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PREFACE

teaching discrete mathematics. For the student, my purpose was to present ma-

terial in a precise, readable manner, with the concepts and techmiques of discrete
mathematics clearly presented and demonstrated, My goal was to show the relevance
and practicality of discrete mathematics to students, who are often skeptical. [ wanted 1o
give students studying cemputer science al! the mathematical foundations they need for
their future studies; I wanted to give mathematics students an understanding of impor-
tant mathematical concepts together with a sense of why these concepts are important
for apphcations. And 1 wanted to accomplish these goals without watering down the
material.

For the instructor, my purpose was to design a flexible, comprehensive teaching tool
using proven pedagogical techniques in mathematics. I wanted to provide instructors
with a package of materials that they could use to teach discrete mathematics effectively
and efficiently in the most appropriate manner for their particular set of students. 1 hope
that I have achieved these goals,

Ihave been extremely gratified by the tremendous success of this text. The many im-
provements in the fourth edition have been made possible by the feedback and sugges-
tions of a large number of instructors and students at many of the more than 400 schools
where this book has been successfully used. There are many enhancements in this edi-
tion. The ancillary package has been enriched, and a companion Web site provides help-
ful material, making it easier for students and instructors to achieve their goals.

This text is designed for a one- or two-term introductory discrete mathematics
course 1o be taken by students in a wide variety of majors, including mathematics,
computer science, and engineering. College algebra is the only explicit prerequisite.

In writing this bock, I was guided by my long-standing experience and interest in

Goals of a Discrete Mathematics Course

A discrete mathematics course has more than one purpose. Students should learn a par-
ticular set of mathematical facts and how to apply them: more importantly, such a course
should teach students how to think mathematically. To achieve these goals, this fext
stresses mathematical reasoning and the different ways problems are solved. Five impor-
tant themes are interwoven in this text: mathematical reasoning, combinatorial analysis,
discrete structures, algorithmic thinking, and applications and modeling. A successful
discrete mathematics course should carefully blend and balance all five themes.

1. Mathematical Reasoning: Students must understand mathematical reasoning in
order to read, comprehend, and construct mathematical arguments. This text starts
with a discussion of mathematical logic, which serves as the foundation for the

1%
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subsequent discussions of methods of proof. The technique of mathiematical in-
duction is stressed through many different types of examples of such proofs and a
careful explanation of why mathematical induction is a valid proof technique.

2. Combinatorial Analysis: Animportant problem-solving skill is the ability to count
or enumerate objects. The discussion of enumeration in this book begins with the
basic techniques of counting. The stress is on performing combinatorial analysis
to solve counting problems, not on applying formulae,

3. Discrete Structures: A course in discrete mathematics should teach students how
to work with discrete structures, which are the abstract mathematical structures
used to represent discrete objects and relationships between these objects. These
discrete structures include sets, permutations, relations, graphs, trees, and finite-
state machines.

4. Algorithmic Thinking: Certain classes of problems are solved by the specification
of an algorithm. After an algorithin has been described, a computer program can
be constructed implementing it. The mathematical portions of this activity, which
include the specification of the algorithm, the verification that it works properly,
and the analysis of the computer memory and time required to perform it, are all
covered in this text. Algorithms are described using both English and an easily
understood form of pseudocode.

3. Applications and Modeling: Discrete mathematics has applications to almost ev-
ery conceivable area of study. There are many applications to computer science
and data networking in this text, as well as applications w such diverse areas
as chemistry, botany, zoology, linguistics, geography, business, and the Internet.
These applications are natural and important uses of discrete mathematics and
are not contrived. Modeling with discrete mathematics is an extremely important
problem-solving skill, which students have the opportunity to develop by con-
structing their own models in some of the exercises in the book.

Why a Fourth Edition?

The third edition of this book has been used successfully at over 400 schools in the
United States, at dozens of Canadian universities, and at universities in Europe, Asia,
and Oceania. Many students and professors like the third edition as it is. Why then, do
we need a fourth edition? This is a valid question deserving a careful answer.

First, although the third edition has been extremnely effective, many instructors have
asked for specific improvements. Many have wanted changes to the text, additional or
clarified examples, more exercises of a cestain type, or new topics covered. In this new
edition I have improved the book by taking into account the numerous suggestions I
have received. The changes I have made at the request of users make this a better text.

Second, discrete mathematics is an active subject. There are many new discoveries
made every year, and some of these can be reflected in a text. So, I have included dis-
coveries made after the publication of the third edition. (Subsequent discoveries will be
included in Jater printings of this edition whenever possible and noted on the companion
Web site.}

Third, since the publication of the third edition, the Internet has become extraordi-
narily imporiant and useful. In this edition you will find examples and exercises relating
applications of discrete mathematics to the structure of the Internet itse!f. And with this
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edition there is an extensive Web site that supplements the text in meaningful ways,
offering additional material for students and instructors and providing a gateway for
learning more about discrete mathematics by providing links to relevant sites on the
~ -, Web, However, since many people will choose not to use the Web in conjunction with
‘Web  this course, the text includes icons indicating the inclusion of Web links in the annotated

' Web Guide on the Web site for this book.
The following list highlights some of the changes in this edition that make the book

more effective.

NEW TOPIC COVERAGE

w Big-Omega and big-Theta notation are now covered, in addition to big-O
notation.

» New topics in probability theory include the variance of a randem variable and
Chebyshev’s inequality. Also, the Monty Hall three-door problem is now dis-
cussed in the text.

w The halting problem is now treated, including a proof that it is unselvable.

w The traveling salesman problem is discussed.

EXPANDED TOPIC COVERAGE

s Additional material on mathematical logic and mathematical reasoning has been
added. New examples show how to translate between quantified statements and
English. The discussion of rules of infetence has been enhanced. In particalar,
rules of inference for quantified statements are now explicitly covered, and ex-
amples illustrating how rules of inference are used have been added.

8 Coverage of the floer and ceiling functions has been enbanced.

» Generating functions are now treated in a separate section in the main body of
the text, expanding the coverage previously found in the appendix. The focus of
this section is to show how generating functions can be used to solve counting
problems, solve recorrence relations, and prove combinatorial identities.

s Nonhoemogeneous linear recurrence relations with constant coefficients are now
discussed in the text, rather than in an exercise set.

» The topic of integer sequences has extended coverage; examples and exercises
involving identifying possible formuias for the terms of a sequence from its initial
terms have been added.

w New biographies have been added, including those for Peirce, Chebyshey,
Knuth, Hardy, Ramanujan, Tukey, Sloane, and Mersenne.

UP-TO-DATE, MODERN EXAMPLES

» Examples have been added at some key points in the text to help explain im-
portant concepts that have proved troublesome to students and to make the book
more interesting,

s Examples and exercises illustrating the application of discrete mathematics to
the protocols and network architecture of the Internet have been added. These
additions include counting problems involving Internet addresses and Internet
Protocot packets: the topic of Boolean searching, used by Internet search engines;
and an example about how spanning trees are used in IP multicasting have been
added,
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= Material has been added to the text which demonstrates that discreté mathematics
1s an active subject with many open questions and with new discoveries. For
example, Mersenae primes are now covered, including the discoveries of new
primes in 1997 and 1998; the range for which the Goldbach conjecture has been
verified is discussed; and the variation of the Tower of Hanoi puzzle with four
pegs is described,

EXPANDED EXERCISE SETS

= More than 500 new exercises have been added, including both routire and chat-
lenging ones, as requested by instructors who used the third edition, as well as
exercises based on logical and mathematical puzzles. New blocks of exercises
develop key concepts in a series of steps. New exercises ensure that there are
both odd- and even-numbered exercises of important exercise types. There are
also more exercises that depend on the previous study of calculus; these are ex-
plicitly noted as vsval and can be easily avoided if so desired.

WEB SUPPORT

® A Web site has been developed to supplement the text for both students and
instructors. This Web site contains a wide range of features (see page Xix), in-
cluding an annotated Web Guide to relevant sites on the Internet, that is keyed
to the 1ext. This guide will be kept current and updated regularly during the life
of this edition.

= An icon has been placed at points in the text whenever the Web Guide includes
annotated links to Web sites pertinent (o the matertal under discussion. (More
than 200 different links are in the guide.) These sites include additional in-
formation about concepts and applications, biographies, the latest discoveries,
downloadable source code, interactive applets, animated algorithms, and other
interesting material,

Special Features

ACCESSIBILITY This text has proven to be easily read and anderstood by be-
ginning students. There are no mathematical prerequisites beyond college algebra for
almost all of this text. The few places in the book where calculus is referred 1o are ex-
plicitly noted. Most students should easily understand the pseudocode used in the text
to express algorithms, regardless of whether they have formally studied programming
languages. There is no formal computer science prerequisite,

Each chapter begins at an easily understood and accessible level. Once basic math-
ematical concepts have been carefully developed, more difficult material and applica-
tions to other areas of study are presented,

FLEXIBILITY This text has been carefully designed for flexible use. The depen-
dence of chapters on previous material has been minimized. Each chapter is divided
into sections of approximately the same length, and each section is divided into subsec-
tions that form natural blocks of material for teaching. Instructors can easily pace their
lectures using these blocks.
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WRITING STYLE The writing style in this beok is direct and pragmatic. Precise
mathematical language is used without excessive formalism and abstraction. Notation
is introduced and used when appropriate. Care has been taken to balance the mix of

notation and words in mathematical statements.

EXTENSIVE CLASSROOM USE  This book has been used at over 400 schools,
and more than 325 have used it more than ence. The feedback from instructors and stu-
dents at nanty of the schools has helped make the fourth edition an even mere successful
teaching tool than previous editions.

MATHEMATICAL RIGOR AND PRECISION  All definitions and theorems in
this text are stated extremely carefuily so that students will appreciate the precision of
language and rigor needed 1 mathematics. Proofs are motivated and developed slowly;
their steps are all carefully justified. Recursive definitions are explained ard used

extensively.

FIGURES AND TABLES  This text contains more than 550 figures. The figures are
designed to illustrate key concepts and steps of proofs. Color has been carefully used
in figures to illustrate important points, Whenever possible, tables have been used to
surmmarize key peints and illuminate quantitative relationships.

WORKED EXAMPLES  Over 650 examples are used to illustrate concepts, relate
different topics, and introduce applications. In the examples, a question is first posed,
then its solution is presented with the appropriate amount of detail.

APPLICATIONS The applications included in this text demonstrate the utility of
discrete mathematics in the solution of real-world problems. This text includes appli-
cations 1o a wide variety of areas, including computer science, data networking, psy-
chology, chemistry, engineering, linguistics, biology, business, and the Internet.

ALGORITHMS Results in discrete mathematics are often expressed in terms of
algorithms; hence, key algorithms are introduced in each chapter of the book. These
algorithms are expressed in words and in an easily understood form of structured pseu-
docode, which is described and specified in Appendix A.2, The computational com-
plexity of the algorithms in the text is also analyzed at an elementary level.

HISTORICAL INFORMATION  The background of many topics is succinctly de-
scribed in the text. Brief biographies of more than 55 mathematicians and computer
scientists are included as footnotes. These biographies include information about the
lives, careers, and accomplishments of these important contributers to discrete math-
ematics. In addition, numerous historical footnotes are included that supplement the
historical information in the main body of the text.

KEY TERMS AND RESULTS A list of key lerms and results follows each chapter.
The key terms include only the most impertant that students should learn, not every
term defined in the chapter.

EXERCISES  There are over 3000 cxercises in the text. There are many different
types of questions posed. There is an ample supply of straightforward exercises that
develop basic skills, a large number of intermediate exercises, and many challenging
exercises, Exercises are stated clearly and unambiguously, and all are carefully graded
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for level of difficulty. Exercise sets contain special discussions, with exercises, that
develop new concepts not covered in the text, permitting students o discover new ideas

through their own work.
Exercises that are somewhat more difficult than average are marked with a single

star; those that are much more challenging are marked with two stars. Exercises whose
solutions require calculus are explicitly noted. Exercises that develop results nsed in the
text are clearly identified with the symbol ex. Answers or outlined solutions to all odd-
numbered exercises are provided at the back of the text. The solutiens include proofs
in which most of the steps are clearly spelled out.

REVIEW QUESTIONS A set of review questions is provided at the end of each
chapter. These questions are designed to help students focus their study on the most
important concepts and techniques of that chapter. To answer these questions students
need to write long answers, rather than just perform calculations or give short replies.

SUPPLEMENTARY EXERCISE SETS Each chapter is followed by a rich and
varied set of supplementary exercises. These exercises are generally more difficult than
those in the exercise sets following the sections. The supplementary exercises reinforce
the concepts of the chapter and integrate different topics more effectively.

COMPUTER PROJECTS Each chapter is followed by a set of computer projects.
The approximately 150 computer projects tie together what students may have leamed
in computing and in discrete mathematics. Computer projects that are more difficult
than average, from both a mathematical and a programming point of view, are marked
with a star, and those that are extremely challenging are marked with two stars.

COMPUTATIONS AND EXPLORATIONS A set of computations and explo-
rations is included at the conclusion of each chapter. These exercises (approximately
100 in total) are designed to be completed using existing software tools, such as pro-
grams that students or instructors have written or mathematical computation packages
such as MAPLE or Mathematica, Many of these exercises give students the opportu-
nity to uncover new facts and ideas through computation. (Some of these exercises are
discussed in the companion velurse, Exploring Discrete Mathematics with MAPLE.)

WRITING PROJECTS Each chapter is followed by a set of writing projects. To
do these projects students need to consult the mathematical literature. Some of these
projects are historical in natare and may involve lovking up original sources. Others
are designed to serve as gateways to new topics and ideas. All are designed to expose
students to ideas not covered in depth in the text. These projects tie together mathe-
matical concepts and the writing process and help expose students to possible areas
for future study. (Suggested references for these projects can be found in the Student
Solutions Guide.)

APPENDIXES There are two appendixes to the text. The first covers exponential
and logarithmic functions, reviewing some basic material used heavily in the course;
the second specifies the psendocode nsed to describe algorithms in this text.

SUGGESTED READING A list of suggested readings for each chapter is provided
in a section at the end of the text. These suggested readings include books at or below
the level of this text, more difficult books, expository articles, and articles in which
discovenies in discrete mathematics were originally published.
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How To Use This Book

This text hag been carefully written and constructed to support discrete mathematics
courses at several levels and with differing foci. The following table identifies the core
and optional sections. An introductory one-term course in discrete mathematics at the
sophomore level can be based on the core sections of the text, with other sections cov-
ered at the discretion of the instructor. A two-term introductory course could include
all the optional mathematics sections in addition to the core sections. A course with a
strong computer science emphasis can be taught by covering some or all of the optional
computer science sections.

Optional Computer Optional Mathematics

Chapter Core Sections Science Sections Sections

1 1.1-1.8 (as needed)

2 21-2.3, 2.6 (as needed) 2.4 2.5

3 3133 34,35

4 41-44 4.7 4.5,4.6

5 51,55 5.3 5.2,54.5.6

6 6.1,6.3,6.5 6.2 64,66

7 T1-75 7.6-78

8 31 8.2-84 85,86

9 9.1-94
10 16.1-10.5

Instructors using this book can adjust the level of difficulty of their course by either
choosing to cover or to omit the more challenging examples at the end of sections, as
well as the more challenging exercises. The dependence of chapters on earlier chapters
is shown in the following chart.

Chapter |
Chapter 2
Chapter 3
Chapter ¢
S

Chapter 5 Chapter 6 Chapter 7 Chapter 9 Chapter 10

Chapter 8
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Ancillaries

STUDENT SOLUTIONS GUIDE This student manual, available separately, con-
taing fill solutions to all the odd-numbered problems in the exercise sets. These sofu-
tions explain why a particular method is used and why it works. For some exercises, one
or two other possible approaches are described to show that a problem can be selved in
several different ways. Suggested references for the writing projects found at the end
of each chapter are also included in this volume. The guide contains a guide to writing
proofs and a list of common mistakes students make in discrete mathematics. It also
includes sample tests and a sample c1ib sheet for each chapter, both designed to help
students prepare for exams. Students find this guide extremely useful.

INSTRUCTOR’S RESQURCE GUIDE This manual centains full solutions to
even-pumbered exercises in the text. It also prevides suggestions on how to teach the
material in each chapter of the book, including the peints to siress in each section and
how to put the material inte perspective. Furthermore, the manual contains a test bank
of sample examination questions for each chapter, including some sample tests as well
as the solutions to the sample questions. Finally, sample syllabi are presented.

APPLICATIONS OF DISCRETE MATHEMATICS  This ancillary is a separate
text that can be used either in conjunction with the text or independently, It contains
more than 20 chapters (each with its own set of exercises) written by instructors who
have used the text. Following a common format similar to that of the text, the chapters
in this book can be used as a text for a separate course, for a student seminar, or for
a student doing independent study. Subsequent editions of this ancillary are planned
that will broaden the range of applications covered. Instructors are invited to submit
additional applications for possible inclusion in later versions.

TEST BANK  An extensive test bank of more than 1300 questions is available for use
on either Windows or Macintosh systems. Instructors can use this software to create their
own {ests by selectmg questions of their choice or by random selection. Instructors can
add their own headings and instructions, print scrambled versions of the same test, and
edit the existing questions or add their own. A printed version of this test bank, including
the questions and their answers, is included in the Instructor’s Resource Guide.

EXPLORING DISCRETE MATHEMATICS AND 1S APPLICATIONS WITH
MAPLE This ancillary is a separate book designed to help students use the MAPLE
computer algebra system to do a wide range of computations in discrete mathematics.
For each chapter of this 1ext, this new ancillary includes the following: a description
of relevant MAPLE functions and how they are used, MAPLE programs that carry out
relevant computations, suggestions and examples showing how MAPLE can be used
for the computations and explorations at the end of each chapter, and exercises that can
be worked using MAPLE.
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THE COMPANION
WEB SITE

tained and improved on a continuing basis. The URL for this site is
http://www.mhhe com/rosen. Following this URL takes you to a page that

! n extensive companion Web site has been developed and will be main-

provides access to five different sections of the Web site:
o About the Book
» [nstructor Resources
» Student Resources
= Web Guide for Discrete Mathemancs
= Suppiementary Resources

Each section will be in place with the publication of this new edition, although addi-
tional material will be added later.

The About the Book section includes basic information about the textbook and its
ancillaries. It also contains an errata list and an e-mail address for the submission of
errata and suggestions.

The Instructor Resources section is a secure portion of the Web site. It contains
valuable tools and resources to supplement both the text and the discrete mathematics
teaching experience.

The Student Resources section contains helpful reference and supplemental mate-
rial to enhance students’ learning experience.

The Web Guide for Discrete Mathematics section includes annotated links to rel-
evant Web sites anchored to the Web icons in the text. {Links are included wherever
the icon is found.} The links in this guide can be used to access sites that provide bi-
ographies, additional material on topics covered in the text, information on the latest
discoveries, animated algorithms, downtoadable source code, and so on.

The Supplemeniary Resources section, intended for use by both students and in-
structors, includes supplementary educational material, orgunized by chapter. This ma-
terial is designed to clarify and expand on material in the text.

XX
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TO THE STUDENT

hat is discrete mathematics? Discrete mathematics is the part of mathemat-
ics devoted to the study of discrete objects. (Here discrefe means consisting
of distinct or unconnected elements.) The kind of problems solved using

discrete mathematics include:
= How many ways are there to choose a valid password on a computer system?
= What is the probability of winning a lottery?
[s there a link between two computers in a network?
What is the shortest path between twe cities using a transportation system?
= How can a list of integers be sorted so that the integers are in increasing order?
= How many steps are required to do such a sorting?
s How can a circuit that adds two integers be designed?
# How many valid Internet addresses are there?

You will learn the discrete structures and techniques needed to solve problems such as
these.

More generally, discrete mathematics is used whenever objects are counted, when
relationships between finite {or countable) sets are studied, and when processes involv-
ing a finite number of steps are analyzed. A key reason for the growth in the importance
of discrete mathematics is that information is stored and manipulated by computing ma-
chines in a discrete fashion.

There are several important reasons for studying discrete mathematics. First,
through this course you can develop your mathematical maturity, that is, your ability
to understand and create mathematical arguments. You will not get very far in your
studies in the mathematical sciences without these skils,

Second, discrete mathematics is the gateway to more advanced courses in all
parts of the mathematical sciences. Discrete mathematics provides the mathematical
foundations for many computer science courses, including data structures, algorithms,
database theory, automata theory, formal languages, compiler theory, computer secu-
rity, and operating systems. Students find these courses much more difficult when they
have not had the appropriate mathematical foundations from discrete math. One student
has sent me an electronic mail message te tell me that she used the contents of this
hoak in every computer science course she took!

Math courses based on the material studied in discrete mathematics include logic,
set theory, number theory, linear algebra, abstract algebra, combinatorics, graph theory,
and probability theory (the discrete part of the subject).

Also, discrete mathematics contains the necessary mathematical background
for solving problems in operations research (including many discrete optimization
techniques), chemistry, engineering, biology, and so on. In the text, we will study

applications to some of these areas,
XXi
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Xxii  TO THE STUDENT

1 would like to offer some helpful advice to students about how best to fearn discrete
mathematics. You will learn the most by working exercises. I suggest you do as many as
you possibly can, including both the exercises at the end of each section of the text and
the supplementary exercises at the end of each chapter. Always wy exercises yourself
before consalting the answers at the end of the book or in the Student Solutions Guide.
Only after you have put together a solution, or you find yourself at an impasse, shouid
you lock up the suggested solution. At that point you will find the discussions in the
Student Solutions Guide most helpful. When doing exercises, remember that the more
difficult ones are marked as described in the following table.

Key to the Exercises

No matking A foutine exercise

* A difficuit exercise

*% An extremely challenging exercisc
oY An exercise containing a resuit used

in the book

(Calculus required) § An exercise whose solution requires
the use of limits or concepts from
differential or integral calculus

Finally, T encourage you to explore discrete mathematics beyond what you see in
the book. An excellent starting place is the Web Guide for Discrete Mathematics that
can be found on the Web site for this book. The URL is http://www.mhhe.com/rosen.

Kenneth H. Rosen
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The Foundations: Logic,
Sets, and Functions

his chapter reviews the foundations of discrete mathematics. Three important

topics are covered: logic, sets, and functions. The rules of logic specify the

precise meaning of mathematical statements. For instance, the rules give us the
meaning of such statements as, “There exists an integer that is greater than 100 that is
a power of 2,” and, “For every integer » the sum of the positive integers not exceeding
nis alr + 127 Logic is the basis of all mathemarical reasoning. and it has practical
applications to the design of computing machines, to artificial intelligence, to computer
programming. to programming languages, and to athier areas of computer science.

Much of discrele mathematics is devoted to the study of discrete structures, which
are used to represent discrete objects. All discrete structures are buiit up from scts,
which are collections of objects. Examples of discrete structures built up from sets
inciede combinations, which are unordered collections of chjects used extensively in
counting; relations, which are sets of ordered pairs that represent relatienships betwecn
objects: graphs. which ave sets of vertices and edges that connect vertices; and finite
state machines. which are used to mode] computing machines.

The concept of a function is extremely important in discrete mathematics. A func-
tion assigns to each element of a set precisely one element of a set. Such useful struc-
tures us scquences and strings are special types of functions. Functions are used
represent the number of steps a procedure uses to solve a problem. The analysis of al-
gorithms uses terminology and concepts related to the growth of functions. Recursive
[unctions, defined by specifving their values at positive integers in terms of thetr values
at smaller positive integers, are used (o solve many counting problems.

_I ..1..._._

[Logic

INTRODUCTION

The rules of logic give precise meaning to mathematical statements. These rules are
used to distinguish between valid and invalid mathematical arguments. Since a major
goal of this book is to teach the reader how to understand and how to construct correct
nrathematical arguments, we begin our study of discrete mathematics with an introduc-
hon to logic.

in addition 1o its importance in understanding mathematical reasoning. logic has
numerous applications in computer science. These rules are used in the design of com-
puler circuits, the construction of computer programs, the verification of the correctness
of programs. and in many other ways, We will discuss each of these applications in the
following chapters.
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2 1/ The Foundations: Logie, Sets, and Functions

PROPOSITIONS

Our discussion begins with an introduction to the basic building blocks of logic—
propositions. A proposition is a siatement that is either true or false, but not both,

EXAMPLE 1 All the foliowing statements are propositions.

. Washington, [D.C., is the capital of the United States of America.
. Toronto is the capital of Canada.

3. l -1 = 2

4. 2+2 =13,

I

Propositions 1 and 3 are true, wiereas 2 and 4 are falsc. u

Some sentences thai are not propositions are given in the next example,

EXAMPLE 2 Consider the following sentences,

What time 15 it?
Read this carefully,

x+] =2

Al

X+y =1

Sentences | and 2 are not propositions because they are not statements. Sentences 3
and 4 are not propesitions because they are neither true nor false, since the variables in
these sentences have not been assigned values. Various ways to form propositions from
sentences of this type will be discussed in Section 1.3, u

Letters are used to denote propositions, just as letters are uscd to denote variables.
The conventional letters uscd for this purpose are p, g, r.s,.... The truth value of a
proposition is true, denoted by T, if it is a true proposition and false, denoted by F, if it
is a false proposition.

We now wrm our attention {0 methods for producing new propositions from those
that we already have. These methods were discussed by the English mathematician
(reorge Booke in 1854 in his book The Laws of Thought. Many mathematical statements
are constructed by combining one or more propesitions. New propositions, called com-
pound prupositions, are formed from exjsting propositions vsing logical operators.

web

DEFINITION 1. Let p be a proposition. The statement
“It is not the case that p.“

is another propesttion, calied the negation of p. The negation of p is denoted by - p,
The proposition - p is read “not p.”
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11Logic 3

EXAMPLE 3 Find the negation of the proposition
“Today is Friday™

and express this in simple English.

Selution: The negation is
“It is not the case that today is Friday.”
This negation can be more simply expressed by

“Today is not Friday.” |

Remark: Strictly speaking, sentences invelving variable times such as those in Exam-
ple 3 are not propositions unless a fixed time is assumed. The same holds for variable
places unless a fixed place is assumed and for pronouns unless a particular person is
assumned.

A truth table displays the relatioaships between the treth values of propositions.
Truth tables are especially valuable in the determination of the truth values of proposi-
tions constructed from simpler propositions. Table 1 displays all possible truth valves
of a propoesition and the corresponding truth values of its negatien.

The negation of a propesition can alse be considered the result of the operation of
the negation operator on a proposition. The negation operator consiructs a new propo-
sition from a single existing proposition. We will now introduce the logical operators
that are used 1o form new propositions from two or more existing propositions. These
logical operators are also calied connectives.

TABLE 1 The Truth Table
for the Negation of a Proposition.

r | p
T F
|
F ' T *

George Boole (18E5-1864).  George Buoele, the son of a cobhbler, was born m Lincoln. England, in Novem-

weld  ber 1815 Because of his family's difficelt financial situarion, Boole had to struggle to educate himself while
supparting his family. Nevertheless, he became one of the most important mathematicians of the 18005 Al-
though he considered a career as a clergyman, he decided mstead to go into teaching and soon afterward
opened a school of his own, [n his preparation for teachimg mathematics, Boole-—unsatisfied with textbooks
of his day—decided ta read the works of the great mathematicians. While reading papers of the great French
mathematician Lagrange, Boole made discoveries in the caleulus of variations, the branch of anaiysis deal-
ing with finding curves and surfaces optimizing certain parameters.

In 1348 Boole published The Marhemarical Analvsis of Logic, the first of his contributions to symbulic
logic. In 1849 he was appointed professor of mathematics ar Queen’s College in Cork, Irefand. In 1854 he
published The Lawy of Thoughy, his most famous work, [n this book Boole introduced what is now called
Hoolean ilgebra in his honor. Roole wrote textbooks on djfferential equaticns and on difference equations
that were used in Great Britain until the end of the nineteenth century. Boole married in 1855; his wife
was the mece of the professor of Greek at Queen’s College. Tn 1864 Roole died from pneumonia, which he
contracted as a result of keeping a lecture engagement even though he was soaking wet from a rainstorm.
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1 1/ The Foundations: Logic, Sets, and Functions

DEFINTTION 2. Let p and g be propositions. The propokition “p und 4" d
by pAg, lsﬂlepmpommﬂmt:smwwhonhmhpmdqmm'Mmfabe
otherwise. The proposition p /\ g is cailed the conjunction of p and g.

The truth table for p /¢ is shown in Table 2. Note that there are four rows in this
truth table. one row for cach possible combination of truth values for the propesidons p

and .

EXAMPLFE 4 Find the conjunction of the propositions p and g where p is the proposttion “Today is
Jriday™ and ¢ is the proposition “Tt is raining today.”

Solution: The conjunction of these propositions, p /* g. is the proposition “Today is
Friday and it is raining today.” This proposition is true on rainy Fridavs and is alse on
any day thai 8 nit a Friday and on Fridays when it does not rain. [ ]

DEFINTTION 3. - Letp and g be propositions. The proposition “p or g,” denoted
by p\/q. is the proposition that is false when p and & are both false and troe otherwise,
The propasition p\/ ¢ is called the disfunction of p and ¢. -

The truth tabice for p /g 1s shown i Table 3.

The use of the conncctive or in 4 disjunction cotresponds to vne of the 1wo ways the
word ¢ 15 used in English, namely. in aninclusive way. A disjunction is true when either
of the twe propositions in it is true or when both are lroe. For instance. the inclusive or
is being used in the slatement

“Students who have faken calculus or compuier science can take this class.”

Here, we mean that students who have taken both caleulus and computer science can
tuke the ciass, as well as the students who have taken just one of the two subjects. On
the other hand, we are using the exclusive or when we say

*Students who have laken calewlus or computer science, but not both, can enroll
in this elass.”

Here, we mean thal studenss who have taken both calcnlus and a computer science
course caunol 1ake the class. Only those whe have taken exactly one of the two courses
can take the class.

TABLE 2  The Truth TABLE 3 The Truth
Table for the Conjunction | Table for the Disjunction
af Two Propositions. of Two Propositions.
oo g P q LAV
! |
r T I T T . 7
roE F T F ! T
F T F F T T
oot F F F | F
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Similarly, when a menu at a restaurant states, “Soup or salad comes with anentrée,”
the restaurant aimost always means that customers can have either soup or salad, bt
not both, Hence. this is an cxclusive, rather than an inclusive, or.

EXAMPLE 3 What is the disjunction of the propositious p and ¢ where p and ¢ are the same propo-
sitions as in Example 47

Solurion: The disjunction of p and ¢. p; 4. is the propostiion
“today 1s Friday or it is raining today.”

This proposition 15 true on any day that is either a Friday or a rainy day (including rainy
Fridays). Tt is only talse on days that are not Fridays when it also does not rain. ]

As was previously remarked. the use of the connective or in a disjunction corre-
sponds to one of the two ways the word or is used in English, namely, in an inclusive
way. Thus, a disjunction is true when eilher of the two propositions in it is tiue or when
both are true. Semetimes. we use or In an exclusive sense. When the exclusive or is
used to connect the propositions p and ¢. the proposition “p or ¢ (bul not beth)™ is ob-
lained. This proposition is true when p is truc and g is false, or vice versa, and itis false
when both p and ¢ arc talse and when beth are true.

DEFINITION 4, Let p and g be propositions. The exclusive or of p and g, denoted
by p € g, 15 the proposition that is true when exactly one of p and g is true and is
false otherwise.

The truth table for the exclusive or of two propositions is displayed in Table 4.
We will discuss several other important ways that propesitions may be combined.
DEFINITIONS.  Let p and g be propositions. The implication p — gis the propo-
sition that is false when p is true and g is false and true otherwise, In this implication

p is called the hypothesis (or antecedent ot premise) and q is called the conclusion
(or conseguence).

The truth table for the implication p — 4 is shown in Table 5.

TABLE 4  The Truth Table TARLE 5  The Truth
for the Exclusive Or of Two Table for the Impli-
Propasitions. cation p — g.
[
?oq rEg P g Py
|

T T F T T 1

T F | T T F F

F r T F T T

| F ¥ | F F r I T
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& 1/ The Foundations: Logic, Sets, and Funcfions

Because implications arise in many places in mathematical reasoning, 2 wide va-
ricty of terminclogy is used to express p — ¢. Some of the more common ways of
expressing this implication are:

® “if p, then ¢” » “p is sufficient for ¢"
» “pimplies ¢* W “gifp”

m it p, g ® “g whenever p"

® “poniyifg” & “g i3 necessary for p.”

Note that p — ¢ is false only in the case that p is true but g is false, so that it is
true when both p and g are true, and when p is false (no matter what truth value g has).

A useful way to remember that an implication is true when its hypothesis is false
is 1o think of a contract or an obligatien. If the condition specified by such a statement
is false, no obligation is in force. For example, the statement “If you imiake more than
$25,004), then you must file a tax return” says nothing about someone making less than
$25,000. You violate the obligation only if you make more than $25,000 and do not file
areturn. Similarly, the statement “If a player hits more than 60 home runs, then a bonus
of $10 million is awarded™ in the contract of a baseball player is violated only when the
player hits more than 60 home runs, but the bonus is not awarded. This says nothing if
the player hits fewer than 60 home runs.

The way we have defined implications is more general than the meaning attached
to implications; in the English language. For instance, the implication

“If it is sunny today, then we will go 1o the beach.”

is an implication used in normal language, since there is a relationship between the
hypothesis and the conclusion. Further, this implication is considered valid unless it is
lndeed sunny today, but we do not go to the beach. On the other hand, the implication

“If today is Friday, then2 + 3 = 5.7

1s true from the definition of implication, since its conclusion is true, (The truth value
of the hypathesis does not matter then.) The implication

“If today is Friday, then2 + 3 = 6.7

is truc every day except Friday, even though 2 + 3 = 61s false.

We would not use these last two implications in natura! fanguage. since there is no
relationship between the hypothesis and the conclusion in either implication. In math-
ematical reasoning we consider implications of & more general sort than we use in En-
glish. The mathematical concept of an implication is independent of a cause-and-effect
relationship between hypothesis and conclusion. Our definition of an implication spec-
ifies its truth values; it is not based on English usage.

The if-then construction used in many programming languages is different from
that used in logic. Most programming lunguages contain statements such as if p then
S. where p is a propesition and § is a program segment (one or mere statements 10 he
cxecuted). When execution of a program encounters such a staternent, S is executed if
p is true. but S is not executed if p is false. as illustrated in the following example.

EXAMPLE 6 What is the value of the variable x after the statement
f2+2=4dtheny:= x+ 1

if x = 0 before this statement is encountered? (The symbol : += stands for assi gnment.
The statement x := 1 + | means the assignment of the value of x + | to x.)
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Solution: Since 2 + 2 = 4 is true, the assignment statement x ;== ¥ + | is executed.
Hence, x has the value O + T = 1 after this statement is encountered. [ ]

We can build up compound propositions using the negation operator and the differ-
ent connectives defined so far. Parentheses are used to specify the order in which the
various logical operators in a compound proposition are applied. In particular, the logi-
cal operators in the innermost parentheses are applied first, For instance, (p\/g)/(=r)
is the: conjunction of p\/ g and —r. To cut down on the number of parentheses needed,
we specify that the negation operator is applied before all other logical operators. This
means that -1 p /\ g is the conjenction of — p and g, namely (— p) /A g, not the negation
of the conjunction of p and g, namely —{p /\ ).

There are some related implications that can be formed from p — 4. The propo-
sition § — p is called the converse of p — ¢. The contrapesitive of p -+ g is the
propostion =g — -p.

EXAMPLE 7 Find the converse and the contrapositive of the implication

“If today is Thursday, then [ have a test today.”

Solutivn: The converse is
“If 1 have a test today, then today is Thursday.”
And the contrapositive of this implication is

“If 1 do not have a test today, then today is not Thursday.” B
We now introduce another way to combine propositions.

DEFINITION 6. Let p and g4 be propositions. The biconditional p <> g is the
proposition that is ttue when p and ¢ have the same truth values and is false other-
wise.

The truth table for p < g is shown in Table 6. Note that the biconditional p < ¢ is
true precisely when both the implications p — g and ¢ — p are true. Because of this,
the terminology

“pif and only if °

is used for this biconditional. Other common ways of expressing the proposition p — ¢
are: *'p is necessary and sufficient for ¢ and “if p then ¢, and conversely.”

TABLE 6 The Truth Table for
the Biconditional p < ¢.

P q pq

T

R e I B
b2 B B |

F
F
T
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RS i 7 The Foundations: Logic, Sets. and Functinns

EXAMPLE ¥

EXAMPLE O

wel

TRANSLATING ENGLISH SENTENCES

There are many 1casons to trans|aie English sentences into expressions involvizg propo-
sitional vainables and logical connectives. In particalar, English {and every other human
language) is often ambiguous. Translating sentences into logical expressions removes
the ambiguity. Note that this may involve making a set of reascnable assumptions based
on the intended meaning of the senlence. Moreover. once we have translated sentences
from English inte logical expressions we can analyze these logical expressions (o de-
rermine their truth valves, we can manipeiate them, und we can use voles of inference
twhich are discussed i Chapter 3) to reason abour them.

To itlustrate the process of transluting an English sentence into a fogical expression,
copsider the following examples.

How cun the following English sentence be transiated inw 2 fogical expression’?

“Yoi can access the Internet from camipus enly if you are s computer scicce
AT or you are not a freshivan.”

Solweon: There are many ways w translate this sentence inte a logical expression,
Although it is possible to represent the sentence by a single propositional variable, such
as o, this would not be useful when analyzing its meaning or reasoning with it. lnskead.
woe will use propositional variables to represent cach senenve part and determine the
appropriate logical conpestives between them. In particular. ve leta, o, and § represent
“You can access the Internet from canpus.” " You are a computer scicnee major.” and
“You ate ¢ freshman,” respectively. Noting that “only i s one way an implicaton can
be expressed. this sentence can be represented s

G — 4 A f) "

How can the foifowing English sentenee be translated into a logical expression

“You cannot 1ide the roller coaster if you are under 4 fesi tall unless you are
older than 16 years old.”

Serdunton: There are many ways o ransiate this sentence into a logical expression. The
stmplest but least useful way is simply to represent the sentence by a single propesi-
tonai variable, say. - Although this is not wrong. doing this would not assist us when
we try (o analyze the sentence or reason using it More appropriately. what we van do
5 1 use proposuional vanables 1o tepresent cach of the seatence parts and o decide
nn the appropriate bagical connectives hetween them, In particular, we fet ¢ r. and s
represent “You can ride the roller couster,” *You are under 4 feer tall,™ and “You ate
older than 16 years old,” respectively, Thea the sentence can be translated to

OF cvurse. there are other ways Lo represent the original sentence as a Jogical ex-
pression, but the ene we have used should meet our needs. =

BOOLEAN SEARCHES

Logical connectives are used extensively in searches of larve collections of informa-
ton, such as indexes of Web pages. Because these searches employ technigues froin
propasitional Jogic. they are called Beolean searches,
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[n Boolean searches. the conncctive AN is used (o match records that contain
both of two search terms, the connective R 15 used to match ene or hoth of twe search
terms, and the connective NOT (sometimes written as AN ¥OT) 15 used o exclude a
particuiar search term. Caretul planning of how logical connectives are used is often
required when Boclean searches are used to locate information of potential interest. The
following example illustrates how Boolean scarches are curried out.

EXAMPLE 10 Web Page Searching.  Most Web search engines supporl Boolean scarchimg tech-
nigues. which usnally can help find Web pages about particular subyects. For instance,
using Boolean searching 10 find Web pages about aniversities in New Mexico, we can
took tor pages matching NEW AND MEXIC(} AND UNIVERSITIES. The results of
this search will include those pages that comain the three wards NEW, MEXIC{, and
UNIVERSITIES. Tius will include all of the pages of interest. together with vthers
such as a page about new universities in Mexico. Next, to find pages that deaj with
universities in New Mexico or Arizona, we can search for pages mutching (NEW AND
MEXICO OR ARIZONA) AND UNIVERSITIES. (Note: Rere the AND operator takes
precedence over the OR operater.) The resuhs of this search will include ali pages
that contain the word UNIVERSITIES and either both the words NEW and MEXIUG
or the word ARTZONA. Again, pages besides those of interest will be listed. Finally.
to find Web pages that deal with universities in Mexico (and not New Mexico), we
might first fook for pages matching MEXICO AND UNIVERSITIES. but since the
results of this search will include pages about universities in New Mexico, as well as
universities in Mexico. it might be better w search for pages matching (MEXICQ AND
UNIVERSITIES) NOT NEW. The results of this search include pages that contain both
the words MEXIC(} and UNIVERSTTIES but do not contain the word NEW, |

LOGIC AND BIT OPERATIONS

Cumputers represent inforrnation using bits. A bit has two possible values, namely, O

weh  (zeroyand 1ione). This meaning of the word bit comes from binary digit, since zetos and
ones are the digits used in binary representations of numbers, The well-known statisti-
cian John Tukey introduced this terminology in 1946, A bit can be used to represent a
truth value, since there are two truth values, namely. true and false. As is customarily
done, we will use a 1 bit to represent true and a 0 bit to represemt false. That is. 1 rep-
resents T {true), G represents F (false). A vanable is called a Boolean variahle if s
value 15 ¢ither true or false. Consequently, a Boolean variable can be represented using
& bit.

Computer bit operations correspond tu the logical connectives. By replaging true
by a one and false by a cero in the truth tables for the aperators ™, v, and &2, the tables
shown in Table 7 for the corresponding bit operalions are obtained. We will also use
the notation OR, AND. and XOR for the operators v/, . and . as is done in vartous
programming languages.

Information is often represented using bit strings, which are sequences of zeros
and ones. When this is done, operations on the bit strings can be used to manipulate
this information.

DEFINITION 7. A bit string is a sequence of zero or more bits. The length of this
string is the number of bits in the string.
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EXAMPLE 11

EMNAMPLE 12

web

| TABLE7 Tables for the Bit

j Operators O, AND, and XOR.

ol T |
g

|
X ¥ o xvy lxAy  x@y
. |

o, 6, 0 0 0
IR I T B ]

Fiot o 0 i b

i [ | [ ! | ! | { ]'

1OLOLOGT 1 15 a bit string of length nine, [ |

We canextend bit operations to bt strings. We define the bitwise OR, bitwise AND,
and bitwise XOR ot two strings of the same length 10 be the strings thathave as their bits
the OR, AND, and XOR of the corresponding bits in the two strings, respectively. We
use the symbols /. /A, and & 1o represent the bilwise OR, bitwise AND, and bitwise
XOR operations, respectively. We itlustrate bitwise operations on bit strings with the
following example.

Find the bitwisc OR, bitwise AND, and bitwise XOR of the bit strings 01 1011 0110
and 110001 1101. {Here, and throughout this book, bit strings will be split inte blocks
of four bits W make them easier to reaily

Sofution: The bitwise OR. bitwise AND, and bitwise XOR of these strings are obtained
by taking the OR, AND, and XOR of the corresponding bits, respectively, This gives us

Historical Note: There were several other suggested words for 4 hinary digit, including binir and biyrr,
that never wete widely secepted. The adaption of the word bit may be due 10 its meaning as a commen
English word. For an sicount of Tukey's coining of the word pit, see the April 1984 issuc of Anncls of the
History of Compuing,

John Wilder Tukey thorn 1915). Tukey. born in New Bedford, Massachusetls, was an only child. His
parents, both teachers. decided home schoofing would best develop his potential. His formal education
began ut Brown Universily, whete he stedied mathematics and chemistry, He received a master’s degree
in chemistry from Brown and continued hi< studies at Princeton University, changing his field of swdy
fewm chemistey to marbernatios. He recerved fis PhuD. trom Princeton in 1039 for woik in topulogy. when
he was appotnted an instructer in mathematics at Princeton. With the srart of World War 11, he joined the
Fire Control Research Office, where he began working in stacistics. Tukey found statisiical research to his
liking urdd impressed several feading slatisticians with his skills. In 1945, at the conclusion of the war,
Tukey returned to the mathematics department at Princelon as a prutessor of statistics, and he also took a
position at AT&T Beli Laboratones. Tukey founded the Statistics Department at Princeton in 1966 and was
its fiest chatrmian, Tukey made significant cortibutions 1o many aress of statistics, including the analysis
of varianee, the estmation of spectra of time series, inferences about the values of 4 set of parameters from
A single experiment, and the philosophy of statistics. However, he is best known for his invention, with 1.
N Coaley, of the fast Fourier trungform,

Tukey contributed his insight and expertise by serving on the President’s Science Advisery Commit-
tee. He chaired several importanr committees deuling with the environment, education, and chertiicals and
health, He also served on committees working on anclear disarmarnent. "I whkey has received many gwards,
dicluding the National Medal of Science.
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01 101 0110
110001 1101
11101 11y
011 0001 0100

10 [0 101

bitwise (R
hitwise AN
bitwise XOR

Exercises

1.

i
h

LI Exercises 11

Which ul the fallowing senences are propositions?

What are ihe truth values of those that are propositions?

a) Boston is the capital of Massachusetts.

B Miami s the capital of Flonda

I IR B

a4y 5 +7 - 10

e v i 2= 1li.

I Answer tis guesuon,

gy v+ v ¢ v — x for every pair of real pumbers x
and v,

. Which of the {ollowing are propositions? What are the

truth values of those that are propositions”?
a) Do not pass .

h) What ume s ji?

¢} There are no brack flies in Maine,

d] 4+ 4= 5
eb a1l =50 o= 1
rx=-v-vbofe s

. What ix the negation of each of the {offow ing propuosi-

tions
ar Today is Thurday.
b} There s e polietion 10 New Jorsey,
S I
d) The sunmner in Maine ts hot and suany.
Let pand ¢ be the propositions
£ 0 1 bought i« lotlery uckel this week,
« . 1 wou the millton dollar jackpot on Friday.

Express cach of the following proposiitens ax an En-
plish seatence,

ayoap by 5y g
p—y di piiog
el prry £y =p— 14

oty MY —p (php

. Letpoand ¢ be the propositions

po Lors below freezing.
g+ i snowing.

Wate the following propositions using p and ¢ and iog-
wal connectives.

a) Iris helow freezing and showing.

b) It is below freezing but not snowing,

¢) It is not below freezing and it is not snowing.

d} It i< either snowing or below freezing (or both)

e] If it is below freezing, it is alse snowing,

1) it is either below fieezing or il is snowing, but it is
not seowing if 1l 15 below freezing,

- g) That 1t is below freezing is necessary and sufficient

for 1t to be snowing.

. Letp. ¢, and r be the propositions

p o You have the fu.
¢ You miss the final examination.
r: You pass the course.

Express each of the following propusitions as an En-
glish sentence.

8) p g b} ~g—r

9g- o dpyayr

&) (p =~ )y (g o )

Biptgrvi-¢hn

. Let zand g he the propositions

por You dnve over 65 miles per hous.
¢ You get s speeding ticket.

Write the foilowing propositions using p and ¢ and log-

ical conmectives.

a) You do ot drive over 65 miles per hour.

bl Youdriveover 65 miles per hour, but you do not get
4 speeding ticket,

¢) You will get 4 speeding ticket if you dove over
6% miles per bour.

4) If you do not érive over 63 miles per hour, then you
wili ot get a speeding ticket.

¢} Driving over 63 miles per hour 1s sufficient for get-
ing a speeding ticket.

1 You get a specding ticket, but you de not drive over
65 miles per hour.

2) Whencver you get a speeding ticket, you are drving
aver 65 miles per hour. .

. Let p. ¢, and r he the propositicns

p: You get an A oo the final exam.

g : You do every exercise in this book.

r. You getan A inthis class.
Wrile the following propositions using p, g, and r and
logical connectives.
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a) You get an A in this ¢lass, but vou do not do every
cxercise in this book,

b) You petan A on the tival. you do every exercise in
this book. and you get an A in this class.

¢} To get an A in this class, 1t is necessary for you to

get an A on the final.

You get an A op the final, but you don’t do cvery

exercise in this book: nevertheless, you get an A in

this class.

Getting an A on the final and doing every excrcise

in this book ix sufficient for getting an A in rhis

class.

£} You will get an A in this class if and only if vou
either do every exercise in this book or vou get an
A on the final,

d

e

—

- Determine whether cach of the following implications

is true or false.

a) [0+ 1 =2 then2 +2 =

by Fi+1 - 3 then2 + 2 :

i1 +1=3then?+2=

@) Ifpigscan fly, then [ + 1 = 3,

ey It + 1 = 3 then God exists,

011+ 1 = 3 then pigs can fly.

gr If1+ | = 2 then pigs can fly,

W 1H2+2=4then!+2 -3

For cach of the felfowing sentetices, deicrmine whether

an nelusive or or an exclusive or is intended. Explain

YOUF answer,

a) Expenence with C++ or Java is required.

b} Lunch includes soup or salad.

¢} To enter the country vou need a passport or a voter
registration card.

d) Publish or perish.

For each ol the following senicnces. state what the

sentence means if the or is an inclusive or (that 1s, 2

disjunction) versus an ¢xciusive or. Which of these

meanings of or do you thiok is intended?

a) To take discrete mathematics, you nwst have taken
caleuius or & COErse in cormpuier science.

b} When vou buy a new car from Acme Motor Com-
pany, you get 32000 back n cash or 2 2% car loan.

¢} Dinner for two includes two items from colurmn A
or three items from colemn B.

d) School is closed if more than 2 feet of snow falls or
if the wind chill is below — 100,

An ancient Siwcilian legend says that the barber

n a remote town who can be reached only by

traveling a dangerous mountain road shaves those

people, and only those people, who do not shave them-

selves. Can there be such a barber?

Each inhabitant of a remote village always tells the

truth or atways lies, A villager will only give a “Yes”

or a “No™ response to 4 guestion a tourist asks. Sup-

pose you are a tounist visiting this area and come to a

fork in the road. One branch Jeads to the ruins you want

to visit: the other branch leads deep into the jungle. A

5.
4.
3.

14.

16.

7.

villager 1s standing at the fork in the road. What one

guestion can you ask the villager to determine which

branch to take?

An explorer is captured by a group of cannibals. There

are two types of cannibals—those who always tell

the truth and those wha always lie. The cannibals will

barbecue the explorer unless he can determine whether

i particolar cannibal always lies or aiways tells

the truth. He is allowed o ask the cannibal exactly one

question.

a} Explain why the question “Are youa liar™ does not
work,

b} Find a quesiion thar the explorer can use w deter-
mine whether the cannibal aiways lies or always
tells the truth.

. Write cach of the following statements in the form *if

p,then ¢ in English. (Hint: Refer to the list of common

warys 10 oxpress implications listed 1o this section.)

a) 1t snows whenever the wind blows from the north-
easl,

b) The apple rrees will bloom if it stays warm for a
week,

¢) That the Pistons win the championship implies that
they beat the Lakers.

d) It is necessary to walk 8 miles to get 1 the top of
Longs Peak.

e) To get tenure as a professor, it is sufficient to be
world-famous.

£ If you drive more than 400 miles, you will naed w
buy gasoline.

g} Your guaraniee is goud oaly if vou bought your CD
player less than 90 days ago.

Write each of the following statements in the form “if

p then ¢” in English. (Hini: Refer to the list of commaon

ways o express implications listed in this section.)

a} [ will remember to send you the address only if yeu
send me an e-mail message.

b) To be a ciuzen of this country, it is sufficient that
you were horn in the Uniled States.

c) If you keep vour rexthook, it will be a useful refer-
ence in your fyture courses.

d) The Red Wings will win the Stanley Cup if their
goalic plays well,

¢} That you get the fob implics that you had the best
credentials.

f) The beach erodes whenever there is a storm.

g) Iris necessary to have a valid password to log on to
the server.

Write cach of the follawing propositions in the form “p

il and only if ¢ in Enghsh.

a) If it is hot outside you buy an ice cream cane, and
if you buy an ice cream cone it is hot outside.

b) For you 10 win the conicst it is necessary and suff-
cient that you have the only winning ticket.

¢} You ger promoted only if you have connections, and
yuu have connections only il you get promated.
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20.

21,

21,

23,

(28]
LN

d) If you watch elevision your mind will decay, and
conversely.
€) Thetrainsrunlate onexactly thosedays when ke it

. Wnite each of the following propositions in the form “p

if and unly if ¢ in English.

a) For you 1o get an A in this course, it is necessary
and sufficient that you leam how to solve discrete
mathematics problems.

bt If you read the newspaper every day. you will be
intormed, and conversely.

¢) It rains i at is a weekend day, and 1115 a weekend
day e 1t rains,

d} You can sec the wizard only if the wizard is not in,
and the wizard is not in only if you can see him.
State the converse and contrapositive of each of the fol-

lowing implications.

a} If it snows today, T will ski tomerrow,

b) Icome o class whenever there is going 1o be 4 quiz.

¢) A positive integer is a prime only if it has no divi-
sots other than 1 and itself.

State the converse and contrapositive of cach of the

following imnplications.

a) If it snows tonighi, then I will stay at horme.

b) Tgotothebeach wheneveritisasunny summer day.

¢l When I stay up late, it is necessary that 1 sleep until
100t

Constract 4 truth table for each of the foliowing com-

pound propositicans.

a) po=p

chipy gy

e (por gy =g oap)

Dhip—a)—1w—p

Construct a truth table for each of the following

compound propositions.

W opEp

) pE g

Y {piRyhyipF gl

by poyp
@ (psg) = (plg

by pii-p
d) pS -y
D {(pEn ips =gl

Construct 4 truth table for each of the followine com-
poind propesitions,

arp o+ g

b op—g

g — ¢dvinpg g
d}ip = ¢)hi-p — g
e (p = ghyi=p =g
B (p et —{p g

. Construct a truth wble for eacts of the following com-

pound propositions.
al (prs g r

e {piglyr

) (P gl

b) (pyq) r
d) (pg) vy
0 Ay

. Constriet a teuth table for cach of the following com-

pound propositivns.
ay p o (g
by g — g )
g giyisp o)
dy ip — g3 iap = p)

EY

26.
2.
28.

29.

I3

1.1 Exercises

e} (p > ghy/(ng <)
Dinp=gp=ig-r

Construct a truth table foc ((p — ¢) —= »r) — 4.
Construct a truth table for {p — ¢} = (r += 35).

What 15 the value of x after each of the following state-
ments 13 encountered in a computer program, if ¢ = 1
before the stalement is reached

ayif] -2 =3thenx:=x+1

by if(l +1=3OR(2+2=3thenx:=x+ |
if(2+3=51AND(3+4 = ythen x:= v + |
)y ifl -1 =XOR(1+2 =3ithen x:= v+ 1

e ifr< 2thenx:= x+1 _
Find the bitwise OR, bitwise AND, and bitwise XOK of
each of the following pairs of bit strings.

a) 101 1110, 040 0001

b} 11110000, 1010 1010

¢) 000111 0001, 100100 1000

dy TETEED THIT, ORI EXM00 000

. Evaluate each of the following expressions.

a) 11660 A0 310 L1011y
b) (B 1L A 0y O 1000
(O IWD0D 11011201000
d} (DO 01010) A e 0001y | IoTD

Fuzzy logic is used in anificial intetligence. In fuzzy ogic,

4 proposition has a truth value that 15 a number between
0 and 1, inclusive, A proposition with a truth value of 0 js
false and one with a truth value of 1 s true. Truth values thar
are between O and 1 indicate varying degrees of truth, For
instance, the truth value 0.8 can be assigned to the statement
“Fred is happy,” since Fred ts happy most of the time, and
the truth value 0.4 can be assigned to the statement “John is
happy.” since John is happy slightly fess than half the time.

3, The truth value of the negation of 4 proposition in fuzzy

Lad
Cad

logic is | minus the truth value of the propostiivn.
What arc the truth values of the statements ~Fred is not
happy™ and “John is not happy™?

. The iruth value of the conjunction of two prepositions

1 [uzzy fogic is the minimum of the truth vadues of the
wo propusitions. What are the truth valees of the state-
ments “Fred and John are happy" and *Neither Fred nor
Jatn s happy™?

. The truth value of the disjunction vf 1wo propesitions

i fuzzy logic 1» the maximum of the wuth values af
the twa propositions. What are (he truth values of the
statements “Fred is happy, or John is happy™ angd “Fred
is not happy, or John 15 not happy™

#34. Is the asserticn “This staternent is False™ a proposstion”

A set of propositional expressions is consistent if there is
an assignment of truth values (o the variables in the expres-
sions that makes each expression true. When giving sys-
tem specifications it is important that these specifications
be consistent.

35, Are the following specilicaions consistent” “The sys-

term is in multiuser state if and only if it is eperating
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nurmally. I the system 1s operating nerrnably, the ker-
nel 15 tunctioning, The kemel iz not functioning ot the
sysiem 1y in iterrupt fode. [ the svsiem is ool in mul-
tiuser state. then it is in interropt mode. The system is
not i interrupt mods.”

X6, Are the following spevifications consistent? "I the
file system is not lecked, then new messages will be
queued. If the file system is nut locked. then the syatem
is [unctiomng normally, and conversely, It new mes-
sages are nulqueved. then they wili he sent to the mes-
sunge buffer If the file system i not locked. then new
e ssiages will be sent to the message butfer. New mes-
sapey will not be sent 1o the message butfer”

T What Tondean search would you use w ook for Web
e bt deaches in New Jersey” What it you
waaled 10 and Web puges about beaches on the isle of
Jersey i the Poptish Cheneedn!

3B, Whiit Baclean search would you use 1o look for Web
puges about hiking in West Vieginia? Whar if you
wanted 1o fnd Web pages about hiking i Vieginga, but
Bt Wt Virginga?

Faoreries M--42 v puggles that can be solved by transdat-
g staienais o gical expressicis and reasoning fron
showr epreasiony using tuth tablen.

Fsteve waid ke e detesote e sefative salaries af
et ceworhers asiag ewa facts, First, e kricws that 1
Frodh 24 now the bighest pacd of the three. then Janice is,
Secoid b knows that f Janice i not the Towest pasd.
the - Magaic s pard the mosi. I il pessibic o determine

[.2

Propositional Equivalences

(NTRODUCTION

4!

.

42

the relutive satartes of Fred, Maggie, aid Janice from
whiit Steve kitows? If so, whe is paid the most and who
the teast? Explain your reasoning.
Five friends have access to a chat room. Is it possible i
deterimine who is chatting if the following information
is known? Either Kevin or Heather. or both. are chat-
ting. Either Randy or Vijay. but not bath, are chatting.
I Abby is chatiing, %o is Rapdy. Vijay and Kevin are
either both chatting or neither is. If Heather s chatting,
then 30 are Abby and Kevin. Explain your reasoning.
A detective has interviewed four witnesses 10 a crime,
From the stonics of the witnesses the detective has con-
cluded thai i the builer is wlling the truth then so is the
vook: the cook and the gardener cannot both be telling
the truth; the gardener and the handyman are not both
iving: and it the handyman is telling the truth then the
vk s lying. For cach of the four witiesses, can the
deteetive determine whether that person is telling the
trth ot [ying? Rxplan your reasoning.
Four friends have becn rdenified as suspects for an
unawthensed decess into o commpyter system. They have
mide statements to the iavestigating authorines. Al-
we spid “Carlos did it John said “l did not do ie”
Carlos said "Diana did it” Diana said "Carlos Hed
when he said that T did it”
al If the authonitics also know that exactty une of the
four sitspects s telling the troth, whe did it? Explain
FOUT regsoning.
b 1 the antharities also know that exactly one i< lving,
who did 17 Fxplain vour ressoning.

Au tporiant tvpe of step used in o mathernaseal argument s the replacement of 4
staternent with another stalement wiih the same tth »uluc. Because of this, methods
than produce propositiens with the same trath value as o given compound proposition
are usea exiensively in the conetroziion of mathematical areuments,

W ocgia oar discussion with a classilication of conpound propositions according
L shedr possibia it valies.,

DEFINITION 1, A compound prisposition that is always trie, no matter what the
truth valaes of the propositions that occur in it, is called a tauselogy. A compound
proposition that is always false is called a contradiciion. Finally, a proposition that
15 nevihier a tautelogy nor a contradiction is called a contingency.

Trutelogies and coniradions are ofter importait I mithematica) reasoping. The
sodicwing exaunple ithustrates these types of propositions.
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TABLE 1 Examples of a Tautology
and a Contradiction.

P P | pvoe | Pl

r T ¥
FiT |7 | T
EXAMPLE 1 We can construct examples of tautologies and contradictions using just one propositien.

Consider the truth tables of py/ = p and p /A = p, shown in Table 1. Since p i/ —pis
always true, it is a tautology. Since p /A = p is always false, it ts a contradiction. ~ #l

LOGICAL EQUIVALENCES

Compound propositions that have the same truth values in all possible cases arc called
logicaily equivalent. We can also define this notion as follows.

DEFINITION 2.  The propositions p and ¢ are calied logically equivalent
if p <> ¢ s a tautology. The notation p < g denoies that p and ¢ are logically
equivaient.

Onc way to determine whether two proposilions are equivalent is 1o use a truth
table. In particular. the propositions p and ¢ are equivalent if and only if the columns
giving their truth vajuves agree. The following example tllustrates this method.

EXAMPLE 2 Show thal ~{p*/ g) and - p/\ ~1q are logically equivalent. This equivalence is one of
De Morgan’s laws for propositions, named after the English mathematician Augustus
De Morgan, of lhe mid-nineteenth century.

Sedution: The truth tables for these propositions are displayedin Table 2. Since the ruth
values of the propositions —{p*/ ¢) and - p " =g agree for all possible combinations
of the truth values of p and g, it follows that these propositions are logically equivalent.

|

TABLE 2 Truth Tables for —{p"/ ¢y and —p ™ -q.
P g9 | pvg | g Il -p r g || ap g
T T T £ ‘ F ! F ! F
T F|T F F 1T ° F
F T T E T | F . F
FF | F T LT |
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| TABLE 3 Trath Tables for ~p . gmdp — 4. 1
- | i i
P4 —p pVg | F—q |
T ‘ F ‘ r [ ‘
T F L F F |k !
BT } T T T
For ol T T [
EXAMPLE 3 Show that the propositions p — ¢ and - p s ¢ are logically equivalent.

Solution: We construct the truth table for these propositions in Table 3. Since the truth
values of —p /g and p — g agrec, these propositions are logically equivalent. W

EXAMPLE 4 Show that the propositions p/ (g ryand (4, g} /A (py r) are logically equivalent,
This is the distributive law of disjunction over conjunction.

Solution: We construct the truth table for these propositions in Table 4. Since the truth
values of py (g r) and (p '/ ¢) / (p \/ r} agree, these propositicns are logically
equivalent. B

Remark: A truth table of a compound proposition invalving three different proposi-
tions requires eight rows, one for each possible combination of truth values of the three
propositions. In general. 27 rows are required if @ compound proposition involves #
propositions.

_ Augustus De Morgan (1806-1871).  Augustus De Morgan was bomn in [ndia, where his father was a
wed  colonelin the Indian army. De Murgan's family moved to England when he was 7 months old, He attended
" private schonls, where he developed 4 strong interest in mathematics in his carly teens. De Morgar studied
at Trinity College, Cambnidge, graduating in 1827. Although he considered entering medicine or law. he
dectied on 4 careet in mathematics, He won a position at University College, London. in (828, but resigned
when the college dismissed a fellow professor without giving reasons. However. he resumed this pusition

it 1836 when hig successor died, staying there until 1366

Dre Morgan was 4 noted eacher who stressed principles over teehniguss. His students inetuded many
famous mathematicians, including Ada Augusta, Countess of Luvelace, who was Charles Bubbage's cal-
faborator in his wurk on computing machines {see page 19 for biographical notes on Ada Augusta). (De
Morgan cautioned the countess against studying oo much mathematics. since it might interfere with her
childbearing atliries?)

e Morpan was an extremely prolific writer. He wrote more than 1000 articles for more than 15 pe-
rivdicals. De Morgan slso wrote texibooks on many sehjects. including logie, probability, calculus, and
algebra. In 1838 he presented what was perhaps the first clear explanation of an important proof technique
Known as mathematical induction (discussed in Section 3.2 of this text), a term he coined. In the 1840s De
Morgan made fundamental comebutions to the development of symbolic logie, He invented notatioas that
helped him prove propositional equivalences, such as the laws that are named after im. [n 1842 De Morgan
presented what was perhaps the first previse definition of a limit and developed some tests for CONVETRLIC.
of infinite series. De Morgan was also interested in the history of mathematics and wrote bingraphies of
Newtan and Halley.

In 1837 De Morgan married Sophia Frend, who wrote his biography in 1882, De Morgan's research,
writmg, and teaching ieft little time for his Family or sovial life, Nevertheless, he was noted for his kindness.,
burmner, and wide range of knowledge.
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-

Equivalent.

TABLE4 A Demonstration That g/ (¢ / r)and (p+/ ¢} /A (p\/ ) Are Logically

-
=
o

r

-

P (gihp)

PN G pyvr v pyn

R B SR R

T M T 4 9 g9 g =
e B B e * B ol B
I B I T TS SR
T E o~ T T~

m ™

P T G R
et o ] e e

T T T A o = o

i

Table 5 contains some important equivalences.* In these equivalences, T derotes
any proposition that is always tme and F denotes any proposition that is always false.
The reader is asked to verify these equivalences in the exercises at the end of the section.

The associative law for disjunction shows that the expression py g\ r is well
defined, in the sense that it does not matter whether we first take the disjunction ot p and

TABLE 5 Logical Equivalences.

1

Equivalence Name

paT <o op Identity laws
pvF<—p

pvT =T Domination laws
pAE &S F

Py p = p Idempotent taws
pip = p

—{np) == p Douhle negation law

PNG S g
pihg &= qghp

Commutative laws

vghvir & pulgy s
(P I q) Moo p /\\[([ I r}

Associative laws

pvilghn = (pygivipy
podgh )y = (plg)y(pion

Distributive laws

'1[-p.-'h‘- §) <> apy g
{phsg) = apliog

De Morgan's laws

*These identities are a special case of idemities that hold for any Boolean algebra. Compare them with set
identitics in Table | in Section 1.5 and with Boolean identities in Table 5 in Section 9.1,
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18 1/ The Foundations; Logic, Sets, and Functiens

TABLE 6 Some Useful
Logical Equivalences.
pyp & T
ph-p—F

(p— g == (—pyyg

g and then the disjunction of py/g with r. or if we first take the disjunction of ¢ and rand
then cake the disjunction of p and /. Similarly, the expression p/.g. v is well defined.
By extending this reasoning. it follows that py vy pz - peand py A ps N Sop,
are well defined whenever py, p... .. p, are propositions, Furthermore, nate that De
Morgan’s laws extend to

_‘(Pl EE AR pﬂ'} — (_‘P; R P SEEERRAT r'}ﬂ)
and

(P Ny ) S gy o
{Metheds for proving these identities will be given in Chapter 3.)

The logical equivalences in Table 5, as well as any others that have been cstab-
lished (such as those shown in Table 6), can be used to construct additional logical
equivalences. The reason for this is that a proposition in a compound propusition can
be replaced by one that is logically equivalent to it without changing the 1ruth valoe
of the compound proposition. This technique is illastrated in £xamples 5 and 6, where
we also use the fact that it p and ¢ are logically equivalent and ¢ and r are lozically
equivalent, then p and r are logically equivalent (sce Exercise 40).

EXAMPLE 5 Show that ~{p/ (v p Ag)yand = p " -1g are logically cquivalent.

Solution: We could use a truth table to show that these compound propusitions are
equivalent. Instead, we will establish this equivalence by developing a series of Jogical
equivalences, using one of the equivalences in Table 5 at a time, starting with ~«(p -,
t p /A g)) and ending with — p . —4. We have the following cquivalences.

{pap /g <= apAa(mp g lrom the second De Morgan's aa
& ip A ={apy gl from the first De Morgan's aw
= =pAipy g) Trom the doable negatton law
= (mp A phy (o p Mgy rom the distribotive law
D Fry(ap g singe pfop a2 F
S imp Ny F fronn the Law for disjunctios
S oap g trom the identity luw e F
Consequently —(p s {—p Sghand —p /A g wre Jogieally cquivalent, |
EXAMPLE o Show that 1 p N gh -~ (p 7 g) I a autology.

Selution: To show that this statement 1 2 tantology, we will use logical equivitences
to demonstrate that it & logically equivalent to T. {Nase: This coold alse be doie UsinE
a truth table.
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1.2 Exercises 19

(plig) = fpygy <= =(plygl S{pyg) by Example
S (mpts gl g by the first De Morgan's Taw
= {mp pryd (mgh/ g) by the assoctative and commuta-
tive laws for disjunction
— Ty T by Example | and the commuta-
tive law for disjunction
«—= T by the domination Law n

A truth table can be used o determine whether a compound proposition 1s @ tau-
lology. This can be dore by hand for a proposition with a small number of variables,
but when the nurnber of variables grows, this becomes impractical. For instance, there
are 2% = 1,048,576 sows in the truth value table for a proposition with 20 variables.
Clearly, you need 4 compuier o elp vou determine, in this way, whether & compound
proposition in 20 vadables i 8 tauivlogy. But when there are 1000 vanables. can even
¢ computer determine in a reasonable amount of time whether a compound proposition
ts 4 tautology? Checking cvery one of the 2! (a number with more than 300 decimai
digits) possible combinatians of truth values simply cannot be dene by a computer in
even trillions of years. Furthermore, no other procedures are known that a computer can
tollow to determine in a reasonable amount of time whether a compound propesition in
such a large number of variables is 3 tanology, We will study questions such as this in
Chapter 2. when we study the complexity o alzonthms.

- .

Exercises

1. Use truth tables to venfy the following equivalences, 6. Use a wuh table o venty the egurvalence -
a} P AT = P b} ,I'-""'\." | RS E {P M 5!"‘] P “p s g
ebp Ve b odop T2 T 7. Shew that earch of the foflowing implications iv a tau-
g) prip =2 p fiplp&cp wiegy by uang truzh wbles.

2. Show that (=1 and pare logically equivalent. aj fp g o by p—ipy g

3. Use truth 1ables ro verify the commutative Tuws o) p rip gl d) (plg) - (p -~ g
al pig < oghp e) o )= p N oalp =gy =g
by plig = gltop 8. Show that zach of the following imphcations {5 a tau-

4. Ll truth tables i venify the associative Laws loiogy by nsing truth pbles,
APl ST gy ) 2pl=papegl] e g
brtp gt WO p g o by [(p = gy g == 0l o~ tp — 1)

A Use wuth iables to verily the distiibutive aw p A ehip g g
(s, r =TT P gl g di fip gty =i y —rif e

Ada Augusta, Countess of Lovelace | 1R1S-1852),  Ada Augusta was the only child from the marmage
of the famous poet Lend Byron and Annabelia Millbanke, who separated when Ada was | month old. She
wis raised by her mother, whe encouraged her intellectual talents. She was taughl by the mathematicians
Wiliiam Frend and Asgustus De Morgan, Tn 1838 she manicd Lord King, Yater clevated o Bari of Lovelace,
Tuogether they had three clildren.

Adg Augasta contined her mathematicu) stdies atier her nagriage. assisting Charles Babbage in
s work on an early computing machine, catbed the Anatytic Engme. The most complete accounts of this
machme are found in her writiags. ADCr IH45 she wad Bubbage worked toward the development of 3 system
1 predicthorse raves. Unforumately, thetr system dis] not work well. icgving Ada heavily in debt at the time
afher death. The progeamming Janguage Ada is named inhonoe of the Countess of Lovelace,

web

PDF created with pdfFactory trial version www.pdffactory.com


http://www.pdffactory.com

20

[N

11.

1z,
13
14
IS,

16.

19.

L / The Foundations: Logic, Sets, and Functions

. Show that each implication in Exercise 715 a lautology

without using truth tables.

Sthurw thut each implication tn Exercise B is a tavtology
without using wruih tables,

Verify the following equivalences, which are known as
thc absorption laws.

al [putplig)l <> p

by {pSipryg)) e op

Determine whether (= p A d(p = ¢)) -~ - is a tau-
wlogy.

Determine whether (g {p — ¢)) — —pis a tay-
ology,

Showthat p e gand (p g (—p/ —g) are equiv-
alent,

Show that {p -+ ¢} — rand p — {g — r} are not
cquivaleni.,

Show that p -~ gand g — - p are logically equiv-
alent.

« Show that = p — g and p — — g are logically equiv-

alent.

. Show that —(p$ ¢) and p — g are logicaily equiva-

tent.
Show that —(p — g} and -~p « g arc logically
equivaleni.

tesulting compound proposition is said o be in dis-
Junctive normal form.

A coblection of logical operators is called functionally com-
plete it every compound proposition is logically equivalent
to a compovnd proposition involving anly these logical op-
Craflors.

27. Show that +. A, and »; form a functionally complete
collection of fogical operators. (Hing: Use the fact that
every prepositien is logically equivalent o one in dis-
junctive normeal form, as shown in Exercise 26.)
Show that ~ and M form s functionally complete collec-
tion of togical operators. (Hint: First use De Morgan's
law to show that piy g15 equivalent to ~{-1p 7 —gh
Show that — and , form a functionally complete col-
lection of logical operators,

*28.

¥29.

The following exercises involbve the logical operators NAND
and NOR. The proposition p NAND g is true when either por
g,or both, are false; and it is false when both p and ¢ are trye.
The proposition p NOR ¢ is true when both p and g are false,
and it is false otherwise. The propositions p NAND g and
NOR garcdenoted by p | gand p | g, respectively. ( The op-
crators | and § are called the Sheffer stroke and the Peirce
arrow after H M. Shetfer and C. 8. Peirce, respectively. )

The dual of 4 compound proposition that contains enly the
logical uperators . %, and 1 ds the proposition obtained
by ecplacing cach v by M, each / by . each T by F. and
cach F by T. The dual of propusition s is denoted by <*.

30.
31.
3,
33,

Construct a truth table for the iogical operator NAND.
Show that pj g is logically equivalent to —{p " g).
Construct 1 truth wble for the logical operator NOR,
Show that p | ¢ is logically equivalent to - (p*/ gl

20.

1.
22,

#4123,

26

Find the dual of cach of the following propositions.

al plog Ny by (p gy s

e (py Yy T

Show that {47 =y,

Show that the lugical equivalences in Table 5, except
for the double negation Jaw, come in pairs, where each
palr contains propositions that are duals of cach other.
Why are the duals of two equivalent compound propo-
sitians also equivalent, where these compound propo-
sitions contain only the operators ., v/, and = 7

. Find « compound proposition involving the proposi-

tins p, g and v that is true when p and g are truc and r
is false. butis false otherwise. tHint- Use a conjunction
of gach proposition or its negation.)

- Find & compound proposition invalving the proposi-

ttons p. g, and r that is true when exactly two of p. g,
and £ are true and s false otherwise. (Ming; Form a
disjunction of conjunctions. Include a conjunction for
each combination of vaiues for which the proposition is
true. Each conjuncton should include each of the three
propositions or their negations. )

Suppose that a truth table in » propositional variables
Is specified. Show that a compound proposition with
this truth table can be formed by taking the disjunc-
tion of conjunctions of the variables or their negations,
with ane conjunction included for each combination of
values for which the compound propaosition is true, The

In this exerctse we will show that {}} is a functionally

compiete collection of logical aperators.

a) Show that p | pis logically cquivalent to — p.

b) Show that {pp | ¢1 L {p ] ¢) is Jogically equivalent
o iy g

¢} Conclude from parts (a) and (b}, and Exercise 29,
that {j} is a functionally complete collection of lag-
ical operaiors.

Find a proposition equivalent to p ~ g using only the

lugical operator |,

36, Show that { ] is a functienally complete collection of

lugical operators.

37. Show that p | ¢ and g | p are equivalent.

38. Show that p | (g | r)and (p | g) | r are ot equivalent,

so that the logical operater | is nut associative.

How many different truth tables of compound proposi-

tions are there that involve the propositions p and ¢?

Show that if p, g, and r are compound propositions such

that prand g are logically equivalent and g and r are log-

ically equivalent, then p and r are logically equivalent.

41. ‘The following sentence is taken from the specification of

atelephone system: “If the directory data base is opened.

then the monitor is put in a closed state. if the system

ts not in its initial state.” This specification is haed to

understand since it involves two implications. Find an

equivalent, caster-to-understand specification that in-

volves disjunctions and negations but not implications,

M.

*35,

*39,

48.
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1.3 Predicates and Quantifiers 2!

Predicates and Quantifiers

EXAMPLE 1

web

INTRODUCTION

Statements involving variables, such as

1Y

=37 Y= +3" and “rry =g

are often found in mathematical assertions and in computer programs. These slatements
arc neither true nor false wheo the values of the variables are not specified. In this sec-
tion we will discuss the ways that propositions can be produced from such statements.

The statement “x is greater than 3™ has two parts. The first part, the variable x, is the
subject of Lhe statement, The second part—the predicate, “is greater than 3" — refers to
a property that the subject of the statement can have. We can denote the statement “x is
greater than 3" by P(x), where P denotes the predicate “is greater than 37 and x is the
variable. The statement P{x) is also said to be the value of the propositienal function
£ at x. Once a value has bezn assigned to the variable x, the statement P{x) becomes a
proposition and has a trath value, Consider the following example.

[t P{x) denote the statement “x > 3,” What are the truth values of Pid) and P(2)?

Charles Sanders Peirce (£839-19141. Many consider Charles Peirce the most original and versatile n-
tellect from the United States; he was born in Cambridge. Massachusetts. His father, Benjamin Peirce. wags
a professot of mathematics and natural philosephy at Harvard. Peirce attended Harvard ( 1855-15859) and
seceived a Harvard master of ants degree 41862} and an advanced degree in chemistry from the Lawrsnee
Scientific School (1863). His tather encouraged hini 1o pursie a carcer in science, but instead he chose to
study legre and sciemific methodology.

tn 1861, Peirce became an aide in the United States Coast Survey, with the goal of better understanding
seicntific methododogy. His service for the Survey exempted him from miliary service during the Ciwl War,
While working for the Survey, Peirce carried ot astronomnical and geodesic work. He made fundamental
contributions to the design of pendulums and 10 map projections. applying new mathematical develspments
in the theory of elliptic functions. He was the first person 1o use the wavelength of light as a unit of mea-
sureient. Peirce rose Lo the position of Axsistant for the Survey. a position he held ungdl he was forced w
resign in 1891 when he disagreed with the direction taken by the Survey's new administration,

Although making his living from work tn the physical sciences, Peiree developed a hierarchy of sci-
ences. with mathematics at the top rng. in which the methods of ne science could be adapted for use by
those sciences under 2t in the heirarchy. He was also the founder of the American philosophical theory of
Pragamatisen,

The enly acadenic position Petrce ever held was as a lecturer in ogic at Johns Hopkins Ustiversity in
Baltimore from [879 to {884, His mathematical work during this tme included contributions to Togic. set
theory, sbstract algebra, and the philosophy of mathematics. His work is still relevant today: some of his wark
on logic has been recently applied 1o anificial intelligence. Peirce believed that the study of mathematics
could develop the mind's powers of imagination, abstraction, and generalization. His diverse activiries after
retiring from the Survey included writing for newspapers and journals. contributing to scholarly dictionaries,
translating scientific papers. guest lecturing, and lextbook writing, Unfortunately, the meome from these
pursuits was insutticient t protect him and his second wife from abijeel poverty, He was supported in his
later ycars by a fund created by his many admirers and administered by the philesopher Wibliam James,
his lifelong fricnd. Although Peirce wrote and published voluminously in a vast range of subjects. he left
more than 10G.00 pages of unpubished manusceipts. Because of the difficnity of stwdying his urpublished
writings, scholars have only recently started to understand some of hes varied contributions. A group of’
peaple is devoted to making his work available over the Internet to bring a better appreciation of Peirce's
accomplishments to the world.
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22 i / The Foundations: Logic, Sets, and Functions

Sotution: The statement P(4) is obtained by setting ¥ = 4 in the statement “'x > 3.7
Hence, P(4), which is the statement 4 = 3, is true. However, P(2), which is the state-
ment "2 > 3,7 is false. |

We can also have staternents that involve mose than one variable. For instance,
consider the statement “x = y + 3.” We can denote this statement by ({x, ¥}, where x
and ¥ are variables and Q 13 the predicate. When values are assigned to the variables x
and v, the statement Q(x, v} has a truth value.

FXAMPLE 2 Let O+, v) denote the statement "x = v+ 3.7 What are the truth values of the propo-
sitions (¥ 1, 2} and (3, H?

Sofution. To obtain {1, 2), set x = 1 and y = 2 in the statement Oix, yi. Henve,
Q0L 2)is the statemnent Y = 24+ 3.7 wiich is false. The statement Q3, 0) iy the propo-
sition 3 = 00+ 3. which iy true. n

Similarly, we can let R(x, v, 7) denote the statement "y + y = 2.7 When values are
assigned to the variables . v, and . this statement has & truth value,

EXAMPLE 3 What are the truth values of the oropositions R(1, 2, 3)and R(Q, 0, 11?
Scfurion: The proposition #(1, 2. 31 is obtained by setting v = 1, v = 2 and ; = 3in
the statement Rix, v, 7). We see that R(1, 2, 3) s the statement L + 2 = 3. which is
true. Also note that RiG, 0, 1, which is the statement “0 + 0 = 1,7 is false. ]

in general, a statement involving the n variables 11, ... . .. ¥, can be denoted by
Plxy, aa, ... v,

A statement of the fortp Plx;, ag,. .., v, 118 the valuc of the propositional function P
at the a-tuple (xy, 13, ..., x4, and P is also called a predicate.

Propositional functions oecur in computer programs, as the following example
demonstrates.

EXAMUPLE 4 Consider the statement
iMx=0then v := v+ |

When this statement is encowntered in a program., the value of the variable 1 at that
peint in the execution of the program is inserted fnte 20y, which is v = (7 IF P(v) is
true for this value ol x, the assipnment statement v 0= x ¢ s executed, so the vahue
of x is increased by 1. If Px} is false for this value of x. the assignment statement ic
not executed, 5o the value of v is oot changed, »
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L3 Predicates and Qruaniifiers

QUANTIFIERS

When ail the variables in a propositional function are assigned valves, the resulting
statement has a truth value. However, Lhere is another important way, called quantifi-
cation, 1o create a proposition from a propositional function. Two types of quaatification
will be discussed here, namely, universal quantification and existential guantification.

Many mathe matical statements assert that a property is true for all values of a vari-
able in a particular domain, called the universe of discourse, Such a staternent is ex-
pressed using a universal quantification. The yniversal quantification of a propositional
function is the proposition that asserts that £(x) is true for all values of x in the uni-
verse of discourse. The universe of discourse specifies the possible values of the vari-
able x.

DEFINITION L. The universal quantification of P(x) is the proposition

“P(x) is true for all values of x in the universe of discourse.”

The notation
Y1 P{x)

denotes the universal quantification of P(x). Here ¥ is called the universal quantifier.
The preposition Yx P{x}is also expressed as

“forall x P(x)" or “forevery x Px)”

Rewmark: 1015 best to avoid the word “any”™ since il is often ambigueus as {0 whether
it means “every” or “some.” In some cases. “any” is unambiguous, such us when it is
used in negatives, tor example, “there is not any reason uot to study hard.”

EXAMPLE 5 Express the stalement
“Every student in this class has studied calculus™

as 4 universal quantitication.

Selution. Let P(r) denote the statement
v has studied calculus.”™

Then the statement “Every student in this class has studied calculus™ can be written as
Vx P\, where the universe of discourse consists of the students in this class.
This statement can also be expressed as

VaiSin — Pl
where S{x) is the stalement
“x 1% 1n this ¢lass”

Py is as before, and the universe of discourse is the set of all students. N

Example 5 illustrates that there is often more than one goodt way to express 1 quan-
tification.
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EXAMPLE 6

EXAMPLE 7

EXAMPLES

| / The Foundations: Logic, Sets, and Functions

Let P(a) be the statement “x + 1 = x." What is the truth value of the quantification
Y1 Pa). where the universe of discourse 15 the set of real numbers?
Solution: Since P(x) is trug for all real numbers x. the quantification

Y Py

is true. [ |

Let (x) be the statement “x < 2." What is the truth value of the quantification Y O(x},

where the universe of discourse 1s the set of real numbers?

Sodurion. Q(x)is not true for alf real numbers x. since, for instance, (3315 false. Thus
Yr0(0

is false. u

When all of the elements in the universe of discourse cun be listed-—say, 1, xa2, .. ..
tp—it follows that the universal quantification ¥ x P{x) is the same as the conjunction

Pl At Pixs) AN Pl

since this conjunction is true if and only if P(x)), Plxs), ..., Plx,) are all true.

What is the truth value of ¥x P(x), where P{x) is the statement “x* <= 107 and the
uiuverse of discourse consists of the positive integers nol cxceeding 47
Solwiion: The statement Yx Pix) is the same as the conjunction

PUIA P N PO AP

since the universe of discourse consists of the integers 1, 2. 3, and 4. Since Pi4). which

1s the statement “4° <2 10,7 1s talse, it follows that V1 Pl.c) is false, [ ]

Many mathematical staternents assert that there is an element with a certain prop-
erty. Such statements are expressed using existential quantification. With existential
guantification, we formn a propesition that is true il and only if P{x) is true for at teast
ane value of x in the untverse of discourse.

DEFINITION 2. The existential quantification of P(x) is the proposition

“There exists an element x in the universe of discourse such that P(x)1s true.™

We use the notation
Jr Pl

for the existential quantification of (), Here 3 is called the existential quantifier.
The existential quantification I P{x) is also expressed as

“There is an x such that Pix).”
“There is at feast one x such that Prx),”
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or

“For some x P(x)

EXAMPLL 9 Let Pix) denote the staterent “x = 3. What is the truth value of the guantification
Ax P{x), where the universe of discourse is the set of real numbers?

Solunion: Since “x > 37 1s true—for instance, when x = 4—the existential quantifi-
cation of P(x), which 1s 3x P(x), 15 true. ||

FEXAMPLE 10 Let Qi x) denote the statement “x = x + 1." What 15 the truth value of the guantification
dx Q(), where the universe of discourse is the set of real numbers?

Sofution: Since Q(x) is false for every real namber x. the exisiential quantification of
Q0 which is e Q(x), is false. [ |

When ali of the elements in the universe of discourse can be fisted—say, x,, x2. ..
x,—the existential quantification Jx P(x) is the same as the disjunction
Plegdty Pleayy v/ Plagl

since this disjunction is true if and only if at leastone of P(xy), P{aa), ..., Plag)is true.

EXAMPLE 11 What is the truth value of 3x P(x} where P{x) is the statement “x° > 10" and (he
umverse of discourse consists of the pesitive integers not exceeding 47

Svlution: Since the universe of discourse is {1, 2, 3, 4}, the proposttion 3x P(x) 1s the
same a5 the disjunction

Pilywy P(2) W P(3) W Pi4).

Since P(4), which is the statement 47 = 10" is true, it fullows that Jx P(x) is true.

Table I summanzes the meaning of the universal and the existential quantifiers.

It is sometimes helpful to think in terms of looping and searching when determining
the truth value of a quantification. Suppose that there are » objects in the universe of
discourse for the variable x. To determine whether ¥x P{x} is true, we can loop through
all r values of x to see if P{x) is always true. If we encounter 2 value ¥ for which Pix)
is false, then we have shown that Vx P{x) is false, Otherwise, Vx P(x) is true. To see
whether Jx P(r} is true, we loop through the 1 values of x searching for a value for

[ TABREE !  Quantifiers,

| .
Statement | When True? ' When False?
j

|

There is an x for which Plx) i fulse,
Plx) s false for every x.

Vi Pix) i Px)is true for every x.
Ay Pl | There 15 an x for which P(x) is true.,
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which Py is true. If we find one, then Jx PLo) is Lue §F we never dnd such an x,
we have determined thiat 3x Pix} 1s false. (Note that this searching procedure does not
apply if there are tnfinitely muny values in the universe of discourse. However, it b still
a usefu! way of thinking about the truth values of quantifications.)

Sometimes expressions involving quantifiers van be quite complicated. Translating
acomplicated expression into English helps understanding of its meaning, The first step
1 thiy ranslation is w wite out what each quantifier means. The next step is to express
this meaning in a simpler sertence. Cousider the following examples.

EXAMPLE 12 Transtate the statement
Yoy 3xClv) W y)n

vand voare friends.” and

into English, where C{xj s v has 4 compuier,” Flx, v) is
the universe of discourse for both x and v is the setof all sradents in vour schonl,

Solution: The statement savs that for every student x in your school x has o computer
orthere 1s a student v such that v has a computer and x and v are friends. Inother words,
every student in your school has a computer or has 2 friend who has a computer.

EXAMPLE 13 Translate the statement

BRI AR DAL £ 5 - 2 F(no

into English, where Fie, o) means « and b are friends and the universe ot discourse for

. v oand 2 s the set of ali students in your school.

Solaion. This statemen: save thai there is a student 3 <uch that for all students  and
all students - other than v, 1 vand v are frends und » and : are friends, then v and -
are not fricnds. In other words, there is 1 student none of whose friends are also Hends

with cach offwr

Complicated expressions involving quantihiers also arise in mathematical state-

ments. Thiv iy illustrated in the following example.

EXAMPLY 14 Assume thar the universe of discourse for the variables v and v s the set of all real

nuabers, the statement

VaViiv 4+ v = 1 4+ 0

saysihat v+ y = v + x fur all real numbers v and v This is the commutative Saw for

add:lion ot real numbers. Likewise, the stalenient

Yrdvin + v = )

savs that tur every real number  there 15 4 real number v such that x + v = 0. This
stutes that every real number has an additive inverse. Similatly, the statement

VavaVelo ~ (v +2) = ix+yhd )

Is the associative law Jor addition of real niumbers,
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1.3 Predicates and Quantifiers

TRANSLATING SENTENCES INTO LOGICAL EXPRESSIONS

Tn Section 1.1 we illustrated the process of transtating English sentences into logical ex-
pressions involving propositions and logical connectives. Now that we have discussed
quantifiers, we can express 4 wider vanety of English sentences using logical expres-
sions. Doing so eliminates ambiguity and makes it possible to reason with these sen-
tences. (Section 3.1 covers rules of inference for reasoning with logical expressions.)

The following examples show how to use logical operators and quantifiers to ex-
press English sentences, similar to the kind that occur frequently in mathematical state-
ments, in logic programming, and in artificial intelligence.

EXAMPLE 15 Express the statements “Some student in this class has visited Mexico™ and “Every
student in this class has visited either Canada or Mexico™ using quantifiers.

Solurion: Let the universe of discourse for the variable x be the set of students in your
class. Let M(x} be the statement “x has visited Mexico” and C(x) the statement “x has
visited Canada.” The statement “Somc student in this class has visited Mexico™ can be
written as FxM(x). The statement “Every student in this class has visited either Canada
or Mexico” can be written as Yx(C(x )y M(x)) (assuming that the inclusive, rather than
the exclusive, or is what is meant here). [ |

EXAMPLE 16 Express the staterment "Everyone has exactly one best friend™ as a logical expression.

Solution: Let B(x, y) be the statement “y is the best friend of x.” To translate the sen-
tence in the example, note that it says that for every person x there is anather person v
such that ¥ is the best friend of x and that if 7 is a person other than v, then 7 is not the
best friend of x. Consequently. we can translate the sentence as

VxAyVa(Blx v (iz = y) — —~Bx ) L

EXAMPLE 17 Express the statement “[f somebody is female and is a parent, then this person is some-
one’s mother” as a logical expression,

Solution: Let F(x} be the statement “x is female.” let P(x) be the statement “x 18 a
parent,” and let M{x, ¥) he the statement “v 15 the mother of ¥.” Since the statement in
the example pertains to all people. we cun write it symbolically as

Yx((F(x) N PLo) — Iy Mix, ¥ |

FXAMPLE 18 Use quantifiers to express the statement “There 15 a woman who has taken a flight on
every airline in the world.”

Solurion: Let P(w, f) be “w has taken £ and Q(f, a} be “f i1s a flight on 0.” We can
express the statement as
IwYa I (P(w, SINOS, o)

where the universes of discourse for w, f, and a consist of ail the women in the world,
all sirplane flights, and all airlines, respectively.
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EXAMPLE 19

a

web

The statement conld also be expressed as
AwVadf Riw, f,a),

where R{w, f,a) 15 “w has taken f on a.” Although this is more compact, it some-
what obscures the relationships between the variables. Consequently, the first solution
is usually preferable. |

As mentioned earlier, quantifiers are often used in the definition of mathematical
concepts. One example that you may be familiar with is the concept of timit, which is
important in calculus.

(Calculus required)  Bxpress the definition of a limnit using quantifiers,

Solution; Recall that the definition of the statement

lim f(x) =L

g
is: For every real number € = 0 there exists a real number § > 0 such that | £(x) —
L| < € whenever 0 < |x — 4| <= 8. This definition of a limit can be phrased in terms of
quantifiers by

Ve 33VYx(0< 0 -al <8 — |fix)— L
where the yniverse of discourse for the variables § and € is the set of positive real

aumbers and for v 15 the set of real numbers.
This definition can also be expressed as

Ve >0 > 0¥x(0<|x~al<d — |fx) — L] < &)

when the universe of discourse for the variables ¢ and § 15 the set of all real numbers,
rather than the set of positive real numbers. [ |

<€),

EXAMPLES FROM LEWIS CARROLL (optional)

Lewis Carroll {really C. L. Dodgson writing under a pseudonym), the author of Afice in
Waonderignd, is also the author of several works on symbolic logic. His books contain
many examples of reasoning using quantifiers. The next two examples come from his
back Symbolic Logic; other examples from that book are given in the exercise set at
the end of this section. These examples illustrate how quantifiers are used to express
various types of statemerus.

Charles Lutwidge Dodgsen 11832-1898).  We know Charles Dodgson as Lewis Carroll—ihe pseudonym
he used in his writings on logic. Dodgson, the son of a clergymn, was the third of 11 children, all of whom
stuttered. He was uncomfortable in the company af aduits and is said 10 have spoken without sratterin 2 un@L
to young girls. many of whom he emenained, corresponded with, and photopraphed {often in the nuds.
Although attracted to young girls, he was extremely puritanical and religious. His [riendship with 1he three
young daughters of Dean Liddel! led to his writing Afice in Wonderfand, which brought him moncy and
tame.

Dodgson graduated from Oxford in 1854 and obiained his master of arts degree in 1857, He was up-
pointed feclurer in mathematics at Chiist Church Coilege, Gxford, in 18335, He was ordained in the Church
of England in 1861 but never practiced his ministry. His writings include articles and books on geoma-
iy, determinants, and the mathematics of tournarents and elections. (He also used the psendonym Lewis
Carrodi for his many works on recreational fogic.
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EXAMPLE 20 Consider the following statements. The first two are called premises and the third is
catled the conclusion. The entire set is called an argument.

“All lions are fierce.”
“Some ltons do nol drink coffee.”
“*Some fierce creatures do not drink coffee.”

{In Section 3.1 we will discuss the issue of determining whether the conclusion is a
valid consequence of the premises. [n this example, it is.) Let P(x), O{x), and Rix) be
the statements “x is a lon,” “xis flerce,” and “'x drinks coffee,” respectively. Assuming
that the universe of discourse is the set of all creatures, express the statements in the
argument using quantifiers and P(x), Q(x), and R(x).

Sofution: We can express these statements as:

Ya(P(x) — Qx))

Axt P M 2 RO,

Ax(Q{x) A = R
Notice that the second statement cannot be written as Ix{ P(x) — -+ R(x)). The reason
is that P(x) -— = R(x) is true whenever x is not a lion, so that x(P{x) — -1 R(x)) 18
true as long as there is at lcast one creature that is not a lion, even if every lion drinks
coftee. Similarly, the third statement cannot be written as

e Hxy — SR |

EXAMPLE 21 Consider the following statements. of which the first three are premises and the fourth
is a valid conclusion.

“All hummingbirds are richly colored.”

“No large birds live on honey.”

“Birds that do net live on honey arc dull in color.”

“Hummingbirds are small.”
Let P{x), Q(x), R(x), and S(x) be the statements “x is a hummingbird,” *'x is large,”
“xlives on honey,” and “xisrichly colored,” respectively. Assuming that the universe of
discourse is the set of all birds, express the statements in the argument using quantifiers
and P{x}, Qx), R(x), and S(x).

Solution. We can express the statements in the argument as;

Vi Plx) — S{x)).

x(Qx) A REX)).

Yy—R(x) — -8

Yx(Plx) — 00X
{Note we have assumed that *'small” is the same as “not large” and that “dul] iny color™ 1s
the same as “net richly colored.” To show that the fourth statement is a valid conclusion

of the first three, we need to use rules of inference that wilt be discussed in Section 3.1.)
[ |

BINDING VARIABLES

When a quantifier is used on the variable x or when we assign a valueto this variable, we
say that this occurrence of the variable is bound. An occurrence of a variable that is not
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bound by a quantifier or set equal to a particular value is said to be free. All the variables
that occur in a propositional fusction must be bound to turn it into a proposition. This
can he done using a combmation of universal quantifiers, existential quantifiers, and

value assignments.

Many mathematical statements involve multiple quantifications of propositional
functions involving more than one variable. [t is tmportant to note that the order of the
quantifiers is important, unless all the quantifiers are universal guantifiers or all are
existential quantifiers. These remarks are illustrated by Examples 22, 23, and 24. In
cach of these examples the universe of discourse for each variable is the set of real

numbers.

EXAMPLE 22 Let P(x, y)bethestatement “x+¥ = y+x." What ig the truth value of the quantification
YaVy Py, v)?
Sofution: The quantification
Yoy Plx, v)
denotes the proposition
“For all real numbers x and for all real numbers v, itistrue that x +y = v + 1.7

Since Plx, v) is true for all real numbers v and v, the proposition V.xVy P(x, y) is true.
[ ]

EXANMPLE 23 Let Q(x, v) denote “x + 3 = 0.7 What arc the truth values of the quantifications
Ay Vx Qlx, yyand Vx Av Q(x, vy’
Sotution: The quantification
Ay Y x v)
denotes the propoesition .
“There is a real nutnber v such that for every real number x, Q(x, y) 18 true.”

No matter what value of v is chosen, therc 1s only one valee of x for which x + v = Q.
Since there is no real number y such that x + v = 1 for all real numbers x, the statemest

Ay ¥x O, vy is false.
The quantification

Yrxdy Gz v)
denotes the propositien
“For every real number x there 15 a real number y such that ({x, ¥ is true,”

Gitven a real number x, there is a real number v such that x + y = 0: namely, y = —x.
Hence, the statement ¥x 3y O(x, ¥) is true.

Example 23 illustrates that the order in which quantificrs appear makes a differ-
ence. The statement Iy ¥x P(x, vi and ¥x 3y P(x, v) are not logically equivalent. The
statement Iy Vx PLx, ¥) is true if and only if there is a ¥ that makes P(x, y) true for
every x. So, for this statement te be true, there must be a particular value of v for
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which P(x, v} is uue regardless of the choice of x. On the other hand, ¥x Iy P(x, y) is
true if and only if for every value of x there is a value of y for which P(x, y) is true. So.
for this statement to be true, ne matter which x you choose, there must be a valve of ¥
(possibly depending on the x you choose) for which P(x, v) is true. In other words, in
the second case y can depend on x, whereas in the first case y 15 & constant independent
of x.

From thesc observations, it follows that if 3y ¥ Px, v) is true, then ¥x 3y Plx, y)
must also be trae, However, if ¥x Iy P(x, ¥) is true, it is not necessary for Ay Vx Plx, ¥)
io be true. (See Supplementary Exercises 8 and 10 at the end of this chapter.)

In working with quantifications of more than one variable, it is sometimes helpful
to think in terms of nested loops. (Of course, if there are infinitely many elements in
the universe of discourse of some variable, we cannot actually loop through all values.
Nevertheless, this way of thinking is helpful in understanding nested quantifiers.) For
example, to see whether Va ¥y P(x, ¥) is true, we loop through the values for x, and for
each x we loop through the values for v, [f we find that P(x, y) is true for all values for x
and y, we have determined that Vx ¥y P(x, v} is true. [f we ever hit a value x for which
we hit a value y for which P(x, )) is false, we have shown that ¥.x ¥y P(x, y) is false.

Similarly, to determine whether ¥x 3y P(x, y) is true, we loop through the values
for x. For each x we loop through the values for y unti! we find a v for which P(x, v) is
true. If for all x we hit such a y, then ¥x 3y P(x, ) is true; if for some x we never hit
such a v, then ¥x 3y P(x, v) is false,

To see whether Ix Xy P(x, ) is true, we loop through the values for x until we find
an x for which P{x, v} is always true when we-loop through al! values for v. Once we
find such an x, we know that Ix¥y P(x, v} is true. If we never hit such an x, then we
know that Jx ¥y P{x, y)is false.

Finally, 10 see whether 3x 3y Pix, ») is true, we loop through the values for x,
where for each x we leop through the values for y until we hit an x for which we hita v
for which P(x. ¥) is true. The statement 3x Iy P(x, y) is false only if we never hit an x
for which we hit a y such that P(x, v) is true.

Table 2 summarizes the meanings of the different possible quantifications involving
two variables.

Quantifications of more than two variables are also common, as Example 24 illus-
trates.

TABLE 2  Quantifications of Two Variables,
Statement | When True? When False?
ViVy Pl y) Pix, ¥} is true for every pair | There is a pair x, y for
Ve¥x Plx v Loy ( which Plx, v) is false.
YxdyPlx v ‘ For every x there is a v lor There is an x such that
| which P{x, v}is true, P{x. v)is false for every v.
Ax Vv Pl ¥) | There is an.x for which P{x. v} For every x there is a y for
Il- is true for every v, which Plx, ) 1s false.
|
| _
dxdyP(x y) | Thereis apair x, y for which P(x, y}is false for every
y3cPix y) | Flx yiisime. | pairxy.
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EXAMPLE 24 Let O(x, v, 2) be the stalement “x + v = 7. What are the truth values of the stalements
Yax¥yI- Oy, v. b and Iz¥xVy O, v 2)?

Solution: Suppose thut x and v are assigned vatues. Then, there cxists 4 real number z
such thal x + y = z. Consequently, the quantification
Vai¥y3z 0 v 2),
which is the statement
“For all real numbers x and for ail real numbers y there is a real number 2 such
that v + y = 2"
is true. The order of the quaatification here 15 important, since the quantfication
AoV Vv Oin v z).
which is the statement

“There is a real mumber 7 such that for all real numbers x and for all rcal numbers
yitis truethat x + y = 27

is false, since there is no value of ; that satisfies the equation x + v = 7 for all valves
of xand y. a

NEGATIONS

We will often want 1o cunsider the negation of a quantified cxpression. For instance,
consider the negation of the statement

“Every student in the class has taken a course in calculus.”
This statement is a universal quantification, namely.

YrxPix)

where P(x) 15 the stalement “x has taken a course in caleulus.” The negation of this
statement 35 Tt is nol the casc that every student in the class has taken a course in
caleulus.” This is equivalent Lo “There is a student in the class who has not taken a
course in calculus.” And this is simply the cxistential quantification of the negation of
the original propositional function, namely,

3y Plx)

This example illustrates the following equivalence:
-Wx P(x) < JxP(x).

Suppose we wish to negate an existengial quantification, For instance, consider the
proposition “There is a student m this class who hays laken a course in calcolus.” This
is the existential guantification

dx Qi x),

where (x) ts the statement “'x has taker # course in caleulus.” The negation of this
statement is the proposition Tt is not the case that there 1s a student in this class who
has taken a course in calculus.”™ This is equivalent to “Every student in this ciass has
not taken caleulus,” which is just the universal quantification of the negation of the
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TABLE 3 Negating Quantifiers.

Negation Eguivalent Statement

—=dx Pl{x) Vi= Fix)

-¥x Plx) i Ix-Pix)

When Is Negation True? When False?

P(x}Is false for every x. There is an x for which
P(x)is true.

There 15 an x for which P(x} is true for every x.

P{xy 15 false,

original propositional function, or, phrased in the language of quantifiers,

Y {Xx)

This example illustrates the equivalence

=3 x) = Vx - 0x)

Negations of quantifiers are summarized in Table 3.

Exercises

Lo

. Let F{x) denote the statement “x = 4.” What are the

trith values of the following?

al P b P4y o) P(B)

Let Pfx} be the statement “the word x contains the legter
a.” What are the truth values of the following?

4) Plorange) b} P{lemon)

¢) Pilrue) d) P(false)

» Let Qx, v) denote Lhe statement “x is the capital of y.”

What are the truth values of the following?
a) ((Denver, Colorado)

b} (N Detroir, Michigan)

) (J{Massachusetts, Boston)

d) O(New York, New York)

. State the value of x after the statement if P{x) then

A= 1oas executed, where P{x) 15 the statement “x >
1" 1f the value of x whea this statement is reached is
a) x =0 b} £ =1 ¢ x =12

. Lot Plx) be the statement “x spends more than five

hours every weckday in class,” where the universe of
discourse for x is the set of students. Express each of
the following quantifications in English.

ay Ix Pl b) ¥x P{x)

¢) dxPlx) d) Ya~=PFix)

. Let Plx, y) be the statement “x has taken class v.”

where the universe of discourse for x is the ser of all
students in your class and for ¥ is the set of all com-
puter science courses al your schaol. Express each of
the tollowing quantifications in English.
a) Irdy Py vy by Ax¥yP{x )
€) ¥x Iy Plx, ¥ d) IxVx P v)
e) ¥y3xPx v N Yavy Py v)

7. Let W(x, ¥) mean that x has visited y, where the uni-
verse of discourse for x is the set of all students in your
school and the universe of discourse for y is the set of
all Web sites. Express each of the following statements
by a simple English sentence.

a) W(Sarah Smith, www.att.com}

by Jx W{x, www.imdb.org)

¢) Ay W{lose Orez, ¥)

d) Iy (WiAshok Puri, y)/\ W(Cindy Yoon, y))

e} Ay¥z(y # (David Belcher)/\{W{David Belcher, 2)
— W)

f) AxIyValix # VIAW(x D < W )

8. Let C(x, y) mean that x is enrolled in v, where the uni-
verse of discourse for x is the set of all students in your
school and the universe of discourse for y is the set of
all classes being given at your school. Express each of
the following statements by a simple English sentence.
a) C{Randy Goidberg, C5 252)

b) 3x Clx. Math 695)

¢) 3y CiCarol Sitea, y)

d) 3x(Clx, Math 22204 C(x,4€85 252))

e) IyIyV(x # VINC(x 2) = Cly. )
B Jx Iy Vallx # ) AC(x D)+ Clv, )

9. Let P{x) be the statement “x can speak Russian™ and
iet ({x} be the statement “x knows the computer lan-
guage C+ +.” Express each of the following sentences
interms of P{x}, Q(x), quantifiers, and logical connec-
tives. For the universe of discourse for quantifiers use
the set of all students at your schooi.

a} There is a student at your school who can speak
Russian and who knows C+ +.
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b} There 15 a student at your school who can speak
Russian but who doesn’t know C+ +.

¢} Every student at your school ezther can speak Rus-
sian or knows C+ +.

d¥ No student at your school can speak Russian or
knows C++.

Let Q¢ x. v) be the statement “r has been a contestant on

¥." Express each of the following sentences in terms of

(X x, v), quantifiers, and logical connectives, where the

universe of discourse for x is the set of all students at

your school and (or ¥ 1s the set of all quiz shows on

television.

a} There is a student al your school who has been a
contestant un a television quiz show,

b} Ne student at your school his ever been a contesiant
on 4 television guiz show,

¢} There is o student at your school who has been a
contestant on Jeapardy and on Whee! of Fornume,

d} Every television quiz show has had a student from
your school as a contestant,

) At least two students from your school have been
contestants on Jeopardy,

let £{x, ¥) be the statement “x loves v, where the uni-

verse of discourse for both x and ¥ is the set of all peo-

Me in the world. Use quantifiers to express each of the

following statements:

a} Everybody toves Jerry.

b} Everybody loves somebody.,

¢) There is somebody whom everybody foves.

d} Nobody loves everybody.

e} There 1 somebody whom Lydia does not love.

f) Therc is somebody whom no one loves,

gt There iy exactly one person whom everybody loves.

h} There are exactly two people whom Lynn loves,

i} Everyone loves himself or herself’

j) There is someone who loves no one besides himself
ot herself.

Let F(x. v) be the statement “x can fool v.” where the

universe of discourse is the set of all people in the

world. Use gquantifiers to express each of the following

SLAEMents,

a) Fverybody can fool Fred.

bj Evelvn can fool everybody.

¢} Everybody can fool semebody.

d} There is 0o one who can fool everybody,

et Everyone can he fooled by somebody,

£} Noone can feol both Fred and Jerry,

g) Nancy can fool exactly two people.

h} There is exactly one person whoem everybody can
Iol,

i} Nu ane can fool himself or herself,

J¥ There is someone who can fool exactty one person
besides himself or herself,

. Let 5tx) be the predicate “x is a student,” Fa) the

predicate ~ v is a faculty member,” and Afx, v) the pred-
ieate v has asked v a question,” where the untverse of

14,

15

discourse is the set of all people associated with your
school. Use quantifiers 1o express cach of the following
statements.

a) Lois has asked Professor Michaels a question.

b) Every student has asked Professor Gross a question.

¢) Every faculty member has either asked Professor
Miller 4 question or been asked a question by Pro-
fessor Miller.

d} Some student has ot asked any faculty member a
question,

e) There is a faculty member who has never heen
asked a question by a student.

£} Some student has asked every faculty member a
guestion.

g) There is a faculty member who has asked every
other faculty member a yuestion.

h) Seme student has never been asked a question by a
facuity member.

Let f(x} be the statement “x has an [nternet connec-
tion” and C(x, y) be the statement “x and v have chai-
ted over the [nternet.” where the universe of discourse
forthe variables x and vis the set of all students in your
class. Use quantifiers to express cach of the foliowing
statements,

) Jerry does aot have an Internet connection.

b} Rachel has noi chatted over the Tmternct with
Chelses.

¢) Jan and Sharon have never chatted over the Inter-
net,

d) No onc in the class has chatted with Boh.

e} Sanjay has chatted with everyone except Joseph.

f} Someone in your class does not have an Internat
connection.

2) Noteveryone in vour ctass hay an Intenct connee-
tien.

h) Exactly one student in your class has an Internet
connection,

i) Bveryone except one student in your class has an
Internet conmection,

J) Everyone in your class with an Internet connection
has chaved over the Internet with at least one other
student in your class.

k) Someone in your class has an Intemet connection
but has not chatted with anyone else in your class.

1) There are two students in your class who have not
chatted with over the Intemet,

m) There is a student in vour class who has chatted with
everyone m your class over the Internet.

n} There are at least two students in your ¢lass who
fave ot charted with the same person in vour class,

o) There are two students in the class who between
them have chatied with evervone else in the class.

Let M(x. ¥ be “x has sent y an e-mail message™ and

F(x, ¥) he “x has welephoned v, where the universe of

discourse 15 the set of all students in your class. Use

quantifiers to express each of the following statements.
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{Assume that all c-mail miessages that were sent are

recelved, which is vt the way things often wogk)

a) Chou has never sent an e-mail message to Koko.

b} Artene has never sentan ¢-mail nessage 10 on fele-

phoned Sarah.

Jose has never received an e-mail message from

Dyeborah.

tvery studeni tn your class has sent e-ratl message

o Ken.

No one in your class has telephoned Nina.

Everyone in class has cither telephoned Avi or sent

him an ¢-mail message,

There is a student in your class who has sent every-

o ¢lse i your cluss an e-mail message.

There is semcone 0 your class whe has either sent

an e-mail essage o1 telephoned everyene else in

your class,

There are two students in vour class wha have sent

¢ach other e-mail messages.

i) There is a student who has sent himsell or herself

an e-mii] message.

There is a swdentin your class who has not received

an e-nusi message from anvone else in the class and

whu has not been called by any other stadent in the
class.

Every student in the class has either receivad an e-

mail message ur received a telephone cafl from &n-

other student in the class.

m} There are at feast two students in v class such
that one student has sent the other e-mail and the
sevond student hias telephoned the first student,

n} There are two students in vour class who berween
them have sent an e-mail message to or telephoned
everyone else i the class.

Use guantifiers to express each of the following state-

ments,

a} There s a student in this class who can speak Hindi.

b) Every studentin this ¢lass knows how 1o drive g car,

¢} Some stodent in this class has vistied Alaska but
has nel visiied Hawuil.

di Al students i this class have learned ot least one
prigramining language.

€) There is a student 1o this class who has taken ev-
ery course ollered by vne of the departinents in this
school,

f) Soune studend in this clags grew up in the same wwn
as exactly one uther student in this class.

2) Every student in this class has chatted with at least
one other student in at least one on-tine chat group.

Live quamtifiers 10 express the following statements.

4} Cvery compuier scicnce student needs a course in
diserete mathemuics.

1) There 1< a student in this class who owns & personal
coimnpmter.

v} Every student in this class has taken al least ong
COMPULET SCIRACE COUTSE,

t)

d

e

k

—

—

13.

._.
=

[ 24
=

21

35

1.3 Exercises

There is a student in this class who has Laken at least

One course in compuer science.

Every student in this class has been in every build-

ling on campus.

fi There 1s a stadent in this class who has been in ev-

ery room of at least one building on campus.

Every student in this class has been in at least one

room of every building on campus.

A discrete mmathematics class contains 1 mathematics

major who is a freshiman, 12 mathematics majors who

are sophomores, 15 computer science majors who are

sophomores, 2 mathematics majors who are juniors, 2

computer science majors who are juniors, and 1 com-

puter <cience major wha is a senior. Express cach of the

following statements in lerms of quantifiers and then

determine 1ls truth value.

a) There is a sluder in the class who s a junior,

b) Every student in the class is a computer science ma-
Jor.

¢} Therc is a student in the clasy who is neither a math-
CMALCS Majur Nor 4 jumior.

d) Every student in the cluss is either a sophomore or
4 COmputer science major,

e} There is a major such that there is 4 student in the
vlass in gvery year of study wilh that major.

Let Pty be the statement *v = 477 If the universe of

diseaurse (s the set of integers, what are the truth values

uf the following?

ay P by Pft)

dy -1 e dr Pt

i

—

€

-

g

) PN
i ¥xPio

»Let Qra, vp be the statement b v = v - v I the

umverse of discourse for both variables 15 the set of in-
tegers, what are the truth values of the following”

ay (L 1 b) Q2.0

) Vil v) d) Ix 0.2

e} dxIvihr v f) Ye3yQix v

) Av¥a{Hx v h) Vy3ax(x v

i VeVyQin v

Determine the iruth value of each of the following
statetnents if the universe of discourse for all variables
is the set of ali integers,

a) Yarn® = 0)

¢} Ynis = n)

e} AnVmin < m

gl AnVminm = m)

i) Andmin® + m* = 6}
P andmin+m 4N -m
Ky dndmin+m =4 \n-m
1) ¥a¥mdpip — (m+ n)2)
Determine the truth value of each of the fuliowing
statetnents if the universe of discourse of each variahle
is the set of real numbers,
a) Axx* =2

¢} Y 3_»'(_{3 =)

el IxV{xy = (1

g) Y=y = 1)

b) 3ain = 1
&) ¥r Amin < m
) ¥uldmin + m = (b

h) Ar3mint +m? = §

1l
Fd -
—

by dx{x" = 1)

&) Ya3ulr = )

fi Ae3vfa+ v £ vy
hy 3x¥y=0xy = )
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iV ¥adwy iy = 1)

B3It + 2y - IA v+ 4y = 5)
Ky Vadvin 1 4y =252y —v =1
[} VaVe3us = (v — vi/d)

. Suppose the universe of discourse of the proposi-
vonal function P(x, vy consists of pairs x and v, where
vis 12 or 3and vois 12, or 30 Write out the
following propositons using disjonctions and con-

[ =
Lad

Junctions.

a} Ac v 3 P ¥y Pl v
c) VavyFPia oy d) 3x3vPixy
€) da¥vFlay) D Yy3IxFix

24. Rewrite each of the following statements so that nega-
tions appear only within predicates (that is, so that no
negation 15 outside a quantifier or an expression involy-
ing logicul vonnectivesh.
ar Jdv3rPloy)

b) ~¥y3dv Py

¢ =3y A ¥ — Ry

diy = 3vidv Ry Yo Sty

e} =AY Az Ty 2y IxVo Uic v

15, Rewrite cach ot the following statements so that nega-
tons appear only within predicates {(that 15, so that no
negation is outside a guantifier or an expression involy-
ing logical connectives),
al  Vr Ve Pl
hy =¥y 3a Plry)

) = ¥e Vi Pl viny O )
d) - Jy 3y P Ve O v
e Vx{dv Vo Pl A3y Pl oy o

26, Express cach of the following statements using quan-
Ghers. Then form the negation of the stalerment so that
no negation is 1o the left of a quantifier. Next, express
the negation in simple English. (Do not simply use the
words "It s net the case that.”)

a) All dogs have fleas.
by No one has lost more than one thousand dollars
plaving the lutteny.

Thuzre iy a4 stedent in this class who has charted with

exactly ane other student.

No student 1n this class has seat e-mail o exactly

two other students in this class.

¢} Some student has solved every exercise in this

book.

No smdent has solved at least one cxercise in every

section of this book.

27, Tixpress cach of the following statements using quanti-
fiers. Then form the negation of the statement, so that
no negation is o the left of a quantifier. Next, express
the negation in simple English. (Do not simply pse the
words "It is not the case (hat.™)

a} There ix no dog that cantalk.

b1 There 15 no one in this class who knows French and
Russian.

¢} Every swdent in this class has taken exactly two
mithematics classes at this school,

—

C

—

d

f

d} Someonc has visited every coumry_ in the world
except Libya.

e) No ong has climbed every mountain in the Hi-
malayas.

f} Every movie actor has either been in a movic with
Kevin Bacon or has been in a movie with someone
who has been in a movie with Kevin Bacon.

28. Express the negations of the following propositions us-

ing quantifiers, and in English.

a} Every student in this class likes mathematics,

b} There is a student in this class who has never seen
a computer.

¢) There is a student in this class who has taken every
mathematics course offered at this school,

d} There is a student in this class who has been in at
least one room of every bailding on campus.

29, Usc quantifiers to express the associative law for mul-
tiplication of real numbers.

30. Use guantifiers 1o express the distributive laws of mul-

tipiication over addition for real numbers.

weh

Exercises 31-34 are based on guestions found in the heok
Svmbalic Logic by Lewis Carroll.

31. Let Pix). (o), and Rix) be the statements “x 1% a pro-
fessor,” “x i ignotant,” and “x is vain,” respectively.
Express each of the following statements using quan-
tifiers; logical connectives: and P{x}, ((x}, and R(x).
where the universe of discourse is the set of all people.
a} No professors are ignorant.

b} All ignorant people are vain.

c) No professors are vain,

d) Does {¢) follow from (&) and (b}? If not. is there a
correct conclusion?

32, Let Pix). (4 x). and R(x; be the statements v is a clear
explaration,” “x is satisfactory,” and “x is an excuse,”
respectively. Suppose that the universe of discourse for
x is the set of all English text. Express each of the
following stalements using quantifiers; logical conmec-
tives; and P}, Q(x), and R(1).

a} All clear explanations are satisfactory.
bt Some excuses are unsatisfactory.
¢) Some cxcuses are nol clear explanations.
*d) Does (c) follow from (a) and (b)? If not, is there a
correct conclusion?

33, Let Plx). @(x), Rix), and S(x) be the statements "xis a
baby,” “x is logical,” “x is able to manage a crocodile,”
and "'x is despised,” respectively. Suppose that the uni-
verse of discourse is the set of all people. Express each
of the following statements using guantificrs; togical
connectives; and P{xh O(x), Rix). and S(x).

&} Babies are iHlogical.
b} Nobody is despised who can manage a crocodile.
¢) Mogical persons are despised.
d} Babies cannot manage crocodiles.
*e} Docs (d) follow from (a), (b), and (c)? If not, is there
a correct concluston?
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34 let Plx), O(x) R(x). and 5(x) be the statements “x
is a duck,” v is one of my pouliry,” "x is an officer,”
and “v s willing 10 waltn.” respectively. Express each
ol the following statements using quantifiers: logical
connectives; and PLe), Ox), R(x), and 3{x).

a) No ducks are willing to waltz.
b} No officers ever decline w waltz,
¢) All my pouitry are ducks.
d) My pouloy are not officers.
*¢) Does (d) follow from (a). (b), and (¢)7 i nol, is there
a correet conclusion’?

35 Show that the statements —3x¥y Plx, ¥
¥x 3v = Plx, ¥) have the sume truth value.

36. Show that Vx(Px} "~ O(xh and Vi Plx) A Ve Qfx)
have the same truth value.

37. Show that Jx(P(x) v Oxy) and Jx Pl vy Ax Q1x)
have the same wuth value,

38, Establish the following logical equivalences, where A
i a proposition not involving any quanii fers.

a) (Va Ployiy A & WalPloy A)
By iy Plxhiv A &= AalPloywy A

39. Establish the following logical equivalences, where A
is a proposition not involving any quanti fiers.
) (WP S A = Y Pla) A
by (3x Pl A = I fian A

40. Show that ¥a Pl W Qx) and Y (Pl Q) are
not logically equivalent.

41. Show that Iy P AT QU and Ix( Px) NOx) are

not logically equivalent,

Show that ¥ Pl W Q(x) and ¥ Wy (PO Q)

are logically equivalent. (The new variable v (s used to

combine the quantifications correctly.)

a) Show that ¥x Pixt A IxO0x) and Va Iy (Pl A

(v 1 e equivalent,

by Show that ¥a Plapyy Axx) and Y Iy (Pla)yy
¢ v} are cquivalent,

44, The notation 3! x fx} denotes the proposition

and

42,

*43.

"“There exists & unigue x such that P{x) is true.”

If the univeyse of discourse is the set of ntegers, what

are the truth values of the following?

ay A = 1}

b A = 1y

) x(a -3 =20

d) sy =3+ 1)
45, What arc the truth vaiues of the following statements?

a) A Pray — 3x Pl

by ¥y Pix) -+ FaP(x)

) Be =Pl — ¥xPix)
46, Write out the quantfication 3'x P{x). where the uni-
verse of discourse consists of the integers 1, 2, and 3,
in terms of negations, conjunctions, and disjunctions.
Express the guantification 3w P{v)y using umiversal
guantifications, existential quantifications, and logical
operalors.

*47,

1.3 Exercises 37

A stateracnt is in prenex normal form (PNF) if and only
if it 15 of the Torm

Q]_t']Qg_l'g T Qk.t} P(_.L’|. Ao &g I,

where each Q.1 = 1. 2,... L is cither the esistential
quantifier or the umiversal quantifier, and F(x,.. ... )
15 a predicate involving no guanifiers. For cxample,
eV v i Plx v S QU s 10 prenex normal form, wheteas
Jx P{x) s ¥ Q{x} bs not {since the quantifiers do not all
oceur Nrsth.

Every statement formed from propositional variables,
predicates, T, and F using logical connectives and quan-
tifiers is equivalent to a statement in preaex pormal form.
Exercise 49 asks for a proof of this fact.

*48. Put the following statements in prenex normal form.
(Hinr: Use logical equivalence from Tables § and 6 in
Section 1.2, Table 2 in this section, and Exercises 36—
0 and 42 .43 in this secuon.)

a) Av Py v Gl A, where A s & propesition
not involving any quantifiers.

b} ~{¥x Plx)y Ve QO

e) dx Plx) — Jx Qi)

#*49, Show how totransform an arbiteary statement to a state-

ment 1n prenes pormal form that is equivalent to the
given statement,

A real number x 1s called an upper hound of a set § of real
numbers if x is greater than or cqual 1o every member of §.
The real number x is called the least upper bound of 2 set
§ of real numbers if x is an upper bound of § and x is less
than or equal to every upper bound of 8t if the Jeast upper
hound of a sel § exists. it is unigue.

50. a) Using quantitiers, express the fact that v isan upper
bound of’ §.
b) Using quantifiers, express the fact that x is the least
upper bound of 5.
81, (Caleulus required) Using quantifiers, express the fact
that lim, - ., f{x) does not exist.

The statement lim, —. 4, = L means that for cvery post-
tive real number € there Is a positive integer N such that
lo. — £« € whenever m = N,

52. (Calcutus required) Use quanti flers to express the state-
ment that limg—- a, — L.

53. {Calculus required) Use quantifiers to express the state-

ment that lim,, - . o, docs not exist.

(Calculus required) Use quantifiers to express the foi-

lowing definition: A sequence {a,} is a Cauchy se-

guence if for every real number € = () there exists &

positive integer & such that |a, -~ an} < € forevery pair

of positive integers m and n withm > N and n = &

55, {Calculus required) Use quantifiers and logical connee-
tives to express the following definition: A number L is
the limit superior of 2 sequence {a,} if for every real
number € > 0, a, = L — ¢ for infinitely many » and
tp = L -+ € for only finitely many n.

54

1
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1 ¢ The Foundations: Logic, Sets. and Functions

web

web

INTRODUCTION

We will study a wide variety of discrete structures in this book. These include rela-
tions, which consist of ordered pairs of elements: combinations, which are unordered
collections of elements; and graphs, which are scts of vertices and edges connecting
vertices. Morgover, we will illustrate how these and other discrete struciures are used
in modeling and problem solving. In particular, many examples of the use of discrete
structures in the storage, communication, and manipulation of data will be described. In
this section we study the fundamental discrete structure upon which all ether discrete
structures are built, namely. the set.

Scts are used to gronp objects together. Often, the objects in a set have similar
properties. For instance, all the students who are currently enrolled in your school makse
up a sel. Likewise, all the students currently taking a course in discrete mathematics at
any school make up a set. In addition, those students enrolled in your school who are
taking a course in discrete mathematics form a set that can be obtained by taking the
elements common to the first two collections. The language of sets is a means to study
such collections in an organized fashion.

Note that the term object has been used without specifying what an object is. This
description of a set as a collection of objects, based on the intuitive notion of an vbject,
was first stated by the German mathematician Georg Cantor in i895. The theory that
results from this intuitive definition of a set leads to paradoxes, or logical inconsisten-
cies, as the English philosopher Bertrand Russell showed in 1902 (sce Exercise 26 for a
description of one of these paradexes). These logical inconsistencies can be avoided by
building set theory starting with basic assumptions, called axioms, We will use Can-
tor’s originai version of set theory. known as naive set theory, without developing an
axiomatic version of sct theory, since all sets considered in this book can be treated
consistently using Canlor’s original theory.

We now proceed with our discussion of sets.

DEFINITION 1. The objects in a set ate also called the tlements or manbem, of
the set. A set is said to conrain its elements.

Georg Cantor (1845-1918).  Geurp Canter was horn in St Pelershurg. Russia, where his father was a
successful merchant. Cantor developed his interest in mathematics in his teens, He began his university
studses in Zurich in 1862, but when hiy father died he left Zurich. He continued his university studies at the
Liniversity of Berlin in 1863, where he studied under the eminent mathematicians Weierstrass. Kummer.
and Kronecker He reccived his doctor's degree in 1867 after having written a dissertation on number theory,
Cantor assumed a position af the University of Halle in 1869, where he continued working until his death.
Caneor is considered the founder of set theary. His contributions m this area include the diseoy ary that
the sct of real numbers is uncountable. He bs also noted for his man; important contributions & analysix,
Cantor alse was interested in philosophy and wrote papers relating his theory of sets widh ietaphysics.
Cantor married in 1874 and had five children. His melancholy temperament was balanced by his
wile's happy disposition. Alihough he received a large inheritunce from his Father, he was poorly trid as
a professor. To mitigate this, he tied 1o obtain u better-paying position ut the University of Rerlin. His
appointment there was blocked by Kronecker, who did not agree with Cantor's views on set theory Cantor
suffered trum noental ilness troughout the later years of his lite. He died in 1918 in 2 prychiatric clinic.
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There are several ways to describe a set. One way s to {ist all the members of 4 set,
when this is possible, We use a notation where all members of the set are listed between
braces. For cxample, the notatien {¢. &, ¢, } represents the set with the four elements

¢ b.ocoand d
EXAMPLE 1 The set V of all vowels in the English alphabet can writicnas V = {a, ¢,/ 0.22). N
EXAMPLE 2 The se1 O of odd positive integers less than 10 can be expressed by €& = {1, 3, 5,7 9}
|
EXAMPLE 3 Although sets are usually used to group together elements with common properties,

there is nothing that prevents a set from having seemingly unrelated elements. For in-
stance, {g, 2, Fred, New Jersey} is the ser containing the four elements «, 2, Fred, and
New Jersey. -

Uppercase letters are usually used to denote sets. The boldface letters N, Z. and R
will be reserved to represent the set of natural numbers {0, €, 2, 3, ...}, the sctof integers
{o=2 -1,0, 1,2 ...}, and the set of real numbers, respectively. We will occasionally
use the notation Z* to denote the sct of positive integers. {Some people do not consider
0 & natural number, so be careful (o check how the term natural numbers is used when
you read other books.)

Sometimes the brace notation is used to describe 2 set without listing al!l its mem-
bers. Some members of the sct are Hsted. and then eflipses (...} are used when the
general pattern of the elements 1s obvious.

EXAMPLE 4 The set of posilive integers less than 100 can be denoted b}_f {1.2,3,...,99. |

Since many mathematical statements assert that twe differently specitied coliec-
tions of objects are really the same set, we need to understand what it means for two
sets to be equal.

Bertrand Russell { 1I¥72-1970%.  Bertrund Russell was bom into a prominent English family active in the

wep  progressive movement and having 2 strong cernmitment to liberty. He becarme an orphan at an eariy age and
way placed i the care of his father’s parents. who had him educated at home. He entered Trinity College,
Cambridge, 10 1890, where be excelled in mathematios and in moral science. He won a fellowship on the
busis of s work on the foundations of geometry. [n 1910 Trinity Callege appointed him 1o a lectureship in
Ingic and the philosophy of mathematics,

Russell fought for progressive causes throughout his Jife, He held strong pacifist views, and bis protests
against World War 1 led to dismissal fram his position at Trinity College. He was imprisonced for 6 months
in 1918 because of an article he wrote thar was branded as seditiovs. Russel! fought for women's suffrage
in Grear Rrilain. In 1961, af the age of 59, he way imprisenad for the second time for his prolests advocating
nuclear disarmament.

Russell’s greatest work was in his development of principles that eould be used as 3 foundation for alt
of mathernatics. His most famous work is Principia Mathematica. writien with Alfred North Whitchead,
which attempts 1o deduce all of mathemancs vsing a set of primitive axioms. He wmie many boiks on
philosophy. physics. and his political ideas, Russell won the Nobel Prize for literature in 1950,
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DEFINITION 2. Two sets are equal if and oniy if they have the same elemants.

EXAMPLE 3 The sets {1, 3, 5} and {3, 5, i} are equal, since they have the same elements. Note that
the order in which the elements of a set are lisled does not matter. Noie also that 11 does
not matter if an clement of a set 1s listed roore than once, so thai {1.3,3.3,5,5. 5. 5} 1«
the same as the set {1, 3, 5} since they have the same elememns. u

Another way o describe a sel is to use set builder notation. We charactenize all
those elements in the set by stating the propety or properties they must have © be
members. For instance. the sct O of all odd positive mtegers Tess than 10 can be writ-
tem as

(= {x | x1s an odd positive integer less than 10}

We otten use this type of notation to describe sets when it ts impossible (o list all the
elements of the set. For instance, the set of all real numbers can be written as

R - {1 vis areal number}.

Sets can also be represented graphically using Venn diagrams, named afwer the
Lnglish mathematician John Vean, who intreduced their use m 1881. In Venn diagrams
the universal set [/, which contains all the objects under consideration, is represented
by a rectangle. Inside-this rectangle, circles or other geometrical figures are used 1o
represent sets. Sometimes points are wsed to represent the particular elements of (he
sc Venn diagrams are often used to indicate the relationships berween sets, We show
how a Venn diagram can be used in the following example.

FNAMPLE 6 Draw a Venn diagram that represents V. the set of vowels in the English alphabel,

Solution: We draw a rectangle to indicate the untversa) set I, which is the set of the
26 tetlers of the English alphabet. Inside this rectungle we draw a circle to represent V,
Inside this circle we indicate the elements of V with points (see Figure 1. a

We will now introduce notation used 10 describe membership in sets. We write
o € A to denote that o Is an element of the set A, The notation a & A denoies that ¢
s not 2 member of the set A. Nete that lowercase fetters are wsually used w denote
clements of sets,

dihn Yenn (18419231 Johin Venn was bun o 3 Londen suburbait fstily noted for its philan thropy,

wef  Heatended London schouls and pot his mathematics degree from Caius College, Cambridge, in 1857, He
was elected a feHow of this college and held his fellowsbip there unti] his death. Be ok baly orders in 1559
and. after a brict stint of religious work, retumed m Cambridge, where he developed programs in the moral
~ciences, Besides his mathematical work, Yenn bad an interest in bistory and wiote extengively abnut his
wallege and family,

Venn's hook Symbofic Logis clarifies ideas onginally presented by Buole. In this beak, Venn prescnts
it sysiematic development of a method that uses peomeric figures, known Row as Yena diagrams. Toduy
these diagrams are primarily used to anatyse logical arguments and & illnstrate relationships between sets
[a addirton 10 his work on symbolic logic. Vens made coniributions 1 prohability theory described in his
widely used textbook on thar subject,
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FIGURE 1 Venn Diagram for the Setof  FIGURE2  Venn Diagram Showing
Vowels. That A Is a Sobset of B.

There is a special set that has no elements. This set is called the empty set, or nul
set, and is denoted by . The empty set can also be denoted by { } (that is, we represent
the empty set with a pair of braces thal encloses all the clements in this set). Otten, a
set of elemenls with certain properties turns oul to be the null set. For instance, the set
of all positive integers that are greater than their sguares is the null set.

DEFINITION 3. The set A is said to be a subset of B if and only if every clement
of A 15 also an element of B. We use the niotation A C B to indicate that A is a subset
of the set 8.

We see that A C Bif and only if the quantification
YixE8A—xe B

is trwe. Hor instance, the set of all odd positive integers less than 10 1s a subsei of the
set of all positive integers less than 1. The set of all computer science majors at your
school is a subset of the set of all students at vour school.

The null set is a subset of every set, thal is,

“os

whenever § is & set. To cstablish (hat the null set 18 a subset of §, we must show thal even
element of the aull set s also in S, Tn other words, we must shiow that the implication
Hif v €, then v € 57 s always true, We need only note that the hypothesis of this
tmplication——namely, “x € &"--1s always faise to see that this implieation 15 always
true. Hence, the empty setis a snbset of every set. Furthermore, note that every set is a
subset of itself (the reader should verify this). Consequently, if P is a set, we know that
UCPand PC P

When we wish to emphasize that a set A 15 a subset of the set B bul that A £ B, we
write A C 4 and say that A is a proper subset of B. Venn diagrams can be used to show
that a set A is a subset of & set B, We draw the universal set I/ as 4 rectangle. Within
this rectangle we draw a circle for . Since A 1s a subsct of 8, we draw Lhe circle for A
within the circle for B. This relationship is shown io Figure 2.

One way to show that two sels have the same elements is to show that each set 15 a
subset ol the other. In other words, we can show that if A and B are sets with 4 C 8 and
B C A then A = B. This turns out 1o be a useful way to show thal two sets are equal.

Sets may have other sets as members, For instance, we have the sets

48, {al, {b} {a b1 and {x | x is a subset of the set {a, b}

Note thal these two sets are equal.

PDF created with pdfFactory trial version www.pdffactory.com



http://www.pdffactory.com

42 1/ The Feundations: Lagic, Sets, and Functions

EXAMPLE 7

EXAMPLES

EXAMPLEY

EXAMPLE L}

EXAMPLE 11

Sets are used extensively in counting problems, and for such applications we need
to diseuss the size of sets.

DEFINITION4. Let .S be a set. If there are exactly n distinct elements in § where
n is a nonnegative integer, we say that S is a fimite ser and that » is the cardinality of
S. The cardinality of S is denoted by 5],

Let A be the sef of odd positive integers less than 10, Then 14] = 5. [
Let § be the set of letiers in the English aiphabet. Then *§] = 26, [ |
Since the nuil set has ao clements, it follows that | & - 0. |

We will also be interested in 5048 that are not finite.

DEFINITION 5. A set is said to be infinite if it is not finite.

The set of positive inlegers 1s dinnte.

The cardinality of infinite sets will be discussed in Scction 1.7, In that section.
we will discuss what it means for a set to be countable and show that certain sets are
countable while others are not.

THE POWER SET

Many problems tnvolve testing all combinations of elements of a set to see if they satisty
some property. To consider all such combinations of elements of a set S, we build a new
set that has as its members all the subsets of §.

DEFINITION 6. Given a set S, the power setf of 5 is the set of all subsets of the
sel §. The power set of § is denoted by P{S).

What 15 the power set ol the set {0. 4, 217

Solution: The power sel P({0, 1, 2}) is the set of all subsets of {0, 1, 2}. Hence.
PUO L 2R = {2 {04 {10 {25, {0, 1140, 21 {1. 23 {0, 1. 21

Note that the empty set and the set iself are members of this set of subsets, [
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What is the power set of the empty set? What is the power set of the set {2y

Soturion. The empty set has exactly one subset, namely, itseif. Consequently.

P = {5},
The set {0} has exactly two subsets, namely, & and the set {Z} itself. Therefore,

PARY = (.42h .

If a set has » elements, then its power set has 2" elements. We will demonstrate this
fact in several ways in subsequent sections of the text,

CARTESIAN PRODUCTS

The order of elements in a collection is often important. Since sets are unordered, a dif-
fevent structure is needed to represent ordered collections. This 1s provided by ordered

n=tuples.

DEFINETION7?. Theordered n-tuple{a,, ay, . .., a,) is the ordered collection that
bas @ as its first element, a; as its second element, . . ., and a,, as its nth element.

We say that two ordered n-tuples are equal if and only if each comresponding pair
of their elements is equal. I other words, {ay, @0, ..., a,) = (b1, bs, .. ., by) if and only
if g; = b, feri = 1.2,....n In particular, 2-tuples are called ordered pairs, The
ordered paits (a, &) and (c, d) ar¢ equal if and only if @ = cand b = 4. Note that (a. b1
and (&, g) are not equal unless a = b.

Many of the discrete structures we will study in later chapters are based on the
notion of the Cartesian praduct of sets (named after René Descartes). We first define
the Cartesian product of two sets.

René Descartes (i596-16501. René Descartes was born into a noble tamily near Tours, France. abour
200 miles southwest of Paris. He was the third child of his father’s first wife: she died several days after his
birth. Because of René’s poor health, his father, a provincia judge, let his son's formal lessons slide until, at
the age of B, Rané entered the Jesuit college at La Flache. The rector of the school took a liking to him and
pennitted him 10 stay in bed until g in the moming becavse of hiy frail health. From then on, Descartes
spent his momings in bed: he considered these thmes his most productive hours for thinking,

Descartes left school in 1612, moving io Paris, where he spent 2 years studying mathematics, He eurned
i law degree in 1616 from the University of Poitiers. At 18 Descanies became disgusted with studying and
decided to see the world. He moved to Panis and became a successful gambler. However, he grew tired nf
bawdy living andt moved to the saburb of Saint-Germain, where he devoted himsell  mathematival study.
When his gambling friends found him, he decided t leave France and undertake 3 military carece. However,
he never did any fighting. One day, while escaping the cold in an overheated room at 4 wilitary encampment,
be bad several feverish dreams. which revealed his future career as a mathematician and philosopher.

After endig his military career, he traveled throughout Europe. He then spept several vears in Paris,
where he stodied mathematics and philosophy and constructed optical instruments. Descartes decided to
move 1o Holland. where he spent 20 years wandering around the country, accomplishing his most important
work. During this time he wrote several books, including the Discours. which contains his conebutions to
analytic geometry, for which he is best known. He also inade fundamental contributions to philosophy.

in 1649 Descartes was invited by Queen Christina to visit her court in Sweden to sutor her in philaso-
phy. Although he was reloctant to live jp what he called “the land of bears amongst rocks and ice.™ he finally
accepted the invitaton and moved o Sweden. Untoruately, the winter of 1649-1650 was extremely biter,
Descartes caught pneumonia and died ip mid- Febroary.
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EXAMPLE 13

EXAMPLE 14

EXAMPLE 13

EXAMPLE 16

DEFINITIONS. LetA and B bé sets. The Cartesian produet of A sl B, dénotsd
by A X B, is the set of all ordered pairs (¢, b) where o € A and & € B. Heuoe,

AXB={ablacANbE B}

Let A represent the set of all students at a university, and let B represent the sel of all
courses offered at the university. What is the Cartesian product A X B?

Serdution: The Cartesian product A X B consists of all the ordered pairs of the {ornn
(@, M), where a is a student at the university and & 15 a course offared at the unmiversity.
The set A X B can be used to represent all possible enroliments of students in courses

at the university. a

What 15 the Cartesian product of A = {1, 2} and 8 = {a. b, ¢}?

Solution: The Cartesian product A X Bis
AXB ={Lan(Lbyl o) (2 a0i2,6),2 ) [ ]

The Cartesian products A X 8 and 8 X A are not equal. unless 4 = Jor B = (&
(sothat A X B = Norualess A = B (see Exervise 24, at the end of this section). This
15 illustrated in the following example.

Show thal the Cartesian product 8 X 4 is not equal to the Cartesian product 4 X B.
where A and A are as in Example 14
Solution: The Cartesian product B x A is

B A ={(a 1) (e, 20,6 100 2) (e, 10 i, 22

Thix is not equal t0 A X B, which was found in Example 14. |

The Cartesian product of more than two sets can also be defined.

DEFINITION 9. The Cartesian product of the sets Ay, Ay, ..., Ax, denoted by
A X Az X +-- X Ap, is the set of ordered n-tuples (ay, @z, . . ., a,), Where g; belongs
to A fori = 1,2,..., n Inother words

Al KA XX A, = {(al,az,...,an}lafEA,- fori = 1,2,..,,&}.

What is the Cartesian product 4 X B x C, where 4 = /0 1} B = 4.2}, and ¢ =
{0,127

Seolution: The Cartesian product A X B X € consists of all ordered triples (¢. b, ¢), where
a €A b€ B.andc € C. Hence,

AXBXC — {01,040 {0,1,2).00,2,00.40,2, 1,(0.2,23,{1, 1,03,(1, 1. 13,
(LL2)(L2.00(L20)(1.2.2)} [ |
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Exercises

1.

L

[¥[]

Lo,
11.

. Suppose that A -

List the members of the following sets.

a} {x. x is a real number such that x° = 1}

bi {x| x is a positive integer iess than 12}

) {x | x is the square ol an integer and x < 100}
d) {v| x1san integer such that 2° = 2}

. Use set builder notation to give a description of each of

the following sets.

a) {0.3,6.9 12

by {-3-2 10123
c{m o, 0, p}

. Petermine whether cach of the following pairs of sets

is equal.

a) {1,3,3,3,555550!53 1}

by HilL 40

o) R

2,4,61L 8 =1{2.6},.C = {4, 6} and
D 46 8 Dctermme which of these sels are sub-
sets of which other of these sers.

. Forcach of the following sets. delermine whether 2 s

an clement of that set.,
a) {x € R|.xis an integer greater than i}
b) {x € R|x is the square of an intcger}
L} 12,{24}

d) {120
e} 120

f) {{2h

{2
W22
i

. For each of the sets in Exercise 3, determine whether

{2} is an efement of that set,

. Determine whether 2ach of the tollowing statements is

true or false.
a) x££ {s}
d) {x} e {{x}}

¢ {x} € {af
fy i & {a}

by {x} O {a}
¢) ZC o}

o Use a Venn diagram Lo illustrate the relationshipd € 8

il B

. Suppose that A, B, and C ace sets such that 4 C B and

B C €. Show that A C C.

Find two sets A and Bsuchthat A€ Band 4 © B,
What 15 the candinality of each of the following sets?
a fut

bt Hult

¢ {adal}

d) {u, {ur) {o bl

. What is the cardimality of cach of the [ollowing c«ts?

a) &
b) v
R
d‘ (&AL o

. Find the power set of each of the fellowing scts.

a) {u}
b {u.
) {7

14,

16.

17,

i8.

1%

20.

21

1

Fr'n

23

24,

*25.

*26.

web

27

Can you conclude that A = B if A and 8 arc two sets

with the same power set?

. How many elements does each of the following sets

hitve?

a) Pilo, b Aa bh

b) PUZ, g {al {allh)
¢y PLPUZN

Determine whether sach of the following sews s the
power set of a sef.
a) &
b) {2, {a}}
) D el A, al}
) {2 {a}. (b} {a, bi}
{cH =4 boodhand B = {y, 2k Find
al AN B
h) Bx A

What 15 the Cartesian product A % B, where A i3 the sel

of courses offered by the mathernatics department a1

vniversity and 8 is the set of mathematics professors at

this university?

What is the Cartesian product A x B % , where A is

the set of all airlines and B and € are buth the set ot all

cities in the United States?

Suppose that A X B = {7, where A and £ are sels. What

can you conclude?

Let A beaset Showthatid X A = Axd =

LetA = {a bt B = {x v}, and C = {0 1}. Find

ay A 8xC

b C = R

v) O AXE

d) BxXBXE

How many diffcrent clements does A X B have if A has

i elements and B has n elements?

Show that AX B £ Bx A, when A and B are nonempiy

ualess A = B

Show that the ordered pair (a, b) can be defined in

terms of sets as {{a}, {a. b1}, |Hins: First show that

Hakfa b} = {fich e, g4 it and enly if @ = ¢ and

b =d)

in this exercise Russell’s paradox is presented. Lot

he the set that contains asel x i the setx does not belong

toitselt, so that § = {x| x & x}.

a) Show that the assumption that S is a member of §
leads 1o @ contradiction.

by Show that the assumption that 8 15 not a2 member of
§ leads to a contradiction.

From parts {a) and (b) #t follows that the set S cannit

be defined as it was. This paradox can be avoided by

restricting the types of elements that sets can have.

. Describe a procedure for listing all the subsets of a fi-

nite set.
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15

Set Operations

EXAMPLE 1

EXAMPLE 2

INTRODUCTION

Two sets can be combined in many different ways. For instance, starting with the set
of mathematics majors and the set of computer science majors at your school, we can
form the set of students who are mathematics majors or computer science majors, the
set of students who are joint majors in mathematics and computer science, the set of all
stidents not majoring in mathematics, and so on,

DEFINITION 1. Let A and B be sets. The anion of the sets A and B, denoted by
A U B, is the set that contains those elements that are etthet in A or i B, or In both.

An element x belongs to the union of the sets A and B if and only if x belongs to 4 or x
belongs to B. This tells us that

AUB ={r|xEAvVxEB.

The VYenn diagram shown in Figure | represents the union of two sets 4 and B, The
shiaded area within the circle representing A or the circle representing B is the area that
represents the union of 4 and B,

We will give some examples of the unien of sets.

The union of the sets {1,3.5} and {1, 2,3} is the set {1, 2,3, 5} that is, {1,3,5} U
{1,231 =1{1,2.3 5k |

The union of the set of all computer science majors at your school and the set of ail
mathematics majors at your school is the set of students at your school who are majoring
either in mathematics or in computer science {or in both). w

DEFINITION 2, Let A and B be sets. The intersection of the sets A and B, denoted
by A N B, is the set containing those elements in both A and B,

A
AU B1s shaded. — A Bis shaded.
FIGURE1 Venn Diagram Representing FIGURE 2 Venn Diagram Representing
the Union of A and B. the Intersection of A and B,
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An element x belongs to the intersection of the sets A and B if and only if x belongs
to A and x belongs to B. This tells us that

ANB={x|xeANxEB}.

The Venn diagram shown in Figure 2 represents the intersection of two sets A and 5.
The shaded area that is withir both the circles representing the sets A and B is the area
that represents the intersection of A and B.

We give some examples of the intersection of sets.

EXAMPLE 3 The intersection of the sets {1, 3,5} and {l, 2', 3} is the set {1, 3}; that is, {1, 3,5} N
{1,2,3} = {1, 3} ]
EXAMPLE 4 The intersection of the set of all computer science majors at your scheol and the set of
all mathematics majors is the set of all students who are joint majors in mathematics
and compulter science. ]

DEFINTTION 3. Two sets are called disjoint if their intétsection is the empty set.

EXAMPLE 5 Letd =1{1,3,579and B = {2,4.6,8, 10} Since A N B = &, 4 and 8 are disjoint.
[ ]

We often are interested in finding the cardinality of the union of sets. To find the
number of elements in the union of two finite sets A and B, note that |4| + |B{ counts
each element that is in A but not in B or in B but not in A exactly once, and each element
that is in both A and B exactly twice. Thus, if the number of elements that are in both A
and B 1s subtracted from |4 + |B, elements in A N B will be counted only once. Hence,

" JAUB| = |A| +18 ~ AN Bl

The generalization of this result to unions of an arbitrary number of sets is calted the
principle of Inclusion—exclusior. The principle of inclusion—exclusion is an impor-
tant technique used in the art of enumeration. We will discuss this principle and other
counting techniques in detail in Chapters 4 and 5.

There are other important ways to combine sets.

DEFINITION 4. PetA and B be sets. The difference of A and B, denoted by A~ B,
is the set containing those elements that are in A but not in B. The difference of A
and B is also called the complement of B with respect to A.

An element x belongs to the difference of A and Bif andonly if x € Aand x € B.
This tells us that

A—B={xix€ANxEB]

The Venn diagram shown in Figure 3 represents the difference of the sets A and B. The
shaded area inside the circle that represents A and outside the ctrcle that represents B
is the area that represents A — B.

We give some examples of differences of sets.

PDF created with pdfFactory trial version www.pdffactory.com



http://www.pdffactory.com

48 1/ The Foundations: Logic, Sets, and Functions

T T T T T Ty | u

f T

i ;//X \I ’

‘ K & / B | !

| /

] 4

A - B is shuded. A 5 shaded.

FIGURE 3 Yenn Diagram for the Dif- FIGURE4 Venn Diagram for the

ference of 4 and 8. Complement of the Set 4.
EXAMPLE 6 The difterence of {I. 3. 5} and {1, 2, 3} is the set {5}; that is, {I,3,5} — {1,2,3} = {5..

This is different from the difference of {1, 2, 3} and {1, 3, 5}, which is the set {2}. [ ]

EXAMPLE 7 The difference of the set of computer science majors at your school and the set of math-
ematics majors at your school is the set of all computer science majors at your schoef
who are not also mathematics majors. n

Ongce the universal set £ has been specified. the complement of a set can be de-
fined.

DEFINITIONS.  Let U be the universal set. The complement of the set A, denoted
by A, is the complement of A with respect to U. In other words, the complement of
thesetAis {/ — A.

An element belongs to A if and enly if x & A. This tells us that

A={x|xe Al
In Figure 4 the shaded area outside the circle that represents A is the area represent-
ing A.

Wt give some examples of the complement of a set.

EXAMPLE 8 Let A = {&, e, 4, 0, u} (where the universal set is the set of letters of the English alpha-
het). Then A = {b,c.d. f.g. h j ki m n p.g.rstv,wx vz |
EXAMPLE 9 Let A be the set of positive integers greater than 10 {with universal set the sei of ali
positive integers). Then A = {1,2,3.4,5,6,7,8,9, 10}. |

SET IDENTITIES

Table 1 lists the most imponant set identities. We will prove several of these identi-
ties here, using three different melhods. These methods are presented to illusirate that
there are often many different approaches 10 the solution of a problem. The proofs of
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TABLE 1  Set Identities.
Hdentity | Name

I
AV =4 i ldentity laws
ANU = 4 !

|
Avl =U . Domination [aws
ANd =
AUA=A I ldempotent lawy
ATA = A |
ﬁ =A Complementation law
AUBR=8UA ] Commutative laws
AMNB=E8MNA
AUBUCI={AUBUC Associative laws
ANBNCYy=AN/HnNT ||_
ANBUC) = (ANEIANC) | Distributive laws
AUBNCi=(ALBNAUD) |
AUB =4AnR l De Morgan’s laws
ANE=AUB

the remaining identities will be left as exercises, The reader should note the similar-
ity between these set identities and the logical equivalences discussed in Section 1.2.
[n fact, the set identities given can be proved directly from the corresponding logical
equivalences. Furthermore, both are special cases of identities that hold for Boolean
algebra (discussed in Chapter 9).

One way to prove that two sets are equal 1s to show that one of the sets is a subset
of the other and vice versa. We illustrate this type of proof by establishing the second
of Dc Morgan’s laws.

Prove that A N B = A U B by showing that each sef is a subset of the other.

Solution: First, suppose that x € A 1 B, It follows that x € A N B. This implies that
X € Aorx & B Hence, x € Aot x € B. Thus, x € A U B. This shows that A1V B C
AU B.

Now suppose that x € AUB. Then x € Aorx € B. [t follows that x € Aot x € B.
Hence. x &€ ANB. Therefore, x € A 1 B. This demonstrates that AUB C A 1 B. Since
we have demonstrated that each set is a subset of the other. these two sets must be equal
and the identity is proved. n

Another way (o verify set identities is 1o use set builder notation and the rules of
togic. Constder the following proof of the second of De Morgan’s laws.
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EXAMPLE 11

EXAMPLE 12

EXAMPLE 13

Use set builder notation and logical equivalences to show that AN B = A U B.

Sofution: The following chain of equalities provides a demonstration of this idertity:

ANB ={x|x&ANB)
={x'=(x€@AN B
={x|~(xrg8aMhxeE B}
={xixZ Ay e Bl
={xxEAxE B}

={x|xE AUB)
Note that the second De Morgan’s law for logical equivalences was used in the fourth
equality of this chain. [ ]

Setidentities can also be proved using membership tables. We consider each com-
bination of sets that an element can belong to and verify that elements in the same com-
binations of sets belong to both the sets in the identity. To indicate that an element is
in a set, a 1 is used: to indicate that an clement is not in a set, a 0 is used. (The reader
should note the similarity between membership tables and truth tables.)

Use a membership table to show that AN{(BU (Y = (AN B UANO).

Sotution: The membership table for these combinations of sets is shown in Table 2.
This table has eight rows. Since the columns for A N{B U Cand (A N BY U (AN )
are the sume, the identity is valid. [ ]

Additional set identities can be established using those that we have already proved.
Consider the following example.

Let A, B, and € be sets. Show that
AUBNO =(CUBNA

TABLE 2 A Membership Table for the Distributive Property.

A B ¢ | BUC | ANBUC) T ANB : ANC ] (ANB) UANC

R r ] ' ] 1 oy |

toroo Iy ) P o | |

VN T Lo [0 Pl Py

1 o 0] o o 0 L0 0

0o 0 0 i0 ‘ 0

001 0| 0 0 i 0 Lo lf

00 1 | ;0 0 |0 | 0 ;

00 0,0 D y0 D o0 [
i i i 1 | i
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_____ E['_' ' t !
‘ B A
c
@t AU &L Cis shaded. thj A BN s shaded
FIGURE 5 (a) AURUC Is Shaded. (b) A7BNC Is Shaded. The Union and Intersection

of A, B, and C.

Solution: We have

AUBAC) = AN(BNTC) by the tirst De Morgan's law
= AN(BUC) by the second De Morgan's law

BUONA by the commutative law for intersections

= (CUBNA bythe commutative law for unions. -

GENERALIZED UNIONS AND INTERSECTIONS

Since unions and intersections of sets satisfy associative laws, the seis A U B U € and
A BN C are well defined when A, B, and C are sets. Note that AU B U C contains
those elements that are in at least one of the sets A, B, and €, and that AN BN C containg
those elements that are in all of 4, B, and , These combinations of the three sets, A, B,
and €. are shown in Figure 5.

EXAMPLE 14 LetA ={0.2,4,6,8} 8 = {0,1.2,3, 4} and " = {0, 3, 6,9} Whatarc AL B LU C and
ANBNC?

Solution: The set AU 81U C contains those elements in at least one of 4, B, and C.
Hence.

AUBUEC = {0.1,2,3,4,6 89
The set A M B 7 C contains those elements in all three of A, B, and €. Thus,

ANBNC =0} .

We can also consider unions and intersections of an arbitrary number of sets. We
usc the following definitions.

DEFINITION 6. The union of a collection of sets is the set that contains those
elements that are members of at least one set in the collection.
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EXAMPLE 15

EXAMPLE 16

We vse the notation
i
AUA U U4, = UA,-
i=1

to denote the union of the sets 4, A;, ..., A,

DEFINITION 7. ‘The intersection of a collection of seis is the set that contains
those elements that are members of all the sets in the collection.

We use the notation
An AN NA, = ﬂAi
i-l

(o denote the intersection of the sets Ay A ... Ay, We illustrate gencralized vnions
and intersections with the following example.

Letd; = {i.i+1.i+2 .. .} Then

f

OA_,- = JlitLir2 ) ={L23 |

=1

and

ﬂ,-m-;-m{,-,;-+1,f+z,...}={n,n+1.n+2.‘..}-. u

i—l i-1

COMPUTER REPRESENTATION OF SETS

There are various ways to represent scts using a compuier. One method is to store the
clements of the set in an unordered fashion. Howewver, if this is done, the operations of
computing the union, intersection, or difference of two sets would be time-consuming,
since each of these operations would require a large amount of searching for elements.
We will present a method for storing elements using an arbitrary ordering of the ele-
ments of the universal set. This method of representing sets makes computing combi-
nations of sets easy.

Assume that the universal set {J 1 timite {and of reasonable size so that the npmber
of elements of U is not larger than the memory size of the computer being used). First.
specify an arbitrary ordering of the elements of U. for instance ¢y, aa, . . ., a,,. Represent
a subset A of U/ with the bit string of length n, where the ith bit in this string is | if g,
belongs t A and is 0 1f a; does not belong to A. The followmng example illustrates this
technique.

Let U = {1,2,3.4.5,6,7,8,9, 10}, and the ordering of elements of {7 has the elements
I increasing order; i.., @; = i. What bit sirings represent the subset of all odd integers
m U, the subset of all even integers in U, and the subset of integers not exceeding
5in UJ?
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Selution: The bit string that represents the se1 of odd integers in I/, namely. {1, 3, 5,7, 9%
has a one bit in the first, third, fifth, seventh, and ninth positions, and a Zere elsewhere.
ftis

10 1010 1010,

{We have split this bit string of fength [0 into two blocks of length five for easy reading
since Jong bit strings arc difficult to read.) Similarly, we represent the subset of all even
integers in {J, namely, {2,4, 6, 8, 10}, by the string

01 0101 0101,

The set of all integers in U that do not exceed 3, namely, {1, 2, 3, 4. 5], 15 represented by
the string

11 1110 G000, ]

Using bil strings Lo represent sets, it is easy tedind complements of sets and unions,
intersections, and differences of sets. To find the bit string for the complement of a set
from the bit string for that set, we simply change each | to a 0 and each 0 to 1, since
x € Aifand enly if x & A. Note that this operation corresponds to faking the negation
of each bit when we associate a bit with a truth value—with | representing true and 0,
false.

EXAMPLE 17 We have scen that the bit string for the set {1, 3,5, 7,9} (with universal set {1,2 3. 4,
56,789 100 is

10 1010 1010,

What is the bit steing for the complement of this set?

Solurion: The bit string for the complement of this set is obtained by replacing Os with
1s and vice versa. This yields the string

(1 0101 0101,

which corresponds to the set {2, 4, 6, 8, 10}, |

To obtain ihe bit string for the union and intersection of two sets we perform bitwise
Boolean operations on the bit strings representing the two sets. The bit in the ith position
of the bt string of the union is 1 if either of the bits in the ith position in the two strings
is 1 {or both are 1) and 15 O when both bits are 0. Hence, the bt string for the union
15 the bitwise OR of the bit strings for the two sets. The bit in the jth position of the
bit string of the intersection is 1 when the bits in the corresponding position in the two
strings are hotl ! and s O when either of the two bits is 0 (or both are}. Hence, the bit
string for the intersection is the bitwise AND of the bit strings for the two sets.

EXAMPLE 18 The bit strings for the sets {1, 2.3, 4. 5} and {1, 3, 5. 7. @ are 11 11100000 and 10 1010
1010, respectively. Use bit strings 1o find the union and intersection of these sets.
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Sotution. The bit string for the union of these sets is
1 11100000 101010 1016 = 11 1110 1010,

which corresponds to the set {1, 2, 3,4, 5, 7, 9}. The bit string tor the intersection of these

sels is

11100000 A 10 1010 1030 = 101010 0000,

which corresponds 1o the set {1, 3, 5}.

Exercises

10.

. et 4 be the set of students who live within one mile

of schoo! and let B be the set of students who walk to
ciasses. Describe the students in each of the following
sets.

a) ANf
oA -8

by AUB
di #-A4

+ Suppose that A is the set of sophomores at your school

and B is the set of students in discrete mathematics at

your school. Express each of the following sets in terms

of A and B.

a) the set of sophomaores taking discrete mathematics
in your school

by the ser of sophomores at your school who are not
taking discrete mathematics

c) the set of students at your school whe either are
sophomaores or are 1aking discrete mathcmatics

d) the set of students at your school who either are not
sophomores or are not taking discrefe mathematics

L hetd = {12,345} and B = {0, 3, 6}. Find

a) AUB.  h) ANEA

¢y AR d) 8- A

cLet A= {ahodeland B = {a.bcde fghl
Find

W) AGB. B ANE

oA B d) B-A

. LetA be aset. Show that 4 = A
. Let A be a sel. Show that

ay AU = by AN = ¢
vy Aud = 4 dl AMAd =4
e} A - QY- A N AUL = 1.
g) AN = A, h) 9—4A = &

. Let A and & be sets. Show that

ay AUB = BUA, b} ANB =A8naA.

. Findthesets Aand Bif A B ={1L578.8-4 =

2100 a0d ANE = {369 -

a) hy showing cach side is 4 subset of the other side
by using a membership table

Let A and B be sets, Show that

DANKHCTA B ACIAUBL

11

12,

13,
14,

15.

16.

17.

18.

19,

20,

21

c) A-BC A d)y AniB—4)y={,

e} AUB-A)Y=AUB.

Show that if A, 8, and  are sets, then AN BAC =
AUBUC

a) by showing each side is a subset of the other side.
b} using a2 membership table.

Let A, B, and C be sets. Show that
NAUVBC{AURYC),
PH{ANBNCIC AN B
dA-H-CCcA-C.

d){(A-CyniC-—-B) =@,

g iB-UIC-AY=BU - A

Show that if A and B are sets, then A — B = A N B,
Show thal if A and B are sens. then (AN B) U
(AN B) = A

Let A, B, and C be sets. Show that

2) AUBUC)=(AUBUC,

b) ANBNC) = (AN BNC,

G AUBNC)=(AUBNIAJC).

let 4, B, and € be sets. Show that (4 - B) - (7 =
{A-Cy-(8 - ).

Let A= {02,468 10, B =1{0.1.2.3.4,56), and
C={4567789 [0} Find

al ANBNC. by AUBUC.
c{ABNC dyiAnBUC

Draw the Venn diagrams for each of the foliowing com-
binations of the sets A, B, and .

a) AN(BUC) b AnBnC

S (A-BuUuA-CIuB €

What can you say about the sets A and Bif the following
are true?

af AUE = A

e A-FB=A

et A-B-=-B-A4
Can you conclude that A = B if A, B and € are sets
such that

al AUC=RUC?

hANC =B0(L?

[.2t A and B be suhscts of a universal set 7! Show that
AC Bifandonlyif B C A,

b) ANE = A
dr AN =8NA4
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The symmetric difference of A and B, denoted by A B B,
is the set containing those elgments in either A or B, but not
inboth 4 and B,

22. Find the symmetric difference of {1, 3, 5} and {1, 2, 3}.

23. Find the symmetric difference of the set of computer
science majors at a school and the set of mathematics
majors at this school,

24, Draw 1 Venn diagram for the symmetric difference of
the sets 4 and B.

25, Showthat AR S = (AUB) - (AN K.

26, Showthat AQ B = (A - B)U (B - A).

27. Show that if A is a subset of a universal set U, then
A ABA=0. b ADBID= A
e ABU =4 d) ADA=10.

28. Show that if A and B are sets, then
a) AR5 =804 b (AGBESE = A,

29. What can you say about the sets A and Bif ABB = A7

*30. Determine whether the symmelric difference 15 asso-

clative; that is, if A, B, and C are sets, does it follow

that
ADBHO)=(ABBVEC?

*31. Suppose that 4, B, and C are sets such that AQ C =
B €. Must it be the case that A = B?
32 If A B.C, and {2 are sets, does it follow that (A & By
(Co D) =(AG YO (RDD)?
A3, ItA. B, C, and [ are sets, does it follow that (A5 8) &
(CT D ={AL (BT CY?
*34. Show thatif A, B. and C are sets, then

[ALBUC = Al + B +|C —]AN B

—ANC —-[BNCl+[AnBN

(This is a special case ot the inclusion—exclusion prin-
ciple, which will be studied in Chapter 3.)
35 LetA; = {123, . Jlfori= 1,23 ... Find

2 Ja. w()A.
i=l =l

Jo. letd: = {ii+ Li+2. . ) Find

a) 0.’\_{. b] ﬁ{"l,‘.
i il

37. Let A, be the set of all aonempty hit strings (that 1s, bit
strings of length at least one) of length not exceeding (.
Find

o) UA,, b) hA,-.
1= i=1

38, Suppose that the universal set is U = {1,234
5,6.7.8,9 10 Express each of the following sets
with hit strings where the ith bit in the string is 1 if § s
in the set and O otherwise.

a) 345 b)Y {1.3.6.10)
A {234789}

39. Using the same universal sctas in the last problem, find

the set specified by each of the following bit strings.

1.5 Exercises 53

a) 11 1100 1111 b) 010111 1000

¢) 1000000001

40. What subsets of a finite universal set do the following
bit strings represent?

a} the string with all zerog
b) the string with all ones

41, What iy the bit string corresponding to the difference
of two sets?

42. What is the hit string cotresponding 1o the symmetric
difference of two sets?

43. Show how bitwise operations on bit strings can
be used 1o find the following combinations of
A= {abedel, B ={bcdgptv, C =
e dowxy:handD =id e hinotany
ay AJB b} AV B
QUEaAuUINBUe 4 AJUBUCUD

44. How can the union and intersection of n sets that ali
are subsets of the universal set U/ be found using bit
strings?

45, The successor of the set 4 is the set A U {A4}. Find the
successors of the following sets.

2 {L23} ML oG diBie

46, How many elements does the successor of a set with »

elements have?

Sometimes the number of times that an element oecurs in an
unerdered collection matters. Multisets are unordered col-
lections of elements where an element can occur as a mem-
ber rmoze than once. The notation {m; -« y, ma-a>, ... m,-a,}
denotes the multiset with element «; occurring ry times. el-
emenl a: occurming #; times, and so on. The numbers m;.
i=12. .. r are called the multiplicities of the elements
ai. = L2,....r.

Let P and ¢) be multisets. The unien of the multisets P
and ¢} 1s the multiset where the multiplicity of an clement
is the maximuozi of its multiplicities in £ and (2. The inter-
section of P and Q is the multiset where the multiplicity of
an element is the minimum of its multiplicities in £ and Q.
The difference of P and O is the multiset where the multi-
plicity of an element is the multiplicity of the element in P
less its multiplicity in Q unless this difference is negative,
i1 which case the muliiplicity 15 0. The sum of P and 0 is
the muitiset where the multiplicity of an element is the sum
of multiplicities in £ and @. The union, intersection, and
differenice of P and @ are denoted by P U Q, P (), and
P — O, respectively (where these operations should not be
confused with the analogous operations for sets). The sum
of P and Q is denoted by P + (.

47. Let A and B be the multisets {3 -a,2- 5,1 - cfand {2 -
a.3- b 4 d}, respectively. Find
a) AUB. by ANB ¢} A-8
d) B- A e A+ 8

48. Suppose that A is the multiset that has as its ele-
ments the types of computer equipment needed by one

PDF created with pdfFactory trial version www.pdffactory.com



http://www.pdffactory.com

56 § / 'The Foundaitons: Logic, Sets, and Functions

departipeni of 4 university where the mwultiplicities are
the number of picces of each type needed, and 7 is the
analogous muitiset tor a second department of the uni-
versity, For inslance, A could be the multiset {107 - per-
somal computers, 44 - routers, 6 - servers} and B could
be the multiset {14 - persenal computers, 6 - routers,
2 - mainframes}.

a) What combination ot A and X represents the equip-
ment the university should buy assuming both de-
piriments ise the same equipment?

What combination of A and B represents the equip-
ment thai wilk be used by both departments if both
departments use the same equipment?

What combination of A and B represents the equip-
ment that the second departiment uses. but the firsg
department does not, if both departments use the
same equipment?

What combination vl A and 5 sepresents the equip-
ment that the university should purchase if the Je-
partinents do nist share cquipment?

-

b

)

d

—_—

wer FU2ZY 8815 arc used in artificial intelligence. Each element
in the utiversal set £/ has a degree of membership, which
i a real number between 0 and | (including 0 and [}, in
a furzy set & The fuzsy set S ts denoted by listing the cl.
ements with their degrees of membership {clements with

1.0

Functions

INTRODUCTION

0 degree of membership are not listed). For instance, we
write {{L6 Alice, 0.9 Brian, 0.4 Frad, 0.1 Oscar, 0.5 Rila}
for the set F {of famous people) to indicate that Alice has a
0.6 degree of membership in F, Brae has a 0.9 degree of
membership in F. Fred has a (0.4 degree of membership in
F, Oscar has & 0.1 degree of membership in F, and Rita has
a{.5 degree of membership in F {so that Brian is the nrost
famous and Oscar is the least famous of these people). Also
suppose that R is the set of rich people with = {0.4 Alice,
{.8 Brian, 0.2 Fred, 0.9 Oscar, (.7 Rita).

49. The complement of a fuzzy set S s the set §, with the
degree of the membership of an element in § equal 1o
! minus the degree of membership of this element in
S. Find F (the fuzsy set of people who are not famous)
and R (the furzy set of people who are not rich).
50, The mmion of two fuzzy scts § and 7 is the fuzzy set
§ U7, where the degree of membership of an element
in $UT s the maximum of the degrees of membership
of this element in § and in T. Find the fuzzy set F U R
of rich or Famaous people,
The intersection of two fuzzy sets § and T is the tussy
set § (1 7. where the degree of membership ot an ele-
ment in.§ 1 7 is the minimom of the degrees of e
bership of thus element in S and in 7. Find the fuzzy st
F 1 R of rich and famous people.

51

In many instances we assign to each element of a set a particular clement of a second
set (which may be the same as the first). For cxample, suppose that each student in a
discrete mathemaiics class is assigned a letter grade from the set {A, B, C. P, ). And
supposc that the grades are A for Adams. € for Chou, B for Goodfriend, A for Rodriguez,
and F for Stevens. This assignment of grades is illustrated in Figure 1.

Adams - e PN
4

- e

Chusg ] --,___.___h-_ - Y
Goudfciend &~ e ey

o

Rodriguer » - .
Stevens . -

FIGURE T Assignment of Grades in a Discrete Mathematics Class,
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This assignment is an example of a function. The concept of a function is extremely
important in discrete mathematics. Functions are used in the definition of such discrete
structures as sequences and strings. Functions are also used to represent how long it
takes a computer to solve problems of a given size. Recursive functions, which are
functions defined in terms of theinselves, are used throughout computer scicnce; they
will be studied in Chapter 3. This section reviews the basic concepts involving functions
needed in discrete mathematics.

DEFENITION 1. ‘Let A and B be sefs. A function ffrom A to 8 is an assignment of
exactly one clement of B to each element of A. We write f{a) = b if b is the unique
e&lemmtofﬁsmgmdbyﬂufuncuonfmﬂwehmtqam If  is a fanction from
AtoB,wewrite f A — B..

Functions are specified in many different ways. Sometimes we explicitly state the as-
signments. Often we give a formula, such as f(x) = x ~+ 1. to define a function. Qther
times we use a computer program to specify a function.

DEFINITION 2. X f is a function from A to B, we say that A is the domain of f
and B is the codomain of f. If f(a) = b, we say that b is the imageof aand ais a
pre-image of b, The range of f is the set of all images of elements of A. Also, if f is
& function from A to B, we say that fmaps Ato B.

Figure 2 represents a function £ from A to B

Consider the example that began this scetion. Let (G be the function that assigns
a grade to a student in our discrete mathematics class, Note that G{Adams) = A. for
instance. The domun of G is the set {Adams, Chou, Goodtriend, Rodriguez, Stevens),
and the codomain isthe set {4, 8 C, D, F}. Therangeof G is the set{A, B, €, F}, because
there are students who are assigned each grade except D. Also consider the followiag

eaamples.

EXAMPLE Let £ be the function that assigns the Last two bits of a bit string of length 2 or greater (v
that string. Then, the domain of f 15 the sel of all bit strings of length 2 or greater, and
bath the codomain and range are the set {00, 01, 10, 11} [ ]

EXAMPLE 2 Let f be the function from Z to Z that assigns the square of an integer 1o this integer.

Then, f(x) = x°, where the domain of f is the set of all integers, the codomain of / can
be chosen ta be the set of all integers. and the range of £ is the set of all nonnegative
integers that are perfect squares, namely, {0, 1,4,9,. | |

ra L Lol |
3 7
! G ' h=fla)

FIGURE 2 The Function f Maps 4 to 8.
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EXAMPLE 3 {For studenls familiar with Pascal) The domuin and codomain of functions are often
specified in programming languages. For instance, the Pascal statement

function floor x: real). integer

states that the domain of the Aoor fanction is the set of real numbers and its codomain
is the set of integers. [ ]

Two real-valued functions with the same domain 2an be added and multiplied.

DEFINTTION 3. Lctf;andf;befumtwnsﬁmn&tok'l‘hcn_ﬁ + fand fi i
are also functions from A to K defined by

(N + L)x) = A+ folx),
(fif2)(5) = fl) fol%).

Note that the functions /) + f and f| f> have been defined by specifying their values
at v in terms of the values of £, and f at x.

EXAMPLE 4 Let fy and f£; be functions from R to R suchthat f1{x) = x%and £,(x) = x — x%. What
are the functions f; + fand £ /2
Solution: From the definition of the sum and product of functions, it follows that
A+ L)) = it + folxy = & + (- 2 =«
and

P =x(x -2 =1 1 -

When f 15 a function from a set A to a set B, the image of a subset of A can also be
defined.

DEFINITION4. Let fbe a function from the set A to the set 8 and let Sbe a subset
of A. The image of § is the subset of B that consists of the images of the elements of
S. We denote the image of S by f(S), so that

8 = {(f5)| s €5}

EXAMPLE 3 LetA = {a.b c.d. e}and B = {1,2,3, 4} with f(a) = 2, f(b) = 1. f(c) = 4, f(d) =
l.und f{e} — 1. The image of the subset § = {b, ¢, d} is the set f(5) = {1, 4. |

ONE-TO-ONE AND ONTO FUNCTIONS

Some functions have distinet images at distinct members of their domain, These func-
tions are said to be one-to-one.
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DEFINITION 5. A function f is said to be ome-to-one, of injective, if and oaly if
f(x} = fly)implics that x = y for all x and y in the-domuin of . A fanction is said
to be an injection if it is one-to-one, o S

Remark: A function f is one-to-one if and only if f(x) # f{y) whenever x # y. This
way of expressing that § is one-to-one is obtained by taking the contrapositive of the
implication in the definition.

We illustrate this concept by giving examples of functions that are one-to-one and
other functions that are not one-te-one.

EXAMPLE 6 Determine whether the function £ from {a, &, ¢, d} to {1,2, 3,4, 5} with f(a} = 4,
f»y =5, ficy = 1,and f(d} = 3 is one-te-one.

Solurion: The function f is one-to-one since f takes on different values at the four ele-
ments of its domain. This is illustrated in Figure 3. |

EXAMPLE 7 Determine whether the function f(x) = x* from the set of integers to the set of integers
is one-to-once.

Solution: The function f(x)} = x° is not one-to-one because, for instance, f(1) =
fi-1 = 1bul# -1 [ |

EXAMPLE 8 Determine whether the function f{x) = x + | is one-to-one.

Solution: The function f{x) = x + | is a one-to-one function. To demonsirate this,
note that x + 1 # v+ [ when x # y. a

We now give some conditions that guarantee that a function is one-to-cne,

DEFINITION 6. A function f whose domain and codomain are subsets of the set
of real numbers is called strictly increasing if f{x) < f(y) whenever x < yand x
and y are in the domain of f. Similarly, f is called stricily decreasing if f(x) > f(y)
whenever x < y and x and y are in the domain of f,

a® L
he e
A ] .
d® .

®5

FIGURE3 A One-to-One Function.
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T

n % L]
K ] LI
4 n .3

FIGURE 4 An Onto Function.

From these definitions, we see that a function that is either strictly increasing or strictly
decreasing must be nne-to-one.

For some functions the range and the codomain are equal. Thatis, every member of
the codomain is the image of some element of the domain, Functions with this property
are called onto functions.

DEFINITION 7. A function f from A to B is called onro, or surjective, if and only
if for every element b € B there is an element @ € A with f(a) = 5. A function
is called a surjecrion if it is onto.

We now give examples of onto functions and functions that are not onto.

q

EXAMPLE ¢ Let f be the function from {a, k. c d} to {1, 2, 3} delined by fla) = 3, fiby = 2.
firy =1, and fld) = 3. Is f an onto function”

Sofution: Since all three elements ol the codomain are images of elements in the do-

main, we see that £ is onto. This is illustrated in Figure 4. ]
EXAMPLE {0 Is the function f{x) = x* from the set of inegers to the set of integers onlo”

Solution. "The function f is not onto since there is no integer x with x* = —1_ for in-

stance. |
EXAMPLE 1] Isthe function f{x) = x + I from the set of integers e the sct of integers onto”

Solution: This function is onto, since for cvery integer y there is an inieger r such that
Jtx) = v. To see this, note that f{x) = vifandonlyif x = | = y, which holds if and
onlyif v = v - 1. ]

DEFINITION 8. The function f is a one-to-one correspondence, or a bijection, if
it is both one-to-one and onto. ’

The tollowing examples illustraie the concept of a bijection.

EXAMPLE 12 Letf be the function from {e, b, ¢, o} 10 {1, 2, 3, 4} with f(a) = 4, fihy =2 fley =1,
and f{d}y = 3 Isf a bijection?
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(at One-to-ong, Cinter, f¢)  One-to-one, (d}y Neither onc-to-ane (e} Nuotafunction
ot enko Aot ehe-to-ene and onto HoF oafa

el aw el agw ®l el
ze sl >< ae

. >’< be o2 be o o2
he Ly / i

el 7< ce el el [
g 3 L X / ce

s de a4 de- .4 [T
FIGURE 5 Exampies of Different Types of Correspondences.

EXAMFPLE 13

Seliton: The function f is one-to-one and onto. It is one-to-one since the function
takes on distinct values. It is onto since all four elements of the codomain are images
of elements in the domain. Hence, f is a bijection. | ]

Figure 5 displays four functions where the first is one-to-one but not onto, the sec-
ond 1s onle but not one-to-one, the third is both one-to-one and onto, and the fourth is
neither ene-lo-ong nor onto, The fifth correspondence in Figure 3 is not a function, since
it sends an element 1o two different elemants.

Suppese that [ 1s a function from a set A toitsetf, i A §s finite, then £ is one-to-
one if and only if it s vnto. (This fellows from the result in Exercise 58 at the end of
this section.} This is not necessarily the case if A is infinite (as will be shown in Sec-
tion 1.71.

Let A be a set. The identirv function on A is the function ¢4 1 A — A where

La(x) = x

where v € A In other words, the identity function 1, is the function that assigns each
element to jtself. The function ¢4 i3 one-to-one and onto, so that it is a bijection. |

INVERSE FUNCTIONS AND COMPOSITIONS OF FUNCTIONS

Now consider a one-l0-one comrespondence f from the set A 1o the set B Since f s
an onto function, every elemnent of B is the image of some element in A. Futhermore,
because f 1s also a one-tv-one function, every element of B 1s the image of a unique
clement of A. Consequently, we can define a new function from B to A that reverses the
correspondence given by f. This leads to the following definition.

DEFINITION 9.  Letf be a one-to-one correspondence from the set A to the set B.
The inverse function of f is the function that assigns to an element & belonging to B
the unique element @ in A such that f{g} = b. Thei inverse function of f is denoted
by £~1, Hence, f™'(h) = a when f(a) = b.

Figure 6 illustrates the concept of & an inverse function.

If a funciion £ is not a one-te-one correspondence, we cannot define an inverse
tunction of f. When f ts not a one-to-one correspondence, either it is not one-to-one or it
1$ not onto. If f is not ene-to-vne, some element b in the codomain is the image of more
than une element in the domain. If £ is not onto, for seme clement b in the codomain,
e element ¢ in the domain exists for which f(a) = 5. Consequeatly, if f is not a
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FIGURE 6 The Function f ! Is the Inverse of Function f.

one-to-one correspondence, we cannot assign to each element 4 in the codomain a
unique element a in the domain such that f{a) = b (because for some 4 there is ei-
ther more than one such g or no such a).

A one-to-one correspondence is called invertible since we can define an inverse
of this function. A funciion is not invertible if it is not a one-to-one correspondence.
since the inverse of such a function does not exist.

EXAMPLE 14 Let f be the function from {a, b ¢} 10 {1,2 3} such that f(a) = 2. f(hy = 3, and
Fley = 1. Is f invertible, and if 1t is, what s its inverse?

Sofusion: The function f is mvertible since it is a one-to-one correspendence. The
inverse function f~' reverses the correspondence given by f. so that [ '(1} = c.
FU = acand £713) = b, u

FXAMPLE 15 Let £ be the function from the sef of inte gers tothe setof integers such that f{x) = x+1.
18 £ invertible, and of it is, what is its inverse?

Sadusion: The function f has an inverse since it is a one-10-one correspondence. as we
have shown. To reverse the correspondence, suppose that ¥ is the image of x, so that
v = x + 1. Then x = y - L This means that y — | 1s the unique element of Z that is
senl {0 v by f. Consequently, f 1y} = v~ 1. [ |

EXAMPLE 16 Let f be the function from Z to Z with (s} = ¥°. Is f invertible?

Selution: Since fi-1) = (1) = 1, is not one-to-one. If an inverse function were
defined, it would have to assign two elements to 1. Hence, £ is not invertible. |

DEFINITION 10, Let g be a function from the set A to the set B and let £ be 2
function from the set B to the set C. The composition of the functions f and g, denoted
by f 0 g, is defined by '

(fopda) = f(zla).
In other words, f © g is the {unction that assigns to the element ¢ of A the clement
assigned by f to g{a). Note that the composition f © ¢ cannot be delined unless the

range of g is & subset of the domain of /. In Figure 7 the cormposition of funcrions is
shown.
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fog

FIGURE 7 The Composition of the Functions f and g.

EXAMPLE 17 Let g be the function from the set {g, b, c te itself such that gla) = b, g(b) = c,
and glc} = a. Let f be the function from the set {a, b, c} to the set {1, 2, 3} such that
flay = 3, fib) = 2, and f(c) = 1. What is the composition of f and g, and what is
the composition of g and 7

Solution: The composition f © g is defined by (f 0 gla) = flgla)) = f{b) = 2,
(fog)(®) = flgh)) = flc) = l,and (f og)c) = flgle)) = fla) = 3.
Note that g © f is not defined, because the range of f is not a subset of the domain

of g. B

EXAMPLE 18 Let f and g be the functions from the set of integers to the set of integers defined by
f(x) = 2x + 3 and g{x) = 3x + 2. What is the composition of f and g? What is the
composition of g and f?

Solution: Both the compositions f o g and g o f are defined. Moreover,

(fogdx) = flgx)y = fB3x+2) =2Bx+2+3=6x+7
and

(zc fXx) = g(f(x) = g2x+3) =3Q2x +3)+ 2 = 6x + 1i -
Remark: Note that even though f © g and go f are defined for the functions f and g in

Example 18, /o g and g © f are not equal. Ia other words, the commutative law does
not hold for the compesition of functions.

‘When the composition of a function and its inverse is formed, in either order, an
identity function is obtained. To see this, suppose that f is a one-to-one correspondence
from the set 4 to the set 8. Then the inverse function f~! exists and is a one-to-one
correspondence from B to A. The inverse function reverses the correspondence of the
original function, so that f~*(h) = awhen f(a) = b,and f(a) = bwhen fF Uik =a
Hence,

(flofay = fH(fan = 'y = a,
and

(fof by = fif7' b)) = fla) = b.
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Consequently £ e f = v and fo £~ = vp where s and ¢p are the dentity func-
tions on the sets 4 and 8, respectively. That is. (f 1= f

THE GRAPHS OF FUNCTIONS

We can associate a st of pairs in A X 8 to each (unction from A to B. This set of pairs is
called the graph of the function and is often displaycd pictorially to aid in understanding
the behavior of the function.

DEFINITION 11. Let be a function from the set A 1o the set. B. The graph of the
function f is the set of ordered pairs {(a, b} {a € A and f(a) = b}

From the definition, the graph of a function f from A to Bis the subset of AX B containing
the ordered pairs wilh the second cntry equal to the element of B assigned by f to the

tirst entry.

EXAMPLE 19 Display the graph of the function f{n) = 2# - | from the set of integers to the sct of
inlegers.

Solution: The graph of f is the set of ordered pairs of the form (n, 2n + 1) where # iy

an integer. This graph is displayed in Figure 8, |
EXAMPLE 20 Display the graph of the function f{x} = x* {rom the set of integers to the set of inte-
gers. '

Selution: The graph of f is the set of ordered pairs of the form (x, f(x)) = {x. )
where x 15 an integer. This graph is displayed in Figure 9. [ ]

o @ o o LIEXR]] 3.9

¢ O C - O

= 0 i o =

C

[ 3
B e i

o

]

L9

oo T oo O 0 s34 (2.4
B
. J S B T Lle L AN}
] - =
SR (T SR S S (0,03
FIGURE R The Graph of the FIGURE Y The Graph of f(x) = «*

Function f(n} = 2n + 1from Z to Z. from Z to Z.
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SOME IMPORTANT FUNCTIONS

Next, we introduce two impottant functions in discrete mathematics, namely, the floor
and ceiling functions. Let x be a real number. The floor function rounds v down
the closest integer less than or equal to x, and the ceiling function rounds x up 10 the
closest integer greater than or equal to x. These functions are often used when objects
are counted, They play an important role in the analysis of the number of steps used by
procedures to solve problems of a particular size.

DEFINITION 12. The floor function assigns to the seal number x the largest
integer that is less than or equal to x. The value of the floor function at x is de-
noted by |x|. The ceifing function assigns to the real number x the smallest integer
that is greater than or equal to x. The value of the ceiling function at x is denoted

by [x]

Remark: The floor function is often also called the greutest integer function. It s often
denoted by [x].

LEXAMPLE 2] The following are some values of the floor and ceiling functiens:

13=0 [I=1L  (=i=-f [
=3  [Bl=4 J=1 [1=

Tk

- 0,
7.

We display the graphs of the floor and ceiling functions in Figure 10).

The floor and ceiling functions are useful in a wide variety of applications. includ-
ing those involving data storage and data transmission. Consider the foliowing exam-
ples, typical of basic calculations done when database and data communications prob-
lems are studied.

14 14 o—e
2+ ~— 14+ o
| + — [ A
= g o ——
3 o 1 2 3 2 1 1 2 3
._"']_'t:‘- L — 4
- ]
o 4 — -3 L
— Bl -3 JF
fay v = |x fh) »=fa

FIGURE 10 Graphs of the ia} Floor and () Ceiling Functions.
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EXAMPLE 22 Data stored on a computer disk or transmitied over a data petwork are usuaily repre-
sented as a string of bytes. Each byte is made up of 8 bits. How many bytes are required
to encode 100 bits of data?

Solution; To determine the number of bytes needed, we determine the smallest infeger
that is at least as large as the quotient when FO0 is divided by &, the number of bits in
a byte. Consequently, [100/8] = [12.5] = 13 bytes is required. [ |

EXAMPLE 23 In asynchronous transfer mode (ATM) {a communications protecel used on backbone
networks), data are organized into cells of 53 bytes. How many ATM cells can be trans-
mitted in | minute over a connection that transmits data at the rate of 500 kilobits per

second?

Solution: In | minule, this connection can transmit 500,000 - 60 = 30,000.000 bits.
Each ATM cell is 53 bytes long, which means that itis 538 = 424 bits Jong. To deter-
mine the number of cells that can be transmitted in 1 mimite, we determine the largest
integer not exceeding the quotient when 30,000,000 is divided by 424. Conseguently,
[30.000,000/424] = 70,754 ATM cells can be transmitted in 1 minute over a 500 kilobit
per second connection. [ ]

Table !, with x denoting a real numbser, displays some simple but important prop-
exties of the fioor and ceiling functions. Since these functions appear so frequently in
discrete mathematics, it is useful to look over these identities. Each property in this ta-
bie can be established using the definitions of the floor and ceiling functions. Properties
{1a), (Ib). (tc), and (1d) follow directly from these definitions. For example, (1a) states
that{.x] = # if and only if the integer » is Jess than or equal fo x and » + 1 is larger
than x. This is precisely what it means for # to be the greatest integer not exceeding
x, which is the definition of [x] = n. Properties (1b), (1¢), and (1d) can be established
stmilarly,

We will show that (4a) is true. To show that (4a) is true, suppose that | x| = r where
nis aninteger. By (1a) it follows that # =< x < n+ 1. Adding m 10 this inequality shows
thatntm = x+m < at+m+1. Using (1a) again, we seethat| x+m) = n+m = | x|+m.

TABLE t  Useful Properties of the Floor and Ceiling Functions.

(layix] = nifandonlyif# = x < n+ | where nis an integer

(1) [xi = nifand only if 7 - 1 < x < n where nis an integer

tlcigay = mifandonly if x — 1 < 7 = x where # is an integer

(Idiix]

nifand only if x = n < 1 + | where 7 is an integer

(e~ l<ld=sx=fxl<i+]

{3a) [ ~x] = —[x]
Obif-xl = —fal

ki) | x + m| =[x} + m when mis an imeger

{ 1dby e~ m] — [T+ mwhen m is an integer

[
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which is what we wanted to show. We defer establishing the other properties to the

exercises.

There are certain types of functions that will be used throughout the text. These in-
clude polynomial, logarithmic, and exponentiaj functions. A brief review of the prop-
erties of these functions needed in this text is given in Appendix 1. In this book the
netation log x will be used to denote the logarithm to the base 2 of x, since 2 is the base
that we will nsually use for logarithms. We will denote logarithms to the base b, where
b is any real number greater than 1, by log, x.

Exercises
1. Why is f not a function from R to R in the following
equations”?
a) fiy=Ux b fix)= S

o fix) =2+ D

. Determine whether f is a function from Z to R if

aj f(n) = *n b) flmy = 2+ 1.
o filn) = Wn* - 4).

. Determine whether £ is a function frem the set of all bit

strings to the set of integers if

a) f{8) is the position of a 0 bit in .

b} F(8)1s the nomber of | bits in S,

€) f(5) is the smallest integer { such that the ith bit of
Sis 1 and f(§) = 0 when 5 js the empty string, the
string with no bits.

. Find the domain and range of the following functions.

a) the function that assigns to each nonnegative inte-
ger its last digit

b the function that assigns the nexl largest integer to
a positive integer

¢} the function that assigns fo a bit stnng the number
of on¢ bits in the string

d) the function that assigns to a bit string the number
of bits in the string

. Find the domain and range of the following functions.

a) the function that assigns to each bt string the differ-
ence between the number of cnes and the number
of zeros

b} the function that assigns to each bit string twice the
number of zeres in that string

¢) the function that assigns the number of bits left over
when a bt string is split into bytes {which are blocks
uof 8 bits)

d} the function that assigns to each positive integer the
largest perfect square not exceeding this integer

Find the following values,

) [11] b) {1.1] ¢} |-0.1]
d[-01] e [299] f) [-2.99]
g i+l W+ + 4]

. Find the following values.

d) [-{]
by 5 -13

b} 3]
0 (-1

o [-H
g 13+

a) {3]
e [3]

. Deterrnine whether each of the foliowing functions

from {g, b, ¢, 4} to itself is one-to-one.

8) fla) =5 f(b)=a,flc)=c fldy=d
b) flay=b fiby= b flc)=d, fld=c¢
e flay=d fi=b floy=c fldy=d

. Which functions in Exercise § are onto?
. Determine whether ¢ach of the following functions

11.

12

13

14.

15,

from Z to Z 15 one-to-one.

a) fim)=n-1 b) fimy=n*+1

o fim=n d) fimy={ni2

Which functiens in Exercise 10 are onto?

Give an example of a function from N to N that is

a) ong-to-one but not onto.

b} ontc but not one-to-gne.

¢} both onto and one-te-one {bwt different from the
identity function).

d) neither one-to-one nor onto.

Give an explicit formula for a function from the set of

integers to the set of positive integers that is

a) one-lo-one, but not onte.

b) onto, but not one-to-one.

¢} one-to-one and onto.

d} neither one-to-one r:or onto.

Determine whether each of the following functions is a

bijection from R to R,

a) fixy=-3x+4

b) Fixy= -322+7

o fly=(r+ DA+

d) fia=21+1

Determine whether each of the following functions is a

birection from R to R.

a) flxy=2x+1
b} flx)= s +1
e) flxy = 2

d) flo) = (¥ + 12+ 2
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i

16,

£,

an s -4 2 B0 L23L by S ={01]2343.
o S = {1 &Y I d) ¥ =1{2.6 10,14},
18, Let f{vy - 2x, What is
ar F(Zy by N cb f(Ry?
1% Suppose that g 15 4 function from 4 to 8 and £ 1% a fung-

*M),

*21.

L / The Foundations: Logic, Sets, and Funetions

Let§ = 4-1.0.2,4.7}. Find fi5}if

ap fier = 1. b} fixp=2x+ 1.

¢ f{x)="x8 d) flad =t = i3
Let fix) = M3 Find f(8) it

tion trem B o .

ab Show that if bath £ and g are one-w-one functions,
then f o gis alse one-le-one.

by Shew that if both f and ¢ are onto funcuons, then
Jow s ulso nto,

It fand /' @ g are one-to-one. does it follow that g s

une-te-ane? Justify vour answer.

IS and ¥ o g ace ont, does it follow that g 1s onto?

Justity your answer.

. Find fegand go f where fix) = % +1and g(x} =

x b 2 are functions from R to R.

. Find ¢+ ¢ and fe for the fonctions £ and g given in

Exercise 22

et fiv) = avbband g(x} = cx+d wherea b, ¢, and

o are constants, Determine for which constants @. b, ¢
andd wivtrue that foy = go f.

. Show that the function f{x) = ax + bfrom R to R is

invertible. where a and b arc constants, withe = 0, and
find the inverse of 7

. Letf be a function from the set A t the ser B, Let § and

1 be subrets of A, Show that
W SIS = IS0 T

17, Give an example to show that the inclusion in part (b)

in kxercise 26 may be proper.

Let # he a function from the set A to the set B. Let 5§ be a
subset of B. We define the inverse image of S to be the
subsct of A contatning 4l pre-images of all elements of
5 We denote the inverse image of § by F7U8), so that
fF Sy = las Al flare Sh

28.

29

. Show that{x »

Let f e the functien from R 1o R defined by fix)
¥ Find

ai FNiflh b 0 x o

er N a4

Let gi2d = ix!, Find

al g gttL bl g Y{-LO L

oy e vy a By

. Letf be a function from A w B. Let §and T be subsets

of &, Shoew that
a f S LTr s FUSU T
bt f SN Ty = FUSin N,

+ Letf beatunction from A 1o 8. Let § be a subset of B,

FRAy

$i1s the closest integer o the integer x.
eacept when v is midway between two integers, when
it & the larger of these two integers,

Show that 7 148

33

M.

35.

fad
=

37

38.

48

41.

42.

43.

45

+

47.

49,

Show that [x ~ }]is the closest integer 1o the integer x.
cxeepl when ¢ is pudway between two integers. when
it is the smaller of these two integers.

Show that if x is a real number, then [x] - 2] = [if x
is not an integer and 'x; - |x] = Qi x s an integer.
Show that if x is a teal number. then v 1 < {x
sy =<+ 1

Show that if' v is a real nurmber and m 15 an integer. then
v+ m] =[xl + m.

Show that i x 15 4 real number and n 15 an integer, then
a) x < nif and oniy if{x] < n,

by n < yif and only if m < [x].

Show that if x is a real number and s is an integer, then
a) x = nifapdonly if[¢ = .

b} n = rifandonlyif i = 1]

. Letx be a real number. Show that[2x] = [xi+]x = !:

Prove that if x is a real number. thepi- x! = [x]and
[wxi= iy

The function INT is found om some calculators, where
INT(x) = x| when ©is a nunncgalive teal number and
INT(x} = [x] when x is a pegative real number. Show
that this INT function satisbes the identity INT{ -1} =
=INT{x).

Let g amd & be real numbers with o < b Use the floor
anddor cetling functions to express the number of fte-
gers n that satisty the inequality ¢ = n = b,

Let w and b be seal numbers with a <0 4. Use the floor
and/or ceiting functions w eapeess the number of inte-
gers # that satisfy Lhe inequality ¢ < n <2 b

. How many bytes are required 1o encode » bits of data

where k equals
a) 47 by 7 ¢l S07 d) 30007

How many bytes are required to encede n bits of daty
where n equals
a7 by m

e) 10017 d) 288007

. How many ATM cells idescribed in Example 23) can

be transmitted in 10 seconds over a link operating at
the lollowing rates?

a) 128 kilobits per second (1 kifobit = [0{K) bits)

b} 300 kilobits per second

¢} 1 megabit persecond (1 megabit = { 000,000 bits)
Data are transmiitted over a particular Ethernet netwurk
in blocks of 1500 octets {Mocks of § bits). How many
blucks are required to transmit the tolfowing amounts
of data over this Ethernet network? (Note that a byte is
a synonym for an octet, a kilobyte 1s 1000 byies. and o
megabyte is 1,000,000 bytes.)

a) 150 kilobytes of data

h} 384 kilobytes of data

¢) L5344 megabytes of data

d) 45.3 megabytes of data

. Draw the graph of the function fin} - | - o fom 7

o 7,
Draw the graph ol the function fix) = 2| from R
wR,
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&0, Draw the graph of the function F(¥) = {x/2| from R
to R.

51, Draw the graph of the function f{x) = |z + &2 from
Rt R.

52, Draw the graph of the function f{x} = Tx]+!x2] from
Rt R

53, Draw graphs of each of the following functions.

a) Sl = x4 by fix)=[2x+ 1}
¢y fixy =[x d)y fivy =[1/]
e) Sl =Txr—24x+2 O 0= |20 2]
g Su e 4]+ 4]
54. Draw graphs of each of the following functions.
a) flx) =[3x-2] b fla) - [0.21]
¢ i)y = (- lx] d) foxh = lx?)
e) flx) =[x2}x/2) B flx) - xf2)+ix/2)
B Sy = 12(x2) + 1
&, Find the inverse function of fry) = &% < L
6. Suppose at £ is an invertible function from ¥ to Z and
£ 18 an invertible function from X to ¥. Show thar the
inverse of the composition fogisgrvenby (fog) 1 =
elofl,

57. Ler § he o subset of a unversal set {7 The charac-
teristic function £ of § 15 the function from & o the
set {00 1 soch that fe(x) = 1 if x belongs to § and
Solw) = 0 tf r does not belong 10 5. Let A and B be
sets. Show that for atl x
a) fi-glx) = falx): foix)
bl fiup(a) = fix) + falxd — falx)- felx)
ek fyftay = L= fida)

d) fazal2y = Fadx) + frle) - 2 000 fata)

$8. Suppose that f is a function rom A to B, wherc A and 8
are finite scts with |A] = | 8|, Show that f is one-to-one
if and only if it is onwe.

A program designed 10 evalvate a function may nol pro-
duce the comect value of the function for alt clements in the

1.7

1.7 Sequences and Summations (9

domain of this fapction. For example, a program may not
produce & comrecl value becanse evaluating the function
may lead to an infinite loep or an overflow.

To study such situations, we use the concept of a partial
function. A partial functien f frum a set 4 to a set B is
an assignment to cach element o in 4 subset of A, called
the domain of definition of £, of a unique element  in &
{he sets A and B are called the domain and codomain of
[ respectively. We say that f is undefined for clements in
A that are pot in the domain of definition of £, We write
£ A = B denote that f is a partial function from 4 10
B.{This is the same notation as is used for functions. The
context in which the notation is used determines whether f
1s & partial functien or a total function.) When the domain
of definition of f equals A, we say that f is a total function.

59. For each of the following partial funclions. determine
ifs domain, codomain, domain of definition, and the set
of values for which it 1y undefined. Also. determine
whether it is o toral function.

a) f:Z— R, fim = 1in

by fiZ = Z, fn) =[nr]

b foAXZ — Q. fimn) = min

d) fZXL—Z fimun) = mn

e JLEXL —ZL fimny=wm-nifm>n

0. a} Show thar a partial function from 4 to 8 can he

viewed as a function f* from A to 8 U {u} where
# is not an clement of 8 and

| flay if ubelongs to the domain
Fay = of detinition of £

o iTf is undefined at 4
b} Using the construction in (a), find the function -

corresponding to euch partial function in Exercise
59,

Sequences and Summations

INTRODUCTION

Sequences are used to represent ordered lists of elements. Sequences are used in discrete
mathematics in many ways. They can be used to represent solutions to certain counting
problems, as we will see in Chapter 5. They are alse an important data structure in
computer science. This section contains a review of the concept of a function, as wel)
as the notation used to represent sequences and sums of terms of sequences.

When the clements of an infinite set can be listed, the set is called countabie, We
will conclude this section with a discussion of both countlable and uncountable sets.

SEQUENCES

A sequence is a dixcrete structure used to represent an ordered [ist.
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s by e
(o) ordhe e
';hli .-.|'I TR 'h Fo ‘“ﬂl‘.".-

We use the notation {a,} to describe the sequence. (Note that a, represents an in-
dividual term of the sequence {a,}. Also note that the notation {a,} for a sequence con-
flicts with the notation for a sei. However, the context in which we use this notation
will always make it clear when we are dealing with sets and when we are dealing with
sequences. )

We describe sequences by listing the terms of the sequence in order of increasing
subscripts.

EXAMPLE 1 Consider the sequence {a,}, where
a, = l/n.

The list of the terms of this sequence, beginning with a;, namely,

Q1, 47, a3, a4, . ..,
starts with
L1
T 2, 3? 4! .
EXAMPLE 2 Consider the sequence {b,} with b, = (—1)". The list of the terms of this sequence,
b{], b[, bz, bg, - begins with
,-11~-L1,.... |
EXAMPLE 3 Consider the sequence ¢, = 3", The list of the terms of the sequence cq, ¢y, ¢3, ¢3, €4,
¢s, ... begins with
1,5,25, 125,625,3125, ... [ |

Sequences of the form
a]y a2| LN ')a}t

are often used in computer science. These fiite sequences are also called strings, This
string 15 also denoted by @143 -+ a,.. (Recall that bit strings, which are finite sequences
of bits, were introduced in Section 1.1.) The length of the string § is the number of
terms tn this string. The empty string is the string that has no terms. The empty string
has length zero,

EXAMPLE 4 The string abed is a string of length four. [ ]

SPECIAL INTEGER SEQUENCES

A common problem in discrete mathematics is finding a formula or a general ruie for
constructing the terms of a sequence. Sometimes only a few terms of a sequence solving
a problem are known; the goal is to identify the sequence. Even though the initial terms
of a sequence do not determine the entire sequence (after all, there are infinitely many
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different sequences that start with any fiite set of initial tertns), knowing the first few
terms may help you make an educated conjecture about the identity of your seguence.
Once you have made this conjecture, you can try to verity that you bave the correct
sequence.

When trying to deduce a possible formula or rule for the terms of a sequence from
the initial terms, try to find a pattern in these terms. You might alse see whether you
can determine how a term might have been produced from those preceding it. There
are many questions you could ask, but some of the more useful are;

8 Are there runs of the same value?

» Are terms obtained from previous terms by adding the same amount or an amount
that depends on the position in the sequence?

¥ Are terms obtained from previous terms by multiplying by a particular amount?
# Are terms obtained by combining previous terms in a certuin way”

The following examples illustrate how this type of problem might be attacked.

EXAMPLE 5 Whal is a rule that can produce the terms of a sequence if the first 10 terms are [, 2, 2,
33344447

Solution: Note that the integer | appears once, the integer 2 appears twice, the integer
3 appears three times. and the integer 4 uppears four times. A reasonable rule for gen-
erating this sequence is that the integer # appears exactly a times, so the next five times
of the sequence would all be 5, the following six terms would all be 6, and se on. The

sequence gencrated this way is a possible match. |
EXAMPLE 6 What is a rule that can produce the terms of a sequence if the first 10 terms are 5, 11,

17,23,29, 35, 41, 47, 53, 597

Solution: Note that each of the firsi 10 terms of this sequence after the first is obtained
by adding 6 t¢ the previous tem. (We could see this by noticing that the difference
between consecutive terms is 6.) Consequently, the nth term could be produced by
starting with 5 und adding 6 a total of # — 1 times; that is, a reasonable guess is that the
nitermis S +6{n~ 1) = 6n -1 |

The sequence in the solution of Example 6 is an arithmetic progression, which
is a sequence of the form w, ¢ + d,a +2d a + 3d. ..., a + nd, ... In particular. this
sequence has @ = Sand d = 0.

Another useful technigue for finding 2 rule for gencrating the ierms of a sequence
1s to compare the terms of a sequence of interest with the terms of 2 well-known integer
sequence, such as terms of an arithmetic progression. terms of a geometric progression
(see Example 123, pertect squares, perfect cubes. and so on. The first 10 terms of some
sequences you may want to keep in mind are displayed in Table ).

EXAMPILE 7 Conjecture & simple formula for «, if the first 10 tenms of the sequence {a,} are 1, 7,
25,79, 341,727, 21R5. 6559, {9681, 59047,

Solurion. To attack thix problem, we begin by looking at the difference of consecutive
terms. but we do aot see a patiern. When we form the ratio of consecutive terms to see
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TABLE 1 Some Usefu! Sequences.
nth Term First 10 Terms
P i.4,0, 16,25, 36,49, 64, 81, 100, . ..
n 1,8, 27,64, 125,216, 343, 512,729, 1000, ...
rﬁ [ 1,16,8L. 256,625, 1296, 2401, 4096, 6561, 10000, ...
an 2.4, 8, 16,32, 64, 28,756,512, 1024, ..
3 | 3,9,27, 81,243,729, 2187, 6561, 19683, 59049, ...
! 2, 6. 24, 120, 720, 5040, 40320, 362880, 3628800, ... |

whether each tetm is a multiple of the previous term, we find that this ratie, although not
a constant. is close to 3. So it is reasonable to suspect that the terms of this sequence are
generated by 3 formula invelving 3". Comparing these terms with the corresponding
termns of the sequence {3"}, we notice that the sth term is 2 less than the corresponding
power of 3. We see thata, = 3" ~2for 1 = n = 10 and conjecture that this formula

holds for all #. | |

We will see throughout this text that integer sequences appear in a wide range of
contexis in discrete mathematics, Sequences we will encounter include the sequence
of prime numbers (Chapter 2), the number of ways to order » discrete objects (Chapter
4). the number of the moves required to solve the famous Tower of Hanoi puzzie with
n disks {Chapter 5), the number of rabhits on an island after » months (Chapter 5}, and
the number of comparisons needed to sort n numbers (Chapter 8).

. Integer sequences appear in a fabulously wide range of subject areas besides dis-
‘Web  crete mathematics, including biology, physics, engineering, chemistry, and physics. as
~ well as in puzzles. A wonderfully diverse collection of over 8000 different integer se-
quences has been constructed over the past 20 years by the mathematician Neil Sloane.
who has teamed up with Simen Plouffe, to produce The Encyclopedia of Integery Se-
gquences ([SIPI93]). Anextended list of the sequences is available on the Web, with new
sequences added regularly. There is aiso a program accessible via the Web that you can

use to find sequences from the encyclopedia that match initial terms you provide.

Neil Sioane (horn 1939),  Neil Sloane studicd mathematics and electrical engineering ar the University
weh  of Melbourne on a scholarship from the Australian state telephone company. He mastered many telephone-
- related jobs, such as erecting telephune pales, in his summer work. After praduating, he designed minimal

vost telephone networks in Australia. In 1962 he came to the United States and studied electrical engineering

at Comell University. His Ph.D. thesis was on what are now called neural networks. He ok a job at Bell

Labs in 1969, working in many areas, including network design, coding theory, and sphere packing. He

now works for AT&T Labs, moving there from Bell Labs when AT&T split up in 1996. One of his favorite

problems is the kissing problem (s name he ceined), which asks how many spheres can be aranged in n

dimensions so that they li touch 4 central sphere of the same size. (In twe dimensions e answer is &, sinee

fi pennies can be placed so they touch a ceatral penny. In three dirensions, 12 hilliasd balls can be placed

30 that they touch a central hilliard ball, Twe billiard balls that just twuch are said to “kiss,” giving rise to the

terminelegy “kissing problem™ and “kissing number.”) Sloanc, together with Andrew Odlyzko, showed that

in & and 24 dimensions the optimal kissing numbers are, respectively, 240 and 196,560). The kissing number
1s known in dimensions 1, 2, 3, 8, and 24, but not in any other dimensions. Sloane’s books include Sphere

Packings, Laiices and Groups, 3d ed.. with lohn Conway: The Theary of Error-Correciing Codes with

Jessie MacWilliams; The Encyclepedia of Integer Sequences with Simon Plouffe; and The Rock-Climbing

Guide 10 New Jersey Crags with Paul Nick. The last hook dernonstrates his interest in tock climbing: u

includes more than 50 climbing sites in New Jersey.
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SUMMATIONS

Next, we introduce summation notation. We begin by describing the notation used to
express the sum of the terms

arm am-rl' A ‘rur’l

from the sequence {a,}. We use the notation
n
\,\ d;

<
jmm

to represent
A T gy T 00+l
Here, the viriable f is called the index of summation, and the choice of the letter ; as

the variable is arbitrary: that is, we could have used any other ietier, such as ¢ or £. Or,
in notation,

n "l q
g=m P—m k=rm
Here, the index of summation runs through all integers starting with its lower limit
m and ending with its upper limit ». The uppercase Greek letter sigma, %, is used t
denote summation. We give some examples of summation notation.

EXAMPLE R Express the sum of the first 100 terms of the sequence {a,}, where a, = l/n for v =
1,23 ...

Solution: The lower limit for the index of summation is 1, and the upper limit is 10
We write this sum as

![}_[l 1
>
=
n
EXAMPLE 9 What is the value of 35 2
Solution: We have
S e 2R g §
Sl =1+ 449416+ 25
EXAMPLE 16 What is the value of 378, (— 1)
Salution: We have
B
G N O U e LR B SRS E LR S
Red =1+ i+(~1)+1
= 1. n
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Sometimes it is useful to shift the index of summation in a sum. This s often done
when two sums need to be added but their indices of summation do not match. When
shifting an index of summation, it is important to make the appropriate changes in the
corresponding summand. This is iliustrated by the following example.

EXAMPLE 11 Suppose we have the sum

2

J

[\/]rdn

—

but want the index of summation to run between {) and 4 rather than from 1 to 5. To do
this, we let £ = j — [. Then the new summation index runs from 0 to 4, and the term
j2 becomes (& + 1)°. Hence
5 4

= > (k4 1)

L._;J_;
i~ k=0

It is easily checked that both sumsare [ + 4+ 9 + 16 + 25 = 55. |

EXAMPLE 12 A geometric progression is a sequence of the form

il
d, ar, are, arj ,,,,, ark,

where &, the tnittal term, and r. the common ratio, are real numbers. Sums of terms
of geometric progressions commonly arise; such sums are called geomerric series. We
will ind a formula for §, the sum of the fitst n + 1 terms of a geometric progression
with initial term a and common nonzero ratio 7, that is,

S = Zarf'.
j=0
To compute §, first multiply both sides of the equality by # and then manipulate the
resulting sum as follows:
r§ = rz ar!
F=0
= gt

e

im0
n+1
= Nart
Py
H
= > ar + (@™ —a)  (This equality is obtained by shifting the index of

i
A

k=t surnmation, setting k = j + 1.)
= 8§+t —a)

From these equaiities, we see that

rS =5+ (ar"*! — g,
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Solving for § shows that if r = |

S = ar? ]_;'_‘_‘._
r—1
It r = 1, then clearly the sum equals (# ~ 1)a. a2
EXAMPLE 13 Double summations arise in many contexts (as in the analysis of nested loops in com-
puter programs). An example of 2 double summaticn is
13
>, 24

i-1j-1
To evaluate the double sum, first expand the inner summation and then centinue by
comnputing the outer summation:

4 3
> 2=

i=1j-1 i=1

i+ 2i+ 3

VR

1=

6i
1

6+ 12+ 18 + 24 = 60 ' 1

t

We can also use summation notation to add all values of a function, or terms of an
indexed set. where the index of sumunation runsg over all values in a sct, That is, we
write

> I

SES

o represent the sum of the vatues f(a), for all members s of S.

EXAMPLE 14 What is the value of = o5 4y 87

Solution: Since 2. oy 4 5 represents the sum of the values of 5 for all the members
of the set {0, 2, 41, it follows that

> s=0+2+4=6 .
52{0,2,4}

Certain sums arise repeatedly throughout discrete mathematics. Having a coflection
of formulae for such sums can be useful, so Table 2 provides a smail table of formulae
for commonly occurring sums.

We derived the first formula in this table in Example 12, The remaining three for-
muiae give us the sum of the first » positive intergers, the sum of their squares, and
the sura of their cubes. These three formulae can be derived in many different ways
(for example, see Exercises 21 and 22 at the end of this section), Also note that each
formula, once known, can easily be proved using mathematical induction, the subject
of Section 3.2

Example 15 illustrates how the formulae m Table 2 can be useful.
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TABLE 2 Some Useful Summation
Formulae.
Sum T Closed Form
— 1 rn-r—i _
Shapart ar— S
n n+ 1}
2k n{"—g—
n s . nin+ 1¥2n+ 1
R = : (e + 120 + 1)
- win+ 1"
>_.G:=.-] K’ (ﬁ_i
v - 100 2
EXAMPLE I5 Fmd.\_*___mk .

. . . . T - 16K
Solution: First note that since }_iﬂ_ﬂl k= 2,19_ K+ ;\ﬁkzsnkzv we have

10 L0 49
2 K=2 K-Sk
k=50 k=1 k=1

Using the formula X 7_ &% = n(n + 1)}2n + 1)/6 from Table 2, we see that

lOQ . - . .
}_; s @9—@—1—01 -~ 19%92 = 338,330 — 40,425 = 297925
k=50 6 [ |

CARDINALITY (optional)

Recall that in Section 1.4, the cardinality of a finite set was defined to be the number
of elements in the set. It is possible to extend the concept of cardinality to all sets, both
finite and infinite, with the following definition.

DEFINITION 2. The sets A and B have the same cardinality if and only if there
is a one-to-one correspondence from A to B.

To see that this definition agrees with the previous definition of the cardinality of a finite
sel as the number of elements in that set, note that there is a one-to-one corresponderce
between any two finite sets with a elements, where n is a nonnegative integer.

We will now split infinite sets into two groups, those with the same cardinality as
the set of natral numbers and those with different cardinality.

DEFINITION 3. A set that is either finite or has the same cardinatity as the sef of
natural nuntbers is called countable. A set that is not countabile is called uncountable.

We now give examples of counntable and uncountable sets.

EXAMPLE 1o Show that the set of odd positive integers is a countable set.

Sofution: To show that the set of odd positive integers is countable, we will exhibit a
one-to-one correspondence between this set and the set of natural numbers. Coasider
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FIGURE1 A One-to-One Correspondence Between V and the Set of 0dd Positive
Integers.

the funclion

fimy = 2n - |
from N to the set of odd positive integers. We show that f is 4 one-to-one correspondence
by showing that it is both one-to-one and onto. To see that it is one-to-one, suppose that
fin) = fim). Then 27 — 1 = 2m — 1, so that & = m. To see that it is onto, suppose
that 1 is an odd positive integer. Then ¢ is | less than an even integer 24, where & is 4
natral number. Hence r = 2k—1 = f{k). We display this one-to-one correspondence
in Figure 1. |

An infinite set is countable if and oaly i it is possible to list the elements of the set
in u sequence (indexed by the naiural numbers). The reason for this is that & one-to-one
correspondence £ from the set of natural numbers to @ set § can be expressed in terms
of u sequence ay, 4,..., 4y, ... wherea; = f(I),as = f(2),...,a, = fin).... Far
instance, the set of odd integers can be listed i a sequence ay, @2, ... dy. . .., Where
dy = 20— 1.

We now give an example of an uncountable set.

EXAMPLE 17 Show that the set of real numbers is an uncountable set.

Solution: To show that the set of real numbers is uncountable, we suppose that the
set of real nombers 1s countable and arrive at a contradiction. Then, the subset of all
real numbers that fall between O and | would also be countable {(since any subset of
a countable set is also countable; see Exercise 32 at the end of the section). Under
this assumption, the real numbers between 0 and ! can be listed in some order, say,
+1, ¥, s, Let the decimal representation of these real rumbers bhe

ry = Qdpdpdidy ..

ry = Odydndydy ...

Fy = 0.d31d32d33d34 -
ra = Odydpdady

where di; €10.1,2.3.4,5,6,7. 8. 9}. (For example, if r; = 0.23794102. . ., we have
dy = 2,d;z = 3,43 = 7, and so on.) Then, forn a new real number with decimal ex-
pansion r = O.ddydsdy . . ., where the decimal digits are determined by the following
rule:
i 2{4 ifdy =4
! 5 ifdy #4.
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{As an example. suppose that r| = 0.23794102. ., r, = 0.44590138.. ., r
0.09118764 ..., ry = (.80553900. . ., and so on. Then we have r = 0.d;dxd1ds . ..
(14544 ..., where d1 = 4 girice d|1 # 4, dz = 5 since (3'22 = 4, d3 = 4 since d33 # 4,
dy = 4since dag = 4, and so on,)

Every real number has a unique decimal expansion (when the possibility that the
expansion has a tail end that consists entirely of the digit 9 is excluded). Then, the
real number r 1s not equal to any of ry. s, . .., since the decimal expansion of r differs
from the decimal expansion of #; in the ith place to the right of the decimal point, for
cach f,

Since there is a real number r between 0 and | that is not in the List, the as sumption
that all the real numbers between 0 and 1 could be listed must be false. Therefore, ail the
real nutnbers between 0 and 1 cannot be listed, so that the set of real numbers between
and | is uncountable. Any set with an uncountable subset is uncountable {scc Exercise

35 at the end of this section). Hence, the set of real numbers is uncountable. [ ]

Exercises

ko

. Find the following terms of the sequence {a,} where

4, = 3 (=3V 4 57
al b a c) oy d) s

. What is the term gy of the sequence {a,} if ¢, equals

a) 2
¢y 1+ (=17

b) 1?
) - (-2

- What ure the terms ¢y, @i, w, and ay of the sequence

{a,}, where a, equals
al 2+ 1 by (n+ pmI
€} [n/2? d) |ni2i+ In /2

- What are the terms ¢y, ¢y, ay, and ay of the sequence

{ani, where @, equals
aj (-2y7 by 37
€ 74T d) 2k (-2

< List the first [0 terms of each of the following se-

quences.

a) the sequence that begins with 2 and in which each
successive lerm is 3 more than the preceding lerm

b the sequence that ists cach positive nteger three
times, in increasing order

€ the sequence that lists the odd positive integers in
inereasing order, listing each odd integer twice

d) the sequence whese sth term is nt — 27

€} 1the soquence that begins with 3, where each sue-
ceeding term is twice the preceding term

f) the sequence whose first two terms are 1 and cach
sycceeding term is the sum of the two preced-
ing termus (This is the famous Fibonacei sequence,
which we will study [ater in this text.)

gl the sequence whose nth term is the number of bits
in the binary expansion of the number  (defined in
Section 2.3)

h} the sequence where the sth term is the number of
fetters fn the English word for the index #

6. List the first 10 terms of each of the following se-

quences.

a) the sequence obtained by starting with 10 and ob-
taining each term by subtracting 3 from the previous
term _

b} the sequence whose nth term is the sum of the first
n positive integers

¢) the sequence whose mih term is 37 — 24

d) the sequence whose nth term is | /n

€) the'sequence whose first two terms are 1 and 2 2nd
cach succeeding term is the sum of the two previous
terms

f) the sequence whose ath term is the largest integer
whose binary ex pansion (defined in Section 2.3) has
n bits. (Write your answer in decimal notation. )

£) the sequence whose terms are constructed sequen-
tially as follows: start with 1, then add |, then mul-
tiply by 1. then add 2, then multiply by 2, and
50 oh

h) the sequenca whose mh term is the largast integer
ksuchthat k! = n

- Find at least theee differem sequences beginning with

the terms 1. 2, 4 whose touns are generated by a simple
formula or rule.

. Find at feast three different sequences beginning with

the terms 3. 5, 7 whose terms are generated by a simple
fotmula or rule.

» For gach of the following lists of integers, provide a

simple formula or ruie that generates the terms of an
imteger sequence that begins with the given list,

#) LOL L0011 1,060,000,

b) 1,2,2,3.4.4.5,6,6,7.8,8, . .

¢ 00,204,680, 16,0,...

dj 3.6,12, 24, 48. 96,192,
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*1L

*12.

14.

e) 15,8, 1, -6, =13, 20, -27. ...

0 3.5,812,17,23,30,38,47, ...

g) 2,16, 54, 128, 250, 432, 686, . ..

hy 2.3, 7,25 121, 721, 5041, 40321, ...

For each of the following lists of integers, provide a

sitnpie formula or rule that generates the terms of an

integer sequence that begins with the given st

a) 3.6, 11, 18, 27, 38,51, 66, §3, 102, . ..

by 7. 11,15, 19,23, 27,31,35,3%, 43, . .

e} 1, 10, 11, 104, 101, 116, 1i1, 1000, 1601, 1014,

1011, .

d) 1,2 2 3.3,3,3,3.5,5,5,5.5,5.5,,._

e) 0,2, 8, 26. B0, 242, 728, 2186, 6560, 19682, . ..

fy 1. 3, 15, 105, 945 10395, 135135, 2027025,
34459425, .

@ 1,0,0,1,1,1,0,0,0,0,1, 1,1, 1.1,.

h} 2.4, 16, 256, 65536, 4294967296, .

Show that if a, denotes the nth p-uSIT.WC mteger that 15

not a perfect square, then @, = n + {/n}, where {x}

denotes the integer closest to the real number x.

Let @, be the nth term of the sequence 1,2, 2,3, 3, 3,

4.4,4,4.5,5,5,5,56,6,6,6,0,6, .., constructed

by mdudmg the integer & exactly & times. Show that

ay = |V2n + 1.

. What are Lhe values of the following sums?
5 4
a) Nk+1) b)) X(-2)f
L= J=0
n ) .
¢ 33 d) 321 2)
1= j=1
What are the values of the fallowing sums, where § =
1.3.5 7
a) N LIRS
58 jes
o X)) b X
i JEX

15.

16.

17.

What is the value of each of the following sums of terms
ot'a gcomeu ic progressmn“

a) }dq 2 ) 2 \ 2
] i= ]

8
L IS Sk S LA | \ 20(-3y
P f= 0
Find the value of each of the tollowing sums.
8 3
a) 2 (l+(-1) b >3 -20)
c=l

FER!!
5 . LA .
€ M2V 432y d) 22 =20
FELH Jadl
Compute each of the ﬁ)llowing double sums.

L3
a) > N+ )B\(2:+3j;

1=k i=0i=0

yo2 2 4
o > dy 5T

[EA AN 1=0y=1

1.7 Exercises 79

18. Cumpute each of the followmg double sums.

3
a) > Si-H W ("h+ 2/
= 1_,' 1 !t[]_,r =0
2- 3* .2 .3
Z i d) > > P
i= I; 0 i=0 j=0
19. Show that }_,;'zl(aj ~ a,-|) = a; ~ ag Where
an, 4. ..., 4, i% a sequence of real numbers, This type

of sum is ¢alled teleseoping.
20, Use the identity 1/(k(k + 1)) = l/k - 1Ak + 1) and
Exercise 19 to compute > _, 1/(k(k + 1)).
21. Sum hoth sides of the identity &% — (k — 12 = 2k - 1
from k = 1t & = n and use Exercise 19 to find
a) a formula for 3 7_(2k — 1} (the sum of the first n
odd natural numbers),
b) a formula for 3°F lk
*22. Use the technique given in Exercise 19, together
with xhr; result of Exercise 13b, 10 find a formula for
i K
23, Find /—k=1{)0k' {Use Table 2.)
24. Find 3 3%, . (Use Table 2.)
%25, Find a formula for >7_ [ \/k], when m is a positive in-
teger. (Hint: Use the formula for 35 _ k)
*26. Find a formula for 37| ¥k], when m is a positive
integer. (Hint: Use the formala for 3.} _, &3}
There is also a special notation for products. The product of
s Dy b - s a, is represented by

l
]_l aj.
j=m

27, Wha are the values of lhe following products?
a) ﬂ. of b} l_[, st
9 MmNy T2

The: value of the factorial funetion at a positive integer n,
denoted by n!. is the product of the positive integers from 1
10 i, inclosive, Also, we specify that ¢! = 1.

28. Express n! using product notation.

29. Find >4 j.

30. Find [T]_, 1.

3i. Determine whether cach of the following sets is count-
able or uncountable. For those that are countable, ex-
hibit a une-te-one correspondence between the set of
natural numbers and that set,
a) the negative integers
b) the even inlegers
¢) the real numbers between 0 and 1
d) integers that are multiples of 7

*32. Determine whether each of the following sets is count-

able or uncovntable. For those thal are countable, ex-
hibit a one-to-one correspondence between the set of
natural numbers and that set.
) integers not divisible by 3
b) integers divisible by 3 but not by 7
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¢) the real numbers with decimal representations con-
sisting of afl 1y

d} therea! numbers with decimal representations of all
s or s

. If A is an uncountable set and B 1s a countable set, must

A — B be uncountable?

. Show that 5 subset of a countable set is also count-

able.

. Show that i A is an uncountable set and A C B, then

B s uncountable.

. Show that the urion of two countable sets is countable.
. Show that the union of 4 countable number of countable

sets is countable.

. A real number is called rational if if can be writien as

the quetient of two integers, Show that the set of ratio-
nal numbers between () and 1 is countable. (Hine: List
the elements of this set in order of increasing p + g,
where p is the numerator and g is the denominator of a
fraction plg in lowest terms.}

8

*39.
*40.

*41.

*42

*

*43.

Show that the set of all bit strings is countable.

Show that the set of real numbers that are solutions of
guadratic equations ax? + bx+ ¢ = 0, where o, &, and
¢ are inlegers, 1s countable,

Show that the set of all computer programs ir a par-
ticular programming language is countable. (Hinf: A
computer program writteh in a programming language
can be thought of as a string of symbels from a anite
alphabet.)

Show that the set of functions from the positive integers
wtheset{0. 1,2, 3,4,5,6, 7,8, 9}is uncountable. (Hinr.
First set up a one-to-one cosrespondence between the
set of real numbers between 0 and 1 and a subser of
these functions. Do this by associating to the real num-
ber O.dydy ... d, ... the function f with f(n) = d4,.)
We say that a function is computable if there is a com-
puter program that finds the values of this function. Use
Exercises 41 and 42 tp show that there are functions
that are not computable,

The Growth of Funcﬁons

INTRODUCTION

Suppose that a computer program reorders any list of z integers into a list where the
wtegers are 1n increasing order. One important consideration concerning the practi-
cality of this program is how long & computer takes to solve this problem. An anal-
ysis may show that the time used to reorder a list of # integers (where these inte-
gers are less than some specified size) is less than f{n) microseconds, where f(n) =
100nlogn + 251 + 9. To analyze the practicality of the program, we need to under-
stand how quickly this function grows as n grows. This section reviews some important
rmethods used in cstimating the growth of functions. We will introduce the notation
most coromonly used in the analysis of the growth of functions, namely, big-0 no-
tation. We will develop seme useful results about the growth of functions using this
notation.

BlG-0 NOTATION

The growth of functions is often described using a special notation. The following def-
ihition describes this notation.

DEFINITION 1. Let f and g be functions from the set of integers or the set of real
numbers to the set of real numbers. We say that £(x)is O(g(x}) :fmmm:s
C and k such that

[fx)l = Clgtn) _
whenever x > k. {This.is read as “£(x) is big-oh of g(x).")
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Remark: Toshow f(x) is O(g(x)), we need only find one pair of constanis C and & such
that | f (x)] = Clg(x} if x > & However, a pair C, & that satisfies the definition is never
unique. Moreovcr, if one such pair exists, there are infinitely many such pairs. A simple
way 1o see this is to note that if C, k is one such pair, any pair C', k' with C < C'
and k < k' alse satisties the definition, since |f(x)| = Clg(x)| = C’[g(x}| whenever
x>k =k

EXAMPLE 1 Show that f(x) = 3 + 2x + 1 is O(x2).

Solution: Since
D= +2x+1 <2 +2x + 5% =4ax°

whenever x > 1, it follows that f{x) is O(x*). (To apply the definition of big-O notation
here, take C = 4 and k = 1. It is not necessary to use absolute values here since all
functions in these equalities are positive when x is positive.)

Another approach is to note that when x > 2, it follows that 2x =< x*, Conse-
quently, if x > 2, we see that

0= +2x+1 = 22+ 2+ = 3%

{We apply the definition with C = 3and k = 2.)

Observe that in the relationship £(x) is O(x*}, x* can be replaced by any function
with larger values than +¢, for example, f(x}is Q(x), flx}is Ox* + 2x + 7). and so
on. It i also true that x% is OLx* + 2x + 1), since x2 < x% + 2x + | whenever y = 1.

Figure | illustrates that x* + 2x + 13s O(x?%). u

Note that in Example t we have two functions, f(x) = x* + 2Zx+ | and g(x) =
«%, such that f(x)is O(g(x)) and g(x} is O(f(x)}—the latter fact following from the
inequality £ = x? + 2x + t, which holds for all nonnegative real numbers x. We say
that two functions f(x) and g{x) that satisfy both of these big-Q relationships are of the
same order. (See pages 88-90.)

J| axt p x4 el

1 Velreledrt  forami

1 i
! 2

FIGURE | The Function x2 + 2r + 1 Is O{x3).
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Remark: The fact that f{x) is O(g(x)} is sometimes written f(x) = O(g{x)). How-
ever, the equals sign in this notation does nnf represent a genuine equality. Rather, this
notation tells us that an inequality holds relating the values of the functions f and g for
sufficiently large numbers in the domains of these functions.

Big-O notation has been used in mathematics for almost a ceatery. In computer
science it is widely used in the analysis of algorithms, as will be seen in Chapter 2.
The German mathematician Pau) Bachmann first introduced big-€ notation in 1892 in
an important book on number theory. The big-O symbol is sometimes called a Lan-
dau symbel after the German mathematician Edmund Landau, who used this notation
throughout his work. The use of big-( notation in computer science was popularized
by Donald Knuth, who also intreduced the big-Omega and big-Theta notations defined
fater in this section.

When f(x) is O(g(x)), and k(x) is z function that has larger absolute values than
g(x}does for sofficiently large values of x, it follows that f{x) is O(h(x)). In other words,
the function g(x) in the relationship £{x}is O(g(x)) can be replaced by a function with
larger absclute values. To see this, notc that if

o= Clglxyl if x> &,
and if jh{x)| > |g(x)! for all x > k, then
[f0)| < Clhinyl  if x> &

Hence, f(x) is O(h(x)).

When big-Q notation is used, the function g in the relationship f{x) is O(g(x)} is
chosen 1o be as small as possible (sometimes from a set of reference fusctions, such as
functions of the form x*, where n is a positive integer).

In subsequent discussions, we will almost always deal with functions that take on
only positive values. All references to absolute values can be dropped when working
with big-O estimates for sech functions. Figure 2 illustrates the relationship f(x) is

Olg(x)).
The following example illustrates how big-O notation is used to estimate the growth

of functions.

father's pious lifestyle and love of music, His mathematical talent was discovered by one of his teachers,
even though he had difficuliies with some of his early mathematical smdies. After recuperating from tu-
berculosis in Switzerland, Bachmann studied mathematics. first at the University of Berlin and later at
Gittingen, where he attended lectures presented by the famous number theorist Dirichlet, He received
his doctorate under the German number theorist Kummer in 1862; his thesis was on group theory. Bach-
mann was a professor at Breslau and later at Miinster. After he retired from his professorship, he con-
tinued his mathersaiical writing, played the pisno, and served as 2 music critic for newspapers, Bach-
mann's mathematical writings include a five-volume survey of resnlts and methoeds in number theory, a
wa-volume work on elementary oumber theory, 2 book on irrational numbers, and a book on the Jamoug
cemjecture known as Fermat's Last Theorem. He introduced big-02 notation 1 his 1892 book Arabytische
Zuhlentherrie. ’

Edmund Landeau (187719381, Fdmund Landau, the son of 2 Berfin gynecologist, attended high school
and untversity in Berlin. He received his doctorate in 1899, under the direction of Frobenius. Landau first
taught at the University of Beriin and then moved we Gttingen, where he was a full professor until the
Navis forced himm to stop teaching. Landau’s main contributions fo mathematics were in the field of analytic
number theory. {n particular, he established several important results voncerning the distribution of primes.
He authored a three-vodume exposition on nurber theory as well as other books an number thesry and
mathematical analysis,
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Cglx}
fix)

gix)

Fixte Cglx)  for x>k

1

k
FIGURE 2 The Function f{x) Is O(g{x)).

Donald E. Knuth (barn 1938).  Knuth grew up in Milwaukee, where his father taught bookkeeping ata
Lutheran high school and owned a small printing business. He was an cxcellent student, setling academic
achievement awards. He applied his intslligence in unconventional ways, winning a contest when he was
in the eighth grade by finding over 4,500 words that could be formed from the letters in “Ziegler's Giant
Bar.” This won a television set for his school and a candy bar for everyone in his class,

Knuth had a difficult time choosing physics over music as his major ag the Case Institute of Technology.
He then switched from physics 1o mathermatics, and in 1960 he received bis bachelor of science degree,
simultaneously receiving @ master of science degree by a special award of the faculty who considered his
waork outstanding. At Case, he managed the basketbai! team and applied his 1alents by copstructing a formula
for the value of each player. This novel approach was covered by Mewsweek and by Walter Cronkite un the
CBS television neowork. Knuth began graduate work at the California Institute of Techrology in 1964 and
received his Ph.D. there in 1963, During this time he wirked as a consultant, writing compilers for differenut
computers.

Knuth jeined the staff of the Califoraia Institute of Technology in 1963, where he remained until 1968,
when he 100k a job as a full professor at Stanford University. He retired as Professor Emeritus in 1992 to
concentrate on writing. He is especially interested in updating and completing new voluines of his series The
At of Computer Programming, a work that has had a profound influence en the development of computer
science, which he began writing as a graduate student in 1962, focusing on compilers. In commaon jargon,
“Knuth,” referring to The Art of Computer Programyming, has come to mean the reference that answers all
questions about such topics as data structures and algorithms.

Kouth is the founder of the modemn study of computational complexity. He has made fundamentat
contributions (e the subject of compilers. His dissatisfaction with mathematics typography sparked him to
invent the now widely used TeX and Metafont cystems. TeX hag become a standard language for compuier
typography. Two of the many awards Knuth has received are the 1974 Turing Award and the 1979 National
Medal of Technology, awarded to him by President Carter.

Knuth has written for a wide range of professional journals in computer science and in mathematics.
However, his firsi publication, in 1957, when he was a college freshman, was a parody of the metric syster
called “The Potrzebie Systems of Weights and Measures.” which appeared in MAD Mugazine and has been
in reprint several times. He is 4 church organist, as his father was. He is also a composer of nwisgic for the
organ. Knuth beligves that writing computer programs can be an aesthetic experience, much like writing
potiry or composing music.

Knuth pays $2.56 for the first person to find each error in his books and $0.32 for sigaificant sugges-
tions. If you send him a letter with an error {you will need to use regular mail, since he has given up reading
c-mail}. he will eventually inform you whether you were the fitst person to tell him about this error. Be
prepared for a long wail. since he receives an overwhelming amount of mail. {The author received a letter
years afier sending an error report 10 Knuth, noting that this report arrived several months after the first
report of this error.} -
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FXAMPLE 2 Show that 707 is O x3).

Soluiion: The inequality 7x* < x’ holds whenever ¥ > 7. (We see this by dividing
both sides of this inequality by x.) Hence, 7x” is 0(x*). 1aking C = 1and & = 7 in
the definition of big-O notation. s

FXAMPLE 3 Example 2 shows that 7x* is O(x™). Is it also true thar x? is Of7x%)?

Solution: To determine whether ©* is Q(7x%), it is aecessary to determiine whether
there arc constants C and k such that ©° = (71} whenever x > k. This inequality is
equivalent to the inequality x < 7C, which is obtained by dividing both sides by .
No such €' can exist since x can be made arbitrarily large. Hence 3 is nor O(7%). &

Polynomials can often be used 1o estimate the growth of functions. Instead of ana-
lyzing the growih of polynomials each time thev occur, we would like 4 result that can
always be used to estimate the growth of a polynomial. The following theorem does
this. It shows that the leading term of a palynomial dominates its growth by asserting
that a polynomial of degree # or less is O(x"),

THEOREM 1 Let f(x) = a,x" + gq 1" 4 -+ 4 a1 + ap, whexe ag, a, .. . @p_1, Qp BIC teal
numbers, Then f(x) is O(x").
Praof: Using the triangle inequality. if x > | we have
Vol =la™ +ay (x4 wagx+ ap|
= |1 4 a2 s g |x
=" [jlanf F |t ifx + el it 4 |agij/.x”}
= 2 ag oy o+ o] +a)).
This shows that
lf(0)] = Cx
where C = |a,. + a4 + - 4 |aa| whenever x = 1. Hence, fixyis Qlx™. O

We now give some examples involving functions that have the set of positive inte-
gers as their domains.

EXAMPLE 4 How can big-0 netation be used (o estimae the sum of the first » positive ntegers”?

Solution: Since each of the integers in the sum of the first » positive integers does not
exceed n, it follows that

1+2 1_,.,+n$n+n+"'~+ﬂ=nz.

From this inequality it follows that | + 2+ 3+ -~ + p ig O(r’), taking € = | and
k =1 in the definition of big-( notation. (In this example the domains of the functions
i the big-O relationship are the set of positive ntegers.) n
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In the next example big-O estimates will be developed for the factorial function
and its logarithm. These estimates will be important in the analysis of the number of
steps used in sorting procedures.

EXAMPLE 5 Give big-0 estimates for the factorial function and the logarithm of the factorial func-
tion, where the factorial function f(n) = n! is defined hy

nl=1-2-3- . up
whenever n is a positive integer. and 0! = {. For example,

It =1 NW=1-2=12 3I=1-2-3=9, 44=1-2-3-4=24
Note that the function 1! grows rapidly. For instance,

201 = 2,432,902.008,176.640,000.

Solution: A big-O estimate for n! can be obtained by noting that each term in the prod-
uct does not exceed n. Hence,
=123 n
< PR R on
= n.

This inequality shows that n! is O(s"}. Taking logarithms of both sides of the mequality
established for #!, we cbtain

logn! = logn™ = nlogn.

This implies that log #! is O(nlog n). [ ]
EXAMPLE 6 In Section 3.2 we will show that
n 20

whenever # is a positive integer. Using this inequality we can conclude that # is O(2").
(Take & = € = 1 in the definition of big-( notation.) Since the logarithm function is
increasing, taking logarithms (base 2) of hoth sides of this inequality shows that

logrn < n.
It follows that
log nis Om).

{Again we take C = & = 1 in the definition of big-Q notation. )
If we have legarithms to a base 4, where b is different from 2, we still have log, n
is ({n) since

_logn n

log,n = —% < M
%7 ogh < logh

whenever # is a positive integer. (We have used Theorem 3 in Appendix 1 to see that
log, n = logn/lcg b). |
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THEOREM 2

COROLLARY |

THE GROWTH OF COMBINATIONS OF FUNCTIONS

Many algorithms are made up of two or more separate subprocedures. The number
of steps used by a computer te selve a problem with input of a specified size using
such an algonithm is the sum of the number of steps used by these subprocedures. To
give a big-& estimate for the number of sleps needed, it is necessary 1o find big-O
estimates for the number of steps used by each subprocedure and then combine these
estimates.

Big-0 estimates of combinatiens of functions ¢an be provided if care is taken when
different big-{? estimates are combined. In particular, 1t is often necessary 10 estimate
the growth of the sum and the product of two functions. What can be said if big-0Q
estimates for each of two functions are known? Toe see what sort of estimates hold for
the sum and the product of twa Functions, suppoese that fi{(x) is Olg:(x)) and f(x) is

O(g2(x)).
From the definition of big- notwation, there are constants C;, Cy, &y, and k> such

that
A0 = Cilgi{x)
when x > &, and
Alx) = Colga(n)
when x = ky. To estimate the sum of fi{x) and f5(x), note that
[(fe + )l = Al + fa(0)]
= Hi(x) + [ (0] (using triangle inequality ja + & = la| + (bi),

When x is greater than both &; and k3, it follows from the inequalities for | f;{x)] and
| /2(x)) that
LA00] + LA < Gilgi(2)] + Golgalx)
Ciig(x)| + Cjgtx)|
(€ + Cy)lglon
= Cle(x)l

where O = €, +C; and g(x) = max(|g;(x)|,|g2(x)]). (Here max{a, £) denotes the max-
imurn, or larger, of ¢ and b.)

This inequality shows that {(fi + f2)(x)| = Clg(x)| whenever x = &, where k =
maxiky, k). We state this useful result as the following theorem.

1A

fl

Suppose that fi(x) is O(g;(x)) and fo(x) s Ofgx(x)). Then (fi + f)x) is
Of(max(g;(x), £2(:0)).

We often have big-O estimates for f; and f3 in terms of the same function g In
this situation, Theorem 2 can be vsed to show that (£ + £)(x) is also Ofg( ). since
max(g(xhg(x)) = g(x). This resulr is stated in the following corollary.

Suppose that fi(x) and fy(x) are both O(g(x)). Then (f; + f£)x) is O(g(x)).
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[n a similar way big-O estimates can be derived for the product of the functions f|
and f. When x s greater than max(k;. &) it follows that

(ALY = [fitn]| /ol

Crig1 (0iCaga()|
= CGl(g1g2(x)
= Cligig2)(x)]

where ¢ = €. From this inequality, it follows that fi(x)f(x) is Olg122), sim,e
there are constants Cand k—namely, C = C;Cyand k = max(k,, k), since [( fi f2)(x
= Clei(x)g2(x)f whenever x > k. This result is stated in the following theorem.

A

THREOREM 3 Suppose that fi(x)is {gr(x)} and fo(x) is O{ga(x)). Theai (i /oX(x) 8 O(1 (x}g2( X))

The goal 1n using big-@ notation to estimate functicns is to choose a functien gfx)
that grows relatively slowly so thar f(x) is O(g(x)). The following examples illustrate
how to use Theorems 2 and 3 to do this. The type of analysis given in these examples is
often used in the analysis of the time used to solve problems using computer programs.

EXAMPLE 7 Give a big-O estimate for f{n) = 3nlog(nh) + (7" + 3) log #, where n is a positive
integer.

Solution: First, the product 3nlogin!) will be estimated. From Example 5 we know
that log(n!) is Ot# log n). Using this estimate and the fact that 3a iy On), Theorem 3
gives the estimate that 3n log(n!) is O(r? log n).

Next, the product (n> + 3) log n will be estimated. Since {(n? + 3) < 2n? when
n > 2,1t follows that n? -+ 3 is O(n?). Thus, from Theorem 3 it follows that (r*+3)logn
is O(n" Jog n). Using Theorem 2 w combine the two big-€ cstimales for the products
shews that f(n) = 3nlog(n!) + 2°log nis Q" log ). |

EXAMPLE 8 Give a big-0 estimate for £(x) = (x + 1) log(x® + 1) = 3x2.

Solution: First, a big- Oestlma[;, for(t* 1) log(x? + 1) will be found. Note that (x + 1}
is Ofx). Furthermore, x* + 1 = 2% when x > 1. Hence,

10g(.t2 b1 = log(2x Yy = log2 + log = =log2+ 2logx = 3lnga,

if x > 2. This shows that log{x* + T’ is O(log x).

From Theorem 3 it follows that (x + 1) log(x* + 1) is O(x log x). Slm.c 3x? is O{a?)
Theorern 2 telis us that fix}is Omaxtrlog x2). Since xlogx = x* forx = I, it
follows that f(x)is ({x). |

As mentioned before, big-¢J notation is used to estimate the number of operations
needed to solve a problem using a specified procedure or algorithm. The functions used
in these estimates often include the following:

1 logan, n nlogn ni 27 gl
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FIGURE 3 A Display of the Growth of Functions Commonly Used in Big-() Estimates,

Using calculus it can be shown that each function in the list 15 smaller than the sue-
ceeding function, in the sense that the ratio of a function and the succeeding function
tends (o zero as n grows without bound. Figure 3 displays the graphs of these functions,
using a scale for the values of the functions that doubies for each successive marking

on the graph.

BIG-OMEGA AND BIG-THETA NOTATION

Big-0 notation is used extensively to describe the growth of functions, but it has limi-
tations. In particalar, when f{x) is Oig{ x)), we have an upper bound, in terms of g(x),
for the size of f{x} for large values of x. However, big-(? notation does not provide
a lower bound for the size of f{x) for lurge x. For this, we use big-Omega notation.
When we want to give both an upper and a lower bound on the size of a function f(x),
relative to a reference function g(x), we use big-Theta notation. Both big-Omega and
big-Theta notation were introduced by Donald Knuth in the 1970s. His motivation for
introducing these notations was the common misuse of big-0 notation when both an
upper and a lower bound on the size of a function are needed.

We now define big-Omega notation and illustrate its usc. After doing so. we wili
do the same for big-Theta notation.

There is a strong connection between big-O and big-Omega notation. In particular.
Flavis Q(g(xp if and only If glx) is O/ (x)). We leave the verification of this fact as
a straightforward exercise for the reader.

DEFINITION 2.  Let f and g be functions from the set of integers or the set of real
numbers to the set of real numbers, We say that () is {(g{(x)) if there are positive
constanis € and & such that

LFxH = Cle(a)
whenever x > k. (This is read as *' f(x} is big-Omega of g(x)"}.
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EXAMPLE O The function f{x) = 8x® + 5x° + 7 is (g x)), where g(x) is the function g{x) = 1
This is easy to see since f(x) = 83° + 5x% + 7 = 8x% forall positive real numbers x.
This is equivalent to saying that g(x) = x?is O(8x’ +5x?+7), which can be established
directiy by turning the inequality around. [ |

Often, it is important o know the order of growth of a function in terms of some
relatively simple reference function such as x* when # is a positive integer or ¢, where
¢ = 1. Knowing the order of growth requires that we have both an upper bound and
a lower bound for the size of the function. That is, given a function f{x), we want
a reference function g(x) such that f(x} is O(g(x)) and f(x) is Q{g(x)). Big-Theta
notation, defined as follows, is used to express both of these relationships, providing
both an upper and a lower bound on the size of a function.

DEFINITION 3. Let f and g be functions from the set of integers or the set of real
numbers to the set of real numbers. We say that f(x) is @(g(x)) if f(x) is O{g(x))
and f(x) is £1(g(x)). When f(x) is S(g(x)), we say that “f is big-Theta of g(x)”
and we also say that f{x) is of order g(x).

When f(t) is g(x)). it is abso the case that g(x) is ©( f(x)). Usually, when big-
Theta notation is used, the function g(x) in O(g(x)) is a relatively simple reference
function, such as 17, ¢*, log x, and so on, while f(x) can be relatively complicated.

EXAMPLE 18 We showed (in Example 4) that the sum of the first » positive integers is O(n°). Is this
sum of order n?

Solwion: Let f(n) = 1+2+3+---+n Since we already know that f(n) = O(#), 10
show that f () is of order n° we need to find a positive constant € such that f(a) = Cn?
for sufficiently large integers r. To obtain a lower bound for this sum, we can ignore
the first half of the terms. Summing cnly the terms greater than [#/2), we find that

L2244 +nz22l+ (02 + 1)+ +n
= [nf2]+ [n2] + - +{0/2]
= {n — [af2] + D[n2]
= (nf2)(nf2)
= ni,

This shows that f(n) is §(n?). We conclude that f{a) is of order #%, or in symbols,
Fin)is @), [ |

We can show thal f(x) 1s € g{x)) if we can find positive real numbers € and
and a positive real number & such that

Crg()| = | (0] = Cylgtx)
whenever x = k. This shows that f{x}is (Xg{x)) and f(x) is {2(g{x)).
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EXAMPLE 1!

THEOQREN 4

EXAMPLE 12

Show that 312 + 8xlog x is ©(x?).

Solution: Since 0 < 8xlog x = 8%, it follows that 3x? + 8xlog x = 11x forx = 1.
Consequently, 3x° + 8xlog x is O{x°). Clearly, x* is 0(3x° + 8xlog x). Consequently,
347 + Bxlog x is O(x?). [

One useful fact is that the leading term of a polynomial determines its order. For
example, if F(x) = 367+ x* + 170° + 2, then f(x}is of order x>. This is stated in the
following theorem, whose proof is left as an exercise at the end of this section.

Let f(X) = Gax" +8p-13"" !+ +ax+ag, where gy, @y, .. ., ay ar¢ real numbers
with a, # 0. Then f{x) is of order x*.

The polynomials 3x3+ 10x7 +221x° 4 1444, x19 — 182 — 10112, and ~ x> + 40001 12
+ [00003.x are of orders +%, x'%, and 1™, respectively. [

Unfortunately, as Knuth observed, big-O notation is often used by careless writers
and speakers as 1f it had the same meaning as big-Theta notation. Keep this in mind
when you see hig-O notation used. The recent trend has been to use big-Theta notation

whenever both upper and lower bounds on the size of & function are needed.

Exercises

Determine whether each of the following funcoons s
Gl

. Find the lcast integer # such that £(x) is O(x") for each

of the following functions.
a) flx)=2x"+ x'logu

al flx - I by frvy=3v+7
& f - wxrl ) f(x) = Sloga by fix) = 35" + (log x*
e flyy fi fr) =[x/ ¢} fix) = (x;‘ ke DA+ 1)
2. Determine whether each of the following functions is d fio) = x 5 Pog_ A + 1)
O, 9. Show that x* + 41+ 1715 Qx> but that x* Is not O(x* +
N o Ax+17).
a.: H” i I_ ;x " ' 2: f.:'l_} ~ X;; 1000 10. Show that 1% is O(x*) but that x* is not O(x%).
€ fha - e ) o= S 11. Show that 3x* + s O(x%/2) and /2 is O3 + 1),
e) fla) sl =l 12. Show that 1 log x is O(x") but that £ is not Ox log x).
3, Ulse the definition of the fact rhe_az flxhis gl to 13. Show that 27 is 03"} but that 3% is not O(2%).
show that x* + 97 + 44 Tis Oix'y. 14. Is it troe that © is O(gix)), if g is the given func-
4. Use the definition of the fact that f1x) is O{g{x)) o tion? [For exarmple, if g(x) = x + 1. this question asks
shiow thet 2t 1+ 176 13 whether ,'t" i ()(I + IJJ
5. Show that Na DViv+ By Ofx. a) g(x) = £
6. Show thut (3% + 200 2x 1 1Y is (7). b) ;'(x] =
7. Find the lcast integer # such that F{ vy is O( ™) for each 0 ;v(xj 22y
of the I'nl]uwin\g_ tunctions. i) ;’(X) = 2.t
a) fluh 20 + v logy €) E_‘.(x} = 3
b} floy = 3x7 kglog o) foglxy = 2
I ARSI R R B SE R 15. Explain what it means for a function to be 1.
& Fing ot Sogota® + 1) 16. Show that if £ix) is O(x), then f{x)is O(x").
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17.

18.

19.

20.

21.

2.

25,

R

27.

29.

Suppose thal f(x). g(x), and %(x) are functions such
that fi{x) 1s Ofg{x}) and g(x) is O(h(x)). Show that
Sfixyis OCh(x)).

Let  be a positive integer. Show that 14 + 28 4 -« - ot
15 Hnt+h),

Give as good a big-O estimate us possible for each of
the following functions,

a} (2 +8)(n+ 13

b) (mlogn+ ¥t + 2

€) {n!+ 291 + log(n® + 1))

Give a big-0 estimate for each of the following func-
tions. For the function g in your estimate f(x)is O{g),
use a simple function g of smallest order,

a) (a4 nflognptlogn + 13+ (Flegn + 19yt + 2)
b} (2" + 2%)n* + 37)

¢} (" + 02" + 5"n! + 5

Give a big-0 estimate for each of the following func-
tions. For the function g in your estimate that f(x) is
Oig{x)} use a simple function g of the smailest order.
a) nlog(r® + 11 + n'logn

b) {nlogn + 13 +{logn ~ 1)(n* + )

¢) i+ a

For each function in Exercise 1. determine whether that
function is {}(x) and whether it is &(x),

For each function in Exercise 2. determine whether that
function is £2{+%} and whether it is @(2).

. a) Show that 3x + 7 is &{x).

b} Show that 2x% + x — 7is &1,

c} Show that | x + 1/2] is B(x).

d} Show that Tog(x* + 1) is B(leg, x).

€) Show that log,, x is Btlog, +).

Show that f{x)is &{g(x})if and only i f(x)is Olg(a)d
and g(x)is O fx)).

Show that 1f f{x) and g(x) are functions from the set
of rcal numbers to the set of real numbers, then Fix) is
O(g(x}) if and only if glx)is Q2 f{x)h

Show that if f(x) and gtx) are functions from the set
of real numbers to the set of real numbers, then f(x)
is Og(x)) if and only if there are positive constants
k, Cy, and € such that Cilgo)l = [f10f = Clgin]
whenever @ > k.

. a) Show that 327 + v + 1 is @ 3x%) by directly finding

the constants k. |, Oy in Fxercise 27.
b) Express the relationship in part (a) using a picture
showing the functions 3x% + ¥ + 1. € - 3%, and
C: - 3x°, and the constant & on the x-axis, where
€y, Gy, and & are the constants you found in part (z)
to show that 32 + v + 1 is (1),
Express the relationship f(x) is @(gix)) using a
picture. Show the graphs of the functions f(x),
Cilg(x), and Calglx)], as well as the constant & on the
J-dXIS.

. Explain what it means for a function to be £2¢1),
. Explain what it means for a function to be ®(1).

3.

33,

35,

37,

38.

34

40.

41,

42,

43.

1.8 Exercises 9}

Give a big-0 estimate of the product of the first # odd
positive integers.
Show that if { and g are real-vatued functions such
that £{x) is O{g(x}), then f*(x)is Ofg*( 1. [Note that
Ay = [t

. Show that if #(x)is Oflog, x) where & > 1, then fix)

i3 Olog, X) where a > |,

Suppose that £{x)is O{g{x)) where f and g are increas-
ing and unbounded functions. Show that log | £(x)] is
O(log lg(x)h.

. Suppose that f(x)is (Xg(x)). Does it follow ehat 271+

is Q(22ey?

Let fi{x) and f2(x) be functions from the set of rea)
numbers to the set of positive real numbers. Show that
if fuxyand frx) are both Gg(x)), where gix) is a
function from the set of real numbers to the set of posi-
tive real numbers, then fi(x} + fa(x} is @(g(x)). [s this
still rue if fy(x} and /(=) can take negative values?
Suppose that fx). gfx), and #{.x) are functions such that
fixyis B g(x)) and g(x} is O Ai x)). Show that f(x)is
) A x)).

If fi{xyand f2(x) are functions from the set of positive
integets to the set of positive real numbers ard fj(0)
and f{x}are both Bglxh), is (/] — f)ix) also O g x)i?
Either prove that it 15 or give a counterexample.

Show that if fj(x) and f;(x) are functions from the
set of positive integers to the set of real numbers and
A is B(gr(x)) and falx) is O ga(x), then (F H)x)
is B gig:(a)).

Find functions £ and g {rom the sef of positive integers
to the set of real numbers such that f(#11s not (Kg(n))
and gin} is not O( f(n)) simultanecusty,

Express the relationship f(x) is {}{g(x)) using a pic-
ture. Show the graphs of the functions f(x)and Cgi ).
as well as the constant & on (he real axis.

Show that if fi(x) is &{gi{x)). frlx) is Bes(x)), and
Jolxh = 0 and ga(x) + 0 for all real numbers ¢ = 0,
then ( £/ f2)( x) is @((g, /g1 ) x)).

 Show that it F(x) = @, 0" +a,_x" "+ Fax o,

where an, @), .., wa- |, ay are real numbers and a, = 1,
then f{x)is 8.

Big-£3, big-Thela, and big-Omega rotation can be extended
to funetions in more than one variable. For exaraple. the
statement fio v)is Qiglx, v)r means that there exnis con-
stamis C, &, and k» such that {f(x, v}l = Ciglx. )l when-
ever x = & and v = k.

45,
46,
47.
48.
49,
S0,

Define the statement fix, v)is Oig(x, vi).
Define the statement f(x, vy is S(g(x, v}
Show that (x* + xy + xidgy) is O '),
Show that ¥y + rvt + eyt is Bixtyh.
Show that | xy) is Ly,
Show that [ vylis Dxv),

The tollowing problems deal with another type of asymp-
totic aotatiow, called little-o notation. Because litde-o
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92 [ # The Foundations: Logic, Sets, und Functions

notation is based on the concept of limits, a knowledge of
calculps is peeded lor these problems. We say that f(x) is
e [read Fa) is “ltle-ch™ of g{x)], when

51. tCaiculus required) Show that
a) Hisalxt b) xlogrise(x?)

e} st ¢) ¥~ x+ 1isnot o{x’)

52, i Calculus required)

a} Show that if f{x) and g(x) are functions such that
Fixdis wiglx)) and ¢ is & constant, then ¢ f{x) is
ol g(x)) where (¢ fYx} = e flx)

b} Show that if fi{x} fia), and g(x) are functions
such that () 1s o{g(x)yand f2{x) is of g(x)). then
(fi+ AMxdis ofplo), where () 4 £)(x) = Alx+
Hrix)

33. (Calculus required) Represent pictorially that x log x 1
o(x") by graphing xlogr, x*, and xlog x/x*. Explain
how this picture shows thal xlog x is o(x").

54, (Calculus reguired) Express the relationship fx) 1s
ol g(x) using a picture, Show the graphs of Flx), g(x).
and f{aWgti),

*55. (Caleulus required} Suppose that f () ts o{g{x)). Does
it follow that 2719 iy p(2801)?

¥36. (Calculus required) Suppose that £ (x) is o(g(x}). Docs
it follow that tog |f{x)| is oflog [g(x)))*

57. (Caleulus required) The two parts of this exercise de-
scribe the reiationship between little-o and big-O nota-
tion,

a) Show that if fix) and g{x} are functions such that
Flxiis olgla)), then flx)is O g(x)).

b) Show that if #(x)and g(x) arc functions such that
Jiaris OCgix)) then it does not necessarily follow
that f{e)is o(gla.

Key Terms and Results

LOGIC (SECTIONS 1-3):

TERMS

propesition: & statement that is truc or false
truth value: true or false
1p {negation of p):  the proposition with truth value op-
posite to the truth value of p
logical operators: operators used 1o combine proposi-
tions

58. (Calculus required) Show that if f(x) is a polynemial
of degrec 2 and g(x) is a polynomial nf degree m where
m > p,then f{x} s o gix)).

59. (Calculus required) Show that if f,{x}is ({gix}) and
frlx)is vig(x)), then fi(x) + frlx)is Oglx)).

60. {Calculus required} Let A, be the nth harmaonic num-
ber

| | 1
Hy= bz gtos
Show that H,, is Q(iog n). (Hint: First establish the in-
equality
I I A I
A
:E'q‘ 4 II A

by showing that the sum of the areas of the rectangles of

height 177 with base from j— lwj forj = 2.3, ... .
1s lexs than the area under the curve v = |/x from
2won)

*6l, Show that nlognis Qllegn!).
62. Detennine whether log(n!} is O(nlogn). Justify your
AlsWer,

Let fixyand gix) be functivns fram the sct of real numbrery
to the set of real numbers, We say that f* and g are asymp-
totic and write fix) ~ gl iflim,—, f{x¥gix) = |

63. (Calcuius required) For each of the following pairs of
funcrions, determine whether £ and g are asvmptotic.
a) fix)=x"+3x+ 7 glx) = ¢ +10
M fix) = ¥ logx,gly) = 3
¢ Fiad = ot +logBxt + Thoptx) = {xd 4 1Tx+ 3
dy fix) = (x 48+ 104 gl = (R

x4 1P

el fixd = logla® + 1), glx} = log x
n f“.} = 2.14—3, f,’(l) = 7
g flo) = gy = 27

compound proposition: a propesition comstructed by
combining propositions using logical operators

trath table: g 1able dispiaving the truth values of prope-
sitions

P/ ¢ (disjunction of g and ¢):  the preposition that is true
unless both p and ¢ are false

p/vg (conjunction of pand ¢):  the proposition that is true
only when both pr and g are true
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pDq (exclusive or of p and g):  the proposition that is true
when exactly one of p and g is true

p — ¢ {p implies g): the proposition that ts lalse only
when p s true and g 1s false

converse of p — ¢:  the implication g — p

contrapositive of p — ¢ (he implication g — - p

p + g (biconditional): the proposition that is true only
when p and ¢ have the same truth value

bit: eithera Ooral

Boolean varfable: 2 variable that has a value of §or |

hit operation: an operation on 4 bit or bils

bit string: a list of bits

bitwisc operations: operations on bit strings that operate
vn each bit o one string and the corresponding bit in the
other sting

tautology: a compound proposition that is always true

contradiction: a corpound proposition that is always
false

contipgeney:  a compound proposition that is sometimes
true and sometimes false

SETS (SECTHONS 4-3);

TERMS

set: a colfection of distinct objects

axiom: abasic assumption of a theory

paradox: a logical inconsistency

element, member of a set: an object in a set

i (empty set, noll set}:  the set with no members

universal set: the set containing alf objects under consid-
cration

Venn diagrany:  a graphical represeniation of a set or sets

5 = T (set equality): S and T have the same elements

8§ T T(8isasubsctof T cvery element of § is also an
clementof T

8§ T (5 is a proper subset of T): 5 is 2 subset of T and

5T .
tinite sel: 4 set with # sfements where n is a nonnegative
nteger

infinite set: 2 set that s not finite

FUNCTIONS (SECTIONS 6-8):

TERMS

function from 4 to B:  an assignment of exactly one ele-
ment of B to cach elenieni of A
domain of /2 the set A where £ is a function from A to B

Key Terms and Resulis 93

logical equivalence: compound pro;ﬁositions are logic-
ally cquivalent if they always have the same truth
values

propositivnal function: the combination of a vartable und
a predicate

universe of discourse: the domain of the variable in a
propositional function

3x P(x} (existential quantification of P(x)): the propo-
sition that is true if and only if there exists an x in the
universe of discourse such that P(x} is true

¥x P{x) (universal quantification of P(x)}: the proposi-
tion that is true if and onky if P(x) is true for all x in the
rniverse of discourse

free variable: u variable not bound in 4 propositional
fupction

RESUILTS

The logical equjvalences given in Tubles 5 and & in Scc-
tion 2

i$| (the cardinality of §): the number of elements in §

P53y (the power sel of §):  the set of all subsets of §

A U B (the union of A and B): thc set contzining those
clements that are in at least one of A and &

AN B (the intersection of 4 and B):  the sct containing
those clements that are in both A and 8.

A—B{thedifference of A and B): the set containing thuse
elements that are in A but notin B

A {the complement of A); the seL of elements in the upi-
versal ser that are not in 4

A & B (the symmetric difference of A and By the sel
containing those elements in exactly one of A and B

membership table: a ruble displaying the membership of
elements in sets

RESULTS

The setidentities given in Table t in Section 5

codomain of f: the set B where f is a function from A
08

& is the image of g under 2 b = f{u)

a is a pre-image of b under f: fla) = b

range of f: the set of images of f
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94 1/ The Foundutions: Logic, Sets, and Functions

onto feaction, surjection:  a function from A to B such that
every element of 8 is the tmage of some element in 4

one-to-one function, injection: a function such that the
images of elements in its domain are 2t different

one-to-one correspondence, bijection:  function thatis
hoth one-te-one and onto

inverse of f: the function that reverses the correspondence
given by f {when { is a bijection)

fog {composition of fand g): the function that assigns
gl

|x} (fioor function): the largest integer not exceeding x

[x] {ceiling function}: the smallest integer greater than or
equai to v

séquence:  a function with domain that 1s a subset of the
sct of inlegers

sfring: a hnite sequence

N thesumap —as + - + 4,

J ;I:l"_‘ ¢ i the prf)dl!l:{ Al g

countable set: a set that is either finite or that can be
placed in one-le-one cotrespondence with the set of pos-
itive inlegers

uncountable set:  a set that ix not countable

Slxris G{g(x)): the factthat | F(x)| = Clg(x)forall x = &
for some constants C and k

Sleyis Q(g{x)y: the factthat| fix)| = Clglx)fforall x > &
for some positive constants € and £

Sixh is O{g(x)): the fact thar F{x) s Otg(x)) and fix}is
0{g(x)}

RESULTS

The set of real numbers is uncountable.

log n!is O{nlog n).

If Ai{x)is O{gi(x)) and falx) is H{g2(x)). then ( fy + fr)(x)
is O(maxig(x), g2(x))) and (f; f2)(x) is O(g(x)g2(x)).

Ifap, a). ..., a, are teal aumbers, then a, 4™ + a,-, 2773 +
sty k o+ oap is O{x"y apd 8.

Review Questions

1. &) Define the negation of a proposition.

b) What is the negation of “This is a boring course™
. a} Define (using truth tables) the disjunctien, conjunc-
tion, exclusive or, conditional, and biconditional of
the propusitions p and 4.
What are the disjunclion, conjunction, exclusive or,
implication, and biconditional of the propositions
"I go 10 the movies tomight” and “I'1} tinish my
diserete mathematics homework™?
Describe at least five different ways to write the im-
plication p -~ ¢ in English.
Define the converse and contrapositive of an impli-
cation.
State the converse and the contrapositive of the im-
plication "If it is sunny tormorrow, then [ will go for
a walk in the woods,”
4. a) What docs i mean for two propasitions to be logi-
cally equivalent?
Descnbe the different ways to show that two com-
pound propositions are logically equivalent.

i Show in al least two different ways that the com-
pound propositions —p i (r — —g) and apy
gy o F are eguivalent.

5. (Depends on the Exercise Set in Section 1.2}

a) Given g truth table, explain how to use disjunctive
aormal form to construct a compound proposition
with this truth table.

b} Explain why part (a} shows that the operators /A, v,
and — are tunctionally compleie.

~J

b

-

b
o
=

b

c

b

¢) 1s there an operator such that the set containing just
this operator is functionally complete?

6. What are the universal and existential quantifications

of a predicate £{x)? What arc their negations?

7. a) What is the difference between the guantification
Jx ¥y Plx, v and Wy 3x P{x, v), where Px, y)isa
predicate?

B} Give an example of a predicate P(x, y) such that
Je¥yPix vy and Yvdx Pix ) have different
truth values.

8. a) Define the unicn, intersection, difference, and sym-
metric difference of 1wo sets,

b} What are the vnion, intersecticl, difference, and
svinmetric difference of the set of positive integers
and the set of odd integers?

9. a} Define what it means for two sets to be equal.

b) Describe the ways to show that two sels are

equal.

¢} Show in ai least two different ways that the sets

A-BNCland (A - BYU (A - C) are equal.

Explain the relationship between logical equivalences

and set identities.

1. a) Define |$|, the cardinality of the set §.

b} Give a formula for |4 U B| where A and R are

3¢t

12. a) Define the power set of a sel S,

b} When is the empty set in the power set of a sel §7

c) How many elements does the power set of & set §
with n elements have?

10

by
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13.

M

15,

16.

a) Define the domain, codomain, and the tange of a
function.

b} Let f(a)be the function from the set of integers to
the set of integers such that fin) = n’ + 1. What
are the domain, codomain, and range of this fung-
ton?

a) Define what it means for a function from the set of
positive integers to the set of positive integers to be
one-to-one.

b} Define what it means for a function from the set of
positive integers to the set of positive integers 1o be
onlo.

¢} Give an example of a function from the set of pos-
ttive intcgers to the set of positive integers that is
both ene-te-one and onto.

d} Give an example of a function from the set of pos-
iive iniegers 10 the set of positive integers that is
une-to-one but not onto.

e) Give an example of a function from the set of pos-
itive integers to the set of positive integers that is
not one-to-one but is onto.

f) Give an exampie of a function from the set of pos-
iive integers 10 the set of positzve integers that is
neither one-to-one nor onto.

8) Define the inverse of a function.

b} When does a function have an inverse?

¢) Does the function f(n) = L) — u from the set of
integers to the set of integers have an inverse? 1If
so, what s it?

a) Define the floor and ceiling fonctions from the set
of real numbers to the sct of integers.

17

18.

1%

.

20.

Supplementary Exercises 95

b For which real numbers x s it true that | x| = [x]?

a) Use summation notation to express the sum of the
powers of 2 from 27 to 2",

b) What is the value of the sum in part (a)?

a) What does it mean for a set to be countable? Give a
precise definition.

) is the set of negative integers countable? Why or
why not?

c} Is the sef of rational numbers with deneminators
greater than 3 countable? Why or why not?

d) Is the set of real oumbers between 2 and 3 count-
able? Why or why not?

a) State the definition of the fact that f(n) ts O(g(n)).
where f(n) and g(n) are functions from the set of
positive integers to the set of real numbers.

b) Use the definition of the fact that f(n) is O(g(n})
directly to prove or disprove that n° + 18n + 107 is
on').

¢) Use the definition of the fact that f{n} is Qlg(n})
directly to prove or disprove that #* is O(r* + 18r +
167).

a) How can you produce & hig-Q estimate for a func-
tion that is the sum of different terms where each
term is the product of several functions?

b) Give a big-O estimate for the function f(n} =
(! + D"+ 1) + (™2 o+ By + 27y
For the function g in your estmate f{x) is
O{gi{x)) use a simple function of smalless possible
order.

i.

Let p be the proposition “[ will do every exercise in this
hook™ and g be the proposition “I will get an ‘A’ in this
course.” Fxpress each of the following as a combina-
tion of p and g,

a} I will get an A in this course enly if 1 do every
exercise in this book.

b) | will get an *A" in this course and I will do cvery
exercise in this book,

¢) Either I will not get an *A" n this course or I wili
nof do every exercise in this book.

d) For me o get an ‘A’ in this course it is neces-
sary and sufficient that 1 do every exercise in this
book.

Find the truth table of the compound proposition

ipyv g —(ph=r)

. Show that the feilowing prepositions are tavtologies.

a) (ngNip—q))— —p
b) ((pvg)h-p — g

» Give the converse and the contrapositive of the follow-

ing implications.

a) If it rains today, then ] will drive to work.

b} If x| = x, thenx = &,

¢) If nis greater than 3, then n? is greater than 9.

. Find a compound proposition invelving the proposi-

tional variables p, g, r, and s that is true when exactly
three of these propositional variables are true and is
false otherwise.

. Let P{x) be the statement “student x knows caleudus™

and let O7y) be the statement “class v contains a student
who knows calculus.” Express each of the following as
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guantifications of P(x) and (X v

a} Some students know calculus.

b) Notevery student knows calculus.

€} Every class hag a student in it who knows caleulus.

dd Every student i every class knows calculus.

el There 15 at least one clasy with no students who
know calcolus.

. Let PO, 1} be the statement “m divides #,”" where the

universe of discourse for both variables is the set of pos-
iteve rntegers. Determine the truth values of each of the
folowing propositions,

al Fud 5t by P24
¢} Var¥n Plm ) &) Am¥Yn PO, n}
el Juvm P ) £t VPl n}

. Let Pra vy be a propesitional function. Show that the

implication 3x ¥y P(v, v} -+ Yy Jx Plx, v)is ataatol-
DRY.

. Let Plasand (Xx) be propositional functions. Show

that Ax Py — Q{el) and ¥y P{x) — Ao O(x) al-
ways ave the same truth value.

[N Vv 3v P, v) s true. does it necessarily follow that
Ve Pl vis toe?

APV 3y Py, v s true. does i necessarity follow that

Fe¥y Py vd s tine”

Find the negations of the following staiements.

ad ifit snows today. thea T will go skitng tomormow:

by Fvery person in this class understands mathemati-
cal induction.

e} Seme stadents i this class do not like discrete
mathematics.

d) In every mathematics class there is some student
wiy falls asleep duning lectuecs,

. Express the following statement using guantifiers:

“Every student In this class has tuken some course
in every department 1t the school of mathematical
sciences.”

Fxpress the fellowing statement using quantifiers:
“Phere is # building o the campus of some college
in the United States in which every raom is painted
white.™

. LetA be the set of English words that contain the letter

1, and let B he the set of English words that contain the

letter . Express each of the following sets as a combi-

natien of A and B.

a) Theset of Epglish werds that do not contain the let-
lera.

b) The set of English words that contain both an x
and a g.

¢} The set of English words that contain an x but
net 3 4.

d) The set of English words that do not conrain either
anvorag.

e) The set of English words that contain an x or a ¢,
hut not hoth.

16.

i7,

18,

18,

20,

21,
22,

23,

24,

25,

29,

30.

4.

Show thut if 4 1s a subset of B, then the power set of A
is a subset of the power set of 5.

Suppose that A and B are sets such that the power set of
A is a subsct of the power set of 8. Does it follow that
A 15 a subset of B?

Let E denate the set of even integers and 0 denorte the
set of odd integers. As usuzl. let Z denote the sct of all
integers. Detcrming each of the following.

a) EuG Y e ) c) Z-E d Z-0
Show that if A 15 a set and I/ is the universal set, then
A ANA= b AUA=U.

Show that if A and 8 are sets, then

a} A= AN(4AU B). by A=AU{ANB).
Show thatif 4 and B ure sets, then A— (A~ B} = AR,
Let A and B be sets. Show that A C 8 if and only #
AMNAE =4

Let A, B, and € be sets. Show that (A — &) — € is net
necessanfy equal to A — (B ~ ()

Suppose that A, B. and ( are sets. Prove or disprove
that (A - Bi-- C ={4-C) - &

Suppose that A, B, ¢, and D are sets. Prove or disprove
that (A = By —(C-=(aA=-Cr—(B- D).

. Show that if A4 and B are finite sets, then |4 M B| =

\AU B[, Determnine when this relationship is an equality,

. Lot A and B be sets in a finite universal set {J, List the

following in order of increasing size.
a) {A| |A U Bl |4 B |U. |1
b) iA—B,lAB B Al - 1BLIAL B2

. Let A and 8B be subsets of the finite universal set 7.

Show that (4 N1 Bl = (L1 — 4| — 1B + 14 "y 8],

Let f and g be functions from {1, 2.3 4} 10 {a, b, ¢, d}

and from {a. b, ¢, d} o {12, 3.4}, respectively, such

that f1) = d. f(2) ~ ¢, f(3) = w. f(4) = b. and

gta) = 2. p(b) = 1 gley = 3, pidy = 2.

aj Is f one-to-one? Is g one-te-one?

b} Is f omo? 1s g onto?

) Does either F or g have an inverse? If so, find this
ANVErse.

Let f be a one-to-one function from the set A to the set

B letSand T be subsets of A. Show that (SN T) -

SN JTy

. Giive an cxample to show that the equality in Exercise

30 may not hold if /15 not one-to-one.
Show that if # 1s an integer, then = [a/2) 4 |w/2}.

. Find the value of the following guantities.,

3 4 4 30
2 Z(if;‘) b) H(z%;;)
=gl jen il

0 \ﬁ(; 1} d ﬁ(ﬂ j)
=y N pe Ly et

[s the set of frrational numbers between 0 and | count-
able? Justify vour answer,

PDF created with pdfFactory trial version www.pdffactory.com



http://www.pdffactory.com

¥*35. A real number is called algebraic if it is the root of a

C

potynomial with integer coefficients, Show that therc
are & countable number of algebraic numbers. (Hins:
lJsg the faet that a polynomial of degree n has at most
A distinet roos, )

‘omputer Projects

WRITE PROGRAMS WITH THE SPECIFIED INPUT AND QUTPLT.

L. Given the tuth values of the propositions p and g, find

Computations and Explorations

the truth values of the conjunction, disjunction, exclu-
sive or, implicatton, and biconditional of these propo-
SHIONS.

. Civen two bit sirings of length a1, find the bitwise AND,

hiwise OR. and bitwise XOR of these strings.

. Given the truth values of the propositions g and ¢ in

fuzzy togic, find the truth value of the disjunction and
the conjunction of p and g (see Exercises 31-33 of Sec-
tion 1.17).

. Given subsets 4 and 8 of 4 set with # elements,

use bit strings to find A AU B AN B, A - B, and
AR

Writing Projects 97

36. Show that 8x* + 12x + 100 log x is O(x?).
37. Give a big-Q estimate for (x* + x (logx¥')- (2* + x,
38, Find a big-O estimate for 3., j(; + 1).

*39. Show that #! 15 not {271,

*40, Show that »” is not ((n!).

5. Given multisets A and B from the same universal set,

10

find AUB AN B, A— B, and A + B (see preamble to
Exercise 47 of Section 1.53).

. Criven fuzzy sets A and B, find A, A UB. and A N B

{see preamble o Exercise 42 of Section [.5),

. Given a function f from {1, 2, ..., #} to the set of inte-

gers, determine whether f is one-to-onte.

. Given atfunctionf from {1, 2, .., n}toitself, detecmine

whether f 1s onto,

Given a bijection f from the set {1.2, ..., a} o itself,
find £,

Given the terms of 2 sequence ap,uy,.. .,
> 7.a;and o) a;.

a,, find

USE A COMPLTATIONAL PROGRAM OR PROGRAMS YOL HAVE WRITTEN TO DO THE FOLLOWING EXERUISES.

1.

[

Wriling Projects

What is the largest value of n for which n! has fewer
than 100 decimal digits and fewer than 1000 decimai
digits?

- How many zeres are there at the end of the decimal rep-

rescntation of a! for each of the first 25 positive inte-
gers n? Can you figure out 2 formula for the number
of reros at the end of #! in dectmal notation? {See Sec-
tion 2.3.)

Calculate the number of one-to-one functions from a
set S aset T, where § and T are finite sets of var-
wus sizes. Can you determine a formuia for the nem-

ber of such functions” (We will find such a formula in
Chapter 4.)

4. Calculate the number of onto functions from a set S 1o 2

set T where S and T are finite sets of various sizes. Can
you determine a formula for the number of such fune-
tions? (We will find such a formula in Chapter 5.)

5. Weknow that #* is O{d” ) when 4 and d are positive num-

bers with d = 2. Give values of the consiants € and k
such that it < Cd whenever x > & for each of the fol-
lowing sets of values: b = 1, d = 2, b = 20,4 = 3;
b= 1000.d =7

RESPOND TQ THL FOLLOWING WITH ESSAYS USING OUTSIDE SOGURCES.

L

Peseribe how fuery logic is being applied to practical
applications. Consult one or more of the recent books on
fuzzy logic written for general audiences.

2. Read some of the writings of Lewis Carroll on symbolic

logic. Describe in detail some of the models he used to
represent logical arguments.
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98 1/ The Foumdations: Logic, Sets, and Functions

3. Discuss how an axiomatic set theory can be developed 6. Describe how the concept of the cardinality of sets can

to avoid Russedl’s paradox. (See Exercise 26 of Section be extended to infinite sets.

1.4.) 7. Look up the definition of a transcendental number. Ex-
4. Research where the concept of a function first arose, and plain how to show that such numbers exist and how such

describe how this concept was first used. numbers can be constructed. Which famous numbers
5, Explain bow various people have found The Encyclope- can be shown to be transcendental?

dia of Integer Sequences [SIPI93] useful. Also, describe 8. Look up Bachmann's original introduction of big-0 no-

a few of the more unusual sequences in this encyclope- tation. Explain how he and others have used this nota-

dia and how they arise. tion.
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The Fundamentals:
Algorithms, the Integers,

problems. [or instance, consider the problem of lecating the largest integer

in the sequence 101, 12, 144, 212, 98. This is a specific case of the problem
of locating the largest integer in a sequence of integers. To solve this general problem
we musi give an algorithm, which specifies a sequence of steps used to sotve this gen-
eral problem. We will study algorithms for solving many different types of preblems in
this book. For iastance, algorithms will be developed for finding the greaiest common
divisor of two integers, for generating all the orderings of 2 finite set, for searching a
list, and for finding the shortest path between two vertices in a network. One impor-
tant consideration concermning an algorithm is its computational complexity. That is,
what are the computer resources needed to use this algorithm to solve a problem of a
specified size? We will illustrate the analysis of the complexity of algorithms in this
chapter.

The set of integers plays a fundamental role in discrete mathematics. In particu-
lar, the concept of division of integers is fundamental to computer arithmetic. We wil
briefly review some of the impertant concepts of number theory, the study of integers
and their properties. Some important algorithms involving integers will be studied, in-
cluding the Euclidean algorithm for computing greatest common divisors, which was
first described thousands of years ago. Integers can be represented using any positive
integer greater than 1 as a base. Binary expansions, which are used throughout com-
puter science, are representations with 2 as the base. In this chapter we discuss base
b representations of integers and give an algorithm for finding them. Algerithms for
integer arithmetic, which were the first procedures called algorithms, will also be dis-
cussed. This chapter also introduces several important applications of number theory.
For example, in this chapter we will use number theory to make messages secret, to
generate pseudorandom numbers, and o assign memory locatiens to computer files.
Number theory, once considered the purest of subjects, has become an essential tool in
providing computer and Internet security.

Matrices are used in discreie mathematics to represent a variety of discrete struc-
tures. We review the hasic maierial about matrices and mutrix arithmetic needed to
represent relations and graphs. Matrix arithmetic will be used in numerous algorithms
involving these structures,

M any problems can be solved by considering them as special cases of general

2.1
Algorithms

INTRODUCTION

There are many general classes of problems that arise in discrete mathematics, For
instance: given a sequence of integers, find the largest one; given a set, list all of s

29
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subscts; given a set of integers. put them in increasing order; given a network, find the
shortest path between two vertices, When presenied with such a probiem, the first thing
to do 15 10 construct a model that transiates the problern mto & mathematical context. [hs-
crete structures used in such models include seis, sequences, and functions—structures
discussed in Chapter |—as well as such other structures as permutations, relations,
graphs, irees, networks, and finite state machines—concepts that will be discussed in
later chapters.

Sctiing up the appropriate mathematical model is only part of the solution. To com-
plele the solution, a method 1s needed that will solve the general problem usiag the
modei. ideally, what is required is a procedure that follows a sequence of sieps thu
leads 1o the desired answer. Such a sequence of steps is called an algorithm.

DEFINITION 1.  Analgorithm is a finite set of precise instructions for performing
a computation or for solving a problem.

The term algorithm is a corruption of the name al-Khowarizmi, an Arabian math-
etnatician of the ninth century, whose book on Hindu numerals is the basis of modern
decimal notation. Originally, the word afgorism was used for the rules for performing
arithmetic using decimal notation. Algorism evolved into the word algorithm by the
eighteenth century. With the growing interest in computing machincs, the concept of
an algonithm was given a more general meaning, to include all definite procedures for
solving problems, not just the procedures for performing arithmetic. { We will discuss
algorithms for performing arithmetic with integers in Section 2.4.)

In this book, we will discuss algorithms that solve a wide variety of problems. In
this section we wiil use the problem of finding the largest integer in a finite sequence
of integers to illustrate the concept of an algorithm and the propertics algorithms have.
Also, we will describe algorithms for locating a particular element in a finite set. in
subsequent sections, procedures for finding the greatest common divisor of two integers.
for finding the shortest path between two points in a network, for multiplying matrices.
and so on, will be discussed.

EXAMPLE V' Describe an algorithm for finding the maximum (largest) value in a finite sequence of
integers.

Even though the problem of finding the maximum element in a sequence 15 rel-
atively trivial, it provides a good illustration of the concept of an algorithm. Also.
there are many instances where the largest integer in a finite sequence of integers is
required. For instance, a university may need to find the highest score on a competitive
cxam taken by thousands of students. Or a sports organization may want to identify the

Abu Ja'far Mohammed ibn Musa al- Khowarizmi {c. 780—¢. 850, al-Khowarizmi, an astronomer and
mathematician, was a member of the House of Wisdom, an academy of scientists in Baghdad. The name
al-Khewarizmi meuns “from the town of Kowarzizin,” which is naw called Khiva and is part of Urhekistan,
al-Khowarizmi wrote books on mathematics. astronomy, and geography, Western Europeans first leamied
about algebra from his works. The word algebra comes from al-jabr. part of the title of his boak Kitah uf-jabr
w'al migtinbalz. This bock was translated tnfo Latin and was & widely used textbook. }is hook on the se
vf Hindu numerals deseribes procedares for arithmeric aperations using these numerals, Eurepean authors
used a Latin corruption of his name, which later evolved to the word alearithm to describe the subject a1
anthmetic with Hindu numerals.

webh
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member with the highest rating each month. We want to develop an algorithm that can
be used whenever the problem of finding the largest element in a finite sequence of
integers arises.

We can specify a procedure for solving this problem in several ways. One method
is simply to use the English language to describe the sequence of steps used. We now
provide such a solution. '

Sotution of Example {: We perform the following steps.

1. Setthe temporary maximum equal to the first integer in the sequence. (The tempo-
rary maximum will be the largest integer examined at any stage of the procedure.)

2. Compare the next integer in the sequence to the temporary maximur, and if it
is larger than the temporary maximum, set the temporary maximum equal 1o this
integer.

J. Repeat the previous step if’ there are more integers in the sequence.

4. Stop when there are no integers left in the sequence. The temporary maximum at
this point is the Jargest integer in the sequence. u

An algorithm can also be described using a corputer language, However, when
that is done, only those instructions permitted in the language can be used. This often
leads to a description of the algorithm that is coraplicated and difficult to understand.
Furthermore, since many programming languages are in common use, it would be un-
desirable to choose one particular language. So, instead of using a particular computer
language to specify algorithms, a form of pseudocode will be used in this book. (All
algorithms will also be described using the English language.) Pseudocode provides an
intermediate step between an English language description of an algorithm and an im-
plementation of this algorithm in a programming language. The steps of the algorithm
are specified using instructions resembling those used in programming languages. How-
ever, in pscudocode, the instructions used can include any well-defined operations or
statements. A computer program can be produced in any computer language using the
pseudecode description as a starting point.

The pseudocode used in this book is loosely based on the programming language
Pascal. However, the syntax of Pascal, or that of other programming languages, will not
be followed. Furthermore. any weli-defined instruction can be used in this pseudocode.
The details of the pseudocode used in the text are given in Appendix 2. The reader
should refer to this appendix whenever the need arises.

A pseudocode description of the algorithm for finding the maximum efement in a
finite sequence follows,

ALGORITHM ( Finding the Maximum Element in a Finite Sequence. |

procedure max(ay, ay. . .., a,: integers)
Max = d |
fori:=2ton ‘

if max < g; then max . = g; i
{max is the largest element}
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EXAMPLE 2

wel

This algorithm first assigns the initial term of the sequence, y, to the variable max. The
“tor™ loop is used to successively examine terms of the sequence. If a term is greater
than the curzent value of max, it is assigned to be the new value of max.

There are several properties that algorithms generally share. They are useful to
keep in mind when algorithms are described. These properties are:

w [nput. An algorithm has input values from g specified set,

® Ouipnet. From each set of input values an algerithm preduces output values from a
specified set. The output values are the solution to the probiem.

® Definiteness. The steps of an algorithm must be defined precisely.

m Correctness. An algorithm should produce the correct output values for each set
of input values.

® Finiteness. An algorithm shoeld produce the desired output after a finite (but per-
haps large) number of steps for any input in the set.

® Effectiveriess, [t must be possible to perform each step of an algorithm exactly and
n a finite amount of time.

 Generaliry. The procedure should be upplicable for all preblems of the desired
form, mot just for a particular set of input values.

Show that Algorithm | for finding the maximum element in a finite sequence of integers
has all the properties listed.

Sofutton: The input to Algorithm [ is a sequence of integers. The oulput is the largest
integer in the sequence. Each step of the algorithm is precisely defined, since only
assignments, a finite loop, and conditional statements oceur, The algorithm uses a finite
number of steps, since it terminates after all the integers in the sequence have been
examined. The algorithm can be carried out in 2 finite amount of time since each step
is either a comparison or an assignment. Finally, Algorithm } is general, since it can be
used to find the maximum of any finite sequence of integers. [ |

SEARCHING ALGORITHMS

The probiem of locating an element in an ordered list occurs in many contexts. For in-
stance, a program that checks the spelling of words searches for them in a dictionary,
which 15 just an ordered list of words. Problems of this kind are called searching prob-
lems, We will discuss several algorithms for scarching in this section. We will study
the number of steps used by each of these algorithms in Section 2.2.

The general searching problem can be described as follows: Locate an element x
in a list of distinct elements 4y, 4z, .. ., a,. or determine that it is not in the list, The
solution to this search problem is the location of the term in the list that equals x (that
Is. i 1s the selution if x = g} and is 0 if x is not in the Jist.

The first algorithm that we will present is called the linear search, or sequential
search, algorithm. The linear search algorithm begins by comparing x and a,. When
x = ay, the solution is the location of a|, namcly, |. When x # g, compare x with as.
If x = a;, the solution is the focation of a,, namely, 2. When v # a;. compare x with
ay. Continue this process, comparing v successively with each term of the list until 4
match 15 found, where the solution is the location of that term. unless no match occurs.
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1f the entire list has been searched without locating x, the solution is 0. The pseudocode
for the linear search algorithm is displayed as Algorithm 2.

ALGORITHM 2 The Linear Search Algorithm,

procedure [fnear search(x: integes, a|, gy, .. ., dy,: distinct integers)

=1

while (/ = nand x # )
i=i+1

if i = nthen location .= i

else location .= 0

{focation is the subscript of term that equals x, or is 0 if x is not
found}

We will now consider another searching algorithm. This algorithm can be used
when the list has terms occurring in order of increasing size {for instance; if the terms
are numbets, they are listed from smallest to lacgest; if they are words, they are listed in
lexicographic, or alphabetic. order). This second algorithm is called the binary search
algorithm. It proceeds by comparing the element to be located to the middie term of
the list. The list 1s then split into two smaller sublists of the same size, or where one
of these smaller lists has one fewer term than the other. The search continues by re-
stricting the search to the apptopriate sublist based on the comparison of the element
to be located and the middie tecm. In the next section, it will be shown thar the binary
search algorithm is much more efficient than the linear search algorithm, The following
example demonstrates how a binary search works,

To search for 19 in the list
1233678101213 151618 192022,

fiest sphit this hist, which has 16 tenms, into two smaller tists with eight terms each,
namely.

123567810 1213151618 192022,

Then. compare 19 and the largest term in the first list. Since 10 < 19, the search for 19
can be restricted 10 the list containing the 9th through the 16th terms of the original list.
Next, split this list, which has eight terms. into the two smatler lists of four terms each,
namely,

12131516 18192022

Since 16 < 19 fcomparing 19 with the largest term of the first list) the search is re-
stricted (o the second of these lists, which contains the 13th through the 16th terms of
the original [ist. The Tist 18 {9 20 22 is split into two lists, namely,

18 1Y 2022

Since 1915 not greater than the fargest term of the first of these two lists, which is also
19, the search is restricted to the first list: 18 19, which contains the 13th and 14th terms
of the original isi. Next, this list of two terms is split into two lists of one term each:
18 and 19. Since (8 < 19, the search is restricted to the second list: the list containing

PDF created with pdfFactory trial version www.pdffactory.com



http://www.pdffactory.com

f4 2 / The Fundamentals: Algorithms, the Integers, and Matrices

Exercises

the 14th term of the list, which 1s 19. Now that the search has been narrowed down to

ume term, a comparison is made, and §9 is located as the 14th term in the ori%inal list,
[ ]

We now specily the steps of the binary search algorithm. To search for the integer
xin the hist ar. 4. ... aq, where @3 < ay < -+ < a,, begin by compuring x with the
middle term of the sequence, a,,, where m = [(n = 1)/2]. (Recall that | x| is the greatest
integer not exceeding x.) If x > a,,, the search for x can be restricted to the second half
of the sequence. which is @p-y. der. .. .. ay. 1t v is not greater than a,,. the search for
x can be restricted to the first half of the sequence, which is 4, as. . . .. e

The search has now been restricted to a list with no more than [#/2] elements. Using
the same procedure. compare x to the middle term of the restricted list, Then restrict the
search o the first or second half of the list. Repeat this process until a list with one rerm
15 obtained. Then determine whether this term 15 x. Pseudocede for the binary search
algonthm is displayed as Algorithm 3.

[ ALGORITHM 3 The Binary Search Algorithm,

‘ procedure binary seerchix: loteger, ay, ap. ..., a,: mereasing integers)

io= 1 {iis left endpoint of search interval)

ji=u {jis right endpoint of search interval}

I while/ < §

begin
m= |+ ji?]
fx>a,theni = m+ | :
else j-= m

end

it & = ¢ thenlocation = i

else location .= ()

i Hocation 1s the subscript of term equal to x, or 0 if 1 is not found} !

Algorithm 3 proceeds by successively narrowing down the part of the sequence
heing scarched. At any given stage only the terms beginning with 4; and ending with
oy are under consideration. [n other words, / and j are the smallest and largest subscripts
of the rematning terms, respectively. Algorithm 3 continues narrowing the part of the
sequence being searched until only onc term of the sequence remains. When this is
done, a comparison is made to see whether this term equals 1,

i. Lictall the steps used by Algorithm ! to find the max- by procedure divider: positive integer)
imum of the fist 18, 12,9, 11, 2, 14, 5, 10, 4. whilen = 0
2, Determine which characteristics ol an algonithm the begin
following procedures have and which they lack. Bl
a) procedure double(n: positive integer) m:=ln
while 1 = 0 ni=n—1
ni= 2n end
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I

=1

el

=

lis,

2.

¢} procedure sppein: positive inleger
seigp e (3
while 1 < I{}
U K+ )
d} procedure chooseta,b: inlegers)
o eithera or b

. Devise an algorithm thar finds the sum of all the mle-

gers i a st

« Devise an algorithon to compute <7, where v is a real

nuinher wand s aninteger. {Hint: Fist give a proce-
dure for computing 1" when 7 s nonnegative by suc-
cessive nltiplication by x, starting with 1. Then ex-
tend this procedure, and use the fact that a7 — 174"
to compute ¥ when a1 18 negative.)

. Descrihe an algonthm that interchanges the vaiues of

the vaniables v and v, using only assignments. What is
the menumum oember of assignment stateinents needed

i de this !

» Deserrbe analgoritin that uses only ssignment state-

ments that replaces the wiple (v 20 wiih v 2
What 1 the mimmum nunther of assigment state.
ments peeded

- Listall the stens wsed to search for 9 i the sequence 1

LAA A, 800 using

a} d hiear search. bt a bunary scarch,

List all the steps used to «carch for 7 i the weyuence
given in Exercize 7.

Desenibe an algorithm that insens an integer 1 in the
appropriaie position into the list @y, az, . . a, of inte-
pors thdl are i increasing order,

Desennbe an algorith for tinding the smallest integer
ic a fuite sequence of natueal numbers.

. Deseribe an algorithm that [ocates the first occurrene

of the largest element inafnite list of integers. where
the integers in the list ure not necessarily distinet.
Deeseribe an algorithro that locates she last occurtence
ol the smallest clement in a iare st of integers, where
the intepers m the list are nof nevessarily distmet.
tesenbe an algorithia that produces the maximun, me-
dizn. mean. and minimurm of a setof three integers. (The
miedian ol a set of integers ts the middle element in the
ISl when these integrers are listed in order of increasing
size The mean of a set of integers is the sum of the
wniegers divided by me number of integers in the ser)

"

et

14,

15.

16

&

21

2]
(2]

23

24

27
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Describe an algorithm for finding both the largest and
the smallest integers in a hinite sequence of integers.
Describe an algorithm that puts the first three terms of
a sequence of integers of arbitrary length in increasing
order.

Deseribe an algorithm 1o find the longest word in an
English sentence (where @ word is a string of Jeuers
and a sentence is @ list of words, separated by hlanks),
Describe an algorithm thar determines whether a func-
sion from a finite set to another finite set is onio.

. Describe an algorithm thar determines whether a func-

tion from a finte set to another Anite set is one-1o-ong.
Describe an algorithm that will coum the number of 15
in a bit sting by examining sach bit of the string o
determine whether itis a | bit,

. Change Algorithm 3 so that the binary search proce-

dure compares v 6 oy, at each stage of the algorithm,
withthe algorithoy teriminating if ¥ = @, What advan
tage does lhis version of the algorithm have?

The ternary search algorithne locates an clement in a
list of increasing integers by successively splitting the
list 1o three sublists of equal {or as close 10 equal as
possible) <ize. and restricring the search to the appro-
prigtc piece. Specify the steps of this algorithm,

. Specily the steps of an algorithey that locates an ele-

ment in a list of increasing integers by successively
splitting the list inte four sublists of equal (or as close
o equai a5 possible) size, and restricting the search to
the appropriate picce.

A mode of o list of integers is an element that occurs at
Jeast as ofien as cach of the other elements Devise an
algorithm that fimds a mede in a list of nondecreasing
inlegers.

Devise an algorithm that finds all modes {defined in
Exercise 23} in a list of nondecteasing integers.

- Devise an algorithm that finds the first term of 4 se-

quence of integers that equals some previous term 1n
the seguence.

> Devise an algonthm thai finds all ferms of 2 finite se-

quence of integers that are greater than the sum of all
previous ferms of the sequence.

Devise an algorithin that finds the first term of a se-
quence of pesitive miegers that s less than the imme-
diately preceding term of the sequence.

Complexity of Algorithms

INFRODUCTION

When does an algorithm provide # satisfactory solution to a problem? First, it must
always produce the correct answer, How this can be demonstrated will be discussed in
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EXAMPLE i

Chapter 3. Second. it should be efficient. The efficiency of algoerithms will be discussed
in this section.

How can the efficiency of an algorithin be analyzed? One measure of efficiency is
the time used by a compuier to solve a problem using the algorithm, when input values
are of a specified size. A second measure is the amount of computer memory required
to implement the algorithm when input values are of a specified size.

Questions such as thesc involve the computational complexity of the algorithm.
An analysis of the time required to solve a problem of a particular size involves the time
complexity of the algorithm. An analysis of the computer memory required involves the
space complexity of the algorithm. Considerations of the time and space complexity of
an algorithm are essential when algorithms are implemented. It is obvicusly important
to know whether an algorithm will produce an answer in & microsecond, a minute, or a
hillion years. Likewise, the required memory must be available io solve a preblem, so
that space complexity tust be taken ito account.

Considerations of space complexity are tied in with the particular data structures
used to implement the algorithm. Because data structures are not dealt with in detail
in this book, space complexity will not be considered. We will restrict our attention to
time complexity.

The time complexity of an algorithm can be expressed in terms of the number
of operations used by the algorithm when the input has a particular size. The opera-
tions used to measure time complexity can be the comparison of integers, the additien
of integers, the multiplication of integers, the division of integers, or any other bastc
cpetation.

Tine complexity is described in terms of the nurber of operations required instead
of actual computer time because of the difference in time needed for diffetent computers
to perform basic operations, Moreover. it is quite complicated o break all operations
down to the basic bit operations that a computer uses. Furthermore, the fastest com-
puters in existence can perform basic bit operations (for instance, adding, multiplying,
comparing. or exchanging two bits) in 10~° second (] nanosecond), but personal com-
puters may require 10~° second (1 microsecond), which is 1000 times as long, to do
the same operations.

We illustrate how to analyzc the time complexity of an algorithm by considering
Algorithm 1 of Section 2.1, which finds the maximum of a finite set of integers.

Describe the time complexity of Algorithm 1 of Section 2.1 for finding the maximum
clement in o set.

Sotution: The nurmber of comparisons will be used as the measure of the time com-
plexity of the algorithm, since comparisons are the basic operations vsed.

To find the maximum element of a set with » elements, listed in an arbitrary order,
the temporary maximum is first set cqual 1o the initial term in the list. Then, after a
comparison has been done to determine that the end of the list has not yet been reached,
the iemporary maximum and second term are compared, updating the temporary max-
imum to the value of the second term if it is larger. This procedure is continued, using
two additional comparisons for each term of the list—one to determine that the end
of the list has not been reached and another to dctermine whether to update the tem-
porary maximum. Since two comparisons are used for each of the second through the
ath elements and one more comparison is used to exit the loop when i = n+ 1, exactly
An—D+1 = 2n~ ] comparisons are used whenever this algorithm is applied. Hence,
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the algorithm for finding the maximum of a set of 1 elements has time complexity O(n),
measured in terms of the number of comparisons used. |

Next. the time complexity of searching algorithms will be analyzed.

EXAMPLE 2 Describe the time complex ity of the linear search algorithm.

Solution: The number of comparisons used by the algorithm will be taken as the mea-
sure of the time complexity. At each step of the loop in the algorithm, two comparisons
are performed—one to see whether the end of the list has been reached and one to com-
pare the element x with a term of the list. Finally, one more camparison is made outside
the loop. Consequently, if x = 4;. 2{ + | comparisons are used. The most comparisons,
2n + 2. are required when the clement is oot in the list. In this case, 2x comparisons
are used to determune that x s not a;, for i = 1.2, ... n, an additional comparisen is
used o exit the loop, and ene comparison is made outside the loop. So when 1 is not in
the list, a total of 2n + 2 comparisons are used. Hence, a linear search requires at most
((n) comparisons. |

The type of complexity analysis done in Exampie 2 is 2 worst-case analysis. By
the worst-case performance of an algorithm, we mean the largest number of operations
needed to solve the given problem using this algorithm on input of specified size. Worst-
case analysis tells us how many operations un algorithin requires to guarantee that it will
produce a solution.

EXAMPLE 3 Describe the time complexity ot the binary scarch algorithm.

Solution; For simplicity, assume there are # = 2% elements in the list ap, a, .. . ..
where & is a nonnegative integer. Note that & = loga. (I s, the number of elements
in the list, is not a power of 2, the lisl can be considered parnt of a larger list with
2441 elements, where 25 < 5 < 281, Here 2€*! is the smallest power of 2 larger
than n.)

At each stage of the algorithm. / and j, the locations of the first term and the last
term of the restricted list at that stage, are compared to see whether the restricted list
has more than one term. [f § < f, a comparison is done to determine whether x is greater
than the middie term of the restricied list,

Al the first stage the search is restricted to a Tist with 2477 terms. So far. two com-
parisons have been used. This procedure is continued, using 1wo comparisons at each
stage to restrict the search to a list with half as many terms. In other words, two com-
parisons are used at the first stage of the algerithm when the list has 2* elements, two
more when the search has been reduced to a list with 257! elements, two more when the
search has been reduced to & list with 2472 clements, and so on, unti! two comparisens
are used when the search has been reduced to a list with 2! = 2 elements, Finally, when
one term 15 Jeft in the list, one comparison tells us that there are no additional terms left,
and one more comparison is used to determine if this term is x.

Hence. at most 2k + 2 = 2 log # + 2 comparisons are required to perform a binary
search when the list being searched has 2* elements. (If # is not a power of 2, the original
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list is expanded 1o a list with 2%*7 terms, where k = |log s, and the search requires at
mos! 2[log n]+ 2 comparisons.) Consequently, a binary search requires at most O(log n)
comparisons. From this analysis it follows that the binary search algorithm is more
efficient, in the worst case, thap a linear search. n

Another important type of complexity analysis, besides worst-case analysis, is
called average-case analysis. The average number of operations used to solve the
problem over all inputs of a given size is found in this type of analysis. Average-case
time complexity analysis is usually muck more complicated than worst-case analysis.
However, the average-case analysis for the iinear search algorithm can he done without
difficulty, as shown in Example 4.

EXAMPLE 4 Describe the average-case performance of the linear search algorithm, assuming that
the element x 15 in the list.

Solution: "There are n types of possible inputs when x is known to be in the list. If x is
the first term of the list, three comparisons are needed, one to determine whether the
end of the list has been reached, one to compare x and the first term, and one outside the
loop. If x is the second term of the list, two more comparisons are needed, o that a total
of five comparisons are used. In general, if x is the ith term of the list, two comparisons
will be used at each of the / steps of the loop, and one outside the loop, so that a total
of 2i + 1 comparisons are needed. Hence, the average number of comparisons used
equals

34547+ 4+@n+1} 21 +2+43+ - +n)+a

n n
In Section 3.2 we will show that

:+2+3+---+n:’3{—“;—1—).

Hence, the average number of comparisons used by the linear search abgorithm (when
x is known to be in the list} 15

Arn + 12|
n

=n+2

which is O(n).

Remark: Tn this analysis it has been assumed that x is in the list being searched and
it is equally likely that x is in any position. It is also possible to do an average-case
analysis of this algorithm when x may not be in the list (see Exercise 13 at the end of
this section), [ ]

Table 1 displays some common terminology used to describe the time complexity
of algorithms. For instance, an algorithm is said to have exponential complexity if it
has time complexity O(b"), where & > 1, measured in terms of some specified type
of operation. Similarly, an algorithm with time complexity ({(n?) is said to have poly-
nomial complexity, The linear search algorithm has linear (worst- or average-casc)
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TABLE ! Commonly Used Terminology for
the Complexity of Algorithms.

Complexity Terminology

1) Constant cotnplexity
Xing n) Logarithmic complexity
Aln) Linear complexity
Onlog ) rlog  complexity
nt) Poiynomial complexity
O{6"), where b 2= | Exponential complexity
Qaty Factorial complexity

complexity and the binary search algorithin has logarithmic (worst-case) complexity,
measured in terms of the number of comparisons used.

A problem that is selvable using an algotithm with polynomial worst-case com-
plexity is called tractable, since the expectation is that the algorithm will produce
the solution to the probiem for reasonubly stzed input in a relatively short time. How-
ever, If the polynomial in the big-Q estimate has high degree (such as degree 100)
or if the cocfficicnts are extremely large, the algorithm may take ap extremely long
tme to solve the problem. Consequently, thut a problem can be solved using an algo-
rithm with polynomial worst-case time complexity is no guarantee that the problem
can be solved in a reasonable amount of time for even relatively small input values.
Fortunately, in practice, the degree and coefficients of polynomials in such estimares
are cmall.

The situation 1s much worse for problers that cannat be solved using an algorithm
with worst-case poalynomial time compiexity. Such probiems are called intractable,
Usually. bat not always, an extremely large amount of time is reguired 10 solve the
probleny for the worst cases of even small input values. In practice, however. there are
situations where an algorithm with worst-case time complexity may be able to solve
a problem much more quickly for most cases than for its worst case. When we are
willing 1o allow that some, perhaps small, number of cases may not be solved in a
reasonable amount of time, the average-case time complexity is a better measure of
how long an algorithm tukes to solve a problem. Many problems important in industry
are thought to be intractable bui can be practically solved for essentially all sets of
inpur that arise in datly life. Another way that intractable problems are handled when
they arise in practical applications is that instead of looking for exact solutions of a
problem. approximate solutions are sought. It may be the case that fast algorithms exist
for finding such approximate solutions, perhaps even with 4 guarantee that they do not
differ by very much from an exact solution.

Some problems even exist for which it can be shown that no algorithm exists for
solving them. Such problems are called unsolvable (ay opposcd to solvable problems
that can be solved using an atgorithm). The first proof that there are unsolvable problems
was provided by the great English mathematician and computer scientist Alan Taring.
The problem he showed unselvable is the halting problem, This problem takes as
its input a program together with input (o this program. The problem asks whether
the program will halt when executed with the input (o the program, We will study the
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halting problem in Section 3.1. (A biography of Alan Turing and a description of some
of his other work can be found in Chapter 10.)

The study of the complexity of algorithms goes far beyond what we can describe
here. Note, however, that many solvable problems are believed to have the property
that no algorithm with polynomial worst-case time complexity solves them, but that
once a solution is known, it can be checked in polynomial time. Problems for which a
solution can be checked in polynomial time are said to belong to the class NP (tractable
problems are said to belong to class P). There is also an important class of problems,
called NP-complete problems, with the property that if any of these problems can be
solved by a polynomial werst-case time algorithm, then all can be solved by polyno-
mial worst-case time algorithms. Despite extensive research, no polynomial worst-case
time algorithm has been found for any problem in this class. [t is generally accepted, al-
though net proven, that no NP-complete problem can be selved in polynomial time. For
more information about the complexity of algorithmns, consult the references, including
|CoLeRi 80], for this section listed at the end of this book.

Note that a big-O estimate of the time complexity of an algorithm expresses how
the time required 1o solve the problem changes as the input grows in size. In practice,
the best estimate (that is, with the smallest reference function) that can be shown is
used. However, big-O estimates of titee complexity cannot be directly translated into
the actual amount of computer time used. One reason is that a big-O estimate f(n} is
O(g(m)), where f(»)is the time complexity of an algorithm and g(#) is a reference func-
tion, means that f(n) = Cg(n) when n > k, where C and & are constants. So without
knowing the constants € and k in the inequality, this estimate cannot be used to deter-
mine an upper bound on the number of eperations used. Moreover, as remarked before,
the time required for an operation depends on the type of eperation and the computer
being used. (Also note that a big-( estimate on the time complexity of an algorithm
provides an upper, but not a lower, bound, on the worst-case time required for the al-
gorithm as a function of the input size. To provide a lower bound, a big-Theta estimale
should be used. However, for simplicity, we will use hig-O estimates when describ-
ing the time complexity of algorithms, with the understanding that big-Theta estimates
would provide more information.}

However, the time required for an algorithmn to solve a problem of a specified size
can be determined 1f all operations can be reduced to the bit operations used by the
coraputer. Table 2 displays the time needed to solve problems of various sizes with

| TABLE2  The Computer Time Used by Algorithms.
Probiem Size | Bit Operations Used
|
7 ! log n n nlogn n’ 2" n!t
0 LS [ 10745 31078y 10 7s 10755 Ix107Ys
12 Tx 10 %s 0°7s  7xi0 7y 1655 4108y
i ' LOX 10 ®s 1075 I x 1) 3 0 %s % *
ot 1L3x 1085 0755 Px0ts  107ts * *
10} LLIXI0s 10Ys 2XE0%s 10 * *
10° 2x107¥s 035 2x A0ty 17 ruin * * i
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an algorithm using the indicated number of bit operations. Times of more than 0™
years are indicated with an asterisk. (In Section 2.4 the number of bit operations used
to add and multiply two integers will be discussed.) In the construction of this table,
each bit operation is assumed to take 107° second, which is the time required for a bit
operaticn using the fastest computers today. Tn the future, these times will decrease as
faster computers are developed.

It is important to know how long a computer will need to solve a problem. For in-
stance, if an algorithm requires 10 hours, it may be worthwhile to spend the computer
tme (and money ) required to solve this problem. But, if an algorithm reguires 10 billion
years to solve a problem, it would be unreasonable to use resources to implement this
algorithm. One of the most interesting phenomena of modem technology is the tremen-
dous increase in the speed and memery space of computers. Another important factor
that decreases the time needed to solve problems on computers is parallel processing,
which 1s the technique of performing sequences of operations simultancously. Because
of the increased speed of computation, increases in computer memory, and the use of
algorithms that 1ake advantage of parallel processing, problems that were considered
impossible to solve 5 years ago are now routinely solved, and certainly 5 vears from
now this statement will still be truc.

Exercises

Here § — | is the bit string obtained by changing the
rightmost 1 bit of $'to a 0 and all the 0 bits to the right
of this to 1s. [Recall that £/ (S — 1} 15 the bitwise
ANDofSand S - 1]
b} How many bitwise AND operations are needed to
find the number of 1 bits in a string §?
7. The conventional algorithm for evaluating a polynomial
Au X"+ po g XN+ - +ayx +ag al x = ¢ can be ex-
pressed in pseudocede by

1. How many comparisons ate used by the algorithm given
in Exercise 10 of Section 2.1 to find the smallest natural
number in a seyuence of » natural numbers?

2. Write the algorithm that puts the first four terms of a list
of arbitrary length in increasing order. Show that this al-
gorithm has time complexity Q61 in terms of the num-
ber of compartsons tsed.

). Suppose that an element is known to be amang the first
four elements in a list of 32 elements. Would a lin-
car search or & binary search locate this element more

rapidly? .. thy Teal

procedure polynomiaf{c, an. 4y, ..

4. Dretermine the rumber of multiplications used to find Py numbers)
starting with + and successively squaring (to find 4%, x*, power 1= |
and so-on). Is this a more efficient way to find +2 than by V! = ai
multiplying x by itself the appropriate number of times? g‘l’ p= Iton

gin

5. Give a big-O estimate for the number of comparisons
used by the ulgorithm that determines the number of 1s
in g bit string by examining cach bit of the string to de-

power = power %
¥z ¥+ a; ¢ power
end {y = g0, 0" L+t ae Fay

*6.

termime whether 1t is a [ bit (see Exercise 19 of Sec-

tion 2.1},

a) Show that the following algorithm determines the
number of 1 bits in the bit string §,

procedure bitcowni(S: bit string)

where the final value of y is the value of the polynomial

atx = ¢.

8) Evaluate 3x* + x + 1 at x = 2 by warking through
cach step of the algorithm.

count 1= 0 b) Exactly how many multiplications and additions are
while § = () used to evaluate a polynomial of degree nat x = ¢
begin (Do not count additions used to increment the loop
count i= count + 1 variable. )
.= 8585~ 1) . There is a more cfficient algonithm (i terms of the cum-

end {coment s the number of 1s in 5}

ber of multiplic ations and additions used) for evatuating
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pelynomials than the cooventional algorithm de-
scribed in the previous exercise. It is called
Horper’s method., The following pseudocode
shows how to use this method to find the value of
Fpx" i, Xyt agax = c

procedure Homer(c, ap, a,. a;, - .., a,
numbers}

Yi=d4,

fori:= ltom
Y= ¥R+ e

IV = ™+ 8y 0™ 4 - 4o+ ag)

a) Evaluate 31* + x + 1 at x = 2 by working through
each step of the algorithm.

b) Exactly how many muoltiplications and additions
arc used by this algonithm to evaluate a polynomial
of degree nat x = ¢? (Do not count additions used
to increment the loop variable.)

. How large a problem can be solved in 1 second using

an alporithm that requires f{a) bit operations, where
each bit operation is carried out in 107 second, with
ihe following values for fin)?

a) fogn h n e} nlogn

dy u ey ¢ b s

How much titne does an algorithm take to solve a prob-
lem of size n if this algorithm uses 2n* + 2" bit oper-
ations, each requiring 10" ? second, with the foltowing
values of n?

a1t b 20

¢ S0 d) 10

How much time does an algorithun asing 2% bil op-
erations need if cach bit operation fakes the following
amount of time?

a) 10 * second

b) 107 second

¢} 107" second

- Determine the {east number of comparisous, or best-

case performance,

a) required to find the maximum of a seyuence of n
integers, using Algorithm 1 of Section 2.1,

b) used to locate an element in a list of » terms with a
lingar search.

3

13.

14

15.

16.

1.

18,

19,

20,

21,

¢) used to locate an element in a Jist of # terms using
a binary search.

Analyze the average-case performance of the [inear

search algorithm, if exactly half the time element x is

not inthe listand if x is in the list it 15 equally likely to
be in any position.

An algorithm is called optimal for the solution of a

problem with respect to a specified operation if there

is no algorithm for solving this problem using fewer

Operations.

3) Show that Algorithm | in Section 2.1 is an op-
timal algorithn with respect to the number of
comparisons of integers. (Mete: Comparisons used
for bookkeeping in the loop are not of concem
here.)

b} Is the linear search algorithm optimal with respect
to the number of comparisons of integers (not in-
cluding comparisons used for bookkeeping in the
loop)?

Describe the worst-case time complexity, measured in

terms of comparisons. of the ternary search algerithm

described in Exercise 21 of Section 2.1.

Describe the worst-case time complexity, measured

in terms of comparisons, of the search algorithm de-

scribed in Exercise 22 of Section 2.1.

Analyze the worsl-case time complexity of the alge-

rithm you devised in Exercise 23 of Section 2.1 for lo-

cating a mode in 4 list of nondecreasing integers.

Analyze the worst-case time complexity of the algo-

rithm you devised in Exercise 24 of Section 2.1 for lo-

cating all modes in a list of nondecreasing integers.

Analyze the worst-case time complexity of the alge-

rithm you devised in Exercise 235 of Section 2.1 for

finding the first term of a sequence of integers equal
to some previous terni.

Analyze the worst-case time complexity of the algo-

rithm you devised in Exercise 26 of Section 2.1 for

finding all terms of a sequence that are greater than the
sumn of all previous terms.

Analyze the worst-case time complexity of the algo-

rithm you devised in Exercise 27 of Section 2.1 for

finding the first term of a sequence less than the jm-
mediately preceding term.

The Integers and Division

INTRODUCTION

The part of discrete mathematics involving the integers and their properties belongs (o
the branch of mathematics called number theory. This section is the beginning of a
three-section introduction to number theory. In this section we will review some basic
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concepts of number theory, including divisibility, greatest common divisors, and mod-
ular arithmetic. In Section 2.4 we will describe several important algorithms from
number theory, tying together the material in Sections 2.1 and 2.2 en algorithms and
their complexity with the notions introduced in this section. For example, we will in-
troduce algorithms for finding the greatest common diviser of two positive integers
and for performing computer arithmetic using binary expansions. Finally, in Section
2.5, we will continue cur study of number theory by introducing some important re-
sults and their applications to computer arithmetic and cryptology, the study of secret
messages.

The ideas that we will develop in this section are based on the notion of divisibility.
One important concept based on divisibility is that of a prime number. A prime is an
integer greater than 1 that is divisible only by 1 and by itself. Determining whether
an integer is prime is important in applications to cryptology. An important theorem
from number theory, the Fundamental Theorem of Arithmetic, asserts that every pos-
itive integer can be written uniuely as the product of prime numbers. Factoring in-
tegers into their prime factors is important in cryptology. Division of an integer by a
positive integer produces a quotient and a remainder. Working with these remainders
leads to modular arithmetic, which is used throoghout computer scienice. We will dis-
cuss three applications of modular arithmetic in this section: generating pseudorandom
numbers, assigning computer memory locations to files, and encrypting and decrypting
messages.

DIVISION

When one integer s divided by a second, nonzero integer, the quotient may or may not
be an integer. For example, 12/3 = 4 is an integer, whereas 11/4 = 2.75 is not. This
ieads to the following definition.

DEFINITION 1. If ¢ and b are integers with a 5 (, we say that a divides b if
there is an integer ¢ stich that b = ac. When g divides b we say that a is a factor of
b and that b is a mudtiple of a. The notation a | b denotes that a divides b. We write
& f b when a does not divide b.

In Figure 1 & number line indicates which integers are divisible by the positive

integer d.
EXAMPLE | Determine whether 3 | 7 and whether 3 | 12.
Solution: Tt follows that 3 /7, since 7/3 is not an integer. On the other hand, 3| 12
since 12/3 = 4, |
i meE R |‘ f i i >
-3d -2d -4 0 d 2 3

FIGURE 1 Integers Divisible by the Positive Integer 4.
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EXAMPLE 2 Let 7 and  be positive integers. How many positive integers not exceeding » are di-
visible by &?

Solution: The positive integers divisible by d are all the integers of the form dk, where
k& 18 4 positive integer, Hence, the number of positive integers divisible by d that de
not exceed n equals the number of integers k with 0 < dk = n,orwith 0 < k = n/d,
Therefore, there are | n/d| positive integers not exceeding # that are divisible by . &

Some of the basic properties of divisibility of integers are given in Theorem 1.

THEOREM 1 - _ 3.
.1 ﬁah&w i ,,_-muub y o
R E-ﬁ%&.}ﬂ&t}sﬁmmm ¢y
‘3 Halbawdb|e tenale
Proof: Suppose that g | b and | ¢, Then, from the definition of divisibility, it follows
that there are integers s and f with b = as and ¢ = at. Hence,
b4¢ =as+ar = u(s + 1)
Therefore, a divides & + ¢. This establishes part (1) of the theorem. The proofs of parts
(2) and (3) are left as excrcises for the reader. O
PRIMES
Every positive integer greater than 1 is divisible by at least two integers, since a positive
integer is divisible by [ and by itseif. Intcgers that have exactly two different positive
integer factors are called primes.
DEFINETION 2. A positive imteger p grester than 1 i galled prime if the only
postiive faciors fpife landp. Amww&nkmm ¥ and s pot
pritae is called composite.
EXAMPLE 3 The integer 7 1s prime since its only positive factors are | and 7, whereas the integer 9
is composite since if is divisible by 3. |
The primes less than 100 are 2, 3. 5.7, 11,13, 17,19, 23, 29, 31, 37, 41, 43, 47,
53.59.61.67,71,73,79,83, 89, and 97.
The primes are the building blocks of positive integers, as the Fundamental Theo-
rem of Arithmetic shows. The proof will be given in Section 3.2.
THEOREM 2 THE FUNDAMENTAL THEOREM OF ARITHMETIC Every positive integer

can be written uniquely as the product of primes, where the prime faciors are writien
in order of increasing size, (Here, 2 product can have zero, one, or more than obe
prime factor.}
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The next example gives some prime factorizations of integers.

EXAMPLE 4 The prime tactorizations of 100, 641, 999, and 1024 are given by
100=2255=25"
641 = 641,

099 = 3-3-3-37 = 3*.37,

1024 =2-2-2-2-2.2.2.2.2.2 =30 -

[t is often important to show that a given integer is prime. For instance. in cryptol-
ogy large primes are used in some methods for making messages secret. One procedure
for showing that an integer is prime is based on the following observation.

THEGREM 3 If n iis a composite integer, then n has a prime divisor less than or equal to /.

Progf: 1 nis composite, it has a factor @ with 1 < a < #, Hence, n= ab where both
aand b are pomwe mtegers greater than |. We sce thate = Jfrorb = /. since

otherwise ab > /n- ;n = n. Hence, n has a positive divisor not exteeding Jn. This
divisor is clther prlme or. by the Fundamental Theorem of Arithmetic, has a prime
divisor. In either case, » has a prime divisor less than or equal to /n. O

From Theorem 3, it follows that an integer is prime if it is not divisible by any prime
tess than or equal (o its squarc root. In the following example this observation is used
to show that 101 is prime,

EXAMPILES Show that 131 is prime.

Solution: The only primes not exceeding .,T}] are 2, 3, 5, and 7. Since 101 is not
divisible by 2, 3, 5, or 7 (the quotient of 101 and each of these integers is not an integer),
it follows that 101 is prime. [ |

Since every integer has a prime {actorization. it would be useful to have a pro-
cedure tor finding this prime lactorization. Consider the problem of finding the prime
factonzation of n. Begin by dividing » by successive primes, starting with the small-
est prime, 2. [f # has a prime factor. then by Theorem 3 a pmm. factor p not exceed-
1ng /n will be fourd. So, if no pnme factor not exceeding /n is found. then 2 is
prime. Otherwise, if a prime factor p is found, continue by facmrmg nfp. Note that
n/p has no prime facters less than p. Again, il #/p has no prime factor greater than
or equal to p and not exceeding its square rool. then it is prime. Otherwise. if it has
a prime factor ¢, continue by factoring #/{ pg). This procedure is continued until the
factorization has been reduced to a prime. This procedure is illustrated in the following
example.
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EXAMPLE 6

FXAMPLE 7

web

webh

Find the prime factorization of 7007,

Sofution: To find the prime faclorization of 7007, first perform divisions of 7007 by
successive primes, beginning with 2. None of the primes 2, 3, and 5 divides 7007. How-
ever, 7 divides 7007, with 7007/7 = 1001. Next, divide 1001 by successive primes.
beginning with 7. It is immediately seen that 7 also divides 1001, since 1001/7 = 143.
Continue by dividing 143 by successive pimes, beginning with 7. Although 7 dees not
divide 143, 11 does divide 143, and (43/11 = 13. Since 13 is prime, the procedure is

completed. It follows that the prime factorization of 700718 77+ 1113 = 7711 -13.
|

Prime numbers were studied in ancient times for philosophical reasons, Today,
there are now highly practical reasons for their study. In particular, large primes play
a crucial role in cryptography, as we will see in Scetion 2.5, [t has long been known
that there are infinitely many primes, a fact we will prove in Section 3.1. Since there
are infinitely many primes, given any positive integer there are primes greater than this
integer. There 1s an ongeing quest to discover larger and larger prime numbers; for al-
most all the last 300 years, the largest prime known has been an integer of the special
form 27 — 1. where p is also prime. Such primes are called Mersenne primes, after
the French monk Marin Mersenne, who studied them in the seventeenth century. The
reason that the largest known prime has usually been a Mersenne prime is that there is
an extremely efficient test, known as the Lucas—Lehmer test, for determining whether
27 1 is prime. Furthermore, it is not currently possible to test numbers not of certain
special forms anywhere near as quickly to'determine whether they are prime.

The numbers 22 - 4 = 3,28 — | = 7, and 2° - | = 31 are Mersenne primes, while
2" — 1 = 2047 is not a Mersenne prime since 2047 =23 - §9. [ |

Progress in finding Mersenne primes has been steady since computers were in-
vented. As of late 1998, 37 differemt Mersenne primes were known, with six found

Marin Mersenne tIS88-1648).  Mersenne was born in Maine. France. inte a family of laborers and at-
tended the College of Mans and the Jesuir College at La Fléche, He continued his cducation at the Surbonne,
studying theology fram 1609 to 1611, He joined the religious order of the Mimams in 1611, a gioup whyse
name comes from the word minii (the members of this group considered themselves the least religious
vrder). Besides prayee. the members of this group devated their energy to scholarship and study. In 1612 he
became 4 pricst at the Place Rovil in Paris: between 1614 and 1618 he raught philosophy a1 the Minim
Comvent ar Nevers. He retumed to Paris in 1619, where his cell in the Minims de 1" Annociade became
a place for meetings of French scientists, phitosophers, and mathematicians, including Fermat and Pas-
val. Mersenne corresponded extensively with scholars throughout Europe, serving as a clearinghouse for
muthematical and scientific knowledge, a function fater served by mathematical journals tand today also
by the Intermet). Mersenne wivte books covering mechanics, mathematical physics. mathematics, music,
and acoustics. He studied prime numbers and tried unsuccessfully o construct 2 formula representing aft
primes. In 1644 Mersenne claimed that 29 — 1 is prime for p — 2,35, 7,13, 17,19, 31, 67, 127, 257 but
i compasite for all other primes less than 257. It took over 300 years to determine that Mersenne's cluim
was wrong five times. Specifically. 24 — 1 is not prime for p = 67 and p = 257 but is prime for JE
f = &T.and p = 107 It is also noteworthy that Mersenne detended two of the most famous men of his
tume. Descaetes and Galileo, from religions eritics. He also helped expose alchemists and astrolugers as
frands.
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since 1990. The largest Mersenne prime known (as of late 1998) is 2%021377 — 1 4
number with 909,526 digits. A communal effort, the Great Intermet Mersenne Prime
Search (GIMPS), has been organized to look for new Mersenne primes. By the way.
even the search for Mersenne primes has practical implications, One quality control
test for supercomputers has been to replicate the Lucas-Lehmer test that establishes
the primality of a large Mersenne prime.

Using triai division with Theorem 3 gives procedures for factoring and for primal-
ity testing. However, these procedures are not efficient algorithuns; many much more
practical and efficient algorithms for these tasks have been developed. Factoring and
primality testing have become important in the applications of number theory 1o cryp-
tography. Ths has led to a great interest in developing efficicnt algorithms for both
tasks. Clever procedures have been devised in the last 25 years for efficiently gener-
ating large primes, However, even though powerful new factorization methods have
been developed in the same time frame, factoring large numbers remains extraordi-
narily more time consuming. Nevertheless, the challenge of factoring large numbers
interests many people, There is 1 communal cffort on the Internet to factor large num-
bers, especilly those of the special form &* = |, where £ is a small positive integer and
n1s a large positive integer (such numbers are called Cuaningham numbers). At any
given time, there is a list of the “Ten Most Wanted" Jarge numbers of this type awaiting
factorization,

THE DIVISION ALGORITHM

We have seen that an integer may or may not be divisible by another. Huwever, when
an integer is divided by a positive integer, there always is a quotient and a remainder,
as the division algorithm shows.

THEOREM 4 THE DIVISION ALGORITHM  Let & be an integer and d 2 positive integer. Then
there are unique integers g and r, with O = r < d, such thata = dg + r.

Remark: Theorem 4 is not really an algorithm. (Why not?) Nevertheless. we use its
traditionai name.

DEFINITION 3. In the equality given in the division algorithim, d is called the
divisor, @ is called the dividend, q is called the guotient, and r is called the remainder

The following two examples iliustrate the division algorithm.

EXAMPLE 8 What are the quotient and remainder when 101 js divided by 117

Sodution: We have
0] = {{-9+2

Hence, the quotient when 101 is divided by 1115 9, and the remainder is 2, |
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EXAMPLE 9 What are the quotient and remainder when 11 is divided by 3?

Solurion: We have
=11 =3~ +1.

Hence, the quotient when — 11 is divided by 3 is —4, and the remainder is 1.
Note that the remainder cannot be negative. Consequently, the remainder is nor — 2,
gven though

~H = 3(-3) - 2,

since r = —2 does not satisfy 0 = r < 3, |

Note that the integer « is divisible by the integer 4 if and only if the remainder is
zero when « is divided by 4.

SREATEST COMMON DIVISORS
AND LEAST COMMON MULTIPLES

The largest integer that divides both of two integers is called the greatest common
divisor of these integers.

DEFINITION.  Leta and b be integers, not both zero. The largest integer o sach.
that | a and 4 | b is called the greatest common divisor of a and b. The greatest
common divisor of g and b is denated by ged(a, b).

The greatest common divisor of two integers. not both zero, exists because the set
of common divisors of these integers is finite. One way to find the greatest common
divisor of two integers is to find all the positive common divisors of both integers and
then take the largest divisor. This is done in the following examples. Later, a more
efficient method of finding greatest common divisors will be given,

EXAMPLE 10 What is the greatest common divisor of 24 and 367
Sotution: The positive common divisors of 24 and 36 are 1, 2, 3. 4, 6, and 12. Hence,
ged(24, 36y = 12, n
EXAMPLE 11 What is the greatest commion divisor of 17 and 222

Solution: The integers 17 and 22 have no positive common divisors other than [, o
that ged({7,22) = 1. [ |

Since it is often important to specify that two integers have no common positive
divisor othey than 1, we have the following definition.
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DEFINITION 5. The integers 2 and b are relatively prime if their greatest com-
mon divisor is 1.

EXAMPLE 12 From Example 11 it follows that the integers 17 and 22 are relatively prime, since
ged(17,22) = 1. [ |

Since we often need to specify that no two integers in 4 set of integers have a
cemmon positive divisor greater than 1. we make the following definition.

DEFINITION 6. The integers ay,ay, ..., a, are pairwise relatively prime if
gedia;. a;) = 1 whenever 1 < i< j = a.

EXAMPLE 13 Determine whether the integers 10, 17, and 21 are pairwise relatively prime and
whether the integers 10, 19, and 24 are pairwise retatively prime,

Sofuzion: Since god(10, 17) = 1, ged(10.21) = 1, and ged(17, 21} ~ 1, we conciude
that 10, 17, and 21 are pairwise relatively prime.

Since ged(10, 24y = 7 > |, we see that 10, 19, and 24 are not pairwise relatively
prime. [ ]

Another way to find the greatest common divicor of two integers is to use the prime
factorizations of these integers. Suppose that the prime fuctorizations of the integers a
and b, neither equal to zero, are

[ R R . P T R,
4= M f’ﬁ»b_!’apz Py
where cach exponent is a nonnegative integer, and where all primes occurring in the

prime factorization of either @ or & are included in both factorizations, with zero expo-
nents if necessury. Then ged(a, b) is given by

Byt _minia bal infd,.
ng(G, b) .. p;mntm b, pgltn abal ﬂﬂnfa,b,.).‘

where min(x. ¥) represents the minimum of the two numbers x and y. To show that
this formula for gedia, b) is valid, we must show that the integer on the right-hand side
divides both @ and b, and that no Jurger integer also does. This integer does divide both
a and b. since the power of each prime in the facterization does not exceed the power
of this prime in either the factorization of a or that of . Further, no larger integer can
divide both a and &, because the exponents of the primes in this factorization cannot be
increased. and no other primes can be included.

EXAMPLE 14 Since the prime factorizations of 120 and 500 are 120 = 2335 and 500 = 22 §°,
the greatest common divisor is

ng{]EU 500) - 2mir|13.'.’.r3min{I.(]‘:‘.-)minl_’l.'.’-J — 2231}51 =20 ]
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Prime factorizations can also be used to find the least common multiple of two
mtegers.

DEFINITION 7,  The least common multiple of the positive integers « and & is
the smallest positive integer that is divisible by both a and b. The least common
multiple of 4 and b is dencted by lem(a, b). '

The least common multiple exists because the set of integers divisible by both ¢ and
h is nonempty, and every nonempty set of positive integers hay a least element {by the
well-ordering property, which will he discussed in Chapter 3). Suppose that the prime
factorizations of 4 and b are as before. Then the least common multiple of & and b is
given by

maxic. by} maiar b o Magie.. by}

leinia, by = p, P P

where max(x, ¥) denotes the maximum of the two numbers x and v, This formula is
valid since @ common muhiple of « and b has at least max(a,, b;) factors uf p; in its
prime tactorization. and the least common multiple has no other prime factors besides
those in « and A.

EXAMULE 15 What 1s the leasl common muitiple of 223°7° and 2437

Sedurion: We have

pda5nd a3 Axd ) 4 man 8, 0 42522
[CIT]{_E' ¥ ?_‘2433} o 2rmx(_1.413n.ml...5}7m9.'{|h,f) = 13377 [ |

The following theorem gives the refationship between the greatest common divisor
and least common multiple of two integers. [t can be proved using the formulae we
have derived for these quantities. The proof ol this theorem is left as an exercise for the
reader.

THEOREAM 5 Let @ and & be pogitive integers. Then
ab = ged(a, b) + lemia, by,

MODULAR ARITHMETIC

In some situations we care only about the remainder of an integer when it is divided
by some specified positive integer. For instance, when we ask what time it wili be {on
a 24-hour clock) 50 hours from now, we care only about the remainder when 50 plus
the current hour 1s divided by 24, Since we are often interested only in remainders, we
have special notations for them.

DEFINITION 8.  Let a be an integer and m be a positive integer. We denote by «
mod m the remainder when a is divided by m.
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[t foliows from the definition of remainder that ¢ mod m is the integer » such that
a=gm+rand0 = r < m.

EXAMPLE 16 Weseethat [7mod 5 = 2, 133 mod & = 2, and 2001 mod 10} = §2. ]

We aiso have a notation to indicate that (wo integers have the same remainder when
they are divided by the positive integer m.

DEFINITION 9.  If a and b are integers and m is a positive integer, then a is
congruent to b modulo m if m divides a — b. We use the notation @ = b (mod m) to
indicate that a is congruent to b modulo m. ¥ ¢ and b are not congruent modulo m,
we write ¢ # b (mod m),

Note that a = » (mod n1) if and only it a mod m = H» mod .

EXAMPLE 17 Determine whether 1715 congruent 1o 5 modulo 6 and whether 24 and 14 arc congruent
module 6.

Solution: Since 6 divides 17 — 3 = 12, we see that 17 = 5 (mod 6). However, since
24 — 14 = 101y not divisible by 6, we see that 24 # 14 {mod 6). »

The great German mathematician Karl Friedrich Gauss developed the concept of
congruences at the end of the eighteenth century.

The notion of congruences has played an important role in the development of num-
ber theory. The following theorem provides a useful way 1o work with congruences.

Karl Friedrich Gavss (1777-1855).  Karl Friednch Gawss, the son of a bricklayer, was a child prodegy,
He demonstrated his potential at the age of 100, when he quickly solved a problem assigned hy a teacher Lo
keep the class busy. The teacher asked the students to find the sum of the first 100 positive integers, Gauss
realized that this sum could be found by forming 50 pairs, each with the sum 161 1+ 100, 2499, . 50+51.
This briliance attracted the sponsorship of patrons, including Duke Ferdinand of Brunswick, who made it
possible for Gauss to attend Caroline College and the University of Géttingen. While a student, he invented
the method of Jeast wyuares, which is used o estimate the most likely value of a variable from experimental
results. [n 1796 Gauss made a furdamentat discovery in geomelry, advancing a subject that had not advance|
since ancient times. He showed that a i7-sided regular polygon could be drawn using just a ruler and
CORIPASS,

In 1795 Gauss presented the first niporous proot of the Fundamental Theorem of Arithmetic, which
states that a polynomial of degree r has exactly # mots (counting multiplicities). Gauss achieved world-
wide fame when he suceessfully calculated the orbit of the first asteroid discovered, Ceres, using scanty
data.

Gauss way called the Prince of Mathematics by his contemporary mathematicians. Although Gauss
is nated for his nmany discovenes in geometry. algebra, analysis. astronomy, and physics, he had » special
interest in number theory, which can be seen from his state ment “Mathematics is the queen of the sciences,
and the theory of numbers is the queen of mathematics.” Gauss L the foundations for modern nember
theory with the publication of his book Disquivitiones Arithmericae in 1801,

web
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THEOREM 6 Let m be a positive integer. The integers a-and b are congruent medulo m if and only
if there is an integer k such that @ = & + km.

Proof: i a = b (mod mj. then m | (a — b). This means that there is an integer & such
that ¢ h = km, 5o that ¢ = b + km. Conversely, if there is an integer k such that
a = b+ km, then km = @ — b Hence, m divides @ — b, sothate = b{mod m). O

The following theorem shows how congruences work with respect to addition and mul-
tiplication.

THEOREM 7 Let m be a positive integer. If a = b (mod m) and ¢ = d (mod m), then
a+c*®=b+d(modm) and ac = bd {mod m).
Proof: Since a = b (mod m) and « =  {mod m}, there are integers s and 1 with & =
o+ smandd = ¢+ m. Hence,
b—d=tatsmy+{c~im = la+ec)+ms+1t)
and

bd = (g + smle +im) = ac+ miagt + o5 + stm).

Hence,
g+c=b+dimodm and ¢ = bed {mod m). O
EXAMPLE 18 Since 7= 2imod 3} and 1] = | tmad 3), it tollows from Theorem 7 that
I8 =7+11=2+1=3(mud 5}

and that
TI=7- 1 =2-1=2mad5 |

APPLICATIONS OF CONGRUENCES

Number theory has applications to a wide range of areas. We will introduce three appli-
cations i this section: the use of congruences fo assign memory locations to computer
files, the generation of pseuderandom numbers, and cryptosystems based on moduiar
arithmetic.

EXAMPLE 19 Hashing Functions  The central computer al your school maintains records for each
student. How can memory locations be assigned so that student records can be retrieved
quickly? The solution to this problem is to use a suitably chosen hashing function.
Records are identified using a key, which uniquely identifies each student’s records.
Far instance, student records are efien identified using the Social Security number of
the student as the key. A hashing function f1 assigns memory location (k) to the record
that has £ as its key.

In practice, many different hashing functions are vsed. One of the most common is
the function
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ME) = kmod m

where s is the number ot availabie memory locations.

Hashing functions should be casily evaluated so that files can be quickly located.
The hashing function (k) = 4 mod m meels this requirement; to find A{k), we need
only compute the remainder when & is divided by m. Furthermore, the hashing function
shouid be onto, so that all memory locations ure possible. The function (k) = krmod m
also satisfies this property.

For example, when m = 111, the record of the student with Social Security number
064212848 is assigned to memory focation 14, since

A(D6A212548) = 064212848 mod 111 = 14,
Similarly, since
A037149212)y = 037149212 mod 111 = 65,

the record of the student with Svcial Security number 037149212 1s assigned to memory
lecation 65.

Since a hashing function is not one-to-one (since there are more possible keys than
memory locations), more than one file may be assigned to a memory location. When
this happens. we say that a collision occurs. One way to resobve 1 collision is (o assign
the first fiee location following the occupicd memory lecation ussigned by the hashing
function, For example, after making the twe earlier assignments, we assign location 15
to the record of the student with the Social Security number 107405723, To see this,
first note that A(k) maps this Secial Security number (o location 14, since

ACLOT7405723) = 107405723 mod 111 = 14,

but this location is already occupicd (by the file of the student with Social Security
nuntber 164212848). However, memory location 15, the first focation following mem-
ory location 14, is free,

There are many more sophisticated ways to resolve collisions that are more cfficient
than the simple method we have described. These are discussed in the references on
hashing functions given at the end of the book. |

EXAMPLE 20 Pseudorandom Numbers Randomly chosen numbers are often needed for computer
simulattons. Different methods have been devised for generating numbers that have
properties of randomly chosen numbers. Because numbers generated by systematic
methods are not truly random, they are called pseudorandom numbers,

The most commonly used procedure for generating pscudorandom numbers is the
linear congruential method, We choose four intcgers: the modulus 2, multiplier
a, increment ¢, und seed xp. with 2 = g =m0 = ¢ <m and 0 = x5 < m. We
generate a sequence of pseudorandom numbers {x,f, with 0 = x, < m for all n. by
successively using the congruence

Xpo = dax, + cymod m
{This is an example of a recursive definition, discussed in Section 3.3. In that section
we will show that such sequences are well defined.}

Many computer experiments require the generation of pseudorandom numbers be-

tween O and 1. Te generate such numbers. we divide numbers generated with a linear
congruential generator by the modulus; that 1s, we usc the numbers x,/m.
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For instance. the sequence of pseudorandom nimbers generated by choosing m =
9,4 =7 ¢ =4, and xy = 3, can be found as follows:

N =Txtd=7-3+4=25mod9 = 7,
2=Tx+4=7-T+4 =53mod 9 = §,
=T +4=T7-8+4=600mod9 = 6,
=T +4d=7-6+4 =46mod® = |,
Xs=7x3+4=T-1+4 =11mod9 =2,
Xe = Txs 44 =7-24+4 = 18mod 9 =0,
X9 =Tx|5+4: T-0+4 = 4mod9=4,
w=Txg+4=7-4+4=32mod9 =5,
Trg+4=7353+4=30maed9 = 3.

Since xg = xg and since each term depends only on the previous term, the following
sequence is generated:

37.861,204537861,2.0453.. ..

li

Il

Xy

This sequence contains nine difterent numbers before repeating,

Most compuiers do use lincar congruential generators to generate pseudorandorn
numbers. Often, a linear congruential generator with increment ¢ = 013 used. Such a
generatoris called a pure multiplicative generator. For example, the pure muhiplicative
generator with modulus 2°' — 1 and multiplier 7° = 16,807 is widely used. With these
values, it can be shown that 22! — 2 numbers are generated before repetition begins. W

CRYPTOLOGY

Congruences have many applications to discrete mathematics and computer science,
Discussions of these applications can be found in the suggested readings given at the
end of the book. One of the most important applications of congruences involves cryp-
tology, which is the study of secret messages. One of the earliest known uses of cryptol-
ogy was by Julius Caesar. He made messages secret by shifting each letter three letters
forward in the alphabet (sending the last three letters of the alphabet to the first three).
For Instance, using this scheme the letter B is sent to £ and the letter X is sent to A. This
is an example of encryption, that is, the process of making a message secret.

To express Caesar's encryption process mathematically, first replace each letter by
an integer from 0 to 25, based on its position in the alphabet. For example, replace A
by 0, K by 10, and Z by 25. Caesar’s encryption method can be represented by the
function f that assigns to the nonaegative integer p, p < 25, the integer f(p) in the set
{0,1,2..... 25} with

Fip) = {p+ 3) mod 26.

In the encrypted version of the message, the letter represented by p is replaced with the
letter represented by (p + 3) mod 26,

EXAMPLE 21 What is the secret message produced from the message “MEET YOU IN THE PARK™
using the Caesar cipher?

Solution: First replace the letters in the message with numbers. This produces

124419 241420 R 13 1974 15017 10.
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Now replace each of these numbers p by f(p) = (p + 3} mod 26, This gives
(57722 11723 lnie 22107 1832013,

Teanslating this back to Jetters produces the encrypted message “PHHW BRX LO
WKH SDUN.” n

To recover the original message from a secret message encrypted by the Caesar
cipher, the function £, the inverse of . is used. Note that the function f ~! sends an
integer pfrom {0,1,2, ..., 25} to £~ !(p) = {p — 3y mod 26. In other words, to find the
onginal message, each letter is shifted back three letters in the alphabet, with the first
three letters sent to the Jast three letters of the alphabet. The process of determining the
original message from the encrypted message is cailed decryption,

There are various ways to generalize the Caesar cipher. For example, instead of
shifting each letter by 3, we can shift each letter by &, so that

f(py = (p+ k)ymod 26, \

Such a cipher is called a shift eipher. Note that decryption can be carried out using
£y = (p - kymod 26,
Obviously, Caesar’s method and shift ciphers do net provide a high level of security.

There arc various ways to enhance rthis method, One approach that slightly enhances
the security 1s to use a function of the form

f(p} = (ap + b) mod 26,

where a and b are integers, chosen such that £ is a bijection. (Such a mapping is called
an affine transformation.) This provides a number of possible encryption systems. The
use of one of these systems is illustrated in the following exampie.

EXAMPLE 22 What letter replaces the letter K when the functioa f{p) = {7p + 3) mod 26 is used
for encryption”?

Solution: First, note that 10 represents K. Then, using the encryption function speci-
fied, it follows that {10} = (7- 10 + 3) mod 26 = 21. Since 21 represents V, X is
replaced by V in the encrypted message, [ |

Caesar’s encryption method, and the generalization of this method, proceed by re-
placing each letter of the alphabet by another letter in the alphabet, Encryption methods
of this kind are vulnerable to attacks based on the frequency of occurrence of letters in
the message. More sophisticated encryption methods are based on replacing blocks of
letters with other blocks of letters. There are a number of techniques based on modular
arithmetic for encrypting blocks of letters. A discussion of these can be found in the
suggested readings listed at the end of the book.

Exercises
1. Does 17 divide each of the following numbers? 2. Show thatif g is an inleger other than 0, then
a) 6% b) #4 ¢}y 3587 d) 100 a) divides 7. b} a divides 0.
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Show that part (2} of Theorem 1 18 true.

. Show that part (31 of Theorem 1 is true,
. Show thatif « | b and b | a, where a and b are integers.

thena = pora = —b.

. Show that it & b, ¢, and d are integers such that a | ¢

and b4, thenah| od,

. Show that it @, b, and ¢ are integers such that ac: be,

thena* b,

. Arg the following integers primes?
a} 19 by 27 c) 03
dj 101 ) 17 i u3

. In cach of the following cases. what are the quotient

and remainder?

a} 191s divided by 7
¢) 789 13 divided by 23
¢) Dis divided by 19 5 3 isdivided by 5

g) - 1isdivided by 3 h} 4 is divided by |

Find the prime faclonzation of each of the following.
ay 39 b) 8] ) 101

d) 143 e) 289 N 89

Find the prime factorization of 10,

How many zcros are therc at the end of 10017

An irrational nember is a real nomber x that cannot
be written as the ratio of two integers. Show that log, 3
i5 an ircational number.

B — 11l is divided by 11
dy 1001 is divided by 13

- Which positive integers less than 12 are relatively

prime to 27

Determine whether the following sets of integers arc

pairwise relatively prime.

ap (11 1519 b} (14,1521

OO 173037 d) (789, 1

We call a positive integer perfect if it equals the sum

of 1ts pusitive divisors other than itself.

a} Show that 6 and 28 are perfect.

b) Show that 2 '(2F — 1} s a perfect number when
2" — 1is prime,

Lel m be a positive integer. Show that ¢ = & (mod m)

iamod m = bmod m.

. Let m be a positive integer, Show that w mod m = &

miod m if ¢ = & {mod m).

Show that if 2" — 1 is prime. then » is prime. [Hint: Use
the identity 2% — 1 = (24— [)- (2500 D ppab-2 .y
224 1

Determine whether cach of the tollowing integers is
prime, verifying some of Merscnne's claims,

a) 27 - | b) 2 -1

a2'-1  d) -1

The value of the Ealer &-function at the positive in-
teger ais defined to be the number of positive integers
less than or equal o 7 that are relatively poime o a1,
(Notz: & 13 the Greek letter phi.) Find

ay ¢ by HI10). ) &t13)

Show that n is prime 1f and onfy if din) = 1 - .
What is the value of &{p*) when p is prime and k is a
positive ineger?

2.

*25.

26.

T

28,

29,

3,
1,

3.

33,

3

35

37,

3.

39,

40.

What are the greatest common divisors of the following
pairs of integers?

a) 27-3° -5, 25.3 . 52

by 2:3-5-7-11-13,21.3% (117"

) 17,177

d 2275013

ey 0,5

Nn2-3-5-72-3-5.7

Show that if # and & are positive integers, then [n/k} =
(n— Dk + 1.

Show that if a is an integer and o 15 a positive inte-
ger greater than 1. then the quotient and remainder ab-
tained when a is divided by d are |a/d| and a — d|a/d].
respectively.

Find a formula for the integer with smallest absolute
value that is congroent to an integer & modulo m, where
m 1§ & positive integer.

Evaluaie the following quantities.

a) —17mod 2 b} 144 mod 7
¢ ~l0lmod 13 d) 199moed 19
Evaluale the following quantities,

a) 13 mod 3 b) —97mod 11
c) 155mod 19 d} —22! mod 23

List five intcgers that are congruent to 4 modulo (2,
Decide whether each of the following integers is con-
gruent to § modulo (7.

a) B0 B I103 e -29 Ay —122

If the product of two integers is 273857 and their
greatest common divisor is 2*3*3, what is their least
cormmon multiple?

Show that if @ and & are positive integers then ab =
gedia, b) iem(a, b). [Hint: Use the pime factorizations
of a and & and the formulae for gcd{a, &) and lem(a, b)
in terms of these factorizations. |

Show that if ¢ = b {mod m) and ¢ = d (maed m). where
a. b, ¢, d and mare integers withm = 2 theng--c =
b — d {mod m).

Show that if n | m, where n and »t are positive integers
greater than |, and if g = & (mod m), where g and b are
integers, then a = b (mod n).

. Show thatif g, b. ¢, and m are integers such thatm = 2,

¢ =0, and g = & (mod m), then ac = be (mod me),
Show that ac = be (mod m), where a, b, ¢, and m are
integers with m = 2, does not necessarily imply that
& = # (mad m).

Show that if @, b, and m are integers such that m = 2
and @ = b (mod m}, then ged(a, m) = ged(h, m).
Show (hat if' @, &, k. and m are imegers such that & =
Lt = 2 and g = himodm), then a* = b¥{mod m)
whenever k is 4 positive integer.

Which memory locations are assigned by the hashing
function (k) = k mod 10! to the records of students
with the following Social Security numbers?

a) 134578690 b) 432222187

e) 37220191%  d) 501338753
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41.

42

43,

45,

A parking lothas 31 visitor spaces, numbered from (4 to

30. Visitors are assigned parking spaces using the hash-

ing function A{k) = kmod 31, where k is the number

formed from the first three digits on a visitor’s licensc

plate.

a) Which spaces are assigned by the hashing function
to cars that have the following first three digits on
their license plates?

317.918.007, 106, 111,310

b) Describe a procedure visitors should follow o find
a free parking space, when the space they are as-
signed is occupied.

What sequence of pseudorandom numbers is gener-

ated uging the linear congruential generator x,.; =

(dx, + 1) mod 7 with seed x; = 3?7

Whar sequence of pseudorandom numbers is gener-

ated using the pure multiplicative generator x,.; =

Jx,mod 1! wath seed xg = 27

. Write an algorithm in pseudocode for generating a se-

quence of psendorandom numbers using a linear con-
gruential generator.

Encrypt the message “TH0 NOT PASS GO by trans-
lating the ietters into numbers, applying the encryption
function given, and then translating the numbers back
intw letters.

a) f(p) = (p+ 3) mod 26 (the Cacsar cipher}
b) f(p) = (p + 13) mad 26
¢) fipy = (3p+7)mod 26

. Decrypt the following messages encrypled using the

Caesar cipher.

a) EOXH MHDQVY
b} WHYW WRGDB
¢) HDW GLP VXP

Books are identified by an International Standard
Book Number (ISBN), a i10-digit code xjx3... 1),
assigned by the publisher. These 10 digits consist of blocks
ideniifying the language, the publisher, the number as-
signed o the book by its publishing company, and finally,

24
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a L-digit check digit that is either a digit or the letter
X (used tn represent 10). This check digit is selected
so that 2‘-4 yix; =0 (mod 11} and is used to detect er-
rors in individual digits and transposition of dig-

its.

47.

48.

49

50.

51,

52

The first nine digits of the [ISBN of the third edition of
this book are §-07-053965. What is the check digit for
this book?

The ISBN of Elementary Number Theory and Its Ap-
plications, 3d ed.. is 0-201-57089-1, where Q is a
digit. Find the valve of .

Deterimine whether the check digit of the ISBN for this
textbock was computed correctly by the publisher.
Find the smallest positive integer with exactly » differ-
ent factors when # is

a} 3. b)4 a3 d6 e in

Can you find a formula or fule for the ath term of a se-
quence related to the prime numbers or prime factor-
izations se that the initial terms of the sequence have
the following values?

ab0,1.1.06,1,0,1,0,0,0,1.0,1, .

by 1,2.3,2,52,7,2,3,2,11,2,13, 2

€ 1,2,2.3,2,4,2.4,3,4,2,6,2,4,

d) L1LOLLL00,1,1,0,1,1,

e 1,2,3.3,557,7,7,7, 11. 11, 13, ]*

fy 1, 2, 6, 30, 210, 2310, 30030, 510510, 9699650,
223092870, ...

Can vou find a formula or rule for the ath term of 2 se-

guence related to the ptime nombers or prime factor-

izations so that the initial terms of the sequence have

the following values?

a) 22,35, 5.7,7, 1L, 1L, 10, 10013, 13, ...

b) 0.1,2.2,3,3,4,4,4,4,55.6,6, ...

o LOO L0101 LLD LG, ...

dy t, -1 -1, 00 ~1, L, —1,0,0, 1,
.1 ...

e) ILLILLLO LI 1,0,1,0 1,00, ..

f} 4,9, 25, 49, 121, 169, 289, 361, 529, %41, 951,
1369, ...

=10, -,

Integers and Algorithms

INTRODUCTION

As mentioned in Section 2.1, the term aigorithm originaily referred to procedures
for performing arithmetic operations using the decimal representations of integers.
These algorithms, adapted for use with binary representations, are the basis for
computer arithmetic. They provide good illustrations of the concept of an algorithm
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and the complexity of algorithms. For these reasons, they will be discussed in this
section,

There are many important algorithms involving integers hesides those used in arith-
metic. We will begin our discussion of integers and algorithms with the Euclidean al-
gorithm. Tt is one of the most useful algorithms, and perhaps the oldest algorithm in
mathematics. We will alse describe an algerithm for finding the base b expansion of a
positive integer tor any base b.

THE EUCLIDEAN ALGORITHM

The method described in Section 2.3 for compuiing the greatest commen divisor of
two integers, using the prime factorizations of these integers, is mefficient. The rea-
son is that it is time-consuming to find prime factorizations. We will give a more
efficient method of finding the greatest common divisor, called the Euclidean algo-
rithm. This algorithm has been known since ancient times. It is named after the an-
cient Greek mathematician Euclid, who included a description of this algorithm in his
Elements.

Before describing the Euclidean algorithm, we will show how it is used to find
ged(91, 287). First. divide 287, the larger of the two mtegers, by 91, the smaller, w0
obtain

287 =91-3+ 14

Any divisor of 91 and 287 must also be a divisor of 287-91-3 = 14_Also, any divisor
of 91 and 14 must also be a divisor of 287 = 91 - 3 + 4. Hence, the greatest common
divisor of 91 and 287 is the same as the greatest common divisor of 91 and 14. This
means that the problem of finding ged(91, 287) has been reduced to the problem of
finding ged(91, 14).

Next, divide 91 by 14 to obtain

91 = 14-6+ 17

Since any common diviser of 91 and 14 also divides 91 ~ 14+ 6 = 7 and any common
divisor of 14 and 7 divides 91, it follows that ged(91, 14) = ged(14, 7).
Continue by dividing 14 by 7, to obtain

14 ="7-2.

Since 7 divides 14, it follows that ged(14, 7) = 7, and since ged(287,91) = ged(91, 14)
ged(14, 7y = 7, the original problem has been solved.

We now describe how the Euclidean algorithm works in generality. We will use
successive divisions to reduce the problem of finding the greatest common divisor of
two positive integers to the same problem with smaller integers, until one of the integers
15 Zero,

The Euchidean algorithm is based on the following result about greatest common
divisors and the division algorithm.

Fuclid (c. 350 B.C.E.}.  Euclid was the author of the most successful mathematics book ever written, the
ELlements. which appeared in over 1000 different editions from ancient to modern times. Litfle is known
about Euclid’s IHe, other than that he tanght ut the famous academy at Alexandria, A pparcntly, Euclid did
not siress applications. When a student asked what he would get by learning geometry, Euclid explained
that knowiedge was worth acquiring for its own sake and told his servant o give the studeat i coan “vince
he must make a profit from what be learns,”
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LEMMA 1 Leta = bg + r, whete a, b, g, and r are integers. Then ged(a, b) = ged(b, r).

Proof: T we can show that the common divisers of @ and b are the same as the common
divisors of & and r, we will have shown that ged(a, bY = ged{b, r), since both pairs must
have the same greatest common divisor.

So suppose that f divides both ¢ and b. Then it follows that 4 alsodivides g—bg = r
{from Theorem 1 of Section 2.3). Hence, any coinmon divisor of @ and £ is also a
common diviser of b and r.

Likewise, suppose that 4 divides both & and « Then 4 also divides bg + r = 4.
Hence, any common divisor of b and r is also a commeon divisor of ¢ and b.

Consequently, ged{a, ) = ged(h, r). a8

Suppose that & and b are positive integers with g = b. Let ry = gand r; = b.
When we successively apply the division algorithm, we obtain

rp o =rnqr+n 0=r<r,
' = riqz tr3 0 =r<r
Pn-g = Fpo1g@no1t i 0=y < -y,
Fa—1 = Fuifn.

Eventually a remainder of zero occurs in this sequence of successive divisions, since
the sequence of remainders @ = ry > ry = r; = --- = ( cannet contain more than a
terms. Furthermore. it follows from Lemma 1 that

gedla, b) = ged{ry. r) = gediry, r2) = -+ = god{ry-o, 15-1)
= BCd(rn--l. ry) = ng(rm = Fr.

Hence, the greatest common divisor 1s the last nonzero remainder in the sequence of
divisions.

EXAMPLE 1 Find the greatest common diviser of 414 and 662 using the Evclidean algorithm.

Solution: Successive uses of the division algorithm give:

662 = 414 -1 + 248
414 = 248 - [ ~ 166
248 = 1661+ 82
166 = 82-2+2
2=2-4L
Hence, ged(414, 662) = 2. since 2 1s the last nonzero remainder. |

The Euclidean algorithm is expressed in pseudoecode in Algorithm 1.
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THEOQREM 1

[

i ALGORITHM 1 The Kuclidean Alporithm,
i

I

procedure ged(a, b: positive integers)

X =d
! yi=b
. while v =0
begin
Ii r-= rmod v
| Y=y
| vi=r !
© end {ged(a, b) is x} i

[n Algorithm [, the initial values of x and y are g and b, respectively. Ateach siage of the
procedure, v is replaced by v, and v is replaced by x mod y. which is the remainder when
v is divided by y. This process is repeated as long us y # 0. The algorithm terminates
when v = 0, and the value of x at that point, the last nonzero remainder in the procedure,
i the greatest common divisor of @ and &.

We will study the time complexity of the Euclidean algorithm in Sectien 3.3, where
we will show that the number of divisions required 10 find the greatest common divisor
of gand b, where 2 = b, is ({log b),

REPRESENTATIONS OF INTEGERS

In everyday life we usc decimal notation to express integers. For cxample, 965 is
used to denote 9+ 10° + 6+ 10 + 5. However, it is often convenient to use bases other
than 10. In particular, computers usually use binary notation (with 2 as the base)
when carrying out arithmetic, and octal (base 8} or hexadecimal (base 16) notation
when expressing characters, such as letters or digits. In fact. we can use any posi-
tive integer greater than | as the base when expressing integers. This is stated in the
tollowing theorem.

Let b be a positive integer greater than 1. Then if n is a positive integer, it can be
expressed uniquely in the form

n= ﬂtbk +ﬂk\.1bk_l + -+ aqb + ap,

where k is a nonnegative integer, ag, dy, .. ., 4, are nonnegative integers less than b,
and @, # 0.

The proof of this theorem can be found in the suggested readings referred to at the end
of the book. The representation of n given in Theorem 1 is called the base b expansion
of i, The basc & expansion of n is denoted by (aray. | - a dn)g. For instance, (245);
represents 282 + 48 + 5 = 65,

Choosing 2 as the base gives binary expansions of integers, In binary notation
each digit is either a 0 or a |, In other words. the binary expansion of an integer is

just 2 bit string. Binary expansions (and related expansions that are variants of binary

expansions) are used by computers 1o represent and do arithmetic with integers.
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EXAMPLE 2 What is the decimal expansion of the integer that has (101011111), as its binary expan-
sion?
Solution: We have

(1010111113, = 28 + 22 + 2 + 22 + 22 4 24 1 = 351 -

Sixteen is another base used 1n computer science. The base 16 expansion of an
integer is calied its hexadecimal cxpansion. Sixteen different digits are required for
such expansions. Usaally, the hexadecimal digits used are 0, 1,2, 3, 4,5, 6, 7,8, 9. A,
B, C D, E, and F, where the letters A through F represent the digits corresponding to
the numbers 10 through 135 {in decimal notation).

EXAMPLE 3 What is the decimal expansion of the hexadecimal expansion of (ZAE(QB),¢"?

Solution: We have
(2AEOB) | = 2- 1614 10- 16> + 14167+ 0- 16 + 1] = (175627),5. =

Since a hexadecimal digit is represented using four bits, bytes, which are bit strings of
length eight, can be represented by two hexadecimal digits. For instance, (111001013,
= (E5)g since (1110); = (E)g and {0101 = (5.

We will now describe an algorithm for constructing the base & expansion of an
integer . First, divide i by & to obiain a quotient and remainder, that is,

n = bgy + ag, 0 =aqgy<bh

The remainder, aq, is the rightmost digit in the base » expansion of n. Next, divide ¢,
by b to obtain

rmzbq;-*cq, 0=a <h

We see thal a, is the second digit from the right in the base & expansion of #. Continue
this process, successively dividing the quotients by b, obtaining additional base b digits
as the remainders. This process terminates when we obtain a quotient equal to zero,

EXAMPLE 4 Find the base 8 expansion of (12345),.
Sotarion: First, divide 12345 by 8 to obiamn
12345 = 8- ]543 + 1,
Successively dividing quotients by 8 gives

1543 = 8- 192 +7

192 =8-24+0
2% = 8340
3=8-0+3
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Since the remainders are the digits of the base 8 expansion of 12345, it follows that

(12345)) = (30071} |

The pseudacode given in Algorithm 2 finds the base & expansion (ay. - ayag)s
of the integer m.

ALGORITHM 2 Constructing Base / Expangions,

‘ procedure base b expansion{n: positive integer)

Yogi=n
| k=0
‘ while ¢ = 0
hegin i
| ay = gmod b
‘ g1= |g/b!
ki=k—~1

end {the base h expansion ot a1 1s (a, |- a )y

[n Algorithm 2, ¢ represents the guotient obtained by successive divisions by b, starting
with ¢ = n. The digits in the base » expansion are the remainders of these divisions
and are given by g mod b. The algorithm terminstes when a quotient g = 0 is reached.

ALGORITHMS FOR INTEGER OPERATIONS

The algonthms for performing operativns with integers using their binary expansions
are extrentely important i computer arithmetic. We will describe algorithms for the
addition and the multiplication of rwo integers e xpressed in binary notation. We will also
anulyze lhe computational complexity of these algorithms, in erms of the actual number
of bitoperations used. Throughout this discussion. suppose that the binary expansions
ol et and b are

O = didg vy i)y B b ibyos - Dbyl

so that ¢ and b each have 1 bits (putting bits cqual to 0 at the beginning of one of these
expunsions if necessary).

Consider the problem of adding two integers in binary notation. A procedure to per-
fortn addition can be based on the usual method for adding numbers with pencil and paper,
This method proceeds by adding pairs of binary digits together with carries, when they
oeellt.  corupate the sumot two integers. This procedure will now be specified in detail.

Toadd g aml 2 first add their nghimost biss This gives

oy + bl‘] — Ly 2o AITS
where s 1< the rightmosl bit in the binary expansion of @ + b and ¢y is the carry. which
15 either O or b Then add the next pair of bits and the carry.

) -ty = o2t

where ¢ iy the next bit {from the right) in the binary expansion of @ + b, and ¢ is the
carty. Connne this process. adding the comespending bits in the two binary cxpansions
and the vy, e defermine the next bir from the right in the binary expansion of ¢ + 4.
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Atthelaststage, add a, ., b 1, and ¢,-2 to obtain ¢, | -2+ sn—. The leading bit of the
sum is 5, = ¢, ;. This procedure produces the binary expansion of the sin, namely.
at b= (5,3,- 1802 8150)2-

EXAMPLE 3 Add ¢ = (1110p and & = (1011,

Sclution: Following the procedure specified in the algorithm, first note thai
an+ by =0+1=0-2=-1,

s0 that ¢y = 0 and sy = 1. Then, since
g +bh+eqpg=1+14+0=1-2410,

it follows that ¢; = 1 and s; = {. Continuing,

bt =11 0411 =1-241,

' so that > = | and 53 = 0. Finally. since
Il(]]}[lj i Ebi+y—=14+1+1=1-2+1,

110401 it follows that ¢3 = | and s; = 1. This means that 54 = 3 — 1. Thersfore, 5 =
FIGLRE ¢ a + b = {11001 );. This addition is displayed in Figure 1. B
Adding
{1110); and
(H1);. The algorithm for addition can be described using pscudocode as follows.

ALGORITIIN 3 Addition of [ntegers,
procedure add(a. b: positive integers)
{the binary expansions of g and b are (q,,.. @y 1G5}
and (B, by—2 +** by by o, Tespectively}
=0
for j = 0ton -1
begin
d = {a; +b; + 2
spi=a;thi+e-2d
ci=d
end
Spi= ¢
{the binary expansion of the sum is (5,5, .| - -~ fg)a}
Next, the number of additions of bits used by Algorithm 3 will be analvzed.
EXAMPLE 6 How many additions of bits are required to use Algorithm 3 to add two integers with n

bits (or less} in their binary represcntations”?

Sofution: Two integers are added by successively adding pairs of bits and, when it
occurs, acarry. Adding each pair of bits and the carry requires three or fewer additions of
bits. Thos. the rotal number of additions of bits used is less than three times the number
of bits in the expansion. Hence, the number of additions of bits used by Algorithm 2 to
add two a-bit integers 15 Of i), |
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Next, consider the multiplication of two n-bit integers & and &. The conventional
algorithm (used when muitiplying with pencil and paper} works as follows. Using the
distributive law, we see that

a-l n-l

ab = azbﬂf = ﬂa(bjzf)‘
=0 j=0

We can compute ab using this equation. We fisstnote that ab; = aifb; = land ab; =
0if b; = 0. Each time we multiply a term by 2, we shift its binary expansion one place
to the left and add a zero at the tail end of the expansion. Consequently, we can obtain
(ab,)2/ by shifting the binary expansion of &, j places 1o the left, adding j zero bits
at the ail end of this binary expansion. Finally, we obtain «# by adding the = integers
ab;2/, j=0,12.. ,n—-1

The following example illustrates the use of this algorithm.

EXAMPLE 7 Find the product of @ = {110)s and # = {101).

Solution: First note that
aby - 2" = (110) - 127 = (110)s,
ab) - 21 = (110); - 0- 21 = (0000},

110 and
:?r‘} aby - 28 = (110), - 1- 22 = (11000),.
oo
I, To find the product, add (110),, (0000}, and (11000),. Carrying out these additions {us-
111 ing Algorithm 3, including initial zero bits when necessary) shows that ab = (11110);.
FIGURE 2 This multiplication is displayed in Figure 2. |
Multiplying
{(110); and
{1},

This procedhure for multiplication can be descnbed using pseudecode as follows.

ALGORTTHM 4 Multiplying Integers.

procedure mufripiy(a, b. positive integers)
{the binary expansions of 2 and # are (g,— d,-2 ' ayap )
and (b, 15y 2--- bho)y, respectively}

for j:=0ton -1
begin
ifb; = 1then ¢; := a shifted j places
elsec; .= 0
end
1C0. 1, - .. Cp— are the partial products)
p:=10
for j:=0ton— 1
pi=ptoy
{p is the value of ab}
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Next, we determine the number of additions of bits and shifis of hits used by Al-
gorithm 4 to multiply two integers.

How many additions of bits and shifts of bits are used to multiply g and # using Algo-
rithm 47

EXAMPLE 8

Solution: Algorithm 4 computes the products of 4 and & by adding the partial products
€. €. €2 ... and ¢; 1. Whenb; = 1, wecompute the partial product ¢ by shifting the
binary expansion of af bits. When b; = 0, no shifts are required since ¢; = 0. Hence,

to find all 2 of the integers @b, 27, j = 0,1... ., n — 1, requires at most

G+1+2+-4+n—1

shifts. Hence, by Example 4 in Section 1.8 the number of shifts required is O(r%).

To add the integers ab; from j = G 1o j = # - | requires the addition of an
n-bit integer, an {n + 1)-bitinteger.. .., and a {2n}-bit integer. We know from Example
8 that each of these additions reguires Q(r) additions of bits. Conscquently, a total of
O(n?} additions of bits are required for all # additions. [

Surprisingly, there are more cfficient algorithms than the conventional algorithm
for multiplying integers. One such algorithm, which uses O(x"%5%) bit operations to
mulitiply #-bit numbers, will be described in Chapter 5.

Exercises

. Use the Buclidean algorithm to find

bi ged(111, 201).
d) gcd{12345, 54321}

a) gedil2, 18).
cb ged( 1001, 1331).

. Canvert the following integers from binary notation to

decimal notation.
ap 11011 by 143 1011 0101

dy I1E 11000001 1111

2. Use the Euclidean algonthm to find ¢) 1L 1011 {110
a) gedil, 5) b) ged(i00, 101) Y. Devise a simple method for converting from hexadec-
e) ged( 123,277} dy ged(1529, 14039; imal notation to binary notation.
e} god(1529, 14038) ) ged(11LEL 11HI1D) 10. Devise a sunple method for converting from binary no-
3. How many divisions are required t find gedi2l, 34) tation ty hexadecimal nolation.
using the Euclidean aigorithm? 11. Convert each of the following integers from hexadeci-
4. How many divisions arc required to find ged(34,55) mal notation to binary notation.
using the Buclidean aigorithm? a) 80E b 135AB
5. Convent the following integers from decimal notation ¢) ABBA  d) DEFACED
to binary notation. 12, Convert each of the following integers from binary no-
a} 23] b) 4532 ¢) 97644 tation to hexadecimal notation,
6. Convert the following integers from decimal notation a) 1111011 by 1010 1630 1010
to bicary notation. ¢) 1101110111 0111
a) 321 by 1023 ¢) 100632 13, Show that every positive integer can be represcnted

- Convert the following inlegers from binary nolation to

decimal notation,

a) 1111t

b 0000 G0

o) 10101 6l

d) 1101001 0601 0000

uniquely as the sum of distinet powers of 2. (Hint: Con-
sider hinary expansions of integers.)

- 1t can be shown that every integer can be uniguely rep-

resented 11 the form

e,kak -~ fp- |3k“] +or e 3+ ey,
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where e, = 1,0, 00 | for j = 0, 1,2,.. .k Expan-
sions of this pype are called balanced ternary expan-
sions. Find the balanced ternary cxpansions of
ab § [URIR ¢) 37 di 79
15, Show thut a positive inte ger1s divisible by 3 if and only
if the sum of its decimal digits 15 divistble by 3.
Show that a positive integer is divisible by 11 if and
only if the difference of the sum of its decimal digis
in even-numbered posinons and the sum of its decimal
digits in odd-numbered positions is divisible by 11,
Show that a positive integer is divisible by 3 if and only
if the difference of the suin of its binary digits in even-
nombered positions and the sum of its binary digits in
add-numberad positions ix divisible by 3.

16

17

One’s complement representations of integers are used
tw simplify computer arithmetic. To represent positive and
nepative integers with absolute value less than 27 1, a -
tal of m bils 1s used. The leftmost bit is used o represent
the sign. A O bit in thes position is used for positive inte-
gers. and a 1 bit ip this position is used for negative in-
tegers. For positive integers the remaining bits are identi-
cal to the binary expansion of the integer. For negative in-
tegers, the remaining hits are obtained by first finding the
binary expansion of the absolute value of the integer, and
then taking the complement of each of these bits, where
the complement of a tis a 0 and the complement of a 0
sal

I8, Find the une’s complement representations, using bit

stnngs of length six, of the tullowing iategers,

ay 22 by 31 ch —7 dy —19

What inleger dees cach of the following one’s comple-

ment representations of length five represent?

a} [100] b} 01101 o L0031 db HHL

20, It or is 2 positive integer less than 27", how is the one’s
complement representation of --m obtained from the
one’s complement of m. when bit strings of length n
are uscd?

21. How is the one s complement representation of the surm
of two integers obrained from the one’s complement
representations ol these integers?

22, How isthe one’s complement representation of the dif-
ference of two integers obtained from the onc’s com-
pletent represemations of these integers?

23, Show that the integer m with one’s complement rep-
Fesentdtion i, 1a, @< - @ant can be found using the

9

. E Lo Aan ol \__\‘H—f '
cquation m = —a, (12 -0 ha?

Two's comiplement reprosentations of integers are also
used to simplify computer anthmetic and are used more
commonly than one’s complement representations. To rep-
resent an ipteger x with —2" 1 = x = 2°71 — 1 for a spec-
ified positive integer », a total of # bits is used. The leftmost
bit is used o represent the sign. A 0 bit in this position is
used for positive integers. and a T bit in this position js used

for negative integers, just as in one's complement expan-
sions. For a positive integer, the remaining bits are tdenti-
cul to the binary expansion of the inleger. For a negalive
integer, the remaining bits are the bits of the binary ex-
pansion of 2" ' — | x|. Two's complement cxpansions of in-
tepers are often used by computers because additien and
sabtraction of integers can be performed casily using these
expansions, where these integers can be cither positive or
negative.

24. Answer Exercise 18. but this time find the two's com-
plement expansion using bit strings of length six.

25, Answer Exercise 19 if each expansion is & two™s com-
plement expansion of length five.

26. Answur Exercise 20for two's complemens expansions.

27, Answer Exercise 21 for two's complement expansions.

28. Answer Exercise 22 for two’s complement expansions,

29, Show that the integer m with two's complement rep-
[ESSNLAion (@, ye,-z -+ g dg) can be found using (he
equation m = —a,.. - 2777 + l:‘;ﬁ @2

3. Give asimple algorithn: for forming the two’s comple-
ment representation of an integer from its ene’s com-
plement representation.

31, Semetimes infegers are encaded by using Four-digit bi-
nary expansions to represent cach decimal digic. This
produces the binary coded decimal form of the in-
teger. For instance, 791 is encoded in this way by
GlLT100100T. How many bits are required to repre-
sent a number with » decimal digirs using this type of
encoding?

A Cantor expansion is a sum ol the form
aal+ay gin— 1N+ @2t a1

where &, s an ineger with 0 = g, = ¢ for ¢ = |,
2 .

32, Find the Cantor expansions of
ay 2 by 7 c) 19
d 37 ) 1000 £) 1,000,000
*33. Describe an algorithm tha finds the Camtor expansion
of an integer.
*34. Describe an algorithm o add two integers fromt their
Cantor expansions,
Add (10¥I1); and (11010) by working through each
step of the algonthm for addition given in the rext.
Multiply {1110} and (10 [0}; by working through cach
step of the algorithm for multiplication piven in the
Lext.
37, Describe an algorithm tor finding the difference of two
hinary expansions.
38. Estimate the number of bit operations used to subtract
two binary expansions.
39. Devise an algorithm thar, given the binary expansions
of the integers a and b, determines whethera > b, a =
boora - b

35

36
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4. How many bit eperations does the comparison algo- 41, Estimate the complexity of Algorithm 2 for finding the
rithm from Exercise 39 use when the larger of ¢ and base b expansion of an integer # in terms of the number

& has n bits in 115 binary expansion’? of divisions used.

2.5
Applications of Number Theory

INTRODUCTION

Number theory has many applications, especially to computer science. In Section 2.3
we described several of these applications, including hashing functions, the genera-
tion of pseudorandom numbers, and shift ciphers. This section continues our intro-
duction to number theory, developing some key results and presenting two important
applications: a method for performing arithmetic with large integers and a recently in-
vented type of cryptosystem, called a public key system. In such a cryptosystem, we do
not have 1o keep encryption keys secret, since knowledge of an encryption key does not
help someone decrypt messages in a realistic amount of time. Privately held decryption
keys are nsed o decrypt messages.

Before developing these applications, we will introduce some key resulls that play
a central role in number theory and its applications. For example, we will show how
10 solve systems of linear congruences modulo pairwise refatively prime integers using
the Chinese Remainder Theorem, and then show how to use this result as a basis for
performing arithmetic with farge integers. We will introduce Fermat’s Little Theorem
and the concept of a pseudoprime and will show how to use these concepts to develop
a public key cryptosystem,

SOME USEFUL RESULTS

An important result we will use throughout this section is that the greatest common
diviser of two integers ¢ and b can be cxpressed in the form

sa + b,

where s and ¢ are integers. [n other words, ged{a, #) can be expressed as a linear
combination with integer coefficients of @ and b. For example, ged(6, 14) — 2, and
2=1(-2)y-6+1-1d. We state this fact as Theorem 1.

THEORENM | tf @ and b are positive imegers, then there exist integers 5 and ¢ such that ged(a, b) =
£a + b,

We will not give a formal proof of Theoren 1, but we will provide an example of a
methed for finding a linear combination of two integers equal to their greatest commen
divisor. {In this section, we will assume that a linear combination has integer coeffi-
cients.} The method proceeds by working backward through the divisions of the Eu-
clidean algerithm.
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EXAMPLE 1 Express gedi252, 198) = 18 as a linear combination of 252 and 198.

Sofution: To show that ged(252, [98) = 18, the Euclidean algorithm uses the follow-
ing divisions:

252 =1-198 + 54

198 = 3-54 + 36
4 =1-36+18
36 =218

Using the next-to-Jast division (the third division), we can express ged(252, 198) = 18
as 4 linear combination of 54 and 36, We find that

[8 =34 -1-36

The second division tells us that

36 = 198~ 3-54

Substituting this expression for 36 into the previous equation, we can express 18 as a
imear combination of 54 and 198. We have

18=54-1-36=5—-1-(198-3.54) =4 .54 — 1198
The first division tells us that
54 = 252 - 1- Y8,

Substituting this expression for 54 into the previous equation, we can express 18 as a
linear combination of 252 and 198. We conclude that

18 =4-{252-1-198) —1-198 = 4-252 - 5. 198,

completing the solution. |

The method used in Example { works for any pair of positive integers. | There are
more efficient methods for expressing ged{a, b) as a linear combination of a and #:
consult the refcrences at the ¢nd of the book 10 learn more about these methods. |

We will use Theorem 1 to develop several useful results. One of our goals will be
to prove the part of the Fundamental Theorem of Arithmetic asserting that a positive
imteger has at most one prime factorization. We will show that if a positive integer has
4 factorization into primes, where the primes are written in nondecreasing order, then
this factorization is unigue.

First, we need to develop some results about divisibility.

LEMMA 1 If a, b, and ¢ are positive integers such that ged(a, b) = 1 and a | bc, then a | c.
Proof: Since ged(a, b) = |, by Theorem | there are integers s and f such that
sat+ith=1

Multiplytng both sides of this cquation by ¢, we obtain

st the = o
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Using Theorem 1 of Section 2.3, we can use this last equation to show that ¢ ! c. By
part 2 of that theorem, a { the. Since « | sac and a | the, by pant 1 of that theorem, we
conclude that « divides sac + tbc, and hence a | ¢. This finishes the proof. 0

We will use the following generalization of Lemma | in the proof of uniquencss of
prime factorizations. (The proof of Lemma 2 is left as an exercise in Section 3.2, since
it can be most easily carried out using the method of mathematical induction, which
will be covered in that section.)

LEMMA 2 If p is a prime and p | aya7 - a, where each 4y manmﬂ:up[ & for
some . S '

We can now show that a factorization of an integer into primes is unique. That is,
we will show that every integer can be written as the product of primes in nondecreasing
order in at most one way. This is part of the Fundamemal Theorem of Arithmetic, We
will prove the other part, that every integer has a factorization into primes, in Sec-
tion 3.2
Proof (of the uniqueness of the prime factorization of a positive integer): Suppose
that the positive integer n# can be written as the product of primes in two different
ways, say, n = pi1py - p,and no = quq: - g, cach p; and ¢, are primes such that

nEpEoc-Spadg sq = =g
When we remove all common primes from the (wo factorizations, we have

PiPiy "' P, = 4545 G
where 1o prime occurs on both sides of this equation and # and v are positive integers.
By Lemma 2 1 follows that p; divides g,, for some & Since no prime divides another
prime, this is impossible. Consequently, there can be at most one factorization of # into
primes in nondecreasing order, |

Lemma | can also be used to prove a result about dividing both sides of a con-
gruence by the same integer. We have shown (Theorem 7 in Section 2.3) that we can
mulkiply both sides of a congruence by the same integer. However, dividing both sides
of a congruence by an integer does not always produce a valid congruence, as the fol-
lowing example shows.

EXAMPLE 2 The congruence [4 = & (mod 6) holds, but both sides of this congruence cannot be
divided by 2 since 14/2 = 7 and 8/2 = 4, but 7 # 4 (mod 6). [ ]

However, using Lemma 1, we can show that we can divide both sides of a congru-
ence by an integer relatively prime to the modulus. This is stated as Theoremn 2.

THEQREM 2 Let m be a positive integer and let a, b, and ¢ be integers, if ac = be (mod m) and
gedic, my = 1, then o = b (mod m).

Proof: Sinceac = befmodm).m | ac he = e(a—b). By Lemma 1, since gedic, m) =
, it follows that m | @ — 5. We conclude that a = b (mod m). O
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LINEAR CONGRUENCES

A congruence of the form
ax = b{mod m)

where m is a positive integer, @ and b are integers, and x is a variable, is called a linear
congruence. Such congruences arise throughout number theory and its applications.

How can we solve the lineur congruence ax = b (med m}, that is, find all integers
x that satisfy this congruence? One method that we will describe uses an integer & such
that@a = 1 {mod m), if such an integer exists. Such an integer @ is said to be an inverse
of @ modulo m. Theorem 3 guarantees that an inverse of @ modulo m exists whenever
a and m are refatively prime.

THEOREM 3 Ifaandmmml&ﬁvelypnmzmtqgm&nﬂm>l.m- itrverss of 2 S0
m exists. Purthermore, this invetse is unigue mo iiique
pomuvemugerzilessthanmﬂmtlsmmvmofamoduh _ Mymhum
of a modulo m is congruent to @ modulo m.) ' S

Proof: By Theorem 1, since ged(a, m) = 1, there arc integers s and ¢ such that
sa+tm = L

This implies that
sa + tm = | {mod m).

Since tm = 0 (mod m), it follows that
sa = | (mod m).

Consequently, s is an inverse of 4 module m. That this inverse is unique modulo m is
left as Exercise 9 at the end of this section. O

The proof of Theorem 3 describes a method for finding the inverse of & modulo m
when « and m are relatively prime: find a linear combination of ¢ and m that equals 1
{which can be done by working backward through the steps of the Enclidean aigorithm);
the coefficient of @ in this linear combination is an inverse of @ modulo m. We illustrate
this procedure in Example 3.

EXAMPLE 3 Find an inverse of 3 modulo 7.

Solution: Since ged(3, 73 = 1, Theorem 2 tells us that an inverse of 3 modulo 7 exists.
The Euclidean algorithm ends quickly when used to find the greatest common divisor
of 3and 7:

T=2-3+1
From this equation we see that
-2-3+41:7=1

This shows that —2 is an inverse of 3 modulo 7. (Note that every integer congruent to
—2 modulc 7 is also an inverse of 3, such as 5, —9, 12, and so on.) |
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When we have an inverse g of a modulo m, we can easily solve the congruence
ax = b {mod m) by multiplying both sides of the linear congruence by @, as Example
4 Hustrates,

EXAMPLE 4 What are the solutions of the linear congruence 3.x = 4 (mod 7)?

Solution: By Example 3 we know that ~2 is an inverse of 3 modulo 7. Multiplying
both sides of the congruence by —2 shows that

-2-3x=-2-4(mod 7).

Since -6 =1 {mod 7) and —8 = 6 (mod 7), it follows that if x is a solution, then
x=-8=6{mod7).

We need to determine whether every x with x = & (mod 7) is a solution. Assume
that x = 6(mod 7). Then, by Theorem 7 of Section 2.3, it follows that

3x=3-6=18=4(mod 7),

which shows that all such x satisfy the congruence. We conclude that the solutions to
the congruence are the integers x such that x = 6{mod 7), namely, 6, 13, 20, ... and
-1,-8, 15, .... n

THE CHINESE REMAINDER THEOREM

- -» - Systems of linear congruences arise in many contexts. For example, as we will see

WE{? later, they are the basis for a method that can be used to perform arithmetic with large

=% integers. Such systems can even be found as word puzzles in the writings of ancient
Chinese and Hindu mathematicians, such as that given in Example 5.

EXAMPLE 5 In the first century, the Chinese mathematician Sun-Tsu asked:

There are certain things whose number is unknown. When divided by 3, the re-
mainder is 2; when divided by 35, the remainder is 3; and when divided by 7, the
remainder is 2. What will be the number of things?

This puzzie can be translated into the following question: What are the solutions of
the systems of congruences

x =2 (mod 3),
x =3 (mod 5},
x =2 (mod 7)?
We will soive this system, and with it Sun-Tsu’s puzzle, later in this section. n

The Chinese Remainder Theorem, named after the Chinese heritage of problems
tnvolving systems of linear congruences, states that when the moduli of a system of
linear congruences are pairwise relatively prime, there is a unique solution of the system
modulo the product of the moduli.
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THEOREM 4 THE CHINESE REMAINDER THEOREM  Letm;, ma, ..., my Iitmnh-
tively prime positive integers. The system C el
x = g (mod my),
X = az (md mﬂ)r - . '.$\ x il- ""J‘.'v." . g
x = g, (mod m,)

has a unigue solution modale m = mymy - m,. ('Ihatls,&mnum.rm
{t = x < m, and all other solutions are congruent moduio m o this sotution.)

Proof: To establish this theorem, we need to show that a solution exists and that if is
unique modulo m. We will show that a solution exists by describing a way to construct
this solution: showing that the solution is unigue modulo m is Exercise 20 at the end of

this section.
To construct a stmultaneous solution, first let
L= mimy

forx = 1,2,..., n. Thatis, M, is the preduct of the moduli except for #,. Since m; and
my have no common factors greater than 1 when 7 # £, it follows that ged(m;, M) =
Consequently, by Theorem 3, we knew that there is an integer y,, an inverse of M,
modulo my, such that

My = 1 (mod ).
To construct 4 simultaneous solution, form the sum
R HIM|}’1 + GQMQ}‘E + -+ anM,,yﬂ.

We will now show that x is a simultaneous solution. First, note that since M, =
0 (mod m;) whenever j > k, all terms except the kth term in this sum are congru-
ent to 0 modulo m,. Since M, v, = 1 {mod m,) we see that

X = a My, = a (mod my),

fork = 1,2,...,n. We have shown that x is a simultaneous solution to the » congru-
ences. O

The followtng example itlustrates how o use the construction given in the proof of
Theorem 4 1o solve a system of congruences. We will solve the system given in Example
5, arising in Sun-Tsu’s puzzle.

EXAMPLE 6 To solve the system of congruences in Exampie 5, firstietm = 3-5-7 = 105, M| =
mf3 = 35 My = m/§ = 21, and My = m/7 = 15. We see that 2is aninverse of M) =
35 modulo 3, since 35 = 2 (mod 3}; 1 1s an inverse of M, = 21 modulo 5, since 21 =
1 {mod 3); and | is an inverse of M3 = 15 (mod 7}, since 15 = 1 (med 7). The solutions
to this system are those x such that
x=aMiy +arMoyy +asMay; = 2-35-243-21- 1+ 215+ 1 {mod 105)
= 233 =23 (mod 105},
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It follows that 23 is the smallest positive integer that is a simultaneous solution. We
conclude that 23 is the smallest positive integer that Jeaves a remainder of 2 when
divided by 3, a remainder of 3 when divided by 5, and a remainder of 2 when divided

by 7. u

COMPUTER ARITHMETIC WITH LARGE INTEGERS

Suppose that my, mty, . .., m, are pairwise relatively prime integers greater than or equal
to 2 and let m be their product. By the Chinese Remainder Theorem, we can show (see
Exercise 18) that an integer a with 0 < ¢ < m can be uniquely represented by the -
tuple consisting of its remainders upon division by m;, i = 1,2,..., n. That is, we can
uniquely represent a by

(a mod my, a mod m, ..., ¢ mod m,).

What are the pars used to represent the nonnegative integers less than 12 when they
are represented by the ordered pair where the first component is the remainder of the
integer upor division by 3 and the second component is the remainder of the integer
upon division by 47

Solution; We have the following representations, obtained by finding the remainder of
cach integer when it 1s divided by 3 and by 4:

0=0mH 4=01,00 8=(20

=N 5=021 9={01

2=022 6=02 10=(D

3=003 7=(0,3% 1l =273 [
Te perform arithmetic with large intcgers, we select moduli my, ms, ..., m,,

where each m; is an integer greater than 2, ged{m,, m;) =1 whenever { # j, and
m = mymy - my, is greater than the result of the arithmetic operations we want to
carry out.

Once we have selected our moduli, we carry out arithmetic operations with large
integers by performing componentwise operations on the n-tuples representing these
integers using their remainders upon division by m;, i = 1,2,..., . Once we have
computed the value of each component in the result, we recover its value by solving a
system of # congruences modulo m;, i = 1.2, ..., n. This method of performing anth-
metic with large integers has several valuable features. First, it can be used to perform
arithmetic with integers larger than can ordinarily be carried out on a computer. Second,
computations with respect to the different moduli can be done in parallel, speeding up
the arithmetic.

Suppose that performing arithmetic with integers less than 100 on a certain processor is
much quicker than doing arithmetic with larger integers. We can restrict almost all our
computations o integers less than 100 if we represent integers using their remainders
maodulo pairwise relatively prinie integers less than 100, For example, we can use the
moduli of 99, 98, 97, and 95. (These integers are relatively prime pairwise, since no
two have a common factor greater than 1.)

PDF created with pdfFactory trial version www.pdffactory.com



http://www.pdffactory.com

144 2/ The Fundamentals: Algorithms, the Integers, and Mairices

By the Chinese Remainder Theorem, every nonnegative integer less than 99 - 98 -
97 - 95 = 89.403.930 can be represented uniquely by its remainders when divided by
these four moduli. For examptle, we represent 123,684 as (33, 8, 9, 89), since 123,684
mod 99 = 33, 123,684 mod 98 = 8, 123,684 mod 97 = 9, and 123,684 mod 95 =
89. Similarly, we represent 413,456 as (32, 92, 42, 16).

To find the sum of 123,684 and 413,456, we work with these 4-tuples instead of
these two integers directly. We add the 4-tuples componentwise and reduce each com-
ponent with respect to the appropriate modulus. This yields

(33.8,9,89) + (32,92,42, 16)
= {65 mod 99, 100 mod 98, 51 mod 97, 105 mod 95)
= (65,2, 51, 10).

To find the sum, that is, the integer represented by (65, 2. 51, 10), we need to solve
the system of congruences

x = 65 {mod Y9)
x = 2 (mod 98)
X =51 {mod 97)

x = 10 {mod 95}

It can be shown {see Exercise 29) that 537,140 is the unigue nonnegative selution
of this system less than §9,403,930. Consequently, 537,140 is the sum. Note that it is
only when we have to recover the integer represented by (63, 2, 51, 10) that we have
to do arithmetic with integers larger than 1 00, B

Particularly good choices for moduli for arithmetic with large integers are sets of
integers of the form 2¢ — |, where & is a positive integer, since it is casy to do binary
arithmetic modulo such integers, and since it is easy to find sets of such integers that
are pairwise relatively prime. [The second reason is a consequence of the fact that
ged{2¢—1 20~ 1) = pediabl | oo Exercise 31 shows.] Suppose, for instance, that we
can do arithmetic with integers less than 2% easily on our computer, but that working
with larger integers requires special procedures. We can use pairwise telatively prime
moduli less than 2% to perform arithmetic with integers as targe as their product. For
example. as Exercise 32 shows, the integers 2% = 1, 2% — | 233 -1 23t -} 2% _
and 2% - 1 are pairwise refatively prime. Since the product of these six moduli exceeds
2% we can perform arithmetic with integers as large as 2% (as long as the results do
not exceed this number) by doing arithmetic modulo for each of these six moduli, none
of which exceeds 2%,

PSEUDOPRIMES

In Section 2.3 we showed that an integer n is prime when it is not divisible by any
prime p with p < /r. Unfortunately, using this criterion to show that 4 given integer
is prime is inefficient. It requires that we find all primes not exceeding /n and that we
carry out trial division by each such prime to see whether it divides .

Are there more efficient ways to determine whether an Integer is prime? Ancient
Chinese mathematicians believed that # was prime if and only if

271 == | {mod 1,
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If this were true, it would provide an effictent primality test. Why did they belicve
this congruence could be used to determine whether an integer is prime? First, they
observed that the congruence hoids whenever n is prime. For example. 5 is prime

and
2371 = 2% = 16 = 1 (mod 5).

Second. they never found a composite integer » for which the congruence holds. The
ancient Chinesc were only partially correct. They were correct in thinking that the con-
gruence holds whenever n is prime, but they were incorrect in concluding that # is

necessarily prime if the congruence holds.
The great French mathematician Fermat showed that the congruence holds when

nis prime. He proved the following, more general result.

THEOREM 5§ FERMAT'S LITTLE THEOREM  If p is prime and a is an integer not divisible by
p, then ' '

a’~! = 1 (mod p).
Furthermore, for every integer a we have

a’ = g (mod p).

The proof of Theorem 5 is outlined in Exercise 17 at the end of this section.
Unfortunately, there are composite integers n such that 2°7' = | (mod n}. Such
integers are called psendoprimes.

EXAMPLE 9 The integer 341 is a pseudoprime singe it is composite (341 = 11 - 31) and as Exercise
23 shows
2% = | (mod 341). |

Although the ancient Chinese were wrong, pseudoprimes are relatively rare. Their
scarcity—and the cven greater scarcity of integers that pass more delicate tests that
begin by determining whether an integer is a pseudoprime—can be used as the basis
for efficient probabilistic primality tests. Such tests can be used to quickly show that
1t almost certainly is the case that a given integer is prime. (More precisely, these tests

Pierre de Fermat (1601-1663).  Pierre de Fermat, one o the most important mathematicians of the seven-
teenth century, was a lawyer by profession, He s the most famous amatear mathematician in history, Fermat
published little of his mathematical discoveries. It is through his correspondence with other mathematicians
that we know of his work. Fermat was one of the invenlors of analytic geometry and developed some of
the fundamental ideas of calculus. Fermat, along with Pascal, gave probability theory a mathematical basis.
Fermat formulated what is now the most famous unseived problem in mathematics, He asseried that the
equation x* + " = z" has no nomrivial positive integer solutions when # is an integer areater than 2. For
meore than 300 years, no proof {or counterexample) was found. In his copy of the works of the ancient Greek
mathematician Diophantus, Fermat wrote that he had a proof but that it would not fit in the margin, Because
he first proof, found by Andrew Wiles in 1994, relies on sophisticated, moder mathematics. most peaple
think that Fermat thought he had a proof. but i was incorrect. Hiwever, he may have been tempting others
to Lk fuE o pront. ot being abls to find ane himset.

web
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weh

show that the probability that an integer that passes a series of tests is pﬁﬁlc 15 close to
1; see Chapter 4 for a discussion of probability.} These probabilistic primality tests can
be used, and are used, to find large pnmes extremely rapidly on computers.

PUBLIC KEY CRYPTOGRAPHY

In Scetion 2.3 we introduced metheds for cncrypting messages based on congruences.
When these encryplion methods are used, messages, which arc strings of characters, are
translated into numbers. Then the number for each character s transformed iato another
number, either using a shift or an affine rrunsformation medule 26. These methods are
examples of private key cryptosystems, Knowing the encryption key lets you quickly
find the decryption key. For examiple, when a shift cipher is used with encryption ey
k. @ number p representing a letter is sent to

¢ = {p+ kmod 26,
Decryption is carried out by shifting by ~k; that is,
p = (¢ — k)ymod 26.

When a private key cryptosystem is used, a pair of people who wish to communicate
1n secret must have a separate key. Since anyone knowing this key can both encrypt and
decrypt messages casily, these two people need to securcly exchange the key.

in the mid-1970s, cryptologists intreduced the concept of public key cryptosys-
tems. When such cr: ptosystems are used, knowing how to send someone a message
does not help you decrypt messages sent to this person. In such a system, every person
can have a publicly known encryption key. Only the decryption keys are kept secret,
and only the intended recipient of a message can decrypt it, since the encryption key
does not let someone find the decryption key without an extraordinary amount of work
{such as 2 billion years of computer time).

in 1976, three rcsearchers at M.LT.—Ron Rivest, Adi Shamir, and Len
Adleman—introduced a public key cryptosystemn, known as the RSA system, from
the initials of its inventors. The RSA cryptosystem is based on modular exponentiation
modulo of the product of two large primes. Each individual has an encryption key
consisting of a modulus n = pg, where p and g are large primes, say, with 200 digits
each, and an exponent ¢ that is relatively prime to (p ~ 13{g — 1}. To produce a usable
key, two large primes must be found. This can be done quickly on a computer vsing
probabilistic pnmality tests, referred to earlier in this section. However, the product of
these primes n = pg, with appreximately 400 digits, cannot be factored in a reasonable
length of ime. As we will see, this is an important reason why decryption cannot be
done quickly without a separate decryption key.

RSA ENCRYPTION

In the RSA encryption method, messages are translated into sequences of integers. This
can be done by translating each Jetter into an integer, as is done with the Caesar cipher.
These integers are grouped together to form larger integers, each representing a block of
letters. The encryption proceeds by transforming the integer M, representing the plain-
text (the original message), to an integer , representing the ciphertext (the encrypted
message), using the function

C =M modn
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(To perform the encryptior, we use an algorithm for fast modular exponentiation, such
as that described in Exercise 14 in the Supplementary Exercises at the end of this chap-
ter.) We leave the encrypted message as blocks of numbers and send these to the in-

tended recipient.
Example 10 illustrates how RSA encryption is performed. For practical reasons

we use small primes p and ¢ in this example, rather than primes with 100 or more
digits. Although the cipher described in this example is not secure, it does illustrate the
techniques used in the RSA cipher.

EXAMPLE 10 Encrypt the message STOP using the RSA cryptosystem with p = 43 and ¢ = 59, %0
thatn = 43 -59 = 2537, and with ¢ = 13. Note that

ged(e, (p — 1){g — 1)) = ged(13,42-58) = 1.

Solution: We translate the letters in STOP into their numerical equivalents and then
group the numbers inte blocks of four. We obtain

1819 1415
We encrypt each block using the mapping
C = M" mod 2537.

Computations using fast modutar multiplicaticn show that 1819 mod 2537 = 2081
and 1415 mod 2537 = 2182. The encrypted message is 2081 2182, |

RSA DECRYPTION

The plaintext message can be quickly recovered when the decryption key d, an inverse
of e modulo (p — 1}(g ~ 1}, is known. [Such an inverse exists since ged(e, (p— 1
(g~ 1) = 1] To see this, note that if de = 1 (mod (p — 1)(¢ — 1)), there is an integer
ksuchthatde = 1 + &(p — I}{g — 1). It follows that

Cd - (ME)(J' _ Md( —- M!*—k{p—li(ﬁ'—l}‘

By Fermat’s Little Theorem [assuming that ged{M, p) = gcd(M, g) = 1, which helds
except in rare cases], it follows that M#~! = 1 (mod p) and M4~! = | (mod ¢). Con-
sequently,

CH=M-MP Y9 = 411 = M (mod p)

and
Cf=M- (MNP D= 1.1 = M (mod g).

Since ged(p, g) = 1, it follows by the Chinese Remainder Theorem that
C? = M (mod pg).

Example 11 illustrates how to decrypt messages sent using the RSA cryptosystem.

EXAMPLE 11 We receive the encrypted message 0981 0461, What is the decrypted message if it was
encrypted using the RSA cipher from Example 107
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web-

Solution: The message was encrypted using the RSA cryptosystern with n = 43 - 59
and exponent {3. As Exercise 4 shows, d = 937 is an inverse of 13 modulo 42 - 58 =
2436, We usc 937 as our decryption exponent. Consequently, to decrypt a block C, we
compule

P = C*" mod 2537.

To decrypi the message, we use the fast modular exponentiation algorithm to compute
0081%7 mod 2537 = 0704 and 0461%" med 2537 = 1115, Consequently, the nu-
merical version of the original message is 0704 1115. Translating this back to English
lettcrs, we sec that the message is HELP. |

RSA AS A PUBLIC KEY SYSTEM

Why is the RSA cryptesystem suitable for public key cryptography? When we know
the factorization of the modulus n, that is, when we know p and 4, we can use the
Euclidean algorithm to quickly find an exponent d inverse to ¢ modulo (p — 1¥g — 1).
This lets us decrypt messages sent using our key. However, no method is known (o
decrypt messages that is not based on finding a factorization of n, or that does not also
lead to the factorization of »#. The most efficient factorization methods known (as of
1999} require billions of years to factor 400-digit integers. Consequently, when p and
g are 200-digit primes, messages encrypted using # = pg as the modulus cannot be
found in a reascnable time unless the primes p and ¢ are known.

Active research is under way to find new ways to efficiently factor integers. Integers
that were thought, as recently as several years ago, to be far too large te be factored in
a reasonable amount of time can now be factored routinely. Inlegers with more than
100 digits, as well as some with more than 150 digits, have been factored using team
cfforts. When new factorization techniques are found, it will be necessary to use larger
primes 1o ensure secrecy of messages. Unfortunately, messages that were considered
secure earlier can be suved and subsequently decrypted by unintended recipients when
it becomes foasible to factor the n = pg in the key used for RSA encryption.

‘The RSA method has been implemented and is used for some particularly sensitive
applications. However, the most commonly used cryptosystem is a private key system
known as DES (an acronym for the Data Encryption Standard}. When DES is used, en-
cryption and decryption can be performed cxtremely rapidly on a computer. Although
some people believe that messages encrypted using DES can be broken by experts, DES
is considered sufficiently secure in most situations. The use of public key cryptography,
via the RSA system. is growing, but when the RSA system is used, encryption and
decryption are too slow (using the current generation of computers) for many applica-
tions. However, there are applications that use both private key and public key systems.
For example. a public key cryptosystem. such as RSA, can be used to distribute private
keys to pairs of individuals when they wish to communicate. These people then use a
private key system. such ay DES, for encryption and decryplion of messages.

Exercises

L Express the greatest commun divisor of each of the fol- aj ki b 20,44 ¢ 36,48
lowing pairs of'integers ax a linear combination of these d) 34,55 el 117.213 0,223

ntegeers,

) 123, 2347 hl 3454, 4666 i) 9999, L1

PDF created with pdfFactory trial version www.pdffactory.com



http://www.pdffactory.com

2

NS -k 2N e

10.

1.
12.
*13.

*16.

*17.

Express the greatest common divisor of each of the fol-
lowing pairs of integers as a lingar combination of these
integers,

ay 9. 11 b} 33.44

c) 35.78 d} 21,55

€) 101. 203 £} 124, 323

g 2002, 2339 h) 3457, 4669

i) 10001, 13422

. Show that 15 is an inverse of 7 modulo 26.

Show that 937 15 an inverse of 13 modulo 2436.

. Find an inverse of 4 modulo 9.
. Find an inverse of 2 modulo 17.

Find an inverse of 19 modulo 141.

. Find an inverse of 144 modulo 233,
. Show (hatif & and m are relatively prime positive inte-

gers, then the inverse of ¢ modulo m is unique modulo
m [Hint: Assume that there are two solutions & and ¢
of the congruence ex = | {moed m). Use Theorem 2 to
show that b = ¢ (mod m) ]

Show that an inverse of a modulo m does not exist if
pedia, my =

Solve the congruence dx = 5 (mod 9).

Solve the congruence 2r = 7 (mad 17).

Show that it m is a positive integer preater
than 1 and ac = be (mod m), then a = &
mod m/ gedic, m),

- #) Show that the positive integers less than 11, except

1 and 10, can be split into pairs of integers such
that each pair consists of integers that are inverses
ol each other modulo 11,

b} Usc part (a) to show that 10! = - (med 11).

. Show that if p is prime, the only solutions of 1° =

imod p) are integers x such that x = | (mod p} and

x = —Himod pl,

a) Generalize the result In part (a) of Exercise 14 that
ts, show that if p is a pnime, the positive integers less
than pr. except | and p — 1. can be splitinto (p —
3W2 pairs of integers such that each pair consists of
ntegers that are inverses of cach other. (Him: Use
the resuit of Exercise 13.)

by From part (a) conclude that (p -~ 1) -1
{mod p) whenever p is prime. This result is known
as Wilson’s theorem.

¢) What can we conclude if # is a positive integer such
that (# - 12 ¥ =1 {mod #)?

This exercise eutlines a proof of Fermat’s Little Theo-

ren.

a} Suppose that ¢ is nmot divisible by the prime
p Show that no two of the integers 1 - 4
2ra.Ap Da are congruent modulo p.

b) Conclude from part {a) that the product of
1.2..... p—liscengruent modulo p to the product
ofa. 20 .. (p = Da. Use this to show that

(o Tew Tipe Dtimnd o

18.

*19.

*20

21

22

23,

24,

2.5 Exercises 149

) Use Wilson's theoremn {proved in Exercise 16] to
show that ¢ ' =1 (mod pyif p 7 a.

d)} Use part () to show that a? = & {mod p) for all
Negers a.

Use the Chinese Remainder Theorem to show that an

integer g, withQ < @ < m = mymy - m,, where the

mtegers my, my. ... m, are pairwise relatively prime,

can be represented uniquely by the a-tuple (g mod m,,

amod m,. .., a mod m,).

Let my. ;o ..., m, be pairwise relatively prime in-

legers greater than or equal to 2, Show that if ¢ =

bimoed m) for i = 1,2, . n then a = b{mod m),

where m = mm - m,.

Complete the proof of the Chinese Remainder Theorern

by showing that the simultaneous solution of a svstem

of linear congruences modulo pairwise relatively prime

integers is unique modulo the product of these moduli.

(Hint: Assume that x and v are rwo simultaneous solu-

tions. Show that m, | x — y for ali i. Using Exercise 15,

conclude that m = myms o m, | £ — v.)

Which integers leave aremainder of | when divided by

2 and also leave a remainder of | when divided by 37

Which integers are divisible by 5 but leave a remainder

of 1 when divided by 37

2} Show that 2% = 1 {mod 11) by Fermat's Little
Theorem and noting that 240 = (2'0)™,

b} Show that 22 = | (mod 31) using the fact that
30 (25 ]63 = 13268

¢) Conciude from parts fa} and (b} that 2™ =
1 {mod 341).

a) Use Fermat's Linle Theorem to compute 3% mod
5.3 mod 7. and 3 mod (I,

b} Use vour resulls from part (a) and the Chinese Re-
mainder Theorem to find 3*7 mod 385, Note that
By=5-7-11)

. a} Use Fermat's Little Theorem to compute 5 mod

6.

27.

28,

29,

7.5 mod i1, and 3™ mod 13,

b) Use your results from part (a} and the Chincse Re-
raainder Theotem to find 57 meod 1001. (Note
that 00T = 7- 11 - 13.)

Find the nonnegative integer a less than 28 represented

by cach of the following pairs. where ¢ach pair repre-

sents (@ mod 4, a mod 7).

a} i b) (1.0} c) (I, Iy
dy 2D e (2.2 0 (0.3
g (200 h i3 i) (3.6)
Express each nonnegative integer o less than 15 using

the pair (g mod 3, 2 mod 5).

Explain how to use the pairs found in Exercise 27 ta
add 4and 7.

Solve the system of congruences that arises in Exam-
ple 8.

. Show that it « and & are positive integers, then (27 -

limod (2 - 1) - Jemedi
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**31, Use Exercise 30 to show that il « and & are posi-
tive integers, then ged(2¢ — 1,28 - 1) = 2ecd@b) . 1
[Hinr: Show that the rermainders obtained when the Eu-
clidean algorithm is used to compute ged(2® — 1,27 —
1y are of the form 2° — |, where r is a remainder
arising when the Euclidean algorithm is used to find

gedia, b))
32. Use Exercise 31 to show that the integers 23— 1, 2% —
L2 — 1,23 = 1,2% — 1 and 2°7 - | are pairwise

relatively prime.

33, Show that if p is an odd prime, then every diviser of
the Mersenne number 27 — | is of the form 2&p + [,
where & is a nonncgative integer. (Hine: Use Permat's
Little Theorem and Exercise 31.)

M. Use Exercise 33 w determine whether My; = 217 -
| = 8191 and My; = 2% — 1 = 8,388,607 arc prime.

*35. Show that we can easily factor # when we know that »
is the product of two primes, p and g, and we know the
value of (p — D{g — 1}.

36. Encrypt the message ATTACK using the RSA system
with v = 43 - 39 und ¢ = )3, rapslating each lelter
into integers and grouping together pairs of integers, as
done in Example 10,

37. What is the original message encrypted vsing the RSA
system with 1 = 43 - 39 and ¢ = 13 #f the encrypted
message is 0667 1947 06717 (Note: Some computa-
tional aid is needed to do this in a realistic amount of
tume.)

If m 1s a positive inicger, the imeger a is a quadratic
residue of m it ged(e. m) = | and the congruence x* =
a (moed m) has a solution. [n other words, a quadratic residue
of m 15 an integer relatively prime to m which is a perfect
syuare modulo m. For example, 2 is 2 quadratic residue of 7
since ged(2, 7) = 1 and 3° = 2 (mod 7) and 3 is a quadratic
nonresidue of 7 since ged(3, 7) = Tand 2% = 3(mod 7) has
na solution.

38, Which integers are guadratic residues of 117

2.6

39, Show that if p 15 ant odd pome and 2 is an integer not
divisible by p, then the congruence x* = a (mod p) has
either no solutions or exactly two incongrent solutions
modulo p.

40. Show that if p is an odd prime, then there are exactly
{p — 1)/2 quadratic residues of p among the integers
12,...,p—1.

If p is an odd prime and o is an integer not divisible by p, the
Legendre symbol 2 is defined to be 1 if a is a quadratic
P

residue of p and — | otherwise.

41, Show that it p is an odd prime and ¢ and b are integers
with @ = b{modp). then

)= G)

42. Provethat if p is an odd prime and a is a positive intcger
not divisible by p, then

(_a) = 4" " (med p).

P/

43, Use Exercise 42 to show that if p is an odd prime and
a and b are integers not divisible by p, then

(7)-GJG)

44, Show that if p is an odd prime, then — | is a quadratic
residue of p if p = ) (mod4) and 1 is not a quadratic
residue of p if p = 3 (mod 4). (Hint: Use Exercise 42.)

45, Find atl selutions of the congruence x* = 29 (mod 35).

(Hine: Find the solutions of this congruence modula 5

and modula 7, and then ase the Chinese Remainder

Theorem.)

Find all solutions of the congruence x* = 16 (mod 105).

{(Hint: Find the solutions of this congruence modulo 3,

module 5, and modulo 7, and then use the Chinesc

Remainder Theorem.)

46

Matrices

INTRODUCTION

Matrices are used throughout discrete mathematics to express relationships between
elements in sets. In subsequent chapters we will use matrices in a wide variety
of models. For instance, matrices will be used in models of communications net-
works and transportation systems. Many algorithms will be developed that use these
matrix moedels. This section reviews matrix arithmetic that will be used in these

algorithms.
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DEFINITION 1. Ammamanaﬂumayofm&mmﬂlu
rows aad # colvmns is calied an »1 X 5 mwrix. The plizal f sesit is satrices. A
matrix with the same number of rows as colasmns is called sguane. Twio inatrices are
equdnftheykavethesamcnumherofmwsandﬂ:emmmbuofcﬂmmd

the corresponding entries in every position are equal.

11

EXAMPLE 1 The matrix {{] 2} is 23 ¥ 2 matrix. [ |
1 3

We now introduce some terminology about matrices. Boldface uppercase letters
will be used te represent matrices.

DEFINITION 2. Let

an ary " dia
dy Gp ' (B

a1 &2 7 O

The ith row of A is the 1 X r matrix [ai1, @iz, - .., Gi). The jth coliemn of A is the
n X 1 matrix .

]
a2

L Gaj |

The (i, j)th element or entry of A is the element a;;, that is, the number in the ith
row and jth column of A. A convenient shorthand notation for expressing the ma-
trix A is to write A = [a;;], which indicates that A is the matrix with its (i th
clement equal to a; e

MATRIX ARITHMETIC

The basic operations of matrix arithmetic will now be discussed, beginning with a def-
mition of matrix addition.

DEFINITION 3. LetA = [a;;] and B = [b;;] be m X n matrices. The sum of A
and B, denoted by A + B, is the m X n matrix that has a;; + b;; as its (i, /)th element.
In other words, A + B = [a;; + &;;].
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EXAMPLE 2

EXAMPLE 3

The sum of two matrices of the same size is obtained by adding elements in the corre-
sponding positiens. Matrices of different sizes cannat be added, since the sumn of two
matrices is defined only when both matrices have the same aumber of rows and the
same number of columns.

o -1} |3 4 -11 4 4 -2
Wehave 2 2 -3[+] | -3 0|=[3 -1 -3| |
34 o [-1 1 2] |2 5 2

We now discuss mattix products. A product of two matrices is defined only when
the number ef columns in the first matrix equals the number of rows of the second
matiix.

DEFINTTION 4. LctAbeankamaMxmdecak
of A and B, denoted by AB, is the m X mairix

memmdmcmspmﬁngdm&m ;
of B. In other words, if AB = Icul,

_pqualwﬂ:emmu{
-Aandmaj&mhnm

£
¢y = apby; + apby; + - +a,-,,t:,ﬁf = auby..
e=1

[n Figure [ the colored row of A and the colored column of B are used to compute
the element c;; of AB. The product of two matrices is not defined when the number of
columns in the Arst matrix and the number of rows in the second matrix are nol the same,

We now give some examples of matrix products.

Let
-
1o »
A=17 and B=|1 1]
310 3
0 2 2 30
Find AB if it is defined.
g a0 “!.k]_ Yoy €yt Cyp |
@roan ot duiby by br, bm]
b ba ba; b | tn (1 2
ap  dp a || s : 1T {
. . . ’ ’ ’ i : C‘.J'- :
Do ; {bkt by by b
Ol Gpy 7 G Cml Cm2 °°° Can

FIGURE ! The Productof A = [a;] and B — [b;].
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Solution: Since A is 2 4 X 3 matrix and B is a 3 X 2 matnix, the product AB is de-
fined and is a 4 X 2 matrix. To find the elements of AB, the corresponding elements
of the rows of A and the columns of B are first muitiplied and ther these products
are added. For instance, the element in the (3, 1jth position of AB is the sum of the
products of the corresponding elements of the third row of A and the first column of
B;namely, 3-2+4+1-1 4 0-3 = 7. When all the elements of AB are computed, we

seg that
4 4
| & 9
AB = 7 13l
8 2 -

Matrix multiplication is not commutative. That is, if A and B are two matrices, it
1s not necessarily tme that AB and BA are the same. In fact, it may be that only one
of these two products is defined. For instance, if Ais2 X 3 and B is 3 X 4, then AB 1s
defined and is 2 X 4; however, BA is not defined, since it is impossible to multiply a
3 X 4 matrix and a 2 X 3 matrix.

tn general, suppose that A is an m X » matrix and B is an # X § matrix, Then
AB is defined only when # = r and BA is defined only when s = m. Moreover,
even when AB and BA are both defined, they will not be the same size unless
m = n = r = 5. Hence, if both AB and BA are defined and are the same size, then
both A and B must be square and of the same size. Furthermore, even with A and B
both n X n matrices, AB and BA are not necessarily equal, as the following example
demonstrates.

EXAMPLE 4 Let

] ]

Does AB = BA?

Sodution: We find that

13 2 |4 3
AB—{S 3} and BA—[3 2:[‘

Hence, AB # BA. B

ALGORITHMS FOR MATRIX MULTIPLICATION

The definition of the preduct of two matrices leads to an algorithm that computes
the product of two matrices, Suppose that C = fc;;) is the m X # matrix that is the
product of the m X & matrix A = [u;;] and the & X # matrix B = [5;;1. The algo-
rithm based on the definition of the matrix product is expressed in pseadocode in
Algorithm [,
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ALGORITHM 1 Matrix Multiplication.

procedure mairix multiplication({A, B: matrices)
fori:= ltom
hegin
for j:= i ton
begin
cij =0
forg:= 1tok
€= cij +aghy;

end
end {C = [¢;,] is the product of A and B}

We can determine the complexity of this algorithmn in terms of the number of additions
and multiplications used.

EXAMPLE 3 How many additions of integers and muitiplications of integers are used by Algorithm
I o multiply two n X # matrices with integer entries?

Solution: There are n* cniries in the product of A and B. To find each entry requires a
total of # multiplications and » ~ 1 additions. Hence, 4 total of 2 multiplications and
n*{n — 1) additions are vsed. ]

Surprisingly, there are more efficient algorithms for matrix multipiication than that
given in Algorithm 1. As Example 5 shows, multiplying two » X # matrices directly
from the definition requires O(ny multiplications and additions. Using other ajgo-
rithms, two n X n matrices can be multiplied using O(+") multiplications and addi-
tions. (Details of such algorithms can be found in the references given in the suggested
readings at the end of the book.)

There is another unportant problem involving the complexity of the muluplication
of matrices. How should the product A A -+ A, be computed using the fewest mul-
tiplications of integers, where Ay, Az, .., Ay are my X my, ma X ms, ..., My X My
matrices. respectively, and each has integers as entries? (Since matrix multiplication is
associative, as shows in Exercise 13 at the end of this section, the order of the multipli-
cation used does not matter.) Before studying this problem, note that my mym; multipli-
cations of integers are performed to multiply an m; X m» matrix and an m; X m; matrix
using Algorithm | (see Exercise 23 at the end of this section). The following example
illustrates this complexity problem.

EXAMPLE 6 In which order shouid the matrices A, A, and As—where A is 30X 20, A, is 20 X 40,
and Ay is 40 X 10, all with integer entries—be multiplied to use the least number of
multiplications of integers?

Solurion: There are two possible ways to compute A;AqA;. These are A {A»A;) and
(A [Ag}A;;.
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If Ay and Ay are first multiplied, a total of 20 - 40 - 10 = 3000 multiplications of
integers arc vsed to obtain the 20 X 10 matrix A»A;. Then, o multiply A, and A»A;
requires 30 - 20 - 10 = 6000 multiplications, Hence, u total of

8000 + 6000 = 14,000

multiplications are used. On the other hand, if A| and A; are first multiplied, then
30-20- 40 = 24,000 multiphcations are used to obtain the 30X 40 mairix A| As. Then,
to muitiply A1A, and Ax requires 30 X 40 » 1§ = 12,000 multiplication. Hence, a
total of

24,000 + 12,000 = 36,000

multiplications are used.
Clearly, the first method is more efficient. [

Algorithms for determining the most efficient way 10 multiply n matrices are discussed
in the suggested readings listed at the end of the book.

TRANSPOSES AND POWERS OF MATRICES

We now introduce an important matrix with entries that are zeros and oncs.

DEFINITION 5. The identity matrix of order n is the n X n matrix I, = [§; il
where 8;; = 1ifi = jand §;; = Qif i # j, Hence

1 ¢ -0
o1 - 0
L=l .
040 -1

Multiplying a matrix by an appropriately sized identity matrix does not change this
matrix. In other words, when A is an m X » matrix, we have

Al, = [,A = A
Powers of square matrices can be defined. When A is an # X n matrix, we have

Al =1, A" = AAA AL
——

roumes

The operation of interchanging the rows and columns of a square matrix is used in
many algorithms,

DEFINITION 6. LetA = [g; 7] be an m X n matrix. The transpose of A, denoted
by A', is the n X m matrix obtained by interchanging the rows and columns of A, In
other words, if A’ = [b;;], then b;; = agfori =12 ..,nand j = 1,2, ..., m
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FIGURE2Z A Symmetric Matrix.

1 4
EXAMPLE 7 The transpose of the matrix {l g ﬂ 15 the matrix {2 5] a
3 6

Matrices that do not change when their rows and celumns are interchanged are often
important.

DEFINTTION 7. A square matrix A is calied symmetric if A = A" Thus A =
{a;;} 8 symomnetric if g;) = g forall iandjwith < i Saamd]l < jsn

Note that a matrix is symmetric if and only if it 18 square and it is symmeiric with
Tespect to is main diagonal {which consists of entries that are in the ith row and ith
colurnn for some ). This symmetry is displayed in Figure 2.

1
]
o

EXAMPLE 8 The matrix

1 0
0 tjissymmetric. [ ]
1 0]

ZERQO-ONE MATRICES

A matrix with entries that are either O or { 1s called a zere—one matrix. Zero—one
matrices are often used to represent discrete structures, as we will see in Chapters 6
and 7. Algorithms using these structures are based on Boolean arithmetic with zero—one
matrices. This arithmetic is based on the Boolean operations / and /\, which operate
on pairs of bits, defined by

1 ifby = by = 1
M =
EALe [0 otherwise,

ifb[ = 101’53 =}

po= )
b, [0 otherwise.

DEFINITIONS. LetA = [a;]and B = [by] be m X r zero-one matrices. Then
the join of A ind Bis shie zero-ofe meirix with (£ fith-einy 4;; \/ by, The join of
A and Bisdenoted by & \/ B, The meer of A ot B s the zero-one 1strix with
(i, j)th entry ai; A\ by . The mest of A and B is densted by A A B.
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EXAMPLEY Find the join and meet of the zero—one matrices
I o1 0
A= {0 1 0]' B - [l | 0}'

Solution: We find that the join of A and B is

AvB=[lVO Oy i lvﬁ}=P 1 1.

ovi Fvl 0o |1 1 0
The meet of A and B is

IA0 OAT LAO]_f0 0 0

AAB“kAl A1 OAOY_% 1 4'

We now define the Boolean product of two matrices.

= mﬂﬁﬂ?hw“'"'f‘!’f%ﬂ:-

Nete that the Boolean product of A and B is obtained in an analogous way to the or-
dinary product of these matrices, but with addition replaced with the operation %/ and
with multiplication replaced with the operation /A. We give an example of the Boolean

products of matrices.
EXAMPLE 10 Find the Boolean product of A and B, where
I 0
A=l0 1 B=B: ﬂ
1 0

Solution: The Boolean product A © B is given by

(EADVOAY UADVOAD AV OAIL
AOB = [0ARNVAAD OADVIALD CADYVAAIL
TADVOAD) LADVOAD (ADYVEOAL

(10 1v0 0vo
= loyveo oy oy
Iy 1y Oy0O

1
1
1

f
= —
- —
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Algorithm 2 displays pseudocode for computing the Boolean product of two
magrices.

ALGORITHEM 2 The Boolean Product.

procedure Boolean product(A, B: zero—one matrices)
fori:=ltom
begin
forj:=1ton
begin
Cij i = 0
forg:= ltok
Cif =N ['a;q /\bfb")
end
end {C = [c;;] is the Boolean product of A and B}

We can also define the Boolean powers of a square zero—one matrix. These powers

will be used in our subsequent studies of paths in graphs, which are used to mode] such
things as communications paths in computer networks.

DEFINITION 10. Let A be & squate zémo-ono matrix and let r be a positive in-

teger. The rth Boolean power of A is theBmleanpmdwtofrfactonofA.'Iherﬁ
Boolean product of A is denoted by A7), Hence

Al = ADAOAO---QA

l'll‘l’!ﬂ

(This is well defined since the Boolean product of matrices is associative.) We also

define Al to be I,
¢ 0 1

EXAMPLE 11 LetA = |1 O O Find A" for all positive integers ».
I 1 0

Solution; We find that

1 1 0
AM=A0CA={0 0 1
1 0 1
We alse find that
[ 01 ot
A= ARTOA=]] 1 0f, AM=ARBIQA<|] 0 1]
1 1 1 b 11
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Additional computation shows that

111
AP < |1 .
P11

The reader can now see that AP = A for all positive integers n withn = 5, W

The number of bit operations used to find the Boolean product of two n X n matrices
can be easily determined.

EXAMPLE 12 How many bit operations are used to find A © B, where A and B are n X s zero—cne
matrices?
Solution: There are n’ entries in A © B. Using Algerithm 2, atotal of n ORs and n ANDs
are vsed to find an entry of A © B. Hence, 2 bit operations are used to find each entry.
Therefore, 24* bit operations are required to corpute A © B using Algorithm 2. |
Exercises
brbs 4. Find the product AB, where
LLetA=[2 0 4 6] ‘ P ‘
1137 10 1 0 1 —ll
ajA=] 0 -1 -1{B= I -1 0,
a) What size ts A? -1 ] ] -1 0 ]J
b} What is the third column of A? 1 -3 0 1 -1 2 M
) What is the second row of A? b) A =] 2 2| B = LI 0 3 ].!
) What is the element of A in the (3, 2)th position? VA= S - J
©) What is A" 2 1 -1 -3 -2 0 2
2. Find A + B, where A O _I]B— 4 -1 2 3 0
Lo 4 —-135} c)-?Z.—_2 01 4 |
AaA=|-1 2 2/B=|2 2 -3 —4 -3
0 -2 -3 2 -3 o 5. Find a matrix A such that
2 3 30
-1 0 5 6 -3 9 -3 4 [ }A = { J
A= = . 1 4 1 2
b) l—4 -3 5 ~2]’B [ 0 -2 - 2]
. ] (Hinr: Finding A requires that you solve systems of lin-
3. Find AB if edr equations. )
2 A [3 IJ‘ B - {9 4]. 6. Find a matrix A such that
j 2 1 3 1 3 2 7 1 3
1 -1 2010 1lA=] 1 0 3
b)AJo I‘B=ﬁ _S _” 4 0 3 -1 -3 7
A 7. Let A be an m X n matrix and let 0 be the m X n matrix
[ a -3] that has all entries equal to zero. Show that A = 0 +
| 3ol -1 32 -2 A=A+0 w
o) A= o -3l B = 0 -1 4 -3/ 8. Show hat matrix addition is commutative that is, show
\ - o that il A und B are both m x n matrices, then A + B =

B+ A
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9. Show that matrix addition is associative; that is, show
that if A, B, and C are all m X n matrices, then A +
B+O=(A+B)+C

10. Let Abe a3 X 4 matrix, Bbe a4 ¥ 5 matrix, and C
be a 4 X 4 matrix. Determine which of the following
products are defined and find the size of those that are
defined.

a) AB b BA ¢ AC
dr CA ¢} BC f CB

§1. What do we know about the sizes of the matrices A and

B if both of the products AB and BA are defined?

In this exercise we show that matrix multiplication is

distributive over matrix addition.

a} Suppose that A and B are m X k matrices and that C
15 a k X n matrix. Show that (A + B)YC = AC+BC.

b} Suppose that Cis an m X & matrix and that A and B
are kX nmatrices. Show that C(A+B) = CA+CB.

13. In this exercise we show that matrix multiplication is
associative. Suppose that A 1y an m X p matrix, B is
4 px kmatrix, and € is a k X 7 matrix. Show that
A(BC) = (ABC.

M. ThenXnmatrix A = {u;;] is called a diagonal matrix
if @, = 0 wheni= j Show that the product of two
n ¥ ndiagonal matrces is again a diagonal matrix. Give
a stmple rule for determining this product.

15, Lel
|
ol

Find a formula for A”, whenever » is a positive integer.
16. Show that (A’) = AL
17, Let A and B be two n X n matrices. Show that
8) (A1 B = A +B.  b) (ABY = B'A".

If A and B are # > n matrices with AB = Ba = [, then B
is called the inverse of A (this erminology is appropriate
since such a matrix B is unique) and A is said to be invert-
ible. The notation B = AV denotes that B is the inverse
of A

18. Show that

12

H

15 the inverse of

7T -8 51
J-—4 5 -3,
S

19, Lot Abe a2 % 2 matrix with

a b
vl

L

Show that if ad — bc # 0, then

g
Al = ad =~ be  ad - be
b T
[ad—bc ad — bc
20, Let
-1 2
A= { ! 3}.
a) Find A . (Hint: Use Exercise 19.)
b) Find A°.

21

22

23

24

25

26.

¢) Find (A™1)%,
d) Use your answers to (b) and {c) 10 show that (A1)
is the inverse of A%

. Let A be an invertible matix. Show that (A7) ! =
(A1) whenever a 1s a positive integer.

. Let A be a matrix. Show that the matrix AA’ is sym-
metric. (Hin¢: Show that this matrix equals its trans-
pose with the help of Exercise 17b.)

. Show that the conventional aigorithm uses mman;
multiplications to compute the product of the my X ma
matnx A and the my X m; matrix B.

. What i3 the tnost efficient way to multiply the matrices
A1, Az, and A with sizes
a} 20 % 50,50 X 10, 10 X 407
by 10X 5550 50> 1

. What is the most efficient way to multiply the matrices

A:, Ag, As, and A, if the dimensions of these matrices

are 10X 2.2 5,5 % 20, and 20 X 3, respectively?

a) Show that the system of simultaneous linear equa-

Tions

ayn k1 + dnks + k= 8
anx tanx + o tamx.= b

Gy X1 + dmX2 + - -+ dun X, = b,

in the variables x, x2,..., 1, can be expressed as
AX = B, where A = la,], X is an # X | matrix
with x; the entry in its ih row, and B is an n % |
matrix with &; the entry in its ith row.

b} Show that if the matrix A = [a;;] is invertible (as
defined in the preamble to Exercise 18), then the
solution of the system in part (a) can be found using
the equation X = A~'B.

27. Use Exercises 18 and 26 to solve the system

Ix - 8x3 + 513 =5
=43 + 5% - 3x3 = -3
n—x+x =0

ot
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Find

a) A/B.

o) ACB.
29, et

b A AB.

S e

Find
a) A B
bi A A\B.
¢l ADB.
30. Find the Boolean product of A and B, where

0
A0
1

|

1.

01
0 1| and B =
i

!
0
1
1 1

== ]
[

3. Let

Find

a) AL b)) AP ¢ A AT Al

K_e;/_ferms and Results

TERMS

algorithm: . finite set of precise instructions for perform-
ing a computation or solving a problem.

searching algorithm: the problem of locating an element
in alist

linear search algorithm: a procedure for searching a list
clement by element

binary search algorithm: a procedure for searching an
ordered list by successively splitting the list in half

time complexity: the amount of time required for an al-
gorithm to solve a problem

space complexity: the amount of storage space required
for an algorithm to solve a prablem

worst-case time complexity: the greatest amount of time
required for an algorithm to solve a problem of a given
stre

average-case fime complexity: the average amount of
time required for an algorithm to solve a problem of a
gven size

« | b {a divides b): there is an integer ¢ such that b = ge

prime: g positive integer greater than 1 wich exactly two
positive integer divisors

Key Terms and Results 16/

32, Let A be a zero—one matrix. Show that
a AvA=A
b) AAA = A

33. In this exercise we show that the meet and join opera-
tions are commutative. Let A and B be m > zero—one
matrices. Show that
a) AvB=8yA
by BAA=AN B,

34. In this exercise we show that the meet and join opera-
tions are associative. Let A, B, and C be m X n zero-one
maatrices. Show that
) Ay B)VC = Ay (ByCh
b (AABYNC = AABAQ),

35. We will establish distributive laws of the meet over the
join operation in this exercise, Let A, B,and Cbe m < n
zerc—one matrices. Show that
a) Avv{BAC) = (AVBIN{AYy Q)

b) AA(BYC) = (AAB){AAC).

36. Let A be an n X r zerp—one matrix. Let T be
the # X n identity matrix, Show that A 21 =
I10A = A

37. In this exercise we will show that the Boolean product
of zero—one matrices is associative, Assume that A 1s
anmX p zero-one matrix, B is a p X k zero—one matrix.
and C is a k X n zero-one matrix. Show that A S (B ©
O ={AGB)LC.

composite:  a positive integer greater than ! that is not
prime

Mersenne prime: a prime of the form 2¥ — 1, where p is
prime

ged{a, b) (greatest common divisor of a and b): the
targest integer that divides both @ and b

relatively prime integers: integers g and b such that
gedfa by = 1

pairwise relatively prime integers: aset of integers with
the property that every pair of these integers is relatively
prine

temie, b) (least common multiple of ¢ and b}  the small-
est positive integer that is divisible by both @ and &

amod b: the remainder when the integer @ 1% divided by
the positive integer &

a = b(mod m) (g is congruent to b modulom): a- b is
divisible by m

encryption: the process of making a message secret

decryptien: the process of returning a secret message to
its original form

mo= {mai- - maghy:  the base b representation of n

binary representation: the base 2 representation of an in-
teger
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hexadecimal representation: the base 16 representation
of an integer

linear combination of o and b with integer coeffi-
cients: anumber of the form s@ + 1b where s and f are
integers

inverse of ¢ modulo m:
1 {mod m)

lincar congruence: a congruence of the form ax =
b (mod m) where x is a variable

pseudoprime to the base 2:  a composite integer » such
that 20 = | {mod n)

privale key encryption: cncryption where both encryp-
tion keys and decryption keys must be kept secret

public key encryption: encryption where encryption
keys are public knowledge, but decryption keys are kept
secret

matrix: a rectangular array of numbers

matrix addition: see page 151

matrix multiplication: sce page 152

I, (identity matrix of order a): the n X # matrix that hag
entries equal to | on its diagonal and Os elsewhere

A’ {transpose of A):  the matrix obtained from A by inter-
changing the rows and columns

symmetric: amatrix is symmetric if it equals t1s ranspose

zero—one matrix: i matrix with each entry equ.f to either
Oorl

Ay B ithe join of A and BY:  see page 156

A B (the meet of A and B): see page 156

A 3 B (the Boolean product of A and B): see page 157

an integer @ such that da

RESULTS
The linear and binary search algorithms: ({giveninSec-
tton 2.1}

The Fundamental Theorem of Arithmetic: Every pos-
itive integer can be written uniquely as the product of
primes, where the prime factors are written in order of
increasing sive.

The division algorithm: Let g and 4 be integers with o
positive. Then there are upigue integers ¢ and » with 0 =
r< dsuchthata = dg + r.

If @ and & are pusitive integers, then ab = ged(a, #) -
lemia, ).

The Euclidean algorithm: for finding greatest common
divisors {see Algonthm 1 in Section 2.4).

Let & be a positive integer greater than 1. Then if n is a
positive integer, it can be expressed uniquely in the form
no b g B b 4o

The algorithm for inding the base b expansion of an integer
(see Algorithm 2 in Sectivn 2.4),

The conventional algorithms for addition and multiplication
of integers {given in Section 2.4},

The greatest common divisor of two integers can be ex-
pressed as a linear combination with imteger coefficients
of these integers.

If i 15 a positive inleger and gedfa, m) = 1, then g has a
unique inverse moduia m.

The Chinese Remainder Theorem: A system of lin-
ear congruences modulo pairwise relatively prime inte-
gers has a unique solution modujo the product of these
mmoduli,

Fermat’s Little Theorem: If p is prime and p / a). then
a” ' =1 (mud p).

Review Questions

1. a) Definc the wnn algorithm.

b) What are the different ways to describe algorithms?

¢) What is the difference between an algorithm for
solving a problem and a compuicr program that
solves this problem?

2, a) Dcescribe. using English, an algorithm for finding
the largest, second largest, and third largest integers
in a list of 1 integers.

b) Express this algorithm in pseudocode,
¢) How many comparisons does the algorithm use?

3. a) Define what the worst-case time complexity,
average-case time complexity, and best-case time
cornpiexity (in terms of comparisons) nean for an
algorithm that finds the smallest integer in a list of
71 infegers,

b} What are the worst-case, average-case. and best-
case time complexities, in terms of comparisons, of
the algorithm that finds the smallest integer in a list
of nintegers by comparing each of the integers with
the smallest integer found so far?
Describe the linear search and binary search algo-
rithm for finding an integer in a list of integers in
increasing order,
b) Compare the worst-case time complexities of these
two algorithms.
¢} Is one of these algorithms always faster than the
other {measured in terms of comparisons)?
5. State the Fundamental Theorem of Arithmetic,
6. a) Describe a procedure for finding the prime factor-
tzation of an {nteger.

=
&
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10,

b) Use this procedure w find the prime factorization of
80,707.

a) Define the greatest cornmon divisor of twe integers.

b) Describe at least three different ways 1o find the
greatest common divisor of two integers. When
does each method work best?

¢) Find the greatest common divisor of 1,234,567 and
7.654,321.

d) Find the greatest common divisor of 2°3°577°11
and 2°375%7313.

. a) Define what it means for # and b 10 be congruent

module 7.

b) Which pairs of the integers —11, —8. -7, - 1,{}, 3,
and 17 are congruent modulo 77

¢} Show that if @ and & are congruent moduls 7, then
10a + 13 and —4& + 20 are also congruent mod-
ulo 7.

. Describe a procedure for conventing decimal (base 10)

expansions of integers into hexadecimal expansions.

2} How can you find a Jinear combination (with integer
coetficients) of two integers that equals their great-
st common divisor?

b} Express ged(84, 119) as a linear combination of 84
and 119

11. 2} What does it mean for @ to be an inverse of ¢ mod-

ulo m?

12,

13.

14.
15,

16.

7.

Supplemenisry Exercises 163

b} How cun you find an inverse of @ modulo m when
m is a positive integer and ged(a, m) = 17

¢) Find an inverse of 7 modulo 19.

a) How can an inverse of o modulo m be used o
solve the linear congruence gx = & (mod m) when
ped(a, m) = 17

b) Solve the linear congruence 7x = 13 (mod 19,

a) State the Chinese Remainder Theorem.

b) Find the selutions to the system x = 1 {mod 4), x =
2 (mod 5), and x = 3 (mod 7},

Supposc that 2* ' = 1 {mod n). Is # necessarily prime”

a) What is the difference between a public key and a
private key cryptosystem?

b} Explain why using shift ciphersisa private key sys-
tem,

¢} Explain why the RSA cipher system is a public key
System.

Define the product of two matrices A and B. When is

this product defined?

a) How many different ways are there to evaluate
the product A;A;A3A4 by successively multiply-
ing pairs of matrices, when this product is defined?

b) Suppose thut Ay, Ay, Aj, and Agare 1020, 20 5,
3 10, and 19 X 5 matrices, respectively. How
should AyA;A3A¢ be computed to use the least
number of muitipiications of entries?

Supplué;r‘lér_ltary Exercises

L.

to

Ll

*7.

*8.

@) Describe an algorithm for locating the last occur-
rence of the largest number in a list of integers.
b) Estimate the number of comparisons used.

. &} Describe an aigorithm for finding the first and sec-

ond latgest elements in a list of integers.
b) Estimate the number of comparisons used.

. ab Give an algorithin to determine whether a bit string

conltains a parr of consccutive zeros.
b} How many comparisons does the algorithm use?

- a) Suppose that a list contains integers that are in or-

der of largest 1o smallest and an integer can appear
repeatedly in this list. Devise an algorithm that lo-
cates atl occurrences of an integer x in the list.

b) Estimate the number of comparisons used.

- Find four nombers that are congruent to 5 modulo 17,
« Show that if @ and d are positive integers, then there are

integers ¢ and r such that @ = dg + r where —d/2 <
ro=df2.

Show that if ac = be {mod m), then a = A(mod mid)
where d = godim, ¢}

How many zeros are at the end of the binary cxpansion

of ”.)”][].l?

10.

11.

12

13

14.

. Use the Euclidean algorithm to find the greatest com-

mon divisor of 10,223 and 33,341.

How many divisions are required to find ged(144, 233)

using the Euclidean algorithm?

Find ged(2n + 1, 3r + 2), where n is a positive integer.

(Hint: Use the Euclidean algorithm.)

a} Show that if 2 and b are positive integers with
a = b, then gedia b) = a if a = b, godia, b) =
2pedial2, b/2) if @ and b are even, ged(a, b) =
2ed{a/2, b)itaisevenand bisodd, and gedia, b) =
gedia — b, by if both g and b are odd.

b} Explain how to use {4} to construct an algorithm for
computing the greatest common divisor of two pos-
itive integers that uses only comparisons, subtrac-
tions, and shifts of binary expansions, without using
any divisions.

<) Find ged(1202, 4848) using this algorithm.

Show that an integer is divisible by 9 if and orly if the

sum of its decimal digits is divisible by 9.

a} Devise an aigorithm for computing x° mod m.
where x is an inleger and m and n arc positive
integers, using the binary expansion of n. (Hint:
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Perform successive squarings to obtain x mod m,
x* mod m, x* mod m, and so on. Then multiply the
appropriate powers of the form 2% mod m to obtain
" mod m.)

b} Estimate the number of muitiplications used by this
algorithm.

A setof integers 1s called mutually relatively prime if the
greatest comumon divisor of these integers is 1.

15.

16.

17.

18.

19.

*240.

Deternune whether the following sets of integers are

mutually relatively prime.

a 8, 10.12

by 12, 15,25

cy 15,2028

dy 21, 24, 28. 32

Find a set of four mutually relatively prime integers

such that no two of them are relatively prime.

a) Suppose that messages are encrypted using the
fupction f{p) = {ap + b) mod 26 such that
eodia, 26) = 1. Determine a fupction that can be
used (0 decrypt messages.

b} The encrypted version of a message is LIMKG
MGMXF QEXMW. 1T it was encrypted using the
function f{p) = (7p + 1) mod 26, what was the
onginal message?

Show that the system of congruences x = 2 (mod 8)

and ¥ = 3 {mod % has no solutions.

Find all solutions of the system of congrucnces x =

4 imod &) and ¥ = 13 tmod 15).

a} Show that the system of congruences x
{mod my) and v = @ (mod ms) has a solution
i and only if gedimy, mz) ja) — a;.

b Show that the solution in part {a) is upique moduly
lemism ), mah

=

21,

22,

23

Find A" if A i3

Lu 1]'

1 &
Show that if A = ¢l, where ¢ 15 3 real pumber and § 15
the r X n identity matrix, then AB = BA whenever B
is an X s matrix.
Show that if A is a 2 % 2 matnx such that AB — BA
whenever B is a2 X 2 matnix, then A = ¢l, where ¢ 15
a real number and Lis the 2 X 2 identity matrix.

An 7 X n matrix is called upper trianguler if a; = 0
whenever [ > .

24,

26

27,

29,

From the definition of the matrix product, devise an al-
gonthm for computing the product of two upper tri-
angular matrices that ignores those preducts in the
computation that are automatically equal to zero,

. Give a pseudocode description of the algorithm in Ex-

ercise 24 for multiplying two upper triangular matrices,
How many multiplications of entries are used by the
algorithm found in Exercise 25 for multiplying two
n upper angular matrices?

Show that if A and B are invertible matrices and AR
exists, then (AB)™' = B71A "L,

. What is the best order to form the product ABCD if A

B. C, and b are matrices with dimensions 30 10, 10x
40, 40> 50, and 504 30, respectively? Assume that the
number of multiplications of entries used to multiply a
F X g matnix and 4 ¢ X r matrix 1s pgr.

Let A be an n X n mamx and let 0 be the » x 7 matrix
all of whose entries are zero. Show that the fullowing
are true.

A ACI=0CA=10
S ANO=0NA=

B ALO=0uA - A

Computer Projects

WRITE PROGRAMS WITH THE FOLLOWING INPUT AND OUTPUT.

1.

2

Given a list of # integers, find the largest integer in the

list.
Given a list of o integers, Gnd the first and last occur-
rences of the largest integer in the list.

. Given a list of a distinct integers, determine the posi-

tion of an integer in the list using a linear search,

. Given an ordered list of 7 distinct integers, determine

the position of'an integer in the listusing abinary search.

. Given an ordered Hst of # integers and an integer x,

find the number of comparisons used 10 determine the
position of an mteger i the list using o Hoear scarch
and using o hinary search,

6.
7.

10,

H.

Given a positive integer, determine whether it is prime.
Given a message, encrypt this message using the Cae-
sar cipher; and given a message encrypted using rhe
Caesar cipher. decrypt this message.

. Given two positive imegers, find their greatest common

divisor using the Euclidean algorithm,

. Given two positive integers, find their least commen

muitiple.

Given a positive integer. find the prime Factorization of
this integer.

Uiven a positive integer and a pesitive infeger b great-
crthan 1, tind the base & expansion of this integer,
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12,

13.

14

15.

16.

Given a positive integer, find the Cantor expansion of
this integer (see the preamble to Exercise 32 of Sec-
tion 2.4).

Given a positive integer 7. a modulus m, multiplier «,
increment ¢, and seed xp. with0 = ¢ <m0 = ¢ <
m.and 0 = xy < m, generate the sequence of n pseu-
dorandom numbers using the linear congruential gen-
eralor x,.; = {ax, + c) mod m,

Given positive integers o and b, find integers 5 and ¢
such that sa + th = ged(a, b).

Given n linear congruences module pairwise relatively
prime moduli, find the simultaneons soiution of these
congruences modelo the product of these meduli,
Given an m X & matix A and a & X n matrix B, find
AB.

18.

19.

20.

21,

22

Writing Projects 165

. Given a square matrix A and a positive integer n, find

A",

Given a square malrix, detertmine whether it 18 sym-
mgtric.

Given an ny X n#2 matrix A, an #; ¥ n; matrix B,
an ny X ng mairix C, and an ny X ns matrix I,
all with integer entries, determine the most effi-
cient order to multiply these matrices fin terms of the
number of multiplications and additions of integers).
Given two m X n Boolean matrices, find their meet and
Jjoin.

Given an m < k Boolean matrix A and a & X » Boolean
matrix B, find the Boolean product of A and B.

Givett a square Boolean matrix A and a positive integer
a, find Al"],

Computations and Explorations
USE A COMPUTATIONAL PROGR AM OR PROGRAMS YOU HAVE WRITTEN TO DO THE FOLLOWING EXERCISES.

L

2

Determine whether 2° — | is prime for each of the
primes not ¢xceeding 100,

Test a range of large Mersenne numbers 22 — | 1o de-
termnine whethet they are prime. { You may want to use
software from the GIMPS project.)

+ Show that #2 + r + 41 is pnme for all integers n with

} = n = 39, bul is pot prime when n = 40. Is there
a polynomial in r with integer coefficients and degree
greater than zero that always takes on a prime value
when # 18 a positive integer?

. Find a5 many primes of the form »° ~ 1 where n is

a pusitive integer as you can. It js not known whether
there are infinitely many such primes.

. Find 10 different primes each with 100 digits.

6.

8

How many primes are there less than 1.0O0000, less
than 10,000,000, and less than 100,000, 000? Can you
propose an estimate for the number of primes less than
x where ¥ is 2 positive integer?

. Find a prime factor of each of 10 different 20-digit odd

integers, selected at random. Keep track of how long it
takes to find a factor of each of these integers. Do the
same thing for 10 different 30-digit odd integers. 10
different 40-digit odd integers, and so on, continuing
as long as possible.

Fitd all pseudoprimes to the base 2, that is, composite
integers # such that 277! = 1{mod n), where » does
not exceed 10,000,

RESPOND TO THE FOLLOWING PROJECTS WITH ESSAYS USING OUTSIDE SOURCES.

1

2

Examine the history of the word algerizhm and de-
scribe the use of this word in early writings.

Describe what is meant by u paralle] algorithm. Explain
how the pseudocode used in this book can be extended
0 handle parallel algorithms.

. Explain how the complexity of parallei algorithms can

be measured. Give some examples 1o illustrate this con-
cept, showing how a parallel algorithm can work more
quickly than one that does not operate in paralfel.

. Describe the Lucas Lehmer test for determining

whether 1 Mersenne number is prime. Discuss the

progress of the GIMPS project i finding Mersenne
primes using this test.

. Explain how probabilistic primality tests are used in

practice to produce extremely large numbers that are
almost certainly prime. Do such tests have any poten-
tial drawbacks?

. A Curmichael number is an integer that is a pseu-

doprime to all bases relatively prime w this integer.
The question of whether there are infinitely many
Carmichuel numbers was solved recently after be-
ing open for more than 75 years. Explain whal a
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Carmichaed number 15, give examples of such numbers,
and describe the ingredients that went into the proof
that there are infimtely many such numbers.

. Summarize the current status of factoring algorithrus

in terms of their complexity and the size of numbers
that cait curtenily be factored. When do you think that
it will be feasible to factor 200-digit numbers?

. Describe the algorithms that are actually used in mod-

ern computers to add, subtract, muliply, and divide
positive integers.

. Deseribe the history of the Chinese Remainder Theo-

rem. Describe some of the relevant problems posed in
Chinese and Hindu writings and how the Chinese Re-
matnder Theorem applies to them.

When are the numbers of 2 sequence truly random
numbers, and not pseudorandom? What shortcomings
have been observed in simulations and cxperiments in

11.

12.

13.

14.

15,

which pseuderandom numbers have been used? What
ar¢ the properties that pseudorandom numbers can
have that random numbers should not have?

Describe how public key cryptography is being applied.
Are the ways it is applied secure given the status of fac-
toring algerithms? Wil inforrmation kept secure using
public key cryptography become insecure in the future?
Describe how public key ceyptography can be used to
send signed secret messages so that the recipient is rel-
atively sure the message was sent by the person claim-
ing 1o have seat it

Show how a congruence can be used to tell the day of
the weck for any given date.

Describe some of the algorithms used 1o efficienty
multiply large integers.

Describe some of the algorithms used to efficiently
muitiply large matrices.
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Mathematical Reasoning

mathematical argument, that is, a proof. To learn mathematics, a persor needs

to construct mathematical arguments and rot just read exposition. Obviously,
this requires an urderstanding of the techniques used to build proofs. The goals of this
chapter are to teach what makes up a correct mathematical argument and to give the
student the necessary tools to construct these arguments.

Note that the methods we will study for building proofs are aiso used throughout
computer science, such as the rules computers use to reason, the technigues used to
verify that programs are correct, and the rules used for constructing new theoreins using
automated reasoning.

Many mathematical statements assert that a property is true for all positive integers.
Examples of suct statements are that for every positive integer m: n! < n", n? ~ &
is divisible by 3, and the sum of the fitst n positive integers is n(n ~ [}¥2. A major
goal of this chapter, and the book, is to give the student a thorough understanding of
mathernatical induction, which is used to prove resuits of this kind.

In previcus chapters we explicitly defined sets, sequences, and functions. That is,
we described sets by listing their elements or by giving some property that characterizes
these elements. We gave formulae for the terins of sequences and the values of functions.
There is another important way 1o define such objects, based on mathematical induction.
To define sequences and functicns, some initial terins are specified, and a rule is given
for finding subsequent values from values already known. For instance, we can define
the sequence {2"} by specifying that a; = 2 and thata,,; = 2a, forn = 1,23, ...,
Sets can be defined by listing some of their elements and giving rules for constructing
elements from those already known to be in the sct. Such definitions, called recursive
definitions, are used throughout discrete mathematics and computer science.

When a procedure is specified for solving a problem, this procedure afways solves
the problem correctly. Jusi testing to see that the coerect resultis obtained tor a set of input
values doesnot show thatthe procedurc always works correctly. The correctness of aproce-
durecanbe guaranteedonly by proving thatit aiways yields thecorrectresuit. The final sec-
tionof this chaptercontains an introduction 1o the technigues of program verification. This
1s a formal technique to verify that procedures are correct. Program verification serves as
the basi s forattem pts under way to prove inamechanical fashion that programs are correct.

To understand written mathematics, we must understand what makes up a correct

3.1
Methods of Proof

INTRODUCTION

Twao important questions that arise in the study of mathematics are: (1) When 1s a math-
ematical argument correct? (2) What methods can be used to construct mathematical
167
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EXAMPLE |

arguments? This section helps answer these questions by describing various forms of
correct and incorrect mathematical arguments.

A theorem is a statement that can be shown to be true. We demonstrate that a
theorem is true with a sequence of statements that form an argument, called a proof.
To censtruct proofs, methods are needed to derive new statements from cld ones. The
staternents used in a proof can include axioms or postulates, which are the underlying
assumptions about mathematical structures, the hypotheses of the theorem to be proved,
and previously proved theorems. The rules of inference, which are the means used to
draw conclusions from other assertions, tie together the steps of a proof.

In this section rules of inference will be discussed. This will help clarify what
makes up a correct proof. Some common forms of incorrect reasoning, calied fallacies,
will also be described. Then various methods commonly used to prove theorems witl

be introduced.

Remark: The terms lemma and ceroliary are used for certain types of theorems. A
lemma (plural lemmas or lemmata) is a simple theorem used in the proof of other
theorems. (For instance, Lemma | in Section 2.4 was used to prove the theorem that
the Euclidean algorithr produces the greatest common divisor of two integers. } Com-
plicated proofs are usually easier to understand when they are proved using a series of
lemmas, where each lemma is proved individually. A corollary is a proposition that
can be established directly from a theorem that has been proved. A comjecture is a
statement whose truth vafue is unknown. When a proof of a conjecture is found, the
conjecture becormes a theorem. Many times conjectures are shown to be false, so they
are not theorems.

The methods of proof discussed in this chapter are important oot only because they
are used to prove mathematical thecrems, but also for their many applications to com-
puter seience. These applications include verifying that computer programs are correct,
establishing that operating systems are secure, making inferences in the area of artifi-
clal intelligence, and so on. Consequently, understanding the techniques used in proofs
is essential both in mathematics and in compuier science.

RULES OF INFERENCE

We will now introduce rules of inference for propositional logic. These rules provide the
Justification of the steps used to show that a conclusion follows logically from a set of
hypotheses. The tautology {p/\(p — ¢3) — qisthe basis of the rule of inference called
modus ponens, or the law of detachment. This tautology is writtenin the following way:

I
i |
o
Using this notation, the hypotheses are written in a column and the conclusion below a

bar. (The symbol .. denotes “therefore.”) Modus ponens states that if both an implication
and its hypothesis are known to be true, then the conclusion of this implication is true.

Suppose that the implication “if it snows today, then we will go skiing” and its hy-
pothesis, “it is snowing today,” are true, Then, by modus ponens, it follows that the
conclusien of the implication, “we will go skiing,” is true. |
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TABLE1 Rules of Inference.
Rule of Inference | Tautology Name

P p—(pva) { Addition
PG

pihg ipihgy—~p Simplification
P

P

P (p)/\ig) — (p gl . Conjuction

q

Lpig

P [pip—q)—gq Modus ponens
e i

Ly

g [giip — gl — —p Modus tollens
_r—4

Loop l

Py ip = @) Afg — )] — (p — r} | Hypotheticaj syllogism
-

p—r

|

AR llev@hapl— ¢ Disjunctive syllogism
I i

..q B

EXAMPLE 2 The implication “if n is divisible by 3, then #* is divisible by 9, is true. Consequently,

if n is divisible by 3, then by modus ponens, it follows that r? is divisible by 9. ]

Table 1 lists some important rules of inference. The verifications of these rules of
inference can be found as exercises in Section 1.2. Here are some examples of argu-
ments using these rules of inference.

EXAMPLE 3 State which rule of inference is the basis of the following argument: “11 is below freezing
now. Therefore, it is either below freezing or raining now.”

Soluwtion. Let p be the proposition Tt is below freezing now™ and ¢ the proposition “It
is raining now.” Then this argument is of the form

P

PV

This is an argument that uses the addition rule. [ |
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EXAMPLE 4

EXAMPLE 5

EXAMPLE o

State which rule of inference is the basis of the following argument: Tt is below freezing
and raining now, Therefore, it is below freezing now,”

Selution: Let p be the proposition It is below freezing now,” and let g be the proposi-
tion "It is raining now.” This argument is of the form

PRy
Lp
This argument uses the simplification rule. a2

State which rule of inference is used in the argument:

If it rains today, then we will not have a barbecue today. If we do not have a barbecue
today, then we will have a barbecuc tomorrow. Therefore, if it rains today, then we
will have a barbecue tororrow.

Solution: Let p be the proposition "It is raining today,” let ¢ be the proposition “We
will not have a barbecue today,” and let r be the proposition “We will have a barbecue

tomorrow.” Then this argument is of the form
P4
g
P

Hence, this argument is a hypothetical syllogism. |

An argument is called valid if whenever all the hypothescs are true, the conclu-
sion 1s also true. Conscquently, showing that ¢ logically follows from the hypotheses
Pi. P2, Py is the same as showing that the implication

(prprfoApy) ~ g
is true. When all propositions used in a valid argument are true, it leads to a comect
conclusion, However, a valid argument can lead to an incorrect conclusion if one or
morc false propositions are used within the argument. For example,

“If 101 is divisible by 3, then 1017 is divisible by 9. 101 is divisible by 3, Conse-
quently, 1017 is divisible by 0.7

15 a valid argument based on modus punens. However, the conclusion of this argument
is false, since 9 does not divide 1012 = 10,201. The false proposition 101 is divisible
by 3" has been used in the argument, which means that the conclusion of the argument
may be false.

When there are many premises, several rules of inference are often needed to show
that an argument is valid. This is illustrated by the following examples, where the steps
of arguments are displayed step by step, with the reason for each step explicitly stated.
These examples also show how arguments in English can be analyzed using rules of
inference.

Show that the hypotheses “Itis not sunny this afternoon and it is colder than yesterday,”
“We will go swimming only if it is sunny,” “If we do not go swimming, then we will
take a canoe trip,” and “If we take a canoe trip, then we will be home by sunset” lead
to the conclusion “We will be home by sunset.”
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Sofution: Let p be the proposition "It is sunny this afternocn,” ¢ the proposition “It
is colder than yesterday,” r the proposition “We will go swimming,” s the proposi-
tion “We will take a canoe trip,” and ¢ the proposition “We will be home by sunset.”
Then the hypotheses become = p /A g, r — p, —r — 5. and s — ¢. The conclusion is
simply ¢.

We consiruct an argument to show that our hypetheses lead to the desired conclu-
sion as follows.

Step Reason

Loapig Hypothesis

2 ap Simplification using Step 1

Ir—p Hypothesis

4 ar Medus tollens using Steps 2 and 3

5= Hypothesis

6.5 Modus ponens using Steps 4 and 5

781 Hypothesis

A Modus ponens using Steps 6 and 7 |
EXAMPLE 7 Show that the hypotheses “If you send me an e-mail message, then I will finish writ-

ing the program,” “If you do not send me an e-mail message, then 1 will go to sleep
early,” and “If T go to sleep early. then I will wake up feeling refreshed” lead to
the conciusion “If I do not finish writing the program, then 1 will wake up feeling
refreshed.”

Solution; Let p be the proposition “You send me an ¢-mail message,” g the proposition
"1 will finish writing the program.” r the propasition “1 will go to sleep early,” and s
the proposition “i will wake up feeling refreshed.” Then the hypotheses are p — ¢,
<+p — r,and r — 5. The desired conclusion is - g — 5.

The following argement shows that our hypotheses lead to the desired conclusion.

Step Reason

1L p—>g Hypothesis

2. g — p Contrapositive of Step 1

3 ap—r Hypothesis

4 g—r Hypothelical sytlogism using Steps 2 and 3

Sr—u Hypothesis

6. g —s Hypothetical syllogism using Steps 4 and 5 ]
FALLACIES

- Several common fallacies arise in incorrect argumenits. These fallacies resemble rules
web  of inference but are based on coatingencics rather than tautologies. Thesc are discussed
: here to show the distinction between correct and incorrect reasoning,.
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EXAMPLE 8

EXAMPLE 9

EXAMPLE 10

EXAMPLE 11

The proposition [(p — ¢} / g] — p is not a tautology, since it is false when p
is false and ¢ is true, However, there are many incorrect arguments that treat this as a
tautology. This type of incorrect reasoning is called the fallacy of affirming the con-

clusion.

Is the following arguement valid?

[f you do every problem in this book, then you will learn discrete mathematics. You
learned discrete mathematics.

Therefore, you did every problem in this book.

Solution: Let p be the proposition “You did every problem in this book.” Let ¢ be the
proposition “You learned discrete mathematics.” Then this argument is of the form: if
p — g and g, then p. This fs an example of an incorrect argument using the faltacy
of affirming the conclusion. Indeed, it is possible for you to learn discrete mathematics
in some way other than by doing every problem in this book. {You may learn discrete
mathematics by reading, listening to lectures, doing some but not all the problems in
this book, and so on) n

Let p be the preposition “» = | (mod 3).” and lct ¢ be the proposition “»* = 1 (mod
3)." The implication p — ¢, whichis“if n = | (mod 3}, then n* = | (mod 3),” is true.
ff ¢ is true, so that ? = | (mod 3). does it follow that p is true, namely, that n = 1
(mod 3)?

Solution: It would be incorrect to conclude that p is true, since it is possible that n = 2
{rnod 3). If the mncorrect conclusion that p is frue is made, this would be an example of
the fallacy of affirming (he conclusion. u

The proposition [(p = ¢)\—~p] = —¢is not a tautology, since it is false when pis
false and ¢ 1s true. Many incorrect arguments use this incorrectty as a rule of inference.
This type of incorrect reasoning is called the fallacy of denying the hypothesis.

Let p and ¢ be as in Exarnple 8. If the implication p — ¢ is true, and = p is true, is it
correct to conclude that g is true? In other words, is it correct t¢ assume that you did
not learn discrete mathematics if you did not do every problem in the book, assuming
that if you do every problem in this book, then yon will learn discrete mathematics”

Solution: 1t is possible that you learned discrete mathematics even if you did not do
every problem in this book. This incorrect argument is of the form p — g and —p
imply —g, which is an example of the fallacy of denying the hypothesis. [ |

Let p and g be as in Example 9. Is it correct to assume that if — p is true, then g s
true, using the fact that p — ¢ is true? In other words, is it correct to conclude that
nl# 1 (mod3)ifn < | {mod 3), using the implication: if n = 1 {mod 3), thea #? = |
{mod 3)7
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Solution; Itis incomrect to corclude that #° # [ (mod 3)if # # 1 (mod 3), since n¢ = 1
{mod 3} when n = 2 {mod 3), This incorrect argument is another example of the failacy
of denying the hypothesis. |

Many incorrect arguments are based on a faliacy called begging the guestion. This
fallacy occurs when one or more steps of a proof are based on the truth of the statement
being proved. In other words, this fallacy arises when a statement is proved using itself,
or a staiement equivalent to 1t. That is why this fallacy is also called circular reasoning,

EXAMPLE 12 Is the following argument correct? It supposedly shows that n is un even integer when-
ever n* is an even integer.

Suppose that #* is even. Then n*> = 2k for some integer k. Let # = 2/ for some
integer /. This shows that » is even.

Solution: This argument is incorrect. The statement “let # = 2! for some integer [
accurs 1n the proof. No argument has been given to show that it is true. This is circular
reasoning because this statement is equivalent to the statement betng proved, namely,
“nis even.” Of course, the resalt itself is correct; only the method of proof is wrong. ll

RULES OF INFERENCE FOR QUANTIFIED STATEMENTS

We discussed rules of inference for propositions. We will now describe some important
rules of inference for statements involving quantifiers. These rules of inference are used
extensively in mathematical arguments, often without being explicitly mentioned.

Universal instantiation is the rule of inference used te conclude that P(c) is true,
where ¢ is a particular member of the universe of discourse, given the premise VxP(x).
Universal instantiation is used when we con¢lude from the statement “All women are
wise” that “Lisa 15 wise,” where Lisa is a member of the universe of discourse of all
women.

Universal generalization is the rule of inference which states that ¥x£{x) is true.
given the premise that P(c) is tree for all elements ¢ in the universe of discourse. Uni-
versal generalization is used when we show that ¥xP(x} is true by taking an arbitrary
element ¢ from the universe of discourse and showing that P(c) is true. The element ¢
that we select must be an arbitrary, and not a specific, element of the universe of dis-
course. Universal generalization is used implicitly in many proofs in mathematics and
is seldom mentioned explicitly.

Existential instantiation is the rule which allows us to conclude that there is an
element c in the universe of discourse for which P{c) is true if we know that IxP(x) is
true. We cannot select an arbitrary value of ¢ here, but rather it must be a ¢ for which
£(c) is true. Usually we have no knowledge of what ¢ is, onty that it exists, Since 1t
exists, we may give it a name (c) and continue our argument.

Existential generalization is the rule of inference which is used to conclude that
xP(x) is true when a particular element ¢ with P(c) true is known. That is, if we know
one element ¢ in the universe of discourse for which P(c) is true, then we know that
IxP{x) 18 true.

We summarize these rules of inference in Table 2.

We will illustrate how one of these rules of inference for quantified statements is
used in the following example,
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TABLE 2 Rules of Inference For Quantified Statements,
U/ 1s the Universe of Discourse.

.
! Rule of Inference | Name

YxPix)

_— Universal instantiation
SPoyifeel

PAe) for an arbitrary ¢ & U Universal generalization

3 TPy

Existential instantiation
P(c) for some element ¢ € U

+—

P(c) tor some clemeut cel

NEN O Existential generalization

EXAMPLE 13 Show that the premises “Everyone in this discrete mathematics class has taken a course
in computer science” and “Marla is a student in this class™ imnply the conclusion “Marla
has taken a course in compuier science.”

Solution: Let Dix)denote “x is in this discrete mathematics ctass,” and let C(x) denate
“x has taken a course in computer science.” Then the premises are Yx(D(x) — C(x))
and D{(Marla}. The conclusion is C(Marla).

The following steps can be used to establish the conclusion from the premises.

Step Reason

LYx(Dix) — C{x)) Premise

2. D{Marla) — C(Maria) Universal instantiation using Step 1

3. D(Marla) Premise

4. C{Marla) Modus ponens using Steps 2 and 3 [ ]

Remark: Mathematical arguments often include steps where both a rule of inference
far propositions and a rule of inference for quantifiers are used. For example, nniversal
instantiation and modus ponens are often used together. When these ules of inference
are combined, the hypothesis Yx(P(x) — Q(x)) and P(c), where ¢ is a member of the
universe of discourse, show that the conclusion Q(c) is true.

Remark: Many theorems in mathematics state that a property holds for all elements
in a particular set, such as the set of integers or the set of real numbers. Although the
precise statement of such theorems needs to include a universal quantifier, the standard
convention in maLhcmanc:s 15 to omit it. For cxample, the statement “If the integer n
is divisible by 3, then n* is divisible by 9” really means “For all integers a, if n is
divisible by 3, then »? is divisibte by 9. Slrmlarly, the statement “If x > v, where
x and y are positive real numbers, then x> > y*” really means “For all positive real
numbers x and v, if x > y, then x* > y%.* Furthermore, when theorems of this type
are proved, the law of universal generalization is often used without explicit mention.
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The first step of the proof usually invelves selecting a general element of the universe
of discourse. Subsequent steps show that this element has the property in question,
Universal generalization implies that the theorem helds for all members of the universe

of discourse.

In our subsequent discussions, we will follow the usual conventions and not explic-
itly mention the use of universal quantification and universal generalization. However,
you should always understand when this rule of inference is being implicitly applied.

METHODS OF PROVING THEOREMS

We proved several theorems in Chapters 1 and 2. Let us now be more explicit about the
methedology of constructing proofs. We will describe how different types of statements
arc proved.

: Because many theorems are implications, the techaiques for proving implications
ar¢ important. Recall that p — ¢ is true uniess p is true but q is false. Note that when
the statement p — g 1s proved, it need only be shown that 4 is true if p is true; it is not
usually the case that 4 is proved to be true. The following discussion will give the most
common techniques for proving implications.

The implication p — ¢ can be proved by showing that if p is true, then g must also
be true. This shows that the combination p true and ¢ false never occurs. A proof of this
kind is called a direct proof. To carry out such a proof, assume that p is true and use
rules of inference and theorems already proved to show that g must also be true.

EXAMPLE 14 Give a direct proof of the theorem “If » is odd, then n? is odd.”

Sotution: Assume that the hypothesis of this implication is true, namely, suppose that
n is odd. Then n = 2k + 1, where k is an integer. It follows that n* = (2k + 1)? =
44° + 4k + 1 = 2(2k% + 2k) + 1. Thercfore, n? is odd (it is | more than twice ap

integer). |

Since the implication p — ¢ is equivalent to its contzapositive, ¢ ~~ —p, the
implication p — ¢ can be proved by shewing that its contrapositive, ng — - p, is
true. This related implication 1s usually proved directly, but any proof techrique can be
used. An argument of this type is called an indirvect proof,

EXAMPLE 15 Give an indirect proof of the theorem “If 3n + 2 is odd, then » is edd.”

Solution: Assume that the conclusion of this implication is false; namely, assume that
n is even. Then n = 2k for some integer &, i follows that 3n + 2 = 3(2k) + 2 =
0k +2 = 23k + 1), 50 3n + 2 is even (since it is a multiple of 2). Since the negation
of the conclusion of the implication implies that the hypothesis is false, the original
implication s true. ]

Suppose that the hypothesis p of an implication p — ¢ is false. Then the implica-
tion p — q is true, because the statement has the form F — T or F — F, and hence
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is true. Consequently, if it can be shown that p is false, then a proof, called a vacu-
ous proof, of the implication p — ¢ can be given. Vacuous proofs are often used to
establish special cases of theorems that state that an impiication is true for all positive
integers [i.e., a theorem of the kind ¥a P(n) where P(n) is 4 propositional function).
Proof techniques for theorems of this Xind will be discussed in Section 3.2.

EXAMPLE 16 Show that the proposition £(0) is true where P(n) isthe propositional function *If # > 1,
then n? > n."

Solution: Note that the proposition P(0) is the implication “If 0 > [, then 0% > (.
Since the hypothesis 0 > 1is false, the implication P(0) is automatically true. 2

Remark: The fact that the conclusion of this implication, 07 > 0, is false is irrelevant
to the truth vafue of the implication, because an implication with a false hypothesis is
guaranteed to be true,

Suppose that the conclusion g of an implication p — ¢ is true, Then p — ¢ is
trug, since the statement has the form T — T or F — T, which are true. Hence, if it
can be shown that g is true, then a proof, called a trivial proof, of p — g can be given.
Trivial proofs are often important when special cases of theorems are proved (see the
discussion of procf by cases} and in mathematical induction, which is a proof technique
discussed ir Section 3.2

EXAMPLE 17 Let #(n) be the proposition “If & and b are positive integers witha = b, theng™ = "
Show that the proposition P(0) is true,

Sofurion: The proposition P(0) is "If @ = b, then @ = 0" Since a® = #* = 1, the
conclusion of P(0) is true. Hence, P{0) is true. This is an example of a trivial proof.
Note that the hypothesis. which is the statement “2 = b," was not needed in this proof.

a

Suppose that a contradiction 4 can be found so that - p — g s true, thatis, ~p —
F is true. Then the proposition —p must be false. Consequently, p must be true. This
technique can be used when a contradiction, such as » A =, can be found so that it is
possible to show that the implication - p — (r /A —7) is true. An argument of this type
is called a proof by contradiction.

EXAMPLE 18 Prove that /2 is irrational by giving a proof by contradiction.

Solution: Let p be the proposition “V'E is irrational.” Suppose that — p is true. Then
v2 is rational. We will show that this leads to 2 contradiction. Under the assumption
that /2 is rational, there exist integers g and b with /2 = /b, where a and & have
no commen factors (so that the fraction a/b is in lowest terms). Since 2 = a/b, when
both sides of this equation are squared, it {ollows that

) hl
2= afh
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Hence,
25 = u

2

This means that g7 is even, implying that « is even. Furthermore, since aiseven, g = 2¢
tor some integer ¢. Thus

Wt = 4,
$0

b =2
This means that &° is even. Hence, b must be even as well.

It has been shown that — p implies that V2 = alb, where a and & have no commaon
factors, and 2 divides a and &. This is a contradiction since we have shown that = p

implics hoth rand —r where ris the statement that @ and b are integers with no commen
factors. Hence, — p is false, so chat pr *¢2 is irTational” is true. [ |

An indirect proof of an implication can be rewritter as a proof by contradiction.
in an indirect proof we show that p — ¢ is true by using a direct proof to show that
“1g — - p is true. That is, i an mdirect proof of p — ¢ we assume that —q s true
and show that = p must also be true. To rewrite an indirect proof of p — ¢ as a proof
by contradiction, we suppose that both p and — g are true. Then we use the steps from
the direct proof of ¢ — - p to show that - p must also be true. This leads to the
contradiction p / - p, completing the proof by contradiction. Example 19 illustrates
how an indirect proof of an implication can be rewnritten as a proof by contradiction.

EXAMPLE 19 Give u proof by contradiction of the theorem “If 3n + 2 is odd, then n is 0dd.”

Sofutiorn: We assume that 32+ 2 isodd and that # is not odd, sc that 7 is even. Following
the same steps as in the solution of Example 15 (an indircet proof of this thcoremy), we
can show that if # is even, then 3n + 2 is even. This contradicts the assumption that
3n + 2 is odd. completing the proof, [ ]

To prove an implication of the form

S TRVE - AVERERAVE M Rl
the tautelogy
[nw e o e gl —~ Hpr — @) A ipr = @) N Adpy = ¢

can be used as a rule of inference. This shows that the original implication with a hy-
pothesis made up of a disjunction of the propositions py, pa, ..., pa can be proved by
proving each of the nimplications p; — ¢,¢ = 1.2,..., n,individually. Such an argu-
ment is called a proof by cases. Sometimes to prove that an implication p — g is true,
it is convenient to use a disjunction py v/ pr ' - -/ pr Instead of p as the hypothesis of
the implication, where p and p;\/ p2/ -/ ps are equivalent, Consider the following
example.

EXAMPLE 20 Prove the implication “If 2 is an integer not divisible by 3, then n° = | {mod 31"
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Solution: Let p be the proposition “n is not divisible by 3,” and let ¢ be the proposition
“n? = | (med 3).” Then p is equivalent to p; \/ p; where pyis “n =1 (mod 3)" and
pa is “n = 2 (mod 3).” Hence, to show that p — g it can be shown that py — ¢ and
ps — g. It is casy to give dizect proofs of these two implications.

First, suppase that p is true. Then n = [ (mod 3), so that n = 3& + 1 for some
integer £. Thus,

=0 4 6k+1 =338 +20+ L

It follows that 7 = 1 {mod 3). Hence, the implication p; — g is true. Next, suppose
that p; is true. Then 1 = 2 (mod 3), so that n = 3% + 2 for some integer k. Thus,

W= 9k2’+‘ 12k 4 4 = 3{3k2+4k+ D+ L

Hence, #2 = | (med 3), so the implication p; — g is true.

Since it has been shown that both p; — gand py — gare true, it cun be concluded
that (p1 \/ p2) — ¢ is true. Moreover, since p is equivalent to py \/ pa, it follows that
p o= g s true. |

To prove « theorem that is an equivalence, that is, one that is a stetement of the
form p < ¢ where p and ¢ are propositions, the tautology

(pqy—1te—=ag ig—p)

can be used. That i, the proposition *p if and only if ¢ can be proved if both the
implications “if p, then ¢" and “if g, then p” arc proved.

EXAMPLE 21 Prove the theorem “The integer » is odd if and only if #% is 0dd.”

Solution: This theorem has the form “p if and only if g,” where p is “n is odd” and
g is “n is odd.” To prove this theorem, we need to show that p — gand ¢ — pare

true.

We have already shown (in Example 14) that p — gis true. We will use an indirect
proof to prove that ¢ — p. Assume that its conclusion is false, namely, that n is even.
Then n = 2k for some integer £. Then n? = 4k = 2(2k%), so n” is even {since it is a
multiple of 2). This comptetes the indirect proaf of ¢ — p.

Since we have shown that both p — g and ¢ — p are true, we have shown that
the theorem is true. ]

Sometimes a theorem states that several propositions are equivalent. Such a theo-
rem states that propositions py, p2, p1. . . ., P are equivalent. This can be written 43

Pi ™ pa o 2 Pa

which states that all i propositions have the same truth values. One way to prove these
mutuatly equivalent is to use the tautology

[y =~ pz oo pl =l = p) N = p) A Alpn = il

This shows that if the implications p; — p2. P2 — Pa.. .. Pa — Py cin be shown o
be true, then the propositions pr. pa. ..., p, are all equivalent.
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Prove that when # is an integer, the following three statements are equivalent.
prnmod3 = lornmed3 = 2
P nis not divisible by 3

il =1 {mod 3)

Solution: To show that the statements are equivalent, we can prove that the implications
Py~ prpr — p3.and p3 — py are true,

We will use a direct proof to show that p; — p is true. Assume that r mod 3 = 1
or 2. By the division algorithm, # = 3¢ +r where 0 = 7 < 3. By the definition of mod,
we have » = n mod 3. Since » is divisible by 3 if and only if r = 0, the assumption
that nmod 3 = 1 or 2 implies that # is not divisible by 3. This completes the proof that
P11~ pristrue.

We have already shown that py — pa is true in Example 20.

We will use an indirect proof to show that p; — p; is true. We assume that the
conclusion of this implication is [alse, namely, that n mod 3 is neither 1 nor 2. Since
nmod 3 equals 0, 1, or 2, we see that 2 mod 3 = 0. This means that 3 | n, so that
n = 3k for some integer . This implies that n* = 9%* = 3(3k%), which shows that
#¢ = 0 (med 3), so that p; is false. This completes the indirect proof that p3 — py,
and it also completes the proof of the theorem. |

THEOREMS AND QUANTIFIERS

Many theorems are stated as propositions that involve quantifiers. A variety of methods
are used to prove theorems that are quantifications. We wiil describe some of the most
important of these here.

Many theorems are assertions that objects of a particular type exist. A theorem of
this 1ype is a proposition of the form Jx P(x), where P is a predicate. A proof of a
proposition of the form Jx P{x) is called an existence proof. There arc several ways to
prove a theorem of this type. Semetimes an existence proof of 3¢ A(x) can be given by
finding an element a such that P(¢) is true. Such an existence proof is called construc-
tive, It is also possible to give an existence proof that is nonconstructive; that is, we
do not find an element a such that P() is true, but rather prove that Ix P(x} is true in
some other way, Onie common taethod of giving a nonconstructive existence proof 1s 1o
use proof by contradiction and show that the negation of the existential quantification
implies a contradiction. The concept of a constructive existence proof is illustrated by
the following example.

A Constructive Existence Proof  Show that there are n consecutive composite positive
integers for every positive integer . Note that this asks for proof of the quantification:
¥r3x(x +iiscomposite fori = 1,2,....m).
Sotution: Let

x={rn+1}+1L
Consider the integers

x+bLx+2....0 Y+ A,
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EXAMPLE 24

EXAMPLE 25

EXAMPLE 26

Note that{ + ! divides x+i = (n+ D! +(i+ 1fori = 1,2,..., n. Hence, nconsecutive
composite positive integers have been given. Note that in the solution a number x such
that x +{ is composite for i = 1, 2,..., n hay been produced. Hence, this is an example
of a constructive existence proof. [ |

Remark: The proof in Example 23 can be found in the works of the ancient Greek
mathematiciar Euclid.

An example of a nonconstructive existence proof is given next.

A Nonconstructive Existence Proof  Show that for every positive integer n there is a
prime greater than #. This problem asks for a proof of an existential quantification,
namely, 3x Q(x), where Q(x) is the proposition “x is prime and x is greater than n,” and
the universe of discourse is the set of positive integers.

Solution: Let n be a positive integer. To shaw that there is a prime greater than n.
consider the integer n? + 1. Since every integer has a prime factor, there is at least one
prime dividing n! + 1. {One possibility is that n! + 1 is already prime.) Note that when
n! + 1is divided by an integer less than or equal to », the remainder equals 1. Hence,
any prime factor of this integer must be greater than . This proves the result. This
argument 1s a nunconstructive existence proof because a prime larger than 2 has not
been produced. It has simply been shown that one must exist. |

Suppose a statement of the form ¥y P(x) 1s false. How can we show this? Recall
that the propositions —1¥.x P{x) and 3x — P(x) are cquivalent. This means that if we
find an element a such that P{a) is false, then we have shown that 3x -1 P(x) is true,
which means that Y.x P{x) is faise. An element a for which P(a) is false is called u
counterexample. Note that only one counterexample needs to be found 10 show that
Y Plx)is false.

Show that the assertion “All primes are odd™ is false,

Soduzion: The scatement *“All primes are odd” is a universal quantification, namely,
YxOix),

where (x) is the proposition “x is odd,” and the universe of discourse is the set of
primes. Note that x = 2 is a counterexample, since 2 is a prime number that is even.
Hence, the statement “All prime numbers are odd™ s false, [ |

I1 s a common mistake to assume that one or more examples establish the truth of
a statement. No matter how many examples there are where P{x) is true, the universal
quantification ¥xP(x) may still be false. Consider the following example.

sy 2+ 41 prime for all nonnegative integers #? That is, is the statement ¥ P(m)
4 theorem. where P(n) is the statement “n° - 2 + 41 is prime” and the universe of
discourse is the set of nonnegative integers?
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Solution: To determine whether n” — n + 41 Is prime for all nonnegative integers, we
might begin by examining whether 1t is prime for the smallest nonnegative integers.
We find that ° — 1 + 41 is prime for all nonnegative integers not excecding 40 (as the
teader can verify). However, if we decided this was enough checking, we would come
to the wrong conclusion. It is not true that #2 — » + 41 is prime for all nonnegative
integers. When # = 41, it is compasite {as the reader should verify). |

Example 26 helps illustrate the crucial point that a statement may not be true, even
though there are many examples for which it is true.

THE HALTING PROBLEM

We will now describe a proof of one of the most famous theorems in computer science.
We will show that there is a problem which cannot be solved using any procedure. That
- is, we will show there are unsolvable problems, as was mentioned in Section 2.2. The
‘web problem we will study is the halting problem. It asks whether there is a procedure
' that does the following: [t takes as input a computer program and input to the program
and determines whether the program will eventually stop when run with this input. It
would be convenient to have such a procedure, if it existed. Certainly being able to
test whether a program entered inio an infinite loop wonld be helpfu} when writing and
debugging programs. However, in 1936 Alan Turing showed that no such procedure

exists (see his biography in Section 10.4),

Before we present a proof that the halting problem is unsolvable, first note that we
cannot simply tun a program and observe what it does to determine whether it termu-
nates when ran with the given input. If the program halts, we have our answer. but if
it is still running after any fixed length of time has elapsed, we do not know whether it
will never halt or we just did not wait long enough for it to terminate. After all, it is not
hard to design a program that will stop only after more than a billion years has elapsed.

We will describe Turing’s proof that the halting problem is unsolvabie; it is a proot
by contradiction. (The reader should note that vuer proof is not completely rigorous.
since we have not explicitly defined what a procedure is. To remedy this, the concept
of a Turing machinc is needed. This concept is introduced in Section 13.5.)

FProof: Assnme there is a sclution o the halting problem, a procedure called H(P 1.
The procedure H(F. /) takes two inputs, one a program P and the other 7, an input to the
program F. H(F, /) generates the string “hait™ as output if & determines that # stops
when given / as input. Othcrwise, H (P, /) generates the string “loops forever™ as output.
We will now derive a contradiction.

When a procedure is coded, it is expressed as a string of characters; this siring can
be mterpreted as a sequence of bits, This means that a program itself can be used as
data. Therefore a program can be thought of as input to another program, or even itself.
Hence, H can take a program P as both of its inputs, which are a program and input to
this program. H should be able 1o determine if 2 will halt when it is given a copy of
itself as input.

To show that no procedure H exists which solves the halting problem, we construct
a simple procedure K(P), which works as follows, making use of the output H(P, £). If
the output of (P, P 1s “loops forever,” which means that P loops forever when given a
copy of itself as input, then K (P} halis. If the owtput of H(P. P) is “halt,” which means
that P halts when given a copy of itself as input, then K(P) loops forever. That is. K(#)
does the opposite of what the output of H( £, P) specities. (See Figure 1)
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IFH (P P) = “halts,”
P as program then loop forever
| ™ Program Outout Program | — =
nput u
p HED LA I 415
Program P AP
!  I——
L
P as input If # (P, Py = “loops forever,”
then halt
FIGURE 1

Now suppose we provide X as input to K. We note that if the output of H{(K, K} is
“loops forever,” then by the definition of K we see that K(K) balts. Otherwise, if the
output of H(K, K) is “halt,” then by the definition of K we see that K(K'} loops forever,
in violation of what H tells us. In both cases, we have a contradiction.

Thus, H cannot always give the correct answers. Consequently, there is ne proce-
dure that solves the halting problem. a

SOME COMMENTS ON PROOFS

We described a variety of methods for proving theorems. Observe that no algorithm for
proving theorems has been given here. Such a procedure does not exist.

There are many theorems whose proofs are easy to find by directly working through
the hypotheses and definitions of the terms in the theorem. However, it is often difficult
to prove a theorem without resorting 1o a clever use of an indirect proof, a proof by
contradiction, or seme other proof technique. Constructing proofs is an art that can be
learned only by wying various lines of attack.

Muoreover, many statements that appear 1o be theorems have resisted the persistent
efforts of mathematicians for hundreds of years. For instance, as simple a siatement
as “every even positive integer greater than 4 is the sum of two primes” has not yet
been shown (o be true, and no counterexample has been found, although it has been
verified for all even posttive integers up to 10'4, This statement is known as Goldbach’s
cenjecture and is one of many assertions in mathematics with a truth valuc that is

unknown,
Exercises
1. What rule uf inference is used in each of the following b} Jetry is a mathematics major and a computer sci-
arguments”? ence major. Therefore, Jerry is a mathematics
a) Alice is # mathematics major, Therefore, Alice 13 major.
either & mathematics major or a computer science ¢) If it is rainy, then the pool will be closed. It is rainy.
major. Thercfore, the pool is closed.

= - - UChristian Goldbach (16%0-1764).  Christian Goldbach was born in Kénigsberg, Prussia, the city noted
: we& tor its famous bridge problem {which will be studied in Section 7.5). He beeame professor of mathematics
oL arthe Academy in St. Petersburg in 1725 Tn 1728 Goldbach went (o Mescow to tutor the son of the tsar. He
cntered the world of politics when, in 1742, he became a staff member in the Russian Ministry of Foreign
Affairs. Gildhach is best known for his correspondence with eminent mathematicians, including Euler and

Bernoulli, for his famous conjectures in number theory, and for several contributions 10 analysis.
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d) i it snows today, the university will close. The uni-
versily is not closed teday. Therefore, it did not
snow teday.

e} If I go swimming, then [ will stay in the sun too
long. If [ stay in the sun too long, then I will sun-
bum. Therefore, if [ go swimming, then I will sun-
burn.

. What ritle of inference is used tn cach of the following

arguments?

4) Kangaroos live in Australia and arc marsupials,
Therefore, kangarcos are marsupials.

b} It is either hotter than 100 degrees today or the pol-
lution is dangerous, It is less than 100 degrees out-
side today. Therefore, the pollution is dangerous.

¢} Linda is an excellent swimmer. If Linda is an ex-
cellent swimmer, then she can work as a lifeguard.
Therefore, Linda can work as a lifegnard.

d) Steve will work ul a computer company this sum-
mer. Therefore, this summer Steve will work at a
compiter company or he wiil be a beach bum.

¢} IfTwork al night on this homework. then [ can an-
swer all the exercises. If [ answer all the exercises,
I will understand the matenial. Therefore, if T work
all night on this homewaork, then I will understand
the material.

. Construct an argument using rules of inference 1o show

that the hypotheses “Randy works hard,” “If Randy
works hard, then he iy a dull boy,” and “If Randy is
a dull boy. then he will not get the job™ irnply the con-
clusion “Randy will not get the job.™

. Construct an argument using rules of inference to show

that the hypotheses “If it does not rain or if it is not
fopgy, then the sailing race will be held and the life-
saving demonstration will go on,” “If the sailing race
15 held, then the trophy will be awarded,” and “The
trophy was not awarded” imply the corclusion “It
raited.”

. What rules of inference are used in the following fa-

mous argument? “All men are mortal. Socraies is a
man. Thercfore, Socrates is mortal.”
What rules of inference are used in the following ar-
gument? “No man is an island. Machattan s an islandg,
Therefore, Manrhattan is not a man.”

. For cach of the following sets of premises, what rele-

vant conclusion or copclusions can be drawn? Explain

the rules of inference used to obtain each conclusion

from the premises,

a) "If [ take the day off, it either rains or snows.” "
took Tuesday off or 1 took Thursday off.” “[t was
sunny on Tuesday.” “It did not snow on Thursday

b) “If 1 eat spicy foods, then I have strange dreams.”
"I have strange dreams if there is thunder while |
slecp.” “1 did not have strange dreams.”

¢) “lam cither clever or lucky.” ~Tam not lucky.™ *Tf
[ am lucky. then T will win the lotery.”

3.1 Exercises [83

d) “Every computer science major has a personal com-
puter.” “Ralph does not have a personal computer.”
“Ann has a personal computer.”

e} “What 15 good for corporations is good for the
United States,” “What is good for the United States
15 good for you.” “What is geod for corporations is
for you to buy lots of smff.”

) “All rodents gnaw their food.” “Mice are rodents "
“Rabbits do not gnaw their food.” “Bats are not ro-
dents.”

. For each of the following sets of premises, what rele-

vant conclusion or conelusions can be drawn? Explain

the rules of inlerence vsed to obtain each conclusion

from the premises.

ay "I 1 play hnckey, then [ am sore the next day.” *“i
use the whirlpool if [ am sore.” 1 did not use the
whirlpool.”

b) “If I work, it is either sunny or partly sunny.” “1
worked last Monday or 1 worked last Friday.” “It
was not sunny on Tuesday.” “It was not partly sunny
on Friday.”

¢} “All insects have six legs.” “Dragonflics are in-
sects.” “Spiders do not have six legs.” “Spiders eat
dragonflies.”

d} “Every student has an Infernet account.” “Homer
does not have an Internet account,” “Maggie has an
Intemet account.”

€) "All foods that are healthy to eat do not taste good.”
“Tofu is healthy to car.” “You only eat what tastes
2o0d.” “You do not eat tofu.” “Cheeseburgers are
not healthy to eat.”

f) "1 am cither dreaming or hallucinating.” “T am not
dreaming.” “If [ am hallucinating, | see elephants
running down the road.”

. For zach of the fellowing arguments, explain which

rules of inference are used for each step.

a) “Doug, a student in this class, knows how to write

programs in JAVA. Everyone who knows how 1o

write programs in JAVA can get a high-paying job.

Therefore, someone in this class can get a high-

paying job.”

“Somebody in this class enjoys whale watching,

Fyvery person who enjoys whale watching cares

about ocean pollution. Therefore, there is a person

in this class who cares about ocean pollution.”

“Each of the 93 students in this class owns a per-

sonal computer. Everyone who owns a personal

computer can use a word processing program.

Therefore, Zeke, a student in this class, can use a

wuord processing program.”

d) “Everyone in New Jersey lives within 50 miles
of the ocean. Someone in New Jersey has never
seen the oceuan. Therefore, someone who lives
within 350 miles of the ocean has never seen the
ocean,”™

b

——

e

C
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10.

11

12.

13.

14,

15,

3/ Mathematical Reasoning

For cach of the following arguments, explain which
rules of inference are used for each step.
a) “'Linda. a student in this class, owns a red convert-
ible. Evervone whe ewns i red convertible has gol-
1en i least one speeding ticket. Thercfore, someone
in this vlass has golten a speeding ticket.”
“Each of five roommates, Melissa, Aaron, Ralph,
Veneesha, and Keeshawn, has taken a course in dis-
crete mathematics, Every student who has taken a
course in discrele mathematics can take a course in
algorithms. Theretore, all five roommates can take
a course in algorithms next vear.”
“All movies produced by John Sayles are wonder-
ful. fohn Sayles produced a movie about coal min-
ers. Therefore, there is 2 wonderiul movie about
coal miners.”
“There s somecne tn this class who has been to
France. Everyone who goes to France visits the
Fouvre. Therefore. someone in this class hus vis-
ited the Louvre.”
Determine whether each of the following arguments is
valid, If an argument is correct, what rule of inference
is being used? If it is not, what fallacy occurs?
a) If n is a real number such that n 2> |, then #° > 1.
Suppose that 72 = 1. Then n = 1.
kY The number lag; 3 is irrational if it 1s not the ratio
of two integers. Therefore, since logy 3 cannot be
written in the form /b where a and b are imtegers.
it is irrational.
I 1 is a real number with # > 3. then #” > 9. Sup-
pose that 77 = & Then n = 3.
A positive integer is either a perfect square or it has
aneven number of positive integer divisors. Suppose
that 7 is a positive integer that has an odd number of
positive integer divisors. Then # is a perfect square.
[f # is a real number with a > 2, then n° = 4. Sup-
posethat n = 2, Then n- < 4,
The following argument is ah incorract proof of the the-
orem "If #° is not divisible by 3, then a1 is not divisible
by 3" The teason it 1§ incorrect is that circular reason-
ing has boen used. Where has the error in reasening
been made?

b

—_—

———

<

d

o

Ly

d)

€)

[f n* is not divisible by 3, then »? does not equal 3k
for some integer k. Hence, # does not equal 3/ for
some integer [ Therefore, n is not divisible by 3.

Prove the proposition P(0), where P{n) is the propo-
sition “lf » is a positive integer greater than 1, then
a* > n" What kind of proof did vou use?

Prave the proposition P(1). where P(n) is the proposi-
ton "I ntis & positive integer, then #? > 4. What kind
of proof did you use?

Let Pa) be the proposition “If @ and b are positive real
numbers, then (g + b)Y == g™ + p"" Prove that P{1)is
truc. Whar kind of proof did you use?

16.

17

18.

19

A,

22

*25.

26.

27.
*28.

29.

30.

3

3z

T
Ly
:

36.
*37.

38.

19,

Prove that the square of an even number is an even
number using

a) adirect proot,

b} an indirect proof.

¢} a prool by contradiction.

Prove thatif # is an integer and #° + 5 is odd, then # is
even using

a) an indirect proof. b} a proof by coniradictiun.
Prove that if » Is an integer and 3n + 2 is even, then n
is even using

a} an mdirect proof. b} a proof by contradiction.
Prove that the s of two odd integers is even.

, Prove that the sum of two rational numbers is rational.

Prove that the sum of an irrational number and g ratio-
nal number is irrational using a proof by contradiction.
Prove that the product of two rational numbers is ratio-
nal.

» Prove or disprove that the product of two ifrational

numbers is irrational,

. Prove or disprove that the product of a nonzere rational

nember and an iratienal pumber is irrational.

Prove or disprove that n* — 79z + 1601 is prime when-
ever f 1s a positive integer.

Prove or disprove that 2 + | is pnme for i nonnega-
tive integers .

Show that :5 1s irrational.

Show that 7 is irational if r is a positive integer that
is not & perfect square.

Prove that if x and ¥ are real numbers, then max( x, ¥ +
min(x, ¥} = x + y. (Hint: Use a proof by cases, with
the two cases corresponding o x = vy and x < vy, re-
spectively.)

Prove that the square of an integer not divisible by §
leavesaremainderof | ord whendividedby 5. (Hint: Use
a proof by cases, where the cases correspond to the pes-
sible remainders for the integer when it is divided by 5.)
Prove that if x and y are real pumbers, then [+ |y| =
|x + ¥| (where |x| represents the absolute value of x,
which equals x if x = 0 and equals —xif x = 0).
Use a proof by cases w show that [a/2][nf2] = |n'/4)
for all integers n.

Use a proof by cases to show that min(a, min(d, ¢)) =
min{tmin{a. b). ¢)whenevera, b, and ¢ are real numbers.

. Prove that if # is a positive integer, then i is even if and

oniy 1f 7n + 4 is even,

. Prove that if # is a positive integer. then n is odd if and

only if 51 + 6 1s odd.

Prove thatm® = n® ifand onlyif m = norm = - .
Let p be prime. Prove that @ = b* (mod g} if and only
it « = b{mod pyora = —b (mod p).

Prove or disprove that #° — 1 is composite whenever n
is a positive integer greater than |.

Prove or disprove that if 1 and n are integers such that
I, then eitherm = land n = 1 orelse m =
—landnr = -1,

MR =
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4.
41.

42

43

45,

46.

*47.

**48

&

49

*50.

SE

Prove ot disprove that a mod m + 5 mod m = {a +

&) mod m whenever m is a positive integer.

Prove or disprove that cvery positive integer can be

written @ the surm of the squares of two integers.

Prove that if 2 is a positive integer such that the sum of

its divisors is n+ |, then 2 1s prime. What kind of proof

did vou use?

Prove or disprove each of the following statements

about the floor and ceiling functions.

a) [|x/] = | x| for all real numbers .

b |2x] = 2{x| whencver x is a real number.

¢y [xf+[v] =[x + ¥] = 0 or | whenever x and v are
real numbers.

&) [xv! = [2][¥] for all real numbers x and v.

o | 1]

A P T

< L “ i

for all real numbars x,

e)

. Prove or disprove each of the following statements

about the floor and ceiling functions.

a) {[x!] =[x for all rcal numbers .

b} [ v+ y] = {x] + || for alt real nombers x and ».

o) [ w2427 = [ +/4] for all real numbers 1.

d) ']x}] - | x ) forall real numbers x.

e) {x|+|¥|~|x ¢+ v] = |2x] < |2y]for all real numbers
xand v

Prove that if x is a positive real number, then

a) i Jal =] 1)

b [ T} =" v

Prove that if m and n are positive integers and v is a

real number, then

b’
5]

Prove that if » is a positive integer and x 5 a real nurn-
ber, then

Lt+mt
mo |

[l = &)+ +

1 EJ
el R E R = A
m H

m— |

+x+—J.
m

Show that if @ and b are positive irrational numbers
such that /e + 1/ = 1, then every positive integer
can be vniquely expressed as either| ka |or| k6| for some
positive lnteger k.

Prove that at least one of the real numbers ay, ga, . . ., e,
is greater than or cqual to the average of these numbers.
What kind of proof did you use?

Use Exercise 49 to show that if the first 10 positive in-
legers arc placed around a circle, in any order, there
exist three integers in consecuti ve locations around the
circle that have a sum greater than or equal o 17.
Prove that if # 1 an integer, the following four state-
ments are equivalent: (i) m 1s even, (i) # + 1 is odd.
(i) 3 + 1 is odd. (iv) 3mis even,

52.

53

54

5.

S6.

57.

58.

*59

2

61,

62,

63,

E

685,

*66.
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Prove that if » is an integer, the following three statc-
ments are equivalent: {i} 5 divides &, (i} 5 divides "
(i) > £ =1 {mod 5).
Prove or disprove that there are three consecutive add
positive integers that are pnmes, that 15, odd primes of
the form g, p+ 2, and p + 4.
Prove or disprove that given a positive integer a. there
are n consecutive odd positive integers that are primes.
Which rules of inference are used to establish the von-
clusion of Lewis Carrell’s argument described in Fx-
ample 20 of Section 1.3?
Which rules of inference are used to establish the con-
clusion of Lewis Carroll’s argument described in Ex-
ample 21 of Section 1.3?
CHve a constructive proof of the proposition: “For every
positive integer # there is an integer divisible by more
than x primes.”
Find a counterexample to the proposition: "For every
prime number n, 7 + 2 is prime.”
Prove that there are infinitely many primes congruent
o 3 modulo 4. Is vour preof constructive or noncon-
structive? (Hinr: One approach is to assume that there
are only finitely many such primes p;. ps, ... P Let
g = dppy e py + 3. Show that ¢ must have a prime
factor congruent 10 3 modulo 4 not among the n primes
PP prd
Prove or disprove that if p|, g, ..., p, arc the 1 small-
est pnimes, then pypz o py + 115 prime,
Show that the propositions p|, py. p1, ps. and ps canbe
shown to be equivalent by proving that the implications
PO P Py pa— prpr — psoand ps —
[ are true.
Prove or disprove that if # and b are rational numbers,
then & is also rational.
Prove that there are irrational numbers ¢ and & such
that ¢” is rational. Is your proof constructive or non-
constructive? (Hine: Leta = J2and b = 2. Show
that either «® or {¢®)" is rativnal. |
Prove that an § X § chessboard can be completely cov-
ered using dominos (1 X 2 pieces).
Prove that it is impossible to cover completely with
dominos the 8 X 8 chesshoard with two squares at op-
posite comners of the board removed.
The Logic Problem, taken from WFF'N PROOF, The
Game of Lopic, has the following two assumptions:

1. “Logic is difficult or not many students like
logic.”

2.*1f mathematics is easy, then logic is not difficult,”
By translating these assumptions into statements in-
volving propositional variables and logical connec-
tives, determine whether cach of the following are valid
conclusions of these assumptions:
a) That mathematics is not easy, if many students like

logic.
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b) That not many students like logic, if mathematics Superman does not prevent evil. If Superman ex-
is noL casy. ists, he is neither impatent not malevolent. There-
¢) That mathematics is not easy or logic is difficult. fore, Superman does not exist.

d) That logic is not difficult or mathematics is not

easy.

Resclution is a preof methed used extensively in artificial

e) That if not many students like logic, then ¢ither  intelligence and by antomated proof programs. Resolution
mathematics is not easy or logic is not difftcuit. is based on the rule of inference derived from the tantology
*§7, Determine whether the following argument, taken from ((p g) Napy e — {gvr).
Backhouse [BaB6], is valid.

68, Use the resolution rule of inference to prove the state-

If Superman were able and willing to prevent ment “You will win the lottery or you will be pro-
evil, he would do so. If Superman were unable moted,” pven the hypotheses “You will quit your job
io prevent evil. he would be impotent: if he were o1 you will win the Jottery.” “You will not quit your job
unwilling te prevent evil. he would be malevo- or you will find a better job,” and “You will not find a

ient.

3.2

better job or you will be promoted.”

Mathematical Induction

webh

INTRODUCTION
What 1s a formula for the sum of the first n positive odd injegers? The sums of the first
n positive odd integers forn = 1,2, 3 4, Sare
P =1, 1 +3 =4, 14345 =09,
i+3+5+7=16 1+3+5+74+9 =25

From these values it is reasonable to guess that the sum of the first » positive odd integers
is n*. We need a method to prove that this guess is correct, if in fact it is.

Mathematical induction is an extremely important proof technique that can be
used to prove assertions of this type. As we will see in this section and in subsequent
chapters, mathematical induction is used extensively to prove results about a large va-
riety of discrete objects. For cxample, it is used to prove results about the complexity
of algorithms, the correctness of certain types of computer programs, theorems about
graphs and trees. as well as a wide runge of identities and inequalities,

In this section we will describe how mathematical induction can be used and why
it is a valid proof technique. It is extremely important to note that mathematical induc-
tion can be used anly to prove results obtained in some other way. It is not a 100l for
discovering formulae or theorems.

THE WELL-ORDERING PROPERTY

The validity of mathematical induction follows from the following fundamental axiom
about the set of integers.

The Well-Ordering Property Every nonempty set of nomnegative integers has a
leas! elemnent.

The well-ordering property can often be used directty in proofs.
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EXAMPLE 1 Use the well-ordering property to prove the division algorithm. Recall that the division
algonthm states that if @ is an intcger and & is a positive imeger, then there are unique
integers g and r with0 = r < dand a = dg + r.

Solution: Let § be the set of nonnegative integers of the form ¢ — dg where g4 is an
mteger. This set 1s nonempty since —dg can be made as large as desired (taking g to
be a negative integer with large absolute value). Ry the well-ordering property S has a
least element r = a — dgq.

The integer r is nonnegative. 1t is also the case that r < d. 1f it were not, then there
would be a smaller nonnegative element in 5. namely, a — d(gq + 1). To sec this, suppose
thatr = d.Sincea = dgg +r. it follows thata ~d{gg + 1) = {a~dgy}—d = r—d =
0. Consequently, there are integers g and r with 0 < r < d. The proof that ¢ and r are
unique is left as an exercise for the reader. n

MATHEMATICAL INDUCTION

Many theorems state that P(n) is true for all positive integers », where P(n) is a propo-
siticnal function, such as the statement that [ +2+---+n = n(n+ 1)/2 or the statement
thatn = 27 Mathematical induction is a technique for proving theorems of this kind. In
other words, mathematical induction is used to prove propesitions of the form ¥n P{n),
where the universe of discourse is the set of positive integers.

A proof by mathematical induction that P{n) is true for every positive integer r
consists of two steps;

! Basiy step. The proposition P{1) is shown to be true.
2. Inductive step. The implication £(n) — P{n + 1) is shown to be true for every
positive integer #.

Here, the statement P(n) for a fixed positive integer n is called the inductive hypothe-

sis. When we complete both steps of a proof by mathematical induction, we have proved

that Pin) is true for all positive integers #; that is, we have shown that ¥n Pi{n)is true.
Expressed as a rule of inference, this proof technique can be stated as

[P(YAYR(P(R) — P(n+ 1)) — ¥n P(n).

Since mathematical induction is such an important technique, it is worthwhile to explain
indetail the steps of a proof using this technique. The first thing we do to prove that P(n)
is true for all positive integers # is 1o show that P(1) is true, This amounts to showing
that the particular statement obtained when # is replaced by 1 in P(n) is true. Then we
must show that P(n) — P(n + ) is true for every positive integer . To prove that this
implication is true for every positive integer 7, we necd to show that P(n + 1) cannot
he faise when P(n) is true. This can be accomplished by assuming that P(r} is true and
showing that under this Avpothesis P(n + 1) must also be true.

Remark: Inaproof by mathematical induction It is net assumed that £(n) is wrue for afl
positive integers! Itis only shown that if it is assumed that P(n) is true, then P(n+ 1) is
also true. Thus, a proof by mathematical induction is not a case of begging the question,
or circular reasoning.

When we use mathematical induction to prove a theorem, we first show that P(1) is
true. Then we kniow that £(2) is true, since P(1} mmplies P(2). Further, we know that
P(3) is true, since P(2) implics P(3). Continuing along these lines, we see that P(k) is
true, for any positive integer k.
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Person 2 Perion 3

Person |

FIGURE 1 People Telling Secrcts.

There are several useful itlustrations of mathematical induction that can help you
remember how this principle works, One of these involves a line of people, person one,
person two, and so on. A secret is told to person one, and each person tells the secret
to the next person in line, if the former person hears i1. Ler P{#) be the proposition that
person n knows the secret, Then P(1} is true, since the secret is told to person one;, P(2)
15 true, since person one telis person two the secret; P(3}is true, since person two tells
person three the secret; and so on. By the principle of mathematical induction, every
person in line learns the secret, This is illustrated in Figure 1. (Of course, it has been
assumed that each persen relays the secret in an unchanged manner to the next person,
which is usually not true in real life.)

Another way to llustrate the principle of mathematical induction is to consider an
infinite row of dominos, labeled 1,2, 3,. .., 2 where each demino is standing up. Let
P(n) be the proposition that domine # is knocked over, If the first domiro is knocked
over—i.e, if P(1)1s true—and if, whenever the nth domino is knocked over, it also
knocks the (n + 1)th doming over—i.e., if P(r) — P(n + 1) is true—then all the domi-
nos are knocked over. This is iHlustrated in Figure 2.

Why Mathematical Induction Is Valid Why is mathematical induction a valid
proof technique? The reason comes from the well-ordering property. Suppose we know
that P({1) 1s true and that the proposition P(n) — P{n + 1} is true for all positive
integers . To show that P{n} must be true for all positive integers, assume that there
15 at least one positive integer for which P(n) is false. Then the set S of positive
integers for which P(x) is false is nonempty. Thus, by the well-ordering property, S has
a least element, which will be denoted by k. We know that k cannot be 1, since P(1)
Is true. Since & is positive and greater than 1, k — ! is a positive integer. Furthermore,
since & — 118 less than &, it 1s not in 5, so P(k — 1) must be true. Since the implication
Pk — 1y — P(k)is also true, it must be the case that P(&) is true. This contradicts the
choice of k. Hence, P(n) must be true for every positive integer z.

. Historical note:  The first known use of mathematical induction is in the work of the sixteenth-century
W‘é'ﬁ' mathematician Francesco Maurolice (1454-1575). Maurolico wrote exiensively on the works of classical
% mathematics and made many contributions to geometry and optics. In his book Arithmeticorum Libri Dup,
Maurolico presented a varicty of properties of the integers together with proofs of these properties. To prove
some of these properties he devised the method of mathematical induction. His first use of mathematical

induction in this hook was to prove that the sum of the first n odd positive integers equats #°,

PDF created with pdfFactory trial version www.pdffactory.com



http://www.pdffactory.com

EXAMPLE 2

3.2 Mathematical lnduction 189

FIGURE 2 Tustrating How Mathematical induction Works Using Dominos.

EXAMPLES OF PROOFS BY MATHEMATICAL INDUCTION

We will use a variety of examples to illustrate how theorems are proved using mathe-
matical induction. We begin by proving a formula for the sum of the first # odd positive
integers. (Many theorems proved in this section via mathematical induction can be
proved using different methods. However, 1t is worthwhile to try to prove a theorem in
more than one way, since ene method of attack may succeed whereas another approach

may not.)

Use mathematical induction to prove that the sum of the fust r odd positive integers
. T
is n-.

Solution: Let P{n) denoie the proposition that the sum of the first n odd positive integers
is n°. We must first complete the basis step; that is, we must show that P(1) is tue. Then
we must carry out the inductive step; that is, we must show that P(n + 1) 1s true when

P(n) is assumed to be trie.

BASIS STEP: P(1) states that the sum of the first one odd positive integers is 1°.
This is true since the sum of the first odd positive integer is 1.

INDUCTIVE STEP: To complete the inductive step we must show that the propo-
sition P(n) — P(n + 1) is true for every positive integer n. To do this, suppose that
P(n) is true for a positive integer »: that is,

1+345+ - +(2n—-D=n

[Note that the nth odd positive integer is (2n — 1), since this integer is obtained by
adding 2 a total of n — | times to 1.] We must show that P(n + 1)} is true, assuming that
P{n) is true. Note that P + 1) is the statement that

1+3454 - +@2n-D+2n+ D=+ 12
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So, assuming that P(n} is true, it follows that
M+3+ - +{2Zn-D]+2n+ 1)

P43 +5+-+2n—-D+Cn+1)
w4 2n+ 1)

=nt+2n+1
=+ 17~

This shows that P{n + 1) follows from P(n). Note that we used the inductive hypothesis
P(n) in the second equality to replace the sum of the first # odd positive integers by n?,

Since P(1} is true and the implication P(r) — P(n + 1) is true for all positive in-
tegers #, the principle of mathematical induction shows that P(n) is true for all positive
integers n. |

The next example uses the principle of mathematical induction to prove an
inequality.

EXAMPLE 3 Use mathematical induction to prove the inequality
n= 2"

for all positive integers n.

Solution: Let P{r) be the proposition “n < 277
BASIS STEP; P(1yis true, since 1 < 2! = 2,

INDUCTIVE STEP: Assume that P(n} is true for the positive integer n. That is,
assume that n < 27, We need 1o show that P{n + 1) is true. That is, we need to show
that n + 1 < 27! Adding | to both sides of n < 27, and then noting that 1 =< 27,

gives
EFl<2f 4] =28 408 = )

We have shown that P(r+ 1} is true, namely, that n+ 1 < 2"*1, based on the assumption
that P{n) is true. The induction step is complete.

Therefore, by the principle of mathematical induction, it has been shown that » <
2" is true for all positive integers n. ]

We will now use mathematical induction to prove a theorem involving the divisi-
bitity of integers.

EXAMPLE 4 Use mathernatical induction to prove that n® - n is divisible by 3 whenever nis a positive
integer.

Solution: To construct the proof, let P(n} denote the propositios: “n? ~ nis divisible
by 3.”

BASIS STEP: P(1)is true, since 1° — 1 = (s divisible by 3.
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INDUCTIVE STEP: Assume that P(n) is true; that is, n* — » is divisible by 3. We
must show that P(n + 11 is true. That is, we must show that (n+1)* — (n+ 1) is divisible

by 3. Note that
m+1)P -+ = P+t +3n+ -+ 1
= (n3 - n)y+ 3(n2 + n).

Singe both terms in this sum are divisible by 3 (the first by the assumption of the
inductive step, and the second because it is 3 times an integer), it follows that {n +
1)? = (n + 1} is also divisible by 3. This completes the induction step. Thus, by the
principle of mathematical induction, #* — # is divisible by 3 whenever n is a positive
integer. a

Sometimes we need to show that P{n}is trueform = k, k+ 1, k+ 2,..., where
k is an integer other than 1. We can use mathematical induction to accomplish this as
long as we change the basis step. For instance, consider Example 5, which proves that
a summation formula is vatid for all nonnegative integers, so that we need to prove that
Prmyistrueforn =0,1,2,....

EXAMPLE 5 Use mathematical induction to show that
T+2+28 4 -+27 =271

for all nonnegative integers #.

Solution: Let P(n) be the proposition that this formula is correct for the integer n.
BASIS STEP: P(0)is true since 20 = 1 = 21 — 1.

INDUCTIVE STEP: Assume that P(n) is true. To carry out the inductive step using
this assumption, it must be shown that P(n + 1) is true, namely,

L+ 24 24427420 =gt =2y
Using the inductive hypothesis P(n)}, it follows that
P42 4224 4274220 = (142422 ¢ 27 4 27!
=" -+ 2!
=2.2m1 -
=2,

This finishes the inductive step, which completes the preof. |

As Example 5 demonstrates, to use mathematicat induction to show that P{n) is
true form = k k + 1,k +2,..., where & is an integer other than 1, we show that P(%)
is true {the basis step} and then show that the implication P(n) — P{n -+ 1) is true for
n =k k+1, k+2,... (the inductive step). Note that k can be negative, zero, or positive.
Following the domino analogy we used earlier, imagine that we begin by knocking
down the kth domino (the basis step), and as each domino falls, it knocks down the
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next domino (the inductive step). We leave it 1o the reader 1o show that this form of
induction is valid (see Exercise 68).

The formula given in Example 5 is a special case of a general result for the
sum of the terms of a geometric progression, which is a sequence of the form
a anar’... .. ar”, ... where a and r are rcal numbers. For instance, the sequence
in Example 3 is a geometric progression with @ = 1 and r = 2. Likcwise, the se-
quence 3,15, 75, ., 3.5% . iy a geometric progression witha = 3and r = 5. The
next example gives a formula for the sum of the first # + 1 terms of such a sequence.
The proof of this general formula will use mathematical induction.

FXAMPLE 6 Sums of Geometric Progressions  Use mathematical induction to prove the following
formula for the sum of a finite number of terms of 2 geometric progression:

] +l

. el
‘)ar1=a*ar+arz+"'+dl"":7= when r # 1.
f:do r—1

Selution: To prove this formula vsing mathematical induction, let P(n) be the propo-
sition that the sum of the first n + 1 terms of a geometric progression in this formula is
correct.

BASIS STEP: P(() is true, since

ar —d

= —

F—
INODUCTIVE STEP: Assume that £(n) s true. That is, assume

!

1 n a —a
atartar+ -+ = —

r—1

To show that this implies that P(n + 1} is true, add ar?! to both sides of this equation
to obtain
L arl-a )

,
a+ar+ar ~ o t+art —ar™ = g +ar"
P

Rewriting the right-hand side of this equation shows that

l,J,rm'—l - atl w.nﬂ -a arn+2 _ {I!‘"H
- + ar _ - .
r—1 r—1 r-1
_ar"t?-ga
r—-1

Combining these equations gives
ar"’ —a
q -
atartar+-+a’+a =2

-1

This shows that if P(n) is true, then P{n + 1) must also be true. This completes the
induetive argurent and shows that the formula for the sum of the terms of a georuetric
senes 15 correct, =
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As previously mentioned, the formula in Example 3 is the case of the formula in
Example 6 with g = | and r = 2. The reader should verify that putting these values
for & and r in the general formula gives the same formula as in Exampic 5.

An important inequality for the sum of the reciprocals of a set of positive integers
will be proved in the next example.

EXAMPLE 7 An Incquality for Harmonic Numbers The harmonic numbers Hy bk = 1,23, ..,
are defined by
oL 1
Hk—l-r§+§+ +§'

LI S
2734 Ty

{Jse mathematical induction to show that

whenever x is a nonnegative integer.

Solurion: To carry out the proof, let P{n} be the proposition that Hyn = | + nf2.
BASIS STEP: P(0yis true, since Hw = Hy = 1 = 1 + (/2.

INDUCTIVE STEP: Assume that P(r) is frue, so that Hs- = | + n/2. It must be
shown that P(n + 1), which states that F,... = | + (2 + 12, must also be true under
this assurnption. This can be done since

1 1 | 1 l
Har = 1 Lj+§+mT§+2_ﬂ+_1”+m+2n+l
I |
MH3"+2u+l+' VLK
o= ll_}_n ; 1 l b h H ]
= T T (by the inductive hypothesis)

oon [ , ‘ -
C = (1 + —)1- ¥ o= (since thereare 2 terms each not less than 1/2°71)

Thix establishes the inductive step of the proof. Thus, the inequality for the hurmonic
numtbers iy valid for all nunnegative integers . |
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Remark: The inequality established here can be used to show that the harmonic series

WREIFIL RS S
2 3 n

is a divergent infinite series. This is an important example in the study of infinite series.

The next example shows how mathematical induction can be used to verify a for-
mula for the number of subsets of a finite set.

EXAMPLE 8 The Number of Subsets of a Finite Set  Use mathematical induction to show that if §
is a finite set with # elements. then S has 27 subsets. (We will prove this result directty
in several ways in Chapter 4.)

Sertution: Let P(n) be the proposition that a set with n elements has 27 subsets.

BASIS STEP: £(0) 15 true. since a set with zero elements, the empty set, has exactly
20 = | subsets, since it has one subset, namely, itself.

INDUCTIVE STEP: Assume that P(n)1s true, that is, that every set with 7 elements
has 2" subsets. It must be shown that under this assumption P(# + 1), which is the
statement that every set with n + | elements has 2"*! subsets, must also be true. To
show this, let 7" be a set with # + 1 elements, Then, it is possible to write T = § U {a}
where a is one of the elements of Tand § = T — {a}. The subsets of T can be obtained
in the following way. For each subset X of § there are exactly two subsets of T, namely,
X and ¥ U{a}. (This is illustrated in Figure 3.) These constitute all the subsets of T and
are all distinct. Since there are 2" subsets of S there are 2 - 29 = 2%+] quhgers of T,
This finishes the induction argument. u

EXAMPLE % Show that if » 1s a positive integer,
1+2+ - +n=nn+ 12

g O

QS\

|
b

T

FIGURE 3 Generating Subsets of a Set with # + 1 Elements. Here T = $ U {a},
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Solution: Let P(n) be the proposition that the sum of the first n positive integers is
a{n+1)/2. We must do two things to prove that P(n)is rueforn = 1,2, 3,.. .. Namely,
we must show that P(1} is true and that the implication P{n) implies P(n + 1) is true
forn =123,....

BASIS STEP: P(1)istrue, since 1 = 1{1 + 1)/2.
INDUCTIVE STEP: Assume that P(n) holds so that
1+2+-++n=nn+ DR
Under this assumption, it must be shown that P(rn + 1) is true, namely, that
b2+ dnt+ntl=@+ D+ D+112=n+1Mn+22
is also true. Add » + | to both sides of the equation in P{n) to obtain
1+24+ +n+in+ D =nn+12+m+ 1)
=[{(r+1ln+1)
={n+ Din+ 2)2

This last equation shows that P(n + 1) is true, This completes the inductive step and

completes the proof. |
EXAMPLE 10 Use mathematical induction to prove that 2" < a! for every positive integer n with
n =4

Solution: 1.t P(n) be the proposition that 2° < !,

BASIS STEP: To prove the inequality for n = 4 requires that the basis step be P(4).
Note that P(4) is true, since 2¥ = 16 < 4! = 24,

INDUCTIVE STEP: Assume that P(n) is true. That is, assume that 2° < r!. We
must show that P(r+ 1}is true. That is, we must show that 27! < (n+1)!. Multiplying
both sides of the inequality 2" < n! by 2, it follows that

2:2"<2-n!
<{m+1) nl
=(n+ DL

This shows that P(n + 1) is true when P{(n} is true. This completes the inductive step
of the proof. Hence, it follows that 2" < n!is true for all integers n withn = 4. ®

EXAMPLE 11 Use mathematical induction to prove the following generalization of one of De Mor-
gan’s laws;

a0 L
Aas = (i
k=1 Kl
whenever A, As, ..., A, are subsets of a universal set I and n = 2,

Solution. Let P(n) be the identity for # sets.
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widb

EXAMPLE 12

BASIS STEP: The statement P(2) asserts that A, N A> = Ay U Ag. This is onc of
De Morgan’s laws: it was proved in Section L.5.

INDUCTIVE STEP: Assume that P(m) is true, that is,

N "

Aac - U

k=1 k=1
whenever A4y, Aa, ..., A, are subsets of the universal set U, To carry out the inductive
step it must be shown that if this equality holds for any # subsets of L/, it must also be
valid for any n 4 1 subscts of /. Suppose that A, 41, ..., 4, A, are subsets of I/,
When the inductive hypothesis is assumed to hold, it fallow s that

IR
ﬂfh)ﬁ Agy

4]
A=

(ﬂ ‘4")U Ans1 (by De Morgan's law)

-1

"
(U Zk>u Auoy (by the inductive hypothesis)
-1

n+1

U
k=1

This completes the proof by induction. a

The next example illustrates how mathematical induction can be used 1o prove a
result abont covering chessboards with pieces shaped like the letter “L."

Let# be a positive integer. Show that any 2% X 27 chessboard with one square removed
can be tiled using L-shaped pieces. where these pieces cover three squares at a 1ime, a5
shown in Figare 4.

Solwtion: Let P(n) be the proposition that any 2% X 2" chessboard with one square
removed can be tiled vsing L-shaped pieces. We can use mathematical induction to
prove thal P{n} is true for all positive integers #.

FIGURE 4  An L-Shaped Piecc.
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..
FIGURE 5 Tiling 2 x 2 Chessboards with One Square Removed.

BASIS STEP: P(1}is true, since any of the four 2 X 2 chesshoards with one syuare
removed can be tiled using one L-shaped piece. as shown in Figure 5.

INDUCTIVE STEP: Assume that P(n} is Irue: that 1s, assume that any 27 x 29
chessboard with one square removed cap be tiled using L-shaped picces. It must be
shown that under this assumption P(# + 1) must also be true; that is, any 271 % 27°°
chessboard with one square removed can be tiled using L-shaped pieces.

To see this, consider a 2**! x 2*'1 chessboard with one square removed. Split
this chessboard into four chessboards of size 2" X 2%, by dividing it in half in both
directions. This is illustrated in Figure 6. No square has been removed from three of
these four chessboards. The fourth 2% x 2 chessboard has one square remeved, so by the
inductive hypothesis, it can be covered by L-shaped pieces. Now temporarily remove
the square from each of the other three 27 X 27 chessboards that has the center of the
oniginal, larger chessboard as one of its corners, as shown in Figure 7. By the inductive
hypothesis, each of these three 27 X 2” chessboards with a square removed can be tiled
by L-shaped pieces. Furthermore, the three sguares that were temporanily removed can
be covered by one L-shaped picce. Henee, the entire 21! % 2% chessboard can be
tiled with L-shaped pieces. This completes the proof. [ |

THE SECOND PRINCIPLE OF MATHEMATICAL INDUCTION

There is another form of mathematical induction that is often useful in proofs. With this
form we use the same basis stcp as before, but we use a different inductive step. We
assume that P&y istruefork = [, ., #and show that P{p + | )y must also be true hased
on this assumption. This is called the second principle of mathematical induction,

I_ _ -

FIGURE 6 Dividinga 2" ' x2""! Chess- FIGURE7 Tiling the 2°*' x 2*°1 Chess-
board into Four 27 x 2 Chesshoards. board with One Square Removed.
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EXAMPLE 13

EXAMPLE 14

We summarize the two steps used to show that P(n) is true for all positive inte-
CETS N

1. Basis step. The proposition P(1) is shown 10 De true.
2. Inductive step. It is shown thar [P(1y /AP A - MNP — Pln+ 1) is true for
every positive integer #.

The two forms of mathematical induction are equivalent: that is, each can be shown
to be a valid proef technique assuming the other, We leave it as an exercise for the
reader 1o show this. We now give an example that shows how the second principle of
mathematical induction is used.

Show that if # 15 an integer greater than 1, then # can be written as the product of primes.

Sofution: Let P(n) be the proposition that » can be written as the product of primes.

BASIS STEP: P(2) is true, since 2 cap be written as the product of one prime, itself’
[Nate that P(2) is the first case we need to establish. ]

INDUCTIVE STEP: Assume that P(k) is true for all positive integers k with k <
#. To complete the inductive step, it must be shown that P(n + 1) is true under this
assumption.

There are two cases to consider, namely, when n + 1 is prime and when 1 + 1 is
composite. If 2 + 1 is prime, we immediately see that P(n + 1) is true. Otherwise, n + 1
13 composite and can be written as the product of two positive integers @ and & with
2 s a = b<n+ |. By the induction hypothesis, both 2 and & can be written as the
product of primes. Thus, if # + 1 is composite, it can be written as the product of primes,
namely, those primes in the factorization of ¢ and those in the factorization of b, B

Remark: Swnce | 1s a product of primes, namely, the empry product of no primes, we
could have started the proof in Example 13 with P(I) as the basis step. We chose not
to do this because many people tind this confusing,

Note that Example 13 completes the proof of the Fundamental Theorem of Arith-
metic. which asserts thatevery nonnegative integer can be written uniquely as the prod-
uct of primes in nondecreasing order. We showed in Section 2.5 that an integer has at
most one such factorization inio primes. Example 13 shows there is at least one such
factorization.

Using the principle of mathematical induction, instead of the second principle of
mathematical induction, to prove the result in Example 13 is difficult. However, as
Example 14 shows, some results can be readily proved using either the principle of
mathematical induction or the second principle of mathematical induction.

Prove that every amount of postage of 12 cents or mote can be formed using Just 4-cent
and 5-cent stamps.

Solution: We will prove this result using the principle of mathematical induction. Then
we will present a proof using the second principle of mathematical induction. Let P(n)
be the statement that postage of n cents can be formed using 4-cent and S-cent stamps.
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We begin by using the principle of mathematical induction.
BASIS STEF: Postage of 12 cents can be formed vsing three 4-cent stamps.

INDUCTIVE STEP: Assume that P(n) is true, so that postage of » cents can be
formed using 4-cent and 5-cent stamps. If at least one 4-cent stamp was used, replace
it with a 5-cent stamp to form postage of # + | cents. If no 4-cent stamps were used,
postage of n cents was fermed using jost 5-cent stamps. Since n = 12, at least three
5-cent stamps were used. So, replace three 5-cent stamps with four 4-cent stamps to
form postage of n + 1 cents. This compietes the inductive siep, as well as the proof by
the principle of mathematical induction,

Next, we will use the second principle of mathematical induction. We will show
that postage of 12, 13, 14, and 15 cents can be furmed and then show how to get postage
of n + 1 cents for # = 15 from postage of n — 3 cents.

BASIS STEP: We can form postage of 12, 13, 14, and 15 cents using three 4-cent
stamps. two 4-cent stamps and one S-cent stamp, one 4-cent stamp and two S-cent
stamps, and three S-cent stamps, respectively.

INDUCTIVE STEP: Let n = 15. Assume that we can form postage of & cents,
where 12 = & = n. To form postage of » + 1 cents, use the stamps that form postage
of n — 3 cents together with a 4-cent stamp. This completes the inductive step, as well
as the proof by the second principle of mathematical induction.

{There are other ways to approach this problem besides those described here. Can
you find a selution that does not use rathematical induction?) [ |

Remark: Example 14 shows how we can adapt the secoad principle of mathematical
induction to handle cases where the inductive step is valid only for sufficiently large
vilues of . In particular, to show that P(r)istrue forn = K k+ 1,k + 2, ..., where
k is an integer, we first show that P(k), P(k + 1), P(k + 2), ..., P(i) are truc (the basis
step), and then we show that [P(X) A P+ DA P+ 2 A - ANP)]l — Pn+ 1)
is true for every integer n = / (the inductive step). For example, the basis step of the
second proof in the solution of Example 14 shows that P(12), P(13), P(14}, and P(15)
are true. We need to prove these cases separateiy since the inductive step, which shows
that [P(12) A PLIYA -+~ N P(m)] — P{n + 1), only holds when n = 5.

We will discuss two important applications of mathematical induction in the fol-
lowing secticns, The first involves the definition of sequences without giving explicit
formulae for their terms. The sccond involves preving that computer programs are

correct.
Exercises
1, Find 4 formuta for the sum of the first # even positive 4. Usc mathematical induction to prove that2  2-7 4 2-
integers. T— o+ 27 = (1 = (=74 whenever n is a
2. Usc mathematical induction to prove the formula that nomnegative integer.
you found in Exercise 1. §. Find a formu)a for

3. Use mathematical induction to prove that 3+ 3 -5 +
3-50 4435 = 35" ~ 1)4 whenever 5 is a LI DR
ponncgative integer. 248 2
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bv examining the values of this expression for small
values of v Tise mathematicat induction ta prove your
result,
Find a formula tor

t ! - !

i3y nin k1)

by examining the values of this expression for small
values of 1. Use mathematical induction to prove your
result,
Show that 17 +2° — -+ a7 = n{n + 320 + 1¥6
whenever # is a positive inleger.
Show that 15 +2% - - 4+ r* = [ + 1)2) whenever
1% 4 positive integer.

L Provethat 1P+ 3 v S84 v Q4 1Y = (0 + D20+

13020 + 333 whenever # is a nonnegative integer.
Provethat 1- 11 +2-2'+ - +n-ml =(n+ 131 =1
whenever p1s a posilive integer.

Show by mathematical induction that if A » —1, then
1t who=2 (1 + 4" for all nonnegative integers n. This
i+ called Bernoulli’s inequality.

. Prove that 3" < n! whenever # 15 4 positive integer

greater than 6.

Show that 2 = »' whenever # 15 an integet greater
than 4.

Lise mathematical induction to prove that st < 4"
whenever n iy a positive integer greater than 1.

. Prove using mathematical induction that

P 2+2- 3t mins 1)
= n{n - 1)n + 2)3
whenever 7 is a posiive teger.
Use mathematical induction (o prove that

1234 2-3 44 - +nin+ 1n+2)

=qalm + Din + 2%n - 34

Show that 7 - 2* + 3 - + (=D lgt
= (= 1" 'n(n + 12 whenever n is a positive integer
Prove that
1 | | |
T4 - g2 —
i n

whenever # ix a positive integer greater than .

Show that any pestage that 1s s positive integer number
of cents greater than 7 cents can be formed using just
Z-cent stamps and J-cent stamps.

Use mathematical induction o show that 3 divides
At 2 whenever nis a nonnegative inieger.

Use mathematical induction to show that 5 divides
7 - n whenever i is a nennegative integer.

Use matheratical induction to show that 6 divides
n' — u whenever 1 is & nomnegative integer

Use mathematical induction to show that n2 —~ | is
divisible by 8 whenever # is an odd pesitive integer.

tn

24. Use mathemaiical induction to show that n° — Tn+ 12

is nonnggative whenever # is an integer greater than 3.
Use mathematical induction to prove that a set with »
elements has a{n — 1)/2 subsets containing exactly two
elemnents whenever 15 an integer greater than or equal
w2

Tse mathematical inductlion o prove that a set with »
elements has nin — 1){n - 2)/6 subsets containing ex-
actly three elements whenever n is an integer greater
than or equal to 3.

Use mathematical induction to prove that ™7_ | /* =
nin + 1320+ 10382 - 31— 130 whencver ris a pos-
itive integer.

For which nonnegative integers n is #* < n'? Prove
your answer using mathematical induction.

For which nonnegative integers n is 2n + 3 = 27
Prove your answer using mathematical induction.

, Use mathematical induction to show that 1/(2») = [1-

3-5 0 2n— D24 2n) whenever nis a
positive integer.

. 4} Determine which amounts of postage can be formed

using Just S-cent and H-cent stamps.
b) Prove your answer to {a) using the principle of
mathematical induction.
¢} Prove vour answer to (a) using the second principle
of mathematical induction.
Which amounts of money can be formed using just
dirnes and quarters? Prove your answer using a form
of mathematical induction.

. An automatic teller machine has only $20 bills and $50

bills. Which amounts of money can the machine dis-
pensc, assuming the machine has a limitless supply of
these two denominations of bills? Prove your answer
using a form of mathematical induction.

. Use mathematical induction to prove that 3% | k2% =

(n— 12" + 2,

. Show that
.. 1
DA ——
LIRS Vit B Ga; a

(Here the sum is ever all nonempty subsets of the set
of the # smallest positive integers.)

. Use mathematical induction to show thal given a set of

n — | pusitive integers, none exceeding 25, there is at
least one integer in this set that divides another integer
in the set.

{Calculus required) Use mathematical induction to
prove that the derivative of f{x) = x" equals nx"!
whenever n is a positive inteper. (For the inductive
step, use the product nufe for derivatives.)

. Suppose that

Cja 0]
0 b
where ¢ and & are real numbers. Show that

A
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41,

42

H

46

47.

. Use

n_'—u" 0
A= g b"}

for every positive integer n.

, Suppese that A and B are square matrices with the

property AB = BA. Show that AB" = B"A for every
positive integer n.

. Supposc that m is a positive integer. Use mathemati-

cal induction to prove that if « and b are integers with
¢ = b (mod m), then #¥ = b* {mod m) whenever £ is a
nonnegative integer.
Use mathematical induction to show that it A;, As, ...,
A, and B are sets, then
Ay UA-L - UANDN B

= (AN BYU (A MBIV -~ U {4, N B)
Prove thatif A;. 4., .. ... A, and By, B.. .. .. B, are scts
suchthat A, C 8, fork = 1,2, ., n then

a) LJAKQKCJ[BA b) !]JA,QQ&QB&,

. Use mathematical induction to prove that if Ay, A;, . .,

A, are subsets of @ universal set U/, then

OA_; = hA*'
i=1 K=l

mathematical
2Py PN N ) S
S S MNo—py whenever g, pa.
propositions.

induction to show  that
equivalent to  —pfh
. Pyoare

. Show that

(g = p) gy — p A Aipen = poll
- [(PI "J\'PE EAREEAN Pn--i] = pn]

is 4 tautology whenever py, p2, ..., p, are propositions.

Use the formula for the sutn of Lhe terms of 2 geometric

propression to evaluate the following sums.

) d+d-3+4-32 4443

by 3+3-20 43244 .- 4320

) 1= 2422 g (R

What is wrong with the following “proof™ that all

horses are the same color?
Let P{n) be the proposition that all the horses in
a set of a2 horses are the samme color. Clearly, P(1)
is true. Now assume that £in) is true, so that all
the horses in any set of # horses are the same color.
Consider any 1 + 1 horses; number these as horses

......... n.i+ 1. Now the first n of these horses

all must have the same color, and the last » of these
must also have the same color. Since the set of the
lirst n horses and the set of the last # horses overlap,
all 1 must be the same celor. This shows that
fion + 1) is true and finishes the proof by induction.

*48.

*49,

*50,

201

12 Exervises

Find the flaw with the following “proof” that 2" = |
for all nonnegative integers n, whenever a 1s a nonzero
real number.

BASIS STEP: @ = 1 is true by the definition of &".
INDUCTIVE STEP: Assume that * = | for all non-
negative integers & with & = ». Then note that

no,ooR .
o = g a I-1 _ L
qn 1 1

Show that the second form of mathematical induction
is a valid methed of proof by showing that it follows
from the weli-ordering propeny.

Show that the following form of mathematical induc-
tion 1s a valid method to prove that P{n) is truc for all
positive integers #,

BASIS STEP: P(1) and P{2} are true.

INDUCTIVE STEP: For each positive integer n, if P{n)
and Pir + 1) are both true, then P{n + 2} is true.

In Exercises 51 and 52, H, denotes the nth harmonic
number.

*51.

*52,

*53.

*54.

**55.

*56.

*58.

Use mathematical induction to show that fzr = 1 +n
whenever nis a nonnegative integer.
Use mathematical induction to prove that

H Vv H;~ - +H ={n+1H,— n

Prove that

> 2R+ 1 - I

Show that # lings scparate the plane into (n° + 1+ 2)/2
tegions if no twe of these lines are paraile! and no three
pass through a common point.

Lel &, ay, .. .. a, be positive real oumbers. The arith-
metic mean of these numbers is defined by

A= (g tar+ -+ g,in,
and thc geometric mean of these numbers is defined
by

G = (aas - a.)'™

Use mathematical induction to prove that 4 = G.
Use mathematical induction to show that 21 divides
47+~ 5221 whenever n is a positive inleger.

. Use mathematical induction to prove Lemma 2

of Section 2.5, which states that if p is a prime

and plaa--a, where g is an integer for

i= 123 .. nthen p|a for some integeri.

The well-ordering property can be used to show that

there is a unique greatest commmon divisor of (wo posi-

tive integers. Let 2 and b be positive integers, and let §

be the set of positive integers of the form as + by, where

s and ¢ are integers,

a} Show that §is nonempty.

b) Usc the well-ordering property to show that § has a
smallest element ¢
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€) Show that if 4 is a common divisor of @ and &, then a) 3x2* b 6 x2"
d is 2 divisor of ¢. ¢ 3nx3dt 4y e xe"

d} Show that ¢ |« and ¢ [ b. (Hint: First, assume Lhat
¢{a Thena = g¢ + +, where 0 < r < ¢. Show
that r € §. contradicting the choice of ¢.)

e} Conclude frem (c) and {d) that the greatest com-
mon divisor of a and & exists. Finish the proof by
showing that this greatest common divisor of two
positive integers is unique.

*43.

64,

Show that a three-dimensional 27 X 2% x 2" chessboard
with one 1 % 1 X 1 cube missing can be completely
covered by 2 X 2 X 2 cubes with one 1 % | X 1 cube
removed.

Show that an r X n chessboard with one square removed
can be completely covered using L-shaped picces if
n > 5, nis odd, and # is not divisible by 3.

*39, Show that if ). a7, .., a, are n distinct real numbers, 65. Show that a 5 X 5 chessboard with a corner square re-
exactly # ~ | multiplications are used to compute the moved can be tiled using L-shaped picces.
product of these # numbers no matter jow parentheses %66, Find a 5 X 5 chessboard with a square removed that
are inserted into their product. (Hint: Use the second canmot be tiled using L-shaped pieces. Prove that such
principle of mathematical induction and consider the a tiling does not exist for this beard.
last multiplication.) 67, Let o be an integer and 4 be a positive integer. Show
60. Construct a tiking using L-shaped pieces of the 4 X 4 that the integers g and r witha = dg+ rand 0 = r <
chessboard with the square in the upper left corner re- i, which were shown to exist in Example 1, arc unique.
moved, e 68, Use the principle of mathematical indugtion (o show
61. Construct a tiling using L-shaped pieces of the 8 X 8 that Plr)istrueforn = L k+ 1 k+2,. . wherckis
chessboard with the square in the upper left comer re- an integer, if P{k) is true and the implication P{n) —
moved. Pra+ 1) is true for all positive integers # with n = £,
62. Prove or disprove that all chessboards of the follow-  *#6Y. Can you use the well-ordering property to prove the fol-

ing shapes can be completely covered using L-shaped
pieccs whenever # is a positive integer.

3.3

lowing statement? “Every positive integer can be de-
scribed using no more than 15 English words™?

Recursive Definitions

INTRODUCTION

Semetimes it is difficult to define an object explicitly. However, it may be easy to define
this object in terms of itself. This process is called recursion. For instance, the picture
shown in Figure 1 i3 produced recursively, First, an original picture is given. Then a
process of successively superimposing centered smaller pictures on top of the previous
pictures is carried out.

We can use recursion to define sequences, functions, and sets. In previous discus-
sions, we specificd the rerms of a sequence vsing an explicit formula. For instance, the
sequence of powers of 2 is given by a, = 2" for n = 0,1,2,.... However, this se-
quence can also be defined by giving the first term of the sequence, namely, ag = 1,
and arule for finding a term of the sequence from the previous ome, namely, a,,, = Za,
forn=012 ...

RECURSIVELY DEFINED FUNCTIONS

To define a function with the set of nonnegative integers as its domain,

1. Specify the value of the function at zero.
2. Give arule for finding its value as an integer from its values at smaller integers,

Such a definition 15 called a recursive or inductive definition,
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FIGURE 1 A Recursively Defined Picture.

EXAMPLE 1 Suppose that f is defined recursively by

f(oy =3
Fin+ ) =2f(n) + 3.

Find f(1). f(2). £(3). and f(4).

Solution; From the recursive definition it follows 