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Preface

The development of mathematical methods and analysis, and computer tech-
nology with advanced electrotechnical devices has led to the creation of vari-
ous programs increasing labor productivity. There are three types of programs: 
mathematical, simulation, and programs that unite these two operations. 
Furthermore, these programs are often used for analysis in various areas.

Mathematical programs perform analytic and numerical methods and 
transformations that realize known mathematical operations. Among the 
better-known programs are Mathematica® and Maple®.

Programs that carry out the analysis of electromagnetic processes in 
electronic and electrotechnical devices and systems belong to the family of 
simulation programs. Such programs have additional abilities such as the cal-
culation of thermal conditions, sensibility, and harmonic composition. One 
such widely known program is ORCAD (formerly PSpice®), which allows 
modeling of digital devices and the design of printed circuit cards. We are 
interested in programs in which the mathematical description and methods, 
together with methods of modeling, are incorporated in the general software 
product. The most widespread program is Matlab®.Matlab’s potential 
is enhanced by the inclusion in its structure of various up-to-date methods, 
such as neural networks and systems of fuzzy logic.

The characteristics of the programs are presented here briefly, showing 
the relative niche occupied by each program. Depending on the problems 
in question (e.g., programmer qualification, capabilities of the program), we 
can effectively analyze enough complex systems. In some cases preference 
is given to mathematical programs that include a powerful block of analytic 
transformations. It is expedient to use a simulation program if it is neces-
sary to develop and analyze electronic systems. There are certain limitations 
in their use caused by the elements involved in a program. Another defi-
ciency is the absence of a maneuver, as in the analysis of stiff systems. In 
such a case, as a rule, it is necessary to change the model of the elements or 
change the purpose or the model of the whole system. For example, during 
the determination of a steady-state process, the system may be unstable. In 
this case, use of the simulation programs does not give the answer to the 
question of what is necessary to change in the system in order to maintain its 
working capacity. For this, it is necessary to undertake an additional analysis 
of the model. And in this case mathematical programs have an advantage in 
respect to the ability of formation and change of complexity of the model, 
and to a choice of mathematical methods used in the solution of a problem. 
This feature of mathematical programs is very attractive for researchers, and 
is the main reason why authors select the mathematical program as the tool 
for research.
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viii	 Preface

The application of the mathematical pocket Mathematica 4.2 for the analy-
sis of the electromagnetic processes in electrotechnical systems is shown in 
this book. For the clarity of represented expressions, and expressions, vari-
ables, and functions used by Mathematica for the input, the latter will be 
shown in bold.

MATLAB® is a registered trademark of The MathWorks, Inc. For product 
information, please contact: 

The MathWorks, Inc. 
3 Apple Hill Drive 
Natick, MA 01760-2098 USA 
Tel: 508 647 7000 
Fax: 508-647-7001 
E-mail: info@mathworks.com 
Web: www.mathworks.com
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1

1
Characteristics of the Mathematica® System

1.1 � Calculations and Transformations of Equations

An elementary example of the use of Mathematica® is the execution of calcu-
lations with the sphere of the calculator. Let us input the following expres-
sion to the Mathematica notepad:

	 12/3

and then press the keys Shift + Enter. The expression In[1] = will appear to 
the left of this expression, and in the next row,

	 Out[2] = 4

As we have entered integer numbers, Mathematica has calculated the result 
as an integer value. For the expression

	 11/3

Mathematica displays

	

11
3

Let us use the built-in function N[ ] of Mathematica. Then, for

	 N[11/3]

we get

	 3.66667

Built-in functions of Mathematica begin with the capital letters, and the 
argument is enclosed in square brackets.
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2	 Electrotechnical Systems

There is an alternative calculation. For this purpose, at the end of equation, 
it is necessary to write down //N, that is,

	 11/3//N

When real numbers are entered, Mathematica executes the calculation 
without the use of function N[ ]. For example, for

	 12.2/3

we have

	 4.06667

Real numbers are entered in the format

	 1.22*10^1

	 122.0*10^−1

The multiplier sign is entered either by the space or by the asterisk; the degree 
sign is entered with the help of the symbol .̂

Complex numbers are inputted with the help of the symbol of imaginary 
unit I (or i). For example,

	 1.2+I*3.2

Calculations with complex numbers are also executed just as with real ones.
For example, for the result of the calculation

	 (1.2+I*3.2)/(2.0+I*9.1)

we obtain

	 0.363092−0.0520677i

Real and imaginary parts of complex numbers are distinguished with the 
help of the functions Re[ ] and Im[ ]. For example,

	 Re[6.1-I*5.5]

	 Im[6.1-I*5.5]

	   6.1

	 −5.5
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Characteristics of the Mathematica® System	 3

In Mathematica, use of some constants for which symbols are reserved 
is provided: imaginary unit I (or i), E (the base of the natural logarithm), 
Pi (p number), Degree (p/180 number), and Infinity (infinity) are some of 
them.

When complex systems are calculated, names are given to the variables 
called named variables. A named variable begins with a letter. The value 
of the variable is assigned by means of an operation of assignment. For 
example, for

	 con1=56.2;

	 con2=14.7;

	 con1/con2

we have

	 3.82313

We write values of parameters in each row of the cell of a notepad. Several 
parameters can be entered in one row, but they must be separated by the 
semicolon sign (;). When the semicolon sign is not written at the end of the 
row, then the parameter value will be written down in a separate cell after 
the cell calculation. It is also necessary to keep in mind that a line feed is 
made by pressing the Enter key.

One more way of assigning the value of a variable is determined by the 
sign: =. For example,

	 var1:=var2;

In this case, the right part will not be calculated, while the variable var1 will 
not appear in following expressions. Let us consider by examples the differ-
ence between the presented assignment techniques. In the first example,

	 con1=16.2;

	 con2=4;

	 var1=con1/con2

	 con2=3;

	 var1

we obtain

	 4.05

	 4.05
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4	 Electrotechnical Systems

In the second example,

	 con1=16.2;

	 con2=4;

	 var1:=con1/con2;

	 var1

	 con2=3;

	 var1

we obtain

	   4.05

	 5.4

Thus, we can change the value of a variable during the calculations.
During calculations of various expressions, it is often necessary to carry 

out their transformations. The Expand[  ] function permits expansion of 
products. For example, calculating

	 var1=(x+3.9)*(y−2.1);

	 var2=Expand[var1]

yields

	 −8.19−2.1x + 3.9y + xy

We can transform the obtained expression for the given variable with the 
help of the function Collect[ ]. Applying

	 Collect[var2,x]

yields

	 − + − + +8 19 2 1 3 9. ( . ) .x y y

For the expansion of polynomials with integer numbers, the function Factor[ ] 
is used. Applying this function to the expression

	 var1=x*y+3*y-2*x-6;

	 Factor[var1]
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Characteristics of the Mathematica® System	 5

yields

	 ( )( )3 2+ − +x y

The function Simplify[  ] produces the algebraic manipulation of an argu-
ment and returns its simple form. If in the considered example we replace 
the function Factor[ ] with Simplify[ ], the result will be the same. The func-
tions Simplify[ ] and Factor[ ] in analytical transformations also allow us to 
effect reduction of fractions. For example, for

	 var1=x/(x+1)-2/(x^2-1);

	 Simplify[var1]

we obtain

	

− +
− +

2
1

x
x

In Mathematica, the function FullSimplify[ ], in comparison with the func-
tion Simplify[ ], has a greater range of capabilities. Let us show the differ-
ence between these two functions with the example:

	 var1=(x*y+4*x+3.1*y+12.4)/(x+3.1);

	 Simplify[var1]

	 FullSimplify[var1]

As a result of the use of the first function, we obtain

	

12 4 3 1 4
3 1

. . ( )
.

+ + +
+

y x y
x

for the second

	 4.+ y

For reduction of the common multipliers in the numerator and denominator, 
the Cancel[ ] function is used. The transformed expression must be repre-
sented in the form of a fraction. Then, for

	 Cancel[(s*d+a*s+h*d+a*h)/(s+h)]

we obtain

	 a d+
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6	 Electrotechnical Systems

The Together[ ] function allows the reduction of fractions to the common 
denominator and the cancellation of the common multipliers in the numera-
tor and denominator. For the expression

	 var1=x^2/(x-1)+(-2*x+1)/(x-1);

	 Together[var1]

we obtain

	 − +1 x

It should be noted that, for this example, the application of the Simplify[ ] 
and Factor[ ] functions allow us to obtain the same result.

The Apart[  ] function presents an argument as a sum of fractions. As a 
result of the application of this function to the expression

	 var1=(x^2-2*x*y+y^2-x^2*y^2)/(x^2-2*x*y+y^2);

	 Apart[var1]

we obtain

	
1 22

4

2

3

− −
− +

−
− +

x x
x y

x
x y( )

The substitutions are often used during the transformation of the expressions 
in Mathematica. A substitution operation is determined by the symbol /.. The 
expression following this symbol, var1->var2, shows that var2 replaces the 
variable var1. The symbol -> consists of two symbols: - and >. Let us consider 
the example of the application of substitution

	 x=a+4;

	 m=x/.a->z+3;

	 y=b+6;

	 b=z+1;

	 y

	 m

	 x

As a result we obtain

	 7+z

	 7+z

	 4+a
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Thus, the first equation remained unchangeable for x, but the equation for y 
changed.

1.2 � Solutions of Algebraic and Differential Equations

The Solve[ ] function is used for solutions of algebraic equations. Let us find 
the solution to the algebraic equation

	 x x2 1 6 7 77 0− − =. .

We shall define the variable corresponding to the equation and apply the 
Solve[ ] function:

	 eq1=x^2-1.6*x-7.77;

	 x12=Solve[eq1 == 0,x]

The first part of the Solve[ ] involves the equation (or system of equations), 
but the second part involves the variable (or list of variables), according to 
which the equation must be solved. The sign == is obtained by way of enter-
ing two signs of =. The result of the solution is represented as the list

	 {{ . }, { . }}x x→− →2 1 3 7

in which the substitutions are used. For assignment of the solution to the 
variables x1 and x2, it is necessary to use the substitution of the solution x12 
for the variables and then pick out the separate values. Continuing the previ-
ous example,

	 x1=Part[x/.x12,1]

	 x2=Part[x/.x12,2]

we obtain

	 −2.1

	    3.7

By means of the Part[ ] function, extraction of the element from the list is 
made.
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8	 Electrotechnical Systems

For the set of equations

	 eq1=a*x+b*y+c;

	 eq2=2*a*x+2*b*y+2*c;

	 xy=Solve[{eq1 == 0,  eq2 == 0},{x,y}]

Mathematica displays
Solve::svars: Equations may not give solutions for all “solve” variables.

	
x c

a
by
a

→− −{ }







Change the second equation in the following way and apply the Solve[ ] 
function

	 eq1=a*x+b*y+c;

	 eq2=2*a*x+2*b*y+c;

	 xy=Solve[{eq1 == 0,eq2 == 0},{x,y}]

We obtain the answer

	 {}

which shows that there is no solution.
Change the second equation once again. As a result of solving the set of 

equations

	 eq1=a*x+b*y+c;

	 eq2=2*a*x+b*y+c;

	 xy=Solve[{eq1 == 0,eq2 == 0},{x,y}]

we obtain

	
x y c

b
→ →−{ }








0,

Use the Part[ ] function to assign the solution to the variables

	 x1=Part[x/.xy,1]

	 y1=Part[y/.xy,1]
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Characteristics of the Mathematica® System	 9

Then

	 0

	
− c

b

For elimination of a part of the variables from the set of equations, it is neces-
sary to use the Eliminate[ ] function. If we use the equations from the last 
example, then for

	 eq3=Eliminate[{eq1==0,eq2==0},x]

we obtain

	 − ==by c

The solution to this equation can be found with the help of the Solve[ ] 
function.

For the numeral solution to the algebraic equations, the NSolve[ ] function 
is used. For example, for the equation

	 eq1=x^5-2*x^2+3;

	 NSolve[eq1 == 0,x]

we obtain

	 {{ .}, { . . }, { . .x x i x→− →− − →− +1 0 585371 1 34012 0 585371 1 334012i}}

When equations are represented in the matrix form, it is expedient to use the 
LinearSolve[ ] function for their solution.

For the numeral solution to nonlinear equations in Mathematica, the 
FindRoot[ ] function is used. In this function, the initial value is introduced 
and, in case of need, the interval on which the solution will be found is also 
introduced. For example, solving the equation

	 e xx− =

by means of

	 FindRoot[Exp[−x]==x,{x,1}]

yields

	 { }x → 0.567143
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10	 Electrotechnical Systems

The second argument {x,1} of the function in this case defines the initial value 
and the variable according to which the solution is calculated.

With the solving of the differential equations in Mathematica, it is neces-
sary to set both a function and independent variable according to which the 
solution is found. We find the solution to the 2nd-order differential equation

	

d y
dx

dy
dx

y
2

2 2 3 0+ + = .

Using the DSolve[ ] function

	 eq1=y’’[x]+2*y’[x]+3*y[x];

	 s1=DSolve[eq1 == 0,y[x],x]

we obtain the solution

	
y x e C Cos x e C Sin xx x[ ] [ ] [ ] [ ] [ ]→ +{ }{ }− −2 2 1 2

in which two constants C[1] and C[2] are presented. To extract the solution, 
the Part[ ] function is used

	 ys=Part[y[x]/.s1,1]

Then,

	 e C Cos x e C Sin xx x− −+[ ] [ ] [ ] [ ]2 2 1 2

Let us calculate the value of this expression at the point x = 2 at C[1] = 3 and  
C[2] = 4

	 X=2;

	 yd=ys/.{C[1]->3,C[2]->4}

We obtain

	

4 2 2 3 2 2
2 2

Cos
e

Sin
e

[ ] [ ]+

The numerical value is determined with the help of the N[ ] function

	 N[yd]

Then, mathematica outputs

	 −0.389933

87096_Book.indb   10 1/27/10   6:06:34 PM



Characteristics of the Mathematica® System	 11

The DSolve[ ] function is used for the solution to the set of differential equa-
tions. We solve the set of the first-order differential equations

	

dy
dt

y x− + =3 0* ,

	

dx
dt

x y+ − =2 1*

with the initial conditions y(0) = −1, x(0) = 2. The set of equations is repre-
sented as follows:

	 eq1=y’[t]-3*y[t]+x[t];

	 eq2=x’[t]+2*x[t]-y[t]-1;

As a result of the solution

	 s1=DSolve[{eq1==0,eq2==0,y[0]==-1,x[0]==2},{y[t],x[t]},t]//N

we obtain

	 {{ [ ] . ( . . . .y t t→ + ⋅ −−0 0952381 21 37 8167 2 71828 11 79129 663 8117 2 7118282 79129. . ),.⋅ t

x t t[ ] . ( . . . .→ + ⋅ −−0 0047619 126 362 381 2 71828 681 79129 .. . )}}.3811 2 7118282 79129⋅ t

Remember that the //N function specifies that the solution should be obtained 
in a numeral form.

Let us transform this solution in the following way:

	 Simplify[s1]

Then,

	 {{ [ ] . . . ,. .y t e et t→ + −−0 2 0 360159 1 560161 79129 2 79129

	 { [ ] . . . }}. .x t e et t→ + −−0 6 1 72562 0 3256241 79129 2 79129

For the numeral solution to differential equations in Mathematica, the func-
tion NDSolve[ ] is used. Let us find the solution to the same system on the 
interval 0 … 1.

	 eq1=y’[t]−3*y[t]+x[t];

	 eq2=x’[t]+2*x[t]-y[t]-1;

	 s2=NDSolve[{eq1==0,eq2==0,y[0]==-1,x[0]==2},{y,x},{t,0,1}]
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As a result of the application of the function NDSolve[ ], we obtain the solu-
tion in the form of interpolation functions

	 {{y->InterpolatingFunction[{{0.,1.}},<>],

	 x-> InterpolatingFunction[{{0.,1.}},<>]}}

For t = 0.2, the value of functions is obtained in the following way:

	 Part[y[0.2]/.s2,1]

	 Part[x[0.2]/.s2,1]

Then

	 −2.27486

	    1.23696

1.3 � Use of Vectors and Matrices

In Mathematica the vectors and matrices are represented in the view of lists. 
For example, vector u = {0.1, 0.25}, matrix m = {{a, b}, {c, d}}. There are various 
functions in Mathematica to work with vectors and matrices. Let us consider 
an example. We find the inverse matrix for

	
m1 0 0

0.1 0.2
;=











	 Inverse[m1]

Mathematica displays:

	 Inverse::sing: Matrix{{0.,0.},{0.1,0.2}} is singular

	 Inverse[{{0,0},{0.1,0.2}}]

Mathematica informs that the matrix is singular. Let us find the eigenvalues 
of the matrix with the help of the function

	 Eigenvalues[m1]

Then

	 {0.2, 0.}

In fact, one of the eigenvalues of the matrix is equal to zero.
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Let us change the data of the example. Consider the matrix

	

m1
0.3 2.0
0.1 0.2

;5
2









Applying the function

	 Inverse[m1]

	 Eigenvalues[m1]

yields

	 {{0.769231, 7.69231}, {−0.384615, 1.15385}}

	 {0.25+0.44441i, 0.25−0.44441i}

For transformation of matrices, functions also are used:

Transpose[ ]—transpose of matrix
Det[ ]—calculation of matrix determinant
Tr[ ]—calculation of trace of matrix
Eigenvectors[m1]—calculation of matrix eigenvalues

The set of linear algebraic equations, represented in the matrix form, can be 
solved with the help of the LinearSolve[ ] function. Let us find the solution 
to the set of equations

	 0. . . ,3 2 0 5 01 2x x− =

	   0 1 0 2 1 31 2. . . .x x+ = −

We use this symbol to input the matrix:

	

� �

� �











which is located on the toolbar. To input matrices and vectors of different 
sizes, it is necessary to choose the Mathematica menu: Input->Create Table/
Matrix/Palette. and then determine the Number of rows and Number of col-
umns. Solving the system of equations with matrix and vector,

	

m1
0.3 2.0
1.1 0.2

;=
-









	
b1 5.0

1.3
;=

-






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with the help of the function

	 LinearSolve[m1,b1]

we obtain

	 {{ . }, { . }}− −0 707965 2 60619

The solution to this set of equations could also be found using the inverse 
matrix

	 Inverse[m1].b1

The result will be the same.
It is necessary to note that, for addition and subtraction of matrices, the 

usual symbols are used. To multiply matrix by matrix, matrix by vector, and 
vector by vector (inner product of vectors), the dot symbol is used. To find the 
product of vector-column by vector-row, it is necessary to use the Outer[ ] 
function. Consider an example. Let us find the product of two vectors

	 cc={c1,c2};

	 dd={d1,d2};

Applying the function

	 Outer[Times,cc,dd]

yields

	 {{ , }, { , }}c d c d c d c d1 1 1 2 2 1 2 2

The MatrixExp[ ] function is used in Mathematica for the calculation of 
matrix exponential. Let us consider the application of this function for solv-
ing the set of linear differential equations

	

dX
dt

AX=

at the initial condition X(0) = X0. The solution to such an equation has the form

	 X t e XAt( ) = 0 	 (1.1)

For matrix

	
A1 0.3 2.0

1.1 0.2
;= -





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at the initial condition

	
x0 1.0

1.0
= -






the solution to Equation (1.1) is obtained in the following way:

	 s1=Simplify[ComplexExpand[MatrixExp[A1*t].x0]]

	 {{ (( . . ) [ . ] ( . . ) [.e i Cos t i Sint0 25 1 0 1 4824 1 3829 0− + − + 11 4824. ])},t

	 { (( . . ) [ . ] ( . . ) [.e i Cos t i Sint0 25 1 0 1 4824 0 775771 0+ − + 11 4824. ])}}t

The ComplexExpand[ ] function, which expands expressions with com-
plex numbers, is used for a solution’s transformation. Items 0.i exist in the 
obtained solution. The function Chop[ ], which in the general case allows the 
approximation of the real part of the number with the required precision, is 
used for the elimination of such items. Calculating

	 s2=Chop[s1]

yields

	 {{ ( . [ . ] . [ . ])},.e Cos t Sin tt0 25 1 1 4824 1 3829 1 4824− −

		  { ( . [ . ] . [ . ])}}.e Cos t Sin tt0 25 1 1 4824 0 775771 1 4824−

For solving the nonhomogeneous matrix differential equation

	

dX
dt

AX B= + 	 (1.2)

we use the expression

	

X t e X e B dAt A t

t

( ) ( ) .( )= + −∫0

0

τ τ τ 	 (1.3)

When B B const( ) ,τ = =  then this expression can be represented as

	 X t e X A e I BAt At( ) ( ) ,= + −−
0

1

where A−1 is the inverse matrix; I is the unit matrix.
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Let us find the solution to the Equation (1.2) for

	
A1 0.4 0.3

0.8 7.6
;= - −

−







	
B1 10.0

0
;=








	
X0 0

0
;=








	 I2=IdentityMatrix[2];

	 At:=MatrixExp[A1*t];

	 X1=Simplify[At.X0+Inverse[A1].(At-I2).B1]

Then

	 {{ . . .. .23 1707 0 00620489 23 17697 56651 0 43348+ −− −e et 99t},

	 { . . . }. .2 43902 0 148225 2 587257 56651 0 433489+ −− −e et t }}

In these calculations the unit matrix of second order is determined with the 
help of the Identity[2] function. The function At:=MatrixExp[A1*t] is intro-
duced for shortening the expressions.

1.4 � Graphics Plotting

In Mathematica the application of various functions that enable the genera-
tion of 2D and 3D graphs, organized in various ways, is specified. The Plot[ ] 
function is used for plotting 2D graphs. Let us plot graphs of y aSin t1= ( )ω  
and y2 = bt on the interval t = 0.1 − 0.5. Then, as a result,

	 =16.1;

	 y1=12.1*Sin[*t];

	 y2=8.7*t;

	 Plot[{y1,y2},{t,0.1,0.5},AxesLabel->{“t”,”y”}]

we obtain the graphs presented in Figure 1.1. The Plot[ ] function draws the 
graphs of functions presented in the list {y1,y2} at the interval {t,0.1,0.5}. In 

87096_Book.indb   16 1/27/10   6:06:41 PM



Characteristics of the Mathematica® System	 17

this example, the option used is AxesLabel -> {“t”, “y”}, which establishes 
the labels to be put on the axes. Numerical values for ordinate axes are cho-
sen by Mathematica after the calculation of all function values.

During the solving of differential equations, the obtained expressions are 
often presented as plots. Let us consider an example. We plot x(t) and y(t) func-
tions, arising from the solution to the following set of differential equations:

	 eq1=-y’[t]-3*y[t]+x[t]+10;

	 eq2=2*x’[t]-1.8*x[t]-y[t];

	 s1=Simplify[DSolve[{eq1==0,eq2==0,y[0]==-1,x[0]==2},{y[t],x[t]},t]]//N;

	 Plot[y[t]/.s1,{t,0,1.5},AxesLabel->{“t”,”y”}]

	 Plot[x[t]/.s1,{t,0,1.5},AxesLabel->{“t”,”x”}]

Graphs of y[t], x[t] are presented in Figures 1.2 and 1.3.

0.2 0.3 0.4 0.5

–5

5

10

t

y

y1

y2

Figure 1.1
Graphs of y1 = aSin(wt) and y2 = bt.

1

2

3

4
5

6

–1
0.2 0.4 0.6 0.8 1 1.2 1.4

y

t

Figure 1.2
Graphs of function y[t].
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The ParametricPlot[ ] function for making graphics of parametrically 
specified functions is used in Mathematica. Let us plot the graph of the 
functions specified parametrically with the help of y a e Sin tbt1 1= − ( )ω  and 
y a e Cos tbt2 2= − ( ).ω  Then,

	 =60;

	 y1=12.1*Exp[-33*t]*Sin[*t];

	 y2=2.4*Exp[-33*t]*Cos[*t];

	 ParametricPlot[{y1,y2},{t,0.1,0.5},AxesLabel->{“y2”,”y1”},PlotRange->All]

The graph is shown in Figure 1.4.
When data are specified as a list, then it is necessary to use the ListPlot[ ] 

function for graphic presentation. Data can be represented either in the form 

t

2

4

6

8

10

x

0.2 0.4 0.6 0.8 1 1.2 1.4

12

Figure 1.3
Graph of function x[t].

0.05 0.1 0.15
y2

–0.1 –0.05

0.02

0.04

0.06

0.08

y1

Figure 1.4
Graph of the functions specified parametrically.
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of {y1, y2,…} , or {{x1, y1}, {x2, y2}..}. In first case, for y1 x1 = 1, y2 x2 = 2, etc. 
In the second case, pairs of numbers correspond to values of points. For 
example, for the function y = f(x), represented by the list

	 d1={{0.1,0.2},{0.3,0.3},{0.2,0.4},{0.0,0.5},{-0.4,0.4}};

plotting of graphs is realized in the following way:

	 d1={{0.1,0.2},{0.3,0.3},{0.2,0.4},{0.0,0.5},{-0.4,0.4}};

	 p1=ListPlot[d1,AxesLabel->{“x”,”y”},PlotStyle->{PointSize[0.02]}]

	 p2=ListPlot[d1,AxesLabel->{“x”,”y”},PlotJoined->True]

	 Show[p1,p2]

In Figure 1.5, the graph of the function in the form of points is presented. 
The Point size is established by the option PlotStyle->{PointSize[0.02]}. The 
minimum point size for a 2D graph is established Mathematica and is equal 
to 0.08.

Points can be joined by straight lines with the help of the PlotJoined->True 
option. This option is used for plotting the graph (Figure 1.6). The Show[ ] 
function draws two graphs together (Figure 1.7).

For making 3D plots in Mathematica the Plot3D[ ], the ParamericPlot3D[ ] 
and ListPlot3D[  ] functions are used. For an application of the Plot3D[  ] 
function, let us consider an example. Let the functions have the form

	 z1=x+0.8*y;

	 z2=1.5*Sin[1.2*x]+2.0;

x
0.1 0.2 0.3–0.1–0.2–0.3–0.4

0.25

0.3

0.35

0.4

0.45

0.5
y

Figure 1.5
Graph of y = f(x) in the form of points.
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Using the functions Plot3D[ ] and Show[ ],

	 p1=Plot3D[z1,{x,0,4},{y,0,3},AxesLabel->{“x”,”y”,”z”},Shading->False];

	 p2=Plot3D[z2,{x,0,4},{y,0,3},Lighting->False];

	 Show[p1,p2]

we obtain graphs, which are shown in Figures 1.8, 1.9, and 1.10.
During plotting of the z1 = f(x, y) function, we use the option Shading-> 

False, which makes the surface white. The option Lighting->False allows 
drawing without an illumination.

x
0.1 0.2 0.3–0.1–0.2–0.3–0.4

0.25

0.3

0.35

0.4

0.45

0.5
y

Figure 1.6
Graph of y = f(x) in the form of straight-line segments.

0.1 0.2 0.3
x

–0.1–0.2–0.3–0.4

0.25

0.3

0.35

0.4

0.45

0.5
y

Figure 1.7
Graphs 1.5 and 1.6.
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Figure 1.8
Graph of z1 = f(x, y).
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Figure 1.9
Graph of z2 = j(x, y).
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1.5 � Overview of Elements and Methods of Higher Mathematics

In Mathematica there are derivate and integral operations. To calculate deri-
vates D[ ] and Dt[ ], functions are used. The function

	 D[a*Sin[b*x],x]

allows us to find the partial derivative ∂
∂x :

	 abCos bx[ ]

The function

	 D[a*Sin[b*x],{x,2}]

allows us to find the second partial derivative:

	 −ab Sin b x2 [ ]

The function

	 D[y*Sin[b*x]+y,x,y]

allows us to find the derivative ∂
∂

∂
∂x y :

	 bCos bx[ ]

0

1

2

3

y
0

2
4

6

z

0
1

2
3

4

x

Figure 1.10
Graphs of z1 = f(x, y) and z2 = j(x, y).
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In Mathematica, provision is made to define certain functions. For example,

	 f[x_]:=2.0*Exp[-x];

In the expression f[x_], the argument x_ points to the variable place, not 
to the variable itself. Using such a function’s determination, the derivative 
calculation

	 D[f[t],t]

gives the following expression:

	 − ⋅ −2 e t

To calculate the total derivatives and the differential, the Dt[ ] function is 
used. For example, as a result of the calculation

	 Dt[a1*x]

we obtain

	 xDt a a Dt x[ ] [ ]1 1+

There are analytic and numerical methods for calculating integrals in 
Mathematica. For the indefinite integral, calculation is made by the function 
defined by the symbol

	
� �d∫

for example,

	
Cos b x dx[ ]*∫

or the function defined by the name Integrate[ ], for example,

	 Integrate[Cos[b*x],x]

As a result of indefinite integral calculation, we obtain

	

Sin b x
b
[ ]
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For definite integral calculation, there are also two applicable forms. For 
example, calculating the integral with the help of one of the forms

	
Exp b x dx[ ]- *

0

1

∫
	 Integrate[Exp[ b*x], {x,0,1}]-

we obtain the same result:

	

1
b

e
b

b

−
−

For numerical integration of the expressions, the NIntegrate[ ] function is 
used. Consider the following example. Find the integral of a function

	

1
b x x+ + sin

Calculating indefinite integral

	 f[x_]:=1/(b+x+Sin[x]);

	 Integrate[f[x],x]

we obtain

	

1
b x Sin x

dx
+ +∫ [ ]

Mathematica shows that this indefinite integral cannot be calculated. The 
numerical value of this integral for b = 2.2 and the interval 0–1 is calculated 
in the following way:

	 B=2.2;

	 NIntegrate[f[x],{x,0,1}]

Then,

	 0.326247

In solving various problems, functions very often are presented as a sum. 
For the Taylor series expansion, the Series[ ] function is used. For example, 
the Taylor series of the function

	

1
2+ t
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up to 3-d order is found in the following way:

	 s1=Series[1/(2+t),{t,0,3}]

Then,

	

1
2 4 8 16

0
2 3

4− + − +t t t t[ ]

For series truncating, the Normal[ ] function is used. Using this function

	 s2=Normal[s1]

we obtain

	

1
2 4 8 16

2 3

− + −t t t

In Mathematica there are functions that are used for finding the Fourier 
transform, Laplace transform, and Z-transform. The Fourier transform is 
determined by the function FourierTransform[ ]. For example, for function

	

f t
e t

t

t

( )
, ,

,
=

>
≤







− 0

0 0

the Fourier transform

	 f1[t_]:=Exp[-t]*UnitStep[t];

	 FourierTransform[f1[t],t,]

gives the expression

	

i
i2π ω( )+

The f1[t_] function is defined by the unit step function UnitStep[t].
The inverse Fourier transform of the function

	

1
3+ iω

is determined with the help of the function

	 InverseFourierTransform[1/(3+I*),,t]
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Then,

	 e UnitStep tt3 2π [ ].−

The Laplace transform and Z-transform are applied similarly.

1.6 � Use of the Programming Elements in Mathematical Problems

In Mathematica the use of defined if-statements and functions allow effec-
tive organization of the process of calculation of complex expressions. An 
if-statement has the form If[ ]. Let us consider an example in which it is nec-
essary to calculate the integral of a function

	

f t
e t

t t

t

( )
, ,

,
=

>
+ ≤







− 0

1 0

Using an if-statement, determine the function in the following way:

	 f[t_]:=If[t>0,Exp[-t],t+1];

The graph of this function

	 Plot[f[t],{t,-2,2},AxesLabel->{“t”,”f”}]

is presented in Figure 1.11

1 2
t

1

0.5

–0.5

–1

f

–1–2

Figure 1.11
Graph of f(t).

87096_Book.indb   26 1/27/10   6:06:57 PM



Characteristics of the Mathematica® System	 27

The integral of function

	 Integrate[f[x],{x,-1,1}]

is equal to

	

3
2

1−
e

For a finite series sum calculation, it is expedient to use the For[ ] function, 
by the help of which loops are created in the program. For example, the sum 
of numbers 2n for n = 1…100 can be found as follows:

	 i1=0;

	 For[n=1,n≤100,i1=i1+2*n;n++];

	 i1

Then,

	 10110

In this expression, n=1 corresponds to the initial value, but n≤100, corre-
sponds to the finite value of the variable. The expression n++ shows that the 
variable increases by 1.

In another example we consider the finite series formation for the function
1

1+an .  As a result of using the For[ ] function

	 i1=0;

	 For[n=1,n≤4,i1=i1+1/(1+a*n);n++];

	 i1

we obtain

	

1
1

1
1 2

1
1 3

1
1 4+

+
+

+
+

+
+a a a a

We may obtain the same result using the Sum[ ] function. To form the finite 
series, we should write

	 Sum[1/(1+a*n),{n,1,4}]

It is expedient to use the For[ ] function for repeating operations with matri-
ces and vectors. For example, let us find the product

	 A B A A Ab3 = ( ( ( ))),
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where

	  
A B= − −

−






=

−






1 2 0 7
2 0 0 9

4 1
6

. .

. .
; . .

 

The calculation of the product is made as follows:

	
A1 1.2 0.7

2.0 0.9
= − −

−









 ;

	
B1 4.1

6
=

−









 ;

	 C1=B1;

	 For[n=1,n<=3,C1=A1.C1;n++];

	 C1

Then,

	 {{ . }, { }}19 9632 5−

The same results can be obtained with the help of the Do[ ] function. With 
the presence of a condition, repeating calculations can be realized by means 
of the While[ ] function.
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2
Calculation of Transition 
and Steady-State Processes

2.1 � Calculation of Processes in Linear Systems

Electromagnetic processes in linear systems are described by linear differen-
tial equations with constant coefficients:

	

dX
dt

AX Be t= + ( ),	 (2.1)

where X is the vector of state variables, e(t) is the forcing function, A is the 
matrix, and B is the vector with constant elements.

Let us present the solution to Equation 2.1 in the form

	

X t e X e Be dAt A t

t

( ) ( ) ,( )= + −∫0

0

τ τ τ 	 (2.2)

where X0 is the initial condition of the vector X at t = 0.
As an example, we consider the circuit represented in Figure 2.1.
Using Kirchhoff’s laws we may write the differential equations for current 

i and voltage u in the following way:

	
e t iR L di

dt
u( ) ;= + +1

	
i C du

dt
u

R
= +

2
.

Transforming these equations to the normal form (Equation 2.1), matrix A 
and vector B are

	

A

R
L L

C R C

B L=
− −

−
=

1

2

1

1 1

1

0
; .
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2.1.1 � Solution by the Analytical Method

In Mathematica the process of solution begins with data input:

	 R1=0.2;

	 R2=8.0;

	 L1=0.008;

	 C1=8.0*10^(-4);

	
A1 =

R1 / L1 1 / L1
1 / C1 1 / (R2 * C1)

− −
−







;

	

B1
1/L1

0
;=











	 f=50.0;

	 =2*π*f;

	 e[_]:=20.0*Sin[*];

	
X0 0

0
;=










Remember that matrix and vector of arbitrary dimensions are inputted by 
Input->Create Table/Matrix/Palette… Then, in the opened window, the num-
ber of rows (Number of rows) and columns (Number of columns) are set.

In a row

	 e[_]:=20.0*Sin[*];

the user-defined function is determined for a variable t. Sign :=  shows that 
the right part of the expression is not calculated and is not generated in the 
output row.

C

u

iL

e(t)

R1

R2

Figure 2.1
Circuit with linear elements.
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In the next cell the function At1[t_] is defined, and the solution XT is deter-
mined as follows:

	 At1[t_]:=MatrixExp[A1*t];

	 XT=Chop[ComplexExpand[At1[t].X0+At1[t].

	 Integrate[(At1[-].B1)*e[],{,0,t}]]];

In the first row the expression MatrixExp[A1*t] defines a function for the 
matrix exponent of matrix A1. In the next row, the solution (Equation 2.2) is 
determined. In this expression the “dot” symbol points to the matrix multi-
plication or matrix by vector multiplication. The function Integrate[(At1[-].
B1)*e(),{,0,t}] finds the defined integral of the function (At1[-].B1)*e()[] 
with respect to the variable  determined on the interval 0-t.

The graphs are plotted with the help of the function

	 Plot[{XT[[2]],e[t],XT[[1]]},{t,0,0.02},AxesLabel_{“t”,”u i”}]

The Plot[] function plots the graphs of the functions, which are represented 
in the list {XT[[2]],e[t],XT[[1]]}. Time diagrams are shown in Figure 2.2. The 
argument t changes from 0 to 0.02. The argument and its change are writ-
ten as a list {t,0,0.02}. During XT calculation, Mathematica determines itself 
that this expression is a vector and calculates its dimension. The extraction 
of the vector element is produced by means of writing XT[[1]], that is, the 
first element of the vector, which determines the current in this case, is cho-
sen. The option AxesLabel->{“t”,”u i”} points to the necessity of output of 
symbols t and u i along the abscissa and ordinate axes. Numeral values for 
the ordinate axis are chosen by Mathematica® after the calculation of all 
function values.

t

u i

0.020.0150.010.005

20

10

–10

–20

–30

u
i

e(t)

Figure 2.2
Input voltage e(t), inductor current i, and capacitor voltage u responses (e(t) and u in volts, i in 
amperes, time t in seconds).
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In a row,

	 ParametricPlot[{Part[XT[[1]],1],Part[XT[[2]],1]},{t,0,0.05},PlotRange->All, 	
AxesLabel->{“i”,”u”},DefaultFont->{“Arial”,12}]

the ParametricPlot function determines the parametric graph (Figure 2.3), 
which corresponds to the phase-plane portrait. The graph is given by the 
arguments {Part[XT[[1]],1],Part[[2]],1]} and is drawn for the interval {t,0,0.05}. 
The option PlotRange->All points to the necessity for the output of all cal-
culated points in the picture.

The calculation process of the whole notebook is produced by the choice 
Kerner->Evaluation->Evaluate Notebook. If it is necessary to calculate a cell 
in which the cursor is situated, one needs to press keys Shift and Enter at the 
same time. Remember that pressing only the Enter key leads to a line feed.

The other way of finding a solution for differential equations is based on 
the use of the DSolve[ ] function

	 sol1=Chop[ComplexExpand[DSolve[{i’[t]==-R1/L1*i[t]-1/L1*u[t]+e[t]/
L1,u’[t] == 1/C1*i[t]-1/(R2*C1)*u[t],i[0]==0,u[0]==0},{i[t],u[t]},t]]]

In this case, Mathematica tries to find the analytical solution to the set of dif-
ferential equations. Since the symbol ‘;’ is absent, the expression is generated 
in the output cell (as a list):

{{ [ ] ( . . ) ((( . . )i t i e i t→ + − −4 37655 1 85393 90 625 779 598 −− −0 718315 0 695718 389 799. . ) .i e it

	 + + − +1 0 718315 0 3042821169 4 90 625 779. ( . . ). ( . .ie i eit 5598 314 159i tCos t) [ . ]

	 + − +( . . ) [ .( . . )1 89678 0 803488 31490 625 779 598i e i tSin 1159t]),

u t i e i t[ ] ( . . ) (( .( . . )→ + − −12 6745 8 07898 090 625 779 598 4422167 0 906518 1389 799 1169 4− +. ) .. .i e et it

	 − − +( . . ) [ .( . . )1 42217 0 906518 31490 625 779 598i e Cosi t 1159t]

	 + − +( . . ) [ .( . . )1 53503 0 978459 31490 625 779 598i e Sini t 1159t])}}

–10 –5 5 10
i

–40
–30
–20
–10

10
20
30

u

Figure 2.3
The phase-plane trajectory (u in volts, i in amperes).
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In the list {i[t],u[t]} of the DSolve[ ] function, related variables are defined by 
which the solution is found and, at the end of this function, also the indepen-
dent variable t is defined. The graph is plotted with the help of the function

	 ParametricPlot[{Part[i[t]/.sol1,1],Part[u[t]/.sol1,1]},{t,0,0.05},

	 PlotRange->All,AxesLabel->{“i”,”u”},DefaultFont->{“Arial”,12}];

As a result we obtain the plane-phase portrait analogous to the one shown 
in Figure 2.3.

2.1.2 � Solution by the Numerical Method

Let us use the numerical method of Mathematica for the solution of the sys-
tem (Equation 2.1). In the row

	 sol2=NDSolve[{i’[t]==-R1/L1*i[t]-1/L1*u[t]+e[t]/L1,u’[t]==1/C1*i[t]

	 -1/(R2*C1)*u[t],i[0]==0,u[0]==0},{i[t],u[t]},{t,0,0.05}];

the numerical solution is given for the sol2 variable and, in the next output 
cell, an interpolation polynomial is defined:

	 {{i[t] -> InterpolatingFunction[{{0., 0.05}}, “<>”][t],

	 u[t] -> InterpolatingFunction[{{0., 0.05}}, “<>”][t]}}

The equations set and initial conditions of variables are specified in the form 
of the list for the NDSolve[ ] function

	 {i’[t]==-R1/L1*i[t]-1/L1*u[t]+e[t]/L1,u’[t]==1/C1*i[t]-1/(R2*C1)*

	 u[t],i[0]==0,u[0]==0},

Further, the variables are defined in the form of a list and, at the end, the list 
of the independent variable t and its range {t,0,0.05} are specified.

For plotting of the graph we use the function

ParametricPlot[{Part[Evaluate[i[t]/.sol2],1],Part[Evaluate[u[t]/.
sol2],1]},{t,0,0.05},

	 PlotRange->All,AxesLabel->{“i”,”u”},DefaultFont->{“Arial”,12}];

The expression [i[t]/.sol2] shows that the value of the sol2 solution must 
be substituted for the current i[t]. The Evaluate[ ] function shows that 
the expression must be calculated. The Part[ ,1] function chooses the first 
expression from the list, that is, allows the cancellation of braces. The 
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ParametricPlot function outputs the graph of the phase-plane portrait 
similarly to that in Figure 2.3.

2.2 � Calculation of Processes in the Thyristor Rectifier Circuit

Let us determine a steady-state process in the circuit of the semicontrolled 
rectifier (Figure 2.4). Thyristors are turned on by periodical impulses, but 
impulses for thyristor T1 are shifted by half of the period from impulses for 
thyristor T2.

We assume that the current through the inductor is continuous, the induc-
tor is a linear element, and that an ideal switch model for diodes and thyris-
tors is used. The example of the time diagram of the voltages is shown in the 
Figure 2.5.

Processes in this rectifier can be described by the differential equation

	
L di t

dt
Ri t u t( ) ( ) ( ),+ = 	 (2.3)

i(t) L

e(t)

R

u(t)

D1 D2

T1 T2

Figure 2.4
Topology of the thyristor-controlled rectifier.

T
t

u u(t)

2
T

uR(t)

t1

Figure 2.5
Processes in the thyristor rectifier circuits.
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where

	

u t
nT t t nT

E t t nT t n
( )

, / / ;

|sin( )|, / (
=

≤ ≤ +
+ ≤ ≤ +

0 2 2

2 1
1

1ω )) / ;T 2







n = 0 1 2, , , ..; ω π= 2
T ,  T  is the period of the supply voltage e t( ); and t1  is the 

turn-on time of the thyristors.
In order to show features of a method in more detail, we shift the ordinate 

axis at the point t t= 1. Then the voltage u t( )  takes the form

	

u t
E t t nT t nT t

nT t t
( )

|sin( )|, / / ;

, / (
=

+ ≤ ≤ −
− ≤ ≤

ω 1 1

1

2 2

0 2 nn T+





 1 2) / ;
	 (2.4)

Since processes in such a circuit are described by a stationary differential 
equation, we can use the Laplace transform. Applying the Laplace transform 
to Equation 2.3 with the voltage (Equation 2.4), one obtains the following 
equation:

	 ( ) ( ) ( )pL R I p U p+ = ,	 (2.5)

where I p( ) is the Laplace transform of the current i t( ); and U p( ) is the Laplace 
transform of the voltage u t( ).  At the same time we assume that the initial 
condition of the current i t( )  is equal to zero. The right part of this equation 
is obtained by taking into account that the voltage u t( ) is periodic, with the 
period equaling T/2. The transform of a periodic function f t f t T( ) ( )= +  is 
given by

	
F p

f t e dt
e

T pT

pT( )
( )

.= ∫
−

−

−
0

1

Let us use Mathematica for deriving the expression for the transform U s( ). In 
the cell we evaluate the nominator of the function F p( ):

	

Ee1 FullSimplify E1 * Sin[ *(t t1)] * Exp[ p * t]
0

= + −v

TT/2 t1

.T 2 * Pi/
−

∫












− > v

	

Mathematica outputs the expression

	

E e t p t

p

p t
1 1 1

1

2

−



 + +











+

π
ω ω ω ω ωCos Sin[ * ] [ * ]

ωω 2
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Solving Equation 2.5 for I p( ) yields

	

I p

E e t p t
p t

( )

[ ] [ ]

(
=

+ +










−



1

1 1

π
ω ω ω ω ωCos Sin

ppL R p e
p

T

+ + −






−
)( )

.
2 2 21ω

	 (2.6)

Natural and forced responses of the current could be determined by using 
the inverse Laplace transform, and could be expressed thus:

	 i t i t i tn f( ) ( ) ( ),= + 	 (2.7)

where i tn( ) is the natural response; and i tf ( ) is the forced response. A forced 
response is also called a steady-state process. These responses are deter-
mined by calculating residues with respect to all poles of the transform I s( ) 
as follows:

	
i t s I p e pn

pt
k

k

K

( ) Re [ ( ) , ];=
=
∑

1

	
i t s I p e pf

pt
l

l

( ) Re [ ( ) , ],=∑

where pk  are the poles of a transfer function 1
pL R+ ; K is the order of the dif-

ferential equation describing the circuit; and pl  are the poles of the forced 
function, that is, poles of the function 1

12 2 2( )( )
.

p e
pT

+ −
−

ω
 Since the function 1 2− −e pT

 
has infinitely many roots

	
p j

m
T

mm = ± =4
0 1 2

π
, , , ,…

then the steady-state solution has infinitely many terms.
Let us consider a method (Waidelich, 1946) that allows finding a steady-

state process without using a periodicity condition. The method is based on 
introducing a continuous function u tc( )  (Rudenko et al., 1980) that coincides 
with the forced function u t( )  on the interval where the steady-state process 
is determined (Figure 2.6).

We consider the equation

	
L di t

dt
Ri t u tc

c c
( ) ( ) ( )+ =
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which differs from Equation 2.3 only by the right-hand part. The Laplace 
transform of this equation gives

	 ( ) ( ) ( ),pL R I p U pc c+ =

where U pc( )  is the Laplace transform of the u t E t tc( ) sin( ( ))= +ω 1  voltage; 
and I pc( )  is the Laplace transform of a current corresponding to the voltage 
U p U pc c

E p t t
p

( ); ( ) ( sin cos )= +
+

ω ω ω
ω

1 1
2 2 . Solving this equation for I pc( )  yields

	
I p E p t t

pL R p
c( ) ( sin cos )

( )( )
,= +

+ +
ω ω ω

ω
1 1

2 2 	 (2.8)

Using the inverse Laplace transform, we obtain from Equation 2.8 the solution

	 i t i t i tc n f( ) ( ) ( ),= + 
	 (2.9)

where i tn( )  is the natural response; and i tf ( )  is the forced response. These 
responses can be determined by calculating residues with respect to all poles 
of the transform I pc( ) :

	

i t s I p e pn c
pt

k

k

K

( ) Re ( ) , ;=  
=

∑
1

	

i t s I p e pf c
pt

q

q

Q

( ) Re ( ) , ,=  
=

∑
1

u(t)

t

t

2
T

T

2
T

uc(t)
–t1

Figure 2.6
Forced and continuous functions.
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where pk  are the poles of the transfer function 1
pL R+ ;  pq  are the poles of the 

forced function U pc( ) ; and Q is the number of poles of the forced function 
U pc( ).

Since forced functions u t( )  and u tc( )  equal on the interval 0 2 1− −( )T t , solu-
tions to (2.7) and (2.9) equal each other on the same interval:

	 i t i t i t i tn f n f( ) ( ) ( ) ( ),+ = + 

Therefore, one can write

	 i t i t i t i tf n f n( ) ( ) ( ) ( ),= + −  	 (2.10)

In this expression the steady-state process is described by a sum of finite terms.
Let us use Mathematica for deriving a solution. In a cell we introduce 

expressions (2.6) and (2.8)

	 Iu:=Ee1/(p*L+R)/(1-Exp[-p*T/2]);

	 Ic:=E1*(p*Sin[*t1]+*Cos[*t1])/(p^2+^2)/(p*L+R);

In this cell, Iu corresponds to I p( ), and Ic corresponds to I pc( ). In the next 
cell we find the inverse Laplace transform by evaluating the residues:

	 =R/L;

	 p1=I;

	 in1=Residue[Iu*Exp[p*t],{p, }]

	 icf1=Simplify[Factor[ExpToTrig[Residue[Ic*Exp[p*t],{p,p1}]+

	 Residue[Ic*Exp[p*t],{p,-p1}]]]]

	 Icn1=Residue[Ic*Exp[p*t],{p,- }]

In this cell, in1 corresponds to i tn( ), icf1 corresponds to i tf ( ), icn1 corre-
sponds to i tn( ) ,  is the pole of the transfer function 1

pL R+ , and p1 is the pole 
of the function 1

2 2p +ω
. Mathematica outputs the following expressions:
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Simplifying the right part of (2.10), one obtains

	

i t E

R L

e t

e
ef
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α ϕ ω= =
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
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


R
L

acrtg L
R

; .

Now we determine a solution on the second interval. In order to simplify 
the calculation, it would be expedient to shift the ordinate axis at the point 
t T t= −/2 1. However, this is the same as that we find for the forced function 
in Figure 2.5. So, we find the solution on the interval 0 1− t .

Using Mathematica we find a Laplace transform for the voltage u t( ) defined 
as in (2.3):

	

Ee2 FullSimplify E1 * Sin[ * t]* Exp[ p * t .T
t1

T

= − −∫[ ]]/v >> 2 * Pi/v

Mathematica outputs the expression

	

E e e t p t

p

p
pt1 1 11

2 2

− −+ +





+

π
ω ω ω ω ω

ω

( [ * ] [ * ])Cos Sin

In the interval 0 1− t , the voltage u t( ) is equal to zero. Therefore, the continu-
ous function u tc( )  equals zero, and the Laplace transform has the same value, 
that is, U pc( ) = 0. In that case, a natural response i tn( ) and a forced response 
i tf ( )  are equal to zero.

We input the expression of the solution to Equation 2.5 with Ee2:

	 Iu2:=Ee2/(p*L+R)/(1-Exp[-p*T/2]);

Then we determine a solution corresponding to the forced function by cal-
culating residue

	 in2=Residue[Iu2*Exp[p*t],{p,-}]/.t->(t-T/2+t1)

In this row we substitute t by t T t− −( / )2 1 , which allows us to carry the solu-
tion at the point t T t= −( / )2 1 .
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Mathematica outputs the expression

	

e E e L e L t
Ru
L

R t

L

T
R

L
Rt
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− −
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2 1

1 1
π
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( )

1
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ω

ω

Now we enter the values of parameters of the circuit:

	 E1=310.0;

	 R=20.0;

	 L=0.04;

	 t1=2*10^(-3);

	 T=20*10^(-3);

	 =2*Pi/T;

The graphs of the current of the steady-state process form with the help of 
the functions

p1i=Plot[icf1+icn1-in1,{t,0,T/2-t1},AxesLabel->{“t”,”i”},PlotRange->{0,15}, 
DisplayFunction->Identity];

p2i=Plot[-in2,{t,T/2-t1,T/2},AxesLabel->{“t”,”i”}, 
DisplayFunction->Identity];

Since the solutions on the second interval for the continuous function are 
equal to zero, in the last row one uses i t i tf n( ) ( )= − .

The graphical output using the function

	 Show[{p1i,p2i},DisplayFunction->$DisplayFunction]

is presented in Figure  2.7. The option DisplayFunction->Identity forms a 
graphical object but suppresses output. All characteristics are plotted simulta-
neously with the help of the Show[] function. The option DisplayFunction-> 
$DisplayFunction allows the display of the graphical object.

It should be noted that the considered method does not depend on an ana-
lyzed circuit. The circuit must be described by linear stationary differential 
equations.

For such a linear stationary system we can determine the average value 
and harmonics of the steady-state process of the current. Let us express a 
function f t( ) by the complex Fourier series

	

f t c en
jnt

n

( ) ,=
=−∞

∞

∑
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where cn  are the Fourier coefficients. One can see that, in this expression, 
the coefficients are multiplied by e jnt . Comparing this expression with the 
inverse Laplace transform, we see that, in order to determine coefficients cn, 
it is necessary to evaluate the residues of the I p( ) transform with respect to 
the poles of the 1

12 2 2( )( )p e
pT

+ −
−

ω
. These poles are 0 2 4, , , ,± ± ±j j jω ω ω …

Let us use Mathematica for deriving the average value and harmonics. The 
average value is obtained by calculating the residue with respect to s = 0:

	 Residue[Iu,{p,0}]

Mathematica outputs the expression

	

E
R

t
T1 1 2 1+ [ ]( )Cos π

π

It should be noted that the foregoing and other functions of Mathematica 
that follow are to be used before inputting the parameter values.

For calculating the first harmonic s j=± ω , we input the expression

	 Residue[Iu,{p,I*}]

As a result, we obtain zero.
For calculating the second harmonic p j=± 2ω , we evaluate the residues as 

follows:

	 c2=FullSimplify[ExpToTrig[Residue[Iu,{p,I*4*Pi/T}]/.->2*Pi/T]]

	 c2c=FullSimplify[ExpToTrig[Residue[Iu,{p,–I*4*Pi/T}]/. ->2*Pi/T]]

0.002 0.004 0.006 0.008 0.01
t

2
4
6
8

10
12
14

i

Figure 2.7
Steady-state process of the current (i in amperes, time t in seconds).
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Mathematica outputs expressions

	

jE T jt
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t
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t
T

t
T1 82 1 4 1 1 3 1Cos Cos Cos Sinπ π π π[ ]+ [ ]+ [ ] [ ](( )

−3 4π π( )L jRT
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+3 4π π( )L jRT

The Fourier coefficients an, bn, and an amplitude of the harmonic are calcu-
lated using

	 a c cn n n= + − ;

	 b j c cn n n= − −( );

	
a bn n

2 2+

Computing the following expressions

	 an=Simplify[c2+c2c];

	 bn=Simplify[I*(c2-c2c)];

	 Simplify[Sqrt[an^2+bn^2]]

yields

	

4
1 5 4

16
3

2 2 1 4 2 1

2 2 2 2− [ ] − + [ ]( )
+

E T

L R T

t
T

t
TCos Cosπ π

π
π

In the same way we can calculate the other harmonics.

2.3 � Calculation of Processes in Nonstationary Circuits

Let us consider the calculating procedure of processes in the open-loop sys-
tem with the Boost converter as shown in Figure 2.8. The periodical pulses 
of an independent generator with a period T and duration t1 are fed to the 
base of the transistor. On the interval nT t nT t≤ ≤ + 1  (n = 0 1 2, , ,…), the tran-
sistor is opened. The current of the power supply flows through the inductor 
and transistor, and the capacitor is discharged through the resistor. On the 
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interval nT t t n T+ ≤ ≤ +1 1( ) , the transistor is closed. The inductor maintains 
the current, which flows through the power supply, diode, and RC-circuit.

With enough precision for system modeling, the transistor and diode 
can be presented by the RS model, that is, as a switch with a resistance. We 
assume that the current through the inductor is continuous, and that the 
inductor and capacitor are linear elements. In the on state, the transistor and 
diode have equal resistances.

The equivalent circuit for the interval nT t nT t≤ ≤ + 1 is presented in 
Figure 2.9. The electromagnetic processes are described by the matrix dif-
ferential equation

	

dX t
dt

A X t B E( ) ( )= +1 1 ,	 (2.11)

where 

	

X t i
u

A

R
L

RC

B L R R Ri t( ) ; ; ; ;= =
−

−
= = +1

1

1 1

0

0
1

1

0

Rt is the resistance of the transistor in on state, and Ri  is the resistance of the 
inductor.

C
u

R

iL

E

D

T

Figure 2.8
The topology of the Boost converter.

i

C R

E

Ri

Rt u

L

Figure 2.9
The equivalent circuit of the converter. The transistor is on, and the diode is off.
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The equivalent circuit for the interval nT t t n T+ ≤ ≤ +1 1( )  is presented in 
Figure 2.10.

The electromagnetic processes are described by the matrix differential 
equation

	

dX t
dt

A X t B E( ) ( ) ,= +2 2 	 (2.12)

where 

	

A

R
L L

C RC

B B R R Ri d2

2

2 1 2

1

1 1
=

− −

−
= = +; ; ;

Rd is the resistance of the diode in the on state; R R2 1= .
For the solution to Equations 2.11 and 2.12 we use the expression (2.2). Since 

Be t B E( ) = 1  does not depend on time, we can take the integral in (2.2) and 
write as follows:

	

X t e X nT A e I B E

X t e

A t nT A t nT( ) ( ) ( ) ,

( )

( ) ( )= + −

=

− − −1 1
1

1
1

AA t nT t A t nT tX nT t A e I B E2 1 2 1
1 2

1
1

( ) ( )( ) ( ) ,− − − − −+ + −
	 (2.13)

where A1
1− , A2

1−  are the inverse matrices; I is the unit matrix; X nT( )  is the ini-
tial condition of the vector X t( )  for the interval nT t nT t≤ ≤ + 1 ; and X nT t( )+ 1  
is the initial condition of the vector X t( )  for the interval nT t t n T+ ≤ ≤ +1 1( ) .

The solution for the system is based on the consequent use of expressions 
(2.13). In addition, the initial conditions X nT( )  and X nT t( )+ 1  are determined 
from the vector X t( )  at the end of corresponding intervals:

	

X nT t e X nT A e I B E

X n T

A t A t( ) ( ) ( ) ,

(( ) )

+ = + −

+ =

−
1 1

1
1

1 1 1 1

1 ee X nT t A e I B EA T t A T t2 1 2 1
1 2

1
1

( ) ( )( ) ( ) .− − −+ + −
	 (2.14)

iL

R

E

Ri Rd

C

u

Figure 2.10
The equivalent circuit of the converter. The transistor is off, and the diode is on.
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In the steady state, X nT X n T( ) (( ) )= +1 . Using this condition and the set (2.14), 
we obtain

	
X nT I e e e A e IA T t A t A T t A t( ) ( ) (( ) ( )= − −− − − −2 1 1 1 2 1 1 11

1
1 )) ( ) .( )+ − 

− −A e I B EA T t
2

1
1

2 1 	 (2.15)

Let us consider how to use Mathematica for determination of the transition and 
steady-state behaviors. In the first cell, the values of the parameters are inputted:

	 R1=4.0;

	 L1=0.02;

	 C1=1.0*10^(-5);

	 R2=15.0;

	 E1=20;

	 t1=0.000469;

	 T=1.0*10^(-3);

	

A1
R1/L1 0

1/C1 1/(R2 * C1)
;=

−
−











	

A2
R1/L1 1/L1

1/C1 1 / (R2 * C1)
;=

− −
−











	 B1=(E1/L1,0);

	
X0 0

0
;=








In the next cell the matrix exponents eA t1 1  and eA t2 2 are calculated (where 
t T t2 1= − ).

	 At1=MatrixExp[A1*t1];

	 At2=MatrixExp[A2*t2];

	 AT=At2.At1;

	 A1inv=Inverse[A1];

	 A2inv=Inverse[A2];

	 I2=IdentityMatrix[2];

	 ATinv=Inverse[I2-AT];

	 XT=ATinv.(At2.A1inv.(At1-I2)+A2inv.(At2-I2)).B1

	 Xt1=At1.XT+A1inv.(At1-I2).B1
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The inverse matrices A1
1−  and A2

1−  (denoted A1inv, A2inv) are calculated by 
the Inverse[ ] function. The 2 × 2 unit matrix I (denoted I2) is defined by the 
IdentityMatrix[2] function. The inverse matrix ( )( )I e eA T t A t− − −2 1 1 1 1 is denoted 
by the symbol Atinv. In the rows

	 XT=ATinv.(At2.A1inv.(At1-I2)+A2inv.(At2-I2)).B1

	 Xt1=At1.XT+A1inv.(At1-I2).B1

the initial conditions X nT( ) and X nT t( )+ 1  are calculated for steady-state 
behavior. The variable XT corresponds to the Equation 2.15, and the variable 
Xtl corresponds to the first equation of the set (2.14).

In order to draw a steady-state process, it is necessary to define a function 
that joins solutions of the set (2.13). In the row

	 Y1[t_]:=If[Floor[t/T]*T<t<=Floor[t/T]*T+t1,MatrixExp[A1*(t-Floor 
[t/T]*T)].XT+

	 A1inv.(MatrixExp[A1*(t-Floor[t/T]*T)]-I2).B1,MatrixExp[A2*(t-t1-
Floor[t/T]*T)].

	 Xt1+A2inv.(MatrixExp[A2*(t-t1-Floor[t/T]*T)]-I2).B1]

such a function is defined with the help of the If[ ] function. The expression

	 Floor[t/T]*T<t<=Floor[t/T]*T+t1

corresponds to the condition nT t nT t≤ ≤ + 1. When the condition holds, the 
first expression (this is situated between commas in the If[ , , ] function) is 
equal to the Yl[t_] function; otherwise, the second one is equal to this func-
tion (this is situated after the second comma in the If[ , , ] function). It should 
be pointed out once more that the use of the symbol ‘:=’ shows that the calcu-
lation and assignment are executed only when the function Y1[ ] is invoked. 
The Floor[ ] function calculates the integer part of an argument.

The plotting of the steady-state process for the current is determined by 
the function

	 Plot[Part[Y1[t],1],{t,0,2*T},AxesLabel->{“t”,”i”},TextStyle->

	 {FontFamily->”Times”,FontSize->12},GridLines->Automatic];

The mesh is outputted by the option GridLines->Automatic, and the 
font and its size are determined by the option TextStyle->{FontFamily-> 
“Times”,FontSize -> 12}. The graph of the steady-state process for the cur-
rent is presented in Figure 2.11.

The graph for the steady-state process of the voltage is plotted similarly:

	 Plot[Part[Y1[t],2],{t,0,2*T},AxesLabel->{“t”,”u”},TextStyle->

	 {FontFamily->”Times”,FontSize->12},GridLines->Automatic];
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The time diagram is presented in Figure 2.12.
The calculation of the transitional process is realized on the basis of the 

recurrent use of the expressions (2.13) for the given initial condition X( )0 . 
First, we calculate the transitional process in the points X nT( )  and X nT t( )+ 1  
using the expression (2.14).

In the row

	 Xn1[1]=X0;

the initial condition X nT( ) for n = 0 is given. The value of the variable Kper=8 
inputted in the next row of this cell defines the number of periods on which 
the transitional process is calculated. In the row

	 Xn2[1]=At1.X0+A1inv.(At1-I2).Ev;

t

i

2.1

2.05

1.95

1.9

1.85

0.0005 0.001 0.0015 0.002

Figure 2.11
Steady-state process of the current (i in amperes, time t in seconds).

t

5

10

15

20

25

u

0.0005 0.001 0.0015 0.002

Figure 2.12
Steady-state process of the voltage (u in volts, time t in seconds).
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the initial condition X nT t( )+ 1  for n = 0 is calculated. With the help of the 
function

	 For[k=1,k<=Kper,t0=k*T;Xn2[k]=At1.Xn1[k]+A1inv.(At1-I2).B1;

	 Xn1[k+1]=At2.Xn2[k]+A2inv.(At2-I2).B1;k++];

the calculations of the initial conditions Xn1[k] and Xn2[k] for Kper periods 
are produced. Second, we define the function that describes the transitional 
process for an arbitrary period, taking into account the initial conditions

	 Y2[t_]:=If[Floor[t/T]*T<t<=Floor[t/T]*T+t1,MatrixExp[A1*

	 (t-Floor[t/T]*T)].Xn1[Floor[t/T]+1]+A1inv.(MatrixExp[A1*

	 (t-Floor[t/T]*T)]-I2).B1,MatrixExp[A2*(t-t1-Floor[t/T]*T)].

	 Xn2[Floor[t/T]+1]+A2inv.(MatrixExp[A2*(t-t1-Floor[t/T]*T)]-I2).B1];

Time diagrams of the transition processes for the current and voltage are 
generated with the help of the function

	 Plot[Part[Y2[t], 1], {t, 0, Kper*T}, AxesLabel -> {“t”, “i”}, TextStyle -> 
{FontFamily -> “Times”, FontSize -> 12}, GridLines -> Automatic];

and correspondingly by the function

	 Plot[Part[Y2[t], 2], {t, 0, Kper*T}, AxesLabel -> {“t”, “u”}, TextStyle -> 
{FontFamily -> “Times”, FontSize -> 12}, GridLines -> Automatic];

Time diagrams of the processes are shown in Figures  2.13 and 2.14. 
Analysis of the processes represented in Figures 2.13 and 2.14 show that 

t

1

2

i

0.5

1.5

0.002 0.004 0.006 0.008

Figure 2.13
Transition process of the current (i in amperes, time t in seconds).
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the transient behavior is finished approximately through eight periods of 
the generator voltage.

2.4 � Calculation of Processes in Nonlinear Systems

Let us consider the calculation of the transition process in the circuit of the 
noncontrolled rectifier (Figure 2.15)

The equations that describe changes of the voltage u on the capacitor, the 
current i, and the voltage on a diode ud are given by

	

e t u u

i C du
dt

u
R

i f u

d

d

( ) ;

;

( ),

= +

= +

=

	 (2.16)

t

5

10

15

20

25

u

0.002 0.004 0.006 0.008

Figure 2.14
Transition process of the voltage (u in volts, time t in seconds).

C R

e(t)

Di

u

Figure 2.15
Circuit of the noncontrolled rectifier.
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where i f ud= ( ) is the voltage-current characteristic of the diode. We present 
this characteristic in a view of two sections of a straight line (Figure 2.16). 
The mathematical description of such characteristic has the form

	

R
R u

R u
d

d d

d d
=

≥
<







1

2

0

0

, ,

,
	 (2.17)

Solving the set of equations (2.16), we obtain the nonlinear differential equa-
tion with respect to the voltage across the capacitor:

	

du
dt CR

e t
C R R

u
d d

= − +








1 1 1 1( ) .

Let us consider how to solve this equation by means of Mathematica. In the 
first row of the cell, the use of the function

	 Clear[sol];

allows the cleaning of the sol variable. This is necessary in the case when 
a repeated calculation takes place (for example, after one or several param-
eter changes).

In the next rows the variables are defined and their values are assigned:

	 Rd1=0.1;

	 Rd2=20000.0;

	 R=10.0;

	 C1=1000.0*10^(-6);

	 f=50.0;

	 =2*π*f;

ud

i

Figure 2.16
Approximated voltage-current characteristic of the diode.

87096_Book.indb   50 1/27/10   6:07:40 PM



Calculation of Transition and Steady-State Processes	 51

In the row

	 Rdi[ud_]:=If[ud>=0,Rd1,Rd2];

the function (2.17) is determined. In the row

	 e[_]:=20.0*Sin[*];

the function corresponding to the input voltage is defined. In the row

	 ud:=e[t]-Part[Evaluate[u[t]/.sol],1];

the variable of the diode voltage is defined. In the expression

sol=NDSolve[{u’[t]==1/(C1*Rdi[ud])*e[t]-1/C1* 
(1/Rdi[ud]+1/R)*u[t],u[0]==0},u,{t,0,0.05}]

the sol variable is used, to which the solution to the differential equation is 
assigned later on. In the output row

	 {{u->InterpolatingFunction[{{0.,0.05}},<>]}}

Mathematica shows that the value of the variable u is approximated 
successfully.

In the row

	 Plot[{Part[Evaluate[u[t]/.sol],1],ud,e[t]},{t,0.0,0.042},AxesLabel->{“t”,”u”},

	 DefaultFont->{“Arial”,12}}];

plotting of the time diagrams of the voltage on the capacitor, diode, and 
supply voltage is produced (Figure 2.17). The analysis of the voltages on the 

t

10

u
20

–10

–20

0.01 0.02 0.03 0.04

ud

u

e(t)

Figure 2.17
Time diagrams of the voltages on the diode ud, capacitor u, and power supply e(t) ([ud, u, and e(t) 
in volts, time t in seconds]).
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capacitor and diode shows that changes in responses of the voltages occur 
simultaneously.

2.5 � Calculation of Processes in Systems 
with Several Aliquant Frequencies

In open-loop stable systems with switches, the steady-state process does not 
exist if the periods of switching are aliquant. Let the transistor T and switch 
S in the circuit of the converter presented in Figure 2.18 be switched periodi-
cally with periods T and Θ, and at such periods be aliquant.

In the area of one independent variable of time t, steady-state behavior 
does not exist. However, when we introduce the second independent vari-
able of time t, then, in the area of two variables t and t, steady-state behavior 
exists (Korotyeyev, 1999). The simplest example illustrating this fact is the 
electric circuit (Figure 2.19) with two independent periodic power supplies.

The current in such a circuit is

	
i t e t e t

R
( ) ( ) ( ) ,= +1 2

where e t e t T1 1( ) ( )= + , e t e t2 2( ) ( )= +Θ .

u

i L

E

T

D

R1 R2C

S

Figure 2.18
Circuit of the converter with periodically commutated load.

R

e1(t)

e2(t)i(t)

Figure 2.19
Circuit with two independent power supplies.
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Since in such a system reactive elements are absent, the current immedi-
ately becomes quasi-periodical. Note that i t i t T( ) ( )≠ +  and i t i t( ) ( )≠ +Θ . In the 
area of the two independent variables t and t, steady-state behavior exists. 
Let us define the current

	
i t

e t e
R

( , )
( ) ( )τ τ= +1 2

Then the current i t i t T( , ) ( , )τ τ= + +Θ  is periodical.
In electrical circuits with reactive elements, the introduction of the addi-

tional independent variable causes the necessity for a change of differential 
equations. When the power suppliers e t1( ) and e t2( ) work on the RL-load, 
the method of superposition can be used for the computation of quasi-
steady-state processes. According to this method, when power supply e t2( ) is 
shorted, the process is described by the differential equation

	
L di t

dt
Ri t e t( ) ( ) ( ),+ = 1 	 (2.18)

When power supply e t1( ) is shorted, the process is described by the differ-
ential equation

	
L di

d
Ri e( ) ( ) ( ),τ

τ
τ τ+ = 2 	 (2.19)

We define the current as follows:

	 i t i t i( , ) ( ) ( ).τ τ= +

Then, summing the right and left parts of the Equations 2.18 and 2.19, we can 
write the process in such a circuit by the differential equation

	
L i t

t
L i t Ri t e t e∂

∂
+ ∂

∂
+ = +( , ) ( , ) ( , ) ( ) ( ).τ τ

τ
τ τ1 2

In what follows, this reasoning will form the basis of a model expansion dur-
ing the analysis of electromagnetic processes in converters.

Let us consider the calculation of the processes in the converter (Figure 2.18), 
with the same assumptions for active and passive elements. Then, electro-
magnetic processes are described by the nonstationary differential equation

	

dX t
dt

A t X t B t( ) ( ) ( ) ( ),= + 	 (2.20)
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where 

	

X t
i t
u t

A t

r
L L

C CR t

B t
E t

L( )
( )
( )

; ( )

( )

; ( )
( )

= =
− −

−
=

1

1 1
0

γ
;;

the functions R t( ) and γ( )t  are shown in Figure 2.20; R R R
R R3 1 2

1 2
= + . The matrix 

A t A t( ) ( )= +Θ  and vector B t B t T( ) ( )= +  are periodical; moreover, the periods 
T and Θ  are aliquant.

Using the Lyapunov transformation (Gantmacher, 1977)

	 X t F t Y t( ) ( ) ( )= 	 (2.21)

we transform the differential equation with periodical coefficients into the 
differential equation with constant coefficients:

	

dY t
dt

KY t N t B t( ) ( ) ( ) ( ),= + 	 (2.22)

where F t F t( ) ( )= +Θ  is Lyapunov’s matrix; Y(t) is the new vector of state vari-
ables; and N t( )  is the inverse matrix for the matrix F t( ).

Matrices F t( )  and K are defined by the equation

	

dF t
dt

A t F t F t K( ) ( ) ( ) ( )= − 	 (2.23)

and the conditions F t F t( ) ( )= +Θ , F I( )0 =  (I being the unit matrix).

tR(t) nT + t2

R3

R2

γ(t)

mΘ + t1

(n + 1)T

(m + 1)ΘmΘ

1

nT

t

Figure 2.20
Time diagrams of the functions R t( )  and γ( )t .
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Let us solve Equation 2.23 on the intervals of the matrix’s A t( ) constancy. 
On the interval m t m tΘ Θ≤ ≤ + 1, Equation 2.23 takes the form

	

dF t
dt

A F t F t K( ) ( ) ( ) ,= −1 	 (2.24)

where A A t1 = ( ) at R t R( ) = 1. The solution to Equation 2.24 is (Bellman, 1976)

	 F t e F eA t Kt( ) ( ) .= −1 0 	 (2.25)

Similarly, for the interval m t t mΘ Θ+ ≤ ≤ +1 1( ) , the solution to Equation 2.23 is

	 F t e F t eA t t K t t( ) ( ) ,( ) ( )= − − −2 1 1
1 	 (2.26)

where A A t2 = ( ) at R t R( ) .= 3

Substituting t t= 1  in (2.25), t =Θ  in (2.26), and then eliminating F t( )1  from 
the obtained expressions, the following is obtained:

	 F e e eA t A t K( ) .( )0 2 1 1 1= − −Θ Θ 	 (2.27)

Taking into account that F F I( ) ( )Θ = =0 , we find the matrix from (2.27):

	
K e eA t A t= −1 2 1 1 1

Θ
Θln[ ].( ) 	 (2.28)

Then, for the interval m t m tΘ Θ≤ ≤ + 1  the matrix F t( ) is

	 F t e eA t Kt( ) ,= −1 	 (2.29)

and for the interval m t t mΘ Θ+ ≤ ≤ +1 1( ) ,  the matrix F t( )  is

	 F t e e eA t t A t Kt( ) .( )= − −2 1 1 1 	 (2.30)

Similar to the given reasoning about the model expansion for the two power 
supplies, we introduce one more independent variable of time t  and expand 
Equation 2.22 in the following way:

	

∂
∂

+ ∂
∂

= +Y t
t

Y t KY t N t B( , ) ( , ) ( , ) ( ) ( ).τ τ
τ

τ τ 	 (2.31)

To define the steady-state process we apply the multidimensional Laplace 
transform (Pupkov et al., 1976) to Equation 2.31. Then,

	 [( ) ] ( , ) ( ) ( ),p q I K Y p q N p B q+ − = 	 (2.32)
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where p q,  are the complex variables of the multidimensional Laplace trans-
form; Y p q( , ), N p( ), and B q( ) are the Laplace transforms of the functions 
Y t( , )τ , N t( ), and B( )τ .

The solution to Equation 2.32 has the form

	 Y p q W p q N p B q( , ) ( , ) ( ) ( ),= 	 (2.33)

where W p q p q I K( , ) [( ) ]= + − −1 .
Let us transform (2.21) into the expression of the two independent variables

	 X t F t Y t( , ) ( ) ( , )τ τ=

and then apply the multidimensional Laplace transform to this expression. 
We obtain

	 X p q F p Y p q( , ) ( ) * ( , ),= 	 (2.34)

where * is the sign of convolution in the p–q domain. Since the matrices F t( )  
and N t( ),  and the vector B t( )  are periodical, their transformations have the 
forms

	
F p F p

e p( ) ( )=
− −
Θ

Θ1
,
 

N p N p
e p( ) ( )=

− −
Θ

Θ1
,
 

B q B q
e

T
qT( ) ( ) ,=

− −1

where 

	

F p e F t dt N p e N t dt B q ept pt
TΘ

Θ

Θ

Θ

( ) ( ) , ( ) ( ) , ( )= = =− −∫ ∫
0 0

−−∫ qt

T

B d( )τ τ
0

.

Let us find the convolution in the expression (2.34). Since the convolution 
with respect to poles of the function F pΘ( )  gives zero value, and the poles of 
this function do not coincide with the poles of the function 1

1− −e pΘ  (the consid-
ering circuit is dissipative), we find the convolution with respect to the poles 
of the function 1

1− −e pΘ . Then,

	

X p q F p W p p q N p p B qk k

k

k( , ) ( ) ( , ) ( ) ( ),= − −
=−∞

∞

∑1
Θ Θ 	 (2.35)

where pk  are the roots of the equation 1 0− =−e pΘ ; p jk
k= 2π

Θ  ( , , , ).k = ± ±0 1 2 …
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Let us present the steady-state process in the form of an aliquot Fourier 
series (Tolstoy 1951). Transformation of vector B t( ) is

	

B q
E
L

e
q e

E
L

e
q

e

qt

qT

qt

qT( ) ( ) .=
−
− =

−

−

−

−

−

−

1
1

0

1

0

1
1

2 2

Then, the inverse Laplace transform for (2.35), which is calculated with 
respect to the poles of the functions N p pk( )− 1

1− −e pΘ  and B q( ) 1
1− −e qT , gives

	

X t
T

F p W p p q N p p B qk m k n m k T n( , ) ( ) ( , ) ( ) ( )τ = − −1
2Θ Θ Θ

kkm n
n

p t qe e X tm n

=−∞

∞

=−∞
≠

∞

∑∑












+
,

( , ),

0

0τ

	
		  (2.36)

where p jm
m= 2π

Θ  (m = ± ±0 1 2, , ,…) are the roots of the equation 1 0− =−e pΘ ; 
q jn

n
T= 2π  ( n = ± ±0 1 2, , ,…) are the roots of the equation 1 0− =−e qT ; and

B qT n
E e

TLq

qnt

n
( ) | |( )= − −1

0

2
. In the expression (2.36), the second term is given by

	

X t F p W p p N p p Bk m k m k T

k

( , ) ( ) ( , ) ( ) ( )0 1 0 02= − − ′
=−∞

∞

∑Θ
Θ Θ













=−∞

∞
−∑

m

p te m ,

	

(2.37)

where 

	

′ = =
→

B qB q E t
TT

q
( ) lim ( ) .0

0
0

1

Let us consider how to find the quasi-steady-state values of the current i(t)  
and voltage u(t) with the help of Mathematica. In the first cell we enter the 
parameters of the circuit elements:

	 Rs=1.6;

	 L1=0.2*10^(-3);

87096_Book.indb   57 1/27/10   6:08:01 PM



58	 Electrotechnical Systems

	 C1=10*10^(-6);

	 R1=10.0;

	 R3=5.0;

	

A1
Rs/L1 1/L1

1/C1 1/(R3 * C1)
=

− −
−











;

	

A2
Rs/L1 1/L1

1/C1 1/(R1 * C1)
;=

− −
−













�

	 t1=4*10^(-5);

	  =6*10^(-5);

	 t2=8.0*10^(-5);

	 T=10.0*10^(-5);

	 E1=12.0;

	 Ns=2;

	 K =2*Pi/ ;

	 KT=2*Pi/T;

	 I2=IdentityMatrix[Ns];

In this cell, Rs denotes r, K defines the angular frequency for the period , 
KT defines the angular frequency for the period T, and Ns defines the order 
of the matrix A t( ).

In the following cell the calculation of the matrix K is produced according 
to the expression (2.28). Since Mathematica does not have a built-in func-
tion for the matrix logarithm calculation, an integral calculation is used in 
the program. For matrix A the logarithm is calculated in the following way 
(Davies and Higham, 2005):

	

ln[ ] ( )[ ( ) ] .A A I x A I I dx= − − + −∫ 1

0

1

	 (2.38)

This expression is true if the matrix argument does not have eigenvalues on 
the negative part of the real axis.

The matrix K is signified as K1 in the program. The matrix logarithm is 
calculated in the cell

	 A21=MatrixExp[A2*(-t1)].MatrixExp[A1*t1];

	 K1=Integrate[(A21-I2).Inverse[x*(A21-I2)-I2]/ ,{x,0,1}];
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In the following two cells the calculation of the F pΘ( ) function is produced. 
The function is calculated for the intervals of the matrix F t( ) constancy. The 
parts of the F pΘ( ) function are denoted as F1 and F2 in the program.

	 Clear[pk]

	 Fnt1=MatrixExp[A1*t].MatrixExp[-K1*t];

	

F1 Fnt1 * E ^( pk * t)dt
0

t1

= −∫ ;

Fnt2=MatrixExp[A2*t].MatrixExp[A2*(-t1)].MatrixExp[A1*t1]. 
MatrixExp[-(K1*t)];

	

F2 Simplify Fnt2 * E ^( pk * t)dt
t1

= −










∫

Q

;

In these expressions, pk is an independent variable, for which a value is set 
later.

The N pΘ( ) function is calculated similarly. Since N t F t( ) ( ),= −1  when the 
integrals are calculated, the inverse matrices are found initially for the inter-
vals of constant topology of the matrix F t( ) . At those for nonsingular matri-
ces A and B, we use ( )AB B A− − −=1 1 1. Then, on the intervals of the matrix F t( )  
constancy, we find matrices N1 and N2:

	 NInt1=MatrixExp[K1*t].MatrixExp[-A1*t];

	 Clear[p]

	

N1 NInt1 * E ^ ( p * t)dt
0

t1

= −∫ ;

	 NInt2=MatrixExp[K1*t].MatrixExp[-A1*t1].MatrixExp[A2*t1].
MatrixExp[-A2*t];

	

N2 Simplify NInt2 * E ^( p * t)dt
t1

= −










∫

Q

;

In these expressions, p is an independent variable, for which a value is set 
later.

The inverse matrix

	 W p q p q I K( , ) [( ) ]= − − −1
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is formed in the following way (the matrix is designated WK in the program):

	 Clear[pq,n,m]

	 KK=(pq-pk)*I2-K1;

	 WK=Inverse[KK];

	 pk=I*k*K;

	 qn=I*n*KT;

	 pm=I*m*K;

	 pq=pm+qn;

	 p=pm-pk;

The variables pk, qn, pm, and p are also defined in the cell.
In the next cell the constants num, knum, kn, and a matrix X1 are defined. 

The knum constant defines the number of summands in a ∑ =−k knum
knum  sum, the 

num constant defines the number of summands in the ∑ =−m n num
num

,  sum, and 
the kn=2*num+1 constant defines the dimension of the matrix X1. In the 
program, this matrix is defined by the expression

	

F W p p q N p p B q
k knum

knum

m k n m k T nΘ Θ

=−

∑ − −( , ) ( ) ( )

which corresponds to the part of (2.36):

	 num=3;

	 knum=10;

	 kn=2*num+1;

	 Array[X1,{kn,kn}];

	 Bn=E1*(1-E^(-qn*t2))/(qn*T*L1*^2);

	 Z0={{1.*10^(-8),1.*10^(-8)},{1.*10^(-8),1.*10^(-8)}};

For[m=-num, m<num+1, m++,For[n=-num, n<num+1, n++, If[n==0, 
X1[m+1+num,n+1+num]=Z0, X1[m+1+num,n+1+num]=Bn*Sum[(F1+F2).

WK.(N1+N2),{k,-knum,knum,1}]]]]

By means of the Array[] function, the matrix X1, elements of which are 
matrices, is created.

In the program, the first element of the vector B qT n( ), together with overall 
coefficient 1 2/Θ  in (2.36), is defined as

	 Bn=E1*(1-E^(-qn*t2))/(qn*T*L1*^2)
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All the matrix elements are multiplied by this coefficient. The second ele-
ment of the vector B qT n( )  is equal to zero. Therefore, the corresponding ele-
ments of the matrix X1 are not used later on.

The matrix Z0 is entered to fill the matrix X1 for n = 0. In the expression 
(2.36), these values are not defined (summing is produced for n ≠ 0). To sim-
plify the following calculations, it could be taken into account that Z0 is equal 
to the zero matrix. However, when the coefficients of a Fourier series are 
found, the calculation of the arguments of the matrix elements is produced. 
This leads to infinity for some coefficients. To simplify the transformations 
we define the matrix Z0 as sufficiently small. We calculate the matrix X1 
with the help of the For[] function.

In the next cell the variables pm, pq, and p, and the coefficient ′BT ( )0  and a 
matrix X01 are defined:

	 Array[X01,kn];

	 Clear[m]

	 pm=m*I*K;

	 pq=pm;

	 p=pm-pk;

	 B0=E1*t2/(T*L1*^2);

	 For[m=-num,m<num+1,X01[m+1+num]=Sum[(F1+F2).WK.(N1+N2),

	 {k,knum,knum,1}]*B0;m++];

The matrix X01, the elements of which are the matrices of (2.37)

	

F p W p p N p p Bk m k m k T

k knum

knum

Θ Θ( ) ( , ) ( ) ( )− − ′
=−

∑ 0 0

is created by means of the Array[] function. The first element of the vector 
′BT ( )0  and the overall coefficient 1 2/Θ  in the program are defined as B0. As 

in the previous case, all matrix elements are multiplied by this coefficient. 
However, further, during the calculation, only those elements are used that 
correspond to the nonzero values.

The expression (2.36) for the current It[th_] of the one-variable function 
t = τ  is formed in the cell

	 It[th_]:=Re[Sum[Sum[Part[X1[m+num+1,n+num+1],1,1]*

	 E^(I*K*m*th+I*KT*n*th),{n,-num,num}],{m,-num,

	 num}]]+Re[Sum[Part[X01[k+1+num],1,1]*E^(I*K*k*th),{k,-num,num}]]
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The required number of terms of the series is calculated with the help of 
the Sum[] function. By means of the Re[] function, the terms with imag-
ined parts, which arise through inaccuracies and summing of the complex 
expressions, are removed.

The time diagram for the current is plotted with the help of the function

	 Plot[It[th],{th,0.006-2*T,0.006},AxesLabel->{“t”,”i”}]

The quasi-steady-state process of the current is shown in Figure 2.21.
It can be seen from the figure that the current function for such parameters 

is practically periodical on the interval 0 2− T  of time.
The expression Ut[th_] for the voltage of the one-variable function t = τ  is 

composed similarly:

Ut[th_]:=Re[Sum[Sum[Part[X1[m+num+1,n+num+1],2,1]*E^(I*K*m*th+

I*KT*n*th),{n,-num,num}],{m,-num,num}]]+ 
Re[Sum[Part[X01[k+num+1],2,1]*

	 E^(I*K*k*th),{k,-num,num}]]

The graph of the voltage (represented in Figure 2.22) is plotted with the help 
of the function Plot[Ut[th],{th,0,2*T},AxesLabel->{“t”,”u”}]. It can be seen 
from the figure that the voltage is not a periodical function.

The expression It[ta_,tc_] for the current of the two-variable function t 
and t is formed in the following way:

	 It[ta_,tc_]:=Re[Sum[Sum[Part[X1[m+num+1,n+num+1],1,1]*E^

	 (I*K*m*ta+I*KT*n*tc),{n,-num,num}],{m,-num,num}]]+

	 Re[Sum[Part[X01[k+1+num],1,1]*E^(I*K*k*ta),{k,-num,num}]]

0.0058 0.00585 0.0059 0.00595
t

0.6

0.8

1.2

1.4

i

Figure 2.21
The quasi-steady-state process of the current for 0 0058 0 006. .≤ ≤t  (i in amperes, time t in 
seconds).

87096_Book.indb   62 1/27/10   6:08:09 PM



Calculation of Transition and Steady-State Processes	 63

The graph of the steady-state process of the current is generated by means 
of the function

Plot3D[It[ta,tc],{ta,0,},{tc,0,T},Ticks->{{0,0.00003,0.00006}, 
{0,0.00005,0.0001},

{0,1}},Lighting->False,AxesLabel->{“t”,””,”i”}]

and is presented in Figure  2.23. With the help of the option Ticks-> 
{{0,0.00003,0.00006}, {0,0.00005,0.0001},{0,1}}, the required tick marks on the 
axes are set explicitly.

0.0058 0.00585 0.0059 0.00595
t

7.5

8

8.5

9
u

Figure 2.22
The quasi-steady-state process of the voltage for 0 0058 0 006. .≤ ≤t  (u in volts, time t in 
seconds).

τ

0.00006 0

0.00005

0.0001
1i

0

0.00003t

Figure 2.23
The steady-state process of the current (i in amperes, t and t in seconds).
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The expression Ut[ta_,tc_] for the voltage of the two-variable function t 
and t is formed similarly:

Ut[ta_,tc_]:=Re[Sum[Sum[Part[X1[m+num+1,n+num+1],2,1]* 
E^(I*K*m*ta+

I*KT*n*tc),{n,-num,num}],{m,-num,num}]]+Re[Sum[Part[X01 
[k+1+num],2,1]*

	 E^(I*K*k*ta),{k,-num,num}]]

The steady-state process for the two periods of the voltage is generated by 
means of the function

Plot3D[Ut[ta,tc],{ta,0,2*},{tc,0,2*T},Ticks->{{0,0.00005,0.0001}, 
{0,0.00001,0.0002}, {6,8,10}},Lighting->False,PlotRange->{6,10}, 

AxesLabel->{“t”,””,”u”}]

and is represented in Figure 2.24. The plotting of a black-and-white pic-
ture is realized by means of the option Lighting -> False. The option 
PlotRange -> {6,10} provides the range of outputted values.

2.6 � Analysis of Harmonic Distribution 
in an AC Voltage Converter

Let us consider an analysis of the harmonic distribution and steady-state 
process calculation in a system with an AC converter (Figure 2.25).

Suppose that a period of topology change of a converter as well as a period of 
an input voltage are aliquant. To find the steady-state process in such a system 
in which a period of the supplying voltage and a period of the switching of a 

τ0

0.00005
t

0

0.0001

0.0002

6

8

10

u

0.0001

Figure 2.24
The steady-state process of the voltage (u in volts, t and t in seconds).
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converter are aliquant, it is necessary to expand the initial area of one variable 
to the area of several independent variables of time. The expansion is realized 
by the substitution of the periodical functions, which correspond to the inde-
pendent periodical signals, for the functions with independent variables of 
time. In addition, the derivatives of one independent variable are substituted 
for the sum of derivatives of all independent variables. With such expansion 
the steady-state process exists in the area of several independent variables.

For an AC converter we use the Boost converter (Figure 2.26).
Let us consider that the power switches S1 and S2 are bidirectional. 

Furthermore, if the key S1 is opened, then the key S2 is closed, and vice versa. 
Suppose that the switches are described by the RS model and have the same 
resistance in the on state. The electromagnetic processes in such systems are 
described by the nonstationary matrix differential equation (2.20) in which

	 X t
i t
u t

( )
( )
( )

=

LoadMatrix
AC Converter

Hibrid
AC Converter

In
pu

t F
ilt

er

O
ut

pu
t F

ilt
er

Power
Supply

Figure 2.25
AC converter in a power supply system. (Data from Korotyeyev I. Ye., Fedyczak Z. Analysis of 
steady-state behavior in converters with changed topology Technical electrodynamics, Supply 
System of Electrotechnical Devices and Systems, Kiev, No. 1, pp. 31–34, 1999).

L

R

e(t)

i(t)

u(t)S1

S2

C

Figure 2.26
AC Boost converter.
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is the vector of the state variables,

	

A t

r
L

t
L

t
C RC

( )

( )

( )
,=

− −

−

γ

γ 1

 

B t E e t( ) ( ),= ′    ′ =E L
1

0
;

   

r = rs + rL is the sum of resistances of the closed switch rs and the inductor rL, 
e t USin t( ) ,= ω  ω π= 2 / ,T  T is the period of the supplying voltage, and Θ  is the 
switching period of power switches. The state of the switches is described by 
the switching function γ( )t  (Figure 2.27). The off state of the key S1 and the 
on state of the key S2 correspond to the zero value of the switching function. 
When γ( )t = 1 , key S1 is opened and key S2 is closed.

Using the Lyapunov transformation (2.21), X t F t Y t( ) ( ) ( ),=  and expanding 
the area of one independent variable of time t to the area of two independent 
variables t and t (Korotyeyev and Fedyczak, 1999), let us present the nonsta-
tionary equation in the form (2.31):

	

∂
∂

+ ∂
∂

= +Y t
t

Y t KY t N t B( , ) ( , ) ( , ) ( ) ( ),τ τ
τ

τ τ 	 (2.39)

Applying the multidimensional Laplace transform to Equation 2.39, we find 
the solution (2.34), which can be represented in the following way:

	 X p q F p W p q N p B q( , ) ( ) * [ ( , ) ( ) ( )],= 	 (2.40)

where F p F p

e p( ) ( )=
− −
Θ

Θ1
, N p N p

e p( ) ( )=
− −
Θ

Θ1
, B q E U

q
( ) = ′

+
ω
ω2 2 , W p q p q I K( , ) [( ) ]= + − −1 .

Calculating the convolution in (2.40) with respect to the poles of the F p( ) 
function yields (2.35) in the form

	
X p q

e
F p W p p q N p p Bp k k

k

k( , )
( )

( ) ( , ) ( )=
−

− −−
=−∞

∞

∑1
1Θ Θ Θ Θ (( ).q 	 (2.41)

t
Θ

γ(t)

t1 2Θ

Figure 2.27
Time diagram of the switching function.
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Let us present the steady-state process for X p q( , )  as the double Fourier series 
(Tolstoy, 1951):

	

X t C es m n
j m t n

m n

( , ) ,,
( )

,

τ ϑ ωτ= +

=−∞

∞

∑ 	 (2.42)

where ϑ π= 2
Θ . The double Fourier series is obtained as the inverse Laplace 

transform for the expression (2.41) with respect to the poles of the N p( ) func-
tion 1

1− −e pΘ , which correspond to the steady-state process and to the poles of 
the function B q( ) , that is, q j1 2, =± ω . Taking into account this reasoning, the 
expression (2.42) takes the form

	

X t C es m n
j m t n

n
n

m

( , ) ,
( )

,

τ ϑ ωτ= +

=−
≠

=−∞

∞

∑∑
1

0

1

	 (2.43)

where

	

C nU
j

F p W p p q N p p Em n k m k n m k

k

, ( ) ( , ) ( )= − − ′
=−∞

∞

∑2 2Θ
Θ Θ 	 (2.44)

p jm
m= 2π

Θ  are the roots of the equation 1 0− =−e pΘ ; m = ± ±0 1 2, , …; q j nn = ω ,  
n = −1 1, .

Let us consider how to use Mathematica for the calculation of the pro-
cess in the system with the Boost converter. The initial data is presented 
in the cell

	 r1=0.2;

	 L1=0.15*10^(-3);

	 C1=60*10^(-6);

	 R11=0.8*10^3;

	

A1
r1/L1 0

0 1/(R11 * C1)
;=

−
−













	

A2
r1/L1 1/L1

1/C1 1/(R11 * C1)
;=

− −
−













	 t1=7/5*10^(-4);
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	 T=20*10^(–3);

	 =7*10^(–4);

	 K =2*Pi/;

	 KT=2*Pi/T;

	 t2=–t1;

	 U=310;

	 Ns=2;

	 I2=IdentityMatrix[Ns];

In this cell, r1 denotes r, R11 denotes R, K defines the angular frequency 
for the period , KT defines the angular frequency for the period T, and 
Ns defines the order of matrix A t( ).  In the following cells we calculate the 
matrix K:

	 A21 = MatrixExp[A2*t2].MatrixExp[A1*t1];

	 K1 = Integrate[(A21 – I2).Inverse[x*(A21 – I2) + I2]/, {x, 0, 1}];

and matrices F1, F2, N1, N2

	 Clear[pk];

	 Fnt1=MatrixExp[A1*t].MatrixExp[-K1*t];

	

F1 Simplify Fnt1 * E ^( pk * t)dt
0

t1

= −










∫ ;

Fnt2=MatrixExp[A2*t].MatrixExp[A2*(-t1)].MatrixExp[A1*t1]. 
MatrixExp[-(K1*t)];

	

F2 Simplify Fnt2 * E ^( pk * t)dt
t1

= −










∫

Q

;

	 Nint1=MatrixExp[K1*t].MatrixExp[-A1*t];

	 Clear[p];

	

N1 NInt1 * E ^( p * t)dt
0

t1

= −∫ ;

Nint2=MatrixExp[K1*t].MatrixExp[-A1*t1].MatrixExp[A2*t1]. 
MatrixExp[-A2*t];
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	 Clear[p,t];

	

N2 NInt2 * E ^( p * t)dt
t1

= −∫
Q

;

Further, we define the inverse matrix W p p qm k n( , )−  (denoted as WK), roots 
pk, pm, q0, dimensions and the number of terms in the expressions (2.43) 
and (2.44)

	 Clear[pq,n,m,k];

	 KK=(pq–pk)*I2–K1;

	 WK=Inverse[KK];

	 pk=I*k*K;

	 q0=I*KT;

	 pm=I*m*K;

	 pq=pm+q0;

	 p=pm–pk;

	 nn=2;

	 num=4;

	 knum=10;

	 U0=U/(L1*^2);

The constant nn is equal to the number of roots of the transform of the sinu-
soidal function, the coefficient U0 corresponds to the part of the coefficient 
included in (2.44), the knum constant defines the number of summands in 
the ∑ =−k knum

knum
 sum as in (2.44), and the num constant defines the number of 

summands in the ∑ =−m n num
num

,  sum as in (2.43).
In the cell

	 Array[X1,{2*num+1,nn}];

the list X1, which corresponds to the matrix with complex coefficients of the 
Fourier series, is defined

	 For[m=-num,m≤num,For[n=1,n≤nn,{pq=(2*n–3)*q0+pm;X1[m+1+num,

n]=(2*n-3)/(2*I)*U0*Sum[(F1+F2).WK.(N1+N2), 
{k,-knum,knum,1}]};n++];m++];

In this expression the coefficient (2*n – 3) defines the sign of the pole q jnn = ω.
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The output of the complex coefficients of the Fourier series for the voltage 
is realized by means of the expression

For[m=1,m≤2*num+1,m++,For[n=1,n≤nn,n++,If[n==1,Print[“n=”,–1,“ “,“ 
“,“m=”,

m – num–1,“ “,“Cu=”,Part[X1[m,n],2,1]],Print[“n=”,1,“ “,“ 
“,“m=”,m–num–1,

	 “ “,“Cu=”,Part[X1[m,n],2,1]]]]];

The coefficients of the complex Fourier series for the current are output-
ted similarly:

For[m=1,m≤2*num+1,m++,For[n=1,n≤nn,n++,If[n==1,Print[“n=”,-1,“ “,“ 
“,“m=”,

	m–num–1,“ “,“Ci=”,Part[X1[m,n],1,1]],Print[“n=”,1,“ “,“ “,“m=”,m–num–1,

	 “ “,“Ci=”,Part[X1[m,n],1,1]]]]];

The values of the coefficients for the voltage and current are presented in 
Table 2.1.

Table 2.1

The Values of the Coefficients for the Voltage and Current

Coefficient Cm,n Voltage Current

C− −4 1, −4.514 − j0.147 −0.812 + j0.266
C−4 1, 5.246 − j1.094 −0.637 − j1.992
C− −3 1, −8.028 + j8.525 −0.728 + j1.956
C−3 1, 7.663 − j13.81 −6.163 − j3.384
C− −2 1, −1.178 + j29.585    5.702 + j3.788
C−2 1, −12.19 − j47.488 −24.393 + j6.571
C− −1 1,     27.7 − j116.934 −87.98 + j7.931
C−1 1, 79.557 + j173.868 109.526 − j67.644
C0 1,− 21.309 + j141.051      0.111 + j34.561
C0 1, 21.309 − j141.051      0.111 − j34.561
C1 1,− 79.557 − j173.868  109.526 + j67.644
C1 1,     27.7 + j116.934 −87.98 − j7.931
C2 1,− −12.19 + j47.488 −24.393 − j6.571
C2 1, −1.178 − j29.585 5.702 − j3.788
C3 1,− 7.663 + j13.81 −6.163 + j3.384
C3 1, −8.028 − j8.525 −0.728 − j1.956
C4 1,− 5.246 + j1.094 −0.637 + j1.992
C4 1, −4.514 + j0.147 −0.812 − j0.266
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The functions of the inverse Fourier transform are generated in the fol-
lowing cells, and the graphs of the steady-state processes of the voltage and 
current are plotted either.

	 It[ta_,tc_]:=Re[Sum[Sum[Part[X1[m,n],1,1]*E^(I*K*(m-num-1)*ta+

	 I*KT*(2*n-3)*tc),{n,1,nn}],{m,1,2*num+1}]];

	 Plot3D[It[ta,tc],{ta,0,},{tc,0,T},Lighting->False,AxesLabel->{“t”,””,”i”}]

	 Ut[ta_,tc_]:=Re[Sum[Sum[Part[X1[m,n],2,1]*E^(I*K*(m-num-1)*ta+

	 I*KT*(2*n-3)*tc),{n,1,nn}],{m,1,2*num+1}]];

	Plot3D[Ut[ta,tc],{ta,0,},{tc,0,T},Lighting->False,AxesLabel->{“t”,””,”u”}]

In this cell, the variables tc and ta denote t and t, respectively.
The graphs of the steady-state processes of the current and voltage are pre-

sented, respectively, in Figures 2.28 and 2.29.
It can be seen that the process with one time variable in that system is not 

steady state.

0
0.0002

0.0006 0

0.005

0.01

0.015

0.02

–500
–250

0
250

500

i

0.0004t

τ

Figure 2.28
The steady-state process of the current time t and t in seconds (i in amperes, t and t in 
seconds).
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2.7 � Calculation of Processes in Direct Frequency Converter

Let us determine a steady-state current in a load on the direct frequency con-
verter shown in Figure 2.30. Switches S1 – S4 are periodically turned on and 
off in such a way that the positive and negative parts of the input sinusoidal 
voltage, as shown in Figure 2.31, are applied to the RL load. Impulses for the 
switches S1, and S3 are shifted by half of the period from impulses for the 
switches S2, and S4.

We assume that the inductor is a linear element and the switches are ideal. 
Processes in this converter are described by the differential equation

	
L di t

dt
Ri t u t( ) ( ) ( ),+ = 	 (2.45)

0.0002

0.0004
0.0006

t 0.005

0.01

0.015

0.02

–1000
–500

0
500

1000

u

0 τ

0

Figure 2.29
The steady-state process of the voltage (u in volts, t and t in seconds).

L i(t)

e(t)
R

u(t)

S1 S2

S3S4

Figure 2.30
Topology of the direct frequency converter.
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where

	

u t
E t nt t n t

E t n t
( )

sin( ), ( ) ;

sin( ), ( )
=

≤ ≤ +
− +

ω
ω

2 2 1

2 1
1 1

11 12 1≤ ≤ +





 t n t( ) ;

n = 0 1 2, , , ,…  ω π= 2
T ,  T is the period of the supply voltage e t( ),  and t T

K1 2=  is 
the time interval (with this number, K must be even).

In order to determine a steady-state solution, we use the method described 
in Section 2.2. First we determine a Laplace transform of the voltage u t( ). 
This voltage can be obtained by multiplication of a sinusoidal function by 
the single rectangular pulse

	

sq t
nt t n t

( )
, ( ) ;

,
=

≤ ≤ +





1 1

0
1 1

otherwise.

with the amplitude equal to one and summation of an obtained expression 
for n N= −0 1 1, , ,… .

Let us use the convolution of two functions in the frequency domain that 
has the form

	

L f t f t
j

F s F p s ds
c j

c j

{ ( ) ( )} ( ) ( ) ,1 2 1 2
1

2
= −

− ∞

+ ∞

∫π

where L{ }…  is the Laplace transform; L f t F p{ ( )} ( );1 1=  and L f t F p{ ( )} ( )2 2= . The 
complex integral can be calculated using the residue theory as follows:

	

L f t f t res F s F p sk k

k

KF

{ ( ) ( )} [ ( ) ( )],1 2 1 2

1

1

= −
=

∑

u(t)

T
t

2
Tt1 2t1

Figure 2.31
Voltage on the RL load.
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where sk  is the k-th pole of the function F s1( );  and KF1  is the number of poles 
of the function F s1( ).

Since our goal is to find the steady-state solution on all intervals of period 
T
2 , we shall derive a general expression for a function sin( ( ))ω t t+ 1 . Using 
Mathematica, one obtains
	 sn=Sin[*(t+t1)];

	 Lsn=LaplaceTransform[sn,t,s]

	 Lsn2=Lsn/.{t1->n*T/K1,s->p}

	 sgS1=((Exp[-n*s*T/K1]-Exp[-(n+1)*s*T/K1])/s)/.s->(p-s)

In this cell, sn denotes the sinus function, Lsn defines the Laplace trans-
form of the sinus function, Lsn2 defines the Laplace transform of the sinus 
function for t nT K1 1= /  and s p= , K1 denotes 2K , sgS1 denotes the Laplace 
transform of the single rectangular pulse sq t( )  with the substitution p for 
p – s. Mathematica outputs expressions

	

ω
ω

ω ωCos SinnT
K

nT
Kp

p
1 1
2 2

[ ]+ [ ]
+

	

− +
−

− − − −

e e
p s

n p s T
K

n p s T
K

( )( ) ( )1
1 1

In the next cell we calculate the convolution of the two functions sin( ( ))ω t t+ 1  
and sq t( ) for t1 0= :

nsnN=FullSimplify[Residue[sgS1*Lsn,{s,I*]}]+Residue[sgS1*Lsn, 
{s,-I*}]]/.t1->0

Mathematica outputs the expression

	

1
2

1
1

1

−
−








−
+

− − −− + −

i e e

p i

i e
nT p i

K
n T p i

K
( ) ( ) ( )ω ω

ω

nnT p i
K

n T p i
Ke

p i

( ) ( ) ( )+ + +

−







+














−ω ω

ω

1
1

1




Then we form the Laplace transforms ∫ + −
t
t T ptf t e dt
0
0 2/ ( )  for six intervals, which 

is equal to the period T
2  with different initial points t0 :

sg1=((nsnN/.n->0)-(nsnN/.n->1)+(nsnN/.n->2)-(nsnN/.n->3)+(nsnN/.n->4)-
(nsnN/.n->5));

sg2=-(Exp[p*T/K1]*((nsnN/.n->1)-(nsnN/.n->2)+(nsnN/.n->3)-
(nsnN/.n->4)+
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(nsnN/.n->5)+(nsnN/.n->6)));

sg3=(Exp[p*2*T/K1]*((nsnN/.n->2)-(nsnN/.n->3)+(nsnN/.n->4) 
-(nsnN/.n->5)-

(nsnN/.n->6)+(nsnN/.n->7)));

sg4=-(Exp[p*3*T/K1]*((nsnN/.n->3)-(nsnN/.n->4)+(nsnN/. 
n->5)+(nsnN/.n->6)-

(nsnN/.n->7)+(nsnN/.n->8)));

sg5=(Exp[p*4*T/K1]*((nsnN/.n->4)-(nsnN/.n->5)-(nsnN/. 
n->6)+(nsnN/.n->7)-

(nsnN/.n->8)+(nsnN/.n->9)));

sg6=-(Exp[p*5*T/K1]*((nsnN/.n->5)+(nsnN/.n->6)-(nsnN/. 
n->7)+(nsnN/.n->8)-

(nsnN/.n->9)+(nsnN/.n->10)));

In this cell, sg1 corresponds to the initial point t0 0= , sg2 corresponds to the 
initial point t t0 1= , sg3 corresponds to the initial point t t0 2 1= , and so on.

Now we define the Laplace transform of currents:

	 Iu:=E1*sg1/(1-Exp[-p*T/2])/(p*L+R);

	 Ic:=E1*Lsn2/(p*L+R)

In the first row we use the expression of the Laplace transform for a periodic 
function f t f t T( ) ( )= + 2 , which has the form

	
F p f t e dt

e

T pt

pT( ) ( )/

= ∫
−

−

−
0

2

1 2

for the period T
2 .

According to the method described in Section 2.2, the steady-state process 
can be determined by calculating the expression

	 i t i t i t i tf n f n( ) ( ) ( ) ( ),= + −  	 (2.4)

where i tn( ) is the natural, and i tf ( ) the forced response determined for 
the continuous function u t E t ntc

n( ) ( ) sin( ( ))= − +1 1ω ; and i tn( )  is the natural 
response determined for the voltage u t( ).

In the next cell we form natural and forced responses for continuous and 
input functions:

	 =R/L;

	 p1=I*;
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	 i1:=Residue[Iu*Exp[p*t],{p,-  }];

	 i2:=Simplify[Factor[ExpToTrig[Residue[Ic*Exp[p*t],{p,p1}]+

	 Residue[Ic*Exp[p*t],{p,-p1}]]]]

	 i3:=Residue[Ic*Exp[p*t],{p,-  }]

In this cell, i1 corresponds to i tn( ), i2 corresponds to i tf ( ), and i3 corresponds 
to i tn( ).

Let us plot the time diagram of the steady-state current i t( ). At first we 
enter the values of the parameters:

	 n=0;

	 K1=12;

	 E1=310.0;

	 R=20.0;

	 L=0.04;

	 T=20*10^(-3);

	 =2*Pi/T;

	 t1=T/K1;

Plotting of the current for the six intervals is made as follows:

On the first interval we use expressions of the currents defined in the 
previous cell:

	p1i=Plot[-i1+i2+i3,{t,0,t1},AxesLabel->{“t”,”i”},DisplayFunction->Identity]

On the second interval,

	 n=1;

	 Iu=E1*sg2/(1-Exp[-p*T/2])/(p*L+R);

	 Ic=-(E1*Lsn2/(p*L+R));

	 isum=ReplaceAll[(-i1+i2+i3),t->t-n*T/K1];

p2i=Plot[isum,{t, n*t1,(n+1)*t1},AxesLabel->{“t”,”i”},DisplayFunction 
->Identity]

we introduce the function Iu and Ic for the currents taking into account 
that the continuous function sin( )ωt  is negative.
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On the third interval,

	 n=2;

	 Iu:=E1*sg3/(1-Exp[-p*T/2])/(p*L+R);

	 Ic=(E1*Lsn2/(p*L+R));

	 isum=ReplaceAll[(-i1+i2+i3),t->t-n*T/K1];

p3i=Plot[isum,{t,n*t1,(n+1)*t1},AxesLabel->{“t”,”i”},DisplayFunction 
->Identity]

On the fourth interval,

	 n=3;

	 Iu:=E1*sg4/(1-Exp[-p*T/2])/(p*L+R);

	 Ic=-(E1*Lsn2/(p*L+R));

	 isum=ReplaceAll[(-i1+i2+i3),t->t-n*T/K1];

	 p4i=Plot[isum,{t,n*t1,(n+1)*t1},AxesLabel->{“t”,”i”},DisplayFunction 
->Identity]

On the fifth interval,

	 n=4;

	 Iu:=E1*sg5/(1-Exp[-p*T/2])/(p*L+R);

	 Ic=(E1*Lsn2/(p*L+R));

	 isum=ReplaceAll[(-i1+i2+i3),t->t-n*T/K1];

	 p5i=Plot[isum,{t,n*t1,(n+1)*t1},AxesLabel->{“t”,”i”},DisplayFunction 
->Identity]

On the sixth interval,

	 n=5;

	 Iu:=E1*sg6/(1-Exp[-p*T/2])/(p*L+R);

	 Ic=-(E1*Lsn2/(p*L+R));

	 isum=ReplaceAll[(-i1+i2+i3),t->t-n*T/K1];

	 p6i=Plot[isum,{t,n*t1,(n+1)*t1},AxesLabel->{“t”,”i”},DisplayFunction 
->Identity]
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We shift the beginning of the sum of currents isum at the point t->t-n*T/K1, 
corresponding to the beginning of a proper time interval.

Combining these graphs and outputting their results are realized using 
the function

	 Show[p1i,p2i,p3i,p4i,p5i,p6i,DisplayFunction->$DisplayFunction]

The time diagram of the steady-state current is presented in Figure 2.32.
Let us use Mathematica’s tools to find the solution for the given problem. 

We define the voltage u t( ) in the following way:

	 f1:=E1*((-1)^(Floor[2*t/(T)]))*((-1)^(Floor[K1*t/(T)]))*Sin[ *t];

The function Floor[.] gives the greatest integer less than or equal to an argu-
ment. We use the expression ((-1)^(Floor[2*t/(T)])) to rectify the sinusoidal 
signal, whereas we use the expression ((-1)^(Floor[K1*t/(T)])) to multiply 
the rectified sinusoidal signal by the square wave sgn(sin( ))K tω . One can 
see that using the function Plot[f1,{t,0,T}] we obtain the same graph as in 
Figure 2.31.

Now we use Mathematica to solve Equation 2.45:

	

fnd NDSolve[{i [t] R/L * i[t] f1/L, i[0] 0}= == + ==′ 2 ,, i,

{t, 0, * T},MaxSteps 100005 >2 ]

In this function, we choose the time interval equal to the five periods. Since 
the time constant R L/ = ⋅ −2 10 3 and period T = ⋅ −20 10 3, this allows the obtain-
ing of the steady-state process in the last of the intervals.

To compare the results for solving the differential Equation 2.45 by the 
considered and numerical methods, we can use the function

	 Plot[Evaluate[y[t]/.fnd],{t,4*T,5*T}]

It is not difficult to ensure that we obtain the same graph as in Figure 2.32.

t

–4

–2

2

4

6

0.002 0.004 0.006 0.008 0.01

i

Figure 2.32
Time diagram of the steady-state current (i in amperes, time t in seconds).
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2.8 � Calculation of Processes in the Three-Phase 
Symmetric Matrix-Reactance Converter

Matrix-reactance converters have some properties that allow their efficient 
use in three-phase power supply systems. These properties are based on 
their capabilities in changing amplitudes and frequencies of output voltages 
and currents.

Let us consider a three-phase system with Buck-Boost and matrix convert-
ers (Korotyeyev and Fedyczak, 2008a) as shown in Figure 2.33. A modula-
tion of the matrix converter switches is realized by pulse width modulation 
(PWM). The control strategy of the proposed matrix-reactance frequency con-
verter (MRFC), in general form, is illustrated in Figure 2.34. In each sequence 
period TS  there are two time intervals, tS  and tL . In the interval tS , the syn-
chronous-connected switches (SCS) are off, whereas the matrix-connected 

A

B

C

a b c

SCS

MCSUS1

US2

US3

LF1

LF2

LF3

CF1 CF2 CF3

LS1

LS2

LS3

CL1

CL2

CL3
UCL1 UCL2 UCL3

SL1 SL2 SL3

SaA SbA ScA

SaB SbB
ScB

SaC SbC ScC

R1

R2

R3

Figure 2.33
Matrix-reactance converter system, MCS—matrix-connected switches, SCS—synchronous-
connected switches. (Data from Korotyeyev I. Ye. and Fedyczak Z., 2008b. With permission.)
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switches (MCS) are switching in accordance with a control strategy. At those 
switching times, sjk  satisfy the condition

	 s s s jj j j1 2 3 1 1 2 3+ + = =for , , .

In the interval tL , the MCS are off, whereas the SCS are on. The MCS are 
controlled in line with the classical control strategy (Venturini and Alesina, 
1980). For such a converter, MCS output voltages ua, ub, and uc, and input cur-
rents iA, iB, iC are formed as follows:

	

u
u
u

M t
u
u
u

a

b

c

A

B

C

= ( ) ;

	

i
i
i

M t
i
i
i

A

B

C

T
a

b

c

= ( ) ,

	

M t

d d d

d d d

d d d

aA aB aC

bA bB bC

cA cB cC

( ) ,















	 (2.46)

where
d d d D q taA bB cC S m= = = +( cos( ))/1 2 3ω ;
d d d D q taB cA bC S m= = = + −( cos( / ))/1 2 2 3 3ω π ;
d d d D q taC bA cB S m= = = + −( cos( / ))/1 2 4 3 3ω π ;
ω ω ωm L= − ; ωL  is the pulsation of a voltage on a load; ω  is a frequency of 

the supply voltage; T is the symbol of the transposition; q is the volt-
age gain; and DS

t
T

S
S

=  is the duty ratio of the SCS.

Phase a 

Phase b

Phase c
Next cycle

MCS on/off & SCS off sL = 0 MCS off sjk = 0 & SCS on
saA = 1 saB = 1 saC = 1

sbA = 1 sbB = 1 sbC = 1

scA = 1 scB = 1 scC = 1

sL1 = 1

sL2 = 1

sL3 = 1
tLtS

TS

Figure 2.34
General form of the control strategy. (Data from Korotyeyev I. Ye. and Fedyczak Z., 2008b. 
With permission.)
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Assuming that all switches are ideal, inductors and capacitors are lin-
ear, and, in order to simplify calculations, one uses the averaged operator 
(Korotyeyev and Fedyczak, 2002), and then the processes in such a system 
are described by the matrix differential equation

	

dX
dt

A t X B t= +( ) ( ), 	 (2.47)

where X I I I I I I U U U U UT
LF LF LF LS LS LS CF CF CF CL CL= ( 1 2 3 1 2 3 1 2 3 1 22 3UCL ); ILF1, ILF2, ILF3 

are the currents in inductors LF1, LF2 , LF3; ILS1, ILS2, ILS3 are the currents in 
inductors LS1 , LS2, LS3; UCF1, UCF2 , UCF3 are the voltages across capacitors 
CF1, CF2 , CF3 ; and UCL1, UCL2 , UCL3 are the voltages across capacitors CL1, 
CL2 , CL3.
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U1, U2, U3 are the amplitudes of supply voltages.
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We assume that the system is symmetrical, that is,

	 R R R R R R R RF F F F S S S S1 2 3 1 2 3= = = = = =; ;

	 L L L L L L L LF F F F S S S S1 2 3 1 2 3= = = = = =; ;

	 C C C C C C C CF F F F L L L L1 2 3 1 2 3= = = = = =; ;

	 R R R R U U U U1 2 3 1 2 3= = = = = =and ;

where RF, and RS are the resistances of inductors LF  and LS ; and R is the 
load resistance.

In consequence to the modulation strategy, the processes in converter sys-
tems are described by nonstationary differential equations. Calculations 
of transient and steady-state processes in such systems can be realized by 
numerical means. Based on the assumption of symmetry, steady-state and 
transient processes can be found analytically.

2.8.1 � Double-Frequency Complex Function Method

Let us find steady-state processes in the matrix-reactance converter. Since 
in the matrix A t( ) and in the vector B t( ) there are signals that depend on two 
frequencies, we introduce a double-frequency complex function model and 
describe the state variable vector x( )t as follows:
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e

U e U e U e U e U e
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ω
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where ILF1 , ILF2 , ILF3  are amplitudes of currents in inductors LF1 , LF2 , LF3 ; 
ILS1 , ILS2 , ILS3  are the amplitudes of currents in inductors LS1 , LS2 , LS3 ; 
UCF1 , UCF2 , UCF3  are the amplitudes of voltages across capacitors CF1 , CF2, 
CF3 ; and UCL1 , UCL2 , UCL3  are amplitudes of voltages across capacitors CL1, 
CL2 , CL3 .

For symmetry of both the MRFC circuit and the supply source, the state 
variables can be described as follows:

	 I I e I I e I I eLF LF
j

LF LF
j

LS LS
j

2 1
2 3

3 1
4 3

2 1
2 3= = =π π π/ / /; ; ;; ;/I I eLS LS

j
3 1

4 3= π

	 U U e U U e U U eCF CF
j

CF CF
j

CL CL
j

2 1
2 3

3 1
4 3

2 1
2 3= = =π π π/ / /; ; ;; ./U U eCL CL

j
3 1

4 3= π
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Then, the vectors X t( )  and B t( )  can be described as

	
X I e I e I e I eT

LF
j t

LF
j t

LF
j t

LS
j= + +

1 1
2 3

1
4 3

1
ω ω π ω π( / ) ( / ) ωω ω π ω πL L Lt

LS
j t

LS
j tI e I e1

2 3
1

4 3( / ) ( / )+ +(

	         
U e U e U e U eCF

j t
CF

j t
CF

j t
CL

j tL
1 1

2 3
1

4 3
1

ω ω π ω π ω( / ) ( / )+ + UU e U eCL
j t

CL
j tL L

1
2 3

1
4 3( / ) ( / ) ;ω π ω π+ + )

	
B t U

L
e U

L
e U

L
eT

F

j t

F

j t

F

j t( ) ( / ) ( / )= + +ω ω π ω π2 3 4 3 0 0 0 0 0 0 00 0 0 0 0 0






. 	 (2.48)

Taking the derivative of X t( ) , we get

dX
dt

I e I e I e
T

LF
j t

LF
j t

LF
j t= + +ω ω ωω ω π ω π

1 1
2 3

1
4 3( / ) ( / )((

+ +

ω

ω ω

ω

ω π ω π

L LS
j t

L LS
j t

L LS
j t

I e

I e I e

L

L L

1

1
2 3

1
4( / ) ( /33

1 1
2 3

1
4 3

) ( / )

( / )

ω ω

ω ω

ω ω π

ω π

U e U e

U e U

CF
j t

CF
j t

CF
j t

L

+

+
CCL

j t
L CL

j t
L CL

j te U e U eL L L
1 1

2 3
1

4 3ω ω π ω πω ω( / ) ( / ) .+ + )

	 (2.49)

Substituting (2.48) and (2.49) into (2.47), and multiplying the matrix A t( )  by 
the vector X t( ), we obtain 12 linear equations in which each row has the 
same factor ( e j tω , e j t( / )ω π+2 3 , e j t( / )ω π+4 3  or e j tLω , e j tL( / ) ,ω π+2 3  e j tL( / )ω π+4 3 ). It turns out 
that, after cancellation of common factors, we can choose only four indepen-
dent equations. In matrix form these equations can be written as follows:

	 ′ = +X AX B, 	 (2.50)

where

	

′ =





















=X j

I

I

U

U

X

ILF

L LS

CF

L CL

LFω
ω
ω
ω

1

1

1

1

1

,
II

U

U

B

U
L

LS

CF

CL

F
1

1

1

0
0
0





















=

















,





,

	

A

R
L L

R
L

D q
L

D
L

C
D q
C

D
C

F

F F

S

S

S

S

S

S

F

S

F

S

=

− −

− −

−

−

0 1 0

0 1

1 0 0

0 1
LL LRC

0 1−





























.
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Solving (2.50) for X yields

	 X jI A B= − −( ) ,ω
1

	 (2.51)

where

	

I L

L

ω

ω
ω

ω
ω

=



















0 0 0
0 0 0
0 0 0
0 0 0

.

The solution to (2.51) gives the components of the vector X  expressed by

	
I jU C R D C R jL jC R D

LF
F S F S S L L L S

1

21 2 1= − + + + +{ ( ) ( )( )ω ω ω ω [[ ( )]} ;C R q j C RF L Lω ω+ − +2

∆

 
I UqD jC R U UqRD D

CL
S L L

CL
S S

1 1
1 1= + = −( ) , ( ) ,ω
∆ ∆ 	 (2.52)

 
U

U R jL R D D C jR L
CF

S S L S S L L S S L

1

21 2
=

+ + − + + −  ω ω ω( ) 
∆

,

where

	

∆ = + + + − + +D q R jL C jR L R jL

R D

S F F F F F S S L
2 2 1

2

( ) [ ( )]( )ω ω ω ω

SS F F F S F F F LC jR L D C jR L jC q[ ( )] [ ( )− + − + + + − + ⋅{ 1 12 2ω ω ω ω

(( ) ] [ ( )][ (R jL C jR L C jR LF F L F F F L L S+ + − + − + − + − +ω ω ω ω ω1 1 SS Lω )] .}

Instantaneous values of currents and voltages are obtained by multiplication 
of complex variables ILF1, ILC1, UCF1, and UCL1 by the function of either e j tω  
or e j tLω :

	 I t I eLF LF
j t

1 1( ) Re ;= ( )ω
 I t I eCL LC

j tL
1 1( ) Re= ( )ω ;

	 U t U eCF CF
j t

1 1( ) Re ;= ( )ω

 U t U eCL CL
j tL

1 1( ) Re= ( )ω .	 (2.53)

Expressions (2.53) are a solution of the set (2.47) for the steady-state process.
Let us use Mathematica for solving the equation set (2.47). In the cell

	 m=L-;

	 daA:=Ds*(1+2*qu*Cos[m*t])/3;

	 daB:=Ds*(1+2*qu*Cos[m*t-2*Pi/3])/3;
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	 daC:=Ds*(1+2*qu*Cos[m*t-4*Pi/3])/3;

	 dbA:=Ds*(1+2*qu*Cos[m*t-4*Pi/3])/3;

	 dbB:=Ds*(1+2*qu*Cos[m*t])/3;

	 dbC:=Ds*(1+2*qu*Cos[m*t-2*Pi/3])/3;

	 dcA:=Ds*(1+2*qu*Cos[m*t-2*Pi/3])/3;

	 dcB:=Ds*(1+2*qu*Cos[m*t-4*Pi/3])/3;

	 dcC:=Ds*(1+2*qu*Cos[m*t])/3;

we define the components of the matrix M(t) as in (2.46). Next, we define the 
vectors X(t), B(t), and the matrix A(t) as follows:

	

Xin

Is * Exp[I *( * t)]

Is * Exp[I *( * t 2 * Pi/3)]

Is * Exp

=

+

v

v

[[I * ( * t * Pi/3)]

Ic * Exp[I *( * t)]

Ic * Exp[I *( * t

v

v

v

+ 4

L

L ++

+

4 * Pi/3)]

Ic * Exp[I *( * t 4 * Pi/3)]

Uc * Exp[I *( * t)

v

v

L

]]

Uc * Exp[I *( * t 2 * Pi/3)]

Uc * Exp[I *( * t 4 * Pi/3)]

U

v

v

+

+

ll * Exp[I *( * t)]

Ul * Exp[I *( * t 2 * Pi/3)]

Ul * Exp[I

v

v

L

L +

**( * t 4 * Pi/3)]vL +















































;

	

B(t)

U * Exp[I * ( * t)]/Lf

U * Exp[I * ( * t 2 * Pi/3)]/Lf

U

=

+

v

v

** Exp[I * ( * t 4 * Pi/3)]/Lfv +

0
0
0
0
0
0
0
0
0









































;
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A(t) =

	

− −

− −

−

Rf
Lf

1
Lf

Rf
Lf

1
Lf

Rf
Lf

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 00 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0

−

− −

1
Lf

Rs
Ls

d
Ls

d
Ls

d
Ls

1 D
Ls

aA aB aC S

00 0 0 0

0 0 0 0 0

− −

−

Rs
Ls

d
Ls

d
Ls

d
Ls

1 D
Ls

Rs
Ls

d
Ls

d

bA bB bC S

cA ccB cC S

aA bA cA

Ls
d
Ls

1 D
Ls

1
Cf

d
Cf

d
Cf

d
Cf

0 0

0 0 0 0 0 0 0 0

−

− − −

00 0 0 0 0 0 0 0

0 0

1
Cf

d
Cf

d
Cf

d
Cf

1
Cf

d
Cf

d
Cf

aB bB cB

aC bC

− − −

− − −−

− −

−

d
Cf

D 1
Cl

1
RCl

D 1
Cl

cC

S

S

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 00 0 0

0 0 0 0 0 0 0 0 0 0

−

− −





















1
RCl

D 1
Cl

1
RCl

S






















































;

	
		  (2.54)

The symbols Xin, Is, Ic, Uc, Ul correspond to X , ILF1, ICL1, UCF1, UCL1, 
respectively.

In the row

	 DXin Xint= ;∂∂

the derivative of X  is calculated. In order to show that some parts of

	

dX
dt

A t X B t− − =( ) ( ) 0 	 (2.55)

are the same, we calculate the left part of this equation:

	 XE=Simplify[TrigToExp[A11.Xin+E1]-DXin];

and cancel each row by e j t− ω  or e j tL− ω  factors:

	 For[n=1,n<=12,If[n<=3 || n>=7&&n<=9,

	 AXL[n]=Simplify[Part[Part[XE*Exp[-I**t],n],1]],

	 AXL[n]=Simplify[Part[Part[XE*Exp[-I* L*t],n],1]]];n++];
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Now we will show that some parts of (2.55) are the same. We output the first 
three parts of the obtained equations:

	 For[n=1,n<=3,Print[AXL[n]];n++];

	
− − + +IsRf U Uc iIsLf

Lf
ω

	
− − − + + +( ) ( ( ))/1 2 3 U Uc Is Rf iLf

Lf
ω

	
− − − + + +( ) ( ( ))/1 1 3 U Uc Is Rf iLf

Lf
ω

After equating these expressions to zero, the constant factors are canceled, 
and we obtain three identical equations.

In the next cell we find a solution to (2.50). At first we define the matrix Iω  
and vector B  (denoted by B4):

	 I=IdentityMatrix[4];

	 I[[1,1]]=I*;

	 I[[2,2]]=I*L;

	 I[[3,3]]=I*;

	 I[[4,4]]=I*L;

	

B4

U/Lf

= 0
0
0



















;

Elements of the matrix A denoted by A4 are determined by the calcula-
tion A t X t( ) ( )

	 AX=Simplify[TrigToExp[A11.Xin]];

cancellation by e j t− ω  or e j tL− ω  factors in rows

	 For[n=1,n<=12,If[n<=3 || n>=7&&n<=9,

	 XL[n]=Simplify[Part[Part[AX*Exp[-I**t],n],1]],

	 XL[n]=Simplify[Part[Part[AX*Exp[-I* L*t],n],1]]];n++];
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and extraction of coefficients from rows 1, 4, 7, 10:

	 ZS={Is,Ic,Uc,Ul};

	 A4=IdentityMatrix[4];

	 For[n=1,n<=4,

	 For[m=1,m<=4,A4[[n,m]]=Coefficient[XL[3*(n-1)+1],ZS[[m]]];m++];n++];

According to (2.51), we find the solution

	 solIA=Simplify[Inverse[I-A4].B4];

By transforming and simplifying the components in the expression solIA, 
we obtain solutions in the form (2.52).

Using Mathematica we can find the same solution in the following way:

	 usl=Table[Part[XE[[n]],1]==0,{n,1,12}];

	 solX=Simplify[Solve[usl,{Is,Ic,Uc,Ul}]];

In the first row we generate the set of equations, and in the second row we 
find the solution.

Let us find the steady-state values of currents and voltages. In the cell we enter 
the parameters of the circuit elements, the supply voltage, and control signals:

	 Rf=0.01;

	 Rs=0.01;

	 Lf=0.0005;

	 Ls=0.0005;

	 Cf=50*10^(-6);

	 Cl=50*10^(-6);

	 R=10.0;

	 U=230.0;

	 T=1/50.0;

	 =2*Pi/T;

	 TL=1/25.0;

	 L:=2*Pi/TL;

	 qu=0.5;

	 Ds=0.7;
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Then we select the components that correspond to currents ILF1, and ILS1 and 
voltages UCF1, and UCL1:

	 Is1:=Part[solIA[[1]],1];

	 Ic1:=Part[solIA[[2]],1];

	 Uc1:=Part[solIA[[3]],1];

	 Ul1:=Part[solIA[[4]],1];

The solutions (2.53) are defined as follows:

	 p1=Re[Is1*Exp[I**t]];

	 p2=Re[Ic1*Exp[I*L*t]];

	 p3=Re[Uc1*Exp[I**t]];

	 p4=Re[Ul1*Exp[I*L*t]];

We also define a function of the first phase supply voltage:

	 psupp:=U*Cos[ *t];

Time diagrams of the steady-state processes for currents and voltages are 
outputted with the help of the functions

	 Plot[{p1,p2},{t,0,2*T}];

	 Plot[{p3,p4,psupp},{t,0,2*T}];

These time diagrams are shown in Figures 2.35 and 2.36.

I

75

50

25

–25

–50

–75

0.01 0.02 0.03 0.04
t

ILF1

ILS1

Figure 2.35
The steady-state currents ILF1  and ILS1  in inductors ( ILF1 and ILS1  in amperes, time t in 
seconds).
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The graphs of the relative magnitude and phase shift of the load voltage as 
functions of DS and q obtained by

	 Plot3D[Abs[Ul1]/U,{Ds,0.1,0.99},{qu,0.1,0.5},

	 AxesLabel->{“Ds”,”q”,”UcL1/U”},Shading->False];

	 Plot3D[Arg[Ul1],{Ds,0.1,0.7},{qu,0.1,0.5},

	 AxesLabel->{“Ds”,”UcL1”},Shading->False];

are presented correspondingly in Figures 2.37 and 2.38.

U

t

200

100

–100

–200

0.01 0.02 0.03 0.04

UCL1UCF1

Figure 2.36
The steady-state voltages across capacitors UCL1 , UCF1  and supply voltage US1  ( UCL1 , UCF1 , 
and US1  in volts, time t in seconds).
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Figure 2.37
The relative magnitude of the load voltage versus parameters Ds and q.
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From these figures one sees that regulation of the output voltage can be 
made by changing the parameters q and Ds while the phase shift can be 
made mainly by changing the parameter Ds.

The graphs of the relative magnitudes of the load voltage with respect to 
the supply voltage, and the input power factor versus the parameter Ds for 
different values of a period TL obtained by

	 qu=0.5;

	 p025V=Plot[Abs[Ul1]/U,{Ds,0.0,0.95},AxesLabel->{“D”,”UcL1/U”},

	 DisplayFunction->Identity];

	 p025A=Plot[Cos[Arg[Is1]],{Ds,0.0,0.95},AxesLabel->{“D”,”p”},

	 DisplayFunction->Identity];

	 TL=1/75.0;

	 p075V=Plot[Abs[Ul1/U],{Ds,0.0,0.95},AxesLabel->{“D”,”UcL1/U”},

	 DisplayFunction->Identity];

	 p075A=Plot[Cos[Arg[Is1]],{Ds,0.0,0.95},AxesLabel->{“D”,”p”},

	 DisplayFunction->Identity];

	 TL=1/50.0;
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3
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φUCL1

Figure 2.38
The phase shift of the load voltage versus parameters Ds and q.
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	 p050V=Plot[Abs[Ul1]/U,{Ds,0.0,0.95},AxesLabel->{“D”,”UcL1/U”},

	 DisplayFunction->Identity];

	 p050A=Plot[Cos[Arg[Is1]],{Ds,0.0,0.95},AxesLabel->{“D”,”p”},

	 DisplayFunction->Identity];

	 Show[{p025V,p050V,p075V},DisplayFunction->$DisplayFunction];

are presented in Figures 2.39 and 2.40. The power factor is defined as λ φp s= cos( ), 
where φs is the phase shift between the voltage US1 and the current ILF1.

Comparing Figures 2.39 and 2.40, one can change the gain and have the 
power factor near to unity.
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1.5

1

0.5

0.2 0.4 0.6 0.8
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U
UCL1

fL = 75Hz

fL = 25Hz

fL = 50Hz

Figure 2.39
The relative magnitude of the load voltage versus parameter Ds for different TL values.
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Figure 2.40
The input power factor versus parameter Ds for different TL values.
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2.8.2 � Double-Frequency Transform Matrix Method

Let us find transient process in the symmetric matrix-reactance converter. We 
transform (2.47) with the use of the matrix (Korotyeyev and Fedyczak, 2008b)

	

K

K
K

K
K

S

L

S

L

=



















0 0 0
0 0 0
0 0 0
0 0 0

,

where

	

K

t t t

S =

+ + + + +



 + − +


1 1

2
3

1
2
3

cos( ) cos cosω ϕ ω π ϕ ω π ϕ

+ + +



 + − +



 + +1

2
3

1
2
3

1cos cos cos( )ω π ϕ ω π ϕ ω ϕt t t

11
2
3

1 1
2
3

+ − +



 + + + + +







cos cos( ) cosω π ϕ ω ϕ ω π ϕt t t






















;

K

t t t

L

L L L

=

+ + + + +



 + − +1 1

2
3

1
2
3

cos( ) cos cosω ϕ ω π ϕ ω π ϕ





+ + +



 + − +



 +1

2
3

1
2
3

1cos cos cos(ω π ϕ ω π ϕL Lt t ωω ϕ

ω π ϕ ω ϕ ω

L

L L L

t

t t t

+

+ − +



 + + + +

)

cos cos( ) cos1
2
3

1 1
2ππ ϕ
3

+





























,

and ϕ  is the phase shift.
Substituting X for KY yields

	

dK
dt

Y K dY
dt

A t KY B t+ = +( ) ( ),

where Y is the vector of transformed system variables. The matrix K is not 
singular. An inverse matrix

KS
− = ⋅1 1

3 2

{{ cos( ), cos( ) sin( ), c− − + − + + + + − +1 4 1 2 2 3 1 2ω ϕ ω ϕ ω ϕt t t oos( )

sin( )},

ω ϕ

ω ϕ

t

t

+

− +2 3

{ cos( ) sin( ), cos( ) sin(− + + + + − + + −1 2 2 3 1 2 2 3ω ϕ ω ϕ ω ϕt t t ωω ϕ
ω ϕ

t

t

+
− − +

),
cos( ), }1 4

{ cos( ) sin( ), cos( ), co− + + − + − − + − +1 2 2 3 1 4 1 2ω ϕ ω ϕ ω ϕt t t ss( )

sin( )}}

ω ϕ

ω ϕ

t

t

+

+ +2 3
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An inverse matrix KL
−1 has a similar form.

Premultiplying this equation by the inverse matrix K−1  and taking into 
account that

	

Ω

Ω
Ω

Ω
Ω

= =



















−K
dK
dt

S

L

S

L

1

0 0 0
0 0 0
0 0 0
0 0 0

we obtain

	

dY
dt

K A t K Y K B t= − +− −( ( ) ) ( ),1 1Ω 	 (2.56)

where

	

ΩS =

−

−

−

























0
3 3

3
0

3

3 3
0

ω ω

ω ω

ω ω

,

,

	

ΩL

L L

L L

L L

=

−

−

−

























0
3 3

3
0

3

3 3
0

ω ω

ω ω

ω ω

.

In (2.56) the matrix K A t K−1 ( ) and the vector K B t−1 ( ) do not depend on time. 
Denoting

	 K A t K A K B t B− −= =1 1( ) ( ) ,and

Equation 2.56 can be rewritten as follows:

	

dY
dt

A Y B= − +( ) .Ω 	 (2.57)
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By means of the transformation, the nonstationary matrix differential equa-
tion (2.47) describing processes in the three-phase matrix-reactance converter 
system has been transformed into the stationary differential equation (2.57). 
From this equation the solution is obtained in an ordinary way. In Equation 
2.57 the matrix A has the forms

A =

 

− −

− −

−

R
L L

R
L L

R
L

F

F F

F

F F

F

F

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 00 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0

1 2 3

−

− −

−

L
R
L

a
L

a
L

a
L

D
L

R

F

S

S S S S

S

S

SS

S S S S

S

S

S

S S S S

L
a
L

a
L

a
L

D
L

R
L

a
L

a
L

a
L

0 0 1 0

0 0 0 0 0

3 1 2

2 3 1

−

− 00 0 1

1 0 0 0 0 0 0 0 0

0 1 0

1 3 2

2

−

− − −

− −

D
L

C
a

C
a

C
a

C

C
a

C
a

S

S

F F F F

F F

11 3

3 2 1

0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0

C
a

C

C
a

C
a

C
a

C
D

F F

F F F F

S

−

− − −

−11 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 1

C RC
D

C RC
D

C

S S

S

S S

S

−

− −

−
SS SRC

0 0 0 0 0 1−









































































where a q1 1 2 3= +( )/ ; a q2 1 3= −( )/ ; a q3 1 3= −( )/ .
Let us consider a more general case when the vector

B t U
L

t U
L

t U
L

tT

F F F
( ) cos( ) cos( / ) cos(= + + + +ω ψ ω π ψ ω π2 3 4 // ) ,3 000000000+







ψ

where ψ  is the phase shift of the supply voltages. Then vector

	

B
U
L

U
L

U

T

F F
= − − − − −


2
3

2
cos( )

(cos( ) sin( ))

(co

ψ ϕ ψ ϕ ψ ϕ

ss( ) sin( ))
.

ψ ϕ ψ ϕ− + − 


3
2

000000000
LF
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Taking ϕ ψ π= + /6  provides

	
B U

L
U
L

T

F F
= −








3

2
3
2

0000000000 .

Solving Equation 2.57 yields

	 Y e Y A e I BA t A t= + − −− − −( ) ( )( ) ( ) ,Ω ΩΩ0
1 	 (2.58)

where I is the unit matrix; Y0 is the initial condition vector. From this formula 
the solution to (2.47) follows at once:

	 X KY= .

The steady-state process is obtained from (2.58) as follows:

	 X K A Bst = − − −( ) .Ω 1
	 (2.59)

The transformation X KY=  can also be realized by using matrices:

	

K

t t

t tS = +



 +





2
3

1
2

2
3

2
3

cos( ) sin( )

cos sin

ω ω

ω π ω π 11
2

2
3

2
3

1
2

cos sinω π ω π
t t−



 −





























;
	 (2.60)

	

K

t t

t tL

L L

L L= +



 +2

3

1
2

2
3

2
3

cos( ) sin( )

cos sin

ω ω

ω π ω π





−



 −



















1
2

2
3

2
3

1
2

cos sinω π ω π
L Lt t











.

Note that matrices KS  and KL  are inverse with respect to dq-transformation.
For this transformation equations (2.56–2.59) are the same, but matrices ΩS  
and ΩL  take the forms

	

Ω ΩS L

L

L= −












 = −















0 0
0 0

0 0 0

0 0
0 0

0 0 0

ω
ω

ω
ω,
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and a part of the matrix A transforms in the following way:

	

a
L

a
L

a
L

a
L

a
L

a
L

a
L

a
L

a
L

S S S

S S S

S S S

1 2 3

3 1 2

2 3 1

























->

q
L

q
L

L

S

S

S

0 0

0 0

0 0
1

























	 (2.61)

and the vector BT  has the form

	
B U

L
U
L

T

F F
= −








3

2
3
2

0 0 0 0 0 0 0 0 0 0cos sin .ψ ψ

When ψ = 0, the vector B has only the first nonzero component, and the 
matrix A has more zero components, and then calculations produced by 
(2.58–2.59) are a little faster.

Let us calculate the transient processes in the matrix-reactance converter. 
For simplicity we use matrices KS  and KL  in the form (2.60). We start from 
the beginning. In the first cell we enter the components of the matrix M t( ) :

	 m=L-;

	 daA:=Ds*(1+2*qu*Cos[m*t])/3;

	 daB:=Ds*(1+2*qu*Cos[m*t-2*Pi/3])/3;

	 daC:=Ds*(1+2*qu*Cos[m*t-4*Pi/3])/3;

	 dbA:=Ds*(1+2*qu*Cos[m*t-4*Pi/3])/3;

	 dbB:=Ds*(1+2*qu*Cos[m*t])/3;

	 dbC:=Ds*(1+2*qu*Cos[m*t-2*Pi/3])/3;

	 dcA:=Ds*(1+2*qu*Cos[m*t-2*Pi/3])/3;

	 dcB:=Ds*(1+2*qu*Cos[m*t-4*Pi/3])/3;

	 dcC:=Ds*(1+2*qu*Cos[m*t])/3;

The matrix M t( )-denoted M is defined in the next cell:

	

M
daA dAB daC
dbA dbB dbC
dcA dcB dcC

=












 ;
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Then we define the matrices:

	

K
2
3

*

Cos[ * t] Sin[ * t] 1/ 2

Cos[ * t 2 * Pi/3] Sin[ * tS =

v v

v v+ ++ 2 * Pi/3] 1/ 2

Cos[ * t 2 * Pi/3] Sin[ * t 2 * Pi/3] 1/ 2v 2 v 2



















;

	

K
2
3

*

Cos[ * t] Sin[ * t] 1/ 2

Cos[ * t 2 * Pi/3] Sin[L =

v v

v

L L

L + vv

v 2 v 2

L

L

* t 2 * Pi/3] 1/ 2

Cos[ * t 2 * Pi/3] Sin[ * t 2 * Pi/3

+

L ]] 1/ 2



















;

One can see that, using

	 MatrixForm[Simplify[KLi.M.KS]]

provides

	

qu

qu

0 0

0 0

0 0 1

















,

which differs from (2.61) only by the factor 1/ .LS  Matrix A denoted by Aq is 
as follows:
Aq =

− −

− −

−

Rf
Lf

1
Lf

Rf
Lf

1
Lf

Rf
Lf

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 00 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

−

− −

−

1
Lf

Rs
Ls

q
Ls

1 D
Ls

Rs
Ls

q
L

S

ss
1 D

Ls
Rs
Ls Ls

1 D
Ls

1
Cf

q
Cf

S

S

0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0

−

− −

− 00 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0

1
Cf

q
Cf

1
Cf Cf

D 1
C
S

−

−

−
ll

1
RCl

D 1
Cl

1
RCl

D 1
Cl

S

S

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

−

− −

− 00 0 0 0 −












































1
RCl































;
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and the matrix Ω  has the form

	

V

v

v

v

=

−
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0L 00 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0

−v

v

L

00 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

−

−

v

v

v

L
LL 0 0

0 0 0 0 0 0 0 0 0 0 0 0









































;

In the row, one calculates the part of the expression (2.58)

	 A Aq ;V V== --

We define the unit matrix of the twelfth order:

	 I2=IdentityMatrix[12];

We assume that initial conditions are equal to zero. Then we use the second 
term in expression (2.58).

	 Y:=Inverse[AV].(MatrixExp[AV*t]-I2);

In order to speed up calculations, it is expedient to take into account the 
structure of the expression

	 K A e I BA t( ) ( ) .( )− −− −Ω Ω1

The first component of the vector B is not equal to zero. Therefore, we can 
take only the first column of the matrix

	 ( ) ( ).( )A e IA t− −− −Ω Ω1

Since the matrix K has a diagonal structure, we can multiply only three non-
zero elements of K for evaluating one of currents or voltages. In the next cell, 
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functions for currents and voltages are formed:

	 if1:=Part[Y,1,1]*(U/Lf)*Cos[*t]+Part[Y,2,1]*(U/Lf)*Sin[*t]+ 
Part[Y, 3,1] (U/Lf)/ 2 ;*

	 is1:=Part[Y,4,1] *(U/Lf)*Cos[L*t]+ Part[Y,5,1] *(U/Lf)*Sin[L*t]+
Part[Y,6,1] (U/Lf)/ 2 ;*

	 uf1:=Part[Y,7,1]*(U/Lf)*Cos[*t]+Part[Y,8,1]*(U/Lf)*Sin[*t]+
Part[Y, 9,1] (U/Lf)/ 2 ;*

	 ul1:=Part[Y,10,1] *(U/Lf)*Cos[L*t]+ Part[Y,11,1] *(U/Lf)*Sin[L*t]+
Part[Y,12,1] (U/Lf)/ 2 ;*

Now we enter the parameters of the circuit elements:

	 Rf=0.01;

	 Rs=0.01;

	 Lf=0.0005;

	 Ls=0.0005;

	 Cf=50*10^(-6);

	 Cl=50*10^(-6);

	 R=10.0;

	 U=230.0;

	 T=1/50.0;

	 =2*Pi/T;

	 TL=1/25.0;

	 L:=2*Pi/TL;

	 qu=0.5;

	 Ds=0.7;

The graphs of the process (Figures 2.41 and 2.42) are plotted with the help of 
the Plot[..] function

	 pif1d=Plot[if1,{t,0,2*T},AxesLabel->{“t”,”I”},DisplayFunction->Identity];

	 pis1d=Plot[is1,{t,0,2*T},AxesLabel->{“t”,”I”},DisplayFunction->Identity];

	 Show[{pis1d,pif1d},DisplayFunction->$DisplayFunction];
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	 puf1d=Plot[uf1,{t,0,2*T},AxesLabel->{“t”,”U”},DisplayFunction 
->Identity];

	 pus1d=Plot[ul1,{t,0,2*T},AxesLabel->{“t”,”U”},DisplayFunction 
->Identity];

	 Show[{pus1d,puf1d},DisplayFunction->$DisplayFunction];

We could find the steady-state processes by choosing another time interval, 
for example,

	 Plot[if1,{t,10*T,12*T},AxesLabel->{“t”,”I”}];

t

150

100

50

–50

–100

–150

0.01 0.02 0.03 0.04

I

ILF1

ILS1

Figure 2.41
The transient currents ILF1  and ILS1  in inductors LF1  and LS1  

( ILF1  and ILS1  in amperes, time 
t in seconds).

t

400

200

–200

–400

U

0.01 0.02 0.03 0.04

UCF1 UCL1

Figure 2.42
The transient voltages UCF1  and UCL1 across capacitors CF1  and CL1  

(UCF1  and UCL1  in volts, 
time t in seconds).
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Note that the time interval {t,10*T,12*T} for the steady-state process is depen-
dent on a decay rate of the transient process.

We could also verify the obtained results by numerical calculations. In that 
case we should enter matrix A(t) as in (2.54). Then we define the vector of 
currents and voltages:

	 Xx:={i1[t],i2[t],i3[t],i4[t],i5[t],i6[t],u1[t],u2[t],u3[t],u4[t],u5[t],u6[t]};

and form the right part of Equation 2.47:

	 eq:=A11.Xx

The components of the vector Xx correspond to the components of the vec-
tor X I I I I I I U U U U UT

LF LF LF LS LS LS CF CF CF CL CL= ( 1 2 3 1 2 3 1 2 3 1 22 3UCL ). In the next cell 
we use the NDSolve[ ] function for a numerical solution to Equation 2.47:

	 sol4Phase NDSolve{{i1 [t] eq[[1]] U * Cos[ * t]/L= == +′ v ff, i2 [t] eq[[2]]′ == +

	

U * Cos[ * t 2 * Pi/3]/Lf i3 [t] eq[[3]] U * Cos[ * tv v+ == +, ′ + 44 * Pi/3]/

Lf, i4 [t] eq[[4]],′ ==

	

i5 [t] eq[[5]], i6 [t] eq[[6]],u1 [t] eq[[7]]′ ′ ′== == == ,,u2 [t] eq[[8]],

u3 [t] eq[[9]],

′

′

==

==

	

u4 [t] eq[[10]],u5 [t] eq[[11]],u6 [t] eq[[1′ ′ ′== == == 22]], i1[0] 0, i2[0] 0,

i3[0] 0,

== ==

==

	

i4[0] 0, i5[0] 0, i6[0] 0,u1[0] 0,u2[0] 0,u3== == == == == [[0] 0,u4[0] 0,

u5[0] 0,

== ==

==

	

u6[0] 0}, {i1, i2, i3, i4, i5, i6,u1,u2,u3,u4,u5,u6}== ,, {t, 0,12 * T},

MaxSteps 100000]22> ;

In order to find a solution in the time interval 0–12T with the required preci-
sion, the option MaxSteps is set. Using the Plot[ ] function

	 Plot[Part[Evaluate[i1[t]/.sol4Phase],1],{t,0,2*T},AxesLabel->{“t”,”I”}];

we obtain the same graph for the current ILF1.
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3
The Calculation of the Processes and 
Stability in Closed-Loop Systems

3.1 � Calculation of Processes in Closed-Loop 
Systems with PWM

Electromagnetic processes in converters with a closed-loop feedback are 
described by nonlinear differential and algebraic equations. For the solution 
to such equations, numerical and numerical–analytical methods are used. 
Consider the use of a numerical–analytical method for the calculation of 
transient and steady-state processes and stability in a Buck-Boost DC voltage 
converter (Figure 3.1).

Assume that the transistor and diode are described by RS models and in 
the on state have the same resistances; the inductor and capacitor are linear 
elements. The control system CS realizes pulse width modulation (PWM) 
(Korotyeyev and Klytta, 2002). On the inputs of the control system (Figure 3.2), 
voltages are fed from the load and an independent sawtooth ramp genera-
tor. The comparison of the voltages is made on the input of a comparator C. 
On the output of the comparator, rectangular voltage impulses are formed 
(Figure 3.3), which open and close the transistor. In the control system, pro-
cesses are described by the following equation set:

	

u k u k u

u u u

u

c ref r

com c r

= −

= −

=

( );

;

( ),γ γ com

	 (3.1)

where kr is the output voltage ratio; k is the voltage feedback gain; uc is the 
control voltage; uref is the reference voltage; ucom is the voltage on the input of 
the comparator; ur is the independent sawtooth ramp voltage; T is the period 
of the voltage of a generator; t is the impulse duration on the output of the 
control system; and g(t) is the switching function (Figure 3.4). The duration 
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γ(t)

Figure 3.4
Switching function.
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Figure 3.2
Control system with PWM-2.
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Figure 3.1
Topology of a Buck-Boost converter.
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Figure 3.3
Time diagrams of the voltages in the control system with PWM.
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of the switching function coincides with the duration of the voltage on the 
output of the comparator.

Let us write differential equations for the intervals of constancy of the 
converter topology. On the interval nT ≤ t ≤ nT + tn (n is the number of 
the periods), the transistor is in an on state, and the diode is an off state. The 
equivalent scheme of the converter is presented in Figure 3.5. The inductor 
current i and the voltage across the capacitor u are described by the differ-
ential equations

	

E r i L
di
dt

C
du
dt

u
R

= +

= +

1

0

;

,
	 (3.2)

where r1 = rt + ri is the sum of the resistances of the inductor and the transis-
tor in an on state.

During the interval nT + tn ≤ t ≤ (n + 1) T, the transistor is off and the diode 
is on. The equivalent scheme of the converter is presented in Figure 3.6.

The differential equations describing the electromagnetic processes are 
as follows:

	

0 2= + +

= +

r i L
di
dt

u

i C
du
dt

u
R

;

,
	 (3.3)

E

L C

i

R

u

Rt Ri

Figure 3.5
Equivalent scheme of the converter. The transistor is on, the diode is off.

L

i

C R
u

R1

Figure 3.6
Equivalent scheme of the converter. The transistor is off, and the diode on.
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where r2 is the sum of resistances of the inductor and the diode in an on state; 
r2 = r1.

Let us combine Equations 3.2 and 3.3 using the switching function. We 
assume that the value of the switching function equal to one corresponds to 
the on state of the transistor, and the zero value corresponds to the off state 
of the transistor. Taking this into account, we can write the differential equa-
tions for all intervals in the form

	
L

di
dt

r i u E= − − − +1 1( ) ;γ γ 	 (3.4)

	
C du

dt
i

R
u= − −( ) .1 1γ

This equation set we represent as follows:

	

dX t
dt

A X t B( ) ( ) ( ) ( ),= +γ γ 	 (3.5)

where

	 X t i
u

( ) =

is the vector of the state variables;

	

A

r
L L

C RC

B
E
L( ) ; ( ) .γ

γ

γ
γ

γ
=

− − −

− −
=

1 1

1 1
0

 

The set of Equations 3.1–3.5 describes processes in the closed-loop system of 
the converter with PWM.

Let us consider the use of Mathematica for discovering transient behav-
iors. In the next cell, the variables are defined and values assigned to them

	 R1=0.05;

	 L1=40*10^(-6);

	 C1=2.0*10^(-6);

	 Rn=10.0;

	 E1=12;

	 T=10.0*10^(-6);
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	 Kd=0.01;

	 Ky=1.6;

	

A1 =
R1 L1 0

0 1 Rn C1
;

−
−











/

/( * )

	

A2 =
R1 L1 1 L1

1 C1 1 Rn C1
;

− −
−











/ /

/ /( * )

	 B1={E1/L1, 0};

	 Ii={0, 1};

	 I2=IdentityMatrix[2];

	 Ug=5.0;

	 Uref=1.5;.

	 Kg=Ug/T;

In this cell, Rn is the load resistance; Ky is the voltage feedback gain k; A1, 
A2 are the matrixes coinciding with the matrix A(g) for g = 1 and g = 0, 
respectively; B1 is the vector B for g = 1; Ii is the vector that extracts the 
second component (it is necessary for extracting the voltage from the vector 
X(t)); Uref is the reference voltage; and Ug is the voltage amplitude of the 
independent generator.

In the next cell, solutions for all intervals of constancy of converter topolo-
gies and the expression of transitional process are presented, and a solution 
for a nonlinear algebraic equation is executed. For the interval nT ≤t ≤ nT + tn, 
when the transistor is on the processes are described by the expression

	 X t e X nT A e I BA t nT A t nT( ) ( ) ( ) .( ) ( )= + −− − −1 1
1

1 	 (3.6)

For the interval when the transistor is off, the processes are described as

	 X t e X nT tA t nT t
n

n( ) ( ).( )= +− −2 	 (3.7)

Substituting t = nT + tn in (3.6) and t = (n + 1)T in (3.7), and taking into 
account the periodicity condition X(nT) = X((n + 1)T), we find the steady-state 
process:

	 X nT I e e e A e IA T t A t A T t A tn n n n( ) ( ) (( ) ( )= − −− − − −2 1 2 11
1

1 )) . B 	 (3.8)

In this expression tn = const.
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In the cell

	 Clear[tn];

	 A1inv=Inverse[A1];

	 A2inv=Inverse[A2];

	 An1:=MatrixExp[A1*tn];

	 An2:=MatrixExp[A2*(T-tn)];

	 ATn:=An2.An1;

	 ATninv:=Inverse[I2-ATn];

	 XTn:=ATninv.(An2.A1inv.(An1-I2)).B1;

	 Xn1:=An1.XTn+A1inv.(An1-I2).B1;

	 F:=Kg*tn-Ky*(Uref-Chop[Kd*(Ii.Xn1)])	 (3.9)

	 Ftn=FindRoot[F==0,{tn,T/2,0,T}];

	 tu=Chop[tn/.Ftn[[1]]]

	 tn=tu;

XTn corresponds to the vector X(nT), Xn1 corresponds to the vector (3.6) for 
t = nT + tn. The function F is defined by the second equation of the set (3.1), in 
which the first equation and value of the voltage from (3.6) are substituted:

	 F u k u k ur ref r= − + −( ). 	 (3.10)

The variable Ftn denotes the result of the solution to the nonlinear algebraic 
equation. The solution is found with the help of the FindRoot[ ] function. In 
the list {tn,T/2,0,T}, the variable with respect to which a solution is found, the 
initial point, and the interval for which it is necessary to find the solution are 
defined. As a result, we determine the value of time tn:

	 4.44179 × 10−6

Let us plot the time diagrams of the steady-state processes. In the cell

	 XT=XTn;

	 Xt1=Xn1;

	 Y1[t_]:=If[t<t1,MatrixExp[A1*t].XT+A1inv.(MatrixExp[A1*t]-I2).B1,

	 MatrixExp[A2*(t-t1)].Xt1];

	 Plot[Part[Y1[u],1],{u,0,T},AxesLabel->{“t”,”i”}];

	 Plot[Part[Y1[u],2],{u,0,T},AxesLabel->{“t”,”u”}];
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with the help of the If[ ] function for two intervals 0 ≤ t < t1 and t1 ≤ t ≤ T , two 
solutions with initial conditions XT=XTn and Xt1=Xn1 are combined. This 
solution corresponds to a steady-state process. The graphs of the process 
(Figures 3.7 and 3.8) are plotted with the help of the Plot[ ] function.

Let us calculate the transient process in the circuit of the converter. Assume 
that the inductor current is positive. In that case, it is not necessary to carry 
out a corresponding check or find the time at which the current equals zero. 
Solving this is based on the solution to Equation 3.10 during an on state of 
the transistor and on recurrent use of the relations (3.6) and (3.7). The initial 
value of the vector is set equal to zero.

t

2

i

2.2

1.8

1.6

1.4

1.2

2×10–6 4×10–6 6×10–6 8×10–6 0.00001

Figure 3.7
Steady-state inductor current (i in amperes, time t in seconds).

t

10

u

9.5

8.5

0.000012×10–6 4×10–6 6×10–6 8×10–6

Figure 3.8
Steady-state voltage across the capacitor (u in volts, time t in seconds).
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In the cell

	 Clear[tn];

	 Kp=20;

	 X0={0,0};

	 Tg=0.85*T;

	 Xn1:=An1.X0+A1inv.(An1-I2).B1;

	 X1s[1]=X0;

	 For[n=1,n≤Kp,n++,Ftn=FindRoot[F==0,{tn,T/2,0,T}];

	 t1=Re[tn/.Ftn[[1]]];If[t1>Tg,tn=Tg,tn=t1];Xt[n]=tn;

	 X2s[n]=Xn1;X0=An2.Xn1;X1s[n+1]=X0]

the Kp variable defines the number of periods for which the transient pro-
cess is calculated. The vector X0 = {0,0} defines the initial value of the vector 
of space variables. The variable Tg=0.85*T defines the maximum value of 
on-state time for the transistor. The introduction of this variable is governed 
by a static characteristic of the converter with a closed-loop control system. 
The static characteristic is defined by the expression

	

u
E r R
= −

− −
γ γ

γ
( )

[ / ( ) ]
1

11
2

and has the part with a negative derivative (Figure 3.9). This characteristic is 
obtained by setting the right part of Equation 3.5 equal to zero.

1

1

2

3

4

5

6

u/E

0.2 0.4 0.6 0.8
γ

Figure 3.9
The static characteristic of the converter.
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With the help of the For[n=1,n≤Kp,n++…] function, calculations are made 
for the moments of crossing of the control uc and the generator ur  voltages, 
and for the values of the vectors X(nT) and X(nT + tn). These values are set in 
the arrays Xt[n], X1s[n], and X2s[n], respectively.

To plot the time diagram, the If[ ] function is used to combine the two 
interval solutions obtained earlier:

	 Y2[t_]:=If[(t>=(Floor[t/T])*T)&&(t<(Floor[t/T])*T+Xt[Floor[t/T]+1]),

	 MatrixExp[A1*(t-(Floor[t/T])*T)].X1s[(Floor[t/T]+1)]+

	 A1inv.(MatrixExp[A1*(t-(Floor[t/T])*T)]-I2).B1,

	 MatrixExp[A2*(t-(Floor[t/T])*T-Xt[Floor[t/T]+1])].X2s[Floor[t/T]+1]];

	 Plot[Part[Y2[t],1],{t,0,20*T},AxesLabel->{“t”,”i”}];

	 Plot[Part[Y2[t],2],{t,0,20*T},AxesLabel->{“t”,”u”}];

The Floor[t/T] function is used to determine the number of the period. The 
expression

	 (t>=(Floor[t/T])*T)&&(t<(Floor[t/T])*T+Xt[Floor[t/T]+1])

corresponds to the interval nT ≤ t < nT + tn. Time diagrams of the transient 
process for the current and voltage are presented in Figures 3.10 and 3.11, 
respectively.

t

1

2

3

i
3.5

2.5

1.5

0.5

0.00005 0.0001 0.00015 0.0002

Figure 3.10
Time diagram of the transient inductor current (i in amperes, time t in seconds).
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It can be seen from Figure 3.11 that Mathematica® plots only part of the 
time diagram. In order for the whole time diagram to be plotted, we use the 
PlotRange->{0,16} option, that is,

	 Plot[Part[Y2[t],2],{t,0,20*T},AxesLabel->{“t”,”u”},PlotRange->{0,16}];

The whole time diagram of the transient voltage across the capacitor is 
shown in Figure 3.12. From the diagrams one sees overshot and large ripples 
in the voltage.

t

2

4

6

8

10

12

14

16
u

0.00005 0.0001 0.00015 0.0002

Figure 3.12
Time diagram of the transient voltage across the capacitor (u in volts, time t in seconds). The 
diagram is plotted with the use the PlotRange->{0,16} option.
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0.00005 0.0001 0.00015 0.0002

Figure 3.11
Time diagram of the transient voltage across the capacitor (u in volts, time t in seconds).
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3.2 � Stability Analysis in Closed-Loop Systems with PWM

The equation set (3.1) and (3.5) is nonlinear. A stability analysis will be based 
upon the first Lyapunov method. For the stability analysis we use techniques 
(Tsypkin, 1974; Rozenwasser and Yusupov, 1981) that permit the execution of 
linearization of a differential and algebraic equation set described through 
intervals of constancy topology. In contrast to this method, the method pre-
sented in Bromberg (1967) requires prior solution to a nonlinear differential 
equation set.

Let us linearize Equations 3.1 and 3.2 around a steady-state process 
(Zhuykov et al., 1989). We vary the state space variable corresponding to initial 
conditions on the infinitesimal value Xx(mT). We find equations describing 
changes of the state space variables for time moments t > mT.  Since solutions 
depend on initial values and time, that is, X(t) = f(X(mT),t), then the increment 
of state space variables is determined by finding the variation

	
X f

X mT
X mTξ ξ= ∂

∂ ( )
( ). 	 (3.11)

Applying (3.11) to set (3.1) and (3.5) yields

	

dX
dt

A X A X Bξ
ξ ξ ξγ γ γ= + +( ) ( ) ( ); 	 (3.12)

	 u kk uc rξ ξ= − ;

	 u ucom cξ ξ= .

Substituting for uξcom ,  we obtain

	 u kk ucom rξ ξ= − .

Let us determine Ax(g) and Bg(g). Since the matrix A(g) depends on the voltage 
u, A uA

u
u

ucom
comξ

γ
γ

γ
ξγ( ) .( )= ∂

∂
∂

∂
∂
∂  In this expression, ∂

∂ = −u
u r
com kk .

Let us determine the derivative ∂
∂

γ
ucom

.  Since the switching function g  is the 
step function, the derivative ∂

∂ =γ δu comcom
u( )  (d being the Dirac delta function). 

The switching function depends also on time γ γ= ( ( ))u tcom  (Figure 3.13). The 
derivative with respect to time is

	

∂
∂

= − −
=

∞

∑γ δµ

µ

µ
t

t t( ) ( ),1
0

	 (3.13)

where tm are time moments in which control impulse durations are changed 
with the changing of the initial values.
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Calculating the derivative of the switching function as a composite func-
tion, we obtain

	

∂
∂

= ∂
∂

γ γ( ( )) ,u t
t u

du
dt

com

com

com 	 (3.14)

at which the derivative is equal to ∂
∂ =γ δu comcom

u( ).
We denote the derivative as du

dt tcom
com u= .  Using expressions (3.13) and (3.14), 

we obtain

	

δ δµ µ

µ

( ) ( ) ( ).u u t tcom tcom = − −
=

∞

∑ 1
0

Then,

	
δ

δµ µ

µ( )

( ) ( )

.u

t t

ucom
tcom

=

− −
=

∞

∑ 1
0 	 (3.15)

The derivative utcom is a positive in the case (−1)m (t−tm) > 0; therefore,

	
δ

δ µ

µ( )

( )

| |
.u

t t

ucom
tcom

=

−
=

∞

∑
0

Taking into account that, for any continuous function y(t), the product 
y t t t y t t t( ) ( ) ( ) ( ),δ δµ µ µ− = −  the expression (3.15) becomes

	
δ

δ µ

µ

µ
( )

( )

| ( )|
,u

t t

u tcom
tcom

=

−
=

∞

∑
0

where u ttcom
t t

du t
dt

com( ) lim ( )
µ

µ
=

→ −0
 is the derivative on the left of the function ucom(t)

at the point tm. This implies that a control system at first states the value of the 
control signal, and then the switching is made.

t

t

1

γ

uc

Figure 3.13
Relation between the control voltage and moments of change of the switching function.
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Using the obtained expressions, we find that

	

A kk A
t t

u t
u tr

tcom
ξ γ

µ

µ
µ

ξ µγ δ
( )

( )
| ( )|

( ),= − −

=

∞

∑
0

where A Aγ γ= ∂
∂ .  Similarly,

	

B kk B t t
u t

u tr
tcom

ξ γ
µ

µ
µ

ξ µγ δ( ) ( )
| ( )|

( ).= − −

=

∞

∑
0

Substituting the obtained expressions in (3.12), we have

	

dX
dt

A X kk B A X t
u t

u tr
tcom

ξ
ξ

γ γ µ

µ
ξγ γ γ= − +( ) ( ) ( ) ( )

| ( )|
( µµ µ

µ

δ) ( ).t t−
=

∞

∑
0

	 (3.16)

Equation 3.16 is a linear nonstationary differential equation. In order to deter-
mine stability conditions, it is necessary to find the solution to this equation 
for the period T. Denoting

	
D kk B A X t

u t
r

tcom
µ

γ γ µ

µ

γ γ= − +( ) ( ) ( )
| ( )|

,

we write Equation 3.16 in the form

	

dX
dt

A X D u t t tξ
ξ µ ξ µ µ

µ

γ δ= + −
=

∞

∑( ) ( ) ( ),
0

	 (3.17)

where

	

A L

C

B
E
Lγ γγ γ( ) ; ( ) .=

−
=

0
1

1
0 0

 

In order to calculate the derivative utcom(tm) at the point tm , it is necessary to 
determine a steady-state process in the closed-loop system.

Let us find stability conditions for the steady-state process. For this we will 
find the solution to Equation 3.17 for the part equal to the period of a gen-
erator voltage. For the first interval mT t mT≤ ≤ +τ ,  the differential equation 
(3.16) has the form

	
dX
dt

A X D u mT t mTξ
ξ ξ δ= + −1 1 ( ) ( ), 	 (3.18)
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where

A A A

r
L

RC

D
kk
k

u mT E
L

i mT
r

1 1 1 1
1

0

0
1

= =
−

−
= −

+

=( )| ; ;

( )

( )
γ γ

CC

k u mTtcom; | ( )|.1 =

 

The value X(mT) is not dependent on the number of the period (a steady-
state process is considered). Therefore, the vector D1 is constant.

Applying the Laplace transform, we will find the solution to Equation 3.18. 
The transformation of Equation 3.18, taking into account the initial condition 
Xx(mT), has the form

	 pX p A X p D u mT X mT e pmT
ξ ξ ξ ξ( ) ( ) [ ( ) ( )] ,= + + −

1 1 	 (3.19)

where Xx(p) is the transformation of the vector Xx.
Transforming the expression in square brackets in Equation 3.19, we obtain

	 pX p A X p N X mT e pmT
ξ ξ ξ( ) ( ) ( ) ,= + −

1 1

where D1ux(mT) + Xx(mT) = N1 Xx  (mT); 

	

D
d

d
N

d

d
d

kk u mT E
k L

dr
1

1
1

1
2

1
1
1

1
2 1

1

1
1

1

0 1
= =

+
= − +

; ;
[ ( ) ]

; 22

1
= − kk i mT

k C
r ( )

.

Solving this equation yields

	 X p pI A N X mT e pmT
ξ ξ( ) ( ) ( ) .= − − −

1
1

1

Taking into account that the original of the transformation ( )pI A e pmT− − −
1

1  is 
the matrix exponential eA t mT1( ) ,−  we find the original for the transformation 
Xx(p). Then,

	 X t e N X mTA t mT
ξ ξ( ) ( ).( )= −1

1

Substituting in this expression the value of time t = mT + t equal to the end 
of the interval yields

	 X mT e N X mTA
ξ

τ
ξτ( ) ( ).+ = 1

1 	 (3.20)
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For the considered generator voltage (see Figure 3.3), the descending part is 
vertical. Therefore, k1 →∞,  and so N I1 = .

For the second part of the interval of constancy topology of converter 
mT t m T+ ≤ ≤ +τ ( )1  γ = 0, Equation 3.17 is

	

dX
dt

A X D u mTξ
ξ ξ τ= + +2 2 ( ), 	 (3.21)

where

D kk
B A X mT

u mT
kk
k

u

r
tcom

r
2

2
= − + +

+ = −γ γγ γ τ
τ

( ) ( ) ( )
| ( )|

(mmT
L

i mT
C

k u mTtcom

+

− +
= +

τ

τ
τ

)

( )
; | ( )|.2

 

The solution to the differential equation (3.21) is determined similarly to 
the solution to Equation 3.18. Applying the Laplace transform, we express 
the solution to Equation 3.21 in the form

	 X p pI A D u mT X mT e pmT
ξ ξ ξ

ττ τ( ) ( ) [ ( ) ( )] ,( )= − + + +− − +
2

1
2 	 (3.22)

where Xx(mT + t) is the initial value of the vector Xx for the moment t = 
mT  + t.

We define a matrix N2 as follows

	 D u mT X mT N X mT2 2ξ ξ ξτ τ τ( ) ( ) ( ),+ + + = +

where

	

D
d

d
N

d

d
d

kk u mT
k L

dr
2

2
1

2
2

2
2
1

2
2 2

1

2
2
21

0 1
= =

+
= − + =; ;

( )
;

τ −− +kk i mT
k C

r ( )
.

τ
2

Using the matrix N2, we write (3.22) in the form

	 X p pI A N X mT e pmT
ξ ξ

ττ( ) ( ) ( ) .( )= − +− − +
2

1
2

Taking into account that the original of the transformation ( ) ( )pI A e pmT− − − +
2

1 τ  
is the matrix exponential, the solution takes the form

	 X t e N X mTA t mT
ξ

τ
ξ τ( ) ( ),( )= +− −2

2

where eA t mT2 ( )− −τ  is the matrix exponential.
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Substituting in this expression the value of time corresponding to the end 
of the period, that is, t = (m + 1)T,  yields

	 X m T e N X mTA T
ξ

τ
ξ τ(( ) ) ( ).( )+ = +−1 2

2 	 (3.23)

Next, substituting in (3.23) the value Xx(mT + t)  from (3.20), we obtain a dif-
ference equation

	 X m T e N e N X mTA T A
ξ

τ τ
ξ(( ) ) ( ).( )+ = −1 2 1

2 1 	 (3.24)

In line with Lyapunov’s first method, if the solution to Equation 3.24 is stable, 
the initial nonlinear system is stable (stability in small).

The stability of the linearized system is determined by the eigenvalues of 
the matrix:

	 H e N e NA T A= −2 1
2 1

( )τ τ 	 (3.25)

The system will be stable if all absolute values of the eigenvalues of the matrix  
H will be less then unity.

According to the form of generator voltage, the matrix H takes a different 
form. The expression (3.25) corresponds to the case when both front edges of 
the generator voltage have finite slopes. For the case under consideration (see 
Figure 3.3), the expression takes the form

	 H e N eA T A= −2 1
2

( ) .τ τ 	 (3.26)

For the computation of the eigenvalues it is necessary to find elements of 
matrixes N1 and N2. At first the values of the vectors of the state variables 
X(mT), X(mT + t)  for the steady-state process should be determined. Next, the 
values of coefficients k1 and k2 should be computed. For the calculation of the 
derivative, we use the initial differential equation set

	

dX
dt

A X B mT t mT= + ≤ ≤ +1 1 , ;τ

	

dX
dt

A X B mT t m T= + + ≤ ≤ +2 2 1, ( ) .τ

The left-hand-side derivatives of the vector X at the moments of structure 
changing are defined by the expressions

	

dX
dt

A X mT B
t mT= + −

= + +
τ

τ
0

1 1( ) ; 	 (3.27)

	

dX
dt

A X mT B
t mT= −

= +
0

2 2( ) .
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The elements of (3.27) are the derivatives

	
u mT

du
dt

u mT
du
dtt

t mT
t

t mT

( ) , ( ) ,+ = =
− + − = −

τ
τ 0 0

which are used for computation of the values u mT kk u mTtcom r t( ) ( )+ = − +τ τ  
and u mT kk u mTtcom r t( ) ( ),= −  respectively.

Let us consider the use of Mathematica for stability analysis. We continue 
with the analysis of the Buck-Boost converter. In the cell, the eigenvalues of 
the matrix H are computed:

	 Udt2=Ii.(A1.Xt1+B1);

	 D2=-((A1-A2).Xt1+B1)*Kd*Ky/Abs[-Kg-Ky*Kd*Udt2];

	

N2
1.0 D2[[1]]
0 1 D2[[2]]

;=
+











	 At1=MatrixExp[A1*tu];

	 At2=MatrixExp[A2*(T-tu)];

	 Hs=At2.N2.At1;

	 Sei=Eigenvalues[Hs]

	 Abs[Sei]

The variable Udt2 corresponds to the derivative ut(mT + t), Hs denotes the 
matrix H, tu denotes t, and Sei denotes the eigenvalues of the matrix H. As a 
result of computations, we determine the matrix H eigenvalues

	 {0.644784 + 0.454581i,  0.644784-0.454581i}

and the absolute value of the eigenvalues {0.788283, 0.788283}. Since the abso-
lute value is less then unity, the system is stable.

The calculations show that the increase in the voltage feedback gain k leads 
to increase in the absolute values of the eigenvalues. For k = 3.45, the absolute 
values are (0.997657, 0.997657}, and for k = 3.46, the absolute values are {1.0003, 
1.0003}. Therefore, for k = 3.46, the system becomes unstable.

It should be noted that, for k = 3.46, the accuracy of calculation of the switch-
ing moment becomes unsatisfactory. The error of the calculation of the volt-
age defined by the expression (3.9) is equal to −0.27839. At that the duty factor 
equals 0.774163. To improve accuracy, it is necessary to change the method of 
calculation of pulse duration. Replace expression

	 Ftn=FindRoot[F==0,{tn,T/2,0,T}];
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with the sequence

	 delta=0.0001;

	 ta=0.01*T;

	 tb=0.9*T;

	 While[(tb-ta)/T>delta,{tn=(ta+tb)/2;If[F>0,tb=tn,ta=tn]}];

This determines the dichotomy method. The delta variable defines the accu-
racy of computation of impulse durations, and ta and tb are the beginning 
and end of the time interval on the period T. In that case, F = 0.000120373, and 
the duty factor equals 0.801081. Taking into account this value, we determine 
the absolute values of eigenvalues {1.05969, 1.05969}.

Changing the form of generator voltage leads to changes in the stability 
of the system. For the declining form of generator voltage (Figure 3.14), the 
matrix H is defined by the expression

	 H e e NA T A= −2 1
1

( ) .τ τ 	 (3.27b)

By changing the equation (3.9) for

	 F:=Kg*tn-Ky*(Uref-Chop[Kd*(Ii.XTn)]);

and the expressions of the derivative ut(mT), vector D1, matrix N1 for

	 Udt1=Ii.(A2.XT);

	 D1=-((A1-A2).XT+B1)*Kd*Ky/Abs[-Kg-Ky*Kd*Udt1];

	

N1
1.0 D1[[1]]
0 1 D1[[2]]

;=
+











uc

u
ur

ucom

t

t

Tτ

Figure 3.14
Time diagrams of the signals in the control system with PWM.
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	 At1=MatrixExp[A1*tu];

	 At2=MatrixExp[A2*(T-tu)];

	 Hs=At2.At1.N1;

	 Sei=Eigenvalues[Hs]

	 Abs[Sei]

we determine the matrix H eigenvalues

	 {0.863092 + 0.486529i,  0.863092 − 0.486529i}

and the absolute values of eigenvalues {0.990777, 0.990777} for k = 3.46 (the 
switching moment is computed by the dichotomy method).

3.3 � Stability Analysis in Closed-Loop Systems with 
PWM Using the State Space Averaging Method

We consider the use of the state space averaging method (Middlebrook and 
Ćuk, 1976) for stability analysis in the Boost converter (Figure  2.8) with a 
closed-loop system. Processes in such a converter are described by the dif-
ferential equation

	

dX t
dt

A X t B( ) ( ) ( ) ( ),= +γ γ 	 (3.28)

where
	 X t i

u
( ) =

is the vector of the state variables;

	
A

r
L L

C RC

B
E
L( ) ; ( ) ;γ

γ

γ
γ=

− − −

− −
=

1 1

1 1
0

g  is the switching function (Figure  3.4). The control system processes are 
described by the following equation set:

	 u k u k uc ref r= −( );

	 u u ucom c r= − ; 	 (3.29)

	 γ γ= ( ),u omc
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where kr is the output voltage ratio; k is the voltage feedback gain; uc is the 
control voltage; uref is the reference voltage; ucom is the voltage on the input of 
the comparator; and ur is the independent sawtooth ramp voltage.

Solution to Equation 3.28 for g  = 1 is

	 X t e X mT A e I BA t mT A t mT( ) ( ) ( ) ( )( ) ( )= + −− − −1 1
1

1
1 	 (3.30)

and for g  = 0 is

	 X t e X mT t A e IA t mT t
m

A t mT tm m( ) ( ) ( ) (( ) ( )= + + −− − − − −2 2
2

1 ))B2 	 (3.31)

where tm is the value of the time when the topology of the converter is 
changed; and T is the period of an independent generator.

Substituting in (3.30) the value t = mT + tm, and in (3.31) the value t = (m + 1)T 
and eliminating X = (mT + tm), we get

	 X m T e e X mT QA T t A tm m(( ) ) ( ) ,( )+ = +−1 2 1 	 (3.32)

where Q e A e I B A eA T t A t A T tm m m= − +− − − −2 1 2
1

1
1 2

1( ) ( )(( ) ( ) ) ( ) ( −− I B) .2  Using the period-
icity condition X m T X mT(( ) ) ( ),+ =1  one obtains from (3.32) the initial value 
for a steady-state process:

	
ˆ ( ) ( )( )X I e e QA T A0 2 1 1= − − −τ τ 	 (3.33)

where t denotes the value of tm for the steady-state process. We determine the 
value of t as a result of solving the nonlinear algebraic equation

	
U
T

k u k ug
ref rτ τ= −[ ˆ( )], 	 (3.34)

where ˆ( )u τ  is the voltage for the steady-state process. This voltage is obtained 
from (3.30) by substituting ˆ ( )X 0  in this equation.

Using the state space averaging method, we transform Equations 3.28 and 
3.29 into

	

dX
dt

A d X B d

U d k u k u dg ref r

= +

= −

( ) ( );

( ( )),
	 (3.35)

where X i
u

=  is the vector of averaged state variables; A d A d A d( ) ( );= + −1 2 1

B d B d B d( ) ( );= + −1 2 1  d is the averaged value of the switching function g on the
	period T; and

	 A A B
r
L

RC

r
L L

C RC

1 1 2

1

1 1 1
0

0
=

−
−













=
− −

−













; ; == =








B

E
L

2
0

.   
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In order to find the steady-state value of the vector ˆ ,X  we equate to zero 
the right part of the equation (3.35)

	
ˆ ( ) ,X A D B= − −1 	 (3.36)

or

	

ˆ

ˆ

( )
( )

( )

i

u

E
r D R

D RE
r D R













 =

+ −
−

+ −












1
1

1

2

2







,

where D is the value of d for the steady-state process; and X̂  is the steady-
state value of X.  The second equation (3.35) in the steady state has the form

	 U D k u k u Dg ref r= −( ˆ ( )) 	 (3.37)

We can find the steady-state value of the vector X̂  and D by simultaneous 
calculation equations (3.36) and (3.37):

	 ( )( ( ) ) ( ) .U D ku r D R kk D REg ref r− + − + − =1 1 02

Let us linearize the equation set (3.35) around the steady-state process ˆ .X  Then,

	

dX
dt

A D X A D X B D dd d
ξ

ξ ξ= + +( ) [ ( ) ˆ ( ))] ; 	 (3.38)

	 d k ueξ ξ= − ,

where Xξ  is the increment of the averaged state vector X ;  ke
kk
U

r
g

= ;  
A Dd

A d
d d D

( ) ;( )= ∂
∂ =

 and B Dd
B d

d d D
( ) .( )= ∂

∂ =

Substituting the second expression of (3.38) in the first yields

	

dX
dt

FXξ
ξ= , 	 (3.39)

	 F A D k A D X B D Ge d d= − +( ) [ ( ) ˆ ( )] . 	 (3.40)

where G = |01| is the vector with two elements. Since the expression 
k A D X B De d d[ ( ) ˆ ( )]+  has the structure of a vector column, and G is the vector 
row, their multiplication will be a matrix with the first column equal to zero. 
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The system (3.39) is stable when all real parts of the eigenvalues of the matrix 
F are negative.

Let us compare stability conditions obtained by the averaged and exact 
methods. In the cell we input parameter values

	 r=0.005;

	 L=40.0*10^(-6);

	 C1=1.0*10^(-6);

	 Rn=20.0;

	 E1=4;

	 T=25.0*10^(-6);

	 t2:=T-t1;

	 Kd=0.01;

	 Ky=1.49;

	

A

r
L

1
RC

1 =
−

−



















0

0

	

A

r
L

1
L

1
C

1
RC

2 =

− −

−



















	 Ev={E1/L,0};

	 I2=IdentityMatrix[2];

	 Ii={0,1};

	 Ug=1.0;

	 Uref=0.6;

	 Kg=Ug/T;

	 Dd:=t1/T;

In this cell, Rn denotes the resistance R; Ky denotes the voltage feedback 
gain k; B1 denotes the vector B; Kd denotes the output voltage ratio kr; and Ii 
defines the vector that extracts the second component.

87096_Book.indb   124 1/27/10   6:10:05 PM



The Calculation of the Processes and Stability in Closed-Loop Systems	 125

To begin, we find the steady-state solution for the nonlinear set of equations 
(3.28) and (3.29). For this we solve Equation 3.34 together with Equation 3.33

	 A1inv=Inverse[A1];

	 A2inv=Inverse[A2];

	 An1:=MatrixExp[A1*tn];

	 An2:=MatrixExp[A2*(T-tn)];

	 ATn:=An2.An1;

	 ATninv:=Inverse[I2-ATn];

	 XTn:=ATninv.(An2.A1inv.(An1-I2)+A2inv.(An2-I2)).Ev;

	 Xn1:=An1.XTn+A1inv.(An1-I2).Ev;

	 F:=Kg*tn-Ky*(Uref-Kd*(Ii.Xn1));

	 Ftn=FindRoot[F==0,{tn,T/2,0,T}]

	 t1=Re[tn/.Ftn[[1]]];

In this cell, XTn corresponds to X(mT) = X(0), and Xn1 corresponds to the 
vector (3.6) for t = nT + tm. The function F is defined by the second equation 
of the set (3.34). As a result, we determine the value of time tn:

	 { . . }t in− > + × −0 0000198723 5 07691 10 25

Now we form the matrix H (3.26) and calculate its eigenvalues:

	 Udt2=Ii.(A1.Xt1);

	 D2=-(B1.Xt1)*Kd*Ky/Abs[-Kg-Ky*Kd*Udt2];

	
N2

1 D2[[1]]
0 1 D2[[2]]

=
+









 ;

	 Hs=At2.N2.At1;

	 Sei=Eigenvalues[H1]

	 Abs[Sei]

In this cell, Udt2 corresponds to the derivative ut(mT + t), Hs denotes the 
matrix H, and Sei denotes the eigenvalues of the matrix H. Mathematica out-
puts the following values:

	 {0.996663, 0.996663}
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Increasing the gain Ky further to 1.5 yields

	 {1.01795, 1.01795}

In this case the considered system becomes unstable.
In the next cell we determine the steady-state values using the averaged 

method

	 Au:=A1*Du+A2*(1-Du);

	 Xu:=-Inverse[Au].Ev;

	 NsU=NSolve[Ky*Uref/Ug-Ky*Kd*Part[Xu,2]/Ug-Du== 0, Du]

	 Dd=Du/.NsU[[3]]

	 Ad=Au/.{Du->Dd};

	 Xd=-(Inverse[Ad].Ev)/.{Du->Dd}

In this cell, Au denotes A(D), and Xu denotes ˆ .X  These variables are used 
for solving the nonlinear algebraic equation (3.37). Variables Dd, Ad, and Xd
denote D, A(D), and X̂  for the steady-state process.

Since the calculation of NsU gives

	 {{Du->1.23341},  {Du->1.00016},  {Du->0.726798}},

we choose the third value (because its value is less than 1 and greater than 0) 
and substitute it in Ad and Xd. Then we calculate the eigenvalues of the matrix 
F (3.40)

	 As1=Outer[Times,((A1-A2).Xd),Ii]*Kd*Ky/Ug;

	 Fs=Ad-As1;

	 Eigenvalues[Fs]

which yields

	 {−3689.55+58724.3 i, −3689.55−58724.3 i}

Note that the Outer[ ] function with the option Times gives the outer prod-
uct of the arguments (A1-A2).Xd, and Ii.

Since eigenvalues have negative real parts, the system according to the 
state-space-averaged method should be stable, but this contradicts the result 
obtained by the exact method. This situation is governed by the simplifica-
tion introduced by the state-space-averaged method that cannot take into 
account pulsation of voltages and currents in the circuits of the converter.
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Let us consider the behavior of the solutions and the stability conditions as 
T → 0. The steady-state value (3.36) and the matrix F in (3.40) do not depend 
on the period T. The steady-state value of (3.33) as T → 0 yields

	
ˆ lim ˆ ( ) [ ( ) ] [ ( ) ]X X A D A D B D B D

T
= = − − + ⋅ − + = −

→

−

0
2 2

1
2 10 1 1 AA D B( ) .−1

With this we take into account the expressions τ
T D=  and T

T D− = −τ 1 .  
Calculating the limit of (3.30) at t = mT + t, we obtain

	
ˆ lim ( ).X X mT

T
= +

→0
τ

Then Equation 3.34 takes the form

	 DU k u k uag ref r= −[ ˆ ].

The obtained expressions correspond to expressions (3.36) and (3.37).
The stability condition of the linearized system and the system with aver-

aged-state variables are obtained for the difference (3.24) and differential 
equations (3.39). In order to compare these equations, we write the solution 
to Equation 3.39 on the interval equal to the period T:

	 X m T e X mTFT
ξ ξ(( ) ) ( ).+ =1

The form of this solution suggests an approach for comparing stability 
conditions.

Let us find a matrix H that satisfies the equality

	 e e N eHT A T A= −2 1( ) ( )τ ττ

as T → 0. We write a matrix exponential as a series and limit it with a few 
terms:

	
I HT H T I A D T I N I A DT+ + = + − + + + +1

2
12 2

2 1... [ ( ) ..][ ][ ... ]] 	 (3.41)

where N D G= ( ) .τ
In the expression u kk utcom r t

U
T

g( ) | ( ) |,τ τ= − −  the derivative ut( ) ,τ → 0  and 
U
T

g →∞  as T → 0. Therefore, one can consider that

	
u t U

T
tcom

g( )→

as T → 0, and then,

	
 D kk A X B

U
T D Tr

d d

g
= + =

ˆ
,0
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where D k A X Be d d0 = +( ˆ ).  Multiplying the expressions on the right-hand side 
of (3.41), we obtain

	
I HT H T I A D A D N T MT+ + = + − + + + +1

2
12 2

2 1 0
2... [ ( ) ] ... 	 (3.42)

where  N D G0 0= ;  and M is a matrix.
The expression (3.42) can be rewritten as follows:

	
H H T A D A D N MT+ = − + + + +1

2
12

2 1 0... ( ) ...

Therefore,

	 H A D A D N= − + +2 1 01( ) .

For a sufficiently small T the vector,

	

D k

u
L

i
C

e0 = −

−

ˆ

ˆ

coincides with the vector A Xd
ˆ .  Therefore, the matrix H coincides with the 

matrix F. It has been shown that the state-space-averaging method gives the 
same results as the exact method for a sufficiently small period T.

Appropriate application of the described methods depends to a large 
extent on the examined question. Simplicity in use is a great advantage of the 
state-space-averaging method. Its disadvantage is the absence of the accu-
racy estimation.

3.4 � Steady-State and Chaotic Processes 
in Closed-Loop Systems with PWM

For the description of the behavior of processes in nonlinear systems, a 
notion of attractor has been introduced, which generalize notions of the 
equilibrium position, limit cycle, and quasi-periodical process. The position 
of an equilibrium point, and periodic and quasi-periodical processes, exists 
in a system when a stability condition is executed.

In a system, chaotic processes could exist, characterized by an irregularity 
of motions. Such motions are connected with the instability of a system, but, at 
the same time, trajectories do not leave a bounded area in the state space. The 
domain of attraction in which chaotic motions exist is called a strange attractor.
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An important virtue of a nonlinear system is the virtue of dissipativeness. 
For the system in which processes are described by the stationary differen-
tial equation

	

dX
dt

F X= ( ) 	 (3.43)

where X x x xn= ( , , ..., )1 2  is the vector, and F X F X F X F Xn( ) ( ( ), ( ), ..., ( ))= 1 2  is 
the nonlinear vector, the virtue of dissipativeness can be determined by the 
divergence theorem

	

1
V

dV
dt

F
x

i

i
i

= ∂
∂∑ , 	 (3.44)

where V is the region in the state space.
If the inequality

	

∂
∂

<∑ F
x

i

i
i

0 	 (3.45)

holds, then the system will be dissipative. The realization of this condition 
shows a possibility of the existence of a strange attractor.

For a second-order system, the condition of dissipativeness is based on 
Green’s theorem, which permits writing the equation of changing of area S:

	

dS
dt

Q
x

P
y

dxdy= ∂
∂

+ ∂
∂







∫∫ ,

where Q = F1(x, y), P = F2(x, y).
The behavior of the system with PWM described by Equation 3.43 is only 

valid for separated intervals of constancy structure. A general set of equa-
tions is nonlinear and nonstationary. In that case, it is necessary to obtain the 
nonlinear difference equation in which state variables are connected with 
initial values. These values are obtained for the time moments at which the 
structure of a system is changed. For the i-th interval of constancy of struc-
ture ( , , , ..., ),t t t i Ni i− ≤ < =1 1 2  the differential equation has the form

	
dX t

dt
A X t Bi i

( ) ( )= + 	 (3.46)

where Ai, Bi is the matrix and vector.
Solving Equation 3.46 for all intervals and linking the initial X(ti−1) and ter-

minal X(ti)  values for all intervals, we determine the difference equation

	 X m T G X mT(( ) ) ( ( )).+ =1 	 (3.47)
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This equation is stationary and nonlinear. For this equation, the dissipative 
criterion (3.45) takes the form

	
det .

∂
∂






<G

x
i

j
1 	 (3.48)

In the expression (3.48), the matrix ∂∂
G
x

i
j  actually defines the linear approxima-

tion. In what follows, in order to determine the matrix ∂∂
G
x

i
j
,  we will apply the 

method of linearization described earlier.
In order that system motions correspond to a strange attractor, it is necessary 

for the existence of the following conditions: a sensitive dependence of phase 
space trajectory on initial conditions, a constraint of the area occupied by tra-
jectories, and a contraction of the area. The first condition is connected with the 
stability condition. The second condition is satisfied for closed-loop systems. 
The third condition is characterized by the dissipativeness of the system.

The determination of the conditions of existence for a strange attractor will 
be realized with respect to an examined process whose equation has been 
linearized. As result of the linearization of Equation 3.47 for n periods, we 
obtain

	

X m n T H X mTk

k

n

(( ) ) ( ).+ =
=

∏
1

	 (3.49)

The stability and dissipativeness are determined on the basis of the analysis 
of the eigenvalues of matrix multiplication:

	

H Hk

k

n

=
=

∏
1

. 	 (3.50)

In this case, the conditions of existence of the strange attractor are formu-
lated as follows:

The eigenvalues of the matrix H must be greater than unity.
The absolute value of the determinant of the matrix must be less then 

unity, that is,

	 |det | .H < 1 	 (3.51)

Let us consider the Buck converter with PWM (Figure 3.15) (Zhuykov and 
Korotyeyev, 2000).

The electromagnetic processes in the converter circuits are described by 
the matrix differential equation

	

dX t
dt

AX t B( ) ( ) ,= + 	 (3.52)
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where

	 X t i
u

( ) =

is the vector of state variables;

	
A

r
L L

C RC

B
E
L=

− −

−
=

1

1 1
0

; .
γ

 

For steady-state stability analysis, the matrix H, for process with the period 
nT, takes the form

	 H e N ek
A T

k
Ak k= −( ) ( ) ,τ ττ2 	 (3.53)

where

	

N
d

d
D kk

B
uk

k

k
k r

tco
2
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Using the condition (3.51), and with det ( ) ,N m2 1τ =  we obtain

	

|det | .( )H e eA T A

k

n

k k= −

=

∏ 1 1

1

τ τ

It follows that the presented system is always dissipative.

 

E

i L

C R

uCS

T

D

Figure 3.15
Buck converter.
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Let us calculate the processes in the converter circuit for the following 
parameter values: E = 120 V; C = 12.5 µF; L = 8 mH; R = 8 Ω; r = 0.4 Ω; T = 0.3 ms; 
uref = 10 V; Ug = 4 V; kr = 0.125, k = 4.4. In the cell, the parameter values, and 
expressions for the matrix and vectors are defined:

	 R1=0.4;

	 L1=8.0*10^(-3);

	 C1=12.5*10^(-6);

	 Rn=8;

	 E1=120;

	

A1
R1 L1 1 L1

1 C1 1 Rn C1
=

− −
−













/ /

/ /( * )
;

	

B1
E1 L1

0
;=











/

	 Ug=4.0;

	 Uref=10.0;

	 T=0.3*10^(-3);

	 Ky=4.4;

	 Kr=0.125;

	
X0 0

0
;=











	 Kg=Ug/T;

	 Iu={0, 1};

	 Ii={1, 0};

In this cell, R1 denotes r; Rn denotes R; Ky denotes k; Ug defines the voltage 
amplitude of the independent generator; the vectors Ii and Iu select the first 
and second components; and the vector B1 defines the value of the vector B 
for g = 1. In the next cell

	 At1:=MatrixExp[A1*t1];

	 At2:=MatrixExp[A1*t2];

	 A1inv=Inverse[A1];

	 I2=IdentityMatrix[2];
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	 Xn[1]=X0;

	 n=1;

	 Xt1:=At1.Xn[n]+A1inv.(At1-I2).B1;

	 Uc:=-Kg*t1+Ky*(Uref-Kr*Part[Xt1,2]);

the functions for the matrix exponentials, the vector of state variables for the 
switching moment, and the voltage on the input of the comparator are defined.

For the calculation of switching moments and the transient process in the cell

	 Nmax=400;

	 Nmin=380;

	 Np = 8;

	 delta=1*10^(-8);

	 For[n=1,n<=Nmax,n++,{aa=0,bb=T,Xn[n]=X0,While[(bb-aa)/T>delta,

	 {t1=(aa+bb)/2,If[Part[Uc,1]<0,bb=t1,aa=t1]}],tn[n]=t1,Xnt1[n]=Xt1,t2=T-t1,

	 Xn[n+1]=At2.Xnt1[n],X0=Xn[n+1]}];

the dichotomy method is employed. The variable Nmax defines the maxi-
mum number of periods for the calculated process; Nmin defines the number 
of periods used to plot the phase-plane portrait; and Np defines the number 
of periods used to plot the transient process.

In the next cell, the functions are used to plot the phase-plane portrait, 
generator and control voltages are defined:

	 Zif[t_, n_]:=If[(t<(n-1)*T+tn[n])&&(t>=(n-1)*T),MatrixExp[A1*

	 (t–(n-1)*T)].Xn[n]+A1inv.(MatrixExp[A1*(t-(n-1)*T)]-I2).B1,

	 If[(t<n*T)&&(t>=(n-1)*T+tn[n]),

	 MatrixExp[A1*(t-(n-1)*T-tn[n])].Xnt1[n],0]];

	 Y3[t_]:=Sum[Zif[t,n],{n,1,Nmax}];

	 Zg[t_,n_]:=If[(t<=n*T)&&(t>(n-1)*T),Kg*(t-(n-1)*T),0];

	 Yg[t_]:=Sum[Zg[t,n],{n,1,Nmax}];

	 Zoc[t_, n_]:=If[(t<(n-1)*T+tn[n])&&(t>=(n-1)*T),Ky*(Uref-Kd*

	 Part[(MatrixExp[A1*(t-(n-1)*T)].Xn[n]+A1inv.(MatrixExp[A1*

	 (t–(n-1)*T)]-I2).B1),2]),If[(t<n*T)&&(t>=(n-1)*T+tn[n]),Ky*(Uref -

	 Kd*Part[(MatrixExp[A1*(t-(n-1)*T-tn[n])].Xnt1[n]),2]),0]];

	 Yoc[t_]:=Sum[Zoc[t,n],{n,1,Nmax}];
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In Figure 3.16 the phase-plane portrait is presented, and in Figure 3.17 the gen-
erator and control voltages. For plotting the process we use the functions

	 Yt=Plot[Yg[t],{t,(Nmax-Np8)*T,Nmax*T},

	 AxesLabel->{“t”,”u”},AxesOrigin->{(Nmax-Np)*T,0},

	 DisplayFunction->Identity];

	 Poc=Plot[Yoc[t],{t,(Nmax-Np)*T,Nmax*T},AxesLabel->{“t”,”u”},

	 AxesOrigin->{(Nmax-Np)*T,0},DisplayFunction->Identity];

	 Show[{Poc,Yt},DisplayFunction->$DisplayFunction];

	 ParametricPlot[{Part[Iu.Y3[t],1],

	 Part[Ii.Y3[t],1]},{t,Nmin*T,Nmax*T},AxesLabel->{“u”,”i”},

u

i
9.8

9.6

9.4

9.2

8.8

73.5 74 74.5 75 75.5

Figure3.16
Phase-plane portrait for k = 4.4 (i in amperes, u in volts).
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Figure 3.17
Generator and control voltages for k = 4.4 (u in volts, time t in seconds).
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Data for plotting the generator and control voltages are assigned to two func-
tions, Yt and Poc. Both voltages are plotted simultaneously with the help of 
the Show[ ] function.

By increasing the gain, a bifurcation takes place and, in the system, a pro-
cess is formed with the period 2 * T. In Figures 3.18 and 3.19, the phase-plane 
portrait and the voltages for k = 4.6 are presented.

When k ≈ 9.4, a new bifurcation takes place in the system, and a process 
with the period 4 * T is formed. In Figures 3.20 and 3.21, the phase-plane por-
trait and the voltages for k = 9.6 are presented.
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Figure3.18
Phase-plane portrait for k = 4.6 (i in amperes, u in volts).
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Figure 3.19
Generator and control voltages for k = 4.6 (u in volts, time t in seconds).
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The determination of process stability is accomplished by the computation 
of the eigenvalues of the matrix Hk for intervals with the duration T.

	

N2n :
1.0 d12 * E1/L1

0 1.0
;= −









	 For[n=1,n<=Nmax,n++,{t1=tn[n],t2=T-t1,

	 Udt=Part[Iu.(A1.Xnt1[n]+B1),1],

	 d12=Kd*Ky/Abs[-Kg-Kd*Ky*Udt],If[tn[n]>0.99*T,f12p=0,0],

	 Hm[n]=At2.N2m.At1}];
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Figure 3.20
Phase-plane portrait for k = 9.6 (i in amperes, u in volts).

t

2

4

6

8

10

12

14
u

0.118 0.1185 0.119 0.1195 0.12

Figure 3.21
Generator and control voltages for k = 9.6 (u in volts, time t in seconds).
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It should be stressed that, in the program, the limitation of maximum pulse 
duration tn[n] > 0.99*T is introduced. This is connected with the fact that 
impulse duration theoretically can be greater than the period.

In the next cell, the eigenvalues for the end of computed intervals are 
outputted:

	 Print[“Nmax “,Eigenvalues[Hm[Nmax]]];

	 Print[“Nmax-1 “,Eigenvalues[Hm[Nmax-1]]];

	 Print[“Nmax-2 “,Eigenvalues[Hm[Nmax-2]]];

	 Print[“Nmax-3 “,Eigenvalues[Hm[Nmax-3]]];

	 Print[“Nmax*(Nmax-1) “,Eigenvalues[Hm[Nmax].Hm[Nmax-1]]];

	 Print[“Nmax*...*(Nmax-3) “,Eigenvalues[Hm[Nmax].Hm[Nmax-1].

	 Hm[Nmax-2].Hm[Nmax-3]]];

The values of gains and eigenvalues are presented in Table 3.1. In the sec-
ond column of the table, the eigenvalues for the interval of duration T are 
presented. In the forth column, the eigenvalues are presented for an inter-
val equal to the period of steady-state process. For all presented processes, 
det |Hm|= 0.049.

For the gain k ≈ 27.2, the absolute values of eigenvalues determined for the 
arbitrary-interval aliquot to the period become greater than unity. There the 
system remains dissipative since the condition (3.51) holds for any number 
of intervals. Thus, the system is unstable and dissipative at the same time. 
In this case, it can be argued that the examined process corresponds to the 
strange attractor (Figure 3.22). The calculation is made for an interval equal 
to 800T, when the plotting is realized for 700T ≤ t ≤ 800T. It should be noted 
that, by increasing the time interval used for plotting, the phase trajectories 
fill the bounded area.

Table 3.1

The Values of Eigenvalues for Different Gains and Periods of Steady-State 
Process

Gain, k
Eigenvalues for 
the Interval T

Period of Steady-State 
Process 

Eigenvalues for the 
Period

4.4 −0.98, −0.05 T −0.98, −0.05
4.6 −1.105, −0.044

−0.917, −0.053
2T 0.9136, 0.0026

9.6 0.7, 0.07
−1.34, −0.037
−1.26, −0.039
−1.15, −0.043

4T 0.41, 0.000014
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3.5 � Identification of Chaotic Processes

Nonregular motions in a system can be connected with various phenomena. 
In the first place, in a system, there could be quasi-periodic oscillations with 
a few incommensurable frequencies. In the second place, a strange attractor 
could arise in a system. There is also the possibility of error connected with 
the fact that an investigated interval is chosen inside a transient process. For 
the identification of processes, the following operations are used: Poincare 
section, computation of the attractor dimension, Lyapunov exponent, and 
the correlation function (Strzelecky et al., 2001).

The map P connecting the coordinates of points in which the trajectory of 
the motion of a system intersects a given surface

	 a P am m+ =1 ( )

is called a Poincare section. With the help of the Poincare section, the transition 
from a system with continuous time to a system with discrete time is achieved.

Another method of finding a Poincare section is based on the solution to 
Equations 3.1 and 3.5 at defined moments mT + tm (T is the interval of sam-
pling, and tm is the time moment inside the interval T). In this case the equa-
tion connecting the sampled point has the form

	 X P Xm m+ =1 ( ), 	 (3.54)

where Xm is the value of the vector X at the time mT + tm. For the nonstation-
ary system (3.5) with a periodic forcing function, it is expedient to choose the 
step T equal to the period of this function. In this case, Equation 3.54 can be 
written in the form (3.47).

.
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Figure 3.22
Phase-plane portrait of the strange attractor for k = 28 (i in amperes, u in volts).
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A Poincare section of a periodical process has only one point. If in a system 
subharmonic oscillations with period 2T arise, the Poincare section contains 
two points, whereas, if quasi-periodical oscillations arise, the Poincare sec-
tion contains a closed graph. Poincare sections of strange attractors represent 
point sets that form groups in some way.

The plotting of a Poincare section for voltage across the capacity for time 
moments t = mT on the basis of data obtained earlier is done as follows:

	 Nu=400;

	 PuancareUn=Table[{Part[Iu.Xn[n],1],Part[Iu.Xn[n+1],1]},{n,Nu,Nmax-1}];

	 ListPlot[PuancareUn,AxesLabel->{“Un”,”Un+1”}];

The variable Nu defines the initial value for the output of points. During the 
calculation, the following interval value Nmax = 800 was used. The Poincare 
section is presented in Figure 3.23. When increasing the time interval used 
for output, the points are located practically on the same curve. Therefore, 
the process under consideration is chaotic, and the attractor is strange.

An attractor dimension characterizes the number of degrees of freedom of 
points corresponding to this attractor. For a subset in the phase space occu-
pied by an attractor, the attractor dimension is defined by the expression

	
d N

0
0 1

= ( )→
lim ln ( )

ln
,

ε ε

ε

where N(e) is the minimum number of cubes with cube size e that are neces-
sary for covering a subset. This expression is the definition of the Hausdorff 
dimension.

70 72 74 76 78

70

72

74

76

78

Un

Un+1

Figure 3.23
Poincare section of the voltage across capacity for k = 28 (Un+1 and Un in volts).
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For a point attractor, the number N(e) = 1  and does not depend on length 
e, and therefore, d0 = 0. When the attractor is a closed cycle, then N(e) ~ e,  and 
d0 = 1 (taken into account are the squares through which the cycle curve is 
run). In the case when the domain occupied by the attractor is a surface, then  
N(e) ~ e2 (squares covering the inner surface are taken into account), and 
therefore, d0 = 2. The strange attractor does not have integral dimension; the 
Lorenz attractor has the dimension d0 = 2.06, the Henon attractor has d0 =1.25, 
and the logistic attractor has d0 = 0.543.

In calculating a process dimension, it is convenient to use the definition of 
a dimension on the basis of the correlation function

	

C r
N

H r x x
M

i j

ji

( ) ( || ||),= − −∑∑1
2 	 (3.55)

where NM is the number of points; r is the radius of the circle in the point 
xi; ||...|| is the distance between points xi and xj; and H is the Heaviside step 
function. The correlation dimension d2 is defined by the expression

	
d C r

rr
2

0
=

→
lim ln ( )

ln
. 	 (3.56)

Let us consider a dimension change for processes running in the circuit of 
the Buck converter (Section 3.4). The calculation of the correlation function 
(3.55) is executed as follows:

	 Clear[k,n,m];

	 rk=0.2;

	 Nk=20;

	 Nmin=Nmax-100;

	 Norma:=Sqrt[(Iu.Xn[n]-Iu.Xn[m])^2+(Ii.Xn[n]-Ii.Xn[m])^2];

	 For[k=1,k≤Nk,k++,{Cr[k]=0;rr=rk*k;

	 For[m=Nmin,m≤Nmax,m++,For[n=Nmin,n≤Nmax,n++,

	 If[(rr≥Norma[[1]]),Cr[k]=Cr[k]+1,1]]]}];

In this cell the variable rk defines the minimum circle size, and Nk the num-
ber of points or radius rr. The argument of Heaviside step function is deter-
mined with the help of the Norma function.

In view of the finite number of computed intervals, the results of the calcu-
lation of the dimension by (3.56) are inexact. The presentation of the results 
of the calculation of the dimension seems to be well expedited by the graph 
of the ln C(r) = f(ln r) function.
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In the next cell the values of logarithms of correlation function and radius 
are calculated by forming the table

	 TabP=Table[{Log[rk*i],Log[Cr[i]/((Nmax-Nmin)^2)]},{i,Nk}];

	 ListPlot[TabP,Prolog->AbsolutePointSize[4]]

The size of the plotting points is defined by the Prolog->AbsolutePointSize[4] 
option. The graph of the ln C(r) = f(ln r) function is presented in Figure 3.24. 
For k = 9.6 (subharmonic oscillation with the period 4T), the dependence 
ln C(r) = f(ln r)  is shown in Figure 3.25. Comparing Figures 3.24 and 3.25, one 
can see the qualitative change of the dependence ln C(r) = f(ln r).
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lnC(r)
–0.5
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Figure 3.24
Dependence ln C(r) = f(ln r) for k = 28.
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Figure 3.25
Dependence ln C(r) = f(ln r)  for k = 9.6.
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The correlation function for the continuous process is defined by the 
expression

	

K
A

x t x t dt
A

A

( ) lim ˆ( ) ˆ( ) ,τ τ= +
→∞ ∫1

0

where ˆ( ) ( ) lim ( ) ;x t x t x t dt
A A

A= − ∫
→∞

1
0  for periodical processes, the function is

periodical: K T K( ) ( ).+ =τ τ  For chaotic processes, the correlation function 
behaves in the following way: lim ( ) .

τ
τ

→∞
=K 0

For processes described by the difference equation (3.47), the correlation 
function is defined as follows:
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We perform a calculation of the correlation function on the finite interval Nt:

	

K m
N N

x x
M k

i m i

i

N NM k

( ) ˆ ˆ ,=
− +

=

−

∑1

1

	 (3.57)

where Nk is the number of points to be calculated in the correlation function 
(1 ≤ m ≤ Nk). The limitation of the interval is related to the need not to exceed 
the number of interval Nmax.

	 Nt=200;

	 Xav=Sum[Iu.Xn[k],{k,1,Nmax}]/Nmax;

	 For[n=1,n≤Nt,n++,Kor[n]=Sum[(Iu.Xn[i]-Xav)*(Iu.Xn[i+n]-Xav),

	 {i,1,Nmax-Nt}]/(Nmax-Nt)];

The variable Xav corresponds to the average value x ,  and Kor is the correla-
tion function. The plotting of the correlation function is done as follows:

	 TabKor=Table[{i,Part[Kor[i],1]},{i,Nt}];

	 ListPlot[TabKor,Prolog-> AbsolutePointSize[2]]

If a process is not chaotic, the correlation function represents a regular func-
tion. Figure 3.26 shows the correlation function of the process for k = 9.6 and, 
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in Figure 3.27, for k = 28. The randomness of the correlation function allows 
one to come to the conclusion that a strange attractor is present in the system. 
The irregular behavior of the correlation function allows one to distinguish 
chaotic processes from processes with an irrational relationship between fre-
quencies, which at first glance could have a high resemblance to chaotic ones.

Analyses of convergence or divergence of processes is expediently carried 
out with the help of Lyapunov exponents. For the linear system

	

dX
dt

A t X= ( ) ,

the Lyapunov exponents are defined as

	
α =

→∞
lim ln|| ( )||

|| ||
,

t t
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Figure 3.26
Correlation function of the process for k = 9.6.
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Figure 3.27
Correlation function of the process for k = 28.
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where ||...|| is the norm; and X0 is the initial value of the vector X(t). The num-
ber of Lyapunov exponents corresponds to the phase space dimension. For 
the stationary system A t A const( ) ,= =  the Lyapunov exponents α λi i= Re  
are determined by the eigenvalues li of the matrix A.

The calculation of Lyapunov exponents for a nonlinear system is based 
on a numerical procedure of calculation of two processes starting close to 
each other. The calculation is carried out on intervals of duration such that 
the processes do not reach a value greater than the capacity of the computer 
used. At the beginning of every interval, the initial values of one of the pro-
cesses are determined by scaling of calculated values obtained at the end of 
the previous interval (Figure 3.28).

The calculation of the two processes begins at initial values X0  and ′X0.
Further, the distance r x x x x0 10 10

2
20 20

2= − ′ + − ′( ) ( )  between the initial values 
is chosen sufficiently small. Calculation is continued for the moment t1. This 
moment is determined by an experimental method and is connected with 
the rate of process divergence. Calculation of the next interval t t t1 12≤ ≤  for 
one of the processes is realized for initial values

	 ′ = + ′ − ′X X r X X r0 1 0 1 1 1( )/ .

With respect to such scaling r r r rN0 1 2= = = =.. ,  the maximum value of the 
Lyapunov exponent is determined by calculating the expression

	

αM
N

i

i

N

Nt
r
r

= ′
→∞

=

∑lim ln ,1
1 0

1

	 (3.58)

where ′ri  is the distance between processes at the end of i -th interval.
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Figure 3.28
Processes of scaling at the calculation of the maximum Lyapunov exponent.
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The calculation of the maximum value of Lyapunov exponents for various 
values of gain is realized as follows:

	 ui0=0.00001;

	 i0=ui0;

	 u0=ui0;

	 NL=20;

	 KL=Floor[Nmax/NL];

	 r0=Sqrt[i0^2+u0^2];

	 kL=0;

	 MLyap=61;

	For[m=1,m<=MLyap,m++,{Ky=4+0.4*(m-1),kL=0, X2 = i0
u0

,








  X1 = 0

0
,











For[n=1,n<=Nmax,n++,{For[k=1,k<=2,k++,{aa=0,bb=T,If[k==1,Xn[n]=X1, 
Xn[n]=X2],

	 While[(bb-aa)/T>delta,{t1=(aa+bb)/2,

	 If[Part[Uc,1]<0,bb=t1,aa=t1]}],tn[n]=t1,Xnt1[n]=Xt1,t2=T-t1,

	 Xn[n+1]=At2.Xnt1[n],If[k==1,X1=Xn[n+1],X2=Xn[n+1]]}],

	If[Mod[n,NL]==0,{kL=kL+1,ri=Part[Sqrt[(Ii.(X2-X1))^2+(Iu.(X2-X1))^2],1],

	 SSn[kL]=Log[ri/r0],X22=X2,X2=X1+r0*(X22-X1)/ri},1]}],

	 LyE[m]=Sum[SSn[nn],{nn,1,KL}]/(T*Nmax) }];

where the variable ui0 defines the initial values of the current and voltage 
(chosen in such a way that the distance r0 between processes would be suf-
ficiently small); NL defines the number of intervals of duration T in such a 
way that NL T t⋅ = 1 ;  KL corresponds to the number of intervals N; kL corre-
sponds to variable i in (3.58); MLyap defines the number of calculating values 
for gain Ky; and Ky=4+0.4*(m-1) defines the range of change of the gain.

For outputting the values of the Lyapunov exponent, a table is formed. To 
plot the graph of the function, the option PlotJoined->True is used, which 
allows the combination of calculated points by straight-line segments.

	 TabLyap=Table[{4+0.4*(i-1),LyE[i]},{i,MLyap}];

	 ListPlot[TabLyap,Prolog->AbsolutePointSize[2],

	 PlotJoined->True,AxesLabel->{“Ky”,”Lyapunov Exponent”}];
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The dependence of the maximum value of Lyapunov exponents is presented 
in Figure 3.29. As one sees from the figure, a chaotic process can emerge in 
the system for k > 16.7.

3.6 � Calculation of Processes in Relay Systems

In relay systems, the forming of alternating voltage on a load is based on the 
tracing of a given sinusoidal signal ug (Figure 3.30).

In such a system the power supply of a converter is provided by the DC 
voltage E. The control of the converter is handled in such a way that, on its 
output, rectangular impulses are formed whose frequencies and duty fac-
tors are determined by a dead band of a relay element. A sinusoidal voltage 
generation on the load L is made by the output of filter F. In Figure 3.31 the 
block diagram of the relay system as relay controller is shown. Assume that 
the controller is proportional, and the filter and the load (Figure  3.32) are 
described by a transfer function W(p) of the second order.

5 10 15 20 25

500

1000
Lyapunov Exponent

–500

–1000

–1500

k

Figure 3.29
Dependence of the maximum value of Lyapunov exponents versus gain.

C F L
+
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ug

E

Figure 3.30
Block diagram of a relay system.
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The dynamic characteristics of a closed system are determined by the 
parameters of the relay characteristics, the filter and the load, and behav-
ior of the controller. We will analyze the conditions for the onset of self-
oscillations with the help of harmonic linearization (Korotyeyev, 2003a). 
The electromagnetic processes in a closed-loop system are described by 
the equations

	

di
dt

r
L

i
L

u E
L

r= − − +1 ;

	

du
dt C

i
RC

u= −1 1 ; 	 (3.59)

	 u k u k uc g r= −( );

	 E f ur c= ( ),

where Er is the voltage on the output of the relay element (Figure  3.33); 
u U tg g= +sin( );ω ϕ  k is the gain of the proportional regulator; and kr is the 
output voltage ratio.

The method of harmonic linearization is used for the analysis of pro-
cesses in the closed-loop system and is based on the investigation of the first 

+
–

k
uW(p)

kr

ug uc Er

Figure 3.31
Block diagram of the relay system as relay controller.

r iL

C R

uEr

Figure 3.32
Circuit of the filter and load.
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harmonic passing through a system. According to this method, we write the 
expression of an output voltage of a nonlinear element in the form

	 J U q U jq Ug g g( ) ( ) ( ),= + ′ 	 (3.60)

where q Ug
E U u

U

g db

g
( ) ,= −4 2 2

2π
 ′ = −q Ug

Eu
U

db

g
( ) 4

2π
 are the coefficients of harmonic line-

arization; and Ug is the amplitude of sinusoidal generator voltage.
The condition for the onset of oscillations in the closed-loop system in the 

absence of the external action ug is determined by the expression

	
kk W j

J Ur
g

( )
( )

,ω = − 1
	 (3.61)

where W p R
LCRp CRr L p R r

( )
( )

=
+ + + +2  is the transfer function of the filter and load;

	
W j

R R r LCR
R r LCR CRr L

( )
( )

( ) ( )
ω ω

ω ω
= + −

+ − + +
−

2

2 2 2 2 	 (3.62)

	               

j R CRr L
R r LCR CRr L

ω
ω ω

( )
( ) ( )

.
+

+ − + +2 2 2 2

In Figure 3.34 the right and left parts of the expression (3.61) are presented.
On the line corresponding to the nonlinear function − 1

J Ug( ) ,  the use of the 
arrow shows the direction of the increasing value of this function with an 
increase in the amplitude Ug. Since the motion during the increase in value 
occurs from the area bounded by the amplitude-frequency characteristic, the 
cross point A is stable.

Equating the real and imaginary parts of Equation 3.61, we determine the 
frequency and amplitude of self-oscillations. Using expressions (3.61) and 
(3.62), we obtain the equation for frequency

	
π ω ω ωu

E
R r LCR CRr L kk R CRr Ldb

r
4

02 2 2 2[( ) ( ) ] ( )+ − + + − + = 	 (3.63)

E

–E

Er

udb–udb uc

Figure 3.33
Characteristic of the relay element.
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and the expression for the amplitude of self-oscillations

	
U

Ekk P u
g

r db= +[ ( )] ( )
,

4 2 2ω π
π 	 (3.64)

where P(w) is the real part of the complex transfer function (3.62). At first, 
from Equation 3.63, the frequency of self-oscillation is determined, and then 
the P(w) function and, thereafter, from expression (3.64), the amplitude of 
self-oscillation is calculated.

Let us determine the self-oscillation for the following parameter values:

	 r1=2.0;

	 Rn=12000.0;

	 L1=0.02;

	 C1=1.0*10^(-7);

	 E1=300.0;

	 Kr=1.0;

	 Ky=1.0;

	 Uref=200.0;

	 Ff=4636;

	 pg=2.0;

	 f0=0;

	 wf=2.0*Pi*Ff;

ImW(jω)

ReW(jω)

W(jω)J(Ug)
1

A

–

Ug–>∞

Figure 3.34
Amplitude-frequency characteristic of the filter and load, and linear characteristic of the non-
linear element.
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	 rL=(r1+Rn)/L1;

	

A1 =
R1/L1 1/L1

1/C1 1/ Rn C1
;

− −
−











( * )

	 EL:=E1/L1;

	

B1 : =
E1/L1

0
;











	 wkon=1/Sqrt[L1*C1];

	 I2=IdentityMatrix[2];

In this cell, r1 denotes r, Rn denotes R, Ky denotes k, Ug denotes the ampli-
tude of the sinusoidal signal ug, Ff denotes the frequency of the sinusoidal 
signal ug, and the vector B1 defines the value of the vector B for the differen-
tial equation (3.59).

Using the expressions (3.63) and (3.64), we calculate the amplitude and fre-
quency of self-oscillation:

	 descr=Expand[Pi*pg*((Rn+r1-ω^2*L1*C1*Rn)^2
	 + ω^2*(C1*Rn*r1+L1)^2)/4/

	 Abs[E1]-Ky*Kr* ω*Rn*(C1*Rn*r1+L1)];

	 desSol=Solve[descry==0, ω]

	 ω1=ω/.desSol[[4]]

	 TpGarmLin=2*Pi/ ω1

	 Pω = Rn*(Rn+r1-ω1^2*L1*C1*

	 Rn)/((Rn+r1- ω1^2*L1*C1*Rn)^2+ω1^2*(C1*Rn*r1+L1)^2)

	 Sqrt[(4*Abs[E1]*Ky*Kr*Pω)^2+(Pi*pg)^2]/Pi

In this cell, descr defines Equation 3.63, desSol defines the solution to this 
equation, TpGarmLin defines the period of self-oscillation, and Pω denotes 
P(ω). The expression (3.64) is calculated in the last row of this cell. Mathematica 
outputs the roots of this expression as follows:

	 {{ω-> −27049.1−32492.4 i]}, {ω->−27049.1 + 32492.4 i]},

	 {ω->2723.39}, {ω->51374.9}}

We calculate the amplitude of the frequency 51374.9 because, for that value, 
P(ω)  is a negative −0.233605. Then the amplitude equals 89.2528.
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Let us analyze the stability of oscillation with the help of linearization 
of the set (3.59). For the determination of stability conditions (Korotyeyev, 
2003b), we will take into account that a change of an impulse front on the 
output of the relay element occurs at the beginning of every half-period of 
forced voltage, while initial and boundary conditions on that interval differ 
by the sign. A steady-state process is determined as a result of the solution to 
the two first equations of the set (3.59) on half of the period:

	 X t e X A e I BAt At( ) ( ) ( ) ,= + −−0 1

where

	

A r L

C RC

B
E
L X

T
X=

− −

−
= 



 = −

1 1

1 1
0

2
0; ; ( );

	
X e A e B

AT AT

( ) .0 1 12

1

1 2= +








 −











−
−

The period of self-oscillation is determined by the use of the third equation 
of the set (3.59):

	 u kk udb r= − ( ),0 	 (3.65)

where u(0) is the voltage across the capacitor in the steady state.
We realize, for the interval mT t m T≤ ≤ +( / ) ,1 2  the stability analysis of the 

closed-loop system with an external sinusoidal voltage. Since there is one 
interval of constancy of structure, by linearization of the equation set (3.59), 
we obtain (3.17), in which tm is the time moment of switching of the relay 
element;

 

D kk
B

u t

u
du
dt

k U k u

r
tc

tc
c

t
g r t

µ
µ

ω ϕ

= −

= = −
=−

2

0

| ( )|
;

( cos )); ( ) ( ).and u
du
dt C

i
RC

ut
t

= = −
=−0

1
0

1
0

Solving Equation 3.17 for the interval mT t m T≤ ≤ +( / )1 2  yields

	 X m T e NX mT
AT

(( / ) ) ( ),+ =1 2 2
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where N d= 1
0 1

2
1

;  d Ekk
u L

r
tc2

1 2
0= −| ( )| .  Then the matrix whose eigenvalues deter-

mine the stability of the linearized system is defined as

	 H e N
AT

= 2 	 (3.66)

From the obtained expressions it follows that, for the next half-period of 
forced voltage, the stability condition remains invariable.

For stability calculation with the help of the linearization method, it is nec-
essary first to find the solution to the nonlinear equation (5.65), which deter-
mines the period of self-oscillations:

	 E1=Abs[E1];

	 Clear[Ta];

	 At1:=MatrixExp[A1*Ta];

	 A1inv=Inverse[A1];

	 XT:=Inverse[(At1+I2)].A1inv.(At1-I2).B1;

	 Ua:=pg-Ky*Kr*Part[XT[[2]],1];

	 Tper=Ta/.FindRoot[Ua==0,{Ta,TpGarmLin}];

In this cell, XT denotes X(0) for the steady-state process, Ua defines the equa-
tion (3.65). As a result, we obtain the period equal to 2*Tper:

	 0.00012199 + 0.i

In the next cell, with the use of the matrix H (3.66), the stability conditions of 
self-oscillation are calculated:

	 Xt1:=At1.XT-A1inv.(At1-I2).B1;

	 Ta=Re[Tper];

	 Udt1=Part[Part[A1.Xt1,2],1]

	 f12s=-2*Abs[EL]*Ky*Kd/Abs[Ky*Kd*Udt1];

	
Q2s := 1.0 f12s

0 1
;











	 H1s:=At1.Q2s

	 Sei:=Eigenvalues[H1s]

	 Abs[Sei]
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In this cell, Xt1 denotes X(T/2) the steady-state process, Udt1 defines the 
derivative utc(0), and H1s denotes the matrix H. The absolute values of the 
eigenvalues are {1., 0.944661}. The eigenvalue equal to unity indicates that, in 
the system, there arise oscillations whose phase depends on the initial condi-
tions. Such oscillations are characterized by a stability (but not an asymptoti-
cal stability).

Let us consider the behavior of the system subject to the action of a sinusoi-
dal voltage on its input. In this case, the system could have imposed oscilla-
tions from an external generator, natural oscillations could arise in the system 
or oscillations from an external source and from the system could exist at the 
same time. For verifying the existence of oscillations imposed by an external 
generator, it is necessary to study the stability of any obtained solutions. In 
the cell for the given half-period tp, the solution of the nonlinear differential 
equation obtained with the help of the periodicity condition is determined:

	 E1=Abs[E1];

	 Atp:=MatrixExp[A1*tp];

	 XTp:=Inverse[I2+Atp].A1inv.(Atp-I2).B1;

	 Xt1p:=Atp.XTp-A1inv.(Atp-I2).B1;

	 tn:=ArcSin[(Part[Part[Xt1p,2],1]-pg)/Uref];

	 Udt1:=Part[Part[A1.Xt1p,2],1];

	 ft:=tp*2;

	 wf:=2.0*Pi/ft;

	 f12s:=-2*Abs[EL]*Ky*Kd/Abs[Ky*Uref*wf*Cos[(Pi-tn)]-Ky*Kd*Udt1];

	 H1s:=Atp.Q2s;

In this cell, XTp and Xt1p denote X(0) and X(T/2) for the steady-state process, 
and tn defines the time at which the voltage goes to another part of the relay 
characteristic (Figure 3.33).

Now we use the functions defined in the previous cell to examine the behav-
ior of the eigenvalues for different periods (in fact, for different half-periods):

	 t0=0.00002;

	 tnac=0.00004;

	 Nstep=1000;

	 For[n=1,n<=Nstep,n++,{tp=tnac+t0*n,

	 MaxExp[n]=Max[Abs[Eigenvalues[H1s]]]}];

	 TabMaxExp=Table[{tnac+t0*n,MaxExp[n]},{n,Nstep}];
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In this cell, tnac, t0, and Nstep define the first point, the step, and the number 
of steps, respectively. These variables are used for calculation eigenvalues for 
different periods. The calculated eigenvalues are placed in the table denoted 
TabMaxExp. The dependence of the maximum absolute eigenvalue versus 
the half-period is presented in Figure 3.35. For the plotting of the process we 
use the function

	 ListPlot[TabMaxExp,AxesLabel->{“t”,”Max|Eigenvalue|”},

	 PlotRange->{0,2.0},GridLines->{None,{1.0,0.0}}];

In this function, the option GridLines->{None,{1.0,0.0}} allows the genera-
tion of only one grid line passing through point one situated on the ordinate 
axis. For the obtained initial value Xt1p, the time moment is defined:

	 tn:=ArcSin[(Part[Part[Xt1p,2],1]-pg)/Uref];

which corresponds to the switching point of the relay element. For the half-
period values 0.000002…0.002,

	 t0=0.000002;

	 tnac=0.000004;

	 Nstep=1000;

	 For[n=1,n<=Nstep,n++,{tp=tnac+t0*n,
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Figure 3.35
Dependence of the maximum absolute eigenvalue versus the half-period (T in seconds).
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	 MaxExp[n]=Max[Abs[Eigenvalues[H1s]]]}];

	 TabMaxExp=Table[{tnac+t0*n,MaxExp[n]},{n,Nstep}];

	 ListPlot[TabMaxExp,AxesLabel->{“t”,”Max|Eigenvalue|”},

	 PlotRange->{0,2.0},GridLines->{None,{1.0,0.0}}];

the dependence of the maximum absolute eigenvalue versus the half-period 
is presented in Figure 3.36. For values less than unity in the system, the oscil-
lations are formed with the frequency of an external generator. For values 
greater than unity in the system, subharmonic, quasi-periodical, or chaotic 
oscillations could be formed.

The calculation of transient processes is made using the expressions 
obtained from the solution to the differential equations. This calculation pro-
cedure allows appreciable reduction of calculation time in comparison with 
the procedure using expressions with a matrix exponential:

	 If[wf>wkon,Tp:=2*Pi/wkon,Tp:=2*Pi/wf];

	 If[Discrim>0,Tp:=2*Pi/wf,Tp:=2*Pi/wkon];

	 a11=-r1/L1;

	 a12=-1/L1;

	 a21=1/C1;

	 a22=-1/Rn/C1;
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Figure 3.36
Dependence of the maximum absolute eigenvalue versus the half-period (T in seconds).
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	 Discrim=(1/Rn/C1+r1/L1)*(1/Rn/C1+r1/L1)/4–(r1/Rn+1)/L1/C1;

	 If[Discrim>0,{p1=-(1/Rn/C1+r1/L1)/2+Sqrt[Discrim],

	 p2=-(1/Rn/C1+r1/L1)/2–Sqrt[Discrim]},{p1=-(1/Rn/C1+r1/L1)/2,

	 p2=Sqrt[-Discrim]}];

	 pp=p1*p1+p2*p2;

	 exp1:=Exp[p1*(tt–t0)];

	 cos1:=Cos[p2*(tt–t0)];

	 sin1:=Sin[p2*(tt–t0)];

	 ev1=(L1–C1*r1*Rn)/(2*L1*Rn);

	 dtrm=Sqrt[(L1+C1*r1*Rn)^2–4*C1*L1*Rn*(r1+Rn)]/(2*C1*L1*Rn);

In this cell, we determine the discriminant (denoted Discrim) of the charac-
teristic equation corresponding to the transfer function of the filter and load. 
Then we define some parts of the solution to the differential equation. Using 
these parts, we define the currents and voltages as follows:

	 Iap:=1/(2*C1*dtrm)*(C1*dtrm*(Exp[p1*(tt–t0)]+Exp[p2*(tt–t0)])*I1+

	 C1^2*dtrm^2*(Exp[p1*(tt–t0)]–Exp[p2*(tt–t0)])*U1–

	 (Exp[p1*(tt–t0)]–Exp[p2*(tt–t0)])*ev1*(-I1+ev1*U1))–

	 1/(2*C1*dtrm*(r1+Rn))*(EL*((Exp[p1*(tt–t0)]–Exp[p2*(tt–t0)])*ev1*

	 L1+C1*(dtrm*(-2+Exp[p1*(tt–t0)]+Exp[p2*(tt–t0)])*

	 L1+(-Exp[p1*(tt–t0)]+Exp[p2*(tt–t0)])*Rn)));

	 Uap:=1/(2*C1*dtrm)*(Exp[p1*(tt–t0)]*(I1+(C1*dtrm–ev1)*U1)+

	 Exp[p2*(tt–t0)]*(-I1+(C1*dtrm+ev1)*U1))–

	 1/(2*C1*dtrm*(r1+Rn))*(EL*((Exp[p1*(tt–t0)]–Exp[p2*(tt–t0)])*ev1*

	 L1+C1*(dtrm*(-2+Exp[p1*(tt–t0)]+Exp[p2*(tt–t0)])*

	 L1+(Exp[p1*(tt–t0)]–Exp[p2*(tt–t0)])*r1))*Rn);

	 Ics:=(cos1+(p1–a22)/p2*sin1)*exp1*I1+a12/p2*sin1*exp1*U1+

	 a22/pp*cos1*exp1*EL+(pp–p1*a22)/p2/pp*sin1*exp1*EL–a22*EL/pp;

	 Ucs:=a21/p2*sin1*exp1*I1+(cos1+(p1–a11)/p2*sin1)*exp1*

	 U1+(-a21/pp*exp1*cos1+p1*a21/pp/p2*exp1*sin1)*EL+a21*EL/pp;
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	 Ik:=If[Discrim>0,Iap,Ics];

	 Uk:=If[Discrim>0,Uap,Ucs];

	 Usl:=Uref*Sin[wf*tt+f0]–Uk;

The functions Iap and Uap define solutions to the current and voltage in the 
case of real roots (the descriminant Discrim is greater than zero); the func-
tions Ics and Ucs define solutions to complex-conjugate roots. The functions 
Ik and Uk combine these solutions.

The procedure for the calculation of transient process is presented in the 
next cell:

	 Nm=5000;

	 t0=0;

	 U1=0;

	 I1=0;

	 E1=Abs[E1];

	 Km=40;

	 Tk=Tp/Km;

	 For[n=1,n<=Nm,n++,{For[m=1,m<=Km,m++,{tt=Tk*m+t0,

	 If[(((Usl<-pg) && (E1>0))||((Usl>pg) && (E1<0))),{t3=tt,t4=t3-Tk,

	 If[Usl<=-pg,Ftn=FindRoot[Usl==-pg,{tt,t4}],

	 Ftn=FindRoot[Usl==pg,{tt,t4}]],m=Km+1},1]}],

	 tt=Re[tt/.Ftn[[1]]],Ut=Uk,It=Ik,U1=Ut,Un[n]=Ut,I1=It,Iin[n]=It,t0=tt,

	 KT[n]=t0,E1=-E1}];

In this cell, U1=0 and I1=0 define the initial values of the voltage and current for 
the time t0=0, Tk defines the minimal part of the time interval when the switch 
instant tt is determined, Ftn defines the switching time, and Un[n] and Iin[n] 
define the vectors of voltages and currents calculated at the switching points.

The calculation procedure for the switching points of the relay element is 
based upon preliminarily finding a sufficiently small interval (in which the 
point is situated). For this, the total period is divided into Km intervals with 
a duration equal to Tp/Km. The number of points is given by the variable 
Nm. The calculation is realized for initial conditions equal to zero. From 
this, it is assumed that the relay element is in the state +E1. For the frequency 
10000 Hz in the system, steady-state oscillations are formed. The plotting of 
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the transient process for first 20 switches of the relay element is done using 
the Zu1[n_], Zu2[n_], and Ris functions:

	
B1a =

Abs[E1]/L1

0
;











	
B2a =

Abs[E1]/L1

0
;

−









	 Clear[tt,n,Ris];

	 For[n=1,n<=Nm,n++, Xn[n] =
Iin[n]
Un[n]

;










	 KT[0]=0;

	
Xn[0] = 0

0
;








	 Zu1[n_]:=If[KT[n]<=tt<KT[n+1],Part[MatrixExp[A1*(tt-KT[n])].

	 Xn[n]+A1inv.(MatrixExp[A1*(tt-KT[n])]-I2).B1a,2],0];

	 Zu2[n_]:=If[KT[n+1]<=tt<KT[n+2],Part[MatrixExp[A1*(tt-KT[n+1])].

	 Xn[n+1]+A1inv.(MatrixExp[A1*(tt-KT[n+1])]-I2).B2a,2],0];

	 Nint=8;

	 Ris=Sum[Zu1[n]+Zu2[n],{n,0,Nint,2}];

	Plot[{Uref*Sin[wf*tt+f0],Ris},{tt,KT[0],KT[Nint+2]},AxesLabel->{“t”,”u”}];

In this cell, Nint defines the number of intervals used for the summing of 
solutions. The functions Zu1[n_] and Zu2[n_] define the solution to even and 
odd time intervals, respectively, situated between the two switching points 
of the relay element.

The graphs of the transient process for the voltage across the capacitor for 
the first 10 switches of the relay element are presented in Figure 3.37. The 
graph of the transient process for the last 10 switches (Figure 3.38) is made 
with the help of the functions

	 ZU[tt_,n_]:=If[KT[n]<=tt<KT[n+1],Part[MatrixExp[A1*(tt-KT[n])].

	 Xn[n]+A1inv.(MatrixExp[A1*(tt-KT[n])]-I2).B1,2],0]+
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	 If[KT[n+1]<=tt<KT[n+2],Part[MatrixExp[A1*(tt-KT[n+1])].

	 Xn[n+1]+A1inv.(MatrixExp[A1*(tt-KT[n+1])]-I2).B2,2],0];

	 FU2[tt_]:=Sum[ZU[tt,n],{n,Nm-10,Nm-2,2}];

	 Plot[{Uref*Sin[wf*tt+f0],FU2[tt]},{tt,KT[Nm-10],KT[Nm]},

	 AxesLabel->{“t”,”u”},AxesOrigin->{KT[Nm-10],0}];
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Figure 3.37
The transient process for voltage u across the capacitor and the generator voltage ug for the first 
10 switches Ff = 10000 Hz (u in volts, time t in seconds).
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Figure 3.38
The transient process for voltage u across the capacitor and the generator voltage ug for the last 
10 switches Ff = 10000 Hz (u in volts, time t in seconds).
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In this cell, the function ZU[tt_,n_] combines functions Zu1[n_] and Zu2[n_]. 
The stability calculation

	 Ta=1.0/Ff/2;

	 tn=ArcSin[(Part[Part[Xt1,2],1]-pg)/Uref];

	 Udt1=Part[Part[A1.Xt1,2],1];

	 f12s=-2*Abs[EL]*Ky*Kd/Abs[Ky*Kd*Uref*wf*Cos[(Pi-tn)]-Kd*Udt1];

	 Abs[Sei]

gives the absolute values of eigenvalues

	 {0.976937, 0.976937}.

Let us consider the behavior of the relay system for the generator frequency 
equal to 4636 Hz. Graphs of the transient process for the first and last 10 
switches of the relay element are presented in Figures 3.39 and 3.40.

Figure  3.40 shows that, in the system, on the interval equal to approxi-
mately 2500T, a steady-state process with the period of external supply is not 
formed. Confirmation of this fact is shown by the stability calculation. One 
of the absolute values of the eigenvalues is greater than unity:

	 {1.55916, 0.579952}

Consider the characteristics of process identification. For this, we plot a 
phase-space portrait. In order to simplify the plotting procedure, we use 

t

200

400

u

–200

–400

0.0002 0.0004 0.0006 0.0008

ug

u

Figure 3.39
The transient process for voltage u across the capacitor and the generator voltage ug for the first 
10 switches FF = 4636 Hz (u in volts, time t in seconds).
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the values Un[2*n], Iin[2*n], and Un[2*n-1], Iin[2*n-1] determined in the 
switching moments of the relay element:

	 uiTab=Table[{Un[2*n],Iin[2*n]},{n,1000,Round[Nm/2]}];

	LPeven=ListPlot[uiTab,AxesLabel->{“u”,”i”},DisplayFunction->Identity];

	 uiTab=Table[{Un[2*n-1],Iin[2*n-1]},{n,1000,Round[Nm/2]}];

	 LPodd=ListPlot[uiTab,AxesLabel->{“u”,”i”},DisplayFunction->Identity];

	 Show[{LPeven,LPodd},DisplayFunction->$DisplayFunction];

The phase-plane portrait is shown in Figure  3.41. The Poincare section 
u f un n2 1 2( ) ( )+ =  is presented in Figure 3.42. The plotting of the Poincare sec-
tion is realized for the interval 200 ... Nm

	 uTab=Table[{Un[2*(n-1)],Un[2*n]},{n,100,Round[Nm/2]}];

	 ListPlot[uTab,AxesLabel->{“Un”,”Un+1”}]

The images presented in Figures 3.41 and 3.42 indicate that quasi-periodic 
oscillations are formed in the system.

We also make the correlation function for the even-switching moments:

	 Nt=400;

	 Nmm=Round[Nm/2];

	 Xav=Sum[Un[2*k],{k,1,Nmm}]/Nmm;

0.3383 0.3385 0.3387 0.3389
t

–300

–200

–100

100

200

300

u

ug

u

Figure 3.40
The transient process for voltage u across the capacitor and the generator voltage ug for the last 
10 switches FF = 4636 Hz (u in volts, time t in seconds).
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	 For[n=1,n<=Nt,n++,Kor[n]=Sum[(Un[2*i]-Xav)*(Un[2*i+2*n]-Xav),

	 {i,1,Nmm-Nt}]/(Nmm-Nt)];

	 TabKor=Table[{i,Kor[i]},{i,Nt}];

	ListPlot[TabKor,Prolog->AbsolutePointSize[2],AxesLabel->{“m”,”K(m)”}];

The variable Nt defines the number of points in which the correlation func-
tion is calculated, the variable Nmm defines the number of even-switching 
moments, the variable Xav defines the average value of even-switching 
moments, and the Prolog option allows increase in the size of points in a 
graph. The correlation function is shown in Figure 3.43. The figure illustrates 
the regularity of the correlation function. This confirms that the process is 

u

1

i

–0.5

0.5

–1

100 200–100–200

1

2

Figure 3.41
The phase-plane portrait for the switching moments (i in amperes, u in volts): the curve (1) is 
obtained for even-switching moments, and curve (2) for odd-switching moments.

Un
200100

200

100

–100

–200

–100–200

Un+1

Figure 3.42
The Puancare section of the voltage for even-switching moments u2n+2 = f(u2n) (Un+1 and Un in volts).
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quasi-periodic. It should be noted that the correlation function for all switch-
ing moments does not have a regular structure.

Consider a particularity of process identification done with the help of the 
space dimension calculation:

	 Clear[k,n,m];

	 rk=0.2;

	 Nk=100;

	 Nmin=Nmm-100;

	 Norma:=Sqrt[(Un[2*n]-Un[2*m])^2+(Iin[2*n]-Iin[2*m])^2];

	 For[k=1,k<=Nk,k++,{Cr[k]=0;rr=rk*k;For[m=Nmin,m<=Nmm,m++,

	 For[n=Nmin,n<=Nmm,n++,If[(rr>=Norma),Cr[k]=Cr[k]+1,1]]]}];

	 TabP=Table[{Log[rk*i],Log[Cr[i]/((Nmm-Nmin)^2)]},{i,Nk}];

	ListPlot[TabP,Prolog->AbsolutePointSize[4],AxesLabel->{“lnr”,”lnC(r)”}]

The variable rk defines the minimum dimension of the cell in the phase 
space; the variable Nk defines the number of calculating points, the variable 
Norma denotes the distance between points, and the function For[ ] is used 
for the calculation of the correlation function as in (3.55). The graph of the 
function ln C(r) versus ln r is presented in Figure 3.44. This graph is not uni-
form. The confirmation of nonuniformity is illustrated in the graph obtained 
by the calculation of the derivative

	

∂
∂
ln ( )

ln
C r

r

100 200 300 400
m

K(m)

–5000

5000

10000

15000

–10000

Figure 3.43
The correlation function for even-switching moments of the relay element.
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In the cell, this derivative is calculated:

	 TabCr=Table[{Log[rk*i],(Log[Cr[i+1]]–

	 Log[Cr[i]])/((Nmm-Nmin)^2)/(Log[rk*(i+1)]-Log[rk*i])},{i,Nk-1}];

	ListPlot[TabCr,Prolog->AbsolutePointSize[4],AxesLabel->{“lnr”,”lnC(r)/lnr”}]

The graph of the function ∂
∂
ln ( )

ln
C r

r  versus ln r is presented in Figure 3.45. It 
should be noted that the dependence presented in Figure 3.45 has certain 
maximums.

1 2 3

–4.5

lnr

lnC(r)

–2.5

–3

–3.5

–1

Figure 3.44
The graph of the function ln C(r) versus ln r.

1 2 3
lnr

–1

lnC(r)/lnr

0.0002

0.00015

0.0001

0.00005

Figure 3.45
The graph of the function 

∂
∂
ln ( )

ln
C r

r  versus ln r.
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The harmonic linearization method discussed here expediently uses for 
analysis a closed-loop system in which an input forcing is absent. In this 
case, the results obtained by the method practically coincide with simulation 
ones. If, on the input of a system, a sinusoidal voltage is presented, the sta-
bility of the periodic and subharmonic oscillations present are expediently 
analyzed with the help of the linearization method.
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4
Analysis of Processes in 
Systems with Converters

4.1 � Power Conditioner

4.1.1 � The Mathematical Model of a System

An AC converter is used as a power conditioner, a compensator for the sag or 
imbalance of voltage in power supply, and a compensator for reactive power. In 
such converters, control methods are used, providing the possibility of dynamic 
change of the transformation ratio with a time constant that is much less than the 
period of the supply voltage (Veszpremi and Hunyar, 2000; Kasperek, 2003).

Consider a mathematical model of the power conditioner, the circuits of 
which are constructed on the basis of the Buck topology (Figure 4.1).

This power conditioner provides direct conversion of AC voltage with-
out an intermediate circuit used for energy storage. In the system, a voltage 
imbalance is introduced by the connection of the resistor Rn.

Assume that the switches are described by the RS model, and the induc-
tors and load are linear. Then the electromagnetic processes for the interval 
when switches S1s and S2s  are closed, and switches S1L  and S2L  are opened, 
are described by the matrix differential equation (Korotyeyev and Kasperek, 
2004a)

	
LL dI

dt
A I AI i AU I E= − − − +11 11 11 0 , 	 (4.1)

where

	
LL

L L L
L L L

L L L

L L L
= +

+
1 2 2

2 2 3
;

	
I i

i
L

L
= 1

3
;
 
I i

i
0

01

03
= ;
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A
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=

+ +
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+
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2
= + ;
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1 2 2
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= +

+












;
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e e
= −

−













1 2

2 3
.

Suppose that the switch Sn is in the on state. Then the current is

	 i i RD I RP I= + +11 11 0 11 ; 	 (4.2)

where

	
i

e e
R

R R R R RD RP
R

s
s in in n

in
11

1 2
1 2 11 11

1= + = + + = = −; ;
++ −











R
R

R
R

in

s

in

s

2 2 .
 

v s(t)

i

Control system
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Rin2

Rin3

uS1 uS2 uS3

R0 R0

R0

i01
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i03

S1S

S2S

iL1

iL3

SL1

S2L

LL1

LL2

LL3

RL1

RL2

RL3

Rn

Sn

Figure 4.1
System topology with power conditioner. (Data from Korotyeyev I. Ye. and Kasperek R., 2004a. 
With permission.)
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The algebraic equation for the balancing circuit has the form

	 E AD I AN i AP I= + +11 0 11 11 ; 	 (4.3)

where

	

AD
R R R R R

R R R R R
in in in

in in in
11

1 2 0 2 0

2 0 2 3 0

2 2
2 2

= + + +
+ + +

;; ;AN AI11 11=
 

	
AP R R R

R R R
in in in

in in in
11

1 2 2

2 2 3
= +

+
.

The electromagnetic processes for the interval when switches SiL and S2L  are 
closed, and switches S1s and S2s are opened, are described by the matrix dif-
ferential equation

	
LL dI

dt
A I= − 22 ; 	 (4.4)

	 i i RD I= +11 11 0 ; 	 (4.5)

	 E AD I AN i= +11 0 11 , 	 (4.6)

where

	
A R R R

R R R
L L L

L L L
22

1 2 2

2 2 3
= +

+
.

Combining Equations 4.1–4.3 and 4.4–4.6, we obtain

	
LL dI

dt
A I AP I AU I AI i E= − − − − +22 11 11 0 11γ γ γ γ 	 (4.7)

	 i i RD I RP I= + +11 11 0 11γ ; 	 (4.8)

	 E AD I AN i AP I= + +11 0 11 11γ , 	 (4.9)

where g is the switching function for the switches Ss and SL.
The control system presented in Figure 4.2 generates impulses based on 

the calculation of instantaneous power. During the calculation process, the 
Clark transformation is used.
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The processes in the control system are described by the following equations:

	 I k Icα = ;

	 U k Ucα = ;

	 P gU IT
α α α= ;

	
∆p P

D pn
= −α

2 1; 	 (4.10)

	 g k D py= −( );∆

	 u gu tco g= ( );

	 s s uco= ( ),

where

	

I
i
i

U
u
u

U
u
u

kS

S
cα

α

β
α

α

β
= = = =

















; ; ; ;1

3

1 0
1

3

2

3
 

D, pn are constancies; ky is the gain; ug(t) is the voltage of the independent 
generator; and UT

α  is the transposed vector.
Since | | | |,AP A11 22<  | | | |,AU A11 22<   | | | |AP I AN i11 11<  and | | ,RP I i11 11<  Equation 

4.7 is simplified as

	
LL dI

dt
A I E= − +22 1γ , 	 (4.11)

g

D

s

uS1

uS3

iL1
iL3 kc

gkc

uα
uβ

iα
i β́

α,β
p,q

p ∆p

D2pN

p
–1 ky(D-∆p) 0

1

pN

Figure 4.2
Schematic diagram of the control system. (Data from Korotyeyev I. Ye. and Kasperek R., 2004a. 
With permission.)
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where E1 = E − AI11i11 − (AI11RD11 + AU11)I0; I0 = RS−1(E − AN11i11); RS = AD11 + 
AN11RD11; and RS11

1−  is the inverse matrix. The voltage U is defined by the 
expression

	 U R I= 0 0. 	 (4.12)

Using the averaged state-space method (Middlebrook and Ćuk, 1976; 
Korotyeyev and Fedyczak, 2002), we transform Equations 4.10 and 4.11 into 
the averaged state-space equations

	
LL

dI
dt

A I dE= − +22 1 ; 	 (4.13)

	

U R I

I k I

U k U

c

c

=

=

=

0 0 ;

;

;

α

α

	

d g
U

g k D
k k U I

ag

y

y d
T

=

= +
+











;

( )
,

1
1 α α

	 (4.14)

where I ,  and Iα  are the averaged vectors; d is the duty factor; Uag is the 
amplitude of the generator voltage; and kd

D pn
= 1

2 .

4.1.2 � Computation of a Steady-State Process

Since in the control system signals are generated on the basis of the calcula-
tion of power, we will find the solving of an equation set to be the sum of 
the constant component and second harmonic. We assume that the duty 
factor is

	 d d d t= + +0 2 2sin( ),ω ϕ 	 (4.15)

where d0 is the constant component and d2 and j are the amplitude and phase, 
respectively, of the second harmonic. Using the expression (4.15), we determine 
the solution to the set (4.13) and (4.14) by taking the Laplace transform

	 I p pI LL A LL d E p d pI LL A L( ) ( ) ( ) ( )= − + −− − − − −1
22

1 1
0 2

1
22

1 LL− ⋅1

	
E p p

p
( ) * sin cos

( )
,ϕ ω ϕ

ω
+
+











2
22 2 	 (4.16)
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where I(p) and E(p) are the transforms of the vectors I  and E1, respectively; I 
is the unity matrix; (..)−1 and LL −1  are inverse matrixes; and * is the convolu-
tion in the complex domain.

We can write the steady-state current as follows:

	 I I t I t= +0 2( ) ( ), 	 (4.17)

where

	
I t j I LL A d

j
LL E j en

j t
0

1
22

1 0 12
2

( ) Re ( ) ( )= −



− − −ω
ω

ω ω


	 (4.18)

is determined with respect to the poles p j=± ω  of the vector E p( ).  In this 
expression, E jn( )ω  denotes the numerator of the vector E j( ).ω

Consider the second term in the solution (4.16). Calculating the convolution 
of the function in (4.16), we obtain

	

E p E p p
p

p kj
c( ) ( ) * sin cos

( )
( )sin c= +

+
= − +ϕ ω ϕ

ω
ω ϕ ω2

2
2

2 2
oos

( )( )
( ) .ϕ

ω ω
ω
ωp kj p kj

E kj
k j
n

k
k

+ −
=−
≠

∑ 3 2
1

0

1

From the expression, it follows that, in the solution, the first and third har-
monics are presented. Since a third harmonic does not participate in the 
solution, from this expression we extract only a first harmonic

	

E p kj
p kj kj

E kj
k j

c
n

1
2 2

4 2
( ) sin cos

( )( )
( )= − +

+ −
ω ϕ ω ϕ

ω ω
ω
ωω

.
k
k
=−
≠

∑
1

0

1

Then the value of the vector of the current I2(t) in (4.17) is determined by the 
expression similar to (4.18):

	
I t j I LL A d

j
LL E j ec n

j t
2

1
22

1 2 1
12

2
( ) Re ( ) ( )≅ −




− − −ω
ω

ω ω 



 , 	 (4.19)

where E jc n1 ( )ω  is the numerator of the vector E jc1( ).ω
The instantaneous power

	 P U IT
α α α= 	 (4.20)
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can be written as

	 P P P tα ω ψ= + +0 2 2sin( ), 	 (4.21)

where P P dtT
T

0
1

0= ∫ α  is the constant component of the instantaneous power; 
and P2 and y are the amplitude and phase, respectively, of the second 
harmonic.

Using the Laplace transform, we calculate the power (4.20) with the help 
of the convolution

	

P p U p I p
U kj I p jk

kj p j
T n

T
n

α α α
α αω ω
ω

( ) ( ) * ( )
( ) ( )
[(

= = −
−2 kk

U kj I p jk
kj p p

k
k

n
T

n

ω ω
ω ω
ω

α α

) ]
( ) ( )

(2 2

1
0

1

2 2+
= −

−
=−
≠

∑ jjk
k
k

ω)
,

=−
≠

∑
1

0

1

		  (4.22)

where I kjnα ω( )  and U kjn
T
α ω( )  are the numerators of the vectors I kjα ω( ), 

U kjT
α ω( ),  respectively.
From the expression (4.22), it follows that, in the solution, a constant com-

ponent and second harmonic exist. We determine the constant component 
using the theorem of the final value of the Laplace transform

	

P pP p U kj I jk
kp

n
T

n

k
k

0
0 2 2

1
0

4
= = −

→
=−
≠

lim ( ) ( ) ( ) .α
α αω ω

ω

11

∑

The transformation of the second harmonic is determined by the calculation 
of residues

	

P p
p j k P p

p j k
P

pp jk

k
k

2
2

1
0

1

2

2

2
( )

lim ( ) ( )
=

−

− =→

=−
≠

∑ ω
αω

ω
ssin cos

.
ψ ω ψ

ω
+
+

2
42 2p

In this expression, P2 and y are determined as a result of the calculation of a 
limit of the transform Pa(p).

Taking into account that the power P2 is small in comparison to P0, we 
expand (4.14) in the Taylor series about P0. Then, the duty factor d takes form

	
d k D

k k P U
k D k k P ty

y d ag

y y d= +
+

− + +( )
( )

( ) sin( )
(

1
1

1 2
0

2 ω ψ
11 0

2+ k k P Uy d ag)
.
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Using the expression for the duty factor (4.15), we extract the equation for the 
constant component:

	
d k D

k k P U
y

y d ag
0

0

1
1

= +
+

( )
( )

	 (4.23)

and the equation for the amplitude d2 and phase j:

	
d k D k k P

k k P U
y y d

y d ag
2

2

0
2

1
1

= +
+
( )

( )
; 	 (4.24)

	 ψ ϕ π= + . 	 (4.25)

Transform Equation 4.23 in the following way:

	
d k D

k k d P U
y

y d ag
0

0 0

1
1

= +
+

( )
( )

,

where P P
d0

0
0

= ;  and P U I dt I k I tT
T T

c0
1

0 0 0 0= ∫ =α α α; ( ).  Then the constant compo-
nent is determined by the solution to the square equation

	 d U k k d P k Dag y d y0 0 01 1( ) ( ).+ = + 	 (4.26)

For the determination of d0, and d2 j, at first we calculate d0 from Equation 
4.26, and then we solve Equations 4.24 and 4.25 simultaneously.

4.1.3 � Steady-State Stability Analyses

For the purpose of calculation of the stability of steady-state behavior, we 
find increments of the state variables. Using Equations 4.13 and 4.14, we 
obtain (Korotyeyev and Kasperek, 2004b)

	
LL dI

dt
A I d Eξ

ξ ξ= − +22 1 ; 	 (4.27)

	 I k Icαξ ξ= ;

	
d

k k D U
U kk P

Ir
T

ag r s
ξ

α

α
αξ= − +

+

2

2

1
1
( )

( )
, 	 (4.28)

where Iξ  and dx are the variations of the variables I  and d, respectively; and 
Pas is the value of Pa for the steady-state behavior. Substituting (4.28) into 
(4.27), we obtain the linearized equation

	
LL dI

dt
MIξ

ξ= − , 	 (4.29)
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where

	
M A E

k k D U k
U kk P

r
T

c

ag r s
= + +

+
22 1

2

2

1
1
( )
( )

.α

α

Equation 4.29 is a differential equation with periodic coefficients. For sta-
bility analysis, it is necessary to determine the solution to this equation for 
the interval equal to the period of the matrix M. We find the solution by 
approximating E1, U

T
α ,  and Pas at a small time interval with constant values. 

Then, supposing that E1, UT
α ,  and Pas are constants for the interval t ti i− +1 , 

we can write the solution to Equation 4.29 as follows:

	 I e I tM t t t
i

i i
ξ ξ= − −( )( ) ( ),

where e M t t ti i− −( )( )  is the matrix exponential. Solving the equation for all inter-
vals and eliminating intermediate variables, we determine the solution for 
the period:

	

I n T e I nTM t

i

N

i
ξ

τ
ξ(( ) ) ( ),( )+ = −

=

∏1
1

	 (4.30)

where τ = − =+t t consti i1 ; N T= τ .  Analysis of system stability is based on the 
calculation of the eigenvalues of the matrix

	

H e M t

i

N

i= −

=

∏ ( ) .τ

1

	 (4.31)

The system is stable if all absolute values of the eigenvalues of the matrix H 
are less than unity.

4.1.4 � Calculation of Steady-State Processes and System Stability

Let us calculate a steady-state process for the following values of the param-
eters: E = 310 V; D = 0.5; ku = 0.0326; ki = 3.256; Pn = 97.5 W; Uag = 1 V; Rin = 1 Ω, 
Rn = 10 Ω, RL = 100 Ω; LL = 75 mH; T = ⋅ −20 10 3  s (the switching period of the 
converter). Coefficients ku and ki are used for the calculation of the vectors

	 I k k Ii cα = ,

	 U k k Uu cα = .
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Let us use Mathematica® for a process analysis in the system. In the cell, the 
value of the parameters are assigned and matrixes are defined

	 L1=L2=L3=0.075;

	 r1=r2=r3=100;

	 re1=re2=re3=1;

	 R12=10;

	 RR=re1+re2+R12;

	 ri=10*(10^3);

	 Es=310;

	 pzn=97.5;

	 ky=10;

	 D1=0.5;

	 ku=0.0326;

	 ki=3.256;

	 Ff=50.0;

	 T=5.0*10^3;

	 Kt3F=Round[1/Ff/T];

	

kc =
1 0

1/ 3 2/ 3
;













	
LL = L1 + L2 L2

L2 L2 + L3
;











	 Clear[e1,e2,e3,d1];

	
EE := e1 e2

e3 e2
;−

−











	
A11 = r1 + re1 + r2 + re2 r2 + re2

r2 + re2 r2 + re2 + r3 + re3









 ;
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AV11 = re1 + re2 re2

re2 re2 + re3
;











	
AI11 := re1 + re2

re2
;











	
AD11 = re1 + re2 + 2 * ri re2 + ri

re2 + ri re2 + re3 + 2 * ri









 ;;

	
AP11 := re1 + re2 re2

re2 re2 + re3
;











	
AN11 := re1 + re2

re2











	 RD11:=(-(re1+re2)/RR -re2/RR);

	 I11=(e1-e2)/RR;

	 RP11:=(-(re1+re2)/RR -re2/RR);

	 I2=IdentityMatrix[2];

The coefficient Kt3F defines the number of switches during the period of 
power supply.

In the next cell, intermediate matrixes and vectors are calculated:

	 RS11=AD11+AN11.RD11;

	 RS11inv=Inverse[RS11];

	 Uri=Simplify[N[(RS11inv.(EE-AN11*I11))*ri]]

	 E11=EE11-AI11*I11-(AI11.RD11+AV11).RS11inv.(EE-AN11*I11);

	 Ev=Simplify[N[E11*d1]]

	 Linv=Inverse[LL];

In this cell, Uri denotes U, and Ev denotes dE1.
We define the phase voltages and calculate the Laplace transform of the 

voltages E1 and Up as follows:

	 Clear[];

	 e1:=Es*Sin[ *t];
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	 e2:=Es*Sin[*t-2*Pi/3];

	 e3:=Es*Sin[ *t+2*Pi/3];

	 Up=Simplify[LaplaceTransform[Uri,t,p]];

	 Ep=Simplify[LaplaceTransform[Ev,t,p]]

Expressions that correspond to numerators of transforms Up and Ep are 
determined in the cell:

	 Clear[d1];

	 U=Numerator[Up]/.p->I*;

	 Um=Numerator[Up]/.p->I*;

	 Ep=Numerator[Ep]/.p->(p-I*);

	 Epm=Numerator[Ep]/.p->(p+I*);

In the cell, the convolution E p p
p

( ) * sin cos
( )

ϕ ω ϕ
ω

+
+

2
22 2  entered in expression (4.16) is 

calculated, and the first and third harmonics denoted by d2Es1 and d2Es3 
are extracted from the obtained expression:

	 Clear[,d1];

	 Snom=LaplaceTransform[Sin[2**tt+],tt,p];

	 d2Es=Chop[FullSimplify[Limit[(q-I*)*(Snom/.p->(p-q))*(Ep/.p->q)/
     d1,q->I*]+

	 Limit[(q+I*)*(Snom/.p->(p-q))*(Ep/.p->q)/d1,q->-I*]]];

	 d2Es1=Simplify[Limit[(p-I*)*d2Es,p->I*]/(p-I*)+

	 Limit[(p+I*)*d2Es,p->-I*]/(p+I*)];

	 d2Es3=Chop[Simplify[Limit[(p-3*I*)*d2Es,p->3*I*]/(p-3*I*)+

	 Limit[(p+3*I*)*d2Es,p->-3*I*]/(p+3*I*)]];

For harmonics determination we use the function. It should be recalled that 
the third harmonic does not take part in the solution. In what follows, this 
harmonic is used for plotting currents.

Now we will calculate components of the power. First we calculate the part 
of the power that corresponds to the current I2(t). This part of the power is 
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determined by calculating a convolution for the first harmonic of the voltage 
and current. We use the expression Ec1(p) and a transform for the current I2(t).

	 m1s=Simplify[Transpose[kc.(Up/.p->q)].kc.Inverse[(p–q)*I2+Linv.A11].

	 Linv.(d2Es1/.p->(p–q))];

	 Sd12S=Simplify[Limit[(q–I*)*m1s,q->I*]+Limit[(q+I*)*m1s,q->I*]];

From the obtained expression we determine the part of the power P2 caused 
by the current I2(t), and the sine and cosine components for that power:

	 Clear[];

	Gd2=Simplify[Part[Part[Limit[(p–I*2*)*Sd12S,p->I*2*],1],1]/(p–I*2*)
+Part[Part[Limit[(p+I*2*)*Sd12S,p->I*2*],1],1]/(p+I*2*)];

	  =2*Pi*Ff;

	Gd2N=Collect[ComplexExpand[Re[Numerator[Simplify[ki*ku*Gd2]]]],p]

	 cs2=Extract[Gd2N,{1}]/(2*)+Extract[Gd2N,{2}]/(2*);

	 sn2=Extract[Gd2N,3]/p;

In this cell, cs2 and sn2 denote the cosine and sine components of the power P2.
Further, we determine the part of the power caused by the current I0(t). 

From this part the power P0 is determined, and then the component value d0 
is calculated:

	 Sd1=Simplify[Transpose[kc.U].kc.Inverse[(p–I*)*I2+

	 Linv.A11].Linv.Ep (2*I*)/p/(p–I*2*)];

	 Sd1m=Simplify[Transpose[kc.Um].kc.Inverse[(p+I*)*I2+

	 Linv.A11].Linv.Epm/(–2*I*)/p/(p+I*2*)];

	 Clear[];

	 =2*Pi*Ff;

	 Ss1=Sd1/d1;

	 pcon=Part[Part[2*Re[N[Ss1*p/.p->0]]*ki*ku,1],1]

	 Ss1m=Sd1m/d1;

	 kd=1/(D1*D1*pzn);

	 Xs=Solve[(ky*kd*pcon)*x^2+x-ky(D1+1)==0,x]

	 x2=x/.x->Part[Xs,2];

	 d0=x/.Part[x2,1]
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As a result of the calculation of the square equation (4.26), denoted Xs one 
obtains

	 {{x->−0.686487}, {x->0.656444}}

Since the constant component d0 can only be positive, its value equals

	 0.656444

In the cell, another part of the power P2 caused by the current I0(t) and the 
sine and cosine components for that power are determined:

	 Sd1S=Simplify[Ss1+Ss1m];

	 Gd1=Simplify[Part[Part[Limit[(p-I*2*)*Sd1S,p->I*2*],1],1]/(p-I*2*)+

	 Part[Part[Limit[(p+I*2*)*Sd1S,p->I*2*],1],1]/(p+I*2*)];

	 Gd1N=ComplexExpand[Re[Numerator[Simplify[ki*ku*Gd1]]]]

	 cs1=Extract[Gd1N,1]/(2*)

	 sn1=Extract[Gd1N,2]/p

Using the obtained expressions, the square of amplitude of the power P2 is 
calculated:

	 snd12=sn1*d1+sn2*d2;

	 csd12=cs1*d1+cs2*d2;

	 dd2=Factor[snd12^2+csd12^2]/.d1->d0

Solving Equations 4.24 and 4.25, we find the amplitude d2 and phase j:

	 eq1=(D1+1)*ky*(ky*kd)/((1+d0*ky*kd*pcon)^2)*Sqrt[dd2/.d1->d0];

	des1=FindRoot[{eq1==d2,(ArcTan[csd12/.d1->d0,snd12/.d1->d0])==Pi+},

	 {d2,0.1},{,-0.5}];

	 eqd2=d2/.Part[des1,1];

	 Print[“d2 = “,eqd2];

	 eq=/.Part[des1,2];

	 Print[“ = “,eq;]
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The result of the calculations is to output the amplitude and phase values

	 d2 = 0.0784066

	   j = −0.677469

For an accuracy estimation of the considered method, we will use a numeri-
cal calculation of the differential equations:

	 Clear[t,d1];

	 Uri:=Simplify[N[(RS11inv.(EE-AN11*I11))*ri]];

	 pxy:=Simplify[Part[Part[ku*ki*Transpose[kc.
y[t]

x[t]









 .kc.Uri,1],1]];

	 d1:=ky*(D1+1)/(1+ky*kd*pxy);

	 U1=Part[Part[LL.
′

′











y [t]

x [t]
,1],1]+Part[Part[A11.

y[t]

x[t]











.,1],1]-

	 Part[Part[Ev,1],1];

	 U2=Part[Part[LL.
′

′











y [t]

x [t]
,2],1]+Part[Part[A11.

y[t]

x[t]









 ,2],1]-

	 Part[Part[Ev,2],1];

	 sol=NDSolve[{U1==0,U2==0,x[0]==y[0]==0},{x,y},{t,8/Ff}]

The process calculation is made for the interval {0,8/Ff}.
Plotting the graphs of the duty factor for the considered and numerical 

methods are done as follows:

	 prdPlot=Plot[d0+eqd2*Sin[2**tt+eq],{tt,7/Ff,8/Ff},DisplayFunction-> 
Identity];

	 ndPlot=Plot[Evaluate[d1n/.sol],{t,7/Ff,8/Ff},DisplayFunction->Identity];

	 Show[{prdPlot,ndPlot},DisplayFunction->$DisplayFunction];

Temporal changes in the duty factor calculated by the numerical and consid-
ered methods are shown in Figure 4.3.

Let us calculate the current in the load. The current is found with the help 
of the inverse Laplace transform:

	 Clear[p,t];

	 Imax=Simplify[InverseLaplaceTransform[d0*

87096_Book.indb   181 1/27/10   6:11:10 PM



182	 Electrotechnical Systems

	 Inverse[p*I2+Linv.A11].Linv.Ep/d1,p,t]];

	Imax2=Simplify[InverseLaplaceTransform[eqd2*Inverse[p*I2+Linv.A11].

	 Linv.d2Es1,p,t]/.->eq];

	 Imax3=Simplify[InverseLaplaceTransform[eqd2*

	 Inverse[p*I2+Linv.A11].Linv.d2Es3,p,t]/.->eq];

The Imax part of the current corresponds to I0(t); the Imax2 part of the cur-
rent to the first harmonic of I2(t); and the Imax3 part of the current to the third 
harmonic of I2(t). Plotting of the currents for the considered and numerical 
methods are done as follows:

	 Isum=Imax+Imax2+Imax3;

	Iapprox=Plot[{Part[Isum,1],Part[Isum,2]},{t,7/Ff,(7+1)/Ff},DisplayFunction 
->Identity];

	Iexact=Plot[Evaluate[{y[t],x[t]}/.sol],{t,7/Ff,8/Ff},DisplayFunction->Identity];

	 Show[{Iexact,Iapprox},DisplayFunction->$DisplayFunction];

Figure  4.4 presents the currents in the load calculated on the basis of the 
considered and numerical methods.

For the stability calculation, the expressions corresponding to instanta-
neous values of the power are defined in the cell:

	 Clear[t];

	 pt:=Part[Re[Simplify[((Ss1*(p-I*2*))/.p->I*2*)(Cos[2**t]+

d

t
0.145 0.15 0.155 0.16

0.725

0.7

0.675

0.65

0.625

0.575

1

2

Figure 4.3
Temporal changes in the duty factor for the numerical (1) and considered (2) methods (time t 
in seconds).
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	 I*Sin[2**t])]]*ki*ku+pcon,1,1];

	 pt2:=2*eqd2*Re[Simplify[((Simplify[Gd2*(p-I*2*)])/.{p->I*2*,->eq})

	 (Cos[2**t]+I*Sin[2**t])]]*ki*ku;

Using these expressions, we calculate the steady-state process stability by (4.31):

	

H4 =
1 0

0 1
;











	 kMax=100;

	 t0=10/Ff;

	 kpt2:=ku*ki*ky^2*(D1+1)*kd/((1+d0*ky*kd*(pt+pt2))^2);

	 For[k=1,k<=kMax, {t=t0+k/Ff/kMax;

	 H4=H4.MatrixExp[Linv.(-A11-kpt2*E11.Transpose[kc.Uri].kc)/Ff/
        kMax]};k++];

	 Eigenvalues[H4]

As a result we obtain

	 {3.98072 × 10−13, 1.88012 × 10−23}

Since the eigenvalues are less than unity the system is stable.

1

1.5

0.5

–0.5

–1

–1.5

0.145 0.15 0.155 0.16
t

iL3 iL1

iL

1

2

Figure 4.4
Currents iL1 and iL3 calculated on the basis of the considered (1) and numerical (2) methods 
(iL1 and iL3 in amperes, time t in seconds).
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For an estimation of the given values, the stability calculation is realized 
on the basis of the data obtained by a numerical method:

	

H3 =
1 0

0 1
;











	 t0=6/Ff;

	 kMax=100;

	 kpsol:=Re[Part[ku*ki*ky^2*(D1+1)*kd/((1+ky*kd*Evaluate[pxy/.
        sol])^2),1]];

	 For[k=1,k<+kMax, {t=t0+k/Ff/kMax;

	 H3=H3.MatrixExp[Linv.(-A11-kpsol*E11.Transpose[kc.Urin].kc)/Ff/
      kMax]};k++];

	 Eigenvalues[H3]

As a result we have

	 {4.15895 × 10−13, 1.54423 × 10−23}

Comparing the calculated results, one can conclude that the eigenvalues dif-
fer slightly.

4.2 � Characteristics of the Noncompensated DC Motor

4.2.1 � Static Characteristics of the Noncompensated DC Motor

Noncompensated DC motors are widely used in DC drives in view of their 
more simple construction, high efficiency, and low cost. In particular, the exploi-
tation of such motors differs from the exploitation of compensated DC motors. 
The difference results in the weakening of the resulting magnetic field, which 
changes the working characteristics of the motor (Korotyeyev and Klytta, 2005; 
Korotyeyev and Klytta, 2006). Consider a mathematical model of a noncompen-
sated DC motor, the equivalent circuits of which are shown in Figure 4.5.

The differential equations describing the processes in a noncompensated 
DC motor, and taking into account the dependence of the magnetic field ver-
sus the current, have the form

	

L
di t

dt
U R i t k i t t

J
d t

dt
k

A
A

A A A A
( )

( ) ( ( )) ( );

( )

= − −

=

Φ

Φ

ω

ω
(( ( )) ( ) .i t i t MA A L− 	

(4.32)
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Assume that the dependence of the magnetic field versus the armature cur-
rent about an operating mode is linear:

	
Φ Φ ∆Φ( ) ( ) ,I

I
I I a bIA N

N

N
N A A= + − = − 	 (4.33)

where RA and LA are the resistance and inductance of an armature, respec-
tively; iA(t) is the armature current; ML is the load torque; k is the machine 
constant; w(t) is the motor speed; J is the moment of inertia; ΦN is the nomi-
nal flux; ∆Φ Φ ΦN EN N= − ; ΦEN is the no-load flux; IN is the nominal armature 
current; and a and b are constants.

A steady-state process is determined by equating to zero the right parts of 
the set (4.32):

	

U R I k I

k I I M

A A A A

A A L

− − =

− =

Φ

Φ

( ) ,

( ) .

ω 0

0
	 (4.34)

Static characteristics of the noncompensated DC motor are analyzed on the 
basis of the motor, with parameters PN = 7.6 kW; UAN/IAN= 420 V/20.3 A; nN = 
1950 1/min; UEN/IEN = 210 V/2.4 A; RA = 2.15 Ω; LA= 13.4 mH; J = 23.7·10−3 kgm2; 
k = 251.1; ΦN= 7.3·10−3 Vs; and MN= 37.2 Nm.

Figure 4.6 presents the experimental magnetization curve of this motor.
Weakening of the resulting magnetic field in the noncompensated DC 

motor is shown in Figure  4.7, where the curve (2) corresponds to the real 
characteristics, whereas the curve (1) is calculated using (4.33).

The real characteristics of the influence of armature reaction for the differ-
ent excitation currents are presented in Figure 4.8.

UA

IA LA RA

FA

FE

UE

IE

ML

M

ω

Figure 4.5
Equivalent circuits of a noncompensated DC motor. (Data from Korotyeyev I. Ye. and Klytta 
M., 2005. With permission.)
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kΦ

Figure 4.6
Magnetization characteristic of the analyzed motor (kΦ in volt-seconds, IE in amperes). (Data 
from Korotyeyev I. Ye. and Klytta M., 2006. With permission.)
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Figure 4.7
Field weakening for IE = IEN: computed curve (1) and measured characteristic (2) (kΦ in volt-
seconds, IE in amperes). (Data from Korotyeyev I. Ye. and Klytta M., 2005. With permission.)
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Figure 4.8
Measured field characteristics of the analyzed DC motor for the various excitation currents (kΦ in 
volt-seconds, IE in amperes). (Data from Korotyeyev I. Ye. and Klytta M., 2006. With permission.)
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In Figure  4.9 the theoretical (1) and real (2) curves of the armature cur-
rent as a function of load torque are presented. From this figure one can see 
that, in the view of stronger weakening of the field, the armature current 
increases in comparison with the theoretical dependence.

Using the mathematical model, we plot the static characteristics of the non-
compensated DC motor. In the cell, the values of the parameters are inputted:

	 Ra=2.15;

	 La=13.4*10^(-3);

	 n=7.3*10^(-3);

	 nN=1950;

	 Mn=37.2;

	 J1=23.7*10^(-3);

	 Inom=20.3;

In the next cell, the extrinsic parameters of the motor are calculated:

	 Δ0=0.1;

	 Δ=Δ0*n;

	 a1=k*(n+Δ);

	 b1=k*Δ/Inom;

	 k=a1-b1*Inom;

	 kn=nN/n;
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Figure 4.9
Armature current as a function of load torque for the nominal supply (UAN, UEN): Computed 
curve (1) and measured characteristic (2) (IE in amperes, M in newton-meters). (Data from 
Korotyeyev I.Ye. and Klytta M., 2006a. With permission.)
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	 msk=Mn/(n^2);

	 k=Mn/Inom/n;

	 n=N[2*Pi*nN/60];

The coefficient kn corresponds to the conversion of the rotational speed in 
the velocity.

In the next cell, equations that are necessary for plotting the torque-current 
characteristic are defined:

	 Un=420;

	 Imax=a1/2/b1

	 k1=0.8;

	 s:=(Un-Ra*Ix)/(a1-b1*Ix);

	 Mx:=(a1-b1*Iy)*Iy;

	 Mx3:=(a1-b1*Iy2)*Iy2;

	 Mx5:=(a1-b1*Iy4)*Iy4;

	 Mx6:=(a1*k1-b1*Iy5)*Iy5;

	 Iy:=(Un-a1*nr/kn)/(Ra-nr/kn*b1);

	 Iy2:=(Un/2-a1*nr/kn)/(Ra-nr/kn*b1);

	 Iy4:=(Un/4-a1*nr/kn)/(Ra-nr/kn*b1);

	 Iy5:=(Un-a1*nr/kn*k1)/(Ra-nr/kn*b1);

In this cell, currents Iy, Iy2, Iy4, and Iy5 are obtained from the first equa-
tion of the set (4.34) for different voltages Un and under weakening of the 
field defined by the k1 factor; Mx, Mx3, Mx5, and Mx6 are obtained from 
the second equation of the set (4.34) for different currents Iy, Iy2, Iy4, and 
Iy5. It is also assumed that the expression a1–b1*Iy corresponds to kΦ(IA). 
That means that a1=a*k and b1=b*k.

From the equations, the current value Imax corresponding to the moment 
maximum is determined. Then this value is used in plotting part of the 
dependence M = f(I):

	 MIplot1=Plot[Mx,{Iy,0,Imax},AxesLabel->{“I”,”M”},DisplayFunction->
   Identity];

	MIplot2=Plot[Mx,{Iy,Imax,140},AxesLabel->{“I”,”M”},DisplayFunction->
 Identity];
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	 MIplot3=Plot[Iy*a1,{Iy,0,60},PlotStyle->{Thickness[0.004]},

	 AxesLabel->{“I”,”M”},DisplayFunction->Identity];

The torque-current characteristic shown in Figure 4.10 is plotted with the use 
of the function

	 Show[{MIplot1,MIplot2,MIplot3},DisplayFunction->$DisplayFunction];

The straight line (1) corresponds to the condition M~IA,, and the curve 
(2) corresponds to the condition M~Φ(IA)IA. The part (3) of the characteristic 
corresponds to an unstable region of the work. The maximum value deter-
mines the critical torque as in the case of an asynchronous motor.

The torque-speed characteristics of the noncompensated DC motor are 
plotted with the use of the function

	 Plot[{Mx,Mx3,Mx5,Mx6},{nn,0,2674},AxesLabel””,”M”},PlotRange->
       {0,150}];

These characteristics are presented in Figure 4.11. From the figure one sees 
that the characteristics of the noncompensated DC motor and an asynchro-
nous motor are similar.

The real characteristics of the motor for various voltages that are less than 
nominal is presented in Figure 4.12, which practically coincide with the calcu-
lated ones. Differences become apparent for voltages close to nominal one.

The excitation weakening causes the critical torque to decrease. The 
real characteristics of the torque versus speed for IE = 0.8 IEN are shown in 
Figure 4.13.
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Figure 4.10
Curving of the torque characteristic of the noncompensated DC motor (M in newton-meters, 
I in amperes). (Data from Korotyeyev I.Ye. and Klytta M., 2006a. With permission.)
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Figure 4.11
Calculated M/n characteristics of the analyzed motor (M in newton-meters, n in rpm).
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Figure 4.12
Real M/n characteristics of the analyzed motor for IE = IEN and various armature voltages (M in 
newton-meters, n in rpm). (Data from Korotyeyev I. Ye. and Klytta M., 2006a. With permission.)
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Figure 4.13
Real M/n characteristics of the analyzed motor for IE = 0.8 IEN and various armature voltages (M in 
newton-meters, n in rpm). (Data from Korotyeyev I. Ye. and Klytta M., 2006a. With permission.)
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4.2.2 � Analysis of Electrical Drive with Noncompensated DC Motor

Let us consider the starting characteristics in a DC drive with a noncom-
pensated DC motor for various load torques (Korotyeyev and Klytta, 2006b). 
The typical system for the speed control of the DC drive with the additional 
current loop is shown in Figure 4.14.

The parameters of the PI controllers obtained by an empirical method are 
the gains ks = 4, kc =  0.7, the integration time constants Ts = 99.8 ms, Tc = 
0.952 s. Other parameters of the control system are the gains ki = 0.5, kw = 5,4 
10−3, and the reference speed w ref = 5. Further, we compare the start charac-
teristics for two load torques:

Constant load torque

	 ML = const,

Quadratic load torque

	 M mL = ωω2. 	 (4.35)

The coefficient mw = 0.932·10−3 is determined from the nominal point:

	 m MN Nω ω= / .2

+ – +
–

uc

IE UE

ML

iki

kω

ω

ωref DC-DC
converter

Current
controller

Speed
controller

Figure 4.14
Block diagram of the DC drive control system with a noncompensated DC motor. (Data from 
Korotyeyev I. Ye. and Klytta M., 2006b.)
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The DC motor is supplied by the Buck converter shown in Figure 4.15 with 
the PWM control of the output voltage.

The switching frequency of the converter (IGBT technology) equals 10 kHz, 
and the PWM control signal has a “sawtooth” form, with the magnitude of 
Ug = 5 V. The converter is supplied by a 520 V DC voltage source.

The parameters of the control system are presented in the cell:

	 Un=520;

	 tk=4.0;

	 KyI=0.5;

	 Tel=1.05;

	 Ky=4.0;

	 Kd=0.0054;

	 Kel=0.7;

	 Tem=10.02;

In this cell, tk defines the duration of the calculation of a transient behavior, 
KyI defines the gain of the current controller, Tel defines the inverse value 
of the time constant of the current controller, Kd denotes kw, Ky defines the 
gain of the speed controller, and Tem defines the inverse value of the time 
constant of the speed controller. The current and speed controller are defined 
as follows:

	
KyI Tel

s
+ ,

	
Ky Tem

s
+ .

E UA

T

D

uc
PWM

Figure 4.15
Buck converter as controlled supply source of a DC motor. (Data from Korotyeyev I. Ye. and 
Klytta M., 2006b.)
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The calculation of the speed shows that the ripple of the speed is small for the 
high-modulation frequency. This allows the use of the average state-space 
method (Middlebrook and Ćuk, 1976) for solving differential equations that 
describe the processes in the system shown in Figure 4.14.

In the next cell, the equations for the noncompensated DC motor with 
constant load torque are presented. The solution to these equations is deter-
mined with the use of the ND Solve [] function.

	 Ieq5:=(yi[t]*Un/Ug–(a1–b1*it[t])*t[t])/La–Ra*it[t]/La;

	 Veq5:=(a1–b1*it[t])*it[t]/J1–Mn/J1;

	 Zeq5:=Tem*(Uref–Kd*t[t])–Ky*Kd* Veq5;

	 Yeq5:=Tel*(yz[t]–KyI*it[t])+Kel*(Zeq5–KyI*Ieq5);

	 sol6=NDSolve[{it’[t]==Ieq5,t’[t]==Veq5,yi’[t]==Yeq5,yz’[t]==Zeq5,

	 it[0]==0,t[0]==0,yi[0]==Kel*Ky*Uref,yz[0]==Ky*Uref},

                 {it,t,yi,yz},{t,0,tk}];

In this cell, Uref denotes w ref, Ieq5 and Veq5 define the two parts of (4.32); 
Zeq5 defines an equation of the speed controller; and Yeq5 defines an 
equation of the current controller.

The starting characteristics of the current and speed are plotted as follows:

	 PusrVconst=Plot[Evaluate[t[t]/.sol6],{t,0,tk},AxesLabel->

               {“t”,””},PlotRange->All];

	 PusrIconst=Plot[Evaluate[it[t]/.sol6],{t,0,tk},AxesLabel->

                 {“t”,”i”},PlotRange->All];

When the load torque is dependent on the square of speed (4.35), the equa-
tions have the form

	 Veq6:=(a1–b1*it[t])*it[t]/J1–msk*t[t]* t[t]/J1;

	 Zeq6:=Tem*(Uref–Kd*t[t])–Ky*Kd* Veq6;

	 Yeq6:=Tel*(yz[t]–KyI*it[t])+Kel*(Zeq6–KyI*Ieq5);

	 sol7=NDSolve[{it’[t]==Ieq5, t’[t]== Veq6,yi’[t]==Yeq6,yz’[t]==Zeq6,

	it[0]==0,t[0]==0,yi[0]==Kel*Ky*Uref,yz[0]==Ky*Uref},{it,t,yi,yz},{t,0,tk}];
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The starting characteristics are plotted in the same way:

	 PusrV=Plot[Evaluate[t[t]/.sol7],{t,0,tk},AxesLabel->{“t”,””},

	 PlotRange->All];

	 PusrI1=Plot[Evaluate[it[t]/.sol7],{t,0,tk},AxesLabel->{“t”,”i”},

	 PlotRange->All,DisplayFunction->Identity];

Let us calculate the starting characteristics of a compensated DC motor and 
compare them with the ones obtained earlier. The mathematical model of the 
compensated DC motor follows from (4.32):

	
L di t

dt
U R i t k tA

A
A A A N

( ) ( ) ( );= − − Φ ω

	
J d t

dt
k i t MN A L

ω( ) ( ) .= −Φ
	

The parameters for the compensated DC motor are the same as chosen for the 
noncompensated DC motor. The equations for the constant load torque are

	 Ieq7:=(yi[t]*Un/Ug–k*t[t])/La–Ra*it[t]/La;

	 Veq7:=k*it[t]/J1–Mn/J1;

	 Zeq7:=Tem*(Uref–Kd*t[t])–Ky*Kd* Veq7;

	 Yeq6:=Tel*(yz[t]–KyI*it[t])+Kel*(Zeq7–KyI*Ieq7);

	 sol8=NDSolve[{it’[t]==Ieq7,t’[t]== Veq7,yi’[t]==Yeq7,yz’[t]==Zeq7,

	it[0]==0,t[0]==0,yi[0]==Kel*Ky*Uref,yz[0]==Ky*Uref},{it,t,yi,yz},{t,0,tk}];

The starting characteristics are plotted with the use of the functions

	 PusrVconstSkom=Plot[Evaluate[t[t]/.sol8],{t,0,tk},AxesLabel->{“t”,””},

	 PlotRange->All];

	 PusrIconstSkom1=Plot[Evaluate[it[t]/.sol8],{t,0,tk},AxesLabel->{“t”,”i”},

	 PlotRange->All,DisplayFunction->Identity];

The equations describing the processes in the compensated DC motor for the 
load torque (4.35) have the form

	 Ieq8:=(yi[t]*Un/Ug–k*t[t])/La–Ra*it[t]/La;

	 Veq8:=k*it[t]/J1–msk*t[t]*t[t]/J1;
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	 Zeq8:=Tem*(Uref-Kd*t[t])-Ky*Kd* Veq8;

	 Yeq8:=Tel*(yz[t]-KyI*it[t])+Kel*(Zeq8-KyI*Ieq7);

	 sol9=NDSolve[{it’[t]==Ieq8, t’[t]== Veq8,yi’[t]==Yeq8,yz’[t]==Zeq8,

	 it[0]==0, t[0]==0,yi[0]==Kel*Ky*Uref,yz[0]==Ky*Uref},
                {it, t,yi,yz},{t,0,tk}];

The starting characteristics are prepared for plotting as follows:

	 PusrVvarSkom=Plot[Evaluate[t[t]/.sol9],{t,0,tk},AxesLabel->{“t”,””},

	 PlotRange->All];

	 PusrIvarSkom1=Plot[Evaluate[it[t]/.sol9],{t,0,tk},AxesLabel->{“t”,”i”},

	 PlotRange->All,DisplayFunction->Identity];

All starting characteristics of the armature current are plotted with the help 
of the function

	 Show[PusrIconst1,PusrI1,PusrIconstSkom1,PusrIvarSkom1,

	 DisplayFunction->$DisplayFunction];

and are shown in Figure 4.16. In this figure there are presented transients: 
noncompensated motor with constant load torque ML = MN (1); noncompen-
sated motor with load torque proportional to the square of speed (2); com-
pensated DC motor with constant load torque (3); compensated DC motor 
with load torque proportional to the square of speed (4).
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Figure 4.16
Armature current starting characteristics in DC drive with compensated and noncompensated 
DC motors (i in amperes, time t in seconds). (Data from Korotyeyev I. Ye. and Klytta M., 2006b.)
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The starting characteristics of the speed for different load toques and two 
motor types are displayed with the help of the function

	 Show[PusrVconst,PusrV,PusrVconstSkom,PusrVvarSkom];

and are shown in Figure 4.17.
To reduce the transient time, the parameters of PI regulators are optimized 

by the use of the module and symmetry criterions. For the current regulator, 
one obtains the parameters

	 kc = 2.56;  Tc = 6.17 ms,

and for the speed regulator,

	 ks = 35.2;  Ts = 50.0 ms.

The parameters of this case are inputted into the cell:

	 Un=520;

	 tk=1.0;

	 KyI=0.5;

	 Kd=0.005;

	 Kd=0.0056;

	 Tel=162.0;

	 Ky=35.2;

	 Kel=2.56;

	 Tem=176.0;
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Figure 4.17
Motor speed starting characteristics in DC drive with compensated and noncompensated DC 
motors (w in radian/second, time t in seconds). (Data from Korotyeyev I. Ye. and Klytta M., 2006b.)
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The equations for calculating the starting characteristics are written as follows:

For the DC drive with the noncompensated DC motor and constant 
torque,

	 Ieq5:=((UnitStep[yi[t]-Ug]+yi[t]/Ug*UnitStep[-yi[t]+Ug])*

	 Un-(a1-b1*it[t])*t[t])/La-Ra*it[t]/La;

	 V eq5:=(a1-b1*it[t])*it[t]/J1-Mn/J1;

	 Zeq5:=Tem*(Uref-Kd*t[t])-Ky*Kd*eq5;

	 Yeq5:=Tel*(yz[t]-KyI*it[t])+Kel*(Zeq5-KyI*Ieq5);

	 sol6=NDSolve[{it’[t]==Ieq5, t’[t]== V eq5,yi’[t]==Yeq5,yz’[t]==Zeq5,

 	 it[0]==0, t[0]==0,yi[0]==Kel*Ky*Uref,yz[0]==Ky*Uref},

                {it, t,yi,yz},{t,0,tk}];

(the duty factor clipping is carried out by the UnitStep[] function).
For the DC drive with the noncompensated DC motor and the load 

torque proportional to the square of speed,

	 V eq6:=(a1-b1*it[t])*it[t]/J1-msk*t[t]* t[t]/J1;

	 Zeq6:=Tem*(Uref-Kd*t[t])-Ky*Kd* V eq6;

	 Yeq6:=Tel*(yz[t]-KyI*it[t])+Kel*(Zeq6-KyI*Ieq5);

	 sol7=NDSolve[{it’[t]==Ieq5, t’[t]== V eq6,yi’[t]==Yeq6,yz’[t]==Zeq6,

	 it[0]==0, t[0]==0,yi[0]==Kel*Ky*Uref,yz[0]==Ky*Uref},

               {it, t,yi,yz},{t,0,tk}];

For the DC drive with the compensated DC motor and the constant 
torque,

	 Ieq7:=((UnitStep[yi[t]-Ug]+yi[t]/Ug*UnitStep[-yi[t]+Ug])*Un-

	 k* t[t])/La-Ra*it[t]/La;

	 Veq7:=k*it[t]/J1-Mn/J1;

	 Zeq7:=Tem*(Uref-Kd*t[t])-Ky*Kd* V eq7;

	 Yeq7:=Tel*(yz[t]-KyI*it[t])+Kel*(Zeq7-KyI*Ieq7);

	 sol8=NDSolve[{it’[t]==Ieq7, t’[t]== V eq7,yi’[t]==Yeq7,yz’[t]==Zeq7,

	 it[0]==0, t[0]==0,yi[0]==Kel*Ky*Uref,yz[0]==Ky*Uref},

                {it, t,yi,yz},{t,0,tk}];
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For the DC drive with the compensated DC motor and the load torque 
proportional to the square of speed,

	 Ieq8:=((UnitStep[yi[t]-Ug]+yi[t]/Ug*UnitStep[-yi[t]+Ug])*Un-

	 k*t[t])/La-Ra*it[t]/La;

	 Veq8:=k*it[t]/J1-msk*t[t]* t[t]/J1;

	 Zeq8:=Tem*(Uref-Kd*t[t])-Ky*Kd* Veq8;

	 Yeq8:=Tel*(yz[t]-KyI*it[t])+Kel*(Zeq8-KyI*Ieq8);

sol9=NDSolve[{it’[t]==Ieq8, t’[t]== Veq8,yi’[t]==Yeq8,yz’[t]==Zeq8,it[0]=
=0,t[0]==0,

	 yi[0]==Kel*Ky*Uref,yz[0]==Ky*Uref},{it, t,yi,yz},{t,0,tk}];

The starting characteristics are obtained in the same way and are presented 
in Figures 4.18 and 4.19.

From the figure one observes some speed overshoots. For overcoming 
them, we form the reference signal as follows:
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The parameters of this signal are Tref =  0.24 s and w r = 5.
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Figure 4.18
Armature current starting characteristics in DC drive with the parameters determined by the 
module and symmetry criterions (i in amperes, time t in seconds). (Data from Korotyeyev I. Ye. 
and Klytta M., 2006b.)
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The parameters for this case are presented in the cell:

	 Un=520;

	 tk=1.0;

	 KyI=0.5;

	 Kd=0.005;

	 Kd=0.0056;

	 Tel=162.0;

	 Ky=35.2;

	 Kel=2.56;

	 Tem=176.0;

	 Tref=0.24;

The equations for calculating the starting characteristics are written as follows:

For the DC drive with the noncompensated DC motor and the constant 
torque,

	 UrefT:=If[t>Tref,Uref,Uref*t/Tref];

	 Ieq5:=(yi[t]*Un/Ug-(a1-b1*it[t])* t[t])/La-Ra*it[t]/La;
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Figure 4.19
Motor speed starting characteristics in DC drive with the parameters determined by the mod-
ule and symmetry criterions (w in radian/second, time t in seconds). (Data from Korotyeyev 
I. Ye. and Klytta M., 2006b.)
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	 Veq5:=(a1-b1*it[t])*it[t]/J1-Mn/J1;

	 Zeq5:=Tem*(UrefT-Kd*t[t])-Ky*Kd* Veq5;

	 Yeq5:=Tel*(yz[t]-KyI*it[t])+Kel*(Zeq5-KyI*Ieq5);

	 sol6=NDSolve[{it’[t]==Ieq5,t’[t]== Veq5,yi’[t]==Yeq5,yz’[t]==Zeq5,

	 it[0]==0,t[0]==0,yi[0]==0,yz[0]==0},{it,t,yi,yz},{t,0,tk}];

(the representation of linear function of speed is realized by the UrefT 
function).

For the DC drive with the noncompensated DC motor and the load 
torque proportional to the square of speed,

	 Veq6:=(a1-b1*it[t])*it[t]/J1-msk*t[t]*t[t]/J1;

	 Zeq6:=Tem*(UrefT-Kd*t[t])-Ky*Kd* Veq6;

	 Yeq6:=Tel*(yz[t]-KyI*it[t])+Kel*(Zeq6-KyI*Ieq5);

	 sol7=NDSolve[{it’[t]==Ieq5,t’[t]==Veq6,yi’[t]==Yeq6,yz’[t]==Zeq6,

	 it[0]==0,t[0]==0,yi[0]==0,yz[0]==0},{it,t,yi,yz},{t,0,tk}];

For the DC drive with the compensated DC motor and the constant 
torque,

	 Ieq7:=(yi[t]*Un/Ug-k* t[t])/La-Ra*it[t]/La;

	 Veq7:=k*it[t]/J1-Mn/J1;

	 Zeq7:=Tem*(UrefT-Kd*t[t])-Ky*Kd* Veq7;

1
t

10

20

30

i

0.80.60.40.2

1

3
1, 3

2, 4 2, 4

Figure 4.20
Armature current starting characteristics in DC drive using the set-point adjuster (i in amperes, 
time t in seconds). (Data from Korotyeyev I. Ye. and Klytta M., 2006b.)
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	 Yeq7:=Tel*(yz[t]–KyI*it[t])+Kel*(Zeq7–KyI*Ieq7);

	 sol8=NDSolve[{it’[t]==Ieq7,t’[t]==Veq7,yi’[t]==Yeq7,yz’[t]==Zeq7,

	 it[0]==0,t[0]==0,yi[0]==0,yz[0]==0},{it,t,yi,yz},{t,0,tk}];

For the DC drive with the compensated DC motor and the load torque 
proportional to the square of speed,

	 Ieq8:=(yi[t]*Un/Ug–k* t[t])/La–Ra*it[t]/La;

	 Veq8:=k*it[t]/J1–msk*t[t]* t[t]/J1;

	 Zeq8:=Tem*(UrefT-Kd*t[t])–Ky*Kd* Veq8;

	 Yeq8:=Tel*(yz[t]–KyI*it[t])+Kel*(Zeq8–KyI*Ieq8);

	 sol9=NDSolve[{it’[t]==Ieq8,t’[t]== Veq8,yi’[t]==Yeq8,yz’[t]==Zeq8,

	 it[0]==0,t[0]==0,yi[0]==0,yz[0]==0},{it,t,yi,yz},{t,0,tk}];

The current and speed starting characteristics are prepared and plotted in 
the same way. These characteristics are presented in Figures 4.20 and 4.21.

One can see that the overshooting of the armature current is smaller than 
in previous cases. It should be noted that the reduction of the armature cur-
rents during the transient process leads to an increase in the time of the 
transient process.
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Figure 4.21
Starting transients of the motor speed in DC drive using the set-point adjuster (w in radian/
second, time t in seconds). (Data from Korotyeyev I. Ye. and Klytta M., 2006b.)
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5
Modeling of Processes Using PSpice®

PSpice® standard is a computer program dedicated to process modeling in elec-
trical circuits and, for the present, is a trademark of Cadence Company. The pro-
gram packet is distributed under a few versions and names, mainly Microsim 
Design Lab and Orcad Family. The abbreviation SPICE means Simulation 
Program with Integrated Circuit Emphasis. Free or shareware versions of Spice are 
available. The common parts of all the versions are these modules:

Simulation Manager•	
Schematic editor•	
PSpice AD•	

On the basis of the circuits considered in the previous chapters, in particu-
lar, how to use these programs to create and manage circuit drawings, set up 
and run simulations, and evaluate simulation test results will be shown. The 
results of the simulations will be compared with those obtained from the 
Mathematica® models.

5.1 � Modeling of Processes in Linear Systems

The principles of operation of the PSpice schematic editor will be shown 
using the schematic diagram from Chapter 2, Figure  2.1. Let us draw the 
circuit presented in Figure 5.1. Start the schematic editor by double-clicking 
on the Schematics icon in the program group. An empty schematic page is 
displayed. In the beginning, it is recommended the design be named and 
saved by the Save_As command from the File dialog box.

5.1.1 � Placing and Editing Parts

All the parts are marked by a name with a number, for example, L1 or V1. The 
proper part can be found in the Part Browser, and the dialog box is marked 
in Figure 5.1 as (1). Typing the name (L, V, etc.) and then pressing Enter or OK 
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enables selection of the part to be placed. The 10 most recent parts are stored 
in the list (2). We can move the selected symbol to its location and right-click 
to stop placing the parts. The part already placed can be flipped or rotated by 
pressing the Ctrl-F or Ctrl-R buttons. To connect parts with a wire, use the but-
ton Draw Wire (3) by right-clicking the mouse to begin, as well as to finish.

An Agnd (analog ground) or a Gnd component must be placed and con-
nected to one node of our design. It is necessary to fulfill the electrical rules 
of the PSpice netlisting. (Muhammad H. Rashid, Hassan M Rashid 2005)23

5.1.2 �E diting Part Attributes

All the schematic parts and symbols have associated attributes. They can be 
edited by double-clicking on the part, for example, the V1 source, as shown 
in Figure 5.2. The attribute dialog box is opened. It is necessary to fill the 
attribute empty fields.

In our example, the part values should be as follows:

R1 = 0.2 Ω
R2 = 8 Ω
L1 = 8 mH

3 1 2

L1

C1

8e–4 8

R1

R2

0.28mH

I

V V

V1

0

+
–

Figure 5.1
Exemplary schematics page.
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C1 = 80 uF
V1 = Vsin {Vampl = 20 V; Freq = 50, Td = 0 Hz, phase = 0}

Attributes indicated with the ‘*’ symbol are fixed and cannot be changed or 
deleted in the schematic editor. However, they can be globally modified in 
the Symbol Editor.

The V and I markers placed in our schematics determine values that we 
want to be automatically performed as the result of analysis.

5.1.3 � Setting Up Analyses

Standard PSpice A/D analyses are as follows:

DC Sweep•	 —Currents and voltages of the steady-state response are 
calculated.
Bias Point Detail•	 —The bias point is automatically computed by 
PSpice A/D; selecting this item results in reporting the data in out-
put files.
DC sensitivity•	 —This calculates the sensitivity of a node or compo-
nent’s voltage as a function of the bias point.

L1

C1

R1

8e–4

I

V

+

–

Figure 5.2
Part attribute dialog box.
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AC Sweep•	  (frequency response)—This calculates the small-signal 
response of the circuit to a combination of inputs. The sources are 
swept over a declared frequency range. Magnitudes and phases of 
the output values are calculated.
Noise Analysis•	 —This is performed with frequency response analy-
sis. For every frequency specified in the analysis, the contribution of 
each noise generator in the circuit is transferred to an output node.
Transient Response•	 —The behavior of the circuit is observed over 
time as a response of time-varying parameters.
Fourier Components•	 —This can be performed with transient analy-
sis. It calculates the Fourier components of selected signals.

5.2 � Analyzing the Linear Circuits

5.2.1 � Time-Domain Analysis

To analyze the circuit in our example in the time domain, it is necessary to 
open the Analysis, and then the Setup dialog boxes. As shown in Figure 5.3, 
first the Bias point detail and then the Transient must be selected. As a result, 
the proper dialog box, as shown in the figure, should be opened. In this box 
the parameter Print Step determines the time intervals for saving values 
in output files; the Final Time determines the duration of the analysis. The 

Simulate V and I markers

R

0
8mH

V

Figure 5.3
Setting up the transient analysis.
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parameter No-Print Delay determines the moment to start saving the simula-
tion results—the previous values will be computed but not saved in the output 
files. The Step Ceiling determines the maximum allowable time step size for a 
computing algorithm. Parameters for our analysis should be set as

Print Step = 100 μs
Final Time = 50 ms
No-Print Delay = 0 or empty
Step Ceiling = 1 μs

When our design is finished, we can start to simulate it. Pressing the Simulate 
or F11 buttons will start the specified analyses. The PSpice A/D module 
starts to compute the processes in the circuit and save them. First, our design 
is checked for errors. In the case when the circuit or a parameter is incorrect, 
the error is described in an output file. The output file can be opened from 
the Analysis dialog box, under the Examine Output option. For example, if, 
in the R1 value, “0,1” is written instead of “0.1”, the proper fragment of the 
output is shown as follows:

* Schematics Netlist *
R_R2	 0 $N_0001 8
C_C1	 $N_0001 0 8e-4
V_V1		 $N_0002 0 DC 0 AC 0
+SIN	0 20 50 0 0 0
L_L1		 $N_0002 $N_0003 8mH
R_R1		 $N_0003 $N_0001 0,2
------------------------------$
ERROR -- Value may not be 0
**** RESUMING Schematic2.1.cir ****

The error “Value may not be 0” has been found during netlisting of the sche-
matic and pointed out in the output file in the line before the sign $. It is 
necessary to correct the error in the proper Schematics field and start the 
simulation again. Correctness of the circuit is checked again, then the bias 
point for the transient analysis is calculated. Next, the transient analysis 
starts up, and when it is finished, the Probe window appears. The results 
of the simulation are written in output files with the same name as the cir-
cuit but with the .dat and .out extensions. This means that the Probe can be 
started next time without simulation of the circuit.

When the analysis is finished and the Probe window is opened, as shown 
in Figure  5.4, the easiest way to display the traces is to label them in the 
Schematics with proper voltage or current markers, shown in Figure 5.1.

It should be noted that markers can be inserted also after analyses. Marked 
traces are displayed automatically. The other traces that were not marked in 
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the Schematics can be selected from the Trace menu by the Add option (or 
just by pressing the Insert key). A list of all available traces will be displayed. 
We can choose the desired trace from the list and click OK.

The easy way to copy the results of our simulation to other Windows pro-
grams is to use the Copy to clipboard option from the Window dialog box. All 
of the figures presenting simulation test results were obtained in this way.

The range of the time axis is the same as that used in the simulation pro-
file. The means that the beginning moment is equal to 0 or that the No-Print 
Delay value and the end is equal to the Final Time of the analysis. The 
time range, or even the axis variable of displayed results, can be changed 
by double-clicking on the time axis. The results of our simulation are shown 
in Figure 5.5 and are similar to those from Chapter 2, Figure 2.2. They are 
obtained by setting the time range from 0 to 20 ms.

If we need to obtain a proper phase-plane portrait, we can do it by choos-
ing for the x axis variable the I(L1) value, and for the trace the V(C1:1) value. 
The trajectory is presented in Figure 5.6 and looks similar to the one from the 
Mathematica model, shown in Chapter 2, Figure 2.3.

Moreover, the Probe allows presentation of many other time-dependent 
values. This is possible using the Analog Operators and Functions from the 
right of the Add Trace menu. For example, if we need to observe an RMS value 
of the input voltage, we can perform it by typing: RMS(V(V1:+)). To obtain the 

Figure 5.4
Probe window with marked traces.
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Time
0s 2ms 4ms 6ms 8ms 10ms 12ms 14ms 16ms 18ms 20ms

I(L1) V(C1:1) V(V1:+)

–40
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–20
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0
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30

Figure 5.5
Time waveforms of analyzed circuit: input voltage V(V1+), inductor current I(L1), and capacitor 
voltage V(C1:1).

I(L1)
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–40V

–20V
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40V

Figure 5.6
The phase-plane trajectory V(C1:1) versus I(L1).

87096_Book.indb   209 1/27/10   6:11:26 PM



210	 Electrotechnical Systems

active power dissipated in the load of our circuit, type AVG(I(R1)*V(R2:1)); 
and for apparent power, type RMS(I(R1))* RMS(V(R2:1)). Actual waveforms 
are presented in Figure 5.7.

5.2.2 � AC Sweep Analysis

AC sweep analysis is a linear analysis in the frequency domain. It pre-
sents the frequency response of a circuit over a user-defined frequency 
range of AC sources. Let us analyze our linear circuit. It is necessary to 
change the Vsin voltage source to a VAC component that is proper for this 
simulation profile, as shown in Figure 5.8. Instead of time-domain analy-
sis we must choose AC Sweep and Noise Analysis. Set the parameters of 
the simulation as follows:

AC Sweep Type: Linear•	
Total Points: 101•	

Time
0s 5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms 45ms 50ms

AVG(I(R1)*V(R2:1)) RMS(I(R1))*RMS(V(R2:1))

0W

50W

100W

150W

200W

RMS(V(V1:+))
0V

4V

8V

12V

16V

Figure 5.7
Time waveforms of the RMS value of the input voltage (upper window), active and apparent 
power of the load (lower window).
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Start Frequency: 1 Hz•	
End Frequency: 200 Hz•	

In this case, our circuit will be linearly examined for frequency response 
from 1 to 200 Hz, and 101 points of characteristics will be saved in the output 
file. The results of the simulation are presented in Figure 5.9.

Frequency
0Hz 20Hz 40Hz 60Hz 80Hz 100Hz 120Hz 140Hz 160Hz 180Hz 200Hz

V(C1:1) V(V2:+) –I(R1)

0

0.4

0.8

1.2

1.6

2.0

2.4

Figure 5.9
Results of the AC Sweep and Noise Analysis.
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Figure 5.8
Schematic diagram for AC Sweep analysis.
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If the selected values are like those from the figure, we can observe the 
constant value of the input voltage 1V and the frequency-dependent load 
voltage and current. As can be seen, magnitudes of the AC sources are con-
stant, but their frequencies vary.

5.3 � Modeling of Nonstationery Circuits

5.3.1 � Transient Analysis of a Thyristor Rectifier

Figure  5.10 presents a PSpice model of the thyristor (SCR) rectifier pre-
sented in Chapter 2. This is a direct AC/DC converter with a thyristor-
diode bridge with an RL load. The output voltage depends on the delay 
between the moment of zero crossing of the AC voltage and the rising edge 
of the gate impulse. This control function is realized by a TD parameter in a 
V2 pulse voltage. Its parameters are V1 = 0, V2 = 10, TD = 2 ms, TR = 100 μs, 
TF = 100 μs, PW = 1 ms, PER = 10 ms. The gate pulse is the same for both 
thyristors, and its frequency is twice the input voltages. In each moment, 
there could be only one thyristor that conducts a load current. That is, the 
ignited thyristor will be the one with the highest anode potential.

The valves X1 and X2 are described by 2N2579–600 V 25 A type, which 
model is defined by the manufacturer. The AC source is modeled by the VSin 
sinusoidal voltage with internal parameters VAMPL = 310 V, FREQ = 50 Hz, 
TD = 0, Phase = 0. For convenient observation of the load voltage, the negative 
DC terminal is grounded.

R1

100

R2

100

+ –

V1

X1
2N2579 2N2579

X2

D2
Dbreak

D1

+
–V2

LD

40mH

RD
20

V

Dbreak

I

Figure 5.10
A model of the phase-controlled rectifier.
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Exemplary load current, voltage and gate pulses are shown in Figure 5.11. 
For better clearance, the voltage and impulses were scaled 10 times. Because 
of the relatively small value of the time constant L/R of the load, the steady 
state of the circuit was reached in less than one input AC voltage period.

One can see that the curve of the load current presented in Figure 2.7 is the 
same as the one presented in Figure 5.11.

5.3.2 �B oost Converter—Transient Simulation

The open-loop system with the Boost converter is presented in Figure 5.12. 
The switching elements in the circuit are the diode—a Dbreak diode—and 
an S switch.

A Dbreak model is the built-in standard silicon diode model described 
in the Breakout.slb and Breakout.plb model libraries. The S switch, also 
described in the Breakout library, must be previously defined using the Part 
Attribute dialog box. Actually, this component is represented as a voltage-
controlled resistance. Parameters to be defined are the on- and off-state 

Time
20ms 22ms 24ms 26ms 28ms 30ms 32ms 34ms 36ms 38ms 40ms

I(LD) V(LD:1)/10 –I(V2)*10
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35

Figure 5.11
Load current, load voltage, and gate impulses.
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resistances and the thresholds v-on and v-off voltages corresponding to 
them. In our case, the parameters are

Roff •	 = 1e6 Ω
Ron •	 = 2 Ω
Von •	 = 10 V
Voff •	 = 0 V

As the generator of cyclic pulses controlling the switch, the Vpulse trapezoi-
dal voltage source is used. Its parameters should be set as

DC •	 = 0—the voltage for Bias Point calculation
AC •	 = 0—AC magnitude, used for AC sweep analysis only
V1 •	 = 0—initial voltage value
V2 •	 = 10 V—pulsed voltage value
TD •	 = 0 s—delay time
TR •	 = 100 ns—rise time
TF •	 = 100 ns—fall time
PW •	 = 0.000469—pulse width
PER •	 = 1 ms—period

The description of the Vpulse component contains some Simulationonly 
parameters. It indicates symbols to be used for a simulation but not for a 
board layout. In our case, the field can be left empty.

The circuit is analyzed for transients for 8 ms of time. The transient states 
of the input current and output voltage are shown in Figures 5.13 and 5.14.

Dbreak
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20V
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+
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VOFF = 0.0V
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–
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0

0

V

Figure 5.12
Schematic diagram of the Boost converter.
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A useful function of PSpice A/D is Initial Condition. It enables the setting 
of the passive component’s voltage or current values at the start of the analy-
sis. In the case of the converter considered here, we can define the initial 
current of the inductor L1 and the voltage of the capacitor C1. The parameter 
IC for the capacitor should be set to 30 V, and for the inductor, IC = 1.98 A. 
These are the values obtained from the end of the last switching period of 
the previously done simulation.

The results of the analysis in the time domain in two periods of commuta-
tion are presented in Figure 5.15. They represent the steady state of the ana-
lyzed circuit and are the same as those obtained from Mathematica.

5.3.3 � FFT Harmonics Analysis

In some cases there is a need to examine the spectrum of a time-dependent 
signal. As an example, let us analyze the load voltage of the converter pre-
sented earlier. It is possible to do so in two ways: directly in Probe and by 
setting the FFT parameters in the simulation profile.

Time
0s 1.0ms 2.0ms 3.0ms 4.0ms 5.0ms 6.0ms 7.0ms 8.0ms

I(L1)

1.0A

1.2A

1.4A

1.6A

1.8A

2.0A

2.2A

2.4A

Figure 5.13
Transition process for the inductor current.
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To convert the signal into its spectrum, we must first display it in the Probe 
window, as shown in Figure 5.16. It is recommended that the parameters of 
the transient simulation be set up for such a time interval that contains an 
integer number of periods. In our example, if the initial conditions are as in 
the last simulation, and the Final Time is equal to 2 ms, it means that, in two 
periods of the signal, we can observe the steady state of that voltage. To pre-
sent the signal and its FFT as another plot, it is necessary to desynchronize 
them by choosing the option UnsynchronizeXaxis from the Plot menu. To 
transform the signal into its FFT, we use the FFT option from the Trace menu. 
It is necessary to set up the axes to a desired range.

The other method of performing the Fourier analysis is to define it in the 
simulation profile. Under the setup of Transient Analysis, there are fields to 
define the Fourier Analysis. If those fields are filled as follows:

Enable Fourier •	 = On
Center Frequency •	 = 1000 Hz
Number of Harmonics •	 = 5
Output Var(s) •	 = V(R2:2)

Time
0s 1.0ms 2.0ms 3.0ms 4.0ms 5.0ms 6.0ms 7.0ms 8.0ms

V(R2:2)

0V

4V

8V

12V

16V

20V

24V

28V

32V

Figure 5.14
Transition process for the output voltage.
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then the output voltage V(R2:2) will be analyzed with the base frequency 
equal to 1 kHz, and the magnitudes and phases of the first five harmonics 
will be calculated. These results are saved at the end of the output file in the 
following form:

Fourier Components of Transient Response V($N_0002)
DC Component = 1.768876E + 01

Harmonic No.
Frequency 

(HZ)
Fourier 

Component
Normalized 
Component

Phase 
(Deg.)

Normalized 
Phase (Deg.)

1 1.000E+03 1.483E+01 1.000E+00 1.472E+02   0.000E+00
2 2.000E+03 1.028E+00 6.928E−02 3.660E+01 −2.579E+02
3 3.000E+03 1.966E+00 1.325E−01 1.281E+02 −3.136E+02
4 4.000E+03 4.279E−01 2.885E−02 4.253E+01 −5.464E+02
5 5.000E+03 7.057E−01 4.758E−02 1.273E+02 −6.089E+02

Total harmonic distortion = 1.638498E + 01 percent

Time
0s 0.2ms 0.4ms 0.6ms 0.8ms 1.0ms 1.2ms 1.4ms 1.6ms 1.8ms 2.0ms

V(R2:2)

0V

10V

20V

30V

40V
I(L1)

1.9A

2.0A

2.1A

2.2A

2.3A

Figure 5.15
Steady state of the inductor current (upper window) and the load voltage (lower window).
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5.4 � Processes in a System with Several Aliquant Frequencies

In Figure 5.17, a model of a DC/DC step-down converter, equivalent to that in 
Section 2.5, is shown. In those circuits, the switches S2 and S3 are in on/off 
states simultaneously. To avoid shortcircuits on the one hand and overvolt-
ages on the other, they are controlled by the same pulse voltage source V3. Its 
actual parameters should be set as

V1 •	 = −10 V
V2 •	 = 10 V
TD •	 = 0 s
TR •	 = 1 ns
TF •	 = 1 ns
PW •	 = 80 μs
PER •	 = 100 μs

Frequency
0Hz 1KHz 2KHz 3KHz 4KHz 5KHz 6KHz 7KHz 8KHz 9KHz 10KHz

V(R2:2)

0V

5V

10V

15V

20V

SEL>>

Time
0s 0.2ms 0.4ms 0.6ms 0.8ms 1.0ms 1.2ms 1.4ms 1.6ms 1.8ms 2.0ms

V(R2:2)

0V

10V

20V

30V

40V

Figure 5.16
Waveform of the analyzed voltage (upper window) and its FFT diagram (lower window).
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The S1-voltage-controlled switch simulates the nonstationary load. Its resis-
tance in the on state is equal to 8 Ω, and in the off state it is 1 MΩ. Parameters 
of the V2 source are as follows:

V1 •	 = 0 V
V2 •	 = 10 V
TD •	 = 0 s
TR •	 = 100 ns
TF •	 = 100 ns
PW •	 = 40 μs
PER •	 = 60 μs

To obtain the quasi-steady state of the circuit, as presented in Chapter 2, 
Section 2.5, the final time of the analysis is set to 6 ms. Results of the analy-
sis are presented in Figures  5.18 (IL1 current) and 5.19 (the load voltage 
V(C1:1)).

The two final periods of those waveforms are shown. They are denoted 
as quasi-steady state because the frequencies of the pulses controlling the 
switches are aliquant. Therefore, all the waveforms are nonperiodical.

To avoid convergence problems, especially in time-domain analysis, it is 
recommended that properly high voltages be used in the control circuit. As 
voltages in the control and the main circuits are in the same ranges, there are 
fewer problems in calculating the algorithm to establish the precision of a 
calculation. Therefore, the V2 and V3 voltage values applied earlier are cho-
sen as 10 V. The Von and Voff voltages of the switches S are assigned to 10 
and −10 V.
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Figure 5.17
Circuit of the converter with the periodically commutated load.
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Time
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Figure 5.18
The quasi-steady state of the current.
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Figure 5.19
The quasi-steady state of the voltage.
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5.5 � Processes in Closed-Loop Systems

Let us consider the buck-boost DC/DC converter controlled with a volt-
age feedback. The model of the circuit is shown in Figure 5.20. The general 
problem with such a circuit is to transform the electrical values (voltages, 
currents, power, etc.) into control signals. The ABM1 and ABM2 blocks are 
used as the “amplifiers” in the voltage-control loop. Their input and output 
signals are refereed to 0 and can be considered as standard voltages (i.e., they 
can be connected to the other components). A relation between the output 
and input (or inputs) can be easily defined algebraically. For example, if the 
output signal must be negated and divided 100 times with respect to the 
input, the expression to be written is “−(V(%IN))/100“, where the “ (V(%IN))” 
notation means the input voltage. To define constant values, it is convenient 
to use the Const symbol and simply to define its value inside the Value field. 
We can also limit the signals to a desired range with the Limit part filling its 
low and high values.

The output voltage in this converter depends on a duty cycle of the signal 
controlling the switch S1. To obtain the proper duty factor in each period, the 
output voltage divided by −100 is compared with the 1.5 V reference signal. 
Next, that signal is amplified 1.6 times and is limited to between 0.5 and 
4 V. This signal is compared with a ramp voltage and amplified 1000 times 
to obtain square pulses with the desired duty factor. These pulses, limited 

+

–12V

V1

D1
Dbreak

40uH
L1

+ –
+ –

VON = 10V

S1

I

VOFF = 0.0V
2u
C1

10
Rd

1.5

(–V(%IN1)
+V(%IN2)) 
*1.6

4

0.5

(–V(%IN1)
+V(%IN2)) 
*1000

+

–
Vramp0

10

–(V(%IN))/100

0

0

0

V

Figure 5.20
Buck-boost converter.
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to the 0–10 V range, are used to control the S1 switch. The parameters of the 
ramp voltage Vramp are

DC = 0
AC = 0
V1 = 0
V2 = 5 V
TD = 0
TR = 9998 ns
TF = 1 ns
PW = 1 ns
PER = 10 μs

The parameters of the voltage-controlled switch S1 are

RON = 50 mΩ
ROFF = 1 MΩ
VON = 10 V
VOFF = 0 V

Time
0s 20us 40us 60us 80us 100us 120us 140us 160us 180us 200us

I(L1)
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Figure 5.21
Transient process of the inductor current.
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The transient processes of the inductor current I(L1) and reversed output 
voltage –V(Rd:2) are presented in Figures 5.21 and 5.22.

Changing the Const value, in our example is equal to 1.5 V; we can set up 
the output voltage to other values.

5.6 � Modeling of Processes in Relay Systems

The main circuit of the relay system described in Chapter 3, Section 3.6, is 
shown in Figure 5.23. Components S1-S4 and the Vdc voltage source rep-
resent a typical bridge VSI inverter. In such circuits, the pairs of switches 
S1-S4 and S2-S3 are in on or off states simultaneously. This is realized by 
the symmetrical setting of its parameters to Von = 10 V and Voff = −10 V 
values. The output filter is composed of L1 and C1 components. The resistor 
R1 represents the load of the converter. Because the output voltage is bipo-
lar (differential), it is convenient to transform it to the unipolar form (one 
pole should be connected with the 0 point) using the E1 component. This 
component is the voltage-controlled voltage source with the parameter Gain 
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Figure 5.22
Transient process of the load voltage.
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equal to 1. The one-pole signal u taken from E1 is more convenient for the 
following control circuit.

The circuit shown in Figure  5.24 generates a rectangular control signal 
for the switches. Tracing of an input sinusoidal signal Vgen forms the alter-
nating load voltage u. The load and generator voltages are compared by 
the ABM2 block. Resistances of R2 and R3 determine the dead band of the 
Schmitt trigger. Next, in the ABM1 block, the output signal is amplified 
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Figure 5.23
The main circuit of the DC/AC converter.
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Control circuit of the converter.
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100,000 times and, in the end, is limited to between –10 and 10 V by the 
Limit component.

The Schmitt trigger is a comparator with a positive feedback. It constitutes 
the hysteresis component, and its dead band depends on the gain defined by 
the R2/R3 ratio.

In our case, the input voltage Vgen parameters are

Vampl = 200 V
Freq = 10000 Hz
and all of the other values must be set as 0.

The results of transient analysis of the system for the first five periods, on 
time interval from 0 to 0.5 ms, are presented in Figure 5.25. The same analy-
sis, but made for a longer time, is presented in Figure 5.26. As can be seen, 
the steady state of the system has been formed. The test results presented 
in the foregoing simulation are the same as those presented in Chapter 3, 
Section 3.6.

Time
0s 50us 100us 150us 200us 250us 300us 350us 400us 450us 500us

V(Vgen:+) V(u)

–200V

–150V

–100V

–50V
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200V

–

Figure 5.25
Transient process of the output voltage V(u) and generator voltage V(Vgen) for the generator 
frequency 10 kHz.
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5.7 � Modeling of Processes in AC/AC Converters

5.7.1 � Direct Frequency Converter

A model of another kind of power electronics device is presented in 
Figure  5.27. This is a one-phase full-bridge direct AC/AC frequency con-
verter. Pairs of switches S1, S3 and S2, S4 are in opposite states. When one 
pair is on, the second must be off. Moreover, duty factors of both control sig-
nals must be the same, equal to 1/2. The parameters of the switches are

ROFF = 1 MΩ
RON = 100 mΩ
VOFF = −9 V
VON = 9 V

Time
249.5ms 249.6ms 249.7ms 249.8ms 249.9ms 250.0ms

V(Vgen:+) V(u)

–200V

–150V

–100V

–50V

0V

50V

100V
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200V

Figure 5.26
Transient process of the output voltage V(u) and generator voltage V(Vgen) for generator fre-
quency 10 kHz for the last 10 switches.
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Bipolar control of the switches is achieved by reverse connection of pairs to 
the control source Vcntrl. The parameters of the source are

DC = 0 V
AC = 0 V
V1 = −10 V
V2 = 10 V
TD = 0 s
TR = 200 ns
TF = 200 ns
PW = 1.66645 ms
PER = 3.33333 ms

Since the rising and falling edges of the control voltage are equal to 200 ns, 
during those moments, none of the switches is really in an on state. Therefore, 
the load should be overvoltage protected by the Rs Cs snubber circuit. The 
converter is analyzed for transients with simulation of the parameters Final 
Time = 10 ms, Step Ceiling = 1 µs. The result of the analysis is presented in 
Figure 5.28. Because in such converters the number of control pulses must be 
equal to an even multiple of the AC supply half-period, the load voltage is 
rectangular with sinusoidal envelope.

5.7.2 � Three-Phase Matrix-Reactance Converter

The three-phase matrix-reactance converter (MRC) is a kind of power elec-
tronics device that enables changing both the amplitude and frequency of 
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Figure 5.27
Direct frequency converter.
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the voltage. This particular device is based on two well-known topologies: 
the three-phase matrix converter, which enables connection of each input 
phase with each load terminal, and the buck-boost, for example, used in DC 
power suppliers. Its basic properties and the control strategy are described 
in Chapter 2, Section 2.7. The main circuit of the analyzed converter is pre-
sented in Figure 5.29. It consists of the following functional blocks: the three-
phase AC power line with input filter (VS1 ÷ 3, LS1 ÷ 3, CS1 ÷ 3), the 3 × 3 
matrix of bidirectional switches SAA ÷ SCC, boost inductors LS1 ÷ 3, load 
switches SL1 ÷ 3, and load resistors RL1 ÷ 3 with filtering capacitors CL1 ÷ 3. 
The internal parameters of all voltage-controlled switches are

RON = 10 mΩ
ROFF = 100 kΩ
VON = 10 V
VOFF = 0 V

The amplitudes of supply voltages are VAMPL = 325 V.
The control method or modulation strategy of this converter is similar to 

standard three-phase matrix converters (MC). The only difference is that, 
in time intervals where, in a standard MC a zero vector is generated, in the 
MRC the load switches must be additionally turned on. In all other states of 
the circuit, those switches must be off. The proposed control circuit of the 

Time
0s 1ms 2ms 3ms 4ms 5ms 6ms 7ms 8ms 9ms 10ms

I(Rl)
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V(Rl:1, Ll:1)

–400V
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Figure 5.28
Load voltage and current of the converter.
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converter, based on the Venturini method, is presented in Figure 5.30. First, 
the input values are defined: time t, voltage transformation factor q, and a 
difference between the source and load angular frequencies w m. On the basis 
of the latter, three modulating signals are calculated; for example, in first 
phase, the formula written in the ABM block is

	 VDF1 = (1+(2 q cos (w m time))/4.

The sums of the modulating signals are next compared with the ramp volt-
age Vramp, amplified and limited to (−1:11 V), thus generating PWM signals 
for the switches. The parameters of the ramp voltage source are
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Figure 5.29
The main circuit of the matrix-reactance converter.
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TF = 0.5 μs
PW = 0.5 μs
PER = 200 μs

The results of time-domain simulation are presented in Figure 5.31 (currents) 
and Figure 5.32 (voltages). To obtain the steady state of the circuit, the simula-
tion results are printed from 15 ms. As can be seen, load values are smaller 
than in results presented in Chapter 2 because switching losses in the main 
circuit cause worse energetic efficiency.

5.7.3 � Model of AC/AC Buck System

Let us consider a PSpice model of the AC line conditioner described in Chapter 
4. Such devices are based on the well-known DC/DC buck topology, trans-
formed into an alternating current by use of bidirectional switches in the 
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Figure 5.30
Control circuit of the matrix-reactance converter.
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Figure 5.31
ILF1 and ILS1 inductor currents.
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Figure 5.32
UCF1 and UCL1 capacitors voltages.
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main circuit instead of transistors or diodes. Assuming that the commutation 
frequency is much higher than the input AC voltage, the load voltage depends 
linearly on the duty factors of the impulses that control the main switches. 
Because of the three-phase AC/AC three-wire connection, its structure can be 
simplified to the two-phase controller topology, as shown in Figure 5.33. The 
“C” phase of the circuit is a common wire, so the output currents and voltages 
could be regulated independently in phases “A” and “B.” Sinusoidal voltage 
sources VINA-VINC with series R = 1 Ω resistors represent the three-phase 
power source. Its amplitude is equal to 325 V, and the frequency is 50 Hz. 
Components U77 and U88 are Sw_Tclose switches—in fact, they represent a 
time-dependent resistance and will be used to generate a line voltage imbal-
ance. At the moment t = 40 ms, the U78 changes its resistance from 1 MΩ to 
10 Ω. Star-connected voltage-controlled voltage sources E53–E55, with trans-
form ratio GAIN = 0.03077, implement a separated line voltage measurement 
with nominal output amplitude equal to 10 V. It is necessary to connect them 
in parallel with three equal star-connected resistors. Moreover, to provide 
correctness of the voltage measure, the star point must not be grounded. 
S64–S67 voltage-controlled bidirectional switches realize the main function 
of the controller. As S64 and S67 are on, while S65 and S66 are off, the load 
is connected to the source. In the opposite state of these switches, the load 
is shorted, which enables continuity of the load current. Moreover, to avoid 
short circuits on the one hand and to minimize overvoltages on the other, the 
parameters VON and VOFF of the switches are set symmetrically. More pre-
cisely, in this circuit they are set as 9 V for on state and −9 V for off state for 
all switches. The control terminals of the switches connecting the load with 
the source, and the switches shorting the load, are just inversely connected. 
Such a configuration simplifies the control circuit because there is only one 
rectangular control signal needed for each phase of the converter, signed as 
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Figure 5.33
The main circuit of the AC/AC conversion system.
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d1 and d2 in the scheme. They are measured, separated, and scaled by H20 
and H21 current-controlled voltage sources with parameter GAIN = 3.225. 
The parameters of the models used in the main circuit are

VINA•	 : VAMPL = 325 V, FREQ = 50 Hz, PHASE = 0; for VINB and 
VINC, set phases equal to 120 and 240 degrees
E53 ÷ 55•	 : GAIN = 0.03077
U78•	 : tClose = 40 ms; ttran = 1 ms; Rclosed = 10 Ω, Ropen = 1 Meg
S64 ÷ 66•	 : ROFF = 30 kΩ, RON = 100 mΩ, VOFF = −9 V, VON = 9 V
H20, H21•	 : GAIN = 3.225

Control circuits of the converter are presented in Figure 5.34. Conceptually, 
the control is based on the instantaneous power theory. In two upper sub-
circuits, the instantaneous values of the source voltage and load current are 
transformed into orthogonal a-b space-state vectors (in blocks ABM1 ÷ 4). 
Their coordinates can be observed as ulalfa–ulbeta and ilalfa–ilbeta sig-
nals, respectively. The ulalfa–ulbeta signals are obtained as a product of the 
source voltage and the calculated transformation factor d. It means that, in 
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Control circuit of the AC/AC conversion system.
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fact, those values represent the load voltage. This is a much easier way to 
obtain their waveforms because the real load voltage is chopped and would 
need conditioning (i.e., filtering or averaging). Expressions of main blocks 
and models in the control scheme are

ABM1 •	 and ABM3: VIN*2
ABM2 •	 and ABM4: VIN/sqrt(3)
ABM5 •	 and ABM6: VIN1*VIN2
ABM7•	 : VIN2/(VIN1*VIN1*95.4)-1
ABM8•	 : (VIN1-VIN2)*10
ABM9•	 : (VIN1-VIN2)*1000 000
V127•	 : DC = 0 V, AC = 0 V, V1 = 0 V, V2 = 1 V, TD = 0 s, TR = 199.4 μs, 
TF = 200 ns, PW = 200 ns, PER = 0.2 ms
initial conditions of the load current for LLU •	 IC = −380 mA, for LLV 
IC = −1.26 A, for LLW IC = 1.65 A

Although the initial conditions are not necessary for inductor currents, they 
can be set up to shorten any transient states in the modeled circuit. Their 
values were obtained from previously done simulations.

As described in Chapter 4, the goal of the control method is to stabilize the 
value of the instantaneous power of the load. The power is determined as a 
sum of products of orthogonal currents and voltages (ABM5 and ABM6) and 
can be observed in point d in the lowest subcircuit in Figure 5.26. The next 
two blocks (ABM7 and ABM8) realize the closed-loop control system. The 
measured instantaneous power is being compared with the calculated one, 
and the control error is amplified 10 times. This operation determines the 
actual value of the voltage transformation ratio d. This d factor, compared in 
ABM9 with the ramp voltage, determines the duty factor of the signal con-
trolling the main switches. Next, the rectangular signal is limited to −10 and 
10 V. The last unit that forms the control signal is the RC delay circuit. This 
circuit forms the exponential shape of commutation processes as they occur 
in any real solid-state components.

5.7.4 �  Steady-State Time-Domain Analysis

Let us analyze the AC/AC converter previously described in the time domain. 
The parameters of the simulation are

Print Step = 100 μs
Final Time = 80 ms
Step Ceiling = 0.3 μs

Figure 5.35 presents the time waveform of the control signal d. This value deter-
mines the instantaneous voltage transformation factor of the conditioner being 
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operated under voltage imbalance. As can be seen, the d factor is modulated 
by two components with frequencies equal to 100 Hz and 5 kHz. The first one 
provides the load voltage and current balance, and is generated by the control 
system. The second one is produced by the power conversion and the frequency 
of the ramp generator V127. Figure 5.36 presents waveforms of load currents 
in the steady state. As can be seen, their amplitudes are equal, a fact confirming 
the correctness of the presented model and its control method.

5.8 � Static Characteristics of the Noncompensated DC Motor

In this part the PSpice model of the DC motor described in Section 4.2 will 
be shown. The proposed electrical circuit realization of Equations 4.32 and 
4.33 is shown in Figure 5.37. The top right circuit is a realization of the excita-
tion part of the motor. It consists of the VE and RE components, which repre-
sent the excitation voltage and resistance, respectively. The current-controlled 
voltage source H_TORQ implements a relation between the armature cur-
rent and the weakening of the magnetic field. Its Gain = 0.755 results from 
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Figure 5.35
Voltage transformation factor.
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the slope coefficient of the theoretical line shown in Figure 4.7. The H_KPHI 
source, with Gain = −1 provides the straight calculation of the kΦ parameter 
of the machine. The top left circuit represents the armature. RA and LA are 
the armature resistance and inductance, respectively. The voltage-controlled 
voltage source E_EMF, with Gain = 1, represents the back electromotive force 
of the machine. Its value is proportional to the product of the actual value 
of kΦ and the angular velocity of the rotor w. The lower circuit is the electri-
cal representation of a mechanical part of the motor. An electromechanical 
torque is equal to the product of the kΦ and the armature current. In the 
model, its value is represented in volts. At the end of the circuit, there is a 
load torque, simulated by the voltage source V_ML. The series inductance L_J 
represents a moment of inertia, and the resistance R_F simulates mechanical 
losses. The angular velocity is expressed in amperes. The current-controlled 
voltage source H_W changes the signal into the voltage value w. The ABM 
block allows recalculation of the angular speed w into the rotation speed 
n [1/min] by simply multiplying the value by 30 and dividing it by p.

Let us examine how that circuit can show relations between the load torque 
and weakening of the magnetic field or armature current. For the determina-
tion of any static characteristics of the machine, a DC Sweep analysis seems to 
be the most proper. We set the armature voltage V_A = 420 V and the excitation 
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Figure 5.36
Time waveforms of load currents.
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voltage V_E = 210 V, both as nominal values. The load torque voltage V_ML 
will be the swept value, so, in the scheme, its value is optional. In fact, the value 
of V_ML is set in the simulation profile. The parameters of the analysis are

Sweep type: linear
Swept var type: V_ML
Start Value = 0 V
End Value = 200 V
Increment = 0.1

As a result, the load torque of the machine increases linearly, and any 
responses of the circuit to it are calculated.

L_ J

23mH

(V(%IN)*30)/3.14

+ –

H
H_W

+

– 0V
V_ML

L_A

13.4mH

H

H_EL++
– –

E_EMF

E3

R_A

2.15

H_KPHI

H

+

–
420V
V_A

R_E

82.7

+– +–

+–

H

H_TORQ

+

–

V_E
168V

R_F

0.01

0

0

w

KPhi

0

0

IA

KPhi

w

IA

0

n

0

KPhi V

Excitation circuitArmature circuit

Mechanical part

×

×

Figure 5.37
PSpice model of the noncompensated DC Motor.

87096_Book.indb   237 1/27/10   6:11:43 PM



238	 Electrotechnical Systems

Let us examine the model for the influence of the armature current on 
field weakening. The value of the armature current mainly depends on the 
load torque ML. In our model, it is simulated by the V_ML voltage, where 
1 V corresponds to 1 Nm of the load torque. We can easily plot the curve rep-
resenting field weakening versus armature current kΦ = f(IA), as shown in 
Figure 5.38. It is obtained by choosing the V(kPhi) plot, setting as the x axis 
variable the armature current –I(V_A) and scaling the axes.

To examine the dependence between the armature current and the load 
torque IA = f(ML), we can use the same model and simulation. Excitation 
and armature voltages are nominal, and the load should increase. The plot 
of the curve is shown in Figure 5.39. As can be seen, the armature current 
does not grow linearly with the load torque. This is caused by power losses 
in the motor represented in our model by the resistor R_A and the earlier-
mentioned field weakening. The resistor R_F represents friction losses in 
the motor and its value, the idle current of the machine. Its value cannot be 0 
because of a time constant of the mechanical circuit that equals τ = L J

R F
_
_ .

Insofar as in our model the torque depends on the magnetic flux, we can 
also examine the phenomenon of curving of the torque and determine its 
critical value. The plot of the torque versus the armature current is presented 
in Figure  5.40. This is obtained by use of the same DC sweep simulation. 
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Figure 5.38
Field weakening for nominal UA and UE voltages versus the armature current.
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As the x-axis variable, the armature current – I(V_A) is chosen, and as the 
observed value, the torque V(V_ML:+) is chosen. As can be seen, the critical 
torque equals 112 Nm, and the same value is presented by the mathematical 
model in Chapter 4, Section 4.2. The only difference between Mathematica 
and PSpice simulations is that, in this simulation, the input value is the 
torque. In fact, the dependence is calculated reversely as IA = f (ML). As a 
result, the plot of the torque over the critical value does not decrease since 
the function can have only one value for one argument. Let us try to avoid 
that problem during the examination of the mechanical characteristics of the 
motor. As we want to observe the torque versus rotation, the input value 
must be a current force. We have to change the voltage source V_ML into the 
current source I_ML and set the DC sweep analysis parameters as

Sweep type: linear
Swept var type: I_ML
Start Value = −50 A
End Value = 250 A
Increment = 0.1

V (V_ML:+)
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Figure 5.39
Armature current as a function of the load torque for the nominal supply.
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All the remaining parameters should be left as in the previous simulation. 
In Figure 5.41, the V(I1:+) versus rotation speed is shown, which is the M/n 
characteristic of the model.

This is the particular curve that shows that the mechanical characteristics 
of noncompensated and asynchronous motors are similar. The same charac-
teristic is presented in Chapter 4, Figure 4.11.

5.9 � Simulation of the Electrical Drive 
with Noncompensated DC Motor

The model of the control system of a DC drive for the earlier-presented non-
compensated motor is shown in Figure 5.42. The parameters of the motor are 
the same as presented in Section 5.7 and Figure 5.37, but in this case, the load 
torque is dependent on the square of the motor speed. The value of the load 
is modeled by the ABM_ML block, which recalculates the angular speed 
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Figure 5.40
Curving of the torque characteristics.
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Figure 5.41
The mechanical characteristics of the model.
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The model of the speed and current controller of the DC drive.
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into the V_ML value. Components V_UN, S1, D1, and the internal induc-
tance of the motor L_A simulate the Buck converter that allows control of the 
armature voltage V_A between 0 and 520 V. Parameters of the switch S1 are

ROFF = 1 Meg
RON = 10 m
VOFF = 0 V
VON = 10 V

The reference w = 5, set in the constant block, is compared with the actual 
speed of the motor and regulated next by the PI controller. The formula in 
the block of the speed controller is υ υout

s
s in= +

+
4 10 02

0 01
.

.  and it differs from the 
mathematical model by the 0.01 constant in the denominator. Its value is neg-
ligible for regulation processes, but it is necessary to put it there because of 
possible convergence problems during the simulation. Similar to the speed, 
the prescribed current is compared with an actual value and regulated by 
the PI block by the formula υ υout

s
s in= +

+
0 7 1 05

0 01
. .

. . Finally, the output signal forms 
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Figure 5.43
Motor starting: armature current I(I_LA) and rotor speed V(w) versus time.
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a duty factor of the control pulses by comparison with the V_Sawtooth volt-
age whose internal parameters are as follows:

DC = 0
AC = 0
V1 = 0
V2 = 5
TD = 5 m
TR = 50 n
TF = 99.9 u
PER = 100 u

At the end of the control system is the voltage comparator with gain = 100 and 
limit block, which finally forms the control impulses for the main switch S1.

To observe the transient states during the start of the drive, the model 
is simulated in the time domain for 4 s. Due to a great number of com-
mutations and the long time of the analysis, it is recommended that 
interested values in the schematics be marked, and limit the data to be 
collected to the marked ones. The results of the simulation are presented 
in Figure 5.43.

One can see that the results obtained are similar to those presented in 
Chapter 4, Section 4.2.
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