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Preface 

Goals and Emphasis of the Book 

Mathematicians have begun to find productive ways to incorporate computing power 
into the mathematics curriculum. There is no attempt here to use computing to avoid 
doing differential equations and linear algebra. The goal is to make some first ex­
plorations in the subject accessible to students who have had one year of calculus. 
Some of the sciences are now using the symbol-manipulative power of Mathemat­
ica to make more of their subject accessible. This book is one way of doing so for 
differential equations and linear algebra. 

I believe that if a student's first exposure to a subject is pleasant and exciting, 
then that student will seek out ways to continue the study of the subject. The theory 
of differential equations and of linear algebra permeates the discussion. Every topic 
is supported by a statement of the theory. But the primary thrust here is obtaining 
solutions and information about solutions, rather than proving theorems. There are 
other courses where proving theorems is central. The goals of this text are to establish 
a solid understanding of the notion of solution, and an appreciation for the confidence 
that the theory gives during a search for solutions. Later the student can have the same 
confidence while personally developing the theory. 

When a study of the book has been completed, many important elementary con­
cepts of differential equations and linear algebra will have been encountered. In 
addition, the use of Mathematica makes it possible to analyze problems that are 
formidable without computational assistance. Mathematica is an integral part of the 
presentation, because in introductory differential equations or linear algebra courses 
it is too often true that simple tasks like finding an antiderivative, or finding the roots 
of a polynomial of relatively high degree-even when the roots are all rational­
completely obscure the mathematics that is being studied. The complications en­
countered in the manual solution of a realistic problem of four first-order linear equa­
tions with constant coefficients can totally obscure the beauty and centrality of the 
theory. But having Mathematica available to carry out the complicated steps frees 
the student to think about what is happening, how the ideas work together, and what 
everything means. 
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The text contains many examples. Most are followed immediately by the same 
example done in Mathematica. The form of a Mathematica notebook is reproduced 
almost exactly so that the student knows what to expect when trying problems by 
him/herself. Having solutions by Mathematica included in the text also provides a 
sort of encyclopedia of working approaches to doing things in Mathernatica. In ad­
dition, each of these examples exists as a real Mathematica notebook that can be 
executed, studied, printed out, or modified to do some other problem. Other Math­
ematica notebooks may be provided by the instructor. Occasionally a problem will 
request that new methods be tried, but by the time these occur, students should be 
able to write effective Mathematica code of their own. 

Mathematica can carry the bulk of the computational burden, but this does not 
relieve the student of knowing whether or not what is being done is correct. For that 
reason, periodic checking of results is stressed. Often an independent manual calcu­
lation will keep a Mathematica calculation safely on course. Mathematica, itself, can 
and should do much of the checking, because as the problems get more complex, the 
calculations get more and more complicated. A calculation that is internally consis­
tent stands a good chance of being correct when the concepts that are guiding the 
process are correct. 

Since all of the problems except those that are of a theoretical nature can be 
solved and checked in Mathematica, very few of the exercises have answers supplied. 
As the student solves the problems in each section, they should save the notebooks 
to disk-where they can serve as an answer book and study guide if the solutions 
have been properly checked. A Mathematica package is a collection of functions 
that are designed to perform certain operations. Several notebooks depend heavily 
on a package that has been provided. Most of the packages supplied undertake very 
complicated tasks, where the functions are genuinely intimidating, so the code does 
not appear in the text of study notebooks. 

What Is New in This Edition 

The changes are two-fold: 

1. Rearrange and restate some topics (Linear algebra has now been gathered into 
a separate chapter, and series methods for systems have been eliminated.) Many 
typographical errors have been corrected. 

2. Completely rewrite, and occasionally expand, the Mathematica code using ver­
sion 5 of Mathematica. 

In addition, since Mathematica now includes a complete and fully on-line Help sub­
system, several appendices have been eliminated. 

Topics Receiving Lesser Emphasis 

The solutions of most differential equations are not simple, so the solutions of such 
equations are often examined numerically. We indicate some ways to have Math­
ematica solve differential equations numerically. Also, properties of a solution are 
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often deduced from careful examination of the differential equation itself, but an 
extended study of qualitative differential equations must wait for a more advanced 
course. The best advice is to use the NDSol ve function when a numerical solution 
is required. 

Some differential equations have solutions that are very hard to describe either 
analytically or numerically because the equations are sensitive to small changes in 
the initial values. Chaotic behavior is a topic of great current interest; we present 
some examples of such equations, but do not fully develop the concepts. 
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1 

About Differential Equations 

1.0 Introduction 

What Are Differential Equations? Who Uses Them? 

The subject of differential equations is large, diverse, powerful, useful, and full of 
surprises. Differential equations can be studied on their own-just because they are 
intrinsically interesting. Or, they may be studied by a physicist, engineer, biologist, 
economist, physician, or political scientist because they can model (quantitatively 
explain) many physical or abstract systems. Just what is a differential equation? A 
differential equation having y as the dependent variable (unknown function) and x as 
the independent variable has the form 

F(x,y, ~~' ... , ~;) = 0 

for some positive integer n. (If n is 0, the equation is an algebraic or transcendental 
equation, rather than a differential equation.) Here is the same idea in words: 

Definition 1.1. A differential equation is an equation that relates in a nontrivial 
manner an unknown function and one or more of the derivatives or differentials of 
that unknown function with respect to one or more independent variables. 

The phrase "in a nontrivial manner" is added because some equations that appear 
to satisfy the above definition are really identities. That is, they are always true, no 
matter what the unknown function might be. An example of such an equation is: 

. (dy) (dy) sm2 dx + cos2 dx = 1. 

This equation is satisfied by every differentiable function of one variable. Another 
example is: 

( dy )2 (dy)2 (dy) 2 dx - y = dx - 2y dx + y · 

C. C. Ross, Differential Equations
© Springer Science+Business Media New York 2004
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This is clearly just the binomial squaring rule in disguise: (a+ b) 2 = a:! + 2ab + b2 ; 

it, too, is satisfied by every differentiable function of one variable. We want to avoid 
calling such identities differential equations. 

One quick test to see that an equation is not merely an identity is to substitute 
some function such as sin(x) or ex into the equation. If the result is ever false, then 
the equation is not an identity and is perhaps worthy of our study. For example, 
substitute y = sin(x) into y' + y = 0. The result is cos(x) + sin(x) = 0, and this is 
not identically true. (It is false when x = n, for instance.) If you have a complicated 
function and are unsure whether or not it is identically 0, you can use Mathematica 
to plot the function to see if it ever departs from 0. This does not constitute a proof, 
but it is evidence, and it suggests where to look if the function is not identically 0. A 
plot can be produced this way: 

In [ 1]: = Plot [Cos [x] +Sin [x], {x, 0, 27r}]; 

1 I 

0.5 

1 2 3 4 5 6 

-0.5 

-1 

Note that Pi is the symbol n in disguise. The n symbol can be found in the 
Basicinput palette. 

Another extreme that we would like to avoid is an equation that is never true for 
real functions, such as 

(dy)2 2 
dx +y =-I 

No matter what the real differentiable function y is, the left-hand side of the equa­
tion is nonnegative and the right-hand side is negative-and this cannot happen. So 
the equations we want to study are those that can have some solutions, but not too 
many solutions. The meaning of this will become clear as we proceed. Unless stated 
otherwise, the solutions we seek will be real. 

Classification of Differential Equations 

Differential equations are classified in several different ways: ordinary or partial; 
linear or nonlinear. There are even special subclassifications: homogeneous or 
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nonhomogeneous; autonomous or nonautonomous; first-order, second-order, ... 
, nth-order. Most of these names for the various types have been inherited from 
other areas of mathematics, so there is some ambiguity in the meanings. But the 
context of any discussion will make clear what a given name means in that context. 
There are reasons for these classifications, the primary one being to enable discus­
sions about differential equations to focus on the subject matter in a clear and unam­
biguous manner. Our attention will be on ordinary differential equations. Some will 
be linear, some nonlinear. Some will be first-order, some second-order, and some of 
higher order than second. What is the order of a differential equation? 

Definition 1.2. The order of a differential equation is the order of the highest deriva­
tive that appears (nontrivially) in the equation. 

At this early stage in our studies, we need only be able to distinguish ordinary 
from partial differential equations. This is easy: a differential equation is an ordinary 
differential equation if the only derivatives of the unknown function(s) are ordinary 
derivatives, and a differential equation is a partial differential equation if the only 
derivatives of the unknown function( s) are partial derivatives. 

Example 1.1 Here are some ordinary differential equations: 

¥r=l+i (first -order) [nonlinear] 

d2 
~ +y = 3cos(x) (second-order) [linear, nonhomogeneous] 

~ {!y__ -
dx3 + 3d~ 5y - 0 (third-order) [linear, homogeneous] 

Example 1.2 Here are some partial differential equations: 

au - au ax - ay (first-order in x andy) 

(first-order in t; second-order in x) 

a2u a2u fhZ + al = 0 (second-order in X andy) 

(second-order) 

Solutions of Differential Equations 

Definition 1.3. To say that y = g(x) is a solution of the differential equation 

F (x, y, ~~· ... , :; ) = 0 

on an interval I means that 
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F(x, g(x), g'(x), ... , g<nl(x)) = 0 

for every choice of x in the interval I. In other words, a solution, when substituted 

into the differential equation, makes the equation identically true for x in/. 

Example 1.3 The functiony =e-x is a solution of the differential equationy' +y = 0, 
because y' + y = -e-x + e-x = 0 for all x. o 

To have Mathematica verify this for you, conduct this dialog in an active Mathe­
matica window: 

In[21:= Clear[x,y, a] 

In[31 := y[x_) = Exp[-x] 

Out [ 31 = e x 

In [ 4 1 : = y' [X) + y [X) = = 0 

Out[41= True 

The True that Mathematica returned indicates that y'(x) + y(x) = 0 (always), and 
hence we indeed have a solution. It is not necessary to Clear variables regularly, but 
if you get some unusual behavior, Clear the names involved, re-define them, and try 
the calculation again. Mathematica remembers definitions you may have forgotten, 
and these may interfere with a subsequent calculation. 

Here are other examples of solutions of ordinary differential equations. They are 
from the notebook Solutions of DE's. You should execute ideas such as these yourself 
in Mathematica. 

In [51:= y[x_] = c Exp [x2 ] 

Out[51= C<E 
X" 

In[61 := Simplify[y' [x]- 2xy[x] == 0] 

Out[61= True 

In[71 := Clear[y] 

In[81:= y[t_] =cl Sin[at] +c2 Cos[at] 

Out[81= c2 Cos[at] +cl Sin[at] 

In[91 := Simplify[y"[t] +a2 y[t) == 0] 
Out[91= True 

Direction Fields and Solutions 

The solutions of the first-order differential equation dyl dx = f(x, y) can be repre­
sented nicely by a picture. Given a point P = (x, y), the differential equation tells 
what the slope of the tangent line to a solution is at the point P. If m is such a slope 
then the differential equation says that 

dyl . m = --'-- = f(P) = J(x, y). 
dx p 
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Fig. 1.1. A portion of the direction field of dyldx = (3/2)- 3y + e-3xl2. 

The idea of a direction field is similar to that of a vector field, where f(x, y), instead 
of giving a vector that is to be associated with (x, y), gives a slope that is to be associ­
ated with (x, y). If representatives of these slopes are indicated on a graph at enough 
points, some visual indication of the behavior of the solutions of the differential 
equation is suggested. 

For example, in Figure 1.1 we have plotted some representative members of the 
direction field associated with the differential equation dy!dx = (3/2)- 3y + e-3x12 . 

Then in Figure 1.2 some solutions of the differential equation are superimposed on 
the direction field . Notice how the direction field gives a sense of the behavior of 
the solutions. Solutions may be close together, but they do not cross. You may use 
the notebook Direction Field Example to produce similar pictures. These can help 
you understand the behavior of the solutions of any differential equation that has the 
form dyldx = f(x, y). 

How Many Solutions Are There? 

Once we understand that some differential equations have solutions, it is natural to 
ask several questions. How many solutions can a given differential equation have? 
(In general there are many; they may be easy or extremely difficult to find.) When 
there are many solutions to choose from, is it possible to select one or more having 
certain properties? When, if ever, is there exactly one solution having the properties 
we want? 
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Fig.1.2. The direction field of dyldx = (312)- 3y + e- 3xl2and some solutions. 

We will state and often prove theorems that will provide us with guidance as 
we seek answers to questions such as these. Some differential equations courses 
are structured so that you are asked to prove theorems yourself. In this text, what is 
required of you is not the ability to prove these theorems (though you are encouraged 
to prove them if you wish), but rather the ability to understand what the theorems 
mean, so that you can apply them and thereby profit from the work others have done 
on your behalf. Recall that Sir Isaac Newton 1 said "If it be that I have seen further 
than other men, it is because I have stood upon the shoulders of giants." It is upon 
the shoulders of Newton, himself a giant, and many others since, that we proceed to 
stand in the hopes of seeing further than we otherwise might do. 

Here is the first such theorem. It is concerned with a differential equation that has 
an additional condition specified (an initial condition), having the form given in this 
equation: 

{ ¥x = f(x, y) 

y(xo) =Yo· 
(1.1) 

Theorem 1.1 (Existence and Uniqueness). Suppose that the real-valued function 
f(x, y) is defined and continuous on the rectangle R = [a, b] X [c, d] in the xy-plane, 

1 Sir Isaac Newton (1642-1727), British mathematician and natural philosopher. He, along 
with Leibniz, created both the differential and integral calculus. He proposed the fundamen­
tallaws of gravitation, was the first to adequately describe properties of light and color, and 
constructed the first reflecting telescope. In his later years, Newton was Warden of the Mint, 
where he reformed the coinage of the realm, was President of the Royal Society, and was a 
member of Parliament. 
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and that (8/f)y)f(x, y) exists and is continuous throughout R. Suppose further that 
(x0, y0) is an interior point of R. Then there is an open subinterval (a 1, b1) of [a, b] 
centered on x0 and exactly one solution of the differential equation dy! dx = f(x, y) 
that is defined on the subinterval (a 1, b1) and passes through the point (x0, y0). 

This theorem tells us that a large class of differential equations have solutions, 
and that these solutions are particularly nice: not only do solutions exist, but if you 
specify a particular point through which you would like a solution to pass, then 
there is exactly one solution that passes through that point. Two concepts are central 
here: existence of a solution (there are solutions) and uniqueness of solutions (there 
is exactly one solution having the property we want). Existence says that there is 
at least one solution; uniqueness says that there is at most one solution. Together, 
they say that there is only one solution. This is important, because if you know that 
the problem you are solving has a unique solution, and you find a solution, then 
you need look no further: the solution you have is the only solution there is. Of 
greater importance to those who apply differential equations is the knowledge that if 
a process is governed by a differential equation having a unique solution, then if the 
process can be performed at all, there is only one way to perform it. 

Consider the differential equation dy! dx = sin(y). Here f(x, y) = sin(y) has a con­
tinuous partial derivative with respect toy : cos(y). Given any point in the plane, this 
differential equation has a unique solution that passes through the point. However, 
the differential equation dyldx = y213 does not (necessarily) have a unique solution 
in the vicinity of any point where y = 0, because (8!8y)(y213 ) = (2/3)y-113 which is 
not continuous when y = 0. 

How does one visualize the concept of uniqueness? In Figures 1.2, 4.4, and 4.5, 
you can see portions of various families of curves. It is not hard to imagine that each 
point of the plane lies on some solution. Furthermore, the solutions do not seem to 
cross one another. This is the idea of uniqueness: through each point there is only 
one solution. At any point where two solutions cross, we would not have uniqueness. 
Look at Figures 1.5 and 1.9 to see examples where this fails. We primarily study 
situations where solutions are unique. 

Exercises 1.1. Determine whether or not these equations are differential equations. 
Classify the differential equations as being ordinary or partial. State the order of each 
differential equation. 
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There follow two columns of equations. In the first column is a differential equa­

tion; in the second column is a function or set of functions that is a solution of the 

differential equation. Verify that the given functions satisfy the corresponding equa­

tions. Do this manually and by Mathematica. Consider c 1, c2 , and A to be arbitrary 

constants. 
d2 

9. qJ + 36y = 0 
dt2 

10. d2? + 36y = 72t + 1 
dt 

11. d2y - 36y = 0 
dx2 

d2y 
12.-2 -36y= 18x+ 1 

dx 

13. ¥r = 1 + l 

14 au = au 
. ax ay 

15. 2au = 3au 
ax ay 

16 au -aza2u . at - ax2 

17. a2u + a2u = 0 
ax2 al 

1.1 Numerical Methods 

y(t) = c1 cos(6t) + c2 sin(6t) 

y(t) = c 1 cos(6t) + c2 sin(6t) + 2t + -ft 

Y(x) = c e6x + c e-6x - " - j_ 
I 2 2 36 

y(t) = tan(t) 

u(x, y) = f(x + y); f arbitrary and differentiable 

u(x, y) = f(3x + 2y); f arbitrary and differentiable 

) _ -.t2r ( , (h) · (h)) u(x, t - e C l COS a + Cz Slll a 

u(x, y) = e.tx(c 1 cos(t\.y) + c2 sin(t\.y)) 

Only a very few differential equations can actually be solved-in the sense that we 

can write down an expression for a solution. This is especially true of nonlinear 

differential equations. In Chapter 3 we discuss many of the special cases where a 

solution can actually be obtained. If we need a solution to a differential equation, 

but are unable to obtain a closed-form expression for such a solution, how do we get 

useful information about the solution? We may just need a few points that lie on the 

solution, or we may need to know where our solution crosses some given curve, or 

we may wish to determine a maximum or a minimum on the solution. We need such 

information in the absence of a function to evaluate. 

There are situations where we have to rely on approximating a solution, rather 

than obtaining a solution. Leonhard Euler has observed that the direction fields we 
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saw in the introduction to this chapter can be exploited to give us useful informa­
tion.Suppose that the equation to solve is dy/dx = f(x, y) and the initial point is 
y(x0 ) = y0• We want a solution over an interval [a, b] with x0 = a. Since, when his 

small, 

y(x +h)- y(x) 
h ~ y'(x), 

Euler reasoned that we should solve 

y(x +h)- y(x) _ f( ( )) 
h - x,yx 

for 
y(x +h) = y(x) + h f(x, y(x)). 

Then, knowing the solution at (x, y(x)), estimate that the solution will pass through 
(x + h, y(x) + h f(x, y(x)). This just says that a solution essentially follows its tangent 
line, whose direction is that of the direction field element at (x, y(x)). If h is small, 
then this guess, though probably wrong, is nevertheless reasonable. This guessing 
process is repeated enough times to estimate the solution over the entire interval 
[a, b] by finding ordinates corresponding to x0 = a, x 1 = x0 + h, x2 = x0 + 2h, ... , 

xn = x0 + nh =b. The technique is called Euler's method. We denote y(xk) by yk, and 
produce the data points (x0, y0), (x1, y 1), ••• , (xn, Yn) by the following rule: 

Given x0 and y0 , the coordinates of the initial point (x0, y0 ), and a small number 
h, calculate 

k+ I k , for 0 :5 k :5 n - 1. {
X = X + h 
Yk+I = Yk + h f(xk, Yk) 

It is worth noting that if h < 0 then xn < · · · < x 1 < x0, so the points are formed from 
right to left. 

Euler's method can easily be used with any reasonable spreadsheet. Many spread­
sheets even permit plotting the results. Try doing so. 

Here is an example that you can use for comparison purposes. 

Example 1.4 Use Euler's method to approximate the solution to 

dy 
dx = x + 2y, y(l) = 1/2 

over the interval from x = 1 to x = 3 in steps of h = 0.1. 
Solution. For this problem x0 = 1 and y0 = 1/2 = 0.5. Since h = 0.1, from 

xn = x0 + n h = 1 + (O.l)n = 3 we find that n = (3 - 1)/(0.1) = 20. The process we 
need to iterate (repeat) is 

xk+I = xk + 0.1, } 
Yk+I = Yk + 0.1 f(xk, Yk) , 

= Yk + 0.1 (xk + 2yk) 
= 0.1 xk + 1.2 yk 

0 :5 k :5 19. 

We stop when n = 19 because the point (x20, Y2o) is produced at that step. This gives 
us 21 data points. The results follow Ex. 1.4M. 
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Example 1.4 (M) Implement and use the standard Euler method for solving the 
problem of Example 1.4 in Mathematica. 

In[l]:= Clear[x,y,h,n] 
Declare the initial values: 

In [2] := x[O] = 1 
y[O] =0.5 
h = 0.1 

Note that the subscripts are k and k- 1, rather thank+ 1 and k. Mathematica 
needs this change for technical reasons. Declare the values for x andy recursively: 

In[3]:= x[k_] :=x[k-1] +h 
y[k_] := hx[k -1] + 1.2y[k -1] 

The exact solution is: 

In[4]:= exact[k_] :=-1/4. -x[k]/2+5/4Exp[2x[k] -2] 
Produce a four-column table of values. To produce x20 and y20 , we need to let k 

go to 20. 

In[5] :=mat= Table[{k, x[k], y[k], exact[k] }, {k, 0, 20}]; 

Now format this table of values (named mat) placing headings on the columns. 
mat is a table of numbers. What do they mean? For comparison purposes, the last 
column is calculated from the exact solution: y(x) = -1/4- x/2 + (5/4)e2'-2 . This 
means that we didn't do very well. Our final y-values are off by more than 20, an 
approximately 31% error. Figure 1.3 is a picture of the comparison. 

In[6]:= TableForm [mat, 

TableHeadings-+ {None, { "k", xk, yk, "exact"}}] 

k xk yk exact 
0 1 0.5 0 0 5 
1 1.1 0.7 0.726753 
2 1.2 0.95 1.01478 
3 1.3 1. 26 1.37765 
4 1.4 1.642 1. 83193 
5 1.5 2.1104 2.39785 
6 1.6 2.68248 3.10015 

Out[6]= 7 1.7 3.37898 3 0 969 
8 1.8 4.22477 5.04129 
9 1.9 5.24973 6.36206 

10 2. 6.48967 7.98632 
11 2.1 7.9876 9.98127 
12 2.2 9.79513 12.429 
13 2.3 11.9742 15.4297 
14 2 0 4 14.599 19.1058 
15 2.5 17.7588 23.6069 
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16 2 . 6 21 . 5605 29.1157 

17 2.7 26 .1 326 35 . 855 1 

Out[6]= 18 2. 8 31.6292 44 . 0978 
19 2 . 9 38.235 54.1765 

20 3 . 46 . 172 66.4977 

Extract and plot the middle two columns of mat (those under the headings xkand 

yk). The list m2 of points extracted requires the use of ListPlot. More about 
Transpose in the next chapter. 

In [7] := m2 =Transpose [Take [Transpose[mat], {2, 3}]] 

Out[?]= {{1 , 0.5} , {1.1 , 0.7}, {1.2 , 0.95}, {1.3, 1.26} , 

{1.4 , 1.642} , {1.5 , 2.1104}, {1.6, 2.682 4 8}, 

{1.7 , 3 . 37898} , {1.8 , 4.22477}, {1.9, 5 . 2 4 973} , 

{2. , 6.48967} , {2 . 1 , 7.9876}, {2.2, 9.79513} , 

{2.3 , 11.9742}, {2.4, 14 . 599} , {2 .5, 17.7588}, 

{2.6, 2 1. 5605} , {2.7 , 26.1326}, {2.8, 3 1.6292}, 

{2.9 , 38.235}, {3 ., 46.172}} 

In [ 8] : = p31 = ListPlot [m2]; 

40 

30 

20 

10 

1 . 5 2 2.5 3 

The plot above by ListP lot of the points in table m2 produced a collection of 
dots. These are combined with a plot of the exact solution in Fig. 1.3 

The option Plot Joined-Hrue in ListPlot connects the dots, as in the 
plot below. 

At least we can say that our approximate solution tried to climb with the exact 
solution. But notice that if the exact solution curves upward, our approximation will 
be too small at each step because the tangent line at each point lies below the curve, 
thereby making our approximation get progressively worse. We have a systematic 
error here. It has manifested itself in the poor approximation that we found. The 
problem lies in the fact that once an error has taken us off of the actual solution, the 
slope is calculated incorrectly for the next point, and the errors may (and in this case 
do) get worse as we proceed. 
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Fig. 1.3. A comparison of the exact (solid) and approximate (dots) solutions. 

Modifying Euler's Method 

Often Euler's method is not as bad as this example makes it appear, and the results 
can be improved by taking more steps with a smaller value of h. Can anything be 
done to eliminate the systematic error that we observed? To make the solution bend 
better, we can incorporate the second derivative of our solution into Euler's method. 
But, how can the second derivative be found if we do not know the solution? The 
problem is not as great as it might seem-we know the derivative of our solution: 
dy/dx = x + 2y,and this enables us to implicitly differentiate dy/dx == x + 2y with 
respect to x to find that 

d2y d dy 
dx2 = dx (x + 2y) = 1 + 2 dx = 1 + 2(x + 2y). 

We can take advantage of this once we recall that one form of Taylor's theorem says 
that 

y(x +h)= y(x) + hy'(x) + ( ~: )y"(x) + ( ~~ )y"'(x) + ···. 

Euler's method used only the first two terms, y(x)+hy'(x) = y(x)+hf(x, y(x)). We can 
use three terms since we now know the second derivative y"(x). This improves our 
results. The new process might be called Euler2 since it uses the second derivative. 
We can actually calculate as many derivatives as we wish and make a much more 
accurate method. The Euler2 method for the differential equation of Example 1.4, 
using h = 0.1, is 

1/2 = 0.5 
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Yk+J = Yk + (O.I)y~ + (O.il' y~ 

0.005 + (0.1I)xk + (1.22) Yk 

for 0 ::s; k ::s; 19. For this differential equation, using the second derivative required 
very little extra work. This may not always be the case. 

In general, the calculation of y" (x) requires partial derivatives. For instance, 

y"(x) fxJCx, y(x)) 

oxf(x, y(x)) + oyf(x, y(x))dy!dx 

= fx(x, y(x)) + fyCx, y(x))f(x, y(x)) 

This second derivative is easy to calculate in Mathematica. 

In[9]:= Clear[y] 

In[lO]:= f[x_,y_] :=x+2y 

In[ll]:= f2[x_,y_] =oxf[x,y] + (oyf[x,y])f[x,y] 

Out[ll]= 1+2 (x+2y) 

The third derivative is just as simple. 

In [12] := £3 [x_, y_] = Simplify[ox £2 [x, y] + (oy £2 [x, y]) f[x, y]] 

Out[l2]= 2+4x+8y 

The results given are for the problem of Example 1.4. It is clear that being able 
to calculate these higher-order derivatives permits us to produce an Euler method 
that has any desired number of terms. In numerical analysis, one learns that using 
more terms really does improve the accuracy for normal problems. There the topic 
of accuracy of a solution is analyzed in thorough detail. 

Here is the new Euler2 method. Notice the new term that has been added. 

In[13]:= euler2[{x_,y_}] = {x+h,y+hf[x,y] + (~2 )f2[x,yJ} 
Out[l3]= {0.1+x,y+0.1 (x+2y) +0.005 (1+2 (x+2y))} 

This is Euler2 for our problem. 

In[14]:= Expand[euler2[{x,y}]] 

Out[14]= {0.1+x,0.005+0.llx+l.22y} 

Make a table of points using Euler2 , with x0 and y0 known from before. 

In[15] := x[O] = 1 
y[O] = 0.5 
h = 0.1 
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In [ 16] := e2t = NestList [euler2, {x [0], y [0]}, 20] 

Out[16]= {{1, 0.5}, {1.1, 0.725}, {1.2, 1.0105}, {1.3, 1.36981}, 

{1.4, 1.81917}, {1.5, 2.37839}, {1.6, 3.07163}, 

{1.7, 3.92839}, {1.8, 4.98463}, {1.9, 6.28425}, 

{2., 7.88079}, {2.1, 9.83956}, {2.2, 12.2403},. 

{2.3, 15.1801}, {2.4, 18.7778}, {2.5, 23.1779}, 

{2.6, 28.557}, {2.7, 35.1305}, {2.8, 43.1612},. 

{2.9, 52.9697}, {3., 64.9471}} 

Again, Li stP lot could produce a plot of this new approximation. Such a plot 
with points joined appears as a portion of Fig. 1.4 . 

Runge-Kutta and NDSolve 

There is a standard method, called the Runge-Kutta method for its creators, that ef­
fectively incorporates terms through the fourth derivative, requires no partial deriva­
tives, and needs only four evaluations of the original function f(x, y) to obtain the 
next point. Given that the point (xk, yk) is known, the next point (xk+l' Yk+l) is calcu­
lated this way: 

Table 1.1. Summary of results of several Euler methods. 

k I xk I Euler I Euler2 I Euler3 I Euler4 I exact 

0 1.0 0.5 0.5 0.5 0.5 0.5 
1 1.1 0.7 0.725 0.72667 0.72675 0.726753 
2 1.2 0.95 1.0105 1.01457 1.01477 1.01478 
3 1.3 1.26 1.36981 1.37726 1.37763 1.37765 
4 1.4 1.642 1.81917 1.83129 1.8319 1.83193 
5 1.5 2.1104 2.37839 2.39689 2.39781 2.39785 
6 1.6 2.68248 3.07163 3.09873 3.10009 3.10015 
7 1.7 3.37898 3.92839 3.96698 3.96892 3.969 
8 1.8 4.22477 4.98463 5.03848 5.04118 5.04129 
9 1.9 5.24973 6.28425 6.35819 6.36191 6.36206 

10 2.0 6.48967 7.88079 7.98107 7.98611 7.98632 
11 2.1 7.9876 9.83956 9.97422 9.98099 9.98127 
12 2.2 9.79513 12.2403 12.4196 12.4286 12.429 
13 2.3 11.9742 15.1801 15.4172 15.4292 15.4297 
14 2.4 14.599 18.7778 19.0895 19.1052 19.1058 
15 2.5 17.7588 23.1779 23.5855 23.6061 23.6069 
16 2.6 21.5605 28.557 29.0878 29.1146 29.1157 
17 2.7 26.1326 35.1305 35.8189 35.8537 35.8551 
18 2.8 31.6292 43.1612 44.051 44.0959 44.0978 
19 2.9 38.235 52.9697 54.1162 54.1741 54.1765 
20 3.0 46.172 64.9471 66.4201 66.4946 66.4977 
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Exact 
Euler2 

Eu1er(h/4) 

Euler{h) 

1.6 1.7 

Fig. 1.4. Plots of Euler using h and hi 4, Euler2, and the exact solution. 

K, = h f(xk, Yk) 

Kz = hf~xk + th,yk + tK2~ 
K3 = hf xk + 1h,yk + 2.K3 
K4 = h f(xk + h, Yk + K3) 

xk+l = xk + h 

Yk+l Yk + ~(K1 + 2K2 + 2K3 + K4) 

The Runge-Kutta method is easy to program and is in wide use, even though 
there are much more sophisticated methods available. Runge-Kutta and the Euler 
method(s) are for use with first-order differential equations. There is a Runge-Kutta 
package available with Mathematica. 

Here is how one might define and use the process just defined. The built-in func­
tion Module that is used is analogous to a Pascal function declaration. Definitions 
of h, x0, y0 and f(x, y) are used globally; Kl, K2, K3, K4 are declared as local 
variables. The explicit use of Ret urn is unnecessary, since Mathematica always 
returns the last expression that is evaluated inside the function. 

In[17]:= Clear[RK] 

In[18] : = x[O] = 1 

y[0]=0.5 
h = 0.1 
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In[l9] := RK[{x_, y_}] := Module[{Kl, K2, K3, K4}, 

Kl = h * f [x, y] ; 

K2 = h * f [x + h/2, y + Kl/2] ; 

K3 = h * f [x + h/2, y + K2/2] ; 

K4 = h* f[x+h, y+K3]; 

Return [ {x + h, y + (1/6) (Kl + 2K2 + 2K3 + K4)}] 

In [20] := RKt = NestList [RK, {x[O], y[O]}, 20] 

Out[20]= {{1, 0.5}, {1.1, 0.72675}, {1.2, 1.01477}, {1.3, 1.37763}, 
{1.4, 1.8319}, {1.5, 2.39781}, {1.6, 3.10009} .. 
{1.7, 3.96892}, {1.8, 5.04118}, {1.9, 6.36191}, 
{2., 7.98611}, {2.1, 9.98099}, {2.2, 12.4286}, 
{2.3, 15.4292}, {2.4, 19.1052}, {2.5, 23.6061}, 
{2.6, 29.1146}, {2.7, 35.8537}, {2.8, 44.0959}, 
{2.9, 54.1741}, {3., 66.4946}} 

Table 1.1 summarizes the results of using our two Euler methods and Euler 3 and 
Euler4 as well. These incorporate the third and fourth derivatives, respectively, into 
the process. You will observe that these latter higher-order methods become very ac­
curate over the entire interval. 

Figure 1.4 shows all of these results plotted on a single set of axes. For our pur­
poses, when we need a numerical solution of a differential equation, we will rely on 
the built-in function NDSolve.lts use will be demonstrated on several occasions in 
the chapters that follow. NDSol ve can be applied to higher-order differential equa­
tions as well as to first-order equations. 

There are extensions of these methods that can be used when systems of differ­
ential equations must be solved. We see these in Chapt. 9. 

Reducing the Step Size 

We have discussed how improving the method can improve the accuracy for a fixed 
step size. Another common way to improve accuracy with a given method is to re­
duce the step size and take more steps to cross the desired interval. This is a valid 
approach. The primary negative aspect of reducing the step size is that it takes longer 
to cross an interval. This may or may not be important. One important considera­
tion is that more steps with inaccurate information may cause the inaccuracies to 
compound into quite a large effect. This is a topic for extensive study in numerical 
analysis courses. Figure1.4 demonstrates that reducing the step size, as well as im­
proving the method, can reduce the error. Four plots appear. The enormous value of 
his 0.5. 

This was chosen to amplify the effects for easier visualization. The four plots, 
from top to bottom, are the exact solution, the Euler2 method that uses a quadratic 
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polynomial, the standard Euler method in four steps of h/4 = 0.125, and the stan­
dard Euler method in a single step of size h = 0.1. Notice how using the standard 
Euler method in four steps allows the solution to bend at three interior points, and 
thus follow the correct solution more closely. The Euler2 method has a bend built in, 
but it, too, would give more accurate answers if it were applied more times using a 
reduced step size. 

From time to time there will be an opportunity to discuss some important aspects 
of the numerical solution of differential equations. 

Exercises 1.2. 1. By including the extra term (y"'(x)) in the definition of Euler2 

define Euler 3• 

2. By including the extra term (y'"'(x)) in the definition of Euler3 define Euler4. 

3. Evaluate NestList [g, a, 4] toseewhatNestList does.Explainhowthis 
is applicable to iterative methods such as Euler's method or the Runge-Kutta 
method. What is "a" for Euler's method? 

4. Consider the differential equation dy/dx = 1 + y2 with y(O) = 0. 

a) Use Euler's original method with h = 0.1 to estimate points on the solution 
of the stated problem. Find your solution on the interval [0, 1.5]. 

b) Use NDSol veto find an approximate solution. Let: 
{xO, yO}={O, 0} 

h=O.l 
s=NDSolve[{y' [x]==l+y[x] 2 ,y[x0]==y0},y[x],{x,x0}] 
Capture your solution using 
w[x_]=y[x]/.First[s] 
Then make a table of values of the solution function w [ x] . 
t=Table[{xO+k*h,w[xO+k*h]},{k,O,lS}] 

c) Compare these values to those that you calculated. If you used Mathematica 
to calculate the points from Euler's method, you can use the built-in function 
ListPlot to plot them. You can also Plot the function w [x]. The exact 
solution is y(x) = tan(x). You can compare both methods to this, if you like. 

5. Use the Euler2 method on problem 3. Compare results. 

6. Use the Euler3 method on problem 3. Compare results. 

7. Use the given Runge-Kutta method on the same problem. Compare results. 

1.2 Uniqueness Considerations 

Theorem 1.1, our existence and uniqueness theorem, says that existence and unique­
ness are local properties of a differential equation. In this section, we examine a 
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6 

Fig. 1.5. The one-parameter family of solutions. 

differential equation that fails to have a unique solution at any point through which a 
solution passes. In addition, no solutions pass through the half-plane where y < 0. 

We seek a differential equation whose solutions are precisely of the form 

y = (x- a)2 

where a is a real number. This one-parameter family of curves (Fig. 1.5) consists 
of all horizontal translates of the parabola y = x2 • Observe that for each x, the cor­
responding point on any solution curve lies on or above the x-axis. This means that 
no solution will ever be negative. The differential equation of the family is found by 
taking a derivative: 

y' = 2(x- a). 

Then from (x - a) = y' 12, one obtains 

or the simpler equation (y'? = 4y as a differential equation of the family. 
It is easy to see that through each point (p, q) where q?: 0 there pass exactly two 

members of the family of curves. To show this, suppose that q > 0. Then q = (p- a )2 

gives two choices: a= p ± yq for the parameter a. If q = 0, then from 0 = (p- a)2 

one finds that a = p is the only choice for the parameter. But y = 0 is another solution 
of the differential equation that passes through (p, 0). This is the second solution that 
passes through (p, 0). Note that the solution y = 0 of the differential equation was 
not a member of the family of solutions. Because it is somehow a different kind of 
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y 

X 

Fig. 1.6. A solution passing through the origin p > 0. 

solution, it is called a singular solution. This singular solution is tangent to each 
member of the family exactly once. 

From the differential equation itself one sees that it is necessary that y 2: 0, since 
the left-hand side of the equation is a square. It also follows that at the point (p, q) 

if q > 0, then there are two choices, y' = ±-{(j, for the slope of a solution curve at 
(p, q). But if q = 0, then it is required that y' = 0. 

Most of the upper half-plane, except for the positive y-axis, is filled with solutions 
that pass through the origin: through each point (p, q) with 0 :s; q :5 p 2 there is at 
least one solution that passes through the origin. We describe some of them. 

If p 2: -{(j take 

{ 0 x<p--{(j 
y(x) = (x - p + -/(j)2 ' x 2: p - -{(j 

See Fig. 1.6. 
If p :s; --{(j take 

{ 
0 , x>p+-{(j 

y(x) = (x - p ~ -{(j?, x :s; p + -{(j 

See Figure 1.7. 
Let us write down the complete set of solutions that pass through the point (2, I). 

To aid us in our description, Figure 1.8 is a picture of the set we are attempting to 
describe. 

The two curves in Figure 1.4 that cross at (2, 1) are 

y = (x- 1)2 
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and 
y=(x-3)2 . 

The left gray area consists of all curves of the form 

{ 
(x- p)2 , x < p 

y(x) = 0 , p :::; x :::; I , 
(x- I)2 , 1 < x 

where p < 1. The right gray area consists of all curves of the form 

{ 
(x - 3 )2 , x < 3 

y(x) = 0 , 3 :::; x :::; p . 

(x- pf , p < x 

where p > 3. Each of these curves has a "bathtub" shape, being a portion of the 

x-axis with half a parabola at either end. The two remaining solutions are 

y(x) = { (x ~ 1)2 ' 
X< 1 
X~ I 

and 

y(x) = { (x ~ 3)2 ' 
x<3 

' 
x~3 

These latter solutions have a "ski ramp" shape, with each consisting of a ray on the 

x-axis and half of a parabola. They look similar to Figures 1.6 and 1.7. 

In summary, near the point (2, I) there are only two choices for the solution, but 

on any interval containing x = 2 that extends beyond x = I to the left or beyond 

y 

I 

X 

Fig. 1.7. A solution through the origin with p < 0. 
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Fig. 1.8. The set of solutions passing through the point (2. I). 

x = 3 to the right there are infinitely many solutions of (y')2 = 4y that pass through 
the point (2, 1). If we specify the sign of y'(2) at the point (2, 1) then near (2, 1) the 
solution is unique, but not beyond x = 1 on the left if the slope y'(2) > 0 or beyond 
x = 3 on the right if the slope y' (2) < 0. 

Theorem 1.1 warned us that there might be problems with uniqueness along the x­
axis. We have f(x, y) = ...;Y or f(x, y) = -...;Y. In either case the partial derivative with 
respect to y is undefined, and hence not continuous, when y = 0. The theorem was 
unable to guarantee uniqueness where y = 0. With either f(x, y) = ...;Y or f(x, y) = 
-...;Y we would have had uniqueness away from the x-axis, but we had both since y' 
was squared. This gave us two solutions, one for+ and one for-, locally, off of the 
x-axis. 

This example illustrates some of the things that can happen when a differential 
equation fails to have unique solutions. 

Exercises 1.3. l. Repeat the ideas of this section for the family of cubics that are 
precisely of the form y = (x- a)3. You may find it instructive to let Mathematica 
carry out the same sequence of operations that you do manually. 

a) Find a differential equation for the family and show that y = 0 is a solution. 
(Mathematica gives several differential equations, all of which are equiva­
lent.) 

b) Show that there are several kinds of solutions that involve part of one cubic, 
possibly part of y = 0, and then possibly part of another cubic. 

c) Describe all of the kinds of solutions there are. 
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d) Find all of the solutions that pass through the point (I, 2). 

1.3 Differential Inclusions (Optional) 

Rather than insist that y(x) be a differentiable solution of a differential equation such 
as dyldx = f(x, y), suppose we merely ask that dy!dx be in some setS. We might 
write this as dyldx E S. This is an example of a differential inclusion. 

Definition 1.4. LetS be a set and I an interval of real numbers. An inclusion such as 

dyES 
dx 

(1.2) 

is called a first-order differential inclusion, because it asks that dy! dx be a member 
of a set, rather than giving an equation defining dy/dx. A continuous function y(x) 
is called a solution of the differential inclusion (1.2) on I provided that dyldx E S 
except possibly at a finite number of points of I at which dy/ dx may fail to exist. If 
x0 is in I and y0 is a number, an initial value problem for the differential inclusion 
(1.2) asks that y(x) satisfy 

dy 
- E S and y(x0 ) = y0. 
dx 

The set S can have parameters such as x or y or both. 
A differential inclusion generally places fewer restrictions on a function that can 

be called a solution than does a differential equation. Since solutions of differential 
equations have to be differentiable everywhere, they are better behaved than some 
solutions of differential inclusions. 

Solutions of differential inclusions can have "comers" at points where they have 
no slope. Furthermore, if S has parameters x and y and there is only one member 
f(x, y) in S for each permissible x andy, then the differential inclusion is really a 
differential equation: dyldx = j(x, y). All of this suggests that the requirement of 

2 

1.5 
1 

0.5 

-0.5 
-1 

Fig. 1.9. A solution of dyl dx E { -1, 1 ). 



5 

4 

3 

2 

-1 

-2 

1.3 Differential Inclusions (Optional) 23 

Maximal Solution 
y=2+x 

Typical Solution 

y=2-x 
Minimal Solution 

X 

Fig. 1.10. A maximal, minimal, and typical solution passing through (0, 2) 

differentiability everywhere for a solution to a differential equation is not necessary. 
This is true, but we leave the study of the implications of this remark to a later course 
in differential equations. 

Let's look at an example of a differential inclusion. LetS= {-1, 1} and consider 
dy/ dx E S = { -1, 1}. A solution y(x) is continuous, and either dy/ dx = -1, or 
dy/dx = 1 at each point where y(x) has slope. On any finite interval, we only allow a 
finite number of points where y(x) fails to have slope. What do our solution functions 
look like? In general, they consist of a broken line where each segment either has 
slope 1 or slope -1. Figure 1.9 gives a typical picture. 

Of course a solution is permitted to be differentiable. Any function y(x) = x + c 
or y(x) = -x + c, with c a constant, is a differentiable solution of dy/dx E {-1, 1}. 
Suppose that we specify that each solution pass through the point (p, q). Then the 
two differentiable solutions that pass through (p, q) are the lines y- q = +(x- p) and 
y- q = -(x- p). 

If a solution to dyl dx E { -1, 1} is not required to be differentiable everywhere, 
what are the solutions that pass through the point (0, 2), for example? Figure 1.10 
shows a picture that represents members of the set of solutions in the half-plane 
X 2:: 0. 

The particular solution that is drawn with thicker lines in Figure 1.10 is given by 
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{ 
-x + 2, 

y(x) = x, 
-x+4, 

Osxs1 
1<x:s2 
2<xs4 

Note that for x E (0, 1) U (1, 2) U (2, 4), either dyldx = I or dy/dx = -1, so that 
dy/dx E {-1, 1}. 

Definition 1.5. The functions h(x) and g(x) are called a maximal solution and a 
minimal solution, respectively, of the initial value problem dy! dx E S, y(x0 ) = y0 

on an interval I, if each is a solution of the initial value problem and for each x in I, 
whenever y(x) is a solution of the initial value problem, then g(x) :S y(x) :S h(x). 

Note the apparent existence of a maximal solution and a minimal solution in 
Fig. 1.10. Every solution must remain between these. That is, for x ~ 0, each solution 
y(x) satisfies -x + 2 :S y(x) :S x + 2. (Why?) This is typical of differential inclusions. 
What are the maximal and minimal solutions for x s 0? Can you explain why they 
are different? 

Sometimes the maximal and minimal solutions are the same over an interval. 
Then the solution is unique over any interval where this occurs. Look back at the 
differential equation {y')2 = 4y of the last section. Isn't that a differential inclusion: 
dy/ dx E {-2....[Y, 2...jY}? What we changed in this section is that there may now be 
points at which the derivative does not exist. What happens to the solution of the 
example in Section 1.2 if the derivative of the solution can fail to exist at isolated 
points? Note that in Sect. 1.2, there is a maximal solution and a minimal solution for 
x ~ 1. The same is true for x s I, but the maximal solution and minimal solution on 
the left are different from those on the right. 

Exercises 1.4. 1. Determine the maximal and minimal solutions for x ~ 0 to the 
differential inclusion dyl dx E { -1, 1}, with initial condition y(O) = 2. 

2. Find all differentiable solutions to the differential inclusion dy/ dx E {-x, x). You 
will need to integrate the two equations dy!dx = x and dy/dx = -x. 

3. Given the differential inclusion dy!dx E {-x, x} of Problem 2 with initial condi-
tion y(O) = 3. 

a) Depict the set of all solutions. 
b) Determine the maximal and minimal solutions. 
c) Find descriptions of those solutions that follow the maximal or minimal 

solution for a while, then branch off and continue onward as differentiable 
functions. That is, they have only one corner. 

d) Describe the set of all points (p, q) with p > 0 through which at least one of 
the solutions passes. 

e) Find the set of points (a, b) with 0 < a < p such that some solution to 
dyldx E {-x, x} passes through each of the points (0, 2), (a, b), and (p, q). 
How far can this process of finding intermediate points be continued? 

PROJECT A. Examine the differential inclusion dy/ dx E { -2....[Y, 2...jY). (This is really 
the differential equation of Sect. 1.2 expressed as a differential inclusion.) 
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1. All of the solutions given in Sect. 1.2 are still solutions, but now there can be 
comers. Write down typical solutions, including those that contain a segment of 
the x-axis. Use Sect. 1.2 as a guide. 

2. Suppose that the initial condition is given as before: y(2) = 1. What are the max­
imal and minimal solutions of this initial value problem? (Distinguish between 
x::; 2 andx ~ 2.) Write down formulas for some solutions that may have comers, 
in terms of the maximal and minimal solutions. Be careful to state the domain 
of definition of each portion of each solution. 

3. How does Fig. 1.8 of Sect. 1.3 change under the conditions of part 2? How 
complete are your lists of solutions that you made in parts 1 and 2? 

PROJECT B. Consider the differential inclusion dy!dx E [ -1, 1]. That is, wherever a 
solution function has slope, that slope is not greater than 1 in absolute value. 

1. Show that some multiple of every function that has bounded slope is a solution. 
2. Show that y = e is a solution over a restricted domain. (What is that domain?) 
3. Can you find functions that are not solutions over any interval? 
4. What are the maximal and minimal solutions that pass through the origin? 
5. What are the maximal and minimal solutions that pass through the point (p, q)? 

PROJECT C. Consider the differential inclusion dyldx E {-R, +R). 
1. Show that there are two constant solutions. 
2. Show that for every solution -1 ::; y'(x) ::; 1. 
3. Show that portions of sin x and/or cos x are a part of every non-constant solution. 
4. What are the maximal and minimal solutions that pass through the origin? 
5. What are the maximal and minimal solutions that pass through the point (p, q)? 
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Linear Algebra 

2.0 Introduction 

Linear Functions 

This section will provide us with a first look at some aspects of linear algebra. One 
can study differential equations without knowing anything about linear algebra, but 
the study is so much more productive if you are aware of linear algebra as new ideas 
are introduced. There will still be plenty left over to study in a linear algebra course, 
but you will know some of the central ideas when we have finished. Topics from 

linear algebra will occur at several places in the chapters that follow. 
We begin by introducing a working definition of the term linear. 

Definition 2.1. The function f is said to be linear provided that if u and v are in its 

domain, then u + v is in the domain and 

f(u + v) = f(u) + f(v). 

Furthermore, if cis a number, then cu is in the domain off and 

f(cu) = cf(u). 

Using this definition, we can, for instance, show that the derivative function D 

defined by Df(x) = (d/dx)f(x) = f'(x) is linear. (We use the sum and constant 
multiple rules from differential calculus.) 

D(f(x) + g(x)) = ! (f(x) + g(x)) = f' (x) + g' (x) = D f(x) + Dg(x) 

and 
d d 1 

D(cf(x)) = dx(cf(x)) = cdxf(x) = cf (x) = cDf(x). 

Here f(x) and g(x) play the roles of u and v in the definition. ln cases such as this, 
where a function is acting on a set of functions, we often refer to such a function as 

an operator. Thus we would refer to the derivative operator D. 

C. C. Ross, Differential Equations
© Springer Science+Business Media New York 2004
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There are other processes that are linear. Simple multiplication by the number 3 
(or any other number) is such an example: Let f(t) = 3t. Then 

f(u + v) = 3(u + v) = 3u + 3v = f(u) + f(v) 

and 
f(ct) = 3(ct) = (3c)t = (c3)t = c(3t) = cf(t). 

From algebra we needed the distributive law, a(b+c) = ab+ac, the commutative law, 
ab = ba, and the associative law, (ab)c =a( be). It is also clear that there was nothing 
special about the choice of 3 as the multiple. (Replace the 3 by k, throughout.) 

It is easy to show that the function (operator) L defined by L(y) = y' + 3y is 
linear. Let u and v be once-differentiable functions defined on a common domain. 
Then, since sums and constant multiples of once-differentiable functions are once­
differentiable, 

L(u + v) 

When c is a constant, 

L(cu) 

(u + v)' + 3(u + v) 

u' + v' + 3u + 3v 

= (u' + 3u) + (v' + 3v) 

= L(u) + L(v). 

= (cu)' + 3(cu) 

= cu' + 3cu 

c(u' + 3u) 

= cL(u). 

We make two observations about the definition of a linear function as proposed 
above. Let V be the domain of f. Then 

1. given any two objects in V, their sum had to be in V for the first part of the 
definition to hold, and 

2. any multiple of an object in V must also be in V. 

This means that not only does f have to behave properly on sums and multiples, but 
so does the domain of f. We will see this idea again in Section 2.2 when the concept 
of a linear space is defined. 

It will be helpful to have names for the various objects that we encounter as we 
study linear problems. 

Solving Linear Equations 

Here are some properties of linear functions that we will use heavily in the chapters 
to come: Given a linear function L, 
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a) The equation L(u) = 0 always has at least one solution. (Since L(O) == 0, 0 is such 
a solution.) 

b) If L(u) = 0 and L(v) = 0 then L(u + v) = 0, and for any constant c, L(cu) = 0. (If 
L(u) = 0 and L(v) = 0 then L(u + v) = L(u) + L(v) = 0 + 0 = 0, so u + v is in 
the domain of Land is a solution, and L(cu) = cL(u) = cO = 0, so cu is in the 
domain of Land is a solution.) 

c) If L(p) =band L(q) = b, then L(p- q) = 0. (L(p- q) = L(p)- L(q) = b- b = 0.) 
d) If L(p) = band L(q) = b, then there is a (unique) member u in the domain of L 

such that p = q + u. (Take u = p- q. Then L(u) = L(p) - L(q) = b- b = 0. If 
p = q + u1, then u1 = p- q = u.) 

e) If L(q) = b, L(u) = 0, and p = q + u, then L(p) = b. (L(p) = L(q + u) = 
L(q) + L(u) = b + 0 =b.) 

It will be helpful to have names for the various objects that we encounter as we 
study linear problems. 

Definition 2.2. The set of all solutions of the linear equation L(u) = 0 is called the 
null space or kernel of the linear operator L. 

A linear problem such as L(y) = 0, having right-hand side 0, is called homoge­
neous. 

A linear problem such as L(y) = b, having nonzero right-hand side, is called 
nonhomogeneous. 

Properties (d) and (e) will guide us as we begin solving nonhomogeneous linear 
(differential equations) problems. They are used this way: 

Given the linear problem L(y) = b: 

1. Find a typical member, u, of the kernel of L. 
2. Find any one object, q, so that L(q) = b. 
3. Then y = q + u represents every solution of L(y) =b. 

This process is a property of linearity not a property of differential equations, 
although properties of differential equations will dictate how we go about finding q 
and u. Any object that satisfies the nonhomogeneous equation, such as q above, is 
called a particular solution. A typical member of the set u, which represents the 
entire kernel of L, is often called a complementary function of L. A set of functions 
such as y = q + u that represents every solution of L(y) = b is called a general 
solution or complete solution of L(y) = b because there are no other solutions. 

Examples Using Mathematica: 
Solving Linear Algebraic Systems 

A linear problem has either no solution, exactly one solution, or an infinite number 
of solutions. This can be illustrated by considering how two planes in 3-space can 
intersect. If the planes are parallel and different, then there is no point in common, 
and hence there is no solution to the two equations. Otherwise, the two planes in­
tersect in a line or coincide. In either of these latter cases there are infinitely many 
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solutions. If a third plane is also considered, then there can be exactly one solution 
(where the line of intersection of the first two intersects the third) or no solutions 
(from several interesting geometric arrangements) or an infinite number of solutions 
(where all planes coincide, or where all three share a line in common). It is of some 
interest to sketch each of the possibilities for the intersection, or lack of it, of three 
planes in ordinary 3-space. 

The examples that follow illustrate analogous situations for two lines in the plane. 
Here is a system that has a unique solution: 

In[l] := Solve[{3x + 2y == 4, Sx + 3y == 2}] 

Out [ 1] = { {X --7 -8, y --7 14 } } 

Next is a system that has infinitely many solutions. Note the warning that Math­
ematica issues. Indeed it does solve only for x in terms of y: 

In[21:= Solve[{6x+2y==4, 3x+y==2}] 
Solve:: svars : 

Equations may not give solutions for all "solve" variables. 

Out { 21 = { {X --7 ~ - ~}} 
3 3 

Capture the solution(s). The % means the results of the last calculation, and 
[ [ 1] J is Part [ %, 1] , the inner quantity enclosed in braces. See the discussion 

in Appendix A2: 

In[31:= {x1,y1} = {x,y}/.%[[1]] 

Out [ 31 = { ~ - ~, Y} 
Check the solution. 

In [ 41 : = Simplify [ { 6x1 + 2y1 = = 4, 3x1 + y1 = = 2} ] 

Out[41= {True, True} 
The two True's indicate that both equations are satisfied. 
Here is a system that has no solutions. Observe that Mathematica uses the nota­

tion " { } " for the empty set, signifying no solutions. 

In [51 : = Solve [ { 6x + 2y = = 4, 3x + y = = 1} ] 

Out[51= {} 

The expression {2/3 - y/3, y} that appears above can be rewritten as {2/3, 0} + 
y{-1/3, 1}. The linear function is L(x, y) = {6x + 2y, 3x + y} and the stated problem 
is L(x, y) = {4, 2}. From the definition of L we verify that {2/3, 0} is a particular 
solution, and y{ -1/3, 1} = { -y/3, y} gets sent to 0. 

Here is the verification: L({2/3, 0}) = {6(2/3) + 2(0), 3(2/3) + (0)} = {4, 2}. And 
L(-y/3,y) = {6(-y/3)+2(y),3(-y/3)+(y)} = {2y-2y,-y+y} = {0,0}. Thus 
our solution had the desired form: a typical member of the kernel plus a particular 
solution. The symbol y in the solution served only as a constant multiplier: each 
choice of y gave a solution. The points on the solution are merely the points on the 
original curve; the form is that of a line expressed parametrically, rather than a form 
that you see more commonly. The line in parametric form can be written: 
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A better form would be 

{~ 2/3- y/3, 

y. 

{ 
X = 2/3- t/3, 
y = t, 

where t is used as the parameter, rather than y. 

Exercises 2.1. 1. Use Mathematica to solve each of these linear systems. Problem 

(a)wouldbeenteredasSolve[{2x+3y == 5, 3x+4y == 7},{x,y}]. 

Interpret each response. Each problem can be plotted to aid your interpretation. 

Plotproblem(a)asPlot[{ (5-2x)/3, (7-3x)/4}, {x, -2, 2}],for 

instance. Note that to do the plot, each equation was solved for y as a function 

of x and the resulting two functions plotted. If there is a unique 'olution, try 

to include it in the range over which you plot. The range just specified was 

-2 S X S 2. 

a) 

b) 

c) 

d) 

e) 

{ 2x + 3y 

3x+ 4y 

{ 5x- 3v 
3x+ 4y 

5 
7 

5 
3 

{ 
X+ 7y = 5 

2x+ 14y = 10 

{ 
2x + 3y 5 
4x+ 6y 70 

{ 
2x- 5y -5 
x+ 6y 4 

2. Verify that each of these functions is linear. Propose a reasonable domain and 

range for each of the functions. 

a) f(x, y) = (x + y, 2x- y). 

b) g(x, y, z) = (x - z, x, y, x + 2 y ). 

c) h(x, y) = (x- y, x, y, x + 2y). 
d) k(x, y, z, w) = (x- z + 2w, x + 2y). 

e) i(F) = .C F(x) dx. 

f) p(G)(x) = j·h G(x, t) dt. 
a 

3. Sketch possible geometric configurations of three planes that result in 

a) no solutions; 
b) exactly one solution; 
c) infinitely many solutions. 

4. Each bracketed expression below is a line in the xy-plane expressed in parametric 

form. In each case eliminate t from the two equations to obtain an equation for 

the line containing the variables x andy, but not t. (Solve one equation fort and 

substitute into the other, or multiply each equation by an appropriate constant so 

that when the equations are added, twill drop out.) Sketch the lines that result. 
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a) { ~ = 5 + 3t 
7- t 

b) { ~ -2 + 5t 
3- 2t 

c) { ~ 3t 
5 + t 

2.1 Familiar Linear Spaces 

Here are some sets that satisfy the requirements to be called linear spaces. Most of 
these will be familiar to you. A definition or two and a theorem or two and these will 
have much more meaning to you. 

1. The real numbers (called R). 
2. The complex numbers. 
3. The plane, R 2 . 

4. Three-space, R 3 . 

5. Euclidean n-space ={(x" x 2, ... , xn) I each component is in R.) 
6. The set of all functions on an interval [a, b]. 
7. The set of all continuous functions on an interval [a, b]. 
8. The set of all differentiable functions on an interval [a, b]. 
9. M 2, the set of all 2 X 2 matrices. 

10. M3 , the set of all3 x 3 matrices. 
11. The set of all curves in R 2 , {x = f(t), y = g(t)}, t E [a, b]. 
12. The set of all curves in R 3 , {x = j(t), y = g(t), z = h(t)}, t E [a, b]. 

One can continue giving examples of linear spaces. You will see other examples 
as we continue. 

2.2 Abstract Linear Spaces 

Because our examination of higher-order differential equations will concentrate on 
linear equations, we need to broaden our horizons. What we must do is computation­
ally intensive except in the simplest of examples, so we will quickly turn to Math­
ematica to perform the necessary calculations. Once again, in order to be sure that 
what you have asked Mathematica to do is correct, you must be able to understand 
and do manual calculations. 

Linear Spaces 

In Section 2.1, we learned about linear functions, and saw the need for a fuller dis­
cussion of properties of their domains. We now undertake that discussion. 

Definition (Partial). A linear space V is a set that satisfies these properties: 
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1. If u and v are in V, then u +vis in V, and 
2. If u is in V and c is a number, then cu is in V. 

This definition is incomplete. It covers the essentials, but there are some (very 
important) technical matters that have been omitted. The omitted parts of the defini­
tion are there to insure that things that happen to objects in linear spaces obey nice, 
obvious rules. We have to state clearly all of the nice properties because there are 
strange sets where things do not happen the way we want. So we state exactly what 
we need in order to avoid trouble later. Here is the full definition: 

Definition 2.3. A linear space Vis a set that satisfies these properties: if u, v, and w 

are in V, and rands are numbers, then 
I. u +vis in V, and addition has these properties: [Additive closure[ 

(la) u + v = v + u; 
(I b) u + (v + w) = (u + v) + w; 
(I c) there is a member 0 in V such that 

u + 0 = ufor every u in V,· 
(ld)u+(-u)=O 

2. ru is in V, and multiples have these 
properties: 
(2a) r(su) = (rs)u; 
(2b) Ju = u [I is the number 'one'.]; 
(2c) r(u + v) = ru + rv; 
(2d) (r + s)u = ru + su. 

[Commutative law I 
[Associative law] 
[Zero[ 

[Additive inverse] 
[Multiplicative closure I 

[Associative law[ 
[Unit] 
[Distributive law I 
[Distributive law I 

You can see that sums and multiples are the principal ideas. The other parts of 
the definition guarantee that things work correctly. For our purposes, the set V will 
usually be a set of functions having some specified properties. 

The standard notation f : V ~ W is used to say that V is the domain of f and 
W is the range of f. The statement that f maps V to (or into) W conveys the same 
idea. The set j(V) = {y E W I y = f(u) for some u E V) is the image of V under f. 
The set f(V) is a subset of W. It is also a linear space as this theorem states: 

Theorem 2.1. Suppose that the linear function f maps the linear space V to the 
linear space Wand U = f(V) is the image of V under f Then U is a linear space. 

Proof Let u and v be in U. Then u = f(x) and v = f(y) for some x andy in V. So 
u + v = f(x) + f(y) = f(x + y) = f(z 1), where z1 = x + y is in V. Thus u +vis in U. 
Similarly, cu = cf(x) = f(cx) = f(z2), where z2 =ex is in V. Thus cu is in U. D 

The idea of a linear subset of a linear space is an important concept. 

Definition 2.4. Suppose that W is a subset of the linear space V. Then W is said to be 

a subspace of V if and only if W is a linear space. 

Linear spaces are also called vector spaces or linear vector spaces. These are 
commonly accepted terms. 

The following theorem states two properties of linear functions that are easy to 
prove and are very useful. 
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Theorem 2.2. Suppose that V is a linear space and f and g are linear functions 
defined on V such that f(u) + g(u) is defined for each u in V. Then 

1. the function F = f + g, such that F(u) = f(u) + g(u)for each u in Vis a linear 
function, and if r is a number; then 

2. the function G = rf defined for each u in V by G(u) = rf(u) is a linear function. 

Proof (Note how the assumptions that f and g be linear are used throughout, as 
are the properties of linear space.) 
1. F(u + v) = f(u + v) + g(u + v) 

= (f(u) + f(v)) + (g(u) + g(v)) 
= (f(u) + g(u)) + (f(v) + g(v)) 
= F(u) + F(v) 

F(c u) = f(c u) + g(c u) 
= cf(u) + cg(u) 
= c (f(u) + g(u)) 
= cF(u) 

2. G(u + v) = r f(u + v) 
= r(f(u) + f(v)) 
= r f(u) + r f(v) 
= G(u) + G(v) 

G(cu) = r f(cu) 
= r(c f(u)) 
= (rc)f(u) 
= (c r)f(u) 
= c(r f(u)) 
= cG(u) 

[Definition ofF] 
[f, g are linear] 
[Commutative, associative laws] 
[Definition ofF]. 
[Definition of F] 
[f, g are linear] 
[Distributive law] 
[Definition ofF]. 
[Definition of G] 
[f is linear] 
[Distributive law] 
[Definition of G]. 
[Definition of G] 
[f is linear] 
[Associative law] 
[Commutative law] 
[Associative law] 
[Definition of G]. D 

This theorem says that sums and multiples of linear functions are again linear. 
What happens if we perform one linear function and then perform a linear function 
on the result? The technical term is composition. Is the composition of two linear 
functions linear? We state the answer as a theorem. 

Theorem 2.3. The composition of two linear functions is linear. In other words, ifF 
is linear; G is linear; and the domain ofF contains the range of G, then the function 
L defined for each x in the domain ofG by L(x) = F(G(x)) is linear. 

Proof If u and v are in the domain of G and cis a number, then L(u + v) = 
F(G(u + v)) = F(G(u) + G(v)) = F(G(u)) + F(G(v)) = L(u) + L(v), and L(c u) = 
F(G(c u)) + F(c G(u)) = c F(G(u)) = c L(u). D 

An immediate consequence of the fact that the composition of linear functions 
is linear is that the second derivative function is linear. (Why?) By induction, one 
learns that derivatives of any order are linear. (If the kth derivative is linear, why is 
the (k + l)st derivative linear?) Also by induction, any finite sum of linear functions 
is linear. (See the exercises.) 
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Span and Basis of a Linear Space 

You are familiar with the fact that you can express any point (a, b) in the planeR 2 this 
way: (a, b)= a( I, O)+b(O, 1). This means that we can express every member ofR2 by 
using exactly two vectors: (1, 0) and (0, 1). Furthermore, if a(l, 0) + b(O, I) = (0, 0), 
then a= b = 0. 

We can do the same thing with the two vectors (1, 1) and (1, -1): 

a+b a-b 
(a, b)= - 2-(I, 1) + - 2-(1, -1), 

and if c(l, 1) + d(l, -1) = (0, 0), then c = d = 0. The point (a, b) has been expressed 
as a linear combination (see Definition 2.5 below) of the members of two different 
sets. 

Here is another familiar example in an unfamiliar setting: Given the differential 
equation L(y) = (d3yldx3 ) = 0, we can see that y 1 = 1, y2 = x, and y3 = x2 are each 
solutions of the differential equation. Furthermore, for any choice of numbers a, b, 
andc, 

y(x) = ax2 + bx + c = ay3(x) + byz(x) + cy1(x) 

is also a solution of the differential equation. It is also true that if ax2 + bx + c = 0 
for every number x, then a = b = c = 0. These properties of polynomials and of this 
differential equation look a lot like the properties we saw for the plane, R 2. And they 
are. 

We can multiply any nonzero member of a linear space by every real number and 
get new members in the space, so linear spaces that have one nonzero member have 
an infinite number of members. Most linear spaces we encounter can be completely 
described by simple "aritheoremetic" on a finite number of elements. Other than the 
fact that we have to be somewhat careful about how we choose these finite sets of 
elements, their form will be simple, and-at least in theory-the elements we want 
will be easy to find. We just need some definitions to see what is happening. 

Definition 2.5. Given a set {yp y2, ••• , Yml of vectors in a linear space V, and a set 
{c1, c2, ••• , em} of numbers, the vector w = c1y 1 + c2y2 + ·· · + CmYm ofV is called a 
linear combination of the members of the set {yl' y2, ... , Yml· We say that ck is the 
coefficient of Yk• and the set {cl' c2, ••• ,em} is the set of coefficients of the linear 
combination. 

The set of all linear combinations of a set of vectors has a name. 

Definition 2.6. Given a set A= {y1, y2, ••• , Yml of vectors in a linear space V. The set 
of all linear combinations of members of A is called the linear span, or simply the 
span of the set A. 

It is worth noting that this set is a linear space. 

Theorem 2.4. The span of a set A is a linear space. 
Proof. This is proved easily by combining the definition of span and the definition 

of linear space and doing a little calculating. The proof of this is left as an exercise. 
D 
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The plane R 2 is the span of {(1, 0), {0, 1)}, and the set of all polynomials of degree 
2 or less is the span of { 1, x, .x2}. Both of these sets did their spanning in an especially 
nice way. 

Here is another example of the idea of a spanning set. Consider the set { 1, x, x2, .il}. 
What is the span of this set? Typical members of the span are: 1 - x, x2 + 3x - 4, .il, 
x3 - 2, and so on. The most general member is ax3 + b.xl +ex+ d, which you will 
recognize as a polynomial of degree 3 (or less if a = 0 or a = b = 0 or a = b = c = 0 
or even a = b = c = d = 0). Notice that the sum of any two of these functions (the 
polynomials in x of degree three or less) is a polynomial in x of degree three or less. 
The same is true of a constant multiple of any one. 

Here the members of our linear space are functions. So a 'vector' need not be a 
geometric "point," but may even be a function. The members of the vector spaces we 
will see as we study differential equations will often be more than simply a function. 
They will sometimes be vectors of functions or even matrices of functions. (See the 
discussion of matrices below.) 

Definition 2.7. Given a subset A = {y1, y2, ••• , Ym} of vectors in a linear space V. 
Suppose that the zero linear combination c1y1 +c2y2 + · ·· +cmYm = 0 can be produced 
only when c1 = c2 = ··· =em = 0. Then A is said to be linearly independent. 

A linearly independent spanning set for a linear space V is called a basis for V. 
/fit is possible to express c1y1 + c2y2 + · ·· + CmYm = 0 with not all of the C; being 

0, then A is said to be linearly dependent. 

We showed thattheset{(l, 0), (0, 1)} is a basisforR2 , as is the set{(l, 1), (1, -1)}, 
and the set {1, x, x2, x3 } is a basis for the polynomials of degree 3 or less. We are 
especially interested in sets that are a basis for the spaces in which we have interest, 
because the members of a basis are genuinely and essentially different from one 
another. They are exactly enough to describe the set of interest: fewer would not do 
the job; more would be redundant. When we solve homogeneous linear differential 
equations, we will always seek a basis for the set of solutions. When we looked at 
kernels before, the "complete description of the kernel" that we sought can be given 
in terms of a basis. 

One property of the linear spaces we will use is this: every basis of a space has 
the same number of vectors in it. This means that if each of us solves a given linear 
problem and has found a basis for the kernel, then we each have found the same 
number of vectors. We may have different vectors in our bases, but each basis has the 
same number of vectors. This idea is worth stating as a theorem. 

Theorem 2.5. If any basis for a vector space V is finite, then every basis is finite, 
and any two bases have the same number of elements. 

Definition 2.8. The number of vectors in a basis of a vector space V is called the 
dimension ofV. 

Theorem 2.5 tells us that the idea of dimension is well defined. If we say that 
a space is five-dimensional, then any basis for this space will have five vectors in 
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it. Since there are always many choices for a basis, we will often find that one basis 
reveals more about a problem than another. We will also find how to convert one basis 
into another, so that we can start with a basis that is easy to find and then convert it 
into the one that reveals the properties that we wish to exploit. 

Matrices, Matrix Multiplication, Transposes, and Inverses 

Usually by the time students have reached a course in differential equations, they 
know what matrices are and how to perform the basic operations on them. We will 
briefly cover these ideas. 

Properties of Matrices 

After each definition or property is an example in Mathematica. 

A matrix is a rectangular array of objects. We will have matrices (the plural of 
matrix) whose entries are numbers, some whose entries are real- or complex-valued 

functions, and some whose entries are operators. 

(2 3 -1 ) 
In[l}:=A= O 2 S 

Out [1 1 = { { 2, 3, -1 } , { 0, 2, 5 } } 

( Cos [x] Sin [x] ) 
In [21 := M = 

-Sin [x] Cos [x] 
Out [21 = {{Cos [x], Sin [x]}, {-Sin [x], Cos [x]}} 

The shape of a matrix is given in the form m x n where m is the number of rows 
in the matrix and n is the number of columns in the matrix. The rows of a matrix 
are horizontal and the columns are vertical. The entry in row i and column j of the 
matrix A is denoted Aij and is called the i, fh entry of A . 

.In[3] := Dimensions[A] 

Out[31= {2,3} 

In [4] :=A[ [1, 2]] 

Out[41= 3 

Square matrices have the same number of rows as columns. A square matrix 
has a main diagonal, those entries having the same row and column number. Aii for 
instance is the ith main diagonal entry in the matrix A. 

In[5]:= Dimensions[M] 

Out [51= { 2, 2} 

For example from above, 

A=(2 3 -1) 
0 2 5 

is a 2 x 3 matrix having two rows and three columns, the first row being (2, 3, -1) 

and second row (0, 2, 5). The columns are 
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A [ [ 1] ] denotes the first row of A. In general, A [ [ k] ] denotes the kth row of A. 

In [61 := A[ [1]] 

Out [ 61 = { 2, 3, -1} 

Matrix equality is defined only for matrices of the same shape. The equality 
A = B asserts that the matrices A and B have the same shape and that corresponding 
elements are equal. This is shorthand for a set of equations. 

(2 3 -1 ) 
In[7]:=B= 0 -3 5 

Out [ 71 = { { 2, 3, -1 } , { 0, - 3, 5 } } 

Note that Mathematica uses == for equality. 

In[81:= A==B 

Out[81= False 
Matrix addition is defined only for matrices of the same shape. The sum A + B 

is a matrix whose entries are the sum of corresponding elements of A and B. Matrix 
addition is commutative and associative. 

In [ 91: = (A+ B) I /MatrixForm 

Out [ 91 = ( 4 6 - 2 ) 
0 -1 10 

In [ 101 : = A- B/ /MatrixForm 

( 0 0 0 ) Out [101= 0 5 0 

Two special matrices are them X n zero matrix, Omn' each entry of which is zero, 
and the n x n identity matrix In, often written I when the context is clear. The entries 
of I are zero except down the main diagonal where each entry is 1. If A is an m X n 

matrix, then A+ 0 =A and ImA = Ain =A. 

In[111 := Z23 = Table[O, {i, 2}, {j, 3}] 

Out [11] = {{ 0, 0, 0}, { 0, 0, 0}} 

In[121:= A+Z23==A 

Out [121= True 

Define a 3 x 3 identity matrix. 

In[131:= IdentityMatrix[3]//MatrixForm 

Out[13]= r~ ~ ~) 
0 0 1 

Multiplication by a scalar is defined. If cis a scalar and A is a matrix, cA is the 
matrix of the same shape as A whose entries are c times the corresponding entries 
of A. 

In [ 141 : = c A/ /MatrixForm 
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Out [14]= (20c 3 c -c 
2c Sc 

Vectors are single-row or single-column matrices. So vectors can be used as 
either row-matrices or column-matrices. A vector is called ann-vector if it has n 
components. 

In[15] := v = {x, y, z} 

Out[15]= {x, y, z} 

In[16] := w ={a, b, c} 

Out[16]= {a,b,c} 

A dot product or scalar product is defined for any two n-vectors. If u = 
(u1, u2, ... , U11 ) and v = (v1, v2, ..• , V11 ) are n-vectors then u · v = u1 v1 + u2 v2 + ··· + 
U11 V11 • Dot is commutative: u · v = v · u. If cis a number then c(u · v) = (cu) · v = 
u · (cv). When dotting, we do not distinguish whether a vector is a row-vector or a 
column-vector. 

In[17]:= v.w 

Out [ 17] = ax+ by+ c z 

One can partition an m x n matrix to emphasize and name its rows 

or its columns A= (A)A.21 ... 1A.11 ). The notation Ai. refers to row i of A and A; 
refers to column j of A. 

In[18]:= A//MatrixForm 

( 2 3 -1 ) Out [18]= 0 2 5 

A matrix product AB is defined for matrices A and B having shapes m x p and 
pxn, respectively. Notice that the number of columns of A is the same as the number 
of rows of B. Then if C = AB, the entry in row i and column j of C is defined to be 
Cij = Ai· · B.i' where Ai· is row i of A and B.; is column j of B. Thus there are mn 
dot products to perform to calculate the product of matrices A and B. The product 
of A with a row m-vector on the left and with a column p-vector on the right are also 
defined. 

In[19]:=B=(-~ ~) 
3 -4 

Out [ 1 9] = { { 2, 1 } , { -1, 1 } , { 3, -4 } } 

In[20]:= A.B 

Out [20]= { { -2, 9}, {13, -18}} 

In[21]:= B.A 
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Out [ 21 1 = { { 4, 8, 3} , {-2, -1, 6} , { 6, 1, -2 3 } } 

In[22]:= A.v 

Out [ 221 = { 2 X + 3 y - z, 2 y + 5 z} 

In[231:= {c1 ,c2 }.A 
Out [231= {2 c 1 , 3 c 1 + 2 c 2 , -c1 + 5 c 2 } 

We want to use matrices to denote systems of linear equations easily. For in­
stance, the system of two equations in three unknowns 

{ 2.x + 3y - z = 7 
-x+5y+4z = -3 

can be represented by a single equation A v = B, where 

In[241 := B = {7, -3} 

Out [ 2 41 = {7, -3 } 

In [251 := A.v == B 

Out[251= {2x+3y-z,2y+5z} == {7,-3} 

In [261 := LogicalExpand[A.v == B] 

Out[261= 2x+3y-z==7&&2y+5z==-3 

A square n x n matrix A is invertible if and only if the determinant of A, 
denoted det(A) is nonzero. In this case A is said to have an inverse. The matrix B 
is the inverse of the matrix A provided that AB = BA = In, where In is then x n 
identity matrix. Such a matrix B is unique and is denoted A -I. If the matrix A is 
invertible, then a system of equations AX = C has the unique solution X = A -I C. 
If C has more than one column, then so does X. 

In[271:=A=G ~) 
Out [ 2 71 = { { 5, 3} , { 3, 2 } } 

In[281 := Det[A] 

Out[281= 1 

In[291:= Inverse[A] 

Out[291= {{2,-3},{-3,5}} 

In[301:= A.Inverse[A] 

Out [301= { {1, 0}, {0, 1}} 

In[311:= A= ( 1
5
0 ~) 

Out [ 311 = {{ 5, 3}, { 10, 6}} 

In [ 321 := Det [A] 
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Out[321= 0 

Since Det [A] ==0, the matrix A has no inverse. Such a matrix is called sin­

gular. Note the message that Mathematica prints before returning the expression 

unevaluated. 

In[33]:= Inverse[A] 

Inverse : : sing : Matrix { { 5, 3} , { 1 0, 6} } is singular. 

Out[33]= Inverse[{{5, 3}, {10, 6}}] 

Mathematica has functions for finding a basis for the kernel of a matrix and for 

solving a matrix system of equations. Here again is an invertible matrix, A. 

In[341:=A=(~ ~) 
Out [341= { {5, 3}, {3, 2}} 

The kernel (null space) of an invertible matrix contains no nonzero vectors. 

In[35]:= NullSpace[A] 

Out[351= {} 

The kernel of a singular matrix contains nonzero vectors. 

In [361 := A= [ 1:0 =O~ -~3 ) 
Out [ 3 6] = { { 5, -3, 4 } , { 1 0, - 6, 1} , { 0, 0, - 3} } 

In[371 := Det[A] 

Out [ 371 = 0 

In [ 3 81 : = ns = NullSpace [A] 

Out [ 3 81 = { { 3, 5, 0} } 

Solve a nonhomogeneous system of linear algebraic equations. 

In[391 := b = {17, 27, -3} 

Out[39]= {17, 27, -3} 

In [ 4 01 : = A. {x, y, z} = = b 

Out[401= {5x-3y+4z, 10x-6y+z, -3z} 

In [41] := Solve [A. {x, y, z} == b] 

Solve : : svars : 

{17,27,-3) 

Equations may not give solutions for all\ "solve\" variables. 

Out [ 41 1 = { { z -> 1, x -> ~ + ~} } 
5 5 

This is what the solution vector s looks like. 

In[42] := s = {x, y, z}/.% [ [1]] 

{ 13 3y } 
Out[421= -+-,y,l 

5 5 
Check that s is a solution. 

In[43]:= Simplify[A.s==b] 

Out[431= True 
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In(441:= A=(=~ =~ _:) 
Out [ 4 4 1 = { { 5, - 3, 4 } , { 1 0, - 6, 8 } , { -5, 3, -4 } } 

In[451 := Det[A] 

Out[451= 0 

In [ 4 61 : = ns =Null Space [A] 

Out [ 4 61 = { {- 4, 0, 5}, { 3, 5, 0} } 

Note that there are two vectors ( -4, 0, 5) and (3, 5, 0) in the Null Space of A. 
These independent vectors span a plane in R 3 . 

There there are no solutions. 

In(471 := Solve[A. {x, y, z} ==b) 

Out [471= {} 

Form the augmented matrix of A, denoted (A I b), where b (previous page) has 
been appended to A to make a new last column. 

In[481:=Aug=(:o =~: ~~] 
-5 3 -4 -3 

Out (481= {{5, -3, 4, 17}, {10, -6, 8, 27}, { -5, 3, -4, -3}} 

We transform (A I b) into an equivalent matrix from which much information 
about the system A.{x, y, z} == b can be immediately determined. 

In(491:= RowReduce[Aug]//MatrixForm 

(0
1 

Out[491= 

0 

3 4 

5 
0 

0 

5 
0 
0 

~ l 
0 

The first row says 1 x- ~ y + ~ x = 0, which can be made true in many wavs. The 
second row says 0 x + 0 y + 0 z = I which cannot be true (0 = 1) is false! The last row 
says 0 x + 0 y + 0 z = 0 which is true for any choices of x, y, and z. suppose we choose 
x, y, and z so that the first row-equation is true, then the rows say true && false && 
true. But this conjunction that contains a false is itself false, so the original system 
cannot be satisfied (made true) for any choice of x, y, and z. Hence the system has no 
solution. Notice how row reduction (using RowReduce) on the augmented matrix 
made these observations clear. 

To say that the matrix B is the transpose of the matrix A means that the rows 
of B are the columns of A in the same order. That is, the entries in row i of B are 
the entries in column i of A. The operation of transpose is denoted B = AT. For 
example, if 

then 

Note that for any matrix A, A TT =A. 
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In [50 1 : = new A = (:~ ~~ ) 

a3 c3 
Out[50]= {{a1, c 1}, {a2, c 2}, {a3, c 3}} 

In[51]:= Transpose[newA]//MatrixForm 

Out [51]= (al a2 a3 ) 
cl c2 cJ 

Exercises 2.2. PART I. Linear spaces. 

1. Show that each of these sets is a linear space: 

a) The set of all continuous functions defined on the interval [a, b]. 

b) The set of all differentiable functions defined on the interval [a, b]. 

c) The set of all differentiable functions defined on the interval [a, b] such that 

iff is in the set, then f(a) = 0. 

d) The set of all differentiable functions defined on the interval [a, b] such that 

iff is in the set, then j(a) = f(b) = 0. Notice that each succeeding set of 

functions is a subset of the preceding sets, but is still a linear space. 

2. Using properties of sums, multiples and composition of linear operators, explain 

why each of these operators is linear: 

a) L 1(y) = y' + 3y; 

b) L2(y) = Sy' + 2y; 

c) L3(y) = y" + 4y' + y; 
d) L4 (y) = y"- Sy; 
e) L5(y) = yrs)- 7y<4) + 3y"- 2y. 

3. Show by induction that derivatives of any order are linear. 

4. Show by induction that any finite sum of linear functions is linear. 

PART II. Perform the following operations on the given pairs A, B of matrices. 

AB, BA, A + B, B - A. 

Do this manually and by Mathematica. If the indicated operation is undefined, say 

so. 
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( 
1 3 2 l 9. A= 2 3 2 ; 
2 3 1 

B=( ~ ~l· 
-3 2 

PART III. The transpose of a matrix. For each of the pairs of matrices given in 
problems 5 through 9, perform the operations that are defined: (Do some manually; 
all by Mathematica.) State the cause whenever one of the operations is undefined. 

Point out identical results. These are problems 5b-9b. 
PART IV. The inverse of a matrix. For each of these matrices, find the inverse by 

Mathematica. In each case verify that the product of the inverse with the matrix on 
both sides is an identity matrix. 

10. A= ( -~ ~ )· 

11. B = ( c~sx sinx )· 
-smx cosx 

( 1 3 2] 
12. c = 2 3 2 . 

2 3 1 

PART V. The inverse of a product. For each of these pairs of matrices, find the 
inverse of both matrices by Mathematica. In each case verify that the product of the 
inverses is the inverse of the product taken in the reverse order. That is, if A and B 
are invertible and AB is defined, then AB is invertible and (AB)-1 = B-1 A -I. 

13. A= [ i ~ -! ~ l; 
2 1 3 7 

14. A= ( c~sx sinx ) . 
-smx cosx ' 

ISA=U ~ H 
16. A= [ i ~ -! ~ l; 

2 I 3 7 

17.A=( -~ -; ; l; 
2 3 -1 

PART VI. Theory. 

B = [ ~ ~ -~ 1]. 
3 0 1 I 

B = ( c~s t sin t ) . 
-smt cost 

B = ( ~ ~ ~ l· 
2 3 1 

B=[ H -~ 1]. 
3 0 1 1 

B=(~ ~ -~]· 
2 3 -1 
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18. Prove Theorem 2.4 by showing that if u = L e;Y; and v = L d;Y; are in V, then 
so are u + v and ru. 

19. Show that {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is a basis for R 3 . 

20. Show that {e1 = (1, 0, ... , 0), e2 = (0, 1, ... , 0), ... , en = (0, 0, ... , 1)} is a basis 
for R n. The vectors have n components, n - 1 of which are 0, and one is 1. The 
only 1 in the vector ek is in the kth component of ek. 

21. Show that {1, x, x2, x3} is a basis for the set of polynomials of degree 3 or less. 
22. Show that {1, x, x2, ... , ~}is a basis for the set of polynomials of degree nor less. 

2.3 Differential Equations from Solutions 

In the exercises following the introduction to this chapter, we verified that a function 
or set of functions satisfies a given differential equation. In Section 2.1 we looked 
at some ideas from linear algebra. Here we use ideas from linear algebra to find a 
(linear) differential equation of minimal order whose kernel contains a given set of 
functions. 

Our technique is summarized as follows. Suppose that we are given a set {f1 (x), 
f 2 (x), ... , fn(x)} of n functions having a common domain and each possessing at least 
n continuous derivatives. Let V be the set (linear space) of all linear combinations of 
{/1 (x), f 2(x), ... , fn(x)}, that is, Vis the set of all functions having the form 

y(x) = ed1 (x) + e2f 2(x) + ··· + enfn(x), 

where the coefficients e1, e2, ... , en are numbers. We want to find a (linear) differen­
tial equation of order n whose kernel is V. Here is one way to do this. 

a) Solve these n equations 

y(x) = eJi1(x) + ed2(x) + ··· + eJn(x) 

y'(x) = ed{(x) + ed~(x) + · · · + enf~(x) 

( I) (n-1) (n-1) .c( I) 
y n- (x) = ed1 (x) + ed2 (x) + · ·· + CnJ/- (x) 

for the coefficients e I' e2, ... , en in terms of y(x) and its derivatives and the func­
tions /;(x) and their derivatives. This can be done uniquely if the functions 
{f1 (x), f 2(x), ... ,fn(x)} are essentially different. (That is, they are linearly inde­
pendent. Linear independence is discussed at length in Section 4.2. The exam­
ples and problems that follow all have the necessary conditions satisfied, so this 
procedure will work.) 

b) Having determined e1, e2, ... ,en uniquely from the above equations, substitute 
them into 

ytnl(x) = edin)(x) + e2Jin)(x) + ··· + enf~nl(x). 

The resulting equation involves y(x), its derivatives, and the functions /;(x) and 
their derivatives, but none of thee" e2, ... , en. 
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The equation that results from part (b) is the (linear) differential equation we 
seek. It is wise to check to see that the given functions do indeed satisfy the differ­
ential equation that was found. More about this in chapt. 5. 

We present a progression of examples, some very simple and some quite compli­
cated. These examples illustrate the process, both manually and by Mathematica. 

Example 2.1 (Simple antiderivatives) 

1. Given the set of constant functions y = c, differentiate once to see that the dif­
ferential equation is y' = 0. This is the differential equation since it involves y' 
and does not contain c. 

2. Given a differentiable function f(x) and the set of functions y = f(x)+c, differen­
tiate once to see that the differential equation is y' = f'(x). This is the differential 
equation for the same reason as before. 

3. Given a differentiable function f(t) and the set of functions y = f(t) + c 1t + c2, 

differentiate once to get dy/dt = f'(t)+c1• Though it turns out to be unnecessary 
here, solve the pair of equations 

y f(t) + c1t + c2 

y' = f'(t) + cl 

for c 1 and c2 to get 

cl = y'- f'(t) 

c2 = y- f(t)- (y'- f'(t))t. 

Substitute these into the second derivative y" = f"(t). This equation contains 
neither constant, so the differential equation we want is y" = f"(t). Note that 
if f"(t) = -g, with g being the acceleration due to gravity, then this differential 
equation describes the motion of an object falling freely due to the force of 
gravity. 0 

The constants do not go away so easily in most examples. Here is another way in 
which the constants appear to go away as if by magic. 

Example 2.2 Find the (linear) differential equation of minimum order that is satis­
fied by the functions y = c1 sinx + c2 cosx. 

Solution. Here y' = c1 cosx- c2 sinx andy" = -c1 sinx- c2 cosx = -y, so 
the differential equation is y" = -y, or y" + y = 0. You should solve the y and y' 
equations for the coefficients c 1 and c2 and substitute the values for c 1 and c2 into y" 
to see that the same equation results. 0 

One should not expect the coefficient constants to disappear. The next example 
is more typical. 

Example 2.3 Find the (linear) differential equation of minimum order that is satis­
fied by the functions y = c 1 e' + c2x. 
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Solution. Solve the system 

y = c1ex+c2x 

y' cl~ +c2 

for the coefficients c1 and c2 to get 

and 

y-xy' 
c - ---::---

1 - e'(l- x) 

-y+ y' 
c2 = (1 - x). 

Then substitute into y" = c 1 ~ to get the differential equation 

Simplify to get 

"- _,._y-xy' 
y -Cit:----

1-x 

(1 - x)y" + xy'- y = 0. 

It is easy to verify that y = c 1 e' + c2x satisfies this differential equation. (Do so.) 0 

Here is one last example and its solution by Mathematica. 

Example 2.4 Find the (linear) differential equation of minimum order that is satis­
fied by the functionsy = c 1e' + c2e-2x + c3e3x. 

Solution. Solve the system 

y = 

y' = 

y" = 

Substitute into 

to get 

c ~ + c e-2x + c e3x 
I 2 3 

c ~- 2c e-2x + 3c e3x I 2 3 

c ex+ 4c e-2x + 9c e3x 
I 2 3 

6y + y'- y" 

6e' 

e2x(3y- 4y' + y") 

15 
-2y + y' + y" 

10e3x 
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6y + y'- y" 
6e' e' 

8 e2x(3y - 4y' + y") -2x 
- e 

15 
-2y+y'+y" +27 e3x 

l0e3x 
-6y + 5y' + 2y". 

The differential equation can be rewritten as 

y"' - 2y" - 5y' + 6y = 0, 

and it is easy to verify manually thaty = c1e' + c2e-2x + c3e3x is a solution. (Do so.) 
0 

Example 2.4 MUse Mathematica to find the (linear) differential equation of mini­
mum order that is satisfied by the functions y = c1 e' + c2e-2x + c3e3x. 

Solution. 

In[11:= expr= (y[x] ==c1 cex+c2 ce-2x+c3 ce3x) 
Out [11= y [x] == cex c 1 + ce-zx c 2 + ce 3x c 3 

These are the equations from which cl, c2, and c3 are to be eliminated. 

In[21 := (eqns = Table[D[expr, {x, k}], {k, 0, 3}] )// 

TableForm 
y[x] ==<ex Cl + <e-Zx Cz + <e3x C3 
y' [x] == cex c 1 - 2 ce-zx c 2 + 3 ce 3x c 3 Out[21= 
y" [x] ==<ex c 1 + 4 <e-Zx c 2 + 9 ce 3x c 3 
yl31 [x] == cex cl- 8 ce-Zx Cz + 27 ce3x c3 

Solve for y"' [ x] while eliminating cl, c2, and c3 to get an equation containing 
none of the constants cl, c2, and c3. When Solve is given a list of variables in its 
third parameter, it tries to give a solution that does not contain any of these variables. 
This is what happens on our example: 

In [ 31: = DervRule = Simplify [Solve [eqns, y'" [x], {c11 c 2 , c 3 }]] 

Out[31= {{yl 3l [x] ~-6y[x] +5y'[x] +2y"[x]}} 
Name the differential equation so we can check our solutions. The substitution 

applies only to the right-hand side of the equation. 

In[41:= de[x_,y_] = (y'"[x] == (y'"[x]/.First[DervRule])) 
Out { 41 = y I 3 I [X] = = -6 y [X] + 5 y' [X] + 2 y" [X] 

In[51:= s[x_] =expr[[2]] 
Out[51= cexcl +<e-zxcz +<e3xc3 

It appears necessary to Simplify before we can tell whether or not the differ­
ential equation is satisfied. 

In[61 := de[x, s] 
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Out [6]= ex c 1 - 8 e-Zx c 2 + 27 e 3 x c 3 == -6 (ex c 1 + e-Zx c 2 + e 3 x c 3 ) + 

5 (exc 1 -2e- 2 xc 2 +3e3 xc 3 ) +2 (exc 1 +4e-2 xc 2 +9e 3 xc 3 ) 

In[?]:= Simplify[de[x, s]] 
Out [7]= True 

Exercises 2.3. 1. Manually verify that y = c 1 e' + c2x satisfies the differential equa­
tion (1 - x)y" + .xy' - y = 0. (See Example 2.3.) 

2. Manually verify that y = c1 e' + c2e-2x + c3e3x satisfies the differential equation 
Y111 - 2y"- 5y' + 6y = 0. (See Example 2.4.) 

3. Use the technique of Example 2.4M to find a second-order differential equation 
that is satisfied by the two-parameter family of functions y = c 1 e' + c2x + x2 - 1. 

4. Use the technique of Example 2.4M to find a third-order differential equation 
that is satisfied by the three-parameter family of functions y = c 1e' + c2e-2x + 
c3e3x + sinx. 

5. Use the technique of Example 2.4M to find a third-order differential equation 
that is satisfied by the three-parameter family of functions y = c 1 xe' + c2e-2x + 
c3e3x. 

2.4 Characteristic Value Problems 

We now introduce the idea of a characteristic value problem and show how to use 
Mathematica to solve such problems. These ideas are needed immediately. 

Characteristic Value Problems 

Given an n x n matrix A, a characteristic value problem for A has the form 

(A- rl)v = 0, 

where r is a (possibly complex) number, v is a nonzero vector and I is the n x n 
identity matrix; it has 1 's on the main diagonal and O's elsewhere. The characteristic 
equation of the problem is det(A - rl) = 0. This is a polynomial equation of degree 
n, which means that there are n numbers r 1, r2, ••. , rn (counting multiplicities) that 
satisfy it. These numbers are the characteristic roots of A. To each such characteristic 
root ri, there corresponds at least one nonzero vector vi such that (A- ril)vi = 0. 
Any such nonzero vector corresponding to ri is called a characteristic vector of A. 
The matrix A is said to be diagonalizable if it has is a set of n linearly independent 
characteristic vectors. Otherwise A possesses generalized characteristic vectors in 
addition to characteristic vectors. We will meet generalized characteristic vectors 
only indirectly, so their definition is left to a linear algebra course. 

Here is a list of properties of characteristic value problems, roots, and vectors. 
The list is for your reference; we will not prove these assertions. 
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• Any nonzero multiple of a characteristic vector is a characteristic vector. 
• The multiplicity of a characteristic root r is called the algebraic multiplicity of the 

root: the number of linearly independent characteristic vectors that correspond to 
r is called the geometric multiplicity of the root. 

• The geometric multiplicity of a root never exceeds the algebraic multiplicity of 
that root. 

• A matrix possesses generalized characteristic vectors when the algebraic and ge­
ometric multiplicities of some root differ. 

• Characteristic vectors corresponding to different characteristic roots are linearly 
independent, so a matrix that has distinct characteristic roots is diagonalizable. 

• Some matrices that have repeated characteristic roots are diagonalizable. 
• Given an n x n matrix A, there exists an invertible matrix P such that 

p-1AP =J, 

the Jordan canonical form of A. The columns of P can be chosen to be n 
linearly independent characteristic vectors and generalized characteristic vectors 
of A. 

• When A is diagonalizable, J is a diagonal matrix having the characteristic roots 
of A along the diagonal. In this case, the columns of P can be taken to be n 
linearly independent characteristic vectors of A. 

Characteristic Value Problems by Mathematica 

Example 2.5 M Solve the characteristic value problem 

{ 6x+ 2y = rx 
3x+ y = ry. 

Solution. This can be written in the standard form (A- rl)v = 0 where 

A = ( ~ i ) , I = ( ~ ~ ). and v = ( ~ ) . 
We solve the problem in two ways: (1) using the theory, and (2) using built-in func­
tions from Mathematica. 

Using the theory: 

In[11 := Clear[A, sys, r, p, vl, v2] 

In[21:=A=(~ ~) 
Out [ 21 = { { 6, 2 } , { 3, 1 } } 

This matrix is the coefficient matrix. 

In [31 := (sys [r_] =A- r * IdentityMatrix[2]) //MatrixForm 

( 6- r 2 ) 
Out [ 31 = 3 1 _ r 
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Here is its determinant, which gives the characteristic polynomial. 

In[4]:= p[r_] =Det[sys[r]] 
Out [ 4 1 = - 7 r + r 2 

Find the numbers rl and r2 that make the determinant zero. These are the char­
acteristic roots: they make the system (A - rl)v = 0 have nonzero solutions. 

In[5] := Solve[p[r] == 0] 
Out [5]= { {r -7 0}, {r -7 7}} 

Capture the two characteristic roots. 

In[6] := {r1, r2} = r/.Solve[p[r] == 0] 
Out [6]= {0, 7} 

The first solution. Here we find vl corresponding to rl by choosing the first 
item in Null Space [ sys [ rl]]. 

In [ 7]: = v1 = NullSpace [sys [r1]] [ [1]] 
Out[?]= {-1, 3} 

The first solution checks. 

In[B] := A.v1 == r1 *Vl 
Out[B]= True 

The second solution. Here we find v2 corresponding to r2 by choosing the first 
item in Null Space [ sys [ r2]. 

In [ 9] := v2 = NullSpace [sys [r2]] [ [1]] 
Out [9]= {2, 1} 

The second solution checks. 

In[10] := A.v2 == r2 *V2 
Out[10]= True 

Native Mathematica. [Here Mathematica does the work, but we don't know how. 
(It does exactly what we did.)] 

In [ 111 : = {vals, vecs} = Eigensystem [A] 
Out [ 11] = { {7, 0}, { { 2, 1}, { -1, 3}}} 

We could now capture both the characteristic values and the characteristic vectors 
this way: 

In [12] := {rl, r2} = vals 
Out[12]= {7, 0} 

In[13]:= {v1,v2} =vecs 
Out[13]= {{2, 1}, {-1, 3}} 

Check both at once. 

In[14] := A.v1 == rl *v1&&A.v2 == r2 *v2 
Out[14]= True 

The characteristic roots are vals == { 0, 7} and the corresponding character­
istic vectors (written as rows) are vecs == { { -1 I 3, 1} , { 2, 1} } . This agrees 
with the previous results if we multiply the first vector by 3. This is permitted since 
any nonzero multiple of a characteristic vector is a characteristic vector. 0 
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Exercises 2.4. Set up manually and solve using Mathematica the characteristic value 
problems that correspond to all matrices in Exercises 2.2. Number your problems 
using the numbers from Exercises 2.2. 
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First-Order Differential Equations 

3.0 Introduction 

First-order differential equations provide a rich example of differential equations 
of many forms, most of which we can solve easily in the formal sense, and many of 
which we can solve and actually get answers. From calculus, we need the rules of dif­
ferentiation, both the formulas (for sums, products, quotients, chain rule, and so on) 
and the derivatives of the standard Mathematica functions (xn, trigonometric func­
tions, logarithms, exponentials, hyperbolic functions, and the like), and techniques 
of integration. We will likely see an example of most of the kinds of integrals that 
you ever attempted. If this sounds like bad news, the good news is that Mathematica 
can do these integrations for you. You will serve as the mastermind, and Mathemat­
ica will do the labor. Your responsibility is to ensure the correctness of the work 
that you are having Mathematica do, but Mathematica will do these correctness and 
consistency checks for you. You control what is being done; Mathematica does the 
hard work. It is important that you manually do some examples of problems of each 
type. The reason for this is that if you have no idea how to do a problem yourself, 
then it is not too likely that you will know how to guide Mathematica through 
the solution process. 

Following each example or group of examples you will find sample code showing 
how to get Mathematica to do what was just done manually. If you work through 
the examples yourself, you will quickly begin to appreciate just how much of the 
computational burden Mathematica can assume. 

3.1 First-Order Linear Differential Equations 

These equations are among the simplest to solve-at least in theory. If you are good 
at calculating integrals, you will be good at this. If you have had trouble with in­
tegrals, at least you have the confidence that Mathematica can do these problems 
easily. If you formulate the problem correctly, Mathematica will give you the correct 
answer. Even when Mathematica cannot give you an answer in closed form (from 

C. C. Ross, Differential Equations
© Springer Science+Business Media New York 2004
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DSol ve), NDSol ve can give you an answer that you can plot and from which you 
can get accurate numeric function values. 

The general first-order differential equation has the form: 

a 1 (x)y' (x) + a0 (x)y(x) = b(x). (3.la) 

This can be rewritten in the simpler form 

y'(x) + p(x)y(x) = q(x), (3.1b) 

with p(x) = a0(x)la1(x) and q(x) = b(x)la1(x), provided that a1(x) is never 0 on any 
interval I over which we desire a solution. Assume that a 1 (x) and a0(x) are contin­
uous on I. Initially we will also want b(x) to be continuous on I, though some very 
interesting problems occur where b(x), and hence q(x), is discontinuous. 

To draw your attention to the linear algebraic side of things, note that equations 
of this form consist of two parts, 

1. a function L, defined by L(y) = a 1 (x)y' + a0(x)y for y a differentiable function 
defined on I, and 

2. a function b, which is the desired result when we evaluate L at y. 

The functions a 1 (x) and a0(x) are the coefficients; they are functions of x alone (not 
y). They may be constant. 

We deliberately separated from the definition of L any mention of the relationship 
of y to the variable x to emphasize the fact that L has as its domain a set of functions, 
of which y is a representative, and to say how L operates on each of these functions. 
L(y) is also a function, but its domain is the interval I. A more complete definition of 
L says what L(y) does to x. Here is this fuller definition: 

L(y)(x) = a 1 (x)y' (x) + a0(x)y(x). 

This notation says that L(y) is a function, albeit with a complicated name, whose 
value at the number xis L(y)(x). This is exactly like using f(x) to denote the value of 
fat x. The operator L can be considered independently of b(x), and indeed it is most 
productive to do so! We can look at L(sinx), L(ex), L(:x?- - 3x) and so on. We could 
try many functions and not find one for which L(y)(x) = b(x), but the point is: if we 
substitute a function into L, we get back a function. What we need is a simple way 
to decide which function to substitute into L so that the result is b(x). That is what it 
means to solve the differential equation. It turns out that there are lots of functions 
that work, but that they are all related in a simple way, and our look at linear algebra 
in the last chapter showed us how to approach the problem. 

If b(x) * 0, we have a nonhomogeneous problem. In the last chapter, we saw 
that to solve a nonhomogeneous linear problem completely, we should 

1. completely solve the homogeneous problem, 
2. find one solution of the nonhomogeneous problem and then 
3. add these to obtain every solution. 
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We can use an observation from calculus to get ourselves started and then, having 

obtained the solutions, look back and analyze them. 
A place to start is one of the simplest differential equations there is: Given the 

function g(x), find f(x) so that (dx! dx)f(x) = g(x). You recognize that the solution is 

f(x) = I g(x) dx + c. 

There is linear algebra underlying even this simple problem: 

• What is the linear function? The differentiation operator, (dl dx). 

• What is its kernel? The set of all constant functions, represented by u(x) = c. 

• What is q(x), the function that (dl dx) sends into g(x)? That is merely q(x) ::: 

I g(x)dx. 
• The solution function f(x) given above then can be thought of as following our 

prescription for solving linear problems: find the kernel ( = c) and something that 
satisfies the nonhomogeneous equation(= I g(x)dx) and then add. 

We will call the "something that satisfies the nonhomogeneous equation" a par­
ticular solution. This will distinguish it from what is usually called the general 
solution or complete solution ( = I g(x) dx + c), which is a description of all of the 
solutions to the problem. 

We now proceed to find the general solution of the differential equation 

y' (x) + p(x)y(x) = q(x). (3.2) 

We solve this by making an observation: (admittedly this is an unfair approach, but 
it is traditional) 

:X ( ei p(x)dx y(x)) ::: ei p(x)dx y' (x) + p(x)ei p(x)dx y(x) 

ei p(x)dx (y'(x) + p(x)y(x)). 

The second factor of this expression is the left-hand side of our differential equation, 

so if we multiply both sides of our differential equation through by ei p(x) dx, we have 

:X (ei p(x1dx y(x))::: ei p(x)dx q(x). 

We just solved an equation of this form in the paragraph above. In the present 

case, the unknown function is ei p(xldx y(x), for which we can solve to get 

ei p(x)dx y(x) ::: I ei p(x)dx q(x) dx +c. 

From this we isolate our solution y(x): 

y(x) ::: e- I p(x)dx (I ei p(x)dx q(x) dx +c) 
::: e- I p(x)dx I ei p(x)dx q(x) dx + ce- I p(x)dx. (3.3) 
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If you look closely at ( 3.3), you will observe that the symbol x has three different 
meanings: 

1. the argument of y, 
2. the variable of integration in ei p(x) dx, and 
3. the variable of integration in J ei p(x) dx q(x) dx. 

This has the potential for confusion, and we will eventually remedy this problem 
by using definite integrals. 

In (3.3) it may be difficult to identify the two parts of the solution that we ex­
pected to get. Here is a hint: the part that describes the kernel will always have one 
or more arbitrary constants in it (here the part with c in it) and what remains is a 
particular solution. Let's check out these statements. 

Given that L(y) = y' + p(x)y, what does L do to the two terms of our solution, 
(3.3)? 

First, observe that 

L(ce- Ip(x)dx) :X (ce- Ip(x)dx) + p(x)(ce- Ip(x)dx) 

Second, observe that 

- p(x) ( ce- I p(x)dx) + p(x) ( ce- I p(x)dx) 

= 0. 

L(e- Ip(x)dx I efp(x)dxq(x)dx) = :X (e- fp(x)dx I efp(x)dxq(x)dx) 

+ p(x) (e- J p(x)dx I ei p(x)dxq(x) dx) 

= -p(x) (e- I p(x)dx I ei p(x)dxq(x)dx) + e- Ip(x)dxef p(x)dxq(x) 

+ p(x)(e- fp(x)dx I eip(x)dxq(x)dx) 

= q(x). 

The first observation verifies that for every number c, 

uc(x) = (ce- fp(x)dx) 

is in the kernel of L, and the second verifies that 

Yp(x)=(e-fp(x)dx Iefp(x)dxq(x)dx) 

is a particular solution of L(y) = q(x). As the theory states, y(x) = uc(x) + Yp(x) is 
the complete solution of the first-order linear differential equation L(y) = q(x). In 
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the Mathematica notebook Check Linear Theory these two calculations are done by 
Mathematica. 

We have left one thing to do. We know that the function uc(x) = ce- I p(x)dx is 

never 0 (so long as p(x) is continuous and c I= 0) and that L(u c) = 0, from (a) 
above. For any choice of c, L(u) = 0, but is every function z(x) in the kernel of L 

representable as z(x) = uc(x) for some c? The answer is "Yes," as we now show: 
Suppose that z(x) is in the kernel of L. Consider the function w(x) = z(x)lv(x), where 
v(x) = e- I p(x)dx. Calculate 

w'(x) = 

= 

z'(x)v(x)- z(x)v'(x) 

(v(x)) 2 

-p(x)z(x)v(x)- z(x)(-p(x)v(x)) 

(v(x))2 

0. 

Since w'(x) = 0, w(x) =c. Thus z(x) = v(x)w(x) = v(x)c = ce- Ip(x)dx, and hence 
is one of the functions represented by uc(x). This means that uc(x) represents the 
entire kernel of L. 

Theorem 3.1. Let L(y) = y' + p(x)y. Then 

(a) uc(x) = ce- I p(x)dx represents the entire kernel of L: L(uc)(x) = 0 for every c, and 

every member of the kernel of L has this form. 

(b) y P(x) = e- I p(x) dx J ei p(x) dx q(x)dx is a particular solution of L(y)(x) = q(x). 

(c) The expression y(x) = y P(x)+uc(x) represents all of the solutions of L(y)(x) = q(x): 

it is the general solution. Every solution of L(y)(x) = q(x) has this form. 

The interaction between linear algebra and differential equations was this: linear 
algebra told us the form that the solution would take; differential equations invoked 
certain methods from calculus to enable us to actually find the solutions. This is 
the way it will continue to be throughout our study of linear differential equations: 
Linear algebra will suggest the form of the solution, and differential equations 
will dictate the methods we must use to find the solution. 

Exercises 3.1. PART I. Solve these first-order linear differential equations manually 
and by Mathematica. Check your answers. 

dy 
1. ~- 5y = 0. 

dx 
dy 2x 

2. dx- 5y = e . 

dy 
3. ~ + (cosx)y = 3 cosx. 

dx 
dy . 

4. ~ + (tanx)y = smx. 
dx 
dy 

5. ~ + 2.xy = 0. 
dx 



dy 
6. - + 2xy = 4x. 

dx 
dy 

7. x- + 2y = 0. 
dx 
dy x2 

8. x- + 2y = e . 
dx 
dy 

9. x- + 2y = 3x. 
dx 

dy 
10. (x + 3) dx + 2y = 0. 

11. (x + 3/Y + 2y = (x + 3)4. 
dx 

dy 
12. x- - 2y = 0. 

dx 
dy 3 

13. x- - 2y = x . 
dx 
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PART II. Solve and check these differential equations by Mathematica. [Look up the 
proper Mathematica representation for In, tanh, sinh and cosh.] 

dy 
14. -- 5y = cosx. 

dx 
dy 0 

15. - + (cosx)y = 3 smx. 
dx 
dy 

16. - + 2xy = 4x2• 
dx 
dy 

17. x-- 2y = x9 1nx. 
dx 
dy 

18. x-- 2y = 3(lnx)2 - 2(lnxl 
dx 

dy 0 

19. dx + (tanhx)y = smhx. 

dy 
20. - + (coshx)y = 3 coshx. 

dx 

3.2 Linear Equations by M athematica 

First-Order Linear Differential Equations by Mathematica 

Having seen the theory of first-order linear differential equations and studied sev­
eral examples, it is time to see how to get Mathematica to solve these problems for 
you. We will look at the same examples that were done manually in the last section. 
The notebook Using DSolve guides you through these same examples. You may read 
through that notebook rather than the text of this section. In that notebook, the expla­
nations are fuller than they are here. This is basically a summary of that notebook. 

Reminder, in Mathematica use== when defining an equation or for testing equal­
ity between two expressions. Use = for assignment. This distinction is important. 
example 
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Example 3.1 (M) Solve the differential equation y'- 4y = 0 in Mathematica. 

Solution. Name the equation we are trying to solve and the variables x and y. It 
is easy to verify that y(x) = c exp( 4x) is a solution from y' (x) - 4y(x) = 4c exp( 4x) -
4c exp( 4x) = 0. Here is how to find this solution using Mathematic a. 

In [1]: = de [x_, y_] = (y' [x] - 4y [xl == 0) 

Out[l]= -4y[x] +y'[x] == 0 

When DSol ve is used, the result is given in the form of (one or more) rules. 
These rules do not define y [ x] , but say how y [ x] should be defined. 

In [ 21: = So1nRu1e = DSo1ve [de [x, y], y [x], x] 

Out [ 21 = { { y [ x] ~ e 4 x C [ 1] } } 

We can capture our first solution and call it y 1 [ x] this way: Substitute our rule 
into y [ x J , and use this expression to define y 1 [ x] , which is our solution. 

In [ 31 : = y1 [x_] = Simplify [y [x] I. So1nRu1e [ [ 1] ] ] 

Out [ 31 = e 4 x C [ 1] 

The use of Simplify was not necessary here. But often it is useful, if not 
necessary, so it is a good habit to use it. The [ [ 1] ] extracts the contents of the outer 
list. {{a}} [ [1]] =={a}.Otherwisey1 [x] wouldlooklikey1 [x] = {expr}, 
rather than y1 [x] = expr. You will want to remember to extract the contents 
this way when capturing solutions. Alternatively, you can use First [ e xp r] to 
accomplish the same thing as expr [ [ 1] ] . 

That y 1 [ x] is a solution, no matter what value the parameter C [ 1] has, can be 
checked this easy way: 

In[41:= Simp1ify[de[x,y1]] 

Out[41= True 

The symbol de [ x, y] is an equation. When y 1 is substituted for y, this equation 
is identically (not conditionally) I rue. Here, to remind you, is the definition of 
de [x, y]: 

In[51 := de[x, y] 

Out[51= -4y[x] +y'[x] == 0 

Example 3.2 (M) Solve the differential equation xy' - 4y = x7 e" in Mathematica. 
Solution. State the problem. 

In[61:= de[x_,y] = (xy'[x] -4y[x] ==x~7Exp[x]} 

Out[61= -4y[x] +xy'[x] ==exx7 

Solve using DSol ve. 

In [ 71: = So1nRu1e = DSo1ve [x y' [x] - 4y [x] == x~7 Exp [x], y [x], x] 

Out[71= {{y[x] ~exx4 (2-2x+x2 ) +x 4 C[1]}} 

One can capture this solution, simplify its form, and call it y 2 [ x] this way: 

In [ 81 : = y2 [x_] = Simplify [y [x] I. So1nRu1e [ [ 1]] 

Out [ 81 = x 4 (ex ( 2 - 2 x + x 2 ) + C [ 1] ) 
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There is no requirement to simplify, but why keep a solution that is unnecessarily 
complicated? That y2 [x] is a solution can be checked this way: 

In[9]:= Simplify[de[x,y2]] 
Out[9]= True 

Note: y2 [ x] can be obtained in one line by composing steps 7 and 8. 

In [10] := y2 [x_] = Simplify[y[x] I .DSolve[de [x, y], y[x], x] [ [1]] 
Out [ 10] = x 4 (ex ( 2 - 2 x + x 2 ) + C [ 1] ) 

Example 3.3 (M) Solve the differential equation.xy' +4y = x7 e. (Note that the only 
change from the previous problem is a single sign: the"-" became"+". But observe 
how different the solution is!) 

Solution. This time, for a change, let's not name our equation, but use it verbatim. 
Note how we lose generality. 

In [11] := SolnRule = DSolve[xy' [x] + 4y[x] == xA7 Exp[x], y[x], x] 
Out[11}= {{y[x] ~ 

1 
4 (ex (3628800- 3628800 x + 1814400 x 2 - 604800 x 3 
X 

+ 151200 x 4 - 30240 x 5 + 5040 x 6 

7 C[1] }} -720x +90x8 -10x9 +x10 )) +--4 -
x 

One can capture this solution, call it y 3 [ x] , this way: 

In [12] := y3 [x_] = Simplify[y[x] I .SolnRule[ [1]] ] 
1 

Out [12}= 4 (ex (3628800- 3628800 x + 1814400 x 2 - 604800 x 3 
X 

+ 151200 x 4 - 30240 x 5 + 5040 x 6 

-720x7 +90x 8 -10x9 +x10 ) +C[1]) 

That y 3 [ x] is a solution can be checked this way: 

In[l3]:= Simplify[xy3'[x] +4y3[x] ==XA7 Exp[x]] 
Out[13}= True 

Observe how much more typing is required when the equation is not named, and 
how much greater chance of error this introduces. Unlike the previous examples, we 
cannot just copy Input lines 11 or 13 for use elsewhere: these lines are special to 
this problem, and not general, as the others were. 0 

Exercises 3.2. Use DSol ve on the problems in Exercises 3.1. 

3.3 Exact Equations 

Conservative Vector Fields 

When you were studying multidimensional calculus, you certainly studied vector 
fields. A vector field on n-dimensional Euclidean space R n is a function that assigns 
to each point of Rna direction (vector) in Rn. In symbols, 
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F(x1, x2, ... , xn) 

= (fl (xp x2, ... , xn), f2(Xp x2, ... , xn), ... , fn(xl, x2, ... , xn)). 

Examples are F(x, y) = (y, x) on R 2 , and F(x, y, z) = (yz, xz, xy) on R 3 . 

Vector fields that are conservative are of particular importance and interest. 
(Both of the examples above are conservative.) 

Definition 3.1. Let U be a connected open set in Rn and F be a continuously dif­

ferentiable vector field on U. A real function ¢ defined on U is called a potential 
function for F if the gradient of¢ is F. The vector field F is called conservative if 
it has a potential function. 

One of the properties of conservative vector fields is that given a conservative 
vector field F, with potential function ¢ in a domain D, the integral ofF along a 
piecewise continuous curve C from P to Q which lies completely in D can be cal­
culated by: fc F = ¢(Q) - ¢(P), and the value of the integral does not depend on the 
choice of the curve C. This integral looks like one of the forms for the fundamental 
theorem of calculus, and it does say that a potential function is an antiderivative of 
its associated vector field. 

You also learned the theorem that if f(x, y) is a function on Rn having continuous 
second partial derivatives, then 

A consequence of this is that so long as the derivatives involved are continuous, 

am+nr am+nr 

a~ayn oyna~· 

That is, when a given pair of mixed higher-order partial derivatives are of the same 
order in each variable, then they are equal. Thus the order of differentiation does 
not matter. This provides for an immense simplification in keeping track of higher­
order derivatives. You may also have learned that if a vector field (f(x, y), g(x, y)) has 
the property that of loy = og/ox then the vector field is conservative. The obvious 
question is: how do we find a potential function for the vector field, knowing that it 

is conservative? 
There is a process that is presented in most multidimensional calculus courses 

and most differential equations courses that will produce a potential function. The 
process is normally presented only for the case of two variables, and you are left to 
guess what it might be in higher dimensions. 

A simple formula produces a potential function in one step (two integrations) 
for the two-dimensional case. Once you understand it, the generalization to higher 
dimensions is easy, and it is not at all difficult to remember. Here is the formula in 
two dimensions expressed as a theorem. 
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Theorem 3.2. If the vector fieldV(x, y) = (j(x, y), g(x, y)) is conservative in the rect­
angle R = [a, b] X [c, d], and P = (p1, p 2) and Q = (x, Y) are in R, then 

ifJ(x, y) = (x f(tp p 2) dt1 + (y g(x, t2) dt2 
JPt JP2 

is a potential function for the vector field V(x, y). 
Proof Observe that the path of integration is along the horizontal line segment 

from P to the vertical line through Q and then along that vertical line segment to Q. 
To illustrate how to remember this formula, consider these parameterizations for the 
two lines, as illustrated in Figure 3.1: 

HORIZONTAL: X= t1, y = p 2, p 1 :::; t1 :::; X, 

and 
VERTICAL: X = X, y = t2, p 2 :::; t2 :::; y. 

This is for the case when Q is to the right of and above P. Using this parameter­
ization, the definition of¢ is 

The proof that ¢ is a potential function is just a matter of calculating the gradient to 
see that grad(¢(x, y)) = V(x, y). This is left as an exercise for you to do. D 

The notebook, Exact Differential Equations generates potential functions in this 
manner and checks the results. 

In three-space, the analog of "rectangle" is "box;" you need to get from the fixed 
comer P to the diagonally opposite "general" comer Q; and you do so by following 
a sequence of three connected edges from P to Q as Figure 3.2 indicates. You should 
parameterize the three parts of this curve . 

...---------------. Q =(X, Y) 

P = (pl, p2) !..-----------+' PI =(X, p2) 

Fig. 3.1. The path of integration to find a potential function: two variables. 
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Fig. 3.2. The path of integration to find a potential function: three variables. 

Exact Differential Equations 

Definition 3.2. A differential equation in the form M(x, y)dx + N(x, y)dy = 0 is called 

exact provided that the vector field V(x, y) = (M(x, y), N(x, y)) is conservative. 

To solve such an exact differential equation, we will find a potential function 
¢(x, y) and say that the solution is ¢(x, y) = c, where cis an arbitrary constant. Should 
we want a solution that passes through the point P = (p 1, p2 ), take c = ¢(?), so 
that the solution is cp(x, y) = ¢(P). This defines the solution implicitly, rather than 
explicitly. 

Example: Two Variables 

Example 3.4 Show that the differential equation ydx + xdy = 0 is exact, and find the 
solution that passes through the point (3, 4). 

Solution. Here M(x, y) = y and N(x, y) = x. The equation is exact because 

aM aN 
--=I=-. 
ay ax 

From our theorem and the fact that we are given the fixed point (3, 4) from which to 
start the solution, we will want to express ¢(x, y) this way: 

¢(x,y) (X 4dt] + rv Xdt2 
j3 j4 

4t I lr'I =3 + X t21:2 =4 

4(x-3)+x(y-4) 

= xy- 12 

so ¢(x, y) = xy-12. This checks in the differential equation and, in addition, ¢(3, 4) = 
12- 12 = 0. 0 
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Example 3.5 (M) Here is Example 3.4, done in Mathematica. 
Solution. 

In[l]:= MM[x_,y_] =y; (*UsenamesMM, NNbecause*) 

In [2] := NN[x_, y_] = x; (* N is a reserved name*) 

In[3]:= {pl,p2}={3,4} 
Check for exactness. 

Out [3]= {3, 4} 

In [ 4]: = Simplify [ay MM[x, y] == ax NN [x, y]] 
Out[4]= True 

Therefore the equation is exact. Solve using the method of the theorem. 

In[5]:= f[x_,y_] =Simplify[ rxMM[tl,p2]dltl+ ryNN[x,t2]dlt2] Jpl Jp2 
Out [ 5] = -12 + X y 

The solution we want is f [ x, y] == 0. 

In[6] := f[x, y] == 0 

Out[6]= -12+xy==0 

Define a gradient function. 

In [7] := grad[fcn_, vars_List] := Map[Function[t, at fen], vars] 
Check the solution using the function grad that we just defined. 

In[B]:= grad[f[x,y], {x,y}] == {MM[x,y],NN[x,y]} 
Out[BJ= True 

Example: Three Variables 

Example 3.6 Show that the differential equation y z dx + x z dy + x y dz = 0 is exact 
and find the solution that passes through the point (3, 4, 5). 

Solution. Here M 1 (x, y, z) = y z, M 2 (x, y, z) = x z, and M 3 (x, y, z) = x y. The equa­
tion is exact since 

and 
8M2 8M3 ---x---8z - - 8y · 

The solution we desire is then 

cp(x, y, z) lx (4)(5)dt 1 + ly (x)(5)dt2 + lz (x)(y)dt3 

= (20) t 1 ~~ ~3 + (5x) t2 li2 ~4 + (xy) t3 1~1 ~5 
20(x- 3) + (5x)(y- 4) + (xy)(z- 5) 

= 20x - 60 + 5xy - 20x + xyz - 5xy 

= xyz- 60 
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So the result is ¢(x, y, z) = x y z- 60 = 0. This checks. The parameterizations used in 
defining the three connected lines were: 

C1 Ct1) = {t1, 4, 5), 3 :o; t1 :o; x, 
C2(t2) = {x, t2, 5}, 4 :o; t2 :o; y, 

C3(t3 ) = {x, y, t3 ), 5 :o; t3 :o; z. 

Example 3.7 (M) Here is Example 3.7 done in Mathematica. 
Solution. 

In[91:= Ml[x_,y_, z_] =Y*Z; (*Numberthecoefficients*) 

In [ 101 : = M2 [x_, y_, z_] = x * z; (*to distinguish between*) 

In[111 := M3[x_, y_, z_] = x*y; (*them.*) 

In[121 := {pl, p2, p3} = {3, 4, 5} 

Out [ 121 = { 3, 4, 5} 

Test for exactness: 

In[131 := And[ayMl[x, y, z] == axM2[x, y, z], 

az Ml [x, y, z] = = ax M3 [x, y, x] , 
az M2 [x, y, z] == ay M3 [x, y, y]] 

Out[131= True 

Therefore the equation is exact. 

In [141 := f3 [x_, y_, z_] =Simplify[ lx Ml [tl, p2, p3]dltl+ 
y pl z 

l M2 [x, t2, p3]dlt2 + l M3 [x, y, t3]dlt3] 
p2 p3 

Out[141= -60+xyz 

The solution we want is f3 [ x, y, z J ==0: 

In [151 := f3 [x, y, z] == 0 

Out[151= -60+xyz==0 

0 

Check that this is a solution. The grad function defined in Example 3.5M works 
for three variables. 

In[161 := grad[f3[x, y, z], {x, y, z}] == 

{Ml [x, y, z], M2 [x, y, z], M3 [x, y, z]} 

Out[161= True 

0 
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Integrating Factors 

Sometimes a differential equation M(x, y)dx + N(x, y)dy = 0 is not exact, but when 
the equation is multiplied by a function Jl(x, y) the resulting equation 

Jl(X, y)M(x, y)dx + Jl(X, y)N(x, y)dy = 0 

is exact. Such a function Jl(X, y) is called an integrating factor for the equation. If an 
equation M(x, y)dx + N(x, y)dy = 0 is not exact then, in general, the search for an 
integrating factor is not easy. Here is why: In order for Jl(X, y) to be an integrating 
factor, we need to have (8/oy)(jlM) = (8/ox)(jlN). When evaluated, this necessary 
equality becomes 

oJI(x,y)M( ) ( )oM(x,y) ------a;- X, y + Jl X, y oy 

Ojl(X, y) oN(x, y) 
= -------a;-N(x, y) + Jl(X, y) ox , 

which is a partial, not ordinary, differential equation, and finding a solution can be a 
formidable task except in certain special cases when more is known about the form 
of Jl(X, y). 

Here are some of the special cases where it is possible to find an integrating factor 
without too much work: 

SPECIAL CASE I. Jl = Jl(X) is a function of x, alone. Then we need to solve: 

a 
oy (Jl(x)M(x, y)) ( ) oM(x, y) 

= Jl x ay 
djJ(X)N( ) ( )oN(x,y) 

= ~ x, y + J1 x Ox 

a 
ox (Jl(x)N(x, y)). 

After a little rearranging, we see that we can solve 

djJ(X) N(x, y) + Jl(X) (oN(x, y) _ oM(x, y)) = O 
dx ox oy 

as an ordinary differential equation if 

_1_ (oN(x,y) _ oM(x,y)) 
N(x, y) ox oy 

contains only the variable x. Here Jl(x) is easily obtained, because when this is true, 
the equation is merely dJI(x)!dx + P(x)Jl(x) = 0, which is a homogeneous first-order 
linear ordinary differential equation. We studied these equations earlier and found 
thatjl(X) = e- fP(x)dx. 
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Example 3.8 Solve the differential equation (3xy2 + yl)dx + 2xy dy = 0, given that 
there is an integrating factor of the form J1 = Jl(x). 

Solution. The differential equation is not exact, since 

a a 
ay M(x, y) = 6xy + 2y =t. 2y = ax N(x, y) 

except when either x = 0 or y = 0, which is not a rectangle in the plane. The condition 
that there exist an integrating factor of the desired form is 

_1_ (aN(x, y) _ aM(x, y)) = 2y- (6xy + 2y) = -6xy = _3 
N(x, y) ax ay 2xy 2xy ' 

which, being constant, qualifies as a function of x, alone. So it is feasible to search for 

an integrating factor that is a function of X alone. To do this, require that (a! ay )(JlM) = 
(a!ax)(JlN). This means that J1(x)(6xy + 2y) = 2J1'(x)xy + 2jl(x)y. After subtracting 
2J1(x)y from both sides, we find that 2xy(Jl'(x) - 3J1(x)) = 0. Since x = 0 does not 
determine a function, we want Jl'(x) - 3J1(x) = 0, and y =t. 0, which determines 
Jl(X) = e3x. 

Multiply through the differential equation by Jl(x) = e3x to obtain 

which is exact, since 

aM(x, y) 3x(6 2 ) 6 3x 2 3x aN(x, y) 
--:---=e xy+ y = e xy+ e y= . 
~ fu 

The solution that passes through (pi' p 2) is 

</J(x,y) l x ly 
e3x(3 X p~ + p~)dx + 2 X e3x y dy 

P1 Pz 

e3xx i- (e3PJ )pip~ 

0. 

0 

SPECIAL CASE II. J1 = Jl(y) is a function of y alone. The theory parallels that for 
the case where the integrating factor has the form J1 = Jl(x). you are encouraged to 
develop the theory for yourself. 

SPECIAL CASE III. Jl(X, y) = xPyq, a simple product of a power of x and a power 

of y. Sometimes, when the differential equation M(x, y)dx + N(x, y)dy = 0 has co­
efficients that are polynomials in x andy, it is possible to find an integrating factor 

of the form Jl(x, y) = xPyq by equating the coefficients of like terms in the test for 

exactness. 

Example 3.9 Consider the differential equation 
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(5~y- 6l)dx + (4~- 14xl)dy = 0, 

which is not exact. Show that the differential equation has an integrating factor of the 
form Jl(x, y) = xPy'l and solve the resulting exact equation. 

Solution. The differential equation becomes 

which simplifies to 

(5xp+Zyq+l - 6xPyq+4 )dx + (4xP+3yq- 14xp+!yq+3 )dy = 0. 

The test for exactness requires that iJM!iJy = iJN/iJx, which means that 

Equating coefficients gives the simultaneous equations 

5(q + 1) = 4(p + 3) 

and 
-6(q + 4) = -14(p + 1). 

When simplified and solved, these equations yield p = 2 and q = 3. 
This means that the integrating factor we want is Jl(X, y) = x2y3 and the equation 

we are to solve is 

This is exact since 
iJM iJN - = 20x4l-4~l = -. 
iJy ox 

Using the same technique as before, we see that the solution that passes through the 
point (p1, p 2) can be expressed as 

rp(x,y) rx(5x4pi-6~p"j_)dx+ e(4~l-14x3i)dy 
JP1 JP2 

= ~l- 2x3/ - PiPi + 2pjpj_ 

= 0. 

Verify that this checks in the exact equation and the original. <> 

Exercises 3.3. PART I. Show that each of the differential equations below is exact. 
Solve each one manually if you can; otherwise by Mathematica. Check your answers. 

1. y dx + x dy = 0. 
2. (1 + 6~ + y)dx+ (-4 +x)dy = 0. 
3. (3x- y + 3(x + 2y))dx + (-x + 2(3x- y)- 2y)dy = 0. 
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4. (siny3) dx + 3xy2(cos y 3) dy = 0. 

5. (y cosx +cosy) dx + (sinx- x siny) dy = 0. 
X y 

6. 2 2 0/2 dx + 2 2 3/2 dy = 0. 
(x-+y)-' (x+y) 

7. (1 + e' + xe')y3 dx + 3x(I + e')y2 dy = 0. 
8. ((e' + eY)y3 + xe'y3) dx + (3x(e' + eY)y2 + xeYy3) dy = 0. 

9. (e' + 6x2 + cosy)dx- (4 +xsiny)dy = 0. 
10. (2x3 + xy + (x- 4y)(6x2 + y)) dx + (x(x- 4y) - 4(2x3 + xy)) dy = 0. 

PART II. Each of these differential equations has an integrating factor of the 

form ,u = ,u(x). Find an integrating factor and solve the resulting differential equation 

manually if you can; otherwise solve by Mathematica. Check your answers. 

11. (4xy + 3e'y2 + xe'y2 ) dx + (x2 + 2xe'y) dy = 0. 
12. (2ycosx) dx + sinxdy = 0. 
13. 3ydx + dy = 0. 

PART III. Integrating factors of the form ,u = ,u(y). 

14. Show that if M(x, y) dx + N(x, y) dy = 0 is not exact but that 

1 (aM aN) -----
M(x,y) ay ax 

is a function of y alone (does not contain x ), then there is an integrating factor of 

the form ,u = ,u(y). You will encounter the differential equation 

, 1 (aM aN) ,u (y) + ,u(y)-- - - - = 0. 
M(x,y) ay ax 

Each of the differential equations 15-18 has an integrating factor of the form 

,u = ,u(y). Use the results of problem 14 to find an integrating factor. Solve the 

resulting differential equation manually if you can; otherwise solve by Mathe­
matica. Check your answers. 

15. y cos(xy)dx + (x cos(xy) + sin(xy))dy = 0. 
16. (y + e'y + xe'y)dx + (3x + 3xe')dy = 0. 
17. (y + yeY)dx + (4x + 4xeY + xyeY)dy = 0. 
18. (1 + y)dx + (3x + 2xy)dy = 0. 

PART IV. Verify that each of these differential equations has an integrating factor 

of the form ,u = ,u(x, y) that is given. Solve each equation manually if you can; 

otherwise by Mathematica. Check your answers. 

19. (y + xy)dx + (x + xy)dy = 0; ,u(x, y) = ex+Y. 

20. [xy + y arctan(x + y) + x 2y arctan(x + y) + 
2xy2 arctan(x + y) + y3 arctan(x + y)] dx 

+[xy + x arctan(x + y) + x3 arctan(x + y)+ 

2x2y arctan(x + y) + xy2 arctan(x + y)] dy = 0; ll(X y) =_I_ 
r ' l+(x+v)2 • 
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[ exact, both before & after] Jl(x,y)= ~· 
~~+l 

PART V. Verify that each of these differential equations has an integrating factor 
of the form J1 = X"y". Find the quantities m and n by solving a system of two linear 
equations in m and n. Solve the resulting exact differential equation manually if you 
can; otherwise by Mathematica. Check your answers. 

22. (9y + 3ye2Y)dx + (12x + 4xe2Y + 2xye2Y)dy = 0. 
23. ( 12y + xy2 cos(xy) + 4 y sin(xy)) dx + (9x + x2y cos(xy) + 3x sin(xy)) dy = 0. 

PART VI. Theory. 

24. Prove that the function described in Theorem 3.2 is a potential function for the 
vector field V(x, y), and that </J(P) = 0. When trying to calculate 8¢J!Bx you will 
need to use the fact that Bg!Bx = Bf!By. Then the integral you have will be easy 
to evaluate. 

25. Given a conservative vector field V(x, y, z) in 3-space, develop a single formula 
for finding a potential function for V in a manner analogous to that given in 
Theorem 3.2. You will integrate along a broken-line curve from the fixed corner 
P = (pl, p2, p3) to the diagonally opposite corner Q = (x, y, z), by following 
three connected edges from P to Q. Note which variables are constant on a given 
edge. Two variables will be constant; you integrate the one that is not constant. 

26. Prove that your 3-space formula is correct. The manipulations you need in your 
proof will suggest clearly to you why the definition of conservative is defined 
the way it is in higher dimensions. 

27. State the definition of a conservative vector field for 3-space. There will be 
more relationships to satisfy since the behavior in each variable must be checked 
against every other variable. 

28. Generalize the previous two problems ton-space. Everything generalizes nicely, 
but the notation gets to be somewhat awkward. 

3.4 Variables Separable 

Separable Differential Equations 

Another class of differential equations that is easy to solve formally is those equa­
tions with variables separable. 

Definition 3.3. A first-order differential equation in two variables is said to have its 
variables separable provided that it is of one of these two forms: 

(3.4a) 

or 
dy/dx = F(x)G(y), (3.4b) 

or can be put into one of these forms. 
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Differential equations of the form (3.4a) have an obvious integrating factor 
Jl(X, y) = l!(f2(x)g2(y)). In order to use this integrating factor, we require that 
f 2(x)g2(y) =F 0. That is, we seek solutions that are defined on intervals where 
f 2(x) =F 0, and lie between horizontal lines where g2(y) = 0. This means that you 
can expect your solution(s) to reside inside some rectangular box that is bounded 
left-to-right by consecutive places where f 2(x) = 0, (or by ±oo), and top-to-bottom 
by consecutive places where g2 (y) = 0, (or by ±oo). If either f 2(x) or g2 (y) is never 
0, then in the appropriate direction these restrictions do not apply. The examples will 
help clarify these ideas. 

Another possibility that may occur when integrating factors of this form are used 
is that you may either gain or lose solutions. That is, the solutions that the original 
equation has and the set of solutions that you produce may not agree. This is a dis­
turbing state of affairs and deserves careful attention. You want all of the solutions 
of the original equation, and nothing that is not a solution. 

Returning to the solution of differential equations in the form 3.3, multiply 
through by the integrating factor Jl(X, y) = ll(f2(x)g2(y)) to get: 

or 

which may be integrated with respect to x to get the formal solution 

(3.5a) 

We have used the fact that I G(y)(dyldx)dx = I G(y)dy from the change-of­
variables formula of calculus. Solutions produced this way are implicitly defined. 
That is, they state no preference whether x or y is independent and the other depen­
dent. In general one has to appeal to the implicit function theorem to be certain that 
the solution formally defines y as a function of x or vice versa. Actually solving for y 

in terms of xis often impossible or unreasonably difficult. So we usually say that the 
implicit form F(x, y) = c of the solution is the solution, even though the presence of 
an arbitrary constant on the right hand side means that what we have is actually an 
infinite set of solutions: the level curves of F(x, y) = c for various values of c. 

Once the form of F(x, y) = c has been determined, one should check for gained 
or lost solutions. If y0 is a number where g2(y0 ) = 0, then the constant function 
y(x) = y0 is a solution that we have lost, and if x0 is a number where f 2(x) = 0, then 
the vertical line x(y) = x0 is a solution that we have lost. When x = x0 or when y = y0 , 

our integrating factor Jl(x, y) = l!(f2(x)g2(y)) is undefined. Solutions can be gained 
as well. 

When the equation is given in the form dy!dx = F(x)G(y), treat dy!dx as a quo­
tient of differentials and write the equation as dy/G(y) = F(x)dx. Then integrate each 
term. This gives the implicit solution 

' I dy I H(x, y) = G(y) - F(x) dx = c. (3.5b) 
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Our implied integrating factor was Jl(y) = 1/G(y), which means that the places 
where G(y) = 0 deserve special attention. These are the places where our integrating 
factor is undefined. If G(y0 ) = 0 for some number y0 , then the constant function 
y(x) = y0 is a solution of the original differential equation dy! dx = F(x)G(y), but is 
not to be found among the implicitly defined solutions 3.4. So we lost a solution and 
3.4 does not represent all of the solutions of dy!dx = F(x)G(y). 

The notebook Variables Separable illustrates the solution of differential equa­
tions with variables separable. 

Examples of Variables Separable Differential Equations 

Example 3.10 Solve the differential equation 

x(y2 + y- 2)dx + (x- 4)(1 + Sy)dy = 0. 

Solution. The equation is separable, with integrating factor 

Since (y2 + y- 2) = (y + 2)(y- 1 ), we have constant solutions y = -2 andy = 1, which 
make y2 + y - 2 = 0. In addition, the other solutions are defined on intervals where 
(x- 4) =1= 0, that is, where x =1= 4. It can be argued that x = 4 is a perfectly satisfactory 
(vertical) solution of the equation. So, armed with this information multiply through 
by Jl(X, y) to get 

X 1 + Sy 
~-dx + 2 dy = 0. 
x-4 y +y-2 

Integrate to get 

I X I 1 +5y ~-dx+ 2 dy = c, 
x-4 y +y-2 

which evaluates to 

x + 4ln lx - 41 + 2ln ly - 11 + 3 In ly + 21 = c. 

Observe that we need to avoid x = 4, y = 1, andy = -2, as was noted above, because 
any one of these will cause the natural logarithm to become undefined. However, 
moving the x to the other side, combining the logarithms, and exponentiating gives 
solutions in the form 

(3.6) 

where A = ±ec. In addition, when the solution is given in this form we can see 
that if A = 0, we get back all three of our constant solutions: x = 4, y = 1, and 
y = -2. So we did not lose any of the solutions that had these special forms. If 
you attempt to solve 3.6 for y as a function of x, you will become convinced that 
the effort is not worthwhile. How do we check this solution? If we assume that the 
implicit solution 3.6 defines y as a function of x, then, upon taking the derivative 
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we arrive at 

4e'(x- 4)\y- 1)2(y + 2)3 + e'(x- 4)4(y- 1)2(y + 2)3 

+ 3ex(x- 4)4(y- 1)2(y + 2)2 dy + 2e'(x- 4)4(y- 1)(y + 2)3 dy = 0, 
dx dx 

which factors into 

e'(x- 4)3(y- 1)(y + 2)2 (-2x + xy + xl- 4 dy 
dx 

dy dy dy) + x- - 20y- + 5xy- = 0. 
dx dx dx 

Treat dyl dx as a quotient of differentials and multiply through by dx, to get 

e'(x- 4)3(y- l)(y + 2)2(x(y- l)(y + 2)dx + (x- 4)(1 + 5y)dy) = 0. 

This expression is zero only when x = 4, y = 1, y = -2 or when 

x(y- l)(y + 2)dx + (x- 4)(1 + 5y)dy = 0. 

This last expression is equivalent to the given differential equation. So the solution 
checks provided x I = 4, y I = 1, andy I = -2. But these values also checked through 
other techniques. We have completely solved the problem. 0 

Example 3.11 (M) The solution and checking processes in Mathematica. 
Solution. 

In[l]:= s~dlx+f l+Sy dly==c 
x-4 (y-l)(y+2) 

Out[l]= x+4 Log[-4+x] +2 Log[-l+y] +3 Log[2+y] ==C 

In[2]:= Simplify[%] 

Out[2]= C==X+4 Log[-4+x] +2 Log[-l+y] +3 Log[2+y] 

Steps to check the transformed solution are: define it 

In[3]:= solution=Exp[x]Exp[4 Log[-4+x]]Exp[2 Log[-l+y]] 

Exp[3 Log[2 +y]] 

Out[3]= ex (-4+x) 4 (-l+y) 2 (2+y) 3 

Use the built-in function Dt to calculate the total derivative (in terms of Dt [ x] 
and Dt [y] ). Then change these to dx and dy. 

In [ 4 J: = factored= Factor [Dt [solution]] I. {Dt [x] -+ dx, Dt [y] -+ dy} 

Out[4]= ex (-4+x) 3 (-l+y) (2+y) 2 

(- 4 dy - 2 dx X + dy X - 2 0 dy y + dx X y + 5 dy X y + dx X y 2 ) 

Our interest is in the fifth factor of this result. So we look at the fifth part of 
factored: factored [ [ 5]]. Then Collect terms. 
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In [51 : = differentialexpr = Collect [factored [ [5]], { dx, dy}] 

Out[51= dy (-4+x-20y+5xy) +dx (-2x+xy+xy2 ) 

Get the coefficient of dx. 

In [61 := dxPart =Factor [Coefficient [differentialexpr, dx]] 

Out[61= x (-1+y) (2+y) 

Get the coefficient of dy. 

In [ 71 : = dyPart = Factor [Coefficient [differentialexpr, dy]] 

Out [71= (-4 + x) (1 + 5 y) 

Put the equation back together. 

In [81 := dxPart * dx + dyPart * dy == 0 
Out { 81 = dx X ( -1 + y) ( 2 + y) + d y ( - 4 + X) ( 1 + 5 y) = = 0 

You will recognize this last result as the original differential equation with the 
coefficient of dx factored. This demonstrates that our solution checks. <> 

Exercises 3.4. PART I. Solve these problems manually and by Mathematica using 
the technique of separation of variables. Check your answers. Be alert for both ver­
tical and horizontal constant solutions. Explicitly list these. 

1. 3(x- 3)2dx + 4(y + 1)3dy = 0. 
2. xl(y + l)dx + yl(x- l)dy = 0. 
3. dy = 5y 

dx x(y + 2) 

4 dy- 3xly 
"dx-l+x3 • 

5. (3 + 2y)dx + (4- x2 )dy = 0. 
6. y3dx- ~dy = 0. 

PART II. Manually separate variables then solve by Mathematica. Check your 
answers. Explicitly list both vertical and horizontal constant solutions. 

7. ~e3Ydx + e2x(y- 4)3dy = 0. 
8. (y- 3)(y- 2)dx + x(y + 1)dy = 0. 
9. (lnx)4(coty)dx + xdy = 0. 

10. (y- 1)(y- 2)(y- 3)dx + (x + l)(x + 2)(x + 3)dy = 0. 
11. (1 + x2 + y2 + xly2)3dy = y2dx. [Use Factor.] 

12. dy = xy + 2Y- x- 2 . [Use Factor.] 
dx xy - 2x + 4y - 8 
dy 2 

13. x dx = y - 5y + 6. 

14 _x -x dy 3 
. (e + e ) dx = y . 

PART III. Two projects. 
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15. Consider Euler's quadratic differential equation 

( dy)2 
(1 - ~) dx = (l -l). 

a) Find the two constant solutions for y. 
b) Show that if the variables x andy are interchanged, the same equation results. 

What does this suggest about symmetry? What about constant "solutions" 

for x? 
c) Show that in any region of the xy-plane where (1 - x2 ) and (1 -y2) have 

opposite signs, Euler's equation has no real solution. 
d) Show that in any region where (1 - x2 ) and (1 -y2) are both positive or 

both negative, solution functions must satisfy one of the two differential 
equations 

dy = +) 1-l 
dx- l-x2 · 

e) Solve these two differential equations by separation of variables to obtain 
these families of solutions: 

arcsiny ± arcsinx = C when lxl < 1 and lyl < 1 and 

arccosh y ± arccosh x = C when lxl > 1 and lyl > 1. 

The parameter C is arbitrary. Each equation constrains C. 

f) Make the substitution x = sin u and y = sin v in the equations arcsin y ± 

arcsin x = C and take the cosine of the results. Show that the resulting alge­
braic equations each represent a conic with 4Y axes. 

g) Do the solutions of arccoshy ± arccoshx = C also represent conics? 
h) (optional) Treat Euler's equation as a differential inclusion (see below). How 

(if at all) are the solutions different? 

16. (If you have not studied Section 1.4 on differential inclusions, do so in conjunc­
tion with working this problem.) Consider the differential equation 

a) Describe the portion of the plane in which solutions can exist. 
b) Write the differential equation as a differential inclusion by solving for 

dy/dx. 
c) Find all constant solutions of the differential equation and the differential 

inclusion. 
d) Show that for every number c the function y(x) = sin(x +c) is a solution of 

the differential inclusion. Solve the differential equations given by the two 
membership conditions of the differential inclusion to see that this is all of 
the solutions that are not constant on any interval. 
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e) Show that if y1 (x) is a solution of the differential inclusion, then ly1 (x)l is a 
solution that is differentiable except where y1 (x) = 0 or where y1 (x) is not 
differentiable. 

f) Given a point (x0, y0 ) with -1 < y0 < 1, sketch the maximal and minimal 
solutions that pass through (x0, y0 ). 

g) Describe "typical" solutions that have continuous first derivatives every­
where. 

h) Examine the solutions of the generalization 

(~~r + a2l = a2r2, 

where a and r are positive constants. Discuss the ways a and r produce 
differing properties in the solution functions. Examine the limiting behavior 
as the parameter a approaches 0 or oo. What are solutions like for very large 
a? 

3.5 Homogeneous Nonlinear Differential Equations 

Homogeneous Nonlinear Differential Equations 

It is quite likely that in multidimensional calculus you studied functions f(x, y) that 
were called homogeneous. The name suggests the fact that x andy and various com­
binations of them occur in the definition off in "the same way." 

Definition 3.4. A function f(x, y) is called homogeneous of degree n if 

f(tx, ty) = tn f(x, y) 

for all t > 0. 

Examples of homogeneous functions of various degrees are: 
FUNCTION DEGREE 

x+ 3y 

~~- 5.xy + l 
X- 5-{XY + 3y 
x3- 5.xy2 + y3 

x-y 
~- 5.xy + y2 
xly 

1 

2 

2 

0 

x x2 
3+-+- 0 

y l 
Definition 3.5. A differential equation of the form M(x, y)dx+N(x, y)dy = 0 is called 
homogeneous of degree n if each of the coefficients M(x, y) and N(x, y) is homoge­
neous of the same degree n. That is M(tx, ty) = tnM(x, y) and N(tx, ty) = tnN(x, y). 
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Theorem 3.3. If M(x, y)dx + N(x, y)dy = 0 is homogeneous of some degree then the 

substitution y = vx will reduce the equation to one with variables separable. The 

substitution x = uy will do the same. 

Proof We use the substitution y = vx. Since we want to be able to recover v = y!x, 

we want to have x =/=- 0. The product rule for differentials says d( vx) = vdx + xdv. The 

proof proceeds as follows. Suppose the degree of homogeneity is n. 

M(x, y)dx + N(x, y)dy 

= M(x, vx)dx + N(x, vx)(xdv + vdx) 

= x"M(l, v)dx + x"N(l, v)(xdv + vdx) 

= x"(M(l, v) + vN(l, v))dx + xn+! N(I, v)dv = 0, 

which is separable into 

dx + N(l, v) dv = O. 
x M(l, v) + vN(l, v) 

Integrating term by term gives a solution having the form 

In \..q , G(v) = c. 

Since v = y!x, the final (implicit) solution of the original equation has the form 

lnlxi+G(~)=c. 

Observe that we still need to have x =/=- 0. The proof in the case of the substitution 

x = uy is similar, except that here we needy =/=- 0. This proof is left as an exercise. D 

The choice of whether to substitute y = vx or x = uy is determined mainly by 

whichever one results in the easiest integrations to perform. The notebook Homoge­

neous Fens & Eqns actually performs both substitutions and successfully completes 

the integrations both ways. This notebook contains a function that does all of the 

steps for you. It is worthwhile to do several of these problems manually. 

The solutions of homogeneous nonlinear differential equations are typically de­

fined for (x, y) inside one of the four quadrants, but not necessarily at any point on 

either the x- or they-axes. Sometimes, however, x = 0 or y = 0 is a constant solution 

of the equation. 

Example 3.12 Show that the differential equation (x2 + yl)dx + xydy = 0 is homo­

geneous of degree 2 and find its solutions. 
Solution. Both M(x, y) = x2 + y2 and N(x, y) = xy are homogeneous of degree 2 

since 

and 
N(tx, ty) = (tx)(ty) = t2xy = t2 N(x, y). 
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We make the substitution y = vx. Then dy = vdx + xdv, and the differential equation 
becomes 

(~ + l)dx + xydy 

= (~ + v2~)dx + x(vx)(vdx + xdv) 

= x2(1 + v2 )dx + v~(v dx + x dv) 

= ~(1 + 2v2)dx + v~ dv 

=x3 (dx + ~dv) = 0. 
x 1 +2v 

This results in the equations x = 0 and dxlx + v/(1 + 2v2)dv = 0, which have as 
solutions x = 0 (which is a solution of the original equation) and 

1 
In lxl + 4tn(l + 2v2) = c. 

Substitute v = y!x into this to get a family of solutions to the original equation: 

You should verify that this satisfies the original differential equation for x * 0. 0 

Example 3.12 (M) Solve example 3.12 by Mathematica. (This is done in the note­
book Homogeneous Fens & Eqns.) 

Solution. 

In[11:= de[x_,y_] = (x2 +y2 }dx+x•y•dy==0 

Out[11= dyxy+dx (x2 +y2 ) ==0 

Assume y=v*x and make the substitution: 

In[21 := de[x, v•x]/. {dy-+ dv• X+ v* dx} 

Out [ 21 = v x 2 ( dx v + dv x) + dx ( x 2 + v 2 x 2 ) = = 0 

Divide both sides by~ (specific to this problem) and cancel common factors. 
The function Map has to be used to cause the operation to be applied to both sides of 
the equation. 

In[31:= Map[cancel,Map[Function[t,t/x2 ], %]] 
Out [ 31 = dx + 2 dx v 2 + dv v x == 0 

Collect terms to put into standard form. 

In [ 41: = Map [Function [t, Collect [t, {dx, dv}]], %] 

Out [ 41 = dx ( 1 + 2 v 2 ) + dv v x == 0 

This is our separable equation, ready for solving. (In the notebook Homogeneous 
Fens & Eqns, the solution from this point forward is left as an exercise.) 0 

Exercises 3.5. PART I. Determine whether the function is homogeneous. If so, state 
the degree of homogeneity. 
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1. x2 + 5xy -l. 
2 . ..jx + y. 

3. xsin(~)· 
4. (x+ l)(y+ 1)-(xy+ 1). 

y 
5. ~-

x2 + 3-y x4 + l 
lnx2 

6. --2. 
1ny 

PART II. Solve these problems manually and by Mathematica. Show that each 
is homogeneous. State the degree of homogeneity and make the appropriate substi­
tution y = vx or x = vy to convert the problem into one that has variables separable. 
Check your answers. Be alert for solutions that have some special form. Explicitly 
list these solutions having special form. 

7.(x-y)dx+xdy=0. 
8. (y2 + x2)dx + x2dy = 0. 
9. 2x3ydx + (x4 + i)dy = 0. 

10. (x2 - 3y2)dx + 2xydy = 0. 

11. (y + ~ x2 + y2 )dx - x dy = 0. 

12. ( V X + y + V X - y )dx + ( V X - y - V X + y )dy = 0. 

PART III. Manually convert these homogeneous nonlinear differential equations 
into equations with variables separated. Solve the resulting separable equations by 
Mathematica. Check your answers. When Mathematica cannot do one of the inte­
grals, indicate a formal solution. 

13. (x4 + i)dx- 2x3ydy = 0. 
14. xdx + (y- 2x)dy = 0. 

dy X+ 3y 
15.- = ~-. 

dx 3x + y 

16.dy=~ln~. 
dx X X 
dy x2- y2 

17 -=--
·dx x2 +l. 

dy . (y) 18. dx = sm ~ . 

PART IV. Theory. 

19. Prove that the substitution x = uy also converts a homogeneous nonlinear differ­
ential equation M(x, y)dx + N(x, y)dy = 0 into a separable differential equation. 

20. If M(x, y)dx + N(x, y)dy = 0 is homogeneous of some degree, show that the 
substitution X = r COS 8 , y = r sin 8 reduces this equation to a separable equation 
in the variables r and e. 
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21. Suppose that the equation M(x, y)dx + N(x, y)dy = 0 is homogeneous of degree 
n. Show that the substitution x = k{, y = k1] gives the same equation back with 
the variables x andy changed to {and 1J. Here k is a positive constant. 

22. If t(x, y) is homogeneous of degree n, show that 

at at 
X ax +yay = nt. 

This is called Euler's relation. An analogous relation holds for functions of more 
than two variables that are homogeneous of degree n. 

23. Show that the homogeneous nonlinear differential equation 
M(x, y)dx + N(x, y)dy = 0 can be written in the alternative forms 

dy = c(~) 
dx x 

and --F-. dx _ (x) 
dy y 

24. Complete the solution process started in example 3.12M. Use Mathematica. 

3.6 Bernoulli and Riccati Differential Equations (Optional) 

Bernoulli 1 and Riccati 2 differential equations are special nonlinear equations that 
are seen from time to time in theory and in practice. 

Bernoulli Differential Equations 

A differential equation of the form 

y' + P(x)y = Q(x)y", where n * 0 or 1, (3.6) 

is called a Bernoulli differential equation. In the cases where n = 0 or n = 1, the 
equation is actually linear and should be solved by those methods. But when n I = 0 
or 1, to solve an equation of this form, let w = y 1-n. Then w' = (1 - n)y-ny', and 
y' = w'l(l- n)y-n. So the differential equation becomes 

w' 
(1 - n)y-n + P(x)y = Q(x)y", 

which, after multiplying through by y-n, becomes 

1 James Bernoulli ( 1654-1705), the Swiss mathematician who first studied differential equa­
tions of this form. 

2 Jacopo Francesco Riccati (1676-1754) was the son of an Italian nobleman who worked 
for many years on several areas of differential equations. He corresponded at length with 
mathematicians around Europe, including Leibniz. His sons Vincenzo and Giordano were 
also mathematicians of note. Vincenzo studied the hyperbolic functions thoroughly years 
before Lambert, who is popularly credited with introducing them into mathematics. 
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-1 1 w' + P(x)y1-n = Q(x), 
-n 

or, 
w' + (1 - n)P(x)w = (1 - n)Q(x). 

This is a linear differential equation from which we find w. Obtain y from y = 
w 11<1-nl. Since the solution w involves one arbitrary constant, so does y. Thus the 
first-order nonlinear differential equation 3.6 has a one-parameter family of solu­
tions, as it should. 

Example 3.13 Solve the Bernoulli differential equation 

, e 
y -y = -. 

y 

Solution. This is a Bernoulli equation with n = -1, so we substitute w = y 1-< - 1 l = 
y2. Then y' = w'/(2y), so, w'/(2y)- y = (eyy. The equation and these derivatives 
dictate that y * 0. Thus, after multiplying through by (2y), which is nonzero, we get 
the equation 

w'- 2l = 2i', 

or 
w'- 2w = 2i'. 

Solve this linear equation to find w = -2ex + ce2x. Then, since y = ±yw, either 

Y = Yw = ~ -2i' + ce2x 

or 

y = -yw = -~ -2i' + ce2x. 

Observe that these expressions require that -2ex + ce2x ~ 0. So -2 + ce ~ 0. From 
this one sees that c > 0, and, when this is so, the domain is the set of all x ~ ln(2/c). 
When c < 0, the solution is imaginary. 0 

We can use Mathematica to look at some selected solution curves. Note how the 
domains of the curves differ, as was predicted. 

In [1] := curves= 

Flatten [Table [ {"V -2ex + c e 2x, - V -2ex + c e 2x}, 

{c, 1/4, 3, 3/4}]] 

I e2 x I e2 x 
Out [ 1] = { \j -2 ex + - 4-, - \j -2 ex + - 4-, Y- 2 ex + e 2 x, ... , 

In[2] := Plot[Evaluate[curves], {x, -1, 3}, PlotRange -+All]; 
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Example 3.13 (M) Solve the same Bernoulli equation y' - y = (e'")ly in Mathemat­
ica. 

Solution. (Note that except for minor changes, like putting all nonzero parts on 
the left-hand side the steps followed are exactly those of Example 3.13 above.) 

Define the equation. 

ex 
In[3]: = BernoulliEquation[x_,y_] :=y'[x] -y[x] == -­

y[x] 
Verify the equation. (Display it.) 

In[4]:= BernoulliEquation[x,y] 
<ex 

Out[4}= -y[x] +y'[x] = = -­
y[x) 

Determine the power of y [ x J . (This allows the process to be done in a general 
way.) 

In [5] := BNum = -1 

Out[5}= -1 

Declare the required substitution. 

In[6]:= w[x_) ==y[x] 1 -BNum 

Out[6]= w[x_) == y[x] 2 

Make the substitution. 

In [7] : = yp =Solve [ w' [x] ==ax ( y [x] 1 -BNum) I y' [x]] 

Out [7}= { {y' [x] --7 ~}} 
2 y [x] 

Put everything on the left, then divide through by y [ x) "BNum term by term. 

t 
In[8]: = LeftSide=Map[Function[t, BN ], 

Y [x] um 

BernoulliEquation [x, y] I. yp [ [1]] I. (a_== b_) -+a- b] 

x 2 w' [x] 
Out[8]= -<e -y [x ] + --

2 
Obtain the operator (may have a nonhomogeneous part). 

In [ 9]: = L [x_, y_] =Left Side I. y [x] <1 -BNum) -+ w [x] 
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x w' [ x ] 
Out [9]= - e - w [x] + - 2-

Solve the linear differential equation. 

In[10] : = SolnW=DSolve[L[x,y] ==O,w[x],x] 

Out[10}= {{w [x]-?-2€x+e2 xC [ l] }} 

Simplify the solution to the Bernoulli equation. 

In [ 111 : = s [x_] = Simplify [ (w [x] I. SolnW [ [ 1] ] ) 11<1 -BNum)] 

Out[11] = ~ex (-2+exC[l]) 

Check the solution. 

In[12]:= Simplify[BernoulliEquation[x, s]] 
Out[12}= True 

Example 3.14 Solve the Bernoulli differential equation y' + (213)xy = xy4 . 

0 

Solution. Note first that y = 0 is a constant solution. This Bernoulli equation has 
n = 4, so for y * 0 we substitute w = y 1- 4 = y-3 , which produces the linear equation 
in w: w'- 2xw = -3x. This has solution w = 3/2 + c~2 , so 

1 y = w - 113 = . 
1~ +c~2 

Several observations about the character of this solution are in order. 

1. If c = 0, then y is constant with value {2/3. 
2. If c > 0, y is defined for all x, and is always positive. 

Fig. 3.3. Some of the solutions produced in Ex. 3.14. 
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3. If -3/2 s c < 0, then y has a vertical asymptote when ex2 = -3/2c. That is, 

when 

x=±Ffl). 

4. If c s -3/2 , then y is defined for all x and is always negative. 
5. If c I= 0, y ~ 0 (one of the constant solutions) as x ~ ±oo. 
6. When c > 0, but very near 0, y is near the constant solution Y2J3 for x near 0. 0 

Riccati Differential Equations 

A differential equation that can be written in the form 

y' = p(x) + q(x)y + r(x)/ (3.7) 

is called a Riccati differential equation. 
Any Riccati differential equation where r(x) is differentiable can be transformed 

into a homogeneous second order linear differential equation by the transformation 
y = -w'lr(x)w. It follows that 

, w"r(x)w- w'(r'(x)w + r(x)w) 
y =-

(r(x)w)2 

and after some simplification, 

r(x)w" - (r' (x) + q(x)r2(x))w' + (r2(x)p(x))w = 0. 

At this point, we merely observe that this is a fact. Later we will occasionally be able 
to solve a Riccati differential equation by finding one solution of such a second-order 
differential equation. 

Any second-order linear differential equation a2(x)w" + a1 (x)w' + a0(x)w 

= 0, where a2(x) * 0 can be transformed into a Riccati equation by the transforma­

tion w = e- f u. Indeed, w' = -ue- f u, and w" = -u' e- f u + u2e- f u, so substitution 

yields 

0 a2(x)w" + a1 (x)w' + a0(x)w 

a2(x)(-u'e- fu + u2e- fu) + a1(x)(-ue- fu) + a0(x)e- fu 

(a2(x)(-u' + u2) + a1(x)(-u) + a0(x))e- fu 

az(x)(-u' + u2 + al(x) (-u) + aa(x))e- fu, 
az(x) a2(x) 

which implies that 

-u' + u2 + al (x) ( -u) + aa(x) = 0. 
a2(x) az(x) 

This can be rewritten as 
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u' = p(x) + q(x)u + r(x)u2, 

where p(x) = a0(x)! a2(x), q(x) = -a1 (x)l a2(x), and r(x) = I. This completes the 
transformation of the second-order differential equation to one of Riccati type. 

The complete solution of equations of Riccati type proceeds in three steps: find 
one solution; use that solution to further transform the equation into a first-order 

linear differential equation, whose complete solution is formally easy to obtain. Then 
recover all of the solutions from these solutions. We will find the complete solution 
to be of the form 

y(x) = cfl(x) + f2(x). 
cf1(x) + f 4 (x) 

It is left as an exercise to show that if f 1 (x), f 2(x), j 3(x), and j~(x) are differentiable 
functions then the function u(x) = (cf1 (x) + f 2(x))!(cf1(x) + f 4 (x)) satisfies a differ­
ential equation of Riccati type that is independent of the number c. 

Continue the solution process by assuming that a solution y 1 (x) of the Riccati 
differential equation 3.7 has been found. Let y = y 1 (x) + l!v(x), where v(x) I= 0. 
Then we have these calculations 

y' 

v'(x) 
Yi (x) - v2(x) 

v'(x) 
Yi (x)- v2(x) 

This becomes 

p(x) + q(x)y + r(x)i 

p(x) + q(x) (y1 (x) + - 1-) + r(x) (y1 (x) + - 1-)
2 

v(x) v(x) 

q(x) 
p(x) + q(x)y 1 (x) + ~ 

v(x) 
2 

( 
2y (x) 1 ) 

+r(x) yr(x) + - 1- + - 2-
v(x) v (x) 

v'(x) q(x) 2r(x)y 1 (x) r(x) 
---=~+ +--

v2(x) v(x) v(x) v2 (x)' 

since y] (x) = p(x) + q(x)y 1 (x) + r(x)yi(x). Multiply through by -v2(x) to get the 
first-order linear differential equation 

v' (x) + (q(x) + 2r(x)y 1 (x))v(x) = -r(x). 

This has a solution of the form v(x) = v1 (x)c + v2(x) that we can substitute back into 

1 1 
y = y (x) + ~ = y (x) + . 

1 v(x) 1 v1 (x)c + v2(x) 

This is a one parameter family of solutions that simplifies to the form that was 
desired. 

Example 3.15 Solve the Riccati differential equation u' = ( 1 - 2x2) +xu + u2. 

Solution. We observe that u 1 (x) = x is a solution. Let 
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1 1 
u(x) = u1 (x) + - = x + -. 

v(x) v(x) 

Then u' = 1 - (v' /v2 ), and 1 - (v!v2 ) = 1 - 2.x2 + x(x + (llv(x)) + (x + (1/v(x))2. This 
reduces to the linear differential equation v' + 3xv = -1, which has as solution 

v = exp ( -~x2 ) c _ exp ( -~x2 ) (I exp c;2
) dx). 

The one parameter family of solutions is obtained from u = x + l!v to be 

u =x+ exp(-~~)c-exp(-~x2 )(I exp( 3ndx)" 
This solution is used in the solution of an exercise in Chapter 4. 

Example 3.15 (M) Solve example 3.15 by Mathematica. 
Solution. 
The Riccati operator R [ x, u] : 

In[13]:= R[x_,u_] = (1-2x2 ) +xu[x] +u[x] 2 -u'[x] 

Out[l3]= l-2x2 +xu[x] +u[x] 2 -u'[x] 
A solution by inspection. 

In[l4]:= u1[x_] =x 

Out [14]= x 

Check the solution. 

In[15] := R[x, u1] == 0 

Out [15]= True 

A second solution can be obtained by the further transformation u [ x] 
1 I v [ x] . The equation for v [ x] is linear and can be solved completely. 

1 
In[16] := Expand[v[x] 2 R[x, Function[t, t + --]]] 

v[t] 
Out[l6]= 1+3xv[x] +v'[x] 

In[17]:= DSolve[%==0,v[x],x] 

Out[l7]= {{v[x] ~re--'-Fc[l]-re- 3 ~2 ,fiErfi[[fxj}} 

0 

u1 [x]-t 

This is a family of solutions. The parameter is C [ 1] . (Try it without the 
Simplify.) 

In [18] := u2 [x_] =Simplify[ (u1 [x] + - 1-) /.% [ [1]] 
v[x] 

3 x 2 
6 re -y-

Ou t [ 18] = x + ---------=---==---=-
6 C [1] - Y6JTErfi [~X l 

Check the family of solutions in the differential equation 

In[19] := Simplify[R[x, u2] == 0] 
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Out[19]= True 

The function E r f i is a form of the error function that is encountered in statistics. 
0 

Exercises 3.6. Solve these Bernoulli differential equations manually and by Mathe­
matica using Example 3.13M as a guide: 

I. dy = 4y +xv3. 
dx · · 

2.ldy = 1- sl. 
dx 

dv 1 
3 __:_ = -- [Hint: Consider dxldy.] 

· dx x5 + xy 

4. dy = y(xl- 1). 
dx 

dy 
5. 4(1 + x2)- = 2xy(/- 1). 

dx 
dy 2 

6. -- 2y = e"y . 
dx 

Solve these Riccati differential equations manually and by Mathematica, using 
Example 3.15M as a guide. In each case a solution has been supplied. 

7. ~~ = x2 - 2 + 2xy + l; y 1 = 1 - x. 

dy 2 
8. dx = x- 1 + y- xy ; y 1 is constant. 

dy 
9. (1 - x2) dx = 1 -/; Y1 = 1. 

10. (l-x2)~~ = 1-/; Y1 =x. 

1l.x(x2 -l)~~ +x2 -(x2 -l)y=/; y 1 =x" forsomen. 

dy 2 
12. dx = -2- y + y ; y 1 is constant. 

13. Show that if f 1 (x), f 2(x), f 3(x), and f 4(x) are differentiable functions then the 
function 

cf1 (x) + f 2(x) 
u(x) = ...::...'-.----"--''--­

cf3(x) + f 4(x) 

satisfies a differential equation of Riccati type. 

3.7 Clairaut Differential Equations (Optional) 

Suppose that y = F(x) is a real function. At the point (x0 , F(x0 )) an equation for the 
tangent line is 

(3.8) 
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This is a one-parameter family with parameter x0 . We can find a differential equation 
for this family this way. If y' = F' (x0 ), and F' has an inverse g near x0 , then x0 = g(y') 
and we can rewrite the given equation for the tangent line as 

or 
y = xy' + f(y'), (3.9) 

where we have used the assumption that x0 = g(y'), and have defined 

f(y') = -g(y')F'(g(y')) + F(g(y')). 

Eqn. 3.9 is a differential equation for the original family of straight lines. It has the 
form of a Clairaut 3 differential equation. We expect the solutions to be straight 
lines, since this is supposed to be the differential equation for a family of straight 
lines. 

Differential equations of the Clairaut type are solved as follows: differentiate 

y = xy' + f(y') 

to get 
y' = y' + xy" + f'(y')y". 

This simplifies to the product 

(y")(x + f'(y')) = 0. 

Any function that satisfies this equation is a solution of y = xy' + f(y'). There are 
two factors. Either of them could be zero. So we get two kinds of solutions. 

1. Suppose that y" = 0. This means that y' = c, a constant, giving solutions to 
y = xy' + f(y') of the form y = xc + f(c). This is a one-parameter family of 
straight lines. 

2. Suppose that x + f'(y') = 0. We pair this equation withy = xy' + f(y') and let 
y' = t, to get this parametric representation for a plane curve: 

{ 
X = - f(t) 
y = f(t)-tf'(t) 

(3.1 0) 

This curve satisfies both x + f'(y') = 0 andy = xy' + f(y') at each of its points. 
In general the curve is not a straight line, but is tangent to each line of the family 
y = xc + f(c). Such a solution is called a singular solution because it has a 
different form from the members in the family of straight lines. Its relationship 
to these members causes it to be referred to as an envelope of the family. The 
reason for this name is made clear by an example. 

3 Alexis Claude Clairaut (1713-1765) French mathematician. He studied privately with his 
father. At age 19, below the legal age, his work on quadratic curves got him admitted to the 
French Academy of Science. His work on lunar orbits was well-respected, he calculated the 
perihelion of Halley's comet, and was among the first to observe the existence of singular 
solutions to differential equations. 
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Example 3.16 Solve the differential equation y = .xy' + ( l/2)(y')2 . 

Solution. This is a Clairaut equation with f(y') = (l/2)(y')2 . A one-parameter 
family of straight line solutions is y = ex+ (l/2)c2 . The third output of Ex. 3.16M 
below shows some representative members of this family. It is apparent that the lines 
are tangent to some curve. From part (2) of our solution process, we find that this 
curve can be defined parametrically by 

X = -f(t) = -t, 
y = f(t) - t f(t) = !r2 - t(t) = - !t2 . 

We can eliminate the parameter t between these two equations and get an equation 
for the singular solution to bey = -(112)x2 . You should verify that this satisfies the 
original differential equation and is tangent to each of the members of the family of 
straight lines. 0 

Example 3.16 (M) In Mathematica Example 3.16 can be thought about this way: 
Solution. This is the one-parameter family 

1 
In [l] := y[x_] = xc + 2c 2 

c z 
Out [ 11 = - + c x 

2 
Here are some representative lines. 

In [2] : = samples= Table [y[x] , {c, -3, 3, 1/2}] 

Ou t [2} = { ~ - 3 X ~ - ~ 2 - 2 X ~ - ~ ~ - X ~ - .:_ 
2 , a 2 , , a 2 , 2 , a 2 ' 

1 X 1 9 3 X 25 5 X 9 } 
0 - + - - +x - + - 2+2x - + - -+ 3x ' a 2 ' 2 'a 2 ' ' a 2 ' 2 

Plot this set of lines on a common axis. 

In[ 3 ] :=lines= Plot[Evaluate[samples], {x, -3, 3}, 

PlotRange-. {-5, 5}]; 

The plot certainly suggests that there is some curve (an envelope) to which each 
of the straight lines is tangent at one point. This curve is given by the parametric 
representation described above. 
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Note that the graph of the envelope is almost totally obscured by the tangent lines 
that are representatives of the one-parameter family. In this case, we can eliminate t 
from these two equations and find an equation for y in terms of 

1 2 
In[4]:= f[t_] =-t 

2 

Out[4]= 
2 

In [5] := Eliminate [ {x == -f' [t], y == f[t] - t f' [t]}, t] 
Out [5]= -2 y == x 2 

This is the downward-turning parabola we saw above. 0 

Exercises 3.7. Solve these Clairaut equations. In each case, find a singular solution. 

1. y = xy' + 1 -lny'. 
2. xy' - y = el. 

3. y = xy' -tarry'. 
4. y- xy' = 1 + 4(y')2 . 

5. Let z = sinx in y = y' tanx- (y')2 sec2 x. 
6. y = xy' + 2 + (y')3. 
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Applications of First-Order Equations 

4.0 Introduction 

In this chapter we will look at several applications of first-order differential equa­
tions. There are many of these that could be studied, but we will concentrate on 
those that can be described by linear differential equations or by separable differen­
tial equations. There are applications whose differential equations are first-order and 
which fall into each of the classifications that we saw in the last chapter. These two 
kinds of applications are chosen because the applications are interesting and useful, 
and the differential equations can usually be solved with a minimum of difficulty, 
especially since we have Mathematica to do the rather complicated integrations that 
may be necessary. 

Among the applications are families of curves where the members cross each 
other perpendicularly. These are called orthogonal families. We will consider pairs 
of families that are mutually orthogonal. 

In addition, we will consider applications from biology, chemistry, economics, 
and physics. Some of these are growth and decay, radiocarbon dating, simple cooling 
problems and chemical mixtures. These problems are all linear. We will also consider 
problems of air resistance, restricted population growth, and bimolecular reactions. 
These problems are nonlinear. 

Each of these problems can suggest ideas for careful study. Many questions arise 
from the solutions we find and the meaning to be extracted from them. Most of the 
problems are really only approximately correct, and there is a great deal of room for 
further study of more exact formulations of the problems. These studies might well 
occupy your time for several years to come. There is room for experts in most of 
these applications areas. 

4.1 Orthogonal Trajectories 

We have seen one-parameter families of functions having the form f(x, y, c) = 0, 
where c is the parameter. The family is usually defined for c in some interval of 

C. C. Ross, Differential Equations
© Springer Science+Business Media New York 2004
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the reals (maybe all of the reals). Often such a family has associated with it another 
family g(x, y, d) = 0 such that if any member of the first family crosses a member of 
the second family, the tangent lines to the respective curves are orthogonal, that is, 
they are perpendicular. Recall that two lines not parallel to the axes that have slopes 
m 1 and m2 meet perpendicularly if the two slopes satisfy m1 m2 = -1. We can use 
this property of orthogonal slopes to find orthogonal families for some interesting 
families of curves. 

In physics, an example of orthogonal families is the equipotential curves around 
one pole of a magnetic dipole or electrostatic monopole. They are orthogonal to the 
lines of force acting on external objects. The direction of the force (inward or out­
ward) on an external object depends on the relative polarity of the external object. In 
meteorology, the isobars (lines of equal barometric pressure) on a weather map are 
orthogonal to the pressure gradient curves. In meteorology one also plots isotherms, 
curves of equal temperature. Heat flows orthogonally to the isotherms (from hot to 
cold). In true applications in spaces of three dimensions, the level objects are sur­
faces, rather than curves, and the differential equations are really partial differential 
equations. We have to look at the two-dimensional special cases, because we are 
studying ordinary differential equations. 

The procedure for obtaining an orthogonal family is: 

1. Find a differential equation whose solutions contain the members of the given 
family, by eliminating c from the two equations 

f(x, y, c)= 0 and 8! + 8f dy = 0. 
ax 8y dx 

2. Use the orthogonality relationship to obtain a differential equation of the orthog­
onal family. 

3. Solve this latter equation to find the members of the orthogonal family. 

Example 4.1 Given the family of all straight lines through the origin. Find a de­
scription of the orthogonal family. 

Solution. The given family may be expressed as y = ex, for creal. Note that this 
formulation does not include the y-axis, which is one of these lines. Rewrite y = ex 
as x = yl c for c I= 0. If you take the limit as c ~ oo, you get the missing line, x = 0. 
It is worth taking note that sometimes we can express missing objects as limits of 
objects we are able to express with formulas of a particular kind. 

To get the differential equation of the given family, differentiate y = ex to get 
y' = c. From these two equations we eliminate c to get y = y' x, or y' = y!x, xI= 0. 
Rewrite this as dyldx = ylx and apply the orthogonality condition, to get 

-1 dx y 
= 

dy/dx dy x 

as the differential equation of the orthogonal family. This equation is separable into 
ydy = -xdx, and has as solutions y2/2 = -x2!2 + d, or x2 + y2 = r 2, by writing 
? = 2d. This is a family of circles concentric with the origin. A picture of both 
families will make the geometric situation clear. See Fig. 4.1. 0 



92 4 Applications of First -Order Equations 

Example 4.2 Given the family of curves xy = c. Find the orthogonal family. 
Solution. The given family is the two axes (c = 0) plus all of the hyperbolas in 

quadrants 1 and 3 (c > 0) or quadrants 2 and 4 (c < 0) having the axes as asymptotes. 
These are all rectangular hyperbolas, since their asymptotes are perpendicular. The 
differential equation of the family is xy' + y = 0, or dy! dx = -y/x. The orthogonality 
condition says that -1/(dy/ddx) = -dx/dy = -y/x. Separating variables gives the 
differential equation xdx = ydy, which has as solution x2 = y2 +d. When d = 0, 
this gives y = ±x. When d = a2 > 0 the solution is x2!a2 - y2!a2 = I, a family of 
hyperbolas opening left and right each of which has as asymptotes the lines y = ±x. 
When d = -a2 < 0 the solution is yl! a2 - x2 I a2 = 1, a family of hyperbolas opening 
up and down each of which also has as asymptotes the lines y = ±x. Thus, the 
orthogonal family of a set of rectangular hyperbolas (plus two lines) is a family of 
rectangular hyperbolas (plus two lines). See Fig. 4.2. 0 

Example 4.3 The differential equation 

dy 

dx 

cosx 
v e· 

defines its family of solutions. Find the orthogonal family and plot both families. 
Solution. The equation has its variables separable. Separating gives eYdy 

cosxdx, and hence eY = sinx + c1 as the family of solutions. The orthogonal family 
has as its differential equation 

dy 

dx 

-eY 

cosx 

Fig. 4.1. The orthogonal families y = ex and x2 + l = r2 . 
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Fig. 4.2. Orthogonal families from Ex. 4.2. 

which is also separable and has among its solutions the family 

e-y = ln I secx + tanxl + c2 

and the vertical lines x = ±n/2, ±3n/2, etc. These families can be considered to be 
the level curves of f(x, y) = eY -sinx and g(x, y) = e-Y -ln I secx+tanxl, respectively. 
The families can each be solved for y as a function of x and plotted. Combining the 
two plots yields Figure 4.3. 0 

In Fig. 4.3, the solutions of the original family are horizontal at x = ±n/2. This 
means that the members of the orthogonal family are very steep near x = ±n/2. The 
vertical lines x = ±n/2 are in the orthogonal family. 

Exercises 4.1. 1. Show that the family of circles with center on they-axis that pass 
through the origin has as orthogonal family all of the circles with center on the 
x-axis that pass through the origin. 

2. Show that the family of circles with center on the x-axis that pass through the 
origin has as orthogonal family all of the circles with center on the y-axis that 
pass through the origin. 

3. Show that the family of circles with center on the line y = x that pass through the 
origin has as orthogonal family all of the circles with center on the line y = -x 
that pass through the origin. [Hint: Think about the two previous problems.] 

4. Consider 
r i 
2 + -2--2 = l, 
a a -c 
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Fig. 4.3. Some members of the orthogonal families of Example 4.3. 

for fixed c and a as parameter, a I= 0 and a I= ±c. This is a family of con­
focal conics. (Each curve is a conic having foci at (0, c) and (0, -c)). Show that 
this family is self-orthogonal. That means that the differential equation of the 
orthogonal family is the same as the differential equation of the original family. 
As a secondary question, what is the geometric, not algebraic, significance of 

the requirement that a I= 0 and a I= ±c? 
5. Find a family orthogonal to the family 

y= --,­
I+ ce2x· 

6. Find the orthogonal trajectories of 

ex 
y = 2 +x· 

7. Find the orthogonal trajectories of the family of solutions of the separable dif­
ferential equation 

dy 
dx = f(x)g(y). 

8. Find the family of solutions of 

dy secx 

dx 4y 
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Fig. 4.4. Exponential growth. 

9. Find the family of solutions of 

dy tanx 
= 

dx 8y 

Find the orthogonal trajectories of the family of solutions. 

4.2 Linear Applications 

This section is devoted to applications of first-order linear differential equations in 
the biological sciences, the physical sciences, and the social sciences. Each of these 
applications is closely related to the notions of exponential growth and decay. 

Growth and Decay 

It is interesting to note that a wide range of problems such as the growth of bacteria, 
fungi, rabbits, cities, and continuous compound interest, and the decay of radioactive 
substances all can be modeled by a single kind of differential equation, namely, 

dy 
dt = ry. (4.1) 

The loss of temperature in warm-body cooling satisfies a closely related equation 

dy 
dt = r(c- y), 

where c is a constant. 
If r > 0, equation 4.1 describes a growth phenomenon (See Figure 3.4), and if 

r < 0 a decay phenomenon (See Figure 3.5). Whatever the value of r, y = 0 is a 
constant solution and every solution has the form y(t) = Ce'1• 

There are certain key phrases that identify a process as satisfying a differential 
equation of the form y' = ry. Such phrases as "rate of change is proportional to 
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the amount present," or "the relative rate of change (of a quantity) is constant" are 
key to the proper statement of the problem. The relative rate of change is (dy/ dt)ly. 

Sometimes r is given in absolute terms and sometimes as a percent. Be careful to 
express r in absolute terms. The word "initially" usually indicates a condition at 
timet= 0. 

Applications in the Biological Sciences 

Example 4.4 Suppose that the rate of growth of a population of organisms is 5% of 
the number present, t being measured in days. If there are 10,000 individuals present 
initially, how many are present in 10 days? When will the initial population have 
doubled? 

Solution. Let p(t) denote the number present at timet. Then dp/dt = 0.05p and 
p(O) = 10,000, and the solution has the form p(t) = Ce0051 . From the given initial 
condition we find that p(O) = C = 10,000. Therefore there are p(t) = 10,000e0051 

individuals present t days later. Hence there are lO,OOOe0·5 = 16, 487.2, which we 
round to 16,487, individuals present at the end of day 10. 

In order to find when the population has doubled, we need to solve the equation 
p(T) = 10,000e005T = 2(10,000) = 20,000 forT. This means e005T = 2, which 
means that T = (In 2)/0.05 = 13.8629 days. (From the size of the population after 
10 days, we knew that doubling had to occur shortly after 10 days.) 0 

A common variation on this problem is the following: 

Example 4.5 The population of a city was 20,000 according to the 1980 census and 
25,000 according to the 1990 census. If the rate of growth of population is propor­
tional to the population and is constant, 

1. what was the population in 1960? and 
2. when will the population be 40,000? 

Fig. 4.5. Exponential decay. 
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Solution. The statement of the problem suggests that dP/dt = rP, where P(t) is 
the population at timet (in years), so P(t) = Cerr. We are given that 

P(1980) = Ce1980' = 20,000 

and 
P(1990) = Ce1990' = 25,000. 

Divide these to find that e10' = 25,000/20,000 = 5/4, so that lOr = ln(5/4), and 
r = (1110) ln(5/4) ~ 0.0223144. From Ce<1980110lln(S/4l = 20,000, we find that 

C = 20,000e(-l980110)ln(S/4) ~ 1.29672(10-15). 

This means that 
P(t) = 20,000e((t-1980YIO)ln(5/4). 

To answer the question of part (a), 

P(l960) = 20,000e((1960-1980YIO)ln(5/4)) 

= 20,000e-21n(S/4) 

= 12,800. 

To answer the question of part (b), we need to determine t (remember that the ques­
tion asked when) such that 

20,000e((t-1980Y10)ln(5/4) = 40,000. 

This means that 

so 

and 

e((t-1980YIO)ln(5/4) = 2, 

t- 1980 
10 ln(5/4) = ln2 

1980 + 10 1n~~~4) 
= 2011.06 years, 

or sometime in early 2011. The time of doubling of the 1980 population was there­
fore 31 years. 0 

The Spread of an Epidemic 

In 1959, H. Muench introduced an elementary model for the progress of an epidemic. 
His model is 

dy 
- = r(l-y) 
dt ' 
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where r is a constant rate. Here "1" denotes the entire population, and y denotes the 
portion of the population that has come down with the disease. Initially some small 
fraction y(O) has the disease. From then on, the course of the outbreak is described 
completely by the solution 

y(t) = 1 - (1 - y(O))e-rr, 

where 0 ::; y ::; 1, and tis in days. This model says that the disease remains present 
in the population forever. However, when everyone in the population has had the dis­
ease, we would say that the differential equation no longer applies, and the epidemic 
has passed. It is perhaps clearer to state the problem with a base population of size n 
that is large (tens of thousands or millions). Then the equation reads 

dy 
dt = r(n- y), 

and y(O) is a small positive integer. The epidemic is over when t ~ T implies y(t) ~ 

n - 1. This makes the duration of the epidemic finite. The solution in this case is 
y(t) = n- (n- y(O))e-rr, 0::; t::; T. 

Adding Tap Water to a Fish Bowl 

Anyone who keeps or is interested in keeping freshwater fish in a bowl or aquarium 
should want to know how to renew the water that is lost naturally by evaporation. It 
is important to do more than just maintain the water level. If water is merely added, 
the concentration of sodium (as ordinary table salt, NaCl) that is present in almost 
every commercial or private water supply will increase until deadly levels can occur. 
We compare this scenario with that of systematically removing an extra quantity of 
water whenever fresh water is added. (As it has been stated, the problem is natu­
rally a difference equation, with water additions being discrete events. We consider 
the fresh water to be (slowly) added continuously. When water is removed, whether 
by evaporation or manually, we assume that it is continuously being removed at a 
constant rate. This allows us to study the problem as a differential equation.) 

In the first scenario, fresh (tap) water exactly replaces the water lost through 
evaporation. Suppose that r is the rate of addition of water, that e is the rate of evapo­
ration, x(t) is the amount of salt present at timet, with x0 being present initially. Say 
that the concentration of NaCl in the fresh water is s. Then 

dV dt = r- e = 0, V(O) = V0. 

This means that V(t) = V0 fort > 0. Also 

dx 
- = rs - 0 = rs > 0 
dt ' 

and 
x(O) = x0 ~ 0. 
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Thus fort > 0, the amount of salt, x(t) = (rs)t + x0. This function increases with­
out bound, and hence will cause the concentration x(t)!V0 of salt in the fishbowl to 
exceed the survivable level for the fish living in the fishbowl. Of course the described 
process must effectively halt at some time because the amount of salt in the fishbowl 
cannot exceed the volume of the fishbowl (See Fig. 4.6). 

In the second scenario, more water than that which evaporates is removed (and 
disposed of) at the rate o and fresh water exactly replaces the water being lost through 
evaporation and deliberate removal. Under these circumstances, 

dV - = r - o - e = 0 since r = o + e, dt , 

so that again 
V(t) = V0 fort > 0. 

Under these circumstances, the amount of salt in the fishbowl has a different differ­
ential equation, 

dx = rs- o(~). 
dt V0 

but it satisfies the same initial condition x(O) = x0 ~ 0. We can already see potential 
benefits in that now it is possible for d.x:!dt < 0 and therefore the amount of salt 
in solution can decrease. The differential equation has a constant, or equilibrium, 
solution x(t) = rsVofo for which x'(t) = 0 (that may or may not satisfy the initial 
condition), and the solution 

rsV0 ( rsV0 ) _.2..r x(t) = - 0- + x0 - T e vo • 

This solution says that the limiting concentration 

rsV0 rs ( r ) 
xc = ~o = If = r - e s > s. 

However, xc can be large if r/ o is large. (That is, if the amount of water disposed 
of is only a small fraction of the fresh water being added.) If, for instance, extra water 
is disposed of at the same rate that evaporation takes place, then o = e, r = 2e and 
xc = (2e/e)s = 2s, which should be an acceptable concentration, because presumably 
the available tap water has an acceptably low concentration of salt. For a saltwater 
aquarium this procedure is inappropriate because it can cause the concentration of 
sodium to decrease to levels that may be dangerous to saltwater organisms that expect 
high concentrations of sodium. See Fig. 4.7. 

The limiting value of x(t) as t ~ oo is the equilibrium solution noted above. This 
means that no matter what the initial amount x0 of salt, the solution ultimately ap­
proaches the equilibrium solution. There is more discussion of equilibrium solutions 
in Sect. 1 0.2. 

It might interest some of you to ask a representative of your local water supplier 
about the concentration of sodium in your water supply. Then you could use real data 
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to model the situations described here. In our small town in Tennessee, the concen­
tration of sodium is 0.9 mg per liter. Nationally, the concentration ranges from 0.5 
mg per liter to 25 mg per liter. When the concentration exceeds 20 mg per liter some 
patients with heart disease may have to take special precautions under the guidance 
of a physician. 

Of course fishbowls are not the only places where sodium can concentrate if 
water is able to evaporate but sodium cannot be readily removed: just consider the 
Dead Sea and the Great Salt Lake! The Great Lakes have a substantial concentration 
of sodium that is not substantially increasing because the Great Lakes are constantly 
emptying to the sea by way of the St. Lawrence River. The oceans themselves are the 
ultimate example of extreme sodium concentration produced when only evaporation 
is able to take place. 

Applications in the Physical Sciences 

Cooling 

Newton's law of cooling states that the rate that a warm body cools is proportional to 
the difference between its temperature, T, and the temperature, T0 , of the surround­
ings. As an equation, this says 

dT - = k(T, - T). 
dt 0 

(4.2) 

This is a linear differential equation whose solution is obvious when the equation 
is written as 

NaCl 
2L 

d(T - T0 ) = dT = -k(T _ T, ), 
dt dt 0 

time 

Fig. 4.6. Amount of NaCl with simple replacement of lost water. 



NaCl 
2L 

xO 
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time 

Fig. 4.7. Amount of NaCI with systematic water removal. 

so that 

or 
T = T0 + ce-k1• 

The constant c is the initial temperature differential T(O) - T0 . So the solution is 

which decays to T0 as t ~ oo. The parameter k is related to several factors such as 
the volume, surface area, mass, and the heat capacity of the body that is cooling. In 
many situations where this cooling law is used, values for k are tabulated. 

Example 4.6 Suppose that a cake is removed from a 325 degree (Fahrenheit) oven 
into a 75 degree kitchen. If the cake cools to 180 degrees in 10 minutes, how long 
afterward will its temperature have fallen to 80 degrees? 

Solution. From the discussion above, T(t) = 75 + (325 -75)e-k1 = 75 + 250e-kt. 
From T(IO) = 75+250e- 10k = 180, we find that e-IOk = (180-75)/250 = 105/250 = 
21150, so that -10k = ln(21!50), or 

k = -(1/10) ln(21!50) ""0.086750. 

This means that 
T(t) = 75 + 250eto In( ~ )1 • 

We need to solve 
75 + 250e to In(~)t = 80 

for t. This requires that 
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1 ( 21) 
10 ln 50 t = ln(S/250) = ln(l/50), 

so t = lO(ln( l/50)/ ln(2l/50)) = 45.1 minutes. This is the time since removal from 

the oven, so the time since the temperature was 180 degrees is 45.1 - 10 = 35.1 
minutes for the temperature to drop the remaining 100 degrees. It is of interest to 

note that the temperature at the end of one hour of cooling is 76.4 degrees. Most 
people would say that the cake had cooled. See Fig. 4.8. 0 

Those of you who thought carefully about the problem will realize that the heat 
that leaves the cake has to go into the environment, thereby raising the temperature 
of the environment. So our assumption about the temperature of the kitchen "being" 
75 degrees might have been slightly incorrect. There are two ways to think about 
this. First, that there is another differential equation that is associated with the one 
we defined, but which accounts for the heat that the cake loses. This is absolutely 
correct. On the other hand, the heat capacity of the kitchen environment is certainly 
much greater than the heat capacity of the cake, so the temperature in the kitchen will 
rise only negligibly, and can safely be called constant. This, too, is correct. There are 

delicate situations where it is vitally important to keep track of everything, and there 
are situations where a high degree of accuracy is wasteful. What is being suggested 

here is that there is a sort of continuity about differential equations: One can say when 
two differential equations are near one another. Under the appropriate assumptions, 

the solutions of two differential equations that are near one another are also near 
one another. This model of cooling does not apply to cooling near a phase transition 

point, such as where water becomes ice or where steam becomes water. Other laws 
apply in such situations. It does apply on intervals that are not too near such points. 
Nor does this model apply when the temperature changes over too great a range. 
There are nonlinear differential equations that apply in more extreme situations such 

0 10 20 

Fig. 4.8. Cooling of a cake, Example 4.6. 
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as these, but they all are approximated very closely by Newton's law of cooling when 
the temperature range is small. 

A second application of Newton's law of cooling that you may have heard about 
for years on your local television news is the procedure used by coroners and med­
ical examiners to determine the time of death of a body. The coroner measures the 
temperature of the body. Then, using this information the coroner can estimate the 
time of death. It is of some interest that coroners in Tennessee use the approximate 
rule H = (99 - T)/1.5 to estimate hours since death from measured (rectal) tem­
perature. The "more precise" rule in use is that body temperature falls three degrees 
Fahrenheit per hour for the first three hours and one degree per hour thereafter until 
"ambient temperature is reached." You will recognize that this is merely a working 
approximation to the shape of a decreasing exponential. It implicitly assumes that 
the body is indoors, because a body outdoors in cold weather would certainly lose 
heat faster than one inside a building that is at a normal residential temperature. 

We all know that "cooling" can go the other way. The temperature of a cold glass 
of water rises to the temperature of its surroundings, and Newton's law of cooling 
can be used to estimate the times and temperatures involved. 

Mixtures 

There are many types of problems that can be classified as mixture problems. Typi­
cally, a container holds a solution of a substance that is initially at some concentra­
tion. A new source of the substance is coming in at a different concentration. Op­
tionally, the solution in the container is being drawn off. Assuming that the solution 
in the container is being kept well-stirred at all times, how does the concentration 
of the substance in the container vary over time? In later chapters we will consider 
a network of interconnected containers and ask about the concentrations in each of 
them. This will require several related differential equations, one for each container. 

Two principles that must be understood in order to be able to set up problems of 
this type are: Rate of change of volume = Incoming change of volume - Outgoing 
rate of change of volume, 

dV = dVin dVout . 
dt dt-dt, 

and Change of mass = Incoming mass - Outgoing mass, 

so that 
ilc ilcin _ ilcout 
ilt ilt ilt ' 

and hence 
de dcin _ dcout 
dt dt dt ' 

(4.3) 

(4.4) 

where c is the mass of the subject in question. This relationship also holds for weight. 
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Example 4.7 A container initially contains 50 pounds of salt dissolved in I 000 gal­
lons of water. A brine mixture of 1/4 pounds of salt per gallon is entering the con­
tainer at 6 gallons per minute. The well-mixed contents of the container are being 
discharged from the container at the rate of 6 gallons per minute. Express the amount 
of salt in the container as a function of time. What is the limiting concentration of 

salt in the container? 
Solution. Let x(t) denote the amount of salt in the container at timet. First note 

that the volume of the mixture in the container is unchanging since dV I dt = 6-6 = 0. 
Salt is coming into the container at the rate of 

dx d;rr = (6gaVmin)(l/4lblgal) = (3/2)lblmin. 

Also, since the concentration of salt in the container is 

amount in the container x -------.- = -- lblgal, 
volume of the contamer 1000 

it follows that salt is leaving the container at the rate of 

dx 6x 
d~ut = (6gaVmin)(x/1000 lblgal) = 1000 lblmin. 

This means that the rate of change of salt in the container is 

dx 

dt 
dxin - dxout 
dt dt 

3 6x 3 3x 
----=---
2 1000 2 500' 

and the initial condition is x(O) = 50. This is a linear differential equation. You should 
verify that the solution is 

x(t) = 250 - 200e-311500 . 

See Fig. 4.9. 0 

This expresses the amount of salt in the container at time t as was requested, and 
it is easy to see that the limiting amount of salt in the container is 250 pounds, which 
results in a limiting concentration of 25011000 = 114 pound per gallon of salt in the 
container. Is it an accident that the limiting concentration is the same as the entering 
concentration? See the exercises. 

Example 4.8 Suppose that the rate of discharge of the solution in the previous ex­
ample is reduced to 5 gallons per minute, and the container can hold a maximum of 
2000 gallons. Now express the amount of salt in the container as a function of time. 
When does the container begin to overflow? What is the concentration of salt in the 
container when the container begins to overflow? 

Solution. Here dV I dt = 6 - 5 = 1 gallons per minute, so that V (t) = ( 1000 + t) 

gallons after t minutes. This means that the container will overflow when 1000 + t = 
2000. or t = 1000. We need to account for the fact that the volume is not constant 
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when we consider the concentration of salt. The rate of change of salt in the container 
is 

dx 

dt 

dxin _ dx0111 _ ~ _ __ 5x __ 
dt dt 2 1000 + t 

This is still a linear differential equation, but it no longer has constant coefficients. 
Using the methods we studied before, the solution is found to be 

t 2(1017) 
x(t) = 250 + -4 - 5 . 

(1000 + t) 

This has a much different character than the solution with constant volume. In fact it 
is equivalent to a rational function: the quotient of two polynomials. 

Notice in Figure 4.10 that the amount of salt is increasing without apparent limit 
(until the container overflows). But the concentration of the salt at t = 1000 when 
the container begins to overflow is x(lOOO)/V(lOOO)) = 493.75/2000 = 0.246875, 
which is near 0.250, the concentration of the incoming stream. It is also interesting 
to note that if the process is not stopped, but the container is permitted to continue 
overflowing, then the differential equation of the process becomes 

dx 

dt 
dxin _ dxout 
dt dt 

3 6x 
2 - 2000' 

t ~ 1000, 

with initial condition x(1000) = 493.75, the amount of salt in the container when 
overflow first begins. This overflow equation has solution 

25 e3(1000-rYIOOO 

x(t) = 500- ------,-4--

from which can be easily seen that the limiting concentration in the overflowing 
container is 1/4 pound/gallon, the salt concentration in the entering stream. 0 

250 

200 400 600 800 1000 

Fig. 4.9. The amount of salt, constant volume. 
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500 

400 

300 

200 

100 

200 400 600 800 1000 

Fig. 4.10. The amount of salt when volume is increasing. 

Example 4.8 M Solve and check example 4.8 by Mathematica. 
Solution. We let Mathematica solve the system. 

3 x[t] 
In[l]:= DSolve[{x'[t] ==--5 ,x[O] ==50},x[t],t] 

2 1000 + t 
1 

Out [1]= { {x [t] __, -----cc 
4(1000+t) 5 

(200000000000000000 + 6000000000000000 t 

+15000000000000t 2 + 20000000000 t 3 

+15000000 t 4 + 6000 t 5 + t 6 )}} 

Capture the solution. Write it expanded by partial fractions using Apart. 

In [2] := Soln[t_] =Apart [x[t] I .First[%] ] 
t 200000000000000000 

Out[2]= 250 +-- ----------,---
4 (1000+t) 5 

Have Mathematica check this answer. 

( 3 So1n[t]) 
In [ 3]: = Simplify [ Soln' [t] - 2 - s-1-0-0-0-+-t 

Out[3]= True 
The initial condition checks easily. 

In[4] := Soln[O] ==50 

Out[4]= True 

Applications in the Social Sciences 

Compound Interest 

== 0] 

0 

An amount P0 of money earns interest at an annual rate of i percent compounded n 

times per year at times tk = kin, k = l, 2, .... Let Pk denote the amount present at 

time tk. Then 
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i 
Po+ lOOn Po. 

i 
p +--P 

1 lOOn 1• 

and in general 

This says that 
Pk+l- Pk __ 1_· p 

1 n - 100 k' 

If n is permitted to increase without bound, we have the law of continuously 
compounded interest: 

dP i 
dt = lOOP, P(O) =Po. 

This has as solution P(t) = P0 ei11100• Note also that continuously compounded interest 
obeys the same law as that of unrestricted growth. 

Radioactive Decay 

Radioactive substances decay at a rate proportional to the amount present. That is, 
dyl dt = -ry. If an amount y0 is present initially, then for any timet > 0, y(t) = y0e-rt. 

A common term that occurs in discussions of radioactive phenomena is half-life. A 
substance has half-life t 112 if y(t + t 112 ) = (1!2)y(t). The value of t 112 is determined 
completely by rand is independent of y0 and t. We find t 112 from the calculation 

y(t + t 112 ) = y0e-r(t+tuz) = (112)y0e-rt = (1!2)y(t). 

Simplify to get 

or 
1 

e-rtl/2 = -
2 

This simplifies tot 112 = (1/r) In 2. The smaller r is, the larger t 112 is. Values of t 112 for 
various substances range from small fractions of a second to many billions of years. 

Radiocarbon Dating 

Around 1950 Willard Libby, a chemist, proposed a method for estimating the age of 
an object made from materials that had been alive. Such materials as wood, or natural 
fibers that occur in fabrics were well-suited for his methods. The idea is that the pro­
portion of the isotope 14C of carbon, called carbon-14, which is part of all naturally 
occurring carbon in the environment has been essentially constant for thousands of 
years and hence has been constant in living organisms, since all of them require car­
bon for life, and thus assimilate 14C and 12C with carbon. When an organism dies, 
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the 14C it contains decreases through the process of radioactive decay, but the 12C 
does not, and hence the ratio of 14C to 12C decreases. The idea proposed by Libby, 
which won him a Nobel prize for chemistry in 1960, was that one could measure 
the ratio of 14C to 12C in an object, compare that with the (constant) ratio in the en­
vironment, and hence determine how long since the object died. This would enable 
the determination of the approximate date when the object died. This is obviously 
of great interest to archaeologists, biblical scholars, and other historians. This sec­
tion is concerned with the nature of the errors in such a technique. The technological 
methodology of those who actually do such measurement is very sophisticated. This 
discussion is not. 

We earlier mentioned the differential equation dyldt = -ry which models ra­
dioactive decay. The idea of a half-life, the time it takes for half of a substance to 
decay, is reasonably clear. What isn't clear is exactly how to accurately measure 
half-lives. Human understanding of radioactive decay and our measurement of de­
cay phenomena spans only slightly more than one human lifetime. This is not a long 
enough span of time to be able to accurately estimate very long half-lives. It is true 
that two points on a decreasing exponential determine the exponential, and hence 
the half-life, but each such measurement contains some error, however small. These 
errors mean that we cannot know long half-lives accurately until we have been able 
to obtain two measurements that are very far apart. Scientists have made attempts 
at this by measuring the 12C ratio of ancient materials whose dates have been cor­
roborated independently by historians. For our purposes, assume that the half-life of 
14C is about 5600 ± 30 years. Libby used the figure 5568 years, and 5730 ± 40 is 
used in other circumstances. Let's find out what effect this indeterminacy has on our 
attempts to date objects using 14C. It is standard to date objects as being so many 
years B.P. (before present), present being set at 1950, the date of Libby's method. 

The techniques for radioactive decay we saw before say that if the true half-life 
is 5600- 30 = 5570, then 14C decays like C(t) = Ae-((lnZY5570l 1• If the true half-life 
is 5600, then 14C decays like C(t) = Ae-WnZY5600l 1• And ifthe true half-life is 5600 + 
30 = 5630, then 14C decays like C(t) = Ae((-lnZY5630l 1• These three curves decay 
to the right of the point (0, A). They are actually quite close together, with the 5570-
curve below the 5600-curve below the 5630-curve. For the calculation below, we take 
A = 1, meaning we start with 1 unit of the substance whose age is to be determined. 
As time increases to the right, that is, as the actual age of the sample increases, the 
ratio of 14C present in the sample should lie between the three curves. What effect 
does this have on the estimated age? In addition, measurement of the ratio of 14C 
present in a given sample is subject to some measurement error, though these errors 
are of a statistical nature, involving the counting of actual particle decomposition. 
What is the effect of such measurement errors on the results we obtain? Here are 
some examples for objects that date throughout the entire gamut of time to which 
this method is applicable: 50,000 B.P. to the present. 

These examples assume a fixed measurement error of 1%. This is an entirely 
fictitious estimate. We assume a 14C to 12C fraction, f, is present and produce 9 
estimated ages, depending on measurements of 0.99 f, 1.00 f, and 1.01 f. The ages 
are estimated along each of the three decay curves from the last paragraph. This 
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assumes that if a measurement error of 1% is made, then 0. 99 f ::5 measured ratio ::5 

1.01/. We therefore look at the age predictions at these measurement extremes and 
at the assumed fraction f. This gives us a 3 x 3 table where each row entry is an age 
estimated by a given measurement level and each column entry is an age estimated 
on one of the possible decay curves. 

Sample from Around 50,000 Years B.P. 

Example 4.9 Ratio assumed present: f = 0.00205226 of the original. Table 4.1 sum­
marizes the results. 

If our measured result is too large, it falsely says that our sample is too recent. If 
our measured result is too small, it falsely says that the sample is too old. It seems 
clear that this sample is approximately 50,000 years old, because all of the estimated 
ages are near 50,000. But it might be as old as 50,350 years or as recent as 49,652 
years. This indicates an uncertainty of 698 years. But along each row, at each level of 
measurement error, the error is about 536 years due to the uncertainty about the half­
life of 14C, and down each column, that is, along each decay curve, the uncertainty is 
about 162 years. This indicates that for samples whose age is in the range of 50,000 
years B.P., most of the uncertainty is due to the uncertainty in the half-life of 14C, 
because the deviation along each row is greater than the deviation down each column. 
See Fig. 4.11. The nominal curve (t112 = 5600) is the middle curve in each graph. <> 

Sample from Around 1950 Years B.P., or 1 A.D. 

For a sample dating from around 1 A.D., the data table is essentially: Ratio present: 
f = 0. 7856 of the original. See Table 4.2. 

Thus the total uncertainty is about 82 years, with about 20 years due to uncer­
tainty in the half-life of 14C and about 62 years due to measurement errors. See 
Figure 4.12. 

The Shroud of Turin 

Example 4.10 The question of the authenticity ofthe shroud ofThrin has fascinated 
people for centuries. It is claimed that the shroud is the burial shroud of Jesus Christ, 
which would date it from about 30 A.D., or 1920 B.P. 

The shroud is kept in the Royal Chapel of the Turin (Italy) Cathedral in a spe­
cially designed shrine. During the years 1986-1988, a major scientific investiga­
tion was undertaken under the auspices of the British Museum, with the approval of 

Table 4.1. Ratio present:/= 0.00205226 

h = 5570 h = 5600 h = 5630 
1.01/ 49652 49919 50187 
1.00/ 49732 50000 50268 
0.99! 49813 50081 50350 
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Table 4.2. Ratio present:/= 0.7856 

h = 557o 1 h = 56oo h = 5630 
1.01 f 1860 I 1870 1880 
1.00/ 1940 ! 1950 1960 
0.99 f 2020 

I 
2031 2042 

Table 4.3. Radiocarbon dating of the Shroud of Turin 

Laboratory Years B.P. Range (B .P.) Dates (A.D.) 

Arizona 646 ± 31 615-677 1273-1335 
Oxford 750 ± 30 720-780 1170-1230 
Zurich 676 ± 24 652-700 1250-1298 

the Roman Catholic Church which owns the shroud. Improvements in radiocarbon 
dating methodology (using small gas-counters and accelerator-mass-spectrometry 
methods) had reached the point where reliable dating could be done from a very 

small sample. A sample measuring 10 mmx70 mm, and weighing approximately 150 
mg was cut from the hem in the lower left of the shroud. This sample was divided 
into three equivalent parts and independently analyzed in three different laboratories 
[Nature 337:611-615]. 

Using our estimates the same way as before, except only along the nominal decay 
curve, and taking the nominal age of the shroud as given in the report to be 689 B.P., 

then the ratio of 14C present would be f = 0. 91825 of the original. See Table 4.4. 
This analysis gives strong evidence that the shroud is not authentic, but is a me­

dieval forgery of impressive quality. Others disagree, saying that during the last sev-

Amount 
Present 

,-------

49732 50000 
Years BP 

50268 

Fig. 4.11. Radiocarbon dating uncertainty around 50,000 B.P. 
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Table 4.4. Shroud of Turin: ratio f = 0.91825. 

h = 5600 Date 
1.01/ 609 1341 AD 
1.00 f 689 1261 AD 
0.99f 770 1180AD 

eral centuries, the shroud was contaminated by mold and other living organisms, so 
that its apparent age was biased away from its true antiquity. 

You can see from Figure 4.13, the shroud of Turin graph, that the dominant error 
is from measurement error and not from uncertainty in the half-life. Our estimates, as 
depicted, essentially cover the range of dates returned from the laboratory measure­
ments. (It is interesting that the apparent agreement is so close, considering that our 
assumed measurement error of 1% was a guess not based on any supporting data.)<> 

Supply and Demand 

A simple model of the effects of supply and demand on the price of a commodity 
is 

dp 
dt = k(D- S), 

where p is the price, S is the supply, D is the demand, and k is a positive constant. 
One sees immediately that if demand exceeds supply then D- S > 0 and dp/dt > 0, 
so the price rises. On the other hand, if supply exceeds demand, then D - S < 0 and 
dp/dt < 0 and the price falls. If supply equals demand, then dp!dt = 0 and price 
does not change. 

Amount 
Present 

1870 1950 
Years BP 

2031 

Fig. 4.12. Radiocarbon uncertainty near 1950 B.P. 

l.Olf 

1.00£ 

0.99£ 
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One speaks of seasonal fluctuation in either supply or demand of a commodity. 
Saying the fluctuation is seasonal implies regular repetition that is usually modeled 
as being periodic. For instance one might assumeS= C1 - C2 cos(at). It is often the 
case that demand can reasonably be said to be a decreasing function of price so that 
D =A- Bp. This expresses "decreasing" as dD!dt = -B < 0. Furthermore, it says 
that if the commodity were free there would still be only the limited demand A, but 
if the price were to rise to AlB, then there would be no demand. 

Example 4.11 Suppose that we have the simple supply and demand model dp!dt = 
k(D- S), with D = A - B p and S = C 1 - C2 cos( at). How does price vary as a function 
of time? 

Solution. We have 

or 

dp 
- = k(A- Bp- C1 + C2 cos(a t)) 
dt 

dp 
dt + (kB)p = k(A- C1) + kC2 cos(at) 

This is a nonhomogeneous linear differential equation having solution 

A-C I p(t) = Ke-kBt + T + kC2e-kBt l 81 cos( at) dt. 

In Chapter 5 we will learn how to write the last term so that the solution has the form 

where 

A -C I 
p(t) K e - kBt + T + kC2 -y a 2 + B2e sin( at + 8), 

Amount 
Present 

PK(t) + Pa(t), 

609 689 
Years BP 

770 

l.Olf 

1 . 00£ 

0 . 99£ 

Fig. 4.13. Estimated uncertainty for dating the shroud of Turin (years B.P.) 
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supply/price 

Fig. 4.14. Effect of fluctuating supply on price. 

PK(t) Ke-kBt, 

A-C I 
Pa(t) = T + kC2 V a 2 + B2~ sin( at+()), 

and q = arctan(a!Bk). If the initial price is p(O) = p 0, then 

A-C I 
K =Po-T- kC2v a2 + B2~ sin(()). 

It is important to note that 

limpK(t) = limKe-kBt = 0, 
1-+oo t-+oo 

so that ultimately the price is not dependent on the initial price and it fluctuates 

about the stable price (A - C1 )IB with a maximum deviation of kC2 .Y a 2 + B2~, and 
does so at the same rate that supply fluctuates. However, the fluctuation of price is 
"out of phase" with the supply by an amount q. For this reason q is called a phase 
angle in some applications. See Fig 4.14. <> 

The relationship between price and demand is something like the following: 
Another supply and demand model is 

dS 
dt = k(D-S), 

which says that the rate of change of supply is proportional to the difference between 
demand and supply. In this model, if demand exceeds supply, then supply will de­
crease, whereas if supply exceeds demand, the supply will decrease. Notice that this 
model says that the rate of change of supply is not explicitly dependent on price. 
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Example 4.12 If the seasonal demand for a commodity has the form 

D = C1 - C2 cos( at), 

how does the supply vary? 
Solution. Here the model becomes 

dS 
dt = k(C1 - C2 cos( at)- S), 

or 
dS 
dt + kS = kC1 - kC2 cos( at). 

This is the same form as the equation of Example 4.11 and the solution is 

S(t) Ke-kr + Ct - kC2 ~ a2 + k2 sin( at+ 81). 

SK(t) + S(l'(t). 

where 

SK(t) Ke-k1, 

Sa(t) = Ct - kC2 ~ a 2 + k2 sin( at + et ), 

and 

et = arctan ( ~} 
Again K is determined by the initial supply, but since 

limSK(t) = limKe-Kt = 0, 
{-HXJ !--too 

the supply is ultimately independent of the initial supply. The fluctuation rate of the 

supply is the same as that of demand, but once again is out of phase by an amount q t· 

Note also that the long-term fluctuations of supply are centered on Cl, which is pre­

cisely where demand is centered. Figure 4.15 is a typical picture of the relationship 

of supply to demand. 0 

Exercises 4.2. PROBLEMS FROM THE BIOLOGICAL SCIENCES 

1. (The Doomsday Problem) Assume that the population of the world doubles every 

75 years. It was 4.6 billion in 1982, according to the 1986 World Almanac. Under 

the hypothesis that the rate of growth is proportional to the population present, 

when will there be one person for each of the 1.5(10!4 ) square meters ofland on 

the earth? [Motivated by Shenk, p. 394, problem 15.] 

2. Suppose that the rate of growth of a population of organisms is 3% of the number 

present, t being measured in days. If there are 5000 individuals present initially, 

how many are present in 10 days? When will the initial population have doubled? 
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supply/demand 

'-----:6:---1::':2:----:1:c:8----:2"-:4---:::3::-0 ---- Time (months) 

Fig. 4.15. Effect of fluctuating demand on supply 

3. Suppose that the rate of growth of a population of organisms is 3% of the number 
present, t being measured in days. If there are 10,000 individuals present in 10 
days, how many were present initially? When will the initial population have 
doubled? 

4. Suppose that the rate of growth of a population of organisms is proportional to 
the number present, t being measured in days. If there are 10,000 individuals 
present in 10 days and 15,000 individuals present in 15 days, when will the 
initial population have doubled? 

5. At a university with 1000 students after a mid-semester break one student returns 
with type X flu. Let y(t) denote the number of students who have contracted the 
disease by timet (in days). If the disease propagates throughout the population 
according to the rule dyldt = 0.05(1000- y), how long does it take before 75% 
of the students have had the disease? 

6. At a university with I 000 students after a mid-semester break one student returns 
with type X flu. If y(t) is as in problem 5 and the disease propagates throughout 
the population according to the rule dy!dt = 0.10(1000- y), how many days 
does it take before 75% of the students have had the disease? 

7. If the concentration of NaCl in the tap water of a community is 0.05 mg per 
liter, and water in a 5 gallon (18.93liter) aquarium is kept at constant volume by 
adding tap water at the rate of 0.25 liter per week, after how many weeks will 
the concentration of NaCl in the aquarium be 0.20 mg per liter? 

8. If the concentration of NaCl in the tap water of a community is 0.05 mg per 
liter, and water in a 5 gallon (18.93liter) aquarium is kept at constant volume by 
discarding 0.01 liter per week and then adding tap water at the rate of (0.01 + 
0.25 = 0.26) liter per week, after how many weeks will the concentration of 
NaCl in the aquarium be 0.20 mg per liter? Compare with the previous problem. 
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PROBLEMS FROM THE PHYSICAL SCIENCES 

9. Repeat problem 8 with r as the concentration of N aCl in the entering solution and 
see if the limiting concentration is r. Does the final concentration ofNaCl depend 
on the initial concentration of NaCl in the container? Set the initial amount of 
salt to x0, and solve again. 

10. An automobile engine is turned off and allowed to cool. Assume that Newton's 
law of cooling holds. Suppose that the internal temperature of the engine is 230oF 
when it is turned off and is 190oF after one hour. What is the constant of propor­
tionality if the ambient temperature of the surroundings is 75oF? How long does 
it take for the engine to cool to 100°F? 

11. In problem 10, if the ambient temperature of the surroundings is 9YF? How 
long does it take for the engine to cool to 1 OOOF? Assume the same constant of 
proportionality. 

12. In problem 10, if the ambient temperature of the surroundings is 3YF? How 
long does it take for the engine to cool to 100°F? Assume the same constant of 
proportionality. 

13. In problem 10, ifthe ambient temperature of the surroundings is OOF? How long 
does it take for the engine to cool to 100°F? Assume the same constant of pro­
portionality. 

14. A container initially contains 5 pounds of salt dissolved in 100 gallons of water. 
A brine mixture of 1/4 pound of salt per gallon is entering the container at 6 gal­
lons per minute. The well-mixed contents of the container are being discharged 
from the container at the rate of 6 gallons per minute. Express the amount of salt 
in the container as a function of time. What is the limiting concentration of salt 
in the container? 

15. A container initially contains 5 pounds of salt dissolved in 100 gallons of water. 
A brine mixture of 114 pounds of salt per gallon is entering the container at 6 gal­
lons per minute. The well-mixed contents of the container are being discharged 
from the container at the rate of 7 gallons per minute. Express the amount of 
salt in the container as a function of time during the interval before the container 
empties. 

PROBLEMS FROM THE SOCIAL SCIENCES 

16. How long does it take an amount of money to double when it is invested at i% 
per year compounded continuously? Compare with the rule of 72 which says 
that the number of years to doubling is approximately 7'2/i. 

17. If A invests P0 dollars in an account at i0 compounded continuously and B invests 
PI dollars in an account at ii compounded continuously, PI < P0 and i0 < il' 
when do the two accounts contain equal amounts? One year later, how much 
more is in the account owned by B? 

18. Solve problem 17 with P0 = $1000, PI = $500, i0% = 6% and ii% = 8%. 
19. We wish to determine the age of an artifact made of formerly living substances 

by Libby's method of radiocarbon dating. It is found that the ratio of I4C present 
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is 0.689817 the ratio in a similar living substance. Estimate a range of dates B.P. 
for the age of the sample using the half-life of 14C as 5600±30 years. 

4.3 Nonlinear Applications 

Nonlinear differential equations occur widely and are very interesting. It is some­
times quite a challenge to explain why some behavior that the solutions of a problem 
exhibit is not behavior that would be expected of the physical system that the equa­
tion purports to model. Often the defect can be remedied at the expense of clarity 
and ease of understanding. This can be an expensive trade-off: simplicity and clar­
ity with possible fallacious behavior, versus obscurity and accuracy of behavior. Here 
are several applications of nonlinear differential equations to the biological, the phys­
ical, and the social sciences. Most of these equations have variables separable, but 
others are examples of special classes of differential equations that can be studied 
productively. 

Applications in the Biological Sciences 

The Logistic Equation 

The nonlinear differential equation dyldt = y(b- ay) is called the logistic equation. 
This name is from the Greek word A.oyurrtKat; (logistikos), which means "skilled 
in calculating." Presumably this is because this equation works so well in a wide 
range of applications. Here the topic is populations where the growth is restricted, 
rather than unrestricted as it was in Sect. 4.2. But differential equations similar to the 
logistic equation, such as the equation 

dy 
dt = (d ...- cy)(b- ay), (4.5) 

which is clearly a generalization of the logistic equation, govern such other processes 
as bimolecular chemical reactions and the spread of flu epidemics. Both of these 
equations are a special type of separable differential equation where dy!dt = F(y). 
Notice that the independent variable t is not present on the right hand side. Such 
equations are called autonomous, and their solutions behave in special ways. For 
instance, if y(t) is a solution, then so is y(t + k) for any k. (Any horizontal translation 
of a solution is also a solution. This is left as an exercise.) 

Autonomous differential equations are solved in the standard way for separable 
equations to obtain 

G(y) = I F~) dy = t + C, 

which we want to solve for y. Sometimes G has an identifiable inverse so that we can 
explicitly findy(t) = o-1(t +c). 

In the last section we saw that the differential equation for unrestricted growth 
was dyl dt = ry. However, it is not reasonable to think that any support system can 
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sustain unrestricted growth for any extended period of time. Early in a process, the 

growth may appear to be unrestricted, but since the earth and every habitat in it is 

finite in extent, restrictions have to appear. A closer look at the equation for un­
restricted growth indicates that we have successfully accounted for deaths in our 
population in this way: Suppose that the death rate is d per unit population and the 

birth rate is b per unit population. Then the rate of population change is r = b - d. 
This says that the effective growth rate is the difference between the birth rate and 
the death rate. If the birth rate and death rate are equal, d pi dt = 0, and the population 
is stable. If the birth rate is numerically greater than the death rate, the population is 
increasing. If the death rate exceeds the birth rate, the population is in decline. But 

all of this assumes that any possible growth is unrestricted if b > d. How does one 
account for the fact that natural resources, be they an agar medium in a Petri dish, or 
a tropical rain forest, or the Pacific Ocean, are finite? 

The standard technique for accounting for restricted growth is to assume that the 
death rate is not a constant, but depends on the size of the population. That is we take 
as our equation of growth, dy/dt =by- (ay)y =by- ayl = y(b- ay). Here b is the 

birthrate, but the death rate is (ay), which depends on y. Strange as it may seem at 

first glance, this equation has served very well at predicting the size of populations 
living in restricted environments. Note that if y is small, the equation is essentially 

dy!dt = by, which is the equation of unrestricted growth. But as y increases, no 
matter how small a is, so long as it is nonzero, the term (ay) begins to have an effect, 
and the rate of population growth begins to slow. We assume an initial population of 

Yo· 
The two constant solutions, y = 0 and y = b! a have significance. If y = 0 the 

population has become extinct. No further growth of this population is possible. The 
other constant value y = b! a is called the carrying capacity of the environment. The 
carrying capacity of the environment is the maximum population that the environ-

population 

Fig. 4.16. A typical logistic curve. 
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ment can sustain. If the population reaches this level then it cannot increase further 
because the death rate becomes larger than the birth rate. We will solve the logis­
tic equation and observe how that equation models the phenomenon of restricted 
growth. It is of critical importance for a population (such as humanity) to know the 
value of a. Part of the problem of estimating a is that there are competitors for all 
natural resources, and the equation as formulated does not take this explicitly into 
account. All of the effects of competition are incorporated into the one coefficient a, 
so a is more than merely an observable "death rate." 

Since the portion of the curve in which we have special interest (because it de­
scribes most populations living in restricted environments) lies between y = 0 and 
y = b/ a, this interval will be implicitly used in our solution. For 0 < y < b/ a, separate 
variables to get 

I b dy = I dt + co. 
y( - ay) 

Then integrate to get 
1 1 b lny- b ln(b- ay) = t + c0• 

When t = 0, y(O) = y0, so 

co = ~ ln ( b !~YJ . 
Multiply through by b, combine logarithms, and exponentiate to get 

Y Yo bt --=---e. 
b-ay b- ay0 

Solving for y gives 

y(t) = byo . 
ay0 + (b- ay0)e-bt 

Notice that y(t) ~ b/a as t ~ oo, and that y(t) ~ 0 as t ~ -oo. See Fig. 4.16. 
A quick calculation reveals that y" = (b- 2ay)(y)(b- ay), so that y is concave 

up between 0 and b/(2a), andy is concave down between b/(2a) and b/a. When y = 
b/(2a), which is half-way between extinction and the carrying capacity, y" = 0, so 
the population curve y has its maximum slope there. If earth's population is following 
a logistic curve, then we are not yet at one-half of the carrying capacity of the earth, 
because the rate of increase of population is still increasing. If we were past half-way, 
then the rate of increase would be decreasing. Of course the flaw in this reasoning is 
that we are probably not following a logistic curve, and we may be in greater trouble 
than this simple analysis would dictate. There certainly are regions of the earth that 
have essentially reached the carrying capacity of those regions to support their own 
populations. 

Observe the disturbing fact that for most of its early history a population is small. 
It then experiences a short period of very rapid growth that increases the size of the 
population to near its possible maximum, and then the size of the population becomes 
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nearly constant at this very large size (the carrying capacity). The population of the 
earth has dramatically increased during this century, so it would appear that mankind 
is in the short period of rapid growth. When will this rapid growth stop? Since the 
carrying capacity of the earth is unknown, no one knows. Several world models (Jay 
Forrester and others) have suggested that the global standard of living is likely to 
erode markedly as the population of the earth approaches its maximum. 

Applications in the Physical Sciences 

Air Resistance 

The form of air resistance can be either linear (when the object is moving relatively 
slowly) or quadratic (when high speed is involved). 

Example 4.13 (Quadratic air resistance). A 1600-pound box is dropped from a sta­
tionary helicopter. The magnitude of the force of air resistance on it is (1/25)v2 

pounds when its velocity is v feet per second. Find its velocity as a function of time. 
What is its terminal velocity? How high was the helicopter in order for the box to 
reach 90% of its terminal velocity before striking the ground? 

Solution. We suppose that the box moves vertically on an axis with positive di­
rection pointing down and units measured in feet. Measure time t in seconds starting 
with t = 0 when the box begins its fall, and let g = 32ft/sec2 denote the acceleration 
due to gravity. The downward velocity is v feet per second, and v(O) = 0. Since the 
box is falling, air resistance is directed upward, and is given by -(1/25)v2 pounds 
when its velocity is v. The downward force on the box is due to gravity: the weight 
of the box, 1600 pounds. This makes the mass of the box m =wig= 1600/32 =50 
slugs. The crate's downward acceleration is a = dv!dt, so, from Newton's law 
F = rna, we find that the acceleration on the box is 50dvldt = 1600- (1/25)v2 • 

Multiply through by 25 to get 

1250~; = 40,000- v2 = 2002 - v2. 

The constant solutions are v = ±200 feet per second. Neither satisfies the initial 
conditions, so the solution we seek is not constant. In fact, since v(O) = 0, it starts 
between the two constant solutions. This makes dv/dt > 0, so v(t) is increasing, and 
is bounded above by 200. Separating variables leads to 

I 200~~ v2 = I 12
1
50 dt +c. 

which, when integrated by partial fractions or Mathematica yields 

1 1200+vl 1 
400 1n 200- v = 1250t +C. 

The initial condition v(O) = 0 (implied by the word 'stationary') implies that 
1/4001n(l) = 0 + C, and hence that C = 0. Since (200 + v)/(200- v) > 0 when 
v = 0, take 
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for v, obtaining 
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1
200 + vI = 200 + v 
200-v 200-v 

_1_ 1n(200 + v) = _l_t 
400 200- v 1250 

v = 200 ( e'7r- 1 ) 
(e 125ot + 1 

200 ( ::::~: : ~ ) 
( 

1 _ e-0.32t) 

200 1 + e-0.32r . 

From this latter expression we find the terminal velocity to be 200 feet/second, 
since lim e-0·321 = 0. The time until the box reaches 90% of terminal velocity is 

t->oo 

1250 (200 + 180) 1250 (380) t = 400 In 200 _ 180 = 400 In W = (3.125)(2.9444) = 9.20sec. 

The height of the helicopter would then be 

(9.2 (e0.32t _ 1) 
height= Jo 200 e 0_321 + 1 dt = 1037.71 feet 

in order for the box to reach 180 feet per second = 90% of the 200 feet per second 
terminal velocity. 

The Mathematica cell that was used to find the height was: 

[ Exp [0. 32t] - 1 ] 
In[l] := Nintegrate 200 , {t, 0, 9.2} 

Exp [ 0 . 32t] + 1 
Out[l]= 1037.71 

0 

Bimolecular Reactions 

Suppose that m molecules of chemical A and n molecules of chemical B react in a 
water solution to form one molecule of chemical C. Let x(t) be the concentration (in 
grams per liter) of A and y(t) be the concentration (same units) of Bin the solution. 
Let z(t) be the concentration of chemical Cat timet. We suppose that initially x(O) = 
a, y(O) = b, and z(O) = 0. What is the concentration z(t) of Cas a function oft? 

We begin by deriving a differential equation for the rate of change of z. Since 
each molecule of C requires m molecules of A, x(t) decreases m times as fast as z(t) 
increases: 

dx(t) dz(t) 
-- =-m--, 

dt dt 
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so 
dx dz 
- +m- =0. 
dt dt 

This means that 

x(t) + mz(t) =constant= a, or x(t) =a- mz(t). 

By similar reasoning, 

y(t) + nz(t) = constant = b, or y(t) = b- nz(t). 

Under some circumstances (no catalysts present, for instance), because each unit 
of C requires m units of A and n units of B, it is reasonable to assume that 

dz - k--m n --- .\ y. 
dt 

This equation expresses the need for this relationship among the molecules within 
the solution. In this case, we have the equation 

dz - = k(a- mz)"'(b- nzt 
dt 

(4.6) 

as the differential equation of the reaction. The exponents m and n are called the 
orders of the reaction with respect to the concentrations of A and B, and dzl dt is 
called the rate of the reaction. 

Example 4.14 Suppose that one molecule of A reacts with one molecule of B to 
produce one molecule of C. Then with x, a, y, b, and z, defined as above, we obtain 
as the differential equation of the reaction, 

This equation is separable, and 

dz 
- = k(a - z)(b - z). 
dt 

I __ d_z-,--- = I k dt + c . 
(a - z)(b - z) 1 

We want the solution where a - z ~ 0 and b - z ~ 0. 
Solution. If a I= b, we integrate and apply the initial condition z(O) = 0, to obtain 

1 l 1 a 
-- ln(a - z) + -- ln(b - z) = kt + -- In -. 
a-b b-a a-b b 

Multiply through by a - b, collect the logarithms and exponentiate to find 

a - ~ = q_ek(a-b)t 

b-z b 

Then solve this for z to get 
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( 
ek(a-b)t _ 1 ) 

z(t) = ab aek(a-b)t - b . 

Having z, we can get x(t) = a- z(t) and y(t) = b- z(t). 
Notice that if a > b, then z --7 b, x --7 a - b, and y --7 0, and if a < b, then 

z --7 a, x --7 0, and y --7 b - a. (What do these say about the physical setting?) 
If a = b, then the differential equation is 

which separates into 

dz 2 
dt = k(a- z) , 

I~ =fkdt+c1• 
(a- z) 

Upon integrating and substituting the initial condition z(O) = 0, we find that 

Solving for z yields 

1 1 
-- =kt+ -. 
a -z a 

z(t) =a( I- ak/+ 1), 

from which we can get x(t) and y(t) as before. Note also that since x(t) = a- z(t), as 
t --7 oo, z --7 a, x --7 0, and y --7 0. 0 

Applications in the Social Sciences 

The Propagation of a Single Action in a Population 

In some circumstances people perform a specific action because it is warranted and 
others because they have observed the action being taken. We assume there is an 
external stimulus that may precipitate an action in some individuals, and other indi­
viduals who then imitate that action. For example, some people may mow their lawn 
just because it needs mowing and others who do so because they see lawns being 
mowed. In time it becomes obvious to those who have not mown that the time has 
come to act or be identified as a laggard. Eventually all of the lawns get mowed. An­
other example might be yawning in a class where a boring lecture is the continuing 
external stimulus. Some yawn because they are bored. Some yawn not because they 
are bored, but because they see others yawning. Eventually everyone has yawned. 
An even more compelling example is the act of turning on headlights at sundown. 
It is clear that there is an ever more pressing reason to act as night approaches, but 
the mere presence of vehicles with lights on may cause some to respond where the 
darkness itself did not. 

If the population is sufficiently large it has been suggested by Rapoport (1952) 
that the proportion y(t) of the population who have acted can be described by the 
first-order nonlinear differential equation 
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dy 
dt = (1 - y)(x(t) +by), (4.7) 

where x(t) is the nonnegative external stimulus and b is the positive coefficient of 

imitation. Note that there is a constant solution y = 1, which says that once the entire 

population has taken the action, the rate of change becomes 0. If you multiply out 

the right-hand side of equation 4.7 you get 

dy - = x(t) + (b- x(t))y- bl. 
dt 

(4.8) 

This is a Riccati differential equation and we know one solution, y 1. The 

theory of Riccati differential equations from Section 3.6 suggests that to get a one 

parameter family of solutions let y = 1 + 1/v. This produces these calculations: 
dy!dt = (-l!v2 )dv!dt and 

-1 dv 

v2 dt 
x(t) + (b- x(t)) ( 1 + ~) - b ( 1 + ~ r 

b x(t) 2b b 
x(t) + b + - - x(t) - ~ - b- - - -

v v v v2 

x(t) + b b 

v 2" v 

Now it must be true that v * 0, so we can multiply through by -v2 to get 

dv - = (b + x(t))v + b 
dt 

which is a first-order linear differential equation and is easily solved (formally). One 

then gets a one parameter family of solutions y from y = 1 + l!v. Even for simple 

functions x(t) these solutions are complicated. For this reason, you might consider 

using NDSol ve to obtain numerical solutions, rather than using DSol ve to get 

formal solutions. 
Even in the special case when x(t) = at, for positive constant a, the integrations 

are complicated. In situations such as this, we could have Mathematica do: 

In [ 21 : = NDSol ve [ { y' [ t] = = ( 1 - y [ t] ) ( 0 . 5t + y ~ ~] ) , y [ 0] = = 0 . 01} , 

y[t], {t, 0, 5}] 
Out[2]= {{y[t]-7InterpolatingFunction[{{O., 5.}}, <>] [t]}} 

In [3] := p1 =Plot [Evaluate [y[t] I.% [ [1]] ] , {t, 0, 5}]; 

Three plots such as this forb = 0.1, x(t) = at, and a = 0.25, 0.33, and 0.50 can 

be combined to compare the effects of varying the constant multiplier a to produce a 

picture such as Figure 4.17. 
We saw curves of this general shape when we considered the logistic equation. It 

is worth noting that when x(t) is small, equation 4.7 is very near 

dy 
- = by(l- y) 
dt 
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5 

Fig. 4.17. Propagation of a single action; three choices for a. 

which is a form of the logistic equation. Had x(t) been constant, the equation would 
have been 

dy 
dt = (1 - y)(a +by), 

which is similar to the equations of bimolecular reactions, so we might expect the 
shape of the solution curve to be similar to that of a solution of the bimolecular 
equation. The presence of x(t) on the right -hand side causes the shape of the solution 
curves to change as x(t) is changed. This was reflected in the three curves depicted 
in Figure 4.17. 

Exercises 4.3. It is often to your advantage to do some manual conversions on a 
problem before letting Mathematica do work for you. As a general rule, since most of 
these problems are solvable by separating variables, evaluate constants of integration 
before attempting to further solve for the function you desire. This can usually be 
accomplished by using definite integrals. 

1. Show that if y(t) is a solution of the autonomous differential equation dy!dt = 
F(y), then z(t) = y(t +a) is a solution for any fixed number a. 

PART I. Problems from the Biological Sciences 

2. Suppose that a population whose growth is following a logistic equation dy!dt = 
y(b- ay) is presently at 1/4 of the carrying capacity of the environment in which 
it lives. How long until the greatest rate of growth occurs? 

3. Answer problem 2 in case b = 0.1 and a= 0.0001. 
4. Suppose that a population whose growth is otherwise following a logistic equa­

tion dy/dt = y(b- ay) is being harvested continuously. Harvesting artificially 
increases the death rate. One model of this situation that was proposed by the 
biologist M. B. Schafer is dy/dt = y(b- ay)- ey, where t: is constant. 
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a) What is the effect of this harvest on the maximum size of the population? 
[There is a new artificial carrying capacity.] Consider several cases. 

b) What relationship between the population when harvesting begins and £ 
must exist in order for the population to actually decrease? The value of 
£ depends on the population at the time harvesting begins. 

5. In problem 4 if the differential equation of the population is dy/ dt = y(O.l -
0.0001y) - cy, what rate of harvest£ (depending on the population when har­
vesting begins) will result immediately in a constant population? What is the 
new behavior of the population if the rate of harvest is then reduced by half? 

6. If the differential equation of the population is dyl dt = y(O. 1 - 0. 0001 y ), and is 
essentially constant before harvesting begins, what rate of harvest £ will result 
in an equilibrium population that is half of the original size? What happens to 
the population if that rate of harvest is reduced by half? 

7. Modify the model of exercise 4 so that dyldt = y(b- ay)- c where cis the 
(constant) rate of harvest. Harvesting is done at a fixed rate which is independent 
of the size of the population. In exercise 4, the rate of harvest decreased as the 
population decreased. That is not true here. 

a) What is the effect of c on the possible equilibrium positions the population 
can have? Consider several cases. 

b) Among these possibilities, how can c be chosen so that the population con­
tinues to increase. For an ocean resource is it reasonable to assume that the 
population is near the carrying capacity prior to beginning harvesting? 

c) What values of c will cause the the population to actually decrease toward 
extinction as the only possible equilibrium position? 

8. Gompertz curves result from this modification of the logistic equation: dy/ dt = 

y(b- alny). Find the constant solutions. Solve the equation by separating vari­
ables. Discuss the behavior of the solution curves as a function of the signs of 
a and b. [Gompertz curves have application in population biology; in actuarial 
studies; and in sales predictions for commercial products.] 

PART II. Problems from the Physical Sciences 

9. An object falls downward with velocity changing according to the rule 

dv = 400- v2 
dt 16' 

with downward being positive and units being feet per second. 

a) What is the only physically realizable constant solution v =? 
b) Show that if the object has initial velocity 0, then limHoo v(t) = v oo" 

c) Find the time of fall to the ground if the object was initially at rest at 2000 

feet. 
d) What is the effect of an initial velocity of v0 = v oo + 100 on the time of fall 

from 2000 feet? 
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10. Two chemicals A and B combine to produce a product X according to the dif­
ferential equation dx!dt = k(250- x)(40- x). Assume that x(O) = 0. Find kif 
x(lO) = 30. Find an expression for x(t) fort;::: 0, and find limHoox(t). 

11. When three chemicals react to form a single product, one has a third-order chem­
ical reaction. The mass of the product X may obey a differential equation of the 
form 

dX dt = k(a- X)(/3- X)(y- X), 

where a, {3, and y are positive. 
a) Solve the equation assuming that a, {3, andy are all different. 
b) Solve the equation assuming that a= {3, andy is different. 
c) Solve the equation assuming that a,f3, andy are all the same. 

12. When three chemicals react to form a single product, the mass of the product X 
more generally obeys a differential equation of the form 

dX m (f3 m m dt = k(a- X) 1 -X) 2(y- X) 3, 

where a,f3, andy are positive and m1, m2, and m3 are positive integers. Explore 
the nature of the solutions for various choices of m1, m2, and m3• 

13. Newton's law of cooling is not the only law of cooling for radiative cooling. 
According to Stefan's law of radiation, the rate of change of temperature of a 
body at temperature T K is 

where T0 is the absolute temperature of the surroundings. 
a) Solve Stefan's equation 

dT = k(T4 - r,4) 
dt 0 ' 

b) Recall that T 4 - To4 = (T - T0)(T + T0)(T2 + Tb When T - T0 is small and 
T0 is large, (T + T0)(T2 + To2) , k1 a large constant and T 4 - To4 , k1 (T- T0). 

ThereforedT/dt = k(T4-To4), kk1(T-T0 ) = K(T-T0), which is Newton's 
law of cooling. 

c) Look at the series representation of T 4- To4 centered on T0• What is k1 when 
T0 = 300 K? 

d) Investigate whether or not the solution of Stefan's equation is near the so­
lution of Newton's equation when T - T0 is small and T0 is large. Use the 
same initial condition for both equations. Look at the series representation 
of both solutions centered on T0. 

PART III. Problems from the Social Sciences 

14. Complete the solution of the differential equation 4.8. 
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15. A new electronic consumer product is introduced into the marketplace with ini­
tial sales of 10,000 and projected total sales s(t) at timet governed by the differ­
ential equation 

ds - = lOs(l 0, 000,000 - s ). 
dt 

What is the expected saturation level (carrying capacity)? How long will it take 
for the market to be 95% saturated? Plot your solution curve. 

16. At sundown, seeing someone with lights on suggests that you should tum on 
your lights. So does the onset of darkness. Suppose that initially no one has 
turned on their lights, that the external stimulus due to the onset of darkness 
is x(t) = 2t, and that the coefficient of imitation is 0.25. State and solve the 
appropriate differential equation of the form of eqn. 4.8. 

17. The price of a commodity is proportional to the excess of demand over supply 
as presented in Section 4.2. Suppose that demand is inversely proportional to 
price and supply is directly proportional to price. Give a differential equation 
that governs price in this situation. Solve the equation. Plot your solution in the 
special case where the constants of proportionality are: for price, I ; for demand, 
200; and for supply, 0.1. Use a reasonable initial condition. 
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Higher-Order Linear Differential Equations 

5.0 Introduction 

Linear differential equations of higher order have useful and interesting applications, 
just as first-order differential equations do. We study linear differential equations 
of higher order in this chapter. The word linear in the chapter title should suggest 
that techniques for solving linear equations will be important. What is somewhat 
unexpected is that we have to appeal to the theory of solving polynomial equations 
in one variable. Though the solution technique for first-order equations gave us a 
complete solution in essentially one step, this is not the case here. For the first time 
we have to solve the homogeneous and nonhomogeneous equations separately and 
by different methods. 

When solving the homogeneous equation, we need to find the roots of polynomi­
als. The notion of linearly independent solutions becomes centrally important for 
the first time. The Wronskian determinant is introduced to test for linear indepen­
dence. It is the determinant of the Wronskian matrix upon which the technique of 
variation of parameters is based. Variation of parameters and the method of un­
determined coefficients are used to find a particular solution to nonhomogeneous 
problems, once the homogeneous problem has been completely solved. 

This chapter leans heavily on linear algebra for its theory. You are shown how 
to use Mathematica to perform many of the steps that are simple in theory but very 
hard in practice. The idea behind the use of Mathematica is to free you from compu­
tational burdens so that you can concentrate on the meaning of our activities, rather 
than on the many details that arise as we seek solutions. 

In this chapter we once again see all of the elementary functions that you have 
studied polynomials, the natural exponential, the sine and cosine functions, and the 
hyperbolic functions. The theory of linear differential equations with constant coef­
ficients is built on these functions. The natural logarithm plays an important role in 
Chapter 8 where differential equations with variable coefficients are studied. Matri­
ces become important to us in this chapter, and remain so throughout the rest of the 
text. 

C. C. Ross, Differential Equations
© Springer Science+Business Media New York 2004
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The Mathematica function NOSal ve can be used to obtain accurate numerical 
solutions to the differential equations studied in this chapter, but this accuracy ex­
tends only to the values of the solution function, not the derivatives of the solution. 
This is because NOSal ve approximates the solution by a cubic spline, a sequence 
of cubic polynomials that are defined over short intervals and adjacent polynomials 
agree in function value and slope at the endpoint that is common to their intervals of 
definition. This serves very well for accurately determining points along the solution 
curve, but these cubics do not accurately convey slope information. 

If you need slope information, then you need techniques from Chapt. 9 for ex­
pressing a higher order differential equation as a system of equations that explicitly 
define the derivatives you need. In that context, NOSal ve does give accurate values 
for the derivatives that the differential system explicitly defines. Be alert to what you 
are asking a numerical method to do, to be sure that it is capable of providing what 
you seek. 

5.1 The Fundamental Theorem 

In order to see why we can expect to find solutions for differential equations, we state 
the fundamental theorem, which says that there are solutions and gives conditions 
under which there is only one solution. Of course, knowing that there are solutions 
is not at all the same thing as being able to actually find a solution. But there is a 
large class of important differential equations, the linear differential equations with 
constant coefficients, where we can actually write down a formula for the solutions. 
But even in cases such as these, when it is clear what has to be done to obtain a 
solution, the theory is much easier than the practice. We will find that Mathematica 
eases the computational burden immensely, but that there are places where the theory 
says something exists and another piece of theory says that we cannot necessarily 
write out an actual solution. In these cases we can often get approximate solutions 
that are very close to the theoretically exact solutions we seek. But when we are 
calculating with approximate objects an immediate question is: just how good is the 
approximation? Questions such as these are covered in courses in numerical analysis. 

The Fundamental Theorem 

Theorem 5.1 (Existence and Uniqueness). Given an open subset U of(n+ 1)-space 
Rn+I and a point P = (x0, a0, a 1, a2, ..• , an-I) of U. Suppose that the real-valued 
function f is defined and continuous on U and there is a positive number M so that 
if(x, u1, u2, ••• , un) and (x, vi, v2, ..• , vn) are in U it follows that 

lf(x, ui' u2, ... , un)- f(x, vi, v2, •.. , vn)l 

::5 M(lu 1 - v11 + lu2 - v21 + ··· + lun- vnl). 

Then there is exactly one solution of the nth-order initial value problem 
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y<nl(x) = f(x, y(x), y'(x), ... , y<n-1l(x)) (5.1) 

y(xo) = ao,y'(xo) = ai' ... ,y<n-1)(xo) = an-1 (5.2) 

that is defined for x in a neighborhood of x0• 

Equations 5.1 and 5.2 constitute an initial value problem because the information 
needed to select one particular solution is given at a single point. Note that the ini­
tial conditions 5.2 merely define the value of f(P). This is enough to determine the 
solution (near x0 ). We say that Theorem 5.1 is an existence and uniqueness theorem 
because it says that there is a solution (existence) and that this is the only solution 
(uniqueness). 

The constant M whose existence must be demonstrated for the theorem to hold, is 
an idea due to Lipschitz. 1 For the first -order case, if a f/ f)y exists, then the constant M 
can be taken to be any upper bound on a f/ f)y, which can be seen from the inequality 

In the nth-order case, M can be taken to be any bound 

As the examples below indicate, a bound can be found through algebraic manip­
ulation. 

Example 5.1 The differential equation y' = 1 + y2 has a unique solution that passes 
through the point (0, 0). Here f(x, u) = I + u2 and f(x, v) = 1 + v2• Thus lf(x, u)­
f(x, v)l =lu2 - v21 =lu + vllu - vi :5 2lu - vi in the rectangle U : lxl < 1, lyl < 1. So we 
can take M = 2, and Theorem 5.1 says that there is exactly one solution that passes 
through (0, 0). You may check that this solution is given by y(x) = tanx. 0 

The theorem guarantees a solution only in a neighborhood of the initial point. 
The next example demonstrates that this is the case when f is a polynomial, which 
is nearly as simple as a nonlinear function can get. 

Example 5.2 Show that the differential equation y' = - 2xy2 has exactly one solution 
that passes through the point (2, 1/2). 

Solution. Choose U to be the rectangle lx - 21 < 1, ly - 1/21 < 1/2. Then for 
(x, u) and (x, v) in U, we have that lf(x, u)- f(x, v)l =1- 2xu2 + 2xv21 :52lxllu + vllu­
vi :5l2lu- vi, because if lx- 21 < I, then 1 < x < 3, and if ly- 1/21 < 1/2 then 
0 < y < 1. Hence 21xllu +vi :5 2(3)(1 + 1) = 12. Theorem 5.1, with M = 12, says that 
there is a unique solution that passes through the point (2, 1/2). 

We find the solution. Separating variables gives 

y' 
-2 = 2x. 

y 

1 Rudo1fLipschitz (1832-1903), German mathematician. Professor at Bonn for many years. 
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Integrating both sides gives 
1 
- = x2 +c. 
y 

At the point (2, 112), we find c from 2 = 22 + c, or c = -2. Thus y(x) = l!(x2 - 2). 
Note that y(x) is defined on an interval containing x = 2 only for x ~ {2, and hence 

only for the subinterval {2 < x < 3 of the original interval lx - 21 < 1 that is in U. 
This illustrates why Theorem 5.1 only guarantees a solution on a subinterval of the 
original interval. 0 

Even very simple examples of equation 5.1 can be exceedingly difficult to solve. 
But if we specify additional properties that f should have, then we can begin to say 
something about the nature of any solutions that the equation may have. 

Definition 5.1. Let C be a set of real valued functions that are defined on an open 
interval a < x < b of the reals and which have n continuous derivatives for a < x < 
b. A differential operator is a function F whose domain is C, such that for some 
continuous function g, ifu is inC, then F(u)(x) = g(x, u(x),u'(x), ... ,u<nl(x)). In case 

F(u)(x) = an(x)u(n)(x) +an-I (x)u(n- 1\x) + · · · + a0(x)u(x), 

where an(x) * 0, and the functions ai(x) are continuous for a < x < b, then F is 
called an nth-order linear differential operator. Further, if each of the coefficient 
functions ai(x) is constant, then F is an nth-order linear differential operator with 
constant coefficients. 

Example 5.3 The linear differential operator A(y) = y" + xy, so denoted because 
the homogeneous differential equation y" + xy = 0 is known as Airy's differential 
equation, does not have constant coefficients, whereas L(y) = y" + 4y is a second­
order linear differential operator with constant coefficients. 0 

A linear differential operator, as a function, is linear. That is, if u and v are in the 
domain ofF, F(u + v) = F(u) + F(v) and F(cu) = cF(u) for any number c. In the 
linear case the fundamental existence and uniqueness theorem goes this way. 

Theorem 5.2. Let Ln be an nth-order linear differential operator and q be a function 
defined and continuous for a < x < b, over which an(x) * 0. Then the initial value 
problem consisting of the nth-order linear differential equation 

Ln(y)(x) = an(x)y(n)(x) + an_1(x)y(n-l)(x) 

+ · · · + a0(x)y(x) = q(x), 

and for any a < x0 < b the initial conditions 

y(xo) = ao, y'(xo) =a!, ... , y<n-I)(xo) =an-I 

has a unique solution in a neighborhood of x0• 

Proof. Theorem 5.2 follows from Theorem 5.1 by taking 

(5.3) 

(5.4) 
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f(x, y(x), y'(x), ... , y<n-l)(x)) 

= (1/an(x))[q(x)- an-I (x)y(n-l)(x)- ···- a0(x)y(x)]. 

Example 5.4 The linear differential equation (x- 1 )y" - xy' + y = 0 has the solution 
y = x, which satisfies the initial conditions y(O) = 0, y'(O) = 1, and the solution y = 
ex, which satisfies the initial conditions y(O) = y'(O) = 1. Both solutions successfully 
cross x = 1, where the coefficient of y" is 0. <> 

Theorem 5.3. Suppose that y /x) is a solution of the nth-order linear differential 
equation Ln(y)(x) = q(x) on some interval I, with an(x) * 0 on I. If z(x) is also a 
solution of Ln(y)(x) = q(x) on the same interval I then there is a function u(x) that is 
a solution of Ln(y)(x) = 0 such that z(x) = u(x) + Yp(x)for x in I. 

Proof The proof of this theorem follows from this calculation: Both y P and z 
are known solutions. Let u = z- Yp· Then Ln(u)(x) =Ln(Z- Yp)(x) =Ln(z)(x) -
Ln(yp)(x) =q(x)- q(x) = 0. Solving for z gives z = u + Yp• which is what was to 
beproved. D 

Theorem 5.3 is just an extension of the similar result we saw in chapter 1. It tells 
us the form that solutions of nonhomogeneous linear differential equations will take. 
The idea presented in Theorem 5.3 is sometimes called the principle of superpo­
sition. The next theorem tells us more about the form of solutions of homogeneous 
linear differential equations. 

Theorem 5.4. Given the nth-order homogeneous linear differential equation 
Ln(y)(x) = 0 defined on an interval a < x < b over which an(x) * 0. There ex­
ist n functions y1, y2, ••• , Yn that are solutions of Ln(y)(x) = 0 such that if z is any 
solution of Ln(y)(x) = 0 for a < x < b, then there are numbers c1, c2, ••• ,en having 
the property that 

fora< x <b. 
Proof This theorem is proved by actually exhibiting a collection of functions 

that works. Let z(x) be a solution, and let a < x0 < b. Define solutions yjkl (x) so that 

l)(x0 ) = 6~+1, where 6~ is 0 when i * j and 1 when i = j. [The symbol6~ is called 

the Kronecker delta.] We have that then functions Yp y2, .•• , Yn satisfy: 

YI(xo) = 1. y!(x0 ) = 0, 
(n-1) 

Yl (x0 ) = 0, 

y2(xo) = 0, yz(x0 ) = 1, 
(n-1) 

Y2 (x0 ) = 0, 

Yn(x0 ) = 0, y~(x0 ) = 0, y~n-ll(xo) = 1. 

A direct calculation shows that if 

2 Leopold Kronecker (1823-1891), German mathematician. 
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then w is a solution of the differential equation and 

The function w satisfies the same initial conditions that z satisfies. Since there is only 
one solution that satisfies these initial conditions, z(x) = w(x) for all x, a < x < b. D 

Example 5.5 The functions y1 (x) = ~ and Y2(x) = e-x are solutions of the differen­
tial equation y"- y = 0. They can serve as the functions mentioned in Theorem 5.4. 
For instance, observe that y(x) = cosh x is also a solution of y" - y = 0 : y' (x) = sinh x 
and y"(x) = coshx, so that y"(x)- y(x) = coshx- coshx = 0. To find the constants, 
let 

coshx = c 1 ~ + c2e-x. 

Then when x = 0, cosh 0 = 1 = c 1 + c2• Take a derivative to get 

Then take x = 0 to get sinh 0 = 0 = c 1 - c2. Solve the simultaneous equations. 

to find that the constants are c 1 = c2 = 1/2. Then we recover the definition 

~+e-x 
coshx = 2 

Similarly, y(x) = sinhx is a solution of y" - y = 0, and we recover the definition 

~-e-x 

sinhx = 2 

0 

The results of Theorems 5.3 and 5.4 combine to give Theorem 5.5, which will 
direct our thoughts for much of the rest of the chapter. 

Theorem 5.5. Suppose that y ix) is a solution of the nonhomogeneous linear differ­
ential equation Ln(y)(x) = f(x) on a < x < b over which an(x) =f:. 0. Then there are 
n functions y1, Y2· ... , Yn that are solutions of Ln(y)(x) = 0 on a < x < b with this 
property: 

lfy(x) is a solution of Ln(y)(x) = f(x) then there are n numbers cl' c2, ... , en such 
that fora< x < b, 

(5.5) 
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The functions y1, y2, ••• , Yn that this theorem requires can be the functions con­
structed during the proof of Theorem 5.4, though there are other sets of functions 
that will work. 

Example 5.6 The family of functions y = c1 cosx + c2 sinx + x2 - 2 is a solution 
of the differential equation y" + y = x2 for every choice of c1 and c2 and every real 
number x. (You should check this.) We will use Mathematica to check solutions of 
equations like this, because the equations we will consider and the functions that are 
their solutions can be so complicated that checking may be a daunting task. 0 

Example 5.6 (M) Check the solution given in example 5.6. Then, in the family of 
solutions of Example 5.6, find numbers c1 and c2 so thaty(O) = 3 andy'(O) = -2. 

Solution. 

In[l]:= y[x_] =c1 Cos[x] +c2 Sin[x] +x2 -2 

Out [1]= -2 + x 2 +Cos [x] c 1 +Sin [x] c 2 

In[2]:= y"[x] +y[x] ==x2 

Out[2]= True 
Impose the initial conditions to get two equations. 

In[3]:= eqns={y[O] ==3,y'[O] ==-2} 

Out [3]= { -2 + c 1 == 3, c 2 == -2} 

Solve these equations. 

In[4] := clc2 = Solve[eqns, {c1 , c 2 }] 

Out [4]= { {c 1 ~ 5, c 2 ~ -2}} 

Capture the solution. 

In[5]:= soln[x_] =y[x]/.clc2[[1]] 

Out [5]= -2 + x 2 + 5 Cos [x] -2 Sin [x] 

Check the solution in the differential equation and the initial conditions. The infix 
operator"&&" means "And." 

In [6] := soln" [x] + soln[x] == x 2 &&soln[O] == 3&&soln' [0] == -2 

Out[6]= True 

0 

Definition 5.2. A collection of functions having the property indicated in Theo­
rem 5.5 is called a fundamental set of solutions of Ln(y)(x) = 0. The function 

Yc(x) = c1y1 (x) + c2y2(x) + ··· + CnYn(x) 

is also called the complementary function of Ln(y)(x) = 0. 
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The set {e', e-x) is a fundamental set of solutions for the equation y" - y = 0 
discussed in Example 5.4. So is the set {coshx, sinhx}. 

We need a way of determining whether or not a given collection of solutions of 
a homogeneous linear differential equation is fundamental. The necessary tool is the 

determinant function introduced by Wronski. 3 

Definition 5.3. The Wronskian W(vp y2, 00 ., Yn) of a set of functions having n - 1 
continuous derivatives on some interval I is the determinant 

y, Y2 Yn 
' ' y~ 

W(yp Y2' ... , Yn) = 
Yl Y2 

(5.6) 

(n-1) (n-1) 
Y~n-l) Yl Y2 

We will use the notation W[y 1 (x), y2(x), 00 ., Yn(x)] to mean the same thing as 

W(y 1, y2, 00 ., Yn)(x). 

Example 5.7 The Wronskian of the pair {cosx, sinx} is 

0 I cos X Sill X I 2 0 2 Wlcosx, smx] = . =cos x + sm x = 1. 
- smx cosx 

0 

The Wronskian is important to us for this reason: 

Theorem 5.6. If the functions Yp y2 , oo., Yn are solutions of Ln(y)(x) = 0 on a< x < b 

over which an(x) * 0, then W[y 1 (x), h(x), 00 ., Yn(x)] is either zero for every x, a < 
x < b, or is never zero for any x, a < x < b. 

Proof (For two functions.) The proof in the case of two functions is easy. It 

suggests how the general proof goes, however. 
Suppose that p 1 (x) and p0(x) are continuous for a < x < b, and let y 1 and y2 be 

solutions of L2(y) = y" + p 1(x)y' + p0(x)y = 0. Then 

and 

y,y{- y;'h 

y 1(-p1(x)y;- p0(x)y2)- (-p1(x)y;- p0(x)y 1)y2 

= -pl (x)(y1y;- Y~Y2) 

-p 1 (x)W(y 1, h)· 

This first-order differential equation has as solution 

3 Hoene Wronski (1788-1853), Polish mathematician. He spent most of his professional life 
working in France. 
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which is either identically zero, if c = 0, or never zero. This equation is called Abel's 
identity after Niels Henrik Abel. 4 D 

We leave the complete proof of Theorem 5.6 to the exercises. 
Example 5.7 illustrates that W[cosx, sinx] * 0 for any x. 

Example 5.8 Here is a Wronskian that is identically zero. 

w[cos(x- ~2),sinx] = I cos{x- ~) sinx I 
-sin(x- ~) cosx 

= cos (x- ~) cosx +sin (x- ~) sinx 

= cos(x- ~ -x) 

= cos(-~) 
= 0. 

0 
In the next section we will define terms to use to describe the situations that 

occurred in the last two examples. 

Exercises 5.1. PART I. Pairs of equations appear below. The first is a differential 
equation; in the second a function or set of functions that is a solution of the differ­
ential equation. Verify that the given functions satisfy the corresponding equations. 
Do this manually and by Mathematica. Consider c; to be an arbitrary constant. 

1. y" - 4y' + 3y = 0; 
y(x) = c1e3x + c2e 

2. y" - 3y' = 0; 
y(x) = c1e3x +c2 

3. y" + 4y' + 3y = 0; 
y(x) = c I e-3x + Cze-x 

4. y" - 2y = 0; 
y(x) = c1e-Y'ix + c2e-Y'ix 

5. y"- 2y' + y = 0; 
y(x) = c1e + CzXe 

6. y" + 2y' + 4y = 0; 
y(x) = c,e-x cos {3x + c2e-x sin {3x 

7. y"- 4y' + l3y = 0; 
y(x) = c1e2xcos3x+c2e2xsin3x 

4 Niels Henrik: Abel (1802-1829). The premier Norwegian mathematician. A child genius, 
as a youth, he showed that the general quintic (fifth-degree polynomial) was unsolvable by 
radicals. His work on higher-order equations foreshadowed the work of Galois. 
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8. y" - 2y1 + 2y = 0; 
y(x) = c1 e'" cosx + c2e'" sinx 

9. yC4l- 8y"1 + 74y"- 232y1 + 84ly = 0; 
y(x) = c1 e2x cos 5x + c2e2x sin 5x + c3xe2x cos 5x + c4xe2x sin 5x 

10. y"1 - 3y" + 4y1 - 12y = e2x - 5 sin 3x; 

y(x) = c1 e3x + c2 sin 2x + c3 cos 2x- (118)e2x- (116) sin 3x- (116) cos 3x 

PART II. For each solution given in problems 1-10 above, evaluate the Wron­
skian determinant of the indicated basis for the kernel of the differential operator. 

PART III. Prove Theorem 5.4. The proof requires several properties of determi­
nants. Here is an outline of the proof for n = 3. You should extend it to the general 

case. Let y1, h' and y3 be solutions of the third-order homogeneous linear differential 

equation L(y) = y"1 + a2(x)y" + a 1 (x)y1 + a0(x)y = 0. Let 

YI Y2 Y3 
W(yi,y2,y3) = 

I I I 

)'I )'2 )'3 

" " " YI )'2 )'3 

Then 

I I I 

)'I )'2 )'3 Yl Yz Y3 Yt Yz h 
(W(yt, Y2' Y3)) 1 

I I I " " " I I I 

)'I )'2 )'3 + )'I )'2 )'3 + )'I )'2 )'3 

" " " " " " ffl Iff ffl 

)'I )'2 )'3 )'I )'2 )'3 )'I )'2 )'3 

Yl Y2 Y3 
I I I 

YI )'2 )'3 
ffl ffl Iff 

YI )'2 )'3 

since the first two determinants are 0 (they have two identical rows). Note the pat­
tern for the derivative of a determinant: it is the sum of n determinants where each 
successive row is differentiated. Continuing, 

Yl Yz Y3 
(W(yl' h, Y3)) 1 

I I I 

)'I .)'2 )'3 
ffl ffl ffl 

Yt )'2 )'3 

Yl Yz Y3 
I I I 

Yt )'2 )'3 

g(yl) g(y2) g(y3) 

Yl Yz Y3 
I I I 

)'I Y2 )'3 

-a2(x)y; 1 -a2 (x)y~ -a2(x)y;' 

Yl Y2 Y3 
-a2(x) 

I I I 

= )'1 )'2 .)'3 

" " " )'I )'2 )'3 

-a2(x)W(yl, Y2' Y3), 
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where g(y) = -(a2(x)y" + a 1 (x)y' + a0(x)y). The simplification in the second step 
results by adding a0(x) times row one and a 1 (x) times row two to row three. These 
manipulations leave the value of the determinant unchanged. The resulting differen­
tialequation 

has as solution 

W(yl, y2, Y3)(x) = cef -p~(x) dx = W(yl, y2, Y3)(xo) exp (ix -pi (t) dt) 

and hence is identically zero if and only if W(y1, y2, y3)(x0 ) = 0. Since x0 can be any 
point, W(y1, y2, y3) is either identically zero or never zero. 

5.2 Homogeneous Second-Order Linear Constant Coefficients 

Because we can completely describe the set of all solutions to a homogeneous 
second-order linear differential equation with constant coefficients, we proceed to 
do it. Everything to come in the next section that is concerned with higher-order lin­
ear differential equations with constant coefficients will have been anticipated in this 
brief section. 

It would be useful to have a reliable check for the linear independence of a finite 
set of functions. The Wronskian does this for us. Recall that for two functions, y1 

and y2, the Wronskian determinant is simply 

W(yl, Y2)(x) = I ~{ ~~~ ~~~~~ I = Y1 (x)y;(x)- Yi (x)y2(x) 

Our interest in the Wronskian determinant is this theorem (second-order case). 

Theorem 5.7. Given a pair {y1, y2} of functions having a continuous derivative on 
an interval I. If the functions are not linearly independent on I, then W(yl' y2)(x) = 0 
for every x in I. 

If the functions {y1, y2} are both solutions of the same linear homogeneous differ­
ential equation, then W(y1, y2) * 0 on I if and only if the pair of functions {y1, y2} is 
linearly independent. 

Example 5.9 The functions cosx and sinx, two solutions of the linear differential 
equation y" + y = 0, are linearly independent. Their Wronskian is 

. I cosx sinx I 2 • 2 W[cosx, smx] = . = cos x + sm x = 1 * 0. 
-SlllX COSX 

On the other hand, x and 5x, which are linearly dependent since 5(x) + ( -1)(5x) = 
0, has the Wronskian 

I x 5x I W[x, 5x] = 1 5 = 5x- 5x = 0. 

<> 
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We showed in Example 5.8 that the functions cos(x + n/2) and sinx are linearly 
dependent. 

We will often need to calculate such Wronskian determinants. When the deter­
minants involved are 3 x 3 or larger, this is a real chore. There is a collection of rules 
for manipulating determinants that can simplify the work, but, done manually, such 
a calculation is prone to errors. Mathematica does these calculations easily, and we 
will rely heavily on it. In Mathematica Example 5.9 is the following. 

Example 5.9 (M) Use Mathematica to show the linearly independence of the sine 
and cosine functions. 

Solution. 

In [ 11 : = row [x_) = {Cos [ x], Sin [x]} 

Out[l1= {Cos[x],Sin[x]} 

In[21:= {row[x],row'[x]}//MatrixForm 

Out[21= ( Cos [x] Sin [x] ) 
-Sin[x] Cos[x] 

In [ 31 : = W [x_] = Det [ {row [x] , row' [x] } ] 

Out[31= 1 

The fact that the determinant is 1 means that these two functions are linearly 
independent. 0 

The Dimension of the Kernel of a Second-Order Homogeneous Linear 
Differential Equation 

Theorem 5.8. The dimension of the kernel of a second-order linear differential op­
erator is two. That is, suppose that I is an interval and the functions a 1 (x) and a0(x) 
are continuous on /, then a homogeneous linear differential equation of the form 

has two linearly independent solutions that are a basis for the set of all solutions. 
Proof We proved this theorem in Section 5.1. D 

Theorem 5.8 tells us how large a task we have when we attempt to solve a ho­
mogeneous linear differential equation. It also gives us a measure of how much work 
remains as we proceed to find solutions to a problem. Though linear algebra may 
tell us how many vectors (in our case functions) we can expect in a basis for the 
kernel of a linear differential operator, it does not say how to find these basis vectors. 
This we learn in differential equations. But you may be surprised at how much of 
the theory leads us back to the algebra you learned in high school, as well as back to 
calculus. Actually, there is a very good fit between algebra and calculus. The present 
discipline "differential equations" responds well to the application of methods we 
already know. 
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Second-Order Linear Differential Equations 
with Constant Coefficients 

Second-order linear differential equations give us a good look at what we can ex­
pect as we examine higher-order equations. For the moment we will concentrate our 
studies on linear differential equations with constant coefficients, because of the sig­
nificance of their applications and the simplicity of the theory of their solution. 

Let us define the second-order differential operator that we will study to be 

(5.7) 

where a, b, and c are numbers and a * 0. The first thing to notice is that if we let y = 
f(x), then L2(f(x)) is a function. For instance, using the fact that (dk!di')e'x = r"e'x 
several times, observe that 

L2(e) = a(e) + b(e) + c(e) = (a+ b + c)e, 
L2(e2x) = a(4e2x) + b(2e2x) + c(e2x) = (4a + 2b + c)e2x, 
L2(e-x) = a( e-x)+ b( -e-x)+ c(e-x) = (a- b + c)e-\ 

andy = x andy = x2 produce 

L2(x) = a(O) + b(l) + c(x) = b +ex, 

and 
L2(~) = a(2) + b(2x) + c(x2) = 2a + 2bx + cx2• 

We can take advantage of the way L2 acts on exponentials of the form e'x to see 
how to get solutions of the equation L2 (y) = 0. In order for 

L2(e'x) = (a?- + br + c)e'x = 0, 

we must have p(r) = ayZ + br + c = 0 since e'x is never 0. This means that we need 
only choose r to be a root of the polynomial equation 

p(r) = ar2 + br + c = 0 

to have a solution y(x) = e'x of the differential equation L2{y) = 0. The polynomial 
equation p(r) = 0 is called the characteristic equation of the differential equation 
Lz(y) = 0, and the polynomial p(r) is the characteristic polynomial. If the char­
acteristic equation has distinct roots r 1 and r2, we immediately have two linearly 
independent solutions, y1 (x) = e'1x and y2(x) = e'2x, of L2{y) = 0. 

Example 5.10 Solve the differential equation L2{y) = y"- 5y' + 6y = 0 by making 
the substitution y = e'x. 

Solution. When we do this, y' = re'x andy" = yZerx, so that L2(e'x) = yZerx-
5re'x + 6e'x = (yZ - 5r + 6)e'x = p(r)e'x. Lz(e'x) = 0 only when p(r) = r2 - 5r + 6 = 
(r - 2)(r- 3) = 0. 
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This means that r 1 = 2 and r2 = 3 are the roots we seek. Thus 

and 
Yz(x) = er,x = e3x 

are two solutions. That they are solutions is verified by 

and 
L2(e3x) = 9e3x - 5(3e3x) + 6(e3x) = (9- 15 + 6)e3x = 0. 

These two solutions are also linearly independent, because their Wronskian is 

Since {e2x, e3x} is a basis for the kernel of the differential equation L0 (y) 

member of the kernel can be described by y = c 1 e2x + c2e3x. ~ 
0, any 

0 

Example 5.10 (M) These solutions can be found by Mathematica in two ways: 

1. by working through the theory, and 
2. by using DSol ve. 

Demonstrate these two ways. 
Solution. 
Define the operator: 

In[4]:= L[x_,y_] =y"[x] -Sy'[x] +6y[x] 

Out { 4} = 6 y [X] - 5 y' [X] + y" [X] 

Get the characteristic polynomial by finding the coefficient of Exp [ r x] after 
substituting Exp [ r x] into the operator L. 

In [5] := CharacteristicPoly[r_] =Coefficient [L[x, Exp[r #] &] , 

Exp[rx]] 

Out[5]= 6-5r+r2 

Get the roots of the characteristic equation. (Note the use of the 
ReplaceAll operator'/.'.) 

In[6] := rlr2 = r/.Solve[CharacteristicPoly[r] == 0, r] 

Out [6]= {2, 3} 

Tum these roots into functions. 

In [7] := Solns = Exp[x * rlr2] 
Out[7]= {e2x, <e3x} 

Form the complete kernel. Here Dot is used. You saw it in multidimensional 
calculus. 
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In [ 81 : = AllSolns [x_] = Solns. { c 1 , c 2 } 

Out [8]= e 2 x c 1 + e 3 x c 2 

Check that this set of solutions works: 

In [9] := Simplify[L[x, AllSolns] == 0] 

Out[9]= True 

Here is the second way: the solution using the built-in function DSol ve. 

In[lO] := DSolve[L[x, y] == 0, y[x], x] 

Out[lO]= {{y[x] ~e2 xC[l] +e3 xC[2]}} 

This is not y(x), but a rule saying how y(x) should be defined. 0 

Notice that the first steps thatMathematica was requested to execute were exactly 
the steps that we executed manually in solving the same problem. Whenever such a 
second-order problem has a characteristic equation with distinct roots, the steps we 
first executed suffice to solve that problem. As was seen in the last step above, Math­
ematica can solve the differential equation. This is powerful, but, for now, we want 
to be able to check our understanding of each step of our work, so the intermediate 
steps are worthwhile. 

Review of the Solution of Quadratic Equations 

In the second-order case with real coefficients the characteristic equation is a quadratic, 
and since there are three different situations that can occur when solving such equa­
tions, we consider the effect on differential equations of each of these three cases. 
The cases are: 

1. two distinct roots, 
2. one double root (repeated roots), and 
3. complex conjugate roots. 

Since L2{y) = a(d2y!dr)+b(dy!dx)+cy has as characteristic equation the general 
quadratic equation ar2 + br + c = 0, which admits each of these three cases, we 
need to do some algebra to remind ourselves about how to recognize each case. 
Solving a? + br + c = 0 by completing the square leads to the quadratic formula, 

r = (-b±.../b2 - 4acY(2a). The quantity q = b2 -4acdetermines which case we have, 
and for this reason is called the discriminant. The discriminant, being a number, 
must be either positive or zero or negative. 

These three cases correspond to the classification of roots mentioned above. To 
see why, look at r = (-b ± -{qY(2a). 

1. If q > 0, .yq is real and nonzero, so -b ± .yq denotes two different numbers: 
-b + .yq, and -b - .yq. After dividing these two numbers by 2a, we have two 
different roots r1 = (-b + .yqy(2a). and r2 = (-b- .yqy(2a). 

2. When q = 0, -b ± .yq = -b ± 0 = {-b, -b}. This is the double root case, where 
r 1 = r2 = -b/(2a). 
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3. When q < 0, yq is a pure imaginary, which we can denote by i~. The two 

roots are r = ( -b ± i~)/(2a) which is more clearly seen to represent a pair 

of conjugate complex numbers when written r 1 = -b/(2a) + (i~)/(2a), r2 = 
-b/(2a)-(i~)/(2a). We see that the two roots have the same real part Re(r 1) = 

Re(r2) = -b/(2a). The imaginary parts differ only in sign: Im(r1) = y"j(JV(2a), 

and Im(r2) = -y"j(JV(2a). 

We are now left with the problem of deciding what kinds of solutions correspond 

to these three cases. In the two cases where the real or complex roots are different, 

we get linearly independent solutions, even though we do not yet know the form of 

the solution in the complex case. 

Discriminant > 0 : Distinct Real Roots ( r 1 -:J:. r 2 ) 

L(er1x) = p(r1)erlx = (O)er1x = 0, and L(er,x) = p(r2 )er,x = (O)er,x = 0. The Wron­

skian determinant gives 

since r1 * r2, and no exponential is zero. The two linearly independent solutions are 
y 1 (x) = er1x and y2(x) = er,x. 

Discriminant= 0: Repeated Real Roots (r = r 1 = r 2 ) 

Suppose that the discriminant is zero. Then the characteristic equation p(r) = 0 has 

roots r 1 = r2 = -b/(2a). It is clear that y 1 (x) = er1x and y2(x) = er1x are not different 

solutions. The way to find a second solution involves a fact about polynomials. 

Theorem 5.9. Given a polynomial p(x). 

I. Then p(x) has a root r provided that p(x) = (x- r)q0(x). 

2. Also, p(x) and its derivative p'(x) have a common root r provided that p(x) 

(x - r)2 q 1 (x ). That is, p(x) has r as (at least) a double root. 

3. Further, p(x), p'(x) and p"(x) have a common root provided that 

p(x) = (x - r)3q2(x). [Similarly for higher multiplicities.] 

Proof The proof involves expanding p(x) in a Taylor series about rand interpret­

ing why some of the leading terms are missing. [The value p(r), and the appropriate 

derivatives p(kl(r) are zero.] You have as an exercise the construction of a proof from 

this hint. D 

This theorem and the interchange of order of differentiation property for partial 

derivatives tells us how to get a second linearly independent solution when the char­

acteristic equation has a double root. Recall that L2(erx) = p(r)erx, with the deriva­

tives taken with respect to x. Since there was a parameter r present, we actually 

should have denoted the derivatives as partial derivatives. But we thought of x as 
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the independent variable and r as essentially a constant whose value(s) we would 
determine. Let's upgrade the status of r. Calculate 

!!_L (e'x) = !!_ (p(r)e'x) = p'(r)e'x + p(r)xe'x. ar 2 ar 
Since r is a double root of p(x) = 0, both p(r) = 0 and p'(r) = 0. So, by interchanging 
the order of differentiation, we find that 

This says that xe'x is a solution since L2(xe'x) = 0. In order to understand this, we 
examine a differential operator whose characteristic equation has a double root. 

For r to be a double root of the quadratic p(x) = 0, the characteristic polynomial 
must be a constant multiple of p(x) = (x- r)2 = x2 - 2rx + ?. In this case the 
corresponding differential operator is Liy) = y" - 2ry' + ?y. We need to verify that 
y1 (x) = e'x and y2(x) = xe'x are both solutions of the differential equation L2(y) = 
y" - 2ry' + ?y = 0 and that they are linearly independent. L2(y1 (x)) = L2(e'x) = 
(?erx) - 2r(re'x) + ?(e'x) = (? - 2r2 + ?)e'x = 0, so y1 (x) is a solution. For y2(x), 
we have y~(x) = (dldx)(xe'x) = e'x + rxe'x, and y2' (x) = 2re'x + ?xe'x, so that 

L2(y2(x)) = 2re'x + ?xe'x- 2r(e'x + rxe'x) + ?xe'x 

= (2r + ?x- 2r- 2?x + ?x)e'x 

= ((2r- 2r) + (? - 2? + ?)x)e'x 

= (p'(r) + p(r)x)e'x 

= (0 + Ox)e'x 

= Oe'x 

= 0. 

It remains to show that y1 and y2 are linearly independent. The Wronskian deter­
minant 

I e'x xe'x I 
W[yl (x), Yix)] = re'x e'x + rxe'x = e2rx * 0, 

so y1 and y2 are linearly independent. This idea looks ahead to what we will have to 
do to find missing solutions when we encounter the repeated-root situation in higher­
dimensional settings. 

The one remaining case is when our discriminant is negative, so that the two 
roots of the characteristic equation are complex conjugates. 

Complex Numbers and Functions of Complex Numbers 

When studying complex variables you find that most elementary manipulations with 
complex numbers behave just like they would with real numbers. For instance, ad­
dition is commutative and associative, as is multiplication, there are additive and 
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multiplicative inverses (except for 0 which has no multiplicative inverse), Oz = 0 for 
any z, and if z1 z2 = 0, then either z1 = 0 or z2 = 0. The differentiation rules for real 
functions all carry over to complex functions, and the formulas for the derivatives of 
familiar functions, such as (d/ dz)z2 = 2z, still look the same. The rules for derivative 
of a sum, product, and quotient, all look and work the same, as does the chain rule. 

The formula that we need most is called Euler's formula5 and it says that if q is 
real, then eiq = cos q+i sin q. Thus Re(eiq) = cos q, and lm(eiq) = sin q. The functions 
Re and Im are the real part and imaginary part of their argument, respectively. 
Using them with a and b both real, Re(a + bi) = a and lm(a + bi) = h. Since the 

length or modulus of the complex number z = a+ bi is defined to be lzl = Va2 + h2, 

leiql = ~ cos2 q + sin2 q = I, when q is real. 

This means that all of the values of eiq for real q lie on the unit circle in the com­
plex plane. Furthermore, since the usual law of exponents e2 ' +z, = ez, e2' holds for 
complex z1 and z2, we have that ea+bi = eaebi = ea(cos b + i sin b). This is the key to 
representing the solutions that correspond to complex roots. 

Discriminant< 0: Conjugate Complex Roots (rv r 2 =a± hi) 

If r1 = a + bi is a complex root of the characteristic equation, the corresponding 
solution is 

y(x) = er,x = e(a+bi)x = eax(cos bx + i sin bx) = eax cos bx + ie"x sin bx. 

The reason this is so important to us is contained in Theorem 5.10. 

Theorem 5.10. lfL is a real-valued linear function and the elements in the domain of 

L are all real-valued, then the domain of L can be enlarged to include elements that 

are complex-valued as follows: If u and v are in the domain of L (so they are real­

valued), andy= u+iv, thenL(y) = L(u)+iL(v)andifL(y) = 0, thenL(u) = L(v) = 0. 
Proof The theorem follows from the calculation L(y) = L(u + iv) = L(u) + iL(v) = 

0. Since the representation 0 = 0+i0 is unique and both L(u) and L(v) are real, equate 
coefficients to see that L(u) = L(v) = 0. D 

The equations L(u) = 0 and L(v) = 0 are equations involving real-valued, not 
complex-valued objects. We use this discovery this way: If the characteristic equa­
tion corresponding to the differential equation L(y) = 0 has the pair r 1, r2 = a± i/3 
of conjugate complex roots, then even though er,x and er2x are complex-valued so­
lutions, y 1 (x) = e'n cosf3x and y2(x) = eax sinf3x are two linearly independent real 
solutions that span the same set of real-valued solutions that the complex-valued 
functions er,x and er,x span. We get the same real pair from r2 as from r 1• 

5 Leonhard Euler ( 1707-1783 ), Switzerland's greatest scientist, and one of the greatest math­
ematicians who has ever lived. A prolific author, he averaged around 800 published pages 
per year of his life. He founded or expanded many of the present themes of mathematics. 
His name is attached to theorems from all branches of modem mathematics. 
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That the two real functions y1 and Y2 are solutions follows from Theorem 5.10. 
Here is the proof that they are linearly independent. 

W[eax cosf3x, eax sinf3x] 

I eax cosf3x 
eaxa cosf3x- eax/3 sinf3x 

eax sinf3x I 
eax13 cosf3x + eaxa sinf3x 

= e2axf3(cos2 f3x + sin2 f3x) 

= e2axf3 

=F 0 when f3 =F 0, 

and f3 * 0 is necessary for the root a ± i/3 to be complex. 

Example 5.11 (M) In Mathematica this proof may be done this way. 
Solution. 

In[ll]:= y[x_] =eax{Cos[bx],Sin[bx]} 
Out[ll]= {eax Cos[bx],eax Sin[bx]} 

In [ 12] : = (w = {y [x] , y' [x] } ) //MatrixForm 

Out[12]= ( 
eaxcos[bx] eaxsin[bx] 

aeaxcos[bx]-beaxsin[bx] beaxcos[bx] +aeaxsin[bx] 

In[13]:= Simplify[Det[w]] 
Out[13]= be2 ax 

This is nonzero if b ;f:. 0. 0 

Our findings are worth recording as a theorem, after which we will give some 
examples. 

Theorem 5.11. Suppose that the second-order linear differential operator L(y) = 
ay" + by' + cy has real coefficients with a ;f:. 0. The character of the roots of the 
characteristic equation p(r) = ar2 + br + c = 0 determines the character of pairs of 
linearly independent solutions of the homogeneous equation L(y) = 0 in this way: 

1. If p(r) = 0 has two different real roots, r 1 and r2, then two solutions of L(y) = 0 
are y1 (x) = e'tx and y2(x) = e'2x. 

2. If p(r) = 0 has a double (real) root r = r 1, then two solutions of L(y) = 0 are 
y1 (x) = e'tx and y2(x) = xe'tx. 

3. If p(r) = 0 has two conjugate complex roots rl' r 2 = a ± f3i, then two real 
solutions of L(y) = 0 are y 1 (x) = eax cosf3x and y2(x) = eax sinf3x. 

The first case was illustrated in Example 5 .1. Here are examples of the remaining 
two cases. 

Example 5.12 Find two linearly independent solutions to the differential equation 
L2(y) = y" + 4y' + 4y = 0. 

Solution. Here when we substitute y = e'x, we find thatL2(e'x) = (r2+4r+4)e'x = 
p(r)e'x. In order for this to be 0, p(r) = r2 + 4r + 4 = (r + 2)2 = 0. This means that 
there is a double root r = -2. From the theory, y1 (x) = e-2x and y2(x) = xe-2x are two 
solutions. So a complete description of the kernel is y = c 1 e-2x + c2xe-2x. 0 
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Example 5.12 (M) Solve the differential equation of example 5.12 in Mathematica 

and demonstrate the linear independence of the two solutions. 
Solution. 

In [14 1: = DSolve [y" [x] + 4y' [x] + 4y [x] == 0, y [x], x] 

Out[141= {{y[x] -?<e- 2 xC[l] +<e 2 xxC[2]}} 

In[151:= soln[x] =Expand[y[x]/.%[[1]]] 

Out[151= e- 2 xC[l] +e-2 xxC[2] 

In [ 161: = y1 [x_] =Coefficient [soln [x], C [1]] 

Out[161= e- 2 x 

In [ 171: = y2 [x_] =Coefficient [soln [x], C [2]] 

Out [171= e- 2 x x 

In [ 181: = basis [x_] = {y1 [x], y2 [x]} 

Out[181= {e 2 x, e- 2 x x} 

In [ 191 : = WronskianDet = Det [{basis [x] , basis' [x] } ] 

Out[191= e- 4 x 

0 

Example 5.13 Completely describe the kernel of the differential equation 
L2(y) = y" - 6y' + 25y = 0. 

Solution. Substitute y = erx, to get L2(er') = (r2 - 6r + 25)erx = p(r)er'. In order 

for this to be 0, p(r) = r2 - 6r + 25 = 0. The quadratic equation reveals the roots to 

be r 1, r 2 = 3 ± 4i, and the theory in the third case, complex roots, says that y 1 (x) = 
e3' cos 4x and y?(x) = e3x sin 4x are linearly independent solutions. The kernel is 
completely desc;ibed by the set of functions y(x) = c 1 e3x cos 4x + c2e3x sin 4x. 0 

Example 5.13 (M) Solve the differential equation of Example 5.13 in Mathematica 

and demonstrate the linear independence of the two solutions. 
Solution. 

In [ 201: = DSolve [y" [x] - 6y' [x] + 25y [x] == 0, y [x], x] 

Out[201= {{y[x] -?<e 3 xC[2] Cos[4x] +<e 3 xC[l] Sin[4x]}} 

In[211:= soln[x] =Expand[y[x]/.%[[1]]] 

Out[211= e 3 xC[2] Cos[4x] +<e 3 xC[l] Sin[4x] 

In[221:= y1[x_] =Coefficient[soln[x], C[1]] 

Out[221= e 3 x Sin[4 x] 

In [231 := y2 [x_] =Coefficient [soln[x], C[2]] 

Out[231= e 3 x Cos[4x] 

In [ 241: = basis [x_] = {y1 [x], y2 [x]} 

Out[241= {e3 xSin[4x],e 3 xCos[4x]} 

In [251 := WronskianDet = Simplify[Det [{basis[x], basis' [x] }]] 

Out [251= -4 e 6 x 

0 
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These examples are worked and checked in Mathematica in the notebook named 
Second-Order Linear. This notebook develops each detail of the theory; it does not 
use DSol ve. The three cell groupings in the notebook can be changed to have the 
notebook solve other problems for you. Just decide the case into which a problem 
falls and modify the operator defined for that case. Then execute the cells as a group 
or one at a time until the solution has been obtained and checked. Once you under­
stand what must be done to solve problems like these, you can make regular use of 
DSolve. 

Initial Value Problems 

Quite often one seeks a solution of a differential equation that has special properties. 
Theorem 5.2 states that a linear initial value problem has a unique solution. Here 
is a sample Mathematica session that illustrates how to use Mathematica to solve 
initial-value problems. It also illustrates the behavior of a family of solutions that 
pass through a fixed point with unrestricted slopes, and a family that has specified 
slope when x = 0, but no specific starting point is given. Observe that in each case 
the solution is expressed in terms of a single parameter since only one of two initial 
conditions has been given. The differential equation in each case is that of Exam­
ple 5.13. 

Example 5.13 (M) Solve the differential equation of Example 5.13 given the con­
dition y(O) = 1. 

Solution. 

I n[26] := DSolve[{y" [x] -6y' [x] +25y[x] ==O,y[O] ==1},y[x],x] 
Out[26] = {{y[x] ~ e3 x (Cos [4 x ] +C[ l] Sin[4x ] ) }} 

The c [ 1] is changed to c 1 because C [ 1] cannot be used as an iterator in the 
Table function. 

In[27]:= soln[x] =Expand[y[x]/.%[[1]] ]/.C[1] -+c1 
Out[27] = e 3 x Cos [4 x ] +cle3 x Sin [4x ] 

In [ 28] : = curves =Table [soln [x], {c1, -2, 2}] 
Out[2 8] = {e3 x Cos[4x] - 2e3 x Sin[4x], e 3 x Cos [ 4x] - e 3 x S i n [ 4x ] , 

e 3 x Cos[4 x], e 3 x Co s[4x] +e3 x Sin[4x], e 3 x Cos[4x ]+ 
2 e 3 x Sin[4 x] } 

In [29] := Plot [Evaluate [curves], {x, -1, 1}, PlotRange-+ { -15 , 15}]; 

-1 
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0 

Example 5.14 (M) Solve the differential equation of Example 5.13 given the con­

dition y'(O) = 2. No initial point is specified. 
Solution. 

In[30] := DSolve[{y"[x] -6y'[x] +25y[x] ==O,y'[O] ==2},y[x], 

x] 
1 

Ou t [30]= {{y[x]-? -<e 3 x(4C[2] Cos[ 4 x]+2Sin[4x] - 3C[2 ] Sin[4 x J)}} 
4 

In[31] : = 

Out[31]= 

In[32] : = 

Out[32]= 

so1n[x] =Expand[y[x]/.%[[1]] )/.C[2] -+c2 
1 3 

c2e3 x Cos[ 4 x] +-e3 x S i n [4 x ]--c2e3 x Sin[4x] 
2 4 

curves= Tab1e[so1n[x], {c2, -2, 2}] 

{ -2e3 x Cos[4x] +2e3 x Sin [ 4x], 

5 1 
- e 3 x Cos[4x] +-e3 " S in[4 x ], -e3 x S in [4x], 

4 2 
1 

e 3 x Cos[4x] - -e3 x S i n[4x] , 2e 3 x Cos[4x]-e3 x Sin[4xJ} 
4 

In[33] := P1ot[Evaluate[curves], {x, -1, 1.1}, 

P1otRange-+ { -25, 25}] ; 

20 

10 

-1 -0 . 5 

-10 

-20 

0 

In both of the plots it appears that all of the curves pass through a single point to 

the right of x = 0. In the first plot, all of the curves do pass through the point (0, I). 

Is it the case that there are other common points on the graphs? You can investigate 

these matters in the exercises. 

Exercises 5.2. PART I. In each differential equation in problems 1- 8, make the sub­

stitution y = e rx to find the characteristic polynomial. Solve the characteristic poly­

nomial. Describe the kernel of the operator and write down a complete solution to 

the differential equation. Do this manually and by Mathematica. 

l. y" - 4y' + 3y = 0. 
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2. y" - 3y' = 0. 
3. y" + 4y' + 3y = 0. 
4. y" - 2y = 0. 
5. y" - 2y' + y = 0. 
6. y" + 2y' + y = 0. 
7. y" - 4y' + 13y = 0. 
8. y" - 2y' + 2y = 0. 

PART II. For each solution given in problems 1-8 above, evaluate the Wronskian 
determinant of the indicated basis for the kernel of the differential operator. Show 
that in each case, the Wronskian determinant satisfies the differential equation 

W'(x) = -(~)w(x), 

where the coefficients come from the differential equation ay" + by' + cy = 0. The 
problems in this part are problems 1 b-8b. 

PART III. For each of problems 1-8 above, find the solution for which y(O) = 
1, y'(O) = 0. Name the solution to problem i, y;(x). Plot each of these solutions on a 
separate plot. The problems in this part are problems 1c-8c. 

9. Plot all of the solutions y1c(x)- Ysc(x) on a common set of axes over the interval 
-3 ::s; x ::s; 3. In Mathematica this is done by the function call 
Plot[Evaluate[ylc[x], y2c[x], y3c[x], y4c[x], y5c[x], 
y6c[x], y7c[x], yBc[x]], x,-3,3]; 
These functions have nothing in common but the initial condition. 

PART IV. Theory. 

10. Prove Theorem 5.9 by expanding p(x) in a Taylor series about rand interpreting 
why some of the leading terms are missing. [The value p(r), and the appropriate 
derivatives p(kl(r) are zero.] Observe that the remaining terms have a common 
factor. 

11. In the two plots just before these exercises, it appears that all of the curves pass 
through a single point to the right of x = 0. Show that this is the case and find all 
of the points where the curves have a common crossing. The differential equation 
is 

y" - 6y' + 25y = 0. 

a) In the first plot, all solutions pass through y(O) = I. 
b) In the second plot, all solution have slope 2 when they cross the y-axis: 

y'(O) = 2. 

Each of these polynomials has a multiple root at the indicated point x0. Find the 
order of multiplicity in each case. In Mathematica use the function Factor. Also 
in Mathematica expand the polynomial in a power series about x0. 

Xo = 1. 
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13. 16- 8x2 + x4 ; 

14. 81 + 81x- 18x2 - 18x3 + x4 + x5; 

15. -81 - 27x + 54x2 - 6x3 - 5x4 + x5 ; 

x0 = 2. 
x0 = -3. 
x0 = 3. 

5.3 Higher-Order Constant Coefficients (Homogeneous) 

Recall that the Wronskian W(y 1, y2, ... , Yn) of a set of functions having n- I contin­
uous derivatives on some interval I is the determinant 

Yt h Yn 
I I 

y~ 
W(yt, Y2• .. . , Yn) = 

Yt Y2 

(n-l) (n-l) 
y~n-l) Yt Y2 

Theorem 5.12 makes this very useful to us, both in theory and in practice. 

Theorem 5.12. Given a set {y 1, y2, ... , Yn) of functions having n - I continuous 
derivatives on an interval I. If the functions are not linearly independent on /, then 
W(y 1, y2, ... , Yn)(x) = 0 for every x in I. If the functions {y1, y2, ... , Yn) are all solu­
tions of the same linear homogeneous differential equation, then W(yl' h· ... , Yn) =I= 

0 on I if and only if the set {y1, y2, ... , Yn) is linearly independent. 
Proof Theorem 5.12 follows from Theorem 5.6. The proof requires several prop­

erties of determinants. It is not difficult to understand, but it is complicated to write 
out. It was outlined in exercises 5.1. D 

Example 5.15 The functions cos x and sin x, two solutions of the linear differential 
equation y'1 + y = 0, have the Wronskian W[cosx, sinx] = 1, which means that they 
are linearly independent. On the other hand, W[cos(x- n/2), sinx] = 0, indicates 
that the functions cos(x- n/2) and sinx, which are solutions of the same differential 
equation, y" + y = 0, are linearly dependent. In fact, cos(x- n/2) = sinx. 0 

Theorem 5.13 gives the relationship between the order of the differential operator 
and the dimension of its kernel. 

Theorem 5.13. The dimension of the kernel of an nth-order linear differential oper­
ator is n. That is, suppose that I is an interval and the functions an(x), an-I (x), ... , 

a1 (x), a0(x) are continuous on I and an(x) is nonzero on I, then a homogeneous linear 
differential equation of the form 

dny dn-ly dy 
Ln(y) = an(x) d~ + an_ 1(x) d~-l + ... + a1(x) dx + a0(x)y = 0 

has n linearly independent solutions that together form a basis for the set of all 
solutions on I. 

Here is an example of the use of the Wronskian to define a differential equation 
with known solutions. This is rarely done manually because the computations can be 
so involved, but we can easily use Mathematica to help us. 
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Example 5.16 Suppose that we want a linear differential equation whose solutions 
are the span of the two functions y 1 (x) = x and h(x) =~.Consider 

X ~ y 
W[x, ~.y] 1 ~ y' 

0 ~ y" 

X 1 y 

= £! 1 1 y' 
0 1 y" 

f![(x- 1)y"- xy' + y]. 

Then W[x, ~. y] = 0 provided we choose as our differential equation L(y) 
(x - 1 )y" - xy' + y = 0. 

You may wish to verify that both y 1 (x) = x and y2(x) 
kernel is then the set of their linear combinations. 

~ are solutions. The 
0 

We often want to find a differential equation whose solutions are the span of 
the linearly independent set of functions {y1 (x), y2(x), ... , Yn(x)). This is an easy 
task, now that we have seen the last example. Up to a nonzero factor, an equation 
that has these properties is simply Ln(y) = W(yl' y2, ••• , Yn' y) = 0. Why? Because 
W(collection of functions) = 0 is a condition for the linear dependence of the func­
tions in the collection, and we want y to depend on (be a linear combination of) 
y 1, y2, ••• , Yn· For certain choices of y 1, y2, ••• , Yn' the differential equation may even 
have constant coefficients. See the exercises. 

Higher-Order Differential Equations with Constant Coefficients 

We now state the theorems that enable us to completely describe the kernel of any 
higher order differential equation having constant coefficients. This discussion goes 
well in theory, but N.H. Abel showed that it is not possible to solve polynomial 
equations of degree five or greater in terms of radicals (like the quadratic formula, 
for instance). This means that we cannot expect Mathematica to be able to give us 
theoretically exact roots to every higher order polynomial equation that we try to 
solve. Mathematica can give us numerical answers, and we often will have to be 
content with these unless we or someone else has contrived the problem so that the 
roots can be found in terms of radicals. If you have ever seen the formal solution of 
the cubic or the quartic, you will know that sometimes a theoretically exact solution 
is so incredibly complicated as to be essentially useless. We will not hesitate to seek 
numerical roots of polynomials from Mathematica in either of these cases. 

Distinct Real Roots 

Theorem 5.14./f the characteristic polynomial of the nth-order linear differential 
equation Ln(y) = any(n) + an_ 1y<n-l) + · · · + a1y' + a0y = 0 has n distinct real roots 
rl' r2, ... , rn, then the n functions y1 (x) = e'tx, y2(x) = e'zx, ... , Yn(x) = e'nx form a 
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basis for the kernel of the differential equation Ln(y) = 0. In this case, every solution 

of Ln(y) = 0 can be written as 

Proof This is proved the same way that Theorem 5.11 was proved for the case 
of two functions. D 

Example 5.17 The third-order constant coefficients differential equation 

L3(y) = y"' - 6y" + lly' - 6y = 0 

hascharacteristicpolynomialp(r) = r3 -6r2 +llr-6 = (r-l)(r-2)(r-3), whichhas 
the distinct roots r1 = 1, r2 = 2 and r3 = 3. The three linearly independent solutions 
are y 1 (x) = er1x = e, h(x) = erzx = e2 <, and y3(x) = er,x = e3x, so every solution in 
the kernel has the form y(x) = C I e + c 2e2" + C3e3x. 0 

Example 5.17 {M) We can reproduce these steps in Mathematica this way: 
Solution. 

In [1]: = L [x_, y_1 = y"' [x1 - 6y" [x1 + lly' [x1 - 6y [x1 

Out [1]= -6 y [x] + 11 y' [x] - 6 y" [x] + yl 31 [x] 

In [ 2]: = p [r_1 =Coefficient [L [x, Exp [r #1 & 1, Exp [r x11 

Out[2]= -6+11r-6r 7 +r 3 

In[3] :=roots= r/.Solve[p[r1 == 0, r1 

Out[3]= {1,2,3} 

In [ 4] : = basis = Exp [ x * roots 1 
Out[4]= {<ex, <E2x, <E3x} 

In[5]:= y[x_1 =basis.{c1,c2,c3} 

Out [5]= c1 <Ex+ c2 e 2 x + c3 e 3 x 

These same results can be obtained directly using the built-in function DSol ve. 

In[6]:= Clear[x,y1 

In[7] := DSolve[L[x, y1 == 0, y[x], x1 

Out [ 7] ~' { { y [X J ~ <Ex C[ 1] + e 2 x C [ 2] + <e 3 x C [ 3] } } 

In[8]:= y[x_1 =y[x1/.%[[111 

Out [ 8] = <ex C[ 1] + e 2 x C[ 2 J + e 3 x C [ 3] 

In[9] := Table[Coefficient[y[x1, C[k11, {k, 1, 3}1 

Out[ 9 ]= {<ex,<E2x 1 <E3x} 

0 
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Repeated Real Roots 

Theorem 5.15. If the characteristic polynomial p(r) of the nth-order linear differen­
tial equation Ln(y) = any<n) + an_1y<n-l) + ... + a1y' + a0y = 0 has a single root r 
repeated n times, then then functions y1 (x) = e'x, yix) = xe'X, ... , Yn(x) = ~-lerx 
form a basis for the kernel of the differential equation Ln(y) = 0. 

In this case, every solution of Ln(y) = 0 can be written as 

y(x) = (cl + CzX + ... + Cn~-l)e'x. 

If the characteristic polynomial has a single root r repeated m times and n-m dis­
tinct roots rm+l' rm+Z' ... , rn, then the nfunctions y 1(x) = e'x,y2(x) = xe'x, ... ,ym(x) = 
xm-1e'\Ym+] (x) = e'm+Ix, ... , Yn(x) = e'·x form a basis for the kernel of the differential 
equation Ln(y) = 0, and every solution can be written in the form 

Y(X) = (c + C X+ "· + C xm-1)erx + C e'm+Ix + · · · + C e'nx 1 2 m m+l n · 

If the characteristic polynomial has a single root r repeated m times and other 
roots that are also repeated, then the other roots are handled just as the root r was, 
and the process is continued. 

Proof This is proved the same way that Theorem 5.11 was proved for the case 
of two functions. The essential observation is that derivatives with respect to r and 
with respect to x can be interchanged. This, combined with the representation of 
polynomials having repeated roots, does the job. D 

Example 5.18 The fifth-order constant coefficients differential equation 

L5(y) = y<5l - 10y14l + 39y"' - 74y" + 68y' - 24y = 0 

has characteristic polynomial p(r) = r5 - 10r4 + 39r3 - 74? + 68r - 24 
(r- l)(r- 3)(r- 2)3, which has the distinct roots r1 = 1, r 2 = 3 and the repeated 
root r3 = r4 = r5 = 2, having multiplicity 3. The five linearly independent solutions 
are y 1 (x) = e'1x = ~~ y2(x) = e'2x = e3x, y3(x) = e'3x = e2x, y4(x) = xe'3x = xe2x, and 
y5(x) = x2e'3x = x2e2x, so every solution in the kernel has the form 

Use the Wronskian to check these five functions for linear independence. 0 

Example 5.18 (M) Do Example 5.18 in Mathematica. 
Solution. 

In[10]:= Clear[x,y,L] 

In[11] := L[x_, y_] = D[y[x], {x, 5}] -lOD[y[x], {x, 4}] + 39y"' [x]-

74y" [x] + 68y' [x] - 24y [x] 

Out [11]= -24 y [x] + 68 y' [x] -74 y" [x] + 39 yl 31 [x]- 10 yl 41 [x] + yl 51 [x] 

In[12]:= DSolve[L[x,y] ==O,y[x],x] 
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In[131:= y[x_] =y[x]/.%[[1]] 

Out[131= exC[1] +e 2 xC[2] +e2xxC[3] +e2 xx2 C[4] +e3xC[5] 

In [ 141: = basis =Table [Coefficient [y [x], C [k]], {k, 1, 5}] 

Out [ 141 = {ex, e2 x, e2 x x, ez x x2, e3 x} 

In [ 151: = p [r_] =Coefficient [L [x, Exp [r #] &] , Exp [r x]] 

Out[151= ~24+68r~74r2 +39r3 ~10r4 +r 5 

In[161:= Factor[p[r]] 

Out [ 1 61 = ( ~ 3 + r) ( ~ 2 + r) 3 ( ~ 1 + r) 

Note how this function calculates successive derivatives of a function. 

In[171:= W[x_] =NestList[(ax#)&, z[x], 4] 

Out[17]= {z[x], z'[x], z"[x], z1 31 [x], z1 41 [x]} 

When applied to the list of functions, basis, the Wronskian matrix is produced: 

In[181:= (W[x_] = NestList [(ax#)&, basis, 4]) I /MatrixForm 
ex e2x 

[ex 
2 e2 x 

Out[181= ex 4 e2 x 

ex 8 e2x 

ex 16 e 2x 

In[191:= Det[W[x]] 

Out [191= 4 e 10 x 

e2x X e2 x x2 

e2x+2e2xx 2e2xx+2e2xx2 

4e2x+4e2xx 2 e 2 x + 8 e 2 x x + 4 e 2 x x 7 

12e2 x+8e2xx 12 e 2 x + 2 4 e 2 X X + 8 e 2 X X/ 

32e2x+l6e2xx 48e2x + 64e 2 xx+ 16e2xx 2 

Example 5.19 The fifth-order constant coefficients differential equation 

L5(y) = / 5)- 8yl4l + 25y"'- 38y" + 28y'- 8y = 0 

has characteristic polynomial 

p(r) = r5 - 8r4 + 25r3 - 38r2 + 28r- 8 = (r- 1)2(r- 2)3, 

<EJ X 

3 e3 x 

9 e3x 

27 e 3 x 

81 e 3 x 

0 

which has the repeated roots r 1 = r2 = I and r3 = r4 = r5 = 2, having multiplicities 
2 and 3, respectively. The five linearly independent solutions are y 1 (x) = e'1 r = 
e", h(x) = xe'1x = xe", y3(x) = er,x = e2', y4(x) = xe'3x = xe2x, and y5(x) = x2e''x = 
x2e2x, so every solution in the kernel has the form 

Use the Wronskian to check these five functions for linear independence. 0 

Example 5.19 (M) Example 5.19 can be worked in Mathematica this way. 
Solution. This calculation was done in the last two evaluations in exercise 5.18. 

0 

We are only beginning to take advantage of the considerable power built into 
Mathematica for finding these solutions. 
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Complex Roots 

We use the theory from the section on second-order equations as it applies in this 
case. The proofs are essentially the same, but some of the ideas are combined. We 
still take a pair of complex-valued functions and break them into their real and imag­
inary parts, which we proceed to retain as the functions we seek. Repeated roots are 
handled just like they were in the preceding case. You might think of using Theo­
rem 5.15 on a complex-valued exponential and then breaking the product into its real 
and imaginary parts which we want here. 

Theorem 5.16. If the characteristic polynomial p(r) of the nth-order linear differen­
tial equation Ln(y) = any(n) + an_,y<n-i) + · ·· + a1y' + a0y = 0 is real and has a pair of 
complex roots r =a± bi, then the functions y 1 (x) = eax cos bx and yz(x) = eax sin bx 
are linearly independent solutions of the differential equation Ln(y) = 0. 

If the characteristic polynomial has a pair of complex conjugate roots r =a± bi 
repeated m times, then the 2m functions 

y1 (x) = e= cos bx, y2(x) = xeax cos bx, ... , Ym(x) = ~-ieax cos bx, 

Ym+i (x) = eax sinbx, Ym+2(x) = xeax sinbx, ... , Yzm(x) = ~-ieax sinbx 

are linearly independent solutions of the differential equation Ln(y) = 0, and every 
function of the form 

y(x) (cl + CzX + · · · + Cm~-i )eax COS bx 

+ (cm+i + Cm+2X + ··· + Czm~-!)eax sinbx. 

is a solution. 
If the characteristic polynomial has a complex conjugate pair repeated m times 

and other roots that are either distinct or repeated, then the other roots are handled 
individually as the theory suggests, and the process is continued. 

Example 5.20 (M) Solve y"" - 8y"' + 74y" - 232y' + 841y = 0 completely and 
evaluate the Wronskian determinant. 

Solution. 

In[20]:= Clear[x,y,L] 

In[21]:= L[x_,y_] =D[y[x], {x, 4}] -Sy"'[x] +74y"[x] -232y'[x]+ 

84ly[x] 

Out [21]= 841 y [x] -232 y' [x] + 74 y" [x]- 8 y< 3 l [x] + y< 4 l [x] 

In[22]:= DSolve[L[x,y] ==O,y[x],x] 
Out[22]= {{y[x] -?ce2 xC[3] Cos[Sx]+ 

ce 2 xxC[4] Cos[Sx] +ce 2 xC[l] Sin[5x]+ 
ce 2 xxC[2] Sin[Sx]}} 

In[23]:= y[x_] =y[x]/.%[[1]] 
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Out[23]= e 2 xC[3] Cos[5x] +<e2>xC[4] Cos[5x]+ 

e 2 xC[l] Sin[5x] +<e 2 xxC[2] Sin[5x] 

In [ 24 J : = basis = Table [Coefficient [y [x] , C [k]] , {k, 1, 4}] 

Out [24]= {e2 x Sin [5 x], e 2 x x Sin [5 x], e 2 x Cos [5 x], e 2 x x Cos [5 x]} 

In[25] := p[r_] = Coefficient[L[x, Exp[r#]&], Exp[rx]] 

Out[25]= 841-232r+74r 2 -Sr 3 +r 4 

In[26]:= Factor[p[r]] 

Out[26]= (29-4r+r2 ) 2 

In[27]:= (W[x_] =NestList[(ox#}&,basis,3]); 

In[28]:= Simplify[Det[W[x]]] 

Out[28]= -2500e 8 x 

0 

Solving higher-order constant coefficients linear differential equations is easy in 

theory. With the help of Mathematica even very large problems are not difficult, so 

long as they have been properly constructed. If the characteristic equation does not 

have exact solutions representable by radicals, then numerical solutions may have 

to suffice. However, the formal character of the solutions can change dramatically 

when solutions have to be obtained numerically, but formulas are still desired. If all 

that is needed is an accurate picture or a list of reliable points that lie on a solution, 

then NDSo1 ve may give you what you need. On the other hand you can inadver­

tently cause messy roots by copying the operator incorrectly. It is wise to verify the 

operator. 

Using DKernel.m 

There is a package that you can read in that readily finds the kernel for essentially any 

linear differential equation with constant numeric coefficients. It works by following 

the theory that has been outlined. Example 5.21M shows how to use DKerne1.m. 

You will notice that DKe rne 1 . m returns a basis for the kernel. If you want solutions, 

you can form linear combinations by Dotting with a vector of constants. The first 

cell loads the package DKe rne 1. m. Ask your professor where is is to be found. 

Example 5.21 (M) Load DKerne1. m and find the kernel of the linear differential 

equation L(y) = yC4l- 8y(3l + 74yC2l- 232y' + 841y = 0. 

Solution. 

In[29]:= <<"/Applications/MathematicaS.O.app/AddOns/ 

ExtraPackages/RossDE/DKernel.m" 

( * The actual location of this package depends on 

where your system supervisor put it *) 

In[30]:= Clear[x,y,L] 
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In [ 31] : = L [x_, y_) = D [y [x], {x, 4}] - By"' [x] + 74y" [x] - 232y' [x] + 

841y [x] 

Out [31]= 841 y[x]- 232 y' [x] + 74 y" [x]- 8 y(3l [x] + y( 4 ) [x] 

In [ 32]: = DKernel [L [x, y] == 0, y [x], x] 

Out [32]= {e2 x Cos (5 x], e 2 x Sin [5 x], e 2 x x Cos [5 x], e 2 x x Sin [5 x]} 

0 

This is simple, fast and direct. DKernel handles integer or rational coefficients, 
as well as reals, but not differential equations that contain a parameter in the coef­
ficients. Both DSol ve and DKernel may have trouble with differential equations 
of order five or greater. This is because of Abel's theorem which says that polyno­
mial equations of degree five and above are not all solvable in radicals. Even in cases 
where an exact solution can be obtained, it may be too complicated for you to be able 
to grasp. This is another situation where NDSol ve is a valuable alternative. 

The form and order of the parameters to DKernel is the same as for DSolve. 
DKernel. m does not accept initial conditions (they are not needed). 

Exercises 5.3. PART I. Use the determinant method of Example 5.16 to find a differ­
ential equation of second-order whose kernel has as basis the two given functions. Do 
this by Mathematica. Simplify your differential equation. Note that sometimes the 
differential equation has constant coefficients and sometimes not. The determinant 
you want may be generated by the function call 

Det[NestList[Function[t, D[t, x]], {y1[x], y2[x], y[x]}, 2]]. 

(Remove the Det [ and the last ] to see what Nest List does.) 

1. Yt (x) = x3; 
2. y1 (x) = e2x; 
3. y1 (x) = e cos 4x; 
4. y 1 (x) = e2x; 

y2(x) = xZ. 
Yz(x) = e-3x. 
y2 (x) = esin4x. 
Yz(x) = xe3x. 

You can use this method in Chapter 7 to generate problems with nonconstant 
coefficients that have recognizable solutions. Chapter 7 concentrates on differential 
equations with nonconstant coefficients. 

PART II. Modify the function call of problems 1-4 to find a differential equation 
of third-order whose kernel has as basis the given functions. The determinant you 
want may be generated by the function call 

Det[NestList[Function[t, D[t, x]], {y1[x], y2[x], y3[x], y[x]}, 3]]. 

5. y1(x) = ~; 
6. y1 (x) = e2x; 
7. y 1(x) = ecos4x; 
8. y1 (x) = e2x; 

Yz(x) = xZ; 
Yz(x) = e-3x; 

Yz(X) = e sin4x; 
Yz(x) = xe3x; 

y3(x) =X. 

Y3(x) = e-2x. 
y3(x) = xZ. 
y3(x) =X. 
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You may need to Simplify in order to make your operator more reasonable. 
PART III. Applying initial conditions to problems 2-4. 
For each of problems 2-4 above, find a linear combination of the given functions 

such that y(O) = 1, y'(O) = 0. Name the solution to problem i, z;(x). Plot each of these 
functions on a separate plot. These are problems 2b-4b. (Is it possible to find a 
combination of the functions in problem 1 which satisfies these initial conditions?) 

PART IV. Applying initial conditions to problems 6-8. 
For each of problems 6--8 above, find a linear combination of the given functions 

such that y(O) = 1, y'(O) = 0, y"(O) = 0. Name the solution to problem i, u;(x). 
Plot each of these functions on a separate plot. These are problems 6b-8b. (Is it 
possible to find a combination of the functions in problem 5 which satisfies these 
initial conditions?) 

PART V. Solving homogeneous differential equations which have constant coef­
ficients. 

For the following differential equations, find a basis for the kernel and a de­
scription of all solutions. You may find that the package DKernel.rn gives you 
the kernel in the most straightforward manner. (It goes step-by-step through the the­
ory and merely does what you would do by hand.) You may get partial help from 
Mathematica by using Solve to find the roots of a manually supplied characteristic 
polynomial (which you can write down by inspection). 

9. y'" + y" - 2y = 0. 
10. y"'- 6y"- y' + 30y = 0. 
11. 2y"' - y" - 200y' + lOOy = 0. 
12. y"' + y" - 3y' - 3y = 0. 
13. y"'- 18y" + 65y' = 0. 
14. yC4>- 19y"' +Sly" - 29y' - 130y = 0. 
15. 2y<5>- 33yC4l + 143y"'- 120y"- lOOy' = 0. 
16. y<6l + 2yC5l- 425yC4l + 1450y"' + 22484y"- 47432y' = 0. 
17. y"'- 5y" + 8y'- 4y = 0. 
18. y"' + 15y" + 75y' + 125y = 0. 
19. y<4l - 2y"'- 12y" + 40y' - 32y = 0. 
20. y<5l- 15/4) + 75y"'- 125y" = 0. 
21. y<8l + 7y(?) + 6y<6l - 50y(S)- 95y<4> + 63y"' + 216y" + 108y' = 0. 
22. y" - 4y' + 13y = 0. 
23. y<4l- 8y"' + 56y"- 192y' + 468y = 0. 
24. y<4> - 6y"' + 54y" - 126y' + 493y = 0. 
25. y<6l- 20y<5l + 224y<4l- 1616y"' + 7668y"- 23376y' + 35360y = 0. 
26. y<4l - 12y"' + 87y" - 380y' + 600y = 0. 
27. y<8l- 12y(7) + 202y(6)- 636y(S) + 5829y<4> 

+24,280y"' + l5,200y" + 696,000y' + 1,800,000y = 0 

5.4 The Method of Undetermined Coefficients 

Now that we are able to completely describe the kernel of a homogeneous linear 
differential equation with constant coefficients, our next task is to begin to solve 
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nonhomogeneous problems. Theorem 5.3 told us that nonhomogeneous problems 
have solutions and it even told us the form those solutions would take. At this point 
all we are missing is some method of actually finding the particular solutions we 
know to exist. 

There are two approaches we can take. One is appealing because it appears to 
be simple, but solves only certain special kinds of problems, and one is completely 
general, but appears to be complicated. The simple technique is known as the method 
of undetermined coefficients. It is the subject of this section. The other method is 
the method of variation of parameters. It will be covered in the next section. 

An example will set the tone of the discussion. Here we will use the fact that if 
L(y) is a linear differential operator with constant coefficients, then L(polynomial) 
= polynomial. In other words constant coefficients operators take polynomials into 
polynomials. This suggests that if the function on the right hand side of the equation 
is a polynomial, we might profitably guess that Yp(x), the particular solution we want, 
is a polynomial. 

Example 5.22 Find a particular solution to the nonhomogeneous differential equa­
tion L(y) = y"- 5y' + 6y = 12x3 - 30x2 - 18x + 73. 

Solution. We observe that L(cubic polynomial) = cubic polynomial. (Why?) It 
therefore seems reasonable to assume that 

Yp(x) = ax3 + b~ +ex+ d, 

the most general cubic. We want to find out what a, b, c, and d should be in order for 

L(yP)(x) = 12x3 - 30~- 18x + 73. 

Substituting the cubic y P(x) into the operator yields the cubic 

(6ax + 2b) - 5(3~ + 2bx + c) + 6(~ + b~ + ex+ d) 

= 6~ + (-15a + 6b)~ + (6a- lOb+ 6c)x + (2b- 5c + 6d). 

For this to agree with the right-hand side, 

12x3 - 30x2 - 18x + 73 

we must equate coefficients, which gives the equations 

(~): 6a = 12 

(~): -15a + 6b = -30 

(x): 6a- lOb+ 6c = -18 

(1): 2b- 5c + 6d = 73 

These equations are easily solved from the top down, giving a = 2, b = 0, c = -5, 
andd = 8. 

Thus the particular solution we have found is y P(x) = ~ - 5x + 8. You are 
encouraged to check it. 
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The kernel for L(y) = y" - 5y' + 6y was obtained in example 5.10, so here is a 
complete solution of the problem: 

y(x) c1e2x +c2e3x +yp(x) 

c1 e2x + c2e3x + 2x3 - 5x + 8. 

This is a solution of the nonhomogeneous equation for every choice of c 1 

andc2• 0 

Example 5.22 (M) We could have done Example 5.22 this way in Mathematica. 
Solution. 

In[l] := Clear[x, y, L, yp, w, eqn] 

In[2]:= L[x_,y_] =y"[x] -Sy'[x] +6y[x]; 

rhs = 12x3 - 30x2 - 18x + 73; 

In[3] := L[x, y] == rhs 

Out[3]= 6y[x]-5y'[x] +y"[x] ==73-18x-30x2 +12x3 

In[4] := assume[x_] = ax3 +bx2 +ex+ d 

Out [ 41 = d + c x + b x 2 + a x 3 

In[5] :=result= Collect[L[x, assume], x] 

Out [ 5] = 2 b- 5 c + 6 d + ( 6 a - 10 b + 6 c) x + ( -15 a + 6 b) x 2 + 6 a x 3 

In[6] := eqn = (CoefficientList[result, x] == 
CoefficientList[rhs,x]) 

Out[6]= {2b-5c+6d, 6a-10b+6c, -15a+6b, 6a} == {73, -18,-30, 12} 

In[?]:= LogicalExpand[eqn] 

Out [7]= 6a == 12&&-15a+6b == -30&&6a-10b+6c == -18&&2b-5c+6d == 73 

In[B]:= yp[x_] =assume[x]/.Solve[eqn] [[1]] 

Out[B]= 8-5x+2x 3 

In[9] := yc[x_] = DKernel[L[x, y] == 0, y[x], x]. {cl, c2} 

Out[9]= c1e 2 x+c2e 3 x 

In [ 1 0] : = AllSolns [x_] = yc [x] + yp [x] 

Out [ 101 = 8 + c1 e 2 x + c2 e 3 x - 5 x + 2 x 3 

In[11] := Simplify[L[x, AllSolns] == rhs] 

Out[11]= True 

0 
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It is the possibility that one can guess the form of a solution and then actually 
find the solution by solving a system of linear algebraic equations (not a hard task) 
that makes this so appealing. The problem is that sometimes it is difficult to guess a 
proper form to assume for the proposed solution. We will see by example that this is 
so. Theorem 5.19 will say exactly what to guess and why. When working with the 
class of problems where this method is appropriate, the theory says that all you need 
to know is how to solve homogeneous linear differential equations with constant 
coefficients. It is reasonable to claim that you know how to do this since we just 
finished in the last section. We first need to develop some supplementary theory. 

Composition of Linear Differential Operators 

Definition 5.4. The composition L2L1 of the linear differential operators L2 and L 1 

is defined to be (L2L1)(y) = L2(L 1 (y)) for any function y that meets the combined 
differentiability requirements of the composition. 

It is important to know the order of the composition of two linear differential 
operators. 

Theorem 5.17. If the linear differential operators L2 and L 1 have orders m and n, 
respectively, then the order of either composition of L 1 and L2 ism + n. 

If L2 and L 1 have constant coefficients, then L1L2 = L2L1, but this is not neces­
sarily true if either operator has variable coefficients. 

The proof of the first part is an exercise in manipulating summations, as is the 
commutativity. An example suffices to show noncommutativity. (Find such an exam­
ple. First-order will do.) 

Here is an example of the commutativity and the sum of orders properties. It is 
repeated in Mathematica. 

Example 5.23 Given the constant coefficient differential operators 

and 
L2(y) = b2y'' + b1y' + b0y 

show that L 3(L2(y}} = LiL3(y)) for all functions y that have five continuous deriva­
tives. 

Solution. 

L 3(L2(y)) = a3(b2y'' + b1y + b0y)"' + a2(b2y'' + b1y' + b0y)" 

+ a 1 (b2y'' + b1y' + b0y)' + a0(b2y'' + b1y' + b0y) 

a0b0y + (a1 b0 + a0b1 )y' + (a2b0 + a1 b1 + a0b2 )y" 

+ (a3b0 + a2b1 + a 1 b2 )y(3) + (a3b0 + a2b1)y(4) + a3b2y<5). 

Similarly, 
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L2(L3(y)) = b2(a3y"' + a2y'' + a 1y' + a0y)" 

These are equal. 

+ bi (a3y"' + azy'' + aiy' + aoy)' + bo(a3y"' 

+ azy'' + aiy' + aoy) 

a0b0y + (a 1b0 + a0b1)y' + (a2b0 + a1b1 + a0b2)y" 

+ (a3bo + azbi +a! bz)y<31 + (a3bo + azbi)Y(4) + a3b2yl51. 

0 

Example 5.23 (M) Here is how to do example 5.23 in Mathematica. Note the use 
of ax rather than primes (') for differentiation. This is because composition works 
better with ax because its action can be delayed. 

Solution. 

In[121:= L3[x_,y_] :=a3 o{x, 3 Jy[x] +a2 o 1x, 2 Jy[x] +a1 oxy[x] +a0 y[x] 

In [131 := L2 [x_, y_] : = b 2 o 1x, 2 J y[x] + b 1 ox y[x] + b 0 y[x] 

Compose L3 with L2. 

In [ 141 : = L3L2Result = Expand [L3 [x, L2 [#, y] & ]] 

Out[141= a 0 b 0 y[x] +a 1 b 0 y'[x] +a0 b 1 y'[x] +a2 b 0 y"[x]+ 

a 1 b 1 y" [x] + a 0 b 2 y" [x] + a 3 b 0 y 131 [x] + a 2 b 1 yi 31 [x] + 

al bz yl31 [x] + a3 bl yl41 [x] + az bz yl41 [x] + a3 bz yl51 [x] 

Compose L2 with L3. 

In [ 151 : = L2L3Result = Expand [L2 [x, L3 [ #, y] & ]] 

Out[151= a 0 b 0 y[x] +a1 b 0 y'[x] +a0 b 1 y'[x] +a2 b 0 y"[x]+ 

a 1 b 1 y" [x] + a 0 b 2 y" [x] + a 3 b 0 yi 31 [x] + a2 b 1 yi 31 [x] + 

al bz yl31 [x] + a3 bl yl41 [x] + az bz yl41 [x] + a3 bz yiSI [x] 

Are they equal? 

In[161 := L3L2Result == L2L3Result 

Out[161= True 
This example could be modified by making one coefficient or more in either 

operator contain x as a variable to see what would happen. 0 

Annihilators 

In order to be able to use the method of undetermined coefficients effectively, you 
need to be able to look at a function, f, just like those we have been producing as 
the members of the kernel of a linear differential equation with constant coefficients, 

and write down an operator A that maps f to zero: A(f) = 0. 

Definition 5.5. Given a function f, an annihilator off is a linear operator A such 

that A (f)= 0. 

For our purposes, an annihilator A should have constant coefficients. The choice 
of A is not unique, but smaller order is preferable to larger order. 
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Example 5.24 Here are some annihilators (and their characteristic polynomials). 

1. A 1 (y) = y'- 3y is an annihilator of e3x. 

2. A2(y) = y" - 5y' + 6y is also an annihilator of e3x. (But not obviously so.) 
3. A3(y) = y" - 6y' + 9y is an annihilator of xe3x. It also annihilates e3x. 

4. A4 (y) = y"' - 9y" + 27y' - 27y is an annihilator of x2e3x. It also annihilates e3x 

and xe3x. 

5. A5(y) = y" + 9y is an annihilator of sin 3x. It also annihilates cos 3x. 
6. A6 (y) = y" - 6y' + 13y is an annihilator of e3x sin 2x. It also annihilates e3x cos 2x. 
7. A7(y) = y(6)- 18y(5l + 147y(4l - 684y"' + 19lly"- 3042y' + 2197y annihilates 

x2 e3x cos 2x. It also annihilates xe3x cos 2x, e3x cos 2x, x2 e3x sin 2x, xe3x sin 2x, and 
e3x sin2x. 

The secret here is to look at the characteristic polynomial of the annihilator. For 
the operators above they are 

1. (r- 3); 
2. r2 - 5r + 6 = (r- 3)(r- 2); 
3. (r- 3)2 ; 

4. (r- 3)3 ; 

5. (r2 + 9) = (r + 3i)(r- 3i); 
6. (r2 - 6r + 13) = (r- 3 + 2i)(r- 3 - 2i); and 
7. (r2 - 6r + 13)3 . 0 

As Example 5.24 demonstrates, we need not construct an annihilator. The char­
acteristic polynomial in factored form gives all of the information we need! Now 
consider Theorem 5.18 which makes the observation more powerful. 

Theorem 5.18. If L 1 is an annihilator of f 1 and L2 is an annihilator of f 2, and L1 
and L2 commute, then L1 L2 annihilates f 1 + f 2. If p 1 (r) is the characteristic poly­
nomial of L1 and p 2(r) is the characteristic polynomial of L2, then p 1 (r)p2(r) is the 
characteristic polynomial of L1L2. 

Proof 

L1L2(f1 + f2) Ll (L2Cf1) + Lif2)) 

= Ll (L2Cft) + 0) 

= LI (L2Cft)) 

L2(LtCft)) 

= L2(0) 

= 0 

D 

Theorem 5.18 tells us how to construct an annihilator for a sum of functions: Ob­
tain the characteristic polynomials (in factored form) of annihilators of the individual 
terms and multiply them. This is the characteristic polynomial of an annihilator of 
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the sum. It is helpful, but not necessary, to remember that a given annihilator may 
annihilate more than one term of your sum. Don't construct unnecessarily high-order 
annihilators. They increase the size of the linear system that you have to solve to find 
your particular solution. 

Here is how to construct an annihilator for a function having several terms. Sup­
pose that our function is 

f(x) = x2e2x + 5 sin(3x) + x + xe2x sin(3x). 

In every case we concentrate on the factored form of the characteristic polynomial, 
rather than on the actual differential operator that is the annihilator. This table sum­
marizes the considerations for each term and for the entire function: 

Function Characteristic polynomial Basis of functions annihilated 
ezx (r- 2) {ezx} 
rezx (r- 2)3 {ezx, xezx, x2ezx} 

sin(3x) crz + 32 ) {sin(3x), cos(3x)} 

X ,.z {1, x} 
ezx sin(3x) (r- (2 + 3i))(r - (2 - 3i)) {ezx sin(3x), ezx cos(3x)} 

= (r - 4r + 13) 
xezx sin(3x) (r- 4r + 13)L {eL.X sin(3x), eL.X cos(3x), 

xe2x sin(3x), xe2x cos(3x)} 
f(x) (r- 2?(r + Y) {ezx, xezx, 

X r2(r2 - 4r + 13)2 x2e2x, sin(3x), cos(3x), 1, x, 
e2x sin(3x), e2x cos(3x), 
xe2x sin(3x), xe2x cos(3x)} 

Theorem 5.19 is stated in the form of an algorithm to guide you as you use the 
method of undetermined coefficients. 

Theorem 5.19. To solve L(y) = f(x) by the method of undetermined coefficients: 

1. Factor the characteristic polynomial pL(r) of L into linear and irreducible 
quadratic factors, using powers to show repeated factors, and form B u a ba­
sis for the kernel of L. 

2. Separate f(x) into groups of terms that are annihilated by a single annihilator. 
3. Form PA (r), the characteristic polynomial for an annihilator of f(x), factored 

into linear and irreducible quadratic factors, using powers to show repeated 
factors. 

4. Using pA(r)pL(r), the characteristic polynomial of AL, write out a basis BALfor 
the kernel of the operator AL. 

5. Find B, the complement of BL in BAL· That is, B consists of those functions in 
BAL that are not in BL. 

6. Form y pCx) as a linear combination of the functions in B. This is the form that 
the candidate particular solution takes. The coefficients are as yet undeter­
mined. 
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7. Equate coefficients of L(y P(x)) = f(x). The functions that appear in L(y pCx)) are 
all in the kernel of A. The function f(x) is there, too. This is why we know there 
is a match for everything and that the coefficients are unique. 

8. Solve the resulting system of equations to determine values for the coefficients. 
9. Use these values to produce an actual particular solution Yp(x). 

10. Form y(x) = Yc(x) + Yp(x). 

Notice that essentially everything is done through solving homogeneous equa­
tions by simply inspecting the characteristic polynomials! This is why it is so impor­
tant for you to understand completely how to solve homogeneous equations. 

Steps (1), (3), (7), and (8) can be assisted greatly by Mathematica. These steps 
are the ones that are simple in theory, but are difficult in practice. The notebook 
Undetermined Coefficients performs all of these steps (with your help). Here are 
three examples. 

Example 5.25 Solve the nonhomogeneous differential equation 

L(y) = y"'- 3y" + 4y'- l2y = e2x- 5 sin(3x) = f(x) 

by the method of undetermined coefficients. 
Solution. We follow the steps presented in Theorem 5.19. 

1. The characteristic polynomial of Lis r3 - 3r2 + 4r- 12 = (r- 3)(r2 + 4), so a 
basis for the kernel of Lis BL = {e3x, sin(2x), cos(2x)}. 

2. e2x is annihilated by an operator having characteristic polynomial (r - 2); 
-5 sin(3x) is annihilated by an operator having characteristic polynomial (r2 + 
32). 

3. (r- 2)(r2 + 32) is the characteristic polynomial for A, an annihilator of f(x). A 
basis for the kernel of A is B A = (e2x, sin(3x), cos(3x) }. 

4. (r- 3)(r2 + 4)(r- 2)(r2 + 32) is the characteristic polynomial of AL, so a basis 

for the kernel of A Lis B AL = rl e3X I. e2x, I sin(2x), cos(2x) I· sin(3x), cos(3x) }. The 
boxed entries are the members of B L" 

5. The complement of BL in BALis B = {e2x, sin(3x), cos(3x)} = BA" 
6. Assume a particular solution of the form 

7. FormL(yP)(x) = -8a1e2x +(15a2 -15a3)cos(3x)+(l5a2 + 15a3)sin(3x). Equate 
coefficients with f(x) = e2x - 5 sin(3x) to get the system of equations 

(e2x): 

(cos(3x)): 

(sin(3x)): 

-8a1 = 1 

l5a2 - l5a3 = 0 

15a2 + 15a3 = -5. 

8. Solve these equations to get a 1 = -1/8, a2 = -1/6, and a3 = -1/6. 
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9. Produce 
Yp(x) = (-118)e2x- (116)sin(3x)- (116)cos(3x). 

The complete solution of L(y) = f is then 

y(x) = c 1 e3x + c2 sin(2x) + c3 cos(2x) 

-(1/8)e2x - (1/6) sin(3x) - ( 116) cos(3x), 

where c1, c2, and c3 are arbitrary constants. <> 

We now solve another example that looks superficially like Example 5.23, but 
turns out to be quite different because the right-hand side is in the kernel of L. In the 
last example BLand BA were disjoint. In this example they are not. 

Example 5.26 Solve the nonhomogeneous differential equation 

L(y) = y"' - 3y" + 4y' - 12y = e3x - 5 sin(2x) = f(x) 

by the method of undetermined coefficients. 
Solution. We again follow the steps presented in Theorem 5.19. 

1. The characteristic polynomial of Lis r3 - 3? + 4r- 12 = (r- 3)(? + 4), so a 
basis for the kernel of Lis BL = {e3x, sin(2x), cos(2x)}. 

2. e3x is annihilated by an operator having characteristic polynomial (r - 3); 
-5 sin(2x) is annihilated by an operator having characteristic polynomial (r2 + 
22). 

3. (r - 3)(? + 22) is the characteristic polynomial for A, an annihilator of f(x). A 
basis for the kernel of A is B A = { e3x, sin(2x ), cos(2x)} = B L. 

4. (r- 3?(? + 4)2 is the characteristic polynomial of AL, so a basis for the kernel 

of AL is B AL = 11 e3x I. xe3x, I sin(2x), cos(2x) I· x sin(2x), x cos(2x)}. The boxed 
entries are the members of BL. 

5. The complement of BL in BALis B = {xe3x, xsin(2x), xcos(2x)} * BA. 

6. Assume a particular solution of the form 

7. Form 

Equate coefficients with f(x) = e3x- 5 sin(2x) to get the system of equations 

(e3x): 

(cos(2x)): 

(sin(2x)): 

13a1 = 1 

-8a2 - 12a3 = 0 

12a2 - 8a3 = -5. 

8. Solve these equations to get a1 = 1/13, a2 = -15/52, and a3 = 5/26. 
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9. Produce 

Yp(x) = (1!13)xe3x- (15/52)x sin(2x) + (5/26)xcos(2x). 

The complete solution of L(y) = f is 

y(x) = c1 e3x + c2 sin(2x) + c3 cos(2x) 

+(1113)xe3x- (15/52)xsin(2x) + (5/26)xcos(2x), 

where c I' c2, and c3 are arbitrary constants. 0 

Example 5.27 Consider the linear operator L whose characteristic polynomial is 
PL(r) = (r- 4)(r + 3)3(r- 2). (Write out L(y). It is fifth-order.) We wish to solve 
the nonhomogeneous problem L(y) = 5x3e-3x + ?xe-3x + 36e2x. 

Solution. The first two terms are annihilated by an operator whose characteristic 
polynomial is (r + 3)4 and the third by an operator whose characteristic polynomial 
is (r- 2). So the characteristic polynomial for A, an annihilator of the right-hand side 
is PA (r) = (r - 2)(r + 3)4. This means that the characteristic polynomial of AL is 
PA (r)pL(r) = ((r + 3)4(r- 2))((r- 4)(r + 3)3(r- 2)) = (r- 4)(r + 3)7 (r- 2)2. 

We see that the kernel of AL has as basis 

and a basis for the kernel of L is contained in boxes. This means that the form of our 
particular solution is a linear combination of the remaining functions and is therefore 

When we have equated coefficients, we will have a set of five equations in five 
unknowns. We now need the definition for L(y). It is 

L(y) = yl5l + 3yl4l- 19y'"- 63y" + 54y' + 216y, 

and we equate coefficients to make 

L(yP(x)) = -250a 1e2x + (210a2 - 288a3 + 120a4)e-3x 

+ (840a3 - 1440a4 + 720a5 )xe-3x 

+ (2100a - 4320a )x2e-3x + 4200a x3e-3x 4 5 5 

5x3 e-3x + ?xe-3x + 36e2x. 

The resulting system of equations is 

(x3 e-3x): 

(x2e-3x): 

(xe-3x): 

(e-3x): 

(e2x): 

4200a5 = 5 

2100a4 - 4320a5 = 0 

840a3 - 1440a4 + 720a5 = 7 

2l0a2 - 288a3 + 120a4 = 0: 

-250a 1 = 36 
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This system, with the help of Mathematica, has the solution 

a 1 = -18/125,a2 = 4318/300125,a3 = 2369/205800, 

a4 = 3/1225, a5 = 11840. 

From these, we find a particular solution to be 

Yp(x) = -(181125)xe2x + (4318/300125)x3e-3x 

+ (2369/205800)x4 e-3x + (3/1225)x5 e-3x + (11840)x6 e-3'. 

0 

You can modify the Undetermined Coefficients notebook to have it work this 
problem for you. It would be instructive to do so. 

Exercises 5.4. PART I. Given an annihilator, what is annihilated? In each problem 1-
10, you are given a constant coefficients linear operator. State a basis for the functions 
that are annihilated by the operator. Look at the factored form of the characteristic 
polynomial. The use ofF actor in Mathematica may be helpful. 

l. A1 (u) = u'" - u'. 
2. A2 (u) = u" - 7u' + lOu. 
3. A 3 (u) = u"- 4u' + 5u. 
4. A4 (u) = u"' - 1lu" + 33u'- 35u. 
5. A5(u) = u"' + u" - 16u' + 20u. 
6. A 6 (u) = u"' - 900u'. 
7. Aiu) = u(Sl - 5u(4)- 5u"' + 45u"- 108u. 
8. A8(u) = u(4l- 20u"' + 167u" - 770u' + 1666u. 
9. A9(u) = u(6)- 4u(S) + 7u(4)- 6u"' + 2u". 

10. A 10(u) = u(8l- 34u0l + 538u(6l- 5272u(5l + 335, 188u(4l- 161,992u"' 

+ 491,816u"- 881,504u' + 703,040u 

PART II. Construct the characteristic polynomial of an annihilator for each 
of the following functions. Remember that if L1(u 1) = 0 and L2 (u2 ) = 0 then 
L 1L2(u 1 + u2) = 0. The characteristic polynomial of L 1L2 is the product of the two 
characteristic polynomials. Have Mathematica multiply out your product polyno­
mial. You may use the function MakeOperator that is defined in the notebook 
Undetermined Coefficients to check your annihilator. It builds a differential operator 
from its characteristic polynomial. As in problems 1-10, list all of the functions that 
are annihilated by your operator. 

11. ex 
12. e4x 

13. xe3x 
14. x2e6x 

15. xe-2x 
16. ex+ xe3x 
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17. e4x cos 5x 
18. e3x + 3e4x cos 5x 
19. e3x + 3e4x cos 5x + x3 

20. e3x + 3e4x cos 5x + x3 + x2 e6x 

PART III. Given these pairs of differential operators, what operator is the com­
position of the operators? Multiply the two characteristic polynomials and construct 
the composite operator by inspection. 

21. L1(y) = y'- 4y; 
22. L 1 (y) = y" + y'- 4y; 
23. L 1 (y) = y"- 5y'; 
24. L1 (y) = y" + y; 

Lz(y) = y" + Y 
Lz(y) = y" + y' 
L2(y) = y" + 2y 
Lz(y) = y" + Y 

PART IV. Nonhomogeneous differential equations with constant coefficients. For 
the following differential equations, factor the characteristic polynomials of the op­
erator and of an annihilator of the right hand side. Multiply these two polynomials 
in factored form. By inspection write down a kernel of the composite operator that 
corresponds to the product polynomial and delete from this kernel the kernel of the 
operator of the differential equation. Finally, state the form to assume for a candidate 
particular solution by undetermined coefficients. 

25. y" - 4y' - 12y = 15ex- 4 cosx- 13 sinx. 
26. y" + 9y = lOex - 9x. 
27. y"'- 4y" + 14y'- 20y = -4- 3c + 14x- 10~. 
28. y"' - 3y" + 4y' - 2y = 8 - 8x + 2x2. 

29. y"'- 8y"- lOy'- 100y = -117c- 11 cosx- 92 sinx. 
30. y"' - 3y" + 3y'- y = e9x- sinx. 

PART V. Modify the notebook Undetermined Coefficients to do the manipula­
tions required to solve each of problems 25-30. These are problems 31-36. 

5.5 Variation of Parameters 

We have seen that the method of undetermined coefficients, which works only in 
those special cases where the right-hand side has a special form, gets complicated to 
execute even though the steps are straightforward in theory. The method of variation 
of parameters is also straight-forward in theory, but its complexity is on two fronts: 
how to invert the Wronskian matrix, and how to integrate the functions that appear. 
When this method is being done manually, these are truly daunting problems. But 
our salvation is in having Mathematica to do these difficult steps for us. Even Math­
ematica can have difficulty with the integrals that it encounters, but except in rare 
circumstances you can be assured that if Mathematica has trouble with an integral, 
you are not likely to evaluate it easily yourself! 

Given the general nonhomogeneous linear nth-order differential equation 
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dny dn-ly dy 
Ln(y) = an(x) d~ +an-I (x) d~-l + · · · + a 1 (x) dx + a0 (x)y = f(x), (5.8) 

where f and all of the coefficient functions are continuous on some interval over 
which an(x) * 0. We want to solve the nonhomogeneous linear differential equation 
Ln(y) = f(x), where all we know about f(x) is that it is continuous. 

The idea behind the method is that linear operators send linear combinations of 
functions to linear combinations of their images. We always find the kernel of Ln first. 
So we have a set of functions {y1, y2, •.• , Ynl that is a basis for the kernel of Ln. But 
Ln sends every linear combination of these functions to 0. How can we distort them 
in some way, so that Ln(distorted functions) = f(x)? The way to do the distorting is 
to think of 

as 
v1 (x)y 1 (x) + vix)y2(x) + · · · + vn(x)yn(x), 

where we have changed the parameters {c1, c2, ••• , en} into {v1 (x), v2(x), ... , vn(x)}. 

We have made the parameters vary by turning them into functions. Hence the name 
variation of parameters. 

Since we have n coefficients to determine, we need to impose n conditions. To 
determine the first n - 1 conditions, we will let n - 1 functions be 0. The differential 
equation will then determine the last condition for us. 

Recall from multidimensional calculus that if f(x) and g(x) are differentiable and 
their values are n-vectors, then their dot product f(x) · g(x) is differentiable and the 
derivative looks like the usual product rule: 

(f(x) · g(x))' = f' (x) · g(x) + f(x) · g' (x). 

We will use this rule to reduce the notation in the derivation of the method of 
variation of parameters. To do this let Y(x) = {y 1 (x), y 2(x), ... , Yn(x)} and V(x) = 
{v1 (x), v2(x), ... , v n(x)}. Then the particular solution we seek can be written as y P(x) = 
Y(x) · V(x), or Yp = Y · V for short. We begin our search for then conditions that are 
to be imposed. 

Calculate y~ = Y' · V + Y · V'. We take as our first condition Y · V' = 0. Then 

y~ = Y' · V. 
Calculate y~ = Y" · V + Y' · V'. We take as our second condition Y' · V' = 0. Then 

y~ = Y" · V. 
Using the same reasoning, for 1 ::o; k ::o; n- 1, y~l = y<kl · V and the kth condition 

is y(k-lJ · V' = 0. This means that y~l = y(n) · V + y(n-IJ · V', from which we need to 

obtain the nth condition. We do this by substituting all of these derivatives back into 
Ln and requiring that Ln(y P) = f. This is what results: 

Ln(Y). V + an(y(n-ll. V') 

On. V + an(y<n-IJ. V') 

= an(y(n-ll. V') 

f. 
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This gives as the nth condition y<n- 1) • V' = flan, where an(x) is the coefficient of 
the highest-order derivative in the differential equation. The notation Ln(Y) is short 
for the vector {Ln(y1), Ln(y2), ... , Ln(yn)) = {0, 0, ... , 0} =On. 

In summary, the n conditions are: 

{ 

Y ·V' 0 
Y' ·V' :0 

y<n-1). V' ~ f/an 

(5.9) 

Equations 5.9 are just the row equations of this matrix equation: 

[ 

Y1 Yz 
' ' 

W(x)V' = ~~ Y2 

(n-1) (n-1) 
Y1 yz 

·. 

Observe that the coefficient matrix is just the Wronskian matrix (not determi­
nant). Since {y1, y2, .. . , Ynl is a linearly independent set, the Wronskian determinant 
W(yi' y2, ... , Yn) :f:. 0, and the matrix W(x) has an inverse. This means that we can 
solve for V', getting 

V' (x) = (W(x))- 1 F(x). 

If we know V'(x), we can find V(x) by integrating this vector equation. The inte­
gration is done component by component, giving 

V(x) = Jcw(x))- 1F(x))dx + c, 

where c is a vector of constants. 
Once we have V(x), we obtain Yp(x) from either Y(x) · V(x) or V(x) · Y(x): 

Yp(x) = V(x) · Y(x) 

= (f (W(x))- 1 F(x) dx +c)· Y(x) 

= (f (W(x))- 1 F(x) dx) · Y(x) +c. Y(x) 

(Y(x) · J (W(x))- 1F(x)dx) +c. Y(x). 

Notice that our arbitrary constant from the integration has produced a full de­
scription of the kernel, c · Y(x), as well, so that what we have here is actually the 
complete solution of the nonhomogeneous equation Ln(y) =f. 

Theorem 5.20. To find a particular solution Yp(x) of equation 5.8, find a basis for 
the kernel of Ln. Let such a basis be {yi' y2, ... , Ynl· We seek functions {v1, v2, ... , vn} 
such that Yp(x) = v1 (x)y 1 (x) + v2(x)y2(x) + · · · + vn(x)yn(x). Form the system 
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[ 

Yl 
' ' Yl Y2 

(n:-1) (n-1) 

Yl Y2 J, ll 1 HJJ 
The coefficient matrix has an inverse, so integrate 

Yn 
y~ J'UJ (5.10) 

y~n-1) 

to find the vector of functions {v 1, v2, ... , vn}. Then form the solution 

This is a particular solution of equation 5.8. The complete solution of equa­
tion 5.8 is therefore 

Example 5.28 Find a particular solution of the differential equation 

L2(y)(x) = x2y" (x) - 4xy' (x) + 6y(x) = (x- 1 )3 

by the method of variation of parameters, given that y1 (x) = x2 and h(x) = x3 are 
linearly independent functions in the kernel of L 2 . 

Solution. We seek functions {v 1 (x), v2(x)} such that Yp(x) = v1 (x)y 1 (x) + v2(x)y2(x) 
is a particular solution. Form the system 

Invert the coefficient matrix to get 

Integrate this to get 

( v ) ( -1!2x2)+3/x-x+3lnx) 
V2

1 (x) = 
l/3x3 - 3!2x2 + 3/x + lnx · 
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Then 

x - + - - x + 3lnx + x - - - + - + lnx 2 (-l 3 ) 3 ( 1 3 3 ) 
2x2 x 3x3 2x2 x 

I 3x 
- 6 + 2 + 3x2 - x3 + 3~ In x + ~ ln x 

is the desired particular solution. <) 

Example 5.28 (M) Solve the problem of Example 5.28 in Mathematica. Notice how 
these steps parallel the ones above. 

Solution. 

In[l] := Clear[basis, W, F, v, yp] 

In[2]:= L2[x_,y_] =x~2y"[x] -4xy'[x] +6y[x] 

Out[2]= 6y[x]-4xy'[x] +x2 y"[x] 

In [3] := basis [x_] = {x2 , x 3 } 

Out[3]= {x2 , x 3 } 

In [ 41 : = (W [x_] = {basis [x] , basis' [x] } ) I /MatrixForm 

Out [4]= (;: 3x~ 2 ) 

(x- 1) 3 
In[5]:=F[x_]={0, 2 } 

X 

{ (-1+x) 3 } 
Out[5]= 0, 2 

X 

In[6]:= Inverse[W[x]].F[x] 

Out { 6) = { - ( -1 + X) 3 ( -1 + X) 3 } 
x3 , x4 

In [ 7]: = v [x_] = J Inverse [W [x]] . F [x] dlx 

1 3 1 3 3 
Out [ 7] = { - -- +- - x + 3 Log [x], -----+-+Log [x]} 

2 X? X 3 x 3 2 x 2 X 

In [ 81: = yp [x_] = Simplify [basis [x] . v [x]] 
1 3 X 

Out[8]= --+-+3x2 -x 3 +x2 (3+x) Log[x] 
6 2 

In[9]:= Simplify[L2[x,yp] == (x-1) 3 ] 

Out[9]= True 
<) 

The notebook Variation of Parameters contains the machinery necessary to solve 
problems such as these. The integrations can be complicated, but that is why we have 
Mathematica. The notebook Complete Solution uses DKernel to find a basis for the 
kernel of the operator part of a differential equation and variation of parameters to 
find a particular solution. It then returns the complete solution as an n-parameter 
family of functions. 
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You can then take this solution and begin to impose conditions on it in order to 
select the solution from the family that satisfies some identifying set of criteria. Since 
there are n parameters that can be determined, n conditions need to be imposed. 
When those n conditions are in the form of standard initial conditions, the unique 
solution is easy to obtain: just solve the n linear algebraic equations in n unknowns 
that the initial conditions produce. It is possible that the n conditions do not all occur 
at a single point in the interval over which you want a solution, but are given at 
several (even infinitely many) places on the interval. In this case you are said to 
have a boundary value problem. Boundary value problems are not different from 
initial value problems to Mathematica, because all we present to Mathematica is 
a system of linear algebraic equations. Mathematica does not know or care where 
those equations came from. As with any system of equations, the linear algebraic 
system we have may have a unique solution, or no solution, or an infinite number of 
solutions. These latter two eventualities are what makes most people think boundary 
value problems are a totally different type of problem from initial value problems. 
But they can be essentially the same, except that initial value problems in standard 
form always have unique solutions, whereas a perfectly reasonably stated boundary 
value problem may lose either existence or uniqueness. This loss is not a property 
of the differential equation itself, but of the form of the boundary conditions. We 
will see in Chapter 9, systems of differential equations, an existence and uniqueness 
theorem for boundary value problems. 

Example 5.29 (M) Solve the boundary value problemy"- y'- 12y = 6x along with 

the boundary conditions: y(O) = 3 and fo2 y(x) dx = 1. 
Solution. Note that there is a point condition at 0 and that every point in the 

interval [0, 2] is involved in the integral. Therefore this problem has its boundary 
conditions at an infinite number of points! 

In[10]:= Clear[x,y,L,s,const, z, zn] 

In [11] := L[x_, y_] = y" [x]- y' [x] -12y[x] 

Out[11]= -12y[x]-y'[x] +y"[x] 

In[12]:= s[x_] =y[x]/.DSolve[L[x,y] ==6x,y[x],x][[l]] 
1 

Out[l2]=- (1-12x) +<e- 3 xC[1] +<e4xC[2] 
24 

In[13}:= const = Simplify[Solve[{s[O] == 3,12 
s[x]dlx == 1}, 

{C[l], C[2]}]] 

{{ e 6 (-255 + 71 e 8 ) 71 + 67 e 6 }} 

Out [13]= C[1] __. 8 (4- 7 e6 + 3 e14), C [2] _, 24-42 e6 + 18 e14 

In[14]:= z[x_] =Simplify[s[x]/.const[[l]]] 
1 ( 4e4x(71+67e 6 ) 3e6- 3 x(-255+71e 8 ) ) 

Out [ 14} = 24 1 + 4 - 7 <E6 + 3 <E14 + 4 - 7 <E6 + 3 <E14 - 12 X 

This is so complicated that its form gets totally lost. Let's tum these complicated 
expressions into numbers and then look at what we have. Here is the numeric value 
of the constants: 
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In [ 15] : = { d1, d2} = N [ { C [ 1] , C [ 2] } I. const [ [ 1] ] 

Out [ 15 J = { 2 . 9 57 0 8, 0 . 0 0 12 52 9 3 } 

In[16]:= zn[x_] =s[x]/.{C[1] -+d1,C[2] -+d2} 
1 

Out[16]= 2.95708e-3 x+0.00125293e4 x+_ (1-12x) 
24 

In [ 1 7] : = Plot [ zn [x] , {x, 0, 2}] ; 

3 

2.5 

1 

0.5 

In[18] := Nintegrate[zn[x], {x, 0, 2}] 

Out[18]=1. 

2 

The form of z n [ x] is simply that of s [ x] : the sum of a polynomial and two ex­
ponentials. Now go back and look at z [ x] again through enlightened eyes. Doesn't 
it have the same form? 0 

You will find boundary value problems such as these to be immensely powerful 
and exciting. When you have an existence and uniqueness theorem to work with, and 
a collection of acceptable forms for boundary conditions, those of you who have a 
primary interest in applications will have a truly powerful tool in your possession, 
because your intuition will suggest wonderful boundary conditions that have a real 
physical significance. We will look again at boundary value problems in Chapter 9 
in the context of systems of differential equations. 

Exercises 5.5. These exercises consist of 10 problems to be solved by variation of 
parameters. Parts I, II, and III are steps that guide you through the solution. You 
may take any problem and perform the instructions given in the three parts to 
complete the solution. 

PART I. Wronskian. After each differential equation below is a basis for the ker­
nel. Construct the Wronskian matrix W(x) of the basis set. Calculate the determinant 
of W (x) to verify linear independence. 

1. y"' - y" + y' - y = I ; 
2. y" - 5y' + 6y = x2 ; 

3. y" + 4y' - 5y = sinx; 
4. y"- 2y' + 2y = e3x; 
5. y"'- 2y" + 2y' = cosx; 

{e, sinx, cosx}. 
le3x, e2"). 

{e-5x, e). 

{e sinx, e cosx). 
{ e sin X, e COS X, [}. 
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6. y'"- 2y" + 2y' = x3 - l; 
7. y'"- 2y" + y' =e-x; 
8. y'" - 5y" + 9y' - 5y = 1 oe-x cos x; 

9. y'"- 6y" + l2y' - 8y = 2~ sinx; 
10. y'" - 3y' + 2y = sinx; 

{~ sinx, ~ cosx, 1 }. 
{1, e', x~}. 

{e2x sinx, e2x cosx, ~~­
{e2x, xe2x, x2e2xl. 

{ex, x~. e-2xl. 

PART II. For each differential equation in problems l-10, construct the linear 
equation (5.9), W(x)V'(x) = Q(x), which the coefficient functions V;(x) must satisfy. 
These problems are continuations of problems 1-10. 

PART III. With the help of Mathematica solve each of the linear equations for 
the vector V'(x). If you need further help, use Mathematica to perform the integra­
tions necessary to find the vector V (x). Complete the solution of each of the original 

problems by variation of parameters by forming the dot product of the kernel with 
V(x) as suggested by Theorem 5.20. Write out the complete solution of the original 

problem and check. These problems are also continuations of problems 1-10. 
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Applications of Second-Order Equations 

6.0 Introduction 

Once again, second-order differential equations with constant coefficients serve as 
a special topic for our study. This time we study them not just because it is easy 
to explain everything that is going on, but because of the special interests one can 
have in the physical situation that these differential equations are modeling. We study 
several cases of the motion of a single weight hanging from a spring: 

• where the motion is free; 
• where the motion is damped; 
• when there is a forcing function present. 

This second-order setting for differential equations also applies to series elec­
tronic circuits that contain only resistance, capacitance, and inductance. Such elec­
tronic circuits can also be forced by an oscillating voltage. The behavior of many of 
these electronic circuits is analogous to that of systems of springs. 

Resonance phenomena are also investigated, especially in the exercises. 
If an idea you are working with suggests further investigations of theoretical or 

applied interest, you do not have to endure intrusive manual calculations. You should 
be free to think and experiment. Do so; let Mathematica help you. 

It is worth remembering that Mathematica can do a symbolic computation as 
easily as it can do a numerical one. 

6.1 Simple Harmonic Motion 

To study simple harmonic motion, we need to review Hooke's 1 law. Hooke's law 
states that the restoring force of a spring is proportional to the displacement from the 

1 Robert Hooke (1635-1703) was a contemporary oflsaac Newton. Newton had ideas, and 
Hooke did experiments for the Royal Society to verify them. Their association was long and 
rancorous. Hooke thought that Newton's best ideas were stolen from him. When Newton 
was thinking about universal gravitation, Hooke communicated an (incorrect) idea that 

C. C. Ross, Differential Equations
© Springer Science+Business Media New York 2004
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length of the spring when it is at rest. The spring produces a force F = -kx, when it is 
x units from its rest position. The number k is called the spring constant. If the spring 
is stretched, then x is considered to be positive. If the spring is compressed, then x 
is considered to be negative. When the spring is hanging this seems counterintuitive, 
but dxl dt > 0 means that the length of the spring is increasing, and this increasing 
length is downward. 

Newton's second law of motion is F = ma, where m is the mass of the object in 
motion and a is the acceleration on the object. In our setting, we will use a = d2 xi dt2, 

where xis displacement. When the spring is hanging vertically, there is an additional 
force on the mass, that due to gravity. In these problems it is important to choose 
an appropriate system of units [foot-pound-second (English), or gram-centimeter­
second (cgs), for instance] and not mix units. It is also important to remember that 
weight is a unit of force. A calculation is needed to obtain an object's mass from its 
weight. 

Suppose that the natural length of a massless spring is L and that when an object 
of mass m is suspended from the end of the spring, the spring extends d units and is 
in its equilibrium position. The spring is stretched further and released. What is the 
differential equation of the motion? When the mass is in equilibrium, as in the center 
of Figure 6.1, the upward restoring force of the spring and the downward force due 
to gravity are in balance: kd = mg. Thus, when the spring is extended x units further, 
for a total extension of d + x, the force on the system is the sum of the force produced 
by the spring and the force due to gravity. 

d2x 
m dt2 = -k(d + x) + mg = -kx + (-kd + mg) = -kx, 

since mg = kd. Thus 

We simplify further to get 

where w2 =kim. 

d2x 
m-2 +kx=O. 

dt 

(6.1) 

This is the differential equation of free harmonic motion. The parameter w is 
called the angular velocity. 

From the section on second-order differential equations with constant coeffi­
cients, you will recognize one form of the solution to be 

x(t) = c1 coswt + c2 sinwt. 

This is often called the equation of motion of the free vibrations described by the 
differential equation. The period of the free vibrations so described is the number 

caused Newton to redirect his thoughts toward a valid theory. Hooke thought that the whole 
theory was stolen from him. 
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Fig. 6.1. Positions of a simple spring system. 

Table 6.1. Common standard units. 

Sys. Distance Time Mass I Accel. Force 

s,x,y, . .. t m a F 
SI meter (m) second (sec) kilogram (kg) m/sec2 Newton (Nt) 
cgs centimeter (em) second (sec) gram (g) cm/sec2 dyne 

Engl. foot (ft) second (sec) slug ft/sec2 pound (lb) 

T = 2nlw, and the frequency of the free vibrations is f = (liT) = w/(2n). For 
instance, if the equation of motion is x(t) = 4 cos 5t + 3 sin 5t, then the period of the 
free vibrations is T = (2n/5), and the frequency is f = 5/(2n). This period means 
that the motion repeats every 5/(2n) units of time, and that during each 2n units of 
time the motion is repeated five times. During each unit of time, 5/(27r) of the motion 
is completed. 

Summary of Consistent Basic Units 

For your use in the exercises, here is a summary of three standard consistent sets of 
units that are in common use. 

You can find an astonishingly complete list of conversion factors in the pack­
age Miscellaneous 'Units'. Once you have loaded this package you can 
invoke Convert [ old, newunits]. There are also functions SI [exprJ, 
MKS [ expr] , CGS [ expr], which convert expr to the International System, or 
to the mks or cgs systems. In this package there are not only units of distance, time, 
mass, acceleration, and force, but also electrical, information, inverse length, vol-
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ume, viscosity, luminosity, radiation, angles, power, area, amount, pressure, energy, 
frequency, and more. 

Here is a short list of conversion factors. 
Length 1 km = 1000 m; 1 mi = 5280 ft; 

Mass 

Force 

1m= 100 em; 
1 m = 3.281 ft; 
1 km = 0.6214 mi; 

1 ft = 30.48 em; 
1 mi = 1.609 km; 

1 kg = 1000 g = 0.06852 slug; 
1 slug= 14.59 kg= 32lb.; 
1 kg wt = 2.205 lb = 9.807 kg; 
1 Nt = 105 dynes = 0.2248 lb; 
1 lb = 4.448 Nt. 

Example 6.1 Suppose that a long spring hanging vertically is stretched to an equilib­

rium position of 2 feet by a 1 0.24-pound object. If the spring is stretched 3 additional 
feet and released from rest, what is the equation of motion of the system? 

Solution. First we need to calculate the mass of the object. Since the force of 
gravity in the foot-pound-second system is 32 feet per second per second, and the 

force is mg = 32m = 10.24, it follows that m = (10.24/32) = 0.32 slug. Next, we 
need to calculate the spring constant k. The force F = -10.24 pounds= -k (2 feet), 
so k = 5.12 pounds per foot. Next, formulate the differential equation as 

d2x d2x 
m dt 2 + kx = 0.32 dt2 + 5.12x = 0, 

or 
d2x d 2x 
dt2 + (5.12/0.32)x = dt 2 + 16x = 0, 

with initial conditions x(O) = 3 and x'(O) = 0. This initial value problem, which 

describes the motion, has as solutions 

x(t) = c 1 cos 4t + c2 sin 4t. 

The initial conditions give the equations 

x(O) = c 1 cos 0 + c2 sin 0 = c 1 = 3 

and 
x'(O) = -4c 1 sin 0 + 4c2 cos 0 = 4c2 = 0. 

From these we find that c 1 = 3 and c2 = 0. So the equation of motion is 

x(t) = 3 cos 4t, 

which is a pure cosine curve, with amplitude 3. This means that the mass rises 3 

feet and falls 3 feet in its excursion about the rest position. This is a 6-foot total 
excursion, which is why it was stated that the spring was very long. At its minimum 
excursion the mass must not compress the spring fully. The frequency of this motion 
is f = 4/(2n) = (2/n) and the period is T = (n/2). 0 
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Example 6.1 (M) Solve the initial value problem of example 6.1 in Mathematica by 
using DSol ve. 

Solution. 

In[l]:= DSolve[{x"[t] +16x[t] ==O,x[O] ==3,x'[O] ==0}, 

x[t],t] 
Out[l]= {{x[t]-d Cos[4t]}} 

0 

Example 6.2 Suppose that a spring hanging vertically is stretched to a rest position 
of 2 inches by a 10.24-pound weight. If the spring is stretched 3 additional inches 
and released from rest, what is the equation of motion of the system? 

Solution. Notice that the only difference between this example and the last exam­
ple is that the units have been changed from feet to inches. The mass is still 0.32 slug. 
Put the length units into feet, since the force was given in pounds. The rest position is 
2 inches= (2 inches) (1112) (foot/inch) =(116) feet. The release point is an additional 

3 inches = (3 inches) (1112) (foot/inch) = (114)feet. 

Calculate the spring constant. F = -10.24 pounds= -k (116 feet), so k = 61.44 
pounds per foot. Next, formulate the differential equation as 

d2x 
0.32 dt2 + 61.44x = 0, 

or 
d2x d2x 
- 2 + (61.44/0.32)x = - 2 + 192x = 0; 
dt dt 

with initial conditions 
x(O) = 114, x'(O) = 0. 

This differential equation of motion has as solutions 

x(t) = c1 COS 8-13t + C2 sin 8-13t. 

The initial conditions give the equations 

x(O) = c1 cosO+ c2 sinO= c1 = 1/4 

and 
x'(O) = -8-/3c1 sinO+ S-/3c2 cosO= S-/3c2 = 0. 

From these we find that c 1 = 114 and c2 = 0. So the equation of motion is 

x(t) = (1/4) cos s-13t, 

which is a pure cosine curve with amplitude 114 . This means that the mass rises 
and falls with a total excursion of 112 foot. The spring need not be nearly as long as 
~~- 0 
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Down 

t 

Fig. 6.2. The amplitude and phase angle when the solution is expressed as a sine function. 

Example 6.2 (M) Solve the differential equation of Example 6.2 in Mathematica by 
using DSol ve. 

Solution. 

In[2]:= Clear[soln] 

In[3}:= soln=DSolve[{x"[t] +192x[t] ==O,x[O] ==1/4, 

x'[O] ==O},x[t],t] 

Out[3}= {{x[t] ~~Cos [s-13tj}} 
This is the same result that we got in Example 6.2. 0 

Sometimes it is not nearly so easy to determine the amplitude of the motion that 
is obtained. This happens when the mass is not released from rest, but is given an 
upward (negative) or downward (positive) initial velocity. The motion is still a single 
sine (or cosine) wave, but there is an additive adjustment to the angle wt. 

To clarify, suppose that we have the general equation of motion, 

x(t) = c 1 coswt + c2 sinwt 

from a differential equation d 2:x!dt2 + w2x = 0 that describes free harmonic motion. 
Recall from your trigonometry studies that sin(a + b) = sin a cos b + sin b cos a. We 
wish to use this formula in the context 

sin(a + wt) = c1 coswt + c2 sinwt = x(t). 

We can take any point in the plane, different from the origin, and write it uniquely 
as 
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(c2, c1) = A(cos¢>, sin¢), for 0 s; ¢> < 27r and A> 0. 

This is a polar representation of the point (c2, c1). Using the association, c1 = 
A sin¢>, c2 = A cos¢> we ,qm write . 

xU)= c1 coswt+c2 smwt 

= A sin ¢> cos wt + A cos ¢> sin wt 

= A sin(wt + ¢>). 

This expresses the equation of free harmonic motion as a pure sine curve, from 
which the amplitude A can be immediately determined by inspection. But this does 
introduce a different parameter ¢>, the phase angle. In the first two examples, the 
phase angle was 0. Notice that we still have a two-parameter family of solutions 
of x" + w2x = 0, but expressed in terms of two different parameters. The basis 
{cos wt, sin wt} for the kernel is not nearly as clear in this representation, but we can 
see other things such as the amplitude of the motion much more clearly. Figure 6.2 
is a picture of the amplitude and the phase angle. 

Example 6.3 Suppose that a spring hanging vertically is stretched to an equilibrium 
position of 15.36 inches by a 1.6-pound weight. If the spring is stretched 4 additional 
inches and released with an upward velocity of 15 inches per second, what is the 
equation of motion of the system? What is the velocity of the mass the first time it 
passes downward through the rest position? 

Solution. Again we have to find the mass m = (1.6/32) = (l/20) slug, and put 
the length units into feet, since the force was given in pounds. The rest position is 
15.36 inches = (15.36 inches) (1112) (foot/inch) = 1.28 feet. The release point x(O) 
is an additional 113 feet, and the initial velocity x'(O) = -(15(inch/second)) (1112) 
(foot/inch) = -5/4 (foot/second). 

We calculate the spring constant. F = -1.6 pounds = -k(1.28 foot), so k = 
(1.6/1.28) = 1.25 = 5/4 pounds per foot. Next, formulate the differential equation as 

or 

(_!_) d2x + (~)x = 0 
20 dt2 4 ' 

dzx + ( IOO)x = dzx + 25x = O· 
dP 4 dt2 ' 

with initial conditions x(O) = 1/3 foot and x' (0) = -514 foot per second. 
This differential equation has as solutions x(t) = c 1 cos 5t + c2 sin 5t. The initial 

conditions give the equations 

x(O) = c 1 cos 0 + c2 sin 0 = c 1 = 1/3 

and 
x'(O) = -5c1 sinO+ 5c2 cosO= 5c2 = -5/4. 

From these we find that c1 = 1/3 and c2 = -1/4. Now ~ cf + c~ = 5/12. So the 
equation of motion is 
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x(t) = 1 1 
- cos 5t - - sin 5t 
3 4 

5(! 1 5 ) - _l_ cos 5t - - over- sin 5t 
12 j_ 4 12 

12 

- - cos 5t - - sin 5t 5 (4 3 ) 
12 5 5 

= 1
5
2 (sin ( 7r +arctan (-~))cos 5t) 

+ (cos (n + arctan (- ~)) sin 5t) 

1
5
2 sin ( 5t + [ 7r + arctan (- ~) ]) 

which is a sine curve with period 2n/5, amplitude 5/12, and phase angle n + 
arctan( -4/3). This means that the mass rises and falls with a total excursion of 5/6 
foot. 

The mass passes through the rest position when 

x(t) = ( 152 ) sin ( 5t + 7r + arctan (- ~)) = 0, 

which is when 

5t + n + arctan (- ~) = kn. 

Since the mass started below the rest point, the first time through, when k = I, 
the mass is rising. The next time through, when k = 2, is the first time through mov­
ing downward. This is when 5t + 7r + arctan( -4/3) = 2n, or when t = (l/5)(7r + 
arctan(-4/3)) ""0.813778. The velocity is therefore x'(0.813778)"" 2.08333. Posi­
tive means downward. 0 

Example 6.3 (M) Solve the preceding exercise in Mathematica. 
Solution. 

In[4]:= Clear[soln] 

In[5] := soln = 

DSolve[{x" [t] + 25x[t] == 0, x[O] == 1/3, x' [0] == -5/4}, 

x[t],t] 
1 

Out[5]= {{x[t] --7- (4 Cos[St] -3 Sin[StJ)}} 
12 

In [6] := s2 [t_] = Expand[x[t] /. soln[ [1]]] 
1 1 

Out[6]=- Cos[St]-- Sin[St] 
3 4 

Look at a plot of the solution. 

In[7] := Plot[s2[t], {t, 0, 2}, AxesLabel-+ {"t", "Down"}]; 
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Down 

0.4 

2 t 

-0.4 

Calculate the time of the first downward excursion through equilibrium. 

[ 7f-ArcTan[-4/3]] 
In[81 := N 

5 
The downward velocity at the equilibrium position is: 

In [91 := s2' [%] 

Out[91= 2.08333 
This agrees with the manual solution. 0 

In the exercises that follow, you may find these transformation rules to be helpful: 

In [ 101 : = Amplitude [A_. Sin [b_] ] : = Abs [A] 

Amplitude [A_. Cos [b_]] : = Abs [A] 

Amplitude[A_. Sin[b_] +B_. Cos[b_]] := YAA2 +BA2 

In [ 111 : = SinePhaseAngle [A_. Sin [b_. t + c_.] ] : = c +ArcTan [A, 0] 
SinePhaseAngle [A_. Cos [b_. t + c_. ] ] : = c +ArcTan [ 0, A] 
SinePhaseAngle [A_. Sin [b_] + B_. Cos [b_] ] : = 
ArcTan [A, B] 

In [ 121: = CosinePhaseAngle [A_. Sin [b_. t + c_.]] : = c- ArcTan [0, A] 
CosinePhaseAngle [A_. Cos [b_. t + c_. ] ] : = c +ArcTan [A, 0] 
CosinePhaseAngle [A_. Sin [b_] + B_. Cos [b_]] : = 
ArcTan [B, -A] 

For example: 

In[131 := y[t_] = -2Sin[2t] 

Out[131= -2 Sin[2t] 

In [141 :=A= Amplitude[y[t]] 
Out [141 = 2 

In [15 1 : = spa = SinePhaseAngle [y [t] ] 

Out[151= JT 

In [161 := cpa= CosinePhaseAngle[y[t]] 
JT 

Out[161= 
2 
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In [ 1 71: = yf [t_] =A Sin [2t +spa] 

Out [17]= -2 Sin [2 t] 

In[18]:= yg[t_] =ACos[2t+cpa] 

Out[18]= -2 Sin[2t] 

Exercises 6.1. PART I. Convert the following functions having the form 

c1 coswt + c2 sinwt 

to the forms A sin(wt +¢)and A cos(wt +¢)with A > 0. Do these both manually and 

by Mathematica. 

1. 2 sin 3t -cos 3t. 
1 . 3 1 3 

2. - sm -t + -cos-t. 
2 2 4 2 
~ 1 

3 - cos4t-- sin4t . 2 2 . 
4. 5 sin6t. 

1 ~. 
5. :2 cos4t + T sm4t. 

6. -3 cos 5t. 
Y2 Y2. 

7 --- cosm-- smm . 2 2 . 
7ft . 7ft 

8 2 cos - - sm -. . 3 3 

PART II. These initial-value problems model simple harmonic motion. Solve 

each of the problems and convert each of the solutions into the single sine and single 

cosine forms of Part I. 

9• 1 
ld2x +lOx == 0; 
5 dt2 

x(O) 0, 
x'(O) == 1. 

lOa { 

ld2x+20x o· 
5 dt2 

, 

x(O) 0, 
x'(O) == -1. 

!Ia 1 
d2x + lOOx o· 
dt2 

, 

x(O) l/2, 
x'(O) == 0. 

l2a { 

d2x + 25x o· 
dt2 

, 

x(O) -1/2, 
x'(O) == 0. 

13a 1 
d2x + 40x o· 
dt2 

, 

x(O) l/2, 
x'(O) 1. 



{ 
d2x + 40x = 
dt2 

14a. x(O) = 

x'(O) = 

1
5d2x +lOx = 

dt2 
15a. x(O) 

x'(O) = 

{ 
5d2x +lOx = 

dt2 
16a. x(O) 

x'(O) = 

o· , 
-1/2, 

1. 

0; 

1/2, 
-1. 

0; 

-1/2, 
-1. 
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PART III. Each of the problems in Part II describes a spring that is undamped 
and is set in motion from some initial conditions. Describe in words the positioning 
of the spring at the moment of release. Use such terms as above or below equilib­
rium, and upward or downward velocity. Recall that downward is positive. These 
are problems 9b-16b. 

PART IV. For each problem in Part II give the coordinates of the first maximum 
and the first minimum of the motion of the spring. These are problems 9c-16c. 

PART V. Simple harmonic motion: problems. 

17. Suppose that an object moving in a straight line has the equation of motion 

mx" + 6x' + 3x = 0. 

For what values of m is the motion oscillatory? 
18. A weight of 4 pounds stretches a spring 6 inches. A 5-pound weight is attached 

to the spring as the only weight, is pulled downward 8 inches below equilibrium, 
and released with an upward velocity of 3 inches per second. Find a formula for 
the position of the weight thereafter. 

19. A mass of 30 grams stretches a spring 3 centimeters. An object of unknown 
mass is attached to the spring and set in motion. The period is observed to be 0.5 
second. What is the mass of the object? 

PART VI. Simple harmonic motion: theory. 

20. Verify mathematically the physical observation that if the motion of the mass 
starts at rest from its rest position, then it remains at the rest position. 

21. Show that if the mass is started moving from its rest position by being given a 
nonzero initial velocity, then the motion is a pure sine curve (the phase angle is 
zero). 

22. Show that if the mass starts its motion away from its rest position, but with initial 
velocity 0, the motion is a pure cosine curve (the phase angle is zero). 

23. Show that if the mass is not at rest when it starts x0 units above or below its 
rest position, then the motion of the mass eventually takes it further than x0 units 
away from the rest position. That is, the amplitude of the motion is greater than 
lx0 1. 
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6.2 Damped Harmonic Motion 

Having a situation where simple harmonic motion is possible is essentially unknown 
in nature. If it were possible, then such a device would demonstrate perpetual motion, 
and this does not occur. What actually happens is that a spring system such as is 
described in the last section always experiences some form of damping of its motion. 
Usually such a system is operating in the air. Objects moving in air have their motion 
opposed by the air itself. For slowly moving systems such as spring systems, the 
force of resistance due to the air, or air resistance, is proportional to the speed of the 
object through the air. In other words, air resistance is -[3(dxl dt), for an object whose 
position is x(t). The number [3 is called the damping constant. We will assume that 
any damping of motion that is present is of this form, though damping proportional 
to (dx!dt)2 does occur in certain situations. 

The differential equation of an object of mass m attached to a spring with spring 
constant k and damping proportional to velocity is therefore 

d2x dx 
m- = -kx-[3-

dt2 dt' 

or 
d 2x dx 

m- + [3- + kx = 0. 
dt2 dt 

This can be simplified to yield the differential equation of free damped motion 

d2x dx 2 - + 2A- + w X = 0, 
dt2 dt 

(6.2) 

where 2A = [3/m and w2 = kim. The "2" in the expression 2A is present to simplify 
some algebra that will be encountered. 

One can artificially control the amount of damping by attaching a paddle (of low 
mass) to the object at the end of the spring or by attaching a piston that rides in an 
enclosed tube and thus provides resistance to the motion. The attachment should be 
by a stiff rod in order for it to resist on the way down as well as on the way up. Some 
very complicated behavior is exhibited when the resistance is a "semi-resistor" and 
resists motion in only one direction [See Lazer & McKenna, 1990]. 

The differential equation of free damped motion can be solved by standard 
methods. The characteristic equation is r2 + 2Ar + w2 = 0. Solving for r by the 

quadratic equation yields rl' r2 =-A± YA2 - w2. The solutions are real and distinct 
if A2 - w2 > 0; repeated if A2 - w2 = 0, or A = ±w; and complex if A2 - w2 < 0. 
These three situations are all important, and will be discussed separately. Note that 
these situations depend on the magnitude of A, since w 2 is determined by the spring 
itself and not by external conditions. Here are the formal solutions in the three cases. 

CASE I. A2 - w2 > 0. The motion is said to be overdamped. The two roots 

r1, r2 = -A± YA2 - w2 are real and both are negative since YA2 - w2 < V"i.2 = A. 
This means that the solution x(t) = c1er1r + c2er2r will head quickly for 0 and the 
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motion will die out rapidly. In this case, there will be at most one critical point on 
the curve. The motion is not oscillatory. 

CASE II. A 2 - w2 = 0. The motion is said to be critically damped. The two roots 

r1, r2 = -A± YA2 - w2 = -A± 0 = -A, -A are equal, so the solution is 

Here again, the motion is not oscillatory and there will be at most one critical 
point. 

CASE Ill. A2 - w2 < 0. The motion is said to be underdamped. The two roots 

r1, r2 = -A± YA2 - w2 = -A± iY w2 - A2. These roots are complex and the solution 
is 

x(t) = e-AI(c1 cos~ w2 - A2t + c2 sin~ w2 - A2t) 

Ae-AI sin(~ w2 - A2t + ifl). 

The motion is oscillatory because of the second factor, but the first factor Ae -AI causes 
the motion to decay. This is referred to as damped oscillation. The quantity Ae-AI 

is sometimes called the damped amplitude, and 2n/Y w2 - A2 is called the quasi 

period. The quantity (Y w2 - A2Y(2n) is called the quasi frequency. These latter 
quantities are not a true period or frequency because the motion is damped and not 
periodic. 

Example 6.4 [Case I] The solution of the initial value problem 

{ 
x" + 26x' + 2Sx = 0, 

x(O) = 4, 
.x'(O) = 20 

is readily shown to be 
x(t) = -e-251 +se-t. 

Where does the system make its greatest excursion from equilibrium? 
Solution. We need to solvex'(t) = 2Se-25t -se-t = 0. This can be written S-e24t = 

0, and this has as solution, t = (ln SY24 ~ 0.0670S99. 0 

Example 6.4 (M) Solve Example 6.4 in Mathematica. 
Solution. 

In[l]:= Clear[soln,x, sl] 

In[2]:= soln=DSolve[{x"[t] +26x'[t] +25x[t] ==0, 

x[O] == 4, 

x' [0] == 20}, 

x[t], t] 

Out[2]= {{x[t]--?e-25 t (-1+5e24t)}} 
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In[3]:= s1[t_] =x[t]/.soln[[1]] 
Out[3]= e-zst (-1+5e24t) 

In[4] := Plot[s1[t], {t, 0, 1}]; 

4.5 

4 

3.5 

3 

2.5 

0.2 0.4 0.6 

When does the maximum excursion occur? 

In[5]:= FindRoot[s1'[t] ==0, {t,O}] 

Out [ 5] = { t --? 0 • 0 6 7 0 59 9} 

In[6] := s1[t/.%] 

Out[6]= 4.48867 
These values are consistent with the graph of the motion. 

Example 6.5 [Case II] The solution of 

{ 
x" + 6x' + 9x = 0, 

x(O) = -2, 
x'(O) = 15 

0 

fort > 0 is easily verified to be x(t) = e-31(-2 + 9t). Find the location of the single 
extremum. 

Solution. Wefindthatx'(t) = e-31 (15-27t), whichisOwhen 15-27t = 0. This is 
when t = 5/9. The x-position is therefore x(519) = 3e-513 • This is the only extremum. 
Since x > 0, this is a maximum downward excursion. Had the zero occurred for 
t < 0, there would have been no extremum for t positive. 0 

Example 6.5 (M) Solve Ex. 6.5 in Mathematica . 
Solution. 

In[?]:= Clear[soln,x, s2] 

In[B]:= soln=DSolve[{x"[t] +6x'[t] +9x[t] ==0, 

x[O] == -2, 

x' [0] == 15}, 

x[t], t] 

Out[B]= {{x[t]--?e-3 t (-2+9t)}} 
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In[9]:= s2[t_] =x[t]/.soln[[l]] 
Out[9]= re- 3 t (-2 + 9t) 

In [1 0] : = Plot [ s2 [t] , {t, 0, 3}, P lotRange -+ { -2, 1}] ; 

1 

0.5 

-2 

When does the extremum occur? 

In[ll]:= Solve[s2'[t] ==O,t] 
5 

Out [11] = { { t ---> -}} 
9 

Where is the extremum? 

In[12]:= s2[t/.%[[1]]] 
3 

Out[12]= 

In [13] := N[%] 

Out[13]= 0.566627 

2 2. 5 3 

Agian, these values are consistent with the plot of the motion. 0 

Example 6.6 [Case III] An 8-pound weight stretches a spring 9.6 inches. The damp­
ing on the system is half the velocity of the motion. The weight is set in motion from 
a point 6 inches above the equilibrium position with an initial velocity of 1 foot per 
second upward. What is the equation of motion? 

Solution. The mass of the weight is m = 8/32 = 114 slug. The initial position is 
x(O) = (-6 inch)(l/12)(foot/inch) = -1/2 foot, and the spring constant is found from 
-8 pounds= -k (9.6 inch)(l/12) (foot/inch)= -4/Sk foot. 

Thus k = (5/4)8 = 10 pounds/foot. The damping constant was given as 112, so 
the differential equation of motion is 

I I 
4x" + 2x' + lOx= 0, 

or 
x" + 2x' + 40x = 0, 

with initial conditions 

x(O) = -1/2 and x' (0) = -I. 

0 
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Example 6.6 (M) The solution of Example 6.6 by Mathematica is: 
Solution. 

In[l41:= Clear[soln,x, s3] 

In[151:= soln=DSolve[{x"[t] +2x'[t] +40x[t] == 0, 

X [0] == -1/2, 

x' [0] == -1}, 

x[t], t] 

Out [ 151 = { { x [ t] _, -2
1
6 e t ( 13 Cos [ Y39 t] + Y39 Sin [ Y39 t] ) } } 

In [161 := s3 [t_] = Expand[x[t] /. soln[ [1]]] 

Out [161= -~ e-t Cos [ Y39 t ]- ~ [!; e-t Sin [ Y39 t] 
In [ 1 71 : = Plot [ s3 [t], {t, 0, 3}, Plot Range -+ { -1, 1}] ; 

1 

0.75 
0.5 

0.25 

~0.75 

~1 

Use "pattern matching" to find the amplitude. 

In [181 := amp!= PowerExpand[Amplitude[s3 [t]]] 
2 e-t 

Out[181= 
-[13 

The solution and the exponential envelopes plot as: 

In[191 := Plot[{-ampl, amp!, s3[t] }, {t, 0, 3}]; 

0.4 
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Since both envelopes approach 0, and the solution lies between them, it must also 
~~Q 0 

Exercises 6.2. PART I. Convert the following functions having the form 

to the form 
Ae-AI sin(wt + ¢) 

or 
Ae-AI cos(wt + ()), 

with A > 0. Do these both manually and by Mathematica. State the upper and lower 
envelope curves in each case. Modify the transformation rules given in Exercises 5.1 
to include the exponential factor. 

1a. 

2a. 

3a. 

4a. 

5a. 

6a. 

7a. 

8a. 

2e-t sin 3t- e-t cos 3t. 

~e-31 sin ~t + ~e-31 cos ~t. 
2 2 4 2 v; e-st cos4t- ~e-51 sin4t. 

5e-21 sin 6t. 

~e-21 cos4t + {3 e-zr sin4t 
2 2 . 
-3e-41 cos 5t. 
Vi Vi . --e-41 cos8t- -e-41 sm8t. 
2 2 

8t . 8t 
2e-31 cos-- e-31 sm-. 

3 3 

PART II. For each function given in Part I, plot it and the two envelopes on a 
common set of axes. Make the orientation of the plots reflect the fact that downward 
is positive. These are problems lb-Sb. 

PART III. For each problem in Part I give the coordinates of all relative maxima 
and all relative minima. These are problems le-Se. 

PART IV. Solve these initial value problems. They model free (unforced) damped 
harmonic motion. Convert each of the solutions to the single sine and single cosine 
forms of Part I. Repeat Parts II and III for these solution functions. Describe in words 
each of these problems as a spring system. 

9. y" +lOy'+ 41y = 0; y(O) = v;, y'(O) =-4 + ~{3· 
10. y" + 8y' + 41y = 0; y(O) = -3, y'(O) = 12. 

1 
11. 4y" + 24y' + 45y = 0; y(O) = 4, y'(O) = 0. 

II I Vi I .r::: 12. y + 8y +soy= 0; y(O) = - 2 ,y (0) = -2v2. 

13. 9y" + 54y' + 14y = 0; y(O) = 2,y"(O) =- 2
3
6 . 
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14. y" + 2y' + lOy = 0; 
15. y" + 4y' + 40y = 0; 

16. y" + 4y' + 20y = 0; 

Equilibrium Position 

Fig. 6.3. Floating cube. 

y(O) = -l,y'(O) = 7. 
y(O) = 0, y' (0) = 30. 

y(O) = ~· y'(O) = -1 + 2..f3. 

PART V. Problems about free damped harmonic motion. 

X t 

17. A mass weighing 16 pounds stretches a spring 3 inches. The mass undergoes 
damping that is proportional to velocity. When the velocity is 112 foot per sec­
ond, the damping is 1 pound. Determine the motion of the mass if the mass is 
given an upward velocity of 3 inches per second from the equilibrium position. 

18. A closed sheet metal cube of side 3 feet is floating in still water of density 62.4 
pounds per cubic foot. It is weighted so the top stays parallel to the water surface. 
It floats at equilibrium 2 feet being submerged. If the cube is pressed downward 
6 inches and released from rest, it bobs up and down. Suppose the buoyancy is 
proportional to the net volume of water displaced as compared to equilibrium. 
See Figure 6.3. 

a) What is the period of the motion assuming no damping? 
b) What is the quasi period of the motion if the motion is damped with magni­

tude of damping equal to the velocity? 

19. A 20-pound weight stretches a spring 4 feet. The damping on the spring system 
can be adjusted. Damping is numerically equal to b (b > 0) times the velocity. 
Determine b so that the motion is (a) underdamped, (b) critically damped, (c) 
overdamped. 

PART VI. The theory of damped harmonic motion. The initial value problem for this 
part is x" + 2i\x' + w2x = 0, x(O) =a, x'(O) = {3, with A and w chosen so that the roots 
are complex. 

20. In the case of free, damped motion, find the location of each point where the 
solution curve is tangent to one of the envelopes. 
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21. In the case of free, damped motion, find the location of each point where the so­
lution crosses the equilibrium position. Distinguish between up-going and down­
going crossings. 

22. Show that the time interval between two successive maxima (minima) is con­
stant. This is a measurable quantity. Call it !:J.t. 

23. Show that if t1 < t2 are the abscissas of successive maxima of x(t), then !:J.x = 
(x(t1Yx(t2)) is constant. It is a measurable quantity. The number 11 = ln(!:J.x) is 
called the logarithmic decrement. 

24. Suppose that you have observed (and recorded) the behavior of a system under­
going damped harmonic motion, and have measured the time interval !:J.t between 
successive maxima and have calculated the logarithmic decrement /1. Show how 
to determine A. and the angular velocity w from !:J.t and /1. If the mass m has also 
been measured, the damping factor f3 = 2mA. can be calculated. This observa­
tion thus allows the straight-forward calculation of a quantity that is difficult to 
measure accurately. 

6.3 Forced Oscillation 

One often has an external force acting on a damped system. For instance the differ­
ential equation might be 

d2x dx 
m- = -kx- /3- + f(t) 

dt2 dt ' 

or 
d2x dx 

m dt2 + f3 dt + kx = f(t). 

In the notation we used before this becomes 

d2x dx 2 
dt2 + 2A. dt + w x = F(t), (6.3) 

where F(t) = f(tYm, 2A. = f3/m and w2 = kim. The function F(t) is called the 
forcing function. This is just a nonhomogeneous second-order differential equation 
with constant coefficients, and is easily solved both in theory and in practice when 
the function F(t) is simple. Usually the problem is posed as an initial value problem, 
with the initial conditions x(O) = x0 and x' (0) = x1 included. 

Example 6.7 (M) Interpret and solve the initial-value problem 

1 d2x dx 1 
- 0 - 2 +0.6-d +x= -cos3t, 
1 dt t 5 

1 
x(O) = 2,x'(O) = 0. 

Solution. Here we can say that we have a mass of 1/10 (unit of mass), a damping 
constant of 0.6, and a spring constant of 1. The initial position of the mass is 1/2 
(length unit) below the equilibrium position, and initially the mass is at rest. 
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Multiply the differential equation by 10 to get 

d2x dx 
dt2 + 6 dt + 1 Ox = 2 cos 3t 

as the differential equation to solve. We let Mathematica do the work. See the note­
book Forced Oscillations. 

In[l]:= Clear[soln, solnRule,x] 

In[2]:= L[t_,x_] =x"[t] +6x'[t] +10x[t] ==2Cos[3t] 

Out[2]= 10x[t] +6x'[t] +x"[t) ==2 Cos[3t) 

In [3] := solnRule = Simplify[DSolve [L[t, x], x[t], t]] 

Out[3]= {{x[t] ~ 

e-3 tc[2J 

e-3 t c ( 1) 

2 
Cos[t] +- Cos[3t)+ 

325 
36 

Sin[t] +- Sin[3tJ}} 
325 

soln [t_] = Expand [x [t ]/. solnRule [ [ 1]]] In [4] := 

Out[4]= 
2 36 

e-3 tC[2) Cos[t]+- Cos[3t]+e-3 tC[1) Sin[t]+- Sin[3t] 
325 325 

In [5] := 

Out[5]= 

steadystate[t_] = soln[t]/. {C[1]-+ 0, C[2]-+ 0} 
2 36 

- Cos[3t) +- Sin[3t] 
325 325 

In [6]: = c1c2 = Solve [ {soln [0] == 1/2, soln' [0] == 0}] 
747 321 

Out [ 6] = { { C[ 1) ~ 6 50 , C [ 2) ~ 6 50 } } 

In[?]:= x1[t_] =soln[t]/.c1c2[[1]] 
321 2 747 36 

Out[?]= -e-3 t Cos[t) +- Cos[3t) +-e-3 t Sin[t] +- Sin[3t] 
650 325 650 325 

In[B}:= Simplify[L[t,x1]] 

Out[B]= True 

In[9]:= Plot[x1[t], {t,O,S}]; 

0.5 

0.4 

0.3 

0.2 

0.1 

5 

-0.1 
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This is what the transient solution looks like: 

In [ 1 OJ:= Plot [x1 [t] - steadystate [t], {t, 0, 5}, 

PlotRange-+ { -1/2, 1/2}]; 

0.4 

0.2 

1 2 3 4 

-0.2 

-0.4 

5 

<> 

Notice that the solution itself eventually looks almost exactly like simple har­
monic motion. There is, however, a small transient from the strongly overdamped 
(homogeneous) system, whose plot is just above. This affects the solution noticeably 
only for two to three seconds. After that, the system is effectively in its steady-state 
condition. The transient solution is obtained from the homogeneous system and the 
steady-state solution is a particular solution of the nonhomogeneous system. Both 
are used when satisfying the initial conditions, but their effects on the solution differ. 

Resonance Phenomena 

The solution that satisfies the initial-value problem 

1 
d2x + 2.:t dx + w2x = F0 cosyt 
dt2 at 

x(O) x0 

x'(O) = x1 

(6.4) 

can be expressed as 

x(t) = Ae-At sin((~ w2 - .:t2)t + cp) + Bcosyt + Csinyt, (6.5) 

where the first term, Ae-,u sinCY w2 - A.2t + cp), is a solution of the unforced system, 
and the two terms B cos yt + C sin yt are due to the forcing function. The constants 
B and C, which can easily be found by undetermined coefficients, depend on the 
parameters .:t and w, and hence on the basic parameters m, f3, and k, as well as on the 
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parameter F0• Using the same reasoning as before, we can write the sum of a sine 
and a cosine as 

B cos yt + C sin yt = g(y) sin(yt +B), 

where the nonnegative amplitude function g(y) depends not only on y but on A, w, 
and F0, and hence on the basic parameters m, {3, and k. The angle B is a new phase 
angle. 

The solution is thus expressible as 

x(t) = Ae-A! sin((~ w2 - A2)t + ¢) + g(y) sin(yt +B), 

and it is easily seen that in the presence of damping, that is, when A I = 0, the first 
term decays away and leaves the second term as the dominant term in the solution. 
For these reasons, the first term is called the transient solution and the second term 
is called the steady-state solution. We saw this situation in the example above. 

Since g(y) is not constant, what does it look like, and how does it behave? We 
understand everything else about the solution. It is left as an exercise for you to show 
that 

F 
g(y) = 0 . 

~(w2 _ y)2 + 4A2Y 
(6.6) 

Several things are immediately clear. This expression does explicitly depend on 
the parameters we indicated it would. The expression inside the radical is always 
positive, so we have no need to worry about complex numbers. The expression is not 
constant as a function of y. You have as an exercise to show that g(y) has a maximum 

at y1 = Yw2 - 2A2. The notebook Resonance Phenomena examines the maximum 
value and shows the effects of A on the graph of g(y). As A~ 0 the system begins to 
exhibit resonance, which means that the solution has an amplitude that is unbounded 
as t ~ oo. 

Exercises 6.3. PART I. Convert the following functions having the form 

to the form 
Ae-A! sin( at+¢)+ B sin(yt + c5) 

or 
Ae-A! cos( at+ B)+ B cos(yt + r), 

where A~ 0 and B ~ 0. 
Do these both manually and by Mathematica. You may wish to add new transfor­

mation rules that distinguish between those terms which have an exponential factor 
and those that do not. These problems are combinations of problems from Part I of 
Exercises 6.1 and 6.2. They do not necessarily correspond to forced spring systems 
of the form in the text. Make certain that your A and B are nonnegative. 

1. 2e-t sin 3t - e-1 cos 3t + Vj cos 4t - 4 sin 4t. 
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2. !e-21 cos4t + '(}e-21 sin4t + 5 sin6t. 
3. 2e-31 cos }- - e-31 sin }- - 3 cos 5t. 

4. 5e-21 sin 6t + ! sin ~t + ! cos ~t. 

5.-Y}e-41 cos:Trt- Y}e-41 sin:Trt +! cos4t + '(} sin4t. 
6. -3e-m cos 5t + 2 cos}- -sin !!f. 
7. 2e-31 cos}-- e-31 sin}-- "} cos:Trt- "} sin:Trt. 
8. 5e-21 sin 6t + 2 sin 3t -cos 3t. 

PART II. Solve these initial value problems that model forced harmonic motion. 
Convert each of the solutions to the single sine and single cosine forms of Part I. The 
operators are from the same numbered problems of Part IV of Exercises 6.2 . 

..[3 1 
9. y" + lOy'+ 4ly = 3 cos 2t; y(O) = 2' y'(O) = -2. 

t 
10. y" + Sy' + 4ly = 5cos 2;y(O) = -3,y'(O) = 12. 

1 
11. 4y" + 24y' + 45y = 4cost; y(O) = 4, y'(O) = 0. 

12. y" + Sy' + SOy = 5 cos 4t; y(O) = - -v;, y' (0) = -2..fi. 

3t 26 
13. 9y" + 54y' + l4y =cos 2 ; y(O) = 2, y'(O) = -3. 
14. y" + 2y' + lOy = cos 3t; y(O) = -1, y'(O) = 7. 
15. y" + 4y' + 40y = 4 cos 3t; y(O) = 0, y'(O) = 30. 

1 
16. y" + 4y' + 20y = 3 cos4t; y(O) = 2. y'(O) = -1. 

PART III. Problems on forced oscillation. 

17. In problem 18 of the exercises for Section 6.2, it was assumed that the water was 
still. This made the motion of the cube unforced. Suppose that there are waves 
that impart a force of (312) cos 4t. What is a formula for the vertical displacement 
of the cube at any positive time t? 

a) Assume no damping. 
b) Assume damping with magnitude equal to that of the velocity. 

18. A 16-pound weight stretches a spring 5/32 foot. The spring is initially com­
pressed 1 foot and given a further upward velocity of 1 foot per second. The 
system undergoes damping numerically equal to twice the velocity. 

a) Describe the motion if the system is driven by a force of cos 2t - 3 sin 2t. 
b) Identify the transient motion and the steady-state motion. 
c) Plot the motion, the transient motion, and the steady-state motion. 

19. Suppose that a spring is stretched 6 inches by a 12-pound weight. The weight 
is pulled downward 3 inches below equilibrium and released from rest. If no 
damping is present, but there is an impressed force of 9 sin 4t pounds, describe 
the motion. 
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PART IV. Theory of forced oscillation. Throughout this part of the exercises we 
are concerned with the nonhomogeneous differential equation 

d2x dx 2 
dt2 + 2A dt + w x = F0 cosyt. (N) 

20. Derive equation 6.6, 

from equation 6.5 

x(t) = Ae-A1 sin({~t + ¢) + Bcosyt + Csinyt, 

where the first term, Ae-A1 sin(~ w 2 -lt + ¢) is a solution of the unforced sys­
tem, and the two terms B cos yt + C sin yt are a particular solution of the forced 
equation (N). You first need to determine the values of Band C. 

21. Show that the maximum of the function g(y) = FrJ~ (w 2 - y2) 2 + 4A 2y2 occurs 

when y = y1 = V w2 - 2A2. There is also a critical point when y = 0. To what 
does it correspond? 

22. Find the maximum value g(y1) attained by g(y). How does this maximum value 
behave as A --7 0? How does y1 behave as A --7 0? As y --7 w? 

23. What is limg(y)? Is there a physical interpretation for this? 
y->oo 

24. Suppose that the spring system being modeled happens to be the suspension 
system of your car. 

a) Explain what the speed with which you traverse a lengthy "washboard" de­
fect in a roadway has to do with our investigations of g(y). 

b) What is the relationship between speed and y? 

c) What differing effects do you as driver feel for slow speeds, intermediate 
speeds, and high speed? 

d) Which speed strategy is best? Which is worst? 
e) Explain how such a "washboard" defect might come into being. [Assume 

that the roadway can be made to change shape by applying vertical forces to 
it.] 

6.4 Simple Electronic Circuits 

A Serial Circuit 

As we will see, the differential equations that model simple electronic circuits are 
directly analogous to those that model the oscillatory motion of springs. Here we 
will use timet (in seconds), charge q (in coulombs2), voltage v (in volts3), current 

2 Charles-Augustin de Coulomb (1736-1806), French physicist. Studied forces, including 
forces produced by electrical charges ( 1777). 

3 Alessandro Giuseppe Volta ( 1745-1827), Italian physicist. Constructed the first batteries 
(known as Voltaic cells) that would produce electricity continuously ( 1800). 
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I (in amperes4 ), capacitance C (in farads5), resistance R (in ohms6), and inductance 
L (in henrys 7). See Table 6.1 for the correspondence between these quantities and the 
analogous quantities for springs. Here are the fundamental relationships among these 
quantities: 

A charge q on a capacitor of capacitance C produces a voltage: v = q!C. 
The time rate of change of charge is called current: I= (dqldt). 
In a circuit, voltage drops across a component because of the action of the com­

ponent on the charge present. Typical components are resistors, capacitors, and 
inductors. These produce resistance, capacitance, and inductance in the circuit, re­
spectively. Resistors, capacitors, and inductors act linearly. As always, this is impor­
tant to us. 

Voltage drops are produced across our three types of components in these ways: 

( ~), IR ( = R ~;), and L ~: ( = L ~:n . 
Furthermore, in the simple circuit of Figure 6.4, if we consider the applied voltage 
source E(t) to be introducing voltage into the circuit, then R, L, and C, are "con­
suming" voltage. Kirchhoff's voltage law8 says that the total voltage drop around a 
circuit is 0. For our circuit this gives 

q dq d2q 
E(t)- C - R dt - L dt2 = 0. (6.7) 

Recall that I= (dq/dt), so that (di!dt) = (d2q!dt2 ). We can rewrite equation 6.7 as 

d2q dq 1 
L dr2 +R dt + Cq = E(t). (6.8) 

This allows us to restate Kirchoff's voltage law as the sum of the voltage drops 
across the components of a circuit equals the applied voltage. If we differentiate 
eqn. (6.8) which expresses relationships based on the charge q across the capacitor, 
we obtain 

4 Andre Marie Ampere (1775-1836), French physicist. Studied current and electromechani­
cal effects in parallel (1820) and helically wound (1823) wires. 

5 Michael Faraday ( 1791-1867), English physicist. Discovered electromagnetic lines of 
force (1821); liquefied gases (1823); built transformers and discovered electromagnetic 
induction ( 1831 ); built an electric motor and generator ( 1831 ); stated laws of electronics 
(1832). 

6 Georg Simon Ohm (1789-1854 ), German physicist. Studied the relationships between cur­
rent and resistance (1827) known as Ohm's law. 

7 Joseph Henry (1797-1878), American physicist. Studied and produced useful electromag­
nets (1823); studied inductive effects on electrical currents (1823). 

8 Gustav Robert Kirchhoff (1824-1887), German physicist. Studied spectroscopy (1859), 
blackbody radiation ( 1860), stated the fundamental laws of behavior of voltage and current 
known now as Kirchhoff's laws; discovered cesium (1860) and rubidium (1861) from their 
spectra. 
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R 

c 

L 

Fig. 6.4. A simple passive serial circuit. 

d2! dl I , 
L- + R- + -/ = E (t). 

dt2 dt c (6.9) 

This equation has the same form as eqn. (6.8), but it is expressed in terms of the 
current in the circuit. From current we can get voltage. Often we are given that E(t) = 
fo cos(yt). When this is the case, divide eqn. (6.8) through by L to get 

d2q R dq 1 fo 
dt 2 + L dt + LCq = L cosyt, 

or 

(6.10) 

where 2A = R/L, w 2 = 1/(LC), and F0 = frJL. If we include the initial conditions 
q(O) = q0 and q'(O) = i(O) = q1, we have reproduced equation (6.4) which models 
the motion of a spring system. This means that we already know how simple circuits 
such as that in figure 6.4 behave, because we analyzed equation (6.4) completely, 
and the same analysis holds. 

Exercises 6.4. Throughout these exercises we are concerned with either the homo­
geneous differential equation 

d2q dq 1 
L- +R- + -q=O 

dt2 dt c ' (H) 

or with the nonhomogeneous differential equation 

d2q dq I 
L dt2 + R dt + Cq = fo cos yt, (N) 

where Lis in henrys, R is in ohms, Cis in farads (usually microfarads: Jlf), q is in 
coulombs, and fo is in volts. See figure 6.4. 

PART I. Solve these initial value problems that model the simple electronic circuit 
illustrated above. Convert each of the solutions to the forms of part I of exercises 6.3. 
Use i = dq/ dt to find the current. 
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1. L = O.OSh, R = 20n, C = lOOJ.tf, E(t) = lOOV; q(O) = q'(O) = 0. 
2. L = O.OSh, R = 20n, C = lOOJ.lf, E(t) = (lOOcost)V; q(O) = q'(O) = 0. 
3. L = O.OSh, R =SOn, C = 0.0004J.lf, E(t) = 117V; q(O) = q'(O) = 0. 
4. L = O.OSh, R =SOn, C = 0.0004J.lf, E(t) = (120cos 120m)V; 

q(O) = q'(O) = 0. 
S. L = 0.2h., R = 300n, C = lOJ.lf, E(t) = 0; q(O) = 10-6, q'(O) = 0. 
6. L = 0.2h., R = 300n, C = lOJ.lf, E(t) = (120cos 120m)V; 

q(O) = 10-6, q'(O) = 0. 
7. L = 2h., R = 400n, C = lOJ.lf, E(t) =(lOcos 120m)V; q(O) = q'(O) = 0. 
8. L = 2h., R = 400n, C = lOJ.tf, E(t) =(lOcos 120m)V; q(O) = 1, q'(O) = 0. 

PART II. Theory. Throughout this part of the exercises we are concerned with 
either the homogeneous differential equation (H) or with the nonhomogeneous dif­
ferential equation (N), above, where L is in henrys, R is in ohms, C is in farads, q is 
in coulombs, and fo is in volts. 

9. Express g(y), the amplitude of the steady-state term, in terms of L, R, and C. 
10. Find where the maximim and minimum of the function g(y), occur as functions 

of L, R, and C. 
11. In equation (N), found on page 204, take R = 0. 

a) Show that the solution which also satisfies the initial conditions q(O) = 
q'(O) = o is q(t) = CFr/Cw2 - r))(cosyt- coswt), where w = (1/YLC) 
and F0 =foiL. 

b) Evaluate lim(Fof(w2 - y))(cosyt- coswt). 
y->w 

c) Show that the limit is the solution of the initial-value problem 

d2q 2 -
dt2 + w q - F0 cos wt, q(O) = q(O) = 0. 

12. Rewrite the solution of the last problem as 

q(t) 

= 

F. 
2 ° r(cosyt-coswt) 

w -
-2F. . 1 . 1 
2 ~ sm -(y- w)t sm -2 (y + w)t. 

w - 2 

When w is positive, y- w < y + w. Defines = !CY- w). When y is near w, then 
s is small, and 

Calculate 

() -Fo . . 
qt ~ -smstsmyt. 

2sy 

lim - Fo sin et sin yt. 
s->0 2sy 
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13. Using Mathematica, plot the three functions 

-F 
- 0 (sin st)(sin yt) 
2sy 

and 
+F 
- 0 sinst 
2sy 

on the same axes for s = 1/2, y = 5, and F0 = 1, using 0 :s: t :s: 30. What 
you see illustrates the phenomenon known as beats. You plotted three curves on 
the same axes. Explain which is which. The effect you see also lies at the heart 
of AM (amplitude modulated) radio broadcasting, which includes short-wave, 
where a signal of the form s(t) sin yt is broadcast. In this context, s(t) is called 
the signal and sin yt is called the carrier. The frequency y is the frequency to 
which you tune your dial. (The actual situation is somewhat more complicated 
than this, but this is the basic idea.) [By contrast, FM signals are broadcast in the 
form sin(y+s(t))t, where s(t) modulates the frequency, rather than the amplitude.] 

6.5 Two Nonlinear Examples (Optional) 

Even though this chapter and the previous one as well were devoted to linear dif­
ferential equations, these two examples are of interest because almost everyone has 
heard of them. In each case we make some headway toward solving the equations 
using techniques that are new to us, and we obtain qualitative information from the 
differential equations themselves. 

Escape Velocity 

Newton's law of gravitation states that the mutual force of gravitational attraction 
acting between two bodies is proportional to the reciprocal of the square of the dis­
tance between them. Suppose that we are interested in the force acting on a small 
body of mass m5 due to the presence of a large body of mass m1• If y is the distance 
separating the two centers with positive being in the direction of greater separation, 
then 

d2y Gm5 m1 
m-=----

s dt2 l ' 
where G is Newton's universal gravitation constant. It is positive. The negative 
indicates that the force acts to oppose the separation of the two bodies. To solve this 
differential equation, divide through by m,. Then let v = dyldt and multiply through 
by dy/ dt to get 

dv Gm1 dy 
v- = ----

dt l dt" 

The variables are separated. Integrate both sides of the equation to get 
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1 Gm 
-v2 = __ z +c. 
2 y 

If the initial separation between the centers is y0 = R > 0, and the initial velocity is 
v0, then 

This means that 

1 2 
c = -v0 2 

Gm1 

R 

~v2 = Gmz + ~v2- Gmz 
2 y 2 ° R 

We see from this that if the initial velocity v0 is such that &v6 < Gmz!R, then lvl 
decreases to 0 as y increases to 

After v reaches 0, then lvl begins to increase again, and the smaller body picks up 

speed as it falls back toward the larger body. On the other hand, if !v6 ;:: Gmz!R, 
then v can never become 0 since the right-hand side is always positive. The two 
bodies therefore continue to separate forever, though at a smaller and smaller rate. 
The smaller body is said to escape from the gravitational control of the larger. The 
initial velocity v0 that permits this escape is 

_ )2Gm1 Vo- --
R 

and is called the escape velocity. Notice that the escape velocity depends on the mass 
m1 of the larger body, but not on the mass of the smaller one. It is often the case that 
R is the radius of the larger body, so that the larger body completely determines the 
escape velocity. 

Planetary Orbits 

In Chapter 9 we consider the equation(s) of motion of a small body about a larger 
body under the assumptions of Newtonian mechanics. We show that the motion lies 
in a plane and that if the larger body is located at the origin of a rectangular coordi­
nate system then in polar coordinates (r, (}), the smaller body orbits according to the 
equation of motion: 

( H
2 

) d 2 r _ ( 2H2 
) ( d r )2 = H 2 

_ G, 
r2 de2 r3 d(} r 

(6.11) 

which is a second-order nonlinear differential equation for r in terms of e. We take H 
and G to be positive constants. Their physical significance is explained in Chapter 8. 
One fascinating thing about this equation is that a simple transformation reduces it 
to a linear differential equation that we can solve by the methods of Chapter 4. 
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Let r = l/ u. Then 
dr -I du 

de u2 de 

and 

When these three expressions are substituted into equation 6.II there results 

2 2 (2 (du) 2 1 d2u) 2 3(-Idu)2 2 
u H u3 de - u2 del - 2H u --;1 de = H u - G, 

or, after simplification, 
d 2 u G 
del+ u = H 2 . 

This is Binet's equation. It is a nonhomogeneous second-order differential equa­
tion with constant coefficients. Once u is known, we find r(e) = llu(e). From our 
studies in Chapter 4 we know that 

G 
u(e) = - 2 + c cos(e +d). 

H 

Let k = l/ c, and t: = cH2! G. Then 

1 kt: 
r(e) = = ----

(G/H2) + c cos(e +d) I + t: cos( e) 
(6.12) 

if the initial conditions are chosen so that d = 0. This is a polar equation for a conic 
with one focus at the origin. See figure 6.5. When the orbit is an ellipse the other 
focus is at (t:a, 0), where a = (kd(l - t:2 )) is the length of the semi major axis. (See 
a standard calculus book such as Thomas/Finney.) The line x = k is the directrix of 
the conic and the parameter t: > 0, called the eccentricity of the conic, determines 
the nature of the conic in accordance with this table: 

t: > 1: hyperbola 
t: = 1: parabola 

0 < t: < I: ellipse. 

In your studies of physics you will learn that t: > 1 corresponds to a high-energy 
hyperbolic orbit that will pass by the larger body once with enough energy never 
to return, t: < 1 corresponds to a low-energy elliptical orbit such as planets and 
periodic comets (Halley's Comet, for instance) exhibit within our solar system. A 
parabolic orbit, t: = I, is statistically so rare as to be considered impossible. At a 
minimum, measurement errors are likely to mis-classify it. The orbit would require 
so long to return, if it were truly elliptical, that it would be impossible to say that it 
had returned, and if it were properly hyperbolic we would not see it again, anyway, 
as would also be the case if it were parabolic. 
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Fig. 6.5. Elliptical and hyperbolic orbits. sleft = 0.5; sright = 1.1 
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The Laplace Transform 

7.0 Introduction 

In this chapter we introduce the Laplace 1 transform and show how to use it to solve 
differential equations of the kind discussed in Chapters 5 and 6-Iinear differen­
tial equations with constant coefficients. The Laplace transform really shines when 

a nonhomogeneous constant coefficients initial value problem must be solved. The 
Laplace transform package LaplaceTransform.m provided in Mathematica is full­
featured and easy to use. If you have a nonhomogeneous constant coefficients initial 
value problem to solve, the LaplaceTransform.m package should do it very effec­
tively. 

The Laplace transform is a linear transformation that, when applied to a lin­
ear initial value problem, converts the problem from a differential problem into an 
algebraic problem. The algebraic problem is easy to solve for the transform of the 
unknown function, and the solution to the differential problem can be obtained by re­
versing the process: the inverse Laplace transform. Traditionally, Laplace transforms 
have been applied by using a table of transforms to obtain the desired algebraic sys­
tem, and then manipulating the algebraic system into a form where the terms of the 
solution can be identified in a table of inverse Laplace transforms. We will demon­
strate this method, but will concentrate on Jetting Mathematica perform all of the 

manipulations for us. 
The Laplace transform gives us a direct way to solve a constant coefficients initial 

value problem where the nonhomogeneous part is not continuous. The methods of 
Chapt 5 also work, but they are tedious to apply because several different solutions 
on abutting subintervals have to be obtained and "glued" together to force continuity 
of the solution across points where the nonhomogeneous part is not continuous. 

1 Pierre-Simon de Laplace (1749-1827), French man of science, was born of peasant parents. 
He sought out centers of power and found his in Paris, where he was a contemporary of 

d' Alembert and Lagrange. Best known by many for his work Mechanique Celeste which 

exploited Newton's ideas to give a mathematical basis to the motions in the solar system, 

he is also recognized as the founder of the theory of probability. He accompanied Napoleon 

on many expeditions as principal scientific adviser. 

C. C. Ross, Differential Equations
© Springer Science+Business Media New York 2004
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The Laplace transform takes problems such as this in easy stride. There are sim­
ple methods for expressing certain discontinuous functions in terms of step functions. 
The resulting functions have straightforward Laplace transforms and inverse Laplace 
transforms. For example, a stable spring system may be given a momentary shock 
that introduces motion. What is the nature of that motion? A switch might be thrown 
(open or closed) to stimulate an electronic circuit to change behavior. What is the 
nature of the behavior before and after the event? 

Since the LaplaceTransform.m package provided by Mathematica is so general 
and powerful, its demands for computer resources and time are great. Thus, for our 
purposes in this chapter, a Laplace transform package, LPT.m, with fewer features, 
has been provided. It is much faster and requires fewer computer resources. LPT.m 
provides you with only enough functionality to do the problems in this chapter (and 
in Chapters 5, 6, and 9). It is, however, smaller and much faster than the general 
package. You should consider LPT.m to be a package for the beginner; the package 
LaplaceTransform.m is for professionals who need its power. You will not need its 
power unless you pursue problems of greater complexity than those in this text. 

7.1 The Laplace Transform 

The Laplace transform is an example of an integral transform. Here is its definition. 

Definition 7.1. Suppose that the function y(t) is defined for 0 ::; t < oo and the 
improper integral fooo e-st y(t) dt exists for s > s0 . Then the Laplace transform of 

y(t) is said to exist for s > s0 and we denote it by Y(s) = L(y(t)) = fooo e-st y(t) dt. 

We will soon develop some theory to make our work easier, but for now we 
obtain the Laplace transform of some elementary functions. Before doing so, let us 
agree upon the notation 

g(t) I;;' = lim(g(t) I~) = (lim g(b))- g(a). 
b-HXJ b-hxJ 

This will make things much simpler to write. Recall from your study of 1' Hopi tal's 
rule in calculus that limHoo (tm I est) = 0 whenever s > 0. This is used several times in 
the derivations below. 

l oo e-st 100 1 
L(l) = 

0 
e-st 1 dt = - = -for s > 0, 

-s 0 s 

since limb-+oo e-sb = 0 when s > 0. 

L(t) = Loo e-stt dt 

te-st loa 1 loa -- +- e-st! dt 
-s o s o 

1 
0 + -.£(1) 

s 
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for s > 0. 

It is left as an exercise in mathematical induction to show that 

We also have 

for s > 0. 

e(k-s)t leo 

k- s 0 

1 
for s > k. 

s- k' 

It is left as an exercise for you to find the Laplace transforms of sin t and cos t 
from their complex representations 

by using the above transform (formally). We find each of these Laplace transforms 
directly using integration by parts twice . 

.i(sin t) = leo e-st sin t dt 

e-st sin t leo 1 leo - + - e-st COSt dt 
s 0 s 0 

1 = 0 + -L(cost). 
s 

We can get .i(cost) from this equation in a moment, but we continue with 
L(sin t). 
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= ~ [-e-st cost 100 - ~ roo e-st sin t dt] 
s s o s Jo 

= ~ [~- ~.L:(sint)] 
s s s 
1 1 0 

-- -L(smt), for s > 0. 
s2 s2 

Thus, s2 .L:(sint) = 1- .L:(sint). So, (s2 + l).L:(sint) = 1, and 

.[(sin t) = - 1- 2 , for s > 0. 
l+s 

From .L:(sint) = ~.[(cost) we see that 

.[(cost)= s.L:(sint) = ~. for s > 0. 
l+s 

Once the package LPT.m is loaded, these transformations are very easy to obtain 
by Mathematica , using Transform [y [ t] , t, s] to transform y [ t]. Here is 
how to load the package and obtain these results by Mathematica. 

In[l]:= <<"/Applications/MathematicaS.O.app/AddOns/ 
ExtraPackages/RossDE/LPT. m" (*Ask Mathematica 

supervisor for correct Path *) 

In [2] := Transform[l, t, s] 
1 

Out[2]= 
5 

In[3] := Transform[t, t, s] 
1 

Out[3}= 
52 

In [4] := Transform[t2 , t, s] 
2 

Out[4]= 
53 

In[5]:= Transform[ekt,t,s] 
1 

Out[5]= 
-k + 5 

In[6]:= Transform[Sin[t],t, s] 
1 

Out[6]= 
1 +52 

In[7]:= Transform[Cos[t],t, s] 
5 

Out[7}= 
1 + 5 2 

Being able to transform a given function may be an interesting exercise in calcu-
lus, but it is not as useful as we would like. What we need are some theorems that 
provide general rules about the behavior of Laplace transforms. These are provided 
in the next section. 
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Exercises7.1. Load the package LPT.m. Use Transform[ , t, s] to repro­
duce these Laplace transforms that were found in the text. 

1.1. 
2. t. 
3. t 2 . 

4. ekr. 

5. sin t. 
6. cost. 
7. Find .!(tn) for n = 3, 4, 5. 
8. Using the definition, find .!(sinht) and .!(cosht). 
9. Use mathematical induction to prove that for each positive integer n, 

r n n! c 
~u ) = - 1 • 10r s > o. 

sn+ 

10. Use the definition of the Laplace transform to formally find the Laplace trans­
forms of sin t and cost from their complex representations 

eit _ e-it eir + e-ir 
sin t = 2i and cost = 2 

11. Use l'H6pital's rule and mathematical induction to prove that for each positive 
integer m, 

tm 
lim --c-1 = 0 whenever s > 0. 
f-HX> e·\ 

7.2 Properties of the Laplace Transform 

The Laplace transform can be applied to functions that are not continuous and to 

functions that are large for large values of their argument, but they cannot be too 
discontinuous or get too large too fast. These definitions clarify these thoughts. 

Definition 7.2. A function f(t) is said to be piecewise continuous on the closed 

and bounded interval [a, b], provided that either f(t) is continuous, or there is an 

increasing sequence a0, a1, ... , an such that on each open subinterval ak-l < t < 
ak, f(t) is continuous and has a finite limit at each end of the subinterval. Such a 

function f(t) is said to be piecewise continuous on [0, oo) if it is piecewise continuous 

on each closed and bounded subinterval of [0, oo ). 

This explains "not too discontinuous." Here is how to insure that a function does 
not grow too fast. 

Definition 7 .3. The function f(t) defined for 0 :S t < oo is said to be of exponential 
order provided that there is a number k and nonnegative numbers T and M such that 

fort > T, lf(t)l :S Mekr. 
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It is often convenient to verify the exponential order of a function f(t) by calcu­
lating 

lim 1/(t)l = L 
t-+oo ekt 

for some suitably chosen number k. If L is finite, then M can be chosen to be any 
number larger than L (and this determines T). Otherwise, f(t) is not of exponential 
order. 

It is easy to verify that polynomials of any finite degree n, exponentials of the 
form ebt with b constant, sin bt, and cos bt are all of exponential order. So are finite 
sums and products of them. The set of functions just described is precisely the set of 
functions that can be obtained as solutions from the differential equations discussed 
in Chapters 5 and 6. It is for this reason that the Laplace transform is useful-it is 
applicable to this set of functions (and more). 

Example 7.1 The polynomial t 3 is of exponential order. 
Solution. To prove this, use l'Hopital's rule three times: 

lim~ = lim~ = lim~ = lim - 6- = 0 
t-+oo ekt t-+oo kekt t-+oo k?-ekt t-+oo p ekt 

for any positive number k. Therefore, if tis sufficiently large, lt31 < e, and t3 is of 
exponential order. 0 

It is clear that an extension of this argument will show that tn is of exponential 
order for any positive integer n: just apply l'Hopital's rule n times. 

Example 7.2 Any exponential f(t) = ebt is of exponential order. 
Solution. We have immediately that 

bt 
lim ~ = lim e<b-k)t = 0 
t-+oo ekt t-+oo 

fork> b. So ebt < ekt for large t. 

The function f(t) = e12 is not of exponential order. Note that 
2 

lim ~ = lim e 12-kt = lim e 1<r-k) = oo 
t-+oo ekt t-+oo t-+oo 

since t(t - k) > 0 for large t. This means that there is no acceptable M. 

Example 7.3 Any bounded function is of exponential order. 

0 

Solution. Call our bounded function f(t) and assume that for all nonnegative 
t, 1/(t)l :s; B. Then 

lim l/(t)l :s; lim !!._ = 0 
t-+oo ekt t-+oo ekt 

fork > 0, which is what we need. Take M = 1, for instance. 0 

Since both sin t and cos t are bounded, they are of exponential order. It is left as 
an exercise for you to show that if f(t) and g(t) are both of exponential order, then 
so are f(t) + g(t) and f(t)g(t). This will verify that any function that is a solution to a 
differential equation from Chapters 5 or 6 is of exponential order. 
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The Fundamental Existence Theorem for Laplace Transforms 

This theorem is the reason for our definitions of piecewise continuous and exponen­
tial order. 

Theorem 7.1. If the function y(t) is piecewise continuous and of exponential order 
for 0 :s; t < oo, then the Laplace transform of y(t) exists. That is, there is a number s0 

such that Y(s) = .[(y(t)) exists for s > s0. 

Proof. There are nonnegative numbers T, k, and M such that ly(t)l :s; Mekt for 
t > T. Thus 

lim rb e-sty(t)dt = rT e-sty(t)dt +lim rb e-sty(t)dt. 
b->eo ) 0 ) 0 b->eo JT 

The first integral exists. So does the second, from this calculation: 

llb e-sty(t)dtl :5 lb e-stly(t)ldt 

:s; lb e-stMekt dt 

= lb Me(k-s)t dt 

e<k-s)b _ e<k-s)T 
= M----­

k-s 

The limit of this latter function as b ~ oo exists, provided that s > k. Therefore 
the Laplace transform of y(t) exists. D 

Linearity of Laplace Transforms 

Theorem 7.2 . .[(f(t) + g(t)) = .[(f(t)) + .[(g(t)) and .[(cf(t)) = c.[(f(t)) when cis 
constant provided that the Laplace transform of each of f(t) and g(t) exists. 

Proof. When we apply to the improper integrals our convention about limits, we 
have 

Also, 

.[(f(t) + g(t)) = Leo e-st (f(t) + g(t)) dt 

= Leo e-st f(t) dt + Leo e-st g(t) dt 

= .[(f(t)) + .[(g(t)). 

.[(cf(t)) = Leo e-st(cf(t)) dt =CLeo e-st f(t) dt = c.[(f(t)). 

D 
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This example illustrates how to use the linearity of the Laplace transform. 

Example 7.4 Determine the Laplace transform of f(t) = 1 + 4t + 2e 31 - 5 sin t. 
Solution. 

.L:(l + 4t + 2e31 - 5 sin t) .£(1) + 4.L:(t) + 2.L:(e31 )- 5.L:(sin t) 
1 4 2 5 

= -+-+-----
s s2 s-3 1+s2 . 

<> 

Laplace Transforms of Derivatives 

In order to apply Laplace transforms to the solution of differential equations, we need 
to be able to find the Laplace transform of the derivative of a function. This theorem 
says what it is. 

Theorem 7.3. If y'(t) has a Laplace transform and .L:(y(t)) = Y(s), then 
.L:(y'(t)) = sY(s)- y(O). 

Proof Integrate by parts . 

.L:(y'(t)) l"" e-sty'(t) dt 

= e-sty(t)l~ + s l"" e-sty(t)dt 

-y(O) + s.L:(y(t)) 

= sY(s)- y(O). 

A similar argument shows that 

.L:(y" (t)) = -y' (0) + s.L:(y' (t)) 

-y'(O) + s(-y(O) + s.L:(y(t))) 

= -y' (0) - sy(O) + s2 .L:(y(t)) 

= s2Y(s)- y' (0)- sy(O). 

The following theorem is proved by mathematical induction. 

0 

Theorem 7.4. For each positive integer n, ify<n)(t) exists and is piecewise continuous 
and of exponential order and y<k)(t) is continuous for 0 :o; k :o; n- 1, then 

n-1 
.L:(y(n)(t)) = snY(s)- l>jy(n-1-j)(O)) 

j=O 

snY(s)- y<n- 1)(0)- sy<n-Z)(O)- · · · - sn- 1y(O). 

0 
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The Solution of Differential Equations 

To illustrate the use of the linearity of Laplace transforms and of Theorem 7 .4, con­
sider this example, whose solution is y(t) = e-31 • 

Example 7.5 Use Laplace transforms to solve the first-order initial-value problem 

y' (t) + 3y(t) = 0, y(O) = 1. 

Solution. We have 

Use y(O) = 1 to get 

Solve this for 

Therefore y(t) = e-31 • 

.L(y' (t) + 3y(t)) 

.L(y' (t)) + 3.L(y(t)) 

s.L(y(t))- y(O) + 3.L(y(t)) 

(s + 3).L(y(t)) - 1 = 0. 

.L(O) = 0 

0 

0. 

l 1 ~ 
.L(y(t)) = - = = .L(e- ). 

s+3 s-(-3) 

<> 

It is worth pointing out that if both y(t) and z(t) are continuous and .L(y(t)) = 
.L(z(t)), then y(t) = z(t). We used this in the above example to get y(t) = e-3t from 
.L(y(t)) = .L(e-3r). 

Example 7.5 (M) Use Laplace transforms from the package LPT.m to solve the 
first-order initial value problem 

y'(t) + 3y(t) = 0, y(O) = 1. 

Solution. 
Load the small Laplace transforms package LPT.m. 

In [ 1] : = << "/Applications/Mathematica 5. 0. app/AddOns/ 

ExtraPackages/RossDE/LPT.m" 

Transform the differential equation. 

In[2]:= Clear[y,t, s] 

In[3] := Transform[y'[t] + 3y[t] == 0, t, s] 

Out[3]= 3LaplaceTransform[y[t],t, s]+ 

sLaplaceTransform[y[t], t, s] -y[O] == 0 

Substitute the initial condition into the previous result. 

In[4] := %/.y[O]-+ 1 

Out [ 4] = -1 + 3 LaplaceTransform [y [t], t, s] + 

s LaplaceTransform [y [t], t, s] == 0 
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Isolate LPT[y[t], t, s]. 

In[5]:= Solve[%,LaplaceTransform[y[t],t,s]] 
1 

Out [5]= { { LaplaceTransform[y [t], t, s] ~ --}} 
3+5 

The solution can now be identified. 

Here is another familiar differential equation. It has solution y(t) = sint. 

0 

Example 7.6 Use Laplace transforms to solve the second-order initial value prob­
lem 

y"(t) + y(t) = 0; y(O) = 0, y'(O) = 1. 

Solution. Use linearity to get 

L(y" (t) + y(t)) 

L(y" (t)) + .l{y(t)) 

i .l{y(t))- y'(O)- sy(O) + .l{y(t)) 

= 
= 
= 

Substitute the initial values y(O) = 0 andy' (0) = 1 to get 

(i + 1).£{y{t))- 1 = 0. 

.£(0) = 0 

0 

0. 

Solve this for .l{y(t)) = ~ = .l(sint). Therefore y(t) = sint. 
s + 1 

0 

Example 7.6 (M) Use the function LPT in the package LPT.m to solve the second­
order initial value problem y"(t) + y(t) = O;y(O) = 0, y'(O) = 1. 

Solution.Transform the differential equation. (We assume that LPT.m is still 
loaded.) 

In[6] := Clear[y, t, s] 

In[?]:= Transform[y"[t] +y[t] ==O,t,s] 
Out[?]= LaplaceTransform[y[t],t, s]+ 

s 2 LaplaceTransform[y[t],t,s]-sy[O]-y'[O] ==0 

Substitute the initial conditions. 

In[B]:= %/.{y[O] -+O,y'[O] -+1} 
Out [8] = -1 + LaplaceTransform [y [t], t, s] + 

s 2 LaplaceTransform[y[t], t, s] == 0 

Isolate LaplaceTransform[y [t], t, s]. 

In[9]:= Solve[%,LaplaceTransform[y[t],t,s]] 
1 

Out[9]= { {LaplaceTransform[y[t], t, s] ~ --2 }} 
1 + s 

The solution can now be identified. 0 

Needless to say, not every problem will produce a function that you can immedi­
ately identify as the transform of a known function, but the idea is correct: transform 
an initial value problem (with variable t) and then manipulate the resulting algebraic 
function of s so that it is not (too) difficult to recover a function oft that has the same 
transform. This function of t is the desired solution. 
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The Scaling Property 

We can often determine the Laplace transform of some function from the transform 
of a simpler function. Here is one way. 

Theorem 7.5. If c * 0 and L(f(t)) = F(s), then 

L(f(ct)) = ~F(n. 

Proof In L(f(ct)) = fo"" e-st f(ct) dt make the change of variables T = ct, to get 

1 L"" L(f(ct)) = - e-(slc)rf(r)dT 
c 0 

~F(~) 
D 

Example 7.7 Apply Theorem 7.5 to obtain .l(sinbt) and .£.(cos bt) from .l(sint) and 
.£.(cost). 

Solution. From the theorem, 

r. b 1( 1 ) b ~sm t-- ---
( ) - b 1 + (s/b)2 - b2 + s2 ' 

and 

.£.(cos bt) = - = --, 1 ( sib ) s 
b 1 + (s!b2) b2 + s2 

Example 7.7 (M) Obtain .£.(sin bt) and .£.(cos bt) using Mathematica. 
Solution. 

In[10]:= Clear[y,t, s] 

In [11] := Transform[Sin[bt], t, s] 
N Sign[b) 

Out [11]= 

In[12] := %/. W Sign[b] -+b 
b 

Out[12]= 
b2 +52 

In [13] := Transform[Cos [bt], t, s] 
5 

Out[13]= b 2 + 52 

0 

0 
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Example 7.8 Solve the initial value problem 

y" (t) + b2y(t) = 0; y(O) = 1, y' (0) = 0 

using Laplace transforms. 
Solution. Transform the problem: 

L(y"(t) + b2y(t)) = o 
L(y"(t)) + b2 L(y(t))) o 

s2 L(y(t))- y'(O)- sy(O) + b2 L(y(t)) = 0. 

Substitute the initial values y(O) = 1 and y'(O) = 0 to get 

Solve this for 

Therefore y(t) = cos bt. 

s 
L(y(t)) = -2--2 = .£(cos bt). 

s +b 

Further Transformation Rules 

It is instructive to differentiate the Laplace transform partially with respect to s: 

a 
as (L(y(t))) 

a roo 
as Jo e-sty(t)dt 

roo a 
= Jo a/-sty(t)dt 

-Loa e-stty(t)dt 

= -L(ty(t)). 

This gives us a new transformation rule. 

Theorem 7 .6. 

a 
L(ty(t)) =- a/L(y(t))) = -Y'(s). 

Example 7.9 Find L(t sin bt), L(t cos bt), and L(teb1 ). 

Solution. According to Theorem 7 .6, 

L(t sinbt) = - :s (L(sinbt)) 

-:s (b2: s2) 
2bs 

= 

0 



222 7 The Laplace Transform 

L(t cos bt) 
a 

- a/L(cosbt)) 

= -:s(bz:sz) 
s2- b2 

(b2 + s2)2 · 
_!!_(L(ebt)) 

as 

-:sC~b) 

Example 7.9 (M) Find L(t sin bt), L(t cos bt), and L(teb1 ) using Mathematica. 
Solution. We continue with the LPT.m package loaded. 

In[14] := Clear[b, t, s] 

In [15] := Transform[t Sin[bt], t, s] 

2 N s Sign[b] 
Out[15]= 

In[16] := %/. W Sign[b] -+b 
2bs 

In[l7] := 0 8 Transform[Sin[bt], t, s] 

2 N s Sign[b] 
Out[17]= ---------~~ 

(bz + s2)2 

In[lB] := Transform[t Cos[bt], t, s] 
-bz + sz 

Out [18]= 
(b2 + s2)2 

In[19] := Together[os Transform[ Cos[bt], t, s]] 
bz - s2 

Out[19]= 2 
(b2+S2) 

In [20] := Transform[t Exp[bt], t, s] 
1 

Out[20]= 2 
(b- s) 

An immediate corollary of Theorem 7.6 suggests how to transform tny(t). 

Corollary 7 .6. 

0 

0 
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The proof is by mathematical induction, and is left as an exercise. 
Here is another common situation: what is the Laplace transform of ek1y(t)? The 

theorem is called the translation theorem. 

Theorem 7.7. If y(t) has a Laplace transform .i(y(t)) = Y(s) for s > s0, then for 

Proof. 

.i(ek1y(t)) = Y(s- k). 

.i(ity(t)) = Loo e-stekty(t)dt 

Loo e-(s-k)ty(t) dt 

Y(s - k), for s > k + s0. 

0 

We can now find .i(t2ek1) in two different ways. Using .i(t2y(t)) with y(t) = ekt 

gives 

Using .i(ek1y(t)) with y(t) = t 2 gives 

.i(t2it) = 3 = ---3. 21 2 
S s-->s-k (s - k) 

It does not matter which way we choose to transform, though the latter way 
was simpler in this case. You should try this Laplace transform by Mathematica. We 
close this section with a summary of our results, stated as a theorem. You will want to 
refer to this theorem when doing problems by hand. There are extensive tables such 
as this for a large class of functions. See, for instance, the readily available sources 
Abramowitz and Stegun, or Spiegel. Our choice is to let Mathematica do the work 
for us whenever possible. 

When you are working with Mathematica you need not worry about recalling 
these results. They can be obtained on a moment's notice by issuing the proper in­
vocation of the function Transform. When we get into the next section, you will 
begin to appreciate the work that Mathematica is doing for you when it calculates 
these transforms. This is especially true when we get to chapter 9 and apply Laplace 
transforms to systems of equations. 

Theorem 7.8 (Table of Laplace Transforms). Denote .i(f(t)) = F(s), .i(g(t)) = 
G(s), and .i(y(t)) = Y(s). Then 

I. .i(f(t) + g(t)) = .i(f(t)) + .i(g(t)); 
2 . .i(cf(t)) = c.i(f(t)); 
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3. L(y(nl(t)) = snY(s)- 'L/]:6 sJyCn-l-j)(O) 

= snY(s)- y<n-1)(0)- syCn-2)(0)- ... - sn-ly(O); 

4. LWy(t)) = ( -l)n fs, (L(y(t))) = ( -1 tf(nl(s); 

5. L(f(ct))= ~F(~), cisconstant; 
6. L(ek1y(t)) = Y(s- k); 
7. L(c) = %' cis constant; 
8. LW) = ~;, ; 

s 
9. L(ek1) = _!_ · 

s-k' 

10. L(sinbt) = b2b 2; 
+s 

11. L( cos bt) = b,s 2 ; 
+s 

12. L(sinh bt) = /b2 ; 

13. L(cosh bt) = 52~b2. 

The proofs of the latter two Laplace transforms are left as exercises 5 and 6 
below. 

Exercises 7 .2. Load the package L PT. m. Use Trans form [ , t , s ] to find these 
Laplace transforms. Do these manually, as well. 

l. L(1 + 3t) 
2. L(2- 7t3) 

3. L(sin kt - k cos kt) 
4. L(cos kt + k sin kt) 
5. L(sinh bt) 
6. L(coshbt) 
7. L(e51 + 7) 
8. L(t + 3e21 ) 

9. L(l + 3t3 - 6e41 ) 

10 . .[(sinh 3t +cosh 3t) 

These problems involve powers oft. 

11. L(t sin bt) 
12. L(t cos bt) 
13. L(teb1) 
14. L(t(e51 + 7)) 
15. L(t2 sin bt) 
16. L(t2 cos bt) 
17. L(t2ebt) 
18. L(t2(e5t + 7)) 
19. L(t3 sinbt) 
20. L(t3 cos bt) 
21. L(t3eht) 
22. L(t3(e5t + 7)) 

These problems involve ek1• 



23 . .£.(ek1 sin bt) 
24 . .[.(ekt cos bt) 
25 . .£.( ekt (t sin bt)) 

26 . .[.(ekt(t cos bt)) 
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These problems involve derivatives. Collect all terms involving .£.(y). 

27 . .£.(y'(t)- 3y(t)) 
28 . .[.(y"(t) + 4y'(t)- lOy(t)) 
29 . .£.(y<4l(t)- 16y(t)) 
30 . .[.(y"'(t) + y"(t)- 5y'(t) + 36y(t)) 
31. Show that a piecewise continuous function is bounded on each closed and 

bounded subinterval of its domain. 
32. Show that if f(t) and g(t) are both of exponential order, then so are f(t) + g(t) 

and f(t)g(t). 

7.3 The Inverse Laplace Transform 

The inverse Laplace transform .£.-1 is defined by .£.-1(.£.(y(t))) = y(t). If y(t) is con­
tinuous, then there is no difficulty, but if z(t) differs from y(t) at a finite number of 
points, then .[.(y(t)) = .£.(z(t)), so .£.-1(Y(s)) = .£.-1(Z(s)) and we have a potential 
problem. However, we seek functions that are solutions to differential equations and 
are therefore necessarily continuous. Thus, this potential problem is not a problem 
for us. 

There is a general definition of the inverse Laplace transform that involves inte­
grals, but we leave that to you to pursue if you choose. In those situations where we 
need them, the inverse Laplace transform is easy to determine. 

These properties of the inverse Laplace transform follow from Theorem 7.8: 

Theorem 7.9 (Table of Inverse Laplace Transforms). Denote .£.(f(t)) = F(s), 
.£.(g(t)) = G(s), and .[.(y(t)) = Y(s). Then 

1 . .£.-1(F(s) + G(s)) = .£.-1(F(s)) + .£.-1(G(s)); 
2 . .£.-1(cF(s)) = c.£.-1(F(s)); 
3 . .£.-1(snY(s)- Ij:J sjy<n-1-j)(O))) = y<nl(t) 

4 . .£.-1((-l)ny(nl(s)) = tny(t); 

5 . .£.-1 (F (~)) = cf(ct), cis constant; 
6 . .£.-1(Y(s- k)) = ek1y(t); 

7 . .£.-1 ( ~) = c, c is constant; 

8 .£.-1 (_!!l_) = tn. 
. ~+I ' 

9 . .£.-1 (s ~ k) = ekt; 

10 . .£.-1 ( b ) = sinbt; 
b2 +s2 
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11 L-1 ( s )-cosbt· . b2+sz- ' 

12. L-1 c2 ~ ~) = sinhbt; 

13 . .£-1 (h)= coshbt. 

In general, if we know L(y(t)) = Y(s) and L(z(t)) = Z(s) then we can find 
L-1(Y(s)Z(s)). This derivation tells us how: 

Y(s)Z(s) = (Loo e-svy(v)dv)(Loo e-suz(u)du) 

= Loo Loo e-s(v+u)y(v)z(u)dvdu 

= Loo [L"" e-s(v+u)y(v)dv]z(u)du 

= Loo [Loo e-sry(t- u)dt]z(u)du, [Let v = t- u.] 

= Loo [e-st Lr y(t- u)z(u)du] dt, [order of integration] 

= L(Lr y(t- u)z(u)du )· 

We therefore have this theorem. 

Theorem 7.10. If L(y(t)) = Y(s) and L(z(t)) = Z(s), then 

L-1(Y(s)Z(s)) = Lt y(t- u)z(u)du. 

The integral (y * z)(t) = £ y(t- u)z(u) du is called the convolution of y and z. It 
is a kind of generalized product. You can show that* is associative and commutative, 
and that it distributes over addition. 

Example 7.10 Find .£-1((1/s)(1/(1 + s2))). 

Solution. From Theorem 7.9 we recognize .£-1(1/s) = 1 and .£-1(1/(1 + s2)) = 
sin t, so that 

.£-1((1/s)(1/(1 + s2))) = Lr 1 sin(t- u)du 

= cos{t - u) ~~~~ 

= 1-cost. 

0 
Normally, we will avoid the use of the integral by using partial fractions to write 
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so that 

= 1-cost. 

You may recall from Calculus that partial fractions, though straightforward, were 
algebraically messy. To avoid this messiness, we will use the built-in Mathematica 
function Apart. Here is an illustration: 

1 
In [ 11 : = Apart [ 2 , s] 

s (s + 1) 
1 s 

Out [1]= -- --
s 1 + s 2 

Example 7.10 (M) Find .L:-1((1/s)(1/(1 + s2))) using Mathematica. 
Solution. Assume that LPT.m is loaded. 

1 
In[2]:= InverseLaplaceTransform[ 2 , s,t] 

s (s + 1) 
Out[2]= 1-Cos[t] 

It is of particular importance to recognize when Part 6 of Theorem 7. 9 should be 
invoked. For instance 

.L:-1 ( 1 ) -
5-2s+s2 -

We will rely on Mathematica to make these observations for us. The results ob­
tained should always be checked for correctness. 

The functions Transform and LP T Solve defined in the package will accept 
initial value problems in the form acceptable to DSol ve. That is, the differential 
equation and all of its initial values can be included in a List as the first argument. 
For example, 

Transform[{y"[t] + 9y[t] == 0, y[O] == 1, y'[O] == 0}, t, s] 

or 
LPTSolve[{y"[t] + 9y[t] == 0, y[O] == 1, y'[O] == 0}, y[t], t, s]. 

Note that the form of LPTSol ve is identical to that of DSol ve except for the 
addition of the last argument. This will also be the case in Chapter 9 when we use 
Laplace transforms to solve first-order linear systems of differential systems with 
constant coefficients. There, when there are two or more unknown functions, the 
second argument will be a list of these arguments. 
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Here is the solution of a differential equation using the package LPT.m. The 
problem is solved twice -once with the steps done manually, using Transform, 
and I so late, and once automatically using LPTSol ve. invokes the inverse Laplace 
transform function InverseLaplaceTransforrn which is defined in the pack­
age LaplaceTransform.m. The latter two steps have been combined in 
InverseTransforrn [ IsolatedVars, s, t] which can be invoked imme­
diately after isolating the transform. 

Example 7.11 (M) Use the package LPT.m to manually solve the initial value prob­
lem y"(t)- 5y'(t) + 6y(t) = e21 ; y(O) = 1, y'(O) = -2. 

Solution. Load the LPT.m package. 

In[3]:= <<"/Applications/MathematicaS.O.app/AddOns/ 

ExtraPackages/RossDE/LPT.m" 

Transform the initial value problem. 

In [ 4]: = sys [t_, y_] = {y" [t] - Sy' [t] + 6y [t] == e 2t, 

y[O] == 1, 

y' [0] == -2} 
Out[4]= {6y[t]-5y'[t] +y"[t] ==e2 t,y[O] ==1,y'[O] ==-2} 

In [5] := Transform[sys [t, y], t, s] 
Out[5]= {6Lap1aceTransform[y[t],t, s]+ 

s 2 Lap1aceTransform[y[t],t, s]-

5 (sLap1aceTransform[y[t],t,s]-y[O]) -s 

5 y [ 0 l - y' [ 0 l = = 

- 1 -, y [ 0 l = = 1, y' [ 0 l = = -2} 
-2 + s 

Isolate the transform of the unknown function y[t]. 

In[6] := Isolate[%, y[t], t, s] 
Out[6]= {Lap1aceTransform[y[t], t, s] ~ 

15 9 s 
-----------;;- - + 
(-3+s) (-2+s) 2 (-3+s) (-2+s) 2 

Find the inverse transform. 

In[7]:= InverseLaplaceTransform[%, s,t] 
Out[7]= {y[t] ~-e2 t (-4+3<et+t)} 

Capture the solution. 

In[B]:= w[t_] =y[t]/.% 
Out[8]= -e2 t (-4+3<et+t) 

Check the solution in the initial-value problem. 

In[9]:= Simplify[sys[t,w]] 
Out[9]= {True, True, True} 

82 

(-3+s) (-2+s) 2 } 

The problem can be solved completely in one step this way: 
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In[lO] := LPTSolve[sys[t, y], y[t], t, s] 
The transformed system 

2- 5 + 6 LaplaceTransform [y [ t], t, 5] + 

5 2 LaplaceTransf orm [ y [ t ] , t, 5] -

5 (-1 + 5LaplaceTransform[y[t], t, 5]) 

The unknown ( s) isolated. 

{ LaplaceTransform [ y [ t] , t, 5] ~ 

1 

-2 + 5 

15 9 5 5 2 } 

(-3+5) (-2+5) 2 - (-3+5) (-2+5) 2 + (-3+5) (-2+5) 2 

Out[lO]= {y[t] ~-e2 t (-4+3et+t)} 

The solution can be identified from this expression. One could capture the solu-
tion and check it as we have done previously. 0 

The Laplace transform can be used in this mechanical way to solve differential 
equations. In certain circumstances this is permissible, and sometimes even standard 
practice. However, one should always be alert for errors of one kind or another. Even 
Mathematica still has errors in it, though fewer and fewer remain with each new 
release. 

Exercises 7.3. Load the package LPT.m. Use 

InverseLaplaceTransform[expr, s, t] 

to find the inverse Laplace transform of 'expr'. 

1 .£-1 (_!_ _1_) 
· s2 1+s2 

2~ ---r-1 ( 1 1 ) 
. s+21+s2 

3 .£-I (-I _s ) 
· s+21+s2 

4 .£-1 (-5-) 
· I6 + s2 

5 . .£-1 (10 _I ___ I_) 
s- 3 9 + s2 

6 . .£-Ic 1 ) 
I+(s+4)2 

7 .£-1 ( s + 6 ) 
· I+(s+4)2 

8 .£-1 ( s- 3 ) 
· 25 + (s + 4)2 

9 .£-l(IO 1 ) 
· s I + (s- 2)2 

IO .£-1 (10 s ) 
· s I6 + (s- 2)2 
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Follow the steps suggested in Example 7.11M to solve these initial value prob­
lems. 

11. y'(t) + 3y(t) = sin 2t, y(O) = 4. 
12. y"(t) + 4y'(t) + 4y(t) = 0, y(O) = l, y'(O) = -3. 
13. y"(t) + 4y'(t) + 4y(t) = 1, y(O) = l, y'(O) = -3. 
14. y"(t) + 4y'(t) + 4y(t) = e-21 , y(O) = 1, y'(O) = -3. 
15. y"(t) + 4y'(t) + 4y(t) = 1 + 5e-21 , y(O) = 1, y'(O) = -3. 

16. y"'(t)- 9y'(t) = 0, y(O) = -2, y'(O) = 4, y"(O) = 0. 
17. y"'(t)- 9y'(t) = 7, y(O) = -2, y'(O) = 4, y"(O) = 0. 
18. y"'(t)- 9y'(t) = 4e31 , y(O) = -2, y'(O) = 4, y"(O) = 0. 
19. y"'(t)- 9y'(t) = 3e-31 , y(O) = -2, y'(O) = 4, y"(O) = 0. 
20. y"'(t)- 9y'(t) = 7 + 4e31 + 3e-31 , y(O) = -2, y'(O) = 4, y"(O) = 0. 
21. y"(t) + 36y(t) = 0, y(O) =a, y'(O) =b. 
22. y"(t) + 36y(t) = 3e-31 , y(O) =a, y'(O) =b. 
23. y"(t) + 36y(t) = te1 sin 3t, y(O) =a, y'(O) =b. 
24. y"(t) + 36y(t) = t 2e1 sin3t, y(O) = a,y'(O) =b. 

7.4 Discontinous Functions and Their Transforms 

The methods of Chapter 5 were fully capable of finding the solution of nonhomo­
geneous linear initial value problems for differential equations with constant coeffi­

cients and continuous nonhomogeneous parts. Some processes, however, are not con­
tinuous. For instance, a mechanical light switch goes from off to on without passing 

through intermediate values. 
In calculus, one was often asked to discuss piecewise continuous functions such 

as 

{ 
t2, 0 ~ t ~ 1 

j(t) = !(t- ~t 1 < t ~ 2 

6- t2, 2 < t 

In Mathematica one can define this function as 

f[t_] := If[TrueQ[O <= t <= 1], 

(*then*) 

t"2, 

(*else*) 

If[TrueQ[1 < t <= 2], 

(*then*) 

1/2 (t-3/2) "2, 
(*else*) 
If[TrueQ[2 < t], (*then*) 6-t"2] 

(7.1) 
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This definition is even better: 

In[l]:= f[t_/;TrueQ[N[Ostsl]]] :=e 

f [t_/; TrueQ [N [ 1 < t s 2] ] ] : = ~ ( t _ ~) 2 

f[t_/;TrueQ[N[2 <t]]] := 6-t2 

This may look like three separate definitions, but it emphasizes the fact that there 
are three parts to the definition of f(t). The Condition function, denoted I; , 
controls which of the three parts of the definition holds when t is given a value. 
The function N, which evaluates its arguments numerically, prevents problems when 
some of the constants are symbolic. Examples of symbolic constants are 1 + {2, and 
lf. 

Either of these two definitions is awkward to use to calculate the Laplace trans­
form of f(t), even though the Laplace transform is not difficult to express: 

l ] 12 1 100 

L(f(t)) = e-st t2 dt + e-st -(t - 3/2)2 dt + e-st (6- rl) dt. 
0 I 2 2 

Each of these integrals can be evaluated without unreasonable difficulty. 
The function f(t) has this appearance: 

2 2 

1.5 1.5 

1 1 
0.5 0.5 

3 0 
3 -0.5 -0.5 

-1 -1 

Plotted by Mathematica. The usual appearance. 
You will notice that Mathematica connects the jumps in the definition of f(t) with 
vertical line segments. One can force Mathematica to construct a graph as on the 
right which has the usual appearance, but the construction has to be done manually. 

The evaluation of the Laplace transform of f(t) above is only an ad hoc pro­
cedure. It would be helpful to have a general procedure. The help we need is the 
Heaviside2 unit step function, which has the definition 

U(t- c)= { ~: t:::; c 
c < t ' 

2 Oliver Heaviside (1850-1925) was a British physicist. He became deaf at age 24. This 
forced him to quit his job with the Great Northern Telegraph company. Thereafter, he 
worked at his home in Devonshire on electromagnetic theory, where his work on the the­
ory of the telephone made long-distance telephony possible. His nonstandard theoretical 
methods made it necessary for him to publish the results of his work privately. 
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and looks like this: 

c 

For purposes of the Laplace transform, if c < 0, U(t -c) = 1 (since t ~ 0). The 
package LPT.m defines the unit step function Unit Step this way: 

Uni tStep[x_] := If[TrueQ[x > 0], 1, 0]/; NumberQ[N[x]] 

As you can see, this is more general than the function U(t- c) defined above. This 
definition of the unit step function facilitates plotting, as in the case of this rectified 
half-wave: 

Y\ f\ f\ f\ 
Jf 2Tr 3Jf 4Jf 

Fig. 7.1. Rectified half-wave picture of Sin [ 2t] Uni tStep [Sin [ 2t] ] . 

We will not use UnitStep in this way when using LPT.m, even though such 
use is permitted when using the general package LaplaceTransform.m. 

The function 1 -11(t - c) has a single down-going step: 

1 1~ i~t 
c 

More generally, we define the unit pulse function 'P 

'P(t, a, b) = U(t -a) - U(t- b), for a < b. 

This function looks like: 
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a b 

When b < a, as defined, this function is -1 between b and a. As a result, it is 
more useful to define 

P(t, a, b) = 1 + U(t -a)- U(t -b), forb < a. 

In both cases, the function rises at a and falls at b. When b < a the function looks 
like: 

b a 

We can now describe our original function f(t) in terms of the unit pulse function 
rp and the unit step function U as 

f(t) = t2P(t, 0, 1) + (ll2)(t - 3!2)2P(t, 1, 2) + (6- rl)U(t - 2). 

This is progress, as we shall see in the paragraphs that follow, where the Laplace 
transform of U(t- c) is developed. 

The Laplace Transform of U(t -c) 

For c 2: 0, we have 

L(U(t- c)) = 1c e-stOdt + Ioo e-st1 dt [LetT= t- c.] 

= 0 + 100 
e-s(T+c)dT [LetT= t.] 

= e-sc 1oo e-st I dt 

e-sc L(l) 

= 
s 

A similar calculation gives us this theorem and a corollary. 

Theorem 7.11. If f(t) is defined for nonnegative t and has a Laplace transform, then 
fore> 0, 

L(U(t- c)f(t)) =e-sc L(f(t +c)). 
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Corollary 7.11. L('U(t - c)f(t -c)) = e-sc L(f(t)) = e-sc F(s). 

Proof of the theorem: For c 2: 0, we have 

L('U(t-c)f(t)) = Lc e-51 0f(t)dt+ I"" e-51 f(t)dt [Letr=t-c.] 

= 0+ L"" e-s(r+c)f(r+c)dr [Letr=t.J 

e-sc L"" e-st f(t +c) dt 

= e-sc L(f(t +c)). 

D 

Aside from its utility in graphing, the simple effect ofuni tStep when perform­

ing Laplace transforms is what makes it so useful to us. Though e-sc L(f(t +c)) looks 

superficially similar to L(ek1 f(t + c)), it is significantly different, in that the factor 

e--sc is the result of a transformation and the factor ek1 initiates a transformation. 

We can now in effect add a new row to the bottom of Theorems 7.8 and 7.9. 

Theorem 7.12 (7.8 and 7.9: last row). If f(t) has a Laplace transform then 

L('U(t - c)f(t)) = e-sc L(f(t + c)) 

and 
L-1(e-s'L(f(t))) = 'U(t- c)f(t- c). 

Example 7.12 (M) Find the Laplace transform of 

'U(t - c)f(t) 

and of 

f(t) = t2P(t, 0, 1) + (1/2)(t - 3!2)2'P(t, 1, 2) + (6- t 2 )11(t - 2) 

by Mathematica. 
Solution. 

In[2]:= <<"/Applications/MathematicaS.O.app/AddOns/ 

ExtraPackages/RossDE/LPT.m" 

In [ 31: = Transform[UnitStep [t- c] f1 [t], t, s] 

Out[3}= LaplaceTransform[fl[t] UnitStep[-c+t], t, s] 

In[4}:= f[t_] =t2 UnitPulse[t, 0, 1]+ 

~ (t- ~ r UnitPulse [t, 1, 2] + ( 6- t 2 ) UnitStep[t- 2]; 

In[5}:= Transform[f[t],t, s] 
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Out[5)= 
2 39e~zs 9e~s 3e~s (1+s) 3e~zs (1+2s) 
~+-8-s-+~- + 

3 e~ 2 s ( 2 + 4 s ( 1 + s) ) <E~s ( 2 + s ( 2 + s) ) 

In[6]:= Expand[%] 
2 3 <E~z s <E~s 9 <E~z s 5 <E~s 1 5 <E~z s 7 <E~s 

Out [ 6] = ~ - -- - - - -- - -- + ---
s3 s 3 s 3 2s 2 2s2 8s 8s 

In[7]:= 

Out [7] = 

InverseLaplaceTransform[%, s,t] 

_:1:_ (8t 2 + (39+12t-12t 2 ) UnitStep[-2+t]+ 
8 

(9 -12 t- 4 t 2 ) UnitStep[ -1 + t]) 

Check this result. 

In[B]:= Simplify[%-f[t]] 
Out[B]= -t 2 (-l+UnitStep[t]) 

This expression is 0 for t ~ 0, so the transform is correct. 

The Dirac Delta 

0 

Before we proceed to solving differential equations with discontinuous nonhomo­
geneous parts, we can gain some more insight into 11(t- c). In 1939 Dirac3 proposed 
a "function" o(t- c) that had these properties: 

(1) o(t- c)= 0 if t =f:. c, and 
cz) 1: ou- c)dt = 1. 

It is clear that such an object is not a function in the usual sense. It does have its uses, 
however. One can find that L: o(t -c) f(t) dt = L: O(t- c) f(c) dt = f(c), c ~ 0. 
Therefore, L(o(t -c)) = e-sc, c ~ 0. What is most interesting to us is that 

I~ O(T- c)dT = 11(t- c). 

This tells us that, formally at least, 11'(t- c)= o(t- c). This is worth pondering. 
In Mathematica, o(t- c) is typed as DiracDelta [t-c], and is output as 

DiracDel ta [ -c+t]. The reason that the Dirac delta function o(t - c) is men­
tioned is that if you solve a differential equation with nonhomogeneous part involv­
ing 11(t -c) for some choice or choices of c, then the solution will be expressed in 
terms of 11(t - c) for the same c. If you proceed to check your solution, you need to 
calculate derivatives of 11(t -c). This means that o(t - c) will appear. Higher-order 
derivatives of11(t- c) require higher derivatives of o(t- c). This can be complicated. 

3 Paul A.M. Dirac (1902-1984), British physicist. He won a Nobel Prize at age 31 for his pi­
oneering work in quantum mechanics. Though he recognized that his "delta-function" was 
not a function in the usual sense, his intuition was unerring, and his vision was vindicated 
when the theory of distributions or generalized functions was developed some years later. 
The Dirac 8 was only one of the symbolic tools he created that enabled him to expand the 
theory of quantum mechanics so broadly. 
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The most helpful observation you can make is that o(t - c) and all derivatives of 
o(t -c) (whatever they may mean) are zero if t =1= c. 

If you have an expression, each term of which has a factor of o(t - c) or any 
derivative of o(t - c), then that expression is zero when t =1= c. The left- and right­
hand limits of such a function are of interest, but we leave their investigation to a 
more advanced course. 

The Solution of Differential Equations Having Discontinuous 
Nonhomogeneous Part 

Since we can now easily represent discontinuous functions using 1/(t -c) so that the 
Laplace transforms are readily obtained, we can proceed to illustrate the process of 
solving differential equations that have a discontinuous nonhomogeneous part. Here 
is the first example. 

Example 7.13 (M) Use Mathematica solve the initial value problem 

y"(t) + 25y(t) = 1/(t- 1), y(O) = 0, y'(O) = 0. 

Observe that the solution is zero fort < 1 and only departs from zero fort > I. 
Solution. Here is how the solution process looks. 

In[9]:= <<"/Applications/MathematicaS.O.app/AddOns/ 

ExtraPackages/RossDE/LPT.m" 

In[lO] := Clear[t, y, sys] 

In[ll]:= sys[t_,y_] = {y"[t] +25y[t] ==UnitStep[t-1], 

y[O] == 0, y' [0] == 0} 
Out[ll}= {25y[t] +y"[t] ==UnitStep[-l+t],y[OJ ==O,y'[O] ==0} 

In[l2]:= Transform[sys[t,y],t,s] 

Out[12}= {25LaplaceTransform[y[t],t,s]+ 

s 2 LaplaceTransform[y[t], t, s]- s y[O]- y' [OJ 

e-s , y [ 0] = = 0, y' [ 0] = = 0} 
s 

Solve for the Laplace transform of y [ t J • 

In [ 131 : = Isolate [%, y [ t] , t, s] 

Out [13]= {LaplaceTransform[y [t], t, s] ...., e-s } 
25s+s 3 

Perform the inverse Laplace transform. 

In[14}:= InverseLaplaceTransform[%, s,t] 
2 5 2 

Out[14}= {y[t] ->~Sin[- (-l+t)] UnitStep[-l+tJ} 
25 2 

Capture the solution. 

In[l5] := w[t_] = y[t]/.% 
2 5 2 

Out[15}= -Sin[- (-l+t)] UnitStep[-l+t] 
25 2 
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Plot the solution function. 

In [ 16]: = Plot [Evaluate [w [tl], {t, 0, 3}, PlotRange-+ All]; 

0.08 

0.06 

0.04 

0.02 

0. 5 1 

Check the solution. 

In[17]:= Simplify[sys[t,w]] 
Out [17]= {True, True, True} 

The solution checks. 

3 

0 

Here is a more substantial example using the function f(t) defined in equation 7 .I 
by a three-part rule. 

Example 7.14 (M) Use Mathematica to solve the initial value problem 

y"(t) + 5y'(t) + 6y(t) = t 2P(t, 0, 1) + (112)(t- 3!2)2P(t, I, 2) 

+ (6- t 2 )11(t - 2), 

y(O) = 0, 

y'(O) = -2. 

Solution. Here is the function f [ t] having a three-part rule. 

In[l8] := f[t] 

Out[18]= (6-t 2 ) UnitStep[-2+t]+ 

1 ( 3 ) 2 
2 -2+t (-UnitStep[-2+t]+UnitStep[-l+t])+ 

t 2 (-UnitStep[-l+t] +UnitStep[t]) 

Perform the Laplace transform. 

In[19]:= sys[t_,y_] = {y"[t] +Sy'[t] +6y[t] ==f[t], 
y[O] == 0, y' [0] == -2}; 

In[20]:= Transform[sys[t,y],t, s] 
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Out[20]= {6LaplaceTransform[y[tJ, t, sJ+ 

s 2 LaplaceTransform[y[tJ, t, sJ+ 

5 (s LaplaceTransform[y [tJ, t, sJ - y [OJ) - s y [OJ-

2 39e-25 9e-s 3<e- 3 (l+s) 3e- 25 (1+2s) 
y' [OJ == ~ + -8-s- + ~- 2 s 2 + 2 s 2 

3 e -z s ( 2 + 4 s ( 1 + s ) ) e- s ( 2 + s ( 2 + s) ) 

2 s 3 

Y [ 0 J = = 0 r y' [ 0 J = =c -2} 

Solve for the Laplace transform of y [ t J . 

In [21] := Isolate[%, y[t], t, s] 
-2 2 

Out [ 21] = { LaplaceTransform [y [t], t, s J ~ 6 + 5 s + 52 + -5cc3------c,­
( 6 + 5 s + s 2 ) 

3 e-z s 

5 e-s 
---=:-----~ + 
2 s 2 ( 6 + 5 s + s 2 ) 8 s 

Perform the inverse Laplace transform. 

15e-23 7e-s 

(6+5s+s2 )- 8s (6+5s+s 2 )} 

In[22]:= InverseLaplaceTransform[%, s,t] 

Out[22]= {y[tJ ~ 

- 1- e- 3 t (896- 972 et + 76 e 3 t- 120 e 3 t t + 72 e 3 t t 2 - 3 ( -146 e 6 + 
432 

2 4 3 e 4+t + e 3 t ( -4 9 - 96 t + 3 6 t 2 ) ) Uni tStep [ -2 + t] -

( 2 2 e 3 + 2 7 e 2 +t + e 3 t ( -133 + 4 8 t + 3 6 t 2 ) ) Uni tStep [ -1 + t J ) } 

Capture the solution. Suppress the output. 

In[23]:= w[t_] =y[t]/.%; 

Plot the solution function. 

In [24] := Plot [Evaluate [w[t]], {t, 0, 3}]; 

0.05 

-0.3 

Check the solution. 

0. 5 1 

In[25]:= Simplify[sys[t,w]] 
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Out[25}= {t UnitStep[t] == t, True, True} 

Note that t 1l[t] = t fort ;:: 0, so the solution therefore satisfies the differential 
equation and the initial conditions t ;:: 0. 0 

This example illustrates the power of the Laplace transform to solve complicated 
initial value problems. In so doing it also illustrates just how complex such solutions 
can be. Remember that if you need to solve a problem that involves more complicated 
situations than those illustrated, you should consider using the full implementation 
of Laplace transforms that is provided in the package LaplaceTransform.m. 

Exercises 7 .4. Load the package LPT.m. Use Transform [ f [ t J , t , s ] to find 
these Laplace transforms. Express each function using UnitStep or UnitPulse 
individually or in combination before transforming. 

{ 1 0::5t::52 
l.fl(t)= o: 2<t 

{
0, 

2. f2(t) = 1, 
0, 

{ 
1, 

3. f,(t) = 0, 
1, 

0::5t::51 
1<t::52 
2 < t 
0::5t::51 
1 < t ::52 
2 < t 

{
2, 0::5t::51 

4. f4(t) = 1, 1 < t ::5 2 
3, 2 < t 

{
t, 0::5t::57r 

5. f 5(t) = sint, 1r < t:::; 5 
e1- 5, 5 < t 

{
sint, O:::;t:::;n/2 

6. / 6(t) = 1, n/2 < t ::5 3n/2 
cost, 3n/2 < t 

Use Transform [ , t , s ] to find the Laplace transform of each system. Then 
use Isolate [ , y [t] , t, s] to isolate the transform LaplaceTrans form [ 
, t, s]. Finally, use InverseLaplaceTrans form [ , s, t] to find the solu­
tion to each of these initial value problems. Capture each solution, plot it on an ap­
propriate interval, and check it. Afterwards, solve each problem in a single step using 
LP T Solve [ , y [ t J , t, s] . The functions f;(t) are those defined in problems 1-6. 

7. y"(t)- 25y(t) = f 1(t), y(O) = 1,y'(O) = -1. 
8. y"(t)- 25y(t) = f 2 (t), y(O) = 1,y'(O) = -1. 
9. y"(t)- 25y(t) = f 3(t), y(O) = 1, y'(O) = -1. 

10. y"(t) + 7y'(t) + 12y(t) = f 4(t), y(O) = 0, y'(O) = 1. 
11. y"(t) + 7y'(t) + 12y(t) = J5(t), y(O) = 0, y'(O) = 1. 
12. y"(t) + 7y'(t) + 12y(t) = f 6 (t), y(O) = 0, y'(O) = 1. 



8 

Higher-Order Differential Equations with Variable 
Coefficients 

8.0 Introduction 

In the previous two chapters we studied differential equations having constant co­
efficients. The theory was straightforward, and, with the help of Mathematica, the 
solutions were easy to obtain--even when the order of the differential equations was 
rather large. The persistent difficulty was, when we needed the roots of a polynomial 
of degree five or more, we could not be certain that they could be obtained exactly. 
This opened up the possibility of needing approximations to the roots, which opened 
up the need for knowing how accurately those approximations could be obtained, 
which led to numerical analysis, etc. The difficulties lay outside the field of differen­
tial equations, so we did not press for a resolution of them. 

But when the differential equations no longer have constant coefficients, there 
begin to be real difficulties from the standpoint of differential equations. The earlier 
problems still remain, but new ones are added. Except in rare cases, the solutions 
we obtain will not be like they were before: combinations of polynomials, exponen­
tial functions, sines, and cosines. We still have all of these, but we add logarithms, 
and eventually will be forced to settle for solutions expressed as infinite series. Of 
course, polynomials, exponential functions, sines, cosines, and logarithms all have 
series expansions of one kind or another. We will obtain solution functions that are 
not readily identifiable as elementary functions, and indeed may not be elementary 
functions. 

We start with simple problems and work our way up to more complicated prob­
lems. The simple problems in this chapter are of Cauchy-Euler type, where the 
method of solution is analogous to that of the constant coefficients problems we just 
studied. A simple change of variables can convert a problem of Cauchy-Euler type 
to one with constant coefficients, and vice versa. 

Some problems with variable coefficients can be solved easily by series. These 
are the problems where solutions are centered on ordinary points of the equation. 
For some equations, certain points are not ordinary points and the simple methods 
do not apply. We therefore need to be able to determine when a point is ordinary 
and when it is not. Points that are not ordinary are called singular. Some singular 

C. C. Ross, Differential Equations
© Springer Science+Business Media New York 2004
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points can still be approached by straightforward methods. These are called regular 
singular points. Some cannot. These are called irregular singular points. We will 
concentrate our attention on ordinary points and regular singular points. The theo­
rems will be stated for differential equations of order n, because using Mathematica 
it is essentially as easy to solve higher-order problems as it is to solve second-order 
problems. 

We will observe that the nature of solutions of a differential equation about a 
singular point can be inferred from the nature of solutions of Cauchy-Euler equa­
tions. Solutions of Cauchy-Euler equations are usually sought about a regular sin­
gular point. Since we will have a complete theory for Cauchy-Euler equations, we 
consider the general equation near a regular singular point to be merely a perturba­
tion of a Cauchy-Euler equation. This enables us to make guesses about how to ap­
proach the general problem. The theorem, though complicated, vindicates this line 
of reasoning. 

The investigation requires a review of infinite series. It demands skill in the tech­
nical manipulation of series. It introduces product notation as a companion to sum­
mation notation, and it introduces difference equations and their solutions. These 
difference equations are the recursion relations that say how any one coefficient in 
a series solution is related to one or more preceding coefficients. 

Mathematica will do most of the manipulations for us. It will also check our 
answers for us. Without Mathematica the topics to be covered in this chapter demand 
both enormous amounts of thought and enormous amounts of manual manipulation. 
With Mathematica, the manipulative component, though not necessarily eliminated, 
is certainly reduced to manageable proportions. You are still encouraged to think. 

The standard equations of mathematical physics such as the Bessel and Legendre 
equations, and equations of special functions in general, such as the hypergeometric 
equation, are covered as exercises. 

8.1 Cauchy-Euler Differential Equations 

The form of a Cauchy1-Euler2 differential operator is 

dny -! dn-ly dy 
CE(y) =anY!' dX' + an_1X' dX'-l + ··· + a1x dx + a0y, (8.1) 

where an, an-i' ... , a 1, a0 are numbers and an * 0. Examples of Cauchy-Euler differ­
ential equations are 

d2y dy 
3~- -7x- +3y = 0 

d~ dx 

1 Augustin Louis Cauchy (1789-1875), French mathematician. Among his massive contri­
butions to mathematics (some 800 books and articles) was the first truly acceptable theory 
of limits. 

2 Leonhard Euler (1707-1783), Swiss mathematician. Euler was the most prolific and versa­
tile writer of mathematics to have ever lived. His influence can be seen throughout all of 
modem mathematics. 



242 8 Higher-Order Differential Equations with Variable Coefficients 

which is second-order homogeneous, and 

dy 
x~ + 4y = 5 cos(lnx) 

dx 

which is first-order nonhomogeneous. The key to identifying a Cauchy-Euler differ­
ential operator is to observe that each term has the form 

dky 
ak0 d0' 

where ak is a number and the power of x and the order of the derivative agree. Missing 
terms are considered to have the correct form. 

The central insight into solving Cauchy-Euler differential equations is that 

CE(xr) = p(r)xr, (8.2) 

where p(r) is a polynomial. This polynomial is the characteristic polynomial of the 
operator. A Cauchy-Euler operator maps a power of x into a polynomial times the 
same power of x. We will use this observation the same way we did the analogous 
observation in Chapter 5. 

Example 8.1 Demonstrate equation 8.2 for the Cauchy-Euler differential equation 

CE(y) = x2y" + 5xy' - 3y. 

Solution. Consider 

CE(xr) x2(r(r- 1 )xr-2 ) + 5x(rxr-i) - 3xr 

r(r- 1)xr + 5rxr- 3xr 

= [r(r- 1) + 5r - 3]xr 

(r2 + 4r - 3)xr 

p(r)xr. 

Observe that every term of CE takes xr to a polynomial times xr, because 

ak0(r(r- l)(r- 2)·· ·(r- k + l)xr-k) 

(akr(r- l)(r- 2)· · ·(r- k + l))xr 

0 

To get solutions to CE(y) = 0 we need only find the roots of the characteristic 
equation p(r) = 0. We have seen this before, and anticipate that we need to handle 

three cases. 

Theorem 8.1. The solutions of 

dny -i dn-iy dy 
CE(y) =an~ d~ +an-i~ d~-i + ... + alx dx + aoy, 

are found this way. Substitute y = xr to get CE(xr) = p(r)xr. Then CE(xr) = 0 when 

p(r) = 0. 
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1. Jfm ~nand r1, r2, ... , r mare distinct real characteristic roots, thenxr1, xr2, ... , xrm 
are linearly independent real solutions, and 

defines an m-dimensional subspace of the kernel ofCE. 
2. If s is a characteristic root of multiplicity k, 1 < k ~ n, then X 5 , x' lnx, ... , 

x'(lnx)k-l are linearly independent solutions and 

defines a k-dimensional subspace of the kernel ofCE. 
3. Jfr = a±f3i is a complex conjugate pair of characteristic roots, thenxa cos(/3lnx) 

and xll' sin(.Blnx) are real linearly independent solutions corresponding to the 
pair a ± f3i of complex roots. If a ± f3i is a pair of multiplicity k then 

xa cos(.Blnx), xa lnxcos(.Blnx), ... , xa(lnxl- 1 cos(.Blnx) 

and 
~ sin(.Blnx), xa lnx sin(.Blnx), ... , xa(lnx)k-l sin(.Blnx) 

are 2k real linearly independent solutions in the kernel ofCE. Their linear com­
binations span a (2k)-dimensional subspace of the kernel ofCE. 

4. A complete description of the kernel of CE is the set of all linear combinations 
of the functions found in the previous three cases. 

Proof (Indication). 

1. The Mathematica notebook Cauchy-Euler, Independence shows that xa, xi', and 
X: are linearly independent if a, b, and c are all different. A complete proof is 
analogous, but complicated. 

2. Here we try an idea that worked before. If sis a double root of p(r) = 0, then 
p(s) = p'(s) = 0. Now CE(x') = p(s)x' = 0. Taking rasa variable gives 

:rCE(xr) = CE(:rx)=CE(xrlnx) 

a 
ar (p(r)xr) = p'(r)x + p(r)xr lnx. 

Thus, when r = s, CE(x' lnx) = p'(s)x' + p(s)x' lnx = Ox' + Ox' lnx = 0. 
So a second solution is x' lnx. That the solutions obtained from this pattern of 
reasoning are linearly independent is also illustrated in the notebook Cauchy­
Euler, Independence in the case of multiplicity three. 

3. Again we use an old technique. We have that 

~+f:Ji = ~J!li = ~e({:Jlnx)i = xa(cos(.Blnx) + isin(.Blnx)). 

Since CE is a real linear operator, it follows from Theorem 5.15 that 
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CE(xa cos(/3lnx)) = 0 

and 
CE(x" sin(/3lnx)) = 0. 

D 

The solutions y 1 (x) = x" cos(/3lnx) and h(x) = x" cos(/3ln x) are shown to be 
linearly independent in the notebook Cauchy-Euler, Independence. 

Example 8.2 Solve the homogeneous Cauchy-Euler differential equation 

Solution. The substitution y = xr makes 

CE3(xr) = x3r(r- l)(r- 2)x'-3 - 2x2r(r- l)x'-2 - 2xrx•-i + Sxr 

= r(r - I )(r - 2)xr - 2r(r - l )xr - 2rxr + Sx' 

= [r(r- l)(r- 2)- 2r(r- 1)- 2r + 8Jxr 

= (r3 - 5r2 + 2r + 8)x' 

= p(r)x' 

= 0. 

This requires that p(r) = r3 - 5r2 + 2r+ 8 = (r+ l)(r-4)(r- 2) = 0, which means that 
our characteristic roots are distinct: r = -1, 4, and 2. The three linearly independent 
solutions are y 1 = x- 1, Yz = x4 , and y3 = x2• A complete description of the kernel is 

You are encouraged to check this. 0 

Example 8.2 (M) (From the Mathematica notebook Solving Cauchy-Euler.) Note 
how we follow the theory step-by-step. 

Solution. Here is the operator. 

In[l]:= Clear[CEOp,x,y] 

In [ 2]: = CEOp [x_, y_] = x 3 y'" [x] - 2x2 y" [x] - 2x y' [x] + Sy [x] 

Out[2]= 8y[x]-2xy'[x]-2x2 y"[x] +x 3 yi 31 [x] 

The function that we will substitute. 

In[3]:= ySub[x_] =Xr 

Out[3]= xr 

The characteristic polynomial. 

In [ 4]: = poly [r_] =Coefficient [Expand [CEOp [x, ySub]], xr] 

Out [ 4] = 8 + 2 r - 5 r 2 + r 3 

Here are the distinct roots (in rule form). 

In[5] := Solve[poly[r] == 0, r] 
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Out[5]= {{r--7-l}, {r--72}, {r--74}} 

Capture the roots. 

In[6] :=roots= r/.% 

Out[6]= {-1,2,4} 

Produce the complete solution. 

In[7] := s[x_] = (xAroots). {cl, c2, c3} 

cl 
Out[7]= -+c2x2 +c3x 4 

X 
Check the solution. 

In [8] := Simplify[CEOp[x, s] == 0] 

Out[B]= True 
Of course, we can get the same result directly by using DSol ve. 

In[9]:= DSolve[CEOp[x,y] ==O,y[x],x] 

C[l] 
Out[9]= {{y[x]--?--+x2 C[2] +x4 C[3J}} 

X 
This is the solution that we had before. 

Example 8.3 Solve the differential equation 

CE(y) = x4y<4l + 9x3y'" + lO~y"- 30xy'- 24y = 0. 

Solution. As before, substitute y = xr to get 

CE(x7 ) = x4r(r- l)(r- 2)(r- 3)x7- 4 + 9~r(r- l)(r- 2)xr-3 

+ IO~r(r- l)x7 - 2 - 30xrx- 1 - 24x 

= r(r- l)(r- 2)(r- 3)x7 + 9r(r- l)(r- 2)x7 

+ lOr(r- l)xr- 30rx- 24x 

= [r(r- l)(r- 2)(r- 3) + 9r(r- l)(r- 2) 

+ lOr(r- 1) - 30r- 24]x7 

= (r- 3)(r + 2)3x 
= 0 

0 

when r = 3, -2, -2, -2. Here we have an isolated root and a root of multiplicity 
three. The solution corresponding to the isolated root 3 is y 1 = ~. and the solutions 
corresponding to the triple root -2 are y2 = x-2, y3 = x-2 lnx, and y4 = x-2(lnx)2• 

The complete description of the kernel is 

0 
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Example 8.3 (M) (From the notebook Solving Cauchy-Euler.) Solve the Cauchy­
Euler differential equation 

by Mathematica. 
Solution. Here is the operator. 

In[101:= Clear[CEOp,x,y] 

In [ 111: = CEOp [x_, y_] = x 4 y"" [x] + 9x3 y'" [x] + 10x2 y" [x]-

30x y' [x] - 24y [x] 

Out[ll]= -24y[x]-30xy'[x] +10x2 y"[x] +9x3 yi 31 [x] +x 4 y1 41 [x] 

The function that we will substitute. 

In [ 121: = ySub [x_] = xr 

Out[121= xr 

The characteristic polynomial. 

In [ 131: = poly [r_] =Coefficient [Expand [CEOp [x, ySub]], xr] 

Out[131= -24-28r-6r2 +3r3 +r 4 

The roots (in rule form). 

In[141 := Solve[poly[r] == 0, r] 

Out[141= {{r-7-2}, {r-7-2}, {r-7-2}, {r-73}} 

Capture the roots. 

In[151:= roots=r/.% 

Out [151= { -2, -2, -2, 3} 

Produce the complete solution. Notice the way to account for the triple root. 

In [161 := s [x_] = (xAroots). { cl, c2 * Log[x], c3 * Log[x] 2 , c4} 
cl c2 Log[x] c3Log[x] 2 

Out [161= 2 + c4 x 3 + + ----=;,-:---"--
x x 2 x 2 

Check the solution. 

In [ 171: = Simplify [CEOp [x, s] == 0] 

Out[171= True 
Again, we can get the same result directly: 

In[181:= DSolve[CEOp[x,y] ==O,y[x],x] 

{{ C[l] 3 C[2] Log[x] C[3] Log[x] 2 }} 0 
Out [1 8 1 = y [ X] -7 - 2- + X C [ 4 ] + 2 + 2 

X X X 

Example 8.4 Give a complete description of the kernel of the operator 

CEOp(y) = x2y" + 5xy' + 29y. 

Solution. Substitute y = x' to get 
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CEOp(xr) .x?r(r- l)xr-z + 5xrx-1 + 29xr 

r(r- l)x + 5rxr + 29xr 

= [r(r- 1) + 5r + 29]xr 

= c? + 4r + 29)xr 

= 0 

when r2 + 4r + 29 = 0. This equation has the roots -2 ± 5i, so the two real solutions 
are 

y1 (x) = [ 2c1 cos(Slnx) and Yz(X) = x-2c2 sin(Slnx). 

The complete description of the kernel can be written 

y(x) = x-2(c1 cos(Slnx) + c2 sin(Slnx)). 0 

Example 8.4 (M) (From the notebook Solving Cauchy-Euler.) Solve the Cauchy­
Euler differential equation 

CEOp(y) = .x?y" + 5xy' + 29y 

by Mathematica. 
Solution. Here is the operator. 

In [ 19 J: = Clear [CEOp, x, y] 

In[20]:= CEOp[x_,y_] =x2y"[x] +Sxy'[x] +29y[x] 

Out[20]= 29y[x] +5xy'[x] +x2 y"[x] 

The function that we will substitute. 

In[21]:= ySub[x_] =xr 

Out [21]= xr 

The characteristic polynomial. 

In[22] := poly[r_] = Coefficient[Expand[CEOp[x, ySub]], xr] 

Out[22]= 29+4r+r2 

The distinct roots (in rule form). 

In[23] := Solve[poly[r] == 0, r] 

Out[23]= {{r~-2-Si}, {r~-2+5i}} 

Capture the first root. 

In[24] := {rl, r2} = r/.% 

Out[24]= {-2-5i,-2+5i} 

In[25]:= a=Re[rl] 

Out[25]= -2 

In[26] := b = Im[rl] 

Out[26]= -5 

Produce the complete solution. 
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In[27]:= s[x_] = (xAa) *{Cos[bLog[x]],Sin[bLog[x]]}.{cl,c2} 
cl Cos[S Log[x]]-c2 Sin[S Log[x]] 

Out[27]= 2 
X 

Check the solution. 

In[28] := Simplify[CEOp[x, s] == 0] 

Out[28]= True 
Once again the use of DSol ve is most direct (the constant names are different): 

In[29]:= DSolve[CEOp[x,y] == O,y[x],x] 

{{ C[2] Cos[S Log[x]] C[l] Sinx[5
2 

Log[x]] }} 
Out [29]= y [x] ~ 2 + _____:_____c_ __ ~--=--=-____c_-=-

x 0 

Cauchy-Euler to Constant Coefficients 

The observation that 
dk lnx ( -1)k+I 

d~ =~ 
suggests that it might be productive to attempt to change the variable in a Cauchy­
Euler operator from x tot by using the substitution t = lnx, or, equivalently, x = e1• 

The reason is that these derivatives of lnx appear to cancel the powers of x in the 
coefficients. To make this change of variable we use the chain rule: 

dy dy dt dy 1 

dx dt dx dt x 

This says that x(dy!dx) = dy/dt. This is promising: the coefficient is now constant! 
Try the second derivative: 

This means that 

d (dy) 
dx dx 

= d (dy 1) 
dx dt x 

= d (dy) 1 dy d ( 1) 
dx dt ~ + dt dx ~ 

= (d2y ~) ~ + dy ( -1) 
dt2 X X dt ~ 

= _!_ (d2y - dy) 
~ dt2 dt . 

d2y d2y dy 
~-=---
d~ dt2 dt' 

and again we have success: we get terms with constant coefficients. This is not an 
accident; the process continues through higher derivatives, as can be shown by math­
ematical induction. 

Thus we can make the change of variable t = lnx in a Cauchy-Euler differential 
equation and arrive at a differential equation with constant coefficients. This is worth 
a theorem. 
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Theorem 8.2. The change of variable t = lnx in a Cauchy-Euler differential equa­
tion CE(y)(x) = f(x) converts it into a differential equation L(y)(e1) = g(t) with 
constant coefficients, where g(t) = f(e 1), or equivalently, f(x) = g(lnx). These are 
equivalent: 

1. y(x) is a solution ofCE(y)(x) = f(x). 
2. y(e1 ) is a solution of L(y)(e1) = g(t). D 

A comment is in order. We understand the sorts of functions that g(t) can be in 
order for there to be easy solutions by undetermined coefficients. These are poly­
nomials in t, exponentials linear in t, sines and cosines linear in t, and products of 
these. This says that the kinds of functions that f(x) can be in order for there to 
be solutions that are obtainable (in x) by undetermined coefficients are polynomials 
in lnx, exponentials linear in (lnx), sines and cosines linear in (lnx), and products 
of these. For example, these functions appearing on the right-hand side of a Cauchy­
Euler differential equation would admit solutions (in x) by undetermined coefficients: 
(lnx)3 -4(lnx), 7e50nxJ [= 7x-'i], and5cos(2lnx). 

Example 8.5 Make the substitution t = lnx to change the Cauchy-Euler differential 
equation x2y" + 5xy' + 4y = 0 to a differential equation with constant coefficients. 
Solve the constant coefficients equation completely and recover the complete solu­
tion of the Cauchy-Euler equation. 

Solution. From the work above, we know that 

xdy = dy andxzdzy = dzy- dy 
dx dt dx2 dt2 dt ' 

so the differential equation becomes 

( d2y - dy) + 5 (dy) + 4y 
dt2 dt dt 

d2y dy 
dt2 + 4 dt + 4y = 0. = 

This has characteristic polynomial r2 + 4r + 4 = (r + 2? = 0, and hence has a 
double root r = -2. The complete description of the kernel is y(t) = e-21 (c 1 + c2t). 
This means that the solution as a function of xis y = e-Zinx(c1 + c 2 lnx) = x-2(c1 + 
c2 lnx). You should verify this two ways: solve the Cauchy-Euler equation by those 
special techniques that apply to Cauchy-Euler equations, and by direct substitution 
and direct verification of linear independence. You may explore these ideas further 
in the notebook Cauchy-Euler- >Canst Coeff. <> 

Exercises 8.1. These problems should be done manually and by Mathematica. Feel 
free to use Mathematica to assist your manual solutions by finding the roots of high­
order polynomials. Continue with the solution manually. 

PART I. Solve these Cauchy-Euler differential equations. Their characteristic 
polynomials have distinct roots. 
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dy 
I. x- + 2y = 0. 

dx 
zd2y 

2. X - 2 - 6y = 0. 
dx 

3d3y zd2y dy 
3. x -- + 2x - - 6x- = 0. 

dx3 dx2 dx 
d3y d2y dv 

4. 2x3-- 5x2- + 8x__:_- 6v = 0. 
dx3 dx2 dx · 
d3y d2v dy 

5. 6x3 -- 13x2___:, + 5x-- 8v = 0. 
dx3 dx- dx ~ 

3d3y zd2y dy 
6. 4x-- 12x - + 15x-- 12y = 0. 

dx3 dx2 dx 
3d3y zd2y dy 

7. 15x - - 2x - + 6x- - 8y = 0. 
dx3 dx2 dx 

3 d3y 2 d2y dy 
8. 9x - + 36x - - 4x- - 8v = 0. 

dx3 dx2 dx ~ 

PART II. Solve these Cauchy-Euler differential equations. Their characteristic 
polynomials have some or all roots repeated. 

2 d2y dy 
9. x - 2 + 5x- + 4y = 0. 

dx dx 
3d3y zdzy dy 

10. x -- + 4x - - 6x- - l2y = 0. 
dx3 dx2 dx 

3d3y zd2y dy 
I L x - - x - - 6x- + 18y = 0. 

dx3 dx2 dx 
4d4y 3d\ z{Py dy 

12. x - + 4x - - 1 Ox - 7 + 6x- + v = 0. 
dx4 dx3 dr dx ~ 

d4y 3 d3y 7 d2y dy 
13. 27x4 - + 90x-- 12r- + 8x- + 8v = 0. 

dx4 dx3 dx2 dx · 
4d4y 3d3y zd2y dy 

14. 27x- +45x-- 12x- +28x-- 32v = 0. 
dx4 dx3 dx2 dx · 

4d4y 3d3y 2d2y dy 
15. x - 4 + 6x - 3 + 5x - 7 - x- + y = 0. 

dx dx dr dx 
d5y d4y d3y d2y dy 

16. 20x5 - 5 + 244x4 - 4 + 76lx3 - 3 + 563x2 - 2 + 25x- = 0. 
dx dx dx dx dx 

PART III. Solve these Cauchy-Euler differential equations. The characteristic 

polynomials have some complex roots. Convert the complex solutions to their equiv­

alent real form. 

zd2y dy -
17.x - 2 +5x-+13y-O. 

dx dx 
zdzy dy 

l8.x --3x-+20y=0. 
dx2 dx 
d3y d2v dv 

19. x3 - 3 + 2x2 --2- 15x__:_- 25y = 0. 
dx dx dx 
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d4y d3y d2y dy 
20. x4- 4 -10x3~ + 57x?-~- 189x-d + 289y = 0. 

dx d:r d:r x 

PART IV. Transformations to constant coefficients. We found that if x = e1 then 
x(dyldx) = dy/dt and x2(d2y!dx?-) = d2y!dt2 - dyldt. 

21. Find an expression for x\d3y!d~) in terms of the derivatives of y with respect 
tot. 

22. Find an expression for 
d4y 

x4-
dx4 

in terms of the derivatives of y with respect to t. 
23. Transform the Cauchy-Euler equations in Parts II and III into constant coeffi­

cients equations in t by the change of variables x = e1• 

8.2 Obtaining a Second Solution 

We need to be able to find a second solution to a second-order linear differential 
equation given that one solution is known. Here is how to do this. 

Suppose that y1 (x) is a solution of L2(y) = a2(x)y" + a 1 (x)y1 + a0(x)y = 0. 
How is a second solution to be found? Let y = vy 1• That is y(x) = v(x)y1 (x). Then 

Y1 = V1y 1 + vy! andy" = v"y1 + 2V1YI + vy!1
• Substitute into L2 : 

L2(y) = L2(vy1) 

= a2(x)(v"y 1 + 2v1y~ + vyt) + a1(x)(v1y 1 + vy11 ) + a0(x)vy 1 

= (a2(x)y1 )v" + (2a2(x)y1 1 + a 1 (x)y1 )v1 

+ (a2(x)y1" + a1(x)y 11 + a0(x)y1)v 

since L2(y1) = 0. 
Let w = V1• Then W1 = v", and 

aix)y1 v" + (2a2(x)y1 1 + a 1 (x)y 1)v1 = a2(x)y1 W1 + (2a2 (x)y~ + a 1 (x)y1)w 

= 0 

is what we must solve. (If we know w, then we know v, and we can then find y.) The 
equation for w is merely a first-order linear differential equation having solution 

w(x) = exp - x [ I 
2a2(x)y11 + a 1 (x)y1 d ] 

a2(x)y1 

= exp [- I(2Y 11 + ai(x))dx] 
Y1 a2(x) 

= exp [- (lnyT)- I a1 (x) dx] 
a2(x) 

= 
exp [- J a 1 (xYa2(x) dx] 

yf 
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This means that 

I exp [- J (a1 (x)la2(x))dx] 
v(x) = 2 dx 

y 1 (x) 

so we find the second solution in terms of y 1 to be 

h(x) v(x)y 1 (x) 

I exp [- J (a 1 (x)la2(x))dx] 
= y 1(x) 2 dx. 

y1(x) 

You should verify that h(x) does satisfy L 2(y) = a2 (x)y" + a 1 (x)y' + a0 (x)y = 0 and 
that W[y 1 (x), h(x)] * 0. See Example 8.14 for an application of this technique (to 
series). 

More Thoughts on Substitutions 

It is of interest to note here that the substitution of y = vy 1 into L2(y) g1vmg 
L2(vy1) = (a2(x)y 1)v" + (2a2(x)y 1' + a1(x)y 1)v' + (a2(x)y1" + a1(x)y 1' + a0(x)y 1)v 

can be done without knowing in advance what role y 1 (x) is to play. One role is the 
one just discussed, where L2(y1) = 0. In this case, the order of the resulting equation 
can be decreased, as we saw. On the other hand, we can choose y 1 (x) to make the 
coefficient of v'(x) = 0. This means take 2a2(x)y 1' + a 1 (x)y1 = 0, so that 

( ) _ -J (a 1 (x)l2a2(x))dx 
Yi x - e . 

Since y1 * 0, the resulting differential equation has the form 

L(v) = v" + p(x)v = 0, where p(x) = - Lz(yl)(x) . 
a2(x)y 1 (x) 

This is one of the canonical forms for second-order differential equations. 

Exercises 8.2. 1. Write a few lines of code in Mathematica that finds this second 
solution, checks it, and verifies the linear independence. Then test your code 
on some second-order problems you make up using the Wronskian method of 
generating differential equations that was introduced in Example 4.17. 

2. PROJECT. Can one find a third solution of a third-order linear differential equa­
tion given two linearly independent solutions? With the help of Mathematica it 
can be done. The steps are interesting and require some careful thought. [Hint: 

Use your solutions one at a time to reduce the order from 3 to 2 to 1. Then, having 
solved the resulting first-order equation, perform the necessary two integrations 
to recover the third solution. Be careful to integrate the correct functions!] 
Here is a sample problem. The differential equation 

L 0 (y) = ( -x3 + 3x2 - 3x)y"' + (x3 - 3x + 3)y" 

+ (-3x2 + 3x)y' + (3x- 3)y = 0 

has as two solutions y1 (x) = x and y2(x) = x3. Find a third linearly independent 
solution. 
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8.3 Sums, Products and Recursion Relations 

Manipulating Sums and Products 

You are familiar with the summation symbol 

The condition on the second line is useful to reduce the necessity for specifying 
extra conditions on the indices and ranges of summation in complicated summation 
expressions. For instance, the sum 

I ck = I ck + I ck, for n0 ~ j ~ n1 
k=n0 k=n0 k= j+ I 
k*j 

makes sense without the need to state special cases when j = n0 or j = n1. 

You may also be familiar with the product symbol 

Once again the second line is needed for a product such as 

to make sense without the need to state special cases when j = n0 or j = n1. 

Definition 8.1. A difference equation is an equation of the form 

(8.3) 

The upper limit k1 may be infinite. The order of the difference equation is n - m 
( = (k + n) - (k + m)), the difference between the largest and smallest subscripts, 
which should both be nontrivially present in equation 8.3. 

k=k1 +n 
A solution of equation 8.3 is a sequence {<h)k=ko+m such that if k0 ~ k ~ k1, then 

A difference equation is sometimes called a recursion relation or a recurrence 
relation. 
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For example, from 

n+l n 

I ck = I ck +en+ I' n ;:: 0, 
k=O k=O 

we see that if 
n 

S11 = I ck for n ;:: 0, 
k=O 

then 

This is a first-order difference equation initial-value problem, and we know 
its unique solution, s11 = L:Z=o ck. It is first-order because the largest and smallest 
subscripts are one unit apart (n + 1 - n = 1). This solution is a sequence, each term 
of which is a sum. 

Similarly, from 
n+l n n Ck = (cn+l) n Ck, n;:: 0, 
k=O k=O 

we see that if 
n 

Pn = n ck for n ;:: 0, 
k=O 

then 
Pn+l = (p,)(cn+I) for n;:: 0. Furthermore, p0 = c0. 

This again is a first-order difference equation initial-value problem, and we 
know its unique solution, Pn = Ilk=O ck. The equation is again first-order because the 
largest and smallest subscripts are one unit apart (n + I - n = 1 ). The solution is again 
a sequence, but this time each term of the sequence is a product. 

The equation Pn+I = (p11)(c11+1) is homogeneous; sn+I = s, + c,+1 is nonhomoge­
neous. In each case the operator is linear: 

and 
L 2(s) = sn+I - S11 • 

You should check both of these for linearity. 
We first show how to do common manipulations with summations and products 

and then show how to solve some other more complicated difference equations. In 
other contexts, we call certain difference equations recursion relations because of the 
way they express how the terms of a sequence are related (recur). You should know 
the change of variables formula from calculus 

l b lb dy Lg(b) 
f(g(x))g'(x)dx= f(y)ddx= f(y)dy. 

a a X g(a) 
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Here we say that we have changed the variable from x toy = g(x). This takes an 
especially simple form in the case where y = g(x) = x- t, a simple translation by an 
amount t. Here 

Lb f(x- t)dx = L~:r f(y)dy. 

We illustrate this last transformation for sum and product 

n n-d 

Lck-d = 2.: Cp 
k=m j=m-d 

and 
n n-d n ck-d = n cj. 

k=m j=m-d 

Here we let k = j + d. To verify these quickly, note that the summands (or 
multiplicands) are the same at the lower limit, they are the same at the upper limit, 
and the indices step by the same amount ( = 1 ). This means 

and 

ck-dlk=n =en-d = cjlj=n-d · 

This explanation works for both sums and products. In the latter sum and product 
(whose index is j) we can change the index back to k without changing the result, so 
we can say 

and 
n n-d n ck-d = n ck, 

k=m k=m-d 

and verify the result the same way. The process just illustrated is called slipping the 
index. We slipped the index up by d in each case. 

Example 8.6 (M) (a) Show how to use Mathematica to do the process illustrated in 
the last paragraph. Here the amount to be slipped is the fixed amount d. Notice that 
the substitution rule accommodates both sums and products, depending on which 
operator matches Op. 

Solution. 

In[l]:= Clear[Slipindices] 

In[2]:= Slipindices[Op_[expr_, {k_,a_,b_}],d_] := 

Op[ (expr/.k-+ k +d), {k, a-d, b- d}] 

In [ 3] := Slipindices [Sum[c [k- d], {k, m, n}], d] 
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-dtn 

Out[3]= ,L: c[k] 
k=-d+m 

n 

In [4] := Slipindices [ L:c[k- d], d] 
k=m 

-d+n 

Out[4]= ,L: c[k] 
k=-d+m 

In [5] := Slipindices[Product [c[k- d], {k, m, n}], d] 
-d+n 

Out[5]= n c[k] 
k--d+m 

n 

In [6] := Slipindices [ n c [k- d], d] 

d+n 

Out [6]= n c [k] 
kc -d+m 

0 

In case the upper limit is infinite it is still infinite after the index change, so an 
infinite limit does not appear to change when the index is slipped. 

Our primary application of change of index manipulations is in situations such 
as 

00 

I k(k- l)ck.l-2 = I (k + 2)(k + l)ck+2.1. 
k=2 k=O 

Check to be sure that you understand completely how the transformation was 
made. We wanted to slip the index k up 2 units so that the exponent would be k 
rather than k - 2. 

Here is another example: 

I kck_I+I = I (k- l)ck-1.1. 
k=l k=2 

Here we slipped the index down 1 for the same reason. Note that when k- I 1, 
k = 2, so the new summation starts at 2. 

Example 8.6 (M) (b) Illustrate on the last two summations how Mathematica can be 
made to automatically determine the amount by which the index should be slipped. 
The criterion chosen is to have the power of x be k. 

Solution. First define a substitution rule that is to be applied to summations whose 
indices are to be slipped. 

In [ 7 J : = SlipindicesPwr [ Op_ [ expr_ * xk_+d_., {k_, a_, b_}]] . -

ap[(expr/.k-+k-d) *Xk, {k,a+d,b+d}] 

SlipindicesPwr [A_ + B_] : = SlipindicesPwr [A] 

+SlipindicesPwr[B] 
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"' 
In [8] := SlipindicesPwr[ I,k (k -1) c[k] xk-2 ] 

k=2 
00 

Out[8]= I(l+k) (2+k) xkc[2+k] 
k oQ 

00 

In [ 9 J: = SlipindicesPwr [I, k c [k] xk•l] 
k=l 

00 

Out[9]= I(-l+k) xkc[-l+k] 
k=2 

Example 8.7 Add the two sums 2:~2 k(k- l)ck.xk-2 and Lk=l kcki'+ 1• 

0 

Solution. These two sums could not readily be added as they are, but can be added 
easily, once indices are slipped (so we have xk in each sum) and the lower indices 
made equal by breaking the first two terms out of the first sum. Combine like sums. 
This is how to add the two sums: 

00 00 

I k(k- l)ck.xk-2 +I kckJ<+I 
k=2 k=l 

00 00 

=I (k + 2)(k + I)ck+2~ +I (k- l)ck-l~ 
k=O k=2 

00 00 

= (2)(l)c2 + (3)(2)c3x +I (k + 2)(k + l)ck+2~ +I (k- l)ck-l~ 
k=2 k=2 

00 

= (2)(l)c2 + (3)(2)c3x +I [(k + 2)(k + l)ck+2 + (k- l)ck_ 1 ]~. 0 
k=2 

This sort of manipulation will occur often as we continue our studies in this 
chapter. To pursue this for a moment more, if we wanted the above sum to represent 
the zero function, then each coefficient of x to a power must be 0. So c2 = c3 = 0, 
and fork;::; 2, 

(k + 2)(k + l)ck+2 + (k- l)ck-l = 0. 

This is a third-order (k + 2- (k- 1) = 3) homogeneous linear difference equation. 
It is very similar to those we were looking at a short time ago. 

Example 8.7 (M) Do Example 8.7 in Mathematica. 
Solution. The rule slipindices was defined in Example 8.6. 

In [ 10] : = SlipindicesPwr [ Op_ [ expr_ * xk-•d_., {k_, a_, b_}]] . -

ep[(expr/.k-+k-d) *Xk, {k,a+d,b+d}] 

SlipindicesPwr [A_ + B_] : = SlipindicesPwr [A] 

+SlipindicesPwr[B] 
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00 1 00 

In[11] := FirstTerms( L: d_] := L:ct+ L:ct 
k_=O k=O k=2 

First Terms [U_] : = U 

Break out the first two terms. 
00 00 00 

In[12]:= CombineSums2[d3_. + .2:: dl + .2:: d2_J == d3 + .L:(dl + d2) 
k_=a_ k_=a_ k=a 

00 00 

In [13]: = sl = SlipindicesPwr [ L:k (k- 1) c[k] xk-2 + Lk c [k] xk•l] 
k=2 k=l 

Out[13]= 2>-1+k) xkc[-1+k] + I(1+k) (2+k) xkc[2+k] 
k=2 k=O 

In [ 14] : = s2 =Map [First Terms, sl] 

Out [ 14] = 2 c [ 2 J + 6 x c [ 3] +I ( -1 + k) xk c [ -1 + k J +I ( 1 + k) ( 2 + k) x' c [ 2 + k J 
k-2 k:-) 

Combine the two summations. 

In[15]:= CombineSums2[s2] 

Out [ 15] = 2 c [ 2 J + 6 x c [ 3] +I ( ( -1 + k) xk c [ -1 + k] + ( 1 + k) ( 2 + k) xk c [ 2 + k J ) 
k-2 

It is clear that the latter expression is the same as that obtained in Example 8.7. 
The terms inside the summation can be combined and simplified. This is done in the 
notebook Formal Series. Ordinary Point. 0 

Solving Recursion Relations 

It is of some interest to solve the general first-order linear difference equation (recur­
sion relation). The problem is to solve 

Yn+l = CnYn + d/1, n 2:: 0, Yo= Q'. 

Notice that this combines the two first-order equations we saw before, but that the 
statement is slightly different: we have C11 and d11 , instead of c n+ 1 and dn+ 1. This was 
done because it is often easier to see what a function of n is than to see what a 
function of n + I is. There is no change in our methods: We evaluate the first several 
y n until we see a pattern, guess the general form, and then prove that our guess is 
correct. The fundamental existence and uniqueness theorem, Theorem 8.3, says that 
for each initial point y0 = a, there is a unique solution. We proceed to find it. 

Y1 CoYo +do 

coa +do 

h clyl +dl 

c1(c0a + d0) + d1 

c1c0a + (c 1d0 + d1) 
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Y3 = CzYl + dz 
c2(c1c0a + (c 1d0 + d1)) + d2 

c2c1c0a + c2(c1d0 + d1) + d2 

c2c1c0a + (c2c1d0 + c2d1 + d2 ) 

Y4 C3Y3 + d3 
c3(c2c1c0a + (c2c1d0 + c2d1 + d2 )) + d3 

c3c2c1c0a + c3(c2c1d0 + c2d1 + d2)) + d3 

c3c2c 1c0a + (c3c2c1d0 + c3c2d1 + c3d2 + d3 ). 

The coefficient of a is a product and the other term is a sum of products. From 
the patterns presented, we make the guess: 

n-1 n-1 [ n-1 l 
Yn=a(Jc;+ ~ XIcj d;. (8.4) 

If you do not understand what the expression in equation 8.4 says, write out what 
it means for n = 0, 1, and 4. This should help. You should check that when n = 0 
(and 1, 2, 3, and 4) the expression agrees with the value of the corresponding Yn 
determined just above. 

We now need to show that this expression satisfies Yn+i = cnYn + dn for every 
nonnegative integer n. You just showed it to be correct for n = 0. We now show that 
if it is correct for n = m, then it is correct for n = m + 1. Thus, by the principle of 
mathematical induction, it is true for every nonnegative integer n. Assume that 

is correct. Then 

m-1 n-1 [ m-1 l 
y m = a 0 C; + ~ joi C j d;. 

cma 0 C; +em~ [J], cjJdi + dm 

aQc;+ ~[cmj[tcjJd;+dm 

= aQc;+ ~[ji)cjJd; 
Ym+l" 

This completes the proof (by induction) that the stated expression for Yn is a solution 
of the difference equation for very nonnegative integer n. 
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In the coming sections we will have to solve difference equations of the form 

n-1 

f(n, k)yk+n = 2..: g/k)Yk+j' k 2: k0. 

j=O 

This is an nth-order difference equation so long as f(n, k) and g0(k) are nonzero, 
because then the largest and smallest subscript are k + n and k, and their difference 
is n. In this case there is a solution function F(k) such that fork ;:: k0, 

n-1 

f(n, k)F(k + n) = 2..: g /k)F(k + j). 
j=O 

In general it is difficult to find a formula for such a solution function, but here is 
an existence and uniqueness theorem. 

Theorem 8.3 (Existence and Uniqueness: Difference Equations). Suppose that 

the function ¢J is a real-valued function defined throughout Rn+l, and that {a;};:; 
are numbers. If f(n, k) * 0 fork 2: k0, then there is a unique solution of 

f(n, k)yk+n = ¢J(k, Yk' Yk+1' ... , Yk+n-l ), k 2: ko, (8.5) 

having the property that 

Yko+j = aj for 0 ~ j ~ n- 1. 

Equation 8.5 is a (possibly nonlinear) difference equation. If 8¢(x, y, ... )!By* 0 then 
the order of the difference equation is n. 

Proof The proof hinges on the fact that if n consecutive values of y are known, 
then the (n + 1)st is uniquely determined by the equation. Calculate 

1 
Yk0 +n = f(n, ko) c/J(ko, Yko' Yk0+ 1' · · ., Yk0+n-l) 

1 
= f(n, ko) cp(ko, ao, a" ... , an-1), 

so Yk +n is known uniquely. Ifym, Ym+ 1, ... , Ym+n-l are known, then 
0 

1 
Ym+n = f(n, m/(m, Ym' Ym+l' ... , Ym+n-1) 

is uniquely determined since f(n, m) * 0, and the proof is complete. D 

Having the existence and uniqueness theorem puts us in a position analogous 
to where we were at the beginning of the course where we had an existence and 
uniqueness theorem for differential equations, but we did not know how to solve any 
of the equations whose solutions we could prove existed and were unique. In case 
f(n, m) = 0 for some m 2: m0, we cannot determine Ym+n from 

f(n, m)ym+n = ¢J(m, Ym' Ym+l' · .. , Ym+n-1). 

Two situations arise. 
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1. If ¢(m, Ym' Ym+ 1, .•. , Ym+n- 1) = 0, then Ym+n is arbitrary, and there may be a solu­
tion beyond m. 

2. If ¢(m, Ym' Ym+ 1, ••• , Ym+n-l) :f:. 0 then we have 

0 = f(n, m)ym+n = ¢(m, Ym' Ym+l' ... , Ym+n-l) :f:. 0. 

Since this cannot happen, we have no solution that defines Yk+n fork;;:: m. 

Here is another example of a typical solution process. Solve the difference equa­
tion 

Find out how the solution sequence starts: 

az = f(O)a0 = f(O)a 

a3 f(l)al = f(l)fJ 

a4 f(2)a 2 = f(2)f(O)a 

as = f(3)a 3 = f(3)f(l)f3. 

This is enough to guess that the solution is 

( m-l ) ITj=O f(2j) a 

( m-1 ) ITj=O f(2j + 1) fJ 
for m;;:: 0, (8.6) 

and prove it by mathematical induction. (This is an exercise.) 
Two-term variable coefficient difference equations such as this are easy to solve. 

Three-term difference equations can be very difficult, and more than three terms with 
variable coefficients are rarely solved-in the sense that a formula for the solution is 
given. 

Exercises 8.3. PART I. Verify the equality of these sums or products: 

5 9 

1. I3i = I3i-4_ 
i=O i=4 

n 1 n+i ( 1)! 
2. (a+ x)" n. an-k~ = " n + . an+i-k~. 

~ k!(n- k)! ~ k! (n + 1 - k)! 
n n-l 

3. n k + 1 = n k + 2 = n + 1. 
k=l k k=O k + 1 

PART II. Verify that the given functions are solutions of the difference equation 
or difference initial value problem. Constants are represented by c, c 1, etc. 
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PART III. Theory. 

8. Show that the difference equation ak+2 = -a,/((k + 2)2), k 2: 0 is second-order 
and has as solutions the two sequences, one even and one odd: 

(-l)mao 

22m(m!)2 

(-!)mal 
for m 2: 0. 

where a0 and a 1 are arbitrary. Any linear combination of these is also a solution. 
9. Prove that the two functions given in equation 8.6 define the only solution of the 

difference initial-value problem 

10. The sequence an is defined by 

an a 11 _ 1 - (n- I )an-l• n 2: 2, 

a0 a 1 = 1. 

Show that the solution sequence satisfies the equation 

'\' a -- = exp x - r 00 X' ( ") 
D "n! 2 
n=O 

by differentiating both sides of this equation and manipulating the result as a 
series expression. (You may need to slip the indices in the recursion relation, 
depending on just how you manipulate the series.) [From the solution of problem 
91-9, SIAM Review, 34(2) pp. 315--317.] 

8.4 Series Solutions of Differential Equations 

You can easily verify that y(x) = cex' is a solution of y' - 2xy = 0 for each choice 
of the number c. From your study of Taylor3 series you know that e1 = 2::~0 t"lk!, 

3 Brooke Taylor (1685-1731), British mathematician. As secretary of the Royal Society, he 
supported Newton in the acrimonious battles with Leibniz over who invented calculus. 
Taylor series were invented by John Bernoulli, and Taylor knew it when he published his 
formula. 
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and this sum converges for every real (or complex) value oft. So you know that 
cr;X2 = c L:;;o (x2)klk! = c L:;;o x2k!k! for every real x. This infinite series is a solution 
of y'- 2xy = 0. It is worth your while to verify this claim. The manipulations that you 
encounter are typical of those we will see throughout this study of series solutions of 
differential equations with variable coefficients. 

How could we have found an infinite series solution directly from the differential 
equation without having to know the Taylor series for some function? This is the 
topic of this section. We will consider power series solutions of first-order equations 
now and defer second-order equations until later. 

Review Power Series 

A power series is an infinite series of the form 

The number cis called the center, and the numbers {ak}k':,o are the coefficients. Here 
are some of the properties of power series that we will use. 

• The power series :L:;;o ak(x- c)k is convergent at z provided that 
limn-.oo :L:Z=o ak(z- c)k exists. 

• The power series :L:;;o ak(x- c)k is absolutely convergent at z if the power series 
2::;:0 lakllz - elk is convergent. 

• If the power series 2::;:0 ak(x- c)k is absolutely convergent, then it is convergent. 
• A power series that is convergent, but not absolutely convergent, is called condi­

tionally convergent. 
• Either there is a number R such that if lz-cl < R, then :L;k':,0 ak(z-c)k is absolutely 

convergent or the series converges only for z = c, in which case we say R = 0. 
The largest such R is called the radius of convergence of the power series. The 
radius of convergence may be infinite, in which case the series is called entire. 

• If R is finite, the convergence of 2::;:0 ak(x-c)k at the two points where lx-cl = R 
has to be examined specially. 

• If the power series for f(x) = 2::;:0 ak(x- c)k converges absolutely on an interval 
then the series can be integrated or differentiated term by term with the result that 

J'(x) = l>ak(x- c)k-1 
k=l 

and 

f f(x)dx = ~ ak(x- c)k+l 

~ k+l 
k=O 

• The ratio test is of especial importance in the study of power series. It states that 
if limk-.oo i(ak+ / ak)l = rand r < 1, then the series :L:;;o akxk converges absolutely 
(for lxl < llr if r > 0 and for all x if r = 0. 



264 8 Higher-Order Differential Equations with Variable Coefficients 

An Example of Solution by Series 

Example 8.8 Solve y' - 2xy = 0 by assuming a solution of the form 

Solution. We have our solution as soon as we determine each of the coefficients 
{ak}k:o. This means that we have to determine an infinite collection of numbers. 

We do this by attempting to find a formula for the coefficients in the form ak = 
f(k). It is not always possible to write down such a formula. But you can always 
establish a relationship between the coefficients that permits the calculation of any 
desired coefficient. This is essentially as good as a formula. 

Assume that the series is absolutely convergent on a interval centered on 0 so that 
we can differentiate term by term. Thus, given 

we have 
00 00 

y' = L ka,/'- 1 = L kak:J<-I. 
k=O k=! 

(The index of summation can start at I since the term corresponding to k = 0 is 0.) 
Therefore 

y'- 2xy L ka,/'- 1 - 2.x L: ak:J< 
k=l k=O 

00 00 

L: ka,/'- 1 - L 2ak:J<+I 
k=l k=O 

00 

L: (k + l)ak+!j<- L: 2ak_1X' 
k=O k=l 

(slip k ---t k + 1 in first sum) 

00 00 

= (0 + l)a0+1x0 + L (k + l)ak+Ij<- L 2ak_1X' 
k=l k=l 

00 

a 1 + L: [(k + l)ak+I - 2ak_1]X' 
k=l 

We want this sum to be 0 for all x in our interval centered on 0. For this to happen, 
two things must occur: 

1. a 1 = 0, and 
2. (k + l)ak+I - 2ak-I = 0, for k ~ I. 
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We now have what is called a recursion relation (or recurrence relation). It shows 
the way coefficients in the assumed series are related for the series to be a solution. 

Collections of coefficients have to cooperate in order for a power series to be a 
solution. Equation (2) expresses the form of that cooperation, namely (k + l)ak+l = 
2ak-l and equation (1) says that a 1 has no choice: it must be 0. 

In order to get a function that says what each coefficient is, we need to "solve" the 
recursion relation as we did in the last section. The technique involves three steps: 

1. look at some sample terms for early indices; 
2. guess a formula that describes these terms; 
3. use mathematical induction and prove that the guess is correct. 

The recursion relation we have is ak+ 1 = 2/(k + l)ak-J fork :::0: 1. By substituting 
values for k we can see that 

(k = 1) a2 = 2/(1 + l)a0 = a0 . 

(k = 2) a3 = 2/(2 + l)a 1 = (2/3)a1 = (2/3)0 = 0. 
(k = 3) a4 = 2/(3 + l)a2 = (214)a0 = (l/2)a0 . 

It is still too early to see a clear pattern, so we proceed. 

(k = 4) a5 = 2/(4 + l)a3 = (2J5)a3 = 0. 
(k = 5) a6 = 2/(5 + l)a4 = (1!3)a4 = 1!((3)(2)(1))a0 = 1!(3!)a0. 

It is possible to make a reasonable guess at this point, especially given the way 
the denominator of a6 has been expressed. If you are not ready to guess, try some 
more terms. 

Here is my guess: 

a2m+l = 0, m :::0: 0. (aodd = 0) 

and 
a2m = (1/m!)a0, m :::0: 0. 

This guess defines all of the coefficients. The question now is: is the guess cor­
rect? 

Observe that the guess works for all of the coefficients that we had calculated: 

and 

and 
a6 = (113!)a0. 

This is not a proof, but if it had not worked we would have had proof that the 
guess was wrong. 

Here is proof that the guess is correct. We use the recursion relation 
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for k 2:: 1. 

Start with the assumptions that a0 is arbitrary, a1 = 0, and that for some m 2:: I, 
we have the two adjacent coefficients a2m+l = 0, and a2m = (llm!)a0 . We show that 
the next two coefficients (using m + I) have the correct form. 

2 2 
a -a ----- a - a -O 

2(m+l)+l - 2m+3- 2(m + 1) + 1 2(m+l)-l - 2(m + I)+ I 2m+l - ' 

so the next odd-numbered term has the correct form. For the next even-numbered 
coefficient, 

2 I l I 
a2(m+l) = 2(m + l)a2m = m +I m!ao = (m + l)!ao, 

which also has the correct form. Since a0 and a 1 are correct and the correct form 
for the coefficients at m + 1 follows from the form for the coefficients at m, we 
have established the correctness of our formulas for all nonnegative integers k. (Note 
carefully where the recursion relation was used and where the assumptions were 
used. Both should be used in your proof.) 

It is of interest to express our solution as a sum: 

00 00 

~ a2mx2m + ~ a 2m+ I x2m+ I, 

m=O m=O 

(even terms, then odd terms) 
oo I oo 

'\' -a 2m+'\' Ox2m+l 
Dm! 0 L...J 
m=O m=O 

00 l 
a '\' -x2m + 0 

OL...Jm! 
m=O 

00 l 
a '\' -x2m. 

oL...Jm! 
m=O 

Observe that, except for the names of the index and the arbitrary constant, this is the 
series that we obtained at the start of this investigation. We can change the name of 
the constant a0 to c and that of the index from m to k without affecting the meaning 
of the sum. The terms of a series can be rearranged if the series converges absolutely. 
That is the case here since all of the terms of the series are nonnegative. 0 

Example 8.8 (M) Work the previous example by Mathematica. 
Solution. (From the notebook Quick Series Solution.) Define the operator 

In[l] := Clear[L, x, y, LHS, a, s, soln] 
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In[2]:= L[x_,y_] =y'[x]-2xy[x] 

Out { 2) = -2 X y [X) + y' [X) 

Set n (the number of terms desired) to 10 

In[3] := n = 10 

Out[3]= 10 

The next cell says to create a sum of n terms and effectively tum it into a series 
by saying that the terms beyond n are indefinite. 0 [ x] A ( n + 1 ) indicates we know 
nothing about terms of order n + 1 and beyond. Here is the series to be assumed. 

n 

In [4] := y[x_] = .l:a[i]xi + O[x]n+l 

Out [ 4] = a [ 0 J + a [ 1] x + a [ 2] x 2 + a [ 3] x 3 + a [ 4 J x 4 + a [ 5] x 5 + 

a[6] x 6 +a[7] x 7 +a[S] x 8 +a[9] x 9 +a[10] x 10 +0[x] 11 

Substitute into the differential operator. 

In [51:= LHS =Collect [L [x, y], x] + 0 [x] 10 

Out[5]= a[1] + (-2a[O] +2a[2])x+ (-2a[1]+ 
3a[3])x2 + (-2a[2] +4a[4])x 3 + 

(-2a[3] + 5a[5]) x 4 + (-2a[4] + 6a[6]) x 5 + 
(-2a[5] +7a[7J)x 6 + (-2a[6J +8a[8J)x7 + 

(-2a[7J +9a[9J)x 8 + (-2a[8J +10a[10J)x 9 +0[xJ 10 

Equate the coefficients to 0. Notice that the recursion relation has appeared in the 
latter coefficients. (Its form remains to be guessed.) The operator & & means And. 

In[6] := sys = LogicalExpand[LHS == 0] 

Out[6]= a[l] ==0&&-2a[O] +2a[2] ==0&&-2a[l] +3a[3] ==0&& 

-2a[2J +4a[4J ==0&&-2a[3J +5a[5J ==0&& 

-2a[4] +6a[6] ==0&&-2a[5] +7a[7] ==0&& 

-2a[6J +8a[8J ==0&&-2a[7J +9a[9] ==0&& 

-2a[8J +lOa[lOJ ==0 

Find the coefficients. Using Reverse [Table [a [ i J 1 i 1 0 1 n] ] makes the 
form of the coefficients agree with what you would find by hand: the latter terms 
are found in terms of the former. 

In [ 71: = coeff =Solve [sys, Reverse [Table [a [j], { j, 0, n} ]]] 
Solve : : svars : Equations may not give solutions for all "solve" variables. 

{{ a[OJ a[OJ 
Out [ 7] = a [ 10 J .._. --, a [ 9 J .._. 0, a [ 8 J .._. --, a [ 7 J .._. 0, 

120 24 
a [OJ a [OJ 

a[6J .._. - 6-, a[SJ .._. 0, a[4J .._. - 2-, a[3J .._. 0, 

a[2J .._. a[OJ, a[1J .._. o}} 
Get the solution series; take a [ 0] ==1. 

In[B]:= s[x_] =y[x]/.coeff[[1]]/.a[0]-+1 
z x4 x6 xs xlo 11 

Out [ 81 = 1 + x + - + - + - + -- + 0 [ x J 
2 6 24 120 



268 8 Higher-Order Differential Equations with Variable Coefficients 

The known solution has the same initial terms. 

In [9] := soln[x] =Series [ Exp [ x 2 ], {x, 0, n}] 
x4 x6 xs x10 

Out[9]= l+x2 +-+-+~+·-+0[x] 11 
2 6 24 120 

Check the series that we have found. 

In[lO]:= Simplify[L[x, s]] 

Out[lO]= O[x] 10 

What this says is that L [ x, s] ==0 through terms of order 9 in x. 0 [ x] Al 0 says 
the remainder starts at the x 10 term. 0 

There are functions of great value in the sciences, among them the Bessel4 func­
tions, that can only be defined in terms of power series. One can argue that the fa­

miliar sine, cosine, exponential, and other functions with which we are familiar can 

also only be defined by power series. In fact when they need to be evaluated (in your 
calculator, for instance), this is done by calculating the value from a power series or 
from some other function that was obtained from a power series. 

Exercises 8.4. PART I. Verify that the given series are solutions of the differential 
equation or initial value problem. 

dy 
1. - - 2xy(x) = 0; 

dx 

00 2k 

y(x) = L :! . 
d2y 

2. dx2 + y(x) = 0, y(O) = l, 

d2y 
3. dx2 + y(x) = 0, y(O) = 0, 

d 3y d 2y dy 
4. ·- - - + - - y(x) = 0; 

dx3 dx2 dx 

k=O 

y'(O) = 0; 

y'(O) =I; 

oo ( -l)k x2k 

y(x) = L (2k)! 
k=O 

oo (-l)kx2k+l 

y(x) = L (2k + 1)! 
k=O 

00 xk 
y(x) = L k!. 

k=O 

PART II. Solve the following differential equations in powers of x by the methods 
of this section. You may wish to modify the notebook Quick Series Solution to assist 
you by checking your calculations. Find the complete solution by the methods of 
Chapter 3 and compare the power series for the complete solution with the result 
you found. Use the built-in Mathematica function Series to compute the series for 
the complete solution. 

dy 
5. dx- 3y = 0. 

dy 
6. - + (x + l )y = 0. 

dx 

7. dy + (x2 + l )y = 0. 
dx 

4 Friedrich Wilhelm Bessel (1784-1846), German astronomer. Used parallax measurement 
to determine the distance to a fixed star. He was a close personal friend of Gauss. His Bessel 
functions have many important uses in physics. 
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8.5 Series Solutions About Ordinary Points 

An important application of formal series methods to the solution of linear ordinary 
differential equations is the case of second-order differential equations with variable 
coefficients. When second-order differential equations are solved by series methods, 
essentially every special case behavior is encountered or at least alluded to. There are 
enough opportunities for study in the second-order case for individuals to actually 
specialize in studying them. The fundamental concepts are applicable to higher-order 
equations as well, so we propose to introduce the theory in the general case. 

Definition 8.2. The function f is analytic at x0 means that f(x) is represented by its 
power series near x0. That is, 

f(x) = I ck(x- x0 )k for lx- x01 < R. 
k=O 

The differential equation we consider is 

(8.7) 

We seek a solution near x0 where an(x), an-l (x), .. . , a0(x), and q(x) are analytic at x0. 

We will concentrate on the solution of the homogeneous equation, because a partic­
ular solution of the nonhomogeneous equation can often be obtained by techniques 
learned previously. Series methods can be used to find a particular solution by equat­
ing coefficients on the left-hand side with the corresponding coefficients ofthe series 
expansion about x0 of the function q(x). 

Definition 8.3. The point x0 near which we seek a solution is called the center of the 
expansion. Such points are either ordinary or singular. 

The point x0 is an ordinary point of equation 8.7 provided that an(x0 ) * 0. 
The point x0 is a regular singular point of equation 8.7 provided that equa­

tion 8.7 is expressible as 

(x- x0 )n Pn(x)/n)(x) + (x- x0t-l Pn-l (x)y<n-l)(x) 

+ · · · + (x- x0 )p1 (x)y'(x) + p(x)y(x) = Q(x), (8.7 RSP) 

where the functions Pn(x), Pn-l (x), ... , p0(x) and Q(x) are analytic at x0. 

Otherwise the point x0 is an irregular singular point. 

The fundamental theorem for series expansions about ordinary points was proved 
in 1866 by L. Fuchs.5 It was he who introduced the term fundamental solution. 

5 Immanual Lazarus Fuchs (1833-1902), German mathematician. He made many advances 
in the theory of differential equations, and was instrumental in the creation of the modem 
theory of differential equations. 
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Theorem 8.4 (Ordinary Points). If the coefficients and right-hand side of the equa-
tion 

y<nl(x) +an-i (x)y<n-i)(x) + · · · + a0(x)y(x) = q(x) (8.7 OP) 

are all analytic at the point x0, and if R is the smallest of the radii of convergence 
of the coefficient functions of the equation, then there are n linearly independent 
solutions of the homogeneous equation 

y<nl(x) + an_1(x)y<n-i)(x) + ··· + a0(x)y(x) = 0 

of the form y(x) = Lk:o ck(x- x0)k. These are all (absolutely) convergent with radii 
of convergence at least R. There is also a particular solution of the same form having 
the same convergence properties with radius of convergence at least the smaller of R 
and the radius of convergence of the series that represents q(x). 

The theorem concerning regular singular points, due to Frobenius6 is more com­
plicated and its results are less definitive. There are powerful applications, especially 
in the second-order case. 

Theorem 8.5 (Regular Singular Points). Suppose that equation 8.7 can be written 
in the form (8.7 RSP) with all of the functions Pn(x), Pn-i (x), ... , p0(x) and q(x) ana­
lytic at x0• Suppose that R is the smallest of the radii of convergence of the coefficients 
of the equation, then there are at most n linearly independent solutions having the 
form y(x) = Lk:o ck(x- x0 )k+r that are solutions of the homogeneous equation. The 
number r is called an index of the equation. There are at most n values that r can 
take; to each distinct value of r there results a solution, but not all are necessarily 
linearly independent. 

There is a particular solution of the same form having the same convergence 
properties with radius of convergence the smaller of R and the radius of convergence 
of the series that represents q(x). 

The indices are roots of the indicial equation which we will see in due time. 
When there is a root r of the indicia! equation of multiplicity m greater than I, 

then, in addition to a solution of the homogeneous equation of the form 

there are often solutions of the form 
m-1 oo 

y2(x) = y 1 (x) I d}ln(x- x0 ))j + I ck(x- x0 l+r. 

j=i k=O 

These are clearly not strictly power series and they are defined only for x > x0. 

Determining when such solutions exist is a delicate task which we leave to those who 
are interested in the question. The Bessel equation will provide us with an example 
where the solutions corresponding to the two roots are not linearly independent when 
the indices are integers. When the indices of the Bessel equation are not integers, 
however, the solutions corresponding to the two indices are linearly independent. 

6 Ferdinand Georg Frobenius ( 1849-1917), German mathematician. 
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Classifying the Point x 0 

Given that x0 is not an ordinary point of equation 8.7 how does one convert equa­
tion 8.7 into equation (7.7 RSP)? How can you tell that the form (8.7 RSP) is not 
possible? Here is the calculation. It provides criteria that insure x0 is a regular singu­
lar point. 

Divide the homogeneous equation 8.7 by an(x) to get 

y(n)(x) + (an_,(x))yrn-l)(x) + ... + (ao(x))y(x) = 0. 
an(x) an(x) 

(8.8) 

Then the requirement is that each of the n functions 

(x-x )(an_,(x)) 
o an(x) 

= Pn-1 (x), 

(x- x )2 ( an-2(x)) 
o an(x) 

= Pn-2(x), 

(8.9) 

(X- X r' ( al (X)) 
0 an(x) 

= p,(x), 

(x - x )n ( ao(x)) 
0 an(x) 

= Po(x) 

be analytic at x0. When the functions defined in equations 8.9 are each analytic at x0 , 

multiply equation 8.8 through by (x- x0 )n. Then 

which is equation (8.7 RSP). The equations 8.9 constitute the test for whether or not 
the singular point x0 is regular. If each function in 8.9 is analytic at x0, then x0 is 
a regular singular point; otherwise x0 is an irregular singular point. Here are some 
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examples of differential equations to see how to classify points as ordinary, regular 
singular, or irregular singular. If all of the coefficients are analytic at x0, then any 
point x0 where an(x0 ) t- 0 is an ordinary point. If x0 is a point where an(x0 ) = 0, 
then expand every coefficient in a power series about x0 . Check for the factorization 
indicated in equation (8.7 RSP). For example: 

Example 8.9 Given the differential equation 

(x2 - l)2y" + (Sx- S)y' + (x4 - l)y = 0. 

Classify all points as being either ordinary, regular singular, or irregular singular. 
Solution. The only singular points are 1 and -1 since that is where x2 - 1 = 0. 

Every other point is an ordinary point. Consider the singular point x0 = 1. After 
dividing through by (x2 - 1) we have 

, ( Sx - 5 ) , ( x4 
- I ) 0 

y + (x2 - 1 )2 y + (x2 - 1 )2 y = . 

From here on we let Mathematica do the work. We have 

In [ 1 1 : = xO = 1 

Out [ 1 1 = 1 

5x- 5 
In [21 := p1 [x_] =Series [ (x- xO) 2 , {x, xO, 3}] 

(x2 - 1) 
r, 5 5(x-1) 15 2 5 1 4 

Out[L]= -- +- (x-1) -- (x-1) +O[x-1] 
4 4 16 8 

p 1 (x) is analytic. Now consider 

x 4 - 1 
In [ 31 := pO [x_] =Series [ (x- xO) 2 

2 , {x, xO, 3}] 
(x2 - 1) 

1 2 1 1 4 
Out[31= (x-1) +- (x-1) +- (x-1) +O[x-1] 

2 4 
So p0(x) is analytic. 

(8.10) 

Therefore when multiplied through by (x - I )2, the coefficients of equation 8.10 
factor into 

(x -l)2y" + (x- l)p 1(x)y' + p0(x)y = 0, 

and x0 = 1 is a regular singular point. 
Now consider the singular point x0 = -1. Again let Mathematica do the work. 

From equation 8.10 we see that we must consider 

In[4j := xO = -1 

Out[41= -1 

5x- 5 
In[5]:= p1[x_] =Series[(x-xO) 2 , {x,x0,3}] 

(x2 -1) 

Out[51=- 5 5 5 (x+ 1 ) 5 (x+1) 2 -~ (x+1) 3 +0[x+1] 4 

2(x+1) 4 8 16 32 
and 



8.5 Series Solutions About Ordinary Points 273 

x 4 -1 
In [6] := pO [x_] =Series [ (x- x0) 2 2 , {x, xO, 3}) 

(x2 - 1) 
1 1 

Out[6]= -(x+l) +- (x+1) 2 -- (x+1) 3 +0[x+1] 4 

2 4 
The function p0 is analytic at x0 = -1, but p 1 is not. (It is undefined for x = -1.) 
The conclusion is that 1 is a regular singular point, -1 is an irregular singular 

point, and all other points are ordinary points of the equation. 0 

The notebook Classify Points does these calculations for us. The main function, 
Classify[x, xO, y, operator],willsaywhatthestatusofthepointxOis 
in the differential operator operator. The parameters x andy are symbols, xO is 
an expression, and operator is the name of the differential operator. 

Example 8.9 (M) Two function calls suffice to make the tests we just did. 
Solution. Load ClassifyPoints .rn. Define the operator. 

In[?]:= Clear[L,x,y] 

In[B]:= <<"/Applications/MathematicaS.O.app/AddOns/ 

ExtraPackages/RossDE/ClassifyPoints.m" 

In[9]:= L[x_,y_] = {x2 -1} 2y"[x] +5(x-1)y'[x] + {x4 -1}y[x] 

Out[9]= (-l+x4 ) y[x] +5 (-l+x) y'[x] + (-l+x2 ) 2 y"[x] 

In[lO] := Classify[x, 1, y, L] 
The point xO = 1 is a regular singular point. 

In[ll] := Classify[x, -1, y, L] 
The point xO = -1 is an irregular singular point. 0 

Predicting Properties of the Recursion Relation 

When finding a power series solution for a first-order equation, we can expect a 
recursion relation to appear that says how all of the coefficients after a certain index 
are related. It is possible to determine many of the attributes of that recursion relation 
by inspection of the differential operator itself. First, express the coefficients of the 
differential equation in powers of (x- x0 ). The essential observation to make is that a 
term such as (x- x0)m(dkyl di') changes the term (x- x0 )j of a series expansion into 
(x-x0r+ j-k. In other words, the exponent changes by the amount m-k. The set of all 
changes that can occur determine the terms ck+s that occur in the recursion relation, 
the order of the recursion relation, and the index at which the relation takes effect. 
Here is an example: Consider the differential equation with solution to be expanded 
aboutx0 = 0: 

L(y)(x) = ( l)y" + (2x+ x2 )y' + (4+ x)y = 0 
.lJ, .lJ, .lJ, .lJ, .lJ, 

Changes ---t -2 0 1 0 
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Tum these changes into a set by eliminating duplicates: DS(L) = l-2, 0, 11. This 
set is called the determining set of the operator, because it determines so much of the 
behavior of the recursion relation. From this one learns to see that the terms involved 
in the recursion relation are ck-(-2), ck_0, and ck_ 1, or ck+2, ck, and ck-I· The recur­
sion relation is a three-term recursion relation (involving the three terms shown). 
It is third- (maxDS(L)- minDS(L) = I - (-2) = 3) order, and is applicable for 
k 2': 1 = maxDS(L). These conclusions are based on the requirement that all sum­
mation indices should be adjusted so that for ordinary series the common power of 
(x- x0 ) is (x- x0 )k and for Frobenius's method the common power of (x- x0 ) is 
(x - x0)k+r. There will always be as many initial equations as the starting index of 
the general summation that defines the recursion relation. The starting index of the 
general summation should cause c0 to be involved, but no prior cj. An mth-order 
(linear) recursion relation has a solution involving m arbitrary constants, but if the 
order of the differential equation is 11 < m, the desired solution will involve (at most) 
11 arbitrary constants. Note that the determining set is useful when the coefficients of 
the differential equation are polynomials, but not when they are expressible as infi­
nite series, because then the determining set is not bounded, and has infinitely many 
members. 

Example 8.10 Solve L(y)(x) = y" + (2x + x2)y' + (4 + x)y = 0 by a power series with 
center at x0 = 0 to illustrate the properties of the determining set. 

Solution. We showed above that the determining set DS(L) = l-2,0, I}. Watch 
how these numbers play a central role in our calculations. Since x0 = 0 is an ordinary 
point, assume 

Then 

and 

00 

y(x) = Ick~. 
k=O 

y'(x) =I kck~-1 
k=1 

y"(x) =I k(k- l)ck~-2 . 
k=2 

Substitution gives 

y" + (2x + x2 )y' + (4 + x)y 

'" =I k(k- l)ck~-2 + (2x + x2) I kck~- 1 + (4 + x) I ck~ 
k=2 k=J k=c() 

00 =I k(k- l)ck~-2 + 2x I kck~-! + x2 I kc-,~- 1 
k=2 k=I k=1 

00 

+4 Ick~ +x Ice! 
k=O k=O 
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00 00 00 

=I k(k- 1)c,)'-2 + 2 I kc,/ +I kc,)<+l 
k=2 k=l k=l 

00 00 

+4 Ic,)' + Ic,/+1. 

k=O k=O 

Notice the changes in the exponents: -2, 0, 1, 0, 1; these form the determining 
set {-2, 0, 1}. Adjust the indices so that all sums involve xk : 

00 00 

= I (k + 2)(k + 1)ck+Z~ + 2 I kck~ + I (k- 1)ck-l~ 
k=O k=l k=2 

00 00 

+4Ic,)'+ Ick-l~ 
k=O k=l 

(The choices for the coefficients are now the ones expected: ck+Z' ck, and ck_1.) 

= (2c2 + 4c0) + (c0 + 6c1 + 6c3)x 
00 

+I [(k + 2)(k + 1)ck+Z + (4 + 2k)ck + kck-d~ (8.11) 
k=2 

00 

= (2c2 + 4c0) +I [(k + 2)(k + 1)ck+Z + (4 + 2k)ck + kck-d~ 
k=l 

= 0. 

What appears to be an initial term involving x1 in equation 8.11 is really a general 
term when k = 1: 

(1 + 2)(1 + 1)c1+2 + (4 + 2 · 1)c1 + 1c1_ 1 = c0 + 6c1 + 6c3. 

The recursion relation is therefore 

(k + 2)(k + 1)ck+Z + (4 + 2k)ck + kck-l = 0, k;::: 1, 

which has the form that was predicted. There are three terms, the order is (k + 2) -
(k- 1) = 3, and the recursion relation is in effect fork ;::: 1. Thus we knew a lot about 
what to expect before starting this rather complicated procedure. If we take c 0 and c 1 

as arbitrary, all of the subsequent coefficients are defined in terms of these two, and 
we get the two linearly independent series, one the coefficient of c0 and the other the 
coefficient of c 1• 

Here is how to finish the problem: c0 is arbitrary, as is c1 (since no condition 
defines either c0 or c1); 2c2 + 4c0 = 0 implies c2 = -2c0• 

From 

for k ;::: 1, we get 

-2(2 + k)ck- kck-l 
c k+Z = ---::-(k_+_2:--)--,"(k'-+-----,.,-1 )-"----'-
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(k = 1) c3 = 
-(2)(3)c1 - c0 

(3)(2) 
1 

= -6CO- Cp 

(k = 2) c4 = 
-2{4)c2 - 2c1 

(4)(3) 

= 
-2(4)(-2c0)- 2c1 

(4)(3) 

= 
16c0 - 2c1 

(4)(3) 
4 1 

= 3CO- 6Cl, 

and so on. 
Since three consecutive terms c0, c1, and c2 have been expressed in terms of c0 

and c1, all of the rest will also be expressed in terms of c0 and c1. (Why?) It is often 
quite difficult to guess the solutions to a three-term recursion relation. Sometimes 
you can see patterns by solving twice: once with c0 = 1 and c 1 = 0, and a second 
time with c0 = 0 and c 1 = 1. These can give manageable series. They will be the 
two series that we seek. Any linear combination of them is a solution, and they are 
linearly independent. (Why?) The Complete Series, Ordinary notebook gives the first 
several initial terms of the series to be 

c[O] + c[l] X- 2 c[O] x2 + (- c~] - c[ll) r+ 

(4c[O] _ c[l])x4 +(23c[O] + c[l])~+ 
3 6 60 2 

( _ 23 c[O] + c[l]) 6 + ( _ 361 c[O] _ 37 c[l]) 7 + O[ ]8 
45 5 X 1260 252 X X 

Since the coefficients in the differential equation are entire, these series are entire 
as well. (Can you find a general expression for the coefficients of these series?) The 
notation 0 [ x] An signifies the beginning of the remainder of the series. In this case 
the remainder begins with x8• 0 

Exercises 8.5. PART I. For each of the following differential equations, classify ev­
ery real number as being either an ordinary point, a regular singular point, or an 
irregular singular point. 

1. x3y"- 5x2y' + 4y = 0. 
2. (~- 4)2y" + (x- 2)y' + 5y = 0. 
3. ~(x- 6)2y" + 7xy' - (x2 - 36)y = 0. 
4. (x3 - 5x2 + 6x)2y" + 3x(x- 3)3y' + (x + 4)y = 0. 

PART II. By the methods of this section, solve the following differential equa­
tions in a power series centered on the ordinary point x0 = 0. You may wish to modify 
the notebook Quick Series Solution to assist you by checking your calculations. The 
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notebook Formal Series, Ordinary will actually reproduce each step that you make 
throughout the solution process. 

5. y" + xy = 0. [This is the Airy7 differential equation.] 
6. y" - 2xy' + 8y = 0. 
7. y"- (x + l)y'- y = 0. 

8. ( l- ~x2 )y" + xy'- y = 0. 

9. y" + 5.0y = 0. 
10. y" - xy' + x2y = 0. 

8.6 Series Solution About Regular Singular Points 

The Method of Frobenius 

As we saw in the general introduction to solution in series, Georg Frobenius gave 
us the technique for solving in series about the regular singular point x = x0. The 
differential equation 

Ln(y)(x) = (x- x0)n Pn(x)y(n)(x) 

+ (x- Xot-1 Pn-1 (x)y(n-1)(x) 

+· · · + (x- x0)p1 (x)y'(x) + p0(x)y(x) = q(x), (8.12) 

has x0 as a regular singular point when the functions Pn(x), ~- 1 (x), ... , p0(x) are an­
alytic at x0. Theorem 8.5 stated that there is at least one solution having the form 

00 

y(x) = I ck(x- Xo)k+r. 
k=O 

It is worth noting that near x0 each of the (analytic) functions Pn(x), pn_1(x), 
... , p0(x) is nearly constant, so that for x near x0, equation 8.12 is very much like 

Ln(y)(x) = (x- x0t Pn(x0)y(n}(x) 

+ (x- Xo)n-1 Pn-1 (xo)Y(n-l)(x) 

+· ·· + (x- x0)p1 (x0)y'(x) + p0(x0)y(x) = q(x), (8.13) 

where Pn(x0), Pn-1 (x0), .. . , p0(x0) are constants and Pn(x0) :f:. 0. Look carefully at the 
form of this differential equation. It is a differential equation of the Cauchy-Euler 
type, suggesting that for x near x0 equation (8.12) should have a solution that looks 
very much like (x - x0 )'. If this is so, then the possible choices for r can be found 
among the roots of a polynomial equation. We can indeed find the choices for r from 
among the roots of a polynomial equation, and that equation is 

7 George Biddle Airy (1801-1892), British astronomer. He suffered from astigmatism, and 
was the the first, in 1825, to design eyeglasses that could correct for astigmatism. 



278 8 Higher-Order Differential Equations with Variable Coefficients 

[r(r- 1)· · ·(r- n + 1)]pn(x0 ) 

+ [r(r- 1)· · ·(r- n + 2)]Pn-! (x0 ) 

+ · · · + rp 1 (x0 ) + p0(x0 ) 

= ~ [j] (<- +,(x,) 
=0. (8.14) 

This is called the indicial equation for equation 8.12. It is the coefficient of (x- x0)' 

in equation 8.12 when y(x) = L:;;:o ck(x- x0 )k+r. 

Example 8.11 Let x0 = 0. Find the indicia! equation and the indices of the differen­
tial equation 

6x3y(3) - r(l + 3x)y" - 11x(l + x)y' + (3 + 2x)y = 0. 

Solution. Here p 3(x) = 6, p2(x) = -(1+3x), p 1(x) = -11(1+x), andp0(x) = 3+2x, 
so that p 3(0) = 6, piO) = -1, p 1 (0) = -11, and p0(0) = 3. The indicia! equation is 

6r(r- 1)(r- 2)- r(r- 1)- llr + 3 = (r- 3)(2r- 1)(3r + l) = 0, 

which has as roots r 1 = 3, r2 = 1/2, and r3 = -1/3. These are the indices. 
Our statement was that the solution should look "very much like (x- x0 )'." What 

does "very much like" mean here? It means that the solutions have the form 

where 

y(x) = (x - x0Yv(x), 

00 

v(x) = I ck(x- x0 )k, 
k=O 

and we find v(x) by series methods. This makes the solutions ultimately have the 
form 

00 00 

y(x) = (x- x0Y I ck(x- x0 l =I ck(x- x0l+r, 
k=O k=O 

the form that Frobenius suggested. <> 

Since the indices r are found to be the solutions of a polynomial equation, we 
expect the same three cases we saw before: distinct roots, repeated roots, and con­
jugate complex roots. The number of linearly independent solution we can get by 
Frobenius's method does depend on these three cases. However, the case of complex 
roots does not occur in practice (at least in the important second-order applications 
of the theory), so we will not elaborate on it. You therefore can expect to only find 
problems that have been so contrived that the indicial equations have no complex 
roots. We do get three cases, however. 

The three cases of Frobenius's method are: 
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CASE I. Distinct real indices (roots), no two of which differ by a positive integer. 
CASE II. Repeated real indices. 
CASE III. Real indices that differ by a positive integer. 

The notebook FormalSeries, RSP can be used to find n linearly independent solu­
tions in case I. It will find linearly independent solutions corresponding to the indices 
that are distinct and do not differ by a positive integer from some other index. In cases 
II and III, you can look for solutions having one of the "ln x" forms by assuming a 
solution of the proper form. 

The theorem that will guide your search for solutions follows. A special version 
for second-order equations is provided. Both theorems assume the indicial equation 
has only real roots. 

Theorem 8.6. The differential equation 

Ln(y)(x) = (x- x0)n Pn(x)y(n)(x) 

+ (x- Xo)n-1 Pn-1 (x)y(n-1)(x) 

+··· + (x- x0 )p1 (x)y'(x) + p(x)y(x) = 0, (8.15) 

has x0 as a regular singular point when the functions Pn(x), Pn-l (x), ... , p0(x) are 
analytic at x0 . The form of the solution is y(x) = L~o ck(x- x0 )k+r, where r is a 
(real) root of the indicia) equation 

Each such a root r is an index. 
The distribution of the indices determines three cases: 
CASE I. The roots r1, r2, ..• , rn of the indicia! equation are distinct and no two 

differ by an integer. In this case there are n linearly independent solutions having the 
form 

y;(x) = (x- x0 )'• I c;,k(x- x0 )k, 1 ~ i ~ n. 
k=O 

CASE II. There is an index r; of multiplicity k; > 1 which differs from no other 
index by an integer. In this case there is one solution of the form 

00 

y;(x) = (x - x0 )'• I c;,k(x- x0 )k, 
k=O 

and k; - 1 further linearly independent solutions of the form 

Y;,m(x) = Y;(x) (ln(x- x0 ) r 
m-1 oo 

+(x - xo)'' I (ln(x - Xo))j I dm,j,k(x- Xo)k, 
j=1 k=O 

for 2 ~ m < k;. 
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CASE III. There is at least one collection Cq : r1 > r2 > · · · > rq of indices 
that differ from each other by integer amounts and no other index d(ffers from any 
of these by an integer amount. Suppose that the corresponding multiplicities are 
m1, m2, ••• , mq. Let p = I m;. Then, corresponding to the largest index r1 in Cq, there 
is one solution having the form 

y1(x) = (x-x0 )'' ~c1 .k(x-x0l. 
k=O 

There may be other solutions having this form corresponding to other smaller 
indices in Cq or there may not. To any index rs in Cq of multiplicity greater than 1, 
there correspond m5 solutions having the form 

i 

y(x) = (x - x0)'' ~ (ln(x - x0 ))j ~ di,j,k(x - x0 )k 
j=O k=O 

for some i, 0 ~ i ~ p. 

For simplicity when you need to apply Theorem 8.6 to the second-order differen­
tial equations of mathematical physics, here is a statement of the theorem that applies 
specially to that case. 

Theorem 8.7. The second-order differential equation 

(x- x0 )2 p2(x)y" (x) + (x- x0 )p1 (x)y' (x) + p0(x)y(x) = 0, (8.16) 

has x0 as a regular singular point when the functions pz(x), PI (x), and p0(x) are 
analytic at x0. The form of the solution is y(x) = L:;:o ck(x- x0 )k+r, where r is a 
(real) root of the indicia[ equation p2(x0)r(r- 1) +PI (x0 )r + p0(x0 ) = 0. 

There are three cases: 
CASE I. The roots r1, r2 of the indicia[ equation are distinct and do not differ by 

an integer. In this case there are two linearly independent solutions having the form 

00 

y;(x) = (X- Xo)'' ~ Ci,k(X- x0 )k, i = 1, 2. 
k=O 

CASE II. There is an index r1 of multiplicity 2. In this case there is one solution 
of the form 

00 

YI (x) = (x- x0Y1 ~ cl,k(x- x0)k, 

k=O 

and one further linearly independent solution of the form 

y2(x) = y1 (x) In(x- x0 ) + (x- x0Y' ~ c2,k(x- x0l. 
k=O 
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CASE III. The two indices r 1 > r2 differ from each other by a positive integer. 
Then, corresponding to the larger index r 1 there is one solution having the form 

y 1 (x) = (x- x0 )'' ~ cl,k(x- x0t 
k=O 

There may be a second solution having this form corresponding to the smaller 
index or there may not. In any event, there is a second solution having the form 

00 

Yz(X) = Cy1 (x) ln(x- x0) + (x- x0)'2 ~ c2,k(x- x0)k 
k=O 

where C = 0 if there is a second series solution. 

Examples of each of the three cases follow. Most are second-order, but case III 
is illustrated for a fifth-order problem as well. 

Frobenius, Case I 

The first case to consider when solving in series about a regular singular point is 
when the indices do not differ by a positive integer. In this case there are two linearly 
independent solutions, one for each index. See the notebook §8.6 RSP Case I. 

Example 8.12 Consider the differential equation 

3~y" + (x2 - x)y' + (1 + 2x)y = 0. 

Find a pair of series solutions expanded about x0 = 0. 
Solution. The determining set is { 0, 1 } , so we expect a two term recursion relation 

involving ck and ck-I that is in effect fork;;:: 1. Assume a series solution of the form 
y(x) = L~o ckxk+r. Then 

y'(x) = I (k + r)ckxk+r-I, 
k=O 

00 

y"(x) ~ (k + r)(k + r- l)ckxk+r-2, 

k=O 

and when these substitutions are made, 

3x2y" + (~ - x)y' + (1 + 2x)y 
00 00 

= 3~ ~ (k + r)(k + r- l)c~+r-2 + (x2 - x) ~ (k + r)ckxk+r-I 
k=O k=O 

+ (1 + 2x) ~ ckxk+r 
k=O 
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00 00 

= 3 I (k + r)(k + r- l)ck_l+r +I (k + r)ck_l+r+l 

k=O k=O 
00 00 00 

-I (k + r)ck_l+r +I ckJ<+r + 2 I ckJ<+r+J 

k=O k=O k=O 
00 00 

=I 3(k + r)(k + r- l)ckJ<+r +I (k + r- l)ck-J_I+r 

k=O k=l 
00 00 00 

- ~ (k + r)c _l+r + ~ c _l+r + ~ 2c _l+r LJ k LJ k LJ k-J 
k=O k=O k=l 

= [3r(r- I)- r + l]c0xr 
00 

+I [3(k + r)(k + r- I)ck + (k + r- I )ck-l 

k=l 

- (k + r)ck + ck + 2ck_ 1l-/+r 

= [3r2 - 4r + 1 jc0xr 
00 

+ I[(k+r-1)(3(k+r)-l)ck+(k+r+ l)ck-1]_/+r 

k=l 

= 0. 

From the indicia! equation (3r2 - 4r + I )c0 = (r - 1 )(3r - I )c0 = 0, we have the 
indices r 1 = 113 and r2 = 1, and c0 arbitrary. The recursion relation is 

(k + r- 1)(3(k + r)- L)ck + (k + r + l)ck-l = 0, k ~ 1. 

When r = 1/3, the recursion relation becomes 

(3k- 2)(3k)ck + (3k + 4)ck-l = 0, k ~ I, 

or, solved for c k since the leading coefficient is never 0, 

3k+4 
c-- c k~l. 

k - (3k- 2)(3k) k-l• 

A formula for the general coefficient is 

knk 3j+4 c - (-1) c 
k- j=l (3j- 2)(3j) 0• 

k ~ I. 

The first several values produced are 

7 
cl -}CO 

35 
c2 36co 

65 
c3 --c 

324 () 
13 

c4 -c 
486 °' 
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so the series corresponding to r1 = 1/3 is 

l/3 ( 7 35 2 65 3 13 4 ) 
Y1(x) =cox 1 - 3x + 36x - 324x + 486x - ... · 

When r = 1 the recursion relation becomes 

(k)(3k + 2)ck + (k + 2)ck_1 = 0, k 2: 1, 

which can be written 
k+2 

k;;:: 1, ck = (k)(3k + 2) ck-1' 

since the leading coefficient is never 0. A formula for the general coefficient is 

k . 2 kn j+ c - -1 c 
k - ( ) j=1 (j)(3 j + 2) 0' 

The first several values produced are 

3 
c1 -sco 

3 
c2 = -c 

20 ° 
1 

c3 --c 
44 ° 
3 

c4 = --c 
1232 o· 

so the series corresponding to r 2 = 1 is 

Since c0 is intended to be arbitrary here and not related to the c0 of the previous 
solution, it would be better to change its name (to c1). Then the solution to our 
differential equation is 

y(x) = c x 113 (1- 2x + 35 ~- ~x3 + _!2_x4 - ···) 
0 3 36 324 486 

+c x(l- ~x + ~x2 - _!_x3 + - 3-x4 - ···) 
1 5 20 44 1232 ' 

where c0 and c 1 are arbitrary. These solutions are valid for 0 < x < oo. 0 

Frobenius, Case II 

Example 8.13 Find a series solution of this differential equation about the regular 
singular point x0 = 0 where the two indices are equal: 
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x2y" + x(2x - 5)y' + 9y = 0. 

Solution. We actually seek two series centered on 0. As we will see, the indices 
are 3 and 3. This is the case of a double root of the indicia! equation. We will find 
the only solution that Frobenius's method produces and then, in Example 8.14, find 
a second linearly independent solution by using the formula (see Section 8.2) for a 
second solution in series. 

We substitute y(x) = I;;:o ce}+r. The determining set for the equation is { 0, I} 
which says that the recursion relation will involve the two terms ck and ck-I and is in 
effect for k 2: I. The indicia! equation turns out to be 

which says that r 1 = r2 = 3 and c0 is arbitrary. So we can find only one series 
solution by Frobenius's method. The recursion relation is 

2(-1 + k + r)ck-I + (-3 + k + dck = 2(k + 2)ck-I + k2ck = 0, k 2: 1, 

which can also be written 

k 2: I. 

This produces the coefficients of the solution 

1 ( 2 40 3 4 28 5 112 6 32 7 ) 
Y (x) = c x- 1- 6x + 12x - -x +lOx - -x + -x - -x + ··· 

1 0 3 5 45 35 

Note that the recursion relation has the solution 

k 2: I. 

You may wish to verify each of these assertions. We still need to find a second 
linearly independent solution. 0 

Example 8.14 Find a second series solution using the formula for a second solution: 

I e-J(al(x)la,(x))dx 

y2 (x) = Y1 (x) 2 dx. 
y 1 (x) 

Solution. Here a 1 (x) = x(2x- 5) and a2(x) = x2, so that 

We find that according to Mathematica the series for (l!(y 1 (x)2) is 

1 
In[l] := ---

yl [x] 2 
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1 12 84 1376 2188 
Out [1]= - +- +- + -- + --+ 

x6 xs x4 3 x3 x2 

48176 1814848 5708928 X 2 ---+ + +O[x] 
5x 45 35 

It is worth noting that the coefficients seem to be getting larger. When the co­
efficients are approaching 0 we get an entire function from our series; when the 
coefficients are bounded, the series has a finite positive radius of convergence. But 
when the coefficients are unbounded the series may converge only at a single point. 
We watch to see what happens. 

The factor 

is, according to Mathematica, 

In [2] := other= Normal[ J g[x] 2 cUx] 
yl [x] 

2 940 x 3 2135 x 4 
Out[2]= 10x+31x +---+ + 

91084 x 5 

75 

9 6 
111946 x 6 31213288 x 7 

+ + -----+Log[x] 
27 2205 

This means that the second solution is 

y2(x) = y1(x)ln(x) + 

1( ) (10 31 2 940 x3 2135 x4 91084 x5 111946 x6 ) 
y X* X+ X+--+---+ + +··· 

9 6 75 27 

Note the size of the coefficients. The y1 (x) lnx term is convergent for x > 0, but 
the term on the second line looks like it may converge only for x small. 

When substituted into the differential equation we would like for 

x2y" + x(2x - 5)y' + 9y = smallterms. 

This means that we should satisfy the differential equation except for terms that are 
small because the series that is left over should be an approximation for the correct 
right-hand side, 0. These terms left over constitute the residual error in our solution. 
When the substitution of y2(x) is made, Mathematica says that the residual error is 

112 x9 352 x 10 
-- + -- + O[x] 11 

45 45 

0 

This is small for small x. When plotted, the residual error is very slow to leave 0, 
but when it does, it rises rapidly. Look at the notebook Second Series Solution for a 
derivation of the second solution and a plot of the residual error. A residual error is 
plotted in Example 8.16M. 

Note that y2(x) as provided to you is not the solution. It is merely the initial 
terms of an infinite series. The difference between it and the actual solution is the 
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actual error in the solution. This is not the same as the residual error. There is a 
relationship between the two errors, however. Since the differential operator is linear, 
the relationship is easy to show. Write h(x) = y2(x) + E2(x), where this means that 
the exact solution y2(x) is the sum of y2(x), the approximate solution we have found, 
and the actual error E2(x) = y2(x) - }"2(x), the difference between the exact and the 
approximate solutions. We have 

so 

0 L(y2 (x)) 

L(.Y2(x) + E2(x)) 

L(.Y2(x)) + L(E2 (x)) 

Residual Error+ L(Eix)), 

Residual Error= -L(E2(x)). 

This implies that the actual error E 2(x) is a particular solution of the differential 
equation 

L(y) = -Residual Error, 

which suggests that the actual error may be hard to find, since we are having trouble 
solving the homogeneous form of just such an equation. But this does define the re­
lationship between the actual error and the residual error. In numerical analysis, such 
a relationship between the actual error and the residual error for linear algebraic sys­
tems is exploited to improve the approximate solution by using iterative techniques. 

Frobenius, Case III 

Example 8.15 Solve the differential equation 

xy" + (x- 8)y' - 5y = 0 

about the regular singular point x0 = 0 where the two indices differ by a positive 
integer. 

Solution. We seek series centered on 0. As we will see, the indices are 0 and 9. 
The role of the -5 is also of interest: there is a polynomial solution of order 5 (cor­
responding to the index 0). A second linearly independent solution (corresponding 
to the index 9) is an infinite series whose leading coefficient is x9 . The problem is a 
special case of the problem 

which has a polynomial solution of order n0 and a series solution whose leading term 
is x"1+1• 

The determining set is { -1, 0}, so we expect a two-term recursion relation that 
takes effect for k ;:: 0. Assume a series solution of the form 



Then 

and 
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00 

y(x) = L c~+r. 
k=O 

00 

y'(x) = L (k + r)ck~+r-I, 
k=O 

00 

y"(x) = L (k + r)(k + r- 1)c~+r-2, 
k=O 

xy" + (x - 8)y' - 5y 
00 

= x L (k + r)(k + r- 1)c~+r-2 
k=O 

00 00 

+ (x- 8) L (k + r)c~+r- 1 - 5 L c~+r 
k=O k=O 

00 

= L (k + r)(k + r- 1)ck~+r- 1 

k=O 
00 00 00 

+ L (k + r)ck~+r- 8 L (k + r)c~+r-1 - 5 L c~+r 
k=O k=O k=O 

00 

= L (k + 1 + r)(k + r)ck+ 1~+r 
k=-1 

00 00 00 

+ L (k + r)ck~+r - 8 L (k + 1 + r)ck+ 1~+r - 5 L: c~+r 
k=O k=-1 k=O 

= [r(r- 1)- 8r]c0x-1 

00 

+ L [(k + 1 + r)(k + r)ck+1 + (k + r)ck - 8(k + 1 + r)ck+1 - 5ck]~+r 
k=O 

00 

= [r2 - 9r]c0x-1 + L [(k + 1 + r)(k + r- 8)ck+1 + (k + r- 5)ck]~+r 
k=O 

= 0. 

From ~ - 9r = 0, we have the indices r = 0 and r = 9. The recursion relation is 

(k + 1 + r)(k + r- 8)ck+1 + (k + r- 5)ck = 0, k ~ 0. 

When r = 0, the recursion relation becomes 

(k + 1)(k- 8)ck+1 + (k- 5)ck = 0, 

Note that k- 5 = 0 when k = 5 and k- 8 = 0 when k = 8. These are important 
events. 
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The first several equations produced from the recursion relation are (according 
to Mathematica): 

5 c[O]- 8 c[1] == 0 
4 c[1]- 14 c[2] ==0 
3 c[2] - 18 c[3] ==0 
2 c[3] - 20 c[4] ==0 

c[4]- 20 c[5] ==0 
I] c[5] - 18 c[6] ==0 
-c[6]- 14 c[7] ==0 
-2 c[7] - 8 c[8] ==0 
-3 c[8] -0 c[9] ==0 

-4 c[9] + 10 c[IO] == 0 
-5 c[IO] + 22 c[11] == 0 
-6 c[ll] + 36 c[l2] == 0 
-7 c[12] +52 c[l3] ==0 

The first five equations determine the polynomial solution. The next four equations, 
because of the boxed Os, say that c6 = c7 = c8 = 0, and c9 is arbitrary. The recursion 
relation defines all of the subsequent coefficients in terms of c9, because after k = 9 
we have passed the point where any factor in the recursion relation is zero. For k ;;:: 9 
the recursion relation says 

k-5 
ck+l = (k + 1)(k- 8) ck, 

and one can write down the equation 

= (-l)m9! Cg 

3! (m + 9)(m + 8)(m + 7)(m + 6)(m + 5)(m + 4)m! 
m9! (m + 3)(m + 2)(m + l)c9 

= (-1) 3! (m+9)! ' m2=0. 

The case r = 9 reproduces these coefficients (with c0 replacing c9, and em replac­
ing c9+m). You should verify this statement. 

The solution to the given differential equation is 

These solutions are valid for 0 < x < oo. 0 

Case Ill for Higher-Order Equations 

In case III of Theorem 8.6, i = 0 corresponds to having a solution of Frobenius type 
corresponding to a smaller index. Also in case III, it is possible for i to be at least as 
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large as ms. This case is illustrated in the notebook Example 8.16M where Frobenius 
solutions are found, and solutions having logarithms are found. In this notebook, the 
differential equation is the fifth-order equation of the next example. 

Example 8.16 (M) Find series solutions of the differential equation 

about the regular singular point x0 = 0. 
Solution. The differential equation has as indicia! equation (r + 3)2(r - 4)3 

0. Thus, r 1 = -3 has multiplicity 2 and r2 = 4 has multiplicity 3. Furthermore, 
r2 - r 1 = 7, an integer. So we have two indices, each of which is repeated, which 
differ by an integer. This is the third case, the statement of which appears to be so 
complicated. Since the order of the differential equation is five, we need to find five 
linearly independent solutions. 

The following solutions were obtained from the notebook Example 8.16 M in 
three steps. We want to find two linearly independent solutions corresponding to the 
double root r1 = -3 and three linearly independent solutions corresponding to the 
triple root r2 = 4. 

Step I. Find power series solutions by specifying { a } where you are to sup­
ply a list of coefficient names. After the next several cells are executed, find that 
corresponding to r1 = -3 there is the power series solution 

( -1 1 1 I ) 
y, (x) = 1296000 + x3 - 36x2 + 4500x 

x-3 
( 1 - ;6 + 4~~0 - 12:;000) · 

This solution is exact. 
Corresponding to r 2 = 4 there is the power series solution 

[ x 5x2 x3 7 x4 7 ~ ] 
Y3(x) = x4 1 - 8 + 2592 - 116640 + 451630080 - 508083840000 + ... · 

We now know that there are only two Frobenius solutions. The remainder of the 
solutions will involve In x or powers of In x. 

We need one more solution corresponding to r 1 = -3 and two more correspond­
ing to r2 = 4. We now look for solutions that involve lnx but no higher powers of 
Inx. 

Step II. Use the notebook Example 8.16M to find simple "log series". These have 
the form 

(Frobenius series) + (lnx)(Frobenius series). 

To find these, specify {a, b} in the list of coefficient names. This should enable us to 
reproduce y 1 (x) and y3(x) and find at least one additional log series corresponding to 
each index. From r 1 = -3, there results a log series having two arbitrary constants. 

The constants can be chosen (see exercises 12 and 13) to create the new solution 
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( 11 x 4lx2 73 x3 x4 .0 ) 
Yz(x) = 216 - 67500 + 25920000 - 279936000 - 27993600000 + · · · x-3 

+ ln(x)(y1 (x)). 

Likewise, from the index r2 = 4, there results a similar log series having two 
arbitrary constants which can be chosen (see exercises 14 and 15) either to reproduce 
y3 (x) or to generate the new solution 

4 [3x 407xl 5x3 17587x4 
Yix) = x S- 46656 + 104976- 178845511680 

193657 r J 
+ 2012012006400000 + ... + log(x) [y3(x)] · 

This gives us four of the required five solutions. There remains one more solution 
corresponding to r2 = 4 to find. This solution will contain (lnx)2 . 

Step III. Use the notebook Example 8.16M to find a solution of the form 

(Frobenius series) + (lnx)(Frobenius series)+ (lnx)2(Frobenius series). 

To find this solution, specify {a, b, c) in the list of coefficient names. This should 
enable us to reproduce y 1 (x), y2(x), y3(x) andyix) and find at least one additional log 
series corresponding to r2 = 4. From r2 = 4, there results a log2 series having three 
arbitrary constants. 

The three constants can be chosen to reproduce y 3(x) and y4 (x), or to generate the 
last remaining solution (see also exercise 16): 

4 [ 52809 x 45890551 x3 14321509579 x4 

Ys(x) = x 104192 - 1025405568000 + 87348147904512000 

14281510597.0 J 
- 65511110928384000000 + ... 

41 [104345 12871x 1085209x2 

+x og(x) 19536 + 156288- 151911936 

67633x3 3014507 x4 17705011 x5 ] 

+ 1367207424 - 26469135728640 + 148888888473600000 + ... 

+ log(x)2 [y3(x)]. 

We now have five linearly independent solutions. Any linear combination of these is 
also a solution. 

The notebook Example 8.16M can be used to find these solutions through as 
many terms as you have patience to wait for (or have memory available). The process 
is not fast, but since a reassuring check of the solution is made, having confidence in 
the results is likely worth the wait. You will observe that when you request more than 
just a few terms, Mathematica spreads the various terms of the results quite widely 
apart. You may have to look carefully across several pages of output to pick out the 
terms you want. 
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Fig. 8.1. A plot of the residual error of the solution. 

If you use the notebook Example 8.16 M, a check of the solution claims that 
when 15 terms are retained, then 

L(x, y(x)) = x13g(x, lnx) = x12(xg(x, lnx)) 
Large constant Large constant 

This is a residual.lt measures how closely L(x, y(x)) approximates 0. (We wanted 
to solve a homogeneous equation, so we wanted the answer to be exactly 0. Instead, 
it is merely near 0.) Since 

limxg{x, lnx) = 0, 
x-+0 

the factor x12 guarantees that our solution is a very good approximation to 0 near 
x = 0, because for x near 0, x13 is very small. In fact, a plot indicates that the residual 
is smaller than 4.0 x 10-11 for 0 < x :55, as Figure 8.1 shows. 0 

Exercises 8.6. Solve the following differential equations in power series centered on 
the regular singular point x0 = 0 by the methods of this section. You may wish to 
modify the notebook FormalSeries, RSP to assist you by checking your calculations. 
The problems have been partitioned into those whose indices fall into case I or into 
case II or into case III of Theorem 8.6. FormalSeries, RSP permits you to assume 
series having several log parts. 

PART I. These problems are in case I: the indices do not differ by an integer. The 
method of Frobenius gives you a linearly independent set of solutions. 
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PART II. These problems are in case II: an index has multiplicity greater than 1; 
no unequal indices differ by an integer. The method of Frobenius may or may not 
give you a linearly independent set of solutions. If it does not, assume a solution 
with a log part. Add more and more log series until you have a full basis of solutions. 
Quite often the smallest index gives you the most linearly independent solutions, so 
you may want to try it first. 

d2y dy 
4. ~ d~ + (5 + 2x)x dx + 4y = 0. 

d3y d2y dy 
5. ~-3 - 5~--:2 + 3x(2x + 1)-d + 9y = 0. 

dx dx- x 
d4y d3y d2y dy 

6. 9x4- 4 + 84x3 - 3 + 166x2 - 2 + 32x(2.x + 1)- + (4 + x)y = 0. 
dx dx dx dx 

d4y d3y d2y dy 
7. 135x4~ + 666x3 - 3 + 444~-2 + 56x(x -1)-d + 8y = 0. 

dx dx dx x 

PART III. These problems are in case III: a pair of indices differ by an integer. 
The method of Frobenius may or may not give you a linearly independent set of 
solutions. If it does not, assume a solution with a log part. Add more and more log 
series until you have a full basis of solutions. 

d3y d2y dy 
8. 4~-- 12x2 - + 15x-- (12 +x)y = 0. 

d~ dx2 dx 
d2y dy 

9. ~ d~ + x(2x + 1) dx - y = 0. 

d4y d3y d2y dy 
10. 27x4 - 4 + 45x3 - 3 - 12x2 --:2 + 14x(x + 2)-- 32y = 0. 

dx dx dx- dx 
d4y d3y d2y dy 

11. 2.x4- + 7~-- 13~-- 5x(2x + 3)- = 0. 
dx4 d~ d~ dx 

PART IV. Further examination of Example 8.16. 
In the notebook Example 8.16M make certain that the operator defined is the 

operator of Example 8.16M. Execute each cell until you reach the boxed cell that 
reads: 

y[x_]=MakeAssumedFunction[x,r,{a}] 
(* {a}: Power series*) 
(* {a,b}: Power series+ Log series*) 
(* {a,b,c}:Power series+ Log series+ LogA2 Series*) 

Be sure that the function call is MakeAssumedFunction [x, r, {a, b, c} J, 
so that a log2 series will be produced when you execute the cell. Continue executing, 
using n = 5, until you have obtained the log2 series corresponding to r1 and r2 . 

12. In the series for y 12 [ x ] choose a [ 0 ] and a [ 1] to match the corresponding 
terms of the series for y1 (x) in the solution of Example 8.16. The result you get 
should be equivalent to y 1 (x). 
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13. In the series for y12 [x] make the three leading terms of the coefficient of 
Log [x] agree with the three leading terms ofy1(x) that you just obtained. The 
result should agree with y2(x). 

14. In the series for y345 [x] create a system of equations by setting the coeffi­
cients in the lowest-order power series equal to the corresponding terms in y3(x). 
This should reproduce y3(x). (Alternatively, make the first three coefficients of 
Log [x] to be 0.) 

15. Obtain y4(x) by making the low-order three coefficients of Log [x] agree with 
the corresponding coefficients of y3(x). 

16. Obtain y5(x) by making the low-order three coefficients of (Log [x]) 2 agree 
with the corresponding coefficients of y3(x). 

8. 7 Important Classical Differential Equations and Functions 

The definitions and problems that follow are but a quick glimpse at some very im­
portant material. You may find it productive to have Mathematica do some of the 
investigations. You may find the proofs to be difficult. For each of the functions de­
fined, there is a special function built into Mathematica. You should investigate the 
properties of the functions Mathematica provides. 

The Gamma Function 

The Gamma function r(p) is defined for positive p by 

r(p) = L"" tP- 1e-1dt. 

Mathematica calls r(p) Gamma [p]. 

G.1 The improper integral that defines r(p) is convergent for p > 0. 
G.2 r(p + 1) = pr(p). (Integrate by parts.) This is a recursive definition for the 

Gamma function. 
G.3 r(l) = 1; r(n + 1) = n! for each positive integer n. 
G.4 If pis not 0 or a negative integer, then r(p) = r(p + 1)/p can be used to extend 

the definition of r(p) to negative p's. 
G.S Use Mathematica to plot r(p) for -3 :5 p :54. 
G.6 Use Mathematica or otherwise show that r(l/2) = -..{ii. 

We define p! = r(p + 1) for all p except p a negative integer. This usage will be 
seen later in these problems. 

The Bessel Function 

Bessel's equation is 
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d2y dy 
X: dx!- +x dx +(X:- p2)y = 0, 

where p is a nonnegative constant. The Bessel functions of the first kind are tra­
ditionally denoted JP(x); those of the second kind, YP(x). In Mathematica these are 
called BesselJ [p, x] and BesselY [p, x], respectively. 

1.1 Zero is a regular singular point of Bessel's equation. 
1.2 The numbers p and -pare the indices of Bessel's equation. 
1.3 If a solution of the form y(x) = L:~ anx"+P is assumed, the recursion relation is 

a = - an-2 for n ~ 2. 
n n(2p + n)' 

1.4 One solution is 

oo X:n 
y(x) = a0xP Ic-on . 

n=O 22nn!(p + 1)·. ·(p + n) 

It is traditional to let a0 = 11(2Pf(p + 1)) to get the Bessel functions of the first 
kind of order p, 

oo (xf2?n+p 
J (x) = ~ (-lt . 

P LJ n! f(p + n + 1) 
n=O 

The use of r occurs because p need not be an integer. Using p! = f(p + 1), we 
have the alternate definition 

oo (.x/2)2n+ p 
J(x)=~(-l)n . 

P LJ n! (p + n)! 
n=O 

1.5 Write out several terms of J0(x) and of 11 (x). Note that lo(x) = -11 (x). 

1.6 If pis not an integer, then l_P(x) is linearly independent of JP(x) and is a second 
solution of Bessel's equation. Any solution of the form y = c1JP(x) + c2J_P(x) 
with c2 =t- 0 is called a Bessel function of the second kind of order p. 

1.7 If pis an integer, then J_P(x) = ( -l)P JP(x). In this case it is traditional to define 

. lqCx) cos qn- l_qCx) 
YP(x) = hm . . 

q-->p smqn 

YP(x) is a Bessel function of the second kind of order p, and is linearly inde­
pendent of lpCx). 

1.8 PlotBesselJ[O,x],BesselJ[l,x],andBesselY[O,x] forO~x~9. 

The Legendre Polynomials 

The Legendre equation is 

d 2y dy 
(1-:x!-) dx!-- 2x dx + n(n + l)y = 0, 

where n is constant. 
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P.l Zero is an ordinary point of the Legendre equation. 
P.2 If n is a nonnegative integer, then there is a polynomial solution of Legendre's 

equation 
[n/Z] (2 - 2k)' 

P( )- ~(-l)k n . xz-2k 
n X - L..i 2nk! (n- k)! (n- 2k)! ' 

k=O 

where [n/2] denotes the greatest integer in n/2. These polynomials are the Leg­
endre polynomials. 

P.3 A second linearly independent solution is 

Q 1 ()l l+x .. n(x) = -Pn x n --+power senes mx. 
2 1-x 

Find the power series part of the solution. This solution is unbounded on ( -1, 1 ). 

In Mathematica, Pn(x) is called LegendreP [ n, x] and Qn(x) is called 
LegendreQ [n, x]. 

The Hypergeometric Equation 

The equation 
d2y dy 

x(l - x) dr + [c- (a+ b + l)x] dx - aby = 0 

is called the hypergeometric equation. The numbers a, b, and c are constants. The 
numbers x = 0 and x = 1 are singular. 

F.l Zero is a regular singular point. The indices at x = 0 are 0 and 1. We concentrate 
on the solution about x = 0 produced by the index 0, and suppose that c is not 0 
or a negative integer. 

F.2 Substitute y(x) = L: anxn to find that the recursion relation is 

(a +n- l)(b+n- 1) 
an= n(c+n-1) an-! for n ~ 1; a0 is arbitrary. 

F.3 Use the Gamma function to express 

f(a+n)f(b+n)f(c) 
a = a for n ~ 0. 

n n! f(a)f(b)f(c + n) 0 

Let a0 = 1, and define the solution function to be 

F( b ) = 1 Loo f(a + n)f(b + n)f(c) . .n 
a, , C,X + ..\. 

n! f(a)f(b)f(c + n) 
n=l 

This is called the hypergeometric series or the hypergeometric function. In 
Mathematica, F(a, b, c, x) is called 

Hypergeometric2F1[a, b, c, x]. 

By choosing the parameters a, b, and c properly, F(a, b, c, x) can represent many 
functions. Here are some familiar ones. 
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1 
F.4 --0 = F(a, b, b, x). 

(1-x) 
F.S Pk(x) = F( -k, k + 1, 1, (1 - .x/2)). (The Legendre polynomials.) 
F.6 ln(l + x) = xF(l, 1, 2, -x). 

F.7 arcsinx = xF (~, 1, ~' ~). 
F.8 arctanx = xF (~, 1, ~' -~). 
F.9 COSX = lim F (a, a, -21, ~). 

Q-HXJ Q 

F.lO sinx= limF(a,a,~,- .x22 ). 
a-->oo 2 4a 

F.ll £! = lim F (a, b, b, ~) . 
a~oo a 

F.12 Show that 
d ab 
-F(a,b,c,x) = -F(a+ 1,b+ l,c+ l,x). 
dx c 

Mathematica can give you an idea of what these statements are saying. To look 
at the first several terms of F(a, b, c, x), define a shortened approximation like: 

Fs[a_,b_,c_,x_] := 
1+Sum[Gamma[a+1]Gamma[b+1]Gamma[c]/ 
(n! Gamma [a] Gamma [b] Gamma [ c+n]) *x"n, { n, 8}] 

To use this to preview problem F. 7, for instance, compute x * F s [ 1 , 1 , 2 , 
-x] and compare the result with Series [Log [ 1 +x] , x, 0, 8]. In problems F.9-
F.ll, you will need to use ReplaceRepeated like this: 

Fs[ ... ]//.Gamma[a+p_] :>(a+p-l)Gamma[a+p-1] 

before taking the limits. 
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Differential Systems: Theory 

9.0 Introduction 

In this chapter, we study systems of ordinary differential equations. Our study will 
focus on first-order systems. These have the form 

{
y; = ft (x, Yt· Yz, .. · 'Yn) 
y; = fz(x, Yp Yz, ... , Yn) 

Y~ ~ fn(x, Yp h• ... , Yn). 

(9.1) 

This is a system of n simultaneous first-order differential equations. We seek a solu­
tion on some interval a ::; x ::; b. We can make the notation more compact and sugges­
tive without any loss of ability to express concepts clearly if we let y = (y 1, y2, ••• , y n) 
be a vector whose components are the solution functions (dependent variables) that 
we seek. Then system 9.1 can be written as 

y' = f(x, y), (9.2) 

where the bold type denotes a vector object. The notation f(x, y) represents the entire 
n right-hand sides of system 9.1. The symbol f denotes (f1, f 2, •.. , fn), each compo­
nent of which is a function from Rn+l toR, so f is a function from Rn+l toRn. 
The arguments of each component off consist of one dependent variable (x) and 
n dependent variables y = (y 1, Yz, ... , Yn). The notation of equation 9.2 is strongly 
suggestive of the notation y' = f(x, y) of section 1.0, where Thm. 1.1 gave us infor­
mation about the existence and uniqueness of solutions to initial value problems. The 
existence and uniqueness theorem for system 9.2 will look very similar to Thm. 1.1. 

In section 9.1 we will discover that any nth-order differential equation 

in) = g(x, y, y', y", ... , in- I)) 

can be written in the form 9.1 as 

C. C. Ross, Differential Equations
© Springer Science+Business Media New York 2004
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by writing 

l I YI 
I 

Y2 

Y~-1 
y~ 

= Yn 
= g(x, Yt' Y2, · · ., Yn), 

Yi = / i-1), 1 :s; i :s; n. 

(9.3) 

This observation has very important and useful theoretical interest to us. It also tells 
us how to obtain accurate values for the solution and its derivatives when we want to 
use NO Solve to solve a higher-order differential equation numerically. lfNDSol ve 
is used for the calculation of a solution for 9.3, the solution y(x) and each of the 
derivatives y1 (x), y"(x), ... , y<n-l)(x) is obtained accurately. The differential equation 
itself provides the value for y<nl with the same accuracy. (How could one get values 
for the (n + 1)st-derivative accurately if g is nice?) 

Chapter Topics 

First we consider systems of linear differential equations having constant coeffi­
cients. Such a system can be put in the vector form 

Y 1 (x) - Ay(x) = q(x), (9.4 v) 

where A is a constant n X n matrix, y(x) is ann-vector, and q(x) is ann-vector of 
continuous functions. The system is called homogeneous if q(x) = 0 and nonho­
mogeneous otherwise. Differential systems of this form arise naturally in physical 
situations. They can also be obtained from a single higher-order differential equation 
or from a system of higher-order differential equations. The differential operator in 
eq. (9.1 v) is the vector linear operator L(y) = Y 1 - Ay. 

Later we consider the matrix system 

Y 1(x)- AY(x) = Q(x), (9.4 m) 

where A is a constant n x n matrix, Y(x) is ann x n matrix, and Q(x) is ann x n 
matrix of continuous functions. The system is called homogeneous if Q(x) = 0 
and nonhomogeneous otherwise. It turns out that this is a natural way to pose such 
problems because of the favorable properties that matrices give us over vectors, the 
principal one being the ability to calculate inverses. The ability to calculate an in­
verse for a matrix has always been a powerful theoretical tool, but Mathematica now 
makes this a practical tool as well. In (8.1 m) we have the matrix linear differential 
operator L(Y) = Y 1 - AY. In this setting we even get a special kind of linearity 
where L(YK)(x) = L(Y)(x)K whenever K is a constant vector or matrix. This is a 
type of homogeneity or uniformity that is possessed by the operator. We still retain 
ordinary linearity. 

The process for solving (9.1 v) relies heavily on algebraic techniques as it did 
in chapter 5, but the ideas are somewhat more advanced. These algebraic ideas were 
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reviewed in chap. 2. Over the years, students have tended to get lost in the manipula­
tions that are necessary to solve problems such as these, so an understanding of the 
method and the goals has been difficult to achieve. However, Mathematica will do 
these long and complicated manipulations for us. This enables us to concentrate on 
the process and gives us a real hope of understanding what is going on and why it is 
being done. Depending on the problem we are solving, these manipulations can be 
enormous, so it is very important to know what has to be done, how much of it has 
been completed, how much remains to be done, and how to check for correctness. 
All of this will be done within Mathematica, which makes it possible for you to keep 
long procedures in mind. 

The key algebraic technique is the solution of characteristic value problems. 
These problems are computationally intensive, but Mathematica will be used to do 
the work. 

The method of variation of parameters was introduced in chapter 5. We are 
now prepared to explain the method. In chapter 5 we used Mathematica to calculate 
the matrix inverses and the integrals involved, and we will do so here. But in the 
present chapter it will become clear what the process really involves, so you can go 
back to chapter 5 and understand what was happening there. 

The central goal is that of finding a fundamental solution (matrix) for a ho­
mogeneous system of equations with constant coefficients. This fundamental solu­
tion permits us to express every solution of both the homogeneous problem and any 
nonhomogeneous problem that has the same (vector or matrix) differential operator. 
Once a way has been found to obtain a fundamental solution, we can begin the study 
of initial value problems and quite general boundary value problems. Mathematica 
will carry the heavy computational burden for us. 

Nonlinear systems such as system 9.1 are exceedingly difficult to "solve" in the 
sense of finding a formula for the solution. There exists a theory of such systems that 
attempts to explain the local and sometimes global behavior of the solutions with­
out actually having access to the solutions themselves. We will begin to appreciate 
the value of this approach after finding that the solutions to simple linear problems 
are often so complicated as to defy understanding. We will discuss some of these 
ideas when we briefly consider the geometric theory of differential equations in Sec­
tion 10.2. Perhaps a description of generic behavior can contribute to our under­
standing when actual solutions become too complicated. As the number of equations 
increases, even the clearest exposition of behavior also increases in complexity. 

Lastly, we will see in that a system of the form 

xy' = Ay, 

where A is an n x n constant matrix is a generalization of differential equations of 
Cauchy-Euler type and the solution methods are analogous. 

Sources of Differential Systems 

One does not have to contrive systems such as system 9.1. They arise naturally from 
elementary applications as the setting of the problem is made more complicated. For 
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instance, in the case of chemical mixing, if the number of containers increases from 
one to two or more cascaded containers where the outflow of one container is allowed 
to become part of the inflow of the next container, a system is required to track the 
amount of the solute in the various containers. (This type of system can also describe 
the dissemination of a pollutant throughout a chain of lakes.) If, in addition, there 
is a return of the solution from some of the later containers to some of the earlier 
containers, the equations become more complicated, but we will be able to actually 
solve them and give formulas for the amount of solute in each of the containers. 

Other examples involve weights attached to spring systems where from the 
weight at the end of each spring, another spring and weight is attached. Such com­
pound spring systems require a system of first-order linear differential equations to 
describe the motion. Also, it seems clear that the growth of rabbits that we studied in 
Chapter 3 is affected if wolves or other predators are introduced into the population. 
The growth of the rabbit population must slow down as predation takes place. When 
there are adequate prey, the predator population will increase, but what happens as 
the prey population begins to diminish? The rate of growth of the predator population 
is affected, and we have a system of differential equations, one describing the rate of 
growth of the prey population and one describing the rate of growth of the predator 
population, where each rate involves the population of both prey and predators. Such 
systems are typically nonlinear. 

Newton's law of gravitation says that each two objects in the universe attract each 
other. This attraction is an acceleration: a force directed along the straight line joining 
the two bodies. A system of celestial objects such as our own solar system defines a 
set of differential equations that "determines" the motion of each object within the 
system. The determination is incomplete because the equations are nonlinear, their 
solutions may behave in wildly different ways when conditions differ slightly, and we 
are fundamentally unable to describe the system fully. Nonlinear systems are central 
to the study of the phenomenon of chaos: systems whose behavior is so unstable that 
it is exceedingly difficult to describe the behavior of solutions. Often these systems 
involving initial value problems fail to have unique solutions. 

Electronic circuits give a rich source of examples of linear (and nonlinear) differ­
ential systems. Kirchoff's laws permit the various current paths in a complex elec­
tronic system to be separately described by a differential equation. Within any such 
device, the behavior of the resulting system of differential equations describes the 
currents within the various circuits comprising the device. A final linear application 
is radioactive decay series. 

Section 10.3, which is optional, covers two nonlinear applications: planetary mo­
tion as a consequence of Newton's second law and Volterra-Lotka predator-prey 
equations. Section 10.4 looks briefly at defective systems of the form Ay' = Py, 
where A is an n x n constant matrix that has no inverse. These systems are shown to 
be equivalent to differential systems with algebraic side conditions. 
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Existence and Uniqueness Theorem 

Here is the fundamental existence and uniqueness theorem that guarantees that (most 
of) what we are attempting in Chapters 9 and 10 will work. 

Theorem 9.1 (Existence and Uniqueness). Let the function f : R n+l toRn be con­
tinuous in the "box" B = [a, b] X [a1, bd X ... X [an, bnl in Rn+l. Suppose that there 
is a number M such that each component function fi off satisfies 

n 

l.fiCx, u1, u2, ... , un)- !;(x, v1, v2, ... , vn)l :::; M I luj- v), 1 :::; i:::; n, 
j=l 

whenever (x, u) and (x, v) are in B. Jf(x0, a 1, a2, ... an) is in the interior of B, then 
there is an open interval I containing x0, and a unique vector function y(x) = 
(y1 (x), y2(x), ... , Yn(x)) such that y(x0 ) = (a1, a2, ... , an) = a, and for each x in I, 
(x, y(x)) E B, and 

y'(x) = f(x, y(x)). 

The proof is not difficult, but it involves concepts that are usually introduced in 
later courses, so we omit it. Two corollaries will be of value to us. 

Corollary 9.1 (Linear Systems). In the linear case M can be taken to be the maxi­
mum of the absolute values of the n2 component functions in P(x). Therefore, every 
initial-value problem for the linear system 

{ 
y' = P(x)y + q(x) 

y(x0) = a 

has a unique solution that passes through point (x0, a). 

The proof of Corollary 9.1 is left as an exercise. 

Corollary 9.2.In the case that of/oyj exists, is bounded on B, and is continuous, 
for 1 :::; i, j :::; n, then M can be taken to be the maximum absolute value of these 
n2 functions over B. Therefore, iff is continuously differentiable on B in its last n 
places, then each of the initial value problems involving system 9.1 has a unique 
solution. 

The proof of Corollary 9.2 is also left as an exercise. 

Exercises 9.0. 1. Prove that Corollary 9.1 follows from Theorem 9.1. 
2. Prove that Corollary 9.2 follows from Theorem 9.1. 
3. Show that the system of equations 

~ -{ 

dx _ 

7ft = 
x(~) = 

satisfies the conditions of Theorem 9.1. 

x + siny 

COSX- y 

y(O) = 0 
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4. Obtain a numerical approximation to the solution of the last problem using 

NDSolve[{x'[t] == x[t] + Sin[y[t]], 
y'[t] Cos[x[t]] -y[t], 

X [0] 0, 
y[O] 0}, {x[t], y[t]}, {t, -Pi, Pi}]. 

Capture the solution functions and plot them individually and parametrically 
as a pair { x [ t ] , y [ t ] } in the plane. We have taken t to be in the interval 
[ -1f, 1r]. Notice that the parameters for using NDSol veto solve this initial-value 
problem are the same as those for D So 1 ve except that instead of merely having 
the independent variable t in the last position, a range for t must be specified. 

9.1 Reduction to First-Order Systems 

In the introduction we indicated that a single nth-order differential equation can be 
reduced to a first-order system of differential equations. Here is an example of the 
technique. The equation in the example does not have constant coefficients, to illus­
trate that the technique is directly applicable to the problems of Chapter 10 as well 
as this chapter. 

Example 9.1 Transform the third-order differential equation 

5y'"- 3y" + 7xy'- (cosx)y = 4 sin 3x 

with initial conditions y(O) = 1, y' (0) = -1, y" (0) = 3 into a first-order system of 
three equations. 

and 

Solution. To do this, let y 1 = y, y2 = y', and y3 = y". Then 

y; = y"' 

Yi = y' = Y2 

Y; y" = Y3 

~(4 sin 3x + 3y"- 7xy' + (cosx)y) 

4 . 3 7 COSX 
= S Sln3x+ 5Y3 - 5xy2 + - 5-YJ· 

The equivalent system we seek is 

1 Y} = Yz 
Yz = Y3 

' cosx 7 3 4 . 3 Y3 = -s-YI- :sXYz + sY3 + 5 sm X. 

This is a linear system with 
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( Yt ]' ( 0 Y2 = 0 
y3 (cosxY5 

1 0 ]( y1 l ( 0 l 0 1 y2 + 0 . 
-(7/5)x 3/5 y3 (4/5) sin 3x 

The initial conditions are 

We can express this as 

where 

( Yt l ( y(O) l ( 1 l Y2 (0) = y'(O) = -1 . 
Y3 y"(O) 3 

{ 
y'(x) = P(x)y(x) + q(x) 
y(O) = c, 

y(x)=(~~].P<x)=( ~ ~ ~ J.q(x)=( ~ ]· 
y3 (cosxY5 -(7/5)x 3/5 (4/5)sin3x 

and 

c=[ -n 
It is comforting that a single linear differential equation transforms into a linear 
differential system. 0 

More generally, we can transform a system of higher -order equations into a single 
first-order system. An example is sufficient to enable you to make the transformation 
in these cases. Once again the example is more general than we require, but the point 
is still clear. 

Example 9.2 Transform the system 

{ 
y"' = 
z" = 

into a first-order system. 

f(x, y, y', y", z, z') 
g(x, y, y', y", z, z') 

Solution. This is a nonlinear system of two equations in the two unknown func­
tions y and z. It is third-order in y and second-order in z. We therefore need three 
dependent variables v1, v2, v3 to transform y and two, v4 and v5, to transform z. We 
expect to have a system of five first-order differential equations. Let 

{ ~~ : ~' 
v3 = y" 
v4 = z 
v5 = z' 
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Then 

I II 
vz = y = v3 

v3 = Y111 = f(x, y, y, y", z, Z1 ) = f(x, vi' v2, v3, v 4, v5) ( 
vi = Y1 = v2 

I I 
V4 = Z = V5 

I 
vs = z" = g(x, y, y, y", z, Z1 ) = g(x, vi' v2, v3, v4, v5). 

The first-order system that results is 

I 

VI = Vz 
I 

V2 = v3 
I 

f(x, vl, vz, v3, v4, Vs) V3 = 
I 

V4 = Vs 
I 

g(x, v1, v2, v3, v4, v5), V5 = 

which is indeed a system of five first-order differential equations. Each of the two 
original equations has the highest-order derivative of one variable expressed explic­
itly in terms of lower-order derivatives of all of the variables. This made the trans­
formation simple. 0 

Here is a more interesting example where the high-order derivatives are not ex­
plicitly expressed. This example does have constant coefficients, however. 

Example 9.3 Transform the system 

{ 
y" + 3z" + 3w1 + 3y1 + 2y - Z1 + 2z + w = 0 
y" + 4z" + 3w1 - Y1 - 5y + 2z1 + z - w = 0 

y" + 3z" + 4w1 + Y1 
- 2z1 + w = 0 

into a first-order system. 
Solution. We concentrate on getting three differential equations in the three un­

known functions y, z, and w. The highest -order derivatives are y", z", and W 1• In order 
to solve for these derivatives explicitly, we express the system using matrices in such 
a way as to emphasize these highest-order derivatives: 

[ 1 3 3 f' l [ 2 3 2 -1 

l[ t 4 3 z" =- -5 -1 1 2 -1 
3 4 W 1 0 1 0 -2 

Now observe that 

[l33r (7 -3 -3 J 1 4 3 = -1 1 0 ' 
1 3 4 -1 0 1 

so that multiplying through on the left by this matrix gives us the system 
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(~]=-(=i 
-3 -3 ]( 2 3 2 -1 

1 0 -5 -1 1 2 
0 I 0 0 -2 

29 21 11 -7 7 Y1 

= - ( -7 -4 -1 3 -2] z 
-2 -2 -2 -1 0 Z1 

y l 
w 

lf' -1 z 
1 Z1 

w 
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which is expressed with matrix coefficients. It turns out to be convenient to retain 
this representation because when one lets v1 = y, v2 = y1 , v3 = z, v4 = Z1 , and v5 = w, 
the coefficients for v; = y", v4 = z", and v~ = W 1 can be obtained from: 

The example is now easy to complete since we have explicitly solved for y", z", and 
W 1 as the derivatives v2, v4, and v5. The final form of the system is 

I 

[ -2~ 
1 0 0 0 VI v, 

I 

-21 -11 7 -7 V2 v2 
I 

= 0 0 0 1 0 V3 v3 
I 7 4 1 -3 2 V4 v4 0 
I 2 2 2 1 0 Vs vs 

When the matrix of coefficients of the highest-order derivatives is singular (has no 
inverse), the system is somehow defective. The techniques for solving such defec­
tive systems are not as well defined as for normal systems, so they are rarely dis­
cussed. Defective systems are discussed briefly in Section 10.4 to demonstrate that 
they can be solved. Such systems are very interesting, and some work has been done 
on describing their solutions. They have applications in control theory and in reactor 
physics, among other places. The following important example will provide us with 
several illustrations later. 

Example 9.4 Transform the differential equation y" + w2y = 0 into a first-order 
system. Find one solution of the system so that y(O) = 1, y' (0) = 0, and another so 
that y(O) = 0, y1 (0) = w. Take w * 0. 

Solution. To illustrate that reductions do not always have to be done the same 
way, let y 1 = wy and y2 = y1 • Notice the additional w. Then 

y~ = wy1 = WYz 
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and 
I II 2 

y2 = y = -w y = -wy 1• 

Written as a vector system this is 

The substitution we made has put win two places, rather than putting w 2 in one place 
the way the standard substitution would have done. (Make the standard substitution 
to see that this is so.) 

From Chapter 5 we know that the solution that satisfies y(O) = I, y'(O) = 0 is 
u(x) = cos wx. The solution to the vector system corresponding to the substitution 
y 1 = wu,y2 = u' is 

( y 1 (x) ) = ( w u(x) ) = ( 
Yz(X) u'(x) 

w coswx ) ( coswx ) 
-w sin wx = w - sin wx · 

Also from Chapter 4, the solution that satisfies y(O) = 0, y' (0) = w is v(x) = sin wx. 

The solution to the vector system corresponding to the substitution y 1 = wv, y2 = v' 

is 

( y1(x)) = ( wv(x)) = ( w sinwx ) = w( sinwx )· 
y2(x) v'(x) w cos wx cos wx 

0 

We can now see how to obtain a solution to the vector system from a solution to 
the second-order differential equation. 

Form of the Solutions 

Now that we can transform a single higher-order differential equation into a first­
order system, how do we solve such systems? Our primary subject for this chapter 
is systems with constant coefficients. We can consider an example from Chapter 5 to 
motivate the technique for solving first-order systems with constant coefficients. 

Consider the third-order differential equation 

L(y) = 2y"' - 3y" - lly' + 6y = 0. (9.5) 

In Chapter 5 we learned that the substitution y = erx led to the result L(erx) = 

p(r)erx = 0, so we want to have 

p(r) = 2r3 - 3r2 - llr + 6 = (2r- l)(r + 2)(r- 3) = 0. 

From this we obtain the three roots r1 = 1/2, r2 = -2, r3 = 3 These produce the 
three linearly independent solutions 
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Example 9.5 Transform equation 9.5 into a first-order system by the substitution 
u1 = y, u2 = y', u3 = y", and relate this system to the solution of equation 9.5 
obtained above. 

Solution. The substitution produces the system 

where 

1 
0 

11/2 

A=[ ~ ~ ~ ]· 
-3 11/2 3/2 

(9.6) 

The function y 1 (x) = £!"'2 found above should provide us with a solution in this vector 
environment if we use the definitions of up u2, and u3 properly. Their definitions, 
respectively, were 

{ 
u1 (x) = y1 (x) = £!"'2, 

u2(x) = y;(x) = £!"'2/2, 
u3(x) = y;' (x) = £!"'2/4. 

Now we need to check whether or not the vector 

is a solution of system 9.6. It certainly is, as the calculation 

[ u1 
]' [ 1/2] [ 0 u2 (x) = 114 ex/2 = 0 

~ 1/8 -3 

1 0 ][ 1 l 0 1 1/2 ~2 

11/2 3/2 114 

demonstrates. 
Observe that the form of this vector solution is U 1 (x) = k 1 erx, where k 1 is a 

nonzero constant vector, and r is a number. This is also the case with the other two 
vector solutions that we obtain from the solutions of equation 9.6 this way: 

and 

[ 
y3 (x) l [ e3

x l [ 1 l U3(x) = Y,~(x) = 3e3x = 3 e3x. 
Y3 (x) 9e3x 9 

You should verify as was done above that these two vector functions are indeed 
solutions of equation 9.6. We will soon have a way to easily test that these three 



308 9 Differential Systems: Theory 

solutions are linearly independent and hence that they form a basis for the kernel 
of the vector linear differential equation 9.6. We can form the Wronskian matrix of 
these solutions. It is 

This matrix will be used again later. It is worth noting that 

W'(x) = AW(x), 

where the matrix A is given in system 9.6. 0 

From this example we have found the form of a vector solution to a homogeneous 
constant coefficients linear differential system: solutions should have the form ke'x, 
where k is a nonzero constant vector, r is a (possibly complex) number, and both are 
to be determined. It is this observation that leads us to consider the solution of vector 
characteristic value problems. We will do this later in the chapter. 

Exercises 9.1. PART I. Transform these differential equations into first-order sys­
tems. If an initial-value problem is given, transform the initial conditions as well. 

1. y"'- y" + y'- y = 1; y(O) = -1, y'(O) = 0, y"(O) = 2. 

{ y" - 5z + 6y = x2 

2· z' + 4y = 1 - x · 
3. y" + 4y' - 5y = sinx; y(3) = 0, y'(3) = 1. 

{ 
y" - 2y' + 2z = e3x 

4· z" + y' - 2y + z = 0 · 
5. y'"- 2y" + 2y' = cosx; y(O) = 0, y'(O) = 0, y"(O) = -2. 

{ 
y"' - 2z" + 2y' + z = x3 - 1 

6· z" + y' - 2y + z = 0 · 
7. y"'- 2y" + y' =e-x; y(O) = 1, y'(O) = -1, y"(O) = 0 

{ 
y"' - 5y" + 9z' - 5y = 1 Oe-x COS X 

8· z' + 4y = 1- x · 
9. y'"- 6y" + 12y'- 8y = 2e'" sinx; y(O) = 0, y'(O) = I, y"(O) = 0. 

{ 

y"'- 3y' + 2z = sinx 
z' + 4y + 3z = 1 - x 

10· y(O) = y'(O) = y"(O) = 0 
z(O) = I. 

PART II. In each of these problems you have a differential equation and a basis 
for the kernel. Transform these differential equations into first-order systems by the 
transformation Y; = yU-1). Show that each function in the given basis for the kernel 
transforms into a vector solution of the first-order system. 

II a. y"' - y" + y' - y = 0; 
12a. y"- 5y' + 6y = 0; 

{e'", sinx, cosx). 
{e3x, e2<). 
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13a. y" + 4y'- 5y = 0; 
14a. y"- 2y' + 2y = 0; 
15a. y"'- 2y" + 2y' = 0; 
16a. y""- 2y"' + 2y" = 0; 
17a. y"' - 2y" + y' = 0; 
18a. y"' - Sy" + 9y' - Sy = 0; 
19a. y'"- 6y" + 12y'- 8y = 0; 
20a. y"' - 3y' + 2y = 0; 

{e-5x, e). 

{e sinx, e cosx). 
{e sinx, e COSX, I}. 

{e sinx, e cosx, X, I}. 
{1, e, xe). 

{e2x sinx, e2x COSX, e). 
{e2x, xe2x, x2e2x). 

{e, xe, e-2x). 

PART III. For each problem in Part II, show that the set of vectors you con­
structed is a (Wronskian) matrix whose determinant is nonzero. If the problem was 
transformed into the vector system y' = Ay, show that W satisfies the matrix sys­
tem W' = AW. These are problems llb-20b. 

9.2 Theory of First-Order Systems 

Recall the theory of solving linear algebraic equations and systems. To solve the 
linear system L(y) = q describe the kernel completely: call a typical member u. 
Then find some particular solution y 0 such that L(y0 ) = q. The complete solution of 
L(y) = q is then y = u + y0 . This is how to solve linear equations, be they algebraic 
or differential. 

From here on the theory of differential equations provides techniques that enable 
us to find u and y 0 when the operator L is a first-order linear vector differential 
operator. This is an operator of the form 

L(y) = y' - P(x)y, (9.7) 

where y is an n-vector of differentiable functions and P(x) is an n X n matrix of 
continuous functions. The function q is ann-vector of continuous functions. We will 
initially be interested in the homogeneous problem 

L(y) = y' - P(x)y = 0 or y' = P(x)y. (9.8) 

Given a vector c, Corollary 9.2 says that system 9.8 has a unique solution y such 
that y(x0 ) = c. We therefore can choose an independent set {c" c2, ... , en) of vectors 
from Rn, and on an interval I containing x0, find unique solutions {y 1, y 2, ... , y nl to 
the n homogeneous initial-value problems 

{ L(y;) = y; - P(x)y; = 0 
Y;(xo) = c;, 

ls:is:n. (9.9) 

Since L is linear, any linear combination of the Y; is also a solution of the homoge­
neous differential equation L(y) = y'- P(x)y = 0 on/. 
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Theorem 9.2 (Linear Independence). If the vectors {c 1, c2, ... , en) are linearly in­

dependent, then the corresponding solutions {y 1, y 2, ... , Yn) to the homogeneous ini­

tial value problems 

{ L(y;) = y; - P(x)y; = 0, .x E /, 

y;(x0 ) = C;, 1 :::; 1 :::; n, 

are linearly independent in the sense that {y 1 (x), y 2(x), ... , y n(x)} is a linearly inde­

pendent set for each x in/. 

Proof We indicate a proof of Theorem 9.2 in the case of two equations. Compare 
this proof with that of Theorem 5.6. The proof follows from the fact that if W(x) = 

(y(x)lz(x)) is the matrix whose columns are the vector solutions y and z, then the 
determinant of W (x) is either never 0 or identically 0. This is a demonstration of this 
fact: Write 

where 

y(x) = ( ~~ ) and z(x) = ( ~~ ) 

are vector solutions of the homogeneous linear system 

L(y)(x) y' (x) - P(x)y(x) 

y'(x)-( Ptt(x) P12(x) )y(x) 
P21 (x) P22(x) 

0. 

You can easily verify the identity 

We use this identity to show that 

(detW(x))' 

= (det( y1(x) z1(x) ))' 
y2(x) z2(x) 

= det( y;(x) z~(x) ) + det( y)(x) z)(x)) 
h(x) z2(x) y2(x) 22(x) 

= det ( Pt 1 (x)yl (x) + P12(x)Y2(x) p 11 (x)z1 (x) + p 12(x)z2(x) ) 
y2(x) z2(x) 

+ det( yl(x) Zt(x) ) 
P2I (x)yl (x) + Pn(x)y2(x) P2I (x)zl (x) + Pn(x)z2(x) 

= det ( Pu (x)yl (x) Pll (x)zl (x) ) 
y2 (x) z2(x) 



9.2 Theory of First-Order Systems 311 

z1 (x) ) 
zz(x) 

This is a single homogeneous first-order linear differential equation that has the 
solution 

detW(x) = detW(x0) ef<Pn(x)+Pzz(x))dx. (9.10) 

Therefore det W(x) is neverO if det W(x0 ) t. 0 and is identically 0 if det W(x0 ) = 
0. Equation 9.10 is known as Abel's identity. It is a more general form of the identity 
than that found during the proof of Theorem 5.6. The quantity p 11 (x)+ p 22 (x), the sum 
of the diagonal elements of the matrix, is known as the trace of the coefficient matrix. 
Abel's identity holds in higher dimensions as well, with the integrand being the trace 
of the coefficient matrix. In then x n case, det W(x) = det W(x0 ) exp(f tr P(x)dx). 
D 

Definition 9.1. A linearly independent set of n vector-valued solutions to system 9.8 
is called a fundamental set of solutions. 

The powerful property possessed by fundamental sets of solutions is that they 
form a basis for the kernel of the operator L. Any function in the kernel of L is a 
solution of system 9.8 and is expressible as a linear combination of the members of 
the fundamental set, and the linear combination is unique. This means that if we have 
a fundamental set of solutions of system 9.8 we can uniquely describe any solution 
of system 9.8 as a linear combination of the members of that fundamental set. We 
state this as a theorem. 

Theorem 9.3 (Fundamental Sets of Solutions). If {y I' y 2, •.. , Ynl is a fundamental 
set of solutions of system 9.8 and z is a solution of system 9.8, then there is a unique 
linear combination of {y 1, y 2, •.• , Ynl such that 

for each x in I. 

n 

z(x) = I a;y;(x) 
j=l 

Proof. Let z(x) be a vector solution. Consider the vector z(x0 ). The constants 
{a;l7=I required are the solutions of the linear algebraic system 

n 

z(x0 ) = I a;Y;(x0 ). 

j=l 

This system has a unique solution {a1, a2 , •.. , an) because the constant vectors 
{y 1 (x0 ), y 2 (x0 ), ••• , Yn(x0 )) are linearly independent. The function w(x) = I'J= 1 a;Y;(x) 
is a solution of system 9.8 as we showed above, and the {a 1, a2 , .. . , an) were 
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chosen so that w(x0) = z(x0 ). The uniqueness property says that w(x) = z(x) 
for each x in /. Therefore, z(x) is expressed uniquely as a linear combination of 
{y1(x), Yix), ... , Yn(x)}, as required. D 

Here is a powerful observation about the linearly independent set {y 1, y 2, 

... , y nl of solutions of the vector system 9.8: Form the matrix 
W(x) = (y 11y21 ... 1yn) whose columns are the vectors {yp y 2, ... , Ynl· Then 

W'(x) = Cyi I y; I ··· I y:) 

= (P(x)y I I P(x)y 2 I ... I P(x)y n) 

= P(x)(yll Y2l···l Yn) 

= P(x)W(x). 

This means that W'(x)- P(x)W(x) = 0. This is a differential equation with both 
coefficients and solution being n x n matrices. This is called a matrix differential 
equation. We first saw such a result in Example 9.5. 

Properties of Matrices and of Matrix Differential Equations 

Here are some properties of matrix differential equations and of matrices as they 
relate to these differential equations. Consider the n x n matrix differential operator 
L defined for each x in an interval I by 

L(Y)(x) = Y'(x)- P(x)Y(x). 

• L(Y) is defined for each n x n matrix Y of continuously differentiable functions 
defined on I. We say that Y is a continuously differentiable matrix-valued 
function. This means that each value of the function Y is a matrix, rather than 
that Y is a matrix, each entry of which is a function. 

• The derivative of Y is the matrix of derivatives. 
• The integral of Y is the matrix of integrals. 
• If Y is a solution of L(Y) = 0, then det(Y) is either never 0 or identically 0. 
• If det(Y) =1= 0, then Y is called a fundamental matrix solution or simply a 

fundamental solution of L(Y) = 0. 
• If Y and Z are differentiable n x n matrix-valued functions, then the derivative 

of their product satisfies this rule: (YZ)' = Y'Z + YZ'. Note that order of 
multiplication has been preserved: in each term, Y is the left factor and Z the 
right. 

• (Y + Z)' = Y' + Z'. 
• If K is a constant matrix (YK)' = Y'K. 
• This latter property guarantees the homogeneity property 

L(YK) = (YK)' - P(x)(YK) 

= Y'K - P(x)YK 

= (Y' - P(x)Y)K 

= L(Y)K 
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when K is a constant matrix. The property L(YK) = L(Y)K is just another 
higher level way to pass constants out of a linear operator. Note that the matrix 
K does not come out on the left because P(x) is in the way: L(KY) = KY' + 
P(x)KY =F KL(Y), unless P(x)K = KP(x). SoL has a one-sided homogeneity 
property toward constant matrices. This is still a very useful property. 

• If K is a constant and invertible matrix and Y is a fundamental solution matrix, 
then Z = YK is also a fundamental solution matrix because 

det(YK) = det(Y) det(K) =F 0. 

• If A is an n x n matrix, then there is only one solution of L(Y) = 0 such that 
Y(x0) =A. 

• If Z is a solution of L(Y) = 0 and Y is a fundamental solution, then Z = 
Y(Y(x0W1 Z(x0). The matrix function U = Y(Y(x0W1 is a solution of L(U) = 
0 with U(x0 ) = In, then x n identity matrix. The proofs of these assertions are 
left as exercises. 

• If U is a differentiable n x n matrix that is invertible on an interval [a, b], then 
U is a fundamental solution of the matrix system Y' = PY where P(x) = 
U'(x)(U(x))- 1. This follows from the calculation 

P(x)U(x) = U'(x)(U(x))- 1 U(x) = U'(x). 

Any other matrix Z = UK that is obtained from U by right-multiplication by a 
constant n X n matrix K is also a solution ofY' = PY. 

Variation of Parameters 

Suppose that Y is a fundamental solution of L(Y) = 0. We can construct a particular 
solution Z of the nonhomogeneous equation L(Y) = Q in this manner: consider 
Z = YV, where the matrix function V is to be determined so that Z is a solution of 
L(Z) = Q. Make the calculation 

L(Z) = L(YV) 

(YV)' - P(x)(YV) 

Y'V + YV' - P(x)YV 

= (Y' - P(x)Y)V + YV' 

L(Y)V+YV' 

= OV+YV' 

= YV' 

Q. 

From YV' = Q, invert Y to obtain V' = y-tQ. Integrate this to get 

V(x) = (x y-1(t)Q(t) dt + K. 
Jxo 



314 9 Differential Systems: Theory 

Then 

Z(x) Y(x)V(x) 

Y(x) (l,r y-1(t)Q(t)dt + K) 
= Y(x) Lx y- 1(t)Q(t)dt + Y(x)K 

is the solution to the nonhomogeneous differential equation. Two things are worth 
noting: 

l. The solution exhibits the two parts that the solution of a nonhomogeneous linear 
equation is supposed to exhibit: the kernel plus a particular solution. 

2. This procedure is just the method of variation of parameters in its natural set­
ting! 

This technique is equally applicable to vector systems-just take V to be a vector 
to match the shape of the vector Q. Verify that in either the vector or matrix case 

Y 0(x) = Y(x) Ix y- 1(t)Q(t)dt 
<o 

is a particular solution of the nonhomogeneous equation L(Y) = Q. Observe that if 
Q(x) is a vector, then Y 0(x) is a vector. It is also true that Y 0 (x0 ) = 0, because x0 is 
used as the lower limit on the integral. 

The relationships between vectors and matrices are important here. We obtained 
a matrix solution only after solving a vector system and collecting the (column) 
vector solutions into a matrix. However, after having done this, we see that the matrix 
solutions play a central role. The ability to compute inverses gives us a powerful 
notational tool for keeping track of complicated calculations. We can also express 
the vector solution z = Yk in terms of the fundamental matrix of solutions by using 
a column vector k rather than a matrix. 

Example 9.6 (Continuation of Example 9.4) Find a fundamental matrix solution for 
the homogeneous 2 X 2 matrix differential equation 

Y' = ( 0 w )y 
-w 0 

that satisfies the initial condition Y(O) = 12 . 

Solution. From Example 9.4 we know that 

Y(x) = w . ( 
Coswx Sinwx ) 

- Slll WX COS WX 

is a fundamental solution. This is easily verified: 
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Y'(x) = (w( co~wx sinwx ))' 
-smwx coswx 

( -wsinwx wcoswx) 
= w -wcoswx -wsinwx 

w) ( wcoswx wsinwx) 
0 -wsinwx wcoswx 

~ )Y(x). 

Y(O)=w( ~ ~ ), wehave Y(0)-1 = ~( ~ ~ ), 

and the solution we want can be obtained simply by dividing through by w. Therefore 
the solution we want is 

U(x) = .!_ (w( c~swx sinwx )) = ( c~swx sinwx )· 
w - smwx coswx - smwx coswx 

You should verify that U(x) does indeed satisfy the required conditions. <> 

Exercises 9.2. PART I. Verify that the given matrix-valued function W(x) is a funda­
mental solution of the first-order linear system Y' = P(x)Y. The coefficient matrix 
P(x) is given in the first column. Let Mathematica do the work for you. 

1a. P 1(x) = ( ~9 ~ ); 

2a. P 2(x) = ( -~5 ~ ); 

3a. P 3(x) = ( -~5 1~ ) ; 

W _ ( cos(3x) sin(3x) ) 
1 (x) - -3 sin(3x) 3 cos(3x) · 

W _ ( cos(5x) sin(5x) ) 
z(x) - -5 sin(5x) 5 cos(5x) · 

( 
e5x xe5x ) 

W3(x) = 5e5x e5x + 5xe5x · 

[ 
0 1 l (3x 4a.P4(x)= -3(7+10x) 2(5+8x) ; W4(x)= ;e3x 

1+2x 1+2x 

[ 
-2- 20e5x + 15x 5(1 - 14e5x + 6x) l 

5a.P5(x)= -l-2e5x+3x -1-2e5x+3x ; 
-1 -2 

_ ( 5e3x 1 + 7e5x + 2x ) 
Ws(X)- 3x 5x · -e -e -x 

( 10 35 ) ( 5e3x 1e5x ) 
6a. P 6(x) = _ 1 _2 ; W 6(x) = -e3x -e5x . 

( -4 1 ) ( (1 _ x)e-3x -e-3x ) 
7a. P7(x) = 1 2 ; W7(x) = -3x -3x . - - -xe -e 
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8 P ( ) = ( 2 + (7/x) 4 + (15/x2) + (14/x) ) . 
a. 8 x -1 -2 ' 

W ( ) _ ( x2(3 + 2x) x4 (5 + 2x) ) 
8 X - -_x3 -_ii . 

( 6 25 ) 9a. P 9(x) = _ 1 _2 ; 

W (x) = ( e2x(4cos(3x)- 3 sin(3x) 
9 -e2x cos(3x) 

e2x(3 cos(3x) + 4 sin(3x) ) 
-e2x sin(3x) · 

lOa. P 10(x) = ( ~1 ~2 ) ; 

W (x) = ( (cos(2x)- 2 sin(2x))/e'" 
10 -(cos(2x))/e'" 

(2cos(2x) + sin(2x))/e'" ) 
-(sin(2x)/ e'") · 

PART II. When possible, for each system in Part I find a fundamental solution 
such that at x = 0 the solution is an appropriate-sized identity matrix. When neces­
sary, let Mathematica do the work for you. These are problem 1 b-1 Ob. 

PART III. For each nonhomogeneous system Y' = P(x)Y + Q(x) below, use the 
fundamental solution given in Part I and the method of variation of parameters to 
find a particular solution. Then state the complete solution. Let Mathematica do the 
work for you. The operators in these problems correspond to those in Part I. 

1c. Y' = P 1(x)Y(x) + ( -~ _; )· 

2c. Y' = P 2(x)Y(x) + ( ~ ~ )· 

3c. Y' = P 3(x)Y(x) + ( ~ ~ )· 

4c. Y' = P 4(x)Y(x) + ( ~ ~ ) . 

5c. Y' = P 5(x)Y(x) + ( i ~ )· 
6c. Y' = P 6(x)Y(x) + ( !1 ~ )· 

7c. Y' = P 7 (x)Y(x) + ( ~ ~ ) . 

8c. Y' = P 8(x)Y(x) + ( ~ ~1 ) . 

9c. Y' = P 9(x)Y(x) + ( ~ ~ )· 
lOc. Y' = P 10(x)Y(x) + ( ~ ~ ) . 

PART IV. Manufacture similar problems for yourself. Given W(x) which is in­
vertible, the matrix P(x) = W'(x)W(x)-1. Then almost anything simple can be used 
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for Q(x). You may occasionally find an integral that Mathematica cannot do. Do not 
expect DSol ve to be able to solve your problems. Someday it may be able to do 
all of them. If the coefficient matrix is constant, and you are willing to wait long 
enough, Mathematica may return a solution. We are about to learn how to manually 
direct the solution process. 

PART V. Theory. 

11. Verify that in either the vector or matrix case 

Y 0(x) = Y(x) (x y-1(t)Q(t) dt 
Jxo 

is a particular solution of the nonhomogeneous equation L(Y) = Y'- P(x)Y = 
Q, and that Y(x0) = 0. 

12. Verify that 

does indeed satisfy 

U(x) = ( co~wx sinwx ) 
-smwx coswx 

Y' = ( 0 w )y 
-w 0 

and the initial condition Y(O) = I 2• 

13. Show that the matrix function U = Y(Y(x0))-1 satisfies 

L(U) = U' - P(x)U = 0 

and 
U(x0) =In, 

where In is then X n identity matrix. 
14. Show that if Z is a solution of L(Y) = Y' - P(x)Y = 0 andY is a fundamental 

solution, then Z = Y(Y(x0))-1Z(x0). 

9.3 First-Order Constant Coefficients Systems 

As we found in Section 4.2 the solution of constant coefficients systems leads im­
mediately to auxiliary problems in algebra. This was certainly true for homogeneous 
nth-order differential equations with constant coefficients where we needed to find 
the roots of polynomials. We will find a general representation for fundamental solu­
tions of first-order systems, and then explore the algebraic approaches that we must 
take in order to actually solve a given system. The multidimensional setting in which 
we are now operating permits some strange things to happen that do not occur in the 
one-dimensional setting. We have to completely examine the structure of matrices in 
order to describe every solution, even though the general solution can be described 
theoretically as an exponential without the need to know about internal structure. 
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Picard's Method and the Matrix Exponential 

Suppose that we wish to solve the homogeneous n x n constant coefficient matrix 
differential equation 

Y'=AY, 

along with the initial condition 
Y(O) =In. 

The Picard1 method, says that to solve Y' = AY we should produce a sequence 
of (matrix-valued) functions from the recursion relation 

We start the sequence withY 0(x) = ln. Then 

Y 1(x) In+ lx AY0(t)dt =In+ Ax, 

Y2(x) In+ lx AY1(t)dt =In+ lx A(In + At)dt 

A2x2 
ln+Ax+ ~· 

(x (x ( A2t2) 
Y 3(x) = In+ Jo AY1(t)dt =In+ Jo A In+ At+ 2! dt 

In general, 

A2x2 A3x3 
ln+Ax+~+~. 

m (Ax)i 
Y m(x) = In + L -.,-, 

I. 
i=l 

which may be verified by mathematical induction. 
This sequence (of matrix-valued functions) has a limit because each of the com­

ponent sequences has a limit. (This is an exercise.) But we want to know what the 
limit is. Here is a hint: consider the Maclaurin2 series expansion for the ordinary ex­
ponential function, eax = 2:~0 ((axY!i!). The partial sums of this series look exactly 
like the terms of the sequence that the Picard method was defining for us. Compare 
the partial sum 

m (ax)i m (ax)i 
~-=1+~-L...J ., L...J ., 

I. I. 
i=O i=l 

with the expression 

1 Emile Picard (1856-1941), an eminent French mathematician. 
2 Colin Maclaurin (1698-1746), Scottish mathematician who was a skilled geometer. His 

work Treatise on Fluxions attempted to apply Greek rigor to the new calculus. 
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I +~(Ax); 
n LJ ., 

i=l l. 

for Y n(x) above. Isn't the similarity striking? We have the multiplicative identity 
matrix In in place of the number 1 and the matrix A in place of the number a. 
Since the Picard iterants we are producing look so much like the partial sums for an 
exponential, we define the limit of the sequence of Picard iterants to be 

U(x) = limm->oo Y m(x) = eAx. 

This is called the matrix exponential of Ax. When we observe that Y~(x) 
A Y m-I (x), we find by taking limits that 

In addition, since Y m(O) = In for all m, 

Therefore, U(x) = eAx is the fundamental matrix solution that satisfies U' =AU 
and U(O) = In. This means that every solution of Y' = AY can be expressed as 
Y = UK for some choice of the constant matrix K. It is often convenient to use the 
notation exp(Ax) for eAx. 

Mathematica distinguishes between the exponential of a numeric-valued ex­
pression and that of a matrix-valued expression. It uses Exp for the former, and 
MatrixExp for the latter. 

Example 9.7 Find the matrix exponential 

Solution. The matrix exponential exp r ( -~ ~ ) X J is the solution of the differ­

ential equation Y' = ( _ ~ ~ ) Y satisfying the initial condition Y(O) = I 2. It is 

left as an exercise for you to apply Picard's method to obtain enough terms for you 
to recognize the four component series. We will take advantage of Examples 9.4 and 

9.5, and observe that since A = ( _ ~ ~ ) is just the system we studied when w = 1, 

we know that 

This is verified by the calculations 

cosx sinx ) 
-SlllX COSX 
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( . )' cosx smx 
-sinx COSX -

( - sinx COSX ) 

-cosx - sinx 

= ( - ~ ~ ) ( - ~~~~ 
and 

( c~s 0 sin 0 ) = ( 1 0 ) = 1 . 
-smO cosO 0 1 2 

sinx) 
COSX 

0 

Example 9.7 (M) Find the matrix exponential exp [ ( _ ~ ~ ) x] by Mathematica. 

Solution. 

In[l] := (MatrixExp[{{O, 1}, {-1, O}}x] )//MatrixForm 

Out [1] = ( Cos [x] Sin [x] ) 
-Sin[x] Cos[x] 0 

Example 9.8 (a) Find the matrix exponential of the diagonal matrix 

Solution. The solution is simple once you realize that the powers of D are also 
diagonal matrices having a particularly nice form: 

Therefore 

m 

= lim ~ diag((d1x)k, (d2xl, ... , (dnxlYk! 
m~oo .L..J 

k=O 

= diag[lim ~ (d1x)klk!, lim ~ (d2x)klk!, ... ,lim~ (dnx)klk!l 
m-+oo .L..J m-+oo .L..J m-+oo .L..J 

k=O k=O k=O 

= diag(exp(d1x), exp(d2x), ... , exp(dnx)) 0 

Example 9.8 (b) Apply the result of Example 9.8 to find the matrix exponential of 
the diagonal matrix D = diag( -1, 2, 3)x = diag( -x, 2x, 3x). 

Solution. The desired exponential is 

0 l 0 . 
e3x 

Note that 
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'f~· 
0 

0 l [ _,-• 0 0 l e2x 0 = 0 2e2x 0 
dx 0 0 e3x 0 0 3e3x 

[ -~ 0 

~ ]['~' 
0 1] 2 e2x 

0 0 

and 

OJ [100] 0 = 0 1 0 = 13. 
e0 0 0 1 

Example 9.8 (M) (b) Find the matrix exponential of the diagonal matrix 

D = diag( -1, 2, 3)x = diag( -x, 2x, 3x) 

by Mathematica. 
Solution. 

In [2] := (diag = DiagonalMatrix[ { -1, 2, 3}]) I /Ma.trixForm 

out [21= (-ol ~ ~ l 
0 0 3 

In [ 3] := (Y[x_] = MatrixExp[diag x]) I /MatrixForm 

Out [3]= (e~x e~x ~ l 
0 0 e 3 x 

In[4]:= (Y[O])I/MatrixForm 

Out[4]= (~ ~ ~ l 
0 0 1 

Check that Y [ x] is a solution of the differential equation. 

In[5]:= Y'[x] ==diag.Y[x] 

Out[5]= True 

321 

0 

0 

A matrix N * 0 is called nilpotent of order p if NP = 0, but NP- 1 * 0. Of 
course, if NP = 0, then Nk = 0 fork ~ p. The exponential of a nilpotent matrix is 
particularly simple to compute, and the result is interesting. 

Example 9.9 Show that 

[ 
0 1 

N = 0 0 
0 0 

is nilpotent of order 3 and calculate exp(Nx). 
Solution. We have that N 1 * 0, 
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N' = [ ~ 0 2] 
0 0 * 0, 
0 0 

and Nk = 0 fork 2: 3. Therefore, N is nilpotent of order 3. It follows that Y(x), the 
exponential of Nx, is simply 

exp(Nx) = 

-3] [ 0 
~ x+ ~ ~ ~ ]~ 

0 0 2 

x x
2 ~3x ]· 

0 1 

Verify that Y'(x) = 
polynomial. 

NY(x) and that Y(O) = 13. This solution matrix is a matrix 
0 

Example 9.9 (M) By Mathematica, show that 

[ 0 1 -032] N= 0 0 
0 0 

is nilpotent of order 3 and calculate exp(Nx). 
Solution. Use the name Nil. The square of Nil is nonzero. Use the function 

Mat r i xP ower [A, n] to find the nth power of the square matrix A. 

In[6]:=Nil=[~ ~ -~3 ); 
In[7]:= MatrixPower[Nil, 2]//MatrixForm 

[
0 0 2 l 

Out[7]= 0 0 0 

0 0 0 

In[8]:= MatrixPower[Nil, 3]//MatrixForm 

Out[8]= [~ ~ ~ l 
0 0 0 

In[9]:= MatrixExp[Nilx]//MatrixForm 

Out[9]= (~ : -3;1:x2l 0 
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The Solution Process 

We are in a situation where the theory says that solutions to a differential system 
exist, but we do not know how to find them. We present a method in theory and then 
give examples done both manually and by Mathematica following the manual steps. 
It is worth knowing how to guide Mathematica to a solution because you may be 
able to direct it to do something that it cannot (yet) do on its own. The key to this 
method is the characteristic value problem. 

To solve the vector system y' = Ay, guided by our solution of equation 9.5 in 
the system setting, we seek at least one solution having the form y(x) = Kerx, where 
we are to find r and a corresponding nonzero constant vector K such that 

y' - Ay = rKerx - AKerx = (rK - AK)erx = -(AK - rK)erx = 0. 

We have a solution if we can solve the characteristic value problem 

AK=rK. 

We must find numbers r and corresponding nonzero vectors K so that 

AK - rK = (A - rln)K = 0. 

This is an algebraic system of n linear equations in the n unknown components 
of K. The n x n coefficient matrix is A - rlw If r happens to be such that this 
coefficient matrix has an inverse, then K = 0 is the only solution. We do not want 
this to happen. Can we chooser so that the matrix A- rln has no inverse? We learned 
how to accomplish this in Chapter 2: if we can find r so that det(A- rln) = 0, then 
there is a nonzero vector K such that 

The pair {r, K}, which is a characteristic value and corresponding characteristic vec­
tor, gives us a solution to the differential system as we verify next. 

Consider y(x) = Kerx with r chosen so that det(A- rln) = 0 and K * 0 chosen 
so that (A - rln)K = 0, then 

y' (x) - Ay(x) = rKerx - AKerx 

(rK- AK)erx 

(rln - A)Kerx 

-(A - rln)Kerx 

oerx 

0. 

So y does satisfy the differential equation. 
We now know what has to be done. How do we do it? An example will illustrate 

the theory. 
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Example 9.10 Let 

A= [ -~ ~ 
-3 -6 

~ ]· 
-6 

Find a fundamental set of solutions for the first-order vector system y' = Ay. Then 
express the kernel as y = W(x)C where W(x) is a fundamental matrix and Cis a 
constant vector. 

Solution. The differential operator is L(y) = y'- Ay. Its kernel is the space of all 
functions such that y' - Ay = 0 which is those functions where y' = Ay. We saw 
above that we would have a solution of the form Y(x) = Kerx if we could chooser 
so that det(A- rl3) = 0. Then, after choosing r, choose K to be a nonzero solution 
of the linear algebraic system (A - ri3)K = 0. 

Let's see how to make det(A- rl3 ) = 0. 

[ -1 2 2] [ I 0 

~ l A- rl3 = 2 2 2 -r 0 I 
-3 -6 -6 0 0 

[ -12-' 
2 

2 l 2-r 2 ' 
-3 -6 -6- r 

so we want 

det(A- d,l " det[ -!:' 2_=6, _}_'] 

r3 + 5r2 + 6r 

r(r + 2)(r + 3) = 0. 

Notice that we are once again back to finding roots of polynomials, just like 
we were in Chapters 2 and 5. As before, distinct real roots are going to present the 
simplest case. Repeated roots will again require special attention, and we will have 
to see how to convert the conjugate complex case into two real solutions. This much 
is familiar ground. 

Now that we have three choices for r: r1 = 0, r2 = -2, and r3 = -3, what do we 
do to get the corresponding vectors Kl' K 2, and K 3? To find K 1 we need to solve 

This problem is solved if we have a basis for the kernel of A. Row reduce A to get 

[ -~ ~ ~]~(~ ~ ~]· 
-3 -6 -6 0 0 0 
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Here a bru;i, fonhe kernel ;, K, = ( -! } (Verify that thi' is a oolution of AK, = 

OKI.) 
To find K 2 we solve 

We again want a basis for the kernel of A + 213. Row reduce A + 213 to get 

A + 213 = ( ~ ~ ~ l ~ ( ~ ~ ~ l· 
-3 -6 -4 0 0 0 

A ba~' foc the kernel ;, K 2 = ( ~2 ]. (Again. verify.) 

To find K 3 solve 

To obtain a basis for the kernel of A + 313, row reduce A + 313 to get 

A + 313 = ( ~ ~ ~ l ~ ( ~ ~ ~ l· 
-3 -6 -3 0 0 0 

A bru;i, fo' the kernel;, K 3 = ( -~ J. (Again. verify.) 

Now that we have the three pairs {rp K 1}, {r2, K 2}, and {r3, K 3} we can state the 
three solution vectors to our differential equation to be 

(This is a constant solution. It is analogous to the constant solutions we found for 
certain differential equations in Chapter 3.) Similarly, 
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and 

A fundamental matrix is 

and a general vector solution is 

-e -3x l 
0 ' 

e-3x 

Y(x) = W(x) [ ~~ ] = [ -l~~~-= c~;~:-3x ]· 

c3 c1 + c3e 
0 

As you can see, even for this simple system where things worked out well, the 
solution process can be long and complicated. This is why it is imperative for you to 
fully understand the steps in the solution process. That way, when the calculations 
become very long and drawn out, you can think to yourself about where you are in 
the process, what it is that you just did, and what is to come next. You even need 
to be able to do this when Mathematica is doing the calculations for you. This is 
especially important, because you will attempt to have Mathematica solve problems 
that are so complicated that you would never attempt to solve them by hand. 

Example 9.10 (M) We repeat the last example, letting Mathematica do the calcula­
tions for us. 

Solution. 

In [ 101 : = a = [-21 ~ ~ ] ; 
-3 -6 -6 

In [111 := (sys [r_] =a- r * IdentityMatrix[3]) I /MatrixForm 

[
-1-r 2 2 

Out [ 111 = 2 2 - r 2 
-3 -6 -6-r 

The characteristic polynomial. 

In [121 := CharacteristicPoly[r_] = Factor[Det [sys [r]]] 
Out [121= -r (2 + r) (3 + r) 

Get and name the characteristic roots r1, r2, and r3. Note the parallel assign­
ment. 

In[131 := {r1, r2, r3} = r/.Solve[CharacteristicPoly[r] == 0] 

Out[131= {-3,-2,0} 

Get the characteristic vector and solution corresponding to r1 = 0 

In [ 1 4 1 : = k1 = Null Space [ sys [ r 1] ] [ [ 1] ] 

Out [ 141 = { -1, 0, 1} 
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The solution corresponding to r 1. 

In[15]:= y1[x_] =Exp[r1x] *k1 
Out [15]= { -e- 3 x, 0, e- 3 x} 

Get the characteristic vector and solution corresponding to r2 = -2 

In[16] := k2 = Nul1Space[sys[r2]] [ [1]] 

Out[16]= {-2,1,0} 

The solution corresponding to r2. 

In[17]:= y2[x_] =Exp[r2x] *k2 
Out[17]= {-2e-2x, e-2x, 0} 

Get the characteristic vector and solution corresponding to r3 = -3 

In [18] := k3 = NullSpace[sys [r3]] [ [1]] 

Out[18]= {0, -1, 1} 

The solution corresponding to r3. 

In[19]:= y3[x_] =Exp[r3x] *k3 
Out[19]= {0, -1, 1} 

The complete solution. 

In[20]:= y[x_] =c1*y1[x] +C2*y2[x] +c3*y3[x] 
Out[20]= {-c1 e-3x- 2 c2 e-2x, -c3 + c2 e-2x, c3 + c1 e- 3 x} 

Check: 

In[21]:= Simplify[y'[x] ==a.y[x]] 

Out[21]= True 
W [ x] is fundamental matrix of the system Y' = a.y. Note that we have to trans­

pose to tum the (row) vectors into columns. 

In [22] := (W[x_] = Transpose[{y1 [x], y2 [x], y3 [x]}]) I I 
MatrixForm 

Out [22]= ~-e~ 3 x 
l e-3 x 0 

W(x) is always invertible because it has a nonzero determinant 
W [ x] solves the matrix equation Y' = a.Y(Y' - a.Y = 0). 

In[23]:= Simplify[W'[x] ==a.W[x]] 

Out[23]= True 
The matrix exponential of the coefficient matrix a. 

In [ 241 : = (U [x_] = W [x] . Inverse [W [ 0] ] ) I /MatrixForm 

(
-e-3x + 2 e-2x -2 e-3x + 2 e-2x -2 e-3x + 2 e-2x 

Out[24]= 1-e-lx 2-re-2 x 1-e-2x 
-1+e- 3 x -2+2e- 3 x -1+2e-3x 

In[25]:= (U[O])I/MatrixForm 
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[
1 0 0 ) 

Out{251= 0 1 0 
0 0 1 

Simplify[U'[x]-a.U[x] == 0] 

In{261:= Simplify[U'[x] ==a.U[x]] 

Out[261= True 0 

You might think from this example that doing these problems by Mathematica 
is longer than by hand. This would be a mistaken impression. In this latter example 
we did everything that was illustrated in the previous example, and, in addition, pro­
duced and checked both the natural fundamental matrix and the matrix exponential of 
the system. These latter two computations lengthened the example considerably, but 
they illustrate how easily we can make complicated calculations using Mathematica. 
To prove the point, try obtaining U[x] by hand from the definition of W[x]. Then 
manually check that U[x] is a solution of the matrix system. This should convince 
you that Mathematica has simplified our work. 

Mathematica provides us with two shortcuts: the function Eigensystem, and 
the function Mat r ixExp. Here is how these would work for our example: 

In [271 := {roots, vectors}= Eigensystem[a] 

Out [ 2 71 = { { -3, -2, 0} , { { -1, 0, 1 } , { -2, 1, 0 } , { 0, -1, 1 } } } 

This output has the form {roots, vectors} where roots is a list of the 
characteristic roots of the matrix a, and vectors is a list of characteristic vectors 
in the proper order so that they correspond to the appropriate characteristic root. 
Inthiscase,roots = {-3,-2,0} andvectors = {{-1, 0, 1}, {-2, 
1, 0}, { 0, -1, 1} } . Note that this is not the same ordering that we used be­
fore, but that the correspondence of vectors to roots is the same. This means that the 
appropriate correspondence is: 

Roots 
-3 
-2 
0 

Vectors 
{-1, 0, 1} 
{-2, 1,0} 
{0, -1, 1} 

Here is a particularly simple fundamental matrix w [ x l . 

In [281 := (W[x_] = Transpose[Exp[roots x] *vectors]) I I 
MatrixForm 

( -e0~3x -:~~:x _all ) 
Out [281= ~ 

e~3 x 0 

Mathematica provides MatrixExp to find the solution U [x] we found above. 

In [ 2 91 : = (Ul [x_] = MatrixExp [ax]) I /MatrixForm 

( e~3x (-1+2<ex) 2e~3x (-l+<ex) 2e~3x (-l+<ex) ) 
Out[291= e~2x (-l+<ezx) e~zx (-1+2<e2x) e~zx (-l+<ezx) 

-l+<e~3x _ 2 <e~3x(-l+<e3x) -<e~3x(- 2 +<e3x) 
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The form is slightly different, but this is the fundamental solution matrix U(x) 
that we found before. Simplify the difference u 1 [ x] - u [ x] to see that it is the zero 
matrix. The function MatrixExp quickly gives us a fundamental solution, but we 
have also lost something: from w [ x] we know that in each of the three directions 
{-1, 0, 1}, {-2, 1, 0}, and {0, -1, 1} the solution acts like a simple exponential, and 
that in all other directions, its behavior is that of a mixture of exponentials. Now we 
have only a mixture of exponentials; there is no easy way to obtain from this matrix 
those directions in which the action of the solution is "pure." 

The example suggests (correctly) that it is easy to summarize the distinct real 
roots case as a theorem. 

Theorem 9.4. If the characteristic equation for the n x n matrix A has only real 
and distinct characteristic roots r1, r2, •• • , rn, then every solution of the first-order 
differential system y' = Ay can be written uniquely in the form 

n 

y(x) = ~ cier,xki, 
i=l 

where ki is the real nonzero characteristic vector corresponding to the characteristic 
root ri, 1 ::;; i ::;; n. 

The individual solutions y;(x) = e',xki, 1 ::;; i ::;; n are linearly independent and 
form the columns of a fundamental matrix solution 

of the n X n matrix system 
Y'(x) = AY(x). 

Every solution of the matrix system Y'(x) = AY(x) can be written uniquely as 

Y(x) = W(x)K, 

where K is an nxn constant matrix, and every solution of the vector system y' = Ay 
can be written uniquely in the form 

y(x) = W(x)k, 

where k is ann-vector. 

Exercises 9.3. PART I. Set up the recursion suggested by Picard's method for each 
of these first-order systems. The recursion for the initial-value problem 

Y'(x) = P(x)Y(x) + Q(x), Y(O) = K 

is 

Yn+l(x) K + Lx P(t)Yn(t) + Q(t)dt, 

Y 0 (x) - K. 

Find the first five nonzero terms of a power series expansion for the solution. It will 
be centered on x0 = 0. Let Mathematica do the work for you. 
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1. Y'(x) = (! 
2. Y'(x) = ( ~ 

~ ) Y(x) + ( ~ 

~ )Y(x) + ( ~ 
~ ), 
2x ) 
1 ' 

, (1 X) (02) 3. Y (x) = x _ 1 Y(x) + x 0 , 

4. Y'(x) = ( 3 2x )Y(x) + ( 3x 
l+x 1-x x 

( -1 -1 ) 
Y(O) = 2 2 . 

( -1 -1 ) 
Y(O) = 3 3 . 

Y(O) = ( -~ -~ )· 
2 ~ X ), y (O) = ( ~ 

PART II. Manually solve each of these diagonal systems. 

5. Y'(x) = ( ~ -~ )Y(x), Y(O) = ( -~ ~ )· 

6 Y'(x) = ( ~ -~ ~ ]Y(x), Y(O) = ( ~ -~ H 
7. Y'(x) = ( ~ -~ ~ ]Y(x), Y(O) = ( ~ =! ~ ]· 

0 0 3 0 0 -2 

8 Y'(x) = l-~ -~ ~ j ]Y(x), Y(O) = l ~ ~ -~ n 

)· 

PART III. Show that each of these matrices is nilpotent. State the order of nilpo­
tency of each matrix. Find the matrix exponential eAx of each matrix. Verify that 

each exponential is a matrix polynomial. Write each matrix polynomial in the form 

~~;o Ckx". 

9 N, = l ~ 1 0 n 0 -2 
0 0 
0 0 

10 N, =U 
1 0 

H 0 -2 
0 0 
0 0 

PART IV. Using the techniques of Examples 9.10 and 9.10 M, find a fundamental 
solution for each of these constant coefficients systems. Even when doing the prob­
lems manually, let Mathematica solve the characteristic value problems that arise. 

( 

8 -51 11. Y'(x) = 10 _ 7 J Y(x). 

12. Y'(x) = -1~ -2 ~ ]Y(x). 
10 6 1 
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( 
133 54 22] 

13. Y'(x) = -300 -122 -50 Y(x). 
-60 -24 -9 

!4Y'(x) = [ -: -! nY(x) 

!5Y'(x) = [ -~ -~ =~ =~ ]Y(x) 

PART V. Theory. 

16. Show that if v1 and v2 are characteristic vectors of the matrix A corresponding 
to the characteristic root r, then v = c1v1 + c2v2 is also a characteristic vector. 
This means that there corresponds to r a subspace of characteristic vectors. 

17. Verify by induction that 

is the unique solution of 

for n 2: 0. 

n (Ax)i 
Yn(x) =In+ I-.,­

!. 
i=l 

18. Show that each component (Y m)ij of Y m(x) =In+ .E;:1 (Ax);/i! is bounded by 

when M is chosen such that max;)A;) ::; M. Hence conclude that limm-><XJ Y m(x) 
exists for each real number x. 

19. Make enough iterations of Picard's method on the equation of Example 9.7 to 
obtain recognizable series. 

9.4 Repeated and Complex Roots 

We have just seen an example of how to solve first-order vector or matrix systems 
when the characteristic roots of the coefficient matrix are real and distinct. The the­
ory for the next case is not always so neat. We begin where the characteristic roots 
are not distinct, but where there is a complete linearly independent set of character­
istic vectors. In the study of linear algebra, the case we are considering is identified 
by saying that the coefficient matrix A is diagonalizable. This means that there is an 
invertible matrix P such that D = p-I AP has only zeros off of the main diagonal. 
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That is, Dis a diagonal matrix. The entries on the diagonal of Dare the character­
istic roots of A, and the columns of P are the corresponding characteristic vectors. 
This means that we have already learned how to use Mathematica to do all of the 
calculations that we need. 

Repeated Roots (Diagonalizable) 

In Section 5.2 we learned that the multiplicity of a characteristic root r of the matrix 
A is called the algebraic multiplicity of the root, and the dimension of the kernel of 
A - rl is called the geometric multiplicity of the root r. The geometric multiplicity 
is the number of linearly independent characteristic vectors that correspond to r. The 
geometric multiplicity is always at least 1 and is never greater than the algebraic 
multiplicity. The matrix A is diagonalizable provided that the algebraic multiplicity 
of each characteristic root equals the geometric multiplicity of that root. This follows 
from the fact that characteristic vectors corresponding to distinct characteristic roots 
are linearly independent. Equivalently, the n X n matrix A is diagonalizable provided 
that A has n linearly independent characteristic vectors. 

Consider the matrix 

2 6 3 12 6 
0 26 6 54 6 

A= 0 6 5 12 6 
0 -12 -3 -25 -3 
0 -6 -3 -12 -4 

and the matrix 
3 2 2 -1 -1 
2 9 2 -4 -2 

P= 2 2 2 -1 -1 
-1 -4 -1 2 
-1 -2 -1 1 

Then we have this matrix equality: 

6 4 4 1 1 
4 18 4 4 2 

AP= 4 4 4 1 
-2 -8 -2 -2 -1 
-2 -4 -2 -1 -1 

3 2 2 -1 -1 2 0 0 0 0 
2 9 2 -4 -2 0 2 0 0 0 

= 2 2 2 -1 -1 0 0 2 0 0 
-1 -4 -1 2 0 0 0 -1 0 
-1 -2 -1 0 0 0 0 -1 

= PD. 
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where 
2 0 0 0 0 
0 2 0 0 0 

D= 0 0 2 0 0 
0 0 0 -1 0 
0 0 0 0 -1 

We note for later use that 

1 0 -1 0 0 
0 1 0 2 0 

p-1 = -1 0 2 0 1 
0 2 0 5 -1 
0 0 -1 3 

From AP = PD we can see that D = p-I AP, which was to be illustrated. From 
these results, we can read off the characteristic roots from the matrix D and see that 
r1 = 2 is a triple root and that r2 = -1 is a double root. The first three columns of P 
are the characteristic vectors corresponding to r1 and the last two columns of P are 
the characteristic vectors corresponding to r2. So if we can solve the characteristic 
value problem completely we can easily diagonalize A, and if we have diagonalized 
A, we can read off a complete solution of the characteristic value problem, given 
that we know P and D. 

Convince yourself that the matrix exponential of the matrix Dx is 

and that 

so that from 

we have 

exp(P-1 (Ax)P) p-I exp(Ax)P 

= p-IeAxP, 

exp(P-1(Ax)P) = p-I exp(Ax)P 

= p-leAxP 

= eDx 

Example 9.11 The observation of the last paragraph leads to the calculation: 

e2x 0 0 0 0 
0 e2x 0 0 0 

eAx = p 0 0 e2x 0 0 p-1. 
0 0 0 e-x 0 
0 0 0 0 e-x 



334 9 Differential Systems: Theory 

You should use Mathematica to multiply these matrices out and then check that 
the resulting matrix is a solution of the original problem, Y' = A Y. 

The diagonalizable case is summarized in this theorem. 

Theorem 9.5. If the n X n matrix A is diagonalizable, that is, there is an invertible 
n X n matrix P such that p~l AP = D, a diagonal matrix, then a fundamental 
solution of the matrix differential system Y' = A Y is W(x) = P exp(Dx)P~ 1. 

Every solution of the matrix differential system Y' =A Y has the form 

Y(x) = W(x)K, 

where K is a constant n X n matrix. 
Every solution of the vector differential system y' 

W(x)k, where k is a constant n-vector. 
Ay has the form y(x) = 

The theorem is deliberately stated so as to not prohibit the characteristic roots 
from being complex, even though the case of complex roots has yet to be discussed. 

Also, not every matrix differential system has a coefficient matrix that is diag­
onalizable, so the situation is not always as simple as the case described by Theo­
rem 9.5. The next paragraphs describe this more complicated case. 

Repeated Roots (Not Diagonalizable) 

When the characteristic root r of A has algebraic multiplicity m, but geometric mul­
tiplicity m1 < m, then the root r of A is said to be deficient. In theory, if one were to 
write down n x n matrices with random rational numbers as entries, the probability is 
zero of encountering a deficient matrix. This does not mean that they cannot happen, 
but that they are rare. Just as one has to carefully construct polynomials of degree 
greater than 4 in order for the polynomials to be solvable exactly, so one has to con­
struct deficient matrices artificially. When doing so, for each example the starting 
point is a matrix J that is in Jordan canonical form. Then J is transformed into 
A = p~ 1JP by the choice of some suitable matrix P. The problem Y' = A Y is 
then presented. 

Jordan canonical forms of matrices are an important topic of study in linear al­
gebra. We will not elaborate on the theory, except to say that every square matrix A 
is similar to a matrix of the form D + N, where DN = ND, D is diagonal, and N 
is nilpotent. In summary, p~l AP = D + N. The matrix D + N is (essentially) the 
Jordan canonical form of A. Furthermore, A is diagonalizable if and only if N = 0. 

It is true that exp((D + N)x) = exp(Dx) exp(Nx), and, as we saw in Example 9.9, 
exp(Nx) is a matrix of polynomials. The degrees of the polynomials depend on the 
last power of N that is nonzero. 

Knowing this, the solution of Y' = A Y proceeds as follows. Let P be such 
that p~I AP = D + N, where Dis diagonal, N is nilpotent and DN = ND. Define 
Z = p~Iy_ ThenZ' = p~ 1 Y',orY' = PZ'. Thus,fromPZ' = Y' == AY = APZ 
we obtain 

Z' = p~l APZ = (D + N)Z. 
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Hence 
Z(x) = exp((D + N)x) = exp(Dx)exp(Nx) = p-'Y(x) 

and we have 
Y(x) = PZ(x) = P exp(Dx) exp(Nx). 

You are encouraged to verify that this is indeed a solution of the matrix system 
Y' = A Y. In order to do this, you will need to be aware that N and D not only 
commute with one another, but each commutes with exp(Dx) and exp(Nx). 

One obvious question is: where did the matrix P come from? Clearly, once P 
is known things proceed smoothly, but P is not very easy to obtain. Once again, 
the theory is fairly straightforward, but it is difficult to carry out. A linear algebra 
course would improve your understanding of how to obtain P. We will give a partial 
explanation by way of examples. 

If the root r of A has multiplicity m, then there will be m linearly independent 
solutions of the form 

yl(x) = Km_lerx 

Y2(x) = (Km-2 + Km_lx)erx 

Y3(x) ~ (Km-3 + Km-2X + Km-1 ~) erx (9.11) 

In these expressions the K; are constant n-vectors. There are exactly m linearly 
independent K; that appear in the solution, even though not all of these forms 
need actually occur. A sequence of K; in one of these forms is called a chain. 
K 0, K 1, ... , Km_2 are generalized characteristic vectors; only Km-l is a charac­
teristic vector. 

As we have seen, when r has a complete system of characteristic vectors, every 
one of the solutions corresponding to r has the form of y 1 (x), and there are m linearly 
independent choices for Km_ 1. If r has deficiency 1, then there are m- I linearly 
independent solutions having the form of y 1 (x) and one other having the form of 
y 2 (x). The situation can get exceedingly complicated, and there is no way to know in 
advance which of the forms will actually occur. It does not hurt to assume a solution 
of the form of y m(x), since the solution procedure will zero out any unneeded K;. 
The list 9.11 contains the possible forms for the solutions. It is not a formula for the 
solutions. 

Here is an example presented from the standpoint of differential equations rather 
than linear algebra. It will suggest to us the steps that are required to obtain a com­
plete solution of a differential equation where the coefficient matrix has a deficient 
root. The discussion applies to every characteristic root of A whose algebraic and 
geometric multiplicities differ. 

Suppose that r is a characteristic root of A that has deficiency 3. This means that 
r is at least a quadruple root of the characteristic equation. That is, r has algebraic 
multiplicity m 2: 4. Since we are assuming that the deficiency is 3, there are m - 3 
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linearly independent characteristic vectors, and we can use them as before to provide 
us with m - 3 linearly independent solutions. To find the three missing solutions 
we can assume a solution of the form y(x) = (K0 + K 1x + K 2x2!2!)erx and try to 
determine values for the three constant vectors K 0, K 1, and K 2 . Our attempt to find 
the three missing solutions will actually give us all m linearly independent solutions 
that correspond to the characteristic root r. 

For this example there will be m - 3 linearly independent choices for K 0. We 
cannot say in advance which form(s) from 9.11 will occur, but some will involve 
K 1 and some may involve K 2 . What will actually occur is determined by the Jor­
dan canonical form of the coefficient matrix A which we will know only after our 
solution process is complete. 

Suppose that y(x) = (K0 + K 1x + K 2x212!)erx is a solution of y' = Ay. Then 

(K 1 + K 2x)erx + r ( K 0 + K 1x + K 2 ;~) erx = A ( K 0 + K 1x + K 2 ;~) erx 

should hold for all x. The equation simplifies to 

This equation holds identically if these equations are satisfied simultaneously: 

{
(A- ri)K2 = 0 
(A - ri)K 1 : K 2 . 

(A- ri)K0 - K 1 

(9.12) 

There will be exactly m linearly independent solutions of these equations since the 
root r has multiplicity m. It is important to note that not every choice of characteristic 
vector K 2 permits a solution for K 1• Likewise, not every choice of K 1 permits a 
solution for K 0. We let Mathematica solve the system simultaneously, which takes 
care of these considerations. 

When we solve the system 

{
(A - ri)K2 = 0 
(A - ri)K 1 : K 2 , 

(A- ri)K0 - K 1 

seeking three linearly independent solutions we get all m solutions. These solutions 
are substituted into the form 

y(x) = ( K 0 + K 1x + K 2 ;~) erx 

to obtain all of the linearly independent solutions. 
A complete description of the solution when the coefficient matrix has deficient 

roots is very elaborate. Though all of the mechanisms necessary to find all solution in 
any particular instance are now in place, we will not give the general description, but 
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will be satisfied with the ability to solve each individual problem that is encountered. 
We illustrate these ideas with an example. It appears in the Mathematica supplement 
as Repeated Root-Example 1. 

Example 9.12 Let 
2 1 0 0 0 0 
0 2 1 0 0 0 

A= 
0 0 2 0 0 0 
0 0 0 2 0 0 
0 0 0 0 2 1 
0 0 0 0 0 2 

Solve the vector system y' = Ay. 
Solution. We first form the matrix 

2-r 0 0 0 0 
0 2-r 0 0 0 

A-rl = 
0 0 2-r 0 0 0 
0 0 0 2-r 0 0 
0 0 0 0 2-r 
0 0 0 0 0 2-r 

from which it is seen immediately that the characteristic polynomial is p(r) = (r- 2)6. 

This means that r = 2 is repeated 6 times as a characteristic root. The corresponding 
characteristic vectors are found from row-reducing the matrix 

0 1 0 0 0 0 
0 0 1 0 0 0 

A-21 = 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 0 

This produces the three characteristic vectors, 

0 0 
0 0 0 
0 0 

and 
0 

VI = 0 ' vz = v3 = 0 
0 0 I 
0 0 0 

We needed six characteristic vectors and found only three. The matrix A therefore 
has a deficiency of three. We thus seek vectors K 0, K 1, and K 2 so that 
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is a solution. Let the jth component of K;, (K;) j = e6i+ j• for i = 0, 1, 2, and I ~ j ~ 
6. Then, when we solve 

{
(A - ri)K2 = 0 
(A- ri)K 1 = K 2 . 

(A - ri)K0 = K 1 

a system of equations in the I8 (= 3 x 6) unknowns, e1, ... , e18, we find that 

e, e7 e13 
e7 e13 0 

Ko= 
e13 K, = 

0 
and Kz= 

0 

e4 0 0 

es ell 0 
ell 0 0 

(9.I3) 

Three vectors are expressed in terms of the six arbitrary constants el' c4, e5 , e7, 
ell, and e13 . It is important to observe that e" e4, and c5 occur only in K 0 , e7, and 
e11 occur in both K 0 and Kp while e13 occurs in all three. We will produce each of 
the six solutions from the form 

y(x) = ( K 0 + K 1x + K2~)e2.x 
by successively setting one of thee" e4, e5, e7, e11 , and e13 to 1 and the others to 0. 
This results in these solutions: 

When e1 = 1, e4 = 0, e5 = 0, e7 = 0, ell = 0 and e13 = 0, we get 

1 e2.x 

0 0 

y,(x) = 0 e2.x = 0 
0 0 
0 0 
0 0 

When c1 = 0, c4 = 1, e5 = 0, e7 = 0, e11 = 0 and e13 = 0, we get 

0 0 
0 0 

() 0 e2.x= 0 
Yz x = 1 e2x 

0 0 
0 0 

When e1 = 0, e4 = 0, e5 = 1, c7 = 0, eu = 0, and e13 = 0, we get 

0 0 
0 0 

y 3(x) = 
0 e2.x = 0 
0 0 
I e2x 

0 0 
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The three solutions y 1(x), y 2(x), and y 3(x) that involve Cp e4 , and e5 correspond 
respectively to the three characteristic vectors Vp v 2 , and v 3 that were found orig­
inally. The remaining solutions involve chains of two or more vectors. Note that e7 

and c 11 each occur twice. Observe how they produce chains of two vectors. Finally, 
e13 occurs three times and produces a chain of three vectors in the solution it gener­
ates. 

When e 1 = 0, e4 = 0, e5 = 0, e7 = 1, ell = 0, and e 13 = 0, we get 

0 1 xe2.x 

1 0 e2.x 

Y4(x) = 
0 0 e2.x = 0 
0 + 0 

X 
0 

0 0 0 
0 0 0 

The coefficient of x is the characteristic vector v 1, and the constant term is new. 
When e 1 = 0, e4 = 0, e5 = 0, e7 = 0, ell = 1, and e 13 = 0, we get 

0 0 0 
0 0 0 

Y5(x) = 
0 0 e2.x = 0 
0 + 0 

X 
0 

0 1 xe2.x 

0 e2.x 

The coefficient of x is the characteristic vector v 3, and the constant term is new. 
And when e 1 = 0, e4 = 0, e5 = 0, e7 = 0, e 11 = 0, and e 13 = 1, we get 

0 0 1 (x212)e2.x 

0 1 0 xe2.x 

y 6(x) = 
1 0 0 x2 

e2.x = 
e2.x 

0 + 0 
x+ 

0 2! 0 
0 0 0 0 
0 0 0 0 

The coefficient of x212 is the characteristic vector v 1 . The constant coefficient in 
the chain is new. 

These are the six linearly independent solutions that we sought. They can be 
used as the columns of a fundamental matrix, and every solution can be produced as 
a linear combination of them. Note that only the first three of the possible six forms 
the solution might contain actually occurred. 

All six solutions are contained in the single expression 

el e7 e13 

e7 e13 0 

y(x) = C13 0 0 x2 
e2.x, + x+ 

e4 0 0 2! 
e5 ell 0 
ell 0 0 



340 9 Differential Systems: Theory 

which comes from equation 9.13. This representation is somewhat obscure, in that 
it is relatively hard to visualize any specific one of the six solutions listed above. 
In general, the entries in the vectors are very complicated linear expressions in the 
arbitrary constants; this example was especially simple since the coefficient matrix 
was in Jordan form. 0 

The solution to this example was produced with the help of Mathematica. With­
out it the calculations would have been exceedingly tedious. With it, the main prob­
lem is keeping in mind what actions are required to produce the solution(s). In case 
the matrix had possessed other roots that were deficient, then steps similar to the 
ones just executed would have to be executed for each such deficient root. The col­
lection of all n vector solutions would then constitute the complete solution of the 
differential system, and the matrix with them as columns would be a fundamental 
matrix. 

Complex Roots 

When a real polynomial has a complex root, the complex conjugate of the root is also 
a root. Since we are studying real differential equations, the same is true here. In the 
present context, not only is the conjugate of the root also a root, but the conjugate of 
the corresponding characteristic vector is the characteristic vector corresponding to 
the conjugate root. Suppose that r is a complex characteristic root of the real matrix 
A with characteristic vector v, then 

(A - rl)v = (A - rl)v, 

so vis a characteristic vector corresponding to the conjugate root r. 
The characteristic vector corresponding to a complex root is complex, so its con­

jugate is a different vector. This is important to know. Also, as we saw before in our 
earlier studies of linear operators, if a complex object is a solution of a real homoge­
neous linear equation, then both the real and imaginary parts of this object are (real) 
solutions of the homogeneous linear equation. We will use these ideas to obtain real 
solutions that correspond to complex characteristic roots. 

The complex conjugate characteristic roots are found along with the real charac­
teristic roots when the characteristic equation is solved. Given a pair (r, v) and (r, v), 
of complex solutions to (A- rl)v = 0, we find two complex solutions of the differ­
ential system y·' = Ay to bey. (x) = verx, andy (x) = verx. Write r = r 1 = a + bi 

i 1 C2 

and v = K 1 + K 2i, where K 1 and K 2 are real constant vectors. Using these two 
complex solutions we get the two linearly independent real solutions y 1 (x) andy 2 (x) 

from this expansion: 

Yc, (x) verx 

(Kl + Kzi)e(a+bi)x 

= (K1 + K 2i)e'u(cos(bx) + isin(bx)) 

= eax(K 1 cos(bx)- K 2 sin(bx)) + ieax(K 1 sin(bx) + K 2 cos(bx)) 

y 1(x) + iy2(x), 



9.4 Repeated and Complex Roots 341 

where 

y 1 (x) = eax(K1 cos(bx)- K 2 sin(bx)) = eax(Re(v) cos(bx)- lm(v) sin(bx)) 

and 

y 2(x) = eax(K 1 sin(bx) + K 2 cos(bx)) = eax(Re(v) sin(bx) + Im(v) cos(bx)). 

We would have obtained the same result had we used y c (x). 
2 

Example 9.13 Find a real fundamental solution for the homogeneous second-order 
differential system 

y'(x) = ( _: ! )y(x). 

Solution. The characteristic equation is 

det ( a -br b ) = (r- a)2 +if = 0, 
- a-r 

which has as solutions rl.2 = a± bi. The characteristic vector v corresponding to 
r 1 =a+ bi is found from 

( a - r b ) ( -bi b ) 
(A- rll)v = -b I a- rl v = -b -bi v = 0, 

which has as basis for its kernel v = ( ! ) . Corresponding to the second root r2 = 

a - bi is the vector v = ( -~ ) . Since 

1 ) ·( 0) \ 0 + l 1 ' 

we have that 

K 1 = Re(v) = ( ~ ) 

and 

K 2 = lm(v) = ( ~ ) . 
The two complex solutions are therefore 

y (x) = ( ~ ) e(a+bi)x c, l 

and 
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y (x) = ( 1. ) e<a-bi)x 
c2 -1 

To these correspond the real solutions 

y 1 (x) eax(K 1 cos(bx)- K 2 sin(bx)) 

= eax ( ( ~ ) cos(bx) - ( ~ ) sin(bx)) 

ax ( cos(bx) ) 
e - sin(bx) ' 

and 

y 2(x) = eax(K1 sin(bx) + K 2 cos(bx)) 

= eax ( ( ~ ) sin(bx) + ( ~ ) cos(bx)) 

= eax ( ~~:~~~ ) . 

A real fundamental matrix is therefore 

Y(x) = eax ( c~s(bx) sin(bx) ) 
- sm(bx) cos(bx) · 

Note that if a = 0, then this is just the solution we found in Example 9.4. Observe 
also that if b = 0, then the solution is just 

as was to be expected when the coefficient matrix is diagonal. 0 

The matrix ( -~ ! ) plays a fundamental role in the theory of complex charac­

teristic roots of real matrices. You are encouraged to explore further. 

Exercises 9.4. PART I. Each of these systems has a diagonalizable coefficient matrix. 
In each case find a fundamental solution. Let Mathematica do the work for you. The 
methods of Section 9.3 still work. 

I. Y'(x) = ( ~ 
2 

b JY(x) 2 
-30 -12 -4 

( 32 
12 

-1~ JY(x) 2. Y'(x) = -60 -22 
-30 -12 -3 
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r-2 
15 -10 5 ] 

3. Y'(x) = ~ 8 -10 0 
5 -7 0 Y(x). 

-5 10 3 

r-2 
15 5 -10 ] 

4. Y'(x) = ~ 8 0 -10 
-5 3 10 Y(x). 

5 0 -7 

PART II. None of these systems has a coefficient matrix that is diagonalizable. 
Nevertheless, in each case find a fundamental solution. Let Mathematica do the work 
for you. Model your investigations after Example 9.12 and the discussion that pre­
cedes it. 

5. Y'(x) = ( i 0 0 l 4 1 Y(x). 
-11 -4 0 

( -3 0 0 l 6. Y'(x) = 13 3 1 Y(x). 
-6 -4 -1 

r-2 
14 -12 '] 

7. Y'(x) = ~ 6 -10 -2 
4 -7 -1 Y(x). 

-3 10 5 

( -2 16 -2 15] 
8. Y'(x) = ~ 8 0 10 

5 -2 5 Y(x). 

-5 0 -7 

PART III. Each of these systems has at least one pair of complex characteristic 
roots, and consequently a corresponding pair of complex characteristic vectors. Find 
a fundamental matrix solution expressed in real (not complex) terms. 

9. Y'(x) = ( ~~ ~ ~ ]Y(x). 
-8 -5 -1 

10. Y'(x) = ( -1~ _; ~ ]Y(x). 
-15 -8 -1 

11. Y'(x) = r-: li ~~ I~ ]Y(x). 

-1 -3 0 -6 

12. Y'(x) = r-: ~O =i~ =~ ]Y(x). 

-1 1 12 10 
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PART IV. Theory. 

13. Show that an n X n matrix A is diagonalizable provided that A has n linearly 

independent characteristic vectors. 
14. Use Mathematica to multiply out the matrices that occur in Example 9.11 and 

then check that the resulting matrix is a solution of the original problem, Y' = 

AY. 
15. Show that if N is nilpotent, then exp(Nx) is a polynomial. 
16. Verify that the matrix function 

Y(x) = PZ(x) = P exp(Dx) exp(Nx) 

is a solution of the matrix system Y' = A Y. You will need to be aware that N 
and D not only commute with one another, but each commutes with exp(Dx) 
and exp(Nx). 

17. Show that if D = diag(dp ... , dn) is diagonal, then 

exp(Dx) = diag(ed1x, ... , ed,x). 

18. If B = p-I AP, show that Bk = p-I AkP. Hence show that 

exp(Bx) = p-I exp(Ax)P. 

19. Let 

9.5 Nonhomogeneous Equations and Boundary-Value Problems 

We saw in Section 9.2 how the method of variation of parameters works. Now that 
we can obtain fundamental solutions to constant coefficients differential systems we 

can apply the method of variation of parameters to real problems. It is still true that 
the method of undetermined coefficients remains available to us. There are times 

when undetermined coefficients can get a solution more easily than variation of pa­

rameters because of the number and complexity of the integrals involved, but when 

the systems are of large order, the number of unknowns can be very large. In cases 

such as this the Mathematica Solve function can be quite slow. It is worth knowing 

that there are alternative methods available. 

Nonhomogeneous Systems 

We will reconsider nonhomogeneous versions of some of the homogeneous systems 

that we have solved in this chapter. We will primarily illustrate the use of variation 
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of parameters which, for the vector differential system Y' = A Y + q(x) having 
fundamental matrix W(x), says that a particular solution is 

So a complete solution is 

Y(x) = W(x)K + W(x) I W(x)- 1q(x)dx. 

If we are solving the initial-value problemY' = A Y + q(x), Y(x0 ) = a, then the 
definiltion 

YP(x) = W(x) (x W(t)- 1q(t)dt 
Jxo 

makes Y P(x0 ) = 0. The solution to the initial-value problem in closed form is there­
fore 

Y(x) W(x)(W(x0))-1a + W(x) Lox (W(t))- 1q(t)dt 

= exp(A(x- Xo))a + W(x) rx (W(t))-1q(t) dt. 
Jxo 

Example 9.14 Find a particular solution of the nonhomogeneous vector differential 
system 

Y'(x) = 0 0 1 Y(x) + 2 . [ 0 1 OJ [x-1] 
-3 1112 3/2 e 

Solution. We found in Example 9.5 that a fundamental matrix for the homoge­
neous system is the matrix function 

which has an inverse 

[ 
24/(25e<i2) 4/(25e<i2) -4/(25e<i2) l 

(W(x))- 1 = 3e2x/25 -7e2xf25 2e2x!25 . 
- 2!(25e3x) 3/(25e3x) 2/(25e3x) 

The vector v(x) we need to find Y P(x) = W(x)v(x) is 

v(x) = I (W(x))- 1q(x)dx 

[ 
24/(25e<i2 ) 4/(25e<i2) I 3e2x!25 -7e2x/25 
- 2!(25e3x) 3!(25e3x) 
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Thus 

[ 
-4(4 + e- 6x)l(25e>i2) l 

= J e2x(-17 + 2e + 3x)/25 dx 
2(4 + e- x)l(25e3X) 

[ 
-8(8 + c + 6x)/(25e>i2 ) l 

e2x( -Ill + 8e + 18x)/300 . 
-22- 9c + 6x/(225e3x) 

[ 
e->i2 e-2x e3

X l ( -8(8 + e + 6x)/(25e>i2 ) l 
et/212 -2e-2x 3e3X e2x(-lll +sex+ 18x)/300 
et/2/4 4e-lx 9e3x (-22- 9e + 6x)/(225e3x) 

( 
( -109- 12c- 66x)/36] 

-(5/6)- (ex/3)- x . 
-3- (e/3) 

[ 
-109/36] ( 113] [ 1116] 

= -5/6 - 113 e'- J X. 

-3 113 0 

Observe that we have three kinds of vector objects here: a constant, a multiple of 

c, and a multiple of x. These are precisely the three kinds of objects that we would 
have expected to obtain from undetermined coefficients. This suggests the form to 
assume to solve the problem by undetermined coefficients: three terms, a constant 
vector, a vector multiple of ex, and a vector multiple of x. The three unknown vectors 
are to be determined. This means that nine equations in the nine unknown coefficients 
are required. 0 

Here is the solution of Example 9.14 by Mathematica. 

Example 9.14 (M) Given the fundamental matrix W(x) defined above, find a par­

ticular solution of the nonhomogeneous vector differential system 

Y'(x)=[ ~ ~ ~ ]Y(x)+(x;ll· 
-3 11/2 3/2 e< 

Solution. 

In[11:=a=(~ ~ ~ 
-3 11/2 3/2 

{ 
c 11 3}} Out [11= {0, 1, 0}, {0, 0, 1}, t- 3, -,-

2 2 

In [21 := {vals, vecs} = Eigensystem[a] 
1 1 1 1 1 

Out [ 21 = { { 3, -2, 2 } , { { 9, J, 1 } , { 4 , - 2, 1} , { 4, 2, 1 } } } 

In [ 31 : = vecs = vecs * { 9, 4, 1} 
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Out [ 31 = {{ 1, 3, 9} , { 1, -2, 4 } , { 4, 2, 1 } } 

In [ 41 : = (W [x_] = Transpose [vecs * Exp [vals x]]) I /MatrixForm 

( 
e3 X e-2 X 4 ex/2 

Out[41= 3e 3 x -2e-2 x 2ex12 

9 e3 X 4 e-2 X ex/2 

In[51 := q[x_] = {x-1, 2, ex} 

Out [51= { -1 + x, 2, ex} 

In[61 := yp[x_] = Simplify[w[x]. f Inverse[W[x]].q[xldlx] 

1 1 ex 
Out [ 61 = { J6 ( -1 0 9 - 12 ex - 6 6 x) , 6 (- 5 - 2 ex - 6 x) , -3 - ] } 

We should check our solution. 

In[71:= Simplify[yp'[x]-a.yp[x] ==q[x]] 

Out[71= True 0 

Except for the formalities of defining W [ x_] and q [ x_] , and checking the re­
sult, the particular solution was obtained in one step at the third step above. You 
need not really be concerned about the work that Mathematica expended in that one 
statement unless an exceedingly difficult integral was encountered. In which case the 
problem would possibly have been very difficult by hand. In that somewhat unlikely 
event you should consider an alternative method. 

Example 9.15 Solve the problem of Example 9.14 by undetermined coefficients. 
Solution. We do this with the help of Mathematica. Assume Y pCx) = K 0 + 

K 1x+ K 2e", where K 0 , 1, and K 2 are constant vectors. This form is suggested by the 

(
X- l l 

functions that appear in the nonhomogeneous term q(x) = ; . Since Y pCx) is 

to be a solution of Y' = A Y + q(x), we must have 

K, +K,C = AK0 + AK,x+ AK,r + ( -~ ]+( ~ ]x+( ~ Jr 
Equate coefficients to obtain the equations that we must solve. 

K, AK0 +( -~ l 
K2 AK, +( n 

0 = AK,+( H 
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Here we have 

A=( : 0 l ~=Uil 0 1 ' 
-3 11/2 3/2 

K,=(H K,=(::J 
In terms of the k;, the equations are expressed in Mathematica as 

In[8] := Clear[KO, K1, K2, sys] 

In [9] := {KO, K1, K2} =Partition [Table [Subscript [k, i], {i, 9}], 

3] 
Out[9]= {{k 1 ,k2 ,k3 }, {k 4 ,k5 ,k6 }, {k7,k8 ,k9 }} 

In [ 10]: = (sys =Apply [And, Map [LogicalExpand, 

Out[10]= 

{K1 == a.KO + {-1, 2, 0}, K2 == a.K2 + {0,. 0, 1}, 

{ 0, 0, 0} = = a . K1 + { 1, 0, 0} } ] ] ) I /Col umnForm 

k4==-1+k2 

k 5 ==2+k 3 

11k2 3kl 
k6 == -3 k1 + -2- + -2-

ks = = k7 

k9 == kg 
11 kg 3 k9 

1- 3 k7 + -- + -- ==kg 
2 2 

1+k5 ==0 

k6 == 0 
11 k 5 3 k 6 

-3 k4 + -- + -- == 0 
2 2 

The solution process continues in Mathematica . Note the conjunction of the 
equations(&&). 

In[11]:= Solve[sys] 
5 11 

Out [11]= { {k 2 _, --, k 4 _, ---, k 5 _, -1, k 3 _, -3, 
6 6 

109 1 1 1 
k6 _, 0, kl _, - 3 6 , k7 _, -3, ks _, -3, kg _, -3}} 

Now capture the coefficient vectors. 

In [12] := {KO, K1, K2} = {KO, K1, K2}/ .First [Solve [sys]] 
109 5 11 1 1 1 

out [12]= { {- 36 , - 6 , -3}, {- 6 , -1, o}, {- 3' -3,-3}} 
Combine the terms into the desired particular solution. 

In[13]:= thisyp[x_] = {1,x,cex}.{KO,K1,K2} 
1 0 9 <ex 11 X 5 <ex <ex 

Out [13]= {- 36-3- -6-, -6- 3- x, -3- 3} 

In [14] := Simplify[yp[x] == thisyp[x]] 

Out[14]= True 0 
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This agrees with the solution that we had before. Note that undetermined co­
efficients are somewhat awkward even in this low-order setting. The awkwardness 
increases as the number of different kinds of objects in q(x) increases. There soon 
arise very many equations to solve. Also it is not easy to select and equate coeffi­
cients automatically, as you will see if you try it. Undetermined coefficients does 
save having to compute some very complicated integrals, but you have to know the 
form the solution will have, and the situation can become complicated, as it did in 
Chapter 5, when objects that appear on the right-hand side are in the kernel of the 
differential operator. 

Boundary-Value Problems 

Now that we can completely solve initial value problems for homogeneous 
and nonhomogeneous linear differential systems, it is reasonable to consider 
boundary-value problems . We will study these problems only for matrix systems. 
Such a problem can be represented for matrix systems as 

{ Y' = A Y + Q(x) 
H(Y) = C, 

where the boundary condition operator H has the homogeneity property 

H(U(x)K) = H(U(x))K 

for all n x n constant matrices K. Under this definition, the initial-value problem 

{ Y' = A Y + Q(x) 
Y(x0 ) = C, 

is a boundary-value problem with H(Y(x)) = Y(x0 ). The boundary condition oper­
ator H always performs some sort of evaluation on the matrix function it receives as 
its argument. This means that the domain of H is the n x n continuously differentiable 
matrix-valued functions, and the range is then x n (constant) matrices. The value of 
H at any matrix function is a constant matrix. 

Examples of typical linear boundary condition operators H are: 

• H(Y(x)) = Y(x0 ); 

• H(Y(x)) = BY(x0 ), Ban n x n (constant) matrix; 
• H(Y(x)) = B 1 Y(x0 ) + B 2 Y(x1), B 1 and B 2 are n x n (constant) matrices; 

• H(Y(x)) = .CY(x)dx; 

• H(Y(x)) = .C F(x)Y(x) dx, F(x) is n x nand continuous on [a, b]; 

• H(Y(x)) = B 1Y(x0 ) + B 2Y(x1) + .CF(x)Y(x)dx; B 1, B 2 , and F(x) as before. 
• H(Y(x)) = L:;': 1 B;Y(xJ 
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There are others, but by now you get the idea. You should verify that each of 
these forms for the boundary condition operator H has both the ordinary linearity 
property and the homogeneity property for constant right-multiplier matrices. 

We will not study boundary value problems exhaustively, but will rely on this 
theorem for our activities. 

Theorem 9.6. The nonhomogeneous boundary-value problem 

{ Y' = A Y + Q(x) 
H(Y) = C 

has a unique solution if and only if the homogeneous boundary-value problem 

{ Y'=AY 
H(Y) = 0 

has the zero matrix as its unique solution. These both happen if and only ifH(W) is 
invertible whenever W(x) is a fundamental solution ofY' =A Y. 

Proof As was shown above, the nonhomogeneous system 

Y' = AY + Q(x) 

has as its complete set of solutions 

Y(x) = W(x)K + W(x) Lx (W(t))-1Q(t)dt = W(x)K + YpCx). 

We must find out when a unique value forK can be found so that H(Y) = C. Make 
the calculation 

H(Y) = H(W(x)K + Yp(x)) 

= H(W)K + H(Y P). 

This has the value C provided that 

H(W)K + H(Y P) = C, 

which is equivalent to 
H(W)K = C - H(Y P). 

(9.14) 

(9.15) 

Now, since Cis completely arbitrary, so is C-H(Y P). From linear algebra, we learn 
that 

Ax=b 

has a solution x for every choice of b if and only if A is invertible. It follows that 

H(W)K = C - H(Y P) 

has a solution for every choice of C if and only if H(W) is invertible. The solution 
Y(x) = W(x)K of Y' = AY must also satisfy H(W)K = 0, and H(W)K = 0 
has only the zero solution K = 0. This makes Y(x) = 0 if and only if H(W) is 
invertible, which proves the theorem. D 
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That is all there is to the theory of boundary value problems as we will study 
them. Some interesting special cases of boundary condition operators will be dis­
cussed in the exercises. What remains is to learn how to solve the problems that we 
encounter. It will only take a few examples for us to understand clearly what to do. 
If you attempt to do any one of these problems without the aid of Mathematica you 
will see why they are rarely covered in an introductory text: the manipulations are 
gigantic. By using Mathematica we will never see these huge calculations, and we 
will proceed simply and directly to the answer and check it. The answers themselves 
may be huge, however. 

Example 9.16 Does the boundary-value problem 

Y 1(x) = ( ~ ~ ~ ]Y(x)+( x; 
1 

-3 1112 312 e 
x-1 x-1] 

2 2 ' 
e e 

(9.16) 

H(Y) = Y(O)- Y(l) = ( ~ ! n· (9.17) 

have a unique solution? 
Solution. We begin by calculating H(W(x)) = W(O)- W(l). We can solve the 

problem uniquely if H(W(x)) is invertible. w [ x_] was defined in example 9.14. We 
have these calculations 

( 
e3x e-2x 4 ex/2) 

Out[141= W[x_] = 3e3 x -2e-2 x 2ex12 

9 e3x 4 e-2x ex/2 

In [ 151: = (Q [x_] =Transpose [ {q[x] 1 q[x] 1 q[x]}]) I /MatrixForm 

Out[151= (-\+x -\+x -\+x l 
ex ex ex 

In[161:= H[Y_] =Y[O] -Y[l] 

Out[161= Y[O] -Y[1] 

In [ 1 71 : = H [W] 

Out [ 1 71 = { { 1 - e 3 , 1 - ~, 4 - 4 ve}, 
e 

{ 3 - 3 e 3 , -2 + 22, 2 - 2 ve}, { 9 - 9 e 3 , 4 - ~, 1 - ve}} 
e e 

In[181:= Det[H[W]] 
125 125 

Out [181= 125- - 2 + ~- 125 ve + 125 e- 125 e 312 - 125 e 3 + 125 e 712 
e e 

This is nonzero, but that fact is obscure. Look at the numeric value, which is 
nonzero. 

In[191 := N[%] 

Out[191= 1338.2 
It follows that H(W) is invertible, so our problem has a unique solution. The 

calculation of the actual solution is done in the notebook Boundary Value Examples, 
but is far too long to include here. The solution is also checked. <> 
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Example 9.17 Solve the boundary value problem 

Y' = ( - ~ ~ ) y + ( ~ ~ ) 
H(Y) = Y(O) + 2Y(7r) = ( ~ -~ )· 

Solutwn. Here we have W(x) = . , so that . ( COSX sinx ) 
-SlllX COSX 

H(W) W(O) + 2W(7r) 

= (~ ~)+2(-~ -~) 

= ( -1 0 ) 
0 -1 ' 

which is invertible. So there is a unique solution. All we need to do is find it. 
By variation of parameters or undetermined coefficients we find that 

The system that the solution Y(x) = W(x)K + Y pCx) must satisfy is 

H(Y) = H(WK + YP) = H(W)K + H(YP) = ( ~ -~ ) 

which is equivalent to 

or 

( 0 1 ) ( 1 1 ) 2( 1 1 ) 
1 -1 0 0 -iT 0 

Thus 

K=-( 1:321r =~ )-( -1~27r ~ )· 

This means that the solution is 
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Y(x) = W(x)K + Y P(x) 

( -~~~: :!~: )( -1 ~21r ~ )+( -! ~) 
= ( 1+3cosx+(-1-2n)sinx 1+2cosx+sinx) 

-(x + cosx + 2ncosx + 3 sinx) cosx- 2 sinx · 

That this is the desired solution can be verified without difficulty. 

Example 9.17 (M) The entire solution process in Mathematica follows. 
Solution. Define the system 

In[201 := Clear[A, Q, W, H, U] 

In [ 21 1 : = A = ( _01 ~ ) ; 

In[221 := Q[x_] = (~ ~}; 

In [231 := HRhs = (~ _11 } ; 

Define the boundary value operator 

In [241 := H[U_] = U[O] + 2U[7T]; 

0 

Define solution parts, first the fundamental solution, and then a particular solution 
by variation of parameters. 

In [ 2 51 : = W [x_] = MatrixExp [Ax] 

Out[251= {{Cos[x],Sin[x]}, {-Sin[x],Cos[x]}} 

In[261 := (Yp[x_] = Simplify[W[x]. J Inverse[W[x]] .Q[x]dlx]}/1 

MatrixForm 

( 1 1 ) Out [26]= -x 0 

Is there a unique solution? Yes: 

In[271:= Det[H[W]] 

Out [27]= 1 

Find the constant matrix multiplier, K=KMat . Solve for K=KMat . (One can 
actually compute this using Inverse [H [W]] ). 

In[281 := (KMat = Table[Subscript[k, i, j], {i, 2}, {j, 2}])// 

MatrixForm 

Out[281= 

In [291 := sys = (H[W] .KMat == HRhs- H[Yp]) 

Out[291= {{-k 1, 1 , -k 1, 2 }, {-k2 , 1 , -k2 , 2 }} == {{-3, -2}, {1 +27f, -1}} 
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In[30]:= Solve[sys] 

Out [30]= { {k1 , 1 ~ 3, k 1 , 2 ~ 2, k 2 , 1 ~ -1- 21f, k 2 , 2 ~ 1}} 

Capture the solution. 

In [31] := (SolnKMat = I<Mat/.First [Solve [sys]]) I /MatrixForm 

Out[31]= (_ 1 ~ 2 1f ~) 
Determine the unique solution. 

In [ 32] : = (Y [x_] = Simplify [W [x] . SolnKMat + Yp [x] ] ) // 

MatrixForm 

( 1+3 Cos[x]- (1+21f) Sin[x] 1+2 Cos[x] +Sin[x] 
Out[32]= 

-x- (1 + 21f) Cos [x] - 3 Sin [x] Cos [x] - 2 Sin [x] 

Check the solution in the differential equation and the boundary condition. Note 
that Mathematica used a numerical calculation. 

In[33]:= Simplify[Y'[x]-A.Y[x] ==Q[x]&&H[Y] ==HRhs] 
N:: meprec: Internal precision limit $MaxExtraPrecision 

50. reached while evaluating - 2- 2 1f + 2 ( 1 + lf) . 

Out[33]= True <> 

Once again, to solve a problem by Mathematica the steps we follow are essen­
tially identical to those we follow to solve the problem manually. The differences 
are usually definitions of auxiliary quantities and functions. We were easily able to 
check the results. This is important when the problems get huge, as in example 9 .16. 

Two-Point Boundary-Value Problems 

Some types of boundary-value problems that are familiar to users of differential 
equations can be put into the context we are studying, but it is not immediately ob­
vious how it should be done. 

Example 9.18 Convert this two-point boundary-value problem 

to a 2 x 2 system. 
Solution. The first observation to make is that the problem is a vector problem: 

But how should the boundary conditions be written? The secret is to separately cut 
off the top and bottom of the vector y, evaluate the parts separately at 0 and at 1r, and 
"glue" the pieces back into a single vector. Here is how: 
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( 1 0 ) ( y, ) (0) + ( 0 0 ) ( y, ) (7r) = ( y, (0) ) . 
0 0 y2 0 1 Y2 Y2(7r) 

Now that the two pieces are separately evaluated, all that remains to be done to 
completely pose the problem in the context of this section is to state the problem 
twice: once as the first column of a matrix system and again, unchanged, as the 
second column. That's all there is to it. The resulting problem appears as: 

Y'(x) = ( -~ 6 )Y(x)+( ~ ~) (9.18) 

H(Y) = ( 6 ~ ) Y(O) + ( ~ ~ ) Y(n) = ( ~ ~ ) . (9.19) 

When you solve this system, you will note that the two columns of the solution are 
identical, since we merely have a single vector problem duplicated. The solution of 
this matrix system appears in the notebook Boundary Value Examples . In case you 
are interested, the solution turns out to be 

Y(x) = ( -(-1 + cosx + sinx + n~inx) -(-1 + cosx + sinx + nsinx) ) 
-x+(-1-n)cosx+smx -x+(-1-n)cosx+sinx · 

If you evaluate the appropriate portion of the cited notebook, you will also be able to 
check that this answer is correct. <> 

It is clear that this technique for evaluating the various component functions of a 
vector differential system at different points extends to higher dimensions: one just 
has to slice the vector into more pieces using matrices such as 

[ 
1 0 0 l 
0 0 0 ' 
0 0 0 

[ 
0 0 0 l 
0 1 0 ' 
0 0 0 and[~ Hl 

in three dimensions. These vectors select the first, second, and third components of 
the vector, respectively. For example, 

(9.20) 

(9.21) 

evaluates the three components of y at three possibly different points and combines 
the results. This permits the expression of a three-point boundary condition as a 
single operator. 
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Conclusions 

With the help of Mathematica, some substantial problems involving systems of dif­
ferential equations having constant coefficients can be solved with relative ease. For 
the most part the theory is simple and direct, even though the practice may be messy. 
But with the power of Mathematica available to you, hard problems should be within 
your ability to solve. There will still be systems that are outside the scope of even 
the power of Mathematica. But their number should decrease with each new release 
of the software. 

In the next section, we tum our attention to Cauchy-Euler systems of differential 
equations. 

Exercises 9.5. PART I. For each matrix that follows, verify that it is differentiable 
and invertible for all x, and then find a linear system for which it is a fundamental 
solution. Use the fact that if V(x) is differentiable and everywhere invertible, then 
P(x) = V'(x)V(x)- 1 is such that V'(x) = P(x)V(x). Finally, find a fundamental 
solution such that Y(O) = I. You should use the function Inverse to find P(x) 

and to determine the appropriate right-multiplier. 

- sin(2x) 
-2cos(2x) 

4 sin(2x) 
8 cos(2x) 

cos(2x) 
-2 sin(2x) 
-4cos(2x) 

8 sin(2x) 

Find P 2(x). 

Find Pix). 

PART II. Consider the nonhomogeneous form of each of the systems derived in 
Part 1: Y;(x) = Pi(x)Y;(x) + QJx) where Q;(x) is given below. Use the fundamental 
solution you were given and the method of variation of parameters to find a partic­
ular solution and hence the complete solution of the nonhomogeneous system. For 
each problem, determine which one of the members of the complete solution has the 
property that Y;(O) = 0. 

[ 
1 0 X l 

5. Q1 (x) = 0 0 1 . 
-x 1 0 

[ 
1 0 e' l 

6. Q2(x) = 0 0 -1 . 
X 0 1 
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7 Q,Cx) = [ ~ 
1 0 n 0 X 

0 0 
0 

8 Q,(x) = [ ~ 
1 0 n 0 X 

0 0 
0 

PART III. Given the nonhomogeneous differential system 

, ( 01) (lx) y (x) = -1 0 Y(x) + 0 1 ' 

for each boundary value operator Hi below. Verify that each Hi in problems 9-15 is 
right homogeneous for constant matrices and by Theorem 9.6 the system 

Y'(x) ( -~ ~ )Y(x)+( ~ ~ ), 

HJY) = ( ~ -~) 

has a unique solution. Find that solution. 

9. HI(Y) = Y(O). 
10. H 2(Y) = Y(O)- Y(n). 

11. H 3(Y) = ( ~ ~ )Y(O) + ( ~ ~ )Y(n). 

12. H 4(Y) = ( ~ ~ ) Y(O) + 2Y (~) + ( ~ ~ ) Y(n). 

13. H 5(Y) = Y(O) + lrr Y(t)dt. 

14. H6(Y) = Y(O) + l][ Y(t)dt + 2 LZlr Y(t)dt. 

15. H7(Y) = ( ~ ~ ) Y(O) + 2Y G)+ ( ~ ~ ) Y(Jr) + l][ Y(t) dt. 

PART IV. 

16. Solve the system of Example 9.18 in Mathematica. 
17. Repeat the solution of Example 9.18 in Mathematica with the boundary condi­

tions changed toY 1 (0) = 1, Y 2(n) = I. 
18. Repeat the solution of Example 9.18 in Mathematica with the boundary condi­

tions changed to Y 1(0) = 1, Y 2 (7r) = 0. 
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9.6 Cauchy-Euler Systems 

Introduction 

The topic of Cauchy-Euler systems is included because it is such an accessible gener­
alization of the Cauchy-Euler differential equations that were encountered in Chap­
ter 8. These are differential systems in which the origin is a singular point. The so­
lution techniques for Cauchy-Euler differential equations are actually an interesting 
modification of the methods of Chapter 9. 

A Reduction Process for Higher-Order Cauchy-Euler Differential Equations 

To motivate the definition of Cauchy-Euler systems, we will transform the fourth­
order Cauchy-Euler differential equation 

a x4y(4) + a x3y(3) + a x2y(2) + a X)'1 + a y - 0 
4 3 2 1 o-· 

into a singular system of first-order differential equations. To accomplish this, let 

I 2 II 

YJ = y, Y2 = xy 'Y3 =X y ' d 3 Ill 
an Y4 = x Y . 

Notice the extra factors: the powers of x. These factors are necessary whenever we 
transform a Cauchy-Euler differential equation into a Cauchy-Euler system. The 
transformation proceeds as follows: 

xy~ xy1 = Y2 
I (yl ") I 2 II xy2 X + xy = xy +X y = Y2 + Y3 

xy; = x(2.xy" + x 2y"1
) = 2x2y" + x3y"1 = 2y3 + Y4 

xy~ x(3~y~" + x3yC4l) = 3x3y"l + x4yC4l 

3y4-: [a3x3yC3l + a2~yC2l + alxyl + aoy] 
4 

3y4 - a3 x3yC3l- a2 ~y(2)- al xyl - ao y 
a4 a4 a4 a4 
a3 a2 al ao 

3y4- -;;-Y4- ;-Y3 - ;-Y2- ;-h 
4 4 4 4 

This gives us the vector system 

I 

0 0 l y, ll 0 llU X Y2 = 0 I 0 

~: -a~a4 
0 2 

-a/a4 -aia4 3- a/a4 

This is a system having the form 

xy1 = Ay, 

where A is a 4 x 4 constant matrix. We make the following definition. 
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Definition 9.2. Suppose that A is a constant n X n matrix andy is inn-vector (or 
an n x n matrix). A first-order vector (or matrix) differential system consisting of n 
equations in the form 

xy' = Ay (9.22) 

is called a Cauchy-Euler system. 

The solution of Cauchy-Euler systems and their relationship with constant coef­
ficients systems is directly analogous to the solution of Cauchy-Euler equations and 
their relationship with constant coefficient equations that we studied in Chapter 8. 

Example 9.19 Convert the second-order Cauchy-Euler differential equation 

x2y" - 2xy' - 4y = 0 

to a singular system of first-order differential equations in Cauchy-Euler form. 
Solution. Let y 1 = y, and y2 = xy'. Then 

xy; = xy' = Yz 

xy; = x(y' + xy") 

= xy' +~y" 

y2 + (2xy' + 4y) 

Yz + (2yz + 4y,) 

= 3Yz + 4y,. 

The resulting system is 

This system has the proper Cauchy-Euler form of equation (9.22). 0 

How do we solve a system such as this? In xy' = Aylett = lnx, which is the 
same as letting x = e1• Define w(t) = y(e1). Then 

From 

d 
-w(t) 
dt 

!!_(y(et)) = ety'(et) 
dt 
xy'(x) = Ay(x) = Ay(e1 ) = Aw(t). 

w'=Aw (9.23) 

we obtain w(t) = <l>(t)k, by the methods of this chapter, where <l>(t) is fundamental 
and k is an arbitrary constant vector. Then from w(t) = y(e1 ) = <l>(t)k, we find 
that y(x) = <l>(lnx)k. The matrix-valued function <l>(lnx) is still fundamental and is a 
solution of the system xy' (x) = Ay(x), as this calculation shows: 
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xy'(x) 
d 

= rl>'(lnx)k-(lnx) 
dx 

= rl>'(lnx)k( ~) 
X 

A<l>(lnx)k 

= Ay(x), 

since <I>' =A <I>. The Cauchy-Euler system is thus solved. 
We can also solve xy' = Ay directly by assuming that y = kx', where r is a 

number and k is a nonzero constant vector. With this approach, 

xy' = Ay becomes x(rx'- 1)k = Ax'k, 

which says that 
x'(A- rl)k = 0 

must hold for all (positive) x. Thus the characteristic value problem 

(A- rl)k = 0 

must be solved for pairs (r, k) with k nonzero. This is precisely the characteristic 
value problem encountered when solving 9.23. So the methods are equivalent (as 
they were in Chapter 8). 

Example 9.20 Solve the singular system that resulted from the transformation in 
Example 9.19. 

Solution. The singular system 

may be solved by letting ( ~~ ) = x'k. Then ( ~~ r = r x'- I k and 

x( ~~ r = x(rx'-Ik) = rx'k = ( ~ ~ )x'k. 

We therefore need to solve 

( ~ ~ ) x'k = rx'k, 

for all (positive) x, or 

( ~ ~ )k = rk. 

This characteristic value problem may be expressed as 
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which has the characteristic equation 

( -r)(3- r)- 4 = r2 - 3r- 4 = (r- 4)(r + I) = 0. 

We have the characteristic roots r1 = -I and r2 = 4, to which correspond the char­

acteristic vectors k 1 = ( _ ~ ) and k 2 = ( ! ) , respectively. From these, we obtain 

the linearly independent solutions y 1(x) = ( -~ )x-' and y 2(x) = ( ! )x4 . This 

( 
-1 4 ) finally gives us the fundamental matrix solution <l>(x) = _:_1 4: 4 , from which 

we obtain the most general solution to the vector system as 

y(x) <l>(x)k 

(-:=: 4::)(~~) 
( _:=:~: :~:~~2 ). 

The first component of this vector is the solution y(x) = x- 1c1 + x4c2 of the 
original second-order problem x2y" - 2xy' - 4y = 0, and the second is x times its 
derivative. 0 

It is worth noting that the solution process followed in Chapter 5 is more direct 
for this problem, but there are systems, such as that illustrated in the next example, 
where the system may not have come from a single higher-order equation, and the 
methods of this chapter are the only ones we have available to us. 

Example 9.21 Find a fundamental solution matrix for the Cauchy-Euler differential 
system 

[ 
1 2 1 l xy'(x) = 6 -1 0 y(x). 

-1 -2 -I 

Solution. Assume a solution of the form y(x) = x'k. Then 

[ 
1 2 I l xy' (x) = x(rxr-l k) = 6 -1 0 xrk, 

-1 -2 -I 

from which we see that we must solve the characteristic value problem 

( 
I 2 1 l 6 -1 0 k = rk. 

-I -2 -I 
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The characteristic equation is 

det[ 
1 ~ r -1

2
- r ~ J 

-1 -2 -1- r 

= -r3 - ,.Z + 12r = r(r + 4)(r- 3) = 0. 

To the three characteristic roots r 1 = 0, r2 = -4, and r3 = 3, there correspond 
characteristic vectors that are multiples of 

as one may easily verify by a manual or Mathematica calculation. From these one 
obtains the three linearly independent solution vectors 

and 

As requested, a fundamental matrix for x > 0 is therefore 

so that a complete vector solution to the given equation is 

[ 
1 -x-4 

y(x) = <l>(x)k = 6 2x-4 

-13 x-4 

This should be checked by substitution. Do it by hand and by Mathematica. 0 

In the case of diagonalizable coefficient matrices, it is very easy to obtain solu­
tions with Mathematica. Here is an example. 

Example 9.20 (M) Solve the singular Cauchy-Euler system 
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by Mathematica. 
Solution. We duplicate the manual steps. Define the coefficient matrix. 

In[34]:=a=(~ ~); 

In [35] := CharPoly = Factor[Det [a- r * IdentityMatrix[2]]] 

Out[35]= (-4+r) (1+r) 

Since a is diagonalizable, the characteristic value problem can be solved in one 
step. 

In [36] := {vals, vecs} = Eigensystem[a] 
Out[36]= {{4, -1}, {{1, 4}, {-1, 1}}} 

Here are the powers of x. 

In[37]:= xAvals 
1 

Out[37]= {x4 ,-} 
X 

The solution vectors as rows. 

In [ 38]: = (xAvals) * vecs (*note the use of ' *' *) 
1 1 

Out[38]= {{x4 ,4x4 },{--,-}} 
X X 

A fundamental matrix. 

In [ 39] := (W[x_] =Transpose [ (xAvals) * vecs]) I /MatrixForm 

[ 
x4 _1_x1 l 

Out[39}= 
4 x 4 

X 

In[40]:= Det[W[x]] 

Out [40}= 5 x 3 

This is nonzero when x * 0. w [ 0 ] is undefined, so the solution is only defined 
when x * 0. Check the solution. 

In[41]:= Simplify[xW'[x] ==a.W[x]] 

Out[41]= True 

It is so simple to construct a Mathematica function to produce such a solution 
automatically that it is worth doing so. 

This function finds a fundamental solution for diagonalizable Cauchy-Euler sys­
tems. 

In[42]:= DSolveCauchyEulerSystem[Coeff_,x_?AtomQ] .­

Module[{vals,vecs}, 

{vals, vecs} = Eigensystem[Coeff]; 

Transpose[ (xAvals) *vecs] 

Here is how it is invoked. 
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In[431:= (DSolveCauchyEulerSystem[a,t])//MatrixForm 

Out[431= [ t
4 -1~ ) 

4 t 4 -
t 

Note the name of the independent variable was changed to t from x. 0 

Now that we have such a function at our disposal, let's use it to solve Exam­
ple 9.21. 

Example 9.21 (M) Use the function DSol veCauchyEulerSystem to find a 
fundamental solution matrix for the Cauchy-Euler differential system 

[ 
1 2 

xy'(x) = 6 -1 
-1 -2 

Solution. Define the coefficient matrix. 

( 
1 2 1 ) 

In[441:=a1= 6 -1 0 ; 
-1 -2 -1 

~ ly(x). 
-1 

In [ 451 := (W[x_] = DSolveCauchyEulerSystem[a1, x]) // 

MatrixForm 
1 

-2 x 3 [- ~· 
-1 

Out[451= -3 x 3 -6 
~4 

x4 
2 x 3 13 

Check the solution. 

In [ 4 61 : = Simplify [x W' [x] == al. W [x] ] 

Out[461= True 

Here is an example where a root is repeated but the matrix is diagonalizable. 

Example 9.22 (M) Solve the diagonalizable third-order Cauchy-Euler system 

which has a double root. 
Solution. 

[ 
-23 30 10 l 

xy'(x) = -10 12 5 y(x) 
-20 30 7 

In [ 4 71: = a2 = [=~~ ~~ 1s0 
] ; 

-20 30 7 

0 
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In [48] := (W[x_] = DSolveCauchyEulerSystem[a2, x]) I I 
MatrixForm 
1 3 

2 x 2 

Out[48]= I~ :: x' l 
x3 0 2 x2 

The solution is fundamental. 

In[49]:= Det[W[x]] 
2 

Out[49]= -x4 
It checks. 

In[50]:= Simplify[xW'[x) ==a2.W[x]] 

Out[50]= True 

Complex Roots 

<> 

We saw in Section 9.4 that any complex conjugate pairs of characteristic roots are 
found along with the real characteristic roots when the characteristic equation is 
solved. Given a pair (r, v) and (r, v) of complex solutions to (A - rl)v = 0, we 
find two complex solutions of the differential system xy' = Ay to be y c (x) = vx, 

1 

and Yc/x) = v?. Writer = r1 = a+ bi and v = k 1 + k 2i, where k 1 and k 2 are 
real constant vectors. Using these two complex solutions we get the two linearly 
independent real solutions y 1 (x) and y 2(x) from this expansion: 

Ycl (x) vx' 

(kl + k2i)x(a+bi) 

(kl + k2i)x".t'i 

= (kl + k2i)x"ebi(lnx) 

(k1 + k 2i)x"(cos(b lnx) + i sin(b lnx)) 

= .x"(k1 cos(b lnx)- k2 sin(b lnx)) 

+ ix"(k1 sin(b lnx) + k 2 cos(b lnx)) 

y 1(x) + iy2(x), 

where 

Yt(x) = x"(k1 cos(blnx)- k 2 sin(blnx)) 

= x"(Re(v) cos(b lnx)- lm(v) sin(b lnx)). 

and 

y 2(x) = .x"(k1 sin(blnx) + k2 cos(blnx)) 

= x"(Re(v) sin(b lnx) + lm(v) cos(b lnx)). 
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We would have obtained the same result had we used y c (x), but we would have to 
2 

use -b throughout, rather than b. 

Example 9.23 Find a real fundamental solution for the homogeneous second-order 
Cauchy-Euler differential system 

dy ( a b ) 
x dx = -b a y(x). 

Solution. The corresponding constant coefficients problem was solved in Exam­
ple 9.13. There it was found that r~, 2 = a ± bi, and the characteristic vector K 1 

corresponding to r 1 =a+ bi is K 1 = ( ~) + i( ~ )·so that k 1 = Re(K1) = ( ~ ) 

andk2 = lm(K1) = ( ~ )· 
The two complex solutions are therefore 

y (x) = ( ~ )x(a+bi) and y (x) = ( 1_ )x<a-bil. c, l cz -l 

To these correspond the real solutions 

and 

y 1(x) = ~(k1 cos(blnx)-k2 sin(blnx)) 

= ~(( ~ )cos(blnx)-( ~ )sin(blnx)) 

~ ( cos(blnx) ) 
-sin(blnx) ' 

y 2(x) = ~(k1 sin(blnx) + k 2 cos(blnx)) 

= ~(( ~ )sin(blnx)+( ~ )cos(blnx)) 

~ ( sin(blnx) ) 
cos(blnx) · 

We have the real fundamental matrix solution 

Y(x) = ~ ( c~s(b lnx) 
- sm(blnx) 

If b = 0, then this solution is 

sin(blnx) ) 
cos(blnx) · 

Y(x) = ~ ( ~ ~ ) = ( ~ ~ ). 
which was to be expected if the coefficient matrix is diagonal. 0 
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Exercises 9.6. PART I. Use the transformation rules for singular systems to trans­
form these Cauchy-Euler equations into Cauchy-Euler systems. 

dy 
1. X-+ 2y = 0. 

dx 
2d2y 

2. X - 2 - 6y = 0. 
dx 

3d3y 2d2y dy 
3.x- +2x- -6x- =0. 

dx3 d~ dx 
3d3y 2d2y dy 

4. 2x d~ - 5x d~ + 8x dx - 6y = 0. 

d3y d2y dy 
5. 6x3- -13~- + 5x-- 8y = 0. 

dx3 dx2 dx 
d3y d2y dy 

6. 4x3-- 1~- + 15x-- 12y = 0. 
dx3 d~ dx 

d3y d2y dy 
7. 15x3--2~- + 6x-- 8y = 0. 

d~ d~ dx 
3d3y 2d2y dy 

8. 9x dx3 + 36x d~ - 4x dx - 8y = 0. 

PART II. Solve these Cauchy-Euler systems. The coefficient matrices are diag­
onalizable. Solve manually using Mathematica to help with the algebra and again 
using DSol veCauchyEulerSystem. 

9. xY'(x) = ( 1 ~ =; )Y(x). 

10. xY'(x) = [ -1~ -~ ~ ]Y(x). 
10 6 1 

[ 
133 54 22] 

ll.xY'(x)= -300 -122 -50 Y(x). 
-60 -24 -9 

12. xY'(x) = [ -: -! ~ ]Y(x) 

13. xY'(x) = [-~ -! =~ =: ]Y(x). 

0 0 8 7 

PART III. The coefficient matrices of these Cauchy-Euler systems are diagonal­
izable, but there may be repeated roots. Solve manually using Mathematica to help 
with the algebra. Do not forget the factors of Log [ x] ( = In x) that are required when 
there is a repeated root. 

[ 
7 2 1 l 14. xY'(x) = 0 2 0 Y(x). 

-30 -12 -4 
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15. xY'(x) = [ -~~ -~~ -1~ ]Y(x). 
-30 -12 -3 

16 xY'(x) = ( -~ J =~~ ~ ]Y(x) 

17 xY'(x) = ( -~ -~ =~~ =i~ ]Y(x) 

PART IV. 

18. Show that the solution found in Example 9.3 checks. Do the calculation both 
manually and by Mathematica. 

19. The system .xy'(x) = ( -~ ~ ) y(x) has a double root r = 2 and is defective. 

Solve it by assuming a solution of the form y(x) = K 0x' + K 1x' lnx, where the 
coefficient vectors K 0 and K 1 are to be determined. Show that you need to solve 
a system of the form 

(A- ri)K1 = 0 

(A- ri)K0 K 1. 

Then solve. 
20. Generalize the technique of the last problem. 
21. Find a fundamental solution of the Cauchy-Euler system 

[ 
-25/6 22 -31/6] 

.xy'(x) = -7/3 9 -4/3 y(x). 
-14/3 22 -14/3 

Check your answer. Is the fundamental matrix defined on an open interval con­
taining 0? 



10 

Differential Systems: Applications 

10.0 Introduction 

There are many processes in the world that can be modeled by systems of differential 
equations. In biology, modeling competing species requires coupled systems of non­
linear equations. Chemical mixing problems involving a single solute dissolved in 
solutions throughout several interconnected containers whose contents are being in­
termixed, require one differential equation for the amount of solute in each container. 
In physics, mechanical systems involving multiple springs and multiple masses in 
various configurations introduce linear (and sometimes nonlinear) systems of dif­
ferential equations. In electrical engineering, passive L-R-C circuits having multiple 
loops and hence multiple currents require a system of linear differential equations, 
one equation for the current in each loop. In fact, passive L-R-C circuits are modeled 
by a hybrid set of equations consisting of several differential equations and several 
algebraic equations all to be satisfied simultaneously. In international relations, a lin­
ear system of equations proposed by Richardson 1 effectively models the forces that 
govern the armament and disarmament of nations that do not trust one another. 

10.1 Applications of Systems of Differential Equations 
Passive L-R-C Circuits Having Multiple Loops 

An example should suffice to illustrate the kinds of reasoning that apply to problems 
of this kind. The example is set up manually and solved by Mathematica, given 
numerical values for the various components. You will use Kirchhoff's voltage law 
in each loop: The applied voltage equals the sum of the voltage drops across the 
components in the loop . You will use Kirchhoff's current law at each junction of 

1 Lewis Frye Richardson, 1881-1953. British physicist. Richardson applied his education 
in physics to forecasting the weather during the 1920's. He can be called the 'father' of 
the modem science of meterology. During the depression of the 1930's, he turned his at­
tention to economics and established several of the basic principles of that field. Then, as 
World War II began to spread throughout Europe, he turned his research to armament and 
disarmament. The Richardson Models of warfare are still widely studied. 

C. C. Ross, Differential Equations
© Springer Science+Business Media New York 2004
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two or more branches: The sum of the currents directed toward a junction equals the 
sum of the currents directed out of that junction. Differential equations arise from 
Kirchhoff's voltage law and the algebraic equations from Kirchhoff's current law. 

We outline an algorithm that produces a system of equations that models the 
currents in a circuit having N loops that have branches in common. Observe carefully 
how the first two steps have been followed in the labeling of Figure 1 0.1. 

First. Identify and number the loops that occur in the circuit. Then propose (arbi­
trarily) a direction for positive current in each separate branch of the circuit. 
Draw an arrow in each branch to indicate (assumed) positive current. Do not be 
concerned with signs. The solution will supply the correct signs. 

Second. Name each component and each current. Using a consistent naming con­
vention such as that illustrated below will help you keep track of the meaning of 
the symbols you introduce. Briefly, a useful naming convention is: 

• Use Lm, Rm, Cm, and im for objects that occur only in loop m. 

• Use Lmk' Rmk' Cmk' and imk for objects occurring both in loop m and in loop 
k (always have m < k). Internal branch currents typically have the form imk· 

• Name every junction of two or more circuit branches so that Jmk means the 
junction is in common to two loops m and k and J mkl means the junction is 
in common with the three loops m, k, and l. Similar conventions apply to 
junctions common to more than three loops. Maintain m < k < l < etc . 

Fig. 10.1. A passive L-R-C circuit having three loops. 
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Third. Apply Kirchhoff's voltage law (in derivative form to give each term as a 
current) to each loop of the circuit. Process the components in order around each 
loop, honoring the assumed current direction through each component: opposite 
direction needs opposite sign. Use de/dt as the applied current. 

Fourth. Apply Kirchhoff's current law to each junction. 
Fifth. Solve the system of equations obtained in the fourth step for all of the branch 

currents having two subscripts in terms of the loop currents that have a single 
subscript. Substitute these values into the differential system obtained in the third 
step to obtain a system of N second-order linear differential equations in the 
primary loop currents i 1, i2, •.. , iN. 

Sixth. Solve this system for i1, i2, ... , iN. Substitute il' i2, ... , iN into the formulas 
obtained for the various branch currents if values for the branch currents are 
needed. 

This may seem like a complicated process, but each step is simple, and with 
the help of Mathematica , a solution is easy to obtain. In systems such as these, 
the initial conditions soon have very little effect (transient solution), and all lasting 
effects (steady-state solution) come from the particular solution determined by the 
applied voltage. 

Example 10.1 Set up a system of differential equations that models the current in 
each of the three loops of Figure 1 0.1. 

Solution. The components and currents have been named according to the stated 
conventions. The results of applying Kirchhoff's voltage law in derivative form to 
each of the three loops are: 

d2i 1 di12 . 1 . de 
(loop 1) LI dP + Rlzdt + C12t12 + C13 ,13 = dt 

d2i2 di23 di12 1 . di2 
(loop 2) Lz dtz + Rz3 dt - Rlz dt - C12 '12 + Rz dt = 0 

d2i3 1 di23 di3 1 
(loop 3) L3 dtz - C13 i13 - Rz3 dt + R3 dt + C3 i3 = 0. 

The results of applying Kirchhoff's current law to each of the four junctions are: 

(112) i1 = i2 + i12 
(113) il = il3 + i3 
(J23) i2 = i23 + i3 

(1123) il3 = i12 + i23" 

Solve these algebraic equations for i12, i 13 , and i23 in terms of i1, i2, and i3 to get: 

Substitute these branch currents into the three loop equations to get: 
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d 2i1 d(i 1 - i2) 1 . . 1 . . de 
(loop 1) L1 - 2 + R 12 + -(11 - 12) + -(11 - 13) = -

dt dt C12 C13 · dt 

d2i2 d(i2- i3) d(il - i2) 1 . . di2 
(loop 2) L2- 2 + R23 d - R12 d - -(1 1 - z2) + R2- = 0 

dt t r C12 dt 

d2i3 1 . . d(i2 - i3 ) di3 I . 
(loop 3) L3 - 2 - -(1 1 - 13)- R23 + R3 - + -11 = 0. 

dt C13 - dt dt C3 · 

These equations simplify to this second-order system: 

d2i 1 di 1 di2 1 . 1 . I . I . de 
(loop 1) L1 dt2 +R12 -dt -R 12 - + -11 --12 + -11 --13 =-

dt C12 C12 c13 c13 dr 

d 2i2 di2 di3 di 1 di2 I . 1 . di2 
(loop 2) L + R R - - R - - R - - -1 - -1 + R - - 0 

2 dt2 23 dt - 23 dt 12 dt 12 dt C I C 2 2 dt -
12 12 

d 2i3 1 . 1 . di2 di3 di3 1 . 
(loop3) L ----1 --1 -R - -R - +R3 - + -13 = 0. 

3 dt2 C I C 3 23 dt 23 dt dt C, . 
13 13 -' 

One can collect terms involving like currents or simplify in other ways, but these 
equations serve as a system of second-order equations that describes the behavior of 
the three primary currents, i" i2 , and i3 . The three branch currents i 12' i 13 , and i23 

can be obtained from the branch equations once i" i2 , and i3 are known. We have 
accomplished what the example required: we have set up a system of differential 
equations that models the current in each branch of the three loops of Figure 1 0.1. 
The substitutions introduced in Section 9.1 show that the second-order system is 
equivalent to six first-order differential equations, so the order of the system defining 
the loop currents is six. 0 

The Spread of AIDS 

Tudor (1992) gave a model for the spread of AIDS in a population in which an at­
tempt is being made to educate the population about the disease and its modes of 

propagation. His model was of the SJ type (see Hethcote (1976) ). Models of SJ type 
assume that every individual in the population is susceptible (S) to the disease and 
that after adequate contact becomes infected (I) and remains so thereafter. Tudor 
assumed that in the presence of efforts at education, a portion, Sc, of the entire S 
population would change their behavior so as to avoid contact with the infected pop­
ulation and that the remainder of the S population, Su, would be unwilling to change. 
The dynamics of the model assumes that everyone entering the sexually active popu­
lation is susceptible, with the rate of entry into the populationS being a. One should 
actually write a = ac +au where ac denotes the rate of entry into the population 
Sc that is willing to change and au denoting the rate of entry into the population Su 

that is unwilling to change. Assume further that the death rate J1 = Jlc + Jlu with the 
designations being analogous to those for a. Denote the population size by N, and 
assume that a = J1 so that the population is of constant size. An education campaign 
is undertaken, which is designed to increase ac and decrease A. The resulting model 

has the form 
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{ 
S~ : -Al:.u + au - JluSu, 
Sc - ac JlcSc, 

I' = AISU - JlJ, 

where it contacts per unit time are made by the I(t) infectious individuals. This is a 
nonlinear system of three equations in three unknown functions. The second equation 
can be explicitly solved for Sc which reduces the system to two equations in Su 
and I. Note that the rate of decrease in the Su population due to contact with the 
infected population(= A/Su) is exactly the same as the rate of increase of the infected 
population I due to this same contact. This describes those susceptibles who become 
infected and thus become part of the infected population. Note also that the rate of 
change of the S c population is independent of the size of the infected population 
because they have modified their behavior to avoid contact with infected individuals. 

Tudor goes on to study the effects of increased levels of educational campaigns 
at specific later times. He concludes with the statement: "Although the models pre­
sented here are meant primarily for use in the classroom, we have seen that, based 
on our analysis here, to effectively combat AIDS, we must either be assured that 
behavioral changes are permanent, which is doubtful, or we may never cease in our 
[educational] campaign efforts." 

Chemical Mixing 

Chemical mixing problems are basically transport problems where a substance is 
moved through a collection of containers or compartments. The following example 
discusses the mixing of salt in an aqueous solution that is in motion through two 
containers. Another example would be that of the circulation throughout the body 
of a substance that has been injected directly into the blood stream and is dissipated 
throughout the body. An interesting problem is when a short-lived radioactive tracer 
is injected into the body and its progress monitored as it is dissipated (differentially) 
throughout the body, is simultaneously decaying, and the remnant is eventually ex­
creted. 

Example 10.2 Suppose that fluid is able to pass through an interconnected collec­
tion of containers as depicted in Figure 10.2. The upper container holds at least 100 
gallons and the lower at least 200 gallons. Initially, 25 pounds of salt (NaCI) is dis­
solved in 100 gallons of water in the upper container and the lower container contains 
200 gallons of pure water (no salt). After the start of the process, the incoming fluid 
is brine containing a concentration of 1 pound per gallon of salt that is entering at the 
rate of 3 gallons per minute and exiting at a rate of 5 gallons per minute. Both con­
tainers are kept well mixed. The solution in the lower container is recycled back into 
the upper container at the rate of 2 gallons per minute. Solution also flows out of the 
second container at the rate of 3 gallons per minute and is lost to the system. Set up 
and solve a system of equations that describes the amounts x1 (t) and x2(t) of salt in 
the respective containers after the process starts. What is the limiting concentration 
of salt in each container? 
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Solution. Let x 1 (t) be the amount of salt in the first container and x2(t) be the 
amount in the second. Denote the volume of the first container by V1 (t) and that of 
the second by V2(t). Both the volumes involved and the amounts of salt obey the 
general rule 

Rate of change =rate in- rate out· 

This permits us to express the four related quantities of salt and volume as: 

dV1 = rate. - rate = (3 gal + 2 gal ) - 5 gal = 0 gal . 
dt m out min min min min 

This means that V1(t) =constant= V1(0) = 100 gals. 

dVz = rate. - rate = 5 gal - (2 gal + 3 gal ) = 0 gal . 
dt m out min min min min 

This means that V2(t) =constant= V2(0) = 200 gals. Furthermore, 

dx1 

dt 

3~ 

ratein - rateout 

(3~) (1 ~) + (2 gal) (x2 ~) 
min gal min V2 gal 

-( 5 !~~) ( ~: ~:1 ) 
3 + 2x2 _ 5x1 , 

Vz VI 

X] (t) 

5 

Fig. 10.2. Two containers of constant volume with recycling. 
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and 

ratein - rateout 

(S g~l) (XI ~) _ (2 g~l) (X2 ~) 
mm VI gal mm v2 gal 

_ (3 g~l ) ( x2 ~) 
mm v2 gal 

5x1 _ 5x2 

Vl Vz 

The system of equations is 

dV1 

dt 
dV2 

dt 
dx1 

dt 

~ 
dt 

0 

= 0 

Since V1 and V2 are constant, these equations simplify to this initial value problem 
for the amounts of salt in the two containers: 

The solution of these two equations by the standard methods we discussed earlier 
in this chapter is rather complicated. (You can do it as an exercise.) Numerically 
evaluating the various coefficients yields the (approximate) solution: 

{ 
x1 (t) = 100 _ 16. 762le-0.0631174t _ 58.23?9e-O.OII8826r 
x2(t) = 200 + 21.9875e-0.0631174r _ 221.988e-O.Oll8826r. 

In Mathematica these can be plotted this way 

In[l]:= p=Plot[Evaluate[{sl[t],s2[t],100,200}], 

{t, 0, 400}]; 

-Omitted-

In[2]:= Show[p, 

Graphics[{Text[ 11 xl[t] 11 , {250, 80}], 

Text[ 11 x2[t] 11 , {250, 170}]}], 

AxesLabel -+ { 11 t 11 , 11 NaCl 11 }] ; 
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and 

NaCl 

2oor---------------~~===== 

150 

xl [t] 

50 

200 300 

It is clear both graphically and analytically that 

limx1(t) = 100 
1-->oo 

1imx2 (t) = 200. 
1-->oo 

0 

Suppose that for the same two containers as in Example 10.2 the inflow and 
outflow of the containers is not in balance so that the volume(s) vary with time. We 
illustrate the phenomenon. The system turns out to not have constant coefficients, 
but we solve it numerically using NDSol ve. The example actually consists of three 
separate parts, of which we indicate the solution only of the first. 

Example 10.3 Suppose that fluid is able to pass through an interconnected collec­
tion of containers as depicted in Figure 10.3. The upper container holds at least 150 
gallons and the lower at least 300 gallons. Initially, 25 pounds of salt (NaCl) is dis­
solved in 100 gallons of water in the upper container, and the lower container con­
tains 200 gallons of pure water (no salt). After the start of the process, the incoming 
fluid is brine containing a concentration of 1 pound per gallon of salt that is entering 
at the rate of 3 gallons per minute and exiting at a rate of 6 gallons per minute. Both 
containers are kept well mixed. The solution in the lower container is recycled back 
into the upper container at the rate of 2 gallons per minute. Solution also flows out of 
the second container at the rate of 4 gallons per minute and is lost to the system. Set 
up and solve a system of equations that describes the amounts x1 (t) and x2(t) of salt in 
the respective containers after the process starts. What is the limiting concentration 
of salt in each container? 

Solution. Let x1 (t), xit), V1 (t), and V2(t) be as in Example 1 0.2. Initially express 
the four related quantities of salt and volume as: 

-- = rate. - rate = 3- + 2- - 6- = -1-. dV1 ( gal gal ) gal gal 
dt m out min min min min 

This means that V1 (t) = V1 (0)- t = (100- t) gals. Therefore, after 100 mins, the first 
container empties. At this point the system enters a new state where the salt solution 
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3~ 

V1(t) XJ(t) I 2 

6 

V2(t) X2(t) 

Fig. 10.3. Two containers of varying volume with recycling. 

that enters the first container flows directly on into the second container. Therefore, 
for the first 100 mins V2(t) obeys this rule: 

dVz = rate. - rate = 6 gal - (2 gal + 4 gal ) = 0 gal . 
dt m out min min min min 

This means that for the first 100 mins, V2(t) = constant = V2(0) = 200 gals. This 
holds until the first container empties. (What is the new equation for how V2 changes? 
Over what interval is it in effect?) During this first 100 mins, 

and 

dx1 

dt 

dx2 

dt 

= ratein - rateout 

ratein - rateout 

(6 gal ) ( x, ) lb (2 gal ) ( x2 ) lb 
min V1 (t) gal min V2(t) gal 
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The system of equations in effect for the first 100 mins is 

dV1 -1, V1(0) 100, at 
dV2 = 0, V2(0) 200, at 
dx1 3 2x2 6x1 

X1 (0) 25, at + V2(t) - V1 (t)' 

dx2 = 
6x1 6x1 x2(0) 0. at VI (t) - V2(t)' 

Since VI (t) = 100 - t and V2(t) = 200 during the first 100 mins, these equations 
simplify to this initial value problem for the amounts of salt in the two containers: 

25 

0, for 0:::; t:::; 100. 

We have no formal technique for solving this problem, but we can numerically 
solve it using NDSol ve. That is left as an exercise. 0 

Radioactive Decay Series 

In Chapter 4 we considered the radioactive decay of a single element. For some 
elements-notably uranium, thorium, and actinium-as an isotope of one of these 
elements decays it decays into an isotope of another element. This new isotope may 
itself be radioactive and decay into another isotope, which may be radioactive and 
decay further. The identification of the isotopes in these decay series took years of 
careful analysis by numerous chemists and physicists, starting with Henri Becquerel 
in 1896, Pierre and Marie Curie during 1898-1902, and Willard Libby during 194 7-
1950, whose method of radiocarbon dating was also considered in Chapter 4. 

The differential equation for the amount x 1 of the initial element in a decay series 
is dxl dt = -A.1 xi, which we saw in Chapter 4. For decay products later in the series 
the differential equation for the amount xk of product k is dx,/dt = Ak_Jxk-l - A.kxk, 
because the amount of product k increases due to the decay of product k - 1, but 
decreases through radioactive decay with decay rate Ak. The sizes of the decay rates 
within a single decay series may vary by several orders of magnitude. Ultimately, 
after several products have been produced, a final stable product is produced that 
decays no further. The differential equation for the amount X 11 of the final stable 
product is dx/dt = A11 _ 1x11 _ 1 because product n just increases through the decay of 
product n - 1. This final product is normally some isotope of the element lead. 
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For purposes of illustration, suppose that el' e2 , e3 , and e4 are consecutive prod­
ucts in a decay series and that x1 (t), x2(t), x3(t), and x4(t) are the amounts present at 
timet. Let A1, A.2 , A.3 , and A.4 = 0 be the respective decay rates. The statement A4 = 0 
says that e4 is the stable end product of the series. The differential equations of the 
decay series can be written as 

~ -A.,x, dt 

~ A1x1 - A2x2 dt 

dx3 
AzXz- A3x3 dt 

dx4 
A3x3. at 

The choice of initial conditions depends on the experiment that is being observed, 
but a common set of initial conditions is x1 (0) = a 0, x2(0) = 0, x3 (0) = 0, x4 (0) = 0. 
This assumes that an amount a0 of substance e1 is isolated and begins to decay. For 
a while, both dx2! dt and dxl dt are positive, and hence the amounts of substances 
e2 and e3 are increasing. As the amount of substance e1 decreases, dxz!dt eventually 
becomes negative, which eventually causes dxl dt to also become negative. The rate 
dx4! dt remains positive throughout. After some (possible very long) period of time, 
the masses of all three radioactive products decrease, with their total mass having 
been converted into the final stable product e4 . The total mass of the four isotopes is 
constant since 

d(x 1 +x2 +x3 +x4 ) 
-~--=---"---.:..._ = (-A1x1) + (A1x1 - A2x2 ) + (A2x2 - A3x3) + (A3x3 ) = 0. 

dt 

The phenomenon of radioactive decay series has naturally introduced a system 
of first-order linear differential equations. See Figure 10.4. The differential equations 
for the decay series of uranium, thorium, and actinium have respectively 14, 10, and 
11 equations. Though the same elements appear in several of these series, different 
isotopes of the elements occur in the different series. These different isotopes have 
markedly different half-lives and hence different decay rates. In order to set up the 
differential equations for any one of these series, it is necessary to look up the half­
lives of the various isotopes that occur in the series and convert each half-life into a 
decay rate. Tables of half-lives of the various isotopes are readily available. Since the 
half-life t 112 of a substance is related to the decay rate A by t 112 = ln 2/A, one finds the 
necessary value of A from A = ln 2/t 112 • Remember that all of the decay rates should 
be based on the second as standard unit of time, even though the half-lives in a series 
can range from microseconds to millions of years. 

An interesting laboratory exercise using the thorium series consists of determin­
ing the date of manufacture of Coleman lantern mantles. Thorium is put in Coleman 
lantern mantles because it glows with a particularly bright white light. The manufac­
ture date of a particular mantle can be determined with some certainty by measuring 
the relative quantities of the components of the isotopes in the decay series and com­
paring with the quantities predicted by the differential equations. 
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Isotope Mass 

Fig. 10.4. Solutions of a typical decay series showing the rise and ultimate fall of the radioac­
tive products and the rise of the stable product. 

It is not difficult to write down the complete solution for the system that describes 
a decay series because each differential equation can easily be solved explicitly in 
terms of the solution to the differential equation that precedes it in the system. These 
explicit solution functions have the formxk(t) = .L:~=I cj exp(-1}) where the cj are de­
termined by the initial conditions. This description of decay series does not address 
the fact that occasionally an isotope has two decay modes that produce different iso­
topes. These two product isotopes each head decay series, and produce a common 
product after one or several steps. One accounts for these separate paths by observing 
the probabilities with which the two modes of decay occur and using these probabil­
ities to state how later recombinations take place. The probabilities of various modes 
of decay are available in standard tables. 

International Armament and Disarmament 

Beginning shortly after the First World War, Lewis F. Richardson, who almost single­
handedly established the science of meteorology, studied the causes and effects of 
deadly quarrels. This was his terminology for anything from a murder through global 
warfare. The distillations of his efforts appeared posthumously in two books, Statis­
tics of Deadly Quarrels and Arms and Insecurity. One of the ideas that he proposed 
was that it was possible to model the circumstances under which an arms race might 
be undertaken. 

Here is a summary of Richardson's model of international armament. Suppose 
that there are two nations that mistrust each another. Suppose that one nation feels the 
need to defend itself against the other. Let x andy denote the amount of armament of 
the two nations. The first nation begins to arm itself proportionally to the perceived 
threat from the other nation: dx!dt = ky. The second nation does the same: dyldt = 
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kx. But these are not the only factors, for if they were, both nations would never be 
able to stop the arms race. For each nation there is a cost of armament that tends to 
oppose the increase. Call these terms ax and ,By. In addition, there are grievances g1 

and g2 present that are more or less constant with respect to armament considerations. 
Thus the final pair of equations is 

{ ¥t = ky-ax+g1 

dy Tt = kx- ,By + g2. 

Unilateral disarmament on the part of the second nation corresponds to putting 
y = 0. If this is done, note that y does not remain zero! It causes only a tempo­
rary decrease in the rate of growth of armament of the first nation, the armament of 
both nations will again rise unless something else changes. Since mathematically it 
is possible for either x or y to be negative, Richardson concluded after some study 
that this situation is not "peace," but rather "cooperation" which is primarily man­
ifested through commerce as trade. "Peace" then became something that happens 
only briefly in transition between two other states. If two nations trust one another, it 
is possible to assign negative values to the "grievances" g1 and g2 • In this case con­
trol of the arms race is dependent on the relative sizes of the costs a and ,8 compared 
tok. 

Richardson generalized the model to three nations and then to n nations. In the 
case of three nations he showed that the above equations for any pair of nations could 
predict a basically neutral arms buildup, but that the third nation could destabilize 
any one of the pairs, and hence the entire triple of nations. He concluded on the basis 
of applying the model to real data that the world of 1938 was unstable(!), but that 
when the instability was resolved, a "just barely stable" world situation would result. 
In fact, he suggested that any "peaceful" portion of the twentieth century was only 
barely stable, with renewed arms races always ready to break out. 

Exercises 10.1. 1. The three loop equations 

d2i1 di1 di2 1 . 1 . 1 . 1 . de 
(loop 1) L 1- 2 +R12 -d -R12 -d + -z1 - -z2 + -z1 - -z3 =-

dt t t c,2 C12 c13 c13 dt 

(l 2) L d2 i2 R di2 R di, R ~ R di2 I . I . R di2 - 0 
00P 2 df2 + 23 tii - 23 tii - 12 de - 12 tii - c12 11 - c12 12 + 2 tii -

d2i3 1 . 1 . di2 di3 di3 1 . 
(loop 3) L3 dt2 - -c ~,- -c 13- R23-- R23- + R3-dt + -13 = o. 

13 13 dt dt c3 

describe the currents in the three loops in this circuit. 
Transform the system into a system of six first-order equations in the loop cur­
rents i 1, i2, and i3. Use NDSol ve to obtain an approximate solution to the sys­
tem when L 1 = 0.2h, R 2 = 10!1, L 2 = lh, R 3 = 100!1, L 3 = 0.5h, C3 = 0.22J1f, 
R 12 = 220!1, C12 = O.lJlf, C13 = l.OJ1f, R 23 = 330!1, e(t) = 3 cos(20m). 

2. Use NDSol ve to obtain an approximate solution to the system that models 
the spread of AIDS. Make individual plots of the three functions and combine 
the plots on a single set of axes. Use these (fictional) values: ac = 0.15, Jlc = 
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0.05, au = 0.15, Jlu = 0.25, A = 0.20. It would be worth your while to obtain 
good estimates for these parameters based on reliable data and then repeat the 
problem. 

3. The definitions for this problem are given in Example 10.1. 

a) Solve the differential system numerically using NDSol ve. Plot V1 (t), 

V2(t), x 1 (t), and x2(t) on the same axes for 0 :::; t :::; 100. 
b) What system of differential equations governs the next phase of the pro­

cess? Pay particular attention to the initial conditions that are in effect at the 
beginning of this second phase. 

c) Determine the time at which the second phase ends, and plot the same four 
functions over the time interval during which this second phase is in effect. 

d) Determine the equations that are in effect thereafter. Solve them. 
e) P 1 ot a composite graph of the solution throughout the three phases studied. 

4. Here is a drawing that represents part of the uranium decay series. The double­
line arrows indicate the main modes of decay. The percentages p = 0.02% and 
q = 99.98% represent the relative occurrences of the indicated decay modes of 
218Po into 218 At and 214Pb, respectively. The encircled numbers are the half-lives 
of the nearest isotopes. We will include y0 in the differential equations, but will 
let y0(t) = 0 in order to isolate this portion of the series. For brevity of notation 
we use y;(t) for the amount of isotope i that is present at timet. The association 
of they-names and isotopes is on the picture. 

a) Determine each of the four decay constants A; that are associated with the 
appropriate Y;-

b) Explain why these differential equations describe the rates of change of the 
amounts of the isotopes: 
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218 
At : Yz 

""" 
214 

Bi : Y4 
218 

Po : Yl 

214 
Pb : Y3 

~ 

dy, 
= AoYo- A.,y, Tt 

* = pA.,y, -~y2 

* = qA.,y,- A3Y3 

* = ~h + A3Y3 - A4Y4· 

Note how the probabilities of the two decay modes of 218Po are included in 
the second and third equations. 

c) Show that under the assumption y0 = 0, the change of mass in the system 
consisting of these four isotopes is d{y1 + y2 + y3 + y4 )1dt = -A.4y4 • Recall 
thatp + q = 1. 

d) Solve the system of exercise 2 above using the values for the A; that you ob­
tained in part (a) letting the initial conditions be y1 (0) = 1, y2(0) = 0, y3(0) = 
0, and y4(0) = 0. Take Yo= 0. 

e) Plot the solution functions on a common pair of axes over an appropriate 
time interval. Choose your time interval large enough to reveal the maxima 
fory2, y3, andy3 . If you cannot seem to find all of the curves you expect, plot 
each curve individually. It is sometimes helpful (and useful to investigators) 
to plot Log [curves] on an interval [small, large], with small > 0. 
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10.2 Phase Portraits 

In Chapter 3 we studied differential equations that could be put into the form 

dy f(x, y) 

dx g(x,y) 

In this chapter we have studied linear systems that have the form 

{ ¥t = f(x,y) 

dx _ g( ) dt - x,y 

(10.1) 

(10.2) 

Equation 10.1 and system 10.2 look too similar to be unrelated, and, indeed, they 
are related. Recall from the chain rule that (dyldx)(dxfdt) = dy!dt. It follows that 

dy dyldt 
= 

dx dx/dt 

f(x,y) 

g(x,y) 

In system 10.2 we have disconnected the numerator and denominator of equa­
tion 10.1 and have asked that x andy be simultaneously parameterized (by t). Thus 
in 10.2 we have made the static situation of 10.1 into a dynamic situation: both x(t) 
and y(t) can change with t. 

The parameterized solutions of 10.2 trace out the (static) solutions of 10.1. For 
this reason we refer to the solutions of 10.1, where y is given as a function of x or x 
is given as a function of y, as trajectories or orbits of the solutions of 1 0.2. System 
10.2 is often called a dynamical system. 

Note also that system 10.2 is autonomous -it does not explicitly involve the in­
dependent variable t. This means that the system has the property that any t-translate 
of a solution is a solution. Indeed, let (x(t), y(t)) be a solution of 10.2 for t 1 < t < t2, 

a * 0 be a number, and consider the functions u(t) = x(t +a), and v(t) = y(t +a). 
Then 

v'(t) = y'(t +a) = f(x(t +a), y(t +a)) = f(u(t), v(t)) 

and 
u'(t) = x'(t +a)= g(x(t +a), y(t +a)) = g(u(t), v{t)), 

so the pair (u(t), v(t)) is also a solution of 10.2 for t1 -a < t < t2 - a. The solution 
(u(t), v(t)) is a different solution from the solution (x(t), y(t)), but the two solutions 
trace out the same trajectory, or solution, of equation 10.1. Of great interest is the 
limiting behavior of these solutions as t ~ ±oo if the domain is infinite. 

In Chapter 3 we discovered that differential equations such as 10.1 can have 
solutions where either x is constant, y is constant, or both are constant. The case 
where both x andy are constant is of special importance in the study of system 10.2. 
If this happens, both derivatives are 0, so we have 

f(x, y) = g(x, y) = 0. 
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Such a point is called a stationary point or an equilibrium point of the system. This 
idea is related to that of a critical point of a vector field. There is a unique solution that 
is stationary at any equilibrium point, and uniqueness says that no nonequilibrium 
solution ever passes through an equilibrium point. So at any point in the plane, either 
there is a solution that "moves through" the point, or else there is a solution that is 
stationary at the point. 

How do the "moving" solutions behave in the neighborhood of an equilibrium 
point? This is a very interesting topic for study, and we will look at it briefly. 

The Linear Approximation to a System 

We first concentrate on what happens in a neighborhood of a point. Expand both 
f(x, y) and g(x, y) in a Taylor series (in two variables) about the point (a, b). This 
expresses values of the functions at (x, y) in terms of information that is concentrated 
at the point (a, b). We then have 

f(x, y) = f(a, b)+ f/a, b)(x- a)+ fyCa, b)(y- b)+ higher-order terms 

and 

g(x, y) = g(a, b)+ gx(a, b)(x- a)+ gyCa, b)(y- b)+ higher-order terms, 

where fx denotes 8f/8x and similarly for the other partials, fy, gx, and gy. Since 
higher-order terms approach 0 faster than linear terms, we can estimate local behav­
ior by simply ignoring all higher-order terms. When we do so, the system 

{ 
d(yd- b) tjy_ t = dt = f(a, b) + fx(a, b)(x- a) + fyCa, b)(y - b) 

d(xd~ a) = ¥t = g(a, b)+ gx(a, b)(x- a)+ gyCa, b)(y- b) 
(10.3) 

results. This says that near any point, system 10.2 is essentially a linear system. Sys­
tem 10.3 is called the linear approximation to system 10.2. An especially interest­
ing thing happens at an equilibrium point: f(a, b) = g(a, b) = 0, so the linear system 
that gives clues to the behavior in the vicinity of an equilibrium point is actually 
homogeneous. 

{ 
d(yd~ b) = f/a, b)(x- a)+ fyCa, b)(y- b) 

d(xd~ a) = gx(a, b)(x- a)+ gyCa, b)(y- b). 
(10.4) 

If we write Y = y - b, X = x -a, gx(a, b) = a, gyCa, b) = {3, fx(a, b) = y, fyCa, b) = 6, 
and reverse the order of the equations, then system 10.4 becomes even simpler. 

{ djf = aX +f3Y 

dY yX +OY Tt 
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or 

!!_ (X)= (aX +f3Y) = (a f3 )(X)= A( X) 
dt Y yX + 6Y y 6 Y Y 

(10.5) 

where A = ( ~ ~ ) is a constant matrix. Constant coefficients systems of this type 

are the topic under discussion in this chapter, and this is the form we will study in 
this section. We now classify the ways an autonomous first-order system such as 10.2 
can behave in a neighborhood of an equilibrium point. 

Behavior in the Neighborhood of an Equilibrium 

The coefficient matrix A = ( ~ ~ ) can have one of a quite small number of canon­

ical forms that describe every possibility. We can immediately identify the solution 
in each of these cases. The basic classification is into real or complex characteristic 
roots. What then matters is distinct or repeated roots. Here are three real cases that 
arise from real matrices. They are basically all of the possibilities. 

where a, {3, y, and 6 are all real. We will encounter one special case of these. A 
related case that is not truly canonical also often arises. These are: 

In each of the above cases, we want the nonzero entries that appear to truly be 
nonzero. This means that we want det A * 0. Situations in which det A = 0 are 
called degenerate. For the matrix A taken to be any of these cases, we determine all 
solutions (as functions oft) and the trajectories to which they correspond. As we go 
along further interesting special cases will arise. Note that a linear differential system 
y' = Ay always has the origin as an equilibrium point, and that the requirement that 
det A * 0 means that there are no other equilibrium points. In what follows, the 
origin is the equilibrium point under discussion. 

Consider the special case where a = 6 and f3 = y = 0. We know the solution of 

For each choice of c1 and c2 this is a parameterization of a straight line through the 
origin (our equilibrium point). The static form of this differential system is 
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Fig. 10.5. A proper node. Sink. 

dy ay y 
= ' X dx ax 

a separable differential equation whose solutions are just c 1y = c2x. So the trajecto­
ries are straight lines that radiate from the equilibrium point, and the parameterized 
solutions lie on those trajectories. Dynamically, we find that if a > 0, then both x(t) 
and y(t) become infinite as t ~ oo, and x(t) and y(t) both approach 0 as t ~ -oo. Thus 
the parameterized solution radiates outward from the origin as t increases. When this 
happens to all solutions, the equilibrium point is called a source. If a < 0, the static 
solution is unchanged, but the parameterization becomes x(t) = c 1 eat and y(t) = c2ea1 

with a < 0. This parameterized solution approaches the origin radially as t increases. 
When this happens to all solutions, the equilibrium point is called a sink. A sink and 
a source are illustrated in Figures I 0.5 and 10.6. 

An equilibrium point that has trajectories approaching it from all directions is 
called a node or proper node. An equilibrium that has trajectories approaching it 
from only two directions is an improper node. 

Let A = ( ~ ~ } where a =F 8. The degenerate special case when 8 = 0 is 

illustrated in Figures 10.7 and 10.8. There, every point on they-axis is an equilib­
rium point. This is an example of the type of degeneracy mentioned above: there are 
equilibrium points other than the origin, and the equilibrium points are not isolated 
from one another. When A is not degenerate, other very interesting things happen. 

For example, let a > 0, and consider 

The characteristic roots are a and 2a, so this system has as solution x(t) = c 1 eat, y(t) = 
c2e2a1 • It follows that both x(t )I c 1 and y(t )I c2 are positive when c 1 and c2 are nonzero. 
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In addition, 

y(t) = (x(t) ) 2 

c2 c 1 

Thus (x(t), y(t)) parameterizes a portion of the parabola 

The differential equation of the trajectories is dy/dx = (2ay)!(ax) = 2y!x. The 
trajectories, the solutions of this separable equation, are In lyl = In x 2 + ln c = In x2 + 
In c2 - In cT . This latter is equivalent to ciy = c2x2 , so each parametric solution 
parameterizes a member of this family of parabolas (including the degenerate cases 
when one of c1 or c2 is zero). Since a > 0, when c 1 and c2 are not both zero, (x(t), y(t)) 
moves away from (0, 0) as t ~ oo (so (0, 0) is a source) and (x(t), y(t)) approaches 
(0, 0) as t ~ -oo. If c2 = 0 the solution stays on the x-axis, whereas, if c 1 = 0, the 
solution stays on they- axis. This is illustrated in Figures I 0.9 and 10.10. 

In the general case where A = ( ~ ~ } the characteristic roots are a and /5, and 

the parametric solution is x(t) = c1 eat and y(t) = c2e01 . From this it follows that when 
neither c1 nor c2 is zero, 

Because both y!c2 and x/c 1 are positive, this equation holds for any real a and 
/5 . Solutions can exist in any quadrant, and no solution leaves a quadrant in which it 
starts. A solution that starts away from zero on either axis stays on that axis on the 
same side of the origin. When a and /5 are both positive, any parameterized solution 

Fig. 10.6. A proper node. Source. 
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2 

-2 2 

- 1 

-2 

Fig. 10.7. Degenerate-every point of they-axis is an equilibrium. 

that starts away from the origin moves away from the origin, and the origin is a 
source. When a and 8 are both negative, any parameterized solution that starts away 
from the origin stays away from the origin, but approaches the origin as t increases. 
Hence the origin is a sink. These statements deserve careful thought. 

A new kind of behavior occurs when a and 8 have different signs. Then, as t ~ oo, 

one of x(t) or y(t) approaches the origin and the other approaches either positive or 

2 

1 

4 -2 2 

-1 

-2 

Fig. 10.8. Also degenerate-every point of they-axis is an equilibrium. 
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Fig. 10.9. Improper node. Source. Trajectories are parabolas. 

negative infinity, depending on the sign of the appropriate c;. This produces the be­
havior illustrated in Figures 10.11 and 10.12. The trajectories act rather like hyper­
bolas in the neighborhood of the origin, first approaching, then turning, and finally 
receding from the origin. Such an equilibrium point is called a saddle point. 

In the special case when a = 0, every solution is clearly periodic, and the equi­
librium point is called a center. See Figures I 0.13 and 1 0.14. 

A still different kind of behavior occurs when A = ( -~ ~ } Here the charac­

teristic roots are a ± f3i, so 

Fig. 10.10. Improper node. Sink. Trajectories are parabolas. 
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Fig. 10.11. Saddle point. 

( x(t) ) = at ( cos(/3t) sin(/3t) ) ( c1 ) 
y(t) e - sin(/3t) cos(/3t) c 2 · 

When a < 0, each solution approaches 0 along a spiral path as t ~ oo. This follows 
from the calculation that the distance of the solution from the origin is a constant 
multiple of eat, and when a < 0 this approaches 0 as t ~ oo. In this case, the origin 
is called a spiral point. This case is illustrated in Figures 10.15 and 10.16. 

When a > 0, each solution spirals outward away from the origin. The direction 
of the spiral depends on the sign of f3. In this case also the origin is called a spiral 
point. 

Fig. 10.12. Another saddle point. 
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Fig. 10.13. Center. Trajectories are circles. 

In the special case A = ( ~ ~ ) with f3 and y having opposite signs, the charac­

teristic roots are pure imaginary, the solutions are periodic, follow ellipses, and the 
origin is again a center. See Figures I 0.17 and 10.18. 

Fig. 10.14. Center. Trajectories are circles. Opposite orientation. 
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4 

-4 

Fig. 10.15. Spiral point. 

If f3 and y have the same sign, then the characteristic roots are real and distinct 
and this is an earlier diagonalizable case. Note that you must be alert to signs as a 
part of the form that you are examining. 

Fig. 10.16. Spiral point. Opposite orientation. 
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Fig. 10.17. Center. Elliptical trajectories. 

The remaining case is that of repeated real roots, where A = ( ~ ! ). Here the 

matrix A is not diagonalizable. In this case, the parametric solution swirls around 
the origin, but does not spiral. The solution is x(t) = (c 1 + c2t)em , y(t) = c 1 eat. Note 
that, depending on the sign of a, x(t) has exactly one maximum (or minimum), and 
that y(t) has none. 

Fig. 10.18. Center. Elliptical trajectories. Opposite orientation. 
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Fig. 10.19. Improper node. Repeated root. 

See Figures 10.19 and 10.20 for illustrations of this behavior. In this case the 
origin is called a node or improper node. Depending on the sign of a, the parame­
terized solution can either approach or depart from the origin as t --7 oo. 

This briefly summarizes types of behavior that can occur in the neighborhood of 
an equilibrium point. Finally Figure 10.21 shows four ways to view the trajectories 
near a spiral point. 

Fig. 10.20. Another improper node. Repeated root. Opposite orientation. 
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Fig. 10.21. Spiral point. Left: (t, x(t), y(t)) Right: xt-, yt-, and t = 0 projections. 

First-Order Systems with More than Two Equations 

It is reasonable to expect, based on the above discussion, that systems such as 

Y'=Ay 

having more than two equations should behave much like systems of two equations, 
except that there is the possibility of somewhat greater complication, and, indeed, this 
is the case. Basically, it matters whether or not the characteristic roots are repeated 
or distinct, and what the sign of the real part of each root is. The real part of the 
characteristic root determines how the exponential factor behaves, and this is the 
factor that ultimately determines how far the solution gets from the origin. Repeated 
roots cause polynomial factors to appear, but these polynomial factors are dominated 
by exponentials. Periodic factors, which arise from complex roots, are well-behaved; 
here is where the impact of the sign of the real part can be seen clearly. If the real part 
of a complex root is 0, then a periodic solution occurs. If the real part of a complex 
root is negative, the exponential goes to 0 as t ---? oo, and the solution spirals to the 
origin. If the real part of a complex root is positive, then the solution spirals away 
from the origin. If a characteristic root is real, its sign says whether solutions built 
from it approach or depart from 0. 

Since solutions that result from real characteristic roots typically look like 

If all but one c; are 0, then the solution lies on a line through the origin. (Why?) If 
exactly two c; are nonzero, then the solution lies in a plane, and is essentially like 
the two by two case discussed earlier. The pattern continues, with the complexity 
increasing as the dimension increases. But in each two-dimensional subspace, we 
know the behavior. 
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Nonlinear Dynamical Systems: Some Examples 

The previous discussion was reasonably complete for linear systems. It is therefore 
reasonably complete for neighborhoods of equilibria of nonlinear systems. There is 
another fascinating phenomenon that can occur for nonlinear systems which does 
not occur for linear systems. For this reason alone, it is not sufficient to concentrate 
entirely on local behavior of a system about a point of equilibrium. 

To illustrate this additional phenomenon, consider the nonlinear differential sys-
tern 

{ 
dx _ 
dt -

dy -at -

4y + x(4- x2 -l) 
(10.6) 

-4x+y(4-x2 -l) 
The origin is the only equilibrium point of the system. At the origin, the system 
behaves like 

{ 
dx _ 
dt -

dy -
dt 

4x+4y 

-4x + 4y 

which has characteristic roots 4 ± 4i. The origin is therefore a spiral point with the 
solution receding with increasing t. 

In order to get global information about the solution, let x = r cos e and y = 
r sine, where X, y, r, and e are all functions oft 0 This expresses the problem in polar 
coordinates. We determine r(t) and 8(t) and then construct x(t) and y(t) from these. 
From r 2 = x2 + l, differentiation with respect to t reveals that 

dr dx dy 
r- =x- +y-. 

dt dt dt 

Using the values of dx/dt and dyldt from system 10.6, and the polar definitions of x 
and y reduces this further to 

dr 2 
r- = r\4- r ). 

dt 

Thus, either r = 0, which gives us the equilibrium solution, or 

dr 2 - = r(4- r ). 
dt 

This separable equation has constant solutions r = 0, r = 2 and r = -2. We can then 
determine r(t) when r(t) is not constant from 

I dr =Jdt=t+k. 
r(4- ?) 

Integrating gives 
1 1 
-In iri- -In 14- ?i = t + k. 
4 8 

After multiplying through by 8 and combining logarithms, this finally reduces to 
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_?-_ _ eB(t+k) 

14-?-1- . 

In order to proceed, it is important to know whether we want a solution where 4- r2 > 
0 or one where 4 - r2 < 0. That is, will our solution start inside or outside the circle 
x2 + y2 = 4 which is discreetly hiding in system 10.6? 

Let c2 = e8k. When 4 - r2 > 0, the solution is 

2c 
r(t) = , 

~ c2 + e-sr 

for all real t, and when 4 - ?- < 0, the solution is 

2c 
r(t) = ----;:::::::====:::== .y c2 _ e-Bt 

fort > (-In c2)/8. 
Now determine ()(t). Differentiate tan()= ylx with respect tot to find that 

2 ()d() x(dy/dt)- y(dxldt) 
sec dt = ~ 

Using the differential equations and the polar definitions for x(t) and y(t) further 
reduces this to 

or 
d() = -4. 
dt 

Thus ()(t) = -4t +c. 
Combining the definitions of r(t) and ()(t) yields these possibilities: 

{ 
x(t) = 0 

for all t. [This is the equilibrium solution.] 
y(t) 0 

{ 
x(t) = 

y(t) 

{ 

x(t) 

y(t) = 

2 cos( -4t +c) 

2 sin( -4t +c) 
[This is a parameterized circle.] 

~ 2c cos(-4t +c) 
c2 + e-8r 

~ 2c sin( -4t +c) 
c2 + e-sr 

, r < 2. [Valid for all t.] 

{ 

x(t) = ~ 2c cos(-4t +c) 
c2 _ e-Bt 

, r > 2. [Valid fort > (-In c2)/8.] 
y(t) = ~ 2c sin( -4t +c) 

c2 _ e-sr 
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Fig. 10.22. Circular limit cycle. 

The solutions obtained for r < 0 do not differ from these. (Replace c by c +Jr.) 
Figure 10.22 depicts the underlying vector field and one solution heading out­

ward from the origin. The limiting circle is the new object we were seeking. Every 
nonconstant solution approaches it. This circle is an example of a limit cycle. Of 
course, limit cycles can be much more complicated than this. 

A famous example of a complicated limit cycle that arose in the study of radio 
tubes is the van der Pol equation, which in its system form is: 

{1ft = y 

'1Ji = (-II 4 )(x2 - 1 )y - x. 

Two solutions and the underlying vector field of the van der Pol equation are shown 
in Figure 10.23. This system is studied extensively in texts on dynamical systems. 

Chaos 

This quick look at phase portraits and geometric differential equations cannot do jus­
tice to the richness of the field. Soon after beginning such a study, it is apparent that 
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4 

Fig. 10.23. Van der Pol. Two trajectories--one going out; one going in. 

there are systems of nonlinear differential equations that exhibit a startling sensitivity 

to their initial conditions. No equation that we have yet studied has this property, but 

the Lorenz2 equations 

r 
cr(y- x) 

dt 
dv 
dt px- y -xz 

dz -f3z + .xy dt 
are a famous example. Such equations are described as having solutions that exhibit 

chaotic behavior. Chaos and the dynamical systems that exhibit it are an important 
topic for further study. 

Exercises 10.2. PART I. For the coefficient matrices below, the differential sys­
tem Y' = Ay is in a canonical form or one of the standard special cases. Ex­
amine the characteristic roots of each matrix. From them classify the behavior of 

the solutions in the vicinity of the origin. Write down the general solution of each 

system. Plot one or more solutions using ParametricPlot. Use the package 
'PlotVectorField ' to plot the underlying vector field. Optionally, use Show 

to combine plots of a solution and the vector field into a single plot. 

( -2 0) 
l. A= 0 -2 

2. A= ( ~ ~) 
2 Edward N. Lorenz ( 1917- ), American meteorologist at MIT. He proposed his famous equa­

tions in 1963 while studying models of air flowing as a fluid within the atmosphere. They 

were the first truly simple differential equations to exhibit chaotic behavior. 
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( -2 0) 3.A= 0 -1 

4. A= ( ~ ~) 
( -2 0) 5. A= 0 4 

6. A= ( ~ ~) 
7. A= ( ~ ~ ) 

( -3 1 ) 
8. A= 0 -3 

9. A= ( -~ ~) 
( 0 -2) 10. A= 2 0 

( -1 2 ) 
11.A= -2 -1 

12. A= ( -~ ~) 
PART II. The matrices below are similar to the matrices in Part I that have the 

same number. The transforming matrix is P = ( ~ ; ). The similarity transform is 

p-l AP, where A is from Part I. Analyze the behavior near the equilibrium point and 
plot the solutions as was done in Part I. Describe the differences that the transform by 
P has produced. (Problems 1 and 2 are unchanged under similarity transformations.) 

3a. p- 1AP = ( -; -~) 

4a. p-'AP = ( _; -~) 
5a. p-1 AP = ( ~;o -2;6 ) 

6a. p-1AP = ( -~~ _;~) 

7a.P- 1AP=( -i ~) 
8a. p-1AP = ( =~ _:) 
9a. p-1AP = ( -~~ -~~) 
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lOa. p-1AP = ( -~~ 

lla. p-1 AP = ( -~~ 

12a. p- 1 AP = ( -~~ 

-26) 
16 

26 ) 
-17 

26) 
-15 

PART III. Nonlinear differential systems. 

13. Consider the nonlinear differential system 

{ 
~~ = xy 

qy_ -dt - -y 

Show that each point of the x-axis is an equilibrium point, and that there are no 
other equilibrium points. This means that this is a degenerate case. Show that the 
set of solutions is 

{ 
x(t) = a e-(ce-') 

y(t) = ce-1 ' 

and that the parameters a and c can be chosen so that any point of the plane is on 
some solution. Solve the equation dy!dx = -1/x for the trajectories, noting that 
x = 0 is a constant solution. Show that each point on the x-axis is approached by 
solution curves from exactly two directions. (This is symptomatic of a degener­
acy.) Plot the vector field and some representative solutions. 

14. Consider the nonlinear differential system 

{ 
~~ = -ycosx 

¥t = xcosy 

Show that the origin and the rectangular lattice of points 

( (2m+ l)n (2n + l)n) 
2 ' 2 

for m and n integer are all of the equilibrium points of the system. Show that 
if (p, q) is one of the equilibrium points, then the linear approximation to the 
system near (p, q) is 

where X = x- p andY = y- q. Classify the sixteen equilibria nearest the origin. 
Can you determine a pattern for the distribution of the equilibria? Plot the vector 
field to graphically support your classification. Find all vertical and horizontal 
constant solutions of the equation 
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dy xcosy 
= 

dx -ycosx 

of the trajectories. Note the sign of dyldx in the regions between the vertical 
and horizontal solutions. Note how, except near the origin, any solution seems 
to "join" two equilibrium points. 

15. Consider the nonlinear differential system 

{ 
~: = 4y +x(4 -x2 - y2)(1-x2- y2) 

tfj; = -4x + y(4- x2- y2)(1 - x2 - y2) 

Transform to polar coordinates. Show that the origin is the only equilibrium. 
Show that either r = 0 or dr/dt = r(4-r2)(1-r2), so that r has constant solutions 
0, ± 1, ±2. Show that r is increasing between 0 and 1, decreasing between 1 and 
2, and is increasing when r > 2. Show also that d()/ dt = -4. Identify two limit 
cycles. Describe the global behavior of the solution. Plot the underlying vector 
field to obtain support for your description. Note how the behavior near the two 
limit cycles is different. 

16. Consider the nonlinear differential system 

{ ¥, = 36y + x(4- x2- y2)(1 - x2- y2)(9- x2- y2)2 

tfj; = -36x + y(4- x2 - y2)(1- x2- y2)(9- x2- y2)2 

Perform the analysis that was done on the last problem. Take note of the fact that 
still another kind of behavior takes place near the outer limit cycle. Limit cycles 
are sometimes called stable, or unstable, or semistable. Propose a definition for 
these terms based on the behavior that you see for the solutions of this system. 
Seek out a textbook on dynamical systems or other reference to compare their 
accepted definitions with yours. 

PART IV. Project. Suppose that you want to visualize the behavior of a solution 
that lies in some two-dimensional subspace of R n. Let the solution have the form 
Y(t) = / 1(t)v1 + f 2(t)v2 where v 1 and v 2 are nonzero, nonparallel vectors in Rn, 
and f 1(t) and f 2(t) are differentiable scalar functions defined fortE R. It is easy to 
make in R 2 a faithful copy of the plane in Rn that contains y(t) for all t. 

The linear transformation T on R n that takes v 1 to u 1 and v 2 to u 2 and pre­
serves the angle between v 1 and v 2 is what we want. We know the angle () from 

We can therefore take 

and 
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Then 

\ 

T(Y(t)) == T(j1(t)v1 + j 2 (t)v2 ) 

== f 1 (t)T(v 1 ) + f 2(t)T(v 2 ) 

== J, (t)ul + fit)u2 

Check that lv1 1 == lu1 1, lv2 1 == lu2 1 and the angle between u 1 and u2 is e. Thus the 
copy in the plane is faithful to the original in R n, though it is not "identical." 

U] 

Fig.10.24. The transformation T. 

Apply this technique to plot 

faithfully in the plane. 

10.3 Two Nonlinear Examples (Optional) 

The n-body problem governing the idealized motion of a body in a gravitational 
field produced by n - l larger masses produces a system of n nonlinear second­
order differential equations. In this section we look at the two-body problem. The 
Volterra-Lotka equations, also known as the predator-prey equations, are also 
discussed. 

Newton's Second Law and Planetary Orbits 

We generally follow the exposition of Blake Temple and C. A. Tracy ( 1992). Suppose 
that in a three-dimensional coordinate system we have a large object of mass M, 
located at rs and a small object of mass MP located at rP and we wish to study the 
motion of the smaller object about the larger. (Think of the sun and one planet, for 
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instance.) From Newton's second law we can express these two vector equations 
for the force on each object due to the presence of the other. The force on object a 
due to object b has magnitude inversely proportional to the square of the distance 
separating the objects and acts in the direction opposite the unit vector from b to a. 
Equation 10.7 shows the force equation for the smaller object and the force equation 
for the larger object. 

(10.7) 

Let 

r = rp- rs, 

and 
Mprp + M 5 r 5 

ro = ' 
MP+Ms 

which is the center of mass of the system. We seek implications of equations 10.7. 
Add equations 10.7 to get 

d 2r 0 MP(d 2r jdt2 ) + M5 (d2rjdt2 ) 

drl MP +Ms 

G0MsMp 
------'------"-----;;-3 (rs - rs) = 0. 
(MP + M 5 )lrs- rpl 

This says that r 0(t) = c1t + c2 , which says that r 0 is undergoing unrestricted motion 
in a straight line. This is the motion to which Newton's first law refers. 

Subtract the slightly simplified equations 

GM 
o s (r - r ) 

lr - r 13 P s 
p s 

and 

to get 
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Now 

G0(M, -MP) = G0Ms(1- ~) ~ G0Ms = G, 

since M5 is much larger than M r Hence 

d2r G 
-=--r 
dt2 lrl3 · 

(10.8) 

This is the equation of motion that Newtonian mechanics predicts. Initial conditions 
associated with 10.8 are r(O) = a 0 and (dr/ dt)(O) = a 1, where a 0 and a 1 are nonzero 
and nonparallel. If a 0 and a 1 are parallel, then the smaller object is moving toward 
or away from the larger object and the discussion of escape velocity applies if the 
objects are separating. In astronomy it is often convenient to determine the initial 
conditions at perihelion, the moment of minimum separation, because then the form 
of the solution is very simple. 

The point rs and the vectors a 0 and a 1 determine a plane JT,. The vector rP(t) = 
r(t) + rs lies in the plane JT, as we now show. The normal to 1r, is the vector cross 
product a 0 xa 1• We show that the vector v(t) = r(t)x(dr!dt), which is perpendicular 

to both r(t) and (drldt), is constant. This constant value is a 0 x a 1. Recall from 
equation 10.8 that (d2r! dt2) is parallel tor so that 

dv dr dr d 2 r 
- = - X - + r(t) X - = 0 + 0 = 0. 
dt dt dt dt 2 

Consider a rectangular coordinate system in JT5 with origin at r,. Let r(t) 

(x(t), y(t)) in this coordinate system. In terms of x andy equation 10.8 becomes 

(10.9) 

It is convenient to express (x(t), y(t)) in polar coordinates as x(t) == r(t) cos(B(t)), 
y(t) = r(t) sin(B(t)). Then in the polar coordinates (r(t), B(t)) we find that 

and 

d 2 r dr dB (d8) 2 d 28 - cos(B)- 2- sin(B)-- rcos(B) - - rsin(8)-
dt2 dt dt dt dt 2 

G 
= -- cos(B) 

r2 

d 2r dr d(} (d(})2 d 28 
dt2 sin( B) + 2 dt cos((}) dt - r sin(B) dt + r cos(B) dt 2 

G . e - 2 sm( ). 
r 
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This special form permits us to manipulate further. Calculate 

. d 2x d 2y dr d(J d 2(J 1 d ( 2 d(J) sm((J)-- cos({})-= -2--- r- = -- r- = 0. 
dt2 dt2 dt dt dt2 r dt dt 

This means that r2(dq/dt) = H, a nonzero constant. Thus, from (d(Jfdt) = (H!r2 ) =1= 

0, we learn that(} is monotone. [Note that if H = 0, then either r = 0 or (d(J/dt) = 0. 
If the former, then the smaller object has fallen into the larger, and if the latter, then 
the motion is in a straight line.] Now calculate 

d 2x . d 2y d2r (d(J)2 G cos({})- + sm(O)- = - - r - = --
dt2 dt2 dt2 dt ? 

or 
d2r H2 G 
dt2 -? - ?" 

By the chain rule we find that 

dr dr d(J 
= 

dt d(J dt 

and 

We can express 

d2(J -2(dr/dt)(d(Jfdt) 
= 

= 

r 
-2(dr/dt)H 

,-3 
-2H dr d(J 

? d(Jdt 

-2H2 dr 
-;s d(J" 

Fig. 10.25. An elliptical planetary orbit in the plane n:s with one focus at S. 
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Therefore we have 

Multiply by r2 to get 

This is the equation that was studied in Chapter 6 by reducing it to a second­
order linear problem. Its solutions describe the usual elliptical orbits of planets, and 
the more unusual paths taken by some comets. 

Predator-Prey Equations 

In 1926, Lotka3 (1926) built on foundations established by Volterra4 to propose a 
model of two competing species. Let x(t) denote the number of some prey species 
such as rabbits that are present at time t, and let y(t) denote the number of some 
predator species such as foxes that feeds exclusively on the prey species. The prey 
species feeds on an external source of food such as grass or other vegetation that 
is assumed to be plentifully in supply. The prey propagate in accordance with the 
model of unrestricted growth that we studied earlier, but they die due to encounters 
with the predator population. The predators, on the other hand, would tend to die off 
were they not sustained by the feeding that results from successful encounters with 
the prey. 

Here are the Volterra-Lotka equations that were proposed to model this situa-
tion. 

\ 

dx 
dt 
dy 
dt 

ax- bxy 
(10.10) 

-cy + dxy 

where a, b, c, and d are positive constants of proportionality. Observe that there is an 
equilibrium point at x = y = 0 and at x = c! d, y = alb . The point (0, 0) is a saddle 
point and the point (c/ d, alb) is a center. (See Section 10.2.) This system is another 
where it is possible to reduce the system to a single differential equation and it is 
productive to do so. For equations 10.10 dividing yields 

dy = -cy+dxy = (dx-c)(-Y-), 
dx ax - b x y x a - by 

3 Alfred J. Lotka (1880-1949), American physicist-turned-biologist. He was born in Austria 
of American parents, built on foundations established by Volterra to propose a model of 
two competing species. 

4 Vito Volterra (1860-1940), Italian mathematician. As a student, he published a paper of 
examples that prompted Lebesgue to propose his own integral that was more powerful than 
the Riemann integral. 
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which is an equation with variables separable. We observe that two new constant 
solutions have appeared: x = 0 and y = 0. These correspond to the extinction of one 
or the other of the two species. There are two other equations of interest: dx - c = 0 
and a - by = 0. At these places the derivative has an especially interesting behavior. 
When x = (cld), then (dyldx) = 0, and when y = (alb) then (dy!dx) is vertical 
((dxldy) = 0). We will see that along each solution curve each of these happens 
twice during each "cycle." After solving the separable equation we will use each of 
equations 10.10 to study the behavior of solutions to this model. 

Separate variables over intervals where x =f:. 0, y =f:. 0, x =f:. (c/d), andy =f:. (alb). 
This leads to 

or 
a lny- by= dx- clnx + k. 

The constant k can be estimated by a count of populations in the field. This says 
that the solutions to the Volterra-Lotka predator-prey equations are the level curves 
of the function f(x, y) = a ln y - by - dx + cln x. Figure 10.26 is how some of these 
level curves might look. 

These curves, properly parameterized, are the solution curves we seek. As you 
can see in Figure 10.26, the solution curves are closed. Why this should be is often 
examined in a second course in differential equations. We would like to determine 
just how a typical solution curve is traversed. Does the solution go around clockwise 
or counterclockwise? 

Suppose that (x(t0 ), y(t0 )) = (x0, y0 ) is on a solution curve and that x0 > ( c/ d) and 
Yo > (alb). Then x'(t0 ) = ax0 - bx0y0 = x0(a - by0 ) < 0, which says that x(t) is 
decreasing at t0 • Also y'(t0 ) = -cy0 + dx0y0 = y0( -c + dx0 ) > 0, which says that y(t) 
is increasing at t0 . This says that y(x) is moving left and up, which means that the 
solution traverses the closed path in a counterclockwise direction. Since (dyldt) = 0 
when x = (cld), both the top and bottom of each closed path occurs when x = (cld). 
Also, (dx/dt) = 0 when y = (alb), so the left and right extremes of each path occur 
when y = (alb). The minimum of the prey population occurs when x = (c/d) and 
y < (alb) because 

d2yl 
-2 = 
dt X= c/d 

dy dx dy 
-c- + d-y + dx-

dt dt dt 

dy dx 
(dx- c) dt + dy dt 

= dxy(a- by)> 0. 

Similar remarks and calculations can be made about the other extremes of x(t) and 
y(t). 

During the years 184 7 to 1903 the Hudson Bay Company kept data on the pop­
ulations of lynx and hares in Canada. The variations conform quite closely to what 
this model would predict, even though there were more than two species compet­
ing within the ecosystem under study. This and other studies are reported in Leigh 
(1968). 
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10.4 Defective Systems of First-Order Differential 
Equations (Optional) 

Consider the vector constant coefficients linear differential operator 

L(Y) = A Y' - PY = ( 1r 0 ) Y' - PY, 
0 on-r 

where the matrices A and P are n x n and A has only r < n linearly independent 
rows. Regularly partition P like A as follows: 

p = ( ppll pp12 ), 

21 22 

so that P 11 is r x r and P 22 is (n - r) x (n - r). Assume that P 22 is invertible. The 

differential equation is then 

L(Y) = A Y' - PY = ( 1
0r O ) Y' - ( p 11 p 12 ) Y = 0. 

on-r p21 p22 

Let Y = ( ~ ), where U has r rows and v has n - r rows. Our equation looks 

like 

--- ------- --_.;..---,~-0_: 

Prey 

Fig. 10.26. Solutions of the Volterra-Lotka equations. 
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( ~ ~n-r )( ~ )' = ( : ~: : ~~ )( ~ ), 
which can be multiplied out to give 

{ U' = P 11 U + P 12v 
0 = &vecP21 U + P 22v 

Since P 22 is invertible, v = - P2d P 21 U, and 

or 

U' P 11 U + P 12v 

P 11 u- P 12Pz-dP21 u 

(PI!- Pl2PziP2I)U 

U'=BU, 

(10.11) 

where B = P 11 - P 12P2d P 21 . To solve the original problem L(Y) = A Y'-PY = 0 
for Y we need to solve U' = BU for U. This is an r x r system with constant 
coefficients having r linearly independent solutions, all representable in the form 
U(x) = exp(Bx)K, where K is an arbitrary constant r-vector. Obtain v from 

v(x) = -Pz-iP21 U(x) = -P2iP21 exp(Bx)K. 

Then 

Y(x) ( U(x) ) = v(x) 

( exp(Bx)K ) 
-P22-1P21 exp(Bx)K 

= ( _p;jp21 )exp(Bx)K. 

A basis for the kernel of equations 10.11, which has dimension r, is the r columns of 
the matrix 

( _ p;j p 21 ) exp(Bx). 

These vectors span the set of solutions of L(Y) = 0, the original problem. We see 
that when the leading coefficient is not of full rank, then the differential system is 
effectively of lower order than it appears to be, and consequently there are fewer 
linearly independent solutions than we would have expected. The second equation 
in 10.11 is a linear system, so it is proper to think of L(Y) = 0 as a differential 
system with algebraic side conditions. Because P 22 is invertible, the algebraic system 
0 = P 21 U + P 22 v has a kernel of dimension r (solve for v in terms of the r-vector 
U). This means that not every possible point in Rn is a candidate to be an initial value 
for L(Y) = 0. We saw that the subspace of possible initial values has dimension r. 
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We found a subspace of solutions of dimension r. So the problem does actually only 

determine an r-dimensional subspace in R n. If P 22 is not invertible, then the actual 

order of the system may be less than r. [See Ross, 1964.] 

Example 10.4 Describe all of the solutions of the defective vector system 

1 0 0 0 0 -2 6 6 0 
0 1 0 0 0 -1 -3 2 1 
0 0 0 0 0 Y'(x) = -1 0 2 1 Y(x). 

0 0 0 0 0 -2 0 
0 0 0 0 0 -2 -1 2 

Solution. Here there are two linearly independent rows in A, so r = 2. Since 

there are five rows, we expect to solve the lower three rows for three variables in 

terms of two variables to get a system of two differential equations from which to 

produce the complete set of solutions, a linear space of dimension two. Partition P 

into four submatrices 
-2 6 6 0 
-1 -3 2 

P= -1 0 2 1 
' 

1 -2 0 
-2 -I 2 

where 

( -2 6) 
pll = -1 -3 ' ~l 

-2) 

and 

Then detP22 =I, and 

so the system we need to solve for U is 

which has as fundamental solution matrix 
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From this we find that 

[ 
-16e-Jx 

= -36e-3x 
6?e-3x 

Then two vector solutions to the original problem are the columns of the matrix 

( 
U(x) ) [ ~:=~: 5e~ 

Y(x) = = -16e-3x 5e2x 
v(x) -36e-Jx 5e2x 

67e-3x -10e2x 

These are easily checked by substitution into the original problem. Note that the 
system was actually of order two and not order five as it first appeared. When the 
form of the matrix A is not so clear, then it is more difficult to determine the order, 
because A must be row- and column-reduced to put it into the form used here before 
the order of the system can be determined. When performing the row- and column­
reductions, the matrices that actually do the reduction must be captured for use to 
simultaneously reduce P. 0 

When the submatrix P 22 is singular but the (n- r) x n matrix (P 21 I P 22 ) has full 
rank n - r, then the effective order of the defective system 

L(Y) = A Y' - py = ( Ir 0 ) Y' - ( p II p 12 ) y = 0 
0 0 p21 p22 

is actually less than r, as the following example illustrates. 

Example 10.5 Consider the defective system 

[ 
1 0 0 l [ -1 0 0 0 Y' = 2 
0 0 0 5 

2 c l 2 -3 y 
4 -6 

in which P 22 = ( ~ =~ ) is not invertible. Show that the character of the solutions 

changes depending on whether or not the parameter c = -3. 
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Solution. The submatrix (P 21 I P 22 ) = ( ~ ~ =~ ) has rank 2. We make the 

change of dependent variable 

( 
0 0 1 l 

z = 0 1 0 Y, 
1 0 0 

which interchanges the first and third rows of Y and acts to interchange the first and 
third columns of A and of P when the substitution is made. This results in the system 

Solve the algebraic system in the lower two rows: 

in which Q22 is invertible. Then 

The substitution 

leads to the "differential" equation 0 = cz 1 + 3z 1 = (c + 3)z 1 = 0. This is not 
a differential equation at all, but another algebraic equation: the fact that P 22 was 
singular has reduced the order of the differential equation from 1 to 0. Observe that 

from the equation (c + 3)z1 = 0 we learn that if c = -3, then the original system has 
the one parameter family of solutions 

( 
0 0 1 l-l ( 0 

Y= 0 1 0 Z= 0 
1 0 0 1 

whereas, if c * -3, then the only solution is Y = 0 since if c * -3, then z 1 = 0. 0 

Exercises 10.3. 1. Consider the deficient differential system L(Y) = A Y'-PY = 
0. Suppose that the n X n constant matrix A has rank r < n and that there are 
invertible matrices M and Q such that 

MAQ=(~ ~)· 
LetY = Qw. 
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a) Multiply the system L(Qw) = 0 on the left by M. 
b) Show that the resulting system is 

MAQw' = MPQw = P 1 w, 

or 

( I, 0 ) , _ p 
0 0 w - ,w, 

which has the same form as the system we discussed above. 
c) Show further that if w is a solution of 

( lr 0 ) , _ p 
0 0 w - ,w, 

then Y = Qw is a solution of L(Y) = 0. 

2. Apply the results of exercise 1. Let 

A= [ ~ -08 ~ l· 
-15 20 -23 

then 

[ 
3 0 1 l 

M= 0 1 0 
5 1 2 

and [ 3 0 4] 
Q= 2 1 3 . 

0 1 0 

a) Show that M and Q are invertible matrices such that 

MAQ = ( ~ ~ )· 
b) Use this fact to solve the defective differential system 

L(Y) = [ ~ -~ ~ ]Y'- [ 
2~ -:~ =! ly = 0. 

-15 20 -23 -50 70 -77 

[Hint: Let z = QY. Substitute into the differential equation and pre­
multiply by M.] 

3. Let A= ( =~ =~ : land P = [ =~ -~ ~ l· 
-2 -3 6 -4 -3 6 

a) Find invertible matrices M and Q such that MAQ = ( ~ ~ ). 
b) Solve the defective differential system A Y'- PY = 0. The notebook Rank 

Canonical Form may help you find M and Q. 
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10.5 Solution of Linear Systems by 
Laplace Transforms (Optional) 

The theorems and formulas about Laplace transforms developed in Chapter 7 are 
applicable without change to initial value problems for linear systems of differ­
ential equations. The simplified package LPT.m and the full-featured package 
LaplaceTransform.m both work for systems as they did for a single differen­
tial equation initial value problem. Our approach thus far in this chapter has been to 
convert a mixed-order system into a first-order system and then use linear algebra 
to find the solution. When using Laplace transforms to solve initial value problems 
for systems, that conversion is unnecessary. In addition, once a fundamental solution 
of the homogeneous system has been obtained, one can proceed to solve boundary 
value problems of the kind covered in Section 9.5. 

As discussed in Section 7 .4, the nonhomogeneous parts of systems may be piece­
wise continuous as long as they are of exponential order. The Laplace transform still 
handles them easily, but the solutions may be very complicated. We still must piece 
together the parts of a piecewise continuous function by using U(t- c) and 'P(t, a, b). 
The steps in the solution process are otherwise unchanged from those introduced in 
Chapter 7. To apply a Laplace transform or inverse Laplace transform to a vector 
or matrix of expressions, simply apply the transform to each entry of the vector or 
matrix. 

Here is a sequence of examples that progresses from simple to rather compli­
cated. 

Example 10.6 Use Laplace transforms to solve the initial value problem 

{ 
y'(t)- z(t) = 0, 
z'(t) + y(t) = 0; y(O) = 1, z(O) = 0. 

Solution. Transform the two equations simultaneously. 

{ 
sL(y(t))- y(O)- L(z(t)) = 0, 
sL(z(t))- z(O) + L(y(t)) = 0. 

Substitute the initial conditions y(O) = 1, z(O) = 0. 

{ 
sL(y(t))- 1 - L(z(t)) = 0, 

sL(z(t)) + L(y(t)) = 0. 

In its matrix form this system is 

( s -1 )( L(y(t)) )=( 1 )· 
1 s L(z(t)) 0 

Solve this system for L(y(t)) and L(z(t)). 

( L(y(t))) ( s -1 )-!( 1) ( s11+s2 ) 
L(z(t)) = 1 s 0 = -1/1 +s2 · 
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Finally, apply inverse Laplace transforms. 

This is the solution, as is easily checked. 

cost ) 
- sint · 

0 

Example 10.6 (M) Solve the system of Example I 0.6 by using the function 
LP T So 1 ve found in the package LPT.m. 

Solution. Load the package LPT. m . 

In[l]:= <<"/Applications/MathematicaS.O.app/AddOns/ 
ExtraPackages/RossDE/LPT.m" 

LPTSolve displays intermediate results as it finds them. 

In[2] := Clear[y, z] 

In[3]:= LPTSolve[{y"[t] -z[t] ==0, 

z'[t] +y[t] == 0, 

y[O] ==1, 

y' [0] == 0, 

z [0] == 0}, 

{y[t], z[t]}, t, s] 
The transformed system 

{ -5 +52 LaplaceTransform [y [ t], t, 5]-

LaplaceTransform[z[t], t, 5] == 0, 

Laplace Transform [ y [ t] , t, 5] + 

5LaplaceTransform[z[t], t, 5] == 0} 
The unknown ( s) isolated. 

52 
{ LaplaceTransf orm [ y [ t ] , t , 5] --> --3 , 

1 + 5 

LaplaceTransform[z[t], t, 5]--> -~} 
1 + 5 

Out[3]= {y[t]-->~ (e-t+2et12 Cos [~tJ), 

z[t]-->-~e-t (-1+e3t/2 (cos[~t]+Y3Sin[~tJ))} 
In[4] := {y[t_], z[t_]} = {y[t], z[t]}/.% 

Out[4]= {~ (e-t+2et12 Cos[~tJ), 

-~ e t ( _ 1 + eH/2 (Cos [ ~ t] + Y3 Sin [ ~ t]))} 

In[5]:= Simplify[{y"[t] -z[t] ==0, 

z'[t] +y[t] == 0, 

y[O] == 1, 

y' [0] == 0, 

z[O] == 0}] 
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Out [5]= {True, True, True, True, True} 

This solution has been captured and verified. 

Example 10.7 Use Laplace transforms to solve the initial-value problem 

{ y"(t)- z(t) = 0, 
z'(t) + y(t) = 0; 

y(O) = 1 
y'(O) = 0 
z(O) = 0. 

Solution. Transform the differential system. 

{ s2 L(y(t))- y'(O)- sy(O)- L(z(t)) = 0, 
s.L:(z(t))- z(O) + L(y(t)) 0. 

Substitute the initial conditions y(O) = I, y'(O) = 0, z(O) = 0. 

{ 
s2 L(y(t)) - s- L(z(t)) 0, 

s.L:(z(t)) + L(y(t)) = 0. 

In its matrix form this system is 

( s2 -1 ) ( L(y(t)) ) ( s ) 
I s L(z(t)) - 0 . 

Solve this system for L(y(t)) and L(z(t)). 

( L(y(t)) ) = ( s2 -1 )-I ( s ) = ( s2 I 1 + s3 ) 
L(z(t)) 1 s 0 -s/1 + s3 · 

Finally, apply inverse Laplace transforms. 

( y(t) ) = 
z(t) 

[ L-l (3(11+ s) + 3(;~: ~·:2))] 
L_ 1 ( 1 1 + s ) 

3(1 + s) + 3( 1 - s + s2) 

1 [ e __ , + 2e'12 cos( {3 t/2) l 
= 3 e-1 + 2e'12 (cos( {3 t/2) + {3 sin( {3 t/2)) · 

This is the solution, as you should check. 

0 

0 
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Example 10.7 (M) Use the function LP T So 1 ve provided in the package LPT.m to 
solve the initial value problem stated in Example 10.7. 

Solution. Assume the LP T . m package is loaded. 

In[6] := Clear[y, z] 

In[7]:= LPTSolve[{y"[t] -z[t] ==0, 

z'[t] +y[t] == 0, 

y[O] == 1, 

y' [0] == 0, 

z[0]==0}, 

{y[t], z [t] }, t, s] 
The transformed system 

{ -5 + 5 2 LaplaceTransform [y [ t], t, 5]­

LaplaceTransform [ z [ t], t, 5] == 0, 

LaplaceTransform [y [ t], t, 5] + 

5 LaplaceTransform [ z [ t], t, 5] == 0} 
The unknown ( s) isolated. 

52 
{ LaplaceTransform [y [ t], t, 5] -7 --3 , 

1 + 5 

LaplaceTransform [ z [ t] , t, 5] -7 -~} 
1+5 

Out [7]= {y [t] -7 ~ ( e-t + 2 et12 Cos [ v; t l), 
z [ t] -) - ~ e-t ( - 1 + e 3 t/2 (Cos [ v; t ] + V3 Sin [ ~ t ] ) ) } 

In[B] := {y[t_], z[t_]} = {y[t], z[t] }/.% 

Out[B]= {~ (e-t+2et12 cos[~tJ), 

_ ~ e-t ( _ 1 + e3 t/2 (Cos [ v; t] + V3 Sin [ v; t] ) ) } 

In[9]:= Simplify[{y"[t] -z[t] ==0, 

z'[t] +y[t] == 0, 

y[O] == 1, 

y' [0] == 0, 

z[O] ==0}] 
Out[9]= {True, True, True, True, True} 

Example 10.8 (M) Define 

f(t) = { 1, 0 ~ t ~ 2 . 
0, 2 < t 

0 

Use the function LPTSolve provided in the package LPT.m to solve this initial 
value problem that has a piecewise continuous right-hand side: 
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{ y"(l)- z(l) 
z'(t) + y(t) 

y(O) 

y'(O) 

z(O) 

Solution. 

In[lO} := Clear[y, z, f) 

In[ll]:= f[t_) =1-UnitStep[t-2] 

Out[ll]= 1-UnitStep[-2+t] 

= 
= 
= 

In [ 12]: = LPTSolve [ {y" [t] - z [t] == 0, 

z' [t] + y[t] == f[t], 

y[O] == 1, 

y' [0) == 0, 

z [0) == 0}, 

{y[t], z[t] }, t, s] 
The transformed system 

{ - s + s 2 Laplace Transform [y [ t], t, s]­

LaplaceTransform[z[t], t, s] == 0, 

0, 
f(t); 
1 
0 
0. 

LaplaceTransform [y [ t], t, s] • s LaplaceTransform [ z [ t], t, s] 

1 -2 s 
---~e~} 
s s 

The unknown ( s) isolated. 

{LaplaceTransform[y [t], t, s] 
1 e-2 s 

-7--

s s(1+s 3 )' 

e 2 s s 
LaplaceTransform [ z [ t] , t, s] --> ---3 } 

1 + s 
Out[l2]= {y[t]--> 

1 + ~ ( - 3 + e 2 -t + 2e- 1 '; Cos [ ~~ ( -2 + t) ] ) Uni tStep [ -2 + t], 

1 2 -z[t]-->--e-· 
3 

( - 1 + e- 3+¥ (Cos [ ~ ~ ( -2 + t)] + ~ Sin [ ~ ~ ( -2 + t)])) 

Unit Step [ -2 + t]} 

In[l3] := {y[t_], z[t_)} = {y[t], z[t] }/.% 

Out[13]= {1 + ~ (- 3 + e 2 -t + 2e- 1 +~ Cos [ ~~ (-2 + t)] )unitStep[ -2 + t], 

1 2-t -- e 
3 

(- 1 + e- 3 + (Cos l ~ ~ ( -2 + t)] + ~ Sin [ ~ VJ ( -2 + t)])) 

UnitStep[-2+tJ} 
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In[14]:= Simplify[{y"(t] -z[t] ==0, 

z'[t] +y[t] == f[t], 

y[O] == 1, 

y' (0] == 0, 

z[O] == 0}] 
Out[14]= {True, True, True, True, True} 

A close look at this solution shows that it has a two-part definition with the break 
at t = 2. If you run this example for yourself, you will find that it takes a while to run 
to completion. But imagine doing it by hand! 0 

This brief introduction to the use of Laplace transforms to solve nonhomoge­
neous initial value problems should help convince you that the Laplace transform is 
a powerful tool. As it has been introduced, the Laplace transform is applicable only 
to initial value problems for ordinary differential equations and systems, but they are 
very common problems. The Laplace transform has other applications, as well. 

Exercises 10.4. Use the function LPTSol ve from the package LPT.m to solve 
these initial value problems for systems. 

-y1 (t) + 2y2(t) + 2y3(t), 

2y1 (t) + 2y2(t) + 2y3(t), 
-3y1 (t)- 6y2(t)- 6y3(t); 

1, y2 (0) = -3, y3(0) = 2. 
2y2(t) 

2y, (t) 
1, y2(0) = 0. 
-y1 (t) + 2y2(t) + 2y3(t), 
2y1 (t) + 2y2(t) + 2y3(t) + 1, 
-3y1(t)- 6y2(t)- 6y3(t); 
1, y2 (0) = -3, y3(0) = 2. 

2yz(t), 
2y, (t); 
0, y2 (0) = 1. 

-y,(t) + 2yz(t) + 2y3(t), 
2y1(t) + 2y2(t) + 2y3(t) + 1, 
- 3y1 (t) - 6y2(t)- 6y3(t) +sin 5t; 
1, y2(0) = 0, y3(0) = 0. 

2yz(t) + e3r, 

2y1(t)-e1 ; 

1, y2 (0) = 0. 

L !( ) = ( e1
, 0 ~ t ~ 2 ) d ( ) = ( 0, 0 ~ t ~ 2 ) et t 0 2 , an g t 4 2 . 
' <t ' <t 

Solve these nonhomogeneous initial-value problems. 
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{ y;(t) = 2y2(t) 
1. y2<t> = 2y! (t) + f(t); 

y 1(0) = l,y2(0) = 0. 

{ y; (t) = 2y2(t) + f(t) 
8. yz(t) = 2y! {t) + g(t); 

y1(0) = O,y2(0) = 0. 

{ Y,(t) = 2y2(t) + f(t) 

9. yz<t> = 2y! (t) + g(t); 
y1(0) = 1, Y2(0) = 0. 

{ y;(t) = 2y2(t) + f(t) 
10. yz(t) = 2y! (t) + g(t); 

y1(0) = 0, y2(0) = 1. 

{ Y,(t) = 2y2(t) + g(t) 
11. yz(t) = 2y! (t) + f(t); 

y1(0) = O,y2(0) = 0. 

{ y;(t) y1 (t) + 2y2(t) + g(t) 

12. y2<r> = -2y1 (t) + y2(t) + f(t); 
y1(0) = 0, y2(0) = 0. 
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