] &, Z[10], Z[S]]

f3 = FOrmMorphoid[MOd[#l, 2] &, Z[10], Z[2]]
f4 = FOrmMorphoid[2 -+ 1, U[2S], Z [20]]
fS = FormMorphoid[2 -+ 2, U[2S], Z [20]]
f6 = FormMorphoid[Mod[#l,' 3] &, Z[10], Z[S]]

Let's determine which of these are homomorphisms and compute the kernels.

Kap[MorphismQ, {f2, f3, f4, fS, f6}]

Kap[Kernel, {f2, f3, f4, fS, f6}]

Q3. For which of these five functions is the kernel a group (i.e., a subgroup of
the domain)?

Q4. If h is a homomorphism and a and b are in K = Kernel[h], explain why
a * b must also be in K. (In other words, show that K is closed.) Note: Closure
of a (nonempty) subset of a finite group implies that it is a subgroup.

The Mathematica function Kernel acts on any Morphoid. If the codomain has
an identity, it returns a Groupoid (it returns $Failed otherwise). Recall that f
was not a homomorphism.

104 Group Lab 13

Kernel[f]
ClosedQ[%]

Q5. True or false: If ifJ is a Morphoid from some group G into some group H
and Kernel[ifJ] is a subgroup of the G, then ifJ is a homomorphism. (See the hint
at end of the section, if needed.)

In some sense, the size of the kernel indicates how much the domain is "reduced"
when a homomorphism is applied to it.

• Hint

Consider G = H = Z3 and the function that squares its input (mod 3).

• 13.4.2 The image

The image of a homomorphism is the range of the function and thus is a subset of
the codomain. We want to know when this subset is a subgroup. For our first
homomorphism, g, the image is the whole codomain, and so it is clearly a sub­
group. This is a common situation.

lmage[g]

Consider the five Morphoids defined in section 13.4.1, in addition to f defined
at the outset of the lab. Are the images subgroups of the codomain?

{f, f2, f3, f', f5, f6} / / ColumnForm

Hap [Image, {f, f2, f3, f', f5, f6}]

Q6. Which of these images are subgroups of the given codomain?

Q7. Suppose 7r is a function from the group G into the group H. Consider the
following two statements: (1) If 7r is a homomorphism, then the image of 7r is a
subgroup of H, (2) If the image of 7r is a subgroup of H, then 7r is a homomor­
phism. Determine whether these statements are true or false. If true, give a
proof; if false, provide an example of a Morphoid that demonstrates it is false.

IIII:J 13.5 Properties that are preserved by homomorphisms

The following results are proven in many abstract algebra texts, so we simply
report them and give a few illustrations.

Group Homomorphisms lOS

Let f be a homomorphism from G into H. Then

1. f(the identity of G) = the identity of H.
2. f(x- l) = f(x)-l for all x in G.
3. If S is a subgroup of G, then f(S) = (f(s) I s E S} is a subgroup of H.

We use one homomorphism to illustrate these three properties, mapping the
integers modulo 16 into the fourth roots of unity.

G = Z[16]
H = RootsOfUDity [4, Mode -t Visual]

The visual form of RootsOfUni ty [4] is given to illustrate that this group is
the set of complex numbers (on the unit circle) that satisfy the equation x4 = 1.
The Morphoid maps each integer to that power of i, so x ~ iX.

Clear[f];
f = FormMorphoid [(J: A #) &:, G, B]

The identities here are 0 and 1, respectively. Therefore, by property 1, the element
o in G should be mapped to the element 1 in H.

f[O] == 1

Notice below how the equation is much more explicit in Mathematica than in
property 2. To test the property we need to specify the groups in which each
inversion is taking place. We pick a random element x out of the domain and then
test property 2.

x '" RandomE1ement [G]

f [GroupJ:nverse [G, x]] ='" GroupJ:nverse [H, f [x]]

Let's generate a few more examples and place them in a table. The third and fifth
columns should match if our Morphoid is a morphism.

'l'ableForm[
'l'able [x '" RandomElement [G] ; xinv = GroupJ:nverse [G, x];

fxinv '" f [xinv]; fx '" f [x] ; invfx '" GroupJ:nverse [H, f [x]] ;
{x, xinv, fxinv, fx, invfx}, {10}], 'l'ableHeadings-t
{None, {nxn, nx-ln , nf(x-l)n, nf(x)n, nf(x)-l\nn}}]

For property 3, note that the even elements of Zl6 are a subgroup of G.

Y", Range [0, lS, 2]
SubgroupQ [Y, G]

Now consider its image.

W = UDion[lIap[f, Y]]
SubgroupQ [W, H]

106 Group Lab 13

This too is a subgroup.

Q8. Recall the Morphoidj.5 defined earlier. Verify that these three properties
hold for this morphism.

f5 = FOrmMorphoid[2 -+ 2, U[25], Z [20]]

11113.6 The kernel is normal

The kernel of a homomorphism is not just an ordinary subgroup; it is always a
normal subgroup. One proof of this statement is based on the definition of a
normal subgroup.

H is a normal subgroup of G if and only if g-l h g is in H for all h in H and g in G.

In other words, every conjugate of an element of H is also in H. (Recall that g-l h
g, for some g in G, is a conjugate of h.)

Q9. Verify that if f is a homomorphism and k is in K = Kernel[f], then any
conjugate of k is also in K.

Since every subgroup of an Abelian group is normal (Do you know why?) we
need to consider a nonabelian group to illustrate the normality of the kernel.
Consider the cyclic subgroup generated by Ref in D3.

H = SubgroupGenerated[Dihedral[3], Ref]

We can choose g to be any element of the group--here we pick Ro t and look at
its conjugates.

Kap[Conjugate[Dihedral[3], #, Rot] &, Blements[H]]

This result shows that H is not a normal subgroup. (Why?) It also implies some­
thing we can not easily illustrate: H is not the kernel of any homomorphism with
domain D3. Let's see what kernels we can get from homomorphisms on D3.
Suppose we consider the exponent of the symbol Rot in any element of D3 •

Recall the elements of D3.

Elements[Dihedral[3]]

Clearly the exponent is an integer in {O, 1, 2}, so let's consider this as a Mor­
phoid into Z3. The Mathematica expression here is a bit complicated because
the elements in D3 involve the function NonCommutativeMultiply.

Group Homomorphisms 107

xifunction =
Exponent [# /. {NonCommutativeHultiply -+ Times}, Rot] &:

We put the Morphoid into rules-form to make it easier to read.

{ = FormMorphoid[xifunction, Dihedral[3], Z[3]] //ToRules

Now consider the kernel.

Kernel[€]

QI0. Since the kernel of ~ is {I, Ref}, what immediate conclusion should we
draw regarding ~? You might want to use PreservesQ or MorphismQ to
verify your answer.

Let's do the same thing, but with the exponent of Re f.

taufunction =
Exponent [#1 /. {NonCommutativeHultiply -+ Times}, Ref] &:

~ = FOrmMorphoid[taufunction, Dihedral[3], Z[2]] //ToRules

We get a different kernel here.

K = Kernel [~]

Is the kernel normal? We can use the function NormalQ.

NormalQ [K, Dihedral [3]]

Alternatively, we can ask whether T is a homomorphism.

MorphismQ[~]

Qll. Explain why checking the value of MorphismQ ["[] gives us more
information than does NormalQ [K, Dihedral [3]].

III 13. 7 The First Homomorphism Theorem

Recall that normality is exactly the condition on a subgroup required in order for
its left (or right) cosets to form a group. If f is a homomorphism from G into H
with kernel K, we examine the quotient group G / K. We start with the most recent
example.

Q = QuotientGroup [Dihedral [3], K]

108 Group Lab 13

The quotient group has just two elements, so it clearly must be isomorphic to Z2,
which happens to be the image of T. Let's formally establish this fact by creating
an isomorphism between G / Kerne 1 ["[] and Image ["[] .

FormMorphoidSetup[Q, Image[~]];

We want to map the identity of the domain to the identity of the codomain, so we
define the Morphoid by position using the list {I, 2} to indicate that the first
element of Q goes to the first element of Image ["[] and the second to the second.

9 = FormMorphoid[{l, 2}, Q, Image[~]]

I somorphi smQ [9]

The isomorphism that we've just created is not coincidental. It follows from the
following theorem.

Fundamental Homomorphism Theorem: Let ! be a group homomorphism
from G into H with kernel K and image !(G). Then !(G) is isomorphic to G/ K,
an isomorphism between these two groups being I/!: G / K ~ ! (G) defined by
I/!(a K) = !(a).

In the example, notice how the coset Ref NS is mapped to T [Ref] = 1, while
NS = 1 NS is mapped to T [1] = o.
Virtually every abstract algebra text has a proof of this theorem or some slight
variation of the theorem. For example, one popular text starts with the assumption
that! is onto (and so !(G) = H). The proof is still essentially the same. We close
this section by illustrating the theorem with two more examples .

• 13.7.1 Example 2

Consider the direct product Z5 xZ5 and map each pair (a, b) into 4 a + 3 b (mod
5) in Z5.

G = DirectProduct [Z [5], Z [5]]

a = FormMorphoid [Mod [PlusH ({ 4, 3}. #1), 5] &:, G, Z [5]]

It may not be obvious whether a is a homomorphism, so we verify that it is.

MorphismQ[a]

We compute the kernel and image.

K = Kernel [a]

Image [a]

Group Homomorphisms 109

Notice that a is onto, so we can establish an isomorphism between G / K and Z5.

Q2 = QuotientGroup [G, It]

y=FormMorphoid[a[First[ll]] &:, Q2, Xmage[a]]

XsomorphismQ[y]

Q12. Let G = DirectProduct [Z [4], Z [4]] and K = {{O, O},
{ 0 , 2 }, {2 , O}, {2 , 2 } }. To what group is G / K isomorphic? To prove
your answer, find a homomorphism from G into some other group that has K as
its kernel.

• 13.7.2 Example 3

In this example, we map the divisors of 42 into the divisors of 30 with the func­
tion GCD[#, 30]&. We form the Morphoid between the MixedDivisors
Groupoids based on these sets.

? MixedDivisors

17 = FormMorphoid[GCD[ll, 30] &:,

MixedDivisors[42], MixedDivisors[30]]

The kernel will be the divisors of 42 that are relatively prime to 30.

It = Kernel [17]

Not every divisor of 30 is in the range, so ." is not onto.

Xmage[17]

The Fundamental Homomorphism Theorem tells us that the image is isomorphic
to the following quotient group.

Q3 = QuotientGroup [MixedDivisors [42] , K]

The isomorphism we define maps each of these cosets to the image under." of its
first element.

e = FormMorphoid[17 [First [11]] &:, Q3, Xmage [17]]

XSOll1OrphismQ[e]

Again, our result is not a surprise.

The Fundamental Homomorphism Theorem is occasionally called the First
Homomorphism Theorem. You might wonder about a Second Homomorphism

110 Group Lab 13

Theorem. There is one, and it is often called the Diamond Homomorphism Theo­
rem. There is also a Third (Zassenhauss' Theorem). These theorems are stated and
proved in many introductory abstract algebra books.

Q13. A square-free integer is an integer that has no square divisors other than
1. For example, 42 and 30 are square-free, while 50 is not. Mixed­
Di visors [m] is a group if and only if m is square-free. As a general rule, if
m and n are both square-free integers and we map MixedDi visors [m] into
MixedDi visors [n] with the function GCD [#, n] &, what will be the
kernel and range of this morphism?

III 13.8 The alternating group-parity as a morphism

We have seen that every permutation is either odd or even. Now we will think of
this classification as a Morphoid mapping Sn into the group {l, -I} with multipli·
cation, which we call IntegerUni ts. Here we will work with n = 4.

sign = FOrmMorphoid[Parity, Symmetric [4] , Integerunits]

This happens to be a significant morphism for any n.

MorphismQ[sign]

The kernel is quite significant here.

Kernel [sign]

Q14. Describe the elements of the kernel in terms of their parity.

The kernel, which happens to be a normal subgroup of S4, is called the alternating
group of degree 4, or A4 . This group can be accessed directly without morphisms
using Al t erna t ing.

? Alternating

Alternating [4]

There are many interesting properties of the alternating groups that you can read
about in your text.

Group Lab 14

Rotational Groups of Regular

Polyhedra

III 14.1 Prerequisites

To complete this lab, you should know how a group can be generated from a set
of elements and a binary operation. You should also be familiar with Euler angles
(see the Rotations Lab on the CD for a review) and group actions.

III 14.2 Goals

The goal of this lab is to learn how to generate the rotational groups of polyhedra.

14.3 The rotational group of the tetrahedron

• 14.3.1 Statement of the problem, first rotation

First let's read in the packages and definitions needed for this lab.

112 Group Lab 14

Needs["Graphics'Polyhedra'"];
Needs["AbstractAlgebra'Master'n];
SwitchStructureTo[Group];
Needs["Geometry'Rotations'"];
Needs["Graphics'Shapes'"];
Needs ["NumberTheory'Recognize' "];

Consider the tetrahedron.

object = Tetrahedron[];
object / / disp

We examine certain rotation matrices that act on graphics objects like the Tetra­
hedron. The function ActionOn is used extensively in this lab.

?ActionOn

We want to consider the rotations that make up the so-called rotational group of
the tetrahedron, specifically the ones that rotate a tetrahedron so that it occupies
the same space as the original object. We can use the function Compare to
visually confirm whether a rotation is in the rotation group.

? COJI\Pare

Here is an example of a rotation we will not want to consider, because the matrix
clearly does not return the object to its original position.

7f 7f 7f
compare[object, RotationMatrix3D[-, -, -]];

64.8

One example of an element in the rotational group of this tetrahedron is Ro ta­
tionMa trix3D [2 pi /3 I 0 I 0]. The specific Euler angles that describe this
matrix depend on the position of the tetrahedron. One of the faces of our object
lies on a plane that is parallel to the xy-plane, so a 231r rotation about the z-axis is
in the rotation group. Also, it is important to note that the tetrahedron needs to be
centered about the origin. All polyhedra in the standard Mathematica package
Polyhedra. m are centered about the origin.

Clear[r]
27f

rl = RotationMatrix3D [-, 0, 0];
3

MatrixForm [r1]

compare[object, rl];

Rotational Groups of Regular Polyhedra 113

• 14.3.2 Generation of more rotations

It is not too difficult to identify rl as a member of the rotational group, but how
do we identify more complicated rotations? One way is by multiplying rotations.
Given any set of rotations, we can generate a group.

Clear[G]
G1 = GenerateGroupoid[{rd, Simplify[#1.#2] &:]

This is a cyclic subgroup of order three.

Order[Gd

Ql. Is this the whole rotation group? Based on the fact that the faces of a
tetrahedron are four identical equilateral triangles, how many elements would
you expect to find in its rotational group?

• 14.3.3 Procedure for finding more complicated rotations

Although it may be clear that there are more elements, it is probably not obvious
what the other rotation matrices are. At this point, we outline a systematic process
to find these matrices.

Let's look at a labeled wire-frame picture of the object.

?wireFrame

wireFrame[Tetrahedron];

The first rotation that we identified, rl, maps the (ordered) face {l, 3, 4} into the
face {l, 2, 3} and, by applying it again, into {l, 4, 2}. Now suppose we want to
map, for example, {l, 3, 4} into {4, 3, 2}. Let R be the unknown matrix.

R = Array[r, {3, 3}]

Before setting up a system of equations to solve for the rotation matrix, we need
to take the vertex coordinates given in the Mathematica Polyhedra package
and make them exact. For this we use the function Exact. This function is not
very sophisticated, but it works for the kinds of numbers we are using.

?Exact

Here are the vertices given in the package.

Vertices [Tetrahedron]

114 Group Lab 14

The following are exact values.

xvertices = Map [Exact, Vertices ['l'etrahedron], {2}]

Although a system can be generated more efficiently, here we write it out a bit
more descriptively.

sys =
{R.xvertices[[l]] ==XVertices[[4]] ,
R.XVertices[[3]] ==xvertices[[3]] ,
R.xvertices[[4]] ==xvertices[[2]] }

Now we solve the system, use the rules to get values for R, pick out the one and
only solution, and finally, simplify the solution.

r2 = Simplify [First [R / • Solve [sys, Flatten [R]]]]

Now the moment of truth: Is r2 in the rotational group?

Campare[object, r2];

This is the rotation matrix that we were looking for. It would be nice to know the
values of ifJ, () and", that produce r2.

Q2. Determining Euler Angles from a Rotation Matrix
Determine the values of cf;, e, and l/J for which RotationMatrix3D[cf;,
e, l/J] is equal to r2. Hint: To equate two matrices, A and B, and convert to a
list of equations, you can use code something like (A -- B) / /­

Thread[#]&//Map[Thread[#]&,#]&//Flatten.

Now that we have two distinct rotations of the tetrahedron, we might be able to
generate a larger group.

G2 = GenerateGroupoid[{rll r2}, simplify[#1.#2] 6i:];
Order[G2]

• 14.3.4 Verification that we have the complete rotational group

This should be the whole group for which we are searching. To demonstrate how
the group generates all the rotations, we mark one face and a vertex of the tetrahe­
dron.

markedFace = obj ect [[2]] / /
{I, RGBColor[0.022, 0.688, 0.717], 'l'hickness[O.Ol],

Line[{Apply[Plus, object[[2, 1]]] /3, 1.1#[[1, 1]]}],
RGBColor[0.701, 0.038, 0.038],
PointSize[0.03], Point[l.l#[[l, l]]]}6i:/ldisp;

Rotational Groups of Regular Polyhedra 115

First we look at the individual effects of each group element on this face. You
may want to enlarge the graphic you get here.

Show [GraphicsArray [(Partition [#1, 4] &:) [

(ActionOD[markadFaca, #1] &:) /@First[G2]]]];

Taken together, we get a single tetrahedron with three marks on each face.

Show [(ActionOn [markadFaca, #1] &:) /@First[G2]];

• 14.4 Further exercises

Q3. Rotaiional Group of the Cube
a. How many elements would you expect to find in the group of rotations of

the cube?
b. Generate the group of rotations of Cube [] that is contained in the

Polyhedra package.

wiraFrame[CUba];

Q4. Rotational Group of the Icosahedron
a. How many elements would you expect to find in the group of rotations of

the icosahedron?
b. Generate the group of rotations of Icosahedron [] that is contained in

the Polyhedra package.

wiraFrame[Icosahadron];

Q5. Rotational Groups of the Octahedron and Dodecahedron
The octahedron is the dual of the cube. If each face of the cube is replaced with
a point at its center and points that are derived from adjacent faces are con-
nected' then the wire frame of an octahedron appears. Explain why the rota-
tional group of the octahedron should be isomorphic to that of the cube. The
icosahedron and dodecahedron pair up in the same way.

Q6. The cuboctahedron can be formed by taking a cube and slicing its eight
corners off so that the exposed triangular faces just barely meet at one point. It
can also be created in the same way starting with an octahedron, thus its name.
Determine the number of elements in the rotational group of the cuboctahedron.
Is it isomorphic to a group you've already seen?

116 Group Lab 14

AppendTo [Polyhedra, CUboctahedron];
CUboctahedron[Graphics'Polyhedra'Private'opts ___] .-

Polyhedron [CUboctahedron,
Graphics'Polyhedra'Private'opts] [1]

Vertices [CUboctahedron] A= Map [H,
1 1 111

{{o, - -{2 , - -{2 }, {o, - -{2' -{2}' {o, -{2'

{O, _1_, _1_}, { __ 1_, 0, __ 1_}, { __ 1_, 0,

-{2 -{2 -{2 -{2 -{2
1 1 111

{- -{2' - -{2' o}, {- -{2' -{2' o}, {-{2' 0,

1
--},

-{2
1
-},
-{2

1
--},

-{2
1 1 1 1 1 1

{-, 0, -}, {-, --, o}, {-, -, on, {2}];
-{2 -{2 -{2 -{2 -{2-{2

Faces[Cuboctahedron] A= {{2, 6, 7}, {2, 6, 4, 10},
{2, 10, 11}, {2, 11, 1, 7}, {11, 10, 12, 9}, {6, 8, 5, 7},
{4, 6, 8}, {3, 5, 8}, {1, 5, 3, 9}, {4, 8, 3, 12},
{4, 10, 12}, {1, 11, 9}, {1, 5, 7}, {3, 9, 12}};

wireFrame[Cuboctahedron];

Q7. Why should this method of finding rotation matrices work?

Q8. Let T be a triangle in three-dimensional real space whose vertices are
linearly independent. Prove that if R is a three-by-three matrix with the property
that the triangle R. T (i.e., Dot [R, TJ) is congruent to T, then R is a rotation
matrix.

Part II

Ring Labs

Ring Lab 1

Introduction to Rings and

Ringoids

• 1.1 Prerequisites

There are no prerequisites for this lab, although a brief introduction to the terminol·
ogy related to rings might be beneficiaL

• 1.2 Goals

This lab is intended to introduce both the mathematical concept of the structure of
a ring and the corresponding Mathematica structure Ringoid. Various proper­
ties that a ring must and can have are introduced, and the Mathematica commands
to explore these properties are illustrated.

• 1.3 Getting started? Begin here

In most of the labs in Exploring Abstract Algebra with Mathematica, we need first
to read in extra Mathematica packages necessary to provide the functionality
within the lab. This is done using a Needs statement. (Usually, just reading in the
AbstractAlgebra'Master' package is done.) On opening this notebook
you were probably asked, "Do you want to automatically evaluate all the initializa­
tion cells in the Notebook?" If you answered affirmatively, then you do not need

120 Ring Lab 1

to evaluate the following cell, but it doesn't hurt to do so. If you answered nega­
tively, then you need to evaluate this cell.

Needs["AbstractAlgebra'Master'I];
SwitchStructureTo[Ring];

• 1.4 Ringoids and rings

Consider any set and two operations on that set. We will call this structure a
Ringoid. An example of a Ringoid is the following.

R=FormRingoid[{O, 1, 2}, Mod [#1 + #2, 3] &:, Mod [#1 #2, 3] &:]

We always refer to the first operation of a Ringoid as addition and the second
as multiplication. However, there is no restriction on either of the operations. (In
other words, there is no implication that the addition could not act like multiplica­
tion and the multiplication act like some other type of operation.) One can access
these operations as follows.

Addition[R]
MUltiplication[R]

To compute the sum of 2 and 2, as well as the product of 2 and 2, one does as
follows.

Addition[R] [2, 2]
MUltiplication[R] [2, 2]

Q1. Will it always be the case that the addition and multiplication return the
same value? Why or why not?

The set of elements in a Ringoid is obtained using either of the following
methods.

Elements [R]
Domain[R]

The operations on R are mod 3 addition and mod 3 multiplication, with which you
may be well acquainted. The operation tables for any Ringoid may be displayed
with the function CayleyTables.

CayleyTables [R, Mode -+ Visual]

The output of CayleyTables, using the Visual mode, appears in two forms.
There are two graphical objects that resemble tables that appear in an abstract
algebra text and a pair of Mathematica lists representing the tables. If you want to
look at just the graphical tables, you need to end the input cell with a semicolon

Introduction to Rings and Ringoids 121

(;) so that the list of lists is not displayed. We often do this from now on. On the
other hand, if you are interested only in the output, you may want to drop the
Mode -+ Visual argument.

We consider several types of Ringoids. Note that the Ringoid we have been
calling R is simply the set of integers mod 3 with the appropriate operations. It
can also be obtained by Z [3] .

Z[3]

For every integer n, n ~ 1, Zn is the ring with domain {O, 1, ... , n - I} and opera­
tions mod n addition and mod n multiplication. If you did some of the group labs,
you may recall that we also use Zn for the group consisting of the same set but
with just addition mod n. By default, when we work with rings, we intend Z [n]

to refer to the ring Zn. We can always obtain the group as follows.

G = Z [3, Structure -+ Group]

We can change the default understanding of Zn to be the group or ring by specify­
ing the options for Zn. For example, when reading in the Mathematica code at
startup, the equivalent of the following statement was evaluated.

SetOptions [Z, Structure -+ Ring]

We could change Ring to Group and then Zn would thereafter be understood to
be the group instead of the ring. (Note: The Swi tchStructureTo function
may also be useful.) We use this family of rings extensively in this lab and subse­
quent labs. Other rings are introduced as well.

II 1.5 Properties of rings

Let's consider some of the properties of a ring. Execute the following cell to be
given a random Zn.

n = Random [Integer, {8, 19}]
'1' = Z [n]

• 1.5.1 Additive properties

The first few properties pertain only to the addition. To test these properties, we
form the additive Groupoid consisting of the elements and the addition of the
Ringoid.

?AdditivaGroupoid

122 Ring Lab 1

AG = AdditiveGroupoid[T]

• Addition must be closed

Recall that a set H is closed under the operation * if g * h is in H for all g and h in
H. We can test for this property with the function ClosedQ. We can check either
the additive Groupoid or the Ringoid with a restriction on the operation.
(Almost all the ring properties are related to group properties of either the additive
or multiplicative Groupoid. In each case, we can check the particular
Groupoid or check the Ringoid by specifying a value for the Operation
option.)

ClosedQ[AG]
ClosedQ [T, Operation -+ Addition]

?Operation

• Addition must be associative

Recall that addition is associative if and only if a + (b + c) = (a + b) + c for all
values of a, b, and c in the domain. We can test for this property with the function
AssociativeQ.

AssociativeQ [T, Operation -+ Addition]

For larger Ringoids, this test is time-consuming. Use of the function Random­
AssociativeQ is advised for these Ringoids. This function tests random
triples (a, b, c) for the associative property. If any triple violates the condition, the
addition is known to be not associative. If no violation occurs, it is likely that the
addition is associative.

• Addition must be commutative

Addition is commutative if and only if a + b = b + a for all values of a and b in the
domain. You can test for this property with the function Abel ianQ or Commu ta­
ti veQ, but the former works only with Groupoids. (Thus we can use Abe­
lianQ with the additive Groupoid or use CommutativeQ on the Ringoid.)

AbelianQ [AG]
CommutativeQ [T, Operation -+ Addition]

• Existence of a "zero"

The term zero is used for the additive identity of a ring. That is, if z is the zero,
then

Introduction to Rings and Ringoids 123

z+r=r+z=r

for all r in the ring. To ask whether a zero exists, use the following.

HasJ:dentityQ [T, Operation -+ Addition]

This test can be performed more directly as follows.

HasZeroQ[T]

When a Ringoid has a zero, it can be called upon by name.

Zero[T]

Q2. What is the zero of Ringoid[{O, 1, 2, 3}' Mod[#l + #2,
4] & , Mod [# 1 * # 2, 4] &]?

Q3. What is the zero of Ringoid[{O, 1,2, 3}, Mod[#1*#2, 4]
& , Mod[#l + #2, 4] &]?

• Additive inverses

Assuming a Ringoid has a zero Z, we say r is the additive inverse of s if
s + r = r + s = z. All elements of a ring must have an additive inverse. The addi­
tive inverse of s is referred to as its negation. We can ask whether all elements
have an additive inverse.

HasJ:nversesQ [T, Operation -+ Addition]

We can also ask for a list that displays how the elements of the Ringoid pair up
as inverses. As long as the addition is associative, it can be proven that no element
can have more than one negation. You will find that in some cases an element is
its own negation.

J:nverses [T, Operation -+ Addition]

Q4. How many elements in T are their own negation? (What is your ring T?)

The negation of an individual Ringoid element can be determined using Nega­
tionOf.

NegationOf[T, 1]

Q5. Below, form another random Zn, named T2. What ring did you get? For
each element, determine its negation without Mathematica. Use either
Inverses or Nega tionOf to check your work.

124 Ring Lab 1

n = Random [I:nteger, {5, 12}]
T2 = Z[n]

• 1.5.2 Multiplicative properties

We use MG for the multiplicative Groupoid of the ring T.

?MultiplicativeGroupoid

MG = MultiplicativeGroupoid[T]

• Multiplication must be closed

Not only must the addition be closed, the multiplication must be closed as well.
As noted, we can either check the multiplicative Groupoid or the Ringoid and
restrict the operation.

ClosedQ[MG]
ClosedQ [T, Operation -+ Multiplication]

• Multiplication must be associative

Besides being closed, the multiplication must also be associative.

Associati veQ [T, Operation -+ Multiplication]

• 1.5.3 Distributive property

There is one property that considers how the addition and multiplication interact:
multiplication must be distributive over addition in order for a Ringoid to be a
ring. That is, we must have

a (b + c) = a b + a c and (b+c)a=ba+ca

for all values of a, b, and c in the domain of the Ringoid. The function Dis­
tributi veQ tests for this property.

DistributiveQ[T]

A function called RandomDistributiveQ, which is similar to Random­
AssociativeQ, is also available.

Introduction to Rings and Ringoids 125

• 1.5.4 Is the Ringoid a ring?

If all the properties we have tested up to this point are satisfied, then we can call
the Ringoid a ring. We can use the function RingQ to perform all these tests in
one statement.

RingQ[T]

As we work with a Ringoid and is testing various properties, the results are
collected and can be retrieved by a function called Ringlnfo. Here is what we
know so far about T.

Ringlnfo[T]

Q6. Given any value of n, is Zn a ring? Why or why not?

• 1.5.5 "Optional" properties

Additional properties are frequently satisfied by a ring. We will often look for
rings that satisfy some combination of these properties in the future.

• Ring with unity

Unity is the term that is used for the multiplicative identity of a ring. That is, if u
is the unity, then

ur=ru=r

for all r in the ring. To determine whether a unity exists, try the following.

withtJDityQ[T]

If there is a unity, it can be called on by name.

tJDity[T]

Q7. Does Zn have a unity for all values of n? Why or why not? If so, what is it?

• Commutative ring

A ring is said to be commutative if its multiplication is commutative. (Recall that
the addition must be commutative in a ring.)

126 Ring Lab 1

Commutati veQ [T, Operation -+ Multiplication]

There are several other "optional" properties that we will introduce in Ring Lab 2.

Q8. Is Zn commutative for all values of n? Why or why not?

1.6 Additional exercises

Q9. If k is a divisor of n, we use Z [n, k] to denote the Ringoid whose
elements are {O, k, 2k, ... , (f - 1) k} with addition being mod n addition and
multiplication being mod n multiplication. Is Z [8, 2] a ring? Is it commuta­
tive? Is it a ring with unity? Justify your answers.

Q10. Is Z [10, 2] a ring? Is it commutative? Is it a ring with unity? Justify
your answers.

Q11. What happens if you switch the addition and multiplication in a ring? In
other words, if we have a ring R = Ringoid[D, plus, times], then is
Ringoid[D, times, plus] everaring?TryZ[n, k] for various nand
k and see if you can produce such a ring.

Q12. Evaluate the following cells. Study the multiplication tables. Do you note
any differences or similarities between any of these rings?

CayleyTables [Z [4], Mode -+ Visual] ;

CayleyTables [Z [5], Mode -+ Visual];

CayleyTables [Z [6], Mode -+ Visual];

CayleyTables [Z [7], Mode -+ Visual];

Ring Lab 2

Introduction to Rings, Part 2

2.1 Prerequisites

You should complete Ring Lab 1 before attempting this lab .

• 2.2 Goals

The goals of this lab are familiarization with several important types of rings and
awareness of how to work with rings in the context of the AbstractAlgebra
packages.

2.3 Units and zero divisors

• 2.3.1 Units of a ring

First we read in the code that provides the functionality needed for this lab.

Needs["AbstractAlgebra'Master'I];
SwitchStructureTo[Ring];

In a ring with unity (i.e., multiplicative identity), an element that has a multiplica­
tive inverse in the ring is called a unit. The percentage of elements that are units in
a ring can vary quite a bit. The unity of a ring is always a unit, and the zero of a
ring is never a unit. If all the nonzero elements of a commutative ring with unity
are units, the ring is called a field. (We discuss fields at length in Ring Labs 10,

128 Ring Lab 2

11, and 13.) It is also possible for a ring to have no units other than the unity. We
now consider the set of units in a variety of rings .

• Units of Zs

Consider the ring Zg. What do the Cayley tables tell us?

Cayley'l'ables [Z [8], Mode -+ Visual] ;

Ql. What is the unity of the ring Zg? What are the units of Zg? Explain how
you obtained your answers.

• Boolean rings

A Boolean ring consists of the set of all subsets of a given set, combined with the
operations symmetric difference for the addition, and intersection for the multipli­
cation. Let's consider an example.

R = SooleaDRing[{Curly, Moe, Larry}]

This is the collection of all subsets of the set {Curly, Moe, Larry}. Note
the cardinality of the set.

Q2. Suppose you replaced {Curly, Moe, Larry} with the names of the
students in your class. (This would increase the average intelligence of the set
by a huge factor.) How many elements would the new Ringoid have? Justify
your answer.

Note that this Ringoid has a different approach to addition and multiplication.
The following confirms the description.

AdditioD[R]
Multiplication[R]

The multiplication is simply the intersection of two subsets. The addition, as
indicated, is the symmetric difference of two subsets. In case you need a quick
review of the symmetric difference, consider the following examples.

setA = {2, 3, 4}
setS = {1, 3, 4, 5}
setC = {3, 4}

Addition[R] [setA, setS]
Addition[R] [setA, setC]

Introduction to Rings, Part 2 129

You should note that the symmetric difference of two sets returns the union of the
two sets with the elements in the intersection removed.

Consider the Cayley tables of this ring. After the tables are produced, enlarge
them (until you can see them more clearly) by selecting the graphic and then
stretching from one of the comers.

CayleyTables [BooleanRing [{Curly, Moe, Larry}], Mode -+ visual] ;

Q3. What is the zero of this ring? Justify your answer.

Now we focus on the Boolean ring of subsets of {l, 2} and its multiplication table.

Rl = BooleanRing [2]

MultiplicationTable [Rl, Mode -+ Visual];

Q4. What is the zero for this ring? Is there a unity for this ring? If so, what is it
(and explain how you obtained it). If not, explain why not.

I Q5. Determine all the units for this ring.

Q6. Generalize by determining all the units for the ring BooleanRing [n] .

• Gaussian integers mod n

The Gaussian integers, Z[i], are defined as the ring whose elements are
{a + b i I a, bE Z} and whose operations are ordinary (complex) addition and
multiplication. Note that this is an infinite subring of the complex numbers.

I Q7. Prove the last statement.

We can consider a finite variation of Z[i] by reducing the elements modulo some
positive integer. Try, for example, 3.

R2 = Z [3, I, Structure -+ Ring]

What can we see in the tables? (Again, enlarge the graphic so that it is more
visible.)

CayleyTables [R2, Mode -+ visual] ;

I Q8. What is the zero of this ring?

130 Ring Lab 2

Q9. Is there a unity for this ring? If so, what is it (and explain how you obtained
it). If not, explain why not.

I QI0. Determine all the units for this ring.

• Units of a ring

There are three basic functions related to units that can be used: Uni tQ, Uni ts,
and Mul tiplicati velnverse.

?UnitQ

?Units

?MultiplicativeZnverse

You can test your answer to the last question.

Units [R2]

• Trivial ring

Consider the "trivial ring," for which all products are zero.

?TrivialZR

CayleyTables [TrivialZR[5], Mode -+ Visual];

UnitQ[TrivialZR[5],3]

Since the "trivial ring" has no unity, appropriate messages are given. Observe that
3 does not have a multiplicative inverse.

• 2.3.2 Zero divisors of a ring

In solving a quadratic equation such as xl - 3 x - 10 = 0, we routinely factor the
left-hand side to (x - 5) (x + 2) and then solve x - 5 = 0 and x + 2 = O. We are
accustomed to assuming that for a product to be zero, one of the factors must be
zero. This is an assumption that cannot be made in the general theory of rings.
Consider the ring of integers modulo 15, .z 15. As can be seen from the mUltiplica­
tion table, there are many instances where products of nonzero elements of .z 15

are zero.

Introduction to Rings, Part 2 131

CayleyTables[Z[15],
Mode -+ Visual, Operation -+ Multiplication];

A zero divisor is a nonzero ring element that can produce a product of zero on
multiplication with another nonzero element. For example, in Z 15, 10 is a zero
divisor because its product with 3 is zero.

Qll. Determine all the zero divisors for Z15.

Q12. Determine all the zero divisors for Zl1. (If you wish, change the 15 to 11
in the CayleyTables command.)

Recall the two rings with which we worked earlier.

Rl = BooleanRing [2]
R2 = Z [3, I, Structure -+ Ring]

Q13. Determine all the zero divisors of both RI and R2.

• 2.3.3 Working with zero divisors

To work with zero divisors, we can use either of the following functions.

? ZeroDivisors

? ZeroDivisorQ

Here is how we might test our answers to questions 11 and 12.

ZeroDivisors[Z[15]]

ZeroDivisorQ[Z[15],8]
ZeroDivisorQ[Z[15],9]

The number of zero divisors can vary substantially from one Ringoid to another.

ZeroDivisors[Z[ll]]

ZeroDivisors[TrivialZR[ll]]

You may want to check your answer to question 13.

ZeroDivisors[Rl]
zeroDivisors[R2]

132 Ring Lab 2

2.4 Integral domains

An integral domain is a commutative ring with unity with no zero divisors. The
ring of integers is a prototypical example.

Q14. Recall the rings used in this lab thus far. Which are integral domains and
which are not? Come up with at least one of each.

2.5 Fields

A field is a commutative ring with unity with the property that every nonzero
element is a unit.

Q15. Recall the rings used in this lab thus far. Which are fields and which are
not? Come up with at least one of each.

2.6 Additional exercises

Q16. What are the units of Z [20, 5]? What are the zero divisors?

CayleyTables [Z [20, 5], Mode -+ Visual];

Q17. Using the functions provided thus far, find a Ringoid that has a unity
and this element is the only nonzero element that is not a zero divisor.

Q18. Using the functions provided thus far, find a Ringoid that has a unity
and the only nonunit is the zero. Is this ring a field?

Q19. True or false: In a commutative ring with unity, the intersection of units
and zero divisors is always empty. Prove that your answer is correct.

To test if a Ringoid is an integral domain or field, appropriate functions can be
used (besides testing the parts of the definition).

IntegralDomainQ[Z[7]]
IntegralDomainQ[BooleanRing[2]]

FieldQ[Z[7]]
FieldQ[Z[lS]]
FieldQ[Z[20,4]]

R=Z[30,6]

FieldQ[R]

Introduction to Rings, Part 2 133

Ring Lab 3

An Ideal Part of Rings

• 3.1 Prerequisites

Before attempting this lab, you should have completed Ring Lab 1. You should
also be familiar with cosets of normal subgroups .

• 3.2 Goals

The goal of this lab is to develop the concept of an ideal through examples,
leading to discovery of some of the properties of ideals. Quotient rings are also
introduced through the examples .

• 3.3 What is the ideal part of a ring?

We begin by reading in a package that provides the functionality needed for the
lab.

Needs[OAbstractAlgebra'Kaster'O];
SwitchStructureTo[Ring];

Let's consider a subset of the integers, Z.

H = Table[i, {i, -40, 40, 5}]

An Ideal Part of Rings 135

Since we are working on a finite machine, we can only show finite subsets of Z.
Imagine, however, that H extends infinitely (in both directions) with the same
pattern.

Ql. Once H is extended as stated, is H a ring? Is it a subring of Z? How do you
verify this?

Now consider multiplying every element in the (extended) set H by an element in
Z, say 3.

M=3H

Of course, this only shows a finite part. Are these products in the (extended) set
H?

H

Certainly some of the elements are in the original subset H. Let's use Mathemat­
ica to enlarge H.

H = Table[i, {i, -150, iSO,S}]
SubsetQ [M, H]

By enlarging H (following the given pattern), we see that M = 3 H is a subset of
H.

Q2. M was determined by multiplying by 3 on the left of every element in H.
We then found that M was a subset of (the enlarged) H. Is there anything
special about 3? Could this work for other integers? Does the multiplication
need to occur on the left? Justify your answers.

Q3. Consider the M we found by multiplying H by 3. Actually, consider the
extended M found by multiplying the extended H by 3. In other words, con­
sider 3 (5). Is this a ring? Is this a subring of Z? Is this a subring of (the
extended) H (i.e., (5»?

Let's try another subset of the integers.

P = Table[i, {i, -49, 50,S}]

136 Ring Lab 3

Q4. What happens if we multiply P on the left by 3? Call this result M (as
before). What is the intersection of M and P? Adopt the notation that EX means
the infinite, extended version of the finite X. (This notation is used later as well,
so take note.) What can you say about the intersection of EM and EP? Try to
prove your result.

Q5. What makes P different from H? How do they differ in their properties?

Consider another subset.

It = Tabla[i, {i, -48, 50, 3}]

Q6. Let M be the result of multiplying K by some integer q. Answer the kinds
of questions that were asked regarding sets Hand P in questions 3-5.

Hopefully, you made the observation that EP and EH are both cosets in the group
Z/ EH, with EP = 1 + (5) and EH = (5). (For the moment, think of Z/ EH as a
group, not a ring.) Let's take a look at one more example.

R = Z [12]
als = Elements [R]

Now consider two subsets of the elements of R.

NR = {O, 3, 6, 9}

H={0,5,7}

What happens if we multiply the set NR and the set H by an element r in R?
Suppose we use r = 5.

5NR

5H

Whoops! We need to remember that the multiplication really has to be taking
place mod 12.

11011[5 HR, 12]

lIod[5 H, 12]

Now repeat for all elements r in R.

TablaForm[Map [{I, 11011[1 HR, 12]} &, als], TablaDepth -+ 2,
TablaHaadings -+ {Nona, {"kn, "k*{0,3,6,9}\n"}}]

(* working with HR *)

TablaForm[Map[{I, Mod[IH, 12]}&, als], TablaDepth -+ 2,
TablaHaadings -+ {Nona, {"kn, "k*{0,3,6,9}\nn}}]

(* working with H *)

An Ideal Part of Rings 137

Q7. Consider the sets NR and H and let r be any element in R. What can you
say about the sets r NR and r H? What difference between NR and H causes the
results shown?

• 3.3.1 Dermition of an ideal

Given a ring R and a subring J of the ring R, we call J a (two-sided) ideal of R if
for every element r in R and for every element x in J we have both r x and x r in J.

Q8. Describe the examples of ideals we have seen thus far.

• 3.3.2 Another ring

Consider the ring of two-by-two matrices with entries from Z2.

M=Mat[Z[2], {2, 2}]

You can count the elements; there are 16.

Blements[M]
Length[Elements[M]]

As defined, although M is a ring, it is not a Ringoid in Mathematica. Let's
make it one.

R = ToRingoid[Hat[Z[2], 2]]

Consider two subsets of R.

Msp[MatrixForm., H = {{{1, OJ, {O, 1}},
{{O, OJ, {O, OJ}, {{1, OJ, {O, O}}, {{O, OJ, {O, 1}}}]

Map [MatrixForm.,
K= {{{1, OJ, {O, 1}}, {{O, oJ, {O, oJ}, {{1, oJ, {O, oJ},

{{O, OJ, {O, 1}}, {{O, OJ, {1, oJ}, {{1, oJ, {1, oJ},
{{O, OJ, {1, 1}}, {{1, oJ, {1, 1}}}]

You can verify by hand, or check the following, that these are indeed subrings of
R.

SubringQ [H, R]

SubringQ [K, R]

138 Ring Lab 3

Are H and K ideals? We need to pick an element in R and multiply it by an
element in H (or K) and see if we land back in H (or K). For example, let Ml be
the following matrix in R.

Clear [III]
(1111 = {{1, 1}, {O, O}}) /Il1JatrixForm

What happens if we try multiplying as we did earlier?

Q9. This is a Mathematica question, not an algebraic one-answer it if you can.
What went wrong?

Recall that the multiplication of R can be obtained as follows.

op = 1lJU1tiplication[R]; (* no output is given *)

We can Map the operation op, with Ml as one of the operands, across the whole
setH.

1IJap[lIJatrixForm, IlJap[op[lIIu #1] ro, H]]

Is it true that M 1 * N 1 is in H for every element N 1 in H? If not, what does this say
about H being an ideal? If so, what does this say about H being an ideal?

I Ql0. Is H an ideal? What about K?

Note that both H and K are normal subgroups of the additive group of R.

NormalQ[B, AdditiveGroupoid[R]]
NormalQ[K, AdditiveGroupoid[R]] (* may take some time *)

• 3.4 Ideals factor into other ring properties

Consider the following ring R and subset B.

R = Z [15]
B = {O, 3, 6, 9, 12}

Observe that B is an ideal of R.

IdealQ [B, R]

We know that B is a normal subgroup of R when we view R as an additive group.
Therefore, the quotient group R / B makes sense and we can talk about the cosets
as elements. Each coset has the form x + B, where x is an element of R. We
already know how to add cosets: (x + B) + (y + B) = x + y + B. Can we form a

An Ideal Part of Rings 139

product with these cosets? How about multiplying x + B times y + B to yield
x y + B? We need to verify that this is a valid, well-defined operation, which we
leave to your text and/or classroom. With this, we can form the quotient ring (also
known as thefactor ring) R/ B.

QR = Qu.otientRing[R, B]

Here is an example of how the multiplication works.

Multiplication [QR] [2 + IiIS, 2 + IiIS]

Consider the Cayley tables of this quotient ring.

CayleyTables [QR, Mode -+ Visual]

Qll. To what ring is this quotient ring isomorphic?

Ring Lab 4

What Does Z [i] / (a + b i) Look

Like?

.4.1 Prerequisites

Prior to working on this lab, you should be familiar with the term ideal through
discussions in class or from Ring Lab 3. You should also be familiar with an
integral domain, a field, and the characteristic of a ring .

• 4.2 Goals

The goal of this lab is to explore the quotient structure of the Gaussian integers
modulo an ideal generated by an arbitrary Gaussian integer .

• 4.3 Example 1

To work on this lab, we load the necessary packages.

Needs["AbstractAlgebra'Master'"];
SWitchStructureTo[Ring];

Consider the problem of investigating the ideal J = (2 + 2 i) in the Gaussian
integers, Z[iJ. In particular, what does the quotient ring Z[iJ / (2 + 2 i) look like?

What Does Z[i] / (a + b i) Look Like? 141

First recall that the set of Gaussian integers is the set {a + b i I a, bE Z}. This
forms a lattice in the plane.

gr = IntegerLatticeGrid [
{-6, 6}, {- 6, 6}, AspectRatio -+ Automatic] ;

Now consider the ideal generated by z = 2 + 2 i.

What elements are in this ideal? We know, by definition, that all elements of the
form r z (where r is in Z[i]) are in this ideal. Suppose we consider r to be an
(ordinary) integer and multiply it by z. We might as well try a number of integers
at a time.

somellultipliers = Table[k, {k, -3, 3}]

idealList = someMultipliers * z

Let's plot them on the lattice. To use ListPlot, we need to convert the complex
numbers to ordered pairs.

plotOfIdeals = ListPlot [Map [C~lexToPoint, idealList],
PlotStyle -+ {PointSize[0.030], RGBColor[l, 0, O]},
DisplayFuDction -+ Identity];

Show [{gr, plotOfIdeals}];

What other multiples should we consider? We could multiply by multiples of i.

addToIdealList = Table[kI, {k, -3, 3}] z

idealList = Join[idealList, addToIdealList]

Now look at the set of multiples we have so far.

plotOfIdeals = ListPlot [Map [C~lexToPoint, idealList],
PlotStyle -+ {pointSize[0.030], RGBColor[l, 0, O]},
AspectRatio -+ Automatic, DisplayFunctioD -+ Identity];

Show [{gr, plotOfIdeals}];

To make sense of this picture, recall that multiplying a complex number by i has
the effect of increasing the argument of the complex number (the angle between it
and the positive x-axis) by 90°. This explains why the original diagonal is rotated
to give us the preceding pattern.

There are still quite a few elements in the ideal that reside in this rectangle that are
not being shown. Perhaps we should multiply all the complex numbers in this grid
by z and then plot all the products that are still within the grid.

142 Ring lAb 5

9 = 6;
pts= Flatten['1'able[{i, j}, {i, -g, g}, {j, -g, g}], 1];
cpts = Map [Apply [Complex, I] &:, pts];
idealList = l:ntersection [cpts, z * cpts]

Here is the new plot.

plotOfl:deals = ListPlot [Map [Complex'l'oPoint, idealList],
PlotStyle {pointSize[0.030], RGBColor[l, 0, O]},
AspectRatio Automatic, Displayl'unction l:dentity];

Show [{gr, plotOfl:deals}];

Ql. We now see all the elements in J = (2 + 2 i) that are within the window
shown. How many elements are there in Z[i] / J? In other words, how many
other cosets do you think there are (and then add 1 to account for 1)? Note that
in the code, the variable pts records the lattice points and the variable ideal­
List records the members of J, so perhaps they may be useful in helping to
answer this question. What do you think is the size of Z[i] / J? Why?

Let's refer to the list of points in idealList by a different variable so that we
can more efficiently do the bookkeeping as we try finding the other cosets. Sup­
pose we use J [0] .

Clear[J]
J[O] = idealList

Now we need to find the other cosets. We will be adding elements to the ideal, as
opposed to multiplying, to generate the other cosets. Since we have defined J to
be J [0] , and we know all cosets are of the form r + J, finding another coset is
not too difficult. We just need to pick another ring element and add it to the
elements in J [0] . Which ring element should we add? Since we clearly want to
pick one that is not already in J, we may need to look at our picture again.

Show [{gr, plotOfl:deals}] I

How about using I?

J[l] = 1 + J[O]
(* This conveniently adds 1 to every

element in J[O]. This works well since we are
dealing with complex numbers. Equivalently,

one could use J[l] = Map[(1 + i)&:, J[O]]. *)

This returns all the elements of J [0] with 1 added to them. In other words, we
are building (part of) another coset. Here is a graph showing what we have so far.

What Does Z[i] / (a + b i) Look Like? 143

cosetPlot [2] = ListPlot [ComplexToPoint /@J[1] ,

1
PlotStyle ~ {pointSize [0 .030] , Hue [-] },

9
AspectRatio ~ Automatic, DisplayFunction ~ Identity];

Show [{gr, plotOfIdeals, cosetPlot [2]}];

Q2. How does this graph reflect that J [1] = 1 + J [0] ?

Q3. Do you want to modify your guess regarding how many cosets there will
be? What is your current response?

Let's pick another element to help find another coset. Additionally, let's begin to
automate our process by using the variable index to keep track of the count of
the cosets. Suppose we choose 2 for our new element.

newElement = 2
index = 2
J[index] = newBlement + J[O]
(* now calculate the new J[index] ~ adding newElement *)

We have now calculated our third coset, J [2] . (Recall that the first was J [0]
and the second was J [1] .) Now let's show a graph of the current situation.

cosetPlot [index + 1] = ListPlot [complexToPoint /@J[index] ,

index
PlotStyle ~ {pointSize[0.030], Hue[--]},

9
AspectRatio ~ Automatic, DisplayFunction ~ Identity] ;

Show[Join[{gr, plotOfIdeals},
Table [cosetPlot [k + 1], {k, 1, index}]]];

Q4. Do you want to modify your guess regarding how many cosets there will
be? What is your current response?

Q5. By choosing a value for newElement, step through the following code
until you have found all the cosets. A suggestion for choosing newElement:
Pick an uncolored point that is "closest" to the x-axis (where you measure the
distance by the absolute value of the angle from the x-axis to the point) but also

within a circle of radius 12 + 2 i 1 = 2 {2. Keep track of your elements.

144 Ring Lab 5

newE1ement =

index += 1
J [index] = newE1ement + J [0]

coset Plot [index + 1] = ListP10t [Comp1exToPoint /@J [index] ,

index
P1otSty1e -+ {PointSize[0.030], Hue[--]},

9
AspectRatio -+ Automatic, Disp1ayFunction -+ :Identity];

Show [Join [{gr, p1otOf:Idea1s},
Table [cosetP1ot [k + 1], {k, 1, index}]]];

I Q6. How many co sets are there? List them.

• 4.3.1 What ring is it?

Now that we have found the cosets, let's explore what ring this quotient
Z[i] / (2 + 2 i) might be. Since each coset can have one of many different names
(or representatives, in the sense that 2 + (5) and 7 + (5) are the same cosets in
Z/ (5) but use different representatives), we should first agree on what names to
use so that we can use the same language. (Technically, this is not necessary, but
it is convenient.) Therefore, here is one choice.

cosetReps = {O, 1, 2, 2 -:I, 2 + :I, 1 -:I, 1 +:I, 1- 2 :I}

cosetRepsP1ot = ListP10t [Comp1exToPoint /@cosetReps,
Plot Style -+ {PointSize [0.030], Hue [0] },
AspectRatio -+ Automatic, Disp1ayFunction -+ :Identity] ;

Show [{gr, cosetRepsP1ot,
Graphics [Circle [{O, O}, Abs [2 + 2 :I]]]}];

Here is another choice, with a different visualization. We use this choice in further
analysis of the quotient ring.

QuotientRing [Z [:I], 2 + 2 :I,
Mode -+ Visual, Form -+ Representatives]

The representatives are the elements listed in this Ringoid. Additionally, these
elements can be found within and on the bold square. In general, the corners of
the square are different representatives of the same coset. Also, any element that
appears on a side of a square has a second representative of the same coset on the
opposite side of the square.

What Does Z[i] / (a + b i) Look Like? 145

Q7. There are more Gaussian integers within or on this bold square than there
are coset representations in this quotient ring. Which ones are not included in
the quotient ring? How are these "extras" related to those in the quotient ring?

Q8. Give an explanation for the role the collection of squares is playing. In
particular, address how the other squares relate to the bold one.

Since we have found all the cosets, we should consider how to add and multiply
them. We know that if we add the co sets 4 + 5 i + J and 8 + 9 i + J, we get
12 + 14 i + J. Similarly, the product is -13 + 76 i + J. (Double-check each of
these calculations.) We would, however, like to have them represented by ele­
ments of the form z + J, where z is a representative in our quotient ring. First, let's
look at another version of the quotient ring, where the elements are given in the
form z+ J.

QR = QuotientRing[Z[I], 2 + 2 I]

Now we can look at the sum and product.

Addition[QR] [4 + 5 I + J, 8 + 9 I + J]

Multiplication [QR] [4 + 5 I + J, 8 + 9 I + J]

Q9. From these computations, we see that (4 + 5 i + J) + (8 + 9 i + 1) = 2 + J
and (4 + 5 i + 1) * (8 + 9 i + 1) = 3 + J. Why is this the case? Look again at the
plot given in the visualization of the quotient ring.

a. First, find the representatives in the bold square for both 4 + 5 i + J and
8 + 9 i + J. (The second one may take a little ingenuity with this graph, but you
can do it.)

b. Now add and multiply (by hand) the two representatives. What are these
results (before reducing mod (2 + 2 i)}?

c. Finally, reduce the preceding results mod (2 + 2 i) so that you can find
the corresponding representative in the bold square. Are you convinced of these
results?

By looking at the Cayley table, we should be able to answer some questions
regarding this ring. (You may wish to enlarge the graphics so you can view them
better.)

CayleyTables [QR, Mode -+ visual];

146 Ring Lab 5

Q10. Is QR a field? Why or why not? Is J = (2 + 2 i) a maximal ideal? Why or
why not?

Qll. Is QR an integral domain? Why or why not? Is J = (2 + 2 i) a prime ideal?
Why or why not?

I Q12. What is the characteristic of QR?

Q13. Since the additive group of this ring has order eight, what are the candi­
dates for a group that is isomorphic to this? In other words, what are the groups
of order eight?

Q14. Which one is this? What group is isomorphic to the additive group of this
ring?

• 4.4 Example 2

Suppose we now let J = (3 + i) and consider the quotient ring Z[i] / J. As before,
let's view this visually.

QuotientRing[Z [J:], 3 + J:, Mode -+ Visual]

Try the following to see how this graphic image is built up in stages. (Note: The
following cell uses a lot of memory; you may wish to delete previous graphics
cells first.)

QuotientRing [Z [J:], 3 + I, Mode -+ Visual, Staged -+ All] ;

You can now double-click on anyone of the cells and animate the graphics. The
speed can be controlled by typing a number from 1 to 9 (1 slow, 9 fast). If you
want to see just one stage at a time, the following is an alternative. (If you have
limited memory, you may wish to first clear the graphics just generated.)

QuotientRing [Z [J:], 3 + I, Mode -+ Visual, Staged -+ 'l'rue] ;

Now use NextStage to advance (or PreviOllsStage, if you wish to reverse).

Next Stage [QuotientRing]

I Q15. How many cosets are there?

What Does Z[i] / (a + b i) Look Like? 147

Q16. What can you say about this quotient ring? What is the size? Is it a field?
Is it an integral domain?

The following are some Gaussian integers. You may recall that the absolute value
of a complex number a + b i is the length of the vector starting at the origin and

terminating at the point (a, b), having the value .y a2 + b2 •

someTestCases = {2 +:1:, 2, 3 +:1:, 3 + 2:1:, 2 :1:, " - 3 :1:, 7 -:I:}

TableForm[({II, Abs [11], Size [QuotientRing [Z [:1:], II,
Form -+ Representatives]] } &) /@someTestCases,

TableHeadings -+ {None, {liZ", "I z I", n I Z [i] /<z> I \n"}}]

The output consists of a complex number z, the absolute value of z, followed by
the size of the quotient ring formed byZ[i] / (z) (i.e., the number of cosets).

Q17. Can you make a conjecture regarding the sizes measured?

I Q18. Try to prove your conjecture.

Q19. Which of the quotient rings above do you think are fields? Integral
domains?

You may be interested in trying the following.

Map[{I, PrimeQ[I, Gaussian:l:ntegers -+ True]} &,
someTestCases]

Map [QuotientRing [Z [:1:], 11,
Form -+ Representatives, Mode -+ visual] &, someTestCases];

(* This will likely take some time - good
opportunity for a break *)

Ring Lab 5

Ring Homomorphisms

• 5.1 Prerequisites

Before you start this lab, you should be familiar with Ringoids and the ideas
found in Ring Labs 1 and 2, as well as normal subgroups and ideals .

• 5.2 Goals

This lab explores the notion of a ring homomorphism. First we define one, and
then we see how one can be constructed.

This lab is designed to be independent of the group labs on isomorphisms and
homomorphisms. If you have done them, you can skip the first section of this lab,
except to evaluate the inputs that define Morphoids t, g, and w .

• 5.3 Morphoids on rings

A Morphoid is a Mathematica object that consists of either a function or a set of
rules followed by two structured sets (Ringo ids or Groupoids). The function
or rules serve to map each element in the first structured set into the second one.
The only principle governing construction of a Morphoid is that an actual
(mathematical) function must be defined by the rules or function. To continue,
let's read in the Mathematica functions we will need for this lab.

Needs["AbstractAlgebra'Master'II];
SwitchStructureTo[Ring];

Ring Homomorphisms 149

The way to create a Morphoid is with the function FormMorphoid. For
example, to define the Morphoid from the ring Z15 into the ring Z30, where the
image of each element x in Z15 is 2x, we evaluate the following.

f = FormMorphoid [2 # &:, Z [15], Z [30]]

If you try to create a Morphoid with an invalid function, it will fail to be created.

FOrmMorphoid[2 # &:, Z[15], Z[20]]

One family of built-in Morphoids is ZMap [rot n], where m and n are positive
integers.

?ZMap

g = ZMap [15, 5, Structure -+ Ring]

You can get a graphical representation of a Morphoid with the function Visual
izeMorphoid (or by using the Visual mode of FormMorphoid).

?VisualizeMorphoid

VisualizeMorphoid[g, ColorCodomain -+ Automatic];

Any pair of Ringoids can potentially have a Morphoid connecting them. Here
is an example that is defined with a list of rules instead of a function.

w = FormMorphoid [
{O -+ 0, {1} -+ 0, {2} -+ 0, {1, 2} -+ 1}, BooleanRing[2], Z[2]]

You may have noticed that depending on how you create a Morphoid, the first
argument that appears in the output can vary. Ideally, what appears is the simplest
description of the function that defines the Morphoid. As you will see later, the
single rule 1 ~ 1 defines the Morphoid g, so the rest of the rules that define g
do not need to be displayed .

• 5.4 Ring homomorphisms

A homomorphism between rings Rand T is a function that preserves the opera­
tions between the two rings. That is, if f is a homomorphism, then for all values
of x and y selected from R,

f(x + y) = f(x) + f(y) and f(x * y) = f(x) * f(y)·

150 Ring Lab 5

(Note that the operations + and * on the left-hand side of each equation occur
within R, while those on the right-hand side occur within T.) If f is also one-to­
one and onto, then it is an isomorphism. The existence of an isomorphism
between two rings establishes them as being "equal" in an algebraic sense.

To review the notion of operation preserving, we start by looking at the first two
Morphoids (f and g), since their domains are the same. For both of them we
use the pair of elements {11, 7} and use the function PreservesQ to see if the
conditions above are satisfied when x = 11 and y = 17.

PreservesQ[f, {11, 7}]

PreservesQ[g, {11, 7}]

To see why f does not preserve operations, we can use the Visual mode.

PreservesQ [f, {11, 7}, Mode -+ Visual] ;

From this graphical representation of the tests, we see that the addition condition
is satisfied but the multiplication condition fails: f(11 * 7) = 4 but
fell) * f(7) = 8. Therefore, f is not a ring homomorphism. Although g did pre­
serve the operations for the pair {11, 7}, we cannot conclude that g is a homomor­
phism, since the conditions were checked for only one of the 152 = 225 pairs of
values that need to be checked. MorphisrnQ will check them all at once.

MorphismQ[g, Mode -+ Visual]

Q1. The third Morphoid that was defined in the first section of this lab is also
not a homomorphism. Explain why this is the case with a specific example that
shows it is not.

• 5.5 The kernel and image

• 5.5.1 The kernel

Since every ring "contains" the additive group consisting of the domain and the
addition operation, a ring homomorphism can also be viewed as a group homomor­
phism. This observation extends to the more general structures of a Morphoid
on a Ringoid and a Morphoid on a Groupoid. If you have already studied
group homomorphisms, you are aware of the concept of the kernel. In the group
setting, the kernel of a homomorphism is the set of elements in the domain that
map onto the identity of the codomain. With rings, the additive identity is the zero
of the ring. Therefore it is natural to make the following definition: The kernel of

Ring Homomorphisms 151

a ring homomorphism is the set of elements in the domain that map onto the zero
of the codomain.

Our first true ring homomorphism was called g. What is its kernel? The Visual
mode of Kernel should clearly illustrate the elements in the kernel.

Kernel [g, Mode -+ Visual]

Q2. First review the definition of an ideal. Without making any assumptions
about the kernel (except its definition), answer the following questions.

a. If h is a ring homomorphism and rand s are in K = Kernel[h], explain
why r - s must also be in K.

b. If h is a ring homomorphism and r is in K = Kernel[h] and s is in the
domain of h, explain why r sand s r must also be in K.

c. Properties from (a) and (b) imply what about the kernel?

Kernel returns a result that is a Ringoid. It is a well-defined Mathematica
function, provided the codomain has a zero.

f
Kernel[f]

w
Kernel[w]

Q3. What conclusions, if any, can be drawn from the observations made in
question 2 and the values of Kernel [f] and Kernel [w] ? Assume that you
do not know whether f or w is a homomorphism .

• 5.5.2 The image

The image of a ring homomorphism is the range of the function, but it inherits the
operation of the codomain and is also a Ringoid. For our first homomorphism,
g, the image is the whole codomain, which is not uncommon.

9
lmage[g]

Although a Morphoid that is not a homomorphism can have an image, and that
image may also be a subring (as we see with f that we defined above), there is no
guarantee that it will be a sUbring.

152 Ring Lab 5

J:mage[f]
ClosedQ[%]

Q4. Find an example of a Morphoid of rings for which the image is not a
subring of the codomain.

• 5.6 The kernel is an ideal

It was observed at the conclusion of question 2 that the kernel of a ring homomor­
phism is an ideal of the domain. This closely parallels the situation with groups.
The kernel of a group homomorphism is a normal subgroup. Ideals and normal
subgroups are precisely the subsets of their respective systems that allow quotient
structures of cosets. We illustrate this situation in the ring case here.

• 5.6.1 Example 1

The first true ring homomorphism was called g.

9
Kernel[g]

We can create the quotient ring with QuotientRing.

QR = QuotientRing [Z [15], Kernel [g]]

The theory that has led up to this point assures us that QR is a ring.

I Q5. To what common ring is QR isomorphic?

Your response to this question should be implied by the following theorem. (The
proof appears in nearly every introductory abstract algebra text.)

• 5.6.2 First Isomorphism Theorem (for rings)

Theorem Let!: R ~ S be a surjective (onto) homomorphism of rings with kernel
K. Then the quotient ring R / K is isomorphic to the image of !, with the isomor­
phism g : R / K ~ ! (R) defined by g(a + K) = !(a).

• 5.6.3 Example 2

In the second example, we define and work with a Morphoid based on a direct
product.

R = DirectProduct [Z [3], Z [5]]

We define a Morphoid from Z30 into R.

Ring Homomorphisms 153

13 = FormMorphoid[{Mod[ll, 3], Mod[ll, 5]} &, Z [30], R]

MorphismQ[13]

K = Kernel [13]

Q6. Based on the size of the kernel, how many elements should we expect to
have in the quotient ring Z30 / K?

We can generate the quotient ring to verify a conjecture from the last question.

02 = QuotieDtRiDg[Z[30], K]

Q7. Based on the First Isomorphism Theorem, to what ring is the quotient ring
isomorphic?

.5.7 One-rule Morphoids

It was noted earlier that ZMap [15, 5] and similar expressions form Mor­
phoids with a single rule displayed. Internally, the Morphoid is actually
defined with a function, but the rule may be somewhat shorter, so for simplicity
we display the rule.

h = ZMap[4, 2]

Q8. a. Assuming that h is a morphism, which is true, explain how and why the
rule 1 -7 1 determines rules for the other elements in Z4. (What are the other
rules?)

b. Explain what goes wrong with ZMap [3 , 2] and why 1 -7 1 cannot
define a morphism .

• 5.S The Chinese Remainder Theorem

The image of the homomorphism {3, considered in section 5.6, was the direct
product of Z3 with Zs. This direct product happens to be isomorphic to ZlS. This
follows from the Chinese Remainder Theorem.

154 Ring Lab 5

Chinese Remainder Theorem. If ml, m2, ... , mr are positive integers such that
no two have a common divisor greater than one, then the ring Z[ml m2 ... mr] is
isomorphic to the direct product Z[ml] x Z[m2] x ... x Z[mr].

We do not provide a proof of this theorem since it appears in many standard texts.
We do, however, illustrate one approach from a computational point of view.

An isomorphism from Z15 into Z3 x Z5 is easy to construct. We map each
element of Z15 into the pair of remainders on division by 3 and 5 respectively.

9 = FOrmMorphoid[{Mod[ll, 3], Mod[ll, 5]}&, Z[15], R]

J:somorphismQ[9]

For this case, the matter is settled. In the general situation, if we were to define a
similar function from Z[ml m2 ... mr] into the direct product, it is not totally clear
that the function would be one-to-one and onto. This can be proven, however, and
there is an algorithm that determines the inverse of the function. The inverse,
which is not as simple to compute, is available as a function called ChineseRe­
mainderTheorem in the NumberTheory'NumberTheoryFunctions
package. Let's load this package and learn about this function.

Needs["HumberTheory'HumberTheoryFunctions'n];

?ChineseRemainderTheoram

In the example, we might want to know what the inverse image of {2, 3} is, that is,
for what integer n is e(n) equal to {2, 3}. We use {2, 3} for the first argument and
{3, 5} for the second, since 3 and 5 are the two moduli used to form the codomain
of e.

ChineseRemainderTheoram [{2, 3}, {3, 5}]

It turns out that 8 is the smallest integer congruent to 2 mod 3 and also congruent
to 3 mod 5. We can easily verify this result.

9[8]

The inverse function can be used to create an inverse isomorphism

¥=
FOrmMorphoid[ChineseRemainderTheoram[ll, {3, 5}] &, R, Z[15]]

J:somorphismQ[¥]

Of course, we should also verify that 'Y is really the inverse of e.

MorphoidCODIPosition [9, ¥]

Ring Homomorphisms 155

MorphoidC~sitioD[Y, 9]

Q9. Explain why the last two results verify that these two functions are inverses.

The power of the ChineseRemainderTheorem function may not be clear,
since our original function was based on a relatively small set. Here is a question
for which the Chinese Remainder Theorem can be employed.

Q10. Suppose that Franklin Street Clothing is having a sale. You give x dollars
to person A, who then buys as many $19 shirts as possible with the x dollars
and then has $3 left over. You also give x dollars to person B, who then buys as
many $29 sweatshirts as possible with the x dollars and then has $26 left over.
What is the least positive number of dollars that x could be? Explain how the
answer to this problem can be obtained using isomorphisms.

We finish up the lab with a couple of follow-up questions.

Qll. Does the Chinese Remainder Theorem tell us that Z12 is isomorphic to
the direct product of Z2 and Z6? Explain your answer.

Q12. Explain, from what we have done in this lab, why the rings Z30 / {O, IS}
and Z15 are isomorphic.

Ring Lab 6

Polynomial Rings

• 6.1 Prerequisites

To work on this lab, you need only a cursory familiarity with Ringoids, mostly
?Ln .

• 6.2 Goals

The goal of this lab is discovering some of the basic properties of polynomial
algebra over a ring, through division and the GCD function. Factorization is
discussed in detail in Ring Lab 7 .

• 6.3 Introduction to polynomials

To get started, let's read in the package that provides the functionality needed for
this lab.

Needs["AbstractAlgebra'Ma.ster'''];
SWitchStructureTo[Ring];

Consider the polynomial p = x2 + 3 x - 4. This type of expression has been
familiar to you for many years. You should know how to factor it and how to
graphy = p.

Polynomial Rings 157

Q1. How do you factor this polynomial? What does the graph of y look like?
Try also to get Mathematica to do both of these tasks.

We implicitly consider viewing the polynomial p as having coefficients coming
from the integers (or possibly real numbers). Do we need to confine our coeffi­
cients to the integers, rationals, reals or complex numbers? No.

Let R be any commutative ring. We define the ring of polynomials over R in the
indeterminate x as the set of all (formal) symbols of the form

an xn + an-l xn- l + ... + a2 x2 + al X + ao,

where the coefficients ai are from the ring R and n is a nonnegative integer. We
denote this ring of polynomials by R[x]. In Mathematica, we can create a ring of
polynomials as follows.

P = PolynomialsOver [Z [7]]

The ring P is the set of all polynomials whose coefficients come from Z 7.

Q2. Why don't we list all the elements? How many are there?

The first thing we need to think about when working with polynomials is to be
able to identify two elements as different or the same. Suppose we have a polyno­
mial f(x) of the form

anxn + an-l xn- l + ... +a2 x2 +al x+ao·

In this case, if an is not zero, we say f(x) has degree n and we call the coefficient
an the leading coefficient. We say that the two polynomials f(x) and

g(x) = bm xm + bm- l xm- l + ... + b2 x2 + bl X + bo

are equal if n = m (i.e., they have the same degree) and if ai = bi for all i::;; n.
Note that what is important in a polynomial is only the list of coefficients used;
the variable (and its powers) act merely as place holders, indicating the position of
the coefficients. Thus, in Mathematica, one way we create a polynomial is to
simply give the function Poly a sequence of coefficients, prefixed by the ring
from which the coefficients come. For example,

Clear [x]
p = Poly[Z[7], 6, 1, 0, 2]

yields the polynomial 2.x3 + x + 6. In this case, the indeterminate is denoted by x.
You can specify some other indeterminate.

Clear[y]
p2 = Poly [Z [7], 6, 1, 0, 2, J:ndeterminate ... y]

158 Ring Lab 6

You can also enter a polynomial directly:

p3 = Poly[Z[7], 2 x 3 + X + 6]

It is important to remember to specify the ring from which the coefficients come.
If this is forgotten, the expression will be returned as entered (which is a standard
Mathematica means for communicating that the input is unsuitable).

p4 = Poly [2 x 3 + X + 6]

As usual, asking for information about a function is often useful.

?Poly

In particular, note that if you are accustomed to entering polynomials (as well as
viewing them) the way Mathematica returns them, you will feel at home with the
default setting of Powers Increase. On the other hand, if you prefer to have
the powers of the polynomial increase from right to left for both input and output,
you may wish to use SetOptions and change the default on PowersIn­
crease. Note how this option works.

Poly [Z [5], 1, 2, 3]
Poly [Z [5], 1, 2, 3, PowersIncrease -+ RightToLeft]

Note that both the input method (when just giving a sequence of coefficients) and
the output display is governed by this option. Based on the method you prefer,
evaluate one of the following two cells.

SetOptions [Poly, PowersIncrease -+ LeftToRight]
(* output will be similar to 1 + 2 x + 3 x 2 *)

SetOptions [Poly, Powers Increase -+ RightToLeft]
(* output will be similar to 3 x 2 + 2 x + 1 *)

Consider the following polynomial r.

r=Poly[Z[7], 7x' -4x+4x2 +9]

When the base ring is Zn, polynomials can be entered with coefficients from the
integers (positive or negative), and they will be reduced mod n. (This property can
be turned off by adding the option FlexibleEntering ---7 False.)

Finally, recall the Boolean ring over {a, b} and consider the following polynomi­
als.

Clear[a, b]
R3 = BOoleanRing[{a, b}]

sl=Poly[R3, {b}, {a, b}, 0, {b}]

Polynomial Rings 159

s2=Poly[R3. {c}. {a. b. c}. {y}. {b}]

When a polynomial is constructed, the coefficients are checked for membership
against the base ring; an error message is given if the polynomial is ill-formed.

Q3. Construct a well-formed and an ill-formed third-degree polynomial over
ZlO.

Let's pick a couple of random polynomials of degree 3. (Recall that P is our
extension ring of polynomials over Z 7.)

a = RandomBlement [Po 3]
b = RandomBlement [P. 3]

Q4. List your polynomials. You should have a reasonable guess or idea how to
add these two polynomials. Do so (by hand). Also, determine their product.

In the ring of polynomials, there is a built-in addition and multiplication. Let's
define some Mathematica aliases for these functions in our ring of polynomials
over Z7.

add = Addition[P];
mult = llultiplication [P] ;
(* no output is given *)

Now let's add and multiply a and b (and note that this should check your answer
to question 4).

add[a. b]
mult [a. b]

Conventional notation works as well.

a+b
ab

Q5. What is the degree of the product of polynomials a and b?

The Degree function determines the degree of a polynomial.

Degree[Poly[Z[8]. 4x2 +7x-2]]

Degree [ab]

Q6. What are the constant polynomials in P? (These are the polynomials
without the indeterminate x.)

160 Ring Lab 6

Q7. Does this ring of polynomials over Z7 have a zero? What about a unity? If
you answered yes to either, what is it?

Q8. Can we add two polynomials of degree k and obtain a sum of a lower
degree? Try the following code once or twice (or more times, if you feel it is
necessary) and consider the results. If obtaining a sum with lower degree cannot
happen, explain why not; if it can, cite circumstances under which it can.

print[RLet d(p) be the degree of the polynomial p:"];
('l'ablel'orm[#l, 'l'ableHeadings -+ {None, {npolynomial a R,

"polynomial b", n{d(a), deb) }n, nd(a + b) \n"}},
'l'ableSpacing -+ {O, 3}, 'l'ableDepth -+ 2] 6i:) [

'l'able [a = RandomElement [P, 2]; b = RandomElement [P, 2];
{a, b, {Degree[a], Degree[b]}, Degree[a+b]}, {2S}]]

Q9. What happens when we multiply a polynomial of degree 3 with one of
degree 2? What is the degree of the product? Try the code below once or twice
(or more times, if you feel it necessary) and consider the results. Explain your
conclusion.

('l'ableForm[#l, 'l'ableHeadings-+
{None, {"polynomial aR, ·polynomial b n , "d(a * b)\nR}},

'l'ableSpacing -+ {O, 3}] 6i:) [
'l'able[a = RandomElement[p, 3]; b = RandomElement[p, 2];

{a, b, Degree [P, Multiplication [P] [a, b]]}, {20}]]

Since P is the ring of all polynomials over Z7, we can ask about the Zero and
Uni ty of this ring.

{z, u} = {Zero[P], unity[p]}

Of course, we need to be careful about how we interpret what we see here. If we
ask if z is equal to the number 0 and if u is equal to the number 1, we get the
following.

z === 0
u === 1

I QI0. Explain these results.

Let's shift gears for a moment and consider polynomials over Z6 and look at two
polynomials and their product in this context.

Clear[P]
P 2 = PolynomialsOVer [Z [6]]

a = Poly [Z [6], 3 x 3 + x 2 + X + 1]
b = Poly [Z [6], 2 x 2 + 5]
ab

Polynomial Rings 161

QU. What can you surmise from this example? Look carefully at the output.
Give another example of a similar occurrence in the ring of polynomials over
Z6·

• 6.4 Divide and conquer

The main reason arithmetic with polynomials is interesting (and so similar to
integer arithmetic) is because of the division property. The division property is
often referred to as the Division Algorithm in algebra texts.

Let's do some quick reviewing of familiar territory before looking at general
polynomial rings. When we divide 159 by 13, we seek to find the number of times
we can multiply 13 and still remain less than 159. Or in the vernacular, "How
many times does 13 go into 1591" In this case, 12 times 13 equals 156, leaving a
remainder of 3.

159 == 13 12 + 3

Note that we have written 159 as the product of an integer times 13 plus a remain­
der whose value is less than 13.

Now consider the following polynomials (over the integers).

a=x3 +5x2 -3x+8
b=x-7

What do we get when we divide a by b? In other words, can we write a = b q + r
for some polynomials q and r?

Q12. You should know how to do this by hand. Do so and report your results.

Mathematica has some built-in functions to find the quotient and remainder when
considering polynomials over the integers (as well as some other standard rings).

q = polynomialQuotient [a, b, x]
r = PolynomialRemainder [a, b, x]

Do these work as we suppose?

a==bq+r

162 Ring Lab 6

We need to do some coaxing.

a == Expand[bq + r]

To consider equivalent functionality over arbitrary rings, we need to use the
functions built into the packages that were read in at the beginning. In this sce­
nario, we use the function PolynomialDivision. Here, we define polynomi­
als a and b in the ring of polynomials over Z 7.

a = Poly [Z [7], x' + 5 x 2 + 3 x + ']

b = Poly [Z [7], Xl + 3 x + 2]

Try your hand, using paper and pencil, at determining the quotient and remainder
of a divided by b. Confirm your results with the following cell.

{q, r} = PolynomialDivision[a, b]

We can test this result by multiplying the quotient q times b, then adding the
remainder r.

a == b *q+ r

Often it's necessary to know only the remainder or the quotient. The built-in
functions already used also have extensions in these packages.

?PolynomialQuotient

?polynomialRemainder

PolynomialQuotient [a, b]
polynomialRemainder[a, b]

Let's consider another example by changing b to a linear polynomial

a = Poly [Z [7], 'x' + 3 x 3 + 5 x 2 + 1]
b = Poly [Z [7], x - 3]

Note that x - 3 is the same polynomial as x + 4 in the ring of polynomials over Z 7.

Q13. Use long division to determine the quotient and remainder. Now evaluate
the polynomial a at the value 3.

To evaluate any polynomial, simply substitute in the value and compute in the
ring. In this case, we reduce mod 7 as we go. Try it. We can also use the follow­
ing function.

PolynomialEvaluation[a, 3]

Compare this to the following.

Polynomial Rings 163

PolynomialRemaincier [a, b]

Why did we divide by x - 3 and evaluate at 3? See if you can understand why
with a couple more examples.

Let's change b to a different linear polynomial. We divide and examine the
remainder.

b = Poly [Z [7] , x - 2]
PolynomialRemaincier [a, b]

Also, evaluate a when x is given the value 2.

PolynomialEvaluation[a, 2]

And again, one more time, over a different ring.

a = Poly [Z [13], 'x' + 3 Xl + 5 x 2 + 1]
b = Poly[Z [13], x + 5]
PolynomialEvaluation[a, 8]
polynomialRemaincier[a, b]

Q14. Can you make a conjecture based on these examples? You may wish to
try some other linear polynomials. Note that you need to determine where to
evaluate the polynomial, and this depends on the linear polynomial. What is
this relationship?

Q15. Suppose that a = f(x) and b = x - k. Based on your answer to question 14,
what can you s·ay about the remainder r when we have f(k) = O? (Consider the
following example, if you wish.)

a = Poly [Z [7] , x' + 2 Xl + 2 x 2 + 1]
b = Poly [Z [7] , x - 3]
PolynomialEvaluation[a, 3]
PolynomialRemainder [a, b]

Q16. In all the examples we have encountered, what is the relationship between
the degree of the remainder r and the degree of the divisor b?

Now let's fix a polynomial and consider the zeros ofthe polynomial over various
rings Zn. By a zero, we mean a value such that the polynomial evaluates to the
zero of the base ring (which, in Zn, is 0). For example, consider the polynomial
;? + 3x+ 2.

Consider finding the zeros for this polynomial over Z15, Z17 and Z37.

164 Ring Lab 6

Zeros [Poly[Z [15], p]]
Zeros[Poly[Z[17], p]]
Zeros [Poly[Z [37], p]]

Suppose we consider all Zk for k = 2 to k = 11.

TableForm[
Table [{k, Zeros [Poly[Z [k], Xl + 3 x + 2]] }, {k, 2, 11}],
TableHeadings -+ {None, {nkn, ·zeros over \! \ (Z_k\) \nn}},
TableDepth -+ 2, TableSpacing -+ {O, 3}]

Q17. While several indices k resulted in four zeros, most resulted in two. For
those that yielded only two, is there anything significant about the two zeros?
What is the explanation for this?

Note that finding zeros is a special case of solving an equation set equal to zero.

Solve[Poly[Z[ll], x 2 + 3x+2] == 0]

Of course, we can also solve equations involving other constants.

solns = Solve [Poly[Z [11] , x 2 + 3 x + 2] == 1]

We can also verify the solutions. (Recall that x + 3 /. {x ~ 5} results in 8.)

x + 3 /. {x -+ 5}

Poly[Z [11], x 2 + 3 x + 2] /. solns

Let's try another polynomial.

TableForm[

Table [{k, Zeros [Poly[Z [k], 3 x 3 + x 2 + 3 x + 2]]}, {k, 2, 11}],
TableHeadings -+ {None, {nk", nzeros over Zk \n"}},
TableDepth -+ 2, TableSpacing -+ {O, 3}]

(* an empty position indicates no zeros *)

Q18. By modifying this code, try another polynomial and/or other rings to see
if you can determine a relationship between the (maximum) number of zeros
and the index k of the ring Zk under consideration.

Polynomial Rings 165

• 6.4.1 The Euclidean Algorithm

The greatest common divisor of two polynomials, a and b, b not zero, can be
determined using the fact that if r is the result of Polynomial­
Remainder [a, b], then gcd(a, b) = gcd(b, r). This is an extension with
polynomials of what you have already seen with integers. In other words, if
a = 24 and b = 40, we know that gcd(a, b) = 8. Below we use Mod, which is the
integer equivalent to PolynomialRemainder, to implement the Euclidean
Algorithm. First define a and b.

a = 40
b = 24

Calculate the new values for a and b. Let the new a become the old b and the new
b become the remainder on dividing a by b (Mod [a, b]). Now call these values
a and b again.

newa = b
newb = Mod [a, b]
{a, b} = {newa, newb}

Repeat.

Dewa = b
newb = Mad [a, b]
{a, b} = {newa, newb}

Repeat.

newa = b
newb = Mod [a, b]
{a, b} = {newa, newb}

You are done when the remainder (newb) becomes 0; the gcd is then the last
nonzero remainder (b).

Q19. Employ this algorithm by verifying that the gcd of 21 and 13 is 1.

Q20. Employ the Euclidean Algorithm for polynomials to determine the gcd of
the polynomials x4 + 2.x3 + 2 i2 + 2 and x4 + 3 x3 + 3 x2 + 3 x + 2, both over
Zs.

166 Ring Lab 6

a = Poly [Z [5], X4 + 2 x 3 + 2 x 2 + 2]

b=Poly[Z[5], x' +3x3 +3x2 +3x+2]

You might find this cell handy.

newa = b
newb = PolynomialRemainder[a, b]
{a, b} = {newa, newb}

• 6.4.2 Another approach

Algorithms are great things to instruct computers to do. The Euclidean Algorithm
has been implemented in the function PolynomialGCD.

PolynomialGCD[a, b]

Ring Lab 7

Factoring and Irreducibility

• 7.1 Prerequisites

Before working on this lab, you should be familiar with polynomial arithmetic
over integral domains. No previous labs need to be completed prior to attempting
this lab .

• 7.2 Goals

The goal of this lab is to introduce some of the tools available for polynomial
factorization over a variety of rings .

• 7.3 Introduction to factoring and irreducibility

To get started, we read in the package that provides some of the functionality
needed for this lab.

Needs[nAbstractAlgebra'Kaster'n];
SwitchStructureTo[Ring];

In this lab we consider how to factor polynomials. From high school math, you
should already have a sense of what this means, but now we will make the defini­
tion more formal. For example, suppose you were asked if you could factor the
following polynomial.

168 Ring Lab 7

Clear[f, xl
f=x2 -3

Would you answer "No," since 3 is not a perfect square, so this is not a difference

of two squares? Or would you answer "Yes," since one can factor this as

(x - -/3) (x + -/3)? Actually, it is a poorly worded question. We will learn how
we should ask it.

We consider polynomials from D[x], where D is an integral domain. This means
that the coefficients of the polynomials in the indeterminate x come from the
integral domain D. Given any nonconstant polynomial f(x) in D[x] (i.e.,
degree(f(x)) > 0), we call f(x) irreducible if whenever we write f(x) = g(x) hex)
(with g(x) and hex) from D[xD we have g(x) or hex) a unit in D[x]. In other words,
f(x) cannot be factored except when one of the factors is a unit in D[x]. When a
nonconstant polynomial is not irreducible, we call it reducible over D, or factored
over D. Note that frequently the domain D is a field.

Thus, in our original question we should have asked if f was irreducible over Q
(the rationals) or if f was irreducible over IR (the reals) or over some other inte­
gral domain. In other words, we need to specify the ring from which our coeffi­
cients come.

Q1. Determine whether x2 - 3 is irreducible or reducible over the integers,
rationals, reals, and complex numbers.

Q2. Determine whether 2 x2 - 6 is irreducible or reducible over the integers,
rationals, reals, and complex numbers.

Q3. Determine whether 2 x2 + 6 is irreducible or reducible over the integers,
rationals, reals, and complex numbers .

• 7.4 Some techniques on testing the irreducibility of
polynomials

• 7.4.1 Polynomials over lL.p -Theorem 1

Suppose we consider the polynomial f(x) = 4 x3 + 3 x2 - 2 x + lover the field Zp
for some prime p. If f(x) is reducible, then there exists g(x) and hex) from Zp [x]
such that f(x) = g(x) hex) and neither g(x) nor hex) is a unit. Consequently, these
two polynomials must have degrees 1 and 2 (or 2 and 1), since the sum of their
degrees must be 3. But then the linear factor, whose form is a x + b, has a zero,

Factoring and Irreducibility 169

namely _a-1 b. Consequently, I(x) also has a zero. Therefore, all we have to do is
look for the zeros of I. This can be summarized in the following theorem; you
will probably find the theorem in your text. (Note that this argument works
whether the field is finite or infinite.)

Theorem 1: Let F be a field. A polynomial of degree 2 or 3 over F is reducible
over F if and only if it has a zero in F.

Let's pursue the irreducibility of I(x) = 4 ~ + 3 x2 - 2 x + lover some finite field
Zp. In this case, the task is particularly simple, since all we need to do is check to
see if I has a zero over the field. Here is how we might proceed for p = 3. First
we define I.

f = Poly [Z [3], 'x3 + 3 x 2 - 2 x + 1]

Next we map lover the entire domain of the field.

Map[PolynomialEvaluation[f, #1] &, {O, 1, 2}]

Thus we see that 1 is a zero for I. (Why I? Look at the set over which we mapped
I.) Consequently, by the theorem, we know that I is reducible over Z3.

Q4. Since I(x) is reducible, you should be able to find g(x) and hex) such that
I(x) = g(x) hex). Do so.

I Q5. Is I(x) reducible over Z7?

Q6. Consider I(x) = 7 ~ + 13 x 2 + 2 x + 7. Starting with p = 2, find the first
prime p for which I(x) is reducible over Zp .

• 7.4.2 Rational Root Theorem-2 x3 + 3 x2 - lover Q

Consider the polynomial I = 2 ~ + 3 x2 - lover the rationals, Q.

Clear[f, x]

f=2x3 +3x2 -1

Since this is a cubic, we could use Theorem 1. However, since the rationals are an
infinite field, we don't want to look for zeros by brute force (i.e., test every
element to see if it is a zero), so we introduce another tool, designed specifically
for finding rational zeros: the Rational Root Theorem.

Rational Root Theorem: Suppose I (x) = an xn + an-l xn-1 + ... + a2 x2 +
al x + ao is a polynomial in Z[x] (with an not zero). If r and s are relatively prime
and IU-) = 0, then r I ao and s I an. s

170 Ring Lab 7

Note what this says. If we have a rational zero of the form f, then the numerator r
must divide the constant term of the polynomial and the denominator s must
divide the leading coefficient. This reduces the search for a root from an infinite
set to a finite number of possibilities. (Why does this lead to a finite list?)

For our polynomial f = 2 x3 + 3 x2 - 1, we are looking for integers rand s such
that r divides -1 (thus ± 1) and s divides 2 (thus ± 1, ±2). Hence, the list of
candidates for rational roots is as follows. (Do you agree with this list?)

1 1
possib1eRationa1Roots = {1, -1, -, - -}

2 2

Now we just need to test f at each of these and look for a zero.

f /. {x -+ possibleRationalRoots}

In this case, both -1 and 112 are zeros for f. We can now express f in factored
form.

Q7. Since f is reducible, you should be able to find g(x) and hex) such that
f = g(x) hex). In fact, factor it completely into linear terms. (You should already
know two of them.)

Q8. Given the polynomial 4 x5 + 3 x3 - 8 x2 + 7 x - 6, what are the possible
rational roots to try? Do any of these work?

• 7.4.3 Mod p Irreducibility Test-x4 - 2x3 - 7 x2 - ~1 X

over CQ

First we define f to be a polynomial we wish to factor.

Clear[f, x]

, 3 2 11 4
f=x -2x -7x --x--

3 3

4
3

Since we need our polynomial to have integer coefficients (look at the formula­
tion of the Rational Root Theorem), we multiply f by 3 to get a new polynomial
over Z.

Clear[g]
g = Expand [3 f)

If we find that g(x) can be factored into a product hex) k(x), we will then have a
factorization of f(x): 3-1 hex) g(x). Note that g(x) is a quartic, so it does not
satisfy the hypotheses of Theorem 1. However, if we can find a linear factor, then

Factoring and Irreducibility 171

the remaining factor will be cubic and we can complete the process with the cubic
(if we are looking for a complete factorization, not just trying to determine reduc­
ibility). If we cannot find a linear factor, it still may be factorable into two qua­
dratic polynomials. (Why?)

We will approach the problem first with the Rational Root Theorem and then
introduce another technique.

• Using the Rational Root Theorem

First we determine all possible rational roots (Le., form the list of candidates).

possibleRationalRoots =
1 1 2 2 4 4

{1, -1, -, --,2, -2, -, --, 4, -4, -, --}
3 3 3 3 3 3

(* Do you agree with this list? *)

Now we evaluate g at each possible root.

9 I. {x -+ possibleRationalRoots}

This indicates that 4 is a zero. Therefore, we need to find the quotient of g and
x - 4. (Note that since 4 is a zero, x - 4 is a factor.)

g2 = PolynomialQuotient [g, x - 4, x]

This is our new polynomial to pursue. Continuing with the Rational Root Theo­
rem, let us continue factoring it.

1 1
possibleRationalRoots = {1, -1, -, - - }

3 3
(* Do you agree with this list? *)

g2 I. {x -+ possibleRationalRoots}

We see that none of these are zeros. Hence g is factored as
(x - 4)(3 X3 + 6 r + 3 x + 1), so f is factored as 3-1 (x - 4)(3 X3 + 6 r + 3 x + 1).
Thus f is reducible.

Note: There is a function to determine the list of candidates, though usually it is
fairly easy to create the list by hand.

RationaIRootCandidates[g]

• Using the Mod p Irreducibility Test

Even though we have seen that f is not irreducible (Le., it is reducible), let us
continue with a general approach to testing a polynomial using the Mod p Irreduc­
ibility Test.

172 Ring Lab 7

Mod p Irreducibility Test: Let p be a prime and suppose that f (x) is a polyno­
mial over Z (the integers) with deg (f (x)) ~ 1. Let h (x) be the polynomial in
Zp[x] obtained from f (x) in Z[x] by reducing all the coefficients of f (x) modulo
p. Ifthe degree of h (x) equals the degree of f (x) and if h (x) is irreducible over
Zp, then f (x) is irreducible over Q (the rationals).

We still need the g we defined above.

g

Now we wish to reduce this modulo some prime. (Although the built-in function
PolynomialMod could be used here-specifically, PolynomialMod [g I
2] -we use another approach that is more general.) Try 2 and call this new
polynomial g2.

g2 = Poly[Z[2], g]

It may be clear that this is reducible (since x is a factor), but for the record, this is
how we can check for zeros.

Map [PolynomialEvaluation[g2, 11] &:, Elements [Z [2]]]

We see that 0 is a zero and hence x is a factor. This does not give us any indica­
tion of a factor in Q[x], nor does it imply that g is reducible over Q[x] (though in
this case we know it is reducible from our work with the Rational Root Theorem).
For the sake of argument, let us try a few other primes.

g3 = poly[Z [3], g]

Note that the theorem does not apply when reducing mod 3. (Why?)

gS = Poly[Z[S], g]
Map [PolynomialEvaluation[gS, I] &:, Elemants[Z[S]]]

You can try any other prime modulus with the following.

p = Input ["Enter a prime"];
If[PrimeQ[p],

{"prime = "<>ToString[p]<>":n, gp = Poly[Z[p], g],
If[Degree[gp] == 4, Map[PolynomialEvaluation[gp, I] &:,

Elements[Z[p]]], ndoes not apply"]},
Print["You didn't enter a prime."]]

We see that every time we get at least one factor, and hence the polynomial is not
irreducible over Zp, When using the Mod p Irreducibility Test, we either continue
with more primes, hoping to strike gold, or we begin to think that it is reducible
over Q and try another test (such as the Rational Root Test).

Factoring and Irreducibility 173

• 7.4.4 How to handle quartics-x4 - 3x2 + 2x + lover CQ

First let's define our next polynomial.

h = x' - 3 x 2 + 2 x + 1

Now let's look for a linear factor. We can try the Mod 2 Irreducibility Test.

h2 = Poly[Z[2], h]
Map [PolynomialEvaluation[h2, #] &, {O, i}]

This shows that the polynomial reduced mod 2, h2, has no linear factors over 7l.2,
but this does not make it irreducible. What about quadratic factors over 7l.2?
Could one of these be a factor? What are the irreducible quadratics in 7l.2 [x]?
There are only 4 quadratics, so we can investigate them quite easily.

quads = Table [x2 + a x + b, {a, 0, i}, {b, 0, i}] / / Flatten / /
Map [Poly[Z [2] , #] &, #] &

It's obvious that the first and third polynomials in this list have x as a factor, so
we need to investigate only the second and fourth. First we try the second factor.

Map[PolynomialEvaluation[quads[[2]], #] &, {O, i}]

The second factor has a zero, namely 1. (This is not surprising; in 7l.2
x2 + I = x2 - 1 = (x - 1) (x + 1) = (x - 1)(x - 1).)

Map[PolynomialEvaluation[quads[[4]], #] &, {O, i}]

From this, we can see that the only irreducible quadratic in 7l. 2 [x] is the fourth
candidate, x2 + x + 1. Recall that h2 is our original polynomial, reduced modulo 2.
We want to know if this is divisible by the irreducible quadratic. We use the
PolynomialDi vision function, which returns the quotient and remainder
when given two polynomials.

q = quads[4D

PolynomialDivision[h2, q]

We see that h2 is the square of q.

q q == h2

These two steps show that there are two quadratic factors, so this polynomial is
reducible over 7l.2. Hence, we need to try a new prime since we cannot make any
conclusion about reducibility over Q when we know that we have reducibility
over 7l.p . Next we try p = 3.

174 Ring Lab 7

h3 = Poly[Z[3], h]
Hap [PolynomialEvaluation[h3, #] &, {O, 1, 2}]

This also yields a reducible polynomial (since we have a zero). Try again with
p = 5.

h5 = Poly[Z[5], h]
Hap [PolynomialEvaluation[h5, #] &, {O, 1, 2, 3, 4}]

We can see that at least there are no linear factors, but now we have to consider
quadratic ones. Below, with p = 5, we use the "brute force" method used with
p = 2. Here, we create all possible monic quadratic polynomials over Z5. (To be
monic, the leading coefficient is the unity of the ring, 1. You may wonder, and
rightly so, why we need to consider only monic polynomials. Look in your text
for an answer or ask your professor if you can't find out why.)

Q9. Before computing the list of possible monic quadratics, count how many
there will be. How many? How did you arrive at your result?

quads=Table[x2 +ax+b, {a, 0, 4}, {b, 0, 4}] //Flatten//
Map [Poly[Z [5], #] &, #] &

With each of these quadratics, let's divide h5 by the candidate and look at the
remainder on division.

Hap [PolynamialRemainder[h5, #] &, quads]

Observing that there are no remainders consisting of the 0 polynomial, we see that
there are no quadratic factors. Therefore, since h5 has no linear factors and no
quadratic factors, it is irreducible. Then, by the Mod 5 Irreducibility Test, h(x) is
also irreducible over Q .

• 7.4.5 Theorem 2-2x4 - 2x3 -17 x2 + 25x -7 over 7L.

In this case, we wish to know whether a polynomial is factorable over Z, the
integers. Consider the following theorem, which may be of use.

Theorem 2. Let f (x) be in Z[x]. If f (x) is reducible over Q, then it is reducible
over Z.

Let f(x) be defined as follows.

Clear[f, x]
f = x' + 2 x 3 + 3 x 3 + 6 x + 9

Factoring and Irreducibility 175

Q10. Give as complete a factorization for f(x) as possible. Is it reducible over
Z? Why or why not? Hint: Use the Rational Root Theorem to look for zeros. If
there are quadratic factors, they must look like (x2 + a x + c) (x2 + b x + d).
Since the middle coefficients of f are relatively small and all positive, it is
reasonable to guess that c = d = 3 so that if it factors into two quadratics, it
looks like (r + a x + 3)(r + b x + 3). Try expanding this product and compar­
ing coefficients .

• 7.4.6 Eisenstein's Criterion-3x8 - 4x6 + 8x5 - lOx + 6 over Q

First we define our polynomial.

f = 3 x 8 - 4 x 6 + 8 x 5 - 10 x + 6

Perhaps we should think about this one from another perspective at first. Suppose
we graph this over some domain.

Plot[f, {x, -3, 3}];

It looks as if the interesting part of the function occurs in a smaller domain.

Plot[f, {x, -1.65, 1.1}];

Qll. What does the graph say about the number of real zeros? What does it say
about the number of rational zeros? Considering the graph and the degree of the
polynomial, what does it say about the number of pure complex (i.e., nonreal)
zeros?

Consider the following.

Clear[h]
h = Poly[Z[5], f]
Map[PolynamialEvaluation[h, #] &, Elements[Z[5]]]

This indicates that there are no linear factors. There could, however, be quadratic,
cubic or quartic factors. If there was a cubic factor, there could also be a quintic or
another cubic and a quadratic. It could get quite complicated. Fortunately, for
some very special polynomials whose coefficients behave in a particular fashion,
there is a theorem that can be used to determine irreducibility.

Eisenstein's Criterion. Let f(x) = an xn + an-l xn-1 + ... + a2 x2 + al x + ao be a
polynomial in Z[x] (with an not zero). If there is a prime p such that p does not
divide the leading coefficient an but does divide every other coefficient, and we
also have p2 not dividing ao, then f(x) is irreducible over Q.

176 Ring Lab 7

Let's consider the polynomial f again.

f
CoefficientList [f, x]

Note that the prime p = 2 does indeed divide every coefficient except the leading
3 and that p2 = 4 does not divide 6. Therefore, by Eisenstein's Criterion, f is
irreducible. Although Eisenstein's Criterion is fairly easy to implement by hand,
the following will walk you through the steps.

EisensteinsCriterionQ[f, Mode ... Textual]

• 7.4.7 Over a finite set-x4 + 4 over 7L 7

We now consider a polynomial over Z 7.

C1ear[p]
p = Po1y[Z [7], x' + 4]
Map [Po1ynomia1Eva1uation[p, #] &, E1ements[Z[7]]]

This code defines the polynomial and then shows that there is no zero for the
polynomial over Z 7. Since we are interested in determining irreducibility over
Z7, we cannot use the Mod p Irreducibility Test. (Why?) Having no zero indi­
cates that there is no linear factor (and hence no corresponding irreducible cubic).
There is still the possibility of two irreducible quadratic factors. Let's check this
out. We assume that we have two quadratic factors.

C1ear[a, b, c, d, e, f]
possib1eFactors = {a x 2 + bx + c, dx2 + ex + f}

Here is the product of these factors.

prod = App1y[Times, possib1eFactors]
Expand [prod]

We know that a and d are nonzero and hence invertible. (If either was zero, they
would not be quadratics.) We can factor out both of them and assume that they are
equal to l.

a = d = 1;
t = Expand [prod]

Let's look at our original polynomial and compare it to t with identical factors of
x collected together.

p

Collect [t, x]

Factoring and Irreducibility 177

Note that we need c f = 4, c e + b f = 0, c + be + f = 0 and b + e = O. Addition­
ally, we want the modulus to be 7.

equations =
{cf==4, ce+bf==O, c+be+f==O, b+e==O, Modu1us==7}

How can we get the constant term of 4? What are the values for c and f? We
know that 2 * 2 = 4. Is there any other possibility? Yes. Since Z 7 is a field, there
are 5 other possibilities (such as 3 * 6 = 4). One way to see all of them is to look at
the multiplication table for Z 7.

Mu1tiplicationTab1e[Z [7], Mode visual];

The unordered pairs that have a product of 4 (mod 7) are {4, I}, {2, 2}, {3, 6}, and
{5,5}. We now solve the system of equations arising from each possibility of
values for c and f having a product of 4. Notice that Rest [equations]
represents a list of all but the first equation in equations. First we test when we
have c = 4 and f = 1.

sl = Solve [Rest [equations] /. {c 4, f 1}, {e, b}]

There is no solution for this case. Next we try c = 2 and f = 2.

s2=Solve[Rest[equations] /. {c 2, f 2}, {e,b}]

Here we get two solutions, although we will see that they are really the same.

Q12. Given that we now already know our polynomial is reducible, why might
we want to consider the cases where c = 5 and f = 5 or c = 3 and f = 6?

Let's consider the remaining two cases. First we consider c = 3 and f = 6.

s3 = Solve [Rest [equations] /. {c 3, f 6}, {e, b}]

Again, there is no solution in this case. Finally, we try c = 5 and f = 5.

sol = Solve [Rest [equations] /. {c 5, f 5}, {e, b}]

Again, no solution. Let's return to the second case. The first solution is

s2[1]

Here are the results of the possible factors for these values of b, c, e, and f.

possib1eFactors /. {b 5, c 2, e 2, f 2}

The second solution:

s2[2]

178 Ring Lab 7

We repeat the process used with the second solution.

possibleFactors /. {b -+ 2, c -+ 2, e -+ 5, f -+ 2}

Therefore, there really is only one solution. The difference in our two results is
the ordering of the two factors. In conclusion, we see that f is reducible over the

field Z 7 in exactly one way: into two quadratics.

• 7.4.8 Over the reals-x4 - 2 x3 + x2 + lover IR

This situation is a little different because we are considering factoring a polyno­
mial over the reals.

Clear[p]

p = x' - 2 x 3 + x 2 + 1

First we consider rational factorizations. The Rational Root Test indicates that the
only possibilities for zeros are ± 1.

p/.x-+{l, -l}

This indicates that there are no linear factors over Q. How about the mod p test?

h = Poly[Z[2], p]
Map [PolynomialEvaluation[h, #] &, Elements[Z[2]]]

This also shows that there are no linear factors (no surprise), but what about
quadratic factors? We have already seen in section 7.4.4 that the only irreducible
quadratic factor for h is x2 + X + 1.

Poly[Z[2], Expand[(x2 +x+l) (x2 +x+l)]]

This shows that h is reducible mod 2, but unfortunately, it does not address the
question about reducibility in Q. We could continue with another prime, but this
will at best indicate irreducibility over Q and will not address the irreducibility
over IR at all. Let's try some other approaches.

• First attempt

We use some techniques from calculus: determining the derivative and setting it
equal to zero to find possible relative extrema.

dp = D[p, x]

dzeros = Solve [dp == 0]

Now we evaluate p at the zeros.

Factoring and Irreducibility 179

p /. dzeros

This indicates that we have two relative minima at the value 1 and a relative
maximum at the value ~~.

I Q13. Why can we make this conclusion?

Q14. Why does this tell us that this polynomial has no linear factors?

• Second attempt

Perhaps we should plot it!

Plot[p, {x, -2, 2}, PlotRange-+ {O, 3}];

The graph seems to indicate that there are no real zeros, since the function does
not cross the x-axis.

NSolve [p == 0]

This confirms that the solutions are complex and thus nonreal. Hence, there are no
linear factors.

Q15. Determine whether we can write p as a product of two irreducible qua­
dratic factors over the reals. Caution: This takes a little bit of work.

• 7.5 More polynomials for practice

Consider the following collection of polynomials over various fields. In each case,
determine whether the polynomial is reducible or irreducible over the stated field.
When reducible, factor it as completely as possible. In each case, state the
theorem(s) you use and show your work. Some are fairly easy, while others may
take some work. For your convenience, all the theorems used in this lab are
collected together in a list in section 7.6.

I Q16. i3 + x2 + X + lover Q

I Q17. x4 + x 2 - 6 over Q

I Q18. 4i3 + 3.r + x + lover Zs

180 Ring Lab 7

I Q19. 25 i' - 9 x4 + 3.x2 - 12 over Q

I Q20. x4 - 3 x 3 + 2.x2 + 4 x-lover Z5

I! 7.6 Toolbox of theorems

Theorem 1: Let F be a field. A polynomial of degree 2 or 3 over F is reducible
over F if and only if it has a zero in F.

Rational Root Theorem: Suppose f (x) = an ~ + an-l ~-1 + ... + a2 x2 +
al x + ao is a polynomial in Z[x] (with an not zero). If r and s are relatively prime
and f(!..) = 0, then r I ao and s I an· s

Mod p Irreducibility Test: Let p be a prime and suppose that f (x) is a polyno­
mial over Z (the integers) with degree greater than or equal to 1. Let h (x) be the
polynomial in Zp [x] obtained from f (x) in Z[x] by reducing all the coefficients
of f (x) modulo p. If the degree of h (x) equals the degree of f (x) and if h (x) is
irreducible over Zp, then f (x) is irreducible over Q (the rationals).

Theorem 2. Let f (x) be in Z[x]. If f (x) is reducible over Q, then it is reducible
over Z.

Eisenstein's Criterion. Let f(x) = an ~ + an-I ~-1 + ... + a1 x + ao be a polyno­
mial in Z[x] (with an not zero). If there is a prime p such that p does not divide
the leading coefficient an, but does divide every other coefficient, and we also
have p2 not dividing ao, then f(x) is irreducible over Q.

7.7 Final perspective

We have been purposely avoiding a very powerful built-in function of Mathemat­
ica that does much of the work shown in this lab in one swoop.

11x 4
Factor [x' - 2 x 3 - 7 x 2 - --- - -]

3 3

Factor [2 x 3 + 3 Xl - 1]

Factor[x' - 3 Xl + 2 x + 1]

Factor[x' + 4, Modulus -+ 7]

Isn't this disgusting? All the sweat and blood, not to mention the joy, is removed
by this powerful function Factor.

Factoring and Irreducibility 181

The function Modplrreducibili tyQ may be illustrative as well.

ModpIrreducibilityQ [X4 - 3 x 2 + 2 x + 1, Mode -+ Textual]

ModpIrreducibili tyQ [12 + 5 x + 8 x 2 + 11 x 3 + 3 X4, Mode -+ Textual]

Factor [12 + 5 x + 8 x 2 + 11 x 3 + 3 X4, Modulus -+ 11]

RationalRootTheorem[6 x 3 - 5 x 2 - 7 x + 4]

Factor [6 x 3 - 5 x 2 - 7 x + 4]

Q21. Evaluate the following input cell. What is a reasonable conjecture based
on your observations? Can you prove it?

TableFor.m[Table[
{Prime[n], Factor[x4 + 1, Modulus -+ Prime[n]]}, {n, 1, 25}]]

Ring Lab 8

Roots of Unity

• 8.1 Prerequisites

No other lab needs to be completed before attempting this lab. However, experi­
ence with cyclic groups (see Group Lab 6) may prove beneficial .

• 8.2 Goals

The main goal of this lab is to become familiar with the roots of unity, the roots of
polynomials of the form x'" - 1 .

• 8.3 Introduction

This whole lab focuses on the polynomial x'" - 1 (for a positive integer n) or
factors thereof. This is a fairly simple polynomial. You first saw r - 1 and .x3 - 1
in first-year algebra.

Qt. Quick! Do you remember how to factor.x3 - 1 (over Q)? How is it done?

You can use Mathematica to check your answer to question 1.

Clear [x]
Factor [x3 - 1]

Was your answer correct? What about other values of n? Let's make a table.

TableForm[Table[Factor[x"-l], {n, 1, 17}],
TableSpacing -+ {O. 5, O}]

Q2. What observations can you make from this table?

Roots of Unity 183

Q3. Modify the Table command to get a listing of values from 18 to some
higher value. Do your observations still hold? Do you have any new ones or
modifications?

Let's look at x63 - 1 and consider some questions regarding it.

Factor [X63 - 1]

What things might be of interest? Consider the following list, for starters.

1. How many factors are there?
2. What coefficients are used?
3. What is the highest degree of any factor?
4. What is the list of all the degrees that occur among the factors?

The Factor command easily factors this polynomial, but what is returned is just
the product of all the factors with no way of accessing the pieces of the factoriza­
tion. The function FactorList gives us a list of the factors, so we can access
them.

FactorList [X63 - 1]

Note that this function returns pairs of the form {g(x), m}, where g(x) is a factor of
the polynomial and m is an integer. This integer represents the multiplicity of the
factor. This is just a fancy term for expressing how many times a factor occurs in
the factorization. For an example, the following should illustrate the concept of
multiplicity.

FactorList [Expand [(x - 3)' (x + 1) (x + 2) 3 x 8]] II
TraditionalForm

To get at just the polynomial factors, we need to transpose the list so that the
factors are in the first row rather than the first column. (Version 3 of Mathematica
introduces {I, I} into the factor list; since we are not interested in it, we drop this
term.) We can then ask for the first row. Here is our result for the polynomial
x63 - 1:

factors = Drop [First [Transpose [FactorList [X63 - 1]]], 1]

Now we can pursue some of the questions in the list. The first question was to
count the number of factors. For x63 - 1, of course, we can simply step through

184 Ring Lab 8

and count, but we want to look for a way of doing this in Mathematica. What we
really want to know is how many elements there are in the list factors, which
can be measured by the Length function.

Length [factors]

The second question concerned the coefficients. The function Coefficient­
List does exactly what we want.

CoefficientList [factors, x]

It may be of interest to remove any duplicates and not distinguish from which
factor the values were obtained. The Flatten function puts all these factors into
one list.

Flatten [CoefficientList [factors, x]]

Now we use the Union function, which sorts the factors and removes any dupli­
cates.

Union[Flatten[CoefficientList[factors, x]]]

Questions 3 and 4 deal with the degree of the factors, namely the highest degree
of all the factors and the degree of each factor. The latter can be easily arrived at
with the Exponent function.

Exponent [factors, xl

Once we have this list, it is easy to find the maximum by applying the Max
function.

Exponent [factors, x] / / Max

Let's put all these steps into one function.

PolyZnfo[xA (n_znteger)?Positive - 1] :=
PolyZnfo[xAn - 1] =

Hodule[{factors, exps},
factors =
Drop [First [Transpose [FactorList [xAn - 1]]], 1];

exps = Exponent[factors, x];
{n, Length[factors],

Union[Flatten[CoefficientList[factors, x]]],
Max [exps], Union [exps] }]

Here is a test of this function.

FactorList [X12 - 1]

PolyZnfo [X12 - 1]

Roots of Unity 185

Note that the information is in the form {n, # factors, coefficients used, highest
degree, all degrees}. Here is a table showing some results.

TableForm[Table[PolyJ:nfo[x"-1], {n, 2, 37}],
TableDepth -+ 2, TableSpacing -+ {o. 5, 1}, TableReadings -+

{None, {"n", n#fac", "coefsn, "max degn, ndegrees\nn}}]

Q4. In question 2 of the list, you were asked what observations you could make
from what you had seen. Do you have any additions, corrections, or comments?
Make some conjectures.

Q5. Change the range of values for n in the Table command to test your
conjectures with more data. In particular, make sure you test your conjectures
with values of n that exceed 100 (examples to consider might be n = 210 or
n = 165). (Hint: If testing n = 210, do not test from n = 2 to n = 210, but use a
smaller range, centered at 210.)

Q6. What is the relationship between n and the number of factors of x!" - 1 ?

Q7. What is the relationship between the degrees of the factors and the highest
degree among the factors?

Q8. What conc1usion(s) can you draw about the highest degree of a factor of
X' -1 and n?

II 8.4 A closer look-graphically

For the moment, we focus on x6 - 1.

factors = Rest [First [Transpose [FactorList [x6 - 1]]]]

As we have seen, zeros are intimately related to factors. The first two factors have
the zeros 1 and -1 associated with them. What about the last two factors? What
are the zeros? Let's check out the second quadratic factor (the fourth factor in the
list) by using the Solve command.

solns = Solve [factors [4] == 0]

These are complex zeros (though they may not look like it). What are the real and
imaginary parts of these zeros?

Map[{Re[#], J:m[#]}&:, x I. solns]

186 Ring Lab 8

Q9. These numbers, in pairs, should look familiar. To what are they related or
where have you seen them before? Find the zeros for the third factor and find
the real and imaginary parts as above.

QI0. Look again at the factorization of x6 - 1. The first two factors (together)
yielded two zeros and the last two factors had two zeros each, yielding a total of
six zeros. Graph (not necessarily with Mathematica) these six zeros in the
complex plane, using the vertical axis as the imaginary axis and the horizontal
for the real axis. In other words, the complex number a + b i is to be mapped to
the point (a, b) in the plane. Can you give a precise description of the resulting
graph?

Perhaps it may be worth looking at the zeros of other polynomials. Here we use
the Solve command on several others.

Solve [x8 - 1 == 0]
Solve [xlO - 1 == 0]
Solve [xu - 1 == 0]

Since the exact answers may not be so informative, let's use NSolve instead,
resulting in approximate decimal answers.

NSolve[x8 -1 == 0]
NSolve[xlo -1 == 0]
NSolve [X16 - 1 == 0]

Let's plot the zeros of this last equation. First we need our list of zeros.

zeros = x /. NSolve[xl6 - 1 == 0]

Next we need to convert each zero to its real and imaginary part and make them
Mathematica graphics-type points. Finally, we graph them. Do not concern
yourself with the Mathematica details.

Show[Graphics[{RGBColor[O, 0, 1], PointSize[0.02S],
(Point [{Re[11] , Im[I1]}] &:) /@zeros}],

Axes -+ True, AspectRatio -+ Automatic] ;

This sure looks beautiful! Note, however, that this graph has not considered the
individual factors in the factorization of the polynomial x16 - I:

Rest [FactorList [Xl6 - 1]]

How do the plotted zeros relate to the individual factors just given? What we
would like to do is find the zeros for each factor and then plot them so that we can
discriminate them from each other. We need to slightly modify the code and write
a function that can take any positive integer n as input and output a graph of the

Roots of Unity 187

zeros of the nth roots of unity, colored by factor. (Again, don't concern yourself
with the Mathematica details.)

RootsOfUnityZeros[n_xnteger?Positive] .­
Module[{factors =
First[Transpose[Drop[FactorList[xAn - 1], 1]]], zeros,

len, pts, sizedpts, width = 1.2, p = Cyclotomic[n, x]},
factors = Join[Complement[factors, {p}], {p}];
zeros = x I. Map[NSolve[# == 0] &:, factors];
len = Length[zeros];
pts = Map[Map[Point[{Re[#], Xm[#]}] &:, #] &:, zeros, 2];
sizedpts = Transpose [{Table [{Hue [i I len], PointSize [0.015 +

i*O.OOS]}, {i, len}], pts}];
Show[Graphics[Map[Flatten, sizedpts]], Axes ~ True,

AspectRatio ~ Automatic, PlotRange ~ {{ -width, width},
{-width, width}}, PlotLabel ~ "n = n <>ToString [n]]]

(* no output - just a definition *)

Let's try this on a few examples. Depending on the memory of your Mathematica
Front End, you may want to expand or narrow the range of values in the following
loop by adjusting the values of lowk and highk. (Note: You may wish to delete
all previous graphics cells before continuing, if you are getting low on memory.)

lowk = 4;
highk = 11;
Do [RootsOfUnityZeros [k], {k, lowk, highk}]

In each graph, dots of the same color come from the same factor.

Qll. What observations can you make from these graphs?

Q12. Do you see any groups (or a ring) lurking behind the scenes?

When we find the roots of the polynomial xn - 1, we are finding the solutions
(zeros) to the equation xn - 1 = 0 or, more simply, xn = 1. In other words, we are
finding all the nth roots of 1, the unity, hence, the nth roots of unity. Since 1 is
always a solution, starting with 1 let's number the roots and work counterclock­
wise, labeling the first with O. (You might ask yourself why we start
counting/labeling with 0.) Following is the modified code to reflect the
numbering/counting scheme.

RootsOfUnityZeros[n_Xnteger?Positive, powers] .­
Module[{factors =
First[Transpose[Drop[FactorList[xAn - 1], 1]]], zeros,

len, pts, sizedpts, width = 1.3, p = Cyclotomic[n, x]},
factors = Join[Complement[factors, {p}], {p}];
zeros = x I. Map[NSolve[# == 0] &:, factors];
len = Length[zeros];

188 Ring Lab 8

pts = Map [Map [Point [{Re [I], Im [I]}] &:, I] &:, zeros, 2];
sizedpts = Transpose [{Table [{Hue [i I len], pointSize [0.015 +

i*0.008]}, {i, len}], pts}];
Show[Graphics[{Map[Flatten, sizedpts], {RGBColor[O, 0, 1],

Table[Text[i, 1.2 {Cos[i/n2Pi], Sin[i/n2Pi]}],
{i, 0, n - 1}]}}],

Axes ~ True, AspectRatio ~ Automatic,
PlotRange ~ {{ -width, width}, {-width, width}},
PlotLabel ~ nn = "<>ToString[n]]]

Now let's try it out. (Note: You again may wish to delete all previous graphics
cells before continuing, if you are getting low on memory.)

(* adjust lowk and/or highk
depending on memory considerations *)

lowk = 4;
highk = 11;
Do[RootsOfUnityZeros[k, powers], {k, lowk, highk}]

Q13. You should be seeing two distinct groups. Can you name them? Do you
now know why we started counting at O?

Instead of simply labeling the points 0 through n - 1, let's use these numbers but
divide them by n, which is the number of roots (and the degree of the polyno­
mial). Here we slightly modify the code again to reflect this change.

RootsOfUnityZeros[n_Integer?positive, fractions] .­
Module[{factors =
First[Transpose[Drop[FactorList[xAn - 1], 1]]], zeros,

len, pts, sizedpts, width = 1. 3, p = Cyclotomic en, x]},
factors = Join [Complement [factors, {p}], {p}];
zeros = x I. Map[NSolve[1 == 0] &:, factors];
len = Length[zeros];
pts = Map[Map[Point[{Re[I], Im[I]}] &:, I] &:, zeros, 2];
sizedpts = Transpose[{Table[{Hue[i/len],

PointSize[0.015 + i*0.008]}, {i, len}], pts}];
Show[Graphics[{Map[Flatten, sizedpts],

{RGBColor [0, 0, 1], Table [Text [InputForm[i In], 1. 2
{Cos[i/n2Pi], Sin[i/n2Pi]}], {i, 0, n - 1}]}}],

Axes ~ True, AspectRatio ~ Automatic,
PlotRange ~ {{ -width, width}, {-width, width}},
PlotLabel ~ nn = n<>ToString[n]]]

Let's try it one more time. (Note: You again may wish to delete all previous
graphics cells before continuing, if you are getting low on memory.)

(* adjust lowk and/or highk
depending on memory considerations *)

lowk = 4;
highk = 11;

Roots of Unity 189

Do[RootsOfUnityZeros[k, fractions], {k, lowk, highk}]

Q14. Can you find any connections between the fractions used and the colors of
the dots to which they correspond? (You may wish to try another range of
values.)

• 8.S Another look-algebraically

In section 8.3 we used the function FactorList but often had to manipulate it
to get just the list of factors. Since we wish to do this often, let's write a function
to do it for us.

FactorsOfunity[n_Integer?Positive] :=

First ['1'ranspose [Rest [FactorList [x" - 1]]]]

Here is how it works.

FactorsOfUnity[4]

Let's try a few others.

Map [FactorsOfUnity, {2, 4, 8, 16, 32}] / / ColumnForm
(* here n = 2, 4, 8, 16, 32 *)

Map [FactorsOfunity, {3, 6, 18, 36}] /I ColumnForm

Map [FactorsOfUni ty, {5, 20}] / / ColwnnForm

Map [FactorsOfunity, {14, 28}] //ColumnForm

Map [FactorsOfunity, {3, 6, 12, 24}] //ColumnForm

Q15. Look at the relationship(s) between the numbers Fac torsOfUni ty is
acting on and the results of the factorizations given. What conjectures or conclu­
sions can you make? Can you give any explanations for your conclusions?

Note: Some of the ideas for this lab came from chapter 17 of Exploring Mathemat­
ics with Mathematica by Theodore W. Gray and Jerry Glynn (Addison-Wesley,
1991).

Ring Lab 9

Cyclotomic Polynomials

II 9.1 Prerequisites

Before working on this lab, you should have completed Ring Lab 8, on roots of
unity.

119.2 Goals

The goal for this lab is to formulate recursive and nonrecursive definitions of the
cyclotomic polynomials and discover some of their properties.

II 9.3 Introduction

Recall that in Ring Lab 8 we focused on the polynomial XI - 1 (for a positive
integer n). Here, we continue to focus on this polynomial--or, more accurately,
factors of it.

First let's remind ourselves what the factorizations of these polynomials look like.

Clear [x]
'l'ablerorm['l'able [{n, Factor [x;D - 1] }, {n, 1, 11}]]

We also redefine two functions we created in Ring Lab 8.

Cyclotomic Polynomials 191

RootsOfUnityZeros[n_Integer?Positive,

fractions, opts_?OptionQ] := Module [

{factors = First [Transpose [Drop [FactorList [xn - 1], 1]]],
zeros, len, pts, sizedpts,
width = 1.3, P = Cyclotomic [n, x] } ,

factors = Join [Complement [factors, {p}], {p}];
zeros = x /. (NSolve [#1 == 0] &:) /@factors;
len = Length [zeros] ;
pts = Map [{Point [{Re [#1], Im [#1] }] &:) /@#1 &:, zeros, 2];

sizedpts = Transpose [

i
{Table[{Hue[--], pointSize[O.OlS+iO.OOSJ}, {i, len}],

len

Pts}]; Show[GraPhics[{Flatten/@sizedpts,

i
{RGBColor [0, 0, 1], Table [Text [InputForm [-] ,

n

i27f i27f
1. 2 {cos [-], Sin [--]}], {i, 0, n - 1}]} }] ,

n n
Axes -+ True, AspectRatio -+ Automatic,
PlotRange -+ {{ -width, width}, {-width, width}},

PlotLabel -+ "n = "<>ToString [n], opts]]

UnityFactors[n_Integer?Positive] :=

First [Transpose [Drop [FactorList [~ - 1], 1]]]

Also, we remind ourselves how the zeros of these polynomials are distributed.

Do[RootsOfUnityzeros[k, fractions], {k, 2, 11}]

Our goal is to consider what is called a cyclotomic polynomial. For each positive
integer n, there is a polynomial <I>nex) called the nth cyclotomic polynomial. Since
cyclotomic polynomials are quite important, there is a built-in function for them
in Mathematica. Here are the fifth and sixth cyclotomic polynomials.

{Cyclotomic[S, x], Cyclotomic[6, x]}
(* x simply indicates with what

indeterminate to express the polynomial *)

The cyclotomic polynomials are related to the roots of unity. We were reminded
earlier that these numbers are all on the unit circle. (Note that cyclo refers to a
circle and tomic indicates a cutting.) The nth roots of unity take the form
u(n, k) = cos(27fk/n) + isin(27fk/n) = e21fik/n, where k = 0,1,2, ... , n-1.

If you have ever browsed through The Mathematica Book, you may have come
across the description of the cyclotomic polynomials. The description is that the
nth cyclotomic polynomial in x is the product of all linear factors of the form
x - u(n, k) for which k is relatively prime to n (i.e., GCD [n, k] = 1). These

192 Ring Lab 9

are the factors corresponding to the so-called "primitive nth roots of unity" that
are labeled red in the graphs.

21fk 21fk
U[D_, k_] := COS[--] + J: Sin[--]

D D

For example, there are two primitive sixth roots of unity, u(6, 1) and u(6, 5).

{Bxpand[(x-u[6, 1]) (x-u[6, 5])], Cyclotomic [6, xl}

Ql. a. Determine 4>8(X), the eighth cyclotomic polynomial in x, by expanding
the proper linear factors.

b. Without generating 4>128 (x) itself, determine its degree.

Our goal at this point is to develop an alternate way of building the cyclotomic
polynomials without using the complex numbers. We will be asking you to look
at many patterns to see if you can come up with this alternate definition. First let's
compare X' - 1 and the nth cyclotomic polynomial in tandem. Note that the
output consists of n, then the factorization of X' - 1, followed by 4>n(x).

'l'ableForm ['l'able [{{D, Factor [x" - 1], Cyclotomic [n, x],
n __________________________ n}}, {D, 1, 11}]]

Q2. At least one observation regarding the relationship between 4>n(x) and the
factorization of xn - 1 should be obvious. What is it?

Q3. Suppose n is a prime number. How can you formulate 4>n (x) in terms of
X' -I?

In question 3, you should have found a method of formulating 4>n(x) in terms of
X' - 1, when n is prime. What if n is composite? (Note: We simply define 4>1 (x) to
be x-I, just as we define O! to be 1.) Let's extend our table and make some more
comparisons.

'l'ablel'orm['l'able [{ {n, Factor [x" - 1], Cyclotomic en, x],
,,-------------------------- n}}, {n, 12, 30}]]

It appears that 4>n(x) is a factor of X' - 1. Recall from the last lab that Uni tyFae­
tors gave just the list of factors of the polynomial X' - 1. Let's test some ran­
dom indices and see if 4>n (x) really is a factor of X' - 1. (We use MemberQ to see
if eye 10 tomi e [n, x] belongs to the list offactors of X' - 1.)

n = Random [J:nteger, {31, 120}]
HamberQ [UDityFactors [n], Cyclotomic [n, x]]

We should perhaps try this a number of times.

Cyclotomic Polynomials 193

Table[{n=Random[Integer, {31, 120}],
MemberQ[UDityFactors[n], Cyclotomic [n, x]]}, {20}]

One more time with other values of n:

Table[{n= Random[Integer, {121, lS0}],
MemberQ [unityFactors [n], Cyclotomic [n, x]] }, {15}]

This is not a proof, but the evidence seems to indicate that <I>n(x) divides xn - 1.
Let's assume that this is the case and that there exists some function (depending
on n), gn(x), such that <I>n(x) gn(x) = xn - 1. We already know that gn(x) = x - I
when n is prime. What about when n is composite?

Q4. Although premature for any definitive solution, do you have any thoughts
on the nature of gn (x) for composite n?

• 9.4 Search for gn(x)

Since we are assuming that we have <I>n (x) gn (x) = xn - 1, perhaps we should
solve for gn (x) and explore the quotient of the two pieces we can calculate. (Note,
of course, that Mathematica knows <I>n(x), but we do not, yet.) Let's consider this
with n = 6.

x 6 -1
Si~lifY[]

Cyclotomic[6, x]

We want to factor this so that we can know what the pieces look like.

Factor[%]

We should define and then try out a function to do all these steps at once.

x" -1
gFunction [n_] : = Factor [Si~lifY [.]]

Cyclotom1c [n, x]

TableForm [Table [{n, gFunction [n] }, {n, 1, 14}]]

This may not be so revealing. Perhaps we should also add the nth cyclotomic
polynomial to the table. Study the following results and look for patterns.

TableForm [Table [{{n, gFuDCtioD [n], Cyclotomic [n, x],
n __________________________ n}}, {n, 1, 14}]]

Extend the table, if you wish, by looking at six more cases (in conjunction with
the previous ones).

194 Ring Lab 9

TableForm [Table [{{n, gFunction [n] ,
Cyclotomic [n, x], n ------------------ n}}, {n, 15, 20}]]

Q5. What is the nature of gn (x) for composite n? For a hint, given an index n,
consider the (proper) divisors d of n and the corresponding collection of cI>d(X).
Can they be used to construct gn(x)? Look carefully at the ftrst 15 examples and
apply the hint and see what you can come up with.

Q6. Now we want to give a recursive deftnition for cI>n(x). In other words, you
should be able to write cI>n(x) = RHS, where the RHS depends on cI>k(X) for one
or more values of k that are less than n .

• 9.5 Some properties of.n(x)

We now consider some properties of the cyclotomic polynomials. First we remind
ourselves of some of these polynomials and precede each with its degree.

TableForm [Table [{{n, Exponent [p = Cyclotomic [n, x], x] ,
p, " ______________________ n}}, {n, 2, is}]]

• 9.5.1 Each cyclotomic polynomial is monic

Q7. Based on what you know about the function cI>n(x), why is the nth cycloto­
mic polynomial monic? (Recall that monic means that the leading coefftcient,
the one associated with the term of highest degree, has the value of 1.)

• 9.5.2 Degrees of cyclotomic polynomials

Q8. Compare the index n of the function cI>n(x) with its degree. You should be
able to see an interesting relationship and be able to express the degree of cI>n(x)
as a "nice" function of n. What is it?

• 9.5.3 Irreducibility of the cyclotomic polynomial

In Ring Lab 7 we explored the notion of irreducibility. Which, if any, of the
cyclotomic polynomials are irreducible over the rationals? Try the following to
factor a random cyclotomic polynomial.

Cyclotomic Polynomials 195

'l'ableForm['l'able [{n = Random [Integer, {2, 50}],
Factor[Cyclotomic[n, x]]}, {10}]]

Q9. Repeat and/or modify the range of the random index until you are ready to
make a conjecture regarding when (i.e., for what n) <l>n(x) is irreducible over the
rationals.

Let's choose a prime, say 29, and consider <l>n(x) for n = 29. We call the polyno­
mial h for this example.

Clear[h]
h[x_] = Cyclotomic [29, x]

Now consider h(x + 1).

h [x + 1]

Of course we knew that we wanted this polynomial expanded, but we need to tell
Mathematica explicitly to do so.

Expand[%]

Now examine the coefficients more closely.

coeffs = CoefficientList [%, x]

Since h(x) is monic, so is h(x + 1). Therefore the leading coefficient is 1. Is there
any significance to the rest of the coefficients? Suppose we ignore the last (i.e.,
leading) coefficient and ask for the greatest common divisor of the balance.

Apply [GCD, Drop[coeffs, -1]]

This says that 29 divides each of the coefficients except the leading one. Note
further that 292 does not divide the constant term, 29. We can now use
Eisenstein's Criterion to conclude that the polynomial h(x + 1) is irreducible over
the rationals. Consequently, the polynomial h(x) is also irreducible over the
rationals. This illustrates that a cyclotomic polynomial with prime index is irreduc­
ible. It is also true for composite indices, but the proof requires some understand­
ing of extension fields. (See Ring Lab 11 for an introduction to quadratic exten­
sion fields.)

• 9.5.4 Graphs of roots of the cyclotomic polynomial

As we saw in section 9.5.3, the cyclotomic polynomial is irreducible over the
rationals. It is, of course, reducible over the complex numbers. In fact, we saw this

196 Ring Lab 9

in Ring Lab 8. As was pointed out earlier, the zeros of the nth cyclotomic polyno­
mial are a subset of the whole set of nth roots of unity.

Let's remind ourselves what these roots look like. The roots of the cyclotomic
polynomial are the red ones plotted in the complex plane. (Note: You may wish to
delete all previous graphics cells before continuing, due to memory demand.)

Do[RootsOflJDityZeros[k, fractions], {k, 5, 20, 3}]

Q10. The zeros of the cyclotomic polynomials (the red dots) are labeled with
fractions of the form k / n for certain values of k. What are the k values? How do
they relate to n? You may wish to modify the preceding cell to see more exam­
ples.

Qll. In each of the graphs, the full collection of zeros forms a group under
multiplication. To what group is this group naturally isomorphic? What is the
relationship between the zeros of the cyclotomic polynomials and this group?

As a noted earlier, the roots of the nth cyclotomic polynomial are often called the
primitive nth roots of unity. Can you imagine why?

• 9.5.5 c)n(x) and c)2n(X) for odd n

Here we wish to look for a relationship, if any, between cI>n{x) and cI>2n{X). First
we look at a table listing some pairs.

'l'ableForm['l'able [{ {k, Cyclotomic [k, xl, 2 k, Cyclotomic [2 k, x],
n _____________________________ n, .. "}}, {k, 3, 13, 2}]]

You may wish to expand this table to encompass other values. A plot of an exam­
ple might also be revealing. You may wish to modify your value of n to see other
plots. <l>n is plotted in red and <1>2 n in blue.

n = 9;
Plot [Bvaluate [{Cyclotomic [n, x], Cyclotomic [2 n, x]}], {x,

-2, 2}, PlotStyle -+ {RGBColor[l, 0, 0], RGBCOlor[O, 0, 1]}];

Note that this plot reveals that there are no real zeros (at least in the domain
shown). We can still, however, compare the complex zeros. You may need to
enlarge the output below to view it.

n = 11;
gr1 = RootsOfUnityZeros [

11, fractions, Displayl'uDction -+ Identity];
gr2 = RootsOflJDityZeros [22, fractions,

Displayl'uDction -+ Identity];
Show [GraphicsArray [{gr1, gr2} 1 1 ;

Cyclotomic Polynomials 197

Q12. What conclusion(s), if any, can you make about how <I>n(x) and <I>2n(X) are
related?

• 9.5.6 c)p(x) and c)pk (x) for prime p

Suppose P is a prime and k is an integer with k ~ 1. We wish to compare <I>p(x)
and <I>pk (x) for various primes p. We then make a table consisting of a 5-tuple
{p, k, pk, <I>p(x), <I> pdx)} , where p runs through the ftrst six primes and k is a
random integer between 2 and 4. Study the results.

TableForm [Table [k = Random [Integer, {2, 4}];
{{p = Prime [n], k, pk, Cyclotomic [p, x], Cyclotomic [pk, x],

" ______________________ n}}, {n, 1, 5}]]

Q13. Since k is generated randomly, you may wish to evaluate the cell again if
it is not clear what relationship is being expressed. Determine how you can
express <I> pk (x) in terms of the pth cyclotomic polynomial, if possible .

• 9.5.7 c)n(x) and c)m(x), where m and n have similar prime
decompositions

Suppose m is an integer whose prime-power decomposition is given as
PI P2 ... Pk and n is an integer whose prime-power decomposition is given as
p~l p~2 ... p~k where eI, e2, ... ek are the positive integral exponents belonging to
primes PI through Pk. We wish to compare <I>m(x) and <I>n(x).

For investigative purposes, suppose m = 2 * 3 * 5 and n = 2a 3b 5c for some pow­
ers a, b, and c. We make a table consisting of a 4-tuple Ha, b, c}, n, <I>m(x), <I>n(x)},
where a, b, c are random integers between 2 and 4. Study the results.

m = 235;
TableForm[
Table [{a, b, c} = Table [Random [Integer, {2, 4}], {3}];

n=2&3b 5C ; {{{lOa = "<>ToString[a],
lib = n<>ToString[b], "C = n<>ToString[c]}},

"2"" <>ToString[a] <>" 3""<>ToString[b]<>n 5"n<>
ToString [c] <> n = n <>ToString [n], Cyclotomic [m, x],

Cyclotomic[n, x], " ____________________ "}}, {5}]]

198 Ring Lab 9

Q14. Since a, b, and c are generated randomly, you may wish to evaluate the
cell again if it is not clear what relationship is being expressed. What relation­
ship is there between cl>n(x) and cl>m(x) for the n as obtained above and m = 30?
Generalize for arbitrary m and n satisfying the hypothesis given at the begin­
ning of this section .

• 9.5.8 4ln (1)

We have seen many cyclotomic polynomials cl>n(x) and even seen a few plotted,
but we haven't investigated viewing them as polynomial functions and evaluating
them at specific points. Here we consider cl>n(l) for various values of n. Consider
the table of values of cl>n(l) for n generated randomly between 1 and 150. Study
the results.

'l'ablel'orm['l'able[n = Random[Integer, {1, lS0}];
{n, Cyclotomic [n, x] /. x 1}, {20}],

'l'ableReadings {Hone, {linn, "\!\(!Ii_n\) (l)\n"}},
'l'ableSpacing.... {O. 5, 3}]

Q15. What conclusions can you make? (Evaluate again, if necessary.) State
them as conjectures.

Evaluate the following cell.

'l'ableForm['l'able[{n, Cyclotomic[n, x] /. x 1}, {n, 1, 2S}],
'l'ableReadings {Hone, {nnn, nilin (1) \nR}},
'l'ableSpacing {O. 5, 3}]

Q16. Does the result confirm or deny your previous conjecture? Reformulate, if
necessary .

• 9.5.9 How 4ln (x) is related to the Moebius function, yielding a
nonrecursive definition

The Moebius function (often denoted with the lower-case Greek letter fJ) is a
number-theoretic function defined as follows.

fJ(n) = 1, ifn = 1;
fJ(n) = (_I)k, if n is a product of k distinct primes;

fJ(n) = 0, if p2 divides n for some prime p.

Cyclotomic Polynomials 199

Q17. For n = 1, 2, 3,4, 6, and 12, calculate J.1(n). (Note that these are all divi­
sors of 12.)

Since the Moebius function is important for various parts of mathematics, it is a
built-in function in Mathematica. The following table can be used to confIrm your
answers to question 17.

Map [MoebiusMU, {l, 2, 3, 4, 6, 12}]

Applying the Moebi usMu function to the divisors of an integer proves itself
useful here. In Mathematica, we can obtain the list of divisors of an integer using
the Divisors function.

Divisors [12]

With n = 12, what we now want to do is raise the polynomial x12/d - 1 to the
power J.1(d) for each divisor d. Here is one way of doing it.

n = 12;
polys = «x A (n' #1) - 1) A MoebiusMu. [#1] &:) '0 Divisors [n]

Now we want to multiply these polynomials.

Apply [Times, polys]

Simplify[%]

Cyclotomic [n, x]

Q18. In the previous few input cells, replace 12 with 20 and evaluate each cell.
What is your result? Any conjectures? Try it again with another value or two.

Q19. In question 6 you were asked to determine a recursive defInition for
tPn (x). Now give a nonrecursive defInition .

• 9.5.10 Disclaimer/warning

You are not fInished! Nearly all the conclusions you have reached in this lab were
based on looking at patterns and formulating conjectures. Your next step should
be to prove at least some of your conjectures. Your instructor will no doubt assign
at least some of these proofs to you.

Ring Lab 10

Quotient Rings of Polynomials

• 10.1 Prerequisites

To complete this lab, you should be familiar with the ring of polynomials over a
field, the division property for polynomials over a field, and the definitions of
homomorphism, kernel, and ideal. Finally, you should be familiar with the First
Isomorphism Theorem for ring homomorphisms (Ring Lab 5).

• 10.2 Goals

Extensions of finite fields are generally motivated by the need to solve polyno­
mial equations. These extensions are actually quite concrete in the sense that they
arise from quotient rings, where the ideal from which cosets are formed is the
kernel of a familiar homomorphism. In this case, the homomorphism is the remain­
der function for division by a fixed polynomial (the modulus). In this lab we
introduce quotient rings, and in Ring Lab 11 we explore how they are used to
construct roots of polynomials.

• 10.3 Polynomials over a field

First we read in the Mathematica code we need for this lab.

Needs["AbstractAlgebra'Master'I];
SwitchStructureTo[Ring];

Quotient Rings of Polynomials 201

Given any field, F, we ultimately want to be able to solve any polynomial equa­
tion over it. For example, F might be the integers modulo 3.

F=Z[3]

It is clear, by simple hand-evaluation of m(x) = xZ + x + 2, that none of the ele­
ments of F are roots of m(x). This can also be done using just the built-in Mathe­
matica functions. First define the polynomial function.

Clear [ml, x]
ml [x_] : = x2 + X + 2
(* we call it ml here because we use m below *)

Then evaluate the function at each element in F.

{ml [0] , ml [1] , ml [2] }

For larger fields, it may be easier to do this another way.

Map [ml, Blements[F]]

Reducing mod 3 (recall what ring we are in), we get

Mod[%, 3]

Ql. Why does this last output show that m(x) does not have any roots in F?

We can also use the functions built into the packages that were read in. First
define the polynomial over F using the Poly function.

m = Poly [I', x2 + X + 2]

Then use the PolynomialEvaluation function on the domain elements.

Kap[PolynomialBvaluation[m, #] &, Blements[F]]

Q2. Does the polynomial m(x) - 1 (which is really m(x) + 2) have any roots in
F?

We conclude that the field F does not contain the roots of m(x). In this lab we
concentrate on the construction of a field that contains the roots of m(x). In Ring
Lab 11 we discuss the factorization of m(x) in this new field, along with other
issues involving finite field extensions.

We use V to denote the smallest extension of F that contains all the roots of m(x).
The first step in constructing V is to consider the whole ring of polynomials over
F.

P = PolynomialsOVer [1']

202 Ring Lab 10

Q3. In the packages these labs are based on, a Ringoid has three arguments:
the list of elements, the addition function, and the multiplication function. Why
isn't P a Ringoid in this sense? Is P a ring?

• 10.4 A homomorphism based on
Po lynomialRemainder

The homomorphism (J that we consider here depends on m. If the definition of m
is altered, a different homomorphism and, at least superficially, a different exten­
sion is constructed. Generally, the smallest degree we consider for the polynomial
function m is two, as in this example.

The function (J takes any polynomial in P and returns the polynomial that is the
remainder on division by m (our polynomial Xl + x + 2).

8 = PolynomialRamainder[P, I, m] &:

You may wish to remind yourself how the function PolynomialRemainder
works.

?PolynomialRemainder

For a quick test of (J, let's apply it to m and to m + 1 = x2 + x. (Think about the
answer before evaluating.)

8[m]
8[Poly[F, x 2 + x]]

Q4. a. What happens when we apply (J to m * x + 2 = x3 + Xl + 2 x + 2? Think
about it and then calculate it.

b. What happens when we apply (J to m * (x + 2) + x? Think about it and
then calculate it.

The division property of polynomials over a field assures us that the remainder
(the value of our function (J) will have its degree less than the divisor's degree. So
in our examples, the remainders are all linear polynomials. To illustrate with a
computation, we take some of the elements of P, the ones of degree three or less,
and map the PolynomialRemainder function (J over them. (Note: If your
computer is relatively slow, you may want to change the following expression to
SomePolynomials = PolynomialsUpToDegreeN [F I 2], generating
only polynomials of degree two or less.)

SomePolynomials = PolynomialsUp'l'oDegreeN [I', 3]

Quotient Rings of Polynomials 203

Next we map () over this list. Duplicate images are removed and we can verify by
examination that all nine linear polynomials over Z3 are in this list.

9Range = Hap[9. SomePolynomials] / / Union

Q5. Why are there nine possible remainders? If m(x) were a cubic (instead of a
quadratic) polynomial, how many different elements would be in the range of
()? (In other words, how many different remainders would there be if m(x) were
a cubic?)

Let's review what we have done. Since the set of all polynomials over F (which
we call P) is infinite in size, we cannot apply our function () to the whole of P. So
we took a finite subset of P (SomePolynomials-those of degree less than
four) and applied () to this subset to get a sense of how () worked. The result over
this set is the set we called fJRange. We now rename this set linPolys, which
is the set of linear polynomials over F.

linPolys = 9Range

By considering () as a function from P into the linear polynomials (linPolys),
we want to establish () as a homomorphism. For () to be a homomorphism, more
fundamental than showing that the operations are preserved, is the need to make
sure that both the domain and codomain are rings. The domain is clearly a
ring-it is the ring of polynomials over Z3. It is not so clear that the set of remain­
ders' linPolys, is also a ring. How should addition and multiplication be
defined?

Q6. Consider the set of remainders from division by m(x), linpolys. Why
can't the usual polynomial multiplication be used on linPolys to form a ring?

The First Homomorphism Theorem gives us a clue how to operate in linPolys.
This is because the range is isomorphic to P / K, where K is the kernel of (). Recall
that given an isomorphism f : R -7 S, the inverse map (which exists, since f is a
bijection), f- 1 : S -7 R, is also an isomorphism. We want to consider this inverse
isomorphism, the function that maps an element g in linPolys to the coset
g+KinP/K.

Here are the elements of K that come from the list SomePolynomials. Note
that they are obtained by selecting those whose image under () is the zero of P.

partialK = Select [SomePolynomials. 9 [I] == Zero [P] &:]

204 Ring Lab 10

Q7. What do these polynomials all have in common? For a hint, take one of
these polynomials over F (remember, they were all formed with Poly) and try
the PolynomialDi vision function on it with m(x).

?PolynomialDivision

p = partialK[[l]]
PolynomialDivision[p, m]

Let's take a pair of elements from P and form two co sets from them. We select
polynomials that are also in linPolys so that the sum and product of their
cosets give us a hint at how addition and multiplication are defined in linPolys.

p=poly[F, x+1]
q = Poly[F, 2 x + 1]

Since K is infinite (you should ask yourself why this is true), we cannot form the
full coset p + K, but we can form a portion of p + K by using partialK.

pCoset = Map [Addition[P] [p, #] &, partialK]

We do the same for q + K.

qCoset = Map [Addition[P] [q, #] &, partialK]

We add the two eosets by adding arbitrary representatives of pcoset and
qcoset. There are many possibilities here, but the easiest pair to add is p and q.

sum = Addition[P] [p, q]
8 [sum]

Now we pick random representatives and go through the same process.

Print [nRep. from pCoset: n, pRep = RandomElement[pCoset]]
Print [nRep. from qCoset: n, qRep = RandomElement [qCoset]]
Print[nsum in P: ", sum = Addition[P] [pRep, qRep]]
Print [nlmage of this sum under 8: n, 8 [sum]]

Q8. Consider three more pairs of representatives from pCoset and from
qCoset by evaluating the cell three more times. What do you observe?

Q9. By changing Addition to Multiplication, multiply several random
pairs of representatives as in the previous exercise. (See below.) What do you
observe? Do the same using p and q as representatives.

Quotient Rings of Polynomials 205

Print ["Rep. from pCoset: ", pRep = RaDdomElement[pCoset]]
Print [ORep. from qCoset: 0, qRep = RaDdomElement [qCoset]]
Print [OProduct in P: n, prod = Multiplication [P] [pRep, qRep]]
Print [II Image of this product uDder B: ", B [prod]]

It can be proven that the observations that you (hopefully) made are not coinci­
dence. It is reasonable to consider that the sum of p and q is 2 and their product is
an "obvious value." The general definitions of the operations on linPolys are
based on these observations.

• 10.5 Defining a quotient ring of polynomials

For any polynomial m = Poly[R, an;XI + an-I ;XI-I + ... + a2 x2 + al X + ao],
with each aj in some ring R with unity, the expression QuotientRing [R, m]
generates a quotient ring of R with modulus m. The elements of the ring are the
polynomials of degree less than the degree of m. With m and F defined above, we
define V to be the quotient ring of F mod m.

v = QuotientRing [F, m]

• 10.5.1 Addition

Addition in V is simply addition of polynomials.

{p, q} = {Poly[F, 2 x + 1], Poly[F, 2 xl}

Addition[V] [p, q]

Let's try this addition with a few random pairs.

{p, q} = RandomElements[V, 2]
Addition[V] [p, q]

QI0. Why is V closed under the usual addition of polynomials?

• 10.5.2 Multiplication

Multiplication in V is much like multiplication on the integers mod n. To multiply
polynomials p and q, you perform the usual multiplication (as in P) and then
divide by the modulus, retaining the remainder for the value of the product. In
other words, you apply () to the product. For example,

206 Ring Lab 10

p = Poly[F, x + 1]
q = Poly[F, x + 2]
r = Multiplication [P] [p, q]

8[r]

This result, of course, can also be achieved as follows.

Multiplication [V] [p, q]

Remember, 9(r) is computed by dividing the product, r, by m and then returning
the remainder. The complete division result, quotient and remainder, is given by
PolynomialDivision. (However, only the remainder is used for the product
in V.)

PolynomialDivision[P, r, m, Mode -+ Textual]

Qll. Compute the following in V:
a. (2 x + 1) + (x + 2)
b. xx = x2

c. xxxx = x4

d. xxxxxxxx = x8

e. multiplicative inverse of 2 x + 1

• 10.6 The PolynomialRemainder function 8 is indeed a
homomorphism

Now that we have established the operations on V, we can verify that 9 is a homo­
morphism. Here we verify only that the homomorphism properties are true for a
pair of random third degree elements in P.

{p, q} = Table [RandomElement [P, 3], {2}]

First the addition property,

8 [Addition [P] [p, q]] == Addition [V] [8[p], 8[q]]

then the multiplication property,

8 [Multiplication [P] [p, q]] == Multiplication [V] [8[p], 8[q]]

Q12. Repeat these steps several times. Are you convinced that 9 is a homomor­
phism?Why?

Quotient Rings of Polynomials 207

Q13. Consider the situation where the multiplication on V is defined to be
Multiplication[V] [p, q] = 0 for all p and q (with no change to the
addition). Is () still a homomorphism?

• 10.7 Is Va field?

You probably have seen a theorem that states that the range or image of a
(commutative) ring under a homomorphism is a (commutative) ring. Therefore, V
is a commutative ring. To show that it is also a field, we need to verify that it has
a unity and that every nonzero element has an inverse.

Q14. Does V have a unity? If so, what is it and why is it the unity?

QIS. While we're at it, does V have a zero? If so, what is it and why is it the
zero?

Therefore, we know that V has most of the field properties. The multiplication
table for V can answer the question regarding multiplicative inverses.

llultiplication'l'able [V, Mode -+ Visual];

Q16. Is Va field? On what do you base your conclusion?

• 10.8 Is V what we claimed?

Recall that at the outset we claimed that we would find a field (and call it V) that
would be the smallest field containing all the roots of m = x?- + x + 2. We have
defined V, but we have not yet shown that it contains any roots of m.

It is also true that we can do addition and multiplication in V. Therefore, we
should be able to take any element in V, square it, add this to itself, and then add
the constant polynomial 2 to this result. In other words, we should be able to do
arithmetic in this field.

Next we define a function f that does what we indicated in the previous paragraph.

Clear[f, y]
f[y_] :=
Ilultiplication[V] [y, y] + y + Poly[F, 2, Indeterminate -+ x]

208 Ring Lab 10

Q17. What connection is there between the polynomial function m = :x2 + x + 2
defined at the outset and I? Justify your answer.

Now we want to evaluate 1 at each of the elements in V. In other words, we want
to Map lover V. We form pairs of the form (x, I(x)} so that we can see the
domain elements that create the range elements.

Nap[{#, f[#]}&, Elements[V]]

Note that two elements, Poly [F, xl and Poly [F, 2x + 2 l, yield zero.

rootl = poly [F, x]
root2 = poly[F, 2 x + 2]

f[rootl]
f[root2]

Q18. Does the V we created have all the roots of m? Could m have more than
two roots over V? (Remember that V is an integral domain, since it is a field.)
Is it possible that a smaller field contains these roots? Justify your answers.

Ring Lab 11

Quadratic Field Extensions

• 11.1 Prerequisites

To complete this lab, you should be familiar with the construction of quotient
rings of the ring of polynomials over a field F. You should also be familiar with
irreducible polynomials over a field. This lab does not presume any other prior
knowledge of field extensions. Doing Ring Lab 10 first would be helpful, but it is
not necessary .

• 11.2 Goals

The goal of this lab is to provide some experience in working with quadratic field
extensions to make the general study of finite field extensions easier to understand .

• 11.3 The general problem

Not every polynomial with real coefficients has real roots; the simplest example is
p(x) = x2 + 1. To find the roots of p(x), we extend the real numbers to the com­
plex numbers. That is, we construct a field that contains the real numbers but also
includes some new elements that are roots of p(x). This process of extending a
field can be used to find roots of any nonconstant polynomial over any field.
When the polynomial is quadratic, the smallest extension containing a root of this
polynomial takes on a simple form.

210 Ring Lab 11

The general problem we will consider is to find the roots of a quadratic polyno­
mial p(x) = a x? + b x + c, where a, b, and c are elements of a field F, with a * O.
Recall that t is a root of p(x) if p(t) = O.

Ql. Prove that if p(x) has one root in F, then it also has a second root (possibly
identical to the first) in F.

The case when p(x) has its two roots in F is not very interesting. Therefore,
consider the case where p(x) has no roots in F; that is, p(x) is irreducible over F.
Suppose we have a "larger" field that contains F and also contains a root, Z, of
p(x) = ax2 + bx + c.

Q2. Prove that all positive powers of Z can be written in the form s z + t, where
s and t are elements of F. Hint: Start with Z2 and then proceed by induction.

The result expressed in question 2 tells us exactly what the elements of the small­
est extension field look like. A few loose ends may need to be tied together, but
you should be able to see that this new field, a quadratic extension of F, is

F[z] = {s z + tis, t E F},

where

(s Z + t) + (s' Z + t') = (s + s') Z + (t + t')
and

(s Z + t) (s' Z + t ') = r Z + u

for some rand u. How do we get the result r z + u? This calculation is described in
Ring Lab 10, so here we just review the process. First think of (s z + t) (s' Z + t')
simply as a product of two polynomials. We expand this product into a quadratic
and then divide by p(x). The remainder from this division is our product, r z + u.

As an example, suppose that F is the field of rational numbers, Q, and
p(x) = x2 - X - I. If W is a root of p(x), the product of 2 W + 5 and 3 W - 7 in
Q[W] is 7 W - 29.

C1ear[W]
Po1ynomia1Remainder [(2 W + 5) (3 W - 7), ~ - W - 1, W]

Q3. In the quadratic extension of the rational numbers that contains W, deter­
mine the values of Wn , for n = 2, 3, 4, 5, 6, 7. Can you identify a pattern? An
example of how to calculate the value of W3 follows.

Po1ynomia1Remaincier [~ , ~ - W - 1, W]

Alternatively, we can ask Mathematica to find the real roots of p(x).

Quadratic Field Extensions 211

Clear [x]
Solve[x2 -x-l == 0, x]

We select the first root provided and call it w. Are Q[w] and Q[W] the same? Not
really, but they are isomorphic.

w = x /. First [Solve [x2 - x - 1 == 0, x])

Now we can verify that the product (2 w + 5) (3 w - 7) is consistent with the
product computed involving W's. To compare (2 w + 5) (3 w -7) and -29 + 7 w,
we need to expand both sides.

Expand [(2 w + 5) (3 w -7)] == Expand [-29 + 7 w)

Q4. The isomorphism hinted at would map a + b W to a + b w, where w is the
first root given to us by Solve. Could we have used the second root? If W
maps into the second root, what would map into w?

11.4 An extension of Z3 using Mathematica

To continue we read in the Mathematica code needed for the rest of the lab.

Needs["AbstractAlgebra'Master'I);
SwitchStructureTo[Ring);

Consider the polynomial p(x) = .xl + x + 2 over the integers modulo 3, Z3.

Q5. Verify that none of the elements in Z3, {a, 1, 2}, are roots of p(x).

The extension of Z3 that contains a root z of p(x) can be generated with Quo­
tientRing (see Ring Lab 10). We shorten the name of Z3[Z] to V.

p = Poly [Z [3] , x 2 + X + 2]
v = QuotientRing[Z [3], p)

When you work with V, be aware of the form of its elements. They all appear as
ordinary polynomial expressions, but in fact their internal form is more compli­
cated. We have to use the Poly function to create them. For example, consider
the third element in the list, appearing as 2 x.

third = Elements [V) [3]

Is this simply 2 x? In other words, can we just use 2 x in place of it?

2 x === third

No. They have different internal forms. For instance, 2 x to Mathematica is

212 Ring Lab 11

FullForm[2 x]

which is just the product of 2 and x, as we think of it in ordinary usage. The
Mathematica internal form for the third element in V, 2 x, is quite different.

Full Form [third]

This form is significantly more complicated. The reason is that it represents a
formal polynomial whose underlying ring is embedded in the structure, as well as
several other pieces of data. (Purely optional: This data structure has the head
AbstractAlgebra' RingExtensions' Private 'poly with two argu­
ments. The first is a list with four arguments and the second is the list of coeffi­
cients' starting with the constant term, then linear, and so on. The arguments in
the first list consist of the underlying ring (in internal form), whether we should
view the polynomial from right to left or left to right, the indeterminate that
should be used, and finally whether the coefficients are numeric or not. Thank­
fully, the user does not need to worry about these details.)

Therefore, to use the third element, we either pick it off the list of elements, as we
did earlier or we create it anew with the Poly function. In this case, this polyno­
mial can be obtained by

newthird = Poly[Z[3], 2 x]

It is important that all polynomials are created in this fashion when they are over a
ring besides the integers, rationals, reals, or complex numbers. Note that this is
now identical to third.

newthird === third

What is more important is the mathematical concept of what this 2 x represents.
You can just think of it as an abstract element in a new ring, or you can think of it
as the coset representative of the coset 2 x + (x2 + X + 2), since this element really
comes from the quotient ring Z3 [x] / (x2 + X + 2).

What have we done so far? Let's recap for a moment. We have a polynomial
p = x2 + x + 2 that does not have any roots in Z3. We formed the quotient ring
Z3 [x] / (x2 + X + 2) and called it V. We also know (from Ring Lab 10) that this V
contains a root (call it z) of p, as well as containing Z3 itself. (How does it con­
tain Z3?) We therefore also call V by the name Z3 [z]. To verify that z (whatever
it turns out to be) is a root of p, we need to represent p's coefficients as elements
of V. In other words, we can think of a new p, call it pV, whose coefficients 1, 1,
and 2 are constant polynomials in V. We also want the mUltiplication x*x that
yields x2 to be taking place in V. Hence, we have a new polynomial function as
follows.

Quadratic Field Extensions 213

pV[y_] :=

Multiplication[v] [y, y] + y + Poly[Z [3], 2, Indeterminate ... x]

The constant term 2 in p is reflected by using Poly [Z [3] I 2 I Indetermi­
nate --7 x]. The use of Indeterminate --7 x is just for consistency. Since
constants do not use an indeterminate, adding this option indicates that we are
viewing this polynomial in the indeterminate x.

We have stated that z is a root of p (or of this new version of p, p V), but what is z?
We know we have a root if, when we evaluate a polynomial, we get O. Since z is
supposed to be found in V (and we already know that one third of the elements in
V can be dismissed as candidates-why?), we should perhaps map our new
polynomial pVover our elements in V and look for 0 (Le., Poly [Z [3] I 0]).

valuesOfpV = Map[pV, Elements[V]]

We obtain 0 twice. What values of V yielded the zeros? Let's look at V again.

Elements [V]

Combining and transposing,

Transpose [{Elements [V], valuesOfpV}] II TableForm[#,
TableHeadings ... {None, {"v e V", "pV [v] \n n } }] &

makes it clear that our candidates for z are the elements (polynomials) x and
2x+2.

The formation and evaluation of p V is not particularly pleasant. There is a func­
tion called EvaluationlnExtension that can do these tasks. Here is how it
works.

?EvaluationInExtension

EvaluationInExtension [V, ModulusPolynomial [V], Poly [Z [3], x]]

We can also give it a list of elements to evaluate.

EvaluationInExtension [V, ModulusPolynomial [V], Elements [V]]

Q6. Let q = x2 + 2 x + 2 over Z3. Show that q is irreducible over Z3. Calculate
V2 = QuotientRing [Z [3] I q]. Find a zero for q in V2.

Recall that to compute a product in V, such as x2 = (x) (x), we can use
Multiplication [V] .

Multiplication[v] [Poly[Z[3], x], Poly[Z[3], x]]

For higher powers, it may be easier to use the ElementToPower function.

214 Ring Lab 11

? ElementToPower

ElementToPower[V, Poly[Z [3], x], 2]

Q7. Compute more powers of x (x2 , x3, ... , x9 •••) until you can identify a
pattern. (Hint: Using the Table function with ElementToPower is the
cleanest way of doing this.)

If we consider another irreducible quadratic polynomial over Z3, will we need a
further extension, or will our original extension contain the second irreducible's
roots?

Q8. Verify that q(x) = x2 + 1 has no roots in the Z3 but has both its roots in V .

• 11.5 Theorems motivated from this lab

The calculations we have performed here suggest several theorems. To prove the
theorems, there are many details that need to be shown. However, the examples in
this lab certainly show that the theorems are plausible.

Q9. We state these theorems with a few key words left for you to fill in.

Theorem 1. If p(x) is irreducible over F, E = F[z] is a quadratic extension of F
containing a root z of p(x), and y is the second root of p(x), then F[z] is
_________ to F[y].

Theorem 2. If w is a real root of p(x) = x2 + x + 1, then for each positive
integer n, wn = an + bn w, where an and bn are consecutive ______ _

Theorem 3. If F is a finite field and F[z] is a quadratic extension of F, then the
set of nonzero elements of F[z] with multiplication is a group of order
___ and z is a of the group.

Theorem 4. If F is a finite field, a quadratic polynomial p(x) is irreducible over
F, and z is a root of p(x) in an extension E of F, then every ____ _
polynomial over F has its roots in F[z].

Note: These theorems can all be generalized in several directions, so the theorem
in your text may not match them exactly.

Ring Lab 12

Factoring in Z[-v'd]

• 12.1 Prerequisites

You should have an elementary understanding of divisors and factoring with

integers. It may also be helpful to be familiar with the ring z[-v'd].

• 12.2 Goals

The goal of this lab is to explore the notion of factoring numbers in Z[-v'd] for
various integers d. In particular, we want to see when this factorization is unique
(in some sense) and when it is not.

• 12.3 Introduction to divisibility

To work on this lab, we load the packages that define the needed functionality.

Needs[RAbstractAlgebra'Master'II];
SWitchStructureTo[Ring];

This lab focuses on a particular class of rings that are extensions of the integers.

Let d be a fixed integer and consider the set {r + s -v'd I r, s E Z}. We denote this

set by Z[-v'd]. If d = 2, the following illustrates a subset of Z[v'2], when we
restrictrandsto{-2,-1, ... , 3}.

216 Ring Lab 12

Adjoin [Range [-2, 3], v'2]

Q1. What is the result of letting d = 4? In other words, what does Z[v'4] look

like? What about Z[-v'9]? What about Z[v'16]? Can you think of any restric­
tions on d that we may wish to impose?

Note that when we let d = -1, we obtain Z[.y=I], the Gaussian integers; it is
frequently denoted Z[il

Throughout the rest of the lab, we assume that D is an integral domain. If rand s
are two elements in D, with r nonzero, we say that r divides s (or r is afactor of s)
if s = r t for some t in D. When r divides s, it is denoted r I s and we say that r is a
divisor of s. Note that the units of D are those elements that are divisors of the
unity of D.

Q2. For each ring given, determine whether r I s. If yes, indicate the value of t
such that s = r t.

a. In Z, is it the case that 5 115?
b. In Z, is it the case that 15 15?

c. In Z[-v'3], is it the case that (2 + -v'3) 1 (-7 - 6.y3)?
d. In Z[-v'3], is it the case that (4 - 5 .y3) 1 (-7 - 6 -v'3)?
e. In Z[-Y=5], is it the case that 3 19?
f. In Z[-Y=5], is it the case that (2 + -Y=5) 19?
g. In Z[-Y=5], is it the case that (2 - .y -5) 19?
h. What is the product of 2 + .y - 5 and 2 - -Y=5 ?

i. In Z[-Y=5], is it the case that 31 (2 +.y -5)?

Q3. If r is a unit in D and x is any other element, what can you say about r I x?
Justify your answer.

When we are working with (ordinary) integers, it is fairly easy to know when r
divides s. Essentially, we want to know if the quotient ~ is an integer. We can
define a function Di videsQ by using this approach.

DividesQ[6, 18]
DividesQ[6, 16]

?DividesQ

When we work over the ring Z[v'd], we extend this function by adding the

option Radical -7 d. The following shows that 1 + {2 is a unit in Z[{2].

Factoring in Z[Y'd] 217

Di videsQ [1 + -{2, 1, Radical -+ 2]

This result indicates that there is an element t in Z[YI] such that (1 + YI) t = 1.
What is t? Let's perform the division.

1

Si~lify[%]

Note that Simplify does not return an element in the form a + b Yi, so we
need to turn to another function.

ZdDivide [1, 1 +-{2]

We see that t is indeed an element in Z [YI].

• 12.4 Associates, irreducibility, and norms

We need to introduce (or review) some definitions. Given elements rand sin D,
we say that they are associates if there is a unit u in D such that r = s u. A nonzero
element r in D is called irreducible if r is not a unit, and whenever r = b c (for
elements b and c in D), then b or c is a unit. (In other words, the only divisors of r
are units and associates of r.)

Q4. a. What are the associates of 5 over the integers?
b. What are the associates of 5 over Z[i]?

c. Are 3 + 4 Yi and 5 - YI associates over Z[Yi]?

Q5. a. Is 5 irreducible over the integers? Why or why not?
b. Is 6 irreducible over the integers? Why or why not?
c. Is 5 irreducible over Z[i]? Why or why not?

The function ZdAssociatesQ can confirm whether a pair of numbers are

associates over Z[{d].
? ZdAssociatesQ

ZdAssociatesQ [2, 3 + 4 -{2, 5 - -{2]

For negative d, the function ZdlrreducibleQ specifies whether an element is
irreducible. (The problem is more difficult to answer for positive d.)

218 Ring Lab 12

ZdZrreducibleQ[-l, 5]

Since 5 is not irreducible, we should be able to factor this over Z[i], the Gauss­
ianlntegers.

FactorZnteger[5, GaussianZntegers -+ 'l'rue]

The last idea introduced in this section is the norm function. We define the func­

tion N: Z[v'd] --7 {nonnegative integers} by N(a + b v'd) = 1 a2 - d b2 I. (Note:
Some authors prefer a slightly different definition.) In Mathematica, we use the

function ZdNorm to compute the norm. Let's consider some examples over

Z[v'S].

examples = Adjoin[{-l, 0, 1, 2}, v'S]

Nap[{I, ZdNo~[I]}&, examples] II
'l'ableFo~[I, 'l'ableReadings -+

{None, {"x", nN(x)\nn}}, 'l'ableSpacing -+ {0.5, 3}] &

There are four important properties about the norm function that should be
observed; check your text for details.

1. N(x) = 0 if and only if x = 0,
2. N(x y) = N(x) N(y) for all x and y,
3. N(x) = 1 if and only if x is a unit, and
4. If N(x) is prime (in Z), then x is irreducible in Z[v'd].

Q6. In the list of examples of elements from Z[v'5], which are units and which
can be readily seen as being irreducible?

Consider x = 2 + 3 R and y = 2 - 3 R as elements in Z[-Y=6]. Let's verify
property 2.

x=2+3H

y=2-3H
zdNo~[xy] === ZdNo~[x] ZdNo~[y]

Q7. Let x = 1 + 3 H and y = 1 - 3 H. Verify that property 2 is true with
these values of x and y. Repeat using x = 2 and y = 23.

Be careful how you read property 4; the converse is not true, in general. For

example, with x = 1 + 3 H, used in question 7, the norm of x is 46, which is
composite.

Factoring in Z[-v'd] 219

ZdNorm[l + 3~]

This does not imply that x is not irreducible! In fact, in section 12.6, we show that
x is indeed irreducible .

• 12.5 Units in Z[v'd]
Recall from the third property of the norm function that x is a unit if and only if

N(x) = 1. Can we use this tact to determine the units of z[-v'd]? Let x = a + b -v'd
be an element in Z[-v'd]. Then N(x) = 1 a2 - d b2 I. First, let's consider the case
where d < -1 and let k = -d. Then we have N(x) = a2 + k b2 , with k > 1. Since
k > 1 and we are assuming that N(x) = 1 (since we want x to be a unit), then we
must have b = 0, for otherwise a2 + k b2 ;e: k > 1. Therefore, a2 = 1, so the only
units are 1 and -1.

Let's consider a geometric argument for the same question. To be specific, sup­
pose we consider k = 2 (i.e., d = - 2). What we are really considering is whether
there are integral solutions to the equation a2 + 2 b2 = 1. But this is just the
equation of an ellipse, so let's look at its graph. We need to first read in a package
that allows us to plot equations implicitly.

Needs["Graphics'ImplicitPlot'l]

Here we plot the ellipse determined by this equation.

C1ear[a, b]
gr1 = ImplicitPlot [a2 + 2 b 2 == 1, {a, -2, 2},

AspectRatio -+ Automatic, PlotRange -+ {{ -2, 2}, {-1, 1}}];

Next we graph a backdrop for our ellipse, consisting of points with integer coordi­
nates in the neighborhood of the ellipse.

gr2 = IntegerLatticeGrid[{-2, 2}, {-1, 1},
PlotStyle -+ {PointSize[0.025], RGBColor[O, 0, 1]},
AspectRatio -+ Automatic];

Putting them together results in the following.

Show[{gr2, gr1}, AspectRatio-+Automatic];

It should be clear that the only points with integer coordinates that lie on the
ellipse occur where a = 1 and b = ° and where a = -1 and b = 0.

This figure illustrates that when d = - 2 the only units are 1 and -1. What about
smaller values of d? Consider the following series of graphics. After evaluating

220 Ring Lab 12

the cell, you may wish to double-click on one of the graphics and adjust the
animation speed by typing 1 through 9 (1 slow, 9 fast).

Do [:ImplicitPlot [a2 - db2 == 1, {a, -2, 2},
AspectRatio -+ Automatic, PlotRange -+ {{ -1, 1}, {-1, 1}},
PlotLabel-+ lid = "<>ToString[d]], {d, -3, -15, -2}];

Q8. What is the conclusion? If d < -2, how many units are there? What are
they? Justify your answer.

What if d = -I? We then have N(x) = a2 - (-1) b2 = 1, or N(x) = a2 + b2 = 1.

grl = :ImplicitPlot[a2 +b2 == 1, {a, -2, 2},
AspectRatio -+ Automatic, PlotRange -+ {{ -2, 2}, {-2, 2}},
DisplayFunction -+ :Identity];

Show [{gr2, grl}, AspectRatio -+ Automatic,
DisplayFunction -+ $DisplayFunction] ;

Q9. When d = -1, how many units are there? What are they? Justify your
answer.

Next we consider d> 1. When d = 2 we have N(x) = I a2 - 2 b2 1 = 1. Therefore,
we need a2 - 2 b2 to have the value 1 or -1. This simply gives rise to two hyperbo­
las, a2 - 2 b2 = 1 and a2 - 2 b2 = -1. They are now graphed to gain some geomet­
ric insight.

c = 4;

grl = :ImplicitPlot [{a2 - 2 b 2 == 1, a 2 - 2 b 2 == -1},
{a, -c, c}, AspectRatio -+ Automatic, PlotStyle-+

{{Thickness[O.02], Green}, {Thickness[O.02], Magenta}},
PlotRange -+ {{ -c, c}, {-c, c}}];

Here is the graph with an integer lattice backdrop (actually, a "foredrop" this
time), showing the two together.

gr2 = :IntegerLatticeGrid [{ -c, c},
{-c, c}, PlotStyle-+ {pointSize[O.025], Blue},

AspectRatio -+ Automatic, DisplayFunction -+ :Identity] ;

Show[{grl, gr2}, DisplayFunction-+ $DisplayFunction];

QI0. Are you able to "see" any units? (Remember, we are looking for units in

z[{2] = {a + b -.f21 a, b E Z} that have integer coordinates and must satisfy
one of the equations giving rise to a hyperbola.) List the ones you see. Use the
function ZdUni tQ if you wish to verify that it is a unit; see the following
example.

Factoring in Z[-v'd] 221

The function zdUni tQ can be used to confirm or deny whether an element is a
unit or not.

? ZdunitQ

ZdunitQ [2, 2 + -v'2]

Consider the element x = 3 + 2 ...fi; this is a unit in Z[-v'2].

zdunitQ[2, x = 3 + 2-v'2]

Since x is a unit, then any power of x is also a unit. (Appropriate use of properties
2 and 3 is one method of verifying this statement.) Let's examine the powers of
this element. Here are the first five powers.

ptsl = Table [Expand [Xk] , {k, 1, 5}]

We can verify that these are indeed units.

Map [ZdunitQ [2, #] &, ptsl]

These elements appear to be growing without bound. Here is geometric view of
what is happening, showing only the parts of the hyperbolas in the first quadrant
and the powers of x colored according to Hue (the "rainbow").

convertpts[lst_] :=

1st /. {a_ + b_ -v'2 :+ {a, b}, a_ + -v'2 :+ {a, 1}}

ptsl = convertpts [ptsl] ;
n = Length [ptsl] ;
c = 3400;

grl = J:mplicitPlot[{a2 - 2b2 == 1, a 2 - 2b2 == -1},

{a, 0, c}, AspectRatio -+ Automatic,
PlotStyle -+ {Green, Magenta}, PlotRange -+ {{O, c}, {O, c}},

k
Epilog -+ Table [{Hue [-], PointSize[0.03],

n

Map [Point, ptsl[kD, {O}l}, {k, 1, n}]];

Here are the five colors (in order) of the dots plotted.

Show [Graphics [

i
Table [{Hue [-] , Rectangle [{i, O}, {i + 1, 1} l}, {i, 5}]]];

5

(You might ask where the yellow is on the plot.) Let's try another element,
x = -1 + -v'2, which is also a unit, and its first ten powers.

222 Ring Lab 12

ZdunitQ[2, x = -1 + 12]
pts2 = 'l'able [Expand [xl<], {k, 1, 10}]
(ZdunitQ [2, #1] &:) /@pts2

Here is the graph of the hyperbolas with the ten powers of this x plotted.

pts2 = convertpts [pts2] ;
n = Length [pts2] ;
c = 3400;

gr1 = J:mp1icitPlot [{a2 - 2 b 2 == 1, a 2 - 2 b 2 == -1}, {a, -c, c},

AspectRatio -+ Automatic, PlotStyle -+ {Green, Magenta},
k

PlotRange -+ {{ -c, c}, {-c, c}}, Epilog -+ 'l'able [{Hue [-] ,
n

PointSize[0.03], Map [Point, pts2[k], {OJ]}, {k, 1, n}]];

As n increases in the power xn , the points are colored according to the following
scheme, where the power n is located in the rectangle.

i
Show[Graphics['l'able[{Hue[-], Rectangle[{i, OJ, {i+l, 1}],

10
Black, 'l'ext[i, {O.S+i, O.S}1}, {i, 10}]]];

Qll. What is fundamentally different between the powers of these two ele­
ments (3 + 2 Y2 and -1 + -{2), as shown by the graphs?

As can be seen, z[-{2] has an infinite number of units. This is true whenever
d>1.

• 12.6 Factoring 46 in Z[v'=S]
In question 7, we investigated the norm of the following four numbers.

x=1+3-..r:s
y = ZdConjugate [x]
a=2
b = 23
ZdNorm/@{x, y, a, b}

Note further that x y = a b = 46.

Expand[xy] == 46

This expansion shows that x, y, a, and b are all divisors of 46. Are there any more?

ZdDivisors[-S, 46]

Factoring in Z[-Y'd] 223

Weare really only interested in the nontrivial ones.

ZdDivisors [-5, 46, NonTrivialOnly -+ True]

That 46 has only four nontrivial divisors (over z[0]) is not significant in
itself. If we consider the integer 80, we know that it has many divisors as well.

J:ntegerDi visors [80, NonTri vial Only -+ True]

We know that 80 can be written as 2 * 40, 4 * 20, 5 * 16, or 8 * 10, but in each case
one or both factors can be further factored (into primes) until one obtains the
result 2 * 2 * 2 * 2 * 5, or 24 * 5.

FactorJ:nteger[80]

Except for the order in which these factors are written, or perhaps exchanging a
factor with its associate, this product is unique. This is a result of the Fundamental
Theorem of Arithmetic. The question to pursue here is whether an analogous

situation holds in z[0] and other rings. In other words, even though

(1 + 3 0)(1 - 3 0) = 46 = 2 * 23 in z[0] shows that we have two
factorizations that appear different, we want to make sure that we have factored

46 into irreducibles. Also, we want to see if 1 + 3 0 is possibly an associate of
2 or 23 and if 1 - 3 0 is an associate of the other. Thus, we have two steps to
take.

1. Determine whether 2, 23, 1 + 3 0, and 1 - 3 0 satisfy
our definition of being irreducible.

2. Determine if any of {2,23} are associates with any of

{1 + 3 0,1- 3 0}.

Recall that for r to be irreducible over an integral domain D, it must be nonzero,
not a unit, and if we ever have s t = r (for s, tED), we must have either s or t a
unit. Clearly none of the four are zero, and when we calculated their norms we
observed that none had norm 1, so they are not units. First let's consider 2 and
show that it is irreducible. Its norm is four.

ZdNorm[2]

Therefore, if 2 = s t for some sand t in D = z[0], then N(s) N(t) = 4, by the
second property of norms. To show that 2 is irreducible, we need to show that
either s or t is a unit and consequently has norm 1 (by the third property). There­
fore, since the divisors of 4 are {l, 2, 4}, we want to show that we cannot have
N(s) = N(t) = 2, and then we will know that 2 is irreducible.

224 Ring Lab 12

Q12. Why do we need to show only that we cannot have N(s) = 2 to show that
2 is irreducible?

If we let s = a + b rs, then we see that N(s) = a2 + 5 b2 . For N(s) = 2, we must
have integral coordinates for a point somewhere on the ellipse a2 + 5 b2 = 2.
Inspecting this algebraically, clearly if b is not zero, then the left-hand side is
already at least 5, which is not possible (since we still have to add a2 to 5 b2 ,

while the right-hand side is 2). Geometrically, we can see this as follows.

ZdPossibleNorms [- 5, 2, Mode -+ Visual]

This function shows the ellipse a2 + 5 b2 = 2, as well as showing all points whose
norm is less than or equal to 2 (and the output is a list of all norms that are possi­
ble that are less than or equal to 2). We can also just use the function zdPossi­
bleNormQ.

ZdPossibleNormQ[-5, 2]

Now we know that 2 is indeed an irreducible element. Next we attack 23 and
investigate whether it is irreducible. Let's assume that it is not irreducible and see
if we can find a contradiction. Therefore 23 = s t, where sand t are in D. Conse­
quently, N(23) = N(s) N(t), and we need to find elements sand t whose norm is a
divisor of the norm of 23. Not that we need Mathematica to help us in this case
(the arithmetic is easy), but to illustrate the general idea, we want to look for the
nontrivial divisors of 232 .

:IntegerDivisors[ZdNorm[23], NonTrivialOnly -+ True]

The only possible divisor is 23, so both N(s) and N(t) must be 23. Is it possible to

have this norm in the ring D = Z[rs]?
ZdPossibleNormQ[-5, 23]

Let's "see" why not.

ZdPossibleNorms [- 5, 23, Mode -+ Visual]

The value 23 is not obtainable as a norm, and therefore there are no sand t such
that N(s) = N(t) = 23, so either s or t is a unit and 23 is irreducible.

There are two elements left to check for irreducibility, 1 + 3 rs and

1 - 3 rs . We proceed in the same manner.

:IntegerDi visors [ZdNorm [1 + 3 -r::s], NonTri vialOnly -+ True]

:IntegerDi visors [ZdNorm [1 - 3 -r::s], NonTri vialOnly -+ True]

Factoring in Z[v'd] 225

Since the only possible nontrivial divisors of the norms are 2 and 23, and we have
seen that neither of these norms is possible, we know that both the elements

1 + 3 Nand 1 - 3 H are irreducible.

Q13. Here is an optional question. Define the function v by vex) is the number

of norm values possible in Z[N] that are less than or equal to x. Determine
v(100). How much larger is v(200) than v(100)? (In other words, compare the
number of possible norm values from 1 to 100 in contrast to the number of
possible norm values from 101 to 200.) How does v(300) compare to v(200)? Is
there a monotonic pattern? You may wish to use the following to help you, with
the Length function to measure the output. (Eliminate the Mode ---7 Visual
option if the graphics take too long-they are not needed for the count.)

ZdPossibleNorms [- 5, 100, Mode -+ Visual]

We have shown that the four divisors of 46 are all irreducible. Next we want to
know if any of {2, 23} are associates with {I + 3 N, 1 - 3 N}, step 2 in our

outline. Recall that for 2 to be an associate of 1 + 3 N, it must have a unit u

such that 2=u*(1+3Y-5). If so, then N(2)=N(u)N(1+3N), or
4 = 1 * 46, which is clearly not possible. The following shows that no possible
arrangement (matching across the two sets) for pairing up associates will be
fruitful.

Map [ZdNorm, {2, 23}]

Map [ZdNorm, {1 + 3 -V::S, 1 - 3 -V::S}]

(Note that checking for associates could have also been done as follows.)

ZdAssociatesQ [- 5, 2, 1 + 3 -V::S]

ZdAssociatesQ[-5, 23, 1 + 3-V::S]

What is the conclusion? In Z[N] we have 46 = 2 * 23 and
46 = (1 + 3 N) * (1 - 3 N). These four divisors are all irreducible and the
two factorizations do not involve associates (as would 46 = 2 * 23 and
46 = (-2)*(-23». Consequently, we have two distinct, unrelated factorizations
of the number 46. This verifies that Z[N] is not a Unique Factorization
Domain (UFD).

Historical note: There was a short time in the nineteenth century when Fermat's
Last Theorem was considered to have been proven, but there was a flaw in the
proof. This flaw, discovered by Kummar, traced back to an assumption that

factorization was unique in rings such as Z[N].

226 Ring Lab 12

.12.7 Is Z[v::6] a UFD?

Since we have shown that z[-yes] is not a UFD (Unique Factorization Domain),
we may wonder about other related rings. Let's consider a neighbor (in some

sense), D = Z[R]. To show that D is not a UFD, we need to find an element r
in D that has two distinct factorizations. Since we may want to "automate" the
process, we label each step along the way with variables to hold the values, so we
can readily try other rings.

In this example, we are using d = -6.

d =-6

Let's pick two random-but not too large--coefficients.

{a, b} = Table [Ra:n.dom[Integer, {l, 5}], {2}]

We use these values to form x and let y be its conjugate.

x=a+bVd
y = ZdConjugate [x]

Let z be their product.

z = Expand [xy]

We use nrm for the norm of this product.

nrm = ZdNorm [z]

Let's take a look at all the divisors of z.

ZdDivisors [d, z, DivisorsCom,plete -+ True]

We can view these divisors by pairing up associates.

ZdDivisors[d, z,
Combine -+ Associates, DivisorsComplete -+ True]

We can also pair up the divisors so that the product of each pair is z.

ZdDivisors [d, z, Combine -+ Products, DivisorsComplete -+ True]

From here, we should look for two pairs whose product is z, all divisors are
irreducible, and none is an associate of the others.

Q14. Find two pairs that satisfy these conditions. If there are not two pairs, go
back and generate a new x and y and see if two pairs arise that satisfy these
conditions.

Ring Lab 13

Finite Fields

• 13.1 Prerequisites

To complete this lab, you should be familiar with the construction of a quotient
ring of a ring of polynomials over a field F, as described in Ring Lab 10. You
should also be familiar with Morphoids of rings .

• 13.2 Goals

The goal of this lab is to introduce some of the properties of finite fields. Until
now, we have mostly explored the general situation of polynomials over a ring
mod an arbitrary polynomial. Now we assume that the base ring is a field and that
the polynomial is irreducible over that field. These assumptions are made easier to
enforce by using the Fini teFields package in AbstractAlgebra .

• 13.3 Creation of finite fields

First we make sure that the AbstractAlgebra packages are available and
Rings is the Defaul tStructure.

Needs[nAbstractAlgebra'Haster'n];
SWitchStructureTo[Rings];

The package AbstractAlgebra' Fini teFields.m generates finite fields
in a fashion similar to the way QuotientRing does but with restrictions on the

228 Ring Lab 13

allowable inputs so that only fields are generated. For example, the ring of polyno­
mials over Z3 mod the polynomial x2 + 2 can be created with QuotientRing.
It has 32 = 9 elements.

Clear [x]
R = QuotientRing[Z[3], Poly[Z[3], x 2 + 2]]

As we can see by the result of Inverses, R is not a field.

Inverses [R, Operation -+ Multiplication]

This is because the modulus polynomial, x2 + 2, can be factored as (x + 1) (x + 2)
over Z3. The built-in function Factor can show this.

l'actor[x2 + 2, Modulus -+ 3]

We can also verify this reducibility as follows.

IrreduciblepolyOverZpQ[Poly[Z[3], x 2 + 2], 3]

The ring R has zero divisors. For example, the product of x + 1 and x + 2 is o.

Multiplication [R] [Poly[Z [3], x + 1], poly [Z [3], x + 2]]

Q1. Evaluate the following cell, which creates the multiplication table for R.
Are there any other zero divisors?

Multiplication'l'able [R, Hode -+ visual];

In the rest of this lab we can avoid this type of ring by using the GF function.
GF [n] returns the Galois field (hence, GF) of order n (if n = pd for some prime
p), while GF [n, poly] creates the finite field using the specified irreducible
polynomial. Here is a field with nine elements. They are the same polynomials of
degree one or less that are contained in R, but the multiplication operation is
different

Clear [I']
1'1 =GI'[9]

In Fl, the product of x + I and x + 2 is not zero.

Multiplication [I'd [x + 1, x + 2]

Another advantage to using GF is that the elements of the rings that are created
are simply ordinary polynomial expressions, as opposed to the more complex
structures created with the Poly function.

F 1 is a field because its modulus polynomial is irreducible over Z3.

FieldIrreducible[F1]

Factor [%, Modulus -+ 3]

Finite Fields 229

An alternate irreducible polynomial is also allowed; one simply adds it as a
second argument to GF. GF does not allow a reducible polynomial, however.

GF [9, x 2 + 2]

Here is a valid alternate irreducible polynomial over Z3.

F2 = GF [9, x 2 + 2 x + 2]

You can check a polynomial to see if it is irreducible with Irreduc iblePoly­
OverZpQ.

Map[IrreduciblePolyOverZpQ[#l, 3] &:, {x2 +2, x 2 +2x+2}]

~ 13.4 Finite field theorems and illustrations

We list some of the basic theorems in the theory of finite fields. Your text proba­
bly contains their proofs (or the proofs may be exercises). We illustrate these
theorems with examples to give you a better feel for what they say and what their
implications are. The first theorem severely restricts the possible size (or order) of
a finite field.

Theorem 1. Every finite field is of order pk for some prime p and positive integer
k.

Because of Theorem 1, GF does not accept an order such as 6.

GF[6]

For a given order, there is really no variety among fields of that order.

Theorem 2. All finite fields of order pk, P a prime, are isomorphic.

The same field can appear in many different forms and be created in different
ways. We illustrate this theorem by generating GF [8] with two different irreduc­
ible polynomials over Z2, PI = x3 + X + 1 and P2 = x3 + x2 + 1. We should be
able to create an isomorphism between these fields.

F3 =GF[8, pl =x3 +x+l]

One reasonable guess might be that the identity function is an isomorphism, since
the domains are identical.

230 Ring Lab 13

id = FormMorphoid[Identity, F3 , F,]

This morphism is certainly one-to-one and onto, but it does not satisfy the mor­
phism property for some pairs. For example, x2 and x is such a pair.

PreservesQ rid, {Xl, x}, Mode -+ Visual]

Another reasonable guess might be that the squaring function that takes each
element in F3 to its square (in F4).

8 = FormMorphoid [ElementToPower [F3, #1, 2] 50, F 3 , F,]

This map is one-to-one.

OneToOneQ[8]

Q2. Is there any need to check whether e is onto? Why or why not?

In the end, this attempt fails also.

MorphismQ[8]

Q3. Give one concrete example showing why e is not a morphism.

A final attempt begins by looking for the roots of PI in F3. This is a bit tricky
since we need to use the operations of F3 to evaluate a polynomial expression.
Here is a function that does this calculation.

evalp1 [p_] : =
Addition[F3] [1, Addition[F3] [p, ElementToPower[F3 , p, 3]]]

(* note that this defines f (p) = 1 + p + p"3 *)

Now we evaluate PI at each element of F3 . The first column consists of elements
in F3 and the second column is PI evaluated at the elements.

TableForm[Map [{#1, evalp1 [#1]} 50, Elements [F3]]]

We can see that the roots of PI = x3 + x + 1 are x, x2, and x2 + x. (Why is this the
case?) Now consider P2 = x3 + x2 + 1, the irreducible polynomial for F4 . Let's
see if the roots for P2 are in F3. Again, the function to do the evaluation is a bit
messy.

evalp2[p_] :=Addition[F3] [1, Addition[F3] [
ElementToPower[F3 , p, 2], ElementToPower[F3 , p, 3]]]

Now we evaluate the modulus polynomial P2 at each element of F3.

TableForm[Map [{#1, evalp2 [#1]} 50, Elements [F3]]]

Finite Fields 231

All three roots of P2 = x3 + x2 + 1 are also in F3. Notice that they are the roots of
PI, with 1 added to each of them. With this observation, we make an attempt to
find a morphism by generating a function using the rule x ~ x + 1. After applying
this rule, we simplify the expression. Therefore, the image of x2 will be (x + 1)2,
which expands to x2 + 1, since x + x = (1 + 1) x = O.

Q4. By hand, determine each of the remaining images according to the function
just described and illustrated.

Now that we have a function in mind to work with, we use FormMorphoid­
Setup to determine a position list for forming a Morphoid.

FormMorphoidSetup [F3 , F,];

With this graphic, you can describe a function using a list such as {al, a2 I

••• I a8 }. A list of this sort implies that the image of the first entry on the left
is the one in position al on the right, the image of the second entry on the left is
the one in position a2 on the right, and so on. For example, the identity function is
defined by the list {I, 2,3,4,5,6,7, 8}. Based on your answer to question 4, fill
in the list corresponding to this attempt at an isomorphism. Evaluate the cell after
you have filled in the list.

1: = FormMorphoid [
{replace this with a list consisting of an ordering of 1 •• 8},

Your function will be one-to-one and onto if the position list is a permutation of
{t, 2, 3, 4, 5, 6, 7, 8}. Now let's see if we have an isomorphism. It should work if
you answered question 4 correctly. You should get True for your next output!

MorphismQ [1:]

Q5. It follows from Theorem 2 that the two fields of order 9, FI and F2 that
were generated earlier, are isomorphic. Is the identity function an isomorphism
between them? If so, are there more isomorphisms? If not, find at least one
isomorphism.

The nonzero elements of any field form a multiplicative group. In the finite case,
the group is particularly simple.

Theorem 3. The multiplicative group of nonzero elements of a finite field is
cyclic.

G = FormGroupoid[Units [F3], Multiplication[F3]]

CyclicQ[G]

232 Ring Lab 13

The linear monomial term, x in this case, happens to be a generator for GF [n] .
To view the powers of x, you can use PowerList.

TableFo~[PowerList[F3]]

Note that this result indicates that x6 is Xl + 1. Also, notice that PowerLi s t acts
on the whole finite field and always starts with {O, O}, which is a special case
since 0 is not in the group. One could evaluate Rest [PowerList [F3]] to get
only the powers of x.

Q6. To what more common group is G isomorphic? What cyclic groups of
order 20 or less are isomorphic to the group of units of some finite field?

The concept of a subfield is similar to that of a subring. A subfield of a field F is a
subset of F that is a field, using the operations of F.

Q7. Find a subfield of GF [16] containing four elements. Use Theorem 3 to
explain why GF [16] has no subfield of order 8.

The previous question generalizes to the following theorem about subfields of a
finite field.

Theorem 4. If F is a finite field of order pk, then F has a subfield of order ~ if
and only if j is a divisor of k.

For example, the field GF[26] has proper subfields of order 2, 22 = 4, and 23 = 8,
but not 24 or 25 . The only proper subfield of GF[25] has 2 elements.

Q8. If p is a prime, what are the divisors of pn - I? What connection does this
have with Theorem 4?

Theorem 5. The function J: GF[pn] -7 GF[pn] defined by J(a) = aP is an automor·
phism of GF[pn] , called the Frobenius automorphism.

Earlier, we examined a similar function between two versions of GF [23] that
were based on different irreducible polynomials, and the function was not a
morphism. However, the Frobenius automorphism has the same field for both
domain and codomain. We can easily create the Frobenius automorphism. The
following Morphoid is identical to (), defined earlier, except that the codomain is
changed from F 4 to F 3. We convert it to the rules format to see the images of each
element more easily.

f = ToRules [FormMorphoid[ElementToPower[F3 , #1, 2] &:, F3 , F3]]

The following shows that J is an isomorphism.

Finite Fields 233

OneToOneQ[f] && HorphismQ [f]

Theorem 6. The group of automorphisms of GF[pn] is the set {j, j2, ... , r = i},
where j is the Frobenius automorphism.

We can create this group of automorphisms easily enough and then look at its
table.

Auts = GenerateGroupoid [{f} ,
HorphoidComposition[#l, #2] &, wideBlements -+ True]

Cayley'l'able [Auts, Mode -+ Visual, ShowKey -+ False] ;

Q9. We see that the automorphism group of GF [8] is isomorphic to Z3. What
about the automorphism group of GF [16] ? To what is it isomorphic?

Part III

User's Guide

Z[lO] Z[lO)

b f(b)

.~f(i:7
~ f(a}+f{b)

a+b
5

t(a+b)
Addition

Z[lO]

b
f

Z[lO]

f(b)

8
f(a*b)

Mul tiplica tion

Chapter 1

Introduction to

AbstractAlgebra

This guide is written with the assumption that the reader has at least minimal familiarity
with groups, rings, and homomorphisms; consult an abstract algebra text for details of any
unfamiliar algebraic concept. A bibliography in the Appendix contains some suggested
references. The purpose of this guide is to provide details for (and illustrations of) many
of the structures and functions used in the packages in AbstractAlgebra. Many of
these structures and functions are also used in the laboratory notebooks in Exploring
Abstract Algebra with Mathematica. For updates to this guide, updates to the packages, as
well as other related resources, the web page http://www.central.eduleaam.html (which is
mirrored at http://www.uml.edu/Dept/Math/eaam/eaam.html) can be consulted .

• 1.1 Packages in AbstractAlgebra

Typically, to use a function from AbstractAlgebra, the Master package needs to
be evaluated. This loads all the names of the functions that are found in the packages and
is done as follows.

In[l]:= Needs[nAbstractAlgebra'Kaster'"]

Reading in the Master package causes all the names in all the packages to be recog­
nized. When a particular function is used, the appropriate package is then called. For
example, if we want to know the orders of the elements in the dihedral group D3 , we
provide as input Orders [Dihedral [3]] .

In [2] := Orders [Dihedral [3]]

238 User's Guide

Out[2]= {{l, 1}, {Rot, 3}, {Rot2 , 3},

{Ref, 2}. {Rot ** Ref, 2}, {Rot 2 ** Ref , 2}}

The function to form the dihedral group D3 is found in the Groupoids package, while
the function to calculate the orders is found in the GroupProperties package. They
both call the Core package (as well as several standard Mathematica packages). This is
all intended to be transparent to the user. The packages are organized to minimize the
amount of code that needs to be read in and retained in memory. Consequently, this guide
follows the logical structure, not the physical structure, of the packages. For those inter­
ested, however, the following describes the Mathematica packages included in
AbstractAlgebra, including dependencies; by reading in anyone of these packages,
the packages on which it depends are called automatically.

Core

FiniteFields

Groupoids

Groupproperties

Joint

LabCode

Matrices

Morphisms

Permutations

RingExtensions

Ringoids

RingProperties

Zd

basic collection of function that are u. ed throughout the
other package

functions to work with finite field . constructed as quotient
ring of the form Zn[x]/(p(x»-calls RingExtensions

built-in groupoid -call Core

function to work pecifically with group -call Core

function u eful for both group and ring -call Core

pecialized function that are used only in the group and ring
lab in £rploring Abstract Algebra with Mathematica-call
Groupproperties, Groupoids, and Joint

function to work with matrice over both tandard ring
(Z, Q.1R. and C) and arbitrary rings-call RingExtensions

functions to work with homomorphi m between group or
ring -calls Joint and GroupProperties

function to work with permutations, cycle , and permutation
group -calls Core

function to work with ring exten ion • including polynomials
and function over a ring-calls RingProperties

built-in ringoid -call Core

function to work pecifically with ring -calls Joint

function to work with divi ibility-related i sue in zlv'd]­
call Core

Packages in the AbstractAlgebra directory.

Although loading the Master package is recommended, and this guide assumes that it is
loaded, individual packages can be loaded and their specific functions used.

Introduction to AbstractAlgebra 239

• Suppose we want to load the Zd package.

In [3] : = Needs [n AbstractAlgebra ' Zd' n]

• To obtain the list of names in this package, evaluate the following.

In [4] : = Names [II AbstractAlgebra ' Zd' * n]

Out[4]= {Associates, Combine, DividesQ, DivisorsComplete,
IntegerDi visors, Negations, NonTri vialOnly, Products,
Radical, ValuesHavingGivenNorm, ZdAssociatesQ,
ZdCombineAssociates, ZdConjugate, ZdDivide,
ZdDividesQ, ZdDivisors, ZdlrreducibleQ, ZdNorm,
ZdPossibleNormQ, ZdPossibleNorms, ZdQ, ZdUnitQ}

• To learn about the ZdDi visors function, use the ? approach (or, of course,
read the pertinent portion of this documentation).

In[5]:= ? ZdDivisors

ZdDivisors[d, x, (opts)], when d is negative, returns
all the divisors of the number x in Z[Sqrt[d]].
When d is positive, ZdDivisors[d, x, max] returns
all divisors of x in Z[Sqrt[d]] whose norm is less
than or equal to the norm of the integer max.
Available options are Combine, NonTrivialOnly,
and DivisorsComplete. See them for more details .

• 1.2 Basic structures used in AbstractAlgebra

• 1.2.1 Overview

The goal of the packages in AbstractAlgebra is to provide an environment for
working with groups, rings, fields, and homomorphisms. The fundamental structures are
called Groupoids, Ringoids, and Morphoids. These structures need not necessar­
ily represent bona fide groups, rings, or morphisms. A Groupoid consists of a set
(List) of elements followed by an operation, whereas a Ringoid consists of a set of
elements followed by two operations. A Morphoid consists of a function (or list of
rules) followed by the domain and codomain, which are either both groupoids or both
ringoids. In this guide, we use the term groupoid when referring to the mathematical
structure consisting of a set and an operation and use Groupoid when we refer to the
Mathematica structure that embodies the mathematical groupoid. We make a similar
distinction between ringoid and Ringoid; the mathematical underpinnings for a Mor­
phoid is simply a function between two groupoids or two ringoids. Note that the opera­
tions in a Groupoid or Ringoid need not be binary operations in the usual mathemati­
cal sense (where given a pair of inputs from a set, the image also is required to belong to
the set).

240 User's Guide

• For an example of a groupoid, consider the set {2, 3,4} and the built-in Mathe­
matica operator Plus, which performs addition.

In[6]:= G = Groupoid[(2, 3, 4}, Plus]

Out[6]= Groupoid [{2, 3, 4}, Plus]

This structure, defined as G, constitutes a groupoid, although it clearly does not form a
group. Also, Plus is not a binary operation (over this set) in the normal sense of the
word, since 2 + 3 = 5 and 5 is not a member of the underlying set {2, 3, 4}.

• Similarly, we can form a ringoid as follows. Again, the operations in a Rin­
goid do not need to be binary operations in the normal sense, as illustrated
here.

In[7]:= R = Ringoid[(2, 3, 4}, Plus, Times]

Out[7]= Ringoid[{2, 3, 4}, Plus, Times]

• Consider the function from Z12 to Z6 by sending x to x mod 6. Here is an
example of a Morphoid based on this function.

In[8]:= f = Morphoid[Hod[I, 6]&, Z[12], Z[6]]

Out[8]= Morphoid[Mod[#1, 6] &, Groupoid[
{O, 1,2,3,4,5,6,7,8,9,10, ll}, Mod[#1+#2, 12] &],

Groupoid [{O, 1, 2, 3, 4, 5}, Mod [#1 + #2, 6] &]]

Note that this returns a structure of type Morphoid and three arguments consisting of
the function and the two groups. (We could have made this a ring morphism by indicating
that we intended Z12 and Z6 to be ringoids.)

A better (and strongly recommended) mechanism to form either a Groupoid, a Rin­
goid or a Morphoid is given in section 1.2.2.

• 1.2.2 How to form Groupoids, Ringoids and Morphoids

In section 1.2.1 we formed the Groupoid G by

In[9]:= G = Groupoid [{2, 3, 4}, Plus]

Out[9]= Groupoid[{2, 3, 4}, Plus]

The recommended method is to use the ForrnGroupoid function as follows.

In[lG]:= G = FormGroupoid[{2, 3, 4}, Plus]

Out[lG]= Groupoid[{2, 3, 4}, -Operation-]

Introduction to AbstractAlgebra 241

Although the output is often the same (though not quite, in this case), there are some
internal steps that are taken when the FormGroupoid function is called that may later
prove useful. Additionally, one can add options to the FormGroupoid function that
provide information about the groupoid being formed. The syntax for the Form­
Groupoid function requires the first parameter to be a list of elements and the second
parameter to be the (binary) operation used. An optional third parameter indicates the
symbol used to represent the operation; the default value is *, if none is given. After these
parameters, a variety of options can be added, as indicated in what follows.

In[ll]:= ? FormGroupoid

FormGroupoid[els, op, opsym, opts] is the basic command
for forming a Groupoid consisting of the list els
governed by the operation op. The symbol opsym
defaults to '*' if not specified. The available options
for opts are WideElements, IsAGroup, Generators,
GroupoidDescription, GroupoidName, FormatOperator,
FormatElements, MaxElementsToList, KeyForm, and
CayleyForm. See each one for more information.

This function, rather than just wrapping Groupoid around
a list and an operation, is strongly recommended.

Each of the options for FormGroupoid has default values in these packages, but any of
them can be overridden with other values, or other default values can be defined.
Although we discuss in detail the options and illustrate how they are used in chapter 2, we
now briefly illustrate the use of a few of these options.

In [12] := Options [FormGroupoid]

Out[12]= {CayleyForm ~ OutputForm, FormatElements ~ False,
FormatOperator ~ True, Generators ~ {},
GroupoidDescription ~ , GroupoidName ~ TheGroup,
IsAGroup ~ False, KeyForm ~ InputForm,
MaxElementsToList ~ 50, WideElements ~ False}

• Suppose we want to define the group of integers mod n, the group denoted 7L.n •

It is already built into the packages, defined under the name Z; here we call our
new version newZ. This is how we might define it.

In[13]:= newz[n_Integer?Positive] :=

l'ormGroupoid [Range [0, n - 1] ,
Mod[#i + #2, n] &, "+", IsAGroup -+ True,
FormatOperator -+I'alse, Generators -+ {i},

GroupoidDescription -+ nIntegers under addition mod no,
GroupoidName -+ StringJoin [OZ [0, ToString [n], 01"]]

• To form 7L.5 , we could use the following.

242 User's Guide

In[14]:= G = newZ[S]

Out[14]= Groupoid[{O, 1. 2,3, 4}. Mod[#1+#2, 5] &]

• Since FormatOperator is set to False, the binary operator Mod [#1 +
#2, 5] & is given, instead of hiding behind -Operation-, as seen earlier.
The IsAGroup option indicates that any tests to see if it is a group can be
skipped and True will be immediately returned by GroupQ.

In[15]:= GroupQ[G]

Out[15]= True

• The value of the option GroupoidName shows up when we view a Cayley
table.

In[16]:= CayleyTable[G, Mode ~ Visual]

Z(51 x + y

Out[16]= {{O, I, 2, 3, 4}, {1. 2, 3, 4, OJ,
{2, 3, 4,0, I}, {3, 4, 0, I, 2}, {4, 0, 1,2, 3}}

• This name also shows up when asking for information learned about G, as does
the description and the results of some tests performed on G. We use the
Grouplnfo command to retrieve this information.

In[i?]:= Grouplnfo[G]

Out [17] = {Z [5], Integers under addition mod n, this is a group}

There are several other means for forming groupoids, including GenerateGroupoid
and FormGroupoidByTable. They are discussed in detail in chapter 2, but we give a
brief illustration here. GenerateGroupoid is used by giving a set of generators and a
binary operator, while FormGroupoidByTable requires a list of elements followed by
the Cayley table.

• Here is an illustration of GenerateGroupoid.

In[18]:= G2 =
GenerateGroupoid[{{{l, OJ, {O, 7}}, {{4, OJ, {O, 1}}},

Introduction to AbstractAlgebra 243

Mod[#l • #2, 9] &, WideElements -+ True,
FormatElements -+ True, GroupoidName -+ "What am I?",
GroupoidDescription -+ "generated by two 2-by-2

matrices under matrix multiplication mod 9"]

Out[18]= Groupoid[{-Elements - }, - Operation-]

• Here is an example of FormGroupoidByTable.

In[19]:= Clear[a, b, c]
G3 = FormGroupoidByTable [

{a, b, c}, {{a, c, b}, {b, a, c}, {c, b, a}}]

Out[20]= Groupoid [{a, b, c}, -Operation-]

• We can view the Cayley tables of these two groupoids. Are either of these
groups?

In[21]:= CayleyTable[{G2, G3}, Mode -+ visual];

KEY for What am I7: label used ~ element: {9l ~ {{l,
D}, {D, l}}, 92 ~ {{l, D}, {D, 4}}, 93 ~ {{l, D},
{D , 7}}, 94 ~ {{4, D}, {D, l }}, 95 ~ {{4, D}, {D,
4}} , 96 ~ {{4, D} , {D, 7}}, 97 ~ {{7, D}, {D,
l}}, 98 ~ {{7, D}, {D, 4}}, 99 ~ {{7, D} , {D, 7 }}}

TheGroup x • y

b a

Note that a key is given (for G2) since the option WideElements ~ True indicates
that the elements should not be placed in the table. In this case, a key is set up, associating
shorter generic labels with the elements in the groupoid.

• Another way of seeing the elements of the first Groupoid is to simply ask for
them with the Elements function.

In [22] := Map [MatrixForm, Elements [G2]]

244 User's Guide

Out[22]= {(10) (10) (1 0) (4 0)
01' 04' 07' 01'

(~ ~), (~ ~), (~ ~), (~ ~), (~ ~)}

Forming ringoids is very similar to forming groupoids. Analogous to FormGroupoid is
FormRingoid. More details can be found in the chapter 3.

• The default values for the options are similar to those for FormGroupoid, as
is the method of using them. Here is an illustration.

In[23]:= Rl = FOrmRingoid[{-l, 0, 1}, Plus, Times,
FormatOperator ~ False, RingoidName ~ "Ringoid example"]

Out[23]= Ringoid[{-I, 0, I}, Plus, Times]

• By looking at the Cayley tables, we can try to determine if this is a ring.

In[24]:= CayleyTables[Rl, Mode ~ visual]

Add. x + y Mult .

Out[24]= {{{-2, -1, O}, {-l, 0, I}, {O, 1, 2}},
{{I, 0, - I}, {O, 0, O}, {-I, 0, I}}}

• The RingQ function can confirm our suspicion.

In [25] := RingQ[Rl]

Out[25]= False

x * y

• Similar to Grouplnfo, Ringlnfo returns what has been learned about a
ringoid.

In[26]:= RingJ:nfo[Rl]

Introduction to AbstractAlgebra 245

Out[26]= {Ringoid example,
the set is not closed under this addition,
the set is closed under multiplication,
this is NOT a ring}

While individual groups or rings can be studied by examining the set of elements, often
additional results can be learned by considering homomorphisms from one group (or ring)
to another. In these packages, homomorphisms are simply called morphisms and the
Morphoid is the underlying Mathematica structure for working with these. There are
several ways of using the FormMorphoid function, which is the standard means of
constructing morphisms.

• The default values of the options for FormMorphoid are as follows.

In[27]:= Options [FormHorphoid]

Out [27] = {Mode -7 Computational, ForrnatFunction -7 False}

In chapter 4 we look at the details of these options as well as the various means of form­
ing Morphoids. Here let's construct several Morphoids to illustrate the possibilities.
If a specific function can be easily specified, then using this function is often the easiest
method of forming a Morphoid.

• For example, consider the groups Z6 and Z3 , and the function that takes
x E Z6 and maps it to x mod 3 in Z3.

In [28] := f1 = FOrmHorphoid[Mod[#, 3] &,

Z[6, Structure ~ Group], Z[3, Structure ~ Group]]

Out[28]= Morphoid[Mod[#1, 3] &, -Z[6]-, -Z[3]-]

• We can specify the same morphism by using a list of rules of the form x ~ y,
where x is in the domain and y is in the codomain.

In [29] := f2 =
FormHorphoid[{O ~ 0, 1 ~ 1, 2 ~ 2, 3 ~ 0, 4 ~ 1, 5 ~ 2},

Z[6, Structure ~ Group], Z[3, Structure ~ Group]]

Out[29]= Morphoid[
{0-70, 1-71, 2-72, 3-70, 4-71, 5-72}, -Z[6]-, -Z[3]-]

• While the method of defining these Morphoids is different, as Morphoids
they are equal.

In [30] := EqualMorphoidQ[f1, f2]

Out[30]= True

• Note that we can convert a Morphoid created by a function to one created by
rules.

246 User's Guide

In[31]:= £3 = ToRules [£1]

Out[31]= Morphoid[
{O--?O, 1--?1, 2-?2, 3--?O, 4--?l, 5-?2}, -Z[6]-, -Z[3]-]

• We can also start from scratch in defining a Morphoid by first defining the
underlying function.

In[32]:= Clear[g, x]
g[x_] := Mod[x, 3]

• Now we use g to define the morphism.

In[34]:= £4 = FOrmMorphoid [g,
Z[6, Structure ~ Group], Z[3, Structure ~ Group]]

Out[34]= Morphoid[g[#1] &, -Z[6]-, -Z[3]-]

• Since we know that D3 is isomorphic to S3, we may want to set up a specific
isomorphism to reflect this. The function FormMorphoidSetup helps us do
so. (We will see later how to exploit the output of this function to set up a
morphism.)

In[35]:= FOrmMorphoidSetup[Dihedral[3], Symmetric[3]];

Domain Codomain

1 1 1 {l, 2, 3}

Rot 2 2 {1, 3, 2}

Rot"2 3 3 {2, 1, 3}

Ref 4 4 {2, 3, 1}

Rot**Ref 5 5 {3, 1, 2}
Rot"2**Ref 6 6 {3, 2, 1}

III 1.3 How to use a Mode

One common thread that weaves through many of the functions in AbstractAlgebra
is the use of the Mode option. By default, functions are set to use the Computational
mode (though this can be changed for some functions). This means that the function
simply produces the desired computation, with no further elaboration. As has been
illustrated, adding Mode --7 Visual to some functions adds a visual or graphical
image, as well as the computation. In addition to the Visual mode, there is often a
Textual mode and sometimes a Visua12 mode.

Introduction to AbstractAlgebra 247

Computational default mode for all function (unJe modified by the u er with
SetOptions); in this mode, the output i imply the re ult
of the computation

Textual when available, provides additional printed information about the
function, often providing a general definition of the function as well
as information about the specific application involving the given
parameters

Visual when available, provide additional visual or graphical information
about the algebraic concept repre ented by the function.

Visua12 if there is a second visualization for a function, thi mode i u ed

Values for the Mode option.

• Consider the following example that illustrates the use of the various modes.
Here we use the group U 18, which consists of the positive integers less than 18
that are relatively prime to 18, under multiplication mod 18. The group Un can
also be considered as the group of units in the ring Zn.

In[3 6}: = U[18]

Ou t[36} = Groupoid[{l , 5 , 7 , 11,13, 17}, Mod[#l#2, 18] &]

• Here we use the Computational mode (the default) for both forming U I8

and testing if it is cyclic.

In[3 7]: = CyclicQ[U[18]]

Ou t [37] = True

• By specifying the mode to be Textual, we obtain information in addition to
the result of the Computational output.

In[38}: = CyclicQ[U[18], Mode ... Textual]

A Groupoid G is said to be cyclic if there
exists an element g in G such that for all h in
G there exists an integer n such that h = gAn.

In this case, U[18] is
indeed cyclic, being generated by 5 .

Out[38} = True

• The Visual mode works similarly; both here and with the Textual mode,
the output is True, as given in the Computational mode.

In[39}:= CyclicQ[U[18], Mode ... visual]

248 User's Guide

Out[39]= True

• If a function does not support a particular mode, the user is notified, either with
a message or, as in standard Mathematica usage, by returning the request.

In[40]:= MaxTaker[S, Mode ... visual]

Mode: :notavail :
The function MaxTaker does not support the Visual mode.

Out[40]= Groupoid[{l, 2, 3, 4, 5}, Max]

1.4 Using Visual mode with "large" elements

The elements in some groupoids or ringoids are typographically larger than in other
structures. For example, when working with permutations in S3, the elements are too
large to fit easily into the graphical Cayley table. In such situations, a key is set up to
convert from generic elements in the table to the actual elements in the groupoid or
ringoid.

ElementToKey [G, el]

KeyToElement [G, key]

Interacting with the key .

return the key value u ed for the element el in the tructure
G. when a key i et up
for functions uch a CayleyTable

return the element in the tructure G that correspond to key

• Note the list of rules that define the key, associating generic elements gi with
the various permutations.

In[41]:= CayleyTable[G =Symmetric[3], Mode ... Visual];

KEY for 8[3]: label used ~ element: {gl ~
{l, 2, 3 } , g2 ~ {l, 3, 2}, g3 ~ {2, 1, 3 } ,
g4 ~ {2, 3, l}, g5 ~ {3, 1, 2 } , g6 ~ {3, 2, l}}

Introduction to AbstractAlgebra 249

5[3] x * y

• The key corresponding to the permutation {3, 2, I} is g6.

In[42]:= ElementToKey[G, {3, 2, l}]

Out[42]= g6

• To reverse the direction, we can specify the key and obtain the corresponding
element. The key can be given as a symbol or a string. Since it is possible that
the symbol g6 already has a value (from a previous computation), using a
string is generally better. Note that if the symbol has already been defined, its
value is returned.

In[43]:= {KeyToElement[G, g6], KeyToElement[G, ng6 n],

g6 = 8, KeyToElement[G, g6]}

Out[43]= {8, {3, 2, I}, 8, 8}

• Generally, when the key is displayed, the elements are written using Inpu t­
Form.

In[44]:= CayleyTables[GF[8], Mode ~ Visual];

KEY for Add(GF[8]) : label used ~ element:
{gl ~ 0, g2 ~ xA2, g3 ~ x, g4 ~ x + x A2, g5 ~
1, g6 ~ 1 + xA2, g7 ~ 1 + x, g8 ~ 1 + x + xA2}

Add. x + y Mult. x * y

250 User's Guide

• We can override this default by using the KeyForm option in CayleyTable.

In[45]:= CayleyTables [GF[8],
Mode ~ Visual, KeyFor.m ~ StandardFor.m];

KEY for Add(GF[8]): label used ~ element:
{gl~O, g2~x2 , g3 ~ x, g4~X+X2 , g5~

1, g6 ~ 1 + x 2 , g7 ~ 1 + x, g8 ~ 1 + x + x 2 }

Add. x + y

1.5 How to change the Structure

There are several functions whose usage overlaps both groups and rings. For example,
depending on the context, we can view Zn as either a group or a ring. Accordingly, when
working with groups, the option Structure defaults to the value Group when defining
Z, but defaults to the value Ring when working with rings. At any point, it has a value of
either Group or Ring.

• The global variable Defaul tStructure holds the current value.

In[46]:= DefaultStructure

Out[46]= Group

SwitchStructureTo [Group] DefaultStructure become Group to work
with groupoid

SwitchStructureTo [Ring] DefaultStructure become Ring lO work
with ringoid

Switching structures.

• We can change the value of Defaul tStructure (as well as some other
values) by using the Swi tchStructureTo function.

In[47]:= SwitchStructureTo[Ring]

Introduction to AbstractAlgebra 251

Out[47]= Ring

• If the default value is the desired value, then we can use Z without mention of
the intended structure.

In [48] : = Z [5]

Out[48]= Ringoid[{O, 1, 2,3, 4}, Mod[#1+#2, 5] &, Mod [#1 #2, 5] &]

• If, however, we are in the Rings context and wish to use Z to create a group,
we simply add the option Structure ~ Group.

In[49]:= Z[5, Structure ~ Group]

Out[49]= Groupoid[{O, 1, 2, 3, 4}, Mod[#1+#2, 5] &]

• This method is fine for one evaluation, but there are other approaches for
multiple evaluations. If only Z (or some other function) is affected, use the
SetOptions command. For example, if the default is Ring and we wish to
consider the group Zn, we use the following.

In[50]:= SetOptions[z, Structure ~ Group]

Out[50]= {Mode -7 Computational, Structure -7 Group}

• Now we do not need to add the Structure option to obtain a group.

In[51]:= Z[5]

Out[51]= Groupoid[{O, 1, 2, 3, 4}, Mod[#1+#2, 5] &]

• We are still in the Rings environment, however.

In [52] := DefaultStructure

Out[52]= Ring

• If the focus is to switch from considering rings to considering groups, use the
Swi tchStructureTo function.

In[53]:= SwitchStructureTo[Group]

Out[53]= Group

• The Structure option works similarly for variations of the Z function.

In [54] := Z [10, 2, Structure ~ Ring]

Out[54]= Ringoid[{O, 2, 4,6, 8}, Mod[#1+#2, 10] &, Mod[#1#2, 10] &]

Although the only acceptable values for the Structure option of Z and other functions
are Group and Ring, the Swi tchStructureTo function allows the variants
Groups, Groupoid, Rings, and Ringoid.

Chapter 2

Groupoids

2.1 Forming Groupoids

As we saw in chapter 1, there are several means by which Groupoids can be formed.
Here we consider these methods in detail and consider all the available options.

FOrmGroupoid [{ els} I op] use when the list of elements and the operation are known

GenerateGroupoid [use when a list of generators and the operation are known
{gens} lOP]

FormGroupoidByTable [u e when the list of elements and Cayley table are known
{ els} I { row I , row2 I •• • } 1
FormGroupoidFromCycles [use when a list of permutations written as cycles is known
{cycles} J

RandomGroupoid [n, k] use when a random groupoid of order n is desired;
k takes on a value from 1 to 3 specifying the level of
randomness

Methods of forming Groupoids.

The syntax for the FormGroupoid function requires the first parameter to be a list of
elements and the second parameter to be the (binary) operation. An optional third parame­
ter is used to indicate the symbol used to represent the operation; the default value is * if
none is given. After these parameters, we can add a variety of options.

• The third parameter is optional and defaults to *.
In[l) := {OperatorSymbol[FormGroupoid[{2, 3}, Plus]],

Operator Symbol [FormGroupoid [{2, 3}, Plus, "+"]]}

Ou t [1) = {*, +}

Groupoids 253

• 2.1.1 FormGroupoid

ForrnGroupoid [
{ els } , op]

FOrrnGroupoid[
{els) , op, sym]

ForrnGroupoid[
{ els} , op, opts]

ForrnGroupoid[
{ els} , op, S\'I1l, opts]

form a Groupoid with element leIs} and
operation op u ing ... a the operator symbol

form a Groupoid with elements leis} and
operation op using s)'m as the operator symbol

form a Groupoid with element. leis}
and operation op using the option, given by opt

form a Groupoid with lemen! leis} and operation op
using sym as the operator symbol and the option opt

Variations in using Fo rmGroupo i d .

option name

Cay 1 eyForrn

ForrnatElernents

ForrnatOperator

Generators

GroupoidDescr \
iption

GroupoidNarne

IsAGroup

KeyForrn

MaxElemen tsTo "
List

wideElernents

Options for Fo r mGr o u poid .

default value

OutputForrn

False

True

{ }

"TheGroup"

False

InputForrn

50

False

specifies how to format elements appearing
in a ayley table

di\plays element. or format'; them
to -Elements-

display the operator or formats it
to -Operation-

list of generator of the groupoid, if known

brief de criplion of the group id

name of the gr upoid. if available

specifie whether w can a ume
the gr upoid i a group

sp 'cifies how to format element appearing in
a key when a Cayley table is formed with a
gr up id that ha WideElements set to True

. pecilie . the number of elements to Ii ·t before
the elements are automatically formatted

. pecifies whether the element· are considered too
wide to fit into a ayley table, initiating a key
to be set up

• Typically, we want the elements of a groupoid formatted if there are too many
elements to list or the elements themselves are large and take a lot of space to
display, MaxElernentsToList handles the first problem and is illustrated

254 User's Guide

later. When a groupoid is defined, we need to determine case by case whether
the listing of the elements should be suppressed. In this example, we unnecessar­
ily suppress the elements.

In [2] : = Gl = FormGroupoid [{2, 4, 6},
Plus, n+n, FormatElements ~ True,
FormatOperator ~ False, GroupoidName ~ "ex. ln,
GroupoidDescription ~ "illustrates suppressed elements"]

Out[2]= Groupoid [{-Elements-}, Plus]

• When InnerAutomorphismGroup is used, the elements are usually
formatted.

In[3]:= G2 = InnerAutomorphismGroup[Dihedral[4]]

Out[3]= Groupoid [{-Elements-}, -Operation-]

• We can always view the elements by using the Elements function.

In[4]:= Elements [G2]

Out[4]= {Morphoid[Conjugation by 1, -D[4]-, -D[4]-],
Morphoid[Conjugation by Rot, -D[4]-, -D[4]-],
Morphoid[Conjugation by Ref, -D[4]-, -D[4]-],
Morphoid[Conjugation by Rot**Ref, -D[4]-, -D[4]-]}

• Although FormatElements defaults to False, if the number of elements
exceeds MaxElementsToList, the list of elements is formatted. For some
groups with wider elements (permutations, for example), it may be desirable to
set the default value lower than 50.

In[5]:= {Z[50], Z[51]}

Out[5]= {Groupoid[{O, 1,2,3,4,5,6,7,8,9,10,11,12,13,14,
15,16,17,18,19,20,21,22,23,24,25,26,27,28,
29,30,31,32,33,34,35,36,37,38,39,40,41,
42,43,44,45,46,47,48, 49}, Mod[#1+#2, 50] &J,

Groupoid [{-Elements-}, Mod [#1 + #2, 51] &] }

• Every Groupoid needs to be formed with at least a set of elements and an
operation. Sometimes the Mathematica representation of the binary operation
conveys insight into how the operation works. For example, when we consider
Z5, the operation is shown as Mod [#1 + #2, 5] &. Even if we do not know
that & indicates that a pure function is being used and that #1 and #2 indicate
locations for formal parameters, it should be fairly clear that we are combining
two inputs under mod 5 addition.

In[6]:= Z [5]

Out[6]= Groupoid[{O, 1, 2, 3, 4}, Mod[#1+#2, 5] &]

Groupoids 255

• On the other hand, there are occasions where the actual Mathematica definition
is only a distraction to understanding the operation. For example, consider the
following direct product of the groups Zs and U4 . Here the operation is sup­
pressed.

In[7] : = G3 = DirectProduct[Z[S] , U[4]]

Out[7]= Groupoid[{{O, 1}, {a, 3}, {1, 1}, {l, 3}, {2, 1},
{2, 3}, {3, 1}, {3, 3}, {4, 1}, {4, 3}}, -Operation-]

• W can view the operation by using the Operation function; it should be clear
why the operation is suppressed in this case.

In[8]:= Operation[G3]

Out[8]= MapThread[#1[#2, #3] &,

{Operation /@ {Groupoid[{O, 1, 2, 3, 4}, Mod[#1+#2, 5] &],

Groupoid[{l, 3}, Mod [#1 #2,4] &]}, #1, #2}] &

• By default, when a groupoid does not have WideElements set to True, the
actual elements appear in the body of the Cayley table (and are colored accord­
ing to the elements listed on the top and left sides).

In[9]:= CayleyTable[Gl, Mode ~ Visual]

For each element, a different color is used.
The entries in the table corresponding to the
elements are then colored and labeled accordingly.

ex. 1 x + y

8

10

12

Out[9]= {{4, 6, 8}, {6, 8, 10}, {8, 10, 12}}

• When direct products are fonned, the option WideElements ~ True is
automatically added, which causes a key to be used when CayleyTable is
called.

In[8]:= CayleyTable[G3, Mode ~ Visual];

256 User's Guide

KEY for Z[5] x U[4] : label used ~ element:
{gl ~ {a, l}, g2 ~ {a, 3 } , g3 ~ {l, l}, g4 ~
{ 1, 3}, g5 ~ {2, l } , g6 ~ {2 , 3} , g7 ~ {3,
l}, g8 ~ {3, 3 } , g9 ~ {4, l}, glO ~ {4, 3}}

Z (5) x U(4)

• We add the option WideElements ~ True whenever a groupoid is being
formed whose elements may be too wide to fit in the table. Here we form a new
groupoid, G4 , based on the elements of the symmetric group S3 but with a
twisted operation: given two triples (permutations in S3 are given as ordered
triples), the result of this operation is the triple {maximum of the elements in
the first coordinate, minimum of the second coordinates, add I to the absolute
value of the difference of the third coordinates} .

In[9] : = CayleyTable[(G4 = Fo~Groupoid[Elements[Symmetric[3]],
{Max[First[ll], First[12]], Min[ll[[2]], 12[[2]]],
Abs[Last[ll] - Last[12]]+1}&, WideElements ~ True]), Mode
~ Visual]

KEY for TheGroup: label used ~ element: {gl ~
{l, 2, 3 } , g2 ~ {l, 3, 2}, g3 ~ {2, 1, 3},
g4 ~ {2, 3, I}, g5 ~ {3, 1, 2}, g6 ~ {3, 2, l }}

MIA indicates that an element is not in the domain, so
it cannot be keyed; see output for actual values .

Groupoids 257

TheGroup x * y

Out[9]= {{ {L 2, 1} , {l, 2, 2} , {2, 1, 1}, {2, 2, 3},
{3, 1, 2} , {3, 2, 3} } , {{L 2, 2} , {1, 3, 1},
{2, 1, 2}, {2, 3, 2} , {3,L1}, {3, 2, 2}},

{ {2, 1, 1} , {2, 1, 2} , {2,L1}, {2, 1, 3},
{3, 1, 2} , {3, 1 , 3}}, {{2, 2, 3}, {2, 3, 2},
{2, 1, 3} , {2, 3, 1} , {3, 1, 2}, {3, 2, 1}},

{ {3 , 1, 2}, {3, 1, 1}, {3, 1, 2}, {3, 1, 2},
{3,·1,1}, {3, 1, 2}}, {{3, 2, 3}, {3, 2, 2},
{3, 1, 3}, {3, 2, 1}, {3, 1, 2}, {3, 2, 1}}}

• While the Cayley table makes it clear that this is not a group, we can also ask
whether it is.

In[12]:= GroupQ[G4]

Out[12]= False

• When forming a groupoid, if it is known that the structure is a group, we can
specify it by using the IsAGroup option. This may save time for future
operations that require testing whether the structure is indeed a group.

In[13]:= {Timing [GroupQ [FormGroupoid[
{I, -1, I, -I}, Times, IsAGroup ~ True]]],

Timing[GroupQ[FormGroupoid[{l, -1, I, -I}, Times]]]}

Out[13]= {{O.0333333 Second, True}, {O.lSecond, True}}

• When a groupoid is formed and wideElements is set to True, we may also
wish to consider the form the key should take. Usually the default of Input­
Form works well, though occasionally OutputForm is better.

In[14]:= G5 = FormGroupoid[{{{l, O}, {O, I}}, {{I, O}, {O, 2}},
{{I, O}, {O, 3}}, {{I, O}, {O, 4}}, {{4, O}, {O, I}},
{{4, O}, {O, 2}}, {{4, O}, {O, 3}}, {{4, O}, {O, 4}}},

Mod[#1.#2, 5] a, WideElements ~ True, KeyForm ~ TeXForm]

258 User's Guide

Out[14]= Groupoid[{{{l, A}, {a, 1}}, {{1, a}, {a, 2}}, {{1, A}, {a, 3}},
{{1, A}, {a, 4}}, {{4, a}, {a, 1}}, {{4, a}, {a, 2}},
{{4, O}, {a, 3}}, {{4, O}, {a, 4}}}, -Operation-]

• Rarely would we use KeyForm ~ MatrixForm, even if matrices are
involved; TeXForm is even worse. Is G5 a group? If so, to what group is it
isomorphic?

In[15]:= CayleyTable[GS, Mode ~ Visual];

KEY for TheGroup: label used ~ element: {gl ~ \{ \{ 1,

O\} ,\ { O,l\} \} , g2 ~ \{ \{ 1,O\} ,\{ O,2\} \} ,

g3 ~ \ { \ { 1, ° \} ,\ { 0, 3 \} \} , g4 ~ \ { \ { 1, ° \} ,\ { 0, 4 \} \} , g5 ~ \ { \ { 4, ° \ } ,\ { 0, 1 \} \} ,
g6 ~ \{ \{ 4,O\} ,\{ O,2\} \} , g7 ~ \{ \{ 4,

O\} ,\{ O,3\} \} , g8 ~ \{ \{ 4,O\} ,\{ O,4\} \}

• 2.1.2 GenerateGroupoid

In addition to the FormGroupoid function, there are two other general means of
forming groupoids. These are GenerateGroupoid and FormGroupoidByTable.

In contrast to FormGroupoid, for which we provide a list of elements and an operation,
GenerateGroupoid requires a list of generators and an operation. The cyclic and
dihedral groups are formed using this function. The syntax for GenerateGroupoid is
similar to that for FormGroupoid.

GenerateGroupoid[
gens } , op]

GenerateGroup oid [
{gens } , op t sylll t opts 1

Variations in using GenerateGroupoid.

form a Groupoid with generator tgens} and operation op
u. ing * a the operator ymbol

form a Groupoid with generators tgens} and operation op
using sym a the operator symbol and the options opts

Groupoids 259

The options for GenerateGroupoid are also similar to those for FormGroupoid,
with one additional option.

option default velue

SizeLimit 25 pecifie the maximum number
of element that will be generated

Additional option for GenerateGroupoid.

If, while generating a groupoid, the size of the set exceeds the bound SizeLimit, the
process is aborted. The motive for this option is to avoid inadvertently creating arbitrarily
large sets.

• We could define Zn using GenerateGroupoid (but FormGroupoid is
actually used).

In[16J:= newZ[n_] := GenerateGroupoid[{l}, Mod[#l + #2, n] &:];

newZ[S]

Out[16]= Groupoid[{O, 1,2,3, 4l. -Operation-]

• For another example, first observe that U20 is not cyclic and has eight elements.

In[17J:= {U[20], CyclicQ[U[20]]}

Out[17]= {Groupoid[{1, 3, 7, 9,11,13,17, 19}, Mod[#l #2,20] &],
False}

• U20, however, can be generated by the elements 3 and 11, but not by the
elements 3 and 7.

In[18]:= {Elements[GenerateGroupoid[{3, 11}, Mod[#l #2, 20] &:]]

Elements[tJ[20]],
GenerateGroupoid [{3, 7}, Mod [#1 #2, 20] &:,

FormatOperator ~ False]}

Out[18]= {True, Groupoid[{l , 3 , 7, 9l. Mod[#l#2, 20] &]}

• To what group is the following isomorphic?

In[19J:= GenerateGroupoid[
{{ {1, O}, {O, 7}}, {{4, O}, {O, 1}}}, Mod[#1.#2, 9] &:]

Out(19J= Groupoid[{ {{l, O}, {O, 1} } ,
{{1, O} , {O, 4}} , {{l, a}, {O , 7}}, {{4, O}, {O, 1}},
{{4, a}, {O, 4}}, {{4, a}, {O, 7}l. {{7, O}, {O, 1}},
{ {7, o}, {O, 4}l. {{7, o}, {O, 7}}}, -Operation-]

260 User's Guide

• 2.1.3 FormGroupoidByTable

The third general means of forming a groupoid is with the FormGroupoidByTable
function. As the name implies, this function takes as inputs a set of elements and a Cayley
table (as opposed to an operation). This is useful when the operation of the groupoid can
be more easily represented by a table then by a specific function of two variables.

FormGroupoidByTable [
{els } I table 1

FormGroupoid ByTable [
{els } , table, sym I opts 1

Variations in using FormGroupoidByTable.

form a groupoid with element! leIs) and operation
implicit in table, u ing • ill the operator ymbol

form a groupoid with element · leis) and operation
implicit in table. u ing sym the operator ymbol
and the option opt

• For example, if we wish to consider the Klein 4 group using the elements
Ie, a, b, el, then it is easier to give the table to reflect the operation than to
devise a function that establishes it. Indeed, the built-in group Klein4 is done
in this manner.

In(20):= G = Klein4

Klein4: : warning
The elements e, a, b, c are considered strings and thus

need to have double quotes around them when being used.

Out(20)= Groupoid [{e , a , b , c} I -operation-]

• The foregoing warning simply instructs the user to treat the elements as strings
when using them in functions. Thus, if we wish to determine the inverse of b in
this group, we would need to enter it as "b".

In(21):= Grouplnverse[G, nbn]

Out(21)= b

• The options for FormGroupoidByTable are similar to those of Form­
Groupoid; here is an illustration using some options.

In (22) : = CayleyTable [FormGroupoidByTable [
{2, 3, 6}, {{2, 3, 3}, {3, 2, 6}, {6, 6, 2}},
n+n, GroupoidName 4 nexample n ,

IsAGroup 4 False], MOde 4 Visual]

Groupoids 261

example x + y

L>< 2 3

2 2 3 3

3 3 2

2

Out[22]= {{2, 3, 3}, {3, 2, 6}, {6, 6, 2} }

• 2.1.4 FormGroupoidFromCycles and RandomGroupoid

There are two other means of forming groupoids, both having specialized uses. The first
is FormGroupoidFromCycles and the second is RandomGroupoid.

FormGroupoidFrom ...
Cycles [cycles, opts]

fonn a groupoid of permutation based on the Ii t of cycle
(or product of cy Ie) in cycles u ·ing th option given by opts

Using FormGroupoidFromCycles.

The options for FormGroupoidFromCycles are similar to FormGroupoid, with
the addition of the Produc tOrder option, since we are working with permutations.

option default value

ProductOrder RightToLeft

Additional option for FormGroupoidFromCycles.

pecifie the direction in which the
permutation should be multiplied

• Here we form a groupoid by listing the elements as either cycles or products of
cycles (using @ as an infix operator for multiplying cycles).

In[23]:= G = FormGroupoidFromCycles[{Cycle[l], Cycle[1,3,2] @
Cycle[4,6,5] @ Cycle[7,8], Cycle[1,3,2] @ Cycle[4,6,5] @
Cycle[8], Cycle[1,2,3] @ Cycle[4,5,6] @ Cycle[8],
Cycle[1,2,3] @ Cycle[4,5,6] @ Cycle[7,8],
Cycle[7,8]}]

Out[23]= Groupoid [{ { 1, 2, 3, 4, 5, 6, 7, 8 },

{3, 1, 2, 6, 4, 5, 8, 7}, {3, 1, 2, 6, 4, 5, 7, 8} ,
{2, 3, 1, 5, 6, 4, 7, 8} , {2, 3, 1, 5, 6, 4, 8, 7} ,

{l, 2, 3, 4, 5, 6, 8, 7 } }, -Operation-]

262 User's Guide

• If we use a random check on associativity (using RandornAssociativeQ),
the function ProbableGroupQ checks to see if G is (probably) a group.

In[24J:= [ProbableGroupO[G], Grouplnfo[G]]

Out[24J= {True, {TheGroup, this is a group of permutations,
the set is closed under the operation,
the left identity is {I, 2, 3, 4, 5, 6, 7, a},
the right identity is {I, 2, 3, 4, 5, 6, 7, a},
the identity is {I, 2, 3, 4, 5, 6, 7, a},
every element has an inverse,
the operation is probably associative with

these elements, this is (probably) a group}}

RandornGroupoid can be used to generate groupoids of various random orders and
characteristics.

RandornGroupoid [n.11

RandornGroupoid[n.2)

RandornGroupoid[n.3)

Variations in using RandomGroupoid.

form a groupoid of order n based on a random table of n2

elements from the Ii t of generic clements {g I • g2 •.•.• gn}

form a random groupoid of order n where each row
i a permutation of n elements

form a random groupoid of order n where each
column i a permutation of n elements

• Here we illustrate the differences among the three types of random groupoids of
order three available with this function.

In [25J : = CayleyTable [{RandomGroupoid [3, 1], RandomGroupoid [3, 2],
RandomGroupoid[3, 3]}, Mode ~ Visual];

Randoml x * y Random2 x * y Random3 x * y

Groupoids 263

2.2 Structure of Groupoids

The Mathematica equivalent of a groupoid is an object whose head is Groupoid and has
two arguments. The first argument is the list of elements, and the second is the operation
for the groupoid. (Actually, there is a third argument that is appended on creation that is
suppressed and is used for internal purposes. This is further impetus for defining
groupoids with one of the functions designed for this purpose. While giving true confes­
sions, the real head is the symbol groupoid, which is private to the Core package, but
is formatted to look like Groupoid.)

return lhe element in the group id G Elements[G]

Elements [return a list of the element in the groupoid (01 G2 •... G"I
lG,. Gz G"I I

identical to Elements (G]

return lhe operation in the groupoid G

Domain (G]

Operation [G]

Operation!
lG,. Gz ... · G"I I

return a Ii l of the operation. in the groupoid lG I , G2 • ... G" I

Functions for working with the structure of a Groupoid.

• The elements in any groupoid are easily retrieved.

In [26J := Elements[AlternatingGroup[4]]

Out [26J = { {I, 2, 3, 4}, {1, 3, 4, 2}, {l, 4, 2, 3} , {2, 1, 4, 3},
{2 , 3, 1, 4} , {2, 4, 3, 1 }. {3, 1, 2, 4}. {3 , 2 , 4, I }.
{3, 4 , 1, 2}, {4 , 1, 3, 2}, {4, 2, 1, 3} , {4 , 3 , 2, I}}

• For two or more groupoids, simply provide a list of groupoids to either Ele­
ments or Operation. (Many functions in AbstractAlgebra can take a
list of arguments like this.)

In [27 J : = {Elements [{Dihedral [3], TwistedZ [13] }] ,
Operation[{Z[9], U[12]}]}

Out[27J= {{{I, Rot, Rot 2 , Ref, Rot**Ref, Roe **Ref},

{O, 1, 2,3,4,5,6,7,8,9,10, ll } },
{Mod[#l + #2, 9] &, Mod[#l #2, 12] &}}

Although the data structure Groupoid consists of just elements and an operation, there
are several other functions related to the structure of a groupoid.

• Every Groupoid has a name, even if it is the generic name TheGroup.

264 User's Guide

In[28J:= Map [GroupoidName, someGroupoids =
{Z[lO], DihedralGroup[5], RootsOfUnity[8],
MinTaker[5], FOrmGroupoid[{3, 4}, Plus]}]

Out [28J = {Z [10], D [5] , RootsOfUni ty [8] , MinTaker [5] , TheGroup }

• Additionally, every Groupoid has a symbol for its operator, defaulting to * if
not specified.

In[29J:= Map [OperatorSymbol, someGroupoids]

Ou t [29 J = {+ , *, *, *, *}

GroupoidName [G)

OperatorSyrnbol [G)

SortGroupoid[G)

ReorderGroupoid[
G, llewOrder]

El ementQ [x, G)

ElementsQ [els. G)

GeneratingSet [G)

return the name of the groupoid G

return the ymbol u ed for the operator of G

return the groupoid G with the element sorted according to
the Sort function

return the groupoid G with the elements
in the order given by the Ii t lleIVO,der

give True if x i an element of the groupoid G.
and False otherwi e

give True if all member of els are elements of
the groupoid G. and False otherwi e

give a . et of generator for determining G,
if known and II otherwi e

Functions related to the structure of a groupoid.

• While SubgroupGenerated returns its list of elements in the order they are
generated, applying SortGroupoid to the result reorders them.

In[30J:= {G = SubgroupGenerated[U[7], 3], SortGroupoid[G]}

Out[30J= {Groupoid [{3 , 2, 6, 4, 5, 1 }, Mod[#l #2, 7] &],
Groupoid [{1 , 2, 3, 4, 5, 6 }, Mod [#1 #2, 7] &] }

• If we want the elements to appear in some other order, it can always be
arranged with the ReorderGroupoid function. Note that this function only
changes the order in which the elements appear; there is no structural change to
the mathematical object.

In[31J : = {H= Randomize[{l, 2, 3, 4,5, 6}], ReorderGroupoid[G, H]}

Out[31J= {{1, 5, 3 , 4 , 2, 6},
Groupoid[{l, 5, 3,4,2, 6}, Mod[#1#2 , 7] &] }

Groupoids 265

• Given any object (or list of objects), we can determine if it belongs to some
groupoid.

In[32]:= {ElementQ[23, U[99]], ElementsQ[{23, 33}, U[99]]}

Out[32]= {True, False}

• Here we see the generating sets for the group D5 when it is formed in two
different ways.

In[33]:= Map [GeneratingSet,
{DihedralGroup [5, Form -+ Permutations], DihedralGroup[5]}]

Out[33]= {{{2, 3, 4,5, 1}. {5, 4, 3, 2, 1}}. {Rot, Ref}}

2.3 Testing the defining properties of a group

• 2.3.1 The four standard functions

The standard definition of a group is that it is a set of elements with an operation such that
the set of elements is closed under this operation (commonly stated as being a binary
operation), there is an identity element, every element has an inverse, and the operation is
associative. There are Boolean functions corresponding to each of these requirements.

ClosedQ [G)

ClosedQ [
(G I, Gz , ... , Gil })

HasldentityQ[G]

HaslnversesQ[G]

AssociativeQ[G)

give True if the groupoid G i clo ed
under it operation, and False otherwi e

list of value True or False depending on the
values of ClosedQ[G;]

give True if G ha an identity, and False otherwi e

give True if every element in G has an inver e,
and False otherwise

give True if the operation of G is associative,
and False otherwise

Functions for testing the basic properties of a groupoid.

As with ClosedQ, the functions HasldentityQ, HaslnversesQ, and Associa­
t i veQ can also take a list of groupo ids and return a list of Boolean values corresponding
to the values of the function on each groupoid.

The Textual and Visual modes are available for each of these four functions. Gener­
ally, we do not need to add the Structure option; while working with groups the
Group value is automatically used, and when working with rings the Ring value is used.
(This option affects only the Textual mode.)

266 User's Guide

option name default v8lue

Mode Computational specifie what typ of information, if any hould
be given in addition to the result of the computation

Structure Group pecifie. if the underlying structure
i considered a a groupoid or a ringoid

Options for the four property-defining functions when working with groupoids.

• Consider the following groupoids.

In[34J:= Clear[G]
{Gl = FormGroupoid[{l, 2, 3, '}, Plus, "+n],
G2 = FormGroupoidByTable[

{a, /3, y}, {{y, a, f3}, {a, /3, y}, {a, 'I, /3}},
CayleyFo~ ~ StandardFo~]}

Out [35J = {Groupoid [{1, 2, 3, 4}, -Operation-],
Groupoid [{ex, (3, y}, -Operation-]}

• The groupoid G1 is not closed under the operation Plus. When using the
Textual mode, an example illustrating nonclosure is given when the result is
False.

In[36J:= ClosedQ[G1 , Mode ~ Textual]

We say a set S is closed under an
operation op if whenever we have x and y
in S, we also have op[x,y] (or x-op-y) in S.

In this case, the Groupoid TheGroup is NOT closed.
For example, since 1 + 4 = 5 (which is not in
the set), it is clear that it is not closed.

Out[36J= False

• When using the Visual mode with ClosedQ, the products in the table are
colored yellow if they belong to the groupoid, and red otherwise.

In[37J:= ClosedQ[G1 , Mode ~ Visual]

All the elements marked with yellow are original
elements in the set . Those in red are from outside.

Groupoids 267

TheGroup x * Y

Out[37]= False

• When the Visual mode is used with multiple groupoids, the graphics are
arranged with GraphicsArray.

In[38]:= ClosedQ[{G1 , G2 , U[15], Zx[8]}, Mode ~ visual]

TheGroup x * y TheGroup

~ a {3 y

a y a {3

{3 a [3 y

y a y (3

u 15) x * y Zx(8) x * y
~ 1 2 4 7 811 1 14 ~ o 1 2 3 4 5 6 7
1 1 2 4 7 81 1 1~ 0 0 0 0 o 0 0 o 0
2 2 4 8 1~ 1 7 1 1 1 0 1 2 3 4 5 6 7
4 4 8 11 214 71 2 0 2 4 6 0 2 4 6
7 7 l41 41 2 1 8 3 0 3 6 1 4 7 2 5
8 8 1 2 1 41 14 7 4 0 4 0 4 0 4 0 4

I1 l ll 7 14 2 1 1 8 4 5 0 5 2 7 4 1 6 3

11 11 7 1 V 8 4 2 6 0 6 4 2 0 6 4 2

11 114 1 1 8 7 4 2 1 7 0 7 6 5 4 3 2 1

Out[38]= {False, True, True, True}

• A group identity must be both a left identity and a right identity. Warning
messages may give additional information in case of failure.

In[39]:= HasldentityQ[{G1 , G2 }]

Identity::lfail : TheGroup does not have a left identity.

268 User 's Guide

Identity::rfail : TheGroup does not have a right identity.

Identity::fail : TheGroup does not have an identity.

Out[39)= {False, True}

• While the Textual mode of Hasldenti tyQ reveals the identity, if it exists,
the identity can also be obtained with the Identi ty function .

In[40):= Identity[G2 , Mode ~ Textual]

We say a Groupoid G has an identity e if
for all other elements g in G we have e * g =

g * e = g (where * indicates the operation) .

In this case, TheGroup has the identity B.

Out[40)= B

• The Visual mode illustrates how an identity is both a left and right identity.

In[41):= HasldentityQ[MinTaker[4], Mode ~ visual]

MinTaker[4] x * y MinTaker[4] x * y

1 2 3 4

1 1 1 1 1 1 1 11 1

2 1 2 2 2 2 122 2

3 1 2 3 3 3 123 3

1 2 3 4 4 123 4

red->left identity red->right identity

Out[41)= True

• FirstTaker is a groupoid with multiple right identities but no left identity.

In [42) : = HasldentityQ [FirstTaker [5]]

Identi ty:: lfail :
FirstTaker[5] does not have a left identity .

Identity : :rmultiple: FirstTaker[5] has
the following right identities: {l, 2, 3, 4 , 5 }.

Out[42)= False

• When a groupoid fails to have an inverse for all of its elements, the Textual
mode of HaslnversesQ reveals an example of such an element.

In[43) : = HaslnversesQ[G2 , Mode ~ Textual]

Groupoids 269

Given a Groupoid G, we sayan element g in G
has an inverse h if G has an identity e and g *
h h * g = e (where * indicates the operation) .

The Groupoid The Group contains some elements without
inverses . For example, 0 does NOT have an inverse.

Out[43]= False

• The Visual mode of HaslnversesQ connects elements that are inverses of
each other, using a loop for self-inversive elements. Which, if any, of these
groups are isomorphic?

In[44] : = HasXnversesQ[{U[8], U[10], U[12], Z[4]}, Mode ~ visual]

7

11

1

5

1

7

3 9

1

7

o

3

5 3 _._------. 1

2

Out[44]= {True, True, True, True }

• When a groupoid is not associative, the Textual mode illustrates triples that
do not obey this property.

In[45]:= AssociativeQ[G2 , Mode ~ Textual]

Given a structured set S (Groupoid or
Ringoid), we say the operation * is associative
if for every g, h, and k in S we have (g*
h)*k = g*(h*k), where * is the operation.

In this case, TheGroup is NOT associative since we
have (0*0)*0 = 0, which is not equal to ~ = o*(o*o)!

Consider the following table illustrating triples that do
not associate. Pay attention to the last two columns .

270 User's Guide

i j k (i*j) *k i* (j*k)

a a a a (3
a a ¥ (3 a
a ¥ a a ¥
a ¥ ¥ ¥ a
¥ a a ¥ (3

¥ a ¥ (3 ¥

Out[45]= False

• The Visual mode of Associati veQ chooses a triple of elements at random
and illustrates whether the operation is associative with this triple.

In[46]:= AssociativeQ[U[8], Mode ~ Visual]

(a * b) * c a * (b * c)

* *

/ '" / '" * 5 3 *
/ \ / \

3 3 3 5
Elements a, b, and c chosen at random.

(a * b) * c a * (b * c)

* *
/ '" /

3*3 5 3 3*5

(a * b) * c a * (b * c)

* *
/ '" / '" 1 5 3 7

(a * b) * c a * (b * c)

1*5 3*7

(a * b) * c a * (b * c)

5 5

The two results are equal.
Associativity is possible .

Out[46]= True

Groupoids 271

• 2.3.2 Related functions

There are a number of functions related to the four functions that handle the defining
properties of a group. Many of these functions have Textual and/or Vi sua 1 modes.

ClosedQ[G, H]

Function related to ClosedQ.

give True if H is a closed ub. (of the groupoid G
(under the operation of G), and False olherwi e

• The Visual mode of ClosedQ, when used with a subset, illustrates why the
result is True or False by coloring the products (sums) that are in the subset
yellow and those that are not red.

In [47] : = ClosedQ[Z[6], {O, 2}, Mode -+ Visual]

Z[6] x * y

1 3 4 5

1 3 4 5

3 5 0 1

2 4 5 0

4 0 1 2

5 1 2 3

0 2 3 4

Out[47]= False

• The FirstTaker function does not have a left identity.

In[48]:= LeftIdentity[FirstTaker[5]]

Out[48]= $Failed

• Although there are a number of right identities, the Righ tIden ti ty function
takes the "first" one.

In[49]:= {RightIdentity[FirstTaker[5]],
GroupIdentity[FirstTaker[5]]}

Out[49]= {l, $Failed}

The HasIdenti tyQ function checks for a two-sided identity. One-sided identity
functions are also available.

272 User 's Guide

HasLeftIdentityQ [G]

HasRightIdentityQ [G]

LeftIdentity [G]

RightIdentity [G]

GroupIdentity [Gj

Identity [G)

Functions related to Hasldenti tyQ.

give True if the groupoid G contains
a left identity, and False oth rwise

give True if the groupoid G contains
a right identity, and False otherwi e

give the left identity of the groupoid G,
if it exi t ,and $Failed otherwi e

give the right identity of the groupoid G.
if it exi t ,and $Failed otherwi e

give the (two- ided) identity of the groupoid G,
if it exi t, and $Failed otherwi c

id ntical t GroupIdenti ty [G]

• To determine if the element g2 has a left inverse in the cyclic group of order 5,
the following is used. (Note that the default generator g is a string and is thus
enclosed in quotes.)

In[50] : = LeftlnvertibleQ [CyclicGroup [5], IIgn2]

Out[50]= True

• Considering the element { { -1 , O}, {O, -1 } } in the quatemion group (represented
as matrices), we confirm that it is invertible.

In[51]:= InvertibleQ[
QuaternionGrOup[Form ~ AsHatrices], {{-l, O}, {O, -l}}]

Out[51]= True

• Since the element Ro t 2 * * Re f is a reflection in D5 , its right inverse is itself.

In [52] : = Rightlnverse [DihedralGroup [5], Rot2 * * Ref]

Out[52]= Rot 2 **Ref

• The Visual mode of the Inverses function uses loops for self-inversive
elements and line segments to connect pairs of elements that are inverses to
each other.

In[53]:= Inverses[QuaternionGrOup[Form ~ AsSymbols], Mode ~ visual]

Groupoids 273

e

ba"

b

Out[53]= {{e, e}, {a, a"3}, {a"2, a"2}, {b, ba"2}, {ba, ba"3}}

The HasInversesQ function checks for a two-sided inverse; checking for the one­
sided variety requires one of the following functions.

LeftInvertibleQ [G, Rl

LeftInverse [G, gl

RightInvertibleQ [G, g J

RightInverse [G, g]

InvertibleQ G, g)

GroupInverse r G, g]

Inverses [G]

Inverse [G, g j

Functions related to Haslnv ersesQ,

give True if the groupoid G contain the left
inverse for the element g. and False otherwi. e

give the left inverse of the element g in the
groupoid G. if it e its. and $Failed otherwise

give True if the groupoid G contain the right
in er,e for the element g. and False otherwi e

give the right inver. e of the element g in the
groupoid G. if it exist. and $Failed otherwise

give True if lh groupoid G contain the (two-. ided)
inverse for the element g. and False otherwi. e

give the (two-sided) inver:e of the element g
in the groupoid G. if it exi.ls. and $Failed otherwi e

Ii I pair, of the form {g. g II. when g ha an inver 'e.
or (g. no in er, el if g doe. not ha e an inverse

identical to GroupInverse [G, g J

• When an element does not have an inverse, it is paired with "no inverse."

In[54]:= I:nverses[Zx[6]]

Out[54]= {{D, no inverse}, {l. 1}, {2, no inverse},
{3, no inverse}, {4, no inverse}, {5, 5}}

Since the Associati veQ function checks all possible triples in the groupoid, the time it
takes to check these grows in proportion to the cube of the order of the groupoid. There

274 User's Guide

are faster methods, such as the Light test, that rely on using a generating set, but they are
not currently implemented in these packages. In most cases, if an operation is not associa­
tive, the property is violated by a large percentage of the possible triples.

RandomAssociati veQ [G] give True if the gr upoid G ati fie the
as ociati e property after testing 25 triple
at random, and False otherwi e

RandomAssociativeQ [G. II) give True if th groupoid G ati fie
the associative property after teo ting /I

triples at random. and False otherwi e

NonAssociatingTriples [G J giveali toftriples { a. b. c } such that (ll b)c *a (be)

Functions related to AssociativeQ.

• Lack of associativity is detected quite easily for the following groupoid, even
by testing only one triple.

In[55] := RandomAssociativeQ[G = FormGroupoid [{2, 3, 4o}, Subtract],

Out[55]= False

• The foregoing example works so well because all 27 possible triples fail
associativity.

In [56] := {nat = NOnAssociatingTriples[G], Length[nat]}

Out[56]= {{ {2, 2, 2}, {2, 2, 3}, {2, 2, 4} , {2, 3, 2},
{2, 3, 3}, {2, 3, 4}, {2, 4, 2}, {2, 4, 3},
{2, 4, 4}, {3, 2, 2}, {3, 2, 3} , {3, 2, 4}, {3, 3, 2},

{3, 3, 3}, {3, 3, 4}, {3, 4, 2} , {3, 4, 3}, {3, 4, 4},
{4, 2, 2}, {4, 2, 3}, {4, 2, 4} , {4, 3, 2}, {4, 3, 3},
{4, 3, 4} , {4, 4, 2}, {4, 4, 3}, {4, 4, 4 }}, 27}

1]

We have seen how to test individual properties of being a group. With one test, we can
check to see if a groupoid is indeed a group or not. If the groupoid is large, we can use the
random approach using ProbableGroupQ, which uses RandomAssociativeQ.
Additionally, there are structures called semigroups and monoids that have some of the
group properties; each ofthem can also be tested.

When GroupQ is called, it first tests to see whether the set is closed under the operation,
next whether there is an identity, then whether every element has an inverse, and finally
whether the operation is associative. On the first failure of a test, it returns False.

• The GroupQ function tests the four basic properties for being a group and
returns True or False accordingly.

In[57]:= GroupQ[TwistedZ [13]]

Out[57]= True

GroupQ[G)

ProbableGroupQ[G]

SemiGroupQ[G]

MonoidQ[G)

GroupInfo[G)

Related functions,

Groupoids 275

give True if the groupoid G ,atisfie the propertie of
a group. and False th rwi e

give True if the groupoid G ,atisfie' lh properties
of a group. u,ing RandomAssociati veQ G
~ r AssociativeQ GJ. and False otherwie

givc True if the groupoid G atisfies the properties
of a emigroup (clo ed and a ociative). and False otherwi 'e

give True if the groupoid G sali fie. the propertie
of a mon id (clo ed, as. ociative. and having an id ntily),
and False otherwi 'C

Ii 1 the accumulated faclS about the groupoid G (prefaced
wilh name and de 'cription, if available),
det rmined from various te Is done on G

• Either by adding Mode ~ Textual to the GroupQ function, or by using
GroupInfo afterwards, we can learn details about the result of testing the
four group properties.

In [58) := Grouplnfo [TwistedZ [13]]

Out(58)= {TwistedZ[13), the set is closed under the operation,
the left identity is 0, the right identity is 0,
the identity is 0, every element has an inverse,
the operation is associative with these elements,
this is a group}

• Replacing AssociativeQ with RandomAssociativeQ, Probable­
GroupQ is comparable to GroupQ.

In(59):= ProbableGroupQ[TwistedZ[12]]

Out(59)= False

• Consider the following groupoid.

In(60):= G = FormGroupoid[{-1, 0, 1}, Times]

Out(60)= Groupoid[{-l, 0, l}, -Operation-]

• What kind of structure is it?

In(61):= {GroupQ[G], MonoidQ[G], SemiGroupQ[G]}

Out(61)= {False, True, True}

276 User's Guide

Wl 2.4 Built-in groupoids

Although you are encouraged to try to build your own groupoids, there is a wide variety
that are predefined and can be created with a few keystrokes .

• 2.4.1 Groupoids based on the integers mod n

One of the simplest groups is 7ln , the group of integers under addition mod n.

Z [n]

Z (IZ,
Structure ~ Group]

Z [n,
Structure ~ Ring]

ZG [n)

ZR [n)

Z [{n, , 112, ••. , nk } 1

The z function.

group (or ring) of integer (0, 1,2, ... , n - IJ under
addition mod II (and multiplication mod 11), when
DefaultStructure i et to Group (Ring)

group of integer (0, 1, 2, ... , n - I) under addition mod n

ring of integer 10, I, 2, ... , tl - I} under addition
and multiplication mod n

identical 10 Z [11, Structure --) Group]

identical to Z [tl, Structure ~ Ring 1
return (Z[nd, Z[1l2], ... , Z[nt 11

Since tln can be viewed either as a group or as a ring, the current value of the global
variable Defaul tStructure specifies the interpretation.

• Since the current value of Defaul tStructure is Group, Z [5] returns the
group rather than the ring.

In[62J:= {DefaultStructure, Z[S]}

Out[62J= {Group, Groupoid[{O, 1, 2, 3, 4}, Mod[#1+#2, 5] &]}

• The current structure can be overridden by explicitly specifying the intended
Structure.

In [63 J : = Z [5, Structure -+ Ring]

Out[63J= Ringoid[{O, 1, 2,3, 4}, Mod [#1 + #2, 5] &, Mod[#1#2, 5] &]

• As shortcuts, ZG and ZR return tln as a group and a ring respectively, indepen­
dent of the current value of Defaul tStructure.

In[64J : = {ZG[S], ZR[S]}

Groupoids 277

Out[64]= {Groupoid[{O, 1, 2, 3, 4}, Mod[#1+#2, 5] &J,
Ringoid [{O, 1, 2, 3, 4}, Mod[#1+#2, 5] &, Mod [#1 #2, 5] &]}

There are two variations on the Z function, Z [n, k 1 and Z [n, I]. In both cases, the
result depends on the value of Defaul tStructure but can be overridden by the
Structure option.

Z [II, k]

Z [II, I)

Gaussianlntegers[II)

GaussianIntegersAd
ditive [II]

Variations of the z function.

if k i a di i or of II. the group (ring) of integer.
10. k. 2 k • ... , (T - I) kJ under addition mod 11 (and
multiplication mod II)

Gau . ian integers {a + b i I a, bElL,,} (group or ring)
under addition mod II (and multiplication mod 11)

identical to Z [n , I , S truc t ure ~ Ring)

identical to Z [1/ I I I Structure ~ Group)

• We can view the group 71.n visually as the elements on an n-hour clock.

In [65] := Z[8, Mode -+ Visual]

Think of the elements as the numbers on a (modified)
clock, where we view the last element, 8, as being
equivalent to zero. Addition of two numbers is just like
adding hours on the clock.

Out[65]= Groupoid[{O, 1,2,3,4,5,6, 7}, Mod[#1+#2, 8] &]

• A variation is to count by multiples of some divisor of n. Here we have the
multiples of two.

In [66] : = Z [8, 2]

Out[66]= Groupoid[{O, 2, 4, 6}, Mod[#1+#2, 8] &]

• Another variation is to consider the Gaussian integers, reduced by some
modulus. In this example, they are reduced modulo six.

278 User's Guide

In[67]:= Z[6, :I]

Out[67]= Groupoid[{O, i, 2i, 3i, 4i, 5i, 1, 1+i, 1+2i, 1+3i,
1+4i, 1+5i, 2, 2+i, 2+2i, 2+3i, 2+4i, 2+5i, 3, 3+i,
3+2i, 3+3i, 3+4i, 3+5i, 4, 4+i, 4+2i, 4+3i, 4+4i,
4 + 5 i, 5, 5 + i, 5 + 2 i, 5 + 3 i, 5 + 4 i, 5 + 5 i}, -Operation-)

• By adding the option Structure ~ Ring, we consider each of these as
Ringoids.

In[68]:= {Z[8, Structure ~ Ring],
Z[8, 2, Structure ~ Ring], Z[6, :I, Structure ~ Ring]}

Out[68]= {Ringoid[{O, 1, 2, 3, 4, 5, 6, 7},
Mod[#1 + #2, 8) &, Mod [#1 #2, 8) &),

Ringoid[{O, 2, 4, 6}, Mod[#1+#2, 8) &, Mod[#1#2, 8) &J,

Ringoid [{ 0, i, 2 i, 3 i, 4 i, 5 i, 1, 1 + i, 1 + 2 i, 1 + 3 i,
1+4i, 1+5i, 2, 2+i, 2+2i, 2+3i, 2+4i, 2+5i, 3,
3+i, 3+2i, 3+3i, 3+4i, 3+5i, 4, 4+i, 4+2i, 4+3i,
4+4i, 4+5i, 5, 5+i, 5+2i, 5+3i, 5+4i, 5+5i},

-Addition-, -Mu1tiplication-)}

• The functions z, u, and many others can take a list of indices to produce a list
of groupoids.

In[69]:= {Z[Table[k, {k, 3, '}]], U[{6, 7}]}

Out[69]= {{Groupoid[{O, 1, 2}, Mod[#1+#2, 3) &),
Groupoid[{O, 1, 2, 3}, Mod[#1+#2, 4) &)},

{Groupoid[{1, 5}, Mod[#1#2, 6) &),

Groupoid[{1, 2,3,4,5, 6}, Mod[#1#2, 7) &)}}

There are several other groupoids related to the z function.

Zx [II] integers 10, I, 2, ... , II - 11 under multiplication mod 11

Zx [/1, k] if k i a divi or of 11, the groupoid of integer
10, k, 2 k, ... , (T - I) kl under multiplication mod n

ZX [/J, I] Gaus ian integer {a.,.bil a, beZII } under
multiplication mod n

GaussianlntegersMu... identical to Zx [11, I]
1 tiplicati ve [II]

U [II] integer from 10, 1, 2, ... , t/ - 11 that are relatively
prime to n-the element in Zx [11] that are invenible

TwistedZ [Il] imeger 10, 1,2, ... , n - 2} with operation
Mod [x+y+ xy,l1] for element x and y

Functions related to the z function.

Groupoids 279

• The Groupoid Zx [n] is rarely a group since some elements are not invertible.
(Is it ever a group?)

In[70]:= {Zx[10], Inverses[Zx[10]]}

Out[70]= {Groupoid[{O, 1, 2, 3, 4, 5,6,7,8, 9}, Mod[#1#2, 10] &],

{ { 0, no inverse}, {1, 1}, {2, no inverse},
{3, 7}, {4, no inverse}, {5, no inverse},
{ 6, no inverse}, {8, no inverse}, {9, 9}}}

• The elements in Zx [n] that have inverses are exactly the elements in U [n] .

In [71] := U[10]

Out[71]= Groupoid[{l, 3, 7, 9}, Mod[#1#2, 10] &]

• To obtain the elements in Un, we can simply form the list of elements {O, 1, ... ,
n - 1 } and then select those whose gcd with n has the value 1. The following
code accomplishes this (and is used in the definition of u).

In [72] := n = 10;
Range [0, n-1] II Select[#, (GCD[#, n] == 1) &:] &:

Out[73]= {l, 3, 7, 9}

• Z [n, k] and Z [n, I] have their parallels in the Zx function.

In[74]:= {Zx[10, 2], Zx[4, I]}

Out[74]= {Groupoid[{O, 2, 4, 6, 8}, Mod[#1#2, 10] &],
Groupoid [{O, i, 2 i, 3 i, 1, 1 + i, 1 + 2 i, 1 + 3 i, 2, 2 + i,

2 + 2 i, 2 + 3 i, 3, 3 + i, 3 + 2 i, 3 + 3 i}, -Operation-]}

• The TwistedZ groupoid has an operation that is quite different from the
others.

In [75]:= {G = TwistedZ [13], Operation [G]} I I ColumnForm

Out[75]= Groupoid[{O, 1, 2, 3,4,5,6,7,8,9,10, ll}, -Operation-]

Mod[#1+#2+#1#2, 13] &

• This groupoid is sometimes a group, and sometimes not. For what values of n is
TwistedZ [n] a group?

In[76]:= Table[{n, GrOupQ[TwistedZ[n]]}, {n,l1, 15}]

Out[76]= {{ll, True}, {12, False},
{13, True}, {14, False}, {15, False}}

280 User 's Guide

• 2.4.2 Other numeric-based groupoids

There is a number of groupoids whose elements are Range [n 1 or Range [m, n 1 .

MaxTaker(II)

MaxTaker (m, 11)

MinTaker(lI]

MinTaker (111, 11)

FirstTaker[II)

The Taker family of functions .

elements are the integer. I I, 2, ... , III and operation return
the maximum of the two inputs

elements are the integers 1m, m+ 1,111+2 III and
operation returns the maximum of the two input

elements are the int ger. {I, 2 •.... III and operation return
the minimum of the two input.

lem nls ar the int ge \111,111+ I. m+2 III and operation
return th minimum f the two inputs

elem nt. are the int ger \1. 2 III and operation
return the fir t of the two input

• Viewing a Cayley table of these Taker groupoids is an easy way of seeing
their operations at work.

In[77j:= CayleyTable[{MaxTaker[5], MinTaker[5], FirstTaker[5]},
ShowName -+ False, Mode -+ Visual];

There are also several groupoids based on the divisors of the integer n.

MeetDivisors (II)

JoinDivisors(n)

MixedDivisors [lI)

The Divisors family of functions.

element are the divior of /I and the operation
return. the GCD of the two input

elements are the divi . ors of /I and the operation
returns the LCM of the two inputs

element are the divi .. or of II and the operation
return the LCM GCD of the two inputs

Groupoids 281

• Viewing a Cayley table of these Di vi sors groupoids is again a good way of
seeing their operations at work.

In[78}:= CayleyTable[{MeetDivisors[ls], JoinDivisors[ls],
MixedDivisors [ls]}, ShowName -+ False, Mode -+ Visual];

x GCD Y x LCM y

~IIII
111111
BElli

x mixed y

• While MeetDivisors and JoinDivisors do not appear to be groups
(with n = 15), MixedDi visors does. What about other values of n for
MixedDivisors?

In[79}:= Table[{n, GroupQ[MixedDivisors[n]]}, {n, 10, lS}]

Out[79}= {{lO, True}, {ll, True}, {12, False}, {13, True}, {14, True},
{l5, True}, {l6, False}, {17, True}, {18, False}}

RootsOfUnity [n)

IntegerUnits

GaussianUnits

RootsOfUni ty functions.

olution of X' = 1, under multiplication

olution of x2 " 1, under multiplication

olutions of X' = I, under multiplication

• Here we compare the elements in IntegerUnits with RootsOf-
uni ty [2] and those in Gaussianuni ts with RootsOfUni ty [4]. Then
we ask if these are the same sets in both cases.

In[80}:= {els " Map[Elements, {{Integerunits, RootsOfunity[2]},
{Gaussianunits, RootsOfunity[4]}}, 1],

Apply [SameSetQ, els, {l}]}

Out[80}= {{{{l, -I}, {l, -I}}, {{l, -1, i, -i}, {I, i, -1, -i}}},

{True, True}}

282 User's Guide

• Observe that the elements of RootsOfUni ty [5] are evenly distributed on
the unit circle.

In[81J:= RootsOfUnity[S, Mode ~ visual]

These are the (complex) numbers that are solutions to the
equation x A 5 - 1 = O. The operation is ordinary (complex)
multiplication, which in this case simplifies to adding
the arguments (angles relative to the positive x-axis) .

(21)/5 Pi
E

(4
E

(-4
E

(-2 1) / 5 Pi

Out[8l]= Groupoid[{l, e -'-¥- , e i.¥- , e -i.¥- , e --'-¥- } , e i (Ar g [#l] +Arg [# 2]) &]

• 2.4.3 Groups of permutations

Given a list of integers T = {l. 2. 3 •. . .• nl. a permutation on T is a bijective function
fr : T ~ T. The collection of all permutations on T is called the symmetric group on T.
Each permutation can be more easily viewed by considering the ordered set of images of
the set T under fr .

• The group S3 is obtained as the set of permutations of the elements {I . 2. 3 }
under permutation multiplication.

In[82]:= Gl = Symmetric[3]

Out[82]= Groupoid[{{i, 2, 3}, {l, 3, 2}, {2, 1 , 3},
{2, 3, i}, {3, 1, 2}, {3, 2, i}}, -Operation-]

Symmetric(n]

Symmetric [n, opts]

S [n, opts]

symmetricGroup [n, opts]

PermutationGroup [n, opts]

SymmetricGroup [list, opts]

PermutationGroup [
list, opts I

Symme t r i c and related functions.

Groupoids 283

elements are all permutation of 11.2.3 •...• n} and the
operation is Mul tiplyPermuta tions. which
a urnes ProductOrder -? RightToLeft

elements are a\l permutations of {I 2,3, ... , n)
and the operation i MultiplyPermutations,
with the options given by opts

identical to Symmetric [n, opts]

identical to Symmetric [n, opts]

identical to symmetric [n, opts]

elements are a\l permutations of the elements of list
and the operation multiplies these permutations,
with the options given by opts

identical to SymmetricGroup [list I opts I

There are several options specific to the permutation functions.

option name def,lit value

ProductOrder RightToLeft

IndexLimit 6

Options for Symmetric .

pecifie whether the permutations should be
multiplied from the right to the left (d fault)
or from lite left to the right (LeftToRight)

pecifie the max.imum value for the index n
in the permutation functions

• The operation of the group S3 is the function Mul tiplyPermutations
using the option ProductOrder with the default value of RightToLeft
(as opposed to LeftToRight).

In[83] : = op = Operation[Gl]

Out[83]= MultiplyPermutations[#l, #2, ProductOrder-7DefaultOrder] &

• The value for the global variable Defaul tOrder is set directly or by the
ProductOrder option.

In[84]:= DefaultOrder

Out[84]= RightToLeft

284 User's Guide

• Given permutations 11"1 and 11"2, the product 11"1 011"2 is obtained by doing 11"2 first,
followed by 11"1 (when ~e value for ProductOrder is RightToLeft).

In[85}:= op[{l, 3, 2}, {2, 3, 1}]

Out[85}= {3, 2, 1}

• By changing the value of ProductOrder to LeftToRight, we can change
how the group operation works. (Some mathematicians prefer this interpreta­
tion, so it is available.) Here we perform the operation from left to right.

In[86}:= Operation[symmetric[3, ProductOrder ~ LeftToRight]] [
{1, 3, 2}, {2, 3, 1}]

Out[86}= {2, 1, 3}

• Since Sn becomes quite large with even small values of n, the user is warned
when trying to create a group with an index greater than the value of Index­
Limit.

In[87}:= Symmetric [7]

Group: : size :
Are you sure you want 5[7]? This group has 5040 elements

in it. By default, the index must be less than
or equal to 6. If you wish to increase it, add
the option 'IndexLimit -> k' to this function,
where k is the desired maximum for the index.

Out[87]= $Failed

• Adding a higher value for the option IndexLimi t allows creation of such
groups.

In[88}:= Symmetric[7, IndexLiDdt ~ 7]

Out [88} = Groupoid [{-Elements-}, -Operation-]

• We can also specify that the new value become the default value for the option.

In [89} := SetOptions[Symmetric, IndexLimit ~ 7]

Out[89}= {Mode ~ Computational,
ProductOrder ~ RightToLeft, IndexLimit ~ 7}

• We can obtain the permutation group on the set {a,p, y} as follows.

In[90}:= G2 = PermutationGroup[{a, /3, y}]

Out[90}= Groupoid[{{a, {3, y}, {a, y, {3}, {/3, a, y},

{/3, y, a}, {y, a, {3}, {y, /3, a}}, -Operation-]

• The default operation is again from right to left.

In[91]:= Operation [G2] [{a, y, /3}, {/3, y, a}]

Out[91]= {y, {3, ex}

• The left-to-right option is still available.

In[92] : = Operation [PermutationGroup [{a, /3, y},

Groupoids 285

ProductOrder ~ LeftToRight]] [{a, y, /3}, {/3, y, a}]

Out[92]= {{3, ex, y}

Each permutation can be described as being either odd or even. (More details, and
functions to determine whether a permutation is odd or even, are given in chapter 5.) The
collection of even permutations is called the alternating group.

Alternating [II] element are all el'ell permutation of (I, 2, 3, ... , II)
and the operation i Mul tiplyPermu tations,
which a ume ProductOrder ~ RightToLeft

Al ternating [n, opts] elements are all even permutation of (I, 2, 3, ... , II)
and the operation i MultiplyPermutat i ons,

A [n, opt]

AlternatingGroup (
II, opts]

Ai ternating and related functions.

u ing the option given by opts

identical to Alternating [n, opts]

identical to Alternating (II, opts]

• The group A4 is obtained as the set of even permutations of the elements { 1, 2,
3, 4} under permutation multiplication.

In[93]:= G = Alternating[4]

Out[93]= Groupoid [{ {1, 2, 3, 4}, {1, 3, 4, 2},
{1, 4, 2, 3}, {2, 1, 4, 3} , {2, 3, 1, 4}, {2, 4, 3, 1} ,
{3, 1, 2, 4} , {3, 2, 4, 1} , {3, 4,1, 2}, {4, 1, 3, 2} ,
{4, 2, 1, 3} , {4, 3, 2, 1} } , - Operation-]

• Note that these are all even permutations.

In[94]:= Map [EvenPermutationQ, Elements[G]]

Out[94]= {True, True, True, True, True,
True, True, True, True, True, True, True}

286 User's Guide

• 2.4.4 Dihedral and cyclic groups

The dihedral and cyclic groups are frequently used to describe the symmetries of various
objects .

• One way of thinking of Dihedral [3] is to consider the symmetries of the
equilateral triangle. There are three reflections (through a vertex and midpoint
of the opposite side) and three rotations (of 120°, 240°, and 0°). Using the
symbol Rot for the smallest (positive) degree rotation and Ref to represent
one of the reflections, the rest of the elements can be represented in terms of
these two.

In[95J:= Dihedral[3, Mode ~ Visual]

The dihedral group D[3] consists of all the
symmetries of the 3-sided regular polygon shown
below. Included in the group are the 3 reflections
through the lines connecting the vertices to the
midpoints of opposite sides, as well as the 3
rotations through angles consisting of multiples
of 120. degrees (360 divided by the index) .

The elements are considered as follows :

2

The rotation of 120 . degrees is called Rot and
anyone of the reflections is called Ref . The
elements are then seen as powers of Rot and
products of these powers and the reflection Ref .

3

1

Out[95J= Groupoid [

{1, Rot, Rot2 , Ref, Rot * * Ref, Rot2 * * Ref}, -Operation-]

• This use of Dihedral exercises the following default options.

In [96 J : = Options [Dihedral]

Out [96J = {Mode -7 Computational,
Form -7 RotRef, RotSyrn -7 Rot, RefSyrn -7 Ref}

Dihedral [1/]

Dihedral 11,
Form ~ Permutations]

Dihedral
RotSym
RefSym

/I,

rot,
refJ

D (11, opts]

DihedralGroup II, opt.

Variations of the Di hedral function.

Groupoids 287

dihedral gr up of rder 21/ who e elem nt
are repre.. nted by II rotations and II refle ti n

dihedral gr up of order 211 who e element
are repre ented by permutations of length 11

dihedral group of order 211 who e element. are
represented by 11 rotati n and /I reflection , using
the sym I rot for the I west ord r rotali nand
ref for th reflection gen rator

id ntical to Dihedral [II, opts

identical to Dihedral [II, opts

• The another acceptable value for Form is Permutations.

In[97]:= Dihedral [3, Form ~ Permutations]

Out[97]= Groupoid[{{l , 2 , 3} , {l, 3, 2}, {2, 1, 3},
{2, 3, I}, {3, 1, 2 }, {3, 2, I }} , - Operation- 1

optiOn name default value

Form RotRef

RotSym Rot

RefSym Ref

Options specific to Dihe dral.

pecifies whether the element hould take on the form of
permutation (Permutations) or be repre ented in term
of the lowest order rotation and a reflection (RotRef)

when th Form ~ RotRef option i used,
pecifie the ymbol u ed to represent the rotation

when the Form ~ RotRef option is u ed,
specifie the 'ymbo) u ed to repre ent the reflection

• Instead of using Ro t to represent the lowest order rotation and Re f for a
reflection, we can choose other symbols for these groups.

In[98]:= cayleyTable[Dihedral[3, RotSym ~ "R", RefSym ~ "L"]]

Out[98]= {{ I, R, R2 , L, R**L, R2 **L } , {R, R2 , 1, R**L, R2 **L, L},

{R2 , 1, R, R2 **L, L, R**L}. {L, R2 **L, R**L, 1, R2, R},

{R**L, L, R2 **L, R, 1, R2} , {R2 **L, R**L , L, R2 , R, I}}

• We can use the traditional name for the dihedral group, D, even though it is a
reserved name in Mathematica .

In [99] := D[4]

288 User's Guide

Out[99]= Groupoid [{I, Rot, Roe, Rot3, Ref.
Rot * * Ref, Rot2 * * Ref, Rot3 * * Ref}, -Operation-]

• The standard definition of D, in tenns of differentiation, still works.

In[lOO]:= {D[4, x], D[Xl, x]}

Out[lOO]= {O, 2 x }

Although it is an easy result in group theory to show that there is essentially only one
finite cyclic group, namely 7l.n , sometimes this group is expressed multiplicatively using a
generic generator g. Cyclic is used to create this fonn.

Cyclic (fl l

Cyclic[n, k]

Cyclic (n,
Generator -+ gell)

CyclicGroup (II, opts)

Variations of the Cyclic function.

cyclic group of order fI, expre ed multiplicatively
with generator "g"

cyclic group of order fI/k. expre ed multiplicatively
with generator "g~"

cyclic group of order II, expre ed multiplicatively
with generator ge/l

identical to Cyclic (n, opts)

• The default generator is used if no other is specified.

In[lOl]:= Cyclic [8]

Out[lOl]= Groupoid [{I, g, g2, g3, g4, g5, g6 , g7 }, -Operation-]

• If desired, a different symbol for the generator can be given.

In[102]:= Cyc1 icGroup[7 , Generator -+ "an]

Out[102]= Groupoid [{I, a, a 2 , a 3 , a 4 , a 5 , a 6 }, -Operation-]

• As with the other means of generating a cyclic group (using Z), we can also
obtain variations by looking at multiples of a divisor of the index.

In[103]:= Cyclic[8, 2, Generator -+ "{3n, Mode -+ visual]

Think of the elements as the numbers on a (modified)
clock. The differences, however, are that we view
the element 1 as being equivalent to twelve and the
other elements as powers of ~A2. Multiplication of
two elements is done by adding the exponents on the
elements, just like adding the hours of a clock.

Groupoids 289

1

Out[103]= Groupoid[{1, [32, [34, [36 }, - Operation-]

• 2.4.5 Other groupoids

In this section, we introduce the remaining built-in groupoids.

QuaternionGroup []

QuaternionGroup [
Form ~ AsMatrices]

Quaternion Group [
Form ~ As IJK]

QuaternionGroup [
Form ~ AsSymbolsj

Trivial

Klein4

Various other groupoids .

quatcrnion group of order 8, gi en a. matrice generated by
{lO, 1), (-I, 0)) and {lO, II, {LO}}

identical to Qua ternionGroup r I

quaternion group of order , given as element
(± I, ± I, ± 11, ± KK)

quatemion group of order ,given a element
(e, a, a2 , a3 , b, b a, b a2 , b (3)

trivial group of order 1

group who e elements are Ie. a, b, cl.
commonly called the Klein 4 group

• Klein4 is just a particular implementation of D2 .

In[104]:= CayleyTable[Klein4, Mode ~ visual]

Klein4: :warning :
The elements e , a , b, c are considered strings and thus

need to have double quotes around them when being used.

290 User's Guide

Out[I04]= {{e, a, b, c}, {a, e, c, b}, {b, c, e, a}, {c, b, a, e}}

• From the Cayley table, b appears to be one of the elements of the group.

In[I05] : = subgroupGenerated[Klein4, b]

Klein4 : :warning:
The elements e, a, b , c are considered strings and thus

need to have double quotes around them when being used.

MemberQ: : elmnt : b is not an element of Klein4 .

Out[I05]= $Failed

• The elements in the Klein4 group are strings, so we need quotes around them
when trying to work with them.

In[I06]:= SubgroupGenerated[Klein4, nbn]

Klein4 : :warning:
The elements e, a, b, c are considered strings and thus

need to have double quotes around them when being used.

Out[I06]= Groupoid[{b, e}, -Operation-]

• The default form of the QuaternionGroup is to use the AsMatrices
approach.

In[I07]:= QuaternionGroup[]

Out[I07]= Groupoid [
{{{-l, a}, {a, -l}}, {{a, -l}, {l, a}}, {{a, -i}, {-i, a}},

{ {a, i}, {i, a}} , {{a, l}, {-l, a}}, {{-i, a}, {a, i}},
{{L a}, {a, -i}}, {{l, A}, {a, l}} }, -Operation-]

• There are two other approaches to this group (all of which are isomorphic to
each other).

In[I08]:= {QuaternionGroup[Form ~ AsSymbols],
QuaternionGroup[Form ~ AsIJ,K]}

Groupoids 291

QuaternionGroup : :JJKK:
(Note that KK is used because K is a reserved symbol

in version 3 of Mathematica and JJ is used because
J is reserved as a generic name for an ideal .)

Out[108]= {Groupoid[{e, a, a A 2, a A 3, b, ba, ba A 2, ba A 3}, -Operation-],
Groupoid [{1, -1, i, -i, JJ, -JJ, KK, -KK}, -Operation-]}

~ 2.S Uses of the Cayley table

As has been shown, the Cayley table is a tool that can be valuable in working with
groupoids. There is a large number of variations in implementing this function.

CayleyTable[G]

CayleyTable [G, opts]

CayleyTable[
{GI , Gz • ... , Gn }, opt]

CayleyTable[{GI,Gz, ...• Gn },

{ {opts I}, {optsz } , ... , {opt ,,} }]

CayleyTable[
{GI , Gz , ... , Gn },

{ {opts I }. {opts z }, ...• {opts,,}}.
Mode ~ nwde]

CayleyTable [{ {GI , opts I} ,
{ Gz , optsz } , ...• {Gn , opts,,}}]

CayleyTable [
{{GI , opts / } , {Gz , optsz }, ... ,
{ G". opts,,} } , Mode ~ mode]

Variations for CayleyTable.

give the Cayley table of the groupoid G
a a Ii t of Ii t

u e the option in opts to form the table

give the Cayley table of the groupoid G,. G2 •

... , Gn applying the option opts to each groupoid

give the Cayley tables of the groupoids G, G2
... , G" applying the options opts; to groupoid Gj

give the Cayley table of the groupoid G., G2 , ..•

Gil applying the option opts; to groupoid Gj , as
well applying Mode ~ mode to each groupoid

give the Cayley table. of the groupoid G,. G2 ,

...• G" applying the option opts; to groupoid Gj

give the Cayley table of the groupoids G" G2 ,

... Gil applying the option opts; to groupoid Gj

a well a applying Mode ~ mode to each groupoid

Because the Cayley table is such a rich tool for illustrating algebraic ideas, there are also
many options available to control the display of these tables (all of which apply only
when the Visual mode is being used).

292 User's Guide

optlOfl name default value

CayleyForm OutputForm

HeadingsColored True

KeyForm InputForm

ShowBodyText True

ShowKey True

ShowName True

ShowOperator True

ShowSidesText True

TheSet {}

VarToUse "gtl

Options specific to CayleyTable.

pecifies the form that hould be applied
to the element in the body of the table

pecifie whether the top and ide
heading of the table hould be colored

pecifie the form that hould be applied to the
elemen in the key of the table when a key i u ed

pecifie whether the text of the
body of the table hould be hown

specifie whether the key hould be given,
when a key i called for

pecifies whether the name hould be
hown above the table

pecifie whether the operator ymbol
hould be hown in the comer of the tabl

pecifie whether the text of the top row and
left column of the table hould be hown

pecifie a reordering of the element to
be u ed in the table

pecifie the ymbol to u e a the generic
element name when a key i needed

• Consider the groupoids G} and G2 defined as shown.

In[109] : = Clear [G)
{G1 = FormGroupoid[{2, 3, 1, OJ, Mod[#1+#2, 4] Go, n+,,],

G2 = FormGroupoidByTable [{b, a, a ** b, a b },

{{a, a**b, b, a b }, {b, a, a b , a**b}, {a**b, a b , b, a},
{ab , a ** b, a, b}}, n*", WideElements True]}

Out[110]= {Groupoid[{2, 3,1, O}, -Operation-),
Groupoid[{b, a, a**b, a b }, -Operation-)}

• The Visual mode of CayleyTable gives each element a unique color and
then uses the colors throughout the body of the table.

In[lll]:= CayleyTable [G1 , Mode visual]

Groupoids 293

TheGroup x + y

Out[111J= {{O, 1 , 3, 2 }, {1, 2, 0, 3}, {3, 0, 2, 1}, {2, 3, 1, O}}

• When a groupoid is formed and the option WideElements ~ True is
added, a key is included in the table.

In [112J : = CayleyTable [G2 , Mode -+ Visual]

KEY for TheGroup: label used ~

element: {gl ~ b, g2 ~ a, g3 ~ a**b, g4 ~ aAb }

TheGroup x * y

Out[112J= {{a, a**b, b, a b }, {b, a, a b , a**b},

{a**b, a b , b, a}, {ab , a**b, a, b}}

• In addition to the options for CayleyTable, we can also pass graphics
options.

In[113J:= CayleyTable [Gu Mode -+ Visual, TheSet -+ {O, 1, 2, 3},
HeadingsColored -+ False, ShoWOperator -+ False,
Background -+ Cyan, Frame -+ True, ShowSidesText -+ False]

294 User's Guide

Out[113J= {{ O, 1,2, 3}, {1, 2, 3, O}, {2, 3, 0, 1 } , {3, 0, 1, 2 }}

• As with many of the functions in these packages, multiple inputs are permissi­
ble. Here, the argument for Z is the list {3, 4}, which in tum, after evaluation,
becomes a list of two groupoids for CayleyTable.

In[114J:= CayleyTable[Z[{3, 4}], Mode ~ visual]

Z(3] x + Y Z(4) x + Y

Out[114J= {{ { O, 1, 2}, {1, 2, O}, {2, 0, 1 } },
{ {O, 1, 2, 3}, {1, 2, 3, O}, {2, 3,0, 1}, {3, 0, 1, 2} } }

• We can specify different options for each Groupoid.

In [115J : = CayleyTable [{ {G1 , ShowBodyText ~ False},
{G2 , ShowKey ~ False}}, Mode ~ visual]

TheGroup x + Y TheGroup x * Y

Groupoids 295

Out[115]= {{{O, 1, 3, 2}, {l, 2,0, 3 }, {3, 0, 2, 1}, {2 , 3 , 1, O}},

{ {a, a**b , b, a b }, {b , a, a b , a**b},

{a**b, a b , b , a}, {a b , a**b, a, b } } }

TextCayley[Gj give a text-only er ion of a two-dimen ional Cayley table

• While the graphical Cayley tables are usually more desirable, there is also a
version for text-only systems.

In[118] : = TextCayley[G2]

Out [118] //TableForm=

b a

b a a**b b

b a

a * * b a b b a

b

~ 2.6 Building other structures

When given an algebraic structure, such as a group, three questions naturally arise.

1. Can we take two structures, G l and G2 , and build a new structure based on
them?

2. Given a structure G and a subset H of this structure, under what conditions
is H itself a structure of the same type?

3. Given a structure G and a structure H that is also a subset of G, can we
form a quotient structure G / H?

In this section we explore these three questions .

• 2.6.1 Direct products

For groups, the answer to the first question is to form the direct product or direct sum of
the groups.

DirectProduct G" 0 2, ... , Gil)

DirectSum [G" Gl, ... , G'll

How to form the direct product of several groupoids.

give the direct product of the groupoid. G1 ,

G2 • .. • , Gil

identical to DirectProduct[G I . G2, ... , Gill

296 User's Guide

• Consider the following groupoids. Note that DirectSum and DirectProd­
uct are functionally equivalent.

In[119}:= {Gl = Directsum.[z ['], Z [', 2]],
G2 = DirectProduct [Z [3], Z [2, :r]]}

Out[119}= {Groupoid [{{O, O}, {a, 2}, {1, A}, {1, 2},

{2, A}, {2, 2}, {3, O}, {3, 2}}, -Operation-],

Groupoid [{ {O, O}, {O, iL}, {O, 1}, {O, 1 + iL} ,
{1, A}, {l, iL}, {1, 1}, {L l+iL}, {2, A},

{2, iL}, {2, 1}, {2, l+iL}}, -Operation-]}

• Let's pick two elements at random from G 1.

In[120}:= {a, b} = RandomElements[Gl, 2]

Out[120}= {{a, O}, {3, 2}}

• The operation of a direct product uses the operation of groupoid Gi in the ith
coordinate.

In[121}:= Operation [Gl] [a, b]

Out[121}= {3, 2}

• The DirectSum and DirectProduct functions can act on any number of
arguments.

In [123] := DirectSum[Z[2], Z[2], Z[2], Z[2]]

Out[123}= Groupoid [{{O, 0, 0, O}, {a, 0, 0, 1},

{O , 0, 1, A}, {O , 0, 1, 1} , {O , 1, 0, O} , {a, 1, 0, 1},

{a, 1, 1, A}, {O , 1, 1, 1}, {1,0,0,0}, {1, 0, 0, 1} ,

{1, 0, 1, O} , {l, 0, 1, 1} , {l, 1, 0, O}, {l, 1, 0, 1},
{1, 1, 1, A}, {1, 1, 1, 1}}, -Operation-]

• 2.6.2 Subgroups

We now pursue the second question given at the outset of this section. Given a groupoid
G and a subset H, we can form a new groupoid using the elements from H and the
operation from G.

• Given a subset of a groupoid, we can form a new groupoid from the old.

In [124} := Gl = Subgroupoid[Z [9], {O, '}]

Out[124}= Groupoid[{O, 4}, Mod[#1+#2, 9] &]

• We can now use GroupQ to determine if this is a subgroup.

In [125} := GroupQ[Gl]

Groupoids 297

Out[125]= False

• Alternatively, we can use SubgroupQ.

In[126]:= {SubgroupQ[{O, 4}, Z[9]], SubgroupQ[Gl, Z[9]]}

Out[126]= {False, False}

Subgroupo id [G, H 1

Subgroupoid[G,
{ H/, H2 , "" Hn }]

Subgroupoid[
{{ G/, HIl , {G2,
H2 }, .. ,' { G'll HI! }}J

Variations for the function Subgroupoid.

given H as a ub et of elem nt of the
groupoid G, return the groupoid with element
from H and operation from G

given a collection of ub et {HI, H2 , ••• , Hn I of element
of the groupoid G, return the Ii I of groupoid
with element from Hj and operation from G

given that the ub et H; i a sub et of the elements
of the groupoid G;, return the Ii t of groupoids
with elements from H; and operation from G;

• How often will a random set of elements from 71..9 be a subgroup? Here we
form 10 subgroupoids and then list the elements and whether this set forms a
group or not. For 71..9, what is the probability that three randomly chosen
elements form a subgroup?

In[127]:= subs = Subgroupoid[Z[9],

Out[128]=

Table[RandomBlements[Z[9], Random[Xnteger, {l, 9}],
Replacement ~ False], {10}]];

Map [{Elements [#], GroupQ [I] } &, subs] II ColumnForm

{ {2, 6, 1, 0, 4}, False}
{ {8, 5, 7, 2, 6, 1, O},False}

{ {O, 1, 2, 3, 4, 5, 6, 7, 8}, True}

{ {3, 8, 2, 0, 7, 1,6, 4}. False}

{ {6, 0, 2, 7}, False}
{ {2, 0 , 8, 1 , 3, 6, 7, 5} , False}

{{5}, False}

{{7, 6}. False}

{ {O, 1, 2, 3, 4, 5, 6, 7, 8} , True}

{{O, 1,2,3,4, 5, 6, 7, 8} , True}

• We can form several subgroupoids at once, as well as viewing visually what it
means for the subset to be a subgroup.

In [129] : = subgroupoid [{ {U [15], {1, 2}}, {Dihedral [3], {Rot, Ref}}},
Mode ~ Visual]

298 User's Guide

KEY for 0[3]: label used ~ element: {gl ~ Rot, g2 ~ Ref,
g3 ~ 1, g4 ~ Rot A 2, g5 ~ Rot**Ref, g6 ~ Rot A 2**Ref}

0[3] x * y

Out[129)= {Groupoid[{I, 2}, Mod [#1#2, 15] &],
Groupoid [{Rot, Ref}, -Operation-]}

The syntax for the SubgroupQ function is similar to Subgroupoid, but the order of
the arguments is reversed. This is because the notation H < G is frequently used to
indicate that H is a subgroup of G. Following are the basic forms; each of these can
handle the standard modes, as well as Visual2 .

SubgroupQ[H,G]

SubgroupQ[
{HI, Hz, ... }, G]

SubgroupQ [{ { HI,
Gd, { Hz, Gz }, ... }]

Variations of the SubgroupQ function .

give True if the ub et H is a ubgroup
of the groupoid G, and False otherwi e

give a Ii t of True or False depending on whether
the ub el Hi i a ubgroup of the groupoid G

give a Ii t of True or False depending on whether
the ubset H; i a ubgroup of groupoid G;

• The TwistedZ groupoid was introduced earlier. Is the set to, 2, 8} a subgroup
of Twi s tedZ [13]?

In[130):= SubgroupQ[{O, 2, 8}, TwistedZ[13]]

Out[130)= True

• Before we can ask if to, 4} is a subgroup of TwistedZ [6], we need this parent
groupoid to be a group itself.

In(132):= SubgroupQ[{O, 4}, TwistedZ[6]]

Group: :fail :
The Groupoid TwistedZ[6] fails at least one of the tests

for being a group, which is needed for this function.

Out[132)= $Failed

Groupoids 299

• Let's pick some random sets of elements from TwistedZ [7] and see which
of these are subgroups.

In[131]:= SubgroupQ[Table[RandomElements[TwistedZ[7],
Random [Znteger, {l, Size[TwistedZ[7]]}],
Replacement ~ False], {4}], TwistedZ[7] , Mode ~ Visual]

TWistedZ[7j x * y

);j: 5 2 0 4 3 1

5 0 3 5 1 2 4

2 3 1 2 0 4 5

0 5 2 0 4 3 1

4 1 0 4 3 5 2

3 2 4 3 5 1 0

1 4 5 1 2 0 3

Out[131]= {False, False, False, True}

• We can check several distinct groups at once for subgroups.

In[132]:= SubgroupQ[{{ {O, 3}, Z[S]}, {{l, 4}, 11[9]}}, Mode ~ Visual]

Out[132]= {False, False}

• The Visua12 mode requires that the subset be a subgroup to illustrate its
visualization.

300 User's Guide

In[133]:= SubgroupQ[

{{{O, 3}, Z[5]}, {{1,4, 7}, U[9]}}, Mode -+ Visua12]

MemberQ::sbgrp: {O, 3} is not a subgroup of Z[5].

All the elements marked with yellow are elements in the
subgroup. The others are colored according to the
various left cosets of the subgroup in the group.

U[9] x * y

~ 1 4 7 2 8 5

1 1 4 7 2 8 5

4 4 7 1 8 5 2

7 7 1 4 5 2 8

2 2 8 5 4 7 1

8 8 5 2 7 1 4

5 5 2 8 1 4 7
Graphics Error

Out[133]= {False, True}

Although not every subset H of a group G is a subgroup, the closure of every subset is a
subgroup of G.

Closure[G, H)

Closure [G, H, opts)

SubgroupClosure [
G, H , opts]

Use of Closure.

given H a a ub et of the element of the groupoid
G, return the groupoid generated by the elements in H

given H a a ubsel of the element of the groupoid
G, return the groupoid generated by the elements
in H according to the option pecified in opt

identical to Closure [G, H, opts]

• Starting with the elements 1 and 4, we see that the element 7 is needed to
complete the list before we have a subgroup.

In[134]:= K = Closure[U[9], {1, 4}]

Out[134]= Groupoid[{l, 4, 7}, Mod[#1#2, 9] &]

• We can confirm that this is indeed a subgroup of U9 •

In[135];= SubgroupQ[K, U[9]]

Out[135]= True

In addition to the standard Mode option, several other options for this function are
available.

Groupoids 301

option name default value

ReportIterations False pecifie whether the re ults of each iteration
should be reported in addition to the final closure

Sort False pecifie whether the elements of the closure
hould be orted in the output

Staged False p cifie , when lh mode i Visual, whether the
re ult f ea h iteration hould be reported vi ually
one tep at a time or all at once

Options for Closure.

• When ReportI tera tions is set to True, a list of the fonn {closure,
number of iterations, result at each iteration} is returned.

In[137] : = Closure[Z[9], {l, 4}, Reportlterations ~ True]

Out[137]= {Groupoid[{1, 4, 2, 5 , 8, 3,6 , 0, 7}, Mod[#1 + #2,9] &],
{3, {{1, 4 } , {1, 4, 2 , 5, 8 }, {1, 4, 2,5,8,3,6,0, 7 } }}}

• When the option Sort is set to True, the elements are sorted by the Sort
function before being returned.

In[138]:= Closure[Z[9] , {l, 4}, Sort ~ True]

Out[138]= Groupoid[{O, 1,2,3,4,5,6,7, 8 }, Mod[#1+#2, 9] &]

• When the Visual mode is used without Staged set to True, a visualization
for each iteration is returned. Without the Output ~ GraphicsArray
option, three full-size graphics are created, ready for animation, if desired.

In[139]:= SubgroupClosure[Symmetric [3], {{2, 3, l}},
Mode ~ Visual, Output ~ GraphicsArray]

KEY for 8[3]: label used ~ element: {91 ~
{2, 3, 1}, 92 ~ {1, 2, 3 } , 93 ~ {1, 3, 2},
94 ~ {2, 1, 3}, 95 ~ {3, 1, 2}, 96 ~ {3, 2, 1 } }

S (3)

~ 9 1 9 2 9 3

9 1 92 93 g1

g2 93 91 g2

93 91 g2 93

9 4 g6 g5 9 4

95 g4 g6 9 5

96 g5 g4 96

g4 9 5

g5 9 6

g6 g4

9 4 g5

9 3 9 2

9 1 9 3

9 2 g1

g6

g4

g5

96

9 1

92

9 3

302 User's Guide

Out [139 J = - GraphicsArray -

• The Staged option to Closure causes all the graphics to be generated, but
only the first iteration is displayed (at first) .

In[140}:= SubgroupClosure[Symmetric[3],
{{2, 3, I}}, Mode ~ Visual, Staged ~ True]

KEY for S[3]: label used ~ element: {g1 ~
{2, 3, 1}, g2 ~ {1, 2, 3}, g3 ~ {1, 3, 2},
g4 ~ {2, 1, 3}, g5 ~ {3, 1, 2}, g6 ~ {3, 2, 1} }

S[3)

g2 95 94 91

g 1 g2 g6 g5

g6 g3 g1 g4

g5 91 93 g2

Out[140}= Groupoid[{{2, 3, 1}, {3, 1, 2}, {l, 2, 3}}, -Operation-]

The NextStage and PreviousStage functions are used to rotate through the cycle
of iterations when the Staged option is used. (Note: A second argument, consisting of
an integer, can be added to specify how many steps forward or backwards to take.)

NextStage[Closure)

PreviousStage [
Closure)

when II d with the Staged option, how the
vi ualization of the next iteration of Closure

when u ed with the Staged option, show the i ualization of
the previous iteration of Closure

Functions to be used with the Staged option of Closure.

Another function for working with individual subgroups is the SubgroupGenerated
function .

SubgroupGenerated[G, g) given a group G and an element g from G.
giv the ubgroup generated by g. < g)

• The SubgroupGenerated function also reveals the order of an element,
indicated by the number of elements in the subgroup that is generated.

In[141}:= SubgroupGenerated[Alternating[4], {2, 3, 1, 4}]

Groupoids 303

Out[141]= Groupoid [
{{2, 3, 1, 4}, {3, 1, 2, 4}, {l, 2,3, 4}}, -Operation-)

• Use of the Textual mode gives additional infonnation about how a subgroup
is generated.

In[142]:= SubgroupGenerated[U[25], 4, Mode ~ Textual]

The group U[25) has the subgroup <4> given as

index powers simplified

1 (4) "1 4
2 (4) "2 16
3 (4) "3 14
4 (4) "4 6
5 (4)"5 24
6 (4) "6 21
7 (4) "7 9
8 (4) "8 11
9 (4) "9 19
10 (4) "10 1

as generated: 4 16 14 6 24 21 9 11 19
sorted: 1 4 6 9 11 14 16 19 21

1
24

Out[142]= Groupoid [{ 4, 16, 14, 6, 24, 21, 9, 11, 19, I}, Mod [#1 # 2, 2 5) &)

• There are two visual modes for this function. This one is best viewed as an
animation after it is generated, or, as is done below, evaluated with the Out­
put ~ GraphicsArrayoption.

In[143]:= SubgroupGenerated[Z[8], 6,
Mode ~ Visual, OUtput ~ GraphicsArray]

0°1
162

5 4 3

~~
1*V*6h~*6

2*6 2*6

• This second visual mode uses the context of the Cayley table to illustrate the
subgroup that is generated.

304 User's Guide

In[144] : = SubgroupGenerated[U[ll], 4, Mode ~ visua12]

u 111 x * y
~ 1 2 3 456 7 8 91C
1 1 2 3 4 5 6 7 8 91C
2 2 4 6 81J 1 3 5 7 9
3 3 6 9 1 4 7 I1C 2 5 8
4 _ 8 . 5 9 2 6

1 ___ 7

5 5 .(4 938 2 7 1 6
6 6 1 7 2 8 3 9 4 1J 5
7 7 3 i1c 62 9 5 18 4
8 8 5 2 I(7 4 1 9 6 3
997 5 3 IH 8 6 4 2

1C LC 9 8 7 654 3 2 1

Out[144]= Groupoid[{4, 5, 9, 3, 1}, Mod [#1 #2, 11] &]

Sometimes we are interested in finding all the subgroups of a group.

CyclicSubgroups [G)

Subgroups [G)

Functions to obtain subgroups.

give the Ii t of all cyclic ubgroup of the groupoid G

give the Ii t of all ubgroup of the groupoid G

• Here we generate all the cyclic subgroups of D3 •

In[145]:= Cyclicsubgroups[D[3]]

Out[145]= {Groupoid [{1}, -Operation-],
Groupoid [{1, Ref}, -Operation-],
Groupoid [{1, Rot * * Ref}, - Operation-],

Groupoid [{1, Rot 2 * * Ref}, -Operation-],
Groupoid [{1, Rot , Rot 2 }, -Operation-]}

• Note the addition when we ask for all the subgroups of D3 .

In [146]:= Subgroups [D[3]]

Out[146]= {Groupoid [{1}, -Operation-],
Groupoid [{1, Ref}, -Operation-],
Groupoid [{l, Rot ** Ref}, -Operation-],
Groupoid [{l, Rot2 * * Ref}, -Operation-],

Groupoid [{l, Rot, Rot2 }, -Operation-], Groupoid [

{l, Rot, ROe, Ref, Rot**Ref, Rot 2 **Ref}, -Operation-]}

There are several other functions for working with subgroups.

Groupoids 305

Subgrouplntersection
[G, HI, H2]

given a group G and subgroup HI and H2 • give the
ubgroupoid of G determined by the intersection of

H I and H2

SubgroupJoin [
G, HI' H2]

SubgroupProduct [
G,HI ,H2]

SubgroupUnion [
G, HI, H2]

given a group G and ubgroups HI and H2, give the
ubgroupoid of G generated by the element in H I and H2

given a group G and ubgroup HI and H2, give
the subgroupoid {hi h2 I hi E HI, h2 E H21 of G

given a group G and subgroup HI and H2, give the
subgroupoid of G determined by the union of H I and H2

Various functions to combine two subgroups of a group.

• Consider the subgroups (2) and (3) in Z18. Here is the groupoid formed by
their intersection.

In[147] : = G1 = Subgrouplntersection[
Z[18], H1 = SubgroupGenerated[Z[18], 2],
H2 = SubgroupGenerated[Z[18], 3]]

Out[147]= Groupoid[{O, 6, 12} , Mod[#1+#2, 18] &]

• Using the same group and subgroups, here is the groupoid formed by their
union.

In[148]:= G2 = Subgroupunion[Z[18], H1, H2]

Out[148]= Groupoid[{O , 2, 3, 4, 6, 8, 9, 10 , 12, 14, 15, 16 } ,
Mod [#1 + #2, 18] &]

• We can see which ofthese two groupoids are subgroups of Z 18.

In[149] : = SubgroupQ[{G1, G2}, Z[18]]

Out[149]= {True, False}

• Here we form the SubgroupJoin of two subgroups of U24 and also the join
of two subgroups of S3 .

In[150]:= {G1, G2} = {SubgroupJoin[U[24], {1, 17}, {1, 13}],
subgroupJoin[Symmetric[3],

{{1, 2, 3}, {2, 1, 3}}, {{1, 2, 3}, {3, 2, 1}}]}

Out[150]= {Groupoid[{l, 5, 13, 17}, Mod[#1#2, 24] &],
Groupoid [{ {1, 2, 3}, {1, 3, 2}, {2, 1, 3},

{2, 3, 1}. {3, 1, 2}, {3, 2, 1}}. -Operation-]}

• Note that both these SubgroupJoins are subgroups (the first being a proper
subgroup).

306 User 's Guide

In[151J : = SubgroupQ[{{Gl, U[24]}, {G2, Symmetric[3]}}]

Out[151J= {True, True}

• Now we form the SubgroupProduct of the same subgroups in U24 and also
the same subgroups of S3 .

In[152J:= {Gl, G2} = {SubgroupProduct[U[24], {l, 17}, {l, 13}],
SubgroupProduct [symmetric [3] ,

{{1, 2, 3}, {2, 1, 3}}, {{1, 2, 3}, {3, 2, 1}}]}

Out[152J= {Groupoid[{l, 5, 13, 17}, Mod [#1 #2,24] &], Groupoid[
{{1, 2, 3}, {2, 1, 3 } , {2, 3, 1}, {3, 2, 1}}, -Operation-]}

• Note that these are not both subgroups (and that the product is different from
the join in the S3 case).

In [153J : = SubgroupQ [{{ Gl, U [24]}, {G2, Symmetric [3]}}]

Out [153 J = {True, False}

• Here is one way to generate a noncyclic subgroup of D4 •

In[154J:= {G = SubgroupJoin[Dihedral[4],
SubgroupGenerated[Dihedral[4] , Ref],
SubgroupGenerated[Dihedral[4] , Rot A2]], CyclicQ[G]}

Out[154J= {Groupoid [{1, Ref, Roe, Rot2 **Ref}, -Operation-], False}

• 2.6.3 Quotient groups

The third question deals with quotient structures. The fundamental function related to this
for groupoids is QuotientGroup. There is a number of related functions, as well as a
number of options to consider for this function. Since a quotient group requires a normal
subgroup H (from some group G) for its construction, and a normal subgroup is one in
which every left coset g H is equal to the right coset H g (where g E G), we start this
section by considering cosets.

LeftCoset [G, H, gj

RightCose t [G, H, gj

Functions to create cosets.

given a group G, ubgroup H, and element g.
give the left coset of H in G containing g

given a group G, subgroup H , and element g,
give the right coset of H in G containing g

• The left coset of the subgroup {O, 4} in the group Zs containing 7 is the set 7 +
{0,4}.

Groupoids 307

In[155]:= LeftCoset[Z[8], {O, 4}, 7]

Out[155]= {7, 3 }

• The Visual mode is intended to illustrate how this coset is derived.

In[156]:= LeftCoset[Z[8], {O, 4}, 7, Mode ~ Visual]

7 +

_ subgroul
coset

Out[156]= {7,3}

• The Textual mode walks through the calculation.

In[157]:= LeftCoset[Z[8], {O, 4}, 7, Mode ~ Textual]

Given an element g in a Groupoid G and a subgroup
H of G, the left coset of H in G containing g
is the set of all elements gH = {g h I h in H}.

In this case, the left coset of {O, 4} in Z[8] containing
7 is given by {7, 3 } . This can be seen as follows :

7 + { O, 4 }

{7 + 0, 7 + 4}

{7, 3}

Out[157]= {7, 3 }

• Note that the subgroup for the second argument can be given as a list or as a
groupoid. The coset H + g may happen to be the subgroup H itself.

In[158]:= RightCoset[U[ll],
SubgroupGenerated[U[ll], 3], 3, Mode ~ visual]

* 3

7 10 8 2

subgroup

308 User's Guide

Out[158]= {9, 5, 4, 1, 3}

The examples shown thus far have been Abelian, so the distinction between left and right
eosets is blurred.

• For this nonabelian group with this subgroup and element, we get different
results depending on whether we use left or right eosets.

In[159] : = H = SubgroupGenerated[Symmetric[3], {3, 2, 1}];
{LeftCoset [Symmetric [3], H, {3, 1, 2}],
RightCoset[symmetric[3], H, {3, 1, 2}]}

Out[159]= {{{1, 3, 2}, {3, 1 , 2}}, {{2, 1, 3}, {3, 1, 2}}}

LeftCosets [G t H]

RightCosets [Gt H]

Functions to list all of the cosets.

given a group G and subgroup H,
give the left eosets of H in G

given a group G and subgroup H,
give the right co ets of H in G

• Given a group G and a subgroup H, Lagrange' s Theorem indicates that the
number of eosets is 1 G 1 / 1 H I·

In[160]:= LeftCosets[Z[8], {O, 4}]

Out[160]= {{a, 4}, {1 , 5 }, {2, 6}, {3 , 7}}

• The vi sual mode attempts to make a Cayley table of these eosets. Note:
Output ~ Graphics causes the normal output to be suppressed so that the
graphic image is the output. This is saved here and shown again.

In[161]:= grl = RightCosets [Z [8],
{O, 4}, Mode ~ Visual, OUtput ~ Graphics];

• Compare the previous image to the following one.

Groupoids 309

In[162]:= gr2 = CayleyTable[Z[4], Mode ~ Visual, OUtput ~ Graphics];

Z [4] x y

• Putting the two graphics side by side adds great insight into the nature of the
quotient group. (The first image was initially inspired by Ladnor Geissinger's
work in his pioneering program Exploring Small Groups.)

In[163] : = Show [GraphicsArray[{grl, gr2}]];

Z [4] x + y

As indicated at the beginning of this section, a prerequisite to forming a quotient group is
that the chosen subgroup be normal. The NormalQ function is used to test this. Addition­
ally, the Index function measures the number of cosets, which in tum is also the size of
the quotient group. Note that since we sometimes denote that the subgroup N is normal in
G by N <l G, the order of the arguments in this function reflect this notation.

NormalQ [N, G)

Index [G, N]

Related coset functions .

given a group G and ubgroup N, give True if N
normal in G, and False otherwise

given a group G and subgroup N, give the
number of coset of N in G

• The subgroup H = ({3, 2, II) in S3 is not a normal subgroup.

310 User's Guide

In[164]:= NormalQ[H = SubgroupGenerated[Symmetric[3], {3, 2, i}],
Symmetric[3]]

Out[164]= False

• We can still compute the index for this subgroup, however.

In[165] : = Index [Symmetric [3], H]

Out[165]= 3

• A quotient group is a group with a valid binary operation. The following shows
why the lack of normality in H prevents a quotient structure from being defined.

In[166]:= LeftCosets [Symmetric [3] , H, Mode -+ visual];

KEY for S[3]: label used ~ element: {g1 ~
{ 3 , 2, 1 }, g2 ~ {1, 2, 3} , g3 ~ {2, 3, 1},
g4 ~ {1, 3, 2}, g5 ~ {3, 1, 2}, g6 ~ {2, 1, 3}}

5[3] x * y

We are now ready to consider forming a quotient group.

QuotientGroup[G,N]

QuotientGroup [G, N, opts]

FactorGroup [G, N, opts]

Use of QuotientGroup.

given a group G and normal ubgroup N,
give the quotient group GIN

give the quotient group GIN according to
the option given in opts

equivalent to QuotientGroup [G, N, opts]

• The default form of the elements in a quotient group is to use the symbol NS for
the normal subgroup used in the construction and then list all the elements as
left cosets of the form g + NS (or g NS if a multiplicative group).

In[167] : = QuotientGroup [Z [8], {O, 4}]

Groupoids 311

QuotientGroup: :NS :
This quotient group uses NS to represent

the normal subgroup {O, 4} that you
specified. Use CosetToList to convert this
coset representation to a list of elements.

Out[167]= Groupoid [{NS, 1 + NS, 2 + NS, 3 + NS}, -Operation-]

• The subgroup needs to be normal before the construction can take place.

In [168] : = FactorGroup [Symmetric [3], H]

Group: :notnorm
{{ 3, 2 , l} , {l , 2, 3 }} is not a normal subgroup of S[3] .

Out[168]= $Failed

A number of options are available for the QuotientGroup function.

option name value

Form Cosets

Form CosetLists

Form Representatives

Representat \ Canonical
ives

Representat ...
ives

Representat ... Random
ives

Options for Quo ti entGrou p .

return co ets in the form
g + NS or g NS (default vaJue)

return each coset in the form
of a list of the actuaJ elements

return cosets by simply Ii ting
a representative from each coset

u e the Ii t of repre entative consisting of the
.. malle t" element in each coset (default value)

use the list of representatives given
by {gl , g2, ... J (if properly chosen)

use a list of repre entative cho en randomly

• When a valid list of representatives is given, the list is used in other computa­
tions as well.

In [169] : = CayleyTable [
QuotientGroup[Z[8] , {O, 4}, Fo~ ~ Representatives,
Representatives ~ {4, 5,6, 7}], Mode ~ Visual]

312 User's Guide

Z [8] / NS x + y

Ou t [169] = {{ 4, 5, 6, 7}, {5, 6, 7, 4}, {6, 7, 4, 5}, {7, 4, 5 , 6}}

• The CosetLis ts value of Form returns the elements as the actual co sets in
the form of a list of elements.

In [170] : = CayleyTable [
QuotientGroup[Z[8], {O, 4}, Form ~ CosetLists]]

Out[170]= {{{O, 4}, {i, 5}, {2, 6}, {3, 7}},

{{l, 5}, {2, 6}, {3, 7}, {O, 4}},
{{2, 6}, {3, 7}, {O, 4}, {l, 5} } ,

{{3, 7}, {O, 4}, {l, 5}, {2, 6} } }

CosetToList [Q, coset] return coset repre ented as a Ii t of element from
G where coset i an element of Q = GIN

ElementToCoset [Q, el) return the coset found in the quotient group Q = GIN
that contain the element el from G

Additional coset functions.

• Suppose we define G to be the following quotient group, using the default
settings.

In[l71]:= Q = QuotientGroup[Z[16], {O, 4, 8, 12}]

QuotientGroup: :NS :
This quotient group uses NS to represent

the normal subgroup {O, 4, 8, 12} that you
specified . Use CosetToList to convert this
coset representation to a list of elements .

Out[l71]= Groupoid[{NS, l+NS, 2+NS, 3+NS}, -Operation-]

• Although the quotient group lists the elements in the form g + NS, we can
recover the complete list of elements in any coset with the CosetToList
function .

Groupoids 313

In[172]:= CosetToList[Q, 2+ NS]

Out[172]= {2, 6, 10, 14}

• Given an element in a group G, one can determine the coset to which it belongs
in the quotient group G / N by using the ElernentToCoset function.

In[173] : = ElementTOCoset[Q, 13]

Out[173]= 1 +NS

~ 2.7 Other group properties

This section collects together a number of functions that illustrate some property of a
group, a subgroup, or an element in a group.

RandornElement[G]

RandornEl ernen t s [G I 11]

Generating random elements.

give a random element from the groupoid G

give n random element from the groupoid G

• If a stop sign had a random element from Ds applied to it as a transformation,
the probability that a motorist might be confused is 15/16.

In[174] : = RandomElement [Dihedral [8]]

Out[174]= Rot S ** Ref

option name

SelectFrom

SelectFrom

Replacement

value

Nonldentity

Any

True

choo e any element except the identity
(default for RandornElernent)

choose any element (default for
RandomE1 ernents)

a ume replacement when choo ing the
element (default for RandornElernents)

Options for generating random elements.

• Although you can ask for something that you can't get, you won't get it.

In[17S]:= RandomElements[U[12], 5, Replacement ~ False]

RandomElements::toomany:
You can't ask for 5 random elements

when there are only 4 available .

314 User's Guide

Out[175]= {}

• The SelectFrom option allows us to avoid the identity element.

In[176]:= RandomElements[U[12], 5, SelectFrom ~ Nonrdentity]

Out[176]= {5, 7, 11, 5, 11}

• RandomElement and RandomElements work on ringoids, polynomials,
and other structures. Here we pick we a random element in Z[v'S] of the

forma + b v'S where I a I s; 50 and I b I s; 50.

In [177] : = RandomElement [z [.ys], 50]

Out[l77]= 22 -12..J5

• RandomElement and RandomElements can operate on any list of ele­
ments, not just groupoids or ringoids.

In[178] : = RandomElements[{a, {3, y, 6, E, " 17, e, 1..,

K, A, ~, v, {, 0, ~, p, 0, ~, u, ~, x, ~, w}, 4]

Out[178]= { t., U, p, .i\ }

Size[G]

Order [G]

OrderOfElement [G, g]

Order [G, g]

OrderOfAllElements [G)

Orders [G)
Orders [G, list]

give the order of the groupoid G

equivalent to Size [G]

give the order of the element g in the groupoid G

equivalent to OrderOfElement ·[G, g]

give a Ii t of the orders of all the elements in
the groupoid G in the fonn {g, I g II

equivalent to OrderOfAllElements [G]

equivalent to OrderOfEl ement [G ,list]

Functions related to the order of a groupoid or its elements.

• The Visual mode of OrderOfAllElements reveals a number of facts,
including the order of the groupoid, the order of each element and whether the
groupoid is cyclic.

In[179]:= OrderOfAllElements[U[8], Mode ~ Visual]

Groupoids 315

ural x * y

3 5 7

3 5 7

1 7 5

7 1 3

5 3 1

n 1 2 3 4

g"

Out [179) = {{I, I}, {3, 2}, {5, 2}, {7, 2 }}

• While OrderOfAIIElements returns the orders for all elements in pairs
{g, I g I}, OrderOfElement can be given a list of elements and returns just
the orders of those elements.

In[180):= OrderOfElement [U[8], {3, 5}]

Out[180)= {2 ,2}

• The Orders function has output similar to OrderOfAIIElements.

In[181):= Orders[U[8], {3, 5}]

Out[181)= {{3, 2}, {5, 2}}

• The order of the group Un does not increase monotonically.

In[182]:= ListPlot[Tab1e[{n, Size[U[n]]}, {n, 2, 20}],
PlotStyle ~ {PointSize[O.02], RGBColor[O, 0, l]},
Ticks~ {Table[i, {i, 5, 20, 5}], Table[i, {i, 4, 20, 4}]}];

•
16 •

12 •
•

a • • •
• • • •

4 • • • •
• • • •

5 10 15 20

• The group S3 is nonabelian, as illustrated by the lack of symmetry across the
main diagonal.

In[183):= AbelianQ[Symmetric[3], Mode ~ Visual]

316 User's Guide

KEY for S[3): label used ~ element : {gl ~
{ 1 , 2, 3}, g2 ~ {I, 3, 2} , g3 ~ {2, 1, 3},
g4 ~ {2, 3, I}, g5 ~ {3, 1, 2}, g6 ~ {3, 2, I}}

S [3] x * y

g1 g2 g3 g4 g5 g6

g1 gl g2 g3 g4 g 5 g6

g2 g2

g3 g3

g4 g 4

g5 g5

g6 g 6

Out[183]= False

• These are the pairs that do not commute.

In[184] := NonCommutingPairs[Symmetric[3]]

Out[184]= { { {I, 3, 2} , {2, 1, 3} } ,
{{1, 3, 2}. {2, 3, I}}, {{I, 3, 2}. {3, 1, 2} } ,
{{1, 3, 2}. {3, 2, I}}, { {2, 1, 3}. {2, 3, I} }.

{ {2, 1, 3} , {3, 1, 2} } , { {2, 1, 3}. {3, 2, I} } ,
{ {2, 3, I}. {3, 2, I} }. { {3, 1, 2} , {3, 2, I} } }

Although commutativity is not a required property for a structure to be a group, it is an
important property.

Abe li anQ [G)

CommutativeQ[G)

NonCommutingPairs[G)

Commutator [G, x, yJ
Commutators (G]

CommutatorSubgroup [G J

Functions related to commutativity.

give True if the groupoid G is Abelian,
and False otherwi e

equivaJent to AbelianQ (G)

give a Ii t of the pairs of elements
in the groupoid G that do not commute

give the commutator x y X-I y- I in the groupoid G

give the et of commutator in the groupoid G

give the commutator ubgroup in the groupoid G

• This shows the three commutators for D3 and how they arise from various pairs
of elements.

In[185]:= Commutators[Dihedral[3], Mode ~ visual]

Groupoids 317

KEY for D[3]: label used ~ element: {gl ~ 1, g2 ~ Rot,
g3 ~ Rot A 2, g4 ~ Ref, g5 ~ Rot**Ref, g6 ~ Rot A 2**Ref }

•
~ r!1 IIImli
II
IS
II ~~~"~~ f>~, ~~~,

II ~ '~~"'"
":~~

1m II \~ ,:,
(I II Ii

..

. .
Out[185]= {1, Rot, Rot 2 }

• From the foregoing table, we see that the commutator x yx- I y-I for x = Rot 2

and y = Ref is Rot, confirmed as follows.

In[186]:= Commutator[Dihedral[3], Rot2 , Ref]

Out[186]= Rot

The notion of the center of a group is related to commutativity. By definition, the center
of a group G is Ix E Gig x = x g V g E G}. Given an element g in G, the centralizer of g

is Ix E Gig x = x g}. Related to this is the centralizer of a subgroup H of G:
{xEGlgx=xg Vg EH}.

GroupCenter [G j

Center (G]

Centralizer (G, g]

Centralizer (G, H]

Functions related to the group center.

give the center of the groupoid G

identical to GroupCenter (G]

give the centralizer of the element g in the groupoid G

give the centralizer of the subgroup H in the groupoid G

• The center of the group D4 consists of two elements.

In[187] : = GroupCenter[DihedralGroup[4]]

Out[187]= {l, Rot 2 }

• There are four elements in D4 that commute with the element Ref .

In[188] : = Centralizer[DihedralGroup[4], Ref]

318 User's Guide

Out{188}= Groupoid[{l, Rot2 , Ref, Rot 2 **Ref}, -Operation-]

• The only element in D4 that commutes with all the elements in the subgroup
{ 1, Re f} is the identity element, 1.

In{189] : = Centralizer [DihedralGroup [4], {l, Ref}]

Out{189}= Groupoid [{l}, -Operation-]

Given a group G and elements h and x, we say x h X-I is the conjugate of h by x. The
conjugacy class of h in G is defined to be Ix h x-I I x E G}. Given a subgroup H , the
conjugate of H by x is Ixhx- ' I h E H} and is also a subgroup. Related to this is the
normalizer of H in G: Ix E G I x H X-I = H} ; this too is a subgroup.

ElementConjugate [G, h, xl
Conjugate [G, h, x]

SubgroupConjugate [G, H, x]

Conjugate [G, H, xl
ConjugacyCl ass [G, h]

Normalizer [G, H]

Functions related to conjugation.

give the element x h [I in the groupoid G

identical to ElementConjugate [G, h, x]

give the groupoid that is the conjugate of the
ubgroup H by x

identical to SubgroupConj uga te [G, H, x]

give the conjugacy cia of II in the group G

give the normalizer of the subgroup H in G

• Since Z5 is Abelian, conjugating 2 by 4 simply returns 2.

In{190}:= ElementConjugate[Z[S], 2, 4]

Out{190}= 2

• Conjugating the subgroup {I, Re f} in D3 by Ro t returns the subgroup
{l, Rot 2 ** Ref}.

In[191]:= SubgroupConjugate[Dihedral[3], {l, Ref}, Rot]

Out{191}= Groupoid [{l, Rot2 ** Ref}, -Operation-]

• Here we find the conjugacy class of the element Ref in D3 .

In{192}:= CR = ConjugacyClass[Dihedral[3], Ref]

Out[192]= {Ref, Rot**Ref, Rot2 **Ref}

• We see that this conjugacy class is not a subgroup.

In [193} : = SubgroupQ [CR, Dihedral [3]]

Out[193]= False

CyclicQ [G]

CyclicGenerators [G]

Functions related to cyclicity.

Groupoids 319

give True if the groupoid G i cyclic
and False otherwise

give a Ii t of element in the groupoid G that
are cyclic generator of G

• Since there is no element of order 8, the group V15 is not cyclic.

In[194):= CyclicQ[U[lS], Mode -+ visual]

Out[194]= False

• One third of the elements in V13 can act as a generator for the group.

In[195] : = {CyclicGenerators[U[13]], Size[U[13]]}

Out[195]= {{2, 6,7, ll}, l2}

• The following exponents (including the 1 implicitly given on g) are intimately
related to 12. How?

In[196]:= CyclicGenerators[Cyclic[12]]

Out[196]= {g, g 5 , g 7 , g ll }

ElementToPower [G, g, /1]

GroupExponent [G j

Miscellaneous functions.

give the element gil in the groupoid G

giv the malle t po iIi e integer 11 such
gil = ide for all element g in the groupoid G

• Using the Table function with ElementToPower, we can easily see various
powers of a given element.

320 User's Guide

In[19 7]:= Table [{n, ElementToPower[U[l5], 2, n]}, {n, -2, 4}] II
TableForm[#, TableHeadings -+ {None, {linn, "2"\n"}}] &:

Out [197] //TableForm=

n 2n

- 2 4
- 1 8
0 1
1 2
2 4
3 8
4 1

• We see that the exponent of the group U IS is 4.

In[198]:= GroupExponent [U[15], Mode -+ visual]

1 2 4 7 8 11 13 14
elements

Out[198]= 4

Chapter 3

Ringoids

3.1 Forming Ringoids

The principal means by which ringoids are formed is with ForrnRingoid. Additionally,
there is ForrnRingoidByTable, which parallels the function ForrnGroupoidByTa­
ble .

• 3.1.1 FormRingoid

FOrmRingoid [
{els } , add, mult)

ForrnRingoid [{els } ,
add, m.ult, {asym., msym })

FOrmRingoid [
{els } , add, mult, opts)

FOrrnRingoi d [{els } , add,
mult, {asym, msym } , opts)

Variations in using FormRingoid.

form a Ringoid with element (elsl and operations add
and mult using + and * a operation symbol

form a Ringoid with element (elsl and operations add
and mult using asym and msym a operation symbol

form a Ringoid with elements I elsl operations add and
mult using + and * as operation ymbols and options opts

form a Ringoid with elements I elsl and
operation add and mult using asym and
msym as operation ymbols and options opts

The syntax of the ForrnRingoid function requires the first parameter to be a list of
elements and the next two parameters to be binary operations that serve as the addition
and multiplication of the ringoid that is to be created. These binary operations are usually
pure functions with two Slot variables, #1 and #2. An optional fourth parameter can be
provided, which is a list of two symbols to be used for addition and multiplication.
Finally, any option of ForrnRingoid can be included as a final argument.

322 User's Guide

The choice of operation symbols does not change the ringoid's properties; it is simply a
cosmetic change that makes some outputs more appealing .

• The following are essentially the same ringoid.

In[i] : = {Rl = FormRingoid[{True, False}, Xor, And],
R2 = FormRingoid[{True, False}, Xor, And, {"alD, "A"}]}

Out[i]= {Ringoid[{True, False}, -Addition- , -Multiplication-),
Ringoid[{True, False } , -Addition-, - Multiplication-)}

option name

CayleyForm

FormatElements

FormatOperator

IsARing

KeyForm

MaxElementsTo ...
List

RingoidDescri ...
ption

RingoidNarne

WideElements

Options for Fo rmRingoid.

default value

OutputForm

False

True

False

InputForm

50

"TheRi ng"

False

appearing

pecifies wh th r element hould be
displayed or formatted to - Elements-

pecifi wh th r addition and mUltiplication
should be di played or formatted to
- Addition- and -Multiplication-

pecifie whether w can a sume that the
ring id is a ring

pecifies how to format element
appearing in a key when CayleyTables
or MultiplicationTable
i called with a ringoid having
WideElements et to True

pecifie th number of element to Ii t before
the Ii (f el m nt i automaticall y formatted.

brief de cripti n of the ringoid

name of the ringoid

pecifie whether the element are con idered too
wide to fit into a Cayley table initiating a key
to be t up

The operations on some larger ringoids can be time-consuming. Some time can be saved
if you know that a ringoid is indeed a ring by declaring it as such with the IsARing
option. Caution: Your declaration is not checked, so you should use this option only if
you are sure you have a ring.

• Here is a big ring.

Ringoids 323

In[2J:= BigRing = FormRingoid[Range[O, 1000],
Mod[#l + #2, 1001] &:, Mod [#1 #2, 1001] &:, IsARing -+ True]

Out [2 J = Ringoid [{ -Elements- }, -Addi tion-, -Multiplication-j

• The following timing has been greatly reduced by the use of IsARing.

In[3J:= Timing [RingQ [BigRing]]

Out [3J = {O. 0166667 Second, True}

• Normally the elements of a small ringoid are listed; they can, however, be
suppressed.

In[4J:= FormRingoid[Range[O, 1],
Mod [#1 + #2, 2] &:, Times, MaxElementsToList -+ 1]

Out[4J= Ringoid[{-E1ements-}, -Addition-, -Multiplication-j

• In most cases, the usual addition and multiplication symbols are adequate.
Here, as the fourth parameter, alternate symbols are specified.

In[5J:= UR=FOrmRingoid[{"a", "b", "en}, #1&:,
#2 &:, {"Fst", "Lst"}, RingoidName -+ " UnRing " ,
RingoidDeseription -+ "A nonsense Ringoid"]

Out[5J= Ringoid[{a, b, c}, -Addition-, -Multiplication-j

• The alternate symbols appear in the Cayley tables.

In [6 J : = CayleyTables [UR, Mode -+ visual] ;

For each element, a different color is used.
The entries in the table corresponding to the
elements are then colored and labeled accordingly.

Add. x Fst Y

~II ••••
Mult .

~II •• • •

x Lst Y

• Here is a ring of multiples of 1f mod 31f with CayleyForm set to Tradi tion­
alForm.

324 User's Guide

#1 + #2
In[7]:= piRing = FOrmRingoid[Range[O, 27r, 7r], 7rMOd[, 3] &:,

7r

#1 #2
7r Mod [---, 3] &:, CayleyForm -+ Tradi tionalForm]

7r2

Out [7] = Ringoid [{O, 71, 2 7r}, -Addi tion-, -Multiplication-]

• The Cayley tables are displayed with the Tradi tionalForm of 1T.

In [8] : = CayleyTables [piRing, Mode -+ Visual] ;

Add.

~II
1111

x + y Mult.

• • •

x * y

• Now we form the same ring with CayleyForm set to InputForm.

#1 + #2
In [9] := piRing2 = FOrmRingoid[Range[O, 27r, 71], 7rMod[, 3] &:,

#1 #2
7r Mod [---, 3] &:, CayleyForm -+ J:nputForm]

7r2

7r

Out[9]= Ringoid[{a, 71, 2 7r}, -Addition-, -Multiplication-]

• Now 1T is displayed as pi in the Cayley tables.

In[lO]:= CayleyTables [piRing2, Mode -+ Visual];

Add . x + y •• '

•• • • •

Mult. x * y

• By using the option CayleyForm with the CayleyTables function, we can
always override any preset value. Here we override piRing2 ' s CayleyForm
value of InputForm.

Ringoids 325

In [11 j : = CayleyTables [piRing2,
Mode -+ visual, CayleyForm -+ TraditionalForm];

Add. x + y Mult . x * y

• 3.1.2 FormRingoidByTable

A second general means of forming ringoids is with FormRingoidByTable.

FOrmRingoidByTabl e [
{els } , arable, mtable]

form a Ringoid with elem nt (elsl and
operation table atable and tn/able
u ing + and * a operation ymbols

FormRingoidByTable [{els } ,
atable, tTl/able, {as)'llI, msym } , opts]

form a Ringoid with elements (el I and
operation table a/able and mtable using asym
and msym a operation ymbol and options opt

Variations in using ForrnRingoidByTable .

• Here are two tables of integers between 0 and 3.

In[12j : = {atable = (RotateLeft [Range [0, 3], #1] &:) /@Range[O, 3] ,

mtable = (RotateLeft[Range[O, 3], #1] &:) /@Range[l, 7, 2]} / /
ColumnForm

Out[12j= { {O, 1, 2, 3}, {l, 2 , 3, O} , {2, 3, 0, I}, {3, 0, 1, 2} }

{ {I, 2, 3, O}, {3, 0 , 1 , 2}, {I, 2, 3, O}, {3, 0, 1, 2} }

• These tables can be used to define a ringoid. FormRingoidByTable accepts
the same options as FormRingoid.

In[13]:= FormRingoidByTable[Range[O, 3], atable, mtable,
RingoidDescription -+ "Experimental Ringoid",
FormatElements -+ True, FormatOperator -+ False]

Out[13]= Ringoid[{-Elements-},
First[Flatten[{ {O, 1, 2, 3 } , {I, 2, 3, O} , {2, 3, 0, I}, {3,

0, 1, 2}} [First [(Position[{O, 1, 2, 3}, #1] &) [#1]],
First [(Position[{O, 1, 2, 3}, #1] &) [#2]]]]] &,

326 User's Guide

First[Flatten[{{1, 2, 3, A}, {3, 0, 1, 2}, {I, 2, 3 , O} , {3,
0,1, 2}}[First[(Position[{0, 1, 2, 3 } , #1] &) [#1]],

First[(Position[{O, 1, 2, 3}, #1] &) [#2]]]]] &]

3.2 Structure of Ringoids

• 3.2.1 Basic functions

A ringoid is a structure that has head Ringoid and four arguments, the fourth being
suppressed and used for internal purposes. The fust argument is the domain of the
ringoid, which can be referenced with Domain. The second argument is the addition
operation on the domain, referenced with Addi tion. The third argument is the multipli­
cation operation on the domain, referenced with Mul tiplication.

Domain [R]

Elements[R}

Addition[R]

Multiplication [R}

return th domain (elem nt) of R

identical to Domain [R }

return the addition operation of R (a a pure functi n)

return the multiplication operation of R (a a pure fun ti n)

Functions for working with the structure of a ringoid.

• The expression zR[5] constructs the ringoid Zs.

In[14]:= ZR[S]

Out[14]= Ringoid[{O, 1, 2,3, 4}, Mod[#1 + #2,5] &, Mod [#1 #2,5] &]

• Here are the elements in the ringoid.

In [15] := Domain[ZR[S]]

Out[15]= {O, 1, 2 , 3 , 4}

• This is how to obtain the addition and multiplication operations.

In[16] : = {Addition[ZR[S]], Multiplication[ZR[S]]}

Ou t [16] = {Mod [# 1 + # 2, 5] &, Mod [#1 # 2, 5] &}

Behind the scenes, when zR[5] is evaluated, FormRingoid is called in order to con­
struct it.

Ringoids 327

• 3.2.2 Related functions

rerum the name of the ringoid R RingoidName [R]

PlusSymbol [R]

TimesSymbol [R]

ElementQ [x, R]

ElementsQ [els, R]

return tbe ymbol u ed for the addition of the ringoid R

return the ymbol u ed for the multiplication of the ringoid R

give True if x i an element of R and False otherwi e

give True if all member of els are elements of the ringoid R,
and False otherwi e

Functions related to the structure of a ringoid.

• Here is an example of a nonstandard ring with information provided as options
to FormRingoid.

In[17J:= R=FormRingoid[Range[l, 4], Min[#l, #2] &:,

Max[#l, #2] &:, {"Min", "Max"}, RingoidDescription
"An example of a Ringoid that is not a ring.",

RingoidName "Rex"]

Out [17] = Ringoid [{l, 2, 3, 4}, -Addi tion-, - Multiplication-)

• Here is how we can learn the name of this ringoid and also the symbols used for
its operators.

In [18 J : = {RingoidName [R], PlusSymbol [R], TimesSymbol [R] }

Out [18J = {Rex, Min, Max}

• The ElementQ and ElementsQ functions work just as they do for groupoids.

In[19J:= {ElementQ[3, R], ElementsQ[{3, S}, R]}

Out[19J= {True, False}

• In this ringoid, the "sum" of two numbers is the minimum of the two. Before
doing any testing for ring properties, here is what is known about this ringoid.

In[20J:= RingJ:nfo[R]

Out[20J= {Rex, An example of a Ringoid that is not a ring .}

• As tests are performed on a ringoid, information is collected and retrievable by
the Ringlnfo function.

In[21J:= {Zero[R], RingQ[R], RingJ:nfo[R]}

Out[21J= {4, False,
{Rex, An example of a Ringoid that is not a ring . ,

328 User's Guide

the Ringoid has as a zero the element 4,
the set is closed under addition,
the set is closed under multiplication,
there are elements that do not have an additive inverse,
this is NOT a ring}}

• Most would agree that a ring where all products are zero is "freaky." Why not
use a "freaky" multiplication symbol?

In [22] := FreakyRing = FormRingoid[
Range[O, 2], Mod[#1+#2, 3] &:, O&:, {"+", non}];

MultiplicationTable [FreakyRing, Mode -+ visual];

(Th eRing, x l x Q y

Sometimes it is useful to choose a random ring element or a list of random elements.

RandornElernent [R, opts]

RandornElernents [R , n, opt 1

Choosing random elements.

retum a random element from the ringoid
Race rding to !:he options opts

return n random element from the ringoid
R according to the opti n opts

• To obtain nine random elements (allowing replacement) from Z)I , we can use
either of the following methods.

In[24]:= {Table[RandomElement[Z[ll]], {9}],
RandomElements[Z[11],9]}

Out[24]= {{7, 1, 4, 2, 8, 2, 6, 7, 3}, {8, 0, 1, 0, 2,7,6,2, 10}}

• If you are interested in nine distinct elements and avoiding both of the identi­
ties, we can use the following options to accomplish this.

In[25]:= RandomElements[Z[ll], 9,
Replacement -+ False, SelectFrom -+ Nonldentity]

Out[25]= {7, 5, 8, 10, 9, 4, 6, 2, 3}

Ringoids 329

option name value

SelectFrom NonZero choose any element except the
zero (default for RandomElement)

SelectFrom NonUnity choose any element except the unity

SelectFrom Nonldentity choo e any element except the unity or zero

SelectFrom Any

Replacement True

Options for generating random elements.

choose any elem nt (default for RandOmElements)

a sume replacement when choo ing the
elements (default for RandomElements)

• 3.2.3 Groupoids from ringoids

Since a ringoid is a collection of elements with two binary operations, it makes sense to
consider splitting off either of the operations with the elements and forming a groupoid.
There are several directions to go here: the additive groupoid, the multiplicative groupoid,
and the multiplicative groupoid consisting of just the nonzero elements.

AdditiveGroupoid [R] groupoid associated with ringoid R con isting
of the elements of R and its addition operation

AGroupoid [R] identical to AdditiveGroupoid [R]

MultiplicativeGroupoid [R) groupoid associated with ringoid R con i ting of
the elements of R and its mUltiplication operation

MGroupoid [R) identical to MultiplicativeGroupoid [R]

NonZeroMGroupoid [R) groupoid of nonzero element of ringoid R with
the multiplication of R

Groupoids associated with a ringoid.

• The additive groupoid of the ring lLn is essentially the group lLn •

In(26) : = AdditiveGroupoid[ZR[ll]]

Out(26)= Groupoid[{O, 1, 2 , 3, 4, 5, 6, 7 , 8, 9, 10}, Mod[#1+#2, 11] &]

• The additive groupoid of a ring is an Abelian group.

In(27) : = G = AdditiveGroupoid[LatticeRing[30]];
{GroupQ [G], AbelianQ [G] }

Out(28)= {True , True}

330 User 's Guide

• The multiplicative groupoid of a ring is never a group.

In[29]:= GrOupQ[MultiplicativeGroupoid[Z[9]]]

Out[29]= False

• In some cases, the multiplicative groupoid of nonzero elements is a group.

In[30] : = {G = NonZeroMGroupoid[Z [7]], GroupQ [G) }

Out[30]= {Groupoid[{l, 2, 3, 4,5, 6}, Mod[#1 #2,7] &], True}

3.3 Testing properties of a ring

• 3.3.1 Additive properties

The additive properties of a ring require that the domain be closed with respect to addi­
tion, an identity (the zero) for addition must exist in the domain, each domain element
must have an additive inverse in the domain, and addition must be both commutative and
associative.

ClosedQ [R,
Operation ~ Addition)

HasZeroQ [R]

HaslnversesQ [R,
Operation ~ Addition]

AssociativeQ [R,
Operation ~ Addition]

CorrunutativeQ[R,
Operation ~ Addition)

HasldentityQ [R.
Operation ~ Addition)

Functions for testing the additive properties of a ring.

give True if the elements of the ringoid R are closed
with re peel to the addition, and False otherwi e

give True if R ha a zero. and False otherwi e

give True if every element in R has an
additive inverse in R, and False otherwi e

give True if the addition of Ria ociative,
and False otherwise

give True if the addition of R is commutative,
and False otherwise

identical to HasZeroQ [R)

• Although it is common knowledge that 7l.5 satisfies all the additive ring proper­
ties, here the Mathematica commands confirm it.

In[31]:= {ClosedQ[Z[5], Operation ~ Addition], HasZeroQ[Z[5]],
HaslnversesQ[Z[5], Operation ~ Addition],
AssociativeQ[Z[5], Operation ~ Addition],
CommutativeQ[Z[5], Operation ~ Addition]}

Out[31]= {True, True , True, True , True}

Ringoids 331

• The Visual mode illustrates the symmetry involved in the commutative
property.

In[32]:= commutativeQ[Z[5], Operation -+ Addition, Mode -+ Visual]

Add(Z[5))

IX 0

0 0

1 1

2 2

3 3

4 4

Out[32]= True

Zero[R]

HasNegativeQ[R, r]

NegationOf [R, r]

1

1

2

3

4

0

RandOrnAssociativeQ[
R, Operation ~
Addition]

InvertibleQ [R, r,
Operation -+ Addition]

Inverses[R,
Operation ~ Addition]

2

2

3

4

0

1

x + y

3 4

3 4

4 0

0 1

1 2

2 3

retum the zero of R. if one exi t ,and $Failed otherwi e

give True if r has a negative in R. and False otherwi e

retum the additive inverse of r in R. if it exists,
and $Failed otherwi e

give True if addition on R appears to be as ociative
(based on Ie ting 25 random triples from R),
and False otherwi e

identical to HasNegativeQ [R. r]

return a Ii t of pair of the form lx, -xl. or lx, no inver el
if x has no negation

Related functions for testing the additive properties of a ring.

In[33] : = Inverses[FOrmRingoid[{2, 3, -2, O}, Plus, Times],
Operation -+ Addition]

Out[33]= {{2, -2} , {O, A}, {3, no inverse}}

• By the following, we know that 1 has a negative in 7l.s .

In[34]:= HasNegativeQ[z [5], 1]

Out[34]= True

• Here is why 0 is the zero of 7l.s .

In [35] : = Zero[Z[5], Mode -+ Visual]

332 User's Guide

Add(Z [5) x + y Add(Z[5) x + y

0 1 2 3 4 1 2 3 4

0 1 2 3 4 1 2 3 4

1 1 2 3 4 0 2 3 4 0

2 2 3 4 0 1 3 4 0 1

3 3 4 0 1 2 4 0 1 2

4 4 0 1 2 3 0 1 2 3

red->left identity red->right identity

Out[351= 0

• This explains why the negation of 1 in Z5 is 4.

In[36] := NegationOf[Z[S], 1, Mode -+ Textual]

Given a Ringoid R, we sayan element r in R has an
additive inverse s if R has an additive identity 0 and
r + s = s + r = 0 (where + indicates the operation) .

In this case, 1 has 4 as the inverse .

Out[36]= 4

Associativity in a ringoid with n elements involves n3 tests, so RandomAssociati veQ
is suggested for larger ringoids.

• If we used Associa ti veQ here, we would wait for 64,000 tests.

In [3 7] : = RandomAssociativeQ[Z[40], Operation -+ Addition]

Out[37J= True

option name default value

Mode Computational specifies what type of information,
if any should be given in
addjtion to the result of the computation

Operation Both for functions that apply to both addition and
multiplication, pecifie whkh of the operations should
be con idered; Both, Addi tion, or
Multiplication are values for this option

Options for functions that test ring properties.

• Most of the functions that test the various properties of a ring allow the Opera­
tion option. Here we illustrate the four possibilities; note that (in this

Ringoids 333

case-not true for all functions) not specifying the option assumes that both
operations are to be checked.

In[38J:= R = FormRingoid[{-l, 0, 1}, Plus, Times];
{ClosedQ[R, Operation ~ Addition],
ClosedQ[R, Operation ~ Multiplication],
ClosedQ[R, Operation ~ Both], ClosedQ[R]}

Out[39J= {False, True, False, False}

• 3.3.2 Multiplicative properties

The only purely multiplicative properties a ring must satisfy are closure and associativity,
but there are several other additional properties that are of interest and can be tested.

ClosedQ [R , Operation ~
Multiplication]

AssociativeQ[R,
Operation ~ Multiplication]

Functions for the required mu~iplicative ring properties.

give True if the elements of the ringoid R are
clo ed with re peet to the multiplkation,
and False otherwi e

give True if the multiplication on
R is associative, and False otherwi e

As with the additive properties, there are not many surprises when you consider standard
rings such as the Zn family.

• The unity is 1.

In[40]:= {withunityQ[Z[lS]], unity[Z[lS]]}

Out[40J= {True, l}

• For the units of Z15, here is how elements are paired with their multiplicative
inverses.

In [41J:= Map [{I, MultiplicativeJ:nverse [Z [15], I]} &, units [Z [15]]]

Out [41 J = {{ 1, l}, {2, 8}, {4, 4}, {7, 13},
{8, 2}, {ll, ll}, {13, 7}, {l4, l4}}

• Here is an alternate method that considers all the elements in the ring, providing
appropriate information for those lacking multiplicative inverses.

In[42J:= J:nverses[Z[lS], Operation ~ Multiplication]

Out[42J= {{O, no inverse}, {l, l}, {2, 8}, {3, no inverse}, {4, 4},
{5, no inverse}, {6, no inverse}, {7, 13}, {9, no inverse},
{lO , no inverse}, {ll, ll}, {l2, no inverse}, {l4, 14}}

334 User's Guide

WithUnityQ[R)

Unity [R)

UnitQ [R, r)

Multiplicativelnverse [R, r)

ConunutativeQ[R,
Operation ~ Multiplication)

RandOmAssociativeQ [R,
Operation ~ Multiplication)

HasUnityQ[R)

HasldentityQ [R,
Operation ~ Multiplication)

InvertibleQ [R, r.
Operation ~ Multiplication)

Inverses [R,
Operation ~ Multiplication)

Related multiplicative functions of ring properties.

give True if a multiplicative identity
(unity) exi ts in R, and False otherwi e

return the unity of R, if one exi t ,
and $Failed otherwi e

give True if r h a multiplicali e
inver e in R and False otherwi e

return the multiplicative inverse of r in
R, if it exi t ,and $Failed otherwise

give True if multiplication i c mmutative
in R, and False otherwi e

give True if multiplication in R appear to be
as ociative (ba ed on te ting 25 random triple)
aDd False otherwi e

identical to wi thUni tyQ [R)

identical to wi thUnityQ [R)

identical to Un i tQ [R, r]

return a Ii t of pair of the form lx, x-I I.
or lx, no in er e) if x i not a unit

• The nonstandard rings can provide some interesting surprises.

In[43]:= unity[Z[lO, 2]]

Out[43]= 6

• Multiplication in a ring does not need to be commutative. The ring of two-by­
two matrices over Z2 is not commutative.

In[44] : = commutativeQ[ToRingoid[Mat [Z [2], 2]],
Operation ~ Multiplication]

Out[44]= False

Units[R]

ZeroDi visorQ [R, r]

zeroDivisors[R)

return the list of units of R

give True if r is a zero divisor in R, and False otherwi e

return the list of all zero divi or of R

Additional functions related to the multiplication in a ringoid.

Ringoids 335

• Of the elements {1, 2, 3} in Z15, which are zero divisors?

In[45J:= Map[zeroDivisorQ[Z[15]. #] &:. {1. 2. 3}]

Out[45J= {False, False, True}

• Here are all the zero divisors with an explanation of why they are so designated.

In[46J := zd = ZeroDi visors [Z [15]. Mode Textual]

One reason why 3 is a zero divisor is that 3 * 10 = o.
One reason why 5 is a zero divisor is that 5 * 6 = o.
One reason why 6 is a zero divisor is that 6 * 10 = o.
One reason why 9 is a zero divisor is that 9 * 5 = o.
One reason why 10 is a zero divisor is that 10 * 9 = o.
One reason why 12 is a zero divisor is that 12 * 10 =

Out[46J= {3, 5, 6, 9, 10, 12}

• Here are the units of the same ring.

In[47J:= U =UDits[Z[15]]

Out[47J= {l, 2, 4, 7, 8, 11, 13, 14}

• Here we see that every element in the ring is either a zero divisor, a unit, or the
zero. Is it true for any ring that an element is a zero divisor, a unit, or the zero?

In[48J:= union [zd. u. {O}] == Elements[Z[15]]

Out [48J = True

• 3.3.3 Distributive property

o.

The distributive property can be tested in four ways: DistributiveQ, LeftDistrib­
utiveQ, RightDistributiveQ, and RandomDistributiveQ. As with associativ­
ity, the full test is always correct but can be time-consuming. The random test tends to be
shorter, but not guaranteed. Distributivity must be satisfied both on the left and the right:
a(b + c) = a b + a c and (b + c) a = b a + ca. Testing can be done from both sides or one
of the sides.

• The ring of integers modulo n has the distributive property.

In[49J:= DistributiveQ[Z[12]]

Out[49J= True

There are 2n3 tests performed by DistributiveQ on a ringoid with n elements. For
large ringoids, RandomDistributi veQ is recommended

336 User's Guide

• To avoid asking for 65,536,000 tests to be performed, we use the random
version and opt for ten tests here.

In[50J:= RandomDistributiveQ[Z [320], 10]

Out[50J= True

DistributiveQ [R]

LeftDistributiveQ [R]

RightDistributiveQ [R]

RandOmDistributiveQ [R]

RandomDistributiveQ [
R, n]

Test for distributivity in a ringoid.

• 3.3.4 RingQ test

give True if multiplication i djstributive (from both
ide) over addition in the ringoid R, checking

all po ible triple and False otherwi e

give True if multiplication i left distributive over
addition, and False otherwi e

give True if multiplication i right dj tributive over
addition, and False otherwi e

give True if multiplication i likely to be di tributive
over addition checking 25 triple, and False otherwi e

give True if multiplication i likely to be di tributive
over addition, checking T! triple, and False otherwi e

All of the basic ring properties can be tested using one function, RingQ. Probable­
RingQ, approaching associativity and distributivity randomly, is recommended for larger
ringoids. The results of ring tests are recorded and can be retrieved using RingInfo.

RingQ [R] give True if Ria ring, and False otherwi e

ProbableRingQ [R] give True if R is probably a ring (u ing random a sociativity
and distributivity te t), and Fal se otherwise

RingInfo [R] rerurn a Ii t of facts about R
that are generated by Var10U test of R

Testing for all ring properties and retrieval of results.

• Here we check Z 7 to verify that it is a ring.

In[51J:= RingQ[Z[7]]

Out [51J = True

• Since BooleanRing[6] has 64 elements, we use ProbableRingQ.

In[52J : = ProbableRingQ[BooleanRing[6]]

Out[52J= True

• Let's see what is known about this ringoid now.

In[53J:= RingInfo [BooleanRing [6]]

Out[53J= {Bool[6J, the boolean Ring on {l, ... ,6 },
the set is closed under addition,
the set is closed under multiplication,
the Ringoid has as a zero the element {},
every element has an additive inverse,
the addition operation is commutative,

Ringoids 337

multiplication is probably distributive over addition,
the addition operation is probably associative,
the mUltiplication operation is probably associative,
this is probably a ring }

• 3.3.5 Specialized rings

FieldQ [R] give True if Ria field, and False otherwi e

IntegralDomainQ [R] give True if R i an integral domain, and False otherwi e

Specialized rings can be tested with these functions.

• The ring 7L.n is a field if and only if n is prime.

In[S4J:= Map[{#, l'ie1dQ[Z[#]]} &, Range[3, 9]]

Out[54J= {{3, True}, {4, False}, {5, True},
{6, False}, {7, True}, {8, False}, {9, False}}

• A quotient ring of polynomials over a field F is a field if and only if the modu­
lus polynomial is irreducible over F.

In [55J : = FieldQ [QuotientRing [Z [3], Poly [Z [3], x 2 + X + 2]]]

Out[55J= True

• 3.3.6 Closure of subsets

For a ringoid to be a ring, its domain must be closed with respect to addition and multipli­
cation. We can use ClosedQ to test for closure not only of the whole domain but also of
subsets.

338 User's Guide

ClosedQ [R, Wj

ClosedQ[R, W,
Operation -+ op]

ClosedPlusQ[R, W]

ClosedDiffQ[R, Wj

ClosedTimesQ[R, W]

Other closure functions on ringoids.

give True if W is c10 ed with re peet to addition
and multiplication in R, and False otherwi e

give True if W i c10 ed with respeet to the operation
op in R. and False otherwi e

give True if W i c10 ed with respeet to addition in
R, and False otherwise

give True if W i c10 ed with re peet to ubtraction
in R, and False if not, or if any negation fail to exi t

give True if W is closed with re peet to multiplication
in R and False otherwise

Closure properties are most often considered when determining whether a subset is a
subsystem.

• Here is a set that is not closed with respect to both ring operations, but it is
closed with respect to multiplication, however.

In[56]:= {ClosedQ[Z[8], {l, 3, 5, 7}],
ClosedQ[Z[8], {l, 3, 5, 7}, Operation~Multiplication]}

Out[56]= {False, True}

• Differences between even elements of 7l.n are again even. Likewise, they are
closed under multiplication.

In[57]:= {ClosedDiffQ[Z[8], {O, 2, 4, 6}],
ClosedTimesQ[Z[8], {O, 2, 4, 6}]}

Out[57]= {True, True}

• The second argument of ClosedQ can be a set, or a structure.

In[58]:= {ClosedQ[LatticeRing[30], Elements[LatticeRing[l5]]],
closedQ[LatticeRing[30], LatticeRing[l5]]}

Out[58]= {True, True}

• The Visual mode gives you a sense of "how closed" a set is.

In[59]:= ClosedQ[Z[9], {O, 2, 4,6, 8},
Mode ~ Visual, Operation ~ Addition]

All the elements marked with yellow are original
elements in the set. Those in red are from outside .

Out[59]=

TheGroup x * y

0

0 0

2 2

4 4

6 6

8 8

False

2 4 6

2 4 6

111111
1111
II

8

8

• 3.3.7 Testing other properties

Ringoids 339

Given any finite ring R, the characteristic of the ring is the least positive integer n such
that nx = 0 for all x in R. We can use the Mul tipleOfElement function to determine
values of n x. An analogous function, ElementToPower, returns the multiplicative
equivalent, x" .

ElementToPower[R, a, n)

MultipleOfElement [R, a, n)

Characteristic [R)

Functions related to powers and multiples of elements.

return the power a" in R

return the multiple na in R

return the characteristic of R

• The characteristic of Zn is n, the characteristic of any Boolean ring is 2, and the
characteristic of a direct product is related to the characteristics of the factors.

In[61] : = Map [Characteristic,
{ BooleaDlling [3], Z [6], Z [9], DirectProduct [Z [6], Z [9]]}]

Out[61]= {2, 6, 9, I8 }

• Here is a series of multiples and powers of (3, 6) in Z6 x Z 9.

In[60] : = 'l'ableForm[
Map [{I, MultipleOfElement [DirectProduct [Z [6], Z [9]] ,

{3, 6}, I], Element'l'OPower[DirectProduct[Z[6], Z[9]],
{3, 6}, I]} &:, Range[-l, 4]],

'l'ableHeadings {None, {nn", nn (3,6)\n", "(3,6)D\nn}},
'l'ableDepth 2]

Inverse : : fai 1
{3, 6} does not have an inverse in Mult (Z[6] x Z[9]) .

340 User 's Guide

Out [60]IITableForm=

n

-1

0

1

2

3
4

IdempotentQ[R, r]

Idempotents(R]

NilpotentQ [R, r]

n (3,6)

{3, 3}

{O, O}

{3, 6}

{O, 3}

{3, O}

{O, 6}

Nilpotents[R]

NilpotentDegree [R , r]

Other functions related to powers of an element.

(3,6) n

$Failed

{1, 1}

{3, 6}

{3, O}

{3, O}

{3, O}

give True if r i an idempotent element of
R (i.e., r2 = r), and False otherwise

return the Ii t of idempotent element of R

give True if r is a nilpotent element of R (i.e.,
,J< = 0 for orne po itive k), and False otherwi e

return the Ii t of nilpotent elements of R

return the least po itive integer k for which ,.Ii = 0
in R if r i nilpotent, and 0 if r is not nilpotent in R

• Here we test the elements of Zg to see which are idempotent.

In[62]:= Map[{#, J:dempotentQ[Z[8], #]}5:, Elements[Z[8]]]

out[62]= {{O, True}, {l, True}, {2, False}, {3, False} ,
{4, False}, {5, False}, {6, False}, {7, False}}

• All the elements of a Boolean ring are idempotent.

In[63]:= J:dempotents[BooleanRing[3]]

Out[63]= {{}, {3}, {2}, {2, 3}, {1}, {1, 3}, {1, 2}, {1, 2, 3}}

• The element 6 is nilpotent in Z24 because 63 == 0 (mod 24).

In[64]:= NilpotentQ[Z[24], 6]

Out[64]= True

• Here are the nilpotents of Z16.

In[65]:= Nilpotents[Z[16]]

Out[65]= {O, 2, 4, 6, 8, 10, 12, 14}

• Here are the elements of Z16 with their nilpotent degrees listed below.

Ringoids 341

In[66]:= {Elements[Z[16]],
NilpotentDegree [Z [16], #] &: /@Elements[Z[16]]} II

TableForm [#, TableSpacing -+ {1, 1.2}] &:

Out [66] //TableForm=

012

104

3 4
o 2

567 8

o 4 0 2

9 10 11 12 13

o 402 0

14 15

4 0

• In a commutative ring, the nilpotents form an ideal.

In[67]:= IdealQ[Nilpotents[Z[24]], Z[24]]

Out[67]= True

3.4 Built-in Ringoids

There are several ringoids that are easily constructed by functions in the packages. By far
the most important of the rings in elementary abstract algebra is the ring of integers mod
n, Zn .

• 3.4.1 Numeric rings

ZR [n)

ZR[n, k)

Z[n)
Z [n, k)

Z [n, I)

TrivialZR [n]

LatticeRing [n)

Some built-in numeric ringoids.

ring of integer mod n with mod n addition and multiplication

ring of multiple of k mod n, if k i a divi or of 11

identical to ZR [n) if DefaultStructure iRing

id ntical to ZR [n, k) if DefaultStructure iRing

ring of Gau sian integer with mod n addition and
multiplication, if the Defaul tStructure is Ring

ring of integer mod n with mod n addition
but the multiplication i zero for all product

divi or of n with LCM/GCD for addition and GCD for
multiplication

Here we illustrate severa1 ringoids with eight elements .

• We've seen the Z family many times already. We have mostly used the symbol
Z, but when using ZR we know that we will get a ringoid in all cases.

In[68]:= ZR[8]

342 User 's Guide

Out[68)= Ringoid[{O, 1, 2,3,4,5,6, 7},
Mod [#1 + #2, 8] &, Mod[#l #2, 8] &]

• The following ring happens to be an ideal of 7L 16.

In[69):= {R = Z[l6, 2], IdealQ[R, Z[l6]]}

Out[69)= {Ringoid[{O, 2, 4, 6, 8, 10, 12, 14},
Mod [#1 + #2,16] &, Mod [#1 #2, 16] &], True}

• This is a standard counterexample in elementary algebra courses; any product is
equal to zero.

In[71):= CayleyTables[TrivialZR[8], Mode ~ Visual];

• Here is another interesting ring with eight elements. The operations in L are not
displayed, so they are also listed.

In [71) := {L = LatticeRing[30], Addition[L], Multiplication[L]}

Out[71)= {Ringoid[{l, 2, 3, 5, 6, 10, 15, 30}, -Addition-,

1 . 1 · .] LCM[#l, #2] [#1 #2] } -Mu tJ.P J.catJ.on- , GCD[#1, #2] &, GCD , &

• 3.4.2 Other rings

Bool eanRing [n]

BOO 1 eanRing [list J

Nonnumeric ringoids.

Boolean ri ng consisting of the set of subsets of {I, 2, .. . , nl with
symmetric difference for addition and inter ection for multiplication

Boolean ring with subsets of lisl

• Here is another ring with eight elements.

In[72):= CayleyTables[BooleanRing[{a, (3, y}],
Mode ~ Visual, KeyFo~ ~ StandardFo~];

Ringoids 343

KEY for Add (Bool [{ex, ~, y}]) : label used ~ element:
{g1 ~ {} , g2 ~ { y }, g3 ~ {B}, g4 ~ {B, y}, g5 ~

{ex}, g6 ~ { ex, y }, g7 ~ { ex, ~}, g8 ~ {ex, ~ , y } }

Add . x + y

3.5 Using Cayley tables

Both the additive and multiplicative Cayley tables are produced by the function Cayley­
Tables and individually with CayleyTables or CayleyTable (using the Opera­
tion option). MultiplicationTable can also be used to generate a multiplication
table.

CayleyTables [R]

CayleyTables [R,
Mode -+ Visual]

CayleyTables [R,
Operation -+ op]

MultiplicationTable[R]

Methods for generating Cayley tables of ringoids .

return tbe Cayley tables (in double array form)
for Addition and Multiplication on R

return a PostScript rendition of the Addi tion
and Multiplication tables of
R in addition to the double array form

return the Cayley table of R for the operation
op (Addition or Multiplication)

return the Multiplication table of R

• Here is the computational output for the Cayley tables of the ring of integers
mod 3.

In [73] : = Cayley'l'ables [Z [3]]

Out[73]= {{{ O, 1, 2}, {l, 2, O}, {2 , 0, 1} } ,

{{O, 0, o}, {O, 1, 2}, {O, 2, 1} } }

• An alternative to using Mul tiplicationTable is to use CayleyTables
with the option Operation ~ Mul tiplication. To get just the addition

344 User's Guide

table, use the value Addi tion for this option. (Note: CayleyTable,
without the ending s, can also be used when a single operation is chosen.)

In[74]:= CayleyTables [ZR[3], Operation -+ Addition,
Mode -+ Visual, ShowName -+ False];

x + y

• Although the computational output is useful for further calculations, the
Visual mode provides a result that is much easier to read.

In [75] : = CayleyTables [ZR[3], Mode -+ Visual]

Add. x + y Mult.

Out[75]= {{ {a, 1, 2}, {1, 2, O}, {2, 0, 1 } },

{{a, 0, o}, {a, 1, 2}, {a, 2, 1}} }

• Sometimes a density plot is an effective alternative to the visual mode.

In[76]:= ListDensityPlot[
MultiplicationTable[ZR[19]], FrameTicks-+ False];

The options available to CayleyTables are generally the same as those for CayleyTa­
ble. See section 2.5 in chapter 2 for details.

The Cayley tables of a ringoid are often not very readable if the set of elements is large
(20 or more). Occasionally insight can be gained by looking at just the color patterns of

Ringoids 345

the tables, without any labels. We can use the options ShowKey, ShowBodyText,
ShowOperator, ShowName, and ShowSidesText to suppress the printing of
textual information.

• There are some interesting patterns that provide information even without
seeing a key

In [77] := CayleyTables [BooleanRing[S], Mode -+ Visual, ShowKey -+ False,
ShowBodyText -+ False, ShowSidesText -+ False,
ShOWOperator -+ False, ShoWUame -+ False];

• •• • •• ... ••

.. ~ ~ ~, ••••• • •• ••••••• ~ ~ ~,
• ••• ••• • •••• ',';' ~ • ••• • •••••
.. ~ , ~. . .. •••• • ••• •
...... '~ ~ .. . • ••••• •• • •••• •••• •• • ••• •• •• > ••••••• '",.

. ·11 •••••••
~ ,"' II •• •••••

•• ••• • ••••• ... ~. · ... ".. ' ~

....... " "", , " •• ••• • •• • ••• ••••• • •• ••• • • • •• • ••• •••• ·, • • •• •• ... ••••• II • •••••• ~. •• ~ •• ~ " ~
... ~.
....... ~

3.6 Building other structures

~t. • ~ : ••••.••
••••••••••••••••••••••••••••••••• • • • • • • • • • • • • • • • • •• •• •• •• •• •• •• •• • • • • • • • • ••••••••••••••••••••••••••••••••• ~ ... ~ . ~ ... ~ . ~ ... ~ . ~ ... ~ . ~ •• •• •• •• •• •• •• •• · .s . . ~ . . ~ . .K ••••••••••••••••••••••••••••••••• •• • • • ••••••••• • • • •••••••• ••• •• •••••••••• •• • ••••••• • • ••• •••• • ••• • •• •••••••••••• • ••••••••••• w . ~ ~ . ~ •• •• •••• •••• • ••• • •• ••• • • •• ••• • • ••••••••••••••• ~.~::o ~ i-:::,.;.' ' :." .~ ~ .~ ~ ~ · ~ ~ ~~ ~ · . .. " ' ,: ,~.,.,

• •• ~ . ~ ••• e . ~' •• • • ••• •• •••• •••• •••• • ••• .. . ~ , '" ' ' ••• •• •••••••• y, •••••••• •• • ••• ••• • •••••••~
• ••• • • •••••• > , ••••••
•• •• •••• os •••••••• · ~ :

As with groups, the use of direct products, substructures, and quotient structures is an
effective means of obtaining new ringoids .

• 3.6.1 Direct products

The direct product of two or more ringoids can be constructed with DirectProduct.

• Here is yet another ring with eight elements.

In[78]:= T = DirectProduct [ZR[2], ZR[4]]

Out[78]= Ringoid[{{O. O}. {O. 1}. {O. 2}. {O. 3}. {1. O}. {1. 1}.
{1. 2}. {1. 3}}. -Addi tion-. -Mu1 tiplication-]

• Here is its unity-not exactly the number 1, but close.

In[79]:= Unity[T]

346 User's Guide

Out[79J= {l, I}

DirectProduct [R" Rz] return the ringoid with domain the Cartesian product of the
domain of RI and R2 and coordinate-wi e operation

DirectProduct [
R" Rz , ...]

return the direct products of ringoids R I. R2 , .. .

DirectSum [R" R2 , .. •] identicaJ in functionality to DirectProduct [R1, R2 • ...]

Functions that generate direct products/sums.

• The units in a direct product must have units in each coordinate.

In [80J: = Units [T, Mode -+ Textual]

{I, I} is a unit because {I, I}

{I, 3} is a unit because {I, 3 }

Out[80J= {{I, I}, {I, 3}}

{l, I }

{l , 3}

{I, I}.

{I, I }.

• More than two ringoids can be "multiplied." In this case, there are three copies
of 7L2 , giving one more example of a ring with eight elements.

In[81J:= Elements [DirectProduct [ZR[2] , ZR[2], ZR[2]]]

Out[81J= {{O, 0, O}, {O, 0, I}, {O, 1, O}, {O, 1, I},
{I, 0, O}, {I, 0, I}, {I , 1, O}, {I,Ll}}

• 3.6.2 Suhrings and ideals

When the ringoid R is a ring, the expression SubringQ[S, R] tests whether a list of
elements S is a subring of R. This is done by testing whether S is nonempty and closed
with respect to addition and multiplication in R. Subrings must also contain negations of
its elements, but in a finite ring, it is sufficient to verify closure to conclude that this
property is true.

Given a subring S, we call it a two-sided ideal of the ring R if for every r E R and every
s E S both r sand s r are in S. Left ideals and right ideals require only one of these prod­
ucts to be in S.

• If n is even, the even elements of 7Ln are a subring. Here are two ways of
testing: using a list of elements or a structure.

In[82J:= {SubringQ[{O, 2, 4, 6, 8}, Z[lO]], SubringQ[Z[lO, 2], Z[lO]]}

Out[82J= {True, True}

• This is z [10, 2] with the addition and the multiplication exchanged, showing
that the operations, not just the elements, need to match.

Ringoids 347

In [83] := {Rrev = FormRingoid[Range[O, 8, 2], Z[10] [[3]], Z[10] [[2]]],
SubringQ[Rrev, Z[10]]}

Operation: : fail :
The operation of the substructure(s) does

not match that of the parent structure.

Out[83]= {Ringoid[{D, 2, 4,6, 8},
-Addition-, -Multiplication-], False}

SubringQ [S.R) return True if S (given a a ringoid with operations matching
those in R or as a Ii t) i a ubring of the ringoid R, and
False otherwi e

IdealQ [S, R) return True if S i a (two- ided) ideal of the ringoid R,
and False otherwi e

LeftldealQ [So R) rerum True if S i a left ideal of the ringoid R, and Fal se
otherwi e

RightldeaIQ[~R)

Subring and ideal testing.

return True if S i a right ideal of the ringoid R, and Fal se
otherwi e

• When a subring is an ideal, we are able to build a new ring with Quotient­
Ring.

In[84]:= {ideal = Range[O, 8, 2], J:dealQ[ideal, Z[10]],
QuotientRing[Z[10], ideal]} //ColumnFo~

QuotientRing: :NS :
This quotient ring uses NS to represent the

ideal (normal subgroup) {a, 2, 4, 6, 8} you
specified. Use CosetToList to convert this
coset representation to a list of the elements.

Out[84]= {D, 2, 4, 6, 8}

True

Ringoid [{NS, 1 + NS}, -Addi tion-, -Multiplication-]

• Not every subring is an ideal.

In[85]:= {SubringQ[{O, {1, 2, 3}}, BooleanRing[3]],
J:dealQ [{ 0, {1, 2, 3}}, BooleanRing [3]] }

Out[85]= {True, False}

• Also, not every ideal is both a left and a right ideal. In this example, we con­
sider the two-by-two matrices over Z2 and consider the set of elements (calling
it LI) whose first column is all zeros. (These happen to be in positions 1, 2, 5
and 6 in the ring.)

348 User 's Guide

In[86]:= M = ToRingoid[Mat[Z[2] , 2]];
Map [MatrixForm, (LI = Elements [M] [[{i, 2, 5, 6}]])]

Out[87]= {(~ ~), (~ ~), (~ ~), (~ ~)}

• Now we verify that LI is indeed a subring and also a left ideal, but not a right
ideal.

In [88] := {SubringQ[LI, M], LeftldealQ[LI, M], RightldealQ[LI, M]}

Out[88]= {True, True, False}

• The Textual mode is supported by SubringQ.

In[89]:= SubringQ[{{}, {i, 2, 3}}, BooleanRing[3] , Mode -+ Textual]

Prospective subring is not empty ; passes the first test.

Prospective subring is closed with
respect to addition; passes the second test.

Prospective subring is closed with respect
to multiplication; passes the third test.

Out[89]= True

The principal ideal generated by r in a commutative ring R is defined to be
(r) = Is r Is E R}. Given a subset S of the commutative ring R, we define the annihilator
of S by Ann(S) = Ir E R Irs = 0 for all s E S}; this is an ideal.

Principalldeal[R, r]

Annihilator [R,S]

Methods to create specialized ideals.

return the principal ideal generated by r in R

retum the annihilator of S in R

• We get a principal ideal by mUltiplying the generator by the ring elements, so
here we get the multiples of 8.

In[90]:= Principalldeal[Z[20] , 8]

Out[90]= Ringoid[{O, 4, 8,12, 16}, Mod[#1+#2, 20) &, Mod [#1 #2, 20) &)

• Multiplication in Boolean rings is set intersection, so the ideal generated by
I I, 2} is the intersection of I I, 2} with other sets in the ring.

In[91]:= Principalldeal [BooleanRing[4], {i, 2}]

Out[91]= Ringoid[{{}, {l}, {2}, {1, 2 }},
- Addition-, -Mu1tiplication-)

• Here are all the elements in Zs that annihilate 4.

Ringoids 349

In[92]:= Annihilator[Z[8], {4}]

Out[92]= Ringoid[{O , 2, 4, 6} , Mod[#l+#2 , 8] & , Mod[#l#2, 8] &]

In addition to principal ideals, prime and maximal ideals are also of importance. A proper
ideal P of a commutative ring R is said to be a prime ideal of R if whenever a, b E Rand
abE P, we have either a E P or b E P. A proper ideal M of a commutative ring R is said
to be a maximal ideal of R if whenever N is an ideal of Rand M ~ N ~ R, then either
M=NorN=R.

Maximal IdealQ [S, R] give True if S i a maximal ideal of R and False otherwi e

PrimeIdealQ [S, RJ give True if S i a prime ideal of R, and False otherwise

Testing for maximal and prime ideals.

• Here are the elements of Z \2 that generate a maximal principal ideal. Do you
see a pattern?

In [93] : = maxGen = Select [Range [1, 11],
MaximalldealQ[Principalldeal[Z[12], I], Z[12]] &]

Out[93]= {2, 3, 9, 10}

• Perhaps looking at the actual principal ideals (preceded by their generators)
may be helpful.

In[94]:= Map[{I, Elements[Principalldeal[Z[12], I]]} &, maxGen]

Ou t [94] = {{ 2, {O, 2, 4, 6, 8, 10}}, {3, {O, 3, 6, 9}},
{9, {O, 3, 6 , 9} }, {10, {O , 2,4 , 6,8, lOll}

• In a commutative ring with unity, every maximal ideal is prime. In finite rings,
we also have every prime ideal being maximal (in a commutative ring with
unity). Here are the generators of the prime (or maximal) principal ideals in Z14.

In[95]:= Select[Range[l, 13],
PrimeldealQ[PrincipalIdeal [Z [14], I], Z [14]] &]

Out[95]= {2, 4,6 , 7,8,10, l2}

• 3.6.3 Quotient rings

The cosets of an ideal can form a ring using QuotientRing.

• Earlier we identified {O, 2, 4, 6, 8} as an ideal of Z 10 . Thus, we can form the
quotient ring.

In[96]:= QuotientRing[Z[lO], {O, 2, 4,6, 8}]

350 User's Guide

Out [96J= Ringoid [{NS, 1 + NS}, -Addi tion-, -Multiplication-]

QuotientRing [R, T]

LeftCosets [R, T)

RightCosets [R, T)

LeftCoset [R, T, r]

RightCoset [R, T, r]

CosetToList [
Q, coset)

FactorRing [R, T]

return the quotient ring formed by the ring R and the ideal T

return the et of left co et of the ubring T in the ringoid R

return the et of right co et f the ubring T in the ringoid R

return the left co e[r + T when given the element r from R
and the ubring T of R

return the right co et T + r

return co et represented a a list of element from
R where osel is an element of Q = R/T

identical to QuotientRing [R, T]

Functions for quotient rings and related structures.

• We are notified if a subset is not an ideal.

In[97J:= FactorRing[DirectProduct[Z[4], Z[4]], {{O, OJ, {2, 2}})

QuotientRing::notideal :
The set { to, OJ, {2, 2}} is not an

ideal of the Ringoid Z[4] x Z[4] .

Out[97J= $Failed

• There is a variety of forms in which the co sets can appear. Here representatives
are used to describe the cosets.

In [98J : = QuotientRing [DirectProduct [Z [4], Z [4]] ,
{{O, OJ, {1, OJ, {2, OJ, {3, OJ}, FOrJll-+Representatives]

Out[98J= Ringoid[{{O, OJ, to, IJ, to, 2}, to, 3}J,
-Addition-, -Multiplication-]

• Here is a quotient ring with the coset representatives selected randomly, but the
cosets are listed in the form r + NS.

In[99J : = Q=QuotientRing[Z[21], {O, 7, 14}, Representatives-+Random]

Out[99}= Ringoid[{14+NS, l+NS, 2+NS, 3+NS, 4+NS, S+NS, 6+NSJ,
-Addition-, -Multiplication-]

• To retrieve the complete list of elements of a coset within a quotient ring, use
CosetToList. The elements of one of the cosets are listed here.

In[lOO}:= cosetToList[Q, 5+NS]

Out[lOO}= {S, 12, 19}

Ringoids 351

In cases where a subring is not an ideal we can still form cosets. However, in this case
multiplication of cosets using coset representatives is not well defined. This is why
QuotientRing requires an ideal as its second argument.

• We can illustrate the problem of an ill-defined multiplication with the following
list of cosets.

In[lOl]:= {cosets = LeftCosets [BooleanRing[3], {O, {1, 2, 3}}]) II
ColumnForm

Out[lOl]= {O , {l, 2, 3}}

{{3}, {I, 2}}

{{2}, {l, 3}}

{{2, 3}, {l}}

• Using the first elements of the second and third cosets, the product is in the first
coset. Using the last elements of the same cosets, the product is in the fourth
coset. Thus, multiplication of cosets is not well-defined in this case.

In[102] : = {Mu1tiplication[Boo1eanRing[3]] [cosets[[2, 1]],
cosets[[3, 1]]], Mu1tiplication[BooleanRing[3]] [
cosets[[2, 2]], cosets[[3, 2]]]}

Out[102]= { O , {I}}

• By studying the following Cayley table showing how the left co sets multiply,
we can visually see the same results.

In[103]:= LeftCosets[BooleanRing[3], {O, {1, 2, 3}},
Mode ~ Visual, Operation ~ Multiplication];

KEY for Mult(Bool[3]): label used ~ element :
{gl ~ {}, g2 ~ {I, 2, 3}, g3 ~ {3}, g4 ~ {I,
2}, g5 ~ {2}, g6 ~ {l , 3}, g7 ~ {2, 3}, g8 ~ {I}}

Mul t(Bool[3]) x * y

352 User's Guide

WJ 3.7 Extension ringoids

The time and memory needed to evaluate interesting expressions on large ringoids is
unacceptably high. In order to make it feasible to work with polynomials, matrices, and
functions over a ringoid, an extension ring structure has been created. In the case of
matrices and functions, these extension rings are still finite, but they grow in proportion to
nn2 and nn (where n is the order of the base ring). All but the most trivial cases become
awkward to implement as Ringoids . Of course, polynomial rings are infinite and
representation as a finite Ringoid is out of the question.

PolynomialsOver [R] generate (he exten ion ring of polynomial over R

MatricesOver [R, { m, n }] generate the exten ion ring of m- by- n matrices over R

Ma tr icesOver [R, n] generate the exten ion ring of n -by-" matrice over R

FunctionsOver [R] generate the extension ring of functions on R

Ring extensions.

• Here is a polynomial extension, a matrix extension, and a function extension
over the base ring 7L3 .

In [104J:= {P = PolynomialsOver [Z [3]] I

N = MatricesOver[Z[3] I 2] I F = FunctionsOver[Z[3]]}

Out[104J= {-Ring of Polynomials over Z[3)-,
-Mat2 (Z[3)) - , - Ring of Functions over Z[3)-}

ExtensionType [ext]

BaseRing [ext]

ElementQ [x, ext]

Addi tion [ext]

Multiplication [ext]

Defining parameters of an extension.

return the type of exten ion of ext

return the ba e ring of ext

give True if x i an element of ext and False otherwi e

return the addition operation on ext

return the multiplication operation on ext

• Once an extension is created, its type can be retrieved.

In[105J:= Map[Extension'l'ype , {P, N, F}]

Out[105J= {PolyRing, Matrices, FuncRing}

• Its base ring is also accessible.

In[106J:= Map[BaseRing, {P, N, F}]

Ringoids 353

Out[106]= {Ringoid[{O, 1, 2}, Mod[#1+#2, 3) &, Mod[#1#2, 3) &),

Ringoid[{O, 1, 2}, Mod[#1+#2, 3) &, Mod[#1#2, 3) &),

Ringoid[{O, 1, 2}. Mod[#1+#2, 3) &, Mod[#1#2, 3) &)}

• To be a member of the polynomial ring P (defined earlier), not only does the
element have to be a polynomial formed with the special function Poly, but
the correct base ring must also be used in its formation.

In[107]:= Map[BlementQ[I, P] &, {p = Poly[Z[3], x 2 + 2 x -1],
Poly [Z [4], x 2 + 2 x - 1], x 2 + 2 x - 1}]

Out[107]= {True, False, False}

III 3.8 Polynomials over a ringoid

The PolynomialsOver function returns an extension ringoid representing the ring of
polynomials over the ringoid R. A current restriction on Ringoids is that they must be
finite, but over any ring with two or more elements there are an infinite number of
polynomials. Therefore, the resulting object is a RingExtension .

• 3.S.1 Forming polynomials

An individual polynomial over a ringoid R is created by providing input of the form
Poly[R, expression] or Poly[R, coefficients].

• Here is a polynomial over Zs entered as an expression.

In[108]:= p = Poly[Z[5], t 2 + 2 t + 3]

Out[lOB]= 3+2t+e

• Here is another formed by listing just the coefficients.

In[109]:= q = poly[Z[S], 4, 3, 2, 1]

Out[109]= 4 + 3 x + 2 x 2 + x 3

The entries in a coefficient sequence are assumed, by default, to start with the constant
term and increase in degree. The indeterminate is explicit when an expression is entered,
but when only the coefficients are provided, the default is x. The option Indetermi­
nate can be used to specify an alternate indeterminate. The option PowersIncrease
reflects the order in which the coefficients should be entered, as well as specifying the
output format.

• Here is how to specify an alternate indeterminate when listing coefficients.

354 User's Guide

In[110]:= r = Poly[Z[S], 1, 0, 2, J:ndeterminate A]

Out[110]= 1 + 2).2

Notice that any terms that are missing from a polynomial, because the coefficient is zero,
must still be accounted for when giving the list of coefficients.

Poly [R, expr]

Poly [R, expr, opt

Poly [R, oeffs, opts]

Poly [Polynomials ­
Over [R] , arg)

Entering polynomials using Poly.

creat th polynomial over the ringoid R gi en by expr

creat th polynomial over R given by expr u ing the
option gi en by opt

create the polynomial over R with coefficient coeffs.
u ing option opts

id ntical to Poly [R, ar]

• If you are more comfortable entering coefficients starting with the term with the
highest degree, you can consider the Powers Increase option. Use this as an
option to Poly if you want to order the coefficients this way only occasionally.

In [111] : = Poly [Z [5], 4, 3, 2, 1, PowersJ:ncrease RightToLeft]

Ou t [111] = 4 x 3 + 3 x 2 + 2 x + 1

• If you want to consistently start with the coefficient of the term with the highest
degree, change the default.

In[112]:= SetOptions[Poly, PowersJ:ncrease RightToLeft]

Out[112]= {PowersIncrease RightToLeft,
Indeterminate x, FlexibleEntering True}

• Now this order is the default.

In [113] : = Poly [Z [5], 4, 3, 2, 1]

Ou t [113] = 4 x 3 + 3 x 2 + 2 x + 1

• You can always reverse the change and the original ordering is back in effect.
(Note that we get a completely different polynomial; it is not just the output that
is affected.)

In[l14]:= SetOptions[Poly, PowersJ:ncrease LeftToRight];
Poly[Z[S], 4, 3, 2, 1]

Out[l15]= 4+3x+2x2 +X3

Ringoids 355

There are several options to consider for Poly.

option name default value

PowersIncrease LeftToRight for input, detennine whether equence
of coefficient tart with the con tant or leading
coefficient; for output pecifie whether the
power in the poJynomial increa e from
left to right or right to left (RightToLeft)

Indeterminate x indeterminate to be u ed in a polynomial

FlexibleEntering True if et to True allow negation of ring
elements in polynomiaJ expre ion and
arbitrary integers for polynomial over Zn

Options for Poly.

• With FlexibleEntering set to True, some natural extensions to notation
are allowed. Over the integers mod n, any integers can be entered and they are
reduced mod n.

In [116] := poly[Z [5], x 3 - X + 11]

Out[116]= 1 + 4 x + x 2

• This is not valid if FlexibleEntering is set to False

In[117]:= poly[Z[5] , x 3 -x+ll, FlexibleEntering-+False]

MemberQ::elmnts:
At least one of the coefficients {11, -1, 1} is

not an element of the base ring.

Out[117]= $Failed

• 3.8.2 Random polynomials

A request for a random polynomial is meaningless unless an upper limit on the degree is
specified, so a degree must be specified as a second argument. If degree n is specified,
then n + 1 random elements from the base ring are selected for coefficients. By default,
the leading coefficient is usually not allowed to be the zero of the ring, so the degree will
be exactly n. Options can be used to control the selection of coefficients to allow a degree
less than or equal to n.

• Here is a random cubic polynomial over Z6.

In [118] : = RandomElement [PolynomialsOver [Z [6]], 3]

356 User's Guide

RandomElement[
PolynomialsOver [R] , 11)

RandomElement[
PolynomialsOver [R] , 11, opts]

RandOmElements [
PolynomialsOver [R] , II, k, opts]

Obtaining random polynomials.

option name default value

return a random polynomial of degree 11 over R

return a random polynomial of degree n
(or Ie) over R according to option opts

return k random polynomials of degree
II (or less) over R according to option opts

SelectFrom NonZero determine whether certain polynomiaJ are to be
excluded in electing random polynomial ; other
po ible vaJue are Any, NonUni ty, Nonldenti ty

LowerDegreeOK False pecifie whether the reque ted degree mu t be exact or
whether polynomials of Ie er degree may be elected

Monic False pecifies whether the random polynomial
hould be monk (leading coefficient equaJ

to the unity of the base ringoid)

Options of RandomElement for polynomial extensions.

• The unity of BooleanRing [3] is {1, 2, 3} .

In[119) : = RandomElement [
PolynomialsOVer[BooleanRing[3]], 2, Monic -+ True]

Out[119)= {l, 2} + {2} x + {l, 2, 3} x 2

• With SelectFrom set to Any, we may expect a zero polynomial here.

In[120):= Table[RandomElement[PolynomialsOVer[Z[2]],
2, LowerDegreeOK -+ True, SelectFrom -+ Any], {8}]

• Here are five random polynomials of degree 2, not requiring them to be monic
and not allowing replacement.

In[121):= RandomElements[PolynomialsOVer[Z[3]],
2, 5, Monic -+ False, Replacement -+ False]

Out[121)= {X+2X2, 2+x+2x2, 1+x+x2, 1+2x+x2, 2+X2}

Ringoids 357

• 3.8.3 Polynomial arithmetic

Addition [P] [a, b) return th umofpolyn mial a and b in the
polynomial e ten ion P

Addition[P, a, b) identi al t Addition [P] [a, b)

Addi tion [a , b) if a and b are b th over m polynomial exten ion P,
return Addition [P) [a, bJ, otherwi e return $Failed

a + b identical t Addition [a, b)

Multiplication[P] [a, b) returntheproductofp Iyn mial a and b in the
polynomial e len i n P

Arithmetic in a polynomial extension.

Addition and multiplication of polynomials are defined in the usual way, with the coeffi­
cients of the sums and products based on calculations in the base ring. If the base rings of
the polynomial extension and polynomials do not match, the result is $Failed. The
multiplication has available all the alternate methods shown for the addition.

• Here we form polynomials over 7l.3 .

In [122] : = P = PolynomialsOver [Z [3]]

Out[122]= -Ring of Polynomials over Z[3] -

• We demonstrate polynomial arithmetic with these two polynomials.

In[123]:= {a=Poly[Z[3], 1+2 x 3 +x'], b=Poly[Z[3], X+X2 +X3]}

Out[123]= {1+2 x 3 +X4, X + X2 + X 3 }

• Here are the four ways of finding the sum.

In[124]:= {Addition[P] [a, b], Addition[P, a, b], Addition[a, b], a + b}

• There are analogous ways of finding the product.

In[125]:= {Multiplication[P] [a, b],

Multiplication[P, a, b], Multiplication[a, b], a b, a *b}

Out[125]= {X+X2 +X3 +2X4 +X7, X+X2 +X3 +2X4 +X7,

X + x 2 + x 3 + 2 X4 + X 7 , X + x 2 + x 3 + 2 X4 + X 7 , X + x 2 + x 3 + 2 X4 + X 7 }

Many of the common functions that apply to ringoids also apply to polynomial exten­
sions. Here are some of the more important ones.

358 User's Guide

HasZeroQ [P]

Zero[P]

NegationOf [P, aJ

WithUnityQ [P j

Unity[P]

give True if polynomjal exten ion P ha a zero, and False
otherwi e

return th zero of P, if one exi t ,and $Failed otherwi e

return the negation of polynomial a in P if aJllhe coefficients of a
have a negation in the ba e ring of P, and $Failed otherwi e

give True if P ha a unity. and False otherwi e

return the unity of P, if one exi t , and $Failed olherwi e

Examples of general ringoid functions working in a polynomial extension.

• Recall P; its zero and unity are not too surprising.

In[126]:= {P, HasZeroQ[P], Zero[P], WithunityQ[P], un = unity[p]}

Out[126]= {-Ring of Polynomials over Z[3]-, True, 0, True, 1}

• What is behind a simple 1 may be a surprise, however. Since it is still a polyno­
mial, it uses the (complicated) internal form of a general polynomial.

In[128]:= un II J:nputForm

Out [127] IIInputForm=

AbstractAlgebra'RingExtensions'Private'poly[
{AbstractAlgebra'Core'Private'ringoid[{O, 1, 2}, Mod[#1 + #2,

3] &, Mod[#1*#2, 3] &, {{}, {}, {}, {}, {}, {RingoidName->
"Z[3]", RingoidDescription -> "the ring of integers mod 3",

FormatOperator -> False}}], LeftToRight, x, True}, {1}]

• All polynomials over Zn have negations.

In[426]:= NegationOf[P,

Poly[Z [3], 2 x 2 - X + 1, PowersJ:ncrease -+ RightToLeft]]

Out[128]= x 2 + x + 2

A distinctive aspect of polynomials is the division property. If a and b are polynomials
and the leading coefficient of b is a unit of the base ring, then there are two unique
polynomials q and r such that a = b q + r with r = 0 or the degree of r is less than the
degree of b.

PolynomiaIDivision[P, a, b) retum the pair(q,r) con i ting of the quotient and
remrunder in the divi ion of a by b

PolynomialRemainder [P, a, b J return the remainder in the division of a by b

PolynomialQuotient [P, a, b J return the quotient in the divi ion of a by b

Extensions of built-in polynomial functions for working in polynomial extensions.

Ringoids 359

Note that each of these functions can also be used by giving just the two polynomials,
assuming that they both have the same base ring. Additionally, note that these are exten­
sions of built-in functions, which are still available for ordinary polynomials.

• Here we divide a fourth-degree polynomial by a cubic polynomial.

In[129]:= {q, r} = PolynomialDivision[P,

a = Poly [Z [3], 1 + 2 x 3 + x'], b = Poly [Z [3], x + x 2 + x 3]]

Out[129]= {l+x, 1+2x+x2}

• We can verify that the quotient and remainder are correct.

In[130]:= {a, Addition[P] [Multiplication[P] [b, q], r]}

Out[130]= {1+2 x 3 +X4, 1+2 x 3 +X4}

Frequently only the remainder, r, is needed, such as in finite field calculations.

• Let's consider the polynomials over 7L2 • Let m be a modulus that is irreducible
over 7L2 •

In[13i]:= P2 = PolynomialsOVer [Z [2]] ;

m = Poly[Z[2], a 2 + a + 1]

Out[132]= 1 + 0: + 0:2

• Consider an element t in the Galois field of polynomials mod m.

In[133]:= t = Poly[Z [2], a + 1]

Out[133]= 1 + 0:

• To square t, we multiply it by itself and then divide by the modulus. The result
is the remainder. (Using functions in AbstractAlgebra' Fini teFields
makes this process easier.)

In[134]:= PolynomialRemainder[P2, Multiplication[P2] [t, t], m]

Out[134]= 0:

• The base ring does not need to be a field, but the leading coefficient of the
divisor must be a unit. Here the leading coefficient of the divisor is 3, which is
a unit of 7L4 .

In[135]:= PolynomialDivision[PolynomialsOVer[Z[4]],

Poly [Z [4], x 3 + 2 x + 1], Poly [Z [4], 3 x + 3]]

Out[135]= {1+x+3x2, 2}

• This time, the leading coefficient of the divisor is 2, which is not a unit of Z4.

360 User's Guide

In[136]:= Po1ynomia1Division[Po1ynomia1sOVer[Z[']],
Poly [Z ['], x 3 + 2 x + 1], Poly [Z ['], 2 x + 3]]

PolynomialDivision::undef:
Since the leading coefficient, 2, is

not a unit in Z[4], division is undefined.

Out[136]= $Failed

• The Textual mode is supported by PolynomialDivision.

In[137]:= Po1ynomia1Division[Po1y[ZR[3], x 3 + 2 x + 1],
Poly [ZR [3], 2 x + 1], Mode -+ Textual]

a(x) b(x)q(x) + r(x) where

a (x) 1 + 2 x + x 3 ,

b(x) 1+2x,

q (x) 2 x + 2 x 2 and

r(x) 1.

Notice that either r(x) o or deg r < deg b.

Out[137]= {2 x + 2 x 2 , 1}

• Here are two new polynomials over 71.3 •

In [138] : = {a = Poly [Z [3], x 5 + x' + 2 x 3 + X + 1], b = Poly [Z [3], x' + 2] }

Out[138]= {l + x + 2 x 3 + X4 + x S , 2 + X4}

• Here is their greatest common divisor and least common mUltiple.

In[139]:= {h = Po1ynomia1GCD[a, b], g = Po1ynomia1LCM[a, b]} / /
Co1umnForm

Out[139]= 1+2x

2 + x + x 2 + 2 x 3 + 2 X4 + 2 X S + 2 x 6 + x 7 + 2 x 8

• The product of the LCM and GCD should equal the product of the original
polynomials.

In[140]:= Multiplication [Po1ynomia1sOVer[Z [3]], h, g] ==
Multiplication [Po1ynomia1sOVer [Z [3]], a, b]

Out[140]= True

The Euclidean algorithm for computing the greatest common factor of two polynomials
has been implemented over a ringoid. The algorithm fails if any of the polynomial
divisions are undefined.

• The problem here is that the leading coefficient of the divisor is not a unit, so
the first division in the Euclidean algorithm cannot be performed.

Ringoids 361

In[141J:= PolynomialGCD[PolynomialsOVer[Z[4]],
Poly[Z [4], x 3 + X + 1], Po1y[Z [4], 2 x 2 + 1]]

PolynomialGCD : :undefined:
Result of PolynomialGCD is undefined due

to a nonring base or an undefined division.

Out[141J= $Failed

The standard (built-in) uses for PolynomialGCD and PolynomialLCM sti1l work for
ordinary polynomials.

PolynomialGCD [P, a, b]

PolynomialGCD [a, b]

polynomialLCM [P, a, b]

polynomialLCM [a, b)

GCD and LCM on polynomial extensions.

return the greate t common divi or of the polynomial
a and b in the polynomiaJ exten ion P

if both a and b are in extension P return
PolynomialGCD (P a, b)

return the lea t common multiple of the polynomial
a and b in P

if both a and b are in exten ion P return
PolynomialLCM (P, a, b)

• 3.8.4 Quotient rings of polynomials

A transition back to ringoids is made by QuotientRing. Given a polynomial p of
degree k, QuotientRing [R, pl generates a Ringoid with all polynomials of degree
less than k over R. The operations are polynomial addition and multiplication modulo the
polynomial p.

QuotientRing [
PolynomialsOver[R] , p]

QuotientRing [R, p]

ModulusPolynomial [Q]

Polynomial quotient rings .

return the ringoid of polynomial mod p, if
R is a ringoid with unity, pia polynomjal over
R and the leading coefficient of pia unit of R

identical to QuotientRing [Polynomials ­
Over[R] , p]

return the polynomial from which the quotient
ring Q w created

• With a cubic polynomial oVe:r Z2, the domain of the QuotientRing contains
eight polynomials.

362 User's Guide

In[142]:= Q = QuotientRing[z [2], Poly[Z [2], x 3 + X + 1]]

Out[142]= Ringoid[{O, x 2 , x, X+X2, 1, 1+x2, l+x, 1+x + x 2} ,
- Addition-, -Mu1tip1ication-]

• The first argument may also be a polynomial extension instead of the base ring.
The result is the same.

In[143] : = Q =
QuotientRing [PolynOlllialsOVer [Z [2]], Poly[Z [2], x 3 + X + 1]]

Out[143]= Ringoid[{O, x 2 , x, X+X2, 1, 1+x2, l+x, 1+x+x2},

-Addition-, - Multiplication-]

• The modulus can be extracted from the result of QuotientRing.

In[144]:= ModulusPolynomial [Q]

Out [144] = 1 + x + x 3

• The polynomial x3 + x + 1 is irreducible over 7!.2, so Q is a finite field with
eight elements, GF(8) . (Q can also be constructed by GF[8, ~ + x + 1].) Here is
the multiplication table for this field.

In[145]:= MultiplicationTable[Q, Mode-+visual,
KeyForm -+ StandardForm, ShowHame -+ False];

KEY for 3
Mult(Quotient Ring mod 1 + x + x): label used ~

element: {gl ~ 0, g2 ~ x 2 , g3 ~ x, g4 ~ X+X2,
g5 ~ 1, 96 ~ 1 + x 2 , g7 ~ 1 + x, g8 ~ 1 + x + x 2 }

A limit to the size of a polynomial quotient ring is controlled by the option SizeLimit.
The default limit is 50.

• This ringoid, with 114 = 14641 elements, is far too large to generate (in this
version of AbstractAlgebra).

In[146]:= QuotientRing[Z[l1], PolY[Z[l1], x' +x+1]]

QuotientRing::toobig:
Requested quotient ring is likely to be

too large. Option SizeLimit can be reset .

Out[146]= $Failed

Ringoids 363

• The modulus polynomial need not be irreducible, as in the following case.

In[147]:= Q2 = QuotientRing[Z[3], Poly[Z[3], Xl + 2]]

Out[147]= Ringoid[{O, x, 2x, 1, l+x, 1+2x, 2, 2+x , 2+2x} ,
- Addition- , -Multiplication-]

• Fields do not have zero divisors, but Q2 clearly does.

In[148]:= Multiplication [Q2] [Poly[Z[3], x+l], Poly[Z[3], x+2]]

Out[148]= 0

• Consider the element 2 x in Q2 . Note that (2 x)2 + 2 = 4 xl + 2 = x2 + 2.
Therefore 2 x is a root (zero) of the polynomial xl + 2 over Z3. The following
function confirms this.

In[149]:= EvaluationlnExtension[Q2,
Modul usPolynomial [Q2], Poly [Z [3], 2 x]]

Out[149]= 0

EvaluationlnExtension[
£,p, q j

Doing evaluation in field extensions .

given £ a the quotient ring of a field F over the
irreducible polynomial P. thi evaluate the indu ed
co et polynomial equivalent of p at the element q in £

• 3.8.5 Irreducibility of integer-based polynomials

Assuming p is a polynomial over the integers, p(O) * 0, then if f is a rational root of p, r
must be a divisor of the constant coefficient and s must divide the leading coefficient.
This is the essence of the Rational Root Theorem. Eisenstein's Criterion and the Mod p
Irreducibility Test are two other methods for determining the irreducibility of polynomials
over the integers. Some or all of these approaches are in most standard abstract algebra
books, as well as in Exploring Abstract Algebra with Mathematica . Note that these
functions work with polynomials that are not constructed with the Poly function;
ordinary Mathematica polynomials are used.

• The possible rational roots here are determined by the numbers -7 and 4:
divisors of -7 divided by divisors of 4.

In [150] : = RationalRootCandidates [4 x 5 + 5 Xl - 2 Xl - 7]

364 User's Guide

77 111177}
Out[150]= {-7, - 2' -4' -1, - 2' -4' 4' 2,1, 4' 2,7

RationalRootCandidat ...
es [zPofy)

RationalRootTheorem [
ZP°1Y)

ModplrreducibilityQ[
P, zP0f ')

ModplrreducibilityQ [
zP°L ', lI)

ModplrreducibilityQ [
zPol) , Mode ~ Textual)

EisensteinsCriterionQ
[zP°f)

EisensteinsCriterionQ
[zPo1y, Mode Textual]

Ii t of candidate of rational ro t of polynomial zpofy

return a pair of Ii t con i ting of the rational r t
of zP0f)' followed by the candidate

give True if the polynomial zPof), i irreducible
ac ording to the Mod p Irreducibility Te. t u ing th
prime p and False otherwi

give True if the polynomial zPof i d termin d
irreducible according to th Mod P Irreducibility Te t
u ing the fir t 11 prime (defaulting to 25),
and False otherwi e

give a textual comm ntary of the re ult of applying the Mod
P Lrreducibility Te t to zpo/y,a\' 0 giving the computational
r ult

giv True if the polynomial zP0fy i irreducible
ac ording to Ei en tein' Criterion.and False otherwi e

gi a textual c mmentary of the re ult of applying
Ei n t in' Criterion to zpof • al 0 giving th
computati nal re ult

Functions for testing irreducibility of integer-based polynomials .

• Now we consider the irreducibility of the polynomial x6 + 7 x2 - 6 over the
integers. Reducing the polynomial mod 2, we see that this reduced polynomial
is not irreducible.

In[151]:= ModplrreducibilityQ[2, x 6 + 7 x 2 - 6]

Out[151]= False

• Using the option Modulus in the Factor function, we can obtain similar
results.

In[152]:= Map[Factor[x6 + 7 x 2 - 6, Modulus -+ Prime[#]] &,

Range[l, 6]] / / ColumnForm

Out[152]= x 2 (1 + X)4

x 2 (2 + x + x 2) (2 + 2 x + x 2)

(1 + 3 x + x 2 + x 3) (4 + 3 x + 4 x 2 + x 3)

(1 + x 2) (2 + x 2) (4 + x 2)

(4+x) (7+x) (10+5x2 +x4)

7 + 7 x 2 + x 6

Ringoids 365

• For certain polynomials, Eisenstein's Criterion ably determines irreducibility.

In[153]:= EisensteinsCriterionQ[5 x' - 27 Xl + 6 x + 12, Mode -+ Textual]

The coefficients to consider (from low
degree to high degree) are : {12, 6, - 27, 0, 5}

3 is a prime that divides
all of the first n-1 coefficients.

Is it true that 3 does not divide 5? ~ True

Is it true that 9 does not divide 12? ~ True

Therefore, 3 is a prime that
illustrates the polynomial is irreducible.

Out[153]= True

• 3.8.6 Functions related to solving equations or evaluation

PolynomialEvaluation [p. a]

PolynomialEvaluation [
p. p. a)

polynomialEvaluation [
P,P. rules)

Solve [p == u)

zeros [p]

given the polynomial p, evaluate
p (a) for 0:' in the base ring of p

given the polynomial p in the ring of polynomial
P, evaluate p (0:') for 0:' in the ba e ring of p

u e rule to pecify the value() at
which the polynomial p hould be e aluated

given a polynomial p and a value 0:' in the
ba ring of p. olve the equation p = 0:'

gi e a Li t of all the zero of the polynomial p

Functions for solving equations or evaluating polynomials in a polynomial extension.

• If we are interested in the zeros of the polynomial r + 2 x - 3 over the ring Zs ,
we can map the PolynomialEvaluation function over the elements of the
ring and look for a zero.

In[154] : = Map [{I, PolynomialEvaluation[
p = Poly [Z [5], Xl + 2 x - 3], #]} &, Elements [Z [5]]] 1/

TableForm[#, TableHeadings -+ {None, {"x", "p(x)\n"}}] &

. Out [154] IITableForm=

X p(x)

o 2
1 0
2 0
3 2
4 1

366 User's Guide

• This result can also be obtained using the Zeros function.

In [155} := Zeros [p]

Out[155]= {1,2}

• The So 1 ve function is one more means of finding the zeros of a polynomial
function.

In[156}:= zeros = Solve[p == 0]

Out[156}= {{x~l}, {x~2}}

• The output of the Solve command is in the same form used by the standard
Sol ve command. Furthermore, this output can be used by the ReplaceAll
function (alias t.).

In[157]:= p /. zeros

Out[157]= {a, O}

• The Solve function is useful for more than locating zeros.

In [158] := sols = Solve[p == 2]

Out[158]= {{x~O}, {x~3}}

• By evaluating the polynomial p at the solutions given by the Solve command,
we can confirm that indeed these yield the value 2 in each case.

In[159]:= PolynomialBvaluation[PolynomialsOVer[Z[S]], p, sols]

Out[159]= {2,2}

• A single rule can be given, such as x ~ 3, or a list of rules can be given as the
third argument.

In[160]:= {PolynomialBvaluation[Poly[Z[7], x 2 + 2x -3], x -+ 3],
PolynomialBvaluation[
Poly[Z[7], x 2 + 2x -3], {x-+3, x-+2}]}

Out[160]= {5, {5, 5}}

• 3.S.7 Extensions of ordinary Mathematica functions

We have already seen the functions PolynomialQuotient, PolynomialDivi­
sion, PolynomialRemainder, PolynomialGCD, and PolynomialLCM having
natural extensions in an extension ringoid of polynomials. Here we consider some other
extensions of built-in Mathematica functions.

Equal [PolynomialsOver [
R] , p, q]

Equal [p, q]

Equal [p, q,
Ignorelndeterminate~

False]

Exponent[p]

Degree[p]

Variables [p]

Coefficient [p, illd, II]

CoefficientList [p]

Extensions of ordinary Mathematica functions.

Ringoids 367

give True if the polynomial p and q are equal,
and False otherwi e

a uming that the polynomials p and q ar both 0 er
the arne ring, give True if they are equal ,
and False otherwi e

give True if the polynomial p and q have the arne
Ii t of oefficient and the arne indeterminate and
False otherwi e

return the degree of the polynomial p

identical to Exponent[pJ

return the variable u ed in the polynomial p

given a polynomial p in th indeterminate ind r turn
the coefficient of im/'

return the Ii t of coefficient for the polynomial p in the
order given by Powerslncrease ~ LeftToRight

• Here are three polynomials to consider, as well as an illustration that the
AbstractAlgebra packages do not currently support polynomials with
more than one indeterminate.

In[161]:= {p=Poly[Z[3], x 2 +2x], q=Poly[Z[4], x 2 +2x],

r=Poly[Z[3], y2 +2y], s=Poly[Z[5], x 2 y' -xy+l]}

Poly: : mixvars :
In your polynomial 1 - x Y + J? y4, you should

be using only a single variable (such as
x), but the variables {x, y} were used.

Out[161]= {2X+X2, 2X+X2 , 2y+y2, $Failed}

• Polynomials p and q are not the same since they have different base rings.
Polynomials p and r are the same if the indeterminate is ignored, but otherwise
they are different.

In[162]:= {Equal[p, q], Equal[p, r],
Equal [p, r, Ignorelndeterminate -+ False]}

Out[162]= {False, True, False}

• The following illustrates some of the other functions .

In[163]:= {Exponent[p], Coefficient[p, x, 2], Coefficient[p, y, 2],
Coefficient [p, 2], CoefficientList [p]}

368 User's Guide

Coefficient: : ind
Since 2 x + ~ uses the indeterminate x, y should not

be specified as the indeterminate. Mention of
the indeterminate is optional; it can be omitted.

Out[163]= {2,1, $Failed, 1, {D, 2, 1}}

• 3.8.8 Miscellaneous functions

• Here we form two polynomials.

In[164]:= {p = Poly[Z[7], 9x' - 12x2 + 3x - 2],

Q =
Poly[BOOleanRing[{na", "b", nell}], {"an, "bn}, 0, {nan}]}

Out[164]= {5+3x+2x2+2x4, {a, b} + {} x + {a} x 2 }

• The following shows that the Poly function was used to construct p and q, but
not r (which is defined in the following cell).

In[165] : = Map [PolyQ, {p, Q, r=x2 +3x-S}]

Out[165]= {True, True, False}

ToOrdinarypolynomial [p] given a polynomial produced by the Poly function
return a polynomiaJ in Mathematica' ordinary u age,
where thi make en e

PolyQ [p] give True if the polynomial p was created in the
AbstractAlgebra package with the
Poly function . and False otherwi e

Monomial [R, c , n] return Poly[PolynomialsOver[RJ. ex"]

BaseRinglp] return the underlying ringoid of the polynomial p

Some miscellaneous functions.

• Even if the dot product could be completed, the polynomial q has no meaning
in Mathematica apart from the AbstractAlgebra packages, while the
polynomial p does.

In[166]:= Map [ToOrdinaryPolynomial, {p, Q, r}]

Dot::dotsh: Tensors {{a, b}, {}, {a}}
and {l, x, x 2 } have incompa tibl e shapes.

• The zero of LatticeRing[lO] is 1, which explains why the quadratic term is
"lost" here.

Ringoids 369

In[167]:= ToOrdinaryPolynomial[Poly[LatticeRing[10], 5, 10, 1]]

Out[167]= 5 + 10 x

• Every polynomial constructed using the Poly function has an underlying base
ring.

In[168]:= Map [BaseRing, {p, q}]

Out[168]= {Ringoid[{O, 1, 2, 3, 4, 5, 6},

Mod [#1 + #2,7] &, Mod[#l #2, 7] &], Ringoid[
{{}, {c}, {b}, {b, c}, {a}, {a, c}, {a, b}, {a, b, c}},
-Addition-, -Multiplication-]}

• Here we build a polynomial from some monomials.

In[169]:= p =Sum[Monomial[Z[5], k, k], {k, 1, 3}]

Out[169]= X+2X2+3 x 3

• This polynomial p is the same as constructing it as a single polynomial.

In[170]:= p == Poly[Z[5], x + 2X4 +3x3]

Out[170]= True

PolynomialsOfDegreeN[
R, n, opts]

PolynomialsUpToDegreeN[
R, n, opts]

Generating complete lists of polynomials.

oplion name

SizeLimit

Indeterminate

dataun value

125

x

return all polynomial of degree n over the ringoid
R. according to any restriction in the option opts

return all polynomjals up to (and including) degree
/1 over th ringoid R. u ing the option opts

pecifie indeterminate to be u ed for the polynomial

Options for PolynomialsOfDegreeN and PolynomialsUpToDegreeN.

• Here are all the cubic polynomials over 7l.2 •

In[l71] : = PolynomialsOfDegreeN[Z [2], 3]

Ou t [171] = {x3 , x 2 + x 3 , X + x 3 , X + x 2 + x 3 ,

1 + x 3 , 1 + x 2 + x 3 , 1 + x + x 3 , 1 + x + x 2 + x 3 }

• Here are all polynomials of degree 2 or less over 7l.5 , which is as big a set as
usually possible without using the SizeLimi t option.

370 User's Guide

In[172J:= PolynomialsOpToDegreeN[Z[5], 2] II Short

Out[172J IIShort=

{x2 , 2 x 2 , 3 x 2 , 4 x 2 , X + x 2 , X + 2 x 2 ,

X + 3 x 2 , «111», 4 + 3 x, 4 + 4 x, 0, 1, 2, 3, 4}

• There are 1024 polynomials of degree 9 or less over Z2. Here they are in the
indeterminate a.

In[173J:= Short[PolynomialsOpToDegreeN[ZR[2],
9, :tndeterminate -+ a, SizeLimit -+ 1024], 2]

Out [173J IIShort=

{a9 , as + a 9 , a 7 + a 9 , a 7 + as + a 9 , a 6 + a 9 ,

a 6 +as +a9 , «1012», 1+a2 , 1+a+a2 , a, l+a, 0, 1}

~ 3.9 Matrices over a ringoid

For any ringoid R, the expression MatricesOver [R, n] generates an extension
ringoid that represents the ringoid of all n-by-n matrices over R. The domain of this
system is finite but tends to be quite large, so the normal Ringoid structure is not used.
Alternatively, one can obtain m-by-n matrices over some ring R by using
MatricesOver [R, {m, n}J.

• This represents a matrix extension with 625 matrices as elements.

In[174J:= II = MatricesOVer[Z[5], 2]

Out[174J= -Mat2 (Z[5))-

There are several shortcuts to creating matrix extensions. The Ma t function is equivalent
to MatricesOver. The functions MatA and MatM are useful if one wishes to later
convert these extensions to a groupoid; in the former case, the operation is addition, while
multiplication is used in the latter case.

Mat [R, n]

Mat [R, { m, n }]

MatA [R, n]

Ma tA [R, { m, n }]

MatM[R, n]

identical to MatricesOver[R, n]

identical to MatricesOver[R. 1m, n))

identical to MatricesOver[R, II, Operation ~ Addition]

identical to MatricesOver[R, 1m, nl. Operation ~ Addition]

identical to MatricesOver[R, n, Operation ~
Mul tiplication]

Altemate forms of creating matrix extensions.

• Using Mat to create an extension, we pick a random two-by-two matrix over
Z5'

Ringoids 371

In[175]:= RandomElement[Mat[Z[5], 2]] I/MatrixForm

Out [175] //MatrixForm=

• Here we see that the operation is indeed multiplication when the MatM function
is used.

In[1 76] : = ToGroupoid[MatM[Z[4], 2]] II Operation

Out[176]= Multiplication [-Mat2 (Z[4)) -) [#1 , #2) &

• When Ma tA is used to create an extension, the inherent operation is addition.

In[I 77] : = MatrixOperation[MatA[Z[3], {2, 5}]]

Out [177] = Addition

• 3.9.1 Individual matrices

The structure of a matrix in a matrix extension is identical to the usual Mathematica
matrix structure and matrices are entered in exactly the same manner.

• Matrices are entered in the usual way.

In[178] : = M=MatricesOVer[Z[5], 2];
A= {{4, 2}, {l, 4}}

Out[1 79]= { {4, 2}, {l, 4 } }

ElementQ [A. M]

RandomElement [M]

RandomElement [
M. Opts]

RandOmElements[
M, k. opts]

RandomMa tr ix [R, 11]

RandomMa tr i x (R, 1/,

Ma tr ixType ~ type]

Functions relating to individual matrices.

gi True if A i an elem nt of the matrix exten ion M,
and False otherwi e

return a random nonzer matrix in the matrix exten ion M

return a random matrix in the matrix exten ion M according
to the option specified in opts

return k random matrice in the matrix exten ion M
according to th option pe ified in opt

return a random 11 - by- II matrix over the ringoid
R with no re triction

return a random n - bY- 11 matrix over the ringoid R of the
pecified type (choic below)

372 User's Guide

• Any matrix can be tested for membership in a matrix extension with Ele­
mentQ.

In[180]:= ElementQ[A, M]

Out[180]= True

• ElementQ returns False if the order of a matrix doesn't match that of the
extension.

In[181]:= ElementQ[{{I, 0, O}, {I, 1, 1}, {1, 2, 4}}, M]

Out[181]= False

• RandomElement acts on matrix extensions.

In [182] : = RandomElement [M]

Out[182]= {{4, 1}, {4, O}}

option name default value

SelectFrom NonZero

SelectBaseElements \ Any
From

Options on RandornElernent for matrices.

pecifies re triclion on the individual entrie that
appear in a random matrix; values are Any,
NonZero NonUnity, and Nonldentity

• A random nonzero matrix may have some zero entries. We can also get a
matrix with all nonzero entries.

In[183]:= Map[MatrixForm, {RandomElement[MatricesOVer[Z[3], 5]],
RandamElement[MatricesOVer[Z[3],5],

SelectBaseElementsFrom -+ NonZero]}]

11110

2 0 1 0 2

Out[183]= { 2 1 1 0 2 ,

2 2 122
1 0 1 1 2

21211
1 2 2 2 2

1 1 2 1 1

1 1 1 1 1

1 1 1 2 1

Whereas RandomElement requires its first argument to be a matrix extension, Random­
Matrix uses the base ring for its first argument, and optionally one can specify the type
of matrix being sought by giving a type with the MatrixType option. Here are some
possibilities.

• Here some three-by-three matrices over Z5 illustrating the various types.

Ringoids

In[184]:= MaP[TraditionalFo~,

examples = Map [RandomMatrix[Z [5] , 3, Matrix'l'ype -+ #] te,
{GL, SL, Diag, UT, LT, UTD, LTD, All}]]

{ [: 4 l) , [: 3

~) , [: 0 :) , [: 1

~), Out[184]= 3 0 4 0

0 4 0 0

(: 0 :), (: 4

~), (l
0

~), (: 4

~) } 0 2 3 0

1 0 3 °
• Some of the determinants of these examples are predictable. (Which ones?)

In[185]:= Map [Det [Z[5] , #] te, examples]

Out[185]= {4, 1, 4, 0, 0, 2, 3, 3}

any matri (default)

general linear (an invertible matrix)

373

All

GL

SL

Diag

UT

LT

UTD

LTD

peciaJ linear (matrix with determinant equal to the unity of the base ring)

diagonal (an invertible diagonal matrix)

trictly upper triangular (nonzero entries only above the diagonaJ)

trictly lower triangular (nonzero entrie only below the diagonal)

upper triangular (nonzero entrie only above and on the diagonal)

lower triangular (nonzero entrie only below and on the diagonal)

Possible values of MatrixType. an option of RandornMatrix.

DiagQ [R, A) gi True if the matri A i a diag nal matri
r th ring id R, and False th rwi e

GLQ [R, A] gi e True if th matrix A i an in ertibl
matri 0 er th ring id R. and False oth rwi e

SLQ [R, gi e True if th matri A i an in ertible malri 0 er th
ring id R with d terminant th unity f R. and False therwi e

Testing for special types of matrices.

• Here we test the foregoing matrices with these three functions.

In[186]:= mats := {Map[MatrixForm, examples], Map [DiagQ[Z [5] , #] te,
examples], Map[GLQ[Z[5], #] te, examples],

Map[SLQ[Z[5], #] te, examples]} /I Transpose;
{rl, r2} = Map [Transpose, {mats[[{l, 2, 3, 4}]],

mats [[{ 5, 6, 7, 8}])}];

374 User's Guide

TableFor.m[rl, TableSpacing ~ {O.5, l}, TableHeadings ~
(heads = {{ "matrix", "DiagQ", "GLQ", "SLQ"}, None})]

TableFor.m[r2, TableSpacing ~ {O.5, l},
TableHeadings ~ heads]

Out [188] //TableForm=

[~
4

: I [: 3

: I [: 0

: I [: 1

: I matrix 3 0 4 0

0 4 0 0
DiagQ False False True False
GLQ True True True False
SLQ False True False False

Out [189] / / TableForm=

[: 0

: I [: 4

~ I [: 0

: I [: 4

~ I matrix 0 2 3 0

1 0 3 0
DiagQ False False False False
GLQ False True True True
SLQ False False False False

• 3.9.2 Matrix arithmetic

For any matrix extension M, we can add and mUltiply matrices belonging to M, with
products making sense only if we are in a square matrix extension. By specifying the base
ring (and not a matrix extension), appropriately dimensioned nonsquare matrices can also
be multiplied. The underlying ring operations determine the result of the matrix opera­
tions.

Addi tion [M] [A, B]

Addition [M, A, B]

Addition [R, A, B]

Mul tiplication [
M] [A, Bl

MatrixPower [M. A, k]

Basic arithmetic functions over matrix extensions .

return the urn of matrices A and B
in the matrix exten i n M

identical to Addition[M] [A, B]

if Ria ringoid or groupoid, identical to
Addi tion [M.atricesOver [R] l [A, B]

return the product of matri A and B in the
matrix extension M (and if th dimen ions match
appropriately when M is a ring)

return the kth power of th quare matrix A
in the matrix exten ion (or ring) M

• Here we form a matrix extension over Z7 to illustrate some of these functions .

In[190]:= M3 = MatricesOVer[Z[7], 3]

Ringoids 375

Out[190]= -Mat3 (Z [7])-

• Here is how a cyclic matrix can be created, as well as another matrix.

In[191]:= Map [Matrixl'orm,
{A = Map[RotateRight[{1, 2, 6}, I] 6i:, {O, 1, 2}],

B = {{O, 0, 1}, {O, 1, 2}, {1, 0, O}}}]

Out[191]= {[~ ~ ~), [~ ~ ~)}
261 100

Note that there are variations of the Mul tiplication function comparable to those for
Addition.

• Here are the three methods by which we can find the sum of matrices A and B.

In[192]:= Map[Matrixl'orm, {Addition[1I3] [A, B],
Addition [113, A, B], Addition [Z [7], A, B]}]

Out[192]= {[~ ~ ~), [~ ~ ~), [~ ~ ~)}
361 361 361

• Here is their product.

In[193]:= Map[Matrixl'orm, {Multiplication[1I3] [A, B],
Multiplication [113, A, B], Multiplication [Z [7], A, B]}]

Out[193]= {[~ ~ ~), [~ ~ ~), [~ ~ ~)}
160 160 160

• While M3 consisted of only three-by-three matrices, here we obtain a random
three-by-two matrix over the same base ring, Z 7, as well as a two-by-three
matrix (also over the same base ring).

In[194]:= {(I' = RaDdomElament[MatricesOver[Z[7], {3, 2}]]) II
Matrixl'orm,

(G = RaDdamElement[MatricesOver[Z[7], {2, 3}]]) II
Matrixl'orm}

• There is a variety of products that can now be computed with the matrices A, B,
F,and G.

376 User's Guide

In [195] := Map [MatrixForm,
{Mu1tip1ication[Z[7], A, F), Mu1tip1ication[Z[7], G, A],
Mu1tip1ication[Z[7], G, F), Mu1tip1ication[Z[7], F, G)}]

• There are also some products that do not make sense.

In[196J:= Mu1tip1ication[Z [7], F, A]

Multiplication::fail : A 3 by 2 matrix
can not be mUltiplied by a 3 by 3 matrix .

Out[196J= $Failed

• Here are the powers -1 through 3 of the matrix (~ ~) over 7L 7 .

In[197] : = Map [MatrixForm,

Tab1e[MatrixPower[Z[7], {{2, 3}, {4, 5}}, k], {k, -1, 3}])

Out[197]= {(~ :), (~ ~), (~ ~), (~ ~), (~ ~)}

As with polynomials, much of the basic ringoid functionality carries over into a matrix
extension.

HasZeroQ [M]

Zero [M]

NegationOf [M, A)

WithUnityQ [M]

Unity [M]

UnitQ [M, A]

ZeroDivisorQ [M, A)

give True if M ha a zero, and False otherwi e

return the zero of M if it exi t ,and $Fai led otherwi e

return the negation of matrix A if all of it entrie have
a negation in the ba e ring, and $Failed otherwi e

give True if M ha a unity and False otherwi e

return the unity of M (actually the identity matrix)
if it exi t ,and $Failed otherwise

give True if A i a unit (has a multiplicative inver e in
M), and False otherwi e

give True if A is a zero di i or in M,
and False otherwi e

Using ringoid functions in a matrix extension.

• The negation of A is easily determined.

In [198J :.= Map [MatrixForm, {A, NegationOf [M3, A]}]

Ringoids 377

[1 2 6) [6 5 1)
Out(198)= { 6 1 2 , 1 6 5 }

261 516

• The zero and one are well known.

In(199):= MaP[MatrixForm, {Zero[M3], unity [M3] }]

Out (199) = {[~ ~ ~), [~ ~ ~)}
000 001

• We can reuse A and B in a matrix extension over a different Ringoid in
which the multiplication is always zero. (Observe that matrices do not carry
with them the underlying ring, as do the polynomials discussed earlier.)

In(200):= Map[MatrixForm, {A, B,
Multiplication[MatricesOver[TrivialZR[7], 3]] [A, B]}]

Out(200)= {[~ ~ ~), [~ ~ ~), [~ ~ ~)}
261 100 000

• 3.9.3 Determinants and inverses

The function Det is extended in AbstractAlgebra to compute the determinant of a
square matrix over an arbitrary ringoid.

• Recall that for a two-by-two matrix, the determinant is the difference between
two products: the product of the two diagonal elements and the product of the
two off-diagonal elements.

In(201):= Needs[nGraphics'Arrow'n,"Arrow.mn];
{Line[{{-2,2},{-2,-2}}], Line[{{2,2},{2,-2}}],
Text["an,{-i,i}], Text["c", {-i,-i}], Text["b",{i,i}],
Text[ndn,{i,-i}], Arrow[{-1.S,1.9},{1.S,-1.l}],
Arrow[{-1.S,-1.9},{1.S,1.l}], Text["a d - b c",{4.2,O}],
Text[n=",{2.4S,O}], RGBColor[l,O,O],
Arrow[{1.S,-1.S},{3,-O.2}], Arrow[{1.S,1.S},{4.2,O.2}]}//
Show[Graphics[#],PlotRange~{{-2.3,S.S},{-2.3,2.3}}]&;

378 User 's Guide

Det[M,A]

Det [R, A]

Mu l tiplicativeInverse
[M, A]

Inverse [R, A]

return the determinant of the quare matrix
A in the ring exten ion M

for a ringoid R, identical to Det [MatricesOver [R,
Length[A]] , A]

return the multiplicative inver e of A in the matrix
exten ion (or ring) M . if it ex i ts, and $Failed othelWi e

identical to MultiplicativeInverse [R. A]

Extensions of Det and Mul tiplicativelnverse for matrix extensions.

• Here is the determinant of the matrix A = {{4, 1O}, {6, lOll. In this case, using
mod 11 arithmetic, 4 * 10 - 10* 6 = 7 - 5 = 2.

In[203] : = Det[MatricesOVer[ZR[l1], 2], A= {{4, lO}, {6, lO}}]

Out[203]= 2

• A general formula for the determinant can be determined.

In[204] : = Clear[a, b, c, d];
Det [M = MatricesOVer [Z [11], 2], {{a, b}, {c, d}}]

Out[204]= Mod[-bc+ad, 11]

Caution: The evaluation of determinants of symbolic matrices does not work over all
ringoids.

One of the fundamental theorems in linear algebra is that in the matrix ring over a field F,
a matrix A has a multiplicative inverse if and only if the determinant of A is nonzero. The
following theorem extends this to rings in general. The theorem can be used to determine
whether a matrix is a unit.

Theorem. If A is a square matrix over a commutative ring with unity R, then A has a
multiplicative inverse if and only if the determinant of A is a unit of R.

• The determinant of A (found above to be the value 2) indicates that it should
have an inverse. Indeed, the product of A and A -I should be the identity matrix.

In[205]:= Map[MatrixForm, {Ai = Multiplicativelnverse[M, A],
Multiplication[M] [A, Ai]}]

Out[205]= { (: ~), (~ ~)}

• Here is what happens if a matrix is not invertible.

In [206] : = Multiplicativelnverse [MatricesOVer [Z [8]], {{l, 5}, {l, 7}}]

Ringoids 379

Out [206J = Multiplicativelnverse [
MatricesOver[Ringoid[{O, 1, 2, 3, 4, 5, 6, 7},

Mod[#1+#2, 8] &, Mod [#1 #2, 8] &]J. {{1, 5l, {i, 7}}]

• Since the base ring of this matrix extension is not a field, it is apparent that this
matrix has a detenninant that is not a unit.

In[207J : = Det[Z[8], {{I, 5}, {I, 7}}]

Out[207J= 2

The detenninant function uses an extended dot product to do its calculations.

Dot [R, u, v] return the dot product of the vectors u
and v whose coordinates are from the ringoid R

Dot product extension.

• Here are two examples using the generalized dot product function.

In[208J:= {Dot[Z[5], {2, 3, '}, {I, 0, 2}],
Dot [BooleanRing[2], {{}, {I, 2}}, {{I}, {2}}]}

Out[208J= {a, {2}}

• 3.9.4 Matrix ringoids

Since the matrix extensions are finite, they can be represented as Ringoids. This is not
practical for most situations, but some of the smaller ones can be converted using ToRin­
goid.

ToRingoid[
MatricesOver [R, n]]

return the Ringoid consisting of the n -by- n matrice
over the ringoid R

SizeLimit option to restrict the ize of a matrix ringoid, defaulting to 1000

Obtaining a Ringoid from a matrix extensions.

• This is an example of converting a matrix extension to a Ringoid.

In [209J : = M2 = ToRingoid [Matricesover [Z [2] , 2]]

Out[209J= Ringoid[{{ {a, O}, {a, O}}, {{O, O}, {a, i}}, {{O, O}, {i, O}},
{{a, o}, {1, i}}, {{a, i}, {a, a}}, {{a, i}, {a, i}},

{{a, i}, {1, O}}, {{a, i}, {i, i}}, {{1, O}, {a, O}},
{{i, O}, {a, i}}, {{i, A}, {i, a}}, {{i , a}, {i, i}},
{{i, i}, {a, a}}, {{i, i}, {a, i}}, {{i, i}, {i, a}},
{ {i, i}, {i, i}}}, -Addition-, -Multiplication-]

380 User's Guide

• Here are the invertible matrices in this ring.

In[210]:= Map[MatrixPorm, UDits[II2]]

Out[210]= {(~ ~), (~ ~), (~ ~), (~ ~), (~ ~), (~ ~)}

• 3.9.5 Matrix groupoids

The multiplicative groupoid of many of the matrix extensions account for many interest­
ing groups. These groupoids can be created using ToGroupoid.

• Here is the multiplicative groupoid of the ring M2 that was generated in section
3.9.4.

In [211] : = ToGroupoid [Matricesover [Z [2], 2]] II Short

Out [211]IIShort=

Groupoid [{ { {O, O}, {O, O}}, {{ 0, O}, {O, 1}},
« 12 » , {{1, 1}, {1, O}}, {{1, 1}, {1, 1}}}, ... -]

ToGroupoid [M)

ToGroupoid [M,
SizeLimit ~ n]

form a Groupoid con i ting of all matrices in the ring exten ion
Musing MatrixOperation [M] as the group operation (either
Addition or Multiplication), allowing up to 1000 elements

form a Groupoid if Size [M] doe not exceed n

Creation of a Groupoid by a matrix extension.

• There are 81 two-by-two matrices over 71.3 . The SizeLimi t option set to 80
prevents this groupoid from being formed.

In [212] : = ToGroupoid[MatricesOVer[Z[3], 2], SizeLimit -+ 80]

SizeLimit : :toobig:
with the present restriction on SizeLimit,

there are too many elements to form a
Groupoid that determines all of the elements.

Out[212]= $Failed

• Here are the elements of the groupoid of strictly upper triangular three-by-three
matrices over 71.2 •

In[213]:= G = TOGroupoid[UT[Z[2], 3]]; Map[MatrixPorm, Blements[G]]

Ringoids

{ [: a :) , [: a :) , [: a :) , [: a :) , Out[2131= a a a a

a 0 0 0

[: 1 :), [: 1 :), [: 1 :), [: 1 :) } a a 0 0

a a a a

• Here is the groupoid of all two-by-two matrices over Z3 with determinant equal
to one.

In[2141:= ToGroupoid[SL[Z[3], 2]] II Short

Out [214111Short=

Groupoid [{ { {a, I}, {2, a}}. {{ a, I}. {2, I}}.
« 20», {{2, 2}, {l, O}}, {{2, 2}. {2, I}}}. ... -]

381

The last two groupoids are examples of specialized collections of matrices. Following are
methods of constructing various ring extensions that have some particular property. Each
is a ring extension, not a ringoid or a groupoid. If the size is appropriate, however, they
can be converted to a groupoid (or possibly a ringoid).

Diag [R. n]

GL [R. n]

LT[R. n]

LTD[R. n]

SL [R, n]

UT fR, n]

UTD {R. nJ

Matrix subextensions

return the exten ion of invertible diagonal n -by- n matrice
over the ringoid R

return the exten ion of invertible n -by- n matrice over R

return the exten ion of n -by- n strictly lower triangular
matrices (fuJly below the diagonal) over the ringoid R

return the ex ten ion of n - by- n lower triangular
matrice (including the diagonal) over the ringoid R

return the extension of n -by- n matrice over the
ringoid R that are invertible and have determinant Uni ty [R]

rerum the exten ion of n - by- n trictly upper triangular
matrice (fully above the diagonal) over the ringoid R

return the exten ion of n - by- n upper trianguJar
matrice (including the diagonal) over the ringoid R

• Here we first form GL2(Z2) and then we convert it into a group.

In[2151:= {M=GL[Z[2], 2], ToGroupoid[M]}

Out[2151= {-GL2 (Z[2])-, Groupoid[{{{a, I}, {I, a}},
{{a, I}. {I, I}}, {{I, O}, {O, I}}, {{I, a}. {l, I}},
{{l, I}, {O, I}}. {{l, I}, {I, a}}}. -Operation-]}

382 User's Guide

There are a number of alternate approaches to forming ring extensions, as follows.

TypeName [n, R]

DiagonalMatrices [arg

GL [n, k]

GeneralLinear [args]

GeneralLinearGroup [args]

SL [n, k]

SpecialLinear [args]

SpecialLinearGroup [args]

Alternate names to the subextensions.

for any type of matrix called TypeName thi i
identi aI to T 'PeName[R n] (i.e., imply reverse the
argument for tho e in the previou Ii t)

identical to Diag [arg]

identical to GL [ZR [k], n]

identical to GL [args 1
identical to GL [arg 1
identical to SL [ZR [k], n 1
identical to SL [args 1
identical to SL [args 1

• Note that there are a number of alternate forms of generating GL2 (1:2); here are
two instances.

In[216]:= {GL[2, Z [2]], GL[2, 2]}

Out[216]= (-GL2(Z[2])-, -GL2(Z[2])-}

Another way to come up with some interesting groupoids is to evaluate Generate­
Groupoid with random matrices, using matrix multiplication as the operation.

• The function unitMatrix generates a random invertible matrix. The second
line forms the ring extension of all two-by-two matrices over 1:3 ,

In[217]:= unitMatrix:= RandomMatrix[Z[3], 2, MatrixType ... GL];
M = MatricesOVer[Z[3], 2]

Out[218]= -Mat2(Z[3])-

• Here are two random invertible matrices.

In [219) : = Map [MatrixForm, {Ai = unitMatrix, A2 = unitMatrix}]

Out[219)= {(~ ~), (~ ~)}

• Now we generate the subgroup generated by Al and A2.

In[220) : = G=GenerateGroupoid[{Ai, A2},
Multiplication[M], n.", WideElements ... 'l'rue]

Out[220)= Groupoid[{{{O, I}, {I, O}}, {{O, I}, {2, O}},

{{O, 2l. {I, O}}, {{O, 2}, {2, O}}, {{1, O}, {O, I}},

Ringoids

{{I, O}, {O,2}}, {{I, I}, {1,2}}, {{I, I}, {2, I}},

{{1,2}, {I, I}}, {{1,2}, {2,2}}, {{2,O}, {O, I}},
{{2,O}, {O,2}}, {{2, I}, {I, I}}, {{2, I}, {2,2}},
{{2,2}, {1,2}}, {{2,2}, {2, I}}}, -Operation-]

• 3.9.6 Miscellaneous functions

Identi tyMatrix [M] return the identity matrix, if it exist,
for the matrix extension M

IdentityMatrix [R, n] return the n-by-n identity matrix.
if it exi t • over the ringoid R

383

MatrixOverQ [R, A] give True if the matrix A has its entrie in the ringoid R,
and False otherwi e

MatrixOperation [M) return the operation () inberent in the matrix exten ion M ;
value are Addi tion Mul tiplica tion, or Both

SizeOfMatrices [M] return the dimensions of the matrice in M

Miscellaneous functions.

• The Iden t i tyMa tr ix function has its natural generalization for any ringoid.

In[221j:= IdentityMatrix[MatricesOVer[
BooleanRing[{"cat", "dog"}], 3]] II MatrixForm

Out [221j//MatrixForm=

[
{cat, dog}

{}

{ }

{}

{cat, dog}

{}

{}) {}

{cat, dog}

• Given a matrix, we can check to see what ring it may be based on by using the
MatrixOverQ function.

In[222] : = Map[MatrixoverQ[#, {{2, 3}, {4, 5}}] to, {Z[5], Z[6], Z[7]}]

Out[222]= {False, True, True}

• Here are three different matrix extensions, followed by the dimensions of each
matrix in the extensions, as well as the operation(s).

In[223]:= {extensions =
{Mat[Z[5], 2], MatA[Z[4], {3, 4}], MatM[Z[7], 3]},

Map [SizeOfMatrices, extensions],
Map [MatrixOperation, extensions]} IIColumnForm

384 User's Guide

Out[223]= (-Mat2(Z[5])-, -Mat (3,4) (Z[4])-, -Mat3(Z[7])-}

{{2, 2}, {3, 4}, {3, 3}}

{Both, Addition, Multiplication}

Wl 3.10 Functions on a ringoid

• 3.10.1 Function extensions and their elements

• The extension ring of functions over a ringoid is created with Func t ions­
Over.

In[224]:= T = FunctionsOver[ZR[S]]

Out[224]= -Ring of Functions over Z[5]-

FunctionsOver [R)

Func [images]

ElementQ [Func [images].
FunctionsOver[R]]

Function rings and their elements.

return tbe extension of function over R

represent a function where images
represent the images of elements in a ringoid

give True if Func [images] is a function in
FunctionsOver [R]. and False otherwise

The form of functions on a ringoid is a sequence of functional values consisting of the
images of elements from the domain. The head of this sequence is Func.

• Here is one of the functions on Z5' We can verify that it is in the extension T.

In[225]:= {f=Func[l, 2, 2,3,3], ElementQ[f, T]}

Out[225]= {Func[l, 2, 2, 3, 3], True}

RandomElement [F]

RandomElements [~n)

FuncToRules [F , f]

return a random function in the function exlen ion F

rerum a Ii t of n random function in F

convert a function in the funclion exlen ion F
to a Ii [of rule

Working with individual functions over ringoids.

• Here is a random function on Z5 . Occasionally it is useful to convert a function
to a list of rules.

In[226]:= {g=RandomElement[T], FuncToRules[T, g]}

Ringoids 385

Out[226]= {Func[4, 2,0,0 , 3], {0~4, 1~2, 2~0 , 3~0, 4~3}}

• 3.10.2 Function arithmetic

Addi t i on [F j [/, g j

Addition [F, I, gj

Multiplication[F j [I, g j

Multiplication [F, I, g)

return the sum of functions I and g in the extension F

identical to Addition [FJ [/, g J

return the product of functions I and g

identical to Multiplication (F) [I, g)

Basic arithmetic functions.

HasZeroQ [Fj

Zero [F j

NegationOf (F, f)

WithUnityQ [F j

Unity[F j

UnitQ [F, f)

ZeroDivisorQ[F,/ j

give True if F has a zero, and False otherwise

return the zero of F if it exists, and $Failed otherwise

return the negation of I in F. if it exist, and $Failed
otherwi e

give True if F bas a unity. and False otherwise

return the unity of F. if it exists, and $Failed otherwise

give True if I is a unit of F, and False otherwise

give True if I i a zero divisor of F. and False otherwi e

Other basic functions in function extensions.

• Here is the ring of functions over ZlI .

In [227] : = V = I'unctioDsOVer[Z[ll]]

Out[227]= -Ring of Functions over Z [11]-

• Functions over larger rings can be generated in a variety of ways; here is one
method.

In [228] := f = App1y[l'unc, Mod[Range[O, 10]2, 11]]

Ou t [228] = Func [0, L 4, 9, 5, 3, 3, 5, 9, 4, 1]

• Every function on a field. such as Z 11 • is a polynomial function. Furthermore. a
polynomial over any ringoid can be converted to a function with PolyToFunc­
tion.

In [229] : = g = po1yTOl'unctioD [Z [11], Po1y[Z [11], 1 + X + X2]]

Out[229]= Func[l, 3, 7,2,10,9,10,2,7,3,1]

386 User's Guide

Both addition and multiplication in function extensions are coordinate-wise operations.
Over a ringoid with n elements, the operations each require n corresponding ringoid
operations.

• Here is the sum of f and g •

In[230]:= {f, g, Addition[V] [f, g]} / / ColwmJ'orm

Out[230]= Func[O, 1, 4, 9,5,3,3,5,9,4,1]
Func [1, 3, 7, 2, 10, 9, 10, 2, 7, 3, 1]

Func [1, 4, 0, 0, 4, 1, 2, 7, 5, 7, 2]

• And here is their product.

In [231] := {f, g, Ilultiplication[V] [f, g]} / / ColwmJ'orm

Out[231]= Func[O, 1, 4, 9, 5, 3, 3, 5, 9, 4, 1]

Func [1, 3, 7, 2, 10, 9, 10, 2, 7, 3, 1]

Func [0, 3, 6, 7, 6, 5, 8, 10, 8, 1, 1]

• V has a zero function, as well as a unity, both being constant functions.

In [232] := {HasZeroQ[V], Zero [V] , WithUnityQ[V], Unity [V] }

Out[232]= {True, Func[O, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
True, Func [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}

• Adding f and the negation of f produces the zero function.

In[233]:= h = HegatioDOf[V, f]1
Addition[v, f, h]

Out[234]= Func[O, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

• A function is invertible if its images are invertible in the base ring.

In[235]:= Map[UnitQ[V, #] &:, {f, g}]

Out[235]= {False, True}

• There is an inverse for g.

In[236]:= IlultiplicativeIDverse[v, g]

Out[236]= Func[l, 4, 8, 6, 10, S, 10, 6, 8, 4, 1]

• But f does not have an inverse.

In[237] : = Mu.ltiplicativeJ:nverse[V, f]

RingExtension::NoInverse:
No mult o inverse in extension ring due

to a lack of mult inverse in the base ring.

Out[237]= $Failed

• Units and zero divisors are disjoint.

In[238]:= Map[zeroDivisorQ[v, #] to, {f, g}]

Out[238]= {True, False}

• 3.10.3 Polynomial conversion and interpolation

Ringoids 387

PolyTOFunction [R, p]

InterpolatingPolynomial [
R, {{XI' yd, ...)]

convert a polynomiaJ p over R to a function over R

return the polynomial of least degree pas ing through
the list of points in R x R with distinct first
coordinate, as uming that R is a field

Polynomial conversion and interpolation.

PolyToFunction can be used to check whether a polynomial has a linear factor. This
is equivalent to checking whether it is irreducible for polynomials of degree two or three.

• Consider a typical polynomial p over Z 11 • Since the polynomial function
corresponding to p has no zeros, p is irreducible over Z II .

In[239]:= {p=Poly[Z[ll], Xl +x+6], f=PolyToFunction[Z[ll], p]}

Out[239]= {6 +X+X3, Func[6, 8, 5, 3, 8, 4, 8, 4, 9, 7, 4]}

PolyToFunction and InterpolatingPolynomial are inverses of one another
for a certain set of polynomiaJs over a field.

• We start with a polynomial over Z5 and convert it to a function.

In[240]:= h = PolyToFunction[Z[5], Poly[Z[5], X2 + 1]]

Out[240]= Func[l, 2, 0, 0, 2]

• Now generate a list of ordered pairs consisting of domain and range elements.

In[241]:= hpairs = Transpose [{Elements [Z [5]], ListHh}]

Out[241]= {{O, l}, {l, 2}, {2, O}, {3, O}, {4, 2}}

388 User's Guide

• A polynomial that "passes through" these points is the original one.

In [242 J : = Interpolating-Polynomial [Z [5] I hpairs]

Out[242J= 1+x2

This use of InterpolatingPolynomial is an extension of the built-in function that
works in the real and complex domain and is still available.

• Using the foregoing points, the real interpolating polynomial is quite different.

In [243J : = pr = Interpolating-Polynomial [hpairs , x] / / Expand

1 65x 151x2 25x3 5x4

Out[243J= + 1:2- - 24 + -----u- -~

• But if the coefficients are reduced mod 5, the relationship is apparent.

In[244J:= Map[Mod[#, 5] Ee, CoefficientList[pr, x] /.
{Rational [a_I b_] :> aPowerMod[b, -1, 5]}]

Out[244J= {I,D, 1, 0, O}

III 3.11 Finite fields

The finite fields, or Galois fields, are among the most important in abstract algebra. They
can be most conveniently generated with the specialized functions in the Abstract­
Algebra' Fini teFields package. A portion of the code in this package comes from
the standard package Algebra' F ini teFields (mainly the code to implement
IrreduciblePolynomial), but the output is fundamentally different. Our package
returns a Ringoid, and the polynomials used for inputs can be standard polynomials or
polynomials created with the Poly function.

GF [pd 1

GF [p, d)

GF [pd, pol l

GF [p, d, poly]

Creation of Galois fields using GF.

return the Galoi field of order pd for prime p

identical to GF [pd)

return the finjte field u ing the pecified irreducible
polynomjal of degree d

identical to GF [pd, poly]

• All fields of order 25 are isomorphic, so F is unique.

In [245J := F = GF[25]

Ringoids 389

Out[245J= Ringoid[{a, x, 2 x, 3 x, 4 x, 1, 1 + x, 1 + 2 x, 1 + 3 x,
1 + 4 x, 2, 2 + x, 2 + 2 x, 2 + 3 x, 2 + 4 x, 3, 3 + x,
3 + 2 x, 3 + 3 x, 3 + 4 x, 4, 4 + x, 4 + 2 x, 4 + 3 x, 4 + 4 x} ,

-Addition-, -Multiplication-]

• The Indeterminate option can specify the symbol to be used for the
indeterminate.

In[246J : = F2 = GF [3, 2, Indeterminate -+ y]

Out[246J= Ringoid[{O, y, 2y, 1, l+y, 1+2y, 2, 2+y, 2+2y},
-Addition-, -Multiplication-]

• The index provided to GF must be a power of a prime.

In[247J:= GF[12]

GF: :badindex : The index for GF needs
to be a power of a prime, which 12 is not.

Out[247J= $Failed

Here are some functions for working with Galois fields.

IrreduciblePolyOverZpQ[
poly, p]

IrreduciblePolynomial [
ind, P, d]

Fieldlrreducible (GF[n))

ExtensionDegree [GF[n]]

GaloisFieldQ [R)

give True if the polynomial poly (formed as an
ordinary polynomial or with Poly) i irreducible
over the ring Zp ,and False otherwi e

return an irreducible polynomial in the
indeterminate ind of degree dover Zp

return the irreducible polynomial u ed in
e tabljshing the Galois field GF [n]

give the degree of the extension of GF [n]

give True if the ring R is a Galoi field and was
created u ing the GF function, and Fal se otherwi e

Functions used in the creation and identification of Galois fields.

• If a polynomial is provided, it must be irreducible over the integers mod p.

In[248J:= GF[S, Poly[Z[S], x 2 +4]]

GF: :irr :
The polynomial 4 + x 2 needs to be irreducible over Z [5] .

Out [24 8 J = $Failed

• The error in the preceding example can be anticipated.

390 User's Guide

In[249]:= J:rreduciblepolyOverZpQ[x2 + 4, 5]

Out[249]= False

• Here is a quadratic we could use for GF [2 5] .

In[250]:= J:rreduciblePolynomial[x, 5, 2]

Out[250]= 3 + 2 x + x2

• IrreduciblePolynomial returns the default polynomial for GF [25].
Note that this is the same as the earlier result. Also observe that F is a quadratic
extension.

In[251]:= {FieldJ:rreducible[F = GF[25]], ExtensionDegree[F]}

Out[251]= {3+2x+X2, 2}

• Galois fields created outside the package are not recognized.

In[252] : = {GaloisFieldQ[Z[7]], GaloisFieldQ[GF[7]]}

Out[252]= {False, True}

PrimitivePolynomials
[GF [ll]]

TableOfPowers [GF[n]]

powerList [GF [n]]

Powers in a Galois field.

return alit of primitive polynomial in GF[n]
(generator of the multiplicative group of GF[n))

return a table, starting first with 10,0), followed by pairs of the
form Itt. r\ where r i an element in GF (n] , q i the
.. imple tn primitive polynomial for thi ring, and j i the
power to which q need to be rai ed to be equal to r

equivalent to TableOfPowers, added for compatibility
with the Algebra' Fini teFie l ds ' package

• The primitive polynomial chosen for GF[16) was x, but there are seven other
choices for a primitive polynomial. (Note, however, that x is indeed the sim­
plest in this case.) In general, there are ifJ(pn - 1) primitive polynomials in
GP[pn], where ifJ is Euler's totient function.

In[253]:= {EulerPhi [15], pp = PrimitivePolynomials[GF[16]]}

Out[253]= {8,

{ x, x 2 , X + x 2 , 1 + x + x 2 , 1 + x 3 , x 2 + x 3 , 1 + x 2 + x 3 , X + x 2 + x 3 } }

• Here are the powers of x in GF[16).

In[254]:= TableOfPowers[GF[16]] //lIatrixForm

Ringoids 391

Out [254]//MatrixForm=

o 0
x X

x 2 x 2

x 3 x 3

X4 1 + x 3

x 5 1 + x + x 3

x 6 1 + x + x 2 + x 3

x 7 1 + x + x 2

x 8 X + x 2 + x 3

x 9 1 + x 2

x 10 X + x 3

Xll 1 + x 2 + x 3

X12 l+x

X13 X + x 2

X14 x 2 + x 3

1 1

• We can anticipate that the order of any of the primitive polynomials in GF[16]
is 15.

In[255]:= OrderOfElement[
MultiplicativeGroupoid[GF[16]], RandomElement[pp]]

Out[255]= 15

• This function can also be used to find the highest-order elements in the multipli­
cative groupoid of an ordinary ringoid.

In[256]:= {Orders[NonZeroMGroupoid[Z[S]]],
PrimdtivePolynomials[Z[S]]} //ColumnForm

Out[256]= {{I, I}, {2, 4}, {3, 4}, {4, 2}}

{2, 3 }

Addi ti veToMul tiplicati ve [R, add] convert the element add (in additive fonn)
in the field R to the multiplicative form

MultiplicativeToAdditive [R, muLl) convert the element mult (in multiplicative
form) in the field R to the additive form

Changing representations of a field element.

392 User's Guide

• In the field, GF[16], the element expressed additively as 1 + x?- +.x3 can be
expressed multiplicatively as xli .

In [257J := Additive'l'oHultiplicative [GJ'[16], 1 + x2 + x 3]

Out[257J= xl!

• Similarly, we can convert the multiplicative form xli to the additive form
1+x2 +.x3.

In [258J : = Multiplicative'l'oAdditive [GJ' [16], X 11]

Out[258J= 1 + x 2 + x 3

Chapter 4

Morphoids

Given two groups (or rings), we may want to establish some function between them.
Usually, the interest is not just how the function interacts with the elements of the two
structures, but also how it relates to the operations. Given groups (G1 , *) and (G2, #), we
are often interested in a function f : G1 ~ G2 where f(x * y) = f(x) # f(y) for all x and
y in G1 • In this case, we say f is a homomorphism between the two groups. Clearly not all
functions between groups are homomorphisms. In AbstractAlgebra, we define a
data structure called a Morphoid that reflects a mathematical function between two
groupoids or ringoids. In this chapter, we consider how to form and explore Morphoids.

~ 4.1 Forming Morphoids

FormMorphoid If. Sf. Sz l

FormMorphoid [rules. Sf. Szl

FormMorphoid [positionLi t . Sf. S2l

FOrmMorphoi d If. Sf . Sz,
FormatFunction ~ vall

FormMorphoidSetup [Sf. Szl

Methods of forming a Morphoid .

give the Morphoid determined by the function
f between tructure Sl and Sz

give the Morphoid determined by the
Ii t of rules given in rules that give
a mapping between stru ture Sl and S2

give the Morphoid determined by the
indice found in positionLis(that gives
a mapping between tructure Sl and S2

after forming the Morphoid, format it according
to val, with False being the default value

provide a graphic to a i t in u ing the
po itioo-li t approach to forming a Morphoid

• The function between two groupoids (or ringoids) used to determine a Mor­
phoid can be a built-in function or a pure function.

394 User's Guide

In[l]:= {fl = rormNorphoid[Zdentity, Z[5], Z[5]],
f2 = rormNorphoid[Hod[# + 2, 5] &, Z[5], Z[5]]}

Out[l]= {Morphoid[Identity[#1] &, -Z [5]-, -Z [5]-],
Morphoid[Mod[#1+2, 5] &, -Z[5]-, -Z[5]-]}

• One can also define a function on each element of the domain and then con­
struct a Morphoid. Here we also illustrate the Visual mode of FormMor­
phoid.

In [2] := Clear[g];
Do[g[i] = Hod[i + 2, 5], {i, 0, 4}]
f3 = rormNorphoid[g, Z[5], Z[5], Hode ~ Visual]

Z[5]
01234

01234
Z[5]

Out[3]= Morphoid[g[#1] &, -Z[5]-, -Z[5]-]

• Although f 2 and f 3 were produced by different means, they represent the
same mathematical function and are equal as Morphoids.

In[4]:= BqualHorphoidQ[f2, f3]

Out[4]= True

• Using a list of rules (showing how domain elements are to be mapped to
codomain elements) is another approach to forming a Morphoid.

In [5] := f4 = i'ormMorphoid[
{O ~ 2, 1 ~ 3, 2 ~ 4, 3 ~ 0, 4 ~ 1}, Z[5], Z[5]]

Out[5]= Morphoid[{O~2, 1~3, 2~4, 3~O, 4~1}, -Z[5]-, -Z[5]-]

• The listing of the rules is automatically suppressed if the list is too long; we can
also manually suppress the list from being displayed.

In{6]:= rormNorphoid[{O ~ 2, 1 ~ 3, 2 ~ 4, 3 ~ 0, 4 ~ 1},
Z[5], Z[5], ror.matFunction ~ True]

Out{6]= Morphoid[-Rules-, -Z[5]-, -Z[5]-]

• Applying EqualMorphoidQ over the Cartesian product of two lists both
containing f2, f3, and f4 shows that these three Morphoids are identical.

Morphoids 395

In[7]:= CloseSets[{f2, f3, U}, {f2, f3, U}, EqualMorphoidQ]

Out [7] = {True}

• Since S3 and D3 are isomorphic, we should be able to find an isomorphism
between them. Since there is no natural formula to define this function, and
setting up a list of rules is a bit tedious for these two groups, it is useful to
formulate the Morphoid by using a list of positions in the codomain to give
the pairing. The FormMorphoidSetup function is used to begin this process.

In[B]:= FOrmMorphoidSetup[symmetric[3], Dihedral[3]];

Domain Codomain
{l, 2, 3} 1 1 1
{1, 3, 2} 2 2 Rot
{2, 1, 3} 3 3 Rot A 2
{2, 3, 1} 4 4 Ref
{3, 1, 2} 5 5 Rot**Ref
{3, 2, l} 6 6 Rot A 2**Ref

• Using the preceding graphic, suppose that we want to map p, 2, 3} to 1, {I, 3,
2} to Ref, {2, 1,3} to Rot * * Ref, {2, 3, 1} to Rot, {3, 1, 2} to Rot 2 , and
finally {3, 2, I} to Ro t 2 * * Re f. Note that the (ordered) images of this map
occur in positions {I, 4, 6, 2, 3, 5} in the list of elements in D3 •

In[9]:= f5 = FormMorphoid[
{l, 4, 5, 2, 3, 6}, Symmetric [3], Dihedral [3]]

Out[9]= Morphoid[{{l, 2, 3} --71, {l, 3, 2} --7 Ref,
{2, 1, 3} --7Rot**Ref, {2, 3, 1} --7 Rot, {3, 1, 2} --7 Rot2 ,

{3, 2, 1} --7 Rot2 **Ref}, -8[3]-, -D[3]-]

• The following shows that this is an isomorphism.

In[lO]:= I somorphi smQ [f5, Cautious ~ True]

Ou t [1 0] = True

• Recall how the Pari ty function works.

In[ll]:= parityList = Map[{#, Parity[#]} &:, Elements[Symmetric[3]]]

Out[ll]= {{{1, 2, 3}, 1}, {{1, 3, 2}, -1}, {{2, 1, 3}, -1},

{{2, 3, 1}, 1}, {{3, 1, 2}, 1}, {{3, 2, 1}, -1}}

• Now consider a "natural" morphism with S3 as its domain and {±1} as the
codomain.

In [12] := FormMorphoidSetup[Symmetric [3], Integerunits];

396 User's Guide

Domain
{l, 2, 3} 1
{l, 3, 2} 2 Codomain
{2, 1, 3} 3 1 1
{2, 3, 1} 4 2 -1
{3, 1, 2} 5
{3, 2, 1} 6

• We want the elements with parity -1 to go to position 2 in the list of the
codomain elements.

In[13]:= positions = La.t[Tran.po.e[parityList]] I. -1 ~ 2

Out[13]= {1, 2, 2, 1, 1, 2}

• Now we can easily form the Morphoid using this list of positions.

In[14]:= f6 = roZ'lllllo:rpboi4[positiOl1s, SyJmaetric[3], Integer1Jl1its]

Out[14]= Morphoid[
{{1, 2, 3} --t 1, {1, 3, 2} --t -1, {2, 1, 3} --t -1, {2, 3, 1} --t 1,

{3, 1, 2} --t 1, {3, 2, 1} --t -1}, -S[3]-, -IntegerUnits-]

• This is indeed a homomorphism.

In [15] := IIorphismQ[f6]

OUt[15]= True

• In fact, the kernel of this homomorphism is the alternating group on three
letters.

In[16]:= B1ements[Kernel[f6]] === Blements[Alternating[3]]

Out[16]= True

• If the domain is a cyclic groupoid, we can get by with just specifying a single
defining rule. (In this case, this will define the other rules since "g" is a
generator of CyclicGroup[5]. Note also that ZG [5] is the group Zs.)

In[17]:= f7 = roZ'lllllorphoi4[ngn --t 3, Cycl1cGroup[S], ZG[S]]

Out[17]= Morphoid[g --t 3, -Cyclic [5]-, -z [5]-]

• As expected, these two groups are isomorphic.

In [18] : = Isomorph1smQ [f7]

Out[18]= True

Morphoids 397

~ 4.2 Structure of Morpho ids

There are three fundamental parts of a Morphoid: the function, domain, and codomain.

MorphoidFunction [fJ give the function (or list of rule) of the Morphoid f
MorphoidRules [fl give the Ii t of rule (or function) of the Morphoid f
Domain [fl give the domain of the Morphoid f
Codomain [fl give the codomain (target pace) of the Morphoid f

Extracting parts of a Morphoid.

• Define the Morphoid that takes any element x in Z 10 and maps it to 3 x in
Z30 ·

In{19] : = gl = FOrmMorphoid[Mod[3#, 30] Ge, Z[lO], Z[30]]

Out{19]= Morphoid[Mod[3 #1,30] &, -Z[10]-, -Z[30]-]

• Here is how we extract the function, domain, and codomain of gl.

In {20] := {MorphoidFunction[gl], Domain [gl] , Codomain [gl] }

Out{20]= {Mod[3 #1, 30] &,

Groupoid[{O, 1, 2, 3, 4, 5, 6,7,8, 9}, Mod[#1+#2, 10] &],
Groupoid[{O, 1, 2, 3, 4, 5, 6,7,8,9,10,

11, 12, l3, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 2 6, 27, 28, 29}, Mod [#1 + # 2, 3 0] &]}

Sometimes we may wish to change the way we view a function or Morphoid; here are
some methods of doing so.

• This is the result of converting the Morphoid we previously defined into a
rules-based Morphoid.

In {21] : = g2 = 'l'oRules [gl]

Out{21]= Morphoid[{O ~ 0, 1 ~ 3, 2 ~ 6, 3 ~ 9, 4 ~ 12, 5 ~ 15,
6~18, 7~21, 8~24, 9~27}, -Z[10]-, -Z[30]-]

• MorphoidRules extracts just the list of rules.

In{22]:= someRules = MorphoidRules[g2]

Out{22]= {O~O, 1~3, 2~6, 3~9, 4~12,

5~15, 6~18, 7~21, 8~24, 9~27}

398 User's Guide

ToRul es [f l

ToRules [f, D)

ToRules [f, D, C)

ToFunction [fl

ToFunction [f. g]

ToFunction [rules]

ToFunction [rules. g)

Converting between rules and functions .

convert the function-based Morphoid f to a rules-based
Morphoid

convert the function f with domain D (where D can be a et,
groupoid, or ringoid) to a list of rules of the form x ~ f [xl

convert the function f with domain D to a (jst of rules
of the form x ~ f [x] ,guaranteeing that the images
fall in the codomain C (returning $Fai led if the
codomain C does not contain all of the images)

convert the rules-based Morphoid f to a function-ba ed
Morphoid

convert the rules-based Morphoid f to a function-ba ed
Morphoid named g

convert a list of rule into a function named ffx (where x is
an integer)

convert a list of rule into a function named g

• ToFunction works in different ways with different types of input.

In[23] : = {gS = ToFUnction[g2], ToFunction[g2, g3],
ToFunction[s0m8Ru1es], ToFUnction[someRu1es, g4]}

out[23]= {Morphoid[ff3[#1] &, -Z[lO]-, -Z[30]-],
Morphoid[g3[#1] &, -Z[lO]-, - Z[30]-], ff4, g4}

Note that the function listed in the Morphoid g5 (starting with ff) can be inspected
with Information or?

EqualMorphoidQ [f . g 1 give True if Morphoids f and g are equal
as mathematical function, and False otherwi e

MorphoidComposi tion [g, fl give the Morphoid resulting from composing
f followed by g

Functions on pairs of Morphoids .

• Given two Morphoids, we may want to compose these two functions.

In[24]:= f1 = FormMorphoid[Mod[# + 3, 8] &, Z[4], Z[7]];
f2 = FOrmMorphoid[Mod[#A2 + 1, 12] &, Z[7], Z[12]];
MorphoidComposition[f2, f1]

Out[24]= Morphoid[{O~lO, 1~5, 2~2, 3~1}. -Z[4]-, -Z[12]-]

Morphoids 399

• Note that the order of the operands is important; the composition does not make
sense in the other direction. MorphoidComposi tion [g, fl returns a function
h where we have h(x) = g(j(x».

In [25] := MorphoidComposition[fl, f2]

MorphoidComposition:notdef:
Composi tionis not defined because the image

of the first map is Z[12] while the domain of
the second map is Z [4], which are not the same.

Out[25]= $Failed

III 4.3 Built-in Morphoids

There are several built-in Morphoids that reflect commonly used functions.

ZMap (m, n]

ZMap (m, n, g -+ h)

ZMap [m, n,
Structure -+ StType)

Variations of the ZMap function.

form the Morphoid from Zm to Zn with the function
Mod [#, n] & (i.e., reduce mod n), where the current
value of DefaultStructure pecifie whether
these structure are 10 be considered group or ring

for g a generator of Zm, form the Morphoid from Z,. to
Zn defined by the rule g -+ h

form the Morphoid ZMap [m, n] u ing the
structure StType (with value Group or Ring)

• There is a natural morphism from Zl8 into Z3.

In [26] := f = ZMap[18, 3]

Out[26]= Morphoid[1 --) 1, -Z[18]-, -Z[3]-]

• Here is how the function actually works on each domain element.

In [27] := ToRules[f]

Out[27]= Morphoid[{O--)O, 1--)1, 2--)2, 3--)0,4--)1,5--)2,
6 --) 0, 7 --) 1, 8 --) 2, 9 --) 0, 10 --) 1, 11 --) 2, 12 --) 0 , 13 --) 1,
14--)2,15--)0,16--)1, 17--)2}, -Z[18]-, -Z[3]-]

• The following visualization also makes it clear what is happening with the
function f.

In[28] : = visualizeMorphoid[f, Colorcodomain ~ Automatic];

400 User's Guide

Z[18]
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

o 1 2
z r 31

• With the same domain and codomain, we can also set up a map defined by
sending the generator 5 in Z 18 to the generator I in Z 3 .

In[29]:= VisualizeMorphoid[
ZMap[18, 3, S ~ 1], colorCodomain ~ Automatic];

Z[18]
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

o 1 2
Z[3]

Given any morphism f : G -? H between groups (or rings), there are two natural mor­
phisms induced from f. The first is g : G -? G / Ker (f) defined by x f-+ x Ker(f) and the
second is h : G / Ker (f) -? 1m (f) defined by x Ker(f) f-+ f(x). What follows is a typical
diagram to illustrate the relations between these morphisms.

In[30] := Show[Graphics[{Text["G", {O, OJ], Text["B", {S, OJ],
Text["G/lter(f)n, {2.S, -3.S}], Text["f", {2.S, .1S}],
Text["gn, {1.0, -1.7S}], Text["hn, {', -1.7S}],
RGBColor[O, 0, 1], Arrow[{.2S, OJ, {'.7S,0}],
Arrow[{.lS, -.lS}, {2.3S, -3.3S}],
Arrow[{2.6S, -3.3S}, {'.8S, -.lS}]}]];

G _____ -'f=--___ ---I.-

G/Ker(f)

• Here is the induced canonical homomorphism based on ZMap [18 , 6].

Morphoids 401

In[31]:= f3 = InducedCanonical[Zllap[18, 6]]

QuotientGroup:NS :
This quotient group uses NS to represent the normal subgroup

{a, 6 , l2} that you specified Use CosetToListto
convert this coset representationto a list of elements

Out[31]= Morphoid[{O~NS, 1~I+NS, 2~2+NS, 3~3+NS, 4~4+NS,

5 ~ 5 + NS, 6 ~ NS. 7 ~ 1 + NS. 8 ~ 2 + NS. 9 ~ 3 + NS •
10~4+NS. 11~5+NS. 12~NS.13~I+NS. 14~2+NS.

15~3+NS. 16~4+NS. 17~5+NS}. -Z[18]-. -Z[18] / NS-]

InducedCanonical (f J given a morpbi m f,' G ~ H,
rerum the induced Morphoid g,' G ~ G/Kernel[f]

InducedIsomorphism [f] given a morphism f,' G ~ H . return the induced
Morphoid h " G/Kernellf) ~ Imagelfl

Induced Morphoids.

• This morphism sends an element x in Z 18 to the coset x + {O, 6, 12} .

In[32]:= visualiZeMorphoid[f3, ColorCodomain ~ Automatic];

KEY for Z[18]/NS: label used ~
element: {hI ~ NS. h2 ~ 1 + NS. h3 ~ 2 +
NS. h4 ~ 3 + NS. h5 ~ 4 + NS. h6 ~ 5 + NS}

Z[18]
o 7 8 9 10 15 16 17

hI h2 h 3 h4 h5 h6
Z[18]/NS

• In contrast, the induced isomorphism maps from Z 18/ to, 6, 12} to Z6 (the
image, in this case).

In [33] : = f4 = InducedIsomorphism[ZMap[18, 6]]

Out[33]= Morphoid[{NS~O. I+NS~1. 2+NS~2.

3 + NS ~ 3. 4 + NS ~ 4. 5 + NS ~ 5}. -Z [18]/NS-. -Z [6] -]

• Now let's compose f3 and f4.

In[34]:= f5 = IIorphoidComposition[U, f3]

402 User's Guide

Out[34] = Morphoid[{O-+O, 1-+1, 2-+2,3-+3,4-+4,5-+5,
6-+0,7-+1,8-+2 , 9-+3,10-+4,11-+5,12-+0,13-+1,
14-+2,15-+3,16-+4, 17-+5}, -Z[18]-, -Z[6] -]

• Note that this composition is the same as ZMap [18, 6] .

In[35]:= BqualMOrphoidQ[f5, ZMap[18, 6]]

Out[35]= True

Sgn[G]

Other buih-in Morphoids.

given a permutation group G, return the
Morphoid determined by the Pari ty function

• Under the Sgn function, odd permutations go to -1, while even permutations
go to 1.

In[36]:= ViaualizeHorphoid[Sgn[SymmetricGroup[3]]]1

KEY for 8[3]: label used -+ element: {g1 -+
{1, 2, 3}, g2 -+ {1, 3, 2}, g3 -+ {2, 1, 3},
g4 -+ {2, 3, 1 }, g5 -+ {3, 1, 2}, g6 -+ {3, 2, 1}}

S(3J
g1 g2 g3 g4 g5 g6

1 -1
IntegerUnits

~ 4.4 Properties

• 4.4.1 Surjectivity and injectivity

There are two standard properties of functions that are often of interest. A function
f : A -+ B is said to be injective if f(x) = f(y) implies x = y and surjective if for all
b E B there exists an a E A such that f(a) = b.

• As is the case over the integers, the squaring function is also not injective over
ZIO .

In[37]:= InjectiveQ[f = FoxmMorphoid [Mod [ft-' 2, 10] &, Z [10], Z [10]]]

Morphoids 403

Out{37]= False

• ZMap [m, n J is always surjective as long as m ~ n.

In{38]:= SurjectiveQ[g = ZMap[12, 5]]

Out{38]= True

InjectiveQ [J]

Surj ecti veQ [f]

OneToOneQ [J]

OntoQ [f]

Basic properties of functions.

gi e True if th Morphoid / i
injccli e (one-Io-on), and False th rwi

give True if the Morphoid /
i urj ti e (nto), and False th rwi

id nliullo InjectiveQ [f]

id ntical t SurjectiveQ [J]

• 4.4.2 Preserving operations

While injectivity and surjectivity are general properties for any functions, the possibility
of operation preserving occurs when the function is between two structured sets, such as
groups or rings. Given a function I : (G" *) -7 (G2 , #) between two groups, we say I
preserves the operation of group G, for the pair (x, y) (for x and y in G,) if
I(X* y) = I(x) # l(y). If the operation is preserved for all pairs coming from the domain,
then the function is a homomorphism (or morphism). For rings, we require both the
addition and the multiplication to be preserved.

PreservesQ [I, (a, b })

PreservesQ [J ,
{ a, b } , Mode ~ Visual)

MorphismQ [J]

MorphismQ [/, Mode -7 Visual)

HomomorphismQ [f]

Functions to test for operation preservation.

give True if the Morphoid I pre er e
the binary operation () ~ r th pair (a, b)
from the domain f I. and False otherwi

in addition to giving True r False
give a vi ualization illu tratino the proce

give True if the Morphoid f pre erve
the binary operation () for all pair (a, b)
from the domain of I . and False otherwi e

in addition to giving True or False.
give a vi uali zation iJlu trating which pairs
preserve the operation and ~ hich d not

identical to MorphismQ [f]

404 User's Guide

• Consider the following two Morphoids, whose only difference is the struc­
ture used (group versus ring).

In[39} : = {fg = ZMap[10, 10, 1 ~ 3, Structure ~ Group],
fr = ZMap[10, 10, 1 ~ 3, Structure ~ Ring]}

Out[39]= {Morphoid[l ~ 3, -Z[10]-, -Z[10]-],
Morphoid[l ~ 3, -Z[10]-, -Z[10]-]}

• As we track what happens to the elements 2 and 5 in the following diagram, we
see that with the group Morphoid fg indeed we have fg(2 + 5) = fg(2) +
h(5). Therefore, the operation is preserved for this pair.

In[40}:= PreservesQ[fg , {2, 5}, Mode ~ Visual]

Out[40J= True

Z[101

b

a+b

Z(1 01

fib)

• We can test every pair of elements in the domain by using the MorphismQ
function.

In[41}:= MorphismQ[fg]

Out[41}= True

• When a Morphoid is based on a ring, one needs to check both the addition
and the multiplication. Here is the Visual mode of MorphismQ for the ring
Morphoid fr'

In[42} : = MorphismQ[frl Mode ~ Visual]

The table entry corresponding to the sum a+b
(resp . product a*b) in the domain of the morphoid
is colored if and only if addition (resp.
multiplication) of the pair {a,b} is preserved by
the morphoid; i.e., f(a+b) = f(a)+f(b) (resp .
f(a*b) = f(a)*f(b))

Morphoids 405

Add(Z 10]) x * y Mu1t(Z(1 0]) x * _y
~ 10 11 12 Ll 4 15 ~ 7La 19. ~ 10 11 12 13 412 ~ 7La 19.
0 0 123 4 5 6 7 8 9 o 0 o 0 o 0 o 0 000
1 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9
2 2 3 4 5 6 7 8 9 0 1 2 0 2 4 6 8 o 2 4 6 8
3 3 4 5 6 7 8 9 0 1 2 3 0 3 6 9 2 5 8 1 4 7
4 4 5 6 7 8 9 o 1 2 3 4 0 4 8 2 6 o 4 B 2 6
5 5 6 7 8 9 0 1 2 3 4 5 0 5 0 5 0 5 0 5 0 5
6 6 7 8 9 o 1 2 3 4 5 6 0 6 2 8 4 o 6 2 B 4
7 7 8 9 0 1 2 3 4 5 6 7 o 7 4 1 8 5 2 9 6 3
8 8 9 0 1 2 3 4 5 6 7 B 0 8 6 4 2 0 B 6 4 2
9 9 o 1 2 3 4 5 6 7 8 9 0 9 B 7 6 5 4 3 2 1

Out[42]= False

• From the preceding tables, we see that the pair (2, 3) does not preserve the
multiplication operation. Here is an illustration of an explanation.

In[43]:= PreservesQ[fr , {2, 3}, Mode ~ Visual]

Z[lOI

f (b)

-!11111 --'----- -

a+b _ -......L---
Addition

Out[43]= False

Z [10 1

fIb) •. --'------
.. --+---~

a*b - ---'----
Multiplication

Whereas MorphismQ checks every pair of elements to see if the operations are pre­
served, ProbableMorphismQ pursues the same question randomly by testing a shorter
list of pairs.

ProbableMorphismQ [f] give True if the Morphoid f i probably a
morphi m, and False otherwise

ProbableMorphismQ [f, opts] use the option opts to determine if f i probably
amorphi m

Probabilistic approach to checking if a morphism.

• We can use a probabilistic approach to check for morphisms with the Proba­
bleMorphismQ function.

In[44]:= ProbableMorphismQ[fr]

406 User's Guide

ProbableMorphismt;;?:warning :
The ProbableMorphismQfunction is being used;

True' results are only probabl~ not certain

Out[44]= False

There are several options to consider for this function.

option name default value

PrintMessage

SampleSize

True

5

pecifies whether a warning should be
given about using a probabili tic approach

specifie the ize of ample to choose when
randomly checking

Samplepairs Random pecifies the method by which pairs houJd be
checked (alternatively, Defaul t u e a built-in Ii t
or a Ii t of pair of positions can be provided)

Options for ProbableMorphisrnQ .

• If we choose pairs carefully, we can obtain erroneous results with this function.
Here we use pairs of positions in the domain, where {3, 6} indicates that we are
testing the third element (2) and the sixth element (5).

In[45]:= ProbableMorphismQ[fr , PrintMessage ~ False,
Samplepairs ~ {{1, 1}, {1, 6}, {3, 6}, {6, 8}}]

Out[45]= True

• Setting the SampleSize is immaterial when we use the built-in list of pairs
specified by Defaul t.

In[46] : = ProbableMorphismQ[fr , SampleSize ~ 2000,
SamplePairs ~Default, PrintMessage ~ False]

Out[46]= False

A function f is an isomorphism if it is an injective and surjective (Le., bijective) homomor­
phism.

IsomorphismQ [J]

I somorphi smQ [f ,
Cautious -+ True)

IsornorphisrnQ variations.

give True if the Morphoid f is an i omorphism
(u ing ProbableMorphisrnQ), and False otherwi e

give True if the Morphoid f is an isomorphi m
(u ing MorphismQ) and False otberwi e

Morphoids 407

• The function on 7L20 defined by the rule 1 ~ 5 is not surjective, thus failing one
of the requirements to be an isomorphism.

In[47]:= ZsomorphismQ[ZMap[20, 20, 1 ~ 5]]

Morphoid: :notonto :
Since the Morphoid is not onto, it can not be an isomorphism

Out[47]= False

• If we send 1 to a generator such as 7, we do obtain an isomorphism. (At least
we are informed that it is probably an isomorphism.)

In[48] : = zsomorphismQ[ZMaP[20, 20, 1 ~ 7]]

ProbableMorphism(;}: "warning" :
"The ProbableMorphismQfunction is being used; 'True'

resul tsare onlyprobable, not certain

Out [48] = True

• If we want to be certain, we can use the Cautious option. (Using SetOp­
tions, we can change it so that True is the default value for this option).

In[49]:= zsomorphismQ[ZMaP[20, 20, 1 ~ 7], Cautious ~ True]

Out[49]= True

~ 4.5 Kernel, Image, and Inverselmage

Kernel [f]

Image [f]

Image [f , S]

Kernel and Image functions.

return the kernel (as a groupoid or ringoid) of the
Morphoid f (assuming the codomain has an identity element)

return the image (a a groupoid or ringoid) of the Morphoid f
return the image (as a groupoid or ringoid) of
the ub et S of the domain under the Morphoid f

• Define the following Morphoid that is not a homomorphism.

In[50]:= f = FOrmllorphoid[Mod[# - 2, 13] &, Z[5], Z[13]]

Out[50]= Morphoid[Mod[#1-2, 13] &, -Z[5]-, -Z[13]-]

• It still makes sense to ask about the kernel, even if f does not satisfy Mor­
phismQ.

In[51] : = {MorphismQ[f], Kernel[f]}

408 User's Guide

Out[51]= {False, Groupoid[{2}, Mod[#1+#2, 5] &]}

• The Kernel function has a Visual mode.

In[52]:= K = Kernel[ZKap[12, 4], Mode ~ Visual]

Z[12]
o 1 2 3 4 5 6 7 B 9 10 11

o 1 2
Z[4]

3

Out[52]= Groupoid[{O, 4, B}, Mod[#1+#2, 12] &]

• Using the Pari ty function, the image of all elements in A3 is l.

In [53] : = Image [l'ormMorphoid[Parity, Alternating[3], J:ntegerUnits]]

Out[53]= Groupoid[{l}, Times]

• We make a quotient group with the kernel K as a normal subgroup of Z\2 and
form a morphism between it and Z4 .

In[54]:= l'ormMorphoidSetup[QuotientGroup[Z[12], K], Z[4]];

QuotientGroup :NS :
This quotient group uses NS to represent the normal subgroup

{O, 4 , 8} that you specified Use CosetToList to
convert this coset representationto a list of elements

Domain
NS

1 + NS
2 + NS
3 + NS

1 1
2 2
3 3
4 4

Codomain
o
1
2
3

• The First Isomorphism Theorem guarantees that this is an isomorphism;
Mathematica agrees.

In [55] := J:somorphismQ[
FOrmMorphoid[{l, 2, 3, 4}, QuotientGroup[Z[12], K], Z[4]]]

Out[55]= True

Morphoids 409

• Note that the codomain is the target set, while the image is the set that is
actually hit.

In[56]:= £ = ZMap[12. 24. 1 ~ 2];
Map [Elements. {Codomain[£]. Image [f) }]

Out[56]= {{O, 1,2, 3,4, 5,6,7,8, 9, 10, 11,
12,13,14,15,16,17,18,19,20,21,22,23}.

{O, 2,4,6,8,10,12,14,16,18,20, 22}}

Inverselmage[!. y]

Inverselmage [f, (YI,)'2, ... })

Inverselmages [f]

Inverselmages [f •
Withlmages ~ True)

Fiber[f, S)

Functions related to inverse images.

give the list of elemen in the domain of the
Morphoid ! who e image i y

give the Ii t of elements in the domain of the
Morphoid ! who e image is in {YI,)'2, ... 1

equivalent to Inverselmage [f,
Elements [Codomain [fJ)) but partitioned
by preimages of elements in codomain

list the image element with the Ii t of preimage
for each image element

equivalent to Inverselmage [f. S)

• The Visual mode of Inverselmage illustrates the elements that are
mapped onto 2 for the Morphoid ZMap [12, 4] .

In[57]:= Inver.elmage[ZMap[12. 4]. 2. Mode ~ Visual]

Z[12] ° 1 2 3 4 5 6 7 8 9 10 11

° 1

Out[57]= {2, 6, 10}

2
Z [4]

3

• Two observations should be made from the following output: (1) elements not
in the codomain are ignored (but a warning message is given); (2) {O, 2} is a
subgroup of Z4 and the set of inverse images for it is also a subgroup (in Z 12 ,

in this case).

In[58]:= {SubgroupQ[
inv = Inver.eImage[ZMap[12. 4]. {O.2. 5}]. Z[12]]. inv}

410 User's Guide

MemberQ: :elmnt: 5 is not an element of Z[4] .

Out[58)= {True, {O, 4, 8, 2, 6, 10}}

• The wi thlmages option of Inverselmages is intended to make it explicit
which codomain elements are associated with which domain elements.

In[59) : = InverseImages[FormMorphoid[Mod[f 2, 5] &:, Z[7], Z[7]] ,
Withlmages ~ True]

Out[59)= {{ {O, 5}, O}, {{1, 4, 6}, 1}, {{}, 2},
{{}, 3}, {P, 3}, 4}, {{}, 5}, {{}, 6}}

~ 4.6 Automorphisms

Whereas a morphism describes a function between two groups, an automorphism
describes an isomorphism between a group and itself.

Au tomorphism [G, x -+ y]

AutomorphismGroup[Gj

Aut(G]

for a cyclic group G. fonn the automorphism detennined
by the rule x -+ y

return the group of automorphi ms of the cyclic group G

identical to AutomorphismGroup [G)

InnerAutomorphism [
G, g)

given an element g in the group G. return the
inner automorphism induced by g (via conjugation)

InnerAutomorphism[G. expre s the inner automorphi m using rules if type
g. FunctionForrn -+ type) is Rules and as a function if type is Function

InnerAutomorphismGroup return the group of inner automorphisms of the group G
[G)

Inn [G) identical to InnerAutomorphismGroup [G)

Automorphism functions .

• The Textual mode of the Automorphism function provides some extra
details regarding the map.

In[60) : = gl = Automorphism[Z[10], 1 ~ 3, Mode ~ Textual]

2 1+1 is mapped to 3+3 = 6

3 1+1+1 is mapped to 3+3+3 = 9
4 1+1+«1»+1 is mapped to 3+3+«1»+3 2

5 1+1+«2»+1 is mapped to 3+3+«2»+3 5

6 1+1+«3»+1 is mapped to 3+3+«3»+3 8

7 1+1+« 4»+1 is mapped to 3+3+«4»+3 1

8 1+1+«5»+1 is mapped to 3+3+«5»+3 4

Morphoids 411

9 = 1+1+«6»+1 is mapped to 3+3+«6»+3 7

o = 1+1+«7»+1 is mapped to 3+3+«7»+3 0

Out[60]= Morphoid[l --+ 3, -Z[10]-, -Z[10]-]

• We can see that the rules governing this function are exactly as described.

In [61] : = IIorphoidRules [gl]

Out[61]= {O --+ 0, 1--+ 3, 2 --+ 6, 3 --+ 9, 4 --+ 2, 5 --+ 5, 6 --+ 8, 7 --+ 1, 8 --+ 4, 9 --+ 7}

• The defining rule must involve two generators.

In [62] := Automorphism[Z[10], 1 4]

Automorphism:badrule:
The rule provided does not uniquely define an automorphism

on Z[lO]. The rule must map a generator to a generator.

Out[62]= $Failed

• Since there are four generators in Z 12, the group of automorphisms has four
elements. The following should make it clear which group of order four this is.

In[63]:= Orders [AutomorphismGroup[Z [12]]]

Out{63]= {{Morphoid[l --+ 1, -Z [12]-, -Z [12]-], 1},
{Morphoid[l --+ 5, -Z[12]-, -Z[12]-], 2},
{Morphoid[l --+ 7, -Z[12]-, -Z[12]-], 2},
{Morphoid[l --+ 11, -Z[12]-, -Z[12]-], 2}}

• Since the inner automorphism on Z7 induced by 4 is simply conjugation by 4,
for this Abelian group this amounts to the Identi ty map.

In[64]:= ZQualllorphoidQ[ZnnerAutomorphism[Z[7], 4],
FOrmNQrphoid[Zdentity, Z[7], Z[7]]]

Out[64]= True

• By default, Morphoids based on inner automorphisms are formatted.

In{65]:= ZnnerAutomorphism[Symmetric[3], {3, 1, 2}]

Out[65]= Morphoid[Conjugation by {3, 1, 2}, -8[3]-, -8[3]-]

• This formatting can be overridden, though, giving the list of rules instead.

In [66] := g2 = ZnnerAutomorphism[Symmetric [3],
{3, 1, 2}, FormatFunction False]

412 User's Guide

Out[66]= Morphoid [{ {1, 2, 3} --t {1, 2, 3},
{1, 3, 2} --t {3, 2, 1}, {2, 1, 3} --t {1, 3, 2},
{2, 3, 1} --t {2, 3, 1} , {3, 1, 2} --t {3, 1, 2} ,

{3, 2, 1} --t {2, 1, 3}}, -S[3]-, -S[3]-]

• If the actual function definition is of interest, you can see it by changing the
FunctionForm (which defaults to Rules).

In[67]:= InnerAutomorphism[Symmetric[3], {3, 1, 2},
FormatFunction ~ False, FunctiOnFor.m ~ Function]

Out[67]= Morphoid[
Operation[Groupoid[{{1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2,

3, 1}, {3, 1, 2}, {3, 2, 1}}, -Operation-]] [
Operation[Groupoid[{{l, 2, 3}, {1, 3, 2}, {2, 1, 3},

{2, 3, 1}, {3, 1, 2}, {3, 2, 1}}, -Operation-]] [
Grouplnverse[Groupoid[{{l, 2, 3}, {1, 3, 2}, {2, 1, 3},

{2, 3, 1}, {3, 1, 2}, {3, 2, 1}}, -Operation-],
{3, 1, 2}], #1], {3, 1, 2}] &, -S[3]-, -S[3]-]

• Here is the group of inner automorphisms on D3 .

In[68]:= innd3 = InnerAutomorphismGroup[Dihedral[3]]

Out [68] = Groupoid [{-Elements-}, -Operation-]

• Which group of order six is this?

In[69]:= CayleyTable[innd3, Mode ~ Visual];

KEY for Inn[D[31]: label used --t element: {gl --t Morphoid[
Conjugation by 1, -D[3]-, -D[3]-], g2 --t Morphoid[
Conjugation by Rot, -D[3]-, -D[3]-], g3 --t Morphoid[
Conjugation by Rot A 2, -D[3]-, -D[3]-], g4 --t Morphoid[
Conjugation by Ref, -D[3]-, -D[3]-], g5 --t Morphoid[
Conjugation by Rot**Ref, -D[3]-, -D[3]-], g6 --t

Morphoid[Conjugation by Rot A 2**Ref, -D[3]-, -D[3]-]}

Inn[D[311

Morphoids 413

~ 4.7 Visualizing Morphoids

Visua1izeMorphoid [!J

Visua1izeMorphoid [!,
ColorDomain -+ { {colorl , doml }, ... } 1

VisualizeMorphoid[
/' ColorCodomain -+
{ {colorl , cod l }, ... } 1

visualizeMorphoid [!,
ColorDomain -+ Automatic]

Visua1izeMorphoid [!,
ColorCodomain -+ Automatic)

Variations of VisualizeHorphoid.

give a graphic illustrating the Morphoid !

in the graphic. color the arrow from
the domain element domk using colort

in the graphic. color the arrow (s) to
the codomain element codk using colork

color the arrows from the domain elements
using Rue across the length of the domain

color the arrows to the codomain elements
using Hue across the length of the codomain

• Individual elements can receive special coloring as follows. Note that
Codomain requests take priority over Domain requests and any nonsense is
ignored.

In[70j: = VisualizeMorphoid[ZMap[12, 6], ColorDomain ~
{{Green, 2}, {junk}, {Red, 15}, {Green, 9}},

ColorCodomain ~ {{Black, 2}, {Magenta, 5}}];

Z[12]
o 1 2 3 4 5 6 7 8 9 1 0

o 1 2 3 4 5
Z[6]

• Coloring the Codomain using the value Automatic readily shows inverse
images of values in the codomain.

In[71j : = VisualizeMorphoid[ZMap[12, 6], ColorCodomain ~ Automatic];

0 1 ~ 3 7 9 1 0 11
\
\ \
\ , ,

\
,

\

0 1 2 3 4 5
Z[6]

t

Chapter 5

Additional Functionality

In the final chapter, we look at some additional functionality that does not neatly fit into
the chapters on groupoids, ringoids, or morphisms.

~ 5.1 Global variables and options

There are several global variables and options that are worth noting.

name Initial value

DefaultStru '" Group
cture

Visual TextS ". 2
hown

BackgroundC -.. (see below)
olors

Output Computational

DefaultOrder RightToLeft

Some global variables .

context (group versu rings) that
is as umed for the functions in use

pecifies how often accompanying
text for visuaHzation i shown

(ordered) H t of color that are
used for Cayley table

available for some functions when the Visual
mode i being u ed in order to change
the output from the computation to the
vi ual graphic (using the value Graphics ,
or GraphicsArray for a few function)

default direction for multiplying permutation

• We can always see the default structure that is being assumed.

Additional Functionality 415

In[l]:= DefaultStructure

Que[l]= Group

• If we wish to change the value of this variable, it is best to use the Swi tch­
StructureTo function because it redefines some options for various func­
tions.

In[2]:= switchStructureTo[GrOup]

Que[2]= Group

{Yellow, Orange, Violet, Blue, Mint, Turquoise, EmeraldGreen,
GreenDark, Pink, BlueLight, Banana, Green, Brown, Gray, Red,
Purple, CadmiumYellow, Maroon, Navy, Salmon, Aquamarine,
Indigo, Lavender, Antique, Bisque, Burlywood, Eggshell,
Khaki, BlueViolet, CadmiumOrange, CadmiumRedDeep, Cerulean,
Chartreuse, Cyan, DeepPink, Magenta, OrangeRed, Peacock,
SkyBlueDeep, TurquoiseDark, Ultramarine}

BackgroundCo!ors.

• By adding Output -t Graphics to a function when using the Visual
mode, the computational output is suppressed and the graphic becomes the
output.

In[3]:= grl = CayleyTable[Z[4] , Mode ~ visual, OUtput ~ Graphics]

Z(4)

mil
1111

x + y

• • • Que[3]= - Graphics-

• Now this graphic image can be used along side another graphic using Graph­
icsArray.

In[4]:= gr2 = LeftCosets[Z[8] , {O, 4}, Mode ~ visual,
OUtput ~ Graphics, DisplayFunction ~ Identity];

Show[GraphicsArray[{grl, gr2}],
DisplayFunction ~ $DisplayFunction]

416 User's Guide

Z[4]

~II
1111

x + y

II
II

II
Out[5}= - GraphicsArray-

~mn
I1mo
Elom 11m

mo
om mil mm

mil

• 5.2 Working with permutations and cycles

• 5.2.1 Introduction

A permutation of a set S is a bijection (one-to-one and onto function) from S to S. Fre­
quently, either the set S is the first n positive integers or it can be viewed as such. For the
most part, in these packages we view a permutation cr as a function on Range[n].
Therefore, we describe it by the ordered list of the functional images of the domain
{l, 2 •... , n}. In other words. the permutation cr is given as a rearrangement of this set.
For example, let cr be the permutation that takes 1 to 4.2 to 2. 3 to 1, and 4 to 3.

• We define a permutation by using the ordered set of images of the domain
{I, 2, ... , n}. Here, cr(I) = 4, cr(2) = 2, cr(3) = 1, and cr(4) = 3.

In [6] : = 0 = { 4 , 2, 1, 3 }

Out[6}= {4, 2,1, 3}

• The function PermutationMatrix allows us to view both the domain (first
row) and image (second row) of a permutation, as it is sometimes presented.

In (7] : = PermutationMatrix [0]

Out[7}IIMatrixForm=

(1 2 3 4)
4 2 1 3

• Note that a permutation must be a bijection. Therefore, a list of length n is
considered a permutation only if it is the list {I, 2, ... , n} after the elements are
sorted.

In[B}:= PermutationQ[{S, 2,1, 3}]

Out[B}= False

Additional Functionality 417

A number of functions deal with permutations (and cycles). Note that while the functions
listed here are compatible with those found in the standard package DiscreteMath
Permutations', the functionality is greatly expanded here.

• Below is a list of functions that have either the word Permutation or
Cycle in their name (some of which are not related to these packages).

In [9] : = Union [Names [" * Permutation* n], Names [" *Cycle* n]]

Out[9]= {AnimationCycleOffset, AnimationCycleRepetitions,
Cycle, CycleAs, DisjointCyclesQ, EvenPermutationQ,
ExtendPermutation, FormGroupoidFromCycles,
FromCycles, MultiplyCycles, MultiplyPermutations,
OddPermutationQ, PermutationComposition,
PermutationGroup, Permutationlmage, Permutationlnverse,
PermutationMatrix, PermutationQ, Permutations,
PermutationToPower, RandomPermutation,
SamePermutationQ, ShowColoredPermutation,
ShowPermutation, ShowPossiblePermutations,
TestPermutationQ, ToCycles, ToPermutation}

PermutationQ [list)

RandomPermutation [n)

Ordering [list)

give True if list represent a permutation, and False
otherwise

give a random permutation on II , 2, ... , nl

give the permutation that put the elements in list in order

Basic functions for working with permutations; these are almost equivalent to those in DiscreteMath ' Permutations'.

• The Ordering function does not require the list to be a permutation on the
integers 1,2, ... , n. The following list is considered ordered when the elements
appear in the order {I, 3, 2}.

In[lO]:= Ordering[{"aleph", "gimel", "beth"}]

Out[lO]= {l, 3, 2}

• When the list is a permutation, Order ing effectively finds the inverse of the
permutation.

In[ll]:= q = Ordering[p= {1, 3, 2}]

Out[ll]= {l, 3, 2}

• The following verifies that p and q are inverses.

In[12]:= PermutationComposition[q, p]

Out[12]= {l, 2, 3}

418 User's Guide

• And here is another way of verifying it.

In[13] : = q == PermutatioDIDverse[p]

Out[13]= True

• 5.2.2 Permutation operations

Since we are viewing a permutation of length n as a function on Range [n), we multiply
two permutations by composing the two functions. Since there are two different traditions
as to the order in which one composes two functions, the order for multiplying permuta­
tions is likewise in dispute. To remedy this, the function Mul tiplyPermutations
has an option called ProductOrder that permits the values RightToLeft and
LeftToRight.

MultiplyPermutations [penn2, pennl]

Mul tiplyPermuta tions [penn2, pennI,
ProductOrder ~ LeftToRight]

permutationComposition[
penn2, pennI 1

Different ways of multiplying permutations.

give the product of the permutation pennI
followed by the permutation penn2.
working from right to left

give the product of the permutation penn2
followed by the permutation pennI.
working from left to right

identical to MultiplyPermutations [
penn2. penni.
ProductOrder ~ RightToLeft]

• Here are two randomly chosen permutations of length eight and four respec­
tively.

In[14]:= {p = RandomPermutatioD[8], q = RandomPermutatioD[4]}

Out[14]= {{a, 7, 5,6,3,1,4, 2}, {3, 2, 1, 4}}

• A permutation in Sm can be extended to one in Sn, n > m, with
ExtendPermutation. For example, we can extend q to a permutation in Ss,
extending the function as the identity on the last four entries.

In[15] : = {q, ExtendPermutatioD[q, 8]} / / ColWlllll'orm

Out[15]= {3, 2, 1, 4}
{3, 2, 1, 4, 5, 6, 7, a}

• ExtendPermutation is used automatically when we multiply p and q. This is
the result when performing the product from right to left, the default approach.

In[16]:= MUltiplyPermutatioDs[p, q]

Additional Functionality 419

Out[16]= {5, 7,8,6,3,1,4, 2}

• Using the same permutations, we (generally) get a different result when we
perform the product working from left to right.

In[17]:= MUltiplyPermutations[p, q, Product Order ~ LeftToRight]

Out[17]= {8, 7,5,6,1,3,4, 2}

• Note that permutations can be entered into Mul tiplyPermutations either
as a list of rules or in the standard permutation form. Note also that the Tex­
tual mode indicates the rule form of the product but returns the standard form.

In[18]:= MUltiplyPermutations[{l ~ 4, 2 ~ 5, 3 ~ 3, 4 ~ 2, 5 ~ 1},
{3, 1, 4, 2}, Mode ~ Textual]

The permutation resulting from the product of

{3, 1, 4, 2}

followed by

{1~4, 2~5, 3 ~ 3, 4 ~ 2, 5 ~ 1}

can be given as
{l~3, 2~4, 3 ~ 2, 4 ~ 5, 5 ~ 1}

or as

Out[18]= {3, 4, 2, 5, 1}

Here is a summary of some miscellaneous functions dealing with permutations, several of
which we have already seen in use.

ExtendPermutation (p, n] for a permutation p of length m return the
equivalent, extended permutation of length n
(n > m) that is the identity on position m+ 1, ... , n

Permutationlnverse [p) give the permutation that i the inver e of permutation p

PermutationMatrix [p) show a permutation p in matrix form where
the bottom row i p and the top row
consists of 1, 2, . .. , Leng th [p)

PermutationToPower [P, n) give the nth power of the permutation p
(where is n is any integer)

Miscellaneous functions .

• PermutationToPower is analogous to ElementToPower; both can be
used to raise an element to any positive or negative power.

In[19]:= Tablerorm[
Table[{k, PermutationToPower[p, k]}, {k, -1, 4}],
TableDepth ~ 2,
TableReadings ~ {None, {nk", "\ I \ (p\ "k\) "}}]

420 User's Guide

Out (19) //TableForm=

k pk

-1 {6, 8, 5 , 7, 3, 4, 2, 1}

0 {l, 2, 3, 4, 5, 6, 7, 8}

1 {8, 7, 5, 6, 3, 1, 4, 2}

2 {2, 4, 3, 1, 5, 8, 6, 7 }
3 {7, 6, 5, 8, 3, 2, 1, 4}

4 {4, 1, 3, 2, 5, 7, 8, 6}

• 5.2.3 Representing permutations

Since permutations are functions from Range [n] to itself, it is natural to represent a
permutation by a list of rules.

ToRules [perm]

TOPennutation [list]

for a permutation perm of length n, give a list of
rules of the form x ~ y where x is in Range [n]
and y i perm(x), the image of x under the permutation

when list is a list of rules in the form x ~ y or { x ~ y},
give the permutation, if pos ible, corresponding to the rules

Rules and permutations can be interchanged.

• The following converts a permutation into a list of rules corresponding to the
permutation.

In(20):= {q = RandomPermutation[4], qrule. = ToRul •• [ql}

Out(20)= { {l, 4, 2, 3}, {1-71, 2 -7 4, 3 -7 2, 4 -7 3}}

• TOPennutation converts a list of rules into a permutation. Here we see that
this function is the inverse to ToRules.

In(21):= ToPermutation[qrules] == q

Out[21)= True

• 5.2.4 Cycles

Consider the permutation <r = {3, 1,4, 2}. This represents the function that takes 1 to 3, 2
to 1, 3 to 4 and 4 to 2. Note that <r is a cyclic permutation in the sense that <r(I) = 3, <r(3)
= <r(<r(1» = 4, <r(4) = <r(<r(<r(I») = 2, and then <r(2) takes us back to 1, cycling through
all of the elements. Often such a cycle is represented in the mathematical literature as (1 3
4 2). Since juxtaposition implies multiplication in Mathematica, and since parentheses
cannot be used as delimiters, we need another structure to represent a cycle. In these
packages, this cycle is represented by Cycle[1, 3, 4, 2], with the head Cycle and the

Additional Functionality 421

elements separated by commas, as in a list. Cycles are important in abstract algebra (for
example, any permutation can be written as a product of cycles) and consequently receive
some attention in these packages.

The DiscreteMath ' Permutations ' package contains two functions for convert­
ing between permutations and cycles: ToCycles and FromCycles. For compatibility
reasons, we can still operate using the approach presented there, but because the approach
here is clearer and more robust, you are encouraged to adopt the defaults used here.

ToCycles [perm) give the decomposition of perm into alit
of cycles of the form Cycle [a, b • ...)

ToCycles [perm, CycleAs ~ List) give the decompo ition of perm
into a list of cycles of the form found in
the DiscreteMath package

FromCycles [{ cyc, • cyc2 • .•. }) give the permutation corresponcting
to the given cyclic decomposition

Converting between cycles and permutations.

option name default value

CycleAs Cycle

Normalize True

Options for ToCycles.

specifie whether a cycle bould be repre ented u iog the
Cycle [a. b, ...) tructure or as a Ii t of Ii t (u ing List)

when set to True, specifies that all cycles of length ooe are
dropped (unle s needed to show the length of the original
permutation) and a normalizatioo is applied to all remaining
cycles (only valid if we have CycleAs ~ Cycle)

• Consider the following permutation as an example.

In [22] := r = {a, 2, 5, 6, 4, 3, 1, 9, 7, 10, 11}

Out[22]= {8, 2, 5, 6, 4, 3, 1, 9, 7, 10, 11}

• Here is how ToCycles works in DiscreteMath' Permutations'.

In[23] : = ToCycles[r, CycleAs ~ List]

Out{23]= {{8, 9, 7, 1}, {2}, {5, 4, 6, 3}, {10}, {ll}}

• Here is how the new version of ToCycles works. Note the omission of the
two singleton cycles {2} and {I O} but retention of { 11 }. Note also that the
other cycles are "rotated" until the smallest element in the cycle appears first.

In [24] : = rcycles = ToCycles [r]

422 User's Guide

Out[24}= {Cyc1e[1, 8, 9,7], Cyc1e[3, 5,4, 6], Cyc1e[11]}

• Setting Normalize to False retains the structure of the DiscreteMath
approach but changes the lists to having the head Cycle.

In[25}:= ToCycles[r, Normalize ~ False]

Out[25}= {Cyc1e[8, 9, 7, 1], Cyc1e[2] ,
Cyc1e[5, 4, 6, 3], Cyc1e[10], Cycle [11] }

• FromCycles takes any output of ToCycles and acts as an inverse.

In[26}:= {Fromcycles[ToCycles[r, CycleAs ~ List]] == r,
FromCycles[ToCycles[r]] == r,
FromCycles[ToCycles[r, Normalize ~ False]] == r}

Out[26}= {True, True, True}

• The list of cycles needs to be disjoint before one can hope for a permutation to
represent the cycle list. (This is a failure in the DiscreteMath package; this
is not checked.)

In [27} : = Fromcycles [{Cycle [2, 3], Cycle [1, 2]}]

Cycle::disjoint :
The cycles in the list {Cycle[2, 3], Cycle[l, 2]}

need to be disjoint to use this function.

Out[27}= $Fai1ed

• ToCycles can also work on a list of permutations, returning a list of cycle
decompositions.

In[28}:= ToCycles [{RandomPermutation[8], RandomPermutation[8]}] / /
Co1wanForm

Out[28}= {Cyc1e[1, 7, 3, 8, 6]}

{Cyc1e[1, 8, 2, 6, 7], Cyc1e[3, 5, 4]}

• The permutation given to ToCycles can be given as a list of rules (in various
forms).

In[29}:= {ToCycles[{1~4, 2~3, 3~1, 4~2}],

ToCycles[1~4, 2~3, 3~1, 4~2],

ToCycles[{{1~4}, {2~3}, {3~1}, {4~2}}]}

Out[29}= {{Cyc1e[l, 4, 2, 3]L {Cyc1e[1, 4, 2, 3]}, {Cyc1e[1, 4, 2, 3]}}

• ToPermutation can act on a cycle (as well as a list of rules representing a
permutation, as we saw earlier).

In[30}:= ToPermutation[cycle[2, 3, 5]]

Additional Functionality 423

Out[30}= {1, 3, 5, 4, 2}

• 5.2.5 Cycle operations

Cycles can be multiplied just as permutations can. In the following functions, the cycles
can be either in list form or Cycle form. These cycles are multiplied in the same order
used by Mul tiplyPermutations, which is RightToLeft by default.

MultiplyCycles[
cyc2 , cyc[, n]

MultiplyCycles [cyc2 ' cyc[l

MultiplyCycles [
cyct , ... , cyc2 ' cyc[1

Mul tiplyCycles [
{ cyck , ••• , cyc2 • cyc[}]

MultiplyCycles[. ".
ProductOrder -+

LeftToRight]

CYC2 @cyc[

Variations in the Mul tiplyCycles function .

give the product of cycle cyc)
followed by cyc2 as a permutation of length
n (in Sn), multiplying from right to left

give the product of cycle cyc) followed by
cyc2 as a permutation of length n. where n i
the maximum value appearing in either cycle,
mUltiplying from right to left

give the product of the cycle cyc) followed by cyc2

followed by ... cyck as a permutation of length n,
where n is the maximum value appearing in any cycle

equivalent to MultiplyCycles [cyct ' ...• cyc2• cyc[l

multiply the cycle by multiplying from left to right

equivalent to MultiplyCycles [cyc2' cyc[]

• Here we obtain two different cycles by choosing the first cycle in the decomposi­
tion of two random permutations.

In[31}:= {cl = First[TOCycles[RandamPermutation[l2]]],
c2 = First[ToCycles[RandamPermutatioD[12]]]}

Out[31}= {Cycle[l, 5], Cycle[l, 4, 12]}

• The product of the two cycles is performed by multiplying the cycles from right
to left (by default). One can use the function name (Mul tiplyCycles) or the
shortcut.

In[32}:= {MultiplyCycles[c2, cl], c2 0 cl}

Out[32}= {{5, 2, 3, 12, 4,6,7,8,9,10,11, 1},
{5, 2, 3,12,4,6,7,8,9,10,11 , 1}}

424 User's Guide

• The same result can be obtained by converting the cycles to permutations and
then mUltiplying them.

In[33]:= pi = FromCycles [{el}];
p2 = FramCyeles[{e2}];
MUltiplypermutatioDs[p2, pl]

Out[33]= {5, 2, 3, 12, 4,6,7,8,9,10,11, 1}

• Actually, Mul tiplyPermutations multiplies the cycles without first
doing the conversion.

In[34]:= MUltiplypermutatioDs [e2, el]

Out[34]= {5, 2,3,12,4, 6,7, 8,9,10,11, 1}

• To convey that these cycles are to be multiplied as elements in S9, add 9 as the
final argument.

In[35]:= MUltiplyCycle.[Cyele[2, 3], Cyele[4, 6],9]

Out[35]= {1, 3, 2, 6, 5, 4, 7, 8, 9}

• When the cycles are not disjoint, the order in which these are multiplied matters.

In [36] := {MUltiplyCyele. [
{Cyele[2, 6,4], Cyele[4, 3, 1], Cycle[2, 5, 1]}],

MUltiplyCyele.[{Cyele[2,5, 1],
Cyele[2, 6, 4], Cycle[4, 3, 1]}]}

Out[36]= {{6, 5, 1, 3,2, 4}, {5, 6, 2, 3, 1, 4}}

• However, when the cycles are disjoint, the order of the factors is immaterial.

In[37]:= MUltiplyCyele. [{Cycle [2, 6, 4], Cycle [3, 5, 1]}] ==
MUltiplyCyele.[{Cyele[3,5, 1], Cyele[2, 6, 4]}]

Out[37]= True

• 5.2.6 Other cycle-related functions

• The Disj ointCyclesQ function can ascertain whether the cycles in a list
(or sequence) are disjoint.

In[38]:= DisjoiDtCyele.Q[{Cyele[2, 6, 4], Cycle[3, 5, 1]}]

Out[38]= True

• Representing a permutation with cycles is not unique. The function SamePer­
mutationQ determines whether two lists of cycles represent the same permuta­
tion.

Additional Functionality 425

In(39):= {SamePermutationQ[{{l, 8}, {3, 2, 5}}, {{5, 3, 2}, {8, I}}],
SamePermutationQ[{Cycle[l, 8], Cycle[3, 2, 5]},

{Cycle[5, 3,2], Cycle[8, I]}]}

Out(39)= {True, True}

DisjointCyclesQ[
cyc" cyc2 , ...]

DisjointCyclesQ[
{ cyc" eyc2 , ... }]

SamePermutationQ[
cyclist, ' cyclist2]

Other functions related to cycles.

give True if the cycle cyc,.
cyc2 , ... are disjoint. and False otherwi e

give True if the cycles cyc,.
cyc2 are disjoint. and False otherwise

give True if the cycle in cyclist, repre ent the arne
pennutation as the cycle in eyclist2 • and Fal se otherwi e

Cycles of length two are called transpositions. Any cycle can be written as a product of
transpositions. and consequently so can any pennutation. While the number of transposi­
tions in a given pennutation is not unique. whether this number is odd or even is fixed.

ToTranspositions [cyc]

ToTranspositions[
perm]

Converting to transpositions.

give the cycle cyc as a product of tran po ition

give the pennutation perm a a product of tran po ition

• Here we convert a random pennutation of length six into transpositions.

In(40):= TOTranspositions[p = RandomPermutation[6]]

Out[40]= {Cycle[l, 6], Cycler!, 3],
Cycler!, 5], Cycler!, 4], Cycler!, 2]}

• In this case, first we convert the same pennutation to cycles and then convert
each cycle into transpositions.

In(41):= Map[ToTranspositions, ToCycles[p]]

Out(41)= {{Cycler!, 6], Cycler!, 3],
Cycler!, 5], Cycler!, 4], Cycler!, 2]}}

The number of transpositions in a pennutation gives some infonnation about the pennuta­
tion. Actually, whether the number of transpositions is even or odd is what is important.
The following functions can be used in ascertaining this.

426 User's Guide

EvenPermutationQ [perm] give True if perm is an even permutation, and
False otherwise

OddPermutationQ [perm] give True if perm i an odd permutation, and False
otherwise

Parity [perm] give 1 if perm is an even permutation, and-I
if an odd permutation

Functions dealing with the parity of a permutation.

• First, let's create five random permutations of length six.

In[42]:= Clear[p]
Table [p[k] = RandamPermutation[6], {k, 5}]

Out[43]= {{I, 2, 5, 4, 6, 3}, {3, 2, 4, 5, 6, I},

{I, 4, 2 , 5,3, 6}, {2, 1, 4, 5, 3, 6}, {5, 4, 2, 1,6, 3}}

• Now consider the following table that shows how the oddness/evenness of a
permutation is related to the number of transpositions.

In[44]:= TableForm[
Table[{p[k], Parity[p[k]], OddPermutationQ[p[k]],

Length[ToTranspositions[p[k]]]}, {k, 5}],
TableDepth -+ 2, TableHeadings -+

{None. {"P". "parity". "odd?n, "I of tranap.\n"}}.
TableSpacing -+ {O.5, 2}]

Out [44] //TableForm=

p parity odd? # of transp.

{I, 2, 5, 4, 6, 3} 1 False 2
{3, 2, 4, 5, 6, I} 1 False 4
{I, 4, 2 , 5, 3, 6} -1 True 5
{2, 1, 4, 5, 3, 6} -1 True 5
{5, 4, 2, 1, 6, 3} -1 True 5

• 5.2.7 Stabilizers and orbits

Since a permutation can be regarded as a function, we can ask whether the permutation
sends a value k to itself. If so, we say the permutation fixes k. More generally, we can ask
about the image of any element.

• The permutation p fixes 5 because it sends 5 to itself.

In[45]:= FixQ[p = {2. 3. 4.1, 5}. 5]

Out[45]= True

Additional Functionality 427

• The Permutationlmage function confirms this.

In[46] : = Permutationlmage[p, 5]

Out[46]= 5

FixQ [p, k]

FixQ [S, p, el l

give True if the permutation p (of ().2 •...•
n }) flxe the element k, and False otherwi e

give True if the permutation p of the elements
in the et S fixe the element el (from S). and
False otherwise

Permutationlmage [p, k]

permutationlmage [S, p, el J

give the image of k under the permutation p

give the image of el under the permutation
p of the elements in the et S

FixQ and Perrnutationlrnage variations.

• Here we see that the element "c" is not fixed, since it is sent to "e".

In[4 7] : = Sset = {"a", "b", "C", nd n, "en};
p = {"c", "b", "e", "d", "a"};
{FixQ[Sset, p, nc"], PermutationImage[Sset, p, ·c n]}

Out[4 7]= {False, e}

Given a group G of permutations on a set S, and given an element XES, we are often
interested in the stabilizer and orbit of x.

Stabilizer [G, S, xl

Stabilizer [S, xl

Orbit [G, S, xl

Orbit[S, xl

How to work with orbits and stabilizers.

give the stabilizer of the element x from the set S,
where G is a group of permutations on S

give the stabilizer of the element x from the set S, where the
understood group G is the full group of permutations on S

give the orbit of the element x from the set S, where G
i a group of permutations on S

give the orbit of the element x from the set S, where the
understood group G is the full group of permutations on S

• Let G be a group formed from cycles as follows. Note that I G I = 6 and G is a
subgroup of S8.

In[48] : = G = FormGroupoidPromCycles[
{Cycle[l], Cycle[l, 3,2] o Cycle [4, 6, 5] o Cycle [7, 8],

Cycle[l, 3, 2] 0 Cycle [4, 6, 5] ,

428 User's Guide

Cycla[l, 2, 3] .. Cycle [4, 5, 6] ,
Cycle[l, 2, 3] .. Cycle [4, 5, 6] .. Cycle [7 , 8],
Cycle[7, 8]}]

Out[48}= Groupoid[{{l, 2, 3, 4,5,6,7, 8},
{3, 1,2,6,4,5,8, 7}, {3, 1, 2, 6, 4, 5, 7, 8},
{2, 3, 1, 5, 6, 4, 7, 8}, {2, 3,1,5,6,4,8, 7},
{1, 2, 3, 4, 5, 6, 8, 7}}, -Operation-]

• The orbit of 4 under the group G is the set {4, 6, 5}.

In[49}:= Orbit[G, Range[8], ']

Out[49}= {4, 6, 5}

• The orbit can also be obtained by directly applying the definition of the orbit,
{~(s) I ~ E G}.

In[50}:= IIap[PermutationImaga[Range[8], :ft, '] A, Blement8[G]]

Out[50}= {4, 6, 6, 5, 5, 4}

• The stabilizer of the same element with the same group is the set of the follow­
ing two permutations.

In[51}:= Stabilizer[G, Range[8], 4]

Out[51}= {{1, 2, 3, 4, 5, 6,7, 8}, {1, 2, 3, 4, 5, 6, 8, 7}}

• This set can also be obtained by directly applying the definition of the stabi­
lizer, {~ E G I ~(x) = x}.

In[52}:= Select[Blement8[G], Permutationlmage[Range[8],:ft, 4] -- 'A]

Out[52}= {{1, 2, 3, 4, 5, 6,7, 8}, {1, 2, 3, 4, 5, 6,8, 7}}

• Using the FixQ function, the following may be more natural.

In[53}:= Select[Blement8[G], l'ixQ[:ft,4] A]

Out[53}= {{1, 2, 3, 4, 5, 6,7, 8}, {1, 2, 3, 4, 5,6,8, 7}}

III 5.3 Working in Z[Vd"]

• 5.3.1 Basic functions

It may be worthwhile to first preview the Adj oin function discussed in section 5.4.3,
since it is related. Here we would like to focus on working with elements in Z[-Yd],
which is the set obtained by adjoining the square root of some integer d to the integers.

Additional Functionality 429

(We want d to be square-free.) This set is of interest when considering a unique factoriza­
tion domain (UFD). First we look at some basic functions, then we look at some functions
for divisibility.

ZdQ [x] give True if x can be viewed a an element in
Z[Vd] for orne integer d, and False otherwi e

ZdConjugate [a + b Vd] return a - b Vd
ZdUnitQ [d, x] give True if x i a umt In

z[Vd] , and Fal se otherwi e

ZdDi vide [x, y] return the quotient x/y in the form r + s Vd when
x and y are both in Z[Vd]

ZelAssociatesQ [d, x, yJ give True if x and y are a ociale in Z[Vd],
and False olherwi e

ZdlrreducibleQ [d, xl for negative d, give True if x i irreducible in Z[v'd],
and False olherwi e

RandomElement [d, max] return a + b v'd where abE [- max, max] and are integers

RandomEl emen t s [d, max, n) return n random elements in Z[v'd]

Basic functions.

• Some numbers do not belong to any set Z[Vd].
In[54]:= Map [ZdQ,

{3 - -{5, Vs, 18, 7r, 2 + 17~, RandomElement[-3, 2Sl}]

Out[54]= {True, False, True, False, True, True }

• The conjugate of a + b v'd is a - b v'd.

In[55]:= Map[zdConjugate, {3 - -{5, 2 + fi, 18}]

Out{55]= {3+V5, 2-2Ji.Y2, 18}

• We can ask whether an element is a unit in Z[v'd].

In[56]:= MaP[zdUnitQ[2, #] &, {1 + -.f2, -1, 2 + -.f2, 1 - -.f2}]

Out{56]= {True, True, False, True}

• Here we calculate a quotient between two elements in Z[-v'2].

430 User's Guide

In[57]:= q = ZdDivide[2 - 3 -{2, 1 + -{2]

Out[57]= -S + 5-f2

• Since we just saw that 1 + Y2 is a unit in Z[Y2], 2 - 3Y2 and the previous
quotient should be associates.

In[58]:= ZdAssociatesQ[2, 2 - 3 -{2, q]

Out[58]= True

• Irreducibility can be tested as follows.

In[59]:= Map [Zd:trreducibleQ [-3, #] &, {2 - 5....;-::3, 5, 7}]

Out[59]= {True, True, False}

• 5.3.2 Divisibility

Di videsQ [r, s 1 give True if the integer s clivided by the integer r
yield an integer, and False otherwi e

IntegerDivisors [n] equivalent to Divisors [n)

IntegerDivisors [n, opts] equivalent to Divisors [n] with additional
options specified below with zdDivisors

Functions for working with the ordinary integers.

• It is the case that 4 I 8, but it is not true that 8 I 4.

In[60]:= {DividesQ[4, 8], DividesQ[8, 4]}

Out[60]= {True, False}

• Here we have the divisors of 28 paired up in a natural way.

In[61]:= :tntegerDivisors[28, Combine ~ Products]

Out[61]= {{I, 2S}, {2, l4}, {4, 7}}

• Here we contrast the divisors of 28 with the nontrivial divisors of 28.

In[62]:= {Divisors[28], :tntegerDivisors[28, NonTrivialOnly ~ True]}

Out[62]= {{1, 2, 4, 7, 14, 2S}, {2, 4, 7, 14}}

DividesQ [a + b Yd,
c + e Yd, Radical ~ d]
ZdDividesQ[d, r, s]

ZdDivisors [d, x, opts]

ZdDivisors[
d, x , max, opts]

Additional Functionality 431

give True if a + b Yd I c + e Yd, and False otherwi e

equivalent to DividesQ [r, s, Radical ~ d]

return the divisors of x in Z[Yd] for negative
d, giving only one divisor per class of associates,
u ing the options specified in opts

return the divisors of x in Z[v'd] for positive
d, whose norm is less than or equal to the norm
of max, u ing the options specified in opts

Divisor-related functions for elements in z[Yd].

option name value

DivisorsCorn ... False
plete

NonTrivialO ... False
nly

Combine False

Combine Products

Combine Negations

Combine Associates

Options for IntegerDivisors and ZdDivisors .

include all the divisors if et 10 True, but only
include one from each cla of a ociate (typically
one in the fir t quadrant or right half-plane),
if et to False (default)

if et to True, exclude all a ociate of I and
the number who e divi ors we are eeking,
while include them if set to False (default)

do not combine the divi or
in any manner (default value)

combine divi or , if po sible, in pairs of the form
la, b} where a * b i the number who e divi ors
we are eeking

combine divi or , if po sible, in pair of the
form la, -al

combine divi ors, if po ible,
in Ii ts where each element in a Ii t
is an associate of the others; for d < -I
this i the arne as Negations

• We use the following to determine if I - 3 rs divides 46 over Z[rs].
In[63]:= DividesQ[1 - 3 ~, 46, Radical -+ -5]

Out[63]= True

• This is an alternate way of accomplishing the same thing.

432 User's Guide

In[64]:= ZdDividesQ[-5, 1 - 3 M, 46]

Out[64]= True

• Since we know that 1 - 3 R I 46, we may be interested in knowing the
other divisor (yielding a product of 46).

In[65]:= ZdDivide[46, 1 - 3-v:5]

Out[65]= 1+3iLYs

• In this case, we are asking for all the divisors of 24 to be paired so that the
product is 24.

In [66] := IntegerDivisors[24,
DivisorsComplete ~ True, Combine ~ Products]

Out[66]= {{-24, -I}, {-12, -2}, {-8, -3},
{-6, -4}, {I, 24}, {2, I2}, {3, 8}, {4, 6}}

• Now we are looking for the divisors of 28 in Z[R] in order to pair them by
associates. Since we are not looking for the complete list of divisors, all the
negations (of the ones listed) are excluded. Since the negations are the only
associates, each class has a single element.

In[67]:= ZdDivisors[-5, 28, Combine ~ Associates]

Out[67]= {{l}, {2}, {4}, {7}, {14}, {28},

{3-iLYs}, {3+iLYs}' {6-2iLYs}, {6+2iLYs}}

• When we set DivisorsComplete to True, the natural pairing of associates
(negations in this case) is given. Note also that NonTrivialOnly set to
True prevents ± 1 and ± 28 from being listed.

In[68]:= ZdDivisors[-5,28, Combine ~ Associates,
DivisorsComplete ~ True, NonTrivialonly ~ True]

Out[68]= {{-14, I4}, {-7, 7}, {-4, 4}, {-2, 2},

{-3-iLYs, 3+iLYs}' {3-iYs, -3+iLYs}'

{-6-2iLYs, 6+2iLYs}' {6-2iLYs, -6+2iLYs}}

• Since the ring Z[i] has four units, {± 1, ±i}, combining by associates yields
classes of length 4.

In[69]:= ZdDivisors[-l, 8, Combine ~ Associates,
DivisorsComplete ~ True, NonTrivialonly ~ True]

Out[69]= {{-4, -4i, 4iL, 4}, {-4-4iL, -4+4iL, 4-4iL, 4+4i},
{-2, -2iL, 2iL, 2}, {-2-2i, -2+2iL, 2-2iL, 2+2iL},
{-l-iL, -l+iL, I-i, l+iL}}

Additional Functionality 433

• Here are the same divisors combined by negations.

In [70] := ZdDivisors[-l, 8, Combine ... Negations,
DivisorsComplete ... True, NonTrivialOnly ... True]

Out[70]= { {-4, 4}, {-4-4i, 4+4i}, {-4+4i, 4-4i},
{-2, 2}, {-2-2i, 2+2i}, {-2+2i, 2-2i},
[-1-1. 1+li1 . [-1+1. 1-] 1. [-?1. ?li1 . [-4 1. 4 n l

ZdCombineAssociates [d, lst) return the li t lst by combining all the
as ociates in Z[v'd] together in sublists

Means of combining associates if given a list of elements.

In [71] : = ZdCombineAssociates [-1,
{3,4, 3 I, -4, 5, -5 I, 6, 7 I, -5}]

Out[71]= {{3L 3}, {-5, -5L 5}, {-4, 4}, {7i}, {6 } }

• 5.3.3 Norm-related functions

ZdNorrn [a + b v'd]

ZdPossibleNorrnQ [d, nnn)

ZdPossibleNorrns[d, ~)

ValuesHavingGivenNorrn[
d, nrm)

ValuesHavingGivenNorrn[
d, nrm, ~)

Working with norms .

return the norm of an element in Z[v'd] ,
defined to be I a2 - d b2 1

for negative d, give True if the value nnn

can occur in Z[v'd] ,and False otherwise

for negative d, give a list of all norms less

than or equal to max that are possible in Z[v'd]
for negative d, return all values in Z[v'd] having
norm nnn

return a partial list of values in Z[v'd] having norm
nnn, for positive d. using up to ~ iterations of an
algorithm in this pursuit (defaulting to 50 if omitted)

• After choosing five random elements from Z[R]. we determine the norm of
each.

In[72] : = TableForm[
Map [{I, ZdNorm[I]} re, RandomElements [-3, 25, 5]],
TableHeadings ... {None, {"x", nN(x)\n"}}]

434 User's Guide

Out [72]//TableForm=

x N(x)

-13 + 8 i -/3 361

11+21i-/3 1444

4-2i-/3 28

-16+10i-/3 556

-3 - 19 i -/3 1092

• If we have a norm value in mind, we can check to see if this is a viable value in
the specified ring.

In[73]:= Map [{I, ZdPossibleNormQ[-5, I]} &, Range [0, lOll

Out[73]= {{O, True}, {1, True}, {2, False},
{3, False}, {4, True}, {5, True}, {6, True},
{7, False}, {8, False}, {9, True}, {l0, False}}

• The previous result can also be achieved in the following manner.

In[74]: = ZdPossibleNorms [-5, 10]

Out[74]= {O, 1,4, 5, 6, 9}

• For the value of a norm n to be possible in Z[Y"d]. there must be integer
coordinates (a, b) on the ellipse a2 - d b2 = n, when d is negative, and on one
of two hyperbolas for positive d. In the following figure, points of the same
color have the same norm and are on a common ellipse concentric with the
ellipse shown (corresponding to norm 56).

In[75]:= ZdPossibleNorms[-5, 56, Mode ... Visual]

. .
- 6 -4 -2 ° 2 4 6

Out[75]= {O, 1,4, 5, 6, 9, 14, 16,20,21,
24,25,29, 30, 36, 41, 45, 46, 49, 54, 56}

• If you look carefully, you should be able to see four points on the ellipse shown
in the figure. They have coordinates (± 6, ± 2), which correspond to the
following values in Z[R].

In[76]:= ValuesBavingGivenNorm[-5, 56]

Additional Functionality 435

Out[76]= {-6-2iYs, -6+2iYs, 6-2iYs, 6+2iYs}

• Here are some of the units (having norm 1) in Z[-v'2].

In [77] := ValuesHavingGivenNorm[2, 1, 35]

Out[77]= {-41 - 29 -[2, -41 + 29 -[2, -17 - 12 -[2, -17 + 12 -[2,

-7-5-[2, -7+5-[2, -3-2-[2, -3+2-[2, -1--[2, -1,

-1+-[2,1--[2,1,1+-[2,3-2-[2,3+2-[2,7-5-[2,

7+5-[2,17-12-[2,17+12-[2,41-29-[2,41+29-[2}

• 5.4 Miscellaneous functions

• 5.4.1 Working with lists

Although Mathematica has many functions for working with lists, it is still wanting in a
few areas. Sometimes we wish to take the union or complement of two sets but not have
the elements returned already sorted. The Cartesian product of two sets is a natural
construct in algebra, as is the notion of applying some operation to a Cartesian product.
Finally, we frequently wish to consider relations between two sets, viewing two lists as
mathematical sets.

• UnionNoSort does the work of union by combining all the elements under
one roof and removing duplicates, but it does not apply Sort to the final list.

In[78]:= {UnionNoSort[{2,4,3,5,3}, {1,6,4,3,5}],
UnionNoSort[{2,4,3,5,3,1,6,4,3,5}],
UnionNoSort[anyHead[2,4,3,5,3], anyHead[1,6,4,3,5]]}

Out[78]= {{2, 4, 3,5,1, 6},
{2, 4, 3, 5, 1, 6}, anyHead [2, 4, 3, 5, 1, 6]}

• ComplementNoSort works in a similar fashion.

In [79] := {ComplementNoSort [{2, 4, 3, 5, 3, 7}, {1, 6, 4, 3, 5}] ,
Comp 1 ementNoSort [{2,4,3,5,3,7}, {1,6,4,3,5}, {3,7}],
ComplementNoSort[anyHead[2,4,3,5,3], anyHead[1,6,4,3,5]]}

Out[79]= {{2, 7}, {2}, anyHead[2]}

• The CartesianProduct function returns a list of n-tuples obtained by
taking the Cartesian product of the lists given as arguments.

In[80]:= Cartesianproduet[{"a", lib", "e", "d"}, {1, 2, 3}]

Out[80]= {{a, 1}, {a, 2}, {a, 3}, {b, 1}, {b, 2}, {b, 3},
{c, 1}, {c, 2}, {c, 3}, {d, 1}, {d, 2}, {d, 3}}

436 User's Guide

UnionNoSort [list/ , list2, .. .]

ComplementNoSort [
list/, list2' ... J

CartesianProduct {
list/ , list2, . . .]

CartesianProduct [list/,
list2, ... , Partition "-7True)

CloseSets [list/, list2, op]

Randomi z e [list]

SubsetQ [chi/d, parent]

ProperSubsetQ [child, parent]

SameSetQ [A, B]

Functions to work with lists.

equivalent to Union[list/, list2> ...] except
the elements are not sorted

equivalent to Complement[list/ . list2, ... J except
the element are not sorted

give the Carte ian product of the lists list/, list2, ...

give the Cartesian product of the lists, partitioned
according to the length of the last list

give the list of all distinct elements obtained by
applying the operation op on
CartesianProduct[List/, list2]

randomly reorder the elements in list

give True if child is a subset of parent, and
False otherwi e

give True if child i a proper subset of
parent, and False otherwi e

give True if A is mathematically the same set
as B, and False otherwise

• To have a Cartesian product partitioned according to the length of the last list,
add the corresponding option.

In[81]:= TableForm[CartesianProduet[{"an, "b", lien, "d"},
{l, 2, 3}, Partition -+ True], TableDepth -+ 1]

Out [81] //TableForm=

{{a, 1}, {a, 2}, {a, 3}}

{{b, 1}, {b, 2}, {b, 3}}

{{c, 1}, {c, 2}, {c, 3}}

{{d, I}, {d, 2}, {d, 3}}

• We can use more than two lists for arguments in the CartesianProduct
function.

In[82] := CartesianProduet[{O, 1}, {1, 2, 3}, {O, 1, 2}]

Out[82]= { {O, 1, A}, {O, 1, I}, {O, 1, 2}, {O, 2, A},
{O, 2, I} , {O, 2, 2}, {O, 3, A}, {O, 3, I},
{O, 3, 2}, {l, 1, A}, {l, 1, I} , {l, 1, 2}, {l, 2, O} ,
{I, 2, I} , {I, 2, 2} , {l, 3, A}, {l, 3, I}, {I, 3, 2} }

• If we want to apply an operation to a Cartesian product, the CloseSets
function may be useful.

Additional Functionality 437

In[83]:= {CartesianProduet[{2, 3, S}, {O,l}],
CloseSets[{2, 3, S}, {O, l}, Plus]} /I ColumnForm

Out[83]= {{2, O}, {2, I}, {3, O}, {3, I}, {5, O}, {5, I}}

{2, 3, 4, 5, 6}

• This function can also be used to help form a Boggle dictionary.

In[84]:= words = CloseSets[
CloseSets[{na", "en}, {nan, ne n, "pn}, StringJoin],
{nt n, ne"}, StringJoin]

Out[84]= {aat, aae, act, ace, apt, ape, cat, cae, cct, cce, cpt, cpe}

• Randomize does exactly what its name implies.

In[85]:= Randomize [words]

Out[85]= {aat, ape, ace, cpe, apt, cpt, cct, cat, act, cce, aae, cae}

• Note the differences between SubsetQ, ProperSubsetQ, and SameSetQ.

In[86]:= {SubsetQ[{3, 4, S}, {4, 3, S}],
ProperSubsetQ [{3, 4, S}, { 4, 3, S}],
SameSetQ[{3, 4, S}, {4, 3, S}]}

Out[86]= {True, False, True}

• 5.4.2 Working with graphics

• DrawNgon[5] would have almost the same result as when using ShowFig­
ure. as below.

In [87] := ShOwFigure[S, {l, 2, 3, 4, S}, nDn];

5

4 1

3 2

To illustrate some elementary group concepts, sometimes visual aids are useful. The
following have been constructed with this in mind.

438 User's Guide

ShowCircle [n] give a graph of the unit circle with n points
uniformly placed and labeled 0 through n - I

ShowC i rc 1 e [n, labels] give a graph of the unit circle with n points
uniformly placed and labeled according to labels

DrawNgon [n] give a graph of a regular n -gon with
the vertice labeled J through n (n > 2)

ShowF igure [11, perm, sym] give a graph of an n -gon possessing symmetry of type
sym, with permutation perm applied to the vertice

ShowFigure [] redraw the mo t recently drawn figure

ShowPerrnutation [give the graphic of ShowFigure [n, perm, sym]
11, perm, sym] with al 0 the arne n -gon in tandard po ilion 0 that

the images before and after the permutation are hown

ShowPerrnutation [perm] once a figure ha been drawn via ShowFigure
or Showperrnutation, show the before and
after effects of the permutation perm on the n -gon

Functions for drawing some graphics .

• After ShowFigure has been used, ShowPerrnutation can be used by
simply giving a permutation to be applied to the last figure.

In[88]:= ShowPermutation[{4, 3, 2, 1, 5}]

Before After
5 5

'0 ' '0 '
3 2 2 3

The figure on the left represents the original figure and
the one on the right exhibits the effect of the
transformation determined by the given permutation.

Out[88]= {4, 3, 2, 1, 5}

• 5.4.3 Adjoin

The set of Gaussian integers is the set of all elements of the form {a + b i I a, b E Z}.
Although the polynomial x2 - 2 does not have zeros in the rationals Q, it does have zeros

in the set {a + b {2 I a, b E Q}. Note the similarity between the two sets. In general,

given Yd for some integer d and some set S (usually a group or ring), we can construct

Additional Functionality 439

the set S[Y'd] defined as {a + b Y'd I a, b E S} . The Gaussian integers are therefore

denoted Z[i1 (since i = ..r-:t), while the second set is denoted Q[vf2]. In each case, we
say we are adjoining an element to the underlying set. The same process can be applied to
finite sets. Additionally, this process can be generalized to adjoining elements other than
square roots, as well as generating lists of polynomials by adjoining an indeterminate.

Adj oin [list, num]

Adjoin [S, num]

Adj oin [list, ind, deg]

Adjoin [S, ind, deg]

Uses of the Adjoin function.

give the elements in list with num adjoined, where num
need to be of the form nP/q , where n, p, and q are integers

for S either a groupoid or ringoid,
return Adjoin [Elements [S], num J

give the et of polynomial in the indetermjnate ind of
degree Ie s than or equal to deg with coefficients from li t

for S either a groupoid or ringoid, retum
Adjoin [Elements [S] , indo deg]

• Here we adjoin vf2 to the set {5, 6, 8}.

In[89]:= Adjoin [{5, 6, 8}, -v'2]

Out[89]= {5 + 5...[2, 5+6...[2, 5+8...[2, 6+5...[2,

6+6...[2,6+8...[2,8+5...[2 , 8+6...[2,8+8...[2}

• We can adjoin a cube root to a list of symbols.

In[91]:= Clear[a, t]
Ad::loin[{a, t}, 2 1/3]

Out[92]= {a + 2 1 / 3 a + 22/3 a, a + 21/3 a + 2 2 / 3 t,
a+22/3 a+2 1 / 3 t, a+21/3 t+22 / 3 t, 21/3 a+2 213 a+t,

21/3 a + t + 22/3 t, 2 2 / 3 a + t + 2 113 t, t + 21/3 t + 2 213 t}

• Adjoining can be nested. Note that here we use the group (or ring) Z2 instead
of a list of elements.

In[93]:= Ad::loin[Ad::loin[Z[2], -Yi"], -v'2]

Out[93]= {a, -)6, ...[2, ...[2 + -)6, -13, -13 + -)6, ...[2 + -13,

...[2 +-13 +-)6,1,1+-)6,1+-/2,1+-/2 +-)6,

1+-13,1+-13 +-)6,1+-/2 +..[3,1+-/2 +..[3 +-)6}

• Here we adjoin the cube of a fifth root of 2 to {O, I} .

In[94]:= Adjoin[Z[2] , 2 3/5] II Short

440 User 's Guide

Out [94] IIShort=

{ 0, 4 22 / 5 , 2 24 / 5 , « 2 6» , 1 + 2 21 / 5 + 4 2 2 15 + 2 3 / 5 ,

1 + 2 2 1 / 5 + 23/ 5 + 2 24 / 5 , 1 + 2 2 1 / 5 + 4 2 2 / 5 + 23 / 5 + 2 24 / 5 }

• We can also form a list of polynomials by providing the set of coefficients, the
indeterminate, and the bound on the degree.

In[95]:= Adjoin[Z[2], a, 2]

Out[95]= {O, a 2 , a, a+a2 , 1, 1+a2 , l+a, 1+a+a2 }

• Since we are interested in the elements for coefficients, it doesn't matter if we
are working with a group or a ring. Here we have all third degree (and lower)
polynomials over 7L.3 in the indeterminate x.

In[96]:= Adjoin[Z[3, Structure -+ Ring], x, 3] II Short [I, 3] &:

Out [96] IIShort=

{ 0, x 3 , 2 x 3 , x 2 , x 2 + x 3 , x 2 + 2 x 3 , 2 x 2 , 2 x 2 + x 3 ,

2 x 2 + 2 x 3 , x, X + x 3 , « 59 » , 2 + x + 2 x 2 + x 3 ,

2 + x + 2 x 2 + 2 x 3 , 2 + 2 x, 2 + 2 x + x 3 , 2 + 2 x + 2 x 3 ,

2 + 2 x + x 2 , 2 + 2 x + x 2 + x 3 , 2 + 2 x + x 2 + 2 x 3 ,

2 + 2 x + 2 x 2 , 2 + 2 x + 2 x 2 + x 3 , 2 + 2 x + 2 x 2 + 2 x 3 }

• 5.4.4 Disguising groups and rings

There are five groups of order 8. If they are presented as Cayley tables using only generic
letters (a through h), is it easy to determine which table belongs to which group? The
DisguiseGroupoid function can facilitate the task of presenting generic-looking
groups.

DisguiseGroupoid [G]

DisguiseGroupo i d [G, rules]

DisguiseGroupoid[
G, Randomize -oJ True]

DisguiseRingoid[R]

Disguising a groupoid or ringoid.

In [97] : = CayleyTable [

return the groupoid G with the elements of G
replaced with string a, b, etc., in order to provide a
context-free environment to explore group properties

return the groupoid G disguised according to
the rules given

return the groupoid G disgui ed by fir t
randomizing the elements before u ing the rule
assignment ; Randomi ze defaults to Fal se

return a disguised ringoid in the arne fa hion
as Disgui seGroupoid does for groupoid

{DisguiseGroupoid[G = DirectProduct[Z[2] , Z[2]]],

Additional Functionality 441

DisguiseGroupoid[G, {{O, O} ~ "cat",
{O, l} ~ "dog", {l, l} ~ "hat", {l, O} ~ "log"},

Randomize ~ True]}, Mode ~ Visual];

~II
1111

II
II

II

???

• 5.4.5 A look at some functions in LabCode

x * y

• This function organizes the data regarding the orders of the elements in Z 15.

In[98J:= CollectOrders[Orders[Z[15]]]

Out[98J= {{1, {O}}, {3, {5, 10}}, {5, {3, 6, 9, 12}},
{15, {l, 2, 4, 7, 8, 11, 13, 14}}}

• Here are two graphical ways of considering the same question.

In [99J:= ShowGroupOrders [Z [15]] ;

15

5

3

1 •

• •

•

Z[15]
• • •

•
•

•

• • •

•
•

o 1 2 3 4 5 6 7 8 9 1011121314

442 User's Guide

frequency
8

1 3 5 15
orders

CollectOrders [Orders [G]] given the output of the Orders function
(equivalently, OrderOfAllElemen ts),
thi function organize the data in the form
(p , A I where p i one of the po ible order and
A i the et of elements in G with order p

ShowGroupOrders [G] return a ListPlot howing pair {g. 1 gil
and a bar chart indicating how many element
there are for each order

ShowColoredPerrnutation [p J give a graphjcal iLlu tralion of the permutation p

Miscellaneous functions from LabCode that may be of interest.

• 5.4.6 Potpourri

• A complex number is a Gaussian integer if its real and imaginary parts are
integers.

In[lOO):= Map [GaussianJ:ntegerQ, numa = {3, 3-2J:, 3.5 + 4.3J:, -aJ:}]

Out[lOO}= {True, True, False, True}

• Here are the real and imaginary parts of each of these numbers.

Additional 1 nctionality 443

In[lOl]:= Kap[ComplexToPoiDt, Duma]

Out[lOl]= {{3, a}, {3, -2}, {3.5, 4.3}, {a, -8}}

GaussianIntegerQ[z]

ComplexTopoint[z]

IntegerLatticeGrid[
{ a, b} I {c I d} I opts)

ESG [code)

Miscellaneous functions .

give True if the complex number
z is a Gaussian integer (real
and imaginary parts are integers), and False otherwise

given a complex number z, rerum (Re[z) Im[z]}

rerum a ListPlot of an integer lattice with domain
a :s x :s b and c:s y :s d with options opts to be used
by ListPlot

rerum the group corresponding to code as found
in the Exploring Small Groups software package

• Here are the two groups of order 4 given by the codes 0401 and 0402 used in
the program Exploring Small Groups, written by Ladnor Geissinger.

In [102] := {BSG[0401], BSG[0402]}

Out[102]= {Groupoid[{O, 1, 2, 3}, Mod [#1 +#2, 4] &],
Groupoid [{1, Rot, Ref, Rot * * Ref}, -Operation-]}

7

11

Appendices

1

5

1

3 9

1

7

o

3

5 3 ~-----"' 1

7 2

Appendix A

III Installation instructions

• Version 2.x under Windows

From from the web site (http://www.central.edu/eaam.html) or from the CD,
find the files appropriate for version 2.x under Windows. Place the entire AbstractAl­
gebra directory (called Abstract to limit the name to 8 characters) into the Pack­
ages directory (in the Mathematica directory). The GrpLabs and RngLabs directories can
be placed wherever convenient.

As users of version 2.x under Windows are well aware, each cell contains only one
possible style. Therefore, some of the emphases (italics, bold or otherwise) may be lost
that are provided in other versions. Additionally, to discriminate input cells from text
cells, all input cells have been colored yellow. (This can be changed by the user, if so
inclined.) As you may be aware, there are a large number of advantages in upgrading to
version 3.x, including a number of palettes available that complement Exploring Abstract
Algebra with Mathematica .

• Version 2.x under other platforms

From from the web site (http://www . central. edu/eaam.html) or from the CD,
find the files appropriate for version 2.x under Macintosh or Unix. Place the entire
AbstractAlgebra directory into the Packages directory (in the Mathematica
directory). The GrpLabs and RngLabs directories can be placed wherever convenient.

As you may be aware, there are a large number of advantages in upgrading to version 3.x,
including a number of palettes available that complement Exploring Abstract Algebra
with Mathematica.

448 Appendix A

• Version 3.0 or higher

From from the web site (http://www . central. edu/eaam. html-you may wish
to check here for updates to the files) or from the CD, find the files appropriate for
version 3.0 or higher. (Note that these files work equally well on Macintosh, Unix or
Windows platforms.) The files are located on the CD in such a way to imitate the layout
of the main Mathematica directory. Here is a schematic of what is on the CD and on the
web page (except the CD uses initial lower-case directory names that correspond to
Mathematica directories to avoid an accidental overwrite of files). Note that the AddOns
and Configuration directories are inside the main Mathematica 3.0 Files directory.

AddOns
Applications

AbstractAlgebra
package files (.m files)
Documentation

English
documentation files

GroupLabs
group lab notebooks from EAAM

Kernel
init.m (Master.m copied here and renamed to init.m)

Palettes
palette files from EAAM
palette files for general distribution

RingLabs
ring lab notebooks from EAAM

Configuration
FrontEnd

StyleSheets
EAAM.nb (needed if labs are moved from AbstractAlgebra)

Palettes
AbstractAlgebraPalette.nb (can also be found via the Help Browser)

Place the entire AbstractAlgebra directory into the Applications directory (in the
AddOns directory in the Mathematica directory). From the above schematic, observe that
this places the package files, labs, and Browser documentation in an accessible location
for Mathematica. In particular, the group and ring labs are in the obvious directories. If it
is more convenient, the lab directories can be moved to another location. (The only loss in
doing so is that links related to these labs in the Help Browser will become broken. If the
labs are not moved, they are easily accessible from the EAAM Info section of the accompa­
nying help files.) After placing these files in the Applications directory, open Mathemat­
ica and choose Rebuild Help Index from the Help menu; this will enable the Help
Browser to be aware of the documentation files accompanying AbstractAlgebra.
(Choose the Add-ons button in the Help Browser and AbstractAlgebra will show up
in the left-most column.)

Appendix A 449

In addition to copying the AbstractAlgebra directory into the Applications direc­
tory, copy the EAAM.nb style sheet into the StyleSheets directory (in the FrontEnd
directory in the Configuration directory in the Mathematica directory). Similarly, the
AbstractAlgebraPalette.nb palette should be copied into the Palettes directory (in the
FrontEnd directory in the Configuration directory). From this palette, all the other palettes
in the Palettes directory in the AbstractAlgebra directory will be accessible.

III References

Anick, David, "A Model of Adams-Hilton Type for Fiber Squares," Illinois J. Math, 29
(3), 1985, pp. 463-502.

Dornhoff, L. and F. Hohn, Applied Modem Algebra, Macmillan, New York, 1978.

Fraleigh, J., A First Course in Abstract Algebra, Fifth Edition, Addison-Wesley, Reading,
MA,1994.

Gray, T. and J. Glynn, Exploring Mathematics with Mathematica, Addison-Wesley,
Reading, MA, 1991.

Herstein, I., Topics in Algebra, Second Edition, Wiley, New York, 1975.

Herstein, I., Abstract Algebra, Third Edition, Prentice-Hall, Upper Saddle River, NJ, 1990.

Hungerford, T., Abstract Algebra: An Introduction, Second Edition, Saunders, New York,
1997.

Levasseur, K., "A Microworld for Elementary Group Theory," Mathematica in Educa­
tion,3 (Fall, 1994), pp. 5-10.

Lindl, R. and G. Pilz, Applied Abstract Algebra, Springer-Verlag, New York, 1984.

Lipson, J., Elements of Algebra & Algebraic Computing, Addison-Wesley, Reading, MA,
1981.

Pinter, C., A Book of Abstract Algebra, McGraw Hill, New York, 1990.

Rotman, J., The Theory of Groups, Allyn & Bacon, Boston, 1965.

Rotman, J., A First Course in Abstract Algebra, Prentice-Hall, Upper Saddle River, NJ,
1996.

Sims, C., Abstract Algebra: a Computational Approach, Wiley, New York, 1984.

Wolfram, S., Mathematica, A System for Doing Mathematics by Computer, Second
Edition, Addison-Wesley, Redwood City, CA, 1991.

Wolfram, S., The Mathematica Book, Third Edition, Wolfram Media, Champaign, IL,
1997.

Wolfram Research, Mathematica 3.0 Standard Add-on Packages, Wolfram Media,
Champaign, IL, 1996.

Appendix B-Lab 0

Getting Started with

Mathematica

This lab is intended to be an introduction to using Mathematica. There are several
key skills and concepts that need to be mastered to ensure success with the labs in
Exploring Abstract Algebra with Mathematica. They are:

1. how to recognize nested cells
2. how to open and close nested cells
3. how to evaluate an expression in an input cell
4. how to create an input cell in order to create one's own Mathe­

matica input
5. learn some of the general principles of Mathematica syntax
6. learn where to get more help

Let's begin with the first two goals. For users of Mathematica 2.2, every cell has
one or more brackets surrounding it on the right side of the window. For users of
version 3.0 or higher, the brackets may be replaced by, or supplemented with,
arrows (triangles) on the left that can be toggled. For instance, look at the next
cell, headed by the title "0.0 Note regarding Exploring Abstract Algebra with
Mathematica." (You may need to scroll down to see it. Note: This section occurs
only in the notebook version, not in the printed version.) Note that this cell has a
standard square bracket as well as another bracket to its right that looks somewhat
like a harpoon. This indicates that there are cells nested inside. When you move
the cursor over the bracket with the harpoon, the cursor takes on the shape of an
arrow pointing left toward a vertical bar. When the cursor has this shape, you can
double-click on the harpoon. This will open up to reveal the inner, nested cells.

Getting Started With Mathematica 451

Try this now with any of these first three sections (0.0, 0.1, or 0.2); after reading
any or all of these, proceed to section 0.3 and open it up to continue.

III 0.1 Prerequisites

There are no prerequisites for this lab.

III 0.2 Goals for this lab

This lab is intended to introduce a few of the basics of Mathematica, as well as
introduce a few rudimentary algebraic ideas. In particular, the user should master
the six specific goals outlined at tthe outset of this lab.

III 0.3 The In's and Out's of evaluating Mathematica
expressions

These nested cells are not too difficult to open up, once you get the hang of it,
right?

Ql. Go to section 0.4 (below) and open up the nested cells. What do you find
inside at the inner-most nested level? Note: The printed version, contains only
the section title, while the electronic version has the nested cells to be opened.

You may have noticed that some cells appear differently than others. For instance,
this text is in a Text cell, while the cell heading this section (0.3) is called a
Section cell. If you go up and click anywhere in the characters of the section
0.3 cell, you will see the word Section appear in the pop-up menu in the ruler
at the top of the window. This menu indicates the current cell type; it can also be
used to change one type of cell to another. To tell Mathematica to compute an
evaluation, we need to use a special type of cell, called an Input cell. Consider
the following cell.

26

3

Click the cursor anywhere in the body of the above cell containing 23
6 , or select

its cell bracket. (Note that the name of the cell type becomes Inpu t in the pop­
up menu in the ruler.) To evaluate this cell (assuming you have clicked in the cell
or selected its bracket), press the SHIFTIRETURN key combination (or just the
ENTER key on a Macintosh). Mathematica will then evaluate this request and
return its value. Do so.

452 Appendix B-Lab 0

Do not be too disappointed with the result; Mathematica always tries to return an
exact result whenever possible. In this case, ;6 is more exact than 8.7 or 8.6667
or 8.666666667. Each of these approximations can be obtained as follows
(evaluate this next cell).

26 26 26
{N[-, 2], N[-, 5], N[-, lO]}
333

Q2. Evaluate the cell below. (Remember to use the SHIFfIRETURN combina­
tion.) What do these results have in common with the above approximations of
26/3?

N[{~' ~, ~}]
3 3 3

The next thing to learn is how to make your own Inpu t cell so that you can type
in your own request. Move the cursor (slowly) right below the text in this para­
graph. As you move it, you should see the cursor take on one or more of the
following shapes: a horizontal I-beam, a down-arrow, a circle with a plus, a
vertical I-beam or possibly other shapes. When it is just below this text, but yet
above the next cell, you should see the cursor become a horizontal I-beam. On
clicking the mouse when this cursor is present, a horizontal line appears in the
window. You can now start typing and you are automatically in the Input style.

Q3. Above this cell, but below the preceding paragraph of text, create an input
cell, type in 17/3, and evaluate the cell. Create another cell and determine the
decimal approximations of 14/3 and 11/3. What do these results have in com­
mon with previous results?

Q4. Evaluate the following Inpu t cell. Next, create a new input cell and either
retype the line just evaluated or copy it and paste it in the new cell. (You are not
expected to understand what these instructions in the Input cell mean.) Before
evaluating, change the 2 to a 1. What do the results in the output have in com­
mon? How do they compare to the previous output?

III 0.4 What is inside?

(See question 1.)

Getting Started With Mathematica 453

III 0.5 Some syntax basics

Evaluate the following cell. (Recall that also saw this expression when working
question two.)

H[{~' ~, ~}]
3 3 3

Mathematica is very particular in expecting the exact syntax for communicating
requests. For example, the following are incorrect methods (for various reasons)
of inputting the previous cell. Evaluate each of the following.

(* example 1 *) n [{ ~, ~, ~}]
3 3 3

(* example 2 *)H[(29/3, 23/3, 20/3)]

29 23 20
(* example 3 *) H {-, -, -}

333

(* example' *) H[{29/323/320/3}]
H[{29/3; 23/3; 20/3}]

(* example 5 *)H[{29/3, 23/3, 20/3])

In addition to the error messages that were given, here are additional reasons why
these are incorrect.

1. All Mathematica commands or functions start with capital letters.

2. Lists are always enclosed with curly brackets {}; parentheses are used only for
grouping expressions to alter the standard order of operations (such as (a + b)2 in
contrast to a + b2).

3. Arguments for functions (such as the N function in this case) must always be
enclosed in square brackets [], not parentheses (which are used only as grouping
symbols).

4. Lists must always have their elements separated by commas. (Here the terms
were multiplied, in the first instance, since a space implies multiplication.)

5. Of the three types of brackets, 0, {}, and [], each type can only be used for
the specific use for which it is intended. Furthermore every left bracket must
have a matching right bracket of the same type.

454 Appendix B-Lab 0

Q5. Evaluate the following Input cell. What error(s) does it have? Correct the
error(s) to arrive at the intended input.

Bxpand[{x+ y} "2)

III 0.6 Help

Mathematica has a sophisticated help facility called the Help Browser (or
Function Browser for 2.2 users). The last item on Mathematica's menubar
is the Help menu. Choose this and select the fIrst item (Help ... in 3.0 or higher
or Open Function Browser ... in 2.2). In the browser for version 2.2, you
have the choice of reviewing the use of any names in the Built-in Func­
tions, Packages, or Loaded Packages by pressing the appropriate but­
ton. (For Loaded Packages, fIrst press the Update button.) In version 3.0 or
higher, the browser is much more sophisticated. In addition to the previous three
categories, one can fInd the whole Mathematica book on-line, as well as an index
to it and all the packages, in addition to other information. This browser is a
Mathematica notebook and not just a static display device as in version 2.2. Try it
out and fInd out for yourself. To learn more about the functions in Exploring
Abstract Algebra with Mathematica in version 3.0 or higher, click on the Add­
ons button and AbstractAlgebra should show up in the fIrst column if a
correct installation has been made (including a call to Rebuild Help Index,
the last item on the Help menu).

Q6. Using the help facility, learn more about the Expand function. What does
this function do? (Hint: Expand is a built-in function used for algebraic compu­
tations in basic algebra.)

Another feature that occurs beginning in version 3.0 is the use of hyperlinks. By
clicking on any underlined, blue text, one can be linked to another part of the
notebook (or a different notebook altogether), the main book in the Help Browser,
package documentation in the Help Browser, or even to a web page.

III 0.7 Using Mathematica to learn a mod idea

Above we saw that 26/3, 29/3, 23/3 and several other fractions all had one thing in
common: the quotient had a decimal part returning .666667. In other words, on
division by three, the remainder was always two. Observe:

26 == 8 * 3 + 2

Getting Started With Mathematica 455

29 == 9 *3 + 2

23 == 7 * 3 + 2

In each case, we see that the numbers 26, 29 and 23 have a remainder of two, on
division by 3. We can see this visually as well. First, select all the cells in the
following subsection. (You do not need to open up the subsection, simply select
the outer harpoon bracket surrounding it.) Next, evaluate all these cells (type
SHIFTIRETURN). This will define some functions we will be using. Now go to
the next section.

• Evaluate all cells in this subsection, if not done on opening

• Continue on in this subsection

By evaluating the cell below, you can see why 2 is the remainder of 26 on divi­
sion by 3.

IllustratellodReductioD[26, 3];

Note that the word "mod" is used in the function name. We say 26 mod 3 is 2
because 2 is the remainder when 26 is divided by 3. Mathematica can compute
this directly.

Mod[26, 3]

Note that each of 29, 26 and 23, when reduced modulo 3, results in the value 2.

{Mod[29, 3], Mod[26, 3], Mod[23, 3]}

In other words, 2 is the remainder when 29 is divided by 3 and when 23 is divided
by 3. These can be seen visually as well; evaluate one or both of the following.

IllustrateModReductioD[29,3];

I llustratellodReduction [23, 3];

Q7. Determine the values of 22 mod 3, 25 mod 3 and 28 mod 3 using either the
Mod function or the IllustrateModReduction function. What do these
three values have in common? How are 22, 25 and 28 related to each other?

456 Appendix B-Lab 0

Q8. Determine the values of 21 mod 3, 24 mod 3 and 27 mod 3 using either the
Mod function or the IllustrateModReduction function. What do these
three values have in common? How are 21, 24 and 27 related to each other?

• 0.8 Divide and conquer

Select the input cell below. After evaluating it, come back here and finish reading
this text. There are some mathematical observations to make, as well some Mathe­
matica observations. First, note that this is showing k mod 3 for k running from 18
to 28. As you look at the value of this (the value of the remainder of k divided by
3, which is also the height of the yellow rectangle), note how it cycles through 0
to 1 to 2 to 0 to 1 to 2 and so on. Do you know why? -

Second, note that all the graphics are each in their own cell but there is also one
cell that surrounds the whole collection of graphics. Put the cursor over this
surrounding bracket and double-click. This will close up and hide the nested cells
with only the first one showing. If you now double-click on the top graphic, an
animation should take place. Since the motion may be going too fast, you may
want to know how to adjust it. Typing any number from 1 to 9 adjusts the speed
(l slow and 9 fast), while pressing an up-arrow or down-arrow key causes one
step to be taken in the specified direction. Try it.

Do [l:llustratellodReductioD [k, 3, showText False] ,
{k, 18, 28}]

For each of the cases where the remainder is zero (ie., k mod 3 = 0), observe that
this happens because 3 is a divisor of k. Mathematically, we say "3 divides k" and
denote this by 3 I k. Consider k = 24 and j = 30. In both cases we have 3 as a
divisor. There are, however, other divisors of each. In previous course-work, you
may have encountered the notion of the greatest common divisor, or gcd. In this
case, the gcd of 24 and 30, frequently denoted gcd(24, 30) or simply (24, 30), is
actually 6. Here is how we get Mathematica to confirm this. (Note the capital
letters.)

GCD[24, 30]

I Q9. What is the gcd of 242652 and 3054876?

Suppose we consider the problem of determining the gcd of two fairly large
numbers, say a = 1234567891011121314 and b = 1413121110987654321.

a = 1234567891011121314
b = 1413121110987654321

Getting Started With Mathematica 457

We will pursue the gcd in two ways. First, we will find all the divisors of a (and
record how much time this took).

divisorsOfa = Timing [Divisors [a]]

And then do the same for b.

divisorsOfb = Timing [Divisors [b]]

Next we take the intersection of the lists of divisors and ask for the maximum
value. (Note that divisorsOfa and divisorsOfb consist of a list containing
both the time and the list of divisors. Since we want the second part, the list of
divisors, we specify this by using the notation divisorsOfa [[2]].)

max =
Timing[Hax[Intersection[divisorsOfa[2], divisorsOfb[2]]]]

We see that the gcd is 3. How much time did this take? We can add up the
amounts found in the first part of each result.

totalTime = divisorsOfa[l] + divisorsOfb[l] + max[l]

Now let's see how long it takes for the GCD function?

Timing [GCD [a, b)]

Is this surprising? The GCD function did not use any previous results to enable it
to be this fast, but rather the method of calculating the gcd happens to be a very
fast algorithm called the Euclidean Algorithm. Hopefully, you will be learning
more about this algorithm in this course; we will see it in this suite of labs when
we study polynomial rings in Ring Lab 6. If you increase the number of digits in a
and b by only a few, the time difference will be even more dramatic.

III 0.9 It all adds up

Earlier we saw how the values of k mod 3 (Mod [k, 3]) are 0, 1 or 2.

Table [Mod [k, 3], {k, 18, 28}]

A question that algebraists ask in such a situation is "Does the set {O, 1, 2} have
any other structure?" In other words, is there a natural operation that may exist
between, for example, 14 mod 3 and 16 mod 3? In particular, does this answer
have anything to do with 30 mod 3?

1IOd.[14, 3]
1IOd.[16, 3]
IIod[30, 3]

458 Appendix B-Lab 0

This can be illustrated visually below.

Illu8trateModAddition[14, 16, 3]

Note that (14 mod 3) plus (14 mod 3) (ie., 2 "plus" 2) yields 1, which is also
28 mod 3.

Mod[14, 3]
Mod[14, 3]
Mod[28, 3]

IllustrateModAddition[14, 14, 3]

The collection of values where the integers are reduced by some modulus (3 in
this example) forms a very interesting structure for algebraists. Much more will be
said about this in the future.

@, short for Mul tiplyCycles, 58, 423

A, family of groupoids, 285
AbelianQ, 72, 316
Addition

in a ringoid, 120, 122,326
in ringoid extensions, 352
of functions, 385
of matrices, 374
of polynomials, 357

AdditiveGroupoid, 121,329
AdditiveToMultiplicative, 391
Adjoin, 216, 439
AGroupoid, 329
Algebraic integers, 428
All (MatrixType), 373
Alternating group, 285

Group Lab, 11 0
Alternating, 110,285
AlternatingGroup, 285
Annihilator, 348
Annihilator of a set, 348
Associates (ZdDivisors), 226,431
AssociativeQ

in a groupoid, 265
complexity, 273
in a ringoid, 122,330,333

Aut, 410
Automorphism, 75, 410

Index

AutomorphismGroup, 77, 410
Automorphisms, 410

Group Lab, 74

BackgroundColors, 414
BaseRing

for a polynomial, 368
for ringoid extensions, 352

BooleanRing, 128,342
Building Subgroupoids, 297
Built-in objects

Groupoids, 276
Morphoids, 399
Ringoids, 341

Canonical morphism, 400
CartesianProduct, 436
Cautious (IsomorphismQ). 76, 406
Cayley table(s)

Group Lab, 18
of groupoids, 70, 291
of multiple groupoids, 294

CayleyForm
option to CayleyTable, 292
option to FormGroupoid, 253
option to FormRingoid, 322

CayleyTable, 291
for ringoids, 343
with "wide elements," 292

460 Index

CayleyTable (continued)
with Graphics options, 292

CayleyTables, 120,343
Center, 317
Center of a group, 317
Centralizer, 317
Centralizer of an element, 317
Centralizer of a subgroup, 317
Characteristic, 339
Chinese Remainder Theorem, 154
ClosedDiffQ,338
ClosedPlusQ,338
ClosedQ

for a subset of a groupoid, 271
for groupoids, 265
for ringoids, 122,330,333,338

ClosedTimesQ,338
CloseSets, 436
Closure, 34, 300
Closure of subsets

in a groupoid, 34
in a ringoid, 338

Codomain, 397
Coefficient, EAAM usage, 367
CoefficientList, EAAM usage, 367
CollectOrders, 25, 442
ColorCodomain, option, 413
ColorDomain, option, 413
Combination of subgroups, 305
Combine (ZdDivisors), 226, 431
CommutativeQ

in a groupoid, 316
in a ringoid, 122,330,334

Commutator, in a groupoid, 316
Commutators, of a groupoid, 316
CommutatorSubgroup,72,316
ComplementNoSort,436
ComplexToPoint, 141,443
Composition of permutations, 55
Computational (Mode), 266
Conjugacy classes, 318
ConjugacyClass,318
Conjugate, 106,318
Conjugation of group elements, 78, 318
Cosets (QuotientGroup), 88, 311
CosetToList, 312, 350
Cycle (ToCycles), 421
Cycle operations, 423
CycleAs (ToCycles), 421

Cycles in permutations, 56, 421
Cyclic generators of Zn, 25
Cyclic, family of groupoids, 288
Cyclic groups, 45,291
Cyclic subgroup generation, 305
CyclicGenerators,85,319
CyclicGroup, family of groupoids, 288
Cyclicity of direct products, 50
CyclicQ, 48, 247, 319
CyclicSubgroups, 304
Cyclotomic polynomials, 190

D, EAAM usage, 287
DefaultOrder,414
DefaultStructure,414

how to change value, 250
Degree, EAAM usage, 159, 367
Det, EAAM usage, 378
Determinants, 378, 379
Diag

as a matrix sub-extension, 381
as a value for MatrixType, 373

DiagonalMatrices,382
DiagQ,373
Dihedral group, 286
Dihedral, family of groupoids, 287
DihedralGroup,287
Direct products

of groupoids, 81, 295
of ringoids, 346

DirectProduct
forgroupoids,82,295
for ringoids, 346

DirectSum
for groupoids, 71, 295
for ringoids, 346

DisguiseGroupoid,440
DisguiseRingoid,440
DisjointCyclesQ,425
Distributive property, 336
Distributi veQ, 124, 336
"Divisor" family of groupoids, 280
DividesQ

for integers, 430
in Z[J(j], 216, 431

Divisibility
in Z[J(j], 431
as a basis for groupoids, 280

Division property of polynomials, 161, 358

DivisorsComplete, 226, 431
Domain

option with groupoids, 263
of a Morphoid, 397
of ringoids, 120, 326

Dot, EAAM usage, 379
DrawNgon, 438

EAAM packages, 238
Eisenstein's criterion, 175
EisensteinsCriterionQ,176,364
ElementConjugate,78,318
ElementQ

for groupoids, 264
for functions over a ringoid, 384
for matrices, 371
for ringoid extensions, 352
for ringoids, 327

Elements
for groupoids, 41, 263
for ringoids, 326

ElementsQ
for groupoids, 264
for ringoids, 327

ElementToCoset, 312
ElementToKey,249
ElementToPower, 21, 214, 319, 339
Equal, EAAM usage, 367
EqualMorphoidQ, 68, 245, 398
ESG,443
Euclidean algorithm, 165
Euler angles, 114
Evaluation of polynomials, 365
EvaluationlnExtension,213,363
Even permutations, 63
EvenPermutationQ,63,426
Exploring Small Groups, 309
Exponent, EAAM usage, 367
ExtendPermutation, 419
Extension ringoids, 352
ExtensionDegree, 389
Extensions of Mathematica functions, 366
ExtensionType, 352

Factor group, 98, 306
FactorGroup, 98,310
Factorization

in quadratic extensions, 215
of polynomials, 167

Index 461

FactorRing, 350
Fiber, 409
Fieldlrreducible, 229,389
FieldQ, 133,337
Fields, 132
Finite fields, 227, 388
First Isomorphism Theorem

for groups, 107
for rings, 152

FirstTaker, family of groupoids, 280
FixQ,427
FlexibleEntering(Poly),355
Form

option to Dihedral, 287
option to QuaternionGroup, 289
option to QuotientGroup, 144,311

FormatElements
option to FormGroupoid, 253
option to FormRingoid, 322

FormatFunction(FormMorphoid),393
Formation of EAAM structures, 240
Formation of Morphoids, 393
FormatOperator

option to FormGroupoid, 253
option to FormRingoid, 322

FormGroupoid,252,253
FormGroupoidByTable,252,260
FormGroupoidFromCycles,252,261
FormMorphoid, 68, 149,393
FormMorphoidSetup, 108,246, 393
FormRingoid, 120,321
FormRingoidByTable, 325
FromCycles, 421
Func, 384
Function arithmetic, 385
Functions over a ringoid, 384
FunctionsOver, 352, 384
FuncToRules, 384

Galois fields, formation, 388
GaloisFieldQ,389
Gaussian integers, 140
GaussianlntegerQ,443
Gaussianlntegers, ringoid, 277
GaussianlntegersAdditive, 277
GaussianlntegersMultiplicative,

278
GaussianUni ts, the groupoid, 281
Geissinger, L., 309

462 Index

GeneralLinear,382
GeneralLinearGroup,382
GenerateGroupoid,252,258
GeneratingSet,264
Generator (Cyclic), 288
Generators (FormGroupoid), 253
GF,228,388
GL

alternate syntax, 382
matrix sub-extension, 381
value for Ma trixType, 373

Global variables and options, 414
GLQ,373
Graphics output with Visual, 303, 308
Greatest common factor, 360
Group (structure), 121,251,414
Group properties, to, 17

apparent from a Cayley table, 18
functions to test, 265

GroupCenter,72,317
GroupExponent,319
Groupldenti ty, 65, 272
Grouplnfo,275
Grouplnverse, 22, 273
Groupoid formation, 252
Groupoid, 240

created from ringoids, 329
structure, 263

GroupoidDescription,253
GroupoidName,253,264
GroupQ,275
Groups of permutations, 282

HasldentityQ, 123,265
unity in a ringoid, 334
zero in a ringoid, 330

HaslnversesQ, 123,265
negations in a ringoid, 330

HasLeftldentityQ,272
HasNegativeQ,331
HasRightldentityQ,272
HasUni tyQ, 334
HasZeroQ, 123,330

function extensions, 385
matrix extensions, 376
polynomial extensions, 358

HeadingsColored (CayleyTable), 292
Homomorphisms, 101, 148
HomomorphismQ,403

IdealQ, 138,347
Ideals, 134,347
IdempotentQ,34O
Idempotents,34O
Identi ty, EAAM usage, 272
IdentityMatrix, EAAMusage, 383
Ignorelndeterminate (Equal), 367
Image, ofaMorphoid, 69,104,151,407
Indeterminate

option to GF, 389
option to Poly, 157, 355
option for polynomial lists, 369

Index, of a subgroup, 97, 309
IndexLimi t (Symmetric), 60, 283
InducedCanonical,401
InducedIsomorphism,401
Inj ecti veQ, for Morphoids, 403
Inn, 410
Inner automorphisms, 78
InnerAutomorphism, 80, 410
InnerAutomorphismGroup,410
IntegerDivisors, 223, 430
IntegerLatticeGrid,443
Integers mod n, 276
IntegerUni ts, the groupoid, Ito, 281
Integral domains, 132
IntegralDomainQ, 132,337
InterpolatingPolynomial,387
Intersections of subgroups, 51
Inverse, EAAM usage, 273, 378
Inverselmage,409
Inverselmages,409
Inverses

for a matrix, 378
in a groupoid, 273
in a ringoid, 123, 331, 334

InvertibleQ,273
in a ringoid, 331, 334

Irreducibility of polynomials, 363
IrreduciblePolynomial,389
IrreduciblePolyOverZpQ, 228, 389
IsAGroup (FormGroupoid), 253
IsARing (FormRingoid), 322
IsomorphismQ,69,406
Isomorphisms, 64

JoinDi visors, family of groupoids, 280

Kernel

of a group homomorphism, 69, 103
of a Morphoid, 407
of a ring homomorphism, 151

Key Form
option to CayleyTable, 292
option to FormGroupoid, 253
option to FormRingoid, 322

KeyToElement,249
Klein4, the groupoid, 289

LabCode functions, 441
LatticeRing,341
Least common multiple, 360
LeftCoset

ofasubgroup, 9Q,306
of a subring, 350

LeftCosets
ofasubgroup, 93, 308
of a subring, 350

LeftDistributiveQ,336
LeftIdealQ,347
Leftldentity,272
Leftlnverse,273
LeftlnvertibleQ,273
LeftToRight, 158,261,283,355,418,423
ListDensityPlot,344
Lists, working with, 435
LowerDegreeOK,356
LT

matrix sub-extension, 381
value of MatrixType, 373

LTD
matrix sub-extension, 381
value of MatrixType, 373

Mat, 370
MatA,370
MatM,370
Matrices over a ringoid, 370
MatricesOver,352
Matrix

arithmetic, 374
extensions, syntax, 382
form of a permutation, 5
groupoids, 380
inverses, 377
ringoids, 379
types, testing, 373

MatrixOperation,383
MatrixOverQ,383

Index 463

MatrixPower,374
MatrixType (RandomMatrix), 371
MaxElementsToList

option to FormGroupoid, 253
option to FormRingoid, 322

Maximal ideals, 349
MaximalldealQ,349
MaxTaker, family of groupoids, 248, 280
MeetDi visors, family of groupoids, 280
MGroupoid, 329
MinTaker, family of groupoids, 280
MixedDivisors, groupoids, 109,280
Mod p irreducibility test, 170
Mode, 266

options, 247
how to use, 246

ModplrreducibilityQ,181,364
ModulusPolynomial,361
Monic (RandomElement (s», 356
MonoidQ,275
Monomial, 368
MorphismQ,69, 150,403
Morphoid(s),393

formation, 67, 393
properties, 402
structure, 397
visualization, 413

MorphoidComposition, 77,154,398
MorphoidFunction,397
MorphoidRules, 80, 397
MultipleOfElement,339
Mul tiplication, 120,326

of symmetries, 7
on functions, 385
on matrices, 374
on polynomials, 357
on ringoid extensions, 352

Mul tiplicationTable, ringoid, 129,343
MultiplicativeGroupoid,124,329
Multiplicativelnverse,334

of functions, 386
of matrices, 378

MultiplicativeToAdditive,391
Mul tiplyCycles, 159,423
MultiplyPermutations, 55, 418

Names in a package, 239
NegationOf

for functions, 385

464 Index

NegationOf (continued)
for matrix extensions, 376
for polynomial extensions, 358
in ringoids, 123,331

Negations (ZdDivisors), 431
NextStage (Closure), 35, 146,302
NilpotentDegree,340
NilpotentQ,34O
Nilpotents,34O
NonAssociatingTriples, 274
NonCommutingPairs, 316
Nonldentity, 313
NonTrivialOnly, 223,431
NonUni ty (RandomElement (S», 329
NonZero (RandomElement (S», 329
NonZerOMGrOupoid,329
Norm functions, in Z[.Jd], 433
Normal subgroups, 95
Normality

of kernel of a morphism, 106
of subgroups, 309

Normalize (ToCycles), 421
Normalizer, 318
NormalQ, 97, 309

Odd permutations, 63
OddPermutationQ,63,426
One-rule Morphoids, 153
OneToOneQ, for Morphoids, 230, 403
OntoQ, for Morphoids, 403
Operation

for groupoids, 66, 263
ringoid option, 122,336

Operation-preserving Morphoids, 403
Operations

on cycles, 423
on permutations, 418, 419

OperatorSymbol,264
Orbit,427
Orbits, 426
Order

in direct products, 82
of a group element, 20
of a groupoid, 314

Order, 22, 314
Ordering, 417
OrderOfAllElements,47,314
OrderOfElement,65,314
Orders, 238, 314

Output, option, 414
Overview of EAAM, 239

Packages,EAAM,237
Parity, 62, 110,426

as a Morphoid, 406
PermutationComposition, 418
PermutationGroup,283
Permutation Image, 427
Permutationlnverse,419
PermutationMatrix,5~419

PermutationQ,417
Permutations and cycles, 53, 416

operations, 418
representations, 420

PermutationToPower, 419
PlusSymbol,327
Poly, polynomial, 157,354
Polynomial(s), 156

arithmetic, 357
conversion to functions, 387
formation, 354
interpolation, 391
over a ringoid, 353
quotient ring evaluations, 363
random, 355
solutions, 365

PolynomialDivision, 162,358
PolynomialEvaluation, 162,201,365
PolynomialGCD,166,361
PolynomialLCM, 361
PolynomialQuotient, 161,358
PolynomialRemainder, 161,358
PolynomialsOfDegreeN,369
PolynomialsOver, 157,201,352
PolynomialsUpToDegreeN,369
PolyQ,368
PolyToFunction, 387
PowerList,39O
Powers Increase (Poly), 158,355
PreservesQ,68, 150,403
Previous Stage (Closure), 35, 302
PrimeldealQ,349
PrimitivePolynomials,39O
Principalldeal,348
PrintMessage,406
ProbableGroupQ,275
ProbableMorphismQ,405
ProbableRingQ,336

ProductOrder, 418, 423
FOrmGroupoidFromCycles,261
Symmetric, 283

Products (ZdDivisors), 431
ProperSubsetQ,436

Quadratic field extensions, 209
QuaternionGroup,98,289
Quotient groups, 306
Quotient rings, l39, 350

of polynomials, 201, 365
QuotientGroup,310
QuotientRing, l39, 211, 361, 350

Random polynomials, 355
RandornAssociativeQ,274

in a ringoid, 331, 334
RandomDistributiveQ,336
RandomElement,

algebraic integers, 429
functions, 384
groupoids, 23, 313
matrices, 371
polynomials, 356
ringoids, 328

RandomElements,
algebraic integers, 429
functions, 384
groupoids, 34, 313
matrices, 371
polynomials, 159,356
ringoids, 328

RandomGroupoid, 252, 262
Randomize, 436, 440
RandomMatrix,371
RandomPermutation,58,417
Rational root test, 169
RationalRootCandidates,171,364
RationalRootTheorem,364
RefSym (Dihedral), 287
ReorderGroupoid,264
Replacement

option for groupoids, 313
option for groupoids, 329

Reportlterations,35,301
Representatives, option, 144,311
RightCoset

of a subgroup, 90, 306
of a subring, 350

RightCosets
ofasubgroup,93,308

Index 465

of a subring, 350
RightDistributiveQ,336
RightIdealQ,347
Rightldentity,272
Rightlnverse,273
RightlnvertibleQ,273
RightToLeft, 158,261,283,355,414,418
Ring (Structure), 121,251
Ring homomorphisms, 148
Ring properties, 121

additive tests, 330
multiplicative tests, 333

Ringlnfo, 125,336
Ringoid(s), 119,324

built-in, 341
formation, 321
structure, 326

RingoidDescription,322
RingoidName, 327

option to FormRingoid, 322
RingQ, 125, 336
Root construction, 211
Roots of unity, 182
RootsOfUnity,281
Rotation matrix, 112
Rotational groups, 111
RotSym (Dihedral), 287

s, family of groupoids, 283
SamePermutationQ,425
SameSetQ, 86, 436
SamplePairs, option, 406
SampleSize, option, 406
Seeing isomorphisms, 70
SelectBaseElementsFrom,372
SelectFrom(RandomElement(s»

for groupoids, 313
for ringoids, 329
for random matrices, 372
for random polynomials, 356

SemiGroupQ,275
sgn,402
ShowBodyText (CayleyTable), 292
ShowCircle,438
ShowColoredPermutation,55,442
ShowFigure, 56, 438
ShowGroupOrders,442

466 Index

ShowKey (CayleyTable), 292
ShowName (CayleyTable), 292
ShowOperator(CayleyTable),292
ShowPermutation,438
ShowSidesText(CayleyTable),292
Size, of a groupoid, 314
SizeLimit

GenerateGroupoid,259
for polynomial lists, 369
ToRingoid,379

SizeOfMatrices, 383
SL

alternate syntax, 382
matrix sub-extension, 381
value of Ma tr ixType, 373

SLQ,373
Sol ve, EAAM usage, 177, 365
Sort, EAAM usage, 301
SortGroupoid,264
SpecialLinear,382
SpecialLinearGroup, 382
Stabilizer, 427
Stabilizers, 426
Staged (Closure), 35, 146,301
Structure, 121,399
Structure

of groupo ids, 263
of Morphoids, 397
of ringoids, 326

Structure, how to change, 250
SubgroupClosure,3oo
SubgroupConjugate,318
SubgroupGenerated,46,302

Visua12 mode, 304
Subgrouplntersection, 305
subgroupJoin,305
Subgroupoid,297
subgroupProduct,305
SubgroupQ, 33, 298

Visua12 mode, 300
Subgroups, 32,296
Subgroups, 44, 304
SubgroupUnion, 305
SubringQ, 137,347
Subrings, 346
SubsetQ, 436
surjectiveQ,forMorphoids,403
SwitchStructureTo,250
Symmetric group, 54

Symmetric, 57, 283
SymmetricGroup, 283
Symmetries of plane figures, II
Symmetries of a triangle, 4

TableOfPowers, 390
"Taker" family of groupoids, 280
Tetrahedron, rotational group, III
TextCayley, 295
TheSet (CayleyTable), 70, 292
TimesSymbol,327
ToCycles, 59, 421
ToFunction, 398
ToGroupoid, matrix extensions, 380
ToOrdinaryPolynomial,368
ToPermutation,59,420
ToRingoid, matrix extensions, 137,379
ToRules, EAAM usage

for Morphoids, 75, 398
for permutations, 420

ToTranspos i tions, 61, 425
Transpositions, 60, 425
Tri vial, the groupoid, 289
Tri vialZR, family ofringoids, 130,341
TwistedZ, family of groupoids, 278
Types of structures, testing, 275

U, family of groupoids, 278
isomorphisms in the family, 85
orders of elements, 28
subgroups, 41
when is it cyclic?, 48

UnionNoSort, 436
Uni tQ, 130,334

functions over ringoid, 385
matrix extensions, 376

Uni ts, 130, 334
Unity

functions over ringoid, 385
matrix extensions, 376
polynomial extensions, 358
ringoid, 125, 334

UT
matrix sub-extension, 381
value of Ma tr ixType, 373

UTD
matrix sub-extension, 381
value of MatrixType, 373

ValuesHavingGivenNorm,433
Variables, EAAM usage, 367
VarToUse (CayleyTable), 292
visualizeMorphoid,413
VisualTextShown,414

Well-defined operation, 351
WideElements

option to FormGroupoid, 253
option to FormRingoid, 322

Withlmages(Inverselmages),409
WithUnityQ

z

functions over ringoid, 385
matrix extensions, 376
polynomial extensions, 358
ringoids, 125,334

distribution of orders, 23
family of groupoids, 276
family of ringoids, 341
groupoid variations, 277
subgroups, 36
Z[.J(i),215

ZdAssociatesQ 217, 429

Index 467

ZdCombineAssociates,433
ZdConjugate,222,429
ZdDivide, 217, 429
ZdDividesQ,431
ZdDi visors, 222, 431
ZdlrreducibleQ, 218, 429
ZdNorm, 218, 433
ZdPossibleNormQ, 224, 433
ZdPossibleNorms,224,433
ZdQ,429
ZdUnitQ, 221, 429
Zero, 123,331

functions over ringoid, 389
matrix extensions, 376
polynomial extensions, 358

Zero divisors, 130
ZeroDivisorQ, 131,338

functions over ringoid, 385
matrix extensions, 376

ZeroDivisors,131,334
Zeros, of a polynomial, 365
ZG, family of groupoids, 276
ZMap, family of Morpho ids, 149,399
ZR, family ofringoids, 276, 344
zx, family of groupoids, 278

WITH MATHEMATICA'

REGISTRATION C.\RD

Since this field is fast-moving, we expect updates and changes to occur that might necessitate
sending you the most current pertinent information by paper, electronic media, or both, regard­
ing Exploring Abstract Algebra with Mathematica®. Therefore, in order to not miss out on re­
ceiving your important update information, please fill out this card and return it to us promptly.
Thank you.

Name: __ __

Title: __ _

Company: __ _

Adilless: __ __

City: ______________________________ _ State: ____ _ Zip: ___________ _

Country: __________________________ ___ Phone: ________________________ __

E-mrul: __ __

Areas of Interestffechnical Expertise: __ _

Comments on this Publication: __ _

o Please check this box to indicate that we may use your comments in our promotion and
advertising for this publication.

Purchased from: ____________________________________ __
Date of Purchase: ____________________________________ _

o Please add me to your mruling list to receive updated information on Exploring Abstract Algebra
with Mathematica® and other TELOS publications.

o I have a D IBM compatible D Macintosh D UNIX D other

Designate specific model __ _

~~~ THE == ELECTRONIC 

110S® ~':RARY 

SCIENCE 

Return, our lOstaoe- laid rl'uistration card toda\ ! 



mIlIH 010tl 

BUSINESS REPLY MAIL 
FIRST-CLASS MAIL PERMIT NO. 5863 

POSTAGE WILL BE PAID BY ADDRESSEE 

TELOS PROMOTION 
SPRINGER-VERlAG NEW YORK, INC. 
ATTN: J. Roth 
175 FIFTH AVENUE 
NEW YORK NY 10160-0266 

NEW YORK, NY 

I NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
    /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
    /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
    /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
    /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
    /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
    /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




