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Preface 

This book consists of two parts. Part I describes the essential Mathematica 
commands illustrated with many examples and Part II presents a variety of 
applications to mathematics and physics showing how Mathematica could be 
systematically used to teach these two disciplines. 

The book is based on an introductory course taught at the University of 
Illinois at Chicago to advanced undergraduate and graduate students of the 
physics department who were not supposed to have any prior knowledge of 
Mathematica. 

Mathematica is a huge mathematical software developed by Wolfram Research 
Inc. It is an interactive high-level programming language that has all the 
mathematics one is likely to need already built-in. Moreover, its interactivity 
allows testing built-in and user-defined functions without difficulty thanks to 
numerical, symbolic and graphic capabilities. All these features should en
courage students to look at a problem in a computational way, and discover 
the many benefits of this manner of thinking. For instance, when studying a 
new problem, Mathematica makes it easy to test many examples that might 
reveal unsuspected patterns. 

The reader is advised to first study Chapter 1 of Part I entitled A Panorama 
of Mathematica which presents an overview of the most frequently used com
mands. The following chapters—dealing with Numbers, Algebra, Analysis, 
Lists, Graphics, Statistics and Programming—go into more details. The reader 
would probably make the most of the book browsing, as soon as possible, Part 
II, devoted to Applications to Mathematics and Physics, coming back to Part 
I to go deeper into specific commands and their various options. 

This book is intended for beginners who want to be able to write a small 
efficient Mathematica program in order to solve a given problem. Having this 
in mind, we made every effort to follow the same technique: first the problem is 
broken up into its different component parts, then each part of the problem is 
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solved using either a built-in or a user-defined Mathematica function, checking 
carefully that this function does exactly what it was supposed to do, and the 
program is finally built up by grouping together all these functions using a 
standard structure. 

Note concerning the figures 

Most figures have been generated using colors as indicated by their Mathematica 
code but are represented in the book using only various shades of grey. However 
all the figures can be found in color in the accompanying CD-ROM which also 
contains all the Mathematica cells that appear in the book. 

Nino Boccara 
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Part I 

Essential Commands 



This first part describes the essential Mathematica commands. 

Chapter 1 gives a detailed overview of the most frequently used Mathe
matica commands, starting from the most elementary and culminating in an 
introduction to Mathematica programming with a detailed application to the 
Collatz conjecture and possible generahzations. After studying this chapter, 
the reader should be able to tackle the applications presented in Part II com
ing back to a specific chapter of Part I to study more closely a particular 
command and its various options to better understand how a user-defined 
function solving a specific problem is built up. 

Chaper 2 is dedicated to numbers. Mathematica distinguishes integer—odd, 
even, prime, and Gaussian—, and rational, real, and complex numbers. Math
ematica can manipulate these numbers in different bases with any precision. 
The chapter ends with a discussion of positional number systems, the Zeck-
endorf representation, and calendars which, as a matter of fact, are multibase 
positional number systems. 

Chapter 3 deals with algebra. It examines algebraic and trigonometric ex
pressions, how to solve equations either exactly or numerically, and describes 
a few built-in Mathematica functions related to linear algebra. 

Chapter 4 is devoted to calculus. It studies differentiation and integration, 
differential equations, sums and products, power series and limits, complex 
functions, Fourier transforms and Fourier series, Laplace and Z transforms, 
and in conclusion shows how Mathematica can help solve recurrence equations 
and partial differential equations. 

Chapter 5 studies lists that provide an efficient way of manipulating groups 
of expressions as a whole. It shows how to create lists; extract or add ele
ments to lists; and find, group, rearrange, and count elements. Many built-in 
Mathematica functions are listable indicating that the function should auto
matically be threaded over lists that appear as its arguments. User-defined 
functions can also be made listable. 

Chapter 6 explains how to generate graphics that are important compo
nents of many applications. Mathematica provides powerful graphics capabil
ities. We can plot two- and tridimensional graphics, using different coordinate 
systems. We can also plot lists of data and use a lot of options dealing with 
colors, text, labels, and legends, Graphics can be grouped in arrays. Using spe
cific packages, we can produce special plots such as log-log plots, bar charts, 
pie charts, and histograms. Manipulating graphics primitives, that is, points, 
line, polygons, and circle, we can draw a variety of figures. We can animate 
graphics, draw vector fields, gradient fields, contour plots, and density plots. 

Chapter 7 is dedicated to probabihty and statistics. Mathematica can gener
ate various types of random numbers: integers or reals uniformly distributed in 
a given interval. Mathematica can also generate random numbers distributed 
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according to most discrete and continuous probability distributions such as 
Bernoulli, binomial, Poisson, normal, Cauchy, gamma, Pareto, and so on. To 
analyze data we have at our disposal a variety of statistical tools with the 
possibility of drawing graphics illustrating our results. 

Chapter 8 explains how to write simple and efficient basic programs. After 
a brief review of the Mathematica language, we examine functional program
ming which is characteristic of Mathematica although other types can also be 
used. In order to build up a function generating, for example, the Fibonacci 
number of a given order, we study different programming methods and show 
that the CPU time necessary to generate such a Fibonacci number may vary 
by many orders of magnitude ranging from hours to a fraction of a second 
depending on how efficient the program is. 



A Panorama of Mathematica 

This rather long chapter presents an overview of the most frequently used 
Mathematica commands. 

1.1 Notebooks and Cells 

Mathematica consists of two separate programs: the kernel and the front end. 
The kernel is the computational engine, whereas the front end is the user 
interface. The user sends commands to the kernel through the front end. The 
kernel sends back a postscript code that is displayed in the front end. 

A Mathematica notebook is an interactive document combining text, graphics, 
and calculations. Notebooks are platform independent. The present document 
is a notebook. 

A notebook is organized in cells. On a computer screen, a cell is defined by 
a square bracket on the right-hand side. There are three types of cells: text, 
input, and output cells. 

Commands sent to the kernel are entered in input cells. The cell below is an 
input cell: 

23 + 14 

When an input cell is evaluated by pressing | SHIFT 11 RETURN |, the result 
of the kernel computation is sent back to the front end and displayed in 
an output cell. The cell below is the output cell resulting from sending the 
previous command to the kernel. This cell is a text cell. 

37 
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1.2 Basic Syntax 

All built-in function names have an initial capital letter. Most function names 
are explicitly spelled out (Integrate , Plot , . . .) except a few abbreviations 
of common use (Sin, Det, . . . ) . If a name consists of more than one word, 
the first letter of each word is capitalized, and no spaces separate the words 
(ListPlot, FindRoot, . . . ) . The number of built-in functions is extremely 
large. Mathematica is case sensitive: x and X are two different symbols. 

It is good practice to name variables and functions as explicitly as possible 
and avoid using an initial capital letter when naming user-defined functions. 

Mathematica uses different types of bracketing. Parentheses ( ) are used to 
explicitly group terms and force the correct order of evaluation as in x -
(y-x). Square brackets [ ] are used for functions; for example, the sine of x 
is denoted Sin[x] and not s in(x) . Curly braces {• • •} are used to group the 
elements of a list as {a ,b ,c} . Double square brackets are used for indexing: 
V [ [n] ] , for instance, represents part n of v. Mathematica gets confused when 
the wrong bracket type is used. 

Commas are used to separate the elements of a list or the arguments of a 
function. A semicolon at the end of an input tells Mathematica to perform 
the operation but not display the output. Semicolons are also used to separate 
different expressions written on the same line. For example, 

a = 5; b = 3; c = 7; 

tells Mathematica to assign the values 5, 3, and 7 to the symbols a, b, and c 
respectively without, however, displaying an output. 

A space between two expressions is understood by Mathematica as multiplica
tion: f inal result is not an acceptable name, it is understood as the product 
of f ina l and result . An acceptable name would be finalResult. 

1.3 Basic Operations 

Mathematica can be used as a pocket calculator but arithmetic operations 
can be done with any number of significant digits. 

(4536784519876453286 - 443217654393562751 + 
7659432176587356289 - 321736482582441593) / 5467821 

11431262559487805231 
5467821 
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3429854 67532098 

231625236453692 

321 

10460353203 

(2.67 + 5.72 / 3.4) / 1.58 

2.75465 

Using parentheses ( . . . ) , the expression above could also have been written: 

(2.67 + (5.72 / 3 .4)) / 1.58 

2.75465 

Numbers can be manipulated using an arbitrary base whose maximum value is 
36. BaseForm[number, b] displays number in base b. If b > 10, Mathematica 
uses letters. 

{BaseForm[137, 7 ] , BaseForm[379, 27]} 

{2547, el27} 

Using the notation b ' ' "d ig i t s , where each of the digits is less than b, the 
number d i g i t s in base b is displayed in base 10. 

{7^^254, 27""el} 

{137, 379} 

In the following cell, the first term has infinite precision and the second one 
has machine precision. The command N [expression] gives the numerical 
value of expression. N [expression, n] attempts to give a result with n-digit 
precision. 
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Sqrt [x] or yGc gives the square root of x. ^/x is entered using the Basiclnput 
submenu of File -^ Palettes. 

{Sqrt [ 5 ] , x/5, N [Sqrt [5]]} 

{Sqr t [5 ] , S q r t [ 5 ] , 2.23607} 

We can see the precision from the InputForm: 

{Sqr t [5 ] , N[Sqrt[5]] / / InputForm} 

{Sqr t [5 ] , 2.23606797749979} 

By definition, the Prec is ion of x is equal to minus the decimal logarithm of 
the ratio Zix/x, where Ax is the uncertainty on x. The machine precision is 
15.9546. Prec is ion is different from Accuracy which is equal to minus the 
decimal logarithm of the uncertainty A x. That is, 

r e l a t i v e e r ro r = IQ-P^^ î̂ ^^^ and absolute e r ro r = iQ-̂ ^̂ ^̂ ^̂ y 

Irrational numbers can be manipulated with any chosen precision. 

N[Pi, 100] 

3.14159265358979323846264338327950288\ 

41971693993751058209749445923078164\ 

06286208998628034825342117068 

The \ indicates that the output is continuing on the next line. The function 
Prec is ion [] gives the number of significant digits. 

Precis ion[N[Pi , 100]] 

100 

To avoid printing a long output, end the input expression with a semicolon 
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Timing[N[Pi, 100000];] 

{1.10356 Second, Null} 

Timing [expression] evaluates expression and gives the CPU time in sec
onds spent in the Mathematica kernel. Null is returned when no output is 
printed. 

1.4 Mathematica as a Functional Language 

In Mathematica everything is an expression. A Mathematica expression is any 
string of symbols of the form 

• [ • , • , . . . ] 

where • is a placeholder in which we can write either pure symbols or other 
expressions. At the front of the square bracket is the head of the expression, 
inside the square bracket are the elements of the expression. In Mathematica^ 
this is the internal form of everything. For example, gd [x, ab] is an expres
sion whose head is gd and x and ab are elements. This expression may also 
be viewed as the function gd of x and ab. Variable names can consist of at
tached letters and numbers, but the first symbol cannot be a number; v3 is 
an accepted variable name but 3v will be understood by Mathematica as 3 
times V. 

Head[gd[x, ab]] 

gd 

Inputs in operator notation are transformed into internal forms that are com
binations of expressions. These internal forms could be used instead of tra
ditional arithmetic notations. This is, however, too cumbersome and not rec
ommended. 

{3 + 6, P lus [3 ,6 ]} 

{9, 9} 
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{4 * 5, 4 5, Times[4, 5]} 

{20, 20, 20} 

Instead of the symbol * to multiply two numbers, it is simpler to leave an 
empty space between the two numbers. 

{2S 

{16, 

Power[2, 

16} 

{5 + 2 1, 

4]} 

Complex[5, 2]} 

{5 + 2 I , 5 + 2 1} 

In the full forms of the last four examples, the Head of the expressions is 
explicit. 

{Head [Plus [x + y ] ] , Head[x + y]} 

{Plus, Plus} 

To find internal forms, use the function FullForm. 

{FullFormCx + y ] , FullForm[x y ] , FullForm[x^] , 

FullForm[x - y ] , FullForm[x + y I ] , FullForm[a, b, c ]} 

{PlusEx, y ] , Times[x, y ] , 

Power[x, y ] , Plus[x, Times[-1, y ] ] , 

Plus[x, Times[Complex[0, 1 ] , y ] ] . 

Lis t [a , b, c ]} 

1.5 Getting Help 

To access the Mathematica help system in the notebook environment we just 
have to go to the Help menu and click on Help Browser. Entering a command. 
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say, Plot and clicking the Go button we have to choose among various types 
of plots such as 2D Plots, 3D Plots, Contour Plots, and so on. Selecting 2D 
Plots and cUcking, for example, on ListPlot, a window appears with detailed 
information on how to enter the command. This information is completed with 
Further Examples illustrating how to use the ListPlot command. The Help 
Browser gives also access to Wolfram's Mathematica book [68]. Also worth 
consulting when looking for help are Ruskeepaa's Mathematica Navigator [48] 
and the very detailed four-volume Mathematica Guidebooks by M. Trott [?]. 

It is also possible to get information about a specific Mathematica command 
by entering the symbol ? followed by the command name. For example: 

?Plot 

P lo t [ f , {x, xmin, xmax}] generates a p lo t of f as a function 
of x from xmin to xmax. P l o t [ f l , f2 , . . . , x, xmin, xmax] 
p l o t s severa l functions f i . 

The double question mark ?? adds information about attributes and options. 
For example: 

??Plot 

Plot[f, {x, xmin, xmax}] generates a plot of f as a function 

of X from xmin to xmax. Plot[{fl, f2, ... }, {x, xmin, xmax}] 

plots several functions fi. 

Attributes[Plot] = {HoldAll, Protected} 

Options [Plot] = {AspectRatio -^ 1/GoldenRatio, Axes —> Automatic, 

AxesLabel -^ None, AxesOrigin -^ Automatic, 

AxesStyle -^ Automatic, Background —^ Automatic, 

ColorOutput —> Automatic, Compiled -^ True, 

DefaultColor —^ Automatic, DefaultFont :-̂  $DefaultFont, 

DisplayFimction r̂ " $DisplayFunction, 

Epilog ^ { }, FormatType :-̂  $FormatType, 

Frame -^ False, FrameLabel —> None, 

FrameStyle —^ Automatic, FrameTicks -^ Automatic, 

GridLines -^ None, ImageSize -^ Automatic, 
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MaxBend -^10., PlotDivision -> 30., 

PlotLabel -^ None, PlotPoints -^ 25, 

PlotRange -> Automatic, PlotRegion —> Automatic, 

PlotStyle —> Automatic, Prolog -^ { }, RotateLabel^^ True, 

TextStyle :-> $TextStyle, Ticks -^ Automatic} 

If we want to list all function names containing the word Plot we can use 
the wild card * as shown below. We can then obtain information on a specific 
function by clicking on its name. 

?*Plot* 

System* 

ContourPlot, 

DensityPlot, 

ListContourPlot, 

ListDensityPlot, 

ListPlot, 

ListPlotSD, 

ParametricPlot, 

ParametricPlotSD, 

Plot, 

PlotSD, 

Plot3Matrix, 

PlotDivision, 

PlotJoined, 

PlotLabel, 

PlotPoints, 

PlotRange, 

PlotRegion 

PlotStyle, 

1.6 Logical Operators 

We can use logical operators to compare two expressions. These commands 
return either True or False. 

The symbol != is equivalent to Unequal, that is, ^. 

{3 > 4, 5 == 3 + 2, 3 
5 > 7, 3 7̂  1 H- 2} 

!= 2, 4 < 6, 3 < 3, 

{False, True, True, True, True, 
False, False} 

Function names: 

{HeadEx > y] , Head[x == ] y ] , Head[x < y] , Head[x f̂  y]} 
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{Greater, Equal, LessEqual, Unequal} 

&& is equivalent to And and II to Or. 

{HeadEx && y ] , Head[x M y ] } 

{And, Or} 

Here are more examples combining several logical operators. 

(!(4 == = 3)) 

True 

4 == 2 + 2 && 3 ̂  5 

True 

4 < 2 II 3 < 5 

True 

Xor is the exclusive Or, that is, Xor[expression! , expression2, . . .] 
gives True if an odd number of expressionk are True, and the rest are 
False, it gives False if an even number of express ionk are True, and the 
rest are False. 

Xor [3 == 2 + 1, 2 == 4 -- 2 

False 

Xor [3 == 2 + 1, 2 == 0] 

True 

((4 > 2) II (5 < D) && ((4 < 9) II (2 < D) 
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True 

Be careful, do not mix up = and ==. The command a = 6 means that the 
symbol a is given the value 6 (this could also be written Set [a, 6 ] ) , while 
the command a == 6 yields True if a is equal to 6 and False otherwise. 

1.7 Elementary Functions 

{Sin[Pi/4], Sin[0.785], Cos [Pi/6]} 

1 Sqrt [3] , 

^ i ^ ^ ' '•''''''' ^ - ^ > 

Because sin(7r/4) and cos(7r/6) can be evaluated exactly, the outputs are given 
with infinite precision. This is not the case for sin(0.785). 

We could also have used the symbol TT which, as all other Greek letters, can 
be entered as \ [LetterName] where LetterName stands for Pi. We can also 
either use the command Palettes in the File menu (TT is found in the palette 

Basiclnput), or type | ESC | p | ESC |. 

Tan[Pi/4] 

1 

{ArcSin[ l ] , ArcCos[l] , ArcTan[l]} 

Pi Pi^ 

If not specified, the argument unit is Radian. Degree can also be used. 

{Sin[45 Degree], Cos [45 Degree]} 

r 1 Sqrt [3] -( 

I Sqrt [2] ' 2 J 
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Actually Degree gives the value in radians of one degree. Its numerical value 
is 7r/l80. 

{Tan[22 Degree], Cot [67 Degree]} 

{Tan[22 Degree], Cot[67 Degree]} 

{N[Tan[22 Degree], Cot [67 Degree]]} 

{0.404026, 0.424475} 

Here are other elementary functions. 

{Sinh[1 .3] , 

{1.69838, 1 

{Log [3 .78] , 

Cosh[l 

97091, 

Exp[-0 

. 3 ] , Tanh[l 

0.861723, 1 

.67]} 

3 ] , Coth 

.16047} 

[1.3]} 

{1.32972, 0.511709} 

1.8 User-Defined Functions 

A delayed assignment is made with the SetDelayed function also noted :=. 
When the SetDelayed function is used, the right-hand side is not evaluated 
whereas in the case of the Set function, noted =, the right-hand side is 
immediately evaluated, as illustrated below, where we have used the built-in 
function Random [] that gives a uniformly distributed pseudorandom real in 
the interval [0,1]. 

a = Random [] 

{a, a, a} 

b : = Random [] 

{b, b , b} 
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0.218807 

{0.218807, 0.218807, 0.218807} 

{0.244376, 0.716337, 0.850842} 

If we try to define a function by entering: 

f [x] = x^3 - 3 x^2 + 5 X - 7; 

f [x ] 

-7 + 5x - 3 x^ + x^ 

it does not work because by doing so we are just assigning the expression x''3 
- 3 x ' ' 2 + 5 x - 7 t o f [ x ] , and entering f [a] will not replace x by a and 
give a^ — 3a^ + 5a — 7 as shown below. 

Clear[a] (* Clearing the value of a *) 

f [ a ] ) 

f [a ] 

Any input placed between (* and *) is ignored. Useful comments can be 
inserted anywhere into a Mathematica code using the notation (* comment 
*) . 

To define a function, we have to use a pattern object which can stand for any 
Mathematica expression. _ (short form of Blank []) is such a pattern object, 
and we should use x_ to denote the formal argument of the function f [ ] . 
Moreover we have to use SetDelayed and not Set 

f [x_] := x'̂ 3 -3 x'̂ 2 + 5 x - 7 

f [a ] 

-7 + 5 a - 3 a^ + a^ 

And we can check the definition of the function f [ ] . 

I?f 
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Global ' f 

f [x] = - 7 + 5 X - 3 x^ + x^ 

f [x_] := - 7 + 5 x - 3 x^ + x^ 

Observe the difference when we use = (Set) instead of := (SetDelayed) 

fl[X-] 

f2[x-] 

f l [ a + 

f2[a + 

= Expand[x"3]; 

:= Expand[x"3] 

1] 

1] 

(l + a)3 

1 + 3 a + 3 a^ + a^ 

The argument type may be specified. 

g[n_Integer] := n (n+1) (n+2) 

g[5] 

210 

g[5.4] 

g[5.4] 

- Integer (short form of Blank [Integer]) stands for any expression with 
head Integer . Because 5.4 is not an integer, g[5.4] cannot be evaluated. 

h [x_Real] 

h[3.7] 

:= (x^5 + 3 x'̂ 2) / (x-1) 

272.04 

h[2] 

h[2] 
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Because 2 is not a real number, h[2] cannot be evaluated but 

h[2 . ] 

44. 

is evaluated. 

gp[n_Integer?Positive] := (n+l)"2 

gp[-2] 

gp[-2] 

gp [-2] is not evaluated, -2 is an integer but not a positive integer. 

Functions can also be defined as pure functions, that is, not giving them a 
specific name. 

f [ x j := x'̂ 2 

{ f [ a ] , #-̂ 2 &[a], FunctionEx, x'^2][a]} 

{a2, a2, a2} 

Another example: 

{#1'^#2 &[a, b] , Function[{x, y} , x^y] [a, b]} 

{a^ a^} 

1.9 Rules and Delayed Rules 

If, for instance, we define an expression and assign a value to one of the 
symbols in the expression, the expression is lost as shown below. 

(2 X + 5)^2 

X = 3 

(2 X + 5)'^2 
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( 5 + 2 x)2 

X = 3 

121 

We can surmount this problem by using a replacement rule. 

Clear[x] 

(2 X + 5)'^2 / . X -> 3 

(2 X + 5)^2 

121 

( 5 + 2 x)2 

The arrow -^ can be entered in many different ways. We can type ->, or 
ESC I -> I ESC I, or \ [RightArrow]. 

HoldForm[FullForm[(2 x + 5)'-2 / . x -> 3]] 

ReplaceAll[Power[Plus[Times[2, x ] , 5 ] , 2 ] , Rule[x, 3]] 

The expression on the left of / . , which is the short form of ReplaceAll, is 
evaluated before the replacement is made as shown in the following example. 

(a + 3a) / . 3 a -> A 

4 a 

Once the expression has been evaluated, there is no 3a to be replaced by A. 
Compare the following outputs. 

x + y / . x - > y / . y - > a 

X + y / . {x -> y, y -> a} 

2 a 

a + y 
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Entering expression / / . r u l e s repeatedly performs replacements until 
expression no longer changes. The same result is obtained with 
ReplaceRepeated. 

X + y //. {x -> y. y ->a} 

2 a 

ReplaceRepeated [x + y, {x-> y» y -> a}] 

2 a 

In the command above the number of iterations is supposed to be infinite 
(not really, it is given by the value of the option Maxlterations). We can, 
however, limit the number of iterations. 

ReplaceRepeated[a, a -> 1 + a, Maxlterat ions -> 10] 

RepaceRepeated : : r r l im : 

Exi t ing a f t e r a scanned 10 t imes . More. . . 

10+a 

The maximum number of times a rule will be applied is given by the value of 
the Maxlterat ions option. 

Options[ReplaceRepeated] 

{Maxlterations -> 65536} 

If we wish to have the right-hand side of the rule evaluated only at the time 
the rule is applied, we have to use : > (short form of RuleDelayed []), instead 
of -> (short form of Rule [] ). 

{a. 
{a. 

a. 

a. 

a} /. 

a} /. 

a 

a 

-> Random [] 

:> Random [] 

{0.229831, 0.229831, 0.229831} 

{0.849633, 0.922095, 0.566822} 
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1.10 Built-in Nonelementary Functions 

There exist a huge number of built-in nonelementary functions. Here are a 
very few examples. 

LegendreP[n, x] 

Legendre polynomials of degree n 

ChebyshevT[n,x] 

ChebyshevU[n,x] 

Chebyshev polynomials of degree n of the first and second kinds 

LaguerreL[n, x] 

Laguerre polynomials of degree n 

BesselJ[n , z] 
BesselY[n,z] 

Bessel functions of order n of the first and second kinds 

Gamma[z] 

Euler gamma function 

Probably the most complete collection of formulas and graphics about math
ematical functions can be found at http://functions.wolfram.com. 

1.11 Plotting 

1.11.1 2D plots 

The command Plot [f [x] , {x, x l , x2}] generates a two-dimensional plot 
of f [x] for X varying from xl to x2. 

P lo t [Exp[x] , {x, - 2 , 2 }] ; 
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-2 -1 1 

Fig. 1.1. Graph of e" for x e [-2,2]. 

Plot[BesselJ[0, x ] , {x, 0, 10}]; 

-0 .4 

Fig. 1.2. Graph of the Bessel function of the first kind Jo{x) for x G [0,10]. 

1.11.2 3D plots 

The command PlotSD [f [x, y] , {x, x l , x2}, {y, y l , y2}] generates a 
three-dimensional plot of f{x,y) for x,y e [a:l,x2] x [yl,y2]. 

Plot3D[Sin[x] Cos[2 y] , {x, - 2, 2 } , {y, - 2, 2 } ] ; 

In the chapter dedicated to graphics, we learn how to use various options to 
change fonts and color, label the axes, include text, and so on. 
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Fig. 1.3. Graph of sm{x) cos{2y) for {x,y} G [-2,2] x [-2,2]. 

1.12 Solving Equations 

1.12.1 Exact Solutions 

The command Solve [equations, variables] attempts to solve an equation 
or set of equations for the variables. 

Solve [x'̂ 3 - 2 x^2 + 3 x - 2 == 0, x] 

{{x -^ 1}, {x -. ^(1 - 1^7)}, {x - ^(1 + 1^7)}} 

Solve[{2 X - 4 y == 3 , X + 5 y == - 2 } , {x, y}] 

{(--i>.{x--i)} 

Note the use of the == sign because the two sides of the equation should have 
identical values once the unknowns are replaced by their values. 

1.12.2 Numerical Solutions 

The command NSolve [equationl, equation2 , . . . , variable l , variable2 , 
. . . ] gives a list of numerical approximations to the roots of a system of poly
nomial equations. 
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Solve[{NSolve[2 x^2 - y == 1, x + y^2 == 2, {x, y}]] 

{{x -̂  - 1.17965, y ̂  1.78316}, 

{x -> 0.089826 - 0.451507 I, y ̂  - 1.39158 - 0.162228 I}, 

{x -^ 0.089826 + 0.451507 I, y ̂  - 1.39158 + 0.162228 I}, 

{x ̂  1., y -. 1.}} 

FindRoot [equation, {x, xO}] searches for a numerical solution to equation, 
starting with x = xO. 

FindRoot[Cos[x] == 2 X , {x. 0. 3}] 

{x -> 0.450184} 

FindRoot[Sin[x] == 3 2, {x, 1 + 1}] 

{x -^ 1.5708 + 1.83094 i} 

1.13 Derivatives and Integrals 

1.13.1 Exact Results 

The commands f ' [x ] , D[f [ x ] , x ] , and Derivative [1] [f] [x] are equiva
lent. They all denote the first derivative of f [x] with respect to x. Simi
larly, the commands f " [x ] , D[f [x] , {x, 2}], and Derivative [2] [f] [x] 
all denote the second derivative of f [x] with respect to x. . f"' [x] is a valid 
command for the third derivative but f ^̂ ^ [x] (entered using the Basiclnput 
submenu of the Palettes menu), is understood as the cube of f [x] . 

Clear[f] 

f[x_] : = 

f [x] 

f"[x] 

{ f" ' [x] . 

x"3 + 2 Cos[x] 

f (3) [x] } 

3 x-̂  ~ 2 Sin[x] 

6 X - 2 Cos[x] 

{6 + 2 Sin[x] + ( f^) [x ]} 
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D [ f [ x ] , 

D [ f [ x ] . 

Derivat 

Derivat 

x] 

{x 
ive 

ive 

. 2}] 

[1] [f] [x] 

[2] [f ] [x] 

3 x-̂  - 2 S i n [ x ] 

6 X - 2 Cos[x] 

3 x^ - 2 S i n [ x ] 

6 + 2 CosCx] 

D[x^4 Cos [7-^2], {x, 3 } , {y, 2}] 

24 X ( - 4 y2 Cos[y2] - 2 S inEy^] ) 

We have to be careful if we want to define a function as the derivative of 
another one. 

C l e a r [ f ] 

f [x_] := D[x SinCx] , x] 

f [ x ] 

X Cos[x] + S i n [ x ] 

The result looks correct; but let us t ry to find the value of f [x] for a specific 
value of X. 

f [ P i ] 

Gene ra l : : i v a r : P i i s n o t a v a l i d v a r i a b l e . M o r e . . . 

D[0 , P i ] 

Because f [x] has been defined using := , the right-hand side is kept in an un-
evaluated form. When we enter f [P i ] , Mathematica tries actually to evaluate 
D[Pi Sin[Pi], Pi] which has no meaning. If, on the contrary, we define f [x] 
using = and not : =, Mathematica immediately evaluates f [x] and replacing 
X by P i gives the correct result. 
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Clear[f] 

f [ x j = D[x 

f [x ] 

f [P i ] 

S in [x ] , x] 

X Cos[x] + Sin[x] 

X Cos[x] + Sin[x] 

-Pi 

The command In teg ra t e [f, x] gives the indefinite integral / f{x) dx\ 
In t eg ra t e [f, {x, a, b}] gives the definite integral /^ / (x) dx. The symbol 
/ can be entered using the Palettes submenu Basiclnput. 

Clear[f] 

f [x_] := x^3 + X Cos[x] 

I n t e g r a t e [ f [ x ] , x] 

x4 
— + Cos[x] + X Sin[x] 
4 

I n t e g r a t e [ f [ x ] , {x, 0, Pi/2}] 

- 64 + 32 Pi + Pi"^ 

64 

1.13.2 Numerical Integration 

If In t eg ra t e does not work, NIntegrate will work if the integral is defined. 

P lo t [Tan[S in[x] ] , {x, 0, P i } ] ; 

The plot above shows that the definite integral is finite and we can evaluate 
its numerical value using NIntegrate. Mathematica cannot, however, find its 
exact value. 

In t eg ra te [Tan[S in [x ] ] , {x, 0, Pi}] 

/;Tan[Sin[x]]dx 
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0.5 1 1.5 2 2.5 3 

Fig. 1.4. Graph o/tan(sinx) for x G [0,7r]. 

NIntegrate[Tan[Sin[x]], {x, 0, Pi}] 

2.66428 

1.14 Series Expansions and Limits 

Series [ f [ x ] , {x, xO, n}] gives the power series expansion of f [x] about 
X = xO up to order n. It indicates that the first neglected term is of the order 
(x - x O ) ^ + ^ 

Series[Exp[-2 x] Cos[3 x ] , {x, 0, 5}] 

1 - 2 X 
5 x^ 23 x^ 119 x"̂  61 x^ 

+ + 0[x]' 
2 3 24 25 

We can get rid of the term (x - xO)^ ~̂  and obtain a polynomial using the 
command Normal. 

Normal[Series[Exp[-2 x] Cos [3 x ] , {x, 0, 5}]] 

1 - 2 X -
5 x^ 23 x^ 119 x^ 61 x^ 

+ 24 25 
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Limit [expression, x -^ xO] finds the limit of expression when x tends to 
xO. If the Umit does not exist, Mathematica will either return the input un-
evaluated or I n t e rva l [a, b] indicating a possible range (a, 6) of values. 

Limit[(Exp[- 2 x] Cos[3 x] -1 + 2 x) / x^2, x -> 0] 

Limit[Cos[x] , x -> I n f i n i t y ] 

I n t e r v a l [ { - 1 , 1}] 

Sometimes, the command Limit gives a wrong result! 

Limit[Abs[x] / x, x -> 0] 

The result is not correct. If x approaches 0 from the right, the limit is indeed 
1 but from the left the limit is - 1 . Prom a purely mathematical point of 
view, the limit does not exist. Actually the wrong limit was obtained because 
Mathematica assumed that 0 was approached from the right. To obtain the 
limit when 0 is approached from the left, we have to specify the Direct ion. 

Limit[Abs[x] / x, x -> 0, Direct ion -> 1] 

- 1 

The option Direct ion -> 1 means that we have to approach 0 going in the 
direction of 1 that is from the left of 0. 

Here is another example. The function Sign[x] gives - 1 , 0, or 1 depending 
on whether x is negative, zero, or positive. 

Plot [Sign [x ] , {x, - 1 , 1}]; 

{Limit[Sign[x], x -> 0, Direction -> 1], Sign[0], 
Limit[Sign[x], x -> 0, Direction -> -1]} 
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1 

0 .5 

- 1 - 0 . 5 

- 0 . 5 

0 .5 1 

{-1, 0, 1} 

Fig. 1.5. Graph o/sign (x) for x G [—1,1]. 

1.15 Discrete Sums 

Sum[f [n] , {n, n l , n2}] evaluates the sum of the values of f [n] when n 
varies from n = nl to n = n2. 

For example, 

SumCn, {n, 1, k}] 

k (1 + k) 

Sum[n^2, {n, 1, k}] 

k(l + k)(H-2k) 

SumEn ,̂ {n, 1, 25}] 

23485971550561141649 

14626411683380640000 
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SumCl / n'^2, {n, 1, Inf inity}] 

Pi2 

NSum[f [n] , {n, n l , n2}] gives a numerical approximation of the sum of 
the values of f [n] when n varies from nl to n2. 

NSum[Log[n] / n! , {n, 1, Inf inity}] 

0.603783 

1.16 Ordinary Differential Equations 

1.16.1 Symbolic Solutions 

DSolve [equation, y , x] tries to symbolically solve the differential equation 
for the function y, with independent variable x. As for all types of equations, 
note the use of the sign ==. C[l] represents an arbitrary constant. 

DSolve [y' [x] + 2 y [x] == 2, y [x] , x] 

{y[x] ^ 1 + e-^^ C[l]} 

The equation below is a Cauchy-Euler equation. It has an obvious solution 
of the form y{x) = x^, where a is either real or complex. C[l] and C[2] are 
arbitrary constants. 

DSolve [x^2 y''x] + 2 x y'[x] - 2 y[x] = = 0 , y[x] , x] 

{{y[x] ^ X C[l] + ^ } } 

Here is a pair of simultaneous differential equations. 

DSolve[ {x'[t] == y [ t ] , / [t] == - x [ t ] } , {x[t] , y [ t ] } , t ] 

{{x[t ] -^ C[l] Cos[t] + C[2] S i n [ t ] , 
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y [ t ] -^ C[2] CosEt] - C[l] SinEt]}} 

As in the example above, C[l] and C[2] are arbitrary constants. 

1.16.2 Numerical Solutions 

NDSolve [equation, y, {x, a, b}] finds a numerical solution to the differ
ential equation for the function y, with independent variable x in the interval 
(a, 6). 

so lu t ion = NDSolve [{y'[x] - x^2 y[x] == 0, y[0] == l } , y [ x ] , 
{x, 0, 1}] 

{{y[x] -> Interpolat ingFunctionCO., 1 . , <> ] [x]}} 

The result is an Interpola t ingFunct ion that represents the approximate 
numerical solution y{x) for x in the interval (a, b). The result can be used in 
the following way. Define the function f [x] by 

Clear[f] 

f [x_] = y[x] / . so lu t ion [[1]] 

Interpolat ingFimctionEO., 1 . , <>] [x] 

where, as mentioned above, we use the sign = and not : =. And we can calculate 
the value of f [x] for a specific value of the variable x. 

{ f [ 0 ] , f [ 0 . 5 ] , f [ l ] } 

{ 1 . , 1.04255, 1.39561} 

plot a graph of the function. 

PlotCfEx], {x, 0, 1}]; 

determine the derivative as an Interpolat ingFunct ion, and calculate its 
value for a given value of x. 

I f [x] 
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1.2 

1.15 

1.1 

1.05 

0.2 0.4 0.6 0.8 1 

Fig. 1.6. Graph of f{x) defined as an interpolating function for x G [0,1]. 

InterpolatingFunctionCO., 1 . , <>] [x] 

{ f ' [ 0 . 3 ] , f ' [0 .7 ] } 

{0.0908133, 0.549349} 

1.17 Lists 

Lists are extremely important objects. They provide a way to group any kind 
of expression. 

Here is a list of five elements and different operations on this Ust. 

1 = {a, f, b, e, c, 

{ P a r t [ l , 3 ] , 1 [ [ 3 ] ] } 

Length [1] 

1-̂ 2 

ExpCl] 

d}; 

(1+x) / 1 (* note th i s 

1 / (1+x) 

Sort [1] 

Partit ion [1,2] 

result and the next one *) 

{b, b} 
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6 

{a2, f 2 , b2, e2 , c2, d2} 

{E^, E^, E^, E®, E^, E^} 

a + x f + x b + x e + x c + x d + x 

a f b e c d 

a f b e c d 

a + x ' f + x ' b + x ' e + x ' c + x ' d + x 

{a, b, c, d, e, f } 

{{a, f } , {b, e } , {c, d}} 

Partit ion [ l i s t , n] partitions a list into nonoverlapping sublists of length 
n. 

Table [expression, k] generates a list of k copies of expression. 

Table [Random [ ] , {10}] 

{0.902025, 0.539515, 0.599448, 0.880183, 0.610582, 0.989756, 0.431891, 
0.656339, 0.798266, 0.0958655} 

Table [expression, k, kmin, kmax, ^k] generates a list of the values of 
expression when k runs from kmin to kmax using steps Ak. 

Table[Cos[x], {x, 0, P i / 4 , Pi/16}] 

Pi Pi SPi 1 , 
{1 , C o s [ - ] . C o s [ - ] , C o s [ — ] . ^ ^ ^ } 

Range [n] generates the list {1 , 2, , n}, Range [nl, n2] generates the list 
{nl , nl + 1, . . . , n2}, and Range [nl, n2, An] uses steps ^n. 

{Range[6], Range[3,12], Range[3,12, 3]} 

{{1 , 2, 3 , 4, 5, 6} , {3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, {3, 6, 9, 
12}} 
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Functions with attribute L i s tab le are automatically "threaded" over lists, 
so that they act separately on each list element. Most built-in mathematical 
functions are Lis tab le . 

l i s = {a, b , c} ; 

S i n [ l i s ] 
Log[l is] 

{S in[a ] , S in [b ] , Sin[c]} 

{Log [a] , Log [b] , Log [c] } 

A user-defined function can be made Lis tab le . 

f [ l i s ] 

f [{a , b , c}] 

Se tAt t r ibu tes [ f , L is tab le ] 

f [ l i s ] 

{ f [ a ] , f [ b ] , f [c ]} ] 

ClearAt t r ibu tes [ f , L is tab le] 

f [ l i s ] 

f [{a , b , c}] 

We could also, without making a function Lis tab le , evaluate the function 
at various points x if the function has a specified expression in terms of the 
variable. Look at the different behaviors of the functions g and h below. 

ClearAllCg, h] 

g[X-] 

{g[{a. 

:= x~2 

b, c } ] . 

(* cleair 

h[{a, b. 

a l l 

c}]} 

a t t r i b u t e s , see below *) 
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.2 K2 . 2 I {{a^, b ^ , c ^ } , h[{a, b , c}]} 

{g[x] / . X ^ {a, b , c } , h[x] / . x -> {a, b , c}} 

{{a2, b2, c2} , h[{a, b , c}]} 

It is often necessary to plot a list of data. In this case, we can use L is tP lo t . 

da ta = Table[{x, Cos[x] + 0 . 2 5 Random[]}, {x, 0, 2Pi, 0.2}] 

{{0, 1.13292}, {0.2, 0.999822}, {0.4, 0.932795}, {0.6, 0.993941}, 

{0.8, 0.711319}, {1., 0.618637}, {1.2, 0.536814}, {1.4, 0.385192} 

{1.6, 0.129086}, {1.8, -0.154444}, {2., -0.184746}, 

{2.2, -0.456455}, {2.4, -0.662042}, {2.6, -0.721847}, 

{2.8, -0.73873}, {3., -0.844616}, {3.2, -0.932651}, 

{3.4, -0.943502}, {3.6, -0.679174}, {3.8, -0.63348}, 

{4., -0.487377}, {4.2, -0.343637}, {4.4, -0.121386}, 

{4.6, 0.0293136}, {4.8, 0.12085}, {5., 0.410531}, {5.2, 0.64273}, 

{5.4, 0.857554}, {5.6, 0.794305}, {5.8, 0.934053}, {6., 1.20993}, 

{6.2, 1.00418}} 

The data represent the variations of cos(x) with some added noise (see output 
in Figure 1.7). 

p i = L i s t P l o t [ d a t a ] ; 

F i t [data, funct ions , va r iab les ] finds the least-squares fit to a list of 
data as a linear combination of functions of variables. 

s = F i t [data, {1 , x, x ' '2}, x] 

1.51558 - 1.35589 x + 0.217323 x^ 

In order to visualize how good the fit is, we plot the data and the least-squares 
fit on the same graph using the command Show. 
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Fig. 1.7. Plot of a list of data. 

pis = Plot[s, {x, 0, 2Pi}, DisplayFunction -> Identity]; 

Show[pi, pis, DisplayFunction -> $DisplayFunction]; 

1.5 

0.5 

- 0 .5 

Fig. 1.8. Data and least-square fit plots. 

The option DisplayFunction -> Identity suppresses the output to the 
screen and SDisplayFimction is the default setting for the option 
DisplayFimction. The command Show [graphics, options] displays graph
ics using the specified options. 

1.18 Vectors and Matrices 

An n-dimensional vector is a list of n elements that are not lists themselves. 
Here is a five-dimensional vector. 

vect = {xl , x2, x3, x4, x5} 
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A vector can be multiplied by a scalar. 

a vect 

{a x l , a x2, a x3, a x4, a x5} 

We can add two vectors having the same dimension. 

{xl , x2, x3, x4, x5} + {yl , y2, y3 , y4, y5} 

{xl + y l , x2 + y2, x3 + y3, x4 + y4, x5 + y5} 

The Dot and Cross products of two tridimensional vectors are given by 

{xl , x2, X 3} . {yl , y2, y3} (* or , equ iva len t ly , *) 

Dot[{xl, x2, X 3} , {yl , y2, y3}] 

x l yl + x2 y2 + x3 y3 

xl yl + x2 y2 + x3 y3 

Cross [{xl, x2, x3}, {yl , y2, y3}] 

{- x3 y2 + x2 y3, x3 yl - xl y3 , - x2 yl + xl y2} 

In general, Cross [v l , v2, . . . , vn] is a totally antisymmetric product that 
takes vectors of length n+1 and yields a vector of length n+1 that is orthogonal 
to all the n vectors v l , v2, . . . , vn. Here is an example for n = 3. 
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cp3 = Cross[{xl , x2, x3, x4}, {yl , y2, y3, y4}, {z l , z2, z3 , 
z4}] 

{x4 y3 z2 - x3 y4 z2 - x4 y2 z3 + x2 y4 z3 + x3 y2 z4 - x2 y3 z4, 
-(x4 y3 zl) + x3 y4 zl + x4 yl z3 - xl y4 z3 - x3 yl z4 + xl y3 z4, 
x4 y2 zl - x2 y4 zl - x4 yl z2 + xl y4 z2 + x2 yl z4 - xl y2 z4, 
-(x3 y2 zl) + x2 y3 zl + x3 yl z2 - xl y3 z2 - x2 yl z3 + xl y2 z3} 

Length[cp3] 

{cp3.{xl, x2, x3, x4}, cp3.{yl , y2, y3 , y4}, cp3.{z l , z2, z3 , 
z4}}//Simplify 

{0, 0, 0} 

There is a more general product: the so-called Outer product. 

?Outer 

Outer[f, listl, list2, ... ] gives the generalized outer 

product of the listi, forming all possible combinations 

of the lowest-level elements in each of them, and feeding 

them as arguments to f. Outer[f, listl, list2, ... , n] 

treats as separate elements only sublists at level n 

in the listi. Outer[f, listl, list2, ... , nl, n2, ... ] 

treats as separate elements only sublists at 

level ni in the corresponding listi. More ... 

Outer[f, {a, b}, {x, y}] 

{{f[a, x], f[a, y]},{f[b, x], f[b, y]}} 

A matrix is a list of lists having the same length. Here is a 3 x 2 matrix. 
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MatrixForm[{{al, a2, a3}, {bl, b2, b3}}] 

al a2 a3 
bl b2 bS 

Its transpose is the 2 x 3 matrix: 

Transpose [{al , a2, a3}, {bl , b2, bS}}] 

{{al , b l } , {a2, b2}, {a3, bS}} 

Mathematica can find the inverse of an n x n matrix, 

mat = {{1/2, 1/3, 1/4}, {1/3 , 1/4, 1/5}, {1/4, 1/5, 1/6}}; 
TableForm[mat] 
invMat = Inverse[mat] 

1 1 1 
2 ' 3 ' 4 
1 1 1 
3 ' 4 ' 5 
1 1 1 
4 ' 5 ' 6 

{{72, - 240, 180}, {- 240, 900, - 720}, {180, - 720, 600}} 

a result that can be verified: 

mat . invMat // TableForm 

1 0 0 

0 1 0 

0 0 1 

Mathematica can also find the eigenvalues of a square matrix. 

N[Eigenvalues[mat]] 

{0.875115, 0. 0409049, 0.000646659} 
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1.19 Clear, Clear All, and Remove 

The command Clear clears values and definitions but not attributes. 

a = 5 

a 

Clear[a] 

a 

5 

a 

To clear the value assigned to a symbol we can also use the command a 
which is a shorthand notation for Unset [a] . 

b = 6 

6 

b 

f [x_] := x^2 

SetAt t r ibu tes [ f , L is tab le ] 

f [ a ] 

Clear[f] 

f [ a ] 

f [ a , b] 
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a2 

f [a ] 

{ f [ a ] , f [b ] } 

Clear does not clear attributes. Using the command ClearAll we can clear 
values, definitions, and attribute values. 

f [ x j := x^2 

SetAttributes[f , Listable] 

f [ { a , b}] 

ClearAll[f ] 

f [a ] 

f [ { a , b}] 

{a2, b2} 

f [a ] 

f [ { a , b}] 

When starting a new problem, in order to avoid interference with previous 
variable values or function definitions, it is a good idea to execute the com
mand: ClearAll["Global'*"]. 

ExpectedValue is a built-in function defined in the package 
Sta t i s t i c s 'Descr ip t iveS ta t i s t i c s ' . Using the command Total [ l i s t ] 
which gives the sum of the elements in l i s t , we define the function 
ExpectedValue by 

ExpectedValue [ l is_List ] : = Tota l [ l i s ] / Length[lis] 

As expected we find 

ExpectedValue[{1, 2, 3 , 4, 5}] 

Now, if we load the package S t a t i s t i c s ' D e s c r i p t i v e S t a t i s t i c s ' in order 
to use the Mathematica built-in function, we have to remove our definition 
using Remove. 
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Remove[ExpectedValue] 

« S t a t i s t i c s ' D e s c r i p t i v e S t a t i s t i c s ' 

ExpectedValue[{1,2,3,4,5}] 

ExpectedValue[{1,2,3,4,5}] 

The result above shows that ExpectedValue does not work as the function 
we defined. We can ask Mathematica to tell us why. 

?ExpectedValue 

ExpectedValue[f, l i s t ] gives the expected value of the pure 

function f with respect to the sample d i s t r i b u t i o n of l i s t . 

ExpectedValue[f, l i s t , x] gives the expected value of the 

function f of x with respect to the sample d i s t r i b u t i o n 

of l i s t . More . . . 

Because ExpectedValue [f, data] gives the expected value of the function 
f with respect to the sample distribution of the data, we have, therefore, to 
specify the function f which is represented below by a pure function. 

ExpectedValue[(#)&, {1, 2, 3, 4, 5}] 

Here is another example. 

ExpectedValue[(#^)&, {1, 2, 3 , 4, 5}] 

45 

1.20 Packages 

When working in a particular area, we may need functions that are not 
built into Mathematica but that are defined in a Mathematica package 
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we need to load. For instance, the following command loads the package 
PhysicalConstants. 

«Misce l laneous 'Phys ica lCons tan t s ' 

The list of all the commands defined in this package is found entering the 
command 

?Miscel laneous 'PhysicalConstants '* 

Here are a few examples. 

AccelerationDueToGravity 

9.80665 Meter 

Second 

PlanckConstant 

6.62606876 x 10"^"^ Joule Second 

ElectronMass 

9.10938188 X 10~^^ Kilogram 

1.21 Programming 

1.21.1 Block and Module 

The elaboration of a program is usually done in several steps, and intermedi
ate results have to be kept. The command Module [va r i ab les , expression] 
is a very convenient construct to achieve this goal. One important feature 
of this structure is that va r i ab le s are treated as local when they appear 
in expression. Block [va r i ab les , expression] is a similar structure that, 
however, behaves differently in the way it handles variables as illustrated be
low. 
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Clear[x, 

X = Pi/4; 

Block[{x 

y, u] 

u : = 

= Pi/2 

Sin[x] 

. y = 

+ Cos 

Pi/4}, 

[y]^2; 

u+1] 

5 

2 

Replacing Block by Module yields 

Clear[x, y, 

X = Pi/4; u 

Module[{x = 

u] 

:= Sin[x] 

Pi/2, y = 

+ Cos 

Pi/4} 
[y] ~2; 

, u+1] 

1 o 
1 + -— + Cos[y]^; 

Sqrt[2] ^ 

In Block, u is replaced by its expression sm{x)-\-cos^(y) and u-\-lis evaluated 
using the local values x = 7r/2 and y = n/A. In Module, because in li + 1 the 
symbols x and y do not appear explicitly, they are not replaced by their local 
values X = TT/2 and y = 7r/4, but when returning w + 1, Module replaces x 
by its value 7r/4 and leave y unevaluated since no value had been assigned 
to 2/- As shown above, variables can be assigned values inside the Block and 
Module structures. 

The following example shows the local character of a variable value defined 
inside a Block. 

Clear[x] 

Block[{x = P i } , Cos[x]] 

Cos [x] 

-1 

Cos [x] 

Here is a more interesting example. 

Block [{$DisplayFunction = I d e n t i t y } , 

p i = Plot [Sin [x ] , {x, 0, 2 P i } ] ; 

p2 = P lo t [Cos[x] , X, 0, 2 P i ] ; ] 
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We already used DisplayFunction as an option for graphics functions that 
specifies the function to apply to graphics in order to display them. The local 
value I d e n t i t y for DisplayFunction suppresses the output to the screen. To 
see the output to the screen, we have to use Show. 

Show[pi, p2 ] ; 

0 .5 

- 0 . 5 

Fig. 1.9. Graphs of sin x and cosx for x G [0,27r]. 

If we did not use Block [ ] , we should have entered 

p i = P l o t [ S i n [ x ] , {x, 0, 2 P i } , DisplayFunction -> I d e n t i t y ] ; 

p2 = Plot [Cos [ x ] , {x, 0, 2 P i } , DisplayFunction -> I d e n t i t y ] ; 

and then used the option DisplayFunction -> $DisplayF\mction, which 
was not necessary when using Block because $DisplayFimction was a local 
variable. Because $DisplayFunction gives the default setting for the option 
DisplayFunction, the graphs are then displayed on the screen using the input: 

Show[{pi, p2}, DisplayFunction -> $DisplayFunction]; 

The command Module has the same property. To see how to use it, it is prob
ably better to build up a simple program that exhibits its essential features. 

In the section dedicated to hsts, we have obtained step by step the least-
squares fit of data represented by a list, using a combination of functions. 
Given a data list, the function da taF i tP lo t , defined below, groups all the 
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various steps together to find the best least-squares fit by a polynomial of 
degree n in an interval defined by its lower and upper bounds and to plot on 
the same graph the data points and the fitting curve. 

da taF i tP lo t [data_List, degree_Integer, lowerBoundJleal, 

upperBoundJleal] : = 

Module[{lisPl, powerList, f i tFunc t ion , f i t P l , x } , 

l i s P l = L i s t P l o t [ d a t a , DisplayFunction -> I d e n t i t y ] ; 

powerList = Table[x'^k, {k, 0, degree}]; 

f i tFunct ion = F i t [ d a t a , powerList, x] ; 

f i t P l = P lo t [ f i tFunc t ion , {x, lowerBound, upperBound}, 

DisplayFunction -> I d e n t i t y ] ; 

Show[{lisPl, f i t P l } , DisplayFunction -> $DisplayFunction]] 

We can use this program to find the least-squares fit of a list of values of the 
cosine function including some noise in the interval [0, 27r]. 

Clear[data] 

data = Table[{x, Cos[x] + 0 . 2 5 Random[]}, {x, 0, 2Pi , 0.2}] 

{{0, 1.03372}, {0.2, 0.984004}, {0.4, 1.10815}, 

{0.6, 0.841229}, {0.8 , 0.918472}, { 1 . , 0.642946}, 

{1.2, 0.378395}, {1.4, 0.254044}, {1.6, 0.0212607}, 

{1.8 , -0.00621556}, {2 . , -0.352155}, {2.2, -0.361068}, 

{2.4, -0.502693}, {2.6, -0.838658}, {2.8 , -0.926133}, 

{ 3 . , -0.774244}, {3.2, -0.943265}, {3.4, -0.78986}, 

{3.6, -0.871707}, {3.8 , -0.564668}, {4 . , -0.445388}, 

{4.2, -0.463964}, {4.4, -0.127786}, {4.6, -0.0343247}, 

{4.8 , 0.262035}, { 5 . , 0.306022}, {5.2, 0.710974}, 

{5.4, 0.696627}, {5.6, 0.978336}, {5 .8 , 1.05524}, 

{6 . , 1.18659}, {6.2, 1.2244}} 

Note that because we have chosen to represent the lowerBound and upperBound 
variables as real numbers, they should be written 0. and N [2Pi] and not sim
ply 0 and 2Pi. 
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Using the Module construct to define a function F of the variables x, y, . . . 
that needs to first determine an expression e l involving x, y, . . ., then an 
expression e2 involving e l and possibly x, y, . . . , we observe that we have 
to use a structure of the form F[x_, y_,. . .] := Module [{el , e2, . . . } , 
body] where in body are defined the intermediate expressions e l , e2, in terms 
of X, y, . . . , and previously defined expressions. 

The definitions of each intermediate expression must end with a semicolon 
(;), and all intermediate expressions have to be listed in the first argument of 
the module. When defining the intermediate expressions, built-in functions or 
user-defined functions (previously defined) can be used. Note that there is no 
semicolon after the last command which represents the required final output. 

da taPi tP lo tEdata , 3 , 0 . , N[2Pi]] 

1.5 

0 . 5 

- 0 . 5 

Fig. 1.10. Least-squares fit of the data above. 

1.21.2 Collatz P rob lem 

We first build up a few functions to study the so-called Collatz problem. Also 
known as the 3x + 1 problem, the Collatz problem is the following conjecture. 
Starting from any positive integer n, if this integer is even, divide it by 2, if it is 
odd multiply it by 3, add 1 and then divide the result by 2. Iterating this pro
cess, the sequence of integers thus obtained falls into the cycle 1,2,1,2,1, 
For a very detailed review of the Collatz problem, consult Lagarias [29]. 

Mathematically, this means that the sequence of iterations of the Mathematica 
function: 

Col la tz [n_?OddQ] := (3n + 1) / 2 

Collatz[n_?EvenQ] := n / 2 
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falls into the cycle 1,2,1,2,1, . . . . 

Using an If statement we can also define the CoUatz function a bit differently 
by 

Col la tz[n_Integer?Posi t ive] := I f [Evenq[n] , n / 2 , (3n + l ) / 2 ] 

The statement If [condi t ion, t , f] gives t if condition evaluates to True, 
and f if it evaluates to False. Consider an example. 

NestListCCollatz, 67, 25] 

{67, 101, 152, 76, 38, 19, 29, 44, 22, 11, 17, 26, 13, 20, 10, 

5, 8, 4 , 2, 1, 2, 1, 2, 1, 2, 1} 

Nest [f, express ion, n] gives the result of applying f n times to expression. 
NestLis t [ f , expression, n] gives a list of the results of applying f to 
expres
sion from 0 through n times. 

If we define the length of a Collatz sequence as the smallest integer i such 
that the ith iterate equals 1, the following function may be used to determine 
this length. 

CollatzSequenceLength [n_Integer] : = 

Module[{k = n, 1 = 1 } , 

WhileC k != 1, k = Collatz[k]; 1 = 1 + 1]; 1] 

CollatzSequenceLength[67] 

20 

CollatzSequenceLength [2''50 - 1] 

384 

We can also find the Collatz sequence as the sequence of iterates ending with 
the first iterate equal to 1. 
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CollatzSequence [n_Integer?Posit ive] : = 

Module [{nl = n, 1 = {n}}, 

While[ n l != 1, nl = C o l l a t z [ n l ] ; 1 = Append[ l ,n l ] ] ; 1] 

Append [expression, element] gives expression with element appended. 

CollatzSequence[45] 

{45, 68, 34, 17, 26, 13, 20, 10, 5, 8, 4 , 2, 1} 

CollatzSequence[1453] 

{1453, 2180, 1090, 545, 818, 409, 614, 307, 461, 692, 346, 173, 

260, 130, 65, 98, 49, 74, 37, 56, 28, 14, 7, 11, 17, 26, 13, 20, 

10, 5, 8, 4, 2, 1} 

We can test the Collatz conjecture on all integers between 1 and 10 000 000 
with the following function. We verify that the tested list has actually the 
correct length. 

CollatzSequenceLengthList = 

Table[CollatzSequenceLength[k], {k, 1, 10000000}]; / / T i m i n g 

Length[CollatzSequenceLengthList] 

{ll.0539Second, Null} 

10000000 

1.21.3 Generalizing the Collatz Problem 

In this section the reader will discover how Mathematica is particularly help
ful for suggesting conjectures while we try to generahze the famous Collatz 
conjecture. 

For an initial value n, instead of considering if n is either odd or even (that is, 
if n mod 2 is either equal to 0 or 1), we consider if n mod 3 is equal to 0 or 1 
or 2. The simplest generalization is then the following Collatz-type function. 
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Collatz3[E 

Mod[n, 

ModEn, 

Mod[n, 

3] 

3] 
3] 

L_Integer?Positive] : = 

== 0, 

== 1. 

== 2, 

n / 3, 

(4 n + 

(4 n + 

2) 

1) 

/ 3. 

/ 3] 

Which[ 

Let us first study a few examples. 

Table[NestLis t [Col la tz3 , k, 12] , {k, 1,10}]//TableForm 

1 
2 
3 
4 
5 
6 
7 
8 
9 

2 
3 
1 
6 
7 
2 
10 
11 
3 

3 
1 
2 
2 
10 
3 
14 
15 
1 

1 
2 
3 
3 
14 
1 
19 
5 
2 

2 
3 
1 
1 
19 
2 
26 
7 
3 

3 
1 
2 
2 
26 
3 
35 
10 
1 

1 
2 
3 
3 
35 
1 
47 
14 
2 

2 
3 
1 
1 
47 
2 
63 
19 
3 

3 
1 
2 
2 
63 
3 
21 
26 
1 

1 
2 
3 
3 
21 
1 
7 
35 
2 

2 
3 
1 
1 
7 
2 
10 
47 
3 

3 
1 
2 
2 
10 
3 
14 
63 
1 

1 
2 
3 
3 
14 
1 
19 
21 
2 

10 14 19 26 35 47 63 21 10 14 19 26 

On these few examples, we find that iterating the function CollatzS we find ei
ther 1 and then the periodic sequence 1 , 2 , 3 , 1 , 2 , 3 , 1 , . . . o r ? and then the 
periodic sequence 7 ,10 ,14 ,19 ,26 ,35 ,47 ,63 ,21 ,7 ,10 ,14 , If we conjec
ture that these are the only possibilities, we define a generalized Collatz3Se-
quence as a sequence of iterates ending either with 1 or by 7 

Collatz3Sequence [n_Integer?Posit ive] : = 

Module[{nl = n, 1 = {n}}. 

While[ (nl != 1) && (nl != 7 ) , 

nl = Collatz3[nl]; 1 = Append[1, nl]]; 1] 

Collatz3Sequence[572] 

{572, 763, 1018, 1358, 1811, 2415, 805, 1074, 358, 478, 638, 851, 

1135, 1514, 2019, 673, 898, 1198, 1598, 2131, 2842, 3790, 5054, 

6739, 8986, 11982, 3994, 5326, 7102, 9470, 12627, 4209, 1403, 1871, 

2495, 3327, 1109, 1479, 493, 658, 878, 1171, 1562, 2083, 2778, 926, 

1235, 1647, 549, 183, 61, 82, 110, 147, 49, 66, 22, 30, 10, 14, 19, 
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26, 35, 47, 63, 21 , 7} 

Collatz3Sequence[327] 

{327, 109, 146, 195, 65, 87, 29, 39, 13, 18, 6, 2, 3 , 1} 

These two examples do not prove anything. Let us define, as for the stan
dard Collatz problem, the function Collatz3SequenceLength and test many 
positive integers to check that the sequence does only end with 1 or 7. 

Collatz3SequenceLength[n_Integer?Positive] 

Module[{nl = n, 1 = 1}, 

While[ (nl != 1) && (nl != 7 ) , 

n l = C o l l a t z 3 [ n l ] ; 1 = 1+1]; 1] 

Collatz3SequenceLengthList = 

Table[Collatz3SequenceLength[k], {k, 1, 100000}]; //Timing 

Length[Collatz3SequenceLengthList] 

{67.5151 Second, Null} 

100000 

Here is another generalized Collatz conjecture. 

Starting from any positive integer, by applying repeatedly the function 
Collatz4[n_Integer?Posi t ive] defined by 

Collatz4 !n_Integer?Positive] := 

Which[Mod[n,4] 

Mod[n,4] 

Mod[n,4] 

Mod[n,4] 

== 1, 
== 2. 

== 3 , 

== 

(5 

(5 

(5 

0, n / 

n + 3) 

n + 2) 

n + 1) 

4, 

/ 4, 

/ 4, 

/ 4 ] 

we find either 1 and then the periodic sequence 1, 2, 3 , 4 , 1, 2, 3 , 4, 
1, . . . or 23 and then the periodic sequence 23, 29, 37, 47, 59, 74, 93, 
117, 147, 184, 46, 58, 73, 92, 23, 29, 37, . . . . 

If we assume that these are the only possibilities, we can define a generahzed 
Collatz4Sequence as a sequence of iterates ending either with 1 or 23. 
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Collatz4Sequence [n_Integer?Posit ive] : = 

Module[{nl = n, 1 = {n}}, 

While[ (nl ! = ! ) & & (nl != 23) , n l = C o l l a t z 4 [ n l ] ; 

1 = Append[ l ,n l ] ] ; 1] 

Collatz4Sequence[3879] 

{3879, 4849, 6062, 7578, 9473, 11842, 14803, 18504, 4626, 5783, 

7229, 9037, 11297, 14122, 17653, 22067, 27584, 6896, 1724, 431, 

539, 674, 843, 1054, 1318, 1648, 412, 103, 129, 162, 203, 254, 318, 

398, 498, 623, 779, 974, 1218, 1523, 1904, 476, 119, 149, 187, 234, 

293, 367, 459, 574, 718, 898, 1123, 1404, 351, 439, 549, 687, 859, 

1074, 1343, 1679, 2099, 2624, 656, 164, 41, 52, 13, 17, 22, 28, 7, 

9, 12, 3, 4, 1} 

Collatz4SequenceLength [n_Integer?Positive] : = 

Module[{nl = n, 1 = 1 } , While[ (nl != 1) && (nl != 23), 

nl = Collatz4[nl]; 1 = 1+1]; 1] 

Collatz4SequenceLength[3879] 

78 

Collatz4SequenceLengthList = 

Table[Collatz4SequenceLength[k], {k, 1, 100000}];//Timing 

Length[Collatz4SequenceLengthList] 

{78.7616 Second, Null} 

100000 

Conjecture: Starting from any positive integer, iterating the generalized Col-
latz function: 

CollatzK[k_Integer, n_Integer?Posi t ive] : = 

If [Mod[n, k] == 0, n /k , ((k+1) n + k - Mod[n, k ] ) /k ] 
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we find either 1 and then the periodic sequence 1, 2, . . . , k, 1, 2,. . . , k, 1, 
2, . . . or other periodic sequences. 

The s tandard CoUatz function is Collatz[2,n]. 

N e s t L i s t [ C o l l a t z K [ 2 , #] &, 4 5 , 12] 

{45 , 6 8 , 34 , 17 , 2 6 , 13 , 20 , 10, 5 , 8 , 4 , 2 , 1} 

We can verify tha t the C o l l a t z 3 [n] and C o l l a t z 4 [n] are, respectively, the 
C o l l a t z K [ 3 , n] and C o l l a t z K [ 4 , n] functions. 

Let us consider a new one such as, for example, the Co l l a t zK [6 , n] function. 
It can be shown tha t , s tart ing from any positive integer, we obtain one of the 
following periodic sequences 1, 2, 3, 4, 5, 6, 1, 2, 3, . . . , or 23, 27, 32, 38, 45, 
53, 62, 73, 86, 101, 118, 138, 23, 27, 32, . . . , or 88, 103, 121, 142, 166, 194, 
227, 265, 310, 362, 423, 494, 577, 674, 787, 919, 1073, 1252, 1461, 1705, 1990, 
2322, 387, 452, 528, 88, 103, 121, 

And we could s tudy sequences of iterates of Co l l a t zK [6 , n] using the func
tion Col la tzKSequence [6 , n] defined by 

Col la tzKSequence [6 , n _ I n t e g e r ? P o s i t i v e ] : = 

Module[{nl = n , 1 = {n}} . 

Whi le [ ( n l 1) && ( n l != 23) && ( n l != 8 8 ) , 

n l = C o l l a t z K [ 6 , n l ] ; 1 = A p p e n d [ l , n l ] ] ; 1] 

Here are three illustrative examples. 

C o l l a t z K S e q u e n c e [ 6 , 2154] 

{2154, 359 , 419 , 489 , 5 7 1 , 667 , 779 , 909 , 1061 , 1238, 1445, 1686, 

2 8 1 , 328 , 3 8 3 , 447 , 522 , 8 7 , 102, 17 , 2 0 , 24 , 4 , 5 , 6 , 1} 

C o l l a t z K S e q u e n c e [ 6 , 569] 

{569, 664 , 7 7 5 , 905 , 1056, 176, 206 , 2 4 1 , 282 , 4 7 , 5 5 , 6 5 , 7 6 , 

8 9 , 104, 122, 143 , 167, 195, 228 , 3 8 , 4 5 , 5 3 , 6 2 , 7 3 , 8 6 , 1 0 1 , 

118, 138, 23} 
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CollatzKSequence[6, 5714] 

{5714, 6667, 7779, 9076, 10589, 12354, 2059, 2403, 2804, 3272, 

3818, 4455, 5198, 6065, 7076, 8256, 1376, 1606, 1874, 2187, 2552, 

2978, 3475, 4055, 4731, 5520, 920, 1074, 179, 209, 244, 285, 333, 

389, 454, 530, 619, 723, 844, 985, 1150, 1342, 1566, 261, 305, 

356, 416, 486, 81, 95, 111, 130, 152, 178, 208, 243, 284, 332, 

388, 453, 529, 618, 103, 121, 142, 166, 194, 227, 265, 310, 

362, 423, 494, 577, 674, 787, 919, 1073, 1252, 1461, 1705, 1990, 

2322, 387, 452, 528, 88} 



Numbers 

2.1 Characterizing Numbers 

The command NumberQ [expression] gives True if expression is a number, 
and False otherwise 

{NumberQ[5], NumberQ[2/3], NumberQ[3.7], NumberQ[Hello]} 

{True, True, True, False} 

General Remark: Many commands ending with capital Q test if an expres
sion is of a specific type such as, for example, IntegerQ [expression], EvenQ 
[expression], OddQ[expression], PrimeQ[expression], and so on, which 
test, respectively, if expression is an integer, an even integer, an odd integer, 
a prime number, and so on. 

{IntegerQ[7629], IntegerQ[2/3], IntegerQ[5.78]} 

{True, False, False} 

{EvenQ[46],EvenQ[51]} 

{True, False} 

{OddQ[46], OddQ[51]} 
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{False, True} 

{PrimeQEll], PrimeQ[14]} 

{True, False} 

Mathematica manipulates four types of numbers: reals, integers, rationals, and 
complex numbers. 

2.2 Real Numbers 

When, for example, we cannot find the exact solution to an equation, we have 
to use numerical routines to obtain an approximate numerical solution. In 
the first chapter we defined Prec is ion and Accuracy which are respectively 
related to the relative error and absolute error by the formulas 

relative error = IQ-P'̂ ^ îsî ^ and absolute error = IQ-Accuracy 

In general, real numbers use machine precision. This precision is given by the 
command: 

$MachinePre c i s i on 

15.9546 

Hence adding 10 ^̂  to a machine-precision real number does not change this 
number value! 

{N[Sqrt [2]] / /FullForm, N[Sqrt[2]+10^(-16)] 

FullForm, N [Sqrt [2] +10-̂  (-15)] //FullForm} 

{1.4142135623730951', 1.4142135623730951', 1.4142135623730963'} 

Instead of using $MachinePrecision, users can manipulate numbers with any 
number of significant digits. 

{Prec is ion[N[Pi ] ] , Precis ion[N[Pi ,100]]} 
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{MachinePrecision, 100.} 

The command N[number, n] allows us to carry out computations using 
number with precision n. 

Precis ion[N[Sqrt[5] , 30] ] 

Precis ion[(NCSqrt[5] , 30])'^100] 

30. 

28. 

Note that the precision on the approximate value of {^/5y^^ is less than the 
precision on the approximate numerical value of \ /5 . 

The command N [number, n] can also be entered as number' n. 

{0 .7 '30 , 0 .7 '30 + 10' '(-30)} 

{0.700000000000000000000000000000, 

0.700000000000000000000000000001} 

If we have to manipulate numbers whose values lie in a certain interval, 
such as experimental results, we can use the command In t e rva l [{minimum, 
maximum}]. 

r e s u l t = I n t e r v a l [ { 1 . 9 , 2.1}] + I n t e r v a l [ { 1 . 4 , 1.6}] 

I n t e r v a l [ { 3 . 3 , 3.7}] 

Min[{xl, x2, . . . } ] yields the numerically smallest of the list {xl , x2, 
. . .} and Max [{xl, x2, . . .}] yields the numerically largest of the list {xl , 
x2, . . . } . 

{Min [ r e s u l t ] , Max[result]} 

{3.3, 3.7} 

Real numbers are displayed with six digits. But we can use Number Form [expres
s ion , n] to ask Mathematica to display more or fewer digits. 
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{N[Sqrt [2]] , NumberForm [N [Sqrt [2] ] , 4 ] , 

NumberForm[N[Sqrt[2] ] , 12]} 

{1.41421, 1.414, 1.41421356237} 

2.3 Integers 

There exist three functions that convert real numbers into integers. Floor [x] 
gives the greatest integer less than or equal to x. Cei l ing [x] gives the smallest 
integer greater than or equal to x. Round [x] gives the integer closest to x. 

{Floor [4.49], 

{4, 5, 4} 

{Floor [4.51], 

Ceiling [4.49], 

Ceiling[4.51], 

Round[4.49]} 

Round[4.51]} 

{4, 5, 5} 

Every integer can be written as a product of its prime factors in a unique way. 
Factor In teger [n] gives a list of the prime factors of the integer n, together 
with their exponents, 

FactorInteger[83406151] 

{{31, 2} , {229, 1}, {379, 1}} 

a result which can be verified: 

83406151 == 31'^2 229 379 

True 

In 1832 Carl Priedrich Gauss (1777-1855) considered algebraic integers of the 
form a+6i, where a and b are rational integers, called Gaussian integers. They 
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share many properties with ordinary real integers. For example, the sum, dif
ference, and product of two Gaussian integers are Gaussian integers. Gauss 
proved that the Gaussian integers satisfy a generalized version of the fac
torization theorem. Although by default Fac tor ln teger [n] allows only real 
integers, the option Gaussianlntegers —> True handles Gaussian integers. 

{Fac to r ln tege r [4 ] , 

Fac to r ln tege r [4 , Gaussianlntegers -^ True]} 

{{2, 2}}, {{-1 , 1}, {1 + I . 4}} 

hence 

- (1 + I)'^4 

True 

Divisors [n] gives a list of the integers that divide n, including 1 and n. 

Divisors[1364] 

{1 , 2, 4 , 11, 22, 31 , 44, 62, 124, 341, 682, 1364} 

Here are a few more integer functions: 

Mod[k, n] gives the remainder from dividing k by n. Mod[k, n, d] uses an 
offset d. 

{Mod[3,3], Mod[3,3,l]} 

{0, 3} 

Instead of typing commands one can use the Palettes submenus BasicCalcu-
lation and AlgebraicManipulation (go to File -^ Palettes). 

GCD [n l , n2, . . . ] gives the greatest common divisor of the integers n l , n2, 
. . . and LCM [nl , n2, . . . ] gives the least common multiple of these integers. 

GCD[72, 42, 18] 
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6 

LCM[22, 14, 8] 

616 

These functions apply also to rationals and Gaussian integers. 

GCDCl/3, 2 /7 , 5/4] 

1 

84 

LCM[4 + 3 I , 2 + I , 3 - I ] 

15 + 5 I 

In tegerDig i t s [n] gives a list of the decimal digits in the integer n. 
In tegerDig i t s [n, b] gives a list of digits in the integer n in base b. 

IntegerDigits[27634] 

{2, 7, 6, 3 , 4} 

In tegerDig i t s [23 , 2] 

{1, 0, 1, 1, 1} 

Numbers can be displayed breaking the digits into blocks of a given length 
separated by a specific string. For example, using the options DigitBlock 
-> 5 and Number Separator -> " " for the command NumberForm, displays 
numbers breaking the digits into blocks of length 5 separated by a space. 

NumberForm[23!, DigitBlock -> 5, NumberSeparator -> " "] 

258 52016 73888 49766 40000 
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2.4 Prime Numbers 

Prime [n] gives the nth prime number. One is not a prime number; two is 
therefore the first prime. 

Table[Prime[n], {n, 1, 10}] 

{2, 3 , 5, 7, 11, 13, 17, 19, 23, 29} 

or simply 

Prime[Range[10]] 

{2, 3 , 5, 7, 11, 13, 17, 19, 23, 29} 

PrimePi[x] gives the number of primes 7r(x) less than or equal to x. 7r(x) 
is well approximated by the logarithmic integral function Loglntegral [x] 
defined by li(x) = J^ l/\og{t)dt, where the principal value of the integral 
(singular for x = 1) is taken. 

Plot [{PrimePi[x], Loglntegral[x]}, {x, 1, 10000}, 

PlotStyle -> {{RGBColor[0, 0, 1 ] } , {RGBColor[l, 0, 0 ] } } ] ; 

2000 4000 6000 8000 10000 

Fig. 2.1. Graph of 7r{x) and \i{x) for x G [1,10000]. 

PrimeQ [n] yields True if n is a prime number, and False otherwise. 

{PrimeQ[56509], PrimeQ[4745443]} 
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{True, False} 

We can also use n G Primes, where G is entered as \ [Element]. 

56509 G Primes 

4745443 G Primes 

True 

False 

PrimeQEn, Gaussianlntegers —> True] yields True if n is a Gaussian prime, 
and False otherwise 

PrimeQ[2, Gaussianlntegers -^ True] 

False 

which is correct because 

Fac tor In teger [2 , Gaussianlntegers -^ True] 

{-I, 1}, {1 + I , 2}} 

that is, 

2 == - I (1 + I)'^2 

True 

2.5 Combinatorial Functions 

Fac to r i a l and Binomial are two functions defined for integer arguments. 

2.5.1 Factorial 

n! or Factorial [n] gives the factorial of n equal to n{n — 1) (n — 2 ) . . . 1. The 
notation n! = n{n — l)(n — 2) 3.2.1 is due to Kamp [27]. 
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Table[n!, {n, 1, 10}] 

{1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800} 

For a noninteger or complex argument z, the numerical value of z! is given 
by Gamma[1 + z ] . 

3 . 4 ! == = Gamma [ 4 . 4 ] 

True 

( 2 . 1 + 4 . 5 I ) ! == Gamma [3 1 + 4 5 I ] 

True 

n! ! or Factorial2[n] gives the double factorial of n equal to n{n — 2)(n 
4 ) . . . . 

5 ! ! == 5 3 1 == F a c t o r i a l 2 [ 5 ] 

True 

6! ! == 6 4 2 == F a c t o r i a l 2 [ 6 ] 

True 

5 ! ! 6! ! = == 6! 

True 

2.5.2 Binomial Coefficients 

Binomial [n, m] gives the binomial coefficient (^). Here are the first rows of 
Pascal's triangle. 

Table[Binomial[n,k], {n, 0, 10}, {k, 0, n}] / / TableForm 
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1 1 
1 2 1 
1 3 3 
1 4 6 
1 5 10 
1 6 15 
1 7 21 
1 8 28 
1 9 36 
1 10 45 

1 
4 
10 
20 
35 
56 
84 
120 

1 
5 
15 
35 
70 
126 
210 

1 
6 
21 
56 
126 
252 

1 
7 
28 
84 
210 

1 
8 
36 
120 

1 
9 
4 

Mathematica can evaluate exactly a few sums involving binomial coefficients. 

Sum [Binomial [n, k ] . {k. 0, n}] 

2^ 

Sum[(Binomial[n k]) - 2 , {k. 0, n}] 

/in .1 4" Gamma - H-n 
^2 ^ 

Sqrt[Pi]Gamma[l + n] 

Can we simplify this result? 

FullSimplify [Sum [ (Binomial [n, k])'^2, {k, 0, n}]] 

4^ Gammaf- + nl 
^2 ^ 

Sqrt[Pi]Gamma[l +n] 

Apparently not. But, knowing some properties of the F function, we can show 
that the result can take a much simpler form. 

First 

FullSimplify[Gamma[1+n] == n!] 

True 
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then 

FullSimplify[2'^n Gamma[l/2 + n] == (2*n - 1) ! ! Sqrt [Pi] , n G 
In tegers] 

True 

Hence 

4 ^ r ( I + n) _ 2^(2n - 1)!! _ (2n)! 
x/7r7(l + n) n! (n!)^ * 

That is, the result above is just Binomial [2n, n ] , and Mathematica can 
verify it. 

FullSimplify [Sum[(Binomial [n, k ] ) ' ' 2 , {k, 0, n}] == 

Binomial[2 n, n]] 

True 

Mathematica can also evaluate exactly the binomial sums: 

Table [Sum [k'^r Binomial [n, k] , {k, 0, n}] , 

{r , 1, 5}]//TableForm 

-1 + n 

2 - 2 + n n ( l + n) 
2 - 3 + n j^2(3 + j^) 

2 - 4 + n j^Q + n ) ( -2 + 5 n + n^) 

2 - ^ + ^ n^C-lO + 15 n + 10 n^ + n^) 

Here are sums involving the inverse of central binomial coefficients that Math
ematica can, surprisingly, evaluate exactly. 

Sum[l / Binomial[2n, n] , { n , l , In f in i ty}] 

9 + 2 Sqrt [3] Pi 

27 
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Sum[l/(n Binomial[2n,n]), {n, 1, Inf ini ty}] 

Pi 
3 Sqrt[3] 

2.6 Rational Numbers 

Is it possible to convert real numbers into rational numbers? Rationalize [x] 
converts x into a fraction a/h such that |a/6 —x| < lO"'^/^^. Rationalize [x, 
Z\x] converts x into a fraction with the smallest denominator that lies within 
Ax. 

Rationalize[3.14] 

Rationalize[Pi, IC^C-G)] 

157 
"BO" 

355 
I l3 

N[Pi - 355/113] 

- 2.66764x10""^ 

The symbol {ni,n2, ns , . . . } associated with a real number x is its continued 
fraction representation, which means that x — ni/(n2 + 1/(^3 "̂  • 

The command Cont inuedFract ion [x, n] generates a list of the first n terms 
in the continued fraction representation of x. 

ContinuedFraction[Pi, 7] 

{3, 7, 15, 1, 292, 1, 1} 

This list of n terms represents the fraction: 

13 + 1 / ( 7 + 1 / ( 1 5 + 1 / (292 -H 1 / 2 ) ) ) 

194849 

62024 
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approximately equal to 

N[3 + 1/(7 + 1/(15 + 1/(292 + 1/2)))] 

3.14151 

FromContinuedFract ion [ l i s t ] reconstructs a number from the list of its 
continued fraction terms. 

FromContinuedFraction[{3, 7, 15, 1, 292, 1, 1}]//N 

3.14159 

2.7 Complex Numbers 

To enter the complex number we can type I equal to Sqrt [-1]. 

Sqrt[-1] 

Here are a few basic functions. 

z = 2 - 5 I ; 
{Re[z] , Im[z], Conjugate[z], Abs[z], Arg[z]} 

5 
{2, - 5, 2 + 5 I , Sqrt[29], - ArcTan[-] 

Evaluating expressions containing complex numbers is easy. 

I (2 + I) + (5 - 3 I) 

7 - 2 1 

( 7 - 1 ) (2 + 3 I ) 
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17 + 19 I 

(3 + 2 I ) / (5 - 3 I ) 

9 191 

34 "34" 

5.42 Exp[2.6 I] + 

-7.91151 + 2.92999 

ComplexExpand[(2 -

3.27 Exp[3.1 

I 

• 3 I)-^5] 

I] 

122 + 597 I 

Sq r t [ (3 - 5 I)'^2] 

3 - 5 1 

2.8 Different Bases 

Mathematica can deal with numbers in different bases. BaseForm [niimber, 
b] gives number in base b. number can be an integer, a rational, a real, or a 
complex number. 

{BaseForm[1457, 2 ] , BaseForm[1457,18]} 

{IOIIOIIOOOI2, 48hi3} 

The largest base is 36. It uses the 10 digits 0, 1,2, . . . , 9 and the 26 letters a, 
b, c, . . . , z 

BaseForm[2/3, 2] 
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IO2 

BaseForm[3.27, 2] 

II.OIOOOIOIOOOIIIIOII2 

BaseForm[21 + 57 I, 3] 

2IO3 + 2OIO3 I 

We can also enter a number n in any base b (less than 36) as b""n. Each digit 
of n must be less than b. 

{5-^^234101, 5 ' "^34. 21} 

{8651, 19.44} 

{3^^1201 + T' ̂ 101, 3 . . '1201 T -^101, 3^ ^1201 / 2- ^101} 

{51, 230, —} 
0 

{3^^1201, 2^^101} 

{46, 5} 

Numerical calculations in any base can be done. The result is given in base 
10. 

{3^^1022 + 3^-^2011, 3^-^1022 3^^2011, 3^^1022 / 3^^2011} 

35 . 
{93, 2030, — } 

bo , 

We can even mix bases. The result is again given in base 10. 

{3-^-^212, 7-^^432, 3^^212 + 7-̂ -̂ 432} 
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{23, 219, 242} 

2.9 Calendars 

A calendar may be viewed as some kind of positional number system (see next 
section). For example, the date {1789,7,14} is the 14th day of the 7th month 
(July) of the 1789th year. The package Miscellaneous 'Calendar ' provides 
the following functions to help perform basic calendar operations. 

«Misce l l aneous ' Calendar' 

?Miscellaneous 'Calendar '* 

Miscellaneous'Calendar' 

Calendar 

CalendarChange 

DayOfWeek 

DaysBetween 

DaysPlus 

EasterSunday 

Friday 

Gregorian 

Islamic 

JewishNewYear 

Julian 

Monday 

Saturday 

Sunday 

EasterSundayGreekOrthodox Thursday 

Tuesday 

Wednesday 

Calendar is an option for calendar functions indicating which calendar sys
tem to use: Gregorian, Jul ian, or Islamic. If set to Automatic, the Ju l i an 
calendar is used before 2 September 1752, and the Gregorian calendar after
wards. 

Calendar Change [date, calendar 1, calendar 2] converts a date in calendar 1 
to a date in calendar2. 

CalendarChange[{1789, 7, 14}, Gregorian, Islamic] 

{1203, 10, 20} 

DayOfWeek [date] gives the day of the week for the date. 
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Day0fWeek[{l789, 7, 14}] 

Tuesday 

DaysBetween[datel, date2] gives the number of days between datel and 

date2. 

DaysBetween[{l769, 8, 15}, {1821, 5, 5}] 

18890 

Easter Sunday [year] gives the date of Easter Sunday in the Gregorian cal
endar. 

EasterSunday[2006] 

{2006, 4, 16} 

JewishNewYear [year] gives the date of the Jewish New Year occurring in 
the Christian year where 1900 < year < 2100. Add 3761 to the Christian year 
to get the corresponding new Jewish Year. 

{JewishNewYear[2006], DayOfWeek[JewishNewYear[2006]]} 

{{2006, 9, 23}, Saturday} 

2.10 Positional Number Systems 

Positional number systems give compact representations of numbers. In such 
systems, each number has a unique representation by an ordered sequence 
of digits, the value of the number being determined by the position of the 
digits and the base h of the system. For example, in base b the sequence of 
digits dndn-i... d2dido (more exactly, this is a word in the 6-letter alphabet 
{0,1,2,.. .}) represents the number 

Nb = dnXb'' -\- dn-i X b''~'^ + • • • + (i2 X 6̂  + di X 6 + ĉ o. 

This representation is very economical because we need only b different sym
bols to represent a number in base b. 
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In the previous section we mentioned that a calendar is some kind of posi
tional number system. The difference with standard positional number sys
tems is that the representation of a date does not use a unique base b but a 
sequence of bases {bi,b2,bs,.. .).ln a. multibase system the sequence of digits 
dndn-i... ^2dido represents the number 

^bib2b3... =dnX {bn X 6 n - l X • • • X 62 X 6 i ) 

+ dn-l X {bn-l X bn-2 X • • • X 62 X 61) + ' • ' 

+ ^2 X (62 X 61) + di X 61 + do-

Time intervals are usually represented in a multibase system. For example, 

the time interval of 1,668,214 seconds is more conveniently represented in the 

multibase (week, day, hour, minute, second) by the sequence (2, 5, 7, 23, 34) 

meaning that 1668214 seconds = 2 weeks + 5 days + 7 hours + 23 minutes 

+ 34 seconds because 34 + 23 x 60 -h 7 x 60 x 60 + 5 x 24 x 60 x 60 + 2 

X 7 X 24 X 60 X 60 = 1,668,214. 

Note that we did not define specific symbols but used decimal numbers to rep
resent the numbers of weeks, days, hours, minutes, and seconds. In a multibase 
system, for all indices fc, the "digit" dk is in the range 0 to 6^-1- When the 
multibase is finite, the first digit of the sequence—the number of weeks in the 
example above—is in the range 0 to oo. 

Let us build up a function of two variables: a number n and a finite multibase 
b which gives the representation of the decimal number n in the multibase b. 

We denote this function toMultibase[n_Integer, b -L i s t ] . The image of a 
pair (n, b) will be a finite sequence of length equal to Length [b] + 1. 

We first note that if either the Ust b is empty or the number n is less than 
the last digit of the hst b the sequence of digits representing n is just the 
one-element list n. 

If the list b is not empty and the number n is larger than the last element 
of the list b, then the rightmost element of the sequence of digits is given by 
Mod[n, LastCb]]. 

To find the next element we have to replace n by Floor [n / Last [b] ] and 
to prepend to the digit sequence the new digit obtained reapplying the func
tion Mod[n, Last [b]] where the original b list has been replaced by the 
list DropEb, -1] which is the command that deletes the last element of the 
original list b. To iterate this process and avoid confusion with the original 
variables n and b, we use the local variables tempNumber and tempBase. In 
the program below, we use the command Prepend [sequence, number] to add 
number at the beginning of sequence. 
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toMultibase[n_Integer, b_List] : = 

Module[{tempNumber = n, tempBase = b , digitSequence = {}, d} , 

While[Length[tempBase] > 0, 

d = Mod[tempNumber, Last[tempBase]]; 

digitSequence = Prepend[digitSequence, d ] ; 

tempNumber = Floor [tempNumber/Last[tempBase]]; 

tempBase = D r o p [ t e m p B a s e , - ! ] ] ; 

digitSequence = Prepend[digitSequence, tempNumber]; 

digitSequence] 

For example, 

toMultibase[1789, {12, 11, 10}] 

{1, 4, 2, 9} 

which means that 

1789 == 9 + 2 X 10 + 4 X 11 X 10 + 1 X 12 X 11 X 10 

True 

We can use this toMultibase function to represent a time interval expressed 
in seconds in the multibase {7, 24, 60, 60}. For example, the time interval 
of 1,668,214 seconds is given by 

toMultibase[1668214, {7, 24, 60, 60}] 

{2, 5, 7, 23, 34} 

On calendars, positional number systems, and how to write elegant Mathe-
matica programs see Vardi [61]. 

2.11 Zeckendorf s Representation 

The Belgian medical doctor Edouard Zeckendorf (1901-1923) published sev
eral mathematical papers. His most famous one deals with the representation 
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of any integer as a sum of nonconsecutive Fibonacci numbers [69]. More pre
cisely, Zeckendorf's theorem states that every integer n has a unique repre
sentation of the form 

where kj > kj-\.i -h 2 for j = 1,2,.. . , r — 1 and kr < 2 . The Mathematica 
command Fibonacci [n] gives the Fibonacci number F^. On how to write a 
program generating the Fibonacci sequence, refer to Part I, Chapter 8. 

To find the Zeckendorf representation we use the so-called "greedy" algo
rithm [24], choosing Fk^ to be the largest Fibonacci number less than or 
equal to n, that is, such that F^^ < n < F/ci+i, then choosing Fk^ such 
that Fk2 < n — F^^ < F^^^i, and so on. Another example of the greedy al
gorithm can be found in the chapter dedicated to Egyptian fractions. Note 
that the relation 0 < n — F^^ < F^^^i — Fk^ — F^^-i implies the inequality 
n — Fk^ < Ffci-i so Ffc2 < i^fci-i- That is, the greedy algorithm leads to a 
representation of n by a sum of nonconsecutive Fibonacci numbers. Moreover, 
the algorithm shows that the representation is unique. The Zeckendorf theo
rem leads, therefore, to what can be called the Fibonacci number system. Any 
nonnegative integer n can, therefore, be represented by a unique sequence of 
Os and Is writing 

^ = {dmdm-l ' • • G!2)Fibonacci-

where all the digits dj are equal to 0 or 1, and this representation, which is 
similar to the binary representation, is equivalent to the equality 

m 

Note that, according to the Zeckendorf theorem in the sequence of Os and Is 
^2) we never find two adjacent Is. 

In the Mathematica Help Menu, looking for Fibonacci, in the Further Exam
ples section we find the definitions of a few functions that can generate the 
Zeckendorf representation. Here are these functions. 

The function Leadinglndex [n] gives the largest integer k such that F^ does 
not exceed n. 

Leadinglndex [n_Integer' 

Module [{k}, I f [n == 0, 

For[k=2, Fibonacci[k] 

n 
k 

n 

# 0 &)] 

= 2, 

k++]; k-

: = 

- ; ] ; k] 

Leadinglndex[45] 
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Fibonacci[9] 

34 

The function Zeckendorf Represent a t ion [n] gives the coefficients of the ex
pansion descending from the leading index. 

ZeckendorfRepresentation[n_Integer?(# 0 &)] : = 

Module[{i, k, 1, m, 

k = 0; If[n == 0, r 

1 = Leadinglndex[n] 

k = Leadinglndex[m] 

1}]}] ; 
r = Flatten[{addon, 

addon, r}, 

= {0}, If[n == 1, r = {!}, 

; m = n - Fibonacci[1]; 

; addon = Flatten[{1,Table[0, {i. 

ZeckendorfRepresentation[m]}] ]]; 

k + 2, 

r] 

Here is the Zeckendorf representation of 45. 

ZeckendorfRepresentation[45] 

{1, 0, 0, 1, 0, 1, 0, 0} 

The function f f [Zrepresentat ion] gives the Fibonacci numbers correspond
ing to the Zeckendorf representation Zrepresentat ion. 

f f [Zrepresen ta t ion . ] : = 

Fibonacci[2 + Length[Zrepresentation] -

F i r s t / OPosi t ion[Zrepresentat ion, 1]] 

f f [ { l , 0, 0, 1, 0, 1, 0, 0}] 

{34, 8, 3} 
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3.1 Algebraic Expressions 

Expand [expression] expands products and positive integer powers in expres
sion. 

Expand[3^4] 

81 

Expand[(a + b)^3] 

a^ -h 3 a^ b + 3 a b^ + b^ 

Expand[(a - b) (a + b)] 

a2 - b 2 

Expand[(t^2 - 5)'^3 / . t -> (a - b)^2] 

- 125 + 75 a"̂  - 15 a^ -h a^^ _ 300 a^ b + 120 a"̂  b - 12 a^^ b + 

450 a^ b^ - 420 a^ b^ + 66 a^^ b^ - 300 a b^ + 840 a^ b^ -

220 a^ b^ + 75 b"̂  - 1050 a"̂  b"̂  + 495 a^ b^ + 840 a^ b^ -

792 ^ b^ - 420 a^ b^ + 924 a^ b^ + 120 a b*̂  - 792 a^ b"̂  -



78 3 Algebra 

15 b^ + 495 a.^ b^ - 220 a^ b^ + 66 a^ b^^ -

12 a b^^ + b^2 

ExpandAll [expression] expands everything including denominators. 

ExpandAll[(a + b)^3 / (a - b)'^2] 

a ̂  Sa^b 3ab2 
+ -^ o + 

a? - 2ab + b^ a? - 2ab + b^ a^ - 2ab + b^ 

b3 

a? - 2ab + b^ 

FunctionExpand [expression] expands special functions. It accepts assump
tions. 

{FunctionExpcind [Log [a b] ] , 

FunctionExpand[Log[a b ] , a > 0 && b > 0]} 

{Log [a b ] , Log [a] + Log[b]} 

In the first case, FunctionExpand cannot find a simpler result. In order to 
give the second result, it needs more information about a and b. 

Factor [polynomial] factors a polynomial over the integers. 

Factor [a^3 + 3 a'̂ 2 b + 3 a b^2 + b^3] 

(a + b)3 

ComplexExpand [expression] expands expression assuming that all vari
ables are real. 

ComplexExpand [(a + I b)' '3] 

a^ - 3 a b^ -h I (3 a^ b - b^) 

Cancel [expression] cancels out common factors in the numerator and de
nominator of expression. Simplify [expression] returns the simplest form 
it finds. 
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Cancel [ (a + b)^3 / (a'̂ 2 - b'̂ 2] 

Simplify [ (a + b)'^3 / (a'̂ 2 - b^2] 

(a + b)^ 

a - b 

(a + b)^ 

a - b 

Simplify accepts assumptions. 

{Simplify [Sqrt [a'^2] ] , Simplify [Sqrt [a'^2] , a < 0] } 

{Sqrt[a^ ] , - a} 

We can also use Assuming 

Assuming[a < 0, Simplify[Sqrt[a^2]]] 

- a 

FullSimplif y [expression] tries a wider range of transformations on expres
sion involving elementary and special functions. 

Simplify[(n + 1) Factorial[n]] 

(1 + n) n! 

FullSimplify[(n + 1) Factorial[n]] 

Gamma [2 + n] 

Together [expression] puts terms in a sum over a common denominator, 
and cancels factors in the result. 

Together[a'^2 / (a + b) + b'̂ 2 / (a - b)] 
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a^ - a^b + ab^ + b^ 

( a - b ) ( a + b) 

Numerator [expression] and Denominator [expression] give, respectively, 
the numerator and the denominator of expression. 

a3 
Numerator[ 

- a^b + ab^ -h b^ 

( a - b ) ( a + b) 

a'̂  - a^b + ab^ -f b^ 

a^ - a^b + ab^ + b^ 
Denominator [ ; ^ ] 

( a - b ) ( a + b) 

( a - b ) ( a + b) 

Apart [expression] rewrites a rational expression as a sum of terms with 
minimal denominators. 

Apart[ 
a^ - a^b + ab^ + b^ . 

( a - b ) ( a + b) • 

2 2 
a^ a^ + - a + b a + b 

Apart [expression, var iab le ] treats all variables other than va r i ab le as 
constants. 

ax + b ( x - l ) 
Apart [ — , x] 

x(x - 1) 

a b 
+ - 1 + x X 

We have seen that Factor [polynomial] factors polynomial over the inte
gers; using the option Gaussianlntegers -^ True we can also factor over 
Gaussian integers. 
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{Factor[a^2+b^2] , Factor[â 2+b'̂ 2, Gaussianlntegers -̂  True]} 

.2 ̂  K2 {â  + b^, (a-I b) (a+I b)} 

Collect [expression, x] collects together terms involving the same powers 
of objects matching x. 

Co l l ec t [ ( a + b x) (c + d x ) , x] 

a c + ( b c + a d ) x + b d x ^ 

Collect [expression, x, f] applies f to the expression that forms the co
efficient of each term obtained. 

Co l l ec t [ ( a + b x) (c + d x ) , x, f] 

f [a c] + x^ f [b d] + X f [b c -f a d] 

If the function f is defined, Collect uses this definition. 

f = Function[y, y'^S] ; 

Co l l ec t [ ( a + b x) (c + d x ) , x, f] 

a^ c^ -h (bc + ad)^ x + b^ d^ x^ 

Coefficient [expression, x] gives the coefficient of x in expression. 

Coeff ic ient [a c + (b c + a d) x + b d x^, x] 

b c + a d 

Coefficient [expression, x, n] gives the coefficient of x^ in expression. 

Coeff ic ient [a c + (b c + a d) x + b d x^, x, 0] 

a c 
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Coeff ic ient [a c + (b c + a d) x + b d x^, x, 2] 

b d 

Coeff ic ientLis t [polynomial, x] gives a list of coefficients of powers of x 
in polynomial starting with power 0. 

Coeff ic ientLis t [a c + (b c + a d) x + b d x'^, x] 

{a c, b c + a d, b d} 

Exponent [expression, var iab le ] indicates the maximum power of va r i 
able in expression. 

Exponent [3 x'^3 + 5 x'̂ 2 - 2 x, x] 

PowerExpand may give an incorrect result and does not take into account 
assumptions! 

{PowerExpand [Sqrt[a'^2] ] , PowerExpand [Sqrt[a'^ 2] , a < 0] 

{a, Sqr t [a2]} 

3.2 Trigonometric Expressions 

TrigFactor [expression] and TrigExpand [expression] factor trigonomet
ric functions in expression. They both work on circular and hyperbolic func
tions. 

TrigFactor[Sin[2x]] 

2 Cos[x] Sin[x] 
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TrigFactor [Sinh [2x] ] 

2 Cosh[x] SinhCx] 

We obtain the same result with Factor [expression] if we use the option 
Trig -^ True. 

Factor[Sin[2 x ] , Trig -^ True] 

2 Cos[x] Sin[x] 

Compare the results obtained with either TrigFactor or TrigExpand. 

TrigFactor[Cos[2x] ] 

TrigExpand[Cos[2x]] 

(Cos[x] - Sin[x]) (Cos[x] + Sin[x]) 

Cos[x]2 - Sin[x]2 

TrigExpand[Sinh[2x]] 

Cosh[x]2 + Sinh[x]2 

Factor[Sin[3 x ] , Trig -^ True] 

(1 + 2 Cos [2 x]) Sin[x] 

TrigExpand[Sin[3 x]] 

3 Cos[x]'^ Sin[x] - Sin[x]^ 

TrigExpand[Cosh[3 x]] 

Cosh[x]^ + 3 Cosh[x] Sinh[x]2 
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TrigReduce [expression] rewrites products and powers of trigonometric 
functions in expression in terms of trigonometric functions with combined 
arguments. It works on circular and hyperbolic functions. 

TrigReduce[Cosh[x] ̂2 -- Sinh[x] ̂2] 

1 

TrigReduce[Cosh[x] ̂4 -- Sinh[x] ̂4] 

Cosh[2 x] 

TrigToExp [expression] converts trigonometric functions in expression to 
exponentials and ExpToTrig [expression] converts exponentials in expres
sion to trigonometric functions. 

TrigToExp[Cos[2 x] + Sinh[2 x]] 

:̂  E -2 X + - E-2 I X ^ :̂  £.2 I X ^ i E2 X 
2 2 2 2 

ExpToTrig [(Exp[2 x] - 1) / (Exp[2 x] + 1)] 

- 1 + Cosh[2x] + Sinh[2x] 

1 + Cosh[2x] + Sinh[2x] 

Sometimes we have to use Simplify for a simpler result. 

{ExpToTrig[(Exp[2 x] - 1) / (Exp[2 x] + 1 ) ] , ExpToTrig[(Exp[2 
x] - 1) / (Exp [2 x] + 1)] / / Simplify} 

, - 1 + Cosh 2x + Sinh 2x 
{ r—r r—r-y Tanh[x]} 
^ 1 + Cosh 2x -f Sinh 2x ^ 

TrigToExp [expression] also works in the following cases. 

TrigToExp[ArcTan[x]] 



3.2 Trigonometric Expressions 85 

1 1 
- I LogCl - I x] - - I LogCl + I x] 

TrigToExp[ArcTanh[x]] 

1 1 
- LogEl - x] + - Log[l + x] 

Simplify [Sin [n P i ] ] 

Sin[n Pi] 

Here Mathematica does not assume any specific property for the symbol n. If 
we tell Mathematica that n is an integer, then we get the expected result. 

Simplify[Sin[n P i ] , n G Integers] 

We can also use complex arguments. 

{Sin[I P i ] , Exp[I Pi / 2]} 

{I S inh [P i ] , 1} 

When using approximate numerical values, we can obtain spurious small val
ues due to round-off errors. Chop [expression] replaces approximate real 
numbers less than 10~^° in expression by 0. The default tolerance of 10~^^ 
can be changed to A using the command Chop [expression. A]. 

{Exp [I N[Pi] / 2 ] , Chop [Exp [I N[Pi] / 2] ]} 

{6.12323 10"^*^ -h 1. I , 1. 1} 

Here is a simple relation that has been used to calculate TT. 

FullSimplify[ArcTan[l / 2] + ArcTan[l / 5] + ArcTan[l / 8]] 
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Pi 

T 

3.3 Solving Equations 

3.3.1 Solving Polynomial Equations Exactly 

Linear, quadratic, cubic, and quartic polynomial equations can be solved in 
terms of radicals. There is no solution for general polynomial higher-degree 
equations in terms of radicals. Some particular polynomial equations of degree 
higher than four can however be solved in terms of radicals. In 1829 Evariste 
Galois (1811-1832) submitted articles to the French Academie des Sciences on 
the algebraic solution of equations, and a new article in 1830 entitled Memoire 
sur les conditions de resolubilite des equations par radicaux (On the condition 
that an equation be soluble by radicals) which gave rise to the field of Galois 
theory. 

Solve [equations, variables] attempts to solve an equation, or a system 
of equations, where variables stands for the list of unknowns. Mathematica 
gives exact solutions to linear, quadratic, cubic, and quartic equations. Equa
tions are given in the form Ihs === rhs. Solve gives solutions in terms of rules 
of the form {x —> solution}. 

Solve [a x'̂ 2 + b x + c == 0, x] 

- b - Vb^ - 4ac ^ ^ - b -h >/b^ - 4ac , , 
{{X - } . {X - }} 

The general quintic equation is not solvable by radicals. 

Solve [a x^5 + b x^4 + c x'̂ 3 + d x''2 + e x + f == 0, x] 

X 

RootCf + e #1 -h d #2 -h c #1^ -f b #'̂  -h a #^ &, 1]}, 

RootCf -h e #1 + d #2 -h c #1^ + b #'̂  -h a #^ &, 2]}, 

X -^ RootEf -h e #1 + d #2 -f- c #1^ + b #'̂  -h a #^ &, 3]}, 

X -> RootCf + e #1 -h d #2 -h c #1^ -h b #'̂  H- a #^ &, 4]}, 

X -̂  RootCf 4- e #1 -h d #2 + c #1^ + b #'̂  + a #^ &, 5]}} 
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But some particular quintic equations are solvable by radicals. Here is an 
example. 

Solve[x'^5 - x'̂ 4 - x +1 == 0, x] 

{{x -> - 1}, {x -> - I }, {x -> I } , {x -> 1}, {x -> 1}} 

If the equations are not polynomial, Mathematica has to use inverse functions 
and warns us that some solutions might be missing. 

Solve[Exp[x] = = 2 , x] 

Solve: :ifuii: 

Inverse functions are being used by Solve, 

so some solutions may not be found; use Reduce for 

complete solution information. More 

{{x -> Log[2]}} 

Let us follow the advice and use Reduce. 

Reduce[Exp[x] = = 2 , x] 

C[l] G In tegers && x == (2 I) Pi C[l] + Log[2] 

Because if n is an integer, exp(2ni7r) = 1, the command Reduce does give us 
all the solutions! Here is another example. 

Solve [Sin [x] == Cos[x], x] 

Solve : : i fun: Inverse functions are being used by Solve, 

so some so lu t ions may not be found; use Reduce for complete 

so lu t ion information. More . . . 

{{x -> } , {x -> —}} 
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Reduce[Sin[x] == Cos[x], x] 

C[l] G In tegers && (x == - 2 ArcTan[l + Sqr t [2] ] + 2 Pi C[l] 

II X == - 2 ArcTanEl - Sqr t [2] ] + 2 Pi C[ l ] ) 

Reduce[Sin[x] == Cos[x], x] / / FullSimplify 

(Pi + 8 Pi C[l] == 4 X 

I I Pi (- 3 + 8 C[ l ] ) == 4 x) && C[l] e In tegers 

Reduce can 

Reduce[-

- 1 < X < 

Reduce [{x 

also be used to solve inequalities. 

x'̂ 2 + 2 X 

3 

'̂ 2 + 3 X -

+ 3 > 0, x] 

• 1 > 0, x^2 + X - 5 < 0} , x] 

- 3 + Sqrt[l3] - 1 + Sqrt[2l] 

Mathematica can also solve equations containing rational powers. For exam
ple, 

eqn = (x - 1)^(1 / 2) == (x + 1)^(1 / 3 ) ; 
Solve [eqn] 

4 ( 7 3 - 6 Sqrt[87])^/^ (73 + 6 Sqrt[87])^/^ 

Actually, during the solving process of this type of equation, as a result of 
algebraic manipulations such as raising expressions to various powers, spurious 
solutions may arise. The command Solve verifies all solutions and eliminates 
the wrong ones. We may exhibit all solutions including the wrong ones using 
the option VerifySolutions -^ False. 

so l = Solve[eqn, VerifySolutions -> False] 
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n - ^ ( 7 3 - 6 Sqrt[87])^/^ (73 + 6 Sqrt[87])^/^ 
^^^ ^ 3 "̂  3 "̂  3 ^ ' 

4 _ (l + I Sqrt[3]) ( 7 3 - 6 Sqrt[87])^/^ 

^^ ^ 3 6 ~ 

( l - I Sqrt[3]) (73 + 6 Sqrt[87])^/^ 

6 ^' 

4 __ ( l - I Sqrt[3]) ( 7 3 - 6 Sqrt[87])^/^ 

^^ ^ 3 " 6 

(l + I Sqrt[3]) (73 + 6 Sqrt[87])V^ 

We can verify that the extra solutions were wrong using the command 
expression / . r u l e that applies a ru l e (or a list of rules) to expression. 
Note that solutions are given by rules. 

{eqn / . s o l [ [ 2 ] ] , eqn / . s o l [ [ 3 ] ] } 

{False, False} 

3.3.2 Numerica l Solutions 

NSolve[equations, va r i ab les ] gives a list of numerical approximations to 
the roots of a polynomial equation or a system of polynomial equations. 

NSolve[x^7 - 5 x'̂ S + 2 x'^4 - x^3 + 6 x - 12 == 0, x] 

{{x -> - 2.3818}, {x -> - 1.29259}, {x -> - 0.16742 - 1.17335 1} 

{x -> - 0.16742 + 1.17335 I }, {x -> 0.973189 - 0.630825 I}, 

{x -> 0.973189 + 0.630825 I }, {x -> 2.06286}} 

NSolve[{x - 2 y = = 2 , x - y + 3 z = = - 2 , x + y - 2 z = = 0 } , 
{x, y, z}] 

{{x -> - 0.545455, y -> - 1.27273, z -> - 0.909091}} 
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NSolve[{ x^2 + 3 y-̂ S == 2, 2 x^3 - y == l } , {x, y}] 

{{x -^ - 0.511668 + 0.849668 I , y 

{x -> - 0.511668 - 0.849668 I , y -

{x ^ - 0.152442 + 0.779731 I , y -

{x ^ - 0.152442 - 0.779731 I , y -

{x -^ 0.755431 - 0.214877 I , y -> 

{x -^ 0.755431 + 0.214877 I , y -> 

{x -^ 0.950077, y -^ 0.715169}, 

{x -> - 0.56636 - 0.501715 I , y -^ 

{x ^ - 0.56636 -f- 0.501715 I , y -^ 

-> 0.948437 + 0.107866 I } , 

y 0.948437 - 0.107866 I }, 

> - 0.450997 - 0.839403 I } , 

y - 0.450997 + 0.839403 I } , 

- 0.347066 - 0.715907 I } , 

- 0.347066 + 0.715907 I } , 

- 0.507959 - 0.713011 I } , 

- 0.507959 + 0.713011 I}} 

If equations involve more complicated functions we use FindRoot [eqn, {x, 
xO}] that searches a solution to eqn starting with x = xO. Using Plot helps 
to find the starting approximate solution xO to eqn. 

Plot [{2 Cos[x], Tan[x]}, {x, - 1, 1}] ; 

Fig. 3.1. Graphs of 2 cos{x) and tan(x) for x G [—1,1]. 

The output (Figure 3.1) shows that the solution is close to 1. We therefore 
choose xO = 1. 

FindRoot[2 Cos[x] == Tan[x], {x, 1}] 

0.895907} 
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Note that NSolve would have given correct solutions with, however, the usual 
warning. 

NSolve [2 Cos[x] == Tan[x] , x] 

Solve : : i fun: Inverse functions are being used by Solve, 

so some so lu t ions may not be found; use Reduce for complete 

so lu t ion information. More . . . 

{{x -> - 1.5708 - 0.732858 I } , {x -> - 1.5708 -h 0.732858 I } , 

{x -> 0.895907}, {x -> 2.24569}} 

If here again we follow the advice and use Reduce, we find 

Reduce[2 Cos[x] == Tan[x], x] 

C[l] G In tegers && 

(x == 2 ArcTan[Root[l - #1 - 2 #1^ - #1^ -f #1^ & , 1]] -h 

2 Pi C[l] 

II X == 2 ArcTan[Root[l - #1 - 2 #1^ - #1^ + #1^^ & , 2]] + 

2 Pi C[l] 

II X == 2 ArcTan[Root[l - #1 - 2 #1^ - #1^ + #1"^ & , 3]] + 

2 Pi C[l] 

II X == 2 ArcTan[Root[l - #1 - 2 #1^ - #1^ + #1^ & , 3]] + 

2 Pi C[ l ] ) 

Reduce tells us that the equation has four solutions, but to find them we first 
have to solve the polynomial equation 1 — x — 2x^ — x^ -\- x^ = 0. 

sol = NSolve [1 - X - 2 x'̂ 2 - x^3 + x'^4, x] 

{{x -> - 0.780776 - 0.624811 I } , {x -> - 0.780776 -h 0.624811 I } , 

{x -> 0.480534}, {x -> 2.08102}} 

Hence, the solutions are 
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{2 ArcTanW / . s o l [ [ l ] ] , 2 ArcTan[x] / . sol [ [ 2 ] ] , 2 
ArcTanEx] / . so l [ [ 3 ] ] , 2 ArcTan[x] / . sol [[3]] 

{ - 1.5708 - 0.732858 I , - 1.5708 -f 0.732858 I , 0.895907, 

2.24569} 

which are the solutions found using NSolve except that for the missing addi
tive factor 2n7r where n is an integer. 

Consider another example. 

Plot[{2 CosCx], (x - l )^2} , {x, - 0 .5 , 2 } ] ; 

Fig. 3.2. Graphs of 2 cos(x) and (x - if for x G [-0.5,2]. 

The graphs above show that the two solutions of the equation 2 cos(x) — {x — 
1)^ are close to 1.5 and —0.4. We can increase the precision by including the 
option WorkingPrecision ^ n to specify the number of digits that should 
be used to carry out computations. 

FindRoot[2 Cos [x] == (x-l)'^2, {x, 1 .5} , 

WorkingPrecision -^ 40] 

{x -> 1.463276654181592645123727537628300964609} 

FindRoot[2 Cos[x] == (x-l)'^2, {x, - 0 .4 } , WorkingPrecision 
40] 
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0.3664571903448024777581452462984821489343} 

In order to use Impl ic i tPlot to help solve simultaneous equations, we first 
have to load the corresponding package: 

« Graphics'ImplicitPlot' 

pll = ImplicitPlot[2 x^2 + y^3 == 3, {x, - 3, 3}]; 

Fig. 3.3. Plot of 2x^ -j-y^ ==3 for x G [-3,3]. 
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pl2 = Impl i c i tP lo t [ (x - 1)^2 + 3 y'^2 == 4, x, - 3 , 3 ] ; 

Fig. 3.4. Plot of {x - if -h 3y^ == 4 for x e [-3,3]. 

Let us combine the two plots to visualize the approximate solutions. 

Show[{pll, p l2} ] ; 

Fig. 3.5. Plots of 2x^ -h y^ == 3 and {x - 1)^ + 3y^ == 4 for x e [-3,3]. 

eqns = {2 x'̂ 2 + y'^3 == 3 , (x - 1)^2 + 3 y'̂ 2 == 4} ; 

The plot above shows that there exist two solutions close to {x = l^y = 1) 
and [x = l^y = —1). 

s o i l = FindRoot[eqns, {x, 1}, {y, 1}] 
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{x -^ 0.857916, y -^ 1.15178} 

sol2 = FindRoot[eqns, {x, 1}, {y, - 1}] 

{x -> 1.48428, y -> - 1.12034} 

We can check the solutions as above using the command expression / . ru le . 

eqns / . s o i l 

{True, True} 

eqns / . sol2 

{True, True} 

If we know only that the value of a coefficient lies in a given interval, when 
solving the equation, we can use In te rva l ; the solutions will then be expressed 
in terms of intervals. 

Solve [ x'̂ 2 - 3 == In t e rva l [{1, 6} ] , x] 

{{x -> I n t e r v a l [ { - 3 , - 2}]} , {x -> In t e rva l [{2 , 3}]}} 

3.4 Vectors and Matrices 

Matrix algebra was first developed in the mid-nineteenth century by the En-
ghsh mathematician Arthur Cayley (1821-1895). 

Vectors and matrices are, respectively, represented by lists and lists of lists. 

Here are a two-dimensional vector v and a 2 x 2 matrix m. 

V = {x, y} 

m == {{a, b } , {c, d}} 
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{x, y} 

{{a, b } , {c, d}} 

TableFormCm] 

a b 
c d 

Matrix elements are parts of the list of lists 

m [ [ l , l ] ] 
m[ [ l , 2 ] ] 

m[ [2 , l ] ] 
m[[2,2]] 

a 

b 

c 

d 

We can also use the function Array to define vectors, matrices, and, more 
generally, tensors. 

Array[V, 5] 

{V[ l ] , V[2], V[3], V[4], V[5]} 

The third element of Array gives the index origin if different from one. 

Array[V, 5, 0] 

{V[0], V [ l ] , V[2], V[3], V[4]} 

Array[M, {3, 5}] 
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{{M[l, 1 ] , M[l. 2 ] , M[l, 3 ] , M[l, 4 ] , M[l, 5 ] } , 

{M[2, 1 ] , M[2, 2 ] , M[2, 3 ] , M[2, 4 ] , M[2, 5 ] } , 

{ M[3, 1 ] , M[3, 2 ] , M[3, 3 ] , M[3, 4 ] , M[3, 5]}} 

Array[T, {4, 3 , 5}] 

{{{T[l , 1, 1 ] , T[ l , 1, 2 ] , T[ l , 1, 3 ] , T[ l , 1, 4 ] , T[ l , 1, 5 ] } , 

{T[l , 2, 1 ] , T[ l , 2, 2 ] , T[ l , 2, 3 ] , T[ l , 2, 4 ] , T[ l , 2, 5 ] } , 

{T[l , 3 , 1 ] , T[ l , 3 , 2 ] , T[ l , 3 , 3 ] , T[ l , 3 , 4 ] , T[ l , 3 . 5]}} 

{{T[2, 1, 1 ] , T[2, 1, 2 ] , T[2. 1, 3 ] , T[2, 1, 4 ] , T[2, 1, 5]} 

{T[2, 2, 1 ] , T[2, 2, 2 ] , T[2, 2 . 3 ] , T[2, 2, 4 ] , T[2, 2, 5 ] } , 

{T[2, 3 , 1 ] , T[2. 3 , 2 ] , T[2, 3 , 3 ] , T[2. 3 , 4 ] , T[2, 3 , 5]}} 

{{T[3, 1, 1 ] , T[3, 1, 2 ] , T[3, 1, 3 ] , T[3, 1, 4 ] , T[3, 1, 5]} 

{T[3. 2, 1 ] , T[3, 2, 2 ] , T[3, 2, 3 ] , T[3, 2, 4 ] , T[3, 2, 5 ] } , 

{T[3, 3 . 1 ] , T[3. 3 . 2 ] , T[3, 3 , 3 ] , T[3, 3 . 4 ] , T[3, 3 , 5]}} 

{{T[4, 1, 1 ] , T[4, 1, 2 ] , T[4, 1, 3 ] , T[4, 1, 4 ] , T[4, 1, 5]} 

{T[4. 2, 1 ] , T[4, 2, 2 ] , T[4, 2, 3 ] , T[4, 2, 4 ] , T[4, 2, 5 ] } , 

{T[4, 3 . 1 ] , T[4, 3 , 2 ] , T[4, 3 , 3 ] , T[4, 3 , 4 ] , T[4, 3 , 5]}}} 

Dimensions [expression] gives a list of the dimensions of expression. 

Dimensions[%] 

{4, 3 , 5} 

We can enter true subscripts using Subscript. 

Table[Subscript[v, i ] , { i , 1, 5}] 

Table[Subscript[t, i , j ] , { i , 1, 3 } , { j , 1, 5}] 

{ v i , V2, V3, V4, V5} 

{{*1,1. t l , 2 ' t l , 3 . *1,4' ^1^5}, 

{^2,1' t2 ,2 . t2 ,3 . •t2,4> ^2,5} ' 

{1^3,1. t3 ,2 . t l , 3 ' ^3,4' *3,5}} 
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Using BasicTypesetting of the Palettes submenu we can enter indices and 
Greek letters. Greek letters can also be written entering \[LetterNaine], where 
LetterName is Alpha, Beta, and so on. 

All the following command names have pretty clear meaning. 

DiagonalMatrix[ a , /?, 7] / / MatrixForm 

(OL 0 0> 

0 /?0 

,0 0 7> 

IdentityMatrix[3] 

{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}} 

vl = {xl, yl} 

v2 = {x2, y2} 

vl + v2 

{xl, yl} 

{x2, y2} 

{xl + x2, yl + y2} 

m.v 

{a X + b y, c X + d y} 

Det [m] 

b c + a d 

Transpose[m] 

{{a, c}. {b, d}} 
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Inverse[m] 

// ^ ^- \ / ^ ! U 
U - b c + a d ' - b c + a d J ' I - b c + a d * - b c + a d J J 

MatrixPower[m, 2] 

{{a^ 4- b c, a b + b d} , {a c -h c d, b c + d^}} 

Eigenvalues[m] 

| - ^a + d- \ /a2 + 4 b c - 2 a d + d2V 

- U + d+Va^ H-4 b c - 2 a d + d^H 

Eigenvectors[m] 

« - a + d + \/a2 - h 4 b c - 2 a d - f - d 2 >» 

2"^ ' V ' 

r - a + d - Va2 + 4 b c - 2 a d - f d 2 >i>» 

I 2 ^ '^JJ 

The product of an (rii, 712)-matrix by an (77-2, nsj-matrix is an (ni, n3)-matrix. 
An (n, l)-matrix is a column vector, and a (1, n)-matrix is a row vector. 

mA 

mB 

mA. 

= Array[A, 

= Array[B, 

mB 

{3, 
{2. 

2}] 

1}] 

{{A[l , 1 ] , A[l , 2 ] } , {A[2, 1 ] , A[2, 2 ] } , {A[3, 1 ] , A[3, 2]}} 

{{B[l , 1 ] } , {B[2. 1]}} 

{{A[l . 1] B[ l , 1] + A[l , 2] B[2, 1 ] } , 

{A[2, 1] B[ l , 1] + A[2, 2] B[2, 1 ] } , 

{A[3, 1] B[ l , 1] + ACS, 23 B[2. 1]}} 
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MatrixForm[mA] 

MatrixForm[mB 

^A[l,l],A[l,2p 
A[2,1],A[2,2] 

.A[3,1],A[3,2] 

B[1,1],B[1,2] 
B[2,1],B[2,2] 

Array[X,3,1] 

Array[Y,1,3] 

MatrixForm[Array[X,3,1]] 
MatrixForm[Array[Y,1,3]] 

{{X[l, 1 ] } , {X[2, 1 ] } , {X[3, 1]}} 

{{Y[l , 1 ] , Y[l , 2 ] , Y[l , 3]}} 

<x[i,ir 
X[2,1] 

>X[3,1], 

(Y[l, 1] Y[l , 2] Y[l , 3]) 

For more evolved matrix manipulations, load the package: 

« LinearAlgebra 'MatrixManipulation' 

Here are a few examples. 

A = {{all, 

B = {{bll. 

al2}, 

bl2}. 

{a21, 

{b21. 

a22}}; 

b22}}; 

AppendColvmins [A, B] // MatrixForm 
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all al2 
a21 a22 
bll bl2 
b21 b22 

AppendRows[A, B] //[Imm] MatrixForm 

all al2 bll bl2 
a21 a22 b21 b22 

BlockMatrix[{{A, B}, {B, A}}] // MatrixForm 

all al2 bll bl2 
a21 a22 b21 b22 
bll bl2 all al2 
b21 b22 a21 a22 

UpperDiagonalMatrix[M, 3] // MatrixForm 

M[l, 1] M[l, 2] M[l, 3] 
0 M[2, 2] M[2, 3] 
0 0 M[3, 3] 

LowerDiagonalMatrix[M, 3] // MatrixForm 

M[l, 1] 0 0 
M[2, 1] M[2, 2] 0 
M[3, 1] M[3, 2] M[3, 3] 

LinearEquationsToMatrices[ 

all X + al2 y == bl, 

a21 X + a22 y == b2, x, y] 

{{{all, al2}, {a21, a22}}, {bl, b2}} 
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We don't need to load the package to execute the inverse command, we just 
use the command Thread. 

A = {{all, al2}. 

V = {x, y}; 

b = {bl, b2}; 

Thread[A. {x, y} 

{a21. 

== b] 

a22}}; 

{a l l X + al2 y == b l , a21 x + a22 y == b2} 



Analysis 

4.1 Differentiation 

4.1.1 Partial Derivative 

The function D[f [a,x,y] ,x] does partial differentiation with respect to a 
variable (here x). 

DEx-^O / 2) 7-^2, x] 

3 x/^ y2 

If we define a function f of one variable, we can use, for the derivative, the 
notation f' but, as shown below, we have to be careful. 

f[x_] 

f [x] 

f 

:= x-(2 / 3) 

3 x'/' 
2 

3 #V3 -

The last representation, associated with f ', is a pure function. 
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Using the submenu Palettes -^ Basiclnput, D[f [x ] , x] can also be entered 
as dy:f[x]. 

dy, x^(3/2) y^2 

3 Sqrt[x] y^ 

D also does multiple differentiation with respect to different variables. The 
command below evaluates the second derivative with respect to x and the 
first one with respect to y. 

{D[x^(3/2) y^2, {x, 2} , {y, 1}] , D[x^(3/2) y'^]2, x, x, y]} 

r Z_j_ _3_2_ j 

I 2 V x ' 2 x/x / 

Here are a few more examples illustrating how, using Mathematical we can 
avoid doing rather tedious calculations. 

D [Cos [Log [Sqrt [x] ] ] , x, x] 

-Cos[Log[Sqrt[x]]] S in [Log [Sqrt [x]]] 

4 x̂  ^T^ 

D[Sin[2 x]^3 Cos[x'^2], x] 

6 Cos [2 x] Cos[x2] Sin[2 x ] ^ - 2 x Sin[2 x ] ^ Sin[x2] 

D[Sin[2 x]'^3 Cos[x^2], x, 10] 

Long output suppressed. 

D[f[x]^2, {x, 5}] 

20 f"[x] f(3)[x] + 10 f [x] f(^)[x] + 2 f [x] f(^)[x] 
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D[f[x^3] , x] 

3 x2 f [x^] 

Mathematica knows most special functions of mathematical physics. 

D[BesselJ[3, x] , x] 

1 
- (BesselJ[2, x ] -Besse l [4 , x]) 

D[LegendreP[5, x ] , {x, 2} 

105 X 315 x^ 
+ 

The command Der ivat ive[k , 1] [f] [a, b] takes the derivative of f{x^y) 
k times with respect to x and / times with respect to y and evaluates this 
derivative for x = a and y = b. 

f[x_, y_] := TanCx - y] / Cos[x + y] ; 

Der iva t ive[2 , 3] [f] [Pi / 6, Pi / 4] / / Simplify 

19 Sqrt[2] (5009 - 5447 Sqr t [3] ) 

4.2 Total Derivative 

Dt [f, x] gives the total derivative df/dx. 

Dt[x^2 y^3] 

2 X y^ Dt[x] + 3 x^ y2 Dt [y] 

We can set a variable (here a) to be a constant 

SetAttributes[a, Constant] 
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Dt[a x^2 y^3] 

2 a X y^ Dt[x] + 3 a x^ y^ Dt[y] 

We can replace Dt [x] and Dt [y] by dx and dy^ respectively, in order to obtain 
the following more traditional form. 

% I. {Dt[x] ^ dx, Dt[y] -^ dy} 

3 a dy x^ y^ + 2 a dx X y^ 

4.3 Integration 

4.3.1 Indefinite Integrals 

Integrate [f [x] , x] gives the indefinite integral / j{x) dx. Here are a few 
examples. 

Integrated / (1 + x^2)^2, x] 

- ( o + ArcTan[x] ] 

Using the submenu Palettes —> Basiclnput, Integrate [f [x] , x] can also be 
entered as / f [x] dx. 

Here are a few examples. 

Integrate[Log[x"2] , x] 

- 2 X + X LogCx^] 

Integrated''2 Log[x] , x] 

- x'̂ ^ ( - 1 + 3 LogCx] ) 
9 



4.3 Integration 107 

I n t e g r a t e [ ( 1 - Cos[x]) / (1 + Cos[x]) , x] 

- X + 2 Tan 

Integrate[Sin[Log[x] ] , x] 

1 
- X (Cos[Log[x]] - Sin[Log[x]]) 

In tegra te[Cos[Log[x]] , x] 

X (Cos[Log[x]]+Sin[Log[x]]) 

I n t e g r a t e [ B e s s e l J [ l , x] , x] 

— Besse lJ [0 , x] 

4.3.2 Definite Integrals 

In t eg ra t e [f [x] , x, x l , x2] gives the definite integral/^^ / (x) do:. 

Integrate[Exp[x] S i n [ x ] , {x, 0, Pi}] 

l + E ^ i 

Using the submenu Palettes -^ Basiclnput, In tegra te [ f [x] , x, x l , x2] 
can be entered as /^^ f [x] dx. 

We can use Mathematica to display the output in TraditionalForm. Here are 
a few examples. 

I n t e g r a t e [ ( x ~ 1) / Log[x], {x, 0, l}] / / TraditionalForm 
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log(2) 

Integrate[Log[x] / (x - 1 ) , {x, 0, 1}] / / TraditionalForm 

TT 

~6 

(Log[x])'^2 / (1 + X + x^2), {x, 0, Infinity}] // 
TraditionalForm 

1 6 TT^ 

81 Vs 

Mathematica can also deal with nonelementary functions. 

In tegra te[Cos[Exp[x]] , {x, 0, l}] 

CosIn tegra l [ l ] + Coslntegral[E] 

CosIntegral[x] is defined by — In teg ra t e [Cos [u] / u, {u, x, I n f in -
textttity}] and S in ln teg ra l [x] by In teg ra t e [Sin [u] / u, {u, 0, x}]. 
These functions are, respectively, denoted Ci(a:) and Si(a:). 

P lo t [Cos ln t eg ra l [x ] , {x, 1, E}]; 

0 .45 

0 .4 

0 .35 

0 .25 

1.25 1.5 1.75 2 2.25 2\5 2.75 

Fig. 4.1. Graph of Ci{x) for x G [l,e]. 
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Here are other nontrivial examples. 

Integrate[Log[Cot[x]] , {x, 0, Pi/4}] 

Catalan 

Catalan is Catalan's constant C. Its numerical value is 

Catalan / / N 

0.915966 

This constant is defined by the series: 

(-1)^ c=E 0 2fc+l)2-

In teg ra t e [Exp [" x^3] S q r t [ l - x'^3] , {x, 0, 1}] 

1 1 11 
Sqrt[Pi] Gaimna[-] HypergeometriclFl[- ,—,—l] 

3 3 6 

6 Gammaf—1 
^6 ^ 

where Gamma [z] represents the Euler function F defined for Re(2;) > 0, by 

/»oo 

r{z)= I t^-^e-Mt. 

and HypergeometriclFl is the Kummer confluent hypergeometric function 
iFi defined by 

OO / \ U 

.F,(a;M) = ^ 5 : ^ ^ . 

4.3.3 Numerical Integration 

NIntegrate [f [x] , {x, x l , x2}] gives a numerical approximate value of the 
definite integral j ^ ^ f{x) dx. 

Here is a definite integral that cannot be evaluated exactly. 
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Integrated / Cos [Tan[x]] , {x, 0, Pi /4}] 

Pi 
Integrate[Sec[Tan[x]] , {x, 0, —}] 

Mathematica can, however, find a numerical approximate value of this definite 
integral. 

NIntegrate[l / Cos[Tan[x]], {x, 0, Pi/4}] 

0.927485 

WorkingPrecision is an option for various numerical operations that specifies 
how many digits of precision should be maintained in internal computations. 

NIntegrate[Exp[-x"2] , {x, - 5, 5} , WorkingPrecision —> 50] 

1.7724538509027909507649211099378135487892 

Sometimes we may encounter problems of convergence as in the following 
example. 

NIntegrate[Exp[-x'^2] , {x, - 500, 500}] 

Numerical integration converging too slowly; 

suspect one of the following: singularity, 

value of the integration being 0, oscillatory 

integrand, or insufficient WorkingPrecision. 

If your integrand is oscillatory try using the 

option Method -> Oscillatory in NIntegrate. More ... 

NIntegrate::ncvb : 

NIntegrate failed to converge to 

prescribed accuracy after 7 recursive 

bisections in x near x = -3.90625. More ... 

0.88631 
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??NIntegrate 

NIntegrate[f, {x, xmin, xmax}] gives a numerical 

approximation to the integral of f with 

respect to x from xmin to xmeix. More . . . 

Attributes[NIntegrate] = {HoldAll, Protected} 

Options [NIntegrate] = {AccuracyGoal -^ CXD, Compiled -^ True 

EvaluationMonitor —> None, GaussianPoints —> Automatic, 

MaxPoints —> Automatic, MaxRecursion -^ 6, 

Method —> Automatic, MinRecursion —> 0, 

PrecisionGoal -^ Automatic, SingularityDepth -^ 4, 

WorkingPrecision —> MachinePrecision} 

Increasing MinRecursion, MaxRecursion, and WorkingPrecision yields a 
much better result. 

NIntegrate[Exp[- x 

MinRecursion -^ 5, 

WorkingPrecision -

^2], {x. - 500, 

MaxRecursion — 

^ 30] 

500}, 

> 20, 

1.7724538509055160273 

Breaking the integration interval into pieces explicitly covering the peak may 
help obtain an accurate answer. 

NIntegrate [Exp[- x'̂ 2] , {x, - 500, - 5, 5, 500}, 

WorkingPrecision -^ 30] 

1.77245385090551602730 

We can also evaluate the area between two curves as illustrated below. 

«Graphics' 

fl[x_] 

f2[x.] 

:= x-4 

:= 10 -

NSolve[fl[x] = 

x-3 

== f2[x]. x] 
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{{x -> - 2.09209}, {x -> - 0.240141 - 1.72692 I}, 

{x -> - 0.240141 + 1.72692 I}, {x -> 1.57237}} 

F i l l e d P l o t [ { f l [ x ] , f 2 [ x ] } , {x, - 2.09209, 1.57237}]; 

-2 -1 .5 -1 -0 .5 ' 0.5 1 1.5 

Fig. 4.2. Area between two curves. 

The area between the two curves represented above is given by 

NIntegrate[Abs[f2[x] - f l [ x ] ] , {x, - 2.09209, 1.57237}] 

29.9679 

or, because we have to integrate polynomial functions, 

Integrate[f2[x] , {x, - 2.09209, 1.57237}] - Integrated 1 [x] , 
{x, - 2.09209, 1.57237}] 

29.9679 

4.3.4 Multiple Integrals 

Integrate [ f [x , y] , {x, x l , x2}, {y, y l , y2}] gives the multiple inte
gral £ f dxf^^ dyf[x,y). 
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In tegra te[x^2 y^2, {x, 0, a } , {y, 0, b}] 

. 3 K3 a D 

NIntegrate[Cos[x y ] , {x, 0, Pi / 2} , {y, 0, Pi / 2}] 

1.77049 

4.4 Differential Equations 

Mathematica gives exact solutions to linear diflFerential equations with con
stant coefficients. 

DSolve[y"[x] - 3 y'[x] + 2 y[x] == Exp[x], y[x] , x] 

{{y[x] -^ - E^ (1 + x) + E^ C[l] + E^x C[2]}} 

Mathematica can solve equations with nonconstant coefficients (Bernoulli). 

DSolveCd - x''2) y'[x] - 2 x y[x] == x^2, y[x] , x] 

^^ ^ 3 ( - 1 + x^) - l + x2^^ 

DSolve[y'[x] == x y[x] + x'̂ 2 y[x]^2, y [ x ] , x] 

- 2 E^ /^ 
{{ y w - — J - — } } 

2 E^ /2 x - 2 C[l]-Sqrt[2Pi] E r f i [ ^ ^ ^ ] 

Erf i [z] gives the imaginary error function erf (iz)/i. The error function erf is 
defined by 
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erf(^) 
V^ Jo 

dt. 

The above equation can be written y'/y^ = x/y-\-x^ and \i z = \/y we obtain 
the hnear equation z' -\- xz -{- x^ ==0, easily solved using Mathematica. 

4.4.1 Solving nonelementary ODE 

Mathematica recognizes a Bessel-type differential equation. 

DSolveCx y"[x] + y'[x] + x y[x] == 0, y[x] , x] 

{{y[x] -^ BesselJ[0, x] C[1] + BesselY[0, x] C[2]}} 

We can plot the solutions. 

Plot[{BesselJ[0, x ] , BesselY[0, x ] } , {x, 0 .1 , 10}, 

PlotStyle -^ {RGBColorEl, 0, 0 ] , RGBColor[0, 0, 1 ]}] ; 

Fig. 4.3. Graph of the Bessel functions Jo{x) and Yo{x) for x G [0.1,10]. 

We took the initial point of the x-interval equal to 0.1 because—as we can 
infer from its graph—lo(^) is singular at the origin. 

4.4.2 Numerical Solutions 

The following system of differential equations can only be solved numerically. 
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so lu t ion = NDSolve[{x'[t] == 

y ' [ t ] == x [ t ] - y [ t ] , x[0] == 

- 2 y [ t ] + (x[ t ]) '^2, 

y[0] == 1}, {x, y } , { t , 0, 10}] 

{{x "> In terpola t ingFunct ion[{{0. , 10.}}, <>] , 

y -> Interpolat ingFui ic t ion[{{0. , 10.}}, <>]}} 

We can plot the solution. 

Paramet r icP lo t [Eva lua te [{x[ t ] , y [ t ] } / . s o l u t i o n ] , { t , 0, 
10}] 

Fig. 4.4. Parametric plot of the solution of the system x' — —2y -\- x^,y' — x — y 
for the initial conditions x{0) = y{0) = 1 in the interval t G [0,10]. 

Here is an example of multiple solutions. 

Clear[solution] 

solution = NDSolve[y'[x]"2 == Sin[2x] , 

1}] 

y[0] == 0, y [ x ] , {x, 0, 

{{y[x] -> In terpola t ingFunct ion[{{0. , 1.}}, <> ] [ x ] } , 

{y[x] -> In terpola t ingFunct ion[{{0. , 1.}}, <> ] [x]}} 

Plot[Evaluate[y[x] / . s o l u t i o n ] , { x , 0 , l } ] ; 

We can solve a differential equation with a discontinuous derivative. 
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Fig. 4 .5 . Plot of the solution of the ODE {y'Y = sm{x) for the initial condition 
= 0 m the interval x G [0,1]. 

Clear[solution] 

solution = NDSolve[{y'[x] == If [x < 0, - 1 / (x -
- 2 ) - 2 ] , y[0] == 0} , y [ x ] , {x, - 2 . l } ] 

- 2 ) - 2 , 1 / (x 

{ { y W -> InterpolatingFunction[{{- 2 . , 1 . } } , <> ] [ x ] } } 

Plot[Evaluate[y[x] / . so lu t ion] , {x, - 2, 1}] ; 

-2 -1 .5 - 1 

0 .5 

0 .4 

0 .3 

0 .2 

^ X . O . l 

-0 .5 0 .5 1 

Fig. 4.6. Plot of the solution of the ODE y' = -l/{x-2f, if x < 0 and l / ( x - 2 ) ^ , 
if X > 0, for the initial condition y(0) = 0 in the interval x G [—2,1]. 
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4.4.3 Series Solutions 

Series solutions assume that y[x] is given by a power series with unknown 
coefficients in x. This series is built up with SeriesData[x, xO, {aO, a l , 
a2, . . . } ] 

y[x_] := SeriesData[x, 0, T a b l e [ a [ i ] , { i , 0, 7}]] 

seriesDE = (y'[x])'^2 - y[x] == x 

( - 1 + a [ l ] 2 ) + ( - a [ l ] + 4 a [ l ] a[2]) x + 

( - a[2] + 4 a[2]2 + 6 a [ l ] a[3]) x^ + 

( - a[3] + 12 a[2] a[3] + 8 a [ l ] a[4]) x^ + 

(9 a[3]2 - a[4] + 16 a[2] a[4] + 10 a [ l ] a[5]) x^ + 

(24 a[3] a[4] - a[5] + 20 a[2] a[5] + 12 a [ l ] a[6]) x^ + 

(16 a[4]2 + 30 a[3] a[5] - a[6] + 24 a[2] a[6] + 

14 a [ l ] a[7]) x^ + OEx]"̂  

LogicalExpand [expression] expands expression containing logical opera
tors such as && and I I standing, respectively, for AND and OR. 

coeffEqn = LogicalExpand[seriesDE] 

- 1 + a [ l ] 2 == 0 && - 1 - a [ l ] + 4 a [ l ] a[2] == 0 && 

- a[2] + 4 a[2]2 + 6 a [ l ] a[3] == 0 && 

- a[3] + 12 a[2] a[3] + 8 a [ l ] a[4] == 0 && 

9 a[3]2 - a[4] + 16 a[2] a[4] + 10 a [ l ] a[5] == 0 && 

24 a[3] a[4] - a[5] + 20 a[2] a[5] + 12 a [ l ] a[6] == 0 && 

16 a[4]2 -h 30 a[3] a[5] - a[6] + 24 a[2] a[6] + 14 a [ l ] a[7] 

== 0 

We solve using the initial condition: a[0] == 1. 

?Solve 

Solve[eqns, vars] attempts to solve an equation 
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or set of equations for the variables vars. Solve[eqns, vars, 

elims] attempts to solve the equations for vars, eliminating 

the variables elims. More ... 

coeffSol = Solve[{coeffEqn, a[0] == 1}, 

Table[a[i], {i, 1, 7}]] 

6889 469 41 5 
{{a[7] -^ , a[6] ^ , a[5] -^ , a[4] -^ — , 
^̂  161280 11520 960 96 

1 1 
a[3] -> , a [ l ] -> 1, a[2] -^ - } , {a[7] -> 0 , a[6] -^ 0, 

12 2 

a[5] -^ 0, a[4] -^ 0, a[33 -^ 0, a [ l ] -> - 1, a[2] ^ 0 }} 

We find two solutions. 
coeffSol [[1]] 

{a [7] ^ -

a[3] ^ -

6889 469 
> cL LO J ' » a LO J 

161280 11520 

^ . a [ l ] -. 1, a[2] ^ ^} 

41 5 
, a[4] -^ — 

960 96 

Substituting we obtain 

ser iesSol l = y[x] / . Jo in[coef fSo l [ [1 ] ] , {a[0] -> l } ] 

2 3 
X X 

5 x^ 41 x̂  469 x̂  6889 x̂  
1 + X + -h -h H- 0 [x ]^ 

2 12 96 960 11520 161280 

ser iesSol l = y[x] / . Jo in[coef fSo l [ [2 ] ] , {a[0] -^ 1}] 

1 - X + 0[x] 8 

Note in the input cell above the use of the command Join to concatenate two 
lists. 

Checking: 
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seriesDE /. coeffSol 

|7 _ {x + OEx]'̂  == X, X -f OEx]'̂  == x} 

The function Normal applied to an expression converts this expression to a 
normal form, that is, a polynomial form without the term 0[x]° . 

s o i l = Normal[seriesSoll] 

x^ x^ 5 x^ 41 x^ 469 x^ 6889 x^ 
1 + X + + + 

2 12 96 960 11520 161280 

Plot [soil, {x, 0, 3}] 

Fig. 4.7. Plot of the first series solution of the ODE {y'Y — y = ^) for the initial 
condition y{0) = 1 in the interval x G [0,3]. 

4.4.4 Differential Vector Equations 

DSolve[equation,y,x] does not work when the unknown function y is a 
vector, that is a list, as shown below. 

We first load the package Calculus 'Vector Analysis in order to be able to 
use the command CrossProduct. 

« Calculus'VectorAnalysis' 
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We then define the vector position of the electric charge, the electric and 
magnetic fields, and the vector force. 

r[t_] := {x[t], 

electricField = 

magneticField = 

y[t], z[t]} 

0, Efield, 

{0, 0, Bfi€ 

force = q (electricField + 

magneticField]) ) 

0; 

ild}; 

CrossProduct[r' [t]. 

Finally we enter the equation that determines the motion of the electric point 
charge in the electromagnetic field. 

DSolve[{m r ' ' [ t ] == force , r [0 ] == {0, 0, 0} , 

r ' [0 ] == {vl , v2, v3}}, r [ t ] , t ] / / . { B f i e l d -^ m a; / q, 

Efield -^ V Bfield} // ExpandAll // Simplify 

DSolve::underdet: The system has more dependent variables than 

equations, and so is underdetermined. More . . . 

DSolve::underdet: The system has more dependent variables than 

equations, and so is underdetermined. More . . . 

DSolve::underdet: The system has more dependent variables than 

equations, so is underdetermined. More . . . 

General::stop: Further output of DSolve::underdet will be 

suppressed during this calculation. More . . . 

DSolve[{m r"[t] == force, r[0] == {0, 0, 0}, 

r'[0] == {vl, v2, v3}}, r[t], t] //.{Bfield ^ m a; / q, 

Efield -^ V Bfield} // ExpandAll // Simplify 

One has to transform the vector equation into a list of scalar equations using 
Thread. 
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Clear[eqns] 

eqns = Map[Thread, {m r " [ t ] == force , r [0] == {O, 0, 0} , 

r ' [0] == {vl , v2, v3}}] / / . {Bfield -^ m cj / q, 

Efield -̂  V Bfield} // ExpandAll 

// Simplify 

{{m x" [ t ] == m cj y ' t ] , m y ' ' [ t ] == m cj (V - x ' [ t ] ) , 

m z ' ' [ t ] == 0} , {x[0] == 0, y[0] == 0, z[0] == 0} , 

{vl == x ' [ 0 ] , v2 == y ' [ 0 ] , v3 == z'[0]}} 

We can then enter the equation under the form above and DSolve will work. 

so lu t ion l = DSolve[eqns , { x [ t ] , y [ t ] , z [ t ] } , t ] / / ExpandAll 

/ / Simplify 

,, ^ ^ v2H-t V a ; - v 2 Cosft a;l + (-V + vl) Sinft u] 
{{x[t] ^ L J V 

y [ t ] 
V - v l + (-V + vl) Cos[t a;]+v2 Sin[t uo] 

z [ t ] -^ t v3}} 

We can check that this method gives the correct result. 

so lut ion2 = 

m y ' ' [ t ] == ( 

m 7,"\X] == ( 

x'[0] == v l , 

{ x [ t ] , y [ t ] 

Ef ie ld -^ V 

DSolve[{m 

I Ef ie ld -

3, x[03 == 

y'[0] == 

x" [ t ] == q y ' [ t ] Bf ie ld , 

q x ' [ t ] Bf ie ld , 

y[0] == z[0] == 0, 

v2, z '[0] == v3}. 

, z [ t 3 } , t ] / / . {Bfield ^ m a; / q. 

Bfield} / / ExpandAll / / Simplify 

,, ^ ^ v2 + t V a ; - v 2 Cos t a; - f ( -V + vl) Sin t uA 
{{x[t] ^ ^̂  -

V - v l + (-V + vl) Cosft a;]+v2 Sin[t a;] 
y [ t ] -^ ^̂  -, 

u 
z[t3 -^ t v3}} 
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solutionl == solution2 

True 

There exists a comprehensive Mathematica package called VisualDSolve that 
provides a wide variety of tools for the visualization of solutions to ordinary 
differential equations. The interested reader should refer to Schwalbe and 
Wagon [50]. 

4.5 Sum and Products 

4.5.1 Exact Results 

Sum[f [k] , {k, n}] evaluates the sum Yll^=i / (^)-

Sum[l / n^2, {n, In f in i ty}] 

Pi2 

Sum[l/ n^4, {n, In f in i ty}] 

P i^ 

90 

We mentioned above that Catalan's constant is defined by the series C 
YlT=o ("1)^/(2'^ + 1)^- We can use Mathematica to check this definition. 

Sum[(-l)^k / ( 2 k +1)'^2, {k, 0, In f in i ty}] == Catalan 

True 

Suin[f[k], {k, n l , n2}] evaluates the sum Xl^ln f(^) 

SumCl / (1 + n^2) , {n, - Inf in i ty , In f in i ty}] 

Pi CothCPi] 
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Sum[(- D-^n / (2 n + 1) , {n, 0, Inf ini ty}] 

Pi 

T 

Product [f [k] , {k, n}] evaluates the product 11^=1 fi^)-

Product[1 + 1 / n^2, {n, 1, Inf inity}] 

Sinh[Pi] 

Pi 

Product [f [k] , {k, n l , n2}] evaluates the product H ^ i m / ( ^ ) 

Product[ 1 - 1 / n^3, {n, 2, Inf inity}] 

Coshf^^^I^L^l 

3 Pi 

4.5.2 Numerical Results 

SumCl/ n'^3, {n, 1, Inf ini ty}] 

Zeta[3] 

?Zeta 

Zeta[s] gives the Riemann zeta fmiction. Zeta[s, a] 

gives the generalized Riemann zeta function. More . . . 

The zeta and generalized zeta functions are, respectively, defined by 

oo oo 

C(s) = J ] A;-^ and C(s, a) = J](fc + a)-',{k + a ji 0). 
k=l fc=0 
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To obtain the numerical value of sum we have to use NSum. 

NSuniEl / n'^3, {n, 1, In f in i ty}] 

1.20206 

Because Mathematica recognizes that YlT=i ^ * is C(̂ )? ^o obtain a numerical 
value, we could also have entered 

NSumCl / n-^S, {n, 1, In f in i ty}] / / N 

1.20206 

Sum[l / (1 + n^2) , {n, - I n f i n i t y , In f in i ty}] 

NSiim[l / (1 + n^2) , {n, - I n f i n i t y , In f in i ty}] 

Pi CothCPi] 

3.15335 

Sum[l / (1 + n^3) , {n, 0, In f in i ty}] 

1 ^ o PolyGammafO,-#ll 
- RootSumCl + #1*^ &, y 
2 # 1 ^ 

&] 

TPolyGamma 

PolyGamma[z] gives the digamma fimction psi(z). 

PolyGammaCn, z] gives the nth derivative of the digamma function. 

More ... 

The PolyGamma function i/j is defined by ip{z) = r\z)/r{z), where F is the 
Euler function. 

RootSumCf, form] represents the sum of form[x] for all x that satisfy the 
polynomial equation f [x] == 0. In the present case, we obtain 
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- Apply[Plus, Map[PolyGamma[0, -#] / #"2 &, 

{- 1, (-D-^Cl/S), - ( -1)^(2/3)}] / / N] / 3 

1.6865 - 2.59052 10~^^ I 

and using Chop 

Chop[y.] 

1.6865 

This result can be obtained directly using NSum 

NSum[l / (1 + n^3), {n, 0, Inf inity}] 

1.6865 

4.6 Power Series 

Series [ f [ x ] , {x, xO, n}] gives a power series expansion for f [x] in a 
neighborhood of the point xO to order (x — xO)'^. 

Series [Sin[x] , {x, 0, 10}] 

^ ^ ^ X ^ ^ . H 

X + + -f 0[x]-^-^ 
6 120 5040 362880 

Series [Log[x], {x, 1, 5}] 

(x - 1) - - (x - 1)2 + - (x - 1)3 _ - (x - 1)4 + 
2 3 4 

- (x - 1)^ + 0[x - 1]^ 
5 

Series [Exp[- x] / (1+x), {x, 0, 5}] 
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5 x^ 8 x^ 65 x"̂  163 x^ ^ 
1 - 2 X + + + 0[x]^ 

2 3 24 60 

Ser ies [BesselJ[0, x ] , {x, 0, 10}] 

x2 x^ x^ x8 x^O , , 

4 64 2304 147456 14745600 

As mentioned above, Normal transforms the series expansion into an ordinary 
expression (polynomial). 

Normal[Series[Exp[- x] / (1+x), {x, 0, 5}]] 

5 x^ 8 x^ 65 x"̂  163 x^ 
1 - 2 X + + 

4.7 Limits 

24 60 

Limit [expression, x —> xO] finds the limit of expression when x tends 
to xO. 

Limit[Sin[x] / x, x ^ 0] 

1 

Limit [ (1 - Cos[x]) / x^2, x -•̂  0 ] 

1 
2 

Limit[(Cosh[x] - 1) / (Sinh[x] Tanh[x]), x -^ 0] 

Limit [BesselJ[0, x] / Cos[x], x -^ 0] 
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If L imi t cannot handle a limit, it is worthwhile to load the package C a l c u l u s 
' L i m i t ' tha t greatly expands the capabilities of L imi t and t ry using L imi t 
again. The built-in function L imi t computes limits using symbolic and ana
lytic methods. The command NLimit [f [x] , x —̂  xO] contained in the pack
age Numer ica lMath 'NLimi t ' calculates a sequence of values for the function 
f{x) with successively smaller step sizes and then extrapolates to the limit to 
find an approximate numerical value. Here are two illustrative examples. 

The golden ratio, tha t is, the ratio r = a/b < 1 such tha t 

a b 1 
- = or r = , 
b a-\-b 1 + r 

which, according to the Italian mathematician Luca Pacioli (1445-1517), is 
the Divine Proportion} I ts numerical value is obtained solving the equation. 

S o l v e [ r == 1 / ( 1 + r ) , r ] 

{{r -> - ( - 1 - S q r t [ 5 ] ) } , {r ^ - ( - 1 -h S q r t [ 5 ] ) } } 

r is the positive root, r = \/b — 1/2 ^ 0.618034. From the relation 

1 

we get the following sequence of equalities related to the continued fraction 
representation of r , tha t is. 

^De Divina Proportione is the title of a book Pacioli wrote in 1496 but pub
lished in Venice in 1509. The book is illustrated with drawings by Leonardo da Vinci. 
Pacioli, a Franciscan monk, who taught mathematics at the University of Perugia, 
worked with all major artists of the Quattrocento such as Leonardo da Vinci (1452-
1519), Piero Delia Francesca (1420-1492), and Leon Battista Alberti (1404-1472). 
Pacioli is also considered the father of accounting. 
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1 
r = l + r ^ ^ 1 

1 + r 
1 

1 + ^ 

l + r 
1 

1 + - ^ 
i+-i 

r 

Note . The golden ratio is, sometimes, defined by the inverse of r (i.e., l + r). 

The result above can also be obtained using NestList . 

golden[r_] := 1 / ( l+r) 

NestList[golden, r , 3] 

r^ ^ 1 1 . 1 

1 + - — 1 + 
l + r 1 

l + r 

The representation of r as a continued fraction is therefore (0,1,1,1, . . .) which 
can be also found using the Mathematica function FromContinuedFraction. 

FromContinuedFraction[Join[0, Table[1 , {100}]]] / / N 

0.618034 

Let us see if the command Limit gives us the exact result. 

Limit[Nest[ l / (1 + #) &, 1, n] , 

n —̂  In f in i t y ] 

Nest : : intnm: 

Nonnegative machine-size integer expected at position 3 

1 
# 1 -

in Nest [. • //1 ] & , 1, n] . More 
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Limit [Nest [ ^ ^ r i ^ ] & , 1, n ] , n ^ In f i n i t y ] 

Let us try again loading first the package Calculus 'Limi t ' 

« C a l c u l u s ' Limit ' 

Limit[Nest[1 / ( ! + # ) & , 1, n ] , n -> In f in i t y ] 

-1 + Sqrt[5] 

In the Umit n ^> CXD, it is clear that the continued fraction (0,a,a^a^...) does 
not depend upon the value of a. This can be verified using Limit. 

Limit[Nest[ l / ( ! + #) &, Random [In teger , {1 , 100}], n] , n -> 
In f in i t y ] 

-1 + Sqrt[5] 

The Euler constant 7—called EulerGamma in Mathematica—is defined by 

7 = lim V T - l o g M ) 
\k=l / 

Because the finite sum represents the harmonic number if„ 

Sum[l / k, {k, 1, m}] 

HarmonicNumber [m] 

we can write 

EulerConstant = Limit[HarmonicNumber[m] - Log[m], 

m -^ Infinity] 

EulerGamma 
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Mathematica gives the correct result. To obtain an approximate numerical 
value, we first load the package 

«NumericalMath' NLimit' 

and then use NLimit 

NLimit [Sum[1 / k, {k, 1, m}] - Log[m], m -> In f in i t y ] 

0.577216 

which is indeed the correct numerical value of the constant EulerGamma. 

N[EulerGamma] 

0.577216 

4.8 Complex Functions 

A function / defined on an open domain V in the complex plane is said to 
be analytic, if for any ZQ e T> we can write / (z) as the sum of a convergent 
power series in a neighborhood of ZQ; that is, 

f(^) = X^Cn(z-2:o)'', 
n=0 

where the coefficients c^ (n = 0,1,2, . . .) are complex numbers. 

A point such as ZQ in the neighborhood of which a function / can be written 
as the sum of a convergent power series is said to be regular. Any point that 
is not regular is singular. 

A power series converges in an open disk, that is, a domain whose bound
ary is a circle of radius r centered at ZQ. The largest value of r is the radius 
of convergence of the power series. It is denoted by i?, hence, a power se
ries is convergent if its radius of convergence is positive. For example, the 
power series representing the exponential ê  in a neighborhood of the origin, 
is X]^o ^^ 1'^^" Its radius of convergence is infinite. In other words, the expo
nential function is analytic in the whole complex plane. This is, in general, 
not the case. Given a complex function / analytic in a neighborhood of a 
point zo the power series X l ^ o ^^('^ "" -^o)^ ^ ^ ^ finite radius of convergence 
whose value is limited by the existence of the singularities of the function 



4.8 Complex Functions 131 

/ . The value of the radius of convergence can be determined by the Cauchy 
rule which says that the radius of convergence of a power series of the form 
X^^o ^rii^ ~ ^o)^ is given by the relation: 

- =limitsup^_^|cn|^/ ' ' . 

Consider for example, the function 1/(1 — 2:). Its power series expansion in 
a neighborhood of the origin is given by Yl^=o ^^ ~ I -\- z -\- z^ -\- -- -. This 
function has only one singular point at finite distance, namely 2: = 1, and 
we can easily verify that its radius of convergence is equal to 1, precisely the 
distance from the origin to this singular point. In fact, 

l imitsup^_^l^/^ = lim 1^^ = 1. 
n—>cxD 

Analytic functions are differentiable; that is, if f{z) = Yl^=o ^n{^ — ZQY is a 
power series converging in an open disk Z)(0, R) of radius i? > 0 centered at 
the origin, then its derivative defined in the complex plane by 

•̂  ̂  ̂  c-0 c 

exists for all z in J9(0, R). If a complex function / is difl'erentiable at a point 
zo, it is infinitely differentiable at that point. Differentiable complex functions 
are also called holomorphic. In the case of functions of a complex variable, the 
adjectives analytic and holomorphic are synonymous. 

The singular point of the function 1/(1 — z) is isolated. That is, there exists, 
centered at that point, an open disk with a nonzero radius in which 2: = 1 is 
the only singular point. If, starting from any point ZQ^ where the function is 
equal to 1/(1 — 2:0)̂  we follow a circular path around the point z = 1, when 
we come back to the point ZQ^ the function is again equal to 1/(1 — ZQ) • We 
can therefore say that the function is well defined in the whole complex plane 
except ai z = 1. Again, this property is not shared by all complex functions. 
Consider the function y/z. The origin is a singular point because y/z cannot 
be represented by the sum of a convergent power series in any neighborhood 
of the origin. This singular point is, however, not isolated. The squares of the 
two complex numbers zi = pe^^/^ and 22 = p^^^^l'^^'^) are equal, therefore the 
function ^/z cannot be defined without precaution. If, for instance, we choose 
y/z to be the function equal to 1 when z = 1, then if we write z = pê *̂ , and 
consider that the value z = 1 corresponds to the choice p = 1 and 0 = 0, 
following a circular path of radius 1 centered at the origin, the argument 6 
increases continuously from 0 to 27r and, consequently y/z = y/pe^^^^ is found 
to be equal to —1. Such a behavior is not acceptable for a function. Thus, to 
correctly define the function y/z we should not be able to follow a continuous 
path around the singular point z = 0. The domain in which the function y/z 
is well-defined could be, for instance, the set 
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{z\ z = pe'^, p > 0, -TT < ^ < TT} 

that is, the complement in the complex plane of the negative real semi-axis. 
Along this so-called branch cut the function y/z is discontinuous. All the points 
of the branch cut are singular. For the function y/z the origin is not an isolated 
singular point. Such a singular point is called a branch point The branch cut 
could have been chosen in many different ways. For instance, any semi-axis 
whose equation is pe^^ where a is a given argument between 0 and 27r, and 
p is a parameter varying from 0 to oo, is an acceptable branch cut. Our 
choice, which corresponds to a = TT is the traditional one, also adopted by 
Mathematica. 

The tridimensional plots of the real and imaginary parts of y/z clearly show 
the discontinuity along the negative real semi-axis. 

PlotSD[Re[Sqrt [x + I y ] ] , {x, - 3 , 3 } , {y, - 3 , 3 } ] ; 

Fig. 4.8. Plot of the real part of y/x -h iy in the domain {x, y} G [—3,3] x [—3,3]. 
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Plot3D[Im[Sqrt[x + I y]] , {x, - 3 , 3} , {y, - 3 , 3}] ; 

Fig. 4.9. Plot of the imaginary part of y/x + iy in the domain {x, y} G [—3,3] x 
[-3,3]. 

More generally, if a function g defined in a domain T> of the complex plane is 
not injective, the equation g{z) = u may have more than one solution and g 
has, in this case, more than one inverse function: / i , /2, / s , • • • such that, for 
k = 1,2,3, . . . , g{fk{u)) = u, and these functions cannot be continuous in 
g{V). This is exactly what happened for the noninjective function g{z) = z^, 
defined in the whole complex plane and having two noncontinuous inverse 
functions in the whole complex plane. 

Here is another interesting result concerning the representation of functions 
in the vicinity of an isolated singularity. Let S be the open annulus {z \ ri < 
k "" -̂ ol, ^2}; if / is analytic in S then, for all z G S, we have 

00 

n = —00 

where the power series J2^=o ^n{z — ZQ)'^ is convergent for \z — zo\ < r2 and 
the series X l ^ i ^-n{z — ZQ)"^ is convergent for Iz — 2:o| > ri. This particular 
expansion is called the Laurent series of / in S. 

If the Laurent series is defined in {z \ 0 < \z — zo\ < r}, called the punctured 
neighborhood of the singular point ZQ , the point ZQ is a pole if the series with 
negative exponents has a finite number of terms, and the greatest value of n 
is the order of the pole; if the series with negative exponents has an infinite 
number of terms, the point ZQ is an essential singularity. 

If zo is an isolated singularity of f{z), the coefficient c_i of the Laurent series is 
called the residue of / at z = ZQ. The Mathematica command Residue [f [ z ] , 
{z, zO}] finds the residue of / at the point zO. 
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Residue [Exp [z] / Sin[z]'^2, {z, Pi}] 

EPi 

The residue theorem allows, in particular, the evaluation of contour integrals. 
It states: 

Let V he an open simply connected domain in the complex plane and {2:1,..., 
Zn} a set of n different isolated points. For any analytic function f in 
X>\{2:i,..., Zn}, we have 

j f{z) dz = 2m Y^ Ind(7, Zk)Residue(f, Zk), 
•̂ '̂  k=i 

where ^ is a closed path in V\{zi^Z2->..., z^i}-

The symbol Ind(7, z^) is the index of the point path Zk with respect to the 
path 7. It is defined by 

This formula is a consequence of the relation 

dz 

J ̂  
2i7r, 

where 7 is the circular path 11-^ ê ^̂ * with t G [0,1]. 

If we integrate along the circular path 7 , the result above is obvious because 
replacing z by ê ^̂ * yields 2i7r /^ dt = 2m. But, as a consequence of Cauchy's 
theorem, we can change the circle into the square with vertices l,i , — 1,—i 
without changing the result. Using Mathematica we can evaluate the contour 
integral directly: 

I n t e g r a t e d / z , {z, 1, I , - 1, - I , 1}] 

(2 I) Pi 

For instance, the real integral / ^ f{x) dx of the function / whose only singu
larities, as a function of the complex variable z are poles, none of them being 
real, can be easily evaluated using the residue theorem. Consider the contour 
integral/ f{z) dz where 7 is the closed path equal to the union of the paths 
7i : 11-^ R{2t — 1) and 72 :11-^ Re^'^^ for t varying from 0 to 1. 
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This integral is equal to 

/ f{x)dx+ I f{z)dz= —-Y\Residue(/,Zk), 
J-R Ji2 2i7r ^ 

where the sum is over all the residues of the poles of / in the upper half plane 
such that \zk\ < R. When i? ^ CXD, the first integral becomes the real integral 
we have to evaluate and the second one tends to zero if lima^^oo ^ / (^ ) = 0-
When this condition is satisfied, the real integral / ^ f{x) dx is simply equal 
to the sum of the residues of / at all poles of the upper half-plane. For instance, 

f dx I dx 
2i7rResidue I :; ^, i /_oo 1 + ^^ V l + x 2 

because the index of i with respect to the path 7 is 1. The residue is given by 

Residue[1 / (1 + x^2), {x, I}] 

I 

2 

We thus obtain the classical result: / ^ dx/{l -f- x^) = TT. 

We can also evaluate very simply integrals of the form JQ ̂  /(cos(x), sin(a;)) dx, 
where / is a rational fraction in cos(a:) and sin(x). If we put z == ê ,̂ the in
tegral becomes 1/iz/ / ( ( z -h z~^)/2, {z — z~^)/2\) dz, where 7 is the circular 
path of radius 1 0 y-^ &^ for 6 varying from 0 to 2n. Therefore, 

/ /(cos(a:0, szn[x)) dx = ZTT > Residue I - / I , — — — j ,^k j , 

where the sum is over the residues of all the poles inside the unit circle. For 
instance, if a > |6|, 

/•̂ ^ de _ /• 
^0 a-h6sin^ J 

2dz 
bz'^ -f 2aiz — b 

The complex function has only one pole inside the unit circle, namely 
i(—a + y/s? — b2)/b. Because 

Residue [2 / (b z'^2 + 2 a I z - b) , 

{z, I (- a + SqrtCa'^2 - b'^2]) / b}] 

S q r t [ a 2 - b 2 ] 



136 4 Analysis 

we find 

I 2^ de _ 27r 

For a detailed study with historical references to the properties of functions 
of a complex variable see [7]. 

4.9 Fourier Transforms 

4.9.1 Discrete Fourier Transform 

Fourier [ l i s t ] gives the discrete Fourier transform (or frequency spectrum) 
Vs of a list of complex numbers {ui,U2,..., iXn}- By default it is defined by 

where n is the list length. 

data = Table[Random[], {10}] 

FTl = Four ier [data] 

{0.818232, 0.582609, 0.51494, 0.146173, 0.693925, 

0.867643, 0.72016, 0.11342, 0.663217,0.822117} 

{1.87916 + 0. I , 0.0717421 - 0.0841385 I , 0.44075 - 0.097791 I , 

- 0.24971 - 0.0584497 I , - 0.0475295 -f 0.0148031 I , 0.27781+ 0. 
I , 

- 0.0475295 - 0.0148031 I , - 0.24971 -f 0.0584497 I , 

0.44075 + 0.097791 I , 0.0717421 + 0.0841385 1} 

Chop may be used to discard the tiny imaginary parts that appear due to 
numerical error. 

FT2 = Chop[FTl] 

{1.87916, 0.0717421 - 0.0841385 I , 0.44075 - 0.097791 I , 

- 0.24971 - 0.0584497 I , - 0.0475295 + 0.0148031 I , 
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- 0.0475295 - 0.0148031 I , - 0.24971 + 0.0584497 I , 

0.44075 + 0.097791 I , 0.0717421 -f 0.0841385 1} 

The inverse discrete Fourier transform is, by default, given by 

1 "" ^-2i7r(r-l)(s-l)/n^ 

InverseFourier[FT2] 

{0.818232, 0.582609, 0.51494, 0.146173, 0.693925, 

0.867643, 0.72016, 0.11342, 0.663217,0.822117} 

4.9.2 Fourier Transform 

FourierTransf orm[f [x] , x, t ] gives the Fourier transform F of the func
tion f of the variable x as a function of t . By default it is defined by 

1 r"^ 
F{t) = ^= /(x)e^*-dx. 

\/27r J-oo 

Different choices of definitions can be specified using the option FourierParameters. 

??FourierParameters 

FourierParameters i s an option to Fourier transform 

functions t h a t spec i f i e s the convention t o follow for 

the overa l l constant and the frequency constant . For 

FourierParameters -> {a, b } , FourierTransform[expr, t , w] 

i s equivalent t o Sqrt[Abs[b] / ((2 P i ) ^ ( l - a ) ) ] 

In tegra te [expr Exp[I b w t ] , { t , - I n f i n i t y , I n f i n i t y } ] . More . . . 

At t r ibutes[Four ierParameters] = {Protected, ReadProtected} 

ReadProtected is an attribute that prevents values associated with a symbol 
from being seen, and Protected is an attribute that prevents any values 
associated with a symbol from being modified. 
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FourierTransfonn[x' '2 Exp[- x"2] , x, t ] 

4 Sqrt[2] 

InverseFourierTransf orm [F [ t ] , t , x] gives the inverse Fourier transform 
/ of the function F of the variable t as a function oi x. It is given by 

1 Z*̂  
f{x) = -— F(t)e-^-dx. 

V27r J-oo 

InverseFourierTransformCyo, t , x] 

E -^^ x2 

If the function / is either odd or even, we can use either the FourierSinTransf orm 
or the FourierCosTransf orm, respectively, defined by 

\l ^^^^ sin(tx) dx and \ — f{x) cos{tx) dx. 

{sinFT, cosFT} = {FourierSinTransf orm[x / (1 + x'^4), x, t] 

1 / (1 + x^2), X, t]} 

|£ t /Sqrt[2] sqrt[Pi/2] Sin[t/Sqrt[2]],E~"^ Sqrt[Pi/2]} 

The InverseFourierSinTransform and the InverseFourierCosTransform 
of a function F are given, respectively, by 

J- / F(t)sin(tx)dt and J- I F{t)co8{tx)dt. 

InverseFourierSinTransformCsinFT, t, x] 

InverseFourierCosTransformEcosFT, t, x] 
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l + x"̂  

1+x^ 

4.10 Fourier Series 

We first have to load the package Calculus 'Four ierTransfonn^ 

«Calculus 'Four ierTransform' 

• FourierCoef f i c i e n t [f [x] , x, n] gives the nth coefficient of the expo
nential Fourier series of function / of period 1 on the interval [— ,̂ ^ ] . 

• FourierSinCoeff i c i e n t [f[x] , x, n] gives the nth coefficient of the 
sine Fourier series of the odd function / of the variable x. 

• FourierCosCoeff i c i e n t [ f [ x ] , x, n] gives the nth coefficient of the co
sine Fourier series of the even function / of the variable x. 

• Four ierSer ies[ f [x ] , x, n] gives the exponential Fourier series of the 
function / of the variable x on the interval [— ,̂ ^] to order n. 

• Four ierTr igSer ies [f [x] , x, n] gives the trigonometric Fourier series 
.1 i l 

2 ' 2i 
of the function / of the variable x on the interval [— ,̂ ^] to order n. 

For different definitions use different settings in the option FourierParameters 
-* {a.b}. 

1/2 
a;)e^'"''dx with setting (0, 1}, 

/2 
1/26 

-1/2 
pl/2b 

|^|(i-a)/2 / /(:z:)e2ibnxj^ with Setting {a, b}. 
J-l/2b 

{FourierSinCoefficient [x, x, 1, FourierParameters -^ {0, 1}] , 

FourierSinCoefficient [x, x, 1, FourierParameters -> {0, 2}]} 

^Pi' 2 Sqrt[2] Pi^ 
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Table[FourierSinCoefficientEx, x, k ] , {k, 1, 4}] 

^Pi' 2 P i ' 3 P i ' 4 Pi 7} 

FourierTrigSeriesEx, x, 4] 

Sin[2 Pi x] Sin[4 Pi x] Sin[6 Pi x] Sin[8 Pi x] 

Pi 2 Pi 3 Pi 4 Pi 

sawFunctionPlot = Plot Ex - Round Ex], {x, - 0 .5 , 1 .5} , 

PlotStyle -^ {RGBColorEl,0,0]}]; 

1.5 

Fig. 4.10. Plot of the sawtooth function for x G [—1.5,1.5]. 

Round Ex] gives the integer closest to x. 

In the following graphs note the options PlotStyle used here to specify the 
curve color, and DisplayFunction used with the setting Identity causing 
the objects to be returned, but no display to be generated. 
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pll = Plot[Sin[2 Pi x] / Pi, {x, - 1.5, 1.5}, 

PlotStyle -> {RGBColorCO, 0, 1]}, 

DisplayFunction -̂  Identity]; 

pl2 = Plot[Sin[2 Pi x] / Pi - Sin[4 Pi x] / (2 Pi), 

{x, - 1.5, 1.5}, PlotStyle -̂  {RGBColor[0, 0, 1]}, 

DisplayFunction -^ Identity]; 

pl3 = Plot[Sin[2 Pi x] / Pi - Sin[4 Pi x] / (2 Pi) + Sin[6 Pi 
x] / (3 Pi), {x, - 1.5, 1.5}, 

PlotStyle -̂  {RGBColor[0, 0, 1]}, 

DisplayFunction —> Identity]; 

pl4 = Plot[Sin[2 Pi x] / Pi - Sin[4 Pi x] / (2 Pi) + 

Sin[6 Pi x] / (3 Pi) - Sin[8 Pi x] / (4 Pi), {x, - 1.5, 1.5}, 

Plo tS ty le -^ {RGBColor[0, 0, 1 ]} , 

DisplayFunction -^ I d e n t i t y ] ; 

Show[GraphicsArray[{{pll, p l 2 } , {pl3, p l 4 } , 

DisplayFunction -^ $DisplayFunction]]; 

1 1.5 

Fig. 4.11. Plot of the first Fourier series approximating the sawtooth function for 
xe [-0.5,1.5]. 

Show[{pl4, sawFunctionPlot}, DisplayFunction -> 
$DisplayFunction]; 
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1.5 

Fig. 4.12. Plot of sawtooth function and its four-term Fourier sine series for 
xe [-1.5,1.5]. 

Figure 4.12 above exhibits the Gibbs phenomenon, that is, the overshoot of 
partial Fourier series that occurs at first-order discontinuities moving towards 
the jump as the number of terms of the series increases. It was first described 
by H. Wilbraham in 1848 [67] and then analyzed in detail 50 years later by 
Josiah Willard Gibbs (1839-1903) [20, 11]. Note that the Fourier series of 
a discontinuous function does not converge uniformly in an arbitrary small 
interval around the discontinuity point. 

4.11 Laplace Transforms 

The Laplace transform of f{t) is 

/•OO 

F{z)= / / ( t )e-^Mt. 

This function F is given by LaplaceTransf ormCf [ t ] , t , s ] . For example: 
LaplaceTransform[Cos[t], t , z] 

1 + z^ 

The command InverseLaplaceTransfonn[F[z] , z , t ] gives the inverse 
Laplace transform of F{z)\ as a function of t. 

InverseLaplaceTransformCz / (1 + z"2) , z , t ] 
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Cos [ t ] 

The Heaviside function (also called unit step) is represented by the function 
UnitStep [ t ] , equal to 0 for ^ < 0 and to 1 for t > 0. Its Laplace transform is 

LaplaceTransform[UnitStep[t], t , z] 

1 

z 

Mathematica can also give the Laplace transform of the so-called "Dirac S 
function" defined usually as a function equal to zero everywhere except at the 
origin where it is infinite and such that 

6{t)ip{t)dt = ip{0), 

where ip is any well-behaved function defined at the origin. Prom a purely 
mathematical point of view, this definition makes no sense because S being 
null almost everywhere the (Lebesgue) integral above should be zero. Actually 
5 is a singular distribution, that is, a continuous linear form defined on a space 
V of test functions such that, for all if e T>, S{(p) = (p{0). On distribution 
theory and its history see [8]. 

The Laplace transform of the Dirac 6 is given by 

LaplaceTransform[DiracDelta[t] , t , z] 

and 

InverseLaplaceTransformEl, z , t ] 

DiracDel ta[ t ] 

If F is the Laplace transform of a function / defined on [0, CXD[, the Laplace 
transform of its derivative / ' is equal to —/(O) -h zF{z). 

LaplaceTransform[f'[t] , t , s] / / Simplify 
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- f [0] + s LaplaceTransformCf [t] , t , z] 

On distribution theory see Chapter 4 of Boccara [4]. For a more detailed study 
of distribution theory with historical references see Boccara [8]. 

4.12 Recurrence Equations 

RSolve [{rEquation, in i tVa lues} , f [n] , n] solves the recurrence equation 
rEquation for the initial values ini tValues . 

The following recurrence equation with the initial values f{l) = b and /(2) = 
a-\-b defines the generalized Fibonacci series G{a, b). The traditional Fibonacci 
series corresponds to G(0,1). 

sol = RSolve[{f[n] == f [n-1] + f [ n - 2 ] , 

f [ l ] == b , f [2] == a + b } , f [ n ] , n] / / FullSimplify 

{{f[n] -> ( 2 - 1 - ^ ((1 + Sq r t [5 ] ) ^ 

( - (( - 5 -h Sqr t [5] ) a) + 2 Sqrt [5] b) + 

( - 1 + Sqrt [5] ) ^ ((5 + Sqrt [5]) a - 2 Sqrt [5] b) 

E^ ^ P i ) ) / 5}} 

Flatten[Table[f[n] /. sol, {n, 1, 10}]] // Simplify 

{b, a + b, a + 2 b, 2 a + 3 b, 3 a -f 5 b, 5 a + 8 b, 

8 a + 13 b, 13 a -h 21 b, 21 a + 34 b, 34 a + 55 b} 

Without specifying initial values we obtain the general solution containing 
arbitrary constants. 

Clear[f , sol] 

so l = RSolve [f [n] == f [n - 1] + f [n - 2] , f [n] , n] / / 

FullSimplify 

/ ( 1 - S q r t [ 5 ] ) \ ' ' ^ / ( I + Sqrt [5]) X"" ^ ^ , , 
{{f [n -> n ^ - ^ ^ ) C[l] + ( ^ ^ " ^ ) ^^^^ ^^ 
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4.13 Z Transforms 

The Z transform F{z) of / (n ) is 

(X) 

n=0 

F(z) is therefore the generating function of the sequence (/(O), / ( I ) , / ( 2 ) , . . .)• 
It is given by the Mathematica command ZTransf ormCf [n] , n, z ] . For ex
ample: 

ZTransformCa^n / n! , n, z] 

ga/z 

The command InverseZTransfonn[F[z] , z , n] gives the inverse Z trans
form oi F{z) as a function of n. 

InverseZTransform[Exp[a / z ] , z , n] 

a^ 

n! 

Z transforms are used to solve recurrence equations. Consider, for example, 
the recurrence equation defining the generalized Fibonacci sequence: 

Clear[equation] 

equation = f[n+2] == f[n+1] + f [n ] ; 

with the initial values 

C lea r [ in i t i a lVa lues ] 

i n i t i a lVa lues = {f [0] -^ a, f [1] -> b} ; 

Taking the Z transform of the equation gives 

t ransfEquation = ZTransform[equation, n, z] 

- (z^ f [0 ] ) - z f [1] + z^ ZTransform[f [n] , n, z] == 

- (z f [0 ] ) -h ZTransform[f [n] , n, z] -h z ZTransf orm [f [n] , n, z] 
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Taking into account the initial values, we obtain 

zEquation = transfEquation / . ini t ialValues 

- (b z) - a z-̂  + ZTransformCf [n] , n, z] == 

— (a z) + ZTransformCf [n] , n, z] + z ZTransformCf [n] , n, z] 

Solving for the ZTransf orm yields 

SolveCzEquation, ZTransformCfCn], n, z ] ] 

(pt 7 1 I 1^ 7 I o J' 

{{ZTransformCf Cn] , n, z] -> —̂^ r̂ }} 
- 1 - z + z^ 

and taking the inverse transform, we finally obtain the expression of the gen
eralized Fibonacci sequence: 

Clear Csolution] 

solution = InverseZTransformCCa z"2 + (b -

(z^2 - z - 1 ) , z , n] / / Simplify 

• a) z) / 

( 2 - 1 - n ( ( _ ( ( _ 5 + SqrtC5]) (1 + SqrtC5])^) + 

(1 - SqrtC5])^ (5 + SqrtC5])) a - 2 Sqrt C5] 

((1 - SqrtC5])^ _ _ (1 + SqrtC5] )^ ) b)) / 5 

FlattenCTableCsolution, {n, 1, 10}]] / /Simplify 

{b, a + b, a + 2 b, 2 a + 3 b, 3 a + 5 b, 5 a + 8 b, 

8 a + 13 b, 13 a + 21 b, 21 a + 34 b, 34 a + 55 b} 

which is the sequence we obtained in the previous section. 

4.14 Partial Differential Equations 

DSolveCequation, y, {xl , x2, . . . } ] and NDSolveCequation, y, {xl , 
x2 , . . .}] can also be used to solve partial differential equations. 
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The one-dimensional wave equation 

can be solved, its solution being expressed as a pure function. 

Clear 

eqn = 

sol = 

[eqn, s o l , 

D[u[x, t ] 

f] 

, {t. 2}] == 

Simplify[DSolve[eqn, 

= c"2 D[u[x, 

u[x, t ] , {x 

t ] , {x. 

, t } ] , c 
2}] ; 

> 0] 

{{u[x, t ] -^ C [ l ] [ t - - ] + C[2][ t + - ] } } 
c c 

Here C[l] and C[2] are arbitrary functions oit — x/c and t-\-x/c^ respectively. 
To solve a specific boundary problem, DSolve is not useful. We can use the 
Laplace transform. 

First, let us take the Laplace transform of the equation to get rid of the time 
derivative. 

LTeqnl = LaplaceTransfonn[eqn, t , s] 

s'̂  LaplaceTransform[u[x, t ] , t , s] — s u[x , 0] — uv^'-'-/[x, 0] == 

c^ LaplaceTransform[uV'^'^) [x, t ] , t , s] 

If X belongs to the interval [0,1] with the boundary conditions i^(0, t) = 
u{l,t) = 0, and the initial conditions u{x,0) = f{x), ut{x,0) = 0, we re
place in the equation above LaplaceTransfonn[u[x, t ] , t , s] by U(x) , 
LaplaceTransform[D[u[x, t ] , t , 2 , t , s] by U''[x], [u[x, 0]] by f [x], 
and Der iva t ive[0 ,1] [u] [x, 0] by 0. It yields 

Simplify[DSolve[{< 

s an Sin[n Pi x ] , 

n 6 Integers] 

:~2 U' 

U[0] 

[x] -

== 0, 

s-2 U[x] 

U[l] == 

== 

0} . U[x] , x ] . 

r r ^ ^ an s Sinfn Pi x] , , 
{{U[x] - - ( ^ ^ \ 2^)}} 

c^ n^ P i ^ - h s ^ 

The inverse Laplace transform of this solution is 
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InverseLaplaceTransformCs Sin[n Pi x] / 

(c^2 n^2 Pi^2 + s"2) , s , t ] 

CosCc n Pi t ] Sin[n Pi x] 

Finally, the solution is 

oo 

u{x,t) = V^ an sin(n7rx)cos(cn7rt), 
n=l 

where 

(In = 2 f{x) sin(n7rx) dx. 
Jo 

If, for example, we consider the function f defined by 

^, . \mx/a, i f O < x < a , 

I m(x — l ) / (a — 1), if a < X < 1, 

which corresponds to a plucked string instrument, we find 

an 

2 

{x 

= Simplify[2 Integrate[m 

Integrate[ m (x - 1) / (a 

, a, l}], n 6 Integers] 

(x / 

- 1) 

a) Sin[n Pi x], 

Sin [n Pi x], 

{X, 0, a}] + 

- 2 m Sin[a n Pi] 

( - 1 + a) a n^ Pi^ 

That is, 

-177 TV > —^sm(n7ra)sm(n7ra:)cos(cn7rt). 
TT^fa- \) ^-^ T?' ^ ^ ^ ' ^ ' 

2m ^ 1 

Using TrigReduce we can write the product of trigonometric functions as a 
sum of cosines. 

TrigReduce [Sin [n Pi a] Sin[n Pi x] Cos[n c Pi t ] ] 

(Cos [a n Pi - c n Pi t - n Pi x] + 

Cos [a n Pi + c n Pi t - n Pi x] -

Cos [a n Pi - c n Pi t -h n Pi x] -

Cos [a n Pi + c n Pi t + n Pi x]) / 4 
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which shows that the solution could be expressed in terms of the polylogarithm 
function dilog Li2 defined by 

Li2(x) = y ^ - - , where \z\ < 1, 

whose Mathematica notation is PolyLog [2, z ] . 



Lists 

Mathematica lists are powerful objects. They provide an efficient way of ma
nipulating groups of expressions as a whole. 

5.1 Creating Lists 

Here is a list of elements. 

{a, b , c, d, e, f, g} 

{a, b , c, d, e, f, g} 

FullFonn[{a, b , c, d, e, f, g}] 

L i s t [ a , b , c, d, e, f, g] 

Table [expression, {n}] generates a list of n copies of expression. 

Table [expression, {k, n}] generates a list of the values of expression 
when k runs from 1 to n. 

Table [expression, {k, n l , n2}] generates a list of the values of expression 
when k runs from nl to n2. 

Table [expression, {k, n l , n2, ^k}] is the same as above using steps 
Ak. 

Table [expression, { j , ml, m2}, {k, n l , n2}] generates a nested list. 
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Here are a few examples. 

Table[k (k + 1) / 2, {k, 10}] 

{1, 3 , 6, 10, 15, 21 , 28, 36, 45, 55} 

Table[k, {k, 0, 1, 1 / 10}] 

1 1 3 2 1 3 7 4 9 

^^' 10 ' 5 ' 10 ' 5 ' 2 ' 5 ' 10 ' 5 ' 10 ' ^^ 

Table[i^2 + y2, { i , 3} , { j , 4}] 

{{2, 5, 10, 17}, {5, 8, 13, 20}, {10, 13, 18, 25}} 

Range [n] generates the list {1, 2, . . . , n}. 

Range [m, n] generates the list {m, m+1, . . . , n}, 

Range [m, n, Ak] is the same as above but with steps Z\k. 

Range[12] 

{1, 2, 3 , 4, 5, 6, 7, 8, 9, 10, 11, 12} 

Range[3, 17] 

{3, 4 , 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17} 

Range[3, 27, 3] 

{3, 6, 9, 12, 15, 18, 21 , 24, 27} 

Range[0, 1, 0.1] 

{0, 0 . 1 , 0 .2 , 0 . 3 , 0 .4 , 0 . 5 , 0 .6 , 0 .7 , 0 .8 , 0 .9 , 1.} 
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Array [f, n] generates the list { f [ l ] , f [2] , . . . , f [ n ] } . Array [f, {m, 
n}] generates an m x n list with elements f [ i , j ] . 

Array[f, 5] 

{ f [ l ] , f [ 2 ] , f [ 3 ] , f [ 4 ] , f [5 ]} 

Array[f, {3, 4}] 

{ { f [ l , l ] , f [ l , 2 ] , f [ l , 3 ] , f [ l , 4 ] } , 

{ f [ 2 , l ] , f [ 2 , 2 ] , f [ 2 , 3 ] , f [ 2 , 4 ] } , 

{ f [ 3 , l ] , f [ 3 , 2 ] , f [ 3 , 3 ] , f [3 ,4 ]}} 

We can also change the origin. 

Array[f, 5 , - 1] 

{ f [ - l ] , f [ 0 ] , f [ l ] , f [ 2 ] , f [3 ]} 

Here is a 4 x 6 array in which the indices start from 2 and 4, respectively. 

Array[f, {4, 6} , {2, 4}] 

{{f[2, 4 ] , f [ 2 , 5 ] , f [ 2 , 6 ] , f [ 2 , 7 ] , f [ 2 , 8 ] , f [ 2 , 9 ] } , 

{ f [3 , 4 ] , f [ 3 , 5 ] , f [ 3 , 6 ] , f [ 3 , 7 ] , f [ 3 , 8 ] , f [ 3 , 9 ] } , 

{f [4 , 4 ] , f [ 4 , 5 ] , f [ 4 , 6 ] , f [ 4 , 7 ] , f [ 4 , 8 ] , f [ 4 , 9 ] } , 

{ f [5 , 4 ] , f [ 5 , 5 ] , f [ 5 , 6 ] , f [ 5 , 7 ] , f [ 5 , 8 ] , f [ 5 , 9]}} 

There exist various commands giving better visual presentations of lists. 

TableForm[list] presents the list elements as a rectangular array. This com
mand accepts a variety of Options. 

A = {{12, 3456, 752}, {3, 586, 87}, {17645, 98, 3}}; 

TableForm[A] 
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12 3456 752 
3 586 87 
17645 98 3 

TableForm[A, TableHeadings -^ Automatic] 

1 2 3 
1 12 3456 752 
2 3 586 87 
3 17645 98 3 

TableFormCA, TableHeadings -^ {{"row 1", "row 2" , "row 3"} , 
None}] 

row 1 12 3456 752 
row 2 3 586 87 
row 3 17645 98 3 

ColumnForm [ l i s t ] presents the list elements as a vertical array. There also 
exist various Options. 

ColumnFormCA] 

{12, 3456, 752} 
{3, 586, 87} 
{17645, 98, 3} 

B = {13, 8145, 37}; 

ColumnForm[B] 

13 

8145 

37 

ColumnForm[B, Center] 
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13 
8145 

37 

ColumnForm[B, Right] 

13 
8145 
37 

5.2 Extracting Elements 

l i s = Table[Random[], {12}] 

{0.0622006, 0.672395, 0.296732, 0.0864989, 0.506992, 0.247055, 

0.266085, 0.0842416, 0.360267, 0.336073, 0.709386, 0.388325} 

Par t [expression, n] or expression [ [n] ] gives the nth part of expression. 

Par t [expression, - n] or express ion[ [ - n] ] gives the nth part of expres
sion starting from the end. 

{ P a r t [ l i s , 3 ] , l i s [ [ 3 ] ] } 

{0.296732, 0.296732} 

{ P a r t [ l i s , - 2 ] , l i s [ [ - 2 ] ]} 

{0.709386, 0.709386} 

P a r t [ l i s , {3, 6, 8}] 

{0.296732, 0.247055, 0.0842416} 
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gives the third, sixth, and eighth parts of l i s . 

Note that l i s [ [3 , 6, 8]] is not equivalent. It will give the (3, 6, 8) element 
of a nested list which, in this specific case, does not exist. 

l i s [ [ 3 , 6, 8]] 

Part : : partd ; 

Part speci f icat ion {0.0622006', 0.672395', 0.296732', « 7 » , 

0.709386', 0.388325'} [[ « 1 > . ] ] i s longer than depth of 

object. More . . . 

The symbol « 7 » indicates the number of nondisplayed elements of l i s . 

{0.0622006, 0.672395, 0.296732, 0.0864989, 0.506992, 

0.247055, 0.266085,0.0842416,0.360267,0.336073,0.709386, 

0.388325}[[3, 6, 8]] 

Extract [expression, l i s t ] extracts the part of expression at the posi
tions specified by l i s t . Note in the following commands the number and 
position of curly braces. 

Extrac t [ l i s , {2}] 

Extrac t [ l i s , {{2}}] 

0.672395 

{0.672395} 

Extrac t [ l i s , {{3} , {6} , {8}}] 

(* same as P2Lrt[lis, {3, 6, 8}] *) 

{0.296732, 0.247055, 0.0842416} 

Here is a nested hst. 

1 = {{a, b, c}, {d, e, f}} 
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{{a, b, c } , {d, e, f } } 

{ ! [ [ ! ] ] , 1 [ [ 1 , 2 ] ] } 

{{a, b, c } , b} 

The same result is obtained with Extract. 

Extract[1, { { l } , {1 , 2}}] 

{{a, b, c } , b} 

Extract [expression, l i s t , f ] extracts the part of expression at the po
sitions specified by l i s t and finds the value of f at each of them. 

f [x_] := x'̂ 2 

Extrac t [ l i s , {3} , f] 

0.0880499 

which is the square of 0.296732, the third element of l i s . 

First [expression] and Last [expression] give, respectively, the first and 
last elements of expression. 

{First [ l i s ] , L a s t [ l i s ] } 

{0.0622006, 0.388325} 

Take [ l i s t , n] gives the first n elements of l i s t . 

Take [ l i s t , - n] gives the last n elements of l i s t . 

Take [ l i s t , {m, n}] gives elements m through n of l i s t . 

Take [ l i s , 2] 

{0.0622006, 0.672395} 
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Take[l is , - 2] 

{0.599309, 0.265092} 

Take[l is , {3, 7}] 

{0.0726532, 0.680859, 0.180326, 0.974102, 0.0301189} 

Rest [expression] gives expression with the first element removed. 

Rest[x^2 + y^4 + z^6] 

{y* + z6} 

Rest [ l i s ] 

{0.672395, 0.296732, 0.0864989, 0.506992, 0.247055,0.266085, 

0.0842416, 0.360267, 0.336073,0.709386,0.388325} 

Rest[expression] is equivalent to Drop [expression,1].Drop[expression, 
n] gives expression with its first n elements dropped. 

Drop [ l i s , 1 ] 

{0.672395, 0.296732, 0.0864989, 0.506992, 0.247055, 0.266085, 

0.0842416, 0.360267, 0.336073,0.709386,0.388325} 

Drop[x'^2 + 7*̂ 4 + z'*6, 1] 

{ŷ  + z6} 

Drop[lis, 5] 
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{0.247055, 0.266085, 0.0842416, 0.360267, 0.336073, 

0.709386, 0.388325} 

Drop[a + b + c + d + e , 3] 

d + e 

Drop [expression, - n] gives expression with its last n elements dropped. 

Drop[l is , - 3] 

{0.0622006, 0.672395, 0.296732, 0.0864989, 

0.506992, 0.247055, 0.266085, 0.0842416, 0.360267} 

Drop [expression, {m, n}] gives expression with elements m through n 
dropped. 

Drop[l is , {2, 10}] 

{0.0622006, 0.709386, 0.388325} 

5.3 Adding Elements 

Clear[ l i s ] 

l i s = Range[2, 12] 

{2, 3 , 4, 5, 6, 7, 8, 9, 10, 11,12} 

Prepend[expression, element] adds element at the beginning of expres
sion. 

l i s = Prepend[lis, 1] 

{1 , 2, 3 , 4, 5, 6, 7, 8, 9, 10, 11, 12} 
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Prepend[y^2 + z^2, x'^2] 

y?' + ŷ  + z^ 

Append [expression, element] adds element at the end of expression. 

lis = Append[lis, 13] 

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13} 

Append [x"2 + Y^2, Z'^2] 

x̂  + y2 + -P-

Insert [expression, element, {i, j, . . .}] inserts element at position 
{i, j, ...} in expression. 

lis = Insert[lis, A, {{2}, {4}, {6}, {8}, {10}, {12}}] 

{1, A, 2, 3, A, 4, 5, A, 6, 7, A, 8, 9, A, 10, 11, A, 12, 13} 

Cases [ e l , e2, . . . , pa t t e rn ] gives a list of the elements ej matching 
pa t t e rn . 

C a s e s [ l i s , . In teger] 

{1, 2, 3 , 4, 5, 6, 7, 8, 9, 10, 11, 12, 13} 

The same result may be obtained with Delete. 

D e l e t e [ l i s , {{2}, {5}, {8}, {11}, {14}, {17}}] 

{1, 2, 3 , 4, 5, 6, 7, 8, 9, 10, 11, 12, 13} 

DeleteCases [expression, pa t t e rn ] removes all elements of expression 
that match pa t te rn . 
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l i s l = DeleteCasesElis , A] 

{1, 2, 3 , 4 , 5, 6, 7, 8, 9, 10, 11, 12, 13} 

lis2 = DeleteCasesElis, .Integer] 

{A, A, A, A, A, A} 

We can concatenate lists using Join. 

Clear[lisl, lis2, lis3] 

lisl = {a, b, c, d, e} 

lis2 = {f, g, h, i} 

lis3 = {j, k, 1, m, n, o, 

Join[lisl, lis2, lis3] 

p} 

{a, b , c, d, e} 

{f, g, h, i } 

{ j , k, 1, m, n, o, p} 

{a, b , c, d, e, f, g, h, i , j , k, 1, m, n, o, p} 

Lists can be viewed as sets 

Clear[lisl, lis2 

lisl = {a, c, b. 

lis2 = {d, f, c, 

lis3 = {c, b, h}; 

lis3] 

e}; 
g}; 

Union[lisl, lis2, lis3]] 

lisl, or lis2, or lis3 •) 

Intersection [lisl, lis2, 

lisl, lis2, and lis3 *) 

Complement[lisl, 

lis2 *) 

lis2] (^ 

(* all 

lis3] 

different 

(* all 

= elements of 

elements either in 

common elements of 

lisl L that are i not in 

{a, b , c, d, e, f, g, h} 

{c} 
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{a, b, e} 

Clear[ l i s ] 

l i s = {a, b, a, e, c, a, d, e, b}; 

Union[lis] (* eliminate repeated elements *) 

{a, b, c, d, e} 

5.4 Finding, Grouping, and Counting Elements 

Clear[lis] 

lis = Table[Random[Integer, 3], {20}] 

{3, 1, 0, 0, 3, 3, 1, 1, 1, 0, 3, 2, 0, 0, 3, 1, 3, 1, 2, 3} 

Posit ion [ l i s t , pattern] gives the list of the positions at which elements 
of l i s t match pattern. 

{ P o s i t i o n [ l i s , 0 ] , P o s i t i o n [ l i s , 1 ] , Posit ion [ l i s , 2 ] , 
P o s i t i o n [ l i s , 3]} 

{{{3} . {4} . {10}. {13}, {14}}, 

{{2} . {7} , {8} , {9} , {16}. {18}}, 

{{12}, {19}}. 

{{1} . {5} . {6} , {11}, {15}. {17}, {20}}} 

Cases [ l i s , n_ / ; n > 2] 

{3, 3, 3, 3, 3, 3, 3} 

pattern / ; t e s t tells Mathematica to match pattern only if the evaluation 
of t e s t yields True. 

Partit ion [ l i s t , n] generates nonoverlapping sublists of length n. 
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P a r t i t i o n [ l i s , 4] 

{{3, 1, 0. 0 } , {3, 3 , 1, 1}, {1 , 0, 3 , 2} , 

{0, 0, 3 , 1}, {3, 1. 2, 3}} 

P a r t i t i o n [ l i s t , n, d] generates sublists of length n with offset d. 

P a r t i t i o n [ l i s , 4 , 1] 

{{3, 1, 0, 0} , {1, 0, 0, 3} , {0, 0, 3 , 3} , {O, 3 , 3 , l } , 

{3, 3 , 1, 1}, {3, 1, 1, 1}, {1 , 1, 1, 0 } , {1 , 1, 0, 3} , 

{1 , 0, 3 , 2} , {0, 3 , 2, 0} , {3, 2, 0, 0} , {2, 0, 0, 3 } . 

{0, 0, 3 , 1}, {0, 3 . 1, 3} , {3, 1, 3 , 1}, {1 , 3 , 1, 2} , 

{3, 1, 2 , 3}} 

P a r t i t i o n [ l i s , 4 , 2] 

{{3, 1, 0, 0 } , {0, 0, 3 , 3} , {3, 3 , 1, l } , { l , 1, 1, 0} , 

{1 , 0, 3 , 2} , {3, 2, 0, 0} , {0. 0, 3 , l } , {3, 1, 3 , 1}, 

{3, 1, 2, 3}} 

P a r t i t i o n [ l i s , 4 , 3] 

{{3, 1, 0, 0 } , {0, 3 , 3 ,1} , {1 , 1, 1, 0} , {0, 3 , 2, 0} , 

{0, 0, 3 , 1}, {1, 3 , 1, 2}} 

P a r t i t i o n [ l i s , 4 , 4] 

{{3, 1, 0, 0} , {3, 3 , 1, 1}, {1, 0, 3 , 2 } . {0, 0, 3 , l } , 

{3. 1, 2, 3}} 

Count [ l i s t , pa t t e rn ] counts the number of elements in l i s t matching 
pa t t e rn . 
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{Count[l is , 0 ] , Count[l is , 1 ] , Count[l is , 2 ] , Count[l is , 3]} 

{5, 6, 2, 7} 

5.5 Mathematical Operations on Lists 

Clear[ l i s ] 

l i s = Range[10] 

{1 , 2, 3 , 4, 5, 6, 7, 8, 9, 10} 

Apply [f, expression] or f @@ expression replaces the head of expression 
byf. 

{Head[lis]. Head[Apply[f, lis]]} 

{List, f} 

{Apply[Plus, lis]. Plus m lis} 

{Apply[Times, lis]. Times @@ lis} 

{55, 55} 

{3628800, 3628800} 

Total [ l i s t ] is equivalent to Apply [Plus, l i s t ] . 

To ta l [ l i s ] 

55 

Map[f, expression] or f / @ applies f to each element on the first level in 
expression. The following example shows how to apply a function f to different 
levels of a nested list. 
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Clear[lis. 

lis = 

Map[f 

MapCf 

Map[f 

MapEf 

{{{u 
lis 

lis. 

lis. 

,lis. 

MapAll[f, 

f] 

, V, 

] (* 

{1}] 
{2}] 

{3}] 
lis] 

«}. {x. y}. W}. {{a, b}, {c, 
applies f to first level *) 

(* 

(* 

(* 

(* 

applies 

applies 

applies 

applies 

f to 

f to 

f to 

f to 

first level = 

second level 

third level ' 

all levels *) 

d, 

0 
*) 

0 

e}}}; 

{fC{{u, V, w}, {x, y} , {z}}], f [{{a, b } , {c, d, e}}]} 

{f[{{u, V, w}, {x, y} , {z}}], f [{{a , b } , {c, d, e}}]} 

{{f[{u, V, w}], f [{x , y } ] , f [ {z} ]} , {f[{a, b}3, f [ { c , d, e}]}} 

{{{f[u] , f [ v ] , f [w]} , { f [ x ] . f [ y ] } , { f [ z ]}} , 

{ { f [ a ] , f [ b ] } , { f [ c ] , f [ d ] , f [e]}}} 

f [{ f [{ f [{ fCu] , f [ v ] , f [w]} ] , f [ { f [ x ] , f [ y ] } ] , f [ { f [ z ] } ] } ] . 

f [ { f [ { f [ a ] , f [ b ] } ] , f [ { f [ c ] , f [ d ] , f [e ]}]}]}] 

Clear[lis, f] 

lis = Range[1, 

f [x_] := x'̂ 2 

{Map[f, lis], 

10] 

f / @ lis} 

{1, 2, 3 , 4, 5, 6, 7, 8, 9, 10} 

{{1, 4, 9, 16, 25, 36, 49, 64, 81 , 100}, 

{1 , 4, 9, 1 6, 25, 36, 49, 64, 81 , 100}} 

We can also use pure functions. 

Map [Function [x, x''2] , l i s ] 

Map[#^2 &, l i s ] 

{1, 4, 9, 16, 25, 36, 49, 64, 81 , 100} 

{1, 4 , 9, 16, 25, 36, 49, 64, 81 , 100} 

MapAt[g, expression, { p a r t i , p a r t 2 , . . . } ] applies g to specified parts 
of expression. 
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MapAtEg, {a, {b. c } . d, e } , {{2, 1}, {4}}] 

{a, {g[b] , c } , d, g[e]} 

To apply g to element b, we can first determine its Posi t ion. 

pos = Pos i t ion [{a L, {b, c } , d, e } , b] 

{{2.1}} 

MapAtEg, {a, {b, c } , d, e} , pos] 

{a, {g[b] , c } , d, e} 

MapThreadCg, {{al , a2, . . . } , {bl , b2, . . . }} ] gives g [ a l , b l ] , 
g[a2, b2], . . . . 

MapThread[g, 

{g [ l , 1 ] , g[2 

{{1. 2 , 

. 2 ] , g 

MapThread[Plus, {{1, 

3} 

[3. 

2, 

. {1 . 

3]} 

3 } . 

2, 

{1 . 

3}}] 1 

2, 3}}] 

{2, 4 , 6} 

g[x_, y_] : = 

MapThread[g. 

x-2 + y 

{{1, 2 . 

-2 

3} . {1. 2, 3}}] 

{2, 8, 18} 

Here also we can use pure functions. 

MapThread[Function[{x, y } , x + y ] , {{1, 2, 3 } , {1, 2 , 3}}] 

{2, 4 , 6} 
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MapThread[Function[{x , y } , x'̂ 2 + 7^2], { { l , 2, 3 } , {1 , 2, 
3}}] 

{2, 8, 18} 

MapThread[#l + #2 &, { { l , 2, 3 } , {1 , 2, 3}}] 

{2, 4, 6} 

MapThread[#1-^2 + #2-̂ 2 &, {{1, 2, 3 } , {1 , 2, 3}}] 

{2, 8, 18} 

Maplndexed[g, expression] applies g to each element on the first level in 
expression giving the index of the element. 

MapIndexedEg, {a, {b, c } , d, e}] 

{gCa, { 1 } ] , g[{b, c } , { 2 } ] , g[d, { 3 } ] , g [e , {4}]} 

5.6 Rearranging Lists 

Clear[ l i s ] 

l i s 

{{7, 
= {{{1 . 

8, 9} , 

2, 

{u 

3} , 
. V , 

{a. 

w}. 

b. 

{u, 
c } . 
V, 

{A, B, 

w}}} 

c}}, 

{{{1 , 2, 3 } , {a, b, c } , {A, B, C}}, 

{{7, 8, 9 } , {u, V, w}, {U, V, W}}} 

Transpose [ l i s t ] transposes the first two levels in l i s t . 

Transpose[lis] 
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{{{1, 2, 3} , {7, 8, 9}}, {{a, b , c } , {u, v, w}}, 

{{A, B, C}, {U, V, W}}} 

F l a t t en [nestedLists] concatenates all sublists in one unique list. 

F l a t t e n [ l i s ] 

{1, 2, 3 , a, b , c, A, B, C, 7, 8, 9, u, v, w, U, V, W} 

This operation can be performed at different levels. 

F l a t t e n [ l i s , 1 ] 

{{1, 2, 3} , {a, b , c } , {A, B, C}, {7, 8, 9} , {u, v, w}, {U, V, W}} 

F l a t t e n [ l i s , 2] 

{1, 2, 3 , a, b , c . A, B, C, 7, 8, 9, u, v, w, U, V, W} 

Permutations [ l i s t ] generates the list of all permutations of the elements in 
l i s t . 

Permutat ions[{1, 2, 3}] 

{{1, 2, 3} , {1 , 3 , 2} , {2, 1, 3} , {2, 3 , 1}, {3, 1, 2} , {3, 2, 1}} 

RotateLef t [expression, n] cycles the elements in expression n positions to 
the left and RotateRight [expression, n] n positions to the right. 

RotateLeft[{a, b , c, d, e}] 

RotateLeft[{a, b , c, d, e } , 1] 

{b, c, d, e, a} 

{b, c, d, e, a} 

RotateLeft[{a, b , c, d, e } , 2] 
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{c, d, e, a, b} 

RotateRight[{a, b, c, d, e } , 2] 

{d, e, a, b, c} 

Sort [ l i s t ] sorts the elements of l i s t into canonical order. 

Sort[{d, b, o, j , p, q}] 

{b, d, j , o, p, q} 

Sort[{6, 8, 2, 1, 0, 5, 3}] 

{0, 1, 2, 3 , 5, 6, 8} 

Sort[{9, 3 , t , c, 7, n, 1, 4}] 

{1 , 3 , 4, 7, 9, c, n, t } 

The expression to be sorted need not have head List. 

Sort [ f [4 , 6, a, 1, 7, j , 2, 9, 8]] 

f [ l , 2, 4, 6, 7, 8, 9, a, j ] 

5.7 Listability 

Most Mathematica functions are list able. Here are a few examples. 

Clear[ l i s ] 

l i s = Table[0.5 + 0.1 k, {k, 0, 10}] 

{0 .5 , 0 .6 , 0 .7 , 0 .8 , 0 .9 , 1 . , 1.1, 1.2, 1.3, 1.4, 1.5} 
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S i n [ l i s ] 

{0.479426, 0.564642, 0.644218, 0.717356, 0.783327, 0.841471, 

0.891207, 0.932039, 0.963558, 0.98545, 0.997495} 

SinhClis] 

{0.521095, 0.636654, 0.758584, 0.888106, 1.02652, 1.1752, 

1.33565, 1.50946, 1.69838, 1.9043, 2.12928} 

Log[lis] 

{-0.693147, -0.510826, -0.356675, -0 .223144, -0 .10536, 

0. ,0.0953102, 0.182322, 0.262364, 0.336472, 0.405465} 

Exp [ l i s ] 

{1.64872, 1.82212, 2.01375, 2.22554, 2.4596, 2.71828, 

3.00417, 3.32012, 3.6693, 4.0552, 4.48169} 

List ability is also valid for nested lists. The list able function applies to the 
highest level. 

Sin[{{a, 

Sinli[{{a 

Log[{{a, 

Exp[{{a. 

b} . 
. b} 

b} . 
b} . 

{{c . 

. {{c 

{{c. 

{{c . 

d} . 
. d} 

d} . 

d} . 

{e}}}] 

. {e}}}] 

{e}}}] 

{e}}}] 

{ {S in[a] , S in[b]} , { {S in [c ] , S in[d]} , {Sin[e]}}} 

{{SinliCa], SinhCb]}, {{Sinh[c] , SinhCd]}, {Sinh[e]}}} 

{{Log[a], Log[b]}, {{LogEc], Log[d]}, {Log[e]}}} 

{{E^, Eb}, {{E^ . Ed } , {E® }}} 

User-defined functions are, in general, not listable. 
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C l e a r [ l i s ] 

l i s = Table[0.5 + 0.1 k, {k, 0, 10}]; 

fCl is ] 

f [ { 0 . 5 , 0 .6 , 0 .7 , 0 .8 , 0 .9 , 1 . , 1 .1 , 1.2, 1.3, 1.4, 1.5}] 

They can, however, be made L i s t ab le using the command: 

A t t r i bu t e s [ f ] = L i s tab le 

L i s t ab le 

fCl i s ] 

{ f [ 0 . 5 ] , f [ 0 . 6 ] , f [ 0 . 7 ] , f [ 0 . 8 ] , f [ 0 . 9 ] , f [ l . ] , f [ l . l ] , 

f [ 1 . 2 ] , f [ 1 . 3 ] , f [ 1 . 4 ] , f [ 1 . 5 ] } 

If a function is not L is tab le , it can apphed to all the elements of a list using 
the command Map. 

FClis] 

F[{0.5 , 0 .6 , 0 .7 , 0 .8 , 0 .9 , 1 . , 1 .1 , 1.2, 1.3, 1.4, 1.5}] 

MapCF, l i s ] 

{F[0 .5] , FE0.6], F [ 0 . 7 ] , F [ 0 . 8 ] , F[0.9] , F [ l . ] , F [ l . l ] , F [ 1 . 2 ] , 

F [ 1 . 3 ] , F [ 1 . 4 ] , FE1.5]} 

Functions may be defined on lists. For example, the function f f first adds the 
elements of a list and then squares the result. 

f f [ l i s _ L i s t ] := (Apply[Plus, l is])-^2 

f f [ { l , 2, 3 , 4 , 5}] 

225 
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f f f first adds the elements of the hst, takes the closest integer of the sum, 
and returns 0 if the integer is even and 1 otherwise. 

fff [ l is_List] := Mod[Round[Apply[Plus, 

f f f [ { 3 . 1 2 , 7.53, 2.27, 5.11}] 

f f f [ { 3 . 1 2 , 7 .53, 2.27, 6.11}] 

l i s ] ] . 2] 
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Graphics 

Graphics are important components of many applications, and Mathematica 
provides powerful graphics capabihties. This chapter is rather detailed but a 
lot more can be found in [66] and [55]. 

6.1 2D Plots: Function Plotting 

To graph f{x) in the interval (XI ,J :2) , we use the command Plo t [ f [x ] , { 
X, x l , x2}]. 

Plot [Cos [2x] + S in [x ] , {x, - P i , P i } ] ; 

\ V \ / 

-3 \ -2 - I I I 1 2 3 

\ / ~A 

^ ^ - 2 

Fig. 6.1. Graph of cos{2x) + sin(x) for x e [—7r,7r]. 

We can graph more than one function on the same interval using the command 
P l o t [ { f [ x ] , g [ x ] , h [ x ] } , {x, x l , x2}]. 

Plot [{Cos[x], Cos [3 x ] , Cos [5 x ] } , {x, - P i , P i } ] ; 
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Fig. 6.2. Graphs of cos(x), cos(3a:), and cos(5a:) for x G [—7r,7r] 

6.1.1 Parametric Plots 

We can also plot curves represented by parametric coordinates using the 
command: Parametr icPlot [{x[ t ] , y [ t ] } , { t , t l , t2}] which generates 
a parametric plot where the x and y coordinates are functions of t varying 
between ti and t2. 

Parainetr icPlot[{Sin[3t] , Sin[8 t ] } , { t , 0, 2 P i } ] ; 

Fig. 6.3. Parametric plot of (sin(3t), sin(8t)) for t G [0,27r]. 

6.1.2 Polar Plots 

We can also plot a curve defined by its polar coordinate representation r 
f{6) using ParametricPlot , where the functions x and y are defined by 

x(t)=/(t)cos(t) ,2/( t) = /(t)sin(t) . 

Considering, for example, the curve defined by r = sin 4^, we obtain 



6.1 2D Plots: Function Plotting 175 

ParametricPlot[{Sin[4t] Cos[t], Sin[4t] Sin[t]}, {t, 0, 2Pi}, 

AspectRatio -^ 1] ; 

Fig. 6.4. Parametric plot of the curve given in polar coordinates by r = sin(4^) for 
Oe [0,27r]. 

Such a type of polar graph is called a rose. Note tha t we used the option 
A s p e c t R a t i o —̂  1 to specify tha t the ratio of height to width of the plot 
should be equal to 1. 

We do not need to use P a r a m e t r i c P l o t . We can plot curves using the com
mand P o l a r P l o t . 

P o l a r P l o t [ S i n [ 3 t h e t a ] , { t h e t a , 0 , 2 P i } ] ; 

Fig. 6.5. Polar plot of the curve defined by r = sin(3^) for 6 G [0,27r]. 



176 6 Graphics 

6.1.3 Implicit Plots 

Loading the package Graph ics ' Impl i c i tP lo t ' we can also plot a curve de
fined by an implicit function f{x,y) = 0. 

« Graphics'ImplicitPlot 

ImplicitPlot[(x~2 + y*2)~3 == (x*2 • - y"2), {x. - 2. 2}]; 

Fig. 6.6. Implicit plot of the curve defined by {x^-\-y'^)^ = (x'^ — y^) for x G [—2, 2] 

6.1.4 Color 

To display color we have at our disposal various graphics directives: RGBColor [redLevel, 
greenLevel,blueLevel]. aad CMYKColor[cyanLevel, magentaLevel, yellowLevel, 
blackLevel], v t̂ee colorLevel is a real number in the range 0 to 1. 
PlotStyle -^ style specifies graphics directives for all lines or points. 

Plot [{Cos[x], Cos [3 x ] , Cos [5 x ] } , {x, - P i , P i } , 

P lo tS ty le -^ {RGBColor[0, 0, 1 ] , RGBColor[0, 1, 0 ] , 
RGBColor[1, 0, 0 ] } ] ; 
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Fig. 6.7. Graphs of cos{x), cos(3x), anc? cos(5a;) for x G [—7r,7r], colored, respec
tively, in blue, green, and red. 

Plot [{Cos[x], Cos [3 x], Cos [5 x]}, {x, - Pi, Pi}, 

PlotStyle -̂  {CMYKColorCl, 0, 0, 0], CMYKColor[0, 1, 0, 0], 
CMYKColorCO, 0, 1, 0]}]; 

0(5 '̂•. A 
/ \ 

T-f-r-

Fig. 6.8. Same as above but colored, respectively, in cyan, magenta, and yellow. 

Hue [h] , where h varies from 0 to 1, specifies color with a particular hue. As 
h increases, starting from h = 0, which corresponds to red, the color changes 
to yellow, green, cyan, blue, and red again for h = 1. 

Show[Graphics 

Rectangle[{j , 

Line[{{0, 0 } , 

AspectRatio -

[{Table[{Hue[j 

0} , {j+1 
{10. 0 } . 

-> 0 . 2 ] ; 

. 5 } ] } , 
{10, 

/ 9] 

{ j . 
5 } . 

) 

0, 

{0. 
9}] 
5 } . 

> 

{ 0 , 0 } } ] } ] . 

Fig. 6.9. Rectangles of varying hue. 
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To specify the gray level intensity, we can use GrayLevel [Level] , where 
Level varies from 0 (black) to 1 (white). 

Show[Graphics 

Rectangle[{j , 

Line[{{0, 0 } , 

AspectRatio -

[{Table[{GrayLevel[j / 

0 } , {j+1 
{10, 0 } , 

^ 0 . 2 ] ; 

.5}]} 
{10. 

. { j . 0, 

5 } . {0, 

9 ] , 

9}] 

5 } . 

» 

{0. 0 } } ] } ] . 

Fig. 6.10. Rectangles of varying gray level 

The package Graphics' Colors ' contains a large number of predefined colors. 
Entering the command ?Graphics'Colors'* gives the list of all predefined 
colors. 

«Graphics' Colors' 
?Graphics'Colors'* 

The output is suppressed but we can get the color code of each of these 
predefined colors by entering its name. For example: 

Firebrick 

RGBColor[0.698004, 0.133305, 0.133305] 

6.1.5 Dashing 

Dashing [a, b , . . . ] draws dashed lines with segments of successive length a, 
b, . . . . 

Plot [{Cos [ x ] , Cos [3 x ] , Cos [5 x ] } , {x, - Pi , P i } , 

PlotStyle -> {Dashing[{0.07, 0 .07} ] , Dashing[{0.04, 

Dashing[{0.01, 0 .01} ] } ] ; 

0 .04} ] , 

6.1.6 Text 

Text [expression, {x, y}] is a graphics primitive that prints expression 
centered at the point {x, y}. 
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\ A / \A 

'UVM 
' \ 

Fig. 6.11. Graphs of cos{x), cos(3x), and cos{5x) for x G [—TT, TT], with different 
dashing plot styles. 

Plot[Exp[- 0.1 x] CosCx], {x, 0, 6Pi} , 

PlotStyle -> {RGBColorEO, 0, 1 ] } , 

Epilog -^ Text[''Damped O s c i l l a t i o n s ' \ 

DefaultFont -> { ' 'He lve t i ca ' ' , 12}]; 

{3 Pi , 0 . 7 } ] , 

1 
0.75 
0.5 

0.25 

0.25 
-0.5 
0.75 

\ Damped Oscillations 

2.5 k 7.5i 1c/ l2.5\&, /7.5 

Fig. 6.12. Graphs of e °-^^cos(3x) forx G [0,67r], with added text 

Epilog is an option to be rendered after the main part of the graphics is ren
dered, DefaultFont controls the font used for text in graphics, and TextStyle 
specifies the default style and font options with which text should be rendered. 
The text has to be placed between double quotes ("). 

Plot [{Cos[x] 

PlotStyle -> 

RGBColor[l, 

TextStyle -^ 

, Cos[3 x ] , Cos 

{RGBColor[0, 0 

0, 0 ] } , 

{FontSlant -^ 

[5 x ] } , {x. - Pi , 
, 1 ] , RGBColor[0, 

" I t a l i c " , Fonts 

P i } , 
1, 0] 

ize -^ 

, 

12}]; 

FontSlant is an option that specifies how slanted characters should be. 
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Fig. 6.13. Same as Figure 6.7 with a different text style. 

6.1.7 Axes, Ticks and Labels 

Aspect Ratio is an option which specifies the ratio of height to width for 
a plot. For two-dimensional plots, the default value of Aspect Ratio is 1 / 
GoldenRatio. AspectRatio -^ Automatic (equivalent to AspectRatio -^ 
1) uses the same scale in x and y. 

Plot[BesselJ[0, x ] , {x, 0, 20}]; 

Fig. 6.14. Graph of JQ{X) for x G [0,20]. 

We can replace the traditional axes by frame axes, and label the plot. 

Plot[BesselJ[0,x], {x, 0, 

PlotStyle -^ 

PlotLabel -^ 

DefaultFont -

{RGBColorCO, 

20}, 

0,1]} 

^'Bessel Function 

-> {''Courier *', i: 

Axes —^ 

» 

False, 

of Order 0 " , 

2}]; 

Frame -^ True, 

Here is another example using TraditionalForm to write a mathematical 
expression, and Ticks to specify tick mark positions. 
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Bessel Function of Order 0 

181 

0 5 10 15 20 

Fig. 6.15. Same as Figure 6.14 with a plot label. 

Ibl = Exp[-

Plot[Exp[- 0 

PlotStyle -> 

Ticks -̂  {{5 

a x] Cos [x] ; 

. 1 x] Cos [x] , 

{RGBColor[0, 

, 10, 15}, {-

{x, 0, 6 ] 

0,1]}, 
0.75, - 0 

Epilog ^ Text[TraditionalForm[Ibl] 

DefaultFont -̂  {''Helvetica'\ 12}] 

Pi}, 

25, 

, {3 

» 

0.25. 

Pi, 0 

0.75}}. 

.7}]. 

e-^^cos(jc) 

Fig. 6.16. Same as Figure 6.12 with mathematical symbols in traditional form. 

In the following example, we use Ticks to specify the positions of tick marks 
only for one axis and let the tick marks for the other axis be placed automat
ically. We also use the graphics primitive Point to place a big red dot at the 
origin. We study in more detail graphics primitives in section 6.3 below. 
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plCosColor = Plot [{Cos[x] , Cos[3 x ] , Cos [5 x ] } , 

{x, - Pi , P i } , 

PlotStyle -^ {RGBColorEO, 0, 1], RGBColor[0, 1, 0], 

RGBColorCl, 0, 0]}, 

TextStyle -̂  {FontSlant -̂  "Italic", FontSize -> 14}, 

Ticks ^ {{ - Pi, - Pi/2, 0, Pi/2, Pi} Automatic}, 

Epilog -> {PointSize[0 .05] , RGBColor[l, 0, 0 ] , 

Point [{0, 0 } ] } ] ; 

-71 

Fig. 6.17. Same as Figures 6.7 and 6.13 with different options. 

Using the command Options [plCosColor] will give the expHcit list of options 
of the above graphics object. 

6.1.8 Graphics Array 

To present a collection of plots we use Graphics Array. The following com
mand displays the traditional form of a mathematical symbol. 

TraditionalForm[BesselJ[0, x]] 

JQ{X) 

We first generate four plots without displaying them, and use the option Ticks 
-^ None to eliminate ticks. 
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piJO = Plot[BesselJ[0, x], {x, 0, 10}, 

PlotStyle -^ {CMYKColorEl, 0, 0, 0]}, Ticks -^ None, 

Epilog -> Text[TraditionalFonn[BesselJ[0, x]], {3, 0.5}], 

DefaultFont -> {''Helvetica'\ 16}, 

DisplayFunction -^ Identity]; 

plJl = Plot[BesselJ[l, x], {x, 0, 10}, 

PlotStyle -^ {CMYKColorCO, 1, 0, 0]}, Ticks -^ None, 

Epilog -> Text[TraditionalForm[BesselJ[l, x]], {4.5, 0.35}], 

DefaultFont -^ {''Helvetica'', 16}, 

DisplayFunction -^ Identity]; 

plJ2 = Plot[BesselJ[2, x], {x, 0, 10}, 

PlotStyle -^ {CMYKColorCO, 0, 1, 0.5]}, Ticks -^ None, 

Epilog -^ Text[TraditionalForm[BesselJ[2, x]], {6, 0. 3}], 

DefaultFont -^ {"Helvetica", 16}, 

DisplayFunction -^ Identity]; 

plJ3 = Plot[BesselJ[3, x], {x, 0, 10}, 

PlotStyle -^ {CMYKColorCO, 0, 0, 1]}, Ticks -^ None, 

Epilog -^ Text[TraditionalForm[BesselJ[3, x]], {7, 0. 3}], 

DefaultFont -^ {"Helvetica", 16}, 

DisplayFunction —> Identity]; 

And we display the four plots in a 2 x 2 array. 

plArrayl = 

TextStyle 

PlotLabel 

= Show[GraphicsArray[{{plJO, 

-> {FontSlant -^ "Italic" 

—> "First Bessel Fimctions 

DisplayFunction —> $DisplayFimction] ; 

plJl}, 

Fonts 

' ' ] , 

{plJ2 

ize -^ 

plJ3}}, 

14}, 
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First Bessel Functions 

Fig. 6.18. Graphics array of the Bessel functions Jo, Ji, J2, and J3(x) in the 
interval [0,10]. 

We can increase spacing with the option Graph icsSpac ing , 

plArray2 = 

TextStyle 

= Show[GraphicsArray[{{plJO, 

-^ {FontSlant -^ ''Italic'' 

GraphicsSpacing -> {0.3, 0.3}, 

PlotLabel —> ''First Bessel Functions 

plJl}, {plJ2 

, FontSize -^ 

- ] ] ; 

plJ3}}, 

14}, 

First Bessel Functions 

Fig. 6.19. Graphics array of the Bessel functions Jo, J\, J2, and J^{x) in the 
interval [0,10] using the option GraphicsSpacing. 

and finally add a frame. 

Show[plArray2 , Frame -^ T r u e ] ; 
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First Bessel Functions 
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VoW 
, / • \ 

1 \ 7 \ 

V 

\ / w 

\J 
Fig. 6.20. Graphics array above with a frame. 

6.1.9 Plot Range 

Consider the following graphics. 

plCosh = Plot[Cosh[2 x] Cos[10 x ] , {x, - 3 , 3 } ] ; 

50 

-50 

-100 

-150 

Fig. 6.21. Graph of cosh(2x) cos(10a;) for x G [-3, 3]. 

We can restrict the plot range to analyze more closely a part of the plot using 
the option Plot Range. 

Show[plCosh, PlotRange -> {{-1 , 1}, {- 2, 2}}]; 
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Fig. 6.22. Graph o/cosh(2x)cos(10x) in a reduced plot range. 

6.2 More 2D Plots 

6.2.1 Plotting Lists 

In this section various commands that help visualize numeric data are pre
sented. Data are either of the form of a simple list {di, ^2, • • •, ĉ n}̂  where each 
di isasingletermor alist of listsoftheform: {{xi,2/i}, {x2,2/2}, • • • A^n^Vn}}^ 
where each sublist {xi^yi} represents the coordinates of point i. L i s t [ { d l , 
d2, . . . , dn}] is equivalent to Lis t [{{1, d l } , {2, d2}, . . . , {n, dn}}]. 

data = Table[0.3 k^2 + 1.75 k + (2Random[Integer] - 1 ) , {k, 
1, 15}] 

{3.05, 5 .7 , 6 .95, 10.8, 17.25, 22 .3 , 27.95, 32 .2 , 

39.05, 46 .5 , 56.55, 65 .2 , 72.45, 84 .3 , 94.75} 

We first plot this list of values, adding text and specifying the point size (see 
Figure 6.23). 

plData = Lis tPlotCdata , P lo tS ty le -^ {Poin tSize[0 .02] , 

RGBColor [ 1 , 0 , 0 ] } , Epilog -> Text [ ' ' d a t a p o i n t s " {4, 60}], 

DefaultFont -^ { ' ' H e l v e t i c a ' \ 14}]; 

We then find a quadratic function to fit the data and plot this function, 

f i tData = F i t [data, { l , x, x ' '2}, x] 

1.04396 + 1.43911 x + 0.319877 x^ 



6.2 More 2D Plots 187 
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Fig. 6.23. Plot of a list of data points. 

plFit = PlotCfitData, {x, 0, 15}]; 

10 12 14 

Fig. 6.24. Graph of 1.04396 + 1.43911x + 0.319877x^ (x G [0,15]; that fits the list 
of data points of Figure 6.23 above. 

and we finally represent on the same graph the fitting function and the data 
points (Figure 6.25). 

Show[{plData, p l F i t } , PlotLabel -^ " D a t a f i t ' \ 

DefaultFont -^ { ' ' H e l v e t i c a ' ' , 14}, Frame -^ True] ; 

Loading the package Graphics'Mult i p l e L i s t P l o t ' gives the possibility to 
plot several lists of data on the same graph. 

«Graphics' MultipleListPlot' 

datal = Table [Cos [Pi k / 20] +0.1 Random[] , {k, 1, 10}]; 

data2 = Table [Sin[Pi k / 20] +0.1 Random[] , {k, 1, 10}]; 

MultipleListPlot[datal, data2. PlotJoined -̂  True]; 
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Data fit 

0 2 4 6 8 10 12 14 

Fig. 6.25. Plots of the list of data points and the quadratic fitting function. 

1 

0 .8 

0 .6 

0 .4 

0 .2 

2 4 6 8 10 

Fig. 6.26. Plots of two lists of data points. 

The same plot with different options (Figure 6.27): 

MultipleListPlot[datal, data2, 

SymbolShape 

SymbolStyle 

PlotJoined -

-̂  {PlotSymbol[Triangle], 

-^ {RGBColor[1,0,0], 

-̂  True] ; 

PlotSymbol[Box]}, 

RGBColor[0,0,l]}, 

6.2.2 Special Plots 

Loading the package Graphics 'Graphics ' allows us to use a greater variety 
of graphics commands. 

«Graphics' Graphics' 
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1 

0 .8 

0 .6 

0 .4 

0 .2 

2 4 6 8 10 

Fig. 6.27. Same as Figure 6.26 above with different options. 

LogPlot [f [ x ] , {x, x l , x2} ] generates a log-linear plot in the interval 
[xl , x2] and LogLogPlot [f [x] , {x, x l , x2}] generates a log-log plot in 
the same interval. 

LogPlot[Exp[- 3 x ] , {x, 0, 6 } ] ; 

1 

0 . 0 1 

0 .0001 

1 . xlO"^ 

1 . xlO"^ 

Fig. 6.28. Logplot of e'^"" for x G [0,6]. 

LogLogPlot [x-̂  (3/4) , {x, 0, 1}] ; 

1 
0 . 7 

0 . 5 

0 . 3 

0.2 
0 .15 

0 . 1 

0 .02 0 .05 0 . 1 0 .2 0 .5 1 

Fig. 6.29. Loglogplot of x^'"^ for x G [0,1]. 
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BarChart [ l i s t ] , PieChart [ l i s t ] , and Histogram [ l i s t ] plot as their names 
expUcitly suggest, a bar chart, a pie chart, and the histogram of a Hst of data. 

rnd = Table[Random[Integer, {1 , 5 } ] , {20}] 

{2, 4, 4, 4, 1, 4, 3 , 2, 4, 1, 5, 5, 5, 2, 1, 5, 1, 4, 4, 2} 

BarChart[rnd]; 

1 2 3 4 5 6 7 8 9 1011121314151617181920 

Fig. 6.30. Bar chart of a list of 20 random integers between 1 and 5. 

PieChart[rnd] ; 

Fig. 6.31. Pie chart of a list of 20 random integers between 1 and 5. 
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Histogram[rnd]; 

2 3 4 5 6 

Fig. 6.32. Histogram of a list of 20 random integers between 1 and 5. 

6.2.3 A Horizontal Bar Chart with Many Options 

We represent the 2004 Car Sale Statistics in Maryland (data obtained from 
the Maryland Motor Vehicle Administration). We draw a horizontal bar chart 
increasing little by httle the number of options. 

Clear[data] 

data = {{33361, ''January''}, {27780, ''February''}, 

{39340, "March"}, {37478, "April"}, {37819, "May"}, 

{42758, "June"}, {38329, "July"}, {37175, "August"}, 

{38712, "September"}, {34839, "October"}, 

{29859, "November"}, {31058, "December"}}; 

numbers = Map[First, data]; 

months = Map[Last, data]; 

months = Transpose[{Range[Length[months]], months}]; 

barchl = BarChart[numbers, BarOrientation —> Horizontal, 

BarEdges -> False, BarStyle -^ GrayLevel[0.5], 

Ticks -^ {Automatic, months}]; 
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December 
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Fig. 6.33. Simple horizontal bar chart of 2004 Maryland car sale statistics. 

We add vertical white Hnes, 

barch2 = Show[barchl, Epilog -^ {GrayLevel[1], 

AbsoluteThickness[0.25], Table[Line[{{i , 0 . 5 } , { i , 12.5}}], 

{ i , 10000, 50000, 10000}]}]; 

December 
November 
October 

September 
August 

July-
June 
May 

April 
March 

February 
January 

10000 20000 30000 40000 

Fig. 6.34. Horizontal bar chart of 2004 Maryland car sale statistics with vertical 
white lines. 

then add a title and change the default font, 

barchS = Show[barch2, AxesStyle -^ GrayLevel[1], 

PlotLabel -^ FontFormCMaryland 2004 Car Sales S t a t i s t i c s ' \ 

{ ' ' H e l v e t i c a ' \ 16}], DefaultFont -> { ' ' H e l v e t i c a " , 11}]; 
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Maryland 2004 Car Sales Statistics 
December [ 
November | 
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July I 

June i 
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February j 
January i 

10000 20000 30000 40000 

Fig. 6.35. Adding a title to the figure above. 

and finally add a frame slightly thicker than the default thickness. 

Show[Graph ic sAr ray [{ba rch3} , Frame -^ T r u e , 

F rameSty le -> T h i c k n e s s [ 0 . 0 1 ] ] ] ; 

Maryland 2004 Car Sales Statistics 
December [ 
November i 

October { 
September \ 

June I 
May 1 
Apnl i 

March i 
February \ 
January i 

10000 20000 30000 40000 

Fig. 6.36. Horizontal bar chart of 2004 Maryland car sale statistics with vertical 
white lines, a title, and a frame. 

6.2 .4 L a b e l s 

The option P lo tLegend draws a legend beside the plot associating text with 
the plot style. 

« G r a p h i c s ' L e g e n d ' 
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Plot[{Sin[x] 

PlotStyle -> 

RGBColorCl, 

DefaultFont 

PlotLegend -

, Sin [2 x] , Sin [3 x] } , {x, - 2 Pi, 2 Pi}, 

{RGBColorEO, 0, 1], RGBColor[0, 1, 0], 

0, 0]}, FormatType -^ 

-> {"Helvetica" ,14}, 

-̂  {"SinCx]", "Sin[2x] 

Tradit ionalForm, 

', "Sin[3x]"}]; 

Fig. 6.37. Graphs of sm{x), sin(2a:), and sin{3x) with a legend. 

6.3 2D Graphical Primitives 

Mathematica represents all 2D graphics in terms of a collection of graphics 
primitives such as Point, Line, Rectangle, Polygon, Circ le , and so on. The 
general form of the command is Graphics [pr imi t ive , op t ion l , opt ion2, 
. . . ] . These graphics primitives are displayed with the command Show. 

6.3.1 Point 

Point [{x, y}] represents a single point located at {x, y}. 

ShowCGraphics[Table[{PointSize[0.04], RGBColor[0, 0, 1 ] , 

Point[{Cos[2 k P i ] , Sin[2 k P i ] } ] } , {k, 0, 0 .9 , 0 . 1 } ] ] , 

AspectRatio —̂  Automatic]; 
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Fig. 6.38. Ten blue points on a circle. 

6.3.2 Line 

Line[{{xl , y l } , {x2, y2}, . . . , {xn, yn}] represents a line through all 
points {{x l , y l } , {x2, y2}, . . . , {xn, yn}. 

Show[Graphics[{GrayLevel[0.3], Thickness[0.03], 

Line[{{0, 0 } , {0, 1}, {1 , 1} , {1 , 0} , {0, 0 } } ] } ] , 

AspectRatio -^ Automatic]; 

Fig. 6.39. A thick square drawn using the command Line. 

To combine colored lines and points, 
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Show[Graphics 

Hue[k / 10] , 

Point[{Cos[P: 

AspectRatio -

5[Table[{PointSize[0.05 Abs[S: 

Line[{{0,0}, {Cos 

L k / 20] , Sin [Pi 

-̂  Automatic] ; 

j [P i k / 20] 

k / 20]}]} , 

Ln[Pi 

Sin 

{k, 

. k / 1 0 ] ] ] , 

[Pi k / 20]}}] , 

1, 40}] ] , 

Fig. 6.40. Colored lines and points. 

Show[Graphics [Table[{Hue[k / 6 0 ] , 

L i n e [ { { k , O}, {k, S i n [ P i k / 3 0 ] } } ] } , {k, 1, 6 0 } ] ] ] ; 

HIM 

Fig. 6 .41. Colored lines of varying lengths. 
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6.3.3 Rectangle 

Rectangle [{{xl, y l } , {x2, y2}}] represents a filled rectangle where {xl , 
y l} are the coordinates of the bottom left corner, and {x2, y2} the coordi
nates of the top right corner. 

Show[Graphics[{Rectangle[{0, 

Rectangle[{2 

AspectRatio -

0}. 
5, 0}, {4.5, 1}]}], 

-̂  Automatic] ; 

{2, 1}]. 

Fig. 6.42. Two filled rectangles. 

6.3.4 Polygon 

Polygon [ { x l , y l } , {x2, y2}, . . . , {xn, yn}] represents a filled n-gon whose 
corners are the n points {xi , y i} . 

Below we define a polygon by the position (x, y) of its center and the number 
n of equal sides. 

centeredPoly[{x_, y_}, n_] : = 

Polygon [Table [{Sin [2 k Pi / n] + x, Cos[2 k Pi / n] + y} , 

{k, 0, n}]] 

Show[Graphics[{{Hue[0. 6], centeredPoly[{0.5, 

{Hue[0.7], centeredPoly[{2.5, 

{Hue[0.8], centeredPoly[{4.5, 

{Hue[0.3], centeredPoly[{0.5, 

{Hue[0.4], centeredPoly[{2.5, 

{Hue[0.5], centeredPoly[{4.5, 

AspectRatio —> Automatic]; 

0.5}, 7]}, 

0.5}, 8]}, 

3}, 3]}, 

3}, 4]}, 

3}, 5]}}], 

0.5}, 6]}, 
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Fig. 6.43. Six regular polygons whose positions are defined by their centers. 

6.3.5 Circle 

Circle [{x, y} , r] represents a circle of radius r centered at {x, y}. 

Show[Graphics[{ 

{GrayLevel[0.6], Thickness 

{Hue[0.5], centeredPoly[{0 

AspectRatio -^ Automatic]; 

[0.01] 

0} . 

, Circle 

5 ] } } ] , 

[{0. 0 } . 1 ] } . 

Fig. 6.44. Circle with an inscribed pentagon. 
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6.3.6 Text 

Text [expression, {x, y}] is a graphics primitive that prints expression 
centered at the point {x, y}. We can use this command to label points as 
shown below. 

p t s = Table [{Random [] , Random[]}, {12}]; 

Show[Graphics[{{PointSize[0.07] , CMYKColor[0, 0, 1, 0 ] , 

Map[Point, p t s ] } . Table[Text [ i , P a r t [ p t s , i ] ] , 

{ i , 1, Length[p ts ]}]}] , PlotRange -^ A l l ] ; 

3 7 10 

2 6 

8 

4 

11 

Fig. 6.45. Labeled points. 

6,3.7 Golden Ratio 

The shape of a picture is determined by the AspectRatio option. The default 
option is the golden ratio, that is, a ratio r = a/b such that 

a b 1 
or r b a + b iH-r 

The numerical value of r is the positive root of 

Solve [r == 1 / (1+r) , r ] 

{{r ^ - ( - 1 - S q r t [ 5 ] ) } , {r -^ - ( - 1 + Sqr t [5] )}} 

that is, 

r= ^ ( - 1 + ^ ^ ) = 0.618034. 



200 6 Graphics 

Starting from an initial golden rectangle, when we remove the largest square, 
the remaining rectangle is also a golden rectangle. The figure below represents 
a few iterations of this process. 

r = 

11 

12 

13 

14 

15 

16 

t l 

t 2 

t 3 

t 4 

t 5 

t 6 

t 7 

r 4 

0.618034; 

= Line[{{0, 0} , {1 + 

= Line[{{l , 0} , { l , J 

= Line[{{l , r } , {l + 

= Line[{{l + r'^2, r} 

= Line[{{l + r'^2, 3 ] 

= Line[{{l + r'^2 + r 

= T e x t [ ' ' l " , { 0 . 5 , -

= T e x t [ ' ' l ' ' , { - 0.05 

= T e x t [ ' ' r ' ' , {1 + r 

= T e x t [ ' ' r ' \ {1 + r 

= T e x t [ ' ' \ ! \ ( r \ ^ 2 \ ) ' 

= T e x t [ ' ' \ ! \ ( r \ ^ 3 \ ) ' 

= T e x t [ ' ' \ ! \ ( r \ ^ 4 \ ) ' 

r'^3 - 0 .05}]; 

Show[Graphics[{11, 12, 

t l , t 2 , t 3 , t 4 , t 5 , t 6 . 

r , 0} , 

L}}]; 
r , r}}] 

, {1 + I 

r - 1}J 
^4, r + 

0.05}] 

, 0.5}] 

/ 2, -

+ 0.04 

'> {1 ^ 

' . {1 ^ 

'> {1 ^ 

13, 14, 

t 7 } ] , 

DefaultFont -^ { ' ' H e l v e t i c a " , 
Automatic]; 

{1 + r , 1}, 

t 

"2, 1}}]; 

1 + r , 3 r 

r - 3 } , {1 + 

0 .05}] ; 

, r / 2}] ; 

r~2 /2 , r -

r + 0 .05, r 

r*2 + r "4 /2 

15, 16, 

{0, 1}, {0 

- 1}}]; 
r"2 + r~4, 

0 .05}] ; 

+ r - 3 / 2 } ] ; 

+ 0 . 0 1 , 

14}, AspectRatio —> 

0}}]; 

1}}]; 

^ 

^ 

1 r 

Fig. 6.46. Sequence of golden rectangles. 
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In the input above we used the form \ ! \ ( r \ "2 \ ) to display r"̂  as shown below. 
We could have obtained a similar result using Tradi t ionalForm [Superscript-
[ r , n ] ] (see Figure 6.20) except that in this case the symbol would have been 
displayed using a different font. 

\ ! \ ( r \ - 2 \ 

j-n 

Taking into account that r = 1/(1 + r) , that is, r + r^ = 1, we can verify that 

n=0 n=0 

The golden ratio is closely related to Fibonacci numbers. 

Table[Together[Nest[Function[x, 1 + 1 / x ] , a, k ] ] , 

{k, 1, 5}] 

1 + a 1 + 2 a 2 + 3 a 3 + 5 a 5 + 8 a^ 

I a 1 + a 1 + 2 a 2 + 3 a 3 + 5 a > 

The sequence of fractions above is also given by 

Table[(Fibonacci[k] + a Fibonacci[k+1]) / 

(Fibonacci[k - 1] + a F ibonacc i [k] ) , {k, 1, 5}] 

r l + a 1 + 2 a 2 + 3 a 3 + 5 a 5 + 8 a^ 

I a ' 1 + a ' 1 + 2 a ' 2 + 3 a ' 3 + 5 aJ 

We also have 

NestLis t [Funct ion[x, Together[ l / (1+x)] ] , a, 5] 

^ 1 + a 
1 + a 2 + a 3 + 2 a 5 + 3 a^ 

+ a 2 + a 3 + 2 a 5 + 3 a 8 + 5 a> 

which can be written 
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Table[(Fibonacci[k] + a Fibonacci[k - 1]) / 

(Fibonacci[k + 1] + a F ibonacc i [k] ) , {k, 0, 5}] 

I 1 + 
1 + a 2 + a 3-H2 a 5 + 3 a^ 

+ a 2 + a 3 + 2 a 5 + 3 a 8 + 5 a> 

6.4 Animation 

6.4.1 Rolling Circle 

The cycloid is the locus of a point of the circumference of a circle that rolls 
along a straight line. We first define a function that draws a dotted circle, and 
then animate the rolling motion of this circle along a straight line. 

dottedCircle[{x_, y_}, angle . , rad_] := {Circle [{x, y} , r a d ] , 

Line[{{x, y} , rad {Sin[angle] , Cos[angle]} + {x, y}}] , 

Po in tS ize [0 .03] , RGBColor[1,0,0], 

Poin t [ rad {Sin[angle] , Cos[angle]} + {x, y}]} 

Show[Graphics[dottedCircle[{0, 0} , Pi / 2, 1 ] ] , 

AspectRatio —̂  Automatic]; 

Fig. 6.47. Dotted circle. 

To drawing the dotted circle and the straight line, 
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Show[Graphics[{dottedCircle[{0, 1}, Pi , 1 ] , 

Line[{{0, 0} , {4 Pi , 0 } } ] } ] , 

AspectRatio -^ Automatic]; 

i 
Fig. 6.48. Dotted circle rolling on a straight line. 

To animate the rolling motion we generate the following sequence of images 
and then select an output cell and in the Cell menu go to Animate Selected 
Graphics. 

Table[Show[Graphics[{dottedCircle[{t, l } . Pi + t , 1 ] , 

Line[{{0, 0 } , {4 Pi , 0 } } ] } ] , AspectRatio -^ Automatic], 

{ t , 0, 4 Pi , Pi / 10}]; 

In the next figure the dotted circle has reached the position corresponding to 
t = b. 

Fig. 6.49. Position of the rolling dotted circle for t = 5. 

We can find the locus of the red point using Cases. 

pt = Cases [dottedCircle[{t , 1} , Pi + t , 1 ] , Point [ J ] 

{Point [{t - S i n [ t ] , 1 - Cos[t]}]} 

and represent the locus by a sequence of points. 

ptList = Table[{PointSize[0.02], RGBColor[l, 0, 0 ] , p t } , { t , 
0, 4 Pi , Pi / 10}]; 

Show[Graphics[ptList], AspectRatio -^ Automatic]; 
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V # V % 

Fig. 6.50. Locus of the red dot. 

More details can be found on rolling circles in [64]. 

Another interesting application of Animate Selected Graphics is to visualize 
how a graph is traced. Consider again the polar coordinate representation 
r = sin 4^ (Figure 6.4), and use the command 

Do[ParametricPlot[{S 

{ t , 0, 2 k 1 

AspectRatio 

^i / 20}, 

in [4 t ] Cos [ t ] 

PlotRange -^ 

-^ Automatic], {k, 1, 

, S in[4t] S 

{{- 1, 1}, 
20}]; 

i n [ t ] } , 

{- 1,1}}, 

Fig. 6.51. One image of the sequence generating the animated drawing of the rose 
r = 4e. 

6.5 2D Vector Fields 

The package Graphics 'P lo tF ie ld ' is used to plot two-dimensional vector 
fields. 
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«Graphics' PlotField' 

PlotVectorField[{f [x, y] , g [ x , y ] } , {x, x l , x2}, {y, y l , y2}] plots 
the vector field defined by the two-dimensional vector function (/(x, y),g{x^ y)) 
in the domain [xi,X2] x [2/1,2/2]-

PlotVectorField[{Cos[2x] , S in[y]} , 

{x, - Pi , P i } , {y , - Pi , P i } ] ; 

r / k y V k / • / k V V k / y 

y / k V V k / < / k V V k / y 

< y k > V i / • / k V > ^ / r 

\ r X A r \ ^ \ r A A r \ x 

\ r A' y r \ \ \ T A A r \ \ 

\ f y A f \ \ \ f A A r \ \ 

\ i / y r \ 'X X r y A r \ ' x 
X ^ >- >̂ ' f V ». X ^ ^ >• f X *. 

Fig. 6.52. Vector field (cos(2x),sin(2/)) m /̂le domain [—7r,7r] x [—7r,7r] 

There exist many options. We can, for example, add colors and a frame. The 
color function (RGBColor [#, 1 - #, 0] &) makes long arrows red and short 
arrows green. 

PlotVectorField[{Cos[2x], S in[y]} , 

{x, - Pi , P i } , { y , - Pi , P i } , 

ColorFunction -> (RGBColor[#, 1 - #, 0] &) , Frame -^ True]; 
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Fig. 6.53. Vector field (cos(2a:),sin(t/)) in the domain [—7r,7r] x [—7r,7r] adding 
colors and a frame. 

Plo tGrad ien tF ie ld [V[x , y ] , { x , x l , x 2 } , {y , y l , y2}] plots the gra
dient field of the potential function V{x,y) in the domain [a:i,X2] x [2/1,2/2]-

PlotGradientField[x'^3 + y'^S, {x , - 3 , 3 } , {y , - 3 , 3 } , 

ColorFunction -^ (RGBColor[#,1 - # , 0] &), Frame ^ True] ; 

^ 4 4 4 i l i k i i i d 4 4 4 

^ • 4 4 4 i k k i k k i 4 4 - 4 4 

* ' ' ^ ' ^ 4 4 i k k k i 4 4 r * ' i ^ 

^ f^ ^ w ^ ^ ^ i i ^ * ' '^ " "" •" 

• - » - . - i , - ! ^ ^ ^ j V » ' " " •" •• •- •• 

• » » - » ^ » - ^ ^ ^ i y » - »- •- *- "- •-

Fig. 6.54. Gradient field of x^ -\-y^ in the domain [-3,3] x [—3,3]. 
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6.6 3D Plots 

6.6.1 Plot3D 

To plot the tridimensional surface represented by z = f{x^y) in the do
main [xi, X2] X [2/1, ̂ 2] 5 we enter the command PlotSD [f [x, y] , {x, x l , x2}, 
{y i , y2}]. 

Plot3D[x'^2 + y^2, {x, - 3 , 3 } , {y, - 3 , 3} , 

AspectRatio —> 1] 

Fig. 6.55. Surface x^ -\-y^ in the domain [—3,3] x [—3,3]. 

There exist many options. A few are used in the following plot. The option 
PlotPoints specifies how many sample points to use, and FaceGrids specifies 
grid lines to draw on the faces of the bounding box. Mesh specifies whether 
an exphcit {x, y) mesh should be drawn. ViewPoint gives the point in space 
from which the plotted objects are to be viewed. 

Plot3D[x^2 + y^2, {x,- 3, 3}, {y, - 3, 3}, 

PlotPoints -^ 60, Mesh -^ False, FaceGrids -

AxesLabel -^ {"Length", "Width", "Height"}, 

AspectRatio -^ 1, ViewPoint -^ {1, 1, 0.3}]; 

^ All, 
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Height 

Fig. 6.56. Surface x^-\-y^ in the domain [—3,3] x [—3,3] from a different viewpoint. 

6.6.2 ListPlot3D 

ListPlotSD [array] generates a tridimensional plot of a surface represented 
by an array of heights Zij = f{xi, yj). 

data = Table[x'^2 + y^2, {y, - 1, 1, O. l} , {x, - 1, 1, 0 . 1 } ] ; 

ListPlotSD[data]; 

Fig. 6.57. Tridimensional list plot of nested lists. 

Here is another example. 
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ListPlotSD[Table[Sin[x + y] , 

{x, 0, 3 P i / 2 , P i / 1 0 } , {y, 0, 3 P i / 2 , P i / 1 0 } ] ] ; 

Fig. 6.58. Tridimensional list plot. 

The same result could be obtained using the command Show [Surf aceGraphics-
[array]]. 

Show[SurfaceGraphics[Table[Sin[x+ y ] , 

{x, 0, 3 P i / 2 , P i / 1 0 } , {y, 0, 3 P i / 2, P i , / 10} ] ] ] ; 

Fig. 6.59. Same as above using Surf aceGraphics. 

Whereas ListPlot [points] takes a list of 2D points and plots them in a 
plane, ScatterPlotSD [points] takes a list of 3D points and plots them in a 
3D space. First we have to load the package Graphics'Graphics3D'. As for 
ListPlot [points] we can use the option Plot Joined -^ True. 

«Graphics' Graphics3D' 
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ScatterPlot3D[Table[{Sin[2 t ] , Cos [2 t ] , t } , 

{ t , 0, 4 P i , Pi / 50}], Axes -^ F a l s e ] ; 

Fig. 6.60. ScatterPlotSD: the 3D analogue of ListPlot. 

ScatterPlot3D[Table[{Sin[2 t ] , Cos [2 t ] , t } , 

{ t , 0, 4Pi , Pi / 50}], PlotJoined -^ True, Axes -^ F a l s e ] ; 

Fig. 6.61. Same as above with the option Plot Joined —^ True. 

ListContourPlot3D[array] generates a tridimensional contour plot from a 
tridimensional array f{xi,yi,Zi). 

We need first to load the package «Graphics 'ContourPlot3D' . 
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«Graphics' ContourPlotSD' 

data 

{y, -

= Table[x~2 + y"2 - z 

1. 1, 0 . 1 } , {x, - 1, 
, {z . 
1, 0. 

ListContoiirPlotSD [data. Lighting 

Axes —> True, ContourStyle - {H 

- 1, 1, 0. 

1 } ] ; 
—̂  False, 

ue[0.15]}] 

1} , 

i 

Fig. 6.62. Tridimensional contour plot of nested lists. 

6.6.3 Different Coordinate Systems 

We first have to load the package Graphics' to be able to use different systems 
of coordinates. 

«Graphics' 

CylindricalPlot3D[r'^2 Cos[2 p h i ] , {r, 0, 1} , {phi, 0, 2 P i } ] ; 
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Fig. 6.63. Cylindrical coordinates: surface r^ cos(2(^) in the domain (r, (f) = [0,1] x 
[0,27r]. 

SphericalPlot3D[Cos[theta] Cos [2 theta], 

{theta, 0, Pi / 4}, {phi, 0, 2 Pi}]; 

Fig. 6.64. Spherical coordinates: surface cos{6) cos(2^) in the domain {6, (p) 
[0,7r/4]x[0,27r]. 

6.6.4 ContourPlot 

We can also generate a contour plot of the same surface, and eliminate either 
the contour shading or the contour lines. 
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ContourPlot[x'^2 + y^2 , { x , - 3 , 3 } , { y , - 3 , 3 } , 

AspectRatio —̂  1 ] ; 

Fig. 6.65. Contour plot of x^ -\-y^ in the domain [—3,3] x [—3,3] 

The option Contour Shading specifies whether the regions between contour 
fines should be shaded. 

ContourPlot[x'^2 + y'^2 , {x, - 3 , 3 } , {y, - 3 , 3 } , 

AspectRatio —> 1, ContourShading —> F a l s e ] ; 

Fig. 6.66. Contour plot of x^ + y^ in the domain [—3,3] x [—3,3] with 
ContourShading -^ False. 
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ContourPlot[x'^2 + y'̂ 2 , {x, - 3, 3}, {y, - 3, 3}, 

AspectRatio -̂  1, ContourLines -^ False]; 

Fig. 6.67. Contour plot ofx-\-y in the domain [—3,3] x [—3,3] with ContourLines 
-> False. 

6.6.5 DensityPlot 

A density plot is a rectangular plot that consists of smaller rectangle each 
colored according to the value of a function. 

DensityPlot[Sin[x] Cos[y], 

{x, - Pi , P i } , {y, ~ Pi / 2, 3 Pi / 2} , PlotPoints -^ 100]; 
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Fig. 6.68. Density plot of sin{x) cos{y) in the domain [—7r,7r] x [—7r/2,37r/2]. 

We can improve the plot using options. Above we have already used above 
PlotPoints and Mesh. The option ColorFunction specifies a function to ap
ply to z values to determine the color to use for a particular {x, y) region. 

DensityPlot[Sin[x] Cos [ y ] , 

{ x , - Pi , P i } , { y , - Pi / 2, 3 Pi / 2} , PlotPoints -^ 100, 

Mesh —> False, ColorFunction -^ Hue]; 

- 3 - 2 - 1 0 1 2 3 

Fig. 6.69. Same as above with different options. 

A density plot may be compared to a shaded contour plot. For rapidly chang
ing functions, DensityPlot works slightly better than ContourPlot. For 
slowly changing functions, it is the opposite. Here is an example of a rapidly 
changing function: 
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DensityPlot[Sin[10 x] Cos[10 y ] , {x , - P i , P i } , 

{y , - Pi / 2, 3 Pi / 2} ,PlotPoints -^ 100, 

Mesh —> False , ColorFunction -^ Hue]; 

Fig. 6.70. DensityPlot o/sin(10a:)cos(102/) in the domain [—7r,7r] x [—7r/2,37r/2]. 

6.6.6 Pa rame t r i cP lo t3D 

ParametricPlotSD generates tridimensional curves and surfaces. They are 
defined by three functions of, respectively, one or two parameters. 

ParametricPlotSD[Sin[3 omega], Cos[S omega], omega, 

{omega, 0, 2 P i } , Ticks —> None]; 

See output in Figure 6.71. 

ParametricPlotSD [{Cos [x] Cos[y], Cos[x] Sin[y] , S in [x ]} , 

{x, - Pi / 2, Pi / 2} , {y, 0, 2 P i } , Axes -^ Fa l se , Boxed 
F a l s e ] ; 

See output in Figure 6.72. 
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Fig. 6.71. Tridimensional parametric plot of (sin(3ct;),cos(3a;),a;) in the domain 
[0,27r]. 

Fig. 6.72. Parametric plot of {cos{x) cos{y), cos{x) sm{y), sm{x)) in the domain 
[-7r/2,7r/2]x[0,27r]. 

6.7 3D Graphical Primitives 

As for 2D graphics, there exists a collection of 3D graphics primitives such 
as Point, Line, Polygon, and so on. The general form of the command is 
Graphics [primitive, optionl , option2, . . . ] . These graphics primitives 
are displayed with the command Show. 

Here is an example of a pyramid having an octagonal base and eight triangular 
faces. 

Show[Graphics3D[Tabl€ 

{Sin[n 

{n. Pi 

+ P i / 4 ] , 

/ 4, 2 Pi 

Cos[ 

, Pi 

s[Polygon[{{Sin 

n + P i / 4 ] , 0 } , 

/ 4 } ] ] ] ; 

[n] . 

{0, 

Cos [n] , 

0. 1}}] 

0 } . 

> 
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Fig. 6.73. Using 3D graphics primitives to draw a pyramid with an octagonal base. 

We can modify ViewPoint . 

Show[Graphics3D[Table[Polygon[{{Sin 

{Sin[n + P i / 4 ] , 

{n. P i / 4 , 2 Pi , 

Cos[n + Pi / 4 ] , 0 } , 

Pi / 4 } ] ] , Viewpoint 

[n] . 

{0. 

^ 

Cos [n] , 

0, 1}}] 

{0 .5 , -

0 } . 

* 

1, 0 . 5 } ] ; 

Fig. 6.74. Same as above with a modified viewpoint. 
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7.1 Random Numbers 

Random [] gives a pseudorandom number lying in the interval [0,1] 

Table[Random[], {10}] 

{0.97168, 0.767369, 0.159879, 0.839617, 0.527752, 

0.833297, 0.471409, 0.793496, 0.714053, 0.379495} 

Random [type, range] gives a pseudorandom number of the specified type 
lying in the specified range. Possible types are: Integer, Real, and Complex. 

Random[Real, {O, 1}, 50] 

0.25001677073690337847614440066746917236028215705360 

Table[Random[Real, {5.4, 7 .3} ] , {10}] 

{5.99996, 7.15631, 7.02153, 6.61911, 5.92165, 

6.66404, 6.21742, 6.71256, 6.16074, 5.52855} 

Table[Random[Integer], {10}] 

{0, 0, 1, 1, 0, 1, 0, 0, 1, 0} 
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Table[Random[Integer, {6, 21}] , {10}] 

{20, 7, 15, 19, 6, 16, 16, 13, 19, 8} 

Table[Random[Complex], {10}] 

{0.944269 + 0.71944 I , 0.916369 + 0.196858 I , 

0.736182 + 0.67909 I , 0.376178 + 0.100881 I , 

0.295465 -f 0.798618 I , 0.675603 + 0.532656 I , 

0.688044 + 0.389555 I , 0.768525 + 0.678484 I , 

0.460119 + 0.337657 I , 0.177217 + 0.748684 1} 

Table[Random[Complex, { 2 + 3 1, 4 + 5 1 } ] , {10}] 

{2.41617 + 3.0807 I , 3.08038 + 3.19195 I 

2.88143 -f 4.76094 I , 3.40115 + 4.13645 I , 

3.21484 -f 3.81813 I , 3.81416 + 4.70834 I , 

2.45585 + 3.1038 I , 3.18262 + 4.8596 I , 

2.74898 + 3.82052 I , 2.6335 + 3.52903 1} 

SeedRandom [n] resets the pseudorandom number generator, using the integer 
n as a seed. It allows us to get the same sequence of pseudorandom numbers 
on different occasions. 

SeedRandom[123] 

Table[Random[Integer, {1 , 5} ] , {10}] 

{3, 3 , 3 , 2, 5, 2, 2, 1, 2, 5} 

SeedRandom[123] 

Table[Random[Integer, {1, 5} ] , {10}] 

{3, 3 , 3 , 2, 5, 2, 2, 1, 2, 5} 
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7.2 Evaluating n 

Consider Figure 7.1 representing a unit square with inside a quarter of a disk 
of radius 1. 

Show[Graphics[{ 

{RGBColorEO, 

Line[{{0, 0}, 

AspectRatio -

0, 1 ] , Disk[{0, 

{1, 0} , {1, 1}, 

-> Automatic] ; 

0 } . 

{0. 

1, {0, P 

1}. {0, 

i / 2}]} , 

0}}]}] . 

Fig. 7.1. Quarter of a disk of radius 1 inside a unit square. 

To evaluate TT, we select a sequence of random points distributed uniformly 
inside the unit square. The probability for a random point to lie inside the disk 
is proportional to its area, that is, equal to 7r/4. The function that generates 
a random point inside the unit square is 

randomPoint := {Random[], Random[]} 

randomPoint 

{0.192417, 0.371977} 

The function that tests if a point is inside the unit disk is 

insideDiskCptJ := Total [pt'^2] < 1 
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{insideDisk[{0.9, 0 . 7 } ] , insideDisk[{0.4, 0 .6}]} 

{False, True} 

To evaluate TT we, therefore, generate a sequence of random points inside the 
unit square and determine the fraction of these points lying inside the unit 
disk quarter. The approximate value of TT is obtained multiplying this fraction 
by 4. 

data = Table[randomPoint, {lOOOOOO}]; / / Timing 

approximatePi = N[4* Count[data, _?insideDisk] / 

Length[data]] 

{4.54608 Second, Null} 

3.13943 

To obtain a better approximate value, we increase the number of random 
points from 10^ to 10^. 

data = Table[randomPoint, {10000000}]; / / Timing 

approximatePi = N[4* Count[data, _?insideDisk] / 

Length[data]] 

{47.1171 Second, Null} 

3.14204 

As shown below, this approximate value is quite good; it differs from the exact 
value by less than 0.015%. 

Abs[N[Pi]-3.14204] / N[Pi] 

0.000142395 

7.3 Probability Distributions 

We present just a few of them. We access the most common discrete or continu
ous statistical distributions loading either the package S t a t i s t i c s 'Discrete-
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D i s t r i b u t i o n s ' or the package S t a t i s t i c s ' C o n t i n u o u s D i s t r i b u t i o n s ' . 
As illustrated below, we can find the properties of a given distribution using 
difTerent functions that take as argument a symbolic representation of the 
distribution. 

«Statistics'DiscreteDistributions' 

We can get the list of these discrete probability distributions entering the 
command: 

?Statistics'DiscreteDistributions'* 

7.3.1 Binomial Dis t r ibut ion 

In the command BinomialDistr ibut ion[n, p ] , n is the number of indepen
dent trials and p the probability of a success in a trial. 

bDist = BinomialDistr ibut ion[n, p] 

BinomialDistributionEn, p] 

We can ask Mathematica to give us the expression of the probability density 
function, 

PDF [bDist, x] 

(1 - p ) ^ ~ ^ p^ Binomial[n, x] 

the characteristic function, which is the Fourier transform of the probability 
density function [5], 

Character iSt icFunct ion[bDis t , t ] 

(1 - p + E^ ^ p )^ 

the average value, the variance, and the standard deviation. 

Mean[bDist] 

n p 
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Variance[bDist] 

n (1 - p) p 

StandardDeviation[bDist] 

Sqrt[n (1 - p) p] 

A discrete random variable distributed according to the binomial distribution 
is defined in a domain given by 

Domain[bDist] 

Range[0, n] 

We can generate random numbers distributed according to the binomial dis
tribution 

Table[Random[BinomialDistribution[10, 0. 4 ] ] , {10}] 

{6, 5, 3 , 5, 5, 6, 3 , 3 , 4, 5} 

and we can evaluate expected values. 

ExpectedValue[x"4, BinomialDistr ibut ion[10, 0. 4 ] , x] 

510.304 

7.3.2 Poisson Distribution 

The command PoissonDistr ibution[A] generates the Poisson distribution 
where A represents the mean of the distribution. 

pDist = PoissonDistr ibution[A] 

PoissonDistr ibut ion[A] 
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As in the previous section, we can ask Mathematica to give us all the essential 
characteristics of this probability distribution. 

PDFEpDist, x] 

E-̂  x! 

CharacteristicFunctionCpDist, t] 

E(-I + E^ t) ̂  

MeanCpDist] 

Variance[pDist] 

StandardDeviation[pDist] 

Sqrt[A] 

Domain[pDist] 

Range[0, Inf inity] 

Table[Random[PoissonDistribution[3]], {lO}] 

{4, 4, 4, 0, 4, 2, 4, 4, 1, 1} 

ExpectedValue[x''4, PoissonDistribution[3] , x] 

309 

«Statistics'ContinuousDistributions' 
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7.3.3 Normal Distribution 

In the command NonnalDistr ibution[/ i , cr], /i is the mean and o is the 
standard deviation. 

nDist = NormalDistributionC/i, cr] 

NormalDistribution[/i , a] 

PDF[nDist, x] 

E (x - / i )2 / (2 G^) sq^^f2 Pi] G 

Charac ter i s t icFunct ion[nDis t , t ] 

E I t /i - ( t2a2) /2 

Mean [nDist] 

M 

G 

Variance[nDist] 

2 
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StandardDeviation[nDist] 

Domain[nDist] 

Interval[{- Infinity, Infinity}] 

Plot[PDF [ NormalDistributionCO, 1], x], {x, -3, 3}]; 

-3 -2 - 1 

Fig. 7.2. Probability density function of the normal distribution for /x = 0 and 
a = 1 in the interval [—3,3]. 

Table[Random[NormalDistributionCO, 1 ] ] , {10}] 

{-0.407312, -0 .178324, -0 .863422, 0.0359524, -0 .24181 , 

-1 .15673 , 0.488383, 0.342282, 0.259808, -1 .67701} 

ExpectedValue[x'^4, NormalDistribution[0, 1 ] , x] 

7.3.4 Cauchy Distribution 

In the command CauchyDistribution[a,b], a is the location parameter and 
b the scale parameter. 
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cDist = CauchyDistributionCa, b] 

CauchyDistribution[a, b] 

PDFCcDist, x] 

(-a + x)^. 

CharacteristicFunction[cDist, t ] 

gl a t - b t Sign[t] 

Mean[cDist] 

Indeterminate 

Domain[cDist] 

Interval [{—Infinity, Inf ini ty}] 

Plot[PDF[CauchyDistribution[0, 1 ] , x ] , {x, - 3 , 3 } ] ; 

-3 -2 

^A 
0/25 

/ 0 . 2 

/ 0.15 

0 . 1 

0.05 

- 1 1 2 3 

Fig. 7.3. Probability density function of the Cauchy distribution for a = 0 and 
b — 1 in the interval [—3,3]. 
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Table[Random[CauchyDistribution[0,1]], {10}] 

{-5.29566, -2 .68135, 2.9326, -0.0757705, -1 .10613, 

0.996368, 0.345278, -1 .30723 , 0.142766, -1 .00022} 

7.4 Descriptive Statistics 

We first have to load the packages: 

«Statistics'DescriptiveStatistics' 

«Statistics'DataManipulation' 

«Graphics' Graphics' 

The functions of these packages compute the descriptive statistics of hsts of 
data of the most common probabihty distributions. 

7.4.1 Poisson Distribution 

poissonData = 

Table[Random[PoissonDistribution [ 2 . 5 ] ] , {5000}]; 

N[Mean[poissonData] ] 

2.5234 

N[Variance[poissonData]] 

2.52316 

Frequencies [ l i s t ] gives the distinct elements in a list paired with their 
frequencies. 

poissonDataFrequencies = Frequencies[poissonData] 

{{431, 0} , {1032, 1}, {1315, 2} , {1029, 3 } , {659, 4 } , 

{335, 5} , {139, 6} , {43, 7} , {14, 8} , {2, 9 } , {1 , 10}} 
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BarChart[poissonDataFrequencies] ; 

1200 

1000 

800 

600 

400 

200 

0 1 2 3 4 5 6 7 8 9 10 

Fig. 7.4. Bar chart of 5000 Poisson distributed random numbers. 

7.4.2 Normal Distribution 

gaussData = Table[Random[NormalDistribution[2, 3 ] ] , {lOOOO}]; 

N[Mean[gaussData]] 

1.98548 

N[Variance[gaussData] ] 

8.78256 

gaussDataHistogram = Histogram[gaussData, 

HistogramCategories -^ Table[- 10 + k, {k, 0, 24} ] , 

HistogramScale -^ 1] ; 

gaussPDF = Plot[PDF[NormalDistribution[2, 3 ] , x ] , 

{x, - 10, 12}, PlotStyle -^ {RGBColor[0, 0, 1 ] , 

AbsoluteThickness[2]}] ; 

We can compare the histogram of Figure 7.5 with the exact probabihty density 
function 
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0.12 

0 . 1 

0 . 0 8 

0 .06 

0 . 0 4 

0 .02 

Fig. 7.5. Histogram of 10,000 normally distributed random numbers. 

Fig. 7.6. Probability density function of the normal distribution for fi = 2 and 
(7 = 3. 

Show[{gaussDataHis tograin , gaussPDF}] ; 

0.12 

0 . 1 

0 .08 

0 .06 

0 . 0 4 

0 .02 

5 0 5 10 

Fig. 7.7. Comparing the histogram above with the exact probability density function. 



232 7 Statistics 

7.4.3 Cosine Distribution 

cosData = N[Table[Cos[Pi Random[]], {10000}]]; 

Histogram[cosData, 

HistogramCategories -^ Table[- 1+ k / 10, {k, 0, 20} ] , 

HistogramScale —> 1] ; 

Fig. 7.8. Histogram of 10,000 random numbers distributed according to the cosine 
distribution. 

{Mean[cosData], Variance[cosData]} 

{-0.000358633, 0.50641} 

Integrate[(Cos[x])^2 / P i , {x, 0, Pi}] 

7.4.4 Uniform Distribution 

uniformData = Table[Random[], 

Histogram [iiniformDat a. 

HistogramCategories —> 

HistogramScale —> 1] ; 

Table [C 

{10000}]; 

+ k / 20, {k, 0, 20}], 
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0.2 0 .4 0 .6 OA 

Fig. 7.9. Histogram of 10,000 uniformly distributed random numbers in the interval 
[0,1]. 

{Mean[uniformData], Variance[uniformData]} 

{0.49736, 0.082058} 

The exact value of the variance is 

Integrate[(x - 0.5)'^2, {x, 0, 1}] 

0.0833333 
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Basic Programming 

8.1 The Mathematica Language 

Everything you type in Mathematica is an expression. An expression is of the 
form f [arguments] where f is the Head of the expression which identifies its 
type. Expressions look hke functions (or functions are expressions). 

{Head[3], Head[3 / 4 ] , Head[5.2] , Head ["Hello"]} 

{Integer , Rat iona l , Real, S t r ing} 

{Head[Subtract] , Head[Times], Head[a + b ] , Head[a b]} 

{Symbol, Symbol, Plus,Times} 

Expressions are represented in a uniform way that can be accessed using 
FullForm. Some built-in functions are actually redundant and are translated 
into basic forms such as Plus, Times, and Power. 

{FullForm[Divide[a, b ] ] , Ful lForm[Sqr t [a] ] , FullForm[a - b ] , 

FullForm [a'^b]} 

{Times[a, Power[b, - 1 ] ] , Power[a, R a t i o n a l [ 1 , 2 ] ] , 

P lus [a . T imes [ -1 , b ] ] . Power[a, b]} 
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{FullFormCa + b I] , FullForm[(a + b ) ^ 2 ] , FullForm[{a, b}] , 

FullForm[{a, b} c]} 

{Plus[a, Times[Complex[0, 1 ] , b ] ] , 

Power[Plus[a, b] , 2 ] , L i s t [ a , b] , L is t [Times[a, c] , Times[b,c]]} 

{FullFormCa -> b] , FullForm[a == b] , FullFormCa < b] , 

FullFormCx-Integer]} 

{RuleCa, b] , EqualCa, b] , LessEqualCa, b] , 

PatternCx, BlankCinteger] ] } 

Consider the expression: 

expr = 7 + (a - x)' '2 

7 + (a - x)2 

Its different parts are 

expr C CO]] 

Plus 

exprCCl]] 

expr C C2]] 

(a - x)-

exprCC2, 1]] 
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a — X 

expr[[2,2]] 

2 

e x p r [ [ 2 , l , l ] ] 

a 

expr[[2, 1, 2]] 

8.2 Functional Programming 

Mathematica is essentially a functional programming language that empha
sizes rules and pattern matching. 

8.2.1 Applying Functions to Values 

Clear[f] 

f [x_] := x-̂ S 

{ f [ 2 ] , f 0 2, 2 / / f } 

{8, 8, 8} 

f 0 X is the prefix form for f [x] and x / / f is its postfix form. 

Clear[f] 

f [ { a , b, c}] 

f [x + y + z] 
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f [ { a , b, c}] 

f [x + y + z] 

Map [f, expression] applies f to each element on the first level in expression. 

Map[f, {a, b, c}] 

MapEf, x + y + z] 

{ f [ a ] , f [ b ] , f [ c ] } 

f [x] + f [y] + f [z] 

MapThreadCf, { {a l , a2, . . . } , {bl , b2, . . . }} ] gives 
f [ a l , b l ] , f [ a 2 , b 2 ] , . . . . 

Clear[f] 

MapThreadCf, {{: 

MapThreadCRule, 

MapThreadCPlus, 

<•' y . 

{{x. 

{{x. 

z} 
y. 
y. 

{a 

z}. 
z}. 

, b. 

{a. 
{a. 

c}}3 

b, c}}] 

b, c}}] 

{ f [ x , a ] , f [ y , b ] , f [ z , c ] } 

{x -^ a, y ^ b,z -^ c} 

{a + X, b + y, c + z} 

Apply [f, expression] replaces the head of expression by f. 

Apply[Plus, {a, b, c}] 

Apply[Times, {a, b, c}] 

a + b -h c 

a b c 

Clear[f] 

Apply[f, {{c 

Apply[Plus, 

I. b} 

{{a. 

. {c 

b}. 

. d}}. 2] 

{c, d}}] 
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{f [a , b ] , f [ c , d]} 

{a + c, b + d} 

8.2.2 Defining Functions 

cubel[x_] := x^3 (* named function *) 

cube2 = Function[{x}, x'̂ S] ; (* pure function: long form *) 

cubeS = #'̂ 3 &; (* pure function: short form *) 

{cubel[3], cube2[3], cube3[3]} 

{27, 27, 27} 

A function can be used to check if a condition is True or False. For example: 

greaterThan3[n_] := n > 3 

{greaterThan3[7.5], greaterThan3[2.9]} 

{True, False} 

Blank ( _ ), BlankSequence ( — ), and BlankNullSequence ( ) are pattern 
objects that can, respectively, stand for any Mathematica expression, any 
sequence of one or more Mathematica expressions, or any sequence of zero or 
more Mathematica expressions (see also below). 

f l [ x . . 

f2[x_. 

{ f l [ a . 

{ f2[a . 

y -

y -
b. 

b. 

-] : 

- ] 

c. 

c. 

= X 

: = X 

d ] , 

d ] . 

+ y 

+ y 
f l [ a ] } 

f2 [a]} 

{a -f b + c -f d, f l [ a ] 

{a + b + c -f d} , a} 

8.2.3 Iterations 

In many programs we need to apply a function repeatedly. Here are various 
useful commands to perform such a task. 
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Nest [f, expression, n] generates f [f [f [. . . [expression] . . . ] ] ] where 
f is nested n times. 

NestList [f, expression, n] generates the hst {x, f [x] , f [f [x] ] , . . . .} 
where the last term of the hst is f nested n times. 

FixedPoint [f ,x] apphes f repeatedly until the result no longer changes. 

FixedPoint [f, x, n] applies f repeatedly but stops after at most n steps. 

FixedPointList [f, x] generates the list {x, f [x ] , f [f [x] ] , f [f [f [x] ] 3 , 
. . . .} until the elements no longer change. 

NestWhileCf, expression, t e s t ] applies f repeatedly until applying test 
to the result no longer yields True. 

NestWhileList [f, expression, t e s t ] generates the list of applying f re
peatedly until applying test to the result no longer yields True. 

Nest [Cos, 0 .5 , 7] 

0.752356 

NestList [Cos, 0 .5 , 7] 

{0 .5 , 0.877583, 0.639012, 0.802685, 0.694778, 

0.768196, 0.719165, 0.752356} 

FixedPoint[Cos, 0.5] 

0.739085 

FixedPointList[Cos, 0.5] 

{0.5, 0.877583, 0.639012, 0.802685, 0.694778, 0.768196, 0.719165, 

0.752356, 0.730081, 0.74512, 0.735006, 0.741827, 0.737236, 

0.74033, 0.738246, 0.73965, 0.738705, 0.739341, 0.738912, 

0.739201, 0.739007, 0.739138, 0.73905, 0.739109, 0.739069, 

0.739096, 0.739078, 0.73909, 0.739082, 0.739087, 0.739084, 

0.739086, 0.739084, 0.739086, 0.739085, 0.739085, 0.739085, 
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0.739085, 0.739085, 0.739085, 0.739085, 0.739085, 0.739085, 

0.739085, 0.739085, 0.739085, 0.739085, 0.739085, 0.739085, 

0.739085, 0.739085, 0.739085, 0.739085, 0.739085, 0.739085, 

0.739085, 0.739085, 0.739085, 0.739085, 0.739085, 0.739085, 

0.739085, 0.739085, 0.739085, 0.739085, 0.739085, 0.739085, 

0.739085, 0.739085, 0.739085, 0.739085, 0.739085, 0.739085, 

0.739085, 0.739085, 0.739085, 0.739085, 0.739085, 0.739085, 

0.739085, 0.739085, 0.739085, 0.739085, 0.739085, 0.739085, 

0.739085, 0.739085, 0.739085, 0.739085, 0.739085, 0.739085, 

0.739085} 

The following function gives the smallest prime greater than x. It uses a pure 
function. The Mathematica command NextPrime [n] gives the smallest prime 
larger than n, but we have to first load the package NumberTheory' Number-
TheoryFunctions' . 

«NumberTheory'NumberThecryFunctions' 

NextPrime[100] 

101 

f i rs tPrimeAfter [x_] : = 

NestWhile[(# + 1) &, x, !(PrimeQ[#]) &] 

f irs tPrimeAfter[100] 

101 

Checking: 

PrimeQ [101] 

True 
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8.2.4 A Functional Program 

Let us write a function giving the position of a sequence of k or more identical 
digits in the first n digits in the decimal part of an irrational number x. 

We progress from small units to larger ones (bottom-up programming). 

In tegerDig i t s [ in t ] gives a fist of the decimal digits in the integer int. 

X = Pi; n = 30; 

In tegerDig i t s [Floor [N[Fract ionalPart[x] , n] I C n ] ] 

{1, 4 , 1, 5, 9, 2, 6, 5, 3 , 5, 8, 9, 7, 9, 3 , 2, 3 , 8, 4 , 6, 

2, 6, 4 , 3 , 3 , 8, 3 , 2, 7, 9} 

Partit ion [ l i s t , k, d] generates sublists of l i s t of length k with offset d. 

X = P i ; n = 30; k = 4; 

Partit ion[IntegerDigi ts[Floor[N[FractionalPart[x] , n] 

lO-^n]], k, 1] 

{{1, 4 , 1, 5} , {4, 1, 5, 9} , {1 , 5, 9, 2} , {5, 9, 2, 6} , 

{9, 2, 6, 5} , {2, 6, 5, 3} , {6, 5, 3 , 5} , {5, 3 , 5, 8} , 

{3, 5, 8, 9} , {5, 8, 9, 7} , {8, 9, 7, 9} , {9, 7, 9, 3} , 

{7, 9, 3 , 2} , {9, 3 , 2, 3} , {3, 2, 3 , 8} , {2, 3 , 8, 4} , 

{3, 8, 4 , 6} , {8, 4 , 6, 2} , {4, 6, 2, 6} , {6, 2, 6, 4} , 

{2, 6, 4 , 3} , {6, 4, 3 , 3} , {4, 3 , 3 , 8} , {3, 3 , 8, 3} , 

{3, 8, 3 , 2} , {8, 3 , 2, 7} , {3, 2, 7, 9}} 

Among all the sublists of length 4 (fc = 4), we search the position of the 
sublists equal to {9,9,9,9} {d = 9). 

X = Pi; n = 10000; k = 4; d = 9; 

Posit ion[Partit ion[IntegerDigits[Floor[N[FractionalPart[x], 

n] lO-^n]], k , l ] , Table[d,k]] 

{{762}, {763}, {764}} 
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We can now group all these elementary steps into a final function pos[x, 
k, d, n ] , where x is the irrational number, k the length of the sequence of 
consecutive digits d, and n the number of digits of the fractional part of x. 

pos[x_, k_, d_, n_] := P o s i t i o n [ P a r t i t i o n [ I n t e g e r D i g i t s [ F l o o r [ 

N[Frac t iona lPar t [x ] , n] lO^n]] , k, 1 ] , Table[d, {k}]] 

pos[Pi , 4, 9,10000] 

{{762}, {763}, {764}} 

Here is a table of sequences of length 4 for all digits 0, 1, 2, 3, . . . , 9 in the 
decimal expansion of TT considering 10,000 digits. 

Table [{m, pos[Pi , 4, m, 10000]}, {m, 0, 9}]//MatrixForm 

/o 
1 
2 
3 
4 
5 
6 
7 
8 

V9 

{} 
{} 

{{4902},{7964}} 

{} 
{} 
{} 
{} 

{{1589},{5241},{5322},{5863}} 
{{4751}} 

{{762},{763},{764}} 

Table of sequences of length 4 for all digits 0, 1, 2, 3, . . . , 9 in the decimal 
expansion of e considering 10,000 digits. 

Table[{m, pos[E, 4 , m, 10000]}, {m, 0, 9}] / / MatrixForm 
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/o 
1 
2 
3 
4 
5 
6 
7 
8 

\9 

{{7688}} 

{} 
{} 

{{3354}} 

{} 
{{3620},{8905}} 

{{2175},{4992},{4993}} 
{{1071},{5040}} 

{{723}} 

{} 

Table of sequences of length 4 for all digits 0, 1, 2, 3, . . . , 9 in the decimal 
expansion of \l2 considering 10,000 digits. 

Table[{m, pos [Sq r t [2 ] , 4, m, 10000]}, {m, 0, 9}] / 
/MatrixForm 

/o 
1 
2 
3 
4 
5 
6 
7 
8 

\9 

{> \ 
{{952}} 
{{4701}} 
{{1481}} 
{{3308}} 
{{2016}} 

>̂ 
{{1559}} 
{{4214}} 

{{2515},{2707},{2708},{7326}} / 

Table of sequences of length 6 for all digits 0, 1, 2, 3, . . . , 9 in the decimal 
expansion of TT considering 1,000,000 digits. The computation takes less than 
three minutes. 

Timing[Table[{m, pos[Pi , 6, m, 1000000]}, {m, 0, 9}] / / 
MatrixForm] 



/o 

{158.29 Second, 

1 
2 
3 
4 

5 

6 
7 
8 

\9 
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{} ^ 
{{255945}} 

{{963024}} 

{{710100},{710101}} 

{{828499}} 

{{244453},{253209}, {419997}} 

{{252499}} 

{{399579},{452071}} 

{{222299}} 

{{762},{193034}} ) 

} 

245 

We can solve the same problem in any base h. 

BaseForm[ [Sq r t [2 ] , 2 0 ] , 2] 

1.011010100000100111100110011001111111001110111100110010010000\ 

IOOOI2 

B a s e F o r m [ N [ F r a c t i o n a l P a r t [ S q r t [ 2 ] ] , 2 0 ] , 2] 

0.011010100000100111100110011001111111001110111100110010010000\ 

IOOOIIO2 

B a s e F o r m [ N [ F r a c t i o n a l P a r t [ S q r t [ 2 ] ] , 20] 10^20, 2] 

1.0001111101101011000111000000010011011111110111110011011010111\ 

OOOOO2 X 10^^ 

BaseForm [F loor [N [ F r a c t i o n a l P a r t [Sqr t [2] ] , 20] 10'^20] , 2] 

10001111101101011000111000000010011011111110111110011011010111\ 

OOOO2 

I n t e g e r D i g i t s [ F l o o r [ N [ F r a c t i o n a l P a r t [ S q r t [ 2 ] ] , 20] 1 0 ^ 2 0 ] , 2] 
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{1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 

1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 

1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1 ,1, 1, 0, 

0, 0, 0} 

Length [%] 

66 

Grouping all these elementary steps into a final function basePos[x, k, d, 
n, b ] , where x is the irrational number, k the length of the sequence of 
consecutive digits d, n the number of digits of the fractional part of x in base 
10, and b the base yields 

basePos[x_, k_, d_, n_, b_] : = 

Pos i t i on [Pa r t i t i on [ In t ege rDig i t s [F loo r [N[Frac t i ona lPa r t [x ] , 

n] 10-^n], b ] , k, 1 ] , Table[d, {k}]] 

We can use this function to find sequences of 16 identical digits in the base 2 
expansion of TT. 

Table[{m, basePos[Pi ,16, m, 10000, 2 ] } , {m, 0, 1}] / / 

MatrixForm 

0 {{7802},{10558}} \ 

1 {{24831}} ) 

The length of the sequence of digits in base 2 of the fractional part of n when 
we consider 10,000 digits in base 10 is given by 

Length[ In tegerDig i t s [F loor [N[Frac t iona lPar t [P i ] , 10000] 

10-^10000], 2]] 

33217 

When, in base 10, we consider a fractional part of lO'̂  digits, the lengths of 
digit lists in the expansion of an irrational number in any base can be found 
by adapting the function above. For example, for TT, and e in base 3, we find: 
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Table [Length [ In tegerDigi ts [Floor [N [Fract ionalPar t [Pi] , lO'^k] 
lO^(lO^k)], 3 ] ] , {k, 1, 4}] 

{20, 208, 2095, 20958} 

Table [Length [ In tegerDigi ts [Floor [N [Fract ionalPar t [E] , lO'^k] 
lO-^ClO^k)], 3 ] ] , {k, 1, 4}] 

{21, 210, 2096, 20959} 

8.3 Replacement Rules 

8.3.1 The Two Kinds of Rewrite Global Rules 

They use either = or :=. In the first case the rule is applied immediately 
whereas in the second one it is applied only when it is used (i.e., when it is 
called). 

X = Random [] ; 

y := Random [] ; 

Table[x, {5}] 

Table[y, {5}] 

{0.348571, 0.348571, 0.348571, 0.348571, 0.348571} 

{0.25592, 0.216969, 0.465141, 0.0332237, 0.888415} 

Clear[x, y] 

a = 

b : 

{a, 
X = 

{a. 

Expand[(1 + 

= Expand[(1 

t } 
y + z; 

b} 

x)-3]; 

+ x)-3] 

{1 + 3 X + 3 x2 + x^, 1 + 3 X + 3 x^ + x^} 

{1 + 3 (y + z) + 3 (y + z)2 + (y + z ) ^ . 
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3 z^ + 3 y z^ + z^} 

8.3.2 Local Rules 

They use either -^ or :-^ (entered respectively as -> and :>). As above, the 
first rule is immediately applied and the second one is applied only when it is 
used. These rules are applied using the operator / . 

x^2 - 3 X + 2 / . {{x -> 1}, {x -> 2}} 

{0, 0} 

f [a + x] / . f [X_] -> Expanded + X)'^3] 

f [a + x] / . f [X_] :> Expanded + X)^3] 

1 + 3 (a + x) + 3 (a + x)2 + (a + x)^ 

L -
,3 
l + 3 a + 3 a 2 + a^ + 3 x + 6 a x + 3 a 2 x + 3 x 2 + 3 a x 2 + 

rndList = Table[Random[], {10}] 

{0.214286, 0.35825, 0.694216, 0.642354, 0.694934, 

0.269416, 0.592734, 0.558784, 0.360521, 0.541512} 

rndList / . x_ -> - Log[x] 

{1.54044, 1.02652, 0.364971, 0.442615, 0.363939, 

1.3115, 0.52301, 0.581992, 1.0202, 0.61339} 

We can also add a condition. In the example below, it is only if 0.4 < x < 0.6 
that X is replaced by — log[a:], which is the case for the seventh, eighth, and 
tenth elements of rndList . The other elements are left unchanged. 

rndLis t / . x _ / ; 0 . 4 < x < 0 . 6 - > - Log[x] 
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{0.214286, 0.35825, 0.694216, 0.642354, 0.694934, 0.269416, 0.52301, 
0.581992, 0.360521, 0.61339} 

Replacement rules are not commutative. 

a + b / . a - > 3 b / . b - > 2 a 

a + b / . b - > 2 a / . a - > 3 b 

8 a 

9 b 

8.3.3 The Operators / . and / / . 

The following example illustrates the difference between these two operators. 
With / . rules are applied only if they match the Ihs whereas with / / . rules 
are applied recursively. That is, / / . means keep applying the rules until no 
further substitution is possible. 

f ib [5] 

fib[n_] 

f ib [5] 

fibCnJ 

/ . 

-> 

/ / . 

-> 

{ f i b [ l ] 

f ib[n -

{ f i b [ l ] 

f ib[n -

-> 

2] 

-> 

2] 

1, 
+ 

1 

+ 

f ib[2] 

f ib[n -

, f ib [2] 

f ib[n -

-> 1, 

1 ] } 

-> 1, 

1] } 

f ib [3] + f ib [4] 

5 

In the first case, the rules f ib [ l ] -> 1, f ib [2] -> 1 do not match any
thing in f ib [5]. Only the rule fib[n_] -> f ib [n - 2] + f ib[n - 1] can 
be applied. 

8.3.4 Patterns 

Clear[f] 

f [x_] := x-2 

{f [ a ] , f [a + b ] . f [ a . b ] . f [ {a , b}]} 

{a2, (a + b )2 , f [ a , b] , {a?, h"^}} 
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That is, a, a + b, and {a, b} are matching the pattern x_ and applying the 
rule we find a'̂ , (a + b)^ , and {a, b}^. On the contrary a,b does not match 
the pattern x_. 

We can specify the type of the argument x with a Head. For example, 

Clear[f] 

f [x-Integer] := x"2 

{ f [ 4 ] , f [ 3 . 2 ] } 

{16, f [ 3 . 2 ] } 

X has to be an integer. Here are more examples. 

Clear[f] 

f [x_Real] := x'̂ 2 

{ f [ 3 ] , f [ 3 . ] , f [ 2 . 5 ] } 

{ f [ 3 ] , 9 . , 6.25} 

We can restrict patterns using / ; . 

Clear[f] 

f [x_Integer] := x''2 / ; x > 5 

{ f [ 4 ] , f [ 6 ] } 

{ f [ 4 ] , 36} 

Other examples are 

Clear[f] 

f [x_Integer / ; 

f [x_Integer / ; 

OddQCx]] := x 

EvenQ[x]] := x^2 

{ f [ l ] , f [ 2 ] , f [ 3 ] , f [ 4 ] } 

{1 , 4 , 3 , 16} 



8.3 Replacement Rules 251 

DeleteCases[Range [10], x_ /; OddQ[x]] 

DeleteCases[Range[10], x_/ ; EvenQ[x]] 

{2, 4, 6, 8, 10} 

{1, 3, 5, 7, 9} 

Cases[Range[- 5, 5 ] , _?Positive] 

Cases[Range[- 5, 5 ] , x_ / ; x > 0] 

{1 , 2, 3 , 4, 5} 

{1, 2, 3 , 4, 5} 

f [n_Integer?Positive / ; IntegerQ[n/3]] := n / 3 

{ f [ 2 7 ] , f [ - 6 ] , f [ 5 ] } 

{9, f [ - 6 ] , f [ 5 ] } 

As mentioned above: 

x__ means a sequence of one or more expressions named x (two underscores). 

X means zero or more expressions named x (three underscores) 

Clear[f] 

f [x_] := Length[x] (* one underscore *) 

{ f [ ] , f [ a ] , f [ { a } ] , f [ a , b] , f [ { a , b}]} 

{ f [ ] , 0, 1, f [ a , b ] , 2} 

Clear [f] 

f[x__] : = Length [{x}] (* 

{ f [ ] , f [ a ] , f [ { a } ] , f [ a , 

two 

b]} 

underscores *) 

{ f [ ] , 1, 1, 2} 
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Clear[f] 
f[x-_ 

{f[] 
-] : = 

f[a] 
Length [{x}] 
, f[a,b]} 

(* three underscores *) 

{0, 1, 2} 

8.3.5 E x a m p l e : t h e F i b o n a c c i N u m b e r s 

We use the recursive definition of the Fibonacci numbers^ to determine the 
n t h Fibonacci number. Note tha t F i b o n a c c i [n] is a Mathematica built-in 
function. 

F i b o n a c c i [ 5 0 0 ] 

1394232245616978801397243828704072839500702565876973072641\ 

08962948325571622863290691557658876222521294125 

The symbol \ at the end of the first line of the output cell indicates tha t the 
sequence of digits, being too long, includes the next line. 

Ignoring the built-in function, we first build up a particularly inefficient pro
gram. 

Clear[F] 

F[ l ] = 1; F[23 = 1; 

F[n_Integer / ; n > 0] 

FC15] 

:= F[n - 1] + F[n - 2 ] ; 

610 

Let us evaluate the CPU t ime needed to compute the first Fibonacci numbers 
using the function F [n] defined above. 

^Fibonacci is the nickname of Leonardo Pisano {circa 1170-1250). With his 
father he lived in the Mediterranean town Bejaia in Kabylia where he studied arith
metics. He later traveled widely to improve his knowledge in the art of manipulating 
numbers. In 1202, he published his famous Liber abaci (Book of the Abacus), the 
first European work on Indian and Arabian mathematics, introducing the positional 
number system. 
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Clear[F] 

F[13 = 1; F[2] 

F [n_Integer / ; 

timeCompute = 

{k, 1, 15}] 

= 1; 
n > 0] 

Table [{2 

= F[n - 1] + F[n - 2 ] ; 

k, Timing [F [2 k]] [ [ ! ] ] / Second}, 

{{2, 0 . } , { 4 , 0 . } , { 6 , 0 . } , {8, 0 . } , {10, 0 . } , 

{12, 0 . } , {14, 0 .01} , {16, 0 .01} , {18, 0 .03}, {20, 0 .08}, 

{22, 0 .24} , {24, 0 .6} , {26, 1.57}, {28, 4 .12} , {30, 10.75}} 

To show the inefficiency of this method, let us estimate how long it would 
take to compute F[100]. 

plTime = ListPlot[timeCompute, PlotRange -^ Al l , 

PlotStyle -^ {RGBColor[0,0,l], PointSize[0 .02]} ] ; 

10 

8 

6 

4 

2 

10 15 20 

• 

• 

• 
• 
25 30 

Fig. 8.1. List plot of the CPU time to compute the first Fibonacci numbers using 
the inefficient method described above. 

Fit [timeCompute, {1, x, x''2, x'̂ 3, x"4}, x] 

1.9795 - 1.1436 x + 0.181665 x^ - 0.0105719 x^ + 0.00020295 x^ 
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fiinctionFit[x_] := 1.9795 -

0.0105719 x^3 + 0.00020295 3 

p l F i t = Plot [ f i inc t ionFi t [x] , 

P lo tS ty le -^ {RGBColorCl, 0, 

1.1436 X + 0. 

r4 

{x, 
0 ] } , 

0, 30}, 

181665 

PlotRange —> 

x'̂  2 -

A l l ] ; 

10 

8 

6 

4 

2 

10 15 ^2Xr^ 25 30 

Fig. 8.2. Plot o / funct ionFi t that fits the list of CPU times. 
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Show[plFit ,p lTime] ; 

10 15 ^2T) 25 30 

Fig. 8.3. Plotting together f unct ionFi t the list plot of CPU times. 

It is not such a good fit but we can use it to find a rough estimate of the 
computing time. 

P l o t [ f u n c t i o n F i t [ x ] / 60 , {x , 3 0 , 1 0 0 } ] ; 

40 50 60 70 80 90 100 

Fig. 8.4. Plot fiinctioiiFit in order to estimate the CPU time to evaluate the 
100th Fibonacci number using the first inefficient method. 

The estimated CPU time is given in hours by 

f u n c t i o n F i t [ 1 0 0 ] / (60 60) 

3 .17425 
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More than three hours!! 

It is much faster to use dynamic programming. That is, when evaluating F [n], 
ask Mathematica to remember all values F [k] for k < n, and not reevaluate 
all these values each time F [n] is called. 

Clear[F] 

F[ l ] = 1; F[2] = 1; 

F[n_Integer / ; n > 0] 

Timing[F[250]] 

:= F[n] = F[n -- 1] + F[n -- 2 ] ; 

{0. Second, 7896325826131730509282738943634332893686268675876375} 

This is a much faster method. But let us try to evaluate F [330]. 

Clear[F] 

F[ l ] = 1; F[2] = 1; 

F[n_Integer / ; n > 0] 

F[300]; 

:= F[n] = F[n -• 1] + F[n -- 2 ] ; 

$RecursionLimit : : recl im : Recursion depth of 256 exceeded. 

More . . . 

$RecursionLimit :: reclim : Recursion depth of 256 exceeded. 

More . . . 

$RecursionLimit :: reclim : Recursion depth of 256 exceeded. 

More . . . 

General : : s top : Further output of $RecursionLimit : : recl im : 

w i l l be suppressed during t h i s ca l cu l a t i on . More . . . 

To evaluate higher order Fibonacci numbers, we have to increase Recursion-
Limit. Note that dynamic programming is, however, much faster than the 
first method we used. 
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$RecursionLimit = 10000; 

Clear[F] 

F[ l ] = 1; F[2] = 1; 

F [n_Integer / ; n > 0] : = F [n] = F [n - 1] + F [n - 2] ; 

Timing[F[500]] 

Table[{1000 k, Timing[F[1000 k ] ] [ [ 1 ] ] / Second}, {k, 1, 20}] 

{0.01 Second, \ 

139423224561697880139724382870407283950070256587697\ 

307264108962948325571622863290691557658876222521294125} 

{{1000, 0.01}, {2000, 0.03}, {3000, 0.03}, {4000, 0.04}, 

{5000, 0.03}, {6000, 0.03}, {7000, 0.04}, {8000, 0.03}, 

{9000, 0.03}, {10000, 0.03}, {11000, 0.04}, {12000, 0.04}, 

{13000, 0.04}, {14000, 0.04}, {15000, 0.05},{16000, 0.04}, 

{17000, 0.04}, {18000, 0.04}, {19000, 0.05}, {20000, 0.04}} 

The CPU time is greatly reduced, but we show below that it can be further 
reduced. 

8.4 Control Structures 

8.4.1 Conditional Operations 

They are If, Which, and Switch. 

The command If [ t e s t , then, e l se ] gives then if t e s t evaluates to True and 
e l se if it evaluates to False. 

{If [3 > 2 , 1. 0] , I f [3 < 2, 1, 0]} 

{1. 0} 

Clear[f] 

f[x_] := I f [x 

P l o t E f W . {x. 
0, 1, - 1] 

1, 1 } ] ; 
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1 

0 .5 

- 1 - 0 . 5 

- 0 . 5 

1 

0 .5 1 

Fig. 8.5. Plot of the function defined above. 

Note the difference with conditional rewrite rules. 

Clear[f, g] 

f [x_] := If [x > 0, x'^2, -

g[x_] := x^2 / ; X > 0 

g[x_] := - x^2 / ; X < 0 

- x^2] 

{D[f [x] , x ] , D[g[x] , x]} 

{ I f [x >= 0, 2 X, - 2 x ] , g'[x]} 

The command Which [t est 1, expressionl, t e s t 2 , expression2, . . . ] f o r 
k = 1,2, . . . , gives expressionk if testk evaluates to True. 

Which[3 < 0, 0, 3 < 1, 1, 3 < 2, 2, 3 < 3 , 3 , 3 < 4, 4] 

f [x_] := Which [0 

2 < X < 3, 3 x] 

P l o t [ f [ x ] , {x, 0, 

< X < 

3 } ] ; 

1, X , 1 < X < 2 , 2 X , 

The command Switch [expression, patternl , valuel , pattern2, 
value2 , ...] compares expression to each patternj in turn and gives valuek 
if patternk is the first match found. 
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0.5 1 1.5 2 2.5 3 

Fig. 8.6. Plot of the function defined above. 

numberType[xj : = = Switch[x, -Integer, 

-Rational, ''this is a rational'', 

-Real, ''this is 

-Complex, ''this 

{numberType[6], 

numberType[2.1+ 

a real'', 

is a complex''] 

numberType[3/2], num 

3.6 I]} 

"this 

berType 

» is an 

[2.45], 

integer'', 

{ th i s i s an i n t ege r , t h i s i s a r a t i o n a l , t h i s i s a r e a l , 
t h i s i s a complex} 

Note that expression is first evaluated before being compared to the different 
patterns. 

numberType[6/3] 

t h i s i s an in teger 

Evaluating 6/3 Mathematica finds 2 which is an integer. 

8.4.2 Loops 

There exist three built-in looping functions Do, While, and For. 

The command Do [expression, {k, k l , k2}] evaluates expression start
ing from k = k l to k2. 

Do [Print [S-^k], {k, 3 , 7}] 
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125 

625 

3125 

15625 

78125 

prod=l; 

Do [prod 

prod (* 

*= k. 

gives 
{k. 1, 5}] 

Factorial[5] *) 

120 

X *= c multiplies 

Do [Plot [Cos [n 

X 

x] 

by c 

, {x 

and returns the new value of 

, 0, 2 P i } ] , {n, 1, 10, 0 

X. 

.25}]; 

The command above generates a sequence of plots of cos(na:) in the interval 
[0,27r] for n varying from 1 to 10 by steps 0.25. Below only the last plot of 
the sequence is represented. 

0 .5 

- 0 . 5 

Fig. 8.7. Plot of cos{nx) for n = 10 in the interval [0,27r]. 

Coming back to Fibonacci numbers, we examine if we can build up more 
efficient program generating these numbers. 



8.4 Control Structures 261 

1. Generating a Fibonacci sequence with Do. 

k = 0; 

Do[c = 

a = 1; b = 

a + b; 

FibonacciSequence 

a = b; b = c; c = 

FibonacciSequence 

1; 

= 

0, 

FibonacciSequence = {1 

Join 

{k. 
[FibonacciSequence, 

1, 10}] 

. 1}; 

{c}]; 

{1, 1, 2, 3 , 5, 8, 13, 21 , 34, 55, 89, 144} 

The command While [ t e s t , expression] evaluates expression until test 
fails to give True. 

s = 0; n = 0; 

While[n 10, s += 

s (* yields Suin[n, 

n; 

{n 
n++] 

, 1, 10}] *) 

55 

X += c adds c to X and returns the new value of x. n++ increases the value of 
n by 1 returning the old value of n. 

2. Generating a Fibonacci sequence with While. 

k = 0; a = 1; b = 

While[k < 10, k = 

FibonacciSequence 

a = b; b = c; c = 

FibonacciSequence 

1; 

k 

= 

0] 

FibonacciSequence = {1 

+ 1; c = a + b; 

Join[FibonacciSequence, 

. 1}; 

{c}]; 

{1, 1, 2, 3 , 5, 8, 13, 21 , 34, 55, 89, 144} 

The command For [ s t a r t , t e s t , increment, expression] executes s t a r t , 
then repeatedly evaluates expression and increment until t e s t fails to give 
True. 

For [ i = 1, i < 5, i++. P r i n t [ i ] ] 
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1 

2 

3 

4 

3. Generating a Fibonacci sequence with For. 

a = 1; b = 1; FibonacciSequence = {1, 1}; 

For[k = 1, k < 10, k += 1; c = a + b; 

FibonacciSequence=Join[ FibonacciSequence, {c}] ; 

a = b ; b = c; c= 0] 

FibonacciSequence 

{1, 1, 2, 3 , 5, 8, 13, 21 , 34, 55, 89, 144} 

8.5 Modules 

In the command Module [{a, b , . . . } , expression] the variables a, b , . . 
in expression are local. These variables may be initialized (a = aO, b 
bO). 

{x = 10, Module[{x = 5 } , x = x + 1; x ] , x} 

{10, 6, 10} 

8.5.1 Example 1 

Find the first prime number greater than n. 

f i rs tPr imeGreater[n_Integer?Posi t ive] := Module [{k}, 

k = n + 1; 

While[Not[PrimeQEk]], k++]; k] 

Table[firstPrimeLarger[10 k], {k, 1, 10}] 

{11, 23, 31, 41, 53, 61, 71, 83, 97, 101} 
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As mentioned above when we build up the function f i rstPrimeAfter , the 
Mathematica command Next Prime [n] gives the smallest prime larger than n. 
We have to first load the package NumberTheory'N^lmberTheoryFunctions^ 

8.5.2 Example 2 

Given a list {xl, x2, x3, . . .}, generate the list of partial sums {xl, xl + 

x2, xl + x2 + x3, ...}. 

partialSumList [lisJList] := Module [{sumList = {lis[[l]]}}, 

DoCsumList = Join[sumList, {sumList [[i - 1]] + lis[[i]]}], 

{i, 2, Length[lis], 1}]; sumList] 

lis = Table[2k, {k, 1, 10}] 

partialSumList[lis] 

{2, 4, 6, 8, 10, 12, 14, 16, 18, 20} 

{2, 6, 12, 20, 30, 42, 56, 72, 90, 110} 

8.5.3 Example 3 

Determine the nth Fibonacci number without resetting RecursionLimit us

ing a While loop. 

Clear[fibonacciNumber] 

fibonacciNumber[n_Integer /; n > 0] := Module[{k = 

b = 1}, 

While[!(k == n), {a, b} = {b, a + b}; k++]; b] 

1, a = 0, 

Timing[fibonacciNumber[5000]] 

{0.07244 Second, 38789684543883256337019163083259053120821277146\ 

4624510616059721489555013904403709701082291646221066947929345\ 

2858882973813483102008954982940361430156911478938364216563944\ 

1069102145056341337065586562382546567007125259299038549338139\ 

2883637834751890876297071203333705292310769300851809384980180\ 

3847813996748881765554653788291644268912980384613778969021502\ 
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2930824756663462249230718833248032803750391303529033045058427\ 

0114763524227021093463769910400671417488329842289149127310405\ 

4328753298044273676822977244987749874555691907703880637046832\ 

7948113589737399931101062193081490185708153978543791953056175\ 

1076105307568878376603366735544525884488624161921055345749367\ 

5897849027988234351023599844663934853256411952221859563060475\ 

3646454707603309024208063825849291564528762915757591423438091\ 

4230291749108898415520985443248659407979357131684169286803954\ 

5309545388698114665082066862897420639323438488465240988742395\ 

8738019769938203171742089322654688793640026307977800587591296\ 

7138963421425257911687275560036031137054775472460463998758804\ 

6985178408674382863125} 

The same problem using a Do loop is as follows. 

Clear [fibonacciNumber] 

fibonacciNumber[n_Integer?Positive] := Module [ {a = 0, b =1}, 

Do[{a, b} = {b, a + b}, {n - 1}]; b] 

Timing[fibonacciNumber[5000]] 

{0.03 Second, 38789684543883256337019163083259053120821277146\ 

4624510616059721489555013904403709701082291646221066947929345\ 

2858882973813483102008954982940361430156911478938364216563944\ 

1069102145056341337065586562382546567007125259299038549338139\ 

2883637834751890876297071203333705292310769300851809384980180\ 

3847813996748881765554653788291644268912980384613778969021502\ 

2930824756663462249230718833248032803750391303529033045058427\ 

0114763524227021093463769910400671417488329842289149127310405\ 

4328753298044273676822977244987749874555691907703880637046832\ 

7948113589737399931101062193081490185708153978543791953056175\ 

1076105307568878376603366735544525884488624161921055345749367\ 

5897849027988234351023599844663934853256411952221859563060475\ 
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3646454707603309024208063825849291564528762915757591423438091\ 

4230291749108898415520985443248659407979357131684169286803954\ 

5309545388698114665082066862897420639323438488465240988742395\ 

8738019769938203171742089322654688793640026307977800587591296\ 

7138963421425257911687275560036031137054775472460463998758804\ 

6985178408674382863125} 

The same problem using a For loop follows. 

Clear[fibonacciNumber] 

fibonacciNumber[n_Integer?Positive] := Module [{a = 0, b = 1}, 

For[k = 1, k < n, k++, {a, b} = {b, a + b}] ; b] 

Timing[fibonacciNumber[5000] ] 

{0.06 Second, 38789684543883256337019163083259053120821277146\ 

4624510616059721489555013904403709701082291646221066947929345\ 

2858882973813483102008954982940361430156911478938364216563944\ 

1069102145056341337065586562382546567007125259299038549338139\ 

2883637834751890876297071203333705292310769300851809384980180\ 

3847813996748881765554653788291644268912980384613778969021502\ 

2930824756663462249230718833248032803750391303529033045058427\ 

0114763524227021093463769910400671417488329842289149127310405\ 

4328753298044273676822977244987749874555691907703880637046832\ 

7948113589737399931101062193081490185708153978543791953056175\ 

1076105307568878376603366735544525884488624161921055345749367\ 

5897849027988234351023599844663934853256411952221859563060475\ 

3646454707603309024208063825849291564528762915757591423438091\ 

4230291749108898415520985443248659407979357131684169286803954\ 

5309545388698114665082066862897420639323438488465240988742395\ 

8738019769938203171742089322654688793640026307977800587591296\ 

7138963421425257911687275560036031137054775472460463998758804\ 

6985178408674382863125} 
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The Do loop method is the fastest. Actually an even faster program uses the 
function MatrixPower, which is the method used by the Mathematica built-in 
function Fibonacci [n] (refer to S. Wagon [64]). Note first that the vector 
{a, b} used in the above programs evolves according to 

{b, a+b} == {a, b } . {{0, 1}, {1, 1}} 

True 

The successive powers of the matrix {{0, 1}, {1 , 1}} are shown below: 

Table[MatrixPower[{{0, 1}, {1 , 1}}, k] / / MatrixForm, 

{k, 1, 10}] 

I Vl 1 j ' VI 2) ' (̂ 2 3 j ' V3 5j ' V5 s j ' 

5 8 \ f 8 13\ /13 21 \ /21 34\ /34 55 
8 1 3 / ' V13 21J' I 2 1 3 4 J ' 1 3 4 5 5 / ' 15589 

The sequence of Fibonacci numbers is the sequence of the [ [1 ,2] ] ele
ments of the matrices MatrixPower [{{0, 1}, {1 , 1}}, n] for n = 1, 2, 
. . . . Hence: 

Clear[fibonacciNumber] 

f ibonacciNumber [n_Integer?Posit ive] : = 

MatrixPower[{{0, 1}, { l , 1}}, n] [ [1 ,2] ] 

Timing[fibonacciNumber[10000]] 

{0. Second, 

336447648764317832666216120051075433103021484606800639065\ 

647699746800814421666623681555955136337340255820653326808\ 

361593737347904838652682630408924630564318873545443695598\ 

274916066020998841839338646527313000888302692356736131351\ 

175792974378544137521305205043477016022647583189065278908\ 

551543661595829872796829875106312005754287834532155151038\ 
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708182989697916131278562650331954871402142875326981879620\ 

469360978799003509623022910263681314931952756302278376284\ 

415403605844025721143349611800230912082870460889239623288\ 

354615057765832712525460935911282039252853934346209042452\ 

489294039017062338889910858410651831733604374707379085526\ 

317643257339937128719375877468974799263058370657428301616\ 

374089691784263786242128352581128205163702980893320999057\ 

079200643674262023897831114700540749984592503606335609338\ 

838319233867830561364353518921332797329081337326426526339\ 

897639227234078829281779535805709936910491754708089318410\ 

561463223382174656373212482263830921032977016480547262438\ 

423748624114530938122065649140327510866433945175121615265\ 

453613331113140424368548051067658434935238369596534280717\ 

687753283482343455573667197313927462736291082106792807847\ 

180353291311767789246590899386354593278945237776744061922\ 

403376386740040213303432974969020283281459334188268176838\ 

930720036347956231171031012919531697946076327375892535307\ 

725523759437884345040677155557790564504430166401194625809\ 

722167297586150269684431469520346149322911059706762432685\ 

159928347098912847067408620085871350162603120719031720860\ 

940812983215810772820763531866246112782455372085323653057\ 

759564300725177443150515396009051686032203491632226408852\ 

488524331580515348496224348482993809050704834824493274537\ 

326245677558790891871908036620580095947431500524025327097\ 

469953187707243768259074199396322659841474981936092852239\ 

450397071654431564213281576889080587831834049174345562705\ 

202235648464951961124602683139709750693826487066132645076\ 

650746115126775227486215986425307112984411826226610571635\ 

150692600298617049454250474913781151541399415506712562711\ 

971332527636319396069028956502882686083622410820505624307\ 
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01794976171121233066073310059947366875} 

This Fibonacci number has 2090 digits! 

Length[IntegerDigits[fibonacciNumber[10000] ] ] 

2090 

Using the Mathematica built-in function, we can check the result above 

fibonacciNumber[10000] == Fibonacci[10000] 

True 



Part II 

Applications 



This second part presents a variety of examples from mathematics and physics 
illustrating how Mathematica can be used to study and solve problems. For 
each example we tried to build up simple-to-understand short programs. In 
most cases, we adopted the so-called bottom-up technique, progressing step by 
step from small units to the final program, making every effort to give a simi
lar structure to all programs. Most problems can be tackled in many different 
ways. When a solution is found, it is good practice to try to find a different 
one and compare the different solutions. Many Mathematica applications can 
be found on the Web; the Wolfram site: http://mathworld.wolfram.com/, cre
ated and maintained by Eric Weisstein, is a particularly extensive source of 
interesting applications. 

No subtle criterion has been used to order the list of the different applications. 
They are just listed in the alphabetical order of their TeX file names. 

Mathematicians and physicists are often involved in time-consuming calcu
lations. Using Mathematica to carry the bulk of the computational burden 
and check the results should enable them to devote more time to think about 
ideas. Mathematica computational capabilities are particularly helpful when 
one tries to discover a pattern. We illustrated this feature at the end of the 
first chapter when we tried to generalize the CoUatz conjecture. 

Discovering a pattern is often the first step towards the proof of a theoretical 
result. This has not been the case for the Collatz problem whose solution 
seems for the moment beyond the reach of today's mathematics but there exist 
many examples showing that "computational experimentation" does suggest 
a theoretical result. 

Here is, for instance, a very simple example. There exists an extensive liter
ature dedicated to happy numbers. If / is a function, defined on the set of 
positive integers, such that the image / (n) of any integer n is equal to the 
sum of the squares of the digits of n, then, a number n is said to be happy if 
there exists a finite integer k such that the kth iterate f^{n) = 1. 

Experimenting with Mathematica, one soon discovers that either a num
ber is happy or the sequence of iterates of / ends in the same eight-
cycle: (4,16,37,58,89,145,42,20). Because the L i s tP lo t of f{n) shows that 
f{n) < n for n > /(99) = 162, one can then easily prove that the iterates 
of / either converge to the fixed point 1 or to the eight-cycle above. This 
simple conclusion leads immediately to the question: what about functions fk 
also defined on the set of positive integers, such that the image /fc(^) of any 
integer n is equal to the sum of the powers k of the digits of n. Here again, 
experimenting with Mathematica shows that /s has only a few fixed points, 
namely {1, 153, 370, 371, 407} and, because fsin) < n forn > /(999) = 2187, 
it is sufficient to restrict our search for fixed points in a rather small range, 
which can be done in a fraction of a second using Mathematica. The function 
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/4 has a similar property, and Mathematica shows that the only fixed points 
are {1, 1634, 8208, 9474}. 



9 

Axially Symmetric Electrostatic Potential 

Consider a conducting sphere of radius R held at potential zero and placed 
in a uniform electric field EQ directed along the Oz-axis oriented upward. If 
we use spherical coordinates, the symmetry of the system implies that the 
potential V depends only upon r and 9 but not on (/?, and can, therefore, be 
written as a sum of Legendre polynomials: LegendreP[n,Cos[0]]. We first 
briefly review how to solve the Laplace equation in this case (for more details 
see Vvedensky [63], Chapter 6). 

Legendre polynomials are encountered in several problems of mathematical 
physics involving the eigenfunctions of the angular part of the Laplacian op
erator. 

The Laplacian operator of the function V in spherical coordinates is 

r or^ r^sm 6 o^^ r^^smO 09 \ 09 

If the electric potential does not depend upon (/?, the Laplace equation reads 

This equation can be solved using the method of separation of variables. That 
is, we can factor the solution writing that F(r, 9) is the product of a radial 
part Fr{r)/r and an angular part F0{9). Substituting 

V{r,0) = ^^Fe{e) 
r 

in the expression of the Laplacian yields 

cPFr ^ F r d ( . JFe\ . 
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Multiplying by r^ and dividing by FrFe the left-hand side of this equation 
gives 

r^cPFr , 1 d f. .dFe\_^ 

Fr dr^ ^ FesinQdeX dO ) ~ 
that is, the sum of a function of r only and a function of 6 only. Because the 
sum of these two functions is zero, each function is necessarily a constant and 
we have, therefore, to solve the following two equations: 

k-^ = 0, and -7-^— sinl9—f )-hkFe = 0, 
dr2 r2 ' sinedey dO ^ 

where fc is a constant. 

The radial equation has obvious solutions of the form r^. Replacing Fr{r) by 
r", we find that r" is a solution provided a{a — l) = k. Writing fc as n(n + 1), 
we find that a must be equal either to n or — (n + 1). Hence, the general 
solution of the radial equation is 

r a d i a l P a r t [r_] := A[n] r'^n + B[n] r ^ ( - n - 1) 

where A [n] and B [n] are constants. 

The angular equation takes a simpler form if we introduce the new variable 
X = cos 6. Because the range of 6 is [0, TT], the range of x is [—1,1]. After this 
change of variable the angular part satisfies the ordinary Legendre equation: 

d (^^ 2\^^o 

This equation is usually solved by representing the solution as a power series 
about the origin. The series are converging for all values of x of the closed 
interval [—1,1] if, and only if, FQ is a Legendre polynomial of degree n. These 
functions are Mathematica built-in functions. 

The general solution of the Laplace's equation in the case of axial symmetry 
is therefore 

Vpotent ia l [ r_, t h e t a j := Sum[(A[n] r^n + B[n] r " ( l - n ) ) 
LegendreP[n, Cos[ theta]] 

Coming back to our problem of the grounded conducting sphere of radius R in 
a uniform electric field EQ, the electric potential V p o t e n t i a l [ r , t h e t a ] can 
be simplified taking into account the boundary conditions. 

For r ^ ' 00, the electric potential must behave as —For cos 6, where EQ is the 
only nonzero component of EQ on the Oz-axis. This condition implies that all 
constants A[n] are zero except A[l] = - EO R. The electric potential being 
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equal to zero on the sphere implies that Vpotential[R, t he t a ] = 0. Thus 
B[0] = 0, B[l] = - A[l] = EO R, and B[n] = 0 for all n > 2. The final 
solution is therefore 

Vpotential[r_ ., t h e t a j : = (- EO r + EO R^3 r^2) Cos [ theta] 

because 

LegendrePCl, Cos [ theta] ] 

Cos [ theta] 

We can plot the equipotentials around the sphere in the plane y = 0, choosing 
the numerical values EQ = 1^ R = I. But first we have to transform spherical 
coordinates to Cartesian coordinates. Because y = 0, the transformation rule 
is 

{r -> Sqrt[x^2 + z^2] , Cos[theta] -^ z / Sqrt[x'^2 + z'^2]} 

numVpotential[r_ 

R - 1} 
t h e t a j := Vpo ten t i a l [ r , t he t a ] / . {EO ^ 1, 

Hence, 

numVpotential[r, t he t a ] 

(r '^ - r) Cos [ theta] 

In a more complicated case we would have used Mathematica to obtain the 
transformation rule as shown below. First we load the package Calculus 'Vec
t o r Analys is ' . 

«Calculus' Vector Analysis' 

Then using the command CoordinatesFromCartesian we get 

{r, theta, phi} —> CoordinatesFromCartesian[{x, y, z}, 

Spherical] // Thread 

{r —> Sqrt[x'^ + y -f z'^l , theta -> ArcCos[ ^ ^ Q-] , 

Sqrt[x^+y^+z^] 
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phi -^ ArcTanCx, y]} 

ArcTan[x, y] gives arctan(2//x) taking into account in which quadrant the 
point (x,y) is. 

The 2D potential as a function of x and z is thus defined by 

Vpotential2D[x_, z j := numVpotential[r, theta] / / . 

{CosCtheta] -^ z / r, r ^ Sqrt[x^2 + z'^2]} / / Simplify 

that is, 

Vpotential2D[x,z] 

z ( - 1 + (x2 + z 2 ) - 3 / 2 ) 

and using ContourPlot we can plot a few equipotentials: 

cpl = ContourPlot[Vpotential2D[x, z ] , 

{x, - 2, 2} , {z, - 2, 2} , 

Contours -^ 30, ContourShading -^ False, 

DisplayFimction -^ Identity]; 

sphere = Graphics[{GrayLevel[0.2], Disk[{0, O}, 1]}]; 

Show[{cpl, sphere}, DisplayFunction -^ $DisplayFunction, 

AspectRatio -^ Automatic, Frame —^ True]; 
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Fig. 9 .1 . Equipotentials in the plane y = 0 in the vicinity of a grounded sphere 
placed in a uniform electric field directed along the Oz-axis. 



10 

Motion of a Bead on a Rotating Circle 

A bead of mass m is constrained to move without friction on a circular wire of 
radius R. The circular wire rotates with constant angular velocity uo around 
its vertical diameter. This system has two degrees of freedom. If, to describe 
the motion of the bead, we use the two spherical coordinates 6 and (̂ , the 
Cartesian coordinates of the bead in terms of these generalized coordinates 
are x = Rsm6cos(^, y = RsinOsimp, and z = Rcos6, if we take 9 = 0 at 
the bottom of the circular wire. Let us draw the figure. 

We load the package Graphics'Arrow' which implements a new graphics 
primitive to generate arrows. 

«Graphics' Arrow' 

g = Graphics[{Circle[{0, 0} , 1 ] , 

Ci rc le [{0 , 1.2}, {0.15, 0 .07}, {-

Line[{{0, 1.3}, {0, - 1.1}}], 

4Pi / 3 , Pi 

Line[{{0, 0} , {Cos[4 Pi / 3 ] , Sin[4 Pi / 3]}}] 

Ci rc le [{0 , 0} , 0 . 3 , {4 Pi / 3 , 3 

{PointSize[0 .04] , Point[{Cos[4 Pi 

t x t = Graphics[{ T e x t [ ' ' m ' \ {Cos 

Sin[4 Pi / 3] - 0 .05}] , 

T e x t [ ' ' g ' S {1 .3 , - 0 .1} ] , 

T e x t [ ' ' R ' \ {0.5 Cos[4 Pi / 3] -

0.5 Sin[4 Pi / 3] - 0 .2} ] , 

T e x t [ ' ' l 9 ' \ {0.3 Cos[17 Pi / 12] 

0.3 Sin[17 Pi / 12] - 0 .1}]}] ; 

Pi / 2}] , 

/ 3} ] , 

> 

/ 3 ] , Sin[4 Pi / 3 ]}]}}] ; 

[4 Pi / 3] -

0 .2 , 

- 0.04, 

0 .15, 



280 10 Motion of a Bead on a Rotating Circle 

a = Graphics[{Arrow[{1.2, 0. 

Arrow[{- 0 

fig = Show 

TextStyle 

.05, 1.13}, {0.05, 

2}, {1.2, 

1.13}]}]; 

[{g, txt, a}, AspectRatio -^ 

-^ {FontSlant -^ ' 'Italic'', 

- 0.5}], 

Automatic, 

FontSize —> 16}]; 

Fig. 10.1. A bead on a rotating circle. 

Taking into account that (p^ = LU^ the Cartesian components of the velocity 
vector are 

x' = R6' cos 6 cos (p — RusinO sin (̂ , 

y' = RO' cosOsiiiif -\- RuJsmOcos(^, 

z' = Re'smO, 

and the kinetic energy is 

K = (1 / 2) m R'̂ 2 ( t he t a ' [ t ] ' ' 2 + omega'^2 S i n [ t h e t a [ t ] ] "̂ 2) ; 

The potential energy being 

U = - m g R Cos [ the t a [ t ] ] ; 
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the expression of the Lagrangian is 

Lagrangian = K - U 

m R-̂  (omega^ Sinithetaftll^ + theta'ft]-^) 
g m R Cos [ the ta [ t ] ] + ^ — ^ - ^ 

Loading the Mathematica package Calculus 'Variat ionalMethods ' that con
tains the command EulerEquations we can get Euler-Lagrange equations. 

« C a l cuius 'Variat ionalMethods' 

EulerEquations[Lagrangian, t h e t a [ t ] , t ] / / Simplify 

m R ( ( - g + R omega'̂  Cos [ t h e t a [ t ] ] ) S in [ the t a [ t3 ] 

- R t h e t a " [ t ] ) == 0 

The equation of motion is 

eqn = t h e t a " [ t ] + (g / R - omegâ ^ Cos [ t h e t a [ t ] ] ) 

S i n [ t h e t a [ t ] ] == 0 

Taking into account the Coriohs force, the effective potential is 

Ueffective[theta_] := - m g R Cos[theta] 

(1 / 2) m omega'^2 R'̂ 2 Sin[theta]'^2 

Its minimum gives the stable equilibrium position. 

derTheta = D[Ueffec t ive[ the ta] , t he t a ] 

g m R S in[ the ta ] — m R^ omega^ Cos[theta] S in[ the ta ] 

Define 

0mega^2 = g / R 

and replace in the expression of the derivative of the effective potential 
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derTheta = derTheta / . g -> 0mega^2 R / / Simplify 

m R-̂  (Omega'̂  - omega'̂  Cos[ theta]) S in [ the ta ] 

The equilibrium positions are 

^ = 0 and 6 = ±6o such that cos ̂ o = —^ • 

If the oscillations around the stable equilibrium are small, from the expression 
of the second derivative of the effective potential, we find that the period T 
of these oscillations is 

27r 
T = , = when ^ = 0 is stable for uj < Q, and 

27r 
T = , when 6 = ±0Q is stable for uj > Q. 

Here are two plots of the effective potential, one for a; < i?, when ^ = 0 is 
stable, and the other one for cj > i?, when ^ — ^o is stable. 

m = l ; g = 9 . 8 ; R = 2 ; Omega = g / R; 

Clear[omega] 

omega = 0 . 5 ; 

pll = Plot[Ueffective[theta], {?, - Pi, Pi}, 

PlotStyle -^ {RGBColorCO, 0,1]}, 

DisplayFunction -^ Identity]; 

Clear[omega] 

omega =3.5; 

pl2 = Plot[Ueffective[theta], {theta, - Pi, Pi}, 

PlotStyle -^ {RGBColor[l, 0, 0]}, 

DisplayFunction -^ Identity]; 

Show[{pll, pl2}, DisplayFunction —> $DisplayFunction]; 



10 Motion of a Bead on a Rotating Circle 283 

201-

Fig. 10.2. Effective potentials when either 6 — 0 is stable or 0 = Oo ^ 0 is stable. 



n 
The Brachistochrone 

The brachistocrone (from the Greek, brakhisto meaning "shortest" and chronos 
meaning "time"), is the planar curve on which a body subjected only to the 
force of gravity slides without friction between two points in the least possible 
time. Finding the curve was a problem first posed by Galileo (1564-1642). In 
June 1696 the Swiss mathematician Johann Bernoulli (1667-1748), father of 
Daniel (1700-1782), another famous BernoulH, who was the first to find the 
correct solution in 1696, challenged his contemporaries in Acta Eruditorum to 
find the solution. Correct solutions came from his brother Jakob (1654-1705), 
Gottfried Wilhelm von Leibniz (1646-1716), Guillaume de I'Hopital (1661-
1704), and Isaac Newton (1643-1727). The solution of this famous problem 
led to the development of the calculus of variations. 

A bead of mass m slides without friction on a wire in a vertical plane. In 
the vertical plane, we choose the Ox-axis directed vertically downward. If the 
bead is released from the origin (0,0) with an initial velocity equal to zero, 
the time to reach the point (xo,2/o) is given by 

,^rd_i^rvi±¥id. n—- r 
Jo ^ Jo 

Conservation of energy implies that the velocity v along the wire is equal to 
\J1gx^ where g is the acceleration due to gravity. In order to find the equation 
of the curve representing the shape of the wire such that the time to reach a 
given point (xo,2/o) is minimum, we have to minimize the integral 

=r/ 
The function x\-^ y{x) minimizing this integral is the solution of the Euler-
Lagrange differential equation that could be obtained using the Mathematica 
command EulerEquations found in the package Calculus ' VariationalMeth-
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ods ' . But it is simpler to first note that, because the integrand depends only 
upon y' and not y, the Euler-Lagrange equation is 

That is, 

eqn = 

where 

Solve 

(yO 

c is a 

[eqn, 

^2 / (x (1 + (yO'^2)) == c; 

positive constant less than 1. Solving 

y ] 

for y' yields 

^ ^ _ Sqrt[c] Sqrt[x] , _^ Sqrt[c] Sqrt[x] 

Sqrt[l - ex] ' Sqrt[l - ex] 

Here the function y is defined by 

yCx_] := In teg ra te [Sqrt [e u] / S q r t [ l - e u] , {u, 0, x}] 

Because 0 < ex < 1, it is better to replace ex by s\v? 0\ that is, x(6) = 
(l/2c)(l — cos(2^). To obtain the expression of y{6) we have just to write 

dy dy dx 1 ^ . ,^^, 

Hence, 

y(0) = l ( 2 0 _ s i n ( 2 e ) . 

The parametric equation of the curve representing the wire shape is, therefore, 

^{0} = ^ ( 1 - cos(2e)) vie) = ^ ( 2 ^ - sin(20)). 

It is the equation of an inverted cycloid with its base along the Oy-axis and 
its cusp at the origin as shown in the figure below, where we took into account 
that the Ox-axis is directed vertically downward. 
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ParainetricPlot[{(l / 2) (2 theta - Sin 

- (1 / 2) (1 

PlotStyle -^ 

Frame -^ Tru€ 

PlotLabel -^ 

DefaultFont -

AspectRatio -

- Cos[2 theta])}, {theta, 

{RGBColor[0, 0, 1]}, Axes 

J, FrameTicks —> None, 

*'Brachistochrone'', 

^ {''Helvetica'', 14}, 

-̂  Automatic] ; 

[2 theta]), 

0, 

-̂  

Pi}, 
False, 

Brachistochrone 

Fig. 11.1. Brachistochrone. 
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Negative and Complex Bases 

It is common practice to represent numbers using positional number systems. 
In such a system, each number has a unique representation by an ordered 
sequence of symbols, the value of the number being determined by the position 
of the symbols and the base b of the system. If 6 is a positive integer we need 
b different symbols which are digits if 2 < 6 < 10 and extra symbols if 6 > 10. 
A number AT̂  is then represented by the sequence of digits dndn-i - - - dido 
such that 

Nb = dnXbn-\- dn-i X 6"""̂  H h 61 xb-\-do. 

The concept of base can be extended to negative and even complex bases. 

12.1 Negative Bases 

The representation of numbers in negative bases offers the advantage of not 
requiring the minus sign preceding a negative number. For example, in base 
— 10, the negative number —253 is represented by 1867 because 

253 == (-10)^3 + 8 (-10)^2 + 6 (-10) + 7 

True 

This representation, which can be shown to be unique, is more economical 
because it does not need the extra symbol "—" and the problem of +0 being 
equal to —0 does not exist. 

Note that, of course, positive numbers can also be represented in base —10. 
For example, 253 is represented by 353. 
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253 == 3 (-10)^2 + 5 (-10) + 3 

True 

Formally, as for positive bases, a number Â  in base 6, written {dndn-i... dido)6 
is equal to dnbn+dn-ib^~^-] \-bib-\-do where, for all fc, 0 < dfc < \b\- As for 
positive bases, the digits dk are calculated using the usual division algorithm. 
The successive quotients are, therefore, given by qk = (̂ fc+i — dk)/b. Here is, 
for example, the sequence of operations done to find the representations of 
253 and —253 in base —10 using Mathematica. 

n = 253; b = -10; 

d [ l ] = Mod[n, Abs[b]] 

d[2] = Mod[(n - d [ l ] ) / (b) , Abs[b]] 

d[3] = Mod[((n - d [ l ] ) / (b) - d[2]) / (b) , Abs [b] ] 

3 

5 

3 

n = -

d [ l ] 

d[2] 

d[3] 

d[4] 

• 253; b = -10; 

= Mod[n, Abs[b]] 

= ModCCn -

= Mod[((n 

= Mod[(((ii 
Abs [b] ] 

d [ l ] ) / 

- d [ l ] ) > 

- d [ l ] ) 

(b) , 

' (b) 

/ (b) 

Abs [b] ] 

- d[2]) / 

- d[2]) / 

(b) . 

(b) 

Abs [b] ] 

- d[3]) / (b) . 

7 

6 

8 

1 

All arithmetic operations can be carried out in negative base systems. To 
add, subtract, and multiply using negative-base representations, we proceed 
as usual. The problem of carrying digits requires, however, more care. Because 
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{10== 

20 == 

40 == 

60 == 

80 == 

= 1 

1 

1 

1 

1 

. (-10)-2 

(-10)-2 

(-10)-2 

(-10)-2 

(-10)-2 

! + £ 

+ 8 

+ 6 

+ 4 

+ 2 

1 (-10) 

(-10) 

(-10) 

(-10) 

(-10) 

+ 0 

+ 0, 

+ 0, 

+ 0. 

+ 0, 

> 

30 

50 

70 

90 

== 

== 

== 

== 

1 

1 

1 

1 

(-10)' 

(-10)' 

(-10)' 

(-10)' 

2̂ 

2̂ 

2̂ 

"2 

+ 

+ 

+ 

+ 

7 

5 

3 

1 

(-10) 

(-10) 

(-10) 

(-10) 

+ 

+ 

+ 

+ 

0, 

0, 

0, 

0} 

{True, True, True, True, True, True, True, True, True} 

instead of carrying 1,2,3, . . . we have to carry 19,18,17,.. . which will affect 
the next two higher places. This can create some complications when the carry 
digits accumulate giving an infinite series of carry digits. 

Here are a few simple examples with no accumulation of carry digits. In base 
-10 , 

1 9 

207 
+303 

690 

because 7+ 3 = 10, we write 0 and carry 19, 9 + 0 + 0 = 9, we write 9 and 
then add 1 (of 19), 2 and 3 to get 6, to obtain the final result 690. We verify 
that in base 10, 207 and 303 have the same representation, and that their 
sum, 510, is represented by 690 in base —10. 

207 

303 

510 

== 

== 

== 

2 

3 

6 

(-

(-

(-

-10) 

-10) 

-10) 

-^2 

"2 

^2 

+ 

+ 

+ 

0 

0 

9 

(-

(-

(-

-10) 

-10) 

-10) 

+ 

+ 

+ 

7 

3 

0 

True 

True 

True 

When subtracting two numbers in base —10, we can borrow 10 in one column 
by adding one to the next higher column. For example, 353 — 187 = 386, 

1 1 

353 
- 1 8 7 

386 
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because 7 being greater than 3 we borrow 10 from the next left column, then 
13 minus 7 equals 6, then 8 is greater than 6 (5 + 1) so we borrow again 10 
from the next left column, 16 minus 8 is 8, finally 4 (3 -h 1) minus 1 is 3. 
Subtracting 187 from 353 in base -10 gives 386. In base 10, 353 is 253 and 
187 is 27, so 253 - 27 being equal to 226 we verify that 226 in base - 1 0 is 
386: 

253 == 3 (-10)^2 + 5 (-10) + 3 

27 == 1 (-10)^2 + 8 (-10) + 7 

226 == 3 (-10)^2 + 8 (-10) + 6 

True 

True 

True 

In order to multiply 304 by 107 (note that these two numbers have the same 
representation in bases 10 and —10), we write 

1 8 

1 8 

304 
xl07 
18288 
30400 
48688 

because we first multiply 304 by 7 which gives 18,288 (where instead of car
rying 2 we carried 18, etc.) then multiplying 304 by 0 gives 0, multiplying 304 
by 1 gives 304. Finally adding 18,288 -h 30,400 = 48,688, which is equal in 
base 10 to 304 x 107 = 32,528. 

304 

107 

304 

8 (-

== 3 

== 1 

107 = 

(-10)^2 

(-10)^2 

== 32528 

-10) + 8 

+ 4 

+ 7 

== 4 (--10) ^4 + 8 ( • -10) ^3 + 6 (--10) ^2 + 

True 

True 

True 
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As mentioned above, it often happens that carry digits accumulate. For in
stance, if we add the two negative numbers —44 and —13, represented, re
spectively, by 56 and 27 in base —10, because 6 -f- 7 = 13, write 3 and carry 
19, 9 + 5 -h 2 = 16, write 6 and carry 19, 9 + 1 = 10, write 0, and carry 19, 
and so on. We thus obtain an infinite sequence of zeros. We just have to stop 
when obtaining the infinite sequence of zeros. If we do eliminate this infinite 
sequence of zeros we correctly obtain 63 representing —57 = (—44) + (—13) 
in base —10. 

- 44 

- 13 

- 57 

== 

== 

== 

5 

2 

6 

(-

( • 

(-

-10) 

-10) 

-10) 

+ 

+ 

+ 

6 

7 

3 

True 

True 

True 

Then, 

1 9 

1 9 

1 9 

56 
-h27 

0063 

Many other problems such as representations of rationals having either termi
nating or periodic expansions and reals that do not have periodic expansions 
can be studied. For more details, the interested reader should consult [21]. 

12.2 Complex Bases 

12.2.1 Arithmetic in Complex Bases 

A Gaussian integer z = x -\-iy is said to be expressible in the complex base 
b = a + i/3 a it can be written in the form z = Yll^=o ^kb^ where, as for 
usual positive bases, the numbers dk {^ < k < n) are called digits. In the 
base b = —a + i/3 (a > 0), it can be shown that all Gaussian integers can be 
represented with the "digits" 0 ,1 ,2 , . . . , a^. Thus, the base 6 = —1+i provides 
a binary representation of all Gaussian integers using only the digits 0 and 1. 
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For example, 7 + 6i = (1101001)_i+i because 

7 + 6 I == (-1 + D-^e + (-1 + 1)^5 + (-1 + D-^S + 1 

True 

As with negative bases, all arithmetic operations can be performed in complex 
bases. But, here again, the problem of carry digits has to be handled with care. 
In base —1 + i, each time a sum exceeds (—1)̂  = 1, we have to carry (—1)̂  -h 1 
or some multiple of it to the next left columns. Because 

(-1)^2 + 1 == 2 == (-1+ 1)^3 + (-1+ I)'^2 + 0 (-1+ I) + 0 

True 

we have to write 0 and carry 110 to the next left columns. For example, the 
representations of 2 + 3i and — 1 — i in base — 1 + i are 

2 + 3 I == 1 (-1 + I)'^3 + 1 (-1+1) + 1 

-1 - I == 1 (-1+1)^2 + 1 (-1 + I) + 0 

True 

True 

Then, 

1 1 0 

1 1 0 

1011 
+110 

1110101 

To add 1011 and 110, in base - 1 + i, add 1 + 0 = 1, write 1, add 1 + 1 = 2, 
write 0 and carry 110, 0 + 1 + 0 (from carry 110) = 1, write 1 + 1 (from 
previous carry 110) = 2, write 0 and carry 110, 1 (from first carry) +0 (from 
second carry) = 1, write 1, and because we have the remaining two Is from the 
second carry, write 11. The result is, therefore, 1110101, which is the binary 
representation of (2 + 3i) + (—1 — i) = 1 + 2i. Asking Mathematica to check 
yields 
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(2 + 3 I ) + ( - 1 -

(1 ( -

1 ( -1 

1 ( -1 

1 + I ) - 3 + 1 

+ I ) + 0) == 

+ I )"6 + ( -1 

I ) == 

( -1 + 

+ I ) -

1 + 2 1 

I ) 

5 + 

+ 1) 

== 

+ (1 ( 

( -1 + I ) - 4 

- l + D -

+ 1 (-

• 2 

-1 

+ 

+ I ) -2 + 1 

True 

12.2.2 Fractal Images 

In what follows we generate fractal images plotting Gaussian integers as points 
of R^ using complex bases. 

Consider the base b = — 1 + i with the digit set {0,1}, and first build up the 
list of Gaussian integers defined recursively by 

b = - l + I ; 

GintlCO] = { 0 , 1 } ; (* s e t of d i g i t s *) 

Gint lCl ] = J o i n [ G i n t l [ 0 ] , G i n t l [ 0 ] + b] ; 

Gint l [n_] := J o i n [ G i n t l [ n - 1 ] , G i n t l [ n - 1] + b'^n] 

For example, we find 

Gint l [2] 

{0, 1, - 1 -h I , I , - 2 I , 1 - 2 I , - 1 - I , - 1} 

In order to transform the list Gint l [n] of Gaussian integers in points in R^, 
we use the function complex2point and make it listable. 

Attributes[complex2point] = L i s t ab l e ; 

complex2point [z_] := {Re[z], Im[z]} 

complex2point[Gintl[2]] 

{{0, 0} , {1 , 0} , { - 1 , 1}, {0, 1}, {0, - 2 } , 

{1, - 2 } , { - 1 , - 1 } , {0, -1}} 
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In order to represent the list of points we associate to each point of the list a 
rectangle using the function: 

rectangleList [lis_List] : = 

Table[Rectangle[lis[ [ i ] ] , l i s [ [ i]] + 1 . ] , 

{ i , 1, Length[lis]}] 

Here are the plots corresponding to the first 4 lists of points 

dl = Graphics[{Hue[1 / 15], 

rectangleList[complex2point[Gint1[1]]]}] ; 

d2 = Graphics[{Hue[2 / 15], 

rectangleList[complex2point[Gint1[2]]]}]; 

d3 = Graphics[{Hue[3 / 15], 

rectangleList[complex2point[Gint1[3]]]}]; 

d4 = Graphics[{Hue[4 / 15], 

rectangleList[complex2point[Gint1[4]]]}]; 

Show[GraphicsArray[{{dl, d2}, {d3, d4}}], 

AspectRatio -^ Automatic]; 

Fig. 12.1. Images associated with lists Gintl [ [1] ] , Gintl [ [2] ] , Gintl [ [3] ] , and 
Gintl[[4]]. 

Increasing the list length generates a dragon-type fractal. 
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dl4 = Show[Graphics[{Hue[14 / 15] , 

rectangleList[complex2point[Gint[14]]]}] , 

AspectRatio —̂  Automatic]; 

Fig. 12.2. Dragon-type fractal associated with list Gint [[14]]. 

In the base 6 = —2 + i the digit set is {0,1,2,3,4}, and, as above we build up 
the list of Gaussian integers defined recursively by 

b = - 2 + 

Gint2[0] 

Gint2[l] 

Gint2 [0] 

Gint2 [n_] 

Gint2[n -

Gint2[n -

I ; 

= {0, 1, 2, 3 , 4] 

= Join[Gint2[0] , 

+ 2 b,Gint2[0] + 

:= Join[Gint2[n 

1] + 2 b-^Cn-l), 

1] + 4 b-^Cn-l)] 

S (* set of d ig i t s *) 

Gint2[0] + b, 

3 b. 

- 1 ] , 

Gint2[0] 

Gint2[n 

Gint2[n - 1] -̂  

+ 4 b ] ; 

- 1] + b 

• 3 b ^ ( n -

^(n-

1 ) , 

-1), 

For example, we find 
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Gint2 [2] 

{0, 1, 2, 3 , 4, - 2 + I , - 1 + I , I , 1 -h I , 2 + I , - 4 +2 I , 

- 3 + 2 1, - 2 + 2 1, - 1 + 2 1, 2 1, - 6 + 3 1, - 5 + 3 1, 

- 4 + 3 1, - 3 + 3 1, - 2 + 3 1, - 8 + 4 1, - 7 + 4 1, 

- 6 + 4 1, - 5 + 4 1, - 4 + 4 1, - 2 + 1, - 1 + I , I , 1 + I , 

2 + 1, - 4 + 2 1, - 3 + 2 1, - 2 + 2 1, - 1 + 2 1, 2 1, 

- 6 + 3 1, - 5 + 3 1, - 4 + 3 1, - 3 + 3 1, - 2 + 3 1, 

- 8 + 4 1, - 7 + 4 1, - 6 + 4 1, - 5 + 4 1, - 4 + 4 1, 

- 10 + 5 I , - 9 + 5 1, - 8 + 5 1, - 7 + 5 1, - 6 + 5 1, 

- 4 + 2 1, - 3 + 2 1, - 2 + 2 1, - 1 + 2 1, 2 1, - 6 + 3 1, 

- 5 + 3 1, - 4 + 3 1, - 3 + 3 1, - 2 + 3 1, - 8 + 4 1, 

- 7 + 4 1, - 6 + 4 1, - 5 + 4 1, - 4 + 4 1, - 1 0 + 5 I , 

- 9 + 5 1, - 8 + 5 I , - 7 + 5 I , - 6 + 5 1, - 1 2 + 6 I , 

- 1 1 + 6 I , - 1 0 + 6 I , - 9 + 6 1, - 8 + 6 1, - 6 + 3 1, 

- 5 + 3 1, - 4 + 3 1, - 3 + 3 1, - 2 + 3 1, - 8 + 4 1, 

- 7 + 4 1, - 6 + 4 1, - 5 + 4 1, - 4 + 4 1, - 10 + 5 I , 

- 9 + 5 1, - 8 + 5 1, - 7 + 5 1, - 6 + 5 1, - 1 2 + 6 I , 

- 11 + 6 I , - 10 + 6 I , - 9 + 6 I , - 8 + 6 I , - 14 + 7 I , 

- 13 + 7 I , - 12 + 7 I , - 11 + 7 I , - 10 + 7 I , - 8 + 4 I , 

- 7 + 4 1, - 6 + 4 1, - 5 + 4 1, - 4 + 4 1, - 10 + 5 I , 

- 9 + 5 1, - 8 + 5 1, - 7 + 5 1, - 6 + 5 1, - 1 2 + 6 I , 

- 11 + 6 I , - 10 + 6 I , - 9 + 6 I , - 8 + 6 I , - 14 + 7 I , 

- 13 + 7 I , - 12 + 7 I , - 11 + 7 I , - 10 + 7 I , - 16 + 8 I , 

- 15 + 8 I , - 14 + 8 I , - 13 + 8 I , - 12 + 8 1} 

Below we represent the plots corresponding to the first four lists of points. 
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dl = Graphics[{Hue[1 / 10], 

rectangleList [complex2poiiit [Gint2 [1] ] ] }] ; 

d2 = Graphics[{Hue[2 / 10], 

rectangleList[complex2point[Gint2[2]]]}] ; 

d3 = Graphics [{Hue[3 / 10], 

rectangleList[complex2point[Gint2[3]]]}]; 

d4 = Graphics[{Hue[4 / 10], 

rectangleList[complex2point[Gint2[4]]]}] ; 

Show[GraphicsArray[{{dl, d2}, {d3, d4}}] , 

AspectRatio -^ Automatic]; 

Fig. 12.3. Images associated with lists Gint2 [ [ ! ] ] , Giiit2 [ [2] ] , Gint2 [ [3] ] , and 
Gint2[ [4] ] . 

Increasing the list length generates a fractal image. The image associated to 
G in t2 [ 8 ] , obtained using the following command, has a size of more than 100 
MB. It is not displayed. 

d8 = Show[Graphics[{Hue[8 / 1 0 ] , 

r e c t a n g l e L i s t [ c o m p l e x 2 p o i n t [ G i n t 2 [ 8 ] ] ] } ] , 

AspectRatio -^ Automat ic ] ; 
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Convolution and Laplace Transform 

If / and g are two functions defined on the semi-infinite interval [0, CXD[, the 
convolution of these two functions is defined by 

/ f{t-u)g{u)du. 
Jo 

As shown using the Mathematica command LaplaceTransf orm, the Laplace 
transform of the convolution of two functions is simply the product of their 
Laplace transforms: 

LaplaceTransform[Integrate[f[ t - u] g [ u ] , {u, 0, t } ] , t , s] 

LaplaceTransformCf[t], t , s] LaplaceTransform[g[t] , t , s] 

If F and G are, respectively, the Laplace transforms of / and ^, the result 
above reads 

poo pt 
/ e"*" dt / f(^ - u)g{u) du = F{s)G{s). 

Jo Jo 
In other words, the Laplace transform transforms a convolution into an ordi
nary product. 

This theorem can be used to solve Volterra integral equations. For example, 
find f [ t ] such that 

eqn = f [ t ] - In tegra te[Exp[ t - u] f [ u ] , {u, 0, t}] == t 

f [ t ] - In t eg ra t e [E^ ~ ^ f [u ] , {u, 0, t}] == t 
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Solve[LaplaceTransform[eqn, t , s ] , 

LaplaceTransform[f[ t ] , t , s ] ] 

— 1 -l- s 
{{LaplaceTransformCf [ t ] , t , s] -^ ^}} 

( - 2 + s) s^ 

The solution is 

f [ t_] = InverseLaplaceTransform[(s - 1) / (s"2 (s - 2 ) ) , 

s , t ] / / Simplify 

-1+E^ ^ + 2 t 

and it can be checked 

S impl i fy[ f [ t ] - In tegra te[Exp[ t - u] f [ u ] , {u, 0, t } ] ] == t 

True 

More details on the Laplace transform and its use in solving convolution 
equations can be found in [4, 8]. 

Within the framework of distribution theory, the Laplace transform allows us 
to justify the so-called operational calculus. In most of the literature from the 
early twentieth century, Oliver Heaviside (1850-1925) is said to be the inventor 
of operational calculus. According to J. Liitzen [33], "Today we know that this 
view is wrong, but it reflects the central role that Heaviside has played in the 
history of this branch of mathematics. His work became the starting point of 
the development of the operational calculus in this century, his predecessors 
apparently being for a period totally forgotten." On the history of operational 
calculus from Heaviside to Laurent Schwartz, see [8]. 
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Double Pendulum 

A double pendulum is a simple dynamical system that exhibits a complex 
dynamical behavior. It consists of two mass points at the end of rigid massless 
rods, one suspended from a fixed pivot and the second one suspended from 
the bob of the first. The system is free to oscillate in a vertical plane. 

Fig. 14.1. A double pendulum. 

Here is the list of graphics commands to draw the figure. Note the commands 
used to generate the symbols 6i and 62-
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11 = Graphics[Line [{{0, 0} , {Cos 

12 = Graphics[Line [{{Cos[1.3], -

{Cos[1.3] + Cos[0 .9] , - Sin[1.3] 

X = Graphics[Line [{{0, 0} , { 1 . 1 , 

Y = Graphics[Line[{{0, 0} , {0, -

U = Graphics[Line[{{Cos[1.3] , - i 

{Cos[1.3], - 1.8}}]]; 

t h e t a = Graphics[{Circle[{0, 0} , 

{- 90 Degree, - 75 Degree}], 

Ci rc le [{Cos[1.3], - S i n [ 1 . 3 ] } , 0 

{- 90 Degree, - 50 Degree}]}]; 

T = G r a p h i c s [ { T e x t [ ' ' x ' ' , {1.05, 

T e x t [ ' ' y ' \ {0.05, - 1.75}], 

T e x t [ S u b s c r i p t [ ' ' l " , 1 ] , {0.22, 

T e x t [ S u b s c r i p t [ ' ' l ' ' , 2 ] , {0.62, 
T e x t [ S u b s c r i p t [ ' ' m ' ' , 1 ] , {0.38, 

Tex t [Subscr ip t [ ' 'm" , 2 ] , {0.98, 

Text[FontForm[Subscript[ " q ' ' , 1 

{0.062, - 0 .42}] , 

[ 1 . 3 ] , - S in [1 .3 ]}} ] ] ; 

S in [1 .3 ]} , 

- Sin[0.9]}}]] 

0}}]] ; 
1.8}}]]; 

3 in [1 .3 ]} , 

0 . 3 , 

. 3 , 

- 0 .05}] , 

- 0 .5} ] , 

- 1.3}], 
- 0 .92}] , 

- 1.68}], 

] , { ' 'Symbol" , 

Tex t [Fon tForm[Subscr ip t [ ' ' q ' ' , 2 ] , { ' ' S y m b o l ' ' , 

{0.4, - 1.34}]}]; 

Show[{ll, 12, X, Y, U, t h e t a , T} 

DefaultFont -^ { " C o u r i e r ' \ 12} 

, AspectRatio -

» 
Epilog -> {{PointSize[0.05] , RGBColor[0, 0, 1 ] , 

Point[{0, 0}]} , 

{PointSize[0 .05] , RGBColor[l, 0, 

Point [{Cos[1 .3] , - S in [1 .3 ]} ]} , 

{PointSize[0 .05] , RGBColor[l, 0, 

0 ] , 

0 ] , 

) 

12}], 

12}]. 

-> Automatic, 

Point [{Cos[1.3] + Cos[0 .9] , - Sin[1.3] - Sin[0.9]}]}}] ; 

Symbol[' 'name ' ' ] refers to a symbol with a specified name. 

If ^1 and £2 are the respective lengths of the first and second pendulum strings, 
the bob positions are given by 

bob[l] := 11 { S i n [ t h e t a l [ t ] ] , Cos [ t he t a l [ t ] ] } 

bob [2] := bob[l] + 12 { S i n [ t h e t a 2 [ t ] ] , Cos [ theta2 [ t] ]} 



14 Double Pendulum 305 

If mi and m2 are the respective masses of the bobs, the following commands 
will give the expression of the Lagrangian. 

speed [bobj := Sqrt[D[bob, t ] . D[bob, t ] ] ; 

vl = speed[bob[1]] / / Simplify 

v2 = speed[bob[2]] / / Simplify 

Sqrt[ l l2 the ta l ' [ t ]2 ] 

Sqrt[ l l2 the ta l ' [ t ]2 + 

2 11 12 Cos [thetal [t] - theta2[ t ] ] theta l ' [ t ] theta2'[t] + 

12^ theta2'[t]2 ] 

The kinetic energy K is 

K = (1 / 2 ml vl'^2 + 1 / 2 m2 v2^2) / / Simplify 

(11^ (ml + m2) theta l ' [ t ] 2 + 

2 11 12 m2 Cos [thetal [t] - theta2[ t ] ] theta l ' [ t ] theta2'[t] + 

12^ m2 theta2'[t]2) / 2 

and, if g denotes the acceleration due to gravity, the potential energy U is 
given by 

U = - ml g bob[l] [[2]] - m2 g bob[2] [[2]] 

- (g 11 ml Cos [thetal [t] ] ) - g m2 (11 Cos [thetal [t] ] + 

12 Cos[theta2[t]]) 

Hence, the Lagrangian is given by 

Lagrangian = (K - U) // Simplify 

g (11 (ml + m2) Cos [thetal [t]] + 12 Cos [theta2 [t] ]) + 

11^ (ml+m2) thetal'ftl^ 
^̂  ^ ^ -f 11 12 m2 Cos [thetal [t] -
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Vp- m2 theta2'ftl^ 
the ta2 [ t ] ] t h e t a l ' [ t ] t he t a2 ' [ t ] 

In order to write down the Euler-Lagrange's equations, we first have to load 
the package Calculus 'Variat ionalMethods ' . 

« C a l c u l u s ' VariationalMethods' 

eqns = EulerEquations[Lagrangian, { the ta l [ t ] , t h e t a 2 [ t ] } , t ] 

{- (11 (g ml Sin [ t he t a l [ t ] ] + g m2 Sin [ the t a l [ t ] ] + 

12 m2 Sin [ t he t a l [ t ] - t h e t a 2 [ t ] ] t he ta2 ' [ t ] ' ^ + 

11 (ml + m2) t h e t a l " [ t ] + 12 m2 Cos [ the t a l [ t ] -

t h e t a 2 [ t ] ] t h e t a 2 " [ t ] ) ) == 0, 

- (12 m2 (g S i n [ t h e t a 2 [ t ] ] - 11 Sin [ t he t a l [ t ] -

t h e t a 2 [ t ] ] t h e t a l ' [ t ] ^ -h 11 Cos [ t he t a l [ t ] -

t h e t a 2 [ t ] ] t h e t a l ' ' [ t ] + 12 t h e t a 2 " [ t ] ) ) == 0} 

Choosing the following numerical values 

Clear[values] 

values = {g ^ 9 .8 , 11 ^ 1, 12 ^ 1, ml -^ 1, m2 ^ 1}; 

we obtain 

numEqns = eqns / . values 

{- 19.6 Sin [ t he t a l [ t ] ] - Sin [ t he t a l [ t ] - t h e t a 2 [ t ] ] the ta2 ' [ t ] ' ^ 

- 2 t h e t a l " [ t ] - Cos [ the t a l [ t ] - t h e t a 2 [ t ] ] t h e t a 2 " [ t ] ) ) == 0, 

- 9.8 S i n [ t h e t a 2 [ t ] ] + Sin [ t he t a l [ t ] - t h e t a 2 [ t ] ] t h e t a l ' [ t ] ^ -

Cos [ the t a l [ t ] - t h e t a 2 [ t ] ] t h e t a l " [ t ] - t h e t a 2 " [ t ] ) ) == 0} 

and choosing the initial conditions 
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Clear[initCond] 

initCond = {thetal[0] == 
0 .0 , theta2'[0] == O.O}; 

1 .5 , theta2[0] == 3 0, thetal ' [0] == 

we can solve numerically the equations of motion: 

Clear[solution] 

solution = 

{ the ta l [ t ] 

NDSolve[Join 

, t h e t a 2 [ t ] } , 

[numEqns, initCond], 

{ t , 0, 10}] 

{ { the ta l [ t ] -^ InterpolatingFunction[{{0., 10 . } } , <>] [ t ] , 

theta2[t ] -^ InterpolatingFunction[{{0. , 10 . } } , <>][ t ]}} 

Plotting the solution reveals a fairly complicated behavior. 

Plot[Evaluate[thetal[t] / . so lu t ion] , { t , 0, 10}]; 

Plot[Evaluate[theta2[t] / . so lu t ion] , { t , 0, 10}]; 

Fig. 14.2. Variations of angle 6i as a function of time. 

Fig. 14.3. Variations of angle 62 as a function of time. 
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The positions of the bobs are defined by rodl and rod2 after having flipped 
the y-coordinate which pointed down. 

rodl[ t_] : = 

Evaluate[11 { S i n [ t h e t a l [ t ] ] , - CosCtheta l [ t ] ]}] / . values 

rod2[t_] := Evaluate [11 {Sin[ the ta l [ t ] ] , - Cos [ t he t a l [ t] ] } + 

12 { S i n [ t h e t a 2 [ t ] ] , - Cos[ the ta2[ t ] ]}] / . values 

Although the trajectory of bob[l] is the circle of radius 11 = 1, centered at 
the origin, the trajectory of bob [2] may be very complicated if the initial 
values of t h e t a l and the ta2 are not small as illustrated below. To follow the 
trajectory of bob [2] a sequence of numbered points shows all points from 0 
(initial point) to 20 (last point). 

p i = Parametr icPlot [Evaluate[rod2[ t ] / . s o l u t i o n ] , 

{ t , 0, 10}, Ticks -^ None, AspectRatio -^ 1, 

DisplayFunction -^ I d e n t i t y ] ; 

p t s = Fla t ten[Table[Evaluate[ rod2[ t ] / 

{ t , 0, 10, 0 .5} ] , 1 ] ; 

numPts = Graphics[{{PointSize[0.04] , CMYKColor[0, 0 

Map[Point, p t s ] } . Table[Text[ i - 1, P a r t [ p t s , i ] ] , 

{ i , 1, Length [p t s ]} ]} ] ; 

Show[{pi, numPts}, PlotRange -^ All, AspectRatio -^ 

DisplayFimction -^ $DisplayFunction]; 

solution /. values]. 

1, 0], 

1, 

Fig. 14.4. Trajectory of bob [2]. 
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The following animation better reveals the chaotic behavior of the double 
pendulum when the initial angles thetal [0] and theta2 [0] are not small. 

endPtsl = Flatten[Table[Evaluate[rodlEt] / . 
so lu t ion / . va lues ] , 

{ t , 0, 10, 0 . 5 } ] , 1 ] ; 

endPts2 = Flatten[Table[Evaluate[rod2[t] / . solution / . 
va lues ] , 

{ t , 0, 10, 0 . 5 } ] , 1 ] ; 

{Length[endPtsl], Length[endPts2]} 

{21, 21} 

Table[Show[Graphics 

Line[{{- 2, 

Line[{{0, 0} 

{RGBColor[0, 

{RGBColor[l, 

{RGBColor[0, 

AspectRatio 

- 2 } . { 
, endPt 

0, 0 ] , 

0, 0 ] , 

0, 1 ] , 

-> 1 ] , 

![{{RGBColor[1, 0 

2, - 2 } . {2, 2 } , 

s l [ C i ] ] , eiidPts2 

PointSize[0.04] 

PoiiitSize[0.04] 

PointSize[0.04] 

, 0 ] , Circle[{0, 

{- 2 , 2 } , {- 2 , -

[ [ i ] ] } ] . 
, Point[{0. 0}]} 

0} , 1 ] } , 

• 2 } } ] . 

9 

, Po in t [ endPts l [ [ i ] ] ] } . 

, Point[endPts2[ [ i ] ] ] } } ] , 

{ i , 1, Length[endPtsl]}]; 

Fig. 14.5. Last figure of the sequence generating the animation of the double pen
dulum. 
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Duffing Oscillator 

15.1 The Anharmonic Potential 

The DufRng equation is 
x" -ax^- bx^ = 0, 

where a and 6 > 0 are two parameters. Depending upon the sign of a we have 
either a single-well (a < 0) or a double-well {a > 0) anharmonic potential V 
defined by 

V{x) = --x^ + -x\ 

We can ask Mathematica to plot the potential when a is either negative or 
positive. 

pll = Plot[ - a x'̂ 2 / 2 + b x^4 / 4 /. {a 

{x, - 15, 15}, AxesOrigin -̂  {0, 0}, 

Ticks -̂  {{- 15, - 10, - 5, 0, 5, 10, 15}, 

PlotStyle -̂  RGBColor [0, 0, 1], 

PlotLabel -̂  '*single-well potential'\ 

DefaultFont -̂  {''Helvetica'\ 12}, 

DisplayFunction -^ Identity]; 

pl2 = PlotC - a x'̂ 2 / 2 + b x'*4 / 4 /. {a 

{x, - 15, 15}, AxesOrigin -̂  {0, - 80}, 

Ticks -> {{- 15, - 10, - 5, 0, 5, 10, 15}, 

{- 20, 40, 100, 160}}, 

-̂  - 4, b -> 0.05}, 

{300, 600, 900}}, 

-> 4, b ̂  0.05}, 
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PlotStyle ^ {RGBColorCO, 0, 1 ] } , 

PlotLabel -^ ''double-we 11 p o t e n t i a l " , 

DefaultFont -^ { ' ' H e l v e t i c a ' \ 12}, 

Display-Function —> Identity] ; 

Show[GraphicsArray[{pll, p l 2 } ] ] ; 

single-well potential 

9001 

double-well potential 
1601 
100 
40 

15-10-5 5 10 15 -15-10-5 5 10 15 

Fig. 15.1. Anharmonic potential V{x) = —(a/2)x^ H- {b/4)x^, for a = —4 (left 
figure) and a = 4 (right figure). In both cases 6 = 0.05. 

15.2 Solving Duffing Equations 

15.2.1 Single-Well Potential 

Clear[a, b] 

a = - 4; b = 0.05; 

s o l i = NDSolve [{x"[t] 

x[0] == - 10, 

{ t , 0, 30}] 

x'[0] == 

- a 

0 } , 

x[ t ] + 

x [ t ] . 

b x[ t ] ^3 == 0, 

{{x[t ] -^ Interpolat ingFimction[{{0. ,30.}} ,<>][t]}} 

Plot[Evaluate[x[t] / . s o i l ] . 

PlotStyle -^ {RGBColorCO, 0, 

DefaultFont -^ { ' 'Helvetica' 

AxesLabel -^ { " f , " x ( t ) ' 

{ t , 0, 30}, 

1 ] } , 
' , 10}, 

' } ] ; 
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x(t) 
10 

-5 

-10 

A A 

1$ 

1) 

l i 

29 30 

Fig. 15.2. Solution of the Duffing equation in the interval [0,30], for a = —4 and 
b = 0.05, and the initial conditions x(0) = —10 and x\0) = 0. 

15.2.2 Double-Well Potential 

Clear[ 

a = 4; 

s o i l = 

x[0] = 

{ t , 0, 

a, b] 

b = 0.05; 

NDSolve[{x" 

= 0, x'[0] = 

30}] 

[t] 

= 0. 

- a 

01}, 

x [ t ] + 

x [ t ] . 

b x [ t ] -3 == 0, 

{{x[t ] -^ InterpolatingFunction[{{0.,30.}},<>] [ t ] } } 

Plot[Evaluat 

PlotStyle -^ 

DefaultFont 

AxesLabel -^ 

e [x[ t ] / . sol2] , 

{RGBColorCG, 0, 

-> { ' 'Helvetica' 

{ ' ' t ' \ ' ' x ( t ) ' 

{ t , 0, 

1 ] } . 
\ 10}, 

' } ] ; 

30}, 
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x(t) 

10 

5 

20 25 30 

- 5 

-10 

Fig. 15.3. Solution of the Duffing equation in the interval [0,30], for a = 4 and 
b = 0.05, and the initial conditions x(0) = 0 and x'{0) = 0.01. 

15.3 Oscillations in a Potential Well 

If V{x) is the potential, the conservation of energy imphes 

where E is the total energy. From the equation above, we obtain 

dx_ 2{E-V{x)) 
dt ~ y m 

Thus, the period of oscillation T is given by 

rx2 

^̂ £̂7 m 

2{E-Vix)) 
dx, 

where Xi and X2 are such that V{xi) = V{x2) = E for Xi < x < X2 and 
V{x) < E. 

15.3.1 Single-Well Potential 

Here m = 1, xi = -10 , X2 = 10, and E = V(10). 

energyl = 2 x'̂ 2 + 0.0125 x'^4 / . x -^ 10 

325 
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per iod l = 2 NIntegrateC 1 / Sqr t [2 (energyl - 2 x^2 

0.0125 x'^4)], {x, - 10, 10}] 

2.26816 - 7.29805x10"^^ I 

Using Chop replaces the imaginary part close to zero by zero. 

Chop[periodl] 

2.26816 

We can also get rid of the spurious small imaginary part replacing the bounds 
-10 and 10 by -9.99999999999999, and 9.99999999999999. 

period2 = 

2 NIntegrateC 1 / Sqr t [2 (energyl - 2 x^2 - 0.0125 x ^ 4 ) ] , 

{x,-9.99999999999999, 9.99999999999999}] 

2.26816 

15.3.2 Double-Well Potential 

Here m = 1 smd E = |(x'(0))2. 

energy2 = (1/2) (0.01)^^2 

0.00005 

Then xi and X2 are the real solutions of 

NSolve[energy2 == - 2 x'̂ 2 + 0.0125 x^4, x] 

{{x -^ -12 .6491} , {x ^ 0. - 0.005 I } , {x -^0 . + 0.005 I } , 

{x -^ 12.6491}} 

Hence, 
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period2 = 2 NIntegrateE 1 / Sqrt[2(energy2 + 2 x^2 

0.0125 x^4)], {x, - 12.6491, 12.6491}] 

NIntegrate :: slwcon : Numerical integration converging 

too slowly; suspect 

one of the following: singularity, value of the 

integration being 0, oscillatory integrand, or 

insufficient WorkingPrecision. If your integrand is 

oscillatory try using the option Method->Oscillatory 

in NIntegrate. More 

NIntegrate :: ncvb : 

NIntegrate failed to converge to prescribed accuracy 

after 7 recursive bisections in x near x = -0.0988211 

. More 

18. 3727 

Let us try to include the approximative position of the singularity in the limits 
of integration as suggested when we click More in the message above. 

period2 = 2 NIntegrateE l/SqrtE2(energy2 + 2 x"2 -

0.0125 x^4 ) ] , {x, - 12.6491, 0, 12.6491}] 

18.436 

15.4 Forced Duffing Oscillator with Damping 

Adding a damping term and a harmonic forcing term to the Duffing equation 
yields: 

x" + 7x' — ax^- bx^ = ccos{ut). 

If we choose a = 0.4 and 6 = 0.5 we have a double-well as shown below. 
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C l e a r [ a , b] 

p l 3 = PlotC • 

{x , - 1 . 5 , 1 

PlotRange -^ 

- a 

. 5 } , 

A l l 

x'̂ 2 / 2 + b X 

P l o t S t y l e -^ 

, DefaultFont 

^^ / ^ /. {a 
{RGBColorCO, 

-^ { ' ' H e l v e t 

^ 

0 , 

i c a 

0 . 4 , 

13} 
i > 

b -> 

} 

1 2 } ] ; 

0 5}, 

Fig. 15.4. Double-well potential V{x) = -{l/2)ax^ + (l/4)6x^ for a = 0.4 and 
6 = 0.5. 

15.4.1 No Forcing Term 

C l e a r [ a , b , g , omega, 

a = 0 . 4 ; b = 0 . 5 ; g = 

s o l 3 = NDSolve [ {x ' ' [ t ] 

c Cos[omega t ] , 

x [ 0 ] == 0, x ' [0] == 0. 

c] 

0 . 0 2 ; 

+ g X 

0 0 1 } , 

omega 

' [ t ] -

x [ t ] . 

= 

a 

{t 

0 .125 ; c = 

x [ t ] 

, 0 , 

+ b X 

200}] 

= 0; 

[ t ] - ~3 == 

{{x[t ] -^ InterpolatingFiinction[{{0., 200 .}} , <>][t ]}} 

P l o t [ E v a l u a t 

P l o t S t y l e -> 

DefaultFont 

AxesLabel -^ 

e [ x [ t ] / . s o l 3 ] , 

{RGBColorCO, 0 , 

-^ { " H e l v e t i c a ' 

{ ' ' t ' \ ' ' x ( t ) ' 

{ t , 0 , 2 0 0 } , 

1 ] } , PlotRange -> 

\ 1 0 } , 

^ } ] ; 

A l l , 
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t 
200 

Fig. 15.5. Solution of the Duffing equation: x" + gx' — ax + hx^ ——^ for a = 0.4, 
b = 0.5. g = 0.02, x{0) = 0, and x'{0) = 0.001 in the interval [0,200]. 

In the absence of a forcing term, the energy decreases due to the damping term, 
and starting from x{0) = 0 with a very small positive velocity x'(0) = 0.001, 
the position tends to the minimum of the double-well potential located on the 
positive part of the x-axis. 

15.4.2 With Forcing Term 

In the presence of a forcing term, the solution has a more irregular behavior. 

Clear[a, b, g, omega, 

a = 0.4; b = 0.5; g = 

sol4 = NDSolve [{x''[t] 

c Cos[omega t], 

x[0] == 0, x'[0] == 0. 

c] 

0.02; 

+ g X 

001}, 

omega 

'[t] -

x[t]. 

a 

{t 

0.125; c = 

x[t] 

, 0, 

+ b X 

200}] 

0. 

[t] 

1; 

-3 == 

{{x[t] -^ In terpola t ingFunct ion[{{0. , 200.}}, <>][t]}} 

Plot[Evaluate[x[t] /. sol4], {t, 0, 200}, 

PlotStyle -̂  {RGBColor[0, 0,1]}, 

PlotRange -^ All, DefaultFont -̂  {''Helvetica' 

AxesLabel -̂  { " f , ''x(t)''}]; 

', 10}, 
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Fig. 15.6. Solution of the Duffing equation: x" + gx' — ax-\- bx^ == ccos{ujt) for 
a = 0.4, b = 0.5. g = 0.02, LJ = 0.125, c = 0.1, x{0) = 0, and x'{0) = 0.001 in the 
interval [0,200]. 

Clear[a, b, g, 

a = 0.4; b = 0 

sol5 = NDSolve 

c Cos [omega t ] 

x[0] == 0 .1 , X 

omega, 

.5; g = 
[{x"[t] 

> 

[0] == 

c 

0 

+ 

0. 

, sol4] 

.02; omega = 

g x'[t] - a 

001}, x [ t ] . 

0.125; 

x [ t ] + 

{ t , 0, 

c = 0. 

b x [ t ] 

200}] 

1; 

•̂ 3 == 

{{x[t] -^ InterpolatingFunction[{{0., 200.}}, <>][t]}} 

Plot[Evaluate[x[t] / . s o l 5 ] , { t , 0, 200}, 

PlotStyle -^ {RGBColor[0, 0 , 1 ] } , PlotRange -

DefaultFont -^ { " H e l v e t i c a ' \ 10}, 

AxesLabel -> { ' ' t ' \ ' ' x ( t ) ' ' } ] ; 

^ Al l , 
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Fig. 15.7. Same as above hut with x(0) = 0.1 instead of x{0) = 0. 

A slight change in the initial position greatly modifies the solution suggesting 
a possible chaotic behavior of the forced oscillator (on chaos see Chapter 5 of 
[9]). 
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Egyptian Fractions 

In 1858 the Scottish antiquarian Alexander Henry Rhind (1833-1863), trav-
ehng in Egypt, bought in Luxor an ancient scroll that has been the source of 
much information about Egyptian mathematics. This important document, 
known as the Rhind Mathematical Papyrus, contains, in particular, tables to 
help find a representation of rational numbers less than one as sums of differ
ent unit fractions, that is, with numerators equal to 1, as, for example, 

29 ~ 24 "^58 "^174 ^232* 

As illustrated below, this so-called Egyptian fraction representation is not 
unique. 

29 ~ 15 "̂  435 ~ 16 "̂  232 ^ 464' 
These results can be checked using Mathematica: 

2/29 == 1/24 + 1/58 + 1/174 + 1/232 == 1/15 + 1/435 

== 1/16 + 1/232 + 1/464 

True 

In fact, any fraction less than one has an infinite number of different repre
sentations because taking any representation we can replace the last fraction 
of the representation, that is, the unit fraction with the greatest denomina
tor, by its Egyptian fraction representation. This result is true if we can first 
prove that any fraction has at least one Egyptian fraction representation. Let 
us first describe the well-known algorithm due to Fibonacci—and called the 
greedy algorithm—that, given a fraction a/b generates a strictly increasing 
sequence of integers (n — 1, n2, . . . ) whose sum of reciprocals is equal to a/b. 
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The idea is to first find the greatest unit fraction 1/ni that is less than or 
equal to a/6, then to find the greatest unit fraction l/n2 less than or equal 
to the remainder a/b — In i , and so on. The name of the algorithm comes 
from the fact that at each step we "greedily eat" as much as possible of the 
remainder. If we take, for example, the fraction 2/29 of the Rhind papyrus, 
the greatest unit fraction less than 2/29 is 1/15 (note here something that will 
be useful to write our Mathematica program: 15 is the least integer greater 
than or equal to 29/2, that is, 15 = [29 2], then the largest unit fraction less 
than or equal to 2/29 - 1/15 is precisely 1/435. Hence 2/29 = 1/15 + 1/435, 
which is the second representation given above. 

To prove the existence of at least one Egyptian representation we still have to 
prove that the sequence of unit fractions generated by the greedy algorithm 
is not infinite. This is not difficult if we look at the sequence of remainders. 

The first remainder is a/b — l/ni = {arii — b)/bni but, because l / (n i — 1) > 
a/6, b/{n\ — 1) > a, that is, the numerator arii — 6 of the first remainder 
is strictly less than the numerator a and the denominator brii of this first 
remainder is strictly greater than the denominator b of the fraction. More 
generally, after the fcth step the numerator of the remainder a^nfe+i — bk is 
strictly less than the numerator a^, and it is also clear that the denominator 
f̂ĉ fc+i of the remainder is strictly greater than bk- Hence, the sequence of 

remainders is a sequence of fractions whose denominators are strictly increas
ing while their numerators are strictly decreasing. Because numerators are 
nonnegative integers, this sequence converges to zero. 

Finally, to prove that the number of Egyptian fraction representations of any 
rational number is infinite we have to show that we can replace the last fraction 
of the representation, that is, the unit fraction with the greatest denominator, 
which is already an Egyptian representation by a different representation. This 
new representation cannot of course be found using the greedy algorithm, but 
any unit fraction 1/n can always be written under the form l/m-\-ai/bi where 
m > n and use the greedy algorithm to find the Egyptian representation of 
the fraction ai/bi. 

In order to write a program generating the sequence of unit fractions repre
senting a given rational number 0 < r < 1, we have, at each step, to determine 
the remainder using, for instance, the function: 

remainder[r_Rational / ; 0 < r < 1] : = 

r - Ra t iona l [1 , Cei l ing[1 / r ] ] 

For example, the sequence of remainders of 7/11 is 

remainder[7 / 11] 
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3 

22 

remainder[3 / 22] 

1 

88 

remainder[1 / 88] 

When the remainder is either zero or a unit fraction the program should stop. 
We, therefore, shghtly modify the function remainder as follows. 

remainder [r_Rational/ ; 0 < r < 1] : = 

I f [ r G In tegers II Numerator [r] == 1, 

0, r - Ra t iona lC l ,Ce i l ing [1 / r ] ] ] 

Let us now look at the sequence of remainders using the function FixedPoint-
Lis t [f, expression] that gives the list of repeatedly applying f to expression 
until the result does not change. In our case the last two elements of the list 
generated by this function will be two zeros. 

FixedPointList[remainder, 7 / 1 1 ] 

r 7 3 1 >! 

111 22 88 J 

The Egyptian representation of 7/11 is then simply given by 

l l l ' 2 2 ' 8 8 / l 2 2 ' 8 8 ' / 1 2 ' 8 ' 8 8 / ' 

This result can be obtained using the function Take [ l i s t , {m, n}] which 
gives the elements m through n of l i s t as shown below. 

Take[{7 / 11 . 3 / 22, 1 / 88, 0, 0} , {1, 

Take[{7 / 11, 3 / 22, 1 / 88, 0, 0} , {2, 

- 3 } ] -

- 2 } ] 
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l 2 * 8 ' 8 8 / 2 8 88-

This translated difference can be written for any list as 

t r ans la tedDi f fe rence[ l i s_Lis t ] := Take [ l i s , { l , • 

Take [ l i s , {2, - 2}] 

- 3 } ] -

that we can verify 

translateciDifference[{7 / 11, 3 / 2 2 , 1 / 8 8 , 0, 0}] 

l 2 ' 8 ' 8 8 / 

Finally, we can find the Egyptian representation of any rational number using 
the following function, 

greedyEgyptianSequence[r_Rational / ; 0 < r < 1] : = 

Module [{remainder, translatedDifference}, 

remainder [x_] := If[x == 0 II Numerator [x] == 1, 

0, X - Rational[1, Ceiling[1 / x]]]; 

translatedDifference [lis_List] := Take [lis, {l, - 3}] 

Take[lis, {2, - 2}]; 

t rans la tedDifference[FixedPointLis t [ remainder ,x] ] ] 

and we make this function Li s t ab le . 

SetAttributes[greedyEgyptianSequence, L i s t a b l e ] ; 

Here are a few examples. 

greedyEgyptianSequence[2 / 9] 

i s ' 45} 

greedyEgyptianSequence[7 / 11] 



16 Egyptian Fractions 325 

l2' 8' 88/ 

greedyEgyptianSequence[131 / 263] 

rl 1 1 1 1 

Is' 7' 46' 5909' 51766508' 7771336864724278 

150984191662556420075895541828932-

Because the numerators of the sequence of remainders strictly decrease, the 
number of terms of the Egyptian representation of the rational number a/b is 
at most equal to a. The sequence of denominators is strictly increasing and, 
as shown in the last example, may become quite large. 

Here is a very simple recursive program taken from S. Wagon's book [64] 
which gives the sequence of denominators of the unit fractions. 

EgyptianFraction[0] := {} 

EgyptianPraction[q_] := Prepend[EgyptianFraction[q - 1 / 
Ceiling[1 / q ] ] , Ceiling[1 / q]] 

Attributes[EgyptianFraction] = Listable; 

EgyptianFraction[131 / 263] 

{3, 7, 46, 5909, 51766508, 7771336864724278, 

150984191662556420075895541828932} 

Egyptian representations of rational numbers given by the greedy algorithm 
often involve unit fractions with very large denominators. It is possible to find 
simpler representations combining the representations of two fractions whose 
sum is equal to the original one. For example, because 62-1-69 = 131, we 
obtain a much simpler representation using the command 

Sort[Flatten[EgyptianFraction[{62 / 263, 69 / 263}]]] 

{4, 5, 28, 81, 36820, 85212} 

And we verify that the sum of the corresponding unit fractions is 
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Tota l [1 / yp] 

131 

263 
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Electrostatics 

Electostatics is the study of time-independent distributions of electric charges. 

17.1 Potential and Field 

Given a spatial distribution of electric charge /)(x,i/,z), the laws of electro
statics make it possible to calculate the electric potential V{x,y,z) and the 
electric field E(x,2/, z). These physical quantities are given by 

V{x,y,z) = ^ [ [ [ , P(^^y^^O ^dx'dy'dz', 

^TTJ J J 7 ( x - x^y + {y- y'Y + (z - z'Y 

E(x,2/,z) = -VF(x,2/,2:), 

'dV{x,y,z) dV{x,y,z) dV{x,y,z) 
dx ^ dy ^ dz 

17.1.1 Useful Packages 

The commands in the package Graphics 'P lo tF ie ld ' can be used to draw 
arrows representing vectors, the direction of the arrow indicating the direction 
of the vector field at its base point, and its magnitude being proportional to the 
magnitude of the vector field. The package Calculus 'Vector Analysis ' offers 
a variety of tools for doing calculus in various three-dimensional coordinate 
systems. 

«Graphics' PlotField' 

«Cal cuius 'Vector Analysis' 
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As usual, we can obtain the list of all commands provided by these packages 
entering 

?Graphics 'PlotFie ld '* 

and 

?Calculus 'VectorAnalysis '* 

17.1.2 Point Charge 

The electric potential at point {x,y,z) created by a point charge located at 
(^o,2/o,^o) is given by 

monopolePotential[charge. , {xO_, yO_, zO_}, {x_, y_, z_}] := 

charge / (4 Pi Sqr t [ (x - x0)^2 + (y - y0)^2 + (z - z0)^2]) 

The potential and the field at (x, y, z) created by a point charge q located at 
(^o,2/o,^o) = (0,0,0) are 

monopolePotentialCq, {0, 0, 0} , {x, y, z}] 

4 Pi Sqrt[x'^ + x'^+x'^] 

monopoleField = - Grad[monopolePotentialCq, {0, 0, 0}, 

{x, y, z}], CartesianEx, y, z]] 

q X q y 
'4 Pi (x2+y2 +2^)3/2' 4 Pi (x2 + y 2 ^ 22)3/2' 

q z >! 

4 Pi (x^+y^+z^)^/^^ 

The potential and the field in the plane z = 0 are represented below. We 
take zo 7̂  0 to avoid having an infinite expression at the origin (see below: 
e l e c t r i c F i e l d ) . 

imitMonopoleV[x_, y_] := monopolePotent ial[ l , {O, 0, 0} , 

{x, y, 0.01}] 
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unitMonopoleVEx, y] 

4 Pi Sqrt [0.0001 -f x^ + y^] 2 _^ „2i 

equiPotentials = ContourPlot[unitMonopoleVEx, y], 

{x, - 2, 2}, {y, - 2, 2}, PlotPoints -^ 60, 

ColorFunction -^ Hue, ContourSmoothing —» True]; 

Fig. 17.1. Equipotentials, in the plane z = 0.01, of a unit electric charge located 
at the origin. 

The option Contour Smoothing specifies what smoothing to use for contour 
lines. 

imitCharge = {{RGBColor [1, 1, 0 ] , AbsolutePointSize [20] , 

Point [ {0, 0 } ] } , { T e x t [ ^ ' + 1 ' \ {0, 0}]}}; 

In the following command, using the option ScaleFunction -^ (1&), all ar
rows have the same unit length. 

e lec tr icFie ld = PlotGradientField[- imitMonopoleV[x, y] , 

{x, - 1, 1} , {y, - 1, 1} , ScaleFunction -^ (1&), 

Epilog -^ unitCharge]; 
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V V V V W 

V V V V V 

> > V V V 

> > > > ^ 
^ > > > ^ 

^ / / / ^ 
' ' / / < 
' / ^ ^̂  < 
' ^ < < < 
^ ^ ^ ^ ^ 

+1 

- ^ > > ^ 

^ ^ ^ ^ ^ 
^ ^ ^ ^ f 

^ ^ ^ ^ f 

\ ^ 
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A \ ^ ^ *̂  

^ ^ ^ ^ ^ 
5 A ^ ^ ^ 

Fig. 17.2. Electric field created by a unit electric charge located at the origin. 

17.1.3 Dipole 

The following function gives the electric potential of a dipole (p, 0,0) localized 
at the origin and directed along the x-axis. 

dipolePotential[p_, {x_, y_, 2 

Limit[(monopolePotential[p / 

- monopolePotential[p / a, {-

a -> 0] 

-}] : = 
a, {a / 

a / 2 

2, 

,0, 

0, 

0}. 

0}. 

{x 

{x. 

. y. 

y. z}] 

z}]). 

unitDipoleV[x_, y_] := d i p o l e P o t e n t i a l [ l , {x, y, 0.01}] 

We load the package Graphics'Arrow' to be able to use the command Arrow 
to draw arrows. 

«Graphics' Arrow' 

unitDipole = Arrow[{0. 1, 0}, {- 0.1, 0}, 

HeadScaling -> Absolute]; 

PlotGradientField[unitDipoleV[x,y], {x, - 1, 1}, {y, 

ScaleFunction -> (1&), Epilog -> unitDipole]; 

1, 1}, 
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i i 4 

V i i 

V V i 

V V V 

> >̂  V 

^ ^ 1 T f f 

^ *" ^ 1 f r r f 

^ *" ^ 1 f r ' ' 

^ ^ 1 T r ' ' ^ 

^ ^ T r ' ^ ^ ^ 

. w ^ - ^ ' ' 

^ ^ ^ ^ r . 

>* ^ ^ 

^ f r 

r r f 

1 ^ 

^ > > > ^ 
/ * ^ V V > ^ 

< ^ * ^ V V V 

^ / ^ ^ ^ V V 

/ i 4 i i V 

^ ^ i 4 i i 

Fig. 17.3. Electric field created by a unit dipole, represented by a bigger arrow, 
located at the origin. 

The option HeadScaling -^ Absolute makes the head of the arrow, repre
senting the dipole, slightly bigger (see Figure 17.3). 

17.1.4 Quadrupoles 

We consider different functions that give the electric potential of three or four 
electric charges whose sum is equal to zero. In the next section we define a 
function to plot the corresponding equipotentials and field lines. 

We first define the command quadrupolePotent ia l l generating the electric 
potential created by three charges 2q,—q,—q localized, respectively, at 

(0,0,0), ( | , 0 , 0 ) , and ( - f , 0 , o ) . 

quadrupolePotentiall = 

monopolePotential[2 q, 

monopolePotentialCq, {a 

monopolePotentialEq, {-

{0, 0, 

L / 2. 

a / 2 

0}. 
0, 0 

. 0. 

{x. 

} . {•• 

0}. 

y. 

K. y 

{x, 

z}] -

, z}] -

y .z}] 

2 Pi Sqrt[x2 + y^ + z^] 4 Pi Sqrt[(— + x)^ + y^ + z^] 
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q 

4 Pi S q r t [ ( | + x ) 2 + y ^ + z^] 

Here is another command giving the electric potential created by four charges 
Q^ -Q^ Q^ -Q localized, respectively, at (a/2, a/2,0), (a/2, -a /2 ,0) , ( -a/2, -a /2 ,0) , 
and (a/2,a/2,0). 

quadrupolePotential2 

monopolePotential[q, 

monopolePotential[q, 

monopolePotential[q, 

monopolePotential[q, 

= 

{a 
{a 

{-
{-

/ 2, a 

/ 2, -

a / 2, 

a / 2, 

/ 2, 

a / 

- a 

a / 

0}, {x, y. 

2, 0}, {x. 

/ 2, 0}, {j 

2, 0}, {x. 

z}] -

y. z}] + 

'-, y, z}] -

y. z}] 

4 Pi S q r t [ ( ^ + x)2 + ( ^ + y)^ + z^] 

q 

4 Pi Sqrt[( | + x)2 + ( ^ + y)^ + z^] 

"" + 
4 Pi S q r t [ ( ^ + x)2 + ( | + y)2 + ^2] 

q 
4 P i S q r t [ ( ^ + x ) 2 + ( ^ + y ) 2 + z2] 

We again consider the electric potential created by three charges 2g, —q, —q 
but localized, respectively, at 

(0,0.0), (2,40) and (-1,40). 

Their electric potential is given by 

quadrupolePotentialS = 

monopolePotential[2 q, 

monopolePotential[q, {a 

monopolePotential[q, {-

{0, 0, 

L / 2 , • 

a / 2 

0}, 
- a 

> "* 

{x. 
/ 2, 

a / 

y. z}] -

0}, {x. y 

2, 0}, {x. 

z}] -

y. z}] 

2 Pi Sqrt[x2 + y2 + z2] 4 pi S q r t [ ( ^ + x)2 + ( | + y)2 + z2] 
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4 Pi S q r t [ ( - + x ) ^ + ( - + y ) 2 + z2] 

17.1.5 Plots 

W e define the function equipotentialFieldPlot that plots (in the xOy-
plane) the equipotentials and the field, and we use it to plot the equipotentials 

and the electric field lines of the quadrupoles defined above. optionList 

stands for zero or more options. 

equipotentialFieldPlot[potential-, xRange_, yRange_, 

optionList ] : = 

Module[{equiPotentials, fieldLines}, 

equiPotentials = CentourPlot[potential, xRange, yRange, 

ContourShading -^ False, ContourSmoothing —» True, 

PlotPoints -^ 60, DisplayFunction -^ Identity]; 

fieldLines = PlotGradientField[- potential, xRange, yRange, 

ScaleFunction -^ (1 &), DisplayFimction -> Identity]; 

Show[{equiPotentials, fieldLines}, optionList, 

DisplayFunction -^ $DisplayFunction]]; 

equipotentialFieldPlot[quadrupolePotentiall /. 

{q ^ l,a -> 1, z ^ 0.001}, {x, - 2, 2}, {y, - 2, 2}, 

Epilog -^ {{RGBColor[l, 1, 0], AbsolutePointSize[20], 

Point[{0, 0}]}, {RGBColor[l, 1, 0], AbsolutePointSize[20], 

Point[{0.5, 0}]}, {RGBColor[l, 1, 0], 

AbsolutePointSize[20], Point[{-0.5, 0}]}, 

{Text[''+ 2'', {0, 0}], Text[''-1'', {0.5, 0}], 

Text[''-1'', {-0.5, 0}]}}]; 
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Fig. 17.4. Equipotentials and electric field lines created by three charges respectively 
equal to +2 localized at the origin and —1 localized on the Ox-axis at a distance —1/2 
and 1/2 from the origin. 

equipotentialFieldPlot[quadrupolePotential2 /. 

{q ^ l,a -^ 1, z ^ 0.001}, {x, - 2, 2}, {y, - 2, 2}, 

Epilog -^ {{RGBColor[l,l,0], AbsolutePointSize[20], 

Point[{0.5, 0.5}]}, {RGBColor[l, 1, 0], 

AbsolutePointSize[20], Point[{0.5, - 0.5}]}, 

{RGBColor[l, 1, 0], AbsolutePointSize[20], 

Point[{- 0.5, - 0.5}]}, {RGBColor[1,1,0], 

AbsolutePointSize[20], Point[{- 0.5, 0.5}]}, 

{Text[''+1'\ {0.5, 0.5}], Text[''-1'\ {0.5, - 0.5}], 

Text[''+1'', {- 0.5, - 0.5}], Text[''-1'', {- 0.5, 0.5}]}}]; 
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^ 1 J \ 

-2 - 1 

Fig. 17.5. Equipotentials and electric field lines created by four charges respectively 
equal to —1, + 1 , —1 and +1 localized at the vertices of a unit square centered at the 
origin. 

equipotentialFieldPlot[quadrupolePotentialS /. 

{q -> l,a -> 1, z ̂  0.001}, {x, - 2, 2}, {y, - 2, 2}, 

Epilog -̂  {{RGBColorEl, 1, 0], AbsolutePointSize[20], 

Point[{0, 0}]}, {RGBColorEl,1,0], AbsolutePointSize[20], 

Point[{0.5, - 0.5}]}, {RGBColor[l, 1, 0], 

AbsolutePointSize[20], Point[{- 0.5, - 0.5}]}, 

{Text[''+2'', {0, 0}], Text[''-1", {0.5, - 0.5}], 

Text[''-r', {- 0.5, - 0.5}]}}]; 

Output represented in Figure 17.6. 

17.1 .6 U n i f o r m l y C h a r g e d S p h e r e 

Let R be the radius of a uniformly charged sphere whose center coincides with 
the origin , and let p be the charge density. Spherical symmetry implies tha t 
the electric field is radial and depends only upon the distance r to the origin. 
This field is easily determined using Gauss law. 
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Fig. 17.6. Equipotentials and electric field lines created by three charges respec
tively equal to +2 localized at the origin and two negative unit charges localized at 
(-1/2,-1/2,0) anc? (1/2,-1/2,0). 

eqn = {4 Pi r^2 internalElectricField == 4 Pi r^3 rho 

/ 3, 4 Pi r^2 externalElectricField == 4 Pi R'̂ 3 rho / 

3}; sol = Flatten[Solve[eqn, {internalElectricField, 

externalElectricField}] ] 

{internalElectricField 
r rho 

ex t e rna lE lec t r i cF i e ld 
R^ rho^ 

C lea r [ e l ec t r i cF i e ld ] 

e l ec t r i cF ie ld [ r_ ] := If [r < R, r rho / 3 , R'̂ 3 rho / (3 r'^2)] 

plE = P l o t [ e l e c t r i c F i e l d [ r ] / . {R -^ l , rho -^ 1}, {r , 0, 5} , 

P lo tS ty le -^ {RGBColor[0,0,l]}, DisplayFunction -> I d e n t i t y ] ; 
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tl = Graphics [Text C inside'\ {0.5, 0.33}]]; 

t2 = Graphics[Text[''outside'', {3, 0.33}]]; 

rl = Graphics[{RGBColor[0.5, 0.4, 0], 

Rectangle[{0, 0}, {1, 0.36}]}]; 

r2 = Graphics[{RGBColor[0.8, 0.8, 0], 

Rectangle[{1, 0}, {5, 0.36}]}]; 

Show[{rl, r2, plE, tl, t2}, Axes -^ False, Frame -^ True, 

TextStyle -^ {FontSlant -^ ''Italic", FontSize -^ 12}, 

FrameLabel -> {"r'', "E(r)''}, RotateLabel -^ False, 

FrameTicks -^ {{0, 1, 2, 3, 4, 5}, {0. 05, 0.15, 0.25, 0.35}, 

{}» {}}» Display-Function —> $DisplayFunction] ; 

E(r) 

0,35 

0,25 

0,15 

0,05 

Fig. 17.7. Electric field created by a uniformly charged sphere as a function of the 
distance r from the sphere center. 

RotateLabel specifies whether labels on vertical frame axes should be rotated 
to be vertical. 

The order of the graphics objects in Show is important, The order {plE, t l , 
t 2 , r l , r2} would mask the plot and the text. The list of graphics objects 
has to start with the colored rectangles. 

The electric potential can be derived integrating the radial electric field com
ponent. 
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externalElectricPotential[r_] = - Integrate[R"3 rho /(3 r"2), 

r] 

R̂  rho 

3 r 

internalElectricPotential[r_] = externalElectricPotential[R] 

Integrate[r rho / 3, {r, R, r}] // Simplify 

-(r2-3 R^) rho 

Clear[electricPotential] 

electricPotential[r_] := If [r < R, - (r^2 - 3 R'̂ 2) rho / 6, 

R'̂ 3 rho / (3 r)] 

plV = Plot[electricPotential[r] /. {R -> l,rho -^ 1}, {r, 0, 

5}, 

PlotStyle -^ {RGBColor[0,0,1]}, DisplayFunction -^ Identity] 

tl = Graphics[Text[''inside'\ {0.5, 0.3}]]; 

t2 = Graphics[Text[''outside'^ {3, 0.3}]]; 

rl = Graphics[{RGBColor[0.4, 0.4, 0], 

Rectangle[{0, 0}, {1, 0. 5}]}]; 

r2 = Graphics[{RGBColor[0.8, 0.8, 0], 

Rectangle[{1, 0}, {5, 0.5}]}]; 

Show[{rl, r2, plV, tl, t2}. Axes -^ False, Frame -> True, 

TextStyle -^ {FontSlant -^ ''Italic'', FontSize -^ 12}, 

FrameLabel -^ {''r", "V(r)"}, RotateLabel -> False, 

DisplayFunction -^ $DisplayFunction]; 
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Fig. 17.8. Electric potential created by a uniformly charged sphere as a function of 
the distance r from the sphere center. 
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Foucault Pendulum 

The stars appear to move in circles about a line through the poles of the earth 
as if they were attached to a sphere rotating about the earth. 

Aristarchus of Samos (310-230 BC) was the first astronomer who explained 
the apparent motion of the stars and planets assuming that the earth turns 
on its own axis and also travels around the sun. This theory was not accepted 
by the Greeks. 

Around 1514 Mikolaj Kopernik (1473-1543), better known as Nicolaus Coper
nicus, distributed a little handwritten book, called the Little Commentary, to 
a few of his friends, in which he stated, in particular, that the center of the 
universe is close to the sun and that the rotation of the earth accounts for the 
apparent daily rotation of the stars. 

At the close of the 16th Century, Filippo Bruno (1548-1600), who took 
the name Giordano in 1565 when he entered the Dominican convent of San 
Domenico Maggiore in Naples, was soon suspected of heresy for his unortho
dox ideas. He was nevertheless ordained as a priest in 1572. He came to the 
attention of the Inquisition in Naples and, in 1576, left the city to escape 
prosecution. For 14 years he wandered about Europe defending, in particu
lar, Copernicus' heliocentric theory. Probably believing that the Inquisition 
had lost some of its strength, he thought that he might safely return to Italy. 
Betrayed by Giovanni Mocenigo, a Venetian nobleman who invited him in 
August 1591, he was denounced to the Inquisition and arrested on May 22, 
1592. At the request of the Holy Office, he was transferred to Rome and ar
rived at the prison of the Holy Office near St. Peters on February 27, 1593. 
After seven years, on February 19, 1600, refusing to renounce his beliefs, he 
was brought to the Campo de' Fiori, his tongue in a gag, and burned alive. 

In 1633, after the publication of Dialogo dei due massimi sistemi del mondo, 
Galileo Galilei (1564-1642) was convicted of heresy by the Inquisition and 
forced to recant his support of Copernicus. He confessed to having erred in 



342 18 Foucault Pendulum 

writing his book, and asked for mercy. Sentenced to life imprisonment, he was 
allowed to live in his villa in Arcetri close to Florence. 

In 1851, the French physicist Jean, Bernard, Leon Foucault (1819-1868), de
vised an experiment to demonstrate the rotation of the earth. Inside the 
Pantheon in Paris, he suspended from the dome a 67-meter, 28-kg pendu
lum. To show the motion of the plane of oscillation, he attached a stylus to 
the ball and placed a ring of damp sand on the floor below. It was observed 
that swing after swing this plane rotated slowly clockwise with respect to the 
earth. 

In order to study the motion of the Foucault pendulum we first briefly review 
the equation of motion of a particle in a moving frame of reference. 

Assuming that the moving frame is just rotating, the time derivatives of a vec
tor quantity A with respect to a flxed frame and a rotating frame of reference 
satisfy the relation 

dA\ fdA\ 
— I = l—-\ +0? X A, 
^^ / fixed \ " W rotating 

where cv is the angular velocity vector. In particular, for the time derivative 
V of the position vector r we have 

Vfixed ^^ ^rotating 4" ^ X Tfotating 

Similarly, for the time derivative a of the velocity vector v we have 

^fixed — ^rotating + CJ X Ffotating + 2 O; X Vfotating + CJ X (CJ X Trotating) 

• a;' X Frotating is the azimuthal or transverse acceleration, 

• 2 u; X Vrotating IS the Coriolis acceleration, and 

• ijj X {(jj X Frotating) is the Centripetal acceleration. 

In a local frame fixed to the earth, neglecting air resistance, the equation of 
motion is 

m arotating = F - m Cj' X Frotating - 2 TTl U) X V^otating - TU UJ X {uj X Frotating)-

In a rotating frame, to the real physical force F we have, therefore, to add 
three inertial forces, namely, the azimuthal, Coriolis, and centripetal forces. 

Hence, in a local frame fixed to the earth, neglecting air resistance, the equa
tion of motion becomes 

^r'/otating = F - h m g - 2 m a ; x F̂ ^̂ ^̂ ĵ g - m u; x (a; x Frotating) 
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where r ' and T" are, respectively, the first and second time derivative of the 
vector r. 

The numerical value of the earth's angular velocity u; is small. It is equal to: 

27r 
— X 3600 = 0.727 x 10"^ rad/s. 
24 

We may, therefore, neglect the centripetal force and write the equation of 
motion as 

^ r^^tating = F + m g - 2 m u ; x r^^tating-

The Foucault pendulum illustrates the earth's rotation through the Coriolis 
force. We treat the earth as rotating about its axis with an angular velocity 
(jj with respect to an inertial frame and use the equation above to study the 
motion of the pendulum. 

Let us choose the local Cartesian coordinate system such that its origin O is 
the equilibrium position of the bob. The Ox- and Oy-^xes are in the horizontal 
plane pointing, respectively, south and east, and the vertical 02:-axis points 
up towards the point of suspension of the string. 

If r represents the position of the bob in the rotating frame. 

r [ t_] := { x [ t ] , y [ t ] , z [ t ] } 

the equation of motion of the bob in the rotating frame is 

^ r^^tating = T + m g - 2 m u ; x r^^tating. 

where T is the tension of the string. The acceleration due to gravity g is di
rected along the 02;-axis and points down, and the coordinates in the rotating 
frame of angular velocity vector a; are 

omega [t_] := {- omegaO Cos [ the ta ] , 0, omegaO S in [ the t a ]} 

where omegaO is the norm of omega and t h e t a the latitude. Hence, in the 
rotating frame, the Coriolis force is 

Coriol isForce = - 2 m Cross[omega[t] , r ' [ t ] ] 

{2 m Sin [ theta] omegaO y ' [ t ] , 

— 2 m (Sin [ theta] omegaO x ' [ t ] -h Cos [ theta] omegaO z ' [ t ] ) , 

2 m Cos [ theta] omegaO y ' [ t ] } 
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If the amplitude of the oscillations is small, the tension T is nearly constant 
and equal to mg. Its coordinates in the rotating frame are 

T = {- m g x [ t ] / 1, - m g y [ t ] / 1, 0} 

where 1 is the string length. 

Because m 7̂  0, we use the command Assuming [assumption, expression] 
to tell Mathematica that assumption should be appended to the default as
sumptions when evaluating expression. Hence, the equation of motion of the 
bob is 

eqn = Assuming[m != 0, Simplify[Thread[m r " [ t ] == T + 
Cor io l i sForce] ] ] 

a xftl 
{ — + x'' == 2 S in[ the ta ] omegaO y ' [ t ] == 0, 

g yftl 
+ 2 omegaO (Sin[ the ta] x ' [ t ] + Cos[theta] z ' [ t ] ) + 

/ ' [ t ] == 0, 

2 Cos[theta] omegaO y ' [ t ] == z ' ' [ t ] } 

Because we cannot directly solve the vector differential equation, we used the 
command Thread[f [arguments]] that threads f over any lists that appear 
in arguments. 

Neglecting z' [ t ] compared to y' [ t ] , the equations of motion in the a:Oy-plane 
are 

eqn [ [ l ] ] 

eqn[[2]] / . z ' [ t ] -^ 0 

OP x | t l 
— -h x" == 2 S in[ the ta ] omegaO y ' [ t ] , 

g yftl 
^-^LU. + 2 omegaO (Sin[ the ta] x ' [ t ] -h y" [ t ] == 0 

Let fi = uo sin 0 denote the vertical component of the angular velocity vector 
cj. Then, the equations of motion in the xOy-plane are 
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equations = x" [ t ] == - (g / 1) x [ t ] + 2 Omega y ' [ t ] , 

y " [ t ] == - (g / 1) y [ t ] - 2 Omega x ' [ t ] ; 

Consider a new rotating frame that rotates around the Oz-axis with an an
gular velocity i?, and denote O^ and Or] the new horizontal axes. We have 

x [ t ] = x i [ t ] Cos [Omega t ] + e t a [ t ] Sin [Omega t ] ; 

y [ t ] = - x i [ t ] Sin [Omega t ] + e t a [ t ] Cos [Omega t ] ; 

Because 

x ' [ t ] = D[xi [ t ] Cos [Omega t ] + e t a [ t ] Sin [Omega t ] , t ] 

x" [ t ] = D[xi [ t ] Cos [Omega t ] + e t a [ t ] Sin [Omega t ] , { t , 2}] 

y ' [ t ] = D[- x i [ t ] Sin [Omega t ] + e t a [ t ] Cos [Omega t ] , t ] 

y" [ t ] = D[- x i [ t ] Sin [Omega t ] + e t a [ t ] Cos [Omega t ] , { t , 2}] 

Omega Cos[t Omega] e t a [ t ] — Omega S in[ t Omega] x i [ t ] -(-

S in [ t Omega] e t a ' [ t ] + Cos[t Omega] x i ' [ t ] 

— (Omega^ S in [ t Omega] e t a [ t ] ) - Omega^ Cos[t Omega] x i [ t ] + 

2 Omega Cos[t Omega] e t a ' [ t ] - 2 Omega S in[ t Omega] x i ' [ t ] + 

S in[ t Omega] e t a " [ t ] + Cos[t Omega] x i " [ t ] 

— (Omega S in[ t Omega] e t a [ t ] ) — Omega Cos[t Omega] x i [ t ] + 

Cos[t Omega] e t a ' [ t ] - S in [ t Omega] x i ' [ t ] 

— (Omegâ ^ Cos[t Omega] e t a [ t ] ) + Omega^ S in[ t Omega] x i [ t ] — 

2 Omega S in[ t Omega] e t a ' [ t ] — 2 Omega Cos[t Omega] x i ' [ t ] + 

Cos[t Omega] e t a ' ' [ t ] - S in [ t Omega] x i " [ t ] 

equations = equations / . {x[t] 

e t a [ t ] Sin[Omega t ] , 

x ' [ t ] -> 

y [ t ] -^ 

y ' [ t ] ^ 

D [ x [ t ] , 

- x i [ t ] 

D [ y [ t ] , 

FullSimplify 

—> x i [ t ] Cos[Omega t ] + 

t ] , x " [ t ] -^ D [ x [ t ] , t 

Sin[Omega t ] + 

t ] , y " ' [ t ] ^ 

e t a [ t ] 

D [ y [ t ] , 

. 2 ] , 

Cos 

{t. 

[Omega t ] , 

2}]} / / 
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{(Sin[ t Omega] ((g + 1 Omega^) e t a [ t ] + 1 e t a ' ' [ t ] ) + 

Cos[t Omega] ((g + 1 Omega^) x i [ t ] + 1 x i " [ t ] ) ) / 1 == 0, 

(Cos[t Omega] ((g + 1 Omega^) e t a [ t ] + 1 e t a " [ t ] ) -

S in[ t Omega] ((g + 1 Omega^ ) x i [ t ] + 1 x i " [ t ] ) ) / 1 == 0} 

Neglecting terms in i?^, which are very small, yields 

equations = equations / . Omega'̂ 2 -^ 0 

{(Sin[ t Omega] (g e t a [ t ] + 1 e t a " [ t ] ) 4-

Cos[t Omega] (g x i [ t ] -f 1 x i " [ t ] ) ) / 1 == 0, 

(Cos[t Omega] (g e t a [ t ] + 1 e t a " [ t ] ) -

S in [ t Omega] (g x i [ t ] + 1 x i ' ' [ t ] ) ) / 1 == 0} 

These equations are obviously satisfied if 

e + (g/l) ? = = 0 and r," + (g/l) ^ = 0. 

These are the equations of a two-dimensional harmonic oscillator. The path 
in the ^Or/-plane is an elHpse. Hence in the rotating xOy-plane linked to the 
earth, the path is an elhpse that undergoes a steady precession with angular 
velocity i?. For a fixed observer in the plane linked to the earth, the vertical 
plane containing the major axis of the ellipse turns clockwise in the northern 
hemisphere and counterclockwise in the southern with a period 

^ 27r 24 
T= — = -r-T hours. 

i / sm u 

The precession vanishes at the equator and is maximum at the north pole. The 
24-hour period has been checked at the south pole during the winter 2001. De
tails on the experiment can be found at www.phys-astro.sonoma.edu/people/ 
students/baker/SouthPoleFoucault.html. 
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Fractals 

Fractals are exotic sets that first appeared in the mathematical literature at 
the end of the 19th century. They were devised by Georg Ferdinand Lud-
wig Philipp Cantor (1845-1918), Giuseppe Peano (1858-1932), David Hilbert 
(1862-1943), Henri Leon Lebesgue (1875-1941), Arnaud Denjoy (1884-1974), 
George Polya (1887-1985), Waclaw Sierpinski (1882-1969), and many others. 
There is no precise definition but most authors agree to call fractals sets pos
sessing certain characteristic properties such as self-similarity illustrated in 
the examples presented below. The idea of self-similarity originated implicitly 
in a paper of Niels Fabian Helge von Koch (1870-1924) (see the von Koch 
curve below), and was formulated exphcitly by Ernesto Cesaro (1859-1906). 
The word fractal was coined by Benoit Mandelbrot (born 1924) who wrote 
a few books [34, 35] and many articles on fractal geometry, drawing atten
tion to its relevance in such diverse fields as fiuid mechanics, geomorphology, 
economics, and linguistics. 

In order to better characterize fractals it is useful to introduce the notions of 
Hausdorff measure and Hausdorff dimension [25]. Let 4̂ be a compact subset 
of a metric space and {Uj | j G J } a countable cover of A by a family of open 
sets; the Hausdorff outer measure of A is 

H2{A) = lim ^^mf ^j I Y.(^iUj)f I Vi e J,SiUj) < e\ , 

where S{Uj) is the diameter of the open set Uj. 

It can be shown (see p. 31 of [6]) that 

If H;^^{A) < oo, then for ^2 > di, H;^^{A) = 0, and 

if 0 < H^^{A) < oo, then for d2 < di, H^^{A) = oo. 

Let A be a compact subset of a metric space; the number 
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is the Hausdorff dimension of the set A. 

In what follows, we will determine the Hausdorff dimension of various fractals. 

19.1 Triadic Cantor Set 

Georg Cantor is the founder of set theory. In 1878, he proved, in particular, 
that the sets [0,1] and [0,1] x [0,1] have the same cardinahty. This very 
surprising result even surprised Cantor himself. 

All countable sets such as the set of integers or the set of rational numbers 
have a zero Lebesgue measure. Thus, all sets whose Lebesgue measure is not 
equal to zero are necessarily noncountable. The converse is wrong: there exist 
noncountable sets whose Lebesgue measure is zero. The triadic Cantor set is 
a classical example. 

Let Jn be the union of 2^ disjoint closed sets of length 3"*^ obtained from 
Jfi-i by removing from each closed interval of length 3~^"^~^^ the middle 
open interval of length 3""^. Starting from JQ = [0,1], we obtain the sequence: 

Jo = [0,1] 

Ji = 

J3 = 

H] 
"•l 

U 

U 

M 
2 1 
9 ' 3 

U 
2 7 
3 ' 9 

U l^ 
To build up a function generating the sets Jn we first define a function re
moving the middle third open interval of a given closed interval [a, b] whose 
limit points a and b are rational numbers. 

remaininglntervals[a_,b_] := Module [{m = (b - a) / 3} , 

{{a, a + m}, {b - m, b}}] 

remaininglntervals [{0 , l}] 

{{0. ^ } . {^. 1}} 

We then define a similar function whose argument is a list of intervals. 
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remaininglntervalsList [intervals-List] : = 

Flatten[Map[remaininglntervals, intervals], 1] 

remaininglntervalsList [{{0, l}}] 

{{0. ^}, {^. 1}} 

remaininglntervalsList[{{0, 1 / 3 } , {2 / 3 , 1}}] 

«"• i'' 4- i'' *i' 5'' (5' '» 

We can now generate the sets of intervals J„. Define 

J[0] = {0, 1}; 

J[n-Integer] := Nest[remaininglntervalsList , {{O, l } } , n] 

For example, 

J [3] 

^^°' 27^' ^27' 9^' ^9' 27^' '^27' 3^' 
2 19 20 7 8 25 26 

^ 3 ' 27^' •^27' 9^' ^9 ' 27^' ^27' ^^^ 

The triadic Cantor set C is the intersection of all sets of intervals J^: 

C=f]jn. 
neN 

Because it is the intersection of closed sets, C is closed. It contains no interval, 
so its interior is empty, which implies that all its points are boundary points. 
At each stage of its construction, the open intervals that constitute the middle 
thirds of the closed intervals left at the previous stage are removed, thus, any 
elements x of C can be written: 

oo 
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where, for all positive integers n, Xn = 0 or 2. In other words, the ternary 
expansion, (i.e., the expansion to base 3), of an element of C does not contain 
the digit 1. We can use Mathematica to verify this characteristic property by 
writing in base 3 the list of remaining intervals at stage n, for n = 1,2,3, — 

BaseForm[J[l] / / N, 3] 

{{0.3 , O.I3}, 0.2 3 , 1.3 

BaseForm[J[2] / / N, 3] 

{{0.3 , O.OI3 }, {0.023 , O.I3}, {0.23 , O.2I3}, {0.223 ' 1-3}} 

BaseForm[J[3] / / N, 3] 

{{0.3 , O.OOI3}, {0.0023 ' 0-013}' {0-023 ' O.O2I3}, 

{0.0223 , O.I3}, {0.23 , O.2OI3}, {0.2023 , O.2I3}, 

{0.223 , O.22I3}, {0.2223 , 1.3}} 

Observing the expressions of the endpoints of these intervals (which belong 
to the Cantor set because only the middle third open intervals are removed 
at each stage) we can note that the digit 1 can only appear as the last digit 
of a terminating ternary expansion. But, such digits can be replaced by a 
nonterminating sequence of digits 2; that is, in base 3, we have: 

1.0 = 0.222..., 0.1 = 0.0222..., 0.01 = 0.00222..., 
0.001 = 0.000222..., 0.0001 = 0.0000222..., 0.00001 = 0.00000222.... 

These two different representations (which exist for all bases) is a consequence 
of the relation 

Sum[2 (1 / 3)'^n, {n, 1, In f in i ty}] 

The ternary representation shows that C is not countable because it is equipo-
tent to the closed interval [0,1]. To prove it we just have to exhibit a bijection 
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(̂  from [0,1] onto C. If we write ^ £ [0,1] under the form X l ^ i ^n/'^'^ where 
all ^n are either equal to 0 or 1, and define (f by 

viO 371 ' 

the bijection ^ is known as the Cantor function. Because for all positive inte
gers n = 1,2,..., 2^n is either equal to 0 or 2, then the range of v? lies in C. 
To complete the proof, we have to show that the range of ^ coincides with C. 
Let y be any element in C, and let its ternary expansion be O.2/12/2 • • • where 
for all positive integers n, yn is equal to 0 or 2; then x = ip~^{y) exists and is 
unique. It is determined by its binary expansion O.X1X2 . • • , where, for all n, 
•̂ n ^̂  l/n/^' 

Because Jn is obtained from Jn-i by removing 2'^ open intervals of length 
3-(^+i)^ the Lebesgue measure m of C i.e., its length) is given by 

2n 
"^(^) = i-E^;iTT = o-

n = 0 

That is, the Lebesgue measure of the Cantor set is zero but it has, however, 
the same cardinality as the interval [0,1]. 

Taking into account the self-similar structure of the Cantor set, its Hausdorff 
dimension is easy to determine i9n as much as 

3 Cn 
< 

= C and 3 C n 
3' 2 = a 

but 

and 

Hence 

H*AC) = HUcn "•l + mcn 5. ' 

H*AC) m en 0, m Cn ; , i ) = laHUC)-

Hi{c) = ^,m{c), 

which is true only if 2/3^ = 1, that is, if 

log 2 
dH{D) = 

logs 
0.63093.... 

This result was obtained by Hausdorff and appears in his seminal paper [25]. 

There exists an interesting function related to the Cantor set called the 
Lebesgue function. Although it is fairly exotic, it has been recently rediscov
ered by physicists, and called the DeviVs staircase. It is probably best viewed 
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as the limit of a sequence L^ defined as follows. For each positive integer TI^ 
let Ln be the nondecreasing continuous function on [0,1] such that L(0) = 0, 
L(l) = 1, and linear and increasing by 2~'^ on each closed interval whose 
union is Jn and constant on the removed middle third intervals. If n > m, 
then, for any x € [0,1], \Ln{x) — Lm{x)\ < 2"^^, that is, for all a;, the sequence 
{Ln{x))neN is a Cauchy sequence. The limit L{x) = limn^oo Ln{x) is, there
fore, well defined for all x G [0,1], and from \Ln{x) — Lm{x)\ < 2~'^ it follows 
that the convergence is uniform. The Lebesgue function is, consequently, a 
nondecreasing continuous function on [0,1] such that L(0) = 0 and L(l) = 1. 
Because L is constant on each middle third removed interval, it is constant 
almost everywhere. 

In order to define a Mathematica function Lebesgue [n] generating a plot of 
the function Ln we first define the following function that transforms a list of 
two points with nonidentical ordinates into a list of four points. 

newSegments[{p t l - , pt2_}] : = 

Module[{m = ( p t 2 [ [ l ] ] - p t l [ [ l ] ] ) 

r = (pt2[[2]3 

I f [ p t l != pt2 . 

{ p t 2 [ [ l ] ] - m. 

{pt l , pt2}]] 

- p t l [ [ 2 ] ] ) / 2 } , 

{p t l , { p t l [ [ l ] ] +m, 

p t2 [ [2 ] ] - r } , pt2} 

/ 3 . 

p t l [ [ 2 ] ] + r } . 

i 

If we apply this function to the list {{0,0},{1,1}}, we obtain 

11 = newSegments[{{0, 0} , {1 , 1}}] 

{{0, 0} , {^, ^ } , { ? , i } , {1,1}} 

From the list 11 it is easy to obtain a list 12 such that L i s tP lo t [11] would 
represent the graph of the function L2. 

12 = Flatten[Map[newSegments, P a r t i t i o n [ l l , 2 ] ] , 1] 

. r l 1. r2 1, , 1 1, ,2 1, 
no. 0}, { - , - } , { - , - } , { - . - } , { - . - } , 

7 3 8 3 

(i- i ' ' ( i ' i>' f 'W 
Plotting the lists of points 11 and 12 give the graphs of the functions Li and 
i 2 
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Ipll = ListPlotCll, Plot Joined -^ True, Frame -^ True, 

AspectRatio —> Automatic, DisplayFunction —> Identity]; 

lpl2 = ListPlot[12, PlotJoined -^ True, Frame -^ True, 

AspectRatio —> Automatic, DisplayFunction —^ Identity]; 

Show[GraphicsArray[{lpll, lpl2}], 

DisplayFunction -^ $DisplayFunction]; 
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Fig. 19.1. Graphs of L\ and L2, the first two steps in the construction of the 
Lebesgue function L. 

Generalizing these results we define the function LebesgueFimction[{ptl_, 
pt2_}, n] that plots the function: 

LebesgueF\mction[{ptl_, pt2_}, n.Integer] 

ListPlot[Nest[Flatten[Map[newSegments, 

Part i t ion[#, 2 ] ] , 1] &, {pt l , pt2} , n ] , 

TextStyle -> {FontSize -^ 16}, PlotJoined 

Frame -^ True, AspectRatio -^ Automatic] 
True, 

LebesgueFimction[{{0, 0 } , {1 , 1}} , 3 ] ; 
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0 0 .2 0 .4 0 .6 0 . 

Fig. 19.2. Graph of L3 the third step in the construction of the Lebesgue function 
L. 

19.2 Sierpinski Triangle 

Waclaw Sierpinski, probably the greatest and most prolific Polish mathemati
cian, had a particularly marked taste for ingenious mathematical construc
tions illustrating paradoxical results. He published more than 700 papers; a 
selection of his original publications can be found in [52]. 

The Sierpinski triangle, also called the Sierpinski gasket, is a bounded con
nected subset of R^ whose recursive construction is similar to the Cantor set 
construction. Starting from the closed equilateral triangle whose vertices are 
respectively located at {^1,^2, A3}, we remove the open equilateral triangle 
whose vertices are {(^i + ^2)72, {A2 + As)/2, {As -h Ai)/2} to obtain four 
equilateral triangles. We then repeat this operation on each remaining trian
gle. 

We proceed as above and first define a function remainingTriangles similar 
to the function remaininglntervals . 

remainingTri 

Module 

pt31 = 

{{Ptl, 

[{ptl2 

(pt3 

ptl2, 

angles[{ptl_, 

= (ptl + pt2) 

+ ptl) / 2}, 

pt3l}, {ptl2, 

pt2_, 

/ 2, 

pt2, 

pt3_}] 

pt23 = 

pt23}, 

: = 

(pt2 + 

{pt31. 

pt3) 

pt23, 

/ 2, 

pt3}}] 

Al= {0 . , 0 . } ; A2 = { l . , 0 . } ; A3 = {l / 2, Sqrt[3] / 2} / /N; 

rT = remainingTriangles[{Al, A2, A3}] 
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{{{0., 0 . } , {0 .5 , 0 . } , {0.25, 0.433013}}, 

{{0.5, 0 . } , { 1 . , 0 . } , {0.75, 0.433013}}, 

{{0.25, 0.433013}, {0.75, 0.433013}, {0 .5 , 0.866025}}} 

Show[Graphics[{RGBColor[0,0,1], Map[Polygon, rT]}] 

AspectRatio —̂  Automatic]; 

Fig. 19.3. First stage in the construction of the Sierpinski triangle. 

As for the Cantor set, we define the function remainingTrianglesList . 

remainingTr ianglesLis t [ t r iangles_Lis t ] : = 

Flatten[Map[remainingTriangles, t r i a n g l e s ] , 1] 

r t l = remainingTrianglesList[rT] 

{{{0., 0 . } , {0.25, 0 . } , {0.125, 0.216506}}, 

{{0.25, 0 . } , {0 .5 , 0 . } , {0.375, 0.216506}}, 

{{0.125, 0.216506}, {0.375, 0.216506}, {0.25, 0.433013}}, 

{{0.5, 0 . } , {0.75, 0 . } , {0.625, 0.216506}}, 

{{0.75, 0 . } , { 1 . , 0 . } , {0.875, 0.216506}}, 

{{0.625, 0.216506}, {0.875, 0.216506}, {0.75, 0.433013}}, 

{{0.25, 0.433013}, {0 .5 , 0.433013}, {0.375, 0.649519}}, 

{{0.5, 0.433013}, {0.75, 0.433013}, {0.625, 0.649519}}, 
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{{0.375, 0.649519}, {0.625, 0.649519}, {0.5, 0.866025}}} 

Show[Graphics[{RGBColor[0,0,1], Map[Polygon, rt1]}], 

AspectRatio -̂  Automatic]; 

Fig. 19.4. Second stage in the construction of the Sierpinski triangle. 

We can now build up the function SierpinskiTr iangle , which depends upon 
the integer n, generating the nth iterate in the construction of the Sierpinski 
triangle corresponding to the limit n -^ oc. 

S ierp inskiTr iangle [n.Integer] : = 

Nest[remainingTrianglesList , {{Al, A2, A3}}, n] ; 

Show[Graphics[{RGBColor[0, 0, 1 ] , 

Map[Polygon, S ie rp insk iTr iangle[5] ]}] 

AspectRatio -^ Automatic]; 

Output represented in Figure 19.5. 

Proceeding as we did for the Cantor set, we can determine the Hausdorff 
dimension of the Sierpinski triangle. We find 

d/f(5A) = | ^ « 1.58496..., 
log 2 

where ^ A denotes the Sierpinski triangle This result shows that the area of the 
Sierpinski triangle must be zero. We can check this result as follows. The area 
of an equilateral triangle with sides of length a is equal to {V3/A)a^. Thus, 
starting with an equilateral triangle of side 1 and area \ /3/4, the first iteration 
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Fig. 19.5. Fifth stage in the construction of the Sierpinski triangle. 

removes one equilateral triangle of side | ; that is, we decrease the area of the 
original triangle by (A/3 /4 ) (^) , the second iteration removes three triangles 
of sides j] that is, we again decrease the area by 3(\/3/4 ( | ) . More generally, 
the nth iteration removes an area equal to 3"^"^ (A/3 /4) ( | ) which is equal to 
(V3/12) (I)"". Therefore the total area removed from the original triangle in 
the limit n ^ oo is 

removedArea = (Sqrt[3] / 12) Sum[(3 / 4)^n, {n, 1, In f in i ty}] 

Sqrt[3] 

that is, the area of the original triangle. 

19.3 Sierpinski Square 

Also called the Sierpinski carpet (this fractal set was, according to Sierpinski, 
first found by Stefan Mazurkiewicz (1888-1945) who never published it), it is 
a bounded connected subset of M? whose recursive construction is similar to 
the Sierpinski triangle construction. Starting from the closed square, whose 
vertices are respectively located at (0,0), (0,1), (1,1), (1,0), we first divide 
it in nine equal squares and then remove the open square whose vertices are 
( I ' i ) ' ( i ' D ' (§ ' D ' ( i ' i ) ' ^^ obtain eight closed squares. We then repeat 
this operation on each remaining square. 

We again proceed as above and start defining the function remainingSquares 
similar to the function remainingTriangles. 
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remainingSquares [Rectangle [ptl_List, pt2-List]] : = 

Module[{pt = AbsEptl - pt2] / 3, rectangleList}, 
rectangleList = {Rectangle[ptl, p t l + p t ] , 

Rectangle[{ptl[[l]] ,ptl[[2]]+ p t [ [2] ]} , 
{pt l[[ l ]]+ p t [ [ l ] ] , pt2[[2]] - p t [ [2] ]}] , 
Rectangle[{ptl[[l]] , pt2[[2]] - p t [ [ 2 ] ] } , 
{ptl[[ l]]+ p t [ [ l ] ] , pt2[[2]]}] . 
Rectangle[{ptl[[1]] + p t [ [ l ] ] , p t l [ [2 ] ]} , 
{pt l [ [ l ] ] + 2 p t [ [ l ] ] , p t l [ [2]] + p t [ [2] ]}] . 
Rectangle[{ptl[[1]] + p t [ [ l ] ] , pt2[[2]] - p t [ [2] ]} , 
{pt2[[l]] - p t [ [ l ] ] , pt2[[2]]}] , 
Rectangle[{pt2[[l]] - p t [ [ l ] ] , p t l [ [2 ] ]} , 
{pt2[ [ l ] ] , pt l[[2]]+ p t [ [2] ]}] . 
Rectangle[{pt2[[l]] - p t [ [ l ] ] , p t l [ [2]] + p t [ [ 2 ] ] } . 
{pt2[[ l ] ] , pt2[[2]] - p t [ [2] ]}] . 
Rectangle[{pt2[[l]] - p t [ [ l ] ] , p t2[[2]] - p t [ [2] ]} , 
{pt2[[ l ] ] , pt2[[2]]}]}; rectangleList] 

rSl = remainingSquares[Rectangle[{0, O}, {1, 1}]] 

1 1 1 1 2 
{Rectangle[{0, 0}, {-, - } ] , Rectangle[{O, - } , {-, - } ] , 

2 1 1 2 1 
Rectangle[{0, - } , {-, l}] , Rectangle[{-, 0}, {-, - } ] , 

1 2 2 2 1 
Rectangle [ { - , - } , {-, 1}], Rectangle [ { - , 0}, {1, -}] , 

2 1 2 2 2 
Rectangle [ { - , - } , {1, -}] , Rectangle [ { - , - } , {1,1}]} 

Show[Graphics[{RGBColorEO, 0, 1] , rSl}] , 
AspectRatio -^ Automatic]; 

Making the function remainingSquares list able, we can define the function 
SierpinskiCarpet that generates all the successive steps of the construction 
of the Sierpinski square. 

Attributes[remainingSquares] = Listable; 
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Fig. 19.6. First stage in the construction of the Sierpinski square. 

SierpinskiCarpet [n_Integer] : = 

Nest[remainingSquares, Rectangle[{0, 0} , { 1 , 1 } ] , n] 

Show[Graphics[{RGBColorCO, 0, 1 ] , SierpinskiCarpet[5]}], 

AspectRatio -^ Automatic]; 

Fig. 19.7. Fifth stage in the construction of the Sierpinski square. 

Proceeding as we did above for the Sierpinski triangle, we can determine the 
Hausdorff dimension of the Sierpinski square. We find 

dH{Sa) = ~^^l.S9279..., 
log 3 
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where S\j denotes the Sierpinski square. This result shows that the area of 
the Sierpinski square must be zero. We could check this result as we did for 
the Sierpinski triangle. 

19.4 von Koch Curve 

Helge von Koch was a student of Mittag-Leffler at Stockholm University. He is 
famous for the self-similar curve presented in his 1904 paper [28] entitled Sur 
une courbe continue sans tangente, obtenue par une construction geometrique 
elementaire (On a continuous curve without tangents constructible from ele
mentary geometry). 

The von Koch curve is constructed by first dividing a segment of unit length 
into three segments of equal length and replacing the middle segment by the 
two sides of an equilateral triangle of the same length as the segment being 
removed. Repeat this process on the four resulting segments, dividing them 
into three equal parts and replacing each of the middle segments by two sides 
of an equilateral triangle. The von Koch curve is the limit curve obtained by 
repeating indefinitely this construction on each new generated segment. 

Here is the first stage of the construction. 

Show[Graphics[Line[{{0, 0} , {1/3 , 0} , {1 / 2, Sqrt[3] / 6} , 
{2 / 3 , 0} , {1 , 0}}] ] , AspectRatio -^ Automatic]; 

Fig. 19.8. First stage of the construction of the von Koch curve. 

We call this structure the basicProf i l e . 

bas icProf i l e = {{O, 0} , {1 / 3 , 0} , {1 / 2, Sqrt[3] / 6} , 

{2 / 3 , 0} , {1 , 0}}; 

At each stage of the construction, we have to replace each segment by the line 
defined by bas icProf i l e , correctly oriented and scaled; each segment being 
defined by the coordinates of its initial and final point denoted {xl , y l} and 
{x2, y2}. 
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The function nextProf i l e [ { { x l , y l } , {x2, y2}}] , defined below, gener
ates the next profile of a segment. 

nextProfi le[{{xl_, 

Module[{rotation2D, 

rotation2D[x_, y_] = 

c = X / Sqrt[x"2 + 

{{c, - s } , { s , c } } ] ; 

{x, y} = {x2 - x l , 

r = Sqrt[x'^2 + y'̂ 2] 

basicProfi le = {{0, 

{2 / 3 , 0} , {1 , 0}} 

newProfile = Map[{x 

basicProfi le] / / N; 

yl.}, {x2_, y2_}}] : = 

X, y, basicProf i le , newProfile}, 

= Module[{c. 

7*^2]; s = y 

y2 - y l } ; 

> 
0} , {1 / 3 , 

f 

s } . 
/ Sqrt[x"2 + 

0} , {1 / 2 , 

1, y l } + r rotation2D[x, 

newProfile] 

y - 2 ] ; 

Sqrt[3] / 6 } , 

y ] . # &, 

nextProfi le[{{0, 0} , {1 , 0}}] 

{ { 0 . , 0 . } , {0.333333, 0 . } , {0 .5 , 0.288675}, 

{0.666667, 0 . } , { 1 . , 0.}} 

In order to generate the whole curve at a given stage we have to define the 
next profile of a line. Because the arguments of the function nextProf i l e 
are a pair of points, given a line given by a sequence of points we have to 
generate the sequence of segments that constitute this line. This is done using 
the function Partit ion with an offset equal to 1. 

Part i t ion[{{0 , 0} , {1 / 3 , 0} , {1 / 2, Sqrt[3] / 6 } , 

{2 / 3 , 0 } , {1 , 0}} , 2, 1] 

mo, 0}, {'-. o», ((A, 0). (1, ^ ^ H , 

We then use the Map function to make the function nextProf i l e listable. 

nextProf i le[ l i s_List] := Map[nextProfile, l i s ] 
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nP = Flatten[nextProfile[Partition[{{0, 0}, {l / 3, 0}, 

{1 / 2, Sqrt[3] / 6}, {2 / 3, 0}, {1, 0}}, 2, 1]], 1] 

{{0., 0.}, {0.111111, 0.}, {0.166667, 0.096225}, 

{0.222222, 0.}, {0.333333, 0.}, {0.333333, 0.}, 

{0.388889, 0.096225}, {0.333333, 0.19245}, 

{0.444444, 0.19245}, {0.5, 0.288675}, {0.5, 0.288675}, 

{0.555556, 0.19245}, {0.666667, 0.19245}, 

{0.611111, 0.096225}, {0.666667, 0.}, {0.666667, 0.}, 

{0.777778, 0.}, {0.833333, 0.096225}, {0.888889, 0.}, 

{1., 0.}} 

Show[Graphics[Line[nP]], 

AspectRatio -̂  Automatic]; 

Fig. 19.9. Second stage of the construction of the von Koch curve. 

Apparently, everything is fine but looking carefully at the list nP we discover 
that the fifth and sixth points are identical. This is due to the fact that 
the nP line consists of four basicProf i l e s and that the endpoint of a given 
basic profile is identical to the initial point of the following one. Because 
basicProf i l e consists of five points this implies that the pairs (5,6), (10,11), 
and (15,16) are pairs of identical points. This does not cause any problem 
when visualizing the line because the three segments of zero length do not 
appear on the visualization. But applying the function nextProf i le to a pair 
of identical points returns an error message caused by the indeterminate value 
of the parameters c and s. We can eliminate from the list the extra points 
using the following function. 
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lineSequence[1 

For[k 

If [ l i s 

seq = 

seq] 

= 1, k < 

5[[k]] != 

is_List] : = Module[{seq = { } } , 

Length[ l i s ] , k++, 

l i s [ [ k + 

Flatten[Append[sec 

1 ] ] , seq = Append[seq, 

L, { l i s [ [ L e n g t h [ l i s ] ] ] } ] 

{ l i s 

, 1] 

[ [ k ] ] } ] ] ] ; 

} 

lineSequence[nP] 

{{0., 0.}, {0.111111, 0.}, {0.166667, 0.096225}, 

{0.222222, 0.}, {0.333333, 0.}, {0.388889, 0.096225}, 

{0.333333, 0.19245}, {0.444444, 0.19245}, {0.5, 0.288675}, 

{0.555556, 0.19245}, {0.666667, 0.19245}, 

{0.611111, 0.096225}, {0.666667, 0.}, {0.777778, 0.}, 

{0.833333, 0.096225}, {0.888889, 0.}, {1., 0.}} 

Show[Graphics[Line[lineSequence[nP]]], 

AspectRatio —> Automatic]; 

Fig. 19.10. Second stage of the construction of the von Koch curve using 
lineSequence instead of the listable version of the function nextProf i le . 

We now have to group all these steps to build up the function KochCurve [{{xl, 
y l } , {x2, y2}}, n] that, starting from an initial segment {{xl, y l } , {x2, 
y2}} iterates n times the construction described above. 

KochCvirve [{{xl_, 

Nest 

1 ] ] . 

y l - } . {x2_ . y2-}}. n -Integer] : = 

[lineSequence[Flatten[nextProf i le [Part i t ion [#, 2, 

!]]&, { {x l . y l } . {x2. y2}}. n] 
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Show[Graphics[Line[KochCurve[{{0, 0} , {1,0}}, 4 ] ] ] , 

AspectRatio -^ Automatic]; 

Fig. 19.11. Fourth stage of the construction of the von Koch curve. 

Note that we could also have defined a slightly more general function. 

KochCurve[pointsList_List, n . In teger] : = 

Nes t [ l ineSequence[F la t t en[nex tProf i l e [Par t i t ion[# , 2, 

1 ] ] , 1]] &, p o i n t s L i s t , n] 

where po in t sL i s t is a list of points such as {{0, 0} , {1 , 0}} or any of 
its iterates such as {{0, 0} , {l / 3 , 0} , {1 / 2, Sqrt [3] / 6} , {2 / 
3 , 0} , {1, 0}}. 

Show[Graphics[Line[KochCurve[{{0, 0} , {1 , O}}, 5 ] ] ] , 

AspectRatio -^ Automatic]; 

Fig. 19.12. Fifth stage of the construction of the von Koch curve. 

Show[Graphics[Line[KochCurve[{{0, 0} , {1 / 3 , 0} , 

{1 / 2, Sqrt[3] / 6} , {2 / 3 , 0} , {1 , 0}}, 4 ] ] ] , 

AspectRatio -^ Automatic]; 
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Fig. 19.13. Same as above but starting from a different set of points. 

Taking into account the self-similar structure of the von Koch curve, v̂ e can 
determine its Hausdorff dimension. We find 

d ^ m = 1^^1.266186..., 
^ ^ log3 

where K denotes the von Koch curve. This Hausdorff dimension, greater than 
1, implies that the length of the von Koch curve is infinite which is, by the 
way, obvious because at each step the length is multipUed by 4/3. 

We can even start from a list of points that are the vertices of a regular 
polygon. Starting from an equilateral triangle we generate the so-called von 
Koch island also called the von Koch triangle. 

Show[Graphics[Line[KochCurve[{{0, 0 } , {1 / 2, Sqrt[3] / 2 } , 

{1 , 0 } , {0, 0}} , 5 ] ] ] , AspectRatio -^ Automatic]; 

Fig. 19.14. Fifth stage of the construction of the von Koch triangle. 

It is clear that although the length of the perimeter of the von Koch triangle 
is infinite, its area is finite. To find its value we proceed as we did above to 
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obtain the area of the Sierpihski triangle. First we note that the area of an 
equilateral triangle with sides of length a is equal to (\/3/4)a^. Next we note 
that starting from an equilateral triangle of unit side and area \/3/4, the first 
iteration adds three equilateral triangles of sides | , that is, we increase the 

area of the original triangle by 3(V^/4) ( | ) . More generally, the nth iteration 
adds an area equal to 

Therefore, the total area added to the original triangle, in the limit bn -^ CXD, 
is 

addedArea = (3 Sqrt[3] / 16) Sum[(4 / 9)^n, {n, 1, In f in i ty}] 

3 Sqrt[3] 

20 

The area of a von Koch triangle is larger than the area of the original equi
lateral triangle by a factor 

addedArea / (Sqrt[3] / 4) 

That is, the area of the von Koch triangle when the original equilateral triangle 
sides are equal to 1 is equal to 

areaKochTriangle = (8 / 5) (Sqrt[3] / 4) / / N 

0.69282 

Starting from a unit square, here is another example of the von Koch island. 

Show[Graphics[Line[KochCurve[{{0, 0} , {1, O}, {1 , l } , {0, l } , 

{0, 0}}, 4 ] ] ] , AspectRatio —> Automatic]; 
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Fig. 19.15. Fourth stage of the construction of the von Koch square. 
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Iterated Function Systems 

Let {/z I 1 < i < n} be a finite set of n mappings from a complete metric space 
(E", d) onto itself; {pi \ I < i < n} a, discrete probability distribution, that is, 
a set of nonnegative real numbers such that XlILi P* — 5̂ ^^^ F : E \-^ E the 
mapping defined by a; i-̂  F{x) = fi{x) with probability Pi. The dynamical 
system {{E^d),F) is called an iterated function system or IFS. 

A mapping / of a metric space onto itself is a contraction if there exists a 
constant 0 < 5 < 1 such that for all pairs {x, y) of points of the metric space, 
d{f{x),f{y)) < sd{x,y), where d is the distance defined on the metric space. 
If / , defined on a complete metric space, is a contraction, the sequence of 
iterates {f'^{x)) of any point x always converges to the same fixed point. If all 
the mappings fi of an IFS {fi\l<i<n} are contractions, then the system 
has an attractor. 

For example, {fi\l<i<n} can be a set of two-dimensional affine trans
formations. That is, each mapping is of the form fi{x) = AiX + 6̂ , where 
A^ is a 2 X 2 matrix and bi a two-dimensional vector. We can verify that, if 
I det yl̂ l < 1, / i is a contraction. 

20.1 Chaos Game 

Iterated function systems are widely used to generate computer images that 
are approximations of the attractor of the IFS. These attractors are often 
fractals. In his book, M. Barnsley [1] uses IFS to give a detailed treatment 
of fractal images. The traditional example of IFS is the so-called chaos game. 
Start with an equilateral triangle with vertices at (0,0), (1,0), and (0.5, \/3/2), 
respectively, labeled ^ i , A2, and A^. Select a random pointPi and define a 
sequence of points (Pi, P2, -F3, • • •) such that P2 is the midpoint of the segment 
AiPi, where Ai is one of the vertices selected at random, P3 the midpoint of 
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the segment AjP2^ where Aj is one of the vertices selected at random, and so 
on. 

In order to build up a small program generating the sequence of successive 
iterates of an initial point Pi, we first define the vertices Al, A2, A3 of the tri
angle and the three functions f [1], f [2], and f [3] that transform a point {x, 
y} in the midpoint of the segment joining the point {x, y} to, respectively, 
Al, A2, and A3. 

Al = {0, 

f [ l ] [ { x -

f[2][{x_ 

f [3] [{x-

0} ; A2 

. y-}] : 

, y-}3 : 
. y-}] : 

= {1 . 
= 0.5 

= 0.5 

= 0.5 

0} ; 
({x. 
({x. 
({x. 

A3 

y} 

y} 

y} 

= {0 .5 , 

+ Al) ; 

+ A2); 

+ A3); 

Sqr t [3 .0] / 2}; 

We then define the function chaosGame [ i n i t , n] which generates a numer
ated sequence starting from i n i t followed by its n iterates and draw the 
equilateral triangle. 

chaosGame [ in i t_Li s t , n_Integer] : = 

Module[{F, p t s , p t L i s t , t r i a n g l e , t r a j e c t o r y , image}, 

F [xJ := f [Random[Integer, {1, 3 } ] ] [ x ] ; 

p t s = NestLis t [F, i n i t , n ] ; 

p tL i s t = Graphics[{{PointSize[0.05] , CMYKColor[0, 0, 1, 0 ] , 

Map[Point, p t s ] } , Table[Text [ i , P a r t [ p t s , i ] ] , 

{ i , 1, Length [p t s ]} ]} ] ; 

t r i a n g l e = Graphics[{RGBColor[1,0,0], 

Line[{Al, A2, A3, Al}]}]; 

t r a j e c t o r y = Graphics[{RGBColor[0, 0, 1 ] , L ine [p t s ]} ] ; 

image = Show[{ptList, t r i a n g l e , t r a j e c t o r y } , 

PlotRange —> Al l , AspectRatio -^ Automatic]; image] 
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chaosGame[{0.3, 0 . 2 } , 1 5 ] ; 

Fig. 20 .1 . Sequence of points generated by the chaos game starting from an initial 
point (labeled 1) inside an equilateral triangle. 

Because the mappings f [ 1 ] , f [ 2 ] , and f [3] are contractions, if the initial 
point init Hes outside the triangle, after a few iterations all the successive 
iterates lie inside as shown below. 

chaosGame[{1 , 1 } , 1 0 ] ; 

Fig. 20.2. Sequence of points generated by the chaos game starting from an initial 
point (labeled 1) outside the triangle. 

If we plot a large number of points (reducing their size to obtained a finer 
figure), the sequence seems to converge to a Sierpinski triangle. 
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bigChaosGaine[init_List, n_Integer] : = 

Module[{F, p t s , p t L i s t , image}, 

F [x_] := f[Random[Integer, {1 , 3}]] [x ] ; 

p t s = Drop[NestList[F, i n i t , n ] , Floor[n / 1000]]; 

p tL i s t = Graphics[{PointSize[0.005] , Map[Point, p t s ] } ] ; 

image = Show [p tL i s t , PlotRange -^ A l l , 

AspectRatio -^ Automatic]; image] 

Note that a fraction of 0.1% of the total sequence of points have been dropped. 

bigChaosGame[{0.3, 0 .2} , 10000]; 

Fig. 20.3. The sequence of a large number of points generated by the chaos game 
seems to converge to a Sierpinski triangle. 

To help understand why the sequence of points apparently converges to the 
Sierpinski triangle, consider the respective inverses g [ l ] , g[2] , and g[3] of 
the mappings f [1], f [2], and f [3]. These inverses exist because f [1], f [2], 
and f [3] are linear. They are defined by 

Al = {0, 

g [ l ] [ { x -

g [2 ] [ {x . 

g[3] [{x. 

0}; A2 

y-}] : 

y-}] : 

. y-}] : 

= {1 , 
= 2 {x 

= 2 {x 

= 2 {x 

0}; 

. y} 

. y} 

. y} 

A3 = {0.5 , 

+ Al; 

+ A2; 

+ A3; 

Sqrt[3.0] / 2} ; 

Using g [ l ] , g [2] , and g[3] we can show that the image by any of these 
mappings of a point that does not belong to the Sierpinski triangle cannot 
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belong to the Sierpiriski triangle. Take, for example, the points (0.5, \/3/4) 
and (0.25, \ /3/8). 

{g[l][{0.5, Sqrt[3.0] / 4}] , g[l] [{0.25, Sqrt[3.0] / 8}]} 
{g[2][{0.5, Sqrt[3.0] / 4} ] , g[2] [{0.25, Sqrt[3.0] / 8}]} 
{g[3][{0.5, Sqrt[3.0] / 4}] , g[3] [{0.25, Sqrt[3.0] / 8}]} 

{{1., 0.866025}, {0.5, 0.433013}} 

{{2., 0.866025}, {1.5, 0.433013}} 

{{1.5, 1.73205}, {1., 1.29904}} 

Hence, the sequence of points (Pi, P2? ̂ 3 , • • •) converges to the Sierpinski tri
angle if, and only if, the initial point Pi belongs to the Sierpiriski triangle. 
Because the area of the Sierpiriski triangle is of measure zero (i.e., its Eu
clidean area is zero), starting from a randomly selected initial point Pi the 
probability of converging to the exact Sierpiriski triangle is zero! But, on a 
computer screen, the exact and the approximate Sierpiriski triangles cannot 
be distinguished. 

The three mappings f [1], f [2] , f [3] are afRne transformations which can, 
respectively, be written 

0.5 0 \ fx\ /0.5 0 \ fx\ fl\ /0.5 0\ fx\ f 0.5 \ 
0 0.5; [yj^ V 0 0.5; [yj ^ Voy' V 0 ^'V U / V^^/^y' 

20.2 Variations on the Chaos Game 

Many variations of the chaos game can be played. Not all of them generate 
fractal images. Starting from a set ^ of n points Ai, A2, . . . ,^n5 select at 
random a point Pi and define a sequence of points (Pi, P2, Ps^ - • •) such that 
P2 on the segment AiPi is at a distance from Ai equal to a given fraction r 
of the length of AiPi where A^ is a randomly selected point of A, P3 on the 
segment ^jP2 is at a distance from Aj equal to the fraction r of the length of 
AjP2 where Aj is a randomly selected point of A, and so on. 

Here are a few examples. 
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20 .2 .1 E x a m p l e 1 

ClearCAl, A2, A3, A4, r , f] 

Al = {0 .5 , 0 .5} ; A2 = {- 0 . 5 , 0 .5} ; A3 = 

A4 = {0.5 , - 0 .5} ; r = 0 .4; 

f [ l ] [{x_ , y_}] := r ({x, y} + Al) ; 

f[2][{x_, y.}] := r ({x, y} + A2); 

f[3][{x_, y.}] := r ({x, y} + A3); 

f [4 ] [{x- . y_}] := r ({x, y} + A4) ; 

= {- 0 . 5 , - 0 .5} ; 

b i g G a m e l [ i n i t _ L i s t , n_Integer] := 

Module[{F, p t s , p t L i s t , image}, 

F[x_] := f [Random[Integer, { 1 , 4 } ] ] [ x ] ; 

p t s = Drop[NestLis t [F , i n i t , n ] , F loor [n /lOOO]]; 

p t L i s t = Graphics[{RGBColor[0, 0 , 1 ] , P o i n t S i z e [ 0 . 0 0 5 ] , 

Map[Point, p t s ] } ] ; 

image = Show[ptLis t , PlotRange —> A l l , 

AspectRatio -^ Automat ic ] ; image] 

bigGamel[{0, 0 } , 10000] ; 

itv H*J an n4 ;sa nv «a aia 
ifiS aS4i tin »« BM S!9 KS 0tC 
a s »s oiK Qt: »» tio OSK UU 

eitt ef^ »» tss tt8 iin tut ai> 

» s s » 9» :;« KK ISC KK esss 

«»! Kit SM «« «& »» Ut( Rti 

u s ':Sff lis: 8lt AK rXS U» »K 

Fig. 20.4. Sequence of a large number of points generated by the chaos game of 
Example 1. 
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20.2.2 Example 2 

ClearCAl, A2, A3, A4, A5, r , f] 

Al = {1 , 0}; A2 = {Cos[2Pi / 5 ] , Sin[2Pi / 5 ]} ; 

A3 = {Cos[4Pi / 5 ] , Sin[4Pi / 5 ] } ; 

A4 = {Cos[6Pi / 5 ] , Sin[6Pi / 5 ]} ; A5 = {Cos[8Pi / 5 ] , 
Sin[8Pi / 5 ] } ; r = 0 . 3 ; 

f [ l ] [ { x . , y_}] 

f[2][{x_, y_}] 

f[3][{x_, y_}] 

f[4][{x_, y_}] 

f[5][{x_, y.}] 

= r ({x, y} + Al) 

= r ({x, y} + A2) 

= r ({x, y} + A3) 

= r ({x, y} + A4) 

= r ({x, y} + A5) 

bigGame2 [ i n i t J L i s t , n . In teger] 

Module[{F, p t s , p t L i s t , image}, 

F[x_] := f [Random[Integer, {1 , 

p t s = Drop[NestList[F, i n i t , n. 

p tL i s t = Graphics[{RGBColor[0, 

Map[Point, p t s ] } ] ; 

image = Show[ptList, PlotRange 

: = 

5 } ] ] [ x ] ; 

, Floor[n / 1000]]; 

0, 1 ] , Poin tSize[0 .003] , 

-^ Al l , 

AspectRatio -^ Automatic]; image] 

bigGame2[{0, 0 } , 10000] ; 

^^^ 

:>% 
^i> 

%> 

t> 
•>,*> 

t> 
t> 

* 

»»" 

l^ 

Fig. 20.5. Sequence of a large number of points generated by the chaos game of 
Example 2. 
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20.2.3 Example 3 

ClearCAl, A2, A3, A4, A5, r, f] 

Al = {1, 0}; A2 = {CosCPi / 3], Sin[Pi / 3]}; 

A3 = {Cos[2Pi / 3], Sin[2Pi / 3]}; A4 = {- 1, 0}; 

A5 = {Cos[4Pi / 3], Sin[4Pi / 3]}; A6 = {Cos[5Pi / 3], 
Sin[5Pi / 3]}; r = N[l / 3]; 

f[l3[{x., y_}] 

f[2][{x., y.}] 

f[3][{x_, y_}] 

f[4][{x., y_}] 

f[5][{x_, y.}] 

f[6][{x_, y_}] 

= r ({x, y} + Al) 

= r ({x, y} + A2) 

= r ({x, y} + A3) 

= r ({x, y} + A4) 

= r ({x, y} + A5) 

= r ({x, y} + A6) 

bigGame3[init_List, n_Integer] : = 

Module[{F, p t s , p t L i s t , image}, 

F[x_] := f [RandomClnteger, {1 , 6 } ] ] [ x ] ; 

p t s = Drop[NestList[F, i n i t , n ] , Floor[n / 1000]]; 

p tL i s t = Graphics[{RGBColorCO, 0, 1 ] , Po in tS ize[0 .005] , 

Map [Point , p t s ] } ] ; 

image = Show[ptList, PlotRange —> Al l , 

AspectRatio -^ Automatic]; image] 

bigGame3[{0, 0} , 10000]; 

Fig. 20.6. Sequence of a large number of points generated by the chaos game of 
Example 3. 
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20.3 Barnsley Fern 

20.3.1 The Original Barnsley Fern 

In the case of the Sierpinski triangle the three mappings were chosen with 
equal probability. Using nonuniform probabihties, Barnsley [1] found an at-
tractor that bears a startling resemblance to a fern. The IFS consists of the 
following four afhne transformations defined on R^ and their respective prob
abilities. 

fi{x,y) = L Q ^g] i^j with probability pi = 0.01, 

f2{x,y) = ( Q Q4 Q'35 j r j + L A with probability p2 = 0.85, 

/3(x, y) = (Q^2^3 "J^^2 ; [y) + ( L G ) ^^^^ Probability ps = 0.07, 

/4(x, y) = r ^ 2 6 ^ If A r j + L^^A with probability 7.3 = 0.07. 

f [ l ] [{x_ , y_}] 

f [2 ] [{x . , y.}] 

{0, 1.6} 

f [3 ] [{x- . y.}] 

(0 , 1.6} 

f [4] [{x- , y.}] 

{0, 0.44} 

:= {{0, 0} , {0, 0.16}}. {x, y} 

:= {{0.85, 0 .04}, {- 0.04, 0.85}}. {x, y} + 

:= {{0.2, - 0 .26} , {0.23, 0.22}}. {x, y} + 

:= {{- 0 .15, 0 .28}, {0.26, 0.24}}. {x, y} + 

The following program generates the Barnsley fern 

BarnsleyFern [n_Integer] : = 

Module[{pt, p t L i s t , rnd := Random[Integer, {1,100}]}, 

p t = {0, 0} ; p tL i s t = {p t} ; 

Do[r = rnd; pt = Which[r == 1, f [ l ] [ p t ] , r <= 86, f [2] [pt] , 

r <= 93, f [ 3 ] [ p t ] . True, f [ 4 ] [ p t ] ] ; 

p t L i s t = Append[ptList, p t ] , {n}]; 

image = Show[Graphics[{RGBColor[0, 0 .4 , 0 ] , Po in tS ize[0 .003] , 

Map[Poin t ,p tLis t ]}] , PlotRange -^ A l l ] ; image] 

BF = BarnsleyFern[10000]; 
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Fig. 20.7. Bamsley's fern. 

Barnsley's affine transformations are contractions and each of them has a fixed 
point tha t is found using the Mathematica command F i x e d P o i n t . 

{ f x d l , f xd2 , fxdS , fxd4} = T a b l e [ F i x e d P o i n t [ f [ k ] , 

{ 0 . 5 , 0 . 5 } ] , {k, 1, 4}] 

{ { 0 . , 0 . } , {2 .6556 , 9 . 9 5 8 5 1 } , {- 0 . 608365 , 1 .87189}, 

{0 .153769 , 0 .631553}} 

Figure 20.8 shows their locations on the fern. Point k is the fixed point of fk 
(A: = 1,2,3,4). 

pos = G r a p h i c s [ { P o i n t S i z e [ 0 . 0 4 ] , CMYKColor[0, 0 , 1, 0 ] , 

Map[Poin t , { f x d l , f xd2 , f x d 3 , fxd4}]}] ; 

num = G r a p h i c s [ { T e x t [ 1 , f x d l ] . Text [ 2 , f x d 2 ] , T e x t [ 3 , f x d 3 ] , 

Text [4 , f x d 4 ] } ] ; 

Show[{BF, p o s , num}]; 

•4.-- rJl'fif^' 

Fig. 20.8. Barnsley's fern with the fixed points of the affine transformations fi, 
f2, fs, and /4. 
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The following programs help in understanding how the four afRne transforma
tions generate the different parts of the Barnsley fern by drawing successive 
images of an initial triangular shape called in i t . 

i n i t = Graphics[Line[{{- 2 , 1 } , {2, 1} , {0, 10}, {- 2 , 1 } } ] ] ; 

Starting from the initial triangular shape, the graphics array below illustrates 
the action of the different affine transformations, / i generates the lower part 
of the stem; /2 generates the upper part of the stem, all triangles converging 
to the fixed point 2 of /2; starting from the image of the initial shape by / s , 
and repeatedly applying /2 generates the left branches; and similarly, starting 
from the image of the initial shape by /4, and repeatedly applying /2 generates 
the right branches. 

flAction = 

Show[Graphics[Map[Line, Transpose[Map[NestList[f[1],#, 50]&, 

{ { - 2, 1}, {2, 1} ,{0 , 10}, {- 2, 1 } } ] ] ] ] , 

PlotRange -^ {{- 2.6, 2.6}, {1, 11}}, Frame -^ True, 

DisplayFimction -^ Identity]; 

f2Action = 

Show[Graphics[Map[Line,Transpose[Map[NestList[f[2],#, 50]&, 

{ { - 2, 1} , {2, 1} , {0, 10}, {- 2, 1 } } ] ] ] ] , 

PlotRange -^ { { - 2 .6 , 2 . 6 } , {1 , 11}}, 

Frame —> True, DisplayFunction —̂  Ident i ty ] ; 

f2f3Action = 

Show[Graphics[Map[Line,Transpose[Map[NestList[f[2],#, 50] &, 

Map[f[3], { { - 2 , 1 } , {2 ,1 } , {0 ,10} , {- 2, 1 } } ] ] ] ] ] , 

PlotRange -^ {{- 2 .6 , 2 . 6 } , {1 , 11}}, Frame ^True, 

DisplayFimction -^ Ident i ty ] ; 

f2f4Action = 

Show[Graphics[Map[Line,Transpose[Map[NestList[f[2],#, 50]&, 

Map[f[4], { { - 2, 1}, {2, 1} , {0, 10}, {- 2, 1 } } ] ] ] ] ] , 

PlotRange -> { { -2 .6 , 2 .6 } , {1 , 11}}, Frame -^ True, 

DisplayFunction -^ Ident i ty ] ; 

fAction = Show[GraphicsArray[ 

{{flAction, f2Action}, {f2f3Action, f2f4Action}}]] 
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Fig. 20.9. Action of the four affine transformations on the initial shape. Upper 
left: f\ generates the lower part of the stem. Upper right: /2 generates the upper part 
of the stem, all triangles converging to the fixed point 2 of f2. Lower left: starting 
from the image of the initial shape by fs, and repeatedly applying /2 generates the 
left branches. Lower right: starting from the image of the initial shape by f4, and 
repeatedly applying /2 generates the right branches. 

20.3.2 Modifying the Probabilities 

The probabilities P i , P2, Ps, and p4 can actually be modified, but keeping pi 
small, p2 large, and ps — P4 still generates a fernlike image. Here are two 
examples. 

If we choose pi = 0.03, P2 = 0.75, Ps = P4 = 0.11, and use the following 
program, 
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Clear [BarnsleyFem] 

BarnsleyFern [n.Integer] : = 

Module[{pt, p t L i s t , rnd := Random[Integer, {1 , 100}]}, 

p t = {0, 0} ; p t L i s t = {p t} ; 

Do[r = rnd; pt = Which[r == 3 , f [ l ] [ p t ] , r <= 78, f [2] [pt] , 

r <= 89, f [ 3 ] [ p t ] . True, f [ 4 ] [ p t ] ] ; 

p tL i s t = Append[ptList, p t ] , {n}] ; 

image = Show[Graphics[{RGBColor[0, 0 .4 , 0 ] , Poin tSize[0 .005] , 

Map[Poin t ,p tLis t ]}] , PlotRange -^ A l l ] ; image] 

we obtain the image below (Figure 20.10). 

BarnsleyFern[10000]; 

Fig. 20.10. Bamsley's fern with probabilities pi = 0.03, p2 = 0.75, ps = P4 = 0.11. 

If we choose pi = 0.05, p2 — 0.75, ps = P4 = 0.10, and use the following 
program. 

Clear[BarnsleyFern] 

BarnsleyFern [n_Integer] : = 

Module[{pt, p t L i s t , rnd := Random[Integer, {1 , 100}]}, 

p t = {0, 0}; p tL i s t = {pt} ; 

Do[r = rnd; pt = Which[r == 5, f [1] [ p t ] , r <= 80, f [2] [ p t ] , 

r <= 90, f [ 3 ] [ p t ] . True, f [ 4 ] [ p t ] ] ; 

p tL i s t = Append[ptList, p t ] , {n}] ; 

image = Show[Graphics[{RGBColor[0, 0 .4 , 0 ] , Po in tS ize[0 .005] , 

Map[Poin t ,p tLis t ]}] , PlotRange -^ A l l ] ; image] 
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we obtain an image (not displayed) difficult to distinguish from the previous 
one. 

20.4 The Collage Theorem 

Among important mathematical results, Barnsley's book [1] contains many 
examples of IFS whose attractors have an amazingly realistic appearance. 
One of the most important results is Barnsley's Collage theorem which, given 
a fractal compact subset of R^, shows how to find an IFS whose attractor is 
close to the compact subset (refer to Barnsley's book for details). 

On page 105 Of [1], for instance, Barnsley defines the IFS that consists of 
the following transformations defined on C: Wi{z) = siz + (1 — 5^)a ,̂ for 
i = 1,2,3,4, where the complex numbers Si and â  are given in the table 
below. 

s 
a 

1 
0.6 

0.45 + 0.9i 

2 
0.6 

0.45 + 0.3i 

3 
0,4-0.3i 

0.6 + 0.3i 

4 
0.4 + 0.3i 

0.3 + 0.3i 

In order to generate the attractor using bigGame, we first write the mappings 
Wi on C as affine transformations fi on R'^. 

s 

a 

s 

a 

s 

a 

s 

a 

z + (1 -

-> 0.45 

z + (1 -

-̂  0.45 

z + (1 -

-> 0.6 + 

z + (1 -

-̂  0.3 + 

s) 

+ 0. 

s) 

+ 0 

s) 

O.c 

s) 

a/, { z - ^ x + y l , s 

9 1}// ComplexExpand 

a / . { z - ^ x + y l , s -

3 1}// ComplexExpand 

a/, {z—>x + yl, s 

11}// ComplexExpand 

a/, {z—^x + yl, s 

0.3 1} // ComplexExpand 

-> 0.6, 

-> 0.6, 

-^ 0.4 -

-^ 0.4 + 

0 

0 

3 

.3 

I, 

I, 

0.18 + 0.6 X + I (0.36 + 0.6 y) 

0.18 + 0.6 X + I (0.12 + 0.6 y) 

0.27 + 0.4 X + I (0.36 - 0.3 x + 0.4 y) + 0.3 y 

0.27 + 0.4 X + I (0.09 + 0.3 X + 0.4 y) - 0.3 y 

The affine transformations fi are, therefore, defined by 
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f[l][{x_. y.}] 

f[2][{x., y.}] 

f[3][{x-, y.}] 

{0.27, 0.37} 

f[4][{x., y_}] 

{0.27, 0.09} 

:= {{0.6, 0}, {0, 0.6}}.{x, y} + {0.18, 0.36} 

:= {{0.6, 0}, {0, 0.6}}.{x, y} + {0.18, 0.12}; 

:= {{0.4, 0.3}, {- 0.3, 0.4}}.{x, y} + 

:= {{0.4, - 0.3}. {0.3, 0.4}}.x,y + 

Running bigGame generates a leaflike attractor. 

Clear[bigGame] 

bigGame [ init_List , n.Integer] : = 

Module[{F, p t s , ptList , image}, 

F [x_] : = f [Random [Integer, {1 , 4}] ] [x] ; 

pts = Drop[NestList[F, i n i t , n ] , Floor[n / 1000]]; 

ptList = Graphics[{RGBColor[0, 0 .3 , 0 ] , PointSize[0.003] , 

Map[Point, p t s ] } ] ; 

image = Show[ptList, PlotRange -^ Al l , 

AspectRatio -^ Automatic]; image] 

Fig. 20.11. Leaflike fractal generated using Bamsley's collage theorem. 
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Julia and Mandelbrot Sets 

21.1 Julia Sets 

The French mathematician Gaston JuUa (1893-1978) pubhshed his famous 
Memoire sur Viteration des fonctions rationelles in 1918 [26]. He was 25. 
The paper investigates the behavior of the iterates z^+i = fi^n)^ where / 
is a rational function and, in particular, the set of points whose nth iterates 
remain bounded as n tends to infinity. 

Consider the complex function / : z i-̂  z^ -hc, where c is a constant. The Julia 
set associated with the complex number c is the set of points of the complex 
plane whose sequence of iterates remains bounded. For example, if c = — ̂ , 
we have 

Clear[f] 

f [z-Complex] : 

NestCf, 0.8 + 

Nest[f, 0.9 + 

= 

0 

0 

z ' 

.5 

.5 

2 -

I , 

I , 

- 1 / 2 

1000] 

10] 

- 0.366025 - 2.32705 10~^^^ I 

5027.03 + 2999.2 I 

Apparently the sequence of iterates of z = 0.8-1-0.5i remains bounded whereas 
the sequence of iterates of 0.9 -f- 0.5i does not. For c = 0.5, we can build up a 
program to visuahze the Julia set. 

The function Ju l iaTes t determines whether the iterates of z escape from the 
disk of radius 2 centered at the origin for a number of iterates less than n. If 
it is the case, Ju l iaTes t returns an integer m < n, indicating the first iterate 
escaping the disk, otherwise it returns n. 
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We use the command Compile [variables, expression] that creates a 
compiled function to evaluate expression assuming numerical values of 
variables. In compiled functions, the variables being numbers, the evalu
ation process is faster. Many built-in Mathematica commands compile their 
arguments automatically. 

Clear[JuliaTest] 

JuliaTest = Compile [{x 

Modulejz, num = 0}, z 

While[Abs[z] < 2.0 && 

. y» 

= X 

num 

{n. 
+ y 

< n. 

-Integer}, 

I; 

z = z~2 + 

{c 

c; 

, _Compl 

nvun++]; 

ex}}. 

num]]; 

JuliaTest[0.8 , 0.5 , 50, - 0.5] 

Jul iaTest[0.9 , 0 .5 , 50, - 0.5] 

50 

7 

Using the command DensityPlot we can visualize the Julia set. 

DensityPlot[JuliaTest[x, y, 50, - 0.5], 

{x, - 2.0, 2.0}, {y, - 2.0, 2.0}, PlotPoints -

Mesh —> False]; 

-̂  500, 

Fig. 21.1. Julia set of the function zy-^ z — 0.5. 
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As shown in Figure 21.1 the Juha set is represented by the white region. The 
darker the region the faster the iterates of a point in that region escape to 
infinity. Because the constant is real, if z belongs to the Julia set so does its 
complex conjugate. 

Julia sets often have a complex fractal structure as illustrated below. 

Dens i tyPlo t [ Ju l iaTes t [x , y, 50, - 0.75 + 0.5 I] , 

{x, - 2 .0 , 2 . 0 } , {y, - 2 .0 , 2 . 0 } , P lo tPoin ts -^ 500, 

Mesh —> Fa lse , ColorFunction —> Hue]; 

Fig. 21.2. Julia set of the function z^^ z^ — 0.75 + 0.5i. 

Zooming in exhibits more details. 

Dens i tyPlo t [ Ju l iaTes t [x , y, 50, - 0.75 + 0.5 I] , 

{x, 0 .9 , 1.6}, {y, - 0 .7 , - 0 .1} , P lo tPoin ts -^ 500, 

Mesh -^ Fa l se , ColorFunction -^ Hue]; 
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0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 

Fig. 21.3. Julia set above: zooming in [0.9,1.6] x [—0.7, —0.1]. 

Dens i tyPlo t [Ju l iaTes t [x, 

{x, 1 

Mesh 

L.21, 1.28}, {y, - 0 

y> 

2, 

50, 

- 0 

-^ Fa l se , ColorFunction —̂  

- 0. 

.1}. 
Hue] 

75 + 0.5 I ] , 

P lo tPoin ts -> 

) 

500, 

1.21 1.22 1.23 1.24 1.25 1.26 1.27 1.2 

Fig. 21.4. Julia set above: zooming in [1.26,1.28] x [-0.2, -0.1] . 

DensityPlot[JuliaTest[x, y, 50, - 0.75 + 0.5 I] , 

{x, 1.24, 1.27}, {y, - 0.13, - 0.1}, PlotPoints -> 500, 

Mesh -^ False, ColorFunction -^ Hue]; 
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-0.1 

0.105 

-0.11 

0.115 

-0.12 

0.125 

-0.13 

l ^ ^ J 

^'^^^B 

^^HHVV^^LT^ 

rJi^H 
™58i 
IHJ^^^ 

î B̂ K 
1.24 1 .245 1.25 1 .255 1.26 1.265 1.27 

Fig. 21.5. Julia set above: zooming in [1.24,1.27] x [-0.13, -0.1]. 

The two examples we presented illustrate the property of Julia sets of being 
either connected or totally disconnected. 

21.2 Julia Sets of Different Functions 

21.2.1 z\-^ z^ + c 

Clear[JuliaTest] 

JuliaTest = Compile[{x, y, {n,.Integer}, {c, 

Module[{z, num = 0 } , z = x + y l ; 

While[AbsEz] < 2.0 && num < n, z = z'̂ 3 + c; 

num++]; num]]; 

-Complex}}, 

DensityPlot[JuliaTest[x. 

{x, -
Mesh 

2.0, 2.0}, {y, - 2 

y> 
0, 

50, - 0.5], 

2.0}, PlotPoints 

—> False, ColorFunction -^ Hue]; 

^ 500, 

DensityPlot[JuliaTest[x, y, 50, -0.75 + 0.5 I], 

{x, - 2.0, 2.0}, {y, - 2.0, 2.0}, PlotPoints -^ 500, 

Mesh -^ False, ColorFimction -^ Hue]; 
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Fig. 21.7. Julia set of the function z \-^ z^ - 0.75 + 0.5i. 

Zooming in: 

DensityPlot[JuliaTest[x, y, 50, - 0.75 + 0.5 I] , 

{x, - 0.9, 0.1}, {y, 0.1, 1.3}, PlotPoints -^ 500, 

Mesh -^ False, ColorFunction -^ Hue]; 

DensityPlot[JuliaTest[x, y, 50, - 0.75 + 0.5 I], 

{x, - 0.57, - 0.38}, {y, 0.9, 1.25}, PlotPoints -^ 500, 

Mesh -^ False, ColorFunction -^ Hue]; 
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- 0 . 8 - 0 . 6 

Fig. 21.8. Julia set above: zooming in [-0.9,0.1] x [0.1,1.3]. 

- 0 . 5 5 - 0 . 5 2 5 - 0 . 5 - 0 . 4 7 5 - 0 . 4 5 - 0 . 4 2 5 - 0 . 4 

Fig. 21.9. Julia set above: zooming in [-0.57, -0.38] x [0.9,1.25]. 

21.2.2 zy-^ z^ + c 

Clear[JuliaTest] 

JuliaTest = Compile[{x, y, {n, .Integer}, {c, 

Module[{z, num = 0 } , z = x + y l ; 

While[AbsEz] < 2.0 && num < n, z = z'̂ 4 + c; 

num++]; num]]; 

.Complex}}, 

DensityPlot[JuliaTest[x, y, 50, - 0.5], 

{x, - 2.0, 2.0}, {y, - 2.0, 2.0}, PlotPoints -^ 500, 

Mesh -^ False, ColorFunction -^ Hue]; 
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Fig. 21.10. Julia set of the function z^^ z^ — 0.5. 

And zooming in: 

DensityPlot[JuliaTest[x, y, 50, - 0.5], 

{x, - 0.1, 0.1}, {y, 1.02, 1.22}, PlotPoints -

Mesh -^ False, ColorFunction —> Hue]; 

-̂  500, 

- 0 . 1 - 0 . 0 5 0 0 .05 0 . 1 

Fig. 21.11. Julia set above: zooming in [-0.1,0.1] x [1.02,1.22]. 

21.3 Mandelbrot Sets 

The Mandelbrot set [34, 35] is the set of points c of the complex plane such 
that the sequence (zn) defined by ZQ == 0? ^n+i = ^n '^ ^ ^^^^ ^^^ ^^^^ ^^ 
infinity. Such a set had been already considered by the French mathematician 
Pierre Fatou (1878-1929) who proved that once an iterate moved to a distance 
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greater than two from the origin, then the orbit would escape to infinity. 
Points in the Mandelbrot set have connected Julia sets. It can be shown that 
the Mandelbrot set is simply connected. 

The function Mandelbrot Test is used to test if a point x -f iy belongs to the 
Mandelbrot set. It determines whether the iterates of z escape from the disk 
of radius two centered at the origin for a number of iterates less than n. Its 
definition is similar to the function Ju l iaTes t defined above. 

$RecursionLimit = Infinity; 

MandelbrotTest = Compile [{{x, 

{n, -Integer}}, 

Module[{z, num = 0 , c = x + y 

z = X + y I; While[AbsEz] < 2 

z = z"2 + c; ++num]; num]]; 

_Real}, 

I}, 

{y. 

.0 && num < 

-Real}, 

n, 

For the points that diverge to infinity, and are therefore not in the set, the 
color reflects the number of iterations it takes to reach a certain distance from 
the origin. 

DensityPlot[MandelbrotTest[x, y, 50 ] , 

{x , - 2 .0 , 0 .75}, {y , - 1.25, 1.25}, P lo tPoin ts -^ 500, 

Mesh -^ Fa l se , ColorFunction —̂  Hue]; 

-2 - 1 . 5 - 1 - 0 . 5 0 0 . 5 

Fig. 21.12. Mandelbrot set of the function z ^-^ z^ -\- c. 

Zooming in reveals the very complex structure of the Mandelbrot set. 
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DensityPlot[MandelbrotTest [x, 

{x, -
Mesh 

- 1.0, - 0 .4} , {y, - 0 . 3 , 

—> Fa lse , ColorFunction 

y, 50 ] , 

0 .3} , P lo tPoin ts 

-> Hue] ; 

-^ 500, 

- 1 - 0 . 9 - 0 . 8 - 0 . 7 - 0 . 6 - 0 . 5 - 0 . 4 

Fig. 21.13. Mandelbrot set: zooming in [-1.0, -0.4] x [-0.3,0.3]. 
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DensityPlot[MandelbrotTest[x, y, 50], 

{x, - 0.85, - 0.65}, {y, - 0.2, O.O}, PlotPoints -

Mesh -^ False, ColorFunction -^ Hue]; 

-> 500, 

- 0 . 8 5 - 0 . 8 - 0 . 7 5 - 0 . 7 - 0 . 6 5 

Fig. 21.14. Mandelbrot set: zooming in [-0.85, -0.65] x [-0.2,0]. 

DensityPlot[MandelbrotTest[x, y, 50], 

{x, - 0.77, - 0.72}, {y, - 0.2, - 0.15}, PlotPoints -

Mesh -^ False, ColorFunction —> Hue] ; 

^ 500, 

-0 .77 -0 .76 -0 .75 -0 .74 -0 .73 -0 .72 

Fig. 21.15. Mandelbrot set: zooming in [-0.77, -0.72] x [-0.2, -0.15]. 
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Dens 

{x. 

ityPlot[MandelbrotTest[x, 

- 0.748, 

PlotPoints -̂  

- 0.74}, {y, - 0 
y» 
.186 

500, Mesh -> False, 

50] 

> 

> 
0.178}, 

ColorFunction ^ Hue]; 

-0.748 -0.746 -0.744 -0.742 -0 .74 

Fig. 21.16. Mandelbrot set: zooming in [-0.748, -0.74] x [-0.186, -0.178]. 
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21.4 Mandelbrot Sets for Different Functions 

21.4.1 z ^ z^ + c 

MandelbrotS = ( 

Module[{z, num 

z = X + y I; 

While[Abs[z] < 

++num]; num]]; 

[;ompile[{{x. 

= 0 , c = X 

2.0 && num 

DensityPlot[MandelbrotS[x, 

{x, -1.5, 1.5} 

Mesh -^ False, 

, {y, - 1.5, 

-Real}, 

+ y I } , 

< n, z 

y, 50] 

1.5}, 

{y, 

= z 

» 

-Real}, 

"̂3 + c; 

PlotPoints 

ColorFunction -^ Hue] 

{n 

-^ 

,_Int 

500, 

eger}}. 

- 1 . 5 - 1 - 0 . 5 0 0 .5 1 1 .5 

Fig. 21.17. Mandelbrot set for the function z \-^ z^ -\- c. 
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21.4.2 z ^ z^ + c 

Mandelbrot4 = Compile [{{x,_Real}, 

Module[{z, num = 0 , c = x + y 

z = X + y I ; 

While[Abs[z] < 

++num] ; nxim] ] 

c 2.0 && num < n 

t 

DensityPlot[Mandelbrot4[x, y, 

{x, - 1.5, 1.5}, {y, - 1.5, 1 

Mesh -^ False , ColorFunction -

I } , 

, z 

50] 

5} , 

{y,_Real}, 

= z^4 + c; 

> 
PlotPoints 

-^ Hue] ; 

{n. - In teger}} , 

500, 

- 1 . 5 - 1 - 0 . 5 0 0 .5 1 1 .5 

Fig. 21.18. Mandelbrot set for the function z \-^ z^ -\- c. 
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Kepler's Laws 

Johannes Kepler (1571-1630) came from a modest family but, thanks to 
a scholarship, he could attend the Lutheran Seminary at the University of 
Tubingen. At Tiibingen, Kepler was taught astronomy by one of the leading 
astronomers of the day, Michael Maestlin (1550-1631). Maesthn lent Kepler 
his own annotated copy of Copernicus' book. Kepler quickly grasped the essen
tial ideas of the Copernican system and built up a cosmological theory based 
on the five regular polyhedra. He collaborated with the Danish astronomer 
Tycho Brahe (1546-1601) who was one of the most prominent observational 
astronomer of the time, and succeeded him, when he died in 1601, as Imperial 
Mathematician (they were both living in the Holy Roman Empire). Among 
his many achievements, Kepler was probably the first to explicitly use the 
concept of observational error. He is chiefiy known for the three laws bearing 
his name which Isaac Newton (1643-1727) was able to derive from his gravi
tational law. The first two laws were published in Astronomia Nova (A New 
Astronomy) in 1609, and the third law in Harmonices Mundi (The Harmony 
of the World) in 1619. 

The gravitational force between two mass points mi and m2 derives from the 
potential 

Uir) = -G ^^^^, 
r 

where r is the distance between the two mass points, and G is a universal 
constant whose value, in SI units, can be found loading the Mathematica 
package 

«Misce l laneous 'Phys ica lCons tan ts ' 

G = Gravi tat ionalConstant 
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6.673 10~^^ Meter^ Newton 

Kilogram 

Because the force is central, the torque is zero and the angular momentum L 
is conserved. 

In order to study the motion of a planet in the gravitational field of the sun, 
we choose the origin at the center of the sun and denote, respectively, by m, 
r, and v the mass, the position vector, and the velocity of the planet. The 
relations 

r X L = 0 and v x L == 0 

imply that the motion takes place in the plane passing through the origin and 
perpendicular to L. 

Using polar coordinates, we have 

V = r'er + rO'ee, 

where the local unit vectors Cp and ee are defined in terms of Cartesian unit 
vectors ei and e2 by 

Gr = ei cos 6 -\-e2 sin 6 

ee = —ei sin 9 -\-e2 cos 6. 

These relations show that er and ee are orthogonal. Hence, 

posi t ionVector = {r CosCtheta], r S i n [ t h e t a ] } ; 

veloci tyVector = {r' CosCtheta] - r t he t a ' S i n [ t h e t a ] , 

r ' SinCtheta] + r CosCtheta]}; 

Loading the package Calculus 'Vector Analysis* we can use Mathematica to 
derive a few simple results. 

«Calculus' Vector Analysis' 

In cylindrical coordinates, the components of the position vector r and the 
velocity vector v in the local reference frame (cr, ee, e^) are 

posi t ionVector = {r, 0, 0}; 

velocityVector = {r ' , r t he t a ' , 0} ; 

The angular momentum is therefore given by 

CrossProductCpositionVector, m veloci tyVector] / / Simplify 
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{0, 0, m r-̂  t he t a ' } 

That is, 
L =^\mr^ 6' \= constant. 

It is now a simple matter to derive Kepler's laws. 

Kepler ' s second law (1609). A line drawn between the sun and the planet 
sweeps out equal areas in equal times as the planet orbits the sun. 

The area dA swept by the radius vector during the time interval dt is 

dA= - \\T xvdt \\= — dt =^ A' = constant. 
2 " " 2m 

Kepler ' s first law (1609). The orbit of each planet is an ellipse, with the 
sun located at one of its foci 

The equation of motion in polar coordinates is 

„ Mm 
ruT = -G —2~ ^r, 

where M is the sun mass and m the mass of the planet. 

From the definition of the local unit vectors er and e^ given above it follows 
that 

der ^, , dee ^, 

so, from differentiating one more time the expression of the velocity 

V = r' = r' er -{-r 6' ee, 

we obtain the expression of the acceleration 

v" = ( / ' - {rO'f) er + {2r'e' + rO") eg. 

Hence, the equation of motion can be written 

Mm 
m {r" - {re'f) = -G - ^ and m ( 2 / 6' -\-r 6") = 0. 

The second equation implies r'^6' = constant, that is, conservation of angular 
momentum. To determine the orbit of the planet, we use the variable u = 1/r. 
Thus 

, _ u' _ ^ pf du _ L du 
V? u^ dO mdO' 

and differentiating once more 
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„ _ L d / d u \ _ L , (Pu 

m dt \d6 I m dt'^ 

The differential equation of the orbit is therefore the very simple equation 

d^u _, Mrm? 

whose solution is obtained using the command 

DSolveCu'' [ theta] + uCtheta] == K, uEtheta] , t he t a ] 

{{uCtheta] -> K + C[l] Cos [ theta] + C[2] Sin [ theta]}} 

where K is the constant GMw?/L^\ C[l] and C[2] are two constants of in
tegration. Because we are only interested in the shape of the orbit, we can 
choose C[2] = 0. In polar coordinates the equation of the planar orbit is 

CcosO-^K' 

where we put C[l] = C. To plot the orbit, instead of the two constants C 
and K we introduce two new constants TQ and e and write the polar equation 

14-e 
1 + e cos 6 

Changing the constant e, called the eccentricity^ can modify the shape of the 
orbit. Note that, in terms of the previous constants 

1 GMm? C CL'^ 
^ 0 = ^ , r^ = ro • ^^li^ 9 ^ = 1^ = C + K L^ + CGMm'^ K GMm?' 

1. If 0 < e < 1, the orbit is an ellipse (for e = 0 the orbit is a circle). The 
following commands draw a few elliptical orbits. 

tl = Table[PolarPlot[(l + e) / (1 + e Cos[theta]), 

{theta, 0, 2 Pi}, 

PlotStyle -^ {Thickness[0.007], 

RGBColor[l - e, 0.2, 3 e / 2]}, 

TextStyle -> {FontSize -> 12}, 

DisplayFunction —^ Identity], {e, 0.3, 0.6, 

pt = Graphics[{PointSize[0.04], RGBColor[l, 

Point [{0, 0}]}]; 

Show[{tl, pt}, AspectRatio —> Automatic, 

DisplayFunction —> $DisplayFunction]; 

0. 

0, 
1}]; 
0], 
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Fig. 22.1. Elliptical orbits. The big dot represents the sun. 

2. If e > 1 the orbit is a hyperbola. 

e =1.4; p i = Po l a rP lo tEd + e) / (1 + e CosCtheta]) , 

{ the ta , 0, 2 P i } , 

Ticks -^ {{- 8, - 4, 0, 4, 8, 12, 16}, {- 6 , - 3 , 3 , 6}}, 

P lo tS ty le -^ {Thickness[0.007], RGBColor[0, 0 .2 , 1 ]} , 

TextStyle -> {FontSize -^ 12}, 

DisplayFunction -^ I d e n t i t y ] ; 

pt = Graphics[{PointSizeCO.05] , RGBColor[l, 0, 0 ] , 

Point [{0,0}]}]; 

Show[{pi, p t } , AspectRatio -^ Automatic, 

DisplayFunction -^ $DisplayFunction]; 

Fig. 22.2. Hyperbolic orbit. The big dot represents the sun. 
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For e = 1, the orbit is a parabola. All these orbits are conic sections} The 
origin is one of the foci of the conic section. The eccentricity of the earth's 
orbit about the sun is equal to 0.017. This value is quite small and the earth's 
orbit is, therefore, quasi-circular. 

The distances 

1 + e 
rmin = r{0) = ro and r^ax = r{7r) 

1 - e 

are, respectively, called the perihelion (closest to the sun) and the aphelion 
(farthest from the sun). Because, for the earth, e = 0.017, (1 + e)/{l — e) = 
1.035, which is very close to 1, that is, fmin ~ ^max-

This simple theory neglects the influence of the other planets and the motion 
of the sun. 

Kepler's third law (1618). The square of the period of revolution of a planet 
around the sun is proportional to the cube of the semi-major axis of the planet 
orbit 

From Kepler's second law, we have 

2m 

where A is the area swept by the planet during one complete revolution, that 
is, during a time interval T. Moreover, for an ellipse, 

A = nab and - = v 1 — e^, 
a 

where a and b are, respectively, the semi-minor and semi-major axes. Hence, 

T = 2 A m / L / / . {A ^ Pi a b, b ^ a Sqrt[l - e^2]} 

2 ar Sqrt[l - e^] m Pi 

That is. 

In as much as we have found that the equation of the orbit of a planet in 
polar coordinates is 

^The terms ellipse, parabola, and hyperbola were introduced by the famous 
Greek geometer Appolonius of Perga (262 BC-190 BC) who is the first to have 
rigorously studied the conic sections discovered earlier by Menaechmus (380 BC-
320 BC). 
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e/C 

1 + e cos 6 

we have 

2a = .(0) + . ( . ) = ^ ( ^ + ^ ) 

that is, 

a C a G M m2 

and replacing in the expression of T, we finally obtain 

G M 

Note that the coefficient 47r^/G M is the same for all planets in orbit around 
the sun. 

Remark. The fact that a characteristic time (the period of revolution of a 
planet) behaves as the power 3/2 of a characteristic length (the semi-major 
axis of the elliptical trajectory of a planet) can be proved using a scaling 
argument. The equation of motion of a particle of mass m in a central field 
derived from a potential U{r) is mr" = — VC/(r). If we change r in Ar, and 
t in /it, the equation of motion becomes m(A/i~^)r'' = —X^~^VU{r), if U{r) 
behaves as r^. The equation of motion is unchanged if, and only if, A/i~^ = 
A'^"^, that is, if /i scales as A^~'̂ /^. In the case of the gravitational potential, 
fc == 1, hence, /i scales as A^/^, which is exactly Kepler's third law. 
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Lindenmayer Systems 

Lindenmayer systems (usually referred to as L-systems) are rewriting tech
niques developed by the biologist Aristid Lindenmayer (1925-1989) in 1968. 
They are actually symbolic dynamical systems whose evolution can be repre
sented graphically. Thanks to this feature, they have found several applications 
in computer graphics such as the generation of fractals and reahstic models 
of plants. 

23.1 String Rewriting 

A string rewriting system is a triple {V,uj,R) where F , called the alphabet, 
is a finite set of symbols called letters', u;, called the axiom or initiator, is a 
string of symbols belonging to the alphabet V; and i? is a set of replacement 
rules. Replacement rules are mappings such as a ^^ w, where a is a letter 
and w a word, that is, a sequence of letters. Some letters that are mapped 
to themselves are called constants. Conventionally a letter with no explicit 
production (i.e., image) is a constant. 

For example, the L-system with the alphabet V = {F, +, —}, the axiom u = 
F, and the replacement rule R = {F -^ F -\- F F -f F} can be shown 
to generate the von Koch curve. The symbols -h and — having no explicit 
production are constants. 

Replacement rules can be written using the function StringReplace [ ' ' s t r i n g 
' ' , { " s l ^ ' -^ ' ' n s l ' ' , ' ' s 2 ' ' -> ' ' n s 2 ' ' , . . . ] which replaces in 
' ' s t r i n g ' ' each occurrence of the string ' ' s i ' ' by the string ' ' n s i ' ' for 
a l i i . 

Here are the first iterations of the replacement rule applied to the axiom F 
obtained using the function StringReplace. 
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NestLis t [Str ingReplace[#, ' ' F ' ' -^ ' ' F+F—F+F'' ] &, 

' ' F ^ ' , 2] / / TableForm 

F 

F+F—F+F 

F+F—F+F+F+F—F+F—F+F—F+F+F+F~F+F 

This particular L-system is simple. It is deterministic, in the sense that there 
is only one production for each symbol, and it is context-free in the sense 
that the replacement rule refers only to one individual symbol and does not 
depend upon the neighboring symbols. Deterministic context-free L-systems 
are called DOL-systems. 

23.2 von Koch Curve and Triangle 

To show that the example above generates a von Koch curve, the symbols 
f fp> j ^ < ( + > y^ and ' ' - * ' have to be, respectively, interpreted as "move for
ward" , "turn 60 degrees to the left", and "turn 60 degrees to the right". 

In order to build up a program visualizing the dynamics of this L-system, that 
is, a program generating the line representing the sequence of symbols (i.e., 
the word) obtained after n iterations of the replacement rule, we represent 
this line as the path followed by a turtle moving in a plane. The turtle is a 
robotic creature familiar to the Logo programming language. Moving around 
the plane, the state of the turtle at a given time is defined by its position 
and the direction it is facing. With just the two commands moveForward and 
turnLeft , the turtle can be moved in any path. On iterative graphics by 
simulating a turtle see [64]. 

We define the command t u r t l e [symbol] where the argument symbol will 
take three possible values: f, 1, and r, which, respectively, instruct the turtle 
to move forward one step in the direction it is facing, change direction by 
turning 60 degrees to the left, or 60 degrees to the right. We make the function 
t u r t l e listable. 

Using first the command Characters, we transform a word in the alphabet 
{F, +, -} into a list of letters. 

Characters [ ' ' F+F—F+F'' ] 

{F, +, F, - , - , F, +, F} 
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Then we define the symbols f, 1, and r, associated with these letters. 

symbols = { ' ' F ' ' -^ f, ' ' + ' ' -^ 1, ''-'' -^ r } 

The listable function turtle is defined by 

Attributes[turtle] 

turtle[f ] 

turtle[1] 

turtle[r] 

= Listable 

:= ptList += unit dir; 

:= dir = 

:= dir = 

turnLeft . 

turnRight 

dir; 

dir; 

where p tL i s t is the list of points generating the line representing the turtle 
path, imit is the length of the elementary step, dir the direction faced by 
the turtle, and turnLeft and turnRight the matrices 

and 

We assume that the turtle is initially located at the point (0,0) and facing the 
point (1,0). The path along which the turtle is moving is a line, that is, the 
list of points p tL i s t . At time t = 0, the path has only one point: the initial 
point. 

Putting together all these commands we can write a program generating the 
von Koch curve. 

KochCurve [n_Integer] 

Module[{Lsystem = {' 

symbols, imit =3.0" 

iter = 1, c = Cos[Pi 

: = 
< p > f _ 

(- n) 

/ 3] 

rewritingrules, ptList, f 

symbols = {''F" ^ 1 

ptList = Table[Null, 

turnLeft = {{c, - s} 

turnRight = {{c, s}. 

E , "^ 

{1 + 
, {s. 

{- s. 

^ "F+F~F+F"}, axiom = " F " , 

. X = 

// N, 

, 1, r 

^' > — > 

4-n}] 

c}}; 

c}}; 

{0., 0.}, dir = {1., 0.}, 

s = Sin[Pi / 3] // N, turtle. 

, turnLeft, turnRight}, 

1, " - " ^ r}; 

; ptList[[1]] = X; 
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A t t r i b u t e s [ t u r t l e ] = L i s t a b l e ; 

t u r t l e [ f ] := p tL i s t [ [++i te r ] ] = (X += un i t d i r ) ; 

t u r t l e [ 1 ] := d i r = turnLeft . d i r ; 

t u r t l e [ r ] := d i r = turnRight . d i r ; 

r ewr i t i ng ru le s = MapEFirstEChciracters [ # [ [ ! ] ] ] ] — 

Charac te rs [#[ [2] ] ] &, Lsystem] / . symbols; 

t u r t l e [ N e s t [ # / . r ewr i t i ng ru le s &, 

Characters[axiom] / . symbols, n ] ] ; 

image = Show[Graphics[Line[ptList]] , 

AspectRatio -^ Automatic, 

Axes -^ None, PlotRange —> A l l ] ; image] 

Note that, following Wagon [64], we predefine a path to be a list of Nulls, 
where Null is a symbol used to indicate the absence of a result. 

KochCurve[4]; 

Fig. 23.1. Fourth stage of the construction of the von Koch curve. 

As shown below, it is not difficult to modify the program above to generate 
the von Koch triangle. We just have to change the axiom and the length of 
the predefined path. 
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KochTriangle [n_Integer] : = 

Module[{Lsystem = { ' 'F '^-^ ''F-F++F-F''}, 

axiom = ''-F++F++F'', 

symbols, \init = 3.0^(-n), X = {0., 0.}, dir = {1., 0.}, 

iter = 1, c = Cos[Pi / 3] // N, s = Sin[Pi / 3] // N, turtle, 

rewritingrules, ptList, f, 1, r, turnLeft, turnRight}, 

symbols = {''F'' -> f, '' + '' -> 1, "-'' -^ r}; 

1mm] ptList = Table[Null, {1 + 3*4'̂ n}] ; p tLis t [ [ l ] ] = X; 
turnLeft = {{c, - s} , {s, c}}; 
turnRight = {{c, s} , {- s, c}}; 
Attr ibutes[turt le] = Listable; 
tu r t le [ f ] := ptList[[++iter]] = (X += unit d i r ) ; 
tur t le[1] := dir = turnLeft . dir ; 
tu r t l e [ r ] := dir = turnRight . dir ; 
rewritingrules = Map[First[Characters[#[[1]]]] -^ 
Characters[#[[2]]] &, Lsystem] / . symbols; 
turtle[Nest[# / . rewritingrules &, 
Characters[axiom] / . symbols, n ] ] ; 
image = Show[Graphics[Line[ptList]], 
AspectRatio -^ Automatic, Axes -^ None, 
PlotRange -^ Al l ] ; image] 

KochTriangle[4]; 

Fig. 23.2. Fourth stage of the construction of the von Koch triangle. 
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23.3 Hilbert Curve 

We mentioned earlier (see Chapter 19 "Fractals") that Cantor discovered that 
the sets [0,1] and [0,1] x [0,1] have the same cardinality, which implies the 
existence of a bijection between these two sets. In 1879 Eugen Netto (1848-
1919) proved that such a bijection cannot be continuous, but it was shown 
that continuous surjective mappings from [0,1] to [0,1] x [0,1]—which are, by 
definition, curves—do exist. In 1890, Giuseppe Peano (1858-1932) constructed 
the first space-filling curve (on space-filling curves, refer to [49]. More precisely, 
Peano gave the parametric representation of a curve defined recursively by a 
sequence of functions ^^ • [0,1] i-> [0,1] x [0,1] which, in the limit n -^ 
cxD, goes through all points of the unit square [0,1] x [0,1]. The parametric 
representation represents a continuous curve whose Hausdorff dimension is, 
however, equal to 2 (see pp 34-36 of [6]). 

David Hilbert (1862-1943), who, in particular, is famous for the speech he 
delivered to the Second International Congress of Mathematicians in Paris in 
which he challenged mathematicians to solve fundamental problems, gave a 
simple example of a Peano curve filling the unit square. The Hilbert curve is 
defined by the L-system with a three-letter alphabet: {F, +, - } , respectively, 
interpreted as "move forward", "turn 90 degrees to the left", and "turn 90 
degrees to the right", and the rewriting rules: { " L ' ' -^ '' -RF+LFL+FR-'', 
< 'Rj ^ ^ ' '+LF-RFR-FL+''}, where L and R are not letters but represent, 
respectively, the following two words: +F-F-F+ and -F+F+F-. 

HilbertCurve [n_Integer] : = 

Module [{Lsystem = {''L" -^ '^-RF+LFL+FR-'' 

''+LF-RFR-FL+''} , 

axiom = ''R'', symbols, unit = 2.0''(-n), X 

dir = {!., 0.}, iter = 1 , c = 0 . 0 , s = 1 . 0 , 

rewritingrules, ptList, f, 1, r, turnLeft, 

symbols = {''F'' -> f, " + '' -^ 1, "-'' -^ 

Table [Null, {4'̂ n}] ; ptList [[1]] = X; 

turnLeft = {{c, - s}, {s, c}}; 

turnRight = {{c, s}, {- s, c}}; 

Attributes[turtle] = Listable; 

turtle[f] := ptList[[++iter]] = (X += imit 

turtle[1] := dir = turnLeft . dir; 

turtle[r] := dir = turnRight . dir; 

, ''R'' -> 

= {0., 0.}, 

turtle. 

turnRight}, 

r}; ptList = 

dir); 
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r ewr i t ing ru le s = Map[Fi r s t [Charac te rs [#[ [ ! ] ] ] ] -^ 

Charac te rs [#[ [2] ] ] &, Lsystem] / . symbols; 

t u r t l e [ N e s t [ # / . r ewr i t ing ru le s &, 

Characters[axiom] / . symbols, n ] ] ; 

p tL i s t = p tL i s t / . {L -^ I f r f r f l , R -^ r f l f l f r } ; image = 
Show[Graphics[Line[ptList]] , 

AspectRatio —̂  Automatic, Axes -^ None, 

PlotRange -^ A l l ] ; image] 

Hilber tCurve[6] ; 

Fig. 23.3. Sixth stage of the construction of the Hilbert curve. 

23.4 Peano Curve 

The Peano curve can be generated following the same method. We should 
consider the L-system with the three-letter alphabet: {F, +, - } , respectively, 
interpreted as "move forward", "turn 90 degrees to the left", and "turn 90 de-
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grees to the right", and the rewriting rules: " F ' ' -^ '' F+F-F-F-F+F+F+F-F' 
Here is the program. 

PeanoCurve [n_Integer] : = 

Module[{Lsystem = { ' 'F '^ -^ ' 'F+F-F-F-F+F+F+F-F^'}, 

axiom = ' ' F ' ' , symbols, un i t = 2 .0^ ( -n ) , X = {0 . , 0 . } , 

d i r = { 1 . , 0 . } , i t e r = 1 , c = 0 . 0 , s = 1 . 0 , t u r t l e , 

r e w r i t i n g r u l e s , p t L i s t , f, 1, r , turnLef t , tu rnRight} , 

symbols = { ' 'F^ ' ^ f, ' ' + ' ' -^ 1, ''-'' -^ r } ; p tL i s t = 
TableCNull, {1+ Q-̂ n}] ; p t L i s t [ [ l ] ] = X; 

turnLeft = {{c, - s } , {s , c}}; 

turnRight = {{c, s } , {- s , c}}; 

A t t r i b u t e s [ t u r t l e ] = L i s t a b l e ; 

t u r t l e [ f ] := p t L i s t [ [ + + i t e r ] ] = (X += un i t d i r ) ; 

t u r t l e [ 1 ] := d i r = turnLeft . d i r ; 

t u r t l e [ r ] := d i r = turnRight . d i r ; 

r ewr i t i ng ru l e s = Map[Fi r s t [Charac te r s [#[ [ ! ] ] ] ] -^ 

Charac te rs [#[ [2] ] ] &, Lsystem] / . symbols; 

t u r t l e [Nest [# / . r ewr i t i ng ru le s &, 

Characters [axiom] / . sjrmbols, n ] ] ; 

image = Show[Graphics[Line[ptList]] , 

AspectRatio -^ Automatic, Axes -^ None, 

PlotRange -^ A l l ] ; image] 

The first iteration generates the Hne 

{{0,0},{l,0},{^, J } , { | , | ,},{§,0}, 

{ 1 , 0 } , { 1 , - 1 } , { 2 , - 1 } , { 2 , 0 } , {1,0}} 

As shown below, the numbers from 0 (initial point) to 9 (last point) show the 
itinerary along the line. 
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Peanol = Graphics[Line[{{0.0, 0 .0} , {0.333, 0 .0} , 

{0.333, 0.333}, {0.666, 0.333}, {0.666, 0 .0} , {0.333, 0 .0} , 

{0.333, - 0.333}, {0.666, - 0.333}, {0.666, 0 .0} , 

{1.0, 0 .0}}] ] ; 

p t s = {{0, 0 .03}, {0.303, 0 .03}, {0.363, 0.303}, 

{0.636, 0.303}, {0.636, 0 .03}, {0.363, - 0 .03}, 

{0.363, - 0.303},{0.636, - 0.303},{0.696, - 0 .03}, 

{1.0, - 0.03}}; 

numPts = Graphics[{{PointSize[0.04] , CMYKColor[0, 0, 1, 0 ] , 

Map[Point, p t s ] } . 

Tab le [Tex t [ i -1 . P a r t [ p t s , i ] ] , { i , 1, Length[pts]}]}] ; 

Show[{peanol, numPts}, AspectRatio -^ Automatic]; 

Fig. 23.4. First stage of the construction of the Peano curve. 

PeanoCurve [3] ; 
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Fig. 23.5. Third stage of the construction of the Peano curve. 



24 

Logistic Map 

The discrete logistic map is the simplest nonlinear map. Its properties are, 
however, far from being trivial. In 1962, Myrberg [39] already mentioned the 
existence of considerable difficulties: 

En nous limitant dans noire 
travail au cas le plus sim
ple non lineaire, c^est-a-
dire aux polynomes reels 
du second degre, nous ob-
servons que meme dans ce 
cas special on rencontre 
des difRcultes considerables, 
dont Fexplication exigera des 
recherches ulterieures. 

Limiting ourselves to the sim
plest nonlinear case, that is, 
to quadratic real polynomi
als, it is observed that even 
in this special case consider
able difficulties are encoun
tered, whose explanation will 
require more work in the fu
ture. 

The logistic map, described by the recurrence equation 

nt+i = f{nt,r) = rnt{l - rit), 

can be viewed as the time-discrete evolution of a scaled population n. The 
word logistic was coined by Pierre Pranois Verhulst [62] (1804-1849) who 
used the differential equation 

dN 
dt 

• vN O-f) 
for the first time in 1838 to study population growth. The constant r is re
ferred to as the intrinsic rate of increase and K is called the carrying capacity 
because it represents the population size that the resources of the environment 
can just maintain without a tendency to either increase or decrease. Although 
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Verhulst's paper did not draw much attention when it was first pubhshed, it 
was rediscovered 80 years later by Raymond Pearl (1879-1940) and Lowel J. 
Reed (1886-1966). After the publication of their paper [42], the logistic model 
began to be widely used. 

Although the solution to the differential equation is trivial, we show that the 
recurrence equation is, on the contrary, of considerable interest. 

24.1 Bifurcation Diagram 

If 0 < r < 4, all the iterates of n belong to the interval [0,1]. 

The recurrence equation has two fixed points given by 

f [n_, r_] := r n (1 - n) 

fxdPts = Solve[n == f [ n , r ] , n] 

{{n -> 0}, {n - . -A±^}} 

The stability of these fixed points is determined by the absolute value of the 
derivative of / (n , r) at these points. Because 

C lea r [ r , n] 

Abs[Simplify[D[f[n,r] , 

Abs[Simplify[D [ f [ n , r ] , 

n] 

n] 

/ . 

/ . 

n 

n 

^ 

^ 

fxdPts 

fxdPts 
[ [ 1 , 
[[2, 

1 ,2]]]] 

1 ,2]]]] 

Abs [r] 

Abs [2 - r ] 

if r < 1, the fixed point n = 0 is asymptotically stable and n = (r — l ) / r , 
which does not belong to the interval [0,1], is unstable; and for 1 < r < 3, 
n = 0 is unstable whereas n = (r — l ) / r is asymptotically stable. 

In the case of one-dimensional maps, such as the logistic map, there exists a 
simple graphical method to follow the successive iterates of an initial point 
no- First plot the graphs of n i—> f{n^r) and n ^^ n. Because the sequence of 
iterates is generated by the equation n^- î = fijit^r)^ the iterate of the initial 
value no is on the graph of / at (no, /(no, r)), that is, (no, ni) . The horizontal 
line from this point intersects the diagonal at (n i ,n i ) . The vertical line from 
this point intersects the graph of / at (ni, / ( n i , r)), that is, (ni, n2). Repeating 
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this process generates the sequence ((no,ni), (n i ,n i ) , (721,712), (n2,n2) , . . . ) . 
The equiUbrium point n* is located at the intersection of the graphs of the 
two functions. The diagram below that consists of the graphs of the functions 
n 1-̂  / (n , r) and n\-^ n and the line joining the points of the sequence above 
is called a cobweb. It clearly shows whether the sequence of iterates of the 
initial point no converges to the equilibrium point. 

In order to draw the cobweb given a parameter value r, an initial value no, 
and a maximun number of iterations, we first determine the sequence 
((no,ni), (ni ,n i ) , (ni,n2), (n2,n2),.. O? then plot the function / for the spe
cific r value, and draw the line (in green) going through all the points of the 
sequence, and the diagonal joining the origin to the point (1,1). The initial 
and final points are respectively colored in blue and red. 

logisticCobweb[r_, in i t_ , numl t e r j := 

Module[{F, seq, p i , 1, image}, 

F[n_] := r n (1 - n ) ; 

n = init; seq = {{n, 0}, {n, F[n]}}; 

For[t = 1, t <= numlter, t++, 

n = F[n]; 

seq = Append[seq, {n, n}] ; 

seq = Append[seq, {n, F [n ]} ] ] ; 

seq = Append [seq, {F[n], F [n]}] ; 

p i = P l o t [ F [ n ] , {n, 0, 1}, DisplayFunction -^ I d e n t i t y ] ; 

1 = Graphics[{{RGBColor[0, 1, 0 ] , L ine[seq]} , 

Line[{{0, 0} , {1 , 1}}], 

{RGBColor[0, 0, 1 ] , PointSize[0 . 03 ] , P o i n t [ F i r s t [ s e q ] ] } , 
{RGBColor[l, 0, 0 ] , Po in tS ize [0 .03] , Point [Last [seq]]}}] ; 

image = Show[pi,1, Frame -^ True, PlotRange —> All, 

AspectRatio —> Automatic, 

TextStyle -^ {FontSlant -> " Italic'\ FontSize -> 12}, 

DisplayFunction -^ $DisplayFunction]; image] 

logisticCobweb[2.6, 0 .9 , 15]; 
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1 

0 0,2 0,4 0.6 0 

Fig. 24 .1 . Logistic map cobweb for r = 2.6, no — 0.9, and a number of iterations 
equal to 15. 

Because 

Clear[r] 

{Nest[2.6 # ( ! - # ) &, 0 .9 , 15] , (r -- 1) / r / . r --> 2.6} 

{0.615458, 0.615385} 

after a few iterations, we are quite close to the fixed point. 

For r = 3, the derivative of / at n = (r — l ) / r = I is equal to —1.Because 

Clear[r, n] 

f [ f [ n , r ] , r ] 

(1 - n) n r^ (1 - (1 - n) n r) 

we verify that 

f [ f [ 2 / 3 , 3] 

D[ f [ f [n , r ] . 
, 3] 

r ] , n] / . {n -^ 2 / 3 , r ^ 3} 
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2 
3 
1 

and 

D[f[ f [n , 

D[ f [ f [n , 

D[D[f[f[i 

D[ f [ f [n , 

r ] , 

r ] . 
a, r 

r ] . 

r ] . 

r ] , 

] , r: 

r ] , 

r] 

{n 

/ . { n -

2}] / . 

] . n ] , r] / 

{n 3}] / . 

^ 2 / 

{ n -

• { n -
{ n -

3 , r -^ 

2 / 3 , 

^ 2 / 3 

2 / 3 , 

3} 
r —> 

, r -

r -^ 

3} 
. 3} 

3} 

0 

0 

2 

- 108 

These results show that the nonhyperboUc fixed point ( | ,3) is a period-
doubhng bifurcation point. On bifurcation theory see [9]. 

The map P{n^r) = f{f{n^r)^r) has four fixed points that are the solutions 
of the equation /^(n, r) = n. 

Clear[n, r ] 

fxdPtsf2 = So lve [ f [ f [n , r ] , r ] == n, n] / / Simplify 

rr r.^ r " ^ + ^1 r 1 + r - Sq r t [ -3 - 2 r + r^ 
{{n - . 0} , {n -^ }, {n ^ ^ }, 

r 2 r 

i + r + S q r t [ - 3 - 2 r + r^ ^ ^ 
i^ -" n JJ 

2 r 

Two solutions are already known, namely the two unstable fixed points, n = 0 
and n = {r — l ) / r of / . The remaining two solutions, denoted ni^i and ni,2, 
are such that 

Simplify[fEfxdPtsf2[[3, 1, 2 ] ] , r ] ] == fxdPtsf2[[4, 1, 2]] 

SimplifyEf[fxdPtsf2[[4, 1, 2 ] ] , r ] ] == fxdPtsf2[[3 , 1, 2]] 

True 

True 
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Thus, /(ni^i) = ni,2 and /(ni,2) = ''̂ 1,15 which shows that these two points 
are the components of a two-point cycle. They are defined only for r > 3. The 
domain of stability of this cycle is determined by the condition 

dlfl 
dn 

(^{l + r+y/r^-2r-3),A ^fl-{l+r-Vr^-2r- 3), r j < i ; 

that is, 

(Simplify [D[f[n 

Simplify [D[f[n, 

// Simplify 

. r] 

r]. 

. n] /. 

n] /. 

n 

n -

-̂  fxdPtsf2[[3, 

-* fxdPtsf2[[4, 

1 

1, 

, 2]]] * 

2]]]) 

4 + 2 r - r^ 

Reduce[Abs[4 + 2 r - r^2] < 1, r, Reals] 

1 - Sqrt[6] < r < - l | | 3 < r < l - h Sqrt [6] 

The parameter r being positive, the two-point cycle is stable for 3 < r < 
1-f V6. 

Remark. Because the two fixed points rii and n2 of the map / (n , r) are the 
solutions of the quadratic equation f{n^r) — n — 0, and the four fixed points 
ni , 712, ^1,1 and ni,2 of the map P[n,r) = f[f{n^r),r) are the solutions of 
the quartic equation /^(n, r) = n, the fixed points ni,i and ni,2 should be the 
two solutions of the quadratic equation 

P{n,r)-n ^ ^ 
f{n,r)-n 

which is readily verified using Mathematica. 

eqn = S impl i fy[ ( f [ f [n , r ] , r] - n) / ( f [n , r] - n)] == 0 

1 + r - n r -h ( - 1+ n) n r^ == 0 

Solve[eqn, n] / / Simplify 

l - h r - S q r t [ - 3 - 2 r-h r^ , 
{{n - — }, 
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, 1 + r + Sq r t [ -3 - 2 r + r^ ^ ^ 
{n -> }} 
^ 2 r ^^ 

The bifurcation point (n,r) = (§?3) is therefore determined by equating to 
zero the discriminant of this quadratic equation. We have 

Solve[( r + r'^2)'^2 - 4 (1+r) r^2 == 0, r ] 

{{r -. - 1 } , {r - . 0} , {r - 0} , {r -. 3}} 

Only r = 3 is an acceptable solution, and reporting this value in the expression 
of the fixed point n = {r — \)/r of the map / (n , r) we verify that n = | . 

For r > 1 + \/6, the system undergoes an infinite sequence of period-doubling 
bifurcations. After 100 iterates have been discarded, 16 iterations of the lo
gistic map for increasing values of r are shown below. 

Clear[F, r ] 

r = 2 .6 ; 

i n i t i a l P o i n t = 0 . 8 

F[n_] := f [ n , r ] ; 

seql = NestLis t [F, Nest [F, i n i t i a l P o i n t , 

p l l = Show[Graphics[{{RGBColorCl 

Map[Point, Table[{k, s e q l [ [ k ] ] } , 

Line[Table[{k, s e q l [ [ k ] ] } , {k, 1 

FrameTicks -^ {{0, 

DisplayFunction -^ 

Clear [F , r ] 

r = 3.23; 

i n i t i a l P o i n t = 0 . 8 

F[n_] := f [ n , r ] ; 

seq2 = NestLis t [F, 

4 , 8, 12, 16}, 

I d e n t i t y ] ; 

t 

. 0, 0 ] , 

100], 16]; 

Po in tS ize [0 .02] , 

{ k , l , 1 6 } ] ] } . 

, 16}]]}: , Frame —> True, 

Automatic, {} , {}}, 

Nest[F, i n i t i a l P o i n t , 

p l2 = Show[Graphics[{{RGBColor[l 

Map[Point,Table[{k , s eq2 [ [k ] ]} , • 

Line[Table[{k, s eq2[ [k ] ]} , {k , l , " 

FrameTicks -^ {{0, 

DisplayFunction -^ 

4, 8, 12, 16} 

I d e n t i t y ] ; 

, 0, 0 ] , 

[k, 1, 1 

L6}]]}]. 

100], 16]; 

Po in tS ize [0 .02] , 

6} ] ]} . 
Frame -^ True, 

, Automatic, {},{}}, 
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Clear [F , r ] 

r = 3.49; 

i n i t i a l P o i n t = 0 .8 ; 

F[n_] := f [ n , r ] ; 

seq3 = NestListEF, N e s t [ F , i n i t i a l P o i n t , 100], 16]; 

p i s = Show[Graphics[{{RGBColorCl, 0, 0 ] , Po in tS ize [0 .02] , 

Map[Point,Table[{k, s eq3[ [k ] ]} , {k, 1, 16}]]}, 

Line[Table[{k, s eq3[ [k ] ]} , {k, 1,16}]]}] , Frame -^ True, 

FrameTicks -^ {{0, 4, 8, 12, 16}, Automatic, {}, {}}, 

DisplayFunction -^ I d e n t i t y ] ; 

Clear [F , r ] 

r = 3.554; 

i n i t i a l P o i n t = 0 . 8 ; 

F[n_] := f [n, r ] ; 

seq4 = NestLis t [F, N e s t [ F , i n i t i a l P o i n t , 100], 16]; 

pl4 = Show[Graphics[{{RGBColor[l, 0, 0 ] , Po in tS ize [0 .02] , 

Map[Point,Table[{k, s eq4[ [k ] ]} , {k, 1, 16}]]}, 

Line[Table[{k,seq4[[k]]} , {k, 1, 16}]]}] , Frame -^ True, 

FrameTicks -^ {{0, 4, 8, 12, 16}, Automatic, {}, {}}, 

DisplayFunction —̂  I d e n t i t y ] ; 

Automatic represents an option value that is to be chosen automatically by 
a built-in function, here FrameTicks. 

Show[GraphicsArray[{{pll, p l 2 } , {pl3, p l4}}] , 

DisplayFunction —> $DisplayFunction]; 

See output in Figure 24.2. 

Let {rk)keN be the sequence of parameter values at which a period-doubling 
bifurcation occurs. This sequence is such that the 2'^-point cycle is stable for 
Vk < r < rfc+i. Then, if {nfc,i,n/e,2, • • • ,^^,2'=} denotes the 2'^-point cycle, for 
i = 1,2,.. . , 2^ and Vk < r < r^+i, we have 

Moreover, for i = 1,2,.. . , 2^, 

df' dp' 
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Fig. 24.2. Sixteen iterations of the logistic map for r = 2.3 (fixed point), r = 3.23 
(period 2), r = 3.49 (period 4), and r = 3.554 (period 8). 

where numerical values of the rik^i (i = 1,2,.. . , 2^) depend on r. 

The first period-doubling bifurcations occur for the following parameter val
ues: 

ri = 3.0 r2 = 3.449499 . . . r^ = 3.544090 . . . r^ = 3.564407 .., 
rs = 3.568759 . . . re = 3.569692 . . . r^ = 3.569891 . . . rg = 3.569934 .. , 

The sequence (r/c) is an increasing bounded sequence of positive numbers. It 
has, therefore, a limit Too that is found equal to 3.5699456 — Feigenbaum [14, 
15] discovered that the asymptotic behavior of r^ is of the form 

Tk ~ ^oc ^ / c ' 

where a and 5 are two positive numbers. This behavior implies that 5, known 
as the Feigenbaum number^ is such that 

lim 'Jl^il^ = 5. 
fc^oo Tfc+i - rk 

The interesting fact, found by Feigenbaum, is that the rate of convergence 
5 of the sequence (r^) is universal in the sense that it is the same for all 
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recurrence equations of the form n^+i = f{nt^r) that exhibit an infinite se
quence of period-doubhng bifurcations, if / is continuous and has a unique 
quadratic maximum ric; that is, / (n , r) — / ( n c r) ^ {n — ric)'^. If the order of 
the maximum is changed, the rate of convergence S also changes. 

What is the dynamics of the logistic map for r > Too? The answer is given 
by the bifurcation diagram, which has been computed for different parameter 
values equally spaced between 2.5 and 4. For each value of r, 300 iterates are 
calculated, but only the last 100 have been plotted. 

The compiled function i t e r a t e s [r] generates a list of elements of the form 
{r, i t e r a t e } . 

i t e r a t e s = Compile[{{r, _Real}}, Map[Prepend[{#}, r ] &, 

Take[NestList[r # ( ! - # ) &, 0 .4 , 300] , - 100] ] ] ; 

We determine lists of this type for 301 parameter values from 2.5 to 4.0 equally 
spaced. 

p t sL i s t = F l a t t e n [ T a b l e [ i t e r a t e s [ r ] , {r , 2 . 5 , 4 . 0 , 0.005}], 

1 ] ; 

Using L is tP lo t we finally obtain the bifurcation diagram. 

L i s t P l o t [ p t s L i s t , P lo tS ty le -^ {RGBColor[0, 0, 1 ] , 

Poin tSize[0 .002]} , Frame ^True ] ; 

Fig. 24.3. Bifurcation diagram of the logistic map (n, r) \-^ rn{l—n). The parameter 
r, plotted on the horizontal axis, varies from 2.5 to 4, and the reduced population n, 
plotted on the vertical axis, varies between 0 and 1. 
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For r = 4, the iterates seem to wander in the interval [0,1] as also shown by 
the following cobweb in which the initial point is defined with 200 significant 
digits. 

legisticCobweb[4, N[Sqrt[3] - 1 , 200] , 300]; 

I 
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Fig. 24.4. Logistic map cobweb for r = A, no = \/3 — 1, and a number of iterations 
equal to 300. The initial point is defined with 200 significant digits. 

For r = 4, the trajectory appears to be dense in the interval [0,1]. If / is an 
interval of M, a subset J of / is dense in / if the closure of J coincides with / . 
In other words, any neighborhood of any point in / contains points in J. For 
example, the set of rational numbers Q is dense in R. 

It is clear that a numerical experiment cannot, of course, determine whether 
the trajectory for r = 4 converges to an asymptotically stable periodic orbit 
of very high period or is dense in an interval. A measure fi on an interval / of 
M is emphinvariant for the map / defined on / if, for any measurable subset 
E c I, fi{E) = fxif-^E)). 

If the trajectory is dense, say in [0,1], we should be able to determine an 
approximate cumulative distribution function F from a list of iterates. Given 
a random variable X, its cumulative distribution function is a nondecreasing 
function Fx such that, for any x, Fx{x) is the probability for X to be less 
than or equal to x. 

In order to determine numerically the cumulative distribution function of a 
random sample: d a t a = {xi,X2,. . .}, we plot ListPlot ( absc issa , ordinate), 
where absc issa = Sort [data] and ordinate = {1/n, 2/n, ••• ,n/n}. Note 
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that the cumulative distribution function determined in this way gives the 
maximum information contained in the numerical data. In particular, it gives 
more information than traditional histograms. 

In order to determine a list of iterates, we first define the following compiled 
function. 

i t e r a t e L i s t = Compile[{r, i n i t , {numlter, . In teger}} , 

NestListCr # ( ! - # ) & , i n i t , numl te r ] ] ; 

And, following the procedure described above, we can plot an approximate 
cumulative distribution function for r = 4. 

data = i t e r a t e L i s t [ 4 , 0 .4 , 100000]; 

Clear[n] 

n = Length[data]; 

abscissa = Sort[data]; 

ordinate = Table[k/n, {k, 1, n}]; 

pts = Table[{abscissa[[j]], ordinate[[j]]}, {j, 1, n}]; 

logisticCDF = ListPlot[pts, PlotStyle -> {RGBColor[l, 0, 0], 

PointSize[0.005]}, TextStyle -^ {FontSlant -> "Italic'^ 

FontSize -^ 12}, Frame ^ True]; 

0.4 

Fig. 24.5. Approximate cumulative distribution function for the logistic map n 
4n(l — n). 

As expected for a cumulative distribution function F , this plot shows that 
F(0) = 0 and F ( l ) = 1. Moreover, the derivative of F , if it exists, seems to 
be infinite at 0 and 1 (see below). 
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24.2 Exact Dynamics for r = 4 

24.2.1 Conjugacy and Periodic Orbits 

Two maps / and g are said to be conjugate if there exists a homeomorphism 
h such that h o f = g o h, or h o f o h~^ = g. This relation imphes that, for all 
t G N, ho f^ o h~^ = g*- A homeomorphism is a continuous bijection having 
a continuous inverse. The homeomorphism h takes the trajectories of / into 
the trajectories of g. The logistic map /4, that is, n i-̂  / (n ,4) , and the tent 
map T2 defined by 

^ ^ \ 2 - 2 : r , if | < x < 1, 

are conjugate. To prove these results, it suffices to show that the function 
h : X \-^ sin^ ( | x ) is a homeomorphism such that /i o r2 = /4 o T2. We verify 
that: 

1. /i : [0,1] i-> [0,1] is continuous; 

2. h{xi) = h{x2 =^ xi = X2; 

3. / i ( [0 , l ] ) - [0 , l ] ; 

4. h' exists and is continuous, so h~^ : [0,1] 1-̂  [0,1] exists and is continuous; 

5. (/4 o h){x) = 4sin2 (f x) (1 - sin^ (f x) = sin^CTrx) = {ho T2){x). 

This property greatly simphfies the study of the dynamics of /4. 

Let O.X1X2X3 . . . be the binary representation of x G [0,1], that is, 

00 

where, for all i € N, x̂  G {0,1}. The binary representation of T2(x) is then 
given by 

rj. / X ^ f O.X2X3X4 . . . , if 0 < X < ^ , 

'^^^^ ~ [0.(1 - X2)(l - X3)(l - X4) . . . , if I < X < 1. 

These formulas are both correct for x = \. The binary representation of \ 
being either 0.1000... or 0.01111... , the binary representation of T2(x) is, 
in both cases, 0.1111..., which is equal to 1. 
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The description of the iterates of x in terms of their binary representation 
leads to some remarkable results due to James Whittaker [65] 

1. If the binary representation of x is finite (i.e., if there exists a positive 
integer n such that Xi = 0 for all i> n), then after, at most n + 1 iterations, 
the orbit of x will reach 0 and stay there. Hence, there exists a dense set of 
points whose orbit reaches the origin and stays there. 

T2[x_] := WhichEO x < 1/2, 2 x, 1/2 x 1, 2 - 2 x] 

NestList[T2, 1 / 3 2 , 10] 

1 1 1 1 1 
{—, — , - , - , - , 1, 0, 0, 0, 0, 0} 
^32 16 8 4 2 ^ 

2. If the binary representation of x is periodic with period p, then the orbit of 
X is periodic with a period equal to p or a divisor of p. For example, if x is 
equal to 0.001110011100111... = 7/31, 

Sum[(l / 2)'*(3 + 5 k) + (1 / 2)'^(4 + 5 k) + (1 / 2)^(5 + 5k) , 
{k, 0, In f in i ty}] 

7 

31 

we verify that 

NestList[T2, 7 / 3 1 , 16] 

7 14 28 6 12 24 14 28 6 12 24 14 
3 1 ' 3 1 ' 3 1 ' 3 1 ' 3 1 ' 3 1 ' 3 1 ' 31 ' 31 ' 31 ' 31 ' 31^ 
28 6 12 24 14 

3 1 ' 3 1 ' 3 1 ' 3 1 ' 31 

Hence 

T2[7 / 31] == Nest[T2, 7 / 3 1 , 6] == Nest[T2, 7 / 3 1 , 11] 

True 

Because the binary representation of 7/31 is periodic with period 5, its tra
jectory is periodic with period 5. 
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Using this method, we could show that the binary tent map has periodic orbits 
of all periods, and the set of all periodic points is dense in [0.1]. T2 and f^ 
being conjugate, the logistic map f^ has the same property. 

Regarding the existence of a periodic orbit, an amazing theorem, due to 
Sarkovskii, indicates which periods imply which other periods. First, define 
among all positive integers Sarkovskii's order relation by 

3 > 5 > 7 l > - - 2 - 3 [ > 2 - 5 > - > 2 2 - 3 > 2 2 - 5 > - -

t> 2^ • 3 > 2^ • 5 t> t> 2^ > 2^ t> 2 > 1. 

That is, first hst all the odd numbers, followed by 2 times the odd numbers, 
2^ times the odd numbers, and so on. This exhausts all the positive integers 
except the powers of 2 that are listed last in decreasing order. Because > is 
an order relation, it is transitive (i.e., rii > n2 and 712 \> ns imply ni t> 713). 
Sarkovskii's theorem is as follows. 

Sarkovskii's Theorem Let f : R -^ R be a continuous map. If f has a 
periodic orbit of period n, then, for all integers k such that n\> k, f has also 
a periodic orbit of period k. 

For a proof, see Stefan [54] or Collet and Eckmann [12]. 

We said above that the binary tent map T2 and its conjugate, the logistic 
map /4, have periodic orbits of all periods. Following Sarkovskii's theorem, to 
prove this result it suffices to prove that either T2 or /4 has a periodic orbit 
of period 3. 

In order to generate a period-3 orbit for /4 we can start from x = 0.100100100... 
which generates a period-3 orbit for the binary tent map. Because 

xO = SumCl / 2'^(1+ 3k) , {k, 0, In f in i ty}] 

4 

7 

in order to generate the corresponding period-3 orbit for /4, we have to start 
from the point h{xo) = sin^(27r/7). 

All these periodic orbits are unstable. Hence, periodic orbits computed with 
a finite precision will always present, after a number of iterations depend
ing upon the precision, an erratic behavior. This feature is illustrated in the 
plots below using a precision either equal to $MachinePrecision, which is 
approximately 16, or to 100. 
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i n i t i a l P o i n t = (Sin [2 Pi / 7])'^2; 

f4[ii_] := 4 n ( 1 - n) 

seql = Nes tLis t [ f4 , N [ i n i t i a l P o i n t ] , 100]; 

p l l = Show[Graphics[{{RGBColorCl, 0, 0 ] , Po in tS ize [0 .02] , 

Map[Point,Table[{k, s e q l [ [ k ] ] } , {k, 1, Length[seql ]}] ]} , 

Line[Table[{k, s e q l [ [ k ] ] } , {k, 1, Length[seq l ]}] ]}] , 

TextStyle -^ {FontSlant -^ ' ' I t a l i c ' \ FontSize -^ 12}, 

Frame —> True, FrameTicks —̂  

{{0, 20, 40, 60, 80, 100}, {0.2, 0 .4 , 0 .6 , 0 .8 , 1},{},{}}]; 

100 

Fig. 24.6. One hundred iterates of the logistic map n i-̂  4n(l — n) starting from 
no = sin^(27r/7), defined with $MachinePrecision, showing the instability of the 
period-3 point 

i n i t i a l P o i n t = (Sin[2 Pi / 7 ] )^2 ; 

f4[n_] := 4 n ( 1 - n) 

seql = Nes tLis t [ f4 , N [ i n i t i a l P o i n t , 70 ] , 100]; 

p l l = Show[Graphics[{{RGBColor[l, 0, 0 ] , Po in tS ize [0 .02] , 

Map[Point,Table[{k, s e q l [ [ k ] ] } , {k, 1, Length[seq2]}]]}, 

Line[Table[{k, s e q l [ [ k ] ] } , {k, 1, Length[seq2]}]]}] , 

TextStyle -> {FontSlant -^ ' ' I t a l i c ' ' , FontSize -^ 12}, 

Frame —> True, FrameTicks —> 

{{0, 20, 40, 60, 80, 100}, {0.2, 0 .4 , 0 .6 , 0 .8 , l} ,{} ,{}}] ; 
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100 

Fig. 24.7. One hundred iterates of the logistic map n \-^ 4n(l — n), starting from 
no = sm^(27r/7) defined with 70 significant digits. 

24.2.2 Exact Solution of the Recurrence Equation 

Mathematica can, in some cases, solve recurrence equations using the com
mand RSolve. 

RSolve[{n[t+l] == 4 n [ t ] ( l - n [ t ] ) , n[0] == nO}, n [ t ] , t ] 

Solve: : ifun : Inverse functions are being used by Solve, 

so some so lu t ions may not be found; use 

Reduce for complete so lu t ion 

inf ormat i on. More 

, , ^ 1 - Cos[2'^ ArcCosfl - 2 nOll 
{{n[t] -^ 

This exact result shows that the map/4 has sensitive dependence on initial 
conditions, which, according to Devaney [13], is one of the necessary conditions 
for a map to be chaotic [9]. The following results show how a very small 
increase of the initial value no (from \/3 — I t o y ^ — 1 + 10~^ modifies the 
value of rit after 10,20, . . . , 100 iterations. 

N[Table[(1- Cos[2^t ArcCos[l - 2(Sqrt[3] - 1) -

2 / 10^4]]) /2 - (1 - Cos[2'^t ArcCosCl - 2(Sqrt[3] • 
2 . 

{ t , 10, 100, 10}]] 

- 1 ) ] ] ) / 

{- 0.102199, - 0.459289, 0.287665, 0.906013, - 0.819842, 
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0.154034, 0.520761, - 0.310196, 0.0295783, -0.121685} 

24.2.3 Invariant Probability Density 

To conclude this section we determine the invariant probabihty density for the 
map /4. The invariant probabihty density p for a map / is such that p{x) dx 
measures how frequently the interval [x, x + dx] is visited by the dense orbit 
of a point XQ. 

Before going into any further detail, let us recall a few basic results of ergodic 
theory (for more details see Shields [51]). 

Let / : <S -^ «S be a map. A subset A of <S is invariant if f{A) = A. k 
measure // is invariant for the map / if, for all measurable subsets A of <S, 
/x(/~^ (A)) = /i(A). The map / is ergodic with respect to the invariant measure 
/i if any measurable invariant subset A of <S is such that either iJi{A) = 0 or 
fi{A) = M(5 ) . 

If / is ergodic with respect to the invariant probabihty measure /i (// is a 
probability measure if /i(<S) = 1), and ^ : «S -^ E, an integrable function with 
respect to /i, then, for almost all XQ G 5 , 

1 * f 
lim T y ] ^ o r ( x o ) = / g{^) c?/i(x). 

That is, the time average is equal to the space average. If there exists a positive 
real function p such that d/i(x) = p{x)dx, p is called an invariant probability 
density. 

If the map / : [0,1] -^ [0,1] is such that any point x has k preimages 
2/1,2/2,.--,2/^ by / (i.e., for a lU = 1,2,.. . , fc, f{yi) = x), the probability 
of finding an iterate of / in the interval [x, x -f dx] is then the sum of the 
probabilities of finding its k preimages in the intervals [yi^yi H- dyi]. Hence, 
from the relation 

k 

p{x)dx = ^p{yi)dyi, 

we obtain the Perron-Probenius equation: 

where we have taken into account that 

dx , 
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In the case of the binary tent map T2, the Perron-Probenius equation reads 

p{x) = l {p{lx)^p{l-lx)). 

This equation has the obvious solution p{x) = 1. That is, the map T2 preserves 
the Lebesgue measure. If / i U I2 is the preimage by T2 of an open interval / 
of [0,1], we verify that 

m(/i U I2) = m(/i) + m(/2) = m(/) , 

where m denotes the Lebesgue measure. Using the relation 

f4 o h = h0T2, 

where h : x y-^ sin^(7r/2x), the density p of the invariant probability measure 
for the map / is given by 

dx 

7ry^a:(l — x) 

which can be checked using Mathematica 

p{x) dx = —— dx (24.2) 
dx 

(24.3) 

hlnverse[x_] := 2 ArcSin[Sqrt[x]] / P i ; 

D[hinverse[x] , x] 

Pi Sqrt[l - x ] Sqrt[x] 

The graph of the invariant probability density p is 

rho [x_] : = 

Plot [ rho[x] 

TextStyle -

FontSize -^ 

(1 / Pi) 1 / SqrtCx (1 -

, {x, 0, 1}, ] 

^ {FontSlant -

12}, Frame -> 

> ' ' I t a l i c 

True] ; 

x)] 

9 

As suggested by the numerical data used to plot logisticCDF, we verify that 
the invariant probability density function is infinite at x — 0 and x = 1. 

The cumulative distribution function F is the integral from 0 to x; that is, 

F[x_] ;= Assviming[0 < x < 1, 

Integrate[(1 / Pi) 1 / Sqrt[u (1 

F[x] 

- u ) ] , {u, 0, x}]] 
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0 0,2 0.4 0.6 0.8 1 

Fig. 24.8. Invariant probability density of the logistic map n i-̂  4n(l — n). 

2 ArcSin[Sqrt[x]] 

Pi 

plF = P l o t [ F [ x ] , 

TextStyle 

FontSize 

{x, 0, 

-> {FontSlant 

-^ 12}, Frame -

l } ,P lo tS ty l e 

-^ ' ' I t a l i c ' ' 

-̂  True] ; 

-^ {RGBColorEO, 

> 

0 , 1 ] } . 

Fig. 24.9. Invariant cumulative distribution function of the logistic map n t-̂  4n(l-
n). 

This plot is very similar to the Lis t Plot of the numerical data (called 
logisticCDF) obtained above. The following plot, in which the numerical 
CDF (in red) and the exact one (in blue) are represented shows a very good 
agreement between the two results. 

Show[{logisticCDF, p lF}] ; 
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Fig. 24.10. Comparing the exact invariant cumulative distribution function (in 
blue) with the approximate one (in red) obtained above. The two curves cannot be 
distinguished. 
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Lorenz Equations 

In his historical paper, pubhshed in 1963, Lorenz [31] derived, from a model of 
fluid convection, a three-parameter family of three ordinary differential equa
tions that appeared, when integrated numerically, to have extremely com
plicated solutions. In particular, he discovered that all nonperiodic solutions 
of his deterministic model were bounded but showed irregular fluctuations. 
Thirty years later [32] he described how he 

had come across a phenomenon that later came to be called ^'chaos^^— 
—seemingly random and unpredictable behavior that nevertheless 
proceeds according to precise and often easily expressed rules. 

The study of chaos can be traced back to Henri Poincare (1854-1912). In Sci
ence et Methode, first published in 1909, he already indicates the possibility for 
certain systems to be subject to sensitive dependence on initial conditions [43]. 

The Lorenz equations are 

dx 
^ = ^ ( y - x ) , 
dy 
-— = rx — y — xz, 
dt ^ 
dz . 
-— = xy — bz, 
dt ^ 

where cr, r, and 6 are real positive parameters. The system is invariant under 
the transformation {x,y,z) -^ {—x,—y,z). Although this system is rather 
complicated, we can use NDSolve to solve it numerically. 

NDSolve follows the general procedure of reducing step size until it tracks 
solutions accurately. When solutions have a compHcated structure, however, 
occasionally larger settings may need to be chosen for MaxSteps. With the 



440 25 Lorenz Equations 

setting MaxSteps -^ Inf ini ty there is no upper limit on the number of steps 
used. Chosing a = 10, r = 28, and b = 8/3 we have 

sol = 

y'[t] 

z ' [ t ] 

x[0] = 

{x, y 

NDSolve 

== 28 X 

== x [ t ] 

== z[0] 

, z} , {t 

[ {x' 

[t] -

y [ t ] 
== 0 

, 0, 

[t] == 10 (y[t ] -

y [ t ] - x [ t ] z [ t ] 

- (8/3) z [ t ] . 

. y[0] == 1}, 

40} , MaxSteps —>• 

x [ t ] ) . 

> 

Inf inity] 

{{x -^ InterpolatingFunction[{{0., 4 0 . } } , <>] , 

y -^ InterpolatingFunction[{{0. , 4 0 . } } , <>] , 

z -^ InterpolatingFunction[{{0. , 4 0 . } } , <>]}} 

We can view the projection of the three-dimensional trajectory on the planes 
xOy, yOz, and xOz. 

LorenzXY = 
Imm] { t , 0, 

TextStyle -

ParametricPlot[Evaluate[{x[t] , y [ t ] } / . 
40}, Frame -> 

-̂  {FontSlant -

Axes -^ None, FrameLabel 

PlotPoints -> 1000]; 

True, AspectRatio -^ 1, 

^ ' ' I t a l i c ' ' , FontSize -^ 

sol ] , 

12}, 

—> {x, y } , PlotRange -^ Al l , 

-15 -10 -5 0 5 10 15 20 

Fig. 25.1. Projection on the xOy-plane of a numerical solution of the Lorenz 
equations for t G [0,40] and (xo, yo, ̂ o) = (0,0,1). 
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LorenzYZ = 

Imm] {t, 0 

TextStyle -

ParametricPlot 

, 40}, Frame -^ 

-^ {FontSlant -

Axes -^ None, FrameLabel 

PlotPoints -^ 1000]; 

[Evaluate [{y [t], z [t]} /. 

True, AspectRatio -^ 1, 

•̂  "Italic'', FontSize -> 

- {y, 

sol] , 

12}, 

z}, PlotRange -^ All, 

Fig. 25.2. Projection on the yOz-plane of a numerical solution of the Lorenz 
equations for t G [0,40] and (xo, 2/o, ZQ) = (0,0,1). 

LorenzXZ = 

Imm] {t, 0 

TextStyle -

PsirametricPlot [Evaluate [{x [t] , z [t] } 

40}, Frame -^ True, AspectRatio -^ 1 

-̂  {FontSlant -

Axes -^ None, FrameLabel 

PlotPoints -^ 1000]; 

-̂  ''Italic", FontSize 

—> {x, z}, PlotRange —^ 

/. 

» 

-^ 

sol] , 

12}, 

All, 

-15 -10 -5 0 5 10 15 20 

Fig. 25.3 . Projection on the xOz-plane of a numerical solution of the Lorenz 
equations for t £ [0,40] and (xo, yo, zo) = (0,0,1). 
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The orbit is obviously not periodic. As t increases, the orbit winds first around 
the unstable fixed point (xi ,yi ,zi) = ( -8 .45528. . . , -8 .45528. . . ,27) and 
then around the unstable fixed point {xi,yi,zi) = (8.45528..., 8.45528..., 27) 
without ever settling down. Its shape does not depend upon a particular choice 
of the initial conditions. 

If the initial point (XQ, VO^ZO) is either the first or the second unstable point, 
the orbit turns around this point slowly moving away. 

s o i l = NDSolveC { x ' [ t ] == 10 ( y [ t ] - x [ t ] ) , 

y'Ct] == 28 x [ t ] - y [ t ] - x [ t ] z [ t ] , 

z ' [ t ] == x [ t ] y [ t ] - ( 8 / 3 ) z [ t ] , 

x [ 0 ] == - 8 .45528 , y [ 0 ] == - 8 .45528 , z [ 0 ] == 

{ x , y , z } , { t , 0 , 4 0 } , MaxSteps -^ I n f i n i t y ] 

2 7 } , 

{{x —> Interpola t ingFmict ion[{{0. , 40 .}} , <>], 

y -^ In te rpola t ingFunct ion[{{0. , 40 .}} , <>] , 

z -^ In te rpola t ingFunct ion[{{0. , 40 .}} , <>]}} 

s o l 2 = 

/ [ t ] 

z ' [ t ] 

x [ 0 ] = 

{x, y 

= NDSolveC { x ' [ t ] 

== 28 x [ t ] -

== x [ t ] y [ t ] 

y [ t ] 

== 10 ( y [ t ] 

- x [ t ] z [ t ] 

- ( 8 / 3 ) z [ t ] . 

== 8 .45528 , y [ 0 ] = 

, z} , {t, 0, 4 0 } , 

== 8 .45528 , 

MaxSteps —> 

- X 

> 

2[0] 

Inf: 

: t ] ) . 

== 2 7 } , 

Lnity] 

{{x -^ Interpolat ingFiinct ion[{{0. , 40 .}} , <>] , 

y -^ Interpolat ingFiinct ion[{{0. , 40 .}} , <>] , 

z -^ In terpola t ingFimct ion[{{0. , 40 .}} , <>]}} 

LorenzYZl = Paramet r i cP lo t [Eva lua te [y [ t ] , z [ t ] / . s o i l ] , 

{ t , 0, 40}, Frame -^ True, AspectRatio —> 1, 

TextStyle -^ {FontSlant -^ ' ' I t a l i c ' ' , FontSize -^ 12}, 

Axes -^ None, FrameLabel -^ {y>z}, PlotRange -> Al l , 

FrameTicks -^ 

{{- 9 . 5 , - 8 .5 , - 7 .5} , {25.5, 26 .5 , 27 .5 , 28.5},{},{}}, 

PlotPoints -^ 1000, DisplayFunction -^ Identity]; 
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LorenzYZ2 = ParametricPlot[Evaluate[y[t], z[t] /. sol2], 

{t, 0, 40}, Frame -^ True, AspectRatio -^ 1, 

TextStyle -^ {FontSlant -̂  ''Italic'', FontSize -^ 12}, 

Axes -̂  None, FrameLabel —> {y,z}, PlotRange -> All, 

FrameTicks -̂  

{{7.5, 8.5, 9.5}, {25.5, 26.5, 27.5, 28.5},{},{}}, 

PlotPoints —> 1000, DisplayFunction -̂  Identity]; 

Fig. 25.4. Projection on the yOz-plane showing the trajectory slowly moving away 
from the unstable fixed points. 

The divergence of the flow (trace of the Jacobian matrix) is equal to —{a-\-b-\-
1). Thus a three-dimensional volume element contracts, as a function of time 
t, by a factor e-(^+^+l)^ It can be shown that there is a bounded ellipsoid 
E CM.^ that all trajectories eventually enter. Taken together, the existence of 
the bounded ellipsoid and the negative divergence of the flow imply that there 
exists a bounded set of zero Lebesgue measure inside the ellipsoid E towards 
which all trajectories tend. For the most complete study of the Lorenz model, 
consult Sparrow [53]. 
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The Morse Potential 

In a paper published in July 1929 Philip Morse [38] used the potential 

V{r) = De-2"(^-^^) - 2i)e-"(^-^^) 

to model the vibrational energy of a diatomic molecule, where r is the bond 
length, To the equilibrium bond length, a a parameter controlling the potential 
width, and D the dissociation energy of the molecule measured from the 
potential minimum. 

The minimum of V{r) is equal to — D for r = ro, and V{r) tends to zero when 
r tends to infinity. 

Introducing the variable u = a{r — TQ), the potential takes the form De~^^ — 
2De~^. It is represented below by the blue curve. 

V[r_] := D Exp[- 2 a (r - rO)] - 2 D Exp[- a (r - rO)] 

plV = Plot[V[r] / D / . r ^ u / a + rO, {u, - 1, 3} , 

PlotRange -^ All, AxesLabel -^ Ca(r-rO)'\ ''V(r) / D'}, 

AxesOrigin -^ {0, 0}, PlotStyle -> {RGBColor[0, 0, 1]}, 

DisplayFunction -^ Identity]; 

plH = Plot [u-̂ 2 - 1, {u, - 2, 2}, 

PlotStyle -^ {RGBColorCl, 0, 0]}, 

DisplayFunction -̂  Identity]; 

Show[{plV, plH}, TextStyle -^ {FontSlant -̂  "Italic'\ 

FontSize -^ 12}, DisplayFunction -^ $DisplayFunction]; 



446 26 The Morse Potential 

a{r-rO) 

Fig. 26.1. The Morse potential (in red) and its harmonic part (in blue). 

The red curve is the harmonic part of the Morse potential. The angular fre
quency (Jo of the classical harmonic oscillations of a particle of mass m about 
TQ is ay/2D/m because 

Series [V[r], {r, rO, 2}] 

- D + a^ D (r - rO)^ + 0[r - rO]̂  

Although the Morse potential realistically allows for a diatomic molecule to 
dissociate at infinite bond length, its behavior at very short bond length is 
not realistic. The bond length should never be negative, and for r -^ 0 the 
potential should, therefore, tend to infinity. This is not the case for the Morse 
potential. But, numerically, V{0) is very large and, according to Morse, as 
far as its eff"ect on the energy levels and wave function goes, it is as good as 
infinity (see Morse's paper [38]). 

The Schrodinger equation for a particle of mass m in the Morse potential is 

where h is the Planck constant. 

+ V{r)xl; = Ei/j, 

Note that this equation is actually the radial part of the three-dimensional 
Schrodinger equation using separation of variables in spherical coordinates. 

In terms of the variable u the equation takes the form: 

0. 

And if we make a second transformation, letting x = e ", then 

dx"^ X dx a^h^ 
^ = 0, 
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where ip{x) should be finite and continuous for x >0. The form of the equation 
above shows that it only depends upon two parameters STT^m/a^h'^ and D. 

Following Morse, we, once more, transform the equation. Let 

Then, ii d = 27rVrrid/{ah)^ E = —a^/i^6^/(327r^m), and z — 2dx, the equation 
becomes 

d^F ,^ ^ ^ dF fSn^mD b+l\ ^ ^ 

At this point we can try using Mathematica to solve this equation. Let A 
denote the constant ^Tr'^mD/a^dh?. 

DSolveCz F''[z] + (b + 1 - z) F'[z] + 

(A - (b + 1) / 2) F[z] == 0, F [ z ] , z] 

{{F[z] -^ C[l] HypergeometricUE , 1 + b , z] + 

. - 1 + 2 A - b 
C[2] LaguerreLC , b , z]}} 

The general solution is a linear combination of the confluent hypergeometric 
function U{{h + 1 — 2^)/2,6 -f 1,2;) and the generalized Laguerre polynomial 
L((2A - h - l ) /2 , h-\-l,z) when {2A-h- l ) /2 is a positive integer n. The 
wave function should be well behaved on the positive semi-axis. Hence, the 
only acceptable solution of the equation above is the generalized Laguerre 
polynomial L^ for Re 6 > 1; the confluent hypergeometric function U behaves 
as z^~^ for small z. 

Because we made many changes of variables, we use Mathematica to find the 
simplified expressions of A and h. 

A 

d 

b 

= (8 Pi 

-̂  2 Pi 

= 2A -

2̂ m D) 

Sqrt[2 

2 n - 1 

/ 

m 

/ 

(a 

D] 

/s 

^2 d h'^2) 

/ (a h) 

implify 

/. 

// Simplify 

2 Sqrt[2] Sqrt[D m] Pi 4 Sqrt[2] Sqrt[D m] Pi 
— 1 — 2 n + 

a h a h 

For n > 0, the last expession shows that A7rV2Dm/ah has to be greater than 
1. The energy of the ground state is obtained by replacing n by 0 in the general 
expression of the energy given above. We find 
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groundStateEnergy = 

- a^2 h'^2 (2 A - 2 n - 1)'^2 / (32 Pi'^2 m) / . n -^ 0 / / Expand 

dp- Y? a h Sqrt[D m] 

32 m Pi-^ 2 Sqrt[2] m Pi 

We mentioned above that the expression of the angular frequency CJQ of the 
classical harmonic oscillations of a particle of mass m about TQ is a^jlDjvfi. 

The ground state energy can, therefore, be written 

^ _ ^ 1 /lo; 1 h^u? 

which is the ground state energy of the harmonic oscillator shifted by D with 
a correction in (^ + | ) due to the anharmonicity of the asymmetric Morse 
potential. This result suggests that the general expression of the energy levels 
may also be written as the energy levels of the harmonic oscillator shifted by D 
with an extra anharmonic correction. This can be checked using Mathematica. 

energyLevels[n] = 

- a'̂ 2 h'^2 (2 A - 2 n - 1)'^2 / (32 Pi'^2 m) / / Expand 

2 , 2 2 , 2 2 , 2 2 
a h^ a h n a h n 

32 m Pi^ 8 m Pi^ 8 m Pi^ 
a h Sqrt[D m] a h Sqrt[D m] n 

2 Sqrt[2] m Pi Sqrt[2] m Pi 

That is. 

Because h = 2A — 2n — 1 must be positive for the wave function to be finite, 
the number of discrete energy levels is finite. They correspond to the values 
n = 0 ,1 ,2 , . . . , [A — | J , where \x\ denotes the largest integer less than x (i.e., 
the Mathematica function Floor [x]). Historically, it was the first example of 
a Schrodinger equation giving a finite number of discrete energy levels. 

The theoretical results obtained by Morse are in good agreement with the 
experimental data known at that time (see his paper [38]). For recent results 
on diatomic molecules obtained using the Morse potential, visit the Web site 
http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-8-376 which pres
ents animated wave functions. 
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Prime Numbers 

27.1 Primal i ty 

A positive integer p is a prime (number) if, and only if, it has only two distinct 
divisors: 1 and p itself. The only divisors of 227 are 1 and 227 making 227 a 
prime whereas 237, which has four distinct divisors 1, 3, 79, and 237, is not a 
prime. 

The Mathematica function PrimeQ tests primality. Using this function we 
verify that 227 is a prime and 237 is not. 

{PrimeQ[227], PrimeQ[237]} 

{True, False} 

The divisors of an integer can be found using the built-in function Divisors. 

Divisors[237] 

{1, 3 , 79, 237} 

shows that 237 is not a prime. 

The command Prime [n] gives the nth prime number. Remember that 1 is 
not a prime, so Prime [1] = 2. 

I Prime [57] | 

269 
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The package NumberTheory'PrimeQ' implements primality proving. If Prov-
ablePrimeQ [n] returns True, then the number n can be mathematically 
proven to be prime. In addition, according to the Mathematica book [68], 
while the built-in primality testing function PrimeQ does not actually give a 
proof that a number is prime, there are no known examples where PrimeQ 
fails. 

«NuinberTheory' PrimeQ' 

PrimeQ[22507410677] 

True 

ProvablePrimeQ[22507410677] 

True 

Loading the package 

«NumberTheory'NumberTheoryFunctions' 

we can use many other interesting functions concerning primality. NextPri-
me[n] and PreviousPrime [n] give, respectively, the smallest prime greater 
than n and the largest prime less than n. 

NextPrime[22507410677] 

22507410691 

PreviousPrime[22507410677] 

22507410637 

The command Random [Prime, {nl , n2}] gives a prime in the range {nl , 
n2}. 

Random[Prime, {100, 200}] 

191 
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A Few Simple Exercises 

1. Write a program generating twin primes^ that is, pairs of primes that differ 
by 2. 

Here is a simple program that selects all pairs of primes in a list of pairs of 
odd integers which differ by 2. 

Cases[Table[{2k + 1, 2k + 3}, {k,l, 500}], 

{x_, y_} /; PrimeQ[{x, y}] == {True, True}] 

{{3, 5}, {5, 7}, {11, 13}, {17, 19}, {29, 31}, {41, 43}, 

{59, 61}, {71, 73}, {101, 103}, {107, 109}, {137, 139}, 

{149, 151},{179, 181}, {191, 193}, {197, 199}, {227, 229}, 

{239, 241},{269, 271}, {281, 283}, {311, 313}, {347, 349}, 

{419, 421},{431, 433}, {461, 463}, {521, 523}, {569, 571}, 

{599, 601}, {617, 619}, {641, 643}, {659, 661}, {809, 811}, 

{821, 823}, {827, 829}, {857, 859}, {881, 883}} 

We can also generate twin primes in a specific range, as done below. 

Cases[Table[{2k + 1, 2k + 3}, {k, 50000, 50500}], 

{x_, y_} /; Primeq[{x, y}] == {True, True}] 

{{100151, 100153}, {100361, 100363}, {100391, 100393}, 

{100517, 100519}, {100547, 100549}, {100799, 100801}} 

2. Study the primality of the numbers belonging to the sequence (31, 331, 3331, 
33331, . . . ; . 

The function 

f [n . ] := (1/3) (10-•n - 7 ) 

generates the numbers of this sequence: 

Table[ f [n] , {n , 2 , 10}] 
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{31, 331, 3331, 33331, 333331, 3333331, 33333331, 

333333331, 3333333331} 

Testing primality, we find 

l i s = ; 

For[n = 2, n < 1000, n++, 

If[PrimeQ[f[n]] == True, l i s = Append[lis, n ] ] ] / / Timing 

{15.625 Second, Null} 

l i s 

{2, 3 , 4, 5, 6, 7, 8, 18, 40, 50, 60, 78, 101, 151, 319, 

382, 784} 

The first seven elements of the sequence are prime numbers; then there are 
only 10 more primes less than /(lOOO). Note that f{n) has n digits; the prime 
number f [784] has, therefore, 784 digits! 

3. Verify that for all integer values of n from — 39 to 40, n^ — n -\- Al takes 
only prime values. 

This is very simple. First note that if we change n into 1 — n, the quadratic 
polynomial is left unchanged. To verify the property it is, therefore, sufficient 
to verify it for n varying from 1 to 40. The command 

l i s = Cases [Table [n'^2 - n + 4 1 , {n, 1, 40}] , 

p_ / ; PrimeQ[p] == True] 

{41, 43, 47, 53, 61 , 71 , 83, 97, 113, 131, 151, 173, 197, 223, 

251, 281, 313, 347, 383, 421, 461, 503, 547, 593, 641, 691, 

743, 797, 853, 911, 971, 1033, 1097, 1163, 1231, 1301, 1373, 

1447, 1523, 1601} 

Length[ l i s ] 

40 
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shows that all 40 different integers are primes. 

4. Find all primes that can be written m? + v? where m and n are integers 
not greater than 500, 

An ordered sequence of integers of the form w? -f- n^, where m and n are 
integers not greater than 500, is generated using the command 

Clear[seq] 

seq = In t e r s ec t i on [Sort [F la t ten [Table [m'̂ 2 + n'^2, {m, 1, 500}, 

{n, 1, 500}] ] ] ] ; 

Length[seq] 

78901 

Then, using the program 

Clear[primesList] 

primesList = ; 

For[j = 1, j < Length [seq], j++. 

If[PrimeQ[seq[[j]]] == True, 

primesList = Append[primesList,seq[[j]]]]] 

Length[primesList] 

13724 

we find that in the sequence of 78,901 integers that are the sum of two squares, 
13,724 are primes. They are listed in primesList . Short [expression] prints 
a short form of expression less than about one line long. 

Short[primesList] 

{2, 5, 13, 17, 29, « 1 3 7 1 7 » , 493049, 495017} 

Actually it can be shown that a prime p is the sum of two squares if, and 
only if, p = 2 or p = 1 mod 4. For a proof and a Mathematica program that, 
given p, find m and n such that p = m^ -f n^ see [64]. As shown below, we 
can verify that except the first element of primesList, which is 2, all other 
elements are indeed congruent to 1 modulo 4. 
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For[k = 1, k <= Length[primesList] , k++, 

I f [Mod[pr imesLis t [ [k]] , 4] != 1, P r i n t [ k ] ] ] / / Timing 

1 

{0.058051 Second, Null} 

5. Find ten primes in arithmetic progression. 

The longest sequence of primes in arithmetic progression is 

56211383760397 + 44546738095860 fc, where fc = 0 , 1 , . . . , 22. 

It was discovered in 2004 by Markus Frind, Paul Jobling, and Paul Underwood 
(see http://primes.plentyofRsh.com/). 

Mathematica can easily confirm this result. 

primesAP = Table[56211383760397 + k 44546738095860, 

{k, 0, 22}]; 

PrimeQ[primesAP] 

{True, True, True, True, True, True, True, True, True, True, 

True, True, True, True, True, True, True, True, True, True, 

True, True, True} 

Length[%] 

23 

Coming back to our much simpler problem, we are looking for a sequence of 
primes of the form pi + fcr, where pi and r are given and A: = 0,1,2, . . . , 9. 

To solve this problem we use a theorem stating that if n elements of an 
arithmetic progression are odd, then r can be divided by all primes less than 
n. 

Hence for n = 10, r can be divided by 2, 3, 5, and 7, that is, by 210. If we 
choose r = 210, because this number can be divided by 3, 5, and 7, none of 
these numbers can be the first term of the progression. The first term cannot 
be 11 because the second one would be 221 which is not a prime. The relation 
210 = 1 mod 11 implies that the remainder of each term of the progession 
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divided by 11 should increase by one unit and, consequently, the first term pi 
of the progression should also be equal to 1 mod 11. Because pi must be odd 
we can try a prime of the form 22j + 1, where j is an integer. 

A hst of possible first terms is the list npl obtained below. 

npl = {}; 
ForCj = 1. j < 100, j++. 

If[PrimeQ[22 j + 1] == True, npl = Append[npl, 22 j + 1]]] 

Length [npl] 

30 

We then build all 30 arithmetic progressions of length 10 whose first term is 
an element of npl. 

Clear[seq] 

seq = Table[Table[npl [ [ i ] ] + 210 k, {k, 0, 9} ] , 

{ i , 1, Length[npl]}] ; 

And check the primality of each arithemetic progression. 

For [ i = 1, i < Length [npl] , i++, 

1 = {}; 
For[k = 1, k < 10, k++, 

I f [Pr imeQ[seq[[ i , k ] ] ] == Fa l se , 

1 = Append[l, s e q [ [ i , k ] ] ] ] ] ; 

If [1 == {}, P r i n t [ s e q [ [ i ] ] ] ] ] 

{199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089} 

Among the 30 arithmetic progressions, only one has prime terms. 

Increasing significantly the number of elements of the list npl does not give 
any new sequence of primes. For example: 



456 27 Prime Numbers 

Clear[npl] 

npl = { } ; 
For[j=l, j < 

If [PrimeQ[22 

10000, 

J + 1] 

J++> 
== True, npl= Append[npl. 22 j+1]]] 

Length[npl] 

1952 

Clear[seq] 

seq = Table[Table[npl[[i]] + 210 k, {k, 0, 9 } ] , 

{ i , 1, Length[npl]}]; 

For[i = 1, i < Length [npl] , i++, 

1 = {}; 
For[k = 1, k < 10, k++. 

If[PrimeQ[seq[[i, k]] ] == False, 

1 = Append[l, s e q [ [ i , k ] ] ] ] ] ; 

If [1 == { } , P r i n t [ s e q [ [ i ] ] ] ] ] 

{199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089} 

There is no new arithmetic progression. 

27.2 Mersenne Numbers 

A number of the form 2*̂  — 1 is called a Mersenne number after the French 
theologian and mathematician Marin Mersenne (1588-1648) who observed 
that if 2^ — 1 is prime, then n must be prime, but that the converse is not 
necessarily true. Note that if n is not a prime it can be written as the product 
of two positive integers n = a6, and the relation 

2"^ - 1 -= (2^ - 1)(2^(^~^^ + 2"^^-^^ -h . . . + 1) 

shows that the Mersenne number 2^ — 1 cannot be a prime if n is not a prime. 

In order to define a function giving a list of the first Mersenne numbers, we 
first generate a table of Mersenne numbers and the corresponding exponents, 
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asking Mathematica to only display those that are prime using the command 
Select . 

Select [Table [{n, PrimeQ[2'^n - 1 ]} , 

{n, 1, 100}], # [ [2] ] == True &] 

{{2, True}, {3, True}, {5, True}, {7, True}, {13, True}, 

{17, True}, {19, True}, {31, True}, {61, True}, {89, True}} 

To obtain the list of the exponents generating prime Mersenne numbers, we 
transpose the list above and extract the first of the two sublists. 

exponents = Transpose[Select[Table[{n, PrimeQ[2"n - 1 ]} , 

{n, 1, 100}], # [ [2] ] == True &]] [[1]] 

{2, 3 , 5, 7, 13, 17, 19, 31 , 61 , 89} 

A list of first prime Mersenne numbers is then obtained entering either the 
command 

Table[2^exponents[[k]] - 1 , {k. 1, Length [exponents]}] ; 

or 

Map[(2^# -- 1) &, exponents]; 

which is a bit faster. 

These different steps can now be grouped together in the following function. 

MersenneNumbersList[n_] := Module[{exponents, Ml i s t } , 

exponents = Transpose[Select [Table[{j , Pr imeQ[2"j- l ]} , 

{ j , 1, n } ] , # [ [2] ] == True & ] ] [ [ 1 ] ] ; 

Mlist = Map[(2'^# - 1) &, exponents]; Mlist] 

MersenneNumbersList[200]//Timing 

{0.025853 Second, {3, 7, 31 , 127, 8191, 131071, 524287, 

2147483647, 2305843009213693951, 618970019642690137449562111, 
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162259276829213363391578010288127, 1701411834604692317316\ 

87303715884105727}} 

Remark . In as much as a Mersenne number is of the form 2^ — 1, its expression 
in base 2 contains only Is. 

Table[BaseForm[2'^n - 1, 2 ] , {n, 1,10}] 

{l2 , l l 2 , I I I 2 ' m i 2 ' m i l 2 ' I I I I I I 2 ' I I I I I I I 2 ' 

I I I I I I I I 2 , I I I I I I I I I 2 , I I I I I I I I I I 2 } 

It is not difficult to modify the function MersenneNumbersList into a function 
searching for prime Mersenne numbers in a given range. 

27.3 Perfect Numbers 

Mersenne numbers are related to perfect numbers. A perfect number is an 
integer that equals the sum of its proper divisors. Pythagoreans {circa 525 
BC), who believed that all things are numeric, studied perfect numbers for 
their mystical properties. The first perfect number is 6 which is equal to 1 + 
2 + 3. 

The following function gives the list of all perfect numbers less than a given 
integer n. 

perf ectNumbersList [n_Integer] : = 

Module[{pNums = {}}, 

For[k=l , k <= n, k++, 

I f [Tota l [Most[Divisors[k]] ] == k, 

pNums = Append[pNums, k ] ] ] ; pNums] 

Most [expression] removes the last element of expression. 

perfectNumbersList[10000] 

{6, 28, 496, 8128} 

As shown below, there is no perfect number between 10,000 and 1,000,000. 
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perfectNumbersList[1000000] / / Timing 

{26.5845 Second, {6, 28, 496, 8128}} 

We can build up a function per fee t Number Q [n] which gives True if n is 
perfect. 

perfectNumberQ[n_Integer] := If [Total [Most [Divisors [n]]] == 
n. True, False] 

We can use this test to verify that 33550336, 8589869056, 137438691328, and 
2305843008139952128 are perfect numbers. Let us first make perf ectNumberQ 
Hstable. 

SetAttributes[perfectNumberQ, Lis tab le ] 

perfectNumberQ [{33550336, 8589869056, 137438691328, 

2305843008139952128}] 

{True, True, True, True} 

Leonhard Euler (1707-1783) proved that every even perfect number must he 
of the form 2"^" (̂2"^ — 1), where the Mersenne number 2"̂  — 1 is a prime, a 
result already suggested by Euclid {circa 300 BC). For instance, 28, which is 
equal to 1 -h 2 + 4 + 7 + 14 is perfect and it can be written as 2^(2^ - 1). 
Perfect numbers have many remarkable properties: They are triangular, that 
is, of the form k{k + l ) /2 and the sum of the reciprocals of the divisors of a 
perfect number (including the reciprocal of the number itself) is always equal 
to 2. Thus, for 28 

1 1 1 1 1 1 ^ 
l + 2 + 4 + 7 + 1 4 + 2 8 = ' -

Using Mathematical we can easily check this property. 

Tota l [1 / Divisors [496]] 

Tota l [1 / Divisors[8128]] 
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We can also verify that only perfect numbers have this property. 

sumReciprocalsTwo [n_Integer] : = 

Module[{seq = {}}, 

For[k = 1, k <= n, k++, 

If[Total[l / DivisorsCk]] == 2, seq = Append[seq, k]]]; seq] 

sumReciprocalsTwo[10000] 

{6, 28, 496, 8128} 

sumReciprocalsTwo[1000000] 

{6, 28, 496, 8128} 

Two questions concerning perfect numbers are still unanswered: the first is 
whether there are any odd perfect numbers, and the other is whether there 
are infinitely many perfect numbers. 
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Public-Key Encryption 

Public-key encryption is a cryptographic system that allows users to commu
nicate securely without having prior access to a shared secret key. It uses two 
keys: a public key known to everyone and a private or secret key known only 
to the recipient of the message. These two keys are related mathematically. 

28.1 The RSA Cryptosystem 

The RSA cryptosystem, named after its inventors R. Rivest, A. Shamir, and 
L. Adleman is the most widely used pubhc-key system. It can be described as 
follows [47]. 

1. Choose two large prime numbers p and q. 

2. Choose an integer e satisfying the conditions I < e <pq and such that e 
and (p— l)(g — 1) are relatively prime. Because (p— l)(g — 1) is necessarily 
even, e, called the public exponent^ has to be odd but does not have to be 
prime. 

3. Find an integer d, called the secret exponent^ satisfying de = 1 modulo 
{p — 1)(^ — 1); that is, d is the inverse of e modulo {p —\){q — \). 

4. If t is a positive integer representing the plaintext, the ciphertext, c is the 
positive integer t^ mod pq. Clearly t must be less than pq. 

5. Then t = c^ mod pq. 
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The public key is the pair (e, n), where n = pq. The private key is d. Because 
there is no easy method to obtain rf, p, and q knowing n and e, the two 
numbers n and e can be made public. 

The security of RSA is based upon the difference in the (short) computer time 
needed to find a prime and the (huge) computer time needed to factorize a 
very large prime. 

28.1.1 ToCharacterCode and FromCharacterCode 

The first task is to transform the plaintext message into an integer. There 
exist many methods. One method is to use the ASCII code. The printable 
ASCII characters have ASCII codes ranging from 32 to 126 with 32 being the 
code of the space key. 

ToCharacterCode[" "] 

{32} 

The function ToCharacterCode ["s t r ing"] gives the list of the integer codes 
of the s t r i n g characters. For instance, 

ToCharacterCode["Hello!"] 

{72, 101, 108, 108, 111, 33} 

Its inverse FromCharacterCode [n l , n 2 , . . . ] gives a sequence of characters 
with codes nl , n 2 , . . . . 

FromCharacterCode[{72, 101, 108, 108, 111, 33}] 

Hello! 

28.1.2 Obtaining the Integer t 

To obtain the integer t representing the plaintext string message we use the 
function encoding that associates a two-digit number to each ASCII character. 

FromDigi t s [d ig i t sLis t , b] constructs an integer from the d i g i t s L i s t of 
digits given in base b. 
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encodingString [str_String] : = 

FromDigits[ToCharacterCode[str] - 30 / . 

{2 -^ 02, 3 ^ 03, 4 -^ 04,5 -^ 05,6 -^ 06, 

7 -^ 07, 8 -^ 08, 9 -> 09}, 100] 

For example, if we want to send the following credit card number generated 
below, 

cardNumber = NumberForm[Random[Integer, {10^15, 10''16 - 1}] , 

DigitBlock —> 4, NumberSeparator ^ " "] 

8788 1596 0150 8954 

we will send the message: 

t = encodingString["My credit card number is 8788 1596 0150 

8954"] 

47910269847170758602696784700280877968718402758502262526260219\ 

23272402181923180226272322 

The inverse of the function encodingString is the function decoding defined 

by 

decoding [num_Integer] : = 

FromCharacterCode[IntegerDigits[num, 100] + 30 ] 

IntegerDigits [num, b] gives a list of the digits in base b of the integer num. 
For example: 

IntegerDigits[567891235, 100] 

{5, 67, 89, 12, 35} 

decoding[t] 

My credit card number is 8788 1596 0150 8954 
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28.1.3 Choosing t h e Integer n = pq 

Prime [n] gives the nth prime number. Remember that 1 is not a prime num
ber so the first prime is 2. This function does not accept very large arguments 
as shown below. 

p = Prime [10'^ 15] 

Pr ime: : l a rgp : Argument 1000000000000000 in 

Prime[1000000000000000] 

i s too la rge for t h i s implementation. More 

Prime[1000000000000000] 

If we want to find the smallest prime greater than a given integer n, we use 
the Mathematica function NextPrime but first we have to load the package 
NumberTheory'NumberTheoryFunctions'. 

«NumberTheory'NumberTheoryFunctions' 

NextPrime [10*̂ 100] // Timing 

{0.051037 Second, 1000000000000000000000000000\ 

000000000000000000000000000000000000000000000000000000\ 

0000000000000000267} 

Using this command we select two large prime numbers p and q and determine 
n = pq. 

p = NextPrime[Random[Integer, {10^51, 10^53}]] 

11891461639329158254011406810889410238185522367888077 

q = NextPrime [Random[Integer, {10^^51, 10'̂ 53}]] 

21728946937105068453481798891922084545935148389546269 
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n = p q 

2583889389656037294623718776432403118356838148793644975408\ 

11259358522106357481051858327332657241804934713 

Length[IntegerDigits[n]] 

105 

We verify that t < n. 

t < n 

True 

The basic idea underlying pubhc-key cryptography is that factoring the pubhc 
number n is impossible. 

28.1.4 Choosing the Pubhc Exponent e 

The public exponent has to be less than n and have no common divisor with 
( P - 1 ) ( Q - 1 ) . Let 

e = 341353751; | 

and we verify that the exponent e has no common divisor with {p --l){q-l) 

GCD [341353751, (p-1) (q-1)] | 

28.1.5 Coding t 

The function PowerMod[a, b , n] gives a^ modulo n. It is much more efficient 
than directly evaluating Mod [a'^b, n ] . 

ModCt^e, n] 
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General::ovfl: 

Overflow occurred in 

computation. More 

Overflown 

PowerModCt, e, n] // Timing 

{0.0002 Second, 

22355315382064082573154055115096803325381759229461060136500\ 

9007685993549303214459904582492023875781149113} 

c = 7o[[2]]; 

28.1.6 Choosing the Secret Exponent d 

Because c is the transform of f, in order to obtain t from c we have to determine 
the inverse transform. That is, we have to find the inverse d of the exponent e. 
This exponent d has therefore, to satisfy the relation de = 1 mod {p—l){q—l). 
It can be kept secret if, and only if, the two factors p and q oi n cannot be 
found. 

d = PowerMod[e, -1, (p-1) (q-1)] 

18263235318417383192973960970857591364322786581308857201094970\ 

6838356319152957727482473924887886784336967 

28.1.7 Decrypting t 

Knowing d, we can define the function decoding inverse of the function 

encodingString. 

decoding[PowerModEc, d, n]] 

My credit card number is 8788 1596 0150 8954 
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28.2 Summing Up 

Finally, to encode a message we define the function encrypt [message] know
ing the public key {e, n}, 

encrypt [mess age .String] : = 

PowerMod[FromDigits[ToCharacterCode[message] - 30 / . 

{2 ^ 02, 3 -^ 03, 4 -^ 04, 5 -^ 05, 6 -> 06, 

7 ^ 07, 8 -> 08, 9 ^ 09}, 100], e, n] 

and decode the encrypted number using the function decrypt [number] know
ing the secret key {d,p,q} (the knowledge of p and q is essential for finding 
d). 

decrypt [num_Integer] : = 

FromCharacterCode[IntegerDigits[PowerMod[num, d, n], 100] + 

30] 

cryptedMessage = encrypt["My credit card number is: 

2889 3038 0146 0363"] 

53908531144824148278773698484552834109533735158026594189691251\ 

906817249072781974667167189629829977068233 

originalMessage = decrypt[cryptedMessage] 

My credit card number is: 2889 3038 0146 0363 

Remark 1. Although in ordinary arithmetic the multiplicative inverse of an 
integer is a rational, using modulo arithmetic the multiplicative inverse of an 
integer is also an integer. But, an integer having a common factor with the 
modulus being not invertible, the exponent e and the modulus {p — l){q — 1) 
have to be relatively prime. 

Remark 2. Let ^ denote the Euler function, that is, the mapping which 
associates with each integer n the number (p{n) of positive integers relatively 
prime to n. If the factorization of n in prime factors is Pi^P2^ . • • , then (^(n) = 
n( l — l /p i ) ( l — I / P 2 ) . . . . In the case of the RSA cryptosystem, we used 
the public number n, the product of two prime numbers p and q, therefore, 
V(n) = n(l - l/p)(l - IIq) = {p - l){q - 1). 
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In practice, the numbers p and q are much larger than those we considered in 
the example above. 

Many more details on crytography can be found in [37]. See also The Magic 
of Public Key Encryption^ a 40-page paper that can be downloaded from 
www.hifn.com/docs/a/The-Magic-of-Pubhc-Key-Encryption.pdf. 
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Quadratrix of Hippias 

In 430 BC, Hippias (460 BC-400 EC) of Elis (in the Peloponnese, Greece), a 
contemporary of Socrates, discovered the quadratrix, a curve he used for tri
secting an angle. As a matter of fact, the quadratrix may be used for dividing 
an angle into any number of equal parts. In 350 BC Dinostratus (390BC-
320BC) used the quadratrix to square the circle.^ 

Trisecting an angle and squaring the circle were classical problems of Greek 
geometry. The solutions of these two problems given by Hippias and Dinos
tratus, are not solutions using a ruler and compass. They are based on the 
possibility of dividing a segment into a given number of equal parts. Hippias 
and Dinostratus are mentioned in the works of the famous Greek geometer 
Pappus of Alexandria {circa 290-circa 350). 

29.1 Figure 

Let ABCD be the vertices of a unit square and draw the arc of the circle cen
tered at A of radius AB — 1 (in orange in Figure 29.1 below). The quadratrix 
(in red in the figure) is the locus of the point P intersection of the segment 
B'C (in blue in the figure) moving down uniformly parallel to itself from BC 
to AD and the segment AA! (in blue in the figure) rotating clockwise about 
A uniformly from AB to AD. The thicker blue lines indicate the positions at 
time i of the line B'C and AA!. 

The parametric equation of the quadratrix is then given by 

^Dinostratus was the brother of Menaechmus (380 BC-320 BC) who is credited 
for having discovered that the ellipse, parabola, and hyperbola are conic sections that 
were later rigorously studied by Appolonius of Perga (262 BC-190 BC). 
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x[t_] := (1- t ) Cot [Pi (1- t ) / 2] 

y[t_] := 1 - t 

Note that the point of the quadratrix on AD is not defined and can only be 
obtained as a hmit. 

L i m i t e d - t ) Cot[Pi (1 - t ) / 2] , t -^ 1] 

2 

Pi 

To draw the figure we first load the package Graphics'Arrow' in order to be 
able to draw arrows. 

« G r a p h i c s ' Arrow' 

C lea r [ tx t ] 

plLocus = Pa ramet r i cP lo t [{x[ t ] , y [ t ] } , { t , 0, 1}, 

P lo tS ty le -> {RGBColorCl, 0, 0 ] } , 

AspectRatio -^ Automatic, DisplayFunction -^ I d e n t i t y ] ; 

p lC i rc l e = Graphics[{RGBColorCl, 0 . 5 , 0 ] , 

Ci rc le [{0 , 0} , 1, {0, Pi / 2}]}] ; 

plAngle = Graphics[{Thickness[0.007], RGBColor[0, 0, 1 ] , 

Ci rc le [{0 , 0} , 0 . 3 , {51 Degree, 90 Degree}]}]; 

plTime = Graphics[{Thickness[0.007], RGBColor[0, 0, 1 ] , 

Line[{{0.9, 0.567}, {0.9 ,1}}]}] ; 

square = Graphics[Line [{{0, 0} , {0, 1}, {1 , 1}, {1 , O}, 

{0, 0}}]] ; 

segmentABprime = Graphics[{RGBColor[0, 0, 1], 

Line[{{0, 0}, {Cos[51 Degree], Sin[51 Degree]}}]}]; 

segmentAQ = Graphics[{RGBColor[0, 1, 0], 

Line[{{0, 0}, {Cos[17 Degree], Sin[17 Degree]}}]}]; 

plHorizontall = ParametricPlot[{t, 0.567}, {t, 0, 1}, 

PlotStyle -^ {RGBColor[0, 0, 1]}, 

AspectRatio —^ Automatic, DisplayFimction -^ Identity]; 

plHorizontal2 = ParametricPlot[{t, 0.189}, {t, 0, 1}, 

PlotStyle -> {RGBColor[0, 1, 0]}, 

AspectRatio -^ Automatic, DisplayFimction -^ Identity]; 
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drawArrows = Graphics[{RGBColor[0, 0, 1 ] , 

{Arrow[{0.898, 0 .7} , {0.898, 0 .68}] , 

Arrow[{0.131, 0.271}, {0.143, 0.265}]}}]; 

txtFont = { ' ' H e l v e t i c a ' \ 12}; 

t x t = Graphics [{Text[FontForm[" A ' \ t x t F o n t ] , {-0.03, 0} ] , 

Tex t [FontForm[ ' 'B ' ' , t x t F o n t ] , {- 0 .03, 1}] , 

Tex t [FontForm[ ' 'C ' ' , t x t F o n t ] , {1.03, 1}] , 

Tex t [Fon tForm[ ' 'D ' \ t x t F o n t ] , {1.03, 0}] , 

T e x t [ F o n t F o r m [ ' ' P ' ' , t x t F o n t ] , {0.46, 0 .6} ] , 

Tex t [Fon tFonn[ ' 'A ' " , t x t F o n t ] , {0.65, 0 .8} ] , 

Tex t [FontForm[ ' 'B ' ' ' , t x t F o n t ] , {- 0 .03 , 0.567}], 

Text[FontFor in[ ' 'C ' 'S t x t F o n t ] , {1.03, 0.567}], 

Text[FontFoni i [ ' 'H ' ' , t x t F o n t ] , {- 0 .03 , 0.189}], 

Tex t [FontForm[ ' 'Q" , t x t F o n t ] , {0.64, 0 .2} ] , 

Text[FontForm[' 'L ' \ tx tFon t ] ,{0 .637 , - 0 .04}] , 

Text[FontFonii[TraditionalFonn[t] , t x t F o n t ] , {0.92, 0 .8} ] , 

Text [FontForm [Tr ad i t ionalFonn[7r t / 2] , t x t F o n t ] , 

{ 0 . 1 , 0 .36}]}] ; 

Show[{plLocus, p l C i r c l e , plAngle, plTime, drawArrows, 

square, segmentABprime, segmentAQ, p lHor izon ta l l , 

p lHorizonta l2 , t x t } . Ticks -^ None, Axes -^ None, 

DisplayFunction -^ $DisplayFunction]; 

Output represented in Figure 29.1. 

29.2 Trisecting an Angle 

Let 0 be the angle to divide in three equal parts. We have 

^ e arc A'D AB' ^ . . , ^ ^ 
2 - = ^ ,^^ = —— = AB' since AB = 1. 

TT arc BA'D AB 
So 

e = arc A'D = ^ AB' 
2 

is proportional to AB'. 

To trisect the angle 6, we consider the point H on AB such that AH = AB' /Z 
and draw a parallel to AD through H that meets the quadratrix at Q. The 
angle QAD is exactly the third of the angle PAD = 6. 
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Fig. 29.1. Construction of the quadratrix). 

Note that this method allows draw an angle equal to any rational fraction of 
e. 

29.3 Squaring the Circle 

Once we admit the existence of the limit point L on the side AD of the square, 
using only a ruler and a compass we can construct a square with a side length 
equal to 0 r . First from a segment of length 2/7r we construct a segment half 
the length . There exist various methods . As shown below, you draw two 
circles of radius 2/7r centered respectively at O = (0,0) and L = (2/7r, 0) and 
draw the line going through the points of intersection of these two circles to 
determine the point M on the line joining the centers of the two circles. We 
have OM = I/TT. 
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circlel = Graphics[Circle[{0, 

circle2 = Graphics[Circle[ {2 

centersSegment = Graphics[Line 

perpSegment = Graphics[Line[{{ 

txtFont = {"Helvetica'', 12}; 

txt = Graphics[{Text[FontForml 

Text[FontForm[ " L'', txtFont], 

Text[FontForm[''M " , txtFont], 

0}, 2 

/ Pi, 

[{{0, 

1 / P-

C C Q , , 

{2 / 

/ Pi]]; 

0}, 

0}, 

u -

2 / Pi]]; 

{2 / Pi, 0}}]]; 

1}, {1 

, txtFont] , 

Pi 

{1 / Pi 

Show[{circlel, circle2, centersSegment, 

AspectRatio -^ Automatic]; 

+ 0.05, 

+ 0.05, 

/ Pi, 1}}]]; 

{- 0.05, 0}], 

0}], 

0.05}]}]; 

perpSegment, txt}, 

Fig. 29.2. Construction of a segment of length I/TT. 

Clear[txt] 

drawCircle = Graphics[Circle[{0, 

drawDiameter = 

{(1 + Pi) / 2, 

drawloverPi = 

{(1 - Pi) / 2, 

drawAC = Grapt 

{(1- Pi) / 2, 

= Graphics[Line[{{-

0}}]]; 

Graphics[Line[{{(1 

- 1 / Pi}}]]; 

lies[Line [{{- (1 + 

-1 / Pi}}]]; 

0} 
(1 

, (1 + Pi) > 

+ Pi) / 2. 

- Pi) / 2, 0} 

Pi) / 2, 0}, 

^ 2, 

0}. 

» 

{0, Pi}]]; 
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drawSqPi = Graphics[{RGBColor[l, 0 

Line[{{(l - Pi) / 2, 0}, {(1 - Pi) 

drawDE = Graphics[Line[ {{(1 - Pi) 

{(1 + Pi) / 2, ( 3}}]]; txtFont = {' 

txt = Graphics[{Text[FontFormC" A' 

{- (1 + Pi) / 2 

TextCFontFormC' 

{(1 - Pi) / 2 + 

TextCFontFormC 

{(1 - Pi) / 2 + 

TextCFontFormC 

|{(1 - Pi) / 2 + 

Text[FontForm[' 

{(1 + Pi) / 2 + 

Text[FontForm[' 

{(1 - Pi) / 2+0 

- 0.15, 0}], 

'B" , txtFont] , 

0.15, 0.15}], 

'C'\ txtFont] , 

0.15, -1 / Pi}], 

'D'', txtFont], 

0.15, 1. 1}], 

'E'', txtFont], 

0.15, 0}], 

'F'', txtFont], 

.15,Sqrt[]-0.15}]}] 

, 0], 

/ 2, 

/ 2, 

Sqrt [Pi] }}]}]; 

1}. 
Helvetica", 12}; 

', txtFont] , 

> 

Show[{drawCircle, drawDiameter, drawloverPi, drawAC, 

drawDE, drawSqP i, txt}, AspectRatio -^ Automatic] ; 

In Figure 29.3 below, we show how to construct a segment of length ^/1T. We 
draw a horizontal segment AB = 1, and determine the list of points C, D^ 
E, F as follows. Draw a vertical downward segment BC — I/TT, a vertical 
upward segment BD = 1, the parallel DE to AC where E is on the line 
AB, and BE = TT, and finally F on the line BD at the intersection with the 
upper semi-circle centered at O the middle point of AE and radius (1 + 7r)/2. 
Because BF"^ = BA x BE = TT, we have constructed a segment BE of length 

Fig. 29.3. Construction of a segment of length y/ir. 
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Quantum Harmonic Oscillator 

After having finished his chemistry studies, Erwin Schrodinger (1887-1961) 
devoted himself to Itahan painting for many years and then took up botany 
and pubhshed a series of papers on plant phylogeny. During the years 1906 to 
1910, as a student at the University of Vienna, he was greatly influenced by 
Fritz Hasenohrl's lectures on theoretical physics. He then acquired a mastery 
of eigenvalue problems in the physics of continuous media, thus laying the 
foundation of his future important work. Moving very often, he occupied many 
academic positions starting as assistant to Max Wien (1866-1938). His most 
fruitful period took place when he replaced Max von Laue (1879-1960) at the 
University of Ziirich, where he enjoyed contacts, in particular, with Hermann 
Weyl (1885-1955) who was to provide the deep mathematical knowledge that 
would prove so helpful to Schrodinger. Having never been very satisfied by the 
quantum condition on orbits in Niels Bohr's (1885-1962) atomic model, he 
believed that atomic spectra should be determined by some kind of eigenvalue 
problem. In 1926, he discovered the wave equation that bears his name. In 
1933, "for the discovery of new productive forms of atomic theory," he shared 
with Paul Adrien Dirac (1902-1984) the Nobel Prize in Physics. 

The quantum harmonic oscillator is among the most important model sys
tems in quantum mechanics because the dynamics of many systems near an 
equilibrium configuration can often be modeled by one or more harmonic 
oscillators. 

30.1 Schrodinger Equat ion 

The Schrodinger equation for the harmonic oscillator is 

h^ Cpi^ ^ 1 2 2 , p / 
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If we define the reduced units of length ^ and energy e such that 

2̂ + r v̂  = e v̂ -

h ^ 1 ^ f^^ 

t and E = —— e, 
muj 2 

the reduced Schrodinger equation reads 

For very large ^, the term ^'^ip becomes preponderant and we can neglect the 
term eip. This suggests defining a new function (f by tp{^) = (p{^) exp(-^^/2). 
The differential equation satified by (p is then 

We can solve this equation in many different ways. If we put e = 2n + 1 where 
n is an integer, we obtain the Hermite equation: 

It can be solved using the command 

! i _ ^ _ 2 e : ^ + ( 2 e - l V = 0. 

DSolve [phi" [xi] - 2 xi ph i ' [x i ] + 2 n phi [xi] == 0, 

p h i [ x i ] , x i ] 

j j p h i [ x i ] -> C[l] HermiteH[n, xi] + 

C[2] HypergeometriclFlI - - , - , x i ^ | | | 

Because a wave function has to be square integrable, the only acceptable solu
tion is the Hermite polynomial i /n(0- Plotting the first Hermite polynomials 
we obtain 

Table[HermiteH[n, x i ] , {n, 0, 4}] 

{1, 2 x i , - 2 -h 4 x i ^ , - 12 xi + 8 x i ^ , 1 2 - 4 8 x i^ + 16 xi"^} 

Plot [{2 x i , 

12 - 48 xi^ 

PlotStyle -

RGBColor[0, 

- 2 + 

2 + 16 

4 xi^2, 

xi^4}. 

-̂  {RGBColor[0, 

1, 1] 

> 

{x i . 

0 , 

, RGBColor[l 

1 2 + 8 x i~2 . 

- 2 . 2}] 

1 ] , RGBColorEO, 

, 0, 0]}] 

1, 0 ] , 
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Fig. 30.1. Hermite polynomials Hi, H2, H3, and H^. 

The ground state corresponds to n = 0; that is, 

M^) = exp(-eV2), 

and the first excited states are 

^ i ( 0 = 2e-^V2^ 

V^3(0 = (-12^ + 8 a e - ^ ' / ^ 

^4(^) ^ ( 1 2 - 4 8 ^ 2 ^ 16^4) e -^ ' /^ 

The eigenstates should have a norm equal to 1. Using Mathematica we find 
the norms of the first wave functions. 

normPsi = Table [ In tegra te [(HermiteH[n,xi] Exp[- ( l /2 ) xi ' '2] , 

{xi , - I n f i n i t y , I n f i n i t y } ] , {n,0, 5}] 

{Sq r t [P i ] , 2 S q r t [ P i ] , 8 S q r t [ P i ] , 48 S q r t [ P i ] , 384 S q r t [ P i ] , 3840 
Sqr t [P i ]} 

The first normed eigenstates are, therefore, given by 

^2/2 

Mi) = ^ 
Mi) = tm£^^ 

_ V2$e- '̂/̂  
1-1/4 5 

2V67ri/4 

MO 
^ 3 l ? i V37ri/4 ' 

Mi) = ''-'lj,:jr' ,Mi) = 
More generally, the normed eigenstates are given by 

_ ^ ( 1 5 - 2 0 e + 4 r ) e 
2v/l57ri/4 

4^p-«" /2 



478 30 Quantum Harmonic Oscillator 

Because the Hamiltonian is invariant under the transformation x 
verify tha t the eigenstates are either even or odd functions. 

—X, we 

psi[n_, xi_] : = 

(Exp[- xi'^2/2] / Sqrt[2'^n n! 

Table[Plo t [ p s i [ n , x i ] , {xi , 

P lo tS ty le -^ {RGBColor[0, 0, 

SqrtCPi]] HermiteHEn, xi] 

- 6, 6} , 

1 ]} ] , {n, 0, 5}] ; 

0 . 6 

0 . 4 

0 . 2 

2 4 6 

Fig. 30.2. Normed wave functions ipo and -01. 

Fig. 30.3. Normed wave functions -02 and ips. 

Fig. 30.4. Normed wave functions ip4 and ips-
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30.2 Creation and Annihilation Operators 

Let us now define the creation a"̂  and annihilation a~ operators by 

y z \ ax/ yZ\ ax/ 

creationOperator[f_] := (- D[f, x] + x f) / Sqrt [2] 
annihilationOperator[f_] := (D[f, x] + x f) / Sqrt [2] 

The commutation relation is 

annihilationOperator[creationOperator[f[x] ] ] -
creationOperator[annihilationOperator[f[x] ] ] / / Simplify 

f [x ] 

that is 
[a ^a'^]=a a'^—a^a = 1. 

We can express the Hamiltonian of the harmonic oscillator in terms of the 
creation and annihilation operators. Because 

annihilationOperator[creationOperator[psi[x]]] + 

creationOperator[annihilationOperator[psi[x]]] / / Simplify 

x^ ps i [x] - psi"[x] 

we can write 

Hip = -{a~a'^ + a'^a~)il). 

If we now consider the action of the product a^a~ on the different normed 
wave functions ijjn defined above, we find 

creationOperator[annihilationOperator[psi[0,x]]] 

creationOperator[annihilationOperator[psi[1,x] ] ] == 

p s i [ l , x ] 
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True 

creationOperator[annihilationOperator[psi[2,x]]] 

2 p s i [ 2 , x ] ) / / Simplify 

True 

and more generally, 

creationOperator[annihilationOperator[psi [n ,x]] ] 

n ps i [n ,x ] ) / / Simplify 

True 

that is, 

Hence, taking into account the expression of the Hamiltonian and the com
mutation relation, we have 

H^jjn = •::{(i~a'^ -\-a'^a~)ipn 
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Quantum Square Potential 

The problem is simple to solve analytically. Here we use Mathematica to obtain 
numerical results. 

31.1 The Problem and Its Analytical Solution 

The Schrodinger equation for the square-well potential is 

ft2 (p^ 

where 

Let 

and 

2mdx^+'"* = ^ * 

I Vo, II |a;| < a. 

, _ v / 2 n p | _ ^2miVo - \E\ 
K — - , q — 

h 

2mVoa^ 
fi2 ' y = qa. 

Then (because E is negative) 

X J a 

The symmetry of the Schrodinger equation implies that the eigenfunctions are 
either even or odd. 

The even solutions are 
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il){x) = < 

Acosqx^ if |x| < a; 

Be^^, if X < - a ; 

5e-^^, i f x > + a ; 

and the continuity of the eigenfunctions and their derivatives at ±a imposes 

A cos qa = Be'^"" 

k = q tan qa ^ — = tan y. 
y 

The odd solutions are 

Csin^x, if |x| < a; 

ip{x) = { De^^, if X < - a ; 

-De-^^ , i f x > + a ; 

with 

-Csinga = De — ka 

k = qcotqa^ — = — cot y. 

31.2 Numerical Solution 

Choosing a as the unit of length (i.e., replacing a by 1), the Schrodinger 
equation becomes 

where 

u{x) = h^'^ '^1^1^'' 
^ ^ \A(e + l) , i f | x | < l ; 

with e = E/VQ' Bound states correspond to — 1 < e < 0. 

In order to determine the numerical values of y in the case of even eigenfunc
tions, we draw the graphs of the two functions 

X/A3 ,2 
y Ĥ  -1̂  and y i-̂  tan y. 

y 

to estimate starting points for FindRoot. 
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31.2.1 Energy Levels for A = 16 

lambda = 16; 

Plot [{Sqrt [lambda - y'^2] / y, Tan[y]}, 

{y, 0, 4} , PlotRange -^ {0, 4} , 

TextStyle -> {FontSlant -^ " I t a l i c ' \ FontSize -- 12}]; 

Fig. 31.1. Graphs of the functions y i—>> y/\ — ^/y and y t-> tan?/ in the interval 
[0,4]. 

There are two solutions. We can find their approximate values by selecting 
the graphics and pointing the intersection points while pressing the command 
key. We obtain yi = 1.24 and 2/3 = 3.6. Using FindRoot we get more precise 
values. 

yl = y / . FindRoot[Sqrt[lambda-y^2] / y == Tan[y], {y, 1.24}] 

1.25235 

yl = y / . FindRoot[Sqrt[lambda-y^2] / y == Tan[y] , {y, 3.6}] 

3.5953 

Repeating the same procedure for odd eigenfunctions, we first draw the graphs 
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lambda = 16; 

Plot [{Sqrt [lambda - 7*̂ 2] / y, - Cot[y]}, 

{y, 0, 4}, PlotRange -> {0, 4}, 

TextStyle -^ {FontSlant -^ "Italic'', FontSize -•̂  12}] ; 

Fig. 31.2. Graphs of the functions y i-> \/X~y^/y and y » 
[0,4]. 

- cot y in the interval 

Pointing the intersection points while pressing the command key, we obtain 
2/2 = 2.47. Using FindRoot we get the more precise value: 

y2 = y / . FindRoot [Sqrt [lambda - y'̂ 2] / y == - Cot[y] , 

{y, 2.47}] 

2.47458 

The corresponding values of the energy levels (in unit VQ) are: 

energyl = 

energy2 = 

energyS = 

(-

( 

( 

1 + yl'^2 / lambda) ' 

- 1 + y2^2 / lambda) 

- 1 + y3^2 / lambda) 

VO 

VO 

VO 

- 0.192111 VO 

- 0.617279 VO 

- 0.901976 VO 
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31.2.2 Figure Representing the Potential and the Energy Levels 

The following commands generate the figure showing the potential and the 
energy levels. 

V[x_ / ; Abs[x] > 1] := 0 

V[x_ / ; AbsEx] < 1] := - 1 

P lo t [V[x] , {x, " 2, 2} , 

P lo tS ty le -^ Thickness[0.015], 

PlotRange -^ {0.05, - 1.05}, Axes -^ Fa l se , 

Ticks -^ {None, Automatic}, 

DefaultFont -^ { ' ' T i m e s ' ' , 12}, 

Epilog -^ ({Line[{{l, energyl} , {- 1, energyl}}] , 

T e x t [ ' ' E l ' ' , { 1.25, energyl}] , 

Text[ToString[energyl], {0, energyl + 0.05}], 

Line[{{l, energy2}, {- 1, energy2}}] , 

Text[''E2'', {1.25, energy2}], 

Text[ToString[energy2], {0, energy2 + 0.05}], 

Line[{{l, energyS}, {- 1, energyS}}], 

Text[''E3'', {1.25, energyS}], 

Text[ToString[energyS], {0, energyS + 0.05}], 

Text[''- VO'', {- 1.25, - 1}], 

Text[''0'', {- 0.8, 0}]} /. VO -^ 1)]; 

-VO 

-0.192111 VO 

-0.617279 VO 

-0.901976 VO 

E3 

E2 

El 

Fig. 31.3. Square potential well and energy levels. 
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31.2.3 Plotting the Eigenfunctions 

We can plot the corresponding eigenfunctions. The operator StringJoin con
catenates strings. 

Clear[q, k, PsiEvenl] 

q = y l ; k = Sqrt [lambda - yl''2] ; 

PsiEvenl [x_ / ; x < - 1] := (Cos[q] Exp[k]) Exp[k x] 

PsiEvenl [x_ / ; Abs[x] < 1] := Cos[q x] 

PsiEvenl[x_ / ; x > 1] := (Cos[q] Exp[k]) Exp[-k x] 

PsiEvenlnorm = Sqrt [NIntegrate [(PsiEvenl [x]) ''2, {x, -
Inf in i ty , I n f i n i t y } ] ] ; 

normedPsiEvenl[x_] = (1 / PsiEvenlnorm) PsiEvenl[x]; 

Plot[normedPsiEvenl[x], {x, - 3 , 3} , 

PlotStyle -^ {RGBColorCO, 0, 1 ] } , 

Epilog -^ {Line[{{l , - 1} , {1 , 1 } } ] , 

Line[{{- 1, - 1} , {- 1, 1}} ]} , 

TextStyle -^ {FontSlant -^ ' ' I t a l i c ' ' , FontSize -^ 12}, 

Frame -^ True, FrameLabel -^ { " x ' ' , " T / ; " } , 

PlotLabel -^ StringJoin["E = ' ' , ToString[energy 1]]] ; 

0.8 

0.6 

0.4 

0.2 

0 

E = 

I 
^ 

-0.901976 VO 

-

• 

-3 -2 -1 0 
X 

2 3 

Fig. 31.4. Eigenfunction associated with the energy level Ei = —0.901976 VQ. 
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Clear[q, k, Psi0dd2] 

q = y2; k = Sqrt[lambda - y2^2]; 

Psi0dd2[x_ /; X < -1] := (- Sin[q] Exp[k]) Exp[k x] 

Psi0dd2[x_ /; Abs [x] < 1] := Sin[q x] 

Psi0dd2[x_ /; X > 1] := (Sin[q] ExpCk]) Exp[- k x] 

Psi0dd2norm = Sqrt [NIntegrate[(Psi0dd2[x] )'̂ 2, {x, - Infinity, 
Infinity}]] ; 

normedPsi0dd2[x_] = (1 / Psi0dd2norm) Psi0dd2[x]; 

eigenF2 = Plot[normedPsi0dd2[x], {x, - 3, 3}, 

PlotStyle -̂  {RGBColor[0, 0, 1]}, 

Epilog ^ {Line[{{l, - 1}, {1, 1}}], 

Line[{{- 1, - 1}, {- 1, 1}}]}, 

TextStyle -̂  {FontSlant -̂  "Italic'', FontSize -> 12}, 

Frame -^ True, FrameLabel ^ { ' ' x " , ''ip''}, 

PlotLabel -̂  StringJoin[''E = '', ToString[energy2]]]; 

0. 15 

0.5 

0.25 

0 

-0.25 

-0.5 

-0.15 

E = -0.611219 VO 

: 

y : 

\ 

-

-

3 -2 1 0 
X 

2 3 

Fig. 31.5. Eigenfunction associated to the energy level E2 = —0.617279 Vo-
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Clear[q, k. 

q = y3; k = 

PsiEven3[x_ 

PsiEven3[x_ 

PsiEven3[x_ 

PsiEvenl] 

Sqrt [lambda 

/; X < - 1] 

/; AbsEx] < 

/; X > 1] := 

- y3^2]; 

:= (CosCq] ExpCk]) Exp[k x] 

1] := CosCq x] 

(Cos[q] Exp[k]) Exp[- k x] 

PsiEvenSnorm = Sqrt [NIntegrate[(PsiEven3[x] )''2, {x, -
Inf inity, Inf inity}]]; 

normedPsiEven3[x_] = (1 / PsiEven3nonn) PsiEven3[x]; 

Plot[nonnedPsiEven3[x], 

PlotStyle -

Epilog -̂  { 

Line[{{- 1, 

TextStyle -

^ {RGBColorCC 

Line[{{l, - 1 

-> {FontSlant 

{x, - 3, 3}, 

), 0, 1]}, 

}, {1, 1}}], 

1}}]}, 
-̂  ''Italic'', FontSize -̂  12}, 

Frame -> True, FrameLabel -̂  {"x'', ''i/j''}, 

PlotLabel --̂  StringJoin '/'E = '', ToString[energy3]]]; 
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Fig. 31.6. Eigenfunction associated with the energy level E3 = —0.192111 VQ. 

0 
X 

2 3 

Our results agree with the general property of one-dimensional bound states: 

If bound states are listed in the order of increasing energies, the nth eigen
function has n — 1 nodes. 
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Skydiving 

We study various physical properties of a diver who jumps and falls freely from 
an airplane at a moderate altitude before pulling the ripcord of a parachute. 

Upon leaving the airplane, the diver accelerates downwards due to the force 
of gravity. As her velocity increases, the air resistance (proportional to the 
square of her velocity) exerts a greater retarding force, and eventually balances 
the pull of gravity. From this time onward, the diver descends at a uniform 
velocity. 

32.1 Terminal Velocity 

We first determine the free-fall diver's velocity as a function of time and find 
the value of the terminal uniform velocity, g is the acceleration due to gravity 
and kdiver the coefficient of air resistance of the diver. Note that the terminal 
velocity in m/s is given by 

terminalVeloci ty = Sqr t [ g / kdiver] 

49.4975 
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g = 9.8; kdiver = 0.004; 

s o i l = NDSolve [{vl ' [ t ] == - g + kdiver *( vl[t]) '^2, 

v l [0] == 0} , v l , { t , 0, 100}]; 

plvl = Plot[Evaluate[vl[t] / . s o i l ] , { t , 0, 40}, 

PlotRange -^ {0, - 60}, 

PlotStyle -^ {RGBColor[0, 0, 1]}, Axes -> False, 

Frame -^ True, FrameLabel -^ {''time'\ ''velocity''}, 

RotateLabel -^ False, DefaultFont —> {''Helvetica'', 14}]; 

Fig. 32.1. Free-fall diver's velocity as a function of time. 

32.2 Delaying Parachute Opening 

We determine the diver's velocity as a function of time assuming that the 
diver opens the parachute after 30 seconds, kparachute is the coefficient of 
air resistance of the parachute. 

g = 9.8; kdiver = 0.004; kparachute = 0.4; 

sol2 = NDSolve [{v2'[t] == - g + 

If [t < 30, kdiver, kparachute] *( v2[t])^2, v2[0] == 

v2, {t, 0, 100}]; 

plv2 = Plot[Evaluate[v2[t] /. sol2], {t, 0, 40}, 

PlotRange -^ {0, - 55}, PlotStyle -> {RGBColor[0, 0, 

Axes -^ False, Frame -^ True, 

FrameLabel -^ {"time", "velocity"}. 

RotateLabel -^ False, DefaultFont -^ {"Helvetica", 

0}. 

1]}. 

14}]; 
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Fig. 32.2. Diver's velocity as a function of time when parachute opening is delayed. 

In this case, the terminal velocity is 

terminalVelocity = Sqrt[g / kparachute] 

4.94975 

The diver's velocity is found to decrease from approximately 50 m/s to 5 m/s 
in less than one second as confirmed by the plot below. 

Plot[Evaluate[v2[t] /. sol2], {t, 29.9, 31}, 

PlotRange -^ {O, - 55}, PlotStyle -^ {RGBColor[0, 0, 

Axes -^ False, Frame -^ True, 

FrameLabel -> {''time'', ''velocity"}. 

RotateLabel -^ False, DefaultFont -> {"Helvetica", 

1]}. 

14}]; 

30 30.2 30.4 30.6 30.8 31 
time 

Fig. 32.3. Rapid change of the diver's velocity when the parachute takes less than 
one second to fully open. 
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This result has been obtained assuming that the parachute went from fully 
closed to fully open. This would cause a tremendous strain on the body as 
the velocity changed rapidly in a very short time interval as illustrated below 
on the plot of the diver's acceleration. 

ve loc i ty = v2[ t ] / . so l2 ; 

acce le ra t ion = - g + (velocity) '^2 * 

Which [t < 30, kdiver , t > 30, kparachute] ; 

P l o t [ a c c e l e r a t i o n , { t , 29 .9 , 30 .3} , PlotRange -^ A l l , 

P lo tS ty le -^ {RGBColor[0, 0, 1 ]} , Axes -^ Fa l se , 

Frame -^ True, FrameLabel —> { ' ' t i m e ' ' , ' ' a c c e l e r a t i o n ' ' } , 

RotateLabel -> Fa l se , DefaultFont -> { " H e l v e t i c a " , 14}]; 

acceleration 

29.9 30 30.1 30.2 30.3 
time 

Fig. 32.4. Diver's acceleration when the parachute is opened in a very short time. 
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32.3 Taking into Account Time for Parachute to Open 

To improve the model we should allow, say three seconds, for the parachute 
to open. 

g = 9 .8; kdiver = 0.004; kparachute = 0.4; dt = 3; 

sol3 = NDSolve [{v3'[t] == - g + (v3[t])^2 * 

Which[t < 30, kdiver, 

t < 30 + dt , kdiver + (kparachute - kdiver) * (t - 30) / dt , 

t > 30 + dt , kparachute], v3[0] == 0} , v3, { t , 0, 100}]; 

plv3 = Plot[Evaluate[v3[t] / . s o l 3 ] , { t , 0, 40}, 

PlotRange -> {0, - 55}, 

PlotStyle -^ {RGBColorCO, 0, 1]}, Axes -^ False, 

Frame -^ True, FrameLabel -^ {''time'', ''velocity"'}, 

RotateLabel -^ False, DefaultFont -^ {"Helvetica", 14}]; 

Fig. 32.5. Diverts velocity when the parachute takes three seconds to fully open. 
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Here is a more detailed plot showing the evolution of the diver's velocity and 

acceleration when she opens the parachute. 

Plot[Evaluate[v3[t] /. sol3], {t, 29.9, 32}, 

PlotRange -> {0, - 55}, PlotStyle -^ {RGBColor[0, 0, 

Axes —> False, Frame —> True, 

FrameLabel -^ {''time", "velocity''}, 

RotateLabel -^ False, DefaultFont —> {''Helvetica'', 

1]}. 

14}]; 

30 30.5 31 31.5 32 
time 

Fig. 32.6. More detailed plot of the diver's velocity when the parachute takes three 
seconds to fully open. 

Plotting the acceleration, we can observe that the strain on the diver's body 
is less. 

Clear[velocity, acceleration] 

velocity = v3[t] /. sol3; 

acceleration = - g + (velocity)"2 * 

Which[t < 30, kdiver, 

t < 30 + dt, kdiver + (kparachute - kdiver) * (t - 30) / dt 

t > 30 + dt, kparachute]; 

Plot[acceleration, {t, 29.5, 30.6}, 

PlotRange -> {0, 60}, PlotStyle -^ {RGBColor[0, 0, 1]}, 

Axes -^ False, Frame -^ True, 

FrameLabel —> {''time'', ''acceleration''}, 

RotateLabel -^ False, DefaultFont -^ {"Helvetica", 12}]; 
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29.6 29.8 30 30.2 30.4 30.6 
time 

Fig. 32.7. Diver's acceleration when the parachute takes three seconds to fully open. 
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Tautochrone 

The constancy of the period of a pendulum, when the amphtude of the oscil
lations is small, is said to have been discovered by Galileo Galilei (1564-1642) 
circa 1583 by comparing the period of the oscillations of a swinging lamp in 
a Pisa cathedral with his pulse rate. This property led Galileo and the Dutch 
mathematician, astronomer, and physicist Christiaan Huygens (1629-1695) 
to use a pendulum as a clock regulator. 

As an astronomer, Huygens' interest in the accurate measurement of time 
led him to the discovery of a pendulum whose period is truly constant. In 
1673, while living in Paris, he published his Horologium Oscillatorium that 
contained complete solutions of many problems of dynamics. In particular, he 
showed that, if a pendulum's bob swings along an arc of an inverted cycloid 
rather than that of a circle, the period of the oscillations is constant what
ever the amplitude of these oscillations. The inverted cycloid is, therefore, a 
tautochrone curve (from the Greek, tauto meaning "the same" and chronos 
meaning "time"); that is, a curve such that the time required for a particle 
subjected to specific forces (here gravity) to slide down without friction to its 
lowest point is independent of its initial position on the curve. 

33.1 Involute and Evolute 

The involute of a planar curve 7 is the locus F in the plane of 7 of the endpoint 
of a thread kept taut as it is unwound from 7. The curve 7, which is then 
the locus of the centers of curvature of the curve T, is called the evolute (or 
envelope of the normals) of F. Because the involute of a cycloid is a cycloid 
(see below), if a pendulum is swung between two arches of inverted cycloids, 
the pendulum's bob traces out the involute of a cycloid, that is, a cycloid. 
If the parametric representation of a curve F is {x{u),y{u))^ the parametric 
representation of its evolute is {x{u) — R sin (̂ , y{u) -\- R cos (/:?), where R is the 
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radius of curvature of 7, and ^p the angle between the tangent vector and the 
Ox-axis. Because 

R = 

COS(p 

simp 

x'y" — x"y' ' 
x' 

y' 
(a;'2 + 2/'2)i/2' 

the parametric representation of the evolute of a curve F is 

in) 
( {x'{uf+y'{uf)y'{u) jx'{uf + y'{uf) x'{ 

V ^ ' x'{u)y"{u)-x"{u)y'{uy ^^ ' x'{u)y"{u) - x"{u)y' 

If the curve 7 is the cycloid (on the cycloid see section 6.4.1) represented by 

x ( u ) = u —sinu and 2/(w) = 1 — cosu = 2sin2(u/2), 

its evolute is represented by 

evolute = {x[u] - ((x'[u]"2 

(x'[u] y"[u] -

y[u] + ((x'[u]-

(x'[u] y"[u] -

x"[u] y ' [u]) . 

~2 + y'[u]-2) 

x"[u] y'[u])} 

ParametricPlot[evolute, {u, 

AspectRatio -^ Automatic]; 

+ y'[u]-2) y' 

x'[u]) / 

/ / Simplify 

0, 2 P i } . 

[u]) / 

{u + SinCu], - 2 S i n [ - ] 2 } 
2 

Fig. 33.1. The evolute of a cycloid is a cycloid. 

The evolute of a cycloid is also a cycloid. 
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Figure 33.2 illustrates the property of a cycloid mentioned above, that is, the 
involute of a cycloid is a cycloid^ and how to build a Huygens pendulum using 
this property. 

Fig. 33.2. Huygens pendulum. 

33.2 The Cycloid 

In this section we verify that the cycloid is a tautochrone curve. 

The motion of the mass point is taking place in a vertical plane. In this plane, 
we choose the Ox-axis vertical pointing to the right and the Oy-axis vertical 
pointing upwards. The kinetic and potential energies of a particle of mass m 
are, respectively, ^mv'^ and mgy^ where v is the particle velocity and g the 
acceleration due to gravity. 

The parametric equations of the inverted cycloid are 

x[u_] := u - Sin[u] ; 

y[u_] := - 1 + Cos[u] ; 

Conservation of energy implies ^mv'^ + mgy = mgyo assuming that when at 
t = 0, the particle located at (XQ, yo)^ has a velocity equal to zero. Taking into 
account that 

2 (dx\ ^ (dy 

we have 

' =^jt) + U 
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Hence, 

VMvo - y) 
and replacing 2/0 by —1 + COSUQ, we obtain 

Sqr t [ (D[x[u] , u])^2 + (D[y[u], u])'^2] / 

Sqr t [2 g (- (1 - CosCuO]) -y [u ] ) ] / / Simplify 

Sqrt[l -Cos[u] 

Sqrt[g(-Cos[u] + Cos[uO])] 

that is, 

dt = A — du. 
y g{cosuo — cosu) 

Note that for y^ = 0 (i.e., UQ = 0 and cos?/o = 1)? which corresponds to 
the case of the swinging bob moving back and forth along the whole curve, 
dt = dt/y/gdu. The period T, equal to 4 times the integral from 0 to TT, is 
equal to A.'K^fvfg . If 0 < î o < 7r/2, the period of the cycloidal pendulum is 
given by 

Ao V V̂COS 

COS U 

du. ( c o s UQ — COS u) 

Substituting cosi^ for 2cos^(i^/2) — 1, the expression of the period becomes 

sin U du 

y 9 Juo . /r^oc2 H a _ rr^«2 U yWf ^0 . / C O S ^ ^ — COS^ 1 

This expression suggests the further change of variable: ^ = cos{u/2)/{uo/2), 
which finally gives 

\9Jo y r ^ 
This result shows that the period does not depend upon the initial position 
of the bob. 

The integral is elementary. We find 

T = gJ- arcsin(l) = 47rW-. 
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Remark 1. Because the change of variable shows that the period T does not 
depend upon the initial position of the bob, we could have used the expression 
of the period with UQ = 0, which gives T = Ayjl/g j ^ du = A-Ky/l/g. 

Remark 2. The period T should have the dimension of time, which is appar
ently not the case. Actually, the parametric equation of the cycloid should be 
written [a{u — sinix), —a(l — cosix)), where a is a characteristic length of the 
cycloid. In the above derivation of T we took a = 1. 

33.3 Fractional Calculus 

In order to be able to determine tautochrone curves for a particle in a potential 
[/, we briefly describe the basic principles of fractional calculus [41, 37, 40]. 

The fractional derivative of a function / is an extension of the usual derivative 
dP'f/dx'^^ to nonintegral values of n. The concept of the fractional derivative 
was mentioned for the first time in a letter from Guillaume de 1' Hopital 
(1661-1704) to Gottfried von Leibniz (1646-1716) dated September 30, 1695. 

If n is a positive integer greater than 1, we have 

I / • • • / fiv) dui... dun-idu = —: / f{u){x - uY~^ du, 
Jo Jo Jo ( ^ - ! ) • Jo 

and if denoting by Fn the function 

'O, i f x < 0 ; 

where F is the Euler Gamma function, we can write the result of integrating 
n times the function / as the convolution of / and Fn. 

If a and /3 are two complex numbers such that Re a and Re /? are both positive, 
assuming x > 0, then the convolution of F^ and F/3, denoted F^^^Ffs, is given 

by 

io r{a) r{(3) '^-'^ Jo r{a)r{/3) '''' na + py 
where we took into account the relation 

^Leibniz is the inventor of the notation d^f/dx^ for the derivative of order n 
of a function / . 



502 33 Tautochrone 

B is the Beta function. The result obtained above can be simply written 
Fa "^ Fp = Fa-^(3. By analytic continuation, the result remains valid for all 
values of a and (3 different from 0 , - 1 , - 2 , — Considering Fa and F/3 as 
distributions belonging to X> ,̂ which are distributions with support in R+ 
(set of nonnegative reals), we can further extend the relation F^ * F/̂  = Fa-^p 
for a = 0, —1, —2,. . . and /? = 0, — 1, —2,.. . , as a consequence of the relation 
6^'^'^ *Fn = S, where n is a positive integer and S the Dirac distribution. Hence 
\ima^-nFa=6M, 

Note that I{z) = J^ x^'^e"^^ dx can be written r{a)/z^ replacing in the 
integral zx by u and using the Cauchy theorem where the function z \-^ z^ 
is such that it takes the value 1 for 2: = 1. Hence, the Laplace transform 
of the distribution F^ is 1/z^, that is valid for any value of a by analytic 
continuation. This result gives another proof of the relation limc^^_n Fa = 
SM, For more details on distribution theory see [8]. 

The considerations above suggest defining the fractional derivative of order 
a > 0 with respect to x of f{x) as the convolution D^ * / , where D^ is the 
distribution x~^'^^/r{—a). Hence, the derivative of order a > 0 with respect 
to X of the function x 1-̂  x^ is x^~^/F{X + 1 — a) . This last result shows that 
the fractional derivative of a constant c is not equal to zero! In fact 

D^ ^ c = c lim 
x^ ^ ex 

A-or(A + l - a ) r ( l - a ) ' 

33.4 Other Tautochrone Curves 

In the previous section, we contented ourselves with verifying that the cycloid 
was a tautochrone curve for the gravitational potential. In this section we are 
interested in the more general problem of finding tautochrone curves for a 
particle in a general potential. 

If the particle is in a potential U{y), assuming that for t = 0 the particle 
located at (xo^yo) has a velocity equal to zero, the conservation of energy 
implies ^mv'^ + U{y) — U{yo), and reasoning as above, we obtain 

^2{U{yo)-U{y)y 

where we replaced \/dx^^^^dy^ by ds, the element of the arc. Integrating over 
a quarter of a period yields 

Jo 

ds 

VWiyoF^uWy 
where the period T is a constant not depending upon yo. The lower limit 
of integration assumes that when the velocity of the bob is maximum the 
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potential is minimum dit y = 0. We also assume that f/(0) = 0, which can 
always be achieved by adding an appropriate constant. 

Writing the integral above under the form 

T = / ^^ — dU 
r(l/2) Jo ^2{Uo - U{y)) ' 

shows that the period T is equal to 4 times TT the derivative of order — ̂  with 
respect to C/Q — U{yo) of the function ds/dU. Note that r ( l / 2 ) = TT. Taking 
the derivative of s with respect to U{y) has the same form as the derivative 
of s with respect to UQ, thus T = ATTD^ ' D\jS = ^^TTDJ 5, or, equivalently 
5 = V ^ ^ T / 4 7 r ) . 

Prom the expression of the fractional derivative of a constant we derived in 
the previous section we finally obtain 

or 

With these two relations we can either determine the tautochrone curve for 
a specific potential or determine the potential for which a given curve is tau
tochrone. 

The cycloid whose parametric representation is (x(ifc), y{u)) = (i^+sin u, cos u— 
1) is tautochrone for the potential U{y) proportional to 

( I n t e g r a t e [ S q r t [ ( l + Cos[u])^2 + (S in [u ] )^2] , u])'^2 / / 

Simplify 

u o 
16 S i n [ - ] 2 

2 

Because 2sin^(iA/2) = 1 — cosu, the potential U{y) is a linear function of y 
corresponding to a gravitational potential. 

For an arbitrary potential U{y) we have 

ds T U'{y) 
dU 47r3/2 ^/ui^ 

or 

i + (-W = ( ^ {U'{y)f 
A'K^I'^) U{y) 
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Solving for x\y) and integrating, we obtain 

If, for instance, we consider the quadratic potential U{y) = ky^^ the expression 
under the radical is constant and the corresponding tautochrone curve is a 
straight line passing through the origin. 

Many other examples can be found in [16]. 
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van der Pol Oscillator 

The differential equation 

describes the dynamics of the first relaxation oscillator named after the Dutch 
electrical engineer Balthasar van der Pol (1889-1959) [59, 60]. It is a harmonic 
oscillator that includes a nonlinear friction term A {x^ — l)x. If the amplitude 
of the oscillations is large, the amplitude-dependent "coefficient" of friction 
A (a:̂  — 1), is positive, and the oscillations are damped. As a result, the ampli
tude of the oscillations decreases, and the amplitude-dependent "coefficient" 
of friction eventually becomes negative, corresponding to a sort of antidamp-
ing. If we put 

xi= X and X2 = x, 

the van der Pol equation takes the form 

dXi dX2 \ / 2 1N 

The solution of this system of two differential equations gives the trajectory 
in the phase space, that is, the (xi,X2)-plane. 

It can be proved that, according to the sign of the parameter A, the van der 
Pol oscillator exhibits two different behaviors when the time t goes to infinity. 

Let us solve numerically the system of two differential equations for the initial 
condition xi(0) = X2(0) = 0.2 and plot the trajectories for A = 0.5 and 
A = —0.5. In all phase space plots, the initial point is represented by a blue 
dot. 
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lambda = 

solution2 

x2'[t] == 

x l [0] == 

- 0.5; 

= NDSolve[{xl'[t] 

- x l [ t ] 

x2[0] == 

- lambda ( 

0 .2} , {xl 

== x2 [t] , 

x l [ t ]^2 -

,x2}, {t, 
• 1 ) 

0, 

x 2 [ t ] , 

30}] 

{{xl -> InterpolatingFunction[{{0., 3 0 . } } , <>] , 

x2 -^ InterpolatingFunction[{{0., 3 0 . } } , <>]}} 

plNeg = ParametricPlot[Evaluate[{xl[t] , x2 [ t ] } / . so lut ion2] , 

{ t , 0, 30}, DisplayFunction -^ Ident i ty ] ; 

i n i t = Graphics[{PointSize[0.04], RGBColor[0, 0, 1 ] , 

Point[{0 .2 , 0 . 2 } ] } ] ; 

stEq = Graphics[{PointSize[0.04], RGBColor[l, 0, 0 ] , 

Point [{0 . , 0 . } ] } ] ; 

Show[{init, stEq, plNeg}, Axes —> False, Frame —> True, 

AspectRatio -^ Automatic, PlotRange -^ All, 

TextStyle -^ {FontSlant -^ ''Italic'', FontSize -^ 12}, 

DisplayFunction —>> $DisplayFunction] ; 

0,2 

0.1 

-0.1 

-0.2 
-0.1 0.1 0.2 

Fig. 34.1. Trajectory in the (xi,X2)-phase space of the van der Pol oscillator for 
X = -0.5 andte [0,30]. 

The trajectory converges to a fixed point (red dot). 



34 van der Pol Oscillator 507 

lambda = 0. 

solutions = 

x2'[t] == -

x l [0] == 0, 

5; 

= NDSolve 

x l [ t ] -

x2[0] = 

[{x l ' [ t ] 

lambda 

== 0 .2 } , 

== x2[t] 

( x l [ t ] - 2 -

{xl, x2}. 
- 1) 

{t. 

x2 [t] , 

0, 50}] 

{{xl -^ InterpolatingFimction[{{0., 50.}}, <>] , 

x2 -^ InterpolatingFunction[{{0., 50.}}, <>]}} 

plPos = ParametricPlot[Evaluate[{xl[t], x2[t]} /. solutions], 

{t, 0, 20}, DisplayFunction —> Identity]; 

i n i t = G r a p h i c s [ { P o i n t S i z e [ 0 . 0 4 ] , RGBColor[0, 0 , 1 ] , 

P o i n t [ { 0 . 2 , 0 . 2 } ] } ] ; 

stCycle = ParametricPlot[Evaluate[{xl[t], x2[t]} /. 

solutions], 

{t, 20, 50}, PlotStyle -^ {RGBColor[l, 0, 0]}, 

DisplayFunction —^ Identity]; 

Show[{init, stCycle, plPos}, Axes -^ False, Frame -^ True, 

AspectRatio -^ Automatic, PlotRange -^ All, 

TextStyle -^ {FontSlant -^ ''Italic'', FontSize -^ 12}, 

DisplayFunction -^ $DisplayFunction]; 

Fig. 34.2. Trajectory in the {xi,X2)-phase space of the van der Pol oscillator for 
A = 0.5 andte [0,50]. 
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The trajectory converges to a limit cycle (red curve). 

Note that the asymptotic behaviors are already clearly visible after a time t 
of the order of 30. 
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van der Waals Equation 

In 1873 the Dutch physicist Johannes Diederik van der Waals (1837-1923) 
obtained his doctoral degree for a thesis on the continuity of the gas and liquid 
state in which he put forward his famous equation of state that included both 
the gaseous and liquid states. He showed that these two states could merge in 
a continuous manner and are in fact the same, their only difference being of 
a quantitative and not of a qualitative nature. These results were considered 
very important,^ and he was awarded the Nobel Prize in Physics in 1910 "for 
his work on the equation of state for gases and liquids." 

35.1 Equation of State 

If we denote by P the pressure, V the volume, N the number of moles, T the 
absolute temperature, and R the molar gas constant equal to 8.31441 joules 
per mole-kelvin, the ideal-gas equation of state is PV = N RT. This equation 
of state, which describes approximately the behavior of a gas at low pressures, 
is a simple consequence of the following laws. 

1. Charles' law (1787). At constant volume V, the pressure P is a Unear 
function of the temperature T. 

2. Gay-Lussac's law (1802). At constant pressure P , the volume F is a linear 
function of the temperature T. 

3. Boyle-Mariotte's law (Boyle 1662, Mariotte 1676). At constant tempera
ture T, the product P F is constant. 

4. Avogadro's law (1811). At given temperature T and pressure P , the vol
ume of one mole of gas is the same for all gases. 

^ Maxwell regarded van de Waals as one of the foremost physicists in molecular 
science. 
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The ideal-gas equation of state can also be derived from the kinetic theory 
of gases assuming that gas molecules have zero volume and do not interact. 
These two assumptions are obviously not true, and in 1881 van der Waals 
introduced into the ideal-gas equation of state two parameters a and b that, 
respectively, take into account the nonzero volume of the molecules and the 
existence of interactions between the molecules. He thus obtained the following 
more realistic equation, which, for a mole of gas, is written 

( ^ + 7 2 ) {V~b) = RT{a>0,b>0), 

where here V denotes the molar volume. 

For what follows, it is convenient to express P as a function of V and T. Using 
Mathematica we obtain 

vdWeqn = (P + a/V^2) (V - b) == R T 

solP = Solve[vdWeqn, P 

HP ̂  d i^)±i lz£U!! ,} 
( b - V ) V^ 

The function (r , V) ^ P{T, V) can therefore be defined by 

P[T_, v.] := solPECl, 1, 2]] 

Because 
'dP\ _ RT 2a 

it follows that, for not too high values of T, there exist values of the molar 
volume V for which the isothermal compressibility is negative. This violates 
the stability condition, and for these values of V the van der Waals equation 
cannot be vahd. We show below how van der Waals used this feature to 
describe the gas-liquid first-order phase transition. 

35.2 Critical Parameters 

There exists an isotherm P = P{Tc^ V) that has an inflection point. The 
coordinates {Vc,Tc,Pc) of that point satisfy the equations 

dVj^^j.^ \dV^J T=Ta 
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That is, 

eqnl 

eqn2 

Solve 

= D[P[T, 

= D[P[T, 

[{eqnl, 

V3, 

V], 

eqn2 

{V. 

{V, 

1}] == 

2}] == 

\, {V. T}] 

0; 

0; 

{{T 
8 a 

27 b R 
, V ^ 3 b}} 

Replacing T and V in the expression of P(T, V) by these values yields 

P[T, V] / . {T -^ 8 a / ( 2 7 b R), V ^ 3 b} 

27 b^ 

Hence, the coordinates {Vc,Tc,Pc) of the critical point are 

Combining these three coordinates in a dimensionless ratio, we obtain 

Pc = a (27b '^2) ; , Tc = ( 8 a ) / ( 2 7 b R ) ; Vc = 3 b; 

Pc Vc / (R Tc) 

The dimensionless ratio does not depend upon a, 6, and i?, and should, there
fore, be universal. This is not the case. The following table gives the value of 
this ratio for some gases. 

Hydrogen 
3.29 

Oxygen 
3.42 

Water 
4.35 

35.3 Law of Corresponding States 

Expressing the pressure, the volume, and the temperature as a fraction of 
their critical values we obtain the following dimensionless expression of the 
van der Waals equation. 
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dimensionlessEqn = Simplify[ 

vdWeqn / . {V ^ V Vc, T -^ T Tc, P -> P Pc} 

a (3 - 9 V + (P -f 8 T) V^ - 3 P V^) 

Using Reduce, this result can be further simphfied. 

reducedP = Solve[dimensionlessEqn, P] 

3 - 9 V + 8 T V ^ , , 

V^ ( - 1 + 3 V) 

Because the reduced van der Waals equation, defined by 

P[T_, V_] := reducedP[[1,1,2]] 

does not contain any adustable parameter, it is universal. It should, therefore, 
be valid for all gases. This result, discovered by van der Waals, is known as 
the law of corresponding states. This law is very approximately verified. 

In this case, the critical coordinates are (1,1,1). Thus, if we want to draw the 
isotherms in the vicinity of the critical temperature, we have to consider the 
critical isotherm obtained for ^ = 1, and a few other isotherms for t close to 
1. 

functionsTable = Table[P[V,T], {T, 0 .9 , 1.1, 0 .05}]; 

Plot [{funct ionsTable[[1]] , func t ionsTable [ [2] ] , 

func t ionsTable [ [3] ] , func t ionsTable [ [4] ] , 

func t ionsTable[ [5] ]} , {V, 0 . 5 , 2 . 5 } , 

P lo tS ty le -> {RGBColor[0, 0, 1 ] , RGBColor[0, 1, 0 ] , 

RGBColor[l, 0, 0 ] , RGBColor[0, 1, 0 ] , RGBColor[0, 0, 1 ]} , 

TextStyle -^ {FontFamily -> ' ' H e l v e t i c a ' \ FontSize -> 10}, 

Frame -^ True] ; 

We used the options P lo tS ty le to specify the colors of the different isotherms 
and TextStyle to specify the font and its size. 

Remark . Note that from any equation of state that, in as much as the van der 
Waals equation contains exactly three independent parameters, we can derive 
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0.5 1 1.5 2 2.5 

Fig. 35,1. Dimensionless van der Waals isotherms. 

a universal form of the equation of state which imphes a law of corresponding 
states. Here are two other historical examples: 

BertheloVs equation 

( p + ^ ) ( y - 6 ) = i ? T ( a > 0 , 6 > 0 ) 

Dieterici's equation 

P{V-b)exp[^)=RT{a>0,b>0) 

35.4 Liquid-Gas Phase Transition 

For T <Tc, the two points on the van der Waals isotherm where 

represent states that have reached the limit of stability. 

The point corresponding to the largest volume is interpreted as the limit of 
stability of the gaseous phase while the point corresponding to the smallest 
volume is the limit of stability of the liquid phase. 

According to the Clapeyron equation, at a given temperature, below Tc, the 
liquid -^ gas first-order phase transition occurs at fixed values of P and T and 
is characterized by a discontinuity AV of the specific volume. Therefore, if, 
at temperature T, vaporization occurs at pressure P , the system should not 
follow the isotherm but follow a horizontal line joining the point (Viiquid? P) to 
the point (V âs? P), the discontinuity being equal to AV = Viiquid — V âs {AV 
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is negative because the specific volume of the Uquid is much smaller than the 
specific volume of the gas). 

The positions of these two points are determined by the Maxwell rule. To 
derive this rule, we have to write that the liquid and gaseous phases are in 
equihbrium at the transition point (T^P). This implies that the chemical 
potential of the liquid /inquid {T, P) is equal to the chemical potential of the 
gas //gas(7', P) at that point. 

Because dji — Sdt-\-V dP, at constant T we have 

/'(V^gas,P) 

/^gas - ^liquid = VdP. 

^(Viiquid,P) 

Integrating by parts yields 

HV^gas,P) 

Mgas - /^liquid = P {Vgas " l i q u i d ) " / P dV. 

That is, the horizontal fine cuts the isotherm so that the area between the 
isotherm above the straight line and the straight line is equal to the area 
between the isotherm below the straight line and the straight fine. 

Using the reduced van der Waals equation of state we define a function 
t r an s i t i onPo in t that given a temperature below the critical point temper
ature (in reduced coordinates the critical temperature and critical pressure 
are both equal to one) determine the pressure and the reduced volumes of the 
gas and hquid phases. 

The idea is to solve the following system of two equations 

(vGas - vLiquid) P[temperature, vLiquid] == In tegra te [P[T, 
V], {V, vLiquid, vGas}] 

and 

P [temperature, vGas] == P[temperature,vLiquid] 

where temperature is given and vGas and vLiquid are the two unknowns; 
the transition pressure is then obtained once vGas and vLiquid are found. 
Because we use FindRoot to solve this system, we need to find starting values 
for vGas and vLiquid. 

vGas and vLiquid should both be between the two volume values' solution of 
the equation dP / dV = 0, therefore let us first determine these values. 
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Clear [temperature] 

temperature = 0.85; 

volumeBoundaries = 
0, V] 

Solve [D[P[temperature,V], V] == 0, V] == 

{{V -> 0.254445}, {V -^ 0.67168}, 

{V -^ 1.72093}} 

Prom the expression of the reduced van der Waals equation, we see that any 
volume value less than ^ is not physical. Looking at the graph of the function 
P[ r , y ] , we see that the straight line representing the Maxwell construction 
should be closer to the maximum than to the minimum of p[t,v]. We therefore 
define s t art ingPres sure by 

startingPressure = 0 . 2 P[temperature,V / . 
volumeBoundaries[[2]]] + 

0.8 P[temperature, V / . voliomeBoundaries[[3]]] 

0.506369 

and we choose the starting volumes values' from the solutions of 

startingVolumes = Solve[P[temperature, V] == 

StartingPressure, V] 

{{V -^ 0.553196}, {V -^ 1.1487}, 

{V -^ 3.10775}} 

When solving the system of two equations mentioned above, in order to find 
vLiquid we start from startingVolumes[[l, 1, 2]] and look for a solu
tion lying between 0 and startingVolumes [ [ 2 , 1 , 2] ] , and to find vGas, we 
start from startingVolumes [ [ 3 , 1 , 2] ] and look for a solution lying between 
StartingVolumes[[2,1, 2]] and Infinity. 

Taking all these considerations into account the function trans i t ionPoint 
can be defined as follows:. 
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transitionPoint[temperature.] : = 

Module [{volumeBoundaries, startingPressure, startingVolumes, 

volumes}, 

volumeBoundaries = Solve[D[P[temperature, V], V] ==0, V]; 

startingPressure =0.2 P[temperature, V /. 

volumeBoundaries[[2]]] +0.8 P[temperature, V /. 

volumeBoundaries[[3] ] ] ; 

startingVolumes = Solve[P[temperature, V] == 

StartingPressure, V]; 

areal = (vGas - vLiquid) P[temperature, V] /. V -^ vLiquid; 

F[v_] := Integrate[P[T, V], V] /. T -^ temperature; 

area2 = F[vGas] - F[vLiquid]; 

volumes = FindRoot[Evaluate[{areal == area2 /. 

T —> temperature, 

P[temperature,vLiquid] == P[temperature,vGas]}], 

{vLiquid, startingVolumes[[l,1, 2]], 0 , 

startingVolumes [[2,1, 2]]}, {vGas, startingVolumes [[3,1,2]], 

startingVolumes[[2,l, 2]], Infinity}]; 

pTransition = P[temperature, vLiquid] /.volumes[[1]]; 

NumberForm[{temperature, pTransition, 

volumes [[1, 2]], volumes[[2, 2]]}, 6]] 

transitionPoint[0.85] 

{0.85, 0.504492, 0.55336, 3.12764} 

Figure 35.2 shows the Maxwell construction. 

vdW = Plot[P[0.85, V], {v, 0.5, 4}, 

PlotStyle -> {RGBColor[l, 0, 0]}, Frame -> True, 

DisplayFunction -^ Identity]; 

maxwell = Graphics[{RGBColor[0, 0, 1] , 

Line[{{0.553, 0.504}, {3.128, 0.504}}]}]; 

Show[{vdW, maxwell}, DisplayFunction -^ $DisplayFimction]; 

This function is valid for an interval of temperature values between 0.8438— 

value below which there exist points on the isotherm with a negative pressure— 
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Fig. 35.2. Maxwell construction. 

and 0.98—the value above which machine precision in not sufficient. Here is 
a table from which we could find the coexistence boundary in the (V,P) dia
gram. 

T a b l e [ t r a n s i t i o n P o i n t [ k ] , {k ,0 .85, 0 .98, 0.01}] 

{{0.85, 0.504492, 0.55336, 3.12764}, 

{0.86, 0.531249, 0.561955, 2.9545}, 

{0.87, 0.55887, 0.571159, 2.79091}, 

{0.88, 0.587363, 0.581059, 2.63597}, 

{0.89, 0.616737, 0.591763, 2.48888}, 

{0.9, 0.646998, 0.603402, 2.34884}, 

{0.91, 0.678155, 0.616148, 2.2151}, 

{0.92, 0.710215, 0.630225, 2.0869}, 

{0.93, 0.743184, 0.645932, 1.96343}, 

{0.94, 0.77707, 0.663692, 1.84383}, 

{0.95, 0.811879, 0.684122, 1.72707}, 

{0.96, 0.847619, 0.708189, 1.61181}, 

{0.97, 0.884294, 0.737556, 1.49603}, 

{0.98, 0.921912, 0.775539, 1.3761}} 



36 

Bidirectional Pedestrian Traffic 

36.1 Self-Organized Behavior 

Animal groups display a variety of remarkable coordinated behaviors. For 
example, all the members in a school of fish change direction simultaneously 
without any obvious cue; in the same way, while foraging, birds in a flock 
alternate feeding and scanning. Self-organized motion in schools of fish or 
fiocks of birds is not specific to animal groups. Pedestrian crowds display self-
organized spatiotemporal patterns that are not imposed by any controller: on 
a crowded sidewalk, pedestrians walking in opposite directions tend to form 
lanes along which walkers move in the same direction. 

All these behaviors have in common the following characteristics. 

1. They consist of a large number of interacting agents. 

2. They exhibit emergence; that is, a self-organizing collective behavior dif
ficult to anticipate from knowledge of the agents' behavior. 

3. Their emergent behavior does not result from the existence of a central 
controller. 

The appearance of emergent properties is the single most distinguishing fea
ture of the so-called complex systems [9]. 

In what follows we build up a Mathematica program of two groups of pedes
trians moving in opposite directions in a passageway. 
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36.2 Initial Configuration of Pedestr ians Moving in 
Opposite Directions in a Passageway 

The passageway is represented by a square lattice of length L and width 
W < L. Each cell is either empty or occupied by a pedestrian. Pedestrians 
are divided in two groups moving in opposite directions. Group 1 moves to 
the west (i.e., the right) and group 2 to the east (i.e., the left). The following 
function generates a configuration of pedestrians in a multilane passageway 
with exact numbers of westbound and eastbound pedestrians. 

initialMultiLaneConf ig [numberOneParticles_Integer, 

numberTwoParticles-Integer, la t t iceWidth_Integer , 
l a t t i ceLength- In teger ] : = 

Module[{suml, sum2, s } , 

suml = 0; sum2 = 0; 

s = Table[0, { i , 1, l a t t i ceWid th} , { j , 1, l a t t i ceLeng th} ] ; 
While[suml < numberOneParticles, 

i = Random[Integer, {1, l a t t i ceWid th}] ; 

j = Random[Integer, {1 , l a t t i ceLeng th} ] ; 

I f [ s [ [ i , j ] ] == 0, ( s [ [ i , j ] ] = 1; suml = suml + 1) , suml = 
suml]] ; 

While[sum2 < numberTwoParticles, 

i = Random[Integer, {1, l a t t i ceWid th}] ; 

j = Random[Integer, {1 , l a t t i ceLeng th} ] ; 

I f [ s [ [ i , j ] ] = = 0 , ( s [ [ i , j ] ] = 2 ; sum2 = sum2 + 1) , sum2 = 
sum2]]; s] 

The While loops are used to add pedestrians belonging to either group 1 or 
group 2 until the number of pedestrians in each group reaches its exact value 
(numberOneParticles or numberTwoParticles). The total number of cells 
is l a t t i ceLength * la t t iceWidth. The cell states are either 0 (empty), 1 
(occupied by a pedestrian of group 1), or 2 (occupied by a pedestrian of group 
2). 

(config = in i t ia lMult iLaneConfig[7,7 , 3 , 13])//TableForm 

1 0 0 1 0 2 0 0 2 0 0 2 1 
2 0 0 0 0 0 0 0 0 0 0 0 0 
2 1 0 2 0 1 0 1 2 1 0 0 0 
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The next step is to write down a sequence of functions representing the mov
ing rules. As for most lattice models we assume that the motion takes place 
on a two-dimensional torus; that is, we assume so-called periodic boundary 
conditions. This trick is frequently used, in particular, in solid-state physics 
to remove surface effects. It makes a simulation dealing with a finite num
ber of atoms as if this number were infinite. For example, if we consider a 
finite two-dimensional lattice of length L and width VF, that is, a set of cells 
{{hj) | 1 < ^ < W ^ ? 1 < J < L}^ then the cells to the east of cells (i^L) 
{1 < i < W) are, respectively, the cells (z, 1) (1 < -i < W) which are to the 
west of cells (i,I/), and the cells to the south of cells {W,j) (1 < j < L) are, 
respectively, the cells (1, j ) (1 < j < L) which are to the north of cells {W,j). 
Taking L = 3 and W = 2, instead of the finite lattice 

C l , l Ci,2 Ci,3 

C2,l C2,2 C2,3 

C3,l C3,2 Cs,3 

we consider the following infinite lattice. 

• • • C3,3 

• • • Ci,3 

• • • C2,3 

• • • C3,3 

• • • Ci,3 

• • • C2,3 

• • • C3,3 

• • • Ci,3 

C3,l 

Cl,l 

C2,l 

C3,l 

Cl,l 

C2,l 

C3,l 

Cl,l 

C3,2 

Cl,2 

C2,2 

C3,2 

Cl,2 

C2,2 

C3,2 

Cl,2 

C3,3 

Cl,3 

C2,3 

C3,3 

<̂ 1,3 

C2,3 

C3,3 

Cl,3 

C3,l 

Cl,l 

C2,l 

^3,1 

Cl,l 

C2,l 

^3,1 

Cl,l 

C3,2 

Cl,2 

C2,2 

C3,2 

Cl,2 

C2,2 

C3,2 

Cl,2 

C3,3 

Cl,3 

C2,3 

C3,3 

^1,3 

C2,3 

C3,3 

Cl,3 

C3,l • • • 

Cl,l • • • 

C2,l • • • 

C3,l • • • 

Cl,l • • • 

C2,l • • • 

C3,l • • • 

Cl,l • • • 

One of the first pedestrian traffic models is due to Fukui and Ishibashi [17, 18]. 
Here, adopting a slightly different point of view, we build up a much simpler 
deterministic bidirectional pedestrian traffic model. As in most pedestrian 
traffic models, a pedestrian moves forward to the cell in front of him if it 
is empty. If this cell is occupied by another pedestrian moving in the same 
direction, the pedestrian does not move, but, if it is occupied by a pedestrian 
moving in the opposite direction, the pedestrian moves to the cell in front 
of his right adjacent cell (with respect to the moving direction), and if this 
cell is also occupied, he moves to his right adjacent cell. If both cells are 
occupied, the pedestrian does not move. This deterministic behavior simplifies 
the moving rule. In all cases, pedestrians who can move forward have the right 
of way. Eastbound (resp., westbound) pedestrians move at odd (resp., even) 
time steps. As a result of the lane-changing rule, to avoid collisions, the local 
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walking rule, which gives the state s{ij,t + 1) at time t + 1 of cell (z, j ) 
as a function of the states of the 9 cells {{p^q) \ p G {i — l , i , i + 1},^ G 
{j — I7 j ^ i + 1}} at time t, is of the form 

s{i,j,t + l) = F{s{i - IJ - l,t),s{i - lj,t),s{i - IJ + 1,^), 

S{ij- l , t),5(2,j,t),5(2,j + l , t ) , 

s{i + IJ - l,t),s{i + lj,t),s{i + 1, j + l , t)) 

where i G {1, W }̂ and j G {!,!'}, depends on a lesser number of variables 
and is not probabilistic. At each time step the motion of a given pedestrian 
is determined by his state and the states of his 8 neighbors. Such a 9-cell 
neighborhood is known in cellular automata theory as a Moore neighborhood. 
Because each cell can be in 3 different states, the Moore neighborhood can 
be in 3^ = 19,683 different configurations. To apply the motion rule F to 
a given lattice, taking into account the interaction of each pedestrian with 
his Moore neighborhood, following Gaylord and D'Andria [19] (this reference 
contains many interesting Mathematica programs of agent-based cellular au
tomata models), we use a function neighborhood defined by 

neighborhood[F__, 

MapThreadCF, 

{{1, 1} , {1, 

{0, - 1 } , {-1 

l a t t i c e - ] := 

Map[RotateRight[latt 

0} . 

. 1}. 

{1 , - 1 } , {0. 1}, 

{-1, 0 } , {-1, -

, ice , 

{0. 

1}}] 

#] &. 

0 } . 
, 2] 

Remember that the Blanksequence __ (two underscores) is a pattern object 
that can stand for any sequence of one or more Mathematica expressions. 

The function neighborhood takes correctly into account the cyclic boundary 
conditions as shown below. 

( l a t t i c e = {{1, 2, 3 , 4 , 5} , {6, 7, 8, 9, 10}, 

{11,12,13,14,15}, {16,17,18,19, 20}}) / / TableForm 

1 2 3 4 5 
6 7 8 9 10 
11 12 13 14 15 
16 17 18 19 20 

{neighborhood[F, #] & [ l a t t i c e ] [ [ 1 , 1 ] ] , 

neighborhood[F, #] & [ l a t t i c e ] [ [2 ,3 ] ]} 



36.3 Moving Rules for Type 1 Pedestrians 

{F[20, 16, 17, 5, 1, 2, 10, 6, 7 ] , 

F[2, 3 , 4 , 7, 8, 9, 12, 13, 14]} 

523 

The command RotateRight [ l i s t , n] cycles the elements of l i s t n positions 
to the right. For example: 

RotateRight[{a, b , c, d, e, f } , 2] 

{e, f, a, b , c, d} 

The command RotateLef t [ l i s t , n] cycles the elements of l i s t n positions 
to the left, and we obviously have 

RotateRight[{a, b , c, d, e, f } , 2] == RotateLeft[{a, b , c, d, 
e , f } , - 2] 

True 

36.3 Moving Rules for Type 1 Pedestrians 

Here is the list of the moving rules for type 1 pedestrians according to the 
structure of the Moore neighborhood. A Blank _ (single underscore) stands 
for any site value 0, 1, or 2, and x I y stands for x OR y. 

pedestrianl[_, _, _, 1, 0, _, _, _, _] := 1; 

pedestrianl[_, _, _, _, 1, 0, _, _, _] := 0; 

pedestrianl[_, _ 

pedestrianl[_, _ 

pedestrianl[_, _ 

pedestrianl[_, _ 

pedestrianl[_, _ 

pedestrianl[_, _ 

pedestrianl[_, _ 

pedestrianl[_, _ 

pedestrianl[_, _ 

-

-

-

-

-

-

-

-

. -

-

-

-

-

-

-

, -

» -

» -

1, 1, _, _, .] := 1; 

1, 2, _, 0 1 2, 0] := 0; 

1, 2, _, 1, 0] := 1; 

1, 2, 0 1 2, 0, 1] := 0; 

1, 2, 1, 0, 1] := 1; 

1, 2, _, 1 1 2, 1] := 1; 

1, 2, 0 1 2, 0, 2] := 0; 

1, 2, 1, 0, 2] := 1; 

, 1, 2, _, 1 1 2, 2] := 1; 
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pedestrianlCO, 

pedestrianlEO, 

pedestrianlCO, 

pedestrianlCO, 

pedestrianlCO, 

pedestrianlCl, 

pedestrianlCl, 

pedestrianlCl, 

pedestrianlCl, 

pedestrianlCl, 

pedestrianlC2, 

pedestrianlC2, 

pedestrianlC2, 

pedestrianlC2, 

pedestrianlC-, 

0, -, 0 1 2, 0, _, _, _, J := 0; 

1, 0 1 1, 0 1 2, 0, ., ., _, _] := 0; i 

1, 2, 0 1 2, 0, 0, _, _, J := 0; 

1, 2, 0 1 2, 0, 1 1 2, _, _, J := 1; 

2, _, 0 1 2, 0, _, _, _, J := 0; 

0, _, 0 1 2, 0, _, -., _, J := 0; 

1, 0 1 1, 0 1 2, 0, _, _, _, _] := 0; 

1, 2, 0 1 2, 0, 0, _, _, _] := 0; 

1, 2, 0 1 2, 0, 1 1 2, _, _, J := 1; 

2, _, 0 1 2, 0, _, _, _, J := 1; 

0 1 2, _, 0 1 2, 0, ., _, ., J := 0; 

1, 0 1 1, 0 1 2, 0, ., _, _, _] := 0; 

1, 2, 0 1 2, 0, 0, _, ., _] := 0; 

1, 2, 0 1 2, 0, 1 1 2, _, _, J := 1; 

2 1 •= 2--, _, _, .^, _, _, _, _j . ^ , 

Because this rule is rather complicated, the risk of an error is not neghgible. 
It is therefore wise to check conservation of the number of pedestrians. 

Clear Cinit,iter] 

init = initialMultiLaneConfigC234,347,10, 

iter = neighborhoodCpedestrianl, init]; 

1000]; 

{Apply CPlus,DeleteCases CFlatten Cinit], 2] ] , 

ApplyCPlus,DeleteCasesCFlattenCiter],2]], 

Apply CPIUS,DeleteCases CFlatten Cinit],1]] 

Apply CPlus, DeleteCases CFlatten Citer],1]] 

/ 2, 

/ 2} 

{234, 234, 347, 347} 

36.4 Moving Rules for Type 2 Pedestr ians 

Similarly, we write moving rules for type 2 pedestrians. 

pedestrian2C-, -, _, _, 1, _, _, _, J := 1; 
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pedestrian2[_, _ 

pedestrian2[_, _ 

pedestrian2[_, _ 

pedestrian2[_, _ 

pedestrian2[ , 

pedestrian2[_, _ 

pedestrian2[_, _ 

pedestrian2[_, _ 

pedestriaii2[_, _ 

pedestrian2[_, _ 

pedestrian2[_, _ 

pedestrian2[_, _ 

pedestrian2[_, _ 

pedestrian2[_, _ 

pedestrian2[_, _ 

pedestrian2[_, _ 

pedestrian2[0, 2 

pedestrian2[2, 0 

pedestrian2[l , 0 

pedestrian2[2, 0 

pedestrian2[0, 0 

pedestrian2[2, 1 

pedestrian2[l , 0 

pedestrian2[l , 1 

pedestrian2[_, _ 

_, -, 0, 0 1 1, _, 0, 0] := 0; 

_, _, 0, 0 1 1, 0 1 2, 2, 0] := 0; 

_, 0, 0, 0 1 1, 1, 2, 0] := 0; 

-, 1 1 2, 0, 0 1 1, 1, 2, 0] := 2; 

_, _, 0, 0 1 1, . , 1, 0] := 0; 

_, -, 0, 0 1 1, _, 0, 2] := 0; 

-, -, 0, 0 1 1, 0 1 2, 2, 2] := 0; 

_, 0, 0, 0 1 1, 1, 2, 2] := 0; 

-, 1 1 2, 0, 0 1 1, 1, 2, 2] := 2; 

_, -, 0, 0 1 1, . , 1, 2] := 2; 

_, _, 0, 0 1 1, _, 0 1 1, 1] := 0; 

_, _, 0, 0 1 1, 0 1 2, 2, 1] := 0; 

, _, 0, 0, 0 1 1, 1, 2, 1] := 0; 

> -, 1 1 2, 0, 0 1 1, 1, 2, 13 := 2; 

, _, 0, 2, _, _, _, _] := 0; 

2 2 1 •= 2-

1 2 1 •= 2* 
» - 9 -^ > ^ y ~ i - 9 - 9 - - I • ^9 

2 1 2 1 •= 2* 
9 ^9 • ' •> ^9 - 9 - 9 - 9 - J • ^9 

2 1 2 1 •= 2-
9 ^9 • ' •> ^9 - 9 - 9 - 9 - J • ^9 

, 0 1 1, 1, 2, _, _, _, -] := 0; 

1 1, _, 1, 2, _, _, _. _] := 0; 

1 2 1 2 1 •= 2-

, 0 1 1, 1, 2, _, _, _, J := 0; 

1 2 1 2 1 •= 2* 

0 2 1 •= 2* 
» - 9 - 9 ^ 9 ^ 9 - 9 - 9 - J • ^9 

Clear[ini t , i te r ] 

in i t = initialMultiLaneConfig[269, 327,10,1000]; 

i t e r = neighborhood[pedestrian2, i n i t ] ; 

{Apply[Plus,DeleteCases[Flatten[init], 2] ] , 

Apply[Plus,DeleteCases[Flatten[iter], 2 ] ] , 

Apply[Plus,DeleteCases[Flatten[init], 1]] / 2, 

Apply[Plus,DeleteCases[Flatten[iter],1]] / 2} 

{269, 269, 327, 327} 
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36.5 Evolution of Pedestrians of Both Types 

To obtain the moving rules for both pedestrian types, we alternatively apply 
type 1 pedestrian moving rules and type 2 pedestrian moving rules. 

updatel[configuration-] : 

MapThread[pedestrianl, 

= 

Map[RotateRight[configuration 

{{1, 1}, {1, 0}, {1, -1}, 

{0, 0}, {0, -1}, {-1, 1}, 

update2[configurationj : 

MapThread[pedestrian2, 

{0, 

{-1. 
= 

Map[RotateRight[configuration 

{{1, 1}, {1, 0}, {1, -1}, 

{0, 0}, {0, -1}, {-1, 1}, 

evolve[configurationj : = 

{0. 

{-1. 

. #] 

1}. 

0}, 

. #] 

1}. 
0}. 

&, 

H. 

&, 

H. 

-1}}]. 

-1}}]. 

2]; 

2]; 
update2[updatel[configuration]]; 

Checking number conservation for types 1 and 2 pedestrians when both types 
move, we have 

i n i t = ini t ia lMult iLaneConfig[321, 279,10,1000]; 

i t e r = e v o l v e [ i n i t ] ; 

{Apply [P lus ,De le teCases [F la t t en [ in i t ] ,2 ] ] , 

Apply[Plus, De l e t eCase s [F l a t t en [ i n i t ] , 1 ] ] / 2, 

App ly [P lus ,De le t eCases [F la t t en [ i t e r ] , 2 ] ] , 

Apply[P lus ,Dele teCases [F la t t en[ i t e r ] ,1 ] ] / 2} 

{321, 279, 321, 279} 

36.6 Animation 

We can now show an animation of the evolution of both types of pedestrians. 
Considering a passageway of length 100, after 200 iterations the self-organized 
spatiotemporal pattern is manifest: pedestrians walking in opposite directions 
do form lanes along which walkers move in the same direction. 
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C l e a r [ i n i t , ca] 

i n i t = in i t ia lMult iLaneConf igClSO, 150, 10, 1 0 0 ] ; 

t ime = 200; 

ca = N e s t L i s t [ e v o l v e , i n i t , t i m e ] ; 

Map[Show[Graphics[RasterArray[# / . 

{0 -^ RGBColor[l, 1, 0 ] , 1 -^ RGBColor[0, 0 , 1 ] , 

2 -^ RGBColor[l, 0 , 0 ] } ] ] , 

AspectRatio -^ Automatic] &, 

T a b l e [ R e v e r s e [ c a [ [ k ] ] ] , {k, 1, } ] ] ; 

We do not display the 200 lattices. We just display the the first and the last 
exhibiting the self-organized pat tern . 

'^l^/^^Mf^:^iM 
Fig. 36.1. Initial pedestrian configuration. Type 1 pedestrians (blue squares) move 
to the right, and type 2 (red squares) move to the left. 

T n T V O w O ^ i iai i i i i i i i i i i i i i i i i i i i i iH' i i i i i i i i^ J [ A M A A f t ^ ' ^ « T i m m 

Fig. 36.2. Final pedestrian configuration. Type 1 pedestrians (blue squares) move 
to the right, and type 2 (red squares) move to the left. 
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Ra t iona l i ze , 66 
Re, 67 

ReadProtected, 137 

Real, 17 

Rectangle, 194, 197 

RecursionLimit, 256 

Reduce, 87, 88, 91, 422 

remainder, 322, 323 

remaininglntervals, 348 

remaininglntervalsList, 348 

remainingSquares, 357 

remainingTriangles, 354 

remainingTrianglesList, 355 

Remove, 41 

ReplaceAll, 19 

ReplaceRepeated, 20 

Residue, 133 

Rest, 158 

Right, 155 

RootSum, 124 

RotateLabel, 336, 338, 490—494 

RotateLeft, 168, 523 

RotateRight, 168, 523 

Round, 58 

Rule, 20, 248 

RuleDelayed, 20, 248 

ScaleFunction, 329 

ScatterPlot3D, 209 

SeedRandom, 220 

Select, 457 

Series, 27, 125 

SeriesData, 117 

Set, 14, 16, 17 

SetAttributes, 34, 105, 324 

SetDelayed, 15—17 

Short, 453 

Show, 35, 45, 194, 217 

SierpinskiCarpet, 358 

SierpinskiTriangle, 356 

Sign, 28 

Simplify, 78, 84 

Sin, 14 

Sinlntegral, 108 

Solve, 23, 86, 88, 117 

Sort, 32 

SphericalPlot, 212 

Sqrt, 8 

StandardDeviation 

BinomialDistribution[n, p], 224 

NormalDistribution[//, a] , 227 

PoissonDistribution[A], 225 
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Statistics'ContinuousDistributions', 

223, 225 

Statistics'DescriptiveStatistics', 

41 

Statistics'DiscreteDistributions', 

223 

String Join, 486—488 

StringReplace, 407 

Subscript, 97, 304 

Sum, 29, 122 

sumReciprocalsTwo, 460 

SurfaceGraphics, 209 

Switch, 258 

Symbol, 304 

SymbolShape, 188 

Table, 33, 35, 151 

TableForm, 39, 50, 96, 153 

TableHeadings, 154 

Take, 157, 323 

Tan, 14, 15 

Text, 178, 186, 199 

TextStyle, 179, 279, 353, 483, 

486—488, 506, 507, 512 

Thread, 102, 120 

Ticks, 180—182 

Times, 164, 235 

Timing, 9, 49, 51, 252, 264—266 

ToCharacterCode, 462 

toMultiBase, 72 

ToString, 485—488 

Together, 79 

Total, 41, 164, 459 

TraditionalForm, 107, 182 

TraditionalFprm, 180 

transitionPoint, 515 

translatedDifference, 324 

Transpose, 39, 98, 167, 457 

Triangle, 188 

TrigExpand, 82 

TrigFactor, 82 

TrigReduce, 84, 148 

TrigToExp, 84 

True, 12 

turnLeft, 409 

turnRight, 409 

turtle, 408 

Unequal, 12 

Union, 161 

unitDipole, 330 

unitMonopoleV, 328 

UnitStep, 143 

Unset, 40 

UpperDiagonalMatrix, 101 

Variance 

BinomialDistribution[n, p], 224 

NormalDistribution[/i, cr] , 226 

NormalDistribution[2, 3]], 230 

PoissonDistribution[A], 225 

PoissonDistribution[2.5], 229 

VerifySolutions, 88 

Viewpoint, 207 

Which, 258, 493, 494 

While, 261 

WorkingPrecision, 92, 110 

x//f, 237 

ZTransform, 145 

ZeckendorfRepresentation, 75 
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Riemann ^ function, 123 
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