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Preface

Goals and Emphasis of the Book

Mathematicians have begun to find productive ways to incorporate computing power
into the mathematics curriculum. There is no attempt here to use computing to avoid
doing differential equations and linear algebra. The goal is to make some first ex-
plorations in the subject accessible to students who have had one year of calculus.
Some of the sciences are now using the symbol-manipulative power of Mathemat-
ica to make more of their subject accessible. This book is one way of doing so for
differential equations and linear algebra.

I believe that if a student’s first exposure to a subject is pleasant and exciting,
then that student will seek out ways to continue the study of the subject. The theory
of differential equations and of linear algebra permeates the discussion. Every topic
is supported by a statement of the theory. But the primary thrust here is obtaining
solutions and information about solutions, rather than proving theorems. There are
other courses where proving theorems is central. The goals of this text are to establish
a solid understanding of the notion of solution, and an appreciation for the confidence
that the theory gives during a search for solutions. Later the student can have the same
confidence while personally developing the theory.

When a study of the book has been completed, many important elementary con-
cepts of differential equations and linear algebra will have been encountered. In
addition, the use of Mathematica makes it possible to analyze problems that are
formidable without computational assistance. Mathematica is an integral part of the
presentation, because in introductory differential equations or linear algebra courses
it is too often true that simple tasks like finding an antiderivative, or finding the roots
of a polynomial of relatively high degree—even when the roots are all rational—
completely obscure the mathematics that is being studied. The complications en-
countered in the manual solution of a realistic problem of four first-order linear equa-
tions with constant coefficients can totally obscure the beauty and centrality of the
theory. But having Mathematica available to carry out the complicated steps frees
the student to think about what is happening, how the ideas work together, and what
everything means.
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The text contains many examples. Most are followed immediately by the same
example done in Mathematica. The form of a Mathematica notebook is reproduced
almost exactly so that the student knows what to expect when trying problems by
him/herself. Having solutions by Mathematica included in the text also provides a
sort of encyclopedia of working approaches to doing things in Mathematica. In ad-
dition, each of these examples exists as a real Mathematica notebook that can be
executed, studied, printed out, or modified to do some other problem. Other Math-
ematica notebooks may be provided by the instructor. Occasionally a problem will
request that new methods be tried, but by the time these occur, students should be
able to write effective Mathematica code of their own.

Mathematica can carry the bulk of the computational burden, but this does not
relieve the student of knowing whether or not what is being done is correct. For that
reason, periodic checking of results is stressed. Often an independent manual calcu-
lation will keep a Mathematica calculation safely on course. Mathematica, itself, can
and should do much of the checking, because as the problems get more complex, the
calculations get more and more complicated. A calculation that is internally consis-
tent stands a good chance of being correct when the concepts that are guiding the
process are correct.

Since all of the problems except those that are of a theoretical nature can be
solved and checked in Mathematica, very few of the exercises have answers supplied.
As the student solves the problems in each section, they should save the notebooks
to disk—where they can serve as an answer book and study guide if the solutions
have been properly checked. A Mathematica package is a collection of functions
that are designed to perform certain operations. Several notebooks depend heavily
on a package that has been provided. Most of the packages supplied undertake very
complicated tasks, where the functions are genuinely intimidating, so the code does
not appear in the text of study notebooks.

What Is New in This Edition

The changes are two-fold:

1. Rearrange and restate some topics (Linear algebra has now been gathered into
a separate chapter, and series methods for systems have been eliminated.) Many
typographical errors have been corrected.

2. Completely rewrite, and occasionally expand, the Mathematica code using ver-
sion 5 of Mathematica.

In addition, since Mathematica now includes a complete and fully on-line Help sub-
system, several appendices have been eliminated.

Topics Receiving Lesser Emphasis

The solutions of most differential equations are not simple, so the solutions of such
equations are often examined numerically. We indicate some ways to have Math-
ematica solve differential equations numerically. Also, properties of a solution are
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often deduced from careful examination of the differential equation itself, but an
extended study of qualitative differential equations must wait for a more advanced
course. The best advice is to use the NDSolve function when a numerical solution
is required.

Some differential equations have solutions that are very hard to describe either
analytically or numerically because the equations are sensitive to small changes in
the initial values. Chaotic behavior is a topic of great current interest; we present
some examples of such equations, but do not fully develop the concepts.
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1

About Differential Equations

1.0 Introduction

What Are Differential Equations? Who Uses Them?

The subject of differential equations is large, diverse, powerful, useful, and full of
surprises. Differential equations can be studied on their own—just because they are
intrinsically interesting. Or, they may be studied by a physicist, engineer, biologist,
economist, physician, or political scientist because they can model (quantitatively
explain) many physical or abstract systems. Just what is a differential equation? A
differential equation having y as the dependent variable (unknown function) and x as
the independent variable has the form

dy d'y
F e T | =
(x’y dx dx") 0

for some positive integer n. (If n is O, the equation is an algebraic or transcendental
equation, rather than a differential equation.) Here is the same idea in words:

Definition 1.1. A differential equation is an equation that relates in a nontrivial
manner an unknown function and one or more of the derivatives or differentials of
that unknown function with respect to one or more independent variables.

The phrase “in a nontrivial manner” is added because some equations that appear
to satisfy the above definition are really identities. That is, they are always true, no
matter what the unknown function might be. An example of such an equation is:

2|22 L Pty
N ( ) + COSs ( ) 1.

This equation is satisfied by every differentiable function of one variable. Another
example is:

dy Y dy)2 dy) X

— =y == = 2y{=|+Y"

(dx y) (dx Y (dx Y

C. C. Ross, Differential Equations

© Springer Science+Business Media New York 2004
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This is clearly just the binomial squaring rule in disguise: (a + b)*> = a* + 2ab + b*;
it, too, is satisfied by every differentiable function of one variable. We want to avoid
calling such identities differential equations.

One quick test to see that an equation is not merely an identity is to substitute
some function such as sin(x) or ¢* into the equation. If the result is ever false, then
the equation is not an identity and is perhaps worthy of our study. For example,
substitute y = sin(x) into y’ + y = 0. The result is cos(x) + sin(x) = 0, and this is
not identically true. (It is false when x = 7, for instance.) If you have a complicated
function and are unsure whether or not it is identically 0, you can use Mathematica
to plot the function to see if it ever departs from 0. This does not constitute a proof,
but it is evidence, and it suggests where to look if the function is not identically 0. A
plot can be produced this way:

In{1]:= Plot[Cos[x] +Sin[x], {x, 0, 2n}];

Note that P1i is the symbol 7 in disguise. The 7 symbol can be found in the
BasicInput palette.
Another extreme that we would like to avoid is an equation that is never true for
real functions, such as
d 2
(=

dx
No matter what the real differentiable function y is, the left-hand side of the equa-
tion is nonnegative and the right-hand side is negative—and this cannot happen. So
the equations we want to study are those that can have some solutions, but not too
many solutions. The meaning of this will become clear as we proceed. Unless stated
otherwise, the solutions we seek will be real.

Classification of Differential Equations

Differential equations are classified in several different ways: ordinary or partial;
linear or nonlinear. There are even special subclassifications: homogeneous or
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nonhomogeneous; autonomous or nonautonomous; first-order, second-order, ...
, n th-order. Most of these names for the various types have been inherited from
other areas of mathematics, so there is some ambiguity in the meanings. But the
context of any discussion will make clear what a given name means in that context.
There are reasons for these classifications, the primary one being to enable discus-
sions about differential equations to focus on the subject matter in a clear and unam-
biguous manner. Our attention will be on ordinary differential equations. Some will
be linear, some nonlinear. Some will be first-order, some second-order, and some of
higher order than second. What is the order of a differential equation?

Definition 1.2. The order of a differential equation is the order of the highest deriva-
tive that appears (nontrivially) in the equation.

At this early stage in our studies, we need only be able to distinguish ordinary
from partial differential equations. This is easy: a differential equation is an ordinary
differential equation if the only derivatives of the unknown function(s) are ordinary
derivatives, and a differential equation is a partial differential equation if the only
derivatives of the unknown function(s) are partial derivatives.

Example 1.1 Here are some ordinary differential equations:

% =1+y? (first-order) [nonlinear]

d%y _ .

il +y = 3 cos(x) (second-order) [linear, nonhomogeneous]
d’y

2
R + 33_)% — 5y =0 (third-order) [linear, homogeneous]

Example 1.2 Here are some partial differential equations:

ou _ Ou

o = ay (first-order in x and y)
2

% = czg—” (first-order in ¢; second-order in x)
X

ou + o _ 0 (second-order in x and y)

x> 9y Y

2
66)“;‘)) =3 (second-order)

Solutions of Differential Equations

Definition 1.3. 7o say that y = g(x) is a solution of the differential equation

dy dy
Flxy, 2 .. 2)\_0
(x’y dx dx”)

on an interval [ means that



4 1 About Differential Equations

F(x, gx), ), ..., 8" (x) =0

for every choice of x in the interval I. In other words, a solution, when substituted
into the differential equation, makes the equation identically true for x in I.

Example 1.3 The function y = e is a solution of the differential equation y’+y = 0,
because y + y = —e ¥ + ¢ = 0 for all x. o

To have Mathematica verify this for you, conduct this dialog in an active Mathe-
matica window:

In[2]:= Clear([x, y, al

In[3]:= y[x_] =Exp[-x]
Out[3]=e™*

In{4]:= y'[x] +y[x] ==0
Out [4]= True

The True that Mathematica returned indicates that y’(x) + y(x) = 0 (always), and
hence we indeed have a solution. It is not necessary to Clear variables regularly, but
if you get some unusual behavior, C1ear the names involved, re-define them, and try
the calculation again. Mathematica remembers definitions you may have forgotten,
and these may interfere with a subsequent calculation.

Here are other examples of solutions of ordinary differential equations. They are
from the notebook Solutions of DE’s. You should execute ideas such as these yourself
in Mathematica.

In[5]:= y[x_] =c Exp [xz]
out[5]= ce*

In(6]:= Simplify[y’ [x] - 2xy[x] == 0]
out[6]= True

In[7]:= Clearly]

In[8]:= y[t_] =cl Sin[at] +c2 Cos[at]
Out [8]= c2 Coslat] +cl Sinlat]

In[9]:= Simplify[y”[t] +a’y[t] == 0]
Qut [9]= True

Direction Fields and Solutions

The solutions of the first-order differential equation dy/dx = f(x, y) can be repre-
sented nicely by a picture. Given a point P = (x, y), the differential equation tells
what the slope of the tangent line to a solution is at the point P. If m is such a slope
then the differential equation says that

d
m= dl = f(P) = f(x, ).
xlp
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Fig. 1.1. A portion of the direction field of dy/dx = (3/2) — 3y + e 32,

The idea of a direction field is similar to that of a vector field, where f(x, y), instead
of giving a vector that is to be associated with (x, y), gives a slope that is to be associ-
ated with (x, y). If representatives of these slopes are indicated on a graph at enough
points, some visual indication of the behavior of the solutions of the differential
equation is suggested.

For example, in Figure 1.1 we have plotted some representative members of the
direction field associated with the differential equation dy/dx = (3/2) — 3y + e=3¥2.
Then in Figure 1.2 some solutions of the differential equation are superimposed on
the direction field. Notice how the direction field gives a sense of the behavior of
the solutions. Solutions may be close together, but they do not cross. You may use
the notebook Direction Field Example to produce similar pictures. These can help
you understand the behavior of the solutions of any differential equation that has the
form dy/dx = f(x, y).

How Many Solutions Are There?

Once we understand that some differential equations have solutions, it is natural to
ask several questions. How many solutions can a given differential equation have?
(In general there are many; they may be easy or extremely difficult to find.) When
there are many solutions to choose from, is it possible to select one or more having
certain properties? When, if ever, is there exactly one solution having the properties
we want?
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Fig. 1.2. The direction field of dy/dx = (3/2) — 3y + e **?and some solutions.

We will state and often prove theorems that will provide us with guidance as
we seek answers to questions such as these. Some differential equations courses
are structured so that you are asked to prove theorems yourself. In this text, what is
required of you is not the ability to prove these theorems (though you are encouraged
to prove them if you wish), but rather the ability to understand what the theorems
mean, so that you can apply them and thereby profit from the work others have done
on your behalf. Recall that Sir Isaac Newton! said “If it be that I have seen further
than other men, it is because I have stood upon the shoulders of giants.” It is upon
the shoulders of Newton, himself a giant, and many others since, that we proceed to
stand in the hopes of seeing further than we otherwise might do.

Here is the first such theorem. It is concerned with a differential equation that has
an additional condition specified (an initial condition), having the form given in this

equation:
dy _
}’(xo) =Yo-

Theorem 1.1 (Existence and Uniqueness). Suppose that the real-valued function
f(x, y) is defined and continuous on the rectangle R = [a, b] X [c, d] in the xy-plane,

! Sir Isaac Newton (1642—-1727), British mathematician and natural philosopher. He, along
with Leibniz, created both the differential and integral calculus. He proposed the fundamen-
tal laws of gravitation, was the first to adequately describe properties of light and color, and
constructed the first reflecting telescope. In his later years, Newton was Warden of the Mint,
where he reformed the coinage of the realm, was President of the Royal Society, and was a
member of Parliament.
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and that (3/0y)f(x, y) exists and is continuous throughout R. Suppose further that
(X ¥o) is an interior point of R. Then there is an open subinterval (a,, b,) of [a, b]
centered on x, and exactly one solution of the differential equation dy/dx = f(x, y)
that is defined on the subinterval (a,, b,) and passes through the point (x, y,).

This theorem tells us that a large class of differential equations have solutions,
and that these solutions are particularly nice: not only do solutions exist, but if you
specify a particular point through which you would like a solution to pass, then
there is exactly one solution that passes through that point. Two concepts are central
here: existence of a solution (there are solutions) and uniqueness of solutions (there
is exactly one solution having the property we want). Existence says that there is
at least one solution; uniqueness says that there is at most one solution. Together,
they say that there is only one solution. This is important, because if you know that
the problem you are solving has a unique solution, and you find a solution, then
you need look no further: the solution you have is the only solution there is. Of
greater importance to those who apply differential equations is the knowledge that if
a process is governed by a differential equation having a unique solution, then if the
process can be performed at all, there is only one way to perform it.

Consider the differential equation dy/dx = sin(y). Here f(x, y) = sin(y) has a con-
tinuous partial derivative with respect to y : cos(y). Given any point in the plane, this
differential equation has a unique solution that passes through the point. However,
the differential equation dy/dx = y*3 does not (necessarily) have a unique solution
in the vicinity of any point where y = 0, because (9/9y)(y*?) = (2/3)y~"3 which is
not continuous when y = 0.

How does one visualize the concept of uniqueness? In Figures 1.2, 4.4, and 4.5,
you can see portions of various families of curves. It is not hard to imagine that each
point of the plane lies on some solution. Furthermore, the solutions do not seem to
cross one another. This is the idea of uniqueness: through each point there is only
one solution. At any point where two solutions cross, we would not have uniqueness.
Look at Figures 1.5 and 1.9 to see examples where this fails. We primarily study
situations where solutions are unique.

Exercises 1.1. Determine whether or not these equations are differential equations.
Classify the differential equations as being ordinary or partial. State the order of each
differential equation.
2 2
dy (D 4y | 42
1.( +2y) _(dx) +4d + 4y

2. (3}+2y)2 (gﬁ) 49+ 4y

&y .d :
3. 21}% +4d—§— 17y = x* - sin 5x
4. —Z? +4(Zy) 17y2 = x* — sin 5x
5 ’u _ du
oxdy ~ dy
6 u o’u
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"ox Iy
s (%) - (a_u)z
“\ox ay
There follow two columns of equations. In the first column is a differential equa-
tion; in the second column is a function or set of functions that is a solution of the
differential equation. Verify that the given functions satisfy the corresponding equa-

tions. Do this manually and by Marhematica. Consider ¢, ¢,, and A to be arbitrary
constants.

9. %'QX +36y =0 ¥(t) = ¢, cos(61) + ¢, sin(6r)
10. 9 4 36y = 726 + 1 WE) = ¢, cos(61) + ¢, sin(6r) + 21 + -

d 1 2 36

d2
ll-d—)z)—36y=() y(x) = ¢, % + e

x

d2 6x —6x x 1
12;? 36y— 18x + 1 y(_x):clg + cye -5 %
13. 9 = 1 42 -

cgr =ty y(t) = tan(?)
14. g% = g—; u(x,y) = f(x +y); f arbitrary and differentiable
15.294 = 3 g; u(x,y) = f(3x + 2y); f arbitrary and differentiable
2

16. ?f; a gx ux, 1) = e (cl cos (%) + ¢, sin ((—)‘f))

2 2
17. %4 Ou _

ol ey u(x, y) = e*(c; cos(dy) + ¢, sin(Ay))

1.1 Numerical Methods

Only a very few differential equations can actually be solved—in the sense that we
can write down an expression for a solution. This is especially true of nonlinear
differential equations. In Chapter 3 we discuss many of the special cases where a
solution can actually be obtained. If we need a solution to a differential equation,
but are unable to obtain a closed-form expression for such a solution, how do we get
useful information about the solution? We may just need a few points that lie on the
solution, or we may need to know where our solution crosses some given curve, or
we may wish to determine a maximum or a minimum on the solution. We need such
information in the absence of a function to evaluate.

There are situations where we have to rely on approximating a solution, rather
than obtaining a solution. Leonhard Euler has observed that the direction fields we
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saw in the introduction to this chapter can be exploited to give us useful informa-
tion.Suppose that the equation to solve is dy/dx = f(x, y) and the initial point is
y(xp) = ¥, We want a solution over an interval [a, b] with x, = a. Since, when A is
small,

y(x + h) - y(x) p
™Y ),

Euler reasoned that we should solve

yx +h) — y(x)

P = f(x y(0)

for
Y+ h) = y(x) + h f(x, y(x)).

Then, knowing the solution at (x, y(x)), estimate that the solution will pass through
(x + A, y(x) + h f(x, y(x)). This just says that a solution essentially follows its tangent
line, whose direction is that of the direction field element at (x, y(x)). If 4 is small,
then this guess, though probably wrong, is nevertheless reasonable. This guessing
process is repeated enough times to estimate the solution over the entire interval
[a, b] by finding ordinates corresponding to x, = a, x; = Xy + h, x, = x5 + 2h, ...,
X, = X, +nh = b. The technique is called Euler’s method. We denote y(x,) by y,, and
produce the data points (x,, o), (x;, ;) ..., (x,, ¥,) by the following rule:
Given x,, and y,, the coordinates of the initial point (x,, ¥,), and a small number
h, calculate
Xest = Xt h
Yir1 = Wt hf(xk, i)
It is worth noting thatif 2 < O then x,, < -+ < Xx; < x,, so the points are formed from
right to left.
Euler’s method can easily be used with any reasonable spreadsheet. Many spread-
sheets even permit plotting the results. Try doing so.
Here is an example that you can use for comparison purposes.

,forO<k=<n-1.

Example 1.4 Use Euler’s method to approximate the solution to

d
YD x+2, W )=12
dx

over the interval fromx = 1 tox = 3 in steps of 2 = 0.1.

Solution. For this problem x, = 1 and y, = 172 = 0.5. Since & = 0.1, from
x, =xg+nh=1+(0.1)n =3 we find that n = (3 — 1)/(0.1) = 20. The process we
need to iterate (repeat) is

X1 = X+ 01,

Ve + 0.1 f(x 3)
Y + 0.1 (x, +2y,)
01x, +12y,

Vel , O0=<k=<19.

We stop when r = 19 because the point (x,,, y,,) is produced at that step. This gives
us 21 data points. The results follow Ex. 1.4M.
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Example 1.4 (M) Implement and use the standard Euler method for solving the
problem of Example 1.4 in Mathematica.

In[l]:= Clear[x, y, h, n]
Declare the initial values:

In[2]:= x[0] =1
y[O] =0.5
h=0.1

Note that the subscripts are k and k& — 1, rather than k + 1 and k. Mathematica
needs this change for technical reasons. Declare the values for x and y recursively:

In{3]:= x[k_] :=x[k-1] +h
yvlk_] :=hx[k-1] +1.2y[k-1]

The exact solution is:

In[4]:= exact[k_] :=~-1/4. -x[k]/2 +5/4Exp[2x[k] - 2]
Produce a four-column table of values. To produce x,, and y,,, we need to let &
go to 20.

In[5]:= mat = Table[{k, x[k], y[k], exact[k]}, {k, 0, 20}1];

Now format this table of values (named mat) placing headings on the columns.
mat is a table of numbers. What do they mean? For comparison purposes, the last
column is calculated from the exact solution: y(x) = —1/4 — x/2 + (5/4)e*2. This
means that we didn’t do very well. Our final y-values are off by more than 20, an
approximately 31% error. Figure 1.3 is a picture of the comparison.

In{6]:= TableForm[mat,
TableHeadings -» {None, {"k", x,, y,, "exact"}}]

ko x, Y exact

0 1 0.5 0.5

1 1.1 0.7 0.726753
2 1.2 0.95 1.01478
3 1.3 1.26 1.37765
4 1.4 1.642 1.83193
5 1.5 2.1104 2.39785
6 1.6 2.68248 3.10015

out[6]= 7 1.7 3.37898 3.969

8 1.8 4.22477 5.04129
9 1.9 5.24973 6.36206
10 2. 6.48967 7.98632
11 2.1 7.9876 9.98127
12 2.2 9.79513 12.429
13 2.3 11.9742 15.4297
14 2.4 14.599 19.1058
15 2.5 17.7588 23.6069
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16 2.6 21.5605 29.1157
17 2.7 26.1326 35.8551
Out[6]= 18 2.8 31.6292 44.0978
19 2.9 38.235 54.1765

20 3. 46.172 66.4977

Extract and plot the middle two columns of mat (those under the headings x,and
¥)- The list m2 of points extracted requires the use of ListPlot. More about
Transpose in the next chapter.

In[7]:= m2 = Transpose[Take[Transpose[mat], {2, 3}1]

out[7]= {{1,0.5},{1.1,0.7},{1.2,0.95}, {1.3,1.26},
(1.4,1.642}, {1.5,2.1104}, {1.6,2.68248},
(1.7,3.37898}, {1.8,4.22477}, {1.9, 5.24973},
{2.,6.48967}, {2.1,7.9876}, {2.2, 9.795131,
{2.3,11.9742}, {2.4, 14.599}, {2.5,17.7588},
{2.6,21.5605}, {2.7,26.1326}, {2.8,31.6292},
(2.9, 38.235}, {3.,46.172}}

In[8]:= p31l = ListPlot [m2];

The plot above by ListPlot of the points in table m2 produced a collection of
dots. These are combined with a plot of the exact solution in Fig. 1.3

The option PlotJoined—True in ListPlot connects the dots, as in the
plot below.

At least we can say that our approximate solution tried to climb with the exact
solution. But notice that if the exact solution curves upward, our approximation will
be too small at each step because the tangent line at each point lies below the curve,
thereby making our approximation get progressively worse. We have a systematic
error here. It has manifested itself in the poor approximation that we found. The
problem lies in the fact that once an error has taken us off of the actual solution, the
slope is calculated incorrectly for the next point, and the errors may (and in this case
do) get worse as we proceed.
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Fig. 1.3. A comparison of the exact (solid) and approximate (dots) solutions.

Modifying Euler’s Method

Often Euler’s method is not as bad as this example makes it appear, and the results
can be improved by taking more steps with a smaller value of 4. Can anything be
done to eliminate the systematic error that we observed? To make the solution bend
better, we can incorporate the second derivative of our solution into Euler’s method.
But, how can the second derivative be found if we do not know the solution? The
problem is not as great as it might ssem—we know the derivative of our solution:
dy/dx = x + 2y,and this enables us to implicitly differentiate dy/dx = x + 2y with
respect to x to find that
2
gx—); = %(x+2y) =1 +2% =1+2(x+2y).
We can take advantage of this once we recall that one form of Taylor’s theorem says
that
h2 h3
Y+ h) = y(x) + hy'(x) + (E)y"(x) + (;)y”’(X) +o
Euler’s method used only the first two terms, y(x)+hAy’(x) = y(x)+h f(x, y(x)). We can
use three terms since we now know the second derivative y”’(x). This improves our
results. The new process might be called Euler, since it uses the second derivative.
We can actually calculate as many derivatives as we wish and make a much more
accurate method. The Euler, method for the differential equation of Example 1.4,
using A = 0.1, is

x, = 1
Yo 172 = 0.5
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Xepyp = X+ h=x+ 0.1

’ 2
Yer1 = Y + 0.y + %Lyk

= Y + 0D + 29 + CLA +2(x, +2y,)

= 0,005+ (0.11)x, + (1.22)y,

for 0 <= k < 19. For this differential equation, using the second derivative required
very little extra work. This may not always be the case.
In general, the calculation of y”(x) requires partial derivatives. For instance,

L rx, yoo)

= d,f(x yx)+ c')y f(x y(x))dy/dx

y'(x)

=[x y@) + f,(x y(0)) f(x, y(x))
This second derivative is easy to calculate in Mathematica.
In[9] := Clear[y]
In[10]:= £[x_,y ] :=%x+2y

In[11]:= f2[x_,y_1=0,£[x,y]+ (0, f[x, y])£f[x, y]
Out[ll]=1+2 (x+2vy)
The third derivative is just as simple.

In[12]:= £3[x_, y_] = Simplify[0, £2[x, y] + (8, £2[x, y1) £[x, y1]
Out[l2]= 2+4x+8y

The results given are for the problem of Example 1.4. It is clear that being able
to calculate these higher-order derivatives permits us to produce an Euler method
that has any desired number of terms. In numerical analysis, one learns that using
more terms really does improve the accuracy for normal problems. There the topic
of accuracy of a solution is analyzed in thorough detail.

Here is the new Euler, method. Notice the new term that has been added.

2
In[13]:= euler2[{x_,y }1={x+h,y+h£[x, y] + h )f2[x, v1}
Y

2
Out[13]= {0.1+x,y+0.1 (x+2y)+0.005(1+2(x+2y))}
This is Euler, for our problem.

In[14]:= Expand[euler2[{x, y}1]
Out[14]= {0.1+x,0.005+0.11x+1.22vy}
Make a table of points using Euler,, with x,, and y, known from before.

In[15]:= x[0] =1
y[O] =0.5
h=0.1
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In[16]:= e2t = NestList [euler2, {x[0], y[0]}, 20]

out[16]= {{1,0.5},{1.1,0.725}, {1.2,1.0105}, {1.3, 1.36981},
{1.4,1.81917}, {1.5,2.37839}, {1.6, 3.07163},
{1.7,3.92839}, {1.8, 4.98463}, {1.9, 6.28425},
{2.,7.88079}, {2.1, 9.83956}, {2.2,12.2403},
{2.3,15.1801}, {2.4, 18.7778}, {2.5, 23.1779},
{2.6,28.557}, {2.7, 35.1305}, {2.8, 43.1612},
{2.9,52.9697}, {3., 64.9471}}

Again, ListPlot could produce a plot of this new approximation. Such a plot
with points joined appears as a portion of Fig. 1.4 .

Runge-Kutta and NDSolve

There is a standard method, called the Runge-Kutta method for its creators, that ef-
fectively incorporates terms through the fourth derivative, requires no partial deriva-
tives, and needs only four evaluations of the original function f(x, y) to obtain the
next point. Given that the point (x;, y,) is known, the next point (x,,,, ¥, ) is calcu-
lated this way:

Table 1.1. Summary of results of several Euler methods.

[ k[x, [Euler [Euler, [Euler, [Euler, [exact |
0

1.0} 0.5 0.5 0.5 0.5 0.5
1.1]07 0.725 0.72667 | 0.72675 | 0.726753
121095 1.0105 | 1.01457 | 1.01477 | 1.01478
1.3] 126 1.36981 | 1.37726 | 1.37763 | 1.37765
1.4 1.642 1.81917 | 1.83129 | 1.8319 | 1.83193
1.5|2.1104 | 2.37839 | 2.39689 | 2.39781 | 2.39785
1.6 | 2.68248 | 3.07163 | 3.09873 | 3.10009 | 3.10015
1.7 | 3.37898 | 3.92839 | 3.96698 | 3.96892 | 3.969
1.8 | 422477 { 498463 | 5.03848 | 5.04118 | 5.04129
1.9 | 5.24973 | 6.28425 | 6.35819 | 6.36191 | 6.36206
2.0 | 6.48967 | 7.88079 | 7.98107 | 7.98611 | 7.98632
2.1|7.9876 | 9.83956 | 9.97422 | 9.98099 | 9.98127
2.29.79513 | 12.2403 | 12.4196 | 12.4286 | 12.429
23| 11.9742 | 15.1801 | 15.4172 | 15.4292 | 15.4297
2414599 | 18.7778 | 19.0895 | 19.1052 | 19.1058
2.5 | 17.7588 | 23.1779 | 23.5855 | 23.6061 | 23.6069
2.6 | 21.5605 | 28.557 | 29.0878 | 29.1146 | 29.1157
2.7 | 26.1326 | 35.1305 | 35.8189 | 35.8537 | 35.8551
2.8 | 31.6292 | 43.1612 | 44.051 | 44.0959 | 44.0978
2.9 | 38.235 | 529697 | 54.1162 | 54.1741 | 54.1765
3.0 [ 46.172 | 64.9471 | 66.4201 | 66.4946 | 66.4977
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Fig. 1.4. Plots of Euler using / and #/4, Euler2, and the exact solution.

K, = hfx,n)

K hf(x +ihy, + 3K,
hf(x +3hy, +1iK,
= hf(,+hy +K)

= x,+h

=y + : (K| + 2K, +2K; + K,)

N
1l

=
T AR

The Runge-Kutta method is easy to program and is in wide use, even though
there are much more sophisticated methods available. Runge-Kutta and the Euler
method(s) are for use with first-order differential equations. There is a Runge-Kutta
package available with Mathematica.

Here is how one might define and use the process just defined. The built-in func-
tion Module that is used is analogous to a Pascal function declaration. Definitions
of h, x,, ¥, and f(x, y) are used globally; K1, K2, K3, K4 are declared as local
variables. The explicit use of Return is unnecessary, since Mathematica always
returns the last expression that is evaluated inside the function.

In{17]:= Clear[RK]

Inf18]:= x[0] =1
y[0] =0.5
h=0.1
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In[19]:= RK[{x_, y_}] :=Module[{K1, K2, K3, K4},
Kl=hx*£f[x, y];
K2=h+*»£f[x+h/2, y +K1/2];
K3=hxf[x+h/2, y+K2/2];
Kd=h+»f[x+h, y+K3];
Return[{x+h, y+ (1/6) (K1 + 2K2 + 2K3 +K4) }]
]

In[20]:= RKt = NestList [RK, {x[0], y[0]}, 20]

out[20]= {{1,0.5}, {1.1,0.72675}, {1.2,1.01477}, {1.3, 1.37763},
{1.4,1.8319}, {1.5,2.39781}, {1.6, 3.10009},
{1.7,3.96892}, {1.8, 5.04118}, {1.9, 6.36191},
{2.,7.98611}, {2.1, 9.98099}, {2.2, 12.4286},
(2.3,15.4292}, {2.4,19.1052}, {2.5, 23.6061},
(2.6,29.1146)}, {2.7, 35.8537}, {2.8, 44.0959},
{2.9,54.1741}, {3., 66.49461}

Table 1.1 summarizes the results of using our two Euler methods and Euler, and
Euler, as well. These incorporate the third and fourth derivatives, respectively, into
the process. You will observe that these latter higher-order methods become very ac-
curate over the entire interval.

Figure 1.4 shows all of these results plotted on a single set of axes. For our pur-
poses, when we need a numerical solution of a differential equation, we will rely on
the built-in function NDSolve. Its use will be demonstrated on several occasions in
the chapters that follow. NDSolve can be applied to higher-order differential equa-
tions as well as to first-order equations.

There are extensions of these methods that can be used when systems of differ-
ential equations must be solved. We see these in Chapt. 9.

Reducing the Step Size

We have discussed how improving the method can improve the accuracy for a fixed
step size. Another common way to improve accuracy with a given method is to re-
duce the step size and take more steps to cross the desired interval. This is a valid
approach. The primary negative aspect of reducing the step size is that it takes longer
to cross an interval. This may or may not be important. One important considera-
tion is that more steps with inaccurate information may cause the inaccuracies to
compound into quite a large effect. This is a topic for extensive study in numerical
analysis courses. Figurel.4 demonstrates that reducing the step size, as well as im-
proving the method, can reduce the error. Four plots appear. The enormous value of
his0.5.

This was chosen to amplify the effects for easier visualization. The four plots,
from top to bottom, are the exact solution, the Euler, method that uses a quadratic
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polynomial, the standard Euler method in four steps of A/4 = (.125, and the stan-
dard Euler method in a single step of size & = 0.1. Notice how using the standard
Euler method in four steps allows the solution to bend at three interior points, and
thus follow the correct solution more closely. The Euler, method has a bend built in,
but it, too, would give more accurate answers if it were applied more times using a
reduced step size.

From time to time there will be an opportunity to discuss some important aspects
of the numerical solution of differential equations.

Exercises 1.2. 1. By including the extra term (y"’(x)) in the definition of Euler,
define Euler,.
2. By including the extra term (y”"”(x)) in the definition of Euler; define Euler,.
3. Evaluate NestList [g, a, 4] to see what NestList does. Explain how this
is applicable to iterative methods such as Euler’s method or the Runge-Kutta
method. What is “a” for Euler’s method?

4. Consider the differential equation dy/dx = 1 + y? with y(0) = 0.

a) Use Euler’s original method with & = 0.1 to estimate points on the solution
of the stated problem. Find your solution on the interval [0, 1.5].

b) Use NDSolve to find an approximate solution. Let:
{x0, y0}={0, 0}
h=0.1
s=NDSolve[{y’ [x]==1+y[x]?, y[x0]1==y0},y[x], {x,x0}]
Capture your solution using
wlx_l=y[x]/.First[s]
Then make a table of values of the solution function w[x].
t=Table[ {x0+k*h,w[x0+k*h]}, {k,0,15}]

¢) Compare these values to those that you calculated. If you used Mathematica
to calculate the points from Euler’s method, you can use the built-in function
ListPlot to plot them. You can also P1ot the function w [x]. The exact
solution is y(x) = tan(x). You can compare both methods to this, if you like.

5. Use the Euler, method on problem 3. Compare results.

6. Use the Euler; method on problem 3. Compare results.

7. Use the given Runge-Kutta method on the same problem. Compare results.

1.2 Uniqueness Considerations

Theorem 1.1, our existence and uniqueness theorem, says that existence and unique-
ness are local properties of a differential equation. In this section, we examine a
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Fig. 1.5. The one-parameter family of solutions.

differential equation that fails to have a unique solution at any point through which a
solution passes. In addition, no solutions pass through the half-plane where y < 0.
We seck a differential equation whose solutions are precisely of the form

y=(x-a)

where a is a real number. This one-parameter family of curves (Fig. 1.5) consists
of all horizontal translates of the parabola y = x2. Observe that for each x, the cor-
responding point on any solution curve lies on or above the x-axis. This means that
no solution will ever be negative. The differential equation of the family is found by
taking a derivative:

Y =2(x—a).

Then from (x — a) = y’/2, one obtains

-(3)
Y E
or the simpler equation (y')* = 4y as a differential equation of the family.

It is easy to see that through each point (p, q) where g = 0 there pass exactly two
members of the family of curves. To show this, suppose that g > 0. Then g = (p—a)?
gives two choices: a = p + 4/q for the parameter a. If ¢ = 0, then from 0 = (p — a)?
one finds that a = p is the only choice for the parameter. But y = 0 is another solution
of the differential equation that passes through (p, 0). This is the second solution that
passes through (p, 0). Note that the solution y = 0 of the differential equation was
not a member of the family of solutions. Because it is somehow a different kind of
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Fig. 1.6. A solution passing through the origin p > 0.

solution, it is called a singular solution. This singular solution is tangent to each
member of the family exactly once.

From the differential equation itself one sees that it is necessary that y = 0, since
the left-hand side of the equation is a square. It also follows that at the point (p, q)
if g > 0, then there are two choices, y' = i\[c}, for the slope of a solution curve at
(p, q). But if g = 0O, then it is required that y’ = 0.

Most of the upper half-plane, except for the positive y-axis, is filled with solutions
that pass through the origin: through each point (p, g) with 0 < g < p? there is at
least one solution that passes through the origin. We describe some of them.

If p 2 \/q take

_ 0 , X< p-+/q
y(x)_{(x—p+\/(_])2 . xzp-4/qg

See Fig. 1.6.
If p < ~/q take

_ 0, , X>pt4/q
y‘x)“{(x—p—@%  xspiyq

See Figure 1.7.
Let us write down the complete set of solutions that pass through the point (2, 1).

To aid us in our description, Figure 1.8 is a picture of the set we are attempting to
describe.

The two curves in Figure 1.4 that cross at (2, 1) are

y=(x-1)?
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and
y=@x-3)7%

The left gray area consists of all curves of the form
x-p? , x<p

y(x) = 0 , p=x=1,
-2, l<x

where p < 1. The right gray area consists of all curves of the form
x-3?% , x<3
y(x) = 0 , 3=sx=p .
(x-py , p<x

where p > 3. Each of these curves has a “bathtub” shape, being a portion of the
x-axis with half a parabola at either end. The two remaining solutions are

0 , x<1
y(x):{ (x_l)2 »

, x=1

and

_ (x—=32 , x<3
y(x)—{ 0 , x=3 "’

These latter solutions have a “ski ramp” shape, with each consisting of a ray on the
x-axis and half of a parabola. They look similar to Figures 1.6 and 1.7.

In summary, near the point (2, 1) there are only two choices for the solution, but
on any interval containing x = 2 that extends beyond x = 1 to the left or beyond

(pra)

Fig. 1.7. A solution through the origin with p < 0.
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Fig. 1.8. The set of solutions passing through the point (2, 1).

x = 3 to the right there are infinitely many solutions of (y')> = 4y that pass through
the point (2, 1). If we specify the sign of y’(2) at the point (2, 1) then near (2, 1) the
solution is unique, but not beyond x = 1 on the left if the slope y’(2) > 0 or beyond
x = 3 on the right if the slope y'(2) < 0.

Theorem 1.1 warned us that there might be problems with uniqueness along the x-
axis. We have f(x, y) = \/y or f(x, y) = —+/y. In either case the partial derivative with
respect to y is undefined, and hence not continuous, when y = 0. The theorem was
unable to guarantee uniqueness where y = 0. With either f(x,y) = y/y or f(x,y) =
—+/y we would have had uniqueness away from the x-axis, but we had both since y’
was squared. This gave us two solutions, one for + and one for —, locally, off of the
X-axis.

This example illustrates some of the things that can happen when a differential
equation fails to have unique solutions.

Exercises 1.3. 1. Repeat the ideas of this section for the family of cubics that are
precisely of the form y = (x —a)*. You may find it instructive to let Mathematica
carry out the same sequence of operations that you do manually.

a) Find a differential equation for the family and show that y = 0 is a solution.
(Mathematica gives several differential equations, all of which are equiva-
lent.)

b) Show that there are several kinds of solutions that involve part of one cubic,
possibly part of y = 0, and then possibly part of another cubic.

¢) Describe all of the kinds of solutions there are.
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d) Find all of the solutions that pass through the point (1, 2).

1.3 Differential Inclusions (Optional)

Rather than insist that y(x) be a differentiable solution of a differential equation such
as dy/dx = f(x,y), suppose we merely ask that dy/dx be in some set S. We might
write this as dy/dx € S. This is an example of a differential inclusion.

Definition 1.4. Let S be a set and I an interval of real numbers. An inclusion such as

dy
dx es (1.2)
is called a first-order differential inclusion, because it asks that dy/dx be a member
of a set, rather than giving an equation defining dy/dx. A continuous function y(x)
is called a solution of the differential inclusion (1.2) on I provided that dy/dx € S
except possibly at a finite number of points of I at which dy/dx may fail to exist. If
Xy is in I and y, is a number, an initial value problem for the differential inclusion
(1.2) asks that y(x) satisfy

d
c%c eS and y(xy) =y,

The set S can have parameters such as x or y or both.

A differential inclusion generally places fewer restrictions on a function that can
be called a solution than does a differential equation. Since solutions of differential
equations have to be differentiable everywhere, they are better behaved than some
solutions of differential inclusions.

Solutions of differential inclusions can have “corners” at points where they have
no slope. Furthermore, if S has parameters x and y and there is only one member
f(x,¥) in S for each permissible x and y, then the differential inclusion is really a
differential equation: dy/dx = f(x, y). All of this suggests that the requirement of

Fig. 1.9. A solution of dy/dx € {—1, 1}.
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y
6 Maximal Solution
y=2+4+x
5
4
3
2
1
Typical Solution X
1 2 4
-1
y=2-Xx
2 Minimal Solution

Fig. 1.10. A maximal, minimal, and typical solution passing through (0, 2)

differentiability everywhere for a solution to a differential equation is not necessary.
This is true, but we leave the study of the implications of this remark to a later course
in differential equations.

Let’s look at an example of a differential inclusion. Let S = {1, 1} and consider
dy/dx € § = {-1,1}. A solution y(x) is continuous, and either dy/dx = -1, or
dy/dx = 1 at each point where y(x) has slope. On any finite interval, we only allow a
finite number of points where y(x) fails to have slope. What do our solution functions
look like? In general, they consist of a broken line where each segment either has
slope 1 or slope —1. Figure 1.9 gives a typical picture.

Of course a solution is permitted to be differentiable. Any function y(x) = x + ¢
or y(x) = —x + ¢, with ¢ a constant, is a differentiable solution of dy/dx € {-1, 1}.
Suppose that we specify that each solution pass through the point (p, g). Then the
two differentiable solutions that pass through (p, g) are the lines y —g = +(x — p) and
y—qg=-(x-p).

If a solution to dy/dx € {—1, 1} is not required to be differentiable everywhere,
what are the solutions that pass through the point (0, 2), for example? Figure 1.10
shows a picture that represents members of the set of solutions in the half-plane
xz0.

The particular solution that is drawn with thicker lines in Figure 1.10 is given by
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—x+2, O0=<=x=xl
y(x) = X, l<x=<2 .
~-x+4, 2<x<4

Note that for x € (0, 1) U (1, 2) U (2, 4), either dy/dx = 1 or dy/dx = —1, so that
dy/dx € {1, 1}.

Definition 1.5. The functions h(x) and g(x) are called a maximal solution and a
minimal solution, respectively, of the initial value problem dy/dx € S, y(x,) = y,
on an interval 1, if each is a solution of the initial value problem and for each x in I,
whenever y(x) is a solution of the initial value problem, then g(x) < y(x) < h(x).

Note the apparent existence of a maximal solution and a minimal solution in
Fig. 1.10. Every solution must remain between these. That is, for x = 0, each solution
Vy(x) satisfies —x + 2 < y(x) < x + 2. (Why?) This is typical of differential inclusions.
What are the maximal and minimal solutions for x < 0?7 Can you explain why they
are different?

Sometimes the maximal and minimal solutions are the same over an interval.
Then the solution is unique over any interval where this occurs. Look back at the
differential equation (y')*> = 4y of the last section. Isn’t that a differential inclusion:
dy/dx € {—2\/§, 2\/§}? What we changed in this section is that there may now be
points at which the derivative does not exist. What happens to the solution of the
example in Section 1.2 if the derivative of the solution can fail to exist at isolated
points? Note that in Sect. 1.2, there is a maximal solution and a minimal solution for
x = 1. The same is true for x < 1, but the maximal solution and minimal solution on
the left are different from those on the right.

Exercises 1.4. 1. Determine the maximal and minimal solutions for x = 0 to the
differential inclusion dy/dx € {—1, 1}, with initial condition y(0) = 2.
2. Find all differentiable solutions to the differential inclusion dy/dx € {—x, x}. You
will need to integrate the two equations dy/dx = x and dy/dx = —x.
3. Given the differential inclusion dy/dx € {—x, x} of Problem 2 with initial condi-
tion y(0) = 3.
a) Depict the set of all solutions.
b) Determine the maximal and minimal solutions.
¢) Find descriptions of those solutions that follow the maximal or minimal
solution for a while, then branch off and continue onward as differentiable
functions. That is, they have only one corner.
d) Describe the set of all points (p, g) with p > 0 through which at least one of
the solutions passes.
¢) Find the set of points (a, b) with 0 < a < p such that some solution to
dy/dx € {—x, x} passes through each of the points (0, 2), (a, b), and (p, g).
How far can this process of finding intermediate points be continued?
PROJECT A. Examine the differential inclusion dy/dx € {—2+/y, 24/y}. (This is really
the differential equation of Sect. 1.2 expressed as a differential inclusion.)
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1. All of the solutions given in Sect. 1.2 are still solutions, but now there can be
corners. Write down typical solutions, including those that contain a segment of
the x-axis. Use Sect. 1.2 as a guide.

2. Suppose that the initial condition is given as before: y(2) = 1. What are the max-
imal and minimal solutions of this initial value problem? (Distinguish between
x < 2 and x = 2.) Write down formulas for some solutions that may have corners,
in terms of the maximal and minimal solutions. Be careful to state the domain
of definition of each portion of each solution.

3. How does Fig. 1.8 of Sect. 1.3 change under the conditions of part 27 How
complete are your lists of solutions that you made in parts 1 and 2?

PrOJECT B. Consider the differential inclusion dy/dx € [—1, 1]. That is, wherever a
solution function has slope, that slope is not greater than 1 in absolute value.

1. Show that some multiple of every function that has bounded slope is a solution.
2. Show that y = ¢* is a solution over a restricted domain. (What is that domain?)

3. Can you find functions that are not solutions over any interval?

4. What are the maximal and minimal solutions that pass through the origin?

5. What are the maximal and minimal solutions that pass through the point (p, g)?

PROJECT C. Consider the differential inclusion dy/dx € {—/ 1 - ¥, +1- y*h.

1. Show that there are two constant solutions.

2. Show that for every solution -1 < y'(x) < 1.

3. Show that portions of sinx and/or cos x are a part of every non-constant solution.
4. What are the maximal and minimal solutions that pass through the origin?

5. What are the maximal and minimal solutions that pass through the point (p, g)?
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Linear Algebra

2.0 Introduction

Linear Functions

This section will provide us with a first look at some aspects of linear algebra. One
can study differential equations without knowing anything about linear algebra, but
the study is so much more productive if you are aware of linear algebra as new ideas
are introduced. There will still be plenty left over to study in a linear algebra course,
but you will know some of the central ideas when we have finished. Topics from
linear algebra will occur at several places in the chapters that follow.

We begin by introducing a working definition of the term linear.

Definition 2.1. The function f is said to be linear provided that if u and v are in its
domain, then u + v is in the domain and

f+v)=flu)+ f(v)
Furthermore, if ¢ is a number, then cu is in the domain of f and

flew) = cf(u).

Using this definition, we can, for instance, show that the derivative function D
defined by Df(x) = (d/dx)f(x) = f’(x) is linear. (We use the sum and constant
multiple rules from differential calculus.)

d
D(f(x) + g(x)) = E(f (x) + g(x0) = f'(x) + &' (x) = Df(x) + Dglx)

and
d d
D(cf(x) = &(Cf (x) = Cd_xf (x) = cf'(x) = cDf(x).

Here f(x) and g(x) play the roles of « and v in the definition. In cases such as this,
where a function is acting on a set of functions, we often refer to such a function as
an operator. Thus we would refer to the derivative operator D.

C. C. Ross, Differential Equations
© Springer Science+Business Media New York 2004
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There are other processes that are linear. Simple multiplication by the number 3
(or any other number) is such an example: Let f(¢) = 3¢. Then

fl+v)=3u+v)=3u+3v=fw+ f(v)

and

flct) =3(ct) = By = (3 = ¢(3t) = cf(r).

From algebra we needed the distributive law, a(b+c) = ab+ac, the commutative law,
ab = ba, and the associative law, (ab)c = a(bc). It is also clear that there was nothing
special about the choice of 3 as the multiple. (Replace the 3 by k, throughout.)

It is easy to show that the function (operator) L defined by L(y) = y’ + 3y is
linear. Let u and v be once-differentiable functions defined on a common domain.
Then, since sums and constant multiples of once-differentiable functions are once-
differentiable,

L(u+v) w+v) +3u+v)
= u'+VvV +3u+3v
W +3u)+ (v +3v)

L(u) + L(v).

When c is a constant,

Licu) = (cu) +3(cu)
= cu' +3cu
= c( +3u)
= cL(u).

We make two observations about the definition of a linear function as proposed
above. Let V be the domain of f. Then

1. given any two objects in V, their sum had to be in V for the first part of the
definition to hold, and
2. any multiple of an object in V must also be in V.

This means that not only does f have to behave properly on sums and multiples, but
so does the domain of f. We will see this idea again in Section 2.2 when the concept
of a linear space is defined.

It will be helpful to have names for the various objects that we encounter as we
study linear problems.

Solving Linear Equations

Here are some properties of linear functions that we will use heavily in the chapters
to come: Given a linear function L,
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a) The equation L(u) = 0 always has at least one solution. (Since L(0) = 0, 0 is such
a solution.)

b) If L(u) = 0 and L(v) = 0 then L(u + v) = 0, and for any constant ¢, L(cu) = 0. (If
Lu) =0and L(v) = O0then Lu +v) = Lw) + L0v) =0+ 0 =0, s0u + visin
the domain of L and is a solution, and L(cu) = cL(u) = ¢0 = 0, so cu is in the
domain of L and is a solution.)

¢) IfL(p)=band L(q) =b,then L(p—q) = 0. (L(p—q) = L(p) - L(g) =b—b =0.)

d) If L(p) = b and L(g) = b, then there is a (unique) member u in the domain of L
such that p = g + u. (Take u = p — g. Then L(u) = L(p) — L(q) = b—-b = 0. If
p=q+u,thenuy =p-q=u)

e) fLg) = b, L(u) = 0,and p = g + u, then L(p) = b. (I(p) = L(g + u) =
L@+ Lu)=b+0=0>b)

It will be helpful to have names for the various objects that we encounter as we
study linear problems.

Definition 2.2. The set of all solutions of the linear equation L(u) = 0 is called the
null space or kernel of the linear operator L.

A linear problem such as L(y) = 0, having right-hand side 0, is called homoge-
neous.

A linear problem such as L(y) = b, having nonzero right-hand side, is called
nonhomogeneous.

Properties (d) and (e) will guide us as we begin solving nonhomogeneous linear
(differential equations) problems. They are used this way:
Given the linear problem L(y) = b:

1. Find a typical member, u, of the kernel of L.
2. Find any one object, ¢, so that L(q) = b.
3. Then y = q + u represents every solution of L(y) = b.

This process is a property of linearity not a property of differential equations,
although properties of differential equations will dictate how we go about finding ¢
and u. Any object that satisfies the nonhomogeneous equation, such as g above, is
called a particular solution. A typical member of the set u, which represents the
entire kernel of L, is often called a complementary function of L. A set of functions
such as y = g + u that represents every solution of L(y) = b is called a general
solution or complete solution of L(y) = b because there are no other solutions.

Examples Using Mathematica:
Solving Linear Algebraic Systems

A linear problem has either no solution, exactly one solution, or an infinite number
of solutions. This can be illustrated by considering how two planes in 3-space can
intersect. If the planes are parallel and different, then there is no point in common,
and hence there is no solution to the two equations. Otherwise, the two planes in-
tersect in a line or coincide. In either of these latter cases there are infinitely many
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solutions. If a third plane is also considered, then there can be exactly one solution
(where the line of intersection of the first two intersects the third) or no solutions
(from several interesting geometric arrangements) or an infinite number of solutions
(where all planes coincide, or where all three share a line in common). It is of some
interest to sketch each of the possibilities for the intersection, or lack of it, of three
planes in ordinary 3-space.

The examples that follow illustrate analogous situations for two lines in the plane.

Here is a system that has a unique solution:

In[l]:= Solve[{3x+2y==4,5x+3y==2}]
Outfl]= {{x->-8,y->14}}

Next is a system that has infinitely many solutions. Note the warning that Math-
ematica issues. Indeed it does solve only for x in terms of y:

In[2]:= Solve[{6x+2y==4, 3x+y==2}]
Solve :: svars :

Equations may not give solutions for all “solve” variables.
2
out[2]= {{x~ 3 Ly
Capture the solution(s). The % means the results of the last calculation, and

[[1]] is Part [%, 1], the inner quantity enclosed in braces. See the discussion
in Appendix A2:

In[3]:= {x1,y1l} = {x, y}/.%[[1]]

out [3] - {% - % v}

Check the solution.

In[4]:= Simplify[{6x1 +2yl == 4, 3x1 +yl == 2} ]
Out[4]= {True, True}

The two True’s indicate that both equations are satisfied.

Here is a system that has no solutions. Observe that Mathematica uses the nota-
tion “{ }” for the empty set, signifying no solutions.

In[5]:= Solve[{6x+2y==4,3x+y==1}]
out[5]= {}

The expression {2/3 — y/3, y} that appears above can be rewritten as {2/3, 0} +
y{—1/3, 1}. The linear function is L(x, y) = {6x + 2y, 3x + y} and the stated problem
is L(x, y) = {4,2}. From the definition of L we verify that {2/3, 0} is a particular
solution, and y{—1/3, 1} = {—y/3, y} gets sent to 0.

Here is the verification: L({2/3, 0}) = {6(2/3) + 2(0), 3(2/3) + (0)} = {4, 2}. And
L(=y/3,y) = {6(=y/3) + 2(»), 3(=y/3) + O} = {2y = 2y,—y + y} = {0,0}. Thus
our solution had the desired form: a typical member of the kernel plus a particular
solution. The symbol y in the solution served only as a constant multiplier: each
choice of y gave a solution. The points on the solution are merely the points on the
original curve; the form is that of a line expressed parametrically, rather than a form
that you see more commonly. The line in parametric form can be written:
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x = 23-y/3
y = y

A better form would be

2/3 -1/3,
y = t,

=
It

where 7 is used as the parameter, rather than y.

Exercises 2.1. 1. Use Mathematica to solve each of these linear systems. Problem

(a) would be entered as Solve [ {2x+3y == 5, 3x+dy == 7}, {x,y}].
Interpret each response. Each problem can be plotted to aid your interpretation.
Plot problem (a) as Plot [{ (5-2x) /3, (7-3x)/4},{x, -2, 2}], for
instance. Note that to do the plot, each equation was solved for y as a function
of x and the resulting two functions plotted. If there is a unique solution, try
to include it in the range over which you plot. The range just specified was
-2=x<2

) 2x+3y = 5
2) { x+dy = 7
5x=3y =5
b) { 3x+4y = 3
x+7y = 5
©) { 2x+ 14y = 10
d) 2x+3y = 5
4x+6y = 70
2x—=5y = -5
©) { x+6y = 4

. Verify that each of these functions is linear. Propose a reasonable domain and

range for each of the functions.
a) f(x,y)=(x+y 2x—y).
b) glx, v, 2) = (x —z, %y, x + 2).
c) h(x, y) = (x — y, X, y, x + 2y).
d) k(x,y, 2, w) = (x = 2 + 2w, x + 2).
&) i(F) = [ F(x) dx.

f) pG)X = [ Gl 1) dr.

. Sketch possible geometric configurations of three planes that result in

a) no solutions;
b) exactly one solution;
¢) infinitely many solutions.

. Each bracketed expression below is a line in the xy-plane expressed in parametric

form. In each case eliminate 7 from the two equations to obtain an equation for
the line containing the variables x and y, but not r. (Solve one equation for r and
substitute into the other, or multiply each equation by an appropriate constant so
that when the equations are added,  will drop out.) Sketch the lines that result.
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) x = 543
a y = T—t
x = =2+5¢t
b){y = 3-2t
0 x = 3t
y = 5+t

2.1 Familiar Linear Spaces

Here are some sets that satisfy the requirements to be called linear spaces. Most of
these will be familiar to you. A definition or two and a theorem or two and these will
have much more meaning to you.

. The real numbers (called R)).

. The complex numbers.

. The plane, R2.

. Three-space, R3.

. Buclidean n-space ={(x|, x,, ..., x,) | each component is in R.}
. The set of all functions on an interval [a, b].

. The set of all continuous functions on an interval [a, b].

. The set of all differentiable functions on an interval [a, b].

. M,, the set of all 2 x 2 matrices.

10. M, the set of all 3 x 3 matrices.

11. The set of all curves in R2, {x = f(t), y = g(t)}, t € [a, b].

12. The set of all curves in R3, {x = f(t),y = g(t), z = h(t)}, t € [a, b].

00 ~I N AW —

Nel

One can continue giving examples of linear spaces. You will see other examples
as we continue.

2.2 Abstract Linear Spaces

Because our examination of higher-order differential equations will concentrate on
linear equations, we need to broaden our horizons. What we must do is computation-
ally intensive except in the simplest of examples, so we will quickly turn to Math-
ematica to perform the necessary calculations. Once again, in order to be sure that
what you have asked Mathematica to do is correct, you must be able to understand
and do manual calculations.

Linear Spaces

In Section 2.1, we learned about linear functions, and saw the need for a fuller dis-
cussion of properties of their domains. We now undertake that discussion.
Definition (Partial). A linear space V is a set that satisfies these properties:
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1. fuandvareinV,thenu+visinV, and
2. If uisin V and c is a number, then cu isin V.

This definition is incomplete. It covers the essentials, but there are some (very
important) technical matters that have been omitted. The omitted parts of the defini-
tion are there to insure that things that happen to objects in linear spaces obey nice,
obvious rules. We have to state clearly all of the nice properties because there are
strange sets where things do not happen the way we want. So we state exactly what
we need in order to avoid trouble later. Here is the full definition:

Definition 2.3. A linear space V is a set that satisfies these properties: If u, v, and w

are in 'V, and r and s are numbers, then

1. u+visinV, and addition has these properties:
(la)u+v=v+u,
(ID)u+wW+w)=Wu+v)+w;

Additive closure]
Commutative law|
Associative law]

[
[
[
[

(1¢) there is a member 0 in V such that Zero]
u+0=uforeveryuinV;
Ad)u+(—u)=0 [Additive inverse]
2. ruis in'V, and multiples have these [Multiplicative closure]

properties:

(2a) r(su) = (rs)u; [Associative law]

(2b) 1u = u [1 is the number ‘one’.]; [Unit]

2¢) r(u +v) = ru + rv; [Distributive law]

Q2d) (r + $)u = ru + su. [Distributive law}

You can see that sums and multiples are the principal ideas. The other parts of
the definition guarantee that things work correctly. For our purposes, the set V will
usually be a set of functions having some specified properties.

The standard notation f : V — W is used to say that V is the domain of f and
W is the range of f. The statement that f maps V to (or into) W conveys the same
idea. The set f(V) = {y € W | y = f(u) for some u € V} is the image of V under f.
The set f(V) is a subset of W. It is also a linear space as this theorem states:

Theorem 2.1. Suppose that the linear function f maps the linear space V to the
linear space W and U = f(V) is the image of V under f. Then U is a linear space.
Proof. Letuand vbe in U. Then u = f(x) and v = f(y) for some x and y in V. So
utv=fx)+fy =f(x+y) = f(z,), wherez, =x+yisinV. Thusu + visin U.
Similarly, cu = c¢f(x) = f(ex) = f(z,), where z, = exisin V. Thus cu is in U. O

The idea of a linear subset of a linear space is an important concept.

Definition 2.4. Suppose that W is a subset of the linear space V. Then W is said to be
a subspace of V if and only if W is a linear space.

Linear spaces are also called vector spaces or linear vector spaces. These are
commonly accepted terms.

The following theorem states two properties of linear functions that are easy to
prove and are very useful.
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Theorem 2.2. Suppose that V is a linear space and f and g are linear functions
defined on V such that f(u) + g(u) is defined for each win V. Then

1. the function F = f + g, such that F(u) = f(u) + g(u) for each u in 'V is a linear
function, and if r is a number, then
2. the function G = rf defined for each u in V by G(u) = rf(u) is a linear function.

Proof. (Note how the assumptions that f and g be linear are used throughout, as
are the properties of linear space.)
LLFu+v)=fu+v)+gu+v) [Definition of F]
= (@ + f(v) + (8w) + &) [f, g are linear]

= (f(u) + gw)) + (f(v) + g(v)) [Commutative, associative laws]

=Fu)+ F(®) [Definition of F1].
F(cu) = f(cu) + glcu) [Definition of F]
=c f(u) + cgw) [f, g are linear]
=c(f(u) + g(w) [Distributive law]
=cF(u [Definition of F].
2.Gu+v)=rfu+v) [Definition of G]
=r(f(w) + f(v) [f is linear]
=rf(u)+rfv) [Distributive law]
= G(u) + G(v) [Definition of G].
Glcu) =r f(cu) [Definition of G]
= r(c f(w) [f is linear]
=(ro)f(w) [Associative law]
= (cr)f(u) [Commutative law]
= c(r f(u) [Associative law]
=cGu) [Definition of G]. O

This theorem says that sums and multiples of linear functions are again linear.
What happens if we perform one linear function and then perform a linear function
on the result? The technical term is composition. Is the composition of two linear
functions linear? We state the answer as a theorem.

Theorem 2.3. The composition of two linear functions is linear. In other words, if F
is linear, G is linear, and the domain of F contains the range of G, then the function
L defined for each x in the domain of G by L(x) = F(G(x)) is linear.

Proof. If u and v are in the domain of G and c is a number, then L(u + v) =
F(G(u +v)) = F(G) + G(v)) = F(G(w) + F(G(v)) = L(u) + L(v), and L(cu) =
F(G(cu) + F(cGw)) = c F(G(w) = ¢ L(u). O

An immediate consequence of the fact that the composition of linear functions
is linear is that the second derivative function is linear. (Why?) By induction, one
learns that derivatives of any order are linear. (If the kth derivative is linear, why is
the (k + 1)st derivative linear?) Also by induction, any finite sum of linear functions
is linear. (See the exercises.)
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Span and Basis of a Linear Space

You are familiar with the fact that you can express any point (g, b) in the plane R? this
way: (a, b) = a(1, 0)+b(0, 1). This means that we can express every member of R2 by
using exactly two vectors: (1, 0) and (0, 1). Furthermore, if a(1, 0) + b(0, 1) = (0, 0),
thena=5b=0.

We can do the same thing with the two vectors (1, 1) and (I, —=1) :

a+b a-b
,b) = L)+ I -1,
(a, b) 5 (L1 5 ( )
and if c(1, 1) + d(1, —1) = (0, 0), then ¢ = d = 0. The point (g, b) has been expressed
as a linear combination (see Definition 2.5 below) of the members of two different
sets.

Here is another familiar example in an unfamiliar setting: Given the differential
equation L(y) = (d*y/dx®) = 0, we can see that y, = 1,y, = x, and y; = x* are each
solutions of the differential equation. Furthermore, for any choice of numbers «, b,
and c,

y(x) = ax* +bx+c= ay;(x) + by,(x) + ¢y, (x)

is also a solution of the differential equation. It is also true that if ax? + bx + ¢ = 0
for every number x, then a = b = ¢ = 0. These properties of polynomials and of this
differential equation look a lot like the properties we saw for the plane, R?. And they
are.

We can multiply any nonzero member of a linear space by every real number and
get new members in the space, so linear spaces that have one nonzero member have
an infinite number of members. Most linear spaces we encounter can be completely
described by simple “aritheoremetic’ on a finite number of elements. Other than the
fact that we have to be somewhat careful about how we choose these finite sets of
elements, their form will be simple, and—at least in theory—the elements we want
will be easy to find. We just need some definitions to see what is happening.

Definition 2.5. Given a set {y,,y,, ..., y,,} of vectors in a linear space V, and a set
{c1, ¢y, .. €, ) Of nUmbers, the vector w = ¢,y + ¢y, + -~ +¢,y,, of V is called a
linear combination of the members of the set {y,, y,, ..., ¥,,}- We say that c, is the
coefficient of y,, and the set {c,, c,, ..., c, ) is the set of coefficients of the linear
combination.

The set of all linear combinations of a set of vectors has a name.

Definition 2.6. Given a set A = {y,, y,, ..., ¥,,} of vectors in a linear space V. The set
of all linear combinations of members of A is called the linear span, or simply the
span of the set A.

It is worth noting that this set is a linear space.

Theorem 2.4. The span of a set A is a linear space.

Proof. This is proved easily by combining the definition of span and the definition
of linear space and doing a little calculating. The proof of this is left as an exercise.
0
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The plane R? is the span of {(1, 0), (0, 1)}, and the set of all polynomials of degree
2 or less is the span of {1, x, x?}. Both of these sets did their spanning in an especially
nice way.

Here is another example of the idea of a spanning set. Consider the set {1, x, x2, ).
What is the span of this set? Typical members of the span are: 1 — x, x* + 3x — 4, X3,
x3 — 2, and so on. The most general member is ax® + bx? + cx + d, which you will
recognize as a polynomial of degree 3 (orlessifa=0ora=b=0o0ra=b=c=0
orevena = b = ¢ = d = 0). Notice that the sum of any two of these functions (the
polynomials in x of degree three or less) is a polynomial in x of degree three or less.
The same is true of a constant multiple of any one.

Here the members of our linear space are functions. So a ‘vector’ need not be a
geometric “point,” but may even be a function. The members of the vector spaces we
will see as we study differential equations will often be more than simply a function.
They will sometimes be vectors of functions or even matrices of functions. (See the
discussion of matrices below.)

Definition 2.7. Given a subset A = {y,y,, ..., y,,} of vectors in a linear space V.
Suppose that the zero linear combination ¢,y +c,y, +-+-+c,y,, = 0 can be produced
only when ¢, = ¢, = --- = c,, = 0. Then A is said to be linearly independent.
A linearly independent spanning set for a linear space V is called a basis for V.
If it is possible to express ¢y, + ¢y, + - + ¢, y,, = 0 with not all of the c; being
0, then A is said to be linearly dependent.

We showed that the set {(1, 0), (0, 1)} is a basis for R2, as s the set {(1, 1), (1, =1)},
and the set {1, x, x?, x3} is a basis for the polynomials of degree 3 or less. We are
especially interested in sets that are a basis for the spaces in which we have interest,
because the members of a basis are genuinely and essentially different from one
another. They are exactly enough to describe the set of interest: fewer would not do
the job; more would be redundant. When we solve homogeneous linear differential
equations, we will always seek a basis for the set of solutions. When we looked at
kernels before, the “complete description of the kernel” that we sought can be given
in terms of a basis.

One property of the linear spaces we will use is this: every basis of a space has
the same number of vectors in it. This means that if each of us solves a given linear
problem and has found a basis for the kernel, then we each have found the same
number of vectors. We may have different vectors in our bases, but each basis has the
same number of vectors. This idea is worth stating as a theorem.

Theorem 2.5. If any basis for a vector space V is finite, then every basis is finite,
and any two bases have the same number of elements.

Definition 2.8. The number of vectors in a basis of a vector space V is called the
dimension of V.

Theorem 2.5 tells us that the idea of dimension is well defined. If we say that
a space is five-dimensional, then any basis for this space will have five vectors in
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it. Since there are always many choices for a basis, we will often find that one basis
reveals more about a problem than another. We will also find how to convert one basis
into another, so that we can start with a basis that is easy to find and then convert it
into the one that reveals the properties that we wish to exploit.

Matrices, Matrix Multiplication, Transposes, and Inverses

Usually by the time students have reached a course in differential equations, they
know what matrices are and how to perform the basic operations on them. We will
briefly cover these ideas.

Properties of Matrices

After each definition or property is an example in Mathematica.

A matrix is a rectangular array of objects. We will have matrices (the plural of
matrix) whose entries are numbers, some whose entries are real- or complex-valued
functions, and some whose entries are operators.

2 3 -1)
0 2 5
Ollt[l]: {{2/ 3/ ‘l}/{ol 2/5}}

Inf{l]:= A= (

Tni2] - M= (Cos[x] Sin[x] )

-8in[x] Cos[x]
out [2]= {{Cos[x], Sin[x]}, {-Sin[x], Cos[x]}}

The shape of a matrix is given in the form m X n where m is the number of rows
in the matrix and » is the number of columns in the matrix. The rows of a matrix
are horizontal and the columns are vertical. The entry in row i and column j of the
matrix A is denoted A ; and is called the i, j entry of A.

In[3]:= Dimensions[A]
Qut [3]= {2, 3}

Il

In[4]:= A[[1, 2]]
Out[4]= 3

Square matrices have the same number of rows as columns. A square matrix
has a main diagonal, those entries having the same row and column number. A ; for
instance is the ith main diagonal entry in the matrix A..

In[5] := Dimensions [M]
out[5]= {2, 2}
For example from above,

23 -
A‘(o 2 5)

is a 2 x 3 matrix having two rows and three columns, the first row being (2, 3, —1)
and second row (0, 2, 5). The columns are
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(0} ()= ()

A[[111 denotes the first row of A. In general, A[ [k] ] denotes the kth row of A.

Inf6]:= A[[1l]]
out[6]= {2, 3, -1}

Matrix equality is defined only for matrices of the same shape. The equality
A = B asserts that the matrices A and B have the same shape and that corresponding
elements are equal. This is shorthand for a set of equations.

2 3 -1

B= (0 -3 5 )
out(7]= {{2,3,-1},{0,-3,5}}

Note that Mathematica uses == for equality.

Inf{7]:

i

I

In[8]:= A==
Out [8]= False

Matrix addition is defined only for matrices of the same shape. The sum A + B
is a matrix whose entries are the sum of corresponding elements of A and B. Matrix
addition is commutative and associative.

In[9]:= (A+B)//MatrixForm
4 6 -2 >

out[9]= (0 1 10

In[10]:= A-B//MatrixForm
0 O O)

out[10]= (O 5 0

Two special matrices are the m X n zero matrix, 0,,,, each entry of which is zero,
and the nxn identity matrix I , often written I when the context is clear. The entries
of I are zero except down the main diagonal where each entry is 1. If Aisanm X n
matrix, then A+0=AandI A = Al = A.

In[11]:= Z23 =Table[0, {i, 2}, {j, 3}]
Out[11]= {{0,0,0}, {0,0,0}}

In[12]:= A+ 223 ==
Qut[12]= True
Define a 3 x 3 identity matrix.

In[13]:= IdentityMatrix[3]//MatrixForm

1 0 0
Out[13]= [0 1 O
0 0 1

Multiplication by a scalar is defined. If ¢ is a scalar and A is a matrix, cA is the

matrix of the same shape as A whose entries are ¢ times the corresponding entries
of A.

In[14]:= c¢A//MatrixForm
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2c 3c -c
Oout[14]=
ut [14] ( 0 2c 5c )
Vectors are single-row or single-column matrices. So vectors can be used as
either row-matrices or column-matrices. A vector is called an n—vector if it has n

components.

In[l15]:=v={x,y, 2}
Out[15])= {x,vy, z}

In[l6]:= w={a, b, c}
Out[l16]= {a, b, c}

A dot product or scalar product is defined for any two n-vectors. If u
(), uy, ..., uy)and v = (v}, v,,...,v,) are n-vectors then u - v = u, v, + u, v, + -
u, v,. Dot is commutative: u- v = v - w. If ¢ is a number then c(u-v) = (cu) - v =
u - (¢v). When dotting, we do not distinguish whether a vector is a row-vector or a
column-vector.

i

+

In[17]:= v.w
Out[l7]= ax+by+cz
One can partition an m X n matrix to emphasize an<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>