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ticity with the help of symbolic computation. Differential and integral operators
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readily, and fundamental concepts can be illustrated and problems solved with
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tic problems. General theorems, fundamental solutions, displacements, and stress
potentials are presented and discussed. The Rayleigh-Ritz method for obtaining
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Introduction

MOTIVATION

The idea for this book arose when the authors discovered, working together on a partic-
ular problem in elastic contact mechanics, that they were making extensive and repeated
use of MathematicaTM as a powerful, convenient, and versatile tool. Critically, the use-
fulness of this tool was not limited to its ability to compute and display complex two-
and three-dimensional fields, but rather it helped in understanding the relationships be-
tween different vector and tensor quantities and the way these quantities transformed
with changes of coordinate systems, orientation of surfaces, and representation.

We could still remember our own experiences of learning about classical elasticity and
tensor analysis, in which grasping the complex nature of the objects being manipulated
was only part of the challenge, the other part being the ability to carry out rather long,
laborious, and therefore error-prone algebraic manipulations.

It was then natural to ask the question: Would it be possible to develop a set of
algebraic instruments, within Mathematica, that would carry out these laborious manipu-
lations in a way that was transparent, invariant of the coordinate system, and error-free?
We started the project by reviewing the existing Mathematica packages, in particular the
VectorAnalysis package, to assess what tools had been already developed by others
before us, and what additions and modifications would be required to enable the manip-
ulation of second-rank tensor field quantities, which are of central importance in classical
elasticity. In this book we present our readers with the result of our effort, in the form of
Mathematica packages, notebooks, and worked examples.

In the course of building up this body of methods and solutions, we were forced
to review much of the well-established body of classical elasticity, looking for areas of
application where our instrumentarium would be most effective. After a while it became
apparently necessary for us to include this review in the text, in order to preserve the logic
and consistency of approach and to achieve a level of completeness – although we did
not aim to reach every region of the vast domain of continuum mechanics, or elasticity in
particular.

This book is intended as a text and reference for those wishing to realise more fully the
benefit of studying and using classical elasticity. The approaches presented here are not
aimed at replacing various other computational techniques that have become successful
and widespread in modern engineering practice. Finite element methods, in particular,
through decades of application and development, have acquired tremendous versatil-
ity and the ability to deliver numerical solutions of complex problems. However, the
power of analytical treatments possible within the framework of elasticity should not be

1
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underestimated: true understanding of physical systems often consists of the ability to
identify the relationships and interdependencies between different quantities, and noth-
ing serves this objective more elegantly and efficiently than concise analytical solutions.

It is our hope that any readers who have previous experience of courses in engineering
mechanics and strength of materials will find something useful for themselves in this book.
This might be just a practical tool, such as a symbolic manipulation module; or it might be
an explanation that helps readers to make sense of a more or less sophisticated concept
in elasticity theory, or in the broader context of continuum mechanics. In particular, we
sought to use consistently, insofar as it was possible, the invariant form of operations with
tensor fields. It is of course true that for practical purposes the results always need to be
expressed in some specific coordinate system, to make them understandable to computer
algebra systems and humans. Natural phenomena, however, do not require coordinate
systems to happen – in fact, some of the most successful theories in the natural sciences
are built on the basis of invariance with respect to transformations of spatial and temporal
coordinates. The great benefit of the symbolic manipulation ability of Mathematica is that
it allows the (sometimes heavy) machinery of tensor manipulation in index notation to
be hidden from the user. It is indeed our hope that providing readers with coordinate-
invariant analytical instruments will allow them to concentrate on the intriguing underlying
natural relationships that are the reason many people choose to study this subject in the
first place.

Many books exist that are devoted to similar topics, and many of them are remarkably
good. Some of them show readers in detail how important results in elasticity are derived,
often frightening away beginners with lengthy derivations and numerous indices. Others
select some of the most elegant solutions that can be obtained in a surprisingly concise
way, if the right path to the answer is judiciously chosen, usually on the basis of many years
of practice in algebraic manipulation. This work is unique in that it attempts to place the
focus firmly on the analysis of the mechanics of deformation in terms of tensor fields, but
to take away the fear of ‘long lines,’ freeing the reader to explore, verify, visualise, and
compute.

As in any classical subject (and there are not many fields in hard natural science more
classically established than elasticity), a great body of knowledge has been accumulated
over decades and centuries of research. Detailed description of all of these areas could
fill many volumes. Topics covered in this book were selected because they represent the
common core of concepts and methods that will be useful to any practitioner, whether on
the research or application side of the subject. They also lend themselves well to being
implemented in the form of symbolic manipulation packages and illustrate key principles
that could be applied elsewhere within the broader subject. We made a deliberate effort
to make this book rather concise, aiming to illustrate an approach that can be successfully
applied also to numerous other examples found in the excellent literature on the subject.

The authors’ experience is primarily of teaching continuum mechanics and elasticity
to European students in France and the United Kingdom. Some of the material included
in this book was used to teach advanced mechanics and stress analysis courses. However,
it is also the authors’ belief that, in the context of the U.S. graduate teaching system, the
scope covered in this work would be particularly appropriate for a one-semester course
at the graduate level in departments of engineering mechanics, engineering science, and
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mechanical, aerospace, and civil engineering. It will equip the listeners with valuable
analytical skills applicable in many contexts of applied research and advanced industrial
development work.

The subject of the book is of particular interest to the authors because both of them
have been involved, for a number of years, in the capacity of researchers, graduate super-
visors, research project leaders, and consultants, in the application of classical methods of
continuum mechanics to modern engineering problems in the aerospace and automotive
industry, power generation, manufacturing optimisation and process modelling, systems
design, and structural integrity assessment, etc.

Classical elasticity is one of the oldest and most complete theories in modern science.
Its development was driven by engineering demands in both civil and military construction
and manufacture and required the invention and refinement of analytical tools that made
crucial contributions to the broader subject of applied mathematics.

In an old and thoroughly researched subject such as elasticity, why does one need yet
another textbook? Elasticity theory has not experienced the kind of revolution brought
about by quantum theory in physics or the discovery of the gene in biology. Development
of elasticity theory largely followed the paradigm established by Cauchy and Kelvin,
Lagrange and Love, without significant revisions. Certainly, one ought not to overlook
the advent of powerful computational techniques such as the boundary element method
and the finite element method. Yet these techniques are entirely numerical in their nature
and cannot be used directly to establish fundamental analytical relations between various
problem parameters.

For the first time in perhaps over 200 years, the practice of performing analytical
manipulations in elasticity is changing from the pen and paper paradigm to something
entirely different: analytical elasticity by computer.

The origins of elasticity are often traced to Hooke’s statement of elasticity in 1679 in the
form of the anagram ceiiinsssttuvo containing the coded Latin message ‘ut tensio, sic vis,’
or ‘as the extension, so the force.’ Development of elasticity theory required generalisation
of the concepts of extension or deformation and of stress to three dimensions. The necessity
of describing elastic fields promoted the development of vector analysis, matrix methods,
and particularly tensor calculus. The modern notation used in tensor calculus is largely
due to Ricci and Levi-Civita, but the term ‘tensor’ itself was first introduced by Voigt in
1903, possibly in reference to Hooke’s ‘tensio.’

The subject of tensor analysis is thus particularly closely related to elasticity theory.
In this book we devote particular attention to the manipulation of second rank tensors
in arbitrary orthogonal curvilinear coordinate systems to derive elastic solutions. Differ-
ential operations with second rank tensors are considered in detail in an appendix. Most
importantly from the practical viewpoint, convenient tools for tensor manipulation are
written as modules or commends and organized in the form of a Mathematica package
supplied with this book.

The theory of potential is another branch of mathematics that stands in a close sym-
biotic relationship with elasticity theory, in that it both was driven by and benefited from
the search for solutions of practical elasticity problems. We devote particular attention
to potential representations of elastic fields, in terms of both stress and displacement
functions.
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Fundamental theorems of elasticity are indispensible tools needed to establish unique-
ness of solutions and also to develop the techniques for finding approximate solutions.
These are presented in a concise form, and their use is illustrated using Mathematica exam-
ples. Particular attention is given to the development of approximate solution techniques
based on rigorous variational arguments.

Appendices contain some reference information, which we hope readers will find
useful, on tensor calculus and Mathematica commands employed throughout the text.

WHAT WILL AND WILL NOT BE FOUND IN THIS BOOK

The particular emphasis in this text is placed on developing a Mathematica instrumen-
tarium for manipulating vector and tensor fields in invariant form, but also allowing the
user to inspect and dissect the expressions for tensor components in explicit, coordinate-
system-specific forms. To this end, at relevant points in the presentation, the appropriate
modules are constructed. This includes the definition of differential operators (Grad,
Div, Curl, Laplacian, Biharmonic, Inc) applicable to scalars, vectors, and tensors.
Importantly, in the case of tensor fields, definitions of right (post-) and left (pre-) forms
of the Grad operator are made available. Analysis of biharmonic functions is addressed in
some detail, and tools for the reduction of differential operators in arbitrary orthogonal
curvilinear coordinate systems are provided to help the reader reveal and appreciate their
nature. The modules IntegrateGrad and IntegrateStrain have particular significance
in the context of linear elastic theory and are explained in some detail, together with their
connection with the Saint Venant strain compatibility conditions. All packages, example
notebooks, and solutions to exercises can be downloaded freely from the publisher’s web
site at www.cambridge.org/9780521842013

The development of Mathematica tools happens against the backdrop of the presen-
tation of the classical linear elastic theory. To keep the presentation concise, some care
was taken to select the topics included in this treatment.

Chapter 1 is devoted to the kinematics of motion and serves as a vehicle for introducing
the concept of deformation as a transformation map, leading naturally to the concept
of deformation gradient and its polar decomposition into rotation and translation. The
definition of strain then follows, and particular attention is focused on the concept of small
strain. The procedure for reconstituting the displacement field from a given distribution of
small strains is constructed based on rigorous arguments and implemented in the form of
an efficient Mathematica module. In the process of developing this constructive approach,
the conditions for small strain integrability are identified (also known as the Saint Venant
strain compatibility conditions).

The significance of some differential operators applied to tensor fields becomes imme-
diately apparent from the analysis of Chapter 1. In particular, the second-order incompat-
ibility operator, inc , is introduced, allowing the Saint Venant condition for compatibility
of small strain εεε to be written concisely:

incεεε = 000.

This operator has particular significance in the theory of elasticity, and further attention
is devoted to it in subsequent chapters, as well as to its relationship with the laplacian and
biharmonic operators.



PAB CUFX161-Constantinescu August 13, 2007 17:14

Introduction 5

Chapter 2 is devoted to the analysis of forces. Particular attention is given to elasto-
statics, that is, the study of stresses and the conditions of their equilibrium. We show how
the principle of virtual power offers a rational starting point for the analysis of equilibria
of continua. The concept of stress appears naturally in this approach as dual to small strain
in a continuum solid. Furthermore, the equations of stress equilibrium, together with the
traction boundary conditions, follow from this variational formulation in the most con-
venient invariant form. An interesting aside here is the discussion of the expressions for
virtual power arising within different kinematical descriptions of deformation (e.g., invis-
cid fluid, beams under bending) and the modifications of the concept of stress that are
appropriate for these cases.

The classical stress definition according to Cauchy is also presented, and its equiva-
lence to the definition arising from the principle of virtual power is noted. The Cauchy–
Poisson theorem then establishes the form of equilibrium equations and traction boundary
conditions. (Discussion of the index form of equilibrium equations and boundary condi-
tions that is specific to coordinate systems is addressed by demonstration in the exercises
at the end of this chapter.) Some elementary stress states are considered in detail.

Having established the fact that equlibrium stress states in continuum solids in the ab-
sence of body forces are represented by divergence-free tensors, we address the question
of efficient representation of such tensor fields. The Beltrami potential representation is
introduced, in which the operator inc once again makes its appearance. Donati’s theo-
rem is then quoted, which establishes a certain duality between the conditions of stress
equilibrium and strain compatibility.

Chapter 3 is devoted to the discussion of general anisotropic elasticity tensors. Impor-
tant properties of elastic tensors are introduced, and the relationships between tensor and
matrix representations are rigorously considered, together with efficient Mathematica
implementations of conversion between different forms. Next, classes of material elastic
sysmmetry are considered, and the implications for the form of elastic stiffness matrices
are clarified. Elastic isotropy is discussed in detail as a particularly important case that is
treated in more detail in subsequent chapters.

Mathematica tools for displaying elastic symmetry planes are presented, along with
ways of visualising the results of extension experiments on anisotropic materials.

The methods of solution of elasticity problems for anisotropic materials are not con-
sidered in the present treatment, as the authors felt that this important subject deserved
special treatment.

Modifications and perturbations to the liniear elastic theory are briefly discussed,
including thermal strain effects and residual stresses. The chapter is concluded with a brief
discussion of the limitations of the linear elastic theory and the formulation of Tresca and
von Mises yield criteria.

Chapter 4 is devoted to the formulation of the complete problem of elasticity and
the discussion of general theorems and principles. First, the formulation of a well-posed,
or regular problem of thermoelasticity is introduced. Next, the displacement formula-
tion (Navier equation) and the stress formulation (Beltrami–Michell equations) are in-
troduced. As a demonstration of the application of elasticity problem formulation, the
problem of the spherical vessel is solved directly by considering the radial displacement
field in the spherical coordinate system, computing strains and stresses, and satisfying the
equilibrium and boundary conditions.
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Next, the principle of superposition is introduced, followed by the virtual work theo-
rem. This allows the nature and the conditions for the uniqueness of elastic solution to be
established. This is followed by the proof of existence of the strain energy potential and the
complementary energy potential and of reciprocity theorems. Saint Venant torsion is next
considered in detail with the help of Mathematica implementation, serving as the vehicle
for the introduction of the more general Saint Venant principle. The counterexample due
to Hoff is given as an illustration, and a rigorous formulation of the principle, following
von Mises and Sternberg, is given.

Chapter 5 is devoted to the solution of elastic problems using the stress function
approach. The Beltrami potential introduced previously provides a convenient represen-
tation of self-equilibrated stress fields. The Airy stress function corresponds to a particular
case of this representation and is of special importance in the context of plane elasticity
due to its simplicity, and for historical reasons. Particular care is therefore taken to intro-
duce this approach and to discuss the precise nature of strain compatibility conditions that
must be imposed in this formulation to complement stress equilibrium. This allows the
elucidation of the strain incompatibility that arises in the plane stress approximation. In
passing, an important issue of verifying the biharmonic property of expressions in an ar-
bitrary coordinate system is addressed symbolically through the analysis of reducibility of
differential operators. It is then demonstrated how strain compatibility in plane stress can
be enforced through the introduction of a corrective term. Plane strain is also considered,
and the simple relationship with plane stress is pointed out.

The properties of Airy stress functions in cylindrical polar coordinates are addressed
next. The general form of biharmonic functions of two coordinates, due to Goursat, serves
as the basis for obtaining various forms of Airy stress functions as suitable candidate solu-
tions of the plane elasticity problem. The Michell solution, although originally incomplete
and amplified with additional terms by various contributors, is introduced and discussed
due to its historical importance. Furthermore, it allows the identification of some impor-
tant fundamental solutions that serve as nuclei of strain within the elasticity theory. In this
way the solutions for disclination, dislocation, and other associated problems are analysed.

The Airy stress function solution is derived next for a concentrated force applied at
the apex of an infinitely extended wedge. This important solution serves to introduce the
Flamant solution for the concentrated force at the surface of an elastic half-plane. The
combination of the appropriate wedge solution with the dislocation solution allows the
Kelvin solution for a concentrated force acting in an infinite elastic plane to be derived
by enforcing displacement continuity. The derivation makes use of the strain integration
procedure presented earlier.

Williams eigenfunction analysis of the stress state in an elastic wedge under homoge-
neous loading is presented next. On the basis of this solution, the elastic stress fields can
be found around the tip of a sharp crack subjected either to opening or to shear mode
loading. Finally, two further important problems are treated, namely the Kirsch problem
of remote loading of a circular hole in an infinite plate and the Inglis problem of remote
loading of an elliptical hole in an infinite plate.

Chapter 6 is devoted to the introduction and use of the method of displacement
potential. First, the harmonic scalar and vector Papkovich–Neuber potentials are intro-
duced and the representations of simple deformation states in terms of these potentials are
found. Next, the fundamental solution of three-dimensional elasticity is derived, the Kelvin



PAB CUFX161-Constantinescu August 13, 2007 17:14

Introduction 7

solution for a force concentrated at a point within an infinitely extended isotropic elastic
solid. The Kelvin solution serves as the basis for deriving solutions for force doublets, or
dipoles, with or without moment, and also for centres of dilatation and rotation. These are
further examples of strain nuclei, already introduced earlier in the context of plane elastic
problems.

Solutions presented next are for the Boussinesq and Cerruti problems about concen-
trated forces applied normally or tangentially to the surface of an elastic half-space. The
solution for a concentrated force applied at the tip of an elastic cone is given next. General
solutions in spherical and cylindrical coordinates are discussed, and the use of spherical
harmonics illustrated. The Galerkin vector is introduced as an equivalent displacement
potential formulation, and Love strain function presented as a particular case. The chapter
is concluded with a brief note on the integral transform methods and contact problems.

Chapter 7 deals with the subject of energy principles and variational formulations,
which are of particular importance for many applications, because they provide the basis
for most numerical methods of approximate solutions for problems in continuum solid
mechanics. Using strain energy and complementary energy potentials introduced earlier,
a suite of extremum theorems is introduced. On this basis approximate solutions (bounds)
in the theory of elasticity are introduced, using the notions of kinematically and statically
admissible fields. The problem of the compression of a cylinder between rigid platens
provides an example of application of the method.

Next, extremal properties of free vibrations and approximate spectra are considered.
Analysis of vibration of a cantilever beam serves as an example.

Appendices contain some background information on linear differential operators,
particularly in application to tensor fields studied with respect to general orthogonal
curvilinear coordinate systems. Also explained is the implementation of these operators
within the Tensor2Analysis package. Some important Mathematica constructs used
in the text, such as the IntegrateGrad module, are also explained, along with other
Mathematica tricks and utilities developed by the authors for the visualisation of results.

This book does not dwell in any detail on many important problems in elasticity and
continuum solid mechanics. Anisotropic elasticity problems are not addressed here in any
detail, nor are the complex variable methods in plane elasticity. Contact mechanics forms
another large section of elasticity that is not treated here. Elastic waves, dispersion, and
interaction with boundaries are not addressed in this text, again due to the fact that the
authors thought it impossible to give a fair exposition of this subject within the limited
space available.

It is the authors’ hope, however, that many of the methods and approaches developed
and presented in this book will provide the reader with transferable techniques that can
be applied to many other interesting and complex problems in continuum mechanics. To
help achieve this purpose, the book contains over 60 exercises that are most efficiently
solved using Mathematica tools developed in the corresponding chapters. Many of these
exercises are not original, and, whenever possible, explicit reference is made to the source.
The authors’ hope is, however, that in solving all of these exercises readers will be able to
appreciate the advantages offered by symbolic manipulation.
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1 Kinematics: displacements and strains

OUTLINE

This chapter is devoted to the introduction of the fundamental concepts used to describe
continuum deformation. This is probably most naturally done using examples from fluid
dynamics, by considering the description of particle motion either with reference to the
initial particle positions, or with reference to the current (actual) configuration. The rela-
tionship between the two approaches is illustrated using examples, and further illustrations
are provided in the exercises at the end of the chapter. Some methods of flow visualisation
(streamlines and streaklines) are described and are illustrated using simple examples. The
concepts are then clarified further using the example of inviscid potential flow.

Placing the focus on the description of deformation, the fundamental concept of
deformation gradient is introduced. The polar decomposition theorem is used to separate
deformation into rotation and stretch using appropriate tensor forms, with particular
attention being devoted to the analysis of the stretch tensor and the principal stretches,
using pure shear as an illustrative example. Trigonometric representation of stretch and
rotation is discussed briefly.

Discussion is further specialised to the consideration of small strains. Analysis of
integrability of strain fields then leads to the identification of the invariant form of com-
patibility conditions. This subject is important for many applications within elastic theory
and is therefore dwelt on in some detail. Strain integration is implemented as a generic
module in Mathematica, allowing displacement field reconstruction within any properly
defined orthogonal curvilinear system.

1.1 PARTICLE MOTION: TRAJECTORIES AND STREAMLINES

Lagrangian description

Let us suppose that the material body under observation occupies the domain � ∈ R3 in
a reference configuration C. Each material point is identified by its spatial position XXX in
the reference configuration.

Let us assume that the motion of a particle is described by a function

xxx = FFF(XXX, t) (1.1)

which maps each point XXX of the reference configuration onto its position xxx at time t.
The mapping FFF is therefore defined,

FFF : � × [0,T] −→ R3,

8
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X
x

Figure 1.1. The initial and the actual configuration of a body and the position of a particle on its path.

where � denotes the initial configuration of the body. The domain �t = FFF(�, t) is referred
to as the actual configuration at time t.

This description of motion is referred to as the Lagrangian description.
We shall assume that matter is neither created nor removed, that noninterpenetrability

of particles is respected, and that the continuity of material orientation is conserved during
motion.

These assumptions imply that there exists a one-to-one relation between material
particles and points XXX in the reference configuration, as well as between the initial and
actual positions of particles XXX and xxx, respectively.

Particle path

The trajectory of a given particle in the fixed laboratory frame is the curve that is also
referred to as the particle path (see Figure 1.1). The particle path is the geometrical locus
of the points occupied by the material particle at different times during deformation and
can be mathematically expressed as the following set:

P(XXX) = {FFF(XXX, t)|t ∈ [0,T]}. (1.2)

Consider as an example the particle paths of points on a rigid ‘railway’ wheel that is rolling
without slipping along a surface represented by a straight horizontal line.

In order to illustrate particle paths in Mathematica, first define the transformation F
that at time t is given by the superposition of translation of the wheel centre by the
distance vvvt and rotation of the wheel around its centre by the angle ωt. This is done by
introducing vector positions of the wheel centre cent, the particle point a and velocity
vector v, and the rotation matrix rot.

a = {a1, a2, a3}; v = {v1, 0, 0};

rot[phi_] :=
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Figure 1.2. Trajectories of points on a rigid ‘railway’ wheel rolling along a horizontal surface without
slipping.

{{ Cos[phi], Sin[phi], 0},

{-Sin[phi], Cos[phi], 0},

{ 0, 0, 1}}

F[a_, t_]:= v t + cent + rot[omega t].(a - center)

F[a, t]

The condition of rolling without slipping is ensured by the fact that the total velocity of
the point in instantaneous contact with the surface is equal to zero, due to the fact that
the contributions to this velocity from the translation and rotation parts of the motion
are equal and opposite; that is,

v1 = ωR.

The points selected for particle path tracking are obtained as a double-indexed list
using Table. Flatten transforms the double-indexed list into a single-indexed list.

The wheel and wheel1 represent the ‘railway’ wheel with an outsized ‘tyre’ that
is allowed to pass below the surface. The traject set of particle paths is obtained
using the standard ParametricPlot command. The form of the command represents
the application (Map) of the ParametricPlot command to all initial points. The Drop

command eliminates the third coordinate for two-dimensional plotting.
All trajectories and the wheel and tyre are displayed in Figure 1.2 using Show. The

particle paths can be recognised as cycloids. Classical implicit equations for these curves
can be obtained after some additional manipulations.

cent = {0, R, 0};

R = 1; omega = 1; v1 = R omega;

points = Flatten[

Table[

center + r {Cos[alpha], Sin[alpha], 0},

{r, 0.2, 1.6, 0.2}, {alpha, 0, 0}], 1]

wheel = ParametricPlot[

{R Cos[theta], 1 + R Sin[theta]},
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{theta,0, 2 \[Pi]},
DisplayFunction -> Identity ];

wheel1 = ParametricPlot[

{1.6R Cos[theta], 1 + 1.6R Sin[theta]},

{theta,0, 2 \[Pi]},
DisplayFunction -> Identity ];

traject =

Map[

ParametricPlot[

Evaluate[ Drop[

F[cent + (0. + 0.2 #){Cos[0], Sin[0], 0}, t],

-1 ]],

{t, 0, 10},

PlotStyle -> {Evaluate[Hue[0.1 #]]} ,

DisplayFunction -> Identity ] &#,

Range[8] ];

Show[wheel, wheel1, Sequence[traject] ,

DisplayFunction -> $DisplayFunction,

AspectRatio -> Automatic ]

Eulerian description

Practical experience shows that it is not always possible to track the path of all particles
from the initial to the actual configuration. This is generally the case with fluid flows, as
one notices when observing the flow of particles in a river from a bridge.

In a situation such as this one can imagine instead that we are able to make two
snapshots of the particles at two consecutive time instants. The difference in particle
positions in the snapshots depends on the time interval between them. If this interval is
sufficiently small (for a particular flow), than the particle displacements can be used to
obtain approximate velocities of the particles.

Developing this idea, we shall suppose that the motion at each time instant is described
by the velocity field with respect to the actual configuration:

vvv(xxx, t) : �t −→ R3.

In order to recover the particle path defined previously, one has to integrate the velocities
of a given particle during time. This leads to a new definition of the particle path for
particle XXX as the solution of the following ordinary differential equation:

dxxx
dt

= vvv(xxx(t), t) t ∈ [0,T] (1.3)

xxx(0) = XXX. (1.4)
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Streamline

A streamline is a curve defined at a particular fixed moment in time so that at each point
along the curve the tangent line points in the direction of the instantaneous velocity field.
Because a curve can be defined using either a parametric or an implicit description, the
following two descriptions of a streamline arise.

Consider a vector field of velocities vvv(xxx, t) and a streamline defined in the parametric
form as the curve aaa(s), with s ∈ R the curvilinear coordinate. As the tangent line is in
the direction of velocity field, it follows that there exists a variable parameter λ(s) that
provides the following proportionality:

daaa
ds

= λ(s)vvv(aaa(s), t) ∀s ∈ R.

Choosing λ(s) = 1, one obtains the streamline passing through the point XXX at time t = 0
through integration of the ordinary differential equation

daaa
ds

= vvv(aaa(s), t) t ∈ [0,T] (1.5)

aaa(0) = XXX. (1.6)

An implicit expression for a two-dimensional surface in R3 can be given by the locus
of the solutions of an equation

ψ(xxx) = const

for a scalar-valued function ϕ : R3 −→ R.
A streamline consisting of the points aaa can also be defined as the intersection of

the two surfaces, and therefore corresponds to the solution of the implicit system of
equations

ψ1(aaa) = 0, ψ2(aaa) = 0, (1.7)

where ψ1, ψ2 are two scalar-valued functions.
For planar flows that take place in the (x1, x2) plane, the second equation can be taken

to be the equation of a plane, ψ2(aaa) = aaa · eee3 = 0, and the analysis can be carried out in
terms of only one remaining function, ψ1.

The gradient

∇ψ1(aaa) = ∂ψ1

∂x1
(aaa)eee1 + ∂ψ1

∂x2
(aaa)eee2

defines a vector field normal to the streamline (aaa) = 0, and therefore also normal to the
tangent line of the streamline ttt,

∇ψ1(aaa) · ttt(aaa) = 0,

with

ttt(aaa) = −∂ψ1

∂x2
(aaa)eee1 + ∂ψ1

∂x1
(aaa)eee2.
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Figure 1.3. Streaklines of the points in a plane rigidly attached to a wheel rolling along a straight line
without slipping.

Streakline

A streakline associated with point PPP at the time instant t is the geometrical locus of all
particles that passed through point PPP at an instant τ ≤ t. This locus can be written explicitly
in mathematical form as the following set:

S(PPP, t) = {FFF(FFF−1(PPP, τ), t)|τ ∈ (−∞, t]}. (1.8)

The concept of streaklines stems from their application in fluid mechanics. In flow visual-
isation experiments one often releases smoke or coloured particles from a certain point.
The image of these particles at any time instant is the streakline of the release point at
that moment.

The computation of streaklines is illustated next using Mathematica on the basis of
the examples already discussed with the turning wheel.

To compute the streakline, we first compute the inverse transformation as a superposi-
tion of the inverse translation and rotation. This can also by done using the application
of Solve to the corresponding equation.

The same command grouping as in the case of particle paths makes it possible to
generate the streaklines for a whole series of points, as displayed in Figure 1.3.
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Finv[alpha_, tau_] :=

cent + rot[- omega tau] . (alpha - v tau - cent)

alpha = {alpha1, alpha2, alpha3}

finv = Simplify[ Solve[ F[alpha, t] == a, alpha] ]

Simplify[

v t + cent +

rot[omega t] . (Finv[ {alpha1, alpha2, alpha3}, tau] -

cent) ]

a0 = {0, 3, 0}

F[ Finv[a0 , tau] , 1] // MatrixForm

ParametricPlot[

Drop[

F[ Finv[a0 , tau] , 1]

, -1],

{tau, -10, 0}, AspectRatio -> 1 ]

streaklines = Map[

ParametricPlot[

Evaluate[Drop[

F[ Finv[ cent + (-0.5 + 0.2 # ) {Cos[0], Sin[0], 0}, t] , 0 ],

-1 ]] , {t,-10,0},

PlotStyle -> {Evaluate[Hue[0.1 #]]} ,

DisplayFunction -> Identity ] & ,

Range[8] ];

Show[ wheel, streaklines, DisplayFunction -> $DisplayFunction ,

AspectRatio -> 1]

The plot of a streakline in the present case appears to be a spiral. Although the wheel
has a finite extent within the plane, the streaklines can be understood by imagining the
flow pattern due to an infinitely extended plane attached to the wheel and undergoing
translation and rotation with it.

Ideal inviscid potential flow

Complete analysis and description of fluid flow requires the introduction of the notion of
mass and of conservation laws of mass and momentum, in addition to the description of
the kinematics of continuous motion presented in the previous section.
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ψ=constant

ϕ=constant

v Figure 1.4. Schematic illustration of equipotential lines and streamlines.

For the purposes of the present discussion we omit these theoretical concepts and move
directly to the consideration of irrotational flows of an ideal incompressible, homogeneous
fluid in the presence of conservative body forces. For fluid flows of this class, the velocity
field can be expressed as the gradient of a potential function, and they are therefore
referred to as potential flows. The details of these concepts can be found in classical
textbooks on continuum and fluid mechanics (Huerre, 2001; Malvern, 1969; Salençon,
2001). Here we shall simply use potential flows to illustrate displacement and velocity fields.

The velocity field of a two-dimensional potential flow can be characterized by either
the velocity potential ϕ or the stream function ψ :

vvv = gradϕ vvv = curlψ (1.9)

vvv = ∂ϕ

∂x1
eee1 + ∂ϕ

∂x2
eee2 vvv = − ∂ψ

∂x2
eee1 + ∂ψ

∂x1
eee2. (1.10)

These equations show that the velocity potential ϕ and the stream functionψ are conjugate
complex functions of the complex variable z = x + ι̇y. The continuity equation ensures
further that both functions are also harmonic.

The flow can therefore be characterised by the complex potential:

f (z) = f (x + ι̇y) = ϕ(x, y) + ι̇ψ(x, y).

Two important orthogonal families of lines characterising the flow are the

• equipotential lines: ϕ(x, y) = const
• streamlines: ψ(x, y) = const,

(see Figure 1.4).
Some complex potentials charaterizing basic flow patterns are

• Uniform flow of uniform velocity U at an angle α with the x axis:

f (z) = U exp (−ι̇α) z.

• Point source of intensity Q at z0:

f (z) = Q
2π

log (z − z0).
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• Point vortex of intensity � at z0:

f (z) = ι̇�

2π
log (z − z0).

• Doublet of intensity µ at the orientation angle α (which can be obtained by differen-
tiation of the point source):

f (z) = −µ exp (ι̇α)
z − z0

.

• Flow in a corner of intensity � at z0:

f (z) = c
m + 1

zm+1 c ∈ R,m ∈ [−1,∞).

Linear combinations or conformal mappings of these potentials lead to a series of classical
solutions for potential flows, including the flow around a cylinder and the Kutta–Joukowsky
flow around a wing.

We demonstrate here how to use Mathematica to visualise the particular case of flow
around a cylinder.

The complex potential f for this problem is obtained by the superposition of the funda-
mental potentials for a uniform flow and those of a doublet and a vortex.

Let the parameters of the flow be as follows: Uinf – the velocity at infinity, Gam –
the inensity of the source-sink doublet and the vortex creating the circulation, and rc

the radius of the cylinder.

rc = 1; Uinf = 1; Gam = - 5. 2 Pi;

Gam / (4 Pi Uinf rc)

f = Uinf (z + rcˆ2 / z) - I Gam / (2 Pi) Log[ z / rc]

The complex variable z is expressed as a sum of its real and imaginary parts, z = x + ι̇y.
The velocity potential ϕ and the stream function ψ are the real and imaginary parts of
the complex potential.

The harmonicity of the potential is verified by the Cauchy–Riemann equations:

∂ϕ

∂x
= −∂ψ

∂y
∂ϕ

∂y
= ∂ψ

∂x
.

Because Mathematica does not automatically simplify expressions such as a + ι̇0 to a
when a is a real number, corresponding simplification rules are defined and applied to
the expressions.

Finally, the streamlines are plotted as level lines, or contours, of the stream function.

f = f /. z -> x + I y

phi = ComplexExpand[Re[ f ]]

psi = ComplexExpand[Im[ f ]]

phi = Simplify[ phi /. Complex[a_, 0.‘] -> a /.
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Figure 1.5. Velocity field, streamlines, and deformation of particles during potential flow around a rigid
cylinder.

Arg[x + I y] -> ArcTan[x, y] ]

psi = Simplify[ psi /. Complex[a_, 0.‘] -> a ]

Simplify[ D[phi, x] - D[psi, y] /. 0.‘ -> 0]

Simplify[ D[phi, y] + D[psi, x] /. 0.‘ -> 0]

cplot = ContourPlot[ psi , {x, -5, 5}, {y, -5, 5},

AspectRatio -> Automatic,

Contours -> 20, Frame -> False]

The velocity field is computed as the gradient of the velocity potential vvv = gradϕ. The
vectors are plotted using the standard package PlotField. Options allowing the aspect
ratio of the plot to be adjusted are explained in detail in the help notes for that package.

To superimpose the plot of streamlines and the plot of the velocity field, the Show

command is used. The result of such superposition is displayed in Figure 1.5. The image
file was created using the Export command.

A useful Mathematica trick is the use of the option DisplayFunction ->

Identity that permits the creation of a plot in memory without displaying the im-
age. The option DisplayFunction -> $DisplayFunction restores the default setting
and displays the complete plot.

v[x_, y_] = {D[phi, x], D[phi, y]}

<< Graphics‘PlotField‘
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vplot = Show[

Graphics[Circle[ {0, 0}, rc], DisplayFunction -> Identity],

PlotVectorField[ v[x, y] , {x, -5, 5}, {y, -5, 5},

PlotPoints -> 6, ScaleFactor -> None ,

DisplayFunction -> Identity],

DisplayFunction -> $DisplayFunction, AspectRatio -> 1]

shvelocity = Show[ cplot, vplot,

Graphics[Disk[ {0, 0}, rc], DisplayFunction -> Identity],

DisplayFunction -> $DisplayFunction, AspectRatio -> 1]

Export["flow_cylinder_velocity.pdf", shvelocity]

We now proceed to integrate the velocity field eqn at a series of points in order to
compute the trajectories of these points. The points are then also grouped into circular
particles allowing their deformation to be displayed.

eqn = Thread[{x’[t], y’[t]} == v[x[t], y[t]] ]

tmax = 16.0; dt = 1.;

r = 0.1; n = 10;

circlepts =

Table[N[ r {Sin[2 Pi k/n], Cos[2 Pi k/n]}], {k,n} ];

The integration is performed using the NDSolve command and the commands applied
to a series of points are grouped together in the flows function. The position of the
deformed particles is extracted using the flowpts function.

Using the Map command gives the advantage of not having to keep track of the
number of points involved in the operations. The programming style used in this part of
the example follows the idea of the circlepts function described by Bahder (1994).

flows[{a_, b_}] :=

Apply[Flatten[

NDSolve[ Join[eqn, {x[0] == a + #1, y[0] == b + #2}],

{x, y}, {t,0,tmax}] ]&,

circlepts, 1 ]

flowpts[ center:{_,_}] :=

Map[ ({x[#],y[#]} /. flows[center]) &,

Range[0,tmax,dt] ]

points = Table[ flowpts[{-3, y0}], {y0, 0.2 , 1.4 , 0.4}];
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The particles obtained as sets of points are transformed into polygonal dots using the
Graphics command. All plots are superposed in order to obtain the image shown in
Figure 1.5.

Show[

ContourPlot[ Y , {x, -5, 5}, {y, -5, 5},

DisplayFunction -> Identity , Frame -> False,

ColorFunction -> Hue, Contours -> 30],

Graphics[{GrayLevel[0.] , Disk[ {0, 0}, rc]}],

Graphics[Map[Polygon, points, {2}]],

PlotRange -> {{-5, 5}, {-10, 5}},

AspectRatio -> Automatic,

DisplayFunction -> $DisplayFunction

]

1.2 STRAIN

Deformation gradient

The examples in the preceeding section served to show how one can describe the most
general motion of material particles leading to complex trajectories, using, for example,
the Lagrangian deformation function FFF(XXX, t).

To simplify the analysis of particle motion in the neighbourhood of a material point
XXX it is usual to employ Taylor series expansion of the deformation function with respect
to the spatial variable XXX, considering time t to be fixed:

FFF(XXX + dXXX, t) = FFF(XXX, t) + ∇XXXFFF(XXX, t) · dXXX + o(dXXX2). (1.11)

The widely accepted hypothesis in continuum mechanics is that the first-order term in the
above expansion contains sufficient information to explain and predict a large range of
phenomena. We define the deformation gradient as

FFF(XXX, t) = ∇XXXFFF(XXX, t). (1.12)

This is the spatial gradient of a vector-valued function FFF and is therefore a second-order
tensor. This means that in a particular coordinate system FFF(XXX, t) can be represented by a
time-varying matrix field. A somewhat more detailed discussion of tensor representations
in different orthogonal curvilinear coordinate systems in given in Appendix 1.

Let us illustrate some of the properties of the deformation gradient in relation to other
physical quantities.

• If an infinitesimal material vector dXXX originating at point XXX is considered in the
reference configuration, and dxxx is its image in the actual configuration due to the
motion, then in the first-order approximation of the Taylor expansion one obtains

dxxx = FFF · dXXX.
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In other words, the deformation gradient maps infinitesimal material vectors originat-
ing at a chosen point XXX from initial into actual configuration. Note that the translation
of the initial pointXXX to its actual positionxxx is not captured by the deformation gradient.

• Because the motion obeys the requirement of material impenetrability, the local vol-
ume may only be scaled by a finite positive number. This is expressed in terms of the
deformation gradient as

0 < J < ∞ J = | detFFF | . (1.13)

More precisely, if one considers an initial material volume � which is transformed
in the actual configuration into volume ω, then the actual volume is given by the
integral ∫

ω

dv.

The volume element defined by three vectors, dxxx = FFFdXXX, dyyy = FFFdYYY, dzzz = FFFdZZZ, is the
volume defined by these vectors and expressed using the determinant of the coordinate
matrix [·, ·, ·],

dv = |[dxxx,dyyy,dzzz]| == |[FFFdXXX,FFFdYYY,FFFdZZZ]| = | detFFF |dV = JdV,

with dV the volume element defined by the three vectors dXXX, dYYY, dZZZ in the initial
configuration. By the change of variable one obtains∫

ω

dv =
∫
�

J dV.

The rotation and stretch tensors

The Polar Decomposition Theorem states that all positive definite tensors can be uniquely
decomposed into products of stretch and rotation tensors. For a complete discussion of the
polar decomposition theorem see for example the monograph by Malvern (1969) or the
mathematical proofs given in (Halmos, 1959; Soos and Teodosiu, 1983).

The theorem can be applied to the deformation tensor FFF , because 0 < detFFF < ∞.
Hence FFF can be represented as products:

FFF = RRRUUU = VVVRRR.

Here UUU and VVV are referred to as the right and left stretch tensors, respectively, and RRR
denotes the rotation tensor, which is orthogonal, that is,

RRRRRRT = RRRTRRR = III.

Both UUU and VVV are symmetric positive definite tensors such that

UUU2 = FFFTFFF UUUT = UUU (1.14)

VVV2 = FFFFFFT VVVT = VVV. (1.15)

The squares of the stretch tensors are commonly referred to as the CCC and BBB deformation
tensors:

CCC = UUU2, BBB = VVV2.
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Figure 1.6. Transformation of infinitesimal material vectors from initial into actual configuration in simple
shear.

The decomposition of the deformation gradient also produces a decomposition of material
vector mapping,

dxxx = FFF dXXX = RRRUUU dXXX,

into two sequential operations (see Figure 1.6):

• a stretch of the material vector dXXX into UUU · dXXX
• a rigid-body rotation of UUU · dXXX into dxxx = RRRUUU · dXXX.

This sequence is illustrated in Figure 1.6, where different material vectors are denoted by
their colour, which remains unchanged during the process.

A similar illustration can be obtained using the other decomposition FFF = VVVRRR. In this
case the order of steps in the sequence is reversed: rigid-body rotation due to RRR is followed
by the stretch VVV.

The eigenvalues and eigenvectors of the stretch tensors UUU and VVV have particular
significance. Recall that the eigenvectors vvv of tensor TTT correspond to directions that are
preserved during the linear transformation defined by TTT, that is,

TTT · vvv = λvvv.

Eigenvalue λ represents therefore the relative length change of vvv through the transfor-
mation. A positive definite tensor has three eigenvalues obtained as solutions of the
equation

det (TTT − λIII) = 0.
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Eigenvectors uuui, i = 1, 2, 3, of the stretch tensor are directions that remain invariant
through the stretch and are therefore referred to as the principal stretches. Eigenvec-
tors of a positive definite tensor form an orthogonal vector basis. Therefore a positive
definite tensor such as UUU can be written explicitly as

UUU =
∑
i=1,3

λiuuui ⊗ uuui (1.16)

and also as

UUU2 =
∑
i=1,3

λ2
i uuui ⊗ uuui. (1.17)

The left stretch tensor and the rotation tensor can be computed using the following
steps:

• compute UUU2 = FFFTFFF ;
• compute eigenvalues λ2

i , i = 1, 2, 3, by solving

det
(
UUU2 − λ2III

) = 0

and find the corresponding eigenvectors uuui;
• construct UUU using (1.16);
• compute RRR = FFFUUU−1.

The eigenvectors and eigenvalues of the right stretch tensor VVV are λi and RRRuuui respec-
tively, as is readily deduced from the series of equalities

VVVRRRuuui = FFF uuui = RRRUUUuuui = λiRRRuuui.

Geometrical interpretation of the stretch tensors

Let us consider an infinitesimal sphere centred at XXX and of radius Rε in the reference
configuration. Its points denoted by XXX + dXXX satisfy the following equation:

dXXX · dXXX = R2
ε .

The sphere is transformed into an ellipsoid in the actual configuration defined by the
material points xxx + dxxx. Because dXXX = FFF−1dxxx, it follows that the equation of this ellipsoid
is

dxxx
(

FFF−1T
FFF−1

)
dxxx = dxxxVVV−2dxxx = R2

ε .

The principal axes are those of VVV defined by RRRuuui and the principal axes have length
proportional to λi (Figure 1.6).

Linear stretch of infinitesimal material vectors

The lengths of infinitesimal material vectors in the initial and actual configurations are
given by

dL2 = dXXX · dXXX dl2 = dxxx · dxxx
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Figure 1.7. The transformation of different directions from initial to actual configuration in simple shear.

(See Figure 1.7). Using the relation between dXXX and dxxx given by the deformation gradient,
one obtains the following series of equalities for the difference of squared length of the
two infinitesimal vectors:

dl2 − dL2 = dxxx · dxxx − dXXX · dXXX = (dXXXFFFT) · (FFFdxxx) − dXXX · dXXX.

= dXXX
(
FFFT · FFF − III

)
dXXX = dXXX

1
2

(
UUU2 − III

)
dXXX.

The tensor

GGG = 1
2

(
FFFTFFF − III

) = 1
2

(
UUU2 − III

)
is called the finite strain tensor, also known as the Green–Lagrange strain tensor.

A transformation which preserves the distance between any two material points is
referred to as rigid body motion. It can be shown mathematically that the most general
expression for rigid body motion is given by

xxx = FFF(XXX, t) = ppp(t) + QQQ(t) (XXX − XXX0) , (1.18)

where ppp(t), QQQ(t), and XXX0 denote the time-dependent translation vector, the rotation tensor,
and the centre of rotation, respectively. The rotation tensor is an orthogonal tensor at each
time instant; that is,

QQQ(t)QQQT(t) = III detQQQ(t) = 1.

Simple shear

To develop better insight into these concepts, let us consider in detail the case of simple
shear deformation. Deformation is defined by

xxx = FFF(XXX, t) = XXX + 2a(t) X2eee1. (1.19)

An easy way to visualise this deformation is to imagine the top of a stack of playing cards
being pushed to one side, making cards glide on top of each other. (See Figure 1.8.)

Computation of strain, stretch, and rotation tensors

The squares of the right and left stretch tensors can be readily computed using Equa-
tions (1.14) and (1.15).
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Figure 1.8. Illustration of the geometrical me-
thod employed for the discussion of simple shear.

T[ x_, y_, z_ ] = {x + 2 y a, y, z}.

(F = Grad[ T[x, y, z]] ) // MatrixForm

( V2 = F . Transpose[F] ) // MatrixForm

( U2 = Transpose[F] . F ) // MatrixForm

The next step is the determination of UUU from UUU2.

eigenU2 = Eigensystem[U2]

eigenU2 =

Simplify[

eigenU2/.(aˆ2 + aˆ4)ˆ(1/2) -> a ( 1 + aˆ2 )ˆ(1/2)

]

The construction of UUU from UUU 2 is performed using representations (1.16) and (1.17)
through the function EigenToTensor specially defined here.

We recall that eigen[[1]] and eigen[[2]] represent the eigenvalues and eigen-
vectors, respectively. At the end, a check is performed to confirm that UUU2 = UUU · UUU.

EigenToTensor[ eigen_] :=

Sum[ eigen[[1,i]] / ( eigen[[2,i]] . eigen[[2,i]] )ˆ2

Outer[ Times, eigen[[2,i]] , eigen[[2,i]] ], {i,3}]

U = EigenToTensor[eigenU2]

U = Simplify[ U ]

Simplify[ U . U - U2 ]
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Another way to compute UUU from UUU2 is to apply the Mathematica function
MatrixPower.

The result requires simplification using a series of replacement rules:√
a2 + a4 −→ a

√
1 + a2√

1 + 2a2 − 2a
√

1 + a2 −→
√

1 + a2 − a√
1 + 2a2 + 2a

√
1 + a2 −→

√
1 + a2 + a.

Note that a is assume to be positive and that the positive value of the root has been
chosen in the second expression.

A practical trick useful in determining which expression to use in a replacement
rule is to inspect the Mathematica internal expression using the FullForm command.

U = MatrixPower[ U2 , 1/2 ]

U = U /. Sqrt[ aˆ2 + aˆ4) ]-> a (1 + aˆ2)ˆ(1/2)

U = U /.

Sqrt[ (1 + 2 aˆ2 - 2 a Sqrt[ 1 + aˆ2 ]]

-> Sqrt[ 1 + aˆ2 ] - a /.

Sqrt[ (1 + 2 aˆ2 + 2 a Sqrt[ 1 + aˆ2 ]]

-> Sqrt[ 1 + aˆ2 ] + a

U = Simplify[ U ] /.

1/Sqrt[ aˆ2 + aˆ4 ] :> 1 / ( a (1 + aˆ2)ˆ(1/2) )

Simplify[ U . U - U2 ]

The rotation tensor is computed as

RRR = FFF · UUU−1

and simple inspection of the result shows that it corresponds to rotation by the angle

θ(t) = − arctan a(t).

R = F . Inverse[ U ]

Simplify[ % ]

Trigonometric representation of strain, stretch, and rotation tensors

Trigonometric formulae provide a convenient derivation tool, particularly when calcula-
tions are performed by hand. In the case of simple shear the classical notation is

a(t) = tanαt



PAB CUFX161-Constantinescu August 13, 2007 17:14

26 Kinematics: displacements and strains

so that material deformation is described by the expression

xxx = FFF(XXX, t) = XXX + 2 tanα(t) X2eee1. (1.20)

Instead of repeating complete strain analysis with Mathematica in trigonometric nota-
tion, we only obtain eigenvalues and eigenvectors of UUU here, to allow easy geometric
interpretation of the deformation.

We seek to compute eigenvalues of UUU2. To simplify the expressions we use the rule√
secα2 tanα2 = sinα

cos2 α
.

Then we construct substitution formulae for tan
(
π
2 ± α

4

)
.

Computations can be continued further and are left as an exercise for the reader.

eU2trig = Simplify[ Eigensystem[ U2 /. a -> Tan[ alpha ]] ]

eU2trig = TrigFactor[ eU2trig /.

(Sec[alpha]ˆ2 Tan[alpha]ˆ2)ˆ(1/2) ->

Sin[alpha] Cos[alpha]ˆ2

]

tpiplusa = Factor[ Expand[ TrigFactor[

Tan[ Pi / 4 + alpha / 2 ]]]]

tpiminusa = Factor[ Expand[ TrigFactor[

Tan[ Pi / 4 - alpha / 2 ]]]]

eU2trig =

eU2trig /. tpiplusa -> Tan[ Pi / 4 + alpha / 2 ] /.

tpiplusaˆ2 -> Tan[ Pi / 4 + alpha / 2 ]ˆ2 /.

tpiminusa -> Tan[ Pi / 4 + alpha / 2 ] /.

tpiminusaˆ2 -> Tan[ Pi / 4 + alpha / 2 ]ˆ2

Eigenvalues and eigenvectors of UUU are given by the following expressions:

λ1 = 1 + sinα

cosα
= 1 + tan α

2

1 − tan α
2

(1.21)

λ2 = 1 − sinα

cosα
= 1 − tan α

2

1 + tan α
2

(1.22)

λ3 = 1 (1.23)

uuu1 = cos
(α

2
− π

4

)
eee1 + sin

(α
2

− π

4

)
eee2 (1.24)

uuu2 = cos
(α

2
+ π

4

)
eee1 + sin

(α
2

+ π

4

)
eee2 (1.25)

uuu3 = eee3. (1.26)
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RU

Figure 1.9. An illustration of the polar decomposition of the deformation gradient FFF . Material vectors
preserve their colour though the stretch by UUU and rotation by RRR. Images from left to right represent the
decomposed evolution from initial to actual configuration.

Other proofs

In the particular case of simple shear, the analysis of eigenvectors and eigenvalues can be
completed using a special technique based Hamilton–Cayley theorem in linear algebra,
as described in the monograph by Marsden and Hughes (1994).

Another elegant proof can be obtained by analysing the deformation using the geo-
metric schematic diagram displayed in Figure 1.9. From it one notes that

• Point B is transported to B′ and
∣∣BB′ ∣∣ = 2a = 2 tanα.

• Points on the Ox axis remain stationary: A = A′ C = C′.
• The angle of shear is α = �BOy = �B′Oy.
• Lines AB and BC are transformed into AB′ and B′C, respectively.
• Simple computations of the circular arc length lead to

�BAB′ = α, �OAB′ = π

2
− α

4
.

Plotting stretch and rotation of material vectors

Information about stretch and rotation tensors can now be used to plot the deformation of
infinitesimal material vectors under simple shear. For simplicity, two-dimensional motion
is considered.

We begin by defining a series of parameters, including the angle, α, the particle radius,
r, and the number of vertices of the polygonal particle, n.

colorpts is the set of coordinates of the vertices, where a colour property has been
ascribed using the Hue command.

Numerical values of the tensors are defined next

ff = FFF invrr = RRR−1 uu = UUU

and eigenvectors are defined as line segments.

alpha = Pi / 6;

r = 0.15

n = 40

colorpts =
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Table[

{Hue[N[k/n]], N[ r {Sin[2 Pi k/n], Cos[2 Pi k/n]}]},

{k,n} ];

ff = N[ {{1, 2 Tan[alpha]}, {0, 1}} ]

invrr = N[{{Cos[alpha],-Sin[alpha]}, {+Sin[alpha],Cos[alpha]}} ]

uu = invrr . ff

eigenvector1 =

Line[{{0,0}, 2.5r {Cos[Pi/4-alpha/2], -Sin[Pi/4-alpha/2]}}];

eigenvector2 =

Line[{{0,0}, 2.5r {Cos[Pi/4+alpha/2], +Sin[Pi/4+alpha/2]}}];

The vectormap defined here permits one to construct the deformed particle as a bundle
of coloured segments.

The set colorpts can be considered as representing the initial segments that have
been ‘deformed’ by the action of tensor tens and translated by the distance defined by
the vector center. Note that the point colour expressed here as #[[1]] is inherited by
the corresponding line.

vector[center:{_,_}, tens_] :=

Map[

{#[[1]], Line[{center, center + tens . #[[2]]}]} & ,

colorpts ];

The initial particle with the segments representing the infinitesimal vectors dXXX, the
stretched particle UUU dXXX, and the directions of the eigenvectors and the deformed particle
after stretching and rotation FFF dXXX = RRRUUU dXXX can now be plotted as shown in Figure 1.7.

Eigenvector directions do not change through the stretch tranformation and can be
readily identified from the plot by this property.

Show[ Graphics[{eigenvector1, eigenvector2 ,

vector[{0,0}, uu],

vector[{-4 r,0}, IdentityMatrix[2] ],

vector[{4 r , 0}, ff]}],

AspectRatio -> Automatic,

Axes -> False]

1.3 SMALL STRAIN TENSOR

Prior to this stage in the analysis of strains, no assumption has been made regarding strain
magnitude. Let us now assume that the deformation gradient is close to the identity tensor,
that is, that the norm of the displacement gradient is small compared to unity:

|graduuu| 
 1.
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(a)
(b)

(c) (d)

Figure 1.10. An illustration of the compatibility conditions for deformation. Consideration proceeds via
the following stages: (a) initial geometry of the beam; (b) the beam being separated into pieces; (c) the
imposition of local strain; (d) the object cannot be reassembled due to the incompatibility of strains –
additional forces have to be applied.

Then definitions of strain, stretch, and rotation tensors can be linearized. A series of
algebraic manipulations that are left to the reader as an exercise lead to the equalities

CCC = BBB = III + graduuu + grad Tuuu = III + 2εεε (1.27)

UUU = VVV = III + εεε (1.28)

RRR = III + 1
2

(
graduuu − grad Tuuu

) = III +ωωω, (1.29)

where

εεε = 1
2

(
graduuu + grad Tuuu

)
and ωωω = 1

2

(
graduuu − grad Tuuu

)
denote the small strain tensor εεε and small rotation tensor ωωω, respectively.

1.4 COMPATIBILITY EQUATIONS AND INTEGRATION OF SMALL STRAINS

In the preceding sections we discussed how strains can be computed from a given dis-
placement function. However, in many practical situations the inverse problem is often
encountered, that is, if and how one can recover the displacement field from the knowl-
edge of the strain tensor field. The answer to this question is only positive if the strain
tensor satisfies certain conditions. An illustration of what these conditions must be can be
obtained if one considers putting together a broken jar. If all pieces remain undistorted
then the jar can be glued back together. However, if each piece is deformed on its own in
an independent way, then it is clear that reconstruction is only possible provided certain
compatibility conditions between the deformed pieces are satisfied. (See Figure 1.10.) The
purpose of this section is to introduce the rigorous mathematical form of compatibility
conditions and to present the algorithm for displacement field reconstruction from strains
within Mathematica.
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Cauchy–Schwarz integrability conditions

As the first step, examine the following classical result. Consider a differentiable scalar
function

f : � ⊂ Rn −→ R.

One can readily compute the vector gradient field ggg = grad f .
Let us now analyse the inverse operation. Suppose that a vector field ggg is given and

the task is to identify its potential f . We would like to identify the condition that ensures
the existence of a function f such that ggg = grad f .

Let the vector field ggg be described in cartesian coordinates as ggg = gieeei. It is well
known (Spivak, 1965), that integrability conditions are expressed as

∂gi

∂xj
= ∂gj

∂xi
(1.30)

provided that the domain of integration � is star-shaped (Figure 1.11). An invariant vector
form of this condition is

curlggg = 0.

Using the Stokes theorem (Spivak, 1965),∫
γ

ggg · dxxx =
∫
�

curlggg · nnn ds,

where � is the area enclosed by the path γ and nnn is the normal to this area, this result also
guarantees that the integral of ggg on any closed path γ ⊂ � vanishes:∫

γ

ggg · dxxx =
∫
γ

gi dxi = 0.

Compatibility conditions for small strains

The problem addressed in this section is the reconstruction of the displacement field uuu
from a given tensor field of small strains εεε. We seek to formulate the conditions in invariant
form similarly to the Cauchy–Schwarz conditions for vector functions given in the previous
section.

Figure 1.11. A star-shaped domain and a closed
integration path (closed dashed curve).
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We first observe that the small displacement gradient can be split into symmetric and
antisymmetric parts, εεε and ωωω, respectively,

graduuu = εεε +ωωω,

where

εεε = 1
2

(
graduuu + (graduuu)T) ωωω = 1

2

(
graduuu − (graduuu)T) .

We first discuss some general properties of the strain and rotation tensors. The antisymmet-
ric part of the displacement gradient ωωω, like all antisymmetric tensors, can be represented
by a vector that will be referred to here as the infinitesimal rotation vector ϑϑϑ. In cartesian
coordinates the relationship is given by

ωij = εijkϑk i, j = 1, 2, 3,

where εijk is the Levi-Cività fully antisymmetric third rank symbol and summation of
repeated indexes is assumed (here k). In Mathematica terminology corresponds to the
signature of the permuation ijkcomputed by the command Signature[i,j,k]. Knowing
the infinitesimal rotation vector ϑϑϑ is equivalent to knowing ωωω.

The relationship between ϑϑϑ and the displacement field is given by

ϑϑϑ = −1
2

curluuu ϑk = 1
2
εklmul,m k = 1, 3. (1.31)

Computing the gradient of the infinitesimal rotation vector one observes that

gradϑϑϑ = −curlεεε. (1.32)

This relation can be readily verified with Mathematica.

A general form of displacement field is specified in a given system of coordinates, here
Cartesian. Second-order strain and rotation tensors are computed in different ways.

<<Tensor2Analysis.m

SetCoordinates[Cartesian[x,y,z]]

u = {u1[x, y, z], u2[x, y, z], u3[x, y, z]}

gu = Grad[u]

eps = ( Grad[u] + Transpose[Grad[ u]] ) / 2

ome = ( Grad[u] - Transpose[Grad[ u]] ) / 2

theta = - Curl[ u ] / 2

omega =

Table[

Sum[ Signature[ {i, j, k}] theta[[k]] ,

{k, 3}], {i, 3}, {j, 3}

]
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Formulas (1.31) and (1.32) are thus verified.

Simplify[ omega - ome]

Simplify[ Curl[eps] + Grad[ theta ]]

We now proceed to present a constructive proof of the main result of this section. The
proof consists of the following two steps:

• First, show that given the displacement field εεε, one can reconstruct the antisymmetric
part of the displacement gradient ωωω.

• Second, show that given a tensor displacement gradient ggg = εεε +ωωω that satisfies certain
conditions, one can determine the displacement vector field uuu such that ggg = graduuu.

Given the tensor strain field εεε, one can readily compute hhh = −curlεεε. Generalisation
of the theorem referred to in the previous section provides the result that the tensor
field hhh is indeed the gradient of a vector field ϑϑϑ if and only if −(curlhhhT)T = 0, implying
that

(curl (curlεεε)T)T = 0. (1.33)

This is the invariant form of the strain compatibility condition.
The value of the infinitesimal rotation vector ϑϑϑ at point ppp can be recovered up to a

constant-vector term using the integral formula

ϑϑϑ(ppp) = −
∫
γpo p

(curlεεε) · dxxx,

where γpo p is a path connecting points pppo and ppp. Having determined the infinitesimal
rotation vector ϑ, one can readily compute the rotation tensor ω and therefore construct
the small displacement gradient

ggg = εεε +ωωω.

It now remains to show that there exists uuu such that ggg = graduuu. Once again applying the
theorem of the previous section, one concludes that uuu exists provided −(curlgggT)T = 0,
implying that

(curlgggT)T = (curlεεεT)T + (curlωωωT)T = 0.

This is verified by construction of ωωω from εεε via ϑϑϑ together with the following equalities:

(curlεεεT)T + (curlωωωT)T = (curlεεε)T + (gradϑϑϑ)T − IIIdivϑϑϑ = 0.

We also used the fact that

divϑϑϑ = 1
2
εklmum,lk = 0.

The displacement vector uuu is now obtained by integration:

uuu(ppp) =
∫
γp0 p

(εεε +ωωω) · dxxx.
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Figure 1.12. Simply connected (left) and multiply connected (right) domains.

It is convenient to define the operator applied to the strain tensor in equation (1.33) as
the incompatibility operator, that is,

incεεε = −(curl (curlεεε)T)T.

If incompatibility of strain is zero then the strain field is compatible, and the displace-
ment field can be reconstructed. If incompatibility is nonzero, unique displacement field
reconstruction is impossible. See Figure 1.12.

We now code the described steps within Mathematica and check the validity of
the proposed integration procedure for a general displacement field. The main tool in
the procedure is the IntegrateGrad operator, which integrates the gradient of a given
scalar or vector field and which is provided as part of the Tensor2Analysis package and
explained in Appendix 1.

Consider a given strain tensor εεε that for convenience can be computed in terms of the
arbitrary displacement field uuu. The validation of the proposed procedure would then
consist of the reconstruction of uuu.

First, compatibility of strain is verified using the Inc operator from the package.
Displacement reconstruction begins with the computation of the gradient of the

infinitesimal rotation vector and then of the vector itself by integration.
A check is performed for the correctness of integration.

Inc[eps]

gradtheta = - Curl[eps]

theta = IntegrateGrad[gradtheta]

Simplify[Grad[theta] - gradtheta]

From the computed infinitesimal rotation vector ϑϑϑ the rotation tensor ωωω is computed.
The small displacement gradient εεε +ωωω is then integrated to obtain the displacement
vector uuu.

The result is finally verified.

omega = Table[Sum[Signature[{i,j,k}] theta[[k]],

{k,3}],{i,3},{j,3}]

Simplify[omega + (Grad[u] - Transpose[Grad[u]])/2]
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uint = IntegrateNabla[eps + omega]

Simplify[eps - (Grad[uint] - Transpose[Grad[uint]])/2 ]

Simplify[u - uint]

For convenience of use, the sequence of commands for reconstructing the displace-
ment field from a known strain tensor can be grouped into a single command.

Commands are wrapped in a Module and can be called as a function.
Note that displacement reconstruction is only attempted if the strains are found to

be compatible.

IntegrateStrain[strain_] :=

Module[ {theta, omega},

( theta = IntegrateGrad[-Curl[strain]];

omega =

Table[Sum[Signature[{i, j, k}] theta[[k]],

{k,3}],{i,3},{j,3}];

IntegrateGrad[strain + omega]

) /; ( Inc[strain] === {{0,0,0},{0,0,0},{0,0,0}})]

Strain integration and compatibility operators

IntegrateGrad[gf] Integrates gradient of scalar or vector field gf

to obtain scalar or vector potential f

IntegrateStrain[eps] Integrates small strain field eps

to obtain the displacement vector field u

Inc[f] Incompatibility operator for tensor field f

Equivalent compatibility conditions for small strains

The compatibility equation for the strain tensor εεε

incεεε = −(curl (curlεεε)T)T = 0

is enforced if and only if the following equation is satisfied:

�εεε + grad grad (trεεε) − (grad + grad T)εεε = 000. (1.34)

A general proof of this statement for all cases is given by Gurtin (1982).
The Mathematica package supplied with this book provides the reader with a practical

means of verifying the equivalence of the two above statements for arbitrary tensor fields
εεε in any of the orthogonal coordinate systems defined within Mathematica.
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Rigid body motion

If the small strain tensor is identically equal to zero,

εεε = 0,

then the strain integration procedure produces the following displacement field:

uuu(ppp) = uuu(p0p0p0) + ϑϑϑ(p0p0p0) ∧ (ppp − p0p0p0).

It is important to remark that the preceeding field is not a rigid body motion, that is,
a combination of translation and rotation. One can easily check that the corresponding
finite strain tensor is not equal to zero (as would be expected for rigid body motion):

eee = 1
2

(
graduuu + graduuuT + graduuuTgraduuu

)
eee = 1

2

(
εεε +ωωω2)

= 1
2
ωωω2 �= 0.

Only under the assumption of small strains does the relation eee ≈ εεε hold.

SUMMARY

This chapter introduced the basic quantities used to describe the kinematics of deforma-
tion. The polar decomposition of the deformation gradient tensor into stretch and rotation
tensors was presented. The Green–Lagrange finite strain tensor was introduced, followed
by the small strain tensor particularly widely used in linear elasticity. Particular attention
was devoted to the strain compatibility conditions and the procedure for integrating strain
fields to obtain displacements.

EXERCISES

1. Ocean waves – Trochoidal waves in the Lagrangian representation (Coirier, 1997;
Germain, 1983)

Consider in cartesian coordinates (x, y, z) the half-space y ≤ 0 and the following plane
particle motion defined in this domain:

x = X + Aexp(kY/H) cos 2π
(

X
L

− t
T

)
y = Y+ Aexp(kY/H) sin 2π

(
X
L

− t
T

)
z = Z.

Parameters A,k,H,L,T are real numbers and their physical significance should become
clear from consideration of motion. We shall assume only that A 
 L and leave more
specific choices to the reader. See Figure 1.13.
(a) Show that the trajectories of particles lying on the plane X = const are circles and plot

the trajectories for a point lying on a vertical line.
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Figure 1.13. Trochoidal waves in the Lagrangian representation: the free surface (solid line), the velocity
field, and the streamlines at time t = 0, plotted for parameter values a = 1,w = 1,k = 1. Note that velocity
vectors and streamlines only have physical significance for points lying below the free surface.

(b) Determine the evolution of the planes Z = const with time.
(c) Compute the velocity field and plot this field for a given time instant.
(d) Obtain in closed form the equation of streamlines by

• integrating the parametric form

daaa
ds

= λ(s)vvv

using the DSolve operator.
• finding a complete integral (see package Calculus‘DSolveIntegrals‘ of the

equation

gradϕ · vvv = 0
∂ϕ

∂X
(X,Y)vX(X,Y) + ∂ϕ

∂Y
(X,Y)vY(X,Y) == 0.

2. Ocean waves – Trochoidal waves in the Eulerian representation (Coirier, 1997;
Germain, 1983)

Consider in cartesian coordinates (x, y, z) the half-space y ≤ 0 and the following plane
particle motion defined by the velocity field:

vvv(x, y, z; t) = vx(x, y, z; t)eeex + vy(x, y, z; t)eeey

vx = −Aexp(ky/H) sin 2π
( x

L
− t

T

)
vy = Aexp(ky/H) cos 2π

( x
L

− t
T

)
.
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Figure 1.14. Trochoidal waves in the Eulerian representation: free surface (thick solid line), approximate
trajectory of a particle (thin elliptical solid line), and position of the particle (filled circle) at time t = 0
plotted for parameter values a = 1,w = 1,k = 1.

Parameters A,k,H,L,T are real numbers and their physical significance will become clear
from consideration of motion. We again only assume that A 
 L, leaving specific choices
to the reader. See Figure 1.14.
(a) Show that the trajectories of particles situated on the plane X = const are circles and

plot the trajectories for a point lying on a vertical line.
(b) Determine the evolution of the planes Z = const with time.
(c) Compute the velocity field and plot the field for a given time instant.

3. Potential flows

Plot the streamlines, streaklines, and velocity fields for the potential flows defined in the
text: uniform flow, point source, doublet, flow in a corner.

4. Constraints: Inextensibility and incompressibility

Propose a function ϕ applied to the stretch tensor CCC such that the equation

ϕ(CCC) = 0

expresses
(a) the condition of material inextensibility in the direction mmm.
(b) the condition of material incompressibility, that is, that the material is not allowed to

undergo a volume change.
Express the condition of incompressibility in terms of the principal stretches.

5. Small strains in the shear experiment

Discuss the shear experiment under the assumption of small strains:
(a) define a necessary and sufficient condition to impose on a(t) = tan α(t) to ensure small

strains.
(b) compute the polar decomposition, define the eigenvalues and the eigenvectors of the

strain ellipsoid.
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section   z=constant
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H
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Figure 1.15. The torsion displacement.

(c) define the small strains and the small rotation tensors.
Hint: See end of notebook C01 glide shear strain.nb.

6. Particular strain states

Compute the strain tensors and the principal stretches and their directions assuming large
and infinitesimal strains for the following transformations:
(a) uniform dilatation: xxx = λXXX
(b) uniaxial extension: xxx = λXeeex + Yeeey + Zeeez

(c) uniaxial extension with lateral contraction: xxx = λXeeex + λ− 1
2 Yeeey + λ− 1

2 Zeeez.

7. Isochoric spherically symmetric deformation

Let us consider a spherically symmetric deformation in a body defined by

xxx = f (R)XXX,

where (R,�,�) are the coordinates of the vector XXX = ReeeR in the spherical system.
(a) Find f (R) if the deformation is isochoric, that is, volume is conserved.
(b) Compute the strain tensors and the principal stretches in this case.

8. Torsion of a cylinder

Consider a right circular cylinder of radius R and height 2H, illustrated in Figure 1.15.
Torsional deformation is defined in the cylindrical polar coordinate system of the figure

in the following way,

(r, θ, z) −→
(

r, θ + α(t)
z
L
, z
)
,

where α(t) is angle of torsion, generally a time-dependent function.
(a) Define the position vectors XXX,xxx(XXX, t) and the vector field of displacements uuu(XXX, t) in

the cylindrical polar coordinate system.
(b) Compute the gradient of the transformation FFF .
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(c) Verify that it can be written in the following form:

FFF = RRR
(αr

L

)
FFF1.

(d) Determine the polar decomposition of FFF , using the similarity between FFF1 and the
solution obtained in the case of pure shear.

(e) Define the conditions for small strains
(f) Compute the polar decomposition in the case of small strains:

• using the formulas of small strains and rotations
• by linearizing FFF = RRR · UUU.

Note that the rotation operator is commutative under the condition of small rotations.
Hint: See notebook C01 torsion.nb.

9. Extension of a cylinder

Consider a right circular cylinder of radius R and height 2H.
Extensional deformation is defined in the cylindrical polar coordinate system in Fig-

ure 1.15 in the following way;

(r, θ, z) −→ (λ− 1
2 r, θ, λz),

where λ characterises the amount of extension.
(a) Define position vectors XXX,xxx(XXX, t) and the vector field of displacements uuu(XXX, t) in the

cylindrical polar coordinate system.
(b) Compute the gradient of transformation FFF .
(c) Verify that it can be written in the following form:

FFF = RRR
(αr

L

)
FFF1.

(d) Determine the polar decomposition of F , using the similarity between FFF1 and the
solution obtained in the case of pure shear.

(e) Define the conditions for small strains.

10. Compatibility and integration of strains (Polytechnique Collective, 1990–2005)

Reproduce the reasoning for the integration of small strains in different coordinates
systems (spherical, paraboloidal, cylindrical, etc.) and check the validity of the results.

11. General form of compatible small-strain tensors

Find the general expression of the components of a compatible strain tensor under the
following conditions:
(a) cartesian coordinate system:

εεε(x, y, z) = εxy(x, y, z) (eeex ⊗ eeey + eeey ⊗ eeex) .

(b) cylindrical polar coordinate system:

εεε(r, θ, z) = εrθ(θ, z) (eeez ⊗ eeeθ + eeeθ ⊗ eeez) .

(c) cylindrical polar coordinate system:

εεε(r, θ, z) = εrθ(r, θ, z) (eeer ⊗ eeeθ + eeeθ ⊗ eeer) .



PAB CUFX161-Constantinescu August 13, 2007 17:14

40 Kinematics: displacements and strains

(d) cylindrical polar coordinate system:

εεε(r, θ, z) = εrz(r, θ, z) (eeer ⊗ eeez + eeez ⊗ eeer) .

Hint: See notebook C01 ex compatibility.nb.

12. Compatibility of small strains generated by a temperature field (Polytechnique Col-
lective 1990–2005)

Let us assume that a body is heated to a temperature field θ(x, y, z). Assuming that
thermal dilatation is isotropic, that is, material stretch in all directions is the same due to
temperature change, the small strain tensor due to the thermal dilatation is

εεε(x, y, z) = αθ(x, y, z)III,

where α is the coefficient of linear thermal expansion.
(a) Find the general expression of the temperature field such that the dilatation strains

are compatible.
(b) Integrate the preceding strain and determine the general form of the displacement

field.
(c) Suppose that the body is a cylinder of height 2H and radius R subject to a temperature

gradient along its axis of 2�θ.
• Under which condition is the small strain condition still valid?
• Compute the radius of curvature of the medium section of the cylinder and define

an order of magnitude for thin sheets of usual materials.
Hint: See notebook C01 temperature compatibility.nb.

13. Rigid body translation and rotation

Using Mathematica packages Tensor2Analysis.m, Displacement.m and IntegrateS-

train.m, obtain explicit expressions for displacements due to rigid body translation and
rotation in the following coordinate systems:

• in the cartesian coordinate system
• in the cylindrical polar coordinate system
• in the spherical coordinate system.

Show that neither strains nor stresses arise due to these displacements, that is, check
by differentiation (using the Grad operator) that the corresponding strains (and hence
stresses) are zero. Also, obtain expressions for the small rotation tensor. Consider its
structure and establish its relationship with the rotation vector.

Hint: See notebook C01 rigid displacements.nb.
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OUTLINE

In this chapter we consider the force equilibrium in a continuous body under the assump-
tion that the underlying deformation is adequately described by the small strain hypothesis.
The principle of virtual power occupies a central place in this treatment, since it offers a
rational basis for developing equations that apply to a continuum in a state of equilibrium.
Furthermore, the concept of stress arises naturally from this analysis as dual to small
strain for a solid continuum. Stress equilibrium and traction boundary conditions also
appear in the most convenient invariant form. For illustration, virtual power expressions
are given for systems obeying different kinematics, such as inviscid fluid flow or beams
in simple bending, and the resulting stresslike quantities and their equilibrium equations
are readily derived. Cauchy’s stress principle and the Cauchy–Poisson theorem are also
given.

Once it is established that equlibrium stress states in continuum solids in the absence
of body forces are given by divergence-free tensors, the representation of such tensor fields
is addressed. Beltrami potential representation of divergence-free tensors is considered,
and Donati’s theorem is introduced to illustrate a certain duality that exists between stress
equilibrium and strain compatibility conditions.

2.1 FORCES AND MOMENTA

A body may be subject to a system of exterior forces of the following types:

• Body force fff is described by a vector field distributed over the entire volume of body
�. Denoting body force by the vector fff (xxx, t) represents the fact that the force fff (xxx, t)dv
acts on an infinitesimal volume dv at point xxx at time t. An example of the body force
is the force of gravity.

• Surface traction ttt is described by a vector field distributed over the surface boundary
∂� of body �. Denoting the surface traction by the vector ttt(xxx, t) represents the fact
that the force ttt(xxx, t)ds acts on an infinitesimal element of surface area ds at point xxx at
time t.

A particular type of body force arises when inertial effects during motion are considered.
Let mass density be denoted by ρ, which is thought to be a given function over the

entire body �, such that for every part of the body � ⊂ � the mass of � is given by∫
�

ρdv.

41
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The linear and angular momentum of the subset � are expressed as∫
�

ρ u̇ dV and
∫
�

x × ρ u̇ dv ,

respectively, where u̇ denotes velocity.
Linear and angular inertial forces are body forces related to the rates of change of

linear and angular momentum and expressed as ρ üuu and x × ρ üuu, respectively, where üuu
denotes acceleration.

Laws of momentum balance and change (Newton’s second law) in the case of con-
tinuous bodies apply for each subset of the body. Moreover, we require that, for a body
in motion, exterior and inertial forces are balanced by the internal forces arising due to
the material response to deformation. To understand how an appropiate model can be
constructed for the description of internal forces, we shall follow two independent routes
presented in the next two sections.

In the first method the concept of stress arises from considerations of balance of virtual
power. In the second method the concept of stress arises from geometrical arguments and
the balance of momentum. For a historical overview of the development of the concept
of stress we recommend the essay by Truesdell (1968).

2.2 VIRTUAL POWER AND THE CONCEPT OF STRESS

Virtual power pf of a body force fff is defined as the scalar product of the force vector fff
and a virtual velocity field vvv:

pf = fff · vvv.

Virtual power is thus a linear map over the space of virtual velocities. The equivalence
that exists between such linear map and the vector field fff can be established by mathe-
matical arguments such as the Riesz theorem (Kestelman, 1960) which will not, however,
be further discussed here. On this basis, the balance of forces and moments can be estab-
lished in terms of the balance of virtual powers generated by the system of forces under
consideration.

For a continous body � we shall assume that virtual velocity fields vvv are continuous
differentiable vector fields forming a vector space V. Actual body motion, including ve-
locity fields corresponding to rigid body motion, are included in the virtual velocity fields.
We recall that the general form of the velocity field for rigid body motion is

vvv(xxx, t) = aaa(t) + bbb(t) × xxx,

where aaa and bbb are two time-dependent vector fields corresponding to translation and
rotation, respectively. A straightforward strain rate computation shows that the motion
corresponding to this velocity field is rigid only in the infinitesimal sense. However, be-
cause the theory developed here is the infinitesimal theory, this does not lead to any
contradiction.

Rigid body motion velocity fields form a vector subspace in V, denoted by V0.
For systems of forces discussed in Section 2.1 one can therefore define the virtual

power of internal and external forces Pi and Pe and of inertial forces Pa, respectively, as
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linear integral maps over virtual velocity fields vvv defined as

Pe(vvv) =
∫
�

fff · vvv dv +
∫
∂�

ttt · vvv ds

Pa(vvv) =
∫
�

ρ üuu · vvv dv.

Momentum balance (Newton’s second law) is equivalent to the principle of virtual power.

Principle of virtual power
For every virtual velocity field vvv the following equality holds:

Pe(vvv) + Pi(vvv) = Pa(vvv). (2.1)

for a body in static equilibrium inertial forces vanish, because üuu = 0, and the principle
of virtual power is expressed as:

Pe(vvv) + Pi(vvv) = 0 (2.2)

The virtual power of the internal forces Pi(vvv) remains to be defined by specifying explicitly
the nature of the linear map over the space of virtual velocity fields. A rational condition
should be imposed that this power (and hence the underlying internal forces) should be
independent of the choice of Galilean frame of reference used by the observer. Hence
virtual power of internal forces should vanish when applied to virtual velocity fields
corresponding to rigid body motion:

Pi(vvv) = 0 ∀vvv ∈ V0. (2.3)

In this way the form of the vector subspace of virtual velocity fields VVV derived from the
kinematic analysis of the previous chapter results in certain conditions on the system of
internal forces Pi. This approach can be used to develop internal force models for ideal
fluids, solid bodies, columns, beams, plates, etc. A detailed discussion of this approach can
be found in Salençon (2001).

Ideal fluid

Select the space V of virtual velocity fields to be continuous differentiable vector fields
over �. Define the virtual power as the following linear map:

Pi(vvv) = −
∫
�

p divvvv dv. (2.4)

Here p is a scalar field that characterises internal forces. The scalar p is dual to the rate of
volume change defined by divvvv and represents therefore the internal pressure field within
the body. It is easy to check that this form of internal virtual power vanishes for virtual
velocities corresponding to rigid body motion.

The virtual power expression (2.4) can also be rewritten by the application of the
Stokes theorem in the equivalent form

Pi(vvv) =
∫
�

grad p · vvv dv +
∫
∂�

p nnn · vvv ds, (2.5)
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where nnn is the outward unit normal to the boundary ∂�. The principle of virtual power
becomes ∫

�

(−grad p + fff ) · vvv dv +
∫
∂�

(ttt + p nnn) · vvv ds =
∫
�

ρ üuu · vvv dv. (2.6)

Because the above equality holds for an arbitrary virtual velocity field vvv, this leads to the
following equilibrium equations in the local form:

• for each interior point xxx ∈ �: −grad p + fff = ρ üuu
• for each boundary point xxx ∈ ∂�: ttt = +p nnn.

The condition on the boundary shows that the ideal fluid model only allows boundary load-
ing in the form of normal surface tractions. This anomaly was first observed by d’Alembert
and has since been known as the d’Alembert paradox (Truesdell, 1968).

Continuum solid

Once again we start our consideration with the space V of virtual velocity fields given by
continuous differentiable vector fields over �. The linear map representing virtual power
is in this case given by

Pi(vvv) = −
∫
�

σσσ : gradvvv dv, (2.7)

where σσσ is a symmetric tensor field, referred to as the stress field.
In granular materials such as sand, the internal work is done not only due to particle

deformation, but also due to the mutual rotation of particles. The stress tensor in this case
may not be symmetric. The model that arises if this is taken into consideration is generally
known as a Cosserat material. One must consider the possibility of the existence of an
additional external force producing a distribution of body moments. This, for example, is
the case if particles forming the body are magnetic and the body is subject to an externally
applied magnetic field.

In classical continuum mechanics, the symmetry of stresses is assumed, σσσ = σσσT, imply-
ing that σσσ : gradvvv = σσσ : ε[vvv]. Thus the symmetric stress tensor is dual to the small strain
tensor εεε and does not act on rotations. As for an ideal fluid, one can readily check that
the internal virtual power defined in (2.7) vanishes for virtual velocities corresponding to
rigid body motion.

Applying the Stokes theorem to (2.7) as before, one obtains

Pi(vvv) =
∫
�

divσσσ : ε[vvv] dv −
∫
∂�

vvv · σσσ · nnn ds, (2.8)

where nnn is the outward unit normal to the boundary ∂�. The principle of virtual power
becomes ∫

�

(divσσσ + fff ) · vvv dv +
∫
∂�

(ttt − σσσ · nnn) · vvv ds =
∫
�

ρ üuu · vvv dv. (2.9)

Because the above equality holds for an arbitrary virtual velocity field vvv, it implies that
the following local balance equations are satisfied:

• for each interior point xxx ∈ �: divσσσ + fff = ρ üuu
• for each boundary point xxx ∈ ∂�: ttt = σσσ · nnn.
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The boundary condition is no longer restricted to a particular type of surface traction: a
solid body can carry surface tractions in the form of both pressures and shear forces.

Balance of linear and angular momentum for a continuum solid

The balance of linear and angular momentum is given by the requirement that for any
part of the body, � ⊂ �, the resultant of internal and external forces is equal to the rate
of change of linear momentum:∫

∂�

sss ds +
∫
�

fff dv = d
dt

∫
�

ρ u̇uu dv (2.10)∫
∂�

xxx × sss ds +
∫
�

xxx × fff dv = d
dt

∫
�

xxx × ρ u̇uu dv. (2.11)

Here we denote the surface boundary traction on part � by sss and use the form sss = σσσ · nnn
on ∂�.

The above equations are obtained by integrating the local form of the balance equa-
tions and applying the formula for the time derivative of a moving domain.

As a particular case of the above expressions, the principle of virtual work can be
applied to the virtual velocity field corresponding to general rigid body movement, giving
the balance of linear and angular momentum for the entire body �.

Bending of thin plates

A plate can be defined as a solid occupying a domain of the form � = ω × [−h/2,h/2].
Here ω ⊂ R2 is the domain occupied by the body in the planar median surface, and h is the
thickness. The Love–Kirchhoff kinematic assumption restricts the virtual velocity fields to
the form

vvv(x̂xx, x3) = v(x̂xx)eee3 − x3 ĝrad u,

where x̂ ∈ R2, and ˆgrad denotes the two-dimensional gradient with respect to x̂xx.
The choice of the form of internal virtual power is made as

Pi(vvv) = −
∫
�

MMM : ĝrad ĝradvvv dv, (2.12)

where MMM is a second-order tensor field. MMM acts on the tensor field of bending rates
ĝrad ĝradvvv that is a measure of the rate of change of the geometric curvature of a bent
plate.

Applying the Stokes theorem twice to the preceding form of Pi leads, after a series of
operations similar to those discussed previously, to the following equations in local form:

• for each interior point x̂xx ∈ ω: d̂iv d̂ivMMM + b = ρ ü
• for each boundary point x̂xx ∈ ∂ω: m = nnn · MMM · nnn q = nnn · (2d̂ivMMM − ĝradMMM : (nnn ⊗ nnn)

)
.

The resultant body force f per unit area, resultant bending moment m per unit length, and
resultant shear force q per unit length are related to the body force fff and surface tractions
ttt by the formulas

f (x̂xx) =
∫ h/2

−h/2
eee3 · fff (x̂xx, x3) dx3 m(x̂xx) =

∫ h/2

−h/2
x3ttt(x̂xx, x3) dx3 q(x̂xx) =

∫ h/2

−h/2
eee3 · ttt(x̂xx, x3) dx3.
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The above expressions demonstrate that force fields acting within thin plates are given
by integral moments of different orders of the three-dimensional body force and surface
tractions.

A similar expression relates the second-rank tensor of bending moments to the stress
tensor:

MMM(x̂xx) =
∫ h/2

−h/2
x3σσσ(x̂xx, x3) dx3. (2.13)

2.3 THE STRESS TENSOR ACCORDING TO CAUCHY

A different approach to the concept of stress was first announced in 1822 by Cauchy as
his famous stress principle. It leads to the same concept of stress as a second-order tensor
field introduced above for the description of internal forces within a continuum solid
body.

Consider a small arbitrary part � ⊂ � of a solid body and introduce the stress vector
sssn(xxx, t) at point xxx ∈ ∂� at time t. For an outward unit normal nnn on the boundary ∂�, this
is defined as the force per unit area exerted by the portion of � outside � on the portion
of � inside �. If the point lies on the boundary of the body, xxx ∈ ∂�, then the stress vector
coincides with the vector of surface traction, sssn = ttt.

The balance of linear and angular momentum on part � requires that∫
∂�

sssn ds +
∫
�

fff = d
dt

∫
�

ρ u̇uu dv (2.14)∫
∂�

xxx × sssn ds +
∫
�

xxx × fff = d
dt

∫
�

xxx × ρ u̇uu dv. (2.15)

From these equations one can derive the following theorem.

Theorem: Cauchy–Poisson Theorem: The balance of linear and angular momentum
in part � in equations (2.14) and (2.15) is satisifed if and only if

• The stress vector is a linear function of the outward normal and can therefore be
expressed as

sssn(xxx, t) = σσσ(xxx, t) · nnn(xxx),

where σσσ is a symmetric tensor field.
• Fields uuu,σσσ, fff satisfy the following equation:

divσσσ + fff = ρ üuu.

The direct argument in this statement was proved by Cauchy in 1823, whereas the
correctness of the inverse argument was established by Poisson in 1829.
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Figure 2.1. The Cauchy tetrahedron.

Without providing a complete proof of this theorem, we wish to mention that the
principal steps taken in the proof are to observe the following facts:

• sssn = −sss−n follows from the fact that mutual forces between the bodies must always
balance each other.

• sssn = n1ssse1 + n2ssse2 + n3ssse3 , which follows from the balance of forces on an infinitesimal
tetrahedron (Figure 2.1), where nnn = n1eee1 + n2eee2 + n3eee3. As a consequence, one can
define

σσσ = ssse1 ⊗ eee1 + ssse2 ⊗ eee2 + ssse3 ⊗ eee3.

• Balance of linear momentum over an infinitesimal volume element leads to divσσσ +
fff = ρ üuu.

• Symmetry ofσσσ, that is,σσσ = σσσT, is established by the consideration of balance of angular
momentum and the absence of a volume distribution of moments.

The symmetry of the stress tensor is not observed in the case of granular materials, as
mentioned in the preceding section. The balance of angular momentum is enriched in this
particular case by additional terms corresponding to distribution of moments within the
body.

Example stress states

Suppose that body forces are negligible and that a homogeneous stress tensor σσσ is in
equilibrium with external surface tractions. Some classical examples of fundamental stress
states are discussed here.

• Uniaxial tension in direction k:

σσσ = σkkk⊗ kkk σσσ · nnn = σ (kkk · nnn)kkk.

Suppose the coordinate system is selected so that kkk = eee3. Then the matrix form of the
stress tensor corresponding to the state of uniaxial tension is

σσσ =
0 0 0

0 0 0
0 0 σ

 .



PAB CUFX161-Constantinescu August 13, 2007 17:14

48 Dynamics and statics: stresses and equilibrium

• Hydrostatic compression:

σσσ = −p 111 σσσ · nnn = −pnnn.

The matrix form of the stress tensor for material under hydrostatic compression is

σσσ = −p

 1 0 0
0 1 0
0 0 1

 .

For this stress state the virtual power of internal forces reduces to the form defined
for perfect fluids, that is, −σσσ : gradvvv = p 111 : gradvvv = p divvvv.

• Pure shear τ in a plane is defined by a pair of orthogonal vectors kkk,mmm:

σσσ = τ (kkk⊗ mmm + mmm ⊗ kkk) σσσ · nnn = τ ((mmm · nnn)kkk+ (kkk · nnn)mmm) .

If kkk = eee1 and mmm = eee2, the matrix form of the stress state of pure shear is

σσσ =
0 τ 0
τ 0 0
0 0 0

 .

2.4 POTENTIAL REPRESENTATIONS OF SELF-EQUILIBRATED STRESS TENSORS

We shall call σσσ a self-equilibrated stress tensor if the linear and angular moments due to its
tractions vanish on an arbitrary closed surface � ⊂ �:

∫
�

σσσ · nnn ds = 0
∫
�

xxx × σσσ · nnn ds = 0. (2.16)

Application of the Stokes theorem readily shows that a self-equilibrated stress field also
satisfies

divσσσ = 0. (2.17)

We shall call the stress field that satisfies this equation a divergence-free stress tensor.
We have seen above that a self-equilibrated stress tensor is always divergence-free. The

reverse assertion is only true if � is a simple closed regular surface, that is, it is not the
boundary surface of a domain with holes or cavities. Gurtin (1982) provides an example
for a spherical shell � = (r, θ, ϕ) ∈ [a,b] × [−π/2, π/2] × [0, 2π].

We now consider possible potential representations of self-equilibrated and
divergence-free stress tensors by merely stating results without proof. A complete treat-
ment may be found in the monograph of Gurtin (1982).
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The Beltrami stress potential
If � is bounded by a simple closed surface, then the following statements are equiva-
lent:

(i) symmetric stress tensor field σσσ is divergence-free,

divσσσ = 0

(ii) symmetric stress tensor field σσσ is self-equilibrated,∫
�

σσσ · nnn ds = 0
∫
�

xxx × σσσ · nnn ds = 0

(iii) there exists a second-order symmetric tensor field BBB such that

σσσ = incBBB.

The equivalence of the first two statements for a simply bounded body has already been
established. The equivalence of statements (i) and (iii) is illustrated by the following
sequence of equalities (see also Gurtin (1982)):

divσσσ = div incBBB = div
(
curl (curlBBB)T)T = 0.

Particular cases of the Beltrami stress potential are conventionally referred to by different

names. These are most simply expressed in cartesian coordinates.

The Airy stress potential

BBB = φeee3 ⊗ eee3.

The Maxwell stress potential

BBB = φ1 eee1 ⊗ eee1 + φ2 eee2 ⊗ eee2 + φ3 eee3 ⊗ eee3.

The Morera stress potential

BBB = ω1(eee2 ⊗ eee3 + eee3 ⊗ eee2) + ω2(eee3 ⊗ eee1 + eee1 ⊗ eee3) + ω3(eee1 ⊗ eee2 + eee2 ⊗ eee1).

The form of stress components due to these potentials in arbitrary orthogonal coordinate
systems can be readily obtained using Mathematica.

The Beltrami–Schaeffer stress potential
For a body occupying the domain � bounded by a regular surface,

the symmetric stress tensor σσσ is divergence-free,

divσσσ = 0,

if and only if

there exist a second-order symetric tensor field BBB and a harmonic vector field hhh such
that

σσσ = incBBB + gradhhh + grad Thhh − (divhhh)111.
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On the role of the incompatibility operator in elasticity

From the discussions in the preceding sections and the previous chapter it becomes ap-
parent that a fundamental role in the analysis of strains and stresses is played by the
incompatility operator, inc . Among various continuous symmetric second-rank tensor
fields, only the divergence-free tensors provide candidates for stress fields in a contin-
uum solid. The Beltrami stress potential provides a constructive formalism for obtaining
divergence-free stress tensorsσσσ from arbitrary continuous tensor fieldsBBBby the application
of the incompatibility operator, inc .

The incompatibility operator, inc , was first introduced in Section 1.4 in connection
with the criterion of integrability of a given strain field for the reconstruction of a unique
displacement field.

Using potential representations of symmetric stress tensors, the following proposition
can be established (Germain, 1983; Gurtin, 1982):

Donati’s theorem Let εεε be a symmetric tensor field on � such that the statement∫
�

σσσ : εεε dv = 0

holds true for every symmetric tensor field σσσ that vanishes on ∂� and satisfies

divσσσ = 0.

Then εεε satisfies the compatibility equation

incεεε = 0.

Donati’s theorem establishes a certain duality between strain compatibility and stress
equilibrium conditions in the mechanics of continuum solids.

SUMMARY

In this chapter key concepts of virtual power and hence of stress are introduced. Equi-
librium and boundary conditions arise naturally from the principle of virtual power. The
definition is found to be equivalent to the concept of stress introduced using the Cauchy
tetrahedron. The Beltrami potential representation of self-equilibrating stress fields is
introduced. The role of the incompatibility operator in elastostatics is discussed.

EXERCISES

1. Balance of linear and angular momentum
Show that the balance of the linear and angular momentum for an � can be obtained as
a direct consequence of the principle of virtual work using an infinitesimal rigid velocity
field:

vvv = aaa + bbb × xxx.
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2. Mean stress

Let us consider a body of arbitrary shape � supporting a system of surface tractions
defined by

ttt = AAA · nnn,

where AAA is a given symmetric second-order tensor.
(a) Define the conditions for AAA in order to ensure equilibrium of the body.
(b) Show by applying the principle of virtual work with the appropiate virtual velocity

field that mean stress equals AAA,

1
|� |

∫
�

σσσ dv = AAA,

where |� | denotes the volume of �.

3. Stress transformation between coordinate systems

The transformation of coordinates, as well as scalar, vector, and tensor fields, between
different coordinate systems is implemented in Mathematica using the commands Coor-
dinatesFromCartesian, FieldFromCartesian, and so forth.
(a) Use the command SetCoordinates[Cylindrical[r,t,z]] to define a cylindrical

polar coordinate system (r, θ, z). Determine the transformation between cylindrical
polar coordinates and cartesian coordinates using CoordinatesFromCartesian[x,

y, z].
(b) Specify a stress state with respect to a cylindrical polar coordinate system and trans-

form it into the corresponding cartesian coordinate system (x, y, z) using the command
FieldToCartesian.

(c) Now define a spherical coordinate system using the command SetCoordi-

nates[Spherical[r,p,t]], and use FieldFromCartesian to obtain the stress ten-
sor in the spherical coordinate system. Assuming a simple axisymmetric stress state,
verify that the result obtained in this way is correct.

Hint: See notebook C02 cyl to sph.nb.

4. Stress balance on infinitesimal volume elements (I)

The purpose of this exercise is to construct the stress balance equations for an infinitesi-
mal volume element � = [x − dx, x + dx] × [y − dy, y + dy] × [z − dz, z + dz] in cartesian
coordinates (x, y, z) following classical reasoning using a series expansion of the stress
tensor and the balance of tractions acting on the surface of �.
(a) Compute the stress tensor at middle points on the faces of an infinitesimal cubic

volume � using first-order series expansion ( Mathematica operator Series) .
(b) Using the constant midface values for each face, compute traction vectors acting on

each elementary face and the corresponding linear momentum values.
(c) Compute the total linear momentum of all traction vectors.
(d) Compute 8 × (divσσσ)dx dy dz and compare with the preceeding result. Comment on

the observation.
Hint: See notebook C02 balance cartesian.nb.
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 e1

 e2

 e3

    dx1

    
dx3
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dθ

dϕ

dr

    dz

ez

dθ

Figure 2.2. Volume elements in cartesian, cylindrical, and spherical coordinate systems.

5. Stress balance on infinitesimal volume elements (II)

Perform the same exercise as before for the following cases:
(a) in cylindrical coordinates (r, θ, z) by considering the infinitesimal volume � =

[r − dr, r + dr] × [θ − dθ, θ + dθ] × [z − dz, z + dz].
(b) in spherical coordinates (r, θ, φ) by considering the infinitesimal volume � =

[r − dr, r + dr] × [θ − dθ, θ + dθ] × [φ − dφ, φ + dφ].
See, Figure 2.2.

Hint: See notebook C02 balance cylindrical.nb.

6. Stress tensors in a cylindrical pipe

Consider a tubular cylinder � = [Ri,Re] × [0, 2π] × [0,H] in the cylindrical coordinate
system (r, θ, z).

The tube is subject to a series of surface tractions: inner and outer pressures pi and pe,
respectively, on the cylindrical surfaces, and pressure f on both end sections.
(a) Justify why the tube is in equilibrium state.
(b) Write down boundary conditions and balance equations for the stress tensor σσσ.
(c) Simplify the preceding system of partial differential equations under the assumptions

of cylindrical symmetry. Show that this system admits an infinite number of solutions.
(d) What can be concluded about the uniqueness of the stress field?
(e) Use the principle of virtual work with an appropiate virtual velocity field to compute

the mean value of σθθ.
Hint: Show that for each function σrr satisfying boundary conditions, a complete solution of the

equations can be obtained.

7. Stress tensors in a spherical shell

Consider a spherical shell� = [Ri,Re] × [0, π] × [0, 2π] in the spherical coordinate system
(r, θ, ϕ).

The tube is subject to pressures pi and pe on the inner and outer surfaces, respectively.
(a) Justify why the shell is in equilibrium state.
(b) Write down boundary conditions and balance equations for the stress tensor σσσ.
(c) Simplify the preceding system of partial differential equations under the assumptions

of spherical symetry. Show that this system admits an infinite number of solutions.
(d) What can be concluded about the uniqueness of the stress field?

Hint: See notebook C02 stress spherical.nb.
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8. Polynomial Airy stress function Timoshenko and Goodier (1951)

Consider a rectangular domain � = [−a, a] × [−b,b] × −c, c]. Using Mathematica allows
one to explore body forces and surface traction in equilibrium with the stress field defined
by Airy stress potentials in the form of polynomials of order m:

φm =
m∑

i=0

αi xiym−i.

Carry out the calculations for the cases m = 2, 3, 4, and provide a physical interpretation
of the individual boundary loading patterns.

9. Local stress representation using Mohr’s circles (Salencon, 2001; Timoshenko, 1951)

Assume that the stress tensor in the neighbourhood of point xxx ∈ � considered with respect
to a cartesian coordinate system and expressed in the matrix form appears to be a diagonal
matrix; that is,

σσσ = σ1 eee1 ⊗ eee1 + σ2 eee2 ⊗ eee2 + σ3 eee3 ⊗ eee3,

such that σi ∈ R, i = 1, 2, 3, are distinct from each other.
(a) Consider an infinitesimal surface element defined by the unit normal

nnn = n1 eee1 + n2 eee2 + n3 eee3, n2
1 + n2

2 + n2
3 = 1,

passing through point xxx. Compute the traction vector

ttt = σσσ · nnn

as well as the normal stress

σ = nnn · σσσ · nnn

and the tangential shear stress

τ2 + σ2 = | ttt |2 .

The normal and the tangential shear stress are the lengths of the normal and tangential
components of the traction vector with respect to the plane defined by the normal nnn
(Figure 2.3).

(b) Show that the preceeding equations can be assembled into the following system of
equations:

n2
1 = τ2 + (σ − σ2)(σ − σ3)

(σ1 − σ2)(σ1 − σ3)

n2
2 = τ2 + (σ − σ3)(σ − σ1)

(σ2 − σ3)(σ2 − σ1)

n2
3 = τ2 + (σ − σ1)(σ − σ2)

(σ3 − σ1)(σ3 − σ2)
.

(c) Using the ParametricMesh.m package provided with this book and described in
Appendix 3, plot the domain spanned by the normal and shear stresses (σ, τ) on the
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n

t = σ n

τ

σ

Figure 2.3. Traction vector ttt = σσσ · nnn on an infinitesimal
suface element with unit normal nnn, and its normal and
shear components.

(σ, τ) plane, also referred to as Mohr’s plane when nnn covers all possible orientations
in R3, that is, its tip moves across the entire surface of the unit sphere (Figure 2.4).

(d) Commands used inParametricMesh.muse colour function that is defined with respect
to the coordinates of the “deformed” mesh. Modify the commands presented in
Appendix 3 so that the colour corresponding to the position of a normal vector is
determined as a function of the spherical coordinate angles (θ, ϕ):

nnn(θ, ϕ) = cosϕ sin θeee1 + sinϕ sin θeee2 + cos θeee3.

(e) Assuming that σ1 < σ2 < σ3 and using n2
i ≥ 0, i = 1, 2, 3, conclude that

τ2 + (σ − σ2)(σ − σ3) ≥ 0

τ2 + (σ − σ3)(σ − σ1) ≤ 0

τ2 + (σ − σ1)(σ − σ2) ≥ 0.

Consider and interpret the plot obtained with Mathematica (Figure 2.4) and deduce
a formal proof.

Hint: See notebook: C02 mohr circles.nb.

π/2

− π/2

2π

θ

φ

-1 1 2 3 4 5

0.5

1

1.5

2
2.5

3

σ
σσσ

τ

1 2 3

Figure 2.4. The domain of the spherical coordinate angles defining unit normals nnn(θ, ϕ) (left panel) and
the domain covered in the Mohr plane by the normal and shear stress (σ, τ) (right panel) .
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10. Stress balance and the Beltrami potential

Verify using Mathematica that a stress tensor derived from a Beltrami potential,

σσσ = incBBB,

is divergence-free, that is,

divσσσ = 0.

Is it necessary to check this relation for different coordinate systems?
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OUTLINE

In the preceding chapters we have discussed, on the one hand, the kinematics of defor-
mation of continuous media, where the principal unknowns are the displacement vector
field uuu and the strain tensor field εεε. On the other hand, we have introduced the dynamics
of deformation, representing the balance of forces in terms of the stress tensor field σσσ as
the principal unknown.

Until now we have made no attempt to relate the strain and stress fields to each other.
Before we begin the discussion of the detailed nature of this relationship, we can make
the following general remarks:

• Description so far is clearly incomplete, because we have at our disposal only 6
kinematic relations and 3 force balance equations for the determination of the 3 +
6 + 6 unknown functions, that is, the components of displacement uuu, strain εεε, and stress
σσσ.

• We are so far unable to distinguish between different materials which might assume
different deformed configurations under the same external loading. Clearly structures
produced out of wood, steel, or ceramic may deform in different ways, so that the
complete solutions are different.

The purpose of this chapter is to establish a class of relationships between strains
and stresses known as the linear elastic constitutive law and to discuss a series of basic
properties of these relationships.

3.1 LINEAR ELASTICITY

We shall simply assume for now that there exists a linear relationship between the com-
ponents of stress and strain tensors at each point in the body. This observation is well
supported by experimental evidence, provided that the strains remain sufficiently small.
We shall refer to this theoretical framework as linear elasticity and refer to the relationship
between stresses and strains as Hooke’s law.

In a given orthonormal basis the linear elastic stress–strain relastionship is expressed
as

σij = Cijklεkl, (3.1)

where Cijkl can be referred to as elastic stiffnesses, elastic constants, or elastic moduli.

56
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We recall that all lower case Latin subscripts assume the values 1,2,3 and that sum-
mation over a repeated index is implied, which is known as the Einstein summation
convention. In the above equation this applies to the indices k and l on the right hand
side, so that, for example, for component σ23 the expanded form is

σ23 = C2311ε11 + C2312ε12 + C2313ε13 + C2321ε21 + . . . . (3.2)

Equation (3.1) can also be expressed in tensorial form as

σσσ = CCC : εεε, (3.3)

where C is the fourth rank order of the elastic moduli, also known as Hooke’s tensor. The
colon between the two tensors represents the ‘double dot’ operator, which involves convo-
lution (product and summation) over two pairs of indices. The corresponding Mathematica
operator DDot can be constructed out of the operators Dot and Tr (or their generalised
counterparts GDot and GTr) (Section 3.5).

Hooke’s tensor can be written with respect to a cartesian coordinate system in tensorial
form as

C = Cijkl eeei ⊗ eeej ⊗ eeek ⊗ eeel. (3.4)

We remark that, as C is a fourth rank tensor in the three-dimensional space, it will
possess 3 × 3 × 3 × 3 = 81 components. However, due to the symmetry of the strain tensor
εεε, εkl = εlk, we may assume for simplicity that

Cijkl = Cij lk.

Similarly, due to the symmetry of the stress tensor σσσ, σkl = σlk, we can assume that

Cijkl = Cj ikl.

These two symmetry relations reduce the number of independent components of C from
the initial 81 to 6 × 6 = 36.

Moreover, we shall impose a third symmetry relation:

Cijkl = Cklij .

This condition expresses the statement that for every pair of strain tensors we have

εεε1 : CCC : εεε2 = εεε2 : CCC : εεε1.

The physical meaning of this statement is that no net mechanical work is done in a closed
loading cycle and it will be further discussed in Chapter 4. This symmetry requirement en-
sures the existence of an elastic energy potential. As a consequence of this final symmetry
statement we remark that in the most general case C may have the maximum number of
21 independent components (see next section).

Moreover, the existence of the elastic energy potential, together with the fact that the
body cannot instantenously release energy to the environment, imposes the hypothesis of
material stability, which translates into the positive definiteness of CCC:

εεε : C : εεε ≥ 0 ∀εεε.
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Instead of representing the stresses as linear combinations of strains, we could have
formulated their linear relationship the opposite way around, by putting

εij = Sijklσkl εεε = SSS : σσσ (3.5)

SSS = Sijkl eeei ⊗ eeej ⊗ eeek ⊗ eeel, (3.6)

where S denotes the fourth-order tensor of elastic compliances.
It is accepted within the linear elastic framework that the strains and stresses are

connected through a one-to-one relation. The operation of re-expressing the stresses as a
linear combination of strains is equivalent to the inversion of the linear system (3.1). The
elastic compliance tensor S is therefore the inverse tensor of C; that is, S = C−1.

By repeating the arguments of symmetry, similar requirements can be imposed on the
compliance tensor,

Sijkl = Sklij = Sj ikl, (3.7)

thus establishing that S also has the maximum of 21 independent components; and its
positive definiteness:

σσσ : S : σσσ ≥ 0 ∀σσσ.

3.2 MATRIX REPRESENTATION OF ELASTIC COEFFICIENTS

The above representation of the elastic coefficients as fourth rank tensors is the most
natural way of introducing the linear dependence between the second rank stress and
strain tensors.∗ However, it is not particularly convenient for visualising the relationships
imposed by Hooke’s law or the effect of special material symmetries on its form.

Instead, the relationships between the components of stress and strain can be ex-
pressed by collecting the terms and eliminating the redundant equations due to symmetry,
leading to the following system:

σ11

σ22

σ33

σ23

σ31

σ12


=



C1111 C1122 C1133 C1123 C1131 C1112

C1122 C2222 C2233 C2223 C2231 C2212

C1133 C2233 C3333 C3323 C3331 C3312

C1123 C2233 C3323 C2323 C2331 C2312

C1131 C2231 C3323 C2323 C3131 C3112

C1112 C2212 C3323 C2312 C3112 C1212


·



ε11

ε22

ε33

2 ε23

2 ε31

2 ε12


. (3.8)

This method establishes the link between the 6-vector of stress and the 6-vector of strain
via a 6 × 6 symmetric matrix. The above expression demonstrates explicitly how the 21
independent components of the tensor C populate this matrix.

It is now convenient to replace with a single index each of the first and second pairs of
indices of Cijkl that identify the stress and strain components. We introduce the following
set of rules:

11 ↔ 1 22 ↔ 2 33 ↔ 3 23 ↔ 4 31 ↔ 5 12 ↔ 6.

∗ A complete discussion of matrix representation, as well as the issues of material symmetry, is given in Cowin
and Mehrabadi (1990, 1992).
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Table 3.1. Relationship between strains and stresses in the fourth rank, Voigt, and second rank
notation

Fourth rank Second rank Fourth rank Second rank
tensor Voigt tensor tensor Voigt tensor

ε11 = ε1 = ε̂1 σ11 = σ1 = σ̂1

ε22 = ε2 = ε̂2 σ22 = σ2 = σ̂2

ε33 = ε3 = ε̂3 σ33 = σ3 = σ̂3

ε23 = 1
2 ε4 = 1√

2
ε̂4 σ23 = σ4 = 1√

2
σ̂4

ε31 = 1
2 ε5 = 1√

2
ε̂5 σ31 = σ5 = 1√

2
σ̂5

ε12 = 1
2 ε6 = 1√

2
ε̂6 σ12 = σ6 = 1√

2
σ̂6

Thus for example

C1231 ↔ c31 C2233 ↔ c23,

so that the system is rewritten as

σ11

σ22

σ33

σ23

σ31

σ12


=



c11 c12 c13 c14 c15 c16

c21 c22 c23 c24 c25 c26

c31 c32 c33 c34 c35 c36

c41 c42 c43 c44 c45 c46

c51 c52 c53 c54 c55 c56

c61 c62 c63 c64 c65 c66


·



ε11

ε22

ε33

2ε23

2ε31

2ε12


. (3.9)

According to this convention, known as the Voigt notation, single index notation is also
introduced for strains and stresses. The last relation becomes

σ1

σ2

σ3

σ4

σ5

σ6


=



c11 c12 c13 c14 c15 c16

c21 c22 c23 c24 c25 c26

c31 c32 c33 c34 c35 c36

c41 c42 c43 c44 c45 c46

c51 c52 c53 c54 c55 c56

c61 c62 c63 c64 c65 c66


·



ε1

ε2

ε3

2ε4

2ε5

2ε6


. (3.10)

There are two major drawbacks of the Voigt notation. First, it is apparent that single-
index stresses and strains enter the 6-vector object differently (note the factor of 2 that
appears in front of the shear strain components). Second, the 6-vector and matrix objects
created in this way are no longer tensors, and therefore the transformation of coordi-
nate systems and differential equations cannot be accomplished in a natural way in this
notation.

The situation can be corrected if, instead of an arbitrary choice of transition from
second rank tensors to 6-vectors, one chooses an orthonormal vectorial base in the 6-
dimensional vector space. This will lead to associated symmetric matrices and give rise
to the so-called second-rank tensor notation. See Table 3.1 for a comparison of these
notations.
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The following vectors are naturally associated with the set of basis tensors in the linear
space of symmetric second-order tensors:

vvv1 = eee1 ⊗ eee1 (3.11)

vvv2 = eee2 ⊗ eee2 (3.12)

vvv3 = eee3 ⊗ eee3 (3.13)

vvv4 = eee2 ⊗ eee3 + eee3 ⊗ eee2 (3.14)

vvv5 = eee3 ⊗ eee1 + eee1 ⊗ eee3 (3.15)

vvv6 = eee1 ⊗ eee2 + eee2 ⊗ eee1. (3.16)

The vectors in this basis span the complete space of second rank tensors and are linearly
independent. However, the natural norm for some of them is different from unity:

|vvv4 | = |vvv5 | = |vvv6 | =
√

2. (3.17)

Renormalising these vectors, we can now develop a consistent second rank represen-
tation using the orthonormal basis for both strains and stresses:

vvv1 = eee1 ⊗ eee1 (3.18)

vvv2 = eee2 ⊗ eee2 (3.19)

vvv3 = eee3 ⊗ eee3 (3.20)

vvv4 = 1√
2

(eee2 ⊗ eee3 + eee3 ⊗ eee2) (3.21)

vvv5 = 1√
2

(eee3 ⊗ eee1 + eee1 ⊗ eee3) (3.22)

vvv6 = 1√
2

(eee1 ⊗ eee2 + eee2 ⊗ eee1). (3.23)

Hooke’s law in this basis is written in the form

σ11

σ22

σ33√
2σ23√
2σ31√
2σ12


=



C1111 C1122 C1133
√

2C1123
√

2C1131
√

2C1112

C1122 C2222 C2233
√

2C2223
√

2C2231
√

2C2212

C1133 C2233 C3333
√

2C3323
√

2C3331
√

2C3312√
2C1123

√
2C2233

√
2C3323 2C2323 2C2331 2C2312√

2C1131
√

2C2231
√

2C3323 2C2323 2C3131 2C3112√
2C1112

√
2C2212

√
2C3323 2C2312 2C3112 2C1212


·



ε11

ε22

ε33√
2ε23√
2ε31√
2ε12


,

(3.24)

which is equivalent to the second rank tensor notation

σ̂1

σ̂2

σ̂3

σ̂4

σ̂5

σ̂6


=



ĉ11 ĉ12 ĉ13 ĉ14 ĉ15 ĉ16

ĉ21 ĉ22 ĉ23 ĉ24 ĉ25 ĉ26

ĉ31 ĉ32 ĉ33 ĉ34 ĉ35 ĉ36

ĉ41 ĉ42 ĉ43 ĉ44 ĉ45 ĉ46

ĉ51 ĉ52 ĉ53 ĉ54 ĉ55 ĉ56

ĉ61 ĉ62 ĉ63 ĉ64 ĉ65 ĉ66


·



ε̂1

ε̂2

ε̂3

ε̂4

ε̂5

ε̂6


. (3.25)
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In a similar way, the two different notations introduced above can similarly be used for
the compliance tensor S, leading to the expressions for compliance in the Voigt notation,
s, and the second rank tensor notation, ŝ.

It is important to remark that in all representations the following relations hold
between the matrices:

C = S−1, c = s−1, ĉ = ŝ−1. (3.26)

Mathematica Programmaing

Creation of tensors

SymIndex[2,number], SymIndex[4] creates a list of symmetric indices for second or
fourth rank list

MakeName[myexp] joins strings over elements of lists

MakeTensor[mystring, 2, dim] creates a second rank tensor with head mystring

MakeTensor[mystring, 4] creates a fourth rank tensor with head mystring

Let us now explore how the foregoing definitions can be efficiently implemented using
Mathematica.

As a start, we create tensorial symbolic expressions which will automatically assign
names to the components. Our interest lies in creating symmetric second- and fourth-
order tensors in the forms presented in the previous section and defining procedures for
the passage between different tensor notations, that is, the fourth rank tensor, Voigt, and
second rank tensor notations (denoted by 4,V, and 2, respectively), first for the Hooke
stiffness tensor, and then for its inverse, the compliance tensor.

SymIndex creates a list of indices of a second-order tensor in a space of dimension
dim. An array of indices is created using Array[List, Array[dim &, 2]] and then
rearranged, taking symmetry into account by applying the Sort command. Here ##

stands for SlotSequence and makes it possible to accept a sequence of objects as input
in a Pure Function.

The MakeName command concatenates a list of strings and/or numbers to an expres-
sion.

The MakeTensor command combines the previous commands in order to create a
tensorial expression having components which respect the symmetry conditions. Some
examples illustrate the operation of this command.

SymIndex[2, dim_] :=

Apply[(Sort[List[##]]&),Array[List,Array[dim &,2]],{2}]

SymIndex[2, 3] // MatrixForm

SymIndex[2, 6] // MatrixForm

SymIndex[4] =

Apply[Flatten[Sort[Map[Sort, Partition[List[##], 2]]]] &,
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Array[ List, Array[3 &, 4]], 4]

SymIndex[4] // MatrixForm

MakeName[myexp__] := ToExpression //@ (StringJoin

Map[ToString[#] &, List[myexp]] )

MakeTensor[mystring_, 2, dim_] :=

Apply[(MakeName[mystring, ##] &) , SymIndex[2, dim], {2}]

MakeTensor[mystring_, 4 ] :=

Apply[(MakeName[mystring, ##] &) , SymIndex[4], {4}]]

( stress = MakeTensor["sig", 2, 3]) // MatrixForm

( strain = MakeTensor["eps", 2, 3]) // MatrixForm

( C4 = MakeTensor["C", 4] ) // MatrixForm

For programming the fourth-rank tensor to second-rank tensor transformation, we
have chosen to define sets of rules for the forward and reverse substitution of
indices between the second rank tensors of dimension 3 and vectors of dimen-
sion 6.

indexrule2to1 = {{1, 1} -> 1, {2, 2} -> 2, {3, 3} -> 3,

{2, 3} -> 4, {3, 1} -> 5, {1, 2} -> 6, {3, 2} -> 4,

{1, 3} -> 5, {2, 1} -> 6}

indexrule1to2 = Map[Rule[#[[2]], #[[1]] ] & , indexrule2to1]

Index6[1] = Range[6] /. indexrule1to2

The passage between the fourth-rank tensors and the second-rank tensors is now
easily accomplished by picking any desired form of tensor using the predefined
indexrule.

The commands perform the following transformations:

• HookeVto4 and Hooke4toV transform the Voigt notation into the fourth-order
tensor notation and back

• HookeVto2 and Hooke2toV transform the Voigt notation into the second-order
tensor notation and back

• Hooke4to2 and Hooke2to4 transform the fourth-order into the second-order tensor
notation, and back.
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Note the use of factors 2 and
√

2 in the code that ensure that the tensorial form of
the result is maintained whenever appropriate.

HookeVto4[ myC_] :=

Array[ myC[[ {#1, #2}

/. indexrule2to1, {#3, #4} /. indexrule2to1]] &,

Array[3 &, 4]]

Hooke4toV[ myC_] :=

Apply[ Part[ myC,##] &,

Array[ Join[ #1

/. indexrule1to2 , #2 /. indexrule1to2] &,

Array[6 &, 2]] , 2]

Hooke2toV[myc2_] := Table[

Which[

i <= 3 && j <= 3 , myc2[[i, j]],

4 <= i && j <= 3 , myc2[[i, j]]/ 2ˆ(1/2),

i <= 3 && 4 <= j , myc2[[i, j]]/ 2ˆ(1/2),

4 <= i && 4 <= j , myc2[[i, j]]/ 2

], i, 6, j, 6]

HookeVto2[mycV_] := Table[

Which[

i <= 3 && j <= 3 , mycV[[i, j]],

4 <= i && j <= 3 , mycV[[i, j]] * 2ˆ(1/2),

i <= 3 && 4 <= j , mycV[[i, j]] * 2ˆ(1/2),

4 <= i && 4 <= j , mycV[[i, j]] * 2

], i, 6, j, 6]

Hooke4to2[myC_] := HookeVto2[Hooke4toV[ myC ]]

Hooke2to4[myC_] := HookeVto4[Hooke2toV[ myC ]]

The correctness of Hooke to definitions can now be checked by creating a tensor and
exploring its appearance in different notations.

MatrixForm makes it possible to check the result in a convenient way, even when
applied to fourth-order tensors.

(C2 = MakeTensor["C", 2, 6]) // MatrixForm

C2to4 = HookeVto4[C2]

C2back = Hooke4toV[C2to4]

C4to2 = Hooke4toV[C4]
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C4back = HookeVto4[C4to2]

CV = Hooke2toV[C2]

C2back = HookeVto2[CV]

CV = Hooke4to2[C4]

C4back = Hooke2to4[CV]

A similar set of transformations can easily be defined for the compliance tensor.

Compliance2toV[mys2_] := Hooke2toV[mys2]

ComplianceVto2[mys2_] := HookeVto2[mys2]

Compliance4toV[myS4_] :=

ComplianceVto2[ ComplianceVto2[ Hooke4toV[ myS4 ]]]

ComplianceVto4[mysV_] :=

HookeVto4[ Compliance2toV[ Compliance2toV[ mysV]] ]

( S4 = MakeTensor["S", 4] ) // MatrixForm

( SV = MakeTensor["SV", 2, 6] ) // MatrixForm

Hooke4toV[ ComplianceVto4[ SV]] // MatrixForm

ComplianceVto2[ SV] // MatrixForm

To explore the linear elastic law freely we additionally define the left and right double
dot product between a fourth-rank and a second-rank tensor.

Manipulation procedures can be used that make use of the generalised dot product
command GDot described in Appendix 1.

CEDot[Ctensor_, straintensor_ ] :=

GTr[ GDot[Ctensor, straintensor, 4, 1], 3, 4]

ECDot = CEDot

DDot[T4_, t2_] := GTr[GDot[T4, t2, 1, 1], 1, 4]

Another, more straightforward method employs the standard Mathematica Sum com-
mand.

CEDot[Ctensor_, straintensor_ ] :=

Table[

Sum[ Ctensor[[i,j,k,l]] straintensor[[k,l]],

{k,3},{l,3}],
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{i,3},{j,3}]

ECDot[Ctenso_, straintensor_ ] :=

Table[ Sum[

straintensor[[k,l]] Ctensor[[k,l,i,j]],

{k,3},{l,3}],

{i,3},{j,3}]

Manipulations shown here illustrate the definitions introduced in this chapter, namely,
the expression of stresses as a function of strains and vice versa, and the symmetries of
the elasticity tensor and of the stress tensor.

sigma = CEDot[C4, strain]

strain = CEDot[S4, stress]

Simplify[ CEDot[C4, strain] - ECDot[C4, strain] ]

Simplify[ sigma - Transpose[sigma]]

Second rank, Voigt and fourth rank tensor notations

indexrule2to1 changes indices from 6-vector to 3-matrix
indexrule1to2

Hooke2to4[C] changes elasticity tensor from second-rank
to fourth-rank tensor notation

HookeVto4[C] changes elasticity tensor from Voigt to fourth rank tensor notation

...

Compliance2to4[C] changes compliance tensor from second-rank
to fourth-rank tensor notation

ComplianceVto4[C] changes compliance tensor from Voigt to fourth-rank tensor notation
...

3.3 MATERIAL SYMMETRY

Elastic moduli Cijkl relating the cartesian components of strains and stresses depend of
the orientation of the coordinate system with respect to the orientation of the body.

If the values of all elastic moduli are equal for any two different cartesian coordinate
system orientations we shall speak of material elastic symmetry.

More precisely, let us suppose that (eee1,eee2,eee3) and (ggg1,ggg2,ggg3) define two systems of
cartesian coordinates related through

eeei = Rij gggj , (3.27)

where the transformation (rotation or reflection) matrix R is

Rij = eeei · eeej with det[Rij ] = ±1. (3.28)
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Then the components of C are written as

C = Cg
ijkl gggi ⊗ gggj ⊗ gggk ⊗ gggl (3.29)

C = Ce
pqrs eeep ⊗ eeeq ⊗ eeer ⊗ eees (3.30)

= Ce
pqrs Rpi Rqj Rrk Rslgggi ⊗ gggj ⊗ gggk ⊗ gggl. (3.31)

The material symmetry demands therefore that

Cijkl = Cpqrs Rpi Rqj Rrk Rsl. (3.32)

These relations impose additional restrictions on the elastic moduli and further reduce the
number of independent components that describe the elastic properties of materials that
conform to the additionally imposed symmetry requirements.

The set of transformations RRR defining the material symmetry of the elastic body
correspond to an algebraic group generally denoted by G(RRR). Group G is a subgroup of
the group of orthogonal transformations.

It can be shown (Chadwick et al., [2001]) using rigorous mathematical reasoning that
there are precisely eight groups of material symmetry. Without going into the details of
the mathematical proof, we present these classes below (see Figure 3.1 for illustration).

Triclinic elastic materials

For the vast majority of materials we can assume that in terms of linear elastic properties, no
difference can be detected between the positive and negative senses of a certain direction,
say +x and −x. We therefore assume that all materials respect the material symmetry
relation (3.32) if the group of symmetry transformations is defined as

G = {III,−III}.
In this case no further restrictions can be imposed on the elastic moduli. They can be
displayed in the form of a symmetric 6 × 6 matrix (dots denote symmetry)

C11 C12 C13 C14 C15 C16

· C22 C23 C24 C25 C26

· · C33 C34 C35 C36

· · · C44 C45 C46

· · · · C55 C56

· · · · · C66


. (3.33)

Monoclinic elastic materials

Materials with only one plane of reflexion (material symmetry) are called monoclinic
materials.

Generally we shall denote by

N = {nnn1, . . . ,nnni, . . .}
the set of normals to the planes of reflexion.
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TRICLINIC

MONOCLINIC

ISOTROPIC

TRANSVERSE 
ORTHOTROPICTETRAGONALTRIGONAL

CUBIC

ISOTROPIC

Figure 3.1. The classes of material symmetry represented as symmetry planes for an elementary volume,
and the relations between these classes.

In the present case of monoclinic materials only one plane of symmetry is present. The
number of independent stiffnesses is 13 in a basis oriented so that the mirror plane normal
n1n1n1 coincides with one of the basis vectors (e2e2e2 or e3e3e3). For the stiffness matrix components
with respect to this vector basis, we obtain

if N = {eee2} then C14 = C16 = C24 = C26 = C34 = C36 = C45 = C56 = 0 (3.34)

if N = {eee3} then C14 = C15 = C24 = C25 = C34 = C35 = C46 = C56 = 0. (3.35)

Tetragonal elastic materials

This type of material possesses five mirror planes defined by five vector normals. Of these
normals four are coplanar and at angles of π/4 to each other, whereas the fifth normal
vector is perpendicular to this plane. This type of material is called tetragonal. We select
the set of normals

N =
{

eee2,
1√
2

(eee2 + eee3),eee3,
1√
2

(−eee2 + eee3),eee1

}
(3.36)
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and obtain the set of elastic stiffnesses

C11 C12 C13 0 0 0

· C11 C13 0 0 0

· · C33 0 0 0

· · · C44 0 0

· · · · C44 0

· · · · · C66


. (3.37)

Trigonal elastic materials

An elastic material with three coplanar mirror plane normals separated by an angle of
π

3
is called trigonal.

Let the set of normals be given by

N =
{

eee2,
1
2

(
eee2 +

√
3eee3

)
,

1
2

(
−eee2 +

√
3eee3

)}
. (3.38)

Then the symmetric matrix of the elastic stiffnesses is expressed as

C11 C12 C13 0 C15 0

· C22 C23 0 −C15 0

· · C33 0 0 0

· · · C44 0 −C15

· · · · C55 0

· · · · · 1
2

(C11 − C12)


. (3.39)

Orthotropic elastic materials

We shall now consider orthotropic materials, for which the three mirror plane normals
form an orthogonal basis. If these three normals coincide with the basis vectors of the
cartesian system,

N = {eee1,eee2,eee3},

then the matrix of elastic stiffnesses has the form

C11 C12 C13 0 0 0

· C22 C23 0 0 0

· · C33 0 0 0

· · · C44 0 0

· · · · C55 0

· · · · · C66


. (3.40)
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Transversely isotropic elastic materials

An elastic material is said to be transversly isotropic if a vector eee and all vectors orthogonal
to eee are mirror plane normals. If eee = eee1, then the stiffness matrix has the form

C11 C12 C13 0 0 0

· C11 C13 0 0 0

· · C33 0 0 0

· · · C44 0 0

· · · · C44 0

· · · · · 1
2

(C11 − C12)


. (3.41)

Rules for defining symmetry classes

triclinic triclinic symmetry
monoclinic2 monoclinic symmetry along eee2

monoclinic3 monoclinic symmetry along eee3

tetragonal tetragonal symmetry
trigonal trigonal symmetry
orthotropic orthotropic symmetry
transverse transversely isotropic symmetry
isotropy isotropic symmetry

Cubic elastic symmetry

An elastic material for which there are nine mirror plane normals coinciding with the
edges and face diagonals of a cube is said to be cubic. The set of normals is given by

N =
{

eee1,eee2,eee3,
(eee2 + eee3)√

2
,

(−eee2 + eee3)√
2

,
(eee3 + eee1)√

2
,

(−eee3 + eee1)√
2

,
(eee1 + eee2)√

2
,

(−eee1 + eee2)√
2

,

}
.

(3.42)

The corresponding stiffness matrix is

C11 C12 C12 0 0 0

· C11 C12 0 0 0

· · C11 0 0 0

· · · C44 0 0

· · · · C44 0

· · · · · C44


. (3.43)

Isotropic elastic materials

An elastic material for which every direction can be identified with a mirror plane nor-
mal is called isotropic. In this case the material has no preferred direction in terms of
deformation: all directions are entirely equal. Such a material has only two independent
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elastic moduli, and the stiffness matrix has the form



C11 C12 C12 0 0 0

· C11 C12 0 0 0

· · C11 0 0 0

· · · 1
2

(C11 − C12) 0 0

· · · · 1
2

(C11 − C12) 0

· · · · · 1
2

(C11 − C12)


. (3.44)

Mathematica programming

The different symmetry groups can be defined in Mathematica as sets of rules defining
the relationships between the elastic moduli. Some examples are given in the form of
Mathematica code here.

monoclinic2 = Thread[ {C14,C16,C24,C26,C34,C36,C45,C56}->0]

(C2 /. monoclinic2) // MatrixForm

tetragonal = Join[

Thread[{C14,C15,C16,C24,C25,C26,C34,C35,C36,C45,C46,C56}->0],

{C22 -> C11, C23 -> C13, C55 -> C44}]

(C2 /. tetragonal) // MatrixForm

isotropic = Join[

Thread[{C14,C15,C16,C24,C25,C26,C34,C35,C36,C45,C46,C56}->0],

{C13 -> C12, C22 -> C11, C23 -> C12, C33 -> C11,

C44 -> (C11 - C12)/2, C55 -> (C11 - C12)/2,

C66 -> (C11 - C12)/2}]

(C2 /. isotropic) // MatrixForm

The compliance matrix s will display the same distribution of zeros. This can be readily
established with the help of the theory of symmetric block matrices and even more
easily verified using Mathematica. For example:

Inverse[(C2 /. isotropic) ] // MatrixForm
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er

eϕ

θ

ϕ

θe
Figure 3.2. Plane tangent to the unit sphere at the point defined
by the spherical coordinate angles (θ, ϕ). The plane normal is er,
and the plane is spanned by the vectors eθ and eϕ.

Displaying the symmetry planes

Visualisation of the planes of symmetry that characterise different classes of material
symmetry can be readily achieved in Mathematica using some simple commands.

We note that the basis vector er in the spherical coordinate system assumes values
associated with all possible directions in the Euclidean space. For a specified value of er,
the other two basis vectors, eθ and eϕ, span a plane with the normal er. In our plots the
planes will be represented by [−1, 1] × [−1, 1] rectangles in the (eθ, eϕ) plane.

In Mathematica we define the normal vector of a mirror plane by the spherical coordi-
nate angles (θ, ϕ). We then define a linear function corresponding to the plane and plot
the rectangle using the ParametricPlot3D command. See Figure 3.2.

SetCoordinates[Spherical[r, t, p]]

CoordinatesToCartesian[{r, t, p}]

base = Transpose[ JacobianMatrix[]] / ScaleFactors[]

plane[t_, p_] = u base[[2]] + v base[[3]]

PlanePlot[ t_, p_, opt___] :=

ParametricPlot3D[plane[t,p], u,-1,1, v,-1,1, opt]

To display an entire set of symmetry planes, we map the preceding commands over the
complete set and display the result.

Note the use of the $DisplayFunction option to show only the final plot.
Symmetry planes in the case of trigonal and cubic material symmetries are displayed

in Figure 3.3.

ntrigonal = {{0,Pi/2}, {2Pi/3,Pi/2}, {4Pi/3,Pi/2}}

nortotropic = {{Pi/2, 0}, {Pi/2, Pi/2}, {0, 0}}

ncubic = {{Pi/2,0}, {Pi/2,Pi/2}, 0,0,{Pi/4,Pi/2},

{3Pi/4,Pi/2}, {Pi/4,Pi}, {3Pi/4,Pi},

{Pi/4,3Pi/2}, {3Pi/4,3Pi/2}}
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Figure 3.3. Symmetry planes for (a) trigonal and (b) cubic material symmetry.

ShowPlanes[ ncubic, ViewPoint -> {3, 5, 7}]

planeset =

Map[ PlanePlot[#[[1]], #[[2]],

DisplayFunction -> Identity] &, ntrigonal]

(Show[planeset,

DisplayFunction -> $DisplayFunction ] &) @@ planeset

3.4 THE EXTENSION EXPERIMENT

In order to gain better insight into the meaning of different symmetry groups, let us
perform a series of thought experiments involving specimens of different orientations.

From a homogeneous material possessing given material symmetry we shall cut imag-
inary cylindrical specimens in various directions and perform tensile experiments on each
of them with a unit stress applied along the specimen axis. We shall then record the ax-
ial extension and hence will be able to determine the apparent elastic compliance and
apparent modulus in various directions.

Let us first discuss the corresponding formulae and then present Mathematica pro-
gramming.

For a specimen cut in the direction n the stress field is defined by

σ = n ⊗ n. (3.45)
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The corresponding strain field is computed using the elastic constitutive law with the
compliance tensor S:

ε = S : σ. (3.46)

The longitudinal strain is proportional to the directional compliance and is compu-
ted as

e(n) = n · ε · n = n ⊗ n : S : n ⊗ n. (3.47)

The apparent modulus in the chosen direction is computed as

E(n) = σσσ

e(n)
= 1

n ⊗ n : S : n ⊗ n
. (3.48)

The preceding formulas are now written in terms of the Mathematica commands. Note
the use of the command Outer to construct the outer product, ⊗, between two vectors.

normal = Cos[p] Sin[t], Sin[p] Sin[t], Cos[t]

(stress = Outer[ Times , normal, normal]) // MatrixForm

The illustration of spatial variation of directional compliance is obtained as follows. We
begin by recomputing the stiffness and compliance tensor for the case of cubic material
symmetry, C2cubic and S2cubic, respectively.

We can use this occasion to verify the distribution of zeros of the stiffness and the
compliance tensors and to check the inverse relationship in this specific case.

cubic = Join[

Thread[{c14,c15,c16,c24,c25,c26,c34,c35,c36,c45,c46,c56}

->0],

{c13->c12, c22->c11, c23->c12,

c33->c11, c55->c44, c66->c44}]

(C2cubic = MakeTensor["c", 2,6]/.cubic) //MatrixForm

(S2cubic = Simplify[Inverse[C2cubic]]) //MatrixForm

sol = Solve[ {s11 == S2cubic[[1, 1]],

s12 == S2cubic[[1, 2]],

s44 == S2cubic[[4, 4]]},

{c11, c12, c44}][[1]]

(S2cubic = Simplify[ S2cubic /. sol ]) // MatrixForm

We use the following numerical values of compliance, keeping in mind that these are
usually quoted in the Voigt notation:
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aluminium = {s11->.6 10ˆ-2, s12->-0.58 10ˆ-2, s44->3.5 10ˆ-2}

copper = {s11->1.49 10ˆ-2, s12->-0.63 10ˆ-2, s44->1.33 10ˆ-2}

austenite = {s11->1.49 10ˆ-2, s12->-0.63 10ˆ-2, s44->1.33 10ˆ-2}

TiN = {s11->2.17 10ˆ-3, s12->-3.8 10ˆ-4, s44->5.95 10ˆ-3}

(S4cubic = ComplianceVto4[S2cubic]) // MatrixForm

(strain = CEDot[ S4cubic, stress]) // MatrixForm

The axial extension

εnn = nnn · εεε · nnn

can be computed using different combinations of Mathematica commands.
Particular cases of material behaviour can then be obtained by using the replace-

ment rule defined previously.

epsnn = Simplify[ Nest[ Dot[ # , normal] &, S4cubic , 4] ]

epsnn = Simplify[ normal . strain . normal ]

Simplify[ epsnn /. s44 -> (s11 - s12)/2]

Plots shown in Figures 3.4 and 3.5 are obtained using the ParametricPlot command
and varying the directions (θ, ϕ) ∈ [0, 2π) × (−π

2 ,
π
2 ).

(epsnn normal) /. aluminium;
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Figure 3.4. The orientational variation of axial
extension for TiN.
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Figure 3.5. The orientational variation of axial
extension for fcc iron (austenite).

ParametricPlot3D[ Evaluate[%], {t,0,2Pi}, {p,-Pi2,Pi2},

PlotPoints -> 50]

3.5 FURTHER PROPERTIES OF ISOTROPIC ELASTICITY

In the isotropic case the compliance tensor SSS depends on only two parameters.
The isotropic stiffness tensor is usually expressed in terms of the Lamé moduli (λ,µ),

whereas the isotropic compliance tensor is more coveniently defined using Young’s mod-
ulus E and Poisson’s ratio ν.

Please note the use of the variable EE for Young’s modulus E in Mathematica to avoid
confusion with the base of natural logarithms, E = 2.71828....

The isotropic stiffness and compliance 4-tensors, CCC and SSS, respectively, are defined and
constructed as follows:

Cijkl = λδij δkl + µ(δikδj l + δilδjk)

σσσ = CCC : εεε

Sijkl = −ν

E
δij δkl + (1 + ν)

2Y
(δikδj l + δilδjk)

εεε = SSS : σσσ.

The calculations can be implemented in the form of Mathematica functions DDot
(double dot product) and IsotropicCompliance. It is useful to provide an additional
definition of the isotropic compliance tensor as a function of a single parameter nu, as
it is sometimes convenient to set Young’s modulus EE to unity.

IsotropicStiffness[lambda_, mu_] := Array[

lambda KroneckerDelta[#1,#2] KroneckerDelta[#3,#4]+

mu (KroneckerDelta[#1,#3] KroneckerDelta[#2,#4]+

KroneckerDelta[#1,#4]KroneckerDelta[#2,#3]) &,

{3, 3, 3, 3}]
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IsotropicCompliance[EE_, nu_] := Array[

-nu/EE KroneckerDelta[#1, #2] KroneckerDelta[#3, #4]+

(1+nu)/2/EE( KroneckerDelta[#1,#3] KroneckerDelta[#2,#4]+

KroneckerDelta[#1, #4]KroneckerDelta[#2, #3]) &,

{3, 3, 3, 3}]

IsotropicCompliance[nu_] := IsotropicCompliance[1, nu]

SS = IsotropicCompliance[nu]

The isotropic elastic constitutive law can be expressed using the particular form of the
stiffness and compliance tensors CCC and SSS in one of the two equivalent forms

σσσ = λ trεεε + 2µεεε εεε = 1 + ν

E
σσσ − ν

E
trσσσ. (3.49)

The relationship between Young’s modulus E and Poisson’s ratio ν, on the one hand,
and the Lamé coefficients λ and µ, on the other, is established by

E = µ(3λ + 2µ)
λ + µ

, ν = λ

2(λ + µ)
, (3.50)

λ = νE
(1 + ν)(1 − 2ν)

, µ = E
2(1 + ν)

. (3.51)

The extension experiment performed on isotropic material will of course lead to
uniform elongation in all directions. As a consequence, the elongation diagram will be a
sphere.

Thermal expansion

The foregoing discussion neglected entirely the effect of temperature on material defor-
mation. It is well known that most solid bodies expand upon heating, but the nature of this
expansion is different from elastic deformation, in that it is not caused by the application
of external or body forces. A generalisation of the elastic constitutive law is therefore
required to take into account the presence of thermal strains and their effects on elastic
strains and ultimately stresses.

Strictly speaking, to consider the mutual influence of temperature and stress, one must
note that the application of stress leads to small changes in the temperature of the object.
In an adiabatic experiment, an elastic body will generally cool down under tension and
heat up in compression, in a manner similar to that for an ideal gas (thermoelastic effect).
However, the magnitude of this temperature change is of the order of fractions of Kelvin
and can therefore be neglected in most practical engineering situations.

Prominent examples of a heated body expanding are seen in mercury thermometers,
or in the extension of rails in the heat, which may lead to buckling unless appropriate
measures are taken. The magnitude of thermal strains that arise in such practical situations
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Table 3.2. Thermoelastic properties of some isotropic
materials.

E ν ρ α

[109 Pa] [adim] [kg/m3] [10−6/K]

Aluminium 71 0.34 2.6 23
Steel 210 0.285 7.8 13
Zinc 78 0.21 7.15 30
Copper 100 0.33 7.15 17
Beryllium 300 0.05 1.85 12
Titanium 105 0.34 4.5 9
Granite 60 0.27 2.3-3 20
Marble 26 0.3 2.8 8
Glass 60 0.2–0.3 2.5–2.9 3.4–5.9
PMMA 2.9 0.4 1.8 80–90

is on the order of several percent for temperature changes up to 100 K, and is of significant
importance for many engineering applications.

To obtain the thermoelastic constitutive equations, on additional corrective term must
be introduced into the elasticity equations that is linear in terms of the temperature change
θ. The fundamental assumption made at this point is that small thermal and elastic strains
are additive, but only elastic strains cause stresses. With εεε denoting the total strain, the
thermoelastic equations then take the form

σσσ = CCC : (εεε − AAAθ) εεε = SSS : σσσ + AAAθ, (3.52)

where AAA is the symmetric second-order tensor of thermal linear expansion coefficients.
In the case of a body possessing isotropic thermal linear expansion properties, AAA has

the form

AAA = αIII.

Thermomechanical characteristics for a series of bodies which can be thought to be
isotropic are given in Table 3.2.

Residual stresses

The discussion in the preceeding sections was based on the implicit assumption that the
body was stress-free in its initial configuration:

uuu = 0 −→ εεε = 0 −→ σσσ = CCC : εεε = 0.

Although this assumption holds for a significant fraction of the practical cases of interest
to the engineering community, it excludes situations of some considerable importance.
Generally, when structures under discussion have been manufactured by processes in-
volving large strains and/or high temperatures, the structures are already stressed in the
initial configuration in which the service loading will be applied. This prestress is referred
to as residual stress, or sometimes also as initial stress. As a simple practical example,
one can think of bimaterial assemblies of substances with different thermal linear expan-
sion coefficients that are joined together at high temperatures (for example, by diffusion
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bonding) and then cooled down to room temperature, or any other lower service temper-
ature. Residual stress states that arise in this case would be relatively simple for simple
geometries.

However, in most practical cases, manufacturing is a complex processes involving var-
ious operations that create misfit and accommodation strains within the object, leading
to complex residual stress distributions. It is therefore necessary to include in our consid-
eration the possible presence of a self-equilibrated residual stress state, σσσ0, in the initial
configuration. An alternative way of thinking about residual stresses is in terms of residual
strains, or eigenstrains εεε∗, which will not be discussed here.

Denoting by σσσ0 the residual stress field, the constitutive law can be written in the
general form

σσσ = σσσ0 + CCC : εεε (3.53)

or

σσσ − σσσ0 = CCC : (εεε − AAAθ),

if thermal expansion is also taken into consideration.
Because force balance must be satisfied in the body � in the initial configuration

(when the displacements and strains are identically zero), the residual stress field must be
self-equilibrated,

divσσσ0 = 0 in �, σσσ0 · nnn = 0 on ∂�

provided no external forces are applied and that no displacements are prescribed in the
initial configuration.

A remark must be made about the limitations of this approach to the description
of residual stress effects. The approach described above cannot explain or predict the
following phenomena:

• Stress-induced buckling, that is, the bifurcation of elastic solutions that may occur in a
prestressed body, even in the absence of external loading.

• Change of frequency of a vibrating string due to the presence of prestress, as observed
and used in all stringed musical instruments.

The correct approach in this case consists of adding further terms to equation (3.52)
that are obtained in the general case by linearization (first-order series expansion) of
the deformation energy under a kinematical description for a nonlinear elastic material
around the initial configuration using the hypothesis of small strains. For sources provid-
ing more complete coverage of this topic see, for example Ogden (1997) and Truesdell
(1968).

3.6 LIMITS OF LINEAR ELASTICITY

The foregoing sections were devoted to a discussion of the linear elastic constitutive model.
It is now also appropriate to point out its limitations, that is, the conditions under which
the basic assumptions made in the analysis fail, mainly due to the fact that the implied
linearity is violated:
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• Although the strains remain small, the linearity of material behaviour may no longer
hold. This phenomenon is seen in cases when the material undergoes some internal
shape change process (e.g., straightening of molecular chains in polymers), which may
result in behaviour that is no longer linear, although it may still be reversible.

• Examples of irreversible behaviour include time-dependent deformation (viscous flow
or creep) or time-independent irreversible deformation, such as plasticity. The study
of nonlinear material behaviour is a vast subject that we do not touch upon in this
book.

• The strains are not small, so that large (finite) deformations must be considered. This
opens up a large domain of study that has interesting applications for materials capable
of sustaining large elastic strains, such as rubber. An introduction to the continuum
mechanics of this subject is given, for example, by Ogden (1997).

• Material behaviour cannot be linearised. This is generally the case around singular
points in the solution. For solid bodies an example of this situation is buckling. For an
introduction to buckling in relation to the linearization of constitutive behaviour see
Ogden (1997); Ballard and Millard (2005).

Leaving the exploration of these domains to other texts, let us only introduce some classical
bounds on the domain of linear elasticity imposed by the requirement that stresses and
strains must not exceed certain values at which nonlinear or irreversible behaviour sets in.
Traditionally the bounds on the domain of applicability of elasticity are defined in terms of
stresses, by requiring that the corresponding points in the stress space lie inside a convex
set. More precisely, the condition is defined in terms of the stress state σσσ as follows:

f (σσσ) ≤ 0.

The function f is referred to as the yield function, in reference to the plastic yield phe-
nomenon that may occur when f (σσσ) = 0 .

Two yield functions, or yield criteria, are most commonly used:

• The Tresca criterion,

f (σσσ) = 1
2

max
i,j

|σi − σj | − k,

where σi denote the principal stresses (eigenvalues) ofσσσ, and k is a material parameter.
• The von Mises criterion,

f (σσσ) =
√

3
2

| devσσσ | − σY,

where σY is a material parameter, and | devσσσ | denotes the tensor norm of devσσσ =
σσσ − 1

3 (trσ)III, the deviatoric part of the stress tensor, where III is the appropriate unit
tensor.

The tensor norm |TTT | used here is the Frobenius norm equal to the square root of
the sum of squares of all elements, normalised so that, for example, | III | = 1. For a
symmetric tensor the norm can be conveniently defined as |TTT | = [tr(TTT · TTT)]1/2.

The material parameters introduced above, k for the Tresca criterion and σY for the
von Mises criterion, define the condition under which inelastic deformation may first take
place, and the linear elastic constitutive law for the relationship between stresses and
strains becomes no longer valid. Practical questions arise regarding how these material
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parameters are related to applied loads in deformation experiments, such as uniaxial
tension and simple shear experiments, and in other more complex (multiaxial) loading
cases. It is then possible to define the shape of the domain within which the linear elasticity
description is valid, which is bounded by the yield surface. The visualisation of these
bounding surfaces in the three-dimensional space of principal stresses is a task that can
readily be tackled using Mathematica.

SUMMARY

In this chapter the fundamental linear elastic constitutive relationship between stresses
and strains was introduced. The choice of notation for recording this relationship was
discussed, and the effect of material symmetry on the number of elastic constants needed to
describe the properties of elastic materials was considered. The case of isotropic elasticity
was treated in some detail. The limitations of the linear elastic theory were discussed.

EXERCISES

1. Extension of cylindrical bar

Consider a cylindrical bar � = S × [−L,L] of arbitrary section S, made out of an
anisotropic elastic material (see Figure 3.6 (left)). The bar is subjected on its end sections
z = ±L to a distribution of traction vectors, ttt = ±P

S eeez, with the lateral surface remaining
traction-free. Using a cylindrical coordinate system:
(a) Show that the stress field,

σ = P
S

eeez ⊗ eeez,

is statically admissible, that is, satisfies the balance equation and the boundary condi-
tions.

(b) Compute the corresponding strain field and prove that the compatibility equation
demands that C34 = 0.

(c) Compute the corresponding displacement field, neglecting the infinitesimal rigid dis-
placement. Remark that the solution demands that C13 = −C23 in order to eliminate
the multiplicity of the solution imposed by θ.

Hint: See notebook C03 cylinder anisotropic extension.nb.

Figure 3.6. Deformation experiments for a
cylinder submitted to uniaxial extension (left)
and a rectangular parallelepiped subjected to
shear (right).
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Figure 3.7. Deformation experiment for a body sub-
mitted to uniform pressure.

2. Shear of a rectangular parallelepiped

Consider a rectangular parallelepiped � = [−Lx,Lx] × [−Ly,Ly] × [−Lz,Lz] of arbitrary
section S made out of an anisotropic elastic material (see Figure 3.6 (right)). The stress
state in the body is expressed in a cartesian coordinate system as

σσσ = σxy (eeex ⊗ eeey + eeey ⊗ eeex).

(a) Determine the system of external surface tractions and body forces that balance the
given stress field. Determine the linear and angular momenta of the external forces
acting on the faces of the plate.

(b) Compute the corresponding strain field and check its compatibility.
(c) Compute the displacement field by neglecting the infinitesimal rigid displacement

field.
(d) Determine the extensions of the segments oriented along the coordinate axes.
(e) Show that all faces and plane sections remain plane, but that faces rotate, forming an

oblique parallelipiped.
Hint: See notebook C03 shear anisotropic.nb.

3. Uniform compression

Consider a body � of arbitrary shape made out of an anisotropic elastic material. The
stress state in the body is expressed in a cartesian coordinate system as

σσσ = −pIII.

(a) Determine the system of external surface tractions and body forces that balance the
given stress field. Show that the linear and angular momenta of the external forces
are both zero.

(b) Compute the corresponding strain field and check its compatibility.
(c) Compute the displacement field by neglecting the infinitesimal rigid displacement

field.
(d) Starting now from a uniform compressive strain field

εεε = εIII,

compute the stress and the displacement fields. Remark the difference with respect to
the previous solution. See Figure 3.7.

Hint: See notebook C03 uniform compression anisotropic.nb.
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Figure 3.8. A beam subjected to bending.

4. Bending of a beam

Consider a cylindrical beam � = S × [−L,L] of arbitrary section S made out of an
anisotropic elastic material. The beam is subjected on its end sections z = ±L to a dis-
tribution of traction vectors, ttt = ±Mx

Ix
yeeez, and has traction-free lateral surfaces (see Fig-

ure 3.8). Using a cartesian coordinate system:
(a) Show that the stress field

σ = Mx

Ix
yeeez ⊗ eeez

is statically admissible, that is, satisfies the balance equations and the boundary con-
ditions.

(b) Compute the corresponding strain field and prove that the compatibility equation
demands that C34 = 0.

(c) Compute the corresponding displacement field neglecting the infinitesimal rigid dis-
placement. Show that
• imposing C35 = C34 = 0 would prevent warping of the cross section;
• imposing C35 would prevent twisting of the cross section.

(d) Compute the displacement field by neglecting the infinitesimal rigid displacement
field.

(e) By adding an infinitesimal rigid displacement, compute the constants such that the
boundary conditions correspond to bending of the beam supported at its ends. The
conditions will use five out of the six constants. What is the role of the last one?

(f) Compute the shape of the deflected axis.
Hint: See notebook C03 cylinder anisotropic bending.nb.

5. Bending of a plate

Consider a rectangular plate � = [−Lx,Lx] × [−Lx,Lx] × [−H,H] of arbitrary cross sec-
tion S made out of an anisotropic elastic material (see Figure 3.9). The plate is subject to
tractions on its lateral surfaces x = ±Lx and y = ±Ly that can be equilibrated by the stress
field

σσσ = 12Z
H3

(Mxxeeex ⊗ eeex + Mxy(eeex ⊗ eeey + eeey ⊗ eeex) + Myyzeeey ⊗ eeey) .

(a) Determine the system of external surface tractions and body forces that balance the
given stress field. Determine the resultants and moments of the external forces acting
on the faces of the plate.

(b) Compute the corresponding strain field and check its compatibility.
(c) Compute the displacement field by neglecting the infinitesimal rigid displacement

field.
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Figure 3.9. Deformation experiment for a plate under bending.

(d) Compute the deformed shape of the middle surface.
(e) Show that

• straight material segments become curved during deformation;
• orthogonality between material segments and the middle surface is not preserved

through the deformation.
Analysing the preceeding results, explain why this hypothesis could be accepted in
the case of thin plates.

(f) Determine the anisotropic rigidities Dijkl, i, j ,k, l = x, y relating the bending moments:

MMM = Mxxeeex ⊗ eeex + Mxy(eeex ⊗ eeey + eeey ⊗ eeex) + Myyeeey ⊗ eeey,

to the components of the second gradient of the deflection of the middle
surface,

WWW = ĝrad ĝrad uz(x, y, 0).

Hint: C03 plate anisotropic bending.nb.

6. Orientational variation of elastic properties for different materials

For materials presented in Table 3.3 perform the following calculations:
(a) Compute the values of material constants for the fourth and second rank tensor

notation of the Hooke tensor.
(b) Compute the orientational variation of the axial extension for the materials.

7. Orientational variation in isotropic elasticity

Show that the surface representing orientational variation of the Young modulus in
isotropic elasticity is a sphere.

8. Elastic moduli in isotropic elasticity

Consider an isotropic elastic body with material constants represented in terms of the
constants (λ, ν) and (E, ν), respectively. Obtain the formulae in equation (3.49) using the
following procedures:

• by direct inversion of the second-order tensor form of Hooke’s tensor,
• by transforming equation (3.51) into equation (3.50), and then reciprocally.
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Table 3.3. Elastic compliances (in units of 10−11 Pa−1) in the Voigt notation for a
series of crystals at room temperature (Nye, 1985)

Symmetry

Crystal sV
11 sV

12 sV
44 sV

33 sV
13 sV

14 sV
66

Sodium chloride 2.21 −0.45 7.83 0 0 0 0
Aluminium 1.59 −0.58 3.52 0 0 0 0
Copper 1.49 −0.63 1.33 0 0 0 0
Nickel 7.99 −0.312 8.44 0 0 0 0
Tungsten 0.257 −0.073 0.660 0 0 0 0
Sodium chloride 2.2 −0.6 8.6 0 0 0 0
Tin 1.85 0.99 5.70 1.18 −0.25 0 13.5
ADP 1.8 0.7 11.3 4.3 −1.1 0 16.2
Zinc 0.84 0.11 2.64 2.87 −0.78 0 0
Cadmium 1.23 −0.15 5.40 5.55 0.93 0 0
Quartz 1.27 −0.17 2.01 0.97 −0.15 −0.43 0
Tourmaline 0.40 −0.10 1.51 0.63 −0.016 −0.058 0

Hint: Take the Tr of both sides of equations to obtain the compressibility modulus and the
relation between volume change (spherical part of strain) and pressure (related to the spherical
part of stress).

9. Positive definiteness of elastic moduli in isotropic elasticity

Consider an isotropic elastic body with material constants represented in terms of the
constants (λ, ν) and (E, ν), respectively. Show that
(a) The positive definiteness of the Hooke tensor is eqivalent to the requirements

3λ + 2µ > 0, 2µ > 0

or

E > 0,
1
2

≥ ν > −1.

(b) The incompressibility condition for the material is equivalent to ν = 1
2 .

(c) The spherical and the deviatoric parts of strain, and also of stress, are orthogonal
with respect to the double dot product, and they represent the eigenvectors of the
constitutive equation in isotropic elasticity. Determine the corresponding eigenvalues.

10. Special strain–stress states in isotropic elasticity

Consider an isotropic elastic body with material constants represented in terms of the
constants (λ, ν) and (E, ν), respectively. For each of the following cases:
(a) extension σσσ = σeeex ⊗ eeex

(b) shear σσσ = σ(eeex ⊗ eeey + eeey ⊗ eeex)
(c) uniform compression σσσ = −pIII
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perform the following operations:

• determine complete strain states
• check the compatibility and balance equations (in the absence of body and inertial

forces)
• compute the spherical and deviatoric parts of the tensors and interpret the results in

terms of compression and shear
• determine the traction vectors acting on surfaces of an infinitesimal volume element

and interpret physically the conditions of positive definiteness of elastic moduli.
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OUTLINE

This chapter is devoted to the formulation of the complete elasticity problem. It begins with
the formulation of the regular problem of thermoelasticity. Displacement (Navier) and
stress (Beltrami–Michell) formulations are introduced, and the one-dimensional problem
of a spherical vessel under internal and external pressure is solved as an illustration.

The general principles applicable in linear elasticity are treated next. The superposi-
tion principle and the virtual work theorem are introduced, allowing the conditions for
the uniqueness of elastic solution to be established. The existence of the strain energy po-
tential and the complementary energy potential is proven, and reciprocity theorems are
presented. Saint Venant torsion is considered in detail, and the more general Saint Venant
principle is introduced, together with Hoff’s counterexample and the von Mises–Sternberg
formulation.

4.1 THE COMPLETE ELASTICITY PROBLEM

The complete system of equations of elasticity consists of the equations of kinematics
and dynamics, together with the linear elastic constitutive relations introduced in the
previous chapter. Solution of the complete system must be found in the form of three field
quantities:

vector field of displacements, uuu;
tensor field of small strains, εεε;
tensor field of stresses, σσσ.

Within domain � the following system of equations of linear thermoelasticity must be
satisfied:

• Kinematic equations

εεε = 1
2

(∇ + ∇T)uuu. (4.1)

• Constitutive equations of linear thermoelasticity:

σσσ = σσσ0 + CCC : (εεε − AAAθ), (4.2)

where σσσ0 is a tensor of initial stresses, CCC is the tensor of elastic moduli, AAA is a tensor of
linear thermal expansion coefficients, and θ is a scalar field of temperature changes.

86
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The particular case when θ = 0 will be referred to as isothermal, and whenσσσσσσσσσ0 = 000 will
be referred to as the natural state.

• Equations of static equilibrium

divσσσ + fff = 0, (4.3)

where fff is the vector of body forces.

A set of necessary and sufficient conditions must be imposed on the problem for-
mulation in order to guarantee the existence and uniqueness of the solution. A problem
formulation that satisfies such conditions, following Hadamard, will be called a well-posed,
or regular linear thermoelastic problem.

The regular linear thermoelastic problem must be formulated by the above set of equa-
tions together with the provision of the following information:

• At every point within the domain �:
• the tensor of elastic moduli CCC that is symmetric, positive definite, and bounded
• the tensor of linear thermal expansion coefficients AAA that is symmetric
• the tensor of initial stresses σσσ0

• the vector of body forces fff
• the scalar field of temperature changes θ.

• At every point on the domain boundary ∂� and for each direction eeei, i = 1, 2, 3:
• either a component of the displacement vector,

ui = uB
i , (4.4)

where uB
i is a given function,

• or a component of the traction vector,

(σσσ · nnn)i = tB
i , (4.5)

where tB
i is a given function.

Let ∂�d
i denote the part of the boundary on which the boundary condition is imposed

in terms of displacements uB
i , and respectively let ∂�t

i denote the part of the boundary on
which the boundary condition is imposed in terms of tractions tB

i . The complementarity
of the regions on which boundary conditions are imposed in terms of displacements and
tractions leads to the following partition of the boundary ∂�:

∂�d
i ∪ ∂�t

i = ∂� ∂�d
i ∩ ∂�t

i = ∅ ∀i = 1, 2, 3. (4.6)

The above requirement of complementary partition means that at each boundary point
one of the factors must be prescribed in each of the terms in the expression for the
mechanical work of boundary traction, namely∫

∂�

uuu · σσσ · nnn ds =
∫
∂�

uiσij nj ds (4.7)

=
∫
∂�

[u1σ1j nj + u2σ2j nj + u3σ3j nj ] ds. (4.8)

Regular, or well-posed problems form only a subset of all problems encountered in the
mechanics of linear thermoleastic solids. Examples of nonregular problems, also known
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as ill-posed problems, include nondestructive identification of defects, such as cracks or of
inclusions, or constitutive parameters, and tomographic reconstruction problems (Bonnet
and Constantinescu, 2005).

Some classical boundary conditions are

• Encastre:

uuu = 000, that is, ui = 0 ∀i. (4.9)

• Traction-free surface:

σσσ · nnn = 000 σij nj = 0 ∀i. (4.10)

• Frictionless sliding contact:
Displacement normal to the boundary is prescribed, but lateral sliding is unrestrained,
so that shear tractions vanish,

uuu · nnn = ud, ttt1 · σσσ · nnn = 0, and ttt2 · σσσ · nnn = 0, (4.11)

where ttt1 and ttt2 are two surface tangent vectors that are perpendicular to each other
and to the normal nnn.

• Prescribed normal and shear tractions:

σσσ · nnn = −p nnn + q1ttt1 + q2ttt2 (4.12)

nnn · σσσ · nnn = −p and ttt1 · σσσ · nnn = q1 and ttt2 · σσσ · nnn = q2. (4.13)

4.2 DISPLACEMENT FORMULATION

The regular linear thermoelastic problem can be solved in the displacement formulation,
that is, by assuming that the vector displacement field is the principal unknown variable.
This technique is associated with the names of Lamé and Clapeyron. Substituting equation
(4.1) into (4.2) and then into (4.3), and using the symmetry of the elastic stiffness tensor
CCC, one obtains the displacement equations of equilibrium:

div (σσσ0 + CCC : (graduuu − AAAθ)) + fff = 000. (4.14)

In the displacement formulation the following solution procedure may be adopted:
An admissible displacement field satisfying the displacement boundary conditions

(4.4) is assumed and substituted into kinematic equations (4.1) and linear thermoelastic
constitutive equations (4.2). It is then verified whether the stresses obtained in this way
satisfy the static equilibrium equations (4.3) and the tractions satisfy the boundary con-
ditions (4.5). If not, an improved trial admissible displacement field is selected and the
procedure is repeated.

Conversely, once a displacement vector field uuu is found that satisfies the displacement
equations of equilibrium (4.14), with the strain defined by the kinematic equations (4.1),
and stress defined by the linear thermoelastic constitutive equation (4.2), then the stress
equation of equilibrium (4.3) is satisfied.

In the isothermal case, θ = 0, and in the absence of initial stressesσσσ0 (i.e., in the natural
state), equation (4.14) reduces to

div (CCC : graduuu) + fff = 000. (4.15)
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Equation (4.15) for isotropic material reduces to the Navier equation,

µ�uuu + (λ + µ)grad divuuu + fff = 000, (4.16)

or, equivalently, in terms of engineering elastic constants,

�uuu + 1
1 − 2ν

grad divuuu + 2(1 + ν)
E

fff = 000. (4.17)

Because

�uuu = grad divuuu − curl curluuu, (4.18)

equation (4.16) can be rewritten as

(λ + 2µ)grad divuuu − µcurl curluuu + fff = 000. (4.19)

The application to the above equation of the operators div and curl respectively leads to
the following results:

(λ + 2µ)�divuuu = −div fff , (4.20)

µ�curluuu = −curl fff . (4.21)

If the body force field is such that div fff and curl fff both vanish, then both divuuu and curluuu
are harmonic fields. Furthermore, changing the order of operators yields

div �uuu = 0 and curl �uuu = 0.

Hence, by equation (4.18), �uuu is a vector field that is harmonic; that is,

��uuu = 000. (4.22)

Thus, if the body force field fff is divergence-free and curl-free, then the displacement field
is biharmonic.

From the kinematic equations (4.1), it follows that

��εεε = 000; (4.23)

that is, the strain tensor is also biharmonic.

4.3 STRESS FORMULATION

In the stress formulation, the tensor stress field is used as the principal unknown variable.
This technique is associated with the names of Beltrami and Michell. The strains are
determined from the stresses using the compliance form of the linear thermoelasticity
constitutive equations (4.2), namely,

εεε = AAAθ + CCC−1 : (σσσ − σσσ0). (4.24)

As demonstrated in the discussion of kinematics, in order for a given tensor strain field to
correspond to a compatible displacement field, the strain compatibility equation must be
satisfied:

incεεε = −(curl (curlεεεT)T = 000. (4.25)
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Substitution of (4.24) into the above equation leads to the stress equation of compatibility:

inc [AAAθ + CCC−1 : (σσσ − σσσ0)] = 000. (4.26)

This equation ensures that a unique vector displacement field uuu can be constructed. Pro-
vided the resulting displacements satisfy boundary conditions on parts ∂�d

i of the bound-
ary, a complete solution of the linear thermoelastic problem is obtained.

The stress formulation solution procedure may be adopted as follows. First, a statically
admissible tensor stress field is selected, that is, a field that satisfies stress equilibrium
conditions (4.3) and traction boundary on parts ∂�t

i of the boundary. Strains are then
determined in terms of stresses using equation (4.24) and substituted into the compatibility
equation (4.25). If these equations are not satisfied, another trial admissible stress field
must be selected. If compatibility is verified, displacements can be obtained by back
integration, and displacement boundary conditions on parts ∂�d

i of the boundary enforced.
In the isothermal case, θ = 0, and in the absence of initial stress σσσ0, equation (4.26)

reduces to

inc (CCC−1 : σσσ) = 000. (4.27)

For isotropic linearly elastic material the compliance form of the constitutive linear elastic
equations is

εεε = 1 + ν

E
σσσ − ν

E
(trσσσ)111. (4.28)

Useful relationships between stress and strain can be obtained from the above equation
by applying trace and divergence operators, respectively:

trεεε = 1 − 2ν
E

(trσσσ) (4.29)

divεεε = − ν

E
gradσσσ + 1 + ν

E
divσσσ. (4.30)

To obtain the compatibility equation of stress for isotropic material, expression (4.28) is
substituted into the strain compatibility equation in the form

�εεε + grad grad (trεεε) − (∇ + ∇T)εεε = 000. (4.31)

In conjunction with the stress equilibrium equation (4.3), the following result is obtained:

�σσσ + 1
1 + ν

grad grad (trσσσ) − ν

1 + ν
�(trσσσ)111 + (∇ + ∇T)fff = 000. (4.32)

The above equation is known as the Beltrami–Michell equation.
Taking the trace of the above equation, it is found that

�(trσσσ) = −1 + ν

1 − ν
div fff . (4.33)

Substituting this result back into the Beltrami–Michell equation, it is found that

�σσσ + 1
1 + ν

grad grad (trσσσ) + ν

1 − ν
div fff 111 + (∇ + ∇T)fff = 000. (4.34)
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pi

pe

re

ri
e

Figure 4.1. The upper half of a spherical reservoir, a spherical
shell under pressure.

In the absence of body forces, fff = 000, the stress compatibility equation takes the simple
form

�σσσ + 1
1 + ν

grad grad (trσσσ) = 000. (4.35)

If the volume forces are constant, both div fff and grad fff vanish, and the following results
are obtained. It is found from equation (4.33) that

�(trσσσ) = 0. (4.36)

Taking the Laplacian of the Beltrami–Michell equation and using the commutativity of
differential operators, it is established that the tensor field of stresses is biharmonic:

��σσσ = 000. (4.37)

Equations (4.22), (4.23), and (4.37) demonstrate that for an isothermal natural state
under the action of a constant body force, the elastic fields of displacements, strains, and
stresses are all biharmonic. Therefore a close relationship exists between the family of
solutions of linear thermoelastic problems and the solutions of the biharmonic equation.

The Mathematica package supplied with this book provides an efficient means of
evaluating differential operators of arbitrary tensor fields in various orthogonal coordinate
systems, and thus of verifying biharmonicity of these fields and their suitability as elastic
solutions. Some tools are provided to establish equivalence between differential forms, as
well as methods of writing analytical expression for the general solutions of the biharmonic
equation in different coordinate systems.

4.4 EXAMPLE: SPHERICAL SHELL UNDER PRESSURE

Let us consider the problem of a spherical reservoir under pressure (see Figure 4.1). The
reservoir is a spherical shell with internal and external radii of ri and re, respectively,
made from a linear elastic material with moduli (λ,µ). We shall seek to compute the
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complete solution to this problem, assuming that the internal and the external pressure
fields are uniform and equal to pi and pe, respectively. Gravity and thermal effects are
neglected.

In order to solve the problem we first set the coordinate system to spherical and then start
to search for a general form of solution under the assumption of spherical symmetry,
with a displacement

uuu(r, θ, ϕ) = ur(r)eeer.

Strains and stresses are computed next.

SetCoordinates[Spherical[r, t, p]]

CoordinatesToCartesian[{r, t, p}]

u[r_, t_, p_] := {ur[r], 0, 0}

eps = Strain[ u [r, t, p]]

sig = Lambda Tr[eps ] IdentityMatrix[3 ] + 2 Mu eps

The equation to be satisfied is the stress field equilibrium. Note that only the divergence
component along eeer is nonzero. This leads to the following equation:

(λ + 2µ)
∂

∂r

(
1
r2

∂

∂r

(
r2ur(r)

)) = 0.

The general solution of this equation is computed using DSolve. The option Generat-

edParameters sets the name of the constants of integration.

(divsig = Simplify[Div[ sig ]] ) // MatrixForm

solur = DSolve[ divsig[[1]] == 0, ur, r ,

GeneratedParameters -> CR][[1, 1]]

uu = u [r, t, p] /. solur

eps = Strain[ uu ]

sig = \[Lambda] Tr[eps ] IdentityMatrix[3 ] + 2 \ [Mu] eps

The general form of displacement, strain, and stress fields satisfying the balance equa-
tions in spherical coordinates with spherical symmetry is

uuu(r, θ, ϕ) =
(

c1r + c2

r2

)
eeer

εεε(r, θ, ϕ) =
(

c1 − 2
c2

r3

)
eeer ⊗ eeer +

(
c1 + c2

r3

)
(eeeθ ⊗ eeeθ + eeeϕ ⊗ eeeϕ)

σσσ(r, θ, ϕ) =
(

(3λ + 2µ)c1 − 4µ
c2

r3

)
eeer ⊗ eeer +

(
(3λ + 2µ)c1 + 2µ

c2

r3

)
(eeeθ ⊗ eeeθ + eeeϕ ⊗ eeeϕ) ,

where the constants c1 and c2 will be determined from the boundary conditions.
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The boundary conditions are defined by the internal and the external pressure as

σσσ(r, θ, φ) · nnn = −p(r)nnn

with

r = ri nnn = −eeer

and respectively

r = re nnn = eeer.

er = {1, 0, 0}

normal = - er

eqi = ( Thread [ (sig /. r -> ri) . normal == - pi normal ] )

normal = er

eqe = ( Thread[ (sig /. r -> re) . normal == - pe normal ] )

sol = Solve[ {eqi[[1]], eqe[[1]]} , {C[1], C[2]} ][[1]]

uf = Simplify[ uu /. sol ]

epsf = Simplify[ eps /. sol ]

sigf = Simplify[ sig /. sol ]

The constants obtained are

c1 = − 1
3λ + 2µ

per3
e − pir3

i

r3
e − r3

i

c2 = − 1
4µ

(pe − pi) r3
e r3

i

r3
e − r3

i

.

Let us now simplify the previous solution, using the assumption that the shell forming
the reservoir is thin, that is,

ri =
(

R − e
2

)
re =

(
R + e

2

) e
R


 1,

where e represents the thickness of the shell.

In order to carry out the series expansion we have to introduce two small parameters,

η= e
R


 1, δ =
( r

R
− 1

)

 1,

defining the rule that makes it possible to move forth and back between the different
variables.

Using the Series Mathematica operator we proceed to the series expansion. The
two steps ensure that the combinations of δ and η are eliminated.

We can finally check the divergence of the obtained stress field and note that it is
of order o(δ).

r2eta = {ri-> R(1-eta/2), re-> R(1 + eta/2) , r-> R(1 + delta)}

delta2r = {delta -> r / R - 1, eta -> ee / R}
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Expand[ Normal[

Series[sigf /. r2eta, {eta,0,1}, {delta,0,1}]] ]

ssig = Normal[Series[%, {eta, 0, 0}]]

rsig = Simplify[ ssig /. delta2r ]

Simplify[ Div[ rsig ] ]

Series[% /. r2eta, {delta, 0, 1}]

By introducing the notation p̄ = (pi + pe)/2, �p = pi − pe, the final stress field for a thin
spherical shell is obtained as

σσσ(r, θ, ϕ) =
(

−p̄ − �p
r − R

e

)
eeer ⊗ eeer +

(
−p̄ − �p

r − 2R
2e

)
(eeeθ ⊗ eeeθ + eeeϕ ⊗ eeeϕ) . (4.38)

The stress fields of a thin spherical shell can equally be obtained by simply computing the
balance of forces of a hemisphere under the hypothesis that σθθ is constant through the
thickness. We obtain

2πReσθθ = πR2(pi − pe) (4.39)

and

σθθ = (pe − pi)
R
2e

,

which is an expression of order η−1.

4.5 SUPERPOSITION PRINCIPLE

Linearity of the system of equations of thermoelasticity has certain strong implications
for the properties of solutions. An equivalent formulation is known as the superposition
principle.

Let there exist two deformation states of a linear thermoelastic solid � that satisfy the
system of equations of elasticity and are given by

• State 1: solution (uuu1, εεε1,σσσ1) corresponding to the following fields:

initial stresses σσσ0
1

temperature changes θ1

body forces fff 1 in �

surface tractions ttt1 on ∂�t
i

boundary displacements uuu1 on ∂�d
i .

• State 2: solution (uuu2, εεε2,σσσ2) corresponding to the following fields:

initial stresses σσσ0
2

temperature changes θ2

body forces fff 2 in �

surface tractions ttt2 on ∂�t
i
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boundary displacements uuu2 on ∂�d
i .

Then the following state is also a solution.
• State 3: linear combination of State 1 and State 2 with real coefficients a1 and a2, given

by (a1uuu1 + a2uuu2, a1εεε1 + a2εεε2, a1σσσ1 + a2σσσ2). This solution corresponds to

initial stresses a1σσσ
0
1 + a2σσσ

0
2

temperature changes a1θ1 + a2θ2

body forces a1fff 1 + a2fff 2 in �

surface tractions a1ttt1 + a2ttt2 on ∂�t
i

boundary displacements a1uuu1 + a2uuu2 on ∂�d
i .

4.6 QUASISTATIC DEFORMATION AND THE VIRTUAL WORK THEOREM

Quasistatic deformation implies that all deformation states between the initial and final
configuration are in a state of equilibrium. Physically this assumption means that the
force and work terms associated with mass acceleration are negligible compared to the
terms associated with internal and external forces acting on the body. In other words, it is
assumed that under quasistatic deformation the virtual power of inertial terms is equal to
zero.

Consider a sufficiently smooth virtual displacement field in �, denoted uuu∗. Under
quasistatic deformation, uuu∗ evolves with the corresponding virtual velocity field vvv∗ in �.
Under the assumption of zero power of inertial forces, the total virtual power of external
and internal forces must be equal to zero,

P∗
e (vvv∗) + P∗

i (vvv∗) = 0, ∀vvv∗, (4.40)

where P∗
e (vvv∗) and P∗

e (vvv∗) denote respectively the power of external and internal forces on
the virtual velocity field vvv∗, given by

P∗
e (vvv∗) =

∫
�

fff · vvv∗ dv +
∫
∂�

ttt · vvv∗ ds (4.41)

and

P∗
i (vvv∗) = −

∫
�

σσσ : DDD∗(vvv∗) dv, (4.42)

where DDD∗(vvv∗) denotes the deformation rate corresponding to the virtual velocity field vvv∗,

D∗(v∗) = 1
2

(grad v∗ + grad Tv∗) (4.43)

4.7 UNIQUENESS OF SOLUTION

Consider two equlibrium states of the same body �:

• State 1: solution (uuu1, εεε1,σσσ1) for body force fff 1 in �, tractions ttt1 on ∂�t
i, and displace-

ments uuu1 on ∂�d
i .

• State 2: solution (uuu2, εεε2,σσσ2) for body force fff 2 in �, tractions ttt2 on ∂�t
i, and displace-

ments uuu2 on ∂�d
i .
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Assume that there are no initial stresses, σσσ0 = 000, and the temperature state is isothermal,
θ = 0. Now let

fff 1 = fff 2 ttt1 = ttt2 uuu1 = uuu2.

Then the two solutions may at most differ only by a rigid body displacement

uuu1 = uuu2 + aaa + bbb × xxx (4.44)

εεε1 = εεε2 (4.45)

σσσ1 = σσσ2, (4.46)

where aaa,bbb are two real vectors representing rigid body translation and rigid body rotation,
respectively.

The proof of uniqueness is obtained by considering the difference between the two
states. The solution (ξξξ,εεε,σσσ) = (uuu1, εεε1,σσσ1) − (uuu2, εεε2,σσσ2) corresponds to the body force 000 in
�, tractions 000 on ∂�t

i, and displacements 000 on ∂�d
i . Because

In the absence of initial stresses and temperatures changes, the application of Clapey-
ron’s theorem (see below) leads to the following equality:

2U I(ξξξ) =
∫
�

εεε : CCC : εεεdv = 0. (4.47)

The positive definiteness of the tensor of elastic moduli,CCC, implies from the above equation
that

εεε = 0 and therefore σσσ = 0.

The integration of the strain field to obtain the displacement field leads to the desired
conclusion that the two solutions may only differ by the displacements due to rigid body
motion:

ξξξ = aaa + bbb × xxx, aaa,bbb ∈ R3.

4.8 ENERGY POTENTIALS

Existence of the strain energy potential

External work done on an elastic body is stored in the form of the potential energy of
elastic deformation, or elastic strain energy, and can be recovered provided the heat tranfer
is negligible. The elastic strain energy is a scalar field. Total strain energy of the body can
be expressed as

U I =
∫
�

uI dv.

In a deformed state described by the strain field εεε, strain energy uI is a function of εεε. Strain
energy serves as the potential function for the corresponding stress field; that is,

σσσ = ∂uI

∂εεε
σij = ∂uI

∂εij
∀i, j = 1, 2, 3. (4.48)



PAB CUFX161-Constantinescu August 13, 2007 17:14

4.8 Energy potentials 97

For linear thermoelastic material the strain potential uI(ξξξ∗) corresponding to the displace-
ment field ξξξ∗ and strain field εεε∗ is given by the expression

uI(ξξξ∗) = σσσ0 : εεε∗ + 1
2
εεε∗ : CCC : εεε∗ + εεε∗ : AAAθ. (4.49)

The scalar potential function uI does not represent the complete strain energy, since it
does not take into account all energy terms, for example, those representing heat transfer.

The complete strain energy potential of the body � is defined as

U I(ξξξ∗) =
∫
�

(
σσσ0 : εεε∗ + 1

2
εεε∗ : CCC : εεε∗ + εεε∗ : AAAθ

)
dv. (4.50)

In the absence of initial stresses and temperature changes (σ0σ0σ0 = 000, θ = O), the strain
energy potential takes the simplified form

U I = 1
2

∫
�

ε∗ε∗ε∗ : CCC : εεε∗ dv.

It can be verified by a derivation showing that the definition of the strain energy potential
(4.49) satisfies (4.48). It is worth noting the key role played by the symmetry of the elastic
tensor C, Cijkl = Cklij .

The construction of the strain energy potential offers some useful insight into the
properties of potential functions and the phyical meaning of deformation energy. We start
with the definition of the power of internal forces associated with material particle at
x ∈ �:

σσσ(x) : ε̇εε(x).

The mechanical work done to transform the particle from State 1 determined by (uuu1, εεε1,σσσ1)
into State 2 determined by (uuu2, εεε2,σσσ2) is obtained by integrating the mechanical power of
internal forces over the path of equlibrium states (uuu(t), εεε(t),σσσ(t)) (t ∈ [t1, t2]):∫ t1

t0
σσσ : ε̇εε dt =

∫ ε1

ε0

σσσ : d εd εd ε. (4.51)

The existence of a strain energy potential is ensured by the path independence of the
above integral; that is, a function uI(εεε) exists such that

σσσ = ∂uI

∂εεε
.

In the mathematical formalism of differential forms this is expressed as

σσσ : d εd εd ε = dF

and leads to ∫ ε1

ε0

σσσ : d εd εd ε =
∫ ε1

ε0

dF = F(εεε1) − F(εεε0).

By the Poincaré lemma (Spivak, 1965) (also known as the Cauchy integration formula),
the existence of the potential uI(εεε) is ensured if and only if

∂σij

∂εkl
= ∂σkl

∂εij
i, j ,k, l = 1−3,
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which is equivalent to the previously cited symmetry of the elastic moduli,

Cijkl = Cklij .

The potential function is then defined by equation (4.49).

Existence of the complementary energy potential

Theorems: Virtual work theorem For every quasistatic deformation process (i.e., in
the absence of inertial forces) and for every virtual displacement field vvv the work of
internal and the work of external forces are equal,∫

�

σσσ : εεε[vvv] dv =
∫
�

fff · vvv dv +
∫
∂�

ttt · vvv ds, (4.52)

where εεε[vvv] = 1
2

(∇vvv + ∇Tvvv
)

and ttt = σσσ · nnn.

The equality is derived directly from the principle of virtual work by replacing the
virtual velocity field with a virtual displacement field, or from the integration of the
quasistatic equilibrium equations using the Stokes theorem.

The transition from the virtual velocity field to the virtual displacement field amounts
only to a change of physical dimensions in volume integrals, thereby transforming power
into work. The virtual displacement field considered here is arbitrary and independent of
the actual deformation of the solid.

Theorems: The Clapeyron theorem In the absence of initial stresses (σσσ0 = 000), and
of temperature changes (θ = 0), the virtual work of external and internal forces com-
puted on the actual displacement field is equal to twice the value of the strain energy
potential: ∫

�

σσσ : εεεdv =
∫
�

fff · uuu dv +
∫
∂�

ttt · uuu dv = 2Ui(uuu). (4.53)

The proof follows directly from the virtual work theorem (4.52) and the definition of
the strain energy potential (4.49).

The Clapeyron theorem provides a physical interpretation of the positive definiteness
of the tensor of elastic moduli C. More precisely, the positive definiteness of C ensures
that exterior loading must supply a positive finite quantity of mechanical work in order to
deform the body:

0 <
∫
�
εεε : CCC : εεεdv < +∞ (4.54)

0 <
∫
�

fff · vvv dv + ∫
∂�

ttt · vvv ds < +∞. (4.55)

A negative definite tensor of elastic moduli CCC would imply that the body may supply
energy to the exterior, leading to the lack of stability of the deformation process.

We also recall simple mechanical tests illustrating the positive definiteness of C for
case of isotropic elasticity presented in Section 4.3.
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It is important to note the difference between the virtual work of a force computed
on the real displacement as a particular realisation of the field of virtual displacement, for
example, for the body force ∫

�

fff · uuu dv,

and the actual mechanical work of external surface tractions or body forces done on the
body between the initial and actual configurations. The latter in the case of linear elasticity
is equal to

1
2

∫
�

fff · uuu dv.

The above expression can be obtained by integration of instantaneous power over time.

4.9 RECIPROCITY THEOREMS

Theorems: The Maxwell–Betti reciprocity theorem In the absence of initial stresses
σσσ0 = 000 and temperature changes θ = 0, consider two equilibrium states of the same
body �:

• State 1: solution (uuu1, εεε1,σσσ1) for body force fff 1 in �, tractions ttt1 on ∂�t
i and displace-

ments uuu1 on ∂�d
i .

• State 2: solution (uuu2, εεε2,σσσ2) for body force fff 2 in �, tractions ttt2 on ∂�t
i and displace-

ments uuu2 on ∂�d
i .

Then the virtual mechanical work of external forces of State 1 computed on the
displacements of State 2 is equal to the virtual mechanical work of external forces of
State 2 computed on the displacements of State 1:∫

�

fff 1 · uuu2 dv +
∫
∂�

ttt1 · uuu2 ds =
∫
�

fff 2 · uuu1 dv +
∫
∂�

ttt2 · uuu1 ds.

The proof is obtained as a consequence of the virtual work theorem and the symmetry
of C. Indeed, the virtual work theorem implies the following equality between the virtual
mechanical work of internal forces:∫

�

εεε1 : C : εεε2 dv =
∫
�

εεε2 : C : εεε1 dv.

This equality is satisfied if and only if C is symmetric,

Cijkl = Cklij , ∀i, j ,k, l = 1−3.

This is a fundamental property of C and has already been pointed out as a key requirement
in the proof of the existence of strain energy potential.

It is therefore possible to check the symmetry of the tensor of elastic moduli and
implicitly for the existence of the strain energy potential by performing loading tests on
elastic bodies and by computing the ‘reciprocal work’ from experimental measurements.
This kind of experiment was first invented and preformed by Faraday in 1834 on elastic
rods (Figure 4.2).
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u (P)
1

f (P)
2

f (Q)
1

u (Q)
2

P Q

Figure 4.2. Faraday’s experiments on elastic rods providing an
illustration of the Maxwell–Betti reciprocity principle.

The two states considered in the Maxwell–Betti reciprocity theorem are defined by
the application of forces f1(P) at P and f2(Q) at Q. The reciprocity theorem in this case is
expressed by

f1(P) · u2(P) = f 2(Q) · u1(Q),

where u1(Q) is the displacement in State 1 measured at Q and respectively u2(P) is the
displacement in State 2 measured at P.

A simple proof of the reciprocity theorem can be obtained for this case if the work
done on the elastic system is compared for two loading sequences leading to the same
final state. Sequence 1 involves the simultaneous proportional application of forces f 1(P)
and f 2(Q). Sequence 2 involves the application of force f 1(P) followed by the application
of force f 2(Q). The external work for each sequence is stored in the form of elastic strain
energy of the final state, and therefore

1
2

f 1(P)(u1(P) + u2(P)) + 1
2

f 2(Q)(u1(Q) + u2(Q))

= 1
2

f 1(P)u1(P) + 1
2

f 2(Q)u2(Q) + f 1(P)u2(P),

leading directly to the required relationship.
Within the framework of linear elasticity the forces and displacements are related

through a linear matrix equation:[
f 1(P)

f 2(Q)

]
=
[

LPP LPQ

LQP LQQ

][
u1(P)

u2(Q)

]
. (4.56)

A simple algebraic computation that is left to the reader as an exercise permits to show
that the Maxwell–Betti theorem for this case is verified if and only if the matrix L is
symmetric.

Another exercise related to the analysis of Faraday’s experiments with elastic rods is
to to show that the work done between the initial state at time t = 0 and the final state at
time t = 1 computed over two different integration paths is equal if and only if the matrix
L is symmetric (see Figure 4.3).
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u1

u2

Figure 4.3. A closed loading path over a potential energy
landscape.

Hint: Consider two different paths and compute the actual work from power using
the integral ∫ t1

t0
fff (t) · u̇uu(t)dt =

∫ t1

t0
f 1(P, t)u̇(P, t) + f 2(Q, t)u̇(Q, t)dt.

4.10 THE SAINT VENANT PRINCIPLE

The formulation of elastic problems introduced in the beginning of this chapter emphasises
the crucial role played by the boundary conditions in determining the solution. A natural
question therefore arises: how sensitive are the solutions for the elastic stress and strain
fields to the precise details of the displacement and traction boundary conditions? What
boundary conditions are most appropriate, for example, when considering bending of a
beam or torsion of a shaft?

The fundamental idea that provides an answer to this question was first published
in 1855 by J. C. Adhémar (also known as Barré de Saint Venant, 1855). Saint Venant
continued earlier work by Navier on the bending of beams and put forward the following
conjecture:

The Saint Venant principle
Consider the elastic solution for a shaft subjected to a torque applied at its end. Far
from the ends the elastic fields describing this solution are independent of the exact
distribution of surface tractions that generate the end torque loading.

In this section we consider a cylindrical rod, illustrated in Figure 4.4, and assume that
it is subject to loading only at its extremes. We shall then construct a closed form solution
for this problem that will depend only on the force and moment resultants of the end
traction distribution. The demonstration of the Saint Venant conjecture in application to
this case would amount to showing that the difference between this approximate solution
and the full solution becomes negligible far from the shaft ends.

The extension of the conjecture in the general case, that is, bodies of arbitrary shape,
as well as the existing mathematical proofs for these results will be discussed briefly in the
next section.
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Fx ex

Fy ey

Fz ez F

Figure 4.4. The resultant traction field and its components with
respect to the coordinate system associated with the end section
of a cylindrical shaft.

Consider an elastic shaft of length L with a cylindrical section S, � = [0,L] × S.
Coordinate axes are chosen to represent the geometric axes of inertia of section S:∫

S
y ds = 0,

∫
S

zds = 0,
∫

S
y zds = 0. (4.57)

The shaft is in equilibrium under two distributions of surface tractions applied to its end
sections. The force and moment resultants for the section x = 0, see Figure 4.4, are given
by

FFF = Fxeeex + Fyeeey + Fzeeez =
∫

S(x=0)
σσσ · nnn ds,

MMM = Mxeeex + Myeeey + Mzeeez =
∫

S(x=0)
xxx × (σσσ · nnn) ds. (4.58)

Below we construct the Saint Venant solution of this problem using Mathematica
following the reasoning presented in Ballard and Millard (2005) and Bamberger (1997).
We recall the relation between elastic moduli:

λ = νE
(1 + ν)(1 − 2ν)

, µ = E
1 + ν

.

The necessary packages must be loaded and the coordinate system set to cartesian in
this example.

<< Tensor2Analysis.m

SetCoordinates[Cartesian[x, y, z]]

We begin with the assumption that the stress tensor corresponds to antiplane shear and
tension,

σσσ =

σxx σxy σxz

σxy 0 0

σxz 0 0

 .

Consideration of the equilibrium equation divσσσ = 0 shows that it requires that σxy, σxz

be independent of x.
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sigma[x_, y_, z_] :=

{{sxx[x, y, z], sxy[x, y, z], sxz[x, y, z]},

{sxy[x, y, z], 0, 0},

{sxz[x, y, z], 0, 0}}

sigma[x, y, z] // MatrixForm

div := Thread[ Div[ sigma[x, y, z]] == {0, 0, 0} ]

div // MatrixForm

sxy[x, y, z] = sxy[y, z]

sxz[x, y, z] = sxz[y, z]

eqdiv := Thread[ Div[ sigma[x, y, z]] == {0, 0, 0} ]

eqdiv // MatrixForm

We now calculate the strain field using the isotropic linear elastic constitutive law.

eps[x, y, z] :=

(1+nu)/EE sigma[x, y, z] -

nu/EE Tr[ sigma[x, y, z]] IdentityMatrix[3]

eps[x, y, z] // MatrixForm

The application of the strain compatibility equation leads to the result that

σxx,xx = σxx,yy = σxx,zz = σxx,yz = 0.

This implies that stress σxx has the form of a polynomial function,

σxx = a1 xy + a2 xz + a3 x + a4 y + a5 z + a6,

where ai ∈ R are constants.
Before seeking the solution, we also check the form of boundary conditions in-

volving σxx. The axial (x) component of the resultant applied to the rod should be
equilibrated. Taking into account the expressions for moments of inertia of cross sec-
tions given in equation (4.57), this leads to

a3 = 0.

inc := Thread[Flatten[Inc[eps[x,y,z]] ] == Array[0 &, 9]]

inc // MatrixForm

sxx[x, y, z] = a1 x y + a2 x z + a3 x + a4 y + a5 z + a6

(traction = sigma[x, y, z] . {-1, 0, 0} ) // MatrixForm

(traction /. x -> 0 ) // MatrixForm

(traction = sigma[x, y, z] . {1, 0, 0} ) // MatrixForm
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(traction /. x -> L ) // MatrixForm

a3 = 0

inc // MatrixForm

The remaining equations (one equilibrium equation and two strain compatibility con-
ditions) provide a series of three PDEs for σxy(y, z) and σxz(y, z),

σxy,y + σxz,z + a1 y + a2 z + a3 = 0 (4.59)

�2σxy(y, z) = a1

1 + ν
(4.60)

�2σxz(y, z) = a2

1 + ν
, (4.61)

where �2 denotes the Laplacian operator in the (y, z) plane.

eq1 = div[[1, 1]]

sol = Solve[ D[ div[[1]], y ], D[sxz[y, z], y, z]]

eq2 = Simplify[ inc[[2]] /. sol[[1]]]

sol = Solve[ D[ div[[1]], z ], D[sxy[y, z], y, z]]

eq3 = Simplify[ inc[[3]] /. sol[[1]]]

The displacements can be obtained by integration of normal strains,

εxx = ux,x εyy = uy,y εzz = uz,z,

with the addition of a vector of unknown functions:
1
E

Kx(y, z)eeex − ν

E
Ky(x, z)eeex − ν

E
Kz(y, z)eeex.

The use of the ‘set delayed’ operator := for defining the displacement vector uuu permits
automatical update of expression during manipulation.

u := Map[

Integrate[ strain[[#, #]] , pp[[#]] ] +

If[ # == 1, 1 / EE, - nu / EE]

ToExpression["K" <> ToString[pp[[#]]] ]

@@ Drop[pp, {#}] & , Range[3]]

u

Expressions for unknown functions Kx(y, z),Ky(x, z),Kz(y, z) allow additional simpli-
fication by observing that

εyz = 1 + ν

E
σyz = 0.
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epsyz = D[ u[[3]], y ] + D[ u[[2]], z ]

sky = DSolve[ D[epsyz, z] == 0 , Ky[x, z], z]

Ky[x, z] = sky[[1, 1, 2]] /. C[1] -> Ky[x] /. C[2] -> - K[x]

skz = DSolve[ D[epsyz, y] == 0 , Kz[x, y], y]

Kz[x, y] = skz[[1, 1, 2]] /. C[1] -> Kz[x] /. C[2] -> K[x]

Substituting the results into the expressions for strains and stresses and integrating to
obtain the equilibrium equation, expressions for unknown functions K(x), Ky(x), and
Kz(x) are found.

Equilibrium also provides an equation for Kz(y, z):

�2Kz(y, z) = −2(a1 y + a2 z). (4.62)

The solution is now complete after the following function is introduced:

φ(y, z) = Kx(y, z) + E rz z − E ry y.

strain = Simplify[ 1/2 (Grad[u] + Transpose[Grad[u]] )]

sig = Simplify[

EE nu /(1+nu)/(1-2 nu) Tr[strain] IdentityMatrix[3]+

EE / (1 + nu) strain]

newdiv := Simplify[Div[sig]]

newdiv

newdiv // MatrixForm

K[x] = c x - EE / nu rx

newdiv = newdiv /. K’’[x] -> 0

DSolve[ newdiv[[2]] == 0 , Ky’’[x], x]

Ky[x] =%[[1, 1, 2]] /. C[1] -> - EE ly /. C[2] -> - EE ry

DSolve[ newdiv[[3]] == 0, Kz’’[x], x]

Kz[x] = %[[1, 1, 2]] /. C[1] -> - EE lz /. C[2] -> - EE rz

FullSimplify[ u /. Kx[y, z] -> phi[y, z] - EE rz z + EE ry y]

strain = FullSimplify[ 1/2 (Grad[u] + Transpose[Grad[u]] )]

(sig = FullSimplify[

EE nu /(1 + nu) / (1 - 2 nu) Tr[strain] IdentityMatrix[3]+

EE / (1 + nu) strain] ) // MatrixForm
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The computed closed form elastic solution is defined by the following displacement
field,

ux = 1
E

(a1

2
x2y + a

2
x2z + a4 xy + a5 xz + a6x

)
+ 1

E
φ(y, z) + (ry y − rz z) (4.63)

uy = − 1
E

(a1

6

(− (x (x2 + 3 ν y2))+ 3 ν x z2)− a2 ν x y z

− a4

2

(
x2 + ν (y − z) (y + z)

)− a5 ν y z + c ν x z − a6 ν y
)

+ (ly + rz x − rx z) (4.64)

uz = − 1
E

(
a1 ν x y z − a2

6

(−x3 + 3 ν x y2 − 3 ν x z2)+ a4 ν y z

− a5

2

(−3 x2 + 3 ν y2 − 3 ν z2)+ a6 ν z + c ν x y
)

+ (lz + ry x + rx y) , (4.65)

and the corresponding components of the stress field,

σxx = a6 + a4 y + a1 x y + a5 z + a2 x z (4.66)

σxy = 1
4 (1 + ν)

(
ν
(
2 (c − a2 y) z + a1

(
z2 − y2))+ 2φ(1,0)(y, z)

)
(4.67)

σxz = 1
4 (1 + ν)

(
− (ν (2 c y − a2 y2 + 2 a1 y z + a2 z2))+ 2φ(0,1)(y, z)

)
(4.68)

σyy = σzz = σyz = 0. (4.69)

We can now verify that the stress field satisfies the equilibrium equation

divσσσ = 0.

We also verify that the boundary condition on the cylindrical surface with the normal

nnn = nyeeey + nzeeez = cos θeeey + sin θeeez

is satisfied.

Simplify[Div[sig]]

(traction = sig . 0, Cos[t], Sin[t] ) // MatrixForm

The deplanation (warping) function φ(y, z)
Function φ(y, z), which appeared in the derivation, is referred to as the deplanation,
or the warping function. It is the solution of the equation

�2φ(y, z) = −2(a1y + a2z) (4.70)

with Neumann boundary condition arising from the traction-free requirement im-
posed on the cylindrical surface in the form

∂φ

∂nnn
= ν

{a1

2
(y2 − z2) + a2 y z + ν c z

}
ny + ν

{
a1 y z + a2

2
(z2 − y2) − ν c y

}
nz.
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x yk Figure 4.5. The elastic body and applied surface
tractions considered in the von Mises–Sternberg for-
mulation of the Saint Venant principle.

Functionφ(y, z)/E describes axial displacements of points lying on planar sections
normal to the longitudinal axis of the rod.

From the form of the displacement field we can readily deduce that constants
lx, ly, lz and rx, ry, rz define the components of translation and rotation of the rigid
body displacement field:

lll + rrr × xxx.

Constants a1, a2, a4, a5, a6, c are defined from the boundary conditions at the
loaded ends x = 0 or x = L.

The solution of the problem about torsion of a shaft has been established for
the case when loading is described only in terms of the force and moment resultants
acting on the end sections of the rod, rather than by imposing the detailed distribution
of the vector field of tractions, as one might expect for a well-posed boundary value
problem of elasticity. It is apparent that, according to Saint Venant, far from the region
of application of surface tractions the stress solution depends only on the resultant
force and moment of applied surface tractions.

In spite of its apparent simplicity, precise mathematical proof of this conjecture turns
out to be challenging.

An important result was obtained by Boussinesq (1885) in the form of the solution for
an elastic half-space subjected to a concentrated load (Section 7.1). The resulting stress
field decays as 1/r2 with distance r from the point of application of the concentrated load.
This confirms, albeit indirectly, the Saint Venant conjecture: only the force resultant affects
the stress distribution. A similar conclusion can also be drawn from the Cerruti solution
(Section 7.1) for a tangential concentrated force applied at the surface of an elastic half
plane.

General formulations for bodies of arbitrary shape were proposed by von Mises and
later revisited by Sternberg 1954. (See Figure 4.5.)

The Saint Venant principle in the von Mises–Sternberg formulation
Consider � to be a regular linear elastic domain with boundary ∂�.

Let us assume that the distribution of surface tractions ttt vanishes outside small
nonintersecting neighbourhoods Byyyk(r) of the point yyyk k, 1,K of radius r.

Then for each xxx ∈ � we have for r −→ 0 the relations for the solution

σσσ(xxx) = o(rα) ξξξ(xxx) = o(rα)
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t1

t2

Figure 4.6. A structure proposed by Hoff (1952) as a counter
example to the Saint Venant principle.

with

• α = 2 if at least one of the resultant forces is not vanishing, and if there exist k
such that ∫

Byyy(r)
ttt ds �= 0.

• α = 3 if all the resultant forces are zero:∫
Byyy(r)

ttt ds = 0.

• α = 4 if the resultant forces and moments are zero:∫
Byyy(r)

ttt ds = 0
∫

Byyy(r)
xxx ∧ ttt ds = 0.

Counter-examples proposed by Hoff

Hoff was an aerospace engineer working on thin-walled and slender structures. Hoff
(1952) identified a number of cases where the Saint Venant principle does not apply. As
an example, consider a rod of the shape shown in Figure 4.7. If this structure is subject to
loads represented by the opposite forces ttt1 in yyy1 and ttt2 in yyy2, then both force and moment

p0

pf

p0p0

Figure 4.7. Undisturbed rock mass (left), excavated cavity (middle) and filled cavity (right).
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resultants vanish as points yyy1 and yyy2 approach each other. However, the application of
the original Saint Venant formulation would lead one to conlcude falsely that stress at
σσσ(xxx) at point xxx remote from yyy1 and yyy2 becomes negligibly small. The more precise von
Mises–Sternberg formulation shows that if one of the two independent neighbourhoods of
points yyy1 and yyy2 are considered, then the resultant force in each of them taken separately
does not vanish in this case. The Hoff example therefore does not refute the Saint Venant
principle, but highlights the importance of using its correct formulation.

SUMMARY

In this chapter the formulation of the complete elasticity problem is addressed. Dis-
placement and stress formulations are introduced. The superposition priniciple is then
presented, and the fundamental virtual work theorem is used to prove uniqueness of the
elastic solution, followed by other fundamental theorems (Clapeyron and Maxwell–Betti).
Finally, the Saint Venant principle is discussed.

EXERCISES

1. Isotropic elastic spherical shell under a temperature gradient

Consider a spherical shell made from an isotropic elastic material with constants (λ,µ). The
shell is subjected to a temperature gradient defined by �i and �e, the temperatures of the
internal (r = ri) and external (r = re) surfaces, respectively. Using a spherical coordinate
system under the assumption of spherical symmetry:
(a) Compute the temperature distribution, assuming a time-independent state. We recall

that the heat equation for an isotropic homogenous material is defined as

div kgrad�(x, t) = c
∂

∂t
�(x, t).

(b) Compute the displacement field using spherically symmetric solution of the balance
equation.

(c) Compute the displacement, strain, and stress field solutions of the problem, assuming
that internal and external surfaces of the shell are traction-free.

(d) Compute the solution in the case of a thin shell, that is, if

ri =
(

R − e
2

)
re =

(
R + e

2

) e
R


 1,

where e represents the shell thickness.
(e) Can the principal terms of the thin shell solution be obtained through reasoning similar

to that used in Section 4.4 ?
Hint: See notebook C04 sphere temperature.nb.

2. Isotropic elastic spherical shell subjected to pressure and temperature loading

Consider a spherical shell subjected to both a pressure and a temperature loading,
• pressures pi and pe, and
• temperatures �i and �e,
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at the internal (r = ri) and external (r = re) surfaces, respectively. Solve the problem:
(a) directly, using the method of solution of the preceeding problem,
(b) using the superposition principle.

Hint: Combine notebooks C04 sphere pressure.nb and C04 sphere temperature.

nb.

3. Isotropic solid elastic sphere subjected to pressure and temperature loading

Consider the case of a solid sphere of radius re subject to external pressure pe and tem-
perature �e.
(a) Express explicitly the spherical symmetry, and write the boundary conditions.
(b) Compute the complete solution.

4. Excavation of an underground cavity (G.Rousset, J.Salençon, in Polytechnique, 1990–
2005)

Consider exacavation of an underground cavity of spherical shape with a radius r = ri (see
Figure 4.7). The cavity is to be situated at a depth h, h � r, below the surface. The rock
mass is considered to be a homogenous isotropic elastic body with moduli (λ,µ). We shall
model this situation as an infinite elastic body subject to an initial pressure distribution p0.
Note that a spherical coordinate system centred in the middle of the cavity will be used.
(a) Compute the initial stress field σσσ0 and verify that this field satifies balance equations.
(b) Suppose that the cavity is excavated instantaneously and that the surface of the cavity

becomes traction-free. Present explicitly the boundary conditions in this case after
excavation.

(c) Compute the displacement, strain, and stress fields in the underground rock mass after
the excavation.

(d) Taking into account the elastic displacement of the rock mass, determine the volume
change of the cavity after exacavation. Interpret the result from the physical point of
view.
Hint: See notebook C04 underground reservoir.nb.

5. Filling of an underground cavity with liquified gas (Polytechnique, 1990–2005)

In the second stage of this analysis we fill the underground cavity of the preceeding exercise
with liquified gas at pressure pf .
(a) Suppose that the cavity is filled instantaneously. Write explicitly the boundary condi-

tions in this case after filling.
(b) Compute the displacement, strain, and stress fields of the rock mass arising between

the excavation phase and the filling phase.
(c) Discuss the application of the superposition principle in this case.

Hint: See notebook C04 underground reservoir.nb.

6. Transversely isotropic elastic sphere under pressure (Lehnitski, 1981)

Consider a spherical shell of internal and external radii ri and re, respectively. The shell is
made of material that possesses transversely isotropic material symmetry oriented along
the eeer direction, meaning that θθθ and ϕϕϕ are equivalent directions everywhere.

The shell is subjected to both pressure and temperature loading,
• pressures pi and pe, and
• temperatures �i and �e,

at the internal (r = ri) and external (r = re) surfaces, respectively.
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(a) Explain why one can consider the problem under the assumptions of spherical sym-
metry.

(b) Compute the displacement, strain, and stress fields for the shell subjected to external
pressure in the absence of thermal loading.

(c) Compute the temperature field in the shell, assuming that the stationary heat conduc-
tion equation can be written in the form

divkkkgrad� = 0,

with the transversely isotropic thermal conductivity given by the second-order tensor

kkk = krreeer ⊗ eeer + ktt(eeeθ ⊗ eeeθ + eeeϕ ⊗ eeeϕ).

(d) Compute the displacement, strain, and stress fields for the shell subjected to thermal
loading, assuming that the dilatation tensor has the following form:

AAA = arreeer ⊗ eeer + att(eeeθ ⊗ eeeθ + eeeϕ ⊗ eeeϕ).

Hint: See notebook C04 sphere anisotropic.nb.

Remark for the interested reader: The complete transient thermal problem can also be solved.
For a complete reference on the subject see Eason and Ogden (1964). A brief draft of the
solution is given in notebook C04 sphere anisotropic heat.nb.

7. Finite cylindrical tube subjected to pressure loading

Consider a cylindrical tube made from isotropic elastic material with moduli (λ,µ). The
internal and external radii and the height of the cylinder will be denoted by ri, re,h,
respectively.

The cylinder is subjected to internal and external pressures pi and pe on its internal
and external cylindrical surfaces, respectively. The end sections of the tube are subject to
a pressure pz.
(a) Compute the displacement, strain, and stress field for the shell subject to external

pressures in the absence of thermal loading.
(b) How can the solution be obtained using the superposition principle?
(c) Compute the solution in the case of a thin cylinder, that is,

ri =
(

R − e
2

)
re =

(
R + e

2

) e
R


 1,

where e represents the shell thickness. Does the height of the cylinder play any role
in the solution?

8. Finite cylindrical tube subjected to thermal loading

Consider the same cylinder as in the preceding exercise.
The cylinder this time has uniform temperatures �i and �e on its internal and ex-

ternal cylindrical surfaces, respectively. The end sections are assumed to prevent axial
displacement of the tube without restricting transverse displacements, while at the same
time ensuring zero thermal flux through the boundary.
(a) Propose a kinematically admissible displacement field that obeys cylindrical symmetry.
(b) Compute the temperature distribution within the cylinder.
(c) Compute displacement, strain, and stress fields for the shell due to thermal dilatation.
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re reh

Figure 4.8. A ‘diving bottle’ shape formed out two hemispherical shells and one cylindrical shell.

(d) Compute the solution in the case of a thin cylinder, that is,

ri =
(

R − e
2

)
re =

(
R + e

2

) e
R


 1,

where e represents the shell thickness.
(e) How does the solution change if the tube is replaced with a bar with the same external

diameter ?

9. Finite elastically anisotropic cylindrical tube (Lehnitski, 1981)

Determine the solution for a cylindrical tube subject to the loading of the preceding two
exercises considering that the tube is made from an anisotropic material, for the following
cases of material symmetry:
(a) transverse isotropy
(b) cubic symmetry

10. A diving bottle under pressure loading

Diving bottles are manufactered by welding two hemispherical caps to a length of cylin-
drical tube of the same diameter. We (see Figure 4.8) that the spherical caps and the
cylindrical tube have the same internal and external radii and are manufactured from the
same linear elastic material. The bottle is subjected to pressures pi and pe on its internal
and external surfaces, respectively.
(a) Compute the complete stress field for the case of materials with the following material

symmetry:
• isotropic
• transversely isotropic.

(b) Compute the solution in the case of a thin spherical shell.
(c) Is it possible to obtain a closed form solution for the diving bottle subject to thermal

loading by imposing uniform temperatures �i and �e on its internal and external
surfaces, respectively?

11. Thermal assembly (‘frettage’) of cylindrical tubes (Ballard, in Polytechnique 1990–
2005).

‘Frettage’ is a technique that permits the assembly of prestressed cylindrical tubes. An
inner and an outer tube used are characterised by the radii ri, re and Ri,Re, respectively.
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p
0

p
0

p
0

p
0

Figure 4.9. Tubes before and after ‘assembly.’

The outer tube has a smaller interior radius than the exterior radius of the inner tube, that
is, Ri < re. In order to make the assembly possible, the inner tube is cooled down (or the
outer heated) to create a temparature difference θ. Once assembled, the tubes reform to
the equilibrium state characterised by the interface pressure p0 and a residual stress field
σσσ0. The procedure is illustrated in Figure 4.9.

Applications of this method of assembly include, for example, fixing of valve seats
in motor engine cylinder heads and creation of residual stress distributions in tubular
structures in order to improve service performance.

In the following we assume that both tubes are made from isotropic linear elastic
material with moduli (λ,µ) and that the contact between the tubes is frictionless. The
assumption of frictionless contact is somewhat counterintuitive, as it means that the inner
tube can be extracted from the assembly without effort; however, we shall preserve it as
the first approximation in order to simplify computations.
(a) Specify the complete set of continuity conditions at the interface for displacements

and tractions.
(b) Determine the minimal temperature change during cooling to allow assembly.
(c) Determine the frettage pressure p0 and specify the stress distributions in both

tubes.
(d) Now assume that the initial configuration of the structure corresponds to the already

assembled frettage tube. The inner, interface, and outer radii are ri, r0, re, and the
frettage pressure is p0.
• Compute the initial stress state σσσ0 in the assembly.
• Compute the final displacement and stress state in the assembly when the frettage

tube is subjected to service loading characterised by pi and pe, the inner and the
outer pressure.
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Figure 4.10. Two traction fields creating an equivalent torsion in the sense of Saint Venant.

12. Traction vector fields

Show that the following two vector fields, illustrated in Figure 4.10, are equivalent in the
sense of Saint Venant when applied to a shaft with a sqare cross section [−1, 1] × [−1, 1]:
• ttt1 = −yeeex + xeeey

• ttt1 = (xeeex + yeeey) + ttt1.

13. Cylindrical rod of arbitrary cross section under torsion

Consider an isotropic elastic cylindrical rod with arbitrary cross section under torsional
loading. The body occupies in the initial reference frame the domain � = S × [0,L] (see
Figure 4.11). The relative angle of rotation between end sections by an angleα is prescribed.
The lateral surface of the cylinder is traction-free.
(a) Circular cross section S. Verify that displacement field of the form

uuu = α
z
L

eeez × (xeeex + yeeey)

defines a complete solution of the torsion problem. Compute surface tractions ttt = σσσ · nnn
on the end sections, and show that their linear and angular momenta are

FFF =
∫

S
ttt ds = 0, MMM =

∫
S
(xeeex + yeeey) × ttt ds = 1

2
α

L
µR4,

where R is the radius of the cross section.
Under what conditions is the small strain hypothesis still valid?

(b) Arbitrary cross section S. Show that the previous solution is valid if and only if the
cross section is circular.
Hint: Consider a parameterised description of the boundary of the cross section:

ppp = r(θ)eeer = r(θ)(cos θeeex + sin θeeey) ppp ∈ ∂S.

Compute the tangent and normal vectors to ∂S, and examine the traction vector of the free
surface:

ttt = σσσ · nnn.
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Figure 4.11. Cylindrical rod of arbitrary cross section.

(c) Arbitrary cross section S; introduction of the warping function. Show that the displace-
ment field of the form

uuu = αz
L

eeez × (xeeex + yeeey) + αz
L

ϕ(x, y)eeez

defines a complete solution of the torsion problem, provided the warping function ϕ

is a solution of the Neumann problem,

�ϕ(x, y) = 0 (x, y) ∈ S
∂ϕ

∂nnn
(x, y) = gradϕ · nnn = ynx − xny (x, y) ∈ ∂S,

where nnn = (nx eeex + ny eeey) is the normal unit vector to ∂S .
(d) Arbitrary cross section S, solution with the warping function. Using the solution defined

in the previous question, compute the traction vector acting on the end sections. Show
using the properties on the warping function and integration by parts that the linear
and angular momenta on the end section are in this case

FFF =
∫

S
ttt ds

= µ
α

L

∫
∂S

(
∂ϕ

∂n
− ynx + xny

)
(xeeex + yeeey) ds + µ

α

L

∫
∂S

(�ϕ) (xeeex + yeeey) ds,

MMM =
∫

S
(xeeex + yeeey) × ttt ds = Mzeeez = αµ

L
J0,

J0 =
∫

S
x
(
∂ϕ

∂y
+ x

)
− y

(
∂ϕ

∂y
− y

)
=
∫

S
(x2 + y2) ds −

∫
S

∣∣ gradϕ
∣∣2 ds,

where J0 denotes the geometric torsional moment of cross section S.
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OUTLINE

This chapter is devoted to the solution of elastic problems using the stress function ap-
proach. The Beltrami potential has already been introduced previously as a convenient
form of representation for self-equilibrated stress fields. However, the main emphasis in
the chapter is placed on the analysis of the Airy stress function formulation, even though
it represents only a particular case of the Beltrami representation. The reason for this is
the particular importance of this approach in the context of plane elasticity.

The Airy stress function approach is introduced taking particular care to ensure that
conditions of strain compatibility are properly satisfied. The approximate nature of the
plane stress formulation is elucidated.

The properties of Airy stress functions in cylindrical polar coordinates are then ad-
dressed. Particular care is taken to analyse some important fundamental solutions that
serve as nuclei of strain within the elasticity theory, namely the solutions for a disclination,
dislocations and dislocation dipoles, and concentrated forces.

Williams eigenfunction analysis of the stress state in an elastic wedge under homoge-
neous loading is presented next, and the elastic stress fields found around the tip of a sharp
crack subjected either to opening or shear mode loading. Finally, two further important
problems are treated, namely the Kirsch problem of remote loading of a circular hole in
an infinite plate, and the Inglis problem of remote loading of an elliptical hole in an infinite
plate.

5.1 PLANE STRESS

The previously introduced expression for the stress tensor in terms of the Beltrami poten-
tial is

σσσ = inc BBB. (5.1)

Because div inc BBB = 0, the stress tensor defined in this way automatically satisfies equi-
librium.

The Airy stress function solution corresponds to a special form of the Beltrami
potential, namely

BBB = A(x, y, z)eeez ⊗ eeez. (5.2)

116



PAB CUFX161-Constantinescu August 13, 2007 17:14

5.1 Plane stress 117

In matrix form with respect to cartesian coordinates this Beltrami tensor is given by

BBB =
0 0 0

0 0 0
0 0 A(x, y, z)

 . (5.3)

Introducing the stress using the Airy form of the Beltrami potential ensures that the stress
tensor satisfies the equilibrium equation divσσσ = 0 and that the corresponding stress state
is planar:

σσσ = incBBB = inc A(x, y, z)eeez ⊗ eeez =


∂2A
∂y2

− ∂2A
∂x∂y

0

− ∂2A
∂x∂y

∂2A
∂x2

0

0 0 0

 . (5.4)

The derivation is illustrated in the notebook CQS airy1.nb:

<< Tensor2Analysis.m

SetCoordinates[Cartesian[x, y, z]]

B = {{0, 0, 0}, {0, 0, 0}, {0, 0, A[x, y, z]}}

(Stress = Inc[B]) // MatrixForm

(Div[Stress]) // MatrixForm

From now on we use the Mathematica notation for partial differentiation with respect to
the arguments, so that, for example

A(i,j,k) = ∂i+j +kA
∂xi∂yj ∂zk

. (5.5)

For a stress state to give a solution of the complete system of equations of elasticity, the
corresponding strain state must also satisfy the compatibility equations. To compute the
strain tensor we require the isotropic compliance tensor, which is constructed as follows:

Sijkl = −ν

E
δij δkl + (1 + ν)

2E
(δikδj l + δilδjk). (5.6)

This allows the strain to be computed from the stress by the double dot product:

εεε = SSS : σσσ. (5.7)

We implement the calculations in the form of the Mathematica functions DDot (dou-
ble dot product) and IsotropicCompliance. For the latter we include an alternative
definition of the isotropic compliance tensor as a function of one parameter, nu. This is
done for convenience so that Young’s modulus EE can be set to unity.
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DDot[T4_, t2_] := GTr[GDot[T4, t2, 1, 1], 1, 4]

IsotropicCompliance[EE_, nu_] := Array[

-nu/EE KroneckerDelta[#1,#2] KroneckerDelta[#3,#4]+

(1+nu)/2/EE(KroneckerDelta[#1,#3] KroneckerDelta[#2,#4]+

KroneckerDelta[#1,#4]KroneckerDelta[#2,#3])&,{3,3,3,3}]

IsotropicCompliance[nu_] := IsotropicCompliance[1, nu]

SS = IsotropicCompliance[nu]

(Strain = DDot[SS, Stress]) // MatrixForm

The strain tensor has the formA(0,2,0) − 2nuA(2,0,0) −(1+ nu)A(1,1,0) 0

−(1+ nu)A(1,1,0) A(2,0,0) − 2nuA(0,2,0) 0

0 0 −nu (A(0,2,0) + A(2,0,0))

 . (5.8)

Here the dependence of A on the arguments (x,y,z) is implied, but has been omitted.

The incompatibility tensor is computed by applying the operator inc to the strain tensor.

(Inc[Strain]) // MatrixForm

The resulting incompatibility tensor is a symmetric 3 × 3 tensor. The requirement of
strain compatibility therefore leads to six equations which must be satisfied by the function
A(x, y, z).

In the context of plane elasticity, compliances are often expressed in terms of the Lamé
coefficient µ and the Kolosov constant κ = (3 − ν)/(1 + ν) for plane stress; for plane strain
κ = 3 − 4ν. For convenience we therefore also introduce another definition of compliance
tensor given below.

IsotropicComplianceK is defined as a function of one or two parameters.
The one-parameter version assumes for simplicity that 2µ = 1.

IsotropicComplianceK[K_, mu_] :=

Array[-(3-K)KroneckerDelta[#1,#2] KroneckerDelta[#3,#4]+

2(KroneckerDelta[#1,#3] KroneckerDelta[#2,#4]+

KroneckerDelta[#1,#4] KroneckerDelta[#2,#3])&,

{3,3,3,3}]/(8 mu);

IsotropicComplianceK[K_] := IsotropicComplianceK[K, 1/2];
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5.2 AIRY STRESS FUNCTION OF THE FORM A0(x, y)

Conventionally the Airy stress function is used to solve plane problems of elasticity, for
which the principal dependence of the stress and strain tensors is on the plane coordinates
x and y. Starting the consideration with this case, in equation (5.3) we use a function
A0(x, y) that is independent of the z coordinate, instead of the function A(x, y, z).

The strain tensor is represented by the matrixA0(0,2) − nu A0(2,0) −(1+ nu)A0(1,1) 0

−(1+ nu)A0(1,1) −nuA0(0,2) + A0(2,0) 0

0 0 −nu(A0(0,2) + A0(2,0))

 . (5.9)

The corresponding strain incompatibility matrix has the form

II =

−nu(A0(0,4) + A0(2,2)) nu(A0(1,3) + A0(3,1)) 0

nu(A0(1,3) + A0(3,1)) −nu(A0(2,2) + A0(4,0)) 0

0 0 A0(0,4) + 2A0(2,2) + A0(4,0)

 .

(5.10)

It is now possible to identify the conditions on the Airy stress function A0(x, y) that ensure
that the components of the above incompatibility tensor vanish.

Strain incompatibility in plane stress

We note that the component II[[3,3]] in equation (5.10) is the result of applying the
biharmonic operator to the Airy stress function, ��A0(x, y).

Recall that the corresponding compatibility equation in terms of strains has the form

I33 = ∂2εxx

∂y2
+ ∂2εyy

∂x2
− 2

∂2εxy

∂x∂y
= 0. (5.11)

This equation is special in that it only relates to the strain components in the xy plane.
In many approximate treatments found in the literature this strain compatibility equa-

tion is incorrectly identified as the only one that needs to be satisfied in the plane problem,
on the basis that it is the only one relating the in-plane strains alone. However, it is clear
from the form of the incompatibility tensor (5.10) that this leaves other compatibility
equations unsatisfied.

If only the requirement of biharmonicity of the Airy stress function is imposed, an
approximate solution of a plane problem results. The corresponding state of stress is planar,
whereas the strain tensor contains nonzero terms εxx, εyy, εxy, εzz. Compatibility of strains
is satisfied only partially.

Harmonic Airy stress function: � A0(x, y) = 0

Choosing the Airy stress function to be harmonic,�A0(x, y) = 0, ensures full compatibility
of strains. Indeed, inspection reveals that all of the components of the incompatibility
tensor II can be obtained by differentiation of the laplacian of the Airy stress function,
�A0(x, y).
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Reducibility of differential operators

Although in the present case the above statement can be verified fairly easily, in more
complex computations it is often difficult to recognise higher order derivatives of the
laplacian and their combinations. One of the purposes of this book is to demonstrate how
some of the laborious analytical calculations in classical elasticity can be elucidated and
simplified with the help of Mathematica . Here we develop a useful technique that can be
applied in the general case.

Coefficients of the terms A(i,j )
0 do not depend on the variables x and y. We therefore

establish a one-to-one mapping between the differential operators and polynomials in
auxiliary variables vx and vy, as follows:

A(i,j )
0 = ∂(i+j )A0

∂xi∂yj
←→ vi

x vj
y. (5.12)

We now specify an appropriate Mathematica rule which implements this mapping. The
rule can be applied to the components of the incompatibility tensor II and the laplacian
of A0(x, y).

deriv2poly = Derivative[px_,py_][A0][x,y]->vxˆpx vyˆpy

(incpoly = II /. deriv2poly) // MatrixForm

lappoly = (Laplacian[A0[x, y]]) /. deriv2poly

Now, in order to verify the reducibility of components of tensor II to the derivatives
of the laplacian of A0(x, y), we need to verify the divisibility of the corresponding
polynomials.

(reducelap = Table[ PolynomialReduce[incpoly[[i, j]],

lappoly, {x, y} ], {i, 3}, {j,3}])

// MatrixForm

According to the definition of PolynomialReduce, the second part of the resulting list
contains the residue. We remark that all residues can be extracted to show that they all
indeed evaluate to zero.

(residuelap = Map[ #[[2]] &, reducelap, {2} ] )

// MatrixForm

The result signifies that each component of the incompatibility tensor in polyno-
mial form can be factorized into a product of the ‘laplacian polynomial’ and a quo-
tient polynomial. Using the one-to-one mapping between the differential operators
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and the polynomials, we can establish the following equivalence:

(
a0 + . . . + aij

∂(i+j )

∂xi∂yj
+ . . .

)
�A0 ←→ (

a0 + . . . + aij vi
x vj

y + . . .
) (

v2
x + 2 vx vy + v2

y

)
.

(5.13)
As a consequence, we can obtain explicitly the differential operator that needs to be
applied to �A0 to construct each of the components of the incompatibility tensor.

For completeness of presentation we now define the procedures which perform this
validation exercise.

First we construct the quotient tensor.

(quotientlap = Map[ #[[1, 1]] &, reducelap, {2}] )

// MatrixForm

Let us now exemplify the procedure using one of the components, say, II[[3,3]].

We first build the coefficient list and multiply each coefficient by the appropriate deriva-
tive of the laplacian. We then add together all the terms. Because the initial table of
coefficients was two-dimensional, we flatten this table and apply the plus operator to the
resulting one-dimensional list. Finally, we verify that the result is equal to the component
II[[3,3]].

(coeflist = Simplify[

CoefficientList[quotientlap[[3, 3]], {dx, dy}]])

// MatrixForm

(comblist =

Table[ coeflist[[i, j]] D[lap, {x, i - 1}, {y, j - 1}],

{i, 1, Dimensions[coeflist][[1]]},

{j, 1, Dimensions[coeflist][[2]]} ])

// MatrixForm

Simplify[Plus @@ Flatten[ comblist]]

Simplify[Plus @@ Flatten[ comblist] - II[[3, 3]]]

All operations can be grouped into a module as shown here.

ComputeReduction[quotientpoly_, divisorderiv_, vars_] :=

Module

[{coeflist},

coeflist = CoefficientList[quotientpoly, vars];

Simplify[

Plus @@ Flatten[

Table[ coeflist[[i, j]] D[

divisorderiv, {x, i - 1}, {y, j - 1}],
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{i, 1, Dimensions[coeflist][[1]]},

{j,1,Dimensions[coeflist][[2]]} ]

]

]

]

It now becomes a trivial task to verify the original assumption.

Table[ Simplify[

ComputeReduction[quotientlap[[i, j]], lap, {dx, dy}]

- II[[i, j]]],{i, 3}, {j, 3}]

// MatrixForm

Remarks on the approximate nature of plane stress

The foregoing discussion has identified several deficiencies of the formulation using the
Beltrami potential tensor in the form

BBB =
 0 0 0

0 0 0
0 0 A0(x, y)

 . (5.14)

• Requiring biharmonicity of A0(x, y) does not satisfy strain compatibility, except for
one equation out of six. This approximate formulation is nevertheless widely used in
applications. In the next section we shall demonstrate the nature of the approximations
involved.

• Requiring harmonicity of A0(x, y) satisfies strain compatibility in full. However, prac-
tice has shown that this requirement is restrictive in terms of the variety of solutions
that can be obtained, and therefore it is rarely used.

5.3 AIRY STRESS FUNCTION WITH A CORRECTIVE TERM: A0(x, y) − z2A1(x, y)

We begin again with the Beltrami potential tensor given in (5.3). Our aim is to establish
a form of the function A(x, y, z) which leads to a compatible strain field. A recipe due to
Clebsch (see Love, 1944) is to consider A(x, y, z) in the form

A(x, y, z) = A0(x, y) − z2A1(x, y) (5.15)

and to set

A1(x, y) = ν

2(1 + ν)
�A0(x, y). (5.16)

The Clebsch form of the Airy stress function is introduced.

B := {{0, 0, 0}, {0, 0, 0}, {0, 0, A[x, y, z]}}

A[x_,y_,z_] = A0[x, y] -nu/2/(1 + nu)Laplacian[A0[x,y]] zˆ2;

(Stress = Inc[B]) // MatrixForm
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The resulting stress components have the form

σij = σ0
ij − ν

2(1 + ν)
z2�σ0

ij , (5.17)

where σ0
ij denotes the stress components derived using only the biharmonic function

A0(x, y) of the previous section.

We use Mathematica to demonstrate that the resulting strain field is indeed compatible,
provided A0(x, y) is biharmonic.

SS = IsotropicCompliance[nu]

(Strain = Simplify[Collect[DDot[SS,Stress],z]])// MatrixForm

( Incstrain = Simplify[ Inc[Strain] ] ) // MatrixForm

The strain incompatibility tensor is represented by a large matrix. It is necessary to
demonstrate that all components vanish if A0 is biharmonic, ��A0(x, y) = 0. This task
is similar to that tackled in the preceding section: we use the rule deriv2poly and
command ComputeReduction defined previously.

deriv2poly = Derivative[a_, c_][A0][x, y] -> dxˆa dyˆc

(incpoly = II /. deriv2poly ) // MatrixForm

bih = Biharmonic[A0[x, y]]

bihpoly = (bih) /. deriv2poly

(reducebih =

Table[ PolynomialReduce[incpoly[[i, j]],

bihpoly, {x, y} ], {i, 3}, {j, 3}])

// MatrixForm

(quotientbih = Map[ #[[1, 1]] &, reducebih, {2} ] )

// MatrixForm

(coeflist =

Simplify[

CoefficientList[quotientbih[[3,3]],{dx,dy}]])

// MatrixForm

Table[ Simplify[

ComputeReduction[quotientbih[[i,j]],bih,{dx,dy}]

- II[[i, j]]], {i, 3}, {j, 3}]

// MatrixForm
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The proof of compatibility of the strain field is complete. On this basis a complete set
of expressions for the displacements can be written (see Love, 1944).

Remark on the plane stress approximation

Referring to the stresses given by (5.17), we note that the corrective stress terms are
proportional to z2. These can be made as small as one likes, provided that the extent of the
body in the z direction is kept small compared to its other dimensions. As a consequence,
the plane stress approximation can be applied to thin plates, with the penalty of violating
strain compatibility conditions. The difference between the two formulations amounts to
a parabolic stress variation through the thickness of the plate.

5.4 PLANE STRAIN

The incompatibility of strain that arises in the plane potential formulation involving the
function A0(x, y) can be satisfied by adopting a different approach.

Consider the Beltrami potential tensor in the form

BBB =

A1(x, y) 0 0

0 A2(x, y) 0

0 0 A3(x, y)

 . (5.18)

The Beltrami potential formulation of this form is sometimes referred to as the Maxwell
stress potential.

Compute the stress tensor and note that the resulting stress state is no longer planar.

B := {{A1[x, y], 0, 0}, {0, A2[x, y], 0}, {0, 0, A3[x, y]}}

B // MatrixForm

Stress := Inc[B]

Stress // MatrixForm

Find the strain tensor and compute the incompatibility tensor II.

SS = IsotropicCompliance[nu]

Strain := Simplify[DDot[SS, Stress]]

(Strain) // MatrixForm

II := Inc[Strain]

(II) // MatrixForm

Let us now consider the structure of the nonzero components of this tensor:

II(1, 1) = A(0,4)
1 − νA(0,4)

3 + A(2,2)
2 − νA(2,2)

3 (5.19)

II(1, 2) = −A(1,3)
1 + νA(1,3)

3 − A(3,1)
2 + νA(3,1)

3 (5.20)
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II(2, 1) = −A(1,3)
1 + νA(1,3)

3 − A(3,1)
2 + νA(3,1)

3 (5.21)

II(2, 2) = A(2,2)
1 − νA(2,2)

3 + A(4,0)
2 − νA(4,0)

3 (5.22)

II(3, 3) = −νA(0,4)
1 + A(0,4)

3 − νA(2,2)
1 − νA(2,2)

2 + 2A(2,2)
3 − νA(4,0)

2 + A(4,0)
3 . (5.23)

We note that the first four components can be made identically zero by setting

A1 = νA3, A2 = νA3. (5.24)

Under the same substitution, component II[[3,3]] assumes the form

II(3, 3) = −(1 − ν2)
(

A(0,4)
3 + 2A(2,2)

3 + A(4,0)
3

)
= −(1 − ν2)��A3. (5.25)

We conclude that biharmonicity of A3(x, y) ensures strain compatibility under this formu-
lation.

The stress tensor is now found in the form

Stress // MatrixForm

 A3(0,2) −A3(1,1) 0

−A3(1,1) A3(2,0) 0

0 0 −nu(A3(0,2) + A3(2,0))

 . (5.26)

Note that the out-of-plane stress component is now present.
The strain state is now found.

Simplify[Strain] // MatrixForm

− (1+ nu)

 (−1+ nu)A3(0,2) + nu A3(2,0) A3(1,1) 0

A3(1,1) nu A3(0,2) + (−1+ nu)A3(2,0) 0

0 0 0


(5.27)

We note that this compatible strain state is indeed planar. Moreover, the above equation
can be rewritten in the form

(1− nu2)

A3(0,2) − A3(2,0)nu/(1− nu) −A3(1,1)/(1− nu) 0

−A3(1,1)/(1− nu) A3(0,2) − A3(2,0)nu/(1− nu) 0

0 0 0

 . (5.28)

By comparison with equation (5.9), we note that the two expressions for strain in terms of
the potential function (and hence stresses) differ only in terms of coefficients. In fact, the
definition

E∗ = E
1 − ν2

, ν∗ = ν

1 − ν
(5.29)

ensures that the equations for planar strain become identical with those for planar stress
provided Young’s modulus and Poisson’s ratio are replaced with the starred symbols
throughout.
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5.5 AIRY STRESS FUNCTION OF THE FORM A0(r, θ)

The change of coordinates from cartesian (x, y, z) to cylindrical polar (r, θ, z) preserves all
of the properties introduced in the previous sections. In fact, any coordinate transforma-
tion within the plane perpendicular to the z axis can be performed with the help of the
TensorAnalysis package, provided the resulting coordinate system remains orthogonal.

For cylindrical polar coordinates the result has the form

σσσ = inc (A0(r, θ)eeez ⊗ eeez) =


1
r2

∂2A0

∂θ2
+ 1

r
∂A0

∂r
1
r
∂A0

∂θ
− 1

r2

∂2A0

∂r∂θ
0

1
r
∂A0

∂θ
− 1

r2

∂2A0

∂r∂θ
∂2A0

∂r2
0

0 0 0

 . (5.30)

Using Mathematica, the derivation is performed in a few lines.

<< Tensor2Analysis.m

SetCoordinates[Cylindrical[r, t, z]]

B = {{0, 0, 0}, {0, 0, 0}, {0, 0, Psi[r, t]}}

(Stress1 = Inc[B]) // MatrixForm

Airy stress function

B := {{0, 0, 0}, {0, 0, 0}, {0, 0, A0[x, y]}} Airy stress function form
of the Beltrami–Maxwell
tensor potential B

5.6 BIHARMONIC FUNCTIONS

The above analysis of the plane problem demonstrates the important role played by
biharmonic functions in the solution of elastic plane problems.

The general form of the solution of the biharmonic equation in two dimensions has
been established by Goursat using the apparatus of functions of the complex variable
ζ= x + iy = r exp iθ. The general solution is found in the forms

A1(r, θ) = Re(ζ̄φ(ζ) + χ(ζ)), (5.31)

A2(r, θ) = Im(ζ̄ φ(ζ) + χ(ζ)), (5.32)

where φ and χ are arbitrary analytic (and therefore harmonic) functions of ζ. The function
χ above therefore describes the subset of biharmonic functions that are also harmonic,
whereas the form ζ̄φ(ζ) represents the set of functions that in this context could be termed
‘essentially biharmonic.’

Without constructing a rigorous proof (which can be found, for example, in Muskhe-
lishvili (1953)) one may remark that in the complex plane ζ

�A(ζ) =
(

∂2

∂x2
+ ∂2

∂y2

)
A(ζ) = 4

∂2

∂ζ∂ζ̄
A(ζ).
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Therefore the biharmonic equation is

∂4

∂ζ̄2∂ζ2
A(ζ) = 0.

Considering ζ and ζ̄ as two independent variables and integrating twice with respect to ζ̄

results in

∂2

∂ζ2
A(ζ) = ζ̄�(ζ) + �1(ζ),

where �, �1 are analytic functions of ζ. Further integration in ζpreserves harmonicity and
leads to the solution A(ζ) = A1(ζ) + iA2(ζ) in the form of equation (5.31).

The convenience offered by the Goursat form (5.31) is that the complex variable ζcan
be expressed in terms of an arbitrary pair of coordinates in the complex plane, leading to
a great variety of forms of solution.

The solution of the biharmonic equation in polar coordinates is particularly relevant
to problems with boundaries defined as segments of the r or θ coordinate lines. Exploration
of solutions in the cylindrical polar coordinate representation may begin by noting that
essentially biharmonic terms can be readily obtained by considering analytic functions in
the ζplane, which on their own give rise to harmonic solutions as their real and imaginary
parts. With the multiplier ζ̄ these functions generate ‘essentially biharmonic’ solutions.

One natural choice for a basis family of functions is the powers ζn. These give rise to
the harmonic soutions

ζn = r n cos nθ + ir n sin nθ.

Essentially biharmonic solutions are obtained in the form

ζ̄ζ
n+1 = r n+2 cos nθ + ir n sin nθ.

This representation stands in an obvious relationship with the series expansions, namely
the Fourier series in θ and the power law series in r. In the general real form one can write

A(r, θ) =
∞∑

n=−∞
rn (an1 cos nθ + an2 cos(n − 2)θ + bn1 sin nθ + an2 sin(n − 2)θ) . (5.33)

It turns out, however, that this representation alone does not provide a sufficient vari-
ety of solutions. It needs to be enhanced by the logarithmic function and its combinations
with powers, because of a particularly important role in plane elasticity played by this
family of solutions.

Two harmonic solutions are generated by the real and imaginary parts of the logarith-
mic function,

log ζ= log r + iθ = 1
2

log(x2 + y2) + i arctan(y/x).

These two terms give rise to stresses and strains that decay as 1/r2 with distance from the
origin, and therefore to displacements varying as 1/r. The application ofIntegrateStrain
utility from Chapter 1 reveals that the displacements are purely radial for A(r, θ) = log r
and purely tangential for A(r, θ) = θ.
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A set of important essentially biharmonic solutions is generated by considering equa-
tions (5.31) and (5.32) with the functions

ζ̄φ(ζ) + χ(ζ) = 1
2

(ζ± ζ̄) log ζ.

The real solutions arising in this case are

r log r cos θ, r θ cos θ, r log r sin θ, r θ sin θ.

The stresses and strains due to these solutions decay as 1/r with distance from the origin.
The displacements may therefore be found to vary logarithmically with r or to be a linear
function of angle θ. The elastic fields implied by these functions are of particular interest
in problems involving forces concentrated at a point, and dislocations, as discussed below.

Two more solutions that are essentially biharmonic arise from the function

ζ̄ζlog ζ= r2 log r + ir2θ.

These solutions give rise to displacement fields of the form rθ either in the radial or
tangential components, and thus cannot be continuous in a body that spans the full range
of polar angles. A displacement discontinuity that grows linearly with the distance r from
the origin must be thought to arise at a line that corresponds to the branch cut of the
function θ = atan (y/x) in the ζplane. The solutions thus correspond to ‘disclinations’ that
might be created in the material by inserting or removing a wedge of material.

This method of generating biharmonic solutions can be used to derive families of
functions of arbitrary order n based on ζn log ζand ζ̄ζ

n−1 log ζand their combinations. For
example, with the help with the operator Biharmonic, one can readily verify the validity,
for all values of n, of the following biharmonic solutions:

rn(cos nθ log r − θ sin nθ), rn(sin nθ log r − θ cos nθ), (5.34)

rn(cos(n − 2)θ log r − θ sin(n − 2)θ), rn(sin(n − 2)θ log r − θ cos(n − 2)θ). (5.35)

These are, of course, neither even nor odd in θ. The analysis of displacements reveals
that these solutions contain the term θ in the expressions for stress components. Although
this observation has been used as the basis for excluding these solutions from further
consideration, it seems appropriate to catalogue them here, because they may turn out to
be useful in the solution of some boundary value problems. We note in passing that, for
example, the Airy function term given by the first expression in equation (5.35) for n = 0,

cos 2θ log r + θ sin 2θ,

gives rise to stresses varying as cos 2θ log r/r2, and as θ cos 2θ/r2, not obtainable from the
set of solutions usually considered.

Stress fields corresponding to any test solution can be readily computed and plot-
ted. The necessary packages Tensor2Analysys.m, Displacement.m, IntegrateS-

train.m must be loaded and the coordinate system defined. For any chosen function
Airy[r,t] its biharmonicity is checked first.

For convenience, we define the function AiryStress, which allows the stress com-
ponents to be computed in one line.
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The strain is then calculated using IsotropicCompliance[nu] and DDot operators,
and displacements obtained using IntegrateStrain.

<< Tensor2Analysis.m

<< Displacement.m

<< IntegrateStrain.m

SetCoordinates[Cylindrical[r, t, z]]

Airy[r_,t_]=rˆ2 Log[r];

Biharmonic[Airy[r,t]]

AiryStress[Airy_] := Inc[{{0,0,0}, {0,0,0}, {0,0,Airy}}]

Stress = AiryStress[Airy[r,t]]

Strain = Simplify[DDot[IsotropicCompliance[nu], Stress]];

uint = IntegrateStrain[Strain]

A note of caution must be added, to draw attention to the fact that correct integra-
tion of displacements must take account of rigid body displacement and rotation effects.
Furthermore, the definition of the module IntegrateStrain introduced in Chapter 1
includes the verification of strain compatibility. As discussed above, the majority of plane
elasticity solutions do not satisfy this requirement. If the general procedure for strain inte-
gration is ‘forced’ for a given plane strain tensor, the resulting displacements may contain
terms depending on coordinate z. These terms may be discarded and strain recalculated
to confirm if the integration has been correct. This is illustrated below using the solution
for disclination.

It is apparent from this discussion that the variety of forms of biharmonic functions
can be spanned by the full family of analytic functions in the ζplane. The truly complete
solution for the two-dimensional case is thus given by the Goursat forms (5.31) and (5.32).

Alternative and less general approaches to exploration of the forms of solution in
polar coordinates in real form have been widely employed in the literature. One method
relies on the use of Fourier series expansion in the polar angle θ, seeking A(r, θ) in the
form

A(r, θ) =
∞∑

n=0

f n(r) cos nθ +
∞∑

n=0

gn(r) sin nθ. (5.36)

The requirement that this function be biharmonic leads to the governing equation for the
functions fn(r), gn(r) in the form(

d2

dr2
+ 1

r
d
dr

− n2

r2

)2

f (r) = 0. (5.37)

The difficulty associated with this approach lies in the fact that it does not lead to the
most general form of solution, and somewhat artificial methods have to be employed to
consider the so-called degenerate cases. Michell was the first to present, without proof,
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a form of ‘general’ solution in polar coordinates. It is very important to note, however,
that the solution is not complete. Following Barber (2002) we record the Michell solution
(with the addition of the term r2θ for consistency) as

A(r, θ) = A01r2 + A02r2 log r + A03 log r + A04θ + A05r2θ

+ (A11r3 + A12r log r + A14r−1) cos θ + A13rθ sin θ

+ (B11r3 + B12r log r + B14r−1) sin θ + B13rθ cos θ (5.38)

+
∞∑

n=2

(An1rn+2 + An2r−n+2 + An3rn + An4r−n) cos nθ

+
∞∑

n=2

(Bn1rn+2 + Bn2r−n+2 + Bn3rn + Bn4r−n) sin nθ .

Following the existing convention, functions (5.34) and (5.35), which arise for n ≥ 2, have
been omitted from the Michell solution.

5.7 THE DISCLINATION, DISLOCATIONS, AND ASSOCIATED SOLUTIONS

In this section we consider a particular solution for the Airy stress function that allows some
important properties of displacement fields to be discussed, and relationships between
solutions to be explored.

Choosing

A(r, t) = Dr2 log r

gives rise to a particularly simple stress field given by σrr = D(1 + 2 log r), σθθ =
D(3 + 2 log r), σrθ = 0.

Of particular interest are the strain and displacement fields for this solution.

The strain tensor is computed from stress using the isotropic compliance tensor in
terms of the Kolosov constant K, with 2µ set to unity for simplicity. Application of the
Inc operator shows, however, that this strain is not compatible. Hence the application
of IntegrateStrain runs into difficulties. If the steps of this procedure are formally
completed, however, a displacement field can be found that contains terms depending
on z. If these are discarded, a plane displacement field remains that in fact can be shown
to give rise to the correct strain.

Stress = AiryStress[D rˆ2 Log[r]]

Strain=DDot[IsotropicComplianceK[K],Stress];

Inc[Strain]

theta = IntegrateGrad[-Curl[Strain]];

omega =Table[Sum[Signature[{i, j, k}] theta[[k]],

{k, 3}], {i, 3}, {j, 3}];

Uint = Simplify[IntegrateGrad[Strain + omega]]

Eint= Simplify[(Grad[uint] + Transpose[Grad[uint]])/2]
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The displacement field has the form

2µur = D[(κ − 1)r log r − r], 2µuθ = D(κ + 1)rθ, 2µuz = 0. (5.39)

Of primary importance here is the fact that the tangential displacement component uθ

contains the polar angle θ and therefore is multivalued, unless a branch cut is introduced.
Taking the location of this cut to be the coordinate line θ = 0, we conclude that the
uθ displacement component is discontinuous and undergoes a jump as if the brach cut
were opened to the width −Dπ(κ + 1)r/µ. This displacement field could be created in an
infinite elastic plane by inserting into the branch cut a wedge of material that was infinitely
extended along the z axis, and spanned the (small) angle Dπ(κ + 1)/µ in the (x, y) plane.
This solution will be referred to as the disclination solution.

Stress and displacement fields around a disclination possess singularities at the origin.
They are an example of an important family of singular solutions in elasticity that serve as
‘sources’ of deformation fields and are known as nuclei of strain.

It is useful to consider such solutions in different coordinate frames. For example,
Cartesian coordinates provide a fixed reference frame that is preferable whenever a
distribution of sources is considered in order to construct new solutions.

In Cartesian coordinates associated with the same origin, the Airy stress function for
a disclination assumes the form

A(x, y) = D
2

(x2 + y2) log(x2 + y2).

If instead the disclination is installed at point (ξ, η) then

A(x − ξ, y − η) = D
2

((x − ξ)2 + (y − η)2) log((x − ξ)2 + (y − η)2).

We now consider two disclinations of opposite sign located close to each other at (ξ, η)
and (ξ + d ξ, η) respectively. The physical consequence of forming this disclination dipole
amounts to the creation of a dislocation that corresponds to a uniform layer of material
being inserted into the branch cut so that the displacement component uy undergoes a
jump of magnitude by = −π(κ + 1)Dd ξ/µ as the line y = η, x > ξ is crossed in the direction
of positive y. To form a true dipole in the limit dξ → 0 it is necessary to assume that the
constant D is allowed to vary in the process so that

lim
d ξ→0

Dd ξ = −µby/π(κ + 1).

The displacement discontinuity across the branch cut (in this case by in component uy) is
referred to as the Burgers vector.

The mathematical consequence of forming the disclination dipole amounts to the
differentiation of the Airy stress function with respect to ξ. Discarding the trivial term that
is linear in x − ξ produces a new Airy stress function,

Ay(x − ξ, y − η) = − µby

π(κ + 1)
(x − ξ) log((x − ξ)2 + (y − η)2)).

Now, placing the dislocation at the origin (ξ, η) = (0, 0) and reverting to the polar coordi-
nates, the solution for this dislocation with Burgers vector by can be written as

Ay(r, θ) = − 2µby

π(κ + 1)
r cos θ log r. (5.40)
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The nature of the dipole formed by disclinations of equal and opposite signs located
at (ξ, η) and (ξ, η+ dη) is best understood if the branch cut location is given by x = ξ,
y > η, or θ = π/2. Similar reasoning then shows that the tangential displacement uθ is
now associated with the component ux in Cartesian coordinates, which undergoes a jump
of magnitude bx = π(κ + 1)Ddη/µ as the line x = ξ, y > η is crossed in the direction of
positive x. In other words, the solution for dislocation of this type is given by

Ax(x − ξ, y − η) = µbx

π(κ + 1)
(y − η) log((x − ξ)2 + (y − η)2)).

If the dislocation with Burgers vector bx is located at the origin, then

Ax(r, θ) = 2µbx

π(κ + 1)
r sin θ log r. (5.41)

Integration of the strain fields for the dislocation solution Ay to obtain displacements
using the IntegrateStrain procedure leads to the result

2µur = µby

π

[
−θ sin θ + 1

κ + 1
cos θ − κ − 1

κ + 1
log r cos θ

]
, (5.42)

2µuθ = µby

π

[
−θ cos θ + 1

κ + 1
sin θ − κ − 1

κ + 1
log r sin θ

]
. (5.43)

It can now be readily verified that, in accordance with the mathematical definition of
a dislocation, the displacement component ur is continuous everywhere, whereas the
displacement component uθ undergoes a positive jump of magnitude by if the positive half
of the x-axis is crossed in the direction of increasing polar angle θ (or coordinate y).

The two dislocation solutions (5.40) and (5.41) were obtained by applying the two-
dimensional gradient operator (∂/∂ξ, ∂/∂η, 0) = −(∂/∂x, ∂/∂y, 0) = −∇x,y to the scalar field
Dr2 log r, resulting in a vector field.

Further application of ∇x,y generates a family of other valid solutions, referred to as
dislocation dipoles. This family of solutions possess the properties of a second rank tensor
field.

In an infinite elastic solid, differentiation with respect to ξ, η differs only in sign from
differentiation with respect to x, y. It is therefore sufficient to consider the simple
definition of the Airy stress function for a disclination at the origin. Single and double
application of the gradient operator gives rise to the dislocation and dislocation dipole
families of solutions.

Disclin = D/2(xˆ2 + yˆ2)Log[xˆ2 + yˆ2];

Disloc = -Grad[Disclin]

DislocDipole= -Grad[Disloc]

Dislocation dipole solutions are found to have the forms

Axx = 2D(x2/r2 + log r), Axy = 2Dxy/r2, Ayy = 2D(y2/r2 + log r). (5.44)
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Written in polar coordinates, the term Axy becomes

Axy = D sin 2θ,

and corresponds to the 2D centre of shear (that is, 3D centres of shear, arranged along an
infinite line along the z axis).

Consideration of the difference

Ayy − Axx = 2D(y2 − x2)/r2 = D cos 2θ

shows that it, similarly, corresponds to a plane centre of shear. Indeed, it can be obtained
from Axy by rotation of the coordinate set by the angle −π/4.

Finally, the combination

Axx + Ayy = 4D log r

corresponds to the 2D centre of dilatation at the origin. It produces a planar radial
displacement field with only one nonzero component, ur = −2D/(µr).

Dislocation dipole solutions can be thought of as true ‘nuclei of strain,’ because they
generate displacement, strain, and stress fields that are continuous everywhere, with the
exception of a singularity at the origin. The source installed at the singular point can
be thought of as concentrated inelastic strain, or point eigenstrain. Solutions Axy and
Ayy − Axx correspond to shear, or the deviatoric component of such point eigenstrain,
whereas solution Axx + Ayy corresponds to the dilatational, or isotropic thermal expansion
component. This classification may be helpful in the analysis of inelastic deformation and
residual stresses.

5.8 A WEDGE LOADED BY A CONCENTRATED FORCE APPLIED AT THE APEX

Consider the wedge illustrated in Figure 5.1 made from isotropic homogeneous elastic
material with Young’s modulus EE and Poisson’s ratio nu. Introduce a system of cartesian
coordinates with the z axis associated with the wedge apex, as shown in the figure, and
the x axis along the bisector of the wedge angle. We also introduce the associated system
of cylindrical polar coordinates with the same z-axis. In this frame the body occupies the
angle 2α and is infinitely extended in the direction of the y-axis.

Fx

Fy

y

z

x
Figure 5.1. Elastic wedge.
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Let the wedge be loaded by a concentrated line force FFF = Fxeeex + Fyeeey applied along
the edge, as shown in Figure 5.1. The faces of the body defined by θ = ±α are free from
tractions, and stresses in the wedge vanish at infinite values of r. The faces of the body
defined by z = ±L are subjected to a uniform pressure p.

In the next sections we shall consider separately the cases of loading by the force
components Fxeeex and Fyeeey. The complete solution follows from these two analyses by
superposition.

It is clear from the description that the problem possesses a certain translational
invariance with respect to the z-axis, and the main dependence of the elastic fields is on
the coordinates in the x–y plane. Therefore we shall seek the solution in terms of functions
depending only on these coordinates. In the cylindrical polar coordinate system this means
that the functions will depend on the r–θ coordinates.

Following the analysis of the previous chapter, we shall seek the solution of the plane
problem in terms of a biharmonic function A0(r, θ). The corresponding solution can then
be viewed as an appropriate plane stress solution. Alternatively, it can be corrected using
parabolic dependence on the z coordinate (although the boundary conditions may then
become violated). Finally, a plane strain solution can also be obtained.

Axial force Fx

For the analysis of the problem about axial loading of a wedge (concentrated force at the
apex applied along the wedge bisector) we use a single term from the Michell solution
(5.38):

A1(r, θ) = kFx r θ sin θ.

Note that this form of solution can also be obtained from the Goursat formulation (5.31)
as follows,

φ(z) = 1
2

kFx log(z), χ(z) = −1
2

kFxz log(z), (5.45)

and the biharmonic function

A1(r, θ) = 1
2

kFx Re(z̄ log(z) − z log(z)) = kFx r θ sin θ. (5.46)

The form of the potentials is chosen from the terms in the Michell solution exhibiting
linear behaviour in r. This selection is appropriate on the basis of self-similarity Barber
(2002).

The plane stress solution can now be constructed using this biharmonic function as
the Airy stress function according to the recipe given by equation (5.3). This leads to the
result

σσσ = incBBB = inc (A1(x, y, z)eeez ⊗ eeez) =


2Fxkcos θ

r
0 0

0 0 0

0 0 0

 . (5.47)

Note that the representation of the resulting stress state is very simple in polar coordinates:
the only nonzero stress component present is σrr, which decays in inverse proportion to
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the distance from the apex. The solution satisfies the stress-free boundary conditions at
infinity and also the boundary condition that the wedge sides θ = ±α remain traction-free
(since σθθ = σrθ = 0 everywhere).

The remaining boundary condition concerns the point force Fx acting along the wedge
bisector. This condition can be satisfied as follows. Consider a section through the wedge
made along a circular arc around the wedge apex at an arbitrary radial position r (Fig-
ure 5.1). Force balance requires that, for any r value, the total force along the x-axis be
equal to −Fx. The total force is given by the integral∫ α

−α

σrr cos θrdθ =
∫ α

−α

2Fxkcos2 θdθ = Fxk(2α + sin 2α). (5.48)

The suitable choice of constant k is

k = − 1
(2α + sin 2α)

, (5.49)

so that

σrr = − 2Fx cos θ
(2α + sin 2α)

. (5.50)

The above expression describes the entire family of solutions for apex loading of
wedges of arbitrary opening angle.

The Flamant problem

For the purpose of illustration we consider in more detail the important case of a wedge
of half-angle α = π/2. The problem is that of a concentrated force acting perpendicular to
the straight edge of a semi-infinite elastic plate (the Flamant problem).

Consider contours of equal stress component σrr given by the condition

− 2 cos θ
πr

= − 2
πr0

. (5.51)

The locus of points given by

r = r0 cos θ (5.52)

is a single-parameter (r0) family of circles (Boussinesq circles). All circles touch at the
point of application of the force, where they have the plate edge as the common tangent.
The Boussinesq circles are illustrated in Figure 5.2.

Transverse force Fy

The foregoing analysis can be repeated in an entirely analogous manner for the transverse
force Fy (acting perpendicular to the wedge bisector). The biharmonic function is chosen
as follows:

φ(z) = 1
2

kFy log(z), χ(z) = 1
2

kFyz log(z),

A2(r, θ) = 1
2

kFy Im(z̄ log(z) + z log(z)) = kFy rθ cos θ. (5.53)
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Figure 5.2. Contours of radial stress component for the α = π/2 ‘wedge’ problem (semi-infinite region
x ≥ 0) under the action of concentrated forces (a) Fx and (b) Fy.

The plane stress solution is now given by

σσσ =


−2Fyksin θ

r
0 0

0 0 0

0 0 0

 . (5.54)

The apex boundary condition can again be satisfied by considering a circular arc around
the wedge apex and requiring that the total force along the y-axis be equal to −Fy:∫ α

−α

σrr sin θrd θ =
∫ α

−α

2Fyksin2 θd θ = −Fyk(2α − sin 2α) = −Fy. (5.55)

Hence

k = 1
(2α − sin 2α)

(5.56)

and

σrr = − 2Fy sin θ

(2α − sin 2α)
. (5.57)

Once again, a wedge of half-angle α = π/2 can be considered for illustration. Contours
of equal stress σrr are families of circles with a common tangent at the load application
point.

Load the Tensor2Analysis package and define the cylindrical polar coordinate system.

<< Tensor2Analysis.m

SetCoordinates[Cylindrical[r, t, z]]

Define the Airy stress function A1(r, θ) using the Goursat approach by evaluating the
real and imaginary parts of a complex function.
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RePart[z_] := ComplexExpand[Re[z]] /. Arg[r] -> 0;

ImPart[z_] := ComplexExpand[Im[z]] /. Arg[r] -> 0;

Z = r Exp[I t];

zeta = Log[r] + I t;

phi = k Fx zeta; chi = - k Fx Z zeta;

A1 = RePart[Conjugate[Z] phi + chi]

The stress tensor is now computed by formulating the Beltrami matrix potential BBB and
applying the incompatibility operator inc:

B := {{0, 0, 0}, {0, 0, 0}, {0, 0, A1}}

Stress := Inc[B]

The force applied at the apex is balanced by the total force transmitted across a circular
arc:

FFF +
∫ α

−α

σσσ · eeer r dθ = 0.

The projection of this equation on the x-axis gives the condition for evaluating k.

Forcex = Integrate[Stress[[1,1]] r Cos[t], {t, -a, a}]

ksol = Simplify[Solve[Forcex == -Fx, k]][[1]]

Stress = Simplify[Stress /. ksol]

The results can be displayed in the form of a contour plot by converting the coordinates
back to the cartesian triple (x, y, z) and evaluating the stress component σrr:

myrule = Thread[{Cos[t], Sin[t], r} ->

{x/Sqrt[xˆ2 + yˆ2], y/Sqrt[xˆ2 + yˆ2], Sqrt[xˆ2 + yˆ2]}]

S11 = Stress[[1, 1]] /. a -> Pi/2 /. Fx -> 1

ContourPlot[N[S11 /. myrule], {x, 0, 4}, {y,-2, 2},

PlotPoints -> 50, ContourShading -> False]

5.9 THE KELVIN PROBLEM

The Kelvin problem concerns a point force Fx in an infinite plane. The solution possesses
an apparent similarity to the problem of loading of a wedge apex with a concentrated
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force (and the Flamant problem), because the stresses must vary as 1/r to allow the force
balance condition to be satisfied on a circle of arbitrary radius.

The first step towards constructing the Kelvin solution is to select the case of axial
concentrated force applied at the apex of an elastic wedge with the half-angle α = π, which
conforms to the general Airy stress function form A = k1rθ sin θ.

We next note that the application of the IntegrateStrain procedure to the strain
field arising from this solution leads to the displacement field

2µur = k1

2
[(κ − 1) θ sin θ − cos θ + (κ + 1) log r cos θ] , (5.58)

2µuθ = k1

2
[(κ − 1)θ cos θ − sin θ + (κ + 1) log r sin θ] . (5.59)

It is apparent that the displacement field contains a discontinuity in the displacement
component uθ on the line θ = 0, i.e., the positive half of the x-axis. Furthermore, the
magnitude of this discontinuity is constant along this half-axis and is equal to

2µ[uθ] = k1(κ − 1)π.

We have already encountered a different Airy stress function solution that contained a
constant discontinuity of displacement component uθ along the positive half of the x-axis,
namely, the dislocation by solution (5.40) that has the general Airy stress function form
k2r log r cos θ. It follows that a superposition of these two solutions can be found such that
the displacement is continuous everywhere, and that would correspond to a concentrated
force applied at the origin of an infinitely extended elastic plane.

We therefore postulate an Airy stress function in the form

A(r, θ) = Fx(k1rθ sin θ + k2r log r cos θ). (5.60)

The values of the two unknown constants are found from the following two conditions:

• Enforcement of static equilibrium between the external force Fx applied at the origin
and the distribution of stresses on a circular contour of arbitrary radius centred on the
origin.

• Application of the IntegrateStrain procedure and enforcement of continuity of the
displacement component uθ for θ = 0.

Consideration of static equilibrium reveals that, as expected, the dislocation solution does
not contain a resultant force at the origin, so that the value of the constant k1 can be
deduced directly from the wedge solution (5.49) as

k1 = − Fx

2π
. (5.61)

Adjusting the constants appropriately in the dislocation solution (5.43) and enforcing
displacement continuity by combining it with the expression (5.59) leads to the equation

(κ − 1)k1 + (κ + 1)k2 = 0,

so that

k2 = (κ − 1)
(κ + 1)

Fx

2π
. (5.62)
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Airy stress function form of the Kelvin solution for a concentrated force Fx at the origin
is

A(r, θ) = Fx

2π

[
−r θ sin θ + (κ − 1)

(κ + 1)
r log r cos θ

]
. (5.63)

5.10 THE WILLIAMS EIGENFUNCTION ANALYSIS

The family of solutions associated with the wedge is of special interest in the theory of
elasticity. By considering properties of these solutions, it is possible to make valuable
deductions about the influence of plane geometry (e.g., the wedge angle) on the stress
state in the vicinity of the apex.

Following Williams (1952), we carry out an analysis of the eigenfunctions and eigen-
values for the wedge (plane elastic problem). Wedge geometry −α < θ < α of Fig-
ure 5.1 is once again considered. Solutions must satisfy traction-free boundary conditions
σθθ = σrθ = 0 for θ = ±α. In this section we search for such solutions that have the Airy
stress function in the variable-separable form

A0(r, θ) = rλ+1f (θ). (5.64)

The requirement of biharmonicity of A0(r, θ) leads to

��A0 = rλ−3
[
(λ2 − 1)2f (θ) + 2(λ2 + 1)f ′′(θ) + f (4)(θ)

]
. (5.65)

The solution of this equation for the unknown function A0(r, θ) has the form

A0(r, θ) = rλ+1 [a1 cos(λ + 1)θ + a2 sin(λ + 1)θ + a3 cos(λ − 1)θ + a4 sin(λ − 1)θ] . (5.66)

Now the Beltrami tensor potential can be built and the stress tensor calculated using the
familiar procedure of equation (5.3). The stress components σθθ and σrθ assume the forms

σθθ = rλ−1 [a1 cos(λ + 1)θ + a2 sin(λ + 1)θ + a3 cos(λ − 1)θ + a4 sin(λ − 1)θ] (5.67)

σrθ = rλ−1 [a1 sin(λ + 1)θ − a2 cos(λ + 1)θ + a3 sin(λ − 1)θ − a4 cos(λ − 1)θ] . (5.68)

These must satisfy traction-free boundary conditions on the edges θ = ±α, which lead to
four linear algebraic equations for the four unknown coefficients a1, a2, a3, a4. The system
matrix has the form

(λ + 1) cos(λ + 1)α (λ + 1) sin(λ + 1)α (λ + 1) cos(λ − 1)α (λ + 1) sin(λ − 1)α

(λ + 1) cos(λ + 1)α −(λ + 1) sin(λ + 1)α (λ + 1) cos(λ − 1)α −(λ + 1) sin(λ − 1)α

(λ + 1) sin(λ + 1)α −(λ + 1) cos(λ + 1)α (λ − 1) sin(λ − 1)α −(λ − 1) cos(λ − 1)α

−(λ + 1) sin(λ + 1)α −(λ + 1) cos(λ + 1)α −(λ − 1) sin(λ − 1)α −(λ − 1) cos(λ − 1)α

 .

(5.69)

An eigenfunction of the problem can be found if this system has a nontrivial solution,
which happens only if the determinant of the above matrix vanishes. Evaluation leads to
the equation

(λ + 1)2(λ sin 2α − sin 2λα)(λ sin 2α + sin 2λα) = 0. (5.70)
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Figure 5.3. An illustration of the root-finding procedure for the transcendental eigenvalue equation (see
text).

Apart from the trivial solution λ = −1, the above equation gives rise to two families of
solutions, which can be identified with symmetric and antisymmetric loading of the wedge.

Of particular interest for applications are cases where eigenvalues of λ assume values
below unity, because this leads to the stress fields exhibiting singular behaviour (σ = Crλ−1)
in the vicinity of the wedge apex.

Because the characteristic equation (5.70) is transcendental, solutions must be sought
numerically. The procedure for finding the roots is illustrated in Figure 5.3: intersections
are sought between the curve sin 2λα/ sin 2α (shown for π/2 < α < π) and the lines λ (an-
tisymmetric case, long dash) and −λ (symmetric case, short dash). For the antisymmetric
case a solution λ = 1 is always present, but for wedge angles 2α > 255.4◦ an additional,
more singular solution λ < 1 appears. For the symmetric case singular solutions appear
for reentrant wedges, that is, for 2α > 180◦.

The dependence of singular solution eigenvalues λ on the wedge angle 2α is illustrated
in Figure 5.4.
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Figure 5.4. The dependence of singular solution eigenvalues λ on the wedge angle 2α (upper curve –
antisymmetric solution; lower curve – symmetric solution).
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MATHEMATICA programming

The procedure for Williams wedge analysis is implemented in the Mathematica note-
book with the help of the MultipleListPlot package as follows.

Graphics‘MultipleListPlot‘

Get["Tensor2Analysis.m’’]

SetCoordinates[Cylindrical[r, t, z]]

A0[r_, t_] = rˆ(\[Lambda] + 1) f[t]

eq = Simplify[Biharmonic[A0[r, t]]]

fsol = DSolve[eq == 0, f[t], t][[1]]

f[t_] = f[t] /. fsol; ff = Simplify[f[t]]

A0 = Simplify[ComplexExpand[rˆ(\[Lambda] + 1)ff],

Element[\[Lambda], Reals]]

The general form of the solution for A0(r, θ) can be simplified to the form shown.

A0 = (A1 Cos[(\[Lambda] + 1)t] + A2 Sin[([Lambda] + 1)t] +

A3 Cos[(\[Lambda] - 1)t] +

A4 Sin[(\[Lambda] - 1)t])rˆ(\[Lambda] + 1) ;

Now the stress tensor can be constructed.

(* Build the stress tensor *)

B := {{0, 0, 0}, {0, 0, 0}, {0, 0, A0}}

B // MatrixForm

Stress := Inc[B]

Stress // MatrixForm

Components of the stress tensor can be displayed individually.

Stress[[1]][[1]]

Stress[[1]][[2]]

Stress[[2]][[2]]

The procedure shown can be followed to construct the linear system matrix.

line1 = Coefficient[Stress[[2]][[2]]

/. t -> a, A1,A2,A3,A4]/(rˆ(\[Lambda]-1)[[1]]
line1 = Coefficient[Stress[[2]][[2]]

/. t -> -a, {A1,A2,A3,A4}]/(rˆ(\[Lambda]-1)[[1]]
line1 = Coefficient[Stress[[1]][[2]]

/. t -> a, {A1,A2,A3,A4}]/(rˆ(\[Lambda]-1)[[1]]
line1 = Coefficient[Stress[[1]][[2]]

/. t -> -a, {A1,A2,A3,A4}]/(rˆ(\[Lambda]-1)[[1]]
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mat = {line1, line2, line3, line4};

MatrixForm[mat/\[Lambda]]

Next the determinant can be computed and factored into a form suitable for solving,
with the help of an additional substitution rule.

eq = Simplify[Det[mat/\[Lambda]]]
Factor[eq /. Cos[4 a] -> (1 - 2 (Sin[2 a])ˆ2) /.

Cos[4 a \[Lambda]] -> (1 - 2 (Sin[2 a \[Lambda]])ˆ2)]

The resulting expression shows the form of the characteristic equation as given
in equation (5.70). This equation can be plotted (here for the case 2α = 300◦) as
shown.

(* Characteristic equation *)

aa = 300 Pi/360;

Plot[{\[Lambda] , -\[Lambda], Sin[2 aa \[Lambda]]/Sin[2 aa ]},

{\[Lambda], 0, 1},

PlotStyle -> {Dashing[ {0.15, 0.02} ], Dashing[ {0.02, 0.02} ],

Dashing[ {1, 0} ]} ]

The roots can now be sought using intrinsic Mathematica functions.
The result is the plot shown in Figure 5.4.

asymm = Table[{i, \[Lambda] /. FindRoot[

Sin[2 i Pi \[Lambda]/360] - \[Lambda] Sin[2 i Pi/360] == 0,

[\Lambda], 0.65, 0.25, 1.1}][[1]]}, {i, 220, 360}];

symm1 = Table[{i, \[Lambda] /. FindRoot[

Sin[2 i Pi \[Lambda]/360] + \[Lambda] Sin[2 i Pi/360] == 0,

{\[Lambda], 0.75, 0.25, 1.1}][[1]]}, {i, 180, 320}];

symm2 = Table[{i, \[Lambda] /. FindRoot[

Sin[2 i Pi \[Lambda]/360] + \[Lambda] Sin[2 i Pi/360] == 0,

{\[Lambda], 0.5, 0.25, 1.1}][[1]]}, {i, 320, 360}];

symm = Join[symm1, symm2];

MultipleListPlot[symm, asymm, PlotJoined -> {True, True},

PlotStyle -> {Dashing [ {1, 0} ], Dashing [ {0.15, 0.15} ]}]

The limiting case of the Williams analysis for 2α → 360◦ is a semi-infinite straight cut
in an infinite plane. The asymptotic behaviour of the stress fields with distance from
crack tip that arises in this case is governed by the exponent λ − 1 = −0.5. The angular
variation of stresses is governed by the function f (θ). The antisymmetric and symmetric
solutions represent the characteristic near-tip stress fields in Mode II and Mode I loading,
respectively.
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Figure 5.5. Contour plot of stress component σrθ above an antisymmetrically loaded crack tip at the origin.

The near-tip stress field for a particular case can be plotted as follows. First, define a
rule lrule defining the geometry and the appropriate value of λ = 0.5. Then set one of
the coefficients ai to unity and find the eigenvector (a1, a2, a3, a4) by solving the linear
system. For the antisymmetric case this is implemented as shown.

lrule = {\[Lambda] -> 0.5, a -> Pi};

mymat = mat /. lrule;

mat3 = mymat [[{1, 2, 3}, {1, 2, 3}]]

b = -mymat [[{1, 2, 3}, {4}]]

s = LinearSolve[mat3, b]

The coordinates are now transformed to cartesian, and the shear stress σrθ is plotted.

arule = {A1 -> 0, A2 -> -1., A3 -> 0, A4 -> 1};

backrule =

Thread[{r,t,z}->CoordinatesFromCartesian[{x,y,z}]];

myrule = Thread[{Cos[t], Sin[t], r} ->

{x/Sqrt[xˆ2+yˆ2], y/Sqrt[xˆ2+yˆ2], Sqrt[xˆ2+yˆ2 ]}];

(* Plot shear stress *)

S11 = Stress[[1, 2]]

/. arule /. lrule /. backrule /. myrule

ContourPlot[ N [ S11 ], {x, -1, 1}, {y, 0.001, 1},

PlotPoints -> 50, ContourShading -> False,

AspectRatio -> Automatic]

The symmetric solution can be developed in a similar way by setting a1 = 1, etc. Fig-
ures 5.5 and 5.6 show contour plots for stress components σrθ and σθθ for the antisymmetric
and symmetric cases, respectively.

As one final observation on the nature of the crack tip solution we recast the solution
in cartesian coordinates.
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Figure 5.6. Contour plot of stress component σθθ above a symmetrically loaded crack tip at the
origin.

We use the Mathematica command FieldToCartesian, implementating the procedure
as shown.

StressCart = Simplify[FieldToCartesian[Stress]]

S22 = StressCart[[2, 2]]

/.arule /.lrule /.backrule /.myrule

ContourPlot [N [ S22 ], {x, -1, 1}, {y, 0.001, 1},

PlotPoints -> 250, ContourShading -> True,

AspectRatio -> Automatic,

ColorFunction -> ( Hue[2/3(1 - #)]&),

Contours -> 25, ContourLines -> True]

The contour map of the transverse stress component near the tip of a crack loaded in
the opening mode is shown in Figure 5.7.

Finally, the von Mises stress can be readily computed.
The result is shown in Figure 5.8.

DeviatoricStress =

Simplify[Stress-Tr[Stress]IdentityMatrix[3]/3];

VonMisesStress =

Sqrt[Simplify[

3 Coefficient[Det[DeviatoricStress - w IdentityMatrix[3]],w]]

/. arule /. lrule /. myrule /. backrule];

ContourPlot[N[VonMisesStress], {x, -1, 1}, {y, 0.001, 1},

PlotPoints -> 250, ContourShading -> True,

AspectRatio -> Automatic,

ColorFunction -> (Hue[2/3(1 - #)] &),

Contours -> 25, ContourLines -> True]
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Figure 5.7. Contour plot of stress component σyy above a symmetrically loaded crack tip at the origin.

5.11 THE KIRSCH PROBLEM: STRESS CONCENTRATION AROUND
A CIRCULAR HOLE

This is the name often used to refer to the problem of remote loading of a plate containing
a circular hole. We will consider the particular loading case of remote tension along the
x-axis. The boundary conditions for this problem are given by

σrr = 0, r = a, (5.71)

σrθ = 0, r = a, (5.72)

σxy = 0, r → ∞, (5.73)

σyy = 0, r → ∞, (5.74)

σxx = S, r → ∞. (5.75)

We seek the Airy stress function solution in the form of the following combination of
terms from the Michell solution:

A0(r, θ) = c1r2 + c2r2 cos 2θ + c3 log r + c4 cos 2θ + c5r−2 cos 2θ. (5.76)
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Figure 5.8. Contour plot of von Mises stress above a symmetrically loaded crack tip at the origin.
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We use the algorithmic power of Mathematica to solve the problem by direct application
of the available tools.

The stress solution in polar coordinates is obtained by satisfying each of the bound-
ary conditions. Note that the operator Solve can also deal with overdefined systems,
provided they are consistent, so that a solution can be found.

cvec = Table["c" <> ToString[n], {n, 1, 5}]

fvec = {(r/aˆ2, (r/a)ˆ2 Cos[2t], Log[r/a],

Cos[2t], Cos[2t]/(r/a)ˆ2}

A0[r_, a_, t_] = cvec . fvec

(Stress = Inc[{{0, 0, 0}, {0, 0, 0}, {0, 0, A0 [r, a, t]}}])

// MatrixForm

StressCart = FieldToCartesian[Stress];

(FarStress = Limit[Expand[StressCart], r -> Infinity])

// MatrixForm

(NearStress = Stress /. r -> a) // MatrixForm

eq1 = FarStress[[1, 1]]

eq2 = FarStress[[2, 2]]

eq3 = Coefficient[NearStress[[1, 2]], Sin[2t], 1]

eq4 = Coefficient[NearStress[[1, 1]], Cos[2t], 0]

eq5 = Coefficient[NearStress[[1, 1]], Cos[2t], 1]

csol =

Solve[Thread[ {eq1,eq2,eq3,eq4,eq5} == {1,0,0,0,0}], cvec]

(KirschStress = Stress /. csol[[1]]) // MatrixForm

Now the stresses can be transformed to cartesian coordinates and plotted as contour
maps.

The resulting plot is shown in Figure 5.9.

KirschStressCart = FieldToCartesian[KirschStress];

arule = a -> 1;

backrule =

Thread[{r, t, z} -> CoordinatesFromCartesian[{x, y, z}]];

myrule =

Thread[{Cos[t],Sin[t],Cos[2t],Sin[2t],r} ->

{x/Sqrt[xˆ2+yˆ2], y/Sqrt[xˆ2+yˆ2],

(xˆ2-yˆ2)/(xˆ2+yˆ2), xy/(xˆ2+yˆ2),

Sqrt[xˆ2+yˆ2]

}

];

(* Plot stress *)

S11 = KirschStressCart[[1, 1]]

/. arule /. backrule /. myrule;
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Figure 5.9. Contour plot of the horizontal stress component around a hole in an infinite plate (Kirsch
problem) loaded by horizontal remote tension at infinity.

d = 3;

g1 = ContourPlot[N[S11], {x, -d, d}, {y, -d, d},

PlotPoints -> 50, Contours -> 50, Compiled -> True,

ContourShading -> True, ContourLines -> False,

ColorFunction -> (Hue[2/3(1 - #)] &),

DisplayFunction -> Identity]

g2 = Show[

Graphics[{RGBColor[0, 0, 0], Disk[{0, 0}, 1]},

AspectRatio -> Automatic, Axes -> Automatic],

DisplayFunction -> Identity];

Show[{g1, g2}, DisplayFunction -> $DisplayFunction]

5.12 THE INGLIS PROBLEM: STRESS CONCENTRATION AROUND
AN ELLIPTICAL HOLE

Inglis (1913) obtained the solution for the stress around an elliptical hole that paved
the way for the development of the fundamentals of linear elastic fracture mechanics by
Griffith (1921). The Inglis solution is most conveniently developed in elliptic cylindrical
coordinates. We use this example to demonstrate Mathematica’s powers of manipulat-
ing tensor fields and differential operators in general curvilinear orthogonal coordinate
systems.
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The most convenient way to form the Airy stress function is to use the Goursat con-
struction. For this purpose we introduce local definitions of the real and imaginary parts
of a complex number. We further introduce complex numbers ζ in the (u, v) plane and
Z in the (x, y) plane. Application of ComplexExpand to the expression a cosh ζ shows
that it indeed provides the transformation from ζback to the z plane.

RePart[z_] := ComplexExpand[Re[z]];

ImPart[z_] := ComplexExpand[Im[z]];

zeta = u + I v;

Z = a Cosh[zeta];

ComplexExpand[Z]

Now define two complex functions φ(ζ) and χ(ζ) in the ζplane and introduce a function
� by the Goursat construction.

phi = a(a1 Cosh[zeta] + (b1 + I b2) Sinh[zeta]);

chi = aˆ2((c1 + I c2) zeta + (d1 + I d2) Cosh[2 zeta]

+ (e1 + I e2) Sinh[2 zeta] );

Psi = RePart[Conjugate[Z] phi + chi];

Now group the scaling parameters (coefficients) appearing in � and collect the terms
containing each of the parameters in the expression for this function.

It is apparent that certain combinations of functions of coordinates u and v appear
in the expressions. Using the operator Biharmonic, we can readily verify that all such
combinations are indeed biharmonic. Thus the general form of the Airy stress function
containing nine unknown coefficients is established.

par = {a1, b1, b2, c1, c2, d1, d2, e1, e2};

Collect[Psi, par]

Biharmonic[Cosh[u]Sinh[u]]

Biharmonic[Cos[v]ˆ2 Cosh[u]ˆ2 + Sin[v]ˆ2 Sinh[u]ˆ2]

Now the stress tensor is constructed using the Beltrami form of stress potential and the
application of the operator Inc.

The rule csrule is introduced here to simplify some manipulations that follow.
Next a command AtInf is defined for the purpose of determining the behaviour

of stresses at infinity. The command involves finding the limit of individual expressions
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accompanying each of the parameters, and then reassembling the formula for the stress
component. The application of this command to the stress tensor together with csrule

shows that the stress tensor approaches the limit that only depends on the elliptic
angle v.

Note that the limiting stress tensor at infinity is referred to the local elliptic cylin-
drical coordinate system that makes an angle v with the cartesian system x–y.

Stress = Simplify[Inc[{{0,0,0},{0,0,0},{0,0,Psi}}]];

csrule = {Cos[2 v] -> cv, Sin[2v] -> sv,

Cos[V] -> cv, Sin[V] -> sv};

(* Find stresses at the limit of infinity *)

AtInf[x_] :=

Dot[

Limit[Expand[Coefficient[Simplify[x],par]],u->Infinity],

par]

LimitStress = Map[AtInf, Stress, {2}] /. csrule;

LimitStress // MatrixForm

To define an arbitrary remote stress state, we assume that the principal axes are asso-
ciated with a frame x′–y′. This frame must be rotated by the angle b to return to the
original frame x–y. In the principal axes frame x′–y′ the stress state consists of a stress
of magnitude unity acting in the direction y′ and a stress of magnitude L acting in the
direction x′.

Rotation matrices Rv and Rb are defined, and rotations are applied in the following
order. Rotation by angle b allows the remote stress state to be expressed in the x–y
system. Rotation by angle v allows the stress state to be expressed in the local coordi-
nate system associated with the elliptic cylindrical coordinates. For convenience these
rotations are applied in reverse order: first Rv, then Rb.

Rb = RotationMatrix3D[b, 0, 0];

Rv = RotationMatrix3D[v, 0, 0];

RemoteStress = {{1, 0, 0}, {0, L, 0}, {0, 0, 0}};

StressV =

TrigReduce[Dot[Dot[Transpose[Rv], RemoteStress], Rv]]

/. csrule;

(* csrule above used immediately to hold cv and sv *)

StressVB =

TrigReduce[Dot[Dot[Transpose[Rb], StressV], Rb] ];
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(* Use TrigReduce to simplify terms containing b *)

StressVB // MatrixForm

We are now ready to compare the remote stress state computed using the Airy stress
function with the remote stress state prescribed by the principal stresses of unity and L

and the angle b. Expression S11 provides for such a comparison.
The command EqMake is introduced to generate linear equations for the unknown

parameters from the requirement that an expression such as S11 must be equal to zero.
The application of this command to S11 produces three independent equations denoted
by eq123.

S11 = Collect[Take[Flatten[

LimitStress - StressVB

], 1], {cv, sv}]

EqMake[x_] :=

Map[ # == 0 &,

Drop[ Flatten[CoefficientList[x,{cv,sv}]],-1]]

eq123 = EqMake[S11]

The boundary of the elliptical hole is defined by a particular value of coordinate u = u0.
Expecting u appearing in the stress expression to be replaced with u0, further equations
are obtained by requiring that normal (eq456) and shear (eq789) tractions vanish on
the hole boundary.

A solution for the unknown parameters is obtained by taking the Union of
nine equations and using Solve to discover that a unique solution exisits for all
parameters.

The rule srule ensures that the parameters are expressed in terms of the hole edge
coordinate u0. This completes the solution of the Inglis problem in Mathematica.

eq456 = EqMake[ Numerator[Stress[[1, 1]]] /. csrule ]

eq789 = EqMake[ Numerator[ Stress[[1, 2]] ] /. csrule ]

soln = Solve[ Union[ eq123 , eq456, eq789] , par];

srule = Simplify[soln] /. u -> u0

To illustrate the application of the solution obtained in this way, we select particular
numerical values of problem parameters, as shown by the rule nrule. The parameter
edge gives the numerical value of coordinate u0 on the edge of the hole. Selecting the
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Figure 5.10. Contour plot of the vertical stress component around a horizontal crack in an infinite plate
loaded by vertical remote tension at infinity; a particular case of the Inglis solution.

value of 0.01 for this parameter, together with a = 1, ensures that a slender elliptical
hole of half-length unity along the x-axis is considered.

Solution for stress in the elliptic cylindrical system is found by the application
of srule and nrule. The rotation matrix R is found using RotateFromCartesian[]

command. It is then used to perform the rotation of the stress matrix in the opposite
sense, that is, back from elliptic cylindrical coordinates to cartesian.

After algebraic substitutions described by rule uv2xy, the cartesian stress compo-
nent σ22 is found.

edge = 0.01;

nrule = {a -> 1, u0 -> edge, L -> 0, b -> 0}

Str = Stress /. (srule /. nrule)[[1]];

R = RotateFromCartesian[];

uv2xy = {u -> N[Re[ArcCosh[(x +I y)/a]] /. a -> 1],

v -> N[Im[ArcCosh[(x + I y)/a]] /. a -> 1]}

Scart = Dot[R, Dot[Str, Transpose[R]]];

S22 = RePart[Simplify[Scart[[2, 2]]]] /. uv2xy

The contours of the vertical stress component σ22 around a very slender elliptical hole
are plotted in Figure 5.10. This is the picture of stress intensification by a crack that is
familiar from fracture mechanics textbooks.
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ContourPlot[N[S22], {x, -2, 2}, {y, -2, 2},

PlotPoints -> 200, ColorFunction -> (Hue[0.42#] &),

Contours -> 20, ContourLines -> True]

SUMMARY

Analyses presented in this chapter introduced some important solutions of plane elastic
problems.

The solution for a point load applied at the apex of an elastic wedge is an example of
a fundamental singular solution in elasticity. Distributions of point loads applied over the
edge of a plate can be used to develop simple of elastic contacts.

Stress concentration at holes was considered for circular (Kirsch problem) and ellip-
tical (Inglis problem) hole geometries.

Fundamental eigenfunction solutions for elastic wedges introduced the important
concept of stress intensification at crack tips and wedge apices.

EXERCISES

1. Displacement field around a disclination

Demonstrate that the Airy stress function of the form

A(r, θ) = Dr2 log r

corresponds to a disclination, that is, the stress and strain fields that arise if a wedge of
material is inserted along the positive half of the x-axis.

A set of Mathematica tools can be used:

• Stress tensor evaluation from a given Airy stress function:

AiryStress[Airy_]:=Inc[ {{0,0,0},{0,0,0},{0,0,Airy}}]

• Fourth rank isotropic compliance tensor in terms of the Kolosov constant κ, denoted
K:

IC=IsotropicComplianceK[K]

(For convenience this module assumes that µ = 1/2 if the shear modulus is not given
explicitly.)

• The application of IntegrateStrain generally leads to the appearance of rigid rota-
tion and translation terms. These can be excluded by the application of the following
rule:

rulefun=Rule[#1,#2]& ;

norigid=Thread[

rulefun[Flatten[{Table[R[i], {i,3}],Table[T[i], {i,3}]}],Table[0,

{i,6}]]].

Obtain the stress tensor by applying AiryStress[ ] to the chosen A(r, θ),

SIG=AiryStress[D rˆ2 Log[r]].
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a Figure 5.11. Cylindrical roller loaded by diametrically opposed con-
centrated forces.

Obtain the strain tensor by performing double convolution (double dot product) between
the compliance tensor and the stress tensor,

DDot[T4_, t2_] := GTr[GDot[T4, t2, 1, 1], 1, 4]

EPS=DDot[IsotropicComplianceK[K], SIG].

Checking the compatibility of the strain tensor by applying operator Inc reveals that it
is, in fact, incompatible. However, forcing the out-of-plane strain EPS[[3,3]] to be zero
ensures compatibility.

Applying the IntegrateStrain procedure and excluding rigid body translation and
rotation terms leads to the result of equation (5.39).

Hint: See notebook C05 disclination displacements.nb.

2. Derivation of the dislocation and dislocation dipole solutions from the disclination
solution

Consider the Airy stress function expression for a disclination located at point (ξ, η) in
cartesian coordinates,

A(x − ξ, y − η) = 1
2

((x − ξ)2 + (y − η)2) log((x − ξ)2 + (y − η)2).

Solutions for dislocations and dislocation dipoles can be obtained by differentiation with
respect to the source position variables ξ and η. Note that trivial Airy stress function terms
(constant and linear in cartesian coordinates) ought to be discarded.

Hint: See notebook C05 disclination family.nb.

3. Kelvin solution

Obtain the Kelvin solution for a concentrated force applied at the origin of an infinite
elastic plane by linear combination of two solutions: an axial force applied at the apex of a
2π wedge, and a dislocation. Determine the unknown coefficients from the conditions of
static equilibrium and displacement continuity. For the latter, obtain displacements due to
Airy stress fuction terms for the wedge apex force and dislocation usingIntegrateStrain.

Hint: See notebook C05 kelvin displacements.nb.

4. Diametrical compression of a cylinder by equal and opposite concentrated forces

Consider a cylindrical roller of radius a subjected to two diametrically opposing forces P
per unit length (Figure 5.11). The deformation arising within the roller can be represented
by the superposition of several terms. Initially consider the superposition of the following
two terms:

• the Airy stress function for the Flamant problem for concentrated force P applied in
the positive x direction at point (−a, 0);
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Figure 5.12. Surface loading of a cylinder by two self-equilibrated force
couples.

• the Airy stress function for the Flamant problem for concentrated force P applied in
the negative x direction at point (a, 0).

Use Mathematica tools to compute the stress field resulting from the superposition
of these two solution in cartesian coordinates. Hence compute the stress state at the
circumference of the cylinder.

What is the nature of the stress state? What Airy stress function term would give rise
to this kind of stress state?

Hence identify the third Airy stress function term that must be superimposed to
render the entire circumference of the cylinder traction-free.

Hint: See notebook C05 nutcracker.nb.

5. Surface loading of a cylinder by two equilibrated force couples

Consider a cylindrical roller of radius a subjected to the loading due to two force couples,
as illustrated in Figure 5.12. It is convenient to assume P = 1.

The deformation arising within the roller can be represented by the superposition
of four Airy stress function terms representing the boundary loading of a half-plane by
a tangential concentrated force acting in appropriate directions and placed at positions
(a, 0), (0, a), (−a, 0), and (0,−a).

Using Mathematica tools, the resultant stress field may be readily computed and
evaluated at the circumference in cylindrical coordinates associated with the roller axis.

What is the nature of the stress state? What are the unequilibrated surface tractions?
Consider the corrective Airy stress function term A(r, θ) = −2Paθ/π and demonstrate

that its application renders the cylinder surface traction-free.
Hint: See notebook C05 fourforces.nb.

6. Concentrated and distributed loading at the surface of a half-plane

Consider the following Airy stress function:

A(x, y, ξ) = 1
2π

[(x − ξ)2 + y2) arctan(y/(x − ξ)].

Show that the derivative of this function with respect to parameter ξ leads to the Flamant
solution.

Hence show that the solution for boundary loading of a half-plane surface by uniformly
distributed normal pressure on the segment −a < x < a is given by the Airy stress function

A(x, y, a) − A(x, y,−a).
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Figure 5.13. Stress distribution in a half-plane loaded by surface pressure on the segment −1 < x/a < 1.

Compute a contour plot of the stress component σyy in the region −2a < x < 2a, 0 < y <

4a (Figure 5.13). Discuss the steps that need to be taken to develop a boundary element
formulation for frictionless contact problems on this basis.

Hint: See notebook C05 pressure.nb.

7. Curved beam under shearing force at one end (Barber, 2002)

Consider a curved beam of finite thickness a < r < b subjected to bending by a shearing
force F applied at one end, with the other end built in (Figure 5.14). Seek an approximate
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Figure 5.14. Curved beam under end shear loading.
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elastic solution in the form of the Airy stress function in cylindrical polar coordinates:

A(r, θ) = (Ar3 + B/r + Cr log r) sin θ + Drθ cos θ.

The unknown constants A,B,C,D must be found by satisfying the traction-free boundary
conditions at r = a,b and enforcing force and moment resultant conditions at θ = 0:∫ b

a
σθθdr =

∫ b

a
σθθr dr = 0,

∫ b

a
σrθdr = −F.

Using Mathematica, construct and solve the system of linear equations. Hence determine
the stress distribution in the curved beam, and produce a contour plot of the stress
component σrr shown in Figure 5.14.
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OUTLINE

In this chapter we consider the application of the methods of displacement potential and
demonstrate the implementation of these methods in Mathematica.

The fundamental expression for the Papkovich–Neuber representation of the elastic
displacement fields is introduced first. Papkovich representations of the simple strain
states are next considered, followed by the fundamental singular solutions for the centres
of dilatation and rotation and the Kelvin solution for the concentrated force in an infinite
solid. From the Kelvin solution the momentless force doublet and the force doublet with
moment are derived by differentiation. The combination of three mutually perpendicular
momentless force doublets is considered and is shown to be equivalent to the centre
of dilatation. This example is used to demonstrate the nonuniqueness of the Papkovich
description of elastic solutions. The combination of the centre of dilatation with a force
doublet is also shown to correspond to a point eigenstrain solution. The point shear
eigenstrain is compared with the combination of two force doublets.

Boussinesq and Cerruti solutions for the concentrated force applied at the boundary
of a semi-infinite elastic solid are presented next. Solutions for concentrated forces applied
at the vertex of an infinite cone are derived using the same principles from superpositions
of known solutions for concentrated forces and lines of centres of rotation and dilatation.
The formulation of the elastic problem in spherical coordinates is treated using spherical
harmonics.

The Galerkin vector, and Love’s strain function as its particular case, are introduced
next. Their relationship with the Papkovich potentials is established, thus allowing any
results available in the form of Galerkin vector or Love strain function to be reexamined
in terms of the Papkovich potentials using the methods developed here.

At the beginning of executing each problem in Mathematica the necessary packages
must be loaded containing definitions of operators.

<< Tensor2Analysis.m

<< Displacement.m

Package Displacement.m contains standard definitions of strains in terms of displace-
ments and of stresses in terms of strains. The latter requires the definition of the stiffness
tensor for isotropic material, which is also provided. For simplicity and conciseness we

157
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assume the value of Young’s modulus to be unity, E = 1, but the solutions for stresses
can be multiplied by this factor to obtain correct dimensions.

IsotropicStiffness[nu_] :=

Array[ nu / (1 + nu)/(1 - 2 nu )

KroneckerDelta[#1, #2] KroneckerDelta[#3, #4]

+ 1/ (1 + nu)/2(

KroneckerDelta[#1, #3] KroneckerDelta[#2, #4] +

KroneckerDelta[#1, #4]KroneckerDelta[#2, #3]) &, {3,3,3,3}]

Strain[u_] := (Grad[u] + Transpose[Grad[u]])/2

Stress[eps_] := DDot[ IsotropicStiffness[nu] , eps ]

6.1 PAPKOVICH–NEUBER POTENTIALS

The Navier equation of elastostatics can be written in the form

�uuu + 1
1 − 2ν

grad div uuu + 2(1 + ν)
E

bbb = 0, (6.1)

where bbb is the body force.
We note the following vector identity:

�aaa = grad div aaa − curl curl aaa. (6.2)

To find a representation of an arbitrary vector uuu that vanishes at infinity, assume that

uuu = �aaa,

and hence

uuu = grad div aaa − curl curl aaa = uuuI + uuuS, (6.3)

where uuuI = grad div aaa is irrotational, because

curl uuuI = curl grad div aaa = 000,

and uuuS = −curl curl aaa is solenoidal, because

div uuuS = −div curl curl aaa = 0.

The above statement is the Helmholtz theorem about decomposition of a vector into
solenoidal and irrotational parts. Applied to the vector (uuu − uuu0), this theorem leads to

uuu − uuu0 = uuuI + uuuS, (6.4)

where vector uuu0 is chosen as the particular solution satisfying the equation

�uuu0 + 1
1 − 2ν

grad div uuu0 = −2(1 + ν)
E

bbb, (6.5)
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and for vectors uuuS and uuuI the equation becomes

2(1 − ν)�(uuuI + uuuS) + grad div uuuI = 0. (6.6)

The vector identity (6.2) is next applied to each of the vectors uuuI and uuuS in the above
equation to obtain

2(1 − ν) grad div uuuI = 0, (6.7)

curl curl uuuS = 000. (6.8)

Substitution of these results back into equation (6.2) together with definition of uuuI and uuuS

shows that both these vectors are harmonic, �uuuI = 0, �uuuS = 0.
The irrotational vector can be expressed as a gradient of a potential function,

uuuI = grad χ, (6.9)

whereas the solenoidal part can be thought to be an arbitrary harmonic vector,

uuuS = ψψψ, �ψψψ = 0, and (6.10)

uuu = uuu0 +ψψψ + gradχ. (6.11)

Substitution of this expression into the Navier equation after simplification leads to the
following relationship between vector ψψψ and scalar χ:

2(1 − ν)�χ + div ψψψ = 0. (6.12)

In the Papkovich–Neuber formulation the relationship is taken in the form

χ = − 1
1 − 4ν

(rrr ·ψψψ + φ) , (6.13)

where rrr is the position vector and φ is an arbitrary harmonic function.
This is indeed a solution of equation (6.12), because for the harmonic vector ψψψ

� (rrr ·ψψψ) = 2 div ψψψ. (6.14)

The Papkovich–Neuber representation for the displacement field is written in the form

uuu = uuu0 +ψψψ − 1
(1 − 4ν)

grad (rrr ·ψψψ + φ) , (6.15)

where uuu0 is the displacement field corresponding to the body force bbb. The remaining terms
depend on the harmonic vector potentialψψψ and harmonic scalar potential φ and represent
the elastic displacement field in the absence of body forces.

Now that the Papkovich–Neuber form of the elastic solution has been derived on the
basis of the Helmholtz decomposition, an important point needs to be made regarding the
properties of the potentials. Although the vector potentialψψψ was assumed to be solenoidal
(divψψψ = 0) in the derivation, this requirement can now be relieved. Indeed, let ψψψ be an
arbitrary harmonic vector potential and φ an arbitrary harmonic scalar potential. Then
equation (6.12), which is the equivalent form of the Navier equation, is automatically
satisfied by construction. However, it is no longer possible to assert that uuuS = ψψψ ; that
is, vector potential ψψψ can no longer be thought to represent the solenoidal part of the
Helmholtz decomposition.
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Furthermore, a given displacement field uuu admits more than one representation in
terms of the Papkovich potentials ψψψ and φ, as will be demonstrated below.

Uniform deformation and stress states

We begin consideration with the simple deformation and stress states that correspond to
pure uniaxial strain or stress and to pure shear.

Uniform uniaxial strain state is described as follows:

Consider the following Papkovich potentials in cartesian coordinates: ψψψ = Cxeeez and
φ = 0. The corresponding strain tensor is readily computed and found to correspond to
uniaxial strain along the z-axis.

SetCoordinates[Cartesian[x, y, z]]

pos = {x, y, z}

psi = C z {0,0,1};

phi = 0;

u = Simplify[psi - 1/(4(1-nu)) Grad[Dot[pos, psi]+phi]]

eps=Strain[u]

sig=Stress[eps]

Uniform uniaxial stress state is described next.

In order to establish the Papkovich description of uniaxial stress state, consider a super-
position of three components of the vector potential, as follows: ψ = Czeeez + Byeeey +
Bxeeex and φ = 0. We compute the strain and stress tensor and require that the transverse
stress components σyy and σxx vanish and the axial stress component σzz = σ0, so that
both constants B and C are determined in terms of σ0.

SetCoordinates[Cartesian[x, y, z]]

pos = {x, y, z}

psi = C z {0,0,1} + B y {0,1,0} + B x {1,0,0};

phi = 0;

u = Simplify[psi - 1/(4(1-nu)) Grad[Dot[pos, psi]+phi]]

eps = Strain[u]

sig = Simplify[Stress[eps]]

solB = Solve[sig[[2, 2]] == 0, B][[1, 1]]

sigg = Simplify[sig /. solB]

Solve[sigg[[1, 1]] == Sig0, {C}][[1, 1]]
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Uniform pure shear deformation is described next:

To construct the Papkovich solution corresponding to the state of pure shear, a differ-
ent approach is employed. Considering a particular vector function aaa and performing
Helmholtz decomposition of the displacement field uuu = �aaa into irrotational part uuui and
solenoidal part uuus, it is found that uuui = 000. We therefore setψψψ = uuus and select φ = −rrr ·ψψψ ,
noting that this results in �φ = 0. Therefore the Papkovich expression for the dis-
placement gives uuu = ψψψ = yeeex + xeeey, that is, the dispacement field for pure shear. This is
confirmed by computing the strain and stress tensors.

SetCoordinates[Cartesian[x, y, z]]

pos={x,y,z}

a = {yˆ3/6, xˆ3/6, 0}

ui = Grad[Div[a]]

us = -Curl[Curl[a]]

psi = - Curl[Curl[a]]

phi = -pos.psi

u = psi - 1/(4(1 - nu))Grad[pos.psi + phi]

eps = Strain[u]

sig = Stress[eps]

Concentrated force in infinite space – the Kelvin solution

Probably the most important fundamental singular solution in the theory of elasticity
corresponds to the concentrated force at the origin within an infinitely extended elastic
isotropic material and is due to Kelvin. The Papkovich–Neuber potentials for the con-
centrated force applied at the origin and given by the vector PPP in cartesian coordinates
are

ψψψ = PPP
A
R
, φ = 0,

where R =
√

x2 + y2 + z2 denotes the distance from the origin.

The concentrated force vectorPPP is specified by its cartesian components Px,Py,Pz. How-
ever, because the problem is going to be solved in spherical coordinates, the Papkovich
potentialψψψ must be defined as a vector field in spherical coordinates. The transformation
of a vector field from cartesian to polar coordinates is a standard operation performed
using the command FieldFromCartesian.

P = {Px, Py, Pz};

SetCoordinates[Spherical[R, p, t]]

pos = {R, 0, 0}
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psi = FieldFromCartesian[P] A/R

phi = 0;

The Papkovich–Neuber potentials introduced in this way are harmonic, as can easily
be verified. The corresponding deformation and stress state is determined as follows.

The dispacement field is computed according to the Papkovich–Neuber definition.

u = Simplify[psi-1/(4(1-nu))Grad[Dot[pos,psi]+phi]]

Following the definition of strain and stress, the divergence-free property of the stress
field is confirmed by application of the Div operator.

eps = Strain[u]

sig = Simplify[Stress[eps]]

Simplify[Div[sig]]

Force equilibrium for any spherical volume centred around the origin is now enforced.
The traction vector on this surface is determined by the dot product between the stress
tensor and the normal. Resultant force determination requires integration of traction
as a field referred to the fixed cartesian system, taking account of surface element area
(R2 sinϕ), found as the product of scale factors corresponding to coordinates ϕ → p and
ϑ → t. The unknown constant A is now determined by requiring the resultant force to
be equal and opposite to PPP.

eR = {1, 0, 0};

traction = Dot[sig, eR]

ScaleFactors[]

resforce = Simplify[Integrate[

FieldToCartesian[traction] Rˆ2 Sin[p],

{p, 0, Pi}, {t, 0, 2 Pi}]]

solA = Simplify[Solve[resforce == -P, A][[1, 1]]]

The final displacement solution is obtained by back substitution of the constant A.

usol = u /. solA

Simplify[usol]
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The displacement field can now be transformed back to the cartesian system.

FieldToCartesian[usol] /.

Thread[{R,p,t}->CoordinatesFromCartesian[{x,y,z}]]

A sequence of simplification operations is required to obtain the clear final form of
the solution. In particular, the derivation involves the use of the exponential form of
trigonometric functions.

TrigToExp[%];

Simplify[%];

ComplexExpand[%];

PowerExpand[%];

Simplify[%]

The solution for displacements in the spherical system of coordinates can be written
as follows:

uuu = (1 + ν)
8π(1 − ν)E

[
(3 − 4ν)

PPP
R

+ (RRR · PPP)RRR
R3

]
. (6.16)

Alternatively, using the vector eeeR = RRR/R, the above equation can be rewritten as

uuu = (1 + ν)
8π(1 − ν)E

1
R

[(3 − 4ν)PPP + (eeeR ⊗ eeeR) · PPP] . (6.17)

We recall here that (eeeR · PPP)eeeR = (eeeR ⊗ eeeR) · PPP.
Let now a distribution of forces PPP(ξξξ) be considered within some region �. The form

of equation (6.16) remains unchanged if the point of application of the concentrated force
is moved away from the origin, provided that the vector R′R′R′ is replaced with the vector R′R′R′

computed with respect to the new position of the force, ξξξ; that is, R′R′R′ = RRR − ξξξ. Therefore,
the displacement resulting from a force distribution over � can be obtained from equation
(6.16) by superposition in the form

uuu = (1 + ν)
8π(1 − ν)E

∫
�

[
(3 − 4ν)

PPP(ξξξ)
R

+ (RRR · PPP(ξξξ))RRR
R3

]
dξξξ. (6.18)

This is the original Kelvin solution of 1848 that gives a particular integral of the Navier
equation.

Momentless force dipoles

A number of further singular solutions can be obtained from the Kelvin solution by
superposition, differentiation, and integration. In this section we are concerned with pairs
of concentrated forces that are equal in magnitude and opposite in sign and separated by
an infinitesimal distance, that is, force dipoles.
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First consider the particular case of a concentrated force PPP = Pzeeez with the Papkovich–
Neuber representation in cartesian coordinates

ψψψ = 1 + ν

2π
Pz

R
eeez, φ = 0. (6.19)

We first obtain the solution for a force dipole without moment by considering two opposite
concentrated forces of equal magnitude separated by a small distance az along the line of
their action. We follow a limiting process whereby the distance az is allowed to diminish
while Pz increases proportionately, so that the dipole strength D given by the product
Dzz = Pzaz remains constant. The process is analogous to the definition of a derivative,
and therefore the corresponding form of the Papkovich potentials can be obtained by
differentiation of the above expression along the direction of the segment az, that is, with
respect to the z coordinate. This results in

ψψψ [zz] = −1 + ν

2π
zDzz

R3
eeez, φ = 0. (6.20)

Similar expressions can be obtained for the momentless force dipole along the x coordinate,

ψψψ [xx] = −1 + ν

2π
x Dxx

R3
eeex, φ = 0,

and for the momentless force dipole along the y coordinate,

ψψψ [yy] = −1 + ν

2π
y Dyy

R3
eeey, φ = 0.

It is now possible to consider a special case of superposition of three mutually orthog-
onal momentless force dipoles of identical strength D = Dxx = Dyy = Dzz, that is,

ψψψ = ψψψ [xx] +ψψψ [yy] +ψψψ [zz] = −1 + ν

2π
D
R3

(xeeex + yeeey + zeeez) = −1 + ν

2π
D
R2

eeeR, φ = 0.

The resulting combination of Papkovich potentials is

ψψψ = −1 + ν

2π
D
R2

eeeR, φ = 0. (6.21)

It is interesting to note here that the above potentials give rise to a displacement field that
is identical to the field arising from the potentials

ψψψ = 000, φ = A
R
, (6.22)

where A is another constant. This case demonstrates that the Papkovich–Neuber descrip-
tion of elastic fields is nonunique: the same elastic solution can be represented by two
entirely different sets of potentials.

The classical combination of potentials introduced above, known as the centre of
dilatation, is considered in the next section.

Centre of dilatation in the infinite space – the Lamé solution

The Papkovich–Neuber potential representation considered in this section corresponds
to the singular solution of elasticity first studied by Lamé. Assume that the displacement
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x

y

z

Figure 6.1. An illustration of a centre of dilatation.

field is simply given by the gradient of a scalar harmonic function, φ, or, in the form of
equation (6.15)

φ = A
R
, ψψψ = 000.

To find the displacement, strain, and stress fields, the problem is solved in spherical
coordinates. Vector potential ψψψ is defined as the zero vector, and scalar potential as
φ = A/R.

SetCoordinates[Spherical[R, p, t]]

pos = {R, 0, 0}

psi = {0,0,0};

phi = A/R;

The displacement field is constructed using equation (6.15), and the strain field is found.
The volumetric strain can be computed as the trace of the strain tensor. It is interesting
to note that it vanishes everywhere away from the origin.

u = Simplify[psi - 1/(4(1-nu)) Grad[Dot[pos, psi]+phi]]

eps = Strain[u]

veps = Tr[eps]

The stress tensor is found from strains and is diagonal everywhere in this coordinate
system. Stress components σσσϑϑ and σσσϕϕ have half the magnitude of the radial stress
component, σσσRR, and are opposite to it in sign. It is readily verified that the stress field
is divergence-free.

sig = Simplify[Stress[eps]]

(sig) // MatrixForm

Simplify[Div[sig]]
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To introduce a measure of intensity of the dilatation centre, we consider the traction
on a spherical surface of radius R. The traction is purely radial and uniform, so that the
solid lying outside the sphere of radius R is under uniform internal pressure. Denote by
nnn the outward unit normal to the elastic solid, nnn = −eeeR. Equating the traction to −p nnn
at radius R = a leads to the result A = 2pa3(1 − ν2).

eR = {1, 0, 0};

traction = Simplify[ Dot[sig, eR] ]

Solve[(traction /. R -> a) == {-p, 0, 0}, A]

The singular solution for the centre of dilatation at the origin can be obtained by
considering a sequence of problems with pressure loading p applied within spherical
cavities of diminishing radius a, so that pa3 = const. The limit of the solutions is the
dilatation centre with the strength A = 2pa3(1 − ν2). The displacement field is given by

uuu = A
4(1 − ν)r2

eeeR (6.23)

in the spherical coordinates.

Force dipoles with moment

We again begin the analysis with the particular case of concentrated force PPP = Pyeeey with
the Papkovich–Neuber representation in cartesian coordinates

ψψψ = 1 + ν

2π
Py

R
eeey, φ = 0. (6.24)

We now obtain the solution for a force dipole with moment by considering two opposite
concentrated forces of equal magnitude separated by a small distance ax perpendicular to
the line of their action. We follow a limiting process whereby the distance ax is allowed
to diminish while Py increases proportionately, so that the dipole strength D given by
the product Dxy = axPy remains constant. The process is analogous to the definition of
a derivative, and therefore the corresponding form of the Papkovich potentials can be
obtained by differentiation of the above expression along the direction of the segment ax,
that is, with respect to the x coordinate. This results in

ψψψ [xy] = −1 + ν

2π
Dxy x

R3
eeey, φ = 0. (6.25)

A similar expression can be obtained for the force dipole with moment denoted by Dyx:

ψψψ [yx] = −1 + ν

2π
Dyx y

R3
eeex, φ = 0.

The general expression for the Papkovich–Neuber potentials for the force dipole with
moment Dij is

ψψψ [ij ] = −1 + ν

2π
Dij xi

R3
eeej , φ = 0.
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Centre of rotation in an infinite elastic solid

The moments associated with the force dipoles introduced in the previous section give rise
to rotational displacements concentrated at the origin. Consider two force doublets with
moment of equal intensity D = Dxy = Dyx that form a superposition

ψψψ = ψψψ [xy] −ψψψ [yx] = −1 + ν

2π
D
R3

(xeeey − yeeex), φ = 0. (6.26)

Let us demonstrate that this deformation state corresponds to the centre of rotation arising
from a concentrated moment M0 at the origin.

Solution begins with defining the Papkovich potentials in cartesian coordinates accord-
ing to the above formulas and verifying their harmonicity using the Laplacian operator.
The displacement field is then computed using the standard formula.

SetCoordinates[Cartesian[x, y, z]]

pos = {x, y, z};

R = Sqrt[pos.pos];

psi = D{-y, x, 0} 1/Rˆ3

phi = 0;

Simplify[Laplacian[psi]]

u = Simplify[psi - 1/(4(1 - nu)) Grad[pos.psi + phi]]

To obtain a simple representation of the displacement field, transformation into cylin-
drical polar coordinates is performed. For this purpose the command SetCoordinates

is first used, the transformation rule car2cyl is defined, and expressions for potential
and displacement vectors in cylindrical polar coordinates are obtained.

SetCoordinates[Cylindrical[r, t, z]]

car2cyl=Thread[{x,y,z} -> CoordinatesToCartesian[{r,t,z}]]

psicyl = Simplify[FieldFromCartesian[psi] /. car2cyl]

ucyl = Simplify[FieldFromCartesian[u] /. car2cyl]

The displacement field in cylindrical polar coordinates is given by the simple expres-
sion

uuu = D r
(r2 + z2)3/2

eeeθ. (6.27)

The displacement field is solenoidal, the only nonzero component being parallel to the
basis vector eeeθ, with a magnitude that is independent of θ, thus corresponding to torsional
symmetry.
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The strain and stress fields are computed using standard commands.

eps = Strain[ucyl]

sig = Stress[eps]

Nonzero strain components are εrθ and εzθ and give rise to the stresses

σrθ = − 3Dr2

2(1 + ν)(r2 + z2)5/2
, (6.28)

σzθ = − 3Drz
2(1 + ν)(r2 + z2)5/2

. (6.29)

To determine the unknown constant D, the moment balance condition must be
enforced.

The traction on the cylindrical surface is computed as a scalar product of the stress
tensor with the surface normal vector. The resultant is computed by the integration of
moments on elemental areas given by r tθ r dθ dz. Noting that the result is independent of
the cylinder radius, the moment balance condition is enforced by equating the integral
to −M0. Finally, the solution for the constant is found to be D = M0(1 + ν)/(4π), which
can be substituted back into the expressions for displacements and the Papkovich vector
potential ψψψ .

t = sig.{1, 0, 0}

mom = Integrate[t[[2]] rˆ2,

{t,0,2Pi},{z,-Infinity,Infinity}]

solD = Solve[mom0 == -M0, {D}][[1, 1]]

psicyl /. solD

ucyl /. solD

The same solution can be obtained using a slightly different approach by noting from
the start that the vector potential ψψψ can be assumed to represent the solenoidal part of
the displacement vector decomposition, with the irrotational part being equal to zero. The
vector potential may therefore be written in the form

ψψψ = grad
(

1
R

)
× eeez. (6.30)

This definition leads to identical results.
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Strain nuclei in an infinite elastic solid

The term ‘strain nuclei’ is used here to refer to deformation states associated with force
dipoles or strain states concentrated at a point. The elastic fields for these solutions can
be obtained from the force dipole solutions described above.

Consider Papkovich–Neuber potentials for the superposition of two equal magnitude
force dipoles Dxy = Dyx = D, as follows:

ψψψ = 1
2

(ψψψ [xy] +ψψψ [yx]) = −1 + ν

4π
D
R3

(yeeex + xeeey), φ = 0. (6.31)

This is equivalent to a point shear strain.
Solutions for direct strains concentrated at a point can be similarly developed. Their

relationship to the force dipoles is given by a form of Hooke’s law.

Concentrated load normal to the surface of a half space –
The Boussinesq solution

This problem is solved in cylindrical coordinates. The solution is constructed by linear
superposition of known solutions.

SetCoordinates[Cylindrical[r, t, z]]

R = Sqrt[rˆ2 + zˆ2];

pos = {r, 0, z};

The first term is the Kelvin solution with the force vector PPP having only one nonzero
component in the z direction, and strength given by an unknown constant A.

psi = A {0, 0, 1/R}

The second term is the solution for a line of centres of dilatation along the negative z
axis, for which the solution consists of only the scalar potential φ = B log(z + R), where
R = √

r2 + z2, and B is a scaling constant.

phi = B Log[z + R]

The displacement field is constructed using the Papkovich–Neuber formula, and strain
and stress fields are computed using commands defined previously.

u = Simplify[psi - 1/(4(1 - nu))Grad[Dot[pos, psi] + phi]]

eps = Strain[u]

sig = Simplify[Stress[eps]]
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ϕ Figure 6.2. An illustration of spherical surface element in cylin-
drical polar coordinates.

Provided the functions for Papkovich potentials were chosen correctly, the stress field
should be divergence-free. This is verified using the command Div.

Simplify[Div[sig]]

Next the relationship between constants A and B can be found by enforcing traction-
free boundary conditions, σσσ · nnn = 000, on the surface z = 0. This leads to the result B =
A(1 − 2ν).

ez = {0, 0, 1};

surftraction = Simplify[ Dot[sig, ez] /. z -> 0]

solB = Solve[ %[[1]] == 0 , B][[1, 1]]

Next the force equilibrium on a semispherical volume of radius a around the origin is
enforced. This requires first the determination of tractions on the hemispherical surface
of radius a, using ttt = σσσ · eeeR, where eeeR is the radial vector field. Next the resultant force
must be determined by integration. Figure 6.2 illustrates the procedure adopted for
integration. Given that the spherical surface is described in cylindrical coordinates by

z = √
a2 − r2, the element of surface is computed as

ardrdθ√
a2 − r2

.

eR = {r, 0, z} / Sqrt[rˆ2 + zˆ2]

traction = Simplify[ Dot[ sig . eR ] ]

The resultant of internal tractions is computed with respect to the fixed system of
coordinates, and the relationship between B and A is substituted. The result is in-
dependent of the radius a and has only one nonzero component in the z direction:

Rz = − Aπ

2(1 − ν2)
.

Assuming the external force P is applied in the positive z direction, the resultant
internal force must be equal and opposite.



PAB CUFX161-Constantinescu August 13, 2007 17:14

6.1 Papkovich–Neuber potentials 171

The solution is A = −2(1 − ν2)P
π

.

The solution for u is obtained by back substitution, and can be expressed in cartesian
coordinates using the same set of commands given for the Kelvin solution.

resforce = Simplify[

Integrate[

(FieldToCartesian[traction] r a/Sqrt[aˆ2-rˆ2]) /.

z -> Sqrt[ aˆ2 - rˆ2] ,

{r, 0, a}, {t, 0, 2 Pi}]]

resforce = Simplify[resforce /. solB]

solA = Simplify[Solve[resforce == {0, 0, -P}, A][[1, 1]]]

usol = Simplify[ u /. solB /. solA ]

FieldToCartesian[usol] /.

Thread[ {r,t,z}->CoordinatesFromCartesian[{x,y,z}]]

TrigToExp[%];Simplify[%];ComplexExpand[%];PowerExpand[%];

Simplify[%]

The solution for displacements in the cylindrical system of coordinates is

uuu = ureeer + uzeeez = P
2π

(1 + ν)
E

[(
rz
R3

− (1 − 2ν)
R(R + z)

)
eeer +

(
z2

R3
+ 2(1 − ν)

R

)
eeez

]
, (6.32)

where R = √
r2 + z2.

Concentrated load parallel to the surface of a half space – The Cerruti solution

The solution to this problem begins in cartesian coordinates and is constructed by linear
superposition of several known solutions.

SetCoordinates[Cartesian[x, y, z]]

R = Sqrt[xˆ2 + yˆ2 + zˆ2];

pos = {x, y, z};

P = {Px, 0, 0};

The first term is the Kelvin solution, with the force vector PPP having only one nonzero
component in the x direction.

psi1 = {1, 0, 0}/R;

phi1 = 0;
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The second term corresponds to a line of centres of rotation along the negative z-axis.

psi2 = -Simplify[PowerExpand[Curl[Log[R + z]{0, 1, 0}]]];

phi2 = -x/(R + z);

The third term corresponds to a double line of centres of dilatation, also along the
negative z-axis.

psi3 = {0, 0, 0};

phi3 = D[z Log[z + R] - R, x];

The full Papkovich potentials are now assembled out of the three parts, with unknown
coefficients A, B, and C.

psi = A psi1 + B psi2 + C psi3;

phi = A phi1 + B phi2 + C phi3;

The displacement field is constructed using the Papkovich–Neuber formula, and strain
and stress fields are computed using commands defined previously.

u = Simplify[psi - 1/(4(1 - nu))Grad[Dot[pos, psi] + phi]]

eps = Strain[u]

sig = Simplify[Stress[eps]]

The stress field is verified to be divergence-free using the command Div.

Simplify[PowerExpand[Div[sig]]]

Now the surface z = 0 should be cleared of tractions everywhere (with the exception of
a single point of load application at the origin). To this end we define the normal vector
to the surface, eeez, and compute the traction vector using σσσ · eeez. Next the expressions
are found for the constants A and B in terms of constant C by enforcing traction-
free boundary conditions, σσσ · nnn = 000, on the surface z = 0. This leads to the results A =
C/(1 − 2ν), B = −C/2(1 − ν).

ez = {0, 0, 1};

surftraction = Simplify[ Dot[sig, ez] /. z -> 0]

solAB = Solve[ Thread[ surftraction == {0,0,0}]{A,B}][[1]]

To find the relationship between constant C and the applied force Px, the force equilib-
rium on a semispherical volume of radius a around the origin is enforced. This calculation
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must be performed in fixed cartesian coordinates. The traction vector on the hemispher-
ical surface of radius a is found using ttt = σσσ · eeeR, where eeeR is the radial vector field, and
converted using the appropriate command. Next the resultant force is determined by
integration, in a way entirely similar to that used for the Kelvin solution in an earlier
section.

er = {x, y, z} /R

traction = Simplify[ Dot[ (sig /. solAB). er ] ];

traction = Simplify[traction /. Thread[{x,y,z} ->

CoordinatesToCartesian[{a,t,p},Spherical]]]

resforce = PowerExpand[Simplify[

Integrate[traction aˆ2 Sin[t], {p,0,2Pi}, {t,0,Pi/2}]]]

Note that the traction resultant is computed with respect to the fixed system of co-
ordinates, and the dependence of A and B on C is substituted. The result is inde-
pendent of the radius a and has only one nonzero component in the x direction:

Rx = − Cπ

6(1 − 2ν)(1 − ν2)
.

Because the external force Px is applied in the positive x direction, the resultant
internal force must be equal and opposite.

The solution is C = −6(1 − ν2)(1 − 2ν)Px

π
.

The solution for u is obtained by back substitution and can be expressed in cartesian
coordinates using the same set of commands given for the Kelvin solution.

solC = Simplify[Solve[resforce == -P, C][[1, 1]]]

usol = Simplify[ PowerExpand[u /. solAB /. solC ]]

SetCoordinates[Cylindrical[r, t, z]]

FieldFromCartesian[usol] /.

Thread[ {x, y, z} -> CoordinatesToCartesian[{r, t, z}]]

TrigToExp[%];Simplify[%];ComplexExpand[%];PowerExpand[%];

Simplify[%]

The final form of the solution for displacements in the cartesian coordinate system can be
written

uuu = P
2π

(1 + ν)
E

[
1
R

eeex + xRRR
R3

+ (1 − 2ν)
∂

∂x

(
xeeex + yeeey

R + z
+ eeez log(R + z)

)]
, (6.33)

where R = √
r2 + z2.
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Concentrated loads at the tip of an elastic cone

In this section we consider both normal and transverse concentrated loads applied at the
tip of an elastic cone of opening angle α with the axis coincident with the positive half
of the z-axis. The solutions are constructed similarly to the Kelvin solution, for the case
of axially applied load, and similarly to the Cerruti solution, for the case of load applied
transversely to the cone axis. Spherical coordinates are used in both cases to simplify the
satisfaction of the boundary conditions on the surface of the cone.

We first consider axial loading and use the sum of the Kelvin solution and the line of
centres of dilatation along the negative z-axis.

The K̀elvin solution for a force acting in the positive z-direction is written directly in
terms of the Papkovich potentials found previously, with a coefficient A as yet unknown.

SetCoordinates[Spherical[R, p, t]]

pos={R,0,0};

(* Kelvin *)

psi1 = FieldFromCartesian[{0,0,1}] A(1 + nu)/(2 Pi R);

phi1 = 0;

Next the line of centres of dilatation along the negative z-axis is installed, with unknown
intensity B to be determined.

(* Line of centres of dilatation *)

psi2 = {0, 0, 0};

phi2 = B Log[R(1 + Cos[p])];

The Papkovich potentials are next assembled, the solution for the displacement field
found, the strains and stresses computed, and the divergence-free property of the stress
field verified.

psi = psi1 + psi2;

phi = phi1 + phi2;

u = Simplify[psi - 1/(4(1 - nu))Grad[Dot[pos, psi] + phi]]

eps = Strain[u]

sig = Simplify[Stress[eps]]

Simplify[Div[sig]]

Now the traction vector is found on the cone surface, and the unknown constant B[i]
found by requiring that tractions vanish.

traction = sig.{0, 1, 0} /. t -> alpha

solB = Simplify[Solve[Thread[traction == {0,0,0}],{B}][[1,1]]]
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The relationship between constants B and A that has been found at this stage can now
be written in the form B = A(1 + ν)(1 − 2ν)(1 + cosα)/(2π).

Now the resultant of the internal tractions is computed on a spherical cap and balanced
against the externally applied force Pz.

traction = (sig /. solB).{1,0,0}

tracz = Simplify[FieldToCartesian[traction].{0, 0, 1}]

solA = Solve[

Integrate[Rˆ2 Sin[p] tracz,{p,0,alpha},{t,0,2 Pi}] + Pz == 0,

{A}][[1, 1]]

The final solution for coefficients A and B in terms of the applied force Pz has the
form

A = Pz(1 − ν)
(1 − cos3 α)) − (1 − 2ν) cosα(1 − cosα)

,

B = 4Pz(1 − ν2)(1 − 2ν)(1 + cosα)
π(3 + 4ν cosα + cos 2α)(1 − cosα)

.

The complete solution for the displacement, strain, and stress fields is now readily available
through substitution of A and B into the expressions.

A similar procedure is now followed to derive the solution for the concentrated load
applied transversely to the cone axis.

The three terms for Papkovich potentials that appeared in the Cerruti problem deriva-
tion are once again introduced with unknown coefficients in order to develop the solu-
tion for a concentrated load acting in the positive x-direction. Note that it is convenient
to introduce several of the Papkovich potential terms in cartesian coordinates (referred
using names with suffix ‘car’).

SetCoordinates[Cartesian[x,y,z]];

psi2car = -Simplify[PowerExpand[

Curl[Log[z + Sqrt[xˆ2+yˆ2+zˆ2]]{0,1,0}]]];

phi3car = Simplify[

D[z Log[z + Sqrt[xˆ2+yˆ2+zˆ2]]-Sqrt[xˆ2+yˆ2+zˆ2],x]]

The spherical coordinate system is introduced now, and Papkovich potential expressions
for the three solutions in question are written out, or obtained by conversion from
cartesian fields. Rule ruleR is used to effect some additional simplifications.

SetCoordinates[Spherical[R, p, t]]

pos={R,0,0};
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(* Kelvin *)

psi1 = FieldFromCartesian[{1, 0, 0}] /R

phi1 = 0;

(* Line of centres of dilatation *)

psi2 = Simplify[FieldFromCartesian[(psi2car /.

Thread[{x,y,z}->CoordinatesToCartesian[{R,p,t}]] )]]/.ruleR

phi2 = - Cos[t] Sin[p]/(1 + Cos[p])

(* Double line of centres of dilatation *)

psi3 = {0, 0, 0};

phi3 = Simplify[phi3car/.

Thread[{x,y,z}->CoordinatesToCartesian[{R,p,t}]] )]]/.ruleR

The Papkovich potentials are next assembled, the solution for displacement field is
found, strains and stresses are computed, and the divergence-free property of the stress
field is verified.

phi = A phi1 + B phi2 + C phi3;

psi = A psi1 + B psi2 + C psi3;

u = Simplify[psi - 1/(4(1 - nu))Grad[Dot[pos, psi] + phi]]

eps = Strain[u]

sig = Simplify[Stress[eps]]

Simplify[Div[sig]]

Now the traction vector is found on the cone surface and the unknown constants B and
C are found by requiring that tractions vanish.

traction = sig.{0, 1, 0} /. p -> alpha

solBC=Simplify[Solve[Thread[traction=={0,0,0}],{B,C}][[1]]]

The relationship between constants B, C, and A has now been found and can be written
in the form

B = −A(1 − 2ν)(1 + cosα)/(2(1 − ν)),C = 2A(1 − 2ν)(1 + cosα).

Now the resultant of the internal tractions is computed on a spherical cap and balanced
against the externally applied force Px.

traction = (sig /. solBC).{1,0,0}

tracx = Simplify[FieldToCartesian[traction].{1,0,0}]

solA = Solve[

Integrate[Rˆ2 Sin[p] tracx,{p,0,alpha},{t,0,2 Pi}]+Px==0,

{A}][[1, 1]]
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The final solutions for coefficients A, B, and C in terms of the applied force Px have the
form

A = 2Px(1 − ν2)
π(1 + ν cosα)(1 − cosα)2

,

B = −2Px(1 + ν)(1 − 2ν)(1 + cosα)
π(1 + ν cosα)(1 − cosα)3

,

C = 2Px(1 − ν2)(1 − 2ν)(1 + cosα)2

π(1 + ν cosα)(1 − cosα)2
.

The complete solution for the displacement, strain, and stress fields is now read-
ily available through substitution of A, B, and C into the previously derived expres-
sions.

Spherical harmonics

The deformation in axisymmetrically loaded bodies in spherical coordinates R, ϕ, ϑ is fully
described by the Papkovich potentials having the form (Soutas-Little, 1973)

φ(R, ϕ) = −∑n RnBnPn(ζ),

ψR(R, ϕ) = ∑
n Rn+1 [−An(n + 1)Pn(ζ) + CnζPn+1(ζ)] ,

ψϕ(R, ϕ) = −∑n Rn+1 sinϕ [AnP′
n(ζ) + CnPn+1(ζ)] ,

(6.34)

where ζ= cosϕ, Pn(ζ) denotes the Legendre polynomial of the first kind of degree n, and
the prime denotes differentiation.

We begin by developing the tools to demonstrate that both the scalar potential φ and
the vector potential ψψψ = (ψR, ψϕ, 0) are in fact harmonic.

Spherical coordinates are introduced, and CoordinatesToCartesian provides a con-
venient method of checking the coordinate definition. Here we use a convention that
always refers to the azimuthal angle as ϑ, and the elevation is expressed by the angle
ϕ measured from the north pole (Figure 6.2). The Papkovich potential components are
defined according to the above formulae.

SetCoordinates[Spherical[R, p, t]]

CoordinatesToCartesian[{R, p, t}]

pos = {R, 0, 0};

zeta = Cos[p];

psiR = Rˆ(n + 1)(-A[n](n + 1)LegendreP[n, zeta] +

C[n]zeta LegendreP[n + 1, zeta])

psip = -Rˆ(n + 1)Sin[p]

(A[n]D[LegendreP[n,zeta],zeta] + C[n]LegendreP[n+1,zeta])

phin = -B[n]Rˆn LegendreP[n, zeta]
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Legendre polynomials of the first kind obey the recursion relation

nPn(ζ) = (2n − 1)ζPn−1(ζ) − (n − 1)Pn−2(ζ), (6.35)

which also can be written in the form

(n + 1)Pn+1(ζ) = (2n + 1)ζPn(ζ) − nPn−1(ζ). (6.36)

We define a series of simplification rules based on the recursion relation for several
successive values of n.

rul := LegendreP[-2+n,x_]->

((x-2 n x) LegendreP[-1+n,x]+n LegendreP[n,x])/(1-n)

rulP := rul /. n -> n - 1

rulM := rul /. n -> n + 1

It is now possible to apply the laplacian operator to the scalar and vector potentials and
to demonstrate that both vanish.

psi[n_] = {psiR, psip, 0}

phi[n_] = phin

Simplify[Laplacian[psi[n]] /. rulP /. rul /. rulM]

Simplify[Laplacian[phi[n]] /. rul]

We now have access to the series representation of the axially symmetric Papkovich
solution in spherical coordinates.

Define the displacement vector. The particular case of Cn = 0 is considered, for which
the strains and stresses are computed, and it is demonstrated that the stress field is
divergence-free.

u[n_] = Simplify[psi[n]-1/(4(1-nu))Grad[pos.psi[n]+phi[n]]]

eps[n_] = Simplify[Strain[u[n]] /. C[n]->0 ];

sig[n_] = Simplify[Stress[eps]] /. rul;

Simplify[Div[sig[n]] /. rul /. rulP]

The tractions arising from the solution have a zero resultant. The tractions on a spherical
surface are first found as the dot product of the stress tensor with the outward normal
on a spherical surface. The traction vector field is then converted to fixed cartesian
coordinates.

tracR[n_] = Simplify[sig[n].{1, 0, 0}]

tracRcar = Simplify[FieldToCartesian[tracR]]

The tractions must now be integrated appropriately over ϑ and ϕ after multiplying by
the element of surface area given by the product of scale factors for coordinates ϕ and
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ϑ, which amounts to R2 sinϕ. For purposes of analysis it is convenient to perform the
change of variable to ζ= cosϕ, dζ= sinϕdϕ, which leads to the limits of integration
being set at −1 < ζ< 1.

Rez[n_] = Rˆ2 Simplify[

Integrate[

(Simplify[tracRcar/.p->ArcCos[zet]])

,{t,0,2 Pi},{zet,-1,1}

]

]

Mathematica output shows that the ϑ and ϕ components of the resultant Rez[n] eval-
uate explicitly to zero. The z-component, on the other hand, appears in integral form,
containing expressions of the type∫ 1

−1
ζPn(ζ)dζ,

∫ 1

−1
Pn−1(ζ)dζ.

From the orthogonality property of Legendre polynomials it follows immediately that
these integrals evaluate to zero for n > 1, due to the orthogonality of Pn(ζ) and P1(ζ) = ζ,
and Pn−1(ζ) and P0(ζ) = 1. For n = 0 and n = 1 it can be explicitly verified in Mathe-
matica that Rez[0] and Rez[1] evaluate to zero.

Rez[0]

Rez[1]

It has been shown therefore that equations (6.34) with Cn = 0 provide solutions for
spheres loaded by axisymmetric distributions of surface tractions with zero resultants. It
is now possible to consider boundary value problems with either tractions or displace-
ment prescribed on the spherical surface. Assuming these may be expanded into series
of Legendre polynomials, the solution may then be sought in the form of equations
(6.34).

To develop a demonstration of this method we wish to consider the internal stresses
within a gravitating rotating sphere of radius R0. However, in order to tackle this problem
we must first develop the procedure for finding particular solutions to elastic problems
with prescribed body forces.

We shall assume that the body force bbb(xxx) is conservative and can be expressed in terms
of potential � as

bbb = −grad�. (6.37)

We seek a particular solution of the Navier equation

�uuu + 1
1 − 2ν

grad divuuu = 1
G

grad�, (6.38)
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where G = E/2(1 + ν) is the shear modulus. Assuming that this particular solution is
irrotational and can be represented by its potential,

uuu = gradχ,

the Navier equation reduces to

�χ = 1 − 2ν
(1 − ν)G

�. (6.39)

This equation can be readily solved for χ in two cases:

1. If function � depends only on R, then equation (6.39) assumes the form

1
R2

∂

∂R

(
R2 ∂χ

∂R

)
= 1 − 2ν

(1 − ν)G
�(R),

and can be readily integrated.
2. If function � is harmonic, for example,

� = cnRnPn(ζ),

then χ is biharmonic, and can be written as R2 times a harmonic function, that is, in the
form

dnRn+2Pn(ζ).

The relationship between constants is then readily established as

dn = 1 − 2ν
(1 − ν)G

cn

4(2n + 3)
,

so that the displacement field becomes

uuu = 1 − 2ν
(1 − ν)G

cn

4(2n + 3)
Rn+1

[
(n + 2)Pn(ζ)eeeR + dPn(ζ)

dϕ
eeeϕ

]
.

The procedure for solving the problem about a rotating gravitating sphere then con-
sists of the following steps:

• Identify potential functions � for the graviation force and inertial forces due to rota-
tion.

• Solve the Navier equation for this case and obtain the particular solution denoted uuu0.
• Determine the surface tractions due to the solution uuu0 and impose equal and opposite

tractions as boundary conditions for the problem about unknown displacement uuu.
• Superimpose uuu0 and uuu to obtain the final solution and calculate strains and stresses.

Denoting the sphere radius by R0 and the specific gravity on its surface by g, the body
force field can written in the form

bbbg = −gRRR/R0

and the potential in the form

�g = g
R0

R2

2
.
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This corresponds to case (i) above. Integration leads to the results

χg = (1 − 2ν)
80G(1 − ν)

gR4

R0

and

uuug = (1 − 2ν)
20G(1 − ν)

gR3

R0
eeeR.

The body force due to the rotation of the sphere with the angular velocity ω produces the
inertial body force

bbbω = ρω2rrrr,

where ρ denotes the mass density, and rrr is the radius vector in cylindrical coordinates,
which may be expressed as

rrr = eeeR sinϕ + eeeϕ cosϕ.

This force field can be represented by the potential function

�ω = −ρω2R2

2
sin2 ϕ = −ρω2R2

3
+ ρω2R2

3
P2(ζ);

that is, it is given by the sum of two potentials conforming to cases (i) and (ii) above,
respectively. Integration of this field to obtain the displacements leads to

uuuω = ρω2R3

3
(1 − 2ν)
G(1 − ν)

[
13
140

eeeR + 1
28

dPn(ζ)
dϕ

eeeϕ

]
.

Adding the particular solutions uuug and uuuω, one obtains the general form of the particular
displacement solution for the rotating gravitating sphere as

uuu0 = aR3P2(ζ)eeeR + bR3 dP2(ζ)
dϕ

eeeϕ = aR3 3 cos2 ϕ − 1
2

eeeR − 3bR3 cosϕ sinϕeeeϕ, (6.40)

where coefficients a and b can be found explicitly from the above results.
We can now readily determine the surface tractions ttt0 due to the particular solution

uuu0 and require that

ttt0 + ttt = 000 on R = R0.

This task is readily accomplished in Mathematica.

Define the displacement field of the particular solution uuu0 and compute strains, stresses,
and tractions on a spherical surface of radius R0.

u0 = Rˆ3{a LegendreP[2,Cos[p]], b D[LegendreP[2,Cos[p]],p],0}

eps0 = Simplify[(Grad[u0] + Transpose[Grad[u0]])/2]

sig0 = Simplify[Stress[eps0]]

tracR0 = Simplify[sig0.{1, 0, 0}] /. R -> R0
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Taking the general solution for axisymmetric surface loading of an elastic sphere, con-
sider the form of surface tractions on the sphere of radius R0. Note that the constant
C2 can be set to zero, because the remaining two constants A2 and B2 provide sufficient
flexibility to satisfy the two traction-free boundary conditions written in terms of stress
components σRR and σRϕ.

Simplify[tracR[2] /. C[2] -> 0 /. R -> R0]

The unknown coefficients A2 and B2 can now be found using the Mathematica Solve

command.

Simplify[

Solve[(tracR[2] /. C[2]->0 /. R->R0) + tracR0 == 0,

{A[2], B[2]}]]

The final solution is the superposition of the field determined by the displacements uuu0

of equation (6.40) and the field defined by the Papkovich–Neuber potentials in the form
of equation (6.34) with the only two nonzero coefficients given by

A2 = (1 − ν)
(1 − 2ν)(7 + 5ν)

[a(2 + ν) − 2b(1 + ν)] ,

B2 = (1 − ν)(3 + 2ν)
(1 − 2ν)(7 + 5ν)

[12bν − a(7 − 4ν)] R2
0.

Solutions for other important axisymmetric geometries, notably cylinders, can be
developed similarly by observing that the requirements of harmonicity of Papkovich
potentials allow the general form of a variable separable solution to be established and a
series formulation to be developed.

6.2 GALERKIN VECTOR

Galerkin (1930) introduced an alternative general description of the elastic displacement
field of the general form

uuu = �ggg − 1
2(1 − ν)

grad div ggg, (6.41)

where ggg is a vector field that satisfies the equation

��ggg = − bbb
1 − ν

, (6.42)

where bbb is the field of body forces. Then uuu satisfies the Navier equation for elastic displace-
ments in the presence of body forces.

If the displacement field is written in the form

uuu = uuu0 + �ggg − 1
2(1 − ν)

grad div ggg, (6.43)
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where uuu0 is a particular solution of the Navier equation with body forces, then the Galerkin
vector ggg must be biharmonic; that is,

��ggg = 000. (6.44)

In cartesian coordinates this is equivalent to the requirement that each component gi, i =
1–3 of the Galerkin vector is a biharmonic scalar function. In general curvilinear coordi-
nates the requirement of biharmonicity of a vector is more complex. However, for a given
candidate vector this can be readily verified using the command Biharmonic[] provided
as part of the package Tensor2Analysis.m.

By inspection of equations (6.43) and (6.15) the relationship between the biharmonic
Galerkin vector and the Papkovich–Neuber harmonic potentials can be established in the
form

φ = 2div ggg − rrr · �ggg, (6.45)

ψψψ = �ggg. (6.46)

Similarly to the Papkovich–Neuber potential description, the Galerkin vector description
of elastic displacement fields is nonunique, that is, the same displacement field may be
described by two different Galerkin vectors that differ by a nonzero term (Westergaard,
1952).

Equations (6.46) provide the conversion from Papkovich–Neuber potential descrip-
tion to Galerkin vector. Therefore, solution techniques previously developed and applied
in the Papkovich description can also be used if the Galerkin description is preferred.
In practice there is no particular reason for such preference to be made, because both
descriptions ultimately lead to expressions for displacements, from which strains, stresses,
and tractions can be readily computed with the help of Mathematica.

One special case where Galerkin vector description does offer particular advantages
is when the three-dimensional elasticity problems considered possess axial symmetry. The
formulation used in this case, known as the Love strain function, is discussed in the next
section.

6.3 LOVE STRAIN FUNCTION

Consider a special case when the Galerkin vectorggg possesses only one nonzero component,

ggg = Zeeez, �� Z = 0.

It is apparent that the requirement of biharmonicity of the Galerkin vector in this case is
reduced to the scalar biharmonic equation for function Z. This formulation was originally
introduced by Love in 1906 (Love, 1944).

Although in principle Z may depend on three spatial coordinates, of particular interest
is the use of this formulation for axisymmetric problems described in cylindrical polar
coordinates. In this case dependence solely on coordinates r and z is assumed: Z = Z(r, z).

Expressions for the displacements and stresses can be readily written down for this
case as follows:

ur = − 1
2(1 − ν)

Z,rz, uz = �Z − 1
2(1 − ν)

Z,zz, (6.47)
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σrr = E
2(1 − ν2)

(ν�Z,z − Z,rrz) , σrz = E
2(1 − ν2)

((1 − ν)�Z,r − Z,rzz) , (6.48)

σzz = E
2(1 − ν2)

((2 − ν)�Z,z − Z,zzz) , σθθ = E
2(1 − ν2)

(
ν�Z,z − 1

r
Z,rz

)
. (6.49)

The above formulae give elastic displacement and stress fields for any biharmonic
function Z(r, z). The search for the general elastic solution of the form given by Love’s
strain function is therefore once again reduced to the search for biharmonic functions.

Various techniques can be utilised for this purpose. For example, let �(r, z) be a
harmonic function. Then it is readily verified that

R2�(r, z) = (r2 + z2)�(r, z)

is biharmonic, thus allowing a series of solutions to be generated.
To identify harmonic functions that have the form of homogeneous polynomials in r

and z of order n,

�n(r, z) =
n∑

i=0

airizn−i,

the Mathematica implementation shown below can be used.

Commands are defined as a function of arbitrary order n to generate the set of powers
and coefficients, and hence homogeneous polynomials, by using the dot product.

SetCoordinates[Cylindrical[r, t, z]]

mypowers[n_] := Table[rˆi zˆ(n - i), {i, 0, n}]

mycoef[n_] := Table[ToExpression["a"<>ToString[i]],{i,0,n}]

mypoly[n_] := mycoef[n].mypowers[n]

Now for an arbitrary chosen order nn the laplacian of the polynomial is found to contain
homogeneous terms of order n − 2 and an additional term of the form

a1zn−1/r.

Hence, restricting our attention to nontrivial cases n > 2, according to mysub a1 = 0, and
a0 = 1 is chosen without loss of generality. Coefficients of different power terms in lap

are assembled in cof, and the solution mysol is obtained. Backsubstitution generates
the polynomial harpoly, which is shown to be harmonic.

nn = 10;

Collect[(lap = Laplacian[mypoly[nn]]), mypowers[nn]]

mysub = {a0 -> 1, a1 -> 0};

cof = Coefficient[lap, mypowers[nn - 2]];

zer = cof - cof;
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mysol = Solve[(Thread[cof == zer] /. mysub),

Drop[mycoef[nn], 2]][[1]];

harpoly = (mycoef[nn]/.Join[mysub,mysol]).mypowers[nn]

Simplify[Laplacian[harpoly]]

Soutas-Little (1973) demonstrates how an equivalent system of harmonic polynomials
can be generated using spherical harmonics in the form of Legendre polynomials.

Biharmonic functions given by polynomials of order n can therefore be written as

Z(r, t) = �n(r, z) + (r2 + z2)�n−2(r, z). (6.50)

Using the homogeneous polynomial form of biharmonic functions given above, Timo-
shenko and Goodier (1951) build Love strain function solutions for the concentrated force
in an infinite solid (Kelvin problem), and also for a momentless force doublet and for the
centre of dilatation. The same approach can also be used (Soutas-Little, 1973) to obtain
solutions for simple stress states of uniaxial (σzz) or equibiaxial (σrr) states of tension or
compression, as well as bending solutions for thick plates.

Also included in consideration must be biharmonic functions that are not expressible
as polynomials, and in fact may be singular due to the presence of logarithmic terms or
negative powers, such as

(r2 + z2)1/2, (r2 + z2)−1/2, ..., log r, z log r, z2 log r r2 log r, ....

The corresponding elastic fields are singular at the origin, but can be useful in solving
problems involving concentrated loads or elastic solids with spherical cavities, because
they generate constant and linearly varying traction distributions on spherical surfaces
(Barber, 2002).

For example, the solution of the Kelvin problem about a concentrated force P acting
in the z-direction and applied at the origin can be expressed by the Love strain function

Z = B(r2 + z2)1/2. (6.51)

The Mathematica tools developed above allow displacements, strains, and stresses to be
computed readily, so that traction boundary conditions (or equilibrium with the externally
applied load) can be satisfied to find the value of the unknown constant B.

Integral transform methods

An alternative form of biharmonic function of r and z is given by

Z(r, z)

=
[

AJ0(αr) + BY0(αr) + r
∂

∂r
(CJ0(αr) + DY0(αr)) + EαzJ0(αr) + FαzY0(αr)

]
exp(αz),

(6.52)

where α can be imaginary or real, positive or negative, and J0 and Y0 are Bessel functions
of order zero of the first and second kind, which must be replaced with the modified Bessel
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functions I0 and K0 if α is imaginary. This form of Z(r, z) is particularly useful if boundary
conditions are specified on cylindrical surfaces, for example, axisymmetric tractions on
the side surfaces r = r0 of a rod of radius r0, or loading of plates containing circular
holes.

A generalisation of the above formulation leads to the use of Hankel transform
methods. The Hankel transform of order zero of the Love strain function is defined as

Z̄0(ξ, z) =
∫ ∞

0
rZ(r, z)J0(ξr)dr. (6.53)

Applying the Hankel transform to the biharmonic equation

��Z(r, z) = 0

and using the differentiation properties of Bessel function J0 leads to the ordinary differ-
ential equation in z for the unknown function(

d2

dz2
− ξ2

)
Z̄0(ξ, z) = 0. (6.54)

The solution of this equation is given by

Z̄0(ξ, z) = (A(ξ) + B(ξ)ξz) exp(±ξz). (6.55)

The Hankel transform must also now be applied to displacement and/or traction boundary
conditions of the form (6.47), (6.48) or (6.49) in order to find the unknown functions A(ξ)
and B(ξ).

Soutas-Little (1973) gives an example of using this approach to obtain the Boussinesq
solution for the concentrated load P acting normal to the surface of a half space. The
Hankel transform of Love strain function can be sought in the form

Z̄0(ξ, z) = CP
2πξ2 [2ν + ξz] exp(−ξz), (6.56)

where the constant C is found by satisfying equlibrium between the externally applied
force P and internal stresses.

Axisymmetric contact problems involving elastic half-spaces are a class of so-called
mixed boundary value problems, since on part of the surface the boundary condition is
prescribed in terms of displacements, and elsewhere traction boundary conditions apply.
The integral transform formulation of Love strain solution provides an effective way of
addressing such problems, because it allows the condition on some part of the boundary
(e.g., the traction-free requirement) to be satisfied by construction, thus leading to a single
integral equation formulation.

SUMMARY

The displacement potential approach to the solution of elastic problems is presented.
Harmonic Papkovich–Neuber potentials are first used as the basis for the analysis, and
various fundamental solutions are considered (Kelvin, Boussinesq, and Cerruti). Bihar-
monic potentials (Galerkin vector and Love strain function) are introduced next, and
their application to the solution of special problems is discussed, for example, problems
involving cylindrical or spherical symmetry.
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EXERCISES

1. Simple stress and strain states in terms of the Love strain function

Using the procedures for identifying biharmonic homogeneous polynomials described
in the chapter, generate the following third-order polynomial Love strain function
solutions:

Az(r2 + z2) and B(2z3 − 3r2z).

Compute the displacements arising due to the superposition of these solutions. Derive
the strain and stress states, and show that they are uniform. Determine the relationship
between constants A and B required to obtain a uniaxial strain state and uniaxial and
hydrostatic stress states.

Hint: See notebook C06 Love 3-poly.nb

2. Kelvin solution using Love strain function

Demonstrate that the Love strain function of the form

Z(r, z) = B
√

r2 + z2

provides the solution to the Kelvin problem about the concentrated force P applied at the
origin and acting in the positive z direction. Determine the unknown constant B.

Hint: See notebook C06 Love Kelvin.nb and follow the procedures used for deriving
this solution in terms of the Papkovich–Neuber potentials.

3. Momentless force dipole

Using the Kelvin solution for the concentrated force at the origin as the starting point,
derive the Love strain function solution for the momentless force doublet at the origin.
Verify that the stress field is divergence-free and self-equilibrated.

Hint: See notebook C06 Love momentless force dipole.nb

4. Stresses around a spherical cavity

Papkovich–Neuber potentials may be used to construct solutions of significant practical
interest, for example, for stresses around notches and defects.

Consider a spherical cavity of radius a within an infinitely extended elastic solid
subjected to remote tension. Build the solution using the superposition of the following
terms:
• Papkovich–Neuber potentials for a uniform uniaxial tensile stress field σzz = S.
• Papkovich–Neuber potentials for a centre of dilatation.
• Papkovich–Neuber potentials for a momentless force dipole along the direction of

tensile loading.
• Papkovich–Neuber potential solution of the formψψψ = 0, φ = C(r2 − 2z2)(r2 + z2)−5/2.

Compute tractions on the spherical surface of radius a (with respect to spherical
coordinates). Requiring that this surface be traction-free, obtain expressions for constants
A, B, and C in terms of the remote tension S.

Hint: It is more convenient to carry out manipulations with potentials in cartesian coordinates
and transform to spherical coordinates for the last step of relieving the spherical surface of
tractions. See notebook C06 PN sph cavity car.nb
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5. Torsion of a cylindrical shaft (Barber, 2002)

Using cylindrical polar coordinates, consider the Papkovich–Neuber solution of the form

ψψψ = curl (Bz(r2 + z2)eeez), φ = −rrr ·ψψψ.

Compute the displacement, strain, and stress fields. Find tractions in the section z = const.
and calculate the torque. Hence find the torsional stiffness of a circular shaft, that is, the
ratio of applied torque to angle of twist per unit length.

Hint: See notebook C06 PN shaft torsion.nb

6. Torsion of a conical shaft (Barber, 2002)

Using cartesian coordinates, consider the Papkovich–Neuber solution for a centre of
rotation,

ψψψ = curl (eeez/R), φ = −rrr ·ψψψ,

where R =
√

x2 + y2 + z2.
Transform the stress state into spherical coordinates, and show that any cone with the

apex at the origin is free from surface tractions.
Transform the same stress state into cylindrical polar coordinates, and show that the

tractions in any section z = const. reduce to just the shear component τrθ. Compute the
torque transmitted across the section.

Hint: See notebook C06 PN cone torsion.nb

7. Torsion of a cylindrical shaft with a spherical hole (Barber, 2002)

Using cartesian coordinates, construct the Papkovich–Neuber solution for a shaft or radius
b with a spherical hole of radius a < b using the form

ψψψ = curl ((A/R + BzR2)eeez), φ = −rrr ·ψψψ,

where R =
√

x2 + y2 + z2.
Transform the stress state into spherical coordinates and show that the surface r = a

can be rendered traction-free with a suitable choice of the relationship between constants
A and B.

Hint: See notebook C06 PN shaft hole torsion.nb.
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OUTLINE

In this chapter the classical variational principles of elasticity are introduced and applied.
The solution of the elastic problem is shown to furnish an extremum value of a scalar
potential, either the minimum of the strain energy potential or, respectively and simulta-
neously, the maximum of the complementary energy potential. These principles provide
a complete characterisation of solutions of the regular (well-posed) elasticity problem de-
fined in the preceeding chapters. Moreover, they allow the introduction of classes of
approximate solutions through the optimisation of potentials over a subspace of the space
of admissible fields. Equations of elastostatics are considered first, followed by a discussion
of free vibrations.

7.1 STRAIN ENERGY AND COMPLEMENTARY ENERGY

Strain energy

Suppose that the elastic body � is characterised by a positive definite symmetric tensor of
elastic moduli C.

Define the space of kinematically admissible displacement fields as displacement fields
that obey displacement boundary conditions prescribed on a part ∂�d of the boundary ∂�:

K(uuuD, ∂�d) = { vvv| vvv = uuuD on ∂�d}. (7.1)

Here ∂�d ⊂ ∂� denotes that part of the boundary ∂� where displacements uuuD are pre-
scribed. We recall briefly that in a regular elasticity problem the boundary ∂� is subject
to complementary partition into ∂�d

i with prescribed displacements ud
i and ∂�t with pre-

scribed tractions tt
i in each direction xi, as discussed previously in Chapter 4.

Strain energy is equal to the actual mechanical work done by internal and external
forces between the initial and the actual state. The initial state is defined by zero dis-
placement field, whereas the actual state is characterised by a kinematically admissible
displacement field vvv.

The strain energy of an elastic body is defined over an arbitrary kinematically admis-
sible displacement field vvv as

Ui(vvv) =
∫
�

(
σσσ0 : εεε[vvv] + 1

2
εεε[vvv] : C : εεε[vvv] − εεε[vvv] : C : AAAθD

)
dv (7.2)

189
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with vvv ∈ K(uuuD, ∂�d), and σσσ0 denoting the tensor of initial stresses, C the tensor of elastic
moduli, and A the tensor of thermal expansions coefficients.

It is important to note that the strain energy so defined is equal to the actual internal
energy of an elastic body in the thermodynamic sense only if the initial (residual) stresses
σσσ0 and the prescribed temperature change field θD vanish. The strain energy introduced
above should be understood merely as a scalar potential of internal forces.

The work of given external forces bbbD and tttD is defined over a kinematically admissible
displacement field vvv as

Ue(vvv) = −
∫
�

vvv · bbbD dv −
∫
∂�t

vvv · tttD ds. (7.3)

The strain energy potential is the sum of the strain energy and the work done by
external forces over an arbitrary kinematically admissible displacement field vvv:

Up(vvv) = Ue(vvv) + Ui(vvv) (7.4)

=
∫
�

(
σσσ0 : εεε[vvv] + 1

2
εεε[vvv] : C : εεε[vvv] − εεε[vvv] : C : AAAθD

)
dv −

∫
�

vvv · bbbD dv −
∫
∂�t

vvv · tttD ds.

(7.5)

Subscript p in Up is used to indicate that the strain energy potential is being considered.

Complementary energy

The space of statically admissible stress fields is defined as those stress fields that are in
equilibrium with the presecribed external body forces bbbD and surface tractions tttD,

S(bbbD, tttD, ∂�t) = { sss| div sss + bbbD = 0 in�, sss · nnn = tttD on ∂�t}, (7.6)

where ∂�t ⊂ ∂� denotes the part of the boundary ∂� where given boundary tractions tttD

are prescribed, and bbbD are the given body forces.
The complementary energy is defined as the work of a statically admissible stress field

over internal strains sss,

U∗
i (sss) = −1

2

∫
�

(sss − σσσ0 + C : AAAθD) : C−1 : (sss − σσσ0 + C : AAAθD) dv, (7.7)

with sss ∈ S(bbbD, tttD,St). The complementary energy equals the actual internal energy of the
body only if the initial (residual) stresses σσσ0 and the temperature change field θD vanish,
and must be understood merely as a scalar potential function for the strains.

The work of tractions due to a statically admissible stress field sss over given external
displacements uuuD is given by

U∗
e (sss) =

∫
∂�

uuuD · (sss · nnn) ds. (7.8)
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The complementary energy potential is the sum of the complementary energy and the
work done over the prescribed displacements uuuD:

U∗
p (sss) = U∗

e (sss) + U∗
i (sss) (7.9)

= −1
2

∫
�

(sss − σσσ0 + C : AAAθD) : C−1 : (sss − σσσ0 + C : AAAθD) dv +
∫
∂�

uuuD · (sss · nnn) ds.

(7.10)

Equality of potentials

The particular physical significance of the strain energy potential and the complementary
energy potential becomes particularly clear in the case where initial (residual) stresses σσσ0

and temperature change fields θ vanish. In this case the following result can be be proven:

Theorem: Equality of potentials If [uuu, εεε,σσσ] is the solution of a regular elastic problem
with vanishing residual stresses and temperature change field,

σσσ0 = 0, θD = 0,

then the following equality between the strain energy potential and the complemen-
tary energy potential holds:

Up(uuu) = U∗
p (σσσσσσσσσ).

The proof of this theorem is straightforward. Using expressions for the strain energy
potential and the complementary energy potential for the case of vanishing residual stress
and temperature change field, consider

Up(uuu) − U∗
p (σσσ) = 1

2

∫
�

εεε : C : εεεdv + 1
2

∫
�

σσσ : C−1 : σσσ dv (7.11)

−
∫
�

uuu · bbbD dv −
∫
∂�t

uuu · tttD ds −
∫
∂�d

uuud · (σσσ · nnn) ds. (7.12)

Note that the elastic constitutive law in this case reduces to

σσσ = C : εεε.

Now take into account that the solution consists of both kinematically and statically
admissible fields:

uuu ∈ K(uuuD, ∂�d) and σσσ ∈ S(bbbD, tttD, ∂�t).

Because displacement and traction boundary conditions are defined on a complementary
partition of the boundary ∂�, one obtains

Up(uuu) − U∗
p (σσσ) =

∫
�

εεε : C : εεε −
∫
�

uuu · bbbD dv −
∫
∂�

uuu · (σσσ · nnn) ds = 0. (7.13)

The last equality follows from the Stokes theorem, an argument already used in deriving
the virtual work Theorem.
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7.2 EXTREMUM THEOREMS

The purpose of this section is to demonstrate that elastic solutions deliver extremum values
of the potentials defined in the previous section.

The displacement field of the elastic solution minimises the strain energy potential over
all kinematically admissible displacement fields. In other words, the minimum principle
of the strain energy potential asserts that the sum of the strain energy and the work of
prescribed given external forces is smaller for the displacement field of the elastic solution
than for any other kinematically admissible displacement field.

The complementary energy potential stands in a dual relationship to the strain energy
potential. That is, the stress field of the elastic solution maximises the complementary
energy potential over all statically admissible stress fields. In other words, this maximum
principle asserts that the sum of the complementary energy and the external work over
prescribed boundary displacements is larger for the stress field of the elastic solution than
for any other statically admissible stress field.

The combination of the two extremum principles provides a means of complete char-
acterisation of the elastic solution fields, in the sense that they furnish a formulation that
is mathematically equivalent to the system of PDEs described in previous chapters.

Before giving rigorous statements of the extremum principles and their proof, it
is worth mentioning that the key underlying property that ensures their validity is the
positive definiteness of the tensor of elastic moduli C, which ensures that the strain energy
potential and the complementary energy potential are a convex and a concave functional,
respectively.

Theorem: The minimum property of the strain energy potential The displacement
field uuu of the solution [uuu, εεε,σσσ] of a regular thermoelatic problem minimises the strain
energy potential over all kinematically admissible displacement fields:

Up(vvv) ≥ Up(uuu) ∀vvv ∈ K(uuuD, ∂�d). (7.14)

Consider a kinematically admissible displacement field vvv ∈ K(uuuD,Su) and the dis-
placement field uuu of the elastic solution. The proof will proceed by first showing that

Up(vvv) − Up(uuu) = Ui(vvv) − Ui(uuu) − DUi(uuu)(vvv − uuu), (7.15)

where DUi(uuu) is the differential of the strain energy.
Second, the inequality:

Ui(vvv) − Ui(uuu) − DUi(uuu)(vvv − uuu) ≥ 0 ∀vvv ∈ K

will be established based on the convexity of the strain energy Ui.
From the definition of work of prescribed external forces we obtain

Ue(vvv) − Ue(uuu) = −
∫
�

(vvv − uuu) · bbbD dv −
∫
∂�t

(vvv − uuu) · tttD ds (7.16)

= −
∫
�

(vvv − uuu) · bbbD dv −
∫
∂�

(vvv − uuu) · σσσ[uuu] · nnn ds. (7.17)

The last equality is ensured by the traction boundary condition σσσ[uuu] = tttD on ∂�t, with the
observation that vvv − uuu = 0 on ∂�d, and from the complementarity of ∂�d and ∂�t.
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An application of the Stokes theorem shows that

Ue(vvv) − Ue(uuu) = −
∫
�

σσσ[uuu] : (εεε[vvv] − εεε[uuu]) dv. (7.18)

To demonstrate the validity of equation (7.15) we now need to show that the last expression
in the above equation is in fact the negative of the differential of strain energy −DUi[uuu]
(vvv − uuu).

The differential of a functional can be expressed through the Taylor series as

Ui(uuu + ηwww) = Ui(uuu) + ηDUi[uuu](www) + o(η2),

with ηa small parameter. The strain energy definition used here requires that the displace-
ment field be kinematically admissible; that is,

uuu + ηwww = uuuD on ∂�d.

This is indeed the case, provided that

www = 0 on ∂�d or, equivalently, www ∈ K(0, ∂�d).

From the following series of equalities,

σσσ0 : εεε[uuu + ηwww] = σσσ0 : εεε[uuu] + ησσσ0 : εεε[www] (7.19)

εεε[uuu + ηwww] : C : εεε[uuu + ηwww] = εεε[uuu] : C : εεε[uuu] + 2ηεεε[uuu] : C : εεε[vvv] + o(η2) (7.20)

AAAθD : εεε[uuu + ηwww] = AAAθD : εεε[uuu] + ηAAAθD : εεε[www], (7.21)

one deduces that

DUi[uuu](www) =
∫
�

(σσσ0 : εεε[www] + εεε[uuu] : C : εεε[www] − εεε[uuu] : AAAθd : εεε[www]) dv =
∫
�

σσσ[uuu] : εεε[www] dv,

=
∫
�

σσσ[uuu] : (εεε[vvv] − εεε[uuu]) dv,

which finally demonstrates (7.15).
The last step required is the proof of the inequality

Up(vvv) − Up(uuu) = Ui(vvv) − Ui(uuu) − DUi(uuu)(vvv − uuu) ≥ 0. (7.22)

This inequality is valid due to the convexity of Ui, which can be defined by one of the
equivalent statements (Figure 7.1)

Ui(tuuu + (1 − t)vvv) ≤ tUi(uuu) + (1 − t)Ui(vvv) ∀t ∈ [0, 1] ∀uuu,vvv ∈ V

Ui(vvv) − Ui(uuu) − DUi(uuu)(vvv − uuu) ≥ 0

D2Ui(uuu,www) ≥ 0 ∀uuu,www ∈ V,

where V is the space on which Ui is defined.
Strain energy is indeed a convex functional, for example, according to the last defini-

tion above, because it is a second-order functional of strains based on a positive definite
tensor C.

This completes the proof.

Theorem: The maximum property of the complementary energy potential The stress
field σσσ of the elastic solution [uuu, εεε,σσσ] of a regular thermoelatic problem maximises the
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u v

f(u)

f(u) + D[u](v — u)

f(v)

t u +(1 — t) v 

t f(u) + (1 — t) f(v)

f(t u + (1 — t) v)

Figure 7.1. A schematic illustration of a convex function and its properties.

complementary energy potential over all statically admissible stress fields:

U∗
p (σσσ) ≥ U∗

p (sss) ∀sss ∈ S(bbbD, tttD, ∂�t). (7.23)

The proof follows a line of argument similar to that used for the minimal principle of
the strain energy potential. We therefore only provide a sketch of the proof here.

As the first step, one shows by the definition of the complementary energy potential,
the Stokes theorem, and the application of the boundary conditions that

U∗
p (sss) − U∗

p (σσσ) = U∗
i (sss) − U∗

i (σσσ) − DU∗
i [σσσ](σσσ − sss). (7.24)

The inequality

U∗
i (sss) − U∗

i (σσσ) − DU∗
i [σσσ](σσσ − sss) ≤ 0 (7.25)

is verified through the use of concavity of the complementary energy potential, ensured
by the negative sign of the complementary energy and the positive definiteness of C−1.

Based on the extremum theorems, a series of inequalities and the uniqueness theorem
are established.

Theorem: The inequality of strain energy potential and complementary energy po-
tential Let [uuu, εεε,σσσ] be the solution of a regular elastic problem with vanishing residual
stresses and temperature change field:

σσσ0 = 0 θD = 0.

Then the following inequalities between the strain energy potential and the comple-
mentary energy potentials hold,

Up(vvv) ≥ Up(uuu) = U∗
p (σσσ) ≥ U∗

p (sss),

where vvv and sss are respectively the kinematically admissible displacement and statically
admissible stress fields (see Figure 7.2 for illustration),

vvv ∈ K(uuuD, ∂�d) sss ∈ S(bbbD, tttD, ∂�t).
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       Space of kinematically admissible (k.a.) fields 

Energy of k.a. fields 

Energy of the elastic 
solution 

Energy of s.a. fields 

       Space of statically admissible (s.a.) fields 

0
1

0
1

0

1

Figure 7.2. A schematic representation of the strain energy potential and the complementary energy
potential over admissible fields. The image serves merely as an illustration and should not be interpreted
as if a direct relationship between kinematically and statically admissible fields were implied.

Theorem: Uniqueness of the elastic solution Solution [uuu, εεε,σσσ] of a regular elastic
problem is unique to within a rigid body displacement field.

This result is a direct consequence of convexity of the strain energy potential Ui

over kinematically admissible fields. Considering two putative solutions of a given regular
thermoelastic problem [uuui, εεεi,σσσi] (i = 1, 2), we immediately observe that

[uuu1 − uuu2, εεε1 − εεε2,σσσ1 − σσσ2]

is also the solution of a problem with zero external loads and zero imposed displacements,
and vanishing residual stresses, and temperature change field. Moreover,

uuu1 − uuu2 ∈ K(000, ∂�d) σσσ1 − σσσ2 ∈ S(000,000, ∂�t).

Using previously obtained results for the energy potentials, it is easy to show that

Ui(uuu1 − uuu2) = 0,

and therefore

εεε1 = εεε2.

The integration of strain fields to obtain displacements leads to the following conclusion
about the equality of displacements to within a rigid body displacement:

uuu1 = uuu2 + aaa + bbb × xxx aaa,bbb ∈ R3.

If the part of the boundary ∂�d on which displacement boundary condition are imposed
is nonzero, then

uuu1(xxx) = uuu2(xxx) xxx ∈ ∂�d,

and therefore aaa = 0 and bbb = 0, thus ensuring the uniqueness of the displacement solution.
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The extrema of continuous differentiable functions are usually determined from the
condition of vanishing derivative. This approach can also be applied to the strain energy
potential and complementary energy potential of linear thermoelasticity, as is apparent
from the arguments developed in this section. Equilibrium equations of linear thermoe-
lasticity can be obtained as the Euler–Lagrange variational equations for the strain energy
potential and complementary energy potential.

This property can be stated in the following form:

Theorem: Properties of solution at extremum Consider the solution (uuu, εεε,σσσ) of a
regular thermoelastic problem. Then the equalities below hold for the derivatives of
the energy potentials:

• Strain energy potential:

DUp[uuu](vvv) = 0 ∀vvv ∈ K(000, ∂�d). (7.26)

The above equality can also be expressed as an extended integral formula:∫
�

σσσ[uuu] : εεε[vvv] dv −
∫
�

bbbD · vvv dv −
∫
∂�t

tttD · vvv ds = 0 ∀vvv ∈ K(000, ∂�d). (7.27)

• Complementary energy potential:

DU∗
p [σσσ](sss) = 0 ∀sss ∈ S(000,000, ∂�t). (7.28)

The above equality can also be expressed as an extended integral formula:

−
∫
�

(σσσ[uuu] − σσσ0 − C : AAAθD) : εεε[vvv] dv +
∫
∂�d

uuuD · (sss · nnn) ds = 0 ∀sss ∈ S(000,000, ∂�t).

(7.29)

7.3 APPROXIMATE SOLUTIONS FOR PROBLEMS OF ELASTICITY

Having established the extremal properties of the elastic solution as the miminum of the
strain energy potential and the maximum of the complementary energy potential over
respective admissible fields, we may now introduce approximate solutions over subsets
or subspaces of admissible fields as solutions delivering the extremal value within the
respective subset or subspace.

• The approximate displacement solution uuuA within the subset of admissible fields KA ⊂
K(uuuD, ∂�d) is the solution that minimises the strain energy potential over the subset
KA of admissible displacement fields; that is,

uuuA = arg min
v∈KA

Up[vvv].

• The approximate stress solution σσσA within the subset of statically admissible stress
fields SA ⊂ S(bbbD, tttD, ∂�t) is the solution that maximises the complementary energy
potential over the subset SA of admissible stress fields; that is,

σσσA = arg max
s∈SA

U∗
p [sss].
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K u u

KA

A

Figure 7.3. A schematic indication of location of the exact uuu and
the approximate solution uuuA on the strain energy potential surface
and in the space of kinematically admissible fields.

It can be shown in a mathematically rigorous way that the approximate solutions
defined in this way also minimise the norm of the difference between the exact solu-
tion [uuu, εεε,σσσ] and the subspace of admissible fields KA or respectively SA. A schematic
illustration of this argument is shown in Figure 7.3.

The corresponding definition of the norm is related to the strain energy and is associ-
ated with the scalar product, defined as

〈uuu,vvv〉 :=
∫
�

εεε[uuu] : C : εεε[vvv] dv, (7.30)

with the norm given by

||uuu|| := 〈uuu,uuu〉 1
2 . (7.31)

7.4 THE RAYLEIGH–RITZ METHOD

A particular technique for the determination of approximate solutions based on the energy
minimisation approach is the Rayleigh–Ritz method. This method occupies a place of
particular importance in numerical analysis applied to continuum mechanics because it
provides a rigorous basis for the construction of a number of other techniques. Notably this
includes the finite element method, one of the most widely used techniques for computing
continuum mechanics solutions for engineering structures.

To simplify the presentation, without restricting the generality of treatment, we as-
sume that in the elastic problem under consideration, initial (residual) stresses and the
temperature change field are zero:

σσσ0 = 000, θD = 0.

Furthermore we shall assume that a zero displacement field uuuD = 0 is prescribed on ∂�d.
We seek an approximate solution in the subspace of admissible displacement fields

KA spanned by a finite number of modal displacement fields described by known functions
wwwm ∈ K(000, ∂�d), m = 1, . . . ,M.

The unknown displacement field that corresponds to the approximate solution in the
sense of the previous section vvv ∈ KA is assumed to be given by a linear combination of
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modal displacement fields,

vvv[α] =
M∑

m=1

αmwwwm, (7.32)

where αm ∈ R are as yet unknown constant coefficients that are to be determined. The
infinite-dimensional problem of finding the approximate solution is thus reduced to the
problem of determining a finite-dimensional unknown vector of coefficients [α] ∈ RM

given by

[α] = [α1, α2, . . . , αM]T ∈ RM.

Coefficients [α] that correspond to the approximate solution uuuA deliver a minimum of the
strain energy potential over all kinematically admissible fields of the form (7.32), that is,

[α] = arg min
[α]∈RM

Up(vvv[α]).

A series of elementary manipulations lead to the strain energy potential in the form

Ui(vvv[α]) = 1
2

∫
�

εεε [vvv[α]] : C : εεε [vvv[α]] dv

= 1
2

∫
�

(
M∑

m=1

αmεεε[wwwm]

)
: C :

(
M∑
 =1

α εεε[www ]

)
dv

= 1
2

[α]T · [K] · [α],

where the components of the matrix [K] ∈ (RM × RM) are given by

Km =
∫
�

εεε(wwwm) : C : εεε(www ) dv m,  = 1, . . . ,M.

Matrix [K] is symmetric by construction and positive definite as a consequence of the
positive definiteness of the tensor of elastic moduli C.

The expression for the mechanical work of external forces is written similarly as

Ue(vvv[α]) =
∫
�

vvv[α] · bbbD dv +
∫
∂�

vvv[α] · tttD ds

=
∫
�

(
M∑

m=1

αmwwwm

)
· bbbD dv +

∫
∂�

(
M∑

m=1

αmwwwm

)
· tttD ds

= −[β]T · [α]

βm =
∫
�

wwwm · bbbD dv +
∫
∂�

wwwm · tttD ds. (7.33)

The complete approximate strain energy potential is then written in the following form:

Up(vvv[α]) = 1
2

[α]T · [K] · [α] − [β]T · [α].
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The condition of attaining the minimum requires the derivative to vanish,

D[α]Up(vvv[α]) = 0,

resulting in the following linear system of equations in the unknowns [α]:

[K] · [α] − [β] = [0]. (7.34)

An alternative method of reducing the solution of the elastic problem to the solution
of a finite system of linear algebraic equations is the Galerkin method. This method also
uses the representation of the unknown displacements in the form of a linear combination
of trial functions, as in equation (7.32). However, the approximate solution is obtained by
enforcing the Navier equation by ensuring that the residue is orthogonal (in the sense of
the scalar product defined in the previous section) to the subspace spanned by the system
of trial functions.

Unlike the Raleigh–Ritz method, the Galerkin method does not necessarily give rise
to a linear system with symmetric positive definite matrix. This may potentially lead to
additional difficulties in obtaining numerical solutions.

Example: compression of a cylinder between two fully adhered rigid platens

Consider a cylindrical slab occupying in the initial configuration the domain �(r, z) =
[0,R] × [−H,H], defined in terms of the cylindrical coordinate system (r, θ, z) with its
axis oriented in direction z and its origin at its geometrical centre. The slab is compressed
between two rigid platens that adhere perfectly to the plane faces of the cylinder defined
by z = ±H. The boundary displacement field is therefore required to be of the form

uuu(r, θ,±H) = ∓δeeez, (7.35)

and the cylindrical surface must be traction-free.
The Poisson effect in the slab will lead to widening of its middle sections, thus producing

a ‘barrelling’ effect. It is apparent, however, that the amount of barrelling will not be
uniform over the height of the slab, because adhesion in the extreme sections acts to
prevent it.

We shall call the ratio between the deformed radius and the initial radius at a given
height the barrelling function, and write

r = f (z)R f : [−H,H] −→ R.

This function cannot be estimated by a closed form solution as in the trivial case of
frictionless platens. The purpose of this section is to obtain approximate forms of the
barrelling function using the strain energy minimum principle.

We begin with a kinematically admissible field of the general form

uuu = δ

H

(
ν

r
R

f (z)eeer − z
Z

eeez

)
.

Hereafter we shall assume different classes of functions f (z) and identify the best choice
of f (z) in each class using the strain energy minimum principle. Although the solutions
found in this way are guaranteed to be optimal within their own class, it is worth noting
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Figure 7.4. A cylindrical slab compressed between two rigid perfectly adhered platens.

that all of them are still likely to be approximate, since the chosen form of displacement
field keeps transverse sections z = const. transverse, that is, does not allow deplanation.

We start by loading the required packages. The Displacement package contains the
formulas of linear isotropic elasticity that simplify the presentation.

The form of the kinematically admissible displacement is defined and the boundary
conditions are verified.

We parameterise the problem by introducing the aspect ratio of the slab:

ee = H
R
.

<< Tensor2Analysis.m

<< Displacement.m

SetCoordinates[Cylindrical[r, t, z]]

CoordinatesToCartesian[{r, t, z}]

u := {nu delta / H r ee/ H f[z / H ], 0, - delta / H z}

Thread[ Simplify[ u /. z -> H ] == {0, 0, -delta}]

The strain and stress tensors are computed. We can then check the static admissibility
conditions for the stresses. One can remark that the stresses do not satisfy the traction-
free condition at the external surface of the cylinder, so that one cannot expect to obtain
the exact solution of the problem.

The quantity w denotes the strain energy density, which can be computed from the
strain and stress tensors in several equivalent ways.

(eps = Strain[u] ) // MatrixForm

(sig = Stress[eps]) // MatrixForm
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Simplify[Div[ sig ]]

sig . {1, 0, 0}

w = 1/ 2 Simplify[Tr[ DDot[ IsotropicStiffness[nu], eps]]]

w = 1 / 2 Simplify[Tr[ eps . sig ]]

The potential energy is next computed by integration. The use of the ScaleFactors

command gives a convenient way of evaluating the volume element required in the
calculation.

In order to thread the Integrate operator over the expressions containing f , and
to isolate integrals of f and its derivatives, we define some appropriate rules by the
following operations: ∫ H

0
ah(z/H) dz = a H

∫ 1

0
h(s)ds∫ H

0
a(h(z/H))n dz = a H

∫ 1

0
(h(s))2ds∫ H

0
a(f ′(z/H))2 dz = a H

∫ 1

0
(f ′(s))2ds.

sf = ScaleFactors[]

wintr = 4 Pi Integrate[ w r , { r, 0, H / ee}]

energy = Thread[ Integrate[ Expand[ wintr],{z,0,H}],Plus]

rule1 = Integrate[ a___ h___[z/H], {z, 0, H}] ->

If[ D [a, z] == 0, a H Integrate[h[s], {s, 0, 1}]]

rule2 = Integrate[ a___ Power[h___[z/H], n_], {z, 0, H}] ->

If[ D [a, z] == 0, a H Integrate[Power[h[s],n],{s,0,1}]]

rule3 = Integrate[

Times[ a___, Power[Derivative[1][f][z/H], 2]], {z, 0, H}] ->

If[ D [a, z] == 0,

Times[a,H,Integrate[Power[Derivative[1][f][s],2],{s,0,1}]] ]

energy = energy /. rule1 /. rule2 /. rule3

ww = Simplify[%]
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Triangular solution

As the first approximation let us compute the best choice of barrelling function f in the
class of triangular functions,

f (z) = q
(

1 − |z|
H

)
q ∈ R+,

where the parameter q that represents the maximal barrelling is found from the minimiza-
tion of the strain energy potential.

We compute the strain energy potential by replacing the barrelling function f with its
triangular form and integrating over the volume of the cylinder.

The extremum point of the strain energy potential,

∂Up

∂q
= 0,

defines the optimal value of q,

q = 12eeH
3 + 8ee2 − 6ν

.

Wtriang = Collect[Simplify[ ww /. f -> (q (1 - #) &)], q]

qsol = Simplify[ Solve[ D[Wtriang, q] == 0, q]][[1]]

wsol = Simplify[Wtriang /. qsol]

utriang = Simplify[ u /. f -> (q (1 - #) &) /. qsol ]

Series solutions

As the next class of barrelling functions we can explore the series expressions

f (s) =
N∑

i=1

cigi(s) ci ∈ R, (7.36)

where ci are the coefficients to be determined in the minimisation process.

The minimisation operations are algorithmic and can easily be packaged into a Module

function defined for any given form of potential and test functions. The following steps
need to be taken:

• evaluate the potential for the given test function f
• differentiate the potential obtained with respect to the list of unknown coefficients

and solve the resulting system of equations
• find the optimal function f and the optimal value of the strain energy potential
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MinEnergy[ testfunction_ , testcoef_List , potential_, f_] :=

Module[{},

testpotential = Evaluate[ potential /. f -> testfunction ];

eq = Map[ D[ testpotential , #] == 0 & , testcoef ];

solcoef = Solve[ eq , testcoef ];

optfunction = Simplify[ testfunction /. solcoef ][[1]];

{optfunction, Simplify[ potential /. f -> optfunction]}

]

We can now explore a polynomial series

f (s) =
N∑

i=1

ci(1 − s)i(1 + s)i ci ∈ R.

The optimal barrelling functions can be plotted for different values of the aspect ratio
ee.

Exploration of other forms of barrelling test functions is left to the reader as an
exercise.

testcoef = Map[ ToExpression["c" <> ToString[#]] & , Range[1] ]

testfunction = Evaluate[Sum[

testcoef[[i]] (1 - #)ˆi (1 + #)ˆi,

{i, Length[testcoef]}] ] &

sol = MinEnergy[testfunction, testcoef, ww, f]

ff[ee_,H_,nu_] = (f[s]/.f -> sol[[1]] ) nu ee / H

optww[ ee_, H_, nu_ ] = sol[[2]]

Plot[ {ff[10, 1, -0.1], ff[1, 1, -0.1]} , {s, 0, 1} ]

Calculus of variations

The approximate solution can be improved further if the class of test functions is ex-
tended to include new terms. The largest admissible class is C1, that is, all continuously
differentiable functions. Functions f must satisfy the boundary condition

f (±H) = 0.

All calculations can be performed explicitly in Mathematica, but one can also use the
package VariationalMethods.
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Before beginning the computation, it is convenient to simplify the expression for
strain energy potential and to get rid of a constant that does not affect the result.

The optimal value of an integral defines EulerEquations for its integrand.

<< Calculus‘VariationalMethods‘

wintr

cc = Pi deltaˆ2 /

(4 eeˆ2 Hˆ2 (-1+nu+2 nuˆ2))

int = wintr/cc /. z/H -> s

eueq = EulerEquations[ int , f[s], s ]

eusol = DSolve[ eueq , f, s ][[1]]

eq = {f[s] == 0 /. eusol /. s -> -1,

f[s] == 0 /. eusol /. s -> 1}

csol = Solve[ eq, {C[1], C[2] }]

fopt = Simplify[eusol /. csol][[1, 1]]

Evaluate[f[s] /. fopt /. nu -> 0. /. ee -> 1 /. H -> 1]

Plot[% , {s, 0, 1}, PlotRange -> All]

7.5 EXTREMAL PROPERTIES OF FREE VIBRATIONS

Well-posed problem of elastodynamics

The solution [uuu, εεε,σσσ] of the elastodynamic problem satisfies the partial differential equa-
tion

div (C : εεε[uuu]) + bbbD = ρ üuu on � × [0,T], (7.37)

where the strains and stresses are related to the displacements by

εεε[uuu] = 1
2

(∇uuu + ∇Tuuu), σσσ[uuu] = σσσ0 + C : (εεε[uuu] − AAAθD).

To obtain a well-posed problem in the sense of Hadamard, that is, to guarantee the
existence of a unique solution continuous with respect to the prescribed conditions, we
shall assume that the following data are provided:

• Material data: the elasticity tensor C and the tensor of thermal expansions AAA on �

• Initial (residual) stresses σσσ0 on � and the temperature change field θD on � × [0,T]
• Body forces bbbD on � × [0,T]
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• Boundary conditions on complementary parts of the boundary ∂�d and ∂�t in the
form

uuu = uuuD on ∂�d × [0,T]

σσσ · nnn = tttD on ∂�t × [0,T]

• Initial conditions at t = 0 for displacements and velocities in the form

uuu = u̇uu0, u̇uu = vvv0 on �. (7.38)

The spectrum of free vibrations

Hereafter we consider a particular class of solutions of the elastodynamic problem, namely
the case of free vibrations. We make the following assumptions:

• the evolution is isothermal, θD = 0
• the body is free of initial (residual) stress, σσσ0 = 0
• the body forces are absent, bbbD = 000 on � × [0,T]
• the boundary conditions consist of zero displacements and traction-free surfaces:

uuu = 000 on ∂�d × [0,T] (7.39)

σσσ · nnn = 000 on ∂�t × [0,T]. (7.40)

To obtain free vibrations the solutions of the elastodynamic equation (7.37) are sought
under the hypothesis of separation of variables:

uuu(xxx, t) = h(t)www(xxx) (xxx, t) ∈ � × [0,T]. (7.41)

Due to zero displacement boundary conditions (7.39) www must satisfy the same condition,
that is,

www = 000 on ∂�d. (7.42)

The linearity of equations leads to

εεε[uuu](xxx, t) = h(t)εεε[www](xxx), σσσ[uuu](xxx, t) = h(t)σσσ[www](xxx), (7.43)

and as a consequence the elastodynamic equation (7.37) becomes

h(t) divσσσ[www] = ḧ(t)ρwww. (7.44)

After multiplication of the last equation by www, integration over �, and application of the
Stokes theorem using boundary conditions (7.39) and (7.41), one obtains

− h(t)
∫
�

εεε[www] : C : εεε[www] dv = ḧ(t)
∫
�

www · www dv, (7.45)

or, equivalently,

− ḧ(t)
h(t)

=

∫
�

εεε[www] : C : εεε[www] dv∫
�

ρwww · www dv
. (7.46)
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Because www depends only on the spatial variable xxx, the right-hand side of the above equation
is a constant. Because C is positive definite, this constant is nonnegative, and can be denoted
by ω2.

We distinguish two cases:

• ω2 = 0

The positive definiteness of C implies that εεε[www] = 0. By integration one obtains the
result that h is a linear function of time and www is a rigid body displacement:

h(t) = α + β t α, β ∈ R (7.47)

www(xxx) = aaa + bbb × xxx aaa,bbb ∈ R3. (7.48)

The complete displacement field is given by

uuu(xxx, t) = (α + β t)(aaa + bbb × xxx). (7.49)

This solution, representing rigid body motion, may only exist if there are no encastre
(built-in) displacement conditions; that is, ∂�d = ∅, meaning that the entire boundary
of the body, ∂�, is a traction-free surface.

• ω2 > 0

The solution for the temporal part of the displacement function is given by

h(t) = α cos(ωt + β),

meaning that displacements of the body vary periodically with time, as expected for
free vibrations.

Pairs ω and www are obtained as the solution of the following eigenvalue problem :∫
�

εεε[www] : C : εεε[www] dv − ω2
∫
�

ρwww · www dv = 0. (7.50)

In the nontrivial case, ω2 > 0, ω is referred to as the cyclic eigenfrequency and www as the
eigenmode. The pairs of cyclic eigenfrequencies and eigenmodes possess certain important
properties:

1. The pairs of cyclic eigenfrequencies and eigenmodes form an infinite discrete set
{(ωn,wwwn)|n ∈ N} called the spectrum of free vibrations.

2. The set of eigenmodes {wwwn|n ∈ N} provides an orthogonal vector basis of the space of
admissible displacement fields with built-in boundary conditions K(000, ∂�d). In other
words, every vvv ∈ K(000, ∂�d)) can be expressed as

vvv =
∞∑

n=1

αnwwwn.

The orthogonality of eigenmodes is understood in terms of the scalar products

〈www,vvv〉Q =
∫
�

εεε[www] : C : εεε[vvv] dv (7.51)

〈www,vvv〉M =
∫
�

ρwww · vvv dv (7.52)
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with two associated norms:

|vvv |2Q = 〈vvv,vvv〉Q |vvv |2M = 〈vvv,vvv〉M.

3. The functional defined by

R[www] = |vvv |2Q
|vvv |2M

= 〈www,www〉Q
〈www,www〉M =

∫
�

εεε[www] : C : εεε[www] dv∫
�

ρwww · vvv dv

takes extreme values over the set of kinematically admissible fields K(000, ∂�d) for
the eigenmodes {wwwn|n ∈ N}. These extreme values are given by the squares of cyclic
eigenfrequencies,

R[wwwn] = ω2.

In other words, for every eigenmode wwwn, we have

DwR[wwwn](vvv) = 0 ∀vvv ∈ C(000, ∂�d).

Statements (ii) and (iii) can be demonstrated using the properties of eigenfrequencies
and eigenmodes described previously.

Because α cos(ωnt + β)wwwn(xxx) is a solution of the elastodynamic equation for every
n ∈ N, it follows that

div C : εεε[wwwn] = ω2
nwwwn. (7.53)

Multiplying both sides of the above equation by a test function wwwm and integrating over �
leads to the expression∫

�

εεε[wwwn] : C : εεε[wwwm] dv − ω2
n

∫
�

wwwn · wwwm dv = 0. (7.54)

Exchanging indices n and m, shows that∫
�

εεε[wwwn] : C : εεε[wwwm] dv − ω2
m

∫
�

wwwn · wwwm dv = 0. (7.55)

Because eigenfrequencies are distinct, wn �= wm, the two above equalities demonstrate
that ∫

�

εεε[wwwn] : C : εεε[wwwm] dv = 0,
∫
�

wwwn · wwwm dv = 0.

It is thus shown that eigenmodes wwwn,wwwm are orthogonal in terms of both scalar products
〈·, ·〉Q and 〈·, ·〉M.

To show that that the functional R takes extreme values at eigenmodes, we consider
the first variation of this functional using the classical formula

R[wwwn + ηvvv] = R[uuun] + ηDwR[wwwn](vvv) + o(η2)

and show that the first-order term in η is equal to zero.
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Considering first-order expansions of the scalar products

〈wwwn + ηvvv,wwwn + ηvvv〉Q = 〈wwwn,wwwn〉Q + 2η〈wwwn,vvv〉Q + o(η2), (7.56)

〈wwwn + ηvvv,wwwn + ηvvv〉M = 〈wwwn,wwwn〉M + 2η〈wwwn,vvv〉M + o(η2), (7.57)

and applying Taylor series expansion in the form

1
a + ηb

= 1

a(a + ηb
a )

= 1
a

(
1 − η

b
a

)
+ o(η2), (7.58)

one obtains the first-order term in the expansion of R as

DwR[wwwn](vvv) = 2∫
�

ρwwwn · wwwn dv

[∫
�

εεε[wwwn] : C : εεε[vvv] − ω2
n

∫
�

wwwn · vvv dv
]

= 0. (7.59)

The equality to zero is derived from equations (7.53) and (7.54).

Approximate spectra

Similarly to the approximate solutions in elastostatics, approximate spectra of free vi-
brations can be defined in terms of cyclic eigenfrequencies and eigenmodes (ωA,wwwA) as
the pairs delivering extreme values of the functional R over a subset of kinematically
admissible displacement fields KA ⊂ K(uuuD, ∂�d),

R[wwwA] = (ωA)2, DwR[wwwA](vvv) = 0, ∀vvv ∈ KA.

To explore the definition of approximate spectra, let us consider the case for which a
subset of kinematically admissible fields is defined by a linear combination of basis modal
shapes, similarly to the approach taken in the Raleigh–Ritz method (see Section 7.4).

We seek an approximate solution in the subspace of admissible displacement fields
KA spanned by a finite number of fixed displacement fields vvvm ∈ C(000,Su), m = 1, . . . ,M.

The displacement field www ∈ KA has the form

www[α] =
M∑

m=1

αmvvvm, (7.60)

where αm ∈ R are constant coefficients to be determined and the finite-dimensional vector
[α] ∈ RM is defined as

[α] = [α1, α2, . . . , αM]T ∈ RM.

Coefficients [α] corresponding to the approximate displacement solution uuuA minimise
the strain energy potential over all kinematically admissible displacement fields of the
form (7.60); that is,

[α] = arg min
[α]∈RM

Up(vvv[α]).
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L
a

b

Figure 7.5. Encastre cantilever beam of rectangular
cross section.

A series of elementary manipulations shows that

R[www[α]] ==

∫
�

εεε[www[α]] : C : εεε[www[α]] dv∫
�

ρwww[α] · www[α] dv
= [α][K][α]

[α][M][α]
,

where the components of the matrices [K] and [M] are defined in terms of functions vvvi by

Kij =
∫
�

εεε[vvvi] : C : εεε[vvvj ] dv,

Mij =
∫
�

ρvvvi · vvvj dv.

Matrices [K] and [M] are referred to as the stiffness and the mass matrix, respectively, and
define the following approximate eigenvalue system for the extremal values of R:

([K] − ω2
A[M])[α] = 0. (7.61)

Approximate modal shapes are obtained from the eigenvectors αA of the above equation.

Example: vibration of a cantelever beam

Consider as an example of application of the above technique the calculation of the natural
frequencies of an encastre cantelever beam with rectangular section as shown in Figure 7.5.
The beam occupies the domain � = [0,L] × [− a

2 ,
a
2 ] × [− b

2 ,
b
2 ] and is encastre at the end

section x = 0. The remaining surface is traction-free. The material of the beam is isotropic
and linear elastic.

Let us define the class of kinematically admissible fields,

uuu = −y
∂w
∂y

eeex + w(y)eeey,

with

w = A (cos(πx/L) − 1) + B (cos(2πx/L) − 1) ,

where A,B ∈ R are the coefficients to be determined.
The encastre condition uuu = 0 on x = 0 is satisfied by the choice of trial displacement

fields.
In the computation of strain and stresses, please note the explicit introduction of

Young’s modulus EE. This is necessary because the problem does not simply scale with
respect to this variable, so that the solution depends on its value.
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We verify the traction-free surface condition for the stress field and note from the
series expansion of the traction vector that this condition is not satisfied unless the
thickness of the beam is small compared to its length: a/L 
 1.

<< Tensor2Analysis.m

<< Displacement.m

SetCoordinates[Cartesian[x, y, z]]

domain = {{x, 0, L}, {y, -a/2, a/2}, {z, -b/2, b/2}}

w = A ( Cos[Pi*x/L] - 1) + B ( Cos[2*Pi*x/L] - 1)

u = {-y D[w, x], w, 0}

u /. x -> 0

(eps = Strain[u]) // MatrixForm

(sig = EE Stress[eps]) // MatrixForm

normal = {0, -1, 0}

traction = sig . normal /. y -> -a/2

Series[ traction /. a -> aoL L,{aoL ,0,1}] /. aoL -> a/L

We can now proceed to compute the mass matrix and the stiffness matrix. They can be
obtained from the equalities

[ααα]T[M][ααα] =
∫
�

ρuuu2 dv

[ααα]T[K][ααα] =
∫
�

ε[uuu] : C : ε[uuu] dv,

where [ααα] = [AB]T.
To compute the integrals, we Apply (@@) the Integrate command to the integrand

Prepend’ed to the integration domain.
The results show that we can isolate the two constants in order to simplify the

computations:

cm = a bLρck = Pi4

24
a3b
L3

(−1 + nu)E
(1 − 2ν)(1 + ν)

.

M = Integrate @@ Prepend[domain, rho u . u]

cf = CoefficientList[M, {A, B}]

MM = {{cf[[1,3]], cf[[2,2]]/2}, {cf[[2,2]]/2, cf[[3,1]]}}

K = Integrate @@ Prepend[domain, Flatten[eps] . Flatten[sig]]

cf = CoefficientList[M, {A, B}]
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KK = {{cf[[1,3]], cf[[2,2]]/2}, {cf[[2,2]]/2, cf[[3,1]]}}

cm = a b L rho

Mc = Simplify[MM/cm]

ck = aˆ3 b EE (-1 + nu) Piˆ4 / ( 24 Lˆ3 (-1 + nu + 2 nu ˆ2) )

Kc = Simplify[KK/ck]

As [K] = ck[Kc] and [M] = cm[Mc], the cyclic eigenfrequency ω can be computed from
the solution  of the equation:

det ([Kc] −  [Mc]) = 0 ω =
√
 

ck

cm
.

elsol = Solve[ Det[ Kc - el Mc] == 0, el]

In the case a/L 
 1 we can obtain a simple expression for  and implicitly for the cyclic
eigenfrequency and also compute the eigenmode in this limiting case.

A series expansion of the matrices provides a linear system of equations that must
be satisfied by the eigenmode.

The two approximate eigenvalues and eigenmodes in the case a/L 
 1 are defined
by

 ± = 1
5

(51 ±
√

2281)

and

A± = −±143 + 3
√

2281

±51
√

2281
B.

The proportionality between A and B indicates that the eigenvector defines only a
direction in the space of kinematically admissible fields, without defining its amplitude.

ellim = Simplify[

Map[(Series[#/.a->aoL,{aoL,0,1}] &), elsol], L>0 ]

N[ellim]

Mclim = Normal[ Series[ Mc /. a -> aoL , {aoL, 0, 1}] ]

Kclim = Kc

system = Thread[ (Kclim - el Mclim). {A, B} == 0 ] /. ellim

Map[ (Solve[ # , {A, B} ][[1, 1]] & ) , system ]
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(a) (b)

x
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z
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z

Figure 7.6. Two configurations of a bar composed of two
different elastic materials.

SUMMARY

Variational principles in elastostatics and vibration analysis were introduced in this chap-
ter, leading to the development of approximate methods of solution that are illustrated in
the form of Mathematica code.

EXERCISES

1. Extension of bimaterial rods

Consider two bars composed of two elastic isotropic materials as illustrated in Figure 7.6.
The bars occupy the domain � = [−L,L] × [−L,L] × [−H,H] and the elastic moduli will
be denoted by (Ei, νi) and (λi, µi) for i = 1, 2.

We shall subject both bars to tension along the axis Oz by applying uniform vertical
displacement:

uz = ±δ at both ends z = ±H.

(a) Write down conditions of continuity for tractions and displacement vectors at each of
the interfaces.

(b) Show that for bar (a) an exact solution can be constructed.

2. Bending of a plate

Consider a parallelepipedal plate � that in its initial configuration occupies the domain
[0,L] × [−e, e] × [−H,H]. The plate is made of an isotropic homogenous elastic material
defined by the constants (E, ν). The prescribed boundary displacements are
• uuu(0, y, z) = 0, that is, the face x = 0 is encastre.
• The displacement component along eeey is given by uy(L, y, z) = d on the face

x = L.
• On the faces z = ±H, the displacement component along eeez is given by uy(x, y,±H) =

0.
(a) Under the assumptation that all other necessary components of the boundary

conditions are such that the surfaces are traction-free, complete the boundary
conditions such that the problem is well-posed.
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(b) Using problem symmetry and the given boundary conditions, justify that the
problem is consistent with the plane strain hypothesis,

uuu(x, y, z) = ux(x, y)eeex + uy(x, y)eeey,

and determine the consequences for the stress field.
(c) Determine the general expression for the stress field under the assumption that

σxy(x, y) = a2 y2 + by + c a,b, c ∈ R.

(d) Determine the unknown coefficients of the stress field from the condition of
minimization of the complementary potential energy.

(e) Is the obtained solution the exact solution?
(f) Discuss the case of a thin plate, that is, e 
 L.

Hint: See notebook C07 bending plate.nb.

3. Torsional stiffness of a cylindrical rod

Consider a cylindrical rod � = S × [0,L] made from an isotropic elastic material. The rod
is subject to torsional deformation, in the absence of body forces, defined by the following
boundary conditions:
• On the end section Sz=0:

ux = 0 uy = 0 tz = 0.

• On the end section Sz=L:

uz = −αy uy = +αx tz = 0.

• Lateral surface ∂S × [0,L] is free from tractions:

ttt = 0.

Above, ui and tj are components of the displacement and traction vector field on respective
surfaces.
(a) Show that the field

uuu = αz
L

eeez × (xeeex + yeeey) + αz
L

ϕ(x, y)eeez

is a kinematically admissible displacement field for each harmonic function ϕ on S
obeying the Neumann boundary condition

∂ϕ

∂nnn
(x, y) = gradϕ · nnn = y nx − x ny (x, y) ∈ ∂S,

where nnn = (nx eeex + ny eeey) is the unit normal to ∂S.
(b) Show that the following field is a statically admissible stress field:

σσσ = αµ
(
curl + curl T) (ψ(x, y)eeez ⊗ eeez)

= αµ
∂ψ

∂y
(x, y) (eeex ⊗ eeez + eeez ⊗ eeex) − αµ

∂ψ

∂x
(x, y) (eeey ⊗ eeez + eeez ⊗ eeey).

(c) Define the torsional stiffness KT throught the linear relation

Mz = KTα,
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Figure 7.7. Approximate surface tractions and warping (axial displacement) of the end section of a bar
with a square cross section subjected to torsion.

where Mzeeez is the applied angular moment on the end section Sz=L and α is the angle
between the end sections Sz=0 and Sz=L. Using previously defined kinematically and
statically admissible fields and the variational principles, prove that the following
inequalities hold:

U∗
p (ψ) ≤ 1

2
KTα

2 ≤ Up(ϕ) (7.62)

with

U∗
p (ψ) = −Lα2

(∫
S

1
2µ

∣∣ gradψ
∣∣2 + (xeeex + yeeey) · gradψ ds

)
Up(ψ) = α2µ

2L

∫
S

((
∂ϕ

∂y
+ x

)2

+
(
∂ϕ

∂x
− x

)2
)

ds.

(d) Consider a bar with a square cross section: � = [−1, 1] × [−1, 1] × [0,L]. Show that
the following choice of the admissible function,

ψ(x, y) = m(1 − x2)(1 − y2) + n(1 − x4)(1 − y4) m,n ∈ R

ϕ(x, y) = xy(p + q(x2 − y2)),

leads to the following bounds on the effective torsional stiffness KT of the bar:

2.24803µ
α2

2L
≤ 1

2
KTα

2 ≤ 2.25185µ
α2

2L
.

(e) Plot the traction field and the warping function for the end sections using the Para-

metricPlot3D and PlotVectorField Mathematica commands (see Figure 7.7).
(f) Plot the distribution of the Tresca equivalent stress f T for the end section. Recall that

f T(σσσ) = 1/2 max
i,j

∣∣ σi − σj
∣∣ ,

where σi (i = 1, 3) are the eigenvalues of the stress tensor.
Hint: See notebook C07 torsion triangle.nb



PAB CUFX161-Constantinescu August 13, 2007 17:14

Exercises 215

-2

-1

0

1

-1

0

1

0

0.1

0.2

-2

-1

0

-2

-1

0

1

-1

0

1

-0.02

0

0.02

-2

-1

0

Figure 7.8. Plots of the Tresca equivalent stess and the warping function (axial displacement) for the end
section of a bar with triangular cross section subjected to torsion.

4. Torsional stiffness of a cylindrical rod with triangluar cross section (Obala, 1997)

Consider a cylindrical rod � = S × [0,L] with triangular cross section. S is an equilateral
triangle with an edge of length 2a

√
3 and comes that correspond in the cartesian coordinate

system to the points (−2a, 0), (a, a
√

3), (a,−a
√

3). The cylinder is made out of an isotropic
elastic material and is subjected to torsion characterised by the angle α between its end
sections.
(a) Show that the function

ψ(x, y) = c(a − x)(x − y
√

3 + 2a)(x + y
√

3 + 2a) c ∈ R

defines a statically admissible stress field through the relation

σσσ = αµ
(
curl + curl T) (ψ(x, y)eeez ⊗ eeez)

= αµ
∂ψ

∂y
(x, y) (eeex ⊗ eeez + eeez ⊗ eeex) − αµ

∂ψ

∂x
(x, y) (eeey ⊗ eeez + eeez ⊗ eeey).

(b) Determine the parameter c in two ways:
• by determining the approximate solution in the space of statically admissible

stresses;
• by showing that the corresponding strain is compatible and constructing the exact

solution of the problem.
Compare the two values.

(c) Plot the traction field and the warping function for the end sections using the Para-

metricPlot3D and PlotVectorField Mathematica commands (see Figure 7.8).
(d) Plot the distribution of the Tresca equivalent stress f T for the end section. Recall that

f T(σσσ) = 1/2 max
i,j

∣∣ σi − σj
∣∣ ,

where σi (i = 1, 3) are the eigenvalues of the stress tensor (see Figure 7.8).
Hint: See notebook C07 torsion triangle.nb

5. A dam loaded by the water pressure and its own weight (Obala, 1997)

Consider a dam of height H with an apex angle α made out of an isotropic elastic material
with the cross section illustrated in Figure 7.9. The dam is considered to extend over a
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ex

ey

Figure 7.9. Deformation of a dam under water
pressure and its own weight.

finite length in the Oz direction and to be locked at the end sections so that displacements
along the Oz direction are zero everywhere.

The dam is subjected to the following loading:
• Encastre at the ground level, y = −H.
• Water pressure on the face x = 0, imposed through the weight of water with the

density ρw.
• Body force due to gravity that corresponds to the density of concrete, ρc.

The gravitational acceleration is denoted by g.
(a) Compute an approximate solution within the space of displacement fields of the form

uuu(x, y, z) = (axx + bxy + cx)eeex + (ayx + byy + cy)eeey.

(b) Is this solution exact ? Is the obtained solution physically valid ?
Hint: See notebook C07 dam.nb.

6. A heated disk glued to a planar rigid substrate

Consider a cylinder of radius R and height Z. The disk is made from an isotropic ther-
moelastic material with material parameters (λ,µ, α). The disk is glued to a rigid planar
surface over its lower section z = 0 and uniformly heated to a temperature difference �.
(a) Compute an approximate solution starting from kinematically admissible fields:

• uuu(r, θ, z) = azeeez

• uuu(r, θ, z) = abzeeer

H

R

x

y

z

Figure 7.10. A heated disk glued to a rigid planar surface.
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Figure 7.11. A cylindrical adhesive bond subjected to torsion.

Which one do you consider to be a better approximation? Does it have any physical
justification?

(b) Construct a Mathematica function using the Module operator for computing the
solution and explore other admissible fields.
Hint: Use a function similar to the ones proposed for the compression test of this chapter and
inspect the code contained in the notebook C07 heating disk.nb.

7. Torsion applied to an adhesive bond (Dumontet et al., 1998)

Consider an adhesive bond, illustrated in Figure 7.11. The glue has the form of a cylindrical
tube with internal and external radii denoted by Ri and Re, respectively, made out of an
isotropic elastic material. Its inner surface is perfectly attached to a rigid shaft that may
rotate, while its outer surface is attached to a rigid hollow shaft that is stationary. A
rotation angle α is imposed on the shaft and causes torsional deformation of the bond
material. (The problem formulation simulates a glued joint, or may be thought of as a
representation of a drilling procedure, in which case the bond represents the process zone
where concentrated deformation occurs.)

The solution will be constructed in the cylindrical coordinate system (r, θ, z) oriented
in a standard way with respect to the cartesian system of coordinates.
(a) Describe the well-posed problem for the loading of the joint.
(b) Determine the statically admissible stress fields of the form

σσσ(r, θ, z) = σrθ(r) (eeer ⊗ eeeθ + eeeθ ⊗ eeer) .

(c) Construct the complementary potential energy U∗(σσσ) and determine its minimum.
(d) Construct the strain field corresponding to the approximate stress field determined in

the minimization process, and verify its compatibility.
(e) Construct the displacement field.

Hint: Use the IntegrateStrain command and do not forget to add an infinitesimal rigid
displacement field for completeness of solution: aaa + bbb × xxx.

(f) Compute the linear and angular momenta applied by the shaft and the effective
torsional stiffness of the joint.

(g) What happens to the solution as Re −→ ∞ ?
Hint: See notebook C07 torsion sphere.nb
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Figure 7.12. A hemispherical bond submitted to shear.

8. Elastic deformation of a hemi spherical joint (Dumontet et al., 1998)

A connexion between two shafts is constructed using a spherical bond layer as illustrated in
Figure 7.12. The bond occupies a hollow hemispherical domain, with internal and external
radii denoted by Ri and Re, respectively, and is made from an isotropic elastic material.
The material of both shafts being joined is much stiffer than that of the bond and can be
considered to be rigid in this analysis. The shafts have a common axis along Oz and are
rotated with respect to each other by an angle α that is accommodated by the bond. The
joint is therefore subjected to shear traction loading that can be thought to be similar to
that applied to the skin of an orange when juice is extracted from it.

The solution will be constructed within the spherical coordinate system (r, θ, ϕ) ori-
ented in a standard way with respect to the cartesian system of coordinates.
(a) Describe the well-posed problem for the loading of the joint.
(b) Determine the statically admissible stress fields of the form

σσσ(r, θ, φ) = σrϕ(r, θ) (eeer ⊗ eeeϕ + eeeϕ ⊗ eeer) .

(c) Construct the complementary potential energy U∗(σσσ) and determine its minimum.
Hint: The mimisation process leads to the Euler equation of the complementary potential
energy. Use the standard package Calculus‘VariationalMethods‘ for your calculations.

(d) Construct the strain field corresponding to the approximate stress field determined in
the minimisation process, and show its compatibility.

(e) Construct the displacement field.
Hint: Use the IntegrateStrain command and do not forget to add an infinitesimal rigid
displacement field for completnees of the solution: aaa + bbb × xxx.

(f) Compute the linear and angular momenta applied by the shafts and the effective
torsional stiffness of the bond.

(g) What happens to the solution as Ri −→ 0 ?
Hint: See notebook C07 torsion sphere.nb.
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Differential operators

The solution of physical problems can often be simplified if it is expressed in a particular
curvilinear coordinate system instead of the classical cartesian coordinate system.

The mathematical presentation of this subject follows the evolution of ideas as pre-
sented in (Malvern, 1969; Soos and Teodosiu, 1983). Our development of programming
is built upon the kernel of an existing standard Mathematica package, VectorAnalysis.
Our additions and modifications are grouped together in the form of a new package called
Tensor2Analaysis.

A.1.1 THE MATHEMATICAL DEFINITIONS

Orthogonal curvilinear coordinate systems

Let us introduce a new system of coordinates θ1, θ2, θ3 related to the cartesian coordinates
by the functions

xi = xi(θα) k = 1, 2, 3; α = 1, 2, 3. (1.1)

We shall assume that the functions can be inverted and possess sufficient smoothness
properties. The inverse transformations will be denoted by

θα = θα(xk) α = 1, 2, 3 k = 1, 2, 3. (1.2)

The above smoothness and inversibility hypothesis implies that the Jacobian ma-
trix has a nonvanishing determinant in the domain considered:

J = det



∂x1

∂θ1

∂x1

∂θ2

∂x1

∂θ3

∂x2

∂θ1

∂x2

∂θ2

∂x2

∂θ3

∂x3

∂θ1

∂x3

∂θ2

∂x3

∂θ3

 . (1.3)

A point PPP in the Euclidean space can be identified by its position vector, denoted by

OPOPOP = xxx = xkiiik = x1iii1 + x2iii2 + x3iii3, (1.4)

where iiik,k = 1, 2, 3 denote the basis vectors of the cartesian system. The point PPP can be
identified either by the cartesian coordinates (x1, x2, x3) or by the curvilinear coordinates
(θ1, θ2, θ3).

219
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x1

x2

x2

g2

g3

g1

Figure A.1.1. An orthogonal system of coordinates defined
by the functions xi(θα).

The operators JacobianMatrix and JacobianDeterminant are already defined in
the VectorAnalysis package and provide the tools for calculating the mathematical
objects introduced above.

The vectors that are defined for each α = 1, 2, 3 by

gggα = ∂xxx
∂θα

= ∂xk

∂θα
iiik (1.5)

are tangent to the coordinate lines defined by varying θα while keeping the other two
coordinates fixed. These vectors therefore can be associated in the physical sense with
the rate of change of a particular coordinate along a line while other coordinates remain
unchanged.

In a general curvilinear coordinate system, θ1, θ2, θ3 may have different physical di-
mensions. For example, in the spherical or cylindrical coordinate systems the coordinates
have dimensions either of length (L) or angle (dimensionless).

We now define

eeeα = 1
|gggα |gggα ∀α = 1, 2, 3. (1.6)

The norms of tangent vectors have the significance of scale factors and are also referred
to as Lamé coefficients, expressed as

hα = |gggα | =
√(

∂x1

∂θα

)2

+
(
∂x2

∂θα

)2

+
(
∂x3

∂θα

)2

∀α = 1, 2, 3. (1.7)

The vectors (eee1,eee2,eee3) are now normalized to form a vector basis.
In the following we will only consider orthogonal curvilinear coordinate systems, for

which the vectors (eee1,eee2,eee3) are mutually orthogonal:

eeeα · eeeβ = δαβ α, β = 1, 2, 3. (1.8)

The spatial orientation of the curvilinear basis (eee1,eee2,eee3) is different for each point PPP of
the Euclidean space, whereas the orientation of the cartesian basis (eee1,eee2,eee3) remains the
same.
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The components of the vectors in the curvilinear basis can be expressed in the cartesian
basis in the form

eeeα = qkα · iiik, (1.9)

where

qkα = 1
hα

∂xk

∂θα
α = 1, 2, 3, k = 1, 2, 3. (1.10)

The columns of the matrix QQQ = (qαk) are the normalised columns of the Jacobian matrix
of the transformation. Moreover, due to the fact that both vector bases are orthogonal,
we also have

qkαqkβ = δαβ qkαqmα = δkm. (1.11)

The operations defined before and the computation of the matrix QQQ = (qαk) can be
coded as follows:

cs = ExpandCoordSys[coordsys]

uvw = List @@ Take[cs, 3]

sf = ScaleFactors[cs];

q = Inner[ Divide, JacobianMatrix[uvw] , sf, List];

Programming remark
The above Mathematica operations show that it is possible to define the scale fac-
tors hα from the definition of the coordinate system as a transformation (see equa-
tion (1.1)). However, we retain the structure of the VectorAnalysis package in which the
ScaleFactors are defined ‘by hand’ by enumerating each of the cases for individual co-
ordinate systems in a special Module.

Length, surface, and volume elements

The length, surface, and volume elements are used to compute the curvilinear, surface,
and volume integrals in the curvilinear coordinate system.

The length element of the α coordinate curve is given by

dlα = hαd θα. (1.12)

The surface element on the (α, β) coordinate surface is given by

dsαβ = hαhβd θαd θβ. (1.13)

The volume element is defined as

dv = h1h2h3d θ1d θ2d θ3. (1.14)

We remark that the product h1h2h3 is equal to the Jacobian determinant J , defined at the
beginning of this chapter. We have obtained the formula

dv = J d θ1d θ2d θ3. (1.15)
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Tensors

Higher rank tensors can be understood as generalisations of vectors involving bilinear
operations such as the direct product ⊗. For example, a tensor TTT of rank n can be created
by

TTT = Tα1,α2,...,αneeeα1 ⊗ eeeα2 ⊗ . . . ⊗ eeeαn . (1.16)

Orthogonal curvilinear coordinate systems differ from general curvilinear coordinate
systems in that the covariant and contravariant components of the tensors are equal,
and thus the manipulation of these systems is simplified. From the physical viewpoint
the orthogonality of a coordinate systems simplifies many expressions appearing in the
equations. This is due to the fact that the normal to the coordinate surface defined by any
two coordinates is tangent to the third coordinate line.

Defining tensors in Mathematica
From the Mathematica viewpoint tensors are represented byList’s of List’s. To construct
a vector we can proceed using the Table command in the following way:

myvector = Table[ToExpression["v"<>ToString[i]], {i,3}]

tensor2 = Table[ToExpression["t"<>ToString[i]<>ToString[j]], {i,3},{j,3}]

tensor3 = Table[ToExpression["t"<>ToString[i]<>ToString[j]<>ToString[k]],

{i,3},{j,3},{k,3}].

The dimensions of these objects can be computed by

Dimensions[myvector]

Dimensions[tensor3].

A useful tool for visualising tensors is the command MatrixForm,

tensor2 // MatrixForm

which displays second- (and higher-) order tensors and matrices or arrays of matrices.
To view the resulting form for larger order tensors, execute the commands

tensor4 = Table[

ToExpression["t"<>ToString[i]<>ToString[j]<>ToString[k]<>ToString[l]],

{i,3},{j,3},{k,3},{l,3}]

tensor4 // MatrixForm.

For tensors of higher rank some experience may be required to locate any given component
in a display of this type.

One has to be careful when using MatrixForm. It is not just an Output command, as
it also changes the structure of the object:

Head[ tensor4 ]

Head[ tensor4 // MatrixForm ].

A way to display an object in matrix form without changing its internal storage format is
to use brackets as follows:

(tensor5= 2 tensor4) // MatrixForm
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Tensor index operations in the Tensor2Analysis pacage

Tensor index operators

$ScaQ[f] True only if field f is a scalar

$VecQ[f] True only if field f is a 3-vector (tensor of rank 1)

$TenQ[f] True only if field f if a 3-tensor of rank 2

Twirl Generalised transpose of tensor

GTr Generalised trace of tensor

GDot Generalised dot product of tensors

In order to perform operations with indices correctly (e.g., transposition), we need to
distinguish between scalars and tensors of different ranks. Furthermore, our analysis is
specialised to three-dimensional space.

Logical test functions $ScaQ, $VecQ, and $TenQ are created as follows:

$ScaQ[v_] := Not[ListQ[v]] || (VectorQ[v] && Length[v] == 1);

$VecQ[v_] := VectorQ[v] && Length[v] == 3;

$TenQ[v_] := MatrixQ[v] && Dimensions[v] == {3,3};

Next, we define a new operator Twirl as a generalisation and correction of the
Mathematica operator Transpose for interchanging two indices of a matrix. This new
definition is necessary because the existing operator Transpose does not perform trans-
position of arbitrary indices correctly when applied to higher rank objects. Operator Twirl
is used in order to obtain from tensor TTT,

TTT = Tα1,α2,...,αi,...,αj ,...,αpeeeα1 ⊗ . . . ⊗ eeeαi ⊗ . . . ⊗ eeeαj ⊗ . . . ⊗ eeeαn, (1.17)

another tensor transposed in the indices αi, αj ,

TTT = Tα1,α2,...,αj ,...,αi,...,αpeeeα1 ⊗ . . . ⊗ eeeαi ⊗ . . . ⊗ eeeαj ⊗ . . . ⊗ eeeαn, (1.18)

by the application of

Twirl[TTT, {i, j }]. (1.19)

Therefore the operator Twirl should be defined for a general permutation of
indices as

Twirl[t_?ListQ, ord_?ListQ] :=

Module[ {rank = TensorRank[t], d = Dimensions[t], ind, perm},

(ind = Map[ToExpression["i" <> ToString[#]] &, Range[rank]];

perm = Map[{ToExpression["i" <> ToString[#]], d[[#]]} &, ord];

Table[Part[t, Evaluate[Sequence @@ind]],

Evaluate[Sequence @@perm]] ) /;

( Signature[ord] =!= 0 && Length[ord] === rank)

]

Twirl[t_?ListQ, ord_?IntegerQ] :=
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Twirl[t, Prepend[Drop[Range[TensorRank[t]], {ord} ], ord]]

Twirl[t_?ListQ] := Twirl[t, 2]

The trace operator Tr is the convolution over any two repeated indices of a given
tensor object, that is, summation of the terms on the generalized diagonal. Trace can only
be defined for tensor fields of at least second rank.

For a second rank tensor field TTT,

trTTT = Tαα = T11 + T22 + T33. (1.20)

For higher rank tensor fields the summation can be performed over any pair of indices.
We define the generalised trace

AAAα1,α2,...,γk,...γl,...αn, (1.21)

where the summation index is denoted by γ placed in the k and l index positions. This can
be programmed as follows,

GTr[f_?ListQ,n1_?IntegerQ,n2_?IntegerQ]:= Tr[Twirl[Twirl[f,n1],n2],Plus,2];

The operation of taking a Dot product between any two tensors can also be applied
to any pair of indices. For example, consider the expression

AAAα1,α2,...,γk,...,αnBBBβ1,β2,...,γl,...,βm, (1.22)

where the summation index is indicated by γ placed once in the kand l index positions. We
implement this operator in Mathematica with the help of Twirl and the existing operator
Inner:

GDot[A_?ListQ,B_?ListQ,kA_?IntegerQ,lB_?IntegerQ] :=

Inner[Times,A,Twirl[B,lB],Plus,kA];

Differential operators in curvilinear coordinate systems

Differential operators

Grad[f] Gradient of field f

Div[f] Divergence of field f

Curl[f] Curl of field f

Laplacian[f] Laplacian of field f

Biharmonic[f] Biharmonic of field f,
that is, twice the Laplacian of field f

Inc[f] Incompatibility of field f

The gradient operator is defined in cartesian coordinates as

∇∇∇ = iiik
∂

∂xk
.
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Using definitions of parameters already introduced for curvilinear coordinate systems and
chain differentiation rule for composite functions, we obtain

∇∇∇ = iiik
∂

∂xk
= eeeαqkα

∂

∂xk
= eeeα

1
hα

∂xk

∂θα

∂

∂xk
= eeeα

1
hα

∂

∂θα
= eeeα∇α. (1.23)

Here

∇α = 1
hα

∂

∂θα

represents differentiation along the coordinate line θα.
There are two difficulties with the application of differential operators to vector and

tensor fields:

• The first one comes from indexing the differentiation operation with respect to existing
indices. In other words, is the (i, j ) component of the gradient of the vector field
vvv = vkiiik

∂vi

∂xj
or

∂vj

∂xi

The same question arises for the (i, j ,k) componenent of second-order tensors TTT =
Tnmiiin ⊗ iiim:

∂Tij

∂xk
or

∂Tkj

∂xi

Therefore we shall define two operators:

the pregradient
⇀

∇, where differentiation appears as the first index of the gradient

the postgradient
↼

∇ , where differentiation appears as the last index of the gradient.
• The second stems from the basic fact that basis vectors and hence components in

curvilinear coordinate systems depend on the coordinates eeeα = eeeα(θ1, θ2, θ3).

Let us consider the differentiation of TTT a tensor of rank n in the direction of fixed α:

∇αTTT = 1
hα

∂

∂θα

(
Tα1α2...αpeeeα1 ⊗ eeeα2 ⊗ . . . ⊗ eeeαn

)
(1.24)

= 1
hα

∂

∂θα

(
Tα1α2...αp

)
eeeα1 ⊗ eeeα2 ⊗ . . . ⊗ eeeαn (1.25)

+ Tα1α2...αp

1
hα

∂

∂θα
(eeeα1 ⊗ eeeα2 ⊗ . . . ⊗ eeeαn ) . (1.26)

In order to understand the differentiation of basis vectors, let us write the following
series of equalities:

∇αeeeβ = ∇α (qkβiiik) = (∇αqkβ) iiik = (∇αqkβ) qkγeeeγ = 〈αβγ〉eeeγ. (1.27)

In the above expression we encounter the Hessian tensor given by the following expression:

〈αβγ〉 = (∇αqkβ) qkγ = 1
hα

∂qkβ

∂θα
qkγ.
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The following series of properties can be established and are left as an exercise for the
reader:

〈αβγ〉 = −〈αγβ〉 ∀α, β, γ (1.28)

and

〈αρα〉 = −〈ααρ〉 (1.29)

= 1
hα

∇ρhα ∀α �= ρ with no summation in α. (1.30)

The computation of the 〈αβγ〉 symbol can be achieved through a simple combination
of Mathematica commands:

uvw = List @@ Take[cs, 3];

sf = ScaleFactors[cs];

q = Inner[ Divide, JacobianMatrix[uvw] , sf, List];

dq = Inner[ Divide, Outer[ D, Transpose[ q], uvw ], sf, List ]

hessian = Transpose[ Simplify[ Inner[Times, dq, q, Plus, 2]]].

We can combine these commands in a module defined as

Hessian3Tensor[arg_:$CoordinateSystem] :=

Module[{pt, cs},

Hessian3Tensor[pt, cs] /; (If[$VecQ[arg],

cs = $CoordinateSystem;

pt = arg,

cs = $ExpandCoordSys[arg];

If[cs =!= $Failed,

pt = List @@ Take[cs, 3]]];

cs =!= $Failed)];

Hessian3Tensor[pt_?$VecQ, coordsys_:$CoordinateSystem] :=

Module[{cs = $ExpandCoordSys[coordsys], sf, q, dq, uvw},

(uvw = List Take[cs, 3];

sf = ScaleFactors[cs];

q = Inner[ Divide, JacobianMatrix[uvw] , sf, List];

dq = Inner[ Divide, Outer[ D, Transpose[ q], uvw ], sf, List ] /.

$DAbsSign /. $PointRule[cs, pt];

Transpose[ Simplify[ Inner[Times, dq, q, Plus, 2]]] ) /;

(cs =!= $Failed)].

The definitions for the operator ∇ for scalar, vector-valued, or tensor-valued fields follow
in a logical way as

Nabla[f_?$ScaQ, coordsys_: $CoordinateSystem] :=

Module[{cs = $ExpandCoordSys[coordsys]},

Outer[D,{f}, List @@ Take[cs, 3]][[1]]/ScaleFactors[cs] /;

(cs =!= $Failed)]
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Nabla[f_?$VecQ, coordsys_:$CoordinateSystem] :=

Module[{ cs=$ExpandCoordSys[coordsys],sf,ht },

(sf=ScaleFactors[cs]; ht=Hessian3Tensor[cs];

Transpose[Inner[ Divide, Outer[D, f, List @@Take[cs, 3]],

sf,List ] ] ) /;

(cs =!= $Failed)]

Nabla[f_?$TenQ, coordsys_:$CoordinateSystem] :=

Module[ { cs =$ExpandCoordSys[coordsys],sf,ht },

(sf=ScaleFactors[cs]; ht=Hessian3Tensor[cs];

Twirl[ Inner[ Divide, Outer[D, f, List @@ Take[cs, 3]],/;

sf,List ] ,3 ] ) (cs =xs!=$Failed)].

The gradient operator

Next we shall carefully distinguish between the pre- and post- versions of the differential
operators.

Consider a scalar function,

f : � −→ R,

and define the gradient in a curvilinear coordinate system as the following vector field:

gradf =⇀

∇ f =↼

∇ f = (∇αf )eeeα. (1.31)

The pregradient and postgradient of the vector field vvv : � −→ R3 are second-order
tensors defined as

⇀

∇ vvv = (∇αvβ + 〈αγβ〉vγ)eeeα ⊗ eeeβ (1.32)
↼

∇ vvv = (∇βvα + 〈βγα〉vγ)eeeα ⊗ eeeβ. (1.33)

We remark that in the case of a vector field the difference between the two operators is
just a transposition:

↼

∇ vvv = (
⇀

∇ vvv)T.

We shall identify the gradient of vvv with the postgradient of vvv, so that

gradvvv = ∇ vvv =↼

∇ vvv = (
⇀

∇ vvv)T.

The pre- and postgradients of the second-order tensor field TTT : � −→ R3 × R3 are third-
order tensors, defined as :

⇀

∇ TTT = (∇αTβγ + 〈αλβ〉Tλγ + 〈αλγ〉Tβλ)eeeα ⊗ eeeβ ⊗ eeeγ (1.34)
↼

∇ TTT = (∇γTαβ + 〈γλα〉Tλβ + 〈γλβ〉Tαλ)eeeα ⊗ eeeβ ⊗ eeeγ. (1.35)

We shall identify the gradient of the tensor field TTT with the postgradient of TTT, so that

gradTTT = ∇ TTT =↼

∇ TTT.
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In Mathematica we write

Grad[f_?$ScaQ, coordsys_:$CoordinateSystem] :=

Module[{cs = $ExpandCoordSys[coordsys]},

Outer[D, {f}, List @@ Take[cs, 3]][[1]]/ScaleFactors[cs] /;

(cs =!= $Failed)]

Grad[f_?$VecQ, coordsys_:$CoordinateSystem] :=

Module[{cs =$ExpandCoordSys[coordsys],sf,ht},

(sf=ScaleFactors[cs]; ht=Hessian3Tensor[cs];

Nabla[f,coordsys] + GDot[ ht, f, 2, 1] ) /;

(cs =!= $Failed)]

Grad[f_?$TenQ, coordsys_:$CoordinateSystem] :=

Module[{cs = $ExpandCoordSys[coordsys],sf,ht},

(sf=ScaleFactors[cs]; ht=Hessian3Tensor[cs];

Nabla[f,coordsys]

+ GDot [ht, f, 2, 1]

+ Twirl[ GDot [ht, f, 2, 2], { 1,3,2 } ] ) /;

(cs =!= $Failed)].

The divergence operator

The divergence of a field can be defined as the trace of the gradient of this field.
For a vector field vvv we have

divvvv = tr (gradvvv) = (∇αvα + 〈αγβ〉vγ)eeeα ⊗ eeeβ. (1.36)

The divergence of the second-order tensor field TTT is a first-order tensor defined as

divTTT = tr (gradTTT) = TTT · eeeα∇α = (∇αTαβ + 〈λαλ〉Tαβ + 〈αλβ〉Tαλ)eeeβ. (1.37)

The preceeding definitions are now translated into Mathematica as

Div[f_?$VecQ, coordsys_:$CoordinateSystem] :=

Module[cs = $ExpandCoordSys[coordsys],sf,ht,

(sf=ScaleFactors[cs]; ht=Hessian3Tensor[cs];

Tr[ Grad[f,coordsys] ] ) /;

(cs =!= $Failed)]

Div[f_?$ TenQ, coordsys_:$CoordinateSystem] :=

Module[{cs = $ExpandCoordSys[coordsys],sf,ht,grad},

(sf=ScaleFactors[cs]; ht=Hessian3Tensor[cs];

GTr[Grad[f,coordsys], 1,2 ] )/;

(cs =!= $Failed)].
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The curl operator

In the definition of the curl operator we use the Levy-Civita fully antisymmetric third
rank symbol εαβλ which can be readily implemented in Mathematica using the Signature
function as follows:

epst= Table[ Signature[{i, j, k}], {i, 3}, {j, 3}, {k, 3}]

For a vector field vvv define the curl operator as

curlvvv = eeeα∇α × vvv = εαβλ(∇αvβ − 〈αβγ〉vγ)eeeλ. (1.38)

In a similar way we have for a second-order tensor field T

curlTTT = eeeα∇α × TTT = eeeα∇α × (Tβγ eeeβ ⊗ eeeγ) (1.39)

= εγλα(∇γTλβ + 〈γρλ〉 Tρβ + 〈γρβ〉 Tλρ)eeeα ⊗ eeeβ. (1.40)

This can be programmed as follows:

Curl[f_?$VecQ, coordsys_:$CoordinateSystem] :=

Module[{cs = $ExpandCoordSys[coordsys], sf,ht,epst,df,br},

( sf=ScaleFactors[cs]; ht=Hessian3Tensor[cs];

epst= Table[ Signature[{i, j, k}], {i, 3}, {j, 3}, {k, 3}];

df=Nabla[ f, coordsys];

br=df - GDot[ht,f,3,1];

GTr[ GDot[ epst, br,1,1] ,1,3]

) /; (cs =!= $Failed)]

Curl[f_?$TenQ, coordsys_:$CoordinateSystem] :=

Module[{cs = $ExpandCoordSys[coordsys], sf,ht,epst,df,br},

( sf=ScaleFactors[cs]; ht=Hessian3Tensor[cs];

epst= Table[ Signature[{i, j, k}], {i, 3}, {j, 3}, {k, 3}];

df=Nabla[ f, coordsys];

br=df + GDot[ht,f,2,1] + Twirl[ GDot[ht,f,2,2], {1,3,2} ];

GTr[ GDot[epst,br,1,1], 1,3 ]

) /; (cs =!= $Failed)].

Laplacian, biharmonic, and inc operators

The Laplacian operator is a second-order differential operator defined as

� = div grad = ∇ · ∇. (1.41)

Because the Laplacian operator is obtained simply as a combination of the previously
defined operators, we code it as follows:

Laplacian[f_, coordsys_:$CoordinateSystem] :=

Module[{cs = $ExpandCoordSys[coordsys]},

Div[Grad[f, coordsys], coordsys] /; (cs =!= $Failed)].
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The Grad and Div operators take into account the scalar, vector, or tensor character of
the field f and apply the appropriate definition.

We shall also mention the biharmonic operator, which plays a particularly important
role in elasticity. This operator is simply defined as

�� = (∇ · ∇)(∇ · ∇). (1.42)

It has been implemented as

Biharmonic[f_, coordsys_:$CoordinateSystem] :=

Module[{cs = $ExpandCoordSys[coordsys]},

Laplacian[Laplacian[f, coordsys], coordsys] /; (cs =!= $Failed)].

Finally, we define the incompatibility operator Inc, which can be applied to second
rank tensors. It is defined as

incTTT = (curl (curlTTT)T)T. (1.43)

It is implemented in Mathematica as follows:

Inc[f_?$TenQ, coordsys_:$CoordinateSystem] :=

Module[{cs = $ExpandCoordSys[coordsys]},

Simplify[Transpose[Curl[Transpose[Curl[f, coordsys]]]]] /;

(cs =!= $Failed)].

For a compatible tensor field (i.e., one that can be integrated to a vector), the result
of the application of the incompatibility operator is identically zero.

Classical results for differential operators

The following results are not directly related to the implementation of the Ten-

sor2Analysis package. However, because they are intimately related to the definitions
of differential operators, we state them here. These results have direct relevance to the
properties of potential functions in elasticity.

Potential fields and Stokes’ theorem
Let there be a second-order tensor field. Then there exists a vector field fff such that

ggg = grad fff

if and only if

(curlgggT)T = 0.

This also ensures that the integral of ggg on any closed path γ ⊂ � vanishes:∫
γ

ggg · dxxx = 0.

In a general tensor field framework one can replace g with a tensor of rank p and fff with
a tensor field of rank p + 1.
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For mathematically interested readers we shall recall that the preceeding compatibility
conditions are a particular case of the Poincaré Lemma (Spivak, 1965) which states as
follows

Given � and an open star-shaped domain and the 1-differential form

ωωω = gidxi,

the following statements are equivalent:

• ωωω is exact, that is, there exists f such that ωωω = df , which implies ggg = grad f .
• ωωω is closed, that is, dωωω = 0, which implies equation (2.30).

Differential forms
With a vector field vvv = v1eee1 + v2eee2 + v3eee3, one can associate the following differential
forms Spivak (1965):

ωωω1
vvv = v1dx1 + v2dx2 + v3dx3

ωωω1
vvv = v1dx2 ∧ dx3 + v2dx3 ∧ dx1 + v3dx1 ∧ dx2.

Then the following relations are valid:

df = ωωω1
gradf

d(ωωω1
vvv) = ωωω2

rotvvv

d(ωωω2
vvv) = (divvvv)dx1 ∧ dx2 ∧ dx3.

Using the preceding equalities and applying Poincaré’s Lemma implies that

• if rotvvv = 0 then there exists f such that vvv = gradf
• if divvvv = 0 then there exists fff such that vvv = gradfff .

Stokes’ Theorem can be reformulated in terms of differential forms as follows (see
Figure A.1.2).

If ωωω is a differential form and c is an n-cube, that is, a regular domain or surface, then∫
c

dωωω =
∫
∂c
ωωω.

If we now apply the preceeding result to the vector field vvv and tensor field TTT, then∫
�

divvvv dv =
∫
∂�

vvv · nnn ds,
∫
�

divTTT dv =
∫
∂�

TTT · nnn ds

∫
�

(curlvvv) · nnn ds =
∫
∂�

vvv · ttt dc,
∫
�

(curlTTTT)T · nnn ds =
∫
∂�

TTT · ttt dc.

Solutions of the Poisson equation
Let ψ be a continuous differentiable scalar field defined on a closed set �.

Then

ϕ(x) = − 1
4π

∫
�

ψ(y)
| x − y | dv (1.44)
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n

n

S

t

Ω

Figure A.1.2. Two forms of domains which can be
considered as n-cubes embedded in R

3: a three-
dimensional domain�, and a two-dimensional sur-
face S.

is twice continuously differentiable and satisfies the following equation:

�ϕ = ψ. (1.45)

Similar results can be established for vector and tensor fields.

Representation of curl curl
The following identity holds:

curl curl = grad div − �. (1.46)

For example, for the vector field v the above equation can be written as

curl curlv = grad divv − �v. (1.47)

A direct consequence of the last formula is the Helmholtz representation of vector
fields.

Helmholtz representation of a vector field
Let v be a continuous vector field.

Then there exist a scalar field ϕ and a vector field ψ such that

v = ∇φ + curl ψ, div ψ= 0. (1.48)

Similar results can be established for tensor fields.

Gradient integration

The integration of a gradient in order to recover the original function is a more delicate
operation than differentiation. Recall first that this operation is possible only if certain
compatibility relations are verified, as explained in the text of Chapter 2 and in preceeding
sections.

IntegrateGrad functions provided with the book package and given below proceed
on the assumption that the user has successfully verified compatibility before applying the
procedure. The algorithm then simply performs integration along coordinate lines using
DSolve and appropiate ScaleFactors.

IntegrateGrad[nf_?$VecQ, coordsys_:$CoordinateSystem] :=

Module[{cs = $ExpandCoordSys[coordsys], sf, ht},

(

thef[v_] := f[v] ;

C2frule[v_] = C[1] -> thef[v] ;
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var = cs[[1]];

func = thef[var];

eq = Thread[ Grad[func][[1]] == nf [[1]]];

sol = DSolve[ eq, thef[var], var , GeneratedParameters -> C][[1]];

var = cs[[2]];

func = func /. sol /. C2frule[var] ;

eq = Thread[ Grad[func][[2]] == nf [[2]]];

sol = DSolve[ eq, thef[var], var , GeneratedParameters -> C][[1]];

var = cs[[3]];

func = func /. sol /. C2frule[var];

eq = Thread[ Grad[func][[3]] == nf [[3]]];

sol = DSolve[ eq, thef[var], var , GeneratedParameters -> C][[1]];

func = func /. sol ; func

)

/; (cs =!= $Failed || Curl[nf] =!= {0,0,0})]

IntegrateGrad[nf_? $TenQ, coordsys_:$CoordinateSystem] :=

Module[ {cs = $ExpandCoordSys[coordsys ]},

(

thef[v_] := {f1[v], f2[v], f3[v]} ;

C2frule[v_] = Thread[ Table[ C[i], {i, 3}] -> thef[v] ];

var = cs[[1]];

func = thef[var];

eq = Thread[ Grad[func][[All, 1]] == nf [[All, 1]]];

sol = DSolve[ eq, thef[var], var , GeneratedParameters -> C][[1]];

var = cs[[2]];

func = func /. sol /. C2frule[var] ;

eq = Thread[ Grad[func][[All, 2]] == nf [[All, 2]]];

sol = DSolve[ eq, thef[var], var , GeneratedParameters -> C][[1]];

var = cs[[3]];

func = func /. sol /. C2frule[var];
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eq = Thread[ Grad[func][[All, 3]] == nf [[All, 3]]];

sol = DSolve[ eq, thef[var], var , GeneratedParameters -> C][[1]];

func = func /. sol ; func

)

/; (cs = ! = $Failed || Curl[Transpose[nf]] =!=

{ {0,0,0}, {0,0,0}, {0,0,0}})]
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MATHEMATICA tricks

OUTLINE

This appendix is devoted to a brief discussion of the somewhat less than common
Mathematica constructs that are used in the main text. Because the presentation below
does not systematically cover the range of Mathematica techniques available, we recom-
mend that, in case of need, readers seek details through other Mathematica resources:
notebook help files and the Mathematica book (Wolfram, 1999). Within the large litera-
ture on this subject we refer to an entry-level introduction by Nancy Blachman (1992), or
else to one of the highly structured monographs of Roman Maeder (1997).

The subject matter of this appendix is split into four sections devoted to list manipu-
lation, definition of functions, algebraic handling of expressions, and graphics.

A.2.1 LIST MANIPULATION

Lists are important items within Mathematica, because most objects are internally repre-
sented by general lists,

mylist1 = { item1, item2 , .... , itemn}

mylist2 = { item1 , {item21, item22, {item231, item232, item233}} ,

item3 ... , itemn}

where the items represent different Mathematica objects. Note, for example, that mylist2
consists of a series of sublists.

A command that allows one to get rid of the sublists and to bring all elements within
the list to one level is Flatten:

In[.]:= Flatten[ mylist2 ]

Out[.]= { item1 , {item21, item22, ,item231, item232, item233 ,

item3 ... , itemn}.

A finer level of manipulation is afforded by using options; for example,Flatten[ mylist,

n ] permits ‘flattening’ of the list up to level n of the sublist. The reverse operation of
splitting a list into sublists is performed by the Partition operator.

Different items within a list can be extracted using commands [[.]] or Part; for
example,

theitem231 = mylist2[[2,3,1]]

theitem231 = Part[ mylist2 , 2 , 3 , 1].

235
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While discussing generalised lists, we note that the principles also apply to algebraic
expressions of the form

a + bˆ2.

Two important operators must be mentioned here. Fullform reveals the internal form of
the expression in a generalised form,

In[.]:= FullForm[a + bˆ2 ]

Out[.]//FullForm= Plus[a, Power[b, 2]]

and Head recoveres the zero-order element of the generalised list, which defines its outer-
most type,

In[.]:= Head[ a + bˆ2 ]

Out[.]= Plus

In[.]:= Head[ mylist2 ]

Out[.]= List.

Construction of lists using Table and other operators

Lists can be constructed directly by using operators such as Table, Array, and Range

or may be obtained by the application of more complex operators such as like NestList.
Let us briefly illustrate the mode of using Table to create a two-dimensional list:

In[.]:= mytable= Table[ a[i] b[j] , {i,3}, {j,3} ]

Out[.]= {{a[1] b[1], a[1] b[2], a[1] b[3]},

{a[2] b[1], a[2] b[2], a[2] b[3]},

{a[3] b[1], a[3] b[2], a[3] b[3]}}

To display the table in the form of an array, one has to use the MatrixForm operator, as
follows:

In[.]:= mytable // MatrixForm.

Assigning element names in lists

When handling multidimensional lists or tables, it is sometimes necessary to carry out
assignment of element names to reveal the position of this element within the list. The
situation is similar to that encountered in hand manipulation, when in vector or tensor
notation we write

vvv = vi eeei, ttt = tij eeei ⊗ eeej ,

so that the notation for vector or tensor components is clearly associated with their
meaning. We present one particular way of creating this type of element names:

mylist = Table[ ToExpression["mylist"<>ToString[i]<>ToString[j] ],

{i,6}, {j,3} ].

Here ToString transforms the numerical value of the iterator into a string. This string is
then concatenated with the tensor name (e.g., the string "mylist") using <>, and finally
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transformed back into the name of a Mathematica expression using ToExpression. This
series of operations has been used in examples to create formal expressions for elasticity
and stress tensors.

Other operations on lists: Map, Apply, Thread

It is a common feature of many programming languages that in order to apply a function
to all elements of a list, it is necessary to create a do loop. Mathematica provides several
commands that can perform this type of operation, such as Do and While. However, there
exist also a range of commands that are specifically designed to act on all members of
the list. Among these commands Map is of special interest, because it does not require
knowledge of the length of the list in advance. It applies to general expressions and
distributes the action of its first argument onto the first level elements of the list, as
illustrated by the following examples:

In[.]:= v = {v1, v2, v3, v4};

In[.]:= Map[ f , v]

Out[.]= {f[v1], f[v2], f[v3], f[v4]}

In[.]:= Map[ f , a + bˆ2 + c]

Out[.]= f[a] + f[bˆ2] + f[c].

In the same family of operators one finds the operator Apply, which makes its second
parameter (an expression) into an argument of the function that appears as its first pa-
rameter, as shown next:

In[.]:= Apply[ f , v ]

Out[.]= f[v1, v2, v3, v4]

In[.]:= Apply[ f, a + bˆ2 + c]

Out[.] = f[a, bˆ2, c].

Another important operator is Thread, which permits switching the head between
two expressions. In some respects its action is similar to that of Map:

In[.]:= Thread[ f[ a + bˆ2 + c ], Plus]

Out[.]= f[a] + f[bˆ2] + f[c].

However, it is also particularly convenient to use it in other situations when functions or
operations need to be distributed ‘through’ the list, as happens in the construction of a
system of equations below:

In[.]:= v == w

Out[.]= {v1, v2, v3, v4} == {w1, w2, w3, w4}

In[.]:= Thread[ v == w ]

Out[.]= {v1 == w1, v2 == w2, v3 == w3, v4 == w4}.
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Vector-type operations on lists: Inner, Outer

In vector and tensor calculus two operations are of special interest whenever combinations
of two tensors are to be formed, namely, inner and outer multiplication. As a particular
example, consider the two vectors below:

vvv = vi eeei, www = wi eeei.

Forming inner and outer products between these two vectors produces a scalar and a
second-order tensor, respectively, which are defined using the Einstein summation con-
vention as

vvv · www = vi wi vvv ⊗ www = vi wj eeei ⊗ eeej .

The Mathematica operators for this are Inner and Outer. The operator Dot is a direct
implementation of the usual dot product definition:

In[.]:= v = {v1, v2, v3, v4}; w = {w1, w2, w3, w4};

In[.]:= Dot[ v , w ]

Out[.]= v1 w1 + v2 w2 + v3 w3 + v4 w4.

The same result can also be obtained using Inner. However, Inner can be used in a more
general way, as can be seen in the next example, where the inner product is completed
with respect to the functions f and g:

In[.]:= Inner[ f, v , w, g ]

Out[.]= g[f[v1, w1], f[v2, w2], f[v3, w3], f[v4, w4]].

Here the outermost operation is the application of g, and the innermost operation is the
application of f. To obtain a dot product using Inner we must set f = Times and g =

Plus, so that

In[.]:= Inner[ Times , v , w, Plus ]

Out[.]= v1 w1 + v2 w2 + v3 w3 + v4 w4.

Outer works in a similar way; that is, it creates a second-order tensor from the elements
of two vectors using the function f:

In[.]:= Outer[ f , v , w ]

Out[.]= {{f[v1, w1], f[v1, w2], f[v1, w3], f[v1, w4]},

{f[v2, w1], f[v2, w2], f[v2, w3], f[v2, w4]},

{f[v3, w1], f[v3, w2], f[v3, w3], f[v3, w4]},

{f[v4, w1], f[v4, w2], f[v4, w3], f[v4, w4]}}.

To obtain the outer product one sets f = Times, so that

In[.]:= Outer[ Times , v , w ]

Out[.]= {{v1 w1, v1 w2, v1 w3, v1 w4},

{v2 w1, v2 w2, v2 w3, v2 w4},

{v3 w1, v3 w2, v3 w3, v3 w4},

{v4 w1, v4 w2, v4 w3, v4 w4}}.
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List manipulation

Table, Array, Range Creation of lists

Flatten, Partition Rearrangement of sublist structure

Inner, Outer Inner and outer operations and products

Thread, Apply, Map Application of functions to lists

ToString, ToExpression Manipulation of expression names and strings

A.2.2 FUNCTIONS

A mathematical function is defined as the application of a transformation that turns a set
A into a set B:

f : A −→ B, so that f (a) = b, a ∈ A, b ∈ B.

The definition of function is understood and used differently in common computations,
depending on the context. Within Mathematica there exist different ways to define and
manipulate objects that possess properties of mathematical functions.

Start with an example showing the difference between = (a.k.a. Set) and :=

(a.k.a. SetDelayed) operators:

In[.]:= a = 5; b = 7; c = a + b;

c

Out[.]= 12

In[.]:= a = 5; b = 7; c := a + b;

c

Out[.]= 12

In[.]:= b = 9;

c

Out[.]= 14.

The illustration is meant to show that lhs = rhs and lhs := rhs differ insofar that they assign
either the evaluated or the unevaluated right-hand-side value rhs to the left-hand-side lhs.
Assigning an unevaluted value implies that the value will be evaluated whenever the value
of the left-hand-side lhs is required in the calculation, and hence the result will depend on
the values of other variables that are current at the time of evaluation.

In this respect, evaluating c using c = . . . simply represents a short form of writing out
Evaluate[c].

A simple assignment operation for a function such as f [x] simply establishes that every
occurrence of f [x] must be replaced with the right-hand side:

In[.]:= f[x] := Sin[ xˆ2]

Out[.]= Sin[xˆ2 ].

But this has no effect for f [y]:
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In[.]:= f[y]

Out[.]= f[y].

In practice we are more frequently interested in assigning expressions to functions in a
way that would allow argument(s) such as x to be substituted into the expression, that is,
replaced by another value (e.g., this might be y). This is done using a special underscore
sign, , that is an example of a Pattern:

In[.]:= f[x_] := Sin[ xˆ2]

Out[.]= Sin[xˆ2 ]

In[.]:= f[y + z]

Out[.]= Sin[(y + z)ˆ2 ].

Patterns are used in the more general sense to define entire ranges of parameters that
pass certain conditions. For example, for functions requiring tensor-valued arguments,
we perform a check of their type using patterns in TensQ in the Tensor2Analysis

package.
The derivative of a function is computed using D or Derivative commands. The

example below shows that one has to be careful in defining the function and its arguments,
as well as the variable with respect to which the differentiation takes place.

In[.]:= f[x_] := Sin[ xˆ2];

In[.]:= D[ f, x]

Out[.]= 0

In[.]:= D[f[x] , x]

Out[.]= 2 x Cos[xˆ2 ]

In[.]:= Derivative[1][f[x]]

Out[.]=(Sin[xˆ2])’

In[.]:= Derivative[1][f]

Out[.]= 2 Cos[#1ˆ2 ] #1 &.

The first and the third attempt to differentiate were unsuccessful due to the reasons
explained previously, whereas the second and fourth attempts gave the correct answer.
In the last attempt the answer appears to be expressed in a strange format called pure
function, which is another way of expressing functions. The #1 and the & denote the
argument and the fact that the expression represents a function. Let us compute the vaule
of this function for x:

In[30]:= (2 Cos[#1ˆ2 ] #1 &)[x]

Out[30]= 2 x Cos[x ].

The main utility of pure functions reveals itself in operations where the name of the
function is not known or is being modified, such as when the application of the commands
Map, Apply, Select,... to arbitrary functions is being considered.
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Functions

f[x ] := ... typical function definition with a general argument

= , := Set and SetDelayed commands for associating values to symbols

Pattern command that helps define types of argument(s)

( ...) & Pure function

#, #1, ...#n Arguments in pure functions

Function Construction of an abstract function

D, Derivative Computes derivative(s) of a function

A.2.3 ALGEBRAIC HANDLING OF EXPRESSIONS

The main rule of thumb when manipulating algebraic expressions is to proceed in small
steps, similarly to the way one would perform operations by hand. This will permit Math-
ematica operators to perform most efficiently even on enormous expressions, which can
be very time-consuming to transform. We do not aim to present here the art and the
techniques of this manipulation, although some use is made in the main text of vari-
ous convenient tricks. We discuss briefly, however, a question regarding simplification of
expressions, that is, how to obtain reductions√

a2 + a4 = a
√

a,
1√

a2 + a4
= 1

a
1√

1 + a2
, if a > 0.

It is easy to discover that the application of Simplify, or even of the FullSimplify

operator with the Assumptions option available in version 5 of Mathematica, does not
provide the desired answer:

In[.]:= aa = Sqrt[aˆ2 + aˆ4]

Out[.]= Sqrt[aˆ2 + aˆ4 ]

In[.]:= FullSimplify[aa]

Out[.]= Sqrt[aˆ2 + aˆ4 ]

In[.]:= FullSimplify[aa, a [Element] Reals && a > 0]

Out[.]= Sqrt[aˆ2 + aˆ4 ]

One of the possible workarounds is to define directly a replacement rule for the expressions
to be processed and apply it directly, as follows:

In[.]:= f[x_] := Sin[x]

In[.]:= f[ aa ] /. Sqrt[aˆ2 + aˆ4] -> a Sqrt[1 + aˆ2]

Out[.]= Sin[a Sqrt[1 + a ]]

In certain cases it is important to check the internal form of the expression within
Mathematica using the FullForm operator in order to understand the functions involved;
for example, 1/

√
a becomes

In[65]:= FullForm[ 1 / Sqrt[a]]

Out[65]//FullForm= Power[a, Rational[-1, 2]]
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and not Power[Power[ a, Rational[1,2]], -1], as one might have expected. This
also explains which replacement rules will and will not work.

This technique has been used in the computation of strain, stretch, and rotation tensors
for simple shear in Chapter 2.

Handling algebraic expressions

Simplify, FullSimplify Simplifies an expression

a -> b Assigns a rule

expr /. rule ReplaceAll, replaces suitable atoms using rules in expr

A.2.4 GRAPHICS

Standard routines within Mathematica already provide a series of well-documented
graphics functions, Plot, Plot3D, ContourPlot, ListPlot,..., which present prac-
tical solutions to most questions. In additions, we briefly highlight an interesting option,
DisplayFunction, that permits one to choose where the graphics information is chan-
neled. In superposing different graphics, it is useful to keep intermediate images hidden
and display only the final result. This can be achieved using DisplayFunction in the
following way:

In[.]:=

p = Plot[ xˆ2 , {x,0, 5}, DisplayFunction -> Identity ]

q = Plot[ xˆ5 , {x,0, 5}, DisplayFunction -> Identity ]

Show[ p, q, DisplayFunction -> $DisplayFunction]

Examples in Chapter 2 illustrate how one can build different types of graphics starting
with primitive objects Line,Disk,..., assigning colours with Hue and GrayLevel. As a
further illustration of graphics manipulation, Appendix 3 introduces a series of commands
that allow plotting contour maps of a given function on a deformed mesh.
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Plotting parametric meshes

OUTLINE

The need to plot contour maps over complex-shaped domains arises frequently in the
course of analysis of stress and strain distributions with respect to different coordinate
systems. This appendix is dedicated to the construction of a series of graphics tools to build
parametric meshes and to plot functions over new domains.

A mesh is defined in cartesian coordinates by the function

fff (u, v,w) = fx(u, v,w)eeex + fy(u, v,w)eeey + fz(u, v,w)eeez,

(u, v, z) ∈ [u0,u1] × [v0, v1] × [w0,w1]

and a series of three increments du,dv,dz on each of the coordinate lines. We propose to
colour each mesh element using a colour function defined as

g(u, v, z), (u, v, z) ∈ [u0,u1] × [v0, v1] × [w0,w1].

The tools constructed here stand in a close relationship with the already existing commands
of the ParametricPlot type or the ComplexMap package, which are standard with the
Mathematica distribution.

The main ingredients of the parametric plot package are presented next. The col-
lection of commands and their assembly can be further understood by looking at the
ParametricMesh package that is provided together with this book. Further insight into
the techniques of command and package building can be found in Maeder (1997).

Building a 2D mesh

The sequence of commands introduced below shows how the mesh is first built up from
rectangular elements, and then colour is associated with each element.

We start by defining a rectangular domain of the parameters

(u, v) ∈ [u0,u1] × [v0, v1]

and associating a standard spacing with each of the parametric axes, ndu and ndv.
Then the function defining the deformation of the domain is introduced:

fff (u, v) = f x eeex + f y eeey

fff : [u0,u1] × [v0, v1] −→ R2.

243
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(u, v)f

u

v

Figure A.3.1. A schematic illustration of the nodal positions and a rectangular mesh element in the (u, v)
parameter space and the corresponding curvilinear domain spanned by the mesh and a distorted mesh
element in the real space.

Thread[{u0, u1, ndu} = {0, 1, 0.1}];

Thread[{v0, v1, ndv} = {0, 1, 0.1}];

fu = u + 2 v;

fv = v;

Lists of nodal coordinates in the parameter space (u, v) are created by Apply-ing the
Range command to the initial data.

The outer product of the two lists creates mesh nodes in the parameter space of
(u, v). See Fig. A.3.1.

uu = Range @@ {u0, u1, ndu};

vv = Range @@ {v0, v1, ndv};

thenodes = Outer[ List, uu, vv] ;

The projection of mesh nodes from the parameter space into the real space is created
by mapping fff over the coordinate pairs (u, v).

The nodes are then paired into groups of four in order to define individual rect-
angular elements of the mesh (patches) that are going to be associated with particular
colours.

meshnodes = Map[

{fu , fv} /. Thread[{u,v} -> #]&,

thenodes, {2}];

thequads = Map[

Flatten[#,1][[{1,2,4,3}]] &,

Flatten[

Partition[ meshnodes, {2,2}, {1,1}],

1]];

The final mesh will be defined as a collection of closed rectangular lines.
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Figure A.3.2. Deformation of the [0, 2] × [0, 1] domain
under the application of the function fff (u, v) = 3u2 eeex +
2u sin veeey using the value of the colour function at the
average deformed node position as the piecewise constant
filling colour.

ClosedLine appends the first node of each four-node set that defines a rectangular
domain to the list of nodes in order to close the line. This function is mapped over all
rectangular sets to obtain the mesh.

The mesh can be plotted by using Graphics to create the graphics objects and using
Show to display it.

ClosedLine[ptlist_]:=Line[ Append[ptlist, First[ptlist]] ]

themesh = Map[ ClosedLine, thequads];

Show[ Graphics[themesh] ]

The filling of the mesh is created by a set of coloured rectangular patches. We first
define a piecewise constant colour function by associating the value of this function at
the average node position within each rectangular element with the entire element.

The colour function and the Polygon command are then mapped over the collection
of elements to obtain the filling, which can be plotted using a syntax similar to that used
for the mesh. (See Figure A.3.2.)

MeanNode[ nl_] := 0.25 Plus @@ Drop[nl, -1]

fillcolor[ ptlist_] :=

GrayLevel[ FractionalPart[Norm[MeanNode[ ptlist ]]]]

thefill = Map[ {fillcolor[#] , Polygon[#]} &, thequads ];

Show[ Graphics[thefill] ]

Building a 2D surface in 3D

The image of a 2D surface within a 3D space can now be built in a way similar to that
presented before, starting from a mesh of rectangular elements and associating a patch of
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colour with each element. Coding of the command follows the same steps as before and
adjoins new space coordinates to geometrical objects.

The main change in the procedure with respect to that used for a 2D mesh is that the
mapping transformation

fff (u, v) = f x eeex + f y eeey + f z eeez

fff : [u0,u1] × [v0, v1] −→ R3

now contains the additional third coordinate.

Thread[{u0, u1, ndu} = {0, 1, 0.1}];

Thread[{v0, v1, ndv} = {0, 1, 0.1}];

fu = u + 2 v;

fv = v;

fz = uˆ2;

Nodes and meshes are obtained in the same way as in 2D, with the only difference being
that the resulting geometric objects have an additional coordinate.

uu = Range @@ {u0, u1, ndu};

vv = Range @@ {v0, v1, ndv};

thenodes = Outer[ List, uu, vv] ;

meshnodes = Map[ {fu , fv, fz} /.Thread[{u,v} -> #]&, thenodes, {2}];

thequads = Map[ Flatten[#,1][[{1,2,4,3} ]] & ,

Flatten[ Partition[ meshnodes, {2,2}, {1,1}], 1]];

themesh = Map[ ClosedLine, thequads];

thefill = Map[ {fillcolor[#] , Polygon[ # ]} &, thequads ];

Displaying the objects is achieved in a similar way using Graphics3D and Show. We
note in passing the use of the option Lighting -> False, which ensures that ambient
lighting that affects the colour of the underlying object is switched off. This option is a
characteristic feature of 3D display routines and did not appear in the discussion of 2D
meshes.

Show[ Graphics3D[themesh] ]

Show[ Graphics3D[thefill] , Lighting -> False]

Building a 3D box as a collection 2D surfaces

If both the parameter space and the range of the map are three-dimensional, that is, f is
defined as

fff (u, v,w) = f x eeex + f y eeey + f z eeez (u, v, z) ∈ [u0,u1] × [v0, v1] × [w0,w1],
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Figure A.3.3. Usage of Parametric-
Mesh3D: The map of the [0, 3] × [0, 0.5]
domain under the application of the
function fff (u, v) = (u + v)eeex + veeey + (0.7 +
0.1(u2 + v2))eeez .

then one must consider only external sufaces of a 3D parametric box. These are created
by the maps

fff wi (u, v) = fff (u, v,wi) i = 0, 1 (u, v) ∈ [u0,u1] × [v0, v1]

and fff vi (u,w) = fff (u, vi,w) and fff ui (v,w) = fff (ui, v,w) are defined in a similar way.
The six external surfaces can be displayed using a combination of the previously

defined commands to plot 2D surfaces in 3D space. Further details of these commands
can be found in the package ParametricMesh provided with this book. See Figures A.3.3
and A.3.4

The ParametricMesh package

Mathematica commands and their assemblies discussed above have been organised
into three principal modules, ParametricMesh, ParametricMesh3D, ParametricBox

which together allow one to create surfaces in 2D and 3D and to colour exterior surfaces

Figure A.3.4. Usage of Parametric-
Box3D: the map of the [0, 3] × [0, 0.5] ×
[−0.1, 0.1] domain under the application of
the function fff (u, v,w) = ueeex + veeey + (w +
0.1(u2 + v2))eeez.
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of a boxed domain in 3D, respectively. Examples of command call formats are given in
the notebook CA3 package examples.nb.

Parametric mesh operators

ParametricMesh[ f args, domain args, opts] Builds a 2D mesh in 2D

ParametricMesh3D[f args, domain args, opts] Builds a 2D mesh in 3D

ParametricBox[f args, domain args, opts ] Builds a boxed domain in 3D

Options

Fill -> True / False Defines if the elements of the mesh are
filled or not

FillColor -> g Defines the colour function

Mesh -> True / False Defines if the mesh is displayed or not

Plotpoints -> n Defines the number of intermediate points
in the mesh

Lighting -> False Standard Graphics3D option that turns
the ambient lighting off and makes
colours of the object visible
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Huerre, P. Mécanique des fluides. Editions de l’Ecole Polytechnique, Palaiseau, France, 2001.
Inglis, C. E. Stresses in a plate due to the presence of cracks and sharp corners. Trans. Inst.

Naval Arch. 219–230, 1913.
Kestelman, H. Modern theories of integration. Dover, 1960.
Lehnitski, S. G Theory of elasticity of an anisotropic body. Mir, Moscow, 1981.
Love, A. E. H. A treatise on the mathematical theory of elasticity. Dover, 1944.
Maeder, R. Programming in Mathematica. Addison–Wesley, 1997.
Malvern, L. E. Introduction the mechanics of continuous medium. Prentice Hall, 1969.
Marsden, J. E., and Hughes, T. J. R. Foundations of elasticity. Prentice Hall, 1982; Dover, 1994.

249



PAB CUFX161-Constantinescu August 13, 2007 17:14

250 Bibliography

Muskhelishvili, N. I. Some basic problems of mathematical theory of elasticity. Noordhoff,
Groningen, 1953.

Nye, J. F. Physical properties of crystals. Clarendon, Oxford, 1985.
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AA, 86, 98, 99, 107
AA – Aderogba theorem, 157
AA – contact problems, 186
AA – strain nuclei, 169
Airy, 116
Airy stress potential, 49, 116
Apply, 18, 237
ApplyAt, 121
approximate solution, 189, 196
approximate spectrum, 208

Beltrami stress potential, 49, 116
Beltrami–Michell equation, 90
Beltrami–Schaeffer stress potential,

49
Beltrami’s formulation, 89
Bessel functions, 185
biharmonic

displacement field, 89
equation, 91
functions, 126
operator, 119
strain field, 89
stress field, 91

Biharmonic, 123, 148, 230
biharmonic operator, 230
boundary

conditions
classical, 88
displacement, 87
traction, 87

partition, complementary, 87
boundary condition

displacement, 189, 195
traction, 189, 190, 192

Boussinesq circles, 135
Boussinesq solution, 169
Burgers vector, 131

Cartesian, 117
Cauchy’s integration formula, 97
Cauchy–Poisson theorem, 46
Cauchy–Riemann equations, 16
Cauchy–Schwartz integrability conditions, 30
CEDot, 64
centre of dilatation, 164

double line of, 172
line of, 169, 174

centre of rotation, 167
line of, 172

Cerruti solution, 171
Clapeyron’s formulation, 88
Clapeyron’s theorem, 98
Clebsch corrective term, 122
Coefficient, 146
CoefficientList, 121, 150
Collect, 150
compatibility of strain, 30, 32
ComplexExpand, 16, 148, 163
ComputeReduction, 121
conformal mapping, 16
contact problems, 186
ContourPlot, 16
ContourPlot, 137
convolution, 57
CoordinatesFromCartesian, 146
CoordinatesToCartesian, 173, 175
Cosserat material, 44
Curl, 229
Curl, 31, 161
curl operator, 229
curvilinear coordinates, 219
Cylindrical, 126, 167

d’Alembert’s paradox, 44
Dashing, 142
DDot, 57, 117, 158
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deformation gradient, 19
deplanation, 106
Derivative, 120, 240
Det, 142
differential forms, 231
Dimensions, 222
disclination, 130
Displacement.m, 157
DisplayFunction, 17, 242
Div, 102, 117, 162, 228
divergence operator, 228
Divide, 226
Donati’s theorem, 50
Dot, 57, 224, 238
‘double dot’ operator, 57
Drop, 10, 104
DSolve, 105

ECDot, 64
eigenstrain, 78, 133, 157
Eigensystem, 24
Einstein summation convention, 57
elastic

compliance, 58
isotropic, 75, 117

cone, loaded at tip, 174
constant, 56
modulus, 56, 190
stiffness, 56

isotropic, 75
wedge, 139
wedge, loaded at apex, 133
wedge, loaded at tip, 135

elasticity
linear, 56

element
length, 221
surface, 221
volume, 221

equations
constitutive, 86, 191
kinematic, 86
linear thermoelastic, 86
static equilibrium, 87

equipotential line, 15
Euclidean space, 219
Euler–Lagrange variational equations,

196
Eulerian description, 11

Expand, 146
Export, 17

Factor, 26, 142
Faraday’s rod experiments, 99
field

kinematically admissible displacement, 189
statically admissible stress, 190

FieldFromCartesian, 161, 167, 173
FieldToCartesian, 144, 175, 176
Flamant problem, 135
Flatten, 10, 121, 150, 235, 244
force dipole

momentless, 163
with moment, 166

force,
body, 41
inertial, 42
internal, 42

Fourier series, 130
FullForm, 241
FullSimplify, 105, 241
function

pure, 239

Galerkin method, 199
Galerkin vector, 182
Galilean frame, 43
GDot, 57, 117, 224
Goursat’s biharmonic solution, 126
Grad, 31, 158
gradient

operator, 227
post-, 225
pre-, 225

Graphics, 19
gravitating rotating sphere, 179
Green–Lagrange strain tensor, 23
GTr, 57, 117, 224

Hadamard’s well-posed problem, 87, 204
Hankel transform, 186
Head, 236
Helmholtz decomposition, 158, 232
Hessian tensor, 225
Hessian3Tensor, 226
Hoff ’s counterexample, 108
Hooke’s law, 56
Hue, 27
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Inc, 33, 117, 118, 123, 124, 148, 230
incompatibility

in plane stress, 119
of strain, 29
operator, 33, 50

incompatibility operator, 230
Inglis problem, 147
Inner, 221, 224, 238
integral transform method, 185
Integrate, 137, 162
IntegrateGrad, 33, 233
IntegrateStrain, 34
Inverse, 70
IsotropicCompliance, 117, 123
IsotropicComplianceK, 118
IsotropicStiffness, 158

Jacobian matrix, 219
JacobianDeterminant, 220
JacobianMatrix, 220, 221
Join, 73, 142

Kelvin problem, 137
Kelvin solution, 161
Kirsch problem, 145
Kolosov constants, 118
KroneckerDelta, 158
Kutta–Joukowsky flow, 16

Lagrangian description, 9
Lamé coefficients, 220
Lamé moduli, 75
Lamé solution, 164
Lamé’s formulation, 88
Laplacian, 120, 122, 167, 178, 229
laplacian operator, 229
Legendre polynomial, 177
LegendreP, 177
Levi-Cività symbol, 31
Limit, 146
Line, 27
LinearSolve, 143
List, 222
Love–Kirchhoff hypothesis, 45
Love’s strain function, 183

MakeName, 61
MakeTensor, 61
Map, 10, 18, 120, 237

MatrixForm, 61, 222
MatrixPower, 25
Maxwell stress potential, 124
Maxwell–Betti theorem, 99
mesh building, 243
Michell’s biharmonic solution, 129
Michell’s formulation, 89
Module, 34, 121
Mohr’s circle, 53
momentum

angular, 42
balance, 43, 45
linear, 42

Morera stress potential, 49
MultipleListPlot, 141

Nabla, 226
Navier’s equation, 89, 158, 199
NDSolve, 18
Nest, 74
Numerator, 150

optimisation, 189
orthogonality

of Legendre polynomials, 179
Outer, 24, 73, 238

Papkovich–Neuber potentials, 158
ParametricMesh.m, 247
ParametricPlot, 10
ParametricPlot3D, 71
Part, 236
particle motion, 8
particle path, 9
permutation of indices, 223
plane

stress, 116
plane strain, 124
plate

bending, 45
curvature, 45

PlotField, 17
Plus, 121
Poincaré lemma, 97, 231
Poisson equation, 231
Poisson’s ratio, 75
polar decomposition theorem, 20
PolynomialReduce, 120, 123
position vector, 219
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potential
complementary energy, 98, 190
complex, flow, 15
displacement, 157
Papkovich–Neuber, 158
strain energy, 96, 189, 190
velocity, 15

PowerExpand, 163
principal stretches, 22
problem

eigenvalue, 206
elastodynamic, 204
formulation

displacement, 88
stress, 89

ill-posed, 88
well-posed, 87, 189

product
inner, 238
outer, 238

quasistatic deformation, 95

Range, 18, 104
Rayleigh–Ritz method, 197
recursion rules, 178
reducibility, of operators, 120
reservoir

spherical, 91
Riesz theorem, 42
rigid body motion, 23, 42
RotateFromCartesian, 151
rotation tensor,

finite, 20
small, 29

RotationMatrix3D, 149

Saint Venant principle, 101
scale factors, 220
ScaleFactors, 162, 221
ScaQ, 223
Sequence, 223
SetDelayed, 104
SetCoordinates, 31, 117, 126, 160, 161,

167
shell

spherical, 91
Show, 10, 17
Signature, 31, 223

Simplify, 16, 73, 163, 241
singular solution, 166
Solve, 13, 150
spectrum of free vibrations, 205
Spherical, 161, 175
spherical harmonics, 177
state

isothermal, 87
natural, 87

Stokes theorem, 30, 43–45, 191, 193, 205,
230

strain
nuclei, 169
volumetric, 165

Strain, 158
strain nuclei, 169
strain tensor,

finite, see Green–Lagrange strain tensor
small, 28

streakline, 13
stream function, 15
streamline, 12, 15
Stress, 158
stress tensor

Cauchy, 46
divergence-free, 48
initial, 190
self-equilibrated, 48

stretch tensors, left and right, 20
Sum, 24, 64
superposition principle, 94
surface traction, 41
SymIndex, 61
symmetry

material, 65
of elastic stiffness tensor, 57
of strain tensor, 57
of stress tensor, 57

Table, 10, 222, 236
Take, 150, 226
Taylor series, 19, 193, 208
TenQ, 223
tensor, 222

contravariant, 222
covariant, 222

Tensor2Analysis.m, 219
Tensor2Analysis.m, 33, 117, 126, 136, 157
TensorRank, 223
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theorem
extremum, 192
inequality of potentials, 194
maximum of complementary energy

potential, 193
minimum of strain energy potential, 192
reciprocal, 99
uniqueness of elastic solution, 195
virtual work, 95, 98

thermal expansion coefficients, linear, 87
thermal explansion, 190
Thread, 18, 102, 163, 167, 237
ToExpression, 104, 222, 237
ToString, 222, 237
Tr, 57, 165, 224
traction vector, 162
trajectory, see particle path
Transpose, 149, 158, 223
TrigFactor, 26
TrigReduce, 149
TrigToExp, 163
Twirl, 223

uniform deformation, 160
Union, 150
uniqueness of solution, 95

variational principles, 189
VecQ, 223
vector field

irrotational, 159
solenoidal, 159, 167

VectorAnalysis.m, 219
vibration

spectrum, 205
virtual power, 42
virtual velocity field, 42
Voigt notation, 59
von Mises stress, 144
von Mises–Sternberg formulation,

107

Williams’ eigenfunction analysis, 139

Young’s modulus, 75
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