

Essentials of Mathematica

Nino Boccara

Essentials of Mathematica
With Applications to Mathematics and Physics

Springer

University of Illinois at Chicago
Department of Physics (M/C 273)
845 West Taylor Street
Chicago, IL 60607
USA
boccara@uic.edu

Library of Congress Control Number: 2006936428

ISBN-10: 0-387-49513-4 e-ISBN-10: 0-387-49514-2
ISBN-13: 978-0-387-49513-2 e-ISBN-13: 978-0-387-49514-9

Printed on acid-free paper.

© 2007 Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the pubhsher (Springer Science-i-Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use
in connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

9 8 7 6 5 4 3 2 1

springer.com

Preface

This book consists of two parts. Part I describes the essential Mathematica
commands illustrated with many examples and Part II presents a variety of
applications to mathematics and physics showing how Mathematica could be
systematically used to teach these two disciplines.

The book is based on an introductory course taught at the University of
Illinois at Chicago to advanced undergraduate and graduate students of the
physics department who were not supposed to have any prior knowledge of
Mathematica.

Mathematica is a huge mathematical software developed by Wolfram Research
Inc. It is an interactive high-level programming language that has all the
mathematics one is likely to need already built-in. Moreover, its interactivity
allows testing built-in and user-defined functions without difficulty thanks to
numerical, symbolic and graphic capabilities. All these features should en
courage students to look at a problem in a computational way, and discover
the many benefits of this manner of thinking. For instance, when studying a
new problem, Mathematica makes it easy to test many examples that might
reveal unsuspected patterns.

The reader is advised to first study Chapter 1 of Part I entitled A Panorama
of Mathematica which presents an overview of the most frequently used com
mands. The following chapters—dealing with Numbers, Algebra, Analysis,
Lists, Graphics, Statistics and Programming—go into more details. The reader
would probably make the most of the book browsing, as soon as possible, Part
II, devoted to Applications to Mathematics and Physics, coming back to Part
I to go deeper into specific commands and their various options.

This book is intended for beginners who want to be able to write a small
efficient Mathematica program in order to solve a given problem. Having this
in mind, we made every effort to follow the same technique: first the problem is
broken up into its different component parts, then each part of the problem is

vi Preface

solved using either a built-in or a user-defined Mathematica function, checking
carefully that this function does exactly what it was supposed to do, and the
program is finally built up by grouping together all these functions using a
standard structure.

Note concerning the figures

Most figures have been generated using colors as indicated by their Mathematica
code but are represented in the book using only various shades of grey. However
all the figures can be found in color in the accompanying CD-ROM which also
contains all the Mathematica cells that appear in the book.

Nino Boccara

Contents

Preface v

List of Figures xix

Part I Essential Commands

1 A Panorama of Mathematica 5

1.1 Notebooks and Cells 5

1.2 Basic Syntax 6

1.3 Basic Operations 6

1.4 Mathematica as a Functional Language 9

1.5 Getting Help 10

1.6 Logical Operators 12

1.7 Elementary Functions 14

1.8 User-Defined Functions 15

1.9 Rules and Delayed Rules 18

1.10 Built-in Nonelementary Functions 21

1.11 Plotting 21

1.11.1 2D plots 21

1.11.2 3D plots 22

1.12 Solving Equations 23

1.12.1 Exact Solutions 23

viii Contents

1.12.2 Numerical Solutions 23

1.13 Derivatives and Integrals 24

1.13.1 Exact Results 24

1.13.2 Numerical Integration 26

1.14 Series Expansions and Limits 27

1.15 Discrete Sums 29

1.16 Ordinary Differential Equations 30

1.16.1 Symbolic Solutions 30

1.16.2 Numerical Solutions 31

1.17 Lists 32

1.18 Vectors and Matrices 36

1.19 Clear, ClearAll, and Remove 40

1.20 Packages 42

1.21 Programming 43

1.21.1 Block and Module 43

1.21.2 Collatz Problem 47

1.21.3 Generalizing the Collatz Problem 49

2 Numbers 55

2.1 Characterizing Numbers 55

2.2 Real Numbers 56

2.3 Integers 58

2.4 Prime Numbers 61

2.5 Combinatorial Functions 62

2.5.1 Factorial 62

2.5.2 Binomial CoefRcients 63

2.6 Rational Numbers 66

2.7 Complex Numbers 67

2.8 Different Bases 68

2.9 Calendars 70

Contents ix

2.10 Positional Number Systems 71

2.11 Zeckendorf s Representation 73

3 Algebra 77

3.1 Algebraic Expressions 77

3.2 Trigonometric Expressions 82

3.3 Solving Equations 86

3.3.1 Solving Polynomial Equations Exactly 86

3.3.2 Numerical Solutions 89

3.4 Vectors and Matrices 95

4 Analysis 103

4.1 Differentiation 103

4.1.1 Partial Derivative 103

4.2 Total Derivative 105

4.3 Integration 106

4.3.1 Indefinite Integrals 106

4.3.2 Definite Integrals 107

4.3.3 Numerical Integration 109

4.3.4 Multiple Integrals 112

4.4 Differential Equations 113

4.4.1 Solving nonelementary ODE 114

4.4.2 Numerical Solutions 114

4.4.3 Series Solutions 117

4.4.4 Differential Vector Equations 119

4.5 Sum and Products 122

4.5.1 Exact Results 122

4.5.2 Numerical Results 123

4.6 Power Series 125

4.7 Limits 126

4.8 Complex Functions 130

X Contents

4.9 Fourier Transforms 136

4.9.1 Discrete Fourier Transform 136

4.9.2 Fourier Transform 137

4.10 Fourier Series 139

4.11 Laplace Transforms 142

4.12 Recurrence Equations 144

4.13 Z Transforms 145

4.14 Partial Differential Equations 146

5 Lists 151

5.1 Creating Lists 151

5.2 Extracting Elements 155

5.3 Adding Elements 159

5.4 Finding, Grouping, and Counting Elements 162

5.5 Mathematical Operations on Lists 164

5.6 Rearranging Lists 167

5.7 Listability 169

6 Graphics 173

6.1 2D Plots: Function Plotting 173

6.1.1 Parametric Plots 174

6.1.2 Polar Plots 174

6.1.3 Implicit Plots 176

6.1.4 Color 176

6.1.5 Dashing 178

6.1.6 Text 178

6.1.7 Axes, Ticks and Labels 180

6.1.8 Graphics Array 182

6.1.9 Plot Range 185

6.2 More 2D Plots 186

6.2.1 Plotting Lists 186

Contents xi

6.2.2 Special Plots 188

6.2.3 A Horizontal Bar Chart with Many Options 191

6.2.4 Labels 193

6.3 2D Graphical Primitives 194

6.3.1 Point 194

6.3.2 Line 195

6.3.3 Rectangle 197

6.3.4 Polygon 197

6.3.5 Circle 198

6.3.6 Text 199

6.3.7 Golden Ratio 199

6.4 Animation 202

6.4.1 Rolling Circle 202

6.5 2D Vector Fields 204

6.6 3D Plots 207

6.6.1 Plot3D 207

6.6.2 ListPlot3D 208

6.6.3 Different Coordinate Systems 211

6.6.4 ContourPlot 212

6.6.5 DensityPlot 214

6.6.6 ParametricPlot3D 216

6.7 3D Graphical Primitives 217

7 Statistics 219

7.1 Random Numbers 219

7.2 Evaluating TT 221

7.3 Probability Distributions 222

7.3.1 Binomial Distribution 223

7.3.2 Poisson Distribution 224

7.3.3 Normal Distribution 226

xii Contents

7.3.4 Cauchy Distribution 227

7.4 Descriptive Statistics 229

7.4.1 Poisson Distribution 229

7.4.2 Normal Distribution 230

7.4.3 Cosine Distribution 232

7.4.4 Uniform Distribution 232

8 Basic Programming 235

8.1 The Mathematica Language 235

8.2 Functional Programming 237

8.2.1 Applying Functions to Values 237

8.2.2 Defining Functions 239

8.2.3 Iterations 239

8.2.4 A Functional Program 242

8.3 Replacement Rules 247

8.3.1 The Two Kinds of Rewrite Global Rules 247

8.3.2 Local Rules 248

8.3.3 The Operators / . and / / 249

8.3.4 Patterns 249

8.3.5 Example: the Fibonacci Numbers 252

8.4 Control Structures 257

8.4.1 Conditional Operations 257

8.4.2 Loops 259

8.5 Modules 262

8.5.1 Example 1 262

8.5.2 Example 2 263

8.5.3 Example 3 263

Contents xiii

Part II Applications

9 Axially Symmetric Electrostatic Potential 273

10 Motion of a Bead on a Rotating Circle 279

11 The Brachistochrone 285

12 Negative and Complex Bases 289

12.1 Negative Bases 289

12.2 Complex Bases 293

12.2.1 Arithmetic in Complex Bases 293

12.2.2 Fractal Images 295

13 Convolution and Laplace Transform 301

14 Double Pendulum 303

15 Duffing Oscillator 311

15.1 The Anharmonic Potential 311

15.2 Solving Duffing Equations 312

15.2.1 Single-Well Potential 312

15.2.2 Double-Well Potential 313

15.3 Oscillations in a Potential Well 314

15.3.1 Single-Well Potential 314

15.3.2 Double-Well Potential 315

15.4 Forced Duffing Oscillator with Damping 316

15.4.1 No Forcing Term 317

15.4.2 With Forcing Term 318

16 Egyptian Fractions 321

17 Electrostatics 327

17.1 Potential and Field 327

xiv Contents

17.1.1 Useful Packages 327

17.1.2 Point Charge 328

17.1.3 Dipole 330

17.1.4 Quadrupoles 331

17.1.5 Plots 333

17.1.6 Uniformly Charged Sphere 335

18 Foucault Pendulum 341

19 Fractals 347

19.1 Triadic Cantor Set 348

19.2 Sierpinski Triangle 354

19.3 Sierpinski Square 357

19.4 von Koch Curve 360

20 Iterated Function Systems 369

20.1 Chaos Game 369

20.2 Variations on the Chaos Game 373

20.2.1 Example 1 374

20.2.2 Example 2 375

20.2.3 Example 3 376

20.3 Barnsley Fern 377

20.3.1 The Original Barnsley Fern 377

20.3.2 Modifying the Probabilities 380

20.4 The Collage Theorem 382

21 Julia and Mandelbrot Sets 385

21.1 Julia Sets 385

21.2 Juha Sets of Different Functions 389

21.2.1 z^^z^^c 389

21.2.2 z^ z'^^c 391

21.3 Mandelbrot Sets 392

Contents xv

21.4 Mandelbrot Sets for Different Functions 397

21.4.1 z^.z^ ^c 397

21.4.2 ^ f̂ z^ + c 398

22 Kepler's Laws 399

23 Lindenmayer Systems 407

23.1 String Rewriting 407

23.2 von Koch Curve and Triangle 408

23.3 Hilbert Curve 412

23.4 Peano Curve 413

24 Logistic Map 417

24.1 Bifurcation Diagram 418

24.2 Exact Dynamics for r = 4 429

24.2.1 Conjugacy and Periodic Orbits 429

24.2.2 Exact Solution of the Recurrence Equation 433

24.2.3 Invariant Probabihty Density 434

25 Lorenz Equations 439

26 The Morse Potential 445

27 Prime Numbers 449

27.1 Primality 449

27.2 Mersenne Numbers 456

27.3 Perfect Numbers 458

28 Public-Key Encryption 461

28.1 The RSA Cryptosystem 461

28.1.1 ToCharacterCode and FromCharacterCode 462

28.1.2 Obtaining the Integer t 462

28.1.3 Choosing the Integer n — pq 464

28.1.4 Choosing the Public Exponent e 465

xvi Contents

28.1.5 Coding t 465

28.1.6 Choosing the Secret Exponent d 466

28.1.7 Decrypting t 466

28.2 Summing Up 467

29 Quadratrix of Hippias 469

29.1 Figure 469

29.2 Trisecting an Angle 471

29.3 Squaring the Circle 472

30 Quantum Harmonic Oscillator 475

30.1 Schrodinger Equation 475

30.2 Creation and Annihilation Operators 479

31 Quantum Square Potential 481

31.1 The Problem and Its Analytical Solution 481

31.2 Numerical Solution 482

31.2.1 Energy Levels for A = 16 483

31.2.2 Figure Representing the Potential and the Energy Levels . 485

31.2.3 Plotting the Eigenfunctions 486

32 Skydiving 489

32.1 Terminal Velocity 489

32.2 Delaying Parachute Opening 490

32.3 Taking into Account Time for Parachute to Open 493

33 Tautochrone 497

33.1 Involute and Evolute 497

33.2 The Cycloid 499

33.3 Fractional Calculus 501

33.4 Other Tautochrone Curves 502

34 van der Pol Oscillator 505

Contents xvii

35 van der Waals Equation 509

35.1 Equation of State 509

35.2 Critical Parameters 510

35.3 Law of Corresponding States 511

35.4 Liquid-Gas Phase Transition 513

36 Bidirectional Pedestrian Traffic 519

36.1 Self-Organized Behavior 519

36.2 Initial Configuration of Pedestrians Moving in Opposite
Directions in a Passageway 520

36.3 Moving Rules for Type 1 Pedestrians 523

36.4 Moving Rules for Type 2 Pedestrians 524

36.5 Evolution of Pedestrians of Both Types 526

36.6 Animation 526

References 529

Index 533

List of Figures

1.1 Graph of e" forxe [-2,2] 22

1.2 Graph of the Bessel function of the first kind Jo{x) for

xe [0,10] 22

1.3 Graph of sin(x) cos(22/) for {x, y} e [-2,2] x [-2,2] 23

1.4 Graph of tan(sinx) for a; G [0, TT] 27

1.5 Graph of sign {x) for x E [—1,1] 29

1.6 Graph of f{x) defined as an interpolating function for x G [0,1]. 32

1.7 Plot of a list of data 36

1.8 Data and least-square fit plots 36

1.9 Graphs of sin x and cos x for x G [0,27r] 45

1.10 Least-squares fit of the data above 47

2.1 Graph of 7r{x) and \i{x) for x G [1,10000] 61

3.1 Graphs of 2 cos(x) and tan(x) for x G [—1,1] 90

3.2 Graphs of 2cos{x) and {x - if for x e [-0.5,2] 92

3.3 Plot 0/2^2 + 2/3 ̂ = 3 for x G [-3,3] 93

3.4 Plot of {x - 1)2 + 3y2 == Aforxe [-3,3] 94

3.5 Plots of 2x2 -\-y^ ==3 and {x - 1)^ + Sy'^ == 4 for x e [-3,3]. 94

4.1 Graph of Ci{x) /or x G [l,e] 108

4.2 Area between two curves 112

List of Figures

4.3 Graph of the Bessel functions Jo{x) and YQ{X) for x e [0.1,10].. 114

4.4 Parametric plot of the solution of the system
x' = ~2y -\- x'^^y' = x — y for the initial conditions
x{0) = 2/(0) = 1 in the interval t e [0,10] 115

4.5 Plot of the solution of the ODE {y'Y = sin(x) for the initial
condition y{0) = 0 in the interval x G [0,1] 116

4.6 Plot of the solution of the ODE y' = - l / (x - 2)^, ifx<0 and
l/{x — 2)^, if x > 0, for the initial condition y{0) = 0 in the
interval x G [—2,1] 116

4.7 Plot of the first series solution of the ODE {y'Y — y = x, for
the initial condition y{0) = 1 in the interval x G [0,3] 119

4.8 Plot of the real part of y/x + iy in the domain
{x,y} G [-3,3] X [-3,3] 132

4.9 Plot of the imaginary part of y/x + iy in the domain
{x,y}e [-3,3] X [-3,3] 133

4.10 Plot of the sawtooth function for x G [—1.5,1.5] 140

4.11 Plot of the first Fourier series approximating the sawtooth
function for x G [—0.5,1.5] 141

4.12 Plot of sawtooth function and its four-term Fourier sine series
for X G [-1.5,1.5] 142

6.1 Graph of cos{2x) + sin(x) for x G [—TT, TT] 173

6.2 Graphs of cos{x), cos(3x), and cos(5x) for x G [—7r,7r] 174

6.3 Parametric plot of (sin(3t), sin(8f)) /or t G [0, 27r] 174

6.4 Parametric plot of the curve given in polar coordinates by

r = sin(4l9) /or (9 G [0,27r] 175

6.5 Polar plot of the curve defined by r = sin(3^) for ^ G [0, 27r]. . . . 175

6.6 Implicit plot of the curve defined by (x^ +2/^)^ = (x^ — y^) for
X G [-2,2] 176

6.7 Graphs of cos{x), cos(3x), and cos{5x) for x G [—7r,7r],
colored, respectively, in blue, green, and red 177

6.8 Same as above but colored, respectively, in cyan, magenta, and
yellow 177

6.9 Rectangles of varying hue 177

6.10 Rectangles of varying gray level 178

List of Figures xxi

6.11 Graphs of cos{x), cos(3x), and cos{5x) for x G [—TT, TT], with
different dashing plot styles 179

6.12 Graphs of e~^'^^ cos(3x) for x G [0, dn], with added text 179

6.13 Same as Figure 6.7 with a different text style 180

6.14 Graph of JQ{X) /or X G [0,20] 180

6.15 Same as Figure 6.14 with a plot label 181

6.16 Same as Figure 6.12 with mathematical symbols in traditional
form 181

6.17 Same as Figures 6.7 and 6.13 with different options 182

6.18 Graphics array of the Bessel functions JQ, Ji, J2, and J^{x)
in the interval [0,10] 184

6.19 Graphics array of the Bessel functions JQ, JI, J2, o,nd J^{x)

in the interval [0,10] using the option Graphics Spacing 184

6.20 Graphics array above with a frame 185

6.21 Graph o/cosh(2x) cos(lOx) for x G [-3,3] 185

6.22 Graph o/cosh(2x) cos(lOx) in a reduced plot range 186

6.23 Plot of a list of data points 187

6.24 Graph of 1.04396 -f 1.4391 Ix -f- 0.319877^2 (x G [0,15]; that

fits the list of data points of Figure 6.23 above 187

6.25 Plots of the list of data points and the quadratic fitting function. 188

6.26 Plots of two lists of data points 188

6.27 Same as Figure 6.26 above with different options 189

6.28 Logplot ofe'^"" for xe [0,6] 189

6.29 Loglogplot ofx^l^ /or x G [0,1] 189

6.30 Bar chart of a list of 20 random integers between 1 and 5 190

6.31 Pie chart of a list of 20 random integers between 1 and 5 190

6.32 Histogram of a list of 20 random integers between 1 and 5 191

6.33 Simple horizontal bar chart of 2004 Maryland car sale statistics. 192
6.34 Horizontal bar chart of 2004 Maryland car sale statistics with

vertical white lines 192
6.35 Adding a title to the figure above 193

xxii List of Figures

6.36 Horizontal bar chart of 2004 Maryland car sale statistics with
vertical white lines, a title, and a frame 193

6.37 Graphs of sm{x), sin(2x); and sin(3x) with a legend 194

6.38 Ten blue points on a circle 195

6.39 A thick square drawn using the command Line 195

6.40 Colored lines and points 196

6.41 Colored lines of varying lengths 196

6.42 Two filled rectangles 197

6.43 Six regular polygons whose positions are defined by their centers. 198

6.44 Circle with an inscribed pentagon 198

6.45 Labeled points 199

6.46 Sequence of golden rectangles 200

6.47 Dotted circle 202

6.48 Dotted circle rolling on a straight line 203

6.49 Position of the rolling dotted circle for t = 5 203

6.50 Locus of the red dot 204

6.51 One image of the sequence generating the animated drawing of
the rose r = 49 204

6.52 Vector field (cos(2x),sin(y)) in the domain [—TT, TT] X [—TT, TT]. . . . 205

6.53 Vector field (cos(2x),sin(2/)) in the domain [—TT, TT] X [—TT, TT]
adding colors and a frame 206

6.54 Gradient field of x^ H- y^ in the domain [-3,3] x [-3,3] 206

6.55 Surface x'^ + y'^ in the domain [-3,3] x [-3,3] 207

6.56 Surface x^ + y^ in the domain [—3,3] x [—3,3] from a different
viewpoint 208

6.57 Tridimensional list plot of nested lists 208

6.58 Tridimensional list plot 209

6.59 Same as above using Surf aceGraphics 209

6.60 ScatterPlotSD: the 3D analogue of L i s tP lo t 210

6.61 Same as above with the option Plot Joined -^ True 210

6.62 Tridimensional contour plot of nested lists 211

List of Figures xxiii

6.63 Cylindrical coordinates: surface r^ cos{2ip) in the domain
(r,(^) = [0,1] X [0,27r] 212

6.64 Spherical coordinates: surface cos{6) cos(2^) in the domain
{e,ip) = [0,7r/4] X [0,27r] 212

6.65 Contour plot of x^ + y^ in the domain [—3,3] x [—3,3] 213

6.66 Contour plot of x^ + y'^ in the domain [—3,3] x [—3,3] with
ContourShading -^ False 213

6.67 Contour plot of x^ -\- y^ in the domain [—3,3] x [—3,3] with
ContourLines —> False 214

6.68 Density plot of sm{x) cos{y) in the domain [—TT, TT] X [—7r/2,37r/2].215

6.69 Same as above with different options 215

6.70 DensityPlot o/sin(10x)cos(10^) in the domain
[-TT, TT] X [-7r/2,37r/2] 216

6.71 Tridimensional parametric plot of (sin(3a;),cos(3a;),C(;) in the
domain [0,27r] 217

6.72 Parametric plot o/(cos(x)cos(2/),cos(x)sin(y),sin(x)) in the
domain [-7r/2,7r/2] x [0,27r] 217

6.73 Using 3D graphics primitives to draw a pyramid with an
octagonal base 218

6.74 Same as above with a modified viewpoint 218

7.1 Quarter of a disk of radius 1 inside a unit square 221

7.2 Probability density function of the normal distribution for
fi = 0 and a = 1 in the interval [—3,3] 227

7.3 Probability density function of the Cauchy distribution for

a = 0 and b = 1 in the interval [—3,3] 228

7.4 Bar chart of 5000 Poisson distributed random numbers 230

7.5 Histogram of 10,000 normally distributed random numbers 231

7.6 Probability density function of the normal distribution for
fjL = 2 and a = S 231

7.7 Comparing the histogram above with the exact probability
density function 231

7.8 Histogram of 10,000 random numbers distributed according to
the cosine distribution 232

xxiv List of Figures

7.9 Histogram of 10,000 uniformly distributed random numbers in
the interval [0,1] 233

8.1 List plot of the CPU time to compute the first Fibonacci
numbers using the inefficient method described above 253

8.2 Plot of f unct ionFi t that fits the list of CPU times 254

8.3 Plotting together funct ionFi t the list plot of CPU times 255

8.4 Plot funct ionFi t in order to estimate the CPU time to
evaluate the 100th Fibonacci number using the first inefficient
method 255

8.5 Plot of the function defined above 258

8.6 Plot of the function defined above 259

8.7 Plot ofcos{nx) for n = 10 in the interval [0,27r] 260

9.1 Equipotentials in the plane y = 0 in the vicinity of a grounded
sphere placed in a uniform electric field directed along the
Oz-axis 277

10.1 A bead on a rotating circle 280

10.2 Effective potentials when either 9 = 0 is stable or 0 = OQ ^ 0

is stable 283

11.1 Brachistochrone 287

12.1 Images associated with lists Gintl [[1]] , Gintl [[2]] ^

Gintl [[3]] , and Gintl [[4]] 296
12.2 Dragon-type fractal associated with list Gint [[14]] 297
12.3 Images associated with lists G int2 [[l]] , Gint2[[2]] ,

Gint2[[3]] , and Gint2[[4]] 299

14.1 A double pendulum 303

14.2 Variations of angle 0i as a function of time 307

14.3 Variations of angle 62 as a function of time 307

14.4 Trajectory o/bob[2] 308

14.5 Last figure of the sequence generating the animation of the
double pendulum 309

List of Figures xxv

15.1 Anharmonic potential V{x) = —{a/2)x^ + (6/4)x^, for a = —A
(left figure) and a = 4 (right figure). In both cases b = 0.05 312

15.2 Solution of the Duffing equation in the interval [0,30], for
a = —4 and b = 0.05, and the initial conditions x(0) = —10
and x'{0) =0 313

15.3 Solution of the Duffing equation in the interval [0,30], for
a = 4: and b = 0.05, and the initial conditions x(0) = 0 and
x'(0) - 0.01 314

15.4 Double-well potential V{x) = -{l/2)ax^ + (l/4)6x^ for a = 0.4
and b = 0.5 317

15.5 Solution of the Duffing equation: x" + gx' — ax + bx^ == 0
for a = 0.4, b = 0.5. g = 0.02, x(0) = 0, and x\0) = 0.001 in
the interval [0,200] 318

15.6 Solution of the Duffing equation: x" + gx' — ax + bx^ ——
ccos(cjt) for a = 0.4, b = 0.5. g = 0.02, uj = 0.125, c = 0.1,
x(0) = 0, and x'(0) = 0.001 in the interval [0,200] 319

15.7 Same as above but with x(0) = 0.1 instead of x{0) = 0 320

17.1 Equipotentials, in the plane z = 0.01, of a unit electric charge
located at the origin 329

17.2 Electric field created by a unit electric charge located at the
origin 330

17.3 Electric field created by a unit dipole, represented by a bigger
arrow, located at the origin 331

17.4 Equipotentials and electric field lines created by three charges
respectively equal to +2 localized at the origin and —1 localized
on the Ox-axis at a distance —1/2 and 1/2 from the origin 334

17.5 Equipotentials and electric field lines created by four charges
respectively equal to —1, +1 , —1 and +1 localized at the
vertices of a unit square centered at the origin 335

17.6 Equipotentials and electric field lines created by three charges
respectively equal to +2 localized at the origin and two negative
unit charges localized at (—1/2, —1/2,0) and (1/2, —1/2,0) 336

17.7 Electric field created by a uniformly charged sphere as a
function of the distance r from the sphere center 337

17.8 Electric potential created by a uniformly charged sphere as a
function of the distance r from the sphere center. 339

xxvi List of Figures

19.1 Graphs of Li and L2, the first two steps in the construction of
the Lebesgue function L 353

19.2 Graph of L3 the third step in the construction of the Lebesgue
function L 354

19.3 First stage in the construction of the Sierpinski triangle 355

19.4 Second stage in the construction of the Sierpinski triangle 356

19.5 Fifth stage in the construction of the Sierpinski triangle 357

19.6 First stage in the construction of the Sierpinski square 359

19.7 Fifth stage in the construction of the Sierpinski square 359

19.8 First stage of the construction of the von Koch curve 360

19.9 Second stage of the construction of the von Koch curve 362

19.10 Second stage of the construction of the von Koch curve using
lineSequence instead of the listable version of the function
nextProf i l e 363

19.11 Fourth stage of the construction of the von Koch curve 364

19.12 Fifth stage of the construction of the von Koch curve 364

19.13 Same as above but starting from a different set of points 365

19.14 Fifth stage of the construction of the von Koch triangle 365

19.15 Fourth stage of the construction of the von Koch square 367

20.1 Sequence of points generated by the chaos game starting from
an initial point (labeled 1) inside an equilateral triangle 371

20.2 Sequence of points generated by the chaos game starting from
an initial point (labeled 1) outside the triangle 371

20.3 The sequence of a large number of points generated by the
chaos game seems to converge to a Sierpinski triangle 372

20.4 Sequence of a large number of points generated by the chaos
game of Example 1 374

20.5 Sequence of a large number of points generated by the chaos
game of Example 2 375

20.6 Sequence of a large number of points generated by the chaos
game of Example 3 376

20.7 Bamsley's fern 378

List of Figures xxvii

20.8 Barnsley^s fern with the fixed points of the affine
transformations fi, f2, fs, and f^ 378

20.9 Action of the four affine transformations on the initial shape.
Upper left: / i generates the lower part of the stem. Upper
right: /2 generates the upper part of the stem, all triangles
converging to the fixed point 2 o/ /2. Lower left: starting from
the image of the initial shape by fs, and repeatedly applying
/2 generates the left branches. Lower right: starting from the
image of the initial shape by f4, and repeatedly applying /2
generates the right branches 380

20.10 Bamsley's fern with probabilities pi = 0.03, p2 = 0.75,
p^=p^ = 0.11 381

20.11 Leaflike fractal generated using Bamsley^s collage theorem 383

21.1 Julia set of the function z^^ z^ — 0.5 386

21.2 Julia set of the function z\-^ z^ — 0.75 + 0.5i 387

21.3 Julia set above: zooming in [0.9,1.6] x [—0.7, —0.1] 388

21.4 Julia set above: zooming in [1.26,1.28] x [-0.2, -0.1] 388

21.5 Julia set above: zooming in [1.24,1.27] x [-0.13, -0.1] 389

21.6 Julia set of the function z \-^ z^ — 0.5 390

21.7 Julia set of the function z \-^ z^ — 0.75 -h 0.5i 390

21.8 Julia set above: zooming in [—0.9,0.1] x [0.1,1.3] 391

21.9 Julia set above: zooming in [-0.57, -0.38] x [0.9,1.25] 391

21.10 Julia set of the function z y-^ z^ — 0.5 392

21.11 Julia set above: zooming in [-0.1,0.1] x [1.02,1.22] 392

21.12 Mandelbrot set of the function z ^-^ z'^ -\- c 393

21.13 Mandelbrot set: zooming in [-1.0, -0.4] x [-0.3,0.3] 394

21.14 Mandelbrot set: zooming in [-0.85, -0.65] x [-0.2,0] 395

21.15 Mandelbrot set: zooming in [-0.77, -0.72] x [-0.2, -0.15] 395

21.16 Mandelbrot set: zooming in [-0.748,-0.74] x [-0.186,-0.178]. 396

21.17 Mandelbrot set for the function z \-^ z^ -\- c 397

21.18 Mandelbrot set for the function z y-^ z^ -\- c 398

22.1 Elliptical orbits. The big dot represents the sun 403

xxviii List of Figures

22.2 Hyperbolic orbit. The big dot represents the sun 403

23.1 Fourth stage of the construction of the von Koch curve 410

23.2 Fourth stage of the construction of the von Koch triangle 411

23.3 Sixth stage of the construction of the Hilbert curve 413

23.4 First stage of the construction of the Peano curve 415

23.5 Third stage of the construction of the Peano curve 416

24.1 Logistic map cobweb for r = 2.6, UQ = 0.9, and a number of
iterations equal to 15 420

24.2 Sixteen iterations of the logistic map for r — 2.3 (fixed point),
r = 3.23 (period 2), r = 3.49 (period 4), CL'f^d r = 3.554 (period
8) 425

24.3 Bifurcation diagram of the logistic map {n,r) i—> rn(l — n).
The parameter r, plotted on the horizontal axis, varies from
2.5 to 4, and the reduced population n, plotted on the vertical
axis, varies between 0 and 1 426

24.4 Logistic map cobweb for r = 4, UQ = y/S — 1, and a number of
iterations equal to 300. The initial point is defined with 200
significant digits 427

24.5 Approximate cumulative distribution function for the logistic
map n i-̂ 4n(l — n) 428

24.6 One hundred iterates of the logistic map n -̂̂ 4n(l — n) starting
from no = sin^{2Ti/7), defined with $MachinePrecision,
showing the instability of the period-3 point 432

24.7 One hundred iterates of the logistic map n i-̂ 4n(l — n),
starting from UQ = sm^(27r/7) defined with 70 significant digits. 433

24.8 Invariant probability density of the logistic map n i-> 4n(l — n) . . 436

24.9 Invariant cumulative distribution function of the logistic map
n ^ 4n(l - n) 436

24.10 Comparing the exact invariant cumulative distribution
function (in blue) with the approximate one (in red) obtained
above. The two curves cannot be distinguished 437

25.1 Projection on the xOy-plane of a numerical solution of the
Lorenz equations for t G [0,40] and (XQ, yo^ 2:0) = (0,0,1) 440

List of Figures xxix

25.2 Projection on the yOz-plane of a numerical solution of the
Lorenz equations for t G [0,40] and (XQ, yo, ̂ o) = (0? 0? 1) 441

25.3 Projection on the xOz-plane of a numerical solution of the
Lorenz equations for t G [0,40] and (XQ, yo, ZQ) = (0,0,1) 441

25.4 Projection on the yOz-plane showing the trajectory slowly
moving away from the unstable fixed points 443

26.1 The Morse potential (in red) and its harmonic part (in blue). . . 446

29.1 Construction of the quadratrix) 472

29.2 Construction of a segment of length I/TT 473

29.3 Construction of a segment of length ^TT 474

30.1 Hermite polynomials Hi, H2, Hs, and H4 477

30.2 Normed wave functions ipo and ipi 478

30.3 Normed wave functions 1^2 o,nd ips 478

30.4 Normed wave functions -̂ 4 and ijj^ 478

31.1 Graphs of the functions y 1—> \f\ — y^jy and y i-̂ tany in the
interval [0,4] 483

31.2 Graphs of the functions y H-> yj\ — y^ jy and y 1-̂ — cot^/ in

the interval [0,4] 484

31.3 Square potential well and energy levels 485

31.4 Eigenfunction associated with the energy level

El = -0.901976 Vo 486

31.5 Eigenfunction associated to the energy level E^ = —0.617279 VQ- 487

31.6 Eigenfunction associated with the energy level
Es = -0.192111 Vo 488

32.1 Free-fall diverts velocity as a function of time 490

32.2 Diver's velocity as a function of time when parachute opening
is delayed 491

32.3 Rapid change of the diver's velocity when the parachute takes
less than one second to fully open 491

XXX List of Figures

32.4 Diverts acceleration when the parachute is opened in a very
short time 492

32.5 Diver's velocity when the parachute takes three seconds to fully
open 493

32.6 More detailed plot of the diver's velocity when the parachute
takes three seconds to fully open 494

32.7 Diver's acceleration when the parachute takes three seconds to
fully open 495

33.1 The evolute of a cycloid is a cycloid 498

33.2 Huygens pendulum 499

34.1 Trajectory in the {x\^X2)-phase space of the van der Pol
oscillator for A = -0.5 and t G [0,30] 506

34.2 Trajectory in the {xi^X2)-phase space of the van der Pol
oscillator for A = 0.5 and t G [0,50] 507

35.1 Dimensionless van der Waals isotherms 513

35.2 Maxwell construction 517

36.1 Initial pedestrian configuration. Type 1 pedestrians (blue
squares) move to the right, and type 2 (red squares) move to
the left 527

36.2 Final pedestrian configuration. Type 1 pedestrians (blue
squares) move to the right, and type 2 (red squares) move to
the left 527

Part I

Essential Commands

This first part describes the essential Mathematica commands.

Chapter 1 gives a detailed overview of the most frequently used Mathe
matica commands, starting from the most elementary and culminating in an
introduction to Mathematica programming with a detailed application to the
Collatz conjecture and possible generahzations. After studying this chapter,
the reader should be able to tackle the applications presented in Part II com
ing back to a specific chapter of Part I to study more closely a particular
command and its various options to better understand how a user-defined
function solving a specific problem is built up.

Chaper 2 is dedicated to numbers. Mathematica distinguishes integer—odd,
even, prime, and Gaussian—, and rational, real, and complex numbers. Math
ematica can manipulate these numbers in different bases with any precision.
The chapter ends with a discussion of positional number systems, the Zeck-
endorf representation, and calendars which, as a matter of fact, are multibase
positional number systems.

Chapter 3 deals with algebra. It examines algebraic and trigonometric ex
pressions, how to solve equations either exactly or numerically, and describes
a few built-in Mathematica functions related to linear algebra.

Chapter 4 is devoted to calculus. It studies differentiation and integration,
differential equations, sums and products, power series and limits, complex
functions, Fourier transforms and Fourier series, Laplace and Z transforms,
and in conclusion shows how Mathematica can help solve recurrence equations
and partial differential equations.

Chapter 5 studies lists that provide an efficient way of manipulating groups
of expressions as a whole. It shows how to create lists; extract or add ele
ments to lists; and find, group, rearrange, and count elements. Many built-in
Mathematica functions are listable indicating that the function should auto
matically be threaded over lists that appear as its arguments. User-defined
functions can also be made listable.

Chapter 6 explains how to generate graphics that are important compo
nents of many applications. Mathematica provides powerful graphics capabil
ities. We can plot two- and tridimensional graphics, using different coordinate
systems. We can also plot lists of data and use a lot of options dealing with
colors, text, labels, and legends, Graphics can be grouped in arrays. Using spe
cific packages, we can produce special plots such as log-log plots, bar charts,
pie charts, and histograms. Manipulating graphics primitives, that is, points,
line, polygons, and circle, we can draw a variety of figures. We can animate
graphics, draw vector fields, gradient fields, contour plots, and density plots.

Chapter 7 is dedicated to probabihty and statistics. Mathematica can gener
ate various types of random numbers: integers or reals uniformly distributed in
a given interval. Mathematica can also generate random numbers distributed

4 Part I. Essential Commands

according to most discrete and continuous probability distributions such as
Bernoulli, binomial, Poisson, normal, Cauchy, gamma, Pareto, and so on. To
analyze data we have at our disposal a variety of statistical tools with the
possibility of drawing graphics illustrating our results.

Chapter 8 explains how to write simple and efficient basic programs. After
a brief review of the Mathematica language, we examine functional program
ming which is characteristic of Mathematica although other types can also be
used. In order to build up a function generating, for example, the Fibonacci
number of a given order, we study different programming methods and show
that the CPU time necessary to generate such a Fibonacci number may vary
by many orders of magnitude ranging from hours to a fraction of a second
depending on how efficient the program is.

A Panorama of Mathematica

This rather long chapter presents an overview of the most frequently used
Mathematica commands.

1.1 Notebooks and Cells

Mathematica consists of two separate programs: the kernel and the front end.
The kernel is the computational engine, whereas the front end is the user
interface. The user sends commands to the kernel through the front end. The
kernel sends back a postscript code that is displayed in the front end.

A Mathematica notebook is an interactive document combining text, graphics,
and calculations. Notebooks are platform independent. The present document
is a notebook.

A notebook is organized in cells. On a computer screen, a cell is defined by
a square bracket on the right-hand side. There are three types of cells: text,
input, and output cells.

Commands sent to the kernel are entered in input cells. The cell below is an
input cell:

23 + 14

When an input cell is evaluated by pressing | SHIFT 11 RETURN |, the result
of the kernel computation is sent back to the front end and displayed in
an output cell. The cell below is the output cell resulting from sending the
previous command to the kernel. This cell is a text cell.

37

6 1 Panorama of Mathematica

1.2 Basic Syntax

All built-in function names have an initial capital letter. Most function names
are explicitly spelled out (Integrate , Plot , . . .) except a few abbreviations
of common use (Sin, Det, . . .) . If a name consists of more than one word,
the first letter of each word is capitalized, and no spaces separate the words
(ListPlot, FindRoot, . . .) . The number of built-in functions is extremely
large. Mathematica is case sensitive: x and X are two different symbols.

It is good practice to name variables and functions as explicitly as possible
and avoid using an initial capital letter when naming user-defined functions.

Mathematica uses different types of bracketing. Parentheses () are used to
explicitly group terms and force the correct order of evaluation as in x -
(y-x). Square brackets [] are used for functions; for example, the sine of x
is denoted Sin[x] and not s in(x) . Curly braces {• • •} are used to group the
elements of a list as {a ,b ,c} . Double square brackets are used for indexing:
V [[n]] , for instance, represents part n of v. Mathematica gets confused when
the wrong bracket type is used.

Commas are used to separate the elements of a list or the arguments of a
function. A semicolon at the end of an input tells Mathematica to perform
the operation but not display the output. Semicolons are also used to separate
different expressions written on the same line. For example,

a = 5; b = 3; c = 7;

tells Mathematica to assign the values 5, 3, and 7 to the symbols a, b, and c
respectively without, however, displaying an output.

A space between two expressions is understood by Mathematica as multiplica
tion: f inal result is not an acceptable name, it is understood as the product
of f ina l and result . An acceptable name would be finalResult.

1.3 Basic Operations

Mathematica can be used as a pocket calculator but arithmetic operations
can be done with any number of significant digits.

(4536784519876453286 - 443217654393562751 +
7659432176587356289 - 321736482582441593) / 5467821

11431262559487805231
5467821

1.3 Basic Operations

3429854 67532098

231625236453692

321

10460353203

(2.67 + 5.72 / 3.4) / 1.58

2.75465

Using parentheses (. . .) , the expression above could also have been written:

(2.67 + (5.72 / 3 .4)) / 1.58

2.75465

Numbers can be manipulated using an arbitrary base whose maximum value is
36. BaseForm[number, b] displays number in base b. If b > 10, Mathematica
uses letters.

{BaseForm[137, 7] , BaseForm[379, 27]}

{2547, el27}

Using the notation b ' ' "d ig i t s , where each of the digits is less than b, the
number d i g i t s in base b is displayed in base 10.

{7^^254, 27""el}

{137, 379}

In the following cell, the first term has infinite precision and the second one
has machine precision. The command N [expression] gives the numerical
value of expression. N [expression, n] attempts to give a result with n-digit
precision.

8 1 Panorama of Mathematica

Sqrt [x] or yGc gives the square root of x. ^/x is entered using the Basiclnput
submenu of File -^ Palettes.

{Sqrt [5] , x/5, N [Sqrt [5]]}

{Sqr t [5] , S q r t [5] , 2.23607}

We can see the precision from the InputForm:

{Sqr t [5] , N[Sqrt[5]] / / InputForm}

{Sqr t [5] , 2.23606797749979}

By definition, the Prec is ion of x is equal to minus the decimal logarithm of
the ratio Zix/x, where Ax is the uncertainty on x. The machine precision is
15.9546. Prec is ion is different from Accuracy which is equal to minus the
decimal logarithm of the uncertainty A x. That is,

r e l a t i v e e r ro r = IQ-P^^ î̂ ^^^ and absolute e r ro r = iQ-̂ ^̂ ^̂ ^̂ y

Irrational numbers can be manipulated with any chosen precision.

N[Pi, 100]

3.14159265358979323846264338327950288\

41971693993751058209749445923078164\

06286208998628034825342117068

The \ indicates that the output is continuing on the next line. The function
Prec is ion [] gives the number of significant digits.

Precis ion[N[Pi , 100]]

100

To avoid printing a long output, end the input expression with a semicolon

1.4 Mathematica as a Functional Language 9

Timing[N[Pi, 100000];]

{1.10356 Second, Null}

Timing [expression] evaluates expression and gives the CPU time in sec
onds spent in the Mathematica kernel. Null is returned when no output is
printed.

1.4 Mathematica as a Functional Language

In Mathematica everything is an expression. A Mathematica expression is any
string of symbols of the form

• [• , • , . . .]

where • is a placeholder in which we can write either pure symbols or other
expressions. At the front of the square bracket is the head of the expression,
inside the square bracket are the elements of the expression. In Mathematica^
this is the internal form of everything. For example, gd [x, ab] is an expres
sion whose head is gd and x and ab are elements. This expression may also
be viewed as the function gd of x and ab. Variable names can consist of at
tached letters and numbers, but the first symbol cannot be a number; v3 is
an accepted variable name but 3v will be understood by Mathematica as 3
times V.

Head[gd[x, ab]]

gd

Inputs in operator notation are transformed into internal forms that are com
binations of expressions. These internal forms could be used instead of tra
ditional arithmetic notations. This is, however, too cumbersome and not rec
ommended.

{3 + 6, P lus [3 ,6]}

{9, 9}

10 1 Panorama of Mathematica

{4 * 5, 4 5, Times[4, 5]}

{20, 20, 20}

Instead of the symbol * to multiply two numbers, it is simpler to leave an
empty space between the two numbers.

{2S

{16,

Power[2,

16}

{5 + 2 1,

4]}

Complex[5, 2]}

{5 + 2 I , 5 + 2 1}

In the full forms of the last four examples, the Head of the expressions is
explicit.

{Head [Plus [x + y]] , Head[x + y]}

{Plus, Plus}

To find internal forms, use the function FullForm.

{FullFormCx + y] , FullForm[x y] , FullForm[x^] ,

FullForm[x - y] , FullForm[x + y I] , FullForm[a, b, c]}

{PlusEx, y] , Times[x, y] ,

Power[x, y] , Plus[x, Times[-1, y]] ,

Plus[x, Times[Complex[0, 1] , y]] .

Lis t [a , b, c]}

1.5 Getting Help

To access the Mathematica help system in the notebook environment we just
have to go to the Help menu and click on Help Browser. Entering a command.

1.5 Getting Help 11

say, Plot and clicking the Go button we have to choose among various types
of plots such as 2D Plots, 3D Plots, Contour Plots, and so on. Selecting 2D
Plots and cUcking, for example, on ListPlot, a window appears with detailed
information on how to enter the command. This information is completed with
Further Examples illustrating how to use the ListPlot command. The Help
Browser gives also access to Wolfram's Mathematica book [68]. Also worth
consulting when looking for help are Ruskeepaa's Mathematica Navigator [48]
and the very detailed four-volume Mathematica Guidebooks by M. Trott [?].

It is also possible to get information about a specific Mathematica command
by entering the symbol ? followed by the command name. For example:

?Plot

P lo t [f , {x, xmin, xmax}] generates a p lo t of f as a function
of x from xmin to xmax. P l o t [f l , f2 , . . . , x, xmin, xmax]
p l o t s severa l functions f i .

The double question mark ?? adds information about attributes and options.
For example:

??Plot

Plot[f, {x, xmin, xmax}] generates a plot of f as a function

of X from xmin to xmax. Plot[{fl, f2, ... }, {x, xmin, xmax}]

plots several functions fi.

Attributes[Plot] = {HoldAll, Protected}

Options [Plot] = {AspectRatio -^ 1/GoldenRatio, Axes —> Automatic,

AxesLabel -^ None, AxesOrigin -^ Automatic,

AxesStyle -^ Automatic, Background —^ Automatic,

ColorOutput —> Automatic, Compiled -^ True,

DefaultColor —^ Automatic, DefaultFont :-̂ $DefaultFont,

DisplayFimction r̂ " $DisplayFunction,

Epilog ^ { }, FormatType :-̂ $FormatType,

Frame -^ False, FrameLabel —> None,

FrameStyle —^ Automatic, FrameTicks -^ Automatic,

GridLines -^ None, ImageSize -^ Automatic,

12 1 Panorama of Mathematica

MaxBend -^10., PlotDivision -> 30.,

PlotLabel -^ None, PlotPoints -^ 25,

PlotRange -> Automatic, PlotRegion —> Automatic,

PlotStyle —> Automatic, Prolog -^ { }, RotateLabel^^ True,

TextStyle :-> $TextStyle, Ticks -^ Automatic}

If we want to list all function names containing the word Plot we can use
the wild card * as shown below. We can then obtain information on a specific
function by clicking on its name.

?*Plot*

System*

ContourPlot,

DensityPlot,

ListContourPlot,

ListDensityPlot,

ListPlot,

ListPlotSD,

ParametricPlot,

ParametricPlotSD,

Plot,

PlotSD,

Plot3Matrix,

PlotDivision,

PlotJoined,

PlotLabel,

PlotPoints,

PlotRange,

PlotRegion

PlotStyle,

1.6 Logical Operators

We can use logical operators to compare two expressions. These commands
return either True or False.

The symbol != is equivalent to Unequal, that is, ^.

{3 > 4, 5 == 3 + 2, 3
5 > 7, 3 7̂ 1 H- 2}

!= 2, 4 < 6, 3 < 3,

{False, True, True, True, True,
False, False}

Function names:

{HeadEx > y] , Head[x ==] y] , Head[x < y] , Head[x f̂ y]}

1.6 Logical Operators 13

{Greater, Equal, LessEqual, Unequal}

&& is equivalent to And and II to Or.

{HeadEx && y] , Head[x M y] }

{And, Or}

Here are more examples combining several logical operators.

(!(4 == = 3))

True

4 == 2 + 2 && 3 ̂ 5

True

4 < 2 II 3 < 5

True

Xor is the exclusive Or, that is, Xor[expression! , expression2, . . .]
gives True if an odd number of expressionk are True, and the rest are
False, it gives False if an even number of express ionk are True, and the
rest are False.

Xor [3 == 2 + 1, 2 == 4 -- 2

False

Xor [3 == 2 + 1, 2 == 0]

True

((4 > 2) II (5 < D) && ((4 < 9) II (2 < D)

14 1 Panorama of Mathematica

True

Be careful, do not mix up = and ==. The command a = 6 means that the
symbol a is given the value 6 (this could also be written Set [a, 6]) , while
the command a == 6 yields True if a is equal to 6 and False otherwise.

1.7 Elementary Functions

{Sin[Pi/4], Sin[0.785], Cos [Pi/6]}

1 Sqrt [3] ,

^ i ^ ^ ' '•''''''' ^ - ^ >

Because sin(7r/4) and cos(7r/6) can be evaluated exactly, the outputs are given
with infinite precision. This is not the case for sin(0.785).

We could also have used the symbol TT which, as all other Greek letters, can
be entered as \ [LetterName] where LetterName stands for Pi. We can also
either use the command Palettes in the File menu (TT is found in the palette

Basiclnput), or type | ESC | p | ESC |.

Tan[Pi/4]

1

{ArcSin[l] , ArcCos[l] , ArcTan[l]}

Pi Pi^

If not specified, the argument unit is Radian. Degree can also be used.

{Sin[45 Degree], Cos [45 Degree]}

r 1 Sqrt [3] -(

I Sqrt [2] ' 2 J

1.8 User-Defined Functions 15

Actually Degree gives the value in radians of one degree. Its numerical value
is 7r/l80.

{Tan[22 Degree], Cot [67 Degree]}

{Tan[22 Degree], Cot[67 Degree]}

{N[Tan[22 Degree], Cot [67 Degree]]}

{0.404026, 0.424475}

Here are other elementary functions.

{Sinh[1 .3] ,

{1.69838, 1

{Log [3 .78] ,

Cosh[l

97091,

Exp[-0

. 3] , Tanh[l

0.861723, 1

.67]}

3] , Coth

.16047}

[1.3]}

{1.32972, 0.511709}

1.8 User-Defined Functions

A delayed assignment is made with the SetDelayed function also noted :=.
When the SetDelayed function is used, the right-hand side is not evaluated
whereas in the case of the Set function, noted =, the right-hand side is
immediately evaluated, as illustrated below, where we have used the built-in
function Random [] that gives a uniformly distributed pseudorandom real in
the interval [0,1].

a = Random []

{a, a, a}

b : = Random []

{b, b , b}

16 1 Panorama of Mathematica

0.218807

{0.218807, 0.218807, 0.218807}

{0.244376, 0.716337, 0.850842}

If we try to define a function by entering:

f [x] = x^3 - 3 x^2 + 5 X - 7;

f [x]

-7 + 5x - 3 x^ + x^

it does not work because by doing so we are just assigning the expression x''3
- 3 x ' ' 2 + 5 x - 7 t o f [x] , and entering f [a] will not replace x by a and
give a^ — 3a^ + 5a — 7 as shown below.

Clear[a] (* Clearing the value of a *)

f [a])

f [a]

Any input placed between (* and *) is ignored. Useful comments can be
inserted anywhere into a Mathematica code using the notation (* comment
*) .

To define a function, we have to use a pattern object which can stand for any
Mathematica expression. _ (short form of Blank []) is such a pattern object,
and we should use x_ to denote the formal argument of the function f [] .
Moreover we have to use SetDelayed and not Set

f [x_] := x'̂ 3 -3 x'̂ 2 + 5 x - 7

f [a]

-7 + 5 a - 3 a^ + a^

And we can check the definition of the function f [] .

I?f

1.8 User-Defined Functions 17

Global ' f

f [x] = - 7 + 5 X - 3 x^ + x^

f [x_] := - 7 + 5 x - 3 x^ + x^

Observe the difference when we use = (Set) instead of := (SetDelayed)

fl[X-]

f2[x-]

f l [a +

f2[a +

= Expand[x"3];

:= Expand[x"3]

1]

1]

(l + a)3

1 + 3 a + 3 a^ + a^

The argument type may be specified.

g[n_Integer] := n (n+1) (n+2)

g[5]

210

g[5.4]

g[5.4]

- Integer (short form of Blank [Integer]) stands for any expression with
head Integer . Because 5.4 is not an integer, g[5.4] cannot be evaluated.

h [x_Real]

h[3.7]

:= (x^5 + 3 x'̂ 2) / (x-1)

272.04

h[2]

h[2]

18 1 Panorama of Mathematica

Because 2 is not a real number, h[2] cannot be evaluated but

h[2 .]

44.

is evaluated.

gp[n_Integer?Positive] := (n+l)"2

gp[-2]

gp[-2]

gp [-2] is not evaluated, -2 is an integer but not a positive integer.

Functions can also be defined as pure functions, that is, not giving them a
specific name.

f [x j := x'̂ 2

{ f [a] , #-̂ 2 &[a], FunctionEx, x'^2][a]}

{a2, a2, a2}

Another example:

{#1'^#2 &[a, b] , Function[{x, y} , x^y] [a, b]}

{a^ a^}

1.9 Rules and Delayed Rules

If, for instance, we define an expression and assign a value to one of the
symbols in the expression, the expression is lost as shown below.

(2 X + 5)^2

X = 3

(2 X + 5)'^2

1.9 Rules and Delayed Rules 19

(5 + 2 x)2

X = 3

121

We can surmount this problem by using a replacement rule.

Clear[x]

(2 X + 5)'^2 / . X -> 3

(2 X + 5)^2

121

(5 + 2 x)2

The arrow -^ can be entered in many different ways. We can type ->, or
ESC I -> I ESC I, or \ [RightArrow].

HoldForm[FullForm[(2 x + 5)'-2 / . x -> 3]]

ReplaceAll[Power[Plus[Times[2, x] , 5] , 2] , Rule[x, 3]]

The expression on the left of / . , which is the short form of ReplaceAll, is
evaluated before the replacement is made as shown in the following example.

(a + 3a) / . 3 a -> A

4 a

Once the expression has been evaluated, there is no 3a to be replaced by A.
Compare the following outputs.

x + y / . x - > y / . y - > a

X + y / . {x -> y, y -> a}

2 a

a + y

20 1 Panorama of Mathematica

Entering expression / / . r u l e s repeatedly performs replacements until
expression no longer changes. The same result is obtained with
ReplaceRepeated.

X + y //. {x -> y. y ->a}

2 a

ReplaceRepeated [x + y, {x-> y» y -> a}]

2 a

In the command above the number of iterations is supposed to be infinite
(not really, it is given by the value of the option Maxlterations). We can,
however, limit the number of iterations.

ReplaceRepeated[a, a -> 1 + a, Maxlterat ions -> 10]

RepaceRepeated : : r r l im :

Exi t ing a f t e r a scanned 10 t imes . More. . .

10+a

The maximum number of times a rule will be applied is given by the value of
the Maxlterat ions option.

Options[ReplaceRepeated]

{Maxlterations -> 65536}

If we wish to have the right-hand side of the rule evaluated only at the time
the rule is applied, we have to use : > (short form of RuleDelayed []), instead
of -> (short form of Rule []).

{a.
{a.

a.

a.

a} /.

a} /.

a

a

-> Random []

:> Random []

{0.229831, 0.229831, 0.229831}

{0.849633, 0.922095, 0.566822}

1.11 Plotting 21

1.10 Built-in Nonelementary Functions

There exist a huge number of built-in nonelementary functions. Here are a
very few examples.

LegendreP[n, x]

Legendre polynomials of degree n

ChebyshevT[n,x]

ChebyshevU[n,x]

Chebyshev polynomials of degree n of the first and second kinds

LaguerreL[n, x]

Laguerre polynomials of degree n

BesselJ[n , z]
BesselY[n,z]

Bessel functions of order n of the first and second kinds

Gamma[z]

Euler gamma function

Probably the most complete collection of formulas and graphics about math
ematical functions can be found at http://functions.wolfram.com.

1.11 Plotting

1.11.1 2D plots

The command Plot [f [x] , {x, x l , x2}] generates a two-dimensional plot
of f [x] for X varying from xl to x2.

P lo t [Exp[x] , {x, - 2 , 2 }] ;

22 1 Panorama of Mathematica

-2 -1 1

Fig. 1.1. Graph of e" for x e [-2,2].

Plot[BesselJ[0, x] , {x, 0, 10}];

-0 .4

Fig. 1.2. Graph of the Bessel function of the first kind Jo{x) for x G [0,10].

1.11.2 3D plots

The command PlotSD [f [x, y] , {x, x l , x2}, {y, y l , y2}] generates a
three-dimensional plot of f{x,y) for x,y e [a:l,x2] x [yl,y2].

Plot3D[Sin[x] Cos[2 y] , {x, - 2, 2 } , {y, - 2, 2 }] ;

In the chapter dedicated to graphics, we learn how to use various options to
change fonts and color, label the axes, include text, and so on.

1.12 Solving Equations 23

Fig. 1.3. Graph of sm{x) cos{2y) for {x,y} G [-2,2] x [-2,2].

1.12 Solving Equations

1.12.1 Exact Solutions

The command Solve [equations, variables] attempts to solve an equation
or set of equations for the variables.

Solve [x'̂ 3 - 2 x^2 + 3 x - 2 == 0, x]

{{x -^ 1}, {x -. ^(1 - 1^7)}, {x - ^(1 + 1^7)}}

Solve[{2 X - 4 y == 3 , X + 5 y == - 2 } , {x, y}]

{(--i>.{x--i)}

Note the use of the == sign because the two sides of the equation should have
identical values once the unknowns are replaced by their values.

1.12.2 Numerical Solutions

The command NSolve [equationl, equation2 , . . . , variable l , variable2 ,
. . .] gives a list of numerical approximations to the roots of a system of poly
nomial equations.

24 1 Panorama of Mathematica

Solve[{NSolve[2 x^2 - y == 1, x + y^2 == 2, {x, y}]]

{{x -̂ - 1.17965, y ̂ 1.78316},

{x -> 0.089826 - 0.451507 I, y ̂ - 1.39158 - 0.162228 I},

{x -^ 0.089826 + 0.451507 I, y ̂ - 1.39158 + 0.162228 I},

{x ̂ 1., y -. 1.}}

FindRoot [equation, {x, xO}] searches for a numerical solution to equation,
starting with x = xO.

FindRoot[Cos[x] == 2 X , {x. 0. 3}]

{x -> 0.450184}

FindRoot[Sin[x] == 3 2, {x, 1 + 1}]

{x -^ 1.5708 + 1.83094 i}

1.13 Derivatives and Integrals

1.13.1 Exact Results

The commands f ' [x] , D[f [x] , x] , and Derivative [1] [f] [x] are equiva
lent. They all denote the first derivative of f [x] with respect to x. Simi
larly, the commands f " [x] , D[f [x] , {x, 2}], and Derivative [2] [f] [x]
all denote the second derivative of f [x] with respect to x. . f"' [x] is a valid
command for the third derivative but f ^̂ ^ [x] (entered using the Basiclnput
submenu of the Palettes menu), is understood as the cube of f [x] .

Clear[f]

f[x_] : =

f [x]

f"[x]

{ f" ' [x] .

x"3 + 2 Cos[x]

f (3) [x] }

3 x-̂ ~ 2 Sin[x]

6 X - 2 Cos[x]

{6 + 2 Sin[x] + (f^) [x]}

1.13 Derivatives and Integrals 25

D [f [x] ,

D [f [x] .

Derivat

Derivat

x]

{x
ive

ive

. 2}]

[1] [f] [x]

[2] [f] [x]

3 x-̂ - 2 S i n [x]

6 X - 2 Cos[x]

3 x^ - 2 S i n [x]

6 + 2 CosCx]

D[x^4 Cos [7-^2], {x, 3 } , {y, 2}]

24 X (- 4 y2 Cos[y2] - 2 S inEy^])

We have to be careful if we want to define a function as the derivative of
another one.

C l e a r [f]

f [x_] := D[x SinCx] , x]

f [x]

X Cos[x] + S i n [x]

The result looks correct; but let us t ry to find the value of f [x] for a specific
value of X.

f [P i]

Gene ra l : : i v a r : P i i s n o t a v a l i d v a r i a b l e . M o r e . . .

D[0 , P i]

Because f [x] has been defined using := , the right-hand side is kept in an un-
evaluated form. When we enter f [P i] , Mathematica tries actually to evaluate
D[Pi Sin[Pi], Pi] which has no meaning. If, on the contrary, we define f [x]
using = and not : =, Mathematica immediately evaluates f [x] and replacing
X by P i gives the correct result.

26 1 Panorama of Mathematica

Clear[f]

f [x j = D[x

f [x]

f [P i]

S in [x] , x]

X Cos[x] + Sin[x]

X Cos[x] + Sin[x]

-Pi

The command In teg ra t e [f, x] gives the indefinite integral / f{x) dx\
In t eg ra t e [f, {x, a, b}] gives the definite integral /^ / (x) dx. The symbol
/ can be entered using the Palettes submenu Basiclnput.

Clear[f]

f [x_] := x^3 + X Cos[x]

I n t e g r a t e [f [x] , x]

x4
— + Cos[x] + X Sin[x]
4

I n t e g r a t e [f [x] , {x, 0, Pi/2}]

- 64 + 32 Pi + Pi"^

64

1.13.2 Numerical Integration

If In t eg ra t e does not work, NIntegrate will work if the integral is defined.

P lo t [Tan[S in[x]] , {x, 0, P i }] ;

The plot above shows that the definite integral is finite and we can evaluate
its numerical value using NIntegrate. Mathematica cannot, however, find its
exact value.

In t eg ra te [Tan[S in [x]] , {x, 0, Pi}]

/;Tan[Sin[x]]dx

1.14 Series Expansions and Limits 27

0.5 1 1.5 2 2.5 3

Fig. 1.4. Graph o/tan(sinx) for x G [0,7r].

NIntegrate[Tan[Sin[x]], {x, 0, Pi}]

2.66428

1.14 Series Expansions and Limits

Series [f [x] , {x, xO, n}] gives the power series expansion of f [x] about
X = xO up to order n. It indicates that the first neglected term is of the order
(x - x O) ^ + ^

Series[Exp[-2 x] Cos[3 x] , {x, 0, 5}]

1 - 2 X
5 x^ 23 x^ 119 x"̂ 61 x^

+ + 0[x]'
2 3 24 25

We can get rid of the term (x - xO)^ ~̂ and obtain a polynomial using the
command Normal.

Normal[Series[Exp[-2 x] Cos [3 x] , {x, 0, 5}]]

1 - 2 X -
5 x^ 23 x^ 119 x^ 61 x^

+ 24 25

28 1 Panorama of Mathematica

Limit [expression, x -^ xO] finds the limit of expression when x tends to
xO. If the Umit does not exist, Mathematica will either return the input un-
evaluated or I n t e rva l [a, b] indicating a possible range (a, 6) of values.

Limit[(Exp[- 2 x] Cos[3 x] -1 + 2 x) / x^2, x -> 0]

Limit[Cos[x] , x -> I n f i n i t y]

I n t e r v a l [{ - 1 , 1}]

Sometimes, the command Limit gives a wrong result!

Limit[Abs[x] / x, x -> 0]

The result is not correct. If x approaches 0 from the right, the limit is indeed
1 but from the left the limit is - 1 . Prom a purely mathematical point of
view, the limit does not exist. Actually the wrong limit was obtained because
Mathematica assumed that 0 was approached from the right. To obtain the
limit when 0 is approached from the left, we have to specify the Direct ion.

Limit[Abs[x] / x, x -> 0, Direct ion -> 1]

- 1

The option Direct ion -> 1 means that we have to approach 0 going in the
direction of 1 that is from the left of 0.

Here is another example. The function Sign[x] gives - 1 , 0, or 1 depending
on whether x is negative, zero, or positive.

Plot [Sign [x] , {x, - 1 , 1}];

{Limit[Sign[x], x -> 0, Direction -> 1], Sign[0],
Limit[Sign[x], x -> 0, Direction -> -1]}

1.15 Discrete Sums 29

1

0 .5

- 1 - 0 . 5

- 0 . 5

0 .5 1

{-1, 0, 1}

Fig. 1.5. Graph o/sign (x) for x G [—1,1].

1.15 Discrete Sums

Sum[f [n] , {n, n l , n2}] evaluates the sum of the values of f [n] when n
varies from n = nl to n = n2.

For example,

SumCn, {n, 1, k}]

k (1 + k)

Sum[n^2, {n, 1, k}]

k(l + k)(H-2k)

SumEn ,̂ {n, 1, 25}]

23485971550561141649

14626411683380640000

30 1 Panorama of Mathematica

SumCl / n'^2, {n, 1, Inf inity}]

Pi2

NSum[f [n] , {n, n l , n2}] gives a numerical approximation of the sum of
the values of f [n] when n varies from nl to n2.

NSum[Log[n] / n! , {n, 1, Inf inity}]

0.603783

1.16 Ordinary Differential Equations

1.16.1 Symbolic Solutions

DSolve [equation, y , x] tries to symbolically solve the differential equation
for the function y, with independent variable x. As for all types of equations,
note the use of the sign ==. C[l] represents an arbitrary constant.

DSolve [y' [x] + 2 y [x] == 2, y [x] , x]

{y[x] ^ 1 + e-^^ C[l]}

The equation below is a Cauchy-Euler equation. It has an obvious solution
of the form y{x) = x^, where a is either real or complex. C[l] and C[2] are
arbitrary constants.

DSolve [x^2 y''x] + 2 x y'[x] - 2 y[x] = = 0 , y[x] , x]

{{y[x] ^ X C[l] + ^ } }

Here is a pair of simultaneous differential equations.

DSolve[{x'[t] == y [t] , / [t] == - x [t] } , {x[t] , y [t] } , t]

{{x[t] -^ C[l] Cos[t] + C[2] S i n [t] ,

1.16 Ordinary Differential Equations 31

y [t] -^ C[2] CosEt] - C[l] SinEt]}}

As in the example above, C[l] and C[2] are arbitrary constants.

1.16.2 Numerical Solutions

NDSolve [equation, y, {x, a, b}] finds a numerical solution to the differ
ential equation for the function y, with independent variable x in the interval
(a, 6).

so lu t ion = NDSolve [{y'[x] - x^2 y[x] == 0, y[0] == l } , y [x] ,
{x, 0, 1}]

{{y[x] -> Interpolat ingFunctionCO., 1 . , <>] [x]}}

The result is an Interpola t ingFunct ion that represents the approximate
numerical solution y{x) for x in the interval (a, b). The result can be used in
the following way. Define the function f [x] by

Clear[f]

f [x_] = y[x] / . so lu t ion [[1]]

Interpolat ingFimctionEO., 1 . , <>] [x]

where, as mentioned above, we use the sign = and not : =. And we can calculate
the value of f [x] for a specific value of the variable x.

{ f [0] , f [0 . 5] , f [l] }

{ 1 . , 1.04255, 1.39561}

plot a graph of the function.

PlotCfEx], {x, 0, 1}];

determine the derivative as an Interpolat ingFunct ion, and calculate its
value for a given value of x.

I f [x]

32 1 Panorama of Mathematica

1.2

1.15

1.1

1.05

0.2 0.4 0.6 0.8 1

Fig. 1.6. Graph of f{x) defined as an interpolating function for x G [0,1].

InterpolatingFunctionCO., 1 . , <>] [x]

{ f ' [0 . 3] , f ' [0 .7] }

{0.0908133, 0.549349}

1.17 Lists

Lists are extremely important objects. They provide a way to group any kind
of expression.

Here is a list of five elements and different operations on this Ust.

1 = {a, f, b, e, c,

{ P a r t [l , 3] , 1 [[3]] }

Length [1]

1-̂ 2

ExpCl]

d};

(1+x) / 1 (* note th i s

1 / (1+x)

Sort [1]

Partit ion [1,2]

result and the next one *)

{b, b}

1.17 Lists 33

6

{a2, f 2 , b2, e2 , c2, d2}

{E^, E^, E^, E®, E^, E^}

a + x f + x b + x e + x c + x d + x

a f b e c d

a f b e c d

a + x ' f + x ' b + x ' e + x ' c + x ' d + x

{a, b, c, d, e, f }

{{a, f } , {b, e } , {c, d}}

Partit ion [l i s t , n] partitions a list into nonoverlapping sublists of length
n.

Table [expression, k] generates a list of k copies of expression.

Table [Random [] , {10}]

{0.902025, 0.539515, 0.599448, 0.880183, 0.610582, 0.989756, 0.431891,
0.656339, 0.798266, 0.0958655}

Table [expression, k, kmin, kmax, ^k] generates a list of the values of
expression when k runs from kmin to kmax using steps Ak.

Table[Cos[x], {x, 0, P i / 4 , Pi/16}]

Pi Pi SPi 1 ,
{1 , C o s [-] . C o s [-] , C o s [—] . ^ ^ ^ }

Range [n] generates the list {1 , 2, , n}, Range [nl, n2] generates the list
{nl , nl + 1, . . . , n2}, and Range [nl, n2, An] uses steps ^n.

{Range[6], Range[3,12], Range[3,12, 3]}

{{1 , 2, 3 , 4, 5, 6} , {3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, {3, 6, 9,
12}}

34 1 Panorama of Mathematica

Functions with attribute L i s tab le are automatically "threaded" over lists,
so that they act separately on each list element. Most built-in mathematical
functions are Lis tab le .

l i s = {a, b , c} ;

S i n [l i s]
Log[l is]

{S in[a] , S in [b] , Sin[c]}

{Log [a] , Log [b] , Log [c] }

A user-defined function can be made Lis tab le .

f [l i s]

f [{a , b , c}]

Se tAt t r ibu tes [f , L is tab le]

f [l i s]

{ f [a] , f [b] , f [c]}]

ClearAt t r ibu tes [f , L is tab le]

f [l i s]

f [{a , b , c}]

We could also, without making a function Lis tab le , evaluate the function
at various points x if the function has a specified expression in terms of the
variable. Look at the different behaviors of the functions g and h below.

ClearAllCg, h]

g[X-]

{g[{a.

:= x~2

b, c }] .

(* cleair

h[{a, b.

a l l

c}]}

a t t r i b u t e s , see below *)

1.17 Lists 35

.2 K2 . 2 I {{a^, b ^ , c ^ } , h[{a, b , c}]}

{g[x] / . X ^ {a, b , c } , h[x] / . x -> {a, b , c}}

{{a2, b2, c2} , h[{a, b , c}]}

It is often necessary to plot a list of data. In this case, we can use L is tP lo t .

da ta = Table[{x, Cos[x] + 0 . 2 5 Random[]}, {x, 0, 2Pi, 0.2}]

{{0, 1.13292}, {0.2, 0.999822}, {0.4, 0.932795}, {0.6, 0.993941},

{0.8, 0.711319}, {1., 0.618637}, {1.2, 0.536814}, {1.4, 0.385192}

{1.6, 0.129086}, {1.8, -0.154444}, {2., -0.184746},

{2.2, -0.456455}, {2.4, -0.662042}, {2.6, -0.721847},

{2.8, -0.73873}, {3., -0.844616}, {3.2, -0.932651},

{3.4, -0.943502}, {3.6, -0.679174}, {3.8, -0.63348},

{4., -0.487377}, {4.2, -0.343637}, {4.4, -0.121386},

{4.6, 0.0293136}, {4.8, 0.12085}, {5., 0.410531}, {5.2, 0.64273},

{5.4, 0.857554}, {5.6, 0.794305}, {5.8, 0.934053}, {6., 1.20993},

{6.2, 1.00418}}

The data represent the variations of cos(x) with some added noise (see output
in Figure 1.7).

p i = L i s t P l o t [d a t a] ;

F i t [data, funct ions , va r iab les] finds the least-squares fit to a list of
data as a linear combination of functions of variables.

s = F i t [data, {1 , x, x ' '2}, x]

1.51558 - 1.35589 x + 0.217323 x^

In order to visualize how good the fit is, we plot the data and the least-squares
fit on the same graph using the command Show.

36 1 Panorama of Mathematica

1

0 .5

0 .5

• . •

•

1

,

. 2 3 4
. t

•

•

5

•

6

Fig. 1.7. Plot of a list of data.

pis = Plot[s, {x, 0, 2Pi}, DisplayFunction -> Identity];

Show[pi, pis, DisplayFunction -> $DisplayFunction];

1.5

0.5

- 0 .5

Fig. 1.8. Data and least-square fit plots.

The option DisplayFunction -> Identity suppresses the output to the
screen and SDisplayFimction is the default setting for the option
DisplayFimction. The command Show [graphics, options] displays graph
ics using the specified options.

1.18 Vectors and Matrices

An n-dimensional vector is a list of n elements that are not lists themselves.
Here is a five-dimensional vector.

vect = {xl , x2, x3, x4, x5}

1.18 Vectors and Matrices 37

A vector can be multiplied by a scalar.

a vect

{a x l , a x2, a x3, a x4, a x5}

We can add two vectors having the same dimension.

{xl , x2, x3, x4, x5} + {yl , y2, y3 , y4, y5}

{xl + y l , x2 + y2, x3 + y3, x4 + y4, x5 + y5}

The Dot and Cross products of two tridimensional vectors are given by

{xl , x2, X 3} . {yl , y2, y3} (* or , equ iva len t ly , *)

Dot[{xl, x2, X 3} , {yl , y2, y3}]

x l yl + x2 y2 + x3 y3

xl yl + x2 y2 + x3 y3

Cross [{xl, x2, x3}, {yl , y2, y3}]

{- x3 y2 + x2 y3, x3 yl - xl y3 , - x2 yl + xl y2}

In general, Cross [v l , v2, . . . , vn] is a totally antisymmetric product that
takes vectors of length n+1 and yields a vector of length n+1 that is orthogonal
to all the n vectors v l , v2, . . . , vn. Here is an example for n = 3.

38 1 Panorama of Mathematica

cp3 = Cross[{xl , x2, x3, x4}, {yl , y2, y3, y4}, {z l , z2, z3 ,
z4}]

{x4 y3 z2 - x3 y4 z2 - x4 y2 z3 + x2 y4 z3 + x3 y2 z4 - x2 y3 z4,
-(x4 y3 zl) + x3 y4 zl + x4 yl z3 - xl y4 z3 - x3 yl z4 + xl y3 z4,
x4 y2 zl - x2 y4 zl - x4 yl z2 + xl y4 z2 + x2 yl z4 - xl y2 z4,
-(x3 y2 zl) + x2 y3 zl + x3 yl z2 - xl y3 z2 - x2 yl z3 + xl y2 z3}

Length[cp3]

{cp3.{xl, x2, x3, x4}, cp3.{yl , y2, y3 , y4}, cp3.{z l , z2, z3 ,
z4}}//Simplify

{0, 0, 0}

There is a more general product: the so-called Outer product.

?Outer

Outer[f, listl, list2, ...] gives the generalized outer

product of the listi, forming all possible combinations

of the lowest-level elements in each of them, and feeding

them as arguments to f. Outer[f, listl, list2, ... , n]

treats as separate elements only sublists at level n

in the listi. Outer[f, listl, list2, ... , nl, n2, ...]

treats as separate elements only sublists at

level ni in the corresponding listi. More ...

Outer[f, {a, b}, {x, y}]

{{f[a, x], f[a, y]},{f[b, x], f[b, y]}}

A matrix is a list of lists having the same length. Here is a 3 x 2 matrix.

1.18 Vectors and Matrices 39

MatrixForm[{{al, a2, a3}, {bl, b2, b3}}]

al a2 a3
bl b2 bS

Its transpose is the 2 x 3 matrix:

Transpose [{al , a2, a3}, {bl , b2, bS}}]

{{al , b l } , {a2, b2}, {a3, bS}}

Mathematica can find the inverse of an n x n matrix,

mat = {{1/2, 1/3, 1/4}, {1/3 , 1/4, 1/5}, {1/4, 1/5, 1/6}};
TableForm[mat]
invMat = Inverse[mat]

1 1 1
2 ' 3 ' 4
1 1 1
3 ' 4 ' 5
1 1 1
4 ' 5 ' 6

{{72, - 240, 180}, {- 240, 900, - 720}, {180, - 720, 600}}

a result that can be verified:

mat . invMat // TableForm

1 0 0

0 1 0

0 0 1

Mathematica can also find the eigenvalues of a square matrix.

N[Eigenvalues[mat]]

{0.875115, 0. 0409049, 0.000646659}

40 1 Panorama of Mathematica

1.19 Clear, Clear All, and Remove

The command Clear clears values and definitions but not attributes.

a = 5

a

Clear[a]

a

5

a

To clear the value assigned to a symbol we can also use the command a
which is a shorthand notation for Unset [a] .

b = 6

6

b

f [x_] := x^2

SetAt t r ibu tes [f , L is tab le]

f [a]

Clear[f]

f [a]

f [a , b]

1.19 Clear, Clear All, and Remove 41

a2

f [a]

{ f [a] , f [b] }

Clear does not clear attributes. Using the command ClearAll we can clear
values, definitions, and attribute values.

f [x j := x^2

SetAttributes[f , Listable]

f [{ a , b}]

ClearAll[f]

f [a]

f [{ a , b}]

{a2, b2}

f [a]

f [{ a , b}]

When starting a new problem, in order to avoid interference with previous
variable values or function definitions, it is a good idea to execute the com
mand: ClearAll["Global'*"].

ExpectedValue is a built-in function defined in the package
Sta t i s t i c s 'Descr ip t iveS ta t i s t i c s ' . Using the command Total [l i s t]
which gives the sum of the elements in l i s t , we define the function
ExpectedValue by

ExpectedValue [l is_List] : = Tota l [l i s] / Length[lis]

As expected we find

ExpectedValue[{1, 2, 3 , 4, 5}]

Now, if we load the package S t a t i s t i c s ' D e s c r i p t i v e S t a t i s t i c s ' in order
to use the Mathematica built-in function, we have to remove our definition
using Remove.

42 1 Panorama of Mathematica

Remove[ExpectedValue]

« S t a t i s t i c s ' D e s c r i p t i v e S t a t i s t i c s '

ExpectedValue[{1,2,3,4,5}]

ExpectedValue[{1,2,3,4,5}]

The result above shows that ExpectedValue does not work as the function
we defined. We can ask Mathematica to tell us why.

?ExpectedValue

ExpectedValue[f, l i s t] gives the expected value of the pure

function f with respect to the sample d i s t r i b u t i o n of l i s t .

ExpectedValue[f, l i s t , x] gives the expected value of the

function f of x with respect to the sample d i s t r i b u t i o n

of l i s t . More . . .

Because ExpectedValue [f, data] gives the expected value of the function
f with respect to the sample distribution of the data, we have, therefore, to
specify the function f which is represented below by a pure function.

ExpectedValue[(#)&, {1, 2, 3, 4, 5}]

Here is another example.

ExpectedValue[(#^)&, {1, 2, 3 , 4, 5}]

45

1.20 Packages

When working in a particular area, we may need functions that are not
built into Mathematica but that are defined in a Mathematica package

1.21 Programming 43

we need to load. For instance, the following command loads the package
PhysicalConstants.

«Misce l laneous 'Phys ica lCons tan t s '

The list of all the commands defined in this package is found entering the
command

?Miscel laneous 'PhysicalConstants '*

Here are a few examples.

AccelerationDueToGravity

9.80665 Meter

Second

PlanckConstant

6.62606876 x 10"^"^ Joule Second

ElectronMass

9.10938188 X 10~^^ Kilogram

1.21 Programming

1.21.1 Block and Module

The elaboration of a program is usually done in several steps, and intermedi
ate results have to be kept. The command Module [va r i ab les , expression]
is a very convenient construct to achieve this goal. One important feature
of this structure is that va r i ab le s are treated as local when they appear
in expression. Block [va r i ab les , expression] is a similar structure that,
however, behaves differently in the way it handles variables as illustrated be
low.

44 1 Panorama of Mathematica

Clear[x,

X = Pi/4;

Block[{x

y, u]

u : =

= Pi/2

Sin[x]

. y =

+ Cos

Pi/4},

[y]^2;

u+1]

5

2

Replacing Block by Module yields

Clear[x, y,

X = Pi/4; u

Module[{x =

u]

:= Sin[x]

Pi/2, y =

+ Cos

Pi/4}
[y] ~2;

, u+1]

1 o
1 + -— + Cos[y]^;

Sqrt[2] ^

In Block, u is replaced by its expression sm{x)-\-cos^(y) and u-\-lis evaluated
using the local values x = 7r/2 and y = n/A. In Module, because in li + 1 the
symbols x and y do not appear explicitly, they are not replaced by their local
values X = TT/2 and y = 7r/4, but when returning w + 1, Module replaces x
by its value 7r/4 and leave y unevaluated since no value had been assigned
to 2/- As shown above, variables can be assigned values inside the Block and
Module structures.

The following example shows the local character of a variable value defined
inside a Block.

Clear[x]

Block[{x = P i } , Cos[x]]

Cos [x]

-1

Cos [x]

Here is a more interesting example.

Block [{$DisplayFunction = I d e n t i t y } ,

p i = Plot [Sin [x] , {x, 0, 2 P i }] ;

p2 = P lo t [Cos[x] , X, 0, 2 P i] ;]

1.21 Programming 45

We already used DisplayFunction as an option for graphics functions that
specifies the function to apply to graphics in order to display them. The local
value I d e n t i t y for DisplayFunction suppresses the output to the screen. To
see the output to the screen, we have to use Show.

Show[pi, p2] ;

0 .5

- 0 . 5

Fig. 1.9. Graphs of sin x and cosx for x G [0,27r].

If we did not use Block [] , we should have entered

p i = P l o t [S i n [x] , {x, 0, 2 P i } , DisplayFunction -> I d e n t i t y] ;

p2 = Plot [Cos [x] , {x, 0, 2 P i } , DisplayFunction -> I d e n t i t y] ;

and then used the option DisplayFunction -> $DisplayF\mction, which
was not necessary when using Block because $DisplayFimction was a local
variable. Because $DisplayFunction gives the default setting for the option
DisplayFunction, the graphs are then displayed on the screen using the input:

Show[{pi, p2}, DisplayFunction -> $DisplayFunction];

The command Module has the same property. To see how to use it, it is prob
ably better to build up a simple program that exhibits its essential features.

In the section dedicated to hsts, we have obtained step by step the least-
squares fit of data represented by a list, using a combination of functions.
Given a data list, the function da taF i tP lo t , defined below, groups all the

46 1 Panorama of Mathematica

various steps together to find the best least-squares fit by a polynomial of
degree n in an interval defined by its lower and upper bounds and to plot on
the same graph the data points and the fitting curve.

da taF i tP lo t [data_List, degree_Integer, lowerBoundJleal,

upperBoundJleal] : =

Module[{lisPl, powerList, f i tFunc t ion , f i t P l , x } ,

l i s P l = L i s t P l o t [d a t a , DisplayFunction -> I d e n t i t y] ;

powerList = Table[x'^k, {k, 0, degree}];

f i tFunct ion = F i t [d a t a , powerList, x] ;

f i t P l = P lo t [f i tFunc t ion , {x, lowerBound, upperBound},

DisplayFunction -> I d e n t i t y] ;

Show[{lisPl, f i t P l } , DisplayFunction -> $DisplayFunction]]

We can use this program to find the least-squares fit of a list of values of the
cosine function including some noise in the interval [0, 27r].

Clear[data]

data = Table[{x, Cos[x] + 0 . 2 5 Random[]}, {x, 0, 2Pi , 0.2}]

{{0, 1.03372}, {0.2, 0.984004}, {0.4, 1.10815},

{0.6, 0.841229}, {0.8 , 0.918472}, { 1 . , 0.642946},

{1.2, 0.378395}, {1.4, 0.254044}, {1.6, 0.0212607},

{1.8 , -0.00621556}, {2 . , -0.352155}, {2.2, -0.361068},

{2.4, -0.502693}, {2.6, -0.838658}, {2.8 , -0.926133},

{ 3 . , -0.774244}, {3.2, -0.943265}, {3.4, -0.78986},

{3.6, -0.871707}, {3.8 , -0.564668}, {4 . , -0.445388},

{4.2, -0.463964}, {4.4, -0.127786}, {4.6, -0.0343247},

{4.8 , 0.262035}, { 5 . , 0.306022}, {5.2, 0.710974},

{5.4, 0.696627}, {5.6, 0.978336}, {5 .8 , 1.05524},

{6 . , 1.18659}, {6.2, 1.2244}}

Note that because we have chosen to represent the lowerBound and upperBound
variables as real numbers, they should be written 0. and N [2Pi] and not sim
ply 0 and 2Pi.

1.21 Programming 47

Using the Module construct to define a function F of the variables x, y, . . .
that needs to first determine an expression e l involving x, y, . . ., then an
expression e2 involving e l and possibly x, y, . . . , we observe that we have
to use a structure of the form F[x_, y_,. . .] := Module [{el , e2, . . . } ,
body] where in body are defined the intermediate expressions e l , e2, in terms
of X, y, . . . , and previously defined expressions.

The definitions of each intermediate expression must end with a semicolon
(;), and all intermediate expressions have to be listed in the first argument of
the module. When defining the intermediate expressions, built-in functions or
user-defined functions (previously defined) can be used. Note that there is no
semicolon after the last command which represents the required final output.

da taPi tP lo tEdata , 3 , 0 . , N[2Pi]]

1.5

0 . 5

- 0 . 5

Fig. 1.10. Least-squares fit of the data above.

1.21.2 Collatz P rob lem

We first build up a few functions to study the so-called Collatz problem. Also
known as the 3x + 1 problem, the Collatz problem is the following conjecture.
Starting from any positive integer n, if this integer is even, divide it by 2, if it is
odd multiply it by 3, add 1 and then divide the result by 2. Iterating this pro
cess, the sequence of integers thus obtained falls into the cycle 1,2,1,2,1,
For a very detailed review of the Collatz problem, consult Lagarias [29].

Mathematically, this means that the sequence of iterations of the Mathematica
function:

Col la tz [n_?OddQ] := (3n + 1) / 2

Collatz[n_?EvenQ] := n / 2

48 1 Panorama of Mathematica

falls into the cycle 1,2,1,2,1,

Using an If statement we can also define the CoUatz function a bit differently
by

Col la tz[n_Integer?Posi t ive] := I f [Evenq[n] , n / 2 , (3n + l) / 2]

The statement If [condi t ion, t , f] gives t if condition evaluates to True,
and f if it evaluates to False. Consider an example.

NestListCCollatz, 67, 25]

{67, 101, 152, 76, 38, 19, 29, 44, 22, 11, 17, 26, 13, 20, 10,

5, 8, 4 , 2, 1, 2, 1, 2, 1, 2, 1}

Nest [f, express ion, n] gives the result of applying f n times to expression.
NestLis t [f , expression, n] gives a list of the results of applying f to
expres
sion from 0 through n times.

If we define the length of a Collatz sequence as the smallest integer i such
that the ith iterate equals 1, the following function may be used to determine
this length.

CollatzSequenceLength [n_Integer] : =

Module[{k = n, 1 = 1 } ,

WhileC k != 1, k = Collatz[k]; 1 = 1 + 1]; 1]

CollatzSequenceLength[67]

20

CollatzSequenceLength [2''50 - 1]

384

We can also find the Collatz sequence as the sequence of iterates ending with
the first iterate equal to 1.

1.21 Programming 49

CollatzSequence [n_Integer?Posit ive] : =

Module [{nl = n, 1 = {n}},

While[n l != 1, nl = C o l l a t z [n l] ; 1 = Append[l ,n l]] ; 1]

Append [expression, element] gives expression with element appended.

CollatzSequence[45]

{45, 68, 34, 17, 26, 13, 20, 10, 5, 8, 4 , 2, 1}

CollatzSequence[1453]

{1453, 2180, 1090, 545, 818, 409, 614, 307, 461, 692, 346, 173,

260, 130, 65, 98, 49, 74, 37, 56, 28, 14, 7, 11, 17, 26, 13, 20,

10, 5, 8, 4, 2, 1}

We can test the Collatz conjecture on all integers between 1 and 10 000 000
with the following function. We verify that the tested list has actually the
correct length.

CollatzSequenceLengthList =

Table[CollatzSequenceLength[k], {k, 1, 10000000}]; / / T i m i n g

Length[CollatzSequenceLengthList]

{ll.0539Second, Null}

10000000

1.21.3 Generalizing the Collatz Problem

In this section the reader will discover how Mathematica is particularly help
ful for suggesting conjectures while we try to generahze the famous Collatz
conjecture.

For an initial value n, instead of considering if n is either odd or even (that is,
if n mod 2 is either equal to 0 or 1), we consider if n mod 3 is equal to 0 or 1
or 2. The simplest generalization is then the following Collatz-type function.

50 1 Panorama of Mathematica

Collatz3[E

Mod[n,

ModEn,

Mod[n,

3]

3]
3]

L_Integer?Positive] : =

== 0,

== 1.

== 2,

n / 3,

(4 n +

(4 n +

2)

1)

/ 3.

/ 3]

Which[

Let us first study a few examples.

Table[NestLis t [Col la tz3 , k, 12] , {k, 1,10}]//TableForm

1
2
3
4
5
6
7
8
9

2
3
1
6
7
2
10
11
3

3
1
2
2
10
3
14
15
1

1
2
3
3
14
1
19
5
2

2
3
1
1
19
2
26
7
3

3
1
2
2
26
3
35
10
1

1
2
3
3
35
1
47
14
2

2
3
1
1
47
2
63
19
3

3
1
2
2
63
3
21
26
1

1
2
3
3
21
1
7
35
2

2
3
1
1
7
2
10
47
3

3
1
2
2
10
3
14
63
1

1
2
3
3
14
1
19
21
2

10 14 19 26 35 47 63 21 10 14 19 26

On these few examples, we find that iterating the function CollatzS we find ei
ther 1 and then the periodic sequence 1 , 2 , 3 , 1 , 2 , 3 , 1 , . . . o r ? and then the
periodic sequence 7 ,10 ,14 ,19 ,26 ,35 ,47 ,63 ,21 ,7 ,10 ,14 , If we conjec
ture that these are the only possibilities, we define a generalized Collatz3Se-
quence as a sequence of iterates ending either with 1 or by 7

Collatz3Sequence [n_Integer?Posit ive] : =

Module[{nl = n, 1 = {n}}.

While[(nl != 1) && (nl != 7) ,

nl = Collatz3[nl]; 1 = Append[1, nl]]; 1]

Collatz3Sequence[572]

{572, 763, 1018, 1358, 1811, 2415, 805, 1074, 358, 478, 638, 851,

1135, 1514, 2019, 673, 898, 1198, 1598, 2131, 2842, 3790, 5054,

6739, 8986, 11982, 3994, 5326, 7102, 9470, 12627, 4209, 1403, 1871,

2495, 3327, 1109, 1479, 493, 658, 878, 1171, 1562, 2083, 2778, 926,

1235, 1647, 549, 183, 61, 82, 110, 147, 49, 66, 22, 30, 10, 14, 19,

1.21 Programming 51

26, 35, 47, 63, 21 , 7}

Collatz3Sequence[327]

{327, 109, 146, 195, 65, 87, 29, 39, 13, 18, 6, 2, 3 , 1}

These two examples do not prove anything. Let us define, as for the stan
dard Collatz problem, the function Collatz3SequenceLength and test many
positive integers to check that the sequence does only end with 1 or 7.

Collatz3SequenceLength[n_Integer?Positive]

Module[{nl = n, 1 = 1},

While[(nl != 1) && (nl != 7) ,

n l = C o l l a t z 3 [n l] ; 1 = 1+1]; 1]

Collatz3SequenceLengthList =

Table[Collatz3SequenceLength[k], {k, 1, 100000}]; //Timing

Length[Collatz3SequenceLengthList]

{67.5151 Second, Null}

100000

Here is another generalized Collatz conjecture.

Starting from any positive integer, by applying repeatedly the function
Collatz4[n_Integer?Posi t ive] defined by

Collatz4 !n_Integer?Positive] :=

Which[Mod[n,4]

Mod[n,4]

Mod[n,4]

Mod[n,4]

== 1,
== 2.

== 3 ,

==

(5

(5

(5

0, n /

n + 3)

n + 2)

n + 1)

4,

/ 4,

/ 4,

/ 4]

we find either 1 and then the periodic sequence 1, 2, 3 , 4 , 1, 2, 3 , 4,
1, . . . or 23 and then the periodic sequence 23, 29, 37, 47, 59, 74, 93,
117, 147, 184, 46, 58, 73, 92, 23, 29, 37,

If we assume that these are the only possibilities, we can define a generahzed
Collatz4Sequence as a sequence of iterates ending either with 1 or 23.

52 1 Panorama of Mathematica

Collatz4Sequence [n_Integer?Posit ive] : =

Module[{nl = n, 1 = {n}},

While[(nl ! = !) & & (nl != 23) , n l = C o l l a t z 4 [n l] ;

1 = Append[l ,n l]] ; 1]

Collatz4Sequence[3879]

{3879, 4849, 6062, 7578, 9473, 11842, 14803, 18504, 4626, 5783,

7229, 9037, 11297, 14122, 17653, 22067, 27584, 6896, 1724, 431,

539, 674, 843, 1054, 1318, 1648, 412, 103, 129, 162, 203, 254, 318,

398, 498, 623, 779, 974, 1218, 1523, 1904, 476, 119, 149, 187, 234,

293, 367, 459, 574, 718, 898, 1123, 1404, 351, 439, 549, 687, 859,

1074, 1343, 1679, 2099, 2624, 656, 164, 41, 52, 13, 17, 22, 28, 7,

9, 12, 3, 4, 1}

Collatz4SequenceLength [n_Integer?Positive] : =

Module[{nl = n, 1 = 1 } , While[(nl != 1) && (nl != 23),

nl = Collatz4[nl]; 1 = 1+1]; 1]

Collatz4SequenceLength[3879]

78

Collatz4SequenceLengthList =

Table[Collatz4SequenceLength[k], {k, 1, 100000}];//Timing

Length[Collatz4SequenceLengthList]

{78.7616 Second, Null}

100000

Conjecture: Starting from any positive integer, iterating the generalized Col-
latz function:

CollatzK[k_Integer, n_Integer?Posi t ive] : =

If [Mod[n, k] == 0, n /k , ((k+1) n + k - Mod[n, k]) /k]

1.21 Programming 53

we find either 1 and then the periodic sequence 1, 2, . . . , k, 1, 2,. . . , k, 1,
2, . . . or other periodic sequences.

The s tandard CoUatz function is Collatz[2,n].

N e s t L i s t [C o l l a t z K [2 , #] &, 4 5 , 12]

{45 , 6 8 , 34 , 17 , 2 6 , 13 , 20 , 10, 5 , 8 , 4 , 2 , 1}

We can verify tha t the C o l l a t z 3 [n] and C o l l a t z 4 [n] are, respectively, the
C o l l a t z K [3 , n] and C o l l a t z K [4 , n] functions.

Let us consider a new one such as, for example, the Co l l a t zK [6 , n] function.
It can be shown tha t , s tart ing from any positive integer, we obtain one of the
following periodic sequences 1, 2, 3, 4, 5, 6, 1, 2, 3, . . . , or 23, 27, 32, 38, 45,
53, 62, 73, 86, 101, 118, 138, 23, 27, 32, . . . , or 88, 103, 121, 142, 166, 194,
227, 265, 310, 362, 423, 494, 577, 674, 787, 919, 1073, 1252, 1461, 1705, 1990,
2322, 387, 452, 528, 88, 103, 121,

And we could s tudy sequences of iterates of Co l l a t zK [6 , n] using the func
tion Col la tzKSequence [6 , n] defined by

Col la tzKSequence [6 , n _ I n t e g e r ? P o s i t i v e] : =

Module[{nl = n , 1 = {n}} .

Whi le [(n l 1) && (n l != 23) && (n l != 8 8) ,

n l = C o l l a t z K [6 , n l] ; 1 = A p p e n d [l , n l]] ; 1]

Here are three illustrative examples.

C o l l a t z K S e q u e n c e [6 , 2154]

{2154, 359 , 419 , 489 , 5 7 1 , 667 , 779 , 909 , 1061 , 1238, 1445, 1686,

2 8 1 , 328 , 3 8 3 , 447 , 522 , 8 7 , 102, 17 , 2 0 , 24 , 4 , 5 , 6 , 1}

C o l l a t z K S e q u e n c e [6 , 569]

{569, 664 , 7 7 5 , 905 , 1056, 176, 206 , 2 4 1 , 282 , 4 7 , 5 5 , 6 5 , 7 6 ,

8 9 , 104, 122, 143 , 167, 195, 228 , 3 8 , 4 5 , 5 3 , 6 2 , 7 3 , 8 6 , 1 0 1 ,

118, 138, 23}

54 1 Panorama of Mathematica

CollatzKSequence[6, 5714]

{5714, 6667, 7779, 9076, 10589, 12354, 2059, 2403, 2804, 3272,

3818, 4455, 5198, 6065, 7076, 8256, 1376, 1606, 1874, 2187, 2552,

2978, 3475, 4055, 4731, 5520, 920, 1074, 179, 209, 244, 285, 333,

389, 454, 530, 619, 723, 844, 985, 1150, 1342, 1566, 261, 305,

356, 416, 486, 81, 95, 111, 130, 152, 178, 208, 243, 284, 332,

388, 453, 529, 618, 103, 121, 142, 166, 194, 227, 265, 310,

362, 423, 494, 577, 674, 787, 919, 1073, 1252, 1461, 1705, 1990,

2322, 387, 452, 528, 88}

Numbers

2.1 Characterizing Numbers

The command NumberQ [expression] gives True if expression is a number,
and False otherwise

{NumberQ[5], NumberQ[2/3], NumberQ[3.7], NumberQ[Hello]}

{True, True, True, False}

General Remark: Many commands ending with capital Q test if an expres
sion is of a specific type such as, for example, IntegerQ [expression], EvenQ
[expression], OddQ[expression], PrimeQ[expression], and so on, which
test, respectively, if expression is an integer, an even integer, an odd integer,
a prime number, and so on.

{IntegerQ[7629], IntegerQ[2/3], IntegerQ[5.78]}

{True, False, False}

{EvenQ[46],EvenQ[51]}

{True, False}

{OddQ[46], OddQ[51]}

56 2 Numbers

{False, True}

{PrimeQEll], PrimeQ[14]}

{True, False}

Mathematica manipulates four types of numbers: reals, integers, rationals, and
complex numbers.

2.2 Real Numbers

When, for example, we cannot find the exact solution to an equation, we have
to use numerical routines to obtain an approximate numerical solution. In
the first chapter we defined Prec is ion and Accuracy which are respectively
related to the relative error and absolute error by the formulas

relative error = IQ-P'̂ ^ îsî ^ and absolute error = IQ-Accuracy

In general, real numbers use machine precision. This precision is given by the
command:

$MachinePre c i s i on

15.9546

Hence adding 10 ^̂ to a machine-precision real number does not change this
number value!

{N[Sqrt [2]] / /FullForm, N[Sqrt[2]+10^(-16)]

FullForm, N [Sqrt [2] +10-̂ (-15)] //FullForm}

{1.4142135623730951', 1.4142135623730951', 1.4142135623730963'}

Instead of using $MachinePrecision, users can manipulate numbers with any
number of significant digits.

{Prec is ion[N[Pi]] , Precis ion[N[Pi ,100]]}

2.2 Real Numbers 57

{MachinePrecision, 100.}

The command N[number, n] allows us to carry out computations using
number with precision n.

Precis ion[N[Sqrt[5] , 30]]

Precis ion[(NCSqrt[5] , 30])'^100]

30.

28.

Note that the precision on the approximate value of {^/5y^^ is less than the
precision on the approximate numerical value of \ /5 .

The command N [number, n] can also be entered as number' n.

{0 .7 '30 , 0 .7 '30 + 10' '(-30)}

{0.700000000000000000000000000000,

0.700000000000000000000000000001}

If we have to manipulate numbers whose values lie in a certain interval,
such as experimental results, we can use the command In t e rva l [{minimum,
maximum}].

r e s u l t = I n t e r v a l [{ 1 . 9 , 2.1}] + I n t e r v a l [{ 1 . 4 , 1.6}]

I n t e r v a l [{ 3 . 3 , 3.7}]

Min[{xl, x2, . . . }] yields the numerically smallest of the list {xl , x2,
. . .} and Max [{xl, x2, . . .}] yields the numerically largest of the list {xl ,
x2, . . . } .

{Min [r e s u l t] , Max[result]}

{3.3, 3.7}

Real numbers are displayed with six digits. But we can use Number Form [expres
s ion , n] to ask Mathematica to display more or fewer digits.

58 2 Numbers

{N[Sqrt [2]] , NumberForm [N [Sqrt [2]] , 4] ,

NumberForm[N[Sqrt[2]] , 12]}

{1.41421, 1.414, 1.41421356237}

2.3 Integers

There exist three functions that convert real numbers into integers. Floor [x]
gives the greatest integer less than or equal to x. Cei l ing [x] gives the smallest
integer greater than or equal to x. Round [x] gives the integer closest to x.

{Floor [4.49],

{4, 5, 4}

{Floor [4.51],

Ceiling [4.49],

Ceiling[4.51],

Round[4.49]}

Round[4.51]}

{4, 5, 5}

Every integer can be written as a product of its prime factors in a unique way.
Factor In teger [n] gives a list of the prime factors of the integer n, together
with their exponents,

FactorInteger[83406151]

{{31, 2} , {229, 1}, {379, 1}}

a result which can be verified:

83406151 == 31'^2 229 379

True

In 1832 Carl Priedrich Gauss (1777-1855) considered algebraic integers of the
form a+6i, where a and b are rational integers, called Gaussian integers. They

2.3 Integers 59

share many properties with ordinary real integers. For example, the sum, dif
ference, and product of two Gaussian integers are Gaussian integers. Gauss
proved that the Gaussian integers satisfy a generalized version of the fac
torization theorem. Although by default Fac tor ln teger [n] allows only real
integers, the option Gaussianlntegers —> True handles Gaussian integers.

{Fac to r ln tege r [4] ,

Fac to r ln tege r [4 , Gaussianlntegers -^ True]}

{{2, 2}}, {{-1 , 1}, {1 + I . 4}}

hence

- (1 + I)'^4

True

Divisors [n] gives a list of the integers that divide n, including 1 and n.

Divisors[1364]

{1 , 2, 4 , 11, 22, 31 , 44, 62, 124, 341, 682, 1364}

Here are a few more integer functions:

Mod[k, n] gives the remainder from dividing k by n. Mod[k, n, d] uses an
offset d.

{Mod[3,3], Mod[3,3,l]}

{0, 3}

Instead of typing commands one can use the Palettes submenus BasicCalcu-
lation and AlgebraicManipulation (go to File -^ Palettes).

GCD [n l , n2, . . .] gives the greatest common divisor of the integers n l , n2,
. . . and LCM [nl , n2, . . .] gives the least common multiple of these integers.

GCD[72, 42, 18]

60 2 Numbers

6

LCM[22, 14, 8]

616

These functions apply also to rationals and Gaussian integers.

GCDCl/3, 2 /7 , 5/4]

1

84

LCM[4 + 3 I , 2 + I , 3 - I]

15 + 5 I

In tegerDig i t s [n] gives a list of the decimal digits in the integer n.
In tegerDig i t s [n, b] gives a list of digits in the integer n in base b.

IntegerDigits[27634]

{2, 7, 6, 3 , 4}

In tegerDig i t s [23 , 2]

{1, 0, 1, 1, 1}

Numbers can be displayed breaking the digits into blocks of a given length
separated by a specific string. For example, using the options DigitBlock
-> 5 and Number Separator -> " " for the command NumberForm, displays
numbers breaking the digits into blocks of length 5 separated by a space.

NumberForm[23!, DigitBlock -> 5, NumberSeparator -> " "]

258 52016 73888 49766 40000

2.4 Prime Numbers 61

2.4 Prime Numbers

Prime [n] gives the nth prime number. One is not a prime number; two is
therefore the first prime.

Table[Prime[n], {n, 1, 10}]

{2, 3 , 5, 7, 11, 13, 17, 19, 23, 29}

or simply

Prime[Range[10]]

{2, 3 , 5, 7, 11, 13, 17, 19, 23, 29}

PrimePi[x] gives the number of primes 7r(x) less than or equal to x. 7r(x)
is well approximated by the logarithmic integral function Loglntegral [x]
defined by li(x) = J^ l/\og{t)dt, where the principal value of the integral
(singular for x = 1) is taken.

Plot [{PrimePi[x], Loglntegral[x]}, {x, 1, 10000},

PlotStyle -> {{RGBColor[0, 0, 1] } , {RGBColor[l, 0, 0] } }] ;

2000 4000 6000 8000 10000

Fig. 2.1. Graph of 7r{x) and \i{x) for x G [1,10000].

PrimeQ [n] yields True if n is a prime number, and False otherwise.

{PrimeQ[56509], PrimeQ[4745443]}

62 2 Numbers

{True, False}

We can also use n G Primes, where G is entered as \ [Element].

56509 G Primes

4745443 G Primes

True

False

PrimeQEn, Gaussianlntegers —> True] yields True if n is a Gaussian prime,
and False otherwise

PrimeQ[2, Gaussianlntegers -^ True]

False

which is correct because

Fac tor In teger [2 , Gaussianlntegers -^ True]

{-I, 1}, {1 + I , 2}}

that is,

2 == - I (1 + I)'^2

True

2.5 Combinatorial Functions

Fac to r i a l and Binomial are two functions defined for integer arguments.

2.5.1 Factorial

n! or Factorial [n] gives the factorial of n equal to n{n — 1) (n — 2) . . . 1. The
notation n! = n{n — l)(n — 2) 3.2.1 is due to Kamp [27].

2.5 Combinatorial Functions 63

Table[n!, {n, 1, 10}]

{1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800}

For a noninteger or complex argument z, the numerical value of z! is given
by Gamma[1 + z] .

3 . 4 ! == = Gamma [4 . 4]

True

(2 . 1 + 4 . 5 I) ! == Gamma [3 1 + 4 5 I]

True

n! ! or Factorial2[n] gives the double factorial of n equal to n{n — 2)(n
4)

5 ! ! == 5 3 1 == F a c t o r i a l 2 [5]

True

6! ! == 6 4 2 == F a c t o r i a l 2 [6]

True

5 ! ! 6! ! = == 6!

True

2.5.2 Binomial Coefficients

Binomial [n, m] gives the binomial coefficient (^). Here are the first rows of
Pascal's triangle.

Table[Binomial[n,k], {n, 0, 10}, {k, 0, n}] / / TableForm

64 2 Numbers

1 1
1 2 1
1 3 3
1 4 6
1 5 10
1 6 15
1 7 21
1 8 28
1 9 36
1 10 45

1
4
10
20
35
56
84
120

1
5
15
35
70
126
210

1
6
21
56
126
252

1
7
28
84
210

1
8
36
120

1
9
4

Mathematica can evaluate exactly a few sums involving binomial coefficients.

Sum [Binomial [n, k] . {k. 0, n}]

2^

Sum[(Binomial[n k]) - 2 , {k. 0, n}]

/in .1 4" Gamma - H-n
^2 ^

Sqrt[Pi]Gamma[l + n]

Can we simplify this result?

FullSimplify [Sum [(Binomial [n, k])'^2, {k, 0, n}]]

4^ Gammaf- + nl
^2 ^

Sqrt[Pi]Gamma[l +n]

Apparently not. But, knowing some properties of the F function, we can show
that the result can take a much simpler form.

First

FullSimplify[Gamma[1+n] == n!]

True

2.5 Combinatorial Functions 65

then

FullSimplify[2'^n Gamma[l/2 + n] == (2*n - 1) ! ! Sqrt [Pi] , n G
In tegers]

True

Hence

4 ^ r (I + n) _ 2^(2n - 1)!! _ (2n)!
x/7r7(l + n) n! (n!)^ *

That is, the result above is just Binomial [2n, n] , and Mathematica can
verify it.

FullSimplify [Sum[(Binomial [n, k]) ' ' 2 , {k, 0, n}] ==

Binomial[2 n, n]]

True

Mathematica can also evaluate exactly the binomial sums:

Table [Sum [k'^r Binomial [n, k] , {k, 0, n}] ,

{r , 1, 5}]//TableForm

-1 + n

2 - 2 + n n (l + n)
2 - 3 + n j^2(3 + j^)

2 - 4 + n j^Q + n) (-2 + 5 n + n^)

2 - ^ + ^ n^C-lO + 15 n + 10 n^ + n^)

Here are sums involving the inverse of central binomial coefficients that Math
ematica can, surprisingly, evaluate exactly.

Sum[l / Binomial[2n, n] , { n , l , In f in i ty}]

9 + 2 Sqrt [3] Pi

27

66 2 Numbers

Sum[l/(n Binomial[2n,n]), {n, 1, Inf ini ty}]

Pi
3 Sqrt[3]

2.6 Rational Numbers

Is it possible to convert real numbers into rational numbers? Rationalize [x]
converts x into a fraction a/h such that |a/6 —x| < lO"'^/^^. Rationalize [x,
Z\x] converts x into a fraction with the smallest denominator that lies within
Ax.

Rationalize[3.14]

Rationalize[Pi, IC^C-G)]

157
"BO"

355
I l3

N[Pi - 355/113]

- 2.66764x10""^

The symbol {ni,n2, ns , . . . } associated with a real number x is its continued
fraction representation, which means that x — ni/(n2 + 1/(^3 "̂ •

The command Cont inuedFract ion [x, n] generates a list of the first n terms
in the continued fraction representation of x.

ContinuedFraction[Pi, 7]

{3, 7, 15, 1, 292, 1, 1}

This list of n terms represents the fraction:

13 + 1 / (7 + 1 / (1 5 + 1 / (292 -H 1 / 2)))

194849

62024

2.7 Complex Numbers 67

approximately equal to

N[3 + 1/(7 + 1/(15 + 1/(292 + 1/2)))]

3.14151

FromContinuedFract ion [l i s t] reconstructs a number from the list of its
continued fraction terms.

FromContinuedFraction[{3, 7, 15, 1, 292, 1, 1}]//N

3.14159

2.7 Complex Numbers

To enter the complex number we can type I equal to Sqrt [-1].

Sqrt[-1]

Here are a few basic functions.

z = 2 - 5 I ;
{Re[z] , Im[z], Conjugate[z], Abs[z], Arg[z]}

5
{2, - 5, 2 + 5 I , Sqrt[29], - ArcTan[-]

Evaluating expressions containing complex numbers is easy.

I (2 + I) + (5 - 3 I)

7 - 2 1

(7 - 1) (2 + 3 I)

68 2 Numbers

17 + 19 I

(3 + 2 I) / (5 - 3 I)

9 191

34 "34"

5.42 Exp[2.6 I] +

-7.91151 + 2.92999

ComplexExpand[(2 -

3.27 Exp[3.1

I

• 3 I)-^5]

I]

122 + 597 I

Sq r t [(3 - 5 I)'^2]

3 - 5 1

2.8 Different Bases

Mathematica can deal with numbers in different bases. BaseForm [niimber,
b] gives number in base b. number can be an integer, a rational, a real, or a
complex number.

{BaseForm[1457, 2] , BaseForm[1457,18]}

{IOIIOIIOOOI2, 48hi3}

The largest base is 36. It uses the 10 digits 0, 1,2, . . . , 9 and the 26 letters a,
b, c, . . . , z

BaseForm[2/3, 2]

2.8 DifTerent Bases 69

IO2

BaseForm[3.27, 2]

II.OIOOOIOIOOOIIIIOII2

BaseForm[21 + 57 I, 3]

2IO3 + 2OIO3 I

We can also enter a number n in any base b (less than 36) as b""n. Each digit
of n must be less than b.

{5-^^234101, 5 ' "^34. 21}

{8651, 19.44}

{3^^1201 + T' ̂ 101, 3 . . '1201 T -^101, 3^ ^1201 / 2- ^101}

{51, 230, —}
0

{3^^1201, 2^^101}

{46, 5}

Numerical calculations in any base can be done. The result is given in base
10.

{3^^1022 + 3^-^2011, 3^-^1022 3^^2011, 3^^1022 / 3^^2011}

35 .
{93, 2030, — }

bo ,

We can even mix bases. The result is again given in base 10.

{3-^-^212, 7-^^432, 3^^212 + 7-̂ -̂ 432}

70 2 Numbers

{23, 219, 242}

2.9 Calendars

A calendar may be viewed as some kind of positional number system (see next
section). For example, the date {1789,7,14} is the 14th day of the 7th month
(July) of the 1789th year. The package Miscellaneous 'Calendar ' provides
the following functions to help perform basic calendar operations.

«Misce l l aneous ' Calendar'

?Miscellaneous 'Calendar '*

Miscellaneous'Calendar'

Calendar

CalendarChange

DayOfWeek

DaysBetween

DaysPlus

EasterSunday

Friday

Gregorian

Islamic

JewishNewYear

Julian

Monday

Saturday

Sunday

EasterSundayGreekOrthodox Thursday

Tuesday

Wednesday

Calendar is an option for calendar functions indicating which calendar sys
tem to use: Gregorian, Jul ian, or Islamic. If set to Automatic, the Ju l i an
calendar is used before 2 September 1752, and the Gregorian calendar after
wards.

Calendar Change [date, calendar 1, calendar 2] converts a date in calendar 1
to a date in calendar2.

CalendarChange[{1789, 7, 14}, Gregorian, Islamic]

{1203, 10, 20}

DayOfWeek [date] gives the day of the week for the date.

2.10 Positional Number Systems 71

Day0fWeek[{l789, 7, 14}]

Tuesday

DaysBetween[datel, date2] gives the number of days between datel and

date2.

DaysBetween[{l769, 8, 15}, {1821, 5, 5}]

18890

Easter Sunday [year] gives the date of Easter Sunday in the Gregorian cal
endar.

EasterSunday[2006]

{2006, 4, 16}

JewishNewYear [year] gives the date of the Jewish New Year occurring in
the Christian year where 1900 < year < 2100. Add 3761 to the Christian year
to get the corresponding new Jewish Year.

{JewishNewYear[2006], DayOfWeek[JewishNewYear[2006]]}

{{2006, 9, 23}, Saturday}

2.10 Positional Number Systems

Positional number systems give compact representations of numbers. In such
systems, each number has a unique representation by an ordered sequence
of digits, the value of the number being determined by the position of the
digits and the base h of the system. For example, in base b the sequence of
digits dndn-i... d2dido (more exactly, this is a word in the 6-letter alphabet
{0,1,2,.. .}) represents the number

Nb = dnXb'' -\- dn-i X b''~'^ + • • • + (i2 X 6̂ + di X 6 + ĉ o.

This representation is very economical because we need only b different sym
bols to represent a number in base b.

72 2 Numbers

In the previous section we mentioned that a calendar is some kind of posi
tional number system. The difference with standard positional number sys
tems is that the representation of a date does not use a unique base b but a
sequence of bases {bi,b2,bs,.. .).ln a. multibase system the sequence of digits
dndn-i... ^2dido represents the number

^bib2b3... =dnX {bn X 6 n - l X • • • X 62 X 6 i)

+ dn-l X {bn-l X bn-2 X • • • X 62 X 61) + ' • '

+ ^2 X (62 X 61) + di X 61 + do-

Time intervals are usually represented in a multibase system. For example,

the time interval of 1,668,214 seconds is more conveniently represented in the

multibase (week, day, hour, minute, second) by the sequence (2, 5, 7, 23, 34)

meaning that 1668214 seconds = 2 weeks + 5 days + 7 hours + 23 minutes

+ 34 seconds because 34 + 23 x 60 -h 7 x 60 x 60 + 5 x 24 x 60 x 60 + 2

X 7 X 24 X 60 X 60 = 1,668,214.

Note that we did not define specific symbols but used decimal numbers to rep
resent the numbers of weeks, days, hours, minutes, and seconds. In a multibase
system, for all indices fc, the "digit" dk is in the range 0 to 6^-1- When the
multibase is finite, the first digit of the sequence—the number of weeks in the
example above—is in the range 0 to oo.

Let us build up a function of two variables: a number n and a finite multibase
b which gives the representation of the decimal number n in the multibase b.

We denote this function toMultibase[n_Integer, b -L i s t] . The image of a
pair (n, b) will be a finite sequence of length equal to Length [b] + 1.

We first note that if either the Ust b is empty or the number n is less than
the last digit of the hst b the sequence of digits representing n is just the
one-element list n.

If the list b is not empty and the number n is larger than the last element
of the list b, then the rightmost element of the sequence of digits is given by
Mod[n, LastCb]].

To find the next element we have to replace n by Floor [n / Last [b]] and
to prepend to the digit sequence the new digit obtained reapplying the func
tion Mod[n, Last [b]] where the original b list has been replaced by the
list DropEb, -1] which is the command that deletes the last element of the
original list b. To iterate this process and avoid confusion with the original
variables n and b, we use the local variables tempNumber and tempBase. In
the program below, we use the command Prepend [sequence, number] to add
number at the beginning of sequence.

2.11 Zeckendorf s Representation 73

toMultibase[n_Integer, b_List] : =

Module[{tempNumber = n, tempBase = b , digitSequence = {}, d} ,

While[Length[tempBase] > 0,

d = Mod[tempNumber, Last[tempBase]];

digitSequence = Prepend[digitSequence, d] ;

tempNumber = Floor [tempNumber/Last[tempBase]];

tempBase = D r o p [t e m p B a s e , - !]] ;

digitSequence = Prepend[digitSequence, tempNumber];

digitSequence]

For example,

toMultibase[1789, {12, 11, 10}]

{1, 4, 2, 9}

which means that

1789 == 9 + 2 X 10 + 4 X 11 X 10 + 1 X 12 X 11 X 10

True

We can use this toMultibase function to represent a time interval expressed
in seconds in the multibase {7, 24, 60, 60}. For example, the time interval
of 1,668,214 seconds is given by

toMultibase[1668214, {7, 24, 60, 60}]

{2, 5, 7, 23, 34}

On calendars, positional number systems, and how to write elegant Mathe-
matica programs see Vardi [61].

2.11 Zeckendorf s Representation

The Belgian medical doctor Edouard Zeckendorf (1901-1923) published sev
eral mathematical papers. His most famous one deals with the representation

74 2 Numbers

of any integer as a sum of nonconsecutive Fibonacci numbers [69]. More pre
cisely, Zeckendorf's theorem states that every integer n has a unique repre
sentation of the form

where kj > kj-\.i -h 2 for j = 1,2,.. . , r — 1 and kr < 2 . The Mathematica
command Fibonacci [n] gives the Fibonacci number F^. On how to write a
program generating the Fibonacci sequence, refer to Part I, Chapter 8.

To find the Zeckendorf representation we use the so-called "greedy" algo
rithm [24], choosing Fk^ to be the largest Fibonacci number less than or
equal to n, that is, such that F^^ < n < F/ci+i, then choosing Fk^ such
that Fk2 < n — F^^ < F^^^i, and so on. Another example of the greedy al
gorithm can be found in the chapter dedicated to Egyptian fractions. Note
that the relation 0 < n — F^^ < F^^^i — Fk^ — F^^-i implies the inequality
n — Fk^ < Ffci-i so Ffc2 < i^fci-i- That is, the greedy algorithm leads to a
representation of n by a sum of nonconsecutive Fibonacci numbers. Moreover,
the algorithm shows that the representation is unique. The Zeckendorf theo
rem leads, therefore, to what can be called the Fibonacci number system. Any
nonnegative integer n can, therefore, be represented by a unique sequence of
Os and Is writing

^ = {dmdm-l ' • • G!2)Fibonacci-

where all the digits dj are equal to 0 or 1, and this representation, which is
similar to the binary representation, is equivalent to the equality

m

Note that, according to the Zeckendorf theorem in the sequence of Os and Is
^2) we never find two adjacent Is.

In the Mathematica Help Menu, looking for Fibonacci, in the Further Exam
ples section we find the definitions of a few functions that can generate the
Zeckendorf representation. Here are these functions.

The function Leadinglndex [n] gives the largest integer k such that F^ does
not exceed n.

Leadinglndex [n_Integer'

Module [{k}, I f [n == 0,

For[k=2, Fibonacci[k]

n
k

n

0 &)]

= 2,

k++]; k-

: =

- ;] ; k]

Leadinglndex[45]

2.11 Zeckendorf's Representation 75

Fibonacci[9]

34

The function Zeckendorf Represent a t ion [n] gives the coefficients of the ex
pansion descending from the leading index.

ZeckendorfRepresentation[n_Integer?(# 0 &)] : =

Module[{i, k, 1, m,

k = 0; If[n == 0, r

1 = Leadinglndex[n]

k = Leadinglndex[m]

1}]}] ;
r = Flatten[{addon,

addon, r},

= {0}, If[n == 1, r = {!},

; m = n - Fibonacci[1];

; addon = Flatten[{1,Table[0, {i.

ZeckendorfRepresentation[m]}]]];

k + 2,

r]

Here is the Zeckendorf representation of 45.

ZeckendorfRepresentation[45]

{1, 0, 0, 1, 0, 1, 0, 0}

The function f f [Zrepresentat ion] gives the Fibonacci numbers correspond
ing to the Zeckendorf representation Zrepresentat ion.

f f [Zrepresen ta t ion .] : =

Fibonacci[2 + Length[Zrepresentation] -

F i r s t / OPosi t ion[Zrepresentat ion, 1]]

f f [{ l , 0, 0, 1, 0, 1, 0, 0}]

{34, 8, 3}

Algebra

3.1 Algebraic Expressions

Expand [expression] expands products and positive integer powers in expres
sion.

Expand[3^4]

81

Expand[(a + b)^3]

a^ -h 3 a^ b + 3 a b^ + b^

Expand[(a - b) (a + b)]

a2 - b 2

Expand[(t^2 - 5)'^3 / . t -> (a - b)^2]

- 125 + 75 a"̂ - 15 a^ -h a^^ _ 300 a^ b + 120 a"̂ b - 12 a^^ b +

450 a^ b^ - 420 a^ b^ + 66 a^^ b^ - 300 a b^ + 840 a^ b^ -

220 a^ b^ + 75 b"̂ - 1050 a"̂ b"̂ + 495 a^ b^ + 840 a^ b^ -

792 ^ b^ - 420 a^ b^ + 924 a^ b^ + 120 a b*̂ - 792 a^ b"̂ -

78 3 Algebra

15 b^ + 495 a.^ b^ - 220 a^ b^ + 66 a^ b^^ -

12 a b^^ + b^2

ExpandAll [expression] expands everything including denominators.

ExpandAll[(a + b)^3 / (a - b)'^2]

a ̂ Sa^b 3ab2
+ -^ o +

a? - 2ab + b^ a? - 2ab + b^ a^ - 2ab + b^

b3

a? - 2ab + b^

FunctionExpand [expression] expands special functions. It accepts assump
tions.

{FunctionExpcind [Log [a b]] ,

FunctionExpand[Log[a b] , a > 0 && b > 0]}

{Log [a b] , Log [a] + Log[b]}

In the first case, FunctionExpand cannot find a simpler result. In order to
give the second result, it needs more information about a and b.

Factor [polynomial] factors a polynomial over the integers.

Factor [a^3 + 3 a'̂ 2 b + 3 a b^2 + b^3]

(a + b)3

ComplexExpand [expression] expands expression assuming that all vari
ables are real.

ComplexExpand [(a + I b)' '3]

a^ - 3 a b^ -h I (3 a^ b - b^)

Cancel [expression] cancels out common factors in the numerator and de
nominator of expression. Simplify [expression] returns the simplest form
it finds.

3.1 Algebraic Expressions 79

Cancel [(a + b)^3 / (a'̂ 2 - b'̂ 2]

Simplify [(a + b)'^3 / (a'̂ 2 - b^2]

(a + b)^

a - b

(a + b)^

a - b

Simplify accepts assumptions.

{Simplify [Sqrt [a'^2]] , Simplify [Sqrt [a'^2] , a < 0] }

{Sqrt[a^] , - a}

We can also use Assuming

Assuming[a < 0, Simplify[Sqrt[a^2]]]

- a

FullSimplif y [expression] tries a wider range of transformations on expres
sion involving elementary and special functions.

Simplify[(n + 1) Factorial[n]]

(1 + n) n!

FullSimplify[(n + 1) Factorial[n]]

Gamma [2 + n]

Together [expression] puts terms in a sum over a common denominator,
and cancels factors in the result.

Together[a'^2 / (a + b) + b'̂ 2 / (a - b)]

80 3 Algebra

a^ - a^b + ab^ + b^

(a - b) (a + b)

Numerator [expression] and Denominator [expression] give, respectively,
the numerator and the denominator of expression.

a3
Numerator[

- a^b + ab^ -h b^

(a - b) (a + b)

a'̂ - a^b + ab^ -f b^

a^ - a^b + ab^ + b^
Denominator [; ^]

(a - b) (a + b)

(a - b) (a + b)

Apart [expression] rewrites a rational expression as a sum of terms with
minimal denominators.

Apart[
a^ - a^b + ab^ + b^ .

(a - b) (a + b) •

2 2
a^ a^ + - a + b a + b

Apart [expression, var iab le] treats all variables other than va r i ab le as
constants.

ax + b (x - l)
Apart [— , x]

x(x - 1)

a b
+ - 1 + x X

We have seen that Factor [polynomial] factors polynomial over the inte
gers; using the option Gaussianlntegers -^ True we can also factor over
Gaussian integers.

3.1 Algebraic Expressions 81

{Factor[a^2+b^2] , Factor[â 2+b'̂ 2, Gaussianlntegers -̂ True]}

.2 ̂ K2 {â + b^, (a-I b) (a+I b)}

Collect [expression, x] collects together terms involving the same powers
of objects matching x.

Co l l ec t [(a + b x) (c + d x) , x]

a c + (b c + a d) x + b d x ^

Collect [expression, x, f] applies f to the expression that forms the co
efficient of each term obtained.

Co l l ec t [(a + b x) (c + d x) , x, f]

f [a c] + x^ f [b d] + X f [b c -f a d]

If the function f is defined, Collect uses this definition.

f = Function[y, y'^S] ;

Co l l ec t [(a + b x) (c + d x) , x, f]

a^ c^ -h (bc + ad)^ x + b^ d^ x^

Coefficient [expression, x] gives the coefficient of x in expression.

Coeff ic ient [a c + (b c + a d) x + b d x^, x]

b c + a d

Coefficient [expression, x, n] gives the coefficient of x^ in expression.

Coeff ic ient [a c + (b c + a d) x + b d x^, x, 0]

a c

82 3 Algebra

Coeff ic ient [a c + (b c + a d) x + b d x^, x, 2]

b d

Coeff ic ientLis t [polynomial, x] gives a list of coefficients of powers of x
in polynomial starting with power 0.

Coeff ic ientLis t [a c + (b c + a d) x + b d x'^, x]

{a c, b c + a d, b d}

Exponent [expression, var iab le] indicates the maximum power of va r i
able in expression.

Exponent [3 x'^3 + 5 x'̂ 2 - 2 x, x]

PowerExpand may give an incorrect result and does not take into account
assumptions!

{PowerExpand [Sqrt[a'^2]] , PowerExpand [Sqrt[a'^ 2] , a < 0]

{a, Sqr t [a2]}

3.2 Trigonometric Expressions

TrigFactor [expression] and TrigExpand [expression] factor trigonomet
ric functions in expression. They both work on circular and hyperbolic func
tions.

TrigFactor[Sin[2x]]

2 Cos[x] Sin[x]

3.2 Trigonometric Expressions 83

TrigFactor [Sinh [2x]]

2 Cosh[x] SinhCx]

We obtain the same result with Factor [expression] if we use the option
Trig -^ True.

Factor[Sin[2 x] , Trig -^ True]

2 Cos[x] Sin[x]

Compare the results obtained with either TrigFactor or TrigExpand.

TrigFactor[Cos[2x]]

TrigExpand[Cos[2x]]

(Cos[x] - Sin[x]) (Cos[x] + Sin[x])

Cos[x]2 - Sin[x]2

TrigExpand[Sinh[2x]]

Cosh[x]2 + Sinh[x]2

Factor[Sin[3 x] , Trig -^ True]

(1 + 2 Cos [2 x]) Sin[x]

TrigExpand[Sin[3 x]]

3 Cos[x]'^ Sin[x] - Sin[x]^

TrigExpand[Cosh[3 x]]

Cosh[x]^ + 3 Cosh[x] Sinh[x]2

84 3 Algebra

TrigReduce [expression] rewrites products and powers of trigonometric
functions in expression in terms of trigonometric functions with combined
arguments. It works on circular and hyperbolic functions.

TrigReduce[Cosh[x] ̂2 -- Sinh[x] ̂2]

1

TrigReduce[Cosh[x] ̂4 -- Sinh[x] ̂4]

Cosh[2 x]

TrigToExp [expression] converts trigonometric functions in expression to
exponentials and ExpToTrig [expression] converts exponentials in expres
sion to trigonometric functions.

TrigToExp[Cos[2 x] + Sinh[2 x]]

:̂ E -2 X + - E-2 I X ^ :̂ £.2 I X ^ i E2 X
2 2 2 2

ExpToTrig [(Exp[2 x] - 1) / (Exp[2 x] + 1)]

- 1 + Cosh[2x] + Sinh[2x]

1 + Cosh[2x] + Sinh[2x]

Sometimes we have to use Simplify for a simpler result.

{ExpToTrig[(Exp[2 x] - 1) / (Exp[2 x] + 1)] , ExpToTrig[(Exp[2
x] - 1) / (Exp [2 x] + 1)] / / Simplify}

, - 1 + Cosh 2x + Sinh 2x
{ r—r r—r-y Tanh[x]}
^ 1 + Cosh 2x -f Sinh 2x ^

TrigToExp [expression] also works in the following cases.

TrigToExp[ArcTan[x]]

3.2 Trigonometric Expressions 85

1 1
- I LogCl - I x] - - I LogCl + I x]

TrigToExp[ArcTanh[x]]

1 1
- LogEl - x] + - Log[l + x]

Simplify [Sin [n P i]]

Sin[n Pi]

Here Mathematica does not assume any specific property for the symbol n. If
we tell Mathematica that n is an integer, then we get the expected result.

Simplify[Sin[n P i] , n G Integers]

We can also use complex arguments.

{Sin[I P i] , Exp[I Pi / 2]}

{I S inh [P i] , 1}

When using approximate numerical values, we can obtain spurious small val
ues due to round-off errors. Chop [expression] replaces approximate real
numbers less than 10~^° in expression by 0. The default tolerance of 10~^^
can be changed to A using the command Chop [expression. A].

{Exp [I N[Pi] / 2] , Chop [Exp [I N[Pi] / 2]]}

{6.12323 10"^*^ -h 1. I , 1. 1}

Here is a simple relation that has been used to calculate TT.

FullSimplify[ArcTan[l / 2] + ArcTan[l / 5] + ArcTan[l / 8]]

86 3 Algebra

Pi

T

3.3 Solving Equations

3.3.1 Solving Polynomial Equations Exactly

Linear, quadratic, cubic, and quartic polynomial equations can be solved in
terms of radicals. There is no solution for general polynomial higher-degree
equations in terms of radicals. Some particular polynomial equations of degree
higher than four can however be solved in terms of radicals. In 1829 Evariste
Galois (1811-1832) submitted articles to the French Academie des Sciences on
the algebraic solution of equations, and a new article in 1830 entitled Memoire
sur les conditions de resolubilite des equations par radicaux (On the condition
that an equation be soluble by radicals) which gave rise to the field of Galois
theory.

Solve [equations, variables] attempts to solve an equation, or a system
of equations, where variables stands for the list of unknowns. Mathematica
gives exact solutions to linear, quadratic, cubic, and quartic equations. Equa
tions are given in the form Ihs === rhs. Solve gives solutions in terms of rules
of the form {x —> solution}.

Solve [a x'̂ 2 + b x + c == 0, x]

- b - Vb^ - 4ac ^ ^ - b -h >/b^ - 4ac , ,
{{X - } . {X - }}

The general quintic equation is not solvable by radicals.

Solve [a x^5 + b x^4 + c x'̂ 3 + d x''2 + e x + f == 0, x]

X

RootCf + e #1 -h d #2 -h c #1^ -f b #'̂ -h a #^ &, 1]},

RootCf -h e #1 + d #2 -h c #1^ + b #'̂ -h a #^ &, 2]},

X -^ RootEf -h e #1 + d #2 -f- c #1^ + b #'̂ -h a #^ &, 3]},

X -> RootCf + e #1 -h d #2 -h c #1^ -h b #'̂ H- a #^ &, 4]},

X -̂ RootCf 4- e #1 -h d #2 + c #1^ + b #'̂ + a #^ &, 5]}}

3.3 Solving Equations 87

But some particular quintic equations are solvable by radicals. Here is an
example.

Solve[x'^5 - x'̂ 4 - x +1 == 0, x]

{{x -> - 1}, {x -> - I }, {x -> I } , {x -> 1}, {x -> 1}}

If the equations are not polynomial, Mathematica has to use inverse functions
and warns us that some solutions might be missing.

Solve[Exp[x] = = 2 , x]

Solve: :ifuii:

Inverse functions are being used by Solve,

so some solutions may not be found; use Reduce for

complete solution information. More

{{x -> Log[2]}}

Let us follow the advice and use Reduce.

Reduce[Exp[x] = = 2 , x]

C[l] G In tegers && x == (2 I) Pi C[l] + Log[2]

Because if n is an integer, exp(2ni7r) = 1, the command Reduce does give us
all the solutions! Here is another example.

Solve [Sin [x] == Cos[x], x]

Solve : : i fun: Inverse functions are being used by Solve,

so some so lu t ions may not be found; use Reduce for complete

so lu t ion information. More . . .

{{x -> } , {x -> —}}

88 3 Algebra

Reduce[Sin[x] == Cos[x], x]

C[l] G In tegers && (x == - 2 ArcTan[l + Sqr t [2]] + 2 Pi C[l]

II X == - 2 ArcTanEl - Sqr t [2]] + 2 Pi C[l])

Reduce[Sin[x] == Cos[x], x] / / FullSimplify

(Pi + 8 Pi C[l] == 4 X

I I Pi (- 3 + 8 C[l]) == 4 x) && C[l] e In tegers

Reduce can

Reduce[-

- 1 < X <

Reduce [{x

also be used to solve inequalities.

x'̂ 2 + 2 X

3

'̂ 2 + 3 X -

+ 3 > 0, x]

• 1 > 0, x^2 + X - 5 < 0} , x]

- 3 + Sqrt[l3] - 1 + Sqrt[2l]

Mathematica can also solve equations containing rational powers. For exam
ple,

eqn = (x - 1)^(1 / 2) == (x + 1)^(1 / 3) ;
Solve [eqn]

4 (7 3 - 6 Sqrt[87])^/^ (73 + 6 Sqrt[87])^/^

Actually, during the solving process of this type of equation, as a result of
algebraic manipulations such as raising expressions to various powers, spurious
solutions may arise. The command Solve verifies all solutions and eliminates
the wrong ones. We may exhibit all solutions including the wrong ones using
the option VerifySolutions -^ False.

so l = Solve[eqn, VerifySolutions -> False]

3.3 Solving Equations 89

n - ^ (7 3 - 6 Sqrt[87])^/^ (73 + 6 Sqrt[87])^/^
^^^ ^ 3 "̂ 3 "̂ 3 ^ '

4 _ (l + I Sqrt[3]) (7 3 - 6 Sqrt[87])^/^

^^ ^ 3 6 ~

(l - I Sqrt[3]) (73 + 6 Sqrt[87])^/^

6 ^'

4 __ (l - I Sqrt[3]) (7 3 - 6 Sqrt[87])^/^

^^ ^ 3 " 6

(l + I Sqrt[3]) (73 + 6 Sqrt[87])V^

We can verify that the extra solutions were wrong using the command
expression / . r u l e that applies a ru l e (or a list of rules) to expression.
Note that solutions are given by rules.

{eqn / . s o l [[2]] , eqn / . s o l [[3]] }

{False, False}

3.3.2 Numerica l Solutions

NSolve[equations, va r i ab les] gives a list of numerical approximations to
the roots of a polynomial equation or a system of polynomial equations.

NSolve[x^7 - 5 x'̂ S + 2 x'^4 - x^3 + 6 x - 12 == 0, x]

{{x -> - 2.3818}, {x -> - 1.29259}, {x -> - 0.16742 - 1.17335 1}

{x -> - 0.16742 + 1.17335 I }, {x -> 0.973189 - 0.630825 I},

{x -> 0.973189 + 0.630825 I }, {x -> 2.06286}}

NSolve[{x - 2 y = = 2 , x - y + 3 z = = - 2 , x + y - 2 z = = 0 } ,
{x, y, z}]

{{x -> - 0.545455, y -> - 1.27273, z -> - 0.909091}}

90 3 Algebra

NSolve[{ x^2 + 3 y-̂ S == 2, 2 x^3 - y == l } , {x, y}]

{{x -^ - 0.511668 + 0.849668 I , y

{x -> - 0.511668 - 0.849668 I , y -

{x ^ - 0.152442 + 0.779731 I , y -

{x ^ - 0.152442 - 0.779731 I , y -

{x -^ 0.755431 - 0.214877 I , y ->

{x -^ 0.755431 + 0.214877 I , y ->

{x -^ 0.950077, y -^ 0.715169},

{x -> - 0.56636 - 0.501715 I , y -^

{x ^ - 0.56636 -f- 0.501715 I , y -^

-> 0.948437 + 0.107866 I } ,

y 0.948437 - 0.107866 I },

> - 0.450997 - 0.839403 I } ,

y - 0.450997 + 0.839403 I } ,

- 0.347066 - 0.715907 I } ,

- 0.347066 + 0.715907 I } ,

- 0.507959 - 0.713011 I } ,

- 0.507959 + 0.713011 I}}

If equations involve more complicated functions we use FindRoot [eqn, {x,
xO}] that searches a solution to eqn starting with x = xO. Using Plot helps
to find the starting approximate solution xO to eqn.

Plot [{2 Cos[x], Tan[x]}, {x, - 1, 1}] ;

Fig. 3.1. Graphs of 2 cos{x) and tan(x) for x G [—1,1].

The output (Figure 3.1) shows that the solution is close to 1. We therefore
choose xO = 1.

FindRoot[2 Cos[x] == Tan[x], {x, 1}]

0.895907}

3.3 Solving Equations 91

Note that NSolve would have given correct solutions with, however, the usual
warning.

NSolve [2 Cos[x] == Tan[x] , x]

Solve : : i fun: Inverse functions are being used by Solve,

so some so lu t ions may not be found; use Reduce for complete

so lu t ion information. More . . .

{{x -> - 1.5708 - 0.732858 I } , {x -> - 1.5708 -h 0.732858 I } ,

{x -> 0.895907}, {x -> 2.24569}}

If here again we follow the advice and use Reduce, we find

Reduce[2 Cos[x] == Tan[x], x]

C[l] G In tegers &&

(x == 2 ArcTan[Root[l - #1 - 2 #1^ - #1^ -f #1^ & , 1]] -h

2 Pi C[l]

II X == 2 ArcTan[Root[l - #1 - 2 #1^ - #1^ + #1^^ & , 2]] +

2 Pi C[l]

II X == 2 ArcTan[Root[l - #1 - 2 #1^ - #1^ + #1"^ & , 3]] +

2 Pi C[l]

II X == 2 ArcTan[Root[l - #1 - 2 #1^ - #1^ + #1^ & , 3]] +

2 Pi C[l])

Reduce tells us that the equation has four solutions, but to find them we first
have to solve the polynomial equation 1 — x — 2x^ — x^ -\- x^ = 0.

sol = NSolve [1 - X - 2 x'̂ 2 - x^3 + x'^4, x]

{{x -> - 0.780776 - 0.624811 I } , {x -> - 0.780776 -h 0.624811 I } ,

{x -> 0.480534}, {x -> 2.08102}}

Hence, the solutions are

92 3 Algebra

{2 ArcTanW / . s o l [[l]] , 2 ArcTan[x] / . sol [[2]] , 2
ArcTanEx] / . so l [[3]] , 2 ArcTan[x] / . sol [[3]]

{ - 1.5708 - 0.732858 I , - 1.5708 -f 0.732858 I , 0.895907,

2.24569}

which are the solutions found using NSolve except that for the missing addi
tive factor 2n7r where n is an integer.

Consider another example.

Plot[{2 CosCx], (x - l)^2} , {x, - 0 .5 , 2 }] ;

Fig. 3.2. Graphs of 2 cos(x) and (x - if for x G [-0.5,2].

The graphs above show that the two solutions of the equation 2 cos(x) — {x —
1)^ are close to 1.5 and —0.4. We can increase the precision by including the
option WorkingPrecision ^ n to specify the number of digits that should
be used to carry out computations.

FindRoot[2 Cos [x] == (x-l)'^2, {x, 1 .5} ,

WorkingPrecision -^ 40]

{x -> 1.463276654181592645123727537628300964609}

FindRoot[2 Cos[x] == (x-l)'^2, {x, - 0 .4 } , WorkingPrecision
40]

{x

3.3 Solving Equations 93

0.3664571903448024777581452462984821489343}

In order to use Impl ic i tPlot to help solve simultaneous equations, we first
have to load the corresponding package:

« Graphics'ImplicitPlot'

pll = ImplicitPlot[2 x^2 + y^3 == 3, {x, - 3, 3}];

Fig. 3.3. Plot of 2x^ -j-y^ ==3 for x G [-3,3].

94 3 Algebra

pl2 = Impl i c i tP lo t [(x - 1)^2 + 3 y'^2 == 4, x, - 3 , 3] ;

Fig. 3.4. Plot of {x - if -h 3y^ == 4 for x e [-3,3].

Let us combine the two plots to visualize the approximate solutions.

Show[{pll, p l2}] ;

Fig. 3.5. Plots of 2x^ -h y^ == 3 and {x - 1)^ + 3y^ == 4 for x e [-3,3].

eqns = {2 x'̂ 2 + y'^3 == 3 , (x - 1)^2 + 3 y'̂ 2 == 4} ;

The plot above shows that there exist two solutions close to {x = l^y = 1)
and [x = l^y = —1).

s o i l = FindRoot[eqns, {x, 1}, {y, 1}]

3.4 Vectors and Matrices 95

{x -^ 0.857916, y -^ 1.15178}

sol2 = FindRoot[eqns, {x, 1}, {y, - 1}]

{x -> 1.48428, y -> - 1.12034}

We can check the solutions as above using the command expression / . ru le .

eqns / . s o i l

{True, True}

eqns / . sol2

{True, True}

If we know only that the value of a coefficient lies in a given interval, when
solving the equation, we can use In te rva l ; the solutions will then be expressed
in terms of intervals.

Solve [x'̂ 2 - 3 == In t e rva l [{1, 6}] , x]

{{x -> I n t e r v a l [{ - 3 , - 2}]} , {x -> In t e rva l [{2 , 3}]}}

3.4 Vectors and Matrices

Matrix algebra was first developed in the mid-nineteenth century by the En-
ghsh mathematician Arthur Cayley (1821-1895).

Vectors and matrices are, respectively, represented by lists and lists of lists.

Here are a two-dimensional vector v and a 2 x 2 matrix m.

V = {x, y}

m == {{a, b } , {c, d}}

96 3 Algebra

{x, y}

{{a, b } , {c, d}}

TableFormCm]

a b
c d

Matrix elements are parts of the list of lists

m [[l , l]]
m[[l , 2]]

m[[2 , l]]
m[[2,2]]

a

b

c

d

We can also use the function Array to define vectors, matrices, and, more
generally, tensors.

Array[V, 5]

{V[l] , V[2], V[3], V[4], V[5]}

The third element of Array gives the index origin if different from one.

Array[V, 5, 0]

{V[0], V [l] , V[2], V[3], V[4]}

Array[M, {3, 5}]

3.4 Vectors and Matrices 97

{{M[l, 1] , M[l. 2] , M[l, 3] , M[l, 4] , M[l, 5] } ,

{M[2, 1] , M[2, 2] , M[2, 3] , M[2, 4] , M[2, 5] } ,

{ M[3, 1] , M[3, 2] , M[3, 3] , M[3, 4] , M[3, 5]}}

Array[T, {4, 3 , 5}]

{{{T[l , 1, 1] , T[l , 1, 2] , T[l , 1, 3] , T[l , 1, 4] , T[l , 1, 5] } ,

{T[l , 2, 1] , T[l , 2, 2] , T[l , 2, 3] , T[l , 2, 4] , T[l , 2, 5] } ,

{T[l , 3 , 1] , T[l , 3 , 2] , T[l , 3 , 3] , T[l , 3 , 4] , T[l , 3 . 5]}}

{{T[2, 1, 1] , T[2, 1, 2] , T[2. 1, 3] , T[2, 1, 4] , T[2, 1, 5]}

{T[2, 2, 1] , T[2, 2, 2] , T[2, 2 . 3] , T[2, 2, 4] , T[2, 2, 5] } ,

{T[2, 3 , 1] , T[2. 3 , 2] , T[2, 3 , 3] , T[2. 3 , 4] , T[2, 3 , 5]}}

{{T[3, 1, 1] , T[3, 1, 2] , T[3, 1, 3] , T[3, 1, 4] , T[3, 1, 5]}

{T[3. 2, 1] , T[3, 2, 2] , T[3, 2, 3] , T[3, 2, 4] , T[3, 2, 5] } ,

{T[3, 3 . 1] , T[3. 3 . 2] , T[3, 3 , 3] , T[3, 3 . 4] , T[3, 3 , 5]}}

{{T[4, 1, 1] , T[4, 1, 2] , T[4, 1, 3] , T[4, 1, 4] , T[4, 1, 5]}

{T[4. 2, 1] , T[4, 2, 2] , T[4, 2, 3] , T[4, 2, 4] , T[4, 2, 5] } ,

{T[4, 3 . 1] , T[4, 3 , 2] , T[4, 3 , 3] , T[4, 3 , 4] , T[4, 3 , 5]}}}

Dimensions [expression] gives a list of the dimensions of expression.

Dimensions[%]

{4, 3 , 5}

We can enter true subscripts using Subscript.

Table[Subscript[v, i] , { i , 1, 5}]

Table[Subscript[t, i , j] , { i , 1, 3 } , { j , 1, 5}]

{ v i , V2, V3, V4, V5}

{{*1,1. t l , 2 ' t l , 3 . *1,4' ^1^5},

{^2,1' t2 ,2 . t2 ,3 . •t2,4> ^2,5} '

{1^3,1. t3 ,2 . t l , 3 ' ^3,4' *3,5}}

98 3 Algebra

Using BasicTypesetting of the Palettes submenu we can enter indices and
Greek letters. Greek letters can also be written entering \[LetterNaine], where
LetterName is Alpha, Beta, and so on.

All the following command names have pretty clear meaning.

DiagonalMatrix[a , /?, 7] / / MatrixForm

(OL 0 0>

0 /?0

,0 0 7>

IdentityMatrix[3]

{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}

vl = {xl, yl}

v2 = {x2, y2}

vl + v2

{xl, yl}

{x2, y2}

{xl + x2, yl + y2}

m.v

{a X + b y, c X + d y}

Det [m]

b c + a d

Transpose[m]

{{a, c}. {b, d}}

3.4 Vectors and Matrices 99

Inverse[m]

// ^ ^- \ / ^ ! U
U - b c + a d ' - b c + a d J ' I - b c + a d * - b c + a d J J

MatrixPower[m, 2]

{{a^ 4- b c, a b + b d} , {a c -h c d, b c + d^}}

Eigenvalues[m]

| - ^a + d- \ /a2 + 4 b c - 2 a d + d2V

- U + d+Va^ H-4 b c - 2 a d + d^H

Eigenvectors[m]

« - a + d + \/a2 - h 4 b c - 2 a d - f - d 2 >»

2"^ ' V '

r - a + d - Va2 + 4 b c - 2 a d - f d 2 >i>»

I 2 ^ '^JJ

The product of an (rii, 712)-matrix by an (77-2, nsj-matrix is an (ni, n3)-matrix.
An (n, l)-matrix is a column vector, and a (1, n)-matrix is a row vector.

mA

mB

mA.

= Array[A,

= Array[B,

mB

{3,
{2.

2}]

1}]

{{A[l , 1] , A[l , 2] } , {A[2, 1] , A[2, 2] } , {A[3, 1] , A[3, 2]}}

{{B[l , 1] } , {B[2. 1]}}

{{A[l . 1] B[l , 1] + A[l , 2] B[2, 1] } ,

{A[2, 1] B[l , 1] + A[2, 2] B[2, 1] } ,

{A[3, 1] B[l , 1] + ACS, 23 B[2. 1]}}

100 3 Algebra

MatrixForm[mA]

MatrixForm[mB

^A[l,l],A[l,2p
A[2,1],A[2,2]

.A[3,1],A[3,2]

B[1,1],B[1,2]
B[2,1],B[2,2]

Array[X,3,1]

Array[Y,1,3]

MatrixForm[Array[X,3,1]]
MatrixForm[Array[Y,1,3]]

{{X[l, 1] } , {X[2, 1] } , {X[3, 1]}}

{{Y[l , 1] , Y[l , 2] , Y[l , 3]}}

<x[i,ir
X[2,1]

>X[3,1],

(Y[l, 1] Y[l , 2] Y[l , 3])

For more evolved matrix manipulations, load the package:

« LinearAlgebra 'MatrixManipulation'

Here are a few examples.

A = {{all,

B = {{bll.

al2},

bl2}.

{a21,

{b21.

a22}};

b22}};

AppendColvmins [A, B] // MatrixForm

3.4 Vectors and Matrices 101

all al2
a21 a22
bll bl2
b21 b22

AppendRows[A, B] //[Imm] MatrixForm

all al2 bll bl2
a21 a22 b21 b22

BlockMatrix[{{A, B}, {B, A}}] // MatrixForm

all al2 bll bl2
a21 a22 b21 b22
bll bl2 all al2
b21 b22 a21 a22

UpperDiagonalMatrix[M, 3] // MatrixForm

M[l, 1] M[l, 2] M[l, 3]
0 M[2, 2] M[2, 3]
0 0 M[3, 3]

LowerDiagonalMatrix[M, 3] // MatrixForm

M[l, 1] 0 0
M[2, 1] M[2, 2] 0
M[3, 1] M[3, 2] M[3, 3]

LinearEquationsToMatrices[

all X + al2 y == bl,

a21 X + a22 y == b2, x, y]

{{{all, al2}, {a21, a22}}, {bl, b2}}

102 3 Algebra

We don't need to load the package to execute the inverse command, we just
use the command Thread.

A = {{all, al2}.

V = {x, y};

b = {bl, b2};

Thread[A. {x, y}

{a21.

== b]

a22}};

{a l l X + al2 y == b l , a21 x + a22 y == b2}

Analysis

4.1 Differentiation

4.1.1 Partial Derivative

The function D[f [a,x,y] ,x] does partial differentiation with respect to a
variable (here x).

DEx-^O / 2) 7-^2, x]

3 x/^ y2

If we define a function f of one variable, we can use, for the derivative, the
notation f' but, as shown below, we have to be careful.

f[x_]

f [x]

f

:= x-(2 / 3)

3 x'/'
2

3 #V3 -

The last representation, associated with f ', is a pure function.

104 4 Analysis

Using the submenu Palettes -^ Basiclnput, D[f [x] , x] can also be entered
as dy:f[x].

dy, x^(3/2) y^2

3 Sqrt[x] y^

D also does multiple differentiation with respect to different variables. The
command below evaluates the second derivative with respect to x and the
first one with respect to y.

{D[x^(3/2) y^2, {x, 2} , {y, 1}] , D[x^(3/2) y'^]2, x, x, y]}

r Z_j_ _3_2_ j

I 2 V x ' 2 x/x /

Here are a few more examples illustrating how, using Mathematical we can
avoid doing rather tedious calculations.

D [Cos [Log [Sqrt [x]]] , x, x]

-Cos[Log[Sqrt[x]]] S in [Log [Sqrt [x]]]

4 x̂ ^T^

D[Sin[2 x]^3 Cos[x'^2], x]

6 Cos [2 x] Cos[x2] Sin[2 x] ^ - 2 x Sin[2 x] ^ Sin[x2]

D[Sin[2 x]'^3 Cos[x^2], x, 10]

Long output suppressed.

D[f[x]^2, {x, 5}]

20 f"[x] f(3)[x] + 10 f [x] f(^)[x] + 2 f [x] f(^)[x]

4.2 Total Derivative 105

D[f[x^3] , x]

3 x2 f [x^]

Mathematica knows most special functions of mathematical physics.

D[BesselJ[3, x] , x]

1
- (BesselJ[2, x] -Besse l [4 , x])

D[LegendreP[5, x] , {x, 2}

105 X 315 x^
+

The command Der ivat ive[k , 1] [f] [a, b] takes the derivative of f{x^y)
k times with respect to x and / times with respect to y and evaluates this
derivative for x = a and y = b.

f[x_, y_] := TanCx - y] / Cos[x + y] ;

Der iva t ive[2 , 3] [f] [Pi / 6, Pi / 4] / / Simplify

19 Sqrt[2] (5009 - 5447 Sqr t [3])

4.2 Total Derivative

Dt [f, x] gives the total derivative df/dx.

Dt[x^2 y^3]

2 X y^ Dt[x] + 3 x^ y2 Dt [y]

We can set a variable (here a) to be a constant

SetAttributes[a, Constant]

106 4 Analysis

Dt[a x^2 y^3]

2 a X y^ Dt[x] + 3 a x^ y^ Dt[y]

We can replace Dt [x] and Dt [y] by dx and dy^ respectively, in order to obtain
the following more traditional form.

% I. {Dt[x] ^ dx, Dt[y] -^ dy}

3 a dy x^ y^ + 2 a dx X y^

4.3 Integration

4.3.1 Indefinite Integrals

Integrate [f [x] , x] gives the indefinite integral / j{x) dx. Here are a few
examples.

Integrated / (1 + x^2)^2, x]

- (o + ArcTan[x]]

Using the submenu Palettes —> Basiclnput, Integrate [f [x] , x] can also be
entered as / f [x] dx.

Here are a few examples.

Integrate[Log[x"2] , x]

- 2 X + X LogCx^]

Integrated''2 Log[x] , x]

- x'̂ ^ (- 1 + 3 LogCx])
9

4.3 Integration 107

I n t e g r a t e [(1 - Cos[x]) / (1 + Cos[x]) , x]

- X + 2 Tan

Integrate[Sin[Log[x]] , x]

1
- X (Cos[Log[x]] - Sin[Log[x]])

In tegra te[Cos[Log[x]] , x]

X (Cos[Log[x]]+Sin[Log[x]])

I n t e g r a t e [B e s s e l J [l , x] , x]

— Besse lJ [0 , x]

4.3.2 Definite Integrals

In t eg ra t e [f [x] , x, x l , x2] gives the definite integral/^^ / (x) do:.

Integrate[Exp[x] S i n [x] , {x, 0, Pi}]

l + E ^ i

Using the submenu Palettes -^ Basiclnput, In tegra te [f [x] , x, x l , x2]
can be entered as /^^ f [x] dx.

We can use Mathematica to display the output in TraditionalForm. Here are
a few examples.

I n t e g r a t e [(x ~ 1) / Log[x], {x, 0, l}] / / TraditionalForm

108 4 Analysis

log(2)

Integrate[Log[x] / (x - 1) , {x, 0, 1}] / / TraditionalForm

TT

~6

(Log[x])'^2 / (1 + X + x^2), {x, 0, Infinity}] //
TraditionalForm

1 6 TT^

81 Vs

Mathematica can also deal with nonelementary functions.

In tegra te[Cos[Exp[x]] , {x, 0, l}]

CosIn tegra l [l] + Coslntegral[E]

CosIntegral[x] is defined by — In teg ra t e [Cos [u] / u, {u, x, I n f in -
textttity}] and S in ln teg ra l [x] by In teg ra t e [Sin [u] / u, {u, 0, x}].
These functions are, respectively, denoted Ci(a:) and Si(a:).

P lo t [Cos ln t eg ra l [x] , {x, 1, E}];

0 .45

0 .4

0 .35

0 .25

1.25 1.5 1.75 2 2.25 2\5 2.75

Fig. 4.1. Graph of Ci{x) for x G [l,e].

4.3 Integration 109

Here are other nontrivial examples.

Integrate[Log[Cot[x]] , {x, 0, Pi/4}]

Catalan

Catalan is Catalan's constant C. Its numerical value is

Catalan / / N

0.915966

This constant is defined by the series:

(-1)^ c=E 0 2fc+l)2-

In teg ra t e [Exp [" x^3] S q r t [l - x'^3] , {x, 0, 1}]

1 1 11
Sqrt[Pi] Gaimna[-] HypergeometriclFl[- ,—,—l]

3 3 6

6 Gammaf—1
^6 ^

where Gamma [z] represents the Euler function F defined for Re(2;) > 0, by

/»oo

r{z)= I t^-^e-Mt.

and HypergeometriclFl is the Kummer confluent hypergeometric function
iFi defined by

OO / \ U

.F,(a;M) = ^ 5 : ^ ^ .

4.3.3 Numerical Integration

NIntegrate [f [x] , {x, x l , x2}] gives a numerical approximate value of the
definite integral j ^ ^ f{x) dx.

Here is a definite integral that cannot be evaluated exactly.

110 4 Analysis

Integrated / Cos [Tan[x]] , {x, 0, Pi /4}]

Pi
Integrate[Sec[Tan[x]] , {x, 0, —}]

Mathematica can, however, find a numerical approximate value of this definite
integral.

NIntegrate[l / Cos[Tan[x]], {x, 0, Pi/4}]

0.927485

WorkingPrecision is an option for various numerical operations that specifies
how many digits of precision should be maintained in internal computations.

NIntegrate[Exp[-x"2] , {x, - 5, 5} , WorkingPrecision —> 50]

1.7724538509027909507649211099378135487892

Sometimes we may encounter problems of convergence as in the following
example.

NIntegrate[Exp[-x'^2] , {x, - 500, 500}]

Numerical integration converging too slowly;

suspect one of the following: singularity,

value of the integration being 0, oscillatory

integrand, or insufficient WorkingPrecision.

If your integrand is oscillatory try using the

option Method -> Oscillatory in NIntegrate. More ...

NIntegrate::ncvb :

NIntegrate failed to converge to

prescribed accuracy after 7 recursive

bisections in x near x = -3.90625. More ...

0.88631

4.3 Integration 111

??NIntegrate

NIntegrate[f, {x, xmin, xmax}] gives a numerical

approximation to the integral of f with

respect to x from xmin to xmeix. More . . .

Attributes[NIntegrate] = {HoldAll, Protected}

Options [NIntegrate] = {AccuracyGoal -^ CXD, Compiled -^ True

EvaluationMonitor —> None, GaussianPoints —> Automatic,

MaxPoints —> Automatic, MaxRecursion -^ 6,

Method —> Automatic, MinRecursion —> 0,

PrecisionGoal -^ Automatic, SingularityDepth -^ 4,

WorkingPrecision —> MachinePrecision}

Increasing MinRecursion, MaxRecursion, and WorkingPrecision yields a
much better result.

NIntegrate[Exp[- x

MinRecursion -^ 5,

WorkingPrecision -

^2], {x. - 500,

MaxRecursion —

^ 30]

500},

> 20,

1.7724538509055160273

Breaking the integration interval into pieces explicitly covering the peak may
help obtain an accurate answer.

NIntegrate [Exp[- x'̂ 2] , {x, - 500, - 5, 5, 500},

WorkingPrecision -^ 30]

1.77245385090551602730

We can also evaluate the area between two curves as illustrated below.

«Graphics'

fl[x_]

f2[x.]

:= x-4

:= 10 -

NSolve[fl[x] =

x-3

== f2[x]. x]

112 4 Analysis

{{x -> - 2.09209}, {x -> - 0.240141 - 1.72692 I},

{x -> - 0.240141 + 1.72692 I}, {x -> 1.57237}}

F i l l e d P l o t [{ f l [x] , f 2 [x] } , {x, - 2.09209, 1.57237}];

-2 -1 .5 -1 -0 .5 ' 0.5 1 1.5

Fig. 4.2. Area between two curves.

The area between the two curves represented above is given by

NIntegrate[Abs[f2[x] - f l [x]] , {x, - 2.09209, 1.57237}]

29.9679

or, because we have to integrate polynomial functions,

Integrate[f2[x] , {x, - 2.09209, 1.57237}] - Integrated 1 [x] ,
{x, - 2.09209, 1.57237}]

29.9679

4.3.4 Multiple Integrals

Integrate [f [x , y] , {x, x l , x2}, {y, y l , y2}] gives the multiple inte
gral £ f dxf^^ dyf[x,y).

4.4 Differential Equations 113

In tegra te[x^2 y^2, {x, 0, a } , {y, 0, b}]

. 3 K3 a D

NIntegrate[Cos[x y] , {x, 0, Pi / 2} , {y, 0, Pi / 2}]

1.77049

4.4 Differential Equations

Mathematica gives exact solutions to linear diflFerential equations with con
stant coefficients.

DSolve[y"[x] - 3 y'[x] + 2 y[x] == Exp[x], y[x] , x]

{{y[x] -^ - E^ (1 + x) + E^ C[l] + E^x C[2]}}

Mathematica can solve equations with nonconstant coefficients (Bernoulli).

DSolveCd - x''2) y'[x] - 2 x y[x] == x^2, y[x] , x]

^^ ^ 3 (- 1 + x^) - l + x2^^

DSolve[y'[x] == x y[x] + x'̂ 2 y[x]^2, y [x] , x]

- 2 E^ /^
{{ y w - — J - — } }

2 E^ /2 x - 2 C[l]-Sqrt[2Pi] E r f i [^ ^ ^]

Erf i [z] gives the imaginary error function erf (iz)/i. The error function erf is
defined by

114 4 Analysis

erf(^)
V^ Jo

dt.

The above equation can be written y'/y^ = x/y-\-x^ and \i z = \/y we obtain
the hnear equation z' -\- xz -{- x^ ==0, easily solved using Mathematica.

4.4.1 Solving nonelementary ODE

Mathematica recognizes a Bessel-type differential equation.

DSolveCx y"[x] + y'[x] + x y[x] == 0, y[x] , x]

{{y[x] -^ BesselJ[0, x] C[1] + BesselY[0, x] C[2]}}

We can plot the solutions.

Plot[{BesselJ[0, x] , BesselY[0, x] } , {x, 0 .1 , 10},

PlotStyle -^ {RGBColorEl, 0, 0] , RGBColor[0, 0, 1]}] ;

Fig. 4.3. Graph of the Bessel functions Jo{x) and Yo{x) for x G [0.1,10].

We took the initial point of the x-interval equal to 0.1 because—as we can
infer from its graph—lo(^) is singular at the origin.

4.4.2 Numerical Solutions

The following system of differential equations can only be solved numerically.

4.4 Differential Equations 115

so lu t ion = NDSolve[{x'[t] ==

y ' [t] == x [t] - y [t] , x[0] ==

- 2 y [t] + (x[t]) '^2,

y[0] == 1}, {x, y } , { t , 0, 10}]

{{x "> In terpola t ingFunct ion[{{0. , 10.}}, <>] ,

y -> Interpolat ingFui ic t ion[{{0. , 10.}}, <>]}}

We can plot the solution.

Paramet r icP lo t [Eva lua te [{x[t] , y [t] } / . s o l u t i o n] , { t , 0,
10}]

Fig. 4.4. Parametric plot of the solution of the system x' — —2y -\- x^,y' — x — y
for the initial conditions x{0) = y{0) = 1 in the interval t G [0,10].

Here is an example of multiple solutions.

Clear[solution]

solution = NDSolve[y'[x]"2 == Sin[2x] ,

1}]

y[0] == 0, y [x] , {x, 0,

{{y[x] -> In terpola t ingFunct ion[{{0. , 1.}}, <>] [x] } ,

{y[x] -> In terpola t ingFunct ion[{{0. , 1.}}, <>] [x]}}

Plot[Evaluate[y[x] / . s o l u t i o n] , { x , 0 , l }] ;

We can solve a differential equation with a discontinuous derivative.

116 4 Analysis

Fig. 4 .5 . Plot of the solution of the ODE {y'Y = sm{x) for the initial condition
= 0 m the interval x G [0,1].

Clear[solution]

solution = NDSolve[{y'[x] == If [x < 0, - 1 / (x -
- 2) - 2] , y[0] == 0} , y [x] , {x, - 2 . l }]

- 2) - 2 , 1 / (x

{ { y W -> InterpolatingFunction[{{- 2 . , 1 . } } , <>] [x] } }

Plot[Evaluate[y[x] / . so lu t ion] , {x, - 2, 1}] ;

-2 -1 .5 - 1

0 .5

0 .4

0 .3

0 .2

^ X . O . l

-0 .5 0 .5 1

Fig. 4.6. Plot of the solution of the ODE y' = -l/{x-2f, if x < 0 and l / (x - 2) ^ ,
if X > 0, for the initial condition y(0) = 0 in the interval x G [—2,1].

4.4 Differential Equations 117

4.4.3 Series Solutions

Series solutions assume that y[x] is given by a power series with unknown
coefficients in x. This series is built up with SeriesData[x, xO, {aO, a l ,
a2, . . . }]

y[x_] := SeriesData[x, 0, T a b l e [a [i] , { i , 0, 7}]]

seriesDE = (y'[x])'^2 - y[x] == x

(- 1 + a [l] 2) + (- a [l] + 4 a [l] a[2]) x +

(- a[2] + 4 a[2]2 + 6 a [l] a[3]) x^ +

(- a[3] + 12 a[2] a[3] + 8 a [l] a[4]) x^ +

(9 a[3]2 - a[4] + 16 a[2] a[4] + 10 a [l] a[5]) x^ +

(24 a[3] a[4] - a[5] + 20 a[2] a[5] + 12 a [l] a[6]) x^ +

(16 a[4]2 + 30 a[3] a[5] - a[6] + 24 a[2] a[6] +

14 a [l] a[7]) x^ + OEx]"̂

LogicalExpand [expression] expands expression containing logical opera
tors such as && and I I standing, respectively, for AND and OR.

coeffEqn = LogicalExpand[seriesDE]

- 1 + a [l] 2 == 0 && - 1 - a [l] + 4 a [l] a[2] == 0 &&

- a[2] + 4 a[2]2 + 6 a [l] a[3] == 0 &&

- a[3] + 12 a[2] a[3] + 8 a [l] a[4] == 0 &&

9 a[3]2 - a[4] + 16 a[2] a[4] + 10 a [l] a[5] == 0 &&

24 a[3] a[4] - a[5] + 20 a[2] a[5] + 12 a [l] a[6] == 0 &&

16 a[4]2 -h 30 a[3] a[5] - a[6] + 24 a[2] a[6] + 14 a [l] a[7]

== 0

We solve using the initial condition: a[0] == 1.

?Solve

Solve[eqns, vars] attempts to solve an equation

118 4 Analysis

or set of equations for the variables vars. Solve[eqns, vars,

elims] attempts to solve the equations for vars, eliminating

the variables elims. More ...

coeffSol = Solve[{coeffEqn, a[0] == 1},

Table[a[i], {i, 1, 7}]]

6889 469 41 5
{{a[7] -^ , a[6] ^ , a[5] -^ , a[4] -^ — ,
^̂ 161280 11520 960 96

1 1
a[3] -> , a [l] -> 1, a[2] -^ - } , {a[7] -> 0 , a[6] -^ 0,

12 2

a[5] -^ 0, a[4] -^ 0, a[33 -^ 0, a [l] -> - 1, a[2] ^ 0 }}

We find two solutions.
coeffSol [[1]]

{a [7] ^ -

a[3] ^ -

6889 469
> cL LO J ' » a LO J

161280 11520

^ . a [l] -. 1, a[2] ^ ^}

41 5
, a[4] -^ —

960 96

Substituting we obtain

ser iesSol l = y[x] / . Jo in[coef fSo l [[1]] , {a[0] -> l }]

2 3
X X

5 x^ 41 x̂ 469 x̂ 6889 x̂
1 + X + -h -h H- 0 [x]^

2 12 96 960 11520 161280

ser iesSol l = y[x] / . Jo in[coef fSo l [[2]] , {a[0] -^ 1}]

1 - X + 0[x] 8

Note in the input cell above the use of the command Join to concatenate two
lists.

Checking:

4.4 Differential Equations 119

seriesDE /. coeffSol

|7 _ {x + OEx]'̂ == X, X -f OEx]'̂ == x}

The function Normal applied to an expression converts this expression to a
normal form, that is, a polynomial form without the term 0[x]° .

s o i l = Normal[seriesSoll]

x^ x^ 5 x^ 41 x^ 469 x^ 6889 x^
1 + X + + +

2 12 96 960 11520 161280

Plot [soil, {x, 0, 3}]

Fig. 4.7. Plot of the first series solution of the ODE {y'Y — y = ^) for the initial
condition y{0) = 1 in the interval x G [0,3].

4.4.4 Differential Vector Equations

DSolve[equation,y,x] does not work when the unknown function y is a
vector, that is a list, as shown below.

We first load the package Calculus 'Vector Analysis in order to be able to
use the command CrossProduct.

« Calculus'VectorAnalysis'

120 4 Analysis

We then define the vector position of the electric charge, the electric and
magnetic fields, and the vector force.

r[t_] := {x[t],

electricField =

magneticField =

y[t], z[t]}

0, Efield,

{0, 0, Bfi€

force = q (electricField +

magneticField]))

0;

ild};

CrossProduct[r' [t].

Finally we enter the equation that determines the motion of the electric point
charge in the electromagnetic field.

DSolve[{m r ' ' [t] == force , r [0] == {0, 0, 0} ,

r ' [0] == {vl , v2, v3}}, r [t] , t] / / . { B f i e l d -^ m a; / q,

Efield -^ V Bfield} // ExpandAll // Simplify

DSolve::underdet: The system has more dependent variables than

equations, and so is underdetermined. More . . .

DSolve::underdet: The system has more dependent variables than

equations, and so is underdetermined. More . . .

DSolve::underdet: The system has more dependent variables than

equations, so is underdetermined. More . . .

General::stop: Further output of DSolve::underdet will be

suppressed during this calculation. More . . .

DSolve[{m r"[t] == force, r[0] == {0, 0, 0},

r'[0] == {vl, v2, v3}}, r[t], t] //.{Bfield ^ m a; / q,

Efield -^ V Bfield} // ExpandAll // Simplify

One has to transform the vector equation into a list of scalar equations using
Thread.

4.4 Differential Equations 121

Clear[eqns]

eqns = Map[Thread, {m r " [t] == force , r [0] == {O, 0, 0} ,

r ' [0] == {vl , v2, v3}}] / / . {Bfield -^ m cj / q,

Efield -̂ V Bfield} // ExpandAll

// Simplify

{{m x" [t] == m cj y ' t] , m y ' ' [t] == m cj (V - x ' [t]) ,

m z ' ' [t] == 0} , {x[0] == 0, y[0] == 0, z[0] == 0} ,

{vl == x ' [0] , v2 == y ' [0] , v3 == z'[0]}}

We can then enter the equation under the form above and DSolve will work.

so lu t ion l = DSolve[eqns , { x [t] , y [t] , z [t] } , t] / / ExpandAll

/ / Simplify

,, ^ ^ v2H-t V a ; - v 2 Cosft a;l + (-V + vl) Sinft u]
{{x[t] ^ L J V

y [t]
V - v l + (-V + vl) Cos[t a;]+v2 Sin[t uo]

z [t] -^ t v3}}

We can check that this method gives the correct result.

so lut ion2 =

m y ' ' [t] == (

m 7,"\X] == (

x'[0] == v l ,

{ x [t] , y [t]

Ef ie ld -^ V

DSolve[{m

I Ef ie ld -

3, x[03 ==

y'[0] ==

x" [t] == q y ' [t] Bf ie ld ,

q x ' [t] Bf ie ld ,

y[0] == z[0] == 0,

v2, z '[0] == v3}.

, z [t 3 } , t] / / . {Bfield ^ m a; / q.

Bfield} / / ExpandAll / / Simplify

,, ^ ^ v2 + t V a ; - v 2 Cos t a; - f (-V + vl) Sin t uA
{{x[t] ^ ^̂ -

V - v l + (-V + vl) Cosft a;]+v2 Sin[t a;]
y [t] -^ ^̂ -,

u
z[t3 -^ t v3}}

122 4 Analysis

solutionl == solution2

True

There exists a comprehensive Mathematica package called VisualDSolve that
provides a wide variety of tools for the visualization of solutions to ordinary
differential equations. The interested reader should refer to Schwalbe and
Wagon [50].

4.5 Sum and Products

4.5.1 Exact Results

Sum[f [k] , {k, n}] evaluates the sum Yll^=i / (^)-

Sum[l / n^2, {n, In f in i ty}]

Pi2

Sum[l/ n^4, {n, In f in i ty}]

P i^

90

We mentioned above that Catalan's constant is defined by the series C
YlT=o ("1)^/(2'^ + 1)^- We can use Mathematica to check this definition.

Sum[(-l)^k / (2 k +1)'^2, {k, 0, In f in i ty}] == Catalan

True

Suin[f[k], {k, n l , n2}] evaluates the sum Xl^ln f(^)

SumCl / (1 + n^2) , {n, - Inf in i ty , In f in i ty}]

Pi CothCPi]

4.5 Sum and Products 123

Sum[(- D-^n / (2 n + 1) , {n, 0, Inf ini ty}]

Pi

T

Product [f [k] , {k, n}] evaluates the product 11^=1 fi^)-

Product[1 + 1 / n^2, {n, 1, Inf inity}]

Sinh[Pi]

Pi

Product [f [k] , {k, n l , n2}] evaluates the product H ^ i m / (^)

Product[1 - 1 / n^3, {n, 2, Inf inity}]

Coshf^^^I^L^l

3 Pi

4.5.2 Numerical Results

SumCl/ n'^3, {n, 1, Inf ini ty}]

Zeta[3]

?Zeta

Zeta[s] gives the Riemann zeta fmiction. Zeta[s, a]

gives the generalized Riemann zeta function. More . . .

The zeta and generalized zeta functions are, respectively, defined by

oo oo

C(s) = J] A;-^ and C(s, a) = J](fc + a)-',{k + a ji 0).
k=l fc=0

124 4 Analysis

To obtain the numerical value of sum we have to use NSum.

NSuniEl / n'^3, {n, 1, In f in i ty}]

1.20206

Because Mathematica recognizes that YlT=i ^ * is C(̂)? ^o obtain a numerical
value, we could also have entered

NSumCl / n-^S, {n, 1, In f in i ty}] / / N

1.20206

Sum[l / (1 + n^2) , {n, - I n f i n i t y , In f in i ty}]

NSiim[l / (1 + n^2) , {n, - I n f i n i t y , In f in i ty}]

Pi CothCPi]

3.15335

Sum[l / (1 + n^3) , {n, 0, In f in i ty}]

1 ^ o PolyGammafO,-#ll
- RootSumCl + #1*^ &, y
2 # 1 ^

&]

TPolyGamma

PolyGamma[z] gives the digamma fimction psi(z).

PolyGammaCn, z] gives the nth derivative of the digamma function.

More ...

The PolyGamma function i/j is defined by ip{z) = r\z)/r{z), where F is the
Euler function.

RootSumCf, form] represents the sum of form[x] for all x that satisfy the
polynomial equation f [x] == 0. In the present case, we obtain

4.6 Power Series 125

- Apply[Plus, Map[PolyGamma[0, -#] / #"2 &,

{- 1, (-D-^Cl/S), - (-1)^(2/3)}] / / N] / 3

1.6865 - 2.59052 10~^^ I

and using Chop

Chop[y.]

1.6865

This result can be obtained directly using NSum

NSum[l / (1 + n^3), {n, 0, Inf inity}]

1.6865

4.6 Power Series

Series [f [x] , {x, xO, n}] gives a power series expansion for f [x] in a
neighborhood of the point xO to order (x — xO)'^.

Series [Sin[x] , {x, 0, 10}]

^ ^ ^ X ^ ^ . H

X + + -f 0[x]-^-^
6 120 5040 362880

Series [Log[x], {x, 1, 5}]

(x - 1) - - (x - 1)2 + - (x - 1)3 _ - (x - 1)4 +
2 3 4

- (x - 1)^ + 0[x - 1]^
5

Series [Exp[- x] / (1+x), {x, 0, 5}]

126 4 Analysis

5 x^ 8 x^ 65 x"̂ 163 x^ ^
1 - 2 X + + + 0[x]^

2 3 24 60

Ser ies [BesselJ[0, x] , {x, 0, 10}]

x2 x^ x^ x8 x^O , ,

4 64 2304 147456 14745600

As mentioned above, Normal transforms the series expansion into an ordinary
expression (polynomial).

Normal[Series[Exp[- x] / (1+x), {x, 0, 5}]]

5 x^ 8 x^ 65 x"̂ 163 x^
1 - 2 X + +

4.7 Limits

24 60

Limit [expression, x —> xO] finds the limit of expression when x tends
to xO.

Limit[Sin[x] / x, x ^ 0]

1

Limit [(1 - Cos[x]) / x^2, x -•̂ 0]

1
2

Limit[(Cosh[x] - 1) / (Sinh[x] Tanh[x]), x -^ 0]

Limit [BesselJ[0, x] / Cos[x], x -^ 0]

4.7 Limits 127

If L imi t cannot handle a limit, it is worthwhile to load the package C a l c u l u s
' L i m i t ' tha t greatly expands the capabilities of L imi t and t ry using L imi t
again. The built-in function L imi t computes limits using symbolic and ana
lytic methods. The command NLimit [f [x] , x —̂ xO] contained in the pack
age Numer ica lMath 'NLimi t ' calculates a sequence of values for the function
f{x) with successively smaller step sizes and then extrapolates to the limit to
find an approximate numerical value. Here are two illustrative examples.

The golden ratio, tha t is, the ratio r = a/b < 1 such tha t

a b 1
- = or r = ,
b a-\-b 1 + r

which, according to the Italian mathematician Luca Pacioli (1445-1517), is
the Divine Proportion} I ts numerical value is obtained solving the equation.

S o l v e [r == 1 / (1 + r) , r]

{{r -> - (- 1 - S q r t [5]) } , {r ^ - (- 1 -h S q r t [5]) } }

r is the positive root, r = \/b — 1/2 ^ 0.618034. From the relation

1

we get the following sequence of equalities related to the continued fraction
representation of r , tha t is.

^De Divina Proportione is the title of a book Pacioli wrote in 1496 but pub
lished in Venice in 1509. The book is illustrated with drawings by Leonardo da Vinci.
Pacioli, a Franciscan monk, who taught mathematics at the University of Perugia,
worked with all major artists of the Quattrocento such as Leonardo da Vinci (1452-
1519), Piero Delia Francesca (1420-1492), and Leon Battista Alberti (1404-1472).
Pacioli is also considered the father of accounting.

128 4 Analysis

1
r = l + r ^ ^ 1

1 + r
1

1 + ^

l + r
1

1 + - ^
i+-i

r

Note . The golden ratio is, sometimes, defined by the inverse of r (i.e., l + r).

The result above can also be obtained using NestList .

golden[r_] := 1 / (l+r)

NestList[golden, r , 3]

r^ ^ 1 1 . 1

1 + - — 1 +
l + r 1

l + r

The representation of r as a continued fraction is therefore (0,1,1,1, . . .) which
can be also found using the Mathematica function FromContinuedFraction.

FromContinuedFraction[Join[0, Table[1 , {100}]]] / / N

0.618034

Let us see if the command Limit gives us the exact result.

Limit[Nest[l / (1 + #) &, 1, n] ,

n —̂ In f in i t y]

Nest : : intnm:

Nonnegative machine-size integer expected at position 3

1
1 -

in Nest [. • //1] & , 1, n] . More

4.7 Limits 129

Limit [Nest [^ ^ r i ^] & , 1, n] , n ^ In f i n i t y]

Let us try again loading first the package Calculus 'Limi t '

« C a l c u l u s ' Limit '

Limit[Nest[1 / (! + #) & , 1, n] , n -> In f in i t y]

-1 + Sqrt[5]

In the Umit n ^> CXD, it is clear that the continued fraction (0,a,a^a^...) does
not depend upon the value of a. This can be verified using Limit.

Limit[Nest[l / (! + #) &, Random [In teger , {1 , 100}], n] , n ->
In f in i t y]

-1 + Sqrt[5]

The Euler constant 7—called EulerGamma in Mathematica—is defined by

7 = lim V T - l o g M)
\k=l /

Because the finite sum represents the harmonic number if„

Sum[l / k, {k, 1, m}]

HarmonicNumber [m]

we can write

EulerConstant = Limit[HarmonicNumber[m] - Log[m],

m -^ Infinity]

EulerGamma

130 4 Analysis

Mathematica gives the correct result. To obtain an approximate numerical
value, we first load the package

«NumericalMath' NLimit'

and then use NLimit

NLimit [Sum[1 / k, {k, 1, m}] - Log[m], m -> In f in i t y]

0.577216

which is indeed the correct numerical value of the constant EulerGamma.

N[EulerGamma]

0.577216

4.8 Complex Functions

A function / defined on an open domain V in the complex plane is said to
be analytic, if for any ZQ e T> we can write / (z) as the sum of a convergent
power series in a neighborhood of ZQ; that is,

f(^) = X^Cn(z-2:o)'',
n=0

where the coefficients c^ (n = 0,1,2, . . .) are complex numbers.

A point such as ZQ in the neighborhood of which a function / can be written
as the sum of a convergent power series is said to be regular. Any point that
is not regular is singular.

A power series converges in an open disk, that is, a domain whose bound
ary is a circle of radius r centered at ZQ. The largest value of r is the radius
of convergence of the power series. It is denoted by i?, hence, a power se
ries is convergent if its radius of convergence is positive. For example, the
power series representing the exponential ê in a neighborhood of the origin,
is X]^o ^^ 1'^^" Its radius of convergence is infinite. In other words, the expo
nential function is analytic in the whole complex plane. This is, in general,
not the case. Given a complex function / analytic in a neighborhood of a
point zo the power series X l ^ o ^^('^ "" -^o)^ ^ ^ ^ finite radius of convergence
whose value is limited by the existence of the singularities of the function

4.8 Complex Functions 131

/ . The value of the radius of convergence can be determined by the Cauchy
rule which says that the radius of convergence of a power series of the form
X^^o ^rii^ ~ ^o)^ is given by the relation:

- =limitsup^_^|cn|^/ ' ' .

Consider for example, the function 1/(1 — 2:). Its power series expansion in
a neighborhood of the origin is given by Yl^=o ^^ ~ I -\- z -\- z^ -\- -- -. This
function has only one singular point at finite distance, namely 2: = 1, and
we can easily verify that its radius of convergence is equal to 1, precisely the
distance from the origin to this singular point. In fact,

l imitsup^_^l^/^ = lim 1^^ = 1.
n—>cxD

Analytic functions are differentiable; that is, if f{z) = Yl^=o ^n{^ — ZQY is a
power series converging in an open disk Z)(0, R) of radius i? > 0 centered at
the origin, then its derivative defined in the complex plane by

•̂ ̂ ̂ c-0 c

exists for all z in J9(0, R). If a complex function / is difl'erentiable at a point
zo, it is infinitely differentiable at that point. Differentiable complex functions
are also called holomorphic. In the case of functions of a complex variable, the
adjectives analytic and holomorphic are synonymous.

The singular point of the function 1/(1 — z) is isolated. That is, there exists,
centered at that point, an open disk with a nonzero radius in which 2: = 1 is
the only singular point. If, starting from any point ZQ^ where the function is
equal to 1/(1 — 2:0)̂ we follow a circular path around the point z = 1, when
we come back to the point ZQ^ the function is again equal to 1/(1 — ZQ) • We
can therefore say that the function is well defined in the whole complex plane
except ai z = 1. Again, this property is not shared by all complex functions.
Consider the function y/z. The origin is a singular point because y/z cannot
be represented by the sum of a convergent power series in any neighborhood
of the origin. This singular point is, however, not isolated. The squares of the
two complex numbers zi = pe^^/^ and 22 = p^^^^l'^^'^) are equal, therefore the
function ^/z cannot be defined without precaution. If, for instance, we choose
y/z to be the function equal to 1 when z = 1, then if we write z = pê *̂ , and
consider that the value z = 1 corresponds to the choice p = 1 and 0 = 0,
following a circular path of radius 1 centered at the origin, the argument 6
increases continuously from 0 to 27r and, consequently y/z = y/pe^^^^ is found
to be equal to —1. Such a behavior is not acceptable for a function. Thus, to
correctly define the function y/z we should not be able to follow a continuous
path around the singular point z = 0. The domain in which the function y/z
is well-defined could be, for instance, the set

132 4 Analysis

{z\ z = pe'^, p > 0, -TT < ^ < TT}

that is, the complement in the complex plane of the negative real semi-axis.
Along this so-called branch cut the function y/z is discontinuous. All the points
of the branch cut are singular. For the function y/z the origin is not an isolated
singular point. Such a singular point is called a branch point The branch cut
could have been chosen in many different ways. For instance, any semi-axis
whose equation is pe^^ where a is a given argument between 0 and 27r, and
p is a parameter varying from 0 to oo, is an acceptable branch cut. Our
choice, which corresponds to a = TT is the traditional one, also adopted by
Mathematica.

The tridimensional plots of the real and imaginary parts of y/z clearly show
the discontinuity along the negative real semi-axis.

PlotSD[Re[Sqrt [x + I y]] , {x, - 3 , 3 } , {y, - 3 , 3 }] ;

Fig. 4.8. Plot of the real part of y/x -h iy in the domain {x, y} G [—3,3] x [—3,3].

4.8 Complex Functions 133

Plot3D[Im[Sqrt[x + I y]] , {x, - 3 , 3} , {y, - 3 , 3}] ;

Fig. 4.9. Plot of the imaginary part of y/x + iy in the domain {x, y} G [—3,3] x
[-3,3].

More generally, if a function g defined in a domain T> of the complex plane is
not injective, the equation g{z) = u may have more than one solution and g
has, in this case, more than one inverse function: / i , /2, / s , • • • such that, for
k = 1,2,3, . . . , g{fk{u)) = u, and these functions cannot be continuous in
g{V). This is exactly what happened for the noninjective function g{z) = z^,
defined in the whole complex plane and having two noncontinuous inverse
functions in the whole complex plane.

Here is another interesting result concerning the representation of functions
in the vicinity of an isolated singularity. Let S be the open annulus {z \ ri <
k "" -̂ ol, ^2}; if / is analytic in S then, for all z G S, we have

00

n = —00

where the power series J2^=o ^n{z — ZQ)'^ is convergent for \z — zo\ < r2 and
the series X l ^ i ^-n{z — ZQ)"^ is convergent for Iz — 2:o| > ri. This particular
expansion is called the Laurent series of / in S.

If the Laurent series is defined in {z \ 0 < \z — zo\ < r}, called the punctured
neighborhood of the singular point ZQ , the point ZQ is a pole if the series with
negative exponents has a finite number of terms, and the greatest value of n
is the order of the pole; if the series with negative exponents has an infinite
number of terms, the point ZQ is an essential singularity.

If zo is an isolated singularity of f{z), the coefficient c_i of the Laurent series is
called the residue of / at z = ZQ. The Mathematica command Residue [f [z] ,
{z, zO}] finds the residue of / at the point zO.

134 4 Analysis

Residue [Exp [z] / Sin[z]'^2, {z, Pi}]

EPi

The residue theorem allows, in particular, the evaluation of contour integrals.
It states:

Let V he an open simply connected domain in the complex plane and {2:1,...,
Zn} a set of n different isolated points. For any analytic function f in
X>\{2:i,..., Zn}, we have

j f{z) dz = 2m Y^ Ind(7, Zk)Residue(f, Zk),
•̂ '̂ k=i

where ^ is a closed path in V\{zi^Z2->..., z^i}-

The symbol Ind(7, z^) is the index of the point path Zk with respect to the
path 7. It is defined by

This formula is a consequence of the relation

dz

J ̂
2i7r,

where 7 is the circular path 11-^ ê ^̂ * with t G [0,1].

If we integrate along the circular path 7 , the result above is obvious because
replacing z by ê ^̂ * yields 2i7r /^ dt = 2m. But, as a consequence of Cauchy's
theorem, we can change the circle into the square with vertices l,i , — 1,—i
without changing the result. Using Mathematica we can evaluate the contour
integral directly:

I n t e g r a t e d / z , {z, 1, I , - 1, - I , 1}]

(2 I) Pi

For instance, the real integral / ^ f{x) dx of the function / whose only singu
larities, as a function of the complex variable z are poles, none of them being
real, can be easily evaluated using the residue theorem. Consider the contour
integral/ f{z) dz where 7 is the closed path equal to the union of the paths
7i : 11-^ R{2t — 1) and 72 :11-^ Re^'^^ for t varying from 0 to 1.

4.8 Complex Functions 135

This integral is equal to

/ f{x)dx+ I f{z)dz= —-Y\Residue(/,Zk),
J-R Ji2 2i7r ^

where the sum is over all the residues of the poles of / in the upper half plane
such that \zk\ < R. When i? ^ CXD, the first integral becomes the real integral
we have to evaluate and the second one tends to zero if lima^^oo ^ / (^) = 0-
When this condition is satisfied, the real integral / ^ f{x) dx is simply equal
to the sum of the residues of / at all poles of the upper half-plane. For instance,

f dx I dx
2i7rResidue I :; ^, i /_oo 1 + ^^ V l + x 2

because the index of i with respect to the path 7 is 1. The residue is given by

Residue[1 / (1 + x^2), {x, I}]

I

2

We thus obtain the classical result: / ^ dx/{l -f- x^) = TT.

We can also evaluate very simply integrals of the form JQ ̂ /(cos(x), sin(a;)) dx,
where / is a rational fraction in cos(a:) and sin(x). If we put z == ê ,̂ the in
tegral becomes 1/iz/ / ((z -h z~^)/2, {z — z~^)/2\) dz, where 7 is the circular
path of radius 1 0 y-^ &^ for 6 varying from 0 to 2n. Therefore,

/ /(cos(a:0, szn[x)) dx = ZTT > Residue I - / I , — — — j ,^k j ,

where the sum is over the residues of all the poles inside the unit circle. For
instance, if a > |6|,

/•̂ ^ de _ /•
^0 a-h6sin^ J

2dz
bz'^ -f 2aiz — b

The complex function has only one pole inside the unit circle, namely
i(—a + y/s? — b2)/b. Because

Residue [2 / (b z'^2 + 2 a I z - b) ,

{z, I (- a + SqrtCa'^2 - b'^2]) / b}]

S q r t [a 2 - b 2]

136 4 Analysis

we find

I 2^ de _ 27r

For a detailed study with historical references to the properties of functions
of a complex variable see [7].

4.9 Fourier Transforms

4.9.1 Discrete Fourier Transform

Fourier [l i s t] gives the discrete Fourier transform (or frequency spectrum)
Vs of a list of complex numbers {ui,U2,..., iXn}- By default it is defined by

where n is the list length.

data = Table[Random[], {10}]

FTl = Four ier [data]

{0.818232, 0.582609, 0.51494, 0.146173, 0.693925,

0.867643, 0.72016, 0.11342, 0.663217,0.822117}

{1.87916 + 0. I , 0.0717421 - 0.0841385 I , 0.44075 - 0.097791 I ,

- 0.24971 - 0.0584497 I , - 0.0475295 -f 0.0148031 I , 0.27781+ 0.
I ,

- 0.0475295 - 0.0148031 I , - 0.24971 -f 0.0584497 I ,

0.44075 + 0.097791 I , 0.0717421 + 0.0841385 1}

Chop may be used to discard the tiny imaginary parts that appear due to
numerical error.

FT2 = Chop[FTl]

{1.87916, 0.0717421 - 0.0841385 I , 0.44075 - 0.097791 I ,

- 0.24971 - 0.0584497 I , - 0.0475295 + 0.0148031 I ,

4.9 Fourier Transforms 137

- 0.0475295 - 0.0148031 I , - 0.24971 + 0.0584497 I ,

0.44075 + 0.097791 I , 0.0717421 -f 0.0841385 1}

The inverse discrete Fourier transform is, by default, given by

1 "" ^-2i7r(r-l)(s-l)/n^

InverseFourier[FT2]

{0.818232, 0.582609, 0.51494, 0.146173, 0.693925,

0.867643, 0.72016, 0.11342, 0.663217,0.822117}

4.9.2 Fourier Transform

FourierTransf orm[f [x] , x, t] gives the Fourier transform F of the func
tion f of the variable x as a function of t . By default it is defined by

1 r"^
F{t) = ^= /(x)e^*-dx.

\/27r J-oo

Different choices of definitions can be specified using the option FourierParameters.

??FourierParameters

FourierParameters i s an option to Fourier transform

functions t h a t spec i f i e s the convention t o follow for

the overa l l constant and the frequency constant . For

FourierParameters -> {a, b } , FourierTransform[expr, t , w]

i s equivalent t o Sqrt[Abs[b] / ((2 P i) ^ (l - a))]

In tegra te [expr Exp[I b w t] , { t , - I n f i n i t y , I n f i n i t y }] . More . . .

At t r ibutes[Four ierParameters] = {Protected, ReadProtected}

ReadProtected is an attribute that prevents values associated with a symbol
from being seen, and Protected is an attribute that prevents any values
associated with a symbol from being modified.

138 4 Analysis

FourierTransfonn[x' '2 Exp[- x"2] , x, t]

4 Sqrt[2]

InverseFourierTransf orm [F [t] , t , x] gives the inverse Fourier transform
/ of the function F of the variable t as a function oi x. It is given by

1 Z*̂
f{x) = -— F(t)e-^-dx.

V27r J-oo

InverseFourierTransformCyo, t , x]

E -^^ x2

If the function / is either odd or even, we can use either the FourierSinTransf orm
or the FourierCosTransf orm, respectively, defined by

\l ^^^^ sin(tx) dx and \ — f{x) cos{tx) dx.

{sinFT, cosFT} = {FourierSinTransf orm[x / (1 + x'^4), x, t]

1 / (1 + x^2), X, t]}

|£ t /Sqrt[2] sqrt[Pi/2] Sin[t/Sqrt[2]],E~"^ Sqrt[Pi/2]}

The InverseFourierSinTransform and the InverseFourierCosTransform
of a function F are given, respectively, by

J- / F(t)sin(tx)dt and J- I F{t)co8{tx)dt.

InverseFourierSinTransformCsinFT, t, x]

InverseFourierCosTransformEcosFT, t, x]

4.10 Fourier Series 139

l + x"̂

1+x^

4.10 Fourier Series

We first have to load the package Calculus 'Four ierTransfonn^

«Calculus 'Four ierTransform'

• FourierCoef f i c i e n t [f [x] , x, n] gives the nth coefficient of the expo
nential Fourier series of function / of period 1 on the interval [— ,̂ ^] .

• FourierSinCoeff i c i e n t [f[x] , x, n] gives the nth coefficient of the
sine Fourier series of the odd function / of the variable x.

• FourierCosCoeff i c i e n t [f [x] , x, n] gives the nth coefficient of the co
sine Fourier series of the even function / of the variable x.

• Four ierSer ies[f [x] , x, n] gives the exponential Fourier series of the
function / of the variable x on the interval [— ,̂ ^] to order n.

• Four ierTr igSer ies [f [x] , x, n] gives the trigonometric Fourier series
.1 i l

2 ' 2i
of the function / of the variable x on the interval [— ,̂ ^] to order n.

For different definitions use different settings in the option FourierParameters
-* {a.b}.

1/2
a;)e^'"''dx with setting (0, 1},

/2
1/26

-1/2
pl/2b

|^|(i-a)/2 / /(:z:)e2ibnxj^ with Setting {a, b}.
J-l/2b

{FourierSinCoefficient [x, x, 1, FourierParameters -^ {0, 1}] ,

FourierSinCoefficient [x, x, 1, FourierParameters -> {0, 2}]}

^Pi' 2 Sqrt[2] Pi^

140 4 Analysis

Table[FourierSinCoefficientEx, x, k] , {k, 1, 4}]

^Pi' 2 P i ' 3 P i ' 4 Pi 7}

FourierTrigSeriesEx, x, 4]

Sin[2 Pi x] Sin[4 Pi x] Sin[6 Pi x] Sin[8 Pi x]

Pi 2 Pi 3 Pi 4 Pi

sawFunctionPlot = Plot Ex - Round Ex], {x, - 0 .5 , 1 .5} ,

PlotStyle -^ {RGBColorEl,0,0]}];

1.5

Fig. 4.10. Plot of the sawtooth function for x G [—1.5,1.5].

Round Ex] gives the integer closest to x.

In the following graphs note the options PlotStyle used here to specify the
curve color, and DisplayFunction used with the setting Identity causing
the objects to be returned, but no display to be generated.

4.10 Fourier Series 141

pll = Plot[Sin[2 Pi x] / Pi, {x, - 1.5, 1.5},

PlotStyle -> {RGBColorCO, 0, 1]},

DisplayFunction -̂ Identity];

pl2 = Plot[Sin[2 Pi x] / Pi - Sin[4 Pi x] / (2 Pi),

{x, - 1.5, 1.5}, PlotStyle -̂ {RGBColor[0, 0, 1]},

DisplayFunction -^ Identity];

pl3 = Plot[Sin[2 Pi x] / Pi - Sin[4 Pi x] / (2 Pi) + Sin[6 Pi
x] / (3 Pi), {x, - 1.5, 1.5},

PlotStyle -̂ {RGBColor[0, 0, 1]},

DisplayFunction —> Identity];

pl4 = Plot[Sin[2 Pi x] / Pi - Sin[4 Pi x] / (2 Pi) +

Sin[6 Pi x] / (3 Pi) - Sin[8 Pi x] / (4 Pi), {x, - 1.5, 1.5},

Plo tS ty le -^ {RGBColor[0, 0, 1]} ,

DisplayFunction -^ I d e n t i t y] ;

Show[GraphicsArray[{{pll, p l 2 } , {pl3, p l 4 } ,

DisplayFunction -^ $DisplayFunction]];

1 1.5

Fig. 4.11. Plot of the first Fourier series approximating the sawtooth function for
xe [-0.5,1.5].

Show[{pl4, sawFunctionPlot}, DisplayFunction ->
$DisplayFunction];

142 4 Analysis

1.5

Fig. 4.12. Plot of sawtooth function and its four-term Fourier sine series for
xe [-1.5,1.5].

Figure 4.12 above exhibits the Gibbs phenomenon, that is, the overshoot of
partial Fourier series that occurs at first-order discontinuities moving towards
the jump as the number of terms of the series increases. It was first described
by H. Wilbraham in 1848 [67] and then analyzed in detail 50 years later by
Josiah Willard Gibbs (1839-1903) [20, 11]. Note that the Fourier series of
a discontinuous function does not converge uniformly in an arbitrary small
interval around the discontinuity point.

4.11 Laplace Transforms

The Laplace transform of f{t) is

/•OO

F{z)= / / (t)e-^Mt.

This function F is given by LaplaceTransf ormCf [t] , t , s] . For example:
LaplaceTransform[Cos[t], t , z]

1 + z^

The command InverseLaplaceTransfonn[F[z] , z , t] gives the inverse
Laplace transform of F{z)\ as a function of t.

InverseLaplaceTransformCz / (1 + z"2) , z , t]

4.11 Laplace Transforms 143

Cos [t]

The Heaviside function (also called unit step) is represented by the function
UnitStep [t] , equal to 0 for ^ < 0 and to 1 for t > 0. Its Laplace transform is

LaplaceTransform[UnitStep[t], t , z]

1

z

Mathematica can also give the Laplace transform of the so-called "Dirac S
function" defined usually as a function equal to zero everywhere except at the
origin where it is infinite and such that

6{t)ip{t)dt = ip{0),

where ip is any well-behaved function defined at the origin. Prom a purely
mathematical point of view, this definition makes no sense because S being
null almost everywhere the (Lebesgue) integral above should be zero. Actually
5 is a singular distribution, that is, a continuous linear form defined on a space
V of test functions such that, for all if e T>, S{(p) = (p{0). On distribution
theory and its history see [8].

The Laplace transform of the Dirac 6 is given by

LaplaceTransform[DiracDelta[t] , t , z]

and

InverseLaplaceTransformEl, z , t]

DiracDel ta[t]

If F is the Laplace transform of a function / defined on [0, CXD[, the Laplace
transform of its derivative / ' is equal to —/(O) -h zF{z).

LaplaceTransform[f'[t] , t , s] / / Simplify

144 4 Analysis

- f [0] + s LaplaceTransformCf [t] , t , z]

On distribution theory see Chapter 4 of Boccara [4]. For a more detailed study
of distribution theory with historical references see Boccara [8].

4.12 Recurrence Equations

RSolve [{rEquation, in i tVa lues} , f [n] , n] solves the recurrence equation
rEquation for the initial values ini tValues .

The following recurrence equation with the initial values f{l) = b and /(2) =
a-\-b defines the generalized Fibonacci series G{a, b). The traditional Fibonacci
series corresponds to G(0,1).

sol = RSolve[{f[n] == f [n-1] + f [n - 2] ,

f [l] == b , f [2] == a + b } , f [n] , n] / / FullSimplify

{{f[n] -> (2 - 1 - ^ ((1 + Sq r t [5]) ^

(- ((- 5 -h Sqr t [5]) a) + 2 Sqrt [5] b) +

(- 1 + Sqrt [5]) ^ ((5 + Sqrt [5]) a - 2 Sqrt [5] b)

E^ ^ P i)) / 5}}

Flatten[Table[f[n] /. sol, {n, 1, 10}]] // Simplify

{b, a + b, a + 2 b, 2 a + 3 b, 3 a -f 5 b, 5 a + 8 b,

8 a + 13 b, 13 a -h 21 b, 21 a + 34 b, 34 a + 55 b}

Without specifying initial values we obtain the general solution containing
arbitrary constants.

Clear[f , sol]

so l = RSolve [f [n] == f [n - 1] + f [n - 2] , f [n] , n] / /

FullSimplify

/ (1 - S q r t [5]) \ ' ' ^ / (I + Sqrt [5]) X"" ^ ^ , ,
{{f [n -> n ^ - ^ ^) C[l] + (^ ^ " ^) ^^^^ ^^

4.13 Z Transforms 145

4.13 Z Transforms

The Z transform F{z) of / (n) is

(X)

n=0

F(z) is therefore the generating function of the sequence (/(O), / (I) , / (2) , . . .)•
It is given by the Mathematica command ZTransf ormCf [n] , n, z] . For ex
ample:

ZTransformCa^n / n! , n, z]

ga/z

The command InverseZTransfonn[F[z] , z , n] gives the inverse Z trans
form oi F{z) as a function of n.

InverseZTransform[Exp[a / z] , z , n]

a^

n!

Z transforms are used to solve recurrence equations. Consider, for example,
the recurrence equation defining the generalized Fibonacci sequence:

Clear[equation]

equation = f[n+2] == f[n+1] + f [n] ;

with the initial values

C lea r [in i t i a lVa lues]

i n i t i a lVa lues = {f [0] -^ a, f [1] -> b} ;

Taking the Z transform of the equation gives

t ransfEquation = ZTransform[equation, n, z]

- (z^ f [0]) - z f [1] + z^ ZTransform[f [n] , n, z] ==

- (z f [0]) -h ZTransform[f [n] , n, z] -h z ZTransf orm [f [n] , n, z]

146 4 Analysis

Taking into account the initial values, we obtain

zEquation = transfEquation / . ini t ialValues

- (b z) - a z-̂ + ZTransformCf [n] , n, z] ==

— (a z) + ZTransformCf [n] , n, z] + z ZTransformCf [n] , n, z]

Solving for the ZTransf orm yields

SolveCzEquation, ZTransformCfCn], n, z]]

(pt 7 1 I 1^ 7 I o J'

{{ZTransformCf Cn] , n, z] -> —̂^ r̂ }}
- 1 - z + z^

and taking the inverse transform, we finally obtain the expression of the gen
eralized Fibonacci sequence:

Clear Csolution]

solution = InverseZTransformCCa z"2 + (b -

(z^2 - z - 1) , z , n] / / Simplify

• a) z) /

(2 - 1 - n ((_ ((_ 5 + SqrtC5]) (1 + SqrtC5])^) +

(1 - SqrtC5])^ (5 + SqrtC5])) a - 2 Sqrt C5]

((1 - SqrtC5])^ _ _ (1 + SqrtC5])^) b)) / 5

FlattenCTableCsolution, {n, 1, 10}]] / /Simplify

{b, a + b, a + 2 b, 2 a + 3 b, 3 a + 5 b, 5 a + 8 b,

8 a + 13 b, 13 a + 21 b, 21 a + 34 b, 34 a + 55 b}

which is the sequence we obtained in the previous section.

4.14 Partial Differential Equations

DSolveCequation, y, {xl , x2, . . . }] and NDSolveCequation, y, {xl ,
x2 , . . .}] can also be used to solve partial differential equations.

4.14 Partial Differential Equations 147

The one-dimensional wave equation

can be solved, its solution being expressed as a pure function.

Clear

eqn =

sol =

[eqn, s o l ,

D[u[x, t]

f]

, {t. 2}] ==

Simplify[DSolve[eqn,

= c"2 D[u[x,

u[x, t] , {x

t] , {x.

, t }] , c
2}] ;

> 0]

{{u[x, t] -^ C [l] [t - -] + C[2][t + -] } }
c c

Here C[l] and C[2] are arbitrary functions oit — x/c and t-\-x/c^ respectively.
To solve a specific boundary problem, DSolve is not useful. We can use the
Laplace transform.

First, let us take the Laplace transform of the equation to get rid of the time
derivative.

LTeqnl = LaplaceTransfonn[eqn, t , s]

s'̂ LaplaceTransform[u[x, t] , t , s] — s u[x , 0] — uv^'-'-/[x, 0] ==

c^ LaplaceTransform[uV'^'^) [x, t] , t , s]

If X belongs to the interval [0,1] with the boundary conditions i^(0, t) =
u{l,t) = 0, and the initial conditions u{x,0) = f{x), ut{x,0) = 0, we re
place in the equation above LaplaceTransfonn[u[x, t] , t , s] by U(x) ,
LaplaceTransform[D[u[x, t] , t , 2 , t , s] by U''[x], [u[x, 0]] by f [x],
and Der iva t ive[0 ,1] [u] [x, 0] by 0. It yields

Simplify[DSolve[{<

s an Sin[n Pi x] ,

n 6 Integers]

:~2 U'

U[0]

[x] -

== 0,

s-2 U[x]

U[l] ==

==

0} . U[x] , x] .

r r ^ ^ an s Sinfn Pi x] , ,
{{U[x] - - (^ ^ \ 2^)}}

c^ n^ P i ^ - h s ^

The inverse Laplace transform of this solution is

148 4 Analysis

InverseLaplaceTransformCs Sin[n Pi x] /

(c^2 n^2 Pi^2 + s"2) , s , t]

CosCc n Pi t] Sin[n Pi x]

Finally, the solution is

oo

u{x,t) = V^ an sin(n7rx)cos(cn7rt),
n=l

where

(In = 2 f{x) sin(n7rx) dx.
Jo

If, for example, we consider the function f defined by

^, . \mx/a, i f O < x < a ,

I m(x — l) / (a — 1), if a < X < 1,

which corresponds to a plucked string instrument, we find

an

2

{x

= Simplify[2 Integrate[m

Integrate[m (x - 1) / (a

, a, l}], n 6 Integers]

(x /

- 1)

a) Sin[n Pi x],

Sin [n Pi x],

{X, 0, a}] +

- 2 m Sin[a n Pi]

(- 1 + a) a n^ Pi^

That is,

-177 TV > —^sm(n7ra)sm(n7ra:)cos(cn7rt).
TT^fa- \) ^-^ T?' ^ ^ ^ ' ^ '

2m ^ 1

Using TrigReduce we can write the product of trigonometric functions as a
sum of cosines.

TrigReduce [Sin [n Pi a] Sin[n Pi x] Cos[n c Pi t]]

(Cos [a n Pi - c n Pi t - n Pi x] +

Cos [a n Pi + c n Pi t - n Pi x] -

Cos [a n Pi - c n Pi t -h n Pi x] -

Cos [a n Pi + c n Pi t + n Pi x]) / 4

4.14 Partial Differential Equations 149

which shows that the solution could be expressed in terms of the polylogarithm
function dilog Li2 defined by

Li2(x) = y ^ - - , where \z\ < 1,

whose Mathematica notation is PolyLog [2, z] .

Lists

Mathematica lists are powerful objects. They provide an efficient way of ma
nipulating groups of expressions as a whole.

5.1 Creating Lists

Here is a list of elements.

{a, b , c, d, e, f, g}

{a, b , c, d, e, f, g}

FullFonn[{a, b , c, d, e, f, g}]

L i s t [a , b , c, d, e, f, g]

Table [expression, {n}] generates a list of n copies of expression.

Table [expression, {k, n}] generates a list of the values of expression
when k runs from 1 to n.

Table [expression, {k, n l , n2}] generates a list of the values of expression
when k runs from nl to n2.

Table [expression, {k, n l , n2, ^k}] is the same as above using steps
Ak.

Table [expression, { j , ml, m2}, {k, n l , n2}] generates a nested list.

152 5 Lists

Here are a few examples.

Table[k (k + 1) / 2, {k, 10}]

{1, 3 , 6, 10, 15, 21 , 28, 36, 45, 55}

Table[k, {k, 0, 1, 1 / 10}]

1 1 3 2 1 3 7 4 9

^^' 10 ' 5 ' 10 ' 5 ' 2 ' 5 ' 10 ' 5 ' 10 ' ^^

Table[i^2 + y2, { i , 3} , { j , 4}]

{{2, 5, 10, 17}, {5, 8, 13, 20}, {10, 13, 18, 25}}

Range [n] generates the list {1, 2, . . . , n}.

Range [m, n] generates the list {m, m+1, . . . , n},

Range [m, n, Ak] is the same as above but with steps Z\k.

Range[12]

{1, 2, 3 , 4, 5, 6, 7, 8, 9, 10, 11, 12}

Range[3, 17]

{3, 4 , 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17}

Range[3, 27, 3]

{3, 6, 9, 12, 15, 18, 21 , 24, 27}

Range[0, 1, 0.1]

{0, 0 . 1 , 0 .2 , 0 . 3 , 0 .4 , 0 . 5 , 0 .6 , 0 .7 , 0 .8 , 0 .9 , 1.}

5.1 Creating Lists 153

Array [f, n] generates the list { f [l] , f [2] , . . . , f [n] } . Array [f, {m,
n}] generates an m x n list with elements f [i , j] .

Array[f, 5]

{ f [l] , f [2] , f [3] , f [4] , f [5]}

Array[f, {3, 4}]

{ { f [l , l] , f [l , 2] , f [l , 3] , f [l , 4] } ,

{ f [2 , l] , f [2 , 2] , f [2 , 3] , f [2 , 4] } ,

{ f [3 , l] , f [3 , 2] , f [3 , 3] , f [3 ,4]}}

We can also change the origin.

Array[f, 5 , - 1]

{ f [- l] , f [0] , f [l] , f [2] , f [3]}

Here is a 4 x 6 array in which the indices start from 2 and 4, respectively.

Array[f, {4, 6} , {2, 4}]

{{f[2, 4] , f [2 , 5] , f [2 , 6] , f [2 , 7] , f [2 , 8] , f [2 , 9] } ,

{ f [3 , 4] , f [3 , 5] , f [3 , 6] , f [3 , 7] , f [3 , 8] , f [3 , 9] } ,

{f [4 , 4] , f [4 , 5] , f [4 , 6] , f [4 , 7] , f [4 , 8] , f [4 , 9] } ,

{ f [5 , 4] , f [5 , 5] , f [5 , 6] , f [5 , 7] , f [5 , 8] , f [5 , 9]}}

There exist various commands giving better visual presentations of lists.

TableForm[list] presents the list elements as a rectangular array. This com
mand accepts a variety of Options.

A = {{12, 3456, 752}, {3, 586, 87}, {17645, 98, 3}};

TableForm[A]

154 5 Lists

12 3456 752
3 586 87
17645 98 3

TableForm[A, TableHeadings -^ Automatic]

1 2 3
1 12 3456 752
2 3 586 87
3 17645 98 3

TableFormCA, TableHeadings -^ {{"row 1", "row 2" , "row 3"} ,
None}]

row 1 12 3456 752
row 2 3 586 87
row 3 17645 98 3

ColumnForm [l i s t] presents the list elements as a vertical array. There also
exist various Options.

ColumnFormCA]

{12, 3456, 752}
{3, 586, 87}
{17645, 98, 3}

B = {13, 8145, 37};

ColumnForm[B]

13

8145

37

ColumnForm[B, Center]

5.2 Extracting Elements 155

13
8145

37

ColumnForm[B, Right]

13
8145
37

5.2 Extracting Elements

l i s = Table[Random[], {12}]

{0.0622006, 0.672395, 0.296732, 0.0864989, 0.506992, 0.247055,

0.266085, 0.0842416, 0.360267, 0.336073, 0.709386, 0.388325}

Par t [expression, n] or expression [[n]] gives the nth part of expression.

Par t [expression, - n] or express ion[[- n]] gives the nth part of expres
sion starting from the end.

{ P a r t [l i s , 3] , l i s [[3]] }

{0.296732, 0.296732}

{ P a r t [l i s , - 2] , l i s [[- 2]]}

{0.709386, 0.709386}

P a r t [l i s , {3, 6, 8}]

{0.296732, 0.247055, 0.0842416}

156 5 Lists

gives the third, sixth, and eighth parts of l i s .

Note that l i s [[3 , 6, 8]] is not equivalent. It will give the (3, 6, 8) element
of a nested list which, in this specific case, does not exist.

l i s [[3 , 6, 8]]

Part : : partd ;

Part speci f icat ion {0.0622006', 0.672395', 0.296732', « 7 » ,

0.709386', 0.388325'} [[« 1 > .]] i s longer than depth of

object. More . . .

The symbol « 7 » indicates the number of nondisplayed elements of l i s .

{0.0622006, 0.672395, 0.296732, 0.0864989, 0.506992,

0.247055, 0.266085,0.0842416,0.360267,0.336073,0.709386,

0.388325}[[3, 6, 8]]

Extract [expression, l i s t] extracts the part of expression at the posi
tions specified by l i s t . Note in the following commands the number and
position of curly braces.

Extrac t [l i s , {2}]

Extrac t [l i s , {{2}}]

0.672395

{0.672395}

Extrac t [l i s , {{3} , {6} , {8}}]

(* same as P2Lrt[lis, {3, 6, 8}] *)

{0.296732, 0.247055, 0.0842416}

Here is a nested hst.

1 = {{a, b, c}, {d, e, f}}

5.2 Extracting Elements 157

{{a, b, c } , {d, e, f } }

{ ! [[!]] , 1 [[1 , 2]] }

{{a, b, c } , b}

The same result is obtained with Extract.

Extract[1, { { l } , {1 , 2}}]

{{a, b, c } , b}

Extract [expression, l i s t , f] extracts the part of expression at the po
sitions specified by l i s t and finds the value of f at each of them.

f [x_] := x'̂ 2

Extrac t [l i s , {3} , f]

0.0880499

which is the square of 0.296732, the third element of l i s .

First [expression] and Last [expression] give, respectively, the first and
last elements of expression.

{First [l i s] , L a s t [l i s] }

{0.0622006, 0.388325}

Take [l i s t , n] gives the first n elements of l i s t .

Take [l i s t , - n] gives the last n elements of l i s t .

Take [l i s t , {m, n}] gives elements m through n of l i s t .

Take [l i s , 2]

{0.0622006, 0.672395}

158 5 Lists

Take[l is , - 2]

{0.599309, 0.265092}

Take[l is , {3, 7}]

{0.0726532, 0.680859, 0.180326, 0.974102, 0.0301189}

Rest [expression] gives expression with the first element removed.

Rest[x^2 + y^4 + z^6]

{y* + z6}

Rest [l i s]

{0.672395, 0.296732, 0.0864989, 0.506992, 0.247055,0.266085,

0.0842416, 0.360267, 0.336073,0.709386,0.388325}

Rest[expression] is equivalent to Drop [expression,1].Drop[expression,
n] gives expression with its first n elements dropped.

Drop [l i s , 1]

{0.672395, 0.296732, 0.0864989, 0.506992, 0.247055, 0.266085,

0.0842416, 0.360267, 0.336073,0.709386,0.388325}

Drop[x'^2 + 7*̂ 4 + z'*6, 1]

{ŷ + z6}

Drop[lis, 5]

5.3 Adding Elements 159

{0.247055, 0.266085, 0.0842416, 0.360267, 0.336073,

0.709386, 0.388325}

Drop[a + b + c + d + e , 3]

d + e

Drop [expression, - n] gives expression with its last n elements dropped.

Drop[l is , - 3]

{0.0622006, 0.672395, 0.296732, 0.0864989,

0.506992, 0.247055, 0.266085, 0.0842416, 0.360267}

Drop [expression, {m, n}] gives expression with elements m through n
dropped.

Drop[l is , {2, 10}]

{0.0622006, 0.709386, 0.388325}

5.3 Adding Elements

Clear[l i s]

l i s = Range[2, 12]

{2, 3 , 4, 5, 6, 7, 8, 9, 10, 11,12}

Prepend[expression, element] adds element at the beginning of expres
sion.

l i s = Prepend[lis, 1]

{1 , 2, 3 , 4, 5, 6, 7, 8, 9, 10, 11, 12}

160 5 Lists

Prepend[y^2 + z^2, x'^2]

y?' + ŷ + z^

Append [expression, element] adds element at the end of expression.

lis = Append[lis, 13]

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}

Append [x"2 + Y^2, Z'^2]

x̂ + y2 + -P-

Insert [expression, element, {i, j, . . .}] inserts element at position
{i, j, ...} in expression.

lis = Insert[lis, A, {{2}, {4}, {6}, {8}, {10}, {12}}]

{1, A, 2, 3, A, 4, 5, A, 6, 7, A, 8, 9, A, 10, 11, A, 12, 13}

Cases [e l , e2, . . . , pa t t e rn] gives a list of the elements ej matching
pa t t e rn .

C a s e s [l i s , . In teger]

{1, 2, 3 , 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}

The same result may be obtained with Delete.

D e l e t e [l i s , {{2}, {5}, {8}, {11}, {14}, {17}}]

{1, 2, 3 , 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}

DeleteCases [expression, pa t t e rn] removes all elements of expression
that match pa t te rn .

5.3 Adding Elements 161

l i s l = DeleteCasesElis , A]

{1, 2, 3 , 4 , 5, 6, 7, 8, 9, 10, 11, 12, 13}

lis2 = DeleteCasesElis, .Integer]

{A, A, A, A, A, A}

We can concatenate lists using Join.

Clear[lisl, lis2, lis3]

lisl = {a, b, c, d, e}

lis2 = {f, g, h, i}

lis3 = {j, k, 1, m, n, o,

Join[lisl, lis2, lis3]

p}

{a, b , c, d, e}

{f, g, h, i }

{ j , k, 1, m, n, o, p}

{a, b , c, d, e, f, g, h, i , j , k, 1, m, n, o, p}

Lists can be viewed as sets

Clear[lisl, lis2

lisl = {a, c, b.

lis2 = {d, f, c,

lis3 = {c, b, h};

lis3]

e};
g};

Union[lisl, lis2, lis3]]

lisl, or lis2, or lis3 •)

Intersection [lisl, lis2,

lisl, lis2, and lis3 *)

Complement[lisl,

lis2 *)

lis2] (^

(* all

lis3]

different

(* all

= elements of

elements either in

common elements of

lisl L that are i not in

{a, b , c, d, e, f, g, h}

{c}

162 5 Lists

{a, b, e}

Clear[l i s]

l i s = {a, b, a, e, c, a, d, e, b};

Union[lis] (* eliminate repeated elements *)

{a, b, c, d, e}

5.4 Finding, Grouping, and Counting Elements

Clear[lis]

lis = Table[Random[Integer, 3], {20}]

{3, 1, 0, 0, 3, 3, 1, 1, 1, 0, 3, 2, 0, 0, 3, 1, 3, 1, 2, 3}

Posit ion [l i s t , pattern] gives the list of the positions at which elements
of l i s t match pattern.

{ P o s i t i o n [l i s , 0] , P o s i t i o n [l i s , 1] , Posit ion [l i s , 2] ,
P o s i t i o n [l i s , 3]}

{{{3} . {4} . {10}. {13}, {14}},

{{2} . {7} , {8} , {9} , {16}. {18}},

{{12}, {19}}.

{{1} . {5} . {6} , {11}, {15}. {17}, {20}}}

Cases [l i s , n_ / ; n > 2]

{3, 3, 3, 3, 3, 3, 3}

pattern / ; t e s t tells Mathematica to match pattern only if the evaluation
of t e s t yields True.

Partit ion [l i s t , n] generates nonoverlapping sublists of length n.

5.4 Finding, Grouping, and Counting Elements 163

P a r t i t i o n [l i s , 4]

{{3, 1, 0. 0 } , {3, 3 , 1, 1}, {1 , 0, 3 , 2} ,

{0, 0, 3 , 1}, {3, 1. 2, 3}}

P a r t i t i o n [l i s t , n, d] generates sublists of length n with offset d.

P a r t i t i o n [l i s , 4 , 1]

{{3, 1, 0, 0} , {1, 0, 0, 3} , {0, 0, 3 , 3} , {O, 3 , 3 , l } ,

{3, 3 , 1, 1}, {3, 1, 1, 1}, {1 , 1, 1, 0 } , {1 , 1, 0, 3} ,

{1 , 0, 3 , 2} , {0, 3 , 2, 0} , {3, 2, 0, 0} , {2, 0, 0, 3 } .

{0, 0, 3 , 1}, {0, 3 . 1, 3} , {3, 1, 3 , 1}, {1 , 3 , 1, 2} ,

{3, 1, 2 , 3}}

P a r t i t i o n [l i s , 4 , 2]

{{3, 1, 0, 0 } , {0, 0, 3 , 3} , {3, 3 , 1, l } , { l , 1, 1, 0} ,

{1 , 0, 3 , 2} , {3, 2, 0, 0} , {0. 0, 3 , l } , {3, 1, 3 , 1},

{3, 1, 2, 3}}

P a r t i t i o n [l i s , 4 , 3]

{{3, 1, 0, 0 } , {0, 3 , 3 ,1} , {1 , 1, 1, 0} , {0, 3 , 2, 0} ,

{0, 0, 3 , 1}, {1, 3 , 1, 2}}

P a r t i t i o n [l i s , 4 , 4]

{{3, 1, 0, 0} , {3, 3 , 1, 1}, {1, 0, 3 , 2 } . {0, 0, 3 , l } ,

{3. 1, 2, 3}}

Count [l i s t , pa t t e rn] counts the number of elements in l i s t matching
pa t t e rn .

164 5 Lists

{Count[l is , 0] , Count[l is , 1] , Count[l is , 2] , Count[l is , 3]}

{5, 6, 2, 7}

5.5 Mathematical Operations on Lists

Clear[l i s]

l i s = Range[10]

{1 , 2, 3 , 4, 5, 6, 7, 8, 9, 10}

Apply [f, expression] or f @@ expression replaces the head of expression
byf.

{Head[lis]. Head[Apply[f, lis]]}

{List, f}

{Apply[Plus, lis]. Plus m lis}

{Apply[Times, lis]. Times @@ lis}

{55, 55}

{3628800, 3628800}

Total [l i s t] is equivalent to Apply [Plus, l i s t] .

To ta l [l i s]

55

Map[f, expression] or f / @ applies f to each element on the first level in
expression. The following example shows how to apply a function f to different
levels of a nested list.

5.5 Mathematical Operations on Lists 165

Clear[lis.

lis =

Map[f

MapCf

Map[f

MapEf

{{{u
lis

lis.

lis.

,lis.

MapAll[f,

f]

, V,

] (*

{1}]
{2}]

{3}]
lis]

«}. {x. y}. W}. {{a, b}, {c,
applies f to first level *)

(*

(*

(*

(*

applies

applies

applies

applies

f to

f to

f to

f to

first level =

second level

third level '

all levels *)

d,

0
*)

0

e}}};

{fC{{u, V, w}, {x, y} , {z}}], f [{{a, b } , {c, d, e}}]}

{f[{{u, V, w}, {x, y} , {z}}], f [{{a , b } , {c, d, e}}]}

{{f[{u, V, w}], f [{x , y }] , f [{z}]} , {f[{a, b}3, f [{ c , d, e}]}}

{{{f[u] , f [v] , f [w]} , { f [x] . f [y] } , { f [z]}} ,

{ { f [a] , f [b] } , { f [c] , f [d] , f [e]}}}

f [{ f [{ f [{ fCu] , f [v] , f [w]}] , f [{ f [x] , f [y] }] , f [{ f [z] }] }] .

f [{ f [{ f [a] , f [b] }] , f [{ f [c] , f [d] , f [e]}]}]}]

Clear[lis, f]

lis = Range[1,

f [x_] := x'̂ 2

{Map[f, lis],

10]

f / @ lis}

{1, 2, 3 , 4, 5, 6, 7, 8, 9, 10}

{{1, 4, 9, 16, 25, 36, 49, 64, 81 , 100},

{1 , 4, 9, 1 6, 25, 36, 49, 64, 81 , 100}}

We can also use pure functions.

Map [Function [x, x''2] , l i s]

Map[#^2 &, l i s]

{1, 4, 9, 16, 25, 36, 49, 64, 81 , 100}

{1, 4 , 9, 16, 25, 36, 49, 64, 81 , 100}

MapAt[g, expression, { p a r t i , p a r t 2 , . . . }] applies g to specified parts
of expression.

166 5 Lists

MapAtEg, {a, {b. c } . d, e } , {{2, 1}, {4}}]

{a, {g[b] , c } , d, g[e]}

To apply g to element b, we can first determine its Posi t ion.

pos = Pos i t ion [{a L, {b, c } , d, e } , b]

{{2.1}}

MapAtEg, {a, {b, c } , d, e} , pos]

{a, {g[b] , c } , d, e}

MapThreadCg, {{al , a2, . . . } , {bl , b2, . . . }}] gives g [a l , b l] ,
g[a2, b2],

MapThread[g,

{g [l , 1] , g[2

{{1. 2 ,

. 2] , g

MapThread[Plus, {{1,

3}

[3.

2,

. {1 .

3]}

3 } .

2,

{1 .

3}}] 1

2, 3}}]

{2, 4 , 6}

g[x_, y_] : =

MapThread[g.

x-2 + y

{{1, 2 .

-2

3} . {1. 2, 3}}]

{2, 8, 18}

Here also we can use pure functions.

MapThread[Function[{x, y } , x + y] , {{1, 2, 3 } , {1, 2 , 3}}]

{2, 4 , 6}

5.6 Rearranging Lists 167

MapThread[Function[{x , y } , x'̂ 2 + 7^2], { { l , 2, 3 } , {1 , 2,
3}}]

{2, 8, 18}

MapThread[#l + #2 &, { { l , 2, 3 } , {1 , 2, 3}}]

{2, 4, 6}

MapThread[#1-^2 + #2-̂ 2 &, {{1, 2, 3 } , {1 , 2, 3}}]

{2, 8, 18}

Maplndexed[g, expression] applies g to each element on the first level in
expression giving the index of the element.

MapIndexedEg, {a, {b, c } , d, e}]

{gCa, { 1 }] , g[{b, c } , { 2 }] , g[d, { 3 }] , g [e , {4}]}

5.6 Rearranging Lists

Clear[l i s]

l i s

{{7,
= {{{1 .

8, 9} ,

2,

{u

3} ,
. V ,

{a.

w}.

b.

{u,
c } .
V,

{A, B,

w}}}

c}},

{{{1 , 2, 3 } , {a, b, c } , {A, B, C}},

{{7, 8, 9 } , {u, V, w}, {U, V, W}}}

Transpose [l i s t] transposes the first two levels in l i s t .

Transpose[lis]

168 5 Lists

{{{1, 2, 3} , {7, 8, 9}}, {{a, b , c } , {u, v, w}},

{{A, B, C}, {U, V, W}}}

F l a t t en [nestedLists] concatenates all sublists in one unique list.

F l a t t e n [l i s]

{1, 2, 3 , a, b , c, A, B, C, 7, 8, 9, u, v, w, U, V, W}

This operation can be performed at different levels.

F l a t t e n [l i s , 1]

{{1, 2, 3} , {a, b , c } , {A, B, C}, {7, 8, 9} , {u, v, w}, {U, V, W}}

F l a t t e n [l i s , 2]

{1, 2, 3 , a, b , c . A, B, C, 7, 8, 9, u, v, w, U, V, W}

Permutations [l i s t] generates the list of all permutations of the elements in
l i s t .

Permutat ions[{1, 2, 3}]

{{1, 2, 3} , {1 , 3 , 2} , {2, 1, 3} , {2, 3 , 1}, {3, 1, 2} , {3, 2, 1}}

RotateLef t [expression, n] cycles the elements in expression n positions to
the left and RotateRight [expression, n] n positions to the right.

RotateLeft[{a, b , c, d, e}]

RotateLeft[{a, b , c, d, e } , 1]

{b, c, d, e, a}

{b, c, d, e, a}

RotateLeft[{a, b , c, d, e } , 2]

5.7 Listability 169

{c, d, e, a, b}

RotateRight[{a, b, c, d, e } , 2]

{d, e, a, b, c}

Sort [l i s t] sorts the elements of l i s t into canonical order.

Sort[{d, b, o, j , p, q}]

{b, d, j , o, p, q}

Sort[{6, 8, 2, 1, 0, 5, 3}]

{0, 1, 2, 3 , 5, 6, 8}

Sort[{9, 3 , t , c, 7, n, 1, 4}]

{1 , 3 , 4, 7, 9, c, n, t }

The expression to be sorted need not have head List.

Sort [f [4 , 6, a, 1, 7, j , 2, 9, 8]]

f [l , 2, 4, 6, 7, 8, 9, a, j]

5.7 Listability

Most Mathematica functions are list able. Here are a few examples.

Clear[l i s]

l i s = Table[0.5 + 0.1 k, {k, 0, 10}]

{0 .5 , 0 .6 , 0 .7 , 0 .8 , 0 .9 , 1 . , 1.1, 1.2, 1.3, 1.4, 1.5}

170 5 Lists

S i n [l i s]

{0.479426, 0.564642, 0.644218, 0.717356, 0.783327, 0.841471,

0.891207, 0.932039, 0.963558, 0.98545, 0.997495}

SinhClis]

{0.521095, 0.636654, 0.758584, 0.888106, 1.02652, 1.1752,

1.33565, 1.50946, 1.69838, 1.9043, 2.12928}

Log[lis]

{-0.693147, -0.510826, -0.356675, -0 .223144, -0 .10536,

0. ,0.0953102, 0.182322, 0.262364, 0.336472, 0.405465}

Exp [l i s]

{1.64872, 1.82212, 2.01375, 2.22554, 2.4596, 2.71828,

3.00417, 3.32012, 3.6693, 4.0552, 4.48169}

List ability is also valid for nested lists. The list able function applies to the
highest level.

Sin[{{a,

Sinli[{{a

Log[{{a,

Exp[{{a.

b} .
. b}

b} .
b} .

{{c .

. {{c

{{c.

{{c .

d} .
. d}

d} .

d} .

{e}}}]

. {e}}}]

{e}}}]

{e}}}]

{ {S in[a] , S in[b]} , { {S in [c] , S in[d]} , {Sin[e]}}}

{{SinliCa], SinhCb]}, {{Sinh[c] , SinhCd]}, {Sinh[e]}}}

{{Log[a], Log[b]}, {{LogEc], Log[d]}, {Log[e]}}}

{{E^, Eb}, {{E^ . Ed } , {E® }}}

User-defined functions are, in general, not listable.

5.7 Listability 171

C l e a r [l i s]

l i s = Table[0.5 + 0.1 k, {k, 0, 10}];

fCl is]

f [{ 0 . 5 , 0 .6 , 0 .7 , 0 .8 , 0 .9 , 1 . , 1 .1 , 1.2, 1.3, 1.4, 1.5}]

They can, however, be made L i s t ab le using the command:

A t t r i bu t e s [f] = L i s tab le

L i s t ab le

fCl i s]

{ f [0 . 5] , f [0 . 6] , f [0 . 7] , f [0 . 8] , f [0 . 9] , f [l .] , f [l . l] ,

f [1 . 2] , f [1 . 3] , f [1 . 4] , f [1 . 5] }

If a function is not L is tab le , it can apphed to all the elements of a list using
the command Map.

FClis]

F[{0.5 , 0 .6 , 0 .7 , 0 .8 , 0 .9 , 1 . , 1 .1 , 1.2, 1.3, 1.4, 1.5}]

MapCF, l i s]

{F[0 .5] , FE0.6], F [0 . 7] , F [0 . 8] , F[0.9] , F [l .] , F [l . l] , F [1 . 2] ,

F [1 . 3] , F [1 . 4] , FE1.5]}

Functions may be defined on lists. For example, the function f f first adds the
elements of a list and then squares the result.

f f [l i s _ L i s t] := (Apply[Plus, l is])-^2

f f [{ l , 2, 3 , 4 , 5}]

225

172 5 Lists

f f f first adds the elements of the hst, takes the closest integer of the sum,
and returns 0 if the integer is even and 1 otherwise.

fff [l is_List] := Mod[Round[Apply[Plus,

f f f [{ 3 . 1 2 , 7.53, 2.27, 5.11}]

f f f [{ 3 . 1 2 , 7 .53, 2.27, 6.11}]

l i s]] . 2]

6

Graphics

Graphics are important components of many applications, and Mathematica
provides powerful graphics capabihties. This chapter is rather detailed but a
lot more can be found in [66] and [55].

6.1 2D Plots: Function Plotting

To graph f{x) in the interval (XI ,J :2) , we use the command Plo t [f [x] , {
X, x l , x2}].

Plot [Cos [2x] + S in [x] , {x, - P i , P i }] ;

\ V \ /

-3 \ -2 - I I I 1 2 3

\ / ~A

^ ^ - 2

Fig. 6.1. Graph of cos{2x) + sin(x) for x e [—7r,7r].

We can graph more than one function on the same interval using the command
P l o t [{ f [x] , g [x] , h [x] } , {x, x l , x2}].

Plot [{Cos[x], Cos [3 x] , Cos [5 x] } , {x, - P i , P i }] ;

174 6 Graphics

Fig. 6.2. Graphs of cos(x), cos(3a:), and cos(5a:) for x G [—7r,7r]

6.1.1 Parametric Plots

We can also plot curves represented by parametric coordinates using the
command: Parametr icPlot [{x[t] , y [t] } , { t , t l , t2}] which generates
a parametric plot where the x and y coordinates are functions of t varying
between ti and t2.

Parainetr icPlot[{Sin[3t] , Sin[8 t] } , { t , 0, 2 P i }] ;

Fig. 6.3. Parametric plot of (sin(3t), sin(8t)) for t G [0,27r].

6.1.2 Polar Plots

We can also plot a curve defined by its polar coordinate representation r
f{6) using ParametricPlot , where the functions x and y are defined by

x(t)=/(t)cos(t) ,2/(t) = /(t)sin(t) .

Considering, for example, the curve defined by r = sin 4^, we obtain

6.1 2D Plots: Function Plotting 175

ParametricPlot[{Sin[4t] Cos[t], Sin[4t] Sin[t]}, {t, 0, 2Pi},

AspectRatio -^ 1] ;

Fig. 6.4. Parametric plot of the curve given in polar coordinates by r = sin(4^) for
Oe [0,27r].

Such a type of polar graph is called a rose. Note tha t we used the option
A s p e c t R a t i o —̂ 1 to specify tha t the ratio of height to width of the plot
should be equal to 1.

We do not need to use P a r a m e t r i c P l o t . We can plot curves using the com
mand P o l a r P l o t .

P o l a r P l o t [S i n [3 t h e t a] , { t h e t a , 0 , 2 P i }] ;

Fig. 6.5. Polar plot of the curve defined by r = sin(3^) for 6 G [0,27r].

176 6 Graphics

6.1.3 Implicit Plots

Loading the package Graph ics ' Impl i c i tP lo t ' we can also plot a curve de
fined by an implicit function f{x,y) = 0.

« Graphics'ImplicitPlot

ImplicitPlot[(x~2 + y*2)~3 == (x*2 • - y"2), {x. - 2. 2}];

Fig. 6.6. Implicit plot of the curve defined by {x^-\-y'^)^ = (x'^ — y^) for x G [—2, 2]

6.1.4 Color

To display color we have at our disposal various graphics directives: RGBColor [redLevel,
greenLevel,blueLevel]. aad CMYKColor[cyanLevel, magentaLevel, yellowLevel,
blackLevel], v t̂ee colorLevel is a real number in the range 0 to 1.
PlotStyle -^ style specifies graphics directives for all lines or points.

Plot [{Cos[x], Cos [3 x] , Cos [5 x] } , {x, - P i , P i } ,

P lo tS ty le -^ {RGBColor[0, 0, 1] , RGBColor[0, 1, 0] ,
RGBColor[1, 0, 0] }] ;

6.1 2D Plots: Function Plotting 177

Fig. 6.7. Graphs of cos{x), cos(3x), anc? cos(5a;) for x G [—7r,7r], colored, respec
tively, in blue, green, and red.

Plot [{Cos[x], Cos [3 x], Cos [5 x]}, {x, - Pi, Pi},

PlotStyle -̂ {CMYKColorCl, 0, 0, 0], CMYKColor[0, 1, 0, 0],
CMYKColorCO, 0, 1, 0]}];

0(5 '̂•. A
/ \

T-f-r-

Fig. 6.8. Same as above but colored, respectively, in cyan, magenta, and yellow.

Hue [h] , where h varies from 0 to 1, specifies color with a particular hue. As
h increases, starting from h = 0, which corresponds to red, the color changes
to yellow, green, cyan, blue, and red again for h = 1.

Show[Graphics

Rectangle[{j ,

Line[{{0, 0 } ,

AspectRatio -

[{Table[{Hue[j

0} , {j+1
{10. 0 } .

-> 0 . 2] ;

. 5 }] } ,
{10,

/ 9]

{ j .
5 } .

)

0,

{0.
9}]
5 } .

>

{ 0 , 0 } }] }] .

Fig. 6.9. Rectangles of varying hue.

178 6 Graphics

To specify the gray level intensity, we can use GrayLevel [Level] , where
Level varies from 0 (black) to 1 (white).

Show[Graphics

Rectangle[{j ,

Line[{{0, 0 } ,

AspectRatio -

[{Table[{GrayLevel[j /

0 } , {j+1
{10, 0 } ,

^ 0 . 2] ;

.5}]}
{10.

. { j . 0,

5 } . {0,

9] ,

9}]

5 } .

»

{0. 0 } }] }] .

Fig. 6.10. Rectangles of varying gray level

The package Graphics' Colors ' contains a large number of predefined colors.
Entering the command ?Graphics'Colors'* gives the list of all predefined
colors.

«Graphics' Colors'
?Graphics'Colors'*

The output is suppressed but we can get the color code of each of these
predefined colors by entering its name. For example:

Firebrick

RGBColor[0.698004, 0.133305, 0.133305]

6.1.5 Dashing

Dashing [a, b , . . .] draws dashed lines with segments of successive length a,
b,

Plot [{Cos [x] , Cos [3 x] , Cos [5 x] } , {x, - Pi , P i } ,

PlotStyle -> {Dashing[{0.07, 0 .07}] , Dashing[{0.04,

Dashing[{0.01, 0 .01}] }] ;

0 .04}] ,

6.1.6 Text

Text [expression, {x, y}] is a graphics primitive that prints expression
centered at the point {x, y}.

i^

^ A ^

111
/ hi

\ I ;
- O f . 5

- 1

6.1 2D Plots: Function Plotting 179

\ A / \A

'UVM
' \

Fig. 6.11. Graphs of cos{x), cos(3x), and cos{5x) for x G [—TT, TT], with different
dashing plot styles.

Plot[Exp[- 0.1 x] CosCx], {x, 0, 6Pi} ,

PlotStyle -> {RGBColorEO, 0, 1] } ,

Epilog -^ Text[''Damped O s c i l l a t i o n s ' \

DefaultFont -> { ' 'He lve t i ca ' ' , 12}];

{3 Pi , 0 . 7 }] ,

1
0.75
0.5

0.25

0.25
-0.5
0.75

\ Damped Oscillations

2.5 k 7.5i 1c/ l2.5\&, /7.5

Fig. 6.12. Graphs of e °-^^cos(3x) forx G [0,67r], with added text

Epilog is an option to be rendered after the main part of the graphics is ren
dered, DefaultFont controls the font used for text in graphics, and TextStyle
specifies the default style and font options with which text should be rendered.
The text has to be placed between double quotes (").

Plot [{Cos[x]

PlotStyle ->

RGBColor[l,

TextStyle -^

, Cos[3 x] , Cos

{RGBColor[0, 0

0, 0] } ,

{FontSlant -^

[5 x] } , {x. - Pi ,
, 1] , RGBColor[0,

" I t a l i c " , Fonts

P i } ,
1, 0]

ize -^

,

12}];

FontSlant is an option that specifies how slanted characters should be.

180 6 Graphics

Fig. 6.13. Same as Figure 6.7 with a different text style.

6.1.7 Axes, Ticks and Labels

Aspect Ratio is an option which specifies the ratio of height to width for
a plot. For two-dimensional plots, the default value of Aspect Ratio is 1 /
GoldenRatio. AspectRatio -^ Automatic (equivalent to AspectRatio -^
1) uses the same scale in x and y.

Plot[BesselJ[0, x] , {x, 0, 20}];

Fig. 6.14. Graph of JQ{X) for x G [0,20].

We can replace the traditional axes by frame axes, and label the plot.

Plot[BesselJ[0,x], {x, 0,

PlotStyle -^

PlotLabel -^

DefaultFont -

{RGBColorCO,

20},

0,1]}

^'Bessel Function

-> {''Courier *', i:

Axes —^

»

False,

of Order 0 " ,

2}];

Frame -^ True,

Here is another example using TraditionalForm to write a mathematical
expression, and Ticks to specify tick mark positions.

6.1 2D Plots: Function Plotting

Bessel Function of Order 0

181

0 5 10 15 20

Fig. 6.15. Same as Figure 6.14 with a plot label.

Ibl = Exp[-

Plot[Exp[- 0

PlotStyle ->

Ticks -̂ {{5

a x] Cos [x] ;

. 1 x] Cos [x] ,

{RGBColor[0,

, 10, 15}, {-

{x, 0, 6]

0,1]},
0.75, - 0

Epilog ^ Text[TraditionalForm[Ibl]

DefaultFont -̂ {''Helvetica'\ 12}]

Pi},

25,

, {3

»

0.25.

Pi, 0

0.75}}.

.7}].

e-^^cos(jc)

Fig. 6.16. Same as Figure 6.12 with mathematical symbols in traditional form.

In the following example, we use Ticks to specify the positions of tick marks
only for one axis and let the tick marks for the other axis be placed automat
ically. We also use the graphics primitive Point to place a big red dot at the
origin. We study in more detail graphics primitives in section 6.3 below.

182 6 Graphics

plCosColor = Plot [{Cos[x] , Cos[3 x] , Cos [5 x] } ,

{x, - Pi , P i } ,

PlotStyle -^ {RGBColorEO, 0, 1], RGBColor[0, 1, 0],

RGBColorCl, 0, 0]},

TextStyle -̂ {FontSlant -̂ "Italic", FontSize -> 14},

Ticks ^ {{ - Pi, - Pi/2, 0, Pi/2, Pi} Automatic},

Epilog -> {PointSize[0 .05] , RGBColor[l, 0, 0] ,

Point [{0, 0 }] }] ;

-71

Fig. 6.17. Same as Figures 6.7 and 6.13 with different options.

Using the command Options [plCosColor] will give the expHcit list of options
of the above graphics object.

6.1.8 Graphics Array

To present a collection of plots we use Graphics Array. The following com
mand displays the traditional form of a mathematical symbol.

TraditionalForm[BesselJ[0, x]]

JQ{X)

We first generate four plots without displaying them, and use the option Ticks
-^ None to eliminate ticks.

6.1 2D Plots: Function Plotting 183

piJO = Plot[BesselJ[0, x], {x, 0, 10},

PlotStyle -^ {CMYKColorEl, 0, 0, 0]}, Ticks -^ None,

Epilog -> Text[TraditionalFonn[BesselJ[0, x]], {3, 0.5}],

DefaultFont -> {''Helvetica'\ 16},

DisplayFunction -^ Identity];

plJl = Plot[BesselJ[l, x], {x, 0, 10},

PlotStyle -^ {CMYKColorCO, 1, 0, 0]}, Ticks -^ None,

Epilog -> Text[TraditionalForm[BesselJ[l, x]], {4.5, 0.35}],

DefaultFont -^ {''Helvetica'', 16},

DisplayFunction -^ Identity];

plJ2 = Plot[BesselJ[2, x], {x, 0, 10},

PlotStyle -^ {CMYKColorCO, 0, 1, 0.5]}, Ticks -^ None,

Epilog -^ Text[TraditionalForm[BesselJ[2, x]], {6, 0. 3}],

DefaultFont -^ {"Helvetica", 16},

DisplayFunction -^ Identity];

plJ3 = Plot[BesselJ[3, x], {x, 0, 10},

PlotStyle -^ {CMYKColorCO, 0, 0, 1]}, Ticks -^ None,

Epilog -^ Text[TraditionalForm[BesselJ[3, x]], {7, 0. 3}],

DefaultFont -^ {"Helvetica", 16},

DisplayFunction —> Identity];

And we display the four plots in a 2 x 2 array.

plArrayl =

TextStyle

PlotLabel

= Show[GraphicsArray[{{plJO,

-> {FontSlant -^ "Italic"

—> "First Bessel Fimctions

DisplayFunction —> $DisplayFimction] ;

plJl},

Fonts

' '] ,

{plJ2

ize -^

plJ3}},

14},

184 6 Graphics

First Bessel Functions

Fig. 6.18. Graphics array of the Bessel functions Jo, Ji, J2, and J3(x) in the
interval [0,10].

We can increase spacing with the option Graph icsSpac ing ,

plArray2 =

TextStyle

= Show[GraphicsArray[{{plJO,

-^ {FontSlant -^ ''Italic''

GraphicsSpacing -> {0.3, 0.3},

PlotLabel —> ''First Bessel Functions

plJl}, {plJ2

, FontSize -^

-]] ;

plJ3}},

14},

First Bessel Functions

Fig. 6.19. Graphics array of the Bessel functions Jo, J\, J2, and J^{x) in the
interval [0,10] using the option GraphicsSpacing.

and finally add a frame.

Show[plArray2 , Frame -^ T r u e] ;

6.1 2D Plots: Function Plotting

First Bessel Functions

185

VoW
, / • \

1 \ 7 \

V

\ / w

\J
Fig. 6.20. Graphics array above with a frame.

6.1.9 Plot Range

Consider the following graphics.

plCosh = Plot[Cosh[2 x] Cos[10 x] , {x, - 3 , 3 }] ;

50

-50

-100

-150

Fig. 6.21. Graph of cosh(2x) cos(10a;) for x G [-3, 3].

We can restrict the plot range to analyze more closely a part of the plot using
the option Plot Range.

Show[plCosh, PlotRange -> {{-1 , 1}, {- 2, 2}}];

186 6 Graphics

Fig. 6.22. Graph o/cosh(2x)cos(10x) in a reduced plot range.

6.2 More 2D Plots

6.2.1 Plotting Lists

In this section various commands that help visualize numeric data are pre
sented. Data are either of the form of a simple list {di, ^2, • • •, ĉ n}̂ where each
di isasingletermor alist of listsoftheform: {{xi,2/i}, {x2,2/2}, • • • A^n^Vn}}^
where each sublist {xi^yi} represents the coordinates of point i. L i s t [{ d l ,
d2, . . . , dn}] is equivalent to Lis t [{{1, d l } , {2, d2}, . . . , {n, dn}}].

data = Table[0.3 k^2 + 1.75 k + (2Random[Integer] - 1) , {k,
1, 15}]

{3.05, 5 .7 , 6 .95, 10.8, 17.25, 22 .3 , 27.95, 32 .2 ,

39.05, 46 .5 , 56.55, 65 .2 , 72.45, 84 .3 , 94.75}

We first plot this list of values, adding text and specifying the point size (see
Figure 6.23).

plData = Lis tPlotCdata , P lo tS ty le -^ {Poin tSize[0 .02] ,

RGBColor [1 , 0 , 0] } , Epilog -> Text [' ' d a t a p o i n t s " {4, 60}],

DefaultFont -^ { ' ' H e l v e t i c a ' \ 14}];

We then find a quadratic function to fit the data and plot this function,

f i tData = F i t [data, { l , x, x ' '2}, x]

1.04396 + 1.43911 x + 0.319877 x^

6.2 More 2D Plots 187

80

60

40

20

•
•

•
data points .

•
•

• • • • •
. • •

2 4 6 8 10 12 14

Fig. 6.23. Plot of a list of data points.

plFit = PlotCfitData, {x, 0, 15}];

10 12 14

Fig. 6.24. Graph of 1.04396 + 1.43911x + 0.319877x^ (x G [0,15]; that fits the list
of data points of Figure 6.23 above.

and we finally represent on the same graph the fitting function and the data
points (Figure 6.25).

Show[{plData, p l F i t } , PlotLabel -^ " D a t a f i t ' \

DefaultFont -^ { ' ' H e l v e t i c a ' ' , 14}, Frame -^ True] ;

Loading the package Graphics'Mult i p l e L i s t P l o t ' gives the possibility to
plot several lists of data on the same graph.

«Graphics' MultipleListPlot'

datal = Table [Cos [Pi k / 20] +0.1 Random[] , {k, 1, 10}];

data2 = Table [Sin[Pi k / 20] +0.1 Random[] , {k, 1, 10}];

MultipleListPlot[datal, data2. PlotJoined -̂ True];

188 6 Graphics

Data fit

0 2 4 6 8 10 12 14

Fig. 6.25. Plots of the list of data points and the quadratic fitting function.

1

0 .8

0 .6

0 .4

0 .2

2 4 6 8 10

Fig. 6.26. Plots of two lists of data points.

The same plot with different options (Figure 6.27):

MultipleListPlot[datal, data2,

SymbolShape

SymbolStyle

PlotJoined -

-̂ {PlotSymbol[Triangle],

-^ {RGBColor[1,0,0],

-̂ True] ;

PlotSymbol[Box]},

RGBColor[0,0,l]},

6.2.2 Special Plots

Loading the package Graphics 'Graphics ' allows us to use a greater variety
of graphics commands.

«Graphics' Graphics'

6.2 More 2D Plots 189

1

0 .8

0 .6

0 .4

0 .2

2 4 6 8 10

Fig. 6.27. Same as Figure 6.26 above with different options.

LogPlot [f [x] , {x, x l , x2}] generates a log-linear plot in the interval
[xl , x2] and LogLogPlot [f [x] , {x, x l , x2}] generates a log-log plot in
the same interval.

LogPlot[Exp[- 3 x] , {x, 0, 6 }] ;

1

0 . 0 1

0 .0001

1 . xlO"^

1 . xlO"^

Fig. 6.28. Logplot of e'^"" for x G [0,6].

LogLogPlot [x-̂ (3/4) , {x, 0, 1}] ;

1
0 . 7

0 . 5

0 . 3

0.2
0 .15

0 . 1

0 .02 0 .05 0 . 1 0 .2 0 .5 1

Fig. 6.29. Loglogplot of x^'"^ for x G [0,1].

190 6 Graphics

BarChart [l i s t] , PieChart [l i s t] , and Histogram [l i s t] plot as their names
expUcitly suggest, a bar chart, a pie chart, and the histogram of a Hst of data.

rnd = Table[Random[Integer, {1 , 5 }] , {20}]

{2, 4, 4, 4, 1, 4, 3 , 2, 4, 1, 5, 5, 5, 2, 1, 5, 1, 4, 4, 2}

BarChart[rnd];

1 2 3 4 5 6 7 8 9 1011121314151617181920

Fig. 6.30. Bar chart of a list of 20 random integers between 1 and 5.

PieChart[rnd] ;

Fig. 6.31. Pie chart of a list of 20 random integers between 1 and 5.

6.2 More 2D Plots 191

Histogram[rnd];

2 3 4 5 6

Fig. 6.32. Histogram of a list of 20 random integers between 1 and 5.

6.2.3 A Horizontal Bar Chart with Many Options

We represent the 2004 Car Sale Statistics in Maryland (data obtained from
the Maryland Motor Vehicle Administration). We draw a horizontal bar chart
increasing little by httle the number of options.

Clear[data]

data = {{33361, ''January''}, {27780, ''February''},

{39340, "March"}, {37478, "April"}, {37819, "May"},

{42758, "June"}, {38329, "July"}, {37175, "August"},

{38712, "September"}, {34839, "October"},

{29859, "November"}, {31058, "December"}};

numbers = Map[First, data];

months = Map[Last, data];

months = Transpose[{Range[Length[months]], months}];

barchl = BarChart[numbers, BarOrientation —> Horizontal,

BarEdges -> False, BarStyle -^ GrayLevel[0.5],

Ticks -^ {Automatic, months}];

192 6 Graphics

December
November
October

September
August

July-
June
May-

Apr il
March

February-
January

10000 20000 30000 40000

Fig. 6.33. Simple horizontal bar chart of 2004 Maryland car sale statistics.

We add vertical white Hnes,

barch2 = Show[barchl, Epilog -^ {GrayLevel[1],

AbsoluteThickness[0.25], Table[Line[{{i , 0 . 5 } , { i , 12.5}}],

{ i , 10000, 50000, 10000}]}];

December
November
October

September
August

July-
June
May

April
March

February
January

10000 20000 30000 40000

Fig. 6.34. Horizontal bar chart of 2004 Maryland car sale statistics with vertical
white lines.

then add a title and change the default font,

barchS = Show[barch2, AxesStyle -^ GrayLevel[1],

PlotLabel -^ FontFormCMaryland 2004 Car Sales S t a t i s t i c s ' \

{ ' ' H e l v e t i c a ' \ 16}], DefaultFont -> { ' ' H e l v e t i c a " , 11}];

6.2 More 2D Plots 193

Maryland 2004 Car Sales Statistics
December [
November |

October |
September [

August [
July I

June i
May I
April [

March j
February j
January i

10000 20000 30000 40000

Fig. 6.35. Adding a title to the figure above.

and finally add a frame slightly thicker than the default thickness.

Show[Graph ic sAr ray [{ba rch3} , Frame -^ T r u e ,

F rameSty le -> T h i c k n e s s [0 . 0 1]]] ;

Maryland 2004 Car Sales Statistics
December [
November i

October {
September \

June I
May 1
Apnl i

March i
February \
January i

10000 20000 30000 40000

Fig. 6.36. Horizontal bar chart of 2004 Maryland car sale statistics with vertical
white lines, a title, and a frame.

6.2 .4 L a b e l s

The option P lo tLegend draws a legend beside the plot associating text with
the plot style.

« G r a p h i c s ' L e g e n d '

194 6 Graphics

Plot[{Sin[x]

PlotStyle ->

RGBColorCl,

DefaultFont

PlotLegend -

, Sin [2 x] , Sin [3 x] } , {x, - 2 Pi, 2 Pi},

{RGBColorEO, 0, 1], RGBColor[0, 1, 0],

0, 0]}, FormatType -^

-> {"Helvetica" ,14},

-̂ {"SinCx]", "Sin[2x]

Tradit ionalForm,

', "Sin[3x]"}];

Fig. 6.37. Graphs of sm{x), sin(2a:), and sin{3x) with a legend.

6.3 2D Graphical Primitives

Mathematica represents all 2D graphics in terms of a collection of graphics
primitives such as Point, Line, Rectangle, Polygon, Circ le , and so on. The
general form of the command is Graphics [pr imi t ive , op t ion l , opt ion2,
. . .] . These graphics primitives are displayed with the command Show.

6.3.1 Point

Point [{x, y}] represents a single point located at {x, y}.

ShowCGraphics[Table[{PointSize[0.04], RGBColor[0, 0, 1] ,

Point[{Cos[2 k P i] , Sin[2 k P i] }] } , {k, 0, 0 .9 , 0 . 1 }]] ,

AspectRatio —̂ Automatic];

6.3 2D Graphical Primitives 195

Fig. 6.38. Ten blue points on a circle.

6.3.2 Line

Line[{{xl , y l } , {x2, y2}, . . . , {xn, yn}] represents a line through all
points {{x l , y l } , {x2, y2}, . . . , {xn, yn}.

Show[Graphics[{GrayLevel[0.3], Thickness[0.03],

Line[{{0, 0 } , {0, 1}, {1 , 1} , {1 , 0} , {0, 0 } }] }] ,

AspectRatio -^ Automatic];

Fig. 6.39. A thick square drawn using the command Line.

To combine colored lines and points,

196 6 Graphics

Show[Graphics

Hue[k / 10] ,

Point[{Cos[P:

AspectRatio -

5[Table[{PointSize[0.05 Abs[S:

Line[{{0,0}, {Cos

L k / 20] , Sin [Pi

-̂ Automatic] ;

j [P i k / 20]

k / 20]}]} ,

Ln[Pi

Sin

{k,

. k / 1 0]]] ,

[Pi k / 20]}}] ,

1, 40}]] ,

Fig. 6.40. Colored lines and points.

Show[Graphics [Table[{Hue[k / 6 0] ,

L i n e [{ { k , O}, {k, S i n [P i k / 3 0] } }] } , {k, 1, 6 0 }]]] ;

HIM

Fig. 6 .41. Colored lines of varying lengths.

6.3 2D Graphical Primitives 197

6.3.3 Rectangle

Rectangle [{{xl, y l } , {x2, y2}}] represents a filled rectangle where {xl ,
y l} are the coordinates of the bottom left corner, and {x2, y2} the coordi
nates of the top right corner.

Show[Graphics[{Rectangle[{0,

Rectangle[{2

AspectRatio -

0}.
5, 0}, {4.5, 1}]}],

-̂ Automatic] ;

{2, 1}].

Fig. 6.42. Two filled rectangles.

6.3.4 Polygon

Polygon [{ x l , y l } , {x2, y2}, . . . , {xn, yn}] represents a filled n-gon whose
corners are the n points {xi , y i} .

Below we define a polygon by the position (x, y) of its center and the number
n of equal sides.

centeredPoly[{x_, y_}, n_] : =

Polygon [Table [{Sin [2 k Pi / n] + x, Cos[2 k Pi / n] + y} ,

{k, 0, n}]]

Show[Graphics[{{Hue[0. 6], centeredPoly[{0.5,

{Hue[0.7], centeredPoly[{2.5,

{Hue[0.8], centeredPoly[{4.5,

{Hue[0.3], centeredPoly[{0.5,

{Hue[0.4], centeredPoly[{2.5,

{Hue[0.5], centeredPoly[{4.5,

AspectRatio —> Automatic];

0.5}, 7]},

0.5}, 8]},

3}, 3]},

3}, 4]},

3}, 5]}}],

0.5}, 6]},

198 6 Graphics

Fig. 6.43. Six regular polygons whose positions are defined by their centers.

6.3.5 Circle

Circle [{x, y} , r] represents a circle of radius r centered at {x, y}.

Show[Graphics[{

{GrayLevel[0.6], Thickness

{Hue[0.5], centeredPoly[{0

AspectRatio -^ Automatic];

[0.01]

0} .

, Circle

5] } }] ,

[{0. 0 } . 1] } .

Fig. 6.44. Circle with an inscribed pentagon.

6.3 2D Graphical Primitives 199

6.3.6 Text

Text [expression, {x, y}] is a graphics primitive that prints expression
centered at the point {x, y}. We can use this command to label points as
shown below.

p t s = Table [{Random [] , Random[]}, {12}];

Show[Graphics[{{PointSize[0.07] , CMYKColor[0, 0, 1, 0] ,

Map[Point, p t s] } . Table[Text [i , P a r t [p t s , i]] ,

{ i , 1, Length[p ts]}]}] , PlotRange -^ A l l] ;

3 7 10

2 6

8

4

11

Fig. 6.45. Labeled points.

6,3.7 Golden Ratio

The shape of a picture is determined by the AspectRatio option. The default
option is the golden ratio, that is, a ratio r = a/b such that

a b 1
or r b a + b iH-r

The numerical value of r is the positive root of

Solve [r == 1 / (1+r) , r]

{{r ^ - (- 1 - S q r t [5]) } , {r -^ - (- 1 + Sqr t [5])}}

that is,

r= ^ (- 1 + ^ ^) = 0.618034.

200 6 Graphics

Starting from an initial golden rectangle, when we remove the largest square,
the remaining rectangle is also a golden rectangle. The figure below represents
a few iterations of this process.

r =

11

12

13

14

15

16

t l

t 2

t 3

t 4

t 5

t 6

t 7

r 4

0.618034;

= Line[{{0, 0} , {1 +

= Line[{{l , 0} , { l , J

= Line[{{l , r } , {l +

= Line[{{l + r'^2, r}

= Line[{{l + r'^2, 3]

= Line[{{l + r'^2 + r

= T e x t [' ' l " , { 0 . 5 , -

= T e x t [' ' l ' ' , { - 0.05

= T e x t [' ' r ' ' , {1 + r

= T e x t [' ' r ' \ {1 + r

= T e x t [' ' \ ! \ (r \ ^ 2 \) '

= T e x t [' ' \ ! \ (r \ ^ 3 \) '

= T e x t [' ' \ ! \ (r \ ^ 4 \) '

r'^3 - 0 .05}];

Show[Graphics[{11, 12,

t l , t 2 , t 3 , t 4 , t 5 , t 6 .

r , 0} ,

L}}];
r , r}}]

, {1 + I

r - 1}J
^4, r +

0.05}]

, 0.5}]

/ 2, -

+ 0.04

'> {1 ^

' . {1 ^

'> {1 ^

13, 14,

t 7 }] ,

DefaultFont -^ { ' ' H e l v e t i c a " ,
Automatic];

{1 + r , 1},

t

"2, 1}}];

1 + r , 3 r

r - 3 } , {1 +

0 .05}] ;

, r / 2}] ;

r~2 /2 , r -

r + 0 .05, r

r*2 + r "4 /2

15, 16,

{0, 1}, {0

- 1}}];
r"2 + r~4,

0 .05}] ;

+ r - 3 / 2 }] ;

+ 0 . 0 1 ,

14}, AspectRatio —>

0}}];

1}}];

^

^

1 r

Fig. 6.46. Sequence of golden rectangles.

6.3 2D Graphical Primitives 201

In the input above we used the form \ ! \ (r \ "2 \) to display r"̂ as shown below.
We could have obtained a similar result using Tradi t ionalForm [Superscript-
[r , n]] (see Figure 6.20) except that in this case the symbol would have been
displayed using a different font.

\ ! \ (r \ - 2 \

j-n

Taking into account that r = 1/(1 + r) , that is, r + r^ = 1, we can verify that

n=0 n=0

The golden ratio is closely related to Fibonacci numbers.

Table[Together[Nest[Function[x, 1 + 1 / x] , a, k]] ,

{k, 1, 5}]

1 + a 1 + 2 a 2 + 3 a 3 + 5 a 5 + 8 a^

I a 1 + a 1 + 2 a 2 + 3 a 3 + 5 a >

The sequence of fractions above is also given by

Table[(Fibonacci[k] + a Fibonacci[k+1]) /

(Fibonacci[k - 1] + a F ibonacc i [k]) , {k, 1, 5}]

r l + a 1 + 2 a 2 + 3 a 3 + 5 a 5 + 8 a^

I a ' 1 + a ' 1 + 2 a ' 2 + 3 a ' 3 + 5 aJ

We also have

NestLis t [Funct ion[x, Together[l / (1+x)]] , a, 5]

^ 1 + a
1 + a 2 + a 3 + 2 a 5 + 3 a^

+ a 2 + a 3 + 2 a 5 + 3 a 8 + 5 a>

which can be written

202 6 Graphics

Table[(Fibonacci[k] + a Fibonacci[k - 1]) /

(Fibonacci[k + 1] + a F ibonacc i [k]) , {k, 0, 5}]

I 1 +
1 + a 2 + a 3-H2 a 5 + 3 a^

+ a 2 + a 3 + 2 a 5 + 3 a 8 + 5 a>

6.4 Animation

6.4.1 Rolling Circle

The cycloid is the locus of a point of the circumference of a circle that rolls
along a straight line. We first define a function that draws a dotted circle, and
then animate the rolling motion of this circle along a straight line.

dottedCircle[{x_, y_}, angle . , rad_] := {Circle [{x, y} , r a d] ,

Line[{{x, y} , rad {Sin[angle] , Cos[angle]} + {x, y}}] ,

Po in tS ize [0 .03] , RGBColor[1,0,0],

Poin t [rad {Sin[angle] , Cos[angle]} + {x, y}]}

Show[Graphics[dottedCircle[{0, 0} , Pi / 2, 1]] ,

AspectRatio —̂ Automatic];

Fig. 6.47. Dotted circle.

To drawing the dotted circle and the straight line,

6.4 Animation 203

Show[Graphics[{dottedCircle[{0, 1}, Pi , 1] ,

Line[{{0, 0} , {4 Pi , 0 } }] }] ,

AspectRatio -^ Automatic];

i
Fig. 6.48. Dotted circle rolling on a straight line.

To animate the rolling motion we generate the following sequence of images
and then select an output cell and in the Cell menu go to Animate Selected
Graphics.

Table[Show[Graphics[{dottedCircle[{t, l } . Pi + t , 1] ,

Line[{{0, 0 } , {4 Pi , 0 } }] }] , AspectRatio -^ Automatic],

{ t , 0, 4 Pi , Pi / 10}];

In the next figure the dotted circle has reached the position corresponding to
t = b.

Fig. 6.49. Position of the rolling dotted circle for t = 5.

We can find the locus of the red point using Cases.

pt = Cases [dottedCircle[{t , 1} , Pi + t , 1] , Point [J]

{Point [{t - S i n [t] , 1 - Cos[t]}]}

and represent the locus by a sequence of points.

ptList = Table[{PointSize[0.02], RGBColor[l, 0, 0] , p t } , { t ,
0, 4 Pi , Pi / 10}];

Show[Graphics[ptList], AspectRatio -^ Automatic];

204 6 Graphics

V # V %

Fig. 6.50. Locus of the red dot.

More details can be found on rolling circles in [64].

Another interesting application of Animate Selected Graphics is to visualize
how a graph is traced. Consider again the polar coordinate representation
r = sin 4^ (Figure 6.4), and use the command

Do[ParametricPlot[{S

{ t , 0, 2 k 1

AspectRatio

^i / 20},

in [4 t] Cos [t]

PlotRange -^

-^ Automatic], {k, 1,

, S in[4t] S

{{- 1, 1},
20}];

i n [t] } ,

{- 1,1}},

Fig. 6.51. One image of the sequence generating the animated drawing of the rose
r = 4e.

6.5 2D Vector Fields

The package Graphics 'P lo tF ie ld ' is used to plot two-dimensional vector
fields.

6.5 2D Vector Fields 205

«Graphics' PlotField'

PlotVectorField[{f [x, y] , g [x , y] } , {x, x l , x2}, {y, y l , y2}] plots
the vector field defined by the two-dimensional vector function (/(x, y),g{x^ y))
in the domain [xi,X2] x [2/1,2/2]-

PlotVectorField[{Cos[2x] , S in[y]} ,

{x, - Pi , P i } , {y , - Pi , P i }] ;

r / k y V k / • / k V V k / y

y / k V V k / < / k V V k / y

< y k > V i / • / k V > ^ / r

\ r X A r \ ^ \ r A A r \ x

\ r A' y r \ \ \ T A A r \ \

\ f y A f \ \ \ f A A r \ \

\ i / y r \ 'X X r y A r \ ' x
X ^ >- >̂ ' f V ». X ^ ^ >• f X *.

Fig. 6.52. Vector field (cos(2x),sin(2/)) m /̂le domain [—7r,7r] x [—7r,7r]

There exist many options. We can, for example, add colors and a frame. The
color function (RGBColor [#, 1 - #, 0] &) makes long arrows red and short
arrows green.

PlotVectorField[{Cos[2x], S in[y]} ,

{x, - Pi , P i } , { y , - Pi , P i } ,

ColorFunction -> (RGBColor[#, 1 - #, 0] &) , Frame -^ True];

206 6 Graphics

4 i \ V

* ' fT ^ y

I. 4 4

* i > V t

4 4 4 \ \ \

4 ^ / jk > V

k / *'

p r \

p f \

K \ f A P r \ V

\ f A A

Fig. 6.53. Vector field (cos(2a:),sin(t/)) in the domain [—7r,7r] x [—7r,7r] adding
colors and a frame.

Plo tGrad ien tF ie ld [V[x , y] , { x , x l , x 2 } , {y , y l , y2}] plots the gra
dient field of the potential function V{x,y) in the domain [a:i,X2] x [2/1,2/2]-

PlotGradientField[x'^3 + y'^S, {x , - 3 , 3 } , {y , - 3 , 3 } ,

ColorFunction -^ (RGBColor[#,1 - # , 0] &), Frame ^ True] ;

^ 4 4 4 i l i k i i i d 4 4 4

^ • 4 4 4 i k k i k k i 4 4 - 4 4

* ' ' ^ ' ^ 4 4 i k k k i 4 4 r * ' i ^

^ f^ ^ w ^ ^ ^ i i ^ * ' '^ " "" •"

• - » - . - i , - ! ^ ^ ^ j V » ' " " •" •• •- ••

• » » - » ^ » - ^ ^ ^ i y » - »- •- *- "- •-

Fig. 6.54. Gradient field of x^ -\-y^ in the domain [-3,3] x [—3,3].

6.6 3D Plots 207

6.6 3D Plots

6.6.1 Plot3D

To plot the tridimensional surface represented by z = f{x^y) in the do
main [xi, X2] X [2/1, ̂ 2] 5 we enter the command PlotSD [f [x, y] , {x, x l , x2},
{y i , y2}].

Plot3D[x'^2 + y^2, {x, - 3 , 3 } , {y, - 3 , 3} ,

AspectRatio —> 1]

Fig. 6.55. Surface x^ -\-y^ in the domain [—3,3] x [—3,3].

There exist many options. A few are used in the following plot. The option
PlotPoints specifies how many sample points to use, and FaceGrids specifies
grid lines to draw on the faces of the bounding box. Mesh specifies whether
an exphcit {x, y) mesh should be drawn. ViewPoint gives the point in space
from which the plotted objects are to be viewed.

Plot3D[x^2 + y^2, {x,- 3, 3}, {y, - 3, 3},

PlotPoints -^ 60, Mesh -^ False, FaceGrids -

AxesLabel -^ {"Length", "Width", "Height"},

AspectRatio -^ 1, ViewPoint -^ {1, 1, 0.3}];

^ All,

208 6 Graphics

Height

Fig. 6.56. Surface x^-\-y^ in the domain [—3,3] x [—3,3] from a different viewpoint.

6.6.2 ListPlot3D

ListPlotSD [array] generates a tridimensional plot of a surface represented
by an array of heights Zij = f{xi, yj).

data = Table[x'^2 + y^2, {y, - 1, 1, O. l} , {x, - 1, 1, 0 . 1 }] ;

ListPlotSD[data];

Fig. 6.57. Tridimensional list plot of nested lists.

Here is another example.

6.6 3D Plots 209

ListPlotSD[Table[Sin[x + y] ,

{x, 0, 3 P i / 2 , P i / 1 0 } , {y, 0, 3 P i / 2 , P i / 1 0 }]] ;

Fig. 6.58. Tridimensional list plot.

The same result could be obtained using the command Show [Surf aceGraphics-
[array]].

Show[SurfaceGraphics[Table[Sin[x+ y] ,

{x, 0, 3 P i / 2 , P i / 1 0 } , {y, 0, 3 P i / 2, P i , / 10}]]] ;

Fig. 6.59. Same as above using Surf aceGraphics.

Whereas ListPlot [points] takes a list of 2D points and plots them in a
plane, ScatterPlotSD [points] takes a list of 3D points and plots them in a
3D space. First we have to load the package Graphics'Graphics3D'. As for
ListPlot [points] we can use the option Plot Joined -^ True.

«Graphics' Graphics3D'

210 6 Graphics

ScatterPlot3D[Table[{Sin[2 t] , Cos [2 t] , t } ,

{ t , 0, 4 P i , Pi / 50}], Axes -^ F a l s e] ;

Fig. 6.60. ScatterPlotSD: the 3D analogue of ListPlot.

ScatterPlot3D[Table[{Sin[2 t] , Cos [2 t] , t } ,

{ t , 0, 4Pi , Pi / 50}], PlotJoined -^ True, Axes -^ F a l s e] ;

Fig. 6.61. Same as above with the option Plot Joined —^ True.

ListContourPlot3D[array] generates a tridimensional contour plot from a
tridimensional array f{xi,yi,Zi).

We need first to load the package «Graphics 'ContourPlot3D' .

6.6 3D Plots 211

«Graphics' ContourPlotSD'

data

{y, -

= Table[x~2 + y"2 - z

1. 1, 0 . 1 } , {x, - 1,
, {z .
1, 0.

ListContoiirPlotSD [data. Lighting

Axes —> True, ContourStyle - {H

- 1, 1, 0.

1 }] ;
—̂ False,

ue[0.15]}]

1} ,

i

Fig. 6.62. Tridimensional contour plot of nested lists.

6.6.3 Different Coordinate Systems

We first have to load the package Graphics' to be able to use different systems
of coordinates.

«Graphics'

CylindricalPlot3D[r'^2 Cos[2 p h i] , {r, 0, 1} , {phi, 0, 2 P i }] ;

212 6 Graphics

Fig. 6.63. Cylindrical coordinates: surface r^ cos(2(^) in the domain (r, (f) = [0,1] x
[0,27r].

SphericalPlot3D[Cos[theta] Cos [2 theta],

{theta, 0, Pi / 4}, {phi, 0, 2 Pi}];

Fig. 6.64. Spherical coordinates: surface cos{6) cos(2^) in the domain {6, (p)
[0,7r/4]x[0,27r].

6.6.4 ContourPlot

We can also generate a contour plot of the same surface, and eliminate either
the contour shading or the contour lines.

6.6 3D Plots 213

ContourPlot[x'^2 + y^2 , { x , - 3 , 3 } , { y , - 3 , 3 } ,

AspectRatio —̂ 1] ;

Fig. 6.65. Contour plot of x^ -\-y^ in the domain [—3,3] x [—3,3]

The option Contour Shading specifies whether the regions between contour
fines should be shaded.

ContourPlot[x'^2 + y'^2 , {x, - 3 , 3 } , {y, - 3 , 3 } ,

AspectRatio —> 1, ContourShading —> F a l s e] ;

Fig. 6.66. Contour plot of x^ + y^ in the domain [—3,3] x [—3,3] with
ContourShading -^ False.

214 6 Graphics

ContourPlot[x'^2 + y'̂ 2 , {x, - 3, 3}, {y, - 3, 3},

AspectRatio -̂ 1, ContourLines -^ False];

Fig. 6.67. Contour plot ofx-\-y in the domain [—3,3] x [—3,3] with ContourLines
-> False.

6.6.5 DensityPlot

A density plot is a rectangular plot that consists of smaller rectangle each
colored according to the value of a function.

DensityPlot[Sin[x] Cos[y],

{x, - Pi , P i } , {y, ~ Pi / 2, 3 Pi / 2} , PlotPoints -^ 100];

6.6 3D Plots 215

Fig. 6.68. Density plot of sin{x) cos{y) in the domain [—7r,7r] x [—7r/2,37r/2].

We can improve the plot using options. Above we have already used above
PlotPoints and Mesh. The option ColorFunction specifies a function to ap
ply to z values to determine the color to use for a particular {x, y) region.

DensityPlot[Sin[x] Cos [y] ,

{ x , - Pi , P i } , { y , - Pi / 2, 3 Pi / 2} , PlotPoints -^ 100,

Mesh —> False, ColorFunction -^ Hue];

- 3 - 2 - 1 0 1 2 3

Fig. 6.69. Same as above with different options.

A density plot may be compared to a shaded contour plot. For rapidly chang
ing functions, DensityPlot works slightly better than ContourPlot. For
slowly changing functions, it is the opposite. Here is an example of a rapidly
changing function:

216 6 Graphics

DensityPlot[Sin[10 x] Cos[10 y] , {x , - P i , P i } ,

{y , - Pi / 2, 3 Pi / 2} ,PlotPoints -^ 100,

Mesh —> False , ColorFunction -^ Hue];

Fig. 6.70. DensityPlot o/sin(10a:)cos(102/) in the domain [—7r,7r] x [—7r/2,37r/2].

6.6.6 Pa rame t r i cP lo t3D

ParametricPlotSD generates tridimensional curves and surfaces. They are
defined by three functions of, respectively, one or two parameters.

ParametricPlotSD[Sin[3 omega], Cos[S omega], omega,

{omega, 0, 2 P i } , Ticks —> None];

See output in Figure 6.71.

ParametricPlotSD [{Cos [x] Cos[y], Cos[x] Sin[y] , S in [x]} ,

{x, - Pi / 2, Pi / 2} , {y, 0, 2 P i } , Axes -^ Fa l se , Boxed
F a l s e] ;

See output in Figure 6.72.

6.7 3D Graphical Primitives 217

Fig. 6.71. Tridimensional parametric plot of (sin(3ct;),cos(3a;),a;) in the domain
[0,27r].

Fig. 6.72. Parametric plot of {cos{x) cos{y), cos{x) sm{y), sm{x)) in the domain
[-7r/2,7r/2]x[0,27r].

6.7 3D Graphical Primitives

As for 2D graphics, there exists a collection of 3D graphics primitives such
as Point, Line, Polygon, and so on. The general form of the command is
Graphics [primitive, optionl , option2, . . .] . These graphics primitives
are displayed with the command Show.

Here is an example of a pyramid having an octagonal base and eight triangular
faces.

Show[Graphics3D[Tabl€

{Sin[n

{n. Pi

+ P i / 4] ,

/ 4, 2 Pi

Cos[

, Pi

s[Polygon[{{Sin

n + P i / 4] , 0 } ,

/ 4 }]]] ;

[n] .

{0,

Cos [n] ,

0. 1}}]

0 } .

>

218 6 Graphics

Fig. 6.73. Using 3D graphics primitives to draw a pyramid with an octagonal base.

We can modify ViewPoint .

Show[Graphics3D[Table[Polygon[{{Sin

{Sin[n + P i / 4] ,

{n. P i / 4 , 2 Pi ,

Cos[n + Pi / 4] , 0 } ,

Pi / 4 }]] , Viewpoint

[n] .

{0.

^

Cos [n] ,

0, 1}}]

{0 .5 , -

0 } .

*

1, 0 . 5 }] ;

Fig. 6.74. Same as above with a modified viewpoint.

Statistics

7.1 Random Numbers

Random [] gives a pseudorandom number lying in the interval [0,1]

Table[Random[], {10}]

{0.97168, 0.767369, 0.159879, 0.839617, 0.527752,

0.833297, 0.471409, 0.793496, 0.714053, 0.379495}

Random [type, range] gives a pseudorandom number of the specified type
lying in the specified range. Possible types are: Integer, Real, and Complex.

Random[Real, {O, 1}, 50]

0.25001677073690337847614440066746917236028215705360

Table[Random[Real, {5.4, 7 .3}] , {10}]

{5.99996, 7.15631, 7.02153, 6.61911, 5.92165,

6.66404, 6.21742, 6.71256, 6.16074, 5.52855}

Table[Random[Integer], {10}]

{0, 0, 1, 1, 0, 1, 0, 0, 1, 0}

220 7 Statistics

Table[Random[Integer, {6, 21}] , {10}]

{20, 7, 15, 19, 6, 16, 16, 13, 19, 8}

Table[Random[Complex], {10}]

{0.944269 + 0.71944 I , 0.916369 + 0.196858 I ,

0.736182 + 0.67909 I , 0.376178 + 0.100881 I ,

0.295465 -f 0.798618 I , 0.675603 + 0.532656 I ,

0.688044 + 0.389555 I , 0.768525 + 0.678484 I ,

0.460119 + 0.337657 I , 0.177217 + 0.748684 1}

Table[Random[Complex, { 2 + 3 1, 4 + 5 1 }] , {10}]

{2.41617 + 3.0807 I , 3.08038 + 3.19195 I

2.88143 -f 4.76094 I , 3.40115 + 4.13645 I ,

3.21484 -f 3.81813 I , 3.81416 + 4.70834 I ,

2.45585 + 3.1038 I , 3.18262 + 4.8596 I ,

2.74898 + 3.82052 I , 2.6335 + 3.52903 1}

SeedRandom [n] resets the pseudorandom number generator, using the integer
n as a seed. It allows us to get the same sequence of pseudorandom numbers
on different occasions.

SeedRandom[123]

Table[Random[Integer, {1 , 5}] , {10}]

{3, 3 , 3 , 2, 5, 2, 2, 1, 2, 5}

SeedRandom[123]

Table[Random[Integer, {1, 5}] , {10}]

{3, 3 , 3 , 2, 5, 2, 2, 1, 2, 5}

7.2 Evaluating TT 221

7.2 Evaluating n

Consider Figure 7.1 representing a unit square with inside a quarter of a disk
of radius 1.

Show[Graphics[{

{RGBColorEO,

Line[{{0, 0},

AspectRatio -

0, 1] , Disk[{0,

{1, 0} , {1, 1},

-> Automatic] ;

0 } .

{0.

1, {0, P

1}. {0,

i / 2}]} ,

0}}]}] .

Fig. 7.1. Quarter of a disk of radius 1 inside a unit square.

To evaluate TT, we select a sequence of random points distributed uniformly
inside the unit square. The probability for a random point to lie inside the disk
is proportional to its area, that is, equal to 7r/4. The function that generates
a random point inside the unit square is

randomPoint := {Random[], Random[]}

randomPoint

{0.192417, 0.371977}

The function that tests if a point is inside the unit disk is

insideDiskCptJ := Total [pt'^2] < 1

222 7 Statistics

{insideDisk[{0.9, 0 . 7 }] , insideDisk[{0.4, 0 .6}]}

{False, True}

To evaluate TT we, therefore, generate a sequence of random points inside the
unit square and determine the fraction of these points lying inside the unit
disk quarter. The approximate value of TT is obtained multiplying this fraction
by 4.

data = Table[randomPoint, {lOOOOOO}]; / / Timing

approximatePi = N[4* Count[data, _?insideDisk] /

Length[data]]

{4.54608 Second, Null}

3.13943

To obtain a better approximate value, we increase the number of random
points from 10^ to 10^.

data = Table[randomPoint, {10000000}]; / / Timing

approximatePi = N[4* Count[data, _?insideDisk] /

Length[data]]

{47.1171 Second, Null}

3.14204

As shown below, this approximate value is quite good; it differs from the exact
value by less than 0.015%.

Abs[N[Pi]-3.14204] / N[Pi]

0.000142395

7.3 Probability Distributions

We present just a few of them. We access the most common discrete or continu
ous statistical distributions loading either the package S t a t i s t i c s 'Discrete-

7.3 Probability Distributions 223

D i s t r i b u t i o n s ' or the package S t a t i s t i c s ' C o n t i n u o u s D i s t r i b u t i o n s ' .
As illustrated below, we can find the properties of a given distribution using
difTerent functions that take as argument a symbolic representation of the
distribution.

«Statistics'DiscreteDistributions'

We can get the list of these discrete probability distributions entering the
command:

?Statistics'DiscreteDistributions'*

7.3.1 Binomial Dis t r ibut ion

In the command BinomialDistr ibut ion[n, p] , n is the number of indepen
dent trials and p the probability of a success in a trial.

bDist = BinomialDistr ibut ion[n, p]

BinomialDistributionEn, p]

We can ask Mathematica to give us the expression of the probability density
function,

PDF [bDist, x]

(1 - p) ^ ~ ^ p^ Binomial[n, x]

the characteristic function, which is the Fourier transform of the probability
density function [5],

Character iSt icFunct ion[bDis t , t]

(1 - p + E^ ^ p)^

the average value, the variance, and the standard deviation.

Mean[bDist]

n p

224 7 Statistics

Variance[bDist]

n (1 - p) p

StandardDeviation[bDist]

Sqrt[n (1 - p) p]

A discrete random variable distributed according to the binomial distribution
is defined in a domain given by

Domain[bDist]

Range[0, n]

We can generate random numbers distributed according to the binomial dis
tribution

Table[Random[BinomialDistribution[10, 0. 4]] , {10}]

{6, 5, 3 , 5, 5, 6, 3 , 3 , 4, 5}

and we can evaluate expected values.

ExpectedValue[x"4, BinomialDistr ibut ion[10, 0. 4] , x]

510.304

7.3.2 Poisson Distribution

The command PoissonDistr ibution[A] generates the Poisson distribution
where A represents the mean of the distribution.

pDist = PoissonDistr ibution[A]

PoissonDistr ibut ion[A]

7.3 Probability Distributions 225

As in the previous section, we can ask Mathematica to give us all the essential
characteristics of this probability distribution.

PDFEpDist, x]

E-̂ x!

CharacteristicFunctionCpDist, t]

E(-I + E^ t) ̂

MeanCpDist]

Variance[pDist]

StandardDeviation[pDist]

Sqrt[A]

Domain[pDist]

Range[0, Inf inity]

Table[Random[PoissonDistribution[3]], {lO}]

{4, 4, 4, 0, 4, 2, 4, 4, 1, 1}

ExpectedValue[x''4, PoissonDistribution[3] , x]

309

«Statistics'ContinuousDistributions'

226 7 Statistics

7.3.3 Normal Distribution

In the command NonnalDistr ibution[/ i , cr], /i is the mean and o is the
standard deviation.

nDist = NormalDistributionC/i, cr]

NormalDistribution[/i , a]

PDF[nDist, x]

E (x - / i)2 / (2 G^) sq^^f2 Pi] G

Charac ter i s t icFunct ion[nDis t , t]

E I t /i - (t2a2) /2

Mean [nDist]

M

G

Variance[nDist]

2

7.3 Probability Distributions 227

StandardDeviation[nDist]

Domain[nDist]

Interval[{- Infinity, Infinity}]

Plot[PDF [NormalDistributionCO, 1], x], {x, -3, 3}];

-3 -2 - 1

Fig. 7.2. Probability density function of the normal distribution for /x = 0 and
a = 1 in the interval [—3,3].

Table[Random[NormalDistributionCO, 1]] , {10}]

{-0.407312, -0 .178324, -0 .863422, 0.0359524, -0 .24181 ,

-1 .15673 , 0.488383, 0.342282, 0.259808, -1 .67701}

ExpectedValue[x'^4, NormalDistribution[0, 1] , x]

7.3.4 Cauchy Distribution

In the command CauchyDistribution[a,b], a is the location parameter and
b the scale parameter.

228 7 Statistics

cDist = CauchyDistributionCa, b]

CauchyDistribution[a, b]

PDFCcDist, x]

(-a + x)^.

CharacteristicFunction[cDist, t]

gl a t - b t Sign[t]

Mean[cDist]

Indeterminate

Domain[cDist]

Interval [{—Infinity, Inf ini ty}]

Plot[PDF[CauchyDistribution[0, 1] , x] , {x, - 3 , 3 }] ;

-3 -2

^A
0/25

/ 0 . 2

/ 0.15

0 . 1

0.05

- 1 1 2 3

Fig. 7.3. Probability density function of the Cauchy distribution for a = 0 and
b — 1 in the interval [—3,3].

7.4 Descriptive Statistics 229

Table[Random[CauchyDistribution[0,1]], {10}]

{-5.29566, -2 .68135, 2.9326, -0.0757705, -1 .10613,

0.996368, 0.345278, -1 .30723 , 0.142766, -1 .00022}

7.4 Descriptive Statistics

We first have to load the packages:

«Statistics'DescriptiveStatistics'

«Statistics'DataManipulation'

«Graphics' Graphics'

The functions of these packages compute the descriptive statistics of hsts of
data of the most common probabihty distributions.

7.4.1 Poisson Distribution

poissonData =

Table[Random[PoissonDistribution [2 . 5]] , {5000}];

N[Mean[poissonData]]

2.5234

N[Variance[poissonData]]

2.52316

Frequencies [l i s t] gives the distinct elements in a list paired with their
frequencies.

poissonDataFrequencies = Frequencies[poissonData]

{{431, 0} , {1032, 1}, {1315, 2} , {1029, 3 } , {659, 4 } ,

{335, 5} , {139, 6} , {43, 7} , {14, 8} , {2, 9 } , {1 , 10}}

230 7 Statistics

BarChart[poissonDataFrequencies] ;

1200

1000

800

600

400

200

0 1 2 3 4 5 6 7 8 9 10

Fig. 7.4. Bar chart of 5000 Poisson distributed random numbers.

7.4.2 Normal Distribution

gaussData = Table[Random[NormalDistribution[2, 3]] , {lOOOO}];

N[Mean[gaussData]]

1.98548

N[Variance[gaussData]]

8.78256

gaussDataHistogram = Histogram[gaussData,

HistogramCategories -^ Table[- 10 + k, {k, 0, 24}] ,

HistogramScale -^ 1] ;

gaussPDF = Plot[PDF[NormalDistribution[2, 3] , x] ,

{x, - 10, 12}, PlotStyle -^ {RGBColor[0, 0, 1] ,

AbsoluteThickness[2]}] ;

We can compare the histogram of Figure 7.5 with the exact probabihty density
function

7.4 Descriptive Statistics 231

0.12

0 . 1

0 . 0 8

0 .06

0 . 0 4

0 .02

Fig. 7.5. Histogram of 10,000 normally distributed random numbers.

Fig. 7.6. Probability density function of the normal distribution for fi = 2 and
(7 = 3.

Show[{gaussDataHis tograin , gaussPDF}] ;

0.12

0 . 1

0 .08

0 .06

0 . 0 4

0 .02

5 0 5 10

Fig. 7.7. Comparing the histogram above with the exact probability density function.

232 7 Statistics

7.4.3 Cosine Distribution

cosData = N[Table[Cos[Pi Random[]], {10000}]];

Histogram[cosData,

HistogramCategories -^ Table[- 1+ k / 10, {k, 0, 20}] ,

HistogramScale —> 1] ;

Fig. 7.8. Histogram of 10,000 random numbers distributed according to the cosine
distribution.

{Mean[cosData], Variance[cosData]}

{-0.000358633, 0.50641}

Integrate[(Cos[x])^2 / P i , {x, 0, Pi}]

7.4.4 Uniform Distribution

uniformData = Table[Random[],

Histogram [iiniformDat a.

HistogramCategories —>

HistogramScale —> 1] ;

Table [C

{10000}];

+ k / 20, {k, 0, 20}],

7.4 Descriptive Statistics 233

0.2 0 .4 0 .6 OA

Fig. 7.9. Histogram of 10,000 uniformly distributed random numbers in the interval
[0,1].

{Mean[uniformData], Variance[uniformData]}

{0.49736, 0.082058}

The exact value of the variance is

Integrate[(x - 0.5)'^2, {x, 0, 1}]

0.0833333

8

Basic Programming

8.1 The Mathematica Language

Everything you type in Mathematica is an expression. An expression is of the
form f [arguments] where f is the Head of the expression which identifies its
type. Expressions look hke functions (or functions are expressions).

{Head[3], Head[3 / 4] , Head[5.2] , Head ["Hello"]}

{Integer , Rat iona l , Real, S t r ing}

{Head[Subtract] , Head[Times], Head[a + b] , Head[a b]}

{Symbol, Symbol, Plus,Times}

Expressions are represented in a uniform way that can be accessed using
FullForm. Some built-in functions are actually redundant and are translated
into basic forms such as Plus, Times, and Power.

{FullForm[Divide[a, b]] , Ful lForm[Sqr t [a]] , FullForm[a - b] ,

FullForm [a'^b]}

{Times[a, Power[b, - 1]] , Power[a, R a t i o n a l [1 , 2]] ,

P lus [a . T imes [-1 , b]] . Power[a, b]}

236 8 Basic Programming

{FullFormCa + b I] , FullForm[(a + b) ^ 2] , FullForm[{a, b}] ,

FullForm[{a, b} c]}

{Plus[a, Times[Complex[0, 1] , b]] ,

Power[Plus[a, b] , 2] , L i s t [a , b] , L is t [Times[a, c] , Times[b,c]]}

{FullFormCa -> b] , FullForm[a == b] , FullFormCa < b] ,

FullFormCx-Integer]}

{RuleCa, b] , EqualCa, b] , LessEqualCa, b] ,

PatternCx, BlankCinteger]] }

Consider the expression:

expr = 7 + (a - x)' '2

7 + (a - x)2

Its different parts are

expr C CO]]

Plus

exprCCl]]

expr C C2]]

(a - x)-

exprCC2, 1]]

8.2 Functional Programming 237

a — X

expr[[2,2]]

2

e x p r [[2 , l , l]]

a

expr[[2, 1, 2]]

8.2 Functional Programming

Mathematica is essentially a functional programming language that empha
sizes rules and pattern matching.

8.2.1 Applying Functions to Values

Clear[f]

f [x_] := x-̂ S

{ f [2] , f 0 2, 2 / / f }

{8, 8, 8}

f 0 X is the prefix form for f [x] and x / / f is its postfix form.

Clear[f]

f [{ a , b, c}]

f [x + y + z]

238 8 Basic Programming

f [{ a , b, c}]

f [x + y + z]

Map [f, expression] applies f to each element on the first level in expression.

Map[f, {a, b, c}]

MapEf, x + y + z]

{ f [a] , f [b] , f [c] }

f [x] + f [y] + f [z]

MapThreadCf, { {a l , a2, . . . } , {bl , b2, . . . }}] gives
f [a l , b l] , f [a 2 , b 2] ,

Clear[f]

MapThreadCf, {{:

MapThreadCRule,

MapThreadCPlus,

<•' y .

{{x.

{{x.

z}
y.
y.

{a

z}.
z}.

, b.

{a.
{a.

c}}3

b, c}}]

b, c}}]

{ f [x , a] , f [y , b] , f [z , c] }

{x -^ a, y ^ b,z -^ c}

{a + X, b + y, c + z}

Apply [f, expression] replaces the head of expression by f.

Apply[Plus, {a, b, c}]

Apply[Times, {a, b, c}]

a + b -h c

a b c

Clear[f]

Apply[f, {{c

Apply[Plus,

I. b}

{{a.

. {c

b}.

. d}}. 2]

{c, d}}]

8.2 Functional Programming 239

{f [a , b] , f [c , d]}

{a + c, b + d}

8.2.2 Defining Functions

cubel[x_] := x^3 (* named function *)

cube2 = Function[{x}, x'̂ S] ; (* pure function: long form *)

cubeS = #'̂ 3 &; (* pure function: short form *)

{cubel[3], cube2[3], cube3[3]}

{27, 27, 27}

A function can be used to check if a condition is True or False. For example:

greaterThan3[n_] := n > 3

{greaterThan3[7.5], greaterThan3[2.9]}

{True, False}

Blank (_), BlankSequence (—), and BlankNullSequence () are pattern
objects that can, respectively, stand for any Mathematica expression, any
sequence of one or more Mathematica expressions, or any sequence of zero or
more Mathematica expressions (see also below).

f l [x . .

f2[x_.

{ f l [a .

{ f2[a .

y -

y -
b.

b.

-] :

-]

c.

c.

= X

: = X

d] ,

d] .

+ y

+ y
f l [a] }

f2 [a]}

{a -f b + c -f d, f l [a]

{a + b + c -f d} , a}

8.2.3 Iterations

In many programs we need to apply a function repeatedly. Here are various
useful commands to perform such a task.

240 8 Basic Programming

Nest [f, expression, n] generates f [f [f [. . . [expression] . . .]]] where
f is nested n times.

NestList [f, expression, n] generates the hst {x, f [x] , f [f [x]] ,}
where the last term of the hst is f nested n times.

FixedPoint [f ,x] apphes f repeatedly until the result no longer changes.

FixedPoint [f, x, n] applies f repeatedly but stops after at most n steps.

FixedPointList [f, x] generates the list {x, f [x] , f [f [x]] , f [f [f [x]] 3 ,
. . . .} until the elements no longer change.

NestWhileCf, expression, t e s t] applies f repeatedly until applying test
to the result no longer yields True.

NestWhileList [f, expression, t e s t] generates the list of applying f re
peatedly until applying test to the result no longer yields True.

Nest [Cos, 0 .5 , 7]

0.752356

NestList [Cos, 0 .5 , 7]

{0 .5 , 0.877583, 0.639012, 0.802685, 0.694778,

0.768196, 0.719165, 0.752356}

FixedPoint[Cos, 0.5]

0.739085

FixedPointList[Cos, 0.5]

{0.5, 0.877583, 0.639012, 0.802685, 0.694778, 0.768196, 0.719165,

0.752356, 0.730081, 0.74512, 0.735006, 0.741827, 0.737236,

0.74033, 0.738246, 0.73965, 0.738705, 0.739341, 0.738912,

0.739201, 0.739007, 0.739138, 0.73905, 0.739109, 0.739069,

0.739096, 0.739078, 0.73909, 0.739082, 0.739087, 0.739084,

0.739086, 0.739084, 0.739086, 0.739085, 0.739085, 0.739085,

8.2 Functional Programming 241

0.739085, 0.739085, 0.739085, 0.739085, 0.739085, 0.739085,

0.739085, 0.739085, 0.739085, 0.739085, 0.739085, 0.739085,

0.739085, 0.739085, 0.739085, 0.739085, 0.739085, 0.739085,

0.739085, 0.739085, 0.739085, 0.739085, 0.739085, 0.739085,

0.739085, 0.739085, 0.739085, 0.739085, 0.739085, 0.739085,

0.739085, 0.739085, 0.739085, 0.739085, 0.739085, 0.739085,

0.739085, 0.739085, 0.739085, 0.739085, 0.739085, 0.739085,

0.739085, 0.739085, 0.739085, 0.739085, 0.739085, 0.739085,

0.739085, 0.739085, 0.739085, 0.739085, 0.739085, 0.739085,

0.739085}

The following function gives the smallest prime greater than x. It uses a pure
function. The Mathematica command NextPrime [n] gives the smallest prime
larger than n, but we have to first load the package NumberTheory' Number-
TheoryFunctions' .

«NumberTheory'NumberThecryFunctions'

NextPrime[100]

101

f i rs tPrimeAfter [x_] : =

NestWhile[(# + 1) &, x, !(PrimeQ[#]) &]

f irs tPrimeAfter[100]

101

Checking:

PrimeQ [101]

True

242 8 Basic Programming

8.2.4 A Functional Program

Let us write a function giving the position of a sequence of k or more identical
digits in the first n digits in the decimal part of an irrational number x.

We progress from small units to larger ones (bottom-up programming).

In tegerDig i t s [in t] gives a fist of the decimal digits in the integer int.

X = Pi; n = 30;

In tegerDig i t s [Floor [N[Fract ionalPart[x] , n] I C n]]

{1, 4 , 1, 5, 9, 2, 6, 5, 3 , 5, 8, 9, 7, 9, 3 , 2, 3 , 8, 4 , 6,

2, 6, 4 , 3 , 3 , 8, 3 , 2, 7, 9}

Partit ion [l i s t , k, d] generates sublists of l i s t of length k with offset d.

X = P i ; n = 30; k = 4;

Partit ion[IntegerDigi ts[Floor[N[FractionalPart[x] , n]

lO-^n]], k, 1]

{{1, 4 , 1, 5} , {4, 1, 5, 9} , {1 , 5, 9, 2} , {5, 9, 2, 6} ,

{9, 2, 6, 5} , {2, 6, 5, 3} , {6, 5, 3 , 5} , {5, 3 , 5, 8} ,

{3, 5, 8, 9} , {5, 8, 9, 7} , {8, 9, 7, 9} , {9, 7, 9, 3} ,

{7, 9, 3 , 2} , {9, 3 , 2, 3} , {3, 2, 3 , 8} , {2, 3 , 8, 4} ,

{3, 8, 4 , 6} , {8, 4 , 6, 2} , {4, 6, 2, 6} , {6, 2, 6, 4} ,

{2, 6, 4 , 3} , {6, 4, 3 , 3} , {4, 3 , 3 , 8} , {3, 3 , 8, 3} ,

{3, 8, 3 , 2} , {8, 3 , 2, 7} , {3, 2, 7, 9}}

Among all the sublists of length 4 (fc = 4), we search the position of the
sublists equal to {9,9,9,9} {d = 9).

X = Pi; n = 10000; k = 4; d = 9;

Posit ion[Partit ion[IntegerDigits[Floor[N[FractionalPart[x],

n] lO-^n]], k , l] , Table[d,k]]

{{762}, {763}, {764}}

8.2 Functional Programming 243

We can now group all these elementary steps into a final function pos[x,
k, d, n] , where x is the irrational number, k the length of the sequence of
consecutive digits d, and n the number of digits of the fractional part of x.

pos[x_, k_, d_, n_] := P o s i t i o n [P a r t i t i o n [I n t e g e r D i g i t s [F l o o r [

N[Frac t iona lPar t [x] , n] lO^n]] , k, 1] , Table[d, {k}]]

pos[Pi , 4, 9,10000]

{{762}, {763}, {764}}

Here is a table of sequences of length 4 for all digits 0, 1, 2, 3, . . . , 9 in the
decimal expansion of TT considering 10,000 digits.

Table [{m, pos[Pi , 4, m, 10000]}, {m, 0, 9}]//MatrixForm

/o
1
2
3
4
5
6
7
8

V9

{}
{}

{{4902},{7964}}

{}
{}
{}
{}

{{1589},{5241},{5322},{5863}}
{{4751}}

{{762},{763},{764}}

Table of sequences of length 4 for all digits 0, 1, 2, 3, . . . , 9 in the decimal
expansion of e considering 10,000 digits.

Table[{m, pos[E, 4 , m, 10000]}, {m, 0, 9}] / / MatrixForm

244 8 Basic Programming

/o
1
2
3
4
5
6
7
8

\9

{{7688}}

{}
{}

{{3354}}

{}
{{3620},{8905}}

{{2175},{4992},{4993}}
{{1071},{5040}}

{{723}}

{}

Table of sequences of length 4 for all digits 0, 1, 2, 3, . . . , 9 in the decimal
expansion of \l2 considering 10,000 digits.

Table[{m, pos [Sq r t [2] , 4, m, 10000]}, {m, 0, 9}] /
/MatrixForm

/o
1
2
3
4
5
6
7
8

\9

{> \
{{952}}
{{4701}}
{{1481}}
{{3308}}
{{2016}}

>̂
{{1559}}
{{4214}}

{{2515},{2707},{2708},{7326}} /

Table of sequences of length 6 for all digits 0, 1, 2, 3, . . . , 9 in the decimal
expansion of TT considering 1,000,000 digits. The computation takes less than
three minutes.

Timing[Table[{m, pos[Pi , 6, m, 1000000]}, {m, 0, 9}] / /
MatrixForm]

/o

{158.29 Second,

1
2
3
4

5

6
7
8

\9

8.2 Functional Programming

{} ^
{{255945}}

{{963024}}

{{710100},{710101}}

{{828499}}

{{244453},{253209}, {419997}}

{{252499}}

{{399579},{452071}}

{{222299}}

{{762},{193034}})

}

245

We can solve the same problem in any base h.

BaseForm[[Sq r t [2] , 2 0] , 2]

1.011010100000100111100110011001111111001110111100110010010000\

IOOOI2

B a s e F o r m [N [F r a c t i o n a l P a r t [S q r t [2]] , 2 0] , 2]

0.011010100000100111100110011001111111001110111100110010010000\

IOOOIIO2

B a s e F o r m [N [F r a c t i o n a l P a r t [S q r t [2]] , 20] 10^20, 2]

1.0001111101101011000111000000010011011111110111110011011010111\

OOOOO2 X 10^^

BaseForm [F loor [N [F r a c t i o n a l P a r t [Sqr t [2]] , 20] 10'^20] , 2]

10001111101101011000111000000010011011111110111110011011010111\

OOOO2

I n t e g e r D i g i t s [F l o o r [N [F r a c t i o n a l P a r t [S q r t [2]] , 20] 1 0 ^ 2 0] , 2]

246 8 Basic Programming

{1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1,

1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1,

1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1 ,1, 1, 0,

0, 0, 0}

Length [%]

66

Grouping all these elementary steps into a final function basePos[x, k, d,
n, b] , where x is the irrational number, k the length of the sequence of
consecutive digits d, n the number of digits of the fractional part of x in base
10, and b the base yields

basePos[x_, k_, d_, n_, b_] : =

Pos i t i on [Pa r t i t i on [In t ege rDig i t s [F loo r [N[Frac t i ona lPa r t [x] ,

n] 10-^n], b] , k, 1] , Table[d, {k}]]

We can use this function to find sequences of 16 identical digits in the base 2
expansion of TT.

Table[{m, basePos[Pi ,16, m, 10000, 2] } , {m, 0, 1}] / /

MatrixForm

0 {{7802},{10558}} \

1 {{24831}})

The length of the sequence of digits in base 2 of the fractional part of n when
we consider 10,000 digits in base 10 is given by

Length[In tegerDig i t s [F loor [N[Frac t iona lPar t [P i] , 10000]

10-^10000], 2]]

33217

When, in base 10, we consider a fractional part of lO'̂ digits, the lengths of
digit lists in the expansion of an irrational number in any base can be found
by adapting the function above. For example, for TT, and e in base 3, we find:

8.3 Replacement Rules 247

Table [Length [In tegerDigi ts [Floor [N [Fract ionalPar t [Pi] , lO'^k]
lO^(lO^k)], 3]] , {k, 1, 4}]

{20, 208, 2095, 20958}

Table [Length [In tegerDigi ts [Floor [N [Fract ionalPar t [E] , lO'^k]
lO-^ClO^k)], 3]] , {k, 1, 4}]

{21, 210, 2096, 20959}

8.3 Replacement Rules

8.3.1 The Two Kinds of Rewrite Global Rules

They use either = or :=. In the first case the rule is applied immediately
whereas in the second one it is applied only when it is used (i.e., when it is
called).

X = Random [] ;

y := Random [] ;

Table[x, {5}]

Table[y, {5}]

{0.348571, 0.348571, 0.348571, 0.348571, 0.348571}

{0.25592, 0.216969, 0.465141, 0.0332237, 0.888415}

Clear[x, y]

a =

b :

{a,
X =

{a.

Expand[(1 +

= Expand[(1

t }
y + z;

b}

x)-3];

+ x)-3]

{1 + 3 X + 3 x2 + x^, 1 + 3 X + 3 x^ + x^}

{1 + 3 (y + z) + 3 (y + z)2 + (y + z) ^ .

248 8 Basic Programming

3 z^ + 3 y z^ + z^}

8.3.2 Local Rules

They use either -^ or :-^ (entered respectively as -> and :>). As above, the
first rule is immediately applied and the second one is applied only when it is
used. These rules are applied using the operator / .

x^2 - 3 X + 2 / . {{x -> 1}, {x -> 2}}

{0, 0}

f [a + x] / . f [X_] -> Expanded + X)'^3]

f [a + x] / . f [X_] :> Expanded + X)^3]

1 + 3 (a + x) + 3 (a + x)2 + (a + x)^

L -
,3
l + 3 a + 3 a 2 + a^ + 3 x + 6 a x + 3 a 2 x + 3 x 2 + 3 a x 2 +

rndList = Table[Random[], {10}]

{0.214286, 0.35825, 0.694216, 0.642354, 0.694934,

0.269416, 0.592734, 0.558784, 0.360521, 0.541512}

rndList / . x_ -> - Log[x]

{1.54044, 1.02652, 0.364971, 0.442615, 0.363939,

1.3115, 0.52301, 0.581992, 1.0202, 0.61339}

We can also add a condition. In the example below, it is only if 0.4 < x < 0.6
that X is replaced by — log[a:], which is the case for the seventh, eighth, and
tenth elements of rndList . The other elements are left unchanged.

rndLis t / . x _ / ; 0 . 4 < x < 0 . 6 - > - Log[x]

8.3 Replacement Rules 249

{0.214286, 0.35825, 0.694216, 0.642354, 0.694934, 0.269416, 0.52301,
0.581992, 0.360521, 0.61339}

Replacement rules are not commutative.

a + b / . a - > 3 b / . b - > 2 a

a + b / . b - > 2 a / . a - > 3 b

8 a

9 b

8.3.3 The Operators / . and / / .

The following example illustrates the difference between these two operators.
With / . rules are applied only if they match the Ihs whereas with / / . rules
are applied recursively. That is, / / . means keep applying the rules until no
further substitution is possible.

f ib [5]

fib[n_]

f ib [5]

fibCnJ

/ .

->

/ / .

->

{ f i b [l]

f ib[n -

{ f i b [l]

f ib[n -

->

2]

->

2]

1,
+

1

+

f ib[2]

f ib[n -

, f ib [2]

f ib[n -

-> 1,

1] }

-> 1,

1] }

f ib [3] + f ib [4]

5

In the first case, the rules f ib [l] -> 1, f ib [2] -> 1 do not match any
thing in f ib [5]. Only the rule fib[n_] -> f ib [n - 2] + f ib[n - 1] can
be applied.

8.3.4 Patterns

Clear[f]

f [x_] := x-2

{f [a] , f [a + b] . f [a . b] . f [{a , b}]}

{a2, (a + b)2 , f [a , b] , {a?, h"^}}

250 8 Basic Programming

That is, a, a + b, and {a, b} are matching the pattern x_ and applying the
rule we find a'̂ , (a + b)^ , and {a, b}^. On the contrary a,b does not match
the pattern x_.

We can specify the type of the argument x with a Head. For example,

Clear[f]

f [x-Integer] := x"2

{ f [4] , f [3 . 2] }

{16, f [3 . 2] }

X has to be an integer. Here are more examples.

Clear[f]

f [x_Real] := x'̂ 2

{ f [3] , f [3 .] , f [2 . 5] }

{ f [3] , 9 . , 6.25}

We can restrict patterns using / ; .

Clear[f]

f [x_Integer] := x''2 / ; x > 5

{ f [4] , f [6] }

{ f [4] , 36}

Other examples are

Clear[f]

f [x_Integer / ;

f [x_Integer / ;

OddQCx]] := x

EvenQ[x]] := x^2

{ f [l] , f [2] , f [3] , f [4] }

{1 , 4 , 3 , 16}

8.3 Replacement Rules 251

DeleteCases[Range [10], x_ /; OddQ[x]]

DeleteCases[Range[10], x_/ ; EvenQ[x]]

{2, 4, 6, 8, 10}

{1, 3, 5, 7, 9}

Cases[Range[- 5, 5] , _?Positive]

Cases[Range[- 5, 5] , x_ / ; x > 0]

{1 , 2, 3 , 4, 5}

{1, 2, 3 , 4, 5}

f [n_Integer?Positive / ; IntegerQ[n/3]] := n / 3

{ f [2 7] , f [- 6] , f [5] }

{9, f [- 6] , f [5] }

As mentioned above:

x__ means a sequence of one or more expressions named x (two underscores).

X means zero or more expressions named x (three underscores)

Clear[f]

f [x_] := Length[x] (* one underscore *)

{ f [] , f [a] , f [{ a }] , f [a , b] , f [{ a , b}]}

{ f [] , 0, 1, f [a , b] , 2}

Clear [f]

f[x__] : = Length [{x}] (*

{ f [] , f [a] , f [{ a }] , f [a ,

two

b]}

underscores *)

{ f [] , 1, 1, 2}

252 8 Basic Programming

Clear[f]
f[x-_

{f[]
-] : =

f[a]
Length [{x}]
, f[a,b]}

(* three underscores *)

{0, 1, 2}

8.3.5 E x a m p l e : t h e F i b o n a c c i N u m b e r s

We use the recursive definition of the Fibonacci numbers^ to determine the
n t h Fibonacci number. Note tha t F i b o n a c c i [n] is a Mathematica built-in
function.

F i b o n a c c i [5 0 0]

1394232245616978801397243828704072839500702565876973072641\

08962948325571622863290691557658876222521294125

The symbol \ at the end of the first line of the output cell indicates tha t the
sequence of digits, being too long, includes the next line.

Ignoring the built-in function, we first build up a particularly inefficient pro
gram.

Clear[F]

F[l] = 1; F[23 = 1;

F[n_Integer / ; n > 0]

FC15]

:= F[n - 1] + F[n - 2] ;

610

Let us evaluate the CPU t ime needed to compute the first Fibonacci numbers
using the function F [n] defined above.

^Fibonacci is the nickname of Leonardo Pisano {circa 1170-1250). With his
father he lived in the Mediterranean town Bejaia in Kabylia where he studied arith
metics. He later traveled widely to improve his knowledge in the art of manipulating
numbers. In 1202, he published his famous Liber abaci (Book of the Abacus), the
first European work on Indian and Arabian mathematics, introducing the positional
number system.

8.3 Replacement Rules 253

Clear[F]

F[13 = 1; F[2]

F [n_Integer / ;

timeCompute =

{k, 1, 15}]

= 1;
n > 0]

Table [{2

= F[n - 1] + F[n - 2] ;

k, Timing [F [2 k]] [[!]] / Second},

{{2, 0 . } , { 4 , 0 . } , { 6 , 0 . } , {8, 0 . } , {10, 0 . } ,

{12, 0 . } , {14, 0 .01} , {16, 0 .01} , {18, 0 .03}, {20, 0 .08},

{22, 0 .24} , {24, 0 .6} , {26, 1.57}, {28, 4 .12} , {30, 10.75}}

To show the inefficiency of this method, let us estimate how long it would
take to compute F[100].

plTime = ListPlot[timeCompute, PlotRange -^ Al l ,

PlotStyle -^ {RGBColor[0,0,l], PointSize[0 .02]}] ;

10

8

6

4

2

10 15 20

•

•

•
•
25 30

Fig. 8.1. List plot of the CPU time to compute the first Fibonacci numbers using
the inefficient method described above.

Fit [timeCompute, {1, x, x''2, x'̂ 3, x"4}, x]

1.9795 - 1.1436 x + 0.181665 x^ - 0.0105719 x^ + 0.00020295 x^

254 8 Basic Programming

fiinctionFit[x_] := 1.9795 -

0.0105719 x^3 + 0.00020295 3

p l F i t = Plot [f i inc t ionFi t [x] ,

P lo tS ty le -^ {RGBColorCl, 0,

1.1436 X + 0.

r4

{x,
0] } ,

0, 30},

181665

PlotRange —>

x'̂ 2 -

A l l] ;

10

8

6

4

2

10 15 ^2Xr^ 25 30

Fig. 8.2. Plot o / funct ionFi t that fits the list of CPU times.

8.3 Replacement Rules 255

Show[plFit ,p lTime] ;

10 15 ^2T) 25 30

Fig. 8.3. Plotting together f unct ionFi t the list plot of CPU times.

It is not such a good fit but we can use it to find a rough estimate of the
computing time.

P l o t [f u n c t i o n F i t [x] / 60 , {x , 3 0 , 1 0 0 }] ;

40 50 60 70 80 90 100

Fig. 8.4. Plot fiinctioiiFit in order to estimate the CPU time to evaluate the
100th Fibonacci number using the first inefficient method.

The estimated CPU time is given in hours by

f u n c t i o n F i t [1 0 0] / (60 60)

3 .17425

256 8 Basic Programming

More than three hours!!

It is much faster to use dynamic programming. That is, when evaluating F [n],
ask Mathematica to remember all values F [k] for k < n, and not reevaluate
all these values each time F [n] is called.

Clear[F]

F[l] = 1; F[2] = 1;

F[n_Integer / ; n > 0]

Timing[F[250]]

:= F[n] = F[n -- 1] + F[n -- 2] ;

{0. Second, 7896325826131730509282738943634332893686268675876375}

This is a much faster method. But let us try to evaluate F [330].

Clear[F]

F[l] = 1; F[2] = 1;

F[n_Integer / ; n > 0]

F[300];

:= F[n] = F[n -• 1] + F[n -- 2] ;

$RecursionLimit : : recl im : Recursion depth of 256 exceeded.

More . . .

$RecursionLimit :: reclim : Recursion depth of 256 exceeded.

More . . .

$RecursionLimit :: reclim : Recursion depth of 256 exceeded.

More . . .

General : : s top : Further output of $RecursionLimit : : recl im :

w i l l be suppressed during t h i s ca l cu l a t i on . More . . .

To evaluate higher order Fibonacci numbers, we have to increase Recursion-
Limit. Note that dynamic programming is, however, much faster than the
first method we used.

8.4 Control Structures 257

$RecursionLimit = 10000;

Clear[F]

F[l] = 1; F[2] = 1;

F [n_Integer / ; n > 0] : = F [n] = F [n - 1] + F [n - 2] ;

Timing[F[500]]

Table[{1000 k, Timing[F[1000 k]] [[1]] / Second}, {k, 1, 20}]

{0.01 Second, \

139423224561697880139724382870407283950070256587697\

307264108962948325571622863290691557658876222521294125}

{{1000, 0.01}, {2000, 0.03}, {3000, 0.03}, {4000, 0.04},

{5000, 0.03}, {6000, 0.03}, {7000, 0.04}, {8000, 0.03},

{9000, 0.03}, {10000, 0.03}, {11000, 0.04}, {12000, 0.04},

{13000, 0.04}, {14000, 0.04}, {15000, 0.05},{16000, 0.04},

{17000, 0.04}, {18000, 0.04}, {19000, 0.05}, {20000, 0.04}}

The CPU time is greatly reduced, but we show below that it can be further
reduced.

8.4 Control Structures

8.4.1 Conditional Operations

They are If, Which, and Switch.

The command If [t e s t , then, e l se] gives then if t e s t evaluates to True and
e l se if it evaluates to False.

{If [3 > 2 , 1. 0] , I f [3 < 2, 1, 0]}

{1. 0}

Clear[f]

f[x_] := I f [x

P l o t E f W . {x.
0, 1, - 1]

1, 1 }] ;

258 8 Basic Programming

1

0 .5

- 1 - 0 . 5

- 0 . 5

1

0 .5 1

Fig. 8.5. Plot of the function defined above.

Note the difference with conditional rewrite rules.

Clear[f, g]

f [x_] := If [x > 0, x'^2, -

g[x_] := x^2 / ; X > 0

g[x_] := - x^2 / ; X < 0

- x^2]

{D[f [x] , x] , D[g[x] , x]}

{ I f [x >= 0, 2 X, - 2 x] , g'[x]}

The command Which [t est 1, expressionl, t e s t 2 , expression2, . . .] f o r
k = 1,2, . . . , gives expressionk if testk evaluates to True.

Which[3 < 0, 0, 3 < 1, 1, 3 < 2, 2, 3 < 3 , 3 , 3 < 4, 4]

f [x_] := Which [0

2 < X < 3, 3 x]

P l o t [f [x] , {x, 0,

< X <

3 }] ;

1, X , 1 < X < 2 , 2 X ,

The command Switch [expression, patternl , valuel , pattern2,
value2 , ...] compares expression to each patternj in turn and gives valuek
if patternk is the first match found.

8.4 Control Structures 259

0.5 1 1.5 2 2.5 3

Fig. 8.6. Plot of the function defined above.

numberType[xj : = = Switch[x, -Integer,

-Rational, ''this is a rational'',

-Real, ''this is

-Complex, ''this

{numberType[6],

numberType[2.1+

a real'',

is a complex'']

numberType[3/2], num

3.6 I]}

"this

berType

» is an

[2.45],

integer'',

{ th i s i s an i n t ege r , t h i s i s a r a t i o n a l , t h i s i s a r e a l ,
t h i s i s a complex}

Note that expression is first evaluated before being compared to the different
patterns.

numberType[6/3]

t h i s i s an in teger

Evaluating 6/3 Mathematica finds 2 which is an integer.

8.4.2 Loops

There exist three built-in looping functions Do, While, and For.

The command Do [expression, {k, k l , k2}] evaluates expression start
ing from k = k l to k2.

Do [Print [S-^k], {k, 3 , 7}]

260 8 Basic Programming

125

625

3125

15625

78125

prod=l;

Do [prod

prod (*

*= k.

gives
{k. 1, 5}]

Factorial[5] *)

120

X *= c multiplies

Do [Plot [Cos [n

X

x]

by c

, {x

and returns the new value of

, 0, 2 P i }] , {n, 1, 10, 0

X.

.25}];

The command above generates a sequence of plots of cos(na:) in the interval
[0,27r] for n varying from 1 to 10 by steps 0.25. Below only the last plot of
the sequence is represented.

0 .5

- 0 . 5

Fig. 8.7. Plot of cos{nx) for n = 10 in the interval [0,27r].

Coming back to Fibonacci numbers, we examine if we can build up more
efficient program generating these numbers.

8.4 Control Structures 261

1. Generating a Fibonacci sequence with Do.

k = 0;

Do[c =

a = 1; b =

a + b;

FibonacciSequence

a = b; b = c; c =

FibonacciSequence

1;

=

0,

FibonacciSequence = {1

Join

{k.
[FibonacciSequence,

1, 10}]

. 1};

{c}];

{1, 1, 2, 3 , 5, 8, 13, 21 , 34, 55, 89, 144}

The command While [t e s t , expression] evaluates expression until test
fails to give True.

s = 0; n = 0;

While[n 10, s +=

s (* yields Suin[n,

n;

{n
n++]

, 1, 10}] *)

55

X += c adds c to X and returns the new value of x. n++ increases the value of
n by 1 returning the old value of n.

2. Generating a Fibonacci sequence with While.

k = 0; a = 1; b =

While[k < 10, k =

FibonacciSequence

a = b; b = c; c =

FibonacciSequence

1;

k

=

0]

FibonacciSequence = {1

+ 1; c = a + b;

Join[FibonacciSequence,

. 1};

{c}];

{1, 1, 2, 3 , 5, 8, 13, 21 , 34, 55, 89, 144}

The command For [s t a r t , t e s t , increment, expression] executes s t a r t ,
then repeatedly evaluates expression and increment until t e s t fails to give
True.

For [i = 1, i < 5, i++. P r i n t [i]]

262 8 Basic Programming

1

2

3

4

3. Generating a Fibonacci sequence with For.

a = 1; b = 1; FibonacciSequence = {1, 1};

For[k = 1, k < 10, k += 1; c = a + b;

FibonacciSequence=Join[FibonacciSequence, {c}] ;

a = b ; b = c; c= 0]

FibonacciSequence

{1, 1, 2, 3 , 5, 8, 13, 21 , 34, 55, 89, 144}

8.5 Modules

In the command Module [{a, b , . . . } , expression] the variables a, b , . .
in expression are local. These variables may be initialized (a = aO, b
bO).

{x = 10, Module[{x = 5 } , x = x + 1; x] , x}

{10, 6, 10}

8.5.1 Example 1

Find the first prime number greater than n.

f i rs tPr imeGreater[n_Integer?Posi t ive] := Module [{k},

k = n + 1;

While[Not[PrimeQEk]], k++]; k]

Table[firstPrimeLarger[10 k], {k, 1, 10}]

{11, 23, 31, 41, 53, 61, 71, 83, 97, 101}

8.5 Modules 263

As mentioned above when we build up the function f i rstPrimeAfter , the
Mathematica command Next Prime [n] gives the smallest prime larger than n.
We have to first load the package NumberTheory'N^lmberTheoryFunctions^

8.5.2 Example 2

Given a list {xl, x2, x3, . . .}, generate the list of partial sums {xl, xl +

x2, xl + x2 + x3, ...}.

partialSumList [lisJList] := Module [{sumList = {lis[[l]]}},

DoCsumList = Join[sumList, {sumList [[i - 1]] + lis[[i]]}],

{i, 2, Length[lis], 1}]; sumList]

lis = Table[2k, {k, 1, 10}]

partialSumList[lis]

{2, 4, 6, 8, 10, 12, 14, 16, 18, 20}

{2, 6, 12, 20, 30, 42, 56, 72, 90, 110}

8.5.3 Example 3

Determine the nth Fibonacci number without resetting RecursionLimit us

ing a While loop.

Clear[fibonacciNumber]

fibonacciNumber[n_Integer /; n > 0] := Module[{k =

b = 1},

While[!(k == n), {a, b} = {b, a + b}; k++]; b]

1, a = 0,

Timing[fibonacciNumber[5000]]

{0.07244 Second, 38789684543883256337019163083259053120821277146\

4624510616059721489555013904403709701082291646221066947929345\

2858882973813483102008954982940361430156911478938364216563944\

1069102145056341337065586562382546567007125259299038549338139\

2883637834751890876297071203333705292310769300851809384980180\

3847813996748881765554653788291644268912980384613778969021502\

264 8 Basic Programming

2930824756663462249230718833248032803750391303529033045058427\

0114763524227021093463769910400671417488329842289149127310405\

4328753298044273676822977244987749874555691907703880637046832\

7948113589737399931101062193081490185708153978543791953056175\

1076105307568878376603366735544525884488624161921055345749367\

5897849027988234351023599844663934853256411952221859563060475\

3646454707603309024208063825849291564528762915757591423438091\

4230291749108898415520985443248659407979357131684169286803954\

5309545388698114665082066862897420639323438488465240988742395\

8738019769938203171742089322654688793640026307977800587591296\

7138963421425257911687275560036031137054775472460463998758804\

6985178408674382863125}

The same problem using a Do loop is as follows.

Clear [fibonacciNumber]

fibonacciNumber[n_Integer?Positive] := Module [{a = 0, b =1},

Do[{a, b} = {b, a + b}, {n - 1}]; b]

Timing[fibonacciNumber[5000]]

{0.03 Second, 38789684543883256337019163083259053120821277146\

4624510616059721489555013904403709701082291646221066947929345\

2858882973813483102008954982940361430156911478938364216563944\

1069102145056341337065586562382546567007125259299038549338139\

2883637834751890876297071203333705292310769300851809384980180\

3847813996748881765554653788291644268912980384613778969021502\

2930824756663462249230718833248032803750391303529033045058427\

0114763524227021093463769910400671417488329842289149127310405\

4328753298044273676822977244987749874555691907703880637046832\

7948113589737399931101062193081490185708153978543791953056175\

1076105307568878376603366735544525884488624161921055345749367\

5897849027988234351023599844663934853256411952221859563060475\

8.5 Modules 265

3646454707603309024208063825849291564528762915757591423438091\

4230291749108898415520985443248659407979357131684169286803954\

5309545388698114665082066862897420639323438488465240988742395\

8738019769938203171742089322654688793640026307977800587591296\

7138963421425257911687275560036031137054775472460463998758804\

6985178408674382863125}

The same problem using a For loop follows.

Clear[fibonacciNumber]

fibonacciNumber[n_Integer?Positive] := Module [{a = 0, b = 1},

For[k = 1, k < n, k++, {a, b} = {b, a + b}] ; b]

Timing[fibonacciNumber[5000]]

{0.06 Second, 38789684543883256337019163083259053120821277146\

4624510616059721489555013904403709701082291646221066947929345\

2858882973813483102008954982940361430156911478938364216563944\

1069102145056341337065586562382546567007125259299038549338139\

2883637834751890876297071203333705292310769300851809384980180\

3847813996748881765554653788291644268912980384613778969021502\

2930824756663462249230718833248032803750391303529033045058427\

0114763524227021093463769910400671417488329842289149127310405\

4328753298044273676822977244987749874555691907703880637046832\

7948113589737399931101062193081490185708153978543791953056175\

1076105307568878376603366735544525884488624161921055345749367\

5897849027988234351023599844663934853256411952221859563060475\

3646454707603309024208063825849291564528762915757591423438091\

4230291749108898415520985443248659407979357131684169286803954\

5309545388698114665082066862897420639323438488465240988742395\

8738019769938203171742089322654688793640026307977800587591296\

7138963421425257911687275560036031137054775472460463998758804\

6985178408674382863125}

266 8 Basic Programming

The Do loop method is the fastest. Actually an even faster program uses the
function MatrixPower, which is the method used by the Mathematica built-in
function Fibonacci [n] (refer to S. Wagon [64]). Note first that the vector
{a, b} used in the above programs evolves according to

{b, a+b} == {a, b } . {{0, 1}, {1, 1}}

True

The successive powers of the matrix {{0, 1}, {1 , 1}} are shown below:

Table[MatrixPower[{{0, 1}, {1 , 1}}, k] / / MatrixForm,

{k, 1, 10}]

I Vl 1 j ' VI 2) ' (̂ 2 3 j ' V3 5j ' V5 s j '

5 8 \ f 8 13\ /13 21 \ /21 34\ /34 55
8 1 3 / ' V13 21J' I 2 1 3 4 J ' 1 3 4 5 5 / ' 15589

The sequence of Fibonacci numbers is the sequence of the [[1 ,2]] ele
ments of the matrices MatrixPower [{{0, 1}, {1 , 1}}, n] for n = 1, 2,
. . . . Hence:

Clear[fibonacciNumber]

f ibonacciNumber [n_Integer?Posit ive] : =

MatrixPower[{{0, 1}, { l , 1}}, n] [[1 ,2]]

Timing[fibonacciNumber[10000]]

{0. Second,

336447648764317832666216120051075433103021484606800639065\

647699746800814421666623681555955136337340255820653326808\

361593737347904838652682630408924630564318873545443695598\

274916066020998841839338646527313000888302692356736131351\

175792974378544137521305205043477016022647583189065278908\

551543661595829872796829875106312005754287834532155151038\

8.5 Modules 267

708182989697916131278562650331954871402142875326981879620\

469360978799003509623022910263681314931952756302278376284\

415403605844025721143349611800230912082870460889239623288\

354615057765832712525460935911282039252853934346209042452\

489294039017062338889910858410651831733604374707379085526\

317643257339937128719375877468974799263058370657428301616\

374089691784263786242128352581128205163702980893320999057\

079200643674262023897831114700540749984592503606335609338\

838319233867830561364353518921332797329081337326426526339\

897639227234078829281779535805709936910491754708089318410\

561463223382174656373212482263830921032977016480547262438\

423748624114530938122065649140327510866433945175121615265\

453613331113140424368548051067658434935238369596534280717\

687753283482343455573667197313927462736291082106792807847\

180353291311767789246590899386354593278945237776744061922\

403376386740040213303432974969020283281459334188268176838\

930720036347956231171031012919531697946076327375892535307\

725523759437884345040677155557790564504430166401194625809\

722167297586150269684431469520346149322911059706762432685\

159928347098912847067408620085871350162603120719031720860\

940812983215810772820763531866246112782455372085323653057\

759564300725177443150515396009051686032203491632226408852\

488524331580515348496224348482993809050704834824493274537\

326245677558790891871908036620580095947431500524025327097\

469953187707243768259074199396322659841474981936092852239\

450397071654431564213281576889080587831834049174345562705\

202235648464951961124602683139709750693826487066132645076\

650746115126775227486215986425307112984411826226610571635\

150692600298617049454250474913781151541399415506712562711\

971332527636319396069028956502882686083622410820505624307\

268 8 Basic Programming

01794976171121233066073310059947366875}

This Fibonacci number has 2090 digits!

Length[IntegerDigits[fibonacciNumber[10000]]]

2090

Using the Mathematica built-in function, we can check the result above

fibonacciNumber[10000] == Fibonacci[10000]

True

Part II

Applications

This second part presents a variety of examples from mathematics and physics
illustrating how Mathematica can be used to study and solve problems. For
each example we tried to build up simple-to-understand short programs. In
most cases, we adopted the so-called bottom-up technique, progressing step by
step from small units to the final program, making every effort to give a simi
lar structure to all programs. Most problems can be tackled in many different
ways. When a solution is found, it is good practice to try to find a different
one and compare the different solutions. Many Mathematica applications can
be found on the Web; the Wolfram site: http://mathworld.wolfram.com/, cre
ated and maintained by Eric Weisstein, is a particularly extensive source of
interesting applications.

No subtle criterion has been used to order the list of the different applications.
They are just listed in the alphabetical order of their TeX file names.

Mathematicians and physicists are often involved in time-consuming calcu
lations. Using Mathematica to carry the bulk of the computational burden
and check the results should enable them to devote more time to think about
ideas. Mathematica computational capabilities are particularly helpful when
one tries to discover a pattern. We illustrated this feature at the end of the
first chapter when we tried to generalize the CoUatz conjecture.

Discovering a pattern is often the first step towards the proof of a theoretical
result. This has not been the case for the Collatz problem whose solution
seems for the moment beyond the reach of today's mathematics but there exist
many examples showing that "computational experimentation" does suggest
a theoretical result.

Here is, for instance, a very simple example. There exists an extensive liter
ature dedicated to happy numbers. If / is a function, defined on the set of
positive integers, such that the image / (n) of any integer n is equal to the
sum of the squares of the digits of n, then, a number n is said to be happy if
there exists a finite integer k such that the kth iterate f^{n) = 1.

Experimenting with Mathematica, one soon discovers that either a num
ber is happy or the sequence of iterates of / ends in the same eight-
cycle: (4,16,37,58,89,145,42,20). Because the L i s tP lo t of f{n) shows that
f{n) < n for n > /(99) = 162, one can then easily prove that the iterates
of / either converge to the fixed point 1 or to the eight-cycle above. This
simple conclusion leads immediately to the question: what about functions fk
also defined on the set of positive integers, such that the image /fc(^) of any
integer n is equal to the sum of the powers k of the digits of n. Here again,
experimenting with Mathematica shows that /s has only a few fixed points,
namely {1, 153, 370, 371, 407} and, because fsin) < n forn > /(999) = 2187,
it is sufficient to restrict our search for fixed points in a rather small range,
which can be done in a fraction of a second using Mathematica. The function

272 Part 2. Applications

/4 has a similar property, and Mathematica shows that the only fixed points
are {1, 1634, 8208, 9474}.

9

Axially Symmetric Electrostatic Potential

Consider a conducting sphere of radius R held at potential zero and placed
in a uniform electric field EQ directed along the Oz-axis oriented upward. If
we use spherical coordinates, the symmetry of the system implies that the
potential V depends only upon r and 9 but not on (/?, and can, therefore, be
written as a sum of Legendre polynomials: LegendreP[n,Cos[0]]. We first
briefly review how to solve the Laplace equation in this case (for more details
see Vvedensky [63], Chapter 6).

Legendre polynomials are encountered in several problems of mathematical
physics involving the eigenfunctions of the angular part of the Laplacian op
erator.

The Laplacian operator of the function V in spherical coordinates is

r or^ r^sm 6 o^^ r^^smO 09 \ 09

If the electric potential does not depend upon (/?, the Laplace equation reads

This equation can be solved using the method of separation of variables. That
is, we can factor the solution writing that F(r, 9) is the product of a radial
part Fr{r)/r and an angular part F0{9). Substituting

V{r,0) = ^^Fe{e)
r

in the expression of the Laplacian yields

cPFr ^ F r d (. JFe\ .

274 9 Axially Symmetric Electrostatic Potential

Multiplying by r^ and dividing by FrFe the left-hand side of this equation
gives

r^cPFr , 1 d f. .dFe_^

Fr dr^ ^ FesinQdeX dO) ~
that is, the sum of a function of r only and a function of 6 only. Because the
sum of these two functions is zero, each function is necessarily a constant and
we have, therefore, to solve the following two equations:

k-^ = 0, and -7-^— sinl9—f)-hkFe = 0,
dr2 r2 ' sinedey dO ^

where fc is a constant.

The radial equation has obvious solutions of the form r^. Replacing Fr{r) by
r", we find that r" is a solution provided a{a — l) = k. Writing fc as n(n + 1),
we find that a must be equal either to n or — (n + 1). Hence, the general
solution of the radial equation is

r a d i a l P a r t [r_] := A[n] r'^n + B[n] r ^ (- n - 1)

where A [n] and B [n] are constants.

The angular equation takes a simpler form if we introduce the new variable
X = cos 6. Because the range of 6 is [0, TT], the range of x is [—1,1]. After this
change of variable the angular part satisfies the ordinary Legendre equation:

d (^^ 2\^^o

This equation is usually solved by representing the solution as a power series
about the origin. The series are converging for all values of x of the closed
interval [—1,1] if, and only if, FQ is a Legendre polynomial of degree n. These
functions are Mathematica built-in functions.

The general solution of the Laplace's equation in the case of axial symmetry
is therefore

Vpotent ia l [r_, t h e t a j := Sum[(A[n] r^n + B[n] r " (l - n))
LegendreP[n, Cos[theta]]

Coming back to our problem of the grounded conducting sphere of radius R in
a uniform electric field EQ, the electric potential V p o t e n t i a l [r , t h e t a] can
be simplified taking into account the boundary conditions.

For r ^ ' 00, the electric potential must behave as —For cos 6, where EQ is the
only nonzero component of EQ on the Oz-axis. This condition implies that all
constants A[n] are zero except A[l] = - EO R. The electric potential being

9 Axially Symmetric Electrostatic Potential 275

equal to zero on the sphere implies that Vpotential[R, t he t a] = 0. Thus
B[0] = 0, B[l] = - A[l] = EO R, and B[n] = 0 for all n > 2. The final
solution is therefore

Vpotential[r_ ., t h e t a j : = (- EO r + EO R^3 r^2) Cos [theta]

because

LegendrePCl, Cos [theta]]

Cos [theta]

We can plot the equipotentials around the sphere in the plane y = 0, choosing
the numerical values EQ = 1^ R = I. But first we have to transform spherical
coordinates to Cartesian coordinates. Because y = 0, the transformation rule
is

{r -> Sqrt[x^2 + z^2] , Cos[theta] -^ z / Sqrt[x'^2 + z'^2]}

numVpotential[r_

R - 1}
t h e t a j := Vpo ten t i a l [r , t he t a] / . {EO ^ 1,

Hence,

numVpotential[r, t he t a]

(r '^ - r) Cos [theta]

In a more complicated case we would have used Mathematica to obtain the
transformation rule as shown below. First we load the package Calculus 'Vec
t o r Analys is ' .

«Calculus' Vector Analysis'

Then using the command CoordinatesFromCartesian we get

{r, theta, phi} —> CoordinatesFromCartesian[{x, y, z},

Spherical] // Thread

{r —> Sqrt[x'^ + y -f z'^l , theta -> ArcCos[^ ^ Q-] ,

Sqrt[x^+y^+z^]

276 9 Axially Symmetric Electrostatic Potential

phi -^ ArcTanCx, y]}

ArcTan[x, y] gives arctan(2//x) taking into account in which quadrant the
point (x,y) is.

The 2D potential as a function of x and z is thus defined by

Vpotential2D[x_, z j := numVpotential[r, theta] / / .

{CosCtheta] -^ z / r, r ^ Sqrt[x^2 + z'^2]} / / Simplify

that is,

Vpotential2D[x,z]

z (- 1 + (x2 + z 2) - 3 / 2)

and using ContourPlot we can plot a few equipotentials:

cpl = ContourPlot[Vpotential2D[x, z] ,

{x, - 2, 2} , {z, - 2, 2} ,

Contours -^ 30, ContourShading -^ False,

DisplayFimction -^ Identity];

sphere = Graphics[{GrayLevel[0.2], Disk[{0, O}, 1]}];

Show[{cpl, sphere}, DisplayFunction -^ $DisplayFunction,

AspectRatio -^ Automatic, Frame —^ True];

9 Axially Symmetric Electrostatic Potential 277

Fig. 9 .1 . Equipotentials in the plane y = 0 in the vicinity of a grounded sphere
placed in a uniform electric field directed along the Oz-axis.

10

Motion of a Bead on a Rotating Circle

A bead of mass m is constrained to move without friction on a circular wire of
radius R. The circular wire rotates with constant angular velocity uo around
its vertical diameter. This system has two degrees of freedom. If, to describe
the motion of the bead, we use the two spherical coordinates 6 and (̂ , the
Cartesian coordinates of the bead in terms of these generalized coordinates
are x = Rsm6cos(^, y = RsinOsimp, and z = Rcos6, if we take 9 = 0 at
the bottom of the circular wire. Let us draw the figure.

We load the package Graphics'Arrow' which implements a new graphics
primitive to generate arrows.

«Graphics' Arrow'

g = Graphics[{Circle[{0, 0} , 1] ,

Ci rc le [{0 , 1.2}, {0.15, 0 .07}, {-

Line[{{0, 1.3}, {0, - 1.1}}],

4Pi / 3 , Pi

Line[{{0, 0} , {Cos[4 Pi / 3] , Sin[4 Pi / 3]}}]

Ci rc le [{0 , 0} , 0 . 3 , {4 Pi / 3 , 3

{PointSize[0 .04] , Point[{Cos[4 Pi

t x t = Graphics[{ T e x t [' ' m ' \ {Cos

Sin[4 Pi / 3] - 0 .05}] ,

T e x t [' ' g ' S {1 .3 , - 0 .1}] ,

T e x t [' ' R ' \ {0.5 Cos[4 Pi / 3] -

0.5 Sin[4 Pi / 3] - 0 .2}] ,

T e x t [' ' l 9 ' \ {0.3 Cos[17 Pi / 12]

0.3 Sin[17 Pi / 12] - 0 .1}]}] ;

Pi / 2}] ,

/ 3}] ,

>

/ 3] , Sin[4 Pi / 3]}]}}] ;

[4 Pi / 3] -

0 .2 ,

- 0.04,

0 .15,

280 10 Motion of a Bead on a Rotating Circle

a = Graphics[{Arrow[{1.2, 0.

Arrow[{- 0

fig = Show

TextStyle

.05, 1.13}, {0.05,

2}, {1.2,

1.13}]}];

[{g, txt, a}, AspectRatio -^

-^ {FontSlant -^ ' 'Italic'',

- 0.5}],

Automatic,

FontSize —> 16}];

Fig. 10.1. A bead on a rotating circle.

Taking into account that (p^ = LU^ the Cartesian components of the velocity
vector are

x' = R6' cos 6 cos (p — RusinO sin (̂ ,

y' = RO' cosOsiiiif -\- RuJsmOcos(^,

z' = Re'smO,

and the kinetic energy is

K = (1 / 2) m R'̂ 2 (t he t a ' [t] ' ' 2 + omega'^2 S i n [t h e t a [t]] "̂ 2) ;

The potential energy being

U = - m g R Cos [the t a [t]] ;

10 Motion of a Bead on a Rotating Circle 281

the expression of the Lagrangian is

Lagrangian = K - U

m R-̂ (omega^ Sinithetaftll^ + theta'ft]-^)
g m R Cos [the ta [t]] + ^ — ^ - ^

Loading the Mathematica package Calculus 'Variat ionalMethods ' that con
tains the command EulerEquations we can get Euler-Lagrange equations.

« C a l cuius 'Variat ionalMethods'

EulerEquations[Lagrangian, t h e t a [t] , t] / / Simplify

m R ((- g + R omega'̂ Cos [t h e t a [t]]) S in [the t a [t3]

- R t h e t a " [t]) == 0

The equation of motion is

eqn = t h e t a " [t] + (g / R - omegâ ^ Cos [t h e t a [t]])

S i n [t h e t a [t]] == 0

Taking into account the Coriohs force, the effective potential is

Ueffective[theta_] := - m g R Cos[theta]

(1 / 2) m omega'^2 R'̂ 2 Sin[theta]'^2

Its minimum gives the stable equilibrium position.

derTheta = D[Ueffec t ive[the ta] , t he t a]

g m R S in[the ta] — m R^ omega^ Cos[theta] S in[the ta]

Define

0mega^2 = g / R

and replace in the expression of the derivative of the effective potential

282 10 Motion of a Bead on a Rotating Circle

derTheta = derTheta / . g -> 0mega^2 R / / Simplify

m R-̂ (Omega'̂ - omega'̂ Cos[theta]) S in [the ta]

The equilibrium positions are

^ = 0 and 6 = ±6o such that cos ̂ o = —^ •

If the oscillations around the stable equilibrium are small, from the expression
of the second derivative of the effective potential, we find that the period T
of these oscillations is

27r
T = , = when ^ = 0 is stable for uj < Q, and

27r
T = , when 6 = ±0Q is stable for uj > Q.

Here are two plots of the effective potential, one for a; < i?, when ^ = 0 is
stable, and the other one for cj > i?, when ^ — ^o is stable.

m = l ; g = 9 . 8 ; R = 2 ; Omega = g / R;

Clear[omega]

omega = 0 . 5 ;

pll = Plot[Ueffective[theta], {?, - Pi, Pi},

PlotStyle -^ {RGBColorCO, 0,1]},

DisplayFunction -^ Identity];

Clear[omega]

omega =3.5;

pl2 = Plot[Ueffective[theta], {theta, - Pi, Pi},

PlotStyle -^ {RGBColor[l, 0, 0]},

DisplayFunction -^ Identity];

Show[{pll, pl2}, DisplayFunction —> $DisplayFunction];

10 Motion of a Bead on a Rotating Circle 283

201-

Fig. 10.2. Effective potentials when either 6 — 0 is stable or 0 = Oo ^ 0 is stable.

n
The Brachistochrone

The brachistocrone (from the Greek, brakhisto meaning "shortest" and chronos
meaning "time"), is the planar curve on which a body subjected only to the
force of gravity slides without friction between two points in the least possible
time. Finding the curve was a problem first posed by Galileo (1564-1642). In
June 1696 the Swiss mathematician Johann Bernoulli (1667-1748), father of
Daniel (1700-1782), another famous BernoulH, who was the first to find the
correct solution in 1696, challenged his contemporaries in Acta Eruditorum to
find the solution. Correct solutions came from his brother Jakob (1654-1705),
Gottfried Wilhelm von Leibniz (1646-1716), Guillaume de I'Hopital (1661-
1704), and Isaac Newton (1643-1727). The solution of this famous problem
led to the development of the calculus of variations.

A bead of mass m slides without friction on a wire in a vertical plane. In
the vertical plane, we choose the Ox-axis directed vertically downward. If the
bead is released from the origin (0,0) with an initial velocity equal to zero,
the time to reach the point (xo,2/o) is given by

,^rd_i^rvi±¥id. n—- r
Jo ^ Jo

Conservation of energy implies that the velocity v along the wire is equal to
\J1gx^ where g is the acceleration due to gravity. In order to find the equation
of the curve representing the shape of the wire such that the time to reach a
given point (xo,2/o) is minimum, we have to minimize the integral

=r/
The function x\-^ y{x) minimizing this integral is the solution of the Euler-
Lagrange differential equation that could be obtained using the Mathematica
command EulerEquations found in the package Calculus ' VariationalMeth-

286 11 The Brachistochrone

ods ' . But it is simpler to first note that, because the integrand depends only
upon y' and not y, the Euler-Lagrange equation is

That is,

eqn =

where

Solve

(yO

c is a

[eqn,

^2 / (x (1 + (yO'^2)) == c;

positive constant less than 1. Solving

y]

for y' yields

^ ^ _ Sqrt[c] Sqrt[x] , _^ Sqrt[c] Sqrt[x]

Sqrt[l - ex] ' Sqrt[l - ex]

Here the function y is defined by

yCx_] := In teg ra te [Sqrt [e u] / S q r t [l - e u] , {u, 0, x}]

Because 0 < ex < 1, it is better to replace ex by s\v? 0\ that is, x(6) =
(l/2c)(l — cos(2^). To obtain the expression of y{6) we have just to write

dy dy dx 1 ^ . ,^^,

Hence,

y(0) = l (2 0 _ s i n (2 e) .

The parametric equation of the curve representing the wire shape is, therefore,

^{0} = ^ (1 - cos(2e)) vie) = ^ (2 ^ - sin(20)).

It is the equation of an inverted cycloid with its base along the Oy-axis and
its cusp at the origin as shown in the figure below, where we took into account
that the Ox-axis is directed vertically downward.

11 The Brachistochrone 287

ParainetricPlot[{(l / 2) (2 theta - Sin

- (1 / 2) (1

PlotStyle -^

Frame -^ Tru€

PlotLabel -^

DefaultFont -

AspectRatio -

- Cos[2 theta])}, {theta,

{RGBColor[0, 0, 1]}, Axes

J, FrameTicks —> None,

*'Brachistochrone'',

^ {''Helvetica'', 14},

-̂ Automatic] ;

[2 theta]),

0,

-̂

Pi},
False,

Brachistochrone

Fig. 11.1. Brachistochrone.

12

Negative and Complex Bases

It is common practice to represent numbers using positional number systems.
In such a system, each number has a unique representation by an ordered
sequence of symbols, the value of the number being determined by the position
of the symbols and the base b of the system. If 6 is a positive integer we need
b different symbols which are digits if 2 < 6 < 10 and extra symbols if 6 > 10.
A number AT̂ is then represented by the sequence of digits dndn-i - - - dido
such that

Nb = dnXbn-\- dn-i X 6"""̂ H h 61 xb-\-do.

The concept of base can be extended to negative and even complex bases.

12.1 Negative Bases

The representation of numbers in negative bases offers the advantage of not
requiring the minus sign preceding a negative number. For example, in base
— 10, the negative number —253 is represented by 1867 because

253 == (-10)^3 + 8 (-10)^2 + 6 (-10) + 7

True

This representation, which can be shown to be unique, is more economical
because it does not need the extra symbol "—" and the problem of +0 being
equal to —0 does not exist.

Note that, of course, positive numbers can also be represented in base —10.
For example, 253 is represented by 353.

290 12 Negative and Complex Bases

253 == 3 (-10)^2 + 5 (-10) + 3

True

Formally, as for positive bases, a number Â in base 6, written {dndn-i... dido)6
is equal to dnbn+dn-ib^~^-] \-bib-\-do where, for all fc, 0 < dfc < \b\- As for
positive bases, the digits dk are calculated using the usual division algorithm.
The successive quotients are, therefore, given by qk = (̂ fc+i — dk)/b. Here is,
for example, the sequence of operations done to find the representations of
253 and —253 in base —10 using Mathematica.

n = 253; b = -10;

d [l] = Mod[n, Abs[b]]

d[2] = Mod[(n - d [l]) / (b) , Abs[b]]

d[3] = Mod[((n - d [l]) / (b) - d[2]) / (b) , Abs [b]]

3

5

3

n = -

d [l]

d[2]

d[3]

d[4]

• 253; b = -10;

= Mod[n, Abs[b]]

= ModCCn -

= Mod[((n

= Mod[(((ii
Abs [b]]

d [l]) /

- d [l]) >

- d [l])

(b) ,

' (b)

/ (b)

Abs [b]]

- d[2]) /

- d[2]) /

(b) .

(b)

Abs [b]]

- d[3]) / (b) .

7

6

8

1

All arithmetic operations can be carried out in negative base systems. To
add, subtract, and multiply using negative-base representations, we proceed
as usual. The problem of carrying digits requires, however, more care. Because

12.1 Negative Bases 291

{10==

20 ==

40 ==

60 ==

80 ==

= 1

1

1

1

1

. (-10)-2

(-10)-2

(-10)-2

(-10)-2

(-10)-2

! + £

+ 8

+ 6

+ 4

+ 2

1 (-10)

(-10)

(-10)

(-10)

(-10)

+ 0

+ 0,

+ 0,

+ 0.

+ 0,

>

30

50

70

90

==

==

==

==

1

1

1

1

(-10)'

(-10)'

(-10)'

(-10)'

2̂

2̂

2̂

"2

+

+

+

+

7

5

3

1

(-10)

(-10)

(-10)

(-10)

+

+

+

+

0,

0,

0,

0}

{True, True, True, True, True, True, True, True, True}

instead of carrying 1,2,3, . . . we have to carry 19,18,17,.. . which will affect
the next two higher places. This can create some complications when the carry
digits accumulate giving an infinite series of carry digits.

Here are a few simple examples with no accumulation of carry digits. In base
-10 ,

1 9

207
+303

690

because 7+ 3 = 10, we write 0 and carry 19, 9 + 0 + 0 = 9, we write 9 and
then add 1 (of 19), 2 and 3 to get 6, to obtain the final result 690. We verify
that in base 10, 207 and 303 have the same representation, and that their
sum, 510, is represented by 690 in base —10.

207

303

510

==

==

==

2

3

6

(-

(-

(-

-10)

-10)

-10)

-^2

"2

^2

+

+

+

0

0

9

(-

(-

(-

-10)

-10)

-10)

+

+

+

7

3

0

True

True

True

When subtracting two numbers in base —10, we can borrow 10 in one column
by adding one to the next higher column. For example, 353 — 187 = 386,

1 1

353
- 1 8 7

386

292 12 Negative and Complex Bases

because 7 being greater than 3 we borrow 10 from the next left column, then
13 minus 7 equals 6, then 8 is greater than 6 (5 + 1) so we borrow again 10
from the next left column, 16 minus 8 is 8, finally 4 (3 -h 1) minus 1 is 3.
Subtracting 187 from 353 in base -10 gives 386. In base 10, 353 is 253 and
187 is 27, so 253 - 27 being equal to 226 we verify that 226 in base - 1 0 is
386:

253 == 3 (-10)^2 + 5 (-10) + 3

27 == 1 (-10)^2 + 8 (-10) + 7

226 == 3 (-10)^2 + 8 (-10) + 6

True

True

True

In order to multiply 304 by 107 (note that these two numbers have the same
representation in bases 10 and —10), we write

1 8

1 8

304
xl07
18288
30400
48688

because we first multiply 304 by 7 which gives 18,288 (where instead of car
rying 2 we carried 18, etc.) then multiplying 304 by 0 gives 0, multiplying 304
by 1 gives 304. Finally adding 18,288 -h 30,400 = 48,688, which is equal in
base 10 to 304 x 107 = 32,528.

304

107

304

8 (-

== 3

== 1

107 =

(-10)^2

(-10)^2

== 32528

-10) + 8

+ 4

+ 7

== 4 (--10) ^4 + 8 (• -10) ^3 + 6 (--10) ^2 +

True

True

True

12.2 Complex Bases 293

As mentioned above, it often happens that carry digits accumulate. For in
stance, if we add the two negative numbers —44 and —13, represented, re
spectively, by 56 and 27 in base —10, because 6 -f- 7 = 13, write 3 and carry
19, 9 + 5 -h 2 = 16, write 6 and carry 19, 9 + 1 = 10, write 0, and carry 19,
and so on. We thus obtain an infinite sequence of zeros. We just have to stop
when obtaining the infinite sequence of zeros. If we do eliminate this infinite
sequence of zeros we correctly obtain 63 representing —57 = (—44) + (—13)
in base —10.

- 44

- 13

- 57

==

==

==

5

2

6

(-

(•

(-

-10)

-10)

-10)

+

+

+

6

7

3

True

True

True

Then,

1 9

1 9

1 9

56
-h27

0063

Many other problems such as representations of rationals having either termi
nating or periodic expansions and reals that do not have periodic expansions
can be studied. For more details, the interested reader should consult [21].

12.2 Complex Bases

12.2.1 Arithmetic in Complex Bases

A Gaussian integer z = x -\-iy is said to be expressible in the complex base
b = a + i/3 a it can be written in the form z = Yll^=o ^kb^ where, as for
usual positive bases, the numbers dk {^ < k < n) are called digits. In the
base b = —a + i/3 (a > 0), it can be shown that all Gaussian integers can be
represented with the "digits" 0 ,1 ,2 , . . . , a^. Thus, the base 6 = —1+i provides
a binary representation of all Gaussian integers using only the digits 0 and 1.

294 12 Negative and Complex Bases

For example, 7 + 6i = (1101001)_i+i because

7 + 6 I == (-1 + D-^e + (-1 + 1)^5 + (-1 + D-^S + 1

True

As with negative bases, all arithmetic operations can be performed in complex
bases. But, here again, the problem of carry digits has to be handled with care.
In base —1 + i, each time a sum exceeds (—1)̂ = 1, we have to carry (—1)̂ -h 1
or some multiple of it to the next left columns. Because

(-1)^2 + 1 == 2 == (-1+ 1)^3 + (-1+ I)'^2 + 0 (-1+ I) + 0

True

we have to write 0 and carry 110 to the next left columns. For example, the
representations of 2 + 3i and — 1 — i in base — 1 + i are

2 + 3 I == 1 (-1 + I)'^3 + 1 (-1+1) + 1

-1 - I == 1 (-1+1)^2 + 1 (-1 + I) + 0

True

True

Then,

1 1 0

1 1 0

1011
+110

1110101

To add 1011 and 110, in base - 1 + i, add 1 + 0 = 1, write 1, add 1 + 1 = 2,
write 0 and carry 110, 0 + 1 + 0 (from carry 110) = 1, write 1 + 1 (from
previous carry 110) = 2, write 0 and carry 110, 1 (from first carry) +0 (from
second carry) = 1, write 1, and because we have the remaining two Is from the
second carry, write 11. The result is, therefore, 1110101, which is the binary
representation of (2 + 3i) + (—1 — i) = 1 + 2i. Asking Mathematica to check
yields

12.2 Complex Bases 295

(2 + 3 I) + (- 1 -

(1 (-

1 (-1

1 (-1

1 + I) - 3 + 1

+ I) + 0) ==

+ I)"6 + (-1

I) ==

(-1 +

+ I) -

1 + 2 1

I)

5 +

+ 1)

==

+ (1 (

(-1 + I) - 4

- l + D -

+ 1 (-

• 2

-1

+

+ I) -2 + 1

True

12.2.2 Fractal Images

In what follows we generate fractal images plotting Gaussian integers as points
of R^ using complex bases.

Consider the base b = — 1 + i with the digit set {0,1}, and first build up the
list of Gaussian integers defined recursively by

b = - l + I ;

GintlCO] = { 0 , 1 } ; (* s e t of d i g i t s *)

Gint lCl] = J o i n [G i n t l [0] , G i n t l [0] + b] ;

Gint l [n_] := J o i n [G i n t l [n - 1] , G i n t l [n - 1] + b'^n]

For example, we find

Gint l [2]

{0, 1, - 1 -h I , I , - 2 I , 1 - 2 I , - 1 - I , - 1}

In order to transform the list Gint l [n] of Gaussian integers in points in R^,
we use the function complex2point and make it listable.

Attributes[complex2point] = L i s t ab l e ;

complex2point [z_] := {Re[z], Im[z]}

complex2point[Gintl[2]]

{{0, 0} , {1 , 0} , { - 1 , 1}, {0, 1}, {0, - 2 } ,

{1, - 2 } , { - 1 , - 1 } , {0, -1}}

296 12 Negative and Complex Bases

In order to represent the list of points we associate to each point of the list a
rectangle using the function:

rectangleList [lis_List] : =

Table[Rectangle[lis[[i]] , l i s [[i]] + 1 .] ,

{ i , 1, Length[lis]}]

Here are the plots corresponding to the first 4 lists of points

dl = Graphics[{Hue[1 / 15],

rectangleList[complex2point[Gint1[1]]]}] ;

d2 = Graphics[{Hue[2 / 15],

rectangleList[complex2point[Gint1[2]]]}];

d3 = Graphics[{Hue[3 / 15],

rectangleList[complex2point[Gint1[3]]]}];

d4 = Graphics[{Hue[4 / 15],

rectangleList[complex2point[Gint1[4]]]}];

Show[GraphicsArray[{{dl, d2}, {d3, d4}}],

AspectRatio -^ Automatic];

Fig. 12.1. Images associated with lists Gintl [[1]] , Gintl [[2]] , Gintl [[3]] , and
Gintl[[4]].

Increasing the list length generates a dragon-type fractal.

12.2 Complex Bases 297

dl4 = Show[Graphics[{Hue[14 / 15] ,

rectangleList[complex2point[Gint[14]]]}] ,

AspectRatio —̂ Automatic];

Fig. 12.2. Dragon-type fractal associated with list Gint [[14]].

In the base 6 = —2 + i the digit set is {0,1,2,3,4}, and, as above we build up
the list of Gaussian integers defined recursively by

b = - 2 +

Gint2[0]

Gint2[l]

Gint2 [0]

Gint2 [n_]

Gint2[n -

Gint2[n -

I ;

= {0, 1, 2, 3 , 4]

= Join[Gint2[0] ,

+ 2 b,Gint2[0] +

:= Join[Gint2[n

1] + 2 b-^Cn-l),

1] + 4 b-^Cn-l)]

S (* set of d ig i t s *)

Gint2[0] + b,

3 b.

- 1] ,

Gint2[0]

Gint2[n

Gint2[n - 1] -̂

+ 4 b] ;

- 1] + b

• 3 b ^ (n -

^(n-

1) ,

-1),

For example, we find

298 12 Negative and Complex Bases

Gint2 [2]

{0, 1, 2, 3 , 4, - 2 + I , - 1 + I , I , 1 -h I , 2 + I , - 4 +2 I ,

- 3 + 2 1, - 2 + 2 1, - 1 + 2 1, 2 1, - 6 + 3 1, - 5 + 3 1,

- 4 + 3 1, - 3 + 3 1, - 2 + 3 1, - 8 + 4 1, - 7 + 4 1,

- 6 + 4 1, - 5 + 4 1, - 4 + 4 1, - 2 + 1, - 1 + I , I , 1 + I ,

2 + 1, - 4 + 2 1, - 3 + 2 1, - 2 + 2 1, - 1 + 2 1, 2 1,

- 6 + 3 1, - 5 + 3 1, - 4 + 3 1, - 3 + 3 1, - 2 + 3 1,

- 8 + 4 1, - 7 + 4 1, - 6 + 4 1, - 5 + 4 1, - 4 + 4 1,

- 10 + 5 I , - 9 + 5 1, - 8 + 5 1, - 7 + 5 1, - 6 + 5 1,

- 4 + 2 1, - 3 + 2 1, - 2 + 2 1, - 1 + 2 1, 2 1, - 6 + 3 1,

- 5 + 3 1, - 4 + 3 1, - 3 + 3 1, - 2 + 3 1, - 8 + 4 1,

- 7 + 4 1, - 6 + 4 1, - 5 + 4 1, - 4 + 4 1, - 1 0 + 5 I ,

- 9 + 5 1, - 8 + 5 I , - 7 + 5 I , - 6 + 5 1, - 1 2 + 6 I ,

- 1 1 + 6 I , - 1 0 + 6 I , - 9 + 6 1, - 8 + 6 1, - 6 + 3 1,

- 5 + 3 1, - 4 + 3 1, - 3 + 3 1, - 2 + 3 1, - 8 + 4 1,

- 7 + 4 1, - 6 + 4 1, - 5 + 4 1, - 4 + 4 1, - 10 + 5 I ,

- 9 + 5 1, - 8 + 5 1, - 7 + 5 1, - 6 + 5 1, - 1 2 + 6 I ,

- 11 + 6 I , - 10 + 6 I , - 9 + 6 I , - 8 + 6 I , - 14 + 7 I ,

- 13 + 7 I , - 12 + 7 I , - 11 + 7 I , - 10 + 7 I , - 8 + 4 I ,

- 7 + 4 1, - 6 + 4 1, - 5 + 4 1, - 4 + 4 1, - 10 + 5 I ,

- 9 + 5 1, - 8 + 5 1, - 7 + 5 1, - 6 + 5 1, - 1 2 + 6 I ,

- 11 + 6 I , - 10 + 6 I , - 9 + 6 I , - 8 + 6 I , - 14 + 7 I ,

- 13 + 7 I , - 12 + 7 I , - 11 + 7 I , - 10 + 7 I , - 16 + 8 I ,

- 15 + 8 I , - 14 + 8 I , - 13 + 8 I , - 12 + 8 1}

Below we represent the plots corresponding to the first four lists of points.

12.2 Complex Bases 299

dl = Graphics[{Hue[1 / 10],

rectangleList [complex2poiiit [Gint2 [1]]] }] ;

d2 = Graphics[{Hue[2 / 10],

rectangleList[complex2point[Gint2[2]]]}] ;

d3 = Graphics [{Hue[3 / 10],

rectangleList[complex2point[Gint2[3]]]}];

d4 = Graphics[{Hue[4 / 10],

rectangleList[complex2point[Gint2[4]]]}] ;

Show[GraphicsArray[{{dl, d2}, {d3, d4}}] ,

AspectRatio -^ Automatic];

Fig. 12.3. Images associated with lists Gint2 [[!]] , Giiit2 [[2]] , Gint2 [[3]] , and
Gint2[[4]] .

Increasing the list length generates a fractal image. The image associated to
G in t2 [8] , obtained using the following command, has a size of more than 100
MB. It is not displayed.

d8 = Show[Graphics[{Hue[8 / 1 0] ,

r e c t a n g l e L i s t [c o m p l e x 2 p o i n t [G i n t 2 [8]]] }] ,

AspectRatio -^ Automat ic] ;

13

Convolution and Laplace Transform

If / and g are two functions defined on the semi-infinite interval [0, CXD[, the
convolution of these two functions is defined by

/ f{t-u)g{u)du.
Jo

As shown using the Mathematica command LaplaceTransf orm, the Laplace
transform of the convolution of two functions is simply the product of their
Laplace transforms:

LaplaceTransform[Integrate[f[t - u] g [u] , {u, 0, t }] , t , s]

LaplaceTransformCf[t], t , s] LaplaceTransform[g[t] , t , s]

If F and G are, respectively, the Laplace transforms of / and ^, the result
above reads

poo pt
/ e"*" dt / f(^ - u)g{u) du = F{s)G{s).

Jo Jo
In other words, the Laplace transform transforms a convolution into an ordi
nary product.

This theorem can be used to solve Volterra integral equations. For example,
find f [t] such that

eqn = f [t] - In tegra te[Exp[t - u] f [u] , {u, 0, t}] == t

f [t] - In t eg ra t e [E^ ~ ^ f [u] , {u, 0, t}] == t

302 13 Convolution and Laplace Transform

Solve[LaplaceTransform[eqn, t , s] ,

LaplaceTransform[f[t] , t , s]]

— 1 -l- s
{{LaplaceTransformCf [t] , t , s] -^ ^}}

(- 2 + s) s^

The solution is

f [t_] = InverseLaplaceTransform[(s - 1) / (s"2 (s - 2)) ,

s , t] / / Simplify

-1+E^ ^ + 2 t

and it can be checked

S impl i fy[f [t] - In tegra te[Exp[t - u] f [u] , {u, 0, t }]] == t

True

More details on the Laplace transform and its use in solving convolution
equations can be found in [4, 8].

Within the framework of distribution theory, the Laplace transform allows us
to justify the so-called operational calculus. In most of the literature from the
early twentieth century, Oliver Heaviside (1850-1925) is said to be the inventor
of operational calculus. According to J. Liitzen [33], "Today we know that this
view is wrong, but it reflects the central role that Heaviside has played in the
history of this branch of mathematics. His work became the starting point of
the development of the operational calculus in this century, his predecessors
apparently being for a period totally forgotten." On the history of operational
calculus from Heaviside to Laurent Schwartz, see [8].

14

Double Pendulum

A double pendulum is a simple dynamical system that exhibits a complex
dynamical behavior. It consists of two mass points at the end of rigid massless
rods, one suspended from a fixed pivot and the second one suspended from
the bob of the first. The system is free to oscillate in a vertical plane.

Fig. 14.1. A double pendulum.

Here is the list of graphics commands to draw the figure. Note the commands
used to generate the symbols 6i and 62-

304 14 Double Pendulum

11 = Graphics[Line [{{0, 0} , {Cos

12 = Graphics[Line [{{Cos[1.3], -

{Cos[1.3] + Cos[0 .9] , - Sin[1.3]

X = Graphics[Line [{{0, 0} , { 1 . 1 ,

Y = Graphics[Line[{{0, 0} , {0, -

U = Graphics[Line[{{Cos[1.3] , - i

{Cos[1.3], - 1.8}}]];

t h e t a = Graphics[{Circle[{0, 0} ,

{- 90 Degree, - 75 Degree}],

Ci rc le [{Cos[1.3], - S i n [1 . 3] } , 0

{- 90 Degree, - 50 Degree}]}];

T = G r a p h i c s [{ T e x t [' ' x ' ' , {1.05,

T e x t [' ' y ' \ {0.05, - 1.75}],

T e x t [S u b s c r i p t [' ' l " , 1] , {0.22,

T e x t [S u b s c r i p t [' ' l ' ' , 2] , {0.62,
T e x t [S u b s c r i p t [' ' m ' ' , 1] , {0.38,

Tex t [Subscr ip t [' 'm" , 2] , {0.98,

Text[FontForm[Subscript[" q ' ' , 1

{0.062, - 0 .42}] ,

[1 . 3] , - S in [1 .3]}}]] ;

S in [1 .3]} ,

- Sin[0.9]}}]]

0}}]] ;
1.8}}]];

3 in [1 .3]} ,

0 . 3 ,

. 3 ,

- 0 .05}] ,

- 0 .5}] ,

- 1.3}],
- 0 .92}] ,

- 1.68}],

] , { ' 'Symbol" ,

Tex t [Fon tForm[Subscr ip t [' ' q ' ' , 2] , { ' ' S y m b o l ' ' ,

{0.4, - 1.34}]}];

Show[{ll, 12, X, Y, U, t h e t a , T}

DefaultFont -^ { " C o u r i e r ' \ 12}

, AspectRatio -

»
Epilog -> {{PointSize[0.05] , RGBColor[0, 0, 1] ,

Point[{0, 0}]} ,

{PointSize[0 .05] , RGBColor[l, 0,

Point [{Cos[1 .3] , - S in [1 .3]}]} ,

{PointSize[0 .05] , RGBColor[l, 0,

0] ,

0] ,

)

12}],

12}].

-> Automatic,

Point [{Cos[1.3] + Cos[0 .9] , - Sin[1.3] - Sin[0.9]}]}}] ;

Symbol[' 'name ' '] refers to a symbol with a specified name.

If ^1 and £2 are the respective lengths of the first and second pendulum strings,
the bob positions are given by

bob[l] := 11 { S i n [t h e t a l [t]] , Cos [t he t a l [t]] }

bob [2] := bob[l] + 12 { S i n [t h e t a 2 [t]] , Cos [theta2 [t]]}

14 Double Pendulum 305

If mi and m2 are the respective masses of the bobs, the following commands
will give the expression of the Lagrangian.

speed [bobj := Sqrt[D[bob, t] . D[bob, t]] ;

vl = speed[bob[1]] / / Simplify

v2 = speed[bob[2]] / / Simplify

Sqrt[l l2 the ta l ' [t]2]

Sqrt[l l2 the ta l ' [t]2 +

2 11 12 Cos [thetal [t] - theta2[t]] theta l ' [t] theta2'[t] +

12^ theta2'[t]2]

The kinetic energy K is

K = (1 / 2 ml vl'^2 + 1 / 2 m2 v2^2) / / Simplify

(11^ (ml + m2) theta l ' [t] 2 +

2 11 12 m2 Cos [thetal [t] - theta2[t]] theta l ' [t] theta2'[t] +

12^ m2 theta2'[t]2) / 2

and, if g denotes the acceleration due to gravity, the potential energy U is
given by

U = - ml g bob[l] [[2]] - m2 g bob[2] [[2]]

- (g 11 ml Cos [thetal [t]]) - g m2 (11 Cos [thetal [t]] +

12 Cos[theta2[t]])

Hence, the Lagrangian is given by

Lagrangian = (K - U) // Simplify

g (11 (ml + m2) Cos [thetal [t]] + 12 Cos [theta2 [t]]) +

11^ (ml+m2) thetal'ftl^
^̂ ^ ^ -f 11 12 m2 Cos [thetal [t] -

306 14 Double Pendulum

Vp- m2 theta2'ftl^
the ta2 [t]] t h e t a l ' [t] t he t a2 ' [t]

In order to write down the Euler-Lagrange's equations, we first have to load
the package Calculus 'Variat ionalMethods ' .

« C a l c u l u s ' VariationalMethods'

eqns = EulerEquations[Lagrangian, { the ta l [t] , t h e t a 2 [t] } , t]

{- (11 (g ml Sin [t he t a l [t]] + g m2 Sin [the t a l [t]] +

12 m2 Sin [t he t a l [t] - t h e t a 2 [t]] t he ta2 ' [t] ' ^ +

11 (ml + m2) t h e t a l " [t] + 12 m2 Cos [the t a l [t] -

t h e t a 2 [t]] t h e t a 2 " [t])) == 0,

- (12 m2 (g S i n [t h e t a 2 [t]] - 11 Sin [t he t a l [t] -

t h e t a 2 [t]] t h e t a l ' [t] ^ -h 11 Cos [t he t a l [t] -

t h e t a 2 [t]] t h e t a l ' ' [t] + 12 t h e t a 2 " [t])) == 0}

Choosing the following numerical values

Clear[values]

values = {g ^ 9 .8 , 11 ^ 1, 12 ^ 1, ml -^ 1, m2 ^ 1};

we obtain

numEqns = eqns / . values

{- 19.6 Sin [t he t a l [t]] - Sin [t he t a l [t] - t h e t a 2 [t]] the ta2 ' [t] ' ^

- 2 t h e t a l " [t] - Cos [the t a l [t] - t h e t a 2 [t]] t h e t a 2 " [t])) == 0,

- 9.8 S i n [t h e t a 2 [t]] + Sin [t he t a l [t] - t h e t a 2 [t]] t h e t a l ' [t] ^ -

Cos [the t a l [t] - t h e t a 2 [t]] t h e t a l " [t] - t h e t a 2 " [t])) == 0}

and choosing the initial conditions

14 Double Pendulum 307

Clear[initCond]

initCond = {thetal[0] ==
0 .0 , theta2'[0] == O.O};

1 .5 , theta2[0] == 3 0, thetal ' [0] ==

we can solve numerically the equations of motion:

Clear[solution]

solution =

{ the ta l [t]

NDSolve[Join

, t h e t a 2 [t] } ,

[numEqns, initCond],

{ t , 0, 10}]

{ { the ta l [t] -^ InterpolatingFunction[{{0., 10 . } } , <>] [t] ,

theta2[t] -^ InterpolatingFunction[{{0. , 10 . } } , <>][t]}}

Plotting the solution reveals a fairly complicated behavior.

Plot[Evaluate[thetal[t] / . so lu t ion] , { t , 0, 10}];

Plot[Evaluate[theta2[t] / . so lu t ion] , { t , 0, 10}];

Fig. 14.2. Variations of angle 6i as a function of time.

Fig. 14.3. Variations of angle 62 as a function of time.

308 14 Double Pendulum

The positions of the bobs are defined by rodl and rod2 after having flipped
the y-coordinate which pointed down.

rodl[t_] : =

Evaluate[11 { S i n [t h e t a l [t]] , - CosCtheta l [t]]}] / . values

rod2[t_] := Evaluate [11 {Sin[the ta l [t]] , - Cos [t he t a l [t]] } +

12 { S i n [t h e t a 2 [t]] , - Cos[the ta2[t]]}] / . values

Although the trajectory of bob[l] is the circle of radius 11 = 1, centered at
the origin, the trajectory of bob [2] may be very complicated if the initial
values of t h e t a l and the ta2 are not small as illustrated below. To follow the
trajectory of bob [2] a sequence of numbered points shows all points from 0
(initial point) to 20 (last point).

p i = Parametr icPlot [Evaluate[rod2[t] / . s o l u t i o n] ,

{ t , 0, 10}, Ticks -^ None, AspectRatio -^ 1,

DisplayFunction -^ I d e n t i t y] ;

p t s = Fla t ten[Table[Evaluate[rod2[t] /

{ t , 0, 10, 0 .5}] , 1] ;

numPts = Graphics[{{PointSize[0.04] , CMYKColor[0, 0

Map[Point, p t s] } . Table[Text[i - 1, P a r t [p t s , i]] ,

{ i , 1, Length [p t s]}]}] ;

Show[{pi, numPts}, PlotRange -^ All, AspectRatio -^

DisplayFimction -^ $DisplayFunction];

solution /. values].

1, 0],

1,

Fig. 14.4. Trajectory of bob [2].

14 Double Pendulum 309

The following animation better reveals the chaotic behavior of the double
pendulum when the initial angles thetal [0] and theta2 [0] are not small.

endPtsl = Flatten[Table[Evaluate[rodlEt] / .
so lu t ion / . va lues] ,

{ t , 0, 10, 0 . 5 }] , 1] ;

endPts2 = Flatten[Table[Evaluate[rod2[t] / . solution / .
va lues] ,

{ t , 0, 10, 0 . 5 }] , 1] ;

{Length[endPtsl], Length[endPts2]}

{21, 21}

Table[Show[Graphics

Line[{{- 2,

Line[{{0, 0}

{RGBColor[0,

{RGBColor[l,

{RGBColor[0,

AspectRatio

- 2 } . {
, endPt

0, 0] ,

0, 0] ,

0, 1] ,

-> 1] ,

![{{RGBColor[1, 0

2, - 2 } . {2, 2 } ,

s l [C i]] , eiidPts2

PointSize[0.04]

PoiiitSize[0.04]

PointSize[0.04]

, 0] , Circle[{0,

{- 2 , 2 } , {- 2 , -

[[i]] }] .
, Point[{0. 0}]}

0} , 1] } ,

• 2 } }] .

9

, Po in t [endPts l [[i]]] } .

, Point[endPts2[[i]]] } }] ,

{ i , 1, Length[endPtsl]}];

Fig. 14.5. Last figure of the sequence generating the animation of the double pen
dulum.

15

Duffing Oscillator

15.1 The Anharmonic Potential

The DufRng equation is
x" -ax^- bx^ = 0,

where a and 6 > 0 are two parameters. Depending upon the sign of a we have
either a single-well (a < 0) or a double-well {a > 0) anharmonic potential V
defined by

V{x) = --x^ + -x\

We can ask Mathematica to plot the potential when a is either negative or
positive.

pll = Plot[- a x'̂ 2 / 2 + b x^4 / 4 /. {a

{x, - 15, 15}, AxesOrigin -̂ {0, 0},

Ticks -̂ {{- 15, - 10, - 5, 0, 5, 10, 15},

PlotStyle -̂ RGBColor [0, 0, 1],

PlotLabel -̂ '*single-well potential'\

DefaultFont -̂ {''Helvetica'\ 12},

DisplayFunction -^ Identity];

pl2 = PlotC - a x'̂ 2 / 2 + b x'*4 / 4 /. {a

{x, - 15, 15}, AxesOrigin -̂ {0, - 80},

Ticks -> {{- 15, - 10, - 5, 0, 5, 10, 15},

{- 20, 40, 100, 160}},

-̂ - 4, b -> 0.05},

{300, 600, 900}},

-> 4, b ̂ 0.05},

312 15 Duffing Oscillator

PlotStyle ^ {RGBColorCO, 0, 1] } ,

PlotLabel -^ ''double-we 11 p o t e n t i a l " ,

DefaultFont -^ { ' ' H e l v e t i c a ' \ 12},

Display-Function —> Identity] ;

Show[GraphicsArray[{pll, p l 2 }]] ;

single-well potential

9001

double-well potential
1601
100
40

15-10-5 5 10 15 -15-10-5 5 10 15

Fig. 15.1. Anharmonic potential V{x) = —(a/2)x^ H- {b/4)x^, for a = —4 (left
figure) and a = 4 (right figure). In both cases 6 = 0.05.

15.2 Solving Duffing Equations

15.2.1 Single-Well Potential

Clear[a, b]

a = - 4; b = 0.05;

s o l i = NDSolve [{x"[t]

x[0] == - 10,

{ t , 0, 30}]

x'[0] ==

- a

0 } ,

x[t] +

x [t] .

b x[t] ^3 == 0,

{{x[t] -^ Interpolat ingFimction[{{0. ,30.}} ,<>][t]}}

Plot[Evaluate[x[t] / . s o i l] .

PlotStyle -^ {RGBColorCO, 0,

DefaultFont -^ { ' 'Helvetica'

AxesLabel -^ { " f , " x (t) '

{ t , 0, 30},

1] } ,
' , 10},

' }] ;

15.2 Solving Duffing Equations 313

x(t)
10

-5

-10

A A

1$

1)

l i

29 30

Fig. 15.2. Solution of the Duffing equation in the interval [0,30], for a = —4 and
b = 0.05, and the initial conditions x(0) = —10 and x\0) = 0.

15.2.2 Double-Well Potential

Clear[

a = 4;

s o i l =

x[0] =

{ t , 0,

a, b]

b = 0.05;

NDSolve[{x"

= 0, x'[0] =

30}]

[t]

= 0.

- a

01},

x [t] +

x [t] .

b x [t] -3 == 0,

{{x[t] -^ InterpolatingFunction[{{0.,30.}},<>] [t] } }

Plot[Evaluat

PlotStyle -^

DefaultFont

AxesLabel -^

e [x[t] / . sol2] ,

{RGBColorCG, 0,

-> { ' 'Helvetica'

{ ' ' t ' \ ' ' x (t) '

{ t , 0,

1] } .
\ 10},

' }] ;

30},

314 15 Duffing Oscillator

x(t)

10

5

20 25 30

- 5

-10

Fig. 15.3. Solution of the Duffing equation in the interval [0,30], for a = 4 and
b = 0.05, and the initial conditions x(0) = 0 and x'{0) = 0.01.

15.3 Oscillations in a Potential Well

If V{x) is the potential, the conservation of energy imphes

where E is the total energy. From the equation above, we obtain

dx_ 2{E-V{x))
dt ~ y m

Thus, the period of oscillation T is given by

rx2

^̂ £̂7 m

2{E-Vix))
dx,

where Xi and X2 are such that V{xi) = V{x2) = E for Xi < x < X2 and
V{x) < E.

15.3.1 Single-Well Potential

Here m = 1, xi = -10 , X2 = 10, and E = V(10).

energyl = 2 x'̂ 2 + 0.0125 x'^4 / . x -^ 10

325

15.3 Oscillations in a Potential Well 315

per iod l = 2 NIntegrateC 1 / Sqr t [2 (energyl - 2 x^2

0.0125 x'^4)], {x, - 10, 10}]

2.26816 - 7.29805x10"^^ I

Using Chop replaces the imaginary part close to zero by zero.

Chop[periodl]

2.26816

We can also get rid of the spurious small imaginary part replacing the bounds
-10 and 10 by -9.99999999999999, and 9.99999999999999.

period2 =

2 NIntegrateC 1 / Sqr t [2 (energyl - 2 x^2 - 0.0125 x ^ 4)] ,

{x,-9.99999999999999, 9.99999999999999}]

2.26816

15.3.2 Double-Well Potential

Here m = 1 smd E = |(x'(0))2.

energy2 = (1/2) (0.01)^^2

0.00005

Then xi and X2 are the real solutions of

NSolve[energy2 == - 2 x'̂ 2 + 0.0125 x^4, x]

{{x -^ -12 .6491} , {x ^ 0. - 0.005 I } , {x -^0 . + 0.005 I } ,

{x -^ 12.6491}}

Hence,

316 15 Duffing Oscillator

period2 = 2 NIntegrateE 1 / Sqrt[2(energy2 + 2 x^2

0.0125 x^4)], {x, - 12.6491, 12.6491}]

NIntegrate :: slwcon : Numerical integration converging

too slowly; suspect

one of the following: singularity, value of the

integration being 0, oscillatory integrand, or

insufficient WorkingPrecision. If your integrand is

oscillatory try using the option Method->Oscillatory

in NIntegrate. More

NIntegrate :: ncvb :

NIntegrate failed to converge to prescribed accuracy

after 7 recursive bisections in x near x = -0.0988211

. More

18. 3727

Let us try to include the approximative position of the singularity in the limits
of integration as suggested when we click More in the message above.

period2 = 2 NIntegrateE l/SqrtE2(energy2 + 2 x"2 -

0.0125 x^4)] , {x, - 12.6491, 0, 12.6491}]

18.436

15.4 Forced Duffing Oscillator with Damping

Adding a damping term and a harmonic forcing term to the Duffing equation
yields:

x" + 7x' — ax^- bx^ = ccos{ut).

If we choose a = 0.4 and 6 = 0.5 we have a double-well as shown below.

15.4 Forced Duffing Oscillator with Damping 317

C l e a r [a , b]

p l 3 = PlotC •

{x , - 1 . 5 , 1

PlotRange -^

- a

. 5 } ,

A l l

x'̂ 2 / 2 + b X

P l o t S t y l e -^

, DefaultFont

^^ / ^ /. {a
{RGBColorCO,

-^ { ' ' H e l v e t

^

0 ,

i c a

0 . 4 ,

13}
i >

b ->

}

1 2 }] ;

0 5},

Fig. 15.4. Double-well potential V{x) = -{l/2)ax^ + (l/4)6x^ for a = 0.4 and
6 = 0.5.

15.4.1 No Forcing Term

C l e a r [a , b , g , omega,

a = 0 . 4 ; b = 0 . 5 ; g =

s o l 3 = NDSolve [{x ' ' [t]

c Cos[omega t] ,

x [0] == 0, x ' [0] == 0.

c]

0 . 0 2 ;

+ g X

0 0 1 } ,

omega

' [t] -

x [t] .

=

a

{t

0 .125 ; c =

x [t]

, 0 ,

+ b X

200}]

= 0;

[t] - ~3 ==

{{x[t] -^ InterpolatingFiinction[{{0., 200 .}} , <>][t]}}

P l o t [E v a l u a t

P l o t S t y l e ->

DefaultFont

AxesLabel -^

e [x [t] / . s o l 3] ,

{RGBColorCO, 0 ,

-^ { " H e l v e t i c a '

{ ' ' t ' \ ' ' x (t) '

{ t , 0 , 2 0 0 } ,

1] } , PlotRange ->

\ 1 0 } ,

^ }] ;

A l l ,

318 15 Duffing Oscillator

t
200

Fig. 15.5. Solution of the Duffing equation: x" + gx' — ax + hx^ ——^ for a = 0.4,
b = 0.5. g = 0.02, x{0) = 0, and x'{0) = 0.001 in the interval [0,200].

In the absence of a forcing term, the energy decreases due to the damping term,
and starting from x{0) = 0 with a very small positive velocity x'(0) = 0.001,
the position tends to the minimum of the double-well potential located on the
positive part of the x-axis.

15.4.2 With Forcing Term

In the presence of a forcing term, the solution has a more irregular behavior.

Clear[a, b, g, omega,

a = 0.4; b = 0.5; g =

sol4 = NDSolve [{x''[t]

c Cos[omega t],

x[0] == 0, x'[0] == 0.

c]

0.02;

+ g X

001},

omega

'[t] -

x[t].

a

{t

0.125; c =

x[t]

, 0,

+ b X

200}]

0.

[t]

1;

-3 ==

{{x[t] -^ In terpola t ingFunct ion[{{0. , 200.}}, <>][t]}}

Plot[Evaluate[x[t] /. sol4], {t, 0, 200},

PlotStyle -̂ {RGBColor[0, 0,1]},

PlotRange -^ All, DefaultFont -̂ {''Helvetica'

AxesLabel -̂ { " f , ''x(t)''}];

', 10},

15.4 Forced Duffing Oscillator with Damping 319

Fig. 15.6. Solution of the Duffing equation: x" + gx' — ax-\- bx^ == ccos{ujt) for
a = 0.4, b = 0.5. g = 0.02, LJ = 0.125, c = 0.1, x{0) = 0, and x'{0) = 0.001 in the
interval [0,200].

Clear[a, b, g,

a = 0.4; b = 0

sol5 = NDSolve

c Cos [omega t]

x[0] == 0 .1 , X

omega,

.5; g =
[{x"[t]

>

[0] ==

c

0

+

0.

, sol4]

.02; omega =

g x'[t] - a

001}, x [t] .

0.125;

x [t] +

{ t , 0,

c = 0.

b x [t]

200}]

1;

•̂ 3 ==

{{x[t] -^ InterpolatingFunction[{{0., 200.}}, <>][t]}}

Plot[Evaluate[x[t] / . s o l 5] , { t , 0, 200},

PlotStyle -^ {RGBColor[0, 0 , 1] } , PlotRange -

DefaultFont -^ { " H e l v e t i c a ' \ 10},

AxesLabel -> { ' ' t ' \ ' ' x (t) ' ' }] ;

^ Al l ,

320 15 Duffing Oscillator

Fig. 15.7. Same as above hut with x(0) = 0.1 instead of x{0) = 0.

A slight change in the initial position greatly modifies the solution suggesting
a possible chaotic behavior of the forced oscillator (on chaos see Chapter 5 of
[9]).

16

Egyptian Fractions

In 1858 the Scottish antiquarian Alexander Henry Rhind (1833-1863), trav-
ehng in Egypt, bought in Luxor an ancient scroll that has been the source of
much information about Egyptian mathematics. This important document,
known as the Rhind Mathematical Papyrus, contains, in particular, tables to
help find a representation of rational numbers less than one as sums of differ
ent unit fractions, that is, with numerators equal to 1, as, for example,

29 ~ 24 "^58 "^174 ^232*

As illustrated below, this so-called Egyptian fraction representation is not
unique.

29 ~ 15 "̂ 435 ~ 16 "̂ 232 ^ 464'
These results can be checked using Mathematica:

2/29 == 1/24 + 1/58 + 1/174 + 1/232 == 1/15 + 1/435

== 1/16 + 1/232 + 1/464

True

In fact, any fraction less than one has an infinite number of different repre
sentations because taking any representation we can replace the last fraction
of the representation, that is, the unit fraction with the greatest denomina
tor, by its Egyptian fraction representation. This result is true if we can first
prove that any fraction has at least one Egyptian fraction representation. Let
us first describe the well-known algorithm due to Fibonacci—and called the
greedy algorithm—that, given a fraction a/b generates a strictly increasing
sequence of integers (n — 1, n2, . . .) whose sum of reciprocals is equal to a/b.

322 16 Egyptian Fractions

The idea is to first find the greatest unit fraction 1/ni that is less than or
equal to a/6, then to find the greatest unit fraction l/n2 less than or equal
to the remainder a/b — In i , and so on. The name of the algorithm comes
from the fact that at each step we "greedily eat" as much as possible of the
remainder. If we take, for example, the fraction 2/29 of the Rhind papyrus,
the greatest unit fraction less than 2/29 is 1/15 (note here something that will
be useful to write our Mathematica program: 15 is the least integer greater
than or equal to 29/2, that is, 15 = [29 2], then the largest unit fraction less
than or equal to 2/29 - 1/15 is precisely 1/435. Hence 2/29 = 1/15 + 1/435,
which is the second representation given above.

To prove the existence of at least one Egyptian representation we still have to
prove that the sequence of unit fractions generated by the greedy algorithm
is not infinite. This is not difficult if we look at the sequence of remainders.

The first remainder is a/b — l/ni = {arii — b)/bni but, because l / (n i — 1) >
a/6, b/{n\ — 1) > a, that is, the numerator arii — 6 of the first remainder
is strictly less than the numerator a and the denominator brii of this first
remainder is strictly greater than the denominator b of the fraction. More
generally, after the fcth step the numerator of the remainder a^nfe+i — bk is
strictly less than the numerator a^, and it is also clear that the denominator
f̂ĉ fc+i of the remainder is strictly greater than bk- Hence, the sequence of

remainders is a sequence of fractions whose denominators are strictly increas
ing while their numerators are strictly decreasing. Because numerators are
nonnegative integers, this sequence converges to zero.

Finally, to prove that the number of Egyptian fraction representations of any
rational number is infinite we have to show that we can replace the last fraction
of the representation, that is, the unit fraction with the greatest denominator,
which is already an Egyptian representation by a different representation. This
new representation cannot of course be found using the greedy algorithm, but
any unit fraction 1/n can always be written under the form l/m-\-ai/bi where
m > n and use the greedy algorithm to find the Egyptian representation of
the fraction ai/bi.

In order to write a program generating the sequence of unit fractions repre
senting a given rational number 0 < r < 1, we have, at each step, to determine
the remainder using, for instance, the function:

remainder[r_Rational / ; 0 < r < 1] : =

r - Ra t iona l [1 , Cei l ing[1 / r]]

For example, the sequence of remainders of 7/11 is

remainder[7 / 11]

16 Egyptian Fractions 323

3

22

remainder[3 / 22]

1

88

remainder[1 / 88]

When the remainder is either zero or a unit fraction the program should stop.
We, therefore, shghtly modify the function remainder as follows.

remainder [r_Rational/ ; 0 < r < 1] : =

I f [r G In tegers II Numerator [r] == 1,

0, r - Ra t iona lC l ,Ce i l ing [1 / r]]]

Let us now look at the sequence of remainders using the function FixedPoint-
Lis t [f, expression] that gives the list of repeatedly applying f to expression
until the result does not change. In our case the last two elements of the list
generated by this function will be two zeros.

FixedPointList[remainder, 7 / 1 1]

r 7 3 1 >!

111 22 88 J

The Egyptian representation of 7/11 is then simply given by

l l l ' 2 2 ' 8 8 / l 2 2 ' 8 8 ' / 1 2 ' 8 ' 8 8 / '

This result can be obtained using the function Take [l i s t , {m, n}] which
gives the elements m through n of l i s t as shown below.

Take[{7 / 11 . 3 / 22, 1 / 88, 0, 0} , {1,

Take[{7 / 11, 3 / 22, 1 / 88, 0, 0} , {2,

- 3 }] -

- 2 }]

324 16 Egyptian Fractions

l 2 * 8 ' 8 8 / 2 8 88-

This translated difference can be written for any list as

t r ans la tedDi f fe rence[l i s_Lis t] := Take [l i s , { l , •

Take [l i s , {2, - 2}]

- 3 }] -

that we can verify

translateciDifference[{7 / 11, 3 / 2 2 , 1 / 8 8 , 0, 0}]

l 2 ' 8 ' 8 8 /

Finally, we can find the Egyptian representation of any rational number using
the following function,

greedyEgyptianSequence[r_Rational / ; 0 < r < 1] : =

Module [{remainder, translatedDifference},

remainder [x_] := If[x == 0 II Numerator [x] == 1,

0, X - Rational[1, Ceiling[1 / x]]];

translatedDifference [lis_List] := Take [lis, {l, - 3}]

Take[lis, {2, - 2}];

t rans la tedDifference[FixedPointLis t [remainder ,x]]]

and we make this function Li s t ab le .

SetAttributes[greedyEgyptianSequence, L i s t a b l e] ;

Here are a few examples.

greedyEgyptianSequence[2 / 9]

i s ' 45}

greedyEgyptianSequence[7 / 11]

16 Egyptian Fractions 325

l2' 8' 88/

greedyEgyptianSequence[131 / 263]

rl 1 1 1 1

Is' 7' 46' 5909' 51766508' 7771336864724278

150984191662556420075895541828932-

Because the numerators of the sequence of remainders strictly decrease, the
number of terms of the Egyptian representation of the rational number a/b is
at most equal to a. The sequence of denominators is strictly increasing and,
as shown in the last example, may become quite large.

Here is a very simple recursive program taken from S. Wagon's book [64]
which gives the sequence of denominators of the unit fractions.

EgyptianFraction[0] := {}

EgyptianPraction[q_] := Prepend[EgyptianFraction[q - 1 /
Ceiling[1 / q]] , Ceiling[1 / q]]

Attributes[EgyptianFraction] = Listable;

EgyptianFraction[131 / 263]

{3, 7, 46, 5909, 51766508, 7771336864724278,

150984191662556420075895541828932}

Egyptian representations of rational numbers given by the greedy algorithm
often involve unit fractions with very large denominators. It is possible to find
simpler representations combining the representations of two fractions whose
sum is equal to the original one. For example, because 62-1-69 = 131, we
obtain a much simpler representation using the command

Sort[Flatten[EgyptianFraction[{62 / 263, 69 / 263}]]]

{4, 5, 28, 81, 36820, 85212}

And we verify that the sum of the corresponding unit fractions is

326 16 Egyptian Fractions

Tota l [1 / yp]

131

263

17

Electrostatics

Electostatics is the study of time-independent distributions of electric charges.

17.1 Potential and Field

Given a spatial distribution of electric charge /)(x,i/,z), the laws of electro
statics make it possible to calculate the electric potential V{x,y,z) and the
electric field E(x,2/, z). These physical quantities are given by

V{x,y,z) = ^ [[[, P(^^y^^O ^dx'dy'dz',

^TTJ J J 7 (x - x^y + {y- y'Y + (z - z'Y

E(x,2/,z) = -VF(x,2/,2:),

'dV{x,y,z) dV{x,y,z) dV{x,y,z)
dx ^ dy ^ dz

17.1.1 Useful Packages

The commands in the package Graphics 'P lo tF ie ld ' can be used to draw
arrows representing vectors, the direction of the arrow indicating the direction
of the vector field at its base point, and its magnitude being proportional to the
magnitude of the vector field. The package Calculus 'Vector Analysis ' offers
a variety of tools for doing calculus in various three-dimensional coordinate
systems.

«Graphics' PlotField'

«Cal cuius 'Vector Analysis'

328 17 Electrostatics

As usual, we can obtain the list of all commands provided by these packages
entering

?Graphics 'PlotFie ld '*

and

?Calculus 'VectorAnalysis '*

17.1.2 Point Charge

The electric potential at point {x,y,z) created by a point charge located at
(^o,2/o,^o) is given by

monopolePotential[charge. , {xO_, yO_, zO_}, {x_, y_, z_}] :=

charge / (4 Pi Sqr t [(x - x0)^2 + (y - y0)^2 + (z - z0)^2])

The potential and the field at (x, y, z) created by a point charge q located at
(^o,2/o,^o) = (0,0,0) are

monopolePotentialCq, {0, 0, 0} , {x, y, z}]

4 Pi Sqrt[x'^ + x'^+x'^]

monopoleField = - Grad[monopolePotentialCq, {0, 0, 0},

{x, y, z}], CartesianEx, y, z]]

q X q y
'4 Pi (x2+y2 +2^)3/2' 4 Pi (x2 + y 2 ^ 22)3/2'

q z >!

4 Pi (x^+y^+z^)^/^^

The potential and the field in the plane z = 0 are represented below. We
take zo 7̂ 0 to avoid having an infinite expression at the origin (see below:
e l e c t r i c F i e l d) .

imitMonopoleV[x_, y_] := monopolePotent ial[l , {O, 0, 0} ,

{x, y, 0.01}]

17.1 Potential and Field 329

unitMonopoleVEx, y]

4 Pi Sqrt [0.0001 -f x^ + y^] 2 _^ „2i

equiPotentials = ContourPlot[unitMonopoleVEx, y],

{x, - 2, 2}, {y, - 2, 2}, PlotPoints -^ 60,

ColorFunction -^ Hue, ContourSmoothing —» True];

Fig. 17.1. Equipotentials, in the plane z = 0.01, of a unit electric charge located
at the origin.

The option Contour Smoothing specifies what smoothing to use for contour
lines.

imitCharge = {{RGBColor [1, 1, 0] , AbsolutePointSize [20] ,

Point [{0, 0 }] } , { T e x t [^ ' + 1 ' \ {0, 0}]}};

In the following command, using the option ScaleFunction -^ (1&), all ar
rows have the same unit length.

e lec tr icFie ld = PlotGradientField[- imitMonopoleV[x, y] ,

{x, - 1, 1} , {y, - 1, 1} , ScaleFunction -^ (1&),

Epilog -^ unitCharge];

330 17 Electrostatics

V V V V W

V V V V V

> > V V V

> > > > ^
^ > > > ^

^ / / / ^
' ' / / <
' / ^ ^̂ <
' ^ < < <
^ ^ ^ ^ ^

+1

- ^ > > ^

^ ^ ^ ^ ^
^ ^ ^ ^ f

^ ^ ^ ^ f

\ ^
V V V

A \ ^ ^ *̂

^ ^ ^ ^ ^
5 A ^ ^ ^

Fig. 17.2. Electric field created by a unit electric charge located at the origin.

17.1.3 Dipole

The following function gives the electric potential of a dipole (p, 0,0) localized
at the origin and directed along the x-axis.

dipolePotential[p_, {x_, y_, 2

Limit[(monopolePotential[p /

- monopolePotential[p / a, {-

a -> 0]

-}] : =
a, {a /

a / 2

2,

,0,

0,

0}.

0}.

{x

{x.

. y.

y. z}]

z}]).

unitDipoleV[x_, y_] := d i p o l e P o t e n t i a l [l , {x, y, 0.01}]

We load the package Graphics'Arrow' to be able to use the command Arrow
to draw arrows.

«Graphics' Arrow'

unitDipole = Arrow[{0. 1, 0}, {- 0.1, 0},

HeadScaling -> Absolute];

PlotGradientField[unitDipoleV[x,y], {x, - 1, 1}, {y,

ScaleFunction -> (1&), Epilog -> unitDipole];

1, 1},

17.1 Potential and Field 331

i i 4

V i i

V V i

V V V

> >̂ V

^ ^ 1 T f f

^ *" ^ 1 f r r f

^ *" ^ 1 f r ' '

^ ^ 1 T r ' ' ^

^ ^ T r ' ^ ^ ^

. w ^ - ^ ' '

^ ^ ^ ^ r .

>* ^ ^

^ f r

r r f

1 ^

^ > > > ^
/ * ^ V V > ^

< ^ * ^ V V V

^ / ^ ^ ^ V V

/ i 4 i i V

^ ^ i 4 i i

Fig. 17.3. Electric field created by a unit dipole, represented by a bigger arrow,
located at the origin.

The option HeadScaling -^ Absolute makes the head of the arrow, repre
senting the dipole, slightly bigger (see Figure 17.3).

17.1.4 Quadrupoles

We consider different functions that give the electric potential of three or four
electric charges whose sum is equal to zero. In the next section we define a
function to plot the corresponding equipotentials and field lines.

We first define the command quadrupolePotent ia l l generating the electric
potential created by three charges 2q,—q,—q localized, respectively, at

(0,0,0), (| , 0 , 0) , and (- f , 0 , o) .

quadrupolePotentiall =

monopolePotential[2 q,

monopolePotentialCq, {a

monopolePotentialEq, {-

{0, 0,

L / 2.

a / 2

0}.
0, 0

. 0.

{x.

} . {••

0}.

y.

K. y

{x,

z}] -

, z}] -

y .z}]

2 Pi Sqrt[x2 + y^ + z^] 4 Pi Sqrt[(— + x)^ + y^ + z^]

332 17 Electrostatics

q

4 Pi S q r t [(| + x) 2 + y ^ + z^]

Here is another command giving the electric potential created by four charges
Q^ -Q^ Q^ -Q localized, respectively, at (a/2, a/2,0), (a/2, -a /2 ,0) , (-a/2, -a /2 ,0) ,
and (a/2,a/2,0).

quadrupolePotential2

monopolePotential[q,

monopolePotential[q,

monopolePotential[q,

monopolePotential[q,

=

{a
{a

{-
{-

/ 2, a

/ 2, -

a / 2,

a / 2,

/ 2,

a /

- a

a /

0}, {x, y.

2, 0}, {x.

/ 2, 0}, {j

2, 0}, {x.

z}] -

y. z}] +

'-, y, z}] -

y. z}]

4 Pi S q r t [(^ + x)2 + (^ + y)^ + z^]

q

4 Pi Sqrt[(| + x)2 + (^ + y)^ + z^]

"" +
4 Pi S q r t [(^ + x)2 + (| + y)2 + ^2]

q
4 P i S q r t [(^ + x) 2 + (^ + y) 2 + z2]

We again consider the electric potential created by three charges 2g, —q, —q
but localized, respectively, at

(0,0.0), (2,40) and (-1,40).

Their electric potential is given by

quadrupolePotentialS =

monopolePotential[2 q,

monopolePotential[q, {a

monopolePotential[q, {-

{0, 0,

L / 2 , •

a / 2

0},
- a

> "*

{x.
/ 2,

a /

y. z}] -

0}, {x. y

2, 0}, {x.

z}] -

y. z}]

2 Pi Sqrt[x2 + y2 + z2] 4 pi S q r t [(^ + x)2 + (| + y)2 + z2]

17.1 Potential and Field 333

4 Pi S q r t [(- + x) ^ + (- + y) 2 + z2]

17.1.5 Plots

W e define the function equipotentialFieldPlot that plots (in the xOy-
plane) the equipotentials and the field, and we use it to plot the equipotentials

and the electric field lines of the quadrupoles defined above. optionList

stands for zero or more options.

equipotentialFieldPlot[potential-, xRange_, yRange_,

optionList] : =

Module[{equiPotentials, fieldLines},

equiPotentials = CentourPlot[potential, xRange, yRange,

ContourShading -^ False, ContourSmoothing —» True,

PlotPoints -^ 60, DisplayFunction -^ Identity];

fieldLines = PlotGradientField[- potential, xRange, yRange,

ScaleFunction -^ (1 &), DisplayFimction -> Identity];

Show[{equiPotentials, fieldLines}, optionList,

DisplayFunction -^ $DisplayFunction]];

equipotentialFieldPlot[quadrupolePotentiall /.

{q ^ l,a -> 1, z ^ 0.001}, {x, - 2, 2}, {y, - 2, 2},

Epilog -^ {{RGBColor[l, 1, 0], AbsolutePointSize[20],

Point[{0, 0}]}, {RGBColor[l, 1, 0], AbsolutePointSize[20],

Point[{0.5, 0}]}, {RGBColor[l, 1, 0],

AbsolutePointSize[20], Point[{-0.5, 0}]},

{Text[''+ 2'', {0, 0}], Text[''-1'', {0.5, 0}],

Text[''-1'', {-0.5, 0}]}}];

334 17 Electrostatics

Fig. 17.4. Equipotentials and electric field lines created by three charges respectively
equal to +2 localized at the origin and —1 localized on the Ox-axis at a distance —1/2
and 1/2 from the origin.

equipotentialFieldPlot[quadrupolePotential2 /.

{q ^ l,a -^ 1, z ^ 0.001}, {x, - 2, 2}, {y, - 2, 2},

Epilog -^ {{RGBColor[l,l,0], AbsolutePointSize[20],

Point[{0.5, 0.5}]}, {RGBColor[l, 1, 0],

AbsolutePointSize[20], Point[{0.5, - 0.5}]},

{RGBColor[l, 1, 0], AbsolutePointSize[20],

Point[{- 0.5, - 0.5}]}, {RGBColor[1,1,0],

AbsolutePointSize[20], Point[{- 0.5, 0.5}]},

{Text[''+1'\ {0.5, 0.5}], Text[''-1'\ {0.5, - 0.5}],

Text[''+1'', {- 0.5, - 0.5}], Text[''-1'', {- 0.5, 0.5}]}}];

17.1 Potential and Field 335

^ 1 J \

-2 - 1

Fig. 17.5. Equipotentials and electric field lines created by four charges respectively
equal to —1, + 1 , —1 and +1 localized at the vertices of a unit square centered at the
origin.

equipotentialFieldPlot[quadrupolePotentialS /.

{q -> l,a -> 1, z ̂ 0.001}, {x, - 2, 2}, {y, - 2, 2},

Epilog -̂ {{RGBColorEl, 1, 0], AbsolutePointSize[20],

Point[{0, 0}]}, {RGBColorEl,1,0], AbsolutePointSize[20],

Point[{0.5, - 0.5}]}, {RGBColor[l, 1, 0],

AbsolutePointSize[20], Point[{- 0.5, - 0.5}]},

{Text[''+2'', {0, 0}], Text[''-1", {0.5, - 0.5}],

Text[''-r', {- 0.5, - 0.5}]}}];

Output represented in Figure 17.6.

17.1 .6 U n i f o r m l y C h a r g e d S p h e r e

Let R be the radius of a uniformly charged sphere whose center coincides with
the origin , and let p be the charge density. Spherical symmetry implies tha t
the electric field is radial and depends only upon the distance r to the origin.
This field is easily determined using Gauss law.

336 17 Electrostatics

2

1

0

1

2

- - . X N ^ '

/ ^ ' 'x If/

k

k

k

V

" M

i

i

+2

M
T ^

1 ^

i

i

i

4

^

1
k

X' - j-.-_

Fig. 17.6. Equipotentials and electric field lines created by three charges respec
tively equal to +2 localized at the origin and two negative unit charges localized at
(-1/2,-1/2,0) anc? (1/2,-1/2,0).

eqn = {4 Pi r^2 internalElectricField == 4 Pi r^3 rho

/ 3, 4 Pi r^2 externalElectricField == 4 Pi R'̂ 3 rho /

3}; sol = Flatten[Solve[eqn, {internalElectricField,

externalElectricField}]]

{internalElectricField
r rho

ex t e rna lE lec t r i cF i e ld
R^ rho^

C lea r [e l ec t r i cF i e ld]

e l ec t r i cF ie ld [r_] := If [r < R, r rho / 3 , R'̂ 3 rho / (3 r'^2)]

plE = P l o t [e l e c t r i c F i e l d [r] / . {R -^ l , rho -^ 1}, {r , 0, 5} ,

P lo tS ty le -^ {RGBColor[0,0,l]}, DisplayFunction -> I d e n t i t y] ;

17.1 Potential and Field 337

tl = Graphics [Text C inside'\ {0.5, 0.33}]];

t2 = Graphics[Text[''outside'', {3, 0.33}]];

rl = Graphics[{RGBColor[0.5, 0.4, 0],

Rectangle[{0, 0}, {1, 0.36}]}];

r2 = Graphics[{RGBColor[0.8, 0.8, 0],

Rectangle[{1, 0}, {5, 0.36}]}];

Show[{rl, r2, plE, tl, t2}, Axes -^ False, Frame -^ True,

TextStyle -^ {FontSlant -^ ''Italic", FontSize -^ 12},

FrameLabel -> {"r'', "E(r)''}, RotateLabel -^ False,

FrameTicks -^ {{0, 1, 2, 3, 4, 5}, {0. 05, 0.15, 0.25, 0.35},

{}» {}}» Display-Function —> $DisplayFunction] ;

E(r)

0,35

0,25

0,15

0,05

Fig. 17.7. Electric field created by a uniformly charged sphere as a function of the
distance r from the sphere center.

RotateLabel specifies whether labels on vertical frame axes should be rotated
to be vertical.

The order of the graphics objects in Show is important, The order {plE, t l ,
t 2 , r l , r2} would mask the plot and the text. The list of graphics objects
has to start with the colored rectangles.

The electric potential can be derived integrating the radial electric field com
ponent.

338 17 Electrostatics

externalElectricPotential[r_] = - Integrate[R"3 rho /(3 r"2),

r]

R̂ rho

3 r

internalElectricPotential[r_] = externalElectricPotential[R]

Integrate[r rho / 3, {r, R, r}] // Simplify

-(r2-3 R^) rho

Clear[electricPotential]

electricPotential[r_] := If [r < R, - (r^2 - 3 R'̂ 2) rho / 6,

R'̂ 3 rho / (3 r)]

plV = Plot[electricPotential[r] /. {R -> l,rho -^ 1}, {r, 0,

5},

PlotStyle -^ {RGBColor[0,0,1]}, DisplayFunction -^ Identity]

tl = Graphics[Text[''inside'\ {0.5, 0.3}]];

t2 = Graphics[Text[''outside'^ {3, 0.3}]];

rl = Graphics[{RGBColor[0.4, 0.4, 0],

Rectangle[{0, 0}, {1, 0. 5}]}];

r2 = Graphics[{RGBColor[0.8, 0.8, 0],

Rectangle[{1, 0}, {5, 0.5}]}];

Show[{rl, r2, plV, tl, t2}. Axes -^ False, Frame -> True,

TextStyle -^ {FontSlant -^ ''Italic'', FontSize -^ 12},

FrameLabel -^ {''r", "V(r)"}, RotateLabel -> False,

DisplayFunction -^ $DisplayFunction];

17.1 Potential and Field 339

V{r)

0.5

0.4

0.3

0.2

0.1

2 3
r

Fig. 17.8. Electric potential created by a uniformly charged sphere as a function of
the distance r from the sphere center.

18

Foucault Pendulum

The stars appear to move in circles about a line through the poles of the earth
as if they were attached to a sphere rotating about the earth.

Aristarchus of Samos (310-230 BC) was the first astronomer who explained
the apparent motion of the stars and planets assuming that the earth turns
on its own axis and also travels around the sun. This theory was not accepted
by the Greeks.

Around 1514 Mikolaj Kopernik (1473-1543), better known as Nicolaus Coper
nicus, distributed a little handwritten book, called the Little Commentary, to
a few of his friends, in which he stated, in particular, that the center of the
universe is close to the sun and that the rotation of the earth accounts for the
apparent daily rotation of the stars.

At the close of the 16th Century, Filippo Bruno (1548-1600), who took
the name Giordano in 1565 when he entered the Dominican convent of San
Domenico Maggiore in Naples, was soon suspected of heresy for his unortho
dox ideas. He was nevertheless ordained as a priest in 1572. He came to the
attention of the Inquisition in Naples and, in 1576, left the city to escape
prosecution. For 14 years he wandered about Europe defending, in particu
lar, Copernicus' heliocentric theory. Probably believing that the Inquisition
had lost some of its strength, he thought that he might safely return to Italy.
Betrayed by Giovanni Mocenigo, a Venetian nobleman who invited him in
August 1591, he was denounced to the Inquisition and arrested on May 22,
1592. At the request of the Holy Office, he was transferred to Rome and ar
rived at the prison of the Holy Office near St. Peters on February 27, 1593.
After seven years, on February 19, 1600, refusing to renounce his beliefs, he
was brought to the Campo de' Fiori, his tongue in a gag, and burned alive.

In 1633, after the publication of Dialogo dei due massimi sistemi del mondo,
Galileo Galilei (1564-1642) was convicted of heresy by the Inquisition and
forced to recant his support of Copernicus. He confessed to having erred in

342 18 Foucault Pendulum

writing his book, and asked for mercy. Sentenced to life imprisonment, he was
allowed to live in his villa in Arcetri close to Florence.

In 1851, the French physicist Jean, Bernard, Leon Foucault (1819-1868), de
vised an experiment to demonstrate the rotation of the earth. Inside the
Pantheon in Paris, he suspended from the dome a 67-meter, 28-kg pendu
lum. To show the motion of the plane of oscillation, he attached a stylus to
the ball and placed a ring of damp sand on the floor below. It was observed
that swing after swing this plane rotated slowly clockwise with respect to the
earth.

In order to study the motion of the Foucault pendulum we first briefly review
the equation of motion of a particle in a moving frame of reference.

Assuming that the moving frame is just rotating, the time derivatives of a vec
tor quantity A with respect to a flxed frame and a rotating frame of reference
satisfy the relation

dA\ fdA\
— I = l—-\ +0? X A,
^^ / fixed \ " W rotating

where cv is the angular velocity vector. In particular, for the time derivative
V of the position vector r we have

Vfixed ^^ ^rotating 4" ^ X Tfotating

Similarly, for the time derivative a of the velocity vector v we have

^fixed — ^rotating + CJ X Ffotating + 2 O; X Vfotating + CJ X (CJ X Trotating)

• a;' X Frotating is the azimuthal or transverse acceleration,

• 2 u; X Vrotating IS the Coriolis acceleration, and

• ijj X {(jj X Frotating) is the Centripetal acceleration.

In a local frame fixed to the earth, neglecting air resistance, the equation of
motion is

m arotating = F - m Cj' X Frotating - 2 TTl U) X V^otating - TU UJ X {uj X Frotating)-

In a rotating frame, to the real physical force F we have, therefore, to add
three inertial forces, namely, the azimuthal, Coriolis, and centripetal forces.

Hence, in a local frame fixed to the earth, neglecting air resistance, the equa
tion of motion becomes

^r'/otating = F - h m g - 2 m a ; x F̂ ^̂ ^̂ ĵ g - m u; x (a; x Frotating)

18 Foucault Pendulum 343

where r ' and T" are, respectively, the first and second time derivative of the
vector r.

The numerical value of the earth's angular velocity u; is small. It is equal to:

27r
— X 3600 = 0.727 x 10"^ rad/s.
24

We may, therefore, neglect the centripetal force and write the equation of
motion as

^ r^^tating = F + m g - 2 m u ; x r^^tating-

The Foucault pendulum illustrates the earth's rotation through the Coriolis
force. We treat the earth as rotating about its axis with an angular velocity
(jj with respect to an inertial frame and use the equation above to study the
motion of the pendulum.

Let us choose the local Cartesian coordinate system such that its origin O is
the equilibrium position of the bob. The Ox- and Oy-^xes are in the horizontal
plane pointing, respectively, south and east, and the vertical 02:-axis points
up towards the point of suspension of the string.

If r represents the position of the bob in the rotating frame.

r [t_] := { x [t] , y [t] , z [t] }

the equation of motion of the bob in the rotating frame is

^ r^^tating = T + m g - 2 m u ; x r^^tating.

where T is the tension of the string. The acceleration due to gravity g is di
rected along the 02;-axis and points down, and the coordinates in the rotating
frame of angular velocity vector a; are

omega [t_] := {- omegaO Cos [the ta] , 0, omegaO S in [the t a]}

where omegaO is the norm of omega and t h e t a the latitude. Hence, in the
rotating frame, the Coriolis force is

Coriol isForce = - 2 m Cross[omega[t] , r ' [t]]

{2 m Sin [theta] omegaO y ' [t] ,

— 2 m (Sin [theta] omegaO x ' [t] -h Cos [theta] omegaO z ' [t]) ,

2 m Cos [theta] omegaO y ' [t] }

344 18 Foucault Pendulum

If the amplitude of the oscillations is small, the tension T is nearly constant
and equal to mg. Its coordinates in the rotating frame are

T = {- m g x [t] / 1, - m g y [t] / 1, 0}

where 1 is the string length.

Because m 7̂ 0, we use the command Assuming [assumption, expression]
to tell Mathematica that assumption should be appended to the default as
sumptions when evaluating expression. Hence, the equation of motion of the
bob is

eqn = Assuming[m != 0, Simplify[Thread[m r " [t] == T +
Cor io l i sForce]]]

a xftl
{ — + x'' == 2 S in[the ta] omegaO y ' [t] == 0,

g yftl
+ 2 omegaO (Sin[the ta] x ' [t] + Cos[theta] z ' [t]) +

/ ' [t] == 0,

2 Cos[theta] omegaO y ' [t] == z ' ' [t] }

Because we cannot directly solve the vector differential equation, we used the
command Thread[f [arguments]] that threads f over any lists that appear
in arguments.

Neglecting z' [t] compared to y' [t] , the equations of motion in the a:Oy-plane
are

eqn [[l]]

eqn[[2]] / . z ' [t] -^ 0

OP x | t l
— -h x" == 2 S in[the ta] omegaO y ' [t] ,

g yftl
^-^LU. + 2 omegaO (Sin[the ta] x ' [t] -h y" [t] == 0

Let fi = uo sin 0 denote the vertical component of the angular velocity vector
cj. Then, the equations of motion in the xOy-plane are

18 Foucault Pendulum 345

equations = x" [t] == - (g / 1) x [t] + 2 Omega y ' [t] ,

y " [t] == - (g / 1) y [t] - 2 Omega x ' [t] ;

Consider a new rotating frame that rotates around the Oz-axis with an an
gular velocity i?, and denote O^ and Or] the new horizontal axes. We have

x [t] = x i [t] Cos [Omega t] + e t a [t] Sin [Omega t] ;

y [t] = - x i [t] Sin [Omega t] + e t a [t] Cos [Omega t] ;

Because

x ' [t] = D[xi [t] Cos [Omega t] + e t a [t] Sin [Omega t] , t]

x" [t] = D[xi [t] Cos [Omega t] + e t a [t] Sin [Omega t] , { t , 2}]

y ' [t] = D[- x i [t] Sin [Omega t] + e t a [t] Cos [Omega t] , t]

y" [t] = D[- x i [t] Sin [Omega t] + e t a [t] Cos [Omega t] , { t , 2}]

Omega Cos[t Omega] e t a [t] — Omega S in[t Omega] x i [t] -(-

S in [t Omega] e t a ' [t] + Cos[t Omega] x i ' [t]

— (Omega^ S in [t Omega] e t a [t]) - Omega^ Cos[t Omega] x i [t] +

2 Omega Cos[t Omega] e t a ' [t] - 2 Omega S in[t Omega] x i ' [t] +

S in[t Omega] e t a " [t] + Cos[t Omega] x i " [t]

— (Omega S in[t Omega] e t a [t]) — Omega Cos[t Omega] x i [t] +

Cos[t Omega] e t a ' [t] - S in [t Omega] x i ' [t]

— (Omegâ ^ Cos[t Omega] e t a [t]) + Omega^ S in[t Omega] x i [t] —

2 Omega S in[t Omega] e t a ' [t] — 2 Omega Cos[t Omega] x i ' [t] +

Cos[t Omega] e t a ' ' [t] - S in [t Omega] x i " [t]

equations = equations / . {x[t]

e t a [t] Sin[Omega t] ,

x ' [t] ->

y [t] -^

y ' [t] ^

D [x [t] ,

- x i [t]

D [y [t] ,

FullSimplify

—> x i [t] Cos[Omega t] +

t] , x " [t] -^ D [x [t] , t

Sin[Omega t] +

t] , y " ' [t] ^

e t a [t]

D [y [t] ,

. 2] ,

Cos

{t.

[Omega t] ,

2}]} / /

346 18 Foucault Pendulum

{(Sin[t Omega] ((g + 1 Omega^) e t a [t] + 1 e t a ' ' [t]) +

Cos[t Omega] ((g + 1 Omega^) x i [t] + 1 x i " [t])) / 1 == 0,

(Cos[t Omega] ((g + 1 Omega^) e t a [t] + 1 e t a " [t]) -

S in[t Omega] ((g + 1 Omega^) x i [t] + 1 x i " [t])) / 1 == 0}

Neglecting terms in i?^, which are very small, yields

equations = equations / . Omega'̂ 2 -^ 0

{(Sin[t Omega] (g e t a [t] + 1 e t a " [t]) 4-

Cos[t Omega] (g x i [t] -f 1 x i " [t])) / 1 == 0,

(Cos[t Omega] (g e t a [t] + 1 e t a " [t]) -

S in [t Omega] (g x i [t] + 1 x i ' ' [t])) / 1 == 0}

These equations are obviously satisfied if

e + (g/l) ? = = 0 and r," + (g/l) ^ = 0.

These are the equations of a two-dimensional harmonic oscillator. The path
in the ^Or/-plane is an elHpse. Hence in the rotating xOy-plane linked to the
earth, the path is an elhpse that undergoes a steady precession with angular
velocity i?. For a fixed observer in the plane linked to the earth, the vertical
plane containing the major axis of the ellipse turns clockwise in the northern
hemisphere and counterclockwise in the southern with a period

^ 27r 24
T= — = -r-T hours.

i / sm u

The precession vanishes at the equator and is maximum at the north pole. The
24-hour period has been checked at the south pole during the winter 2001. De
tails on the experiment can be found at www.phys-astro.sonoma.edu/people/
students/baker/SouthPoleFoucault.html.

19

Fractals

Fractals are exotic sets that first appeared in the mathematical literature at
the end of the 19th century. They were devised by Georg Ferdinand Lud-
wig Philipp Cantor (1845-1918), Giuseppe Peano (1858-1932), David Hilbert
(1862-1943), Henri Leon Lebesgue (1875-1941), Arnaud Denjoy (1884-1974),
George Polya (1887-1985), Waclaw Sierpinski (1882-1969), and many others.
There is no precise definition but most authors agree to call fractals sets pos
sessing certain characteristic properties such as self-similarity illustrated in
the examples presented below. The idea of self-similarity originated implicitly
in a paper of Niels Fabian Helge von Koch (1870-1924) (see the von Koch
curve below), and was formulated exphcitly by Ernesto Cesaro (1859-1906).
The word fractal was coined by Benoit Mandelbrot (born 1924) who wrote
a few books [34, 35] and many articles on fractal geometry, drawing atten
tion to its relevance in such diverse fields as fiuid mechanics, geomorphology,
economics, and linguistics.

In order to better characterize fractals it is useful to introduce the notions of
Hausdorff measure and Hausdorff dimension [25]. Let 4̂ be a compact subset
of a metric space and {Uj | j G J } a countable cover of A by a family of open
sets; the Hausdorff outer measure of A is

H2{A) = lim ^^mf ^j I Y.(^iUj)f I Vi e J,SiUj) < e\ ,

where S{Uj) is the diameter of the open set Uj.

It can be shown (see p. 31 of [6]) that

If H;^^{A) < oo, then for ^2 > di, H;^^{A) = 0, and

if 0 < H^^{A) < oo, then for d2 < di, H^^{A) = oo.

Let A be a compact subset of a metric space; the number

348 19 Fractals

is the Hausdorff dimension of the set A.

In what follows, we will determine the Hausdorff dimension of various fractals.

19.1 Triadic Cantor Set

Georg Cantor is the founder of set theory. In 1878, he proved, in particular,
that the sets [0,1] and [0,1] x [0,1] have the same cardinahty. This very
surprising result even surprised Cantor himself.

All countable sets such as the set of integers or the set of rational numbers
have a zero Lebesgue measure. Thus, all sets whose Lebesgue measure is not
equal to zero are necessarily noncountable. The converse is wrong: there exist
noncountable sets whose Lebesgue measure is zero. The triadic Cantor set is
a classical example.

Let Jn be the union of 2^ disjoint closed sets of length 3"*^ obtained from
Jfi-i by removing from each closed interval of length 3~^"^~^^ the middle
open interval of length 3""^. Starting from JQ = [0,1], we obtain the sequence:

Jo = [0,1]

Ji =

J3 =

H]
"•l

U

U

M
2 1
9 ' 3

U
2 7
3 ' 9

U l^
To build up a function generating the sets Jn we first define a function re
moving the middle third open interval of a given closed interval [a, b] whose
limit points a and b are rational numbers.

remaininglntervals[a_,b_] := Module [{m = (b - a) / 3} ,

{{a, a + m}, {b - m, b}}]

remaininglntervals [{0 , l}]

{{0. ^ } . {^. 1}}

We then define a similar function whose argument is a list of intervals.

19.1 Triadic Cantor Set 349

remaininglntervalsList [intervals-List] : =

Flatten[Map[remaininglntervals, intervals], 1]

remaininglntervalsList [{{0, l}}]

{{0. ^}, {^. 1}}

remaininglntervalsList[{{0, 1 / 3 } , {2 / 3 , 1}}]

«"• i'' 4- i'' *i' 5'' (5' '»

We can now generate the sets of intervals J„. Define

J[0] = {0, 1};

J[n-Integer] := Nest[remaininglntervalsList , {{O, l } } , n]

For example,

J [3]

^^°' 27^' ^27' 9^' ^9' 27^' '^27' 3^'
2 19 20 7 8 25 26

^ 3 ' 27^' •^27' 9^' ^9 ' 27^' ^27' ^^^

The triadic Cantor set C is the intersection of all sets of intervals J^:

C=f]jn.
neN

Because it is the intersection of closed sets, C is closed. It contains no interval,
so its interior is empty, which implies that all its points are boundary points.
At each stage of its construction, the open intervals that constitute the middle
thirds of the closed intervals left at the previous stage are removed, thus, any
elements x of C can be written:

oo

350 19 Fractals

where, for all positive integers n, Xn = 0 or 2. In other words, the ternary
expansion, (i.e., the expansion to base 3), of an element of C does not contain
the digit 1. We can use Mathematica to verify this characteristic property by
writing in base 3 the list of remaining intervals at stage n, for n = 1,2,3, —

BaseForm[J[l] / / N, 3]

{{0.3 , O.I3}, 0.2 3 , 1.3

BaseForm[J[2] / / N, 3]

{{0.3 , O.OI3 }, {0.023 , O.I3}, {0.23 , O.2I3}, {0.223 ' 1-3}}

BaseForm[J[3] / / N, 3]

{{0.3 , O.OOI3}, {0.0023 ' 0-013}' {0-023 ' O.O2I3},

{0.0223 , O.I3}, {0.23 , O.2OI3}, {0.2023 , O.2I3},

{0.223 , O.22I3}, {0.2223 , 1.3}}

Observing the expressions of the endpoints of these intervals (which belong
to the Cantor set because only the middle third open intervals are removed
at each stage) we can note that the digit 1 can only appear as the last digit
of a terminating ternary expansion. But, such digits can be replaced by a
nonterminating sequence of digits 2; that is, in base 3, we have:

1.0 = 0.222..., 0.1 = 0.0222..., 0.01 = 0.00222...,
0.001 = 0.000222..., 0.0001 = 0.0000222..., 0.00001 = 0.00000222....

These two different representations (which exist for all bases) is a consequence
of the relation

Sum[2 (1 / 3)'^n, {n, 1, In f in i ty}]

The ternary representation shows that C is not countable because it is equipo-
tent to the closed interval [0,1]. To prove it we just have to exhibit a bijection

19.1 Triadic Cantor Set 351

(̂ from [0,1] onto C. If we write ^ £ [0,1] under the form X l ^ i ^n/'^'^ where
all ^n are either equal to 0 or 1, and define (f by

viO 371 '

the bijection ^ is known as the Cantor function. Because for all positive inte
gers n = 1,2,..., 2^n is either equal to 0 or 2, then the range of v? lies in C.
To complete the proof, we have to show that the range of ^ coincides with C.
Let y be any element in C, and let its ternary expansion be O.2/12/2 • • • where
for all positive integers n, yn is equal to 0 or 2; then x = ip~^{y) exists and is
unique. It is determined by its binary expansion O.X1X2 . • • , where, for all n,
•̂ n ^̂ l/n/^'

Because Jn is obtained from Jn-i by removing 2'^ open intervals of length
3-(^+i)^ the Lebesgue measure m of C i.e., its length) is given by

2n
"^(^) = i-E^;iTT = o-

n = 0

That is, the Lebesgue measure of the Cantor set is zero but it has, however,
the same cardinality as the interval [0,1].

Taking into account the self-similar structure of the Cantor set, its Hausdorff
dimension is easy to determine i9n as much as

3 Cn
<

= C and 3 C n
3' 2 = a

but

and

Hence

H*AC) = HUcn "•l + mcn 5. '

H*AC) m en 0, m Cn ; , i) = laHUC)-

Hi{c) = ^,m{c),

which is true only if 2/3^ = 1, that is, if

log 2
dH{D) =

logs
0.63093....

This result was obtained by Hausdorff and appears in his seminal paper [25].

There exists an interesting function related to the Cantor set called the
Lebesgue function. Although it is fairly exotic, it has been recently rediscov
ered by physicists, and called the DeviVs staircase. It is probably best viewed

352 19 Fractals

as the limit of a sequence L^ defined as follows. For each positive integer TI^
let Ln be the nondecreasing continuous function on [0,1] such that L(0) = 0,
L(l) = 1, and linear and increasing by 2~'^ on each closed interval whose
union is Jn and constant on the removed middle third intervals. If n > m,
then, for any x € [0,1], \Ln{x) — Lm{x)\ < 2"^^, that is, for all a;, the sequence
{Ln{x))neN is a Cauchy sequence. The limit L{x) = limn^oo Ln{x) is, there
fore, well defined for all x G [0,1], and from \Ln{x) — Lm{x)\ < 2~'^ it follows
that the convergence is uniform. The Lebesgue function is, consequently, a
nondecreasing continuous function on [0,1] such that L(0) = 0 and L(l) = 1.
Because L is constant on each middle third removed interval, it is constant
almost everywhere.

In order to define a Mathematica function Lebesgue [n] generating a plot of
the function Ln we first define the following function that transforms a list of
two points with nonidentical ordinates into a list of four points.

newSegments[{p t l - , pt2_}] : =

Module[{m = (p t 2 [[l]] - p t l [[l]])

r = (pt2[[2]3

I f [p t l != pt2 .

{ p t 2 [[l]] - m.

{pt l , pt2}]]

- p t l [[2]]) / 2 } ,

{p t l , { p t l [[l]] +m,

p t2 [[2]] - r } , pt2}

/ 3 .

p t l [[2]] + r } .

i

If we apply this function to the list {{0,0},{1,1}}, we obtain

11 = newSegments[{{0, 0} , {1 , 1}}]

{{0, 0} , {^, ^ } , { ? , i } , {1,1}}

From the list 11 it is easy to obtain a list 12 such that L i s tP lo t [11] would
represent the graph of the function L2.

12 = Flatten[Map[newSegments, P a r t i t i o n [l l , 2]] , 1]

. r l 1. r2 1, , 1 1, ,2 1,
no. 0}, { - , - } , { - , - } , { - . - } , { - . - } ,

7 3 8 3

(i- i ' ' (i ' i>' f 'W
Plotting the lists of points 11 and 12 give the graphs of the functions Li and
i 2

19.1 Triadic Cantor Set 353

Ipll = ListPlotCll, Plot Joined -^ True, Frame -^ True,

AspectRatio —> Automatic, DisplayFunction —> Identity];

lpl2 = ListPlot[12, PlotJoined -^ True, Frame -^ True,

AspectRatio —> Automatic, DisplayFunction —^ Identity];

Show[GraphicsArray[{lpll, lpl2}],

DisplayFunction -^ $DisplayFunction];

0 0 . 2 0 . 4 0 . 6 0 . 8 1

1

0 .8

0 .6

0 .4

0 .2

0

1
J

1
1

r
1
0 0 . 2 0 . 4 0 . 6 0 . 8 1

Fig. 19.1. Graphs of L\ and L2, the first two steps in the construction of the
Lebesgue function L.

Generalizing these results we define the function LebesgueFimction[{ptl_,
pt2_}, n] that plots the function:

LebesgueF\mction[{ptl_, pt2_}, n.Integer]

ListPlot[Nest[Flatten[Map[newSegments,

Part i t ion[#, 2]] , 1] &, {pt l , pt2} , n] ,

TextStyle -> {FontSize -^ 16}, PlotJoined

Frame -^ True, AspectRatio -^ Automatic]
True,

LebesgueFimction[{{0, 0 } , {1 , 1}} , 3] ;

354 19 Fractals

0 0 .2 0 .4 0 .6 0 .

Fig. 19.2. Graph of L3 the third step in the construction of the Lebesgue function
L.

19.2 Sierpinski Triangle

Waclaw Sierpinski, probably the greatest and most prolific Polish mathemati
cian, had a particularly marked taste for ingenious mathematical construc
tions illustrating paradoxical results. He published more than 700 papers; a
selection of his original publications can be found in [52].

The Sierpinski triangle, also called the Sierpinski gasket, is a bounded con
nected subset of R^ whose recursive construction is similar to the Cantor set
construction. Starting from the closed equilateral triangle whose vertices are
respectively located at {^1,^2, A3}, we remove the open equilateral triangle
whose vertices are {(^i + ^2)72, {A2 + As)/2, {As -h Ai)/2} to obtain four
equilateral triangles. We then repeat this operation on each remaining trian
gle.

We proceed as above and first define a function remainingTriangles similar
to the function remaininglntervals .

remainingTri

Module

pt31 =

{{Ptl,

[{ptl2

(pt3

ptl2,

angles[{ptl_,

= (ptl + pt2)

+ ptl) / 2},

pt3l}, {ptl2,

pt2_,

/ 2,

pt2,

pt3_}]

pt23 =

pt23},

: =

(pt2 +

{pt31.

pt3)

pt23,

/ 2,

pt3}}]

Al= {0 . , 0 . } ; A2 = { l . , 0 . } ; A3 = {l / 2, Sqrt[3] / 2} / /N;

rT = remainingTriangles[{Al, A2, A3}]

19.2 Sierpinski Triangle 355

{{{0., 0 . } , {0 .5 , 0 . } , {0.25, 0.433013}},

{{0.5, 0 . } , { 1 . , 0 . } , {0.75, 0.433013}},

{{0.25, 0.433013}, {0.75, 0.433013}, {0 .5 , 0.866025}}}

Show[Graphics[{RGBColor[0,0,1], Map[Polygon, rT]}]

AspectRatio —̂ Automatic];

Fig. 19.3. First stage in the construction of the Sierpinski triangle.

As for the Cantor set, we define the function remainingTrianglesList .

remainingTr ianglesLis t [t r iangles_Lis t] : =

Flatten[Map[remainingTriangles, t r i a n g l e s] , 1]

r t l = remainingTrianglesList[rT]

{{{0., 0 . } , {0.25, 0 . } , {0.125, 0.216506}},

{{0.25, 0 . } , {0 .5 , 0 . } , {0.375, 0.216506}},

{{0.125, 0.216506}, {0.375, 0.216506}, {0.25, 0.433013}},

{{0.5, 0 . } , {0.75, 0 . } , {0.625, 0.216506}},

{{0.75, 0 . } , { 1 . , 0 . } , {0.875, 0.216506}},

{{0.625, 0.216506}, {0.875, 0.216506}, {0.75, 0.433013}},

{{0.25, 0.433013}, {0 .5 , 0.433013}, {0.375, 0.649519}},

{{0.5, 0.433013}, {0.75, 0.433013}, {0.625, 0.649519}},

356 19 Fractals

{{0.375, 0.649519}, {0.625, 0.649519}, {0.5, 0.866025}}}

Show[Graphics[{RGBColor[0,0,1], Map[Polygon, rt1]}],

AspectRatio -̂ Automatic];

Fig. 19.4. Second stage in the construction of the Sierpinski triangle.

We can now build up the function SierpinskiTr iangle , which depends upon
the integer n, generating the nth iterate in the construction of the Sierpinski
triangle corresponding to the limit n -^ oc.

S ierp inskiTr iangle [n.Integer] : =

Nest[remainingTrianglesList , {{Al, A2, A3}}, n] ;

Show[Graphics[{RGBColor[0, 0, 1] ,

Map[Polygon, S ie rp insk iTr iangle[5]]}]

AspectRatio -^ Automatic];

Output represented in Figure 19.5.

Proceeding as we did for the Cantor set, we can determine the Hausdorff
dimension of the Sierpinski triangle. We find

d/f(5A) = | ^ « 1.58496...,
log 2

where ^ A denotes the Sierpinski triangle This result shows that the area of the
Sierpinski triangle must be zero. We can check this result as follows. The area
of an equilateral triangle with sides of length a is equal to {V3/A)a^. Thus,
starting with an equilateral triangle of side 1 and area \ /3/4, the first iteration

19.3 Sierpinski Square 357

Fig. 19.5. Fifth stage in the construction of the Sierpinski triangle.

removes one equilateral triangle of side | ; that is, we decrease the area of the
original triangle by (A/3 /4) (^) , the second iteration removes three triangles
of sides j] that is, we again decrease the area by 3(\/3/4 (|) . More generally,
the nth iteration removes an area equal to 3"^"^ (A/3 /4) (|) which is equal to
(V3/12) (I)"". Therefore the total area removed from the original triangle in
the limit n ^ oo is

removedArea = (Sqrt[3] / 12) Sum[(3 / 4)^n, {n, 1, In f in i ty}]

Sqrt[3]

that is, the area of the original triangle.

19.3 Sierpinski Square

Also called the Sierpinski carpet (this fractal set was, according to Sierpinski,
first found by Stefan Mazurkiewicz (1888-1945) who never published it), it is
a bounded connected subset of M? whose recursive construction is similar to
the Sierpinski triangle construction. Starting from the closed square, whose
vertices are respectively located at (0,0), (0,1), (1,1), (1,0), we first divide
it in nine equal squares and then remove the open square whose vertices are
(I ' i) ' (i ' D ' (§ ' D ' (i ' i) ' ^^ obtain eight closed squares. We then repeat
this operation on each remaining square.

We again proceed as above and start defining the function remainingSquares
similar to the function remainingTriangles.

358 19 Fractals

remainingSquares [Rectangle [ptl_List, pt2-List]] : =

Module[{pt = AbsEptl - pt2] / 3, rectangleList},
rectangleList = {Rectangle[ptl, p t l + p t] ,

Rectangle[{ptl[[l]] ,ptl[[2]]+ p t [[2]]} ,
{pt l[[l]]+ p t [[l]] , pt2[[2]] - p t [[2]]}] ,
Rectangle[{ptl[[l]] , pt2[[2]] - p t [[2]] } ,
{ptl[[l]]+ p t [[l]] , pt2[[2]]}] .
Rectangle[{ptl[[1]] + p t [[l]] , p t l [[2]]} ,
{pt l [[l]] + 2 p t [[l]] , p t l [[2]] + p t [[2]]}] .
Rectangle[{ptl[[1]] + p t [[l]] , pt2[[2]] - p t [[2]]} ,
{pt2[[l]] - p t [[l]] , pt2[[2]]}] ,
Rectangle[{pt2[[l]] - p t [[l]] , p t l [[2]]} ,
{pt2[[l]] , pt l[[2]]+ p t [[2]]}] .
Rectangle[{pt2[[l]] - p t [[l]] , p t l [[2]] + p t [[2]] } .
{pt2[[l]] , pt2[[2]] - p t [[2]]}] .
Rectangle[{pt2[[l]] - p t [[l]] , p t2[[2]] - p t [[2]]} ,
{pt2[[l]] , pt2[[2]]}]}; rectangleList]

rSl = remainingSquares[Rectangle[{0, O}, {1, 1}]]

1 1 1 1 2
{Rectangle[{0, 0}, {-, - }] , Rectangle[{O, - } , {-, - }] ,

2 1 1 2 1
Rectangle[{0, - } , {-, l}] , Rectangle[{-, 0}, {-, - }] ,

1 2 2 2 1
Rectangle [{ - , - } , {-, 1}], Rectangle [{ - , 0}, {1, -}] ,

2 1 2 2 2
Rectangle [{ - , - } , {1, -}] , Rectangle [{ - , - } , {1,1}]}

Show[Graphics[{RGBColorEO, 0, 1] , rSl}] ,
AspectRatio -^ Automatic];

Making the function remainingSquares list able, we can define the function
SierpinskiCarpet that generates all the successive steps of the construction
of the Sierpinski square.

Attributes[remainingSquares] = Listable;

19.3 Sierpinski Square 359

Fig. 19.6. First stage in the construction of the Sierpinski square.

SierpinskiCarpet [n_Integer] : =

Nest[remainingSquares, Rectangle[{0, 0} , { 1 , 1 }] , n]

Show[Graphics[{RGBColorCO, 0, 1] , SierpinskiCarpet[5]}],

AspectRatio -^ Automatic];

Fig. 19.7. Fifth stage in the construction of the Sierpinski square.

Proceeding as we did above for the Sierpinski triangle, we can determine the
Hausdorff dimension of the Sierpinski square. We find

dH{Sa) = ~^^l.S9279...,
log 3

360 19 Fractals

where S\j denotes the Sierpinski square. This result shows that the area of
the Sierpinski square must be zero. We could check this result as we did for
the Sierpinski triangle.

19.4 von Koch Curve

Helge von Koch was a student of Mittag-Leffler at Stockholm University. He is
famous for the self-similar curve presented in his 1904 paper [28] entitled Sur
une courbe continue sans tangente, obtenue par une construction geometrique
elementaire (On a continuous curve without tangents constructible from ele
mentary geometry).

The von Koch curve is constructed by first dividing a segment of unit length
into three segments of equal length and replacing the middle segment by the
two sides of an equilateral triangle of the same length as the segment being
removed. Repeat this process on the four resulting segments, dividing them
into three equal parts and replacing each of the middle segments by two sides
of an equilateral triangle. The von Koch curve is the limit curve obtained by
repeating indefinitely this construction on each new generated segment.

Here is the first stage of the construction.

Show[Graphics[Line[{{0, 0} , {1/3 , 0} , {1 / 2, Sqrt[3] / 6} ,
{2 / 3 , 0} , {1 , 0}}]] , AspectRatio -^ Automatic];

Fig. 19.8. First stage of the construction of the von Koch curve.

We call this structure the basicProf i l e .

bas icProf i l e = {{O, 0} , {1 / 3 , 0} , {1 / 2, Sqrt[3] / 6} ,

{2 / 3 , 0} , {1 , 0}};

At each stage of the construction, we have to replace each segment by the line
defined by bas icProf i l e , correctly oriented and scaled; each segment being
defined by the coordinates of its initial and final point denoted {xl , y l} and
{x2, y2}.

19.4 von Koch Curve 361

The function nextProf i l e [{ { x l , y l } , {x2, y2}}] , defined below, gener
ates the next profile of a segment.

nextProfi le[{{xl_,

Module[{rotation2D,

rotation2D[x_, y_] =

c = X / Sqrt[x"2 +

{{c, - s } , { s , c } }] ;

{x, y} = {x2 - x l ,

r = Sqrt[x'^2 + y'̂ 2]

basicProfi le = {{0,

{2 / 3 , 0} , {1 , 0}}

newProfile = Map[{x

basicProfi le] / / N;

yl.}, {x2_, y2_}}] : =

X, y, basicProf i le , newProfile},

= Module[{c.

7*^2]; s = y

y2 - y l } ;

>
0} , {1 / 3 ,

f

s } .
/ Sqrt[x"2 +

0} , {1 / 2 ,

1, y l } + r rotation2D[x,

newProfile]

y - 2] ;

Sqrt[3] / 6 } ,

y] . # &,

nextProfi le[{{0, 0} , {1 , 0}}]

{ { 0 . , 0 . } , {0.333333, 0 . } , {0 .5 , 0.288675},

{0.666667, 0 . } , { 1 . , 0.}}

In order to generate the whole curve at a given stage we have to define the
next profile of a line. Because the arguments of the function nextProf i l e
are a pair of points, given a line given by a sequence of points we have to
generate the sequence of segments that constitute this line. This is done using
the function Partit ion with an offset equal to 1.

Part i t ion[{{0 , 0} , {1 / 3 , 0} , {1 / 2, Sqrt[3] / 6 } ,

{2 / 3 , 0 } , {1 , 0}} , 2, 1]

mo, 0}, {'-. o», ((A, 0). (1, ^ ^ H ,

We then use the Map function to make the function nextProf i l e listable.

nextProf i le[l i s_List] := Map[nextProfile, l i s]

362 19 Fractals

nP = Flatten[nextProfile[Partition[{{0, 0}, {l / 3, 0},

{1 / 2, Sqrt[3] / 6}, {2 / 3, 0}, {1, 0}}, 2, 1]], 1]

{{0., 0.}, {0.111111, 0.}, {0.166667, 0.096225},

{0.222222, 0.}, {0.333333, 0.}, {0.333333, 0.},

{0.388889, 0.096225}, {0.333333, 0.19245},

{0.444444, 0.19245}, {0.5, 0.288675}, {0.5, 0.288675},

{0.555556, 0.19245}, {0.666667, 0.19245},

{0.611111, 0.096225}, {0.666667, 0.}, {0.666667, 0.},

{0.777778, 0.}, {0.833333, 0.096225}, {0.888889, 0.},

{1., 0.}}

Show[Graphics[Line[nP]],

AspectRatio -̂ Automatic];

Fig. 19.9. Second stage of the construction of the von Koch curve.

Apparently, everything is fine but looking carefully at the list nP we discover
that the fifth and sixth points are identical. This is due to the fact that
the nP line consists of four basicProf i l e s and that the endpoint of a given
basic profile is identical to the initial point of the following one. Because
basicProf i l e consists of five points this implies that the pairs (5,6), (10,11),
and (15,16) are pairs of identical points. This does not cause any problem
when visualizing the line because the three segments of zero length do not
appear on the visualization. But applying the function nextProf i le to a pair
of identical points returns an error message caused by the indeterminate value
of the parameters c and s. We can eliminate from the list the extra points
using the following function.

19.4 von Koch Curve 363

lineSequence[1

For[k

If [l i s

seq =

seq]

= 1, k <

5[[k]] !=

is_List] : = Module[{seq = { } } ,

Length[l i s] , k++,

l i s [[k +

Flatten[Append[sec

1]] , seq = Append[seq,

L, { l i s [[L e n g t h [l i s]]] }]

{ l i s

, 1]

[[k]] }]]] ;

}

lineSequence[nP]

{{0., 0.}, {0.111111, 0.}, {0.166667, 0.096225},

{0.222222, 0.}, {0.333333, 0.}, {0.388889, 0.096225},

{0.333333, 0.19245}, {0.444444, 0.19245}, {0.5, 0.288675},

{0.555556, 0.19245}, {0.666667, 0.19245},

{0.611111, 0.096225}, {0.666667, 0.}, {0.777778, 0.},

{0.833333, 0.096225}, {0.888889, 0.}, {1., 0.}}

Show[Graphics[Line[lineSequence[nP]]],

AspectRatio —> Automatic];

Fig. 19.10. Second stage of the construction of the von Koch curve using
lineSequence instead of the listable version of the function nextProf i le .

We now have to group all these steps to build up the function KochCurve [{{xl,
y l } , {x2, y2}}, n] that, starting from an initial segment {{xl, y l } , {x2,
y2}} iterates n times the construction described above.

KochCvirve [{{xl_,

Nest

1]] .

y l - } . {x2_ . y2-}}. n -Integer] : =

[lineSequence[Flatten[nextProf i le [Part i t ion [#, 2,

!]]&, { {x l . y l } . {x2. y2}}. n]

364 19 Fractals

Show[Graphics[Line[KochCurve[{{0, 0} , {1,0}}, 4]]] ,

AspectRatio -^ Automatic];

Fig. 19.11. Fourth stage of the construction of the von Koch curve.

Note that we could also have defined a slightly more general function.

KochCurve[pointsList_List, n . In teger] : =

Nes t [l ineSequence[F la t t en[nex tProf i l e [Par t i t ion[# , 2,

1]] , 1]] &, p o i n t s L i s t , n]

where po in t sL i s t is a list of points such as {{0, 0} , {1 , 0}} or any of
its iterates such as {{0, 0} , {l / 3 , 0} , {1 / 2, Sqrt [3] / 6} , {2 /
3 , 0} , {1, 0}}.

Show[Graphics[Line[KochCurve[{{0, 0} , {1 , O}}, 5]]] ,

AspectRatio -^ Automatic];

Fig. 19.12. Fifth stage of the construction of the von Koch curve.

Show[Graphics[Line[KochCurve[{{0, 0} , {1 / 3 , 0} ,

{1 / 2, Sqrt[3] / 6} , {2 / 3 , 0} , {1 , 0}}, 4]]] ,

AspectRatio -^ Automatic];

19.4 von Koch Curve 365

Fig. 19.13. Same as above but starting from a different set of points.

Taking into account the self-similar structure of the von Koch curve, v̂ e can
determine its Hausdorff dimension. We find

d ^ m = 1^^1.266186...,
^ ^ log3

where K denotes the von Koch curve. This Hausdorff dimension, greater than
1, implies that the length of the von Koch curve is infinite which is, by the
way, obvious because at each step the length is multipUed by 4/3.

We can even start from a list of points that are the vertices of a regular
polygon. Starting from an equilateral triangle we generate the so-called von
Koch island also called the von Koch triangle.

Show[Graphics[Line[KochCurve[{{0, 0 } , {1 / 2, Sqrt[3] / 2 } ,

{1 , 0 } , {0, 0}} , 5]]] , AspectRatio -^ Automatic];

Fig. 19.14. Fifth stage of the construction of the von Koch triangle.

It is clear that although the length of the perimeter of the von Koch triangle
is infinite, its area is finite. To find its value we proceed as we did above to

366 19 Fractals

obtain the area of the Sierpihski triangle. First we note that the area of an
equilateral triangle with sides of length a is equal to (\/3/4)a^. Next we note
that starting from an equilateral triangle of unit side and area \/3/4, the first
iteration adds three equilateral triangles of sides | , that is, we increase the

area of the original triangle by 3(V^/4) (|) . More generally, the nth iteration
adds an area equal to

Therefore, the total area added to the original triangle, in the limit bn -^ CXD,
is

addedArea = (3 Sqrt[3] / 16) Sum[(4 / 9)^n, {n, 1, In f in i ty}]

3 Sqrt[3]

20

The area of a von Koch triangle is larger than the area of the original equi
lateral triangle by a factor

addedArea / (Sqrt[3] / 4)

That is, the area of the von Koch triangle when the original equilateral triangle
sides are equal to 1 is equal to

areaKochTriangle = (8 / 5) (Sqrt[3] / 4) / / N

0.69282

Starting from a unit square, here is another example of the von Koch island.

Show[Graphics[Line[KochCurve[{{0, 0} , {1, O}, {1 , l } , {0, l } ,

{0, 0}}, 4]]] , AspectRatio —> Automatic];

19.4 von Koch Curve 367

Fig. 19.15. Fourth stage of the construction of the von Koch square.

20

Iterated Function Systems

Let {/z I 1 < i < n} be a finite set of n mappings from a complete metric space
(E", d) onto itself; {pi \ I < i < n} a, discrete probability distribution, that is,
a set of nonnegative real numbers such that XlILi P* — 5̂ ^^^ F : E \-^ E the
mapping defined by a; i-̂ F{x) = fi{x) with probability Pi. The dynamical
system {{E^d),F) is called an iterated function system or IFS.

A mapping / of a metric space onto itself is a contraction if there exists a
constant 0 < 5 < 1 such that for all pairs {x, y) of points of the metric space,
d{f{x),f{y)) < sd{x,y), where d is the distance defined on the metric space.
If / , defined on a complete metric space, is a contraction, the sequence of
iterates {f'^{x)) of any point x always converges to the same fixed point. If all
the mappings fi of an IFS {fi\l<i<n} are contractions, then the system
has an attractor.

For example, {fi\l<i<n} can be a set of two-dimensional affine trans
formations. That is, each mapping is of the form fi{x) = AiX + 6̂ , where
A^ is a 2 X 2 matrix and bi a two-dimensional vector. We can verify that, if
I det yl̂ l < 1, / i is a contraction.

20.1 Chaos Game

Iterated function systems are widely used to generate computer images that
are approximations of the attractor of the IFS. These attractors are often
fractals. In his book, M. Barnsley [1] uses IFS to give a detailed treatment
of fractal images. The traditional example of IFS is the so-called chaos game.
Start with an equilateral triangle with vertices at (0,0), (1,0), and (0.5, \/3/2),
respectively, labeled ^ i , A2, and A^. Select a random pointPi and define a
sequence of points (Pi, P2, -F3, • • •) such that P2 is the midpoint of the segment
AiPi, where Ai is one of the vertices selected at random, P3 the midpoint of

370 20 Iterated Function Systems

the segment AjP2^ where Aj is one of the vertices selected at random, and so
on.

In order to build up a small program generating the sequence of successive
iterates of an initial point Pi, we first define the vertices Al, A2, A3 of the tri
angle and the three functions f [1], f [2], and f [3] that transform a point {x,
y} in the midpoint of the segment joining the point {x, y} to, respectively,
Al, A2, and A3.

Al = {0,

f [l] [{ x -

f[2][{x_

f [3] [{x-

0} ; A2

. y-}] :

, y-}3 :
. y-}] :

= {1 .
= 0.5

= 0.5

= 0.5

0} ;
({x.
({x.
({x.

A3

y}

y}

y}

= {0 .5 ,

+ Al) ;

+ A2);

+ A3);

Sqr t [3 .0] / 2};

We then define the function chaosGame [i n i t , n] which generates a numer
ated sequence starting from i n i t followed by its n iterates and draw the
equilateral triangle.

chaosGame [in i t_Li s t , n_Integer] : =

Module[{F, p t s , p t L i s t , t r i a n g l e , t r a j e c t o r y , image},

F [xJ := f [Random[Integer, {1, 3 }]] [x] ;

p t s = NestLis t [F, i n i t , n] ;

p tL i s t = Graphics[{{PointSize[0.05] , CMYKColor[0, 0, 1, 0] ,

Map[Point, p t s] } , Table[Text [i , P a r t [p t s , i]] ,

{ i , 1, Length [p t s]}]}] ;

t r i a n g l e = Graphics[{RGBColor[1,0,0],

Line[{Al, A2, A3, Al}]}];

t r a j e c t o r y = Graphics[{RGBColor[0, 0, 1] , L ine [p t s]}] ;

image = Show[{ptList, t r i a n g l e , t r a j e c t o r y } ,

PlotRange —> Al l , AspectRatio -^ Automatic]; image]

20.1 Chaos Game 371

chaosGame[{0.3, 0 . 2 } , 1 5] ;

Fig. 20 .1 . Sequence of points generated by the chaos game starting from an initial
point (labeled 1) inside an equilateral triangle.

Because the mappings f [1] , f [2] , and f [3] are contractions, if the initial
point init Hes outside the triangle, after a few iterations all the successive
iterates lie inside as shown below.

chaosGame[{1 , 1 } , 1 0] ;

Fig. 20.2. Sequence of points generated by the chaos game starting from an initial
point (labeled 1) outside the triangle.

If we plot a large number of points (reducing their size to obtained a finer
figure), the sequence seems to converge to a Sierpinski triangle.

372 20 Iterated Function Systems

bigChaosGaine[init_List, n_Integer] : =

Module[{F, p t s , p t L i s t , image},

F [x_] := f[Random[Integer, {1 , 3}]] [x] ;

p t s = Drop[NestList[F, i n i t , n] , Floor[n / 1000]];

p tL i s t = Graphics[{PointSize[0.005] , Map[Point, p t s] }] ;

image = Show [p tL i s t , PlotRange -^ A l l ,

AspectRatio -^ Automatic]; image]

Note that a fraction of 0.1% of the total sequence of points have been dropped.

bigChaosGame[{0.3, 0 .2} , 10000];

Fig. 20.3. The sequence of a large number of points generated by the chaos game
seems to converge to a Sierpinski triangle.

To help understand why the sequence of points apparently converges to the
Sierpinski triangle, consider the respective inverses g [l] , g[2] , and g[3] of
the mappings f [1], f [2], and f [3]. These inverses exist because f [1], f [2],
and f [3] are linear. They are defined by

Al = {0,

g [l] [{ x -

g [2] [{x .

g[3] [{x.

0}; A2

y-}] :

y-}] :

. y-}] :

= {1 ,
= 2 {x

= 2 {x

= 2 {x

0};

. y}

. y}

. y}

A3 = {0.5 ,

+ Al;

+ A2;

+ A3;

Sqrt[3.0] / 2} ;

Using g [l] , g [2] , and g[3] we can show that the image by any of these
mappings of a point that does not belong to the Sierpinski triangle cannot

20.2 Variations on the Chaos Game 373

belong to the Sierpiriski triangle. Take, for example, the points (0.5, \/3/4)
and (0.25, \ /3/8).

{g[l][{0.5, Sqrt[3.0] / 4}] , g[l] [{0.25, Sqrt[3.0] / 8}]}
{g[2][{0.5, Sqrt[3.0] / 4}] , g[2] [{0.25, Sqrt[3.0] / 8}]}
{g[3][{0.5, Sqrt[3.0] / 4}] , g[3] [{0.25, Sqrt[3.0] / 8}]}

{{1., 0.866025}, {0.5, 0.433013}}

{{2., 0.866025}, {1.5, 0.433013}}

{{1.5, 1.73205}, {1., 1.29904}}

Hence, the sequence of points (Pi, P2? ̂ 3 , • • •) converges to the Sierpinski tri
angle if, and only if, the initial point Pi belongs to the Sierpiriski triangle.
Because the area of the Sierpiriski triangle is of measure zero (i.e., its Eu
clidean area is zero), starting from a randomly selected initial point Pi the
probability of converging to the exact Sierpiriski triangle is zero! But, on a
computer screen, the exact and the approximate Sierpiriski triangles cannot
be distinguished.

The three mappings f [1], f [2] , f [3] are afRne transformations which can,
respectively, be written

0.5 0 \ fx\ /0.5 0 \ fx\ fl\ /0.5 0\ fx\ f 0.5 \
0 0.5; [yj^ V 0 0.5; [yj ^ Voy' V 0 ^'V U / V^^/^y'

20.2 Variations on the Chaos Game

Many variations of the chaos game can be played. Not all of them generate
fractal images. Starting from a set ^ of n points Ai, A2, . . . ,^n5 select at
random a point Pi and define a sequence of points (Pi, P2, Ps^ - • •) such that
P2 on the segment AiPi is at a distance from Ai equal to a given fraction r
of the length of AiPi where A^ is a randomly selected point of A, P3 on the
segment ^jP2 is at a distance from Aj equal to the fraction r of the length of
AjP2 where Aj is a randomly selected point of A, and so on.

Here are a few examples.

374 20 Iterated Function Systems

20 .2 .1 E x a m p l e 1

ClearCAl, A2, A3, A4, r , f]

Al = {0 .5 , 0 .5} ; A2 = {- 0 . 5 , 0 .5} ; A3 =

A4 = {0.5 , - 0 .5} ; r = 0 .4;

f [l] [{x_ , y_}] := r ({x, y} + Al) ;

f[2][{x_, y.}] := r ({x, y} + A2);

f[3][{x_, y.}] := r ({x, y} + A3);

f [4] [{x- . y_}] := r ({x, y} + A4) ;

= {- 0 . 5 , - 0 .5} ;

b i g G a m e l [i n i t _ L i s t , n_Integer] :=

Module[{F, p t s , p t L i s t , image},

F[x_] := f [Random[Integer, { 1 , 4 }]] [x] ;

p t s = Drop[NestLis t [F , i n i t , n] , F loor [n /lOOO]];

p t L i s t = Graphics[{RGBColor[0, 0 , 1] , P o i n t S i z e [0 . 0 0 5] ,

Map[Point, p t s] }] ;

image = Show[ptLis t , PlotRange —> A l l ,

AspectRatio -^ Automat ic] ; image]

bigGamel[{0, 0 } , 10000] ;

itv H*J an n4 ;sa nv «a aia
ifiS aS4i tin »« BM S!9 KS 0tC
a s »s oiK Qt: »» tio OSK UU

eitt ef^ »» tss tt8 iin tut ai>

» s s » 9» :;« KK ISC KK esss

«»! Kit SM «« «& »» Ut(Rti

u s ':Sff lis: 8lt AK rXS U» »K

Fig. 20.4. Sequence of a large number of points generated by the chaos game of
Example 1.

20.2 Variations on the Chaos Game 375

20.2.2 Example 2

ClearCAl, A2, A3, A4, A5, r , f]

Al = {1 , 0}; A2 = {Cos[2Pi / 5] , Sin[2Pi / 5]} ;

A3 = {Cos[4Pi / 5] , Sin[4Pi / 5] } ;

A4 = {Cos[6Pi / 5] , Sin[6Pi / 5]} ; A5 = {Cos[8Pi / 5] ,
Sin[8Pi / 5] } ; r = 0 . 3 ;

f [l] [{ x . , y_}]

f[2][{x_, y_}]

f[3][{x_, y_}]

f[4][{x_, y_}]

f[5][{x_, y.}]

= r ({x, y} + Al)

= r ({x, y} + A2)

= r ({x, y} + A3)

= r ({x, y} + A4)

= r ({x, y} + A5)

bigGame2 [i n i t J L i s t , n . In teger]

Module[{F, p t s , p t L i s t , image},

F[x_] := f [Random[Integer, {1 ,

p t s = Drop[NestList[F, i n i t , n.

p tL i s t = Graphics[{RGBColor[0,

Map[Point, p t s] }] ;

image = Show[ptList, PlotRange

: =

5 }]] [x] ;

, Floor[n / 1000]];

0, 1] , Poin tSize[0 .003] ,

-^ Al l ,

AspectRatio -^ Automatic]; image]

bigGame2[{0, 0 } , 10000] ;

^^^

:>%
^i>

%>

t>
•>,*>

t>
t>

*

»»"

l^

Fig. 20.5. Sequence of a large number of points generated by the chaos game of
Example 2.

376 20 Iterated Function Systems

20.2.3 Example 3

ClearCAl, A2, A3, A4, A5, r, f]

Al = {1, 0}; A2 = {CosCPi / 3], Sin[Pi / 3]};

A3 = {Cos[2Pi / 3], Sin[2Pi / 3]}; A4 = {- 1, 0};

A5 = {Cos[4Pi / 3], Sin[4Pi / 3]}; A6 = {Cos[5Pi / 3],
Sin[5Pi / 3]}; r = N[l / 3];

f[l3[{x., y_}]

f[2][{x., y.}]

f[3][{x_, y_}]

f[4][{x., y_}]

f[5][{x_, y.}]

f[6][{x_, y_}]

= r ({x, y} + Al)

= r ({x, y} + A2)

= r ({x, y} + A3)

= r ({x, y} + A4)

= r ({x, y} + A5)

= r ({x, y} + A6)

bigGame3[init_List, n_Integer] : =

Module[{F, p t s , p t L i s t , image},

F[x_] := f [RandomClnteger, {1 , 6 }]] [x] ;

p t s = Drop[NestList[F, i n i t , n] , Floor[n / 1000]];

p tL i s t = Graphics[{RGBColorCO, 0, 1] , Po in tS ize[0 .005] ,

Map [Point , p t s] }] ;

image = Show[ptList, PlotRange —> Al l ,

AspectRatio -^ Automatic]; image]

bigGame3[{0, 0} , 10000];

Fig. 20.6. Sequence of a large number of points generated by the chaos game of
Example 3.

20.3 Barnsley Fern 377

20.3 Barnsley Fern

20.3.1 The Original Barnsley Fern

In the case of the Sierpinski triangle the three mappings were chosen with
equal probability. Using nonuniform probabihties, Barnsley [1] found an at-
tractor that bears a startling resemblance to a fern. The IFS consists of the
following four afhne transformations defined on R^ and their respective prob
abilities.

fi{x,y) = L Q ^g] i^j with probability pi = 0.01,

f2{x,y) = (Q Q4 Q'35 j r j + L A with probability p2 = 0.85,

/3(x, y) = (Q^2^3 "J^^2 ; [y) + (L G) ^^^^ Probability ps = 0.07,

/4(x, y) = r ^ 2 6 ^ If A r j + L^^A with probability 7.3 = 0.07.

f [l] [{x_ , y_}]

f [2] [{x . , y.}]

{0, 1.6}

f [3] [{x- . y.}]

(0 , 1.6}

f [4] [{x- , y.}]

{0, 0.44}

:= {{0, 0} , {0, 0.16}}. {x, y}

:= {{0.85, 0 .04}, {- 0.04, 0.85}}. {x, y} +

:= {{0.2, - 0 .26} , {0.23, 0.22}}. {x, y} +

:= {{- 0 .15, 0 .28}, {0.26, 0.24}}. {x, y} +

The following program generates the Barnsley fern

BarnsleyFern [n_Integer] : =

Module[{pt, p t L i s t , rnd := Random[Integer, {1,100}]},

p t = {0, 0} ; p tL i s t = {p t} ;

Do[r = rnd; pt = Which[r == 1, f [l] [p t] , r <= 86, f [2] [pt] ,

r <= 93, f [3] [p t] . True, f [4] [p t]] ;

p t L i s t = Append[ptList, p t] , {n}];

image = Show[Graphics[{RGBColor[0, 0 .4 , 0] , Po in tS ize[0 .003] ,

Map[Poin t ,p tLis t]}] , PlotRange -^ A l l] ; image]

BF = BarnsleyFern[10000];

378 20 Iterated Function Systems

Fig. 20.7. Bamsley's fern.

Barnsley's affine transformations are contractions and each of them has a fixed
point tha t is found using the Mathematica command F i x e d P o i n t .

{ f x d l , f xd2 , fxdS , fxd4} = T a b l e [F i x e d P o i n t [f [k] ,

{ 0 . 5 , 0 . 5 }] , {k, 1, 4}]

{ { 0 . , 0 . } , {2 .6556 , 9 . 9 5 8 5 1 } , {- 0 . 608365 , 1 .87189},

{0 .153769 , 0 .631553}}

Figure 20.8 shows their locations on the fern. Point k is the fixed point of fk
(A: = 1,2,3,4).

pos = G r a p h i c s [{ P o i n t S i z e [0 . 0 4] , CMYKColor[0, 0 , 1, 0] ,

Map[Poin t , { f x d l , f xd2 , f x d 3 , fxd4}]}] ;

num = G r a p h i c s [{ T e x t [1 , f x d l] . Text [2 , f x d 2] , T e x t [3 , f x d 3] ,

Text [4 , f x d 4] }] ;

Show[{BF, p o s , num}];

•4.-- rJl'fif^'

Fig. 20.8. Barnsley's fern with the fixed points of the affine transformations fi,
f2, fs, and /4.

20.3 Barnsley Fern 379

The following programs help in understanding how the four afRne transforma
tions generate the different parts of the Barnsley fern by drawing successive
images of an initial triangular shape called in i t .

i n i t = Graphics[Line[{{- 2 , 1 } , {2, 1} , {0, 10}, {- 2 , 1 } }]] ;

Starting from the initial triangular shape, the graphics array below illustrates
the action of the different affine transformations, / i generates the lower part
of the stem; /2 generates the upper part of the stem, all triangles converging
to the fixed point 2 of /2; starting from the image of the initial shape by / s ,
and repeatedly applying /2 generates the left branches; and similarly, starting
from the image of the initial shape by /4, and repeatedly applying /2 generates
the right branches.

flAction =

Show[Graphics[Map[Line, Transpose[Map[NestList[f[1],#, 50]&,

{ { - 2, 1}, {2, 1} ,{0 , 10}, {- 2, 1 } }]]]] ,

PlotRange -^ {{- 2.6, 2.6}, {1, 11}}, Frame -^ True,

DisplayFimction -^ Identity];

f2Action =

Show[Graphics[Map[Line,Transpose[Map[NestList[f[2],#, 50]&,

{ { - 2, 1} , {2, 1} , {0, 10}, {- 2, 1 } }]]]] ,

PlotRange -^ { { - 2 .6 , 2 . 6 } , {1 , 11}},

Frame —> True, DisplayFunction —̂ Ident i ty] ;

f2f3Action =

Show[Graphics[Map[Line,Transpose[Map[NestList[f[2],#, 50] &,

Map[f[3], { { - 2 , 1 } , {2 ,1 } , {0 ,10} , {- 2, 1 } }]]]]] ,

PlotRange -^ {{- 2 .6 , 2 . 6 } , {1 , 11}}, Frame ^True,

DisplayFimction -^ Ident i ty] ;

f2f4Action =

Show[Graphics[Map[Line,Transpose[Map[NestList[f[2],#, 50]&,

Map[f[4], { { - 2, 1}, {2, 1} , {0, 10}, {- 2, 1 } }]]]]] ,

PlotRange -> { { -2 .6 , 2 .6 } , {1 , 11}}, Frame -^ True,

DisplayFunction -^ Ident i ty] ;

fAction = Show[GraphicsArray[

{{flAction, f2Action}, {f2f3Action, f2f4Action}}]]

380 20 Iterated Function Systems

Fig. 20.9. Action of the four affine transformations on the initial shape. Upper
left: f\ generates the lower part of the stem. Upper right: /2 generates the upper part
of the stem, all triangles converging to the fixed point 2 of f2. Lower left: starting
from the image of the initial shape by fs, and repeatedly applying /2 generates the
left branches. Lower right: starting from the image of the initial shape by f4, and
repeatedly applying /2 generates the right branches.

20.3.2 Modifying the Probabilities

The probabilities P i , P2, Ps, and p4 can actually be modified, but keeping pi
small, p2 large, and ps — P4 still generates a fernlike image. Here are two
examples.

If we choose pi = 0.03, P2 = 0.75, Ps = P4 = 0.11, and use the following
program,

20.3 Barnsley Fern 381

Clear [BarnsleyFem]

BarnsleyFern [n.Integer] : =

Module[{pt, p t L i s t , rnd := Random[Integer, {1 , 100}]},

p t = {0, 0} ; p t L i s t = {p t} ;

Do[r = rnd; pt = Which[r == 3 , f [l] [p t] , r <= 78, f [2] [pt] ,

r <= 89, f [3] [p t] . True, f [4] [p t]] ;

p tL i s t = Append[ptList, p t] , {n}] ;

image = Show[Graphics[{RGBColor[0, 0 .4 , 0] , Poin tSize[0 .005] ,

Map[Poin t ,p tLis t]}] , PlotRange -^ A l l] ; image]

we obtain the image below (Figure 20.10).

BarnsleyFern[10000];

Fig. 20.10. Bamsley's fern with probabilities pi = 0.03, p2 = 0.75, ps = P4 = 0.11.

If we choose pi = 0.05, p2 — 0.75, ps = P4 = 0.10, and use the following
program.

Clear[BarnsleyFern]

BarnsleyFern [n_Integer] : =

Module[{pt, p t L i s t , rnd := Random[Integer, {1 , 100}]},

p t = {0, 0}; p tL i s t = {pt} ;

Do[r = rnd; pt = Which[r == 5, f [1] [p t] , r <= 80, f [2] [p t] ,

r <= 90, f [3] [p t] . True, f [4] [p t]] ;

p tL i s t = Append[ptList, p t] , {n}] ;

image = Show[Graphics[{RGBColor[0, 0 .4 , 0] , Po in tS ize[0 .005] ,

Map[Poin t ,p tLis t]}] , PlotRange -^ A l l] ; image]

382 20 Iterated Function Systems

we obtain an image (not displayed) difficult to distinguish from the previous
one.

20.4 The Collage Theorem

Among important mathematical results, Barnsley's book [1] contains many
examples of IFS whose attractors have an amazingly realistic appearance.
One of the most important results is Barnsley's Collage theorem which, given
a fractal compact subset of R^, shows how to find an IFS whose attractor is
close to the compact subset (refer to Barnsley's book for details).

On page 105 Of [1], for instance, Barnsley defines the IFS that consists of
the following transformations defined on C: Wi{z) = siz + (1 — 5^)a ,̂ for
i = 1,2,3,4, where the complex numbers Si and â are given in the table
below.

s
a

1
0.6

0.45 + 0.9i

2
0.6

0.45 + 0.3i

3
0,4-0.3i

0.6 + 0.3i

4
0.4 + 0.3i

0.3 + 0.3i

In order to generate the attractor using bigGame, we first write the mappings
Wi on C as affine transformations fi on R'^.

s

a

s

a

s

a

s

a

z + (1 -

-> 0.45

z + (1 -

-̂ 0.45

z + (1 -

-> 0.6 +

z + (1 -

-̂ 0.3 +

s)

+ 0.

s)

+ 0

s)

O.c

s)

a/, { z - ^ x + y l , s

9 1}// ComplexExpand

a / . { z - ^ x + y l , s -

3 1}// ComplexExpand

a/, {z—>x + yl, s

11}// ComplexExpand

a/, {z—^x + yl, s

0.3 1} // ComplexExpand

-> 0.6,

-> 0.6,

-^ 0.4 -

-^ 0.4 +

0

0

3

.3

I,

I,

0.18 + 0.6 X + I (0.36 + 0.6 y)

0.18 + 0.6 X + I (0.12 + 0.6 y)

0.27 + 0.4 X + I (0.36 - 0.3 x + 0.4 y) + 0.3 y

0.27 + 0.4 X + I (0.09 + 0.3 X + 0.4 y) - 0.3 y

The affine transformations fi are, therefore, defined by

20.4 The Collage Theorem 383

f[l][{x_. y.}]

f[2][{x., y.}]

f[3][{x-, y.}]

{0.27, 0.37}

f[4][{x., y_}]

{0.27, 0.09}

:= {{0.6, 0}, {0, 0.6}}.{x, y} + {0.18, 0.36}

:= {{0.6, 0}, {0, 0.6}}.{x, y} + {0.18, 0.12};

:= {{0.4, 0.3}, {- 0.3, 0.4}}.{x, y} +

:= {{0.4, - 0.3}. {0.3, 0.4}}.x,y +

Running bigGame generates a leaflike attractor.

Clear[bigGame]

bigGame [init_List , n.Integer] : =

Module[{F, p t s , ptList , image},

F [x_] : = f [Random [Integer, {1 , 4}]] [x] ;

pts = Drop[NestList[F, i n i t , n] , Floor[n / 1000]];

ptList = Graphics[{RGBColor[0, 0 .3 , 0] , PointSize[0.003] ,

Map[Point, p t s] }] ;

image = Show[ptList, PlotRange -^ Al l ,

AspectRatio -^ Automatic]; image]

Fig. 20.11. Leaflike fractal generated using Bamsley's collage theorem.

21

Julia and Mandelbrot Sets

21.1 Julia Sets

The French mathematician Gaston JuUa (1893-1978) pubhshed his famous
Memoire sur Viteration des fonctions rationelles in 1918 [26]. He was 25.
The paper investigates the behavior of the iterates z^+i = fi^n)^ where /
is a rational function and, in particular, the set of points whose nth iterates
remain bounded as n tends to infinity.

Consider the complex function / : z i-̂ z^ -hc, where c is a constant. The Julia
set associated with the complex number c is the set of points of the complex
plane whose sequence of iterates remains bounded. For example, if c = — ̂ ,
we have

Clear[f]

f [z-Complex] :

NestCf, 0.8 +

Nest[f, 0.9 +

=

0

0

z '

.5

.5

2 -

I ,

I ,

- 1 / 2

1000]

10]

- 0.366025 - 2.32705 10~^^^ I

5027.03 + 2999.2 I

Apparently the sequence of iterates of z = 0.8-1-0.5i remains bounded whereas
the sequence of iterates of 0.9 -f- 0.5i does not. For c = 0.5, we can build up a
program to visuahze the Julia set.

The function Ju l iaTes t determines whether the iterates of z escape from the
disk of radius 2 centered at the origin for a number of iterates less than n. If
it is the case, Ju l iaTes t returns an integer m < n, indicating the first iterate
escaping the disk, otherwise it returns n.

386 21 Julia and Mandelbrot Sets

We use the command Compile [variables, expression] that creates a
compiled function to evaluate expression assuming numerical values of
variables. In compiled functions, the variables being numbers, the evalu
ation process is faster. Many built-in Mathematica commands compile their
arguments automatically.

Clear[JuliaTest]

JuliaTest = Compile [{x

Modulejz, num = 0}, z

While[Abs[z] < 2.0 &&

. y»

= X

num

{n.
+ y

< n.

-Integer},

I;

z = z~2 +

{c

c;

, _Compl

nvun++];

ex}}.

num]];

JuliaTest[0.8 , 0.5 , 50, - 0.5]

Jul iaTest[0.9 , 0 .5 , 50, - 0.5]

50

7

Using the command DensityPlot we can visualize the Julia set.

DensityPlot[JuliaTest[x, y, 50, - 0.5],

{x, - 2.0, 2.0}, {y, - 2.0, 2.0}, PlotPoints -

Mesh —> False];

-̂ 500,

Fig. 21.1. Julia set of the function zy-^ z — 0.5.

21.1 Julia Sets 387

As shown in Figure 21.1 the Juha set is represented by the white region. The
darker the region the faster the iterates of a point in that region escape to
infinity. Because the constant is real, if z belongs to the Julia set so does its
complex conjugate.

Julia sets often have a complex fractal structure as illustrated below.

Dens i tyPlo t [Ju l iaTes t [x , y, 50, - 0.75 + 0.5 I] ,

{x, - 2 .0 , 2 . 0 } , {y, - 2 .0 , 2 . 0 } , P lo tPoin ts -^ 500,

Mesh —> Fa lse , ColorFunction —> Hue];

Fig. 21.2. Julia set of the function z^^ z^ — 0.75 + 0.5i.

Zooming in exhibits more details.

Dens i tyPlo t [Ju l iaTes t [x , y, 50, - 0.75 + 0.5 I] ,

{x, 0 .9 , 1.6}, {y, - 0 .7 , - 0 .1} , P lo tPoin ts -^ 500,

Mesh -^ Fa l se , ColorFunction -^ Hue];

388 21 Julia and Mandelbrot Sets

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

Fig. 21.3. Julia set above: zooming in [0.9,1.6] x [—0.7, —0.1].

Dens i tyPlo t [Ju l iaTes t [x,

{x, 1

Mesh

L.21, 1.28}, {y, - 0

y>

2,

50,

- 0

-^ Fa l se , ColorFunction —̂

- 0.

.1}.
Hue]

75 + 0.5 I] ,

P lo tPoin ts ->

)

500,

1.21 1.22 1.23 1.24 1.25 1.26 1.27 1.2

Fig. 21.4. Julia set above: zooming in [1.26,1.28] x [-0.2, -0.1] .

DensityPlot[JuliaTest[x, y, 50, - 0.75 + 0.5 I] ,

{x, 1.24, 1.27}, {y, - 0.13, - 0.1}, PlotPoints -> 500,

Mesh -^ False, ColorFunction -^ Hue];

21.2 Julia Sets of Different Functions 389

-0.1

0.105

-0.11

0.115

-0.12

0.125

-0.13

l ^ ^ J

^'^^^B

^^HHVV^^LT^

rJi^H
™58i
IHJ^^^

î B̂ K
1.24 1 .245 1.25 1 .255 1.26 1.265 1.27

Fig. 21.5. Julia set above: zooming in [1.24,1.27] x [-0.13, -0.1].

The two examples we presented illustrate the property of Julia sets of being
either connected or totally disconnected.

21.2 Julia Sets of Different Functions

21.2.1 z\-^ z^ + c

Clear[JuliaTest]

JuliaTest = Compile[{x, y, {n,.Integer}, {c,

Module[{z, num = 0 } , z = x + y l ;

While[AbsEz] < 2.0 && num < n, z = z'̂ 3 + c;

num++]; num]];

-Complex}},

DensityPlot[JuliaTest[x.

{x, -
Mesh

2.0, 2.0}, {y, - 2

y>
0,

50, - 0.5],

2.0}, PlotPoints

—> False, ColorFunction -^ Hue];

^ 500,

DensityPlot[JuliaTest[x, y, 50, -0.75 + 0.5 I],

{x, - 2.0, 2.0}, {y, - 2.0, 2.0}, PlotPoints -^ 500,

Mesh -^ False, ColorFimction -^ Hue];

390 21 Julia and Mandelbrot Sets

Fig. 21.7. Julia set of the function z \-^ z^ - 0.75 + 0.5i.

Zooming in:

DensityPlot[JuliaTest[x, y, 50, - 0.75 + 0.5 I] ,

{x, - 0.9, 0.1}, {y, 0.1, 1.3}, PlotPoints -^ 500,

Mesh -^ False, ColorFunction -^ Hue];

DensityPlot[JuliaTest[x, y, 50, - 0.75 + 0.5 I],

{x, - 0.57, - 0.38}, {y, 0.9, 1.25}, PlotPoints -^ 500,

Mesh -^ False, ColorFunction -^ Hue];

21.2 Julia Sets of Different Functions 391

- 0 . 8 - 0 . 6

Fig. 21.8. Julia set above: zooming in [-0.9,0.1] x [0.1,1.3].

- 0 . 5 5 - 0 . 5 2 5 - 0 . 5 - 0 . 4 7 5 - 0 . 4 5 - 0 . 4 2 5 - 0 . 4

Fig. 21.9. Julia set above: zooming in [-0.57, -0.38] x [0.9,1.25].

21.2.2 zy-^ z^ + c

Clear[JuliaTest]

JuliaTest = Compile[{x, y, {n, .Integer}, {c,

Module[{z, num = 0 } , z = x + y l ;

While[AbsEz] < 2.0 && num < n, z = z'̂ 4 + c;

num++]; num]];

.Complex}},

DensityPlot[JuliaTest[x, y, 50, - 0.5],

{x, - 2.0, 2.0}, {y, - 2.0, 2.0}, PlotPoints -^ 500,

Mesh -^ False, ColorFunction -^ Hue];

392 21 Julia and Mandelbrot Sets

Fig. 21.10. Julia set of the function z^^ z^ — 0.5.

And zooming in:

DensityPlot[JuliaTest[x, y, 50, - 0.5],

{x, - 0.1, 0.1}, {y, 1.02, 1.22}, PlotPoints -

Mesh -^ False, ColorFunction —> Hue];

-̂ 500,

- 0 . 1 - 0 . 0 5 0 0 .05 0 . 1

Fig. 21.11. Julia set above: zooming in [-0.1,0.1] x [1.02,1.22].

21.3 Mandelbrot Sets

The Mandelbrot set [34, 35] is the set of points c of the complex plane such
that the sequence (zn) defined by ZQ == 0? ^n+i = ^n '^ ^ ^^^^ ^^^ ^^^^ ^^
infinity. Such a set had been already considered by the French mathematician
Pierre Fatou (1878-1929) who proved that once an iterate moved to a distance

21.3 Mandelbrot Sets 393

greater than two from the origin, then the orbit would escape to infinity.
Points in the Mandelbrot set have connected Julia sets. It can be shown that
the Mandelbrot set is simply connected.

The function Mandelbrot Test is used to test if a point x -f iy belongs to the
Mandelbrot set. It determines whether the iterates of z escape from the disk
of radius two centered at the origin for a number of iterates less than n. Its
definition is similar to the function Ju l iaTes t defined above.

$RecursionLimit = Infinity;

MandelbrotTest = Compile [{{x,

{n, -Integer}},

Module[{z, num = 0 , c = x + y

z = X + y I; While[AbsEz] < 2

z = z"2 + c; ++num]; num]];

_Real},

I},

{y.

.0 && num <

-Real},

n,

For the points that diverge to infinity, and are therefore not in the set, the
color reflects the number of iterations it takes to reach a certain distance from
the origin.

DensityPlot[MandelbrotTest[x, y, 50] ,

{x , - 2 .0 , 0 .75}, {y , - 1.25, 1.25}, P lo tPoin ts -^ 500,

Mesh -^ Fa l se , ColorFunction —̂ Hue];

-2 - 1 . 5 - 1 - 0 . 5 0 0 . 5

Fig. 21.12. Mandelbrot set of the function z ^-^ z^ -\- c.

Zooming in reveals the very complex structure of the Mandelbrot set.

394 21 Julia and Mandelbrot Sets

DensityPlot[MandelbrotTest [x,

{x, -
Mesh

- 1.0, - 0 .4} , {y, - 0 . 3 ,

—> Fa lse , ColorFunction

y, 50] ,

0 .3} , P lo tPoin ts

-> Hue] ;

-^ 500,

- 1 - 0 . 9 - 0 . 8 - 0 . 7 - 0 . 6 - 0 . 5 - 0 . 4

Fig. 21.13. Mandelbrot set: zooming in [-1.0, -0.4] x [-0.3,0.3].

21.3 Mandelbrot Sets 395

DensityPlot[MandelbrotTest[x, y, 50],

{x, - 0.85, - 0.65}, {y, - 0.2, O.O}, PlotPoints -

Mesh -^ False, ColorFunction -^ Hue];

-> 500,

- 0 . 8 5 - 0 . 8 - 0 . 7 5 - 0 . 7 - 0 . 6 5

Fig. 21.14. Mandelbrot set: zooming in [-0.85, -0.65] x [-0.2,0].

DensityPlot[MandelbrotTest[x, y, 50],

{x, - 0.77, - 0.72}, {y, - 0.2, - 0.15}, PlotPoints -

Mesh -^ False, ColorFunction —> Hue] ;

^ 500,

-0 .77 -0 .76 -0 .75 -0 .74 -0 .73 -0 .72

Fig. 21.15. Mandelbrot set: zooming in [-0.77, -0.72] x [-0.2, -0.15].

396 21 Julia and Mandelbrot Sets

Dens

{x.

ityPlot[MandelbrotTest[x,

- 0.748,

PlotPoints -̂

- 0.74}, {y, - 0
y»
.186

500, Mesh -> False,

50]

>

>
0.178},

ColorFunction ^ Hue];

-0.748 -0.746 -0.744 -0.742 -0 .74

Fig. 21.16. Mandelbrot set: zooming in [-0.748, -0.74] x [-0.186, -0.178].

21.4 Mandelbrot Sets for Different Functions 397

21.4 Mandelbrot Sets for Different Functions

21.4.1 z ^ z^ + c

MandelbrotS = (

Module[{z, num

z = X + y I;

While[Abs[z] <

++num]; num]];

[;ompile[{{x.

= 0 , c = X

2.0 && num

DensityPlot[MandelbrotS[x,

{x, -1.5, 1.5}

Mesh -^ False,

, {y, - 1.5,

-Real},

+ y I } ,

< n, z

y, 50]

1.5},

{y,

= z

»

-Real},

"̂3 + c;

PlotPoints

ColorFunction -^ Hue]

{n

-^

,_Int

500,

eger}}.

- 1 . 5 - 1 - 0 . 5 0 0 .5 1 1 .5

Fig. 21.17. Mandelbrot set for the function z \-^ z^ -\- c.

398 21 Julia and Mandelbrot Sets

21.4.2 z ^ z^ + c

Mandelbrot4 = Compile [{{x,_Real},

Module[{z, num = 0 , c = x + y

z = X + y I ;

While[Abs[z] <

++num] ; nxim]]

c 2.0 && num < n

t

DensityPlot[Mandelbrot4[x, y,

{x, - 1.5, 1.5}, {y, - 1.5, 1

Mesh -^ False , ColorFunction -

I } ,

, z

50]

5} ,

{y,_Real},

= z^4 + c;

>
PlotPoints

-^ Hue] ;

{n. - In teger}} ,

500,

- 1 . 5 - 1 - 0 . 5 0 0 .5 1 1 .5

Fig. 21.18. Mandelbrot set for the function z \-^ z^ -\- c.

22

Kepler's Laws

Johannes Kepler (1571-1630) came from a modest family but, thanks to
a scholarship, he could attend the Lutheran Seminary at the University of
Tubingen. At Tiibingen, Kepler was taught astronomy by one of the leading
astronomers of the day, Michael Maestlin (1550-1631). Maesthn lent Kepler
his own annotated copy of Copernicus' book. Kepler quickly grasped the essen
tial ideas of the Copernican system and built up a cosmological theory based
on the five regular polyhedra. He collaborated with the Danish astronomer
Tycho Brahe (1546-1601) who was one of the most prominent observational
astronomer of the time, and succeeded him, when he died in 1601, as Imperial
Mathematician (they were both living in the Holy Roman Empire). Among
his many achievements, Kepler was probably the first to explicitly use the
concept of observational error. He is chiefiy known for the three laws bearing
his name which Isaac Newton (1643-1727) was able to derive from his gravi
tational law. The first two laws were published in Astronomia Nova (A New
Astronomy) in 1609, and the third law in Harmonices Mundi (The Harmony
of the World) in 1619.

The gravitational force between two mass points mi and m2 derives from the
potential

Uir) = -G ^^^^,
r

where r is the distance between the two mass points, and G is a universal
constant whose value, in SI units, can be found loading the Mathematica
package

«Misce l laneous 'Phys ica lCons tan ts '

G = Gravi tat ionalConstant

400 22 Kepler's Laws

6.673 10~^^ Meter^ Newton

Kilogram

Because the force is central, the torque is zero and the angular momentum L
is conserved.

In order to study the motion of a planet in the gravitational field of the sun,
we choose the origin at the center of the sun and denote, respectively, by m,
r, and v the mass, the position vector, and the velocity of the planet. The
relations

r X L = 0 and v x L == 0

imply that the motion takes place in the plane passing through the origin and
perpendicular to L.

Using polar coordinates, we have

V = r'er + rO'ee,

where the local unit vectors Cp and ee are defined in terms of Cartesian unit
vectors ei and e2 by

Gr = ei cos 6 -\-e2 sin 6

ee = —ei sin 9 -\-e2 cos 6.

These relations show that er and ee are orthogonal. Hence,

posi t ionVector = {r CosCtheta], r S i n [t h e t a] } ;

veloci tyVector = {r' CosCtheta] - r t he t a ' S i n [t h e t a] ,

r ' SinCtheta] + r CosCtheta]};

Loading the package Calculus 'Vector Analysis* we can use Mathematica to
derive a few simple results.

«Calculus' Vector Analysis'

In cylindrical coordinates, the components of the position vector r and the
velocity vector v in the local reference frame (cr, ee, e^) are

posi t ionVector = {r, 0, 0};

velocityVector = {r ' , r t he t a ' , 0} ;

The angular momentum is therefore given by

CrossProductCpositionVector, m veloci tyVector] / / Simplify

22 Kepler's Laws 401

{0, 0, m r-̂ t he t a ' }

That is,
L =^\mr^ 6' \= constant.

It is now a simple matter to derive Kepler's laws.

Kepler ' s second law (1609). A line drawn between the sun and the planet
sweeps out equal areas in equal times as the planet orbits the sun.

The area dA swept by the radius vector during the time interval dt is

dA= - \\T xvdt \\= — dt =^ A' = constant.
2 " " 2m

Kepler ' s first law (1609). The orbit of each planet is an ellipse, with the
sun located at one of its foci

The equation of motion in polar coordinates is

„ Mm
ruT = -G —2~ ^r,

where M is the sun mass and m the mass of the planet.

From the definition of the local unit vectors er and e^ given above it follows
that

der ^, , dee ^,

so, from differentiating one more time the expression of the velocity

V = r' = r' er -{-r 6' ee,

we obtain the expression of the acceleration

v" = (/ ' - {rO'f) er + {2r'e' + rO") eg.

Hence, the equation of motion can be written

Mm
m {r" - {re'f) = -G - ^ and m (2 / 6' -\-r 6") = 0.

The second equation implies r'^6' = constant, that is, conservation of angular
momentum. To determine the orbit of the planet, we use the variable u = 1/r.
Thus

, _ u' _ ^ pf du _ L du
V? u^ dO mdO'

and differentiating once more

402 22 Kepler's Laws

„ _ L d / d u \ _ L , (Pu

m dt \d6 I m dt'^

The differential equation of the orbit is therefore the very simple equation

d^u _, Mrm?

whose solution is obtained using the command

DSolveCu'' [theta] + uCtheta] == K, uEtheta] , t he t a]

{{uCtheta] -> K + C[l] Cos [theta] + C[2] Sin [theta]}}

where K is the constant GMw?/L^\ C[l] and C[2] are two constants of in
tegration. Because we are only interested in the shape of the orbit, we can
choose C[2] = 0. In polar coordinates the equation of the planar orbit is

CcosO-^K'

where we put C[l] = C. To plot the orbit, instead of the two constants C
and K we introduce two new constants TQ and e and write the polar equation

14-e
1 + e cos 6

Changing the constant e, called the eccentricity^ can modify the shape of the
orbit. Note that, in terms of the previous constants

1 GMm? C CL'^
^ 0 = ^ , r^ = ro • ^^li^ 9 ^ = 1^ = C + K L^ + CGMm'^ K GMm?'

1. If 0 < e < 1, the orbit is an ellipse (for e = 0 the orbit is a circle). The
following commands draw a few elliptical orbits.

tl = Table[PolarPlot[(l + e) / (1 + e Cos[theta]),

{theta, 0, 2 Pi},

PlotStyle -^ {Thickness[0.007],

RGBColor[l - e, 0.2, 3 e / 2]},

TextStyle -> {FontSize -> 12},

DisplayFunction —^ Identity], {e, 0.3, 0.6,

pt = Graphics[{PointSize[0.04], RGBColor[l,

Point [{0, 0}]}];

Show[{tl, pt}, AspectRatio —> Automatic,

DisplayFunction —> $DisplayFunction];

0.

0,
1}];
0],

22 Kepler's Laws 403

Fig. 22.1. Elliptical orbits. The big dot represents the sun.

2. If e > 1 the orbit is a hyperbola.

e =1.4; p i = Po l a rP lo tEd + e) / (1 + e CosCtheta]) ,

{ the ta , 0, 2 P i } ,

Ticks -^ {{- 8, - 4, 0, 4, 8, 12, 16}, {- 6 , - 3 , 3 , 6}},

P lo tS ty le -^ {Thickness[0.007], RGBColor[0, 0 .2 , 1]} ,

TextStyle -> {FontSize -^ 12},

DisplayFunction -^ I d e n t i t y] ;

pt = Graphics[{PointSizeCO.05] , RGBColor[l, 0, 0] ,

Point [{0,0}]}];

Show[{pi, p t } , AspectRatio -^ Automatic,

DisplayFunction -^ $DisplayFunction];

Fig. 22.2. Hyperbolic orbit. The big dot represents the sun.

404 22 Kepler's Laws

For e = 1, the orbit is a parabola. All these orbits are conic sections} The
origin is one of the foci of the conic section. The eccentricity of the earth's
orbit about the sun is equal to 0.017. This value is quite small and the earth's
orbit is, therefore, quasi-circular.

The distances

1 + e
rmin = r{0) = ro and r^ax = r{7r)

1 - e

are, respectively, called the perihelion (closest to the sun) and the aphelion
(farthest from the sun). Because, for the earth, e = 0.017, (1 + e)/{l — e) =
1.035, which is very close to 1, that is, fmin ~ ^max-

This simple theory neglects the influence of the other planets and the motion
of the sun.

Kepler's third law (1618). The square of the period of revolution of a planet
around the sun is proportional to the cube of the semi-major axis of the planet
orbit

From Kepler's second law, we have

2m

where A is the area swept by the planet during one complete revolution, that
is, during a time interval T. Moreover, for an ellipse,

A = nab and - = v 1 — e^,
a

where a and b are, respectively, the semi-minor and semi-major axes. Hence,

T = 2 A m / L / / . {A ^ Pi a b, b ^ a Sqrt[l - e^2]}

2 ar Sqrt[l - e^] m Pi

That is.

In as much as we have found that the equation of the orbit of a planet in
polar coordinates is

^The terms ellipse, parabola, and hyperbola were introduced by the famous
Greek geometer Appolonius of Perga (262 BC-190 BC) who is the first to have
rigorously studied the conic sections discovered earlier by Menaechmus (380 BC-
320 BC).

22 Kepler's Laws 405

e/C

1 + e cos 6

we have

2a = .(0) + . (.) = ^ (^ + ^)

that is,

a C a G M m2

and replacing in the expression of T, we finally obtain

G M

Note that the coefficient 47r^/G M is the same for all planets in orbit around
the sun.

Remark. The fact that a characteristic time (the period of revolution of a
planet) behaves as the power 3/2 of a characteristic length (the semi-major
axis of the elliptical trajectory of a planet) can be proved using a scaling
argument. The equation of motion of a particle of mass m in a central field
derived from a potential U{r) is mr" = — VC/(r). If we change r in Ar, and
t in /it, the equation of motion becomes m(A/i~^)r'' = —X^~^VU{r), if U{r)
behaves as r^. The equation of motion is unchanged if, and only if, A/i~^ =
A'^"^, that is, if /i scales as A^~'̂ /^. In the case of the gravitational potential,
fc == 1, hence, /i scales as A^/^, which is exactly Kepler's third law.

23

Lindenmayer Systems

Lindenmayer systems (usually referred to as L-systems) are rewriting tech
niques developed by the biologist Aristid Lindenmayer (1925-1989) in 1968.
They are actually symbolic dynamical systems whose evolution can be repre
sented graphically. Thanks to this feature, they have found several applications
in computer graphics such as the generation of fractals and reahstic models
of plants.

23.1 String Rewriting

A string rewriting system is a triple {V,uj,R) where F , called the alphabet,
is a finite set of symbols called letters', u;, called the axiom or initiator, is a
string of symbols belonging to the alphabet V; and i? is a set of replacement
rules. Replacement rules are mappings such as a ^^ w, where a is a letter
and w a word, that is, a sequence of letters. Some letters that are mapped
to themselves are called constants. Conventionally a letter with no explicit
production (i.e., image) is a constant.

For example, the L-system with the alphabet V = {F, +, —}, the axiom u =
F, and the replacement rule R = {F -^ F -\- F F -f F} can be shown
to generate the von Koch curve. The symbols -h and — having no explicit
production are constants.

Replacement rules can be written using the function StringReplace [' ' s t r i n g
' ' , { " s l ^ ' -^ ' ' n s l ' ' , ' ' s 2 ' ' -> ' ' n s 2 ' ' , . . .] which replaces in
' ' s t r i n g ' ' each occurrence of the string ' ' s i ' ' by the string ' ' n s i ' ' for
a l i i .

Here are the first iterations of the replacement rule applied to the axiom F
obtained using the function StringReplace.

408 23 Lindenmayer Systems

NestLis t [Str ingReplace[#, ' ' F ' ' -^ ' ' F+F—F+F''] &,

' ' F ^ ' , 2] / / TableForm

F

F+F—F+F

F+F—F+F+F+F—F+F—F+F—F+F+F+F~F+F

This particular L-system is simple. It is deterministic, in the sense that there
is only one production for each symbol, and it is context-free in the sense
that the replacement rule refers only to one individual symbol and does not
depend upon the neighboring symbols. Deterministic context-free L-systems
are called DOL-systems.

23.2 von Koch Curve and Triangle

To show that the example above generates a von Koch curve, the symbols
f fp> j ^ < (+ > y^ and ' ' - * ' have to be, respectively, interpreted as "move for
ward" , "turn 60 degrees to the left", and "turn 60 degrees to the right".

In order to build up a program visualizing the dynamics of this L-system, that
is, a program generating the line representing the sequence of symbols (i.e.,
the word) obtained after n iterations of the replacement rule, we represent
this line as the path followed by a turtle moving in a plane. The turtle is a
robotic creature familiar to the Logo programming language. Moving around
the plane, the state of the turtle at a given time is defined by its position
and the direction it is facing. With just the two commands moveForward and
turnLeft , the turtle can be moved in any path. On iterative graphics by
simulating a turtle see [64].

We define the command t u r t l e [symbol] where the argument symbol will
take three possible values: f, 1, and r, which, respectively, instruct the turtle
to move forward one step in the direction it is facing, change direction by
turning 60 degrees to the left, or 60 degrees to the right. We make the function
t u r t l e listable.

Using first the command Characters, we transform a word in the alphabet
{F, +, -} into a list of letters.

Characters [' ' F+F—F+F'']

{F, +, F, - , - , F, +, F}

23.2 von Koch Curve and Triangle 409

Then we define the symbols f, 1, and r, associated with these letters.

symbols = { ' ' F ' ' -^ f, ' ' + ' ' -^ 1, ''-'' -^ r }

The listable function turtle is defined by

Attributes[turtle]

turtle[f]

turtle[1]

turtle[r]

= Listable

:= ptList += unit dir;

:= dir =

:= dir =

turnLeft .

turnRight

dir;

dir;

where p tL i s t is the list of points generating the line representing the turtle
path, imit is the length of the elementary step, dir the direction faced by
the turtle, and turnLeft and turnRight the matrices

and

We assume that the turtle is initially located at the point (0,0) and facing the
point (1,0). The path along which the turtle is moving is a line, that is, the
list of points p tL i s t . At time t = 0, the path has only one point: the initial
point.

Putting together all these commands we can write a program generating the
von Koch curve.

KochCurve [n_Integer]

Module[{Lsystem = {'

symbols, imit =3.0"

iter = 1, c = Cos[Pi

: =
< p > f _

(- n)

/ 3]

rewritingrules, ptList, f

symbols = {''F" ^ 1

ptList = Table[Null,

turnLeft = {{c, - s}

turnRight = {{c, s}.

E , "^

{1 +
, {s.

{- s.

^ "F+F~F+F"}, axiom = " F " ,

. X =

// N,

, 1, r

^' > — >

4-n}]

c}};

c}};

{0., 0.}, dir = {1., 0.},

s = Sin[Pi / 3] // N, turtle.

, turnLeft, turnRight},

1, " - " ^ r};

; ptList[[1]] = X;

410 23 Lindenmayer Systems

A t t r i b u t e s [t u r t l e] = L i s t a b l e ;

t u r t l e [f] := p tL i s t [[++i te r]] = (X += un i t d i r) ;

t u r t l e [1] := d i r = turnLeft . d i r ;

t u r t l e [r] := d i r = turnRight . d i r ;

r ewr i t i ng ru le s = MapEFirstEChciracters [# [[!]]]] —

Charac te rs [#[[2]]] &, Lsystem] / . symbols;

t u r t l e [N e s t [# / . r ewr i t i ng ru le s &,

Characters[axiom] / . symbols, n]] ;

image = Show[Graphics[Line[ptList]] ,

AspectRatio -^ Automatic,

Axes -^ None, PlotRange —> A l l] ; image]

Note that, following Wagon [64], we predefine a path to be a list of Nulls,
where Null is a symbol used to indicate the absence of a result.

KochCurve[4];

Fig. 23.1. Fourth stage of the construction of the von Koch curve.

As shown below, it is not difficult to modify the program above to generate
the von Koch triangle. We just have to change the axiom and the length of
the predefined path.

23.2 von Koch Curve and Triangle 411

KochTriangle [n_Integer] : =

Module[{Lsystem = { ' 'F '^-^ ''F-F++F-F''},

axiom = ''-F++F++F'',

symbols, \init = 3.0^(-n), X = {0., 0.}, dir = {1., 0.},

iter = 1, c = Cos[Pi / 3] // N, s = Sin[Pi / 3] // N, turtle,

rewritingrules, ptList, f, 1, r, turnLeft, turnRight},

symbols = {''F'' -> f, '' + '' -> 1, "-'' -^ r};

1mm] ptList = Table[Null, {1 + 3*4'̂ n}] ; p tLis t [[l]] = X;
turnLeft = {{c, - s} , {s, c}};
turnRight = {{c, s} , {- s, c}};
Attr ibutes[turt le] = Listable;
tu r t le [f] := ptList[[++iter]] = (X += unit d i r) ;
tur t le[1] := dir = turnLeft . dir ;
tu r t l e [r] := dir = turnRight . dir ;
rewritingrules = Map[First[Characters[#[[1]]]] -^
Characters[#[[2]]] &, Lsystem] / . symbols;
turtle[Nest[# / . rewritingrules &,
Characters[axiom] / . symbols, n]] ;
image = Show[Graphics[Line[ptList]],
AspectRatio -^ Automatic, Axes -^ None,
PlotRange -^ Al l] ; image]

KochTriangle[4];

Fig. 23.2. Fourth stage of the construction of the von Koch triangle.

412 23 Lindenmayer Systems

23.3 Hilbert Curve

We mentioned earlier (see Chapter 19 "Fractals") that Cantor discovered that
the sets [0,1] and [0,1] x [0,1] have the same cardinality, which implies the
existence of a bijection between these two sets. In 1879 Eugen Netto (1848-
1919) proved that such a bijection cannot be continuous, but it was shown
that continuous surjective mappings from [0,1] to [0,1] x [0,1]—which are, by
definition, curves—do exist. In 1890, Giuseppe Peano (1858-1932) constructed
the first space-filling curve (on space-filling curves, refer to [49]. More precisely,
Peano gave the parametric representation of a curve defined recursively by a
sequence of functions ^^ • [0,1] i-> [0,1] x [0,1] which, in the limit n -^
cxD, goes through all points of the unit square [0,1] x [0,1]. The parametric
representation represents a continuous curve whose Hausdorff dimension is,
however, equal to 2 (see pp 34-36 of [6]).

David Hilbert (1862-1943), who, in particular, is famous for the speech he
delivered to the Second International Congress of Mathematicians in Paris in
which he challenged mathematicians to solve fundamental problems, gave a
simple example of a Peano curve filling the unit square. The Hilbert curve is
defined by the L-system with a three-letter alphabet: {F, +, - } , respectively,
interpreted as "move forward", "turn 90 degrees to the left", and "turn 90
degrees to the right", and the rewriting rules: { " L ' ' -^ '' -RF+LFL+FR-'',
< 'Rj ^ ^ ' '+LF-RFR-FL+''}, where L and R are not letters but represent,
respectively, the following two words: +F-F-F+ and -F+F+F-.

HilbertCurve [n_Integer] : =

Module [{Lsystem = {''L" -^ '^-RF+LFL+FR-''

''+LF-RFR-FL+''} ,

axiom = ''R'', symbols, unit = 2.0''(-n), X

dir = {!., 0.}, iter = 1 , c = 0 . 0 , s = 1 . 0 ,

rewritingrules, ptList, f, 1, r, turnLeft,

symbols = {''F'' -> f, " + '' -^ 1, "-'' -^

Table [Null, {4'̂ n}] ; ptList [[1]] = X;

turnLeft = {{c, - s}, {s, c}};

turnRight = {{c, s}, {- s, c}};

Attributes[turtle] = Listable;

turtle[f] := ptList[[++iter]] = (X += imit

turtle[1] := dir = turnLeft . dir;

turtle[r] := dir = turnRight . dir;

, ''R'' ->

= {0., 0.},

turtle.

turnRight},

r}; ptList =

dir);

23.4 Peano Curve 413

r ewr i t ing ru le s = Map[Fi r s t [Charac te rs [#[[!]]]] -^

Charac te rs [#[[2]]] &, Lsystem] / . symbols;

t u r t l e [N e s t [# / . r ewr i t ing ru le s &,

Characters[axiom] / . symbols, n]] ;

p tL i s t = p tL i s t / . {L -^ I f r f r f l , R -^ r f l f l f r } ; image =
Show[Graphics[Line[ptList]] ,

AspectRatio —̂ Automatic, Axes -^ None,

PlotRange -^ A l l] ; image]

Hilber tCurve[6] ;

Fig. 23.3. Sixth stage of the construction of the Hilbert curve.

23.4 Peano Curve

The Peano curve can be generated following the same method. We should
consider the L-system with the three-letter alphabet: {F, +, - } , respectively,
interpreted as "move forward", "turn 90 degrees to the left", and "turn 90 de-

414 23 Lindenmayer Systems

grees to the right", and the rewriting rules: " F ' ' -^ '' F+F-F-F-F+F+F+F-F'
Here is the program.

PeanoCurve [n_Integer] : =

Module[{Lsystem = { ' 'F '^ -^ ' 'F+F-F-F-F+F+F+F-F^'},

axiom = ' ' F ' ' , symbols, un i t = 2 .0^ (-n) , X = {0 . , 0 . } ,

d i r = { 1 . , 0 . } , i t e r = 1 , c = 0 . 0 , s = 1 . 0 , t u r t l e ,

r e w r i t i n g r u l e s , p t L i s t , f, 1, r , turnLef t , tu rnRight} ,

symbols = { ' 'F^ ' ^ f, ' ' + ' ' -^ 1, ''-'' -^ r } ; p tL i s t =
TableCNull, {1+ Q-̂ n}] ; p t L i s t [[l]] = X;

turnLeft = {{c, - s } , {s , c}};

turnRight = {{c, s } , {- s , c}};

A t t r i b u t e s [t u r t l e] = L i s t a b l e ;

t u r t l e [f] := p t L i s t [[+ + i t e r]] = (X += un i t d i r) ;

t u r t l e [1] := d i r = turnLeft . d i r ;

t u r t l e [r] := d i r = turnRight . d i r ;

r ewr i t i ng ru l e s = Map[Fi r s t [Charac te r s [#[[!]]]] -^

Charac te rs [#[[2]]] &, Lsystem] / . symbols;

t u r t l e [Nest [# / . r ewr i t i ng ru le s &,

Characters [axiom] / . sjrmbols, n]] ;

image = Show[Graphics[Line[ptList]] ,

AspectRatio -^ Automatic, Axes -^ None,

PlotRange -^ A l l] ; image]

The first iteration generates the Hne

{{0,0},{l,0},{^, J } , { | , | ,},{§,0},

{ 1 , 0 } , { 1 , - 1 } , { 2 , - 1 } , { 2 , 0 } , {1,0}}

As shown below, the numbers from 0 (initial point) to 9 (last point) show the
itinerary along the line.

23.4 Peano Curve 415

Peanol = Graphics[Line[{{0.0, 0 .0} , {0.333, 0 .0} ,

{0.333, 0.333}, {0.666, 0.333}, {0.666, 0 .0} , {0.333, 0 .0} ,

{0.333, - 0.333}, {0.666, - 0.333}, {0.666, 0 .0} ,

{1.0, 0 .0}}]] ;

p t s = {{0, 0 .03}, {0.303, 0 .03}, {0.363, 0.303},

{0.636, 0.303}, {0.636, 0 .03}, {0.363, - 0 .03},

{0.363, - 0.303},{0.636, - 0.303},{0.696, - 0 .03},

{1.0, - 0.03}};

numPts = Graphics[{{PointSize[0.04] , CMYKColor[0, 0, 1, 0] ,

Map[Point, p t s] } .

Tab le [Tex t [i -1 . P a r t [p t s , i]] , { i , 1, Length[pts]}]}] ;

Show[{peanol, numPts}, AspectRatio -^ Automatic];

Fig. 23.4. First stage of the construction of the Peano curve.

PeanoCurve [3] ;

416 23 Lindenmayer Systems

Fig. 23.5. Third stage of the construction of the Peano curve.

24

Logistic Map

The discrete logistic map is the simplest nonlinear map. Its properties are,
however, far from being trivial. In 1962, Myrberg [39] already mentioned the
existence of considerable difficulties:

En nous limitant dans noire
travail au cas le plus sim
ple non lineaire, c^est-a-
dire aux polynomes reels
du second degre, nous ob-
servons que meme dans ce
cas special on rencontre
des difRcultes considerables,
dont Fexplication exigera des
recherches ulterieures.

Limiting ourselves to the sim
plest nonlinear case, that is,
to quadratic real polynomi
als, it is observed that even
in this special case consider
able difficulties are encoun
tered, whose explanation will
require more work in the fu
ture.

The logistic map, described by the recurrence equation

nt+i = f{nt,r) = rnt{l - rit),

can be viewed as the time-discrete evolution of a scaled population n. The
word logistic was coined by Pierre Pranois Verhulst [62] (1804-1849) who
used the differential equation

dN
dt

• vN O-f)
for the first time in 1838 to study population growth. The constant r is re
ferred to as the intrinsic rate of increase and K is called the carrying capacity
because it represents the population size that the resources of the environment
can just maintain without a tendency to either increase or decrease. Although

418 24 Logistic Map

Verhulst's paper did not draw much attention when it was first pubhshed, it
was rediscovered 80 years later by Raymond Pearl (1879-1940) and Lowel J.
Reed (1886-1966). After the publication of their paper [42], the logistic model
began to be widely used.

Although the solution to the differential equation is trivial, we show that the
recurrence equation is, on the contrary, of considerable interest.

24.1 Bifurcation Diagram

If 0 < r < 4, all the iterates of n belong to the interval [0,1].

The recurrence equation has two fixed points given by

f [n_, r_] := r n (1 - n)

fxdPts = Solve[n == f [n , r] , n]

{{n -> 0}, {n - . -A±^}}

The stability of these fixed points is determined by the absolute value of the
derivative of / (n , r) at these points. Because

C lea r [r , n]

Abs[Simplify[D[f[n,r] ,

Abs[Simplify[D [f [n , r] ,

n]

n]

/ .

/ .

n

n

^

^

fxdPts

fxdPts
[[1 ,
[[2,

1 ,2]]]]

1 ,2]]]]

Abs [r]

Abs [2 - r]

if r < 1, the fixed point n = 0 is asymptotically stable and n = (r — l) / r ,
which does not belong to the interval [0,1], is unstable; and for 1 < r < 3,
n = 0 is unstable whereas n = (r — l) / r is asymptotically stable.

In the case of one-dimensional maps, such as the logistic map, there exists a
simple graphical method to follow the successive iterates of an initial point
no- First plot the graphs of n i—> f{n^r) and n ^^ n. Because the sequence of
iterates is generated by the equation n^- î = fijit^r)^ the iterate of the initial
value no is on the graph of / at (no, /(no, r)), that is, (no, ni) . The horizontal
line from this point intersects the diagonal at (n i ,n i) . The vertical line from
this point intersects the graph of / at (ni, / (n i , r)), that is, (ni, n2). Repeating

24.1 Bifurcation Diagram 419

this process generates the sequence ((no,ni), (n i ,n i) , (721,712), (n2,n2) , . . .) .
The equiUbrium point n* is located at the intersection of the graphs of the
two functions. The diagram below that consists of the graphs of the functions
n 1-̂ / (n , r) and n\-^ n and the line joining the points of the sequence above
is called a cobweb. It clearly shows whether the sequence of iterates of the
initial point no converges to the equilibrium point.

In order to draw the cobweb given a parameter value r, an initial value no,
and a maximun number of iterations, we first determine the sequence
((no,ni), (ni ,n i) , (ni,n2), (n2,n2),.. O? then plot the function / for the spe
cific r value, and draw the line (in green) going through all the points of the
sequence, and the diagonal joining the origin to the point (1,1). The initial
and final points are respectively colored in blue and red.

logisticCobweb[r_, in i t_ , numl t e r j :=

Module[{F, seq, p i , 1, image},

F[n_] := r n (1 - n) ;

n = init; seq = {{n, 0}, {n, F[n]}};

For[t = 1, t <= numlter, t++,

n = F[n];

seq = Append[seq, {n, n}] ;

seq = Append[seq, {n, F [n]}]] ;

seq = Append [seq, {F[n], F [n]}] ;

p i = P l o t [F [n] , {n, 0, 1}, DisplayFunction -^ I d e n t i t y] ;

1 = Graphics[{{RGBColor[0, 1, 0] , L ine[seq]} ,

Line[{{0, 0} , {1 , 1}}],

{RGBColor[0, 0, 1] , PointSize[0 . 03] , P o i n t [F i r s t [s e q]] } ,
{RGBColor[l, 0, 0] , Po in tS ize [0 .03] , Point [Last [seq]]}}] ;

image = Show[pi,1, Frame -^ True, PlotRange —> All,

AspectRatio —> Automatic,

TextStyle -^ {FontSlant -> " Italic'\ FontSize -> 12},

DisplayFunction -^ $DisplayFunction]; image]

logisticCobweb[2.6, 0 .9 , 15];

420 24 Logistic Map

1

0 0,2 0,4 0.6 0

Fig. 24 .1 . Logistic map cobweb for r = 2.6, no — 0.9, and a number of iterations
equal to 15.

Because

Clear[r]

{Nest[2.6 # (! - #) &, 0 .9 , 15] , (r -- 1) / r / . r --> 2.6}

{0.615458, 0.615385}

after a few iterations, we are quite close to the fixed point.

For r = 3, the derivative of / at n = (r — l) / r = I is equal to —1.Because

Clear[r, n]

f [f [n , r] , r]

(1 - n) n r^ (1 - (1 - n) n r)

we verify that

f [f [2 / 3 , 3]

D[f [f [n , r] .
, 3]

r] , n] / . {n -^ 2 / 3 , r ^ 3}

24.1 Bifurcation Diagram 421

2
3
1

and

D[f[f [n ,

D[f [f [n ,

D[D[f[f[i

D[f [f [n ,

r] ,

r] .
a, r

r] .

r] .

r] ,

] , r:

r] ,

r]

{n

/ . { n -

2}] / .

] . n] , r] /

{n 3}] / .

^ 2 /

{ n -

• { n -
{ n -

3 , r -^

2 / 3 ,

^ 2 / 3

2 / 3 ,

3}
r —>

, r -

r -^

3}
. 3}

3}

0

0

2

- 108

These results show that the nonhyperboUc fixed point (| ,3) is a period-
doubhng bifurcation point. On bifurcation theory see [9].

The map P{n^r) = f{f{n^r)^r) has four fixed points that are the solutions
of the equation /^(n, r) = n.

Clear[n, r]

fxdPtsf2 = So lve [f [f [n , r] , r] == n, n] / / Simplify

rr r.^ r " ^ + ^1 r 1 + r - Sq r t [-3 - 2 r + r^
{{n - . 0} , {n -^ }, {n ^ ^ },

r 2 r

i + r + S q r t [- 3 - 2 r + r^ ^ ^
i^ -" n JJ

2 r

Two solutions are already known, namely the two unstable fixed points, n = 0
and n = {r — l) / r of / . The remaining two solutions, denoted ni^i and ni,2,
are such that

Simplify[fEfxdPtsf2[[3, 1, 2]] , r]] == fxdPtsf2[[4, 1, 2]]

SimplifyEf[fxdPtsf2[[4, 1, 2]] , r]] == fxdPtsf2[[3 , 1, 2]]

True

True

422 24 Logistic Map

Thus, /(ni^i) = ni,2 and /(ni,2) = ''̂ 1,15 which shows that these two points
are the components of a two-point cycle. They are defined only for r > 3. The
domain of stability of this cycle is determined by the condition

dlfl
dn

(^{l + r+y/r^-2r-3),A ^fl-{l+r-Vr^-2r- 3), r j < i ;

that is,

(Simplify [D[f[n

Simplify [D[f[n,

// Simplify

. r]

r].

. n] /.

n] /.

n

n -

-̂ fxdPtsf2[[3,

-* fxdPtsf2[[4,

1

1,

, 2]]] *

2]]])

4 + 2 r - r^

Reduce[Abs[4 + 2 r - r^2] < 1, r, Reals]

1 - Sqrt[6] < r < - l | | 3 < r < l - h Sqrt [6]

The parameter r being positive, the two-point cycle is stable for 3 < r <
1-f V6.

Remark. Because the two fixed points rii and n2 of the map / (n , r) are the
solutions of the quadratic equation f{n^r) — n — 0, and the four fixed points
ni , 712, ^1,1 and ni,2 of the map P[n,r) = f[f{n^r),r) are the solutions of
the quartic equation /^(n, r) = n, the fixed points ni,i and ni,2 should be the
two solutions of the quadratic equation

P{n,r)-n ^ ^
f{n,r)-n

which is readily verified using Mathematica.

eqn = S impl i fy[(f [f [n , r] , r] - n) / (f [n , r] - n)] == 0

1 + r - n r -h (- 1+ n) n r^ == 0

Solve[eqn, n] / / Simplify

l - h r - S q r t [- 3 - 2 r-h r^ ,
{{n - — },

24.1 Bifurcation Diagram 423

, 1 + r + Sq r t [-3 - 2 r + r^ ^ ^
{n -> }}
^ 2 r ^^

The bifurcation point (n,r) = (§?3) is therefore determined by equating to
zero the discriminant of this quadratic equation. We have

Solve[(r + r'^2)'^2 - 4 (1+r) r^2 == 0, r]

{{r -. - 1 } , {r - . 0} , {r - 0} , {r -. 3}}

Only r = 3 is an acceptable solution, and reporting this value in the expression
of the fixed point n = {r — \)/r of the map / (n , r) we verify that n = | .

For r > 1 + \/6, the system undergoes an infinite sequence of period-doubling
bifurcations. After 100 iterates have been discarded, 16 iterations of the lo
gistic map for increasing values of r are shown below.

Clear[F, r]

r = 2 .6 ;

i n i t i a l P o i n t = 0 . 8

F[n_] := f [n , r] ;

seql = NestLis t [F, Nest [F, i n i t i a l P o i n t ,

p l l = Show[Graphics[{{RGBColorCl

Map[Point, Table[{k, s e q l [[k]] } ,

Line[Table[{k, s e q l [[k]] } , {k, 1

FrameTicks -^ {{0,

DisplayFunction -^

Clear [F , r]

r = 3.23;

i n i t i a l P o i n t = 0 . 8

F[n_] := f [n , r] ;

seq2 = NestLis t [F,

4 , 8, 12, 16},

I d e n t i t y] ;

t

. 0, 0] ,

100], 16];

Po in tS ize [0 .02] ,

{ k , l , 1 6 }]] } .

, 16}]]}: , Frame —> True,

Automatic, {} , {}},

Nest[F, i n i t i a l P o i n t ,

p l2 = Show[Graphics[{{RGBColor[l

Map[Point,Table[{k , s eq2 [[k]]} , •

Line[Table[{k, s eq2[[k]]} , {k , l , "

FrameTicks -^ {{0,

DisplayFunction -^

4, 8, 12, 16}

I d e n t i t y] ;

, 0, 0] ,

[k, 1, 1

L6}]]}].

100], 16];

Po in tS ize [0 .02] ,

6}]]} .
Frame -^ True,

, Automatic, {},{}},

424 24 Logistic Map

Clear [F , r]

r = 3.49;

i n i t i a l P o i n t = 0 .8 ;

F[n_] := f [n , r] ;

seq3 = NestListEF, N e s t [F , i n i t i a l P o i n t , 100], 16];

p i s = Show[Graphics[{{RGBColorCl, 0, 0] , Po in tS ize [0 .02] ,

Map[Point,Table[{k, s eq3[[k]]} , {k, 1, 16}]]},

Line[Table[{k, s eq3[[k]]} , {k, 1,16}]]}] , Frame -^ True,

FrameTicks -^ {{0, 4, 8, 12, 16}, Automatic, {}, {}},

DisplayFunction -^ I d e n t i t y] ;

Clear [F , r]

r = 3.554;

i n i t i a l P o i n t = 0 . 8 ;

F[n_] := f [n, r] ;

seq4 = NestLis t [F, N e s t [F , i n i t i a l P o i n t , 100], 16];

pl4 = Show[Graphics[{{RGBColor[l, 0, 0] , Po in tS ize [0 .02] ,

Map[Point,Table[{k, s eq4[[k]]} , {k, 1, 16}]]},

Line[Table[{k,seq4[[k]]} , {k, 1, 16}]]}] , Frame -^ True,

FrameTicks -^ {{0, 4, 8, 12, 16}, Automatic, {}, {}},

DisplayFunction —̂ I d e n t i t y] ;

Automatic represents an option value that is to be chosen automatically by
a built-in function, here FrameTicks.

Show[GraphicsArray[{{pll, p l 2 } , {pl3, p l4}}] ,

DisplayFunction —> $DisplayFunction];

See output in Figure 24.2.

Let {rk)keN be the sequence of parameter values at which a period-doubling
bifurcation occurs. This sequence is such that the 2'^-point cycle is stable for
Vk < r < rfc+i. Then, if {nfc,i,n/e,2, • • • ,^^,2'=} denotes the 2'^-point cycle, for
i = 1,2,.. . , 2^ and Vk < r < r^+i, we have

Moreover, for i = 1,2,.. . , 2^,

df' dp'

24.1 Bifurcation Diagram 425

Fig. 24.2. Sixteen iterations of the logistic map for r = 2.3 (fixed point), r = 3.23
(period 2), r = 3.49 (period 4), and r = 3.554 (period 8).

where numerical values of the rik^i (i = 1,2,.. . , 2^) depend on r.

The first period-doubling bifurcations occur for the following parameter val
ues:

ri = 3.0 r2 = 3.449499 . . . r^ = 3.544090 . . . r^ = 3.564407 ..,
rs = 3.568759 . . . re = 3.569692 . . . r^ = 3.569891 . . . rg = 3.569934 .. ,

The sequence (r/c) is an increasing bounded sequence of positive numbers. It
has, therefore, a limit Too that is found equal to 3.5699456 — Feigenbaum [14,
15] discovered that the asymptotic behavior of r^ is of the form

Tk ~ ^oc ^ / c '

where a and 5 are two positive numbers. This behavior implies that 5, known
as the Feigenbaum number^ is such that

lim 'Jl^il^ = 5.
fc^oo Tfc+i - rk

The interesting fact, found by Feigenbaum, is that the rate of convergence
5 of the sequence (r^) is universal in the sense that it is the same for all

426 24 Logistic Map

recurrence equations of the form n^+i = f{nt^r) that exhibit an infinite se
quence of period-doubhng bifurcations, if / is continuous and has a unique
quadratic maximum ric; that is, / (n , r) — / (n c r) ^ {n — ric)'^. If the order of
the maximum is changed, the rate of convergence S also changes.

What is the dynamics of the logistic map for r > Too? The answer is given
by the bifurcation diagram, which has been computed for different parameter
values equally spaced between 2.5 and 4. For each value of r, 300 iterates are
calculated, but only the last 100 have been plotted.

The compiled function i t e r a t e s [r] generates a list of elements of the form
{r, i t e r a t e } .

i t e r a t e s = Compile[{{r, _Real}}, Map[Prepend[{#}, r] &,

Take[NestList[r # (! - #) &, 0 .4 , 300] , - 100]]] ;

We determine lists of this type for 301 parameter values from 2.5 to 4.0 equally
spaced.

p t sL i s t = F l a t t e n [T a b l e [i t e r a t e s [r] , {r , 2 . 5 , 4 . 0 , 0.005}],

1] ;

Using L is tP lo t we finally obtain the bifurcation diagram.

L i s t P l o t [p t s L i s t , P lo tS ty le -^ {RGBColor[0, 0, 1] ,

Poin tSize[0 .002]} , Frame ^True] ;

Fig. 24.3. Bifurcation diagram of the logistic map (n, r) \-^ rn{l—n). The parameter
r, plotted on the horizontal axis, varies from 2.5 to 4, and the reduced population n,
plotted on the vertical axis, varies between 0 and 1.

24.1 Bifurcation Diagram 427

For r = 4, the iterates seem to wander in the interval [0,1] as also shown by
the following cobweb in which the initial point is defined with 200 significant
digits.

legisticCobweb[4, N[Sqrt[3] - 1 , 200] , 300];

I

0.8

0.6

0. 4

0.2

0

/III 1 II

i|Hg^

4^

fMrJM

Hi
' |i ilil

W ^

tipf^llKmmmmm^^

Ijiijl w^gi!
Ffilffl-j^ r.-.T \| II
-|^ 1̂ 4«=^ .,̂===.— .̂;~̂ - ^

n- _.-- i--—~ • - - ^

"̂

li|i|n

II
i-_:r„—•' =fTr:rr:i-:iJr:-Z±!L^Z;Z!3I^|||g

^ ::- -_- V - 7 - z ^

p g .""WW!:̂ !'!li!!!!>:'. 'i . ' i^mm»i;ummi;:m^

0.2 0.4 0.6 0.8

Fig. 24.4. Logistic map cobweb for r = A, no = \/3 — 1, and a number of iterations
equal to 300. The initial point is defined with 200 significant digits.

For r = 4, the trajectory appears to be dense in the interval [0,1]. If / is an
interval of M, a subset J of / is dense in / if the closure of J coincides with / .
In other words, any neighborhood of any point in / contains points in J. For
example, the set of rational numbers Q is dense in R.

It is clear that a numerical experiment cannot, of course, determine whether
the trajectory for r = 4 converges to an asymptotically stable periodic orbit
of very high period or is dense in an interval. A measure fi on an interval / of
M is emphinvariant for the map / defined on / if, for any measurable subset
E c I, fi{E) = fxif-^E)).

If the trajectory is dense, say in [0,1], we should be able to determine an
approximate cumulative distribution function F from a list of iterates. Given
a random variable X, its cumulative distribution function is a nondecreasing
function Fx such that, for any x, Fx{x) is the probability for X to be less
than or equal to x.

In order to determine numerically the cumulative distribution function of a
random sample: d a t a = {xi,X2,. . .}, we plot ListPlot (absc issa , ordinate),
where absc issa = Sort [data] and ordinate = {1/n, 2/n, ••• ,n/n}. Note

428 24 Logistic Map

that the cumulative distribution function determined in this way gives the
maximum information contained in the numerical data. In particular, it gives
more information than traditional histograms.

In order to determine a list of iterates, we first define the following compiled
function.

i t e r a t e L i s t = Compile[{r, i n i t , {numlter, . In teger}} ,

NestListCr # (! - #) & , i n i t , numl te r]] ;

And, following the procedure described above, we can plot an approximate
cumulative distribution function for r = 4.

data = i t e r a t e L i s t [4 , 0 .4 , 100000];

Clear[n]

n = Length[data];

abscissa = Sort[data];

ordinate = Table[k/n, {k, 1, n}];

pts = Table[{abscissa[[j]], ordinate[[j]]}, {j, 1, n}];

logisticCDF = ListPlot[pts, PlotStyle -> {RGBColor[l, 0, 0],

PointSize[0.005]}, TextStyle -^ {FontSlant -> "Italic'^

FontSize -^ 12}, Frame ^ True];

0.4

Fig. 24.5. Approximate cumulative distribution function for the logistic map n
4n(l — n).

As expected for a cumulative distribution function F , this plot shows that
F(0) = 0 and F (l) = 1. Moreover, the derivative of F , if it exists, seems to
be infinite at 0 and 1 (see below).

24.2 Exact Dynamics for r = 4 429

24.2 Exact Dynamics for r = 4

24.2.1 Conjugacy and Periodic Orbits

Two maps / and g are said to be conjugate if there exists a homeomorphism
h such that h o f = g o h, or h o f o h~^ = g. This relation imphes that, for all
t G N, ho f^ o h~^ = g*- A homeomorphism is a continuous bijection having
a continuous inverse. The homeomorphism h takes the trajectories of / into
the trajectories of g. The logistic map /4, that is, n i-̂ / (n ,4) , and the tent
map T2 defined by

^ ^ \ 2 - 2 : r , if | < x < 1,

are conjugate. To prove these results, it suffices to show that the function
h : X \-^ sin^ (| x) is a homeomorphism such that /i o r2 = /4 o T2. We verify
that:

1. /i : [0,1] i-> [0,1] is continuous;

2. h{xi) = h{x2 =^ xi = X2;

3. / i ([0 , l]) - [0 , l] ;

4. h' exists and is continuous, so h~^ : [0,1] 1-̂ [0,1] exists and is continuous;

5. (/4 o h){x) = 4sin2 (f x) (1 - sin^ (f x) = sin^CTrx) = {ho T2){x).

This property greatly simphfies the study of the dynamics of /4.

Let O.X1X2X3 . . . be the binary representation of x G [0,1], that is,

00

where, for all i € N, x̂ G {0,1}. The binary representation of T2(x) is then
given by

rj. / X ^ f O.X2X3X4 . . . , if 0 < X < ^ ,

'^^^^ ~ [0.(1 - X2)(l - X3)(l - X4) . . . , if I < X < 1.

These formulas are both correct for x = \. The binary representation of \
being either 0.1000... or 0.01111... , the binary representation of T2(x) is,
in both cases, 0.1111..., which is equal to 1.

430 24 Logistic Map

The description of the iterates of x in terms of their binary representation
leads to some remarkable results due to James Whittaker [65]

1. If the binary representation of x is finite (i.e., if there exists a positive
integer n such that Xi = 0 for all i> n), then after, at most n + 1 iterations,
the orbit of x will reach 0 and stay there. Hence, there exists a dense set of
points whose orbit reaches the origin and stays there.

T2[x_] := WhichEO x < 1/2, 2 x, 1/2 x 1, 2 - 2 x]

NestList[T2, 1 / 3 2 , 10]

1 1 1 1 1
{—, — , - , - , - , 1, 0, 0, 0, 0, 0}
^32 16 8 4 2 ^

2. If the binary representation of x is periodic with period p, then the orbit of
X is periodic with a period equal to p or a divisor of p. For example, if x is
equal to 0.001110011100111... = 7/31,

Sum[(l / 2)'*(3 + 5 k) + (1 / 2)'^(4 + 5 k) + (1 / 2)^(5 + 5k) ,
{k, 0, In f in i ty}]

7

31

we verify that

NestList[T2, 7 / 3 1 , 16]

7 14 28 6 12 24 14 28 6 12 24 14
3 1 ' 3 1 ' 3 1 ' 3 1 ' 3 1 ' 3 1 ' 3 1 ' 31 ' 31 ' 31 ' 31 ' 31^
28 6 12 24 14

3 1 ' 3 1 ' 3 1 ' 3 1 ' 31

Hence

T2[7 / 31] == Nest[T2, 7 / 3 1 , 6] == Nest[T2, 7 / 3 1 , 11]

True

Because the binary representation of 7/31 is periodic with period 5, its tra
jectory is periodic with period 5.

24.2 Exact Dynamics for r = 4 431

Using this method, we could show that the binary tent map has periodic orbits
of all periods, and the set of all periodic points is dense in [0.1]. T2 and f^
being conjugate, the logistic map f^ has the same property.

Regarding the existence of a periodic orbit, an amazing theorem, due to
Sarkovskii, indicates which periods imply which other periods. First, define
among all positive integers Sarkovskii's order relation by

3 > 5 > 7 l > - - 2 - 3 [> 2 - 5 > - > 2 2 - 3 > 2 2 - 5 > - -

t> 2^ • 3 > 2^ • 5 t> t> 2^ > 2^ t> 2 > 1.

That is, first hst all the odd numbers, followed by 2 times the odd numbers,
2^ times the odd numbers, and so on. This exhausts all the positive integers
except the powers of 2 that are listed last in decreasing order. Because > is
an order relation, it is transitive (i.e., rii > n2 and 712 \> ns imply ni t> 713).
Sarkovskii's theorem is as follows.

Sarkovskii's Theorem Let f : R -^ R be a continuous map. If f has a
periodic orbit of period n, then, for all integers k such that n\> k, f has also
a periodic orbit of period k.

For a proof, see Stefan [54] or Collet and Eckmann [12].

We said above that the binary tent map T2 and its conjugate, the logistic
map /4, have periodic orbits of all periods. Following Sarkovskii's theorem, to
prove this result it suffices to prove that either T2 or /4 has a periodic orbit
of period 3.

In order to generate a period-3 orbit for /4 we can start from x = 0.100100100...
which generates a period-3 orbit for the binary tent map. Because

xO = SumCl / 2'^(1+ 3k) , {k, 0, In f in i ty}]

4

7

in order to generate the corresponding period-3 orbit for /4, we have to start
from the point h{xo) = sin^(27r/7).

All these periodic orbits are unstable. Hence, periodic orbits computed with
a finite precision will always present, after a number of iterations depend
ing upon the precision, an erratic behavior. This feature is illustrated in the
plots below using a precision either equal to $MachinePrecision, which is
approximately 16, or to 100.

432 24 Logistic Map

i n i t i a l P o i n t = (Sin [2 Pi / 7])'^2;

f4[ii_] := 4 n (1 - n)

seql = Nes tLis t [f4 , N [i n i t i a l P o i n t] , 100];

p l l = Show[Graphics[{{RGBColorCl, 0, 0] , Po in tS ize [0 .02] ,

Map[Point,Table[{k, s e q l [[k]] } , {k, 1, Length[seql]}]]} ,

Line[Table[{k, s e q l [[k]] } , {k, 1, Length[seq l]}]]}] ,

TextStyle -^ {FontSlant -^ ' ' I t a l i c ' \ FontSize -^ 12},

Frame —> True, FrameTicks —̂

{{0, 20, 40, 60, 80, 100}, {0.2, 0 .4 , 0 .6 , 0 .8 , 1},{},{}}];

100

Fig. 24.6. One hundred iterates of the logistic map n i-̂ 4n(l — n) starting from
no = sin^(27r/7), defined with $MachinePrecision, showing the instability of the
period-3 point

i n i t i a l P o i n t = (Sin[2 Pi / 7])^2 ;

f4[n_] := 4 n (1 - n)

seql = Nes tLis t [f4 , N [i n i t i a l P o i n t , 70] , 100];

p l l = Show[Graphics[{{RGBColor[l, 0, 0] , Po in tS ize [0 .02] ,

Map[Point,Table[{k, s e q l [[k]] } , {k, 1, Length[seq2]}]]},

Line[Table[{k, s e q l [[k]] } , {k, 1, Length[seq2]}]]}] ,

TextStyle -> {FontSlant -^ ' ' I t a l i c ' ' , FontSize -^ 12},

Frame —> True, FrameTicks —>

{{0, 20, 40, 60, 80, 100}, {0.2, 0 .4 , 0 .6 , 0 .8 , l} ,{} ,{}}] ;

24.2 Exact Dynamics for r = 4 433

100

Fig. 24.7. One hundred iterates of the logistic map n \-^ 4n(l — n), starting from
no = sm^(27r/7) defined with 70 significant digits.

24.2.2 Exact Solution of the Recurrence Equation

Mathematica can, in some cases, solve recurrence equations using the com
mand RSolve.

RSolve[{n[t+l] == 4 n [t] (l - n [t]) , n[0] == nO}, n [t] , t]

Solve: : ifun : Inverse functions are being used by Solve,

so some so lu t ions may not be found; use

Reduce for complete so lu t ion

inf ormat i on. More

, , ^ 1 - Cos[2'^ ArcCosfl - 2 nOll
{{n[t] -^

This exact result shows that the map/4 has sensitive dependence on initial
conditions, which, according to Devaney [13], is one of the necessary conditions
for a map to be chaotic [9]. The following results show how a very small
increase of the initial value no (from \/3 — I t o y ^ — 1 + 10~^ modifies the
value of rit after 10,20, . . . , 100 iterations.

N[Table[(1- Cos[2^t ArcCos[l - 2(Sqrt[3] - 1) -

2 / 10^4]]) /2 - (1 - Cos[2'^t ArcCosCl - 2(Sqrt[3] •
2 .

{ t , 10, 100, 10}]]

- 1)]]) /

{- 0.102199, - 0.459289, 0.287665, 0.906013, - 0.819842,

434 24 Logistic Map

0.154034, 0.520761, - 0.310196, 0.0295783, -0.121685}

24.2.3 Invariant Probability Density

To conclude this section we determine the invariant probabihty density for the
map /4. The invariant probabihty density p for a map / is such that p{x) dx
measures how frequently the interval [x, x + dx] is visited by the dense orbit
of a point XQ.

Before going into any further detail, let us recall a few basic results of ergodic
theory (for more details see Shields [51]).

Let / : <S -^ «S be a map. A subset A of <S is invariant if f{A) = A. k
measure // is invariant for the map / if, for all measurable subsets A of <S,
/x(/~^ (A)) = /i(A). The map / is ergodic with respect to the invariant measure
/i if any measurable invariant subset A of <S is such that either iJi{A) = 0 or
fi{A) = M(5) .

If / is ergodic with respect to the invariant probabihty measure /i (// is a
probability measure if /i(<S) = 1), and ^ : «S -^ E, an integrable function with
respect to /i, then, for almost all XQ G 5 ,

1 * f
lim T y] ^ o r (x o) = / g{^) c?/i(x).

That is, the time average is equal to the space average. If there exists a positive
real function p such that d/i(x) = p{x)dx, p is called an invariant probability
density.

If the map / : [0,1] -^ [0,1] is such that any point x has k preimages
2/1,2/2,.--,2/^ by / (i.e., for a lU = 1,2,.. . , fc, f{yi) = x), the probability
of finding an iterate of / in the interval [x, x -f dx] is then the sum of the
probabilities of finding its k preimages in the intervals [yi^yi H- dyi]. Hence,
from the relation

k

p{x)dx = ^p{yi)dyi,

we obtain the Perron-Probenius equation:

where we have taken into account that

dx ,

24.2 Exact Dynamics for r == 4 435

In the case of the binary tent map T2, the Perron-Probenius equation reads

p{x) = l {p{lx)^p{l-lx)).

This equation has the obvious solution p{x) = 1. That is, the map T2 preserves
the Lebesgue measure. If / i U I2 is the preimage by T2 of an open interval /
of [0,1], we verify that

m(/i U I2) = m(/i) + m(/2) = m(/) ,

where m denotes the Lebesgue measure. Using the relation

f4 o h = h0T2,

where h : x y-^ sin^(7r/2x), the density p of the invariant probability measure
for the map / is given by

dx

7ry^a:(l — x)

which can be checked using Mathematica

p{x) dx = —— dx (24.2)
dx

(24.3)

hlnverse[x_] := 2 ArcSin[Sqrt[x]] / P i ;

D[hinverse[x] , x]

Pi Sqrt[l - x] Sqrt[x]

The graph of the invariant probability density p is

rho [x_] : =

Plot [rho[x]

TextStyle -

FontSize -^

(1 / Pi) 1 / SqrtCx (1 -

, {x, 0, 1},]

^ {FontSlant -

12}, Frame ->

> ' ' I t a l i c

True] ;

x)]

9

As suggested by the numerical data used to plot logisticCDF, we verify that
the invariant probability density function is infinite at x — 0 and x = 1.

The cumulative distribution function F is the integral from 0 to x; that is,

F[x_] ;= Assviming[0 < x < 1,

Integrate[(1 / Pi) 1 / Sqrt[u (1

F[x]

- u)] , {u, 0, x}]]

436 24 Logistic Map

0 0,2 0.4 0.6 0.8 1

Fig. 24.8. Invariant probability density of the logistic map n i-̂ 4n(l — n).

2 ArcSin[Sqrt[x]]

Pi

plF = P l o t [F [x] ,

TextStyle

FontSize

{x, 0,

-> {FontSlant

-^ 12}, Frame -

l } ,P lo tS ty l e

-^ ' ' I t a l i c ' '

-̂ True] ;

-^ {RGBColorEO,

>

0 , 1] } .

Fig. 24.9. Invariant cumulative distribution function of the logistic map n t-̂ 4n(l-
n).

This plot is very similar to the Lis t Plot of the numerical data (called
logisticCDF) obtained above. The following plot, in which the numerical
CDF (in red) and the exact one (in blue) are represented shows a very good
agreement between the two results.

Show[{logisticCDF, p lF}] ;

24.2 Exact Dynamics for r = 4 437

Fig. 24.10. Comparing the exact invariant cumulative distribution function (in
blue) with the approximate one (in red) obtained above. The two curves cannot be
distinguished.

25

Lorenz Equations

In his historical paper, pubhshed in 1963, Lorenz [31] derived, from a model of
fluid convection, a three-parameter family of three ordinary differential equa
tions that appeared, when integrated numerically, to have extremely com
plicated solutions. In particular, he discovered that all nonperiodic solutions
of his deterministic model were bounded but showed irregular fluctuations.
Thirty years later [32] he described how he

had come across a phenomenon that later came to be called ^'chaos^^—
—seemingly random and unpredictable behavior that nevertheless
proceeds according to precise and often easily expressed rules.

The study of chaos can be traced back to Henri Poincare (1854-1912). In Sci
ence et Methode, first published in 1909, he already indicates the possibility for
certain systems to be subject to sensitive dependence on initial conditions [43].

The Lorenz equations are

dx
^ = ^ (y - x) ,
dy
-— = rx — y — xz,
dt ^
dz .
-— = xy — bz,
dt ^

where cr, r, and 6 are real positive parameters. The system is invariant under
the transformation {x,y,z) -^ {—x,—y,z). Although this system is rather
complicated, we can use NDSolve to solve it numerically.

NDSolve follows the general procedure of reducing step size until it tracks
solutions accurately. When solutions have a compHcated structure, however,
occasionally larger settings may need to be chosen for MaxSteps. With the

440 25 Lorenz Equations

setting MaxSteps -^ Inf ini ty there is no upper limit on the number of steps
used. Chosing a = 10, r = 28, and b = 8/3 we have

sol =

y'[t]

z ' [t]

x[0] =

{x, y

NDSolve

== 28 X

== x [t]

== z[0]

, z} , {t

[{x'

[t] -

y [t]
== 0

, 0,

[t] == 10 (y[t] -

y [t] - x [t] z [t]

- (8/3) z [t] .

. y[0] == 1},

40} , MaxSteps —>•

x [t]) .

>

Inf inity]

{{x -^ InterpolatingFunction[{{0., 4 0 . } } , <>] ,

y -^ InterpolatingFunction[{{0. , 4 0 . } } , <>] ,

z -^ InterpolatingFunction[{{0. , 4 0 . } } , <>]}}

We can view the projection of the three-dimensional trajectory on the planes
xOy, yOz, and xOz.

LorenzXY =
Imm] { t , 0,

TextStyle -

ParametricPlot[Evaluate[{x[t] , y [t] } / .
40}, Frame ->

-̂ {FontSlant -

Axes -^ None, FrameLabel

PlotPoints -> 1000];

True, AspectRatio -^ 1,

^ ' ' I t a l i c ' ' , FontSize -^

sol] ,

12},

—> {x, y } , PlotRange -^ Al l ,

-15 -10 -5 0 5 10 15 20

Fig. 25.1. Projection on the xOy-plane of a numerical solution of the Lorenz
equations for t G [0,40] and (xo, yo, ̂ o) = (0,0,1).

25 Lorenz Equations 441

LorenzYZ =

Imm] {t, 0

TextStyle -

ParametricPlot

, 40}, Frame -^

-^ {FontSlant -

Axes -^ None, FrameLabel

PlotPoints -^ 1000];

[Evaluate [{y [t], z [t]} /.

True, AspectRatio -^ 1,

•̂ "Italic'', FontSize ->

- {y,

sol] ,

12},

z}, PlotRange -^ All,

Fig. 25.2. Projection on the yOz-plane of a numerical solution of the Lorenz
equations for t G [0,40] and (xo, 2/o, ZQ) = (0,0,1).

LorenzXZ =

Imm] {t, 0

TextStyle -

PsirametricPlot [Evaluate [{x [t] , z [t] }

40}, Frame -^ True, AspectRatio -^ 1

-̂ {FontSlant -

Axes -^ None, FrameLabel

PlotPoints -^ 1000];

-̂ ''Italic", FontSize

—> {x, z}, PlotRange —^

/.

»

-^

sol] ,

12},

All,

-15 -10 -5 0 5 10 15 20

Fig. 25.3 . Projection on the xOz-plane of a numerical solution of the Lorenz
equations for t £ [0,40] and (xo, yo, zo) = (0,0,1).

442 25 Lorenz Equations

The orbit is obviously not periodic. As t increases, the orbit winds first around
the unstable fixed point (xi ,yi ,zi) = (-8 .45528. . . , -8 .45528. . . ,27) and
then around the unstable fixed point {xi,yi,zi) = (8.45528..., 8.45528..., 27)
without ever settling down. Its shape does not depend upon a particular choice
of the initial conditions.

If the initial point (XQ, VO^ZO) is either the first or the second unstable point,
the orbit turns around this point slowly moving away.

s o i l = NDSolveC { x ' [t] == 10 (y [t] - x [t]) ,

y'Ct] == 28 x [t] - y [t] - x [t] z [t] ,

z ' [t] == x [t] y [t] - (8 / 3) z [t] ,

x [0] == - 8 .45528 , y [0] == - 8 .45528 , z [0] ==

{ x , y , z } , { t , 0 , 4 0 } , MaxSteps -^ I n f i n i t y]

2 7 } ,

{{x —> Interpola t ingFmict ion[{{0. , 40 .}} , <>],

y -^ In te rpola t ingFunct ion[{{0. , 40 .}} , <>] ,

z -^ In te rpola t ingFunct ion[{{0. , 40 .}} , <>]}}

s o l 2 =

/ [t]

z ' [t]

x [0] =

{x, y

= NDSolveC { x ' [t]

== 28 x [t] -

== x [t] y [t]

y [t]

== 10 (y [t]

- x [t] z [t]

- (8 / 3) z [t] .

== 8 .45528 , y [0] =

, z} , {t, 0, 4 0 } ,

== 8 .45528 ,

MaxSteps —>

- X

>

2[0]

Inf:

: t]) .

== 2 7 } ,

Lnity]

{{x -^ Interpolat ingFiinct ion[{{0. , 40 .}} , <>] ,

y -^ Interpolat ingFiinct ion[{{0. , 40 .}} , <>] ,

z -^ In terpola t ingFimct ion[{{0. , 40 .}} , <>]}}

LorenzYZl = Paramet r i cP lo t [Eva lua te [y [t] , z [t] / . s o i l] ,

{ t , 0, 40}, Frame -^ True, AspectRatio —> 1,

TextStyle -^ {FontSlant -^ ' ' I t a l i c ' ' , FontSize -^ 12},

Axes -^ None, FrameLabel -^ {y>z}, PlotRange -> Al l ,

FrameTicks -^

{{- 9 . 5 , - 8 .5 , - 7 .5} , {25.5, 26 .5 , 27 .5 , 28.5},{},{}},

PlotPoints -^ 1000, DisplayFunction -^ Identity];

25 Lorenz Equations 443

LorenzYZ2 = ParametricPlot[Evaluate[y[t], z[t] /. sol2],

{t, 0, 40}, Frame -^ True, AspectRatio -^ 1,

TextStyle -^ {FontSlant -̂ ''Italic'', FontSize -^ 12},

Axes -̂ None, FrameLabel —> {y,z}, PlotRange -> All,

FrameTicks -̂

{{7.5, 8.5, 9.5}, {25.5, 26.5, 27.5, 28.5},{},{}},

PlotPoints —> 1000, DisplayFunction -̂ Identity];

Fig. 25.4. Projection on the yOz-plane showing the trajectory slowly moving away
from the unstable fixed points.

The divergence of the flow (trace of the Jacobian matrix) is equal to —{a-\-b-\-
1). Thus a three-dimensional volume element contracts, as a function of time
t, by a factor e-(^+^+l)^ It can be shown that there is a bounded ellipsoid
E CM.^ that all trajectories eventually enter. Taken together, the existence of
the bounded ellipsoid and the negative divergence of the flow imply that there
exists a bounded set of zero Lebesgue measure inside the ellipsoid E towards
which all trajectories tend. For the most complete study of the Lorenz model,
consult Sparrow [53].

26

The Morse Potential

In a paper published in July 1929 Philip Morse [38] used the potential

V{r) = De-2"(^-^^) - 2i)e-"(^-^^)

to model the vibrational energy of a diatomic molecule, where r is the bond
length, To the equilibrium bond length, a a parameter controlling the potential
width, and D the dissociation energy of the molecule measured from the
potential minimum.

The minimum of V{r) is equal to — D for r = ro, and V{r) tends to zero when
r tends to infinity.

Introducing the variable u = a{r — TQ), the potential takes the form De~^^ —
2De~^. It is represented below by the blue curve.

V[r_] := D Exp[- 2 a (r - rO)] - 2 D Exp[- a (r - rO)]

plV = Plot[V[r] / D / . r ^ u / a + rO, {u, - 1, 3} ,

PlotRange -^ All, AxesLabel -^ Ca(r-rO)'\ ''V(r) / D'},

AxesOrigin -^ {0, 0}, PlotStyle -> {RGBColor[0, 0, 1]},

DisplayFunction -^ Identity];

plH = Plot [u-̂ 2 - 1, {u, - 2, 2},

PlotStyle -^ {RGBColorCl, 0, 0]},

DisplayFunction -̂ Identity];

Show[{plV, plH}, TextStyle -^ {FontSlant -̂ "Italic'\

FontSize -^ 12}, DisplayFunction -^ $DisplayFunction];

446 26 The Morse Potential

a{r-rO)

Fig. 26.1. The Morse potential (in red) and its harmonic part (in blue).

The red curve is the harmonic part of the Morse potential. The angular fre
quency (Jo of the classical harmonic oscillations of a particle of mass m about
TQ is ay/2D/m because

Series [V[r], {r, rO, 2}]

- D + a^ D (r - rO)^ + 0[r - rO]̂

Although the Morse potential realistically allows for a diatomic molecule to
dissociate at infinite bond length, its behavior at very short bond length is
not realistic. The bond length should never be negative, and for r -^ 0 the
potential should, therefore, tend to infinity. This is not the case for the Morse
potential. But, numerically, V{0) is very large and, according to Morse, as
far as its eff"ect on the energy levels and wave function goes, it is as good as
infinity (see Morse's paper [38]).

The Schrodinger equation for a particle of mass m in the Morse potential is

where h is the Planck constant.

+ V{r)xl; = Ei/j,

Note that this equation is actually the radial part of the three-dimensional
Schrodinger equation using separation of variables in spherical coordinates.

In terms of the variable u the equation takes the form:

0.

And if we make a second transformation, letting x = e ", then

dx"^ X dx a^h^
^ = 0,

26 The Morse Potential 447

where ip{x) should be finite and continuous for x >0. The form of the equation
above shows that it only depends upon two parameters STT^m/a^h'^ and D.

Following Morse, we, once more, transform the equation. Let

Then, ii d = 27rVrrid/{ah)^ E = —a^/i^6^/(327r^m), and z — 2dx, the equation
becomes

d^F ,^ ^ ^ dF fSn^mD b+l\ ^ ^

At this point we can try using Mathematica to solve this equation. Let A
denote the constant ^Tr'^mD/a^dh?.

DSolveCz F''[z] + (b + 1 - z) F'[z] +

(A - (b + 1) / 2) F[z] == 0, F [z] , z]

{{F[z] -^ C[l] HypergeometricUE , 1 + b , z] +

. - 1 + 2 A - b
C[2] LaguerreLC , b , z]}}

The general solution is a linear combination of the confluent hypergeometric
function U{{h + 1 — 2^)/2,6 -f 1,2;) and the generalized Laguerre polynomial
L((2A - h - l) /2 , h-\-l,z) when {2A-h- l) /2 is a positive integer n. The
wave function should be well behaved on the positive semi-axis. Hence, the
only acceptable solution of the equation above is the generalized Laguerre
polynomial L^ for Re 6 > 1; the confluent hypergeometric function U behaves
as z^~^ for small z.

Because we made many changes of variables, we use Mathematica to find the
simplified expressions of A and h.

A

d

b

= (8 Pi

-̂ 2 Pi

= 2A -

2̂ m D)

Sqrt[2

2 n - 1

/

m

/

(a

D]

/s

^2 d h'^2)

/ (a h)

implify

/.

// Simplify

2 Sqrt[2] Sqrt[D m] Pi 4 Sqrt[2] Sqrt[D m] Pi
— 1 — 2 n +

a h a h

For n > 0, the last expession shows that A7rV2Dm/ah has to be greater than
1. The energy of the ground state is obtained by replacing n by 0 in the general
expression of the energy given above. We find

448 26 The Morse Potential

groundStateEnergy =

- a^2 h'^2 (2 A - 2 n - 1)'^2 / (32 Pi'^2 m) / . n -^ 0 / / Expand

dp- Y? a h Sqrt[D m]

32 m Pi-^ 2 Sqrt[2] m Pi

We mentioned above that the expression of the angular frequency CJQ of the
classical harmonic oscillations of a particle of mass m about TQ is a^jlDjvfi.

The ground state energy can, therefore, be written

^ _ ^ 1 /lo; 1 h^u?

which is the ground state energy of the harmonic oscillator shifted by D with
a correction in (^ + |) due to the anharmonicity of the asymmetric Morse
potential. This result suggests that the general expression of the energy levels
may also be written as the energy levels of the harmonic oscillator shifted by D
with an extra anharmonic correction. This can be checked using Mathematica.

energyLevels[n] =

- a'̂ 2 h'^2 (2 A - 2 n - 1)'^2 / (32 Pi'^2 m) / / Expand

2 , 2 2 , 2 2 , 2 2
a h^ a h n a h n

32 m Pi^ 8 m Pi^ 8 m Pi^
a h Sqrt[D m] a h Sqrt[D m] n

2 Sqrt[2] m Pi Sqrt[2] m Pi

That is.

Because h = 2A — 2n — 1 must be positive for the wave function to be finite,
the number of discrete energy levels is finite. They correspond to the values
n = 0 ,1 ,2 , . . . , [A — | J , where \x\ denotes the largest integer less than x (i.e.,
the Mathematica function Floor [x]). Historically, it was the first example of
a Schrodinger equation giving a finite number of discrete energy levels.

The theoretical results obtained by Morse are in good agreement with the
experimental data known at that time (see his paper [38]). For recent results
on diatomic molecules obtained using the Morse potential, visit the Web site
http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-8-376 which pres
ents animated wave functions.

27

Prime Numbers

27.1 Primal i ty

A positive integer p is a prime (number) if, and only if, it has only two distinct
divisors: 1 and p itself. The only divisors of 227 are 1 and 227 making 227 a
prime whereas 237, which has four distinct divisors 1, 3, 79, and 237, is not a
prime.

The Mathematica function PrimeQ tests primality. Using this function we
verify that 227 is a prime and 237 is not.

{PrimeQ[227], PrimeQ[237]}

{True, False}

The divisors of an integer can be found using the built-in function Divisors.

Divisors[237]

{1, 3 , 79, 237}

shows that 237 is not a prime.

The command Prime [n] gives the nth prime number. Remember that 1 is
not a prime, so Prime [1] = 2.

I Prime [57] |

269

450 27 Prime Numbers

The package NumberTheory'PrimeQ' implements primality proving. If Prov-
ablePrimeQ [n] returns True, then the number n can be mathematically
proven to be prime. In addition, according to the Mathematica book [68],
while the built-in primality testing function PrimeQ does not actually give a
proof that a number is prime, there are no known examples where PrimeQ
fails.

«NuinberTheory' PrimeQ'

PrimeQ[22507410677]

True

ProvablePrimeQ[22507410677]

True

Loading the package

«NumberTheory'NumberTheoryFunctions'

we can use many other interesting functions concerning primality. NextPri-
me[n] and PreviousPrime [n] give, respectively, the smallest prime greater
than n and the largest prime less than n.

NextPrime[22507410677]

22507410691

PreviousPrime[22507410677]

22507410637

The command Random [Prime, {nl , n2}] gives a prime in the range {nl ,
n2}.

Random[Prime, {100, 200}]

191

27.1 Primality 451

A Few Simple Exercises

1. Write a program generating twin primes^ that is, pairs of primes that differ
by 2.

Here is a simple program that selects all pairs of primes in a list of pairs of
odd integers which differ by 2.

Cases[Table[{2k + 1, 2k + 3}, {k,l, 500}],

{x_, y_} /; PrimeQ[{x, y}] == {True, True}]

{{3, 5}, {5, 7}, {11, 13}, {17, 19}, {29, 31}, {41, 43},

{59, 61}, {71, 73}, {101, 103}, {107, 109}, {137, 139},

{149, 151},{179, 181}, {191, 193}, {197, 199}, {227, 229},

{239, 241},{269, 271}, {281, 283}, {311, 313}, {347, 349},

{419, 421},{431, 433}, {461, 463}, {521, 523}, {569, 571},

{599, 601}, {617, 619}, {641, 643}, {659, 661}, {809, 811},

{821, 823}, {827, 829}, {857, 859}, {881, 883}}

We can also generate twin primes in a specific range, as done below.

Cases[Table[{2k + 1, 2k + 3}, {k, 50000, 50500}],

{x_, y_} /; Primeq[{x, y}] == {True, True}]

{{100151, 100153}, {100361, 100363}, {100391, 100393},

{100517, 100519}, {100547, 100549}, {100799, 100801}}

2. Study the primality of the numbers belonging to the sequence (31, 331, 3331,
33331, . . . ; .

The function

f [n .] := (1/3) (10-•n - 7)

generates the numbers of this sequence:

Table[f [n] , {n , 2 , 10}]

452 27 Prime Numbers

{31, 331, 3331, 33331, 333331, 3333331, 33333331,

333333331, 3333333331}

Testing primality, we find

l i s = ;

For[n = 2, n < 1000, n++,

If[PrimeQ[f[n]] == True, l i s = Append[lis, n]]] / / Timing

{15.625 Second, Null}

l i s

{2, 3 , 4, 5, 6, 7, 8, 18, 40, 50, 60, 78, 101, 151, 319,

382, 784}

The first seven elements of the sequence are prime numbers; then there are
only 10 more primes less than /(lOOO). Note that f{n) has n digits; the prime
number f [784] has, therefore, 784 digits!

3. Verify that for all integer values of n from — 39 to 40, n^ — n -\- Al takes
only prime values.

This is very simple. First note that if we change n into 1 — n, the quadratic
polynomial is left unchanged. To verify the property it is, therefore, sufficient
to verify it for n varying from 1 to 40. The command

l i s = Cases [Table [n'^2 - n + 4 1 , {n, 1, 40}] ,

p_ / ; PrimeQ[p] == True]

{41, 43, 47, 53, 61 , 71 , 83, 97, 113, 131, 151, 173, 197, 223,

251, 281, 313, 347, 383, 421, 461, 503, 547, 593, 641, 691,

743, 797, 853, 911, 971, 1033, 1097, 1163, 1231, 1301, 1373,

1447, 1523, 1601}

Length[l i s]

40

27.1 Primality 453

shows that all 40 different integers are primes.

4. Find all primes that can be written m? + v? where m and n are integers
not greater than 500,

An ordered sequence of integers of the form w? -f- n^, where m and n are
integers not greater than 500, is generated using the command

Clear[seq]

seq = In t e r s ec t i on [Sort [F la t ten [Table [m'̂ 2 + n'^2, {m, 1, 500},

{n, 1, 500}]]]] ;

Length[seq]

78901

Then, using the program

Clear[primesList]

primesList = ;

For[j = 1, j < Length [seq], j++.

If[PrimeQ[seq[[j]]] == True,

primesList = Append[primesList,seq[[j]]]]]

Length[primesList]

13724

we find that in the sequence of 78,901 integers that are the sum of two squares,
13,724 are primes. They are listed in primesList . Short [expression] prints
a short form of expression less than about one line long.

Short[primesList]

{2, 5, 13, 17, 29, « 1 3 7 1 7 » , 493049, 495017}

Actually it can be shown that a prime p is the sum of two squares if, and
only if, p = 2 or p = 1 mod 4. For a proof and a Mathematica program that,
given p, find m and n such that p = m^ -f n^ see [64]. As shown below, we
can verify that except the first element of primesList, which is 2, all other
elements are indeed congruent to 1 modulo 4.

454 27 Prime Numbers

For[k = 1, k <= Length[primesList] , k++,

I f [Mod[pr imesLis t [[k]] , 4] != 1, P r i n t [k]]] / / Timing

1

{0.058051 Second, Null}

5. Find ten primes in arithmetic progression.

The longest sequence of primes in arithmetic progression is

56211383760397 + 44546738095860 fc, where fc = 0 , 1 , . . . , 22.

It was discovered in 2004 by Markus Frind, Paul Jobling, and Paul Underwood
(see http://primes.plentyofRsh.com/).

Mathematica can easily confirm this result.

primesAP = Table[56211383760397 + k 44546738095860,

{k, 0, 22}];

PrimeQ[primesAP]

{True, True, True, True, True, True, True, True, True, True,

True, True, True, True, True, True, True, True, True, True,

True, True, True}

Length[%]

23

Coming back to our much simpler problem, we are looking for a sequence of
primes of the form pi + fcr, where pi and r are given and A: = 0,1,2, . . . , 9.

To solve this problem we use a theorem stating that if n elements of an
arithmetic progression are odd, then r can be divided by all primes less than
n.

Hence for n = 10, r can be divided by 2, 3, 5, and 7, that is, by 210. If we
choose r = 210, because this number can be divided by 3, 5, and 7, none of
these numbers can be the first term of the progression. The first term cannot
be 11 because the second one would be 221 which is not a prime. The relation
210 = 1 mod 11 implies that the remainder of each term of the progession

27.1 Primality 455

divided by 11 should increase by one unit and, consequently, the first term pi
of the progression should also be equal to 1 mod 11. Because pi must be odd
we can try a prime of the form 22j + 1, where j is an integer.

A hst of possible first terms is the list npl obtained below.

npl = {};
ForCj = 1. j < 100, j++.

If[PrimeQ[22 j + 1] == True, npl = Append[npl, 22 j + 1]]]

Length [npl]

30

We then build all 30 arithmetic progressions of length 10 whose first term is
an element of npl.

Clear[seq]

seq = Table[Table[npl [[i]] + 210 k, {k, 0, 9}] ,

{ i , 1, Length[npl]}] ;

And check the primality of each arithemetic progression.

For [i = 1, i < Length [npl] , i++,

1 = {};
For[k = 1, k < 10, k++,

I f [Pr imeQ[seq[[i , k]]] == Fa l se ,

1 = Append[l, s e q [[i , k]]]]] ;

If [1 == {}, P r i n t [s e q [[i]]]]]

{199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089}

Among the 30 arithmetic progressions, only one has prime terms.

Increasing significantly the number of elements of the list npl does not give
any new sequence of primes. For example:

456 27 Prime Numbers

Clear[npl]

npl = { } ;
For[j=l, j <

If [PrimeQ[22

10000,

J + 1]

J++>
== True, npl= Append[npl. 22 j+1]]]

Length[npl]

1952

Clear[seq]

seq = Table[Table[npl[[i]] + 210 k, {k, 0, 9 }] ,

{ i , 1, Length[npl]}];

For[i = 1, i < Length [npl] , i++,

1 = {};
For[k = 1, k < 10, k++.

If[PrimeQ[seq[[i, k]]] == False,

1 = Append[l, s e q [[i , k]]]]] ;

If [1 == { } , P r i n t [s e q [[i]]]]]

{199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089}

There is no new arithmetic progression.

27.2 Mersenne Numbers

A number of the form 2*̂ — 1 is called a Mersenne number after the French
theologian and mathematician Marin Mersenne (1588-1648) who observed
that if 2^ — 1 is prime, then n must be prime, but that the converse is not
necessarily true. Note that if n is not a prime it can be written as the product
of two positive integers n = a6, and the relation

2"^ - 1 -= (2^ - 1)(2^(^~^^ + 2"^^-^^ -h . . . + 1)

shows that the Mersenne number 2^ — 1 cannot be a prime if n is not a prime.

In order to define a function giving a list of the first Mersenne numbers, we
first generate a table of Mersenne numbers and the corresponding exponents,

27.2 Mersenne Numbers 457

asking Mathematica to only display those that are prime using the command
Select .

Select [Table [{n, PrimeQ[2'^n - 1]} ,

{n, 1, 100}], # [[2]] == True &]

{{2, True}, {3, True}, {5, True}, {7, True}, {13, True},

{17, True}, {19, True}, {31, True}, {61, True}, {89, True}}

To obtain the list of the exponents generating prime Mersenne numbers, we
transpose the list above and extract the first of the two sublists.

exponents = Transpose[Select[Table[{n, PrimeQ[2"n - 1]} ,

{n, 1, 100}], # [[2]] == True &]] [[1]]

{2, 3 , 5, 7, 13, 17, 19, 31 , 61 , 89}

A list of first prime Mersenne numbers is then obtained entering either the
command

Table[2^exponents[[k]] - 1 , {k. 1, Length [exponents]}] ;

or

Map[(2^# -- 1) &, exponents];

which is a bit faster.

These different steps can now be grouped together in the following function.

MersenneNumbersList[n_] := Module[{exponents, Ml i s t } ,

exponents = Transpose[Select [Table[{j , Pr imeQ[2"j- l]} ,

{ j , 1, n }] , # [[2]] == True &]] [[1]] ;

Mlist = Map[(2'^# - 1) &, exponents]; Mlist]

MersenneNumbersList[200]//Timing

{0.025853 Second, {3, 7, 31 , 127, 8191, 131071, 524287,

2147483647, 2305843009213693951, 618970019642690137449562111,

458 27 Prime Numbers

162259276829213363391578010288127, 1701411834604692317316\

87303715884105727}}

Remark . In as much as a Mersenne number is of the form 2^ — 1, its expression
in base 2 contains only Is.

Table[BaseForm[2'^n - 1, 2] , {n, 1,10}]

{l2 , l l 2 , I I I 2 ' m i 2 ' m i l 2 ' I I I I I I 2 ' I I I I I I I 2 '

I I I I I I I I 2 , I I I I I I I I I 2 , I I I I I I I I I I 2 }

It is not difficult to modify the function MersenneNumbersList into a function
searching for prime Mersenne numbers in a given range.

27.3 Perfect Numbers

Mersenne numbers are related to perfect numbers. A perfect number is an
integer that equals the sum of its proper divisors. Pythagoreans {circa 525
BC), who believed that all things are numeric, studied perfect numbers for
their mystical properties. The first perfect number is 6 which is equal to 1 +
2 + 3.

The following function gives the list of all perfect numbers less than a given
integer n.

perf ectNumbersList [n_Integer] : =

Module[{pNums = {}},

For[k=l , k <= n, k++,

I f [Tota l [Most[Divisors[k]]] == k,

pNums = Append[pNums, k]]] ; pNums]

Most [expression] removes the last element of expression.

perfectNumbersList[10000]

{6, 28, 496, 8128}

As shown below, there is no perfect number between 10,000 and 1,000,000.

27.3 Perfect Numbers 459

perfectNumbersList[1000000] / / Timing

{26.5845 Second, {6, 28, 496, 8128}}

We can build up a function per fee t Number Q [n] which gives True if n is
perfect.

perfectNumberQ[n_Integer] := If [Total [Most [Divisors [n]]] ==
n. True, False]

We can use this test to verify that 33550336, 8589869056, 137438691328, and
2305843008139952128 are perfect numbers. Let us first make perf ectNumberQ
Hstable.

SetAttributes[perfectNumberQ, Lis tab le]

perfectNumberQ [{33550336, 8589869056, 137438691328,

2305843008139952128}]

{True, True, True, True}

Leonhard Euler (1707-1783) proved that every even perfect number must he
of the form 2"^" (̂2"^ — 1), where the Mersenne number 2"̂ — 1 is a prime, a
result already suggested by Euclid {circa 300 BC). For instance, 28, which is
equal to 1 -h 2 + 4 + 7 + 14 is perfect and it can be written as 2^(2^ - 1).
Perfect numbers have many remarkable properties: They are triangular, that
is, of the form k{k + l) /2 and the sum of the reciprocals of the divisors of a
perfect number (including the reciprocal of the number itself) is always equal
to 2. Thus, for 28

1 1 1 1 1 1 ^
l + 2 + 4 + 7 + 1 4 + 2 8 = ' -

Using Mathematical we can easily check this property.

Tota l [1 / Divisors [496]]

Tota l [1 / Divisors[8128]]

460 27 Prime Numbers

We can also verify that only perfect numbers have this property.

sumReciprocalsTwo [n_Integer] : =

Module[{seq = {}},

For[k = 1, k <= n, k++,

If[Total[l / DivisorsCk]] == 2, seq = Append[seq, k]]]; seq]

sumReciprocalsTwo[10000]

{6, 28, 496, 8128}

sumReciprocalsTwo[1000000]

{6, 28, 496, 8128}

Two questions concerning perfect numbers are still unanswered: the first is
whether there are any odd perfect numbers, and the other is whether there
are infinitely many perfect numbers.

28

Public-Key Encryption

Public-key encryption is a cryptographic system that allows users to commu
nicate securely without having prior access to a shared secret key. It uses two
keys: a public key known to everyone and a private or secret key known only
to the recipient of the message. These two keys are related mathematically.

28.1 The RSA Cryptosystem

The RSA cryptosystem, named after its inventors R. Rivest, A. Shamir, and
L. Adleman is the most widely used pubhc-key system. It can be described as
follows [47].

1. Choose two large prime numbers p and q.

2. Choose an integer e satisfying the conditions I < e <pq and such that e
and (p— l)(g — 1) are relatively prime. Because (p— l)(g — 1) is necessarily
even, e, called the public exponent^ has to be odd but does not have to be
prime.

3. Find an integer d, called the secret exponent^ satisfying de = 1 modulo
{p — 1)(^ — 1); that is, d is the inverse of e modulo {p —\){q — \).

4. If t is a positive integer representing the plaintext, the ciphertext, c is the
positive integer t^ mod pq. Clearly t must be less than pq.

5. Then t = c^ mod pq.

462 28 Public-Key Encryption

The public key is the pair (e, n), where n = pq. The private key is d. Because
there is no easy method to obtain rf, p, and q knowing n and e, the two
numbers n and e can be made public.

The security of RSA is based upon the difference in the (short) computer time
needed to find a prime and the (huge) computer time needed to factorize a
very large prime.

28.1.1 ToCharacterCode and FromCharacterCode

The first task is to transform the plaintext message into an integer. There
exist many methods. One method is to use the ASCII code. The printable
ASCII characters have ASCII codes ranging from 32 to 126 with 32 being the
code of the space key.

ToCharacterCode[" "]

{32}

The function ToCharacterCode ["s t r ing"] gives the list of the integer codes
of the s t r i n g characters. For instance,

ToCharacterCode["Hello!"]

{72, 101, 108, 108, 111, 33}

Its inverse FromCharacterCode [n l , n 2 , . . .] gives a sequence of characters
with codes nl , n 2 ,

FromCharacterCode[{72, 101, 108, 108, 111, 33}]

Hello!

28.1.2 Obtaining the Integer t

To obtain the integer t representing the plaintext string message we use the
function encoding that associates a two-digit number to each ASCII character.

FromDigi t s [d ig i t sLis t , b] constructs an integer from the d i g i t s L i s t of
digits given in base b.

28.1 The RSA Cryptosystem 463

encodingString [str_String] : =

FromDigits[ToCharacterCode[str] - 30 / .

{2 -^ 02, 3 ^ 03, 4 -^ 04,5 -^ 05,6 -^ 06,

7 -^ 07, 8 -^ 08, 9 -> 09}, 100]

For example, if we want to send the following credit card number generated
below,

cardNumber = NumberForm[Random[Integer, {10^15, 10''16 - 1}] ,

DigitBlock —> 4, NumberSeparator ^ " "]

8788 1596 0150 8954

we will send the message:

t = encodingString["My credit card number is 8788 1596 0150

8954"]

47910269847170758602696784700280877968718402758502262526260219\

23272402181923180226272322

The inverse of the function encodingString is the function decoding defined

by

decoding [num_Integer] : =

FromCharacterCode[IntegerDigits[num, 100] + 30]

IntegerDigits [num, b] gives a list of the digits in base b of the integer num.
For example:

IntegerDigits[567891235, 100]

{5, 67, 89, 12, 35}

decoding[t]

My credit card number is 8788 1596 0150 8954

464 28 Public-Key Encryption

28.1.3 Choosing t h e Integer n = pq

Prime [n] gives the nth prime number. Remember that 1 is not a prime num
ber so the first prime is 2. This function does not accept very large arguments
as shown below.

p = Prime [10'^ 15]

Pr ime: : l a rgp : Argument 1000000000000000 in

Prime[1000000000000000]

i s too la rge for t h i s implementation. More

Prime[1000000000000000]

If we want to find the smallest prime greater than a given integer n, we use
the Mathematica function NextPrime but first we have to load the package
NumberTheory'NumberTheoryFunctions'.

«NumberTheory'NumberTheoryFunctions'

NextPrime [10*̂ 100] // Timing

{0.051037 Second, 1000000000000000000000000000\

00\

0000000000000000267}

Using this command we select two large prime numbers p and q and determine
n = pq.

p = NextPrime[Random[Integer, {10^51, 10^53}]]

11891461639329158254011406810889410238185522367888077

q = NextPrime [Random[Integer, {10^^51, 10'̂ 53}]]

21728946937105068453481798891922084545935148389546269

28.1 The RSA Cryptosystem 465

n = p q

2583889389656037294623718776432403118356838148793644975408\

11259358522106357481051858327332657241804934713

Length[IntegerDigits[n]]

105

We verify that t < n.

t < n

True

The basic idea underlying pubhc-key cryptography is that factoring the pubhc
number n is impossible.

28.1.4 Choosing the Pubhc Exponent e

The public exponent has to be less than n and have no common divisor with
(P - 1) (Q - 1) . Let

e = 341353751; |

and we verify that the exponent e has no common divisor with {p --l){q-l)

GCD [341353751, (p-1) (q-1)] |

28.1.5 Coding t

The function PowerMod[a, b , n] gives a^ modulo n. It is much more efficient
than directly evaluating Mod [a'^b, n] .

ModCt^e, n]

466 28 Public-Key Encryption

General::ovfl:

Overflow occurred in

computation. More

Overflown

PowerModCt, e, n] // Timing

{0.0002 Second,

22355315382064082573154055115096803325381759229461060136500\

9007685993549303214459904582492023875781149113}

c = 7o[[2]];

28.1.6 Choosing the Secret Exponent d

Because c is the transform of f, in order to obtain t from c we have to determine
the inverse transform. That is, we have to find the inverse d of the exponent e.
This exponent d has therefore, to satisfy the relation de = 1 mod {p—l){q—l).
It can be kept secret if, and only if, the two factors p and q oi n cannot be
found.

d = PowerMod[e, -1, (p-1) (q-1)]

18263235318417383192973960970857591364322786581308857201094970\

6838356319152957727482473924887886784336967

28.1.7 Decrypting t

Knowing d, we can define the function decoding inverse of the function

encodingString.

decoding[PowerModEc, d, n]]

My credit card number is 8788 1596 0150 8954

28.2 Summing Up 467

28.2 Summing Up

Finally, to encode a message we define the function encrypt [message] know
ing the public key {e, n},

encrypt [mess age .String] : =

PowerMod[FromDigits[ToCharacterCode[message] - 30 / .

{2 ^ 02, 3 -^ 03, 4 -^ 04, 5 -^ 05, 6 -> 06,

7 ^ 07, 8 -> 08, 9 ^ 09}, 100], e, n]

and decode the encrypted number using the function decrypt [number] know
ing the secret key {d,p,q} (the knowledge of p and q is essential for finding
d).

decrypt [num_Integer] : =

FromCharacterCode[IntegerDigits[PowerMod[num, d, n], 100] +

30]

cryptedMessage = encrypt["My credit card number is:

2889 3038 0146 0363"]

53908531144824148278773698484552834109533735158026594189691251\

906817249072781974667167189629829977068233

originalMessage = decrypt[cryptedMessage]

My credit card number is: 2889 3038 0146 0363

Remark 1. Although in ordinary arithmetic the multiplicative inverse of an
integer is a rational, using modulo arithmetic the multiplicative inverse of an
integer is also an integer. But, an integer having a common factor with the
modulus being not invertible, the exponent e and the modulus {p — l){q — 1)
have to be relatively prime.

Remark 2. Let ^ denote the Euler function, that is, the mapping which
associates with each integer n the number (p{n) of positive integers relatively
prime to n. If the factorization of n in prime factors is Pi^P2^ . • • , then (^(n) =
n(l — l /p i) (l — I / P 2) In the case of the RSA cryptosystem, we used
the public number n, the product of two prime numbers p and q, therefore,
V(n) = n(l - l/p)(l - IIq) = {p - l){q - 1).

468 28 Public-Key Encryption

In practice, the numbers p and q are much larger than those we considered in
the example above.

Many more details on crytography can be found in [37]. See also The Magic
of Public Key Encryption^ a 40-page paper that can be downloaded from
www.hifn.com/docs/a/The-Magic-of-Pubhc-Key-Encryption.pdf.

29

Quadratrix of Hippias

In 430 BC, Hippias (460 BC-400 EC) of Elis (in the Peloponnese, Greece), a
contemporary of Socrates, discovered the quadratrix, a curve he used for tri
secting an angle. As a matter of fact, the quadratrix may be used for dividing
an angle into any number of equal parts. In 350 BC Dinostratus (390BC-
320BC) used the quadratrix to square the circle.^

Trisecting an angle and squaring the circle were classical problems of Greek
geometry. The solutions of these two problems given by Hippias and Dinos
tratus, are not solutions using a ruler and compass. They are based on the
possibility of dividing a segment into a given number of equal parts. Hippias
and Dinostratus are mentioned in the works of the famous Greek geometer
Pappus of Alexandria {circa 290-circa 350).

29.1 Figure

Let ABCD be the vertices of a unit square and draw the arc of the circle cen
tered at A of radius AB — 1 (in orange in Figure 29.1 below). The quadratrix
(in red in the figure) is the locus of the point P intersection of the segment
B'C (in blue in the figure) moving down uniformly parallel to itself from BC
to AD and the segment AA! (in blue in the figure) rotating clockwise about
A uniformly from AB to AD. The thicker blue lines indicate the positions at
time i of the line B'C and AA!.

The parametric equation of the quadratrix is then given by

^Dinostratus was the brother of Menaechmus (380 BC-320 BC) who is credited
for having discovered that the ellipse, parabola, and hyperbola are conic sections that
were later rigorously studied by Appolonius of Perga (262 BC-190 BC).

470 29 Quadratrix of Hippias

x[t_] := (1- t) Cot [Pi (1- t) / 2]

y[t_] := 1 - t

Note that the point of the quadratrix on AD is not defined and can only be
obtained as a hmit.

L i m i t e d - t) Cot[Pi (1 - t) / 2] , t -^ 1]

2

Pi

To draw the figure we first load the package Graphics'Arrow' in order to be
able to draw arrows.

« G r a p h i c s ' Arrow'

C lea r [tx t]

plLocus = Pa ramet r i cP lo t [{x[t] , y [t] } , { t , 0, 1},

P lo tS ty le -> {RGBColorCl, 0, 0] } ,

AspectRatio -^ Automatic, DisplayFunction -^ I d e n t i t y] ;

p lC i rc l e = Graphics[{RGBColorCl, 0 . 5 , 0] ,

Ci rc le [{0 , 0} , 1, {0, Pi / 2}]}] ;

plAngle = Graphics[{Thickness[0.007], RGBColor[0, 0, 1] ,

Ci rc le [{0 , 0} , 0 . 3 , {51 Degree, 90 Degree}]}];

plTime = Graphics[{Thickness[0.007], RGBColor[0, 0, 1] ,

Line[{{0.9, 0.567}, {0.9 ,1}}]}] ;

square = Graphics[Line [{{0, 0} , {0, 1}, {1 , 1}, {1 , O},

{0, 0}}]] ;

segmentABprime = Graphics[{RGBColor[0, 0, 1],

Line[{{0, 0}, {Cos[51 Degree], Sin[51 Degree]}}]}];

segmentAQ = Graphics[{RGBColor[0, 1, 0],

Line[{{0, 0}, {Cos[17 Degree], Sin[17 Degree]}}]}];

plHorizontall = ParametricPlot[{t, 0.567}, {t, 0, 1},

PlotStyle -^ {RGBColor[0, 0, 1]},

AspectRatio —^ Automatic, DisplayFimction -^ Identity];

plHorizontal2 = ParametricPlot[{t, 0.189}, {t, 0, 1},

PlotStyle -> {RGBColor[0, 1, 0]},

AspectRatio -^ Automatic, DisplayFimction -^ Identity];

29.2 Trisecting an Angle 471

drawArrows = Graphics[{RGBColor[0, 0, 1] ,

{Arrow[{0.898, 0 .7} , {0.898, 0 .68}] ,

Arrow[{0.131, 0.271}, {0.143, 0.265}]}}];

txtFont = { ' ' H e l v e t i c a ' \ 12};

t x t = Graphics [{Text[FontForm[" A ' \ t x t F o n t] , {-0.03, 0}] ,

Tex t [FontForm[' 'B ' ' , t x t F o n t] , {- 0 .03, 1}] ,

Tex t [FontForm[' 'C ' ' , t x t F o n t] , {1.03, 1}] ,

Tex t [Fon tForm[' 'D ' \ t x t F o n t] , {1.03, 0}] ,

T e x t [F o n t F o r m [' ' P ' ' , t x t F o n t] , {0.46, 0 .6}] ,

Tex t [Fon tFonn[' 'A ' " , t x t F o n t] , {0.65, 0 .8}] ,

Tex t [FontForm[' 'B ' ' ' , t x t F o n t] , {- 0 .03 , 0.567}],

Text[FontFor in[' 'C ' 'S t x t F o n t] , {1.03, 0.567}],

Text[FontFoni i [' 'H ' ' , t x t F o n t] , {- 0 .03 , 0.189}],

Tex t [FontForm[' 'Q" , t x t F o n t] , {0.64, 0 .2}] ,

Text[FontForm[' 'L ' \ tx tFon t] ,{0 .637 , - 0 .04}] ,

Text[FontFonii[TraditionalFonn[t] , t x t F o n t] , {0.92, 0 .8}] ,

Text [FontForm [Tr ad i t ionalFonn[7r t / 2] , t x t F o n t] ,

{ 0 . 1 , 0 .36}]}] ;

Show[{plLocus, p l C i r c l e , plAngle, plTime, drawArrows,

square, segmentABprime, segmentAQ, p lHor izon ta l l ,

p lHorizonta l2 , t x t } . Ticks -^ None, Axes -^ None,

DisplayFunction -^ $DisplayFunction];

Output represented in Figure 29.1.

29.2 Trisecting an Angle

Let 0 be the angle to divide in three equal parts. We have

^ e arc A'D AB' ^ . . , ^ ^
2 - = ^ ,^^ = —— = AB' since AB = 1.

TT arc BA'D AB
So

e = arc A'D = ^ AB'
2

is proportional to AB'.

To trisect the angle 6, we consider the point H on AB such that AH = AB' /Z
and draw a parallel to AD through H that meets the quadratrix at Q. The
angle QAD is exactly the third of the angle PAD = 6.

472 29 Quadratrix of Hippias

B

Bl

H

nt
2 /

\ y

X A -

W-

f

*

\
\

\
\
\

vi-'^'"^^\

c

D

Fig. 29.1. Construction of the quadratrix).

Note that this method allows draw an angle equal to any rational fraction of
e.

29.3 Squaring the Circle

Once we admit the existence of the limit point L on the side AD of the square,
using only a ruler and a compass we can construct a square with a side length
equal to 0 r . First from a segment of length 2/7r we construct a segment half
the length . There exist various methods . As shown below, you draw two
circles of radius 2/7r centered respectively at O = (0,0) and L = (2/7r, 0) and
draw the line going through the points of intersection of these two circles to
determine the point M on the line joining the centers of the two circles. We
have OM = I/TT.

29.3 Squaring the Circle 473

circlel = Graphics[Circle[{0,

circle2 = Graphics[Circle[{2

centersSegment = Graphics[Line

perpSegment = Graphics[Line[{{

txtFont = {"Helvetica'', 12};

txt = Graphics[{Text[FontForml

Text[FontForm[" L'', txtFont],

Text[FontForm[''M " , txtFont],

0}, 2

/ Pi,

[{{0,

1 / P-

C C Q , ,

{2 /

/ Pi]];

0},

0},

u -

2 / Pi]];

{2 / Pi, 0}}]];

1}, {1

, txtFont] ,

Pi

{1 / Pi

Show[{circlel, circle2, centersSegment,

AspectRatio -^ Automatic];

+ 0.05,

+ 0.05,

/ Pi, 1}}]];

{- 0.05, 0}],

0}],

0.05}]}];

perpSegment, txt},

Fig. 29.2. Construction of a segment of length I/TT.

Clear[txt]

drawCircle = Graphics[Circle[{0,

drawDiameter =

{(1 + Pi) / 2,

drawloverPi =

{(1 - Pi) / 2,

drawAC = Grapt

{(1- Pi) / 2,

= Graphics[Line[{{-

0}}]];

Graphics[Line[{{(1

- 1 / Pi}}]];

lies[Line [{{- (1 +

-1 / Pi}}]];

0}
(1

, (1 + Pi) >

+ Pi) / 2.

- Pi) / 2, 0}

Pi) / 2, 0},

^ 2,

0}.

»

{0, Pi}]];

474 29 Quadratrix of Hippias

drawSqPi = Graphics[{RGBColor[l, 0

Line[{{(l - Pi) / 2, 0}, {(1 - Pi)

drawDE = Graphics[Line[{{(1 - Pi)

{(1 + Pi) / 2, (3}}]]; txtFont = {'

txt = Graphics[{Text[FontFormC" A'

{- (1 + Pi) / 2

TextCFontFormC'

{(1 - Pi) / 2 +

TextCFontFormC

{(1 - Pi) / 2 +

TextCFontFormC

|{(1 - Pi) / 2 +

Text[FontForm['

{(1 + Pi) / 2 +

Text[FontForm['

{(1 - Pi) / 2+0

- 0.15, 0}],

'B" , txtFont] ,

0.15, 0.15}],

'C'\ txtFont] ,

0.15, -1 / Pi}],

'D'', txtFont],

0.15, 1. 1}],

'E'', txtFont],

0.15, 0}],

'F'', txtFont],

.15,Sqrt[]-0.15}]}]

, 0],

/ 2,

/ 2,

Sqrt [Pi] }}]}];

1}.
Helvetica", 12};

', txtFont] ,

>

Show[{drawCircle, drawDiameter, drawloverPi, drawAC,

drawDE, drawSqP i, txt}, AspectRatio -^ Automatic] ;

In Figure 29.3 below, we show how to construct a segment of length ^/1T. We
draw a horizontal segment AB = 1, and determine the list of points C, D^
E, F as follows. Draw a vertical downward segment BC — I/TT, a vertical
upward segment BD = 1, the parallel DE to AC where E is on the line
AB, and BE = TT, and finally F on the line BD at the intersection with the
upper semi-circle centered at O the middle point of AE and radius (1 + 7r)/2.
Because BF"^ = BA x BE = TT, we have constructed a segment BE of length

Fig. 29.3. Construction of a segment of length y/ir.

30

Quantum Harmonic Oscillator

After having finished his chemistry studies, Erwin Schrodinger (1887-1961)
devoted himself to Itahan painting for many years and then took up botany
and pubhshed a series of papers on plant phylogeny. During the years 1906 to
1910, as a student at the University of Vienna, he was greatly influenced by
Fritz Hasenohrl's lectures on theoretical physics. He then acquired a mastery
of eigenvalue problems in the physics of continuous media, thus laying the
foundation of his future important work. Moving very often, he occupied many
academic positions starting as assistant to Max Wien (1866-1938). His most
fruitful period took place when he replaced Max von Laue (1879-1960) at the
University of Ziirich, where he enjoyed contacts, in particular, with Hermann
Weyl (1885-1955) who was to provide the deep mathematical knowledge that
would prove so helpful to Schrodinger. Having never been very satisfied by the
quantum condition on orbits in Niels Bohr's (1885-1962) atomic model, he
believed that atomic spectra should be determined by some kind of eigenvalue
problem. In 1926, he discovered the wave equation that bears his name. In
1933, "for the discovery of new productive forms of atomic theory," he shared
with Paul Adrien Dirac (1902-1984) the Nobel Prize in Physics.

The quantum harmonic oscillator is among the most important model sys
tems in quantum mechanics because the dynamics of many systems near an
equilibrium configuration can often be modeled by one or more harmonic
oscillators.

30.1 Schrodinger Equat ion

The Schrodinger equation for the harmonic oscillator is

h^ Cpi^ ^ 1 2 2 , p /

476 30 Quantum Harmonic Oscillator

If we define the reduced units of length ^ and energy e such that

2̂ + r v̂ = e v̂ -

h ^ 1 ^ f^^

t and E = —— e,
muj 2

the reduced Schrodinger equation reads

For very large ^, the term ^'^ip becomes preponderant and we can neglect the
term eip. This suggests defining a new function (f by tp{^) = (p{^) exp(-^^/2).
The differential equation satified by (p is then

We can solve this equation in many different ways. If we put e = 2n + 1 where
n is an integer, we obtain the Hermite equation:

It can be solved using the command

! i _ ^ _ 2 e : ^ + (2 e - l V = 0.

DSolve [phi" [xi] - 2 xi ph i ' [x i] + 2 n phi [xi] == 0,

p h i [x i] , x i]

j j p h i [x i] -> C[l] HermiteH[n, xi] +

C[2] HypergeometriclFlI - - , - , x i ^ | | |

Because a wave function has to be square integrable, the only acceptable solu
tion is the Hermite polynomial i /n(0- Plotting the first Hermite polynomials
we obtain

Table[HermiteH[n, x i] , {n, 0, 4}]

{1, 2 x i , - 2 -h 4 x i ^ , - 12 xi + 8 x i ^ , 1 2 - 4 8 x i^ + 16 xi"^}

Plot [{2 x i ,

12 - 48 xi^

PlotStyle -

RGBColor[0,

- 2 +

2 + 16

4 xi^2,

xi^4}.

-̂ {RGBColor[0,

1, 1]

>

{x i .

0 ,

, RGBColor[l

1 2 + 8 x i~2 .

- 2 . 2}]

1] , RGBColorEO,

, 0, 0]}]

1, 0] ,

30.1 Schrodinger Equation 477

Fig. 30.1. Hermite polynomials Hi, H2, H3, and H^.

The ground state corresponds to n = 0; that is,

M^) = exp(-eV2),

and the first excited states are

^ i (0 = 2e-^V2^

V^3(0 = (-12^ + 8 a e - ^ ' / ^

^4(^) ^ (1 2 - 4 8 ^ 2 ^ 16^4) e -^ ' /^

The eigenstates should have a norm equal to 1. Using Mathematica we find
the norms of the first wave functions.

normPsi = Table [In tegra te [(HermiteH[n,xi] Exp[- (l /2) xi ' '2] ,

{xi , - I n f i n i t y , I n f i n i t y }] , {n,0, 5}]

{Sq r t [P i] , 2 S q r t [P i] , 8 S q r t [P i] , 48 S q r t [P i] , 384 S q r t [P i] , 3840
Sqr t [P i]}

The first normed eigenstates are, therefore, given by

^2/2

Mi) = ^
Mi) = tm£^^

_ V2$e- '̂/̂
1-1/4 5

2V67ri/4

MO
^ 3 l ? i V37ri/4 '

Mi) = ''-'lj,:jr' ,Mi) =
More generally, the normed eigenstates are given by

_ ^ (1 5 - 2 0 e + 4 r) e
2v/l57ri/4

4^p-«" /2

478 30 Quantum Harmonic Oscillator

Because the Hamiltonian is invariant under the transformation x
verify tha t the eigenstates are either even or odd functions.

—X, we

psi[n_, xi_] : =

(Exp[- xi'^2/2] / Sqrt[2'^n n!

Table[Plo t [p s i [n , x i] , {xi ,

P lo tS ty le -^ {RGBColor[0, 0,

SqrtCPi]] HermiteHEn, xi]

- 6, 6} ,

1]}] , {n, 0, 5}] ;

0 . 6

0 . 4

0 . 2

2 4 6

Fig. 30.2. Normed wave functions ipo and -01.

Fig. 30.3. Normed wave functions -02 and ips.

Fig. 30.4. Normed wave functions ip4 and ips-

30.2 Creation and Annihilation Operators 479

30.2 Creation and Annihilation Operators

Let us now define the creation a"̂ and annihilation a~ operators by

y z \ ax/ yZ\ ax/

creationOperator[f_] := (- D[f, x] + x f) / Sqrt [2]
annihilationOperator[f_] := (D[f, x] + x f) / Sqrt [2]

The commutation relation is

annihilationOperator[creationOperator[f[x]]] -
creationOperator[annihilationOperator[f[x]]] / / Simplify

f [x]

that is
[a ^a'^]=a a'^—a^a = 1.

We can express the Hamiltonian of the harmonic oscillator in terms of the
creation and annihilation operators. Because

annihilationOperator[creationOperator[psi[x]]] +

creationOperator[annihilationOperator[psi[x]]] / / Simplify

x^ ps i [x] - psi"[x]

we can write

Hip = -{a~a'^ + a'^a~)il).

If we now consider the action of the product a^a~ on the different normed
wave functions ijjn defined above, we find

creationOperator[annihilationOperator[psi[0,x]]]

creationOperator[annihilationOperator[psi[1,x]]] ==

p s i [l , x]

480 30 Quantum Harmonic Oscillator

True

creationOperator[annihilationOperator[psi[2,x]]]

2 p s i [2 , x]) / / Simplify

True

and more generally,

creationOperator[annihilationOperator[psi [n ,x]]]

n ps i [n ,x]) / / Simplify

True

that is,

Hence, taking into account the expression of the Hamiltonian and the com
mutation relation, we have

H^jjn = •::{(i~a'^ -\-a'^a~)ipn

31

Quantum Square Potential

The problem is simple to solve analytically. Here we use Mathematica to obtain
numerical results.

31.1 The Problem and Its Analytical Solution

The Schrodinger equation for the square-well potential is

ft2 (p^

where

Let

and

2mdx^+'"* = ^ *

I Vo, II |a;| < a.

, _ v / 2 n p | _ ^2miVo - \E\
K — - , q —

h

2mVoa^
fi2 ' y = qa.

Then (because E is negative)

X J a

The symmetry of the Schrodinger equation implies that the eigenfunctions are
either even or odd.

The even solutions are

482 31 Quantum Square Potential

il){x) = <

Acosqx^ if |x| < a;

Be^^, if X < - a ;

5e-^^, i f x > + a ;

and the continuity of the eigenfunctions and their derivatives at ±a imposes

A cos qa = Be'^""

k = q tan qa ^ — = tan y.
y

The odd solutions are

Csin^x, if |x| < a;

ip{x) = { De^^, if X < - a ;

-De-^^ , i f x > + a ;

with

-Csinga = De — ka

k = qcotqa^ — = — cot y.

31.2 Numerical Solution

Choosing a as the unit of length (i.e., replacing a by 1), the Schrodinger
equation becomes

where

u{x) = h^'^ '^1^1^''
^ ^ \A(e + l) , i f | x | < l ;

with e = E/VQ' Bound states correspond to — 1 < e < 0.

In order to determine the numerical values of y in the case of even eigenfunc
tions, we draw the graphs of the two functions

X/A3 ,2
y Ĥ -1̂ and y i-̂ tan y.

y

to estimate starting points for FindRoot.

31.2 Numerical Solution 483

31.2.1 Energy Levels for A = 16

lambda = 16;

Plot [{Sqrt [lambda - y'^2] / y, Tan[y]},

{y, 0, 4} , PlotRange -^ {0, 4} ,

TextStyle -> {FontSlant -^ " I t a l i c ' \ FontSize -- 12}];

Fig. 31.1. Graphs of the functions y i—>> y/\ — ^/y and y t-> tan?/ in the interval
[0,4].

There are two solutions. We can find their approximate values by selecting
the graphics and pointing the intersection points while pressing the command
key. We obtain yi = 1.24 and 2/3 = 3.6. Using FindRoot we get more precise
values.

yl = y / . FindRoot[Sqrt[lambda-y^2] / y == Tan[y], {y, 1.24}]

1.25235

yl = y / . FindRoot[Sqrt[lambda-y^2] / y == Tan[y] , {y, 3.6}]

3.5953

Repeating the same procedure for odd eigenfunctions, we first draw the graphs

484 31 Quantum Square Potential

lambda = 16;

Plot [{Sqrt [lambda - 7*̂ 2] / y, - Cot[y]},

{y, 0, 4}, PlotRange -> {0, 4},

TextStyle -^ {FontSlant -^ "Italic'', FontSize -•̂ 12}] ;

Fig. 31.2. Graphs of the functions y i-> \/X~y^/y and y »
[0,4].

- cot y in the interval

Pointing the intersection points while pressing the command key, we obtain
2/2 = 2.47. Using FindRoot we get the more precise value:

y2 = y / . FindRoot [Sqrt [lambda - y'̂ 2] / y == - Cot[y] ,

{y, 2.47}]

2.47458

The corresponding values of the energy levels (in unit VQ) are:

energyl =

energy2 =

energyS =

(-

(

(

1 + yl'^2 / lambda) '

- 1 + y2^2 / lambda)

- 1 + y3^2 / lambda)

VO

VO

VO

- 0.192111 VO

- 0.617279 VO

- 0.901976 VO

31.2 Numerical Solution 485

31.2.2 Figure Representing the Potential and the Energy Levels

The following commands generate the figure showing the potential and the
energy levels.

V[x_ / ; Abs[x] > 1] := 0

V[x_ / ; AbsEx] < 1] := - 1

P lo t [V[x] , {x, " 2, 2} ,

P lo tS ty le -^ Thickness[0.015],

PlotRange -^ {0.05, - 1.05}, Axes -^ Fa l se ,

Ticks -^ {None, Automatic},

DefaultFont -^ { ' ' T i m e s ' ' , 12},

Epilog -^ ({Line[{{l, energyl} , {- 1, energyl}}] ,

T e x t [' ' E l ' ' , { 1.25, energyl}] ,

Text[ToString[energyl], {0, energyl + 0.05}],

Line[{{l, energy2}, {- 1, energy2}}] ,

Text[''E2'', {1.25, energy2}],

Text[ToString[energy2], {0, energy2 + 0.05}],

Line[{{l, energyS}, {- 1, energyS}}],

Text[''E3'', {1.25, energyS}],

Text[ToString[energyS], {0, energyS + 0.05}],

Text[''- VO'', {- 1.25, - 1}],

Text[''0'', {- 0.8, 0}]} /. VO -^ 1)];

-VO

-0.192111 VO

-0.617279 VO

-0.901976 VO

E3

E2

El

Fig. 31.3. Square potential well and energy levels.

486 31 Quantum Square Potential

31.2.3 Plotting the Eigenfunctions

We can plot the corresponding eigenfunctions. The operator StringJoin con
catenates strings.

Clear[q, k, PsiEvenl]

q = y l ; k = Sqrt [lambda - yl''2] ;

PsiEvenl [x_ / ; x < - 1] := (Cos[q] Exp[k]) Exp[k x]

PsiEvenl [x_ / ; Abs[x] < 1] := Cos[q x]

PsiEvenl[x_ / ; x > 1] := (Cos[q] Exp[k]) Exp[-k x]

PsiEvenlnorm = Sqrt [NIntegrate [(PsiEvenl [x]) ''2, {x, -
Inf in i ty , I n f i n i t y }]] ;

normedPsiEvenl[x_] = (1 / PsiEvenlnorm) PsiEvenl[x];

Plot[normedPsiEvenl[x], {x, - 3 , 3} ,

PlotStyle -^ {RGBColorCO, 0, 1] } ,

Epilog -^ {Line[{{l , - 1} , {1 , 1 } }] ,

Line[{{- 1, - 1} , {- 1, 1}}]} ,

TextStyle -^ {FontSlant -^ ' ' I t a l i c ' ' , FontSize -^ 12},

Frame -^ True, FrameLabel -^ { " x ' ' , " T / ; " } ,

PlotLabel -^ StringJoin["E = ' ' , ToString[energy 1]]] ;

0.8

0.6

0.4

0.2

0

E =

I
^

-0.901976 VO

-

•

-3 -2 -1 0
X

2 3

Fig. 31.4. Eigenfunction associated with the energy level Ei = —0.901976 VQ.

31.2 Numerical Solution 487

Clear[q, k, Psi0dd2]

q = y2; k = Sqrt[lambda - y2^2];

Psi0dd2[x_ /; X < -1] := (- Sin[q] Exp[k]) Exp[k x]

Psi0dd2[x_ /; Abs [x] < 1] := Sin[q x]

Psi0dd2[x_ /; X > 1] := (Sin[q] ExpCk]) Exp[- k x]

Psi0dd2norm = Sqrt [NIntegrate[(Psi0dd2[x])'̂ 2, {x, - Infinity,
Infinity}]] ;

normedPsi0dd2[x_] = (1 / Psi0dd2norm) Psi0dd2[x];

eigenF2 = Plot[normedPsi0dd2[x], {x, - 3, 3},

PlotStyle -̂ {RGBColor[0, 0, 1]},

Epilog ^ {Line[{{l, - 1}, {1, 1}}],

Line[{{- 1, - 1}, {- 1, 1}}]},

TextStyle -̂ {FontSlant -̂ "Italic'', FontSize -> 12},

Frame -^ True, FrameLabel ^ { ' ' x " , ''ip''},

PlotLabel -̂ StringJoin[''E = '', ToString[energy2]]];

0. 15

0.5

0.25

0

-0.25

-0.5

-0.15

E = -0.611219 VO

:

y :

\

-

-

3 -2 1 0
X

2 3

Fig. 31.5. Eigenfunction associated to the energy level E2 = —0.617279 Vo-

488 31 Quantum Square Potential

Clear[q, k.

q = y3; k =

PsiEven3[x_

PsiEven3[x_

PsiEven3[x_

PsiEvenl]

Sqrt [lambda

/; X < - 1]

/; AbsEx] <

/; X > 1] :=

- y3^2];

:= (CosCq] ExpCk]) Exp[k x]

1] := CosCq x]

(Cos[q] Exp[k]) Exp[- k x]

PsiEvenSnorm = Sqrt [NIntegrate[(PsiEven3[x])''2, {x, -
Inf inity, Inf inity}]];

normedPsiEven3[x_] = (1 / PsiEven3nonn) PsiEven3[x];

Plot[nonnedPsiEven3[x],

PlotStyle -

Epilog -̂ {

Line[{{- 1,

TextStyle -

^ {RGBColorCC

Line[{{l, - 1

-> {FontSlant

{x, - 3, 3},

), 0, 1]},

}, {1, 1}}],

1}}]},
-̂ ''Italic'', FontSize -̂ 12},

Frame -> True, FrameLabel -̂ {"x'', ''i/j''},

PlotLabel --̂ StringJoin '/'E = '', ToString[energy3]]];

0. 15

0.5

0.25

^ 0

-0.25

-0.5

-0.75

E = -0.192111 VO

•

-3 -2 -1

Fig. 31.6. Eigenfunction associated with the energy level E3 = —0.192111 VQ.

0
X

2 3

Our results agree with the general property of one-dimensional bound states:

If bound states are listed in the order of increasing energies, the nth eigen
function has n — 1 nodes.

32

Skydiving

We study various physical properties of a diver who jumps and falls freely from
an airplane at a moderate altitude before pulling the ripcord of a parachute.

Upon leaving the airplane, the diver accelerates downwards due to the force
of gravity. As her velocity increases, the air resistance (proportional to the
square of her velocity) exerts a greater retarding force, and eventually balances
the pull of gravity. From this time onward, the diver descends at a uniform
velocity.

32.1 Terminal Velocity

We first determine the free-fall diver's velocity as a function of time and find
the value of the terminal uniform velocity, g is the acceleration due to gravity
and kdiver the coefficient of air resistance of the diver. Note that the terminal
velocity in m/s is given by

terminalVeloci ty = Sqr t [g / kdiver]

49.4975

490 32 Skydiving

g = 9.8; kdiver = 0.004;

s o i l = NDSolve [{vl ' [t] == - g + kdiver *(vl[t]) '^2,

v l [0] == 0} , v l , { t , 0, 100}];

plvl = Plot[Evaluate[vl[t] / . s o i l] , { t , 0, 40},

PlotRange -^ {0, - 60},

PlotStyle -^ {RGBColor[0, 0, 1]}, Axes -> False,

Frame -^ True, FrameLabel -^ {''time'\ ''velocity''},

RotateLabel -^ False, DefaultFont —> {''Helvetica'', 14}];

Fig. 32.1. Free-fall diver's velocity as a function of time.

32.2 Delaying Parachute Opening

We determine the diver's velocity as a function of time assuming that the
diver opens the parachute after 30 seconds, kparachute is the coefficient of
air resistance of the parachute.

g = 9.8; kdiver = 0.004; kparachute = 0.4;

sol2 = NDSolve [{v2'[t] == - g +

If [t < 30, kdiver, kparachute] *(v2[t])^2, v2[0] ==

v2, {t, 0, 100}];

plv2 = Plot[Evaluate[v2[t] /. sol2], {t, 0, 40},

PlotRange -^ {0, - 55}, PlotStyle -> {RGBColor[0, 0,

Axes -^ False, Frame -^ True,

FrameLabel -^ {"time", "velocity"}.

RotateLabel -^ False, DefaultFont -^ {"Helvetica",

0}.

1]}.

14}];

32.2 Delaying Parachute Opening 491

0

-10

-20

•^-30

-40

-50

0 10 20
time

1

30 40

Fig. 32.2. Diver's velocity as a function of time when parachute opening is delayed.

In this case, the terminal velocity is

terminalVelocity = Sqrt[g / kparachute]

4.94975

The diver's velocity is found to decrease from approximately 50 m/s to 5 m/s
in less than one second as confirmed by the plot below.

Plot[Evaluate[v2[t] /. sol2], {t, 29.9, 31},

PlotRange -^ {O, - 55}, PlotStyle -^ {RGBColor[0, 0,

Axes -^ False, Frame -^ True,

FrameLabel -> {''time'', ''velocity"}.

RotateLabel -^ False, DefaultFont -> {"Helvetica",

1]}.

14}];

30 30.2 30.4 30.6 30.8 31
time

Fig. 32.3. Rapid change of the diver's velocity when the parachute takes less than
one second to fully open.

492 32 Skydiving

This result has been obtained assuming that the parachute went from fully
closed to fully open. This would cause a tremendous strain on the body as
the velocity changed rapidly in a very short time interval as illustrated below
on the plot of the diver's acceleration.

ve loc i ty = v2[t] / . so l2 ;

acce le ra t ion = - g + (velocity) '^2 *

Which [t < 30, kdiver , t > 30, kparachute] ;

P l o t [a c c e l e r a t i o n , { t , 29 .9 , 30 .3} , PlotRange -^ A l l ,

P lo tS ty le -^ {RGBColor[0, 0, 1]} , Axes -^ Fa l se ,

Frame -^ True, FrameLabel —> { ' ' t i m e ' ' , ' ' a c c e l e r a t i o n ' ' } ,

RotateLabel -> Fa l se , DefaultFont -> { " H e l v e t i c a " , 14}];

acceleration

29.9 30 30.1 30.2 30.3
time

Fig. 32.4. Diver's acceleration when the parachute is opened in a very short time.

32.3 Taking into Account Time for Parachute to Open 493

32.3 Taking into Account Time for Parachute to Open

To improve the model we should allow, say three seconds, for the parachute
to open.

g = 9 .8; kdiver = 0.004; kparachute = 0.4; dt = 3;

sol3 = NDSolve [{v3'[t] == - g + (v3[t])^2 *

Which[t < 30, kdiver,

t < 30 + dt , kdiver + (kparachute - kdiver) * (t - 30) / dt ,

t > 30 + dt , kparachute], v3[0] == 0} , v3, { t , 0, 100}];

plv3 = Plot[Evaluate[v3[t] / . s o l 3] , { t , 0, 40},

PlotRange -> {0, - 55},

PlotStyle -^ {RGBColorCO, 0, 1]}, Axes -^ False,

Frame -^ True, FrameLabel -^ {''time'', ''velocity"'},

RotateLabel -^ False, DefaultFont -^ {"Helvetica", 14}];

Fig. 32.5. Diverts velocity when the parachute takes three seconds to fully open.

494 32 Skydiving

Here is a more detailed plot showing the evolution of the diver's velocity and

acceleration when she opens the parachute.

Plot[Evaluate[v3[t] /. sol3], {t, 29.9, 32},

PlotRange -> {0, - 55}, PlotStyle -^ {RGBColor[0, 0,

Axes —> False, Frame —> True,

FrameLabel -^ {''time", "velocity''},

RotateLabel -^ False, DefaultFont —> {''Helvetica'',

1]}.

14}];

30 30.5 31 31.5 32
time

Fig. 32.6. More detailed plot of the diver's velocity when the parachute takes three
seconds to fully open.

Plotting the acceleration, we can observe that the strain on the diver's body
is less.

Clear[velocity, acceleration]

velocity = v3[t] /. sol3;

acceleration = - g + (velocity)"2 *

Which[t < 30, kdiver,

t < 30 + dt, kdiver + (kparachute - kdiver) * (t - 30) / dt

t > 30 + dt, kparachute];

Plot[acceleration, {t, 29.5, 30.6},

PlotRange -> {0, 60}, PlotStyle -^ {RGBColor[0, 0, 1]},

Axes -^ False, Frame -^ True,

FrameLabel —> {''time'', ''acceleration''},

RotateLabel -^ False, DefaultFont -^ {"Helvetica", 12}];

32.3 Taking into Account Time for Parachute to Open 495

29.6 29.8 30 30.2 30.4 30.6
time

Fig. 32.7. Diver's acceleration when the parachute takes three seconds to fully open.

33

Tautochrone

The constancy of the period of a pendulum, when the amphtude of the oscil
lations is small, is said to have been discovered by Galileo Galilei (1564-1642)
circa 1583 by comparing the period of the oscillations of a swinging lamp in
a Pisa cathedral with his pulse rate. This property led Galileo and the Dutch
mathematician, astronomer, and physicist Christiaan Huygens (1629-1695)
to use a pendulum as a clock regulator.

As an astronomer, Huygens' interest in the accurate measurement of time
led him to the discovery of a pendulum whose period is truly constant. In
1673, while living in Paris, he published his Horologium Oscillatorium that
contained complete solutions of many problems of dynamics. In particular, he
showed that, if a pendulum's bob swings along an arc of an inverted cycloid
rather than that of a circle, the period of the oscillations is constant what
ever the amplitude of these oscillations. The inverted cycloid is, therefore, a
tautochrone curve (from the Greek, tauto meaning "the same" and chronos
meaning "time"); that is, a curve such that the time required for a particle
subjected to specific forces (here gravity) to slide down without friction to its
lowest point is independent of its initial position on the curve.

33.1 Involute and Evolute

The involute of a planar curve 7 is the locus F in the plane of 7 of the endpoint
of a thread kept taut as it is unwound from 7. The curve 7, which is then
the locus of the centers of curvature of the curve T, is called the evolute (or
envelope of the normals) of F. Because the involute of a cycloid is a cycloid
(see below), if a pendulum is swung between two arches of inverted cycloids,
the pendulum's bob traces out the involute of a cycloid, that is, a cycloid.
If the parametric representation of a curve F is {x{u),y{u))^ the parametric
representation of its evolute is {x{u) — R sin (̂ , y{u) -\- R cos (/:?), where R is the

498 33 Tautochrone

radius of curvature of 7, and ^p the angle between the tangent vector and the
Ox-axis. Because

R =

COS(p

simp

x'y" — x"y' '
x'

y'
(a;'2 + 2/'2)i/2'

the parametric representation of the evolute of a curve F is

in)
({x'{uf+y'{uf)y'{u) jx'{uf + y'{uf) x'{

V ^ ' x'{u)y"{u)-x"{u)y'{uy ^^ ' x'{u)y"{u) - x"{u)y'

If the curve 7 is the cycloid (on the cycloid see section 6.4.1) represented by

x (u) = u —sinu and 2/(w) = 1 — cosu = 2sin2(u/2),

its evolute is represented by

evolute = {x[u] - ((x'[u]"2

(x'[u] y"[u] -

y[u] + ((x'[u]-

(x'[u] y"[u] -

x"[u] y ' [u]) .

~2 + y'[u]-2)

x"[u] y'[u])}

ParametricPlot[evolute, {u,

AspectRatio -^ Automatic];

+ y'[u]-2) y'

x'[u]) /

/ / Simplify

0, 2 P i } .

[u]) /

{u + SinCu], - 2 S i n [-] 2 }
2

Fig. 33.1. The evolute of a cycloid is a cycloid.

The evolute of a cycloid is also a cycloid.

33.2 The Cycloid 499

Figure 33.2 illustrates the property of a cycloid mentioned above, that is, the
involute of a cycloid is a cycloid^ and how to build a Huygens pendulum using
this property.

Fig. 33.2. Huygens pendulum.

33.2 The Cycloid

In this section we verify that the cycloid is a tautochrone curve.

The motion of the mass point is taking place in a vertical plane. In this plane,
we choose the Ox-axis vertical pointing to the right and the Oy-axis vertical
pointing upwards. The kinetic and potential energies of a particle of mass m
are, respectively, ^mv'^ and mgy^ where v is the particle velocity and g the
acceleration due to gravity.

The parametric equations of the inverted cycloid are

x[u_] := u - Sin[u] ;

y[u_] := - 1 + Cos[u] ;

Conservation of energy implies ^mv'^ + mgy = mgyo assuming that when at
t = 0, the particle located at (XQ, yo)^ has a velocity equal to zero. Taking into
account that

2 (dx\ ^ (dy

we have

' =^jt) + U

500 33 Tautochrone

Hence,

VMvo - y)
and replacing 2/0 by —1 + COSUQ, we obtain

Sqr t [(D[x[u] , u])^2 + (D[y[u], u])'^2] /

Sqr t [2 g (- (1 - CosCuO]) -y [u])] / / Simplify

Sqrt[l -Cos[u]

Sqrt[g(-Cos[u] + Cos[uO])]

that is,

dt = A — du.
y g{cosuo — cosu)

Note that for y^ = 0 (i.e., UQ = 0 and cos?/o = 1)? which corresponds to
the case of the swinging bob moving back and forth along the whole curve,
dt = dt/y/gdu. The period T, equal to 4 times the integral from 0 to TT, is
equal to A.'K^fvfg . If 0 < î o < 7r/2, the period of the cycloidal pendulum is
given by

Ao V V̂COS

COS U

du. (c o s UQ — COS u)

Substituting cosi^ for 2cos^(i^/2) — 1, the expression of the period becomes

sin U du

y 9 Juo . /r^oc2 H a _ rr^«2 U yWf ^0 . / C O S ^ ^ — COS^ 1

This expression suggests the further change of variable: ^ = cos{u/2)/{uo/2),
which finally gives

\9Jo y r ^
This result shows that the period does not depend upon the initial position
of the bob.

The integral is elementary. We find

T = gJ- arcsin(l) = 47rW-.

33.3 Fractional Calculus 501

Remark 1. Because the change of variable shows that the period T does not
depend upon the initial position of the bob, we could have used the expression
of the period with UQ = 0, which gives T = Ayjl/g j ^ du = A-Ky/l/g.

Remark 2. The period T should have the dimension of time, which is appar
ently not the case. Actually, the parametric equation of the cycloid should be
written [a{u — sinix), —a(l — cosix)), where a is a characteristic length of the
cycloid. In the above derivation of T we took a = 1.

33.3 Fractional Calculus

In order to be able to determine tautochrone curves for a particle in a potential
[/, we briefly describe the basic principles of fractional calculus [41, 37, 40].

The fractional derivative of a function / is an extension of the usual derivative
dP'f/dx'^^ to nonintegral values of n. The concept of the fractional derivative
was mentioned for the first time in a letter from Guillaume de 1' Hopital
(1661-1704) to Gottfried von Leibniz (1646-1716) dated September 30, 1695.

If n is a positive integer greater than 1, we have

I / • • • / fiv) dui... dun-idu = —: / f{u){x - uY~^ du,
Jo Jo Jo (^ - !) • Jo

and if denoting by Fn the function

'O, i f x < 0 ;

where F is the Euler Gamma function, we can write the result of integrating
n times the function / as the convolution of / and Fn.

If a and /3 are two complex numbers such that Re a and Re /? are both positive,
assuming x > 0, then the convolution of F^ and F/3, denoted F^^^Ffs, is given

by

io r{a) r{(3) '^-'^ Jo r{a)r{/3) '''' na + py
where we took into account the relation

^Leibniz is the inventor of the notation d^f/dx^ for the derivative of order n
of a function / .

502 33 Tautochrone

B is the Beta function. The result obtained above can be simply written
Fa "^ Fp = Fa-^(3. By analytic continuation, the result remains valid for all
values of a and (3 different from 0 , - 1 , - 2 , — Considering Fa and F/3 as
distributions belonging to X> ,̂ which are distributions with support in R+
(set of nonnegative reals), we can further extend the relation F^ * F/̂ = Fa-^p
for a = 0, —1, —2,. . . and /? = 0, — 1, —2,.. . , as a consequence of the relation
6^'^'^ *Fn = S, where n is a positive integer and S the Dirac distribution. Hence
\ima^-nFa=6M,

Note that I{z) = J^ x^'^e"^^ dx can be written r{a)/z^ replacing in the
integral zx by u and using the Cauchy theorem where the function z \-^ z^
is such that it takes the value 1 for 2: = 1. Hence, the Laplace transform
of the distribution F^ is 1/z^, that is valid for any value of a by analytic
continuation. This result gives another proof of the relation limc^^_n Fa =
SM, For more details on distribution theory see [8].

The considerations above suggest defining the fractional derivative of order
a > 0 with respect to x of f{x) as the convolution D^ * / , where D^ is the
distribution x~^'^^/r{—a). Hence, the derivative of order a > 0 with respect
to X of the function x 1-̂ x^ is x^~^/F{X + 1 — a) . This last result shows that
the fractional derivative of a constant c is not equal to zero! In fact

D^ ^ c = c lim
x^ ^ ex

A-or(A + l - a) r (l - a) '

33.4 Other Tautochrone Curves

In the previous section, we contented ourselves with verifying that the cycloid
was a tautochrone curve for the gravitational potential. In this section we are
interested in the more general problem of finding tautochrone curves for a
particle in a general potential.

If the particle is in a potential U{y), assuming that for t = 0 the particle
located at (xo^yo) has a velocity equal to zero, the conservation of energy
implies ^mv'^ + U{y) — U{yo), and reasoning as above, we obtain

^2{U{yo)-U{y)y

where we replaced \/dx^^^^dy^ by ds, the element of the arc. Integrating over
a quarter of a period yields

Jo

ds

VWiyoF^uWy
where the period T is a constant not depending upon yo. The lower limit
of integration assumes that when the velocity of the bob is maximum the

33.4 Other Tautochrone Curves 503

potential is minimum dit y = 0. We also assume that f/(0) = 0, which can
always be achieved by adding an appropriate constant.

Writing the integral above under the form

T = / ^^ — dU
r(l/2) Jo ^2{Uo - U{y)) '

shows that the period T is equal to 4 times TT the derivative of order — ̂ with
respect to C/Q — U{yo) of the function ds/dU. Note that r (l / 2) = TT. Taking
the derivative of s with respect to U{y) has the same form as the derivative
of s with respect to UQ, thus T = ATTD^ ' D\jS = ^^TTDJ 5, or, equivalently
5 = V ^ ^ T / 4 7 r) .

Prom the expression of the fractional derivative of a constant we derived in
the previous section we finally obtain

or

With these two relations we can either determine the tautochrone curve for
a specific potential or determine the potential for which a given curve is tau
tochrone.

The cycloid whose parametric representation is (x(ifc), y{u)) = (i^+sin u, cos u—
1) is tautochrone for the potential U{y) proportional to

(I n t e g r a t e [S q r t [(l + Cos[u])^2 + (S in [u])^2] , u])'^2 / /

Simplify

u o
16 S i n [-] 2

2

Because 2sin^(iA/2) = 1 — cosu, the potential U{y) is a linear function of y
corresponding to a gravitational potential.

For an arbitrary potential U{y) we have

ds T U'{y)
dU 47r3/2 ^/ui^

or

i + (-W = (^ {U'{y)f
A'K^I'^) U{y)

504 33 Tautochrone

Solving for x\y) and integrating, we obtain

If, for instance, we consider the quadratic potential U{y) = ky^^ the expression
under the radical is constant and the corresponding tautochrone curve is a
straight line passing through the origin.

Many other examples can be found in [16].

34

van der Pol Oscillator

The differential equation

describes the dynamics of the first relaxation oscillator named after the Dutch
electrical engineer Balthasar van der Pol (1889-1959) [59, 60]. It is a harmonic
oscillator that includes a nonlinear friction term A {x^ — l)x. If the amplitude
of the oscillations is large, the amplitude-dependent "coefficient" of friction
A (a:̂ — 1), is positive, and the oscillations are damped. As a result, the ampli
tude of the oscillations decreases, and the amplitude-dependent "coefficient"
of friction eventually becomes negative, corresponding to a sort of antidamp-
ing. If we put

xi= X and X2 = x,

the van der Pol equation takes the form

dXi dX2 \ / 2 1N

The solution of this system of two differential equations gives the trajectory
in the phase space, that is, the (xi,X2)-plane.

It can be proved that, according to the sign of the parameter A, the van der
Pol oscillator exhibits two different behaviors when the time t goes to infinity.

Let us solve numerically the system of two differential equations for the initial
condition xi(0) = X2(0) = 0.2 and plot the trajectories for A = 0.5 and
A = —0.5. In all phase space plots, the initial point is represented by a blue
dot.

506 34 van der Pol Oscillator

lambda =

solution2

x2'[t] ==

x l [0] ==

- 0.5;

= NDSolve[{xl'[t]

- x l [t]

x2[0] ==

- lambda (

0 .2} , {xl

== x2 [t] ,

x l [t]^2 -

,x2}, {t,
• 1)

0,

x 2 [t] ,

30}]

{{xl -> InterpolatingFunction[{{0., 3 0 . } } , <>] ,

x2 -^ InterpolatingFunction[{{0., 3 0 . } } , <>]}}

plNeg = ParametricPlot[Evaluate[{xl[t] , x2 [t] } / . so lut ion2] ,

{ t , 0, 30}, DisplayFunction -^ Ident i ty] ;

i n i t = Graphics[{PointSize[0.04], RGBColor[0, 0, 1] ,

Point[{0 .2 , 0 . 2 }] }] ;

stEq = Graphics[{PointSize[0.04], RGBColor[l, 0, 0] ,

Point [{0 . , 0 . }] }] ;

Show[{init, stEq, plNeg}, Axes —> False, Frame —> True,

AspectRatio -^ Automatic, PlotRange -^ All,

TextStyle -^ {FontSlant -^ ''Italic'', FontSize -^ 12},

DisplayFunction —>> $DisplayFunction] ;

0,2

0.1

-0.1

-0.2
-0.1 0.1 0.2

Fig. 34.1. Trajectory in the (xi,X2)-phase space of the van der Pol oscillator for
X = -0.5 andte [0,30].

The trajectory converges to a fixed point (red dot).

34 van der Pol Oscillator 507

lambda = 0.

solutions =

x2'[t] == -

x l [0] == 0,

5;

= NDSolve

x l [t] -

x2[0] =

[{x l ' [t]

lambda

== 0 .2 } ,

== x2[t]

(x l [t] - 2 -

{xl, x2}.
- 1)

{t.

x2 [t] ,

0, 50}]

{{xl -^ InterpolatingFimction[{{0., 50.}}, <>] ,

x2 -^ InterpolatingFunction[{{0., 50.}}, <>]}}

plPos = ParametricPlot[Evaluate[{xl[t], x2[t]} /. solutions],

{t, 0, 20}, DisplayFunction —> Identity];

i n i t = G r a p h i c s [{ P o i n t S i z e [0 . 0 4] , RGBColor[0, 0 , 1] ,

P o i n t [{ 0 . 2 , 0 . 2 }] }] ;

stCycle = ParametricPlot[Evaluate[{xl[t], x2[t]} /.

solutions],

{t, 20, 50}, PlotStyle -^ {RGBColor[l, 0, 0]},

DisplayFunction —^ Identity];

Show[{init, stCycle, plPos}, Axes -^ False, Frame -^ True,

AspectRatio -^ Automatic, PlotRange -^ All,

TextStyle -^ {FontSlant -^ ''Italic'', FontSize -^ 12},

DisplayFunction -^ $DisplayFunction];

Fig. 34.2. Trajectory in the {xi,X2)-phase space of the van der Pol oscillator for
A = 0.5 andte [0,50].

508 34 van der Pol Oscillator

The trajectory converges to a limit cycle (red curve).

Note that the asymptotic behaviors are already clearly visible after a time t
of the order of 30.

35

van der Waals Equation

In 1873 the Dutch physicist Johannes Diederik van der Waals (1837-1923)
obtained his doctoral degree for a thesis on the continuity of the gas and liquid
state in which he put forward his famous equation of state that included both
the gaseous and liquid states. He showed that these two states could merge in
a continuous manner and are in fact the same, their only difference being of
a quantitative and not of a qualitative nature. These results were considered
very important,^ and he was awarded the Nobel Prize in Physics in 1910 "for
his work on the equation of state for gases and liquids."

35.1 Equation of State

If we denote by P the pressure, V the volume, N the number of moles, T the
absolute temperature, and R the molar gas constant equal to 8.31441 joules
per mole-kelvin, the ideal-gas equation of state is PV = N RT. This equation
of state, which describes approximately the behavior of a gas at low pressures,
is a simple consequence of the following laws.

1. Charles' law (1787). At constant volume V, the pressure P is a Unear
function of the temperature T.

2. Gay-Lussac's law (1802). At constant pressure P , the volume F is a linear
function of the temperature T.

3. Boyle-Mariotte's law (Boyle 1662, Mariotte 1676). At constant tempera
ture T, the product P F is constant.

4. Avogadro's law (1811). At given temperature T and pressure P , the vol
ume of one mole of gas is the same for all gases.

^ Maxwell regarded van de Waals as one of the foremost physicists in molecular
science.

510 35 van der Waals Equation

The ideal-gas equation of state can also be derived from the kinetic theory
of gases assuming that gas molecules have zero volume and do not interact.
These two assumptions are obviously not true, and in 1881 van der Waals
introduced into the ideal-gas equation of state two parameters a and b that,
respectively, take into account the nonzero volume of the molecules and the
existence of interactions between the molecules. He thus obtained the following
more realistic equation, which, for a mole of gas, is written

(^ + 7 2) {V~b) = RT{a>0,b>0),

where here V denotes the molar volume.

For what follows, it is convenient to express P as a function of V and T. Using
Mathematica we obtain

vdWeqn = (P + a/V^2) (V - b) == R T

solP = Solve[vdWeqn, P

HP ̂ d i^)±i lz£U!! ,}
(b - V) V^

The function (r , V) ^ P{T, V) can therefore be defined by

P[T_, v.] := solPECl, 1, 2]]

Because
'dP\ _ RT 2a

it follows that, for not too high values of T, there exist values of the molar
volume V for which the isothermal compressibility is negative. This violates
the stability condition, and for these values of V the van der Waals equation
cannot be vahd. We show below how van der Waals used this feature to
describe the gas-liquid first-order phase transition.

35.2 Critical Parameters

There exists an isotherm P = P{Tc^ V) that has an inflection point. The
coordinates {Vc,Tc,Pc) of that point satisfy the equations

dVj^^j.^ \dV^J T=Ta

35.3 Law of Corresponding States 511

That is,

eqnl

eqn2

Solve

= D[P[T,

= D[P[T,

[{eqnl,

V3,

V],

eqn2

{V.

{V,

1}] ==

2}] ==

\, {V. T}]

0;

0;

{{T
8 a

27 b R
, V ^ 3 b}}

Replacing T and V in the expression of P(T, V) by these values yields

P[T, V] / . {T -^ 8 a / (2 7 b R), V ^ 3 b}

27 b^

Hence, the coordinates {Vc,Tc,Pc) of the critical point are

Combining these three coordinates in a dimensionless ratio, we obtain

Pc = a (27b '^2) ; , Tc = (8 a) / (2 7 b R) ; Vc = 3 b;

Pc Vc / (R Tc)

The dimensionless ratio does not depend upon a, 6, and i?, and should, there
fore, be universal. This is not the case. The following table gives the value of
this ratio for some gases.

Hydrogen
3.29

Oxygen
3.42

Water
4.35

35.3 Law of Corresponding States

Expressing the pressure, the volume, and the temperature as a fraction of
their critical values we obtain the following dimensionless expression of the
van der Waals equation.

512 35 van der Waals Equation

dimensionlessEqn = Simplify[

vdWeqn / . {V ^ V Vc, T -^ T Tc, P -> P Pc}

a (3 - 9 V + (P -f 8 T) V^ - 3 P V^)

Using Reduce, this result can be further simphfied.

reducedP = Solve[dimensionlessEqn, P]

3 - 9 V + 8 T V ^ , ,

V^ (- 1 + 3 V)

Because the reduced van der Waals equation, defined by

P[T_, V_] := reducedP[[1,1,2]]

does not contain any adustable parameter, it is universal. It should, therefore,
be valid for all gases. This result, discovered by van der Waals, is known as
the law of corresponding states. This law is very approximately verified.

In this case, the critical coordinates are (1,1,1). Thus, if we want to draw the
isotherms in the vicinity of the critical temperature, we have to consider the
critical isotherm obtained for ^ = 1, and a few other isotherms for t close to
1.

functionsTable = Table[P[V,T], {T, 0 .9 , 1.1, 0 .05}];

Plot [{funct ionsTable[[1]] , func t ionsTable [[2]] ,

func t ionsTable [[3]] , func t ionsTable [[4]] ,

func t ionsTable[[5]]} , {V, 0 . 5 , 2 . 5 } ,

P lo tS ty le -> {RGBColor[0, 0, 1] , RGBColor[0, 1, 0] ,

RGBColor[l, 0, 0] , RGBColor[0, 1, 0] , RGBColor[0, 0, 1]} ,

TextStyle -^ {FontFamily -> ' ' H e l v e t i c a ' \ FontSize -> 10},

Frame -^ True] ;

We used the options P lo tS ty le to specify the colors of the different isotherms
and TextStyle to specify the font and its size.

Remark . Note that from any equation of state that, in as much as the van der
Waals equation contains exactly three independent parameters, we can derive

35.4 Liquid-Gas Phase Transition 513

0.5 1 1.5 2 2.5

Fig. 35,1. Dimensionless van der Waals isotherms.

a universal form of the equation of state which imphes a law of corresponding
states. Here are two other historical examples:

BertheloVs equation

(p + ^) (y - 6) = i ? T (a > 0 , 6 > 0)

Dieterici's equation

P{V-b)exp[^)=RT{a>0,b>0)

35.4 Liquid-Gas Phase Transition

For T <Tc, the two points on the van der Waals isotherm where

represent states that have reached the limit of stability.

The point corresponding to the largest volume is interpreted as the limit of
stability of the gaseous phase while the point corresponding to the smallest
volume is the limit of stability of the liquid phase.

According to the Clapeyron equation, at a given temperature, below Tc, the
liquid -^ gas first-order phase transition occurs at fixed values of P and T and
is characterized by a discontinuity AV of the specific volume. Therefore, if,
at temperature T, vaporization occurs at pressure P , the system should not
follow the isotherm but follow a horizontal line joining the point (Viiquid? P) to
the point (V âs? P), the discontinuity being equal to AV = Viiquid — V âs {AV

514 35 van der Waals Equation

is negative because the specific volume of the Uquid is much smaller than the
specific volume of the gas).

The positions of these two points are determined by the Maxwell rule. To
derive this rule, we have to write that the liquid and gaseous phases are in
equihbrium at the transition point (T^P). This implies that the chemical
potential of the liquid /inquid {T, P) is equal to the chemical potential of the
gas //gas(7', P) at that point.

Because dji — Sdt-\-V dP, at constant T we have

/'(V^gas,P)

/^gas - ^liquid = VdP.

^(Viiquid,P)

Integrating by parts yields

HV^gas,P)

Mgas - /^liquid = P {Vgas " l i q u i d) " / P dV.

That is, the horizontal fine cuts the isotherm so that the area between the
isotherm above the straight line and the straight line is equal to the area
between the isotherm below the straight line and the straight fine.

Using the reduced van der Waals equation of state we define a function
t r an s i t i onPo in t that given a temperature below the critical point temper
ature (in reduced coordinates the critical temperature and critical pressure
are both equal to one) determine the pressure and the reduced volumes of the
gas and hquid phases.

The idea is to solve the following system of two equations

(vGas - vLiquid) P[temperature, vLiquid] == In tegra te [P[T,
V], {V, vLiquid, vGas}]

and

P [temperature, vGas] == P[temperature,vLiquid]

where temperature is given and vGas and vLiquid are the two unknowns;
the transition pressure is then obtained once vGas and vLiquid are found.
Because we use FindRoot to solve this system, we need to find starting values
for vGas and vLiquid.

vGas and vLiquid should both be between the two volume values' solution of
the equation dP / dV = 0, therefore let us first determine these values.

35.4 Liquid-Gas Phase Transition 515

Clear [temperature]

temperature = 0.85;

volumeBoundaries =
0, V]

Solve [D[P[temperature,V], V] == 0, V] ==

{{V -> 0.254445}, {V -^ 0.67168},

{V -^ 1.72093}}

Prom the expression of the reduced van der Waals equation, we see that any
volume value less than ^ is not physical. Looking at the graph of the function
P[r , y] , we see that the straight line representing the Maxwell construction
should be closer to the maximum than to the minimum of p[t,v]. We therefore
define s t art ingPres sure by

startingPressure = 0 . 2 P[temperature,V / .
volumeBoundaries[[2]]] +

0.8 P[temperature, V / . voliomeBoundaries[[3]]]

0.506369

and we choose the starting volumes values' from the solutions of

startingVolumes = Solve[P[temperature, V] ==

StartingPressure, V]

{{V -^ 0.553196}, {V -^ 1.1487},

{V -^ 3.10775}}

When solving the system of two equations mentioned above, in order to find
vLiquid we start from startingVolumes[[l, 1, 2]] and look for a solu
tion lying between 0 and startingVolumes [[2 , 1 , 2]] , and to find vGas, we
start from startingVolumes [[3 , 1 , 2]] and look for a solution lying between
StartingVolumes[[2,1, 2]] and Infinity.

Taking all these considerations into account the function trans i t ionPoint
can be defined as follows:.

516 35 van der Waals Equation

transitionPoint[temperature.] : =

Module [{volumeBoundaries, startingPressure, startingVolumes,

volumes},

volumeBoundaries = Solve[D[P[temperature, V], V] ==0, V];

startingPressure =0.2 P[temperature, V /.

volumeBoundaries[[2]]] +0.8 P[temperature, V /.

volumeBoundaries[[3]]] ;

startingVolumes = Solve[P[temperature, V] ==

StartingPressure, V];

areal = (vGas - vLiquid) P[temperature, V] /. V -^ vLiquid;

F[v_] := Integrate[P[T, V], V] /. T -^ temperature;

area2 = F[vGas] - F[vLiquid];

volumes = FindRoot[Evaluate[{areal == area2 /.

T —> temperature,

P[temperature,vLiquid] == P[temperature,vGas]}],

{vLiquid, startingVolumes[[l,1, 2]], 0 ,

startingVolumes [[2,1, 2]]}, {vGas, startingVolumes [[3,1,2]],

startingVolumes[[2,l, 2]], Infinity}];

pTransition = P[temperature, vLiquid] /.volumes[[1]];

NumberForm[{temperature, pTransition,

volumes [[1, 2]], volumes[[2, 2]]}, 6]]

transitionPoint[0.85]

{0.85, 0.504492, 0.55336, 3.12764}

Figure 35.2 shows the Maxwell construction.

vdW = Plot[P[0.85, V], {v, 0.5, 4},

PlotStyle -> {RGBColor[l, 0, 0]}, Frame -> True,

DisplayFunction -^ Identity];

maxwell = Graphics[{RGBColor[0, 0, 1] ,

Line[{{0.553, 0.504}, {3.128, 0.504}}]}];

Show[{vdW, maxwell}, DisplayFunction -^ $DisplayFimction];

This function is valid for an interval of temperature values between 0.8438—

value below which there exist points on the isotherm with a negative pressure—

35.4 Liquid-Gas Phase Transition 517

1.5

1.25

1

0 .75

0 .5

0 .25

0

1 /-——--_
1 / ~ —

1 2 3

Fig. 35.2. Maxwell construction.

and 0.98—the value above which machine precision in not sufficient. Here is
a table from which we could find the coexistence boundary in the (V,P) dia
gram.

T a b l e [t r a n s i t i o n P o i n t [k] , {k ,0 .85, 0 .98, 0.01}]

{{0.85, 0.504492, 0.55336, 3.12764},

{0.86, 0.531249, 0.561955, 2.9545},

{0.87, 0.55887, 0.571159, 2.79091},

{0.88, 0.587363, 0.581059, 2.63597},

{0.89, 0.616737, 0.591763, 2.48888},

{0.9, 0.646998, 0.603402, 2.34884},

{0.91, 0.678155, 0.616148, 2.2151},

{0.92, 0.710215, 0.630225, 2.0869},

{0.93, 0.743184, 0.645932, 1.96343},

{0.94, 0.77707, 0.663692, 1.84383},

{0.95, 0.811879, 0.684122, 1.72707},

{0.96, 0.847619, 0.708189, 1.61181},

{0.97, 0.884294, 0.737556, 1.49603},

{0.98, 0.921912, 0.775539, 1.3761}}

36

Bidirectional Pedestrian Traffic

36.1 Self-Organized Behavior

Animal groups display a variety of remarkable coordinated behaviors. For
example, all the members in a school of fish change direction simultaneously
without any obvious cue; in the same way, while foraging, birds in a flock
alternate feeding and scanning. Self-organized motion in schools of fish or
fiocks of birds is not specific to animal groups. Pedestrian crowds display self-
organized spatiotemporal patterns that are not imposed by any controller: on
a crowded sidewalk, pedestrians walking in opposite directions tend to form
lanes along which walkers move in the same direction.

All these behaviors have in common the following characteristics.

1. They consist of a large number of interacting agents.

2. They exhibit emergence; that is, a self-organizing collective behavior dif
ficult to anticipate from knowledge of the agents' behavior.

3. Their emergent behavior does not result from the existence of a central
controller.

The appearance of emergent properties is the single most distinguishing fea
ture of the so-called complex systems [9].

In what follows we build up a Mathematica program of two groups of pedes
trians moving in opposite directions in a passageway.

520 36 Bidirectional Pedestrian Traffic

36.2 Initial Configuration of Pedestr ians Moving in
Opposite Directions in a Passageway

The passageway is represented by a square lattice of length L and width
W < L. Each cell is either empty or occupied by a pedestrian. Pedestrians
are divided in two groups moving in opposite directions. Group 1 moves to
the west (i.e., the right) and group 2 to the east (i.e., the left). The following
function generates a configuration of pedestrians in a multilane passageway
with exact numbers of westbound and eastbound pedestrians.

initialMultiLaneConf ig [numberOneParticles_Integer,

numberTwoParticles-Integer, la t t iceWidth_Integer ,
l a t t i ceLength- In teger] : =

Module[{suml, sum2, s } ,

suml = 0; sum2 = 0;

s = Table[0, { i , 1, l a t t i ceWid th} , { j , 1, l a t t i ceLeng th}] ;
While[suml < numberOneParticles,

i = Random[Integer, {1, l a t t i ceWid th}] ;

j = Random[Integer, {1 , l a t t i ceLeng th}] ;

I f [s [[i , j]] == 0, (s [[i , j]] = 1; suml = suml + 1) , suml =
suml]] ;

While[sum2 < numberTwoParticles,

i = Random[Integer, {1, l a t t i ceWid th}] ;

j = Random[Integer, {1 , l a t t i ceLeng th}] ;

I f [s [[i , j]] = = 0 , (s [[i , j]] = 2 ; sum2 = sum2 + 1) , sum2 =
sum2]]; s]

The While loops are used to add pedestrians belonging to either group 1 or
group 2 until the number of pedestrians in each group reaches its exact value
(numberOneParticles or numberTwoParticles). The total number of cells
is l a t t i ceLength * la t t iceWidth. The cell states are either 0 (empty), 1
(occupied by a pedestrian of group 1), or 2 (occupied by a pedestrian of group
2).

(config = in i t ia lMult iLaneConfig[7,7 , 3 , 13])//TableForm

1 0 0 1 0 2 0 0 2 0 0 2 1
2 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 2 0 1 0 1 2 1 0 0 0

36.2 Initial Configuration of Pedestrians Moving in Opposite Directions 521

The next step is to write down a sequence of functions representing the mov
ing rules. As for most lattice models we assume that the motion takes place
on a two-dimensional torus; that is, we assume so-called periodic boundary
conditions. This trick is frequently used, in particular, in solid-state physics
to remove surface effects. It makes a simulation dealing with a finite num
ber of atoms as if this number were infinite. For example, if we consider a
finite two-dimensional lattice of length L and width VF, that is, a set of cells
{{hj) | 1 < ^ < W ^ ? 1 < J < L}^ then the cells to the east of cells (i^L)
{1 < i < W) are, respectively, the cells (z, 1) (1 < -i < W) which are to the
west of cells (i,I/), and the cells to the south of cells {W,j) (1 < j < L) are,
respectively, the cells (1, j) (1 < j < L) which are to the north of cells {W,j).
Taking L = 3 and W = 2, instead of the finite lattice

C l , l Ci,2 Ci,3

C2,l C2,2 C2,3

C3,l C3,2 Cs,3

we consider the following infinite lattice.

• • • C3,3

• • • Ci,3

• • • C2,3

• • • C3,3

• • • Ci,3

• • • C2,3

• • • C3,3

• • • Ci,3

C3,l

Cl,l

C2,l

C3,l

Cl,l

C2,l

C3,l

Cl,l

C3,2

Cl,2

C2,2

C3,2

Cl,2

C2,2

C3,2

Cl,2

C3,3

Cl,3

C2,3

C3,3

<̂ 1,3

C2,3

C3,3

Cl,3

C3,l

Cl,l

C2,l

^3,1

Cl,l

C2,l

^3,1

Cl,l

C3,2

Cl,2

C2,2

C3,2

Cl,2

C2,2

C3,2

Cl,2

C3,3

Cl,3

C2,3

C3,3

^1,3

C2,3

C3,3

Cl,3

C3,l • • •

Cl,l • • •

C2,l • • •

C3,l • • •

Cl,l • • •

C2,l • • •

C3,l • • •

Cl,l • • •

One of the first pedestrian traffic models is due to Fukui and Ishibashi [17, 18].
Here, adopting a slightly different point of view, we build up a much simpler
deterministic bidirectional pedestrian traffic model. As in most pedestrian
traffic models, a pedestrian moves forward to the cell in front of him if it
is empty. If this cell is occupied by another pedestrian moving in the same
direction, the pedestrian does not move, but, if it is occupied by a pedestrian
moving in the opposite direction, the pedestrian moves to the cell in front
of his right adjacent cell (with respect to the moving direction), and if this
cell is also occupied, he moves to his right adjacent cell. If both cells are
occupied, the pedestrian does not move. This deterministic behavior simplifies
the moving rule. In all cases, pedestrians who can move forward have the right
of way. Eastbound (resp., westbound) pedestrians move at odd (resp., even)
time steps. As a result of the lane-changing rule, to avoid collisions, the local

522 36 Bidirectional Pedestrian Traffic

walking rule, which gives the state s{ij,t + 1) at time t + 1 of cell (z, j)
as a function of the states of the 9 cells {{p^q) \ p G {i — l , i , i + 1},^ G
{j — I7 j ^ i + 1}} at time t, is of the form

s{i,j,t + l) = F{s{i - IJ - l,t),s{i - lj,t),s{i - IJ + 1,^),

S{ij- l , t),5(2,j,t),5(2,j + l , t) ,

s{i + IJ - l,t),s{i + lj,t),s{i + 1, j + l , t))

where i G {1, W }̂ and j G {!,!'}, depends on a lesser number of variables
and is not probabilistic. At each time step the motion of a given pedestrian
is determined by his state and the states of his 8 neighbors. Such a 9-cell
neighborhood is known in cellular automata theory as a Moore neighborhood.
Because each cell can be in 3 different states, the Moore neighborhood can
be in 3^ = 19,683 different configurations. To apply the motion rule F to
a given lattice, taking into account the interaction of each pedestrian with
his Moore neighborhood, following Gaylord and D'Andria [19] (this reference
contains many interesting Mathematica programs of agent-based cellular au
tomata models), we use a function neighborhood defined by

neighborhood[F__,

MapThreadCF,

{{1, 1} , {1,

{0, - 1 } , {-1

l a t t i c e -] :=

Map[RotateRight[latt

0} .

. 1}.

{1 , - 1 } , {0. 1},

{-1, 0 } , {-1, -

, ice ,

{0.

1}}]

#] &.

0 } .
, 2]

Remember that the Blanksequence __ (two underscores) is a pattern object
that can stand for any sequence of one or more Mathematica expressions.

The function neighborhood takes correctly into account the cyclic boundary
conditions as shown below.

(l a t t i c e = {{1, 2, 3 , 4 , 5} , {6, 7, 8, 9, 10},

{11,12,13,14,15}, {16,17,18,19, 20}}) / / TableForm

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20

{neighborhood[F, #] & [l a t t i c e] [[1 , 1]] ,

neighborhood[F, #] & [l a t t i c e] [[2 ,3]]}

36.3 Moving Rules for Type 1 Pedestrians

{F[20, 16, 17, 5, 1, 2, 10, 6, 7] ,

F[2, 3 , 4 , 7, 8, 9, 12, 13, 14]}

523

The command RotateRight [l i s t , n] cycles the elements of l i s t n positions
to the right. For example:

RotateRight[{a, b , c, d, e, f } , 2]

{e, f, a, b , c, d}

The command RotateLef t [l i s t , n] cycles the elements of l i s t n positions
to the left, and we obviously have

RotateRight[{a, b , c, d, e, f } , 2] == RotateLeft[{a, b , c, d,
e , f } , - 2]

True

36.3 Moving Rules for Type 1 Pedestrians

Here is the list of the moving rules for type 1 pedestrians according to the
structure of the Moore neighborhood. A Blank _ (single underscore) stands
for any site value 0, 1, or 2, and x I y stands for x OR y.

pedestrianl[_, _, _, 1, 0, _, _, _, _] := 1;

pedestrianl[_, _, _, _, 1, 0, _, _, _] := 0;

pedestrianl[_, _

pedestrianl[_, _

pedestrianl[_, _

pedestrianl[_, _

pedestrianl[_, _

pedestrianl[_, _

pedestrianl[_, _

pedestrianl[_, _

pedestrianl[_, _

-

-

-

-

-

-

-

-

. -

-

-

-

-

-

-

, -

» -

» -

1, 1, _, _, .] := 1;

1, 2, _, 0 1 2, 0] := 0;

1, 2, _, 1, 0] := 1;

1, 2, 0 1 2, 0, 1] := 0;

1, 2, 1, 0, 1] := 1;

1, 2, _, 1 1 2, 1] := 1;

1, 2, 0 1 2, 0, 2] := 0;

1, 2, 1, 0, 2] := 1;

, 1, 2, _, 1 1 2, 2] := 1;

524 36 Bidirectional Pedestrian Traffic

pedestrianlCO,

pedestrianlEO,

pedestrianlCO,

pedestrianlCO,

pedestrianlCO,

pedestrianlCl,

pedestrianlCl,

pedestrianlCl,

pedestrianlCl,

pedestrianlCl,

pedestrianlC2,

pedestrianlC2,

pedestrianlC2,

pedestrianlC2,

pedestrianlC-,

0, -, 0 1 2, 0, _, _, _, J := 0;

1, 0 1 1, 0 1 2, 0, ., ., _, _] := 0; i

1, 2, 0 1 2, 0, 0, _, _, J := 0;

1, 2, 0 1 2, 0, 1 1 2, _, _, J := 1;

2, _, 0 1 2, 0, _, _, _, J := 0;

0, _, 0 1 2, 0, _, -., _, J := 0;

1, 0 1 1, 0 1 2, 0, _, _, _, _] := 0;

1, 2, 0 1 2, 0, 0, _, _, _] := 0;

1, 2, 0 1 2, 0, 1 1 2, _, _, J := 1;

2, _, 0 1 2, 0, _, _, _, J := 1;

0 1 2, _, 0 1 2, 0, ., _, ., J := 0;

1, 0 1 1, 0 1 2, 0, ., _, _, _] := 0;

1, 2, 0 1 2, 0, 0, _, ., _] := 0;

1, 2, 0 1 2, 0, 1 1 2, _, _, J := 1;

2 1 •= 2--, _, _, .^, _, _, _, _j . ^ ,

Because this rule is rather complicated, the risk of an error is not neghgible.
It is therefore wise to check conservation of the number of pedestrians.

Clear Cinit,iter]

init = initialMultiLaneConfigC234,347,10,

iter = neighborhoodCpedestrianl, init];

1000];

{Apply CPlus,DeleteCases CFlatten Cinit], 2]] ,

ApplyCPlus,DeleteCasesCFlattenCiter],2]],

Apply CPIUS,DeleteCases CFlatten Cinit],1]]

Apply CPlus, DeleteCases CFlatten Citer],1]]

/ 2,

/ 2}

{234, 234, 347, 347}

36.4 Moving Rules for Type 2 Pedestr ians

Similarly, we write moving rules for type 2 pedestrians.

pedestrian2C-, -, _, _, 1, _, _, _, J := 1;

36.4 Moving Rules for Type 2 Pedestrians 525

pedestrian2[_, _

pedestrian2[_, _

pedestrian2[_, _

pedestrian2[_, _

pedestrian2[,

pedestrian2[_, _

pedestrian2[_, _

pedestrian2[_, _

pedestriaii2[_, _

pedestrian2[_, _

pedestrian2[_, _

pedestrian2[_, _

pedestrian2[_, _

pedestrian2[_, _

pedestrian2[_, _

pedestrian2[_, _

pedestrian2[0, 2

pedestrian2[2, 0

pedestrian2[l , 0

pedestrian2[2, 0

pedestrian2[0, 0

pedestrian2[2, 1

pedestrian2[l , 0

pedestrian2[l , 1

pedestrian2[_, _

_, -, 0, 0 1 1, _, 0, 0] := 0;

_, _, 0, 0 1 1, 0 1 2, 2, 0] := 0;

_, 0, 0, 0 1 1, 1, 2, 0] := 0;

-, 1 1 2, 0, 0 1 1, 1, 2, 0] := 2;

_, _, 0, 0 1 1, . , 1, 0] := 0;

_, -, 0, 0 1 1, _, 0, 2] := 0;

-, -, 0, 0 1 1, 0 1 2, 2, 2] := 0;

_, 0, 0, 0 1 1, 1, 2, 2] := 0;

-, 1 1 2, 0, 0 1 1, 1, 2, 2] := 2;

_, -, 0, 0 1 1, . , 1, 2] := 2;

_, _, 0, 0 1 1, _, 0 1 1, 1] := 0;

_, _, 0, 0 1 1, 0 1 2, 2, 1] := 0;

, _, 0, 0, 0 1 1, 1, 2, 1] := 0;

> -, 1 1 2, 0, 0 1 1, 1, 2, 13 := 2;

, _, 0, 2, _, _, _, _] := 0;

2 2 1 •= 2-

1 2 1 •= 2*
» - 9 -^ > ^ y ~ i - 9 - 9 - - I • ^9

2 1 2 1 •= 2*
9 ^9 • ' •> ^9 - 9 - 9 - 9 - J • ^9

2 1 2 1 •= 2-
9 ^9 • ' •> ^9 - 9 - 9 - 9 - J • ^9

, 0 1 1, 1, 2, _, _, _, -] := 0;

1 1, _, 1, 2, _, _, _. _] := 0;

1 2 1 2 1 •= 2-

, 0 1 1, 1, 2, _, _, _, J := 0;

1 2 1 2 1 •= 2*

0 2 1 •= 2*
» - 9 - 9 ^ 9 ^ 9 - 9 - 9 - J • ^9

Clear[ini t , i te r]

in i t = initialMultiLaneConfig[269, 327,10,1000];

i t e r = neighborhood[pedestrian2, i n i t] ;

{Apply[Plus,DeleteCases[Flatten[init], 2]] ,

Apply[Plus,DeleteCases[Flatten[iter], 2]] ,

Apply[Plus,DeleteCases[Flatten[init], 1]] / 2,

Apply[Plus,DeleteCases[Flatten[iter],1]] / 2}

{269, 269, 327, 327}

526 36 Bidirectional Pedestrian Traffic

36.5 Evolution of Pedestrians of Both Types

To obtain the moving rules for both pedestrian types, we alternatively apply
type 1 pedestrian moving rules and type 2 pedestrian moving rules.

updatel[configuration-] :

MapThread[pedestrianl,

=

Map[RotateRight[configuration

{{1, 1}, {1, 0}, {1, -1},

{0, 0}, {0, -1}, {-1, 1},

update2[configurationj :

MapThread[pedestrian2,

{0,

{-1.
=

Map[RotateRight[configuration

{{1, 1}, {1, 0}, {1, -1},

{0, 0}, {0, -1}, {-1, 1},

evolve[configurationj : =

{0.

{-1.

. #]

1}.

0},

. #]

1}.
0}.

&,

H.

&,

H.

-1}}].

-1}}].

2];

2];
update2[updatel[configuration]];

Checking number conservation for types 1 and 2 pedestrians when both types
move, we have

i n i t = ini t ia lMult iLaneConfig[321, 279,10,1000];

i t e r = e v o l v e [i n i t] ;

{Apply [P lus ,De le teCases [F la t t en [in i t] ,2]] ,

Apply[Plus, De l e t eCase s [F l a t t en [i n i t] , 1]] / 2,

App ly [P lus ,De le t eCases [F la t t en [i t e r] , 2]] ,

Apply[P lus ,Dele teCases [F la t t en[i t e r] ,1]] / 2}

{321, 279, 321, 279}

36.6 Animation

We can now show an animation of the evolution of both types of pedestrians.
Considering a passageway of length 100, after 200 iterations the self-organized
spatiotemporal pattern is manifest: pedestrians walking in opposite directions
do form lanes along which walkers move in the same direction.

36.6 Animation 527

C l e a r [i n i t , ca]

i n i t = in i t ia lMult iLaneConf igClSO, 150, 10, 1 0 0] ;

t ime = 200;

ca = N e s t L i s t [e v o l v e , i n i t , t i m e] ;

Map[Show[Graphics[RasterArray[# / .

{0 -^ RGBColor[l, 1, 0] , 1 -^ RGBColor[0, 0 , 1] ,

2 -^ RGBColor[l, 0 , 0] }]] ,

AspectRatio -^ Automatic] &,

T a b l e [R e v e r s e [c a [[k]]] , {k, 1, }]] ;

We do not display the 200 lattices. We just display the the first and the last
exhibiting the self-organized pat tern .

'^l^/^^Mf^:^iM
Fig. 36.1. Initial pedestrian configuration. Type 1 pedestrians (blue squares) move
to the right, and type 2 (red squares) move to the left.

T n T V O w O ^ i iai iH' i i i i i i i i^ J [A M A A f t ^ ' ^ « T i m m

Fig. 36.2. Final pedestrian configuration. Type 1 pedestrians (blue squares) move
to the right, and type 2 (red squares) move to the left.

References

6.
7.
8.
9.

10.

N,
N,
N,
N,
G

1. M. BARNSLEY, Fractals Everywhere (San Diego: Academic Press 1988).
2. G. BAUMANN, Mathematica for Theoretical Physics: Classical Mechanics and

Nonlinear Dynamics (New York: Springer-Verlag 2005).
3. G. BAUMANN, Mathematica for Theoretical Physics: Electrodynamics, Quantum

Mechanics, General Relativity, and Fractals (New York: Springer-Verlag 2005).
4. N. BOCCARA, Functional Analysis: An Introduction for Physicists (Boston:

Academic Press, 1990).
BocCARA, Probabilites (Paris: Ellipses, 1995).
BocCARA, Integration (Paris: Ellipses, 1995).
BocCARA, Fonctions analytiques (Paris: Ellipses 1996).
BocCARA, Distributions (Paris: Ellipses 1997).
BocCARA, Modeling Complex Systems (New York: Springer-Verlag 2004).
CANTOR, De la puissance des ensembles parfaits de points, Acta Mathemat

ica, 4 381-392 (1884).
11. H. S. CARSLAW, Introduction to the Theory of Fourier's Series and Integrals

(New York: Dover 1930).
12. P . COLLET and J. P . ECKMANN, Iterated Maps on the Interval as Dynamical

Systems (Boston: Birkhauser 1980).
13. DEVANEY R . L . , Chaotic Dynamical Systems (Redwood City, CA: Addison-

Wesley 1989).
14. M. J. FEIGENBAUM, Quantitative universality for a class of transformations,

Journal of Statistical Physics 19 25-52 (1978).
15. M . J . FEIGENBAUM, Universal behavior in nonlinear systems, Los Alamos Sci

ence 1 4-27 (1980).
16. E. FLORES and T. J. OSLER, The tautochrone under arbitrary potentials using

fractional derivatives, American Journal of Physics 67 718-722 (1999).
17. M. FuKUi and Y. ISHIBASHI, Self-organized phase transitions in cellular au

tomaton models for pedestrians, Journal of the Physical Society of Japan 68
2861-2863 (1999)

18. M. FuKUl and Y. ISHIBASHI, Jamming transition in cellular automaton models
for pedestrians on passageway. Journal of the Physical Society of Japan 68
3738-3739 (1999)

530 References

19. R. J. GAYLORD and L. J. D 'ANDRIA, Simulating Society: A Mathemat-
ica Toolkit for Modeling Socioeconomic Behavior (New York: Springer-Verlag
1998).

20. J. W. GiBBS, Collected Works (New York: Longmans, Green 1928), volume 2,
pp 258-260.

21. W. J. GILBERT and R. J. GREEN, Negative based number systems, Mathematics
Magazine, 52 240-244 (1979).

22. W. J. GILBERT, Fractal geometry derived from complex bases, The Mathemat
ical Intelligencer, 4 78-86 (1982).

23. W. J. GILBERT, Arithmetic in complex bases, Mathematics Magazine, 57 77-81
(1984).

24. R. L. GRAHAM, D . E . KNUTH, and O. PATASHNIK, Concrete Mathematics: A

Foundation of Computer Science (Reading MA: Addison-Wesley 1989).
25. F . HAUSDORFF, Dimension und dusseres Mafl, Mathematische Annalen, 79

157-179 (1919).
26. G. JULIA, Memoire sur ^iteration des fonctions rationnelles. Journal de

Mathematiques Pures et Appliquees, 8 47-245 (1918).
27. C. KAMP, Siemens d'arithmetique universelle (Cologne, 1808).
28. H. VON KOCH, Sur une courbe continue sans tangente, obtenue par une con

struction geometrique elementaire, Arkiv for Matematik, Astronomi och Fysik,
1 681-702 (1904).

29. J. C. LAGARIAS, The 3x + 1 problem and its generalizations, American Math
ematical Monthly, 92 3-23 (1985).

30. A. LiNDENMAYER, Mathematical models for cellular interactions in develop
ment. Journal of Theoretical Biology, 18 280-300 (1968).

31. E. N. LORENZ, Deterministic nonperiodic flow, Journal of Atmospheric Sci
ences, 20 130-141 (1963).

32. E. N. LORENZ, The Essence of Chaos (Seattle: University of Washington Press
1993).

33. J. LuTZEN, Heaviside operational calculus and the attempts to rigorise it.
Archive for the History of Exact Science, 21 161-200 (1979).

34. B. B. MANDELBROT, Fractals, Form, Chance and Dimension, (San Francisco:
W. H. Freeman 1977).

35. B. B. MANDELBROT, The Fractal Geometry of Nature (San Francisco: W. H.
Freeman 1983).

36. A. MENEZES, P . VAN OORSCHOT, and S. VANSTONE, Handbook of Applied

Cryptography (Boca Raton, FL: CRC Press 1997).
37. K. S. MILLER and B. Ross, An Introduction to the Fractional Calculus and

Fractional Differential Equations (New York: Wiley 1993).
38. P . M. MORSE, Diatomic molecules according to the wave mechanics. II Vibra

tional levels. Physical Review 34 57-64 (1929).
39. P . J. MYRBERG, Sur ^iteration des polynomes quadratiques, Journal de

Mathematiques Pures et Appliquees 41 339-351 (1962).
40. K. B. OLDHAM and J. SPANIER, The Fractional Calculus; Theory and Appli

cations of Differentiation and Integration to Arbitrary Order (Mineola, NY:
Dover 2006).

41. T. J. OSLER, Fractional derivatives and Leibniz rule, American Mathematical
Monthly 78 645-649 (1971).
A complete list of Osier's papers on fractional calculus can be found at
http://www.rowan.edu/mars/depts/math/osler/my_papersl.htm

References 531

42. R. PEARL and L. J. REED, On the rate of growth of the population of the
United States since 1790 and its mathematical representation, Proceedings of
the National Academy of Sciences of the United States of America 21 275-288
(1920).

43. H. PoiNCARE, Science et Methode (Paris: Flammarion 1909). Enghsh transla
tion by G. B. HALSTED, in The Foundations of Science: Science and Hypothesis,
The Value of Science, Science and Method (Lancaster, PA: The Science Press
1946).

44. B. VAN DER P O L , Forced oscillations in a circuit with nonlinear resistance,
London Edinburgh and Dublin Philosophical Magazine 3 65-80 (1927).

45. P . PRUSINKIEWICZ and J. HANAN, Lindenmayer Systems, Fractals, and Plants
(New York: Springer-verlag, 1989).

46. P . PRUSINKIEWICZ and A. LINDENMAYER, The Algorithmic Beauty of Plants
(New York: Springer-Verlag 1990).

47. R. RiVEST, A. SHAMIR, and L. ADLEMAN, A method for obtaining digital sig
natures and public-key encryption, Communications of the ACM, 21 , 2 120-126
(1978).

48. H. RusKEEPAA, Mathematica Navigator (Amsterdam: Elsevier. Academic
Press, 2004)

49. H. SAGAN, Space-Filling Curves (New York: Springer-Verlag 1994).
50. D. SCHWALBE and S. WAGON, VisualDSolve: Visualizing Differential Equations

with Mathematica (New York: Springer Telos 1996).
51. P . C. SHIELDS, The Ergodic Theory of Discrete Sample Paths, Graduate Studies

in Mathematics Series, volume 13 (Providence, RI: American Mathematical
Society 1996).

52. W. SlERPlNSKi, (Euvres choisies, (Warszawa: Pahstowe wydawnictwo naukowe,
1975).

53. C. SPARROW, The Lorenz Equations, Bifurcations, Chaos, and Strange Attrac-
tors (New York: Springer-Verlag 1982).

54. P . STEFAN, A Theorem of Sarkovskii on the existence of periodic orbits of
continuous endomorphisms of the real line. Communications in Mathematical
Physics 54 237-248 (1977).

55. M. T R O T T , The Mathematica Guidebook for Graphics (New York: Springer-
Verlag 2004).

56. M. T R O T T , The Mathematica Guidebook for Programming (New York:
Springer-Verlag 2004).

57. M. T R O T T , The Mathematica Guidebook for Numerics (New York: Springer-
Verlag 2005).

58. M. T R O T T , The Mathematica Guidebook for Symbolics (New York: Springer-
Verlag 2005).

59. B. VAN DER P O L , Forced oscillations in a circuit with nonlinear resistance,
London, Edinburgh and Dublin Philosophical Magazine 3 65-80 (1927).

60. B. VAN DER P O L and J. VAN DER MARK, The heartbeat considered as a relax
ation oscillation, and an electrical model of the heart. Philosophical Magazine
Supplement 6 763-775 (1928).

61. I. VARDI, Computational Recreations in Mathematica (Redwood City, CA:
Addison-Wesley 1991).

62. P . F. VERHULST, Notice sur la loi que la population suit dans son accroisse-
ment, Correspondances Mathematiques et Physiques 10 113-121 (1838).

532 References

63. D. VvEDENSKY, Partial Differential Equations with Mathematica (Reading,
MA: Addison-Wesley 1992).

64. S. WAGON, Mathematica in Action (New York: W. H. Freeman, 1991).
65. J. V. WHITTAKER, An analytical description of some simple cases of chaotic

behavior, American Mathematical Monthly 98 489-504 (1991).
66. T. WiCKHAM-JONES, Mathematica Graphics, 5th edition (New York: Springer-

Verlag 1994).
67. H. WiLBRAHAM, On a certain periodic function, Cambridge and Dublin Math

ematical Journal 3 198-201 (1848).
68. S. WOLFRAM, The Mathematica Book, 5th edition (Champaign, XL: Wolfram

Media 2003).
69. E. ZECKENDORF, Representation des nombres naturels par une somme de nom-

bres de Fibonacci ou de nombres de Lucas, Bulletin de la Societe Royale des
Sciences de Liege, 5 179-182 (1972).

Index

??, 11
?, 11
//., 20

:>, 20

==, 14

\[RightArrow], 19

\[Element], 62

\[LetterName], 14, 98

dxy 104

\/^, 8

(* *) , 34

(...), 6

*, 10

,, 6

->, 19, 28, 248

/ , 164

/., 19, 89, 92, 95, 249

//., 249

/;, 250

: = , 15

:>, 248

;, 6, 8, 162

= , 14

= ., 40

==, 23, 30

??, Ill

[], 6

[[- n]], 155

[[n]], 6, 32, 96, 155

#, 103

$DisplayFuiiction, 45, 183

&, 103

&&, 13, 78, 87

_?Positive, 251

-Integer, 17, 250

_Integer?Positive, 18, 51, 262

Jleal, 17

__, 251

___, 251

• , 9

{...}, 6
Abs, 28, 67

AccelerationDueToGravity, 43

Accuracy, 8, 56

All, 199

And, 13

annihilationOperator, 479

Apart, 80

Append, 49, 50, 52, 160

AppendColumns, 100

AppendRow, 101

Apply, 164, 238

ArcCos, 14

ArcSin, 14

ArcTan, 14, 276

Arg, 67

Array, 96, 153

Arrow, 279, 330

AspectRatio, 175, 180, 199, 506,

507
Assuming, 79, 344

Automatic, 180

FrameTicks, 424

AxesLabel, 312, 313, 316--319

AxesOrigin, 311

534 Index

b^"digits, 7, 69

Banksequence, 522

BarChart, 190, 230

BarEdges, 191

BarOrientation, 191

BarStyle, 191

BarnsleyFern, 377

BaseForm, 7, 68, 245

basicProfile, 360

BesselJ, 21, 105, 126

BesselY, 21

bigChaosGame, 371

bigGame

collage theorem, 382
bigGame1, 374
bigGame2, 375

bigGame3, 376

Binomial, 63, 223
Pascal's triangle, 63
sums involving, 64

BinomialDistribution, 223

Blank, 16, 239

BlankNullSequence, 239

BlankSequence, 239

Block, 43, 44

BlockMatrix, 101

Box, 188

CMYKColor, 176

Calculus'FourierTransform', 139

Calculus'Limit', 127, 129

Calculus'VariationalMethods', 281,

286, 306

Calculus'VectorAnalysis', 120,

275, 327, 400

Calendar, 70

CalenderChange, 70

Cancel, 78

Cases, 160, 162, 203, 251, 451

Catalan, 122

CauchyDistribution, 227

Ceiling, 58

Center, 154

chaosGame, 370

CharacteristicFunction

BinomialDistributionCn, p], 223

CauchyDistribution[a, b], 228

NormalDistribution[/i, <j] , 226

PoissonDistribution[A], 225

Characters, 408

ChebyshevT, 21

ChebyshevU, 21

Chop, 85, 136, 315

Circle, 194, 198

circular arc, 304

Clear, 16, 40

ClearAll, 34, 41

ClearAll[Global'*], 41

ClearAttributes, 34

Coefficient, 81

CoefficientList, 82

Collatz, 47, 48

Collatz3, 50

Collatz3Sequence, 50

Collatz3SequenceLength, 51

Collatz4, 51

Collatz4Sequence, 51

Collatz4sequenceLength, 52

CollatzK, 52

CollatzSequenceLength, 48

Collect, 81

ColorFunction, 205, 215, 329

ColumnForm, 154

Compile, 385, 426, 428

Complement, 161

ComplexExpand, 78

complex2point, 295

Conjugate, 67

Constant, 105

ContinuedFraction, 66

ContourPlot, 212, 276, 329

ContourShading, 213, 276, 333

ContourSmoothing, 329, 333

Contours, 276

CoordinatesFromCartesian, 275

Cos, 14

Coslntegral, 108

Cot, 15

Count, 163

creationOperator, 479

Cross, 37

CrossProduct, 120

CylindricalPlot, 211

D, 24, 103

DSolve, 30, 146

constant coefficients, 113
nonconstant coefficients, 113

Dashing, 178
dataFitPlot, 46

Index 535

DayOfWeek, 70

DaysBetween, 71

decoding, 463, 466

decrypt, 467

DefaultFont, 179, 192, 304,

311—313, 316—319, 485

Degree, 14

Delete, 160

DeleteCases, 160, 250

Denominator, 80

DensityPlot, 214, 386

Derivative, 24

Det, 98

DiagonalMatrix, 98

DigitBlock, 60, 463

Dimensions, 97

dipolePotential, 330

DiracDelta, 143

Direction, 28

DisplayFunction, 36, 45, 182

Divisors, 59, 449, 459

Do, 204, 259, 261

Domain

BinomialDistributionCn, p], 224

CauchyDistribution[a, b], 228

NormalDistribution[/i, cr] , 227

PoissonDistributionCA], 225

Dot, 37

Drop, 72, 158, 159

Dt, 105

EasterSunday, 71

Eigenvalues, 39, 99

Eigenvectors, 99

ElectronMass, 43

encodingString, 463

encrypt, 467

Epilog, 179, 192, 304, 485—488
Equal, 13
equipotentialFieldPlot, 333

EulerEquations, 281, 285, 306

Evaluate, 115, 307, 308

Even, 250

EvenQ, 55

Exp, 15

ExpToTrig, 84

Expand, 77

ExpandAll, 78

ExpectedValue, 41, 42, 224

Exponent, 82

Extract, 156, 157

evolute, 498

f', f\ ±"\ 24
FaceGrids, 207

Factor, 78, 80, 83

FactorInteger, 58, 59

Factorial, 62, 79

Factorial2, 63

False, 12

Fibonacci, 252

Zeckendorf's representation, 74

Zeckendorf's theorem, 74

fibonacciNumber, 263—266, 268

FilledPlot, 112

FindRoot, 24, 90, 94, 482, 484

First, 157

firstPrimeAfter, 241

firstPrimeGreater, 262

Fit, 35

FixedPoinTList, 240

FixedPoint, 240, 378

FixedPointList, 323

Flatten, 168

Floor, 58, 72

FontSize, 179, 279, 336, 338, 353,

483, 486—488, 506, 507

FontSlant, 179, 279, 336, 338,

440, 483, 486—488, 506,

507

For, 261, 262

FormatType, 193

Fourier, 136

FourierCoefficient, 139

FourierCosCoefficient, 139

FourierCosTransform, 138

FourierParameters, 139

FourierSeries, 139

FourierSinCoefficient, 139, 140

FourierSinTransform, 138

FourierTransform, 137

FourierTrigSeries, 139, 140

Frame, 180, 184, 193

FrameLabel, 336, 338, 490—494

FrameStyle, 193

FrameTicks, 336, 338, 424

Frequencies, 229

FromCharacterCode, 462

FromContinuedFraction, 67, 128

FromDigits, 462

536 Index

FullForm, 10, 235

FullSimplify, 79, 88

Function

long form, 18, 239

named form, 16, 239

short form, 18, 103, 124, 128,

239, 241

FunctionExpand, 78

GCD, 59, 465

Gamma, 21, 63, 64, 79, 109

Gaussianlntegers, 59, 80

GraphicsArray, 182, 296, 297, 299,

312, 353

Graphi c s Spac ing, 184

Graphics', 111

Graphics'Arrow', 279, 330, 470

Graphics'Colors', 178

Graphics'Graphics3D', 209

Graphics'Graphics', 188

Graphics'ImplicitPlot', 93, 176

Graphics'MultipleListPlot', 187

Graphics'PlotField', 204, 327

GravitationalConstant, 399

Greater, 13

Gregorian, 70

greedyEgyptianSequence, 324

Head, 10, 12, 164, 235

HeadScaling, 331

Helvetica, 180

HilbertCurve, 412

Histogram, 190, 230, 232

HistogramCategories, 230, 232

HistogramScale, 230, 232

Hue, 215

HypergeometriclFl, 109

HypergeometricU, 447

I, 67

Identity, 36, 44, 45, 182, 506,

507

IdentityMatrix, 98

If, 48, 257

Im, 67

ImplicitPlot, 93, 176

initialMultiLaneConfig, 520

InputForm, 8

Insert, 160

Integer, 17

IntegerDigits, 60, 242, 463

IntegerQ, 55

Integers, 85, 91

Integrate, 26, 107

definite integrals, 26, 107

indefinite integrals, 26, 106

multiple integrals, 112

InterpolatingFunction, 31, 307,

312, 313, 317—319

Intersection, 161

Interval, 57, 95

Inverse, 39, 99

InverseFourierCosTransform, 138

InverseFourierSinTransform, 138

InverseFourierTransform, 138

InverseLaplaceTransform, 142, 148,

302

Islamic, 70

iterates, 426

JewishNewYeair, 71

Join, 118, 128, 161

JuliaTest, 385—391

Julian, 70

KochCrve

von Koch square, 366

von Koch triangle, 365

KochCurve, 364—366, 410

von Koch square, 366

KochTriangle, 410

LCM, 59

LaguerreL, 21, 447

LaplaceTransform, 142, 147

Volterra integral equation, 301

convolution, 301

Last, 157

Leadinglndex, 74

Lebesgue, 352

LegendreP, 21, 105, 273

Length, 32

LessEqual, 13

Limit, 28, 126

Line, 194

LinearAlgebra'MatrixManipulation',

100

LinearEquationsToMatrices, 101

lineSequence, 363

List, 32, 151, 186

ListContourPlot3D, 210

ListPlot, 35, 426

ListPlot3D, 208

Listable, 34, 171

Index 537

Log, 15

Loglntegral, 61

logisticCDF, 428

compared to the exact one, 436

logisticCobweb, 419, 427

LogLogPlot, 189

LogPlot, 189

LogicalExpand, 117

LorenzXY, 440

LorenzXZ, 441

LorenzYZ, 441

LowerDiagonalMatrix, 101

MandelbrotSTest, 396

Mandelbrot4Test, 397

MandelbrotTest, 392—395

Map, 164, 171, 238, 353, 355, 361

MapAt, 165, 166

Maplndexed, 167

MapThread, 166, 167, 238

MatrixForm, 39, 98, 100

MatrixPower, 99, 266

Maixlterations, 20

MaxSteps, 440, 442

Mean

BinomialDistribution[n, p], 223

CauchyDistribution[a, b], 228

NonnalDistribution[/i, cr] , 226

NonnalDistribution[2, 3]], 230

PoissonDistribution[A], 225

PoissonDistribution[2.5], 229

MersenneNumbersList, 457

Mesh, 207, 215

Miscellaneous'Calendar', 70

Miscellaneous'PhysicalConstants',

43, 399

Mod, 59, 72, 290

Module, 43, 45, 47, 48, 50—52,

262

monopolePotential, 328

Most, 458

MultipleListPlot, 187

N, 7

NDSolve, 31, 146

NIntegrate, 26, 109, 110

NLimit, 127, 130

NSolve, 23, 89, 91

NSum, 124

N[x, n], 8, 57

Nest, 48, 240

NestList, 48, 128, 240

NestWhile, 240

NestWhileList, 240

NextPrime, 241, 263, 464

nextProfile, 361

None, 182

Normal, 27, 119, 126

NormalDistribution, 226, 230

Null, 9, 410

NumberForm, 57, 60

NumberQ, 55

NumberSeparator, 60, 463

NumberTheory'NumberTheoryFunctions ̂ ,

263, 450, 464

NumberTheory'PrimeQ', 450

numberType, 258

Numerator, 80

NumericalMath'NLimit', 127, 130

Odd, 250

OddQ, 55

Or, 13

Outer, 38

PDF

BinomialDistribution[n, p], 223

CauchyDistributionCa, b], 228

NormalDistribution [/x, al , 226

NormalDistribution[2, 3], 230

PoissonDistribution[A], 225

ParametricPlot, 115, 174, 204,

286, 308

ParametricPlot3D, 216

Part, 32, 155

partialSumList, 263

Partition, 32, 33, 162, 242, 361

Peanol, 415

PeanoCurve, 414

perfectNumberQ, 459

perfectNumbersList, 458

Permutations, 168

PieChart, 190

PlanckConstant, 43

Plot, 11, 21, 173

Plot3D, 22, 207

PlotGradientField, 206, 330

PlotJoined, 187, 209

PlotLabel, 180, 192, 311

PlotLegend, 193

PlotPoints, 207, 215, 329

538 Index

PlotRange, 185, 199, 490—494,

506, 507

PlotStyle, 176, 178, 311—313,

316—319, 512

PlotSymbol, 188

PlotVectorField, 205

Plus, 164, 235

Point, 181, 194

PointSize, 186, 194

PoissonDistribution, 224, 229

PolarPlot, 175

PolyGamma, 124

PolyLog, 149

Polygon, 194, 197, 355

Position, 162, 166, 242

Power, 235

PowerExpand, 82

PowerMod, 465, 466

Precision, 8, 56

$MachinePrecision, 56

MachinePrecision, 56

Prepend, 72, 159

Prime, 61, 449, 464

PrimePi, 61

PrimeQ, 55, 61, 241, 262, 449

arithmetic progression of primes,

454, 455

formula generatic primes, 452

sum of two squares, 453

twin primes, 451

Product, 123
Protec ted , 137

ProvablePrimeQ, 450
RGBColor, 176, 179

RSolve, 433

Radian, 14

Random

evaluating TT , 222
Random[], 15, 20, 33, 35, 46,

136, 219
Random[Complex. r ange] , 220

Random[Complex], 220
Random[Integer, r ange] , 220

Random[Integer], 129, 186, 219
Random[Real, Range], 219

Range, 33, 61 , 152, 159

Ra t iona l i ze , 66
Re, 67

ReadProtected, 137

Real, 17

Rectangle, 194, 197

RecursionLimit, 256

Reduce, 87, 88, 91, 422

remainder, 322, 323

remaininglntervals, 348

remaininglntervalsList, 348

remainingSquares, 357

remainingTriangles, 354

remainingTrianglesList, 355

Remove, 41

ReplaceAll, 19

ReplaceRepeated, 20

Residue, 133

Rest, 158

Right, 155

RootSum, 124

RotateLabel, 336, 338, 490—494

RotateLeft, 168, 523

RotateRight, 168, 523

Round, 58

Rule, 20, 248

RuleDelayed, 20, 248

ScaleFunction, 329

ScatterPlot3D, 209

SeedRandom, 220

Select, 457

Series, 27, 125

SeriesData, 117

Set, 14, 16, 17

SetAttributes, 34, 105, 324

SetDelayed, 15—17

Short, 453

Show, 35, 45, 194, 217

SierpinskiCarpet, 358

SierpinskiTriangle, 356

Sign, 28

Simplify, 78, 84

Sin, 14

Sinlntegral, 108

Solve, 23, 86, 88, 117

Sort, 32

SphericalPlot, 212

Sqrt, 8

StandardDeviation

BinomialDistribution[n, p], 224

NormalDistribution[//, a] , 227

PoissonDistribution[A], 225

Index 539

Statistics'ContinuousDistributions',

223, 225

Statistics'DescriptiveStatistics',

41

Statistics'DiscreteDistributions',

223

String Join, 486—488

StringReplace, 407

Subscript, 97, 304

Sum, 29, 122

sumReciprocalsTwo, 460

SurfaceGraphics, 209

Switch, 258

Symbol, 304

SymbolShape, 188

Table, 33, 35, 151

TableForm, 39, 50, 96, 153

TableHeadings, 154

Take, 157, 323

Tan, 14, 15

Text, 178, 186, 199

TextStyle, 179, 279, 353, 483,

486—488, 506, 507, 512

Thread, 102, 120

Ticks, 180—182

Times, 164, 235

Timing, 9, 49, 51, 252, 264—266

ToCharacterCode, 462

toMultiBase, 72

ToString, 485—488

Together, 79

Total, 41, 164, 459

TraditionalForm, 107, 182

TraditionalFprm, 180

transitionPoint, 515

translatedDifference, 324

Transpose, 39, 98, 167, 457

Triangle, 188

TrigExpand, 82

TrigFactor, 82

TrigReduce, 84, 148

TrigToExp, 84

True, 12

turnLeft, 409

turnRight, 409

turtle, 408

Unequal, 12

Union, 161

unitDipole, 330

unitMonopoleV, 328

UnitStep, 143

Unset, 40

UpperDiagonalMatrix, 101

Variance

BinomialDistribution[n, p], 224

NormalDistribution[/i, cr] , 226

NormalDistribution[2, 3]], 230

PoissonDistribution[A], 225

PoissonDistribution[2.5], 229

VerifySolutions, 88

Viewpoint, 207

Which, 258, 493, 494

While, 261

WorkingPrecision, 92, 110

x//f, 237

ZTransform, 145

ZeckendorfRepresentation, 75

Zeta

Riemann ^ function, 123
generalized Riemann C function,

123

Printed in the United States of America.

	Cover
	Essentials of Mathematica
	Preface
	Contents
	List of Figures
	Part I Essential Commands
	fulltext_001.pdf
	fulltext_002.pdf
	fulltext_003.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	fulltext_006.pdf
	fulltext_007.pdf
	fulltext_008.pdf

	Part II Applications
	fulltext_009.pdf
	fulltext_010.pdf
	fulltext_011.pdf
	fulltext_012.pdf
	fulltext_013.pdf
	fulltext_014.pdf
	fulltext_015.pdf
	fulltext_016.pdf
	fulltext_017.pdf
	fulltext_018.pdf
	fulltext_019.pdf
	fulltext_020.pdf
	fulltext_021.pdf
	fulltext_022.pdf
	fulltext_023.pdf
	fulltext_024.pdf
	fulltext_025.pdf
	fulltext_026.pdf
	fulltext_027.pdf
	fulltext_028.pdf
	fulltext_029.pdf
	fulltext_030.pdf
	fulltext_031.pdf
	fulltext_032.pdf
	fulltext_033.pdf
	fulltext_034.pdf
	fulltext_035.pdf
	fulltext_036.pdf

	References
	Index

