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Preface

Mathematica’s diversity makes it particularly well suited to performing many cal-
culations encountered when solving many ordinary and partial differential equa-
tions. In some cases, Mathematica’s built-in functions can immediately solve a
differential equation by providing an explicit, implicit, or numerical solution; in
other cases, Mathematica can be used to perform the calculations encountered
when solving a differential equation. Because one goal of elementary differential
equations courses is to introduce students to basic methods and algorithms and
have the student gain proficiency in them, nearly every topic covered in Differ-
ential Equations with Mathematica, Third Edition, includes typical examples solved
by traditional methods and examples solved using Mathematica. Differential Equa-
tions with Mathematica introduces basic commands and includes typical examples
of applications of them. A study of differential equations relies on concepts from
calculus and linear algebra so the text also includes discussions of relevant com-
mands useful in those areas. In many cases, seeing a solution graphically is most
meaningful so Differential Equations with Mathematica relies heavily on Mathemat-
ica’s outstanding graphics capabilities.

Differential Equations with Mathematica is an appropriate reference for all users of
Mathematica who encounter differential equations in their profession, in particu-
lar, for beginning users like students, instructors, engineers, business people, and
other professionals using Mathematica to solve and visualize solutions to differ-
ential equations. Differential Equations with Mathematica is a valuable supplement
for students and instructors at engineering schools that use Mathematica.

Taking advantage of Version 5 of Mathematica, Differential Equations with Math-
ematica, Third Edition, introduces the fundamental concepts of Mathematica to

xiii



xiv Preface

solve (analytically, numerically, and/or graphically) differential equations of inter-
est to students, instructors, and scientists. Other features to help make Differential
Equations with Mathematica, Third Edition, as easy to use and as useful as possible
include the following.

1. Version 5 Compatibility. All examples illustrated in Differential Equations
with Mathematica, Third Edition, were completed using Version 5 of Math-
ematica. Although most computations can continue to be carried out with
earlier versions of Mathematica, like Versions 2, 3, and 4, we have taken
advantage of the new features in Version 5 as much as possible.

2. Applications. New applications, many of which are documented by ref-
erences, from a variety of fields, especially biology, physics, and engineer-
ing, are included throughout the text.

3. Detailed Table of Contents. The table of contents includes all chapter,
section, and subsection headings. Along with the comprehensive index,
we hope that users will be able to locate information quickly and easily.

4. Additional Examples. We have considerably expanded the topics in Chap-
ters 1 through 6. The results should be more useful to instructors, students,
business people, engineers, and other professionals using Mathematica on
a variety of platforms. In addition, several sections have been added to
help make locating information easier for the user.

5. Comprehensive Index. In the index, mathematical examples and appli-
cations are listed by topic, or name, as well as commands along with fre-
quently used options: particular mathematical examples as well as
examples illustrating how to use frequently used commands are easy to
locate. In addition, commands in the index are cross-referenced with fre-
quently used options. Functions available in the various packages are
cross-referenced both by package and alphabetically.

6. Included CD. All Mathematica code that appears in Differential Equations
with Mathematica, Third Edition, is included on the CD packaged with the
text.

7. Getting Started. The Appendix provides a brief introduction to Mathe-
matica, including discussion about entering and evaluating commands,
loading packages, and taking advantage of Mathematica’s extensive help
facilities. Appropriate references to The Mathematica Book are included as
well.

We began Differential Equations with Mathematica in 1990 and the first edition was
published in 1991. Back then, we were on top of the world using Macintosh IIcx’s
with 8 megs of RAM and 40 meg hard drives. We tried to choose examples that we
thought would be relevant to typical users — typically in the context of differential
equations encountered in the undergraduate curriculum. Those examples could
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also be carried out by Mathematica in a timely manner on a computer as powerful
as a Macintosh IIcx.

Now, we are on top of the world with Power Macintosh G4’s with 768 megs
of RAM and 50 gig hard drives, which will almost certainly be obsolete by the
time you are reading this. The examples presented in Differential Equations with
Mathematica continue to be the ones that we think are most similar to the prob-
lems encountered by beginning users and are presented in the context of someone
familiar with mathematics typically encountered by undergraduates. However,
for this third edition of Differential Equations with Mathematica we have taken the
opportunity to expand on several of our favorite examples because the machines
now have the speed and power to explore them in greater detail.

Other improvements to the third edition include:

1. Throughout the text, we have attempted to eliminate redundant examples
and added several interesting ones. The following changes are especially
worth noting.

(a) In Chapter 2, First-Order Ordinary Differential Equations, we present
the integrating factor approach, variation of parameters, and method
of undetermined coefficients when solving first-order linear equations.

(b) In Chapter 3, we discuss the Logistic difference equation and give
some surprisingly simple ways to generate the classic “Pitchfork dia-
gram” with Mathematica.

(c) Chapter 4, Higher-Order Equations, has been completely reorganized;
a new section on nonlinear equations has been added.

(d) Chapter 5, Applications of Higher-Order Equations, has also been
completely reorganized. The catenary is now included in the Other
Applications section.

(e) Chapter 6, Systems of Ordinary Differential Equations, includes sev-
eral new examples. See especially Example 6.2.5.

(f) Chapter 7, Applications of Systems, includes several new examples.
See especially Examples 7.3.3, 7.3.4, and 7.3.6.

(g) We have included references that we find particularly interesting in
the Bibliography, even if they are not specific Mathematica-related
texts. A comprehensive list of Mathematica-related publications can
be found at the Wolfram website.

http://store.wolfram.com/catalog/books/.
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1Introduction to Differential
Equations

The purpose of Differential Equations with Mathematica, Third Edition, is twofold.
First, we introduce and discuss the topics covered in typical undergraduate and
beginning graduate courses in ordinary and partial differential equations includ-
ing topics such as Laplace transforms, Fourier series, eigenvalue problems, and
boundary-value problems. Second, we illustrate how Mathematica is used to
enhance the study of differential equations not only by eliminating the compu-
tational difficulties, but also by overcoming the visual limitations associated with
the explicit solutions to differential equations, which are often quite complicated.
In each chapter, we first briefly present the material in a manner similar to most
differential equations texts and then illustrate how Mathematica can be used to
solve some typical problems. For example, in Chapter 2, we introduce the topic
of first-order equations. First, we show how to solve certain types of problems by
hand and then show how Mathematica can be used to assist in the same solu-
tion procedures. Finally, we illustrate how Mathematica commands like DSolve
and NDSolve can be used to solve some frequently encountered equations exactly
and/or numerically. In Chapter 3 we discuss some applications of first-order equa-
tions. Since we are experienced and understand the methods of solution covered
in Chapter 2, we make use of DSolve and similar commands to obtain solutions.
In doing so, we are able to emphasize the applications themselves as opposed to
becoming bogged down in calculations.

The advantages of using Mathematica in the study of differential equations
are numerous, but perhaps the most useful is that of being able to produce the
graphics associated with solutions of differential equations. This is particularly
beneficial in the discussion of applications because many physical situations are

1



2 Chapter 1 Introduction to Differential Equations

modeled with differential equations. For example, we will see that the motion of a
pendulum can be modeled by a differential equation. When we solve the problem
of the motion of a pendulum, we use technology to actually watch the pendulum
move. The same is true for the motion of a mass attached to the end of a spring
as well as many other problems. In having this ability, the study of differential
equations becomes much more meaningful as well as interesting.

If you are a beginning Mathematica user and, especially, new to Version 5.0, theNumerous references like
Abell and Braselton’s
Mathematica By Example [1]
are also available to beginning
users of Mathematica.

Appendix contains an introduction to Mathematica, including discussions about
entering and evaluating commands, loading packages, and taking advantage of
Mathematica’s extensive help facility.

Although Chapter 1 is short in length, Chapter 1 introduces examples that will
be investigated in subsequent chapters. Also, the vocabulary introduced in Chap-
ter 1 will be used throughout the text. Consequently, even though, to a large extent,
it may be read quickly, subsequent chapters will take advantage of the terminol-
ogy and techniques discussed here.

1.1 Definitions and Concepts

We begin our study of differential equations by explaining what a differential
equation is.

Definition 1 (Differential Equation). A differential equation is an equation that
contains the derivative or differentials of one or more dependent variables with respect to
one or more independent variables. If the equation contains only ordinary derivatives (of
one or more dependent variables) with respect to a single independent variable, the equation
is called an ordinary differential equation.

EXAMPLE 1.1.1: Thus, dy/dx � x2/ �y2 cos y� and dy/dx � du/dx � u � x2y
are examples of ordinary differential equations.

The equation �y�1�dx�x cos y dy � 1 is an ordinary differential equation
written in differential form.

Using prime notation, a solution of the ordinary differential equation xy���
xy� � �x2 � n2� y � 0, which is called Bessel’s equation, is a function y �
y�x� with the property that x d2y/dx2 � x dy/dx � �x2 � n2� y is identically
the 0 function.
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On the other hand,

�				

				
�

dx
dt

� �a � by�x

dy
dt

� ��m � nx�y
(1.1)

where a, b, m, and n are positive constants, is a system of two ordinary
differential equations, called the predator–prey equations. A solution See texts like Giordano,

Weir, and Fox’s A First Course
in Mathematical Modeling [12]
and similar texts for detailed
descriptions of
predator–prey models.

consists of two functions x � x�t� and y � y�t� that satisfy both equations.
Predator–prey models can exhibit very interesting behavior as we will
see when we study systems in more detail.

Note that a system of differential equations can consist of more than
two equations. For example, the basic equations that describe the com-
petition between two organisms, with population densities x1 and x2,
respectively, in a chemostat are See Smith and Waltman’s The

Theory of the Chemostat [24]
for a detailed discussion of
chemostat models.

�								

								
�

S� � 1 � S �
m1S

a1 � S
x1 �

m2S
a2 � S

x2

x1
� � x1 � m1S

a1 � S
� 1�

x2
� � x2 � m2S

a2 � S
� 1�

(1.2)

where � denotes differentiation with respect to t; S � S�t�, x1 � x1�t�,
and x2 � x2�t�. For equations (1.2), we remark that S denotes the con-
centration of the nutrient available to the competitors with population
densities x1 and x2. We investigate chemostat models in more detail in
Chapter 9.

If the equation contains partial derivatives of one or more dependent variables,
then the equation is called a partial differential equation.

EXAMPLE 1.1.2: Because the equations involve partial derivatives of

an unknown function, equations like u
�u
�t

�
�u
�x

and uux � u � uyy are

partial differential equations. For Laplace’s equation,
�2u
�x2

�
�2u
�y2

� 0 a

solution would be a function u � u�x, y� such that uxx � uyy is identically
the 0 function. A solution u � u�x, t� of the wave equation is a function

satisfying
�2u
�t2

�
�2u
�x2

.
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The partial differential equation
�u
�t

�
�2u
�x2

is known as the heat

equation.
As with systems of ordinary differential equations, systems of partial

differential equations can be considered. With exceptions, their study is
beyond the scope of this text.

Generally, given a differential equation, our goal in this course will most often be
to construct a solution (or a numerical approximation of the solution). The approach
to solving an equation depends on various features of the equation. The first level
of classification, distinguishing between ordinary and partial differential equations,
was discussed above. Generally, equations with higher order are more difficult to
solve than those with lower order.

Definition 2 (Order). The order of a differential equation is the order of the highest-order
derivative appearing in the equation.

EXAMPLE 1.1.3: Determine the order of each of the following differen-
tial equations: (a) dy/dx � x2/ �y2 cos y�; (b) uxx�uyy � 0; (c) �dy/dx�4 � y�x;
and (d) y3 � dy/dx � 1.

SOLUTION: (a) The order of this equation is one because the only
derivative it includes is a first-order derivative, dy/dx. (b) This equa-
tion is classified as second-order because the highest-order derivatives,
both uxx, representing �2u/�x2, and uyy, representing �2u/�y2, are of
order two. Hence, Laplace’s equation, uxx � uyy � 0, is a second-order
partial differential equation. (c) This is a first-order equation because
the highest-order derivative is the first derivative. Raising that deriva-
tive to the fourth power does not affect the order of the equation. The
expressions

�dy
dx

�4

and
d4y
dx4

do not represent the same quantities: �dy/dx�4 represents the derivative
of y with respect to x raised to the fourth power; d4y/dx4 represents the
fourth derivative of y with respect to x. (d) Again, we have a first-order
equation, because the highest-order derivative is the first derivative.

Linear differential equations are defined in a manner similar to algebraic linear equa-
tions that are introduced in algebra and pre-calculus courses.
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Definition 3 (Linear Differential Equation). An ordinary differential equation (of
order n) is linear if it is of the form

an�x�
dny
dxn

� an�1�x�
dn�1y
dxn�1

�    � a2�x�
d2y
dx2

� a1�x�
dy
dx

� a0�x�y � f �x�, (1.3)

where the functions ai�x�, i � 0, 1, . . . , n, and f �x� are given and an�x� is not the zero
function.

For the linear differential
equation (1.3), f �x� is called
the forcing function.

If the equation does not meet the requirements of this definition, then the equation
is said to be nonlinear. If f �x� is identically equal to the zero function, the linear
equation (1.3) is said to be homogeneous. A similar classification is

followed for partial
differential equations. In this
case, the coefficients in a
linear partial differential
equation are functions of the
independent variables.

EXAMPLE 1.1.4: Determine which of the following differential equa-
tions are linear: (a) dy/dx � x3; (b) d2u/dx2�u � xx; (c) �y�1�dx�x cos y dy �
0; (d) y�3� � yy� � x; (e) y� � x2y � x; (f) x�� � sin x � 0; (g) uxx � yuy � 0; and
(h) uxx � u uy � 0.

SOLUTION: (a) This equation is linear, because the nonlinear term
x3 is the function f �x� of the independent variable in equation (1.3).
(b) This equation is also linear. Using u as the dependent variable name
does not affect the linearity. (c) Solving for dy/dx we have dy/dx � �1 �
y�/ �x cos y�. Because the right-hand side of this equation includes a non-
linear function of y, the equation is nonlinear in y. However, solving for
dx/dy, we see that

dx
dy

�
cos y
1 � y

x or
dx
dy

�
cos y
1 � y

x � 0.

This equation is linear in the variable x, if we take the dependent vari-
able to be x and the independent variable to be y in this equation.
(d) The coefficient of the y� term is y and, thus, depends on y. Hence,
this equation is nonlinear. (e) This equation is linear. The term x2 is the
coefficient function a0�x� � x2 of y. (f) This equation, known as the
pendulum equation because it models the motion of a pendulum, is
nonlinear because it involves a nonlinear function of x, the dependent
variable in this case. (t is assumed to be the independent variable.) For
this equation, the nonlinear function of x is sin x. (g) This partial differ-
ential equation is linear because the coefficient of uy is a function of one
of the independent variables. (h) In this case, there is a product of u and
one of its derivatives. Therefore, the equation is nonlinear.
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In the same manner that we consider systems of equations in algebra, we can also
consider systems of differential equations. For example, if x and y represent func-
tions of t, we will learn to solve the system of linear equations

�		

		
�

dx/dt � ax � by

dy/dt � cx � dy

where a, b, c, and d represent constants and differentiation is with respect to t
in Chapter 8. On the other hand, systems (1.1) and (1.2) involve products of the
dependent variables (x and y; S, x1, and x2, respectively) so are nonlinear systems
of ordinary differential equations.

We will see that linear and nonlinear systems of differential equations arise nat-
urally in many physical situations that are modeled with more than one equation
and involve more than one dependent variable.

1.2 Solutions of Differential Equations

When faced with a differential equation, our goal is frequently, but not always, to
determine explicit and/or numerical solutions to the equation.

Definition 4 (Solution). A solution to the nth-order ordinary differential equation

F �x, y, y�, y��, . . . , y�n�� � 0 (1.4)

on the interval a < x < b is a function Φ�x� that is continuous on the interval a < x < b
and has all the derivatives present in the differential equation such that

F �x, Φ, Φ�, Φ��, . . . , Φ�n�� � 0

on a < x < b.

In subsequent chapters, we will discuss methods for solving differential equations.
Here, in order to understand what is meant to be a solution, we either give both
the equation and a solution and then verify the solution or use Mathematica to
solve equations directly.

EXAMPLE 1.2.1: Verify that the given function is a solution to the cor-
responding differential equation: (a) dy/dx � 3y, y�x� � e3x; (b) u�� �16u �
0, u�x� � cos 4x; and (c) y�� � 2y� � y � 0, y�x� � xe�x.
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SOLUTION: (a) Differentiating y we have dy/dx � 3e3x so that substi-
tution yields

dy
dx

� 3y or 3e3x � 3e3x.

(b) Two derivatives are required in this case: u� � �4 sin 4x and u�� �
�16 cos 4x. Therefore,

u�� � 16u � �16 cos 4x � 16 cos 4x � 0.

(c) In this case, we illustrate how to use Mathematica. After defining y, If you are a beginning
Mathematica user, see the
Appendix for help getting
started with Mathematica.

In[1]:= y�x � � x Exp��x�

Out[1]= ��x x

we use ’ to compute y� � e�x � xe�x, naming the resulting output dy.

In[2]:= dy � y��x�

Out[2]= ��x � ��x x

Similarly, we use ’’ to compute y�� � �2e�x � xe�x, naming the resulting
output d2y.

In[3]:= d2y � y���x�

Out[3]= �2 ��x � ��x x

Finally, we compute y�� � 2y� � y � �2e�x � 2 �e�x � xe�x� � xe�x � 0. The
result is not automatically simplified so we use Simplify to simplify
the output.

In[4]:= d2y � 2dy � y�x�

Out[4]= �2 ��x � 2 ��x x � 2 ���x � ��x x�

In[5]:= Simplify�d2y � 2dy � y�x��

Out[5]= 0

We obtain the same result by entering

In[6]:= Simplify�y���x� � 2 y��x� � y�x��

Out[6]= 0

which first computes y�� � 2y� � y and then applies the Simplify com-
mand to the result. We graph this solution with Plot. Entering

In[7]:= Plot�y�x�,�x,�1,1	�

graphs y�x� � xe�x on the interval ��1, 1�. See Figure 1-1.
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-1 -0.5 0.5 1

-2.5

-2

-1.5

-1

-0.5

Figure 1-1 Plot of y�x� � xe�x on the interval ��1, 1�

In the previous example, the solution is given as a function of the independent
variable. In these cases, the solution is said to be explicit. In solving some differ-
ential equations, however, we can only find an equation involving x and y that the
solution satisfies. In this case, the solution is said to be implicit.

EXAMPLE 1.2.2: Verify that the given implicit function satisfies the
differential equation.

Function: 2x2 � y2 � 2xy � 5x � 0

Differential Equation:
dy
dx

�
2y � 4x � 5

2y � 2x

SOLUTION: We use implicit differentiation to compute the derivative
of the equation 2x2 � y2 � 2xy � 5y � 0:Assuming that y � y�x�,

dy
dx

� y� .

4x � 2y
dy
dx

� 2x
dy
dx

� 2y � 5 � 0

�2y � 2x�
dy
dx

� 2y � 4x � 5

dy
dx

�
2y � 4x � 5

2y � 2x
.

Hence, the given implicit solution satisfies the differential equation.
We also illustrate how to use Mathematica to differentiate the equa-

tion 2x2 � y2 � 2xy � 5x � 0 with respect to x. After clearing all prior
definitions of x, y, and eq, if any, with Clear we define eq to be the
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equation 2x2 � y2 � 2xy � 5x � 0. Note how we use a double equals sign
(==) to separate the left and right-hand sides of the equation.

In[8]:= Clear�x,y�

eq � 2x2 � y2 � 2xy � 5x �� 0

Out[8]= 5 x � 2 x2 � 2 x y � y2 �� 0

Next, we use Dt to differentiate eq with respect to x, naming the result-
ing output step1. The symbol Dt[y,x] appearing in the result repre-
sents dy/dx; step1 represents the equation 4x � 2yy� � 2xy� � 2y � 5 � 0.

In[9]:= step1 � Dt�eq,x�

Out[9]= 5 � 4 x � 2 y � 2 x Dt�y,x	 � 2 y Dt�y,x	 �� 0

Finally, we obtain y� � dy/dx by solving the equation step1 for Dt[y,x]
with Solve.

In[10]:= step2 � Solve�step1,Dt�y,x��

Out[10]= ��Dt�y,x	 
 5 � 4 x � 2 y

2 �x � y�
��

Generally, to graph an equation of the form f �x, y� � C, where C is a
constant, we use the ContourPlot command which is used to graph
level curves of surfaces: the graph of f �x, y� � C is the same as the
graph of the level curve of z � f �x, y� corresponding to z � C. Thus,
the graph of the equation 2x2 � y2 � 2xy � 5x � 0 is the same as the
graph of the level curve of z � f �x, y� � 2x2 � y2 � 2xy� 5x corresponding
to 0. Note how 2x2 � y2 � 2xy � 5x, the left-hand side of the equation eq,
is extracted from eq with Part ([[...]]): 2x2 � y2 � 2xy� 5x is the first
part of eq.

In[11]:= eq�1�
Out[11]= 5 x � 2 x2 � 2 x y � y2

Thus, entering

In[12]:= ContourPlot�Evaluate�eq��1���,�x,�7,2	,

�y,�7,2	,Frame 
 False,Axes 
 Automatic,

AxesOrigin 
 �0,0	,

AxesStyle 
 GrayLevel�0.5�,

PlotPoints 
 100,Contours 
 �0	,

ContourShading 
 False�
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-6 -4 -2 2

-6

-4

-2

2

Figure 1-2 Graph of 2x2 � y2 � 2xy � 5x � 0

graphs the equation 2x2 � y2 � 2xy � 5x � 0 as shown in Figure 1-2 for
�7 � x � 2 and �7 � y � 2 (the option Contours->{0} instructs
Mathematica to graph only the level curve corresponding to 0). The
option ContourShading->False specifies to not shade the regions
between contours, Frame->False specifies that a frame is not to be
placed around the resulting graphics object, Axes->Automatic spec-
ifies that axes are to be placed on the resulting graphics object while the
option AxesOrigin->{0,0} specifies that they intersect at the point
�0, 0� and the option AxesStyle->GrayLevel[.5] specifies that they
be drawn in a medium shade of gray. The option PlotPoints->100
instructs Mathematica to increase the number of sample points to 100
(the default is 15), helping assure that the resulting graphics object
appears smooth. Be sure to enclose eq[[1]] in Evaluate as shown:
this ensures that Mathematica evaluates eq[[1]] before sampling
points; if Evaluate is not included error messages result. (Note that an
alternative way to graph equations is to use the ImplicitPlot com-
mand which is contained in the ImplicitPlot package located in the
Graphics folder (or directory).) If you are using Version 5.0 (or later)
and wish to avoid using Part, you can select the left-hand side of the
equation, copy it,
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and then paste it into the ContourPlot command. See Getting Started in the
Appendix.

EXAMPLE 1.2.3: On a rectangular membrane, the solution of the wave
equation,

For details, see Graff ’s Wave
Motion in Elastic Solids [13].

�2w
�x2

�
�2w
�y2

�
1

c2
0

�2w
�t2

(1.5)
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takes the form

w �
��

n�1

��
m�1

�Amn cosΩmnt � Bmn sinΩmnt�Wmn,

where Amn and Bmn are constants, Ωmn
2 � c0

2 �Ξn
2 � Ζm

2�, Ξn � nΠ/a, Ζm �
mΠ/b, and the normal modes, Wnm, are given by

Wnm�x, y� � sin Ξnx sin Ζmy.

(a) Verify that fc�x, y, t� � cosΩmnt Wmn�x, y� and fs�x, y, t� � sinΩmnt
Wmn�x, y� satisfy the wave equation (1.5) on a rectangular membrane.
(b) Plot the first few normal modes of the membrane.

SOLUTION: After defining Ωmn
2 � c0

2 �Ξn
2 � Ζm

2�, Ξn � nΠ/a, Ζm � mΠ/b,
we define fc�x, y, t� � cosΩmntWmn�x, y� and fs�x, y, t� � sinΩmntWmn�x, y�.

In[13]:= Ω�m ,n � � Π c0

�
n2

a2
�
m2

b2


In[14]:= Ξ�n � �
n Π

a


Ζ�m � �
m Π

b


In[15]:= fc�x ,y ,t � �

Cos�Ω�m,n� t�Sin�Ξ�n�x�Sin�Ζ�m�y�

In[16]:= fs�x ,y ,t � �

Sin�Ω�m,n� t�Sin�Ξ�n�x�Sin�Ζ�m�y�

To verify that fc�x, y, t� satisfies equation (1.5), we compute
�2 fc

�x2
,
�2 fc

�y2
,

and
�2 fc

�t2
in fcxx, fcyy, and fczz, respectively.

In[17]:= fcxx � D�fc�x,y,t�,�x,2	�

Out[17]= �
n2 Π2 Cos�c0 �

m2

b2
� n2

a2
Π t� Sin� n Π x

a � Sin� m Π y
b �

a2

In[18]:= fcyy � D�fc�x,y,t�,�y,2	�

Out[18]= �
m2 Π2 Cos�c0 �

m2

b2
� n2

a2
Π t� Sin� n Π x

a � Sin� m Π y
b �

b2

In[19]:= fctt � D�fc�x,y,t�,�t,2	�

Out[19]= �c02 �m2
b2

�
n2

a2
� Π2 Cos�c0 	

m2

b2
�
n2

a2
Π t�

Sin�n Π x
a

� Sin�m Π y
b

�



1.2 Solutions of Differential Equations 13

fcxx � fcyy � 1/ c2
0fctt is simplified with Simplify; the result is 0 so

fc�x, y, t� satisfies equation (1.5).

In[20]:= Simplify�fcxx � fcyy � 1/c0ˆ2 fctt�//Simplify

Out[20]= 0

On the other hand, to verify that fs�x, y, t� satisfies equation (1.5), we
compute and simplify

�2 fs

�x2
�
�2 fs

�y2
�

1

c2
0

�2 fs

�t2

in a single step. The result is identically equal to 0 so fs�x, y, t� also sat-
isfies equation (1.5).

In[21]:= Simplify�D�fs�x,y,t�,�x,2	� � D�fs�x,y,t�,
�y,2	� � 1/c0ˆ2 D�fs�x,y,t�,
�t,2	��//Simplify

Out[21]= 0

(b) To graph the normal modes, we choose a � b � 1. We then use
Table and Plot3D to plot Wnm�x, y�, 0 � x � 1 and 0 � y � 1, for n � 1,
2, 3, and 4, m � 1, 2, and 3. The resulting array of graphics is displayed
as a graphics array using Show and GraphicsArray. In Figure 1-3, the
first row corresponds to n � 1, the second to n � 2, and so on; the first
column corresponds to m � 1, the second to m � 3, and so on.

In[22]:= tp � Table�Plot3D�Sin�n Π x� Sin�m Π y�,�x,0,1	,
�y,0,1	,DisplayFunction 
 Identity,
BoxRatios 
 �1,1,1	,PlotPoints 
 45�,
�n,1,4	,�m,1,3	�

Show�GraphicsArray�tp��

As indicated in the previous example, without added initial or boundary condi-
tions many differential equations have more than one solution. We further illus-
trate this property in the following examples where we use the Mathematica
command DSolve to solve the indicated equations. Generally, the command

DSolve[F[x,y[x],y’[x],...,D[y[x],{x,n}]]==0,y[x],x]

attempts to solve the differential equation (1.4) for y. Detailed help regarding
DSolve is obtained by entering ?DSolve or by going to Help under the Math-
ematica menu
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Figure 1-3 Wnm for n � 1, 2, 3, and 4, m � 1, 2, and 3
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and then selecting Help... Once Mathematica opens the Help Browser, you can
either type DSolve and select Go To or select Algebraic Computation followed
by Equation Solving and DSolve to obtain a description of the DSolve com-
mand, a discussion of its various options, and several examples, as illustrated in
the following screen shot.
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Figure 1-4 y � Ce� sin x for various values of C

EXAMPLE 1.2.4: Verify that the differential equation dy/dx � �y cos x
has infinitely many solutions.

SOLUTION: We use DSolve to solve this first-order linear equation
and name the resulting list sol. We see that the solution is given in
terms of a replacement rule and interpret the result to mean that if C[1]
is any number, a solution to the equation is y � C�1�E�Sin�x�. In tradi-

The formula for the solution
is extracted from sol with
sol[[1,1,1]] or, if you
are using Version 5, by
selecting and copying.

tional mathematical notation, we could write that y � Ce� sin x is a solu-
tion of dy/dx � �y cos x for any value of C.

In[23]:= sol � DSolve�y��x� �� �Cos�x� � y�x�,y�x�,x�

Out[23]= ��y�x	 
 ��Sin�x	 C�1	

Thus, the equation has infinitely many solutions. We graph several solu-
tions with Plot in Figure 1-4.

In[24]:= toplot � Table�e�Sin�x�C�1�/.C�1�� > i,�i,�5,5	�
In[25]:= Plot�Evaluate�toplot�,�x,0,4Π	�

EXAMPLE 1.2.5: Verify that y�� � y � 0 has infinitely many solutions.

SOLUTION: We use DSolve to solve this second-order linear equa-
tion and name the resulting list sol. We interpret the result to mean
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that if C[1] and C[2] are any numbers, a solution to the equation is
y � C�1�Cos�x� � C�2�Sin�x�. In traditional mathematical notation, we
write that y � C1 cos x�C2 sin x is a solution of y�� �y � 0 for any constant
values of C1 and C2.

In[26]:= sol � DSolve�y���x� � y�x� �� 0,y�x�,x�

Out[26]= ��y�x	 
 C�1	 Cos�x	 � C�2	 Sin�x	

In particular, this result indicates that y � C cos x is a solution of y�� � y �
0 for any value of C (set C2 � 0) and that y � C sin x is a solution of
y�� � y � 0 for any value of C (set C1 � 0). Some of the members of
the family of solutions are graphed with Plot. First, we use Table to
generate a set of eleven functions obtained by replacing C in y � C cos x
by �2.5, �2, �1.5, . . . , 1.5, 2, and 2.5, naming the resulting set toplot1
and then a set of eleven functions obtained by replacing C in y � C sin x
by �2.5, �2, �1.5, . . . , 1.5, 2, and 2.5, naming the resulting set toplot2.

In[27]:= toplot1 �

Table�C�2� Cos�x� � C�1� Sin�x� /.�C�2�� > i,

C�1�� > 0	,�i,�2.5,2.5,0.5	�

toplot2 �

Table�C�2� Cos�x� � C�1� Sin�x� /.�C�2�� > 0,

C�1�� > i	,�i,�2.5,2.5,0.5	�

Then, the set of functions toplot1 and toplot2 are graphed with
Plot for 0 � x � 4Π. Be sure to include toplot1 and toplot2 within
the Evaluate command because Mathematica must evaluate each set
of functions before sampling points. Neither graph is displayed as it
is generated because we include the option DisplayFunction->
Identity in each Plot command. Instead, we show the graphs side-
by-side using GraphicsArray in Figure 1-5.

In[28]:= plot1 � Plot�Evaluate�toplot1�,�x,0,4Π	,

DisplayFunction� > Identity�

plot2 � Plot�Evaluate�toplot2�,�x,0,4Π	,

DisplayFunction� > Identity�

Show�GraphicsArray��plot1,plot2	��
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Figure 1-5 Plots of y � C cos x and y � C sin x for various values of C

1.3 Initial and Boundary-Value Problems

In many applications, we are not only given a differential equation to solve but we
are given one or more conditions that must be satisfied by the solution(s) as well.
For example, suppose that we want to find an antiderivative of the function f �x� �
3x2 � 4x. Then, we solve the differential equation dy/dx � 3x2 � 4x by integrating:

dy
dx

� 3x2 � 4x �� y � � �3x2 � 4x� dx �� y � x3 � 2x2 �C.

In[29]:= � �3x2 � 4x	�x
Out[29]= �2 x2 � x3

Because the solution involves an arbitrary constant and all solutions to the equa-
tion can be obtained from it, we call this a general solution. On the other hand, if
we want to find a solution that passes through the point �1, 4�, we must find a solu-
tion that satisfies the auxiliary condition y�1� � 4. Substitution into y � x3 � 2x2 �C
yields y�1� � 13 � 2  12 � C � 4 �� C � 5. Therefore, the member of the family
of solutions y � x3 � 2x2 � C that satisfies y�1� � 4 is y � x3 � 2x2 � 5. The follow-
ing commands illustrate how to graph some members of the family of solutions
by substituting various values of C into the general solution. We also graph the
solution to the problem

�		

		
�

y� � 3x2 � 4x

y�1� � 4.

First, we use Table to generate a table of functions x3�2x2�C for C � �10, �8, . . . ,
8, 10, naming the resulting set of functions toplot. Note that we use c to represent
C to avoid conflict with the built-in symbol C. The set of functions toplot is not
displayed (for length reasons) because a semi-colon (;) is included at the end of the
command. However, we are able to view an abbreviation of toplot with Short.
Using Length, we see that toplot contains eleven functions.
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In[30]:= toplot � Table� � 2 x2 � x3 � c,�c,�10,10,2	�
Short�toplot�

Length�toplot�

Out[30]= ��10 � 2 x2 � x3,�9�,10 � 2 x2 � x3

Out[30]= 11

To graph the eleven functions contained in toplot and distinguish between
the graphs, we use Table and GrayLevel to generate a list of eleven differ-
ent gray levels. Then, we graph toplot with Plot in Figure 1-6(a). The option
PlotStyle->grays instructs Mathematica to display each graph using the cor-
responding shade of gray.

In[31]:= grays � Table�GrayLevel�i�,
i,0,0.5, 0.5
10

��
Plot�Evaluate�toplot�,�x,�2,3	,PlotStyle 
 grays,

AxesStyle 
 GrayLevel�0.5�,PlotRange 
 ��15,15	�

In[32]:= Plot�x3 � 2x2 � 5,�x,�2,3	,PlotRange 
 ��15,15	�
Notice that this first-order equation requires one auxiliary condition to eliminate
the unknown coefficient in the general solution. Frequently, the independent vari-
able in a problem is t, which usually represents time. Therefore, we call the auxil-
iary condition of a first-order equation an initial condition, because it indicates the
initial-value (at t � t0) of the dependent variable. Problems that involve an initial
condition are called initial-value problems.

-2 -1 1 2 3

-15

-10

-5

5

10

15

-2 -1 1 2 3

-15

-10

-5

5

10

15

(a) (b)

Figure 1-6 (a) Plot of y � x3 � 2x2 � C for various values of C. (b) Plot of the solution that
satisfies y�1� � 4
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EXAMPLE 1.3.1: Consider the first-order equation

dv
dt

� 32 � v,

which is solved to determine the velocity at time t, v�t�, of an object
of mass m � 1 subjected to air resistance equivalent to the instanta-
neous velocity of the object. If the initial velocity of the object is v�0� � 0,
determine the solution that satisfies this initial condition.

SOLUTION: A general solution to this equation is found to be v�t� �
32 �Ce�t , where C is a constant, with DSolve.

In[33]:= gensol � DSolve�v��t� �� 32 � v�t�,v�t�,t�

Out[33]= ��v�t	 
 32 � ��t C�1	

Substituting into the general solution, we have v�0� � 32�C � 0. Hence,
C � �32, and the solution to the initial-value problem is v�t� � 32�32e�t .
DSolve can be used to solve this initial-value problem as well.

In[34]:= gensol � DSolve��v��t� �� 32 � v�t�,
v�0� �� 0	,v�t�,t�

Out[34]= ��v�t	 
 32 ��t ��1 � �t�

If DSolve cannot find an exact solution to an initial-value problem or if numerical
results are desired, the command

NDSolve[{y’[x]==f[x,y[x]],y[x0]==y0},y[x],{x,a,b}]

attempts to find a numerical solution to the initial-value problem �y� � f �x, y� ,
y �x0� � y0� valid for a � x � b. We use the Help Browser to obtain information
about NDSolve and its options as well as several examples illustrating its use.
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Notice that the syntax of the NDSolve command is almost identical to that of the
DSolve command, except that we must specify an interval �a, b� on which we
want the numerical solution to be valid.

EXAMPLE 1.3.2: Graph the solution to the initial-value problem
�		

		
�

y� � sin x2

y�0� � 0
on the interval �0, 10�. Evaluate y�5�.

SOLUTION: In this case, we see that DSolve is able to solve the initial-
value problem although the result is given in terms of the FresnelS
function.
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Figure 1-7 Plot of the solution of �y� � sin x2

y�0� � 0
for 0 � x � 10

In[35]:= exactsol � DSolve�
y��x� �� Sin�x2�,
y�0� �� 0�,y�x�,x�

Out[35]= ��y�x	 
 	
Π

2
FresnelS�	

2

Π
x���

Here is Mathematica’s description of the FresnelS function.

In[36]:= ?FresnelS

FresnelS�z� gives the Fresnel integral S�z�.

Using NDSolve, we obtain a numerical solution to the initial-value
problem valid on the interval �0, 10�:

In[37]:= numsol � NDSolve�
y��x� �� Sin�x2�,y�0� �� 0�,
y�x�,�x,0,10	�

Out[37]= ��y�x	 
 InterpolatingFunction���0.,10.,
<>	�x	

which we graph with Plot in Figure 1-7.

In[38]:= Plot�y�x�/.numsol,�x,0,10	,PlotRange 
 All�

The value of y�5� is found with ReplaceAll (/.)

In[39]:= numsol/.x 
 5

Out[39]= ��y�5	 
 0.527917

and indicates that y�5� � 0.5279.
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Because first-order equations involve a single auxiliary condition, which is
usually referred to as an initial condition, we use the following examples to distin-
guish between initial-value and boundary-value problems which involve higher-
order equations.

EXAMPLE 1.3.3: Consider the second-order differential equation x�� �
x � 0, which models the motion of a mass with m � 1 attached to the
end of a spring with spring constant k � 1, where x�t� represents the
displacement of the mass from the equilibrium position x � 0 at time t.
A general solution of this differential equation is found to be x�t� �
A cos t � B sin t, where A and B are arbitrary constants, with DSolve.

In[40]:= sol � DSolve�x���t� � x�t� �� 0,x�t�,t�

Out[40]= ��x�t	 
 C�1	 Cos�t	 � C�2	 Sin�t	

Because this is a second-order equation, we need two auxiliary con-
ditions to determine the two unknown constants. Suppose that the ini-
tial displacement of the mass is x�0� � 0 and the initial velocity is
x��0� � 1. This is an initial-value problem because we have two aux-
iliary conditions given at the same value of t, namely t � 0. Use these
initial conditions to determine the solution of this problem.

SOLUTION: Because we need the first derivative of the general solu-
tion, we calculate x��t� � B cos t � A sin t. Substitution yields x�0� � A � 0
and x��0� � B � 1. Hence, the solution is x�t� � sin t. DSolve can solve
this initial-value problem as well.

In[41]:= DSolve��x���t� � x�t� �� 0,x�0� �� 0,x��0� �� 1	,

x�t�,t�
Out[41]= ��x�t	 
 Sin�t	

EXAMPLE 1.3.4: The shape of a bendable beam of length 1 unit that is
subjected to a compressive force at one end is described by the graph of

the solution y�x� of the differential equation
d2y
dx2

�
Π2

4
y � 0, 0 < x < 1. If

the height of the beam above the x-axis is known at the endpoints x � 0
and x � 1, then we have a boundary-value problem. Use the boundary
conditions y�0� � 0 and y�1� � 2 to find the shape of the beam.
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Figure 1-8 A plot of a solution to the beam equation

SOLUTION: First, we use DSolve to find a general solution to theLater, we will see that under
reasonable conditions,
initial-value problems have
unique solutions. On the
other hand, boundary-value
problems may have no
solutions, infinitely many
solutions, or a unique
solution.

equation. The result indicates that a general solution is y�x� � A cos � Π2 x��
B sin � Π2 x�.

In[42]:= DSolve�y���x� � Π2

4
y�x� �� 0,y�x�,x�

Out[42]= ��y�x	 
 C�1	 Cos�Π x
2

� � C�2	 Sin�Π x
2

���
Applying the condition y�0� � 0 to the general solution yields

y�0� � A cos 0 � B sin 0 � A � 0.

Similarly, y�1� � 2 indicates that

y�1� � B sin
Π
2
� B � 2,

so the solution to the boundary value problem is y�x� � 2 sin � Π2 x�, 0 <
x < 1. DSolve is also able to solve this boundary value problem.

In[43]:= DSolve�
y���x� � Π2

4
y�x� �� 0,y�0� �� 0,y�1� �� 2�,

y�x�,x�
Out[43]= ��y�x	 
 2 Sin�Π x

2
���

This function that describes the shape of the beam is graphed with
Plot in Figure 1-8.

In[44]:= Plot�2 Sin�Πx
2

�,�x,0,1	�
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We will see that it is usually impossible to find exact solutions of higher-order non-
linear initial-value problems. In those cases, we can often use NDSolve to generate
an accurate approximation of the solution.

Also see Example 1.4.4.

EXAMPLE 1.3.5 (Rayleigh’s Equation): Rayleigh’s equation is the non-
linear equation

d2x
dt2

� 	1
3

�dx
dt

�2

� 1
 dx
dt
� x � 0 (1.6)

and arises in the study of the motion of a violin string. Graph the solu-
tion to Rayleigh’s equation on the interval �0, 15� if (a) x�0� � 1, x��0� � 0;
(b) x�0� � 0.1, x��0� � 0; and (c) x�0� � 0, x��0� � 1.9.

SOLUTION: In each case, we use NDSolve to approximate the solu-
tion to the initial-value problem, naming the results numsol1, numsol2,
and numsol3, respectively.

In[45]:= numsol1 �

NDSolve�
x���t� � �1
3
x��t�2 � 1 x��t� � x�t� �� 0,

x�0� �� 1,x��0� �� 0�,x�t�,�t,0,15	�
Out[45]= ��x�t	 
 InterpolatingFunction���0.,15.,

<>	�t	

In[46]:= numsol2 �

NDSolve�
x���t� � �1
3
x��t�2 � 1 x��t� � x�t� �� 0,

x�0� �� 0.1,x��0� �� 0�,x�t�,�t,0,15	�
Out[46]= ��x�t	 
 InterpolatingFunction���0.,15.,

<>	�t	

In[47]:= numsol3 �

NDSolve�
x���t� � �1
3
x��t�2 � 1 x��t� � x�t� �� 0,

x�0� �� 0,x��0� �� 1.9�,x�t�,�t,0,15	�
Out[47]= ��x�t	 
 InterpolatingFunction���0.,15.,

<>	�t	
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Figure 1-9 Plot of three solutions of Rayleigh’s equation, (1.6)

All three solutions are graphed together on the interval �0, 15� with
Plot in Figure 1-9. Notice that the solution to (c) appears to be periodic.

In[48]:= Plot�Evaluate�x�t�/

.�numsol1,numsol2,numsol3	�,

�t,0,15	,PlotStyle 
 �GrayLevel�0�,

GrayLevel�0.3�,GrayLevel�0.6�	�

1.4 Direction Fields

The geometrical interpretation of solutions to first-order differential equations of
the form dy/dx � f �x, y� is important to the basic understanding of problems of this
type. Suppose that a solution to this equation is a function y � Ψ�x�, so a solution
is the graph of the function Ψ. Therefore, if �x, y� is a point on this graph, the slope
of the tangent line is given by f �x, y�. A set of short line segments representing the
tangent lines can be constructed for a large number of points. This collection of line
segments is known as the direction field of the differential equation and provides
a great deal of information concerning the behavior of the family of solutions. This
is due to the fact that by determining the slope of the tangent line for a large num-
ber of points in the plane, the shape of the graphs of the solutions can be seen
without actually having a formula for them. The direction field for a differential
equation provides a geometric interpretation about the behavior of the solutions
of the equation. Throughout this text, we will frequently display graphs of vari-
ous solutions to a differential equation along with a graph of the direction field.
Direction fields are generated with the PlotVectorField command, which is
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contained in the PlotField package. After loading the PlotField package, which is
contained in the Graphics folder (or directory) the command

PlotVectorField[{1,f[x,y]},{x,x0,x1},{y,y0,y1}]

graphs the direction field associated with dy/dx � f �x, y� for x0 � x � x1 and y0 � y �
y1. We use the Help Browser to obtain information abut the commands contained
in the PlotField package in the same way that we use the Help Browser to obtain
information about built-in Mathematica functions.

EXAMPLE 1.4.1: Graph the direction field associated with the differ-
ential equation dy/dx � e�x � 2y.



28 Chapter 1 Introduction to Differential Equations

-0.5 -0.25 0.25 0.5 0.75 1

-0.6

-0.4

-0.2

0.2

0.4

0.6

0.8

Figure 1-10 Direction field associated with dy/dx � e�x � 2y

SOLUTION: Entering

In[49]:= << Graphics‘PlotField‘

In[50]:= p1 � PlotVectorField��1,Exp��x� � 2y	,

x,�1

2
,1�,
y,�3

4
,
3

4
�,Axes 
 Automatic,

ScaleFunction 
 �1&�,AxesOrigin 
 �0,0	,

HeadLength� > 0�
first loads the PlotField package and then graphs the direction field
associated with the equation dy/dx � e�x � 2y in Figure 1-10 for �1/2 �
x � 1 and �3/4 � y � 3/4, naming the resulting graphics object p1. The
option Axes->Automatic specifies that axes are to be placed on the
resulting graph, AxesOrigin->{0,0} specifies that the axes intersect
at the point �0, 0�, the option ScaleFunction->(1&) specifies that the
magnitude of each line segment be 1 (this makes them easier to see in
the resulting graph), and the option HeadLength->0 instructs Math-
ematica to not place arrows on the line segments, which would result
in vectors. For a complete list of the options and their default values
associated with this command, enter Options[PlotVectorField].
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A general solution of this first-order linear equation is found to be
y � e�x �Ce�2x with DSolve. Generally, Mathematica is

able to find a general solution
of first-order linear equations
like this with DSolve.

In[51]:= Clear�x,y,diffeq�

gensol � DSolve�y��x� �� Exp��x� � 2 y�x�,y�x�,x�

Out[51]= ��y�x	 
 ��x � ��2 x C�1	

first clears all prior definitions of x, y, and gensol, if any, and then
solves the equation dy/dx � e�x � 2y for y � y�x�, naming the resulting
output gensol. In the DSolve command, the first argument (y��x� ��
E�x � 2y�x�) represents the equation dy/dx � e�x � 2y, the second argu-
ment (y[x]) instructs Mathematica that we are solving for y � y�x�,
and the third argument (x) instructs Mathematica that the independent
variable is x. Note that gensol is a nested list. The first part of gensol,
extracted with gensol[[1]], is the list �y�x� � e�x � e�2xC�1��; the first
part of this list, extracted with gensol[[1,1]], is the list y�x� �
e�x � e�2xC�1�; and the first part of this list, extracted with
gensol[[1,1,1]], is y�x�while the second part of this list (which rep-
resents the formula for the solution), extracted with gensol[[1,1,2]],
is y � e�x �Ce�2x. Of course, if you are using Version 5.0 (or later), you
can extract these results by selecting, copying, and pasting the results
to the desired location in your Mathematica notebook.

In[52]:= gensol�1,1,2�
Out[52]= ��x � ��2 x C�1	

Note that in the formula for the solution the built-in symbol C is used
to denote arbitrary constants. Here C[1] represents C in the solution
y � e�x �Ce�2x.

To graph the solution for various values of the arbitrary constant,
we use Table and ReplaceAll (/.) to replace C[1] in the formula
for the general solution obtained in gensol by i for i � �2, �1.75, �1.50,
. . . , 1.50, 1.75, and 2, naming the resulting set of functions toplot. The
list toplot is not displayed because a semi-colon (;) is included at the
end of the Table command.

In[53]:= toplot � Table��gensol�1,1,2��/.C�1� 
 i,

�i,�2,2,0.25	�

We then use Plot to graph the set of functions toplot for �1/2 � x � 1
in Figure 1-11, naming the resulting graphics object p2. The option
PlotRange->{-3/4,3/4} instructs Mathematica that the range of
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Figure 1-11 Various solutions of dy/dx � e�x � 2y

y-values displayed corresponds to the interval ��3/4, 3/4�,
AspectRatio->1 specifies that the ratio of the lengths of x and y-axes
in the resulting graph is to be 1, AxesStyle->GrayLevel[.5] spec-
ifies that the axes are to be shaded a light gray,

PlotStyle->{{GrayLevel[.4],Thickness[0.01]}}

specifies that the graphs are to be displayed in a slightly darker shade
of gray and that the thickness of each graph be 1/100 of the width of the
total graph, and AxesLabel->{x,y} specifies that the x and y-axes are
to be labeled by x and y, respectively.

In[54]:= p2 � Plot�Evaluate�toplot�,
x,�1
2
,1�,

PlotRange 
 
 �
3

4
,
3

4
�,AspectRatio 
 1,

AxesStyle 
 GrayLevel�0.5�,

PlotStyle 
 ��GrayLevel�0.4�,

Thickness�0.01�		,

AxesLabel 
 �x,y	�
Notice that we can predict the behavior of the solutions of this equa-
tion by observing the direction field, as we confirm with the following
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Figure 1-12 Direction field associated with dy/dx � e�x � 2y together with plots of several
solutions

Show command in Figure 1-12. This is the purpose of direction fields:
most differential equations cannot be solved by the elementary meth-
ods covered in an introductory text on differential equations.

In[55]:= Show�p2,p1�

Mathematica allows us to graph solutions to equations and associated direction
fields that would be nearly impossible by traditional methods.

EXAMPLE 1.4.2: Graph the direction field associated with the differential
equation

dy
dx

�
cos y � y cos x

x sin y � sin x � 1
.

SOLUTION: As in the previous example, we use PlotVectorField
to graph the direction field associated with the equation, in this case for
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Figure 1-13 Direction field associated with dy/dx � �cos y � y cos x� / �x sin y � sin x � 1�

0 � x � 4Π and 0 � y � 4Π in Figure 1-13, naming the resulting graphics
object p1.If you have already loaded the

PlotField package during
your current Mathematica
session and have not quit
Mathematica, you need not
reload the PlotField
package.

In[56]:= << Graphics‘PlotField‘

In[57]:= p1 � PlotVectorField�
1, Cos�y� � y Cos�x�

x Sin�y� � Sin�x� � 1
�,

�x,0,4Π	,�y,0,4Π	,Frame 
 False,

Axes 
 Automatic,AxesOrigin 
 �0,0	,

AxesStyle 
 GrayLevel�0.5�,

ScaleFunction 
 �0.5&�,

PlotPoints� > 30,HeadLength� > 0�
In this case, we see that we are able to find a general solution of the

equation with DSolve if we rewrite the equation as �x sin y � sin x � 1� y�

� cos y � y cos x.

In[58]:= Clear�x,y�

gensol �

DSolve��x Sin�y�x�� � Sin�x� � 1�y��x� ��

Cos�y�x�� � y�x� Cos�x�,y�x�,x�
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Solve �� tdep � The equations appear

to involve the variables to be solved

for in an essentially non�algebraic way.
Out[58]= Solve��x Cos�y�x		 � y�x	

�Sin�x	 y�x	 �� C�1	,y�x		

The result indicates that a general solution is y sin x � x cos y � y � C.
To graph solutions for various values of C, we note that the graph of

the equation y sin x� x cos y� y � C for various values of C is the same as
the graph of the level curves of z � f �x, y� � y sin x�x cos y�y for various
values of z.

In[59]:= toplot � �x Cos�y�x�� � y�x�
�Sin�x� y�x� /. y�x�� > y

Out[59]= �y � x Cos�y	 � y Sin�x	

We now generate several level curves of toplot for 0 � x � 4Π and
0 � y � 4Π with ContourPlot in Figure 1-14, naming the resulting
graphics object cp1.

In[60]:= cp1 � ContourPlot�toplot,�x,0,4Π	,�y,0,4Π	,

ContourShading 
 False,Frame 
 False,

PlotPoints 
 150,Axes 
 Automatic,

AxesOrigin 
 �0,0	,AxesStyle 


GrayLevel�0.5�,Contours 
 20,

ContourStyle 
 ��GrayLevel�0.4�,

Thickness�0.01�		�

Finally, we use Show to display cp1 and p1 together in Figure 1-15.
From these graphs we see that the behavior of the solution depends on
the initial condition. Some solutions follow a closed path while others
do not.

In[61]:= Show�cp1,p1�

Mathematica is particularly useful in graphing the direction field associated with
a system of equations. After the PlotField package has been loaded by entering
<<Graphics‘PlotField‘, the command

PlotVectorField[{f[x,y],g[x,y]},{x,x0,x1},{y,y0,y1}]

graphs the direction field associated with the system
�		

		
�

x� � f �x, y�

y� � g�x, y�
for x0 � x � x1

and y0 � y � y1.
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Figure 1-14 Various solutions of dy/dx � �cos y � y cos x� / �x sin y � sin x � 1�
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Figure 1-15 Direction field and various solutions of dy/dx � �cos y � y cos x�
/ �x sin y � sin x � 1�
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EXAMPLE 1.4.3 (Competing Species): Under certain assumptions the
system of equations

�			

			
�

dx
dt

� x �a � b1x � b2y�
dy
dt

� y �c � d1x � d2y�
(1.7)

where a, b1, b2, c, d1, and d2 represent positive constants, can be used to
model the population of two species, represented by x�t� and y�t�, com-
peting for a common food supply. Graph the direction field associated
with the system if (a) a � 1, b1 � 2, b2 � 1, c � 1, d1 � 0.75, and d2 � 2;
and (b) a � 1, b1 � 1, b2 � 1, c � 0.67, d1 � 0.75, and d2 � 1.

SOLUTION: After identifying f �x, y� � x �a � b1x � b2y� and g�x, y� �
y �c � d1x � d2y�, we define f and g.

In[62]:= Clear�g,f,x,y�

f�x ,y � � x �a � b1x � b2y�

g�x ,y � � y �c � d1x � d2y�

Then, for (a) we define a � 1, b1 � 2, b2 � 1, c � 1, d1 � 0.75, and d2 �
2, load the PlotField package, and graph the direction field associated
with the system for 0 � x � 1 and 0 � y � 1 with PlotVectorField in
Figure 1-16. Remember that if you have

previously loaded the
PlotField package during
your current Mathematica
session, you do not need to
reload the PlotField
package.

In[63]:= a � 1b1 � 2b2 � 1c � 1d1 � 0.75d2 � 2

In[64]:= << Graphics‘PlotField‘

PlotVectorField��f�x,y�,g�x,y�	,�x,0,1	,

�y,0,1	,Frame 
 False,Axes 
 Automatic,

AxesLabel 
 �x,y	,AxesOrigin 
 �0,0	,

AxesStyle 
 GrayLevel�0.5�,

ScaleFunction 
 �1&��

In this case, we see that both the species appear to approach some
equilibrium population. In fact, later we will see that this equilibrium
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Figure 1-16 Direction field associated with the competing species system using the
parameter values in (a)

population is obtained by solving the system of equations
�		

		
�

a � b1x � b2y � 0

c � d1x � d2y � 0
for x and y. For (b), we redefine a � 1, b1 � 1, b2 � 1,

c � 0.67, d1 � 0.75, and d2 � 1 and then re-enter the PlotVectorField
command. See Figure 1-17.

In[65]:= a � 1b1 � 1b2 � 1c � 0.67d1 � 0.75d2 � 1

In[66]:= PlotVectorField��f�x,y�,g�x,y�	,�x,0,1	,

�y,0,1	,Frame 
 False,Axes 
 Automatic,

AxesLabel 
 �x,y	,AxesOrigin 
 �0,0	,

AxesStyle 
 GrayLevel�0.5�,

ScaleFunction 
 �1&��

In this case, we see that it appears as though the species with popula-
tion given by y�t� eventually dies out while the species with population
given by x�t� eventually dominates and approaches some equilibrium
population. Later, we will see that this is true and the equilibrium pop-
ulation of the species with population given by x�t� will be found by
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Figure 1-17 Direction field associated with the competing species system using the
parameter values in (b)

computing the limit as t � � of the solution to the differential equation
dx/dt � ax � b1x2.

Often, we can generate the direction field of a higher-order equation by rewriting
it as a system of first-order equations.

Also see Example 1.3.5.

EXAMPLE 1.4.4 (Rayleigh’s Equation): Write Rayleigh’s equation,
(1.6), as a system of two first-order equations. Graph the direction field
associated with the resulting system on the rectangle ��4, 4� � ��4, 4�.

SOLUTION: We write Rayleigh’s equation as a system by letting y �
x�. Then Rayleigh’s equation, (1.6), becomes

y� � x�� � � 	1
3

�x��2
� 1
 x� � x � � �1

3
y2 � 1� y � x
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Figure 1-18 Direction field associated with the Rayleigh system

so Rayleigh’s equation is equivalent to the system

�		

		
�

x� � y

y� � � � 1
3 y2 � 1� y � x.

The direction field associated with this system is then graphed with
PlotVectorField in Figure 1-18.

In[67]:= << Graphics‘PlotField‘

pvf � PlotVectorField��y,��1/3yˆ2 � 1�y � x	,

�x,�4,4	,�y,�4,4	,Frame� > False,

Axes� > Automatic,AxesOrigin� > �0,0	,

ScaleFunction� > �1&�,PlotPoints� > 25�

In the direction field, we see that solutions appear to tend to a closed
curve, C. We can accurately approximate C. First, we use NDSolve to
approximate the solution to the equation if (a) x�0� � 1, y�0� � 0; (b)
x�0� � 0.1, y�0� � 0; (c) x�0� � 0, y�0� � 1.9; and (d) x�0� � �4, y�0� � 4.
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In[68]:= numsol1 �

NDSolve��x��t� �� y�t�,

y��t� �� ��1/3y�t�ˆ2 � 1�y�t� � x�t�,

x�0� �� 1,y�0� �� 0	,�x�t�,y�t�	,

�t,0,15	�

Out[68]= ��x�t	 
 InterpolatingFunction���0.,15.,
<>	�t	,y�t	 
 InterpolatingFunction

���0.,15.,<>	�t	

In[69]:= numsol2 �

NDSolve��x��t� �� y�t�,

y��t� �� ��1/3y�t�ˆ2 � 1�y�t� � x�t�,

x�0� �� 0.1,y�0� �� 0	,�x�t�,y�t�	,

�t,0,15	�

Out[69]= ��x�t	 
 InterpolatingFunction���0.,15.,
<>	�t	,y�t	 
 InterpolatingFunction

���0.,15.,<>	�t	

In[70]:= numsol3 �

NDSolve��x��t� �� y�t�,

y��t� �� ��1/3y�t�ˆ2 � 1�y�t� � x�t�,

x�0� �� 0,y�0� �� 1.9	,

�x�t�,y�t�	,�t,0,15	�

Out[70]= ��x�t	 
 InterpolatingFunction���0.,15.,
<>	�t	,y�t	 
 InterpolatingFunction

���0.,15.,<>	�t	

In[71]:= numsol4 �

NDSolve��x��t� �� y�t�,

y��t� �� ��1/3y�t�ˆ2 � 1�y�t� � x�t�,

x�0� �� �4,y�0� �� 4	,

�x�t�,y�t�	,�t,0,15	�

Out[71]= ��x�t	 
 InterpolatingFunction���0.,15.,
<>	�t	,y�t	 
 InterpolatingFunction

���0.,15.,<>	�t	

We then graph all four solutions for 0 � t � 15 with ParametricPlot
and show these graphs together with the direction field in Figure 1-19.
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Figure 1-19 Solutions of Rayleigh’s equation tend to a limit cycle

In the graph, we see that the graph of solution (c) corresponds to C; the
graphs of the other solutions all tend to C, which is called a limit cycle.

In[72]:= parplot � ParametricPlot�

Evaluate��x�t�,y�t�	/.

�numsol1,numsol2,numsol3,numsol4	�,

�t,0,15	,Compiled� > False,

PlotStyle� > ��GrayLevel�0.5�,

Thickness�0.01�		,

DisplayFunction� > Identity�

In[73]:= Show�pvf,parplot�



2First-Order Ordinary
Differential
Equations

We will devote a considerable amount of time in this text to developing explicit,
implicit, numerical, and graphical solutions of differential equations. In this chap-
ter we introduce frequently encountered forms of first-order ordinary differential
equations and methods to construct explicit, numerical, and graphical solutions of
them. Several of the equations along with the methods of solution discussed here
will be used in subsequent chapters of the text.

2.1 Theory of First-Order Equations:
A Brief Discussion

In order to understand the types of first-order initial-value problems that have a
unique solution, the following theorem is stated.

Theorem 1 (Existence and Uniqueness). Consider the initial-value problem

�		

		
�

dy/dx � f �x, y�

y �x0� � y0.
(2.1)

If f and � f /�y are continuous functions on the rectangular region R, See texts like [6], [7], or [3].

R � ��x, y��a < x < b, c < y < d� ,

41
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containing the point �x0, y0�, there exists an interval �x � x0� < h centered at x0 on which
there exists one and only one solution to the differential equation that satisfies the initial
condition.

Often, we can use the command

DSolve[{y’[x]==f[x,y[x]],y[x0]==y0},y[x],x]

to solve the initial-value problem (2.1);

DSolve[y’[x]==f[x,y[x]],y[x],x]

attempts to find a general solution of y� � f �x, y�.

EXAMPLE 2.1.1: Solve the initial-value problem

�		

		
�

dy/dx � x/y

y �0� � 0.

Does this result contradict the Existence and Uniqueness Theorem?

SOLUTION: This equation is solved with DSolve to determine the
family of solutions y2 � x2 � C.

In[74]:= Clear�x,y�

DSolve�y��x� �� x

y�x�
,y�x�,x�

Out[74]= ��y�x	 
 �
�
x2 � 2 C�1	�,�y�x	 
 �

x2 � 2 C�1	��
We note that the graph of y2 � x2 � C for various values of C is the
same as the graph of the level curves of f �x, y� � y2 � x2. Members of
this family corresponding to C � �40, �38, . . . , 38, 40 are graphed with
ContourPlot in Figure 2-1.

In[75]:= cvals � Table�i,�i,�40,40,2	�

In[76]:= ContourPlot�y2 � x2,�x,�6,6	,�y,�6,6	,
PlotPoints 
 120,Contours� > cvals,
ContourShading 
 False�

Application of the initial condition yields 02 � 02 � C, so C � 0. There-
fore, solutions that pass through �0, 0�, satisfy y2 � x2 � 0, so there
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Figure 2-1 Plot of f �x, y� � C for various values of C

are two solutions, y � x and y � �x, that satisfy the differential equa-
tion and the initial condition. Although more than one solution satisfies
this initial-value problem, the Existence and Uniqueness Theorem is not
contradicted because the function f �x, y� � x/y is not continuous at the
point �0, 0�; the requirements of the theorem are not met.

EXAMPLE 2.1.2: Verify that the initial-value problem �dy/dx � y, y�0�
� 1� has a unique solution.

SOLUTION: In this case, f �x, y� � y, x0 � 0, and y0 � 1. Hence, both
f and � f /�y � 1 are continuous on all rectangular regions containing
the point �x0, y0� � �0, 1�. Therefore by the Existence and Uniqueness
Theorem, there exists a unique solution to the differential equation that
satisfies the initial condition y�0� � 1.

We can verify this by solving the initial-value problem. The unique
solution is y � ex, which is computed with DSolve and then graphed
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Figure 2-2 Plot of y � ex

with Plot in Figure 2-2. Notice that the graph passes through the point
�0, 1�, as required by the initial condition.

In[77]:= Clear�x,y,sol�

sol � DSolve��y��x� �� y�x�,y�0� �� 1	,y�x�,x�
Out[77]= ��y�x	 
 �x

In[78]:= Plot�y�x� /. sol,�x,�1,1	�

EXAMPLE 2.1.3: Show that the initial-value problem

�		

		
�

x
dy
dx

� y � x2 cos x

y �0� � 0

has infinitely many solutions.

SOLUTION: Writing xy� � y � x2 cos x in the form y� � f �x, y� results in

dy
dx

�
x2 cos x � y

x

and because f �x, y� � �x2 cos x � y� / x is not continuous on an interval
containing x � 0, the Existence and Uniqueness Theorem does not guar-
antee the existence or uniqueness of a solution. In fact, using DSolve
we see that a general solution of the equation is y � x sin x �Cx and for
every value of C, y�0� � 0.
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Figure 2-3 Every solution satisfies y�0� � 0

In[79]:= Clear�y�

sol � DSolve�x y��x� � y�x� �� xˆ2 Cos�x�,y�x�,x�
Out[79]= ��y�x	 
 x C�1	 � x Sin�x	

We confirm this graphically by graphing several solutions. First, we use
Table to define toplot to be a set of functions obtained by replacing
the arbitrary constant in y�x� by �4, �3, . . . , 3, 4.

In[80]:= toplot � Table�sol��1,1,2��/.C�1�� > i,
�i,�4,4	�

Out[80]= ��4 x � x Sin�x	,�3 x � x Sin�x	,�2 x � x Sin�x	,

�x � x Sin�x	,x Sin�x	,x � x Sin�x	,
2 x � x Sin�x	,3 x � x Sin�x	,4 x � x Sin�x	

These functions are then graphed with Plot in Figure 2-3.

In[81]:= Plot�Evaluate�toplot�,�x,�10,10	,
PlotRange� > ��10,10	,AspectRatio� > 1�
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2.2 Separation of Variables

Definition 5 (Separable Differential Equation). A differential equation that can be
written in the form g�y�y� � f �x� or g�y� dy � f �x� dx is called a separable differential
equation.

Separable differential equations are solved by collecting all the terms involving
y on one side of the equation, all the terms involving x on the other side of the
equation, and integrating:

g�y� dy � f �x� dx �� � g�y� dy � � f �x� dx �C,

where C is a constant.

EXAMPLE 2.2.1: Show that the equation

dy
dx

�
2


y � 2y

x

is separable, and solve by separation of variables.

SOLUTION: The equation y� � �2
y � 2y� / x is separable because it can

be written in the form

1
2


y � 2y
dy �

1
x

dx.

To solve the equation, we integrate both sides and simplify. Observe
that we can write this equation as

� 1
2


y
1

1 �


y
dy � � 1

x
dx �C.

To evaluate the integral on the left-hand side, let u � 1 �


y so �du �
1

2


y
dy. We then obtain

�� 1
u

du � � 1
x

dx �C1

so that � ln �u� � ln �x� �C1. Recall that � ln �u� � ln �u��1, so we have

ln
1
�u�

� ln �x� �C1.
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Using Mathematica, we have

In[82]:= � 1

2
�
y � 2y

�y

Out[82]=
2 � � 1 �



y� 


y Log� � 1 �


y�

2


y � 2 y

which we then simplify with Simplify. Note that Log[x]
represents the natural
logarithm function,
y � ln x.In[83]:= Simplify�2 � � 1 �

�
y	 �

y Log� � 1 �
�
y�

2
�
y � 2y

�
Out[83]= �Log� � 1 �



y�

The integral on the right-hand side of the equation is computed in the
same way.

In[84]:= � 1

x
�x

Out[84]= Log�x	

Simplification yields
1
�u�

� eln �x��C1 � C2�x�

where C2 � eC1 . Resubstituting we find that

1����1 �
y
���� � C2�x� or x �

C3

1 �


y
.

Solving for y shows us that
y � 1 �

C
x

y �
x �C

x

y � �x �C
x

�2

is a general solution of the equation y� � �2
y � 2y� / x. We obtain the

same results with Mathematica, We use cons to represent
the arbitrary constant C to
avoid ambiguity with the
built-in symbol C.

In[85]:= Solve� � Log� � 1 �
�
y� �� Log�x�

�cons,y�//Simplify
Out[85]= ��y 
 ��2 cons �1 � �cons x�2

x2
��

where E�cons represents the arbitrary constant in the solution. We obtain
an equivalent result with DSolve. Entering
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In[86]:= Clear�x,y�

gensol � DSolve�y��x� �� 2
�
y�x� � 2 y�x�

x
,

y�x�,x�
Solve �� ifun �

Inverse functions are being used by Solve, so some solutions may not be
found.

Out[86]= ��y�x	 
 �� C�1	
2 � x�2

x2
��

finds a general solution of the equation which is equivalent to the one
we obtained by hand and names the result gensol. The formula for
the solution, which is the second part of the first part of the first part
of gensol, is extracted from gensol with gensol[[1,1,2]]. Alter-
natively, if you are using Version 5, you can select, copy, and paste the
result to any location in the notebook.

In[87]:= gensol�1,1,2�//Simplify
Out[87]=

�� C�1	
2 � x�2

x2

To graph the solution for various values of C[1], which represents
the arbitrary constant in the formula for the solution, we use Table
together with ReplaceAll (/.) to generate a set of functions obtained
by replacing C[1] in the formula for the solution by i for i � �3, �2.50,
. . . , 2.50, and 3, naming the resulting set of functions toplot. We view
an abbreviation of toplot with Short.

In[88]:= toplot � Table�gensol��1,1,2��/.C�1� 

i,�i,�3,3,1/2	�

Short�toplot,4�

Out[88]= �� 1
�3/2

� x�2

x2
,

� 1
�5/4

� x�2

x2
,

� 1
� � x�2

x2
,

� 1
�3/4

� x�2

x2
,

� 1

�
� x�2

x2
,

� 1
�1/4

� x�2

x2
,
�1 � x�2

x2
,

��1/4 � x�2

x2
,

�

� � x�2

x2
,

��3/4 � x�2

x2
,
�� � x�2

x2
,

��5/4 � x�2

x2
,

��3/2 � x�2

x2
�
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Figure 2-4 Various solutions of y� � �2
y � 2y� / x

We then graph the set of functions toplot with Plot in Figure 2-4.

In[89]:= Plot�Evaluate�toplot�,�x,�5,5	,
PlotRange� > �0,10	,AspectRatio 
 1�

An initial-value problem involving a separable equation is solved through the
following steps.

1. Find a general solution of the differential equation using separation of
variables.

2. Use the initial condition to determine the unknown constant in the general
solution.

EXAMPLE 2.2.2: Solve (a) y cos x dx � �1 � y2� dy � 0 and (b) the initial-
value problem �y cos x dx � �1 � y2� dy � 0, y�0� � 1�.
SOLUTION: (a) Note that this equation can be rewritten as dy/dx �
�y cos x� / �1 � y2�. We first use DSolve to solve the equation.
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In[90]:= sol1 � DSolve�y��x� �� y�x�Cos�x�/�1 � y�x�ˆ2�,
y�x�,x�

InverseFunction �� ifun �
Inverse functions are being used. Values may be lost for multivalued
inverses.

Solve �� ifun �
Inverse functions are being used by Solve, so some solutions may not be
found.

Out[90]= ��y�x	 
 �
�
ProductLog��2 C�1	�2 Sin�x		�,�y�x	 
 �
ProductLog��2 C�1	�2 Sin�x		��

In this case, we see that DSolve is able to solve the nonlinear equation,
although the result contains the ProductLog function. Given z, the
Product Log function returns the principal value of w that satisfies z �
wew. A more familiar form of the solution is found using traditional
techniques. Separating and integrating gives us

1 � y2

y
dy � cos x dx

�1
y
� y� dy � cos x dx

ln �y� �
1
2

y2 � sin x �C.

We can also use Mathematica to implement the steps necessary to solve
the equation by hand. To solve the equation, we must integrate both
the left and right-hand sides which we do with Integrate, naming
the resulting output lhs and rhs, respectively.

In[91]:= lhs � Integrate��1 � yˆ2�/y,y�

rhs � Integrate�Cos�x�,x�

Out[91]=
y2

2
� Log�y	

Out[91]= Sin�x	

Therefore, a general solution to the equation is ln �y� � 1
2 y2 � sin x � C.

We now use ContourPlot to graph ln �y� � 1
2 y2 � sin x �C in Figure 2-5

for various values of C by observing that the level curves of f �x, y� �
ln �y� � 1

2 y2 � sin x correspond to the graph of ln �y� � 1
2 y2 � sin x � C for

various values of C.
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Figure 2-5 Plot of ln �y� � 1
2 y2 � sin x �C for various values of C

In[92]:= ContourPlot�lhs � rhs,�x,0,10	,�y,0,10	,

Contours� > 30,PlotPoints� > 150,
ContourShading� > False�

By substituting y�0� � 1 into this equation, we find that C � 1/2, so the
implicit solution is given by ln �y� � 1

2 y2 � sin x � 1/2.

In[93]:= Clear�x,y,c�

In[94]:= Solve�Evaluate�lhs �� rhs � c�/.
�x� > 0,y� > 1	,c�

Out[94]= ��c 
 1

2
��

We can also use DSolve to solve the initial value problem as well. The
solution is then graphed in Figure 2-6 with Plot.

In[95]:= sol2 � DSolve��y��x� �� y�x�Cos�x�/�1 � y�x�ˆ2�,
y�0� �� 1	,y�x�,x�

Out[95]= ��y�x	 
 �
ProductLog��1�2 Sin�x		��

In[96]:= Plot�y�x�/.sol2,�x,0,10	�
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Figure 2-6 Plot of the solution that satisfies y�0� � 1

EXAMPLE 2.2.3: Solve each of the following equations: (a) y� �y2 sin t �
0; (b) y� � Αy �1 � 1

K y�, K, Α > 0 constant.

SOLUTION: (a) The equation is separable:

1
y2

dy � sin t dt

� 1
y2

dy � � sin t dt

�
1
y
� � cos t �C

y �
1

cos t �C
.

We check our result with DSolve.

In[97]:= sola � DSolve�y��t� � y�t�ˆ2Sin�t� �� 0,y�t�,t�

Out[97]= ��y�t	 
 1

�C�1	 � Cos�t	
��

Observe that the result is given as a list. The formula for the solution is
the second part of the first part of the first part of sola.

In[98]:= sola��1,1,2��

Out[98]=
1

�C�1	 � Cos�t	

We then graph the solution for various values of C with Plot in
Figure 2-7.
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Figure 2-7 Several solutions of y� � y2 sin t � 0

In[99]:= toplota � Table�sola��1,1,2��/.
C�1�� > �i,�i,2,10	�

Out[99]= � 1

2 � Cos�t	
,

1

3 � Cos�t	
,

1

4 � Cos�t	
,

1

5 � Cos�t	
,

1

6 � Cos�t	
,

1

7 � Cos�t	
,

1

8 � Cos�t	
,

1

9 � Cos�t	
,

1

10 � Cos�t	
�

expression /. x->y

replaces all occurrences of x

in expression by y.
Table[a[k],{k,n,m}]
generates the list an , an�1 ,
. . . , am�1 , am .

In[100]:= Plot�Evaluate�toplota�,�t,0,2Π	,
PlotRange� > �0,1	,AxesOrigin� > �0,0	�

(b) After separating variables, we use partial fractions to integrate.

To graph the list of functions
list for a � x � b, enter
Plot[Evaluate[list],

{x,a,b}].

y� � Αy �1 � 1
K

y�
1

Αy �1 � 1
K y�dy � dt

1
Α

�1
y
�

1
K � y

� � dt

1
Α
�ln �y� � ln �K � y�� � C1 � t

y
K � y

� CeΑt

y �
CKeΑt

CeΑt � 1

We check the calculations with Mathematica. First, we use Apart to

find the partial fraction decomposition of
1

Αy �1 � 1
K y� .
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In[101]:= s1 � Apart�1/�Α y �1 � 1/k y��,y�

Out[101]=
1

y Α
�

1

��k � y� Α

Then, we use Integrate to check the integration.

In[102]:= s2 � Integrate�s1,y�

Out[102]=
Log�y	

Α
�
Log��k � y	

Α

Last, we use Solve to solve 1
Α �ln �y� � ln �K � y�� � ct for y.

In[103]:= Solve�s2 �� c t,y�

Out[103]= ��y 
 ec t Α k

�1 � ec t Α
��

We can use DSolve to find a general solution of the equation

In[104]:= solb � DSolve�y��t� �� Α y�t� �1 � 1/k y�t��,
y�t�,t�

Out[104]= ��y�t	 
 et Α k

et Α � eC�1	
��

as well as find the solution that satisfies the initial condition y�0� � y0.

In[105]:= solc � DSolve��y��t� �� y�t� �1 � y�t��,
y�0� �� y0	,y�t�,t�

Out[105]= ��y�t	 
 et y0

1 � y0 � et y0
��

The equation y� � Αy �1 � 1
K y� is called the Logistic equation (or Ver-

hulst equation) and is used to model the size of a population that is
not allowed to grow in an unbounded manner. Assuming that y�0� > 0,
then all solutions of the equation have the property that limt�� y�t� � K.Logistic growth is discussed

in more detail in
Section 3.2.2.

To see this, we set Α � K � 1 and use PlotVectorField, which
is contained in the PlotField package that is located in the Graphics
directory to graph the direction field associated with the equation in
Figure 2-8.

1 2 3 4 5

0.2
0.4
0.6
0.8
1

1.2
1.4

Figure 2-8 A typical direction field for the Logistic equation
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Figure 2-9 A typical direction field for the Logistic equation along with several solutions

In[106]:= << Graphics‘PlotField‘
pvf � PlotVectorField��1,y�1 � y�	,�t,0,5	,

�y,0,5/2	,HeadLength� > 0,
Axes� > Automatic�

The property is more easily seen when we graph various solutions
along with the direction field as done next in Figure 2-9.

In[107]:= toplot � Table�solc��1,1,2��/.y0� > i/5,
�i,1,12	�

sols � Plot�Evaluate�toplot�,
�t,0,5	,DisplayFunction� > Identity�

Show�pvf,sols�

Application: Kidney Dialysis Sources: D. N. Burghes and
M. S. Borrie, Modeling with
Differential Equations, Ellis
Horwood Limited, pp. 41–45.
Joyce M. Black and Esther
Matassarin-Jacobs, Luckman
and Sorensen’s
Medical–Surgical Nursing: A
Psychophysiologic Approach,
Fourth Edition, W. B.
Saunders Company (1993),
pp. 1509–1519, 1775–1808.

The primary purpose of the kidney is to remove waste products, like urea, creati-
nine, and excess fluid, from blood. When kidneys are not working properly, wastes
accumulate in the blood; when toxic levels are reached, death is certain. The lead-
ing causes of chronic kidney failure in the United States are hypertension (high
blood pressure) and diabetes mellitus. In fact, one-quarter of all patients requir-
ing kidney dialysis have diabetes. Fortunately, kidney dialysis removes waste
products from the blood of patients with improperly working kidneys. During the
hemodialysis process, the patient’s blood is pumped through a dialyser, usually
at a rate of 1 to 3 deciliters per minute. The patient’s blood is separated from the
“cleaning fluid” by a semi-permeable membrane, which permits wastes (but not
blood cells) to diffuse to the cleaning fluid; the cleaning fluid contains some sub-
stances beneficial to the body which diffuse to the blood. The “cleaning fluid,”
called the dialysate, is flowing in the opposite direction as the blood, usually at a
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rate of 2 to 6 deciliters per minute. Waste products from the blood diffuse to the
dialysate through the membrane at a rate proportional to the difference in concen-
tration of the waste products in the blood and dialysate. If we let u�x� represent
the concentration of wastes in blood, v�x� represent the concentration of wastes in
the dialysate, where x is the distance along the dialyser, QD represent the flow rate
of the dialysate through the machine, and QB represent the flow rate of the blood
through the machine, then

�		

		
�

QBu� � �k�u � v�

�QDv� � k�u � v�

where k is the proportionality constant.
If we let L denote the length of the dialyser and the initial concentration of

wastes in the blood is u�0� � u0 while the initial concentration of wastes in the
dialysate is v�L� � 0, then we must solve the initial-value problem

�				

				
�

QBu� � �k�u � v�

�QDv� � k�u � v�

u�0� � u0, v�L� � 0.

Solving the first equation for u� and the second equation for �v�, we obtain the
equivalent system

�						

						
�

u� � �
k

QB
�u � v�

�v� �
k

QD
�u � v�

u�0� � u0, v�L� � 0.

Adding these two equations results in a separable (and linear) equation in u � v,

u� � v� � �
k

QB
�u � v� �

k
QD

�u � v�

�u � v�� � � � k
QB

�
k

QD
� �u � v�.

Let Α � k/QB � k/QD and y � u � v. Then we must solve the separable equation
y� � �Αy, which is done with DSolve, naming the resulting output step1. We
then name y the result obtained in step1 by extracting the formula for y[x] from
step1 with Part ([[...]]) and replacing C[1] by c with ReplaceAll (/.).

In[108]:= Clear�x,y�

step1 � DSolve�y��x� �� �Α y�x�,y�x�,x�
Out[108]= ��y�x	 
 ��x Α C�1	
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In[109]:= y � step1�1,1,2�/.C�1� 
 c

Out[109]= c ��x Α

Using the facts that u� � � k
QB
�u� v� and v � u� y, we are able to use DSolve to find

u�x�.

In[110]:= step2 � DSolve�
u��x� �� � k

QB
c e�x Α,u�0� �� u0�,

u�x�,x�
Out[110]= ��u�x	 
 ��x Α �c k � c �x Α k � �x Α u0 Α QB�

Α QB
��

Because y � u�v, v � u�y. Consequently, because v�L� � 0 we are able to compute c Note that we use capl to
represent L.

In[111]:= leftside �
e�x Α �c k � ex Α Α �u0 � c k

Α QB
 QB

Α QB
� y/.

x 
 capl

Out[111]= �c ��capl Α �
��capl Α �c k � �capl Α Α �u0 � c k

Α QB
� QB�

Α QB

In[112]:= cval � Solve�leftside �� 0,c�

Out[112]= ��c 
 �capl Α u0 Α QB
�k � �capl Α k � Α QB

��
and determine u and v. Next, we substitute the value of C into the formula for u
and v.

In[113]:= u � Simplify�e�x Α �c k � ex Α Α �u0 � c k
Α QB

 QB
Α QB

/.

cval�1��
Out[113]=

u0 �� � 1 � ��capl�x� Α� k � Α QB�
��1 � �capl Α� k � Α QB

In[114]:= v � Simplify�u � y/.cval�1��
Out[114]=

��x Α ��capl Α � �x Α� u0 �k � Α QB�

��1 � �capl Α� k � Α QB

For example, in healthy adults, typical urea nitrogen levels are 11 to 23 milligrams
per deciliter, while serum creatinine levels range from 0.6 to 1.2 milligrams per
deciliter and the total volume of blood is 4 to 5 liters.

Suppose that hemodialysis is performed on a patient with urea nitrogen level of
34 mg/dl and serum creatinine level of 1.8 using a dialyser with k � 2.25 and L � 1.
If the flow rate of blood, QB, is 2 dl/minute while the flow rate of the dialysate, QD,
is 4 dl/minute, will the level of wastes in the patient’s blood reach normal levels
after dialysis is performed?
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After defining the appropriate constants, we evaluate u and v

In[115]:= Α �
k

QB
�
k

QD


k � 2.25

capl � 1

QB � 2

QD � 4

u0 � 34 � 1.8

u

v

Out[115]= 12.6776 �1.125 � 2.25 � � 1 � �0.5625 �1�x���
Out[115]= 14.2623 ��0.5625 x �1.75505 � �0.5625 x�

and then graph u and v on the interval [0,1] with Plot in Figure 2-10. Remember
that the dialysate is moving in the direction opposite the blood. Thus, we see from
the graphs that as levels of waste in the blood decrease, levels of waste in the
dialysate increase and at the end of the dialysis procedure, levels of waste in the
blood are within normal ranges.

In[116]:= p1 � Plot�u,�x,0,1	,DisplayFunction 
 Identity�

p2 � Plot�v,�x,0,1	,DisplayFunction 
 Identity�
Show�GraphicsArray��p1,p2	��

Typically, hemodialysis is performed 3 to 4 hours at a time 3 or 4 times per week. In
some cases, a kidney transplant can free patients from the restrictions of dialysis.
Of course, transplants have other risks not necessarily faced by those on dialysis;
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Figure 2-10 Remember that the dialysate moves in the opposite direction to the blood
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the number of available kidneys also affects the number of transplants performed.
For example, in 1991 over 130,000 patients were on dialysis while only 7000 kidney
transplants had been performed.

2.3 Homogeneous Equations

Definition 6 (Homogeneous Differential Equation). A differential equation that can
be written in the form

M�x, y� dx � N�x, y� dy � 0,

where

M�tx, ty� � tnM�x, y� and N�tx, ty� � tnN�x, y�

is called a homogeneous differential equation of degree n.

It is a good exercise to show that an equation is homogeneous if we can write it in
either of the forms dy/dx � F�y/x� or dy/dx � G�x/y�.

EXAMPLE 2.3.1: Show that the equation �x2 � xy� dx � y2 dy � 0 is
homogeneous.

SOLUTION: Let M�x, y� � x2 � xy and N�x, y� � �y2. Because M�tx, ty� �
�tx�2 � �tx��ty� � t2 �x2 � xy� � t2M�x, y� and N�tx, ty� � �t2y2 � t2N�x, y�, the
equation �x2 � xy� dx � y2 dy � 0 is homogeneous of degree two.

Homogeneous equations can be reduced to separable equations by either of the
substitutions

y � ux or x � vy.

Generally, use the substitution y � ux if N�x, y� is less complicated than M�x, y�
and use x � vy if M�x, y� is less complicated than N�x, y�. If a difficult integration
problem is encountered after a substitution is made, try the other substitution to
see if it yields an easier problem.
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EXAMPLE 2.3.2: Solve the equation �x2 � y2� dx � xy dy � 0.

SOLUTION: In this case, M�x, y� � x2 � y2 and N�x, y� � xy. Then,
M�tx, ty� � t2M�x, y� and N�tx, ty� � t2N�x, y� which means that �x2 � y2� dx
� xy dy � 0 is a homogeneous equation of degree two. Assume x � vy.
Then, dx � v dy�y dv and substituting into the equation and simplifying
yields

0 � �x2 � y2� dx � xy dy

� �v2y2 � y2� �v dy � y dv� � vy  y dy

� �v2 � 1� �v dy � y dv� � v dy

� v3 dy � y �v2 � 1� dv.

We solve this equation by rewriting it in the form

1
y

dy �
1 � v2

v3
dv � � 1

v3
�

1
v

� dv

and integrating. This yields

ln �y� � �
1

2v2
� ln �v� �C1,

which can be simplified as

ln �vy� � �
1

2v2
�C1, so vy � Ce�1/ �2v2�, where C �  eC1 .

Because x � vy, v � x/y, and resubstituting into the above equation
yields

x � Ce�y2/ �2x2�

as a general solution of the equation �x2 � y2� dx � xy dy � 0. We see that
DSolve is able to solve the equation as well.

In[117]:= Clear�x,y�

In[118]:= gensol � DSolve�x2 � y�x�2 � x y�x�y��x� �� 0,
y�x�,x�

Out[118]= ��y�x	 
 �
�
x2 �C�1	 � 2 Log�x	��,�y�x	 
 �
x2 �C�1	 � 2 Log�x	���
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The result means that a general solution of the equation is y2 �
x2 �C � 2 ln �x��. We can graph this implicit solution for various values
of C by solving this equation for C

In[119]:= f � Solve�y2 �� gensol�1,1,2�2, C�1��
Out[119]= ��C�1	 
 y2 � 2 x2 Log�x	

x2
��

In[120]:= f�1,1,2�
Out[120]=

y2 � 2 x2 Log�x	

x2

In[121]:= f��1,1,2��

Out[121]=
y2 � 2 x2 Log�x	

x2

and then noting that graphs of the equation y2 � x2 �C � 2 ln �x�� for var-
ious values of C are the same as the graphs of the level curves of the
function f �x, y� � �y2 � 2x2 ln �x�� / �2x2�.

The ContourPlot command graphs several level curves C � f �x, y�,
C a constant, of the function z � f �x, y�. We may instruct Mathemat-
ica to graph the level curves of z � f �x, y� for particular values of C
by including the Contours option. For example, the level curves of
f �x, y� � �y2 � 2x2 ln �x�� / �2x2� that intersect the x-axis at x � 1, 3/2, 2, . . . ,
19/2, and 10 are the contours with values obtained by replacing each
occurrence of y in f �x, y� by 0 and x by 1, 3/2, 2, . . . , 19/2, and 10 which
we do now with Table and ReplaceAll (/.), naming the resulting
set of ten numbers contourvals.

In[122]:= contourvals � Table��f�1,1,2��/.
�x 
 i,y 
 0	,�i,1,10,1/2	�

Then, entering

In[123]:= cp1 � ContourPlot�f�1,1,2�,�x,0.01,10	,
�y,�5,5	,PlotPoints 
 150,Frame 


False,Contours 
 contourvals,

Axes 
 Automatic,AxesOrigin 
 �0,0	,

ContourStyle� > ��GrayLevel�0.4�,

Thickness�0.01�		,ContourShading 


False,DisplayFunction� > Identity�

graphs several level curves of z � f �x, y� for 0.01 � x � 10 and �5 � We avoid x � 0 because
f �x, y� is undefined if x � 0.y � 5 and names the resulting graphics object cp1. cp1 is not displayed

because we include the DisplayFunction->Identity option in the
ContourPlot command. The option Contours->contourvals
instructs Mathematica to draw contours with values given in the list
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Figure 2-11 Various solutions and direction field for the homogeneous equation�x2 � y2� dx � xy dy � 0

of numbers contourvals. We use PlotVectorField to graph the
direction field associated with the equation on the rectangle

In[124]:= << Graphics‘PlotField‘

In[125]:= pvf � PlotVectorField��1,�yˆ2 � xˆ2�/�x y�	,

�x,0.01,10	,�y,�5,5	,Frame 


False,Axes 
 Automatic,AxesOrigin 


�0,0	,AxesStyle 
 GrayLevel�0.5�,

ScaleFunction 
 �0.5&�,

PlotPoints� > 30,HeadLength� > 0,

DisplayFunction� > Identity�

and then display cp1 and the direction field together with Show in
Figure 2-11.

In[126]:= Show�cp1,
pvf,DisplayFunction� > $DisplayFunction�
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EXAMPLE 2.3.3: Solve �y2 � 2xy� dx � x2dy � 0.

SOLUTION: In this case, letting F�t� � t2 � 2t, we note that dy/dx �
F�y/x� � � y/x�2 � 2�y/x� so the equation is homogeneous.

Let y � ux. Then, dy � udx� xdu. Substituting into �y2 � 2xy� dx � x2dy � 0
and separating gives us

�y2 � 2xy� dx � x2dy � 0�u2x2 � 2ux2� dx � x2�u dx � x du� � 0�u2 � 2u� dx � �u dx � x du� � 0�u2 � u� dx � x du

1
u �u � 1�

du �
1
x

dx.

Integrating the left and right-hand sides of this equation with Integrate,

In[127]:= Integrate�1/�u�u � 1��,u�

Out[127]= Log�u	 � Log�1 � u	

In[128]:= Integrate�1/x,x�

Out[128]= Log�x	

exponentiating, resubstituting u � y/x, and solving for y gives us

ln �u� � ln �u � 1� � � ln �x� �C

u
u � 1

�
Cx
x

y
x

y
x
� 1

�
Cx
x

y �
Cx2

1 �Cx
.

In[129]:= Solve��y/x�/�y/x � 1� �� cx,y�

Out[129]= ��y 
 �
c x2

�1 � xc
��

We confirm this result with DSolve and then graph several solutions
with Plot in Figure 2-12.
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-4 -2 2 4

-4

-2

2

4

Figure 2-12 Graphs of several solutions of �y2 � 2xy� dx � x2dy � 0

In[130]:= sol � DSolve�y�x�ˆ2 � 2x y�x� � xˆ2y��x� �� 0,
y�x�,x�

Out[130]= ��y�x	 
 �
x2 C�1	

�1 � x C�1	
��

In[131]:= toplot � Table�sol��1,1,2��/.C�1�� > i,
�i,�5,5	�Plot�Evaluate�toplot�,
�x,�5,5	,PlotRange� > ��5,5	,
AspectRatio� > Automatic�

Application: Models of Pursuit
Suppose that one object pursues another whose motion is known by a pre-

Sources: A particularly
interesting and fun-to-read
discussion of flight paths and
models of pursuit can be
found in Differential Equations:
A Modeling Perspective by
Robert L. Borrelli and
Courtney S. Coleman and
published by John Wiley &
Sons.

determined strategy. For example, suppose that an airplane is positioned at
B�1000, 0� to fly to another airport A�0, 0� that is 1000 miles directly west of its
position B, as illustrated in the following figure. Assume that the airplane aims
towards A at all times. If the wind goes from south to north at a constant speed,
w, and the airplane’s speed in still air is b, determine conditions on b so that the
airplane eventually arrives at A and describe its path.
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As described, the speed of the airplane, b, must be greater than the speed of the
wind, w: b > w, in order for the plane to arrive at A. Observe that dx/dt describes
the airplane’s velocity in the x direction:

dx
dt

� �b cos Θ �
�bx
x2 � y2

,

because from right-triangle trigonometry we know that cos Θ � adjacent/
hypotenuse � x/


x2 � y2. Similarly,

dy
dt

� �b sin Θ � w �
�by
x2 � y2

� w,

so

dy
dx

�
dy/dt
dx/dt

�

�by
x2 � y2

� w

�bx
x2�y2

�
by � w


x2 � y2

bx
.

This is a homogeneous equation (of degree one) because it can be written in the
form dy/dx � F�y/x�:

dy
dx

�
by � w


x2 � y2

bx
�

y
x
�

w
b

�
1 � �y

x
�2

.
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Therefore, we must solve the initial-value problem

�			

			
�

dy
dx

�
by � w


x2 � y2

bx
y�1000� � 0.

In this case, we see DSolve is both able to find a general solution of the equation

In[132]:= Clear�x,y,w,b�

DSolve�y��x� �� �b y�x� � w Sqrt�xˆ2 � y�x�ˆ2��/�b x�,
y�x�,x�

Out[132]= ��y�x	 
 x Sinh�C�1	 � w Log�x	

b
���

as well as solve the initial-value problem.

In[133]:= Clear�x,y,b,w�

DSolve��y��x� �� �b y�x� � w Sqrt�xˆ2 � y�x�ˆ2��/�b x�,
y�1000� �� 0	,y�x�,x�

Out[133]= ��y�x	 
 x Sinh�w Log�1000	

b
�
w Log�x	

b
���

Alternatively, letting y � ux, differentiating to obtain dy � u dx � x du, and substi-
tuting into the equation results in the separable equation

dy
dx

�
du
dx

x � u �
bux � w


x2 � u2x2

bx
du
dx

x � u � u �
w
b


1 � u2

1
1 � u2

du � �
w
b

1
x

dx .

In[134]:= Clear�x,y,u�

y � u x

eqn � Dt�y� �� �b y � w Sqrt�xˆ2 � yˆ2��/�b x�

step1 � PowerExpand�Simplify�eqn��

Out[134]=



1 � u2 w

b
� x Dt�u	 � u Dt�x	 �� u

Integrating the left-hand side of this equation yields � 1
1 � u2

du �

ln
�����u �

1 � u2
����� �C1
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In[135]:= leftint � Integrate�1/Sqrt�1 � uˆ2�,u�

Out[135]= ArcSinh�u	

In[136]:= leftint � TrigToExp�leftint�

Out[136]= Log�u � 

1 � u2�

and integrating the right results in �
w
b � 1

x
dx � �

w
b

ln �x� � C2. Note that absolute

value bars are not necessary because x and y and, hence, u are nonnegative. Thus,
ln �u �

1 � u2� � �w
b

ln x �C.

In[137]:= rightint � Integrate��w/�b x�,x� � c

Out[137]= c �
w Log�x	

b

Because y�1000� � 0, C � w
b ln 1000

In[138]:= cval � Solve�leftint �� rightint/.�x� > 1000,u� > 0	,c�

Out[138]= ��c 
 w Log�1000	

b
��

and ln �u �
1 � u2� � �w

b
ln x �

w
b

ln 1000.

In[139]:= step2 � leftint �� rightint/.cval��1��

Out[139]= Log�u � 

1 � u2� ��

w Log�1000	

b
�
w Log�x	

b

Solving for u gives us

ln �u �
1 � u2� � ln � x

1000
��w/b

u �


1 � u2 � � x
1000

��w/b


1 � u2 � � x

1000
��w/b

� u

1 � u2 � � x
1000

��2w/b

� 2u � x
1000

��w/b

� u2

2u � x
1000

��w/b

� � x
1000

��2w/b

� 1

u �
1
2

	� x
1000

��w/b

� � x
1000

�w/b
 .

In[140]:= step3 � Solve�step2,u�

Out[140]= ��u 
 �2�1�
3 w
b 125�

w
b x�

w
b � � 1000

2 w
b � x

2 w
b ���
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Figure 2-13 If w/b " 1, the airplane never reaches its destination

We solve for y by resubstituting u � y/x and multiplying by x:

y
x
�

1
2

	� x
1000

��w/b

� � x
1000

�w/b

y �

1
2

x 	� x
1000

��w/b

� � x
1000

�w/b
 .

In[141]:= Clear�y�

y�x � � x step3��1,1,2��

Out[141]= �2�1�
3 w
b 125�

w
b x1�

w
b � � 1000

2 w
b � x

2 w
b �

We graph y for various values of w/b by setting b � 1 and then using Table to
generate the value of y for w � 0.25, 0.50, . . . , 2.0. These functions are then graphed
with Plot in Figure 2-13. Notice that the airplane never arrives at A if w/b " 1.

In[142]:= b � 1

toplot � Table�y�x�,�w,0.25,2,0.25	�

Plot�Evaluate�toplot�,�x,0,1000	,
PlotRange� > �0,1000	,AspectRatio� > 1�
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2.4 Exact Equations

Definition 7 (Exact Differential Equation). A differential equation that can be written
in the form

M�x, y� dx � N�x, y� dy � 0

where
M�x, y� dx � N�x, y� dy �

� f
�x
�x, y� dx �

� f
�y
�x, y� dy

for some function z � f �x, y� is called an exact differential equation.

We can show that the differential equation M�x, y� dx � N�x, y� dy � 0 is exact if and
only if �M/�y � �N/�x.

EXAMPLE 2.4.1: Show that the equation 2xy3 dx � �1 � 3x2y2� dy � 0 is
exact and that the equation x2y dx � 5xy2 dy � 0 is not exact.

SOLUTION: Because

�
�y

�2xy3� � 6xy2 �
�
�x

�1 � 3x2y2� ,

the equation 2xy3 dx � �1 � 3x2y2� dy � 0 is an exact equation. On the
other hand, the equation x2y dx � 5xy2 dy � 0 is not exact because

�
�y

�x2y� � x2 # 5y2 �
�
�x

�5xy2� .

(However, the equation x2y dx � 5xy2 dy � 0 is separable.)

If an equation is exact, we can find a function z � f �x, y� such that M�x, y� �
� f
�x
�x, y�

and N�x, y� �
� f
�y
�x, y�.

1. Assume that M�x, y� �
� f
�x
�x, y� and N�x, y� �

� f
�y
�x, y�.

2. Integrate M�x, y� with respect to x. (Add an arbitrary function of y, g�y�.)
3. Differentiate the result in Step 2 with respect to y and set the result equal

to N�x, y�. Solve for g��y�.
4. Integrate g��y� with respect to y to obtain an expression for g�y�. (There is

no need to include an arbitrary constant.)
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5. Substitute g�y� into the result obtained in Step 2 for f �x, y�.
6. A general solution is f �x, y� � C where C is a constant.
7. If given an initial-value problem, apply the initial condition to

determine C.

Remark. A similar algorithm can be stated so that in Step 2 N�x, y� is integrated
with respect to y.

EXAMPLE 2.4.2: Solve 2x sin y dx � �x2 cos y � 1� dy � 0 subject to
y�0� � 1/2.

SOLUTION: The equation 2x sin y dx � �x2 cos y � 1� dy � 0 is exact
because

�
�y
�2x sin y� � 2x cos y �

�
�x

�x2 cos y � 1� .

Let z � f �x, y� be a function with � f /�x � 2x sin y and � f /�y � x2 cos y� 1.
Then, integrating � f /�x with respect to x yields

f �x, y� � � 2x sin y dx � x2 sin y � g�y�.

Notice that the arbitrary function g � g�y� of y serves as a “constant” of
integration with respect to x. Because we have � f /�y � x2 cos y � 1 from
the differential equation, and

� f
�y
�x, y� � x2 cos y � g��y�

from differentiation of f �x, y� with respect to y, g��y� � �1. Integrating
g��y� with respect to y gives us g�y� � �y. Therefore, f �x, y� � x2 sin y � y,
so a general solution of the exact equation is x2 sin y�y � C, where C is a
constant. Because our solution requires that y�0� � 1/2, we must find theNotice that we do not have

to include the constant in
calculating g�y� because we
combine it with the constant
in the general solution.

solution in the family of solutions that passes through the point �0, 1/2�.
Substituting these values of x and y into the general solution, we obtain
02  sin�1/2� � 1/2 � C so that C � �1/2. Therefore, the desired solution is
x2 sin y � y � �1/2. We are able to use DSolve to solve the initial-value
problem implicitly as well.

In[143]:= Clear�x,y�

partsol � DSolve�
2x Sin�y�x��

��x2 Cos�y�x�� � 1	 y��x� �� 0,y�0� ��
1

2
�,y�x�,x�



2.4 Exact Equations 71

-10 -5 5 10

-10

-5

5

10

Figure 2-14 Plot of x2 sin y � y � �1/2

Solve �� tdep � The equations appear to involve the

variables to be solved for in an essentially

non�algebraic way.

Solve �� tdep � The equations appear to involve the

variables to be solved for in an essentially

non�algebraic way.

Out[143]= Solve�x2 Sin�y�x		 � y�x	 �� �1
2
,y�x	�

To graph the equation implicitsol, we first load the ImplicitPlot
package, which is located in the Graphics folder (or directory) and then
we use ImplicitPlot to graph the equation for �10 � x � 10 and
�10 � y � 10 in Figure 2-14. We include the option AxesOrigin->
{0,0} to specify that the axes intersect at the point �0, 0� and the option
PlotPoints->100 to help guarantee that the resulting curves appear
smooth.

In[144]:= toplot � x2 Sin�y�x�� � y�x� �� �
1

2
/. y�x�� > y

Out[144]= �y � x2 Sin�y	 �� �
1

2

In[145]:= << Graphics‘ImplicitPlot‘

In[146]:= ImplicitPlot�toplot,�x,�10,10	,�y,�10,10	,
AxesOrigin 
 �0,0	,PlotPoints 
 100�
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The following example illustrates how we can use Mathematica to assist us in
carrying out the necessary steps encountered when solving an exact equation.

EXAMPLE 2.4.3: Solve �2x � y2 sin�xy�� dx � �cos�xy� � xy sin�xy�� dy � 0.

SOLUTION: We begin by identifying M�x, y� � 2x � y2 sin�xy� and
N�x, y� � cos�xy� � xy sin�xy�. We then define capm, corresponding to M,
and capn, corresponding to N. We then see that the equation is exact
because �M/�y � �N/�x.

In[147]:= capm�x ,y � � 2x � y2 Sin�xy�

capn�x ,y � � Cos�xy� � xy Sin�xy�

In[148]:= �ycapm�x,y� �� �xcapn�x,y�

Out[148]= True

Next, we compute � M�x, y� dx and add an arbitrary function of y, g[y],
to the result.

In[149]:= f � � capm�x,y��x � g�y�//Simplify

Out[149]= x2 � y Cos�x y	 � g�y	

Differentiating f with respect to y gives us

In[150]:= �yf

Out[150]= Cos�x y	 � x y Sin�x y	 � g��y	

and because we must have that � f /�y � N�x, y�, we obtain the equation

In[151]:= �yf �� capn�x,y�

Out[151]= Cos�xy	�xySin�xy	�g��y	 �� Cos�xy	�xySin�xy	

which we solve for g��y� with Solve.

In[152]:= Solve��yf �� capn�x,y�,g
��y��

Out[152]= ��g��y	 
 0

Thus, g�y� is a (real-valued) constant and a general solution of the equa-
tion is x2 � y cos�xy� � C. We can graph this general solution for vari-
ous values of C by observing that the level curves of the function z �
x2 � y cos�xy� correspond to the graphs of the equation x2 � y cos�xy� � C
for various values of C.
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Figure 2-15 Level curves of z � x2 � y cos�xy�

In[153]:= f � f/.g�y� 
 0

Out[153]= x2 � y Cos�x y	

We now use ContourPlot to graph several level curves of z � x2 �
y cos�xy� on the rectangle �0, 3Π� � �0, 3Π� in Figure 2-15. In this case,
the option Frame->False instructs Mathematica to not place a frame
around the resulting graphics object, the option Axes->Automatic
specifies that axes are to be placed on the graph, AxesOrigin->{0,0}
specifies that the axes are to intersect at the point �0, 0�, AxesStyle->
GrayLevel[.5] specifies that the axes are to be drawn in a light gray,
ContourShading->False specifies that the region between contours
is to not be shaded and the option PlotPoints->150 helps assure
that the resulting contours appear smooth.

In[154]:= ContourPlot�f,�x,0,3Π	,�y,0,3Π	,

Frame 
 False,Axes 
 Automatic,

AxesOrigin 
 �0,0	,ContourShading 
 False,
PlotPoints 
 150�

We see that DSolve is able to find an implicit solution of the equation
after we rewrite it in the form �2x � y2 sin�xy����cos�xy� � xy sin�xy�� y� � 0.
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In[155]:= gensol � DSolve��2x � y�x�2 Sin�x y�x��	
��Cos�x y�x�� � x y�x� Sin�x y�x��� y��x� �� 0,
y�x�,x�

Solve �� tdep � The equations appear to involve the

variables to be solved for in an essentially non�algebraic way.
Solve �� tdep � The equations appear to involve the

variables to be solved for in an essentially non�algebraic way.
Out[155]= Solve�x2 � Cos�x y�x		 y�x	 �� C�1	,y�x	�

The implicit solution is the first part of gensol.

In[156]:= step1 � gensol�1�
Out[156]= x2 � Cos�x y�x		 y�x	 �� C�1	

To graph the level curves of z � x2 � y cos�xy�, we extract the left-hand
side of the equation gensol[[1]] by noting that it is the first part of
the first part of gensol

In[157]:= step2 � gensol�1,1�
Out[157]= x2 � Cos�x y�x		 y�x	

and then replacing each occurrence of y[x] by y using ReplaceAll
(/.).

In[158]:= implicitsol � step2/.y�x� 
 y

Out[158]= x2 � y Cos�x y	

Entering

In[159]:= ContourPlot�implicitsol,�x,0,3Π	,�y,0,3Π	,
ContourShading 
 False,PlotPoints 
 150�

produces the same graph as that obtained in Figure 2-15.

2.5 Linear Equations

Definition 8 (First-Order Linear Equation). A differential equation of the form

a1�x�
dy
dx

� a0�x�y � f �x�, (2.2)

where a1�x� is not identically the zero function, is a first-order linear differential
equation.
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Assuming that a1�x� is not identically the zero function, dividing equation (2.2) by
a1�x� gives us the standard form of the first-order linear equation:

dy
dx

� p�x�y � q�x�. (2.3)

If q�x� is identically the zero function, we say that the equation is homogeneous.
The corresponding homogeneous equation of equation (2.3) is

dy
dx

� p�x�y � 0. (2.4)

2.5.1 Integrating Factor Approach

Multiplying equation (2.3) by e� p�x� dx yields

e� p�x� dx dy
dx

� e� p�x� dx p�x�y � e� p�x� dxq�x�.

By the product rule and the Fundamental Theorem of Calculus,

d
dx

�e� p�x� dxy� � e� p�x� dx dy
dx

� e� p�x� dx p�x�y

so equation (2.3) becomes

d
dx

�e� p�x� dxy� � e� p�x� dxq�x�.

Integrating and dividing by e� p�x� dx yields a general solution of y� � p�x�y � q�x�:

e� p�x� dxy � � e� p�x� dxq�x� dx

y �
1

e� p�x� dx � e� p�x� dxq�x� dx � e� � p�x� dx � e� p�x� dxq�x� dx.

The term Μ�x� � e� p�x� dx is called an integrating factor for the linear equation (2.3).
Thus, first-order linear equations can always be solved, although the resulting
integrals may be difficult or impossible to evaluate exactly.

As we see with the following command, DSolve is always able to solve first-
order linear differential equations, although the result might contain unevaluated
integrals.
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In[160]:= Clear�x,y,p,q�

DSolve�y��x� � p�x� y�x� �� q�x�,y�x�,x�

Out[160]= ��y�x	 
 � xK$14523 �p�K$14522	�K$14522 C�1	
�� xK$14523 �p�K$14522	�K$14522� x

K$14559

�
�  K$14558K$14523

�p�K$14522	�K$14522

q�K$14558	�K$14558��
EXAMPLE 2.5.1: Solve x dy/dx � y � x cos x, x > 0.

SOLUTION: First, we place the equation in the form used in the deriva-
tion above. Dividing the equation by x yields

dy
dx

�
1
x

y � cos x, (2.5)

where p�x� � 1/ x and q�x� � cos x. Then, an integrating factor is

Μ�x� � e� 1
x dx � eln �x� � x, for x > 0,

and multiplying equation (2.5) by the integrating factor gives us

d
dx
�xy� � x

dy
dx

� y � x cos x.

Integrating once we have

xy � � x cos x dx.

Using the integration by parts formula, � u dv � uv � � v du, with u � x
and dv � cos x dx, we obtain du � dx and v � sin x so

xy � � x cos x dx � x sin x � � sin x dx � x sin x � cos x �C.

Therefore, a general solution of the equation x dy/dx � y � x cos x for
x > 0 is y � �x sin x � cos x �C� / x. We see that DSolve is also successfulIf we want to solve the

equation for x < 0, then we
would have
e� 1

x dx � eln �x� � �x for x < 0.

in finding a general solution of the equation.

In[161]:= gensol � DSolve�xy��x��y�x� �� xCos�x�,y�x�,x�

Out[161]= ��y�x	 
 C�1	

x
�
Cos�x	 � x Sin�x	

x
��
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Figure 2-16 Various solutions of x dy/dx � y � x cos x, x > 0

As we have seen in previous examples, we can graph the solution for
various values of the arbitrary constant by generating a set of func-
tions obtained by replacing the arbitrary constant with numbers using
Table and ReplaceAll (/.).

In[162]:= toplot � Table�gensol�1,1,2�/.C�1� 
 i,
�i,�4,4	�

In this case, Mathematica generates several error messages, which are
not displayed here because the solution is undefined if x � 0. Neverthe-
less, the resulting graph shown in Figure 2-16 is displayed correctly.

In[163]:= grays � Table�GrayLevel�i�,�i,0,0.7,0.7/8	�

Plot�Evaluate�toplot�,�x,0,4Π	,

PlotRange� > ��2Π,2Π	,AspectRatio� > 1,

PlotStyle� > grays�

As with other types of equations, we solve initial-value problems by first finding
a general solution of the equation and then applying the initial condition to deter-
mine the value of the constant.
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EXAMPLE 2.5.2: Solve the initial-value problem
�		

		
�

dy/dx � 5x4y � x4

y�0� � �7.

SOLUTION: As we have seen in many previous examples, DSolve
can be used to find a general solution of the equation and the solution
to the initial-value problem, as done in gensol and partsol, respec-
tively.

In[164]:= Clear�x,y�

gensol � DSolve�y��x� � 5x4 y�x� �� x4,y�x�,x�
Out[164]= ��y�x	 
 1

5
� ��x

5
C�1	��

In[165]:= partsol � DSolve�
y��x� � 5x4 y�x� �� x4,
y�0� �� �7�,y�x�,x�

Out[165]= ��y�x	 
 1

5
��x

5 � � 36 � �x
5���

We now graph the solution to the initial-value problem obtained in
partsol with Plot in Figure 2-17.

In[166]:= Plot�y�x�/.partsol,�x,�1,2	�

We can also use Mathematica to carry out the steps necessary to solve
first-order linear equations. We begin by identifying the integrating fac-
tor e� 5x4 dx � ex5

, computed as follows with Integrate.

-1 -0.5 0.5 1 1.5 2

-15

-10

-5

Figure 2-17 The solution of dy/dx � 5x4y � x4 that satisfies y�0� � �7
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In[167]:= intfac � Exp� � 5x4�x�
Out[167]= �x

5

Therefore, the equation can be written as

d
dx

�ex5
y� � x4ex5

so that integration of both sides of the equation yields

ex5
y �

1
5

ex5
�C.

In[168]:= rightside � � intfacx4�x

Out[168]=
�x

5

5

Hence, a general solution is y � 1
5 � Ce�x5

. Note that we compute y by
using Solve to solve the equation ex5

y � 1
5 ex5

�C for y.

In[169]:= step1 � Solve�Exp�x5� y �� rightside � c,y�
Out[169]= ��y 
 1

5
��x

5 �5 c � �x5���
We find the unknown constant C by substituting the initial condition
y�0� � �7 into the general solution and solving for C.

In[170]:= findc � Solve��7 �� step1�1,1,2�/.x 
 0�

Out[170]= ��c 
 �
36

5
��

Therefore, the solution to the initial-value problem is y � 1
5 �

36
5 e�x5

.

In[171]:= step1�1,1,2�/.findc�1�
Out[171]=

1

5
��x

5 � � 36 � �x
5�

We can use DSolve to solve a first-order linear equation even if the coefficient
functions are discontinuous or piecewise-defined. In such situations, it is often
useful to take advantage of the unit step function. The unit step function, ��t�, is
defined by

��t� �
�		

		
�

1, t " 0

0, t < 0 .

The Mathematica command UnitStep[t] returns��t�.
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EXAMPLE 2.5.3 (Drug Concentration): If a drug is introduced into the
bloodstream in dosages D�t� and is removed at a rate proportional to
the concentration, the concentration C�t� at time t is given by

�		

		
�

dC/dt � D�t� � kC

C�0� � 0

where k > 0 is the constant of proportionality.See J. D. Murray’s
Mathematical Biology,
Springer-Verlag, 1990,
pp. 645–649.

Suppose that over a 24-hour period, a drug is introduced into the
bloodstream at a rate of 24/ t0 for exactly t0 hours and then stopped

so that Dt0 �t� �
�		

		
�

24/t0, 0 � t � t0

0, t > t0
. Calculate and then graph C�t� on the

interval �0, 30� if k � 0.05, 0.10, 0.15, 0.20, and 0.25 for t0 � 4, 8, 12, 16,
and 25. How does increasing t0 affect the concentration of the drug in
the bloodstream? Then consider the effect of increasing k.

SOLUTION: To compute C�t�, we must keep in mind that Dt0 �t� is a
piecewise-defined function. In terms of the unit step function, ��t�,

Dt0 �t� �
24
t0
� �t0 � t�.Note that we use lower-case

letters to avoid any ambiguity
with built-in objects like C
and D.

In[172]:= d�t ,t0 � � 24/t0 UnitStep�t0 � t�

Out[172]=
24 UnitStep��t � t0	

t0

For example, entering d(t,4) returns D4�t� �
�		

		
�

6, 0 � t � 4

0, t > 4
.

In[173]:= d�t,4�

Out[173]= 6 UnitStep�4 � t	

Given k and t0, the function sol returns the solution to the initial-value

problem
�		

		
�

dC/dt � Dt0 �t� � kC

C�0� � 0
.

In[174]:= Clear�sol,k,c,t,t0�

sol�k ,t0 � �� DSolve��c��t� �� d�t,t0� � k c�t�,
c�0� �� 0	,c�t�,t���1,1,2��

Then, for k � 0.05 we solve the initial-value probem
�		

		
�

dC/dt � Dt0 �t� � kC

C�0� � 0
for t � 4, 8, 12, 16, and 20 by applying sol to the list {4,8,12,16,20}.
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In[175]:= toplot05 � Map�sol�0.05,#�&,
�4,8,12,16,20	�

Out[175]= ���0.05 t � � 120. � 120. �0.05 t

�146.568 UnitStep��4. � 1. t	

�120. 2.718280.05 t UnitStep��4. � 1. t	�,
��0.05 t � � 60. � 60.�0.05 t

�89.5095 UnitStep��8. � 1. t	

�60. 2.718280.05 t UnitStep��8. � 1. t	�,
��0.05 t � � 40. � 40. �0.05 t

�72.8848 UnitStep��12. � 1. t	

�40. 2.718280.05 t UnitStep��12. � 1. t	�,
��0.05 t � � 30. � 30. �0.05 t

�66.7662 UnitStep��16. � 1. t	

�30. 2.718280.05 t UnitStep��16. � 1. t	�,
��0.05 t � � 24. � 24. �0.05 t

�65.2388 UnitStep��20. � 1. t	

�24. 2.718280.05 t UnitStep��20. � 1. t	��
These solutions are graphed with Plot in Figure 2-18.
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Figure 2-18 As t0 increases, the maximum concentration of the drug decreases
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In[176]:= grays � Table�GrayLevel�i�,
�i,0,0.6,0.15	�

In[177]:= Plot�Evaluate�toplot05�,�t,0,30	,

PlotRange� > �0,30	,AspectRatio� > 1,

PlotStyle� > grays�

Similar steps are repeated for k � 0.10, 0.15, 0.20, and 0.25 by defin-
ing the function toplot. Given k, toplot[k] solves the initial-value

problem
�		

		
�

dC/dt � Dt0 �t� � kC

C�0� � 0
for t0 � 4, 8, 12, 16, and 20.

In[178]:= Clear�toplot,sols�

toplot�k � �� Map�sol�k,#�&,�4,8,12,16,20	�

We then apply toplot to the list {0.1, 0.15, 0.20, 0.25} nam-
ing the resulting lists of functions sols.

In[179]:= sols � Map�toplot,�0.1,0.15,0.2,0.25	�

Each list of functions in sols is then graphed with Plot by applying
the pure function

Plot[Evaluate[#], {t, 0, 30}, PlotRange ->
{0, 30}, AspectRatio -> 1, PlotStyle -> grays,
DisplayFunction -> Identity] &

to each element of sols with Map.

In[180]:= toshow � Map�Plot�Evaluate�#�,�t,0,30	,

PlotRange� > �0,30	,AspectRatio� > 1,

PlotStyle� > grays,

DisplayFunction� > Identity�&,sols�

Out[180]= �-Graphics-,-Graphics-,-Graphics-,
-Graphics-

Finally, all four graphs are shown together as a graphics array using
Show and GraphicsArray in Figure 2-19.

In[181]:= Show�GraphicsArray�Partition�toshow,2���

From the graphs, we see that as t0 is increased, the maximum con-
centration level decreases and occurs at later times, while increasing k
increases the rate at which the drug is removed from the bloodstream.
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Figure 2-19 C�t� for various values of t0 and k

If the integration cannot be carried out, the solution can often be approximated
numerically by taking advantage of numerical integration techniques.

EXAMPLE 2.5.4: Graph the solution to the initial-value problem y� �
y sin�2Πx� � 1, y�0� � 1 on the interval �0, 2Π�.

SOLUTION: Note that DSolve is successful in finding the solution to
the initial-value problem even though the result contains unevaluated
integrals.
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In[182]:= Clear�x,y,partsol�

partsol � DSolve��y��x� � Sin�2Πx� y�x� �� 1,

y�0� �� 1	,y�x�,x�

Out[182]= ��y�x	 
 ��
Cos�2 Π x	

2 Π �� 1
2 Π � � 0

K$16674

�
Cos�2 K$16673 Π	

2 Π �K$16673

�� x

K$16674

�
Cos�2 K$16673 Π	

2 Π �K$16673���
We can evaluate the result for particular numbers. For example,
entering

In[183]:= partsol�1,1,2�/.x 
 1

Out[183]= ��
1
2 Π �� 1

2 Π � � 0

K$16674

�
Cos�2 K$16673 Π	

2 Π �K$16673

�� 1

K$16674

�
Cos�2 K$16673 Π	

2 Π �K$16673�
returns the value of the solution to the initial-value problem if x � 1.
This result is a bit complicated to understand so we use N to obtain a
numerical approximation.

In[184]:= N�e� 1
2Π �e 1

2Π � BesselI�0, 1

2Π
���

Out[184]= 1.85827

To graph the solution on the interval �0, 2Π�, we use NDSolve to gener-
ate a numerical solution to the initial-value problem valid for 0 � x �
2Π. Generally, the command

NDSolve[{deq,ics},fun,{var,varmin,varmax}]

Note that the number of
initial conditions in ics must
equal the order of the
differential equation deq.

returns a numerical solution fun (which is a function of the variable
var) of the differential equation deq that satisfies the initial conditions
ics valid on the interval [varmin,varmax]. In some cases, the inter-
val on which the solution is returned by NDSolve is smaller than the
interval requested.

We see that the syntax for the NDSolve command is nearly the same
as the syntax of the DSolve command although we must specify an
interval on which we want the approximation to be valid. In this case,
including �x, 0, 2Π� in the NDSolve command instructs Mathematica to
(try to) make the resulting numerical solution valid for 0 � x � 2Π.
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Figure 2-20 Plot of a numerical solution to a differential equation

In[185]:= numsol � NDSolve��y��x� � Sin�2Πx� y�x� �� 1,
y�0� �� 1	,y�x�,�x,0,2Π	�

Out[185]= ��y�x	 
 InterpolatingFunction���0.,6.28319,
<>	�x	

The resulting output is an InterpolatingFunction which repre-
sents an approximate function obtained through interpolation. We can
evaluate the result for particular values of x as long as 0 � x � 2Π. For
example, entering

In[186]:= numsol/.x 
 1

Out[186]= ��y�1	 
 1.85827

approximates the value of the solution to the initial-value problem if
x � 1. Thus, the result means that y�1� � 1.85828. We can graph the result
returned by NDSolve in the same way as we graph results returned by
DSolve: entering

In[187]:= Plot�numsol�1,1,2�,�x,0,2Π	�
graphs the solution to the initial-value problem on the interval �0, 2Π� as
shown in Figure 2-20. Note that we obtain the same graph by entering
Plot[y[x]/.numsol,{x,0,2Pi}].
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2.5.2 Variation of Parameters and the Method of
Undetermined Coefficients

Observe that equation (2.4) is separable:

dy
dx

� p�x�y � 0

1
y

dy � �p�x� dx

ln ���y��� � �� p�x� dx �C

y � Ce� � p�x� dx.

Notice that any constant multiple of a solution to a linear homogeneous equation
is also a solution. Now suppose that y is any solution of equation (2.3) and yp is a
particular solution of equation (2.3). Then,A particular solution is a

specific solution to the
equation that does not
contain any arbitrary
constants.

�y � yp�� � p�x� �y � yp� � y� � p�x�y � �yp
� � p�x�yp�

� q�x� � q�x� � 0.

Thus, y � yp is a solution to the corresponding homogeneous equation of equation
(2.3). Hence,

y � yp � Ce� � p�x� dx

y � Ce� � p�x� dx � yp

y � yh � yp,

where yh � Ce� � p�x� dx. That is, a general solution of equation (2.3) is

y � yh � yp,

where yp is a particular solution to the nonhomogeneous equation and yh is a gen-
eral solution to the corresponding homogeneous equation. Thus, to solve equation
(2.3), we need to first find a general solution to the corresponding homogeneous
equation, yh, which we can accomplish through separation of variables, and then
find a particular solution, yp, to the nonhomogeneous equation.

If yh is a solution to the corresponding homogeneous equation of equation (2.3)
then for any constant C, Cyh is also a solution to the corresponding homogeneous
equation. Hence, it is impossible to find a particular solution to equation (2.3) of
this form. Instead, we search for a particular solution of the form yp � u�x�yh, where
u�x� is not a constant function. Assuming that a particular solution, yp, to equation
(2.3) has the form yp � u�x�yh, differentiating gives us

yp
� � u�yh � uyh

�
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and substituting into equation (2.3) results in

yp
� � p�x�yp � u�yh � uyh

� � p�x�uyh � q�x�.

Because uyh
� � p�x�uyh � u �yh

� � p�x�yh� � u  0 � 0, we obtain yh is a solution to the
corresponding homogeneous
equation so yh

� � p�x�yh � 0.u�yh � q�x�

u� �
1
yh

q�x�

u� � e� p�x� dxq�x�

u � � e� p�x� dxq�x� dt

so

yp � u�x� yh � Ce� � p�x� dx � e� p�x� dxq�x� dx.

Because we can include an arbitrary constant of integration when evaluating� e� p�x� dxq�x� dx, it follows that we can write a general solution of equation (2.3) as

y � e� � p�x� dx � e� p�x� dxq�t� dt. (2.6)

Exponential growth is
discussed in more detail in
Section 3.2.1.

EXAMPLE 2.5.5 (Exponential Growth): Let y � y�t� denote the size of
a population at time t. If y grows at a rate proportional to the amount
present, y satisfies

dy
dt

� Αy, (2.7)

where Α is the growth constant. If y�0� � y0, using equation (2.6) results
in y � y0eΑt . We use DSolve to confirm this result.

In[188]:= DSolve��y��t� �� Α y�t�,y�0� �� y0	,y�t�,t�

Out[188]= ��y�t	 
 et Α y0 dy/dt � k �y � ys� models
Newton’s Law of Cooling: the
rate at which the
temperature, y�t�, changes in
a heating/cooling body is
proportional to the
difference between the
temperature of the body and
the constant temperature, ys ,
of the surroundings.
Newton’s Law of Cooling is
discussed in more detail in
Section 3.3.

EXAMPLE 2.5.6: Solve each of the following equations: (a) dy/dt �
k �y � ys�, y�0� � y0, k and ys constant and (b) y� � 2ty � t.

SOLUTION: By hand, we rewrite the equation and obtain

dy
dt
� ky � �kys .
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Figure 2-21 The temperature of the body approaches the temperature of its surroundings

A general solution of the corresponding homogeneous equation

dy
dt
� ky � 0

is yh � Cekt . Because k and �kys are constants, we suppose that a partic-
ular solution of the nonhomogeneous equation, yp, has the form yp � A,
where A is a constant.

Assuming that yp � A, we have y�p � 0 and substitution into theThis will turn out to be a
lucky guess. If there is not a
solution of this form, we
would not find one of this
form.

nonhomogeneous equation gives us

dyp

dt
� kyp � �kA � �kys so A � ys.

Thus, a general solution is y � yh � yp � Cekt � ys. Applying the initial
condition y�0� � y0 results in y � ys � �y0 � ys�ekt .

We obtain the same result with DSolve. We graph the solution sat-
isfying y�0� � 75 assuming that k � �1/2 and ys � 300 in Figure 2-21.
Notice that y�t� � ys as t � �.

In[189]:= sola � DSolve��y��t� �� k�y�t� � ys�,
y�0� �� y0	,y�t�,t�

Out[189]= ��y�t	 
 ek t �y0 � ys� � ys��
In[190]:= tp � sola��1,1,2��/.�k� > �1/2,

ys� > 300,y0� > 75	Plot�tp,�t,0,10	�

(b) The equation is in standard form and we identify p�t� � �2t. Then,
the integrating factor is Μ�t� � e� p�t� dt � e�t2

. Multiplying the equation
by the integrating factor, Μ�t�, results in

e�t2
�y� � 2ty� � te�t2

or
d
dt

�ye�t2 � � te�t2
.
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Integrating gives us

ye�t2
� �

1
2

e�t2
�C or y � �

1
2
�Cet2

.

We confirm the result with DSolve.

In[191]:= DSolve�y��t� � 2t y�t� �� t,y�t�,t�

Out[191]= ��y�t	 
 �
1

2
� et

2
C�1	��

Application: Antibiotic Production
Source: Kevin H. Dykstra
and Henry Y. Wang,
“Changes in the Protein
Profile of Streptomyces Griseus
during a Cycloheximide
Fermentation,” Biochemical
Engineering V, Annals of the
New York Academy of
Sciences, Volume 56, New
York Academy of Sciences
(1987), pp. 511–522.

When you are injured or sick, your doctor may prescribe antibiotics to prevent
or cure infections. In the journal article “Changes in the Protein Profile of Strep-
tomyces Griseus during a Cycloheximide Fermentation” we see that production
of the antibiotic cycloheximide by Streptomyces is typical of antibiotic production.
During the production of cycloheximide, the mass of Streptomyces grows relatively
quickly and produces little cycloheximide. After approximately 24 hours, the mass
of Streptomyces remains relatively constant and cycloheximide accumulates. How-
ever, once the level of cycloheximide reaches a certain level, extracellular cyclohex-
imide is degraded (feedback inhibited). One approach to alleviating this problem
to maximize cycloheximide production is to continuously remove extracellular
cycloheximide. The rate of growth of Streptomyces can be described by the sepa-
rable equation

dX
dt

� Μmax �1 � 1
Xmax

X� X,

where X represents the mass concentration in g/L, Μmax is the maximum specific
growth rate, and Xmax represents the maximum mass concentration. We now solve Note that this equation can

be converted to a linear
equation with the
substitution y � X�1 .

the initial-value problem
�		

		
�

dX/dt � Μmax �1 � 1
Xmax

X� X

X�0� � 1
with DSolve, naming the

result sol1.

In[192]:= Clear�x�

sol1 � DSolve�
x��t� �� Μ �1 � x�t�

xmax
 x�t�,

x�0� �� 1�,x�t�,t�
Out[192]= ��x�t	 
 �Μ t xmax

�1 � �Μ t � xmax
��
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Figure 2-22 Plot of the mass concentration, x�t�

Experimental results have shown that Μmax � 0.3 hr�1 and Xmax � 10 g/L. For these
values, we use Plot to graph X�t� on the interval �0, 24� in Figure 2-22. Then,
we use Table and TableForm to determine the mass concentration at the end
of 4, 8, 12, 16, 20, and 24 hours.

In[193]:= Μ � 0.3xmax � 10

In[194]:= Plot�Evaluate�x�t�/.sol1�,�t,0,24	�

In[195]:= TableForm�Table��t,sol1�1,1,2�	,�t,4,24,4	��
Out[195]=

4 2.69487
8 5.50521
12 8.02624
16 9.3104
20 9.78178
24 9.93326

The rate of accumulation of cycloheximide is the difference between the rate of
synthesis and the rate of degradation:

dP
dt

� Rs � Rd.

It is known that Rd � KdP, where Kd � 5� 10�3 h�1, so dP/dt � Rs �Rd is equivalent
to dP/dt � Rs � KdP. Furthermore,

Rs � QpoEX �1 � P
Kl

��1

,

where Qpo represents the specific enzyme activity with value Qpo � 0.6 g CH/g
protein  h and Kl represents the inhibition constant. E represents the intracellular
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Figure 2-23 Accumulation of the antibiotic

concentration of an enzyme which we will assume is constant. For large values of
Kl and t, X�t� � 10 and �1 � P/Kl��1 � 1. Thus, Rs � 10QpoE so

dP
dt

� 10QpoE � KdP.

After defining Kd and Qpo, we solve the initial-value problem
�		

		
�

dP/dt � 10QpoE � KdP

p�24� � 0

and then graph
1
E

P�t� on the interval �0, 24� in Figure 2-23.

In[196]:= Clear�p�

kd �
5

1000


Qpo � 0.6

sol2 � DSolve��p��t� �� 10Qpo cape � kd p�t�,

p�24� �� 0	,p�t�,t�//Chop

Out[196]= ��p�t	 
 � � 1353. cape � 1200. 2.718280.005 t cape� ��0.005 t��
In[197]:= toplot � Expand�sol2��1,1,2��

cape
�

Out[197]= �1353. ��0.005 t � 1200. 2.718280.005 t ��0.005 t

In[198]:= Plot�toplot,�t,24,1000	�

From the graph, we see that the total accumulation of the antibiotic approaches a
limiting value, which in this case is 1200.
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2.6 Numerical Approximations of
Solutions to First-Order Equations

2.6.1 Built-In Methods

Numerical approximations of solutions to differential equations can be obtained
with NDSolve, which is particularly useful when working with nonlinear equa-
tions for which DSolve alone is unable to find an explicit or implicit solution. The
command

NDSolve[{y’[t]==f[t,y[t]],y[t0]==y0},y[t],{t,a,b}]

attempts to generate a numerical solution of

�		

		
�

dy
dt

� f �t, y�

y �t0� � y0

valid for a � t � b. In some cases, the interval on which the solution is returned by
NDSolve is smaller than the interval requested. You can obtain basic information
regarding NDSolve by entering ?NDSolve or detailed information by accessing
Mathematica’s on-line help facility by selecting Help from the Mathematica menu.

EXAMPLE 2.6.1: Consider

dy
dt

� �t2 � y2� sin y, y�0� � �1.

(a) Determine y�1�. (b) Graph y�t�, �1 � t � 10.

SOLUTION: We first remark that DSolve can neither exactly solve the
differential equation y� � �t2 � y2� sin y nor find the solution that satisfies
y�0� � �1.

In[199]:= sol � DSolve�y��t� �� �tˆ2 � y�t�ˆ2�Sin�t�,
y�t�,t�

Out[199]= BoxData�DSolve�y��t	 �� Sin�t	 �t2 � y�t	2�,
y�t	,t	�
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Figure 2-24 Graph of the solution to y� � �t2 � y2� sin y, y�0� � �1

In[200]:= sol �
DSolve��y��t� �� �tˆ2 � y�t�ˆ2�Sin�t�,
y�0� �� y0	,y�t�,t�

Out[200]= BoxData�DSolve��y��t	 �� Sin�t	 �t2 � y�t	2�,
y�0	 �� y0,y�t	,t	�

However, we obtain a numerical solution valid for 0 � t � 1000 using
the NDSolve function.

In[201]:= sol � NDSolve��y��t� �� �tˆ2 � y�t�ˆ2�Sin�y�t��,
y�0� �� �1	,y�t�,�t,0,1000	�

Out[201]= BoxData���y�t	 

InterpolatingFunction���0.,1000.,
" <> "	�t	�

Entering sol /.t->1 evaluates the numerical solution if t � 1.

In[202]:= sol /.t� > 1

Out[202]= ��y�1	 
 �0.766014

The result means that y�1� � �.766. We use the Plot command to graph
the solution for 0 � t � 10 in Figure 2-24.

In[203]:= Plot�Evaluate�y�t�/.sol�,�t,0,10	�
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EXAMPLE 2.6.2: Graph the solution to the initial-value problem

�		

		
�

dy/dx � sin �2x � y�

y�0� � 0.5

on the interval �0, 15�. What is the value of y�1�?

SOLUTION: We use NDSolve to approximate the solution to the
initial-value problem, naming the resulting output numsol. The
resulting InterpolatingFunction is a procedure that represents an
approximate function obtained through interpolation.

In[204]:= Clear�x,y�

numsol � NDSolve��y��x� �� Sin�2x � y�x��,

y�0� �� 0.5	,y�x�,�x,0,15	�
Out[204]= ��y�x	 
 InterpolatingFunction���0.,15.,

<>	�x	

We can evaluate numsol for particular values of x. For example,
entering

In[205]:= numsol/.x 
 1

Out[205]= ��y�1	 
 0.875895

returns a list corresponding to the value of y�x� if x � 1. We inter-
pret the result to mean that y�1� � 0.875895. We then graph the solu-
tion returned by NDSolve using Plot in the same way that we graph
solutions returned by DSolve. As you probably expect, entering Plot
[numsol[[1,1,2]],{x,0,15}] produces the same graph as the one
shown in Figure 2-25 generated by the following Plot command.

In[206]:= p1 � Plot�y�x�/.numsol,�x,0,15	�

One way to graph solutions that satisfy different initial conditions is to
define a function as we do here. Given i, sol[i] returns a numerical
solution to the initial-value problem y� � sin�2x � y�, y�0� � i.

In[207]:= Clear�x,y,i,sol�

sol�i � �� NDSolve��y��x� �� Sin�2x � y�x��,

y�0� �� i	,y�x�,�x,0,7	�
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Figure 2-25 Graph of the solution to y� � sin �2x � y�, y�0� � 0.5

For example, to use sol, we first use Table to define inits to be the
list of numbers i/2 for i � 1, 2, . . . , 5 and then use Map to apply sol to
the list of numbers inits. The command

interpfunctions=Map[sol,inits]

computes sol[i] for each value of i in inits. The result is a nested
list consisting of InterpolatingFunction’s.

In[208]:= inits � Table�i
2
,�i,1,10	�

In[209]:= interpfunctions � Map�sol,inits�

We graph the set of InterpolatingFunction’s with Plot in the
same way as we graph other sets of functions. See Figure 2-26.

In[210]:= plot1 � Plot�Evaluate�y�x� /. interpfunctions�,

�x,0,7	,PlotRange� > �0,7	,
AspectRatio� > 1,
PlotStyle� > GrayLevel�0��

Last, we show these graphs together with the direction field associated
with the equation in Figure 2-27.
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Figure 2-26 Various solutions of y� � sin �2x � y�

1 2 3 4 5 6 7

1

2

3

4

5

6

7

Figure 2-27 Direction field together with various solutions of y� � sin �2x � y�
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In[211]:= << Graphics‘PlotField‘

pvf � PlotVectorField��1,Sin�2x � y�	,

�x,0,7	,�y,0,7	,Frame� > False,

Axes� > Automatic,

AxesOrigin� > �0,0	,PlotPoints� > 30,

HeadLength� > 0,

ScaleFunction� > �1&�,

DisplayFunction� > Identity,

DefaultColor� > GrayLevel�0.4��

In[212]:= Show�pvf,plot1,
DisplayFunction� > $DisplayFunction�

Application: Modeling the Spread of a Disease Source: Herbert W.
Hethcote, “Three Basic
Epidemiological Models,” in
Applied Mathematical Ecology,
edited by Simon A. Levin,
Thomas G. Hallan, and Louis
J. Gross, New York,
Springer-Verlag (1989), pp.
119–143.

Suppose that a disease is spreading among a population of size N. In some dis-
eases, like chickenpox, once an individual has had the disease, the individual
becomes immune to the disease. In other diseases, like most venereal diseases,
once an individual has had the disease and recovers from the disease, the individ-
ual does not become immune to the disease; subsequent encounters can lead to
recurrences of the infection.

Let S�t� denote the percent of the population susceptible to a disease at time t,
I�t� the percent of the population infected with the disease, and R�t� the percent of
the population unable to contract the disease. For example, R�t� could represent the
percent of persons who have had a particular disease, recovered, and have subse-
quently become immune to the disease. In order to model the spread of various
diseases, we begin by making several assumptions and introducing some notation.

1. Susceptible and infected individuals die at a rate proportional to the num-
ber of susceptible and infected individuals with proportionality constant
Μ called the daily death removal rate; the number 1/Μ is the average life-
time or life expectancy.

2. The constant Λ represents the daily contact rate: on average, an infected
person will spread the disease to Λ people per day.

3. Individuals recover from the disease at a rate proportional to the number
infected with the disease with proportionality constant Γ. The constant Γ is
called the daily recovery removal rate; the average period of infectivity
is 1/Γ.

4. The contact number Σ � Λ/ �Γ � Μ� represents the average number of con-
tacts an infected person has with both susceptible and infected persons.
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If a person becomes susceptible to a disease after recovering from it (like gonor-
rhea, meningitis, and streptococcal sore throat), then the percent of persons sus-
ceptible to becoming infected with the disease, S�t�, and the percent of people in
the population infected with the disease, I�t�, can be modeled by the system of
differential equations

�						

						
�

dS
dt

� �ΛIS � ΓI � Μ � ΜS

dI
dt

� ΛIS � ΓI � ΜI

S�0� � S0, I�0� � I0, S�t� � I�t� � 1.

(2.8)

This model is called an SIS model (susceptible–infected–susceptible model)
because once an individual has recovered from the disease, the individual again
becomes susceptible to the disease.

We can write dI/dt � ΛIS�ΓI�ΜI as dI/dt � ΛI�1�I��ΓI�ΜI because S�t� � 1�I�t�
and thus we need to solve the initial-value problem

�		

		
�

dI
dt

� �Λ � �Γ � Μ�� I � ΛI2

I�0� � I0 .
(2.9)

In the following, we use i to represent I, thus avoiding conflict with the built-in
constant I �


�1. After defining eq, we use DSolve to find the solution to the

initial-value problem.

In[213]:= eq � i��t� � �Γ � Μ � Λ� i�t� �� �Λ i�t�2

In[214]:= sol � DSolve��eq,i�0� �� i0	,i�t�,t�

Out[214]= ��i�t	 
 �
45. � i0

9.�5. i0
�1.

�5. �0.9 t � 25. � i0
9.�5. i0

�1. ��
We can use this result to see how a disease might spread through a population. For
example, we compute the solution to the initial-value problem, which is extracted
from sol with sol[[1,1,2]], if Λ � 0.5, Γ � 0.75, and Μ � 0.65. In this case, we
see that the contact number is Σ � Λ/ �Γ � Μ� � 0.357143.

In[215]:= Λ � 0.5

Γ � 0.75

Μ � 0.65

Σ �
Λ

Γ � Μ

sol�1,1,2�
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Figure 2-28 The disease is removed from the population

Out[215]= 0.357143

Out[215]= �
45. � i0

9.�5. i0
�1.

�5. �0.9 t � 25. � i0
9.�5. i0

�1.

Next, we use Table to substitute various initial conditions into sol[[1,1,2]],
naming the resulting set of nine functions toplot1. We then graph the functions
in toplot1 for 0 � t � 5 in Figure 2-28. Apparently, regardless of the initial per-
cent of the population infected, under these conditions, the disease is eventually
removed from the population. This makes sense because the contact number is
less than one.

In[216]:= toplot1 � Table�sol�1,1,2�,�i0,0.1,0.9,0.1	�
In[217]:= Plot�Evaluate�toplot1�,�t,0,5	�

On the other hand, if Λ � 1.5, Γ � 0.75, and Μ � 0.65, we see that the contact number
is Σ � Λ/ �Γ � Μ�.

In[218]:= Clear�Λ,Γ,Μ,Σ�

eq � i��t� � �Γ � Μ � Λ� i�t� �� �Λ i�t�2
sol � DSolve��eq,i�0� �� i0	,i�t�,t�
Λ � 1.5
Γ � 0.75
Μ � 0.65

Σ �
Λ

Γ � Μ

sol�1,1,2�
Out[218]= 1.07143
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Figure 2-29 The disease persists

Out[218]= �0.1 e1.5 t i0�/�0.1 e1.4 t�

1.5 e1.4 t i0 � 1.5 e1.5 t i0�
Proceeding as before, we graph the solution using different initial conditions in
Figure 2-29. In this case, we see that no matter what percent of the population is
initially infected, a certain percent of the population is always infected. This makes
sense because the contact number is greater than one. In fact, it is a theorem that

lim
t��

I�t� �
�		

		
�

1 � 1/Σ, if Σ > 1

0, if Σ � 1.

In[219]:= toplot2 � Table�sol�1,1,2�,�i0,0.1,0.9,0.1	�
p1 � Plot�Evaluate�toplot2�,�t,0,5	,

DisplayFunction� > Identity�

In[220]:= toplot3 � Table�sol�1,1,2�,�i0,0.01,0.09,0.01	�
p2 � Plot�Evaluate�toplot3�,�t,0,20	,

DisplayFunction� > Identity�

In[221]:= Show�GraphicsArray��p1,p2	��

The incidence of some diseases, such as measles, rubella, and gonorrhea, oscillates
seasonally. To model these diseases, we may wish to replace the constant contact
rate Λ, by a periodic function Λ�t�. For example, to graph the solution to the SIS
model for various initial conditions if (a) Λ�t� � 3 � 2.5 sin 6t, Γ � 2, and Μ � 1 and
(b) Λ�t� � 3 � 2.5 sin 6t, Γ � 1, and Μ � 1 we proceed as follows. For (a), we begin by
defining Λ, Γ, and Μ, and eq.
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In[222]:= Clear�Λ,i,t,Γ,Μ�

Λ�t � � 3 � 2.5 Sin�6t�

Γ � 2

Μ � 1

eq � i��t� �� �Λ�t� � �Γ � Μ�� i�t� � Λ�t� i�t�2

Out[222]= i��t	 �� �i�t	2 �3 � 2.5 Sin�6 t	� � 2.5 i�t	 Sin�6 t	

We will graph the solutions satisfying the initial conditions I�0� � I0 for I0 � 0.1, 0.2,
. . . , 0.9. We begin by defining graph. Given i0, graph[i0] graphs the solution
to the initial-value problem

�		

		
�

dI
dt � �Λ�t� � �Γ � Μ�� I � Λ�t�I2

I�0� � I0

on the interval �0, 10�. The resulting graphics object is not displayed because we
include the option DisplayFunction->Identity in the Plot command. Next,
we use Table to define the list of numbers inits, corresponding to the initial
conditions, and then use Map to apply the function graph to the list of num-
bers inits. We see that the result is a list of nine graphics objects that we name
toshow.

In[223]:= graph�i0 � �� Module��numsol	,

numsol � NDSolve��eq,i�0� �� i0	,i�t�,�t,0,10	�

Plot�i�t�/.numsol,�t,0,10	,

DisplayFunction 
 Identity��

In[224]:= inits � Table�i,�i,0.1,0.9,0.1	�

toshow � Map�graph,inits�

Finally, we use Show together with the option DisplayFunction->
$DisplayFunction to view the list of nine graphs toshow in Figure 2-30.

In[225]:= Show�toshow,DisplayFunction 
 $DisplayFunction,
PlotRange 
 �0,1	�

For (b), we proceed in the same manner as in (a). See Figure 2-31.
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Figure 2-30 The disease is slowly eliminated from the population
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Figure 2-31 The disease persists periodically in the population

In[226]:= Clear�Λ,i,t,Γ,Μ�

Λ�t � � 3 � 2.5 Sin�6t�

Γ � 1

Μ � 1

In[227]:= eq � i��t� �� �Λ�t� � �Γ � Μ�� i�t� � Λ�t� i�t�2

Out[227]= i��t	 �� i�t	 �1 � 2.5 Sin�6 t	� � i�t	2 �3 � 2.5 Sin�6 t	�

In[228]:= graph�i0 � �� Module��numsol	,

numsol � NDSolve��eq,i�0� �� i0	,i�t�,�t,0,10	�

Plot�i�t�/.numsol,�t,0,10	,

DisplayFunction 
 Identity��
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In[229]:= inits � Table�i,�i,0.1,0.9,0.1	�
toshow � graph/@inits

In[230]:= Show�toshow,DisplayFunction 
 $DisplayFunction,
PlotRange 
 �0,1	�

2.6.2 Other Numerical Methods

In other cases, you may wish to implement your own numerical algorithms to
approximate solutions of differential equations. We briefly discuss three familiar
methods (Euler’s method, the improved Euler’s method, and the Runge–Kutta
method) and illustrate how to implement these algorithms using Mathematica.
Details regarding these and other algorithms, including discussions of the error
involved in implementing them, can be found in most numerical analysis texts or
other references like Zwillinger’s Handbook of Differential Equations [28].

Euler’s Method
In many cases, we cannot obtain an explicit formula for the solution to an initial-
value problem of the form

�		

		
�

dy
dx

� f �x, y�

y �x0� � y0

but we can approximate the solution using a numerical method like Euler’s
method, which is based on tangent line approximations. Let h represent a small
change, or step size, in the independent variable x. Then, we approximate the
value of y at the sequence of x-values, x1, x2, . . . , xn, where

x1 � x0 � h

x2 � x1 � h � x0 � 2h

x3 � x2 � h � x0 � 3h

�

xn � xn�1 � h � x0 � nh.

The slope of the tangent line to the graph of y at each value of x is found with
the differential equation y� � dy/dx � f �x, y�. For example, at x � x0, the slope of
the tangent line is f �x0, y �x0�� � f �x0, y0�. Therefore, the tangent line to the graph
of y is

y � y0 � f �x0, y0� �x � x0� or y � f �x0, y0� �x � x0� � y0.

Using this line to find the value of y, which we call y1, at x1 then yields

y1 � f �x0, y0� �x1 � x0� � y0 � h f �x0, y0� � y0.
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Therefore, we obtain the approximate value of y at x1. Next, we use the point �x1, y1�
to estimate the value of y when x � x2. Using a similar procedure, we approximate
the tangent line at x � x1 with

y � y1 � f �x1, y1� �x � x1� or y � f �x1, y1� �x � x1� � y1.

Then, at x � x2,
y2 � f �x1, y1� �x2 � x1� � y1 � h f �x1, y1� � y1.

Continuing with this procedure, we see that at x � xn,

yn � h f �xn�1, yn�1� � yn�1. (2.10)

Using this formula, we obtain a sequence of points of the form �xn, yn�, n � 1, 2, . . .
where yn is the approximate value of y �xn�.

In[231]:= xe�n � � x0 � nh

ye�n � �� ye�n� � h f�xe�n � 1�,ye�n � 1�� � ye�n � 1�

ye�0� � y0

EXAMPLE 2.6.3: Use Euler’s method with (a) h � 0.1 and (b) h � 0.05
to approximate the solution of y� � xy, y�0� � 1 on 0 � x � 1. Also,
determine the exact solution and compare the results.

SOLUTION: Because we will be considering this initial-value prob-
lem in subsequent examples, we first determine the exact solution with
DSolve and graph the result with Plot, naming the graph p1.

In[232]:= Clear�x,y�

exactsol � DSolve��y��x� �� x y�x�,

y�0� �� 1	,y�x�,x�

Out[232]= ��y�x	 
 �
x2
2 ��

In[233]:= p1 � Plot�ex2
2 ,�x,0,1	,

PlotStyle 
 GrayLevel�0.4�,
DisplayFunction� > Identity�

To implement Euler’s method (2.10), we note that f �x, y� � xy, x0 � 0,
and y0 � 1. (a) With h � 0.1, we have the formula

yn � h f �xn�1, yn�1� � yn�1 � 0.1xn�1yn�1 � yn�1.
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For x1 � x0 � h � 0.1, we have

y1 � 0.1x0y0 � y0 � 0.1  0  1 � 1 � 1.

Similarly, for x2 � x0 � 2h � 0.2,

y2 � 0.1x1y1 � y1 � 0.1  0.1  1 � 1 � 1.01.

In the following, we define f , h, x, and y to calculate yn given by equa-
tion (2.10). We define ye using the form

ye[n_]:=ye[n]=...

so that Mathematica “remembers” the values of ye computed, and thus,
when computing ye[n], Mathematica need not recompute ye[n-1] if
ye[n-1] has previously been computed.

In[234]:= f�x ,y � � xy

h � 0.1

x0 � 0

y0 � 1

In[235]:= xe�n � � x0 � nh

ye�n � �� ye�n� � h � f�xe�n � 1�,
ye�n � 1�� � ye�n � 1�

ye�0� � y0

Next, we use Table to calculate the set of ordered pairs �xn, yn� for n � 0,
1, 2, . . . , 9, 10, naming the result first, and then TableForm to view
first in traditional row-and-column form.

In[236]:= first � Table��xe�n�,ye�n�	,�n,0,10	�

TableForm�first�

Out[236]=

0 1
0.1 1
0.2 1.01
0.3 1.0302
0.4 1.06111
0.5 1.10355
0.6 1.15873
0.7 1.22825
0.8 1.31423
0.9 1.41937
1. 1.54711
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Figure 2-32 Comparison of Euler’s method to the exact solution using h � 0.1

To compare these results to the exact solution, we use ListPlot to
graph the list of ordered pairs first in t2 and display t2 together
with p1 with Show in Figure 2-32.

In[237]:= lp � Map�Point,first�

Out[237]= �Point��0,1	,Point��0.1,1	,

Point��0.2,1.01	,Point��0.3,1.0302	,

Point��0.4,1.06111	,Point��0.5,1.10355	,

Point��0.6,1.15873	,Point��0.7,1.22825	,

Point��0.8,1.31423	,Point��0.9,1.41937	,

Point��1.,1.54711	

In[238]:= t2 � Graphics��PointSize�0.02�,lp	�

In[239]:= Show�p1,t2,
DisplayFunction� > $DisplayFunction�

Alternatively, we can produce Figure 2-32 using ListPlot together
with the option PlotStyle->PointSize[.02] with the following
command.

In[240]:= t2 � ListPlot�first,

PlotStyle 
 PointSize�0.02�,

DisplayFunction 
 Identity�

Show�p1,

t2,DisplayFunction 
 $DisplayFunction�

(b) For h � 0.05, we use

yn � h f �xn�1, yn�1� � yn�1 � 0.05xn�1yn�1 � yn�1
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to obtain an approximation. In the same manner as in (a), we define f ,
h, x, and y to calculate yn given by equation (2.10). Then, we use Table
to calculate the set of ordered pairs for n � 0, 1, 2, . . . , 19, 20, naming the
result second, followed by TableForm to view second in traditional
row-and-column form.

In[241]:= Remove�x,y,f�

f�x ,y � � x � y

h � 0.05

x0 � 0

y0 � 1

In[242]:= xe�n � � x0 � n � h

ye�n � �� ye�n� � h � f�xe�n � 1�,

ye�n � 1�� � ye�n � 1�

ye�0� � y0

In[243]:= second � Table��xe�n�,ye�n�	,�n,0,20	�

TableForm�second�

Out[243]=

0 1
0.05 1
0.1 1.0025
0.15 1.00751
0.2 1.01507
0.25 1.02522
0.3 1.03803
0.35 1.05361
0.4 1.07204
0.45 1.09348
0.5 1.11809
0.55 1.14604
0.6 1.17756
0.65 1.21288
0.7 1.2523
0.75 1.29613
0.8 1.34474
0.85 1.39853
0.9 1.45796
0.95 1.52357
1. 1.59594
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Figure 2-33 Comparison of Euler’s method to the exact solution using h � 0.05

We graph the approximation obtained with h � 0.05 together with the
graph of y � ex2/2 in Figure 2-33. Notice that the approximation is more
accurate when h is decreased.

In[244]:= t3 � ListPlot�second,
PlotStyle� > PointSize�0.02�,
DisplayFunction� > Identity�

In[245]:= Show�p1,t3,
DisplayFunction� > $DisplayFunction�

Improved Euler’s Method
Euler’s method can be improved by using an average slope over each interval.
Using the tangent line approximation of the curve through �x0, y0�, y � f �x0, y0�
�x � x0� � y0, we find the approximate value of y at x � x1 which we now call y1

(:

y1
( � h f �x0, y0� � y0.

With the differential equation y� � f �x, y�, we find that the approximate slope of
the tangent line at x � x1 is f �x,y

1
1�. Then, the average of the two slopes, f �x0, y0�

and f �x1, y1
(�, is 1

2 � f �x0, y0� � f �x1, y1
(��, and an equation of the line through �x0, y0�

with slope 1
2 � f �x0, y0� � f �x1, y1

(�� is

y �
1
2
� f �x0, y0� � f �x1, y1

(�� �x � x0� � y0.

Therefore, at x � x1, we find the approximate value of f with

y1 �
1
2
� f �x0, y0� � f �x1, y1

(�� �x1 � x0� � y0 �
1
2

h � f �x0, y0� � f �x1, y1
(�� � y0.
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Continuing in this manner, the approximation at each step of the improved Euler’s
method depends on the following two calculations:

yn
( � h f �xn�1, yn�1� � yn�1

yn �
1
2

h � f �xn�1, yn�1� � f �xn, yn
(�� � yn�1.

(2.11)

In[246]:= xi�n � � x0 � nh

yi�n � ��

yi�n� �
1

2
h �f�xi�n � 1�,yi�n � 1��

�f�xi�n�,h f�xi�n � 1�,yi�n � 1��
�yi�n � 1��� � yi�n � 1�

yi�0� � y0

EXAMPLE 2.6.4: Use the improved Euler’s method to approximate the
solution of y� � xy, y�0� � 1 on 0 � x � 1 for h � 0.1. Also, compare the
results to the exact solution.

SOLUTION: In this case, f �x, y� � xy, x0 � 0, and y0 � 1 so equations
(2.11) become

yn
( � hxn�1yn�1 � yn�1

yn �
1
2

h �xn�1yn�1 � xnyn
(� � yn�1

for n � 1, 2, . . . , 10. For example, if n � 1, we have

y1
( � hx0y0 � y0 � 0.1  0  1 � 1 � 1

and

y1 �
1
2

h �x0y0 � x1y1
(� � y0 �

1
2
 0.1  �0  1 � 0.1  1� � 1 � 1.005.

Similarly,

y2
( � hx1y1 � y1 � 0.1  0.1  1.005 � 1.005 � 1.01505

and

y2 �
1
2

h �x1y1 � x2y2
(� � y1 �

1
2
 0.1  �0.1  1.005 � 0.2  1.01505� � 1.005 � 1.0201755.
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In the same way as in the previous example, we define f , x, h, and y. We
define yi using the form

yi[n_]:=yi[n]=...,

so that Mathematica “remembers” the values of ystar and y com-
puted. Thus, to compute yi[n], Mathematica need not recompute
yi [n-1] if yi[n-1] has previously been computed.

In[247]:= Remove�f,x,y�

f�x ,y � � x y

h � 0.1

x0 � 0

y0 � 1

In[248]:= xi�n � � x0 � n h

yi�n � �� yi�n� �

N�1
2
h �f�xi�n � 1�,yi�n � 1��

�f�xi�n�,h f�xi�n � 1�,

yi�n � 1�� � yi�n � 1��� � yi�n � 1��
yi�0� � y0

We then compute �xn, yn� for n � 0, 1, . . . , 10 and name the resulting list
of ordered pairs third.

In[249]:= third � Table��xi�n�,yi�n�	,�n,0,10	�

TableForm�third�

Out[249]=

0 1
0.1 1.005
0.2 1.02018
0.3 1.04599
0.4 1.08322
0.5 1.13305
0.6 1.19707
0.7 1.27739
0.8 1.37677
0.9 1.49876
1. 1.64788
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Figure 2-34 Comparison of the improved Euler’s method to the exact solution using
h � 0.1

We graph the approximation obtained using the improved Euler’s
method together with the graph of the exact solution in Figure 2-34.
From the results, we see that the approximation using the improved
Euler’s method results in a slight improvement from that obtained in
the previous example.

In[250]:= t4 � ListPlot�third,
PlotStyle� > PointSize�0.02�,
DisplayFunction� > Identity�

Show�p1,t4,
DisplayFunction� > $DisplayFunction�

The Runge–Kutta Method
In an attempt to improve on the approximation obtained with Euler’s method as
well as avoid the analytic differentiation of the function f �x, y� to obtain y��, y���, . . . ,
the Runge–Kutta method is introduced. Let us begin with the Runge–Kutta method of
order two. Suppose that we know the value of y at xn. We now use the point �xn, yn�
to approximate the value of y at a nearby value x � xn � h by assuming that

yn�1 � yn � Ak1 � Bk2,

where

k1 � h f �xn, yn� and k2 � h f �xn � ah, yn � bk1� .
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We can use the Taylor series expansion of y to obtain another representation of
yn�1 � y �xn � h� as follows:

y �xn � h� � y �xn� � hy� �xn� �
h2

2!
y�� �xn� �    � yn � hy� �xn� �

h2

2!
y�� �xn� �   

Now, because

yn�1 � yn � Ak1 � Bk2 � yn � Ah f �xn, yn� � Bh f �xn � ah, yn � bh f �xn, ym�� ,

we wish to determine values of A, B, a, and b such that these two representations
of yn�1 agree. Notice that if we let A � 1 and B � 0, then the relationships match up
to order h. However, we can choose these parameters more wisely so that agree-
ment occurs up through terms of order h2. This is accomplished by considering
the Taylor series expansion of a function z � F�x, y� of two variables about �x0, y0�
which is given by

F �x0, y0� �
�F
�x

�x0, y0� �x � x0� �
�F
�y

�x0, y0� �y � y0� �   

In our case, we have

f �xn � ah, yn � bh f �xn, ym�� � f �xn, yn� � ah
� f
�x

�xn, yn�

� bh f �xn, yn�
� f
�y

�xn, yn� � O �h2� .

The power series is then substituted into the following expression and simpli-
fied to yield:

yn�1 � yn � Ah f �xn, yn� � Bh f �xn � ah, yn � bh f �xn, ym��

� yn � �A � B�h f �xn, yn� � aBh2 � f
�x

�xn, yn� � bBh2 f �xn, yn�
� f
�y

�xn, yn� � O �h3� .

Comparing this expression to the following power series obtained directly from
the Taylor series of y,

y �xn � h� � y �xn� � h f �xn, yn� �
1
2

h2 � f
�x

�xn, yn� �
1
2

h2 � f
�y

�xn, yn� � O �h3�
or

yn�1 � yn � h f �xn, yn� �
1
2

h2 � f
�x

�xn, yn� �
1
2

h2 � f
�y

�xn, yn� � O �h3� ,

we see that A, B, a, and b must satisfy the following system of nonlinear equations:

A � B � 1, aB �
1
2

, and bB �
1
2

.
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Therefore, choosing a � b � 1, the Runge–Kutta method of order two uses the
equation:

yn�1 � y �xn � h� � yn �
1
2

h f �xn, yn� �
1
2

h f �xn � h, yn � h f �xn, yn��

� yn �
1
2
�k1 � k2�

(2.12)

where k1 � h f �xn, yn� and k2 � h f �xn � h, yn � k1�.

In[251]:= xr�n � � x0 � nh

yr�n � �� yr�n� �

yr�n � 1� �
1

2
h f�xr�n � 1�,yr�n � 1��

�
1

2
h f�xr�n � 1� � h,yr�n � 1�

�h f�xr�n � 1�,yr�n � 1���

yr�0� � y0

EXAMPLE 2.6.5: Use the Runge–Kutta method of order two with h �
0.1 to approximate the solution of the initial-value problem y� � xy,
y�0� � 1 on 0 � x � 1.

SOLUTION: As with the previous examples, f �x, y� � xy, x0 � 0, and
y0 � 1. Therefore, on each step we use the three equations

k1 � h f �xn, yn� � 0.1xnyn,

k2 � h f �xn � h, yn � k1� � 0.1 �xn � 0.1� �yn � k1� ,

and

yn�1 � yn �
1
2
�k1 � k2� .

For example, if n � 0, then

k1 � 0.1x0y0 � 0.1  0  1 � 0,

k2 � 0.1 �x0 � 0.1� �y0 � k1� � 0.1  0.1  1 � 0.01,

and

y1 � y0 �
1
2
�k1 � k2� � 1 �

1
2
 0.01 � 1.005.

Therefore, the Runge–Kutta method of order two approximates that the
value of y at x � 0.1 is 1.005.
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In the same manner as in the previous two examples, we define a
function yr to implement the Runge–Kutta method of order two and
use Table to generate a set of approximations for n � 0, 1, . . . , 10.

In[252]:= Remove�f,x,y�

f�x ,y � � xy

h � 0.1

x0 � 0

y0 � 1

In[253]:= xr�n � � x0 � nh

yr�n � �� yr�n� �

yr�n � 1� �
1

2
h f�xr�n � 1�,

yr�n � 1�� �
1

2
h f�xr�n � 1� � h,yr�n � 1�

�h f�xr�n � 1�,yr�n � 1���

yr�0� � y0

In[254]:= rktable1 � Table��xr�i�,yr�i�	,�i,0,10	�

TableForm�rktable1�

Out[254]=

0 1
0.1 1.005
0.2 1.02018
0.3 1.04599
0.4 1.08322
0.5 1.13305
0.6 1.19707
0.7 1.27739
0.8 1.37677
0.9 1.49876
1. 1.64788

We then use ListPlot to graph the set of points determined in
rktable1. The resulting graphics object, named p2, is not displayed
because the option DisplayFunction->Identity is included in the
ListPlot command. The graphs in p1 and p2 are shown together
with Show in Figure 2-35.
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Figure 2-35 Comparison of the Runge-Kutta method of order two to the exact solution
using h � 0.1

In[255]:= p2 � ListPlot�rktable1,
PlotStyle� > PointSize�0.02�,
DisplayFunction 
 Identity�

Show�p1,
p2,DisplayFunction 
 $DisplayFunction�

The terms of the power series expansions used in the derivation of the Runge–
Kutta method of order two can be made to match up to order four. These compu-
tations are rather complicated, so they will not be discussed here. However, after
much work, the fourth-order Runge–Kutta method approximation at each step is
found to be made with

yn�1 � yn �
1
6

h �k1 � 2k2 � 2k3 � k4� , n � 0, 1, 2, . . .

where

k1 � f �xn, yn�

k2 � f �xn �
1
2

h, yn �
1
2

hk1�
k3 � f �xn �

1
2

h, yn �
1
2

hk2�
and

k4 � f �xn�1, yn � hk3� .

(2.13)
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EXAMPLE 2.6.6: Use the fourth-order Runge–Kutta method with h �
0.1 to approximate the solution of the problem y� � xy, y�0� � 1 on
0 � x � 1.

SOLUTION: With f �x, y� � xy, x0 � 0, and y0 � 1, using equations
(2.13), the formulas are

yn�1 � yn �
0.1
6
�k1 � 2k2 � 2k3 � k4� , n � 0, 1, 2, . . .

where

k1 � f �xn, yn� � xnyn

k2 � f �xn �
1
2

h, yn �
1
2

hk1� � �xn �
1
2
 0.1� �yn �

1
2
 0.1k1�

k3 � f �xn �
1
2

h, yn �
1
2

hk2� � �xn �
1
2
 0.1� �yn �

1
2
 0.1k2�

and

k4 � f �xn�1, yn � hk3� � xn�1 �yn � 0.1k3� .

For n � 0, we have

k1 � x0y0 � 0  1 � 0

k2 � �x0 �
1
2
 0.1� �y0 �

1
2
 0.1k1� � 0.05  1 � 0.05

k3 � �x0 �
1
2
 0.1� �y0 �

1
2
 0.1k2� � 0.05  �1 � 0.0025� � 0.050125

and

k4 � x1 �y0 � 0.1k3� � 0.1  �1 � 0.0050125� � 0.10050125.

Therefore,

y1 � y0 �
0.1
6
�k1 � 2k2 � 2k3 � k4� � 1.005012521.

We list the results for the Runge–Kutta method of order four and com-
pare these results to the exact solution in Figure 2-36. Notice that this
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Figure 2-36 Comparison of the fourth-order Runge–Kutta method to the exact solution
using h � 0.1

method yields the most accurate approximation of the methods used to
this point.

In[256]:= Remove�f,x,y�

f�x ,y � � xy

h � 0.1

x0 � 0

y0 � 1

In[257]:= xr�n � � x0 � nh

yr�n � �� yr�n� � yr�n � 1� �
1

6
h �k1�n � 1�

�2 k2�n � 1� � 2 k3�n � 1� � k4�n � 1��

yr�0� � y0

k1�n � �� k1�n� � f�xr�n�,yr�n��

k2�n � �� k2�n� � f�xr�n� � h

2
,yr�n� �

1

2
h k1�n��

k3�n � �� k3�n� � f�xr�n� � h

2
,yr�n� �

1

2
h k2�n��

k4�n � �� k4�n� � f�xr�n � 1�,yr�n� � h k3�n��



118 Chapter 2 First-Order Ordinary Differential Equations

In[258]:= rktable2 � Table��xr�i�,yr�i�	,�i,0,10	�

TableForm�rktable2�

Out[258]=

0 1
0.1 1.00501
0.2 1.0202
0.3 1.04603
0.4 1.08329
0.5 1.13315
0.6 1.19722
0.7 1.27762
0.8 1.37713
0.9 1.4993
1. 1.64872

In[259]:= p3 � ListPlot�rktable2,
PlotStyle� > PointSize�0.02�,
DisplayFunction 
 Identity�

Show�p1,p3,
DisplayFunction 
 $DisplayFunction�



3Applications of First-Order
Ordinary Differential
Equations

When the space shuttle is launched from the Kennedy Space Center, its escape
velocity can be determined by solving a first-order ordinary differential equation.
The same can be said for finding the flow of electromagnetic forces, the temper-
ature of a cup of coffee, the population of a species, as well as numerous other
applications. In this chapter, we show how these problems can be expressed as
first-order equations. We will focus our attention on setting up the problems and
explaining the meaning of the subsequent solutions because the techniques for
solving these problems were discussed in Chapter 2.

3.1 Orthogonal Trajectories

We begin our discussion with orthogonal trajectories, a topic that is encountered in
the study of electromagnetic fields and heat flow.

Definition 9 (Orthogonal Curves). Two lines, �1 and �2, with slopes m1 and m2,
respectively, are orthogonal (or perpendicular) if their slopes satisfy the relationship
m1 � �1/m2. Two curves, �1 and �2, are orthogonal (or perpendicular) at a point if
their respective tangent lines to the curves at that point are perpendicular.

119
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EXAMPLE 3.1.1: Use the definition of orthogonality to verify that the
curves given by y � x and y �


1 � x2 are orthogonal at the point�2/2,


2/2�.

SOLUTION: First note that the point �2/2,


2/2� lies on both the

graph of y � x and y �


1 � x2. The derivatives of the functions are
given by y� � 1 and y� � �x/


1 � x2, respectively.

In[260]:= Clear�x,y�

y1�x � � x

y2�x � �
�
1 � x2

In[261]:= y1
��x�

Out[261]= 1

In[262]:= y2
��x�

Out[262]= �
x


1 � x2

Hence, the slope of the tangent line to y � x at �2/2,


2/2� is 1. Sub-

stitution of x �


2/2 into y� � �x/


1 � x2 yields �1 as the slope of the
tangent line at �2/2,


2/2�.

In[263]:= y2
���

2

2
�

Out[263]= �1

Thus, the curves are orthogonal at the point �2/2,


2/2� because the

slopes of the lines tangent to the graphs of y � x and y �


1 � x2 at
the point �2/2,


2/2� are negative reciprocals. We graph these two

curves along with the tangent line to y �


1 � x2 at �2/2,


2/2� in
Figure 3-1 to illustrate that the two are orthogonal. Note that the graphs
are displayed correctly even though several error messages, which are
not all displayed here, are generated because y �


1 � x2 is undefined
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Figure 3-1 The curves are orthogonal at the point �2/2,


2/2�
if x < �1 or x > 1. The option AspectRatio->1 specifies that the ratio
of lengths of the x-axis to the y-axis in the resulting graphics object be 1.

In[264]:= Plot�
x,�
1 � x2,�x �

�
2�,
x,�3

2
,
3

2
�,

PlotRange 
 

 �
3

2
,
3

2
�,
 �

3

2
,
3

2
��,

AspectRatio 
 1,PlotStyle 
 �Dashing��0.01	�,

GrayLevel�0�,GrayLevel�0.5�	�
Plot �� plnr �



1 � x2

is not a machine � size real number at x � �1.5.

The next step in our discussion of orthogonal curves is to determine the set of
orthogonal curves to a given family of curves. We refer to this set of orthogonal
curves as the family of orthogonal trajectories. Suppose that a family of curves is
defined as F�x, y� � C and that the slope of the tangent line at any point on these
curves is dy/dx � f �x, y�. Then, the slope of the tangent line on the orthogonal
trajectory is dy/dx � �1/ f �x, y� so the family of orthogonal trajectories is found by
solving the first-order equation dy/dx � �1/ f �x, y�.
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EXAMPLE 3.1.2: Determine the family of orthogonal trajectories to the
family of curves y � cx2.

SOLUTION: First, we must find the slope of the tangent line at any
point on the parabola y � cx2. Differentiating with respect to x results in
dy/dx � 2cx. However from y � cx2, we have that c � y/x2. Substitution
into dy/dx � 2cx then yields dy/dx � 2  y/x2  x � 2y/x on the parabolas.
Hence, we must solve dy/dx � �x/ �2y� to determine the orthogonal tra-
jectories. This equation is separable, so we write it as 2y dy � �x dx, and
then integrating both sides gives us 2y2 � x2 � k, where k is a constant,
which we recognize as a family of ellipses. Note that an equivalent
result is obtained with DSolve.

In[265]:= sol � DSolve�y��x� �� � x

2 y�x�
,y�x�,x�

Out[265]= ��y�x	 
 �



�x2 � 4 C�1	


2
�,�y�x	 
 


�x2 � 4 C�1	

2

��
We graph several members of the family of parabolas y � cx2, the family
of ellipses 2y2 � x2 � k, and the two families of curves together. First,
we define parabs to be the list of functions obtained by replacing c in
y � cx2 by nine equally spaced values of c between �3/2 and 3/2.

In[266]:= parabs � Table�c x2,
c,�3
2
,
3

2
,
1

8
��

Next, we graph the list of functions parabs for �3 � x � 3 with Plot
and name the result p1. The graphs in p1 are not displayed because the
option DisplayFunction->Identity is included in the Plot com-
mand. We graph several ellipses 2y2 � x2 � k by using ContourPlot to
graph several level curves of f �x, y� � y2 � 1

2 x2 and name the result p2.
Including the option PlotPoints->120 helps assure that the ellipses
appear smooth in the result. Including the option ContourStyle->
GrayLevel[.4] specifies that the contours be drawn in a light gray.
(This will help us distinguish between the ellipses and the parabolas
when we show the graphs together.) As with p1, p2 is not displayed.
Finally, p1 and p2 are displayed together with Show in Figure 3-2.
Notice that these two families appear orthogonal, confirming the results
we obtained.

In[267]:= p1 � Plot�Evaluate�parabs�,�x,�3,3	,

DisplayFunction 
 Identity�
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Figure 3-2 The two sets of curves are orthogonal to each other

In[268]:= p2 � ContourPlot�y2 � x2

2
,�x,�3,3	,�y,�3,3	,

Contours 
 30,ContourStyle 
 GrayLevel�0.5�,

ContourShading 
 False,PlotPoints 
 120,

DisplayFunction 
 Identity�
In[269]:= Show�p1,p2,PlotRange 
 ���3,3	,��3,3		,

AspectRatio 
 1,

DisplayFunction 
 $DisplayFunction�

EXAMPLE 3.1.3 (Temperature): Let T �x, y� represent the temperature at
the point �x, y�. The curves given by T �x, y� � c (where c is constant) are
called isotherms. The orthogonal trajectories are curves along which
heat will flow. Determine the isotherms if the curves of heat flow are
given by y2 � 2xy � x2 � c.

SOLUTION: We begin by finding the slope of the tangent line at each
point on the heat flow curves y2 � 2xy � x2 � c using implicit differenti-
ation.
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In[270]:= eq1 � y�x�2 � 2x y�x� � x2 �� c

Out[270]= �x2 � 2 x y�x	 � y�x	2 �� c

In[271]:= step1 � Dt�eq1,x�

Out[271]= �2 x � 2 y�x	 � 2 x y��x	 � 2 y�x	 y��x	 �� Dt�c,x	

Because c represents a constant, d/dx �c� � 0. We interpret step2 to be
equivalent to the equation 2yy� � 2y � 2xy� � 2x � 0, where y� � dy/dx.

In[272]:= step2 � step1/.Dt�c,x� 
 0

Out[272]= �2 x � 2 y�x	 � 2 x y��x	 � 2 y�x	 y��x	 �� 0

We calculate y� � dy/dx by solving step2 for y’[x] with Solve and
name the result imderiv.

In[273]:= imderiv � Solve�step2,y��x��

Out[273]= ��y��x	 
 x � y�x	

x � y�x	
��

Thus, dy/dx � �x � y�/ �x � y� so the orthogonal trajectories satisfy the
differential equation dy/dx � ��x � y�/ �x � y�.

Writing this equation in differential form as �x � y�dx � �x � y�dy � 0,This equation is also
homogeneous of degree one. we see that this equation is exact because �/�y �x � y� � 1 � �/�x �x � y�.

Thus, we solve the equation by integrating x�y with respect to x to yield
f �x, y� � 1

2 x2 � xy � g�y�. Differentiating f with respect to y then gives us
fy�x, y� � x � g��y�. Then, because the equation is exact, x � g��y� � x � y.
Therefore, g��y� � �y which implies that g�y� � � 1

2 y2. This means that
the family of orthogonal trajectories (isotherms) is given by 1

2 x2 � xy�
1
2 y2 � k.

Note that DSolve is able to solve this differential equation.

In[274]:= DSolve�y��x� �� x � y�x�

�x � y�x�
,y�x�,x�//Simplify

Out[274]= ��y�x	 
 x �


�2 C�1	 � 2 x2�,�y�x	 
 x �



�2 C�1	 � 2 x2��

To graph y2 � 2xy � x2 � c and 1
2 x2 � xy � 1

2 y2 � k for various values of
c and k to see that the curves are orthogonal, we use ContourPlot.
First, we graph several level curves of y2 � 2xy � x2 � c on the rectan-
gle ��4, 4����4, 4� and name the result cp1. The option Contours->40
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instructs Mathematica to graph 40 contours instead of the default
of ten.

In[275]:= cp1 � ContourPlot�y2 � 2xy � x2,�x,�4,4	,
�y,�4,4	,ContourShading 
 False,

Axes 
 Automatic,Contours 
 40,

PlotPoints 
 120,AxesOrigin 
 �0,0	,

Frame 
 False,
DisplayFunction 
 Identity�

Next we graph several level curves of 1
2 x2 � xy � 1

2 y2 � k on the same
rectangle and name the result cp2. In this case, the option

ContourStyle->{{GrayLevel[0.4],Dashing[{0.01}]}}

specifies that the contours are to be dashed in a medium gray.

In[276]:= cp2 � ContourPlot�xy � x2

2
�
y2

2
,�x,�4,4	,

�y,�4,4	,ContourShading 
 False,

Axes 
 Automatic,Contours 
 40,

PlotPoints 
 120,
ContourStyle 
 ��GrayLevel�0.4�,

Dashing��0.01	�		,AxesOrigin 
 �0,0	,

Frame 
 False,
DisplayFunction 
 Identity�

The graphs are then displayed side-by-side using Show and Graphics
Array in Figure 3-3 and together using Show in Figure 3-4.
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Figure 3-3 Several members of each family of curves
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Figure 3-4 The two sets of curves are orthogonal to each other

In[277]:= Show�GraphicsArray��cp1,cp2	��

In[278]:= Show�cp1,cp2,
DisplayFunction 
 $DisplayFunction�

EXAMPLE 3.1.4: Determine the orthogonal trajectories of the family of
curves given by y2 � 2cx � c2. Graph several members of both families
of curves on the same set of axes.

SOLUTION: After defining eq to be the equation y2 � 2cx � c2, we
implicitly differentiate.

In[279]:= eq � yˆ2 � 2c x �� cˆ2

step1 � Dt�eq�
Out[279]= �2 x Dt�c	 � 2 c Dt�x	 � 2 y Dt�y	 �� 2 c Dt�c	

As in the previous examples, we interpret Dt[x] to be 1, Dt[c] to be
0, and Dt[y] to represent dy/dx.
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In[280]:= step2 � step1 /.�Dt�c� 
 0,Dt�x� 
 1	

Out[280]= �2 c � 2 y Dt�y	 �� 0

The equation y2 � 2cx � c2 is a quadratic in c. Solving for c,

In[281]:= cval � Solve�eq,c�

Out[281]= ��c 
 �x �
�
x2 � y2�,�c 
 �x �

�
x2 � y2��

we choose to substitute the first value into the equation y dy/dx � c.

In[282]:= imderiv � Solve�step2,Dt�y��/.cval��1��

Out[282]= ��Dt�y	 
 �x �


x2 � y2

y
��

Then, we must solve
dy
dx

�
y

x �


x2 � y2
.

In[283]:= de �

y��x� �� Evaluate��1/imderiv��1,1,2��/.
y 
 y�x��

Out[283]= y��x	 �� �
y�x	

�x �


x2 � y�x	2

Note that Mathematica is able to solve this equation.

In[284]:= DSolve�de,y�x�,x�//Simplify

Out[284]= ��y�x	 
 ��
C�1	
2



�C�1	 � 2 x�,�y�x	 
 �

C�1	
2



�C�1	 � 2 x��

Thus, y2 � 4C2 � 4Cx and replacing 2C with C yields y2 � C2 � 2Cx or
y2 � 2Cx � c2, which means that this family of curves is self-orthogonal.
We confirm that the family is self-orthogonal with ContourPlot in
Figures 3-5 and 3-6.

In[285]:= cp1 � ContourPlot�cval��1,1,2��,�x,�10,10	,

�y,�10,10	,ContourShading 
 False,

Frame 
 False,Axes 
 Automatic,

AxesOrigin 
 �0,0	,Contours 
 30,

PlotPoints 
 120,
DisplayFunction 
 Identity�

In[286]:= cp2 � ContourPlot�cval��2,1,2��,�x,�10,10	,

�y,�10,10	,ContourShading 
 False,

Frame 
 False,Axes 
 Automatic,

AxesOrigin 
 �0,0	,Contours 
 30,

PlotPoints 
 120,
DisplayFunction 
 Identity�
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Figure 3-5 The plots are symmetric about the y-axis

-10 -5 5 10

-10

-5

5

10

Figure 3-6 The family of curves is self-orthogonal

In[287]:= Show�GraphicsArray��cp1,cp2	��

In[288]:= Show�cp1,cp2,
DisplayFunction 
 $DisplayFunction�



3.1 Orthogonal Trajectories 129

Application: Oblique Trajectories
If we are given a family of curves that satisfies the differential equation dy/dx �
f �x, y� and we want to find a family of curves that intersects this family at a con-
stant angle Θ, we must solve the differential equation

dy
dx

�
f �x, y�  tan Θ

1 � f �x, y� tan Θ
.

For example, to find a family of curves that intersects the family of curves x2 � y2 �
c2 at an angle of Π/6, we first implicitly differentiate the equation to obtain

2x � 2y
dy
dx

� 0 ��
dy
dx

� �
x
y
� f �x, y�.

Because tan Θ � tan Π/6 � 1/


3, we solve

dy
dx

�
�x/y � 1/


3

1 � ��x/y��1/


3�
�
�x


3 � y

y


3 � x
,

which is a first-order homogeneous equation. With the substitution x � vy, we
obtain the separable equation

1 � v


3
1 � v2

dv �


3

y
dy.

Integrating yields

�


3

2
ln �1 � v2� � tan�1 v �


3 ln �y� � k1

so

�


3

2
ln �1 �

x2

y2 � � tan�1 x
y
�


3 ln �y� � k1.

Mathematica finds an equivalent implicit solution.

In[289]:= sol1 � DSolve�y��x� �� �
�
3x � y�x��
3y�x� � x

,y�x�,x�//
FullSimplify

Out[289]= Solve�2 ArcTan�y�x	
x

�
�



3 �2 Log�x	 � Log�1 � y�x	2

x2
�� ��

2 C�1	,y�x	�
Similarly, for

dy
dx

�
�x/y � 1/


3

1 � ��x/y��1/


3�
�
�x


3 � y

y


3 � x
,
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we obtain
1 � v


3

1 � v2
dv � �


3

y
dy

so that the trajectories are
3

2
ln �1 �

x2

y2 � � tan�1 x
y
� �


3 ln �y� � k1.

In[290]:= sol2 � DSolve�y��x� �� �
�
3x � y�x��
3y�x� � x

,y�x�,x�
Out[290]= Solve� � ArcTan�y�x	

x
� �

1

2



3 Log�1 � y�x	2

x2
� ��

C�1	 �


3 Log�x	,y�x	�

To confirm the result graphically, we graph several members of each family of
curves in Figure 3-7

In[291]:= toplot2 � Solve�sol2��1��,C�1��/.y�x� 
 y

Out[291]= ��C�1	 
 1

2
� � 2 ArcTan�y

x
�

�2


3 Log�x	 �



3 Log�1 � y2

x2
����

In[292]:= cp1 � ContourPlot�x2 � y2,�x,�10,10	,
�y,�10,10	,Frame 
 False,Contours 
 20,

ContourStyle 
 GrayLevel�0.5�,

Axes 
 Automatic,ContourShading 
 False,

PlotPoints 
 120,AxesOrigin 
 �0,0	,

DisplayFunction 
 Identity�
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Figure 3-7 Several members of each family of curves
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In[293]:= cp2 � ContourPlot�
1

2
� �

�
3 Log�1 � x2

y2
� � ArcTan�x

y
�

�
�
3 Log�Abs�y��,�x,�10,10	,�y,�10,10	,

Frame 
 False,Contours 
 20,

ContourStyle 
 GrayLevel�0�,Axes 
 Automatic,

ContourShading 
 False,PlotPoints 
 120,

AxesOrigin 
 �0,0	,

DisplayFunction 
 Identity�
In[294]:= cp3 � ContourPlot�

1

2

�
3 Log�1 � x2

y2
� � ArcTan�x

y
� �

�
3 Log�Abs�y��,

�x,�10,10	,�y,�10,10	,Frame 
 False,

Contours 
 20,ContourStyle 
 GrayLevel�0�,

Axes 
 Automatic,ContourShading 
 False,

PlotPoints 
 120,AxesOrigin 
 �0,0	,

DisplayFunction 
 Identity�
In[295]:= Show�GraphicsArray��cp1,cp2,cp3	��

and then show the curves together in Figure 3-8 to see that they intersect at an
angle of Π/6.
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Figure 3-8 The curves intersect at an angle of Π/6
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In[296]:= cp4 � Show�cp1,cp2�

cp5 � Show�cp1,cp3�

Show�GraphicsArray��cp4,cp5	��

3.2 Population Growth and Decay

Many interesting problems involving population can be solved through the use of
first-order differential equations. These include the determination of the number
of cells in a bacteria culture, the number of citizens in a country, and the amount
of radioactive substance remaining in a fossil. We begin our discussion by solving
a population problem.

3.2.1 The Malthus Model

Suppose that the rate at which a population of size y�t� at time t changes is pro-
portional to the population, y�t�, at time t. Mathematically, this statement is repre-
sented as the first-order initial-value problem

�		

		
�

dy/dt � ky

y�0� � y0

(3.1)

where y0 is the initial population. If k > 0, then the population increases (growth)
while the population decreases (decay) if k < 0. Problems of this nature arise in
such fields as cell population growth in biology as well as radioactive decay in
physics. Equation (3.1) is known as the Malthus model due to the work of the
English clergyman and economist Thomas R. Malthus. We solve the Malthus model
for all values of k and y0 which enables us to refer to the solution in other problems
without solving the differential equation again. Rewriting dy/dt � ky in the form
dy/y � k dt, we see that this is a separable differential equation. Integrating and
simplifying results in:

� 1
y

dy � � k dt

ln �y� � kt �C1

y � Cekt , where C � eC1 .
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Notice that because y represents population, y " 0 and, therefore, �y� � y. To find C,
we apply the initial condition obtaining y0 � y�0� � Cek0 � C. Thus, the solution to
the initial-value problem (3.1) is

y � y0ekt . (3.2)

We obtain the same result with DSolve:

In[297]:= Clear�x,y,t�

DSolve��y��t� �� k y�t�,y�0� �� y0	,y�t�,t�
Out[297]= ��y�t	 
 �k t y0

EXAMPLE 3.2.1 (Radioactive Decay): Forms of a given element with
different numbers of neutrons are called nuclides. Some nuclides are
not stable. For example, potassium-40 (40K) naturally decays to reach
argon-40 (40K). This decay which occurs in some nuclides was first
observed, but not understood, by Henri Becquerel (1852–1908) in 1896.
Marie Curie, however, began studying this decay in 1898, named it
radioactivity, and discovered the radioactive substances polonium and
radium. Marie Curie (1867–1934), along with her husband, Pierre Curie
(1859–1906), and Henri Becquerel, received the Nobel Prize in Physics
in 1903 for their work on radioactivity. Marie Curie subsequently
received the Nobel Prize in Chemistry in 1910 for discovering polo-
nium and radium.

Given a sample of 40Ar of sufficient size, after 1.2�109 years approx-
imately half of the sample will have decayed to 40Ar. The half-life of a
nuclide is the time for half the nuclei in a given sample to decay. We see
that the rate of decay of a nuclide is proportional to the amount present
because the half-life of a given nuclide is constant and independent of
the sample size.

If the half-life of polonium 209Po is 100 years, determine the percent-
age of the original amount of 209Po that remains after 50 years.

SOLUTION: Let y0 represent the original amount of 209Po that is
present. Then the amount present after t years is y�t� � y0ekt . Because
y�100� � y0/2 and y�100� � y0e100k, we solve y0e100k � y0/2 for ek:

e100k �
1
2

or ek � �1
2

�1/100

so

y�t� � y0ekt � y0 �1
2

�t/100

.
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In[298]:= k � �
Log�2�

100


In[299]:= y�t � � y0 Exp�kt�

Simplify�y�t��

Out[299]= 2�t/100 y0

In order to determine the percentage of y0 that remains, we evaluate
y�50� � y0�1/2�50/100 � y0/


2 � 0.7071y0.

In[300]:= y�50�

Out[300]=
y0

2

In[301]:= N�y�50��

Out[301]= 0.707107 y0.

Therefore, 70.71% of the original amount of 209Po remains after 50 years.

In the previous example, we see that we can determine the percentage of y0 that
remains even though we do not know the value of y0. Hence, instead of letting y�t�
represent the amount of the substance present after time t, we can let it represent
the fraction (or percent) of y0 that remains after time t. In doing this, we use the
initial condition y�0� � 1 to indicate that 100% of y0 is present at t � 0.

EXAMPLE 3.2.2: The wood of an Egyptian sarcophagus (burial case) is
found to contain 63% of the carbon-14 found in a present day sample.
What is the age of the sarcophagus?

SOLUTION: The half-life of carbon-14 is 5730 years. Let y�t� be the
percent of carbon-14 in the sample after t years. Then, y�0� � 1. Because
y�t� � y0ekt , y�5730� � e5730k. Solving for k yields:

ln �e5730k� � ln �1
2

�
5730k � ln �1

2
�

k �
ln �1

2
�

5730
� �

ln 2
5730

.

Thus, y�t� � ekt � e�
ln 2

5730 t � 2�t/5730.
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In[302]:= Clear�k,y�

k � �
Log�2�

5730


In[303]:= y�t � � Exp�kt�

Out[303]= 2�t/5730

In this problem, we must find the value of t for which y�t� � 0.63.
Solving the equation 2�t/5730 � 0.63 � 63/100 results in:

2�t/5730 �
63

100

ln �2�t/5730� � ln
63

100

�
t

5730
ln 2 � ln

63
100

t � �
5730 ln

63
100

ln 2
� 3819.48.

We conclude that the sarcophagus is approximately 3819 years old.
An alternative way to approximate the age of the sarcophagus is to

first graph y�t� and the line y � 0.63 with Plot as shown in Figure 3-9.
The age of the sarcophagus is the t-coordinate of the point of intersec-
tion of y�t� and y � 0.63.

In[304]:= Plot��y�t�,0.63	,�t,0,6000	,

PlotStyle 
 �GrayLevel�0�,GrayLevel�0.5�	,

PlotRange 
 �0,1	�

1000 2000 3000 4000 5000 6000
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Figure 3-9 The age of the sarcophagus is the t-coordinate of the point of intersection of y�t�
and y � 0.63
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We see that the t-coordinate of the point of intersection is approximately
t � 3770. A more accurate approximation is obtained with FindRoot.
The command

FindRoot[equation,{variable,firstguess}]

attempts to find a solution to the equation equation in the variable
variable “near” the number firstguess. Thus, entering

In[305]:= FindRoot�y�t� �� 0.63,�t,3770	�

Out[305]= �t 
 3819.48

returns an approximation of the solution to the equation y�t� � 0.63
using an initial approximation of 3770.

To observe some of the limitations of the Malthus model, we next consider a popu-
lation problem in which the rate of growth of the population does not exclusively
depend on the population present.

EXAMPLE 3.2.3: The population of the United States was recorded as
5.3 million in 1800. Use the Malthus model to approximate the popula-
tion for years after 1800 if k was experimentally determined to be 0.03.
Compare these results to the actual population. Is this a good approxi-
mation for years after 1800?

SOLUTION: In this example, k � 0.03 and y0 � 5.3 and our model for
the population of the United States at time t (where t is the number of
years from 1800) is y�t� � 5.3e0.03t .

In[306]:= Clear�k,y,t�

peq � DSolve��y��t� �� k y�t�,y�0� �� y0	,
y�t�,t�

Out[306]= ��y�t	 
 �k t y0

In[307]:= pop�t ,k ,y0 � � ekt y0

Out[307]= �k t y0

In[308]:= pop�t,0.03,5.3�

Out[308]= 5.3 �0.03 t
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Table 3-1 Population of the United States for various years

Actual Value of Actual Value of
Population y�t� � Population y�t� �

Year (t) (in millions) 5.3e0.03t Year (t) (in millions) 5.3e0.03t

1800 (0) 5.30 5.30 1870 (70) 38.56 43.28
1810 (10) 7.24 7.15 1880 (80) 50.19 58.42
1820 (20) 9.64 9.66 1890 (90) 62.98 78.86
1830 (30) 12.68 13.04 1900 (100) 76.21 106.45
1840 (40) 17.06 17.60 1910 (110) 92.23 143.70
1850 (50) 23.19 23.75 1920 (120) 106.02 193.97
1860 (60) 31.44 32.06 1930 (130) 123.20 261.83
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Figure 3-10 Over time, the Malthus model does not provide a good model of the growth
of the population of the United States

In order to compare this model with the actual population of the United
States, census figures for the population of the United States for various
years are listed in Table 3-1 along with the corresponding value of y�t�.

Although the model appears to closely approximate the data for sev-
eral years after 1800, the accuracy of the approximation diminishes over
time. This is because the population of the United States does not exclu-
sively increase at a rate proportional to the population. Hence, another
model which better approximates the population taking other factors
into account is needed. The graph of y�t� � 5.3e0.03t is shown along with
the data points in Figure 3-10 to show how the approximation becomes
less accurate as t increases.
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In[309]:= realpop � ��0,5.3	,�10,7.24	,�20,9.64	,

�30,12.68	,�40,17.06	,�50,23.19	,

�60,31.44	,�70,38.56	,�80,50.19	,

�90,62.98	,�100,76.21	,�110,92.23	,

�120,106.02	,�130,123.2		

In[310]:= toshow � ListPlot�realpop,

PlotStyle� > PointSize�0.02�,

DisplayFunction 
 Identity�

In[311]:= popplot � Plot�pop�t,0.03,5.3�,�t,0,100	,

PlotStyle� > GrayLevel�0.3�,

DisplayFunction� > Identity�

Show�popplot,toshow,

DisplayFunction� > $DisplayFunction�

3.2.2 The Logistic Equation

The logistic equation (or Verhulst equation) is the equation

dy
dt

� �r � ay�t�� y�t�, (3.3)

where r and a are constants. Equation (3.3) was first introduced by the Belgian
mathematician Pierre Verhulst to study population growth. The logistic equation
differs from the Malthus model in that the term r� ay�t� is not constant. This equa-
tion can be written as dy/dt � �r � ay�y � ry � ay2 where the term �y2 represents
an inhibitive factor. Under these assumptions the population is neither allowed
to grow out of control nor grow or decay constantly as it was with the Malthus
model.

The logistic equation is separable, and, thus, can be solved by separation of
variables. We solve equation (3.3) subject to the condition y�0� � y0.

Separating variables and using partial fractions to integrate with respect to y,
we have

1
�r � ay�y

dy � dt

�a
r

1
r � ay

�
1
r

1
y

� dy � dt

�a 1
r � ay

�
1
y

� dy � r dt

� ln �r � ay� � ln �y� � rt �C.
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Using the properties of logarithms to solve this equation for y yields

ln
������� y
r � ay

������� � rt �C

y
r � ay

�  ert�C � Kert , where K �  eC

y � r � 1
K

e�rt � a��1

.

In[312]:= DSolve�y��t� �� �r � a y�t�� y�t�,y�t�,t�

Out[312]= ��y�t	 
 �r t r

a �r t � �r C�1	
��

Applying the initial condition y�0� � y0 and solving for K, we find that

K �
y0

r � ay0
.

After substituting this value into the general solution and simplifying, the solution
of equation (3.3) that satisfies the initial condition y�0� � y0 can be written as

y �
ry0

ay0 � �r � ay0� e�rt
. (3.4)

Notice that if r > 0, limt�� y�t� � r/a because limt�� e�rt � 0. This makes the solu-
tion to the logistic equation different from that of the Malthus model in that the
solution to the logistic equation approaches a finite nonzero limit as t � � while
that of the Malthus model approaches either infinity or zero as t � �.

In[313]:= DSolve��y��t� �� �r � a y�t�� y�t�,

y�0� �� y0	,y�t�,t�

Out[313]= ��y�t	 
 �r t r y0

r � a y0 � a �r t y0
��

EXAMPLE 3.2.4: Use the logistic equation to approximate the popu-
lation of the United States using r � 0.03, a � 0.0001, and y0 � 5.3.
Compare this result with the actual census values shown in Table 3-1.
Use the model obtained to predict the population of the United States
in the year 2000.

SOLUTION: We substitute the indicated values of r, a, and y0 into
equation (3.4) to obtain the approximation of the population of the
United States at time t, where t represents the number of years since
1800,

y�t� �
0.159

0.00053 � 0.02947e�0.03t
.
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In[314]:= pop�t � �
0.159

0.00053 � 0.0294 Exp��0.03 t�

Out[314]=
0.159

0.00053 � 0.0294 ��0.03 t

In[315]:= realpop � Union�realpop,��140,132.16	,

�150,151.33	,�160,179.32	,

�170,203.3	,�180,226.54	,

�190,248.71		�

We compare the approximation of the population of the United States
given by the approximation with the actual population obtained from
census figures. Note that this model appears to more closely approx-
imate the population over a longer period of time than the Malthus
model which was considered in the previous examples as we can see in
the graph shown in Figure 3-11.Be sure that you have defined

realpop as in Example
3.2.3 before entering the
following commands.

In[316]:= toshow � ListPlot�realpop,

PlotStyle� > PointSize�0.02�,

DisplayFunction 
 Identity�

In[317]:= popplot � Plot�pop�t�,�t,0,200	,

PlotStyle 
 GrayLevel�0.3�,

DisplayFunction 
 Identity�

Show�popplot,toshow,

DisplayFunction 
 $DisplayFunction�

To predict the population of the United States in the year 2000 with this
model, we evaluate y�200�. Thus, we predict that the population will be
approximately 263.74 million in the year 2000. Note that projections of

50 100 150 200

50

100

150

200

250

Figure 3-11 Over time, the logistic equation appears to provide a better model of the
population of the United States than the Malthus model
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the population of the United States in the year 2000 made by the Bureau
of the Census range from 259.57 million to 278.23 million.

In[318]:= pop�200�

Out[318]= 263.736

In[319]:= pop�2010�

Out[319]= 300.

EXAMPLE 3.2.5 (Logistic Equation with Predation): Incorporating pre-

dation into the logistic equation, y� � Αy �1 � 1
K

y�, results in

dy
dt

� Αy �1 � 1
K

y� � P�y�,

where P�y� is a function of y describing the rate of predation. A typical
choice for P is P�y� � ay2/ �b2 � y2� because P�0� � 0 and P is bounded
above: limt�� P�y� < �.

Remark. Of course, if limt�� y�t� � Y , then limt�� P�y� � aY 2/ �b2 � Y 2�.
Generally, however, limt�� P�y� # a because limt�� y�t� � K # �, for
some K " 0, in the predation situation.

If Α � 1, a � 5, and b � 2, graph the direction field associated with
the equation as well as various solutions if (a) K � 19 and (b) K � 20.

SOLUTION: (a) We define eqn[k] to be

dy
dt

� y �1 � 1
K

y� � 5y2

4 � y2
.

In[320]:= << Graphics‘PlotField‘

In[321]:= eqn�k � � y��t� �� y�t��1 � 1/k y�t��
�5y�t�ˆ2/�4 � y�t�ˆ2�

We use PlotVectorField to graph the direction field in Figure 3-12
(a) and then the direction field along with the solutions that satisfy
y�0� � .5, y�0� � .2, and y�0� � 4 in Figure 3-12 (b).

In[322]:= pvf19 � PlotVectorField��1,y�1 � 1/19 y�
�5yˆ2/�4 � yˆ2�	,�t,0,10	,�y,0,6	,
Axes� > Automatic,HeadLength� > 0,
DisplayFunction� > Identity�
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Figure 3-12 (a) Direction field and (b) direction field with three solutions

In[323]:= n1 � NDSolve��eqn�19�,y�0� �� 0.5	,y�t�,
�t,0,10	�

n2 � NDSolve��eqn�19�,y�0� �� 2	,y�t�,
�t,0,10	�

n3 � NDSolve��eqn�19�,y�0� �� 4	,y�t�,
�t,0,10	�

In[324]:= solplot � Plot�Evaluate�y�t�/.�n1,n2,n3	�,
�t,0,10	,PlotStyle� >
Thickness�0.01�,
DisplayFunction� > Identity�

The same results can be obtained using Map.

In[325]:= numsols � Map�NDSolve��eqn�19�,y�0� �� #	,
y�t�,�t,0,10	�&,�0.5,2,4	�

solplot � Plot�Evaluate�y�t�/.numsols�,
�t,0,10	,PlotStyle� >
Thickness�0.01�,
DisplayFunction� > Identity�

In[326]:= Show�GraphicsArray��pvf19,Show�pvf19,
solplot�	��

In the plot, notice that all nontrivial solutions appear to approach an
equilibrium solution. We determine the equilibrium solution by solving
y� � 0

In[327]:= eqn�19���2��

Out[327]= �1 � y�t	

19
� y�t	 �

5 y�t	2

4 � y�t	2



3.2 Population Growth and Decay 143

2 4 6 8 10

5

10

15

20

Figure 3-13 Direction field

In[328]:= Solve�eqn�19.���2�� �� 0,y�t��

Out[328]= ��y�t	 
 0.,�y�t	 
 0.923351,
�y�t	 
 9.03832 � 0.785875 i,
�y�t	 
 9.03832 � 0.785875 i

to see that it is y � 0.923.
(b) We carry out similar steps for (b). First, we graph the direction

field with PlotVectorField in Figure 3-13.

In[329]:= pvf20 � PlotVectorField��1,y�1 � 1/20 y�
�5yˆ2/�4 � yˆ2�	,�t,0,10	,�y,0,20	,
Axes� > Automatic,HeadLength� > 0,
AspectRatio� > 1/GoldenRatio�

We then use Map together with NDSolve to numerically find the solu-
tion satisfying y�0� � .5i, for i � 1, 2, . . . , 40 and name the resulting list
numsols. The functions contained in numsols are graphed with Plot
in solplot.

In[330]:= numsols � Map�NDSolve��eqn�20�,y�0� �� #	,
y�t�,�t,0,10	�&,Table�0.5i,�i,1,40	��

solplot � Plot�Evaluate�y�t�/.numsols�,
�t,0,10	,PlotStyle� > Thickness�0.005�,
DisplayFunction� > Identity�

Last, we display the direction field along with the solution graphs in
solplot using Show in Figure 3-14.

In[331]:= Show�pvf20,solplot�

Notice that there are three nontrivial equilibrium solutions that are found
by solving y� � 0.
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Figure 3-14 Direction field with several solutions

In[332]:= Solve�eqn�20.���2�� �� 0,y�t��

Out[332]= ��y�t	 
 0.,�y�t	 
 0.926741,
�y�t	 
 7.38645,
�y�t	 
 11.6868

In this case, y � .926 and y � 11.687 are stable while y � 7.386 is
unstable.

See Smith and Waltman’s,
The Theory of the Chemostat:
Dynamics of Microbial
Competition [24], for a
detailed discussion of various
chemostat models.

EXAMPLE 3.2.6 (Growth in the Chemostat): The scaled equations for
the growth of a population in a chemostat are

�						

						
�

dS
dt

� 1 � S �
mS

a � S
x

dx
dt

� x � mS
a � S

� 1�
S�0� " 0, x�0� > 0

(3.5)

where S�t� denotes the concentration of the nutrient at time t for the
organism with concentration x�t� at time t. Letting ) � 1 � S � x, we see
that )� � �)

In[333]:= seq � 1 � s � m s x/�a � s�

xeq � x �m s/�a � s� � 1�

In[334]:= Σ � 1 � s � x

In[335]:= seq � xeq � Σ//Simplify

Out[335]= 0
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and system (3.5) can be written as

�						

						
�

d)
dt

� �)

dx
dt

� x � m �1 � ) � x�
a � �1 � ) � x�

� 1�
)�0� > 0, x�0� > 0.

(3.6)

Because )�t� � )�0�e�t , limt�� )�t� � 0 so system (3.6) can be rewritten as
the single first-order equation

dx
dt

� x � m �1 � x�
a � �1 � x�

� 1� or
dx
dt

� x 	 m�1 � x�
1 � a � x

� 1
 , 0 � x � 1, (3.7)

where x�0� > 0. The rest points (or equilibrium points) of equation (3.7)
are found by solving

x 	 m�1 � x�
1 � a � x

� 1
 � 0

for x.

In[336]:= Solve�� � 1 �
m �1 � x�

1 � a � x
 x �� 0,x�

Out[336]= ��x 
 0,�x 
 �1 � a � m

�1 � m
��

For m # 1, observe that the nonzero rest point can be written as x � 1�Λ,
where Λ � a/ �m � 1� is called the break-even concentration.

In[337]:= Apart��1 � a � m
�1 � m

�
Out[337]= 1 �

a

�1 � m

We use Plot to graph y � 1 � Λ in Figure 3-15.

In[338]:= Plot�1 � Λ,�Λ,0,1	,AspectRatio 
 Automatic,
AxesLabel 
 �"Λ",""	�

On the other hand, in Figure 3-16 we use ContourPlot to generate a
plot of the level curve of f �a, m� � �m � a � 1�/ �m � 1� corresponding
to 0. Points �a, m� in the white region are points where 1 � Λ is positive.

In[339]:=
�1 � a � m

�1 � m
/.�a 
 2,m 
 6	

Out[339]=
3

5

In[340]:=
�1 � a � m

�1 � m
/.�a 
 8,m 
 2	

Out[340]= �7
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Figure 3-15 Plot of y � 1 � Λ
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Figure 3-16 The black region corresponds to points �a, m� where 1 � Λ is negative
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In[341]:= ContourPlot��1 � a � m
�1 � m

,�a,0,10	,�m,0,10	,

Contours 
 �0	,PlotPoints 
 200,

AxesLabel 
 �"a","m"	,Frame 
 False,

Axes 
 Automatic�
To see how a, m, and x�0� � x0 affect the solutions of equation (3.7), we
define the function x. The command x[m,a][x0] plots the solution of
equation (3.7) satisfying x�0� � x0 for 0 � t � 10. You can include Plot
options, opts, with x[m,a][x0,opts].

In[342]:= Clear�x�

x�m ,a ��x0 ,opts � �� Module��Λ	,
Λ � a/�m � 1�
numsol � NDSolve��x��t� ��
x�t��m � 1�/�1 � a � x�t���1 � Λ � x�t��,

x�0� �� x0	,x�t�,�t,0,100	�
Plot�Evaluate�x�t�/.numsol�,
�t,0,10	,opts,
DisplayFunction 
 Identity,
PlotRange 
 �0,1	��

For example,

In[343]:= g1 � Table�x�4,2��x0,PlotStyle 
 GrayLevel

��0 � x0/2��,�x0,0.05,0.95,0.9/14	�

In[344]:=
�1 � a � m

�1 � m
/.�m 
 4,a 
 2	

In[345]:= g1b � Show�g1,DisplayFunction 

$DisplayFunction�

plots solutions to equation (3.7) if m � 4 and a � 2 for various initial
conditions. The results are shown in Figure 3-17. In this case, we see
that all solutions approach the equilibrium solution x � 1/3.

Out[345]=
1

3

On the other hand, entering

In[346]:= g2 � Table�x�m,2��0.2,
PlotStyle 
 GrayLevel��9 � m�/8��,
�m,1.01,9,8.99/24	�

In[347]:= g2b � Show�g2,
DisplayFunction 
 $DisplayFunction�
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Figure 3-17 If m � 4 and a � 2, all solutions of equation (3.7) approach the equilibrium
solution x � 1/3
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Figure 3-18 If m is sufficiently small, the organism becomes extinct

solves equation (3.7) if a � 2 and x0 � 0.2 for various values of m. The
results are shown in Figure 3-18.

Application: HarvestingSource: David A. Sanchez,
“Populations and Harvesting,”
Mathematical Modeling:
Classroom Notes in Applied
Mathematics, Murray S.
Klamkin, Editor, SIAM (1987),
pp. 311 – 313.

If we wish to take a constant harvest rate, H (like hunting, fishing, or disease) into
consideration, then we might instead modify the logistic equation (3.3) and use
the equation

dP
dt

� rP � aP2 � H

to model the population under consideration. Notice that Mathematica can find a
solution to this equation if r2 � 4aH < 0.
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In[348]:= gensol � DSolve�p��t� �� r p�t� � ap�t�2
�h,p�t�,t�

Out[348]= ��p�t	 
 1

2 a
�r � 


4 a h � r2 Tan�1
2

�
�



4 a h � r2 t

�


4 a h � r2 C�1	�����

If H does not depend on P, the equilibrium solutions are found by solving rP �
aP2 � H � 0 for P.

In[349]:= eqsols � Solve�r p � a pˆ2 � h �� 0,p�

Out[349]= ��p 
 �
�r �



�4 a h � r2

2 a
�,�p 
 �

�r �


�4 a h � r2

2 a
��

Observe that there are two distinct equilibrium solutions if r2 � 4aH > 0. There is
one equilibrium solution if r2 � 4aH � 0, and none if r2 � 4aH < 0. Suppose that
for a certain species it is found that r � 7/10, a � 1/10, and H � 1. Then, the model
becomes dP/dt � 7

10 P � 1
10 P2 � 1 with equilibrium solutions P � 2 and P � 5. For these parameter values,

the solution obtained in
gensol is not valid because
r2 � 4aH � 9/100 > 0.In[350]:= eqsols/.�r 
 7/10,a 
 1/10,h 
 1	

Out[350]= ��p 
 5,�p 
 2

Mathematica can solve the initial-value problem dP/dt � 7
10 P � 1

10 P2 � 1, P�0� � P0

although the result is very lengthy so we display an abbreviated portion of the
solution with Short.

In[351]:= exactsol �

DSolve��p��t� �� 7/10 p�t� � 1/10p�t�ˆ2 � 1,

p�0� �� p0	,p�t�,t�

In[352]:= Short�exactsol�

Out[352]= ��p�t	 
 �5�� 5�1� p0

�5����1� p0
��

Proceeding numerically, we define the function numgraph. Given i, numgraph[i]
attempts to graph the numerical solution to dP/dt � 7

10 P � 1
10 P2 � 1, P�0� � P0 on

the rectangle ��10, 10� � ��10, 10�. Any options specified are passed through to the
Plot command.
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Figure 3-19 A solution to the logistic equation with harvesting

In[353]:= Clear�p,numgraph�

numgraph�i ,opts � ��

Module��numsol	,numsol �

NDSolve��p��t� �� 7/10p�t� � 1/10p�t�ˆ2 � 1,

p�0� �� i	,p�t�,�t,0,10	�

Plot�p�t�/.numsol,�t,0,10	,opts,

DisplayFunction 
 Identity,

PlotStyle 
 ��GrayLevel�0�,

Thickness�0.01�		,

PlotRange 
 ��0,10	,�0,10		�

�

For example, entering

In[354]:= numgraph�11,PlotRange 
 All,

DisplayFunction 
 $DisplayFunction�

displays the graph of the solution to dP/dt � 7
10 P � 1

10 P2 � 1, P�0� � 11 for 0 �
t � 10, which is shown in Figure 3-19. We then use Map to graph the solution
of dP/dt � 7

10 P � 1
10 P2 � 1, P�0� � i, i � 1, 1/2, . . . , 10, naming the resulting set of

graphs toshow. Notice that Mathematica generates several error messages, not all
of which are shown here, because solutions satisfying P�0� � P0 for P0 < 2 become
unbounded very quickly.

In[355]:= toshow � Map�numgraph,Table�i,�i,1,10,1/2	��

NDSolve �� ndsz �

At t �� 4.62098, step size is effectively zero�

singularity or stiff system suspected.
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Figure 3-20 Solutions to the logistic equation with harvesting with the associated direction
field

In[356]:= p1 � Show�toshow,

DisplayFunction 
 $DisplayFunction�

The unbounded behavior of the solutions is particularly evident when we display
the graphs in toshow together with the direction field associated with the equa-
tion in Figure 3-20.

In[357]:= << Graphics‘PlotField‘

p2 � PlotVectorField��1,7/10y � 1/10yˆ2 � 1	,

�x,0,10	,�y,0,10	,Frame 
 False,

Axes 
 Automatic,AxesOrigin 
 �0,0	,

DefaultColor 
 GrayLevel�0.5�,

ScaleFunction 
 �0.5&�,PlotPoints� > 30,

HeadLength� > 0,DisplayFunction 
 Identity�

In[358]:= Show�p2,p1,DisplayFunction 
 $DisplayFunction,

PlotRange 
 ��0,10	,�0,10		,AspectRatio 
 1�

Thus, if P0 < 2 and harvesting is allowed to continue, the species becomes extinct.
If P0 > 2, the population of the species has an equilibrium population of P � 5.



152 Chapter 3 Applications of First-Order Equations

Application: The Logistic Difference Equation
Given x0, the Logistic difference equation isSources: See texts like

Boyce and DiPrima’s
Elementary Differential
Equations and Boundary-Value
Problems, [5] and Edwards
and Penney’s Differential
Equations and Boundary Value
Problems: Computing and
Modeling, [10] for elementary
but precise discussions.

xn�1 � rxn �1 � xn� . (3.8)

Assume that x0 � 0.5.
Given r, we use Mathematica to define the function xr�n� using the form

x[r_][n_]: = x[r][n]=...

so that Mathematica “remembers” the values of xr�n� computed. In doing so, Math-
ematica need not recompute xr�n � 1� to compute xr�n� if xr�n � 1� has already been
computed.

In[359]:= Clear�x�

x�r ��0� � 0.5

x�r ��n � �� x�r��n� � r x�r��n � 1��1 � x�r��n � 1��

For example,

In[360]:= t4 � Table�x�3.83��n�,�n,1,50	�

Out[360]= �0.9575,0.155857,0.503896,0.957442,0.156061,
0.504433,0.957425,0.156121,0.504592,0.957419,
0.15614,0.504642,0.957417,0.156146,0.504658,
0.957417,0.156148,0.504664,0.957417,0.156149,
0.504666,0.957417,0.156149,0.504666,0.957417,
0.156149,0.504666,0.957417,0.156149,0.504666,
0.957417,0.156149,0.504666,0.957417,0.156149,
0.504666,0.957417,0.156149,0.504666,0.957417,
0.156149,0.504666,0.957417,0.156149,0.504666,
0.957417,0.156149,0.504666,0.957417,0.156149

computes xn for n � 1, 2, . . . , 50 if r � 3.83 in equation (3.8) and

In[361]:= ListPlot�t4,PlotJoined 
 True�

plots the resulting list and connects successive points with line segments as shown
in Figure 3-21.

To investigate how the behavior of equation (3.8) changes as r changes, we enter

In[362]:= t1 � Table��r,x�r��n�	,�r,2.8,4,1.2/249	,
�n,101,300	�

which computes a nested list: for 250 equally spaced values of r between 2.8 and
4.0, the list consisting of �r, xr�n�� for n � 101, . . . , 300 is returned. The nested list is
converted to a list of ordered pairs with Flatten
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Figure 3-21 A 3-cycle
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Figure 3-22 The “Pitchfork diagram” for 2.8 � r � 4.0

In[363]:= toshow � Flatten�t1,1�

and then plotted with ListPlot in Figure 3-22.

In[364]:= ListPlot�toshow,AxesLabel 
 �"r","x"	�

However, if you immediately request x[r][M] for a large value of Mwithout com-
puting x[r][n] for n less than M, Mathematica has a difficult time working back-
wards. We finally abort the calculation.

In[365]:= x�3.9��1000�

$RecursionLimit �� reclim � Recursion depth of 256 exceeded.
$RecursionLimit �� reclim � Recursion depth of 256 exceeded.
$RecursionLimit �� reclim � Recursion depth of 256 exceeded.
General �� stop � Further output of

$RecursionLimit �� reclim will be suppressed during this calculation.

Out[365]= $Aborted
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When using a recursive definition like the one illustrated and to be on the safe
side, a calculation like this should be carried out after the first 999 terms are com-
puted. For situations like this, we prefer using Nest. For repeated compositions
of a function with itself, Nest[f,x,n] computes the composition

� f � f � f �    f �
���������������������������������

n times

�x� � � f � f � f    ���
���������������������������

n times

�x� � f n�x�.

In terms of a composition, computing xn in equation (3.8) is equivalent to compos-
ing f �x� � rx �1 � x� with itself n times.

In[366]:= Clear�f,p�

f�r ��x � �� r x�1 � x�//N

Thus, entering

In[367]:= Table�Nest�f�2.5�,0.5,n�,�n,1,50	�

Out[367]= �0.625,0.585938,0.606537,0.596625,0.601659,
0.599164,0.600416,0.599791,0.600104,0.599948,
0.600026,0.599987,0.600007,0.599997,0.600002,
0.599999,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,
0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,
0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,
0.6,0.6,0.6,0.6

computes xn for n � 1, 2, . . . , 50 if r � 2.5 while entering

In[368]:= Table�Nest�f�3.5�,0.5,n�,�n,1,50	�

Out[368]= �0.875,0.382813,0.826935,0.500898,0.874997,
0.38282,0.826941,0.500884,0.874997,0.38282,
0.826941,0.500884,0.874997,0.38282,0.826941,
0.500884,0.874997,0.38282,0.826941,0.500884,
0.874997,0.38282,0.826941,0.500884,0.874997,
0.38282,0.826941,0.500884,0.874997,0.38282,
0.826941,0.500884,0.874997,0.38282,0.826941,
0.500884,0.874997,0.38282,0.826941,0.500884,
0.874997,0.38282,0.826941,0.500884,0.874997,
0.38282,0.826941,0.500884,0.874997,0.38282

computes xn for n � 1, 2, . . . , 50 if r � 3.5.
You can see how solutions depend on r in a variety of ways. For example,

entering the following command computes xn for n � 1000, . . . , 1050 for nine
equally spaced values of r between 3.2 and 3.9.
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Figure 3-23 As r increases, we see chaos

In[369]:= t1 � Table��n,Nest�f�r�,0.5,n�	,
�r,3.2,3.9,0.7/8	,�n,1000,1050	�

Each list is plotted with ListPlot; successive points are connected with line seg-
ments because the option PlotJoined->True is included in the ListPlot com-
mand.

In[370]:= t1b � Map�ListPlot�#,
PlotJoined 
 True,
DisplayFunction 
 Identity,
PlotRange 
 �0,1	�&,t1�

All nine graphs are shown together as an array using Show and Graphics
Array in Figure 3-23.

In[371]:= Show�GraphicsArray�Partition�t1b,3���

We regenerate the “Pitchfork diagram” with the following commands in
Figure 3-24.

In[372]:= t1 � Table��r,Nest�f�r�,0.5,n�	,
�r,2.8,4,1.2/249	,�n,101,300	�
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Figure 3-24 A copy of the “Pitchfork diagram”
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Figure 3-25 The “Pitchfork diagram” for 3.7 � r � 4.0

In[373]:= toshow � Flatten�t1,1�

In[374]:= ListPlot�toshow,AxesLabel 
 �"r","x"	,
PlotStyle 
 PointSize�0.004��

You can zoom in on areas of interest, as well. In Figure 3-25, we restrict r to
3.7 � r � 4.0.

In[375]:= t3 � Table��r,Nest�f�r�,0.5,n�	,
�r,3.7,4.,0.4/349	,�n,101,300	�

In[376]:= toshow � Flatten�t3,1�

In[377]:= ListPlot�toshow,PlotRange 
 ��3.7,4	,�0,1		,
PlotStyle 
 PointSize�0.004��
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3.3 Newton’s Law of Cooling

First-order linear differential equations can be used to solve a variety of problems
that involve temperature. For example, a medical examiner can find the time of
death in a homicide case, a chemist can determine the time required for a plas-
tic mixture to cool to a hardening temperature, and an engineer can design the
cooling and heating system of a manufacturing facility. Although distinct, each of
these problems depend on a basic principle, Newton’s Law of Cooling, that is used
to develop the associated differential equation.

Newton’s Law of Cooling: The rate at which the temperature
T �t� changes in a cooling body is proportional to the difference
between the temperature of the body and the constant tempera-
ture Ts of the surrounding medium.

Newton’s Law of Cooling is modeled with the first-order initial-value problem

�		

		
�

dT
dt

� k �T � Ts�

T �0� � T0

(3.9)

where T0 is the initial temperature of the body and k is the constant of proportion-
ality. If Ts is constant, equation (3.9) is separable and separating variables gives us Equation (3.9) is also linear.

See Example 2.5.2 where we
solved equation (3.9) by
viewing it as a linear
equation.

1
T � Ts

dT � k dt so ln �T � Ts� � kt �C1.

Using the properties of the natural logarithm and simplifying yields T �t� � Cekt�Ts,
where C �  eC1 . Applying the initial condition implies that T0 � C�Ts, so C � T0�Ts.
Therefore, the solution of equation (3.9) is

T �t� � �T0 � Ts� ekt � Ts. (3.10)

Recall that if k < 0, limt�� ekt � 0. Therefore, limt�� T �t� � Ts, so the temperature
of the body approaches that of its surroundings.

EXAMPLE 3.3.1: A pie is removed from a 350o F oven and placed to
cool in a room with temperature 75o F. In 15 minutes, the pie has a
temperature of 150o F. Determine the time required to cool the pie to a
temperature of 80o F so that it may be eaten.
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SOLUTION: In this example, T0 � 350 and Ts � 75. Substituting
these values into equation (3.11), we obtain T �t� � �350 � 75�ekt�
75 � 275ekt � 75.

In[378]:= step1 � capts � e
kt ��capts � t0�/.

�t0 
 350,capts 
 75	
Out[378]= 75 � 275 �k t

To solve the problem we must find k or ek. Because we also know that
T �15� � 150, T �15� � 275e15k � 75. Solving this equation for k or ek

gives us:

275e15k � 75

e15k �
3

11

ln �e15k� � ln � 3
11

�
15k � ln � 3

11
�

k �
ln � 3

11 �
15

k � �
ln � 11

3 �
15

or

275e15k � 75

e15k �
3

11

ek � � 3
11

�1/15

ek � �11
3

��1/15

.

Thus, T �t� � 275e�t ln�11/3�/15 � 75 � 275 �11
3

��t/15

� 75.

In[379]:= step2 � step1/.k 

1

15
Log� 3

11
�

Out[379]= 75 � 25 3t/15 111�
t
15

To find the value of t for which T �t� � 80, we solve the equation

275 �11
3

��t/15

� 75 � 80 for t:

275 �11
3

��t/15

� 5

�11
3

��t/15

�
1

55

ln �11
3

��t/15

� ln � 1
55

� � � ln 55

�
t

15
ln �11

3
� � � ln 55

t �
15 ln 55

ln �11
3

� � 46.264.
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Figure 3-26 The value of t where y � T �t� and y � 80 is the solution to the problem

Alternatively, we can graph the solution together with the line y � 80
as shown in Figure 3-26

In[380]:= Plot��step2,80	,�t,0,90	,

PlotStyle 
 �GrayLevel�0�,Dashing��0.01	�	,

PlotRange 
 �0,350	�

and then use FindRoot to approximate the time at which the temper-
ature of the pie reaches 80o F.

In[381]:= FindRoot�step2 �� 80,�t,45	�

Out[381]= �t 
 46.264

Thus, the pie will be ready to eat after approximately 46 minutes.
An interesting question associated with cooling problems is to

determine if the pie reaches room temperature. From the formula, T �t� �

275 �11
3

��t/15

� 75, we see that the component 275 �11
3

��t/15

> 0, so T �t� �

275 �11
3

��t/15

� 75 > 75. Therefore, the pie never actually reaches room

temperature according to our model. However, we see from the graph
and from the values in the following table that its temperature
approaches 75o F as t increases.
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In[382]:= Table��t,step2//N	,�t,60,100,10	�//

TableForm

Out[382]=

60 76.5214
70 75.6398
80 75.2691
90 75.1132
100 75.0476

If the temperature of the surroundings, Ts, varies the situation is more complicated.
For example, consider the problem of heating and cooling a building. Over the
span of a 24-hour day, the outside temperature, Ts, varies so the problem of deter-
mining the temperature inside the building becomes more complicated. Assum-
ing that the building has no heating or air conditioning system, the differential
equation that needs to be solved to find the temperature u�t� at time t inside the
building is

du
dt

� k �C�t� � u�t�� , (3.11)

where C�t� is a function that describes the outside temperature and k > 0 is a con-
stant that depends on the insulation of the building. According to this equation,
if C�t� > u�t�, then du/dt > 0, which implies that u increases. On the other hand, if
C�t� < u�t�, then du/dt < 0 which means that u decreases.

EXAMPLE 3.3.2: (a) Suppose that during the month of April in Atlanta,
Georgia, the outside temperature in degrees F is given by C�t� � 70 �
10 cos �Πt/12�, 0 � t � 24. Determine the temperature in a buildingThe first choice of C�t� has

average value of 70o F; the
second choice has an average
value of 80o F.

that has an initial temperature of 60o F if k � 1/4. (b) Compare this to
the temperature in June when the outside temperature is C�t� � 80 �
10 cos �Πt/12� and the initial temperature is 70o F.

SOLUTION: (a) The initial-value problem that we must solve is

�		

		
�

du
dt

� k �70 � 10 cos � Π
12

t� � u�
u�0� � 60.

The differential equation can be solved if we write it as du/dt � ku �
k �70 � 10 cos �Πt/12�� and then use an integrating factor. This gives us

d
dt

�ektu� � kekt �70 � 10 cos �Πt/12�� ,
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Figure 3-27 The temperature in a hypothetical building over a period of 24 hours

so we must integrate both sides of the equation. Of course, solving the
equation is most easily carried out through the use of DSolve.

In[383]:= sol1 �

DSolve�
u��t� �� 1

4
�70 � 10 Cos�Πt

12
� � u�t�,

u�0� �� 60�,u�t�,t�//Simplify
Out[383]= ��u�t	 
 1

9 � Π2
�10 �63 � 7 Π2

���t/4 Π2 � 9 Cos�Π t
12

�
�3 Π Sin�Π t

12
�����

We then use Plot to graph the solution for 0 � t � 24 in Figure 3-27.

In[384]:= Plot�u�t�/.sol1,�t,0,24	�

Note that the temperature reaches its maximum (approximately 77�F)
near t � 15.5 hours which corresponds to 3:30 p.m. A more accurate
estimate is obtained with FindRoot by setting the first derivative of
the solution equal to zero and solving for t.

In[385]:= FindRoot�Evaluate��t�sol1�1,1,2�� �� 0�,
�t,15	�

Out[385]= �t 
 15.1506
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Figure 3-28 The plot is almost identical to the plot obtained in (a)

(b) This problem is solved in the same manner as the previous case.

In[386]:= sol2 � DSolve�
u��t�
��

1

4
�80 � 10 Cos�Πt

12
� � u�t�,u�0�

�� 70�,u�t�,t�//Simplify
Out[386]= ��u�t	 
 1

9 � Π2
�10 �72 � 8 Π2

���t/4 Π2 � 9 Cos�Π t
12

�
�3 Π Sin�Π t

12
�����

The solution is graphed with Plot in Figure 3-28. From the graph, we
see that the maximum temperature appears to occur near t � 15 hours.

In[387]:= Plot�u�t�/.sol2,�t,0,24	�

Again, a more accurate value is obtained with FindRoot by setting
the first derivative of the solution equal to zero and solving for t. This
calculation yields 15.15 hours, the same as that in (a).

In[388]:= FindRoot�Evaluate��t�sol2�1,1,2�� �� 0�,
�t,15	�

Out[388]= �t 
 15.1506
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3.4 Free-Falling Bodies

The motion of objects can be determined through the solution of first-order initial-
value problems. We begin by explaining some of the theory that is needed to set
up the differential equation that models the situation.

Newton’s Second Law of Motion: The rate at which the momen-
tum of a body changes with respect to time is equal to the resul-
tant force acting on the body.

Because the body’s momentum is defined as the product of its mass and velocity,
this statement is modeled as

d
dt
�mv� � F,

where m and v represent the body’s mass and velocity, respectively, and F is the
sum of the forces (the resultant force) acting on the body. Because m is constant,
differentiation leads to the well-known equation

m
dv
dt

� F.

If the body is subjected only to the force due to gravity, then its velocity is deter-
mined by solving the differential equation

m
dv
dt

� mg or
dv
dt

� g,

where g � 32 ft/s2 (English system) and g � 9.8 m/s2 (international system). This
differential equation is applicable only when the resistive force due to the medium
(such as air resistance) is ignored. If this offsetting resistance is considered, we
must discuss all of the forces acting on the object. Mathematically, we write the
equation as

m
dv
dt

� � �forces acting on the object�
where the direction of motion is taken to be the positive direction. Because air
resistance acts against the object as it falls and g acts in the same direction of the
motion, we state the differential equation in the form

m
dv
dt

� mg � ��FR� or m
dv
dt

� mg � FR,

where FR represents this resistive force. Note that down is assumed to be the posi-
tive direction. The resistive force is typically proportional to the body’s velocity, v,
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or the square of its velocity, v2. Hence, the differential equation is linear or nonlin-
ear based on the resistance of the medium taken into account.

EXAMPLE 3.4.1: Determine the velocity and displacement functions
of an object with m � 1 slug where 1 slug � lb s2/ ft, that is thrown
downward with an initial velocity of 2 ft/s from a height of 1000 feet.
Assume that the object is subjected to air resistance that is equivalent
to the instantaneous velocity of the object. Also, determine the time at
which the object strikes the ground and its velocity when it strikes the
ground.

SOLUTION: First, we set up the initial-value problem to determine
the velocity of the object. Because the air resistance is equivalent to the
instantaneous velocity, we have FR � v. The formula m dv/dt � mg � FR

then gives us dv/dt � 32 � v. Of course, we must impose the initial
velocity v�0� � 2. Therefore, the initial-value problem is

�		

		
�

dv/dt � 32 � v

v�0� � 2

which is both separable and first-order linear. We solve it as a linear
first-order equation and so we multiply both sides of the equation by
the integrating factor et , which results in d/dt �etv� � 32t. Integrating
both sides gives us etv � 32et �C, so v � 32 �Ce�t . Applying the initial
velocity, we have v�0� � 32 �C � 2. Therefore, the velocity of the object
is v � 32 � 30e�t . We obtain the same result with DSolve, naming the
resulting output step1.

In[389]:= Clear�v,t�

step1 � DSolve��v��t� �� 32 � v�t�,v�0� �� 2	,
v�t�,t�

Out[389]= ��v�t	 
 2 ��t ��15 � 16 �t�

To determine the position, or distance traveled at time t, s�t�, we solve
the first-order equation ds/dt � 32 � 30e�t with initial displacement
s�0� � 0. Notice that we use the initial displacement as a reference and
let s � s�t� represent the distance traveled from this reference point.

In[390]:= step2 � DSolve��s��t� �� 32 � 30e�t, s�0� �� 0	,
s�t�,t�

Out[390]= ��s�t	 
 2 ��t �15 � 15 �t � 16 �t t�
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Figure 3-29 Plots of s � s�t� and the line s � 1000

Thus, the displacement of the object at time t is given by s � 32t�
30e�t � 30.

Because we are taking s�0� � 0 as our starting point, the object strikes
the ground when s�t� � 1000. Therefore, we must solve s � 32t � 30e�t �
30 � 1000. The roots of this equation can be approximated with Find
Root. We begin by graphing the function s � s�t� and the line s � 1000
with Plot in Figure 3-29.

In[391]:= Plot���30 � 30e�t � 32t,1000	,�t,0,70	,

PlotStyle 
 �GrayLevel�0�,GrayLevel�0.5�	�

From the graph of this function, we see that s�t� � 1000 near t � 35. To
obtain a better approximation, we use FindRoot

In[392]:= t00 � FindRoot��30 � 30e�t � 32t �� 1000,
�t,35	�

Out[392]= �t 
 32.1875

so the object strikes the ground after approximately 32.1875 seconds.
The velocity at the point of impact is found to be 32.0 ft/s by eval-

uating the derivative, s��t� � v�t� � 32 � 30e�t , at the time at which the
object strikes the ground, t � 32.1875.

In[393]:= 32 � 30e�t/.�t00�1��
Out[393]= 32.
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EXAMPLE 3.4.2: Determine a solution (for the velocity and the dis-
placement) of the differential equation that models the motion of an
object of mass m when directed upward with an initial velocity of v0

from an initial displacement y0 assuming that the air resistance equals
cv, where c is constant.

SOLUTION: Because the motion of the object is upward, mg and FR act
against the upward motion of the object; mg and FR are in the negative
direction. Therefore, the initial-value problem that must be solved in
this case is the linear problem,

�		

		
�

dv
dv

� �g �
c
m

v

v�0� � v0

which we solve with DSolve, naming the resulting output sol.

In[394]:= Clear�v,t,s�

sol � DSolve�
v��t� �� �g � c v�t�

m
,v�0� �� v0�,

v�t�,t�
Out[394]= ��v�t	 
 �

��
c t
m � � g m � �

c t
m g m � c v0�

c
��

Next, we use sol to define velocity. This function can be used to
investigate numerous situations without re-solving the differential
equation each time.

In[395]:= velocity�m ,c ,g ,v0 ,t � �

�g m � ce�
ct
m � gm

c � v0
c



For example, the velocity function for the case with m � 128 slugs, c �
1/160, g � 32 ft /s2, and v0 � 48 ft /s is v�t� � 88e�4t/5 � 40.

In[396]:= velocity� 1

128
,

1

160
,32,48,t�//Expand

Out[396]= �40 � 88 ��4 t/5

The displacement function s�t� that represents the distance above the
ground at time t is determined by integrating the velocity function. This
is accomplished here with DSolve using the initial displacement y0. As
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with the previous case, the output is named pos so that the displace-
ment formula may be used to define the function position.

In[397]:= pos � DSolve��y��t�

�� velocity�m,c,g,v0,t�,

y�0� �� y0	,y�t�,t�

Out[397]= ��y�t	 
 1

c2
��� c t

m � � g m2 � �
c t
m g m2

�c �
c t
m g m t � c m v0

�c �
c t
m m v0 � c2 �

c t
m y0����

In[398]:= position�m ,c ,g ,v0 ,y0 ,t � �

�
1

c2
�e� ct

m gm2 � cgmt � ce�
ct
m mv0

�c2 �gm2
c2

�
mv0

c
� y0��

The displacement and velocity functions are plotted in the following
using the parameters m � 128 slugs, c � 1/160, g � 32 ft/s2, and v0 �
48 ft /s as well as y0 � 0.

The time at which the object reaches its maximum height occurs
when the derivative of the displacement is equal to zero. From the
graph in Figure 3-30 we see that s��t� � v�t� � 0 when t � 1.

In[399]:= Plot�
velocity� 1

128
,

1

160
,32,48,t�,

position� 1

128
,

1

160
,32,48,0,t��,�t,0,2	,

PlotStyle 
 �GrayLevel�0�,

Dashing��0.01	�	�
A more accurate approximation, t � 0.985572, is obtained using Solve
together with N

In[400]:= root � N�Solve��tposition� 1

128
,

1

160
,32,48,0,t�

�� 0,t��
Out[400]= ��t 
 0.985572

or with FindRoot.

In[401]:= FindRoot�velocity� 1

128
,

1

160
,32,48,t� �� 0,

�t,1	�
Out[401]= �t 
 0.985572
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Figure 3-30 The maximum height of the object occurs when its velocity is 0

We now compare the effect that varying the initial velocity and dis-
placement has on the displacement function. Suppose that we use the
same values used earlier for m, c, and g. However, we let v0 � 48 in one
function and v0 � 36 in the other. We also let y0 � 0 and y0 � 6 in these
two functions, respectively. See Figure 3-31.

In[402]:= Plot�
position� 1

128
,

1

160
,32,48,0,t�,

position� 1

128
,

1

160
,32,36,6,t��,

�t,0,2	,PlotStyle 
 �GrayLevel�0�,

Dashing��0.01	�	�
Figure 3-32 demonstrates the effect that varying the initial velocity only
has on the displacement function. The values of v0 used are 48, 64,
and 80. The darkest curve corresponds to v0 � 48. Notice that as the
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Figure 3-31 Varying v0 and y0
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Figure 3-32 Varying v0

initial velocity is increased the maximum height attained by the object
is increased as well.

In[403]:= Plot�
position� 1

128
,

1

160
,32,48,0,t�,

position� 1

128
,

1

160
,32,64,0,t�,

position� 1

128
,

1

160
,32,80,0,t��,

�t,0,2	,PlotStyle 
 �GrayLevel�0�,

GrayLevel�0.3�,GrayLevel�0.6�	�
Figure 3-33 indicates the effect that varying the initial displacement
and holding all other values constant has on the displacement function.
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Figure 3-33 Varying y0
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We use values of 0, 10, and 20 for y0. Notice that the value of the initial
displacement vertically translates the displacement function.

In[404]:= Plot�
position� 1

128
,

1

160
,32,48,0,t�,

position� 1

128
,

1

160
,32,48,10,t�,

position� 1

128
,

1

160
,32,48,20,t��,

�t,0,2	,PlotStyle 
 �GrayLevel�0�,

GrayLevel�0.3�,GrayLevel�0.6�	�

We now combine several of the topics discussed in this section to solve the follow-
ing problem.

EXAMPLE 3.4.3: An object of mass m � 1 slug is dropped from a height
of 50 feet above the surface of a small pond. While the object is in the
air, the force due to air resistance is v. However, when the object is in
the pond, it is subjected to a buoyancy force equivalent to 6v. Determine
how much time is required for the object to reach a depth of 25 feet in
the pond.

SOLUTION: This problem must be broken into two parts: an initial-
value problem for the object above the pond, and an initial-value
problem for the object below the surface of the pond. The initial-value
problem above the pond’s surface is found to be

�		

		
�

dv/dt � 32 � v

v�0� � 0.

However, to define the initial-value problem to find the velocity of the
object beneath the pond’s surface, the velocity of the object when it
reaches the surface must be known. Hence, the velocity of the object
above the surface must be determined by solving the initial-value prob-
lem above. The equation dv/dt � 32 � v is separable and solved with
DSolve in d1.
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Figure 3-34 The object has traveled 50 feet when t � 2.5

In[405]:= Clear�v,y�

d1 � DSolve��v��t� �� 32 � v�t�,
v�0� �� 0	,v�t�,t�

Out[405]= ��v�t	 
 32 ��t ��1 � �t�

In order to find the velocity when the object hits the pond’s surface we
must know the time at which the distance traveled by the object (or the
displacement of the object) is 50. Thus, we must find the displacement
function which is done by integrating the velocity function obtaining
s�t� � 32e�t � 32t � 32.

In[406]:= p1 � DSolve��y��t� �� e�t ��32 � 32 et�,
y�0� �� 0	,y�t�,t�

Out[406]= ��y�t	 
 32 ��t �1 � �t � �t t�

The displacement function is graphed with Plot in Figure 3-34. The
value of t at which the object has traveled 50 feet is needed. This time
appears to be approximately 2.5 seconds.

In[407]:= Plot��e�t �32 � 32 et � 32 et t�,50	,�t,0,5	,
PlotStyle 
 �GrayLevel�0�,
GrayLevel�0.5�	�

A more accurate value of the time at which the object hits the surface
is found using FindRoot. In this case, we obtain t � 2.47864. The
velocity at this time is then determined by substitution into the velocity
function resulting in v�2.47864� � 29.3166. Note that this value is the
initial velocity of the object when it hits the surface of the pond.
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In[408]:= t1 � FindRoot�p1��1,1,2�� �� 50,�t,2.5	�

Out[408]= �t 
 2.47864

In[409]:= v1 � d1��1,1,2�� /. t1

Out[409]= 29.3166

Thus, the initial-value problem that determines the velocity of the
object beneath the surface of the pond is given by

�		

		
�

dv/dt � 32 � 6v

v�0� � 29.3166.

The solution of this initial-value problem is v�t� � 16
3 � 23.9833e�6t and

integrating to obtain the displacement function (the initial displace-
ment is 0) we obtain s�t� � 3.99722 � 3.99722e�6t � 16

3 t. These steps are
carried out in d2 and p2.

In[410]:= d2 � DSolve��v��t� �� 32 � 6 v�t�,
v�0� �� v1	,v�t�,t�

Out[410]= ��v�t	 
 ��6 t �23.9832 � 5.33333 �6 t�

In[411]:= p2 � DSolve��y��t� �� d2��1,1,2��,
y�0� �� 0	,y�t�,t�

Out[411]= ��y�t	 
 2.71828�6. t ��3.99721

�3.99721 2.718286. t

�5.33333 2.718286. t t�

This displacement function is then plotted in Figure 3-35 to determine
when the object is 25 feet beneath the surface of the pond. This time
appears to be near 4 seconds.

In[412]:= Plot��p2��1,1,2��,25	,�t,0,5	,
PlotStyle 
 �GrayLevel�0�,GrayLevel�0.5�	�

A more accurate approximation of the time at which the object is 25
feet beneath the pond’s surface is obtained with FindRoot. In this
case, we obtain t � 3.93802. Finally, the time required for the object to
reach the pond’s surface is added to the time needed for it to travel 25
feet beneath the surface to see that approximately 6.41667 seconds are
required for the object to travel from a height of 50 feet above the pond
to a depth of 25 feet below the surface.
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Figure 3-35 After approximately 4 seconds, the object is 25 feet below the surface of the
pond

In[413]:= t2 � FindRoot�p2��1,1,2�� �� 25,�t,4	�

Out[413]= �t 
 3.93802

In[414]:= t1��1,2�� � t2��1,2��

Out[414]= 6.41667
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4Higher-Order Differential
Equations

In Chapters 2 and 3 we saw that first-order differential equations can be used to
model a variety of physical situations. However, many physical situations need
to be modeled by higher-order differential equations. In this chapter, we discuss
several methods for solving higher-order differential equations.

4.1 Preliminary Definitions and Notation

4.1.1 Introduction

In the same way as in previous chapters, we can frequently use DSolve to gener-
ate exact solutions of higher-order equations and NDSolve to generate numerical
solutions to higher-order initial-value problems.

EXAMPLE 4.1.1 (Van-der-Pol Equation): The Van-der-Pol equation,
which arises in the study of nonlinear damping, is the nonlinear second-
order equation

d2x
dt2

� Μ �x2 � 1� dx
dt
� x � 0. (4.1)

(a) If x�0� � 1 and x��0� � 0, graph the solution to the Van-der-Pol equa-
tion (4.1) on the interval �0, 15� for Μ � 1/32, 1/16, 1/8, 1/4, 1/2, 1, 3/2, 2,
3, 5, 7, and 9. (b) Compare the graphs of these solutions to the graph of
the solution to the initial-value problem

�		

		
�

x�� � x � 0

x�0� � 1, x��0� � 0.

175
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Figure 4-1 Plot of x�t� if Μ � 1

SOLUTION: We begin by defining the function vanderpol. Given Μ,
vanderpol�Μ� solves the initial-value problem

�		

		
�

x�� � Μ �x2 � 1� x� � x � 0

x�0� � 1, x��0� � 0.
(4.2)

In[415]:= vanderpol�Μ � ��

NDSolve�
x���t� � Μ �x�t�2 � 1	 x��t� � x�t� �� 0,

x�0� �� 1,x��0� �� 0�,x�t�,�t,0,15	�
For example, entering

In[416]:= numsol1 � vanderpol�1�

Out[416]= ��x�t	 


InterpolatingFunction���0.,15.,
<>	�t	

In[417]:= Plot�x�t� /. numsol1,�t,0,15	�

returns a numerical solution to the initial-value problem (4.2) if Μ � 1
and then graphs the result on �0, 15�, as shown in Figure 4-1. Entering

In[418]:= numsol1/.t 
 1

Out[418]= ��x�1	 
 0.497615

shows us that if Μ � 1, x�1� � 0.497615 and entering

In[419]:= Plot�Evaluate�D�numsol1��1,1,2��,t��,

�t,0,15	�

graphs the derivative of the numerical solution on the interval �0, 15� as
shown in Figure 4-2.
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Figure 4-2 Plot of x��t� if Μ � 1

Because we will be graphing the solution for many values of Μ, we
now define the function solgraph. Given Μ, solgraph�Μ� graphs the
solution to the initial-value problem (4.2) on �0, 15�. Note that the result-
ing graph is not displayed because the option DisplayFunction->
Identity is included in the Plot command. Any options included in
the solgraph command are passed to the Plot command.

In[420]:= Remove�solgraph�

solgraph�Μ ,opts � �� Module��numsol	,

numsol � vanderpol�Μ�

Plot�x�t�/.numsol,�t,0,15	,opts,

PlotRange 
 ��3,3	,Ticks 
 ��0,15	,

��3,3		,DisplayFunction 
 Identity��

For example, entering

In[421]:= solgraph�11,
DisplayFunction 
 $DisplayFunction�

displays the graph of the solution to equation (4.2) on the interval �0, 15�
if Μ � 11 shown in Figure 4-3. Thus, entering

In[422]:= muvals � �1/32,1/16,1/8,1/4,1/2,1,

3/2,2,3,5,7,9	

In[423]:= graphs � Map�solgraph,muvals�

graphs the solution to the initial-value problem on the interval for Μ �
1/32, 1/16, 1/8, 1/4, 1/2, 1, 3/2, 2, 3, 5, 7, and 9.
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Figure 4-3 Plot of x�t� if Μ � 11

After partitioning this list of graphics into three-element subsets in
toshow with Partition, the resulting array of graphics is displayed
with Show and GraphicsArray in Figure 4-4.

In[424]:= toshow � Partition�graphs,3�

Show�GraphicsArray�toshow��

We find the solution to
�		

		
�

x�� � x � 0

x�0� � 1, x��0� � 0
with DSolve. The graph

of y � cost looks most like the first graph in toshow, corresponding to
Μ � 1/32.

In[425]:= exactsol �

DSolve��x���t� � x�t� �� 0,x�0� �� 1,

x��0� �� 0	,x�t�,t�
Out[425]= ��x�t	 
 Cos�t	

Last, we show the two graphs together to see how similar they are in
Figure 4-5.

In[426]:= sol2 � vanderpol�1/32�

Out[426]= ��x�t	 


InterpolatingFunction���0.,15.,
<>	�t	

In[427]:= Plot�Evaluate�x�t�/.�exactsol,sol2	�,

�t,0,15	,

PlotStyle 
 �GrayLevel�0�,GrayLevel�0.5�	,

PlotRange 
 ��2,2	�
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Figure 4-4 Plot of x�t� if Μ � 1/32, 1/16, 1/8, 1/4, 1/2, 1, 3/2, 2, 3, 5, 7, and 9
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Figure 4-5 Plots of x�t� if Μ � 1/32 (in gray) and y � cos t (in black)
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The example illustrates an important difference between linear and nonlinear equa-
tions. Exact solutions of linear equations with constant coefficents can often be
found. Nonlinear equations can often be approximated by linear equations. Thus,
we concentrate our study on linear differential equations.

4.1.2 The nth-Order Ordinary Linear Differential
Equation

In order to develop the methods needed to solve higher-order differential equa-
tions, we must state several important definitions and theorems. We begin by
introducing the types of higher-order equations that we will be solving in this
chapter by restating the following definition that was given in Chapter 1.

Definition 10 (Linear Differential Equation). An ordinary differential equation (of
order n) is linear if it is of the form

an�x�
dny
dxn

� an�1�x�
dn�1y
dxn�1

�    � a2�x�
d2y
dx2

� a1�x�
dy
dx

� a0�x�y � f �x�, (4.3)

For the linear differential
equation (4.3), f �x� is called
the forcing function.

where the functions ai�x�, i � 0, 1, . . . , n, and f �x� are given and an�x� is not the zero
function.

If f �x� is identically the zero function, equation (4.3) is said to be homogeneous;
if f �x� is not the zero function, equation (4.3) is said to be nonhomogeneous; and
if the functions ai�x�, i � 1, 2, . . . , n are constants, equation (4.3) is said to have
constant coefficients. An nth-order equation accompanied by the conditions

y �x0� � y0, y� �x0� � y�0, . . . , y�n�1� �x0� � y
�n�1�
0

where y0, y�0, . . . , y
�n�1�
0 are constants is called an nth-order initial-value problem.

For equation (4.3), the corresponding homogeneous equation is

an�x�
dny
dxn

� an�1�x�
dn�1y
dxn�1

�    � a2�x�
d2y
dx2

� a1�x�
dy
dx

� a0�x�y � 0. (4.4)

The following theorem gives sufficient conditions for the existence of a unique
solution of the nth-order initial-value problem.

Theorem 2 (Existence and Uniqueness). If an�x�, an�1�x�, . . . , a1�x�, a0�x� and f �x� are
continuous throughout an interval I and an�x� # 0 for all x in the interval I, then for every
x0 in I there is a unique solution to the initial-value problem
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�			

			
�

an�x�
dny
dxn

� an�1�x�
dn�1y
dxn�1

�    � a1�x�
dy
dx

� a0�x�y � f �x�

y �x0� � y0, y� �x0� � y�0, . . . , y�n�1� �x0� � y
�n�1�
0

(4.5)

on I where y0, y�0, . . . , y
�n�1�
0 represent arbitrary constants.

Now that we have conditions that indicate the existence of solutions, we become
familiar with the properties of the functions that form the solution. We will see
that solutions to nth-order ordinary linear differential equations require n solutions
with the following property.

Definition 11 (Linearly Dependent and Linearly Independent Functions). Let

S � � f1�x�, f2�x�, . . . , fn�x��

be a set of n functions. S is linearly dependent on an interval I if there are constants c1,
c2, . . . , cn, not all zero, so that

c1 f1�x� � c2 f2�x� �    � cn fn�x� � 0

for every value of x in the interval I. S is linearly independent if S is not linearly depen-
dent.

It is a good exercise to use the definition of linear dependence to show that a set
of two functions is linearly dependent if and only if the two functions are constant
multiples of each other.

Definition 12 (Wronskian). Let S � � f1�x�, f2�x�, . . . , fn�x�� be a set of n functions for
which each is differentiable at least n � 1 times. The Wronskian of S, W �S�, denoted by

W �S� � W �� f1�x�, f2�x�, . . . , fn�x��� ,

is the determinant

W �S� �

����������������
f1�x� f2�x�    fn�x�
f �1�x� f �2�x�    f �n�x�

� � � �

f
�n�1�
1 �x� f

�n�1�
2 �x�    f �n�1�

n �x�

����������������
. (4.6)

EXAMPLE 4.1.2: Compute the Wronskian for each of the following sets
of functions: (a) S � �sin x, cos x� and (b) S � �cos 2x, sin 2x, sin x cos x�.
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SOLUTION: The 2 � 2 determinant
��������a11 a12

a21 a22

�������� is computed with a11a22 �

a12a21. Thus, for (a) we have

W �S� �

����������
sin x cos x

d
dx
�sin x�

d
dx
�cos x�

���������� �
��������sin x cos x
cos x �sin x

�������� � �sin2 x � cos2 x � �1.

For (b), we need to compute the determinant������������������
cos 2x sin 2x sin x cos x

d
dx
�cos 2x�

d
dx
�sin 2x�

d
dx
�sin x cos x�

d2

dx2
�cos 2x�

d2

dx2
�sin 2x�

d2

dx2
�sin x cos x�

������������������
.

The 3 � 3 determinant

������������
a11 a12 a13

a21 a22 a23

a31 a32 a33

������������ can be computed in several equiva-

lent ways. For example,������������
a11 a12 a13

a21 a22 a23

a31 a32 a33

������������ � a11

��������a22 a23

a32 a33

�������� � a12

��������a21 a23

a31 a33

�������� � a13

��������a21 a22

a31 a32

�������� .

Here, we take advantage of the Det command, which computes the
determinant of a square matrix.

First, we define caps to be the set of functions S � �cos 2x, sin 2x, sin x cos x�.

In[428]:= caps � �Cos�2x�,Sin�2x�,Sin�x� Cos�x�	

Out[428]= �Cos�2 x	,Sin�2 x	,Cos�x	 Sin�x	

Next, we use D to compute the list

� d
dx
�cos 2x� ,

d
dx
�sin 2x� ,

d
dx
�sin x cos x�� .

Note that D automatically computes the derivative (with respect to x) of
each function in caps.

In[429]:= row2 � D�caps,x�

Out[429]= ��2 Sin�2 x	,2 Cos�2 x	,Cos�x	2 � Sin�x	2

Similarly, we use D to compute the list

� d2

dx2
�cos 2x� ,

d2

dx2
�sin 2x� ,

d2

dx2
�sin x cos x�� .
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In[430]:= row3 � D�row2,x�

Out[430]= ��4 Cos�2 x	,�4 Sin�2 x	,�4 Cos�x	 Sin�x	

(Note that entering row3=D[caps,{x,2}] yields the same result.)
Finally, we use Det to see that the determinant

In[431]:= �caps,row2,row3	//MatrixForm

Out[431]= � Cos�2 x	 Sin�2 x	 Cos�x	 Sin�x	
�2 Sin�2 x	 2 Cos�2 x	 Cos�x	2 � Sin�x	2

�4 Cos�2 x	 �4 Sin�2 x	 �4 Cos�x	 Sin�x	
�

In[432]:= Det��caps,row2,row3	�

Out[432]= 0

is zero.

In Example 4.1.2, we see that in (a) the Wronskian is not 0 while in (b) the Wron-
skian is 0. Moreover, the set of functions in (a) is linearly independent because
y � sin x and y � cos x are not multiples of each other while the set of functions
in (b) is linearly dependent: sin 2x � 2 sin x cos x. In fact, we will see that we can
often use the Wronskian to determine if a set of functions is linearly dependent or
linearly independent.

Before doing so, we define a function wronskian that quickly computes the
Wronskian of a set of functions. The command wronskian is defined to compute
the Wronskian of a list of n functions list in the variable x by:

1. Defining the variables n, r, and matrix local to the procedure
wronskian;

2. Defining n to be the number of functions in list;
3. Defining r[1] to be the 1 � n matrix list. Note that r[1] corresponds

to the row vector � f1�x� f2�x�    fn�x��, which corresponds to the top row
of the matrix

*+++++++++++
,

f1�x� f2�x�    fn�x�
f �1�x� f �2�x�    f �n�x�

� � � �

f
�n�1�
1 �x� f

�n�1�
2 �x�    f �n�1�

n �x�

-...........
/

0 (4.7)

4. Defining r[k] to be the derivative (with respect to x) of r[k-1]. r[k]
corresponds to the kth row of the matrix (4.7);

5. Defining matrix to be the matrix (4.7); and
6. Computing and returning the determinant of matrix, corresponding to

the Wronskian of list.
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In[433]:= Clear�wronskian�

wronskian�list � �� Module��n,r,matrix	,

n � Length�list�

r�1� � list

r�k � �� r�k� � �xr�k � 1�

matrix � Table�r�i�,�i,1,n	�

Expand�Det�matrix�,Trig 
 True��

We illustrate the use of wronskian for the set of functions

caps � S � � 1
x

sin 4x,
1
x

cos 4x� .

In[434]:= wronskian��Sin�4x�/Sqrt�x�,Cos�4x�/Sqrt�x�	�

Out[434]= �
4

x

Because the Wronskian for these two functions is not 0 and they are both solutions
of 4x2y�� � 4xy� � �64x2 � 1� y � 0, as verified with the following commands,

In[435]:= y1�x � � Sin�4x�/Sqrt�x�

In[436]:= y2�x � � Cos�4x�/Sqrt�x�

In[437]:= �y�x� � 64 x2 y�x� � 4 x y��x� � 4 x2 y���x�//.

��y�x� 
 y1�x�,y��x� 
 y1��x�,y���x� 
 y1���x�	,

�y�x� 
 y2�x�,y��x� 
 y2��x�,

y���x� 
 y2���x�		//Simplify
Out[437]= �0,0

we can conclude they are linearly independent by the following theorem.

Theorem 3. Let S � � f1�x�, f2�x�, . . . , fn�x�� be a set of n solutions of equation (4.4) on an
interval I. S is linearly independent if and only if W �S� # 0 for at least one value of x in
the interval I.

EXAMPLE 4.1.3: Use the Wronskian to classify each of the following
sets of functions as linearly independent or linearly dependent: (a) S ��1 � 2 sin2 x, cos 2x� and (b) S � �ex, xex, x2ex�.
SOLUTION: (a) Note that both functions in S are solutions of y�� �4y �
0. Here, we must compute the determinant of the 2 � 2 matrix����������

1 � 2 sin2 x cos 2x
d
dx

�1 � 2 sin2 x� d
dx
�cos 2x�

���������� .
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We use wronskian to compute the determinant

In[438]:= wronskian�
1 � 2Sin�x�2, Cos�2x���
Out[438]= 0

and see that the result is 0. Therefore, the set of functions S � �1 � 2 sin2 x,
cos 2x� is linearly dependent. This makes sense because these functions
are multiples of each other: cos 2x � 1 � 2 sin2 x.

(b) Note that all three functions in S are solutions of y����3y���3y��y �
0. Here, we must compute the determinant������������������

ex xex x2ex

d
dx
�ex�

d
dx
�xex�

d
dx

�x2ex�
d2

dx2
�ex�

d2

dx2
�xex�

d2

dx2
�x2ex�

������������������
.

In[439]:= wronskian�
Exp�x�,x Exp�x�,x2 Exp�x���
Out[439]= 2 �3 x

We conclude that S is linearly independent because the Wronskian of S
is not identically zero.

4.1.3 Fundamental Set of Solutions

Obtaining a collection of n linearly independent solutions to the nth-order linear
homogeneous differential equation (4.4) is of great importance in solving it. A nontrivial solution is

one that is not identically the
zero function.Definition 13 (Fundamental Set of Solutions). A set S of n linearly independent

nontrivial solutions of the nth-order linear homogeneous equation (4.4) is called a funda-
mental set of solutions of the equation.

EXAMPLE 4.1.4: Show that S � �e�5x, e�x� is a fundamental set of solu-
tions of the equation y�� � 6y� � 5y � 0.

SOLUTION: Because

d2

dx2
�e�5x� � 6

d
dx

�e�5x� � 5e�5x � 25e�5x � 30e�5x � 5e�5x � 0

and
d2

dx2
�e�x� � 6

d
dx

�e�x� � 5e�x � e�x � 6e�x � 5e�x � 0
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each function is a solution of the differential equation. It follows that S
is linearly independent because

W �S� �
�������� e�5x e�x

�5e�5x �e�x

�������� � �e�6x � 5e�6x � 4e�x # 0

so we conclude that S is a fundamental set of solutions of the equation.
Of course, we can perform the same steps with Mathematica. First,

we define caps to be the set of functions S.

In[440]:= Clear�x,y,caps�

caps � �Exp��5 x�,Exp��x�	

To verify that each function in S is a solution of y�� � 6y� � 5y � 0, we
define a function f. f[y] computes and returns y�� � 6y� � 5y. We then
use Map to apply f to each function in caps to see that each function in
caps is a solution of y�� �6y� �5y � 0, confirming the result we obtained
previously.

In[441]:= Clear�f�

f�y � �� D�y,�x,2	� � 6D�y,x� � 5y

In[442]:= f/@caps

Out[442]= �0,0

Next, we define wmat to be the matrix � e�5x e�x

�5e�5x �e�x� and display wmat

in traditional row-and-column form with MatrixForm.

In[443]:= wmat � �caps,�xcaps	

MatrixForm�wmat�

Out[443]= � ��5 x ��x

�5 ��5 x ���x
�

Det is then used to compute W �S�.

In[444]:= Det�wmat�

Out[444]= 4 ��6 x

We use a fundamental set of solutions to create what is known as a general solution
of an nth-order linear homogeneous differential equation.
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Theorem 4 (Principle of Superposition). If S � � f1�x�, f2�x�, . . . , fk�x�� is a set of
solutions of the nth-order linear homogeneous equation (4.4) and �c1, c2, . . . , ck� is a set
of k constants, then

f �x� � c1 f1�x� � c2 f2�x� �    � ck fk�x�

is also a solution of equation (4.4).

f �x� � c1 f1�x� � c2 f2�x� �    � ck fk�x� is called a linear combination of functions
in the set S � � f1�x�, f2�x�, . . . , fk�x��. A consequence of this fact is that the linear
combination of the functions in a fundamental set of solutions of the nth-order
linear homogeneous differential equation (4.4) is also a solution of the differential
equation, and we call this linear combination a general solution of the differential
equation.

Definition 14 (General Solution). If S � � f1�x�, f2�x�, . . . , fn�x�� is a fundamental set
of solutions of the nth-order linear homogeneous equation

an�x�y�n� � an�1�x�y�n�1� �    � a1�x�y� � a0�x�y � 0,

then a general solution of the equation is

f �x� � c1 f1�x� � c2 f2�x� �    � cn fn�x�

where �c1, c2, . . . , cn� is a set of n arbitrary constants.

In other words, if we have a fundamental set of solutions S, then a general solu-
tion of the differential equation is formed by taking the linear combination of the
functions in S.

EXAMPLE 4.1.5: Show that S � �cos 2x, sin 2x� is a fundamental set of
solutions of the second-order ordinary linear differential equation with
constant coefficients y�� � 4y � 0.

SOLUTION: First, we verify that both functions are solutions of y�� �
4y � 0. Note that we have defined caps to be the set of functions
S � �cos 2x, sin 2x�. Now, we use Map to apply the function y�� � 4y to
the functions in caps: the command Map[D[#,{x,2}]+4#&,caps]
computes y�� � 4y for each function y in caps. Thus, we see that given
an argument #, the command D[#,{x,2}]+4#& computes the sum of
the second derivative (with respect to x) of the argument and four times
the argument. We conclude that both functions are solutions of y�� � 4y
because the result is a list of two zeros.
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In[445]:= caps � �Cos�2x�,Sin�2x�	

In[446]:= Map�D�#,�x,2	� � 4#&,caps�

Out[446]= �0,0

Next, we compute the Wronskian

In[447]:= step1 � Det��caps,�xcaps	�

Out[447]= 2 Cos�2 x	2 � 2 Sin�2 x	2

In[448]:= Expand�step1,Trig 
 True�

Out[448]= 2

to show that the functions in S are linearly independent.
By the Principle of Superposition, y�x� � c1 cos 2x � c2 sin 2x, where

c1 and c2 are arbitrary constants, is also a solution of the equation. We
now graph y�x� for various values of c1 and c2. After defining y, we use
Table to create a list obtained by replacing c[1] in y[x] by �1, 0, and
1 and c[2] by �1, 0, and 1. We name the resulting list toplot. Note
that toplot is a list of lists: toplot consists of three elements each of
which is a list consisting of three functions.

In[449]:= Clear�y�

y�x � � c�1� Cos�2x� � c�2� Sin�2x�

In[450]:= toplot � Table�y�x�,�c�1�,�1,1	,
�c�2�,�1,1	�

Out[450]= ���Cos�2 x	 � Sin�2 x	,�Cos�2 x	,
�Cos�2 x	 � Sin�2 x	,

��Sin�2 x	,0,Sin�2 x	,�Cos�2 x	 � Sin�2 x	,
Cos�2 x	,Cos�2 x	 � Sin�2 x	

Next, we use Table and GrayLevel to create a list of nine different
levels of gray.

In[451]:= grays � Table�GrayLevel�i�,
�i,0,0.45,0.45/8	�

Finally, we use Plot to graph the nine functions in toplot for 0 �
x � 2Π in Figure 4-6. The option PlotStyle->grays specifies that the
functions are to be graphed using the GrayLevels in the list grays,
which helps us distinguish the graphs in the resulting plot.

In[452]:= Plot�Evaluate�toplot�,�x,0,2Π	,

PlotStyle 
 grays�
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Figure 4-6 Graphs of various linear combinations of cos 2x and sin 2x
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Figure 4-7 Graphs of various linear combinations of cos 2x and sin 2x

Alternatively, we can show the graphs individually in a graphics array
as shown in Figure 4-7.

In[453]:= toshow � Map�Plot�#,�x,0,2Π	,

DisplayFunction 
 Identity�&,

Flatten�toplot��
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Out[453]= �-Graphics-,-Graphics-,-Graphics-,
-Graphics-,-Graphics-,-Graphics-,
-Graphics-,-Graphics-,-Graphics-

In[454]:= Show�GraphicsArray�Partition�toshow,3���

The Principle of Superposition is a very important property of linear homogeneous
equations and is generally not valid for nonlinear equations and never valid for
nonhomogeneous equations.

EXAMPLE 4.1.6: Is the Principle of Superposition valid for the nonlin-
ear equation tx�� � 2xx� � 0?

SOLUTION: We see that DSolve is able to find a general solution of
this nonlinear equation.

In[455]:= gensol � DSolve�t x���t� � 2 x�t� x��t� �� 0,
x�t�,t�

Out[455]= ��x�t	 
 1

2
� � 1

�


�1 � 8 C�1	 Tan�1

2
�


�1 � 8 C�1	 C�2	

�


�1 � 8 C�1	 Log�t	�����

x�t� � �1/2 is the solution that satisfies x�1� � �1/2 and x��1� � 0.

In[456]:= gensol��1,1,2��/.�C�1� 
 0,C�2� 
 1/4	

Out[456]=
1

2
� � 1 � � Tan�1

2
��
4
� � Log�t	���

In[457]:=
1

2
� � 1 �

�
�1 � 4 C�2�

� Tan�1
2

�
�1 � 4 C�2� �C�1� � Log�t���/.

�C�1�� > 0,C�2�� > 1/4	

Out[457]= �
1

2

x�t� � 1
2 ��1 � tan � 1

2 ln t�� is the solution that satisfies x�1� � �1/2 and
x��1� � 1/4.
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In[458]:=
1

2
� � 1 �

�
�1 � 4 C�2�

�Tan�1
2

�
�1 � 4 C�2� �C�1� � Log�t���/.

�C�1�� > 0,C�2�� > 1/2	

Out[458]=
1

2
� � 1 � Tan�Log�t	

2
��

However, the sum of these two solutions is not a solution to the non-
linear equation because t f �� � 2 f f � # 0; the Principle of Superposition is
not valid for this nonlinear equation.

In[459]:= f�t � � �
1

2
�
1

2
� � 1 � Tan�Log�t�

2
�

In[460]:= Simplify�t f���t� � 2 f�t� f��t��

Out[460]=
Sec� Log�t	

2 �2

4 t

4.1.4 Existence of a Fundamental Set of Solutions

The following two theorems tell us that under reasonable conditions, the nth-order
linear homogeneous equation (4.4) has a fundamental set of n solutions.

Theorem 5. If ai�x� is continuous on an open interval I for i � 0, 1, . . . , n, and an�x� # 0
for all x in the interval I then the nth-order linear homogeneous equation (4.4),

an�x�
dny
dxn

� an�1�x�
dn�1y
dxn�1

�    � a2�x�
d2y
dx2

� a1�x�
dy
dx

� a0�x�y � 0,

has a fundamental set of n solutions.

Theorem 6. Any set of n�1 solutions of the nth-order linear homogeneous equation (4.4)
is linearly dependent.

We can summarize the results of these theorems by saying that in order to solve
the nth-order linear homogeneous differential equation (4.4), we must find a set S
of n functions that satisfy the differential equation such that W �S� # 0.

EXAMPLE 4.1.7: Show that y � e�x �c1 cos 4x � c2 sin 4x� is a general
solution of y�� � 2y� � 17y � 0.
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SOLUTION: After defining y, we use D to compute the first and second
derivatives (with respect to x) of y.

In[461]:= Clear�x,y,c1,c2�

y��c1 ,c2 	� �
Exp��x� �c1 Cos�4x� � c2 Sin�4x��

In[462]:= D�y��c1,c2	�,�x,2	�

D�y��c1,c2	�,x�

Out[462]= �2 ��x �4 c2 Cos�4 x	 � 4 c1 Sin�4 x	�

���x ��16 c1 Cos�4 x	 � 16 c2 Sin�4 x	�

���x �c1 Cos�4 x	 � c2 Sin�4 x	�

Out[462]= ��x �4 c2 Cos�4 x	 � 4 c1 Sin�4 x	�

���x �c1 Cos�4 x	 � c2 Sin�4 x	�

We then compute and simplify y�� � 2y� � 17y. Because the result is zero
and the set of functions S is linearly independent, y � e�x �c1 cos 4x
�c2 sin 4x� is a general solution of the equation.You should verify that

S � �e�x cos 4x, e�x sin 4x� is
a linearly independent set of
functions. In[463]:= Simplify�D�y��c1,c2	�,�x,2	�

�2D�y��c1,c2	�,x� � 17 y��c1,c2	��

Out[463]= 0

Next, we define cvals to be the set of ordered pairs consisting of �0, 1�,
�1, 0�, �2, 1�, and �1,�2� and use Map to compute the value of y for each
ordered pair in cvals, naming the resulting set of functions toplot
and finally graphing them on the interval ��1, 2� with Plot as shown
in Figure 4-8.

In[464]:= cvals � ��0,1	,�1,0	,�2,1	,�1,�2		

grays � Table�GrayLevel�i�,
�i,0,0.4,0.4/3	�

toplot � y/@cvals

In[465]:= Plot�Evaluate�toplot�,�x,�1,2	,
PlotStyle 
 grays�
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Figure 4-8 Various solutions of y�� � 2y� � 17y � 0

4.1.5 Reduction of Order

In the next section, we learn how to find solutions of homogeneous equations with
constant coefficients. In doing so, we will find it necessary to determine a second
solution from a known solution. We illustrate this procedure, called reduction of
order, by considering a second-order equation. In certain situations, we can
reduce a second-order equation by making an appropriate substitution to convert
the second-order equation to a first-order equation (this reduction in order gives
the name to the method). Consider the equation

y�� � p�x�y� � q�x�y � 0,

and suppose that y1 � f �x� is a solution to this equation. Of course we know from
our previous discussion that in order to solve this second-order differential equa-
tion , we must have two linearly independent solutions. Hence, we must deter-
mine a second linearly independent solution. We accomplish this by attempting to
find a solution of the form

y2 � v�x� f �x�,

where v�x� is not a constant function. Differentiating y2 � v�x� f �x� twice we obtain If v�x� were constant, y1 and
y2 would be linearly
dependent.y�2 � v� f � v f � and y��2 � v�� f � 2v� f � � v f ��.

In[466]:= Clear�x,y,f,v�

y�x � � v�x� f�x�

In[467]:= y��x�

y���x�
Out[467]= v�x	 f��x	 � f�x	 v��x	

Out[467]= 2 f��x	 v��x	 � v�x	 f���x	 � f�x	 v���x	
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Notice that for convenience, we have omitted the argument of these functions. We
now substitute y2, y�2, and y��2 into the equation y��� p�x�y��q�x�y � 0, which gives usf �� � p�x� f � � q�x� f � 0

because f is a solution to
y�� � p�x�y� � q�x�y � 0. y�� � p�x�y� � q�x�y � v�� f � 2v� f � � v f �� � p�x� �v� f � v f �� � q�x�v f

� f v�� � �2 f � � p�x� f � v� � v � f �� � p�x� f � � q�x� f �
� f v�� � �2 f � � p�x� f � v� � 0.

In[468]:= step1 � Collect�y���x� � p�x� y��x� � q�x� y�x�,
�v�x�,v��x�,v���x�	�

Out[468]= �f�x	 p�x	 � 2 f��x	� v��x	

�v�x	 �f�x	 q�x	 � p�x	 f��x	 � f���x	� � f�x	 v���x	

In[469]:= step2 �
step1/.f���x� � p�x� f��x� � q�x� f�x� 
 0

Out[469]= �f�x	 p�x	 � 2 f��x	� v��x	 � f�x	 v���x	

Therefore, we have the equation f v�� � �2 f � � p�x� f � v� � 0, which can be written as
a first-order equation by letting w � v�. Making this substitution gives us the linear
first-order equation

f w� � �2 f � � p�x� f � w � 0 or f
dw
dx

� �2 f � � p�x� f � w � 0,

which is separable, resulting in the separated equation

1
w

dw � ��2
f �

f
� p�x�� dx.

In[470]:= step3 � step2/.�v���x� 
 w��x�,v��x� 
 w�x�	

Out[470]= w�x	 �f�x	 p�x	 � 2 f��x	� � f�x	 w��x	

We can solve this equation by integrating both sides of the equation to yield

ln �w� � ln � 1
f 2 � � � p�x� dx so w �

1
f 2

e� � p�x� dx.

In[471]:= step4 � DSolve�step3 �� 0,w�x�,x�

Out[471]= ��w�x	 
 � xK$439 �f�K$438	 p�K$438	�2 f��K$438	
f�K$438	 �K$438

C�1	��
In[472]:= step5 � Simplify�step4�1,1,2��
Out[472]= �

 xK$439 ��p�K$438	� 2 f��K$438	
f�K$438	 ��K$438

C�1	

Thus, we have the formula

dv
dx

�
1
f 2

e� � p�x� dx or v�x� � � 1

� f �x��2
e� � p�x� dx.
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In[473]:= step6 � � step5�x

Out[473]= C�1	 � �
 xK$439 ��p�K$438	� 2 f��K$438	

f�K$438	 ��K$438
�x

Therefore, if we have the solution y1�x� � f �x� of the differential equation y�� � It is a good exercise to show
that y1 and the solution
y2 � vy1 obtained by
reduction of order are
linearly independent.

p�x�y� � q�x�y � 0, then we can obtain a second linearly independent solution of the
form y2�x� � v�x� f �x� � v�x�y1�x� where

v�x� � � 1

�y1�x��2
e� � p�x� dxdx and y2�x� � y1�x�� 1

�y1�x��2
e� � p�x� dxdx. (4.8)

EXAMPLE 4.1.8: Determine a second linearly independent solution to
the differential equation 4x2y�� � 8xy� � y � 0, x > 0, given that y1 � 1/


x

is a solution.

SOLUTION: In this case, we must divide by 4x2 in order to obtain an
equation of the form y�� � p�x�y� � q�x�y � 0. This gives us the equation
y�� � 2x�1y� � 1

4 x�2y � 0. Therefore, p�x� � 2x�1, and y1�x� � x�1/2. Using
the formula for v, equation (4.8), we obtain

v�x� � � 1

�y1�x��2
e� � p�x� dxdx �� 1�x�1/2�2 e� � 2/x dxdx

�� 1
x�1

e�2 ln xdx � � 1
x

dx � ln x, x > 0.

Hence, a second linearly independent solution is y2 � x�1/2 ln x; a gen-
eral solution is y � x�1/2 �c1 � c2 ln x�. Of course, we can take advantage
of commands like Integrate to carry out the steps encountered here.

In[474]:= p�x � �
2

x


f�x � �
1�
x


In[475]:= v�x � � � Exp�� � p�x��x�

f�x�2
�x

Out[475]= Log�x	

In[476]:= y�x � � v�x�f�x�

Mathematica generates several error messages, which are not all dis-
played here, when we enter the following Plot command because both
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Figure 4-9 Plots of y1 (in black) and y2 (in gray)

y1�x� and y2�x� are undefined if x � 0. Nevertheless, the resulting graphs
are displayed correctly in Figure 4-9.

In[477]:= Plot��f�x�,y�x�	,
x,0, 3
2

�,
PlotStyle 
 �GrayLevel�0.4�,

GrayLevel�0�	,PlotRange 
 ��7,7	�

4.2 Solving Homogeneous Equations with
Constant Coefficients

We now turn our attention to solving linear homogeneous equations with constant
coefficients. Nonhomogeneous equations are considered in the following sections.

4.2.1 Second-Order Equations

Suppose that the coefficient functions of equation a2�t�y�� � a1�t�y� � a0�t�y � f �t�
are constants: a2�t� � a, a1�t� � b, and a0�t� � c and that f �t� is identically the zero
function. In this case, the equation a2�t�y�� � a1�t�y� � a0�t�y � f �t� becomes

ay�� � by� � cy � 0. (4.9)
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Now suppose that y � ekt , k constant, is a solution of equation (4.9). Then, y� � kekt

and y�� � k2ekt . Substitution into equation (4.9) then gives us

ay�� � by� � cy � ak2ekt � bkekt � cekt

� ekt �ak2 � bk � c� � 0.

Because ekt # 0, the solutions of equation (4.9) are determined by the solutions of

ak2 � bk � c � 0, (4.10)

called the characteristic equation of equation (4.9).

Theorem 7. Let k1 and k2 be the solutions of equation (4.10).

1. If k1 # k2 are real and distinct, two linearly independent solutions of equa-
tion (4.9) are y1 � ek1t and y2 � ek2t ; a general solution of equation (4.9) is

y � c1ek1t � c2ek2t .

2. If k1 � k2, two linearly independent solutions of equation (4.9) are y1 � ek1t and
y2 � tek1t ; a general solution of equation (4.9) is

y � c1ek1t � c2tek1t .

3. If k1,2 � Α  Βi, Β # 0, two linearly independent solutions of equation (4.9) are
y1 � eΑt cos Βt and y2 � eΑt sin Βt; a general solution of equation (4.9) is

y � eΑt �c1 cos Βt � c2 sin Βt� .

EXAMPLE 4.2.1: Solve each of the following equations: (a) 6y�� � y� �
2y � 0; (b) y�� � 2y� � y � 0; (c) 16y�� � 8y� � 145y � 0.

SOLUTION: (a) The characteristic equation is 6k2� k�2 � �3k�2��2k�
1� � 0 with solutions k � �2/3 and k � 1/2. We check with either
Factor or Solve.

In[478]:= Factor�6kˆ2 � k � 2�

Solve�6kˆ2 � k � 2 �� 0�
Out[478]= ��1 � 2 k� �2 � 3 k�

Out[478]= ��k 
 �
2

3
�,�k 
 1

2
��

Then, a fundamental set of solutions is �e�2t/3, et/2� and a general solu-
tion is

y � c1e�2t/3 � c2et/2.



198 Chapter 4 Higher-Order Differential Equations

Of course, we obtain the same result with DSolve.

In[479]:= DSolve�6y���t� � y��t� � 2y�t� �� 0,y�t�,t�

Out[479]= ��y�t	 
 e�2 t/3 C�1	 � et/2 C�2	��
(b) The characteristic equation is k2 � 2k � 1 � �k � 1�2 � 0 with solution
k � �1, which has multiplicity two, so a fundamental set of solutions is�e�t , te�t� and a general solution is

y � c1e�t � c2te�t .

We check the calculation in the same way as in (a).

In[480]:= Factor�kˆ2 � 2k � 1�

Solve�kˆ2 � 2k � 1 �� 0�

DSolve�y���t� � 2y��t� � y�t� �� 0,y�t�,t�

Out[480]= �1 � k�2

Out[480]= ��k 
 �1,�k 
 �1

Out[480]= ��y�t	 
 e�t C�1	 � e�t t C�2	

(c) The characteristic equation is 16k2 � 8k � 145 � 0 with solutions
k1,2 � � 1

4  3i so a fundamental set of solutions is �e�t/4 cos 3t, e�t/4 sin 3t�
and a general solution is

y � e�t/4 �c1 cos 3t � c2 sin 3t� .

The calculation is verified in the same way as in (a) and (b).

In[481]:= Factor�16kˆ2 � 8k � 145,
GaussianIntegers� > True�

Solve�16kˆ2 � 8k � 145 �� 0�

DSolve�16y���t� � 8y��t� � 145y�t� �� 0,y�t�,t�

Out[481]= ��1 � 12 i� � 4 k� ��1 � 12 i� � 4 k�

Out[481]= ��k 
 �
1

4
� 3 i�,�k 
 �

1

4
� 3 i��

Out[481]= ��y�t	 
 e�t/4 C�2	 Cos�3 t	 � e�t/4 C�1	

Sin�3 t	��
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EXAMPLE 4.2.2: Solve

64
d2y
dt2

� 16
dy
dt
� 1025y � 0, y�0� � 1,

dy
dt
�0� � 2.

SOLUTION: A general solution of 64y�� � 16y� � 1025y � 0 is
y � e�t/8 �c1 sin 4t � c2 cos 4t�.

In[482]:= gensol � DSolve�64y���t� � 16y��t� � 1025y�t� �� 0,
y�t�,t�

Out[482]= ��y�t	 
 e�t/8 C�2	 Cos�4 t	 � e�t/8 C�1	

Sin�4 t	��
Applying y�0� � 1 shows us that c2 � 1.

In[483]:= e1 � y�t�/.gensol��1��/.t� > 0

Out[483]= C�2	

Computing y�

In[484]:= D�y�t�/.gensol��1��,t�

Out[484]= �4 e�t/8 C�1	 Cos�4 t	 �
1

8
e�t/8 C�2	 Cos�4 t	

�
1

8
e�t/8 C�1	 Sin�4 t	 � 4 e�t/8 C�2	 Sin�4 t	

and then y��0�, shows us that �4c1 � 1
8 c2 = 2.

In[485]:= e2 � D�y�t�/.gensol��1��,t�/.t� > 0

Out[485]= �4 C�1	 �
C�2	

8

Solving for c1 and c2 with Solve shows us that c1 � �25/32 and c1 � 1.

In[486]:= cvals � Solve��e1 �� 1,e2 �� 3	�

Out[486]= ��C�1	 
 �
25

32
,C�2	 
 1��

Thus, y � e�t/8 � 17
32 sin 4t � cos 4t�, which we graph with Plot in Fig-

ure 4-10.

In[487]:= sol � y�t�/.gensol��1��/.cvals��1��

Out[487]= e�t/8 Cos�4 t	 �
25

32
e�t/8 Sin�4 t	

In[488]:= Plot�sol,�t,0,8Π	�

We verify the calculation with DSolve.
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Figure 4-10 The solution to the initial-value problem tends to 0 as t � �

In[489]:= DSolve�
�64y���t� � 16y��t� � 1025y�t� �� 0,y�0� �� 1,
y��0� �� 2	,y�t�,t�

Out[489]= ��y�t	 
 e�t/8 �Cos�4 t	 �
17

32
Sin�4 t	���

4.2.2 Higher-Order Equations

As with second-order equations, solutions of any nth-order linear homogeneous
differential equation with constant coefficients are determined by the solutions of
the characteristic equation, which is obtained by assuming that y � ekt .

Definition 15 (Characteristic Equation). The equation

ankn � an�1kn�1 �    � a2k2 � a1k � a0 � 0 (4.11)

is called the characteristic equation of the nth-order linear homogeneous differential
equation with constant coefficients

any�n� � an�1y�n�1� �    � a2y�� � a1y� � a0y � 0.

In order to explain the process of finding a general solution of any nth-order lin-
ear homogeneous differential equations with constant coefficients, we state the
following definition.

Definition 16 (Multiplicity). Suppose that the characteristic equation ankn�an�1kn�1�
  �a2k2�a1k�a0 � 0 can be written in factored form as �k � k1�

m1 �k � k2�
m2    �k � kr�

mr ,
where ki # k j for i # j and m1 � m2 �    � mr � n. Then the roots of the characteristic
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equation are k � k1, k � k2, . . . , and k � kr where the roots have multiplicity m1, m2, . . . ,
and mr, respectively.

In the same manner as in the case for a second-order homogeneous equation
with real constant coefficients, a general solution of an nth-order linear homoge-
neous equation with real constant coefficients is determined by the solutions of its
characteristic equation. Hence, we state the following rules for finding a general
solution of an nth-order linear homogeneous equation for the many situations that
may be encountered.

1. If a solution k of equation (4.11) has multiplicity m, m linearly independent
solutions corresponding to k are

ekt , tekt , . . . , tm�1ekt .

2. If a solution k � Α � Βi, Β # 0, of equation (4.11) has multiplicity m, 2m
linearly independent solutions corresponding to k � Α�Βi (and k � Α�Βi)
are

eΑt cos Βt, eΑt sin Βt, teΑt cos Βt, teΑt sin Βt, . . . , tm�1eΑt cos Βt, tm�1eΑt sin Βt.

Notice that the key to the process is identifying each root of the characteristic
equation and the associated solution(s).

EXAMPLE 4.2.3: Solve 12y��� � 5y�� � 6y� � y � 0.

SOLUTION: The characteristic equation is

12k3 � 5k2 � 6k � 1 � �k � 1� �3k � 1� �4k � 1� � 0

with solutions k1 � �1/3, k2 � �1/4, and k3 � 1. Factor[expression]

attempts to factor
expression.In[490]:= Factor�12kˆ3 � 5kˆ2 � 6k � 1�

Out[490]= ��1 � k� �1 � 3 k� �1 � 4 k�

Thus, three linearly independent solutions of the equation are y1 � e�t/3,
y2 � e�t/4, and y3 � et ; a general solution is y � c1e�t/3 � c2e�t/4 � c3et . We
check with DSolve.

In[491]:= DSolve�12y����t� � 5y���t� � 6y��t� � y�t� �� 0,
y�t�,t�

Out[491]= ��y�t	 
 e�t/3 C�1	 � e�t/4 C�2	 � et C�3	��
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EXAMPLE 4.2.4: Solve y��� � 4y� � 0, y�0� � 0, y��0� � 1, y���0� � �1.

SOLUTION: The characteristic equation is k3 � 4k � k�k2 � 4� � 0 with
solutions k1 � 0 and k2,3 �  2i that are found with Solve.Enter ?Solve to obtain

basic help regarding the
Solve function. In[492]:= Solve�kˆ3 � 4k �� 0�

Out[492]= ��k 
 0,�k 
 �2 i,�k 
 2 i

Three linearly independent solutions of the equation are y1 � 1,
y2 � cos 2t, and y3 � sin 2t. A general solution is y � c1�c2 sin 2t�c3 cos 2t.

In[493]:= gensol � DSolve�y����t� � 4y��t� �� 0,y�t�,t�

Out[493]= ��y�t	 
 C�3	 �
1

2
C�1	 Cos�2 t	 �

1

2
C�2	

Sin�2 t	��
Application of the initial conditions shows us that c1 � �1/4, c2 � 1/2,
and c3 � 1/4 so the solution to the initial-value problem is y � � 1

4 �
1
2 sin 2t � 1

4 cos 2t. We verify the computation with DSolve and graph
the result with Plot in Figure 4-11.

In[494]:= e1 � y�t�/.gensol��1��/.t� > 0

Out[494]=
C�1	

2
� C�3	

In[495]:= e2 � D�y�t�/.gensol��1��,t�/.t� > 0

e3 � D�y�t�/.gensol��1��,�t,2	�/.t� > 0

Out[495]= C�2	

Out[495]= �2 C�1	

In[496]:= cvals � Solve��e1 �� 0,e2 �� 1,e3 �� �1	�

Out[496]= ��C�1	 
 1

2
,C�2	 
 1,C�3	 
 �

1

4
��

In[497]:= partsol � DSolve�
�y����t� � 4y��t� �� 0,y�0� �� 0,y��0� �� 1,
y���0� �� �1	,y�t�,t�

Out[497]= ��y�t	 
 �
1

4
�
1

4
Cos�2 t	 �

1

2
Sin�2 t	��

In[498]:= Plot�Evaluate�y�t�/.partsol�,�t,0,2Π	,
AspectRatio� > Automatic�
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4 cos 2t

EXAMPLE 4.2.5: Solve (a) 4y�4� � 12y��� � 49y�� � 42y� � 10y � 0 and (b)
y�4� � 4y��� � 24y�� � 40y� � 100y � 0.

SOLUTION: (a) The characteristic equation of 4y�4� � 12y��� � 49y�� �
42y� � 10y � 0 is 4k4 � 12k3 � 49k2 � 42k� 10 � 0. We use Factor to try to
factor the characteristic polynomial, but see that Mathematica does not
completely factor the polynomial,

In[499]:= Factor�4k4 � 12k3 � 49k2 � 42k � 10�
Out[499]= �1 � 2 k�2 �10 � 2 k � k2�

unless we include the option GaussianIntegers->True in the Factor
command.

In[500]:= Factor�4k4 � 12k3 � 49k2 � 42k � 10,
GaussianIntegers 
 True�

Out[500]= ��1 � 3 �� � k� ��1 � 3 �� � k� �1 � 2 k�2

From the results, we see that the solutions of the characteristic equation
are k � �1  3i and k � �1/2 with multiplicity 2. As you may suspect,
we obtain the same results with Solve.

In[501]:= Solve�4k4 � 12k3 � 49k2 � 42k � 10 �� 0�
Out[501]= ��k 
 �1 � 3 �,�k 
 �1 � 3 �,�k 
 �

1

2
�,�k 
 �

1

2
��

Four linearly independent solutions of the equation are then given by
y1 � e�x cos 3x, y2 � e�x sin 3x, y3 � e�x/2, and y4 � xe�x/2. This tells us that
a general solution is given by

y � e�x �c1 cos 3x � c2 sin 3x� � e�x/2 �c3 � c4x� .

We obtain the same result with DSolve. The formula for the general
solution is extracted from gensolc with gensolc[[1,1,2]].
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In[502]:= gensolc � DSolve�4y�����x� � 12y����x� � 49 y���x�
�42 y��x� � 10 y�x� �� 0,y�x�,x�

Out[502]= ��y�x	 
 ��x/2 C�3	 � ��x/2 x C�4	

���x C�2	 Cos�3 x	 � ��x C�1	 Sin�3 x	

In this case, we will graph the general solution for �c1, c2, c3, c4� �
�1, 0, 1, 0�, �0, 1, 0, 1�, �1, 1, 0, 1�, �1,�1, 1, 2�, �0, 2, 1,�2�, and �1,�2, 1, 2�. We
accomplish this by applying the pure function

gensolc[[1,1,2]] /. {C[1]->#[[1]],C[2]->#[[2]],
C[3]->#[[3]],C[4]->#[[4]]} &

to the set of ordered quadruples

{{1,0,1,0},{0,1,0,1},{1,1,0,1},{1,-1,1,2},{0,2,1,-2},
{1,-2,1,2}}

with Map. Namely, given an argument #, the function

gensolc[[1,1,2]] /. {C[1]->#[[1]],C[2]->#[[2]],
C[3]->#[[3]],C[4]->#[[4]]} &

replaces C[1] in gensolc[[1,1,2]] by the first part of the argu-
ment, C[2] by the second part, C[3] by the third part, and C[4] by
the fourth part.

In[503]:= toplot � ��gensolc�1,1,2��/.
�C�1� 
 �#1�1��,C�2� 
 �#1�2��,
C�3� 
 �#1�3��,C�4� 
 �#1�4��	&�/@
��1,0,1,0	,�0,1,0,1	,�1,1,0,1	,
�1,�1,1,2	,�0,2,1,�2	,
�1,�2,1,2		

We then graph the set of functions toplot on the interval ��1, 2� with
Plot in Figure 4-12.

In[504]:= grays � Table�GrayLevel�i�,
�i,0,0.7,0.7/5	�

In[505]:= Plot�Evaluate�toplot�,�x,�1,2	,
PlotStyle 
 grays�

(b) The characteristic equation of y�4� � 4y��� � 24y�� � 40y� � 100y � 0
is k4 � 4k3 � 24k2 � 40k � 100 � 0 which we can solve by factoring
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Figure 4-12 Various solutions of 4y�4� � 12y��� � 49y�� � 42y� � 10y � 0

k4 � 4k3 � 24k2 � 40k � 100 using Factor together with the options
GaussianIntegers->True

In[506]:= Factor�k4 � 4k3 � 24k2 � 40k � 100,
GaussianIntegers 
 True�

Out[506]= ��1 � 3 �� � k�2 ��1 � 3 �� � k�2

or using Solve.

In[507]:= Solve�k4 � 4k3 � 24k2 � 40k � 100 �� 0�
Out[507]= ��k 
 �1 � 3 �,�k 
 �1 � 3 �,

�k 
 �1 � 3 �,�k 
 �1 � 3 �

Thus, we see that the solutions of the characteristic equation are k �
�1 � 3i and k � �1 � 3i, each with multiplicity 2, so the corresponding
solutions are y1 � e�x cos 3x, y2 � e�x sin 3x, y3 � xe�x cos 3x, and y4 �
xe�x sin 3x. This tells us that a general solution is given by

y � e�x ��c1 � c2x� cos 3x � �c3 � c4x� sin 3x� .

We obtain the same result using DSolve.

In[508]:= gensold � DSolve�D�y�x�,�x,4	�
�4D�y�x�,�x,3	� � 24 y���x�
�40y��x� � 100 y�x� �� 0,y�x�,x�

Out[508]= ��y�x	 
 ��x C�3	 Cos�3 x	 � ��x x C�4	 Cos�3 x	

���x C�1	 Sin�3 x	 � ��x x C�2	 Sin�3 x	
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To graph the solution for various values of the constants, we proceed in
the same manner as in (a). First, we define a list of ordered quadruples,
vals.

In[509]:= vals � ��5,0,1,0	,�0,1,0,�3	,
�1,3,0,1	,�1,�1,1,2	,�0,2,1,�2	,
�1,�2,5,2	,�0,�3,0,2	,�3,0,0,2	,
�1,1,1,1		

We then use Map to replace C[1] in gensold[[1,1,2]], which rep-
resents the formula for the solution, by the first part of each quadruple
in vals, C[2] by the second part, C[3] by the third part, and C[4] by
the fourth part.

In[510]:= toplot �
Map�
gensold�1,1,2�/.
�C�1� 
 �#1�1��,C�2� 
 �#1�2��,
C�3� 
 �#1�3��,C�4� 
 �#1�4��	&,
vals�

We then use Table and Plot to graph each function in toplot on the
interval ��1/2, 3/2�, naming the resulting list of nine graphics
objects ninegraphs. The graphs are not displayed because the option
DisplayFunction->Identity is included in the Plot command.
(If you do not include this option, each graph is displayed as it is gen-
erated.)

In[511]:= ninegraphs �

Table�Plot�toplot�i�,
x,�1
2
,
3

2
�,

DisplayFunction 
 Identity�,�i,1,9	�
Now, we use Partition to partition the set ninegraphs into three
element subsets, naming the resulting 3 � 3 array of graphics objects
todisplay.

In[512]:= todisplay � Partition�ninegraphs,3�

We then display the array of graphics objects todisplay using Show
together with GraphicsArray in Figure 4-13.

In[513]:= Show�GraphicsArray�todisplay��
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Figure 4-13 Various solutions of y�4� � 4y��� � 24y�� � 40y� � 100y � 0

EXAMPLE 4.2.6: If a is a positive constant, find conditions on the
constant b so that y�x� satisfies

�		

		
�

y��� � 0.344425y�� � 12.4454y� � 4.50047y � 0

y�0� � 0, y��0� � a, y���0� � b

and has the property that limx�� y�x� � 0. (b) For this function, find and
classify the first critical point on the interval �0,��.

SOLUTION: We use Solve to find (accurate approximations of) the
solutions of the characteristic equation k3 � 0.344425k2 � 12.4454k �
4.50047 � 0.

In[514]:= Solve�k3 � 0.344425 k2 � 12.4454 k
�4.50047 �� 0�

Out[514]= ��k 
 �0.349491 � 3.54557 �,
�k 
 �0.349491 � 3.54557 �,�k 
 0.354557

Then, a general solution of the equation is

y � c1e0.354557x � e�0.349491x �c2 cos 3.54557x � c3 sin 3.54557x� .



208 Chapter 4 Higher-Order Differential Equations

In[515]:= Clear�y�

y�x � � c1 Exp�0.354557 x�
�Exp��0.349490878289872464 x�
��c2 Cos�3.54557256737378034 x�
�c3 Sin�3.54557256737378034 x��

We now apply the initial conditions and solve for c1, c2, and c3.Note how we use Chop to
replace those numbers in
cvals that are very close to
zero by zero.

In[516]:= sys � �y�0� �� 0,y��0� �� a,y���0� �� b	

Out[516]= �c1 � c2 �� 0,0.354557 c1
�0.349490878289872464 c2
�3.54557256737378034 c3 �� a,
0.125711 c1 � 12.4489409565056737 c2
�2.47829 c3 �� b

In[517]:= cvals � Solve�sys,�c1, c2, c3	�//Chop//
Simplify

Out[517]= ��c1 
 0.0534931 a � 0.07653 b,
c2 
 �0.0534931 a � 0.07653 b,
c3 
 0.27142 a � 0.0151966 b

We obtain the solution to the initial-value problem by substituting these
values back into the general solution.

In[518]:= y�x � � y�x� /. cvals��1��

Out[518]= �0.0534931 a � 0.07653 b� �0.354557 x

���0.349490878289872464 x ���0.0534931 a � 0.07653 b�
� Cos�3.54557256737378034 x	
��0.27142 a � 0.0151966 b�
� Sin�3.54557256737378034 x	�

These results indicate that limx�� y�x� � 0 if 0.0534931a � 0.07653b � 0
which leads to b � �0.698982a.

In[519]:= bval � Solve�0.0534930859299338479 a
�0.0765300173093015523 b �� 0,b�

Out[519]= ��b 
 �0.698982 a

Substituting back into the solution to the initial-value problem yields

y � 0.282042ae�0.349491x sin 3.54557x.

In[520]:= y�x � � y�x�/.bval��1��//Chop

Out[520]= 0.282042 a ��0.349490878289872464 x

� Sin�3.54557256737378034 x	
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Figure 4-14 The first critical point of y occurs at the first 0 of y�

To find and classify the first critical point of y � 0.282042ae�0.349491x

sin 3.54557x, we compute y �

In[521]:= y��x�

Out[521]= 1. a ��0.349490878289872464 x

�Cos�3.54557256737378034 x	

�0.0985711 a ��0.349490878289872464 x

�Sin�3.54557256737378034 x	

and graph y�/a in Figure 4-14 to locate the first zero of y�.

In[522]:= Plot�y��x�
a

,�x,0,1	�
From the graph, we see that the first zero occurs near 0.4 and with
FindRoot we obtain the critical number x � 0.415319.

In[523]:= critval � FindRoot�y��x�
a

�� 0,�x,0.4	�
Out[523]= �x 
 0.415319

At this critical number, we use ReplaceAll (/.) to find that
y�0.415319� � 0.242759a. Because y� makes a “simple change in sign”
from positive to negative at x � 0.415319, by the first derivative test
�0.415319, 0.242759a� is a relative (or local) maximum.

In[524]:= y�x� /. critval

Out[524]= 0.242759 a

To see that �0.415319, 0.242759a� is the absolute maximum, we graph y
for various values of a with Plot in Figure 4-15.
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Figure 4-15 The maximum value of y is 0.242759a

In[525]:= toplot � Table�y�x�,�a,0.5,5,0.5	�

In[526]:= grays � Table�GrayLevel�i�,
�i,0,0.8,0.8/9	�

In[527]:= Plot�Evaluate�toplot�,�x,0,6	,
PlotStyle 
 grays�

EXAMPLE 4.2.7: Find a differential equation with general solution y �
c1e�2t/3�c2te�2t/3�c3t2e�2t/3�c4 cos t�c5 sin t�c6t cos t�c7t sin t�c8t2 cos t�
c9t2 sin t.

SOLUTION: A linear homogeneous differential equation with constant
coefficients that has this general solution has fundamental set of solu-
tions

S � �e�2t/3, te�2t/3, t2e�2t/3, cos t, sin t, t cos t, t sin t, t2 cos t, t2 sin t� .

Hence, in the characteristic equation k � �2/3 has multiplicity 3 while
k �  i has multiplicity 3. The characteristic equation is

�k � 2
3

�3

�k � i�3�k � i�3 � k9 � 2k8 �
13
3

k7 �
170
27

k6 � 7k5 �
62
9

k4

� 5k3 �
26
9

k2 �
4
3

k �
8
27

,
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where we use Mathematica to compute the multiplication with Expand.

In[528]:= Expand�27�k � 2/3�ˆ3�kˆ2 � 1�ˆ3�

Out[528]= 8 � 36 k � 78 k2 � 135 k3 � 186 k4 � 189 k5 � 170 k6

�117 k7 � 54 k8 � 27 k9

Thus, a differential equation obtained with the indicated general solu-
tion is

d9y
dt9

� 2
d8y
dt8

�
13
3

d7y
dt7

�
170
27

d6y
dt6

� 7
d5y
dt5

�
62
9

d4y
dt4

� 5
d3y
dt3

�
26
9

d2y
dt2

�
4
3

dy
dt
�

8
27

y � 0.

Application: Testing for Diabetes Sources: D. N. Burghess and
M. S. Borrie, Modeling with
Differential Equations, Ellis
Horwood Limited,
pp. 113–116. Joyce M. Black
and Esther
Matassarin–Jacobs, Luckman
and Sorensen’s
Medical–Surgical Nursing:
A Psychophysiologic Approach,
Fourth Edition, W. B.
Saunders Company (1993),
pp. 1775–1808.

Diabetes mellitus affects approximately 12 million Americans; approximately one-
half of these people are unaware that they have diabetes. Diabetes is a serious
disease: it is the leading cause of blindness in adults, the leading cause of renal
failure, responsible for approximately one-half of all nontraumatic amputations in
the United States. In addition, people with diabetes have an increased rate of coro-
nary artery disease and strokes. People at risk for developing diabetes include
those who are obese; those suffering from excessive thirst, hunger, urination, and
weight loss; women who have given birth to a baby with weight greater than nine
pounds; those with a family history of diabetes; those who are over 40 years of
age. People with diabetes cannot metabolize glucose because their pancreas pro-
duces an inadequate or ineffective supply of insulin. Subsequently, glucose levels
rise. The body attempts to remove the excess glucose through the kidneys: the glu-
cose acts as a diuretic, resulting in increased water consumption. Since some cells
require energy, which is not being provided by glucose, fat and protein is broken
down and ketone levels rise. Although there is no cure for diabetes at this time,
many cases can be effectively managed by a balanced diet and insulin therapy
in addition to maintaining an optimal weight. Diabetes can be diagnosed by sev-
eral tests. In the fasting blood sugar test, a patient fasts for at least four hours,
and then the glucose level is measured. In a fasting state, the glucose level in nor-
mal adults ranges from 70 to 110 milligrams per milliliter. An adult in a fasting
state with consistent readings of over 150 milligrams probably has diabetes. How-
ever, people with mild cases of diabetes might have fasting state glucose levels
within the normal range because individuals vary greatly. In these cases, a highly
accurate test which is frequently used to diagnose mild diabetes is the glucose
tolerance test (GTT), which was developed by Drs. Rosevear and Molnar of the
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Mayo Clinic and Drs. Ackerman and Gatewood of the University of Minnesota.
During the GTT, a blood and urine sample are taken from a patient in a fasting
state to measure the glucose, G0, hormone, H0, and glycosuria levels, respectively.
We assume that these values are equilibrium values. The patient is then given 100
grams of glucose. Blood and urine samples are then taken at 1, 2, 3, and 4 hour
intervals. In a person without diabetes, glucose levels return to normal after two
hours; in diabetics their blood sugar levels either take longer or never return to
normal levels.

Let G denote the cumulative level of glucose in the blood, g � G � G0, H
the cumulative level of hormones that affect insulin production (like glucagon,
epinephrine, cortisone, and thyroxin), and h � H � H0. Notice that g and h repre-
sent the fluctuation of the cumulative levels of glucose and hormones from their
equilibrium values. The relationship between the rate of change of glucose in the
blood and the rate of change of the cumulative levels of the hormones in the blood
that affects insulin production is

�		

		
�

g� � f1�g, h� � J�t�

h� � f2�g, h�

where J�t� represents the external rate at which the blood glucose concentration is
being increased. If we assume that f1 and f2 are linear functions, then this system
of equations becomes

�		

		
�

g� � �ag � bh � J�t�

h� � �ch � dg

where a, b, c, and d represent positive numbers. We define these equations in eq1
and eq2.

In[529]:= eq1 � g��t� �� �a g�t� � b h�t� � j�t�

eq2 � h��t� �� �c h�t� � d g�t�

Next, we solve the first equation for h�t�

In[530]:= step1 � Solve�eq1,h�t��

Out[530]= ��h�t	 
 �a g�t	 � j�t	 � g��t	

b
��

and differentiate this result with respect to t to obtain h��t�.

In[531]:= step2 � �tstep1�1,1,2�
Out[531]=

�a g��t	 � j��t	 � g���t	

b
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Substituting these results into the second equation yields the second-order equa-
tion with constant coefficients

1
b

��g�� � ag� � J�� � � c
b

��g� � ag � J� � dg

g�� � �a � c�g� � �ac � bd�g � J� � cJ.

In[532]:= step3 � eq2/.�step1�1,1�,h��t� 
 step2	

Out[532]=
�a g��t	 � j��t	 � g���t	

b
��

d g�t	 �
c ��a g�t	 � j�t	 � g��t	�

b

For t > 0 we have that J�t� � 0 and J��t� � 0 because the glucose solution is
consumed at t � 0, so for t > 0 we can rewrite the equation as

g�� � �a � c�g� � �ac � bd�g � 0.

In[533]:= step4 � step3/.�j��t� 
 0,j�t� 
 0	

Out[533]=
�a g��t	 � g���t	

b
�� d g�t	 �

c ��a g�t	 � g��t	�

b

We now use DSolve to solve this second-order equation.

In[534]:= sol � DSolve�step4,g�t�,t�

Out[534]= ��g�t	 
 �
1
2 ��a�c�



a2�2 a c�c2�4 b d� t

C�1	

��
1
2 ��a�c�



a2�2 a c�c2�4 b d� t

C�2	��
It might be reasonable to assume that glucose levels fluctuate in a periodic fash-
ion so that the solutions to the equation involve periodic functions. In order to
have periodic functions in the solution (like sine and cosine), we must have that
�a � c�2 � 4�ac � bd� < 0. We now replace �a � c�2 � 4�ac � bd� with �4Ω2 and �a � c
with �2Α using ReplaceRepeated (//.)

In[535]:= step5 � �sol�1,1,2��//.
a2 � 2a c � c2 � 4b d 
 �4Ω2,�a � c 
 �2Α�
Out[535]= �

1
2 t��2 Α�2



�Ω2�

C�1	 � �
1
2 t��2 Α�2



�Ω2�

C�2	

We then simplify the result with PowerExpand.

In[536]:= step6 � PowerExpand�step5�

Out[536]= �
1
2 t ��2 Α�2 � Ω� C�1	 � �

1
2 t ��2 Α�2 � Ω� C�2	

Use ComplexExpand to rewrite step6 in terms of trigonometric functions.
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In[537]:= step7 � ComplexExpand�step6�

Out[537]= ��t Α C�1	 Cos�t Ω	 � ��t Α C�2	 Cos�t Ω	

�� ����t Α C�1	 Sin�t Ω	 � ��t Α C�2	 Sin�t Ω	�

We want to choose the constants C[1] and C[2] so that the result is a real-valued
function. We begin by using Collect to collect together the terms involving cosΩt
and sinΩt.

In[538]:= step8 � Collect�step7,�Cos� Ω t�,Sin� Ω t�	�

Out[538]= ���t Α C�1	 � ��t Α C�2	� Cos�t Ω	

���� ��t Α C�1	 � � ��t Α C�2	� Sin�t Ω	

If possible, we would like to choose C[1] and C[2] so that C[1] + C[2] can be
replaced by an arbitrary real constant c1 and -I C[1]+ I C[2] can be replaced
by an arbitrary real constant c2. To see that this is possible, we solve this system
of equations for C[1] and C[2] with Solve.

In[539]:= toapply � Solve��C�1� � C�2� �� c1,
�I C�1� � I C�2� �� c2	,�C�1�,C�2�	�

Out[539]= ��C�1	 
 �
1

2
��c1 � � c2�,C�2	 
 �

1

2
��c1 � � c2���

Replacing C[1] and C[2] by the values obtained in toapply yields our model.

In[540]:= model � Simplify�step8/.�toapply�1���
Out[540]= ��t Α �c1 Cos�t Ω	 � c2 Sin�t Ω	�

Thus, g�t� � e�Αt �c1 cosΩt � c2 sinΩt� and G�t� � G0 � e�Αt �c1 cosΩt � c2 sinΩt�.
Research has shown that lab results of 2Π/Ω > 4 indicate a mild case of diabetes.

For example, suppose that we have given the GTT to four patients we suspect
of having a mild case of diabetes. The results for each patient are shown in the
following table. Which patients, if any, have a mild case of diabetes?

Patient 1 Patient 2 Patient 3 Patient 4
G0 80.00 90.00 100.00 110.00

t � 1 85.32 91.77 103.35 114.64
t � 2 82.54 85.69 98.26 105.89
t � 3 78.25 92.39 96.59 108.14
t � 4 76.61 91.13 99.47 113.76

In each case, we must find Α, Ω, c1, and c2 so that G�t� � G0 � e�Αt �c1 cosΩt
�c2 sinΩt� agrees with the data as closely as possible. To accomplish this, we take
advantage of the NonlinearFit command that is contained in the NonlinearFit
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package which is located in the Statistics folder (or directory). First, we load the
NonlinearFit package.

In[541]:= << Statistics‘NonlinearFit‘

For the first patient, we use NonlinearFit to find values of Α, Ω, c1, and c2

In[542]:= p1 � NonlinearFit���1,85.32	,�2,82.54	,�3,78.25	,
�4,76.61		,model � 80,t,�c1,c2, Ω,Α	�

Out[542]= 80 � ��0.150145 t �2.7639 Cos�1.04611 t	
�5.54293 Sin�1.04611 t	�

and then evaluate 2Π/Ω for the value of Ω obtained to see that the first patient
probably has diabetes.

In[543]:= N� 2Π

1.04610632215009347
�

Out[543]= 6.00626

Similarly, we use NonlinearFit to see that Patients 2 and 4 probably do not have
diabetes while Patient 3 probably has diabetes.

In[544]:= p2 � NonlinearFit���1,91.77	,�2,85.69	,�3,92.39	,
�4,91.13		,model � 90,t,�c1,c2, Ω,Α	�

Out[544]= 90 � ��0.152132 t �3.78531 Cos�2.09345 t	
�4.55901 Sin�2.09345 t	�

In[545]:= N� 2Π

8.37663218680484966
�

Out[545]= 0.750085

In[546]:= p3 � NonlinearFit���1,103.35	,�2,98.26	,�3,96.59	,
�4,99.47		,model � 100,t,�c1,c2, Ω,Α	�

Out[546]= 100 � ��0.149988 t �4.7609 Cos�1.25572 t	
�2.54189 Sin�1.25572 t	�

In[547]:= N� 2Π

1.25572438795247531
�

Out[547]= 5.00363
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In[548]:= p4 � NonlinearFit���1,114.64	,�2,105.89	,
�3,108.14	,�4,113.76		,model � 110,t,
�c1,c2, Ω,Α	�

Out[548]= 110 � ��0.14985 t �3.14157 Cos�8.07894 t	
�6.24831 Sin�8.07894 t	�

In[549]:= N� 2Π

1.79575405057308117
�

Out[549]= 3.49891

4.3 Introduction to Solving
Nonhomogeneous Equations with
Constant Coefficients

In the previous section, we learned how to solve the nth-order linear homogeneous
equation with real constant coefficients. These techniques are also useful in solving
nonhomogeneous equations of the form

any�n� � an�1y�n�1� �    � a1y� � a0y � f �x�, (4.12)

where the ai’s are constant and an # 0. Before describing how to obtain solutions of
some nonhomogeneous equations, we need to describe what is meant by a general
solution of a linear nonhomogeneous equation.

Definition 17 (Particular Solution). A particular solution, yp�x�, of the linear
differential equation

an�x�y�n� � an�1�x�y�n�1� �    a2�x�y�� � a1�x�y� � a0�x�y � f �x�

is a specific function that contains no arbitrary constants and satisfies the differential
equation.

EXAMPLE 4.3.1: Verify that yp�x� � � 3
2 sin x is a particular solution of

y�� � 2y� � y � 3 cos x.
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SOLUTION: After defining yp�x� � � 3
2 sin x,

In[550]:= yp�x � � �
3 Sin�x�

2

Out[550]= �
3 Sin�x	

2

we compute and simplify y��p � 2y�p � yp

In[551]:= yp
���x� � 2yp

��x� � yp�x�

Out[551]= 3 Cos�x	

and see that the result is identically equal to 3 cos x.

Suppose that y is any solution and that yp is a particular solution of the nonhomo-
geneous equation

an�x�y�n� � an�1�x�y�n�1� �    � a2�x�y�� � a1�x�y� � a0�x�y � f �x�

and that yh is a general solution of the corresponding homogeneous equation

an�x�y�n� � an�1�x�y�n�1� �    � a2�x�y�� � a1�x�y� � a0�x�y � 0.

Then, y � yp is a solution of the corresponding homogeneous equation so

y � yp � yh or y � yh � yp.

Thus, any solution of the nonhomogeneous equation can be written as the sum of a
particular solution to the nonhomogeneous equation added to the general solution
of the corresponding homogeneous equation.

Definition 18 (General Solution of a Nonhomogeneous Equation). A general
solution of the nonhomogeneous equation

an�x�y�n� � an�1�x�y�n�1� �    � a2�x�y�� � a1�x�y� � a0�x�y � f �x�

is
y � yh � yp

where yh is a general solution of the corresponding homogeneous equation

an�x�y�n� � an�1�x�y�n�1� �    � a2�x�y�� � a1�x�y� � a0�x�y � 0

and yp is a particular solution to the nonhomogeneous equation.
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EXAMPLE 4.3.2: Find a general solution of y�� � 6y� � 13y � 2e�2x sin x if

yp � e�2x ��1
5

cos x �
2
5

sin x�
is a particular solution to the nonhomogeneous equation and

yh � e�3x �c1 cos 2x � c2 sin 2x�

is a general solution of the corresponding homogeneous equation.

SOLUTION: We first show that yp � e�2x �� 1
5 cos x � 2

5 sin x� is a partic-
ular solution of y�� �6y� �13y � 2e�2x sin x. After defining yp, we calculate
y��p � 6y�p � 13yp

In[552]:= yp�x � � �
1

5
Exp��2 x� Cos�x�

�
2

5
Exp��2 x� Sin�x�

In[553]:= yp
���x� � 6yp

��x� � 13yp�x�//Simplify

Out[553]= 2 ��2 x Sin�x	

and see that the result is 2e�2x sin x. We see that yh � e�3x �c1 cos
2x � c2 sin 2x� is a general solution of the corresponding homogeneous
equation y�� � 6y� � 13y � 0 with DSolve.

In[554]:= Clear�y�

DSolve�y���x� � 6 y��x� � 13 y�x� �� 0,
y�x�,x�

Out[554]= ��y�x	 
 ��3 x C�2	 Cos�2 x	 � ��3 x C�1	 Sin�2 x	

Thus, a general solution of the equation is y � yh � yp � e�3x �c1 cos 2x
� c2 sin 2x� � e�2x �� 1

5 cos x � 2
5 sin x�. We now graph the general solution

for various values of the arbitrary constant. To do so, we define
yh � e�3x �c1 cos 2x � c2 sin 2x� and y�x� � yh�x� � yp�x�.

In[555]:= yh�x � � Exp��3 x� �c1 Cos�2x� � c2 Sin�2x��

In[556]:= y�x � � yh�x� � yp�x�

Then, we use Table to create a list of functions obtained by replac-
ing c1 in y�x� by �1, 0, and 1 and c2 by �1, 0, and 1. The resulting list
of functions toplot is graphed with Plot in Figure 4-16. The option
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Figure 4-16 Various solutions to a nonhomogeneous equation

PlotStyle->grays specifies that the functions are graphed in shades
of gray according to the GrayLevels in the list grays.

In[557]:= toplot � Table�y�x�,�c1,�1,1	,
�c2,�1,1	�

In[558]:= grays � Table�GrayLevel�i�,
�i,0,0.7,0.7/8	�

In[559]:= Plot�Evaluate�toplot�,�x,0,2	,
PlotRange 
 All,PlotStyle 
 grays�

Techniques for solving nonhomogeneous equations with constant coefficients are
discussed in the next two sections. In addition, you can often use DSolve to find
a general solution of a linear nonhomogeneous equation.

EXAMPLE 4.3.3: Solve the initial-value problem

�		

		
�

y�� � y � cosΩx

y�0� � y��0� � 0.

Graph the solution for various values of Ω, including Ω � 1.

SOLUTION: We first use DSolve to solve the initial-value problem.
Note that the result is not valid if Ω � 1.
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In[560]:= Clear�y�

DSolve��y���x� � y�x� �� Cos�Ωx�,
y�0� �� 0,y��0� �� 0	,y�x�,x�//
Simplify

Out[560]= ��y�x	 
 Cos�x	 � Cos�x Ω	

�1 � Ω2
��

In fact, when we graph this solution for various values of Ω, Mathe-
matica generates several error messages (not all of which are displayed
here) because Ω � 1 is included in the Table command. Notice that the
empty graph corresponds to Ω � 1.

In[561]:= graphs �

Table�Plot�Cos�x� � Cos�xΩ�
�1 � Ω2

,�x,0,12Π	,

Ticks� > ��0,12Π	,��1,1		,

DisplayFunction 
 Identity�,
Ω,0,2, 2
8

��
Power �� infy � Infinite expression 1

0 encountered.

� �� indet � Indeterminate expression

0 ComplexInfinity encountered.

From the graphs shown in Figure 4-17, we see that the solution to the
initial-value problem is bounded and periodic if Ω # 1.

In[562]:= toshow � Partition�graphs,3�

In[563]:= Show�GraphicsArray�toshow��

We consider Ω � 1 separately.

In[564]:= DSolve��y���x� � y�x� �� Cos�x�,y�0� �� 0,
y��0� �� 0	,y�x�,x�

Out[564]= ��y�x	 
 1

4
��2 Cos�x	 � 2 Cos�x	3

�2 x Sin�x	 � Sin�x	 Sin�2 x	���
In[565]:= Plot�x Sin�x�

2
,�x,0,12Π	�

In Figure 4-18, we see that if Ω � 1 the solution is unbounded and not
periodic.
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Figure 4-17 Solutions of �y�� � y � cosΩx
y�0� � y��0� � 0

for Ω # 1
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Figure 4-18 Solution of �y�� � y � cosΩx
y�0� � y��0� � 0

for Ω � 1
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4.4 Nonhomogeneous Equations with
Constant Coefficients: The Method
of Undetermined Coefficients

Consider the nth-order linear differential equation with constant coefficients

any�n� � an�1y�n�1� �    � a2y�� � a1y� � a0y � f �x�.

We know that a general solution of this differential equation is given by y � yh �
yp where yp is a particular solution of the nonhomogeneous equation and yh is a
solution of the corresponding homogeneous equation

any�n� � an�1y�n�1� �    � a2y�� � a1y� � a0y � 0.

If f �x� is a linear combination of the functions 1, x, x2, . . . , ekx, xekx, x2ekx, . . . ,
eΑx cos Βx, eΑx sin Βx, xeΑx cos Βx, xeΑx sin Βx, x2eΑx cos Βx, x2eΑx sin Βx, . . . the Method of
Undetermined Coefficients provides a method that we can use to determine a partic-
ular solution of the nonhomogeneous equation.

Outline of the Method of Undetermined Coefficients
1. Solve the corresponding homogeneous equation for yh�x�.
2. Determine the form of a particular solution yp�x�. (See Determining the

Form of yp�x� next.)
3. Determine the unknown coefficients in yp�x� by substituting yp�x� into the

nonhomogeneous equation and equating the coefficients of like terms.
4. Form a general solution with y�x� � yh�x� � yp�x�.

Determining the Form of yp�x� (Step 2):
Suppose that f �x� � b1 f1�x� � b2 f2�x� �    � b j f j�x�, where b1, b2, . . . , b j are constants
and each fi�x�, i � 1, 2, . . . , j, is a function of the form xm, xmekx, xmeΑx cos Βx, or
xmeΑx sin Βx.

1. If fi�x� � xm, the associated set of functions is

S � �1, x, x2, . . . , xm� .

2. If fi�x� � xmekx, the associated set of functions is

S � �ekx, xekx, x2ekx, . . . , xmekx� .
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3. If fi�x� � xmeΑx cos Βx or fi�x� � xmeΑx sin Βx, the associated set of functions is

S � �eΑx cos Βx, xeΑx cos Βx, x2eΑx cos Βx, . . . , xmeΑx cos Βx,

eΑx sin Βx, xeΑx sin Βx, x2eΑx sin Βx, . . . , xmeΑx sin Βx�.
For each function fi�x� in f �x�, determine the associated set of functions S. If any
of the functions in S appears in the general solution to the corresponding homo-
geneous equation, yh�x�, multiply each function in S by xr to obtain a new set xrS,
where r is the smallest positive integer so that each function in xrS is not a solution
of the corresponding homogeneous equation. A particular solution is obtained by
taking the linear combination of all functions in the associated sets where repeated
functions should appear only once in the particular solution.

4.4.1 Second-Order Equations

EXAMPLE 4.4.1: Solve the nonhomogeneous equations (a) y�� � 5y�

+ 6y � 2ex and (b) y�� � 5y� � 6y � 3e�2x.

SOLUTION: (a) The corresponding homogeneous equation y�� � 5y� �
6y � 0 has general solution yh � c1e�2x � c2e�3x.

In[566]:= homsol � DSolve�y���x� � 5 y��x� � 6 y�x�
�� 0,y�x�,x�

Out[566]= ��y�x	 
 ��3 x C�1	 � ��2 x C�2	

Next, we determine the form of yp�x�. We choose S � �ex� because f �x� �
2ex. Notice that ex is not a solution to the homogeneous equation, so we
take yp�x� to be the linear combination of the functions in S. Therefore,

yp�x� � Aex.

In[567]:= yp�x � � a Exp�x�

Out[567]= a �x

Substituting this solution into y�� � 5y� � 6y � 2ex, we have

Aex � 5Aex � 6Aex � 12Aex � 2ex.

In[568]:= eqn � yp
���x� � 5yp

��x� � 6yp�x� �� 2 Exp�x�

Out[568]= 12 a �x �� 2 �x

Equating the coefficients of ex then gives us A � 1/6.
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In[569]:= aval � SolveAlways�eqn,x�

Out[569]= ��a 
 1

6
�,�x 
 ���

Hence, a particular solution is yp�x� � 1
6 ex,

In[570]:= yp�x � � a Exp�x�/. a 

1

6

Out[570]=
�x

6

and a general solution of the nonhomogeneous equation is

y � yh � yp � c1e�2x � c2e�3x �
1
6

ex.

In[571]:= gensol � e�3 x C�1� � e�2 x C�2� � yp�x�

Out[571]=
�x

6
� ��3 x C�1	 � ��2 x C�2	

In this case, we find the same general solution with DSolve.

In[572]:= gensol �
DSolve�y���x� � 5 y��x� � 6 y�x� �� 2 Exp�x�,
y�x�,x,GeneratedParameters 
 c�

Out[572]= ��y�x	 
 �x

6
� ��3 x c�1	 � ��2 x c�2	��

We then graph the general solution for various values of the arbitrary
constants in the same way as in other examples. See Figure 4-19.

In[573]:= toplot � Table�gensol�1,1,2�,
�c�1�,�1,1	,�c�2�,�1,1	�

grays � Table�GrayLevel�i�,
�i,0,0.7,0.7/8	�

Plot�Evaluate�toplot�,�x,�3,5	,
PlotStyle 
 grays,PlotRange� > ��3,5	,
AspectRatio� > 1�

(b) In this case, we see that f �x� � 3e�2x so the associated set is S � �e�2x�.
However, because y � e�2x is a solution to the corresponding homoge-
neous equation, we must multiply each element of this set by xr so that
no element is a solution of the corresponding homogeneous equation.
We multiply the element of S by x to obtain xS � �xe�2x� because xe�2x is
not a solution of y�� � 5y� � 6y � 0. Hence, yp�x� � Axe�2x. Differentiating
yp�x� twice
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Figure 4-19 Various solutions of y�� � 5y� � 6y � 2ex

In[574]:= yp�x � � ax Exp��2 x�

yp
��x�

yp
���x�

Out[574]= a ��2 x � 2 a ��2 x x

Out[574]= �4 a ��2 x � 4 a ��2 x x

and substituting into the nonhomogeneous equation yields

y�� � 5y� � 6y � �4Ae�2x � 4Axe�2x � 5 �Ae�2x � 2Axe�2x� � 6Axe�2x

� Ae�2x � 3e�2x

In[575]:= eqn � yp
���x� � 5yp

��x� � 6yp�x� �� 3 Exp��2 x�

Out[575]= �4 a ��2 x � 10 a ��2 x x � 5 �a ��2 x � 2 a ��2 x x� ��
3 ��2 x

so A � 3 and yp�x� � 3xe�2x.

In[576]:= aval � SolveAlways�eqn,x�

Out[576]= ��a 
 3
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In[577]:= yp�x � � yp�x�/.aval�1�
Out[577]= 3 ��2 x x

A general solution of y�� � 5y� � 6y � 3e�2x is

y � yh � yp � c1e�2x � c2e�3x � 3xe�2x.

As in (a), we can use DSolve to obtain equivalent results. For example,
entering

In[578]:= gensol �
DSolve��y���x� � 5 y��x� � 6 y�x� �� 3 Exp��2 x�,

y�0� �� a,y��0� �� b	,y�x�,x�

Out[578]= ��y�x	 


��3 x �3 � 2 a � b � 3 �x � 3 a �x � b �x � 3 �x x�

solves the equation subject to the initial conditions y�0� � a and y��0� � b
and names the resulting output gensol. Thus entering

-2 -1 1 2 3

-2

-1

1

2

3

Figure 4-20 Various solutions of y�� � 5y� � 6y � 3e�2x
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In[579]:= toplot � Table�gensol�1,1,2�,�a,�1,1	,
�b,�1,1	�

grays � Table�GrayLevel�i�,
�i,0,0.7,0.7/8	�

Plot�Evaluate�toplot�,�x,�2,3	,
PlotStyle 
 grays,PlotRange� > ��2,3	,
AspectRatio� > 1�

defines toplot to be the set consisting of nine functions correspond-
ing to the solutions of y�� � 5y� � 6y � 3e�2x that satisfy the initial con-
ditions y�0� � a and y��0� � b for a � �1, 0, and 1 and b � �1, 0, and 1;
and then graphs the set of functions toplot on the interval ��2, 3� in
Figure 4-20.

EXAMPLE 4.4.2: Solve

4
d2y
dt2

� y � t � 2 � 5 cos t � e�t/2.

SOLUTION: The corresponding homogeneous equation is 4y�� � y � 0
with general solution yh � c1e�t/2 � c2et/2.

In[580]:= DSolve�4y���t� � y�t� �� 0,y�t�,t�

Out[580]= ��y�t	 
 e�t/2 C�1	 � et/2 C�2	��
A fundamental set of solutions for the corresponding homogeneous
equation is S � �e�t/2, et/2�. The associated set of functions for t � 2 is
F1 � �1, t�, the associated set of functions for �5 cos t is F2 � �cos t, sin t�,
and the associated set of functions for �e�t/2 is F3 � �e�t/2�. Note that No element of F1 is

contained in S and no
element of F2 is contained
in S.

e�t/2 is an element of S so we multiply F3 by t resulting in tF3 � �te�t/2�.
Then, we search for a particular solution of the form

yp � A � Bt �C cos t � D sin t � Ete�t/2,

where A, B, C, D, and E are constants to be determined.

In[581]:= yp�t � � a � b t � c Cos�t� � d Sin�t�
�e t Exp��t/2�

Out[581]= a � b t � e e�t/2 t � c Cos�t	 � d Sin�t	



228 Chapter 4 Higher-Order Differential Equations

Computing y�p and y��p

In[582]:= dyp � yp��t�

d2yp � yp���t�

Out[582]= b � e e�t/2 �
1

2
e e�t/2 t � d Cos�t	 � c Sin�t	

Out[582]= �e e�t/2 �
1

4
e e�t/2 t � c Cos�t	 � d Sin�t	

and substituting into the nonhomogeneous equation results in

�A � Bt � 5C cos t � 5D sin t � 4Ee�t/2 � t � 2 � 5 cos t � e�t/2.

In[583]:= eqn � 4 yp���t� � yp�t� �� t � 2 � 5Cos�t�
�Exp��t/2�

Out[583]= �a � b t � e e�t/2 t � c Cos�t	 � d Sin�t	

�4 � � e e�t/2 �
1

4
e e�t/2 t � c Cos�t	

�dSin�t	� �� �2 � e�t/2 � t � 5 Cos�t	

Equating coefficients results in

�A � �2 � B � 1 � 5C � �5 � 5D � 0 � 4E � �1

so A � 2, B � �1, C � 1, D � 0, and E � 1/4.

In[584]:= cvals �
Solve���a �� �2,�b �� 1,�5c �� �5,�5d �� 0,
�4e �� �1	�

Out[584]= ��a 
 2,b 
 �1,c 
 1,d 
 0,e 

1

4
��

yp is then given by yp � 2 � t � cos t � 1
4 te�t/2

In[585]:= yp�t�/.cvals��1��

Out[585]= 2 � t �
1

4
e�t/2 t � Cos�t	

and a general solution is given by

y � yh � yp � c1e�t/2 � c2et/2 � 2 � t � cos t �
1
4

te�t/2.

Note that �A � Bt � 5C cos t � 5D sin t � 4Ee�t/2 � t � 2 � 5 cos t � e�t/2 is
true for all values of t. Evaluating for five different values of t gives us
five equations that we then solve for A, B, C, D, and E, resulting in the
same solutions as already obtained.
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In[586]:= e1 � eqn/.t� > 0

Out[586]= �a � c � 4 ��c � e� �� �8

In[587]:= e2 � eqn/.t� > Π/2

e3 � eqn/.t� > Π

e4 � eqn/.t� > 1

e5 � eqn/.t� > 2

Out[587]= �a � d �
b Π

2
�
1

2
e e�Π/4 Π � 4 � � d � e e�Π/4

�
1

8
e e�Π/4 Π� �� �2 � e�Π/4 �

Π

2
Out[587]= �a � c � b Π � e e�Π/2 Π � 4 �c � e e�Π/2

�
1

4
e e�Π/2 Π� �� 3 � e�Π/2 � Π

Out[587]= �a � b �
e

e
� c Cos�1	

�d Sin�1	 � 4 � �
3 e

4


e
� c Cos�1	

�d Sin�1	� �� �1 �
1

e
� 5 Cos�1	

Out[587]= �a � 2 b �
2 e

e
� c Cos�2	

�d Sin�2	 � 4 � �
e

2 e
� c Cos�2	

�d Sin�2	� �� �
1

e
� 5 Cos�2	

In[588]:= Solve��e1,e2,e3,e4,e5	,
�a,b,c,d,e	�//Simplify

Out[588]= ��d 
 0,b 
 �1,a 
 2,c 
 1,e 

1

4
��

Last, we check our calculation with DSolve and simplify.

In[589]:= sol2 �
DSolve�4y���t� � y�t� �� t � 2 � 5Cos�t�
�Exp��t/2�,y�t�,t�

Out[589]= ��y�t	 

e�t/2 C�1	 � et/2 C�2	 �

1

4
�e�t/2 � 2 t

�2 Cos�t	 � 4 Sin�t	� � e�t/2 �2 et/2

�
t

4
�
1

2
et/2 t �

1

2
et/2 Cos�t	

�et/2 Sin�t	���
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In[590]:= Simplify�sol2�

Out[590]= ��y�t	 

1

4
e�t/2 �1 � 8 et/2 � t � 4 et/2 t � 4 C�1	

�4 et C�2	� � Cos�t	��
In order to solve an initial-value problem, first determine a general solution and
then use the initial conditions to solve for the unknown constants in the general
solution.

EXAMPLE 4.4.3: Solve y�� � 4y � cos 2t, y�0� � 0, y��0� � 0.

SOLUTION: A general solution of the corresponding homogeneous
equation is yh � c1 cos 2t � c2 sin 2t. For this equation, F � �cos 2t,
sin 2t�. Because elements of F are solutions to the corresponding homo-
geneous equation, we multiply each element of F by t resulting in tF �
�t cos 2t, t sin 2t�. Therefore, we assume that a particular solution has the
form

yp � At cos 2t � Bt sin 2t,

where A and B are constants to be determined. Proceeding in the same
manner as before, we compute y�p and y��p

In[591]:= yp�t � � a t Cos�2t� � b t Sin�2 t�
yp��t�

yp���t�

Out[591]= a Cos�2 t	 � 2 b t Cos�2 t	 � b Sin�2 t	
�2 a t Sin�2 t	

Out[591]= 4 b Cos�2 t	 � 4 a t Cos�2 t	 � 4 a Sin�2 t	
�4 b t Sin�2 t	

and then substitute into the nonhomogeneous equation.

In[592]:= eqn � yp���t� � 4yp�t� �� Cos�2t�

Out[592]= 4 b Cos�2 t	 � 4 a t Cos�2 t	 � 4 a Sin�2 t	

�4 b t Sin�2 t	 � 4 �a t Cos�2 t	

�b t Sin�2 t	� �� Cos�2 t	

Equating coefficients readily yields A � 0 and B � 1/4. Alternatively,
remember that �4A sin 2t � 4B cos 2t � cos 2t is true for all values of t.



4.4 Nonhomogeneous Equations with Constant Coefficients 231

Evaluating for two values of t and then solving for A and B gives the
same result.

In[593]:= e1 � eqn/.t� > 0

e2 � eqn/.t� > Π/4

cvals � Solve��e1,e2	�
Out[593]= 4 b �� 1

Out[593]= �4 a �� 0

Out[593]= ��a 
 0,b 

1

4
��

It follows that yp � 1
4 t sin 2t and y � c1 cos 2t � c2 sin 2t � 1

4 t sin 2t.

In[594]:= yp�t�/.cvals��1��

Out[594]=
1

4
t Sin�2 t	

In[595]:= y�t � � c1 Cos�2t��c2 Sin�2t��1/4 t Sin�2t�

Out[595]= c1 Cos�2 t	 � c2 Sin�2 t	 �
1

4
t Sin�2 t	

Applying the initial conditions

In[596]:= y��t�

Out[596]= 2 c2 Cos�2 t	 �
1

2
t Cos�2 t	 �

1

4
Sin�2 t	

�2 c1 Sin�2 t	

In[597]:= cvals � Solve��y�0� �� 0,y��0� �� 0	�

Out[597]= ��c1 
 0,c2 
 0

results in y � 1
4 t sin 2t, which we graph with Plot in Figure 4-21.

In[598]:= y�t�/.cvals��1��

Out[598]=
1

4
t Sin�2 t	

In[599]:= Plot�Evaluate�y�t�/.cvals��1���,�t,0,16Π	�

We verify the calculation with DSolve.

In[600]:= Clear�y�

DSolve�
y���t� � 4y�t� �� Cos�2t�,y�0� �� 0,
y��0�,�� 0	y�t�,t�

Out[600]= ��y�t	 
 1

4
t Sin�2 t	��
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Figure 4-21 The forcing function causes the solution to become unbounded as t � �

Initial-value problems and boundary-value problems can exhibit dramatically dif-
ferent behavior.

EXAMPLE 4.4.4: Show that the boundary-value problem

�		

		
�

4y�� � 4y� � 37y � cos 3x

y�0� � y�Π�

has infinitely many solutions.

SOLUTION: First, we find a general solution of the corresponding
homogeneous equation.

In[601]:= Clear�x,y�

homsol �
DSolve�4y���x� � 4y��x� � 37y�x� �� 0,
y�x�,x�

Out[601]= ��y�x	 
 ��x/2 C�2	 Cos�3x	���x/2 C�1	 Sin�3x	

Using the Method of Undetermined Coefficients, we find a particular
solution to the nonhomogeneous equation of the form yp � A cos 3x �
B sin 3x. Substitution into the nonhomogeneous equation yields.

In[602]:= yp�x � � capa Cos�3x� � capb Sin�3x�

step1 �
4yp

���x� � 4yp
��x� � 37yp�x� �� Cos�3x�//

Simplify
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Out[602]= ��1 � capa � 12 capb� Cos�3 x	

���12 capa � capb� Sin�3 x	 �� 0

This equation is true for all values of x. In particular, substituting x � 0
and x � Π/6 yields two equations

In[603]:= eq1 � step1 /. x� > 0

Out[603]= �1 � capa � 12 capb �� 0

In[604]:= eq2 � step1 /. x� > Π/6

Out[604]= �12 capa � capb �� 0

that we then solve for A and B

In[605]:= vals � Solve��eq1,eq2	�

Out[605]= ��capa 
 1

145
,capb 


12

145
��

to see that A � 1/145 and B � 12/145.

In[606]:= yp�x � � yp�x� /. vals��1��

In[607]:= y�x � � e�x/2 C�2� Cos�3x� � e�x/2 C�1� Sin�3x�

�yp�x�

Out[607]=
1

145
Cos�3 x	 � ��x/2 C�2	 Cos�3 x	

�
12

145
Sin�3 x	 � ��x/2 C�1	 Sin�3 x	

Applying the boundary conditions indicates that 1
145 �c2 � � 1

145 �e�Π/2c2

In[608]:= y�0�

Out[608]=
1

145
� C�2	

In[609]:= y�Π�

Out[609]= �
1

145
� ��Π/2 C�2	

so c2 � 2
145�1�e�Π/2� ; c1 is arbitrary.

In[610]:= cval � Solve�y�0� �� y�Π��

Out[610]= ��C�2	 
 �
2 �Π/2

145 �1 � �Π/2�
��

In[611]:= N�cval�

Out[611]= ��C�2	 
 �0.0114193

In[612]:= y�x � � y�x� /. cval��1��

Out[612]=
1

145
Cos�3 x	 �

2 �
Π
2 �

x
2 Cos�3 x	

145 �1 � �Π/2�

�
12

145
Sin�3 x	 � ��x/2 C�1	 Sin�3 x	
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Note that DSolve is able to solve this boundary-value problem as well.

In[613]:= Clear�x,y�

sol �
DSolve�
�4y���x� � 4y��x� � 37y�x� �� Cos�3x�,
y�0� �� y�Π�	,y�x�,x,

GeneratedParameters� > c�

Out[613]= ��y�x	 
���x/2 � � 24 �Π/2 Cos�3 x	 � 12 �
Π
2 �

x
2 Cos�3 x	

�Cos�6 x	 � 12 �x/2 Cos�3 x	 Cos�6 x	

�145 �
Π
2 �

x
2 Sin�3 x	 � 145 �x/2 Sin�3 x	

�1740 c�1	 Sin�3 x	 � 1740 �Π/2 c�1	

�Sin�3 x	 � �
Π
2 �

x
2 Cos�6 x	 Sin�3 x	

��x/2 Cos�6 x	 Sin�3 x	 � �
Π
2 �

x
2 Cos�3 x	

�Sin�6 x	 � �x/2 Cos�3 x	 Sin�6 x	

�12 �
Π
2 �

x
2 Sin�3 x	 Sin�6 x	

�12 �x/2 Sin�3 x	 Sin�6 x	���
�1740 �1 � �Π/2����

Several solutions are then graphed with Plot in Figure 4-22.

In[614]:= toplot � Table�sol��1,1,2��,�c�1�,�5,5	�

1 2 3 4 5 6

-4

-2

2

4

Figure 4-22 The boundary-value problem has infinitely many solutions
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In[615]:= grays � Table�GrayLevel�i�,
�i,0,0.7,0.7/10	�

Plot�Evaluate�toplot�,�x,0,2Π	,
PlotStyle� > grays�

EXAMPLE 4.4.5: Graph the solution to the initial-value problem

�		

		
�

x�� � 4x � sinΩt

x�0� � 1, x��0� � 0

for various values of Ω, including Ω � 2.

SOLUTION: First, we find a general solution of the corresponding
homogeneous equation.

In[616]:= Clear�x,t�

homsol �
DSolve�x���t� � 4x�t� �� 0,x�t�,t�//
Simplify

Out[616]= ��x�t	 
 C�1	 Cos�2 t	 � C�2	 Sin�2 t	

IfΩ # 2, we can find a particular solution to the nonhomogeneous equa-
tion of the form xp � A cosΩt � B sinΩt. We substitute this function into
the nonhomogeneous equation and simplify the result.

In[617]:= xp�t � � a Cos�Ωt� � b Sin�Ωt�

In[618]:= step1 � xp
���t� � 4xp�t� �� Sin�Ωt�//
Simplify

Out[618]= ���4 � Ω2� �a Cos�t Ω	 � b Sin�t Ω	� �� Sin�t Ω	

This equation is true for all values of t. In particular, substituting t � 0
and t � Π/ �2Ω� yields two equations

In[619]:= eqn1 � step1 /. t� > 0

Out[619]= �a ��4 � Ω2� �� 0

In[620]:= eqn2 � step1 /. t� >
Π

2Ω
Out[620]= �b ��4 � Ω2� �� 1

that we then solve to determine A and B.
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In[621]:= coeffs � Solve��eqn1,eqn2	,�a,b	�

Out[621]= ��a 
 0,b 

1

4 � Ω2
��

We then form a particular solution, xp, to the nonhomogeneous equa-
tion and a general solution to the nonhomogeneous equation, x � xh�xp.

In[622]:= xp�t � � xp�t�/.coeffs��1��

x�t � � homsol��1,1,2�� � xp�t�

Out[622]= C�1	 Cos�2 t	 � C�2	 Sin�2 t	 �
Sin�t Ω	

4 � Ω2

The solution to the initial-value problem is found by applying the initial
conditions

In[623]:= cvals � Solve��x�0� �� 1,x��0� �� 0	,
�C�1�,C�2�	�

Out[623]= ��C�1	 
 1,C�2	 

Ω

2 ��4 � Ω2�
��

and substituting back into the general solution.

In[624]:= sol � x�t� /. cvals��1��

Out[624]= Cos�2 t	 �
Ω Sin�2 t	

2 ��4 � Ω2�
�
Sin�t Ω	

4 � Ω2

If Ω � 2, we can find a particular solution to the nonhomogeneous
equation of the form xp � t �A cos 2t � B sin 2t�. We proceed in the same
manner as before.

In[625]:= xp�t � � t�a Cos�2t� � b Sin�2t��

In[626]:= step1 � xp
���t� � 4xp�t� �� Sin�2t�//
Simplify

Out[626]= 4 b Cos�2 t	 �� �1 � 4 a� Sin�2 t	

In[627]:= eqn1 � step1 /. t� > 0

Out[627]= 4 b �� 0

In[628]:= eqn2 � step1 /. t� > Π/12

Out[628]= 2


3 b ��

1

2
�1 � 4 a�

In[629]:= coeffs � Solve��eqn1,eqn2	,�a,b	�

Out[629]= ��a 
 �
1

4
,b 
 0��

In[630]:= xp�t � � xp�t�/.coeffs��1��

x�t � � homsol��1,1,2�� � xp�t�

Out[630]= �
1

4
t Cos�2 t	 � C�1	 Cos�2 t	 � C�2	 Sin�2 t	
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In[631]:= cvals � Solve��x�0� �� 1,x��0� �� 0	,
�C�1�,C�2�	�

Out[631]= ��C�1	 
 1,C�2	 

1

8
��

In[632]:= sol � x�t� /. cvals��1��

Out[632]= Cos�2 t	 �
1

4
t Cos�2 t	 �

1

8
Sin�2 t	

We see that DSolve is able to solve the initial-value problem as well.
Note that the result returned is valid for Ω # 2.

In[633]:= Clear�x,t�

sola �
DSolve��x���t� � 4x�t� �� Sin�Ωt�,

x�0� �� 1,x��0� �� 0	,x�t�,t�//
Simplify

Out[633]= ��x�t	 

2 ��4 � Ω2� Cos�2 t	 � Ω Sin�2 t	 � 2 Sin�t Ω	

2 ��4 � Ω2�
��

We use this result to graph the solution for various values of Ω in
Figure 4-23. Of course, Mathematica generates several error messages,
which are not all displayed here, and an empty Plot when it encoun-
ters Ω � 2 because the solution obtained in sola is undefined if Ω � 2.

18 Π
-1

1

18 Π
-1

1

18 Π
-1

1

18 Π-1

1

1

18 Π-1

1

18 Π
-1

1

18 Π
-1

1

18 Π
-1

1

Figure 4-23 The empty plot corresponds to Ω � 2
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In[634]:= graphs �
Table�Plot�sola��1,1,2��,�t,0,18Π	,
DisplayFunction� > Identity,
Ticks� > ��0,18Π	,��1,1		,
PlotPoints� > 200�,�Ω,1,3,2/8	�

toshow � Partition�graphs,3�

Show�GraphicsArray�toshow��

Power �� infy � Infinite expression 1
0 encountered.

� �� indet � Indeterminate expression

0 ComplexInfinity encountered.

We also use DSolve to find the solution to the initial-value problem if
Ω � 2 and then graph the result in Figure 4-24.

In[635]:= solb �
DSolve��x���t� � 4x�t� �� Sin�2t�,

x�0� �� 1,x��0� �� 0	,x�t�,t�//
Simplify

Out[635]= ��x�t	 
 1

8
��2 ��4 � t� Cos�2 t	 � Sin�2 t	���

In[636]:= Plot�x�t� /. solb,�t,0,18Π	�

The graphs indicate that if Ω # 2 the solution to the initial-value prob-
lem is bounded and periodic; if Ω � 2 the solution is unbounded. We
investigate this type of behavior further in Chapter 5.

10 20 30 40 50

-10

-5

5

10

Figure 4-24 If Ω � 2, the solution becomes unbounded as t � �
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4.4.2 Higher-Order Equations

Higher-order nonhomogeneous equations are solved in the same way as second-
order equations provided that the forcing function involves appropriate terms,
although the calculations can be more complicated.

EXAMPLE 4.4.6: Solve

d3y
dt3

�
2
3

d2y
dt2

�
145
9

dy
dt

� e�t , y�0� � 1,
dy
dt
�0� � 2,

d2y
dt2

�0� � �1.

SOLUTION: The corresponding homogeneous equation, y��� � 2
3 y�� �

145
9 y� � 0, has general solution yh � c1 � �c2 sin 4t � c3 cos 4t� e�t/3 and a

fundamental set of solutions for the corresponding homogeneous equa-
tion is S � �1, e�t/3 cos 4t, e�t/3 sin 4t�.

In[637]:= DSolve�y����t� � 2/3y���t� � 145/9y��t� �� 0,
y�t�,t�//Simplify

Out[637]= ��y�t	 
 C�3	 �
3

145
e�t/3

���12 C�1	 � C�2	� Cos�4 t	 � �C�1	

�12 C�2	� Sin�4 t	���
For e�t , the associated set of functions is F � �e�t�. Because no element
of F is an element of S, we assume that yp � Ae�t , where A is a constant
to be determined. After defining yp, we compute the necessary deriva-
tives

In[638]:= yp�t � � a Exp��t�
yp��t�

yp���t�

yp����t�

Out[638]= �a e�t

Out[638]= a e�t

Out[638]= �a e�t

and substitute into the nonhomogeneous equation.

In[639]:= eqn � yp����t� � 2/3yp���t� � 145/9yp��t� �� Exp��t�

Out[639]= �
148

9
a e�t �� e�t
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Equating coefficients and solving for A gives us A � �9/148 so yp �
� 9

148 e�t and a general solution is y � yh � yp.

Remark. SolveAlways[equation,variable] attempts to solve
equation so that it is true for all values of variable.

In[640]:= SolveAlways�eqn,t�

Out[640]= ��a 
 �
9

148
��

We verify the result with DSolve.

In[641]:= gensol � DSolve�y����t� � 2/3y���t�
�145/9y��t� �� Exp��t�,y�t�,t�

Out[641]= ��y�t	 
 �
9 e�t

148
� � 3

145
�
36 i

145
� e

�� 1
3 �4 i� t

C�1	

�� 9

290
�

3 i

1160
�

� e
�� 1

3 �4 i� t
C�2	 � C�3	��

To obtain a real-valued solution, we use ComplexExpand:

In[642]:= ?ComplexExpand
��ComplexExpand�expr	expandsexprassuming

thatallvariablesarereal.ComplexExpand�
expr,x1,x2,...	expandsexprassuming
thatvariablesmatchinganyofthexiarecomplex.��

In[643]:= s1 � ComplexExpand�y�t�/.gensol��1���

Out[643]= �
9 e�t

148
� C�3	 � � 3

145
�
36 i

145
�

� e�t/3 C�1	 Cos�4 t	 � � 9

290
�

3 i

1160
�

� e�t/3 C�2	 Cos�4 t	 � � 36

145
�
3 i

145
�

� e�t/3 C�1	 Sin�4 t	 � � 3

1160
�
9 i

290
�

� e�t/3 C�2	 Sin�4 t	

In[644]:= t1 � Coefficient�s1,Exp��t/3�Cos�4t��

Out[644]= � �
3

145
�
36 i

145
� C�1	 � � 9

290
�

3 i

1160
� C�2	

In[645]:= t2 � Coefficient�s1,Exp��t/3�Sin�4t��

Out[645]= � 36

145
�
3 i

145
� C�1	 � � 3

1160
�
9 i

290
� C�2	

In[646]:= t3 � C�3�

Out[646]= C�3	



4.4 Nonhomogeneous Equations with Constant Coefficients 241

In[647]:= Clear�c1,c2,c3�

s2 � Solve��t1 �� c1,t2 �� c2,t3 �� c3	,
�C�1�,C�2�,C�3�	�

Out[647]= ��C�1	 
 � �
1

6
� 2 i� �c1 � i c2�,

C�2	 
 � � 16 �
4 i

3
� �c1 � i c2�,C�3	 
 c3��

The result indicates that the form returned by DSolve is equivalent to

In[648]:= s3 � s1/.s2��1��//Simplify

Out[648]= c3�
9 e�t

148
�c1 e�t/3 Cos�4 t	�c2 e�t/3 Sin�4 t	

To apply the initial conditions, we compute y�0� � 1, y��0� � 2, and
y���0� � �1

In[649]:= e1 � �s3/.t� > 0� �� 1

e2 � �D�s3,t�/.t� > 0� �� 2

e3 � �D�s3,�t,2	�/.t� > 0� �� �1

Out[649]= �
9

148
� c1 � c3 �� 1

Out[649]=
9

148
�
c1

3
� 4 c2 �� 2

Out[649]= �
9

148
�
143 c1

9
�
8 c2

3
�� �1

and solve for c1, c2, and c3.

In[650]:= cvals � Solve��e1,e2,e3	�

Out[650]= ��c1 
 �
471

21460
,c2 


20729

42920
,c3 


157

145
��

The solution of the initial-value problem is obtained by substituting
these values into the general solution.

In[651]:= s3/.cvals��1��

Out[651]=
157

145
�
9 e�t

148
�
471 e�t/3 Cos�4 t	

21460

�
20729 e�t/3 Sin�4 t	

42920

We check by using DSolve to solve the initial-value problem and graph
the result with Plot in Figure 4-25.
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1 2 3 4 5 6
0.8
0.9

1.1
1.2
1.3
1.4

Figure 4-25 The solution of the equation that satisfies y�0� � 1, y��0� � 2, and y���0� � �1

In[652]:= sol � DSolve��y����t� � 2/3y���t� � 145/9y��t� ��
Exp��t�,y�0� �� 1,y��0� �� 2,
y���0� �� �1	,y�t�,t�

Out[652]= ��y�t	 
 157

145
�
9 e�t

148
� � 471

42920
�
20729 i

85840
�

� e
�� 1

3 �4 i� t
� � 471

42920

�
20729 i

85840
�e�� 1

3 �4 i� t��
In[653]:= realsol � ComplexExpand�y�t�/.sol��1���

Out[653]=
157

145
�
9 e�t

148
�
471 e�t/3 Cos�4 t	

21460

�
20729 e�t/3 Sin�4 t	

42920

In[654]:= Plot�realsol,�t,0,2Π	,
AspectRatio� > Automatic�

EXAMPLE 4.4.7: Solve

d8y
dt8

�
7
2

d7y
dt7

�
73
2

d6y
dt6

�
229
2

d5y
dt5

�
801
2

d4y
dt4

� 976
d3y
dt3

� 1168
d2y
dt2

� 640
dy
dt
� 128y � te�t � sin 4t � t.

SOLUTION: Solving the characteristic equation

In[655]:= Solve�kˆ8 � 7/2kˆ7 � 73/2kˆ6 � 229/2kˆ5
�801/2kˆ4 � 976kˆ3 � 1168kˆ2
�640k � 128 �� 0�

Out[655]= ��k 
 �1,�k 
 �1,�k 
 �1,�k 
 �
1

2
�,

�k 
 �4 i,�k 
 �4 i,�k 
 4 i,�k 
 4 i�
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shows us that the solutions are k1 � �1/2, k2 � �1 with multiplicity 3,
and k3,4 �  4i, each with multiplicity 2. A fundamental set of solutions
for the corresponding homogeneous equation is

S � �e�t/2, e�t , te�t , t2e�t , cos 4t, t cos 4t, sin 4t, t sin 4t� .

A general solution of the corresponding homogeneous equation is

yh � c1e�t/2 � �c2 � c3t � c4t2� e�t � �c5 � c7t� sin 4t � �c6 � c8t� cos 4t.

In[656]:= gensol � DSolve�D�y�t�,�t,8	� � 7/2D�y�t�,
�t,7	� � 73/2D�y�t�,�t,6	�
�229/2D�y�t�,�t,5	� � 801/2D�y�t�,
�t,4	� � 976D�y�t�,�t,3	�
�1168D�y�t�,�t,2	� � 640D�y�t�,t�
�128y�t� �� 0,y�t�,t�

Out[656]= ��y�t	 

e�t C�1	 � e�t t C�2	 � e�t t2 C�3	

�e�t/2 C�4	 � C�6	 Cos�4 t	

�t C�8	 Cos�4 t	 � C�5	 Sin�4 t	

�t C�7	 Sin�4 t	��
The associated set of functions for te�t is F1 � �e�t , te�t�. We multiply F1

by tr, where r is the smallest nonnegative integer so that no element of
trF1 is an element of S: t3F1 � �t3e�t , t4e�t�. The associated set of func-
tions for sin 4t is F2 � �cos 4t, sin 4t�. We multiply F2 by tr, where r is the
smallest nonnegative integer so that no element of trF2 is an element
of S: t2F2 � �t2 cos 4t, t2 sin 4t�. The associated set of functions for t is
F3 � �1, t�. No element of F3 is an element of S.

Thus, we search for a particular solution of the form

yp � A1t3e�t � A2t4e�t � A3t2 cos 4t � A4t2 sin 4t � A5 � A6t,

where the Ai are constants to be determined.

After defining yp, we compute the necessary derivatives

Remark. We have used Table twice for typesetting purposes. You
can compute the derivatives using Table[{n,D[yp[t],{t,n}]},
{n,1,8}].
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In[657]:= yp�t � � a�1�tˆ3Exp��t� � a�2�tˆ4Exp��t�
�a�3�tˆ2Cos�4t� � a�4�tˆ2Sin�4t�
�a�5� � a�6�t

Out[657]= e�t t3 a�1	 � e�t t4 a�2	 � a�5	 � t a�6	

�t2 a�3	 Cos�4 t	 � t2 a�4	 Sin�4 t	

In[658]:= Table��n,D�yp�t�,�t,n	�	,�n,1,4	�

Out[658]= ��1,3 e�t t2 a�1	 � e�t t3 a�1	

�4 e�t t3 a�2	 � e�t t4 a�2	 � a�6	

�2 t a�3	 Cos�4 t	 � 4 t2 a�4	 Cos�4 t	

�4 t2 a�3	 Sin�4 t	

�2 t a�4	 Sin�4 t	�,�2,6 e�t t a�1	 � 6 e�t t2 a�1	

�e�t t3 a�1	 � 12 e�t t2 a�2	 � 8 e�t t3 a�2	

�e�t t4 a�2	 � 2 a�3	 Cos�4 t	

�16 t2 a�3	 Cos�4 t	

�16 t a�4	 Cos�4 t	

�16 t a�3	 Sin�4 t	 � 2 a�4	 Sin�4 t	

�16 t2 a�4	 Sin�4 t	�,�3,6 e�t a�1	 � 18 e�t t a�1	 � 9 e�t t2 a�1	

�e�t t3 a�1	 � 24 e�t t a�2	

�36 e�t t2 a�2	 � 12 e�t t3 a�2	

�e�t t4 a�2	 � 96 t a�3	 Cos�4 t	

�24 a�4	 Cos�4 t	 � 64 t2 a�4	 Cos�4 t	

�24 a�3	 Sin�4 t	 � 64 t2 a�3	 Sin�4 t	

�96 t a�4	 Sin�4 t	�,�4,�24 e�t a�1	 � 36 e�t t a�1	

�12 e�t t2 a�1	 � e�t t3 a�1	 � 24 e�t a�2	

�96 e�t t a�2	 � 72 e�t t2 a�2	

�16 e�t t3 a�2	 � e�t t4 a�2	

�192 a�3	 Cos�4 t	

�256 t2 a�3	 Cos�4 t	

�512 t a�4	 Cos�4 t	

�512 t a�3	 Sin�4 t	

�192 a�4	 Sin�4 t	

�256 t2 a�4	 Sin�4 t	��
In[659]:= Table��n,D�yp�t�,�t,n	�	,�n,5,8	�
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Out[659]= ��5,60 e�t a�1	 � 60 e�t t a�1	 � 15 e�t t2 a�1	

�e�t t3 a�1	 � 120 e�t a�2	 � 240 e�t t a�2	

�120 e�t t2 a�2	 � 20 e�t t3 a�2	 � e�t t4 a�2	

�2560 t a�3	 Cos�4 t	 � 1280 a�4	

� Cos�4 t	 � 1024 t2 a�4	 Cos�4 t	

�1280 a�3	 Sin�4 t	 � 1024 t2 a�3	

� Sin�4 t	 � 2560 t a�4	 Sin�4 t	�,�6,�120 e�t a�1	 � 90 e�t t a�1	 � 18 e�t

� t2 a�1	 � e�t t3 a�1	 � 360 e�t a�2	

�480 e�t t a�2	 � 180 e�t t2 a�2	 � 24 e�t

� t3 a�2	 � e�t t4 a�2	 � 7680 a�3	Cos�4 t	

�4096 t2 a�3	 Cos�4 t	 � 12288 t a�4	

� Cos�4 t	 � 12288 t a�3	 Sin�4 t	

�7680 a�4	 Sin�4 t	 � 4096 t2 a�4	Sin�4 t	�,�7,210 e�t a�1	 � 126 e�t t a�1	

�21 e�t t2 a�1	 � e�t t3 a�1	 � 840 e�t a�2	

�840 e�t t a�2	 � 252 e�t t2 a�2	

�28 e�t t3 a�2	 � e�t t4 a�2	

�57344 t a�3	 Cos�4 t	 � 43008 a�4	

� Cos�4 t	 � 16384 t2 a�4	 Cos�4 t	

�43008 a�3	 Sin�4 t	 � 16384 t2 a�3	

� Sin�4 t	 � 57344 t a�4	 Sin�4 t	�,�8,�336 e�t a�1	 � 168 e�t t a�1	 � 24 e�t t2

�a�1	 � e�t t3 a�1	 � 1680 e�t a�2	

�1344 e�t t a�2	 � 336 e�t t2 a�2	

�32 e�t t3 a�2	 � e�t t4 a�2	 � 229376 a�3	

� Cos�4 t	 � 65536 t2 a�3	 Cos�4 t	

�262144 t a�4	 Cos�4 t	 � 262144 t a�3	

�Sin�4 t	 � 229376 a�4	 Sin�4 t	

�65536 t2 a�4	 Sin�4 t	��
and substitute into the nonhomogeneous equation, naming the result
eqn. At this point we can either equate coefficients and solve for Ai or
use the fact that eqn is true for all values of t.

In[660]:= eqn � D�yp�t�,�t,8	� � 7/2D�yp�t�,�t,7	�
�73/2D�yp�t�,�t,6	� � 229/2D�yp�t�,
�t,5	� � 801/2D�yp�t�,�t,4	�
�976D�yp�t�,�t,3	� � 1168D�yp�t�,
�t,2	� � 640D�yp�t�,t� � 128yp�t� ��
t Exp��t� � Sin�4t� � t//

Simplify
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Out[660]= e�t ��867 a�1	 � 7752 a�2	 � 3468 t a�2	�

�128 et a�5	 � 640 et a�6	

�128 et t a�6	�

�64 �369 a�3	 � 428 a�4	� Cos�4 t	

�64 �428 a�3	 � 369 a�4	� Sin�4 t	 ��

t � e�t t � Sin�4 t	

We substitute in six values of t

In[661]:= sysofeqs � Table�eqn/.t� > n//N,�n,0,5	�

Out[661]= ��867. a�1.	
�7752. a�2.	
�64. �369. a�3.	
�428. a�4.	�
�128. a�5.	
�640. a�6.	 �� 0,
41.8332 �369. a�3.	

�428. a�4.	�
�48.4354 �428. a�3.	
�369. a�4.	�
�0.367879 ��867. a�1.	
�4284. a�2.	
�347.94 a�5.	
�2087.64 a�6.	� ��
0.611077,

9.312 �369. a�3.	
�428. a�4.	�
�63.3189 �428. a�3.	
�369. a�4.	�
�0.135335 ��867. a�1.	
�816. a�2.	
�945.799 a�5.	
�6620.59 a�6.	� ��
3.26003,

�54.0067 �369. a�3.	
�428. a�4.	�
�34.3407 �428. a�3.	
�369. a�4.	�
�0.0497871 ��867. a�1.	
�2652. a�2.	
�2570.95 a�5.	
�20567.6 a�6.	� ��
2.61279,
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Out[661]= 61.2902 �369. a�3.	
�428. a�4.	�
�18.4258 �428. a�3.	
�369. a�4.	�
�0.0183156 ��867. a�1.	
�6120. a�2.	
�6988.56 a�5.	
�62897.1 a�6.	� ��
3.78536,

�26.1173 �369. a�3.	
�428. a�4.	�
�58.4285 �428. a�3.	
�369. a�4.	�
�0.00673795
��867. a�1.	
�9588. a�2.	
�18996.9 a�5.	
�189969. a�6.	� ��
5.94663

and then solve for Ai.

In[662]:= coeffs �
Solve�sysofeqs,�a�1.�,a�2.�,a�3.�,a�4.�,
a�5.�,a�6.�	�

Out[662]= ��a�1.	 
 �0.00257819,
a�2.	 
 �0.000288351,
a�3.	 
 �0.0000209413,
a�4.	 
 �0.0000180545,
a�5.	 
 �0.0390625,
a�6.	 
 0.0078125

yp is obtained by substituting the values for Ai into yp and a general
solution is y � yh � yp. DSolve is able to find an exact solution.

In[663]:= gensol � DSolve�D�y�t�,�t,8	� � 7/2D�y�t�,
�t,7	� � 73/2D�y�t�,�t,6	�
�229/2D�y�t�,�t,5	�
�801/2D�y�t�,�t,4	� � 976D�y�t�,
�t,3	� � 1168D�y�t�,�t,2	�
�640D�y�t�,t� � 128y�t� ��
t Exp��t� � Sin�4t� � t,y�t�,t�//

Simplify
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Out[663]= ��y�t	 
 �
5

128
�
2924806 e�t

24137569
�

t

128

�
86016 e�t t

1419857
�
1270 e�t t2

83521
�
38 e�t t3

14739

�
e�t t4

3468
� e�t C�1	 � e�t t C�2	

�e�t t2C�3	 � e�t/2 C�4	

�� 9041976373

199643253056000
�

107 t2

5109520

�C�6	 � t � �
1568449

45168156800

�C�8	�� Cos�4 t	

�� 13794625331

798573012224000

�
20406 t

352876225
�

369 t2

20438080

�C�5	 � t C�7	� Sin�4 t	��

4.5 Nonhomogeneous Equations with
Constant Coefficients: Variation of
Parameters

4.5.1 Second-Order Equations

Let S � �y1, y2� be a fundamental set of solutions for equation y�� � p�t�y� � q�t�y � 0.A particular solution, yp ,
is a solution that does not
contain any arbitrary
constants.

To solve the nonhomogeneous equation y�� � p�t�y� � q�t�y � f �t�, we need to find a
particular solution, yp of equation y���p�t�y��q�t�y � f �t�. We search for a particular
solution of the form

yp � u1�t�y1�t� � u2�t�y2�t�, (4.13)

where u1 and u2 are functions of t. Differentiating equation (4.13) gives us

yp
� � u1

�y1 � u1y1
� � u2

�y2 � u2y2
�.
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Assuming that
y1u1

� � y2u2
� � 0 (4.14)

results in yp
� � u1y1

� � u2y2
�. Computing the second derivative then yields Observe that it is pointless

to search for solutions of the
form yp � c1y1 � c2y2 where
c1 and c2 are constants
because for every choice of
c1 and c2 , c1y1 � c2y2 is a
solution to the
corresponding homogeneous
equation.

yp
�� � u1

�y1
� � u1y1

�� � u2
�y2

� � u2y2
��.

Substituting yp, yp
�, and yp

�� into the equation y�� � p�t�y� � q�t�y � f �t� and using the
facts that

u1 �y1
�� � p y1

� � q y1� � 0 and u2 �y2
�� � p y2

� � q y2� � 0

(because y1 and y2 are solutions to the corresponding homogeneous equation, y�� �
p�t�y� � q�t�y � 0) results in

d2yp

dt2
� p�t�

dyp

dt
� q�t�yp � u1

�y1
� � u1y1

��

� u2
�y2

� � u2y2
�� � p�t� �u1y1

� � u2y2
��

� q�t� �u1y1 � u2y2�

� y1
�u1

� � y2
�u2

� � f �t�.

(4.15)

Observe that equation (4.14) and equation (4.5.1) form a system of two linear equa-
tions in the unknowns u1

� and u2
�:

y1u1
� � y2u2

� � 0

y1
�u1

� � y2
�u2

� � f �t�.
(4.16)

Applying Cramer’s Rule gives us

u1
� �

�������� 0 y2

f �t� y2
�

���������������� y1 y2

y1
� y2

�

��������
� �

y2�t� f �t�
W �S�

and u2
� �

�������� y1 0
y1
� f �t�

���������������� y1 y2

y1
� y2

�

��������
�

y1�t� f �t�
W �S�

, (4.17)

where W �S� is the Wronskian, W �S� �
�������� y1 y2

y1
� y2

�

��������. After integrating to obtain u1 and u2,

we form yp and then a general solution, y � yh � yp.

Summary of Variation of Parameters for Second-Order Equations
Given the second-order equation a2�t�y�� � a2�t�y� � a0�t�y � g�t�.

1. Divide by a1�t� to rewrite the equation in standard form, y�� � p�t�y��
q�t�y � f �t�.
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2. Find a general solution, yh, of the corresponding homogeneous equation
y�� � p�t�y� � q�t�y � 0.

3. Let W �
��������y1 y2

y�1 y�2

��������.
4. Let u1

� � �
y2 f �t�

W
and u2

� �
y1 f �t�

W
.

5. Integrate to obtain u1 and u2.
6. A particular solution of a1�t�y�� � a2�t�y� � a0�t�y � g�t� is given by yp �

u1y1 � u2y2.
7. A general solution of a1�t�y�� � a2�t�y� � a0�t�y � g�t� is given by y � yh � yp.

EXAMPLE 4.5.1: Solve y�� � 9y � sec 3t, y�0� � 0, y��0� � 0, 0 � t < Π/6.

SOLUTION: The corresponding homogeneous equation is y�� � 9y � 0
with general solution yh � c1 cos 3t � c2 sin 3t. Then, a fundamental set
of solutions is S � �cos 3t, sin 3t� and W �S� � 3, as we see using Det, and
Simplify.

In[664]:= fs � �Cos�3t�,Sin�3t�	
wm � �fs,D�fs,t�	
wm//MatrixForm

wd � Simplify�Det�wm��

Out[664]= � Cos�3 t	 Sin�3 t	
�3 Sin�3 t	 3 Cos�3 t	

�
Out[664]= 3

We use equation (4.17) to find u1 � 1
9 ln cos 3t and u2 � 1

3 t.

In[665]:= u1 � Integrate��Sin�3t�Sec�3t�/3,t�

u2 � Integrate�Cos�3t�Sec�3t�/3,t�

Out[665]=
1

9
Log�Cos�3 t		

Out[665]=
t

3

It follows that a particular solution of the nonhomogeneous equation is

yp �
1
9

cos 3t ln cos 3t �
1
3

t sin 3t

and a general solution is

y � yh � yp � c1 cos 3t � c2 sin 3t �
1
9

cos 3t ln cos 3t �
1
3

t sin 3t.
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In[666]:= yp � u1 Cos�3t� � u2 Sin�3t�

Out[666]=
1

9
Cos�3 t	 Log�Cos�3 t		 �

1

3
t Sin�3 t	

Identical results are obtained using DSolve. The negative sign in the
output does not affect the
result because C[1] is
arbitrary.

In[667]:= DSolve�y���t� � 9y�t� �� Sec�3t�,y�t�,t�

Out[667]= ��y�t	 
 C�2	 Cos�3 t	 �
1

9
Cos�3 t	

� Log�Cos�3 t		 �
1

3
t Sin�3 t	 � C�1	

� Sin�3 t	��
Applying the initial conditions gives us c1 � c2 � 0 so we conclude that
the solution to the initial-value problem is

y �
1
9

cos 3t ln cos 3t �
1
3

t sin 3t.

In[668]:= sol � DSolve�
�y���t� � 9y�t� �� Sec�3t�,y�0� �� 0,y��0�
�� 0	,y�t�,t�

Out[668]= ��y�t	 
 1

9
�Cos�3 t	 Log�Cos�3 t		

�3 tSin�3 t	���
We graph the solution with Plot in Figure 4-26.

In[669]:= Plot�Evaluate�y�t�/.sol�,�t,0,Π/6	�

0.1 0.2 0.3 0.4 0.5

0.025

0.05

0.075

0.1

0.125

0.15

0.175

Figure 4-26 The domain of the solution is �Π/6 < t < Π/6
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4.5.2 Higher-Order Nonhomogeneous Equations

In the same way as with second-order equations, we assume that a particular solu-
tion of the nth-order linear nonhomogeneous equation

y�n� � an�1�t�y�n�1� �    � a2�t�y�� � a1�t�y� � a0�t�y � f �t�

has the form yp � u1�t�y1 � u2�t�y2 �    � un�t�yn, where S � �y1, y2, . . . , yn� is a funda-
mental set of solutions to the corresponding homogeneous equation

y�n� � an�1�t�y�n�1� �    � a2�t�y�� � a1�t�y� � a0�t�y � 0.

With the assumptions

y1u1
� � y2u2

� �    � ynun
� � 0

y1
�u1

� � y2
�u2

� �    � yn
�un

� � 0

�

y1
�n�2�u1

� � y2
�n�2�u2

� �    � yn
�n�2�un

� � 0

(4.18)

we obtain the equation

y1
�n�1�u1

� � y2
�n�1�u2

� �    � yn
�n�1�un

� � f �t�. (4.19)

Equations (4.18) and equation (4.19) form a system of n linear equations in the
unknowns u1

�, u2
�, . . . , un

�. Applying Cramer’s Rule,

ui
� �

Wi�S�
W �S�

, (4.20)

where W �S� is given by equation (4.6),

W �S� �

����������������
y1 y2 . . . yn

y1
� y2

� . . . yn
�

� � . . . �

y1
�n�1� y2

�n�1� . . . yn
�n�1�

����������������
,

and Wi�S� is the determinant of the matrix obtained by replacing the ith column of

*++++++++++
,

y1 y2 . . . yn

y1
� y2

� . . . yn
�

� � . . . �

y1
�n�1� y2

�n�1� . . . yn
�n�1�

-..........
/

by

*++++++++++
,

0
0
�

f �t�

-..........
/

.
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EXAMPLE 4.5.2: Solve y�3� � 4y� � sec 2t.

SOLUTION: A general solution of the corresponding homogeneous
equation is yh � c1�c2 cos 2t�c3 sin 2t; a fundamental set is S � �1, cos 2t,
sin 2t� with Wronskian W �S� � 8.

In[670]:= yh � DSolve�y����t� � 4y��t� �� 0,y�t�,t�

Out[670]= ��y�t	 
 C�3	 �
1

2
C�1	 Cos�2 t	

�
1

2
C�2	 Sin�2 t	��

In[671]:= s � �1,Cos�2t�,Sin�2t�	ws � �s,D�s,t�,
D�s,�t,2	�	MatrixForm�ws�

Out[671]= �1 Cos�2 t	 Sin�2 t	
0 �2 Sin�2 t	 2 Cos�2 t	
0 �4 Cos�2 t	 �4 Sin�2 t	

�
In[672]:= dws � Simplify�Det�ws��

Out[672]= 8

Using variation of parameters to find a particular solution of the non-
homogeneous equation, we let y1 � 1, y2 � cos 2t, and y3 � sin 2t and
assume that a particular solution has the form yp � u1y1 � u2y2 � u3y3.
Using the variation of parameters formula, we obtain

u�1 �
1
8

������������
0 cos 2t sin 2t
0 �2 sin 2t 2 cos 2t

sec 2t �4 cos 2t �4 sin 2t

������������ �
1
4

sec 2t

so

u1 �
1
8

ln � sec 2t � tan 2t �,

u�2 �
1
8

������������
1 0 sin 2t
0 0 2 cos 2t
0 sec 2t �4 sin 2t

������������ � �
1
4

so u2 � �
1
4

t,

and

u�3 �
1
8

������������
1 cos 2t 0
0 �2 sin 2t 0
0 �4 cos 2t sec 2t

������������ � �
1
2

tan 2t so u3 �
1
8

ln � cos 2t �,

where we use Det and Integrate to evaluate the determinants and
integrals. In the case of u1, the output given by Mathematica looks
different than the result we obtained by hand but using properties of
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logarithms (ln �a/b� � ln a � ln b) and trigonometric identities (cos2 x �
sin2 x � 1, sin 2x � 2 sin x cos x, cos2 x � sin2 x � cos 2x, and the reciprocal
identities) shows us that

1
8
�ln � cos t � sin t � � ln � cos t � sin t �� �

1
8

ln
�������cos t � sin t
cos t � sin t

�������
�

1
8

ln
�������cos t � sin t
cos t � sin t


cos t � sin t
cos t � sin t

�������
�

1
8

ln
��������cos2 t � 2 cos t sin t � sin2 t

cos2 t � sin2 t

��������
�

1
8

ln
�������1 � sin 2t

cos 2t

�������
�

1
8

ln
������� 1
cos 2t

�
sin 2t
cos 2t

�������
�

1
8

ln �sec 2t � tan 2t �

so the results obtained by hand and with Mathematica are the same.

In[673]:= u1p � 1/8Det���0,Cos�2t�,Sin�2t�	,
�0,�2Sin�2t�,2Cos�2t�	,
�Sec�2t�,�4Cos�2t�,�4Sin�2t�		�//

Simplify

Out[673]=
1

4
Sec�2 t	

In[674]:= Integrate�u1p,t�

Out[674]= �
1

8
Log�Cos�t	 � Sin�t		 �

1

8
Log�Cos�t	

�Sin�t		

In[675]:= u2p � Simplify�1/8 Det���1,0,Sin�2t�	,
�0,0,2Cos�2t�	,�0,Sec�2t�,
�4Sin�2t�		��

Out[675]= �
1

4

In[676]:= Integrate�u2p,t�

Out[676]= �
t

4

In[677]:= u3p � Simplify�1/8 Det���1,Cos�2t�,0	,
�0,�2Sin�2t�,0	,�0,�4Cos�2t�,
Sec�2t�		��

Out[677]= �
1

4
Tan�2 t	
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In[678]:= Integrate�u3p,t�

Out[678]=
1

8
Log�Cos�2 t		

Thus, a particular solution of the nonhomogeneous equation is

yp �
1
8

ln � sec 2t � tan 2t � �
1
4

t cos 2t �
1
8

ln � cos 2t � sin 2t

and a general solution is y � yh � yp. We verify the calculations using
DSolve, which returns an equivalent solution.

In[679]:= gensol �
DSolve�y����t� � 4y��t� �� Sec�2t�,
y�t�,t�//Simplify

Out[679]= ��y�t	 
 1

8
�8 C�3	 � 2 �t � 2 C�1	� Cos�2 t	

�Log�Cos�t	 � Sin�t		 � Log�Cos�t	

�Sin�t		 � �4 C�2	 � Log�Cos�2 t		�

� Sin�2 t	���

4.6 Cauchy–Euler Equations

Generally, solving an arbitrary differential equation is a formidable, if not imposs-
ible task, particularly in the case when the coefficients are not constants. However,
we are able to solve certain equations with variable coefficients using techniques
similar to those discussed previously.

Definition 19 (Cauchy–Euler Equation). A Cauchy–Euler differential equation is
an equation of the form

anxny�n� � an�1xn�1y�n�1� �    � a1xy1 � a0y � f �x�, (4.21)

where a0, a1, . . . , an are constants.

4.6.1 Second-Order Cauchy–Euler Equations

Consider the second-order homogeneous Cauchy–Euler equation

ax2y�� � bxy� � cy � 0, (4.22)
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where a # 0. Notice that because the coefficient of y�� is zero if x � 0, we must
restrict our domain to either x > 0 or x < 0 in order to ensure that the theory of
second-order equations stated in Section 4.1 holds.

Suppose that y � xm, x > 0, for some constant m. Substitution of y � xm with
derivatives y� � mxm�1 and y�� � m�m � 1�xm�2 into equation (4.22) yields

ax2y�� � bxy� � cy � am�m � 1�xm � bmxm � cxm

� xm �am�m � 1� � bm � c� � 0.

Then, y � xm is a solution of equation (4.22) if m satisfies

am�m � 1� � bm � c � 0, (4.23)

which is called the characteristic equation (or auxiliary equation) associated with
the Cauchy–Euler equation of order two. The solutions of the characteristic equa-
tion completely determine the general solution of the homogeneous Cauchy–Euler
equation of order two. Let m1 and m2 denote the two solutions of the characteristic
(or auxiliary) equation (4.23):

m1,2 �
1

2a
	��b � a�  

�
�b � a�2 � 4ac
 .

Hence, we can obtain two real roots, one repeated real root, or a complex conju-
gate pair depending on the values of a, b, and c. We state a general solution that
corresponds to the different types of roots.

Theorem 8. Let m1 and m2 be the solutions of equation (4.23).

1. If m1 # m2 are real and distinct, two linearly independent solutions of equation
(4.22) are y1 � xm1 and y2 � xm2 ; a general solution of (4.22) is

y � c1xm1 � c2xm2 , x > 0.

2. If m1 � m2, two linearly independent solutions of equation (4.22) are y1 � xm1

and y2 � xm1 ln x; a general solution of (4.22) is

y � c1xm1 � c2xm1 ln x, x > 0.

3. If m1,2 � Α  Βi, Β # 0, two linearly independent solutions of equation (4.22) are
y1 � xΑ cos �Β ln x� and y2 � xΑ sin �Β ln x�; a general solution of (4.22) is

y � xΑ �c1 cos �Β ln x� � c2 sin �Β ln x�� , x > 0.
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In[680]:= Clear�x,y�

gensol � DSolve�ax2 y���x� � bx y��x� � c y�x� �� 0,
y�x�,x�

Out[680]= ��y�x	 

x�

�a�b�


a2�2 a b�b2�4 a c

2 a C�1	 � x�
�a�b�



a2�2 a b�b2�4 a c

2 a C�2	��
EXAMPLE 4.6.1: Solve each of the following equations: (a) 3x2y���2xy��
2y � 0, x > 0; (b) x2y�� � xy� � y � 0, x > 0; (c) x2y�� � 5xy� � 10y � 0, x > 0.

SOLUTION: If y � xm, y� � mxm�1 and y�� � m�m � 1�xm�2, substitution
into the differential equation yields

3x2y�� � 2xy� � 2y � 3x2  m�m � 1�xm�2 � 2x  mxm�1 � 2xm

� xm �3m�m � 1� � 2m � 2� � 0.

Hence, the auxiliary equation is

3m�m � 1� � 2m � 2 � 3m�m � 1� � 2�m � 1� � �3m � 2��m � 1� � 0

with roots m1 � 2/3 and m2 � 1. Therefore, a general solution is y �
c1x2/3 � c2x. We obtain the same results with DSolve. Entering

In[681]:= Clear�x,y�

gensol � DSolve�3x2 y���x� � 2x y��x� � 2 y�x� �� 0,
y�x�,x�

Out[681]= ��y�x	 
 x2/3 C�1	 � x C�2	

finds a general solution of the equation, naming the result gensol, and
then entering

In[682]:= toplot �
Table�gensol�1,1,2� /. �C�1�� > i,
C�2�� > j	,�i,�2,2,2	,�j,�2,2,2	�

grays � Table�GrayLevel�i�,
�i,0,0.7,0.7/8	�

Plot�Evaluate�toplot�,�x,0,12	,
PlotStyle 
 grays,PlotRange� > ��6,6	,
AspectRatio� > 1�
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Figure 4-27 Various solutions of 3x2y�� � 2xy� � 2y � 0, x > 0

defines toplot to be the list of functions obtained by replacing c[1]
in gensol[[1,1,2]] by �2, 0, and 2 and C[2] in gensol[[1,1,2]] by
�2, 0, and 2, and graphs the set of functions toplot on the interval
�0, 12�. See Figure 4-27.

(b) In this case, the auxiliary equation is

m�m � 1� � m � 1 � m�m � 1� � �m � 1� � �m � 1�2 � 0

with root m � 1 of multiplicity 2. Hence, a general solution is y � cx �
c2x ln x. As in the previous example, we see that we obtain the same
results with DSolve. See Figure 4-28.

In[683]:= Clear�x,y�

gensol � DSolve�x2 y���x� � x y��x� � y�x� �� 0,
y�x�,x�

Out[683]= ��y�x	 
 x C�1	 � x C�2	 Log�x	

In[684]:= toplot �
Table�gensol�1,1,2�/.�C�1�� > i,C�2�� > j	,
�i,�1,1	,�j,�1,1	�

grays � Table�GrayLevel�i�,
�i,0,0.7,0.7/8	�

Plot�Evaluate�toplot�,�x,0.01,10	,
PlotStyle 
 grays,PlotRange� > ��5,5	,
AspectRatio� > 1�
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Figure 4-28 Various solutions of x2y�� � xy� � y � 0, x > 0

(c) The auxiliary equation is given by

m�m � 1� � 5m � 10 � m2 � 6m � 10 � 0

with complex conjugate roots m1,2 � 1
2 �6  

36 � 40� � 3  i. Thus, a

general solution is y � x3 �c1 cos �ln x� � c2 sin �ln x��.
Again, we see that we obtain equivalent results with DSolve. First,

we find a general solution of the equation, naming the resulting output
gensol.

In[685]:= Clear�x,y�

gensol � DSolve�x2 y���x� � 5x y��x�
�10 y�x� �� 0,y�x�,x�

Out[685]= ��y�x	 
 x3 C�2	 Cos�Log�x		
�x3 C�1	 Sin�Log�x		

Now, we define y�x� to be the general solution obtained in gensol.
(The same result is obtained with Part by entering y[x_]=gensol
[[1,1,2]].)

In[686]:= y�x � � x3C�2� Cos�Log�x���x3C�1� Sin�Log�x��
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Figure 4-29 Various solutions of x2y�� � 5xy� � 10y � 0, x > 0

To find the values of C[1] and C[2] so that the solution satisfies the
initial conditions y�1� � a and y��1� � b, we use Solve and name the
resulting list cvals.

In[687]:= cvals � Solve��y�1� �� a,y��1� �� b	,
�C�1�,C�2�	�

Out[687]= ��C�1	 
 3 a � b,C�2	 
 a

The solution to the initial-value problem

�		

		
�

x2y�� � 5xy� � 10y � 0

y�1� � a, y��1� � b

is obtained by replacing C[1] and C[2] in y�x� by the values found in
cvals.

In[688]:= y�x � � y�x�/.cvals��1��

Out[688]= a x3 Cos�Log�x		 � �3 a � b� x3 Sin�Log�x		

This solution is then graphed for various initial conditions in
Figure 4-29.Note that when you enter

the following Plot
command, Mathematica may
display several error
messages because each
solution is undefined if x � 0.
Nevertheless, the resulting
graphs are displayed
correctly.

In[689]:= toplot � Table�y�x�,�a,�2,2,2	,�b,�2,2,2	�

grays � Table�GrayLevel�i�,
i,0,0.5, 0.5
8

��
Plot�Evaluate�toplot�,�x,0,2	,
PlotStyle 
 grays,PlotRange 
 All�
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4.6.2 Higher-Order Cauchy–Euler Equations

The auxiliary equation of higher-order Cauchy–Euler equations is defined in the
same way and solutions of higher-order homogeneous Cauchy–Euler equations
are determined in the same manner as solutions of higher-order homogeneous dif-
ferential equations with constant coefficients. In the case of higher-order Cauchy–
Euler equations, note that if a real root r of the auxiliary equation is repeated m
times, m linearly independent solutions that correspond to r are xr, xr ln x, xr �ln x�2,
. . . , xr �ln x�m�1; solutions corresponding to repeated complex roots are generated
similarly.

EXAMPLE 4.6.2: Solve 2x3y��� � 4x2y�� � 20xy� � 0, x > 0.

SOLUTION: In this case, if we assume that y � xm for x > 0, we have
the derivatives y� � mxm�1, y�� � m�m � 1�xm�2, and y��� �
m�m � 1��m � 2�xm�3. Substitution into the differential equation and sim-
plification then yields �2m3 � 10m2 � 12m� xm � 0.

In[690]:= Clear�x,y�

eq � 2 x3 y�3��x� � 4x2 y���x� � 20x y��x� �� 0

Out[690]= �20 x y��x	 � 4 x2 y���x	 � 2 x3 y�3��x	 �� 0

In[691]:= y�x � � xm

Out[691]= xm

In[692]:= eq

Out[692]= �20 m xm � 4 ��1 � m� m xm � 2 ��2 � m� ��1 � m� m xm �� 0

In[693]:= Factor�eq�1��
Out[693]= 2 ��6 � m� m �1 � m� xm

We must solve 2m3 � 10m2 � 12m � 2m�m � 1��m � 6� � 0 for m because
xm # 0.

In[694]:= mvals � Solve�eq,m�

Out[694]= ��m 
 �1,�m 
 0,�m 
 6

We see that the solutions are m1 � 0, m2 � �1, and m3 � 6, so a gen-
eral solution of the equation is y � c1 � c2x�1 � c3x6. As in the previous
examples, we see that we obtain the same results with DSolve.
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Figure 4-30 Various solutions of 2x3y��� � 4x2y�� � 20xy� � 0, x > 0

In[695]:= Clear�x,y�

gensol �

DSolve�2 x3 y�3��x� � 4x2 y���x� � 20x y��x� �� 0,
y�x�,x�

Out[695]= ��y�x	 
 1

6
x6 C�1	 �

C�2	

x
� C�3	��

We graph this solutions for various values of the arbitrary constants in
the same way as we graph solutions of other equations. See Figure 4-30.

In[696]:= toplot � Table�c�1�
x

� c�2� � x6c�3�/.c�2� 
 0,

�c�1�,�1,1	,�c�3�,�1,1	�
grays � Table�GrayLevel�i�,�i,0,0.7,0.7/8	�

Plot�Evaluate�toplot�,�x,0,2	,
PlotRange 
 ��10,10	,PlotStyle 
 grays�

EXAMPLE 4.6.3: Solve the initial-value problem

�		

		
�

x4y�4� � 4x3y��� � 11x2y�� � 9xy� � 9y � 0, x > 0

y�1� � 1, y��1� � �9, y���1� � 27, y����1� � 1.
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SOLUTION: Substitution of y � xm into the differential equation x4y�4��
4x3y��� � 11x2y�� � 9xy� � 9y � 0 and simplification leads to the equation

�m4 � 2m3 � 10m2 � 18m � 9� xm � 0.

In[697]:= eq � x4 ��x,4	y�x� � 4 x
3 ��x,3	y�x� � 11 x

2 �y����x�

�9 x y��x� � 9 y�x� �� 0

In[698]:= y�x � � xm

In[699]:= Factor�eq��1���

Out[699]= ��1 � m�2 �9 � m2� xm

We solve

m4 � 2m3 � 10m2 � 18m � 9 � �m2 � 9� �m � 1�2 � 0

for m because xm # 0.

In[700]:= Solve�eq,m�

Out[700]= ��m 
 �3 �,�m 
 3 �,�m 
 1,�m 
 1

Hence, m1,2 �  3i, and m3,4 � 1 is a root of multiplicity 2, so a general
solution of the differential equation is

y � c1 cos �3 ln x� � c2 sin �3 ln x� � c3x � c4x ln x

with first, second, and third derivatives computed as follows.

In[701]:= y�x � � c1 Cos�3 Log�x�� � c2 Sin�3 Log�x��
�c3 x � c4 x Log�x�

In[702]:= Simplify�y��x��

Simplify�y���x��

Simplify�y�3��x��
Out[702]=

1

x
��3 Sin�3 Log�x		 c1

�3 Cos�3 Log�x		 c2 � x �c3 � �1 � Log�x	� c4��

Out[702]=
1

x2
���9 Cos�3 Log�x		 � 3 Sin�3 Log�x		� c1

�3 �Cos�3 Log�x		 � 3 Sin�3 Log�x		� c2 � x c4�

Out[702]=
1

x3
�3 �9 Cos�3 Log�x		 � 7 Sin�3 Log�x		� c1

�3 �7 Cos�3 Log�x		 � 9 Sin�3 Log�x		� c2

�x c4�
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Substitution of the initial conditions then yields the system of equa-
tions,

�						

						
�

c1 � c3 � 1

3c2 � c3 � c4 � �9

�9c1 � 3c2 � c4 � 27

27c1 � 21c2 � c4 � 1

which has the solution �c1, c2, c3, c4� � ��12/5,�89/30, 17/5,�7/2�.

In[703]:= cvals �

Solve�
y�1� �� 1,y��1� �� �9,y���1� �� 27,
y�3��1� �� 1��

Out[703]= ��c1 
 �
12

5
,c3 


17

5
,c2 
 �

89

30
,c4 
 �

7

2
��

Therefore, the solution to the initial-value problem is

y � �
12
5

cos �3 ln x� �
89
30

sin �3 ln x� �
17
5

x �
7
2

x ln x.

In[704]:= y�x � � y�x�/.cvals��1��

Out[704]=
17 x

5
�
12

5
Cos�3 Log�x		 �

7

2
x Log�x	

�
89

30
Sin�3 Log�x		

We graph this solution with Plot in Figure 4-31. From the graph shownMathematica may display
several error messages
because the solution is
undefined if x � 0.

in Figure 4-31, we see that it might appear to be the case that limx�0� y�x�
exists.

In[705]:= Plot�y�x�,�x,0,1	�

0.2 0.4 0.6 0.8 1

-2

2

4

6

Figure 4-31 Plot of the solution to the initial-value problem
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Figure 4-32 Zooming in near x � 0 helps convince us that limx�0� y�x� does not exist

However, when we graph the solution on “small” intervals close to the
origin as shown in Figure 4-32, we see that limx�0� y�x� does not exist.

In[706]:= p1 � Plot�y�x�,�x,0.001,0.1	,
Ticks 
 ��0.05	,Automatic	,
DisplayFunction 
 Identity�

p2 � Plot�y�x�,�x,0.00001,0.001	,
Ticks 
 ��0.0005	,Automatic	,
DisplayFunction 
 Identity�

p3 � Plot�y�x�,�x,1.10�7, 0.00001	,

Ticks 
 ��5.10�6	,Automatic	,
DisplayFunction 
 Identity�

Show�GraphicsArray��p1,p2,p3	��

As expected, we see that DSolve can be used to solve the initial-value
problem directly.

In[707]:= Clear�x,y�

partsol �

DSolve�
eq,y�1� �� 1,y��1� �� �9,y���1� �� 27,
y�3��1� �� 1�,y�x�,x�

Out[707]= ��y�x	 
 1

30
�102 x � 72 Cos�3 Log�x		

�105 x Log�x	 � 89 Sin�3 Log�x		���

4.6.3 Variation of Parameters

Of course, Cauchy–Euler equations can be nonhomogeneous in which case the
method of variation of parameters can be used to solve the problem.
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EXAMPLE 4.6.4: Solve x2y�� � xy� � 5y � x, x > 0.

SOLUTION: We first note that DSolve can be used to find a general
solution of the equation directly.

In[708]:= Clear�x,y,gensol�

gensol � DSolve�x2 y���x� � x y��x� � 5 y�x� �� x,
y�x�,x�

Out[708]= ��y�x	 
 x C�2	 Cos�2 Log�x		 � x C�1	

� Sin�2 Log�x		 �
1

4
�2 x Cos�Log�x		2

� Cos�2 Log�x		 � x Sin�2 Log�x		2���
Alternatively, we can use Mathematica to help us implement variation
of parameters. We begin by finding a general solution to the corre-
sponding homogeneous equation x2y�� � xy� � 5y � 0 with DSolve.

In[709]:= homsol � DSolve�x2 y���x� � x y��x� � 5 y�x� �� 0,
y�x�,x�

Out[709]= ��y�x	 
 x C�2	 Cos�2 Log�x		
�x C�1	 Sin�2 Log�x		

We see that a general solution of the corresponding homogeneous equa-
tion is yh � x �c1 cos �2 ln x� � c2 sin �2 ln x��. A fundamental set of solu-
tions for the homogeneous equation is S � �x cos �2 ln x� , x sin �2 ln x��

In[710]:= y1�x � � x Cos�2 Log�x��

y2�x � � x Sin�2 Log�x��

In[711]:= caps � �y1�x�,y2�x�	

and the Wronskian is W �S� � 2x.

In[712]:= ws � Simplify�Det��caps,�xcaps	��

Out[712]= 2 x

To implement variation of parameters, we rewrite the equation in the
standard form

y�� �
1
x

y� �
5
x2

y �
1
x
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by dividing by x2 and identify f �x� � 1/ x. We then use Integrate to
compute

u1 � � �y2�x� f �x�
2x

dx and u2 � � y1�x� f �x�
2x

dx.

In[713]:= f�x � �
1

x


In[714]:= u1prime � �
y2�x� f�x�

ws

u2prime �
y1�x� f�x�

ws

Out[714]= �
Sin�2 Log�x		

2 x

Out[714]=
Cos�2 Log�x		

2 x

In[715]:= u1�x � � � u1prime�x

u2�x � � � u2prime�x

Out[715]=
1

2
Cos�Log�x		2

Out[715]=
1

4
Sin�2 Log�x		

A particular solution of the nonhomogeneous equation is given by yp �
y1u1 � y2u2

In[716]:= yp�x � � y1�x�u1�x� � y2�x�u2�x�//Simplify

Out[716]=
1

2
x Cos�Log�x		2

and a general solution is given by y � yh � yp.

In[717]:= y�x � � c1 x Cos�2 Log�x�� � c2x Sin�2 Log�x��
�yp�x�

Out[717]=
1

2
x Cos�Log�x		2 � x Cos�2 Log�x		 c1

�x Sin�2 Log�x		 c2

As in previous examples, we graph this general solution for various
values of the arbitrary constants. See Figure 4-33.

In[718]:= toplot � Table�y�x�,�c1 ,�3,3	,�c2,�3,3	�

grays � Table�GrayLevel�i�,�i,0,0.7,0.7/8	�

Plot�Evaluate�toplot�,�x,0,2	,
PlotStyle 
 grays�
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Figure 4-33 Various solutions of a nonhomogeneous Cauchy–Euler equation

4.7 Series Solutions

In calculus we learn that Maclaurin and Taylor polynomials can be used to
approximate functions. This idea can be extended to approximating the solution
of a differential equation. First, we introduce some necessary terminology.

4.7.1 Power Series Solutions about Ordinary Points

Definition 20 (Standard Form, Ordinary, and Singular Points). Consider the equa-
tion a2�x�y�� � a1�x�y� � a0�x�y � 0 and let p�x� � a1�x�/a2�x� and q�x� � a0�x�/a2�x�. Then,
the equation a2�x�y�� � a1�x�y� � a0�x�y � 0 is equivalent to y�� � p�x�y� � q�x�y � 0, which
is called the standard form of the equation. A number x0 is an ordinary point of this
differential equation if both p�x� and q�x� are analytic at x0. If x0 is not an ordinary point,
x0 is called a singular point.

If x0 is an ordinary point of the differential equation y�� � p�x�y� � q�x�y � 0, we
can write p�x� � ��

n�0 bn �x � x0�n, where bn � p�n� �x0� /n!, and q�x� � ��
n�0 cn �x � x0�n,

where cn � q�n� �x0� /n!. Substitution into the equation y���p�x�y��q�x�y � 0 results in

y�� � y�
��

n�0

bn �x � x0�n � y
��

n�0

cn �x � x0�n � 0.

If we assume that y is analytic at x0, we can write y�x� � ��
n�0 an �x � x0�n. Because

a power series can be differentiated term-by-term, we can compute the first and
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second derivatives of y and substitute back into the equation to calculate the coef-
ficients an. Thus, we obtain a power series solution of the equation.

Power Series Solution Method about an Ordinary Point
1. Assume that y�x� � ��

n�0 an �x � x0�n.
2. After taking the appropriate derivatives, substitute y�x� � ��

n�0 an �x � x0�n

into the differential equation.
3. Find the unknown series coefficients an.
4. When applicable, apply any given initial conditions.

Because the differentiation of power series is necessary in this method for solving
differential equations, we should make a few observations about this procedure.
Consider the Maclaurin series y � ��

n�0 anxn. Term-by-term differentiation of this
series yields y� � ��

n�0 nanxn�1. Notice, however, that with the initial index value of
n � 0, the first term of the series is 0 so we rewrite the series in its equivalent form

y� �
��

n�1

nanxn�1 �
��

n�0

�n � 1�an�1xn.

Similarly,

y�� �
��

n�1

n�n � 1�anxn�2 �
��

n�2

n�n � 1�anxn�2 �
��

n�0

�n � 1��n � 2�an�2xn.

We make use of these derivatives throughout the section.

EXAMPLE 4.7.1: (a) Find a general solution of �4 � x2� y� � y � 0.

(b) Solve the initial-value problem
�		

		
�

�4 � x2� y� � y � 0

y�0� � 1.

SOLUTION: Let y � ��
n�0 anxn. Then term-by-term differentiation

yields y� � dy/dx � ��
n�0 nanxn�1 and substitution into the differential

equation gives us

�4 � x2� dy
dx

� y � �4 � x2� ��
n�0

nanxn�1 �
��

n�0

anxn

�
��

n�1

4nanxn�1 �
��

n�1

nanxn�1 �
��

n�0

anxn � 0.
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Note that the first term in these three series involves x0, x2, and x0,
respectively. Thus, if we pull off the first two terms in the first and third
series, all three series will begin with an x2 term. Doing so, we have

�4a1 � a0� � �8a2 � a1� x �
��

n�3

4nanxn�1 �
��

n�1

nanxn�1 �
��

n�2

anxn � 0.

Unfortunately, the indices of these three series do not match, so we
must change two of the three to match the third. Substitution of n � 1
for n in ��

n�3 4nanxn�1 yields

��
n�1�3

4�n � 1�an�1xn�1�1 �
��

n�2

4�n � 1�an�1xn.

Similarly, substitution of n � 1 for n in ��
n�1 nanxn�1 yields

��
n�1�1

�n � 1�an�1xn�1�1 �
��

n�2

�n � 1�an�1xn.

Therefore, after combining the three series, we have the equation

�4a1 � a0� � �8a2 � a1� x �
��

n�2

�an � 4�n � 1�an�1 � �n � 1�an�1� xn � 0.

Because the sum of the terms on the left-hand side of the equation is
zero, each coefficient must be zero. Equating the coefficients of x0 and x
to zero yields a1 � � 1

4 a0 and a2 � � 1
8 a1 � 1

32 a0. When the series coeffi-
cient an � 4�n� 1�an�1 � �n� 1�an�1 is set to zero, we obtain the recurrence

relation an�1 �
�n � 1�an�1 � an

4�n � 1�
for the indices in the series, n " 2. After

defining the recursively defined function a,

In[719]:= Clear�a,n�

a�n � �� a�n� �
�n � 2� a�n � 2� � a�n � 1�

4n


a�0� � a0

a�1� � �
a0

4
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we use the formula to determine the values of an for n � 2, 3, . . . ,
11, and give these values in the following table. In this case, note that
we define a using the form a[n_]:=a[n]=... so that Mathematica
“remembers” the values of a[n] computed. Thus, for particular values
of n, Mathematica need not recompute a[n-1] and a[n-2] to com-
pute a[n] if these values have previously been computed.

In[720]:= TableForm�Table��n,a�n�	,�n,0,11	��

Out[720]=

0 a0

1 �
a0

4

2
a0

32

3 �
3 a0

128

4
11 a0

2048

5 �
31 a0

8192

6
69 a0

65536

7 �
187 a0

262144

8
1843 a0

8388608

9 �
4859 a0

33554432

10
12767 a0

268435456

11 �
32965 a0

1073741824

Therefore,

y � a0 �
1
4

a0x �
1
32

a0x2 �
3

128
a0x3 �

11
2048

a0x4 �
31

8192
a0x5 �   

(b) When we apply the initial condition y�0� � 1, we substitute x � 0
into the general solution obtained in (a) and set the result equal to 1.
Hence, a0 � 1,

In[721]:= a0 � 1

TableForm�Table��n,a�n�	,�n,0,11	��
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Out[721]=

0 1

1 �
1

4
2

1

32

3 �
3

128

4
11

2048

5 �
31

8192

6
69

65536

7 �
187

262144

8
1843

8388608

9 �
4859

33554432

10
12767

268435456

11 �
32965

1073741824

so the series solution of the initial-value problem is

y � 1 �
1
4

x �
1

32
x2 �

3
128

x3 �
11

2048
x4 �

31
8192

x5 �   

Notice that the equation �4 � x2� y� � y � 0 is separable, so we can com-
pute the solution directly with separation of variables by rewriting the

equation as�
1
y

dy �
1

4 � x2
dx. Integrating yields ln y �

1
4
�ln �x � 2� � ln �x�

2�� � � C ln
�������x � 2
x � 2

�������1/4

�C. Applying the initial condition y�0� � 1 results

in y �
�������x � 2
x � 2

�������1/4

. Nearly identical results are obtained with DSolve.

In[722]:= Clear�x,y�

exactsol �

DSolve�
�4 � x2	 y��x� � y�x� �� 0,y�0� �� 1�,
y�x�,x�

Out[722]= ��y�x	 
 �1 � �� ��2 � x�1/4

2 �2 � x�1/4

��
In[723]:= formula � Simplify� �

��1�3/4 ��2 � x�1/4

�2 � x�1/4
�

Out[723]= ���1�3/4 ��2 � x
2 � x

�1/4
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Figure 4-34 Comparison of exact solution to a polynomial approximation of the solution

We can approximate the solution of the problem by taking a finite num-
ber of terms of the series solution.

In[724]:= yapprox �
10�
i�0

a�i� xi

Out[724]= 1 �
x

4
�
x2

32
�
3 x3

128
�
11 x4

2048
�
31 x5

8192
�

69 x6

65536

�
187 x7

262144
�

1843 x8

8388608
�

4859 x9

33554432
�

12767 x10

268435456

The graph of the polynomial approximation of degree 10 is shown in
Figure 4-34 along with the solution obtained through separation of vari-
ables.

In[725]:= p1 � Plot��formula,yapprox	,�x,�2,2	,
PlotStyle 
 �GrayLevel�0.5�,
GrayLevel�0�	�

The graph shows that the accuracy of the approximation decreases near
x �  2, which are the singular points of the differential equation. (The
reason for this is discussed in the theorem following this example.)

Alternatively, we can take advantage of Series to help us form a
series solution of the problem.

First, we use Series to compute the first few terms of the power
series expansion for the left-hand side of the equation about x � 0 and
name the result serapprox.

In[726]:= Clear�x,y�

serapprox � Series��4 � x2	 y��x� � y�x�,

�x,0,10	�
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Out[726]= �y�0	 � 4 y��0	� � �y��0	 � 4 y���0	� x

�� � y��0	 �
y���0	

2
� 2 y�3��0	� x2

�� � y���0	 �
1

6
y�3��0	 �

2

3
y�4��0	� x3

�� �
1

2
y�3��0	 �

1

24
y�4��0	 �

1

6
y�5��0	� x4

�� �
1

6
y�4��0	 �

1

120
y�5��0	 �

1

30
y�6��0	� x5

�� �
1

24
y�5��0	 �

1

720
y�6��0	 �

1

180
y�7��0	� x6

�� �
1

120
y�6��0	 �

y�7��0	

5040
�
y�8��0	

1260
� x7

�� �
1

720
y�7��0	 �

y�8��0	

40320
�
y�9��0	

10080
� x8

�� �
y�8��0	

5040
�
y�9��0	

362880
�
y�10��0	

90720
� x9

�� �
y�9��0	

40320
�
y�10��0	

3628800
�
y�11��0	

907200
� x10 � 0�x	11

Then, we use LogicalExpand to form the system of equations
obtained by equating each coefficient in serapprox to zero.

In[727]:= sysofeqs � LogicalExpand�serapprox �� 0�

Out[727]= y�0	 � 4 y��0	 �� 0&&y��0	 � 4 y���0	 �� 0&&

�y��0	 �
y���0	

2
� 2 y�3��0	 �� 0&&

�y���0	 �
1

6
y�3��0	 �

2

3
y�4��0	 �� 0&&

�
1

2
y�3��0	 �

1

24
y�4��0	 �

1

6
y�5��0	 �� 0&&

�
1

6
y�4��0	 �

1

120
y�5��0	 �

1

30
y�6��0	 �� 0&&

�
1

24
y�5��0	 �

1

720
y�6��0	 �

1

180
y�7��0	 �� 0&&

�
1

120
y�6��0	 �

y�7��0	

5040
�
y�8��0	

1260
�� 0&&

�
1

720
y�7��0	 �

y�8��0	

40320
�
y�9��0	

10080
�� 0&&

�
y�8��0	

5040
�
y�9��0	

362880
�
y�10��0	

90720
�� 0&&

�
y�9��0	

40320
�
y�10��0	

3628800
�
y�11��0	

907200
�� 0

We want to solve this system of equations for y��0�, y���0�, . . . , y�11��0�
so that the results are in terms of y�0�. (Note that the symbol ��x,i�y�x�
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represents D[y[x],{x,i}] so the same result is obtained by entering
vars=Table[D[y[x],{x, i}]/.(x -> 0),{i,1,11}].)

In[728]:= vars � Table���x,i	y�x�/.x 
 0,�i,1,11	�

Out[728]= �y��0	,y���0	,y�3��0	,y�4��0	,y�5��0	,y�6��0	,

y�7��0	,y�8��0	,y�9��0	,y�10��0	,y�11��0	

We then use Solve to solve the system of equations sysofeqs for the
unknowns specified in vars.

In[729]:= sols � Solve�sysofeqs,vars�

Out[729]= ��y��0	 
 �
y�0	

4
,y���0	 


y�0	

16
,

y�3��0	 
 �
9 y�0	

64
,y�4��0	 


33 y�0	

256
,

y�5��0	 
 �
465 y�0	

1024
,y�6��0	 


3105 y�0	

4096
,

y�7��0	 
 �
58905 y�0	

16384
,y�8��0	 


580545 y�0	

65536
,

y�9��0	 
 �
13775265 y�0	

262144
,

y�10��0	 

180972225 y�0	

1048576
,

y�11��0	 
 �
5140067625 y�0	

4194304
��

The power series solution is formed by substituting these values into
the power series for y�x� about x � 0 with ReplaceAll (/.).

In[730]:= sersol � Series�y�x�,�x,0,11	�/.sols��1��

Out[730]= y�0	 �
1

4
y�0	 x �

1

32
y�0	 x2 �

3

128
y�0	 x3

�
11 y�0	 x4

2048
�
31 y�0	 x5

8192
�
69 y�0	 x6

65536

�
187 y�0	 x7

262144
�
1843 y�0	 x8

8388608
�
4859 y�0	 x9

33554432

�
12767 y�0	 x10

268435456
�
32965 y�0	 x11

1073741824
� O�x	12

The solution to the initial-value problem is obtained by replacing each
occurrence of y�0� in sersol by 1.

In[731]:= sol � sersol/.y�0� 
 1

Out[731]= 1 �
x

4
�
x2

32
�
3 x3

128
�
11 x4

2048
�
31 x5

8192
�

69 x6

65536
�

187 x7

262144

�
1843 x8

8388608
�

4859 x9

33554432
�

12767 x10

268435456
�

32965 x11

1073741824

�O�x	12
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Remember that this result cannot be evaluated for particular values of x
because of the O-term indicating the omitted higher-order terms of the
series. To obtain an approximation of the solution that can be evaluated
for particular values of x, use Normal to remove the O-term.

In[732]:= polyapprox � Normal�sol�

Out[732]= 1 �
x

4
�
x2

32
�
3 x3

128
�
11 x4

2048
�
31 x5

8192
�

69 x6

65536
�

187 x7

262144

�
1843 x8

8388608
�

4859 x9

33554432
�

12767 x10

268435456
�

32965 x11

1073741824

The following theorem explains where the approximation of the solution of the
differential equation by the series is valid.

A proof of this theorem can
be found in more advanced
texts, such as Rabenstein’s
Introduction to Ordinary
Differential Equations, [22].

Theorem 9 (Convergence of a Power Series Solution). Let x � x0 be an ordinary
point of the differential equation a2�x�y�� � a1�x�y� � a0�x�y � 0 and suppose that R is the
distance from x � x0 to the closest singular point of the equation. Then the power series
solution y � ��

n�0 an �x � x0�n converges at least on the interval �x0 � R, x0 � R�.

The theorem indicates that the approximation may not be as accurate near singular
points of the equation. Hence, we understand why the approximation in Example
4.7.1 breaks down near x �  2, the closest singular point to the ordinary point
x � 0. Of course, x � 0 is not an ordinary point for every differential equation.
However, because the series y � ��

n�0 an �x � x0�n is easier to work with if x0 � 0, we
can always make a transformation so that we can use y � ��

n�0 anxn to solve any
linear equation. For example, suppose that x � x0 is an ordinary point of a linear
equation. Then, if we make the change of variable t � x�x0, then t � 0 corresponds
to x � x0, so t � 0 is an ordinary point of the transformed equation.

EXAMPLE 4.7.2 (Legendre’s Equation): Legendre’s equation is the
equation �1 � x2� d2y

dx2
� 2x

dy
dx

� k�k � 1�y � 0, (4.24)

where k is a constant, named after the French mathematician Adrien
Marie Legendre (1752–1833). Find a general solution of Legendre’s
equation.

SOLUTION: In standard form, the equation is

d2y
dx2

�
2x

1 � x2

dy
dx

�
k�k � 1�
1 � x2

y � 0.
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There is a solution to the equation of the form y � ��
n�0 anxn because

x � 0 is an ordinary point. This solution will converge at least on the
interval ��1, 1� because the closest singular points to x � 0 are x �  1.

Substitution of this function and its derivatives

y� �
��

n�0

�n � 1�an�1xn and y�� �
��

n�0

�n � 1��n � 2�an�2xn

into Legendre’s equation (4.24) and simplifying the results yields

�2a2 � k�k � 1�a0� � ��2a1 � k�k � 1�a1 � 6a3� x �
��

n�4

n�n � 1�anxn�2

�
��

n�2

n�n � 1�anxn �
��

n�2

2nanxn �
��

n�2

k�k � 1�anxn � 0.

After substituting n � 2 for each occurrence of n in the first series and
simplifying, we have

�2a2 � k�k � 1�a0� � ��2a1 � k�k � 1�a1 � 6a3� x �
��

n�2

��n � 2��n � 1�an�2

� ��n�n � 1� � 2n � k�k � 1�� an� xn � 0.

Equating the coefficients to zero, we find a2, a3, and an�2 with Solve.

In[733]:= Clear�a,k�

Solve�2a2 � k�k � 1�a0 �� 0,a2�

Out[733]= ��a2 
 �
1

2
k �1 � k� a0��

In[734]:= Solve��2a1 � k�k � 1�a1 � 6a3 �� 0,a3�

Out[734]= ��a3 
 1

6
�2 a1 � k a1 � k

2 a1���
In[735]:= genform �

Solve�
�n � 2��n � 1�an�2 � ��n�n � 1�
�2n � k�k � 1��an �� 0,an�2�

Out[735]= ��a2�n 
 �
�k � k2 � n � n2� an

2 � 3 n � n2
��

In[736]:= Factor�genform��1,1,2���

Out[736]= �
�k � n� �1 � k � n� an

�1 � n� �2 � n�

We obtain a formula for an by replacing each occurrence of n in an�2 by
n � 2.
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In[737]:= genform��1,1,2��/.n� > n � 2

Out[737]= �
�2 � k � k2 � ��2 � n�2 � n� a�2�n

2 � 3 ��2 � n� � ��2 � n�2

Using this formula, we find several coefficients with Table.

In[738]:= an �� an �
��2 � k � k2 � ��2 � n�2 � n� a�2�n

��1 � n� n


a1 � a1

a0 � a0

In[739]:= Table��n,an	,�n,2,10	�//TableForm

Out[739]=

2
1

2
a0 ��k � k2�

3
1

6
a1 �2 � k � k2�

4
1

24
a0 ��k � k2� �6 � k � k2�

5
1

120
a1 �2 � k � k2� �12 � k � k2�

6
1

720
a0 ��k � k2� �6 � k � k2� �20 � k � k2�

7
a1 �2 � k � k2� �12 � k � k2� �30 � k � k2�

5040

8
a0 � � k � k2� �6 � k � k2�

40320

�
�20 � k � k2� �42 � k � k2�

40320

9
a1 �2 � k � k2� �12 � k � k2�

362880

�
�30 � k � k2� �56 � k � k2�

362880

10
a0 � � k � k2� �6 � k � k2� �20 � k � k2�

3628800

�
�42 � k � k2� �72 � k � k2�

3628800

Hence, we have the two linearly independent solutions

y1 � a0�1 �
k�k � 1�

2!
x2 �

�2 � k��3 � k�k�k � 1�
4!

x4

�
�4 � k��5 � k��2 � k��3 � k�k�k � 1�

6!
x6 �    �
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and

y2 �a1�x �
�k � 1��k � 2�

3!
x3 �

�3 � k��4 � k��k � 1��k � 2�
5!

x5

�
�5 � k��6 � k��3 � k��4 � k��k � 1��k � 2�

7!
x7 �    �

so a general solution of Legendre’s equation (4.24) is

y �y1 � y2

y1 � a0�1 �
k�k � 1�

2!
x2 �

�2 � k��3 � k�k�k � 1�
4!

x4

�
�4 � k��5 � k��2 � k��3 � k�k�k � 1�

6!
x6 �    �

� a1�x �
�k � 1��k � 2�

3!
x3 �

�3 � k��4 � k��k � 1��k � 2�
5!

x5

�
�5 � k��6 � k��3 � k��4 � k��k � 1��k � 2�

7!
x7 �    �.

Note that DSolve is able to find a general solution as well—the result
is given in terms of the functions LegendreP and LegendreQ, Math-
ematica’s linearly independent solutions of Legendre’s equation.

In[740]:= DSolve��1 � x2	 y���x� � 2 x y��x�

�k �k � 1� y�x� �� 0,y�x�,x�
Out[740]= ��y�x	 
 C�1	 LegendreP�k,x	

�C�2	 LegendreQ�k,x	

An interesting observation from the general solution to Legendre’s
equation is that the series solutions terminate for integer values of k. If k
is an even integer, the first series terminates while if k is an odd integer
the second series terminates. Therefore, polynomial solutions are found
for integer values of k. Because these polynomials are useful and are
encountered in numerous applications, we have a special notation for
them: Pn�x� is called the Legendre polynomial of degree n and repre-
sents an nth degree polynomial solution to Legendre’s equation. The
Mathematica command LegendreP[n,x] returns Pn�x�.

We use Table together with LegendreP to list the first few Legen-
dre polynomials.

In[741]:= toplot � Table�LegendreP�n,x�,�n,0,5	�
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-2 -1 1 2

-2

-1.5

-1

-0.5

0.5

1

1.5

2

Figure 4-35 Plots of the first few Legendre polynomials

Out[741]=

TableForm[toplot]
1
x

�
1

2
�
3 x2

2

�
3 x

2
�
5 x3

2
3

8
�
15 x2

4
�
35 x4

8
15 x

8
�
35 x3

4
�
63 x5

8

We graph these polynomials for �2 � x � 2 in Figure 4-35.

In[742]:= grays � Table�GrayLevel�i�,
i,0,0.6, 0.6
5

��
Plot�Evaluate�toplot�,�x,�2,2	,
PlotRange 
 ��2,2	,AspectRatio 
 1,
PlotStyle 
 grays�

Another interesting observation about the Legendre polynomials is that
they satisfy the relationship � 1

�1
Pm�x�Pn�x� dx � 0, m # n, called an

orthogonality condition, which we verify with Integrate for m, n � 0,
1, . . . , 6.
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In[743]:= Table� � 1

�1
LegendreP�n,x� LegendreP�m,x��x,

�n,0,6	,�m,0,6	�//TableForm

Out[743]=

2 0 0 0 0 0 0

0
2

3
0 0 0 0 0

0 0
2

5
0 0 0 0

0 0 0
2

7
0 0 0

0 0 0 0
2

9
0 0

0 0 0 0 0
2

11
0

0 0 0 0 0 0
2

13

Note that the entries down the diagonal of this result correspond to the
value of � 1

�1
�Pn�x��2 dx for n � 0, 1, . . . , 6 and indicate that � 1

�1
�Pn�x��2 dx �

2/ �2n � 1�.

4.7.2 Series Solutions about Regular Singular Points

In the previous section, we used a power series expansion about an ordinary point
to find (or approximate) the solution of a differential equation. We noted that these
series solutions may not converge near the singular points of the equation.

In this section, we investigate the problem of obtaining a series expansion about
a singular point. We begin with the following classification of singular points.

Definition 21 (Regular and Irregular Singular Points). Let x � x0 be a singular
point of y�� � p�x�y� � q�x�y � 0. x � x0 is a regular singular point of the equation if both
�x � x0� p�x� and �x � x0�2 q�x� are analytic at x � x0. If x � x0 is not a regular singular
point, then x � x0 is called an irregular singular point of the equation.

Sometimes this definition is difficult to apply. Therefore, we supply the following
definition for polynomial coefficients p�x� and q�x� of the equation y�� � p�x�y� �
q�x�y � 0.

Definition 22 (Singular Points of Equations with Polynomial Coefficients). Sup-
pose that p�x� and q�x� are polynomials with no common factors. If after reducing p�x� and
q�x� to lowest terms, the highest power of x � x0 in the denominator of p�x� is 1 and the
highest power of x � x0 in the denominator of q�x� is 2, then x � x0 is a regular singular
point of the equation. Otherwise, it is an irregular singular point.



282 Chapter 4 Higher-Order Differential Equations

EXAMPLE 4.7.3: Classify the singular points of each of the following
equations: (a) x2y�� � xy� � �x2 � Μ2� y � 0 (Bessel’s equation), and (b)�x2 � 16�2

y�� � �x � 4�y� � y � 0.

SOLUTION: (a) In standard form, Bessel’s equation is

d2y
dx2

�
1
x

dy
dx

� �1 �
Μ2

x2 � y � 0

so x � 0 is a singular point of this equation because p�x� � 1/ x is not

analytic at x � 0. Because xp�x� � 1 and x2 �1 �
Μ2

x2 � � x2 � Μ2, x � 0 is

a regular singular point. We see that DSolve is able to find a general
solution of Bessel’s equation, although the result is given in terms of
the Bessel functions, BesselJ and BesselY.

In[744]:= DSolve�x2 y���x� � x y��x� � �x2 � Μ2	 y�x� �� 0,

y�x�,x�
Out[744]= ��y�x	 
 BesselJ�Μ,x	 C�1	

�BesselY�Μ,x	 C�2	

(b) In standard form, the equation is

d2y
dx2

�
x � 4�x2 � 16�2

dy
dx

�
1�x2 � 16�2 y � 0 or

d2y
dx2

�
1

�x � 4��x � 4�2
dy
dx

�
1

�x � 4�2�x � 4�2
y � 0.

Thus, the singular points are x � 4 and x � �4. For x � 4, we have

�x � 4�p�x� � �x � 4�
1

�x � 4��x � 4�2
�

1
�x � 4�2

and
�x � 4�2q�x� � �x � 4�2

1
�x � 4�2�x � 4�2

�
1

�x � 4�2
.

Both of these functions are analytic at x � 4, so x � 4 is a regular singular
point.

For x � �4,

�x � 4�p�x� � �x � 4�
1

�x � 4��x � 4�2
�

1
�x � 4��x � 4�

,

which is not analytic at x � �4. Thus, x � �4 is an irregular singular
point. DSolve is unable to find a general solution of this equation.
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4.7.3 Method of Frobenius

Now we illustrate how a series expansion about a regular singular point can be
used to solve an equation.

Theorem 10 (Method of Frobenius). Let x � x0 be a regular singular point of y�� �
p�x�y� � q�x�y � 0. Then this differential equation has at least one solution of the form

y �
��

n�0

an �x � x0�n�r ,

where r is a constant that must be determined. This solution is convergent at least on some
interval �x � x0� < R, R > 0.

EXAMPLE 4.7.4: Find a general solution of xy�� � �1 � x�y� �
1

16x
y � 0.

SOLUTION: First, we note that in standard form this equation is

d2y
dx2

�
1 � x

x
dy
dx

�
1

16x2
y � 0.

Thus, x � 0 is a singular point. Moreover, because x p�x� � x
1 � x

x
� 1�x

and x2q�x� � x2  �
1

16x2
� �16 are both analytic at x � 0, we classify x � 0

as a regular singular point. By the Method of Frobenius, there is at least
one solution of the form y � ��

n�0 anxn�r. Differentiating this function
twice, we obtain

y� �
��

n�0

an�n � r�xn�r�1 and y�� �
��

n�0

an�n � r��n � r � 1�xn�r�2.

Substituting these series into the differential equation yields

x
��

n�0

an�n � r��n � r � 1�xn�r�2 � �1 � x�
��

n�0

an�n � r�xn�r�1

�
1

16x

��
n�0

anxn�r � 0

��
n�0

an�n � r��n � r � 1�xn�r�1 �
��

n�0

an�n � r�xn�r�1 �
��

n�0

an�n � r�xn�r

�
��

n�0

1
16

anxn�r�1 � 0.
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Notice that the first term in three of the four series begins with an xr�1

term while the first term in ��
n�0 an�n � r�xn�r begins with an xr term,

so we must pull off the first terms in the other three series so that they
match. Hence,

	r�r � 1� � r �
1
16


 a0xr�1 �
��

n�1

an�n � r��n � r � 1�xn�r�1

�
��

n�1

an�n � r�xn�r�1 �
��

n�0

an�n � r�xn�r �
��

n�1

1
16

anxn�r�1 � 0.

Changing the index in the third series by substituting n � 1 for each
occurrence of n, we have

��
n�1�0

an�1�n � 1 � r�xn�1�r �
��

n�1

an�1�n � r � 1�xn�r�1.

After simplification, we have

	r�r � 1� � r �
1

16

 a0xr�1 �

��
n�1

�	�n � r� �n � r � 1� � �n � r� �
1
16


 an

� �n � r � 1� an�1�xn�r�1 � 0.

We equate the coefficients to zero to find the coefficients and the value
of r. Assuming that a0 # 0 so that the first term of our series solution is
not zero, we have from the first term the equation

r�r � 1� � r �
1

16
� 0,

called the indicial equation, because it yields the value of r. In this case,

In[745]:= Solve�r�r � 1� � r � 1/16 �� 0�

Out[745]= ��r 
 �
1

4
�,�r 
 1

4
��

the roots are r1 � 1/4 and r2 � �1/4. Starting with the larger of the
two roots, r1 � 1/4, we assume that y1 � ��

n�0 anxn�1/4 � x1/4 ��
n�0 anxn.

Equating the series coefficient to zero, we have

	�n � 1
4

� �n � 1
4
� 1� � �n � 1

4
� � 1

16

 an � �n � 1

4
� 1� an�1 � 0,

which we solve for an.
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In[746]:= Solve���n � 1

4
 �n � 1

4
� 1 � �n � 1

4
 �

1

16
 an

��n � 1

4
� 1 an�1 �� 0,an�

Out[746]= ��an 
 �
��3 � 4 n� a�1�n
2 n �1 � 2 n�

��
Several of these coefficients are calculated using this formula with Table.

In[747]:= an �� an � �
��3 � 4 n� a�1�n
2 �n � 2 n2�

a0 � a0

TableForm�Table��n,an	,�n,0,10	��

Out[747]=

0 a0

1 �
a0

6

2
a0

24

3 �
a0

112

4
13 a0

8064

5 �
221 a0

887040

6
17 a0

506880

7 �
17 a0

4257792

8
29 a0

68124672

9 �
29 a0

706019328

10
1073 a0

296528117760

Therefore, one solution to the equation is

y1 � a0x1/4 �1 � 1
6

x �
1
24

x2 �
1

112
x3 �

13
8064

x4 �    � .

For r2 � �1/4, we assume that y2 � ��
n�0 anxn�1/4 � x�1/4 ��

n�0 anxn. Then,
we have

	�n � 1
4

� �n � 1
4
� 1� � �n � 1

4
� � 1

16

 bn � �n � 1

4
� 1� bn�1 � 0,

which we solve for bn with Solve.
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In[748]:= Solve���n � 1

4
 �n � 1

4
� 1 � �n � 1

4
 �

1

16
 bn

��n � 1

4
� 1 bn�1 �� 0,bn�

Out[748]= ��bn 
 �
��5 � 4 n� b�1�n
2 n ��1 � 2 n�

��
The value of several coefficients determined with this formula are com-
puted as well.

In[749]:= bn �� bn � �
��5 � 4 n� b�1�n
2 ��n � 2 n2�

b0 � b0

TableForm�Table��n,bn	,�n,0,10	��

Out[749]=

0 b0

1
b0

2

2 �
b0

8

3
7 b0

240

4 �
11 b0

1920

5
11 b0

11520

6 �
19 b0

138240

7
437 b0

25159680

8 �
437 b0

223641600

9
13547 b0

68434329600

10 �
713 b0

39105331200

Therefore, a second linearly independent solution of the equation
obtained with r2 � �1/4 is

y2 � b0x�1/4 �1 � 1
2

x �
1
8

x2 �
7

240
x3 �

11
1920

x4 �    �
and a general solution of the differential equation is y � c1y1 � c2y2

where c1 and c2 are arbitrary constants. Notice that these two solutions
are linearly independent, because they are not scalar multiples of one
another.
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We see that DSolve is able to find a general solution of the equation
as well, although the result is given in terms of the functions Hyper-
geometricU and LaguerreL.

In[750]:= gensol1 � DSolve�x y���x� � �1 � x� y��x�
�
y�x�

16 x
�� 0,y�x�,x�

Out[750]= ��y�x	 
 ��x x1/4 C�1	 HypergeometricU�5
4
,
3

2
,x�

���x x1/4 C�2	 LaguerreL� �
5

4
,
1

2
,x���

In the previous example, we found the indicial equation by direct substitution of
the power series solution into the differential equation. In order to derive a general
formula for the indicial equation, suppose that x � 0 is a regular singular point of
the differential equation y�� � p�x�y� � q�x�y � 0. Then the functions xp�x� and x2q�x�
are analytic at x � 0, which means that both of these functions have a power series
in x with a positive radius of convergence. Hence,

xp�x� � p0 � p1x � p2x2 �    and x2q�x� � q0 � q1x � q2x2 �   

and

p�x� �
p0

x
� p1 � p2x � p3x2 �    and q�x� �

q0

x2
�

q1

x
� q2 � q3x �   

Substitution of these series into the differential equation y�� � p�x�y� � q�x�y � 0 and
multiplying through by the first term in the series for p�x� and q�x�, we see that the
lowest term in the series involves xn�r�2:

��
n�0

an�n � r��n � r � 1�xn�r�2 �
��

n�0

an p0�n � r�xn�r�2

� �p1 � p2x � p3x2 �    � ��
n�0

an�n � r�xn�r�1 �
��

n�0

anq0xn�r�2

� �q1

x
� q2 � q3x2 �    � ��

n�0

anxn�r � 0.

Then, with n � 0, we find that the coefficient of xr�2 is

�ra0 � r2a0 � ra0 p0 � a0q0 � a0 �r2 � �p0 � 1� r � q0�
� a0 �r�r � 1� � p0r � q0� � 0.

Thus, for any equation of the form y�� � p�x�y� �q�x�y � 0 with regular singular point
x � 0, we have the indicial equation

r�r � 1� � p0r � q0 � 0. (4.25)
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The values of r that satisfy the indicial equation are called the exponents or indi-
cial roots and are

r1,2 �
1
2

�1 � p0  
�

1 � 2p0 � p0
2 � 4q0� . (4.26)

Note that r1 " r2 and r1 � r2 �


1 � 2p0 � p0
2 � 4q0.

Several situations can arise when finding the roots of the indicial equation.

1. If r1 # r2 and


1 � 2p0 � p0
2 � 4q0 is not an integer, then there are two

linearly independent solutions of the equation of the form

y1 � xr1

��
n�0

anxn and y2 � xr2

��
n�0

bnxn.

2. If r1 # r2 and


1 � 2p0 � p0
2 � 4q0 is an integer, then there are two linearly

independent solutions of the equation of the form

y1 � xr1

��
n�0

anxn and y2 � cy1 ln x � xr2

��
n�0

bnxn.

3. If r1 � r2 �


1 � 2p0 � p0
2 � 4q0 � 0, then there are two linearly indepen-

dent solutions of the problem of the form

y1 � xr1

��
n�0

anxn and y2 � y1 ln x � xr1

��
n�0

bnxn.

In any case, if y1 is a solution of the equation, a second linearly independent solu-
tion is given by

y2 � y1�x�� 1

� y1�x��2
e� � p�x� dxdx,

which can be obtained through reduction of order.
Note that when solving a differential equation in Case 2, first attempt to find a

general solution using y2 � xr2 ��
n�0 bnxn, where r2 is the smaller of the two roots.

However, if the contradiction a0 � 0 is reached, then find solutions of the form
y1 � xr1 ��

n�0 bnxn and y2 � cy1 ln x � xr2 ��
n�0 bnxn.

The examples here do not illustrate the possibility of complex-valued roots of
the indicial equation. When this occurs, the equation is solved using the proce-
dures of Case 1. The solutions that are obtained are complex, so they can be trans-
formed into real solutions by taking the appropriate linear combinations, such as
those discussed for complex-valued roots of the characteristic equation of Cauchy–
Euler differential equations.

Also, we have not mentioned if a solution can be found with an expansion about
an irregular singular point. If x � x0 is an irregular singular point of y�� � p�x�y� �
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q�x�y � 0, there may or may not be a solution of the form y � xr ��
n�0 anxn for some

number r.

EXAMPLE 4.7.5 (Bessel’s Equation): Bessel’s equation (of order Μ),
named after the German astronomer Friedrich Wilhelm Bessel, is

x2 d2y
dx2

� x
dy
dx

� �x2 � Μ2� y � 0, (4.27)

where Μ " 0 is a constant. Solve Bessel’s equation.

SOLUTION: To use a series method to solve Bessel’s equation, we first
write the equation in standard form as

d2y
dx2

�
1
x

dy
dx

�
x2 � Μ2

x2
y � 0,

so x � 0 is a regular singular point. Using the Method of Frobenius, we
assume that there is a solution of the form y � ��

n�0 anxn�r. We determine
the value(s) of r with the indicial equation. Because xp�x� � x  1/ x � 1
and x2q�x� � x2  �x2 � Μ2� / x2 � x2 � Μ2, p0 � 1 and q0 � �Μ2. Hence, the
indicial equation is

r�r � 1� � p0r � q0 � r�r � 1� � r � Μ2 � r2 � Μ2 � 0

with roots r1,2 �  Μ. Therefore, we assume that y � ��
n�0 anxn�Μ with

derivatives y� � ��
n�0�n�Μ�anxn�Μ�1 and y�� � ��

n�0�n�Μ��n�Μ�1�anxn�Μ�2.
Substitution into Bessel’s equation and simplifying the result yields

�Μ�Μ � 1� � Μ � Μ2� a0xΜ � ��1 � Μ�Μ � �1 � Μ� � Μ2� a1xΜ�1

�
��

n�2

���n � Μ��n � Μ � 1� � �n � Μ� � Μ2� an � an�2� xn�Μ � 0.

Notice that the coefficient of a0xΜ is zero. After simplifying the other
coefficients and equating them to zero, we have �1 � 2Μ�a1 � 0 and��n � Μ��n � Μ � 1� � �n � Μ� � Μ2� an � an�2 � 0, which we solve for an.

In[751]:= Remove�a�

Solve���n � Μ��n � Μ � 1�
��n � Μ� � Μ2	an � an�2 �� 0,an�

Out[751]= ��an 
 �
a�2�n

n �n � 2 Μ�
��
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From the first equation, a1 � 0. Therefore, from an � �
an�2

n�n � 2Μ�
, n " 2,

so that an � 0 for all odd n. We use the formula for an to calculate several
of the coefficients that correspond to even indices.

In[752]:= an �� an � �
a�2�n

n �n � 2 Μ�


a0 � a0

In[753]:= Table��n,an	,�n,2,10,2	�//TableForm

Out[753]=

2 �
a0

2 �2 � 2 Μ�

4
a0

8 �2 � 2 Μ� �4 � 2 Μ�

6 �
a0

48 �2 � 2 Μ� �4 � 2 Μ� �6 � 2 Μ�

8
a0

384 �2 � 2 Μ� �4 � 2 Μ� �6 � 2 Μ� �8 � 2 Μ�

10 �
a0

3840 �2 � 2 Μ� �4 � 2 Μ�

�
1

�6 � 2 Μ� �8 � 2 Μ� �10 � 2 Μ�

A general formula for these coefficients is given by

a2n �
��1�na0

22n!�1 � Μ��2 � Μ�    �n � Μ�
, n " 2.

Our solution can then be written as

y1 �
��

n�0

a2nx2n�Μ �
��

n�0

��1�n2Μ

�1 � Μ��2 � Μ�    �n � Μ�
� x
2

�2n�Μ
.

If Μ is an integer, then by using the gamma function, 2�x�, we can write
this solution as

y1 �
��

n�0

��1�n

n!2�1 � Μ � n�
� x
2

�2n�Μ
. (4.28)

This function, denoted JΜ�x�, is called the Bessel function of the first
kind of order Μ. The command BesselJ�Μ, x� returns JΜ�x�. We use
BesselJ to graph JΜ�x� for Μ � 0, 1, 2, 3, and 4 in Figure 4-36.
Notice that these functions have numerous zeros. We will need to know
these values in subsequent sections.

In[754]:= toplot � Table�BesselJ�Μ,x�,�Μ,0,4	�

grays � Table�GrayLevel�i�,
�i,0,0.6,0.6/4	�
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Figure 4-36 The first five Bessel functions of the first kind

In[755]:= Plot�Evaluate�toplot�,�x,0,10	,
PlotStyle 
 grays�

For the other root, r2 � �Μ, of the indicial equation, a similar derivation
yields a second linearly independent solution of Bessel’s equation,

y1 �
��

n�0

��1�n

n!2�1 � Μ � n�
� x
2

�2n�Μ
,

which is the Bessel function of the first kind of order �Μ and is
denoted J�Μ�x�. Now, we must determine if the functions JΜ�x� and J�Μ�x�
are linearly independent. Notice that if Μ � 0, then these two functions
are the same. If Μ > 0, then r1 � r2 � Μ � ��Μ� � 2Μ. If 2Μ is not an inte-
ger, then by the Method of Frobenius, the two solutions JΜ�x� and J�Μ�x�
are linearly independent. Also, we can show that if 2Μ is an odd inte-
ger, JΜ�x� and J�Μ�x� are linearly independent. In both of these cases, a
general solution is given by y � c1JΜ�x� � c2J�Μ�x�.

If Μ is not an integer, we define the Bessel function of the second
kind of order Μ, YΜ�x�, by the linear combination

YΜ�x� �
1

sin ΜΠ
�cos ΜΠ JΜ�x� � J�Μ�x�� (4.29)

of the functions JΜ�x� and J�Μ�x�. The command BesselY�Μ, x� returns
YΜ�x�. We can show that JΜ�x� and YΜ�x� are linearly independent, so a
general solution of Bessel’s equation of order Μ can be represented by

y � c1JΜ�x� � c2YΜ�x�,
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Figure 4-37 The Bessel functions of the second kind tend to �� as x � 0�

which is the form of the general solution returned by using Mathemat-
ica’s DSolve command to solve Bessel’s equation.

In[756]:= gensol � DSolve�x2 y���x� � x y��x�
��x2 � Μ2	 y�x� �� 0,y�x�,x�

Out[756]= ��y�x	 
 BesselJ�Μ,x	C�1	�BesselY�Μ,x	C�2	

We use BesselY to graph the functions Μ � 0, 1, 2, 3, and 4 in Figure 4-37.
Notice that limx�0� YΜ�x� � ��. This property will be important in sev-
eral applications in later chapters.

In[757]:= toplot � Table�BesselY�Μ,x�,�Μ,0,4	�

grays � Table�GrayLevel�i�,
�i,0,0.6,0.6/4	�

In[758]:= Plot�Evaluate�toplot�,�x,0,10	,
PlotStyle 
 grays,PlotRange 
 ��9,1	�

A more general form of Bessel’s equation is expressed in the form

x2 d2y
dx2

� x
dy
dx

� �Λ2x2 � Μ2� y � 0. (4.30)

Through a change of variables, we can show that a general solution of this equa-
tion defined on the interval 0 < x < � is

y � c1JΜ�Λx� � c2YΜ�Λx�.
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Figure 4-38 Plots of J0�x�, J0�2x�, and J0�4x�

In[759]:= gensol �

DSolve�x2 y���x� � x y��x� � �Λ2x2 � Μ2	 y�x� �� 0,

y�x�,x�
Out[759]= ��y�x	 
 BesselJ�Μ,x Λ	 C�1	 � BesselY�Μ,x Λ	 C�2	

We graph the functions J0�x�, J0�2x�, and J0�4x� in Figure 4-38. Notice that for larger
values of the parameter Λ, the graph of the function intersects the x-axis more often.

In[760]:= Plot��BesselJ�0,x�,BesselJ�0,2 x�,
BesselJ�0,4 x�	,�x,0,10	,

PlotStyle 
 �GrayLevel�0�,GrayLevel�0.3�,
GrayLevel�0.6�	�

EXAMPLE 4.7.6: Find a general solution of each of the following equa-
tions: (a) x2y�� � xy� � �x2 � 16� y � 0 and (b) x2y�� � xy� � �9x2 � 4� y � 0.

SOLUTION: (a) In this case, Μ � 4 so a general solution is y � c1J4�x� �
c2Y4�x�. We graph this solution for various choices of the arbitrary con-
stants in Figure 4-39.

In[761]:= Clear�x,y�

sol1 � DSolve�x2 y���x� � x y��x�
��x2 � 16	 y�x� �� 0,y�x�,x�

Out[761]= ��y�x	 
 BesselJ�4,x	C�1	�BesselY�4,x	C�2	
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Figure 4-39 Solutions of x2y�� � xy� � �x2 � 16� y � 0

In[762]:= toplot �
Table�sol1��1,1,2�� /. �C�1�� > i,C�2�� > j	,
�i,�1,1	,�j,�1,1	�

grays � Table�GrayLevel�i�,�i,0,0.8,0.8/8	�

In[763]:= Plot�Evaluate�toplot�,�x,0,20	,
PlotRange 
 
 �

1

2
,
3

4
�,PlotStyle 
 grays�

(b) Using the parametric Bessel’s equation (4.30) with Λ � 3 and Μ � 2,
we have y � c1J2�3x��c2Y2�3x�. We graph this solution for several choices
of the arbitrary constants in Figure 4-40.

2 4 6 8 10

-0.4

-0.2

0.2

0.4

Figure 4-40 Solutions of x2y�� � xy� � �9x2 � 4� y � 0
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In[764]:= Clear�x,y�

sol2 � DSolve�x2 y���x� � x y��x�
��9 x2 � 4	 y�x� �� 0,y�x�,x�

Out[764]= ��y�x	 
 BesselJ�2,3 x	 C�1	
�BesselY�2,3 x	 C�2	

In[765]:= toplot �
Table�sol2��1,1,2��/.�C�1�� > i,C�2�� > j	,
�i,�1,1	,�j,0,1	�

grays � Table�GrayLevel�i�,
�i,0,0.8,0.8/5	�

In[766]:= Plot�Evaluate�toplot�,�x,0,10	,
PlotRange 
 
 �

1

2
,
1

2
�,PlotStyle 
 grays�

Application: Zeros of the Bessel Functions of the First Kind
As indicated earlier, zeros of the Bessel functions of the first kind will be used
in applications in later chapters. Here, we graph the first nine Bessel functions
of the first kind on the interval �0, 40� and show all nine graphs together as a
GraphicsArray in Figure 4-41.

In[767]:= besselarray �
Table�Plot�BesselJ�n,x�,�x,0,40	,

DisplayFunction 
 Identity�,�n,0,8	�

toshow � Partition�besselarray,3�

Show�GraphicsArray�toshow��

To approximate the zeros, we take advantage of the BesselZeros package that
is contained in the NumericalMath folder (or directory). We obtain information
about the BesselZeros package using Mathematica’s help facility, as indicated in
the following screen shot.
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To use the package, we first load it by entering

<<NumericalMath‘BesselZeros‘.

Thus, entering

In[768]:= << NumericalMath‘BesselZeros‘

In[769]:= Table�BesselJZeros�Μ,5�,�Μ,0,4	�//TableForm

Out[769]=

2.40483 5.52008 8.65373 11.7915 14.9309
3.83171 7.01559 10.1735 13.3237 16.4706
5.13562 8.41724 11.6198 14.796 17.9598
6.38016 9.76102 13.0152 16.2235 19.4094
7.58834 11.0647 14.3725 17.616 20.8269

returns a table of the first five zeros of the Bessel functions JΜ�x� for Μ � 0, 1, 2, 3,
and 4. (The first row corresponds to the zeros of J0�x�, the second row to the zeros
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Figure 4-41 Plots of the first nine Bessel functions of the first kind

of J1�x�, and so on.) Later, we will need to calculate particular zeros. Let Αn denote
the nth zero of J0�x�. We define Αn as follows and then calculate the 50th zero of
J0�x�. Defining Αn in this manner allows us to calculate particular zeros; not a list.

In[770]:= Αn �� Αn � BesselJZeros�0,�n,n	���1��

In[771]:= Α50

Out[771]= 156.295

Next, we generate a list of the first 10 zeros of J0�x�.

In[772]:= Table�Αn,�n,1,10	�

Out[772]= �2.40483,5.52008,8.65373,11.7915,14.9309,
18.0711,21.2116,24.3525,27.4935,30.6346

More generally, let Αm,n denote the nth zero of Jm�x�. We define Αm,n as follows.

In[773]:= Αm ,n �� Αm,n � BesselJZeros�m,�n,n	���1��

Thus, entering

In[774]:= Α25,30

Out[774]= 130.328

returns the 30th zero of J25�x�; entering
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In[775]:= Table�Α0,n,�n,1,5	�

Out[775]= �2.40483,5.52008,8.65373,11.7915,14.9309

returns a list of the first five zeros of J0�x�; and entering

In[776]:= Table�Αm,n,�m,0,4	,�n,1,5	�//TableForm

Out[776]=

2.40483 5.52008 8.65373 11.7915 14.9309
3.83171 7.01559 10.1735 13.3237 16.4706
5.13562 8.41724 11.6198 14.796 17.9598
6.38016 9.76102 13.0152 16.2235 19.4094
7.58834 11.0647 14.3725 17.616 20.8269

returns a table of the first five zeros of the Bessel functions JΜ�x� for Μ � 0, 1, 2, 3,
and 4. (The first row corresponds to the zeros of J0�x�, the second row to the zeros
of J1�x�, and so on.)

Application: The Wave Equation on a Circular PlateFor a classic approach to the
subject see Graff ’s Wave
Motion in Elastic Solids, [13].

The vibrations of a circular plate satisfy the equation

D �4 w�r, Θ, t� � Ρh
�2w�r, Θ, t�

�t2
� q�r, Θ, t�, (4.31)

where �4w � �2 �2 w and �2 is the Laplacian in polar coordinates, which is defined
by

�2 �
1
r
�
�r

�r �
�r

� � 1
r2

�2

�Θ2
�
�2

�r2
�

1
r
�
�r
�

1
r2

�2

�Θ2
.

Assuming no forcing so that q�r, Θ, t� � 0 and w�r, Θ, t� � W �r, Θ�e�iΩt , equation (4.31)
can be written as

�4W �r, Θ� � Β4W �r, Θ� � 0, Β4 � Ω2Ρh/D. (4.32)

For a clamped plate, the boundary conditions are W �a, Θ� � �W �a, Θ�/�r � 0 and
after much work (see [13]) the normal modes are found to be

Wnm�r, Θ� � 	Jn �Βnmr� �
Jn �Βnma�
In �Βnma�

In �Βnmr�
 �sin nΘ
cos nΘ

� . (4.33)

In equation (4.33), Βnm � Λnm /a where Λnm is the mth solution of

In�x�Jn
��x� � Jn�x�In

��x� � 0, (4.34)
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where Jn�x� is the Bessel function of the first kind of order n and In�x� is the modified
Bessel function of the first kind of order n, related to Jn�x� by inIn�x� � Jn�ix�.

The Mathematica command BesselI[n,x] returns In�x�.

EXAMPLE 4.7.7: Graph the first few normal modes of the clamped cir-
cular plate.

SOLUTION: We must determine the value of Λnm for several values of
n and m so we begin by defining eqn[n][x] to be In�x�Jn

��x��Jn�x�In
��x�.

The mth solution of equation (4.34) corresponds to the mth zero of the
graph of eqn[n][x] so we graph eqn[n][x] for n � 0, 1, 2, and 3
with Plot in Figure 4-42.

In[777]:= eqn�n ��x � �� BesselI�n,x�D�BesselJ�n,x�,x�
�BesselJ�n,x�D�BesselI�n,x�,x�

The result of the Table and Plot command is a list of length four

In[778]:= p1 � Table�Plot�eqn�n��x�,�x,0,25	,
PlotRange 
 ��10,10	,
DisplayFunction 
 Identity�,�n,0,3	�

Out[778]= �-Graphics-,-Graphics-,-Graphics-,
-Graphics-
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Figure 4-42 Plot of In�x�Jn
��x� � Jn�x�In

��x� for n � 0 and 1 in the first row; n � 2 and 3 in the
second row
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so we use Partition to create a 2 � 2 array of graphics which is dis-
played using Show and GraphicsArray.

In[779]:= p2 � Show�GraphicsArray�Partition�p1,2���

To determine Λnm we use FindRoot. Recall that to use FindRoot to
solve an equation an initial approximation of the solution must be given.
For example,

In[780]:= lambda01 � FindRoot�eqn�0��x� �� 0,�x,3.04	�

Out[780]= �x 
 3.19622

approximates Λ01, the first solution of equation (4.34) if n � 0. However,
the result of FindRoot is a list. The specific value of the solution is the
second part of the first part of the list, lambda01, extracted from the
list with Part ([[...]]).

In[781]:= lambda01��1,2��

Out[781]= 3.19622

Thus,We use the graphs in Figure
4-42 to obtain initial
approximations of each
solution.

In[782]:= Λ0s � Map�FindRoot�eqn�0��x� �� 0,
�x,#	���1,2��&,
�3.04,6.2,9.36,12.5,15.7	�

Out[782]= �3.19622,6.30644,9.4395,12.5771,15.7164

approximates the first five solutions of equation (4.34) if n � 0 and then
returns the specific value of each solution. We use the same steps to
approximate the first five solutions of equation (4.34) if n � 1, 2, and 3.

In[783]:= Λ1s � Map�FindRoot�eqn�1��x� �� 0,
�x,#	���1,2��&,
�4.59,7.75,10.9,14.1,17.2	�

Out[783]= �4.6109,7.79927,10.9581,14.1086,17.2557

In[784]:= Λ2s � Map�FindRoot�eqn�2��x� �� 0,
�x,#	���1,2��&,
�5.78,9.19,12.4,15.5,18.7	�

Out[784]= �5.90568,9.19688,12.4022,15.5795,18.744

In[785]:= Λ3s � Map�FindRoot�eqn�3��x� �� 0,
�x,#	���1,2��&,
�7.14,10.5,13.8,17,20.2	�

Out[785]= �7.14353,10.5367,13.7951,17.0053,20.1923

All four lists are combined together in Λs.

In[786]:= Λs � �Λ0s,Λ1s,Λ2s,Λ3s	
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Out[786]= ��3.19622,6.30644,9.4395,12.5771,15.7164,
�4.6109,7.79927,10.9581,14.1086,17.2557,
�5.90568,9.19688,12.4022,15.5795,18.744,
�7.14353,10.5367,13.7951,
17.0053,20.1923

For n � 0, 1, 2, and 3 and m � 1, 2, 3, 4, and 5, Λnm is the mth part of the
�n � 1�st part of Λs.

Observe that the value of a does not affect the shape of the graphs of
the normal modes so we use a � 1 and then define Βnm.

In[787]:= a � 1

In[788]:= Β�n ,m � �� Λs��n � 1,m��/a

ws is defined to be the sine part of equation (4.33)

In[789]:= ws�n ,m ��r,Θ� �� �BesselJ�n,Β�n,m� r�
�BesselJ�n,Β�n,m� a�
/BesselI�n,Β�n,m� a�
BesselI�n,Β�n,m� r��
� Sin�n Θ�

and wc to be the cosine part.
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Figure 4-43 The sine part of W34�r, Θ�
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In[790]:= wc�n ,m ��r,Θ� �� �BesselJ�n,Β�n,m� r�
�BesselJ�n,Β�n,m� a�
/BesselI�n,Β�n,m� a�
BesselI�n,Β�n,m� r��
� Cos�n Θ�

We use ParametricPlot3D to plot ws and wc. For example,

In[791]:= ParametricPlot3D��r Cos�Θ�,r Sin�Θ�,
ws�3,4��r,Θ�	,�r,0,1	,�Θ,�Π,Π	,
PlotPoints 
 60�

graphs the sine part of W34�r, Θ� shown in Figure 4-43. We use Table
together with ParametricPlot3D followed by Show and Graphics-
Array to graph the sine part of Wnm�r, Θ� for n � 0, 1, 2, and 3 and m � 1,
2, 3, and 4 shown in Figure 4-44.

In[792]:= ms � Table�ParametricPlot3D��r Cos�Θ�,
r Sin�Θ�,ws�n,m��r,Θ�	,�r,0,1	,
�Θ,�Π,Π	,DisplayFunction 
 Identity,
PlotPoints 
 30,BoxRatios 
 �1,1,1	�,
�n,0,3	,�m,1,4	�

Out[792]= ��-Graphics3D-,-Graphics3D-,-Graphics3D-,
-Graphics3D-,�-Graphics3D-,-Graphics3D-,
-Graphics3D-,-Graphics3D-,�-Graphics3D-,
-Graphics3D-,-Graphics3D-,-Graphics3D-,
�-Graphics3D-,-Graphics3D-,-Graphics3D-,
-Graphics3D-

In[793]:= Show�GraphicsArray�ms��

Identical steps are followed to graph the cosine part shown in
Figure 4-45.

In[794]:= mc � Table�ParametricPlot3D��r Cos�Θ�,
r Sin�Θ�,wc�n,m��r,Θ�	,�r,0,1	,
�Θ,�Π,Π	,DisplayFunction 
 Identity,
PlotPoints 
 30,BoxRatios 
 �1,1,1	�,
�n,0,3	,�m,1,4	�
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Figure 4-44 The sine part of Wnm�r, Θ�: n � 0 in row 1, n � 1 in row 2, n � 2 in row 3, and
n � 3 in row 4 (m � 1 to 4 from left to right in each row)

Out[794]= ��-Graphics3D-,-Graphics3D-,-Graphics3D-,
-Graphics3D-,�-Graphics3D-,-Graphics3D-,
-Graphics3D-,-Graphics3D-,�-Graphics3D-,
-Graphics3D-,-Graphics3D-,-Graphics3D-,
�-Graphics3D-,-Graphics3D-,-Graphics3D-,
-Graphics3D-

In[795]:= Show�GraphicsArray�mc��
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Figure 4-45 The cosine part of Wnm�r, Θ�: n � 0 in row 1, n � 1 in row 2, n � 2 in row 3, and
n � 3 in row 4 (m � 1 to 4 from left to right in each row)

4.8 Nonlinear Equations

Generally, rigorous results regarding nonlinear equations are very difficult to
obtain. In many cases, analysis is best carried out numerically and/or graphically.
In other situations, rewriting the equation as a system can be of benefit, which is
discussed in Chapter 6.
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However, if a nonlinear equation can be solved with currently known tech-
niques, Mathematica can often find a solution for you.

EXAMPLE 4.8.1: Solve 4y �y��2 y�� � �y��4 � 3.

SOLUTION: Mathematica can solve this nonlinear equation with DSolve.

In[796]:= DSolve�4 y�x�y��x�ˆ2 y���x� �� y��x�ˆ4 � 3,
y�x�,x�

Out[796]= ��y�x	 
 3 ��4 C�1	 �
3 31/3 �

4 C�1	
3 �x � C�2	�4/3

4 22/3
�,

�y�x	 
 3 ��4 C�1	

�
3 31/3 �1 � � 


3� �
4 C�1	

3 �x � C�2	�4/3

8 22/3
�,

�y�x	 
 3 ��4 C�1	

�
3 31/3 �1 � � 


3� �
4 C�1	

3 �x � C�2	�4/3

8 22/3
��

Proceeding by hand, let p � y�. Then,

y�� � p� �
d p
dx

�
dy
dx

d p
dy

� p
d p
dy

.

With this substitution, we obtain a first-order separable equation.

4p3y
d p
dy

� 3 � p4

4p3

3 � p4
d p �

1
y

dy

ln �3 � p4� � ln �y� � c1

3 � p4 � c1y

p �  �c1y � 3�1/4 .

Because p � dy/dx,

 
1

�c1y � 3�1/4 dy � dx

and integrating and simplifying the result gives us

4
3c1

�c1y � 3�3/4 � x � c2

256
81c4

�c1y � 3�3 � �x � c2�4 .
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Figure 4-46 Various solutions of 4y �y��2 y�� � �y��4 � 3 shown together

In[797]:= Integrate�4pˆ3/�3 � pˆ4�,p�

Out[797]= Log�3 � p4	

In[798]:= Integrate�1/y,y�

Out[798]= Log�y	

In[799]:= Integrate��c1 y � 3�ˆ��1/4�,y�

Out[799]=
4 ��3 � c1 y�3/4

3 c1

We plot various solutions by graphing level curves of

f �x, y� �
256
81c4

�c1y � 3�3 � �x � c2�4

corresponding to 0 for various values of c1 and c2 in Figures 4-46 and
4-47.

In[800]:= g1 � Table� � �c2 � x�4 �
256 ��3 � c1 y�3

81 c14
,

�c1,1,5	,�c2,�1,1	�//Flatten
In[801]:= g2 �

Map�ContourPlot�#,�x,�5,5	,�y,�5,5	,
ContourShading 
 False,Contours 
 �0	,
DisplayFunction 
 Identity,
PlotPoints 
 240�&,g1�
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Figure 4-47 Various solutions of 4y �y��2 y�� � �y��4 � 3 shown as an array
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In[802]:= Show�g2,Frame 
 False,Axes 
 Automatic,
AxesOrigin 
 �0,0	,
DisplayFunction 
 $DisplayFunction�

In[803]:= Show�GraphicsArray�Partition�g2,3���

EXAMPLE 4.8.2: Solve
�		

		
�

x2y�� � �y��2 � 2xy� � 0

y�2� � 5, y��2� � 1.

SOLUTION: Mathematica can find the solution to the initial-value prob-
lem, which we then graph with Plot in Figure 4-48.

In[804]:= sol � DSolve��xˆ2 y���x� � y��x�ˆ2 � 2x y��x� �� 0,
y�2� �� 5,y��2� �� 1	,y�x�,x�

Out[804]= ��y�x	 
 1

2
�14�4x�x2 �8 Log�4	�8 Log�2�x	���

In[805]:= Plot�y�x�/.sol,�x,0,10	�

By hand, we proceed as before by letting p � y�. Then p� � y�� and the
equation becomes

x2 d p
dx

� p2 � 2xp � 0

x2 d p � �p2 � 2xp� dx � 0,

which is first-order homogeneous of degree 2. Solving for p

2 4 6 8 10

10

20

30

40

Figure 4-48 Plot of the solution to the initial-value problem
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In[806]:= DSolve�xˆ2p��x���p�x�ˆ2�2xp�x�� �� 0,p�x�,x�

Out[806]= ��p�x	 
 x2

x � C�1	
��

and then integrating the result gives us

p �
dy
dx

�
x2

x � c1

dy �
x2

x � c1
dx

y �
1
2

x2 � c1x � c1
2 ln �x � c1� � c2.

In[807]:= y � Integrate� x2

x � c1
,x� � c2

Out[807]= c2 � c1 x �
x2

2
� c12 Log�c1 � x	

Applying the initial conditions gives us the nonlinear system

2 � 2c1 � c2 � c2
1 ln �2 � c1� � 5

2 � c1 �
c1

2

2 � c1
� 1.

In[808]:= f1 � y/.x 
 2

Out[808]= 2 � 2 c1 � c2 � c12 Log�2 � c1	

In[809]:= f2 � D�y,x�/.x 
 2

Out[809]= 2 � c1 �
c12

2 � c1

We can see the solution to this system by graphing each equation with
ContourPlot as shown in Figure 4-49.

In[810]:= cp1 � ContourPlot�f1,�c1,�5,10	,�c2,�5,10	,
Contours 
 �5	,PlotPoints 
 120,
ContourShading 
 False,
DisplayFunction 
 Identity�

cp2 � ContourPlot�f2,�c1,�5,10	,�c2,�5,10	,
Contours 
 �1	,ContourShading 
 False,
PlotPoints 
 120,
ContourStyle 
 GrayLevel�0.4�,
DisplayFunction 
 Identity�

Show�cp1,cp2,DisplayFunction 

$DisplayFunction,Frame 
 False,
Axes 
 Automatic,
AxesOrigin 
 �0,0	�
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Figure 4-49 The nonlinear system of equations has a unique solution

By hand, solving the second equation for c1 gives us c1 � 2. Substituting
into the first equation and solving for c2 gives us c2 � 7 � 4 ln 4. We
confirm the result with Solve.

In[811]:= cvals � Solve��f1 �� 5,f2 �� 1	�

Out[811]= ��c2 
 7 � 4 Log�4	,c1 
 2

In[812]:= y/.cvals��1��

Out[812]= 7 � 2 x �
x2

2
� 4 Log�4	 � 4 Log�2 � x	

Of course, in many cases numerical results are most meaningful.

Sources: See texts like
Jordan and Smith’s Nonlinear
Ordinary Differential Equations,
[17].

EXAMPLE 4.8.3 (Duffing’s Equation): Duffing’s equation is the second-
order nonlinear equation

d2x
dt2

� k
dx
dt
� x � x3 � 2 cosΩt, (4.35)

where k, 2, and Ω are positive constants. Depending upon the values of
the parameters, solutions to Duffing’s equation can exhibit very inter-
esting behavior.
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SOLUTION: To investigate solutions we define the function duffing-
plot. Given k, 2, and Ω,

duffingplot�k, Γ,Ω���x0, y0�, �t, a, b��

graphs the solution to the initial-value problem

�		

		
�

x�� � kx� � x � x3 � 2 cosΩt

x�0� � x0, x��0� � y0

(4.36)

for a � t � b. If {t,a,b} is omitted, the default is 900 � t � 1000. Any
options included are passed to the Plot command.

In[813]:= Clear�duffingplot�

duffingplot�k ,capgamma ,Ω ���x0 ,y0 	,
ts ��t,900,1000	,opts � ��

Module��numsol	,
numsol � NDSolve��x���t� � k x��t� � x�t�
�x�t�ˆ3 �� capgamma Cos�Ω t�,

x�0� �� x0,x��0� �� y0	,x�t�,
ts,MaxSteps 
 100000�

Plot�x�t�/.numsol,ts,opts�
�

For example, entering

In[814]:= duffingplot�0.3,0.5,1.2���0,0	�

plots the solution to the initial-value problem (4.36) shown in
Figure 4-50 if k � 0.3, 2 � 0.5, Ω � 1.2, and x0 � y0 � 0. You can
use duffingplot to see how varying the parameters
affects the solutions. For example, suppose that k � 0.3, Ω � 1.2, x0 � 0,
and y0 � 1. To see how the solutions vary depending on the value
of 2, we define kvals to be a list of 12 equally spaced numbers
between 0 and 0.8 and then use Map to apply duffingplot to the
list kvals. In this case, we generate a short-term plot for 0 � t � 50.
The resulting graphics are not displayed because we include the option
DisplayFunction->Identity in the duffingplot command.

In[815]:= kvals � Table�k,�k,0,0.8,0.8/11	�

In[816]:= toshow �
Map�duffingplot�0.3,#,1.2���0,1	,
�t,0,50	,PlotRange 
 ��3,3	,
DisplayFunction 
 Identity�&,kvals�
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Figure 4-50 Solution to Duffing’s equation if k � 0.3, 2 � 0.5, Ω � 1.2, and x0 � y0 � 0

Out[816]= �-Graphics-,-Graphics-,-Graphics-,,
-Graphics-,-Graphics-,-Graphics-
-Graphics-,-Graphics-,-Graphics-,-
Graphics-,-Graphics-,-Graphics-

We then use Partition, Show, and GraphicsArray to display the
list of graphics toshow in Figure 4-51.

In[817]:= Show�GraphicsArray�Partition�toshow,3���

We enter nearly identical commands to generate the long-term plot
shown in Figure 4-52.

In[818]:= toshow �
Map�duffingplot�0.3,#,1.2���0,1	,
�t,900,1000	,PlotRange 
 ��3,3	,
DisplayFunction 
 Identity�&,kvals�

The Fourier transform, Xk (k � 1, 2, . . . , N) of N equally spaced values
of a time series list � �x1, x2, . . . , xN� is

Xk �
1
N

N�
n�1

xne2Πi�n�1��k�1�/N . (4.37)
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Figure 4-51 Short-term plot: depending upon the value of 2, some solutions to Duffing’s
equation exhibit chaotic behavior

The Mathematica command Fourier[list] computes the Fourier
transform of list. The power spectrum, P �Ωk� (k � 1, 2, . . . , N), of
the list �X1, X2, . . . , XN� is

P �Ωk� � XkX̄k � �Xk �2 . (4.38)

The power spectrum helps detect dominant frequencies. See Jordan and
Smith [17].

We define the function duffingpower to compute the power spec-
trum of Duffing’s equation. Given the appropriate parameter values
and initial conditions, duffingpower returns P �Ω2000�. The 2000 sam-
ple points are the value of x �tn� for tn � 0.5n, n � 1, . . . , 2000.
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Figure 4-52 Long-term plot: depending upon the value of 2, some solutions to Duffing’s
equation exhibit chaotic behavior

In[819]:= Show�GraphicsArray�Partition�toshow,3���

In[820]:= Clear�duffingpower,s2,s3�

duffingpower�k ,capgamma ,Ω ���x0 ,y0 	,
omegak �2000� ��
Module��numsol,s2,s3	,
numsol � NDSolve��x���t� � k x��t� � x�t�
�x�t�ˆ3 �� capgamma Cos�Ω t�,

x�0� �� x0,x��0� �� y0	,
x�t�,�t,0,1000	,
MaxSteps 
 100000�

s2 � Table�x�t�/.numsol��1��,
�t,0.5,1000,0.5	�
s3 � Map�Abs�#�ˆ2&,
Fourier�s2����omegak��

�
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Figure 4-53 Power spectrum of Duffing’s equation using k � 0.3, 2 � 0.5, and x0 � y0 � 0:
the horizontal axis corresponds to Ω; the vertical axis to the power spectrum P �Ω2000�

As an illustration, we set k � 0.3, 2 � 0.5, and x0 � y0 � 0 and then com-
pute the power spectrum for 300 equally spaced values of Ω between 0
and 3.

In[821]:= t1 � Table��Ω,
duffingpower�0.3,0.5,Ω���0,0	�	,
�Ω,0,3,3./299	�

We use LogListPlot, which is contained in the Graphics package
that is located in the Graphics folder (or directory), to plot the list of
points t1 so that Mathematica uses a logarithmic scale on the y-axis
(the vertical axis). See Figure 4-53.

In[822]:= << Graphics‘Graphics‘

In[823]:= LogListPlot�t1,PlotJoined 
 True,
PlotRange 
 All�

For a second-order equation like this, it is often desirable to generate a
parametric plot of x�t� versus x��t�. To do so, we set y � x�. Then, y� �
x�� and we see that Duffing’s equation (4.35) can be rewritten as the
nonlinear system

x� � y

y� � ky � x � x3 � 2 cosΩt.
(4.39)
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We define the function duffingparamplot to graph solutions of the
initial-value problem

�				

				
�

x� � y

y� � ky � x � x3 � 2 cosΩt

x�0� � x0, y�0� � y0

in the same way as we defined duffingplot.

In[824]:= Clear�duffingparamplot,x,y�

duffingparamplot�k ,capgamma ,Ω ���x0 ,y0 	,
ts ��t,800,1000	,

opts � ��
Module��numsol	,
numsol � NDSolve��y��t� � k y�t� � x�t�
�x�t�ˆ3 �� capgamma Cos�Ω t�,

y�t� �� x��t�,x�0� �� x0,y�0� �� y0	,
�x�t�,y�t�	,ts,

MaxSteps 
 100000�
ParametricPlot�Evaluate��x�t�,y�t�	
/.numsol�,ts,opts�

�

For example, entering

In[825]:= duffingparamplot�0.3,0.5, 0.2���0,1	,
�t,800,1000	�

plots x�t� versus x��t� if k � 0.3, 2 � 0.5, Ω � 0.2, x�0� � 0, and y�0� �
x��0� � 1 as shown in Figure 4-54.

With the following commands, we set k � 0.3, 2 � 0.5, x�0� � 0,
and y�0� � x��0� � 1. We then plot x�t� versus x��t� for 12 equally spaced
values of Ω between 0 and 1.5.

In[826]:= kvals � Table�k,�k,0,1.5,1.5/11	�

In[827]:= toshow �
Map�duffingplot�0.3,0.5,#���0,1	,
�t,0,50	,PlotRange 
 ��3,3	,
DisplayFunction 
 Identity�&,kvals�



4.8 Nonlinear Equations 317

-1.5 -1 -0.5 0.5 1 1.5

-1

-0.5

0.5

1

Figure 4-54 A parametric plot of x�t� versus x��t� for a solution to Duffing’s equation

The results are shown as an array in Figure 4-55.

In[828]:= Show�GraphicsArray�Partition�toshow,3���

The long-term plot shown in Figure 4-56 is generated with nearly iden-
tical commands.

In[829]:= toshow �
Map�duffingparamplot�0.3,0.5,#���0,1	,
�t,800,1000	,

PlotRange 
 ���3,3	,��3,3		,
AspectRatio 
 1,
DisplayFunction 
 Identity�&,
kvals�

In[830]:= Show�GraphicsArray�Partition�toshow,3���

The Poincaré plots (or returns) are obtained by plotting

x � x �2nΠ/Ω�

x� � y �2nΠ/Ω� .

We define the function duffingpoincareplot to generate Poincaré
plots for Duffing’s equation.
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Figure 4-55 Short-term plot: sensitivity of solutions of Duffing’s equation to Ω

In[831]:= Clear�duffingpoincareplot,x,y,t1�

duffingpoincareplot�k ,
capgamma ,Ω ���x0 ,y0 	,ns ��n,1,2000	,

opts � �� Module��numsol,t1	,
numsol � NDSolve��y��t� � k x��t� � x�t�
�x�t�ˆ3 �� capgamma Cos�Ω t�,

y�t� �� x��t�,x�0� �� x0,y�0� �� y0	,
�x�t�,y�t�	,�t,0,12000	,

MaxSteps 
 1000000�
t1 � Table��x�t�,y�t�	
/.numsol��1��/.t 
 2 n Π/Ω,ns�
ListPlot�t1�

�
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Figure 4-56 Long-term plot: sensitivity of solutions of Duffing’s equation to Ω



320 Chapter 4 Higher-Order Differential Equations

-1 -0.5 0.5 1

-0.4

-0.2

0.2

0.4

0.6

0.8

1

Figure 4-57

In Figure 4-57, we use duffingpoincareplot to generate a Poincaré
plot for Duffing’s equation if k � 0.3, 2 � 0.4, Ω � 1.2, x�0� � 0, and
y�0� � x��0� � 1.

In[832]:= f1 � duffingpoincareplot�0.3,0.5,1.2�
��0,1	�



5Applications of
Higher-Order Differential
Equations

In Chapter 4, we discussed several techniques for solving higher-order differential
equations. In this chapter, we illustrate how some of these methods can be used to
solve initial-value problems that model physical situations.

5.1 Harmonic Motion

5.1.1 Simple Harmonic Motion

Suppose that a mass is attached to an elastic spring that is suspended from a
rigid support such as a ceiling. According to Hooke’s law, the spring exerts a
restoring force in the upward direction that is proportional to the displacement
of the spring.

Hooke’s Law: F � ks, where k > 0 is the constant of proportional-
ity or spring constant, and s is the displacement of the spring.

A spring has natural length b. When a mass is attached to the spring, it is stretched
s units past its natural length to the equilibrium position x � 0. When the system
is put into motion, the displacement from x � 0 at time t is given by x�t�.

By Newton’s Second Law of Motion, F � ma � m d2x/dt2, where m represents
mass and a represents acceleration. If we assume that there are no other forces

321
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acting on the mass, then we determine the differential equation that models this
situation in the following way:

m
d2x
dt2

� � �forces acting on the system�
� �k�s � x� � mg

� �ks � kx � mg.

At equilibrium ks � mg, so after simplification, we obtain the differential equation

m
d2x
dt2

� �kx or m
d2x
dt2

� kx � 0.

The two initial conditions that are used with this problem are the initial displace-
ment x�0� � Α and initial velocity dx/dt�0� � Β. Hence, the function x�t� that
describes the displacement of the mass with respect to the equilibrium position
is found by solving the initial-value problem

�			

			
�

m
d2x
dt2

� kx � 0

x�0� � Α,
dx
dt
�0� � Β.

(5.1)

The differential equation in initial-value problem (5.1) disregards all retarding
forces acting on the motion of the mass.

The solution x�t� to this problem represents the displacement of the mass at
time t. Based on the assumptions made in deriving the differential equation (the
positive direction is down), positive values of x�t� indicate that the mass is beneath
the equilibrium position while negative values of x�t� indicate that the mass is
above the equilibrium position.

EXAMPLE 5.1.1: A mass weighing 60 lb stretches a spring 6 inches.
Determine the function x�t� that describes the displacement of the mass
if the mass is released from rest 12 inches below the equilibrium
position.

SOLUTION: First, the spring constant k must be determined from the
given information. By Hooke’s law, F � ks, so we have 60 � k  0.5.
Therefore, k � 120 lb/ft. Next, the mass, m, must be determined using
F � mg. In this case, 60 � m  32, so m � 15/8 slugs. Because k/m � 64
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Figure 5-1 Simple harmonic motion

and 12 inches equals 1 foot, the initial-value problem that needs to be
solved is

�		

		
�

x�� � 64x � 0

x�0� � 1, x��0� � 0.

This problem is now solved with DSolve, and the resulting output is
named de1.

In[833]:= Clear�x,t,de1�

de1 �
DSolve��x���t� � 64 x�t� �� 0,x�0� �� 1,
x��0� �� 0	,x�t�,t�

Out[833]= ��x�t	 
 Cos�8 t	

We graph the solution with Plot in Figure 5-1.

In[834]:= Plot�x�t�/.de1,
t,0, Π

2
��

In order to better understand the relationship between the formula
obtained in this example and the motion of the mass on the spring,
an alternate approach is taken here. We begin by defining sol to be the
solution to the initial-value problem: given t, sol[t] returns the value
of cos 8t.

In[835]:= Clear�sol�

In[836]:= sol�t � � de1��1,1,2��

Out[836]= Cos�8 t	

Then, the function zigzag is defined to produce a list of points joined
by line segments to represent the graphics of a spring. Given ordered
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pairs �a, b� and �c, d�, a positive integer n, and a “small” number Ε,
zigzag[{a,b},{c,d},n,eps] connects the set of points

�a, b�, �a � Ε, b �
d � b

n
� , �a � Ε, b � 2

d � b
n

� , . . . , �a � ��1�iΕ, b � i
d � b

n
� , . . .

�a � ��1�n�1Ε, b � �n � 1�
d � b

n
� , �c, d�

with line segments.Note that we will always have
a � c.

In[837]:= Clear�spring,zigzag,length,points,pairs�

zigzag��a ,b 	,�c ,d 	,n ,Ε � ��

Module��length,points,pairs	,
length � d � b

points � Table�b � i length

n
,�i,1,n � 1	�

pairs � Table�
a � ��1�iΕ,points�i��,
�i,1,n � 1	�

PrependTo�pairs,�a,b	�
AppendTo�pairs,�c,d	�

Line�pairs��
The function spring produces the graphics of a point (the mass
attached to the end of the spring) as well as that of the spring obtained
with zigzag. The result of entering spring[t] when displayed with
Show looks like a spring with a mass attached.

In[838]:= spring�t � ��

Show�
Graphics��zigzag��0,�sol�t�	,

�0,1	,20,0.05�,PointSize�0.075�,
Point��0,�sol�t�	�	�,Axes 
 Automatic,

AxesStyle 
 GrayLevel�0.5�,Ticks 
 None,

PlotRange 
 
��1,1	,
 �
3

2
,
3

2
��,

AspectRatio 
 1,DisplayFunction 
 Identity�
A list of graphics is produced in somegraphs for values of t from t � 0
to t � Π/2 using increments of Π/16.

In[839]:= somegraphs � Table�spring�t�,
t,0, Π
2
,
Π

16
��

Out[839]= �-Graphics-,-Graphics-,-Graphics-,
-Graphics-,-Graphics-,-Graphics-,
-Graphics-,-Graphics-,-Graphics-



5.1 Harmonic Motion 325

This list of nine graphics objects is then partitioned into groups of three
with Partition in toshow for use with GraphicsArray.

In[840]:= toshow � Partition�somegraphs,3�

Out[840]= ��-Graphics-,-Graphics-,-Graphics-,
�-Graphics-,-Graphics-,-Graphics-,
�-Graphics-,-Graphics-,-Graphics-

We then display the array of graphics objects toshow with Show and
GraphicsArray in Figure 5-2. We see that the plots displayed show

Figure 5-2 Simple harmonic motion: a spring
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the displacement of the mass at the values of time from t � 0 to t � Π/2
using increments of Π/16.

In[841]:= Show�GraphicsArray�toshow��

In order to achieve an animation so that we can see the motion of the
spring, we use a Do loop. For example, entering

In[842]:= Do�Show�spring�t�,
DisplayFunction 
 $DisplayFunction�,
t,0, Π

2
,

Π

118
��

displays spring[t] for t-values from t � 0 to t � Π/2 using incre-
ments of Π/118. To animate these graphs, select the cell bracket of the
graphs to be animated, go to the menu under Cell and select Animate
Selected Graphics. Alternatively, after selecting the graphs to be ani-
mated, you can use the keyboard shortcut Command-Y to animate the
selected graphics.

When these graphs are animated, as indicated in the following screen
shot, we can see the motion of the spring.

Remember that positive values of x�t� indicate that the mass is beneath
the equilibrium position while negative values of x�t� indicate that the
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Figure 5-3 Simple harmonic motion illustrated with a spring and a plot

mass is above the equilibrium position. To see this, we graph x�t� in
Figure 5-3.

In[843]:= graph � Plot�sol�t�,
t,0, Π
2

�,
PlotStyle 
 GrayLevel�0.3�,
AxesStyle 
 GrayLevel�0.6�,

Ticks 
 ��1	,��1,1		,

PlotRange 
 
 �
3

2
,
3

2
�,

AspectRatio 
 1,

DisplayFunction 
 Identity�
Then, we define p. Given t, p[t] generates a graphics object consisting
of the graph of x�t� on the interval �0, Π/2�, which is named graph, and
a “small” point placed at �t, x�t��.



328 Chapter 5 Applications of Higher-Order Differential Equations

In[844]:= p�t � �� Module��dp	,
dp �
Graphics��PointSize�0.07�,
Point��t,sol�t�	�	�Show�graph,
dp,DisplayFunction 
 Identity��

We then use Table and GraphicsArray to generate a set of graphics
objects consisting of the graphs of spring[t] and p[t], shown side-
by-side, for t-values from t � 0 to t � Π/2 using increments of Π/10.

In[845]:= moregraphs � Table�GraphicsArray��spring�t�,
p�t�	�,
t,0, Π

2
,

Π

10
��

The list moregraphs is then partitioned into two element subsets and
displayed using Show and GraphicsArray in Figure 5-3.

In[846]:= toshow � Partition�moregraphs,2�

In[847]:= Show�GraphicsArray�toshow��

As before, we can use a Do loop to generate several graphs and animate
the result to see the motion of the spring, as indicated in the following
screen shot.

In[848]:= graphs �

Do�Show�GraphicsArray��spring�t�,p�t�	�,
DisplayFunction 
 $DisplayFunction�,
t,0, Π

2
,

Π

118
��
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Notice that the displacement function x�t� � cos 8t indicates that the
spring–mass system never comes to rest once it is set into motion. The
solution is periodic, so the mass moves vertically, retracing its motion.
Hence, motion of this type is called simple harmonic motion.

EXAMPLE 5.1.2: An object with mass m � 1 slug is attached to a spring
with spring constant k � 4. (a) Determine the displacement function of
the object if x�0� � Α and x��0� � 0. Plot the solution for Α � 1, 4, �2.
How does varying the value of Α affect the solution? Does it change the
values of t at which the mass passes through the equilibrium position?
(b) Determine the displacement function of the object if x�0� � 0 and
x��0� � Β. Plot the solution for Β � 1, 4, �2. How does varying the value
of Β affect the solution? Does it change the values of t at which the mass
passes through the equilibrium position?

SOLUTION: For (a), the initial-value problem we need to solve is

�		

		
�

x�� � 4x � 0

x�0� � Α, x��0� � 0

for Α � 1, 4, �2. We now determine the solution to each of the three
problems with DSolve. For example, entering

In[849]:= Clear�x�

de2 � DSolve��x���t� � 4 x�t� �� 0,x�0� �� 1,
x��0� �� 0	,x�t�,t�

Out[849]= ��x�t	 
 Cos�2 t	

solves the initial-value problem if Α � 1 and names the result de2. Note
that the formula for the solution is the second part of the first part of
the first part of de2 and is extracted from de2 with Part ([[...]])
by entering de2[[1,1,2]]. Alternatively, if you are using Version 5
you can select and copy the formula in the output and paste it to any
location. Similarly, entering

In[850]:= de3 � DSolve��x���t� � 4 x�t� �� 0,x�0� �� 4,
x��0� �� 0	,x�t�,t�

Out[850]= ��x�t	 
 4 Cos�2 t	
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Figure 5-4 Simple harmonic motion: varying the initial displacement

In[851]:= de4 � DSolve��x���t� � 4 x�t� �� 0,x�0� �� �2,
x��0� �� 0	,x�t�,t�

Out[851]= ��x�t	 
 �2 Cos�2 t	

solves

�		

		
�

x�� � 4x � 0

x�0� � 4, x��0� � 0
and

�		

		
�

x�� � 4x � 0

x�0� � �2, x��0� � 0

naming the results de3 and de4, respectively. We graph the solutions
on the interval �0, Π� with Plot in Figure 5-4. Note how we use Map to
extract the formula for each solution from de2, de3, and de4.

In[852]:= toplot � Map�#�1,1,2�&,�de2,de3,de4	�
Out[852]= �Cos�2 t	,4 Cos�2 t	,�2 Cos�2 t	

In[853]:= Plot�Evaluate�toplot�,�t,0,Π	,
PlotStyle 
 �GrayLevel�0�,GrayLevel�0.3�,
GrayLevel�0.6�	�

We see that the initial position affects only the amplitude of the func-
tion (and direction in the case of the negative initial position). The mass
passes through the equilibrium position (x � 0) at the same time in all
three cases.

For (b), we need to solve the initial-value problem

�		

		
�

x�� � 4x � 0

x�0� � 0, x��0� � Β

for Β � 1, 4, �2. In this case, we define a procedure d that, given Β,
returns the solution to the initial-value problem.
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Figure 5-5 Simple harmonic motion: varying the initial velocity

In[854]:= d�Β � �� Module��	,
DSolve��x���t� � 4 x�t� �� 0,
x�0� �� 0,x��0� �� Β	,x�t�,t��

We then use Map to apply d to the list of numbers {1,4,-2} and
name the resulting output solutions. (Note that the same result is
obtained by using the keyboard shortcut for Map, /@, and entering
solutions=d/@{1,4,-2}.)

In[855]:= solutions � Map�d,�1,4,�2	�

Out[855]= ���x�t	 
 1

2
Sin�2 t	��,

��x�t	 
 2 Sin�2 t	,��x�t	 
 �Sin�2 t	�
We see that solutions consists of three lists. For example, the solution
to the initial-value problem when Β � �2 is contained in the third list in
solutions. We now extract the formula for the solution with Part
([[...]]).

In[856]:= solutions��3,1,1,2��

Out[856]= �Sin�2 t	

All three solutions are graphed together on �0, 2Π� with Plot in
Figure 5-5.

In[857]:= Plot�Evaluate�x�t�/.solutions�,�t,0,2Π	,
PlotStyle 
 �GrayLevel�0�,GrayLevel�0.3�,
GrayLevel�0.6�	�
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Notice that varying the initial velocity affects the amplitude (and
direction in the case of the negative initial velocity) of each function.
The mass passes through the equilibrium position at the same time in
all three cases.

5.1.2 Damped Motion

Equation (5.1) disregards all retarding forces acting on the motion of the mass and
a more realistic model which takes these forces into account is needed.

Studies in mechanics reveal that resistive forces due to damping are functions
of the velocity of the motion. Hence, for c > 0, FR � c dx/dt, FR � c �dx/dt�3, or
FR � c sgn �dx/dt�, where

sgn �dx
dt

� � �				
				
�

1, dx/dt > 0

0, dx/dt � 0

�1, dx/dt < 0

are typically used to represent the damping force. Incorporating damping into
equation (5.1) and assuming that FR � c dx/dt, the displacement function, x�t�, is
found by solving the initial-value problem

�			

			
�

m
d2x
dt2

� c
dx
dt
� kx � 0

x�0� � Α,
dx
dt
�0� � Β.

(5.2)

From our experience with second-order ordinary differential equations with con-
stant coefficients in Chapter 4, the solutions to initial-value problems of this type
greatly depend on the values of m, k, and c.

Suppose we assume that solutions of the differential equation have the form
x�t� � ert . Because x� � rert and x�� � r2ert , we have by substitution into the differ-This calculation is identical to

those followed in Chapter 4
for second-order linear
homogeneous equations with
constant coefficients.

ential equation mr2ekt � crert � kert � 0, so ert �mr2 � cr � k� � 0. The solutions to the
characteristic equation are

r �
�c  


c2 � 4mk
2a

.

Hence, the solution depends on the value of the quantity c2�4mk. In fact, problems
of this type are characterized by the value of c2 � 4mk as follows.

1. c2�4mk > 0. This situation is said to be overdamped because the damping
coefficient c is large in comparison to the spring constant k.
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2. c2 � 4mk � 0. This situation is described as critically damped because
the resulting motion is oscillatory with a slight decrease in the damping
coefficient c.

3. c2 � 4mk > 0. This situation is called underdamped because the damping
coefficient c is small in comparison with the spring constant k.

EXAMPLE 5.1.3: Classify the following differential equations as over-
damped, underdamped, or critically damped. Also, solve the corre-
sponding initial-value problem using the given initial conditions and
investigate the behavior of the solutions.

(a)
d2x
dt2

� 8
dx
dt
� 16x � 0 subject to x�0� � 0 and

dx
dt
�0� � 1; and

(b)
d2x
dt2

� 5
dx
dt
� 4x � 0 subject to x�0� � 1 and

dx
dt
�0� � 1.

SOLUTION: For (a), we identify m � 1, c � 8, and k � 16 so that
c2�4mk � 0, which means that the differential equation x���8x��16x � 0
is critically damped. After defining de1, we solve the equation subject
to the initial conditions and name the resulting output sol1. We then
graph the solution shown in Figure 5-6 by selecting and copying the
result given in sol1 to the subsequent Plot command. If you prefer
working with InputForm, the formula for the solution to the initial-
value problem is extracted from sol1 with sol1[[1,1,2]].

1 2 3 4

0.02

0.04

0.06

0.08

Figure 5-6 Critically damped motion
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Figure 5-7 Overdamped motion

Thus, entering Plot[sol[[1,1,2]],{t,0,4}] displays the same
graph as that obtained with the following Plot command. Note that
replacing sol1[[1,1,2]] with Evaluate[x[t]/.sol1] in the
Plot command also produces the same result.

In[858]:= Clear�de1,x,t�

de1 � x���t� � 8 x��t� � 16 x�t� �� 0
sol1 � DSolve��de1,x�0� �� 0,x��0� �� 1	,

x�t�,t�

Out[858]= ��x�t	 
 ��4 t t

In[859]:= Plot�e�4 t t,�t,0,4	�
For (b), we proceed in the same manner. We identify m � 1, c � 5,
and k � 4 so that c2 � 4mk � 9 and the equation x�� � 5x� � 4x � 0 is
overdamped. We then define de2 to be the equation and the solution to
the initial-value problem obtained with DSolve, sol2 and then graph
x�t� on the interval �0, 4� in Figure 5-7.

In[860]:= Clear�de2,x,t�

de2 � x���t� � 5 x��t� � 4 x�t� �� 0
sol2 � DSolve��de2,x�0� �� 1,x��0� �� 1	,

x�t�,t�

Out[860]= ��x�t	 
 1

3
��4 t ��2 � 5 �3 t���

In[861]:= Plot�sol2��1,1,2��,�t,0,4	�
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EXAMPLE 5.1.4: A 16-lb weight stretches a spring 2 feet. Determine
the displacement function if the resistive force due to damping is FR �
1
2 dx/dt and the mass is released from the equilibrium position with a
downward velocity of 1 ft/sec.

SOLUTION: Because F � 16 lb, the spring constant is determined
with 16 � k 2. Hence, k � 8 lb/ft. Also, m � 16/32 � 1/2 slug. Therefore,
the differential equation is 1

2 x�� � 1
2 x� � 8x � 0 or x�� � x� � 16x � 0. The

initial position is x�0� � 0 and the initial velocity is x��0� � 1. Thus, we
must solve the initial-value problem

�		

		
�

x�� � x� � 16x � 0

x�0� � 0, x��0� � 1

which is now solved with DSolve.

In[862]:= Clear�x,t,deq,sol�

deq �
DSolve��x���t� � x��t� � 16 x�t� �� 0,x�0� �� 0,

x��0� �� 1	,x�t�,t�

Out[862]= ��x�t	 
 2 ��t/2 Sin� 3


7 t
2 �

3


7

��
In[863]:= sol�t � �

2e�
t
2 Sin� 3

2

�
7 t�

3
�
7



Solutions of this type have several interesting properties. First, the
trigonometric component of the solution causes the motion to oscillate.
Also, the exponential portion forces the solution to approach zero as
t approaches infinity. These qualities are illustrated in the plot of the
solution shown in Figure 5-8.

In[864]:= Plot�sol�t�,�t,0,2Π	�

Physically, the displacement of the mass in this case oscillates about the
equilibrium position and eventually comes to rest in the equilibrium
position. Of course, with our model the displacement function x�t� � 0
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Figure 5-8 Underdamped motion

as t � �, but there is no number T such that x�t� � 0 for t > T as
we might expect from the physical situation. Hence, our model only
approximates the behavior of the mass. Notice also that the solution is
bounded above and below by the exponential term of the solution e�t/2

and its reflection through the horizontal axis, �e�t/2. This is illustrated
with the simultaneous display of these functions in Figure 5-9.

In[865]:= Plot�
sol�t�, 2

3
�
7 Exp� t

2
�,� 2

3
�
7 Exp� t

2
��,

�t,0,2Π	,
PlotStyle 
 �GrayLevel�0�,GrayLevel�0.5�,

GrayLevel�0.5�	�

1 2 3 4 5 6
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Figure 5-9 The solution shown with its envelope functions
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Other questions of interest include: (1) When does the mass first pass
through its equilibrium point? (2) What is the maximum displacement
of the spring?

The time at which the mass passes through x � 0 can be determined
in several ways. The solution equals zero at the time that sin � 3

2


7t� first

equals zero after t � 0 which occurs when 3
2


7t � Π. We use Solve to

solve this equation for t and then use N to approximate the time. (Note
that % refers to the most recent output.)

In[866]:= Solve�3 �
7 t

2
�� Π,t�

N�%�

Out[866]= ��t 
 2 Π

3


7

��
Out[866]= ��t 
 0.791607

Alternatively, we can approximate the time with FindRoot.

In[867]:= FindRoot�sol�t� �� 0,�t,0.7	�

Out[867]= �t 
 0.791607

Similarly, the maximum displacement of the spring is found by finding
the first value of t for which the derivative of the solution is equal to
zero as done here with FindRoot.

In[868]:= cp1 � FindRoot�sol��t� �� 0,�t,0.4	�

Out[868]= �t 
 0.364224

The maximum displacement is then given by evaluating the solution
for the value of t obtained with FindRoot.

In[869]:= N�sol�t�/.cp1�

Out[869]= 0.208377

Another interesting characteristic of solutions to undamped problems
is the time between successive maxima and minima of the solution,
called the quasiperiod. This quantity is found by first determining the
time at which the second maximum occurs with FindRoot. Then, the
difference between these values of t is taken to obtain the value 1.58321.

In[870]:= cp2 � FindRoot�sol��t� �� 0,�t,2	�

Out[870]= �t 
 1.94744
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In[871]:= cp2��1,2�� � cp1��1,2��

Out[871]= 1.58321

To investigate the solution further, an animation can be created with
the zigzag and spring commands, which were defined previously.
We redefine zigzag and spring.

In[872]:= Clear�spring,zigzag,length,points,pairs�

zigzag��a ,b 	,�c ,d 	,n ,Ε � ��

Module��length,points,pairs	,
length � d � b

points � Table�b � i length

n
,�i,1,n � 1	�

pairs � Table�
a � ��1�i Ε,points�i��,
�i,1,n � 1	�
PrependTo�pairs,�a,b	�
AppendTo�pairs,�c,d	�

Line�pairs��
In[873]:= spring�t � ��

Show�
Graphics��zigzag��0,�sol�t�	,�0,0.25	,
20,0.05�,PointSize�0.075�,
Point��0,�sol�t�	�	�,Axes 
 Automatic,
AxesStyle 
 GrayLevel�0.5�,Ticks 
 None,
PlotRange 
 ���1,1	,
��0.25,0.25		,AspectRatio 
 1,
DisplayFunction 
 Identity�

Next, we display a graphics array consisting of spring[t] for t-values
from t � 0 to t � 4 using increments of 4/15 in Figure 5-10.

In[874]:= somegraphs � Table�spring�t�,
t,0,4, 4

15
��

toshow � Partition�somegraphs,4�

Show�GraphicsArray�toshow��
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Figure 5-10 The motion of an underdamped spring

To generate an animation, we use a Do loop. We show a screen shot of
the resulting animation.

In[875]:= Do�Show�spring�t�,
DisplayFunction 
 $DisplayFunction�,
t,0,6, 6

99
��
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We can also compare the motion of the spring to the graph of the solu-
tion as shown in Figure 5-11.

In[876]:= graph � Plot�sol�t�,�t,0,2Π	,
PlotStyle 
 GrayLevel�0.3�,
AxesStyle 
 GrayLevel�0.6�,
Ticks 
 ��2,4,6	,��0.2,0.2		,
PlotRange 
 ��0.25,0.25	,
AspectRatio 
 1,
DisplayFunction� > Identity�

In[877]:= p�t � �� Module��dp	,
dp �
Graphics��PointSize�0.07�,
Point��t,sol�t�	�	�Show�graph,
dp,DisplayFunction 
 Identity��

In[878]:= toshow �

Partition�Table�GraphicsArray��spring�t�,
p�t�	�,
t,0,4, 4

9
��,2�

Show�GraphicsArray�toshow��



5.1 Harmonic Motion 341

2 4 6
-0.2

0.2

2 4 6
-0.2

0.2

2 4 6
-0.2

0.2

2 4 6
-0.2

0.2

2 4 6
-0.2

0.2

2 4 6
-0.2

0.2

2 4 6
-0.2

0.2

2 4 6
-0.2

0.2

2 4 6
-0.2

0.2

2 4 6
-0.2

0.2

Figure 5-11 Visualizing underdamped motion with a spring and a plot
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Alternatively, we can use a Do loop to generate graphics and animate
the result. We show a screen shot obtained from animating the resulting
graphics from the following Do loop.

In[879]:= graphs �

Do�Show�GraphicsArray��spring�t�,p�t�	�,
DisplayFunction 
 $DisplayFunction�,
t,0,6, 6

49
��

EXAMPLE 5.1.5: Suppose that we have the initial-value problem

�		

		
�

x�� � cx� � 6x � 0

x�0� � 0, x��0� � 1
(5.3)

where c � 2


6, 4


6, and


6. Determine how the value of c affects the
solution of the initial-value problem.

SOLUTION: We begin by defining the function d. Given c, d[c] solves
the initial-value problem (5.3).

Be sure to use (lower-case) d
instead of (upper-case) D to
avoid conflict with the
built-in function D.
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Figure 5-12 Depending on the value of c > 0, the motion can be critically damped,
overdamped, or underdamped

In[880]:= Clear�x,t,d�

d�c � ��
DSolve��x���t� � c x��t� � 6 x�t� �� 0,x�0� �� 0,
x��0� �� 1	,x�t�,t�

We then use Map and d to find the solution of the initial-value problem
for each value of c, naming the resulting list somesols.

In[881]:= somesols � d/@
2 �
6,4

�
6,

�
6�

Out[881]= ���x�t	 
 ��


6 t t��,

��x�t	 
 �
�

��3


2�2



6� t

� �
�3



2�2



6� t

6


2

��,
��x�t	 
 1

3



2 ��



3
2 t Sin�3 t


2
����

Note that each case results in a different classification: c � 2


6, criti-
cally damped; c � 4


6, overdamped; and c �


6, underdamped.

All three solutions are graphed together on the interval �0, 4� in Fig-
ure 5-12 using different GrayLevel settings.

In[882]:= Plot�Evaluate�x�t�/.somesols�,�t,0,4	,
PlotStyle 
 �GrayLevel�0�,GrayLevel�0.3�,
GrayLevel�0.6�	�
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EXAMPLE 5.1.6: Consider the system

�		

		
�

x�� � f �t�x� � 5
4 x � 0, t > 0

x�0� � 0, x��0� � 1

where

f �t� �
�		

		
�

1, 0 � t < Π

3, Π � t < 2Π
f �t� � f �t � 2Π�, t " 2Π

in which damping oscillates periodically: the rate at which energy is
taken away from the system fluctuates periodically. Find the displace-
ment x�t� for 0 � t � 4Π.

SOLUTION: For 0 < t < Π, the solution to the initial-value problem is
found by solving

�		

		
�

x�� � x� � 5
4 x � 0

x�0� � 0, x��0� � 1

which is found with DSolve and named y1. Similarly, for Π < t < 2Π,
we solve

�		

		
�

x�� � 3x� � 5
4 x � 0

x�Π� � a, x��Π� � b

where a=x1[Pi] and b=x1’[Pi] and name the result y2.

In[883]:= Clear�sol�

sol �

DSolve�
x���t� � x��t� � 5 x�t�

4
�� 0,x�0� �� 0,

x��0� �� 1�,x�t�,t�
Out[883]= ��x�t	 
 ��t/2 Sin�t	

In[884]:= Clear�x1,x,sol2,a,b�

x1�t � � sol��1,1,2��
a � x1�Π�
b � x1��Π�

sol2 �

DSolve�
x���t� � 3 x��t� � 5 x�t�

4
�� 0,

x�Π� �� a,x��Π� �� b�,x�t�,t�
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Out[884]= ��x�t	 
 �
1

2
��5 t/2 ���2 Π � �2 t���

In a similar way, we find the solution for 2Π < t < 3Π in y3 and the
solution for 3Π < t < 4Π in y4.

In[885]:= Clear�x2,x,sol3,a,b�

x2�t � � sol2��1,1,2��
a � x2�2 Π�
b � x2��2 Π�

sol3 �

DSolve�
x���t� � x��t� � 5 x�t�

4
�� 0,

x�2 Π� �� a,x��2 Π� �� b�,x�t�,t�
Out[885]= ��x�t	 


�
1

2
��4 Π�

t
2 ��Cos�t	 � �2 Π Cos�t	

�3 Sin�t	 � �2 Π Sin�t	���
In[886]:= Clear�x3,x,sol4,a,b�

x3�t � � sol3��1,1,2��
a � x3�3 Π�
b � x3��3 Π�

sol4 �

DSolve�
x���t� � 3 x��t� � 5 x�t�

4
�� 0,

x�3 Π� �� a,x��3 Π� �� b�,x�t�,t�
Out[886]= ��x�t	 
 1

2
�Π�

5 t
2 ���4 Π � �2 t���

In[887]:= x4�t � � sol4��1,1,2��

We see the damped motion of the system by graphing the pieces of the
solution individually and then displaying them together with Show in
Figure 5-13.
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Figure 5-13 Harmonic motion with periodic damping

In[888]:= plot1 � Plot�x1�t�,�t,0,Π	,
DisplayFunction 
 Identity�

plot2 � Plot�x2�t�,�t,Π,2 Π	,
DisplayFunction 
 Identity�

plot3 � Plot�x3�t�,�t,2 Π,3 Π	,
DisplayFunction 
 Identity�

plot4 � Plot�x4�t�,�t,3 Π,4 Π	,
DisplayFunction 
 Identity�

show4 � Show�plot1,plot2,plot3,plot4,
DisplayFunction 
 $DisplayFunction�

5.1.3 Forced Motion

In some cases, the motion of the spring is influenced by an external driving force,
f �t�. Mathematically, this force is included in the differential equation that models
the situation as follows:

m
d2x
dt2

� �kx � c
dx
dt
� f �t�.

The resulting initial-value problem is

�		

		
�

mx�� � cx� � kx � f �t�

x�0� � Α, x��0� � Β.
(5.4)
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Therefore, differential equations modeling forced motion are nonhomogeneous
and require the Method of Undetermined Coefficients or Variation of Parameters
for solution. We first consider forced motion that is undamped.

EXAMPLE 5.1.7: An object of mass m � 1 slug is attached to a spring
with spring constant k � 4. Assuming there is no damping and that the
object is released from rest in the equilibrium position, determine the
position function of the object if it is subjected to an external force of (a)
f �t� � 0, (b) f �t� � 1, (c) f �t� � cos t, and (d) f �t� � sin t.

SOLUTION: First, we note that we must solve the initial-value
problem

�		

		
�

x�� � 4x � f �t�

x�0� � 0, x��0� � 0

for each of the forcing functions in (a), (b), (c), and (d). Because we will
be solving this initial-value problem for various forcing functions, we
begin by defining the function fm. Given a function f � f �t�, fm[f]
returns the formula for the solution to this initial-value problem.

In[889]:= Clear�x,t�

fm�f � ��
DSolve��x���t� � 4 x�t� �� f,x�0� �� 0,
x��0� �� 0	,x�t�,t���1,1,2��

Next, we define fs to be the forcing functions in (a)–(d).

In[890]:= fs � �0,1,Cos�t�,Sin�t�	

We then use Map to apply fm to fs and name the resulting list of func-
tions somesols.

In[891]:= somesols � Map�fm,fs�

Out[891]= �0, 1

4
�1 � Cos�2 t	�,

1

12
��4 Cos�2 t	 � 3 Cos�t	 Cos�2 t	

�Cos�2 t	 Cos�3 t	 � 3 Sin�t	 Sin�2 t	

�Sin�2 t	 Sin�3 t	�,
1

12
��3 Cos�2 t	 Sin�t	

�2 Sin�2 t	 � 3 Cos�t	 Sin�2 t	

�Cos�3 t	 Sin�2 t	 � Cos�2 t	 Sin�3 t	��
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Figure 5-14 Forced motion without damping

From the result, we see that for (a) the solution is x�t� � 0. Physically,
this solution indicates that because there is no forcing function, no ini-
tial displacement from the equilibrium position, and no initial velocity,
the object does not move from the equilibrium position.

The nontrivial solutions in (b), (c), and (d) are then graphed on the
interval �0, 2Π� with Plot in Figure 5-14.

In[892]:= grays � Table�GrayLevel�i�,�i,0,0.7,
0.7/3	�
Plot�Evaluate�somesols�,
�t,0,2Π	,PlotStyle 
 grays,
PlotRange 
 All�

From the graph, we see that for (b) the object never moves above the
equilibrium position. This makes sense because 0 � cos 2t � 1: x�t� �Negative values of x indicate

that the mass is above the
equilibrium position; positive
values indicate that the mass
is below the equilibrium
position.

1
4 �1 � cos 2t� for all t. For (c), we see that the mass passes through the
equilibrium position twice (near t � 2 and t � 4) over the period. For
(d), we again see that the resulting motion is periodic, although differ-
ent from that observed in (c).

When we studied nonhomogeneous equations, we considered equations in which
the nonhomogeneous function was a solution of the corresponding homogeneous
equation. This situation is modeled by the initial-value problem

�		

		
�

x�� � Ω2x � F1 cosΩt � F2 sinΩt � G�t�

x�0� � Α, x��0� � Β
(5.5)
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where Ω > 0, F1 and F2 are constants, and G � G�t� is a function of t. In this case, Note that one of the
constants F1 or F2 can equal
zero and G � G�t� can be
identically the zero function.

we say that Ω is the natural frequency of the system because the solution of the
corresponding homogeneous equation, x�� � Ω2x � 0, is xh � c1 cosΩt � c2 sinΩt.

EXAMPLE 5.1.8: Investigate the effect that the forcing functions (a)
f �t� � cos 2t and (b) f �t� � sin 2t have on the solution of the initial-value
problem

�		

		
�

x�� � 4x � f �t�

x�0� � 0, x��0� � 0.

SOLUTION: We take advantage of the function fm defined in Example
5.1.7. In the same manner as in Example 5.1.7, we use Map to apply fm
to each of the forcing functions in (a) and (b). (Note that entering

moresols=fm/@{Cos[2 t],Sin[2 t]}

produces the same result.)

In[893]:= moresols � Map�fm,�Cos�2 t�,Sin�2 t�	�

Out[893]= � 1

16
��Cos�2 t	 � Cos�2 t	 Cos�4 t	

�4 t Sin�2 t	 � Sin�2 t	 Sin�4 t	�,

1

16
��4 t Cos�2 t	 � Sin�2 t	

�Cos�4 t	 Sin�2 t	 � Cos�2 t	 Sin�4 t	��
From the result, we see that the nonperiodic function y � t sin 2t appears
in the result for (a) while the nonperiodic function y � t cos 2t appears
in the result for (b). In each case, we see that the amplitude increases
without bound as t increases, as illustrated in Figure 5-15. This indicates
that the spring–mass system will encounter a serious problem in that
the mass will eventually hit its support (like a ceiling or beam) or its
lower boundary (like the ground or floor).

In[894]:= Plot�Evaluate�moresols�,�t,0,2Π	,
PlotStyle 
 �GrayLevel�0�,GrayLevel�0.4�	�
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Figure 5-15 Resonance

The phenomenon illustrated in Example 5.1.8 is called resonance and can be
extended to other situations such as vibrations of an aircraft wing, skyscraper,
glass, or bridge. Some of the sources of excitation that lead to the vibration of these
structures include unbalanced rotating devices, vortex shedding, strong winds,
rough surfaces, and moving vehicles. Therefore, the engineer has to overcome
many problems when structures and machines are subjected to forced vibrations.

EXAMPLE 5.1.9: How does slightly changing the value of the argu-
ment of the forcing function change the solution of the initial-value
problem given in Example 5.1.8? Use the functions (a) f �t� � cos 1.9t
and (b) f �t� � cos 2.1t with the initial-value problem.

SOLUTION: As in Example 5.1.8, we take advantage of the function
fm defined in Example 5.1.7. (Note that entering

moresols=Map[fm,{Cos[1.9 t],Sin[2.1 t]}]

produces the same result as that obtained using /@, the keyboard short-
cut for Map.)

In[895]:= moresols � fm/@�Cos�1.9 t�,Sin�2.1 t�	
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Figure 5-16 Resonance?

Out[895]= ��2.5641 �0. t Cos�2. t	

�2.5 �0. t Cos�0.1 t	 Cos�2. t	

�0.0641026 �0. t Cos�2. t	 Cos�3.9 t	

�0. �0. t Sin�2. t	

�2.5 �0. t Sin�0.1 t	 Sin�2. t	

�0.0641026 �0. t Sin�2. t	 Sin�3.9 t	,

0. �0. t Cos�2. t	

�2.5 �0. t Cos�2. t	 Sin�0.1 t	

�2.56098 �0. t Sin�2. t	

�2.5 �0. t Cos�0.1 t	 Sin�2. t	

�0.0609756 �0. t Cos�4.1 t	 Sin�2. t	

�0.0609756 �0. t Cos�2. t	 Sin�4.1 t	

The result shows that each solution is periodic and bounded. These
solutions are then graphed in Figure 5-16 to reveal the behavior of the
curves. If the solutions are plotted over only a small interval, however,
resonance seems to be present. Compare Figure 5-16 to the

graph generated in Example
5.1.8.In[896]:= Plot�Evaluate�moresols�,�t,0,2Π	,

PlotStyle 
 �GrayLevel�0�,GrayLevel�0.4�	�

However, the functions obtained with fm clearly indicate that there is
no resonance. This is further indicated by graphing the solutions over
a longer time interval in Figure 5-17.

In[897]:= Plot�moresols�1�,�t,0,40Π	,PlotPoints 
 200�

In[898]:= Plot�moresols�2�,�t,0,40Π	,PlotPoints 
 200�



352 Chapter 5 Applications of Higher-Order Differential Equations

20 40 60 80 100 120

-4

-2

2

4

20 40 60 80 100 120

-4

-2

2

4

Figure 5-17 No resonance: the solution is periodic

Let us investigate in detail initial-value problems of the form

�		

		
�

x�� � Ω2x � F cos Βt, Ω > 0, Ω # Β

x�0� � 0, x��0� � 0.
(5.6)

A general solution of the corresponding homogeneous equation is xh � c1 cosΩt �
c2 sinΩt. Using the Method of Undetermined Coefficients, we assume that there is
a particular solution to the nonhomogeneous equation of the form xp � A cos Βt �
B sin Βt.

In[899]:= xp�t � � a Cos�Βt� � b Sin�Βt�

Next, we calculate the corresponding derivatives of this solution

In[900]:= xp
��t�

Out[900]= b Β Cos�t Β	 � a Β Sin�t Β	

In[901]:= xp
���t�

Out[901]= �a Β2 Cos�t Β	 � b Β2 Sin�t Β	

and substitute into the nonhomogeneous equation x�� � Ω2x � F cos Βt.

In[902]:= step1 � Simplify�xp���t� � Ω2xp�t�� �� f Cos�Βt�

Out[902]= �
1

4
��5 Π/2 �Β2 � Ω2�

�2 ��1 � �2 Π� Cos�t Β	 � ��5 � �2 Π� Sin�t Β	� �� f Cos�t Β	

This equation is true for all values of t. In particular, substituting t � 0 and t �
Π/ �2Β� yields two equations
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In[903]:= eq1 � step1 /. t� > 0

Out[903]= �a �Β2 � Ω2� �� f

In[904]:= eq2 � step1 /. t� >
Π

2Β

Out[904]= �b �Β2 � Ω2� �� 0

that we then solve for A and B to see that A �
F

Ω2 � Β2
and B � 0 and a general

solution of the nonhomogeneous equation is

x � c1 cosΩt � c2 sinΩt �
F

Ω2 � Β2
cos Βt.

Application of the initial conditions yields the solution

x �
F

Ω2 � Β2
�cos Βt � cosΩt� �

F
Β2 � Ω2

�cosΩt � cos Βt� .

We can use DSolve and Simplify to solve the initial-value problem (5.6) as well.

In[905]:= DSolve�
x���t� � Ω2x�t� �� f Cos�Βt�,x�0� �� 0,

x��0� �� 0�,x�t�,t�//Simplify
Out[905]= ��x�t	 
 f �Cos�t Β	 � Cos�t Ω	�

�Β2 � Ω2
��

Using the trigonometric identity 1
2 �cos �Α � Β� � cos �Α � Β�� � sinΑ sin Β, we have

x �
2F

Ω2 � Β2
sin �Ω � Β

2
t� sin �Ω � Β

2
t� .

These solutions are of interest because of what they indicate about the motion of
the spring under consideration. Notice that the solution can be represented as

x � A�t� sin �Ω � Β
2

t� , where A�t� �
2F

Ω2 � Β2
sin �Ω � Β

2
t� .

Therefore, if the quantity Ω � Β is small, Ω � Β is relatively large in comparison.
Hence, the function sin �Ω�Β2 t� oscillates quite frequently because it has period
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Π/ �Ω � Β�. Meanwhile, the function sin �Ω�Β2 t� oscillates relatively slowly because

it has period Π/ ���Ω � Β���, so the functions  
2F

Ω2 � Β2
sin �Ω � Β

2
t� form an envelope for

the solution.

EXAMPLE 5.1.10: Solve the initial-value problem

�		

		
�

x�� � 4x � f �t�

x�0� � 0, x��0� � 0

with (a) f �t� � cos 3t and (b) f �t� � cos 5t.

SOLUTION: Again, we use fm, defined in Example 5.1.7, to solve the
initial-value problem in each case.

In[906]:= Clear�x,t�

fm�f � ��
DSolve��x���t� � 4 x�t� �� f,x�0� �� 0,
x��0� �� 0	,x�t�,t���1,1,2��

In[907]:= fs � �Cos�3 t�,Cos�5 t�	

In[908]:= somesols � Map�fm,fs�

Out[908]= � 1

20
�4 Cos�2 t	 � 5 Cos�t	 Cos�2 t	

�Cos�2 t	 Cos�5 t	 � 5 Sin�t	 Sin�2 t	

�Sin�2 t	 Sin�5 t	�,

1

84
�4 Cos�2 t	 � 7 Cos�2 t	 Cos�3 t	

�3 Cos�2 t	 Cos�7 t	

�7 Sin�2 t	 Sin�3 t	

�3 Sin�2 t	 Sin�7 t	��
The solution for (a) is graphed in Figure 5-18 and named p1 for later
use.

In[909]:= p1 � Plot�somesols��1��,�t,0,6 Π	�

Using the formula obtained earlier for the functions that “envelope”
the solution, we have x�t� �  sin � 1

2 t�. These functions are graphed in
p2 and displayed with p1 with Show in Figure 5-19.
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Figure 5-18 The forcing function causes beats
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Figure 5-19 The envelope functions show the beats more clearly

In[910]:= p2 � Plot�
2
5
Sin�t

2
�,�2

5
Sin�t

2
��,�t,0,6Π	,

PlotStyle 
 GrayLevel�0.5�,

DisplayFunction 
 Identity�
Show�p1,p2�

For (b), the graph of the solution with the envelope functions x�t� �
 2

21 sin � 3
2 t� is as follows. See Figure 5-20.

In[911]:= Plot�
somesols��2��, 2

21
Sin�3t

2
�,

�
2

21
Sin�3t

2
��,�t,0,4Π	,

PlotStyle 
 �GrayLevel�0�,GrayLevel�0.5�,

GrayLevel�0.5�	�
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Figure 5-20 Beats are seen more clearly when shown with the envelope functions
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Out[911]= -Graphics-

Oscillations like those illustrated in the previous example are called beats because
of the periodic variation of amplitude. This phenomenon is commonly encoun-
tered when two musicians (especially bad ones) try to simultaneously tune their
instruments or when two tuning forks with almost equivalent frequencies are
played at the same time.See the Application at the end

of the section for a
discussion of how you can
listen to beats and resonance
with Mathematica.

We now consider spring problems that involve forces due to damping as well
as external forces. In particular, consider the following initial-value problem:

�		

		
�

mx�� � cx� � kx � Ρ cos Λt

x�0� � Α, x��0� � Β.
(5.7)
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Problems of this nature have solutions of the form x�t� � h�t� � s�t�, where limt��

h�t� � 0 and s�t� � c1 cos Λt � c2 sin Λt.
The function h�t� is called the transient solution while s�t� is called the steady-

state solution. Therefore, as t approaches infinity, the solution x�t� approaches the
steady-state solution. Note that the steady-state solution corresponds to the partic-
ular solution obtained through the Method of Undetermined Coefficients or Vari-
ation of Parameters.

EXAMPLE 5.1.11: Solve the initial-value problem

�		

		
�

x�� � 4x� � 13x � cos t

x�0� � 0, x��0� � 1

that models the motion of an object of mass m � 1 attached to a spring
with spring constant k � 13 that is subjected to a resistive force of FR �
4x�and an external force of f �t� � cos t. Identify the transient and steady-
state solutions.

SOLUTION: First, DSolve is used to obtain the solution of this non-
homogeneous problem. The Method of

Undetermined Coefficients
could be used to find this
solution as well.In[912]:= deq �

Simplify�
DSolve��x���t� � 4 x��t� � 13 x�t� �� Cos�t�,

x�0� �� 0,x��0� �� 1	,x�t�,t��

Out[912]= ��x�t	 
 1

40
��2 t �3 �2 t Cos�t	 � 3 Cos�3 t	

��2 t Sin�t	 � 11 Sin�3 t	���
The solution is then graphed over the interval �0, 5Π� in plot1 to illus-
trate the behavior of this solution. See Figure 5-21.

In[913]:= plot1 � Plot�x�t�/.deq,�t,0,5 Π	�

The transient solution is h � e�2t �� 3
40 cos 3t � 11

40 sin 3t� and the steady-
state solution is s � 3

40 cos t � 1
40 sin t. We graph the steady-state solution
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Figure 5-21 Forced motion with damping
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Figure 5-22 Forced motion with damping shown with its steady-state solution

over the same interval so that it can be compared to plot1 and then
we show the two graphs together with Show in Figure 5-22.

In[914]:= ss�t � �
1

40
�3 Cos�t� � Sin�t��

In[915]:= ssplot � Plot�ss�t�,�t,0,5Π	,
PlotStyle 
 GrayLevel�0.4�,
DisplayFunction 
 Identity�

Show�plot1,ssplot�
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Figure 5-23 The transient solution quickly tends to 0

Notice that the two curves appear identical for t > 2.5. The reason for
this is shown in the plot of the transient solution in Figure 5-23, which
becomes quite small near t � 2.5.

In[916]:= Plot� 1

40
Exp��2 t� � �

3 Cos�3t�

40
�
11 Sin�3t�

40
,

�t,0,Π	�
Notice also that the steady-state solution corresponds to a particular
solution to the nonhomogeneous differential equation as verified here
with Simplify.

In[917]:= Simplify�ss���t� � 4 ss��t� � 13 ss�t��

Out[917]= Cos�t	

Instead of solving initial value problems that model the motion of damped and
undamped systems as functions of time only, we can consider problems that
involve an arbitrary parameter. In doing this, we can obtain a new understand-
ing of the phenomena of resonance and beats.

EXAMPLE 5.1.12: Solve (a)
�		

		
�

x�� � 4x� � 13x � cosΩt

x�0� � 0, x��0� � 0
0

(b)
�		

		
�

x�� � 4x � cosΩt

x�0� � 0, x��0� � 0
. Plot the solution for various values of Ω near the

natural frequency of the system.
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SOLUTION: (a) We solve the initial-value problem and simplify the
result with Simplify for arbitrary Ω in sol, extract the solution with
Part ([[...]]), and define it to be u�t,Ω�.

In[918]:= Clear�sol�

sol �
DSolve��x���t� � 4 x��t� � 13 x�t� �� Cos�Ω t�,

x�0� �� 0,x��0� �� 0	,x�t�,t�//Simplify

Out[918]= ��x�t	 
 ���2 t �6 ��13 � Ω2� Cos�3 t	

�6 �2 t ��13 � Ω2� Cos�t Ω	

�4 ��13 � Ω2� Sin�3 t	

�6 �2 t Ω Sin�t Ω	�����6 �169 � 10 Ω2 � Ω4��
In[919]:= u�t ,Ω � � sol��1,1,2��

We can graph the solution for 0 � Ω � 6 using increments of 0.25 in a
Do command in order to animate the resulting plots. We show a screen
shot from the resulting animation.

In[920]:= Do�Plot�u�t,Ω�,�t,0,10	,PlotPoints 
 30,
PlotRange 
 ��0.1,0.1	�,�Ω,0,6,0.5	�

We can also observe how the motion approaches and then moves away
from resonance using a GraphicsArray as shown in Figure 5-24.
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Figure 5-24 Varying Ω
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In[921]:= Ωgraph�Ω � �� Plot�u�t,Ω�,�t,0,10	,
PlotPoints 
 30,PlotRange 
 ��0.1,0.1	,
Ticks 
 ��5,10	,��0.1,0.1		,
DisplayFunction 
 Identity�

In[922]:= graphs � Table�Ωgraph�Ω�,�Ω,0,6,0.25	�

In[923]:= toshow � Partition�graphs,3�

Show�GraphicsArray�toshow��

On the other hand, we can graph the three-dimensional surface u�t,Ω�
to see how the motion depends on the value of Ω. See Figure 5-25.

In[924]:= Plot3D�u�t,Ω�,�t,0,10	,�Ω,0,6	,
PlotPoints 
 30�

(b) In a similar way, we solve
�		

		
�

x�� � 4x � cosΩt

x�0� � 0, x��0� � 0
for arbitrary Ω

in sol.

In[925]:= Clear�u,sol�

sol �
DSolve��x���t� � 4 x�t� �� Cos�Ω t�,x�0� �� 0,
x��0� �� 0	,x�t�,t�//Simplify
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Figure 5-25 Cross-sections of the three-dimensional plot are solutions of the initial-value
problem
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Out[925]= ��x�t	 
 Cos�2 t	 � Cos�t Ω	

�4 � Ω2
��

In[926]:= u�t ,Ω � � sol��1,1,2��

Using the following Do loop, we can animate the solution for 0 � Ω �
3 using a stepsize of 0.1 to observe how the solution behaves as Ω
approaches the natural frequency of the system, 2. We show a screen
shot from the resulting animation. Note that Mathematica generates
several error messages when it encounters Ω � 2 because the solution
obtained with DSolve is not defined if Ω � 2. Nevertheless, Mathemat-
ica accurately displays the graphs of the solutions for Ω # 2.

In[927]:= Do�Plot�u�t,Ω�,�t,0,10	,PlotPoints 
 30,
PlotRange 
 ��2,2	�,�Ω,0,4,0.25	�

In addition, we can use a GraphicsArray to observe the behavior of
the function as shown in Figure 5-26.

In[928]:= Clear�Ωgraph�

Ωgraph�Ω � �� Plot�u�t,Ω�,�t,0,10	,
PlotPoints 
 30,PlotRange 
 ��2,2	,
Ticks 
 ��5,10	,��2,2		,
DisplayFunction 
 Identity�
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Figure 5-26 The solution is periodic unless Ω � 2

In[929]:= graphs � Table�Ωgraph�Ω�,
Ω,0,4, 4

11
��

In[930]:= toshow � Partition�graphs,3�

Show�GraphicsArray�toshow��

We can see this behavior in the three-dimensional graph of u[t,w] in
Figure 5-27 as well.

In[931]:= Plot3D�u�t,Ω�,�t,0,10	,�Ω,0,3	,
PlotPoints 
 30�
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Figure 5-27 Cross-sections of the three-dimensional plot are solutions of the initial-value
problem for various values of Ω

5.1.4 Soft Springs

In the case of a soft spring, the spring force weakens with compression or exten-
sion. For springs of this type, we model the physical system with

�		

		
�

x�� � cx� � kx � jx3 � f �t�

x�0� � Α, x��0� � Β
(5.8)

where j is a positive constant.

EXAMPLE 5.1.13: Approximate the solution to

�		

		
�

x�� � 0.2x� � 10kx � 0.2x3 � �9.8

x�0� � Α, x��0� � Β

for various values of Α and Β in the initial conditions.

SOLUTION: After stating this nonlinear differential equation in eq ,
we define the function s�Α, Β� to approximate the solution to the initial-
value problem with NDSolve for specified values of Α and Β.
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Figure 5-28 The spring does not converge to its equilibrium position

In[932]:= Clear�eq�

eq � x���t� � 0.2 x��t� � 10 x�t� � 0.2 x�t�3 ��
�9.8

In[933]:= s�Α ,Β � �� NDSolve��eq,x�0� �� Α,x��0� �� Β	,
x�t�,�t,0,15	�

We then define values for Α in vals so that we can solve the initial-
value problem using x�0� � Α for the numbers in vals and x��0� � 0 in
sols. The results are graphed in Figure 5-28. We notice that x�t� � �1
as t � �.

In[934]:= vals � ��1,�0.5,0,0.5,1	

In[935]:= grays � Table�GrayLevel�i�,
�i,0,0.8,0.8/4	�

In[936]:= sols � Map�s�#,0�&,vals�

In[937]:= one � Plot�Evaluate�x�t�/.sols�,�t,0,15	,
PlotStyle 
 grays�

Similarly in sols2, we use the numbers in vals as the initial velocity
in the initial-value problem. We graph these approximate solutions in
Figure 5-29.

In[938]:= sols2 � Map�s�0,#1�&,vals�

In[939]:= two � Plot�Evaluate�x�t�/.sols2�,
�t,0,15	,PlotStyle 
 grays�

In each of the two previous sets of initial conditions, we see that x�t�
approaches a limit as t � �. However, this is not always the case.
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Figure 5-29 Varying the initial velocity in a soft spring

If we consider larger values of Α as defined in vals2, we find that
solutions are unbounded. Because of this, we must use a smaller
interval for t in the NDSolve command in s2�Α, Β�. Otherwise, we do
not obtain meaningful results. The approximate results are graphed in
Figure 5-30.

In[940]:= s2�Α ,Β � �� NDSolve��eq,x�0� �� Α,
x��0� �� Β	,x�t�,�t,0,0.4	�

In[941]:= vals2 � ��10,�9,�8,8,9,10	

In[942]:= sols3 � s2�#1,0�& /@ vals2

In[943]:= three � Plot�Evaluate�x�t�/.sols3�,
�t,0,0.4	,PlotStyle 
 grays�
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Figure 5-30 The spring becomes weak
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5.1.5 Hard Springs

In the case of a hard spring, the spring force strengthens with compression or
extension. For springs of this type, we model the physical system with

�		

		
�

x�� � cx� � kx � jx3 � f �t�

x�0� � Α, x��0� � Β
(5.9)

where j is a positive constant.

EXAMPLE 5.1.14: Approximate the solution to

�		

		
�

x�� � 0.3x � 0.04x3 � 0

x�0� � Α, x��0� � Β

for various values of Α and Β in the initial conditions.

SOLUTION: First, we define the undamped nonlinear differential
equation in eq. Then, we define s�Α, Β� to numerically approximate the
solution to the initial-value problem for given values of Α and Β.

In[944]:= Clear�eq�

eq � x���t� � 0.3 x�t� � 0.04 x�t�3 �� 0

In[945]:= Clear�s�

s�Α ,Β � �� NDSolve��eq,x�0� �� Α,x��0� �� Β	,
x�t�,�t,0,15	�

We approximate the solution using the constants defined in vals4 as
the initial displacement, x�0� � Α. These numerical solutions are then
graphed in Figure 5-31. Notice that solutions with larger amplitudes
have smaller periods as expected with a hard spring.

In[946]:= vals4 � �1,2,3,4,5	

sols4 � Table�s�vals4��i��,0���1,1,2��,
�i,1,5	�

In[947]:= grays � Table�GrayLevel�i�,
�i,0,0.8,0.8/4	�

In[948]:= five � Plot�Evaluate�sols4�,�t,0,15	,
PlotStyle 
 grays�
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Figure 5-31 Varying the initial displacement of a hard spring

In a similar manner, we use the values in vals4 as the initial velocity
x��0� � Β. In Figure 5-32, we see that when the amplitude is large, the
spring strengthens so that the period of the motion is decreased.

In[949]:= sols5 � Table�s�0,vals4��i�����1,1,2��,
�i,1,5	�

In[950]:= six � Plot�Evaluate�sols5�,�t,0,15	,
PlotStyle 
 grays�
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Figure 5-32 Varying the initial velocity of a hard spring
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5.1.6 Aging Springs

In the case of an aging spring, the spring constant weakens with time. For springs
of this type, we model the physical system with

�		

		
�

x�� � cx� � k�t�x � f �t�

x�0� � Α, x��0� � Β
(5.10)

where k�t� � 0 as t � �.

EXAMPLE 5.1.15: Approximate the solution to

�		

		
�

x�� � 4e�t/4x � 0

x�0� � Α, x��0� � Β

for various values of Α and Β in the initial conditions.

SOLUTION: First, we state the differential equation in eq and then we
define s�Α, Β� to solve the initial value problem for given values of Α and
Β. Using the numbers in vals4 as the initial displacement and using 0
as the initial velocity, we approximate the solution to five initial value
problems in sols6. We graph these numerical solutions in Figure 5-33.
Notice that the period of the oscillations increases over time due to the
diminishing value of the spring constant.

In[951]:= Clear�eq�

eq � x���t� � 4 Exp� �
t

4
� x�t� �� 0

In[952]:= Clear�s�

s�Α ,Β � �� NDSolve��eq,x�0� �� Α,x��0� �� Β	,
x�t�,�t,0,30	�

In[953]:= vals4 � �1,2,3,4,5	

sols6 � Table�s�vals4��i��,0���1,1,2��,
�i,1,5	�

In[954]:= grays � Table�GrayLevel�i�,
�i,0,0.8,0.8/4	�

In[955]:= seven � Plot�Evaluate�sols6�,�t,0,30	,
PlotStyle 
 grays�
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Figure 5-33 Varying the initial displacement of an aging spring

In[956]:= Clear�s2�

s2�Α ,Β � ��
NDSolve��eq,x�0� �� Α,x��0� �� Β	,x�t�,
�t,0,100	�

In[957]:= vals4 � �1,2,3,4,5	

sols7 � Table�s2�vals4��i��,0���1,1,2��,
�i,1,5	�

In[958]:= eight � Plot�Evaluate�sols7�,�t,0,100	,
PlotStyle 
 grays�

Choosing a longer time interval in the NDSolve command as we do
in s2�Α, Β�, we see that eventually the motion is not oscillatory. See
Figure 5-34.
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Figure 5-34 An aging spring eventually stops working
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Application: Hearing Beats and Resonance
In order to hear beats and resonance, we solve the initial-value problem

�		

		
�

x�� � Ω2x � F cos Βt

x�0� � Α, x��0� � Β
(5.11)

for each of the following parameter values: (a) Ω2 � 60002, Β � 5991.62, F � 2; and
(b) Ω2 � 60002, Β � 6000, F � 2.

First, we define the function sol which given the parameters, solves the initial-
value problem (5.11).

In[959]:= Clear�x,t,f,sol�

In[960]:= sol�Ω ,Β ,f � ��

DSolve�
x���t� � Ω2 x�t� �� f Cos�Β t�,x�0� �� 0,

x��0� �� 0�,x�t�,t���1,1,2��
Thus, our solution for (a) is obtained by entering

In[961]:= a � sol�6000,5991.62,2�

Out[961]= �0.0000199025 �0. t Cos�6000. t	

�0.0000198886 �0. t Cos�8.38 t	 Cos�6000. t	

�1.38986 � 10�8 �0. t Cos�6000. t	 Cos�11991.6 t	

�0. �0. t Sin�6000. t	

�0.0000198886 �0. t Sin�8.38 t	 Sin�6000. t	

�1.38986 � 10�8 �0. t Sin�6000. t	 Sin�11991.6 t	

To hear the function we use Play in the same way that we use Plot to see func-
tions. The values of a correspond to the amplitude of the sound as a function of
time. See Figure 5-35.

In[962]:= Play�a,�t,0,6	�

Similarly, the solution for (b) is obtained by entering

In[963]:= b � sol�6000,6000,2�

Out[963]=
1

72000000
��2 Cos�6000 t	 � 2 Cos�6000 t	3

�12000 t Sin�6000 t	 � Sin�6000 t	 Sin�12000 t	�

We hear resonance with Play. See Figure 5-36.
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Figure 5-35 Hearing and seeing beats

Figure 5-36 Hearing and seeing resonance

5.2 The Pendulum Problem

Suppose that a mass m is attached to the end of a rod of length L, the weight of
which is negligible.
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We want to determine the equation that describes the motion of the mass in terms
of the displacement Θ�t� which is measured counterclockwise in radians from the
axis shown above. This is possible if we are given an initial displacement and an
initial velocity of the mass. A force diagram for this situation is shown as follows.

Notice that the forces are determined with trigonometry using the diagram. Here,
cos Θ � mg/x and sin Θ � mg/y, so we obtain the forces x � mg cos Θ and y � mg sin Θ,
indicated as follows.

Because the momentum of the mass is given by m ds/dt, the rate of change of the
momentum is

d
dt

�mds
dt

� � m
d2s
dt2

where s represents the length of the arc formed by the motion of the mass. Then,
because the force y � mg sin Θ acts in the opposite direction of the motion of the
mass, we have the equation

m
d2s
dt2

� �mg sin Θ. (5.12)

Using the relationship from geometry between the length of the arc, the length of
the rod, and the angle Θ, s � LΘ, we have the relationship

d2x
dt2

�
d2

dt2
�LΘ� � L

d2Θ
dt2

.
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Hence, the displacement Θ�t� satisfies mL d2Θ/dt2 � �mg sin Θ or

mL
d2Θ
dt2

� mg sin Θ � 0, (5.13)

which is a nonlinear equation. However, because we are only concerned with
small displacements, we note from the Maclaurin series for sin Θ, sin Θ � Θ � 1

3!Θ
3 �

1
5!Θ

5 �    , that for small values of Θ, sin Θ � Θ. Therefore, with this approximation,
we obtain the linear equation

mL
d2Θ
dt2

� mgΘ � 0 or
d2Θ
dt2

�
g
L
Θ � 0, (5.14)

which approximates the original equation (5.13). If the initial displacement is given
by Θ�0� � Θ0 and the initial velocity is given by Θ��0� � v0, then we have the initial-
value problem

�			

			
�

d2Θ
dt2

�
g
L
Θ � 0

Θ�0� � Θ0,
dΘ
dt
�0� � v0

(5.15)

to find the displacement function Θ�t�.
Suppose that Ω2 � g/L so that the differential equation becomes Θ�� � Ω2Θ � 0,

which has general solution

Θ�t� � c1 cosΩt � c2 sinΩt.

Application of the initial conditions Θ�0� � Θ0 and Θ��0� � v0 shows us that

Θ�t� � Θ0 cosΩt �
v0

Ω
sinΩt (5.16)

is the solution of equation (5.15), whereΩ �


g/L. We can write this function solely
in terms of a cosine function that includes a phase shift with

Θ�t� �

�
Θ2

0 �
v2

0

Ω2
cos �Ωt � Φ� , (5.17)

where

Φ � cos�1

*+++++++++++++
,

Θ0�
Θ2

0 �
v2

0

Ω2

-.............
/

and Ω �

�
g
L

.

Note that the approximate period of Θ�t� is T � 2
Π
Ω
� 2Π

�
L
g

.
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EXAMPLE 5.2.1: Determine the displacement of a pendulum of length
L � 32 feet if Θ�0� � 0 and Θ��0� � 1/2 using both the linear and nonlinear
models. What is the period? If the pendulum is part of a clock that ticks
once for each time the pendulum makes a complete swing, how many
ticks does the clock make in one minute?

SOLUTION: The linear initial-value problem that models this situa-
tion is

�		

		
�

Θ�� � Θ � 0

Θ�0� � 0, Θ��0� � 1/2

because g/L � 32/32 � 1. We use DSolve to find a general solution of
the equation

In[964]:= gensol � DSolve�x���t� � x�t� �� 0,x�t�,t�

Out[964]= ��x�t	 
 C�1	 Cos�t	 � C�2	 Sin�t	

and the solution to the initial-value problem

�		

		
�

Θ�� � Θ � 0

Θ�0� � a, Θ��0� � b.

In[965]:= BoxData�eq � DSolve��x���t� � x�t� �� 0,
x�0� �� a,x��0� �� b	,x�t�,t��

Out[965]= ��x�t	 
 a Cos�t	 � b Sin�t	

In this case, we have that a � 0 and b � 1/2 so substituting these values
into eq[[1,1,2]] results in the solution to the initial-value problem.

In[966]:= pen � eq��1,1,2��/.�a 
 0,b 
 1/2	

The period of this function is

T � 2Π

�
L
g
� 2Π

�
32 ft

32 ft/s2
� 2Π s.

Therefore, the number of ticks made by the clock per minute is calcu-
lated with the conversion

1 rev
2Π s

�
1 tick
1 rev

�
60 s

1 min
� 9.55 ticks/min.
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Figure 5-37 Plot of the solution to the nonlinear initial-value problem

Hence, the clock makes approximately 9.55 ticks in one minute. To solve
the nonlinear equation, we use NDSolve to generate a numerical solu-
tion to the initial-value problem valid for 0 � t � 20.

In[967]:= BoxData�numsol � NDSolve��x���t�
�Sin�x�t�� �� 0,x�0� �� 0,x��0� �� 1/2	,
x�t�,�t,0,20	��

Out[967]= BoxData���x�t	 

InterpolatingFunction���0.,20.,
" <> "	�t	�

We then graph this solution on the interval �0, 20� in Figure 5-37.

In[968]:= plot1 � Plot�x�t�/.numsol,�t,0,20	,
PlotRange 
 All�

The solution pen is also graphed on the interval �0, 20�, the resulting
graph is named plot2, and then plot1 and plot2 are displayed together
with Show in Figure 5-38.

In[969]:= plot2 � Plot�pen,�t,0,20	,
PlotStyle 
 GrayLevel�0.4�,
DisplayFunction 
 Identity�

Show�plot1,plot2�

The graphs indicate that the error between the two functions increases
as t increases, which is confirmed by graphing the absolute value of the
difference of the two functions shown in Figure 5-39.

In[970]:= plot3 � Plot�Abs�pen�x�t��/.numsol,�t,0,20	�
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Figure 5-38 Solution of the linear (in gray) and nonlinear (in black) initial-value problems
shown together
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Figure 5-39 The linear approximation approximates the nonlinear solution very well until
t becomes large

Suppose that the pendulum undergoes a damping force that is proportional to the
instantaneous velocity. Then, the force due to damping is given as FR � b dΘ/dt.
Incorporating this force into the sum of the forces acting on the pendulum, we
have the nonlinear equation LΘ�� � bΘ� � g sin Θ � 0. Again, using the approximation
sin Θ � Θ for small values of t, we obtain the linear equation LΘ�� �bΘ� �gΘ � 0 which
approximates the situation. Thus, we solve the initial-value problem

�			

			
�

L
d2Θ
dt2

� b
dΘ
dt
� gΘ � 0

Θ�0� � Θ0,
dΘ
dt
�0� � v0

(5.18)

to find the displacement function Θ�t�.
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EXAMPLE 5.2.2: A pendulum of length L � 8/5 ft is subjected to the
resistive force FR � 32/5 dΘ/dt due to damping. Determine the displace-
ment function if Θ�0� � 1 and Θ��0� � 2.

SOLUTION: The initial-value problem that models this situation is

�			

			
�

8
5

d2Θ
dt2

�
32
5

dΘ
dt
� 32Θ � 0

Θ�0� � 0,
dΘ
dt
�0� � 2.

Simplifying the differential equation, we obtain Θ�� � 4Θ� � 20Θ � 0, and
then using DSolve, we find the solution to the initial-value problem,

In[971]:= sol � DSolve��Θ���t� � 4 Θ��t� � 20 Θ�t� �� 0,
Θ�0� �� 1,Θ��0� �� 2	,Θ�t�,t�

Out[971]= ��Θ�t	 
 ��2 t �Cos�4 t	 � Sin�4 t	�

which is then graphed with Plot in Figure 5-40.

In[972]:= Θ�t � � e�2 t �Cos�4 t� � Sin�4 t��

In[973]:= Plot�Θ�t�,�t,0,2	�

Notice that the damping causes the displacement of the pendulum to
decrease over time.

0.5 1 1.5 2
-0.2

0.2

0.4

0.6

0.8

1

Figure 5-40 A solution to the damped pendulum equation



380 Chapter 5 Applications of Higher-Order Differential Equations

To see the pendulum move, we define the procedure pen. Given t,
len, and opts, where opts are any options of the Show command,
pen[t,len,opts] declares the variable pt1 to be local to the proce-
dure pen, defines pt1 to be the point

�len cos �3
2
Πt � Θ�t�� , len sin �3

2
Πt � Θ�t��� ,

and connects the points pt1 and �0, 0� with a line segment. Note that
PointSize is used so that pt1 is slightly enlarged in the resulting
graphics object. The resulting graphics object looks like the pendulum
of length L � len at time t.

In[974]:= Clear�pen�

pen�t ,len ,opts � �� Module��pt1	,
pt1 � 
len Cos�3 Π

2
� Θ�t��,

len Sin�3 Π
2

� Θ�t���
Show�
Graphics��Line���0,0	,pt1	�,
PointSize�0.05�,Point�pt1�	�,
Axes 
 Automatic,Ticks 
 None,
AxesStyle 
 GrayLevel�0.5�,

PlotRange 
 ���2,2	,��2,0		,opts��
For example, entering

In[975]:= pen�1, 8
5
,DisplayFunction 
 Identity�

Out[975]= -Graphics-

produces a graphics object corresponding to a pendulum of length L � 1
at time t � 1. The resulting graphics object is not displayed because the
option DisplayFunction->Identity, which is an option of Show,
is included in the pen command. On the other hand,

In[976]:= pen�1, 8
5

�
produces and displays a graphics object corresponding to a pendulum
of length L � 8/5 at time t � 1 as shown in Figure 5-41.

You can view a list of the
options associated with the
Show command by entering
Options[Show].
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Figure 5-41 A pendulum

To see the pendulum at various times, we use Table and pen to
generate a table consisting of graphics corresponding to a pendulum
of length L � 8/5 at time t from t � 0 to t � Π/2 using increments
of 2/15. The resulting list of 16 graphics objects is then partitioned into
four element subsets with Partition and the array of graphics objects
toshow is displayed with Show and GraphicsArray in Figure 5-42.

Figure 5-42 A damped pendulum comes to rest
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In[977]:= somegraphs �

Table�pen�t, 8

5
,

DisplayFunction 
 Identity�,
t,0,2, 2

15
��

toshow � Partition�somegraphs,4�

Show�GraphicsArray�toshow��

On the other hand, to see the pendulum move, we can use a Do loop to
generate several graphs and then animate the result. We show a screen
shot of one frame of the resulting animation.

In[978]:= Do�pen�t, 8
5

�,
t,0,2, 2

119
��

Notice that from our approximate solution, the displacement of the
pendulum becomes very close to zero near t � 2, which was our
observation from the graph of Θ�t� � e�2t �cos 4t � 2 sin 4t� in Figure 5-40.

Our last example investigates the properties of the nonlinear differential equation.
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EXAMPLE 5.2.3: Graph the solution to the initial-value problem

�			

			
�

d2Θ
dt2

� 0.5
dΘ
dt
� Θ � 0

Θ�0� � Θ0,
dΘ
dt
�0� � v0

(5.19)

subject to the following initial conditions.

Θ0 v0 Θ0 v0 Θ0 v0 Θ0 v0

�1 0 �0.5 0 0.5 0 1 0
0 �2 0 �1 0 1 0 2
1 1 1 �1 �1 1 �1 �1
1 2 1 3 �1 4 �1 5

�1 2 �1 3 1 �4 1 �5

SOLUTION: We begin by defining eq to be Θ�� � 0.5Θ� � sin Θ � 0.

In[979]:= Clear�eq,t,Θ,s�

eq � Θ���t� � 0.5 Θ��t� � Sin�Θ�t�� �� 0

To avoid retyping the same commands, we define the procedure s.
Given an ordered pair �Θ0, v0� and any options opts of the Show com-
mand, s[{theta0,v0},opts] first declares the variables numsol
and numgraph local to the procedure s, uses NDSolve to define
numsol to be a numerical solution of the initial-value problem (5.19)
valid for 0 � t � 15, generates, but does not display, a graph of the
resulting numerical solution on the interval �0, 15�, and then displays
the result with Show using any options opts passed through the s
command.

In[980]:= s��theta0 ,v0 	,opts � �� Module��numsol	,
numsol � NDSolve��eq,Θ�0� ��
theta0,Θ��0� �� v0	,Θ�t�,�t,0,15	�
numgraph � Plot�Θ�t�/.numsol,�t,0,15	,

DisplayFunction 
 Identity�
Show�numgraph,opts��

Thus, we see that entering

In[981]:= s���1,0	�

Out[981]= -Graphics-
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Figure 5-43 Plot of the solution of equation (5.19) that satisfies Θ0 � �1 and v0 � 0

does not display the graph of the solution to equation (5.19) if Θ0 � �1
and v0 � 0 but entering

In[982]:= s���1,0	,DisplayFunction 
 $DisplayFunction�

displays the graph of the solution shown in Figure 5-43. Thus, to graph
the solutions that satisfy the initial conditions

Θ0 v0 Θ0 v0 Θ0 v0 Θ0 v0

�1 0 �0.5 0 0.5 0 1 0

we first define t1 to be the initial conditions, use Map to apply s to
t1, and then use Show together with the option DisplayFunction->
\$DisplayFunction to display the resulting graphs in Figure 5-44.
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Figure 5-44 Varying the initial displacement in the pendulum equation
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In[983]:= t1 � ���1,0	,��0.5,0	,�0.5,0	,�1,0		

toshow1 � Map�s,t1�Show�toshow1,

DisplayFunction 
 $DisplayFunction�

Similarly, entering

In[984]:= t2 � ��0,�2	,�0,�1	,�0,1	,�0,2		

toshow2 � s/@t2Show�toshow2,

DisplayFunction 
 $DisplayFunction�

defines t2 to be the list of ordered pairs corresponding to the initial
conditions

Θ0 v0 Θ0 v0 Θ0 v0 Θ0 v0

0 �2 0 �1 0 1 0 2

toshow2 to be the resulting list of graphics objects obtained by apply-
ing s to each ordered pair in t2, and then displays the list of graphics
toshow2 together in Figure 5-45. The solutions that satisfy the remain-
ing initial conditions

Θ0 v0 Θ0 v0 Θ0 v0 Θ0 v0

1 1 1 �1 �1 1 �1 �1
1 2 1 3 �1 4 �1 5

�1 2 �1 3 1 �4 1 �5

2 4 6 8 10 12 14

-1.5

-1

-0.5

0.5

1

1.5

Figure 5-45 Varying the initial velocity in the pendulum equation
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Figure 5-46 Varying the initial displacements and velocity in the pendulum equation

are graphed in the same manner in Figures 5-46, 5-47, and 5-48.

In[985]:= t3 � ��1,1	,�1,�1	,��1,1	,��1,�1		

toshow3 � s/@t3Show�toshow3,

DisplayFunction 
 $DisplayFunction�

In[986]:= t4 � ��1,2	,�1,3	,��1,4	,��1,5		

toshow4 � s/@t4Show�toshow4,

DisplayFunction 
 $DisplayFunction�

2 4 6 8 10 12 14

2

4

6

Figure 5-47 Varying the initial displacements and velocity in the pendulum equation
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Figure 5-48 Varying the initial displacements and velocity in the pendulum equation

In[987]:= t5 � ���1,2	,��1,3	,�1,�4	,�1,�5		

toshow5 � s/@t5Show�toshow5,

DisplayFunction 
 $DisplayFunction�

5.3 Other Applications

5.3.1 L–R–C Circuits

Second-order nonhomogeneous linear ordinary differential equations arise in the
study of electrical circuits after the application of Kirchhoff’s law. Suppose that I�t�
is the current in the L–R–C series electrical circuit where L, R, and C represent the
inductance, resistance, and capacitance of the circuit, respectively.
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The voltage drops across the circuit elements shown in the following table have
been obtained from experimental data where Q is the charge of the capacitor and
dQ/dt � I.

Circuit Element Voltage Drop

Inductor L
dI
dt

Resistor RI

Capacitor
1
C

Q

Our goal is to model this physical situation with an initial-value problem so that
we can determine the current and charge in the circuit. For convenience, the ter-
minology used in this section is summarized in the following table.

Electrical Quantities Units
Inductance (L) Henrys (H)
Resistance (R) Ohms (5)

Capacitance (C) Farads (F)
Charge (Q) Coulombs (C)
Current (I) Amperes (A)

The physical principle needed to derive the differential equation that models the
L-R-C series circuit is stated as follows.

Kirchhoff’s Law: The sum of the voltage drops across the circuit
elements is equivalent to the voltage E�t� impressed on the circuit.

Applying Kirchhoff’s law, therefore, yields the differential equation

L
dI
dt
� RI �

1
C

Q � E�t�.

Using the fact that dQ/dt � I, we also have d2Q/dt2 � dI/dt. Therefore, the equation
becomes

L
d2Q
dt2

� R
dQ
dt

�
1
C

Q � E�t�,

which can be solved by the Method of Undetermined Coefficients or the Method
of Variation of Parameters. Hence, if the initial charge and current are Q�0� � Q0

and I�0� � Q��0� � I0, then we must solve the initial-value problem



5.3 Other Applications 389

�			

			
�

L
d2Q
dt2

� R
dQ
dt

�
1
C

Q � E�t�

Q�0� � Q0, I�0� �
dQ
dt
�0� � I0

(5.20)

for the charge Q�t�. This solution can then be differentiated to find the current I�t�.

EXAMPLE 5.3.1: Consider the L-R-C circuit with L � 1 Henry, R � 40
Ohms, C � 4000 Farads, and E�t� � 24 volts. Determine the current in
this circuit if there is zero initial current and zero initial charge.

SOLUTION: Using the indicated values, the initial-value problem that
we must solve is

�		

		
�

Q�� � 40Q� � 4000Q � 24

Q�0� � 0, I�0� � Q��0� � 0.

DSolve is used to obtain the solution to the nonhomogeneous problem
in cir1. Note that we use lower-case

letters to avoid any possible
ambiguity with built-in
Mathematica functions.

In[988]:= Clear�q�

cir1 � DSolve��q���t�
�40 q��t� � 4000 q�t� �� 24,q�0� �� 0,

q��0� �� 0	,q�t�,t�

These results indicate that in time the charge approaches the constant
value of 3/500, which is known as the steady-state charge. Also, due to
the exponential term, the current approaches zero as t increases. This
limit is indicated by the graph of Q�t� in Figure 5-49, as well.

Out[988]= ��q�t	 
 1

500
��20 t�3�20 t�3Cos�60t	�Sin�60t	���

In[989]:= q�t � � cir1��1,1,2��

In[990]:= Plot�q�t�,�t,0,0.35	,PlotRange 
 All�

The current, I�t�, is obtained by differentiating the charge, Q�t�, which is
graphed in Figure 5-50.

In[991]:= q��t�//Simplify

Out[991]=
2

5
��20 t Sin�60 t	

In[992]:= Plot�q��t�,�t,0,0.35	,PlotRange 
 All�



390 Chapter 5 Applications of Higher-Order Differential Equations
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Figure 5-49 Plot of the charge

0.05 0.1 0.15 0.2 0.25 0.3 0.35
-0.05
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Figure 5-50 Plot of the current

5.3.2 Deflection of a Beam

An important mechanical model involves the deflection of a long beam that is
supported at one or both ends as shown in the following figure.

Assuming that in its undeflected form the beam is horizontal, then the deflection
of the beam can be expressed as a function of x.
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Suppose that the shape of the beam when it is deflected is given by the graph of
the function y�x� � �s�x�, where x is the distance from one end of the beam and
s the measurement of the vertical deflection from the equilibrium position. The
boundary value problem that models this situation is derived as follows.

Let m�x� equal the turning moment of the force relative to the point x and w�x�
represent the weight distribution of the beam. These two functions are related by
the equation

d2m
dx2

� w�x�. (5.21)

Also, the turning moment is proportional to the curvature of the beam. Hence,

m�x� �
EI

67777777778

�
1 � � ds

dx
�2
9:::::::::;

3

d2s
dx2

, (5.22)

where E and I are constants related to the composition of the beam and the shape
and size of a cross-section of the beam, respectively. Notice that this equation is,
unfortunately, nonlinear. However, this difficulty is overcome with an approxi-
mation. For small values of s, the denominator of the right-hand side of equation
(5.22) can be approximated by the constant 1. Therefore, equation (5.22) is simpli-
fied to

m�x� � EI
d2s
dx2

. (5.23)

Equation (5.23) is linear and can be differentiated twice to obtain

d2m
dx2

� EI
d4s
dx2

. (5.24)

Equation (5.24) can then be used with equation (5.21) relating m�x� and w�x� to
obtain the single fourth-order linear nonhomogeneous differential equation

EI
d4s
dx4

� w�x�. (5.25)

Boundary conditions for this problem may vary. In most cases, two conditions are
given for each end of the beam. Some of these conditions are specified in pairs. For
example, at x � a these include: s�a� � 0, s��a� � 0 (fixed end); s���a� � 0, s����a� � 0
(free end); s�a� � 0, s���a� � 0 (simple support); and s��a� � 0, s����a� � 0 (sliding
clamped end).

The following example investigates the effects that a constant weight distribu-
tion function w�x� has on the solution to these boundary-value problems.
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EXAMPLE 5.3.2: Solve the beam equation over the interval 0 � x � 1 if
E � I � 1, w�x� � 48, and the following boundary conditions are used:
s�0� � 0, s��0� � 0 (fixed end at x � 0); and
(a) s�1� � 0, s���1� � 0 (simple support at x � 1);
(b) s���1� � 0, s����1� � 0 (free end at x � 1);
(c) s��1� � 0, s����1� � 0 (sliding clamped end at x � 1); and
(d) s�1� � 0, s��1� � 0 (fixed end at x � 1).

SOLUTION: DSolve is used to obtain the solution to this nonhomo-
geneous problem. In de1, the solution that depends on E, I, and w is
given.Note that we use

(lower-case) e to represent
E to avoid conflict with the
built-in constant E and
(lower-case) i to represent I

to avoid conflict with the
built-in constant I.

In[993]:= Clear�e,i,w,s�

de1 �
DSolve��e i D�s�x�,�x,4	� �� w,s�0� �� 0,
s��0� �� 0,s�1� �� 0,s���1� �� 0	,s�x�,x�

Out[993]= ��s�x	 
 3 w x2 � 5 w x3 � 2 w x4

48 e i
��

We can visualize the shape of the beam by graphing y � �s�x�. Thus, we
define toplot1 to be the negative of the solution obtained in de1.

In[994]:= toplot1 � �de1��1,1,2��/.�e 
 1,i 
 1,
w 
 48	

Similar steps are followed to determine the solution to each of the other
three boundary value problems. The corresponding functions to be
graphed are named toplot2, toplot3, and toplot4. (Note that
��x,4�s�x� represents D[s[x],{x,4}], the fourth derivative of s�x�.)

In[995]:= de2 �

DSolve�
e i ��x,4	s�x� �� w,s�0� �� 0,
s��0� �� 0,s�3��1� �� 0,s���1� �� 0�,s�x�,x�

Out[995]= ��s�x	 
 6 w x2 � 4 w x3 � w x4

24 e i
��

In[996]:= toplot2 � �de2��1,1,2��/.�e 
 1,i 
 1,
w 
 48	

In[997]:= de3 �

DSolve�
e i ��x,4	s�x� �� w,s�0� �� 0,
s��0� �� 0,s�3��1� �� 0,s��1� �� 0�,s�x�,x�

Out[997]= ��s�x	 
 4 w x2 � 4 w x3 � w x4

24 e i
��
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Figure 5-51 Solutions to the beam equation

In[998]:= toplot3 � �de3��1,1,2��/.�e 
 1,i 
 1,
w 
 48	

In[999]:= de4 � DSolve��e i ��x,4	s�x� �� w,s�0� �� 0,
s��0� �� 0,s�1� �� 0,s��1� �� 0	,s�x�,x�

Out[999]= ��s�x	 
 w x2 � 2 w x3 � w x4

24 e i
��

In[1000]:= toplot4 � �de4��1,1,2��/.�e 
 1,i 
 1,
w 
 48	

In order to compare the effects that the varying boundary conditions
have on the resulting solution, all four functions are graphed together
with Plot on the interval �0, 1� in Figure 5-51.

In[1001]:= Plot��toplot1,toplot2,toplot3,toplot4	,
�x,0,1	,
PlotStyle 
 �GrayLevel�0�,GrayLevel�0.2�,
GrayLevel�0.4�,Dashing��0.01	�	�

5.3.3 Bodé Plots

Consider the differential equation

d2x
dt2

� 2c
dx
dt
� k2x � F0 sinΩt, (5.26)

where c and k are positive constants with c < k so that the equation x�� � 2cx� �
k2x � 0 is underdamped. To find a particular solution, we can consider the complex
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exponential form of the forcing function, F0eiΩt , which has imaginary part F0 sinΩt.
Assuming a solution of the form zp�t� � AeiΩt , substitution into the differential
equation yields A ��Ω2 � 2icΩ � k2� � F0. Because k2 � Ω2 � 2icΩ � 0 only when
k � Ω and c � 0, we find that

A �
F0

k2 � Ω2 � 2icΩ

or

A �
F0

k2 � Ω2 � 2icΩ


k2 � Ω2 � 2icΩ
k2 � Ω2 � 2icΩ

�
k2 � Ω2 � 2icΩ�k2 � Ω2�2

� 4c2Ω2
F0 � H�iΩ�F0.

Therefore, a particular solution is zp�t� � H�iΩ�F0eiΩt . Now, we can write H�iΩ� in
polar form as H�iΩ� � M�Ω�eiΦ�Ω�, where

M�Ω� �
1��k2 � Ω2� � 4c2Ω2

and Φ�Ω� � cot�1 �Ω2 � k2

2cΩ
� , �Π � Φ � 0.

A particular solution can then be written as

zp�t� � M�Ω�F0eiΩt eiΦ�Ω� � M�Ω�F0ei�Ωt�Φ�Ω��

with imaginary part M�Ω�F0 sin�Ωt � Φ�Ω��, so we take the particular solution to be
xp�t� � M�Ω�F0 sin�Ωt � Φ�Ω��. Comparing the forcing function to xp, we see that the
two functions have the same form but with differing amplitudes and phase shifts.
The ratio of the amplitude of the particular solution (or steady-state), M�Ω�F0, to
that of the forcing function, F0, is M�Ω� and is called the gain. Also, xp is shifted
in time by �Φ�Ω��/Ω radians to the right, so Φ�Ω� is called the phase shift. When we
graph the gain and the phase shift against Ω (using a log10 scale on the Ω-axis) we
obtain the Bodé plots. Engineers refer to the value of 20 log10 M�Ω� as the gain in
decibels.

EXAMPLE 5.3.3: Solve the initial-value problem

�		

		
�

x�� � 2x� � 4x � sin 2t

x�0� � 1/2, x��0� � 1.

(a) Graph the solution simultaneously with the forcing function f �t� �
sin 2t. Approximate M�2� and Φ�2� using this graph. (b) Graph the corre-
sponding Bodé plots. Compare the values of M�2� and Φ�2� with those
obtained in (a).
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SOLUTION: First, we define the nonhomogeneous differential equa-
tion in eq. Next, we solve the initial-value problem in sol.

In[1002]:= Clear�eq�

eq � x���t� � 2 x��t� � 4 x�t� �� Sin�2 t�

sol � DSolve�
eq,
x�0� ��

1

2
,x��0� �� 1�,x�t�,t�//Simplify

Out[1002]= ��x�t	 
 1

12
��t � � 3 �t Cos�2 t	

�9 Cos�

3 t� � 7



3 Sin�


3 t����
We extract the formula for the solution with sol[[1,1,2]] and graph
it simultaneously with f �t� � sin 2t using a lighter level of gray for
the graph of f �t� � sin 2t in Figure 5-52. Clicking inside the graphics
cell and holding down the Command key, we use the cursor to see
that a minimum value of the forcing function occurs near 5.49 and a
minimum value of sol[[1,1,2]] happens near 6.26. Therefore, the
solution is shifted approximately 6.26 � 5.49 � 0.77 units to the right.
Returning to the solution containing Ωt � Φ�Ω� � 2 �t � 1

2Φ�2��, we see
that 1

2Φ�2� � �0.77, so Φ�2� � �1.54. Using a similar technique (with
the Command key and cursor), we approximate the amplitude of the
steady-state solution (after it dies down) to be 0.255. Therefore from the
graph, M�2� � 0.255.

2 4 6 8 10

-1

-0.5

0.5

1

Figure 5-52 Plots of x�t� and f �t� � sin 2t
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Figure 5-53 A log–log plot of M�Ω�20

In[1003]:= Plot��sol��1,1,2��,Sin�2 t�	,�t,0,10	,
PlotStyle 
 �GrayLevel�0�,
GrayLevel�0.5�	�

In[1004]:= 6.26 � 5.49

Out[1004]= 0.77

(b) In the equation x�� � 2x� � 4x � sin 2t, 2c � 2 and k2 � 4. Therefore,
c � 1 and k � 2. We define the gain function based on these constants
in m[w]. Because the graph of M�Ω� is a log–log graph, we load the
Graphics package to take advantage of the LogLogPlot command.
We graph m[w]ˆ20 because engineers are interested in 20 log10 M�Ω� �
log10 M�Ω�20. See Figure 5-53. In (a), we obtained M�2� � 0.255. With the
formula for M�Ω�, we find that M�2� � 0.25.

In[1005]:= k � 2

c � 1

m�w � ��
1�

�k2 � w2�2 � 4 c2 w2

In[1006]:= << Graphics‘Graphics‘

In[1007]:= LogLogPlot�m�w�20,�w,0.1,10	�
In[1008]:= N�m�2��

Out[1008]= 0.25

The branch of y � cot�1 x used by Mathematica is not continuous at x � 0
as seen in Figure 5-54.
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Figure 5-54 Plot of Mathematica’s inverse cotangent function

In[1009]:= Plot�ArcCot�x�,�x,�10,10	�

However, we can construct a function continuous at x � 0 as we do in
newarccot. See Figure 5-55.

In[1010]:= Clear�newarccot�

newarccot�x � �� ArcCot�x�/x � 0

newarccot�x � �� ArcCot�x� � Π/x < 0

In[1011]:= Plot�newarccot�x�,�x,�10,10	�

Using newarccot, we are able to graph Φ�Ω� in Figure 5-56. We define
Φ�Ω� so that it returns an angle between �180o and 0o.
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Figure 5-55 The branch is continuous at x � 0
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Figure 5-56 Plot of Φ�Ω�

In (a), we found Φ�2� � �1.54 (radians). Here, we see that Φ�2� �
�90o. However, �Π/2 � �1.57, so the approximations of M�2� and Φ�2�
obtained in (a) are quite accurate.

In[1012]:= Clear�Φ�

Φ�w � ��
180 newarccot� w2�k2

2 c w
�

Π
� 180

In[1013]:= Plot�Φ�w�,�w,0.1,10	�

In[1014]:= N�Φ�2��

Out[1014]= �90.

5.3.4 The Catenary

The solution of the second-order nonlinear equation

�				

				
�

d2y
dx2

�
1
a

�
1 � �dy

dx
�2

y�0� � a,
dy
dx
�0� � 0

is called a catenary.
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In[1015]:= DSolve��y���x� �� 1/a Sqrt�1 � y��x�ˆ2�,y�0� �� a,
y��0� �� 0	,y�x�,x�

Out[1015]= ��y�x	 
 a Cosh�x
a

��,�y�x	 
 2 a � a Cosh��� a Π � x
a

��,�y�x	 
 2 a � a Cosh�� a Π � x
a

���
A flexible wire or cable suspended between two poles of the same height takes the
shape of the catenary, y � cosh x is defined by

cosh x � 1
2 �e

x � e�x�.
y � c � a cosh � x

a
� , a > 0. (5.27)

EXAMPLE 5.3.4: A flexible cable with length 150 feet is to be sus-
pended between two poles with height 100 feet. How far apart must
the poles be spaced so that the bottom of the cable is 50 feet off the
ground?

SOLUTION: Let 2s denote the distance the poles must be separated

and f �x, c, a� � c � a cosh � x
a

�.
In[1016]:= f�x ,c ,a � � c � aCosh�x/a�

Out[1016]= c � a Cosh�x
a

�
At the endpoints, x � �s and x � s,

f ��s, c, a� � f �s, c, a� � c � a cosh � s
a

� � 100 or cosh2 � s
a

� � �100 � c
a

�2

. (5.28)

The minimum of f is attained at x � 0 and must be 50:

f �0, c, a� � a � c � 50. (5.29)

The length of the wire is 150 feet so by the arc length formula The length, L, of the smooth
curve y � f �x� from x � a to
x � b is
L � � b

a

�
1 � � f ��x��2 dx.� s

�s

�
1 � �d f

dx
�2

dx � 2a sinh � s
a

� � 150 or sinh2 � s
a

� � �75
a

�2

. (5.30)

In[1017]:= df � D�f�x,c,a�,x�

Out[1017]= Sinh�x
a

�
In[1018]:= length � Integrate�Sqrt�1 � dfˆ2�,

�x,�s,s	�//PowerExpand

Out[1018]= 2 a Sinh�s
a

�
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In[1019]:= f��s,c,a� �� 100

eq1 � f�s,c,a� �� 100

eq2 � f�0,c,a� �� 50

eq3 � length �� 150

Out[1019]= c � a Cosh�s
a

� �� 100

Out[1019]= c � a Cosh�s
a

� �� 100

Out[1019]= a � c �� 50

Out[1019]= 2 a Sinh�s
a

� �� 150

Mathematica can solve equations (5.28), (5.29), and (5.30) for s, a, and c
as they are written.

In[1020]:= vals � Solve��eq1,eq2,eq3	,�s,a,c	�

Out[1020]= ��c 
 75

4
,s 


125

4
ArcCosh�13

5
�,a 
 125

4
��

In[1021]:= vals//N

Out[1021]= ��c 
 18.75,s 
 50.2949,a 
 31.25

The system can also be solved by hand if you use the identity cosh2 x �
sinh2 x � 1. Subtracting equation (5.30) from equation (5.28) gives us

1 � cosh2 � s
a

� � sinh2 � s
a

� � �100 � c
a

�2

� �75
a

�2

. (5.31)

We use ContourPlot to graph equations (5.29) and (5.31) together in
Figure 5-57. The coordinates of the intersection point, �a, c� are the solu-
tions to the system �(5.29), (5.31)�.

In[1022]:= p1 � ContourPlot�4375 � 200 c � c2

a2
,

�a,0.01,50	,�c,0,50	,Contours� > �1	,

ContourShading� > False,

DisplayFunction� > Identity�
p2 � ContourPlot�a � c,

�a,0.01,50	,�c,0,50	,Contours� > �50	,
ContourShading� > False,

DisplayFunction� > Identity�
Show�p1,

p2,DisplayFunction� > $DisplayFunction�
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Figure 5-57 Graph of equations (5.29) and (5.31) together

Solving equations (5.29) and (5.31) for a and c with Solve gives us
a � 125/4 and c � 75/4.

In[1023]:= acvals � Solve����100 � c�/a�ˆ2
��75/a�ˆ2 �� 1,a � c �� 50	,�a,c	�

Out[1023]= ��c 
 75

4
,a 


125

4
��

Substituting these values into equation (5.28) and solving for s gives us
s � 125

5 cosh�1 �13/5� � 50.2949.

In[1024]:= eq1b � eq1/.acvals��1��

Out[1024]=
75

4
�
125

4
Cosh�4 s

125
� �� 100

In[1025]:= Solve�eq1b,s�

Out[1025]= ��s 
 �
125

4
ArcCosh�13

5
��,

�s 
 125

4
ArcCosh�13

5
���
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Figure 5-58 The two poles and cable using the s, c, and a values obtained in Example 5.3.4

In[1026]:= N�%�

Out[1026]= ��s 
 �50.2949,�s 
 50.2949

Using these values, we visualize the cable and poles in Figure 5-58.

In[1027]:= p1 � Graphics��Thickness�0.02�,
Line����50.2949,0	,��50.2949,100		�,
Line���50.2949,0	,�50.2949,100		�	�

p2 � Plot�f�x, 75

4
,
125

4
�,�x,�50.2949,

50.2949	,DisplayFunction� > Identity�
Show�p1,p2,Axes� > Automatic,

AxesOrigin� > �0,0	�

Using the same notation as Example 5.3.4, if a flexible cable with length 150 feet is
suspended between two poles with height 100 feet, the distance between the two
poles, 2s, satisfies 0 < s < 75. Let h denote the distance from the bottom of the cable
to the ground. Then,

f ��s, c, a� � f �s, c, a� � 100,

f �0, c, a� � h, and

� s

�s

�
1 � �d f

dx
�2

dx � 2a sinh � s
a

� � 150.

(5.32)
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In[1028]:= f��s,c,a� �� 100

eq1 � f�s,c,a� �� 100

eq2 � f�0,c,a� �� h

eq3 � length �� 150

Out[1028]= c � a Cosh�s
a

� �� 100

Out[1028]= c � a Cosh�s
a

� �� 100

Out[1028]= a � c �� h

Out[1028]= 2 a Sinh�s
a

� �� 150

We use Solve to solve system (5.32) for s, c, and a. Mathematica returns two
solutions.

In[1029]:= posheights � Solve��eq1,eq2,eq3	,�s,c,a	�

Out[1029]= ��c 
 �4375 � h2

2 ��100 � h�
,

s 
 �
�4375 � 200 h � h2� ArcCosh� �15625�200 h�h2

4375�200 h�h2 �
2 ��100 � h�

,

a 

4375 � 200 h � h2

�200 � 2 h
�,�c 
 �4375 � h2

2 ��100 � h�
,

s 

�4375 � 200 h � h2� ArcCosh� �15625�200 h�h2

4375�200 h�h2 �
2 ��100 � h�

,

a 

4375 � 200 h � h2

�200 � 2 h
��

We are assuming that a is positive so the meaningful solution is the one for which
a is positive. We graph each a, s, and c for each component given in posheights
in Figure 5-59.
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Figure 5-59 Mathematica gives two solutions to system (5.32); the second solution is the
meaningful one because a > 0

In[1030]:= p1 � Plot�Evaluate��a,s,c	/.posheights��1���,
�h,0,100	,PlotStyle� >
�GrayLevel�0�,Dashing��0.01	�,
GrayLevel�0.5�	,PlotRange� > �0,100	,
DisplayFunction� > Identity�

p2 � Plot�Evaluate��a,s,c	/.posheights��2���,
�h,0,100	,PlotStyle� >
�GrayLevel�0�,Dashing��0.01	�,
GrayLevel�0.5�	,PlotRange� > �0,100	,
DisplayFunction� > Identity�

Show�GraphicsArray��p1,p2	��

Using the results of the second solution given by Mathematica, we are able to
generate a graphics array illustrating the position of the poles and the cable for
various heights, h, in Figure 5-60.

In[1031]:= Clear�wire�
wire�h ,opts � �� Module��a,s,c,p1,p2	,

a �
4375 � 200 h � h2

�200 � 2 h


s � �
�4375 � 200 h � h2� ArcCosh��15625�200 h�h2

4375�200 h�h2 �

2 ��100 � h�


c �
�4375 � h2

2 ��100 � h�


p1 � Graphics��Thickness�0.02�,Line����s,0	,
��s,100		�,Line���s,0	,�s,100		�	�

p2 � Plot�c � aCosh�x/a�,�x,�s,s	,
DisplayFunction� > Identity�

Show�p1,p2,Axes� > Automatic,AxesOrigin� > �0,0	,
PlotRange� > ���75,75	,�0,110		,opts,
DisplayFunction� > Identity� �	�
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Figure 5-60 An array illustrating how two poles of height 100 feet can be connected by a
flexible cable of length 150 feet

In[1032]:= graphs � Table�wire�n�,�n,26,99,�99 � 26�/15	�
toshow � Partition�graphs,4�
Show�GraphicsArray�toshow��

EXAMPLE 5.3.5: According to our electric utility, Excelsior Electric Mem-
bership Corp (EMC), Metter, Georgia, due to terrain, easements, and so
on, the average distance between utility poles ranges from 325 to 340
feet. Each pole is approximately 40 feet long with 6 feet buried so that
the length of the pole from the ground to the top of the pole is 34 feet.
The Georgia Department of Transportation states that the maximum height
of a truck using interstates, national, and state routes is 13’ 6”. How-
ever, special permits may be granted by the DOT for heights up to 18’
0”. With these restrictions in mind, EMC maintains a minimum clear-
ance of 20’ under those lines it installs during cooler months because
expansion causes lines to sag during warmer months. For the obvious
reasons, EMC prefers that the distance from its lines to the ground is
greater than 18’ 6” at all times.

Find c and a so that f �x, c, a� � c � a cosh � x
a

� models this situation.
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SOLUTION: Centering f �x, c, a� � c � a cosh � x
a

� at x � 0, we require

that

f ��170, c, a� � f �170, c, a� � 34, and

f �0, c, a� � 20.
(5.33)

In[1033]:= f�x ,c ,a � � c � aCosh�x/a�

Out[1033]= c � a Cosh�x
a

�
In[1034]:= df � D�f�x,c,a�,x�

Out[1034]= Sinh�x
a

�
In[1035]:= f�170,c,a�

Out[1035]= c � a Cosh�170
a

�
In[1036]:= f�0,c,a�

Out[1036]= a � c

Mathematica cannot solve system (5.33) exactly with Solve

In[1037]:= Solve�
c � a Cosh�170
a

� �� 34,

a � c �� 20�,�a,c	�
Solve �� "tdep" � "Theequationsappeartoinvolve

transcendentalfunctionsofthevariablesin

anessentiallynon � algebraicway."

Out[1037]= Solve��c � a Cosh�170
a

� �� 40,

a � c �� 20�,�a,c�
but using ContourPlot to graph the equations f �170, c, a� � 34 and
f �0, c, a� � 20 together as shown in Figure 5-61 shows us that the system
does have a solution.
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Figure 5-61 Graphs of equations f �170, c, a� � 40 and f �0, c, a� � 20: the intersection point
is difficult to see

In[1038]:= cp1 � ContourPlot�f�170,c,a�,
�c,�3000,0	,�a,1,3000	,
Contours� > �34	,
ContourShading� > False,
PlotPoints� > 200,
AxesOrigin� > �0,0	,Frame� > False,
Axes� > Automatic,
DisplayFunction� > Identity,
AxesLabel� > �"c","a"	�

cp2 � ContourPlot�a � c,�c,�3000,0	,
�a,1,3000	,Contours� > �20	,
ContourShading� > False,
PlotPoints� > 200,
AxesOrigin� > �0,0	,Frame� > False,
Axes� > Automatic,
DisplayFunction� > Identity,
AxesLabel� > �"c","a"	�

g1 � Show�cp1,cp2,
DisplayFunction� > $DisplayFunction�

We use FindRoot to find the solution.
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Figure 5-62 Plot of f �170, 20 � a, a� and a � 34 together: the solution for a is much easier
to see

In[1039]:= FindRoot�
c � a Cosh�170
a

� �� 34,a � c �� 20�,
�a,1500	,�c,�1500	�

Out[1039]= �a 
 1034.47,c 
 �1014.47

However, using c � 20�a we graph f �170, 20�a, a� and a � 34 together
in Figure 5-62. The solution is much easier to see in Figure 5-62 than in
Figure 5-61.

In[1040]:= Plot��f�170,20 � a,a�,34	,�a,0,3000	,
PlotStyle� > �GrayLevel�0�,
GrayLevel�0.6�	,
PlotRange� > ��0,2000	,�0,200		,
AspectRatio� > 1,AxesLabel� > �"a",""	�

Now, we obtain the same results with FindRoot and Solve as we did
previously with FindRoot.

In[1041]:= aval � FindRoot�f�170,20 � a,
a� �� 34,�a,1100	�

Out[1041]= �a 
 1034.47

In[1042]:= aval��1,2��

Out[1042]= 1034.47
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Figure 5-63 A graphic illustrating how a utility line like an electrical cable may be
connected between two poles of equal height

In[1043]:= cval � 20 � a/.aval��1��

Out[1043]= �1014.47

In[1044]:= length/.�s� > 170,aval��1��	

Out[1044]= 341.532

In[1045]:= Solve�a � c �� 20,c�

Out[1045]= ��c 
 20 � a

With the results obtained above, we generate a plot illustrating the
hanging wire in Figure 5-63.

In[1046]:= p1b � Graphics��Thickness�0.01�,
Line����170,0	,��170,34		�,
Line���170,0	,�170,34		�	�

p2b � Plot�Evaluate�f�x,cval,
aval��1,2����,�x,�170,170	,
DisplayFunction� > Identity�

Show�p1b,p2b,Axes� > None,
AxesOrigin� > �0,0	,
AspectRatio� > Automatic�
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6Systems of Ordinary
Differential
Equations

6.1 Review of Matrix Algebra and Calculus

Because of their importance in the study of systems of linear equations, we now
review matrices and the operations associated with them.

6.1.1 Defining Nested Lists, Matrices, and Vectors

In Mathematica, a matrix is a list of lists where each list represents a row of the
matrix. Therefore, the m � n matrix

A �

*++++++++++++++
,

a11 a12 a13    a1n

a21 a22 a23    a2n

a31 a32 a33    a3n

� � � �

am1 am2 am3    amn

-..............
/

.

is entered with A={{a11,a12,...,a1n},{a21,a22,...,a2n},...,{am1,
am2,...amn}}. For example, to use Mathematica to define m to be the matrix

A � �a11 a12

a21 a22
� enter the command

m={{a11,a12},{a21,a22}}.

The command m=Array[a,{2,2}] produces a result equivalent to this. Once
a matrix A has been entered, it can be viewed in the traditional row-and-column

411
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form using the command MatrixForm[A]. You can quickly construct 2 � 2As when using
TableForm, the result of
using MatrixForm is no
longer a list that can be
manipulated using
Mathematica commands. Use
MatrixForm to view a
matrix in traditional
row-and-column form. Do
not attempt to perform
matrix operations on a
MatrixForm object.

matrices by clicking on the button from the BasicTypesetting palette, which
is accessed by going to File under the Mathematica menu, followed by Palettes
and then BasicTypesetting.

Alternatively, you can construct matrices of any dimension by going to the Math-
ematica menu under Input and selecting Create Table/Matrix/Palette...
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The resulting pop-up window allows you to create tables, matrices, and palettes.
To create a matrix, select Matrix, enter the number of rows and columns of the
matrix, and select any other options. Pressing the OK button places the desired
matrix at the position of the cursor in the Mathematica notebook.

EXAMPLE 6.1.1: Use Mathematica to define the matrices
*++++++
,

a11 a12 a13

a22 a22 a23

a31 a32 a33

-......
/

and �b11 b12 b13 b14

b21 b22 b23 b24
�.

SOLUTION: In this case, both Table�ai,j, �i, 1, 3�, �j, 1, 3�� and Array
[a,{3,3}] produce equivalent results when we define matrixa to be
the matrix

*++++++
,

a11 a12 a13

a22 a22 a23

a31 a32 a33

-......
/

.

The commands MatrixForm or TableForm are used to display the
results in traditional matrix form.

In[1047]:= Clear�a,b,matrixa,matrixb�

In[1048]:= matrixa � Table�ai,j,�i,1,3	,�j,1,3	�

Out[1048]= ��a1,1,a1,2, a1,3,

�a2,1,a2,2, a2,3,�a3,1,a3,2, a3,3

In[1049]:= MatrixForm�matrixa�
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Out[1049]= �a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

�
In[1050]:= matrixa � Array�a,�3,3	�

Out[1050]= ��a�1,1	,a�1,2	,a�1,3	,
�a�2,1	,a�2,2	,a�2,3	,
�a�3,1	,a�3,2	,a�3,3	

In[1051]:= MatrixForm�matrixa�

Out[1051]= �a�1,1	 a�1,2	 a�1,3	
a�2,1	 a�2,2	 a�2,3	
a�3,1	 a�3,2	 a�3,3	

�
We may also use Mathematica to define nonsquare matrices.

In[1052]:= matrixb � Array�b,�2,4	�

Out[1052]= ��b�1,1	,b�1,2	,b�1,3	,b�1,4	,
�b�2,1	,b�2,2	,b�2,3	,b�2,4	

In[1053]:= MatrixForm�matrixb�

Out[1053]= �b�1,1	 b�1,2	 b�1,3	 b�1,4	
b�2,1	 b�2,2	 b�2,3	 b�2,4	

�
Equivalent results would have been obtained by entering Table�bi,j,
�i, 1, 2�, �j, 1, 4��.

More generally the commands Table[f[i,j],{i,imax},{j,jmax}] and
Array[f,{imax,jmax}] yield nested lists corresponding to the imax � jmax

matrix
*++++++++++
,

f �1, 1� f �1, 2�    f �1, jmax�
f �2, 1� f �2, 2�    f �2, jmax�

� � � �

f �imax, 1� f �imax, 2�    f �imax, jmax�

-..........
/

.

Table[f[i,j],{i,imin,imax,istep},{j,jmin,jmax,jstep}] returns
the list of lists

{{f[imin,jmin],f[imin,jmin+jstep],...,f[imin,jmax]},
{f[imin+istep,jmin],...,f[imin+istep,jmax]},

...,{f[imax,jmin],...,f[imax,jmax]}}

and the command

Table[f[i,j,k,...],{i,imin,imax,istep},{j,jmin,jmax,jstep},
{k,kmin,kmax,kstep},...]
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calculates a nested list; the list associated with i is outermost. If istep is omitted,
the stepsize is one.

In Mathematica, a vector is a list of numbers and, thus, is entered in the same
manner as lists. For example, to use Mathematica to define the row vector
vector v to be �v1 v2 v3� enter vector v={v1,v2, v3}. Similarly, to define the

column vector vector v to be
*++++++
,

v1

v2

v3

-......
/

enter vector v={v1,v2,v3} or vector v=

{{v1},{v2},{v3}}. For a 2� 1 vector, you can use the button on the Basic-

With Mathematica, you do
not need to distinguish
between row and column
vectors. Provided that
computations are
well-defined, Mathematica
carries them out correctly.
Mathematica warns of any
ambiguities when they
(rarely) occur.

Typesetting palette. Generally, with Mathematica you do not need to distinguish
between row and column vectors: Mathematica performs computations with vec-
tors and matrices correctly as long as the computations are well-defined.

EXAMPLE 6.1.2: Define the vector w �
*++++++
,

�4
�5
2

-......
/

, vectorv to be the vector

�v1 v2 v3 v4�, and zerovec to be the vector �0 0 0 0 0�.
SOLUTION: To define w, we enter

In[1054]:= w � ��4,�5,2	

Out[1054]= ��4,�5,2

or

In[1055]:= w � ���4	,��5	,�2		

MatrixForm�w�

Out[1055]= ��4�5
2

�
To define vectorv, we use Array.

In[1056]:= vectorv � Array�v,4�

Out[1056]= �v�1	,v�2	,v�3	,v�4	

Equivalent results would have been obtained by entering Table�vi,
�i, 1, 4��. To define zerovec, we use Table.
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In[1057]:= zerovec � Table�0,�5	�

Out[1057]= �0,0,0,0,0

The same result is obtained by going to Input under the Mathematica
menu and selecting Create Table/Matrix/Palette...

In[1058]:= �0 0 0 0 0 �

Out[1058]= ��0,0,0,0,0

6.1.2 Extracting Elements of Matrices

For the 2 � 2 matrix m � ��a1,1, a1,2�, �a2,1, a2,2�� defined earlier, m[[1]] yields the
first element of matrix m which is the list �a1,1, a1,2� or the first row of m; m[[2,1]]
yields the first element of the second element of matrix m which is a2,1. In general,
if m is an i � j matrix, m[[i,j]] or Part[m,i,j] returns the unique element in
the ith row and jth column of m. More specifically, m[[i,j]] yields the jth part
of the ith part of m; list[[i]] or Part[list,i] yields the ith part of list;
list[[i,j]] or Part[list,i,j] yields the jth part of the ith part of list, and
so on.

EXAMPLE 6.1.3: Define mb to be the matrix
*++++++
,

10 �6 �9
6 �5 �7

�10 9 12

-......
/

. (a) Extract

the third row of mb. (b) Extract the element in the first row and third
column of mb. (c) Display mb in traditional matrix form.

SOLUTION: We begin by defining the command mb. mb[[i,j]]
yields the (unique) number in the ith row and jth column of mb.
Observe how various components of mb (rows and elements) can be
extracted and how mb is placed in MatrixForm.

In[1059]:= mb � ��10,�6,�9	,�6,�5,�7	,
��10,9,12		

In[1060]:= MatrixForm�mb�

Out[1060]= � 10 �6 �9
6 �5 �7

�10 9 12
�
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In[1061]:= mb��3��

Out[1061]= ��10,9,12

In[1062]:= mb��1,3��

Out[1062]= �9

If m is a matrix, the ith row of m is extracted with m[[i]]. The command
Transpose[m] yields the transpose of the matrix m, the matrix obtained by
interchanging the rows and columns of m. We extract columns of m by computing
Transpose[m] and then using Part to extract rows from the transpose. Namely,
if m is a matrix, Transpose[m][[i]] extracts the ith row from the transpose of
m which is the same as the ith column of m.

EXAMPLE 6.1.4: Extract the second and third columns from A if A �
*++++++
,

0 �2 2
�1 1 �3
2 �4 1

-......
/

.

SOLUTION: We first define matrixa and then use Transpose to
compute the transpose of matrixa, naming the result ta, and then
displaying ta in MatrixForm.

In[1063]:= matrixa � ��0,�2,2	,��1,1,�3	,
�2,�4,1		

In[1064]:= ta � Transpose�matrixa�

MatrixForm�ta�

Out[1064]= � 0 �1 2
�2 1 �4
2 �3 1

�
Next, we extract the second column of matrixa using Transpose
together with Part ([[...]]). Because we have already defined ta
to be the transpose of matrixa, entering ta[[2]] would produce the
same result.

In[1065]:= Transpose�matrixa���2��

Out[1065]= ��2,1,�4
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To extract the third column, we take advantage of the fact that we have
already defined ta to be the transpose of matrixa. Entering
Transpose [matrixa][[3]] produces the same result.

In[1066]:= ta��3��

Out[1066]= �2,�3,1

Other commands that can be used to manipulate matrices are included in the
MatrixManipulation package, which is contained in the Linear Algebra folder
(or directory).
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After this package has been loaded,

In[1067]:= << LinearAlgebra‘MatrixManipulation‘

we can use commands like TakeColumns and TakeRows to extract columns and
rows from a given matrix. For example, entering

In[1068]:= TakeColumns�matrixa,�2	�//MatrixForm

Out[1068]= ��21
�4

�
extracts the second column of the matrix A defined in the previous example and
displays the result in MatrixForm while entering

In[1069]:= TakeColumns�matrixa,�2,3	�//
MatrixForm

Out[1069]= ��2 2
1 �3

�4 1
�

extracts the second and third columns of A and displays the result in Matrix
Form.

6.1.3 Basic Computations with Matrices

Mathematica performs all of the usual operations on matrices. Matrix addition
(A � B), scalar multiplication (kA), matrix multiplication (when defined) (AB),
and combinations of these operations are all possible. The transpose of A, At ,
is obtained by interchanging the rows and columns of A and is computed with
the command Transpose[A]. If A is a square matrix, the determinant of A is
obtained with Det[A].

If A and B are n � n matrices satisfying AB � BA � I, where I is the n � n
matrix with 1s on the diagonal and 0s elsewhere (the n � n identity matrix), B is
called the inverse of A and is denoted by A�1. If the inverse of a matrix A exists,

the inverse is found with Inverse[A]. Thus, assuming that �a b
c d

� has an inverse

(ad � bc # 0), the inverse is

In[1070]:= Inverse���a,b	,�c,d		�

Out[1070]= �� d

�b c � a d
,�

b

�b c � a d
�,� �

c

�b c � a d
,

a

�b c � a d
��
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EXAMPLE 6.1.5: Let A �
*++++++
,

3 �4 5
8 0 �3
5 2 1

-......
/

and B � � 10 �6 �9
6 �5 �7

�. Compute

(a)A � B; (b) B � 4A; (c) the inverse of AB; (d) the transpose
of �A � 2B� B; and (e) det A � �A�.

SOLUTION: We enter ma (corresponding to A) and mb (corresponding
to B) as nested lists where each element corresponds to a row of the
matrix. We suppress the output by ending each command with a semi-
colon.

In[1071]:= ma � ��3,�4,5	,�8,0,�3	,�5,2,1		

mb � ��10,�6,�9	,�6,�5,�7	,
��10,9,12		

Entering

In[1072]:= ma � mb//MatrixForm

Out[1072]= �13 �10 �4
14 �5 �10
�5 11 13

�
adds matrix ma to mb and expresses the result in traditional matrix
form. Entering

In[1073]:= mb � 4ma//MatrixForm

Out[1073]= � �2 10 �29
�26 �5 5
�30 1 8

�
subtracts four times matrix ma from mb and expresses the result in tra-
ditional matrix form. Entering

In[1074]:= Inverse�ma.mb�//MatrixForm

Out[1074]= �
59

380

53

190
�
167

380

�
223

570
�
92

95

979

570
49

114

18

19
�
187

114

�
computes the inverse of the matrix product AB. Similarly, entering

Matrix products, when
defined, are computed by
placing a period (.) between
the matrices being multiplied.
Note that a period is also
used to compute the dot
product of two vectors,
when the dot product is
defined.

In[1075]:= Transpose��ma � 2mb�.mb�//MatrixForm

Out[1075]= ��352 �90 384
269 73 �277
373 98 �389

�
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computes the transpose of �A � 2B�B and entering

In[1076]:= Det�ma�

Out[1076]= 190

computes the determinant of ma.

EXAMPLE 6.1.6: Compute AB and BA if A �
*++++++
,

�1 �5 �5 �4
�3 5 3 �2
�4 4 2 �3

-......
/

and

B �

*++++++++++
,

1 �2
�4 3

4 �4
�5 �3

-..........
/

.

SOLUTION: Because A is a 3 � 4 matrix and B is a 4 � 2 matrix, AB
is defined and is a 3� 2 matrix. We define matrixa and matrixb with Remember that you can also

define matrices by going to
Input under the
Mathematica menu and
selecting Create
Table/Matrix/Palette....
After entering the desired
number of rows and columns
and pressing the OK button,
a matrix template is placed at
the location of the cursor
that you can fill in.

the following commands.

In[1077]:= matrixa � ��1 �5 �5 �4
�3 5 3 �2
�4 4 2 �3

�
In[1078]:= matrixb �

!""""""""
#

1 �2
�4 3
4 �4
�5 �3

$%%%%%%%%
&



We then compute the product, naming the result ab, and display ab in
MatrixForm.

In[1079]:= ab � matrixa.matrixb

MatrixForm�ab�

Out[1079]= �19 19
�1 15
3 21

�
However, the matrix product BA is not defined and Mathematica pro-
duces error messages when we attempt to compute it.
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In[1080]:= matrixb.matrixa
Dot �� dotsh �

Tensors ��1,�2,��4,3,�4,�4,��5,�3

and ���1,�5,�5,�4,��3,5,3,�2,

��4,4,2,�3 have incompatible shapes.

Out[1080]= ��1,�2,��4,3,�4,�4,��5,�3.
���1,�5,�5,�4,
��3,5,3,�2,��4,4,2,�3

6.1.4 Eigenvalues and Eigenvectors

Let A be an n � n matrix. The number Λ is an eigenvalue of A if there is a nonzero
vector, v, called an eigenvector, satisfying

Av � Λv. (6.1)

We find the eigenvalues of A by solving the characteristic polynomial

�A � ΛI� � 0 (6.2)

for Λ. Once we find the eigenvalues, the corresponding eigenvectors are found by
solving

�A � ΛI�v � 0 (6.3)

for v.
If A is a square matrix,

Eigenvalues[A]

finds the eigenvalues of A,

Eigenvectors[A]

finds the eigenvectors, and

Eigensystem[A]

finds the eigenvalues and corresponding eigenvectors.

CharacteristicPolynomial[A,lambda]

finds the characteristic polynomial of A as a function of Λ.
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EXAMPLE 6.1.7: Find the eigenvalues and corresponding eigenvectors

for each of the following matrices. (a) A � � �3 2
2 �3

�; (b) A � � 1 �1
1 3

�;

(c) A �
*++++++
,

0 1 1
1 0 1
1 1 0

-......
/

; (d) A � ��1/4 2
�8 �1/4

�.

SOLUTION: (a) We begin by finding the eigenvalues. Solving

�A � ΛI� �
���������3 � Λ 2

2 �3 � Λ

�������� � Λ2 � 6Λ � 5 � 0

gives us Λ1 � �5 and Λ2 � �1.
Observe that the same results are obtained using Characteristic

Polynomial and Eigenvalues.

In[1081]:= capa � ���3,2	,�2,�3		
CharacteristicPolynomial�capa,Λ�//Factor

e1 � Eigenvalues�capa�
Out[1081]= �1 � Λ� �5 � Λ�

Out[1081]= ��5,�1

We now find the corresponding eigenvectors. Let v1 � �x1

y1
� be an eigen-

vector corresponding to Λ1, then

�A � Λ1I�v1 � 0	� �3 2
2 �3

� � ��5� �1 0
0 1

�
 �x1

y1
� � �0

0
�

�2 2
2 2

� �x1

y1
� � �0

0
� ,

which row reduces to �1 1
0 0

� �x1

y1
� � �0

0
� .

That is, x1 � y1 � 0 or x1 � �y1. Hence, for any value of y1 # 0,

v1 � �x1

y1
� � ��y1

y1
� � y1 ��1

1
�
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is an eigenvector corresponding to Λ1. Of course, this represents
infinitely many vectors. But, they are all linearly dependent. Choosing

y1 � 1 yields v1 � ��1
1
�. Note that you might have chosen y1 � �1 and

obtained v1 � � 1
�1

�. However, both of our results are “correct” because

these vectors are linearly dependent.

Similarly, letting v2 � �x2

y2
� be an eigenvector corresponding to Λ2 we

solve �A � Λ2I�v1 � 0:

� �2 2
2 �2

� �x2

y2
� � �0

0
� or �1 �1

0 0
� �x2

y2
� � �0

0
� .

Thus, x2 � y2 � 0 or x2 � y2. Hence, for any value of y2 # 0,

v2 � �x2

y2
� � �y2

y2
� � y2 �1

1
�

is an eigenvector corresponding to Λ2. Choosing y2 � 1 yields v2 � �1
1
�.

We confirm these results using RowReduce.

In[1082]:= i2 � ��1,0	,�0,1		
ev1 � capa � e1��1�� i2

Out[1082]= ��2,2,�2,2

In[1083]:= RowReduce�ev1�

Out[1083]= ��1,1,�0,0

In[1084]:= ev2 � capa � e1��2�� i2

RowReduce�ev2�
Out[1084]= ���2,2,�2,�2

Out[1084]= ��1,�1,�0,0

We obtain the same results using Eigenvectors and Eigensystem.

In[1085]:= Eigenvectors�capa�

Eigensystem�capa�
Out[1085]= ���1,1,�1,1

Out[1085]= ���5,�1,���1,1,�1,1

(b) In this case, we see that Λ � 2 has multiplicity 2. There is only one

linearly independent eigenvector, v � ��1
1
�, corresponding to Λ.
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In[1086]:= capa � ��1,�1	,�1,3		
Factor�CharacteristicPolynomial�capa,Λ��

Eigenvectors�capa�

Eigensystem�capa�

Out[1086]= ��2 � Λ�2

Out[1086]= ���1,1,�0,0

Out[1086]= ��2,2,���1,1,�0,0

(c) The eigenvalue Λ1 � 2 has corresponding eigenvector v1 �
*++++++
,

1
1
1

-......
/

.

The eigenvalue Λ2,3 � �1 has multiplicity 2. In this case, there are two
linearly independent eigenvectors corresponding to this eigenvalue:

v2 �
*++++++
,

�1
0
1

-......
/

and v3 �
*++++++
,

�1
1
0

-......
/

.

In[1087]:= capa � ��0,1,1	,�1,0,1	,�1,1,0		
Factor�CharacteristicPolynomial�capa,Λ��

Eigenvectors�capa�

Eigensystem�capa�

Out[1087]= ���2 � Λ� �1 � Λ�2

Out[1087]= ���1,0,1,��1,1,0,�1,1,1

Out[1087]= ���1,�1,2,���1,0,1,��1,1,0,�1,1,1

(d) In this case, the eigenvalues Λ1,2 � � 1
4  4i are complex conjugates.

We see that the eigenvectors v1,2 � �0
2
� �1

0
� i are complex conjugates as

well.

In[1088]:= capa � ���1/4,2	,��8,�1/4		
Eigenvectors�capa�

Eigensystem�capa�

Out[1088]= ��i,2,��i,2

Out[1088]= �� �
1

4
� 4 i,�

1

4
� 4 i�,��i,2,��i,2�
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6.1.5 Matrix Calculus

Definition 23 (Derivative and Integral of a Matrix). The derivative of the m � n
matrix

A�t� �

*++++++++++++++
,

a11�t� a12�t� a13�t�    a1n�t�
a21�t� a22�t� a23�t�    a2n�t�
a31�t� a32�t� a33�t�    a3n�t�

� � � �

am1�t� am2�t� am3�t�    amn�t�

-..............
/

,

where ai j�t� is differentiable for all values of i and j, is

d
dt

A�t� �

*++++++++++++++
,

d
dt a11�t� d

dt a12�t� d
dt a13�t�    d

dt a1n�t�
d
dt a21�t� d

dt a22�t� d
dt a23�t�    d

dt a2n�t�
d
dt a31�t� d

dt a32�t� d
dt a33�t�    d

dt a3n�t�
� � � �

d
dt am1�t� d

dt am2�t� d
dt am3�t�    d

dt amn�t�

-..............
/

.

The integral of A�t�, where ai j�t� is integrable for all values of i and j, is

� A�t� dt �

*++++++++++++++
,

� a11�t� dt � a12�t� dt � a13�t� dt    � a1n�t� dt� a21�t� dt � a22�t� dt � a23�t� dt    � a2n�t� dt� a31�t� dt � a32�t� dt � a33�t� dt    � a3n�t� dt
� � � �� am1�t� dt � am2�t� dt � am3�t� dt    � amn�t� dt

-..............
/

.

EXAMPLE 6.1.8: Find
d
dt

A�t� and � A�t� dt if A�t� � �cos 3t sin 3t e�t

t t sin t2 et �.

SOLUTION: We find
d
dt

A�t� by differentiating each element of A�t�

with D.

In[1089]:= a � ��Cos�3t�,Sin�3t�,Exp��t�	,
�t,t Sin�tˆ2�,Exp�t�		

D�a,t�//MatrixForm

Out[1089]= ��3 Sin�3t	 3 Cos�3t	 �e�t

1 2t2 Cos�t2	 � Sin�t2	 et
�

Similarly, we find � A�t� dt by integrating each element of A�t� with
Integrate.



6.2 Systems of Equations: Preliminary Definitions and Theory 427

In[1090]:= Integrate�a,t�//MatrixForm

Out[1090]=

�����������
�

Sin�3t	

3
�
Cos�3t	

3
�e�t

t2

2
�
Cos�t2�

2
et

 !!!!!!!!!!
"

Note that Mathematica does not include an arbitrary constant of inte-
gration with each anti-derivative.

6.2 Systems of Equations: Preliminary
Definitions and Theory

Up to this point, we have focused our attention on solving differential equations
that involve one dependent variable. However, many physical situations are mod-
eled with more than one equation and involve more than one dependent variable.
For example, if we want to determine the population of two interacting popula-
tions such as foxes and rabbits, we would have two dependent variables which
represent the two populations where these populations depend on one indepen-
dent variable which represents time. Situations like this lead to systems of differ-
ential equations which we study in this chapter. For example, we encountered a
nonlinear initial-value problem like this Van-der-Pol initial-value problem,

�		

		
�

x�� � �x2 � 1� x� � x � 0

x�0� � 1, x��0� � 1

in Chapter 4. If we let x� � y, then

y� � x�� � � ��x2 � 1� x� � x� � �1 � x2� y � x,

so the second-order equation x�� � �x2 � 1� x� � x � 0 is equivalent to the system of
first-order differential equations

�		

		
�

x� � y

y� � �1 � x2� y � x
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5 10 15 20 25
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2

Figure 6-1 In the limit as t � �, the solution is periodic

and the initial-value problem is equivalent to the initial-value problem

�				

				
�

x� � y

y� � �1 � x2� y � x

x�0� � 1, y�0� � 1.

We use NDSolve to generate a numerical solution to this initial-value problem
valid for 0 � t � 25.

In[1091]:= numsol �

NDSolve�
x��t� �� y�t�,
y��t� �� �1 � x�t�2	 y�t� � x�t�,

x�0� �� 1,y�0� �� 1�,�x�t�,y�t�	,�t,0,25	�
Out[1091]= ��x�t	 


InterpolatingFunction���0.,25.,<>	�t	,
y�t	 
 InterpolatingFunction�

��0.,25.,<>	�t	

We can use this result to approximate the solution for various values of t. For
example, entering

In[1092]:= �x�t�,y�t�	 /. numsol /. t� > 1

Out[1092]= ��1.29848,�0.367035

shows us that x�1� � 1.29848 and x��1� � y�1� � �0.367035. We use Plot to graph
x�t� and y�t� (the graph of y�t� is in gray) in Figure 6-1.

In[1093]:= Plot�Evaluate��x�t�,y�t�	 /. numsol�,�t,0,25	,
PlotStyle� > �GrayLevel�0�,GrayLevel�0.5�	�
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Figure 6-2 The solution approaches a limit cycle

Because we let x� � y, notice that y�t� > 0 when x�t� is increasing and y�t� < 0
when x�t� is decreasing. The observation that these solutions are periodic is fur-
ther confirmed by a graph of x�t� (the horizontal axis) versus y�t� (the vertical axis)
generated with ParametricPlot in Figure 6-2. We see that as t increases, the
solution approaches a certain fixed path, called a limit cycle.

In[1094]:= ParametricPlot��x�t�,y�t�	/.numsol,�t,0,25	,
PlotRange� > ���3,3	,��3,3		,
AspectRatio� > 1,Compiled� > False�

We will find that nonlinear equations are more easily studied when they are writ-
ten as a system of equations.

6.2.1 Preliminary Theory

Definition 24 (System of Ordinary Differential Equations). A system of ordinary
differential equations is a simultaneous set of equations that involves two or more depen-
dent variables that depend on one independent variable. A solution of the system is a set
of functions that satisfies each equation on some interval I.
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If the differential equations in the system of differential equations are linear equa-
tions, we say that the system is a linear system of differential equations or a
linear system.

EXAMPLE 6.2.1: Show that
�		

		
�

x � 1
5 e�t �et � cos 2t � 3 sin 2t�

y � �e�t �cos 2t � sin 2t�
is a solu-

tion to the system
�		

		
�

x� � y � 0

y� � 5x � 2y � 1.

SOLUTION: The set of functions is a solution to the system of equa-
tions because

In[1095]:= Clear�x,y,t�

x�t � �
1

5
Exp��t� �Exp�t� � Cos�2t� � 3 Sin�2t��

y�t � � �Exp��t� �Cos�2t� � Sin�2t��

In[1096]:= x��t� � y�t�//Simplify

Out[1096]= 0

and

In[1097]:= y��t� � 5x�t� � 2y�t�//Simplify

Out[1097]= 1

We graph this solution in several different ways. First, we graph the

solution
�		

		
�

x � x�t�

y � y�t�
parametrically with ParametricPlot in Figure 6-3.

Then, we graph x�t� and y�t� together as functions of t in Figure 6-4.

In[1098]:= ParametricPlot��x�t�,y�t�	,�t,0,3Π	,

PlotRange 
 ���0.5,1	,

��1,0.5		,AspectRatio 
 1�

Plot��x�t�,y�t�	,�t,0,3Π	,

PlotStyle 
 �GrayLevel�0�,GrayLevel�0.5�	,

PlotRange 
 ��1,0.5	�

Notice that limt�� x�t� � 1
5 and limt�� y�t� � 0. Therefore, in the para-

metric plot, the points on the curve approach �1/5, 0� as t increases.
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Figure 6-3 x (on the horizontal axis) versus y (on the vertical axis)
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Figure 6-4 x (in black) and y (in gray) as functions of t

We will discuss techiques for solving systems in the following sections. For now,
we make the following remarks. First, we saw previously that you can often use
NDSolve to generate a numerical solution of a system, which is of particular ben-
efit with nonlinear systems. DSolve can also often be used to find solutions of
linear systems and, in a few special cases, nonlinear systems.
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EXAMPLE 6.2.2: Solve
�		

		
�

x� � 2y

y� � � 1
4 x

and

�				

				
�

x� � 2y

y� � � 1
4 x

x�0� � 2, y�0� � 1.

SOLUTION: DSolve can find a general solution of this linear system.

In[1099]:= gensol � DSolve��x��t� �� 2y�t�,y��t� ��
�1/4 x�t�	,�x�t�,y�t�	,t�

Out[1099]= ��x�t	 
 C�1	 Cos� t

2

� � 2


2 C�2	 Sin� t


2
�,

y�t	 
 C�2	 Cos� t

2

� �
C�1	 Sin� t


2
�

2


2

��
Similarly, DSolve can solve the initial-value problem. The resulting list
is named partsol.

In[1100]:= partsol � DSolve��x��t� �� 2y�t�,
y��t� �� �1/4 x�t�,x�0� �� 2,
y�0� �� 1	,�x�t�,y�t�	,t�

Out[1100]= ��x�t	 
 2 �Cos� t

2

� �


2 Sin� t


2
��,

y�t	 

1

2
�2 Cos� t


2
� �



2 Sin� t


2
����

We use Plot to graph the x and y components of the solution indivi-
dually and ParametricPlot to graph them parametrically. See
Figure 6-5.

In[1101]:= p1 � Plot��x�t�,y�t�	/.partsol,
�t,0,4 Sqrt�2�Π	,
PlotStyle 
 �GrayLevel�0�,
GrayLevel�0.3�	,
AxesLabel 
 �"t","x,y"	,
DisplayFunction 
 Identity�

p2 � ParametricPlot��x�t�,y�t�	/.partsol,
�t,0,2 Sqrt�2�Π	,AxesLabel 
 �"x","y"	,
AspectRatio 
 Automatic,
DisplayFunction 
 Identity�

Show�GraphicsArray��p1,p2	��
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Figure 6-5 (a) Plots of x (in black) and y (in gray). (b) Parametric plot of x versus y
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Figure 6-6 Direction field associated with the system together with the solution to the
initial-value problem

For an autonomous system like this, we use PlotVectorField
to graph the direction field associated with the system. An autonomous system is

one for which the
independent variable does
not explicitly occur in the
equations.

PlotVectorField is contained in the PlotField package that is located
in the Graphics folder (or directory). After loading the PlotField pack-
age,

In[1102]:= << Graphics‘PlotField‘

we use PlotVectorField to graph the direction field associated with
the system and then display the direction field together with the solu-
tion to the initial-value problem in Figure 6-6.

In[1103]:= pvf � PlotVectorField��2 y,�1/4x	,�x,�6,6	,
�y,�3,3	,DisplayFunction 
 Identity�

Show�pvf,p2,PlotRange 
 ���6,6	,��3,3		,
AspectRatio 
 Automatic,
DisplayFunction 
 $DisplayFunction,
Axes 
 Automatic,AxesLabel 
 �"x","y"	�
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In fact, we can show the direction field together with several solutions.
With the following command, we use Map to apply a pure function to
the list {0.5,1,1.5,2,2.5} that solves the system if x�0� � 0 and
y�0� � i for i � 0.5, 1.0, . . . , 2.5.

In[1104]:= severalsols �
Map�DSolve��x��t� �� 2y�t�,
y��t� �� �1/4 x�t�,x�0� �� 2,y�0� �� #	,
�x�t�,y�t�	,t�&,�0.5,1,1.5,2,2.5	�

Out[1104]= ���x�t	 
 2. Cos� t

2

� � 1.41421 Sin� t

2

�,
y�t	 
 0.5 Cos� t


2
�

�0.707107 Sin� t

2

���,
��x�t	 
 2 �Cos� t


2
� �



2 Sin� t


2
��,

y�t	 

1

2
�2 Cos� t


2
� �



2 Sin� t


2
����,

��x�t	 
 2. Cos� t

2

� � 4.24264 Sin� t

2

�,
y�t	 
 1.5 Cos� t


2
�

�0.707107 Sin� t

2

���,
��x�t	 
 2 �Cos� t


2
� � 2



2 Sin� t


2
��,

y�t	 

1

2
�4 Cos� t


2
� �



2 Sin� t


2
����,

��x�t	 
 2. Cos� t

2

� � 7.07107 Sin� t

2

�,
y�t	 
 2.5 Cos� t


2
�

�0.707107 Sin� t

2

����
We then use ParametricPlot to graph the solutions obtained in
severalsols together and display them with the direction field,
named pvf, in Figure 6-7.
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Figure 6-7 Direction field associated with the system together with several solutions of
the system

In[1105]:= p3 � ParametricPlot��x�t�,
y�t�	/.severalsols,
�t,0,2Sqrt�2�Π	,Compiled 
 False,
DisplayFunction 
 Identity�

Show�pvf,p3,PlotRange 
 ���6,6	,��3,3		,
AspectRatio 
 Automatic,
DisplayFunction 
 $DisplayFunction,
Axes 
 Automatic,AxesLabel 
 �"x","y"	�

EXAMPLE 6.2.3: The Jacobi elliptic functions satisfy the nonlinear
system The system is nonlinear

because of the products of
the dependent variables u, v,
and w.
For this system, t is the
independent variable; u � u�t�,
v � v�t�, and w � w�t� are the
dependent variables.

�				

				
�

du/dt � vw

dv/dt � �uw

dw/dt � �k2uv.

Use Mathematica to solve this system.

SOLUTION: Although Mathematica generates several error mes-
sages, we see that Mathematica is able to find a general solution of the
system, although the result is given in terms of the Jacobi elliptic function,
JacobiSN.

In[1106]:= gensol � DSolve��u��t� ��
v�t�w�t�,v��t� �� �u�t�w�t�,
w��t� �� �kˆ2 u�t�v�t�	,
�u�t�,v�t�,w�t�	,t�
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Solve �� ifun � Inverse functions are being used by

Solve, so some solutions may not be found.

Solve �� ifun � Inverse functions are being used by

Solve, so some solutions may not be found.

Solve �� ifun � Inverse functions are being used by

Solve, so some solutions may not be found.

General �� stop � Further output of

Solve �� ifun will be suppressed during this calculation.

Out[1106]= ��u�t	 
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2 t
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�


2
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2 t
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�


2



C�2	 C�3	,

k2 C�1	

C�2	
�2�,

w�t	 
 �

�2 C�2	 � 2 k2 C�1	 JacobiSN�


2 t


C�2	

�


2



C�2	 C�3	,

k2 C�1	

C�2	
�2��,

�u�t	 
 

2



C�1	 JacobiSN�


2 t


C�2	

�


2



C�2	 C�3	,

k2 C�1	

C�2	
�,

v�t	 


�2 C�1	 � 2 C�1	 JacobiSN�


2 t


C�2	

�


2



C�2	 C�3	,

k2 C�1	

C�2	
�2�,

w�t	 


�2 C�2	 � 2 k2 C�1	 JacobiSN�


2 t


C�2	

�


2



C�2	 C�3	,

k2 C�1	

C�2	
�2��,

�u�t	 
 

2



C�1	 JacobiSN� �



2 t



C�2	

�


2



C�2	 C�3	,

k2 C�1	

C�2	
�,

v�t	 
 �

�2 C�1	 � 2 C�1	 JacobiSN� �



2 t



C�2	

�


2



C�2	 C�3	,

k2 C�1	

C�2	
�2�,



6.2 Systems of Equations: Preliminary Definitions and Theory 437

Out[1106]= w�t	 


�2 C�2	 � 2 k2 C�1	
SuperscriptBox�JacobiSN� �
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C�2	��

�
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�2��,�u�t	 
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2
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�2���

We use the Help Browser to obtain information regarding the JacobiSN
function as indicated in the following screen shot.
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As with other equations, under reasonable conditions, a solution to a system of
differential equations always exists.

Theorem 11 (Existence and Uniqueness). Assume that each of the functions

f1 �t, x1, x2, . . . , xn� , f2 �t, x1, x2, . . . , xn� , . . . , fn �t, x1, x2, . . . , xn�

and the partial derivatives � f1/�x1, � f2/�x2, . . . , � fn/�xn are continuous in a region R
containing the point �t0, y1, y2, . . . , yn�. Then, the initial-value problem

�									

									
�

x�1 � f1 �t, x1, x2, . . . , xn�

x�2 � f2 �t, x1, x2, . . . , xn�

�

x�n � fn �t, x1, x2, . . . , xn�

x1 �t0� � y1, x2 �t0� � y2, . . . xn �t0� � yn

(6.4)

has a unique solution
�						

						
�

x1 � Φ1�t�

x2 � Φ2�t�

�

xn � Φn�t�

(6.5)

on an interval I containing t � t0.

EXAMPLE 6.2.4: Show that the initial-value problem

�				

				
�

dx/dt � 2x � xy

dy/dt � �3y � xy

x�0� � 2, y�0� � 3/2

has a unique solution.

SOLUTION: In this case, we identify f1�t, x, y� � 2x � xy and f2�t, x, y� �
�3y � xy with � f1/�x � 2 � y and � f2/�y � �3 � x. All four of these
functions are continuous on a region containing �0, 2, 3/2�. Thus, by the
Existence and Uniqueness Theorem, a unique solution to the initial-
value problem exists. In this case, we use NDSolve to approximate the

DSolve is not able to find
an explicit solution to this
nonlinear system. solution to this nonlinear problem valid for 0 � t � 10.
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Figure 6-8 x�t� (in black) and y�t� (in gray) as functions of t

In[1107]:= Clear�x,y�

numsol �

NDSolve��x��t� �� 2 x�t� � x�t� y�t�,y��t� ��
�3 y�t� � x�t� y�t�,x�0� �� 2,y�0� ��

3

2
�,

�x�t�,y�t�	,�t,0,10	�
Out[1107]= ��x�t	 
 InterpolatingFunction�

��0.,10.,<>	�t	,
y�t	 
 InterpolatingFunction�

��0.,10.,<>	�t	

As illustrated previously, we can use this result to approximate x�t� and
y�t� for various values of t. For example,

In[1108]:= �x�t�,y�t�	 /. numsol /. t� > 4

Out[1108]= ��4.26901,2.62469

shows us that x�4� � 4.26901 and y�4� � 2.62469. Next, we use Plot to
graph x�t� and y�t� individually in Figure 6-8 and ParametricPlot to

graph the parametric equations
�		

		
�

x � x�t�

y � y�t�
in Figure 6-9 for 0 � t � 10.

In[1109]:= p1 � Plot�Evaluate��x�t�,y�t�	/.�numsol�1���,
�t,0,10	,PlotStyle 
 �GrayLevel�0�,

GrayLevel�0.5�	,AspectRatio 

1

2
,

PlotRange 
 �0,5	�
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Figure 6-9 x�t� and y�t� are periodic

The graphs illustrate that the solution to the initial-value problem is
periodic.

In fact, all meaningful (or interesting) solutions to the equation are
periodic. Meaningful (or interesting) solutions are ones for which both
x and y are greater than 0 and neither is constant. To see this, we useLater, we will see that a

system like this is used to
model a basic predator–prey
relationship. In such a model,
x and y represent population
sizes (or ratios) so we are
only interested in solutions
where both of these
quantities are greater than or
equal to 0.

PlotVectorField to graph the direction field associated with the
system. We display the direction field together with the solution to the
initial-value problem in Figure 6-10.

In[1110]:= << Graphics‘PlotField‘

pvf � PlotVectorField��2x � x y,

�3y � x y	,�x,0,5	,�y,0,5	,
DisplayFunction 
 Identity�

Show�p2,pvf�

Although the Existence and Uniqueness Theorem, Theorem 11, guarantees the
existence and uniqueness of a solution, the behavior of the solutions of a system
can be remarkably complicated, even for systems that appear quite simple.
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Figure 6-10 The direction field indicates that all meaningful solutions are periodic

See texts like Jordan and
Smith’s Nonlinear Ordinary
Differential Equations [17]
for discussions of ways to
analyze systems like the
Rössler attractor and the
Lorenz equations.

EXAMPLE 6.2.5 (Rössler Attractor): The Rössler attractor is the
system

�				

				
�

x� � �y � z

y� � x � ay

z� � bx � cz � xz .

(6.6)

Observe that system (6.6) is nonlinear because of the product of the x
and z terms in the z� equation.

If a � 0.4, b � 0.3, x0 � 1, y0 � 0.4, and z0 � 0.7, how does the value of
c affect solutions to the initial-value problem

�						

						
�

x� � �y � z

y� � x � ay

z� � bx � cz � xz

x�0� � x0, y�0� � y0, z�0� � z0?

(6.7)

SOLUTION: By the Existence and Uniqueness Theorem, initial-value
problem (6.7) will always have a unique solution.
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We define the function rosslerplot:

rosslerplot[a,b,c][{x0,y0,z0},{t,a,b}]

1. solves the initial-value problem (6.7) for a � t � b,
2. generates parametric plots of x�t� versus y�t�, y�t� versus z�t�, x�t� ver-

sus z�t�, and x�t� versus y�t� versus z�t�, and displays the four graphics
as a graphics array, and

3. returns a numerical solution to the initial-value problem (6.7) valid
for a � t � b.

If {t,a,b} is omitted from the rosslerplot function, the default is
950 � t � 1000. Any options included are passed to the Show command.

In[1111]:= rosslerplot�a ,b ,c ���x0 ,y0 ,
z0 	,ts ��t,950,1000	,opts � ��

Module��numsol	,numsol �
NDSolve��x��t� �� �y�t� � z�t�,
y��t� �� x�t� � a y�t�,
z��t� �� b x�t� � c z�t�
�x�t�z�t�,x�0� �� x0,
y�0� �� y0,z�0� �� z0	,
�x�t�,y�t�,z�t�	,
ts,MaxSteps 
 100000�

p1a � ParametricPlot�
Evaluate��x�t�,y�t�	/.numsol�,ts,
PlotPoints 
 1000,AspectRatio 
 1,
AxesLabel 
 �"x","y"	,
DisplayFunction 
 Identity�

p1b � ParametricPlot�
Evaluate��x�t�,z�t�	/.numsol�,ts,
PlotPoints 
 1000,AspectRatio 
 1,
AxesLabel 
 �"x","z"	,
PlotRange 
 All,
DisplayFunction 
 Identity�

p1c � ParametricPlot�
Evaluate��y�t�,z�t�	/.numsol�,ts,
PlotPoints 
 1000,AspectRatio 
 1,
AxesLabel 
 �"y","z"	,PlotRange 
 All,
DisplayFunction 
 Identity�
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In[1111]:= p1d � ParametricPlot3D�
Evaluate��x�t�,y�t�,z�t�	/.numsol�,
ts,PlotPoints 
 3000,
BoxRatios 
 �1,1,1	,
AxesLabel 
 �"x","y","z"	,
PlotRange 
 All,
DisplayFunction 
 Identity�

Show�GraphicsArray���p1a,p1b	,
�p1c,p1d		�,
opts�numsol�

For example, entering

In[1112]:= rosslerplot�0.4,0.3,4.44���1,0.4,0.7	,
�t,800,1000	�

Out[1112]= ��x�t	 
 InterpolatingFunction���800.,
1000.,<>	�t	,

y�t	 
 InterpolatingFunction���800.,
1000.,<>	�t	,z�t	 

InterpolatingFunction���800.,
1000.,<>	�t	

generates the plots shown in Figure 6-11, which corresponds to plots
for our problem if c � 4.44.

For the given values of a, b, x0, y0, and z0, we will vary c by
using c � 1.4, 2.4, 2.6, 3.4. We then use Map to apply rosslerplot to
the list {1.4,2.4,2.6,3.4}. The resulting list, which corresponds to
the numerical solutions to the initial-value problems is named r1; the
resulting graphs are shown in Figure 6-12.

In[1113]:= r1 �
Map�rosslerplot�0.4,0.3,#���1,0.4,0.7	,

�t,800,1000	�&,�1.4,2.4,2.6,3.4	�

Out[1113]= ���x�t	 
 InterpolatingFunction���800.,
1000.,<>	�t	,

y�t	 
 InterpolatingFunction���800.,
1000.,<>	�t	,

z�t	 
 InterpolatingFunction���800.,
1000.,<>	�t	,

��x�t	 
 InterpolatingFunction���800.,
1000.,<>	�t	,

y�t	 
 InterpolatingFunction���800.,
1000.,<>	�t	,

z�t	 
 InterpolatingFunction���800.,
1000.,<>	�t	,
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Figure 6-11 Solutions to the Rössler attractor if a � 0.4, b � 0.3, and c � 4.44

Out[1113]= ��x�t	 
 InterpolatingFunction���800.,
1000.,<>	�t	,

y�t	 
 InterpolatingFunction���800.,
1000.,<>	�t	,

z�t	 
 InterpolatingFunction���800.,
1000.,<>	�t	,

��x�t	 
 InterpolatingFunction���800.,
1000.,<>	�t	,

y�t	 
 InterpolatingFunction���800.,
1000.,<>	�t	,

z�t	 
 InterpolatingFunction���800.,
1000.,<>	�t	

In Figure 6-12, we see that the value of c dramatically affects the long-
term behavior of the solutions: c � 1.4 results in a single limit cycle,
c � 2.4 results in a 2-cycle, c � 2.6 results in a 4-cycle, and c � 3.4 and
c � 4.44 (see Figure 6-12) appear to be “chaotic.”
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Figure 6-12 Solutions to the Rössler attractor if a � 0.4, b � 0.3, and c � 1.4, 2.4, 2.6, 3.4

We designed the rosslerplot function to return the numerical
solutions instead of the graphics in case further manipulation of the
numerical solutions is needed. For example, entering

In[1114]:= r2 � Map�Plot�Evaluate��x�t�,y�t�,
z�t�	/.#�,�t,950,1000	,
PlotStyle 
 �GrayLevel�0�,
GrayLevel�0.3�,Dashing��0.01	�	,
PlotPoints 
 1000,
DisplayFunction 
 Identity�&,r1�

Show�GraphicsArray�Partition�r2,2���
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Figure 6-13 Plots of x�t� (in black), y�t� (in gray), and z�t� (dashed) if a � 0.4, b � 0.3, and
c � 1.4, 2.4, 2.6, 3.4

graphs each of the solutions x�t�, y�t�, and z�t� in r1. The resulting array
is shown in Figure 6-13.

6.2.2 Linear Systems

We now turn our attention to linear systems.
We begin our study of linear systems of ordinary differential equations by

introducing several definitions along with some convenient notation.
Let

X�t� �

*++++++++++
,

x1�t�
x2�t�

�

xn�t�

-..........
/

, A�t� �

*++++++++++
,

a11�t� a12�t� . . . a1n�t�
a21�t� a22�t� . . . a2n�t�

� � . . . �

an1�t� an2�t� . . . ann�t�

-..........
/

, and F�t� �

*++++++++++
,

f1�t�
f2�t�

�

fn�t�

-..........
/

.
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Then, the homogeneous system of first-order linear differential equations

�						

						
�

x�1 � a11�t�x1 � a12�t�x2 �    � a1nxn�t�

x�2 � a21�t�x1 � a22�t�x2 �    � a2nxn�t�

�

x�n � an1�t�x1 � an2�t�x2 �    � annxn�t�

(6.8)

is equivalent to
X��t� � A�t�X�t� (6.9)

and the nonhomogeneous system

�						

						
�

x�1 � a11�t�x1 � a12�t�x2 �    � a1nxn�t� � f1�t�

x�2 � a21�t�x1 � a22�t�x2 �    � a2nxn�t� � f2�t�

�

x�n � an1�t�x1 � an2�t�x2 �    � annxn�t� � fn�t�

(6.10)

is equivalent to
X��t� � A�t�X�t� � F�t�. (6.11)

For the nonhomogeneous system (6.11), the corresponding homogeneous system
is system (6.9).

EXAMPLE 6.2.6: (a) Write the homogeneous system
�		

		
�

x� � �5x � 5y

y� � �5x � y

in matrix form. (b) Write the nonhomogeneous system
�		

		
�

x� � x � 2y � sin t

y� � 4x � 3y � t2

in matrix form.

SOLUTION: (a) The homogeneous system
�		

		
�

x� � �5x � 5y

y� � �5x � y
is equiva-

lent to the system �x
y
�� � ��5 5

�5 1
� �x

y
�. (b) The nonhomogeneous system With our notation,

*+++
,

x

y

-...
/

�

�
*+++
,

x�

y�
-...
/�		


		
�

x� � x � 2y � sin t

y� � 4x � 3y � t2
is equivalent to �x

y
�� � �1 2

4 �3
� �x

y
� � �� sin t

t2 �.
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The nth-order linear equation

y�n��t� � an�1�t�y�n�1� �    � a2�t�y�� � a1�t�y� � a0�t�y � f �t�, (6.12)

discussed in previous chapters, can be written as a system of first-order equationsThe nth-order linear
equation is discussed in
Chapter 4.

as well. Let x1 � y, x2 � dx1/dt � y�, x3 � dx2/dt � y��, . . . , xn�1 � dxn�2/dt � y�n�2�,
xn � dxn�1/dt � y�n�1�. Then, equation (6.12) is equivalent to the system

�									

									
�

x�1 � x2

x�2 � x3

�

x�n�1 � xn

x�n � �an�1xn �    � a2x3 � a1x2 � a0x1 � f �t�

(6.13)

which can be written in matrix form as

*++++++++++++++
,

x1

x2

�

xn�1

xn

-..............
/

�

�

*++++++++++++++
,

0 1 0    0
0 0 1    0
� � �    �

0 0 0    1
�a0 �a1 �a2    �an

-..............
/

*++++++++++++++
,

x1

x2

�

xn�1

xn

-..............
/

�

*++++++++++++++
,

0
0
�

0
f �t�

-..............
/

. (6.14)

EXAMPLE 6.2.7: Write the equation y�� � 5y� � 6y � cos t as a system of
first-order differential equations.

SOLUTION: We let x1 � y and x2 � x�1 � y�. Then,

x�2 � y�� � cos t � 6y � 5y� � cos t � 6x1 � 5x2

so the second-order equation y�� � 5y� � 6y � cos t is equivalent to the
system

�		

		
�

x�1 � x2

x�2 � cos t � 6x1 � 5x2

which can be written in matrix form as�x1

x2
�� � � 0 1

�6 �5
� �x1

x2
� � � 0

cos t
� .

At this point, given a system of ordinary differential equations, our goal is to
construct either an explicit, numerical, or graphical solution of the system of
equations.
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We now state the following theorems and terminology which are used in
establishing the fundamentals of solving systems of differential equations. In each
case, we assume that the matrix A � A�t� in the systems X��t� � A�t�X�t� (equation
(6.9)) and X��t� � A�t�X�t� � F�t� (equation (6.11)) is an n � n matrix.

Definition 25 (Solution Vector). A solution vector (or solution) of the system X��t� �
A�t�X�t��F�t� (equation (6.11)) on the interval I is an n�1 matrix (or vector) of the form

X�t� �

*++++++++++
,

x1�t�
x2�t�

�

xn�t�

-..........
/

,

where the xi�t� are differentiable functions that satisfies X��t� � A�t�X�t� � F�t� on I.

Consider the homogeneous linear system X��t� � A�t�X�t�, where

X�t� �

*++++++++++
,

x1�t�
x2�t�

�

xn�t�

-..........
/

and A�t� �

*++++++++++
,

a11�t� a12�t� . . . a1n�t�
a21�t� a22�t� . . . a2n�t�

� � . . . �

an1�t� an2�t� . . . ann�t�

-..........
/

for which ai j�t� is continuous for all 1 � i � n and 1 � j � n.

Let �Φi�mi�1 �

�					

					
�

*++++++++++
,

<1i

<2i

�

<mi

-..........
/

=					
>					
?

m

i�1

be a set of m solutions of X��t� � A�t�X�t�. We define

linear dependence and independence of the set of vectors �Φi�mi�1 in the same way as
we define linear dependence and independence of sets of functions. The set �Φi�mi�1

is linearly dependent on an interval I means that there is a set of constants �ci�mi�1

not all zero such that �m
i�1 ciΦi � 0; otherwise, the set is linearly independent.

Definition 26 (Fundamental Set of Solutions). Any set �Φi�ni�1 �

�					

					
�

*++++++++++
,

<1i

<2i

�

<ni

-..........
/

=					
>					
?

n

i�1

of n

linearly independent solution vectors of X��t� � A�t�X�t� on an interval I is called a
fundamental set of solutions of X��t� � A�t�X�t� on I.

We can determine if a set of vectors is linearly independent or linearly dependent
by computing the Wronskian.
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Theorem 12. The set �Φi�ni�1 �

�					

					
�

*++++++++++
,

<1i

<2i

�

<ni

-..........
/

=					
>					
?

n

i�1

is linearly independent if and only if the

Wronskian

W ��Φi�ni�1� � ����Φ1 Φ2    Φn
���� �

����������������
<11 <12 . . . <1n

<21 <22 . . . <2n

� � . . . �

<n1 <n2 . . . <nn

����������������
# 0.

EXAMPLE 6.2.8: Which of the following is a fundamental set of solu-
tions for �x

y
�� � � �2 �8

1 2
� �x

y
�?

(a) S1 � ��cos 2t
sin 2t

� , �sin 2t
cos 2t

��; (b) S2 ���2 sin 2t � 2 cos 2t
sin 2t

� , � 4 cos 2t
sin 2t � cos 2t

��.

SOLUTION: We first remark that the equation �x
y
�� � � �2 �8

1 2
� �x

y
�

is equivalent to the system
�		

		
�

x� � �2x � 8y

y� � x � 2y
. (a) Differentiating we

see that �cos 2t
sin 2t

�� � ��2 sin 2t
2 cos 2t

� # ��2 cos 2t � 8 sin 2t
cos 2t � 2 sin 2t

� ,

which shows us that �cos 2t
sin 2t

� is not a solution of the system.

In[1115]:= a � ���2,�8	,�1,2		

In[1116]:= v1 � �Cos�2t�,Sin�2t�	

In[1117]:= �tv1

Out[1117]= ��2 Sin�2t	,2 Cos�2t	

In[1118]:= a.v1

Out[1118]= ��2 Cos�2t	 � 8 Sin�2t	,Cos�2t	 � 2 Sin�2t	

Therefore, S1 is not a fundamental set of solutions.
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(b) First we verify that ��2 sin 2t � 2 cos 2t
sin 2t

� is a solution of the system.

In[1119]:= v2 � ��2 Sin�2t� � 2 Cos�2t�,Sin�2t�	

In[1120]:= �tv2

Out[1120]= ��4 Cos�2t	 � 4 Sin�2t	,2 Cos�2t	

In[1121]:= Simplify�a.v2�

Out[1121]= ��4 �Cos�2t	 � Sin�2t	�,2 Cos�2t	

In[1122]:= Simplify��tv2 �� a.v2�

Out[1122]= True

Next, we see that � 4 cos 2t
sin 2t � cos 2t

� is a solution of the system.

In[1123]:= v3 � �4 Cos�2t�,Sin�2t� � Cos�2t�	

Out[1123]= �4 Cos�2t	,�Cos�2t	 � Sin�2t	

In[1124]:= �tv3

Out[1124]= ��8 Sin�2t	,2 Cos�2t	 � 2 Sin�2t	

In[1125]:= Simplify�a.v3�

Out[1125]= ��8 Sin�2t	,2 �Cos�2t	 � Sin�2t	�

In[1126]:= Simplify��tv3 �� a.v3�

Out[1126]= True

To see that these vectors are linearly independent, we compute the
Wronskian.

In[1127]:= m1 � Transpose��v2,v3	�

MatrixForm�m1�

In[1128]:= Simplify�Det�m1��

Out[1128]= �2

Thus, the set S2 is a set of two linearly independent solutions of the
system and, consequently, a fundamental set of solutions.

The following theorem implies that a fundamental set of solutions cannot contain
more than n vectors, because the solutions would not be linearly independent.
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Theorem 13. Any n � 1 nontrivial solutions of X��t� � A�t�X�t� are linearly dependent.

Finally, we state the following theorems, which state that a fundamental set of
solutions of X��t� � A�t�X�t� exists and a general solution can (theoretically) be
constructed.

Theorem 14. There is a set of n nontrivial linearly independent solutions of X��t� �
A�t�X�t�.

Theorem 15 (General Solution). Let S � �Φi�ni�1 �

�					

					
�

*++++++++++
,

<1i

<2i

�

<ni

-..........
/

=					
>					
?

n

i�1

be a set of n linearly

independent solutions of X��t� � A�t�X�t�. Then every solution of X��t� � A�t�X�t� is a
linear combination of these solutions.

In this case, S is said to be a fundamental set of solutions of X��t� � A�t�X�t�; a
general solution of X��t� � A�t�X�t� is

X�t� � c1Φ1�t� � c2Φ2�t� �    � cnΦn�t�.

Definition 27 (Fundamental Matrix). Let �Φi�ni�1 �

�					

					
�

*++++++++++
,

<1i

<2i

�

<ni

-..........
/

=					
>					
?

n

i�1

be a fundamental set of

solutions for X��t� � A�t�X�t�. Then

Φ�t� � �Φ1 Φ2    Φn� � *++++++++++
,

<11 <12 . . . <1n

<21 <22 . . . <2n

� � . . . �

<n1 <n2 . . . <nn

-..........
/

is called a fundamental matrix of the system X��t� � A�t�X�t�. Thus, a general solution

of the system X��t� � A�t�X�t� can be written as X�t� � Φ�t�C, where C �

*++++++++++
,

c1

c2

�

cn

-..........
/

is a

constant vector.

If Φ � �Φ1 Φ2    Φn� is a fundamental matrix for X� � AX, Φ� � AΦ:

Φ� � �Φ�
1 Φ�

2    Φ�
n�

� �AΦ1 AΦ2    AΦn�
� A �Φ1 Φ2    Φn�
� AΦ.
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EXAMPLE 6.2.9: Show that Φ � � e�2t �3e5t

2e�2t e5t � is a fundamental matrix

for the system X��t� � � 4 �3
�2 �1

�X�t�. Use the matrix to find a general

solution of X��t� � � 4 �3
�2 �1

�X�t�.

SOLUTION: Because � e�2t

2e�2t�� � ��2e�2t

�4e�2t� � � 4 �3
�2 �1

� � e�2t

2e�2t� and ��3e5t

e5t ��
� ��15e5t

5e5t � � � 4 �3
�2 �1

� ��3e5t

e5t � , both X1 � � e�2t

2e�2t� and X2 � ��3e5t

e5t � are

solutions of the system X��t� � � 4 �3
�2 �1

�X�t�. Alternatively, we show

that Φ��t� and � 4 �3
�2 �1

�Φ�t� are the same.

In[1129]:= a � ��4,�3	,��2,�1		
'�t � � ��Exp��2t�,�3 Exp�5t�	,

�2Exp��2t�,Exp�5t�		

MatrixForm�'�t��

Out[1129]= � e�2 t �3 e5t

2e�2 t e5t
�

In[1130]:= '��t�//MatrixForm

Out[1130]= ��2 e�2 t �15 e5t

�4 e�2 t 5e5t
�

In[1131]:= a.'�t�//MatrixForm

Out[1131]= ��2 e�2 t �15 e5t

�4 e�2 t 5e5t
�

The solutions are linearly independent because the Wronskian is not
the zero function.

In[1132]:= Det�'�t��

Out[1132]= 7e3t

A general solution is given by

X�t� � Φ�t�C � � e�2t �3e5t

2e�2t e5t � �c1

c2
� � �c1e�2t � 3c2e5t

2c1e�2t � c2e5t�
� c1 � e�2t

2e�2t� � c2 ��3e5t

e5t � .
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6.3 Homogeneous Linear Systems with
Constant Coefficients

Now that we have covered the necessary terminology, we can turn our attention
to solving linear systems with constant coefficients. Let

A �

*++++++++++
,

a11 a12 . . . a1n

a21 a22 . . . a2n

� � . . . �

an1 an2 . . . ann

-..........
/

be an n � n matrix with real-valued entries and let �Λk� be the eigenvalues and
�vk� the corresponding eigenvectors of A. Then a general solution of the system
X� � AX is determined by the eigenvalues and corresponding eigenvectors of A.
For the moment, we consider the cases when the eigenvalues of A are distinct and
real or the eigenvalues of A are distinct and complex. We will consider the case
when A has repeated eigenvalues (eigenvalues of multiplicity greater than one)
separately.

6.3.1 Distinct Real Eigenvalues

Let Λ be an eigenvalue of A with corresponding eigenvector v. Then,

Λv � Av

ΛveΛt � AveΛt

d
dt

�veΛt � � A �veΛt � ,

which shows that veΛt is a solution of X� � AX.
If the eigenvalues �Λk�

n
k�1 of A are distinct with corresponding eigenvectors

�vk�
n
k�1,

S � �v1eΛ1t , v2eΛ2t , . . . , vneΛnt�
is a fundamental set of solutions for X� � AX becauseEigenvectors corresponding

to distinct eigenvalues are
linearly independent. W �S� � ����v1eΛ1t v2eΛ2t . . . vneΛnt ����

� e�Λ1�Λ2��Λn�t ����v1 v2 . . . vn
���� # 0.

Therefore, a general solution of X� � AX is

X � c1v1eΛ1t � c2v2eΛ2t �    � cnvneΛnt
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and a fundamental matrix for X� � AX is

Φ � �v1eΛ1t v2eΛ2t    vneΛnt � .

Remark. After you have loaded the PlotField package,

PlotVectorField[{f[x,y],g[x,y]},{x,a,b},{y,c,d}]

generates a basic direction field for the system �x� � f �x, y�, y� � g�x, y�� for a � x � b
and c � y � d.

EXAMPLE 6.3.1: Solve (a)
�		

		
�

x� � 5x � y

y� � 3y
and (b) X� � ��1/2 �1/3

�1/3 �1/2
�X.

SOLUTION: (a) In matrix form the system is X� � �5 �1
0 3

�X. We find

the eigenvalues of A � �5 �1
0 3

� with Eigensystem. The results indi-

cate that the eigenvalues are Λ1 � 3 and Λ2 � 5 with corresponding

eigenvectors v1 � �1
2
� and v2 � �1

0
�, respectively.

In[1133]:= a � ��5,�1	,�0,3		

In[1134]:= Eigensystem�a�

Out[1134]= ��3,5,��1,2,�1,0

Therefore, S � ��1
2
� e3t , �1

0
� e5t� is a fundamental set of solutions of the

system, a general solution is

X � c1v1eΛ1t � c2v2eΛ2t � c1 �1
2
� e3t � c2 �1

0
� e5t ,

and a fundamental matrix is Φ � � e3t e5t

2e3t 0
�. We can write the general

solution as
�		

		
�

x � c1e3t � c2e5t

y � 2c1e3t
or as X � � e3t e5t

2e3t 0
� �c1

c2
�.
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We can use DSolve to find a general solution as well.

In[1135]:= DSolve�
Thread��x��t�,y��t�	 �� a.�x�t�,y�t�	�,
�x�t�,y�t�	,t�

Out[1135]= ��x�t	 
 �5 t C�1	 �
1

2
�3 t ��1 � �2 t� C�2	,

y�t	 
 �3 t C�2	��
We can graph the solution parametrically for various values of c1 and
c2 with ParametricPlot. First, we use Table to generate a list cor-

responding to replacing c1 and c2 in
�		

		
�

x � c1e3t � c2e5t

y � 2c1e3t
by �2, �1, 0, 1,

and 2. The result in step1, however, is not a list of ordered pairs of

functions corresponding to
�		

		
�

x � x�t�

y � y�t�
; it is a nested list.

In[1136]:= step1 � Table�
c1e3t � c2e5t,2c1 e3t�,
�c1,�2,2	,�c2,�2,2	�

Out[1136]= ����2 �3 t � 2 �5 t,�4 �3 t,��2 �3 t � �5 t,�4 �3 t,

��2 �3 t,�4 �3 t,��2 �3 t � �5 t,�4 �3 t,

��2 �3 t � 2 �5 t,�4 �3 t,

����3 t � 2 �5 t,�2 �3 t,���3 t � �5 t,�2 �3 t,

���3 t,�2 �3 t,���3 t � �5 t,�2 �3 t,

���3 t � 2 �5 t,�2 �3 t,���2 �5 t, 0,

���5 t, 0,�0,0,��5 t, 0,�2 �5 t, 0,

���3 t � 2 �5 t, 2 �3 t,��3 t � �5 t, 2 �3 t,

��3 t, 2 �3 t,��3 t � �5 t, 2 �3 t,

��3 t � 2 �5 t, 2 �3 t,��2 �3 t � 2 �5 t, 4 �3 t,

�2 �3 t � �5 t, 4 �3 t,�2 �3 t, 4 �3 t,

�2 �3 t � �5 t, 4 �3 t,�2 �3 t � 2 �5 t, 4 �3 t

To create a list of ordered pairs of functions that we can graph with
ParametricPlot, we use Flatten.Flatten[list,n]

flattens list to level n.

In[1137]:= toplot � Flatten�step1,1�
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Out[1137]= ���2 �3 t � 2 �5 t,�4 �3 t,

��2 �3 t � �5 t,�4 �3 t,��2 �3 t,�4 �3 t,

��2 �3 t � �5 t,�4 �3 t,��2 �3 t � 2 �5 t,�4 �3 t,

���3 t � 2 �5 t,�2 �3 t,���3 t � �5 t,�2 �3 t,

���3 t,�2 �3 t,���3 t � �5 t,�2 �3 t,

���3 t � 2 �5 t,�2 �3 t,��2 �5 t, 0,

���5 t, 0,�0,0,��5 t, 0,�2 �5 t, 0,

��3 t � 2 �5 t, 2 �3 t,��3 t � �5 t, 2 �3 t,

��3 t, 2 �3 t,��3 t � �5 t, 2 �3 t,

��3 t � 2 �5 t, 2 �3 t,�2 �3 t � 2 �5 t, 4 �3 t,

�2 �3 t � �5 t, 4 �3 t,�2 �3 t, 4 �3 t,

�2 �3 t � �5 t, 4 �3 t,�2 �3 t � 2 �5 t, 4 �3 t

Next, we use ParametricPlot to graph the list of parametric func-
tions in toplot and name the resulting graphics object pp1.

In[1138]:= pp1 � ParametricPlot�Evaluate�toplot�,
�t,�1,1	,PlotStyle� > GrayLevel�0�,
DisplayFunction� > Identity�

To show the graphs of the solutions together with the direction field
associated with the system, we first load the PlotField package

In[1139]:= << Graphics‘PlotField‘

and then use PlotVectorField to graph the direction field associ-
ated with the system on the rectangle ��5, 5� � ��5, 5�, naming the
resulting graphics object pvf.

In[1140]:= pvf � PlotVectorField��5x � y,3y	,
�x,�5,5	,�y,�5,5	,
ScaleFunction� > �1&�,
DefaultColor� > GrayLevel�0.5�,
DisplayFunction� > Identity�

Show is then used to display the graphs together in Figure 6-14.

In[1141]:= Show�pvf,pp1,
PlotRange� > ���5,5	,��5,5		,
AspectRatio� > 1,Axes� > Automatic,
DisplayFunction� > $DisplayFunction�

Notice that each curve corresponds to the parametric plot of the pair
�		

		
�

x � x�t�

y � y�t�
. Because both eigenvalues are positive, all solutions move
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Figure 6-14 All nontrivial solutions move away from the origin as t increases

away from the origin as t increases. The arrows on the vectors in the
direction field show this behavior.

(b) With Eigensystem, we see that the eigenvalues and eigenvec-

tors of A � ��1/2 �1/3
�1/3 �1/2

� are Λ1 � �1/6 and Λ2 � �5/6 and v1 � ��1
1
� and

v2 � �1
1
�, respectively.

In[1142]:= capa � ���1/2,�1/3	,��1/3,�1/2		
Eigensystem�capa�

Out[1142]= �� �
5

6
,�

1

6
�,��1,1,��1,1�

Then X1 � ��1
1
� e�t/6 and X2 � �1

1
� e�5t/6 are two linearly independent

solutions of the system so a general solution is X � ��e�t/6 e�5t/6

e�t/6 e�5t/6� �c1

c2
�;

a fundamental matrix is Φ � ��e�t/6 e�5t/6

e�t/6 e�5t/6�.
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Figure 6-15 Direction field for X� � AX

We use DSolve to find a general solution of the system by entering

In[1143]:= gensol � DSolve��x��t� �� �1/2x�t� � 1/3y�t�,
y��t� �� �1/3x�t� � 1/2y�t�	,
�x�t�,y�t�	,t�

Out[1143]= ��x�t	 
 e�5 t/6 C�1	 � e�t/6 C�2	,

y�t	 
 e�5 t/6 C�1	 � e�t/6 C�2	��
We graph the direction field with PlotVectorField, which is con-
tained in the PlotField package located in the Graphics directory, in
Figure 6-15. You do not need to reload

the PlotField package if you
have already loaded it during
your current Mathematica
session.

In[1144]:= << Graphics‘PlotField‘

In[1145]:= pvf �
PlotVectorField���1/2x � 1/3y,�1/3x � 1/2y	,
�x,�1,1	,�y,�1,1	,Axes� > Automatic�

Several solutions are also graphed with ParametricPlot and shown
together with the direction field in Figure 6-16.
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Figure 6-16 Direction field for X� � AX along with various solution curves

In[1146]:= initsol � DSolve��x��t� �� �1/2x�t� � 1/3y�t�,
y��t� �� �1/3x�t� � 1/2y�t�,
x�0� �� x0,y�0� �� y0	,
�x�t�,y�t�	,t�

Out[1146]= ��x�t	 
 �e�5 t/6 �1
2

��x0 � y0�

�
1

2
e2 t/3 ��x0 � y0��,y�t	 


e�5 t/6 �1
2

e2 t/3 ��x0 � y0� �
x0 � y0

2
���

In[1147]:= t1 � Table�ParametricPlot�Evaluate��x�t�,
y�t�	/.initsol/.�x0� > 1,y0� > i	�,
�t,0,15	,DisplayFunction� > Identity,
PlotStyle� > GrayLevel�0.3��,
�i,�1,1,2/8	�

t2 � Table�ParametricPlot�Evaluate��x�t�,
y�t�	/.initsol/.�x0� > �1,y0� > i	�,
�t,0,15	,DisplayFunction� > Identity,
PlotStyle� > GrayLevel�0.3��,
�i,�1,1,2/8	�
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In[1147]:= t3 � Table�ParametricPlot�Evaluate��x�t�,
y�t�	/.initsol/.�x0� > i,y0� > 1	�,
�t,0,15	,DisplayFunction� > Identity,
PlotStyle� > GrayLevel�0.3��,
�i,�1,1,2/8	�

t4 � Table�ParametricPlot�Evaluate��x�t�,
y�t�	/.initsol/.�x0� > i,y0� > �1	�,
�t,0,15	,DisplayFunction� > Identity,
PlotStyle� > GrayLevel�0.3��,
�i,�1,1,2/8	�

In[1148]:= Show�t1,t2,t3,t4,
pvf,DisplayFunction� > $DisplayFunction,
AspectRatio� > Automatic�

6.3.2 Complex Conjugate Eigenvalues

If A has complex conjugate eigenvalues Λ1,2 � Α  Βi, Β # 0, and corresponding
eigenvectors v1,2 � a  bi, then one solution of X� � AX is We use Euler’s formula,

eiΘ � cos Θ � i sin Θ.

X � v1eΛ1t � �a � bi�e�Α�Βi�t � eΑt �a � bi�eiΒt � eΑt �a � bi��cos Βt � i sin Βt�

� eΑt �a cos Βt � b sin Βt� � ieΑt �b cos Βt � a sin Βt�

� X1�t� � iX2�t�.

Now, because X is a solution of the system, X� � AX, we have X�
1 � iX�

2 � AX1 �
iAX2. Equating the real and imaginary parts of this equation yields X�

1 � AX1

and X�
2 � AX2. Therefore, X1 and X2 are solutions of X� � AX, so any linear

combination of X1 and X2 is also a solution. We can show that X1 and X2 are lin-
early independent, so this linear combination forms a portion of a general solution
of X� � AX.

Theorem 16. If A has complex conjugate eigenvalues Λ1,2 � Α  Βi, Β # 0, and corre-
sponding eigenvectors v1,2 � a bi, then two linearly independent solutions of X� � AX
are

X1 � eΑt �a cos Βt � b sin Βt� and X2 � eΑt �b cos Βt � a sin Βt� .

Notice that in the case of complex conjugate eigenvalues, we are able to obtain
two linearly independent solutions from knowing one of the eigenvalues and an
eigenvector that corresponds to it.

Observe that our chosen
eigenvectors are scalar
multiples of the eigenvectors
found with Mathematica.
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EXAMPLE 6.3.2: Solve (a)
�		

		
�

x� � 1
2 y

y� � � 1
8 x

and (b)
�		

		
�

dx/dt � � 1
4 x � 2y

dy/dt � �8x � 1
4 y.

SOLUTION: (a) In matrix form the system is equivalent to the system

X� � � 0 1/2
�1/8 0

�X. As in (a), we use Eigensystem to see that the

eigenvalues and eigenvectors of A � � 0 1/2
�1/8 0

� are Λ1,2 � 0  1
4 i and

v1,2 � �1
0
�  � 0

1/2
� i.

In[1149]:= capa � ��0,1/2	,��1/8,0		
Eigensystem�capa�

Out[1149]= �� �
i

4
,
i

4
�,��2 i,1,��2 i,1�

Two linearly independent solutions are then X1 � �1
0
� cos 1

4 t � � 0
1/2

�
sin 1

4 t � � cos 1
4 t

� 1
2 sin 1

4 t
� and X2 � �1

0
� sin 1

4 t � � 0
1/2

� cos 1
4 t � � sin 1

4 t
1
2 cos 1

4 t
� and a

general solution is X � c1X1 � c2X2 � � cos 1
4 t sin 1

4 t
� 1

2 sin 1
4 t 1

2 cos 1
4 t

� �c1

c2
� or x �

c1 cos 1
4 t � c2 sin 1

4 t and y � �c1
1
2 sin 1

4 t � 1
2 c2 cos 1

4 t.
As before, we use DSolve to find a general solution.

In[1150]:= gensol � DSolve��x��t� �� 1/2y�t�,y��t� ��
�1/8x�t�	,�x�t�,y�t�	,t�

Out[1150]= ��x�t	 
 �2 C�1	 Cos�t
4

� � 2 C�2	 Sin�t
4

�,
y�t	 
 C�2	 Cos�t

4
� � C�1	 Sin�t

4
���

Initial-value problems for systems are solved in the same way as for
other equations. For example, entering

In[1151]:= partsol � DSolve��x��t� �� 1/2y�t�,
y��t� �� �1/8x�t�,x�0� �� 1,
y�0� �� �1	,�x�t�,y�t�	,t�
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Figure 6-17 (a) Graph of x�t� and y�t�. (b) Parametric plot of x�t� versus y�t�

Out[1151]= ��x�t	 
 �2 � �
1

2
Cos�t

4
� � Sin�t

4
��,

y�t	 
 �Cos�t
4

� �
1

2
Sin�t

4
���

finds the solution that satisfies x�0� � 1 and y�0� � �1.
We graph x�t� and y�t� together as well as parametrically with Plot

and ParametricPlot, respectively, in Figure 6-17.

In[1152]:= p1 � Plot�Evaluate��x�t�,y�t�	/.partsol�,
�t,0,8Π	,PlotStyle� > �GrayLevel�0�,
GrayLevel�0.4�	,
DisplayFunction� > Identity�

p2 � ParametricPlot�
Evaluate��x�t�,y�t�	/.partsol�,
�t,0,8Π	,DisplayFunction� > Identity,
AspectRatio� > Automatic�

Show�GraphicsArray��p1,p2	��

We can also use PlotVectorField and ParametricPlot to graph
the direction field and/or various solutions as we do next in Fig-
ure 6-18.

In[1153]:= pvf � PlotVectorField��1/2y,�1/8x	,
�x,�2,2	,�y,�1,1	,
DisplayFunction� > Identity�

In[1154]:= initsol � DSolve��x��t� �� 1/2y�t�,
y��t� �� �1/8x�t�,x�0� �� x0,
y�0� �� y0	,�x�t�,y�t�	,t�

Out[1154]= ��x�t	 
 �2 � �
1

2
x0 Cos�t

4
� � y0 Sin�t

4
��,

y�t	 
 y0 Cos�t
4

� �
1

2
x0 Sin�t

4
���



464 Chapter 6 Systems of Ordinary Differential Equations

-2 -1 1 2

-1

-0.5

0.5

1

Figure 6-18 Notice that all nontrivial solutions are periodic

In[1155]:= t1 � Table�ParametricPlot�Evaluate��x�t�,
y�t�	/.initsol/.�x0� > i,
y0� > i	�,�t,0,8Π	,
DisplayFunction� > Identity,
PlotStyle� > GrayLevel�0.3��,
�i,0,1,1/8	�

In[1156]:= Show�t1,pvf,
DisplayFunction� > $DisplayFunction,
AspectRatio� > Automatic�

(b) In matrix form, the system is equivalent to the system X� � �� 1
4 2

�8 � 1
4
�X.

The eigenvalues and corresponding eigenvectors of A � �� 1
4 2

�8 � 1
4
� are

found to be Λ1,2 � � 1
4  4i and v1,2 � �0

2
�  �1

0
� i with Eigensystem.

In[1157]:= capa � ���1/4,2	,��8,�1/4		
Eigensystem�capa�

Out[1157]= �� �
1

4
� 4 i,�

1

4
� 4 i�,��i,2,��i,2�

A general solution is then

X � c1X1 � c2X2

� c1e�t/4 ��1
0
� cos 4t � �0

2
� sin 4t� � c2e�t/4 ��1

0
� sin 4t � �0

2
� cos 4t�

� e�t/4 	c1 � cos 4t
�2 sin 4t

� � c2 � sin 4t
2 cos 4t

�
 � e�t/4 � cos 4t sin 4t
�2 sin 4t 2 cos 4t

� �c1

c2
�

or x � e�t/4 �c1 cos 4t � c2 sin 4t� and y � e�t/4 �2c2 cos 4t � 2c1 sin 4t�.
We confirm this result using DSolve. Notice that the result returned
by Mathematica contains the hyperbolic trigonometric functions.
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In[1158]:= gensol � DSolve��x��t� ��
�1/4x�t� � 2y�t�,y��t� ��
�8x�t� � 1/4y�t�	,�x�t�,y�t�	,t�

Out[1158]= ��x�t	 
 C�2	 � �
1

2
i Cos��4 � i

4
� t�

�
1

2
i Cosh��1

4
� 4 i� t�

�
1

2
Sin��4 � i

4
� t� �

1

2
i Sinh��1

4

�4 i� t�� � C�1	 � �
1

2
Cos��4 � i

4
� t�

�
1

2
Cosh��1

4
� 4 i� t�

�
1

2
i Sin��4 � i

4
� t� �

1

2
Sinh��1

4

�4 i� t��,y�t	 
 C�2	 �Cos��4 � i

4
� t�

�Cosh��1
4
� 4 i� t�

�i Sin��4 � i

4
� t� � Sinh��1

4
� 4 i� t��

�C�1	 � � i Cos��4 � i

4
� t�

�i Cosh��1
4
� 4 i� t� � Sin��4 � i

4
� t�

�i Sinh��1
4
� 4 i� t����

In[1159]:= gensol��1,1,2��

Out[1159]= C�2	 � �
1

2
i Cos��4 � i

4
� t� �

1

2
i Cosh��1

4

�4 i� t� �
1

2
Sin��4 � i

4
� t�

�
1

2
i Sinh��1

4
� 4 i� t��

�C�1	 � �
1

2
Cos��4 � i

4
� t� �

1

2
Cosh��1

4

�4 i� t� �
1

2
i Sin��4 � i

4
� t�

�
1

2
Sinh��1

4
� 4 i� t��

In[1160]:= ComplexExpand�gensol��1,1,2���//Simplify

Out[1160]= �C�1	 Cos�4 t	 � C�2	 Sin�4 t	� � � Cosh�t
4

�
�Sinh�t

4
��

In[1161]:= �C�1� Cos�4 t� � C�2� Sin�4 t�� � � e�t/4	
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In[1162]:= ComplexExpand�gensol��1,2,2���//Simplify

Out[1162]= 2 �C�2	 Cos�4 t	 � C�1	 Sin�4 t	� �Cosh�t
4

�
�Sinh�t

4
��

In[1163]:= 2 �C�2� Cos�4 t� � C�1� Sin�4 t�� �e�t/4�

In this case, we obtained the real form of the solution by selecting the
portion of the expression that we wanted to write in terms of exponen-
tial functions

and then accessed TrigToExp from the Algebraic Manipulation palette

to obtain the result.
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Figure 6-19 Various solutions and direction field associated with the system

We use PlotVectorField and ParametricPlot to graph the direc-
tion field associated with the system along with various solutions in
Figure 6-19.

In[1164]:= pvf � PlotVectorField���1/4x � 2y,�8x � 1/4y	,
�x,�1,1	,�y,�1,1	,Axes� > Automatic,
DisplayFunction� > Identity�

In[1165]:= initsol � DSolve��x��t� �� �1/4x�t� � 2y�t�,
y��t� �� �8x�t� � 1/4y�t�,x�0� �� x0,
y�0� �� y0	,�x�t�,y�t�	,t�

Out[1165]= ��x�t	 
 x0 Cos�4 t	 Cosh�t
4

� �
1

2
y0

� Cosh�t
4

� Sin�4 t	 � x0 Cos�4 t	

� Sinh�t
4

� �
1

2
y0 Sin�4 t	 Sinh�t

4
�,
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Out[1165]= y�t	 
 2 �1
2

y0 Cos�4 t	 Cosh�t
4

�
�x0 Cosh�t

4
� Sin�4 t	

�
1

2
y0 Cos�4 t	 Sinh�t

4
�

�x0 Sin�4 t	sinh�t
4

����
In[1166]:= t1 � Table�ParametricPlot�

Evaluate��x�t�,y�t�	/.initsol/.
�x0� > 1,y0� > i	�,�t,0,15	,
DisplayFunction� > Identity,
PlotStyle� > GrayLevel�0.3��,
�i,�1,1,2/8	�

In[1167]:= Show�t1,pvf,DisplayFunction� >
$DisplayFunction,PlotRange� > ���1,1	,
��1,1		,AspectRatio� > Automatic�

Last, we illustrate how to solve an initial-value problem and graph the
resulting solutions by finding the solution that satisfies the initial con-
ditions x�0� � 100 and y�0� � 10 and then graphing the results with
Plot and ParametricPlot in Figure 6-20.

In[1168]:= partsol � DSolve��x��t� �� �1/4x�t� � 2y�t�,
y��t� �� �8x�t� � 1/4y�t�,x�0� �� 100,
y�0� �� 10	,�x�t�,y�t�	,t�

Out[1168]= ��x�t	 
 100 Cos�4 t	 Cosh�t
4

�
�5 Cosh�t

4
� Sin�4 t	 � 100 Cos�4 t	

Sinh�t
4

� � 5 Sin�4 t	 Sinh�t
4

�,
y�t	 
 2 �5 Cos�4 t	 Cosh�t

4
�

�100 Cosh�t
4

� Sin�4 t	

�5 Cos�4 t	 Sinh�t
4

�
�100 Sin�4 t	 Sinh�t

4
����

In[1169]:= p1 � Plot�Evaluate��x�t�,y�t�	/.partsol�,
�t,0,20	,PlotStyle� > �GrayLevel�0�,
GrayLevel�0.4�	,
DisplayFunction� > Identity,
PlotRange� > All�
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Figure 6-20 (a) Graph of x�t� and y�t�. (b) Parametric plot of x�t� versus y�t�. (For help with
Show and GraphicsArray use the Help Browser)

In[1169]:=
p2 � ParametricPlot�

Evaluate��x�t�,y�t�	/.partsol�,
�t,0,20	,DisplayFunction� > Identity,
AspectRatio� > Automatic�

Show�GraphicsArray��p1,p2	��

Notice the spiraling motion of the vectors in the direction field. This is
due to terms in the solution formed by a product of exponential and
trigonometric functions.

Initial-value problems can be solved through the use of eigenvalues and eigenvec-
tors as well.

EXAMPLE 6.3.3: Solve

�						

						
�

x� � � 1
2 x � y � 64z

y� � � 1
4 y � 16z

z� � y � 1
4 z

x�0� � 1, y�0� � �1, z�0� � 0.

SOLUTION: In matrix form, the system is equivalent to X� � AX,

where A �
*++++++
,

�1/2 �1 64
0 �1/4 �16
0 1 �1/4

-......
/

. The eigenvalues and corresponding eigen-

vectors of A are found with Eigensystem.



470 Chapter 6 Systems of Ordinary Differential Equations

In[1170]:= Clear�a,b,c,d�

In[1171]:= a � 

 �
1

2
,�1,64�,
0,�1

4
,�16�,


0,1,�1
4

��
In[1172]:= Eigensystem�a�

Out[1172]= �� �
1

2
,�

1

4
� 4 �,�

1

4
� 4 ��,

��1,0,0,�16 �,�4 �,1,��16 �,4 �,1�
These results mean that the eigenvalue Λ1 � �1/2 has corresponding

eigenvector v1 �
*++++++
,

1
0
0

-......
/

so one solution of the system is X1 � v1eΛ1t �

*++++++
,

1
0
0

-......
/

e�t/2. An eigenvector corresponding to Λ2 � �1/4�4i is v2 �
*++++++
,

�16i
4i
1

-......
/

�

*++++++
,

0
0
1

-......
/

�
*++++++
,

�16
4
0

-......
/

i. Thus, two linearly independent solutions that correspond

to the complex conjugate pair of eigenvalues Λ2,3 � �1/4  4i are

X2 � e�t/4

6777777777778

*++++++
,

0
0
1

-......
/

cos 4t �
*++++++
,

�16
4
0

-......
/

sin 4t

9:::::::::::;

�
*++++++
,

16 sin 4t
�4 sin 4t

cos 4t

-......
/

e�t/4

and

X3 � e�t/4

6777777777778

*++++++
,

�16
4
0

-......
/

cos 4t �
*++++++
,

0
0
1

-......
/

sin 4t

9:::::::::::;

�
*++++++
,

�16 cos 4t
4 cos 4t
sin 4t

-......
/

e�t/4.

Hence, a general solution of the system is

X � c1X1 � c2X2 � c3X3

� c1

*++++++
,

1
0
0

-......
/

e�t/2 � c2

*++++++
,

16 sin 4t
�4 sin 4t

cos 4t

-......
/

e�t/4 � c3

*++++++
,

�16 cos 4t
4 cos 4t
sin 4t

-......
/

e�t/4

�
*++++++
,

c1e�t/2 � 16e�t/4 ��c3 cos 4t � c2 sin 4t�
4e�t/4 �c3 cos 4t � c2 sin 4t�
e�t/4 �c2 cos 4t � c3 sin 4t�

-......
/

0

a fundamental matrix is

Φ �
*++++++
,

e�t/2 16e�t/4 sin 4t �16e�t/4 cos 4t
0 �4e�t/4 sin 4t 4e�t/4 cos 4t
0 e�t/4 cos 4t e�t/4 sin 4t

-......
/

.
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In[1173]:= x�t � � c1 Exp��t/2�
�16Exp��t/4��c2 Sin�4t� � c3 Cos�4t��

y�t � � 4Exp��t/4�
��c2 Sin�4t� � c3 Cos�4t��

z�t � �
Exp��t/4��c3 Sin�4t� � c2 Cos�4t��

We solve the initial-value problem by applying the initial condition

X�0� �
*++++++
,

1
�1

0

-......
/

In[1174]:= sysofeqs � �x�0� �� 1,y�0� �� �1,z�0� �� 0	

Out[1174]= �c1 � 16 c3 �� 1,4 c3 �� �1,c2 �� 0

and solving the resulting system of equations for c1, c2, and c3.

In[1175]:= cvals � Solve�sysofeqs�

Out[1175]= ��c2 
 0,c1 
 �3,c3 
 �
1

4
��

Substitution of these values into the general solution yields the solution
to the initial-value problem.

In[1176]:= x�t � � x�t� /. cvals��1��

y�t � � y�t� /. cvals��1��

z�t � � z�t� /. cvals��1��

Out[1176]= �3 ��t/2 � 4 ��t/4 Cos�4 t	

Out[1176]= ���t/4 Cos�4 t	

Out[1176]= �
1

4
��t/4 Sin�4 t	

We graph x�t�, y�t�, and z�t� with Plot in Figure 6-21 and a parametric

plot of

�				

				
�

x � x�t�

y � y�t�

z � z�t�

in three dimensions with ParametricPlot3D in

Figure 6-22.
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Figure 6-22 The solution to the initial-value problem tends to �0, 0, 0� as t � �

In[1177]:= Plot��x�t�,y�t�,z�t�	,�t,0,3Π	,
PlotRange 
 ��2 Π,Π	,AspectRatio 
 1,
PlotStyle 
 �GrayLevel�0�,GrayLevel�0.3�,
GrayLevel�0.6�	�
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In[1178]:= ParametricPlot3D��x�t�,y�t�,z�t�	,
�t,0,3Π	,BoxRatios 
 �1,1,1	,
PlotPoints 
 200�

As in previous examples, we see that DSolve is able to find a gen-
eral solution of the system as well as solve the initial-value problem,
although the results are given in terms of complex exponentials.

In[1179]:= Clear�x,y,z�

gensol �

DSolve�
x��t� �� �x�t�
2

� y�t� � 64 z�t�,

y��t� �� �
y�t�

4
� 16 z�t�,

z��t� �� y�t� �
z�t�

4
�,

�x�t�,y�t�,z�t�	,t�
Out[1179]= ��x�t	 
 ��t/2 C�1	 � 2 �

�� 1
2 �4 �� t � � 2 �4 � t � �t/4

��
� 1

4 �8 �� t� C�2	

�8 � �
�� 1

4 �4 �� t � � 1 � �8 � t� C�3	,

y�t	 

1

2
�

�� 1
4 �4 �� t �1 � �8 � t� C�2	

�2 � �
�� 1

4 �4 �� t � � 1 � �8 � t� C�3	,

z�t	 
 �
1

8
� �

�� 1
4 �4 �� t � � 1 � �8 � t� C�2	

�
1

2
�

�� 1
4 �4 �� t �1 � �8 � t� C�3	��

In[1180]:= Clear�x,y,z�

partsol �

DSolve�
x��t� �� �x�t�
2

� y�t� � 64 z�t�,

y��t� �� �
y�t�

4
� 16 z�t�,

z��t� �� y�t� �
z�t�

4
,x�0� �� 1,

y�0� �� �1,z�0� �� 0�,
�x�t�,y�t�,z�t�	,t�
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Out[1180]= ��x�t	 
 �
�� 1

2 �4 �� t � � 3 �4 � t � 2 �t/4 � 2 �
� 1

4 �8 �� t�,
y�t	 
 �

1

2
�

�� 1
4 �4 �� t �1 � �8 � t�,

z�t	 

1

8
� �

�� 1
4 �4 �� t � � 1 � �8 � t���

To see that x�t�, y�t�, and z�t� are real-valued functions, we use Complex
Expand together with Simplify or ExpToTrig together with
Simplify as follows.

In[1181]:= x�t � �

ExpToTrig�
e

�� 1
2 �4 I	 t � � 3 e4 I t � 2 et/4 � 2 e

� 1
4 �8 I	 t�

//Simplify

Out[1181]= ���3 � 4 Cos�4 t	� Cosh�t
8

�
��3 � 4 Cos�4 t	� Sinh�t

8
��

�Cosh�3 t
8

� � Sinh�3 t
8

��
In[1182]:= y�t � �

ComplexExpand�
4 I e

�� 1
4 �4 I	 t �I

8
�
1

8
I e8 I t�//Simplify

Out[1182]= ���t/4 Cos�4 t	

In[1183]:= z�t � �

ComplexExpand�
e

�� 1
4 �4 I	 t � �

I

8
�
1

8
I e8 I t�//Simplify

Out[1183]= �
1

4
��t/4 Sin�4 t	

6.3.3 Alternate Method for Solving Initial-Value
Problems

An alternate method can be used to solve initial-value problems.
Let Φ�t� be a fundamental matrix for the system of equations X��t� � A�t�X�t�.
Then, a general solution is X�t� � Φ�t�C, where C is a constant vector. If the initial
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condition X�0� � X0 is given, then

X�0� � Φ�0�C

X0 � Φ�0�C

C � Φ�1�0�X0.

Therefore, the solution to the initial-value problem
�		

		
�

X��t� � A�t�X�t�

X�0� � X0

is X�t� �

Φ�t�Φ�1�0�X0.

EXAMPLE 6.3.4: Use a fundamental matrix to solve the initial-value

problem X� � � 1 1
4 �2

�X subject to X�0� � � 1
�2

�.

SOLUTION: We first remark that you can use DSolve to solve the
initial-value problem directly with the command

In[1184]:= Clear�x,y�

DSolve��x��t� �� x�t� � y�t�,
y��t� �� 4 x�t� � 2 y�t�,x�0� �� 1,
y�0� �� �2	,�x�t�,y�t�	,t�

Out[1184]= ��x�t	 
 1

5
��3 t �3 � 2 �5 t�,

y�t	 

2

5
��3 t ��6 � �5 t���

The eigenvalues and corresponding eigenvectors of A � � 1 1
4 �2

� are

found with Eigensystem.

In[1185]:= a � ��1,1	,�4,�2		

Eigensystem�a�

Out[1185]= ���3,2,���1,4,�1,1

Hence, the eigenvalues are Λ1 � �3 and Λ2 � 2 with corresponding

eigenvectors v1 � ��1
4
� and v1 � �1

1
�, respectively. A fundamental

matrix is then given by Φ�t� � ��e3t e2t

4e3t e2t�.
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In[1186]:= '�t � � ���Exp��3t�,Exp�2t�	,
�4Exp��3t�,Exp�2t�		

MatrixForm�'�t��

Out[1186]= � ���3 t �2 t

4 ��3 t �2 t
�

We calculate Φ�1�0� with Inverse.Inverse[A] finds the
inverse of the square matrix
A, if A is invertible. In[1187]:= Inverse�'�0��//MatrixForm

Out[1187]= ��15 1

5
4

5

1

5

�
Hence, the solution to the initial-value problem is X�t� � Φ�t�Φ�1�0�X0.

In[1188]:= sol � '�t� .Inverse�'�0��.�1,�2	//
Simplify

Out[1188]= �1
5
��3 t �3 � 2 �5 t�,

2

5
��3 t ��6 � �5 t��

As in the previous examples, we graph x�t� and y�t� together in Figure
6-23 (a) and parametrically in (b).
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Figure 6-23 (a) x�t� (in black) and y�t� (in gray). (b) Parametric plot of x�t� versus y�t�
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In[1189]:= Plot�Evaluate�sol�,�t,�1,3	,
PlotStyle� > �GrayLevel�0�,GrayLevel�0.5�	,
PlotRange� > ��2,2	,AspectRatio� > 1�

In[1190]:= ParametricPlot�sol,�t,�1,3	�

6.3.4 Repeated Eigenvalues

We now consider the case of repeated eigenvalues, which is more complicated
than the other cases because two situations can arise. An eigenvalue of multiplicity
m may have m corresponding linearly independent eigenvectors or it can have
fewer than m corresponding linearly independent eigenvectors. In the case of m
linearly independent eigenvectors, a general solution is found in the same manner
as the case of n distinct eigenvalues.

EXAMPLE 6.3.5: Solve X� �
*++++++
,

1 �3 3
3 �5 3
6 �6 4

-......
/

X.

SOLUTION: The eigenvalues and corresponding eigenvectors of

A �
*++++++
,

1 �3 3
3 �5 3
6 �6 4

-......
/

are found with Eigensystem.

In[1191]:= Clear�x,y,z,a�

a � ��1,�3,3	,�3,�5,3	,�6,�6,4		

Eigensystem�a�
Out[1191]= ���2,�2,4,

���1,0,1,�1,1,0,�1,1,2

From the results, we see that the eigenvalue Λ1,2 � �2 of multiplicity 2

has two corresponding linearly independent eigenvectors, v1 �
*++++++
,

�1
0
1

-......
/

and v2 �
*++++++
,

1
1
0

-......
/

. An eigenvector corresponding to Λ3 � 4 is v3 �
*++++++
,

1
1
2

-......
/

so a
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fundamental set of solutions for the system is S �

�			

			
�

*++++++
,

�1
0
1

-......
/

e�2t ,
*++++++
,

1
1
0

-......
/

e�2t ,

*++++++
,

1
1
2

-......
/

e4t

=			
>			
?

. A general solution is then

X � c1v1eΛ1t � c2v2eΛ2t � c3v3eΛ3t

� c1

*++++++
,

�1
0
1

-......
/

e�2t � c2

*++++++
,

1
1
0

-......
/

e�2t � c3

*++++++
,

1
1
2

-......
/

e4t

�
*++++++
,

�c1 � c2� e�2t � c3e4t

c1e�2t � c3e4t

c2e�2t � 2c3e4t

-......
/

and a fundamental matrix is

Φ �
*++++++
,

e�2t �e�2t e4t

e�2t 0 e4t

0 e�2t 2e4t

-......
/

.

Of course, DSolve can be used to find a general solution of the system
as well, although the form is slightly different than that obtained above.

In[1192]:= DSolve�
Thread��x��t�,y��t�,z��t�	 ��
a.�x�t�,y�t�,z�t�	�,

�x�t�,y�t�,z�t�	,t�//Simplify

Out[1192]= ��x�t	 
 1

2
��2 t ��1 � �6 t� C�1	

���1 � �6 t� �C�2	 � C�3	��,

y�t	 

1

2
��2 t ���1 � �6 t� C�1	

���3 � �6 t� C�2	 � ��1 � �6 t� C�3	�,

z�t	 
 ��2 t ���1 � �6 t� C�1	 � C�2	

��6 t C�2	 � �6 t C�3	���
Because an eigenvalue of multiplicity 2 can have only one corresponding eigen-
vector, let us first restrict our attention to a system where the repeated eigenvalue
Λ1 � Λ2 of A has only one corresponding eigenvector v1. We obtain one solution,
X1 � v1eΛ1t , to the system X� � AX that corresponds to the eigenvalue Λ1 of
A. We now seek a second linearly independent solution corresponding to Λ1 in a
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manner similar to that considered in the case of repeated characteristic roots of
higher-order equations. In this case, however, we suppose that the second linearly
independent solution corresponding to Λ1 is of the form

X2 � �v2t �w2� eΛ1t .

In order to find v2 and w2, we substitute X2 into X� � AX. Because X�
2 � Λ1 �v2t �

w2� eΛ1t � v2eΛ1t , we have

X�
2 � AX2

Λ1 �v2t �w2� eΛ1t � v2eΛ1t � A �v2t �w2� eΛ1t

Λ1v2t � �Λ1w2 � v2� � Av2t �Aw2.

Equating coefficients yields Λ1v2 � Av2 and Λ1w2�v2 � Aw2. The equation Λ1v2 �
Av2 indicates that v2 is an eigenvector of A that corresponds to Λ1, so we choose
v2 � v1. We simplify the equation Λ1w2 � v2 � Aw2:

Λ1w2 � v2 � Aw2

v2 � Aw2 � Λ1w2

v2 � �A � Λ1I�w2.

Because v2 � v1, w2 satisfies the equation

�A � Λ1I�w2 � v1.

Therefore, a second linearly independent solution corresponding to the eigenvalue
Λ2 has the form

X2 � �v1t �w2� eΛ1t ,

where w2 satisfies �A � Λ1I�w2 � v1.

EXAMPLE 6.3.6: Find a general solution of X� � ��8 �1
16 0

�X.

SOLUTION: We first note that DSolve can find a general solution of
the system.

In[1193]:= DSolve��x��t� �� �8 x�t� � y�t�,
y��t� �� 16 x�t�	,�x�t�,y�t�	,t�

Out[1193]= ��x�t	 
 ���4 t ��1 � 4 t� C�1	 � ��4 t t C�2	,

y�t	 
 16 ��4 t t C�1	 � ��4 t �1 � 4 t� C�2	
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We find the eigenvalues and corresponding eigenvectors of

A � ��8 �1
16 0

� with Eigensystem.

In[1194]:= a � ��8 �1
16 0


Eigensystem�a�

Out[1194]= ���4,�4,���1,4,�0,0

Hence, Λ1,2 � �4 and an eigenvector that corresponds to Λ1 � �4 is

v1 � ��1
4
� and one solution to the system is X1 � ��1

4
� e�4t ; there is

not a second linearly independent eigenvector corresponding to this
repeated eigenvalue.

Therefore, to find w2 � �x2

y2
� in a second linearly independent solu-

tion X2 � �v1t �w2� eΛ1t , we solve �A � Λ1I�w2 � v1, which in this case
is ��4 �1

16 4
� �x2

y2
� � ��1

4
� ,

with LinearSolve.LinearSolve[A,b]

solves Ax � b for x.
In[1195]:= LinearSolve�a � 4 IdentityMatrix�2�,

��1,4	�

Out[1195]= �1
4
,0�

We can use Solve to solve the system as well,

In[1196]:= Solve���4x2 � y2 �� �1,16x2 � 4y2 �� 4	�

Out[1196]= ��x2 
 1

4
�
y2
4

��
which indicates that x2 � 1

4 �1 � y2�. Choosing y2 � 0, x2 � 1/4. With

w2 � �1/4
0

�, a second linearly independent solution is

X2 � 	��1
4
� t � �1/4

0
�
 e�4t

and a general solution is

X � c1 ��1
4
� e�4t � c2 	��1

4
� t � �1/4

0
�
 e�4t 0

a fundamental matrix for the system is

Φ � ��1 �t � 1/4
4 4t

� e�4t .
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Figure 6-24 All solutions tend to �0, 0� as t � �

We now graph several solutions of the system as well as the direction
field associated with the system in Figure 6-24.

In[1197]:= sol �

c1��1
4

Exp��4t�
�c2���1

4
t � �1/4

0
Exp��4t�//Flatten

In[1198]:= step1 � Table�sol,�c1,�2,2	,
�c2,�2,2	�

In[1199]:= toplot � Flatten�step1,1�

In[1200]:= pp1 � ParametricPlot�Evaluate�toplot�,
�t,�1,1	,PlotStyle� > GrayLevel�0�,
DisplayFunction� > Identity�

In[1201]:= << Graphics‘PlotField‘

In[1202]:= pvf � PlotVectorField���8x � y,16x	,
�x,�40,40	,�y,�40,40	,
DisplayFunction� > Identity,
DefaultColor� > GrayLevel�0.5�,
ScaleFunction� > �1&��
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In[1203]:= line � Plot��4x,�x,�30,40	,
PlotStyle� >
��GrayLevel�0.3�,Thickness�0.01�		,
DisplayFunction� > Identity�

In[1204]:= Show�pvf,pp1,line,
PlotRange� > ���40,40	,��40,40		,
Axes� > Automatic,AspectRatio� > 1,
DisplayFunction� > $DisplayFunction�

In Figure 6-24, notice that the behavior of these solutions differs from
those of the other systems solved earlier in the section. This is due to
the repeated eigenvalues.

A similar method is carried out in the case that an eigenvalue of A has multiplicity
3. Suppose that Λ1 � Λ2 � Λ3 has only one linearly independent corresponding
eigenvector v1. In this situation, one solution of X� � AX is X1 � v1eΛ1t . We
assume that two other linearly independent solutions have the form

X2 � �v2t �w2� eΛ1t and X3 � �1
2
v3t2 �w3t � u3� eΛ1t .

Substitution of these solutions into the system of differential equations X� � AX
yields the following system of equations that is solved for the unknown vectors
v2, w2, v3, w3, and u3:

�									

									
�

Λ1v2 � Av2

�A � Λ1I�w2 � v2

Λ1v3 � Av3

�A � Λ1I�w3 � v3

�A � Λ1I�u3 � w3.

Similar to the previous case, v1 � v2 � v3, w2 � w3, and the vector u3 is found by
solving the system

�A � Λ1I�u3 � w2.

Hence, the three solutions have the form

X1 � v1eΛ1t , X2 � �v1t �w2� eΛ1t , and X3 � �1
2
v1t2 �w2t � u3� eΛ1t .

Notice that this method is generalized for instances when the multiplicity of the
repeated eigenvalue is greater than 3.
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EXAMPLE 6.3.7: Solve X� �
*++++++
,

1 1 1
2 1 �1

�3 2 4

-......
/

X.

SOLUTION: After defining A, we can also use DSolve to find a gen-
eral solution of the system.

In[1205]:= DSolve�
Thread��x��t�,y��t�,z��t�	 ��
a.�x�t�,y�t�,z�t�	�,
�x�t�,y�t�,z�t�	,t�

Out[1205]= ��x�t	 
 ��2 t ��1 � t� C�1	

��2 t t C�2	 � �2 t t C�3	,

y�t	 
 �
1

2
�2 t ��4 � t� t C�1	

�
1

2
�2 t �2 � 2 t � t2� C�2	

�
1

2
�2 t ��2 � t� t C�3	,

z�t	 

1

2
�2 t ��6 � t� t C�1	 �

1

2
�2 t ��4 � t� t C�2	

�
1

2
�2 t ��2 � 4 t � t2� C�3	��

Alternatively, we can use the eigenvalues and corresponding eigenvec-
tors to construct a general solution.

The eigenvalues and corresponding eigenvectors of A �
*++++++
,

1 1 1
2 1 �1

�3 2 4

-......
/

are found with Eigensystem.

In[1206]:= a � ��1,1,1	,�2,1,�1	,��3,2,4		

Eigensystem�a�

Out[1206]= ��2,2,2,��0,�1,1,�0,0,0,�0,0,0

Here, Λ1,2,3 � 2 has multiplicity 3 and has one eigenvector, v1 �
*++++++
,

0
�1

1

-......
/

,

that corresponds to it; there are not 1 or 2 other linearly independent
eigenvectors corresponding to Λ � 2. One solution of the system is
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X1 �
*++++++
,

0
�1

1

-......
/

e2t . The vector w2 �
*++++++
,

x2

y2

z2

-......
/

in the second linearly indepen-

dent solution of the form X2 � �v1t �w2� e2t is found by solving the
system �A � Λ1I�w2 � v1. We can solve this system with Solve or
LinearSolve. Here we use LinearSolve

In[1207]:= LinearSolve�a � 2 IdentityMatrix�3�,
�0,�1,1	�

Out[1207]= ��1,�1,0

to see that w2 �
*++++++
,

�1
�1

0

-......
/

, so X2 �
*++++++
,

*++++++
,

0
�1

1

-......
/

t �
*++++++
,

�1
�1

0

-......
/

-......
/

e2t . Finally, we must

determine the vector u3 �
*++++++
,

x3

y3

z3

-......
/

in the third linearly independent solu-

tion X3 � � 1
2v1t2 �w2t � u3� eΛ1t by solving the system �A � Λ1I�u3 �

w2.

In[1208]:= Solve�
�a � 2 IdentityMatrix�3��.�x3,y3,z3	 ��
��1,�1,0	�

Solve �� svars �

Equations may not give solutions

for all "solve" variables.
Out[1208]= ��x3 
 �2,y3 
 �3 � z3

Therefore, x3 � �2 and y3 � �3 � z3. We select z3 � 0 so y3 � �3.

Hence, u3 �
*++++++
,

�2
�3

0

-......
/

and a third linearly independent solution is X3 �

*++++++
,

1
2

*++++++
,

0
�1

1

-......
/

t2 �
*++++++
,

�1
�1

0

-......
/

t �
*++++++
,

�2
�3

0

-......
/

-......
/

e2t . A general solution is then given by

X � c1X1 � c2X2 � c3X3

� c1

*++++++
,

0
�1

1

-......
/

e2t � c2

*++++++
,

*++++++
,

0
�1

1

-......
/

t �
*++++++
,

�1
�1

0

-......
/

-......
/

e2t � c3

*++++++
,

1
2

*++++++
,

0
�1

1

-......
/

t2 �
*++++++
,

�1
�1

0

-......
/

t �
*++++++
,

�2
�3

0

-......
/

-......
/

e2t

�
*++++++
,

�c2 � c3��t � 2�
�c1 � c2��t � 1� � c3 �� 1

2 t2 � t � 3�
c1 � c2t � 1

2 c3t2

-......
/

e2t .
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6.4 Nonhomogeneous First-Order
Systems: Undetermined Coefficients,
Variation of Parameters, and the
Matrix Exponential

In Chapter 4, we learned how to solve nonhomogeneous differential equations
through the use of Undetermined Coefficients and Variation of Parameters. Here
we approach the solution of systems of nonhomogeneous equations using those
methods.

Let

X�t� �

*++++++++++
,

x1�t�
x2�t�

�

xn�t�

-..........
/

, A�t� �

*++++++++++
,

a11�t� a12�t� . . . a1n�t�
a21�t� a22�t� . . . a2n�t�

� � . . . �

an1�t� an2�t� . . . ann�t�

-..........
/

, and F�t� �

*++++++++++
,

f1�t�
f2�t�

�

fn�t�

-..........
/

.

A general solution of the homogeneous system X� � AX is X � Φ�t�C, where
Φ�t� � �Φ1 Φ2    Φn� is a fundamental matrix for the system X� � AX and C �

*++++++++++
,

c1

c2

�

cn

-..........
/

is an n � 1 constant vector.

Let X be any solution of X� � AX � F�t�, Xh � Φ�t�C a general solution of the
corresponding homogeneous system, X� � AX, and Xp a particular solution of A particular solution to a

system of ordinary
differential equations is a set
of functions that satisfy the
system but do not contain
any arbitrary constants. That
is, a particular solution to a
system is a set of specific
functions, containing no
arbitrary constants, that satisfy
the system.

the nonhomogeneous system.
Then, X�Xp is a solution of the corresponding homogeneous system, X� � AX,

so X �Xp � Xh and, consequently, X � Xh �Xp.
Thus, to find a general solution of X� � AX � F�t�, we note that if Xp is a

particular solution of the equation then all other solutions to the equation can be
written in the form

Xh � ΦC is a general
solution of the corresponding
homogeneous equation,
X� � AX.

X � Φ�t�C
�����������

Xh

�Xp.

6.4.1 Undetermined Coefficients

We use the method of undetermined coefficients to find a particular solution of a
nonhomogeneous system in much the same way as we approached nonhomoge-
neous higher-order equations in Chapter 4. The main difference is that the coeffi-
cients are constant vectors when we work with systems.
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EXAMPLE 6.4.1: Solve

�				

				
�

x� � 2x � y � sin 3t

y� � �8x � 2y

x�0� � 0, y�0� � 1.

SOLUTION: In matrix form, the system is equivalent to X� � � 2 1
�8 �2

�X

+�sin 3t
0

�. We find a general solution of the corresponding homogeneous

system X� � � 2 1
�8 �2

�X with DSolve.

In[1209]:= homsol �
DSolve��x��t� �� 2 x�t� � y�t�,
y��t� �� �8 x�t� � 2 y�t�	,�x�t�,y�t�	,
t�//Simplify

Out[1209]= ��x�t	 
 C�1	 Cos�2 t	 � �2 C�1	

�C�2	� Cos�t	 Sin�t	,
y�t	 
 C�2	 Cos�2 t	 � �4 C�1	

�C�2	� Sin�2 t	

These results indicate that a general solution of the corresponding
homogeneous system is

Xh � �� cos 2t � sin 2t sin 2t � cos 2t
4 sin 2t 4 cos 2t

� �c1

c2
� .

In[1210]:= xh�t � � �x�t�
y�t�

/.homsol��1��
Thus, we search for a particular solution of the nonhomogeneous

system of the form Xp � a sin 3t � b cos 3t, where a � �a1

a2
� and b � �b1

b2
�.

After defining A � � 2 1
�8 �2

� and Xp � a sin 3t � b cos 3t, we substitute

Xp into the nonhomogeneous system.

In[1211]:= capa � � 2 1
�8 �2


In[1212]:= xp�t � � �a1

a2
Sin�3t� � �b1

b2
Cos�3t�
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In[1213]:= step1 � xp
��t� �� capa.xp�t� � �Sin�3t�

0
//

Simplify

Out[1213]= ���3 Sin�3 t	 b1 � 3 Cos�3 t	 a1,
��3 Sin�3 t	 b2
�3 Cos�3 t	 a2 ��

��2 Cos�3 t	 b1 � Cos�3 t	 b2
�Sin�3 t	 �1 � 2 a1 � a2�,
��2 �4 Cos�3 t	 b1 � Cos�3 t	 b2
�Sin�3 t	 �4 a1 � a2��

The result represents a system of equations that is true for all values of
t. In particular, substituting t � 0 yields

In[1214]:= eq1 � step1 /. t� > 0

Out[1214]= ��3 ��1,1,�4,�21,
�3 ��1,1,�4,�22 ��
��2 b1 � b2,��2 �4 b1 � b2�

which is equivalent to the system of equations

�		

		
�

3a1 � 2b1 � b2

3a2 � �2 �4b1 � b2� .

Similarly, substituting t � Π/2 results in

In[1215]:= eq2 � step1 /. t� > Π/2

Out[1215]= ��3 b1,�3 b2 ��
���1 � 2 a1 � a2,
��2 ��4 a1 � a2�

which is equivalent to the system of equations

�		

		
�

3b1 � �1 � 2a1 � a2

3b2 � 2 ��4a1 � a2� .

We now use Solve to solve these four equations for a1, a2, b1, and b2

In[1216]:= coeffs � Solve��eq1,eq2	�

Out[1216]= ��b1 
 �
3

5
,b2 
 0,a1 
 �

2

5
,a2 


8

5
��

and substitute into Xp to obtain a particular solution to the nonhomo-
geneous system.
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In[1217]:= xp�t � � xp�t�/.coeffs��1��

Out[1217]= �� �
3

5
Cos�3 t	 �

2

5
Sin�3 t	�,�8

5
Sin�3 t	��

A general solution to the nonhomogeneous system is then given by
X � Xh �Xp.

In[1218]:= x�t � � xh�t� � xp�t�

Out[1218]= ��C�1	 Cos�2 t	 �
3

5
Cos�3 t	

��2 C�1	 � C�2	� Cos�t	 Sin�t	 �
2

5
Sin�3 t	�,�C�2	 Cos�2 t	 � �4 C�1	 � C�2	� Sin�2 t	

�
8

5
Sin�3 t	��

To solve the initial-value problem, we apply the initial condition and
solve for the unknown constants.

In[1219]:= x�0�

Out[1219]= �� �
3

5
� C�1	�,�C�2	�

In[1220]:= cvals � Solve�x�0� �� ��0	,�1		�

Out[1220]= ��C�1	 
 3

5
,C�2	 
 1��

We obtain the solution by substituting these values back into the gen-
eral solution.

In[1221]:= x�t � � x�t� /. cvals��1�� //Flatten//
Simplify

Out[1221]= �1
5
�3 Cos�2 t	 � 3 Cos�3 t	

�11 Cos�t	 Sin�t	 � 2 Sin�3 t	�,

Cos�2 t	 �
17

5
Sin�2 t	 �

8

5
Sin�3 t	�

We confirm this result by graphing x�t� (in black) and y�t� (in gray)
together in Figure 6-25 (a) as well as parametrically in (b).

In[1222]:= Plot�Evaluate�x�t��,�t,0,4Π	,
PlotStyle 

�GrayLevel�0�,GrayLevel�0.5�	,
PlotRange 
 ��2 Π,2Π	,AspectRatio 
 1�

In[1223]:= ParametricPlot�x�t�,�t,0,4Π	,
PlotRange 
 ���6,5	,��5,6		,
AspectRatio 
 1,Compiled 
 False�
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Figure 6-25 (a) x�t� (in black) and y�t� (in gray). (b) Parametric plot of x�t� versus y�t�

Finally, we note that DSolve is able to find a general solution of the
nonhomogeneous system

In[1224]:= Clear�x,y,t�

gensol �
Simplify�
DSolve��x��t� �� 2 x�t� � y�t� � Sin�3 t�,

y��t� �� �8 x�t� � 2 y�t�	,�x�t�,
y�t�	,t��

Out[1224]= ��x�t	 
 C�1	 Cos�2 t	 �
3

5
Cos�3 t	

�C�2	 Cos�t	 Sin�t	 � C�1	 Sin�2 t	

�
2

5
Sin�3 t	,y�t	 
 C�2	 Cos�2 t	

��4 C�1	 � C�2	� Sin�2 t	

�
8

5
Sin�3 t	��

as well as solve the initial-value problem.

In[1225]:= partsol �
Simplify�
DSolve��x��t� �� 2 x�t� � y�t� � Sin�3 t�,

y��t� �� �8 x�t� � 2 y�t�,x�0� �� 0,
y�0� �� 1	,�x�t�,y�t�	,t��
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Out[1225]= ��x�t	 
 1

10
�6 Cos�2 t	

�6 Cos�3 t	 � 11 Sin�2 t	

�4 Sin�3 t	�,

y�t	 
 Cos�2 t	 �
17

5
Sin�2 t	

�
8

5
Sin�3 t	��

In[1226]:= partsol��1,1,2��//ExpToTrig//
Simplify

Out[1226]=
1

10
�6 Cos�2 t	

�6 Cos�3 t	 � 11 Sin�2 t	 � 4 Sin�3 t	�

In[1227]:= partsol��1,2,2��//ExpToTrig//
Simplify

Out[1227]= Cos�2 t	 �
17

5
Sin�2 t	 �

8

5
Sin�3 t	

6.4.2 Variation of Parameters

Generally, the method of undetermined coefficients is difficult to implement for
nonhomogeneous linear systems as the choice for the particular solution must be
very carefully made.

Variation of parameters is implemented in much the same way as for first-order
linear equations.

Let Φ be a fundamental matrix for the corresponding homogeneous system.
We assume that a particular solution has the form Xp � ΦU�t�. Differentiating Xp

gives us
Xp

� � Φ�U �ΦU�.

Substituting into equation X� � AX � F�t� results in

Φ�U �ΦU� � AΦU � F

ΦU� � F

U� � Φ�1F

U � � Φ�1F dt,

where we have used the fact that Φ�U �AΦU � �Φ� �AΦ�U � 0. It follows that

Xp � Φ� Φ�1F dt. (6.15)



6.4 Nonhomogeneous First-Order Systems: Undetermined Coefficients 491

A general solution is then

X � Xh �Xp

� ΦC �Φ� Φ�1F dt

� Φ �C � � Φ�1F dt� � Φ� Φ�1F dt,

where we have incorporated the constant vector C into the indefinite integral� Φ�1F dt.

EXAMPLE 6.4.2: Solve the initial-value problem

X� � � 1 �1
10 �1

�X � � t cos 3t
t sin t � t cos 3t

� , X�0� � � 1
�1

� .

Remark. In traditional form, the system is equivalent to

�		

		
�

x� � x � y � t cos 3t

y� � 10x � y � t sin t � t cos 3t,
x�0� � 1, y�0� � �1.

SOLUTION: The corresponding homogeneous system is X�
h � � 1 �1

10 �1
�Xh.

The eigenvalues and corresponding eigenvectors of A � � 1 �1
10 �1

� are

Λ1,2 �  3i and v1,2 � � 1
10

�  �3
0
� i, respectively.

In[1228]:= capa � ��1,�1	,�10,�1		
Eigensystem�capa�

Out[1228]= ���3 i,3 i,��1 � 3 i,10,�1 � 3 i,10

A fundamental matrix is Φ � � sin 3t cos 3t
sin 3t � 3 cos 3t cos 3t � 3 sin 3t

� with

inverse Φ�1 � � 1
3 cos 3t � sin 3t � 1

3 cos 3t
� 1

3 sin 3t � cos 3t 1
3 sin 3t

�.
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In[1229]:= fm � ��Sin�3t�,Sin�3t� � 3Cos�3t�	,
�Cos�3t�,Cos�3t� � 3Sin�3t�		//Transpose

fminv � Inverse�fm�//Simplify

Out[1229]= ��1
3

Cos�3 t	 � Sin�3 t	,Cos�3 t	

�
1

3
Sin�3 t	�,� �

1

3
Cos�3 t	,

1

3
Sin�3 t	��

We now compute Φ�1F�t�

In[1230]:= ft � ��t Cos�3t�,�t Sin�t� � t Cos�3t�	
step1 � fminv.ft

Out[1230]= ���t Cos�3 t	 � t Sin�t	� �Cos�3 t	

�
1

3
Sin�3 t	� � t Cos�3 t	 �1

3
Cos�3 t	

�Sin�3 t	�, 1

3
t Cos�3 t	2

�
1

3
��t Cos�3 t	

�t Sin�t	�Sin�3 t	�
and � Φ�1F�t� dt.

In[1231]:= step2 � Integrate�step1,t�

Out[1231]= � 1

864
� � 288 t2 � 36 Cos�2 t	

�216 t Cos�2 t	 � 9 Cos�4 t	

�108 t Cos�4 t	 � 16 Cos�6 t	

�48 t Cos�6 t	

�108 Sin�2 t	 � 72 t Sin�2 t	

�27 Sin�4 t	 � 36 t Sin�4 t	

�8 Sin�6 t	 � 96 t Sin�6 t	�, 1

864�72 t2 � 36 Cos�2 t	 � 9 Cos�4 t	

�4 Cos�6 t	 � 24 t Cos�6 t	

�72 t Sin�2 t	 � 36 t Sin�4 t	

�4 Sin�6 t	 � 24 t sin�6 t	��
A general solution of the nonhomogeneous system is then Φ �� Φ�1F�t�
dt �C�.

In[1232]:= Simplify�fm.step2�
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Out[1232]= � 1

288
�27 Cos�t	 � 4 ��1 � 6 t � 18 t2�

� Cos�3 t	 � 27 t Sin�t	 � Sin�3 t	

�6 t Sin�3 t	 � 18 t2 Sin�3 t	��,
1

288
� � 36 t Cos�t	 � 4 �1 � 6 t � 18 t2�

� Cos�3 t	 � 45 Sin�t	 � 4 Sin�3 t	

�24 t Sin�3 t	 � 72 t2 Sin�3 t	��
It is easiest to use DSolve to solve the initial-value problem directly as
we do next.

In[1233]:= check � DSolve��x��t� �� x�t�
�y�t� � t Cos�3t�,y��t� �� 10x�t� � y�t�
�t Sin�t� � t Cos�3t�,x�0� �� 1,
y�0� �� �1	,�x�t�,y�t�	,t�

Out[1233]= ��x�t	 
 1

288
� � 9 Cos�t	 � 297 Cos�3 t	

�72 t2 Cos�3 t	 � 36 t Sin�t	

�192 Sin�3 t	 � 24 t Sin�3 t	�,
y�t	 


1

288
� � 9 Cos�t	 � 36 t Cos�t	

�279 Cos�3 t	 � 72 t Cos�3 t	

�72 t2 Cos�3 t	 � 45 Sin�t	

�36 t Sin�t	 � 1107 Sin�3 t	

�24 t Sin�3 t	 � 216 t2 Sin�3 t	���
After using ?Evaluate to obtain basic information regarding the
Evaluate function, the solutions are graphed with Plot and Para
metricPlot in Figure 6-26.
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Figure 6-26 (a) Graph of x�t� (in black) and y�t� (in gray). (b) Parametric plot of x�t�
versus y�t�
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In[1234]:= ?Evaluate

"Evaluate�expr	causesexprtobeevaluatedeven

ifitappearsastheargumentofafunction

whoseattributesspecifythatitshouldbe

heldunevaluated."

In[1235]:= p1 � Plot�Evaluate��x�t�,y�t�	/.check�,
�t,0,8Π	,PlotStyle� > �GrayLevel�0�,
GrayLevel�0.4�	,DisplayFunction� >
Identity�

p2 � ParametricPlot�Evaluate��x�t�,
y�t�	/.check�,�t,0,8Π	,
DisplayFunction� > Identity,
AspectRatio� > Automatic�

Show�GraphicsArray��p1,p2	��

EXAMPLE 6.4.3: Solve

�				

				
�

x� � �3x � 2y � et sec t

y� � �10x � 5y � et csc t,

x�Π/4� � 3, y�Π/4� � �1

0 < t < Π.

SOLUTION: To implement the method of Variation of Parameters, we
proceed in the same manner as before. First, we find a general solution
of the corresponding homogeneous system.

In[1236]:= Clear�x,y,a�

a � � �3 2
�10 5


In[1237]:= homsol � DSolve�

Thread��x��t�,y��t�	 ��
a.�x�t�,y�t�	�,
�x�t�,y�t�	,t�//
FullSimplify

This result means that a general solution of the corresponding homo-
geneous system is

Xh � �et �� cos 2t � 2 sin 2t� et �2 cos 2t � sin 2t�
5et sin 2t 5et cos 2t

� �c1

c2
�
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and a fundamental matrix is given by

Φ � �et �� cos 2t � 2 sin 2t� et �2 cos 2t � sin 2t�
5et sin 2t 5et cos 2t

� .

In[1238]:= '�t � ��Exp�t���Cos�2t� � 2Sin�2t�� Exp�t��2Cos�2t� � Sin�2t��

5Exp�t�Sin�2t� 5Exp�t�Cos�2t�
�

Next, we compute Xp�t� � Φ�t� � Φ�1�t�F�t� dt. The result is very lengthy
so we suppress the resulting output by including a semi-colon at the
end of the command.

In[1239]:= inverse' � Inverse�'�t��//Simplify

MatrixForm�inverse'�

Out[1239]= ����t Cos�2 t	 1

5
��t �2 Cos�2 t	 � Sin�2 t	�

��t Sin�2 t	
1

5
��t �Cos�2 t	 � 2 Sin�2 t	�

�
In[1240]:= f�t � � �Exp�t�Sec�t�

Exp�t�Csc�t�


xp�t � �
'�t�.Integrate�Inverse�'�t��.f�t�,t�//
Simplify

However, we view abbreviations of x�t� and y�t� with Short.

In[1241]:= xp�t���1��//Short

Out[1241]= ��t ��1��

In[1242]:= xp�t���2��//Short

Out[1242]= ���t ��1��

Finally, we form a general solution of the nonhomogeneous system.

In[1243]:= x�t � � '�t�.�c1
c2

 � xp�t�//Simplify

To solve the initial-value problem, we substitute t � Π/4 into the gen-
eral solution

In[1244]:= x�Π/4�//FullSimplify
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Out[1244]= ���Π/4 � � 2


2 � 2 Log�Cos�Π

8
� � Sin�Π

8
��

�2 Log�Cos�Π
8

� � Sin�Π
8

��
�Log�Tan�Π

8
�� � 2 c1 � c2��,

��Π/4 � � 2


2 � 2 Log�Sec�Π

8
��

�5 Log�Cos�Π
8

� � Sin�Π
8

��
�2 Log�Sin�Π

8
�� � 5 Log�Cos�Π

8
�

�Sin�Π
8

�� � 5 c1���
and solve

�		

		
�

x�Π/4� � 3

y�Π/4� � �1
for c1 and c2.

In[1245]:= cvals � Solve�x�Π/4� �� � 3
�1

�
Out[1245]= ��c2 
 1

5
��Π/4 �17 � 6 


2 �Π/4 � �Π/4 Log�Cos�Π
8

��
��Π/4 Log�Sin�Π

8
���,

c1 

1

5
��Π/4 � � 1 � 2



2 �Π/4 � 2 �Π/4 Log�Cos�Π

8
��

�5 �Π/4 Log�Cos�Π
8

�
�Sin�Π

8
�� � 2 �Π/4 Log�Sin�Π

8
��

�5 �Π/4 Log�Cos�Π
8

� � Sin�Π
8

�����
This result is rather complicated so we compute more meaningful
approximations with N.

In[1246]:= numcvals � N�cvals�

Out[1246]= ��c2. 
 3.42352,c1. 
 �0.0543264

The solution to the initial-value problem is obtained by substituting
these numbers back into the general solution.

In[1247]:= x�t � � x�t� /.cvals��1��//N
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Out[1247]= ��2.71828t ��4. Cos�t	 � Cos�2. t	
��Log�Cos�0.5 t	 � 1. Sin�0.5 t		
�1. Log�Cos�0.5 t	 � Sin�0.5 t		�
�0.0543264 �Cos�2. t	 � 2. Sin�2. t	�
���1. Log�Cos�0.5 t		 � 2. Log�Cos�0.5 t	
�1. Sin�0.5 t		 � Log�Sin�0.5 t		
�2. Log�Cos�0.5 t	 � Sin�0.5 t		� Sin�2. t	

�3.42352 �2. Cos�2. t	 � Sin�2. t	��,
�2.71828t �17.1176 Cos�2. t	 � 1. Cos�2. t	
��Log�Cos�0.5 t		 � 1. Log�Sin�0.5 t		�
�4. Sin�t	 � 2. Cos�t	 �4.
��2. Log�Cos�0.5 t		 � 5. Log�Cos�0.5 t	
�1. Sin�0.5 t		 � 2. Log�Sin�0.5 t		
�5. Log�Cos�0.5 t	 � Sin�0.5 t		� Sin�t	�

�0.271632 Sin�2. t	�

We confirm that the initial conditions are satisfied by graphing x�t� and
y�t� on the interval �0, Π/2� in Figure 6-27.

In[1248]:= Plot�Evaluate�x�t��,
t,0, Π
2

�,
PlotStyle 
 �GrayLevel�0�,GrayLevel�0.5�	�
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Figure 6-27 x�t� (in black) and y�t� (in gray)
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6.4.3 The Matrix Exponential

Definition 28 (Matrix Exponential). If At is n� n, the matrix exponential is defined
by

eAt � exp �At� � I �At �
1
2!

A2t2 �    �
��

n�0

1
n!

Antn. (6.16)

Use the command MatrixExp to compute the matrix exponential of a matrix. For

example, here we use MatrixExp to calculate eAt if A � � 1 0
�2 3

�.

In[1249]:= MatrixExp���t,0	,��2t,3t		�

Out[1249]= ���t, 0,��t � �3 t,�3 t

Differentiating the series (6.16) term-by-term shows us that
d
dt

�eAt � � AeAt so eAt

satisfies the differential equation X� � AX. We can use the matrix exponential eAt

to solve the linear first-order system X� � AX � F�t� in much the same way that
we used the integrating factor e� p�x� dx to solve the linear first-order equation y�

�p�x�y � q�x�. Moreover, eAt is a fundamental matrix for the homogeneous system;�eAt ��1
� e�At ; and if t � 0, eAt � I.

To solve the system X� � AX �F�t�, we first rewrite it as X� �AX � F�t�. Now,
multiply both sides of the equation by e�At and integrate:

e�At �X� �AX� � e�AtF�t�
d
dt

�e�AtX� � e�AtF�t�

e�AtX � � e�AtF�t� dt �C

X � eAt � e�AtF�t� dt � eAtC,

where C is an arbitrary constant vector.
If, in addition, we are given the initial condition X �t0� � X0, the solution to the

initial-value problem
�		

		
�

X� � AX � F�t�

X �t0� � X0

is

X � � t

t0

eA�t�s�F�s� ds � eA�t�t0�X0.

EXAMPLE 6.4.4: Solve X� � � 2 5
�4 �2

�X � �cos 4t
sin 4t

�.
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SOLUTION: Here, A � � 2 5
�4 �2

�. We compute eAt with MatrixExp.

In[1250]:= a � � 2 5
�4 �2


In[1251]:= expa � MatrixExp�at�//ExpToTrig//

FullSimplify

MatrixForm�expa�

Out[1251]=
��������
�

Cos�4 t	 �
1

2
Sin�4 t	

5

4
Sin�4 t	

�Sin�4 t	 Cos�4 t	 �
1

2
Sin�4 t	

 !!!!!!!
"

A general solution of the system is then given by X � eAt � e�AtF�t� dt
�eAtC. We compute e�At , � e�AtF�t� dt, and eAt � e�AtF�t� dt.

In[1252]:= invexpa � Inverse�expa�//Simplify

MatrixForm�invexpa�

Out[1252]=
��������
�

Cos�4 t	 �
1

2
Sin�4 t	 �

5

4
Sin�4 t	

Sin�4 t	 Cos�4 t	 �
1

2
Sin�4 t	

 !!!!!!!
"

In[1253]:= f�t � � �Cos�4t�
Sin�4t�


In[1254]:= step1 � invexpa.f�t�//Simplify

MatrixForm�step1�

Out[1254]=
��������
�

1

8
��1 � 9 Cos�8 t	 � 2 Sin�8 t	�

1

4
�
1

4
Cos�8 t	 � Sin�8 t	

 !!!!!!!
"

In[1255]:= step2 � Integrate�step1,t�//Simplify

MatrixForm�step2�

Out[1255]=
��������
�

1

64
��8 t � 2 Cos�8 t	 � 9 Sin�8 t	�

1

32
�8 t � 4 Cos�8 t	 � Sin�8 t	�

 !!!!!!!
"

In[1256]:= step3 � expa.step2//Simplify

MatrixForm�step3�

Out[1256]=
��������
�

1

64
��2 � 8 t� Cos�4 t	 � �9 � 16 t� Sin�4 t	�

1

32
���4 � 8 t� Cos�4 t	 � Sin�4 t	�

 !!!!!!!
"
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Then, we form our general solution.

In[1257]:= gensol � step3 � expa.�c1
c2

//Simplify
Out[1257]= �� 1

64
��2 � 8 t� Cos�4 t	 � �9 � 16 t� Sin�4 t	�

��Cos�4 t	 � 1

2
Sin�4 t	� c1 �

5

4
Sin�4 t	 c2�,

� 1

32
���4 � 8 t� Cos�4 t	 � Sin�4 t	�

�Sin�4 t	 c1 � �Cos�4 t	 � 1

2
Sin�4 t	� c2��

To graph the solution parametrically for various values of the arbi-
trary constant, we use Flatten to convert gensol to a list of the form
�x�t�, y�t��.

In[1258]:= step1 � Flatten�gensol�

Out[1258]= � 1

64
��2 � 8 t� Cos�4 t	 � �9 � 16 t� Sin�4 t	�

��Cos�4 t	 � 1

2
Sin�4 t	� c1 �

5

4
Sin�4 t	 c2,

1

32
���4 � 8 t� Cos�4 t	 � Sin�4 t	�

�Sin�4 t	 c1 � �Cos�4 t	 � 1

2
Sin�4 t	� c2�

Next, we use Table together with Flatten to create a set of paramet-
ric functions that we will graph with ParametricPlot.

In[1259]:= toplot �
Flatten�Table�step1,�c1,�1,1	,
�c2,�1,1	�,1�

Now, we define paramgraph. Given a list of the form �x�t�, y�t��,

paramgraph parametrically graphs
�		

		
�

x � x�t�

y � y�t�
for �3Π � t � 3Π. The

resulting graphics object is not displayed.

In[1260]:= paramgraph�list � ��
ParametricPlot�list,�t,�3 Π,3Π	,
PlotRange 
 ���5,5	,��5,5		,
Ticks 
 ���5,5	,��5,5		,
AspectRatio 
 1,
DisplayFunction 
 Identity�

We then use Map to apply paramgraph to the list of parametric func-
tions toplot.
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Figure 6-28 Parametric plots of various solutions to the nonhomogeneous system

In[1261]:= somegraphs � Map�paramgraph,toplot�

Out[1261]= �-Graphics-,-Graphics-,-Graphics-,
-Graphics-,-Graphics-,-Graphics-,
-Graphics-,-Graphics-,-Graphics-

The resulting list of nine graphics objects is partitioned into three
element subsets with Partition. All nine graphs are then shown
together using Show and GraphicsArray in Figure 6-28.
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In[1262]:= toshow � Partition�somegraphs,3�

Show�GraphicsArray�toshow��

If a system of differential equations contains derivatives of order greater than one,
we can often rewrite it as a system of first-order equations.In Chapter 8, we will also see

that Laplace transforms can
often be used to solve
systems of this type.

EXAMPLE 6.4.5: Solve

�						

						
�

�2
d2x
dt2

� 2
dy
dt

� 0

d2y
dt2

� y �
dx
dt

� cos t

x�0� � 2, x��0� � 1, y�0� � 1, y��0� � 2.

SOLUTION: To rewrite the system as a system of first-order equa-
tions, we let z � dx/dt and w � dy/dt. Then, dz/dt � d2x/dt2 and dw/dt
� d2y/dt2. Substituting into the first equation we have �2 dz/dt � 2w � 0
so dz/dt � �w. Similarly, substituting into the second equation yields
dw/dt � y � z � cos t so dw/dt � �y � z � cos t. Therefore, the original
system is equivalent to the system of first-order equations

�									

									
�

dx/dt � z

dy/dt � w

dz/dt � �w

dw/dt � �y � z � cos t

x�0� � 2, y�0� � 1, z�0� � 1, w�0� � 2.

In matrix form, the initial-value problem is equivalent to X� � AX

�F�t�, X�0� �

*++++++++++
,

2
1
1
2

-..........
/

, where

X �

*++++++++++
,

x
y
z
w

-..........
/

, A �

*++++++++++
,

0 0 1 0
0 0 0 1
0 0 0 �1
0 �1 1 0

-..........
/

, and F�t� �

*++++++++++
,

0
0
0

cos t

-..........
/

.
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Using the exponential matrix, the solution to the initial-value problem
is given by

X � � t

0
eA�t�s�F�s� ds � eAt

*++++++++++
,

2
1
1
2

-..........
/

.

First, we define A and then use MatrixExp together with ExpToTrig
and FullSimplify to compute eAt .

In[1263]:= a � ��0,0,1,0	,�0,0,0,1	,
�0,0,0,�1	,�0,�1,1,0		

In[1264]:= expa � MatrixExp�at�//ExpToTrig//
FullSimplify

MatrixForm�expa�

Out[1264]=
����������������������������������
�

1
1

4
�2 t � 


2 Sin�

2 t�� 1

4
�2 t � 


2 Sin�

2 t�� �Sin� t


2
�2

0 Cos� t

2

�2

Sin� t

2

�2 Sin�

2 t�

2

0 Sin� t

2

�2

Cos� t

2

�2

�
Sin�


2 t�

2

0 �
Sin�


2 t�

2

Sin�

2 t�

2

Cos�

2 t�

 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
"

The matrix eA�t�s� is obtained by replacing each occurrence of t in eAt

by t � s.

In[1265]:= expats � expa /. t� > t � s

Next, we compute eA�t�s�F�s� and integrate the result.

In[1266]:= f�t � � ��0	,�0	,�0	,�Cos�t�		

MatrixForm�f�t��

Out[1266]= � 0
0
0

Cos�t	

�
In[1267]:= tointegrate � expats.f�s�//Simplify

MatrixForm�tointegrate�
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Out[1267]= �
�Cos�s	 Sin��s � t


2
�2

Cos�s	 Sin�

2 ��s � t��


2

�
Cos�s	 Sin�


2 ��s � t��

2

Cos�s	 Cos�

2 ��s � t��

�

In[1268]:= step2 � Simplify� � t

0

tointegrate�s�
MatrixForm�step2�

Out[1268]= � �Sin�t	 �
Sin�


2 t�

2

Cos�t	 � Cos�

2 t�

�Cos�t	 � Cos�

2 t�

�Sin�t	 �


2 Sin�


2 t�
�

Finally, we form the solution to the initial-value problem. Note that the
first and second rows correspond to x and y, respectively.

In[1269]:= x0 � ��2	,�1	,�1	,�2		

In[1270]:= sol � step2 � expa.x0//Simplify

MatrixForm�sol�

Out[1270]= �2 � t � Sin�t	 � 2 Sin� t

2

�2

�
Sin�


2 t�

2

1 � Cos�t	 � Cos�

2 t� �



2 Sin�


2 t�
1 � Cos�t	 � Cos�


2 t� �


2 Sin�


2 t�
2 Cos�


2 t� � Sin�t	 �


2 Sin�


2 t�
�

We confirm that the initial conditions are satisfied by graphing x�t� and
y�t� together in Figure 6-29 and parametrically in Figure 6-30.

In[1271]:= Plot�

1 � t � Cos��

2 t� � Sin�t� �
Sin��

2 t��
2

,

1 � Cos�t� � Cos��
2 t� �

�
2 Sin��

2 t��,
�t,0,12	,PlotRange� > ��2,10	,
PlotStyle� > �GrayLevel�0�,
GrayLevel�0.5�	,

AspectRatio� > 1�
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Figure 6-29 x�t� (in black) and y�t� (in gray)
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Figure 6-30 Parametric plot of x�t� versus y�t�
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In[1272]:= ParametricPlot�

1 � t � Cos��

2 t� � Sin�t� �
Sin��

2 t��
2

,

1 � Cos�t� � Cos��
2 t� �

�
2 Sin��

2 t��,
�t,0,12	,PlotRange� > ��6,6	,

AspectRatio� > 1�

6.5 Numerical Methods

Because it may be difficult or even impossible to construct an explicit solution
to some systems of differential equations, we now turn our attention to discussing
some numerical methods that are used to construct numerical solutions to systems
of differential equations.

6.5.1 Built-In Methods

Numerical approximations of solutions to systems of ordinary differential equa-
tions can be obtained with NDSolve. This command is particularly useful when
working with nonlinear systems of equations for which DSolve alone is unable
to find an explicit or implicit solution.

EXAMPLE 6.5.1: Consider the nonlinear system of equations

�		

		
�

x� � Μx � y � x �x2 � y2�
y� � Μy � x � y �x2 � y2� .

(6.17)

(a) Graph the direction field associated with the system for Μ � 2, 1,
1/4, and �1/2. (b) For each value of Μ in (a), approximate the solution
that satisfies the initial conditions x�0� � 0 and y�0� � 1/2. Use each
numerical solution to approximate x�5� and y�5�.

SOLUTION: After loading the PlotField package, we define the func-
tion dfield. Given Μ, dfield�Μ� graphs the direction field associated
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with the system (6.17) on the rectangle ��2, 2� � ��2, 2�. The resulting
graphics object is not displayed because we include the option
DisplayFunction->Identity in the PlotVectorField command.

In[1273]:= << Graphics‘PlotField‘

In[1274]:= dfield�Μ � ��

PlotVectorField�
Μx � y � x �x2 � y2	,Μy � x � y �x2 � y2	�,
�x,�2,2	,�y,�2,2	,
ScaleFunction 
 �1&�,Axes 
 Automatic,
AxesOrigin 
 �0,0	,PlotPoints 
 20,
DefaultColor 
 GrayLevel�0.5�,

DisplayFunction 
 Identity�
We use dfield to graph the direction field associated with the system
for Μ � 2, 1, 1/4, and �1/2.

In[1275]:= pvfa � dfield�2�

pvfb � dfield�1�

pvfc � dfield�1
4

�
pvfd � dfield� �

1

2
�

Show together with GraphicsArray is used to display all four graphs
together in Figure 6-31. The direction field indicates that the behavior
of the solutions strongly depends on the value of Μ.

In[1276]:= Show�GraphicsArray�
��pvfa,pvfb	,�pvfc,pvfd		��

Now, we use NDSolve to generate a numerical approximation to the
initial-value problem if Μ � 2.

In[1277]:= sys � 
x��t� �� Μ x�t� � y�t�
�x�t� �x�t�2 � y�t�2	,
y��t� �� Μ y�t� � x�t� � y�t� �x�t�2
�y�t�2	,x�0� �� 0,y�0� �� 1/2�

In[1278]:= Μ � 2

sola � NDSolve�sys,�x�t�,y�t�	,�t,0,10	�
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Figure 6-31 The behavior of solutions to the nonlinear system depends strongly on the
value of Μ

Out[1278]= ��x�t	 
 InterpolatingFunction�

��0.,10.,<>	�t	,
y�t	 
 InterpolatingFunction�

��0.,10.,<>	�t	

We use ReplaceAll (/.) to see that x�5� � �1.35612 and y�5� � 0.401167.

In[1279]:= sola /. t� > 5

Out[1279]= ��x�5	 
 �1.35612,y�5	 
 0.401167

We use Plot to graph x�t� and y�t� for 0 � t � 10 in Figure 6-32. Notice
that the solution appears to become periodic.
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Figure 6-32 If Μ � 2, the solution to the initial-value problem approaches a limit cycle

In[1280]:= Plot�Evaluate��x�t�,y�t�	 /. sola�,
�t,0,10	,PlotStyle� > �GrayLevel�0�,
GrayLevel�0.5�	�

This is further confirmed by graphing the solution parametrically and
showing it together with the direction field in Figure 6-33.

In[1281]:= ppa � ParametricPlot��x�t�,y�t�	 /. sola,
�t,0,10	,Compiled� > False,
PlotRange� > ���2,2	,��2,2		,
AspectRatio� > 1,
PlotStyle� > GrayLevel�0�,
DisplayFunction� > Identity�

In[1282]:= Show�pvfa,ppa,
DisplayFunction� > $DisplayFunction�

For the remaining values of Μ, we define the function numsol. Given Μ,
numsol�Μ� generates a numerical solution to the initial-value problem.

In[1283]:= Clear�Μ�

numsol�Μ � �� NDSolve�
x��t� �� Μ x�t� � y�t�
�x�t� �x�t�2 � y�t�2	,

y��t� �� Μ y�t� � x�t� � y�t��x�t�2 � y�t�2	,x�0� �� 0,
y�0� �� 1/2�,�x�t�,y�t�	,
�t,0,10	�

We use numsol to solve each initial-value problem. Note that Mathe-
matica does not display any output because we have included a
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Figure 6-33 The direction field highlights the location of the limit cycle

semi-colon at the end of each command. (You could use Map[sol[#]&,
{1,1/4,-1/2}] to obtain an equivalent result.)

In[1284]:= solb � numsol�1�

solc � numsol�1/4�

sold � numsol��1/2�

As before, we use ReplaceAll (/.) to approximate the value of each
solution if t � 5.

In[1285]:= �solb,solc,sold	 /. t� > 5

Out[1285]= ���x�5	 
 �0.958856,y�5	 
 0.283647,
��x�5	 
 �0.479456,y�5	 
 0.141833,
��x�5	 
 �0.032173,y�5	 
 0.00951576

For each numerical solution, we use Plot to graph x�t� and y�t� for 0 �
t � 10 in Figure 6-34. Notice that the solutions corresponding to positive
values of Μ appear to become periodic while the solution corresponding
to the negative value of Μ appears to tend towards zero.
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Figure 6-34 If Μ is positive, the solutions approach a limit cycle; if Μ is negative, the solu-
tions tend to 0

In[1286]:= pb � Plot�Evaluate��x�t�,y�t�	 /. solb�,
�t,0,10	,PlotStyle� >
�GrayLevel�0�,GrayLevel�0.5�	,
DisplayFunction� > Identity�

pc � Plot�Evaluate��x�t�,y�t�	 /. solc�,
�t,0,10	,PlotStyle� >
�GrayLevel�0�,GrayLevel�0.5�	,
DisplayFunction� > Identity�

pd � Plot�Evaluate��x�t�,y�t�	 /. sold�,
�t,0,10	,PlotStyle� >
�GrayLevel�0�,GrayLevel�0.5�	,
PlotRange� > All,
DisplayFunction� > Identity�

In[1287]:= Show�GraphicsArray��pb,pc,pd	��

These results are further confirmed when we graph each solution para-
metrically and display the graphs with the direction fields generated in
(a) in Figure 6-35.
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Figure 6-35 If Μ is positive, the solutions approach a limit cycle; if Μ is negative, the solu-
tions tend to 0
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In[1288]:= ppb � ParametricPlot��x�t�,y�t�	 /. solb,
�t,0,10	,Compiled� > False,
PlotRange� > ���2,2	,��2,2		,
AspectRatio� > 1,
PlotStyle� > GrayLevel�0�,
DisplayFunction� > Identity�

ppc � ParametricPlot��x�t�,y�t�	 /. solc,
�t,0,10	,Compiled� > False,
PlotRange� > ���2,2	,��2,2		,
AspectRatio� > 1,
PlotStyle� > GrayLevel�0�,
DisplayFunction� > Identity�

ppd � ParametricPlot��x�t�,y�t�	 /. sold,
�t,0,10	,Compiled� > False,
PlotRange� > ���2,2	,��2,2		,
AspectRatio� > 1,
PlotStyle� > GrayLevel�0�,
DisplayFunction� > Identity�

In[1289]:= graphb � Show�pvfb,ppb�

graphc � Show�pvfc,ppc�

graphd � Show�pvfd,ppd�

In[1290]:= Show�GraphicsArray�
�graphb,graphc,graphd	��

In the cases corresponding to the positive values of Μ, we see in the
direction field that all solutions appear to tend to a closed curve. Can
we find the curve in each case? If Μ � 2, we see that the solution that
satisfies x�0� � 0 and y�0� � 1.41 will be periodic. Similarly, if Μ � 1/4,
we see that the solution that satisfies x�0� � 0 and y�0� � 0.482 will be
periodic. On the other hand, if Μ � 1, we need not approximate the
solution. From the graph, we see that the solution that satisfies x�0�
� 0 and y�0� � 1 will be periodic. It is relatively easy to verify that

the solution that satisfies these initial conditions is
�		

		
�

x � cos t

y � sin t.
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Application: Controlling the Spread of a Disease
If a person becomes immune to a disease after recovering from it and births and Sources: Herbert W.

Hethcote, “Three Basic
Epidemiological Models,”
Applied Mathematical Ecology,
edited by Simon A. Levin,
Thomas G. Hallan, and Louis
J. Gross, Springer-Verlag
(1989), pp. 119–143. Roy M.
Anderson and Robert M.
May, “Directly Transmitted
Infectious Diseases: Control
by Vaccination,” Science,
Volume 215 (February 26,
1982), pp. 1053–1060. J. D.
Murray, Mathematical Biology,
Springer-Verlag (1990),
pp. 611–618.

deaths in the population are not taken into account, then the percent of persons
susceptible to becoming infected with the disease, S�t�, the percent of people in
the population infected with the disease, I�t�, and the percent of the population
recovered and immune to the disease, R�t�, can be modeled by the system

�						

						
�

S� � �ΛSI

I� � ΛSI � ΓI

R� � ΓI

S�0� � S0, I�0� � I0, R�0� � 0.

(6.18)

Because S�t� � I�t� � R�t� � 1, once we know S�t� and I�t�, we can compute R�t� with
R�t� � 1 � S�t� � I�t�. This model is called an SIR model without vital dynamics
because once a person has had the disease the person becomes immune to the
disease and because births and deaths are not taken into consideration. This model
might be used to model diseases that are epidemic to a population: those diseases
that persist in a population for short periods of time (less than one year). Such
diseases typically include influenza, measles, rubella, and chickenpox.

If S0 < Γ/Λ, I��0� � ΛS0I0 � ΓI0 < Λ
Γ
Λ

I0 � ΓI0 � 0. Thus, the rate of infection

immediately begins to decrease; the disease dies out. On the other hand, if S0 >

Γ/Λ, I��0� � ΛS0I0 � ΓI0 > Λ
Γ
Λ

I0 � ΓI0 � 0 so the rate of infection first increases; an

epidemic results.
Although we cannot find explicit formulas for S, I, and R as functions of t, we

can, for example, solve for I in terms of S. The equation
dI
dS

� �
�ΛS � Γ�I
ΛSI

� �1 �
Ρ
S

,

Ρ � Γ/Λ, is separable:

dI
dS

� �1 �
Ρ
S
�� dI � ��1 �

Ρ
S

� dS �� I � �S � Ρ ln S �C

and applying the initial condition results in

I0 � �S0 � Ρ ln S0 �C �� C � I0 � S0 � Ρ ln S0

so I � �S � Ρ ln S � I0 � S0 � Ρ ln S0 �� I � S � Ρ ln S � I0 � S0 � Ρ ln S0.
When diseases persist in a population for long periods of time, births and deaths

must be taken into consideration. If a person becomes immune to a disease after
recovering from it and births and deaths in the population are taken into account,
then the percent of persons susceptible to becoming infected with the disease, S�t�,
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and the percent of people in the population infected with the disease, I�t�, can be
modeled by the system

�				

				
�

S� � �ΛSI � Μ � ΜS

I� � ΛSI � ΓI � ΜI

S�0� � S0, I�0� � I0.

(6.19)

This model is called an SIR model with vital dynamics because once a person has
had the disease the person becomes immune to the disease and because births and
deaths are taken into consideration. This model might be used to model diseases
that are endemic to a population: those diseases that persist in a population for
long periods of time (10 or 20 years). Smallpox is an example of a disease that was
endemic until it was eliminated in 1977. We use Solve to see that the solutions to
the system of equations

�		

		
�

�ΛSI � Μ � ΜS � 0

ΛSI � ΓI � ΜI � 0

are S � 1, I � 0 and S �
Γ � Μ
Λ

, I �
Μ �Λ � �Γ � Μ��
Λ�Γ � Μ�

.

In[1291]:= eq1 � �Λ si � Μ � Μs

eq2 � Λsi � Γi � Μi

In[1292]:= eqpts � Solve��eq1 �� 0,eq2 �� 0	,�s,i	�

Out[1292]= ��i 
 0,s 
 1,�i 
 �
Μ �Γ � Λ � Μ�

Λ �Γ � Μ�
,s 


Γ � Μ

Λ
��

These two points are called equilibrium points because they are constant solu-
tions to the system.

Because S�t� � I�t� � R�t� � 1, it follows that S�t� � I�t� � 1. The following table
shows the average infectious period, 1/Γ, Γ, and typical contact numbers, Σ, for
several diseases during certain epidemics.

Disease 1/Γ Γ Σ
Measles 6.5 0.153846 14.9667

Chickenpox 10.5 0.0952381 11.3
Mumps 19 0.0526316 8.1

Scarlet fever 17.5 0.0571429 8.5

Let us assume that the average lifetime, 1/Μ, is 70 so that Μ � 0.0142857.
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For each of the diseases listed in the previous table, we use the formula Σ �
Λ/ �Γ � Μ� to calculate the daily contact rate Λ.

Disease Λ
Measles 2.51638

Chickenpox 1.23762
Mumps 0.54203

Scarlet fever 0.607143

Diseases like those listed above can be controlled once an effective and inexpensive
vaccine has been developed. Since it is virtually impossible to vaccinate everybody
against a disease, we would like to know what percentage of a population needs to
be vaccinated to eliminate a disease. A population of people has herd immunity to
a disease means that enough people are immune to the disease so that if it is intro-
duced into the population, it will not spread throughout the population. In order
to have herd immunity, an infected person must infect less than one uninfected
person during the time the person is infectious. Thus, we must have

ΣS < 1.

Since I � S � R � 1, when I � 0 we have that S � 1 � R and, consequently, herd
immunity is achieved when

Σ�1 � R� < 1

Σ � ΣR < 1

�ΣR < 1 � Σ

R >
Σ � 1
Σ

� 1 �
1
Σ

.

For each of the diseases listed above, we estimate the minimum percentage of a
population that needs to be vaccinated to achieve herd immunity.

Disease Minimum value of R to achieve herd immunity
Measles 0.933186

Chickenpox 0.911505
Mumps 0.876544

Scarlet fever 0.882354

Using the values in the previous tables, for each disease we graph the direction

field and several solutions
�		

		
�

S � S�t�

I � I�t�
parametrically. For measles, we proceed as
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follows. After loading the PlotField package, we define Μ, Γ, Σ, and Λ. For these
values, we graph the direction field associated with the system on the rectangle
�0, 1� � �0, 1�. Because S�t� � I�t� � 1, we are only concerned with solutions of the
system that are below the line S � I � 1.

In[1293]:= << Graphics‘PlotField‘

p1 � Plot�1 � x,�x,0,1	,
PlotStyle 
 Thickness�0.0075�,
DisplayFunction 
 Identity�

Μ � 0.0142857

Γ � 0.153846

Σ � 14.9667

Λ � Σ �Γ � Μ�

eq1 � �Λ si � Μ � Μs

eq2 � Λsi � Γi � Μi
pvf1 � PlotVectorField��eq1,eq2	,

�s,0,1	,�i,0,1	,
ScaleFunction 
 �1&�,PlotPoints 
 20,
DefaultColor 
 GrayLevel�0.5�,
DisplayFunction 
 Identity�

Next, we define two lists of ordered pairs and use Union to join the two lists. The
points in initconds1 are “close” to the S axis while the points in initconds2
are close to the I axis. We will graph the solutions that satisfy these initial condi-
tions.

In[1294]:= initconds1 � Table��i/10,0.01	,�i,1,9	�

initconds2 � Table��1 � i/10,i/10	,�i,1,9	�

initconds � Union�initconds1,initconds2�

Now we define the function numgraph. Given an ordered pair �S0, I0�, numgraph
generates a numerical solution to the initial-value problem (6.19) and graphs the
result.
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Figure 6-36 Using an SIR model to model measles

In[1295]:= numgraph��s0 ,i0 	� �� Module��numsol	,
numsol � NDSolve��s��t� �� �Λ s�t� i�t� � Μ � Μ s�t�,
i��t� �� Λ s�t� i�t� � Γ i�t� � Μ i�t�,
s�0� �� s0,i�0� �� i0	,�s�t�,i�t�	,�t,0,20	�
ParametricPlot��s�t�,i�t�	/. numsol,�t,0,20	,
PlotStyle� > GrayLevel�0�,Compiled� > False,
DisplayFunction� > Identity��

We then use Map to apply numgraph to the list initconds. Show is used to dis-
play all three graphics objects together in Figure 6-36. In the result, we see that the
(nontrivial) solutions approach the equilibrium point.

In[1296]:= toshow � Map�numgraph,initconds�

Show�pvf1,toshow,p1,
PlotRange� > ��0,1	,�0,1		,
AspectRatio� > 1,
DisplayFunction� > $DisplayFunction,
Axes� > Automatic�

For the remaining three diseases, we change the values of Μ, Γ, Σ, and Λ and reenter
the code. Here are the results for chickenpox. See Figure 6-37.
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Figure 6-37 Using an SIR model to model chickenpox

In[1297]:= Μ � 0.0142857

Γ � 0.0952381

Σ � 11.3

Λ � Σ�Γ � Μ�

eq1 � �Λ si � Μ � Μs

eq2 � Λsi � Γi � Μi
pvf1 � PlotVectorField��eq1,eq2	,

�s,0,1	,�i,0,1	,
ScaleFunction� > �1&�,PlotPoints� > 20,
DefaultColor� > GrayLevel�0.5�,
DisplayFunction� > Identity�

numgraph��s0 ,i0 	� �� Module��numsol	,
numsol � NDSolve��s��t� �� �Λ s�t� i�t�

�Μ � Μ s�t�,i��t� �� Λ s�t� i�t�
�Γ i�t� � Μ i�t�,s�0� �� s0,i�0� �� i0	,
�s�t�,i�t�	,�t,0,20	�
ParametricPlot��s�t�,i�t�	/.
numsol,�t,0,20	,
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In[1297]:= PlotStyle� > GrayLevel�0�,
Compiled� > False,
DisplayFunction� > Identity��

In[1298]:= toshow � Map�numgraph,initconds�

Show�pvf1,toshow,p1,
PlotRange� > ��0,1	,�0,1		,
AspectRatio� > 1,
DisplayFunction� > $DisplayFunction,
Axes� > Automatic�

Similar results are obtained for mumps. See Figure 6-38.

In[1299]:= Μ � 0.0142857

Γ � 0.0526316

Σ � 8.1

Λ � Σ�Γ � Μ�

eq1 � �Λ si � Μ � Μs

eq2 � Λsi � Γi � Μi
pvf1 � PlotVectorField��eq1,eq2	,

�s,0,1	,�i,0,1	,
ScaleFunction� > �1&�,PlotPoints� > 20,
DefaultColor� > GrayLevel�0.5�,
DisplayFunction� > Identity�

numgraph��s0 ,i0 	� �� Module��numsol	,
numsol �

NDSolve�
�s��t� �� �Λ s�t� i�t� � Μ � Μ s�t�,
i��t� �� Λ s�t� i�t� � Γ i�t� � Μ i�t�,
s�0� �� s0,i�0� �� i0	,
�s�t�,i�t�	,�t,0,40	�

ParametricPlot�
�s�t�,i�t�	/. numsol,
�t,0,40	,PlotStyle� > GrayLevel�0�,
Compiled� > False,
DisplayFunction� > Identity��
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Figure 6-38 Using an SIR model to model mumps

In[1300]:= toshow � Map�numgraph,initconds�

Show�pvf1,toshow,p1,
PlotRange� > ��0,1	,�0,1		,
AspectRatio� > 1,
DisplayFunction� > $DisplayFunction,
Axes� > Automatic�

Last, we generate graphs for scarlet fever. See Figure 6-39. In all four cases, we see
that all solutions approach the equilibrium point, which indicates that although
the epidemic runs its course, the disease is never completely removed from the
population.

In[1301]:= Μ � 0.0142857

Γ � 0.0571429

Σ � 8.5

Λ � Σ�Γ � Μ�

eq1 � �Λ si � Μ � Μs

eq2 � Λsi � Γi � Μi
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Figure 6-39 Using an SIR model to model scarlet fever

In[1301]:= pvf1 � PlotVectorField��eq1,eq2	,
�s,0,1	,�i,0,1	,
ScaleFunction� > �1&�,PlotPoints� > 20,
DefaultColor� > GrayLevel�0.5�,
DisplayFunction� > Identity�

numgraph��s0 ,i0 	� �� Module��numsol	,
numsol �

NDSolve�
�s��t� �� �Λ s�t� i�t� � Μ � Μ s�t�,
i��t� �� Λ s�t� i�t� � Γ i�t� � Μ i�t�,
s�0� �� s0,i�0� �� i0	,
�s�t�,i�t�	,�t,0,40	�

ParametricPlot�
�s�t�,i�t�	/. numsol,
�t,0,40	,PlotStyle� > GrayLevel�0�,
Compiled� > False,
DisplayFunction� > Identity��

In[1302]:= toshow � Map�numgraph,initconds�

Show�pvf1,toshow,p1,
PlotRange� > ��0,1	,�0,1		,
AspectRatio� > 1,
DisplayFunction� > $DisplayFunction,
Axes� > Automatic�
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NDSolve can be used to generate numerical solutions of systems that involve
more than one differential equation as well.

EXAMPLE 6.5.2 (FitzHugh–Nagumo Equation): Under certain
assumptions, the FitzHugh–Nagumo equation that arises in the study
of the impulses in a nerve fiber can be written as the system of ordinary
differential equations

�							

							
�

dV /dΞ � W

dW/dΞ � F�V � � R � uW

dR/dΞ �
Ε
u
�bR �V � a�

V �0� � v0, W �0� � W0, R�0� � R0

(6.20)

where F�V � � 1
3V 3�V . (a) Graph the solution to the FitzHugh–Nagumo

equation that satisfies the initial conditions V �0� � 1, W �0� � 0, and
R�0� � 1 if Ε � 0.08, a � 0.7, b � 0, and u � 1. (b) Graph the solution
that satisfies the initial conditions V �0� � 1, W �0� � 0.5, and R�0� � 0.5 if
Ε � 0.08, a � 0.7, b � 0.8, and u � 0.6.

SOLUTION: We begin by defining the function fnsol, which given
the appropriate parameter values and initial conditions returns a
numerical solution of system (6.20). If �Ξ, a, b� is not included after the
initial conditions, the default solution is valid for 0 � Ξ � 100; any
options included are passed to the NDSolve command. In this case, we
use lower-case letters to avoid any ambiguity with built-in Mathemat-
ica functions.

In[1303]:= Clear�fnsol�

fnsol�Ε ,a ,b ,u ���v0 ,w0 ,r0 	,
Ξs ��Ξ,0,100	,opts � ��
NDSolve��v��Ξ� �� w�Ξ�,w��Ξ� ��
1/3v�Ξ�ˆ3 � v�Ξ� � r�Ξ� � u w�Ξ�,r��Ξ� ��
Ε/u �b r�Ξ� � v�Ξ� � a�,v�0� �� v0,w�0� ��
w0,r�0� �� r0	,�v�Ξ�,
w�Ξ�,r�Ξ�	,Ξs,opts�

For (a), we enter

In[1304]:= sola � fnsol�0.08,0.7,0,1���1,0,1	�
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Out[1304]= ��v�Ξ	 
 InterpolatingFunction���0.,100.,
<>	�Ξ	,

w�Ξ	 
 InterpolatingFunction���0.,100.,
<>	�Ξ	,

r�Ξ	 
 InterpolatingFunction���0.,100.,
<>	�Ξ	

We then graph the solution functions parametrically with Para-
metricPlot3D and then individually with Plot. The option Plot-
Points->200 is included in the ParametricPlot3D to help assure
that the resulting graph is smooth. Using Show and GraphicsArray,
both plots are shown in Figure 6-40.

In[1305]:= pp1 � ParametricPlot3D�
Evaluate��w�Ξ�,v�Ξ�,r�Ξ�	/.sola�,
�Ξ,0,100	,PlotRange 
 ���1,1	,
��1,1	,��1,1		,BoxRatios 
 �1,1,1	,
PlotPoints 
 500,
DisplayFunction 
 Identity�

In[1306]:= pa � Plot�Evaluate��w�Ξ�,v�Ξ�,r�Ξ�	/.sola�,
�Ξ,0,100	,PlotStyle 
 �GrayLevel�0�,
GrayLevel�0.3�,Dashing��0.01	�	,
DisplayFunction 
 Identity�

In[1307]:= Show�GraphicsArray��pp1,pa	��
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Figure 6-40 For 0 � Ξ � 50: (a) parametric plot of W versus V versus R; (b) W (in black),
V (in gray), and R (dashed)
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Figure 6-41 For 0 � Ξ � 15: (a) parametric plot of W versus V versus R; (b) W (in black),
V (in gray), and R (dashed)

For (b), we specify that we want the solution to be valid for 0 � Ξ � 15
so enter

In[1308]:= solb � fnsol�0.08,0.7,0.8,0.6�
��1,0.5,0.5	,�Ξ,0,15	�

Out[1308]= ��v�Ξ	 
 InterpolatingFunction���0.,15.,
<>	�Ξ	,

w�Ξ	 
 InterpolatingFunction�

��0.,15.,<>	�Ξ	,
r�Ξ	 
 InterpolatingFunction���0.,15.,

<>	�Ξ	

Parametric plots and individual plots are generated in the same way as
in (a). See Figure 6-41.

In[1309]:= pp2 � ParametricPlot3D�Evaluate�
�w�Ξ�,v�Ξ�,r�Ξ�	/.solb�,�Ξ,0,15	,
PlotRange 
 ���1,1	,��1,1	,��1,1		,
BoxRatios 
 �1,1,1	,PlotPoints 
 500,
DisplayFunction 
 Identity�

In[1310]:= pb � Plot�Evaluate��w�Ξ�,v�Ξ�,r�Ξ�	/.solb�,
�Ξ,0,15	,PlotStyle 
 �GrayLevel�0�,
GrayLevel�0.3�,Dashing��0.01	�	,
DisplayFunction 
 Identity�

In[1311]:= Show�GraphicsArray��pp2,pb	��
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In other cases, you may wish to implement your own numerical algorithms to
approximate solutions of differential equations. We briefly discuss two familiar
methods (Euler’s method and the Runge–Kutta method) and illustrate how to
implement these algorithms using Mathematica. Details regarding these and other
algorithms, including discussions of the error involved in implementing them, can
be found in most numerical analysis texts or other references like the Zwillinger’s
Handbook of Differential Equations, [29].

6.5.2 Euler’s Method

Euler’s method for approximation that was discussed for first-order equations
may be extended to include systems of first-order equations. The initial-value
problem

�				

				
�

dx/dt � f �t, x, y�

dy/dt � g�t, x, y�

x �t0� � x0, y �t0� � y0

(6.21)

is approximated at each step by the recursive relationship based on the Taylor
expansion of x and y:

�		

		
�

xn�1 � xn � h f �tn, xn, xn�

yn�1 � yn � hg �tn, xn, xn�
(6.22)

where tn � t0 � nh, n � 0, 1, 2, . . . .

EXAMPLE 6.5.3: Use Euler’s method with h � 0.1 to approximate the
solution of the initial-value problem

�				

				
�

dx/dt � x � y � 1

dy/dt � x � 3y � e�t

x �0� � 0, y �0� � 1.

Compare these results to those of the exact solution of the system of
equations.
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SOLUTION: We use the same notation as in equations (6.21) and (6.22):
f �x, y� � x � y � 1, g�x, y� � dy/dt � x � 3y � e�t , t0 � 0, x0 � 0, and y0 � 1,
so we use the formulas

�		

		
�

xn�1 � xn � h �xn � yn � 1�

yn�1 � yn � h �xn � 3yn � e�tn �
where tn � 0.1n, n � 0, 1, 2, . . . .

For example, if n � 0, then

�		

		
�

x1 � x0 � h �x0 � y0 � 1� � 0

y1 � y0 � h �x0 � 3y0 � e�t0 � � 1.4.

The exact solution of this initial-value problem is found to be

�		

		
�

x�t� � � 3
4 �

1
9 e�t � 31

36 e2t � 11
6 te2t

y�t� � 1
4 �

2
9 e�t � 35

36 e2t � 11
6 te2t

with DSolve.

In[1312]:= partsol �
DSolve��x��t� �� x�t� � y�t� � 1,
y��t� �� x�t� � 3 y�t� � Exp��t�,
x�0� �� 0,y�0� �� 1	,�x�t�,y�t�	,t�

Out[1312]= ��x�t	 
 �
1

36
��t �4 � 27 �t � 31 �3 t � 66 �3 t t�,

y�t	 

1

36
��t ��8 � 9 �t � 35 �3 t � 66 �3 t t���

In[1313]:= xex�t � � �
3

4
�
Exp��t�

9
�
31 Exp�2t�

36

�
11

6
t Exp�2t�

In[1314]:= yex�t � �
1

4
�
2 Exp��t�

9
�
35 Exp�2t�

36

�
11

6
t Exp�2t�

We display the results obtained with this method (in columns three and
five) and compare them to the actual function values (in columns four
and six).



6.5 Numerical Methods 527

In[1315]:= Clear�f,g,t,h,x,y�

f�t ,x ,y � � x � y � 1

g�t ,x ,y � � x � 3y � Exp��t�

h � 0.1

t�n � �� t0 � nh

t0 � 0

xe�n � ��
xe�n� �
xe�n � 1�
�h f�t�n � 1�,xe�n � 1�,ye�n � 1��

ye�n � ��
ye�n� �
ye�n � 1�
�h g�t�n � 1�,xe�n � 1�,ye�n � 1��

xe�0� � 0

ye�0� � 1

In[1316]:= Table��n,t�n�,xe�n�,xex�t�n��,
ye�n�,yex�t�n��	,�n,0,10	�//
TableForm

Out[1316]=

0 0 0 0 1 1
1 0.1 0 �0.0226978 1.4 1.46032
2 0.2 �0.04 �0.103346 1.91048 2.06545
3 0.3 �0.135048 �0.265432 2.5615 2.85904
4 0.4 �0.304703 �0.540105 3.39053 3.89682
5 0.5 �0.574227 �0.968408 4.44425 5.24975
6 0.6 �0.976074 �1.60412 5.78076 7.00806
7 0.7 �1.55176 �2.51737 7.47226 9.28638
8 0.8 �2.35416 �3.79926 9.60842 12.23
9 0.9 �3.45042 �5.56767 12.3005 16.0232
10 1. �4.9255 �7.97468 15.6862 20.8987

We also graph the approximation with the actual solution in Fig-
ure 6-42.
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Figure 6-42 Euler’s method using h � 0.1: (a) comparison of xn to x�t�; (b) comparison of yn

to y�t�; (c) comparison of �xn, yn� to �x�t�, y�t��

In[1317]:= xs � Table��t�n�,xe�n�	,�n,0,10	�

In[1318]:= p1 � ListPlot�xs,
PlotStyle� > PointSize�0.03�,
DisplayFunction� > Identity�

p2 � Plot�xex�t�,�t,0,1	,
DisplayFunction� > Identity�

p3 � Show�p1,p2�

In[1319]:= ys � Table��t�n�,ye�n�	,�n,0,10	�

In[1320]:= p4 � ListPlot�ys,
PlotStyle� > PointSize�0.03�,
DisplayFunction� > Identity�

p5 � Plot�yex�t�,�t,0,1	,
DisplayFunction� > Identity�

p6 � Show�p4,p5�

In[1321]:= both � Table��xe�n�,ye�n�	,�n,0,10	�

In[1322]:= p7 � ListPlot�both,
PlotStyle� > PointSize�0.03�,
DisplayFunction� > Identity�

p8 � ParametricPlot��xex�t�,yex�t�	,
�t,0,1	,DisplayFunction� >
Identity�

p9 � Show�p7,p8�

In[1323]:= Show�GraphicsArray��p3,p6,p9	��
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Figure 6-43 Euler’s method using h � 0.05: (a) comparison of xn to x�t�; (b) comparison of
yn to y�t�; (c) comparison of �xn, yn� to �x�t�, y�t��

Because the accuracy of this approximation diminishes as t increases,
we attempt to improve the approximation by decreasing the increment
size. We do this next by entering the value h � 0.05 and repeating the
procedure which was followed above. See Figure 6-43.

In[1324]:= Clear�f,g,t,h,x,y�

f�t ,x ,y � � x � y � 1

g�t ,x ,y � � x � 3y � Exp��t�

h � 0.05

t�n � �� t0 � nh

t0 � 0

xe�n � ��
xe�n� �
xe�n � 1�
�h f�t�n � 1�,xe�n � 1�,ye�n � 1��

ye�n � ��
ye�n� �
ye�n � 1�
�h g�t�n � 1�,xe�n � 1�,ye�n � 1��

xe�0� � 0

ye�0� � 1

In[1325]:= Table��t�n�,xe�n�,xex�t�n��,ye�n�,
yex�t�n��	,�n,0,20	�//TableForm
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Out[1325]=

0 0 0 1 1
0.05 0 �0.00532454 1.4 1.21439
0.1 �0.04 �0.0226978 1.91048 1.46032
0.15 �0.135048 �0.054467 2.5615 1.74231
0.2 �0.304703 �0.103346 3.39053 2.06545
0.25 �0.574227 �0.172465 4.44425 2.43552
0.3 �0.976074 �0.265432 5.78076 2.85904
0.35 �1.55176 �0.386392 7.47226 3.34338
0.4 �2.35416 �0.540105 9.60842 3.89682
0.45 �3.45042 �0.732029 12.3005 4.52876
0.5 �4.9255 �0.968408 15.6862 5.24975
0.55 �5.90609 �1.25639 17.8232 6.07171
0.6 �7.04255 �1.60412 20.2302 7.00806
0.65 �8.35619 �2.02091 22.9401 8.07394
0.7 �9.871 �2.51737 25.9894 9.28638
0.75 �11.614 �3.10558 29.419 10.6645
0.8 �13.6157 �3.79926 33.2748 12.23
0.85 �15.9102 �4.61405 37.6077 14.0071
0.9 �18.5361 �5.56767 42.4747 16.0232
0.95 �21.5366 �6.68027 47.9395 18.3088
1. �24.9604 �7.97468 54.0729 20.8987

In[1326]:= xs � Table��t�n�,xe�n�	,�n,0,20	�

In[1327]:= p1 � ListPlot�xs,
PlotStyle� > PointSize�0.03�,
DisplayFunction� > Identity�

p2 � Plot�xex�t�,�t,0,1	,
DisplayFunction� > Identity�

p3 � Show�p1,p2�

In[1328]:= ys � Table��t�n�,ye�n�	,�n,0,20	�

In[1329]:= p4 � ListPlot�ys,
PlotStyle� > PointSize�0.03�,
DisplayFunction� > Identity�

p5 � Plot�yex�t�,�t,0,1	,
DisplayFunction� > Identity�

p6 � Show�p4,p5�

In[1330]:= both � Table��xe�n�,ye�n�	,�n,0,20	�

In[1331]:= p7 � ListPlot�both,
PlotStyle� > PointSize�0.03�,
DisplayFunction� > Identity�
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In[1331]:= p8 � ParametricPlot��xex�t�,yex�t�	,
�t,0,1	,DisplayFunction� >
Identity�

p9 � Show�p7,p8�

In[1332]:= Show�GraphicsArray��p3,p6,p9	��

Notice that the approximations are more accurate with the smaller value
of h. We also see this in the graphs that compare the approximation with
the exact solution.

6.5.3 Runge–Kutta Method

Because we would like to be able to improve the approximation without using
such a small value for h, we seek to improve the method. As with first-order equa-
tions, the Runge–Kutta method can be extended to systems. In this case, the recur-
sive formula at each step is

�		

		
�

xn�1 � xn � 1
6 h �k1 � 2k2 � 2k3 � k4�

yn�1 � yn � 1
6 h �m1 � 2m2 � 2m3 � m4�

(6.23)

where

k1 � f �tn, xn, yn� m1 � g �tn, xn, yn� (6.24)

k2 � f �tn � 1
2

h, xn �
1
2

hk1, yn �
1
2

hm1� m2 � g �tn � 1
2

h, xn �
1
2

hk1, yn �
1
2

hm1� (6.25)

k3 � f �tn � 1
2

h, xn �
1
2

hk2, yn �
1
2

hm2� m3 � g �tn � 1
2

h, xn �
1
2

hk2, yn �
1
2

hm2� (6.26)

k4 � f �tn � h, xn � hk3, yn � hm3� m4 � g �tn � h, xn � hk3, yn � hm3� (6.27)

EXAMPLE 6.5.4: Use the Runge–Kutta method to approximate the
solution of the initial-value problem from Example 2

�				

				
�

dx/dt � x � y � 1

dy/dt � x � 3y � e�t

x �0� � 0, y �0� � 1

using h � 0.1. Compare these results to those of the exact solution of the
system of equations as well as those obtained with Euler’s method.
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SOLUTION: We use equations (6.23) and (6.24) with f �x, y� � x � y � 1,
g�x, y� � x � 3y � e�t , t0 � 0, x0 � 0, y0 � 1, and h � 0.1.

We show the results obtained with this method and compare them
to the exact values.

In[1333]:= Clear�t0,f,g,x,y,t,k1,k2,k3,
k4,m1,m2,m3,m4,xr,yr�

f�t ,x ,y � � x � y � 1

g�t ,x ,y � � x � 3y � Exp��t�

t0 � 0

h � 0.1

t�n � �� t0 � nh

x�n � ��
x�n� �
x�n � 1�

�
1

6
h �k1�n � 1� � 2 k2�n � 1� � 2 k3�n � 1�

�k4�n � 1��

x�0� � 0

y�n � ��
y�n� �
y�n � 1�

�
1

6
h �m1�n � 1� � 2 m2�n � 1� � 2 m3�n � 1�

�m4�n � 1��

y�0� � 1

In[1334]:= k1�n � �� k1�n� � f�t�n�,x�n�,y�n��

k2�n � ��

k2�n� � f�t�n� � h

2
,x�n� �

h k1�n�

2
,

y�n� �
h m1�n�

2
�
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In[1334]:= k3�n � ��

k3�n� � f�t�n� � h

2
,x�n� �

h k2�n�

2
,

y�n� �
h m2�n�

2
�

k4�n � ��
k4�n� � f�t�n� � h,x�n� � h k3�n�,

y�n� � h m3�n��

m1�n � �� m1�n� � g�t�n�,x�n�,y�n��

m2�n � ��

m2�n� � g�t�n� � h

2
,x�n� �

h k1�n�

2
,

y�n� �
h m1�n�

2
�

m3�n � ��

m3�n� � g�t�n� � h

2
,x�n� �

h k2�n�

2
,

y�n� �
h m2�n�

2
�

m4�n � ��
m4�n� � g�t�n� � h,x�n� � h k3�n�,

y�n� � h m3�n��

In[1335]:= Table��t�n�,x�n�,xex�t�n��,y�n�,
yex�t�n��	,�n,0,10	�//TableForm

Out[1335]=

0 0 0 1 1
0.1 �0.0226878 �0.0226978 1.46031 1.46032
0.2 �0.10332 �0.103346 2.06541 2.06545
0.3 �0.265382 �0.265432 2.85897 2.85904
0.4 �0.540021 �0.540105 3.8967 3.89682
0.5 �0.968273 �0.968408 5.24956 5.24975
0.6 �1.60391 �1.60412 7.00778 7.00806
0.7 �2.51707 �2.51737 9.28596 9.28638
0.8 �3.79882 �3.79926 12.2294 12.23
0.9 �5.56704 �5.56767 16.0223 16.0232
1. �7.97379 �7.97468 20.8975 20.8987

Notice that the Runge–Kutta method is much more accurate than
Euler’s method. In fact, the Runge–Kutta with h � 0.1 is more accu-
rate than Euler’s method with h � 0.05. We also observe the accuracy of
the approximation in the graphs that compare the approximation to the
exact solution in Figure 6-44.
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Figure 6-44 Runge–Kutta method using h � 0.1: (a) comparison of xn to x�t�; (b) comparison
of yn to y�t�; (c) comparison of �xn, yn� to �x�t�, y�t��

In[1336]:= xs � Table��t�n�,x�n�	,�n,0,10	�

In[1337]:= p1 � ListPlot�xs,
PlotStyle� > PointSize�0.03�,
DisplayFunction� > Identity�

p2 � Plot�xex�t�,�t,0,1	,
DisplayFunction� > Identity�

p3 � Show�p1,p2�

In[1338]:= ys � Table��t�n�,y�n�	,�n,0,10	�

In[1339]:= p4 � ListPlot�ys,
PlotStyle� > PointSize�0.03�,
DisplayFunction� > Identity�

p5 � Plot�yex�t�,�t,0,1	,
DisplayFunction� > Identity�

p6 � Show�p4,p5�

In[1340]:= both � Table��x�n�,y�n�	,�n,0,10	�

In[1341]:= p7 � ListPlot�both,
PlotStyle� > PointSize�0.03�,
DisplayFunction� > Identity�

p8 � ParametricPlot��xex�t�,yex�t�	,
�t,0,1	,DisplayFunction� >
Identity�

p9 � Show�p7,p8�

In[1342]:= Show�GraphicsArray��p3,p6,p9	��
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6.6 Nonlinear Systems, Linearization, and
Classification of Equilibrium Points

We now turn our attention to the systems of equations of the form

�		

		
�

dx/dt � f �x, y�

dy/dt � g�x, y�.
(6.28)

This system is autonomous, because f �x, y� and g�x, y� do not depend explicitly on
the independent variable t.

Definition 29 (Equilibrium Point). A point �x0, y0� is an equilibrium point of system
(6.28) if f �x0, y0� � 0 and g �x0, y0� � 0.

Equilibrium points are also
called rest points.Before discussing nonlinear systems, we first investigate properties of systems of

the form
�		

		
�

dx/dt � ax � by

dy/dt � cx � dy
(6.29)

where
��������a b
c d

�������� � ad � bc # 0, which have only one equilibrium point: �0, 0�. We have

solved many systems of this type by using the eigenvalues and corresponding

eigenvectors of A � �a b
c d

�.

6.6.1 Real Distinct Eigenvalues

If Λ1 and Λ2 are real eigenvalues of A � �a b
c d

� where Λ2 < Λ1, with corresponding

eigenvectors v1 and v2, respectively, a general solution of system (6.29) is

X � �x
y
� � c1v1eΛ1t � c2v2eΛ2t � eΛ1t �c1v1 � c2v2e�Λ2�Λ1�t� . (6.30)

1. Suppose that both eigenvalues are negative. If we assume that Λ2 < Λ1 < 0,
then Λ2 � Λ1 < 0. Then e�Λ2�Λ1�t and eΛ1t are very small for large values of t.
If c1 # 0, then limt�� X � 0 in one of the directions determined by v1 or
�v1. If c1 � 0, then X � c2v2eΛ2t . Again, because Λ2 < 0, limt�� X � 0 in the
directions determined by v2 or �v2. In this case, �0, 0� is a stable node.
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2. Suppose that both eigenvalues are positive. If 0 < Λ2 < Λ1, then eΛ1t and
eΛ2t both become unbounded as t increases. If c1 # 0, then X becomes
unbounded in either the direction of v1 or �v1. If c1 � 0, then X becomes
unbounded in the directions given by v2 or �v2. In this case, �0, 0� is an
unstable node.

3. Suppose that the eigenvalues have opposite sign. Then, if Λ2 < 0 < Λ1 and
c1 # 0, X becomes unbounded in either the direction of v1 or �v1 as it
did in (2). However, if c1 � 0, then due to the fact that Λ2 < 0, limt�� X �
0 along the line determined by v2. If the initial point X�0� is not on the
line determined by v2, then the line given by v1 is an asymptote for the
solution. We say that �0, 0� is a saddle point in this case.

EXAMPLE 6.6.1: Classify the equilibrium point �0, 0� of the systems:

(a)
�		

		
�

x� � 5x � 3y

y� � �4x � 3y
; (b)

�		

		
�

x� � x � 2y

y� � 3x � 4y
; (c)

�		

		
�

x� � �x � 2y

y� � 3x � 4y
.

SOLUTION: (a) We find the eigenvalues and corresponding eigenvec-

tors of A � � 5 3
�4 �3

� with Eigensystem.

In[1343]:= Clear�a,x,y�

a � � 5 3
�4 �3


Eigensystem�a�

Out[1343]= ���1,3,���1,2,��3,2

Because these eigenvalues have opposite sign, �0, 0� is a saddle point.

Eigenvectors corresponding to Λ1 � �1 and Λ2 � 3 are v1 � ��1
2
� and

v2 � ��3
2
�, respectively. Hence the solution becomes unbounded in the

directions associated with the positive eigenvalue, v2 � ��3
2
� and �v2 �� 3

�2
�. Along the line through �0, 0� determined by v1 � ��1

2
�, the solu-

tion approaches �0, 0�. We see this when we graph various solutions and
display the results together with the direction field associated with the
system. First, we use DSolve to find a general solution of the system.
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In[1344]:= gensol � DSolve��x��t� �� 5 x�t�

�3 y�t�,

y��t� �� �4 x�t� � 3 y�t�	,�x�t�,y�t�	,t�

Out[1344]= ��x�t	 
 1

2
��t ��1 � 3 �4 t� C�1	

�
3

4
��t ��1 � �4 t� C�2	,

y�t	 
 ���t ��1 � �4 t� C�1	

�
1

2
��t ��3 � �4 t� C�2	��

Then, we use Table and Flatten to create a list of ordered pairs
�x�t�, y�t��, corresponding to the solution for various values of the
arbitrary constants. These functions are then graphed with
ParametricPlot.

In[1345]:= toplot �

Flatten�
Table�
 � e�t C�1� � 3e3t C�2�,

2e�t C�1� � 2e3t C�2�� /.

�C�1�� > i,C�2�� > j	,

�i,�0.5,0.5,0.25	,

�j,�0.5,0.5,0.25	�,1�
In[1346]:= somegraphs � ParametricPlot�

Evaluate�toplot�,�t,�3,3	,

PlotRange 
 ���1,1	,��1,1		,

AspectRatio 
 1,PlotStyle 
 GrayLevel�0�,

DisplayFunction 
 Identity�

In[1347]:= p4 � Plot�
 � 2 x,�
2x

3
�,�x,�1,1	,

PlotStyle 


��GrayLevel�0�,Dashing��0.02	�,

Thickness�0.01�	,

�GrayLevel�0.2�,Dashing��0.02	�,

Thickness�0.01�		,

DisplayFunction 
 Identity�
We graph the direction field associated with the system with Plot-
VectorField. Last, all graphs are displayed together with Show in
Figure 6-45.
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Figure 6-45 The origin is a saddle point

In[1348]:= << Graphics‘PlotField‘

In[1349]:= pvf1 � PlotVectorField�
�5x � 3y,�4 x � 3y	,�x,�1,1	,
�y,�1,1	,
DefaultColor 
 GrayLevel�0.5�,
PlotPoints 
 20,
ScaleFunction 
 �0.05&�,
DisplayFunction 
 Identity�

In[1350]:= Show�pvf1,somegraphs,p4,

DisplayFunction 
 $DisplayFunction,

PlotRange 
 ���1,1	,��1,1		,

AspectRatio 
 1,

Axes 
 Automatic,AxesOrigin 
 �0,0	,

DisplayFunction 
 $DisplayFunction�

(b) In this case, the eigenvalues Λ1 � �1 and Λ2 � �2 are both negative.

In[1351]:= a � �1 �2
3 �4


Eigensystem�a�

Out[1351]= ���2,�1,��2,3,�1,1
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Hence, �0, 0� is a stable node. Corresponding eigenvectors are v1 � �1
1
�

and v2 � �2
3
�. Therefore, the solutions approach �0, 0� along the lines

through the origin determined by these vectors, y � x and y � 3
2 x. We see

this in the graph of the direction field and graphs of several solutions
to the system. First, we graph the direction field associated with the
system.

In[1352]:= << Graphics‘PlotField‘

In[1353]:= Clear�x,y,x0,y0,sol�

pvf1 � PlotVectorField��x � 2y,3x � 4y	,

�x,�1,1	,�y,�1,1	,

DefaultColor 
 GrayLevel�0.5�,

PlotPoints 
 20,

ScaleFunction 
 �0.5&�,

DisplayFunction 
 Identity�

Then we use DSolve to solve the initial-value problem
�				

				
�

x� � x � 2y

y� � 3x � 4y

x�0� � x0, y�0� � y0.

In[1354]:= gensol �

DSolve��x��t� �� x�t� � 2 y�t�,

y��t� �� 3 x�t� � 4 y�t�,x�0� �� x0,

y�0� �� y0	,�x�t�,y�t�	,t�//Simplify

Out[1354]= ��x�t	 
 ��2 t ���2 � 3 �t� x0 � 2 ��1 � �t� y0�,

y�t	 
 ��2 t �3 ��1 � �t� x0 � �3 � 2 �t� y0�

Given an ordered pair �x0, y0�, sol��x0, y0�� returns the solution that
satisfies x�0� � x0 and y�0� � y0.

In[1355]:= sol��x0 ,y0 	� �

�e�t �3x0 � 2y0 � 2e�t ��x0 � y0��,

e�t �3x0 � 2y0 � 3e�t ��x0 � y0��	
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We then generate several lists of ordered pairs with Table

In[1356]:= initconds1 �
Table���1,i	,�i,�1,1,2/9	�

initconds2 �
Table��1,i	,�i,�1,1,2/9	�

initconds3 �
Table��i,1	,�i,�1,1,2/9	�

initconds4 �
Table��i,�1	,�i,�1,1,2/9	�

and use Union to join them together.

In[1357]:= initconds � initconds1 ( initconds2(

initconds3 ( initconds4

Map is used to apply sol to the list initconds. The resulting list of
parametric functions is graphed with ParametricPlot.

In[1358]:= toplot � Map�sol,initconds�

In[1359]:= somegraphs � ParametricPlot�Evaluate�toplot�,

�t,�3,3	,PlotRange 
 ���1,1	,

��1,1		,AspectRatio 
 1,

PlotStyle 
 GrayLevel�0�,

DisplayFunction 
 Identity�

In[1360]:= p4 � Plot�
x, 3x
2

�,�x,�1,1	,
PlotStyle 


��GrayLevel�0�,Dashing��0.02	�,

Thickness�0.01�	,

�GrayLevel�0.2�,Dashing��0.02	�,

Thickness�0.01�		,

DisplayFunction 
 Identity�
Finally, all the graphics are displayed together with Show in Figure 6-46.

In[1361]:= Show�pvf1,somegraphs,p4,

DisplayFunction 
 $DisplayFunction,

PlotRange 
 ���1,1	,��1,1		,

AspectRatio 
 1,

Axes 
 Automatic,AxesOrigin 
 �0,0	�
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Figure 6-46 The origin is a stable node

(c) Because the eigenvalues Λ1 � 2 and Λ1 � 1 are both positive, �0, 0� is
an unstable node.

In[1362]:= a � ��1 �2
3 4


Eigensystem�a�

Out[1362]= ��1,2,���1,1,��2,3

Note that the corresponding eigenvectors are v1 � ��2
3

� and v2 � ��1
1

�,

respectively. Hence, the solutions become unbounded along the lines
passing through the origin determined by these vectors, y � � 3

2 x and
y � �x. As before, we see this in the graph of the direction field and
various solutions of the system. See Figure 6-47.

In[1363]:= pvf1 � PlotVectorField���x � 2y,3x � 4y	,

�x,�1,1	,�y,�1,1	,

DefaultColor 
 GrayLevel�0.5�,

PlotPoints 
 20,

ScaleFunction 
 �0.05&�,

DisplayFunction 
 Identity�
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Figure 6-47 The origin is an unstable node

In[1364]:= gensol �

DSolve��x��t� �� �x�t� � 2 y�t�,

y��t� �� 3 x�t� � 4 y�t�,

x�0� �� x0,y�0� �� y0	,

�x�t�,y�t�	,t�

Out[1364]= ��x�t	 
 ��t ��3 x0 � 2 �t x0 � 2 y0 � 2 �t y0�,

y�t	 
 �t ��3 x0 � 3 �t x0 � 2 y0 � 3 �t y0�

In[1365]:= sol��x0 ,y0 	� �

��et ��3 x0 � 2y0 � 2et �x0 � y0��,

et ��3 x0 � 2y0 � 3et �x0 � y0��	

In[1366]:= initconds �

Table��0.5t Cos�2Πt�,0.5t Sin�2Πt�	,
t,0,1, 1

24
��

In[1367]:= toplot � Map�sol,initconds�

In[1368]:= somegraphs �

ParametricPlot�Evaluate�toplot�,

�t,�3,3	,PlotRange 
 ���1,1	,��1,1		,

AspectRatio 
 1,PlotStyle 
 GrayLevel�0�,

DisplayFunction 
 Identity�
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In[1369]:= p4 � Plot�
 � x,�
3x

2
�,�x,�1,1	,

PlotStyle 


��GrayLevel�0�,Dashing��0.02	�,

Thickness�0.01�	,

�GrayLevel�0.2�,Dashing��0.02	�,

Thickness�0.01�		,

DisplayFunction 
 Identity�
In[1370]:= Show�pvf1,somegraphs,p4,

DisplayFunction 
 $DisplayFunction,

PlotRange 
 ���1,1	,��1,1		,

AspectRatio 
 1,

Axes 
 Automatic,AxesOrigin 
 �0,0	�

6.6.2 Repeated Eigenvalues

We recall from our previous experience with repeated eigenvalues of a 2 � 2 sys-
tem that the eigenvalue can have two linearly independent eigenvectors associ-
ated with it or only one eigenvector associated with it. Hence, we investigate the
behavior of solutions in this case by considering both of these possibilities.

1. Suppose that the eigenvalue Λ � Λ1 � Λ2 has two corresponding linearly
independent eigenvectors v1 and v2. Then, a general solution is

X � c1v1eΛt � c2v2eΛt .

Hence, if Λ > 0, then X becomes unbounded along the line through the ori-
gin determined by the vector c1v1�c2v2 where c1 and c2 are arbitrary con-
stants. In this case, we call the equilibrium point a degenerate unstable
node (or an unstable star). On the other hand, if Λ < 0, then X approaches
�0, 0� along these lines, and we call �0, 0� a degenerate stable node (or
stable star). Note that the name “star” was selected due to the shape
of the solutions.

2. Suppose that Λ � Λ1 � Λ2 has only one corresponding eigenvector v1.
Hence, a general solution is

X � c1v1eΛt � c2 �v1t �w2� eΛt � �c1v1 � c2w2� eΛt � c2v1teΛt ,

where �A�ΛI�w2 � v1. We can more easily investigate the behavior of this
solution if we write this solution as

X � teΛt 	1
t
�c1v1 � c2w2� � c2v1
 .
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If Λ < 0, limt�� teΛt � 0 and limt�� 	1
t
�c1v1 � c2w2� � c2v1
 � c2v1. Hence,

the solutions approach �0, 0� along the line determined by v1, and we call
�0, 0� a degenerate stable node. If Λ > 0, the solutions become unbounded
along this line, and we say that �0, 0� is a degenerate unstable node.

EXAMPLE 6.6.2: Classify the equilibrium point �0, 0� in the systems:

(a)
�		

		
�

x� � x � 9y

y� � �x � 5y
; (b)

�		

		
�

x� � 2x

y� � 2y
.

SOLUTION: (a) Using Eigensystem,

In[1371]:= a � � 1 9
�1 �5


Eigensystem�a�

Out[1371]= ���2,�2,���3,1,�0,0

we see that Λ1 � Λ2 � �2 and that there is only one corresponding eigen-
vector. Therefore, because Λ � �2 < 0, �0, 0� is a degenerate stable node.
Notice that in the graph of several members of the family of solutions of
this system along with the direction field shown in Figure 6-48, which
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Figure 6-48 The origin is a degenerate stable node
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we generate using the same technique as in part (b) of the previous
example, the solutions approach �0, 0� along the line in the direction of

v1 � ��3
1

�, y � � 1
3 x.

In[1372]:= << Graphics‘PlotField‘

In[1373]:= Clear�x,y�

pvf1 � PlotVectorField��x � 9y,�x � 5y	,

�x,�1,1	,�y,�1,1	,

DefaultColor 
 GrayLevel�0.5�,

PlotPoints 
 20,

ScaleFunction 
 �0.5&�,

DisplayFunction 
 Identity�

In[1374]:= Simplify�
DSolve��x��t� �� x�t� � 9 y�t�,
y��t� �� �x�t� � 5 y�t�,x�0� �� x0,
y�0� �� y0	,�x�t�,y�t�	,t��

Out[1374]= ��x�t	 
 ��2 t �x0 � 3 t x0 � 9 t y0�,

y�t	 
 ��2 t �y0 � t �x0 � 3 y0��

In[1375]:= sol��x0 ,y0 	� �
x0 � 3tx0 � 9ty0
e2t

,
��tx0� � y0 � 3ty0

e2t
�

In[1376]:= initconds1 �
Table���1,i	,�i,�1,1,2/9	�

initconds2 �
Table��1,i	,�i,�1,1,2/9	�

initconds3 �
Table��i,1	,�i,�1,1,2/9	�

initconds4 �
Table��i,�1	,�i,�1,1,2/9	�

In[1377]:= initconds � initconds1 ( initconds2(

initconds3 ( initconds4

In[1378]:= toplot � Map�sol,initconds�

In[1379]:= somegraphs �

ParametricPlot�Evaluate�toplot�,

�t,�3,3	,PlotRange 
 ���1,1	,��1,1		,

AspectRatio 
 1,PlotStyle 
 GrayLevel�0�,

DisplayFunction 
 Identity�
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In[1380]:= p4 � Plot��x
3
,�x,�1,1	,

PlotStyle 


��GrayLevel�0�,Dashing��0.02	�,

Thickness�0.01�		,

DisplayFunction 
 Identity�
In[1381]:= Show�pvf1,somegraphs,p4,

DisplayFunction 
 $DisplayFunction,

PlotRange 
 ���1,1	,��1,1		,

AspectRatio 
 1,

Axes 
 Automatic,AxesOrigin 
 �0,0	�

(b) We have Λ1 � Λ2 � 2 and two linearly independent vectors, v1 � �1
0
�

and v2 � �0
1
�. (Note: The choice of these two vectors does not change

the value of the solution, because of the form of the general solution in
this case.)

In[1382]:= a � �2 0
0 2


Eigensystem�a�

Out[1382]= ��2,2,��0,1,�1,0

Because Λ � 2 > 0, we classify (0, 0) as a degenerate unstable node (or
star). Some of these solutions along with the direction field are graphed
in Figure 6-49 in the same manner as in part (c) of the previous example.
Notice that they become unbounded in the direction of any vector in the

xy-plane because v1 � �1
0
� and v2 � �0

1
�.

In[1383]:= Clear�x,y�

pvf1 � PlotVectorField��2x,2y	,�x,�1,1	,

�y,�1,1	,DefaultColor 


GrayLevel�0.5�,PlotPoints 
 20,

ScaleFunction 
 �0.5&�,

DisplayFunction 
 Identity�

In[1384]:= Simplify�DSolve��x��t� �� 2 x�t�,
y��t� �� 2 y�t�,
x�0� �� x0,y�0� �� y0	,�x�t�,y�t�	,t��

Out[1384]= ��x�t	 
 �2 t x0,y�t	 
 �2 t y0
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Figure 6-49 The origin is a degenerate unstable node

In[1385]:= sol��x0 ,y0 	� � 
e2t x0,e2t y0�
In[1386]:= initconds � Table��0.05 Cos�2Πt�,

0.05 Sin�2Πt�	,
t,0,1, 1

24
��

In[1387]:= toplot � Map�sol,initconds�

In[1388]:= somegraphs �

ParametricPlot�Evaluate�toplot�,

�t,�3,3	,PlotRange 
 ���1,1	,��1,1		,

AspectRatio 
 1,PlotStyle 
 GrayLevel�0�,

DisplayFunction 
 Identity�

In[1389]:= Show�pvf1,somegraphs,

DisplayFunction 
 $DisplayFunction,

PlotRange 
 ���1,1	,��1,1		,

AspectRatio 
 1,

Axes 
 Automatic,AxesOrigin 
 �0,0	�



548 Chapter 6 Systems of Ordinary Differential Equations

6.6.3 Complex Conjugate Eigenvalues

We have seen that if the eigenvalues of the system (6.29) are Λ1,2 � Α  Βi, Β # 0,
with corresponding eigenvectors v1,2 � a  bi, two linearly independent solutions
of the system are

X1 � eΑt �a cos Βt � b sin Βt� and X2 � eΑt �b cos Βt � a sin Βt� .

Hence, a general solution is X � c1X1 � c2X2, so there are constants A1, A2, B1, and
B2 so that x and y are given by

X � �x
y
� � �A1eΑt cos Βt � A2eΑt sin Βt

B1eΑt cos Βt � B2eΑt sin Βt
� .

1. If Α � 0, the solution is

X � �x
y
� � �A1 cos Βt � A2 sin Βt

B1 cos Βt � B2 sin Βt
� .

Hence, both x and y are periodic and �0, 0� is classified as a center. Note
that the motion around these circles or ellipses is either clockwise or coun-
terclockwise for all solutions.

2. If Α # 0, then eΑt is present in the solution. This term causes the solution
to spiral around the equilibrium point. If Α > 0, then the solution spirals
away from �0, 0�, so we classify (0, 0) as an unstable spiral. Otherwise, if
Α < 0, the solution spirals towards �0, 0�, so we say that �0, 0� is a stable
spiral.

EXAMPLE 6.6.3: Classify the equilibrium point �0, 0� in each of the fol-

lowing systems: (a)
�		

		
�

x� � �y

y� � x
; (b)

�		

		
�

x� � 1
2 x � 153

32 y

y� � 2x � y
.

SOLUTION: (a) The eigenvalues are found to be Λ1,2 �  i.

In[1390]:= a � �0 �1
1 0


Eigensystem�a�

Out[1390]= ����,�,����,1,��,1

Because these eigenvalues have zero real part (and, hence, are purely
imaginary), �0, 0� is a center. Several solutions along with the direction
field are graphed in Figure 6-50.
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Figure 6-50 The origin is a center

In[1391]:= Clear�x,y�

pvf1 � PlotVectorField���y,x	,�x,�1,1	,

�y,�1,1	,DefaultColor 


GrayLevel�0.5�,PlotPoints 
 20,

ScaleFunction 
 �0.5&�,

DisplayFunction 
 Identity�

In[1392]:= Simplify�DSolve��x��t� �� � y�t�,
y��t� �� x�t�,x�0� �� x0,
y�0� �� y0	,�x�t�,y�t�	,t��

Out[1392]= ��x�t	 
 x0 Cos�t	 � y0 Sin�t	,
y�t	 
 y0 Cos�t	 � x0 Sin�t	

In[1393]:= sol��x0 ,y0 	� � �x0 Cos�t� � y0 Sin�t�,
y0 Cos�t� � x0 Sin�t�	

In[1394]:= initconds � Table��0,i	,
�i,0,1,1/14	�

In[1395]:= toplot � Map�sol,initconds�
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In[1396]:= somegraphs �

ParametricPlot�Evaluate�toplot�,

�t,0,2Π	,PlotRange 
 ���1,1	,��1,1		,

AspectRatio 
 1,PlotStyle 
 GrayLevel�0�,

DisplayFunction 
 Identity�

In[1397]:= Show�pvf1,somegraphs,

DisplayFunction 
 $DisplayFunction,

PlotRange 
 ���1,1	,��1,1		,

AspectRatio 
 1,

Axes 
 Automatic,AxesOrigin 
 �0,0	�

(b) The eigenvalues are found to be Λ1,2 � �1/4  3i.

In[1398]:= a � �1/2 �153/32
2 �1


Eigensystem�a�

Out[1398]= �� �
1

4
� 3 �,�

1

4
� 3 ��,

��3
8
�
3 �

2
,1�,�3

8
�
3 �

2
,1���

Thus, �0, 0� is a stable spiral, because Α � �1/4 < 0. Several solutions
along with the direction field are graphed in Figure 6-51 in the same
way that we have done before.
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Figure 6-51 The origin is a stable spiral
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In[1399]:= Clear�x,y�

pvf1 � PlotVectorField��1/2x � 153/32y,

2x � y	,�x,�1,1	,�y,�1,1	,

DefaultColor 
 GrayLevel�0.5�,

PlotPoints 
 20,ScaleFunction 


�0.5&�,DisplayFunction 
 Identity�

In[1400]:= FullSimplify�DSolve��x��t� ��
1/2x�t� � 153/32y�t�,
y��t� �� 2x�t� � y�t�,x�0� �� x0,
y�0� �� y0	,�x�t�,y�t�	,t��

Out[1400]= ��x�t	 
 1

32
��t/4

�32 x0 Cos�3 t	 � �8 x0 � 51 y0� Sin�3 t	�,

y�t	 

1

12
��t/4

�12 y0 Cos�3 t	 � �8 x0 � 3 y0� Sin�3 t	���
In[1401]:= sol��x0 ,y0 	� �
 1

32
e�t/4

�32x0 Cos�3t� � �8x0 � 51y0� Sin�3t��,
1

12
e�t/4

�12y0 Cos�3t� � �8x0 � 3y0� Sin�3t���
In[1402]:= initconds �

Table��1,i	,�i,�1,1,2/4	�

In[1403]:= toplot � Map�sol,initconds�

In[1404]:= somegraphs �

ParametricPlot�Evaluate�toplot�,

�t,0,4Π	,PlotRange 
 ���1,1	,��1,1		,

AspectRatio 
 1,PlotStyle 
 GrayLevel�0�,

DisplayFunction 
 Identity�

In[1405]:= Show�pvf1,somegraphs,

DisplayFunction 
 $DisplayFunction,

PlotRange 
 ���1,1	,��1,1		,

AspectRatio 
 1,

Axes 
 Automatic,AxesOrigin 
 �0,0	�
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6.6.4 Nonlinear Systems

When working with nonlinear systems, we can often gain a great deal of informa-
tion concerning the system by making a linear approximation near each equilib-
rium point of the nonlinear system and solving the linear system. Although the
solution to the linearized system only approximates the solution to the nonlinear
system, the general behavior of solutions to the nonlinear system near each equi-
librium is the same as that of the corresponding linear system in most cases. The
first step towards approximating a nonlinear system near each equilibrium point
is to find the equilibrium points of the system and the matrix for linearization near
each point as defined below.

Recall from multivariate calculus that if z � F�x, y� is a differentiable function,
the tangent plane to the surface S given by the graph of z � F�x, y� at the point
�x0, y0� is

z � Fx �x0, y0� �x � x0� � Fy �x0, y0� �y � y0� � F �x0, y0� .

Hence, near each equilibrium point �x0, y0� of the nonlinear system

�		

		
�

dx/dt � f �x, y�

dy/dt � g�x, y�

the system can be approximated with

�		

		
�

dx/dt � fx �x0, y0� �x � x0� � fy �x0, y0� �y � y0� � f �x0, y0�

dy/dt � gx �x0, y0� �x � x0� � gy �x0, y0� �y � y0� � g �x0, y0� .

Then, because f �x0, y0� � 0 and g �x0, y0� � 0, the approximate system is

�		

		
�

dx/dt � fx �x0, y0� �x � x0� � fy �x0, y0� �y � y0�

dy/dt � gx �x0, y0� �x � x0� � gy �x0, y0� �y � y0�

which can be written in matrix form as

�dx/dt
dy/dt

� � � fx �x0, y0� fy �x0, y0�
gx �x0, y0� gy �x0, y0�

� �x � x0

y � y0
� . (6.31)

Note that we often call system (6.31) the linearized system corresponding to the
nonlinear system due to the fact that we have removed the nonlinear terms from
the original system. Now that the system is approximated by a system of the form
�		

		
�

dx/dt � ax � by

dy/dt � cx � dy
an equilibrium point �x0, y0� of the system

�		

		
�

dx/dt � f �x, y�

dy/dt � g�x, y�
is
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classified by the eigenvalues of the matrix

J � � fx �x0, y0� fy �x0, y0�
gx �x0, y0� gy �x0, y0�

� (6.32)

which is called the Jacobian matrix. Of course, this linearization must be carried The Jacobian matrix is also
called the variational
matrix.

out for each equilibrium point. After determining the matrix for linearization for
each equilibrium point, the eigenvalues for the matrix must be found. Then, we
classify each equilibrium point according to the following criteria.

Classification of Equilibrium Points

Let �x0, y0� be an equilibrium point of the system
�		

		
�

dx/dt � f �x, y�

dy/dt � g�x, y�
and let Λ1 and

Λ2 be the eigenvalues of the Jacobian matrix, (6.32).

1. Suppose that Λ1 and Λ2 are real. If Λ1 > Λ2 > 0, then �x0, y0� is an unstable
node; if Λ2 < Λ1 < 0, then �x0, y0� is a stable node; and if Λ2 < 0 < Λ1, then
�x0, y0� is a saddle.

2. Suppose that Λ1,2 � Α  Βi, Β # 0. If Α < 0, �x0, y0� is a stable spiral; if Α > 0,
�x0, y0� is an unstable spiral; and if Α � 0, �x0, y0� may be a center, unstable
spiral, or stable spiral. Hence, we can draw no conclusion.

We will not discuss the case if the eigenvalues are the same or one eigenvalue is
zero. For analyzing nonlinear systems, we state the following useful theorem.

Theorem 17. Suppose that �x0, y0� is an equilibrium point of the autonomous nonlinear
system

�		

		
�

dx/dt � f �x, y�

dy/dt � g�x, y�.

Then, the relationships in the following table hold for the classification of �x0, y0� in the
nonlinear system and that in the associated linearized system.

Associated Linearized System Nonlinear System
Stable Node Stable Node
Unstable Node Unstable Node
Stable Spiral Stable Spiral
Unstable Spiral Unstable Spiral
Saddle Saddle
Center No Conclusion
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More generally, for the autonomous system of the formAn autonomous system
does not explicitly depend on
the independent variable, t .
That is, if you write the
system omitting all
arguments, the independent
variable (typically t) does not
appear.

x1
� � f1 �x1, x2, . . . , xn�

x2
� � f2 �x1, x2, . . . , xn�

�

xn
� � fn �x1, x2, . . . , xn�

(6.33)

an equilibrium (or rest) point, E � �x1
(, x2

(, . . . , xn
(�, of equation (6.33) is a solution

of the system

f1 �x1, x2, . . . , xn� � 0

f2 �x1, x2, . . . , xn� � 0

�

fn �x1, x2, . . . , xn� � 0.

(6.34)

The Jacobian of equation (6.33) is

J �x1, x2, . . . , xn� �

*+++++++++++++++++++
,

� f1

�x1

� f1

�x2
. . .

� f1

�xn
� f2

�x1

� f2

�x2
. . .

� f2

�xn
� � . . . �

� fn

�x1

� fn

�x2
. . .

� fn

�xn

-...................
/

.

The rest point, E, is locally stable if and only if all the eigenvalues of J�E� have
negative real part. If E is not locally stable, E is unstable.

EXAMPLE 6.6.4: Find and classify the equilibrium points of
�		

		
�

dx/dt � 1 � y

dy/dt � x2 � y2.

SOLUTION: We begin by finding the equilibrium points of this non-

linear system by solving
�		

		
�

1 � y � 0

x2 � y2 � 0.

In[1406]:= Clear�f,g�

f�x ,y � � 1 � y

g�x ,y � � x2 � y2
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In[1407]:= Solve��f�x,y� �� 0,g�x,y� �� 0	�

Out[1407]= ��y 
 1,x 
 �1,�y 
 1,x 
 1

Because f �x, y� � 1 � y and g�x, y� � x2 � y2, fx�x, y� � 0, fy�x, y� � �1,

gx�x, y� � 2x, and gy�x, y� � �2y, so the Jacobian matrix is J � � 0 �1
2x �2y

�.

In[1408]:= jac � ��D�f�x,y�,x�,D�f�x,y�,y�	,
�D�g�x,y�,x�,D�g�x,y�,y�		

MatrixForm�jac�

Out[1408]= � 0 �1
2 x �2 y

�
Next, we obtain the linearized system about each equilibrium point.

For �1, 1�, we obtain Λ1,2 � �1  i. Because these eigenvalues are
complex-valued with negative real part, we classify �1, 1� as a stable
spiral.

In[1409]:= jac /. �x� > 1,y� > 1	//Eigenvalues

Out[1409]= ��1 � �,�1 � �

For ��1, 1�, we obtain Λ1 � �1 �


3 > 0 and Λ2 � �1 �


3 < 0, so ��1, 1�
is a saddle.

In[1410]:= jac /. �x� > �1,y� > 1	//Eigenvalues

Out[1410]= � � 1 �


3,�1 �



3�

We graph solutions to this nonlinear system obtained using NDSolve
together with the direction field associated with the nonlinear system
in Figure 6-52. We can see how the solutions move towards and move
away from the equilibrium points by observing the arrows on the vec-
tors in the direction field.

In[1411]:= << Graphics‘PlotField‘

In[1412]:= pvf � PlotVectorField��f�x,y�,g�x,y�	,
�x,�3/2,3/2	,�y,�1,2	,
Axes� > Automatic,AxesOrigin� > �0,0	,
ScaleFunction� > �1&�,
DefaultColor� > GrayLevel�0.5�,
DisplayFunction� > Identity�
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Figure 6-52 Linearization gives us information about the local behavior of solutions near
equilibrium points but not information about the global behavior of the solution

In[1413]:= numgraph��x0 ,y0 	� �� Module��numsol	,
numsol � NDSolve��x��t� �� f�x�t�,y�t��,

y��t� �� g�x�t�,y�t��,x�0� �� x0,
y�0� �� y0	,�x�t�,y�t�	,
�t,0,15	�

ParametricPlot�
�x�t�,y�t�	 /. numsol,�t,0,15	,
PlotStyle� > GrayLevel�0�,
Compiled� > False,
DisplayFunction� > Identity�

�

In[1414]:= initconds1 �
Table���3/2,i	,�i,�1,2,3/24	�

In[1415]:= initconds2 �
Table��i,2	,�i,�3/2,3/2,3/14	�

In[1416]:= initconds � initconds1 ( initconds2

In[1417]:= somegraphs � Map�numgraph,initconds�
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In[1418]:= Show�pvf,somegraphs,
PlotRange� > ���3/2,3/2	,��1,2		,
AspectRatio 
 1,Axes 
 Automatic,
AxesOrigin 
 �0,0	,
DisplayFunction� > $DisplayFunction�

EXAMPLE 6.6.5 (Duffing’s Equation): Consider the forced pendulum
equation with damping,

x�� � kx� � Ω sin x � F�t�. (6.35)

Recall the Maclaurin series for sin x: sin x � x� 1
3! x

3� 1
5! x

5� 1
7! x

7�. . . . Using
sin x � x, equation (6.35) reduces to the linear equation x�� � kx� � Ωx �
F�t�.

On the other hand, using the approximation sin x � x� 1
6 x3, we obtain

x�� � kx� � Ω �x � 1
6 x3� � F�t�. Adjusting the coefficients of x and x3 and

assuming that F�t� � F cosΩt gives us Duffing’s equation:

x�� � kx� � cx � Εx3 � F cosΩt, (6.36)

where k and c are positive constants.
Let y � x�. Then, y� � x�� � F cosΩt�kx��cx�Εx3 � F cosΩt�ky�cx�Εx3

and we can write equation (6.36) as the system

x� � y

y� � F cosΩt � ky � cx � Εx3.
(6.37)

Assuming that F � 0 results in the autonomous system

x� � y

y� � �cx � Εx3 � ky.
(6.38)

The rest points of system equation (6.38) are found by solving

y � 0

�cx � Εx3 � ky � 0,

resulting in E0 � �0, 0�.

In[1419]:= Solve��y �� 0,�c x � Ε xˆ3 � k y �� 0	,�x,y	�
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Out[1419]= ��y 
 0,x 
 0,�y 
 0,x 
 �
i



c

Ε

�,
�y 
 0,x 


i


c

Ε

��
We find the Jacobian of equation (6.38) in s1, evaluate the Jacobian
at E0,

In[1420]:= s1 � ��0,1	,��c � 3Ε xˆ2,�k		
s2 � s1/.x� > 0

Out[1420]= ��0,1,��c,�k

and then compute the eigenvalues with Eigenvalues.

In[1421]:= s3 � Eigenvalues�s2�

Out[1421]= �1
2

� � k �


�4 c � k2�, 1

2
� � k �



�4 c � k2��

Because k and c are positive, k2 � 4c < k2 so the real part of each eigen-
value is always negative if k2 � 4c # 0. Thus, E0 is locally stable.

For the autonomous system

x� � f �x, y�

y� � g�x, y�
(6.39)

Bendixson’s theorem states that if fx�x, y� � gy�x, y� is a continuous func-
tion that is either always positive or always negative in a particular
region R of the plane, then system (6.39) has no limit cycles in R. For
equation (6.38) we have

d
dx
�y� �

d
dy

��cx � Εx3 � ky� � �k,

which is always negative. Hence, equation (6.38) has no limit cycles and
it follows that E0 is globally, asymptotically stable.

In[1422]:= D�y,x� � D��c x � Ε xˆ3 � k y,y�

Out[1422]= �k

We use PlotVectorField and ParametricPlot to illustrate two
situations that occur. In Figure 6-53 (a), we use c � 1, Ε � 1/2, and k � 3.
In this case, E0 is a stable node. On the other hand, in Figure 6-53 (b), we
use c � 10, Ε � 1/2, and k � 3. In this case, E0 is a stable spiral.

In[1423]:= << Graphics‘PlotField‘

pvf1 � PlotVectorField��y,�x � 1/2xˆ3 � 3y	,
�x,�2.5,2.5	,�y,�2.5,2.5	,
DisplayFunction� > Identity�
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Figure 6-53 (a) The origin is a stable node. (b) The origin is a stable spiral

In[1424]:= numgraph�init ,c ,opts � �� Module
��numsol	,

numsol � NDSolve��x��t� �� y�t�,
y��t� ��
�c x�t� � 1/2x�t�ˆ3 � 3y�t�,
x�0� �� init��1��,
y�0� �� init��2��	,
�x�t�,y�t�	,�t,0,10	�

ParametricPlot�Evaluate��x�t�,
y�t�	/.numsol�,�t,0,10	,opts,
DisplayFunction� > Identity��

In[1425]:= i1 � Table�numgraph��2.5,i	,1�,
�i,�2.5,2.5,1/2	�

i2 � Table�numgraph���2.5,i	,1�,
�i,�2.5,2.5,1/2	�

i3 � Table�numgraph��i,2.5	,1�,
�i,�2.5,2.5,1/2	�

i4 � Table�numgraph��i,�2.5	,1�,
�i,�2.5,2.5,1/2	�

In[1426]:= c1 � Show�i1,i2,i3,i4,pvf1,
PlotRange� > ���2.5,2.5	,��2.5,2.5		,
AspectRatio� > Automatic�
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In[1427]:= pvf2 � PlotVectorField��y,�10x � 1/2xˆ3 � 3y	,
�x,�2.5,2.5	,�y,�2.5,2.5	,
DisplayFunction� > Identity�

In[1428]:= i1 � Table�numgraph��2.5,i	,10�,
�i,�2.5,2.5,1/2	�

i2 � Table�numgraph���2.5,i	,10�,
�i,�2.5,2.5,1/2	�

i3 � Table�numgraph��i,2.5	,10�,
�i,�2.5,2.5,1/2	�

i4 � Table�numgraph��i,�2.5	,10�,
�i,�2.5,2.5,1/2	�

In[1429]:= c2 � Show�i1,i2,i3,i4,pvf2,
PlotRange� > ���2.5,2.5	,��2.5,2.5		,
AspectRatio� > Automatic�

In[1430]:= Show�GraphicsArray��c1,c2	��

Although linearization can help you determine local behavior near rest points, the
long-term behavior of solutions to nonlinear systems can be quite complicated,
even for deceptively simple looking systems.

See texts like Jordan and
Smith’s Nonlinear Ordinary
Differential Equations [17] for
discussions of ways to
analyze systems like the
Rössler attractor and the
Lorenz equations.

EXAMPLE 6.6.6 (Lorenz Equations): The Lorenz equations are

�				

				
�

dx/dt � a�y � x�

dy/dt � bx � y � xz

dz/dt � xy � cz

(6.40)

Graph the solutions to the Lorenz equations if a � 7, b � 27.2, and c � 3
if the initial conditions are x�0� � 3, y�0� � 4, and z�0� � 2.

SOLUTION: So that you can experiment with different parameters
and initial conditions, we define the function lorenzsol. Given the
appropriate parameters and initial conditions,

lorenzsol[a,b,c][{x0,y0,z0}]

returns a numerical solution of the Lorenz equations (6.40) that satis-
fies x�0� � x0, y�0� � y0, and z�0� � z0 and is valid for 0 � t � 1000.
Because the behavior of solutions can be quite intricate, we include the
option MaxSteps->100000 to help Mathematica capture the oscilla-
tory behavior in the long-term solution.
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In[1431]:= lorenzsol�a ,b ,c ���x0 ,y0 ,z0 	,
ts ��t,0,1000	,opts � ��

Module��numsol	,
numsol � NDSolve��x��t� ��

�a x�t� � a y�t�,
y��t� �� b x�t� � y�t� � x�t� z�t�,
z��t� �� x�t� y�t� � c z�t�,x�0� �� x0,
y�0� �� y0,z�0� �� z0	,�x�t�,y�t�,z�t�	,
ts,MaxSteps 
 100000�

�

We then use lorenzplot to generate a numerical solution for our
parameter values and initial conditions.

In[1432]:= n2 � lorenzsol�7,27.2,3���3,4,2	�

Out[1432]= ��x�t	 
 InterpolatingFunction���0.,
1000.,<>	�t	,

y�t	 
 InterpolatingFunction���0.,
1000.,<>	�t	,

z�t	 
 InterpolatingFunction���0.,
1000.,<>	�t	

We generate a short-term plot of the solution in Figure 6-54

In[1433]:= Plot�Evaluate��x�t�,y�t�,z�t�	/.n2�,
�t,0,25	,PlotStyle 
 �GrayLevel�0�,
GrayLevel�0.3�,
Dashing��0.01	�	,PlotPoints 
 1000�

and a long-term plot in Figure 6-55.

In[1434]:= Plot�Evaluate��x�t�,y�t�,z�t�	/.n2�,
�t,950,1000	,PlotStyle 
 �GrayLevel�0�,
GrayLevel�0.3�,
Dashing��0.01	�	,PlotPoints 
 1000�

In Figures 6-54 and 6-55 the oscillatory nature of the solutions is very
difficult to see. We use ParametricPlot and ParametricPlot3D to
generate parametric plots of the solutions in Figure 6-56.
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Figure 6-54 Plots of x�t� (in black), y�t� (in gray), and z�t� (dashed) for 0 � t � 25
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Figure 6-55 Plots of x�t� (in black), y�t� (in gray), and z�t� (dashed) for 950 � t � 1000

In[1435]:= p1a � ParametricPlot�Evaluate��x�t�,
y�t�	/.n2�,�t,0,25	,PlotPoints 
 1000,
AspectRatio 
 1,AxesLabel 
 �"x","y"	,
DisplayFunction 
 Identity�

p1b � ParametricPlot�Evaluate��x�t�,
z�t�	/.n2�,�t,0,25	,PlotPoints 
 1000,
AspectRatio 
 1,AxesLabel 
 �"x","z"	,
DisplayFunction 
 Identity�
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Figure 6-56 (a) x versus y; (b) y versus z; (c) x versus z; (d) x versus y versus z

In[1435]:= p1c � ParametricPlot�Evaluate��y�t�,
z�t�	/.n2�,�t,0,25	,PlotPoints 
 1000,
AspectRatio 
 1,AxesLabel 
 �"y","z"	,
DisplayFunction 
 Identity�

p1d � ParametricPlot3D�Evaluate��x�t�,
y�t�,z�t�	/.n2�,�t,0,25	,
PlotPoints 
 3000,BoxRatios 
 �1,1,1	,
AxesLabel 
 �"x","y","z"	,
DisplayFunction 
 Identity�

Show�GraphicsArray���p1a,p1b	,�p1c,p1d		��
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Of course, you could combine all of these commands into a single func-
tion. For example, given the appropriate parameter values

lorenzplot[a,b,c][{x0,y0,z0},{t,a,b}]

solves the Lorenz system using initial conditions x�0� � x0, y�0� � y0,
and z�0� � z0 for a � t � b, generates parametric plots of x versus y,
y versus z, x versus z, and x versus y versus z, and displays the four
resulting plots as a graphics array. If {t,a,b} is omitted, the default is
950 � t � 1000.

The chaotic nature of the solutions to the Lorenz equations using
these parameter values is seen more clearly in Figure 6-56 than in Fig-
ures 6-54 or 6-55.

In[1436]:= lorenzplot�a ,b ,c ���x0 ,y0 ,z0 	,
ts ��t,950,1000	,opts � ��

Module��numsol	,
numsol � NDSolve��x��t� ��
�a x�t� � a y�t�,
y��t� �� b x�t� � y�t� � x�t� z�t�,
z��t� �� x�t� y�t� � c z�t�,x�0� �� x0,
y�0� �� y0,z�0� �� z0	,�x�t�,
y�t�,z�t�	,ts,MaxSteps 
 100000�

p1a � ParametricPlot�
Evaluate��x�t�,y�t�	/.numsol�,ts,
PlotPoints 
 1000,AspectRatio 
 1,
AxesLabel 
 �"x","y"	,
DisplayFunction 
 Identity�

p1b � ParametricPlot�
Evaluate��x�t�,z�t�	/.numsol�,ts,
PlotPoints 
 1000,AspectRatio 
 1,
AxesLabel 
 �"x","z"	,
DisplayFunction 
 Identity�

p1c � ParametricPlot�
Evaluate��y�t�,z�t�	/.numsol�,ts,
PlotPoints 
 1000,AspectRatio 
 1,
AxesLabel 
 �"y","z"	,
DisplayFunction 
 Identity�

p1d � ParametricPlot3D�
Evaluate��x�t�,y�t�,z�t�	/.numsol�,
ts,PlotPoints 
 3000,BoxRatios 
 �1,
1,1	,AxesLabel 
 �"x","y","z"	,
DisplayFunction 
 Identity�

Show�GraphicsArray���p1a,p1b	,
�p1c,p1d		�,opts��
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Figure 6-57 Changing b from 27.2 to 28: (a) x versus y; (b) y versus z; (c) x versus z;
(d) x versus y versus z

For example, entering

In[1437]:= lorenzplot�7,28,3���3,4,2	�

generates the four plots shown in Figure 6-57, corresponding to chang-
ing b from 27.2 to 28. Again, we obtain a chaotic solution.
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7Applications of Systems of
Ordinary Differential
Equations

7.1 Mechanical and Electrical Problems
with First-Order Linear Systems

7.1.1 L–R–C Circuits with Loops

As indicated in Chapter 5, an electrical circuit can be modeled with an ordinary
differential equation with constant coefficients. In this section, we illustrate how
a circuit involving loops can be described as a system of linear ordinary differen-
tial equations with constant coefficients. This derivation is based on the following
principles.

Kirchhoff’s Current Law: The current entering a point of the
circuit equals the current leaving the point.

Kirchhoff’s Voltage Law: The sum of the changes in voltage around
each loop in the circuit is zero.

As was the case in Chapter 5, we use the following standard symbols for the com-
ponents of the circuit:

I�t� � current, where I�t� �
dQ
dt
�t�,

Q�t� � charge,

R � resistance,
567
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C � capacitance,

V � voltage, and

L � inductance.

The relationships corresponding to the drops in voltage in the various components
of the circuit that were stated in Chapter 5 are also given in the following table.

Circuit Element Voltage Drop

Inductor L
dI
dt

Resistor RI

Capacitor
1
C

Q

Voltage Source �V �t�

7.1.2 L–R–C Circuit with One Loop

In determining the drops in voltage around the circuit, we consistently add the
voltages in the clockwise direction. The positive direction is directed from the neg-
ative symbol towards the positive symbol associated with the voltage source. In
summing the voltage drops encountered in the circuit, a drop across a component
is added to the sum if the positive direction through the component agrees with
the clockwise direction. Otherwise, this drop is subtracted. In the case of the fol-
lowing L–R–C circuit with one loop involving each type of component, the current
is equal around the circuit by Kirchhoff’s Current Law as illustrated in Figure 7-1.

Also, by Kirchhoff’s Voltage Law, we have the sum

RI � L
dI
dt
�

1
C

Q �V �t� � 0.

Figure 7-1 A simple L–R–C circuit
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Solving this equation for dI/dt and using the relationship between I and Q, dQ/dt �
I, we have the following system of differential equations with initial conditions on
charge and current, respectively:

�					

					
�

dQ/dt � I

dI/dt � �
1

LC
Q �

R
L

I �
V �t�

L
Q�0� � Q0, I�0� � I0.

(7.1)

EXAMPLE 7.1.1: Determine the charge and current in an L–R–C circuit
with L � 1, R � 2, C � 4/3, and V �t� � e�t if Q�0� � Q0 and I�0� � I0 .

SOLUTION: We begin by modeling the circuit with the system of
differential equations

�		

		
�

dQ/dt � I

dI/dt � � 3
4 Q � 2I � e�t

which can be written in matrix form as

�dQ/dt
dI/dt

� � � 0 1
�3/4 �2

� �Q
I
� � � 0

e�t� .

We solve the initial-value problem with DSolve, naming the result
sol.

In[1438]:= Clear�q,i�

sol � DSolve��D�q�t�,t� �� i�t�,
D�i�t�,t� �� �3/4q�t� � 2i�t� � Exp��t�,
q�0� �� q0,i�0� �� i0	,�q�t�,i�t�	,t�

Out[1438]= ��q�t	 
 1

2
��3 t/2 �4 � 8 �t/2 � 4 �t � 2 i0

�2 �t i0 � q0 � 3 �t q0�,

i�t	 
 �
1

4
��3 t/2 �12 � 16 �t/2 � 4 �t � 6 i0

�2 �t i0 � 3 q0 � 3 �t q0���
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We now select, copy, and paste the formulas obtained in sol for Q
and I, respectively, and then use Expand to distribute the e�3t/2 term
through the parentheses.

In[1439]:= Expand�1
2
e�3 t/2 � � 4 � 8 et/2 � 2 ��4 � i0�

�2 et ��4 � i0� � q0 � 3 et �4 � q0�	�
Out[1439]= 2 ��3 t/2 � 4 ��t � 2 ��t/2 � ��3 t/2 i0

���t/2 i0 �
1

2
��3 t/2 q0 �

3

2
��t/2 q0

In[1440]:= Expand� �
1

4
e�3 t/2 � � 16 et/2 � 6 ��4 � i0�

�2 et ��4 � i0� � 3 �4 � q0� � 3 et �4 � q0�	�
Out[1440]= �3 ��3 t/2 � 4 ��t � ��t/2 �

3

2
��3 t/2 i0

�
1

2
��t/2 i0 �

3

4
��3 t/2 q0 �

3

4
��t/2 q0

The result indicates that limt�� Q�t� � limt�� I�t� � 0 regardless of the
values of Q0 and I0. This is confirmed by graphing Q�t� (in black) and
I�t� (in gray) together (choosing Q�0� � I�0� � 1) in Figure 7-2 as well as
parametrically in Figure 7-3.

In[1441]:= Plot�Evaluate��q�t�,i�t�	/.sol/.
�q0 
 1,i0 
 1	�,�t,0,10	,
PlotStyle 
 �GrayLevel�0�,GrayLevel�0.5�	�

2 4 6 8 10
-0.25

0.25

0.5

0.75

1

1.25

Figure 7-2 Q�t� (in black) and I�t� (in gray) for 0 � t � 10
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Figure 7-3 Parametric plot of Q versus I for 0 � t � 10

In[1442]:= ParametricPlot�
Evaluate��q�t�,i�t�	/.sol/.
�q0 
 1,i0 
 1	�,�t,0,10	�

7.1.3 L–R–C Circuit with Two Loops

The differential equations that model the circuit become more difficult to derive
as the number of loops in the circuit increases. For example, consider the circuit in
Figure 7-4 that contains two loops.

Figure 7-4 A two-loop circuit
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In this case, the current through the capacitor is equivalent to I1 � I2. Summing
the voltage drops around each loop, we have:

�			

			
�

R1I1 �
1
C

Q �V �t� � 0

L
dI2

dt
� R2I2 �

1
C

Q � 0.
(7.2)

Solving the first equation for I1 we find that I1 �
1

R1
V �t� �

1
R1C

Q and using the

relationship dQ/dt � I � I1 � I2 we have the following system:

�			

			
�

dQ
dt

� �
1

R1C
Q � I2 �

1
R1

V �t�

dI2

dt
�

1
LC

Q �
R2

L
I2 .

(7.3)

EXAMPLE 7.1.2: Find Q�t�, I�t�, I1�t�, and I2�t� in the L–R–C circuit with
two loops given that R1 � R2 � C � 1 and V �t� � e�t if Q�0� � 3 and
I2�0� � 1.

SOLUTION: The nonhomogeneous system that models this circuit is

�		

		
�

dQ/dt � �Q � I2 � e�t

dI2/dt � Q � I2

with initial conditions Q�0� � 3 and I2�0� � 1. We solve the initial-value
problem with DSolve naming the result sol. We define Q�t� and I2�t�
to be the results.

In[1443]:= Clear�q,i�

sol � DSolve��D�q�t�,t� �� �q�t� � i2�t� � Exp��t�,
D�i2�t�,t� �� q�t� � i2�t�,q�0� �� 3,
i2�0� �� 1	,�q�t�,i2�t�	,t�

Out[1443]= ��q�t	 
 3 ��t Cos�t	,

i2�t	 
 ��t �Cos�t	2 � 3 Sin�t	 � Sin�t	2�

In[1444]:= q�t � � sol��1,1,2��

In[1445]:= i2�t � � sol��1,2,2��
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We verify that these functions satisfy the system by substituting back
into each equation and simplifying the result with Simplify.

In[1446]:= D�q�t�,t� � ��q�t� � i2�t� � Exp��t��//
Simplify

Out[1446]= 0

In[1447]:= D�i2�t�,t� � �q�t� � i2�t��//Simplify

Out[1447]= 0

We use the relationship dQ/dt � I to find I�t�

In[1448]:= i�t � � D�q�t�,t�

Out[1448]= �3 ��t Cos�t	 � 3 ��t Sin�t	

and then I1�t� � I�t� � I2�t� to find I1�t�.

In[1449]:= i1�t � � i�t� � i2�t�

Out[1449]= ��t � 3 ��t Cos�t	

We graph Q�t�, I�t�, I1�t�, and I2�t�with Plot and display the result using
Show and GraphicsArray in Figure 7-5.
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Figure 7-5 Q�t�, I�t�, I1�t�, and I2�t� for 0 � t � 5
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In[1450]:= p1 � Plot�q�t�,�t,0,5	,PlotRange 
 All,
DisplayFunction 
 Identity�

p2 � Plot�i�t�,�t,0,5	,PlotRange 
 All,
DisplayFunction 
 Identity�

p3 � Plot�i1�t�,�t,0,5	,PlotRange 
 All,
DisplayFunction 
 Identity�

p4 � Plot�i2�t�,�t,0,5	,PlotRange 
 All,
DisplayFunction 
 Identity�

Show�GraphicsArray���p1,p2	,�p3,p4		��

7.1.4 Spring–Mass Systems

The displacement of a mass attached to the end of a spring was modeled with a
second-order linear differential equation with constant coefficients in Chapter 5.
This situation can then be expressed as a system of first-order ordinary differen-
tial equations as well. Recall that if there is no external forcing function, then the
second-order differential equation that models this situation is mx�� � cx� � kx � 0,
where m is the mass attached to the end of the spring, c is the damping coefficient,
and k is the spring constant found with Hooke’s law. This equation is transformed

into a system of equations by letting x� � y so that y� � x�� � �
k
m

x �
c
m

x� and then

solving the differential equation for x��. After substitution, we have the system

�			

			
�

dx
dt

� y

dy
dt

� �
k
m

x �
c
m

y .
(7.4)

In previous chapters, the displacement of the spring was illustrated as a function
of time. However, problems of this type may also be investigated using the phase
plane.

EXAMPLE 7.1.3: Solve the system of differential equations to find the
displacement of the mass if m � 1, c � 0, and k � 1.

SOLUTION: In this case, the system is
�		

		
�

dx/dt � y

dy/dt � �x
which in matrix

form is X� � � 0 1
�1 0

�X. A general solution is found with DSolve and

named gensol for later use.
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In[1451]:= Clear�x,y�

gensol � DSolve��D�x�t�,t� �� y�t�,
D�y�t�,t� �� �x�t�	,�x�t�,y�t�	,t�

Out[1451]= ��x�t	 
 C�1	 Cos�t	 � C�2	 Sin�t	,
y�t	 
 C�2	 Cos�t	 � C�1	 Sin�t	

Note that this system is equivalent to the second-order differential equa-
tion x�� � x � 0, which we solved in Chapters 4 and 5. At that time, we
found a general solution to be x�t� � c1 cos t � c2 sin t which is equivalent

to the first component of X � �x�t�
y�t�

�, the result obtained with DSolve.

Also notice that �0, 0� is the equilibrium point of the system. The eigen-

values of A � � 0 1
�1 0

� are Λ �  i,

In[1452]:= Eigenvalues�� 0 1
�1 0

�
Out[1452]= ���,�

so we classify the origin as a center.
We graph several members of the phase plane for this system with

ParametricPlot in Figure 7-6.
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Figure 7-6 The origin is a center
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In[1453]:= toplot � Flatten�
Table��x�t�,y�t�	/.gensol/.
�C�1� 
 i,C�2� 
 j	,�i,�3,3	,
�j,0,3	�,2�

In[1454]:= ParametricPlot�Evaluate�toplot�,
�t,0,2 Π	,PlotRange 
 ���5,5	,��5,5		,
AspectRatio 
 1�

7.2 Diffusion and Population Problems
with First-Order Linear Systems

7.2.1 Diffusion through a Membrane

Solving problems to determine the diffusion of a substance (such as glucose or salt)
in a medium (like a blood cell) also leads to systems of first-order linear ordinary
differential equations. For example, suppose that two solutions of a substance are
separated by a membrane where the amount of the substance that passes through
the membrane is proportional to the difference in the concentrations of the solu-
tions. The constant of proportionality is called the permeability, P, of the mem-
brane. Therefore, if we let x and y represent the concentration of each solution, and
V1 and V2 represent the volume of each solution, respectively, then the system of
differential equations is given by

�				

				
�

dx
dt

�
P
V1
�y � x�

dy
dt

�
P
V2
�x � y�

(7.5)

where the initial concentrations of x and y are given.

EXAMPLE 7.2.1: Suppose that two salt concentrations of equal vol-
ume V are separated by a membrane of permeability P. Given that
P � V , determine each concentration at time t if x�0� � 2 and y�0� � 10.
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SOLUTION: In this case, the initial-value problem that models the
situation is

�				

				
�

dx/dt � y � x

dy/dt � x � y

x�0� � 2, y�0� � 10 .

A general solution of the system is found with DSolve and named
gensol.

In[1455]:= Clear�x,y�

gensol � DSolve��D�x�t�,t� �� y�t� � x�t�,
D�y�t�,t� �� x�t� � y�t�	,
�x�t�,y�t�	,t�

Out[1455]= ��x�t	 
 1

2
��2 t �1 � �2 t� C�1	

�
1

2
��2 t ��1 � �2 t� C�2	,y�t	 


1

2
��2 t ��1 � �2 t� C�1	 �

1

2
��2 t �1 � �2 t� C�2	��

We then apply the initial conditions and use Solve to determine the
values of the arbitrary constants.

In[1456]:= cvals � Solve�
� � e�2 t C�1� � C�2�/.t� > 0	 �� 2,�e�2 t C�1� � C�2�/.t� > 0	 �� 10��
Out[1456]= ��C�1	 
 4,C�2	 
 6

The solution is obtained by substituting these values back into the
general solution.

In[1457]:= sol � gensol/.cvals��1��

Out[1457]= ��x�t	 
 3 ��2 t ��1 � �2 t� � 2 ��2 t �1 � �2 t�,

y�t	 
 2 ��2 t ��1 � �2 t� � 3 ��2 t �1 � �2 t�

Of course, DSolve can be used to solve the initial-value problem
directly as well.

In[1458]:= sol � DSolve��D�x�t�,t� �� y�t� � x�t�,
D�y�t�,t� �� x�t� � y�t�,x�0� �� 2,
y�0� �� 10	,�x�t�,y�t�	,t�

Out[1458]= ��x�t	 
 2 ��2 t ��2 � 3 �2 t�,y�t	 

2 ��2 t �2 � 3 �2 t�

We graph this solution parametrically with ParametricPlot in
Figure 7-7(a). We then graph x�t� and y�t� together in Figure 7-7(b). Notice
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Figure 7-7 (a) Parametric plot of x versus y. (b) x�t� (in black) and y�t� (in gray)

that each concentration approaches 6 which is the average value of the
two initial concentrations.

In[1459]:= p1 � ParametricPlot��x�t�,y�t�	/.sol,
�t,0,5	,Compiled 
 False,
PlotRange 
 ��0,10	,�0,10		,
AspectRatio 
 1,AxesOrigin 
 �0,0	,
DisplayFunction 
 Identity�

In[1460]:= p2 � Plot�Evaluate��x�t�,y�t�	/.sol�,
�t,0,5	,PlotRange 
 �0,10	,
PlotStyle 
 �GrayLevel�0�,
GrayLevel�0.5�	,
DisplayFunction 
 Identity�

In[1461]:= Show�GraphicsArray��p1,p2	��

7.2.2 Diffusion through a Double-Walled Membrane

Next, consider the situation in which two solutions are separated by a double-
walled membrane, where the inner wall has permeability P1 and the outer wall
has permeability P2 with 0 < P1 < P2. Suppose that the volume of solution within
the inner wall is V1 and that between the two walls is V2. Let x represent the concen-
tration of the solution within the inner wall and y the concentration between the
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two walls. Assuming that the concentration of the solution outside the outer wall
is constantly C, we have the following system of first-order ordinary differential
equations

�						

						
�

dx
dt

�
P1

V1
�y � x�

dy
dt

�
1

V2
�P2�C � y� � P1�x � y��

x�0� � x0, y�0� � y0 .

(7.6)

EXAMPLE 7.2.2: Given that P1 � 3, P2 � 8, V1 � 2, V2 � 10, and C � 10,
determine x and y if x�0� � 2 and y�0� � 1.

SOLUTION: In this case, we must solve the initial-value problem

�				

				
�

dx/dt � 3
2 �y � x�

dy/dt � � 11
10 y � 3

10 x � 8

x�0� � 2, y�0� � 1 .

A general solution of the corresponding homogeneous system is found
with DSolve.

In[1462]:= Clear�x,y�

homsol � DSolve�
x��t� �� 3

2
y�t� �

3

2
x�t�,

y��t� �� �
11

10
y�t� �

3

10
x�t��,�x�t�,

y�t�	,t�
Out[1462]= ��x�t	 
 1

14
��2 t �9 � 5 �7 t/5� C�1	

�
15

14
��2 t ��1 � �7 t/5� C�2	,

y�t	 

3

14
��2 t ��1 � �7 t/5� C�1	

�
1

14
��2 t �5 � 9 �7 t/5� C�2	��

The result indicates that a fundamental matrix for the corresponding

homogeneous system is Φ�t� � ��3e�2t 5
3 e�3t/5

e�2t e�3t/5 �.

In[1463]:= )�t � � ��3 e�2 t 5

3
e�3 t/5

e�2 t e�3 t/5
�



580 Chapter 7 Applications of Systems of Ordinary Differential Equations

Therefore, using the method of variation of parameters, the solution to
the initial-value problem is given by

X�t� � Φ�t�Φ�1�0�X�0� �Φ�t�� t

0
Φ�1�u�F�u� du.

In[1464]:= sol � )�t�.�Inverse�)�t��/.t 
 0�.�2
1


�)�t�.� t

0

Inverse�)�u��.�0
8

�u//Simplify
MatrixForm�sol�

Out[1464]= �10 � 9 ��2 t

2
�
25

2
��3 t/5

10 �
3 ��2 t

2
�
15

2
��3 t/5

�
Of course, DSolve can be used to solve the initial-value problem
directly, as well.

In[1465]:= sol � DSolve�
x��t� �� 3

2
�y�t� � x�t��,

y��t� �� �
11 y�t�

10
�
3 x�t�

10
� 8,x�0� �� 2,

y�0� �� 1�,�x�t�,y�t�	,t�
Out[1465]= ��x�t	 
 1

2
��2 t �9 � 25 �7 t/5 � 20 �2 t�,

y�t	 

1

2
��2 t ��3 � 15 �7 t/5 � 20 �2 t���

We graph this solution parametrically in addition to graphing the two
functions simultaneously in Figure 7-8. Notice that initially x�t� > y�t�.
However, the two graphs intersect at a value of t near t � 0.2 so that the
value of the two functions approaches 10, which is the concentration of
the solution outside the outer wall, as t increases.

In[1466]:= p1 � ParametricPlot��x�t�,y�t�	/.sol,
�t,0,7	,Compiled 
 False,
PlotRange 
 ��0,10	,�0,10		,
AspectRatio 
 1,AxesOrigin 
 �0,0	,
DisplayFunction 
 Identity�

In[1467]:= p2 � Plot�Evaluate��x�t�,y�t�	/.sol�,
�t,0,7	,PlotRange 
 �0,10	,
PlotStyle 
 �GrayLevel�0�,
GrayLevel�0.5�	,
DisplayFunction 
 Identity�
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Figure 7-8 (a) Parametric plot of x versus y. (b) x�t� (in black) and y�t� (in gray) for 0 � t � 7

In[1468]:= Show�GraphicsArray��p1,p2	��

Last, we plot the solution parametrically for various initial conditions.

In[1469]:= sol � DSolve�
x��t� �� 3

2
�y�t� � x�t��,

y��t� �� �
11 y�t�

10
�
3 x�t�

10
� 8,x�0� �� x0,

y�0� �� y0�,�x�t�,y�t�	,t�
Out[1469]= ��x�t	 
 1

14
��2 t �60 � 200 �7 t/5 � 140 �2 t

�9 x0 � 5 �7 t/5 x0 � 15 y0 � 15 �7 t/5 y0�,

y�t	 

1

14
��2 t ��20 � 120 �7 t/5 � 140 �2 t

�3 x0 � 3 �7 t/5 x0 � 5 y0 � 9 �7 t/5 y0���
Notice how the formulas for x�t� and y�t� are extracted from sol with
Part ([[...]]). The formula for x�t� is the second part of the first part
of the first part of sol; the formula for y�t� is the second part of the
second part of the first part of sol.

In[1470]:= sol��1,1,2��

sol��1,2,2��

Out[1470]=
1

14
��2 t �60 � 200 �7 t/5 � 140 �2 t

�9 x0 � 5 �7 t/5 x0 � 15 y0 � 15 �7 t/5 y0�
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Figure 7-9 Both concentrations approach 10, regardless of the initial conditions

Out[1470]=
1

14
��2 t ��20 � 120 �7 t/5

�140 �2 t � 3 x0 � 3 �7 t/5 x0 � 5 y0 � 9 �7 t/5 y0�

Then, we use Table and Flatten to construct a list of (pairs of) func-
tions to be plotted with ParametricPlot. Short is used to display
an abbreviated portion of toplot.

In[1471]:= toplot � Flatten�
Table��sol��1,1,2��,sol��1,2,2��	,
�x0,0,10,2	,�y0,0,10,2	�,1�

Short�toplot,2�

Out[1471]= ��1�,�34�,�10,10

The list of functions in toplot is then graphed with ParametricPlot
for 0 � t � 7 in Figure 7-9.

In[1472]:= ParametricPlot�Evaluate�toplot�,�t,0,7	,
PlotRange 
 ��0,10	,�0,10		,
AspectRatio 
 1�
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7.2.3 Population Problems

In Chapter 3, population problems were discussed that were based on the prin-
ciple that the rate at which a population grows (or decays) is proportional to
the number present in the population at any time t. Hence, if x�t� represents the
population at time t, dx/dt � kx for some constant k. This idea can be extended
to problems involving more than one population and leads to systems of ordi-
nary differential equations. We illustrate several situations through the following
examples. Note that in each problem, we determine the rate at which a population
of size P changes with the equation

dP
dt

� �rate entering� � �rate leaving� .

We begin by determining the population in two neighboring territories. Suppose
that the population x and y of two neighboring territories depends on several fac-
tors. The birth rate of x is a1 while that of y is b1. The rate at which citizens of x
move to y is a2 while that at which citizens move from y to x is b2. Finally, the mor-
tality rate of each territory is disregarded. Determine the respective populations of
these two territories for any time t.

Using the principles of previous examples, we have that the rate at which pop-
ulation x changes is

dx
dt

� a1x � a2x � b1y � �a1 � a2�x � b2y

while the rate at which population y changes is

dy
dt

� b1y � b2y � a2x � �b1 � b2�y � a2x.

Therefore, the system of equations that must be solved is

�		

		
�

dx/dt � �a1 � a2�x � b1y

dy/dt � a2x � �b1 � b2�y
(7.7)

where the initial populations of the two territories x�0� � x0 and y�0� � y0 are
given.
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EXAMPLE 7.2.3: Determine the populations x�t� and y�t� in each terri-
tory if a1 � 5, a2 � 4, b1 � �1, and b2 � 1 given that x�0� � 60 and
y�0� � 10.

SOLUTION: In this example, the initial-value problem that models the
situation is

�				

				
�

dx/dt � x � y

dy/dt � 4x � 2y

x�0� � 60, y�0� � 10

which we solve with DSolve.

In[1473]:= Clear�x,y�

sol � DSolve��x��t� �� x�t� � y�t�,
y��t� �� 4 x�t� � 2 y�t�,x�0� �� 60,
y�0� �� 10	,�x�t�,y�t�	,t�

Out[1473]= ��x�t	 
 10 ��3 t �1 � 5 �5 t�,

y�t	 
 10 ��3 t ��4 � 5 �5 t�

We graph these two population functions with Plot in Figure 7-10.
Notice that as t increases, the two populations are approximately the
same.
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Figure 7-10 As t increases, the two populations are approximately the same
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In[1474]:= Plot�Evaluate��x�t�,y�t�	/.sol�,
�t,0,1.2	,
PlotStyle 
 �GrayLevel�0�,GrayLevel�0.5�	�

Population problems that involve more than two neighboring populations can be
solved with a system of differential equations as well. Suppose that the population
of three neighboring territories x, y, and z depends on several factors. The birth
rates of x, y, and z are a1, b1, and c1, respectively. The rate at which citizens of x
move to y is a2 while that at which citizens move from x to z is a3. Similarly, the
rate at which citizens of y move to x is b2 while that at which citizens move from
y to z is b3. Also, the rate at which citizens of z move to x is c2 while that at which
citizens move from z to y is c3. Suppose that the mortality rate of each territory is
ignored in the model.

The system of equations in this case is similar to that derived in the previous
example. The rate at which population x changes is

dx
dt

� a1x � a2x � a3x � b2y � c2z � �a1 � a2 � a3� x � b2y � c2z,

while the rate at which population y changes is

dy
dt

� b1y � b2y � b3y � a2x � c3z � �b1 � b2 � b3� y � a2x � c3z,

and that of z is

dz
dt

� c1z � c2z � c3z � a3x � b3y � �c1 � c2 � c3� z � a3x � b3y.

Hence, we must solve the 3 � 3 system

�				

				
�

dx/dt � �a1 � a2 � a3� x � b2y � c2z

dy/dt � �b1 � b2 � b3� y � a2x � c3z

dz/dt � �c1 � c2 � c3� z � a3x � b3y

(7.8)

where the initial populations x�0� � x0, y�0� � y0, and z�0� � z0 are given.

EXAMPLE 7.2.4: Determine the population of the three territories if
a1 � 3, a2 � 0, a3 � 2, b1 � 4, b2 � 2, b3 � 1, c1 � 5, c2 � 3, and c3 � 0 if
x�0� � 50, y�0� � 60, and z�0� � 25.
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Figure 7-11 Three neighboring territories

SOLUTION: We solve the initial-value problem

�						

						
�

dx/dt � x � 2y � 3z

dy/dt � y

dz/dt � 2x � y � 2z

x�0� � 50, y�0� � 60, z�0� � 25

with DSolve.

In[1475]:= Clear�x,y�

sol � DSolve��x��t� �� x�t� � 2 y�t�
�3 z�t�,y��t� �� y�t�,z��t� �� 2 x�t� � y�t�
�2 z�t�,x�0� �� 50,y�0� �� 60,z�0� �� 25	,
�x�t�,y�t�,z�t�	,t�

Out[1475]= ��x�t	 
 ��t ��3 � 10 �2 t � 63 �5 t�,

y�t	 
 60 �t, z�t	 
 ��t �2 � 40 �2 t � 63 �5 t�

The graphs of these three population functions are generated with Plot
in Figure 7-11. We notice that although y was initially greater than pop-
ulations x and z, these populations increase at a much higher rate than
does y.

In[1476]:= Plot�Evaluate��x�t�,y�t�,z�t�	/.sol�,
�t,0,0.5	,
PlotStyle 
 �GrayLevel�0�,GrayLevel�0.3�,
GrayLevel�0.6�	�
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7.3 Applications that Lead to Nonlinear
Systems

Several special equations and systems that arise in the study of many areas of
applied mathematics can be solved using the techniques of Chapter 6. These
include the predator–prey population dynamics problem, the Van der Pol equa-
tion that models variable damping in a spring–mass system, and the Bonhoeffer–
Van der Pol (BVP) oscillator. We begin by considering the Lotka–Volterra system,
which models the interaction between two populations.

7.3.1 Biological Systems: Predator–Prey Interactions,
The Lotka–Volterra System, and Food Chains in
the Chemostat

The Lotka–Volterra System
Let x�t� and y�t� represent the number of members at time t of the prey and preda-
tor populations, respectively. (Examples of such populations include fox/rabbit
and shark/seal.) Suppose that the positive constant a is the birth rate of x�t� so
that in the absence of the predator dx/dt � ax and that c is the death rate of
y which indicates that dy/dt � �cy in the absence of the prey population. In
addition to these factors, the number of interactions between predator and prey
affects the number of members in the two populations. Note that an interaction
increases the growth of the predator population and decreases the growth of the
prey population, because an interaction between the two populations indicates
that a predator overtakes a member of the prey population. In order to include
these interactions in the model, we assume that the number of interactions is
directly proportional to the product of x�t� and y�t�. Therefore, the rate at which
x�t� changes with respect to time is dx/dt � ax � bxy. Similarly, the rate at which
y�t� changes with respect to time is dy/dt � �cy� dxy. Therefore, we must solve the
Lotka–Volterra system

�		

		
�

dx/dt � ax � bxy

dy/dt � �cy � dxy
(7.9)

subject to the initial populations x�0� � x0 and y�0� � y0.
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EXAMPLE 7.3.1: Find and classify the equilibrium points of the Lotka–
Volterra system.

SOLUTION: We solve
�		

		
�

ax � bxy � 0

�cy � dxy � 0
to see that the equilibrium points

are �0, 0� and �c/d, a/b�.

In[1477]:= f�x ,y � � ax � bxy

g�x ,y � � �c y � dxy

Solve��f�x,y� �� 0,g�x,y� �� 0	,�x,y	�

Out[1477]= ��x 
 0,y 
 0,�x 
 c

d
,y 


a

b
��

To classify these equilibrium points, we first calculate the Jacobian
matrix of the nonlinear system.The Jacobian matrix is also

called the variational
matrix.

In[1478]:= jac � �D�f�x,y�,x� D�f�x,y�,y�
D�g�x,y�,x� D�g�x,y�,y�


MatrixForm�jac�

Out[1478]= �a � b y �b x
d y �c � d x

�
At �0, 0�, we have J�0, 0� � �a 0

0 �c
� with eigenvalues Λ1 � �c and Λ2 � a.

In[1479]:= jac /. �x� > 0,y� > 0	//Eigenvalues

Out[1479]= �a,�c

Because these eigenvalues are real with opposite sign, we classify �0, 0�
as a saddle; �0, 0� is unstable. Similarly, at �c/d, a/b�, we have J�c/d, a/b� �� 0 �bc/d
ad/b 0

� with eigenvalues Λ1,2 �  i


ac.

In[1480]:= jac /. �x� > c/d,y� > a/b	//Eigenvalues

Out[1480]= � � �


a



c,�



a



c�

Therefore, the point �c/d, a/b� is classified as a center in the linearized
system. We show the direction field associated with the system using
the values a � 2, b � 1, c � 3, and d � 1 in Figure 7-12. The direction
field indicates that all solutions oscillate about the center.
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Figure 7-12 Typical direction field associated with the Lotka–Volterra system

In[1481]:= << Graphics‘PlotField‘

PlotVectorField��2x � xy,�3y � xy	,
�x,0,15	,�y,0,15	,Axes� > Automatic,
AxesOrigin� > �0,0	,ScaleFunction� > �1&�,
PlotPoints� > 30�

This observation is confirmed by graphing several curves in the phase
plane of the system for these values of a, b, c, and d. See Figure 7-13.

In[1482]:= Clear�x,y,t,s�

graph�s0 � �� Module��numsol,pp,pxy	,
GraphicsArray��pxy,pp	��

numsol �
NDSolve��x��t� �� 2 x�t� � x�t� y�t�,

y��t� �� �3 y�t� � x�t� y�t�,x�0� �� 3s0,
y�0� �� 2s0	,�x�t�,y�t�	,�t,0,15	�

pp � ParametricPlot��x�t�,y�t�	/.numsol,
�t,0,4	,Compiled 
 False,
PlotRange 
 ��0,15	,�0,15		,
AspectRatio 
 1,Ticks 
 ��3	,�2		,
DisplayFunction 
 Identity�
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Figure 7-13 Typical solutions of the Lotka–Volterra system

In[1482]:= pxy � Plot�Evaluate��x�t�,y�t�	/.numsol�,
�t,0,15	,
PlotStyle 
 �GrayLevel�0�,
GrayLevel�0.5�	,PlotRange 
 �0,15	,
AspectRatio 
 1,
Ticks� > ��5,10	,�5,10		,
DisplayFunction 
 Identity�

In[1483]:= graphs � Table�graph�s�,�s,0.1,2,1.9/9	�

In[1484]:= toshow � Partition�graphs,2�

Show�GraphicsArray�toshow��

Notice that all of the solutions oscillate about the center. These solu-
tions reveal the relationship between the two populations: prey, x�t�,
and predator, y�t�. As we follow one cycle counterclockwise beginning,
for example, near the point �3, 2�, we notice that as x�t� increases, then
y�t� increases until y�t� becomes overpopulated. Then, because the prey
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population is too small to supply the predator population, y�t� decreases
which leads to an increase in the population of x�t�. At this point,
because the number of predators becomes too small to control the num-
ber in the prey population, x�t� becomes overpopulated and the cycle
repeats itself.

An interesting variation of the Lotka–Volterra equations is to assume that a
depends strongly on environmental factors and might be given by the differen-
tial equation

da
dt

� �ax � ā � k sin �Ωt � Φ� , (7.10)

where the term �ax represents the loss of nutrients due to species x; ā, k, Ω, and Φ
are constants. Observe that incorporating equation (7.10) into system (7.9) results
in a nonautonomous system.

EXAMPLE 7.3.2: Suppose that x�0� � y�0� � a�0� � 0.5, b � d � 1,
c � 0.5, ā � 0.25, k � 0.125, and Φ � 0. Plot x�t� and y�t� if Ω � 0.1, 0.25,
0.5, 0.75, 1, 1.25, 1.5, and 2.5.

SOLUTION: Given the appropriate parameter values and initial
conditions, solgraph solves

�						

						
�

dx/dt � ax � bxy

dy/dt � �cy � dxy

da/dt � �ax � ā � k sin �Ωt � Φ�

x�0� � x0, y�0� � y0, z�0� � z0

(7.11)

plots x�t� (in black) and y�t� (in gray), parametrically plots
�		

		
�

x � x�t�

y � y�t�
,

and displays the results side-by-side. Any options included are passed
to the Show command. If {t,a,b} is omitted from the solgraph com-
mand, the default is {t,0,40}.
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In[1485]:= solgraph�b ,d ,c ,abar ,k ,Ω ,Φ �
��x0 ,y0 ,a0 	,ts ��t,0,40	,
opts � �� Module��numsol,p1,p2	,
numsol � NDSolve��x��t� �� a�t� x�t�
�b x�t� y�t�,y��t� �� �c y�t�
�d x�t�y�t�,a��t� �� �a�t� x�t�
�abar � k Sin�Ω t � Φ�,x�0� �� x0,
y�0� �� y0,a�0� �� a0	,
�x�t�,y�t�,a�t�	,ts�
p1 � ParametricPlot��x�t�,y�t�	/.numsol,

ts,Compiled 
 False,
PlotRange 
 ��0,1	,�0,1		,
AspectRatio 
 Automatic,
DisplayFunction 
 Identity,
AxesLabel 
 �"x","y"	,Ticks 
 ��0,1	,
�0,1		�

p2 � Plot�Evaluate��x�t�,
y�t�	/.numsol�,ts,

PlotStyle 
 �GrayLevel�0�,
GrayLevel�0.4�	,PlotRange 
 �0,1	,
DisplayFunction 
 Identity,
AxesLabel 
 �"t","x,y"	,
Ticks 
 �Automatic,�0,1		�

Show�GraphicsArray��p2,p1	�,opts�
�

For example, entering

In[1486]:= solgraph�1,1,0.5,0.25,0.125,0.3,0�
��0.5,0.5,0.5	�

graphs the solution to the initial-value problem (7.11) for our parameter
values and initial conditions if Ω � 0.3 shown in Figure 7-14. We then
use Map to apply solgraph to the list of numbers �0.01, 0.1, 0.25, 0.5,
0.75, 1, 1.25, 1.5, 2.5�. The resulting plots are not displayed because we
include the option DisplayFunction->Identity in the solgraph
command.

In[1487]:= solgraph�1,1,0.5,0.25,0.125,0.3,0�
��0.5,0.5,0.5	,�t,0,50	,
DisplayFunction 
 Identity�

Out[1487]= -GraphicsArray-
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Figure 7-14 a � a�t�, Ω � 0.3

In[1488]:= toshow � Map�solgraph�1,1,0.5,0.25,0.125,
#,0���0.5,0.5,0.5	,�t,0,50	,
DisplayFunction 
 Identity�&,
�0.1,0.25,0.5,0.75,1,1.25,1.5,2.5	�

Out[1488]= �-GraphicsArray-,-GraphicsArray-,
-GraphicsArray-,-GraphicsArray-,
-GraphicsArray-,-GraphicsArray-,
-GraphicsArray-,-GraphicsArray-

Partition is used to partition toshow into two element subsets and
the resulting array of graphics is displayed using Show and Graphics
Array in Figure 7-15.

In[1489]:= Show�GraphicsArray�Partition�toshow,2���

(Note that if instead you had entered

In[1490]:= Show�GraphicsArray�Partition�toshow,1���

the plots would have been displayed vertically instead of side-by-side.)
From the graphs, we see that larger values of Ω appear to stabilize the
populations of both species; smaller values ofΩ appear to cause the size
of the populations to oscillate widely.
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Figure 7-15 Varying Ω

7.3.1.1 Simple Food Chain in a Chemostat
The equations that describe a simple food chain in a chemostat areSee Smith and Waltman’s,

The Theory of the Chemostat:
Dynamics of Microbial
Competition [24] for a
detailed discussion of various
chemostat models.
Previously, we discussed
growth in the chemostat in
Example 3.2.6.

�									

									
�

dS
dt

� 1 � S �
m1xS
a1 � S

dx
dt

�
m1xS
a1 � S

� x �
m2xy
a2 � x

dy
dt

�
m2xy
a2 � x

� y

S�0� � S0, x�0� � x0, y�0� � y0 .

(7.12)

In system (7.12), y (the predator) consumes x (the prey) and x consumes the
nutrient S.

Now let ) � 1�S� x� y. Then )� � �S� � x� � y� � ��1�S� x� y� � �) so ) � )0e�t

and limt�� ) � 0. In the limit as t � �, ) � 0 � 1 � S � x � y so S � 1 � x � y and
system (7.12) becomes

�						

						
�

dx
dt

�
m1x�1 � x � y�
1 � a1 � x � y

� x �
m2xy
a2 � x

dy
dt

�
m2xy
a2 � x

� y

x�0� � x0, y�0� � y0 .

(7.13)
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The analysis of system (7.13) is quite technical and beyond the scope of this text.
We illustrate how Mathematica can assist in carrying out a few of the computations See Chapter 3 of Smith and

Waltman’s The Theory of the
Chemostat: Dynamics of
Microbial Competition [24] for
a detailed analysis of system
(7.12).

needed when analyzing system (7.13).
The rest points of system (7.13) are found by solving

�			

			
�

m1x�1 � x � y�
1 � a1 � x � y

� x �
m2xy
a2 � x

� 0

m2xy
a2 � x

� y � 0.

In[1491]:= xeq � x�m1�1 � x � y�/�1 � a1 � x � y� � 1 � m2 y/�a2 � x��

yeq � y�m2 x/�a2 � x� � 1�

In[1492]:= rps � Solve��xeq �� 0,yeq �� 0	,�x,y	�//Simplify

Out[1492]= ��x 
 0,y 
 0,�y 
 0,x 

�1 � a1 � m1

�1 � m1
�,

�y 
 1

2 ��1 � m2�
� � 1 � 2 a2 � a2 m1 � a1 ��1 � m2�

�m2 �


��1 � a2 m1 � m2�2 � a12 ��1 � m2�2

�2 a1 ��1 � m2� ��1 � a2 m1 � m2���,
x 


a2

�1 � m2
�,

�y 
 1

2 ��1 � m2�
� � 1 � 2 a2 � a2 m1 � a1 ��1 � m2� � m2

�


��1 � a2 m1 � m2�2 � a12 ��1 � m2�2

�2 a1 ��1 � m2� ��1 � a2 m1 � m2���,
x 


a2

�1 � m2
��

From the results, we see that E0 � �0, 0� is a rest point. If the appropriate quantities
are positive, another boundary rest point may exist as well as an interior rest point.

In jac, we compute the Jacobian, J, of system (7.12).

In[1493]:= jac � ��D�xeq,x�,D�xeq,y�	,�D�yeq,x�,D�yeq,y�		

Out[1493]= �� � 1 �
m1 �1 � x � y�

1 � a1 � x � y
�

m2 y

a2 � x

�x � m1 �1 � x � y�

�1 � a1 � x � y�2
�

m1

1 � a1 � x � y
�

m2 y

�a2 � x�2
�,

x � �
m2

a2 � x
�

m1 �1 � x � y�

�1 � a1 � x � y�2
�

m1

1 � a1 � x � y
��,

�� �
m2 x

�a2 � x�2
�

m2

a2 � x
� y,�1 �

m2 x

a2 � x
��
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At E0, J �E0� is

In[1494]:= j0 � jac/.rps��1��//FullSimplify

Out[1494]= �� � 1 �
m1

1 � a1
,0�,�0,�1�

with eigenvalues

In[1495]:= Eigenvalues�j0�

Out[1495]= � � 1,�1 �
m1

1 � a1
�

In the context of the problem, it is desirable for E0 to be unstable. Thus, we require
that m1 > 1 and

�1 �
m1

a1 � 1
> 0 or, equivalently, 1 �

a1

m1 � 1
< 0.

With this assumption, the boundary point E1 � �1 � a1

m1 � 1
, 0� � �1 � Λ1, 0� exists.We define Λi to be

Λi �
ai

mi � 1
.

At E1, J �E1� is given by

In[1496]:= j1 � jac/.rps��2��//FullSimplify

Out[1496]= ���1 � a1 � m1� ��1 � m1�
a1 m1

,

�1 � a1 � m1� ��1 � m1
a1 m1

�
m2

1 � a1 � a2 � �1 � a2� m1
��,

�0,�1 � �1 � a1 � m1� m2

1 � a1 � a2 � �1 � a2� m1
��

with eigenvalues

In[1497]:= Eigenvalues�j1�

Out[1497]= ��1 � a1 � m1� ��1 � m1�
a1 m1

,�1 �
�1 � a1 � m1� m2

1 � a1 � a2 � �1 � a2� m1
�
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E1 may be stable or unstable. It can be shown that E1 is stable if Λ1 � Λ2 > 1 and
a saddle (unstable) if Λ1 � Λ2 < 1. If an interior rest point exists, Mathematica can
compute the Jacobian as well as the eigenvalues. At EA, the J �EA� is

In[1498]:= j3 � jac/.rps��3��//FullSimplify

Out[1498]= �� � �2 �a12 ��1 � m2�2
���1 � m1� �1 � a2 m1 � m2�

� �1 � a2 m1 � m2 � 

��1 � a2 m1 � m2�2

�a12 ��1 � m2�2 � 2 a1

���1 � m2� ��1 � a2 m1 � m2���
�a1 ��1 � m2� �2 � 2 m2
�m1 ��1 � a2 �m1 � 2 m2� � m2�

�


��1 � a2 m1 � m2�2

�a12 ��1 � m2�2 � 2 a1 ��1 � m2�

���1 � a2 m1 � m2�������m2 SuperscriptBox��1 � a1 � a2 m1 � m2
�a1 m2 �



��1 � a2 m1 � m2�2��

�a12 ��1 � m2�2 � 2 a1 ��1 � m2�

���1 � a2 m1 � m2���2�,
��2 �a12 ��1 � m2�2 � a1 ��1 � m2�
� � � 2 � 2 a2 m1 � 2 m2 �



��1 � a2 m1 � m2�2

�a12 ��1 � m2�2 � 2 a1 ��1 � m2�

� ��1 � a2 m1 � m2���
��1 � a2 m1 � m2�

��1 � a2 m1 � m2 � 

��1 � a2 m1 � m2�2

�a12 ��1 � m2�2 � 2 a1

���1 � m2� ��1 � a2 m1 � m2������SuperscriptBox��1 � a1 � a2 m1 � m2 � a1 m2
�



��1 � a2 m1 � m2�2��a12 ��1 � m2�2

�2 a1 ��1 � m2� ��1 � a2 m1 � m2���2�,� 1

2 a2 m2
���1 � m2� � � 1 � a2 ��2 � m1�

�a1 ��1 � m2� � m2

�


��1 � a2 m1 � m2�2 � a12 ��1 � m2�2

�2 a1 ��1 � m2� ��1 � a2 m1 � m2����,0��
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The command Eigenvalues[j3] returns the eigenvalues of j3; however, the
result is very lengthy so it is not shown here for length considerations. Refer to
Chapter 3 of Smith and Waltman, [24].

Incorporating a second predator, z, of x into system (7.14) results in

�													

													
�

dS
dt

� 1 � S �
m1xS
a1 � S

dx
dt

�
m1xS
a1 � S

� x �
m2xy
a2 � x

�
m3xz
a3 � x

dy
dt

�
m2xy
a2 � x

� y

dz
dt

�
m3xz
a3 � x

� z

S�0� � S0, x�0� � x0, y�0� � y0, z�0� � z0 .

(7.14)

In the same way as with system (7.14), we let ) � 1 � S � x � y � z. Then, )� � �) so
limt�� ) � 0. Substitution of ) into system (7.14) and taking the limit t � � results
in

�										

										
�

dx
dt

�
m1x �1 � x � y � z�
1 � a1 � x � y � z

� x �
m2xy
a2 � x

�
m3xz
a3 � x

dy
dt

�
m2xy
a2 � x

� y

dz
dt

�
m3xz
a3 � x

� z

S�0� � S0, x�0� � x0, y�0� � y0, z�0� � z0 .

(7.15)

System (7.15) can exhibit very interesting behavior.

EXAMPLE 7.3.3: Let a1 � .3, a2 � .4, m1 � 8, m2 � 4.5, and m3 � 5.0.
If x�0� � .1, y�0� � .1, and z�0� � .3, how does varying a3 affect the
solutions of system (7.15)?

SOLUTION: We define the function predplot:

predplot[{a1,a2,a3},{m1,m2,m3}][{x0,y0,z0},{t,a,b}
,opts]

solves system (7.15) subject to the initial conditions x�0� � x0, y�0� � y0,
and z�0� � z0 for a � t � b, plots x�t� (in black), y�t� (in gray), and z�t�
(dashed), parametrically plots x versus y versus z, displays the resulting
plots side-by-side, and returns a numerical solution to the initial-value
problem. Any options included are passed to the Show command. If



7.3 Applications that Lead to Nonlinear Systems 599

you do not include any options and omit {t,a,b}, the default is 0 �
t � 100.

In[1499]:= Clear�predplot�

predplot��a1 ,a2 ,a3 	,�m1 ,m2 ,m3 	��
�x0 ,y0 ,z0 	,ts ��t,0,100	,opts � ��

Module��numsol,p1,p2,p3	,
numsol � NDSolve�

�x��t� ��
x�t�
�m1 �1 � x�t� � y�t� � z�t��/

�a1 � 1 � x�t�
�y�t� � z�t�� � 1�

y�t� m2 /�a2 � x�t��
�z�t� m3/�a3 � x�t���,

y��t� �� y�t��m2 x�t�/�a2 � x�t�� � 1�,
z��t� �� z�t� �m3 x�t�/�a3 � x�t�� � 1�,
x�0� �� x0,y�0� �� y0,z�0� �� z0	,

�x�t�,y�t�,z�t�	,ts,MaxSteps 
 100000�
p1 � Plot�Evaluate��x�t�,y�t�,

z�t�	/.numsol�,
ts,PlotRange 
 �0,1	,
PlotStyle 
 �GrayLevel�0�,
GrayLevel�0.3�,

Dashing��0.01	�	,
DisplayFunction 
 Identity,
Ticks 
 ��ts��2��,ts��3��	,�0,1		,
AxesLabel 
 �"t",""	�

p2 � ParametricPlot3D�
Evaluate��x�t�,y�t�,z�t�	/.numsol�,
ts,PlotRange 
 ��0,1	,�0,1	,�0,1		,
AxesLabel 
 �"x","y","z"	,
BoxRatios 
 �1,1,1	,
DisplayFunction 
 Identity,
Ticks 
 ��0,1	,�0,1	,�0,1		,
ViewPoint� > �2.21, 2.211, 1.294	,
Boxed 
 False,PlotPoints 
 2000�

Show�GraphicsArray��p1,p2	�,opts�
numsol

�

For example, entering

In[1500]:= predplot��0.3,0.4,0.455	,�8,4.5,5.	�
��0.1,0.1,0.3	,�t,50,60	�
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Figure 7-16 If a3 � 0.455, y and z coexist

Out[1500]= ��x�t	 
 InterpolatingFunction���50.,60.,
<>	�t	,
y�t	 
 InterpolatingFunction���50.,60.,
<>	�t	,
z�t	 
 InterpolatingFunction���50.,60.,
<>	�t	

plots the solutions shown in Figure 7-16 using our parameter values
and initial conditions for 50 � t � 60 if a3 � 0.455. We vary a3 in t1.

In[1501]:= t1 � Table�predplot��0.3,0.4,a3	,�8,4.5,5.	�
��0.3,0.1,0.2	,�t,50,60	�,
�a3,0.35,0.55,0.2/29	�

The resulting graphs result in a striking animation.

You can also visualize the cycles by displaying all the parametric plots
together. In t1, each result is an approximate solution that we can use.
In the following, we use ParametricPlot3D to graph each solution.
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In[1502]:= toshow � Table�ParametricPlot3D�
Evaluate��z�t�,y�t�,x�t�	/.
t1��i����1���,�t,50,60	,
PlotRange 
 ��0,1	,�0,1	,�0,1		,
AxesLabel 
 �"z","y","x"	,
BoxRatios 
 �1,1,1	,
DisplayFunction 
 Identity,
Ticks 
 ��0,1	,�0,1	,�0,1		,
ViewPoint� > �1.47, 2.424, 1.847	,
Boxed 
 False,PlotPoints 
 2000�,
�i,1,30	�

The results are displayed together with Show in Figure 7-17.
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Figure 7-17 In an animation, you can see the limit cycle move from the xz-plane to the
xy-plane as a3 increases
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In[1503]:= Show�toshow,DisplayFunction� >
$DisplayFunction�

In the plots we see that if a3 is small, z dominates the predator popula-
tion, if a3 is large, y dominates the predator population. For moderate
values, y and z coexist.

7.3.1.2 Long Food Chain in a Chemostat
In system (7.12), y predates on x. Incorporating a predator z of y into system (7.12)
results in

�											

											
�

dS
dt

� 1 � S �
m1xS
a1 � S

dx
dt

�
m1xS
a1 � S

� x �
m2xy
a2 � x

dy
dt

�
m2xy
a2 � x

� y �
m3yz
a3 � y

dz
dt

�
m3yz
a3 � y

� z .

(7.16)

As with system (7.12), in the limit as t � �, S � 1� x� y� z so system (7.16) can be
rewritten as

�						

						
�

dx
dt

� x � f1�1 � x � y � z� � 1� � y f2�x�
dy
dt

� y � f2�x� � 1� � z f3�y�
dz
dt

� z � f3�y� � 1�

(7.17)

where

fi�u� �
miu

ai � u
. (7.18)

Of course, rigorous analysis of system (7.17) is even more complicated than the
analysis of system (7.12).

EXAMPLE 7.3.4: Let a1 � .08, a2 � .23, m1 � 10, m2 � 4.0, and m3 � 3.5.
If x�0� � .3, y�0� � .1, and z�0� � .2, how does varying a3 affect the
solutions of system (7.17)?

SOLUTION: We define longchainplot in the same way as we
defined predplot in Example 7.3.3.
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In[1504]:= longchainplot��a1 ,a2 ,a3 	,�m1 ,m2 ,m3 	��
�x0 ,y0 ,z0 	,ts ��t,0,100	� ��

Module��numsol	,numsol � NDSolve�
�x��t� ��

x�t�
�m1 �1 � x�t� � y�t� � z�t��/
�a1 � 1 � x�t� � y�t� � z�t�� � 1��

y�t� m2 x�t�/�a2 � x�t��,
y��t� �� y�t��m2 x�t�/�a2 � x�t�� � 1��

z�t� m3 y�t�/�a3 � y�t��,
z��t� �� z�t� �m3 y�t�/�a3 � y�t�� � 1�,
x�0� �� x0,y�0� �� y0,z�0� �� z0	,

�x�t�,y�t�,z�t�	,ts,MaxSteps 
 100000�
p1 �
Plot�Evaluate��x�t�,y�t�,z�t�	/.numsol�,
ts,PlotRange 
 �0,1	,
PlotStyle 
 �GrayLevel�0�,

GrayLevel�0.3�,Dashing��0.01	�	,
DisplayFunction 
 Identity,
Ticks 
 ��ts��2��,ts��3��	,�0,1		,
AxesLabel 
 �"t",""	�

p2 � ParametricPlot3D�
Evaluate��x�t�,y�t�,z�t�	/.numsol�,
ts,PlotRange 
 ��0,1	,�0,1	,�0,1		,
AxesLabel 
 �"x","y","z"	,
BoxRatios 
 �1,1,1	,
DisplayFunction 
 Identity,
Ticks 
 ��0,1	,�0,1	,�0,1		,
ViewPoint� > �2.21, 2.211, 1.294	,
Boxed 
 False,PlotPoints 
 2000�

Show�GraphicsArray��p1,p2	��
numsol

�

For example, entering

In[1505]:= longchainplot��0.08,0.23,0.4	,�10,4,3.5	�
��0.3,0.1,0.2	,�t,50,60	�

Out[1505]= ��x�t	 
 InterpolatingFunction

���50.,60.,<>	�t	,
y�t	 
 InterpolatingFunction���50.,60.,
<>	�t	,z�t	 
 InterpolatingFunction���50.
,60.,<>	�t	
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Figure 7-18 x�t� (in black), y�t� (in gray), and z�t� (dashed) if a3 � .4 for 0 � t � 60

plots the solution of system (7.17) using our parameter values and ini-
tial conditions if a3 � .4 for 50 � t � 60 in Figure 7-18. In Figure 7-19,
we plot the solutions using the given parameter values and initial con-
ditions using a3 � 0.3, 0.26, 0.24, 0.22, and 0.2 for 975 � t � 1000. In the
plots, we see that the solution appears chaotic for a3 � .2.

In[1506]:= r1 � Map�longchainplot��0.08,0.23,#	,
�10,4,3.5	���0.3,0.1,0.2	,

�t,975,1000	�&,�0.3,0.26,0.24,0.22,0.2	�

The apparent chaotic behavior for a3 � .2 is more apparent in Fig-
ure 7-20, where we graph the solution for 1100 � t � 1200.

In[1507]:= longchainplot��0.08,0.23,0.2	,�10,4,3.5	�
��0.3,0.1,0.2	,�t,1100,1200	�

7.3.2 Physical Systems: Variable Damping

In some physical systems, energy is fed into the system when there are small
oscillations while energy is taken from the system when there are large oscil-
lations. This indicates that the system undergoes “negative damping” for small
oscillations and “positive damping” for large oscillations. A differential equation
that models this situation is Van-der-Pol’s equation.
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Figure 7-20 The solution appears to be chaotic if a3 � .2

Also see Example 4.1.1.

EXAMPLE 7.3.5 (Van-der-Pol’s equation): In the introduction to Chap-
ter 6, we saw that Van-der-Pol’s equation x�� � Μ �x2 � 1� x� � x � 0 is
equivalent to the system

�		

		
�

x� � y

y� � Μ �1 � x2� y � x .

Classify the equilibrium points, use NDSolve to approximate the solu-
tions to this nonlinear system, and plot the phase plane.

SOLUTION: We find the equilibrium points by solving
�		

		
�

y � 0

Μ �1 � x2� y � x � 0
. From the first equation, we see that y � 0. Then,

substitution of y � 0 into the second equation yields x � 0. Therefore,
the only equilibrium point is �0, 0�. The Jacobian matrix for this system
is

J�x, y� � � 0 1
�1 � 2Μxy �Μ �x2 � 1�� .

The eigenvalues of J�0, 0� are Λ1,2 � 1
2 �Μ  

Μ2 � 4�.
In[1508]:= Clear�f,g�

f�x ,y � � y

g�x ,y � � �x � Μ �x2 � 1	 y

In[1509]:= jac � �D�f�x,y�,x� D�f�x,y�,y�
D�g�x,y�,x� D�g�x,y�,y�
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In[1510]:= jac /. �x� > 0,y� > 0	//Eigenvalues

Out[1510]= �1
2

�Μ � �
�4 � Μ2�, 1

2
�Μ � �

�4 � Μ2��
Notice that if Μ > 2, then both eigenvalues are positive and real. Hence,
we classify �0, 0� as an unstable node. On the other hand, if 0 < Μ < 2,
then the eigenvalues are a complex conjugate pair with a positive real
part. Hence, �0, 0� is an unstable spiral. (We omit the case Μ � 2 because
the eigenvalues are repeated.)

We now show several curves in the phase plane that begin at various
points for various values of Μ. First, we define the function sol, which
given Μ, x0, and y0, generates a numerical solution to the initial-value
problem

�				

				
�

x� � y

y� � Μ �1 � x2� y � x

x�0� � x0, y�0� � y0

and then parametrically graphs the result for 0 � t � 20.

In[1511]:= Clear�sol�

sol�Μ ,�x0 ,y0 	,opts � ��

Module��eqone,eqtwo,solt	,
eqone � x��t� �� y�t�

eqtwo � y��t� �� Μ �1 � x�t�2	 y�t� � x�t�

solt � NDSolve��eqone,eqtwo,x�0� �� x0,
y�0� �� y0	,�x�t�,y�t�	,�t,0,20	�

ParametricPlot��x�t�,y�t�	/.solt,

�t,0,20	,Compiled 
 False,opts��
We then use Table and Union to generate a list of ordered pairs
initconds that will correspond to the initial conditions in the initial-
value problem.

In[1512]:= initconds1 � Table��0.1Cos�t�,0.1Sin�t�	,
�t,0,2Π,2Π/9	�

initconds2 � Table���5,i	,�i,�5,5,10/9	�

initconds3 � Table��5,i	,�i,�5,5,10/9	�

initconds4 � Table��i,5	,�i,�5,5,10/9	�

initconds5 � Table��i,�5	,�i,�5,5,10/9	�
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In[1513]:= initconds � initconds1 ( initconds2(

initconds3 ( initconds4 ( initconds5

We then use Map to apply sol to the list of ordered pairs in initconds
for Μ � 1/2.

In[1514]:= somegraphs1 � Map�sol�1/2,#,DisplayFunction� >
Identity�&,initconds�

In[1515]:= phase1 � Show�somegraphs1,
PlotRange� > ���5,5	,��5,5		,
AspectRatio� > 1,Ticks� > ���4,4	,
��4,4		�

Similarly, we use Map to apply sol to the list of ordered pairs in
initconds for Μ � 1, 3/2, and 3.

In[1516]:= somegraphs2 � Map�sol�1,#,DisplayFunction� >
Identity�&,initconds�

In[1517]:= phase2 � Show�somegraphs2,
PlotRange� > ���5,5	,��5,5		,
AspectRatio� > 1,Ticks� > ���4,4	,
��4,4		�

In[1518]:= somegraphs3 � Map�sol�3/2,#,DisplayFunction� >
Identity�&,initconds�

In[1519]:= phase3 � Show�somegraphs3,
PlotRange� > ���5,5	,��5,5		,
AspectRatio� > 1,Ticks� > ���4,4	,
��4,4		�

In[1520]:= somegraphs4 � Map�sol�3,#,DisplayFunction� >
Identity�&,initconds�

In[1521]:= phase4 � Show�somegraphs3,
PlotRange� > ���5,5	,��5,5		,
AspectRatio� > 1,Ticks� > ���4,4	,
��4,4		�

We now show all four graphs together in Figure 7-21. In each figure, we
see that all of the curves approach a curve called a limit cycle. Physically,
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Figure 7-21 Solutions to the Van-der-Pol equation for various values of Μ

the fact that the system has a limit cycle indicates that for all oscilla-
tions, the motion eventually becomes periodic, which is represented by
a closed curve in the phase plane.

In[1522]:= Show�GraphicsArray�
��phase1,phase2	,�phase3,phase4		��

On the other hand, in Figure 7-22 we graph the solutions that satisfy
the initial conditions x�0� � 1 and y�0� � 0 parametrically and individu-
ally for various values of Μ. Notice that for small values of Μ the system
more closely approximates that of the harmonic oscillator because the
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Figure 7-22 The solutions to the Van-der-Pol equation satisfying x�0� � 1 and y�0� � 0
individually (x in black and y in gray) for various values of Μ
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damping coefficient is small. The curves are more circular than those
for larger values of Μ.

In[1523]:= Clear�x,y,t,s�

graph�Μ � �� Module��numsol,pp,pxy	,
numsol � NDSolve�
x��t� �� y�t�,

y��t� �� Μ �1 � x�t�2	 y�t� � x�t�,

x�0� �� 1,

y�0� �� 0�,�x�t�,y�t�	,�t,0,20	�
pp � ParametricPlot��x�t�,y�t�	/.numsol,

�t,0,20	,Compiled 
 False,
PlotRange 
 ���5,5	,��5,5		,
AspectRatio 
 1,Ticks 
 ���4,4	,
��4,4		,DisplayFunction 
 Identity�

pxy � Plot�Evaluate��x�t�,y�t�	/.numsol�,
�t,0,20	,

PlotStyle 
 �GrayLevel�0�,
GrayLevel�0.5�	,PlotRange 

��5,5	,AspectRatio 
 1,

Ticks� > ��5,10,15	,��4,4		,
DisplayFunction 
 Identity�

GraphicsArray��pxy,pp	��
In[1524]:= graphs � Table�graph�i�,

�i,0.25,3,2.75/9	�

In[1525]:= toshow � Partition�graphs,2�

Show�GraphicsArray�toshow��

7.3.3 Differential Geometry: Curvature
Refer to Gray’s outstanding
text, Modern Differential
Geometry of Curves and
Surfaces[14] which
incorporates Mathematica
throughout.

Let C be a piecewise-smooth curve with parametrization r�t� � �x�t�, y�t��, a � t � b.
The unit tangent vector to C at t is

T �
r��t����r��t���� (7.19)
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The arc length function, s � s�t�, is defined by

s�t� � � t

a

���r��u���� du � � t

a

�� dx
du

�2

� � dy
du

�2

du. (7.20)

Solving equation (7.20) for t, we have t � t�s� and the parametrization of C with
respect to arc length is r�s� � �x�t�s��, y�t�s���. When C is parametrized by arc length,���r��s���� � 1 so the unit tangent vector (7.19) is given by T�s� � r��s�. The curvature
of C, Κ�s�, is

Κ�s� �
�������dT

ds

������� . (7.21)

Thus, for the curve C parametrized by arc length, Κ�s� � ���r���s����.
Conversely, a given curvature function determines a plane curve: the curve C

parametrized by arc length with curvature Κ�s� has parametrization r�s� � �x�s�, y�s��
where

�						

						
�

dx/ds � cos Θ

dy/ds � sin Θ

dΘ/ds � Κ

x�a� � c, y�a� � d, Θ�0� � Θ0 .

(7.22)

You can often use NDSolve to solve system (7.22).

EXAMPLE 7.3.6: Plot the curve C for which Κ�s� � e�s� es for �5 � s � 5
if x�0� � y�0� � Θ�0� � 0.

SOLUTION: After defining Κ�s� � e�s � es,

In[1526]:= Κ�s� � Exp��s� � Exp�s�

we use NDSolve to solve system (7.22) using the initial conditions x�0� �
y�0� � Θ�0� � 0 for �5 � s � 5.

In[1527]:= t1 � NDSolve��x��s� �� Cos�Θ�s��,
y��s� �� Sin�Θ�s��,

Θ��s� �� Κ�s�,x�0� �� 0,y�0� �� 0,
Θ�0� �� 0	,
�x�s�,y�s�,Θ�s�	,�s,�5,5	�

Out[1527]= ��x�s	 
 InterpolatingFunction����5.,5.,
<>	�s	,
y�s	 
 InterpolatingFunction����5.,5.,
<>	�s	,
Θ�s	 
 InterpolatingFunction

<>	�s	,����5.,5.,<>	�s	
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Figure 7-23 For this curve, Κ�s� � e�s � es

We use ParametricPlot to graph the result in Figure 7-23.

In[1528]:= ParametricPlot�Evaluate��x�s�,y�s�	/.t1�,
�s,�5,5	,AspectRatio 
 Automatic,
PlotRange 
 All�

Even relatively simple curvature functions can yield remarkable curves. To illus-
trate, we define the function curvek. Given a function Κ�s�, curvek�Κ�s�, �s, a, b�,
opts� solves system (7.22) using the initial conditions x�0� � y�0� � Θ�0� � 0 for
a � s � b, and parametrically plots the result. Any options are passed to the
Parametric Plot command. If you do not include {s,a,b} and do not include
any options, the default is �15 � s � 15.

In[1529]:= Clear�curvek,Κ�

curvek�k ,ss ��s,�15,15	,opts � ��
Module��numsol	,
numsol � NDSolve��x��s� �� Cos�Θ�s��,
y��s� �� Sin�Θ�s��,

Θ��s� �� k,x�0� �� 0,y�0� �� 0,Θ�0� �� 0	,
�x�s�,y�s�,Θ�s�	,ss�

ParametricPlot�Evaluate��x�s�,y�s�	/.numsol�,
ss,opts,AspectRatio 
 Automatic�

�
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Figure 7-24 You can generate stunning curves by specifying a curvature function
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We illustrate the use of curvek using Κ�s� � s � sin s, sJ1�s�, sJ2�s�, s sin �sin s�,
s sin �sin2 s2�, and �s sin �sin s��. All six plots are shown together as an array in
Figure 7-24.

In[1530]:= Κ�s � � s � Sin�s�

p1 � curvek�Κ�s�,�s,�40,40	,PlotPoints 
 480,
AspectRatio 
 1,DisplayFunction 
 Identity�

In[1531]:= p2 � curvek�s BesselJ�1,s�,�s,�40,40	,
PlotPoints 
 120,

DisplayFunction 
 Identity�

In[1532]:= p3 � curvek�s BesselJ�2,s�,�s,�40,40	,
PlotPoints 
 120,

DisplayFunction 
 Identity�

In[1533]:= Κ�s � � s Sin�Sin�s��

p4 � curvek�Κ�s�,�s,�40,40	,
PlotPoints 
 480,

AspectRatio 
 1,DisplayFunction 
 Identity�

In[1534]:= Κ�s � � s Sin�Sin�sˆ2�ˆ2�

p5 � curvek�Κ�s�,�s,�15,15	,
PlotPoints 
 480,

AspectRatio 
 1,PlotRange 
 ���3,3	,��3,3		,
DisplayFunction 
 Identity�

In[1535]:= Κ�s � � Abs�s Sin�Sin�s���

p6 � curvek�Κ�s�,�s,�40,40	,PlotPoints 
 480,
AspectRatio 
 1,DisplayFunction 
 Identity�

In[1536]:= Show�GraphicsArray���p1,p2	,�p3,p4	,
�p5,p6		��
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8Laplace Transform
Methods

In previous chapters we have investigated solving the nth-order linear equation

an�x�y�n� � an�1�x�y�n�1� �    � a2�x�y�� � a1�x�y� � a0�x�y � f �x� (8.1)

for y. We have seen that if the coefficients ai�x� are numbers, we can find a gen-
eral solution of the equation by first solving the characteristic equation of the
corresponding homogeneous equation, forming a general solution of the corre-
sponding homogeneous equation, and then finding a particular solution to the
nonhomogeneous equation. If the coefficients ai�x� are not constants, the situation
is more difficult. In particular cases, like when equation (8.1) is a Cauchy–Euler
equation, similar techniques can be used. In other cases, we might be able to use a
series to find a solution. In each of these situations, however, the function f �x� has
typically been a smooth function. If f �x� is not a smooth function, like when f �x�
is a piecewise-defined or periodic function, solving equation (8.1) can be substan-
tially more difficult.

In this chapter, we discuss a technique that transforms equation (8.1) into an
algebraic equation that can often be solved so that a solution to the differential
equation can be obtained.

617
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8.1 The Laplace Transform

8.1.1 Definition of the Laplace Transform

Definition 30 (Laplace Transform). Let f �t� be a function defined on the interval �0,��.
The Laplace transform of f �t� is the function (of s)

� � f �t�� � � �

0
e�st f �t� dt. (8.2)

The command

LaplaceTransform[f[t],t,s]

computes the Laplace transform of f �t�.
Because the Laplace transform yields a function of s, we often use the notation

� � f �t�� � F�s� to denote the Laplace transform of f �t�.

EXAMPLE 8.1.1: Compute � � f �t�� if f �t� � 1.

SOLUTION: Using the definition, equation (8.2), we have

� � f �t�� � � �

0
e�st dt � lim

M��
� M

0
e�st dt � lim

M��
	�1

s
e�st
t�M

t�0

� �
1
s

lim
M��

�e�sM � 1� � �1
s
�0 � 1� �

1
s

, s > 0.

Notice that in order for limM�� e�sM � 0, we must require that s > 0.
(Otherwise, the limit does not exist.) We can use Integrate to evalu-
ate this integral as well.

In[1537]:= step1 � � capm

0

Exp��s t��t

Out[1537]=
1 � ��capm s

s

However, Mathematica cannot evaluate limM�� e�sM because Mathe-
matica does not assume that s > 0.

In[1538]:= step2 � Limit�step1,capm 
 +�

Out[1538]= Limit�1 � ��capm s
s

,capm 
 ��
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Alternatively, we can use Integrate to evaluate the improper integral

In[1539]:= � +

0

Exp��s t��t

Out[1539]= If�Re�s	 > 0, 1
s
,

Integrate���s t,�t,0,�,

Assumptions 
 Re�s	 & 0	�
or use the command LaplaceTransform to compute � � f �t��.

In[1540]:= LaplaceTransform�1,t,s�

Out[1540]=
1

s

EXAMPLE 8.1.2: Compute � � f �t�� if f �t� � eat .

SOLUTION: As before, we have

� � f �t�� � � �

0
e�st f �t� dt � � �

0
e�steat dt � � �

0
e��s�a�t dt

� lim
M��

	� 1
s � a

e��s�a�t
t�M

t�0
� �

1
s � a

lim
M��

�e��s�a�M � 1�
�

1
s � a

, s > a.

Notice that we must require s > a so that limM�� e��s�a�M � 0. Laplace
Transform can be used to compute the Laplace transform of this func-
tion as well.

In[1541]:= LaplaceTransform�Exp�a t�,t,s�

Out[1541]=
1

�a � s

The formula � �eat� � 1
s � a

can now be used to avoid using the definition.

EXAMPLE 8.1.3: Compute: (a) � �e�3t� and (b) � �e5t�.



620 Chapter 8 Laplace Transform Methods

SOLUTION: We have that (a) � �e�3t� � 1
s � ��3�

�
1

s � 3
, s > �3, and

(b) � �e5t� � 1
s � 5

, s > 5.

With Mathematica, we use Map to apply the pure function Laplace
Transform[#,t,s]& to the list of functions �e�3t , e5t� to compute both
Laplace transforms in a single step.

In[1542]:= Map�LaplaceTransform�#,t,s�&,
�Exp��3 t�,Exp�5 t�	�

Out[1542]= � 1

3 � s
,

1

�5 � s
�

In most cases, using the definition of the Laplace transform to calculate the Laplace
transform of a function is a difficult and time-consuming task.

EXAMPLE 8.1.4: Compute (a) � �t3�; (b) � �sin at�; and (c) � �cos at�.

SOLUTION: To compute � �t3� by hand requires application of inte-
gration by parts three times. Instead, we proceed with Integrate.
First we compute � M

0
t3e�st dt and then � �

0
t3e�st dt � limM�� � M

0
t3e�st dt.

In[1543]:= � capm

0

t3 Exp��s t��t

Out[1543]=
6 � ��capm s �6 � 6 capm s � 3 capm2 s2 � capm3 s3�

s4

In[1544]:= � +

0

t3 Exp��s t��t

Out[1544]= If�Re�s	 > 0, 6

s4
,Integrate���s t t3,

�t,0,�,Assumptions 
 Re�s	 & 0	�
The integrals that result when computing � �sin at� and � �cos at� using
the definition of the Laplace transform each require the use of integra-
tion by parts twice. Instead, we use LaplaceTransform to compute
each Laplace transform.

In[1545]:= Clear�t,s�

Map�LaplaceTransform�#,t,s�&,
t3,Sin�a t�,Cos�a t���
Out[1545]= � 6

s4
,

a

a2 � s2
,

s

a2 � s2
�
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We now discuss the linearity property that enables us to use the transforms that
we have found thus far to find the Laplace transform of other functions.

Theorem 18 (Linearity Property). Let a and b be constants, and suppose that � � f �t��
and � �g�t�� exist. Then,

� �a f �t� � bg�t�� � a� � f �t�� � b� �g�t�� .

EXAMPLE 8.1.5: Calculate (a) � �6�; (b) � �5 � 2e�t�.
SOLUTION: Using the results obtained in previous examples, we have
for (a)

� �6� � 6� �1� � 6 
1
s
�

6
s
0

and for (b)

� �5 � 2e�t� � 5� �1� � 2� �e�t� � 5 
1
s
� 2 

1
s � ��1�

�
5
s
�

2
s � 1

.

8.1.2 Exponential Order, Jump Discontinuities, and
Piecewise-Continuous Functions

In calculus, we learn that some improper integrals diverge, which indicates that
the Laplace transform may not exist for some functions. Therefore, we present the
following definitions and theorems so that we can better understand the types of
functions for which the Laplace transform exists.

Definition 31 (Exponential Order). A function y � f �t� is of exponential order b if
there are numbers b, M > 0, and T > 0 such that��� f �t���� � Mebt

for t > T .

In the following sections, we will see that the Laplace transform is particularly
useful in solving equations involving piecewise or recursively defined functions.

Definition 32 (Jump Discontinuity). A function y � f �t� has a jump discontinuity
at t � c on the closed interval �a, b� if the one-sided limits limt�c� f �t� and limt�c� f �t� are
finite, but unequal, values. y � f �t� has a jump discontinuity at t � a if limt�a� f �t� is a
finite value different from f �a�. y � f �t� has a jump discontinuity at t � b if limt�b� f �t�
is a finite value different from f �b�.
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Definition 33 (Piecewise Continuous). A function y � f �t� is piecewise continuous
on the finite interval �a, b� if y � f �t� is continuous at every point in �a, b� except at finitely
many points at which y � f �t� has a jump discontinuity.

A function y � f �t� is piecewise continuous on �0,�� if y � f �t� is piecewise contin-
uous on �0, N� for all N.

Theorem 19 (Sufficient Condition for Existence of � � f �t��). Suppose that y � f �t�
is a piecewise continuous function on the interval �0,�� and that it is of exponential order
b for t > T . Then, � � f �t�� exists for s > b.

EXAMPLE 8.1.6: Find the Laplace transform of f �t� �
�		

		
�

�1, 0 � t < 4

1, t " 4.

SOLUTION: Because y � f �t� is a piecewise continuous function on
�0,�� and of exponential order,� � f �t�� exists. We use the definition and
evaluate the integral using the sum of two integrals.

� � f �t�� � � �

0
f �t�e�st dt � � 4

0
�1  e�st dt � � �

4
e�st dt

� 	1
s

e�st
t�4

t�0
� lim

M��
	�1

s
e�st
t�M

t�4

�
1
s

�e�4s � 1� � 1
s

lim
M��

�e�Ms � e�4s� � 1
s

�2e�4s � 1� .

Using Cases (/;), we define and graph this piecewise-defined func-
tion in Figure 8-1.

In[1546]:= Clear�f�

f�t � �� �1/0 , t < 4

f�t � �� 1/t � 4

In[1547]:= Plot�f�t�,�t,0,8	�

However, the LaplaceTransform command is unable to compute the
Laplace transform of y � f �t� when f is defined in this manner. To com-
pute the Laplace transform using Mathematica, we take advantage of
the UnitStep function, which is defined by

UnitStep�t� �
�		

		
�

0, t < 0

1, t " 0.
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Figure 8-1 Plot of a piecewise-defined function

Thus, y � f �t� is given by UnitStep[t-4]-UnitStep[4-t]. After
defining y � f �t� in this manner, we see that LaplaceTransform is
then able to compute � � f �t��.

In[1548]:= Clear�f�

f�t � � UnitStep�t � 4� � UnitStep�4 � t�

In[1549]:= LaplaceTransform�f�t�,t,s�

Out[1549]=
��4 s

s
�
1 � ��4 s

s

8.1.3 Properties of the Laplace Transform

The definition of the Laplace transform is not easy to apply to most functions.
Therefore, we now discuss several properties of the Laplace transform so that
numerous transformations can be made without having to use the definition. Most
of the properties discussed here follow directly from our knowledge of integrals.
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Theorem 20 (Shifting Property). If � � f �t�� � F�s� exists for s > b, then

� �eat f �t�� � F�s � a�. (8.3)

EXAMPLE 8.1.7: Find the Laplace transform of (a) f �t� � e�2t cos t and
(b) f �t� � 4te3t .

SOLUTION: (a) In this case, f �t� � cos t and a � �2. Using F�s� �

� �cos t� �
s

s2 � 1
, we replace each s with s � a � s � 2. Therefore,

� �e�2t cos t� � s � 2
�s � 2�2 � 1

�
s � 2

s2 � 4s � 5
.

(b) Using the linearity property, we have � �4te3t� � 4� �te3t�. To apply
the shifting property we have f �t� � t and a � 3, so we replace s in
F�s� � � �t� � s�2 by s � a � s � 3.

Therefore,

� �4te3t� � 4
�s � 3�2

.

Identical results are obtained with LaplaceTransform.

In[1550]:= LaplaceTransform�Exp��2t�Cos�t�,t,s�

Out[1550]=
2 � s

5 � 4 s � s2

In[1551]:= LaplaceTransform�4t Exp�3t�,t,s�

Out[1551]=
4

��3 � s�2

In order to use the Laplace transform to solve differential equations, we will need
to be able to compute the Laplace transform of the derivatives of an arbitrary func-
tion, provided the Laplace transform of such a function exists.

Theorem 21 (Laplace Transform of the First Derivative). Suppose that y � f �t� is
a piecewise continuous function on the interval and that it is of exponential order b for
t " T . Then, for s > b

� � f ��t�� � s� � f �t�� � f �0�. (8.4)
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In[1552]:= Clear�f�

LaplaceTransform�f��t�,t,s�

Out[1552]= �f�0	 � s LaplaceTransform�f�t	,t,s	

Using induction, a direct consequence of the theorem is

Theorem 22 (Laplace Transform of the Higher Derivatives). If f �i��t� is a
continuous function on �0,�� for i � 0, 1, . . . , n � 1 and f �n��t� is piecewise continu-
ous on �0,�� and of exponential order b, then for s > b

� � f �n��t�� � sn
� � f �t�� � sn�1 f �0� �    � s f �n�2��0� � f �n�1��0�. (8.5)

We use LaplaceTransform to compute the Laplace transform of f �i��t� for i � 1,
2, 3, 4, 5.

In[1553]:= derivs � Table�D�f�t�,�t,n	�,�n,1,5	�

Out[1553]= �f��t	,f���t	,f�3��t	,f�4��t	,f�5��t	

In[1554]:= Map�LaplaceTransform�#,t,s�&,derivs�

Out[1554]= ��f�0	 � s LaplaceTransform�f�t	,t,s	,

�s f�0	 � s2 LaplaceTransform�f�t	,t,s	 � f��0	,

�s2 f�0	 � s3 LaplaceTransform�f�t	,t,s	

�s f��0	 � f���0	,

�s3 f�0	 � s4 LaplaceTransform�f�t	,t,s	

�s2 f��0	 � s f���0	�f�3��0	,

�s4 f�0	 � s5 LaplaceTransform�f�t	,t,s	�s3 f��0	

�s2 f���0	 � s f�3��0	 � f�4��0	

We will use this theorem and corollary in solving initial-value problems. However,
we can also use them to find the Laplace transform of a function when we know
the Laplace transform of the derivative of the function.

EXAMPLE 8.1.8: Find � �sin2 kt�.
SOLUTION: We can use the theorem to find the Laplace transform of
f �t� � sin2 kt. Notice that f ��t� � 2k sin kt cos kt � k sin 2kt. Then, because
� � f ��t�� � s� � f �t�� � f �0� and

� � f ��t�� � � �k sin 2kt� � k
2k

s2 � �2k�2
�

2k2

s2 � 4k2
,
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we have
2k2

s2 � 4k2
� s� � f �t�� � 0. Therefore, � � f �t�� �

2k2

s �s2 � 4k2� . As

in previous examples, we see that the same results are obtained with
LaplaceTransform.

In[1555]:= LaplaceTransform�Sin�kt�2, t,s�
Out[1555]=

2 k2

4 k2 s � s3

Theorem 23 (Derivatives of the Laplace Transform). Suppose that F�s� � � � f �t��
where y � f �t� is a piecewise continuous function on �0,�� and of exponential order b.
Then, for s > b,

��tn f �t�� � ��1�n
dnF
dsn

�s�. (8.6)

EXAMPLE 8.1.9: Find the Laplace transform of (a) f �t� � t cos 2t and
(b) f �t� � t2e�3t .

SOLUTION: (a) In this case, n � 1 and F�s� � � �cos 2t� �
s

s2 � 4
. Then

� �t cos 2t� � ��1�
d
ds

� s
s2 � 4

� � � �s2 � 4� � s  2s�s2 � 4�2 �
s2 � 4�s2 � 4�2 .

In[1556]:= LaplaceTransform�t Cos�2t�,t,s�//
Simplify

Out[1556]=
�4 � s2

�4 � s2�2

(b) Because n � 2 and F�s� � � �e�3t� � 1
s � 3

, we have

� �t2e�3t� � ��1�2
d2

ds2 � 1
s � 3

� � 2
�s � 3�2

.

In[1557]:= LaplaceTransform�t2 Exp��3 t�,t,s�
Out[1557]=

2

�3 � s�3

EXAMPLE 8.1.10: Find � �tn�.
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SOLUTION: Using the theorem with� �tn� � � �tn  1�, we have f �t� � 1.
Then, F�s� � � �1� � s�1. Calculating the derivatives of F , we obtain

dF
ds
�s� � �

1
s2

d2F
ds2

�s� �
2
s3

d3F
ds3

�s� � �
3  2
s4

�

dnF
dsn

�s� � ��1�n
n!

sn�1
.

Therefore, Recall that for nonnegative
integers n, 2�n � 1� � n!.

� �tn� � � �tn  1� � ��1�n��1�n
n!

sn�1
� ��1�2n n!

sn�1
�

n!
sn�1

.

In[1558]:= LaplaceTransform�tn,t,s�

Out[1558]= s�1�n Gamma�1 � n	

EXAMPLE 8.1.11: Compute the Laplace transform of f �t�, f ��t�, and
f ���t� if f �t� � �3t � 1�3.

SOLUTION: First, f �t� � �3t � 1�3 � 27t3 � 27t2 � 9t � 1 and � �tn� �
n!

sn�1
so

� � f �t�� � 27
3!
s4
� 27

2!
s3
� 9

1
s2
�

1
s
�

1
s4

�162 � 54s � 9s2 � s3� .

In[1559]:= Clear�f�

f�t � � �3t � 1�3

lf � LaplaceTransform�f�t�,t,s�

Out[1559]=
162

s4
�
54

s3
�
9

s2
�
1

s

By the previous theorem, � � f ��t�� � s� � f �t�� � f �0�. Hence,

� � f ��t�� � s
1
s4

�162 � 54s � 9s2 � s3�� f �0� �
1
s3

�162 � 54s � 9s2 � s3��1 �

9
s3

�18 � 6s � s2�.
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In[1560]:= lfprime � LaplaceTransform�f��t�,t,s�//
Expand

Out[1560]=
162

s3
�
54

s2
�
9

s

In[1561]:= s lf � f�0�//Expand

Out[1561]=
162

s3
�
54

s2
�
9

s

Similarly � � f ���t�� � s2� � f �t�� � s f �0� � f ��0�:

� � f ���t�� � s2 1
s4

�162 � 54s � 9s2 � s3� � s f �0� � f ��0� �
54
s2
�3 � s� .

In[1562]:= lfdoubleprime �
Expand�LaplaceTransform�f���t�,t,s��

Out[1562]=
162

s2
�
54

s

In[1563]:= Expand�s2 lf � s f�0� � f��0��
Out[1563]=

162

s2
�
54

s

Using the properties of the Laplace transform, we can compute the Laplace trans-
form of a large number of frequently encountered functions. We use Map, Laplace
Transform, and TableForm to compute a table of the Laplace transform of sev-
eral frequently encountered functions.

In[1564]:= r1 � �1,Exp�a t�,Sin�k t�,Cos�k t�,Sinh�k t�,
Cosh�k t�,tˆn,tˆn Exp�a t�,
Exp�a t�Sin�k t�,
Exp�a t�Cos�k t�,
Exp�a t�Sinh�k t�,
Exp�a t�Cosh�k t�	
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In[1565]:= Map��#,LaplaceTransform�#,t,s�	&,r1�//TableForm

Out[1565]=

1
1

s
�a t

1

�a � s

Sin�k t	
k

k2 � s2

Cos�k t	
s

k2 � s2

Sinh�k t	
k

�k2 � s2

Cosh�k t	
s

�k2 � s2

tn s�1�n Gamma�1 � n	
�a t tn ��a � s��1�n Gamma�1 � n	

�a t Sin�k t	
k

a2 � k2 � 2 a s � s2

�a t Cos�k t	
�a � s

a2 � k2 � 2 a s � s2

�a t Sinh�k t	
k

a2 � k2 � 2 a s � s2

�a t Cosh�k t	
�a � s

a2 � k2 � 2 a s � s2

8.2 The Inverse Laplace Transform

8.2.1 Definition of the Inverse Laplace Transform

In the previous section, we were concerned with finding the Laplace transform of
a given function either through the use of the definition of the Laplace transform
or with one of the numerous properties of the Laplace transform. At that time, we
discussed the sufficient conditions for the existence of the Laplace transform. In
this section, we will reverse this process: given a function F�s� we want to find a
function f �t� such that � � f �t�� � F�s�.

Definition 34 (Inverse Laplace Transform). The inverse Laplace transform of the
function F�s� is the unique continuous function f �t� on �0,�� that satisfies � � f �t�� �
F�s�. We denote the inverse Laplace transform of F�s� as

f �t� � ��1 �F�s�� . (8.7)

If the only functions that satisfy this relationship are discontinuous on �0,��, we choose a
piecewise continuous function on �0,�� to be ��1 �F�s��.



630 Chapter 8 Laplace Transform Methods

The table of Laplace transforms listed in the previous section is useful in finding
the inverse Laplace transform of a given function. Also, the command

InverseLaplaceTransform[F[s],s,t]

can often find ��1 �F�s��.

EXAMPLE 8.2.1: Find the inverse Laplace transform of (a) F�s� �
1

s � 6
,

(b) F�s� �
2

s2 � 4
, (c) F�s� �

6
s4

, and (d) F�s� �
6

�s � 2�4
.

SOLUTION: (a) Because � �e6t� � 1
s � 6

, ��1 � 1
s � 6

� � e6t . (b) � �sin 2t�

�
2

s2 � 22
�

2
s2 � 4

so ��1 � 2
s2 � 4

� � sin 2t. (c) Note that � �t3� � 3!
s4
�

6
s4

so ��1 � 6
s4 � � t3. (c) F�s� �

6
�s � 2�4

is obtained from F�s� �
6
s4

by substi-

tuting s�2 for s. Therefore by the shifting property, � �e�2t t3� � 6
�s � 2�4

,

so ��1 � 6
�s � 2�4

� � e�2t��1 � 6
s4 � � e�2t t3. In the same way that we use

LaplaceTransform to calculate � � f �t�� we use InverseLaplace
Transform to calculate ��1 �F�s��.

In[1566]:= InverseLaplaceTransform� 1

s � 6
,s,t�

Out[1566]= �6 t

Here, we use Map to apply the pure function InverseLaplace

Transform[#1,s,t]& to the list of functions � 2
s2 � 4

,
6
s4

,
6

�s � 2�4
�.

In[1567]:= Map�InverseLaplaceTransform�#1,s,t�&,
 2

s2 � 4
,
6

s4
,

6

�s � 2�4
��

Out[1567]= �2 Cos�t	 Sin�t	,t3,��2 t t3

Theorem 24 (Linearity Property of the Inverse Laplace Transform). Suppose that
��1 �F�s�� and ��1 �G�s�� exist and are continuous on �0,��. Also, suppose that a and b
are constants. Then,

�
�1 �aF�s� � bG�s�� � a��1 �F�s�� � b��1 �G�s�� . (8.8)
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EXAMPLE 8.2.2: Find the inverse Laplace transform of (a) F�s� �
1
s3

,

(b) F�s� � �
7

s2 � 16
, and (c) F�s� �

5
s
�

2
s � 10

.

SOLUTION: (a) ��1 � 1
s3 � � ��1 �1

2
2
s3 � � 1

2
��1 � 2

s3 � � 1
2

t2.

In[1568]:= InverseLaplaceTransform� 1

s3
,s,t�

Out[1568]=
t2

2

(b) ��1 �� 7
s2 � 16

� � �7��1 � 1
s2 � 16

� � �7��1 �1
4

4
s2 � 42 � � �

7
4
��1

� 4
s2 � 42 � � �7

4
sin 4t.

In[1569]:= InverseLaplaceTransform� �
7

s2 � 16
,s,t�

Out[1569]= �
7

4
Sin�4 t	

(c) ��1 �5
s
�

2
s � 10

� � 5��1 �1
s

� � 2��1 � 1
s � 10

� � 5 � 2e10t .

In[1570]:= InverseLaplaceTransform�5
s
�

2

s � 10
,s,t�

Out[1570]= 5 � 2 �10 t

Of course, the functions F�s� that are encountered do not have to be of the forms
previously discussed. For example, sometimes we must complete the square in the
denominator of F�s� before finding ��1 �F�s��.

EXAMPLE 8.2.3: Determine ��1 � s
s2 � 2s � 5

�.

SOLUTION: Notice that all of the forms of F�s� in the table of Laplace
transforms involve a term of the form s2 � k2 in the denominator. How-
ever, through shifting, this term is replaced by �s � a�2 � k2. We obtain



632 Chapter 8 Laplace Transform Methods

a term of this form in the denominator by completing the square. This
yields

s
s2 � 2s � 5

�
s�s2 � 2s � 1� � 4

�
s

�s � 1�2 � 4
.

Because the variable appears in the numerator, we must write it in the
form s � 1 in order to find the inverse Laplace transform. Doing so, we
find that

s
s2 � 2s � 5

�
s�s2 � 2s � 1� � 4

�
�s � 1� � 1

�s � 1�2 � 4
.

Hence,

�
�1 � s

s2 � 2s � 5
� � ��1 � �s � 1� � 1

�s � 1�2 � 4
�

� ��1 � s � 1

�s � 1�2 � 22
� �

1
2
�
�1 � 2

�s � 1�2 � 22
�

� e�t cos 2t �
1
2

e�t sin 2t.

As in previous examples, we see that InverseLaplaceTransform

quickly finds ��1 � s
s2 � 2s � 5

�.

In[1571]:= s1 � InverseLaplaceTransform� s

s2 � 2s � 5
,s,t�

Out[1571]=
1

4
���1�2 �� t ��2 � �� � �2 � �� �4 � t�

In[1572]:= ExpToTrig�s1�//FullSimplify

Out[1572]=
1

2
��t �2 Cos�2 t	 � Sin�2 t	�

In other cases, partial fractions must be used to obtain terms for which the inverse
Laplace transform can be found. Suppose that F�s� � P�s�/Q�s�, where P�s� and Q�s�
are polynomials of degree m and n, respectively. If n > m, the method of partialWe assume that F�s� is

reduced to lowest terms. fractions can be used to expand F�s�. Recall from calculus, that there are many
possible situations that can be solved through partial fractions. We illustrate three
cases in the examples that follow.

Linear Factors (Nonrepeated)
In this case, Q�s� can be written as a product of linear factors, so

Q�s� � �s � q1� �s � q2�    �s � qn� ,
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where q1, q2, . . . , qn are distinct numbers. Therefore, F�s� can be written as

F�s� �
A1

s � q1
�

A2

s � q2
�    �

An

s � qn
,

where A1, A2, . . . , An are constants that must be determined.

EXAMPLE 8.2.4: Find ��1 � 3s � 4
s�s � 4�

�.

SOLUTION: In this case, we have distinct linear factors in the denom-
inator. Hence, we write F�s� as

3s � 4
s�s � 4�

�
A
s
�

B
s � 4

.

Multiplying both sides of this equation by the lowest common denom-
inator s�s � 4�, we have

3s � 4 � A�s � 4� � Bs � �A � B�s � 4A.

Equating the coefficients of s as well as the constant terms, we see that The set �s, 1� is linearly
independent.the system of equations

�		

		
�

A � B � 3

�4A � �4

must be satisfied. Mathematica can solve this system of equations with
Solve or we can solve the equation 3s� 4 � A�s� 4� �Bs � �A�B�s� 4A
for A and B with SolveAlways.

In[1573]:= SolveAlways�3s � 4 �� �a � b� s � 4a,s�

Out[1573]= ��a 
 1,b 
 2

Hence, A � 1 and B � 2. Therefore,

3s � 4
s�s � 4�

�
1
s
�

2
s � 4

,

so

�
�1 � 3s � 4

s�s � 4�
� � ��1 �1

s
�

2
s � 4

� � 1 � 2e4t

or we can use InverseLaplaceTransform as shown in the previous
examples.
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In[1574]:= InverseLaplaceTransform� 3s � 4

s �s � 4�
,s,t�

Out[1574]= 1 � 2 �4 t

Note that we can compute the partial fraction decomposition of
3s � 4

s�s � 4�
with Apart.Apart[f[x]] computes

the partial fraction
decomposition of the rational
function f �x�.

In[1575]:= Apart� 3s � 4

s �s � 4�
�

Out[1575]=
1

4 � s
�

3

�4 � s
�
1

s

Repeated Linear Factors
If s�q is a factor of Q�s� of multiplicity k, the terms in the partial fraction expansion
of F�s� that correspond to this factor are

A1

s � q
�

A2

�s � q�2
�    �

Ak

�s � q�k
,

where A1, A2, . . . , Ak are constants that must be found.

EXAMPLE 8.2.5: Calculate ��1 �5s2 � 20s � 6
s3 � 2s2 � s

�.

SOLUTION: After using Apart

In[1576]:= Apart�5s2 � 20s � 6
s3 � 2s2 � s

�
Out[1576]=

6

s
�

9

�1 � s�2
�

1

1 � s

we see that
5s2 � 20s � 6
s3 � 2s2 � s

�
6
s
�

1
s � 1

�
9

�s � 1�2
.

Therefore,

�
�1 �5s2 � 20s � 6

s3 � 2s2 � s
� � ��1 �6

s
�

1
s � 1

�
9

�s � 1�2
�

� ��1 �6
s
�

1
s � 1

� 9
1

�s � 1�2
�

� 6 � e�t � 9te�t .

As expected, we obtain the same results using InverseLaplace
Transform.
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In[1577]:= InverseLaplaceTransform�5s2 � 20s � 6
s3 � 2s2 � s

,s,t�
Out[1577]= ��t ��1 � 6 �t � 9 t�

Irreducible Quadratic Factors
If �s � a�2 � b2 is a factor of Q�s� of multiplicity k that cannot be reduced to linear
factors, the partial fraction expansion of F�s� corresponding to �s � a�2 � b2 is

A1s � B1

�s � a�2 � b2
�

A2s � B2��s � a�2 � b2�2 �    �
Aks � Bk��s � a�2 � b2�k .

EXAMPLE 8.2.6: Find ��1 � 2s3 � 4s � 8�s2 � s� �s2 � 4��.

SOLUTION: As in the previous example, we use Apart

In[1578]:= Apart� 2s3 � 4s � 8

�s2 � s� �s2 � 4�
�

Out[1578]= �
2

�1 � s
�
2

s
�
2 �2 � s�

4 � s2

to obtain the partial fraction decomposition. Thus,

�
�1 � 2s3 � 4s � 8�s2 � s� �s2 � 4�� � 2��1 �1

s
� � 2��1 � 1

s � 1
�

� 2��1 � s
s2 � 4

� � 2��1 � 2
s2 � 4

�
� 2 � 2et � 2 cos 2t � 2 sin 2t.

In[1579]:= InverseLaplaceTransform� 2s3 � 4s � 8

�s2 � s� �s2 � 4�
,s,t�

Out[1579]= 2 �1 � �t � Cos�2 t	 � Sin�2 t	�

8.2.2 Laplace Transform of an Integral

We have seen that the Laplace transform of the derivatives of a given function
can be found from the Laplace transform of the function. Similarly, the Laplace
transform of the integral of a given function can also be obtained from the Laplace
transform of the original function.
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Theorem 25 (Laplace Transform of an Integral). Suppose that F�s� � � � f �t�� where
y � f �t� is a piecewise continuous function on �0,�� and of exponential order b. Then, for
s > b,

��� t

0
f �Α� dΑ� �

1
s
� � f �t�� . (8.9)

The theorem implies that

�
�1 �1

s
� � f �t��� � � t

0
f �Α� dΑ. (8.10)

EXAMPLE 8.2.7: Compute ��1 � 1
s�s � 2�

�.

SOLUTION: In this case,
1

s�s � 2�
�

1
s

1
s � 2

, so � � f �t�� �
1

s � 2
. There-

fore, f �t� � ��1 � 1
s � 2

� � e�2t . With the previous theorem, we then have

�
�1 � 1

s�s � 2�
� � � t

0
e�2ΑdΑ �

1
2

�1 � e�2t � .

Note that the same result is obtained with InverseLaplaceTransform

In[1580]:= InverseLaplaceTransform� 1

s �s � 2�
,s,t�

Out[1580]=
1

2
�
��2 t

2

or through a partial fraction expansion of
1

s�s � 2�
:

1
s�s � 2�

�
1
2s
�

1
2�s � 2�

,

��1 � 1
s�s � 2�

� � ��1 � 1
2s
�

1
2�s � 2�

� � 1
2
�

1
2

e�2t .

The following theorem is useful in determining if the inverse Laplace transform of
a function F�s� exists.

Theorem 26. Suppose that y � f �t� is a piecewise continuous function on �0,�� and of
exponential order b. Then,

lim
s��

F�s� � lim
s��
� � f �t�� � 0.
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EXAMPLE 8.2.8: Determine if the inverse Laplace transform of the

functions exists for (a) F�s� �
2s

s � 6
0 and (b) F�s� �

s3

s2 � 16
.

SOLUTION: In both cases, we find lims�� F�s�. If this value is not zero,

then ��1 �F�s�� cannot be found. (a) lims�� F�s� � lims��
2s

s � 6
� 2 # 0,

so ��1 � 2s
s � 6

� does not exist. (b) lims�� F�s� � lims��
s3

s2 � 16
� � # 0.

Thus, ��1 � s3

s2 � 16
� does not exist.

8.3 Solving Initial-Value Problems with the
Laplace Transform

Laplace transforms can be used to solve certain initial-value problems. Typically,
when we use Laplace transforms to solve an initial-value problem for a function y,
we do the following.

1. Compute the Laplace transform of each term in the differential equation.
2. Solve the resulting equation for � �y�t��.
3. Determine y by computing the inverse Laplace transform of � �y�t��.

The advantage of this method is that through the use of the property

� � f �n��t�� � sn
� � f �t�� � sn�1 f �0� �    � s f �n�2��0� � f �n�1��0�

we transform a linear differential equation to an algebraic equation.

EXAMPLE 8.3.1: Solve the initial-value problem y� � 4y � e4t , y�0� � 0.
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SOLUTION: We begin by taking the Laplace transform of both sides
of the differential equation and then solving for � �y�t�� � Y �s�. Because
� �y��t�� � sY �s� � y�0� � sY �s�, we have

� �y� � 4y� � � �e4t�
� �y�� � 4� �y� �

1
s � 4

sY �s� � 4Y �s� �
1

s � 4

�s � 4�Y �s� �
1

s � 4

Y �s� �
1

�s � 4�2
.

We carry out the same steps with Mathematica. After computing the
Laplace transform of each side of the equation,

In[1581]:= step1 � LaplaceTransform
�y��t� � 4 y�t� �� Exp�4t�,t,s�

Out[1581]= �4 LaplaceTransform�y�t	,t,s	

�s LaplaceTransform�y�t	,t,s	 � y�0	 ��
1

�4 � s

we apply the initial condition

In[1582]:= step2 � step1/.y�0� 
 0

Out[1582]= �4 LaplaceTransform�y�t	,t,s	

�s LaplaceTransform�y�t	,t,s	 ��
1

�4 � s

and solve the resulting equation for � �y�t�� � Y �s�.

In[1583]:= step3 � Solve�step2,
LaplaceTransform�y�t�,t,s��

Out[1583]= ��LaplaceTransform�y�t	,t,s	 
 1

��4 � s�2
��

Hence, by using the shifting property with � �t� � s�2, we have

y�t� � ��1 � 1
�s � 4�2

� � te4t .
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Figure 8-2 In the plot, we see that the initial condition is satisfied

Identical results are obtained using InverseLaplaceTransform.

In[1584]:= sol � InverseLaplaceTransform�
step3�1,1,2�,s,t�

Out[1584]= �4 t t

We then graph the solution with Plot in Figure 8-2.

In[1585]:= Plot�sol,�t,0,1	�

We can also use DSolve to solve the initial-value problem directly.

In[1586]:= DSolve��y��t� � 4 y�t� �� Exp�4t�,y�0� �� 0	,
y�t�,t�

Out[1586]= ��y�t	 
 �4 t t

As we can see, Laplace transforms are useful in solving nonhomogeneous equa-
tions. Hence, problems in Chapter 4 for which the methods of undetermined
coefficients or variation of parameters were difficult to apply may be more eas-
ily solved through the method of Laplace transforms.

EXAMPLE 8.3.2: Use Laplace transforms to solve y�� � 4y � e�t cos 2t
subject to y�0� � 0 and y��0� � �1.

SOLUTION: We proceed by computing the Laplace transform of each
side of the equation with LaplaceTransform
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In[1587]:= step1 � LaplaceTransform
�y���t� � 4 y�t� �� Exp��t�
Cos�2t�,t,s�

Out[1587]= 4 LaplaceTransform�y�t	,t,s	

�s2 LaplaceTransform�y�t	,t,s	

�s y�0	 � y��0	 ��
1 � s

5 � 2 s � s2

and then applying the initial conditions y�0� � 0 and y��0� � �1 with
ReplaceAll (/.), naming the result step2.

In[1588]:= step2 � step1/.�y�0� 
 0,y��0� 
 �1	

Out[1588]= 1 � 4 LaplaceTransform�y�t	,t,s	

�s2 LaplaceTransform�y�t	,t,s	 ��
1 � s

5 � 2 s � s2

Next, we solve step2 for the Laplace transform of y�t� and simplify the
result, naming the resulting output step3

In[1589]:= step3 � Solve�step2,
LaplaceTransform�y�t�,t,s��

Out[1589]= ��LaplaceTransform�y�t	,t,s	 

�4 � s � s2

�4 � s2� �5 � 2 s � s2�
��

and use InverseLaplaceTransform to compute the inverse Laplace
transform of step3, naming the result sol.

In[1590]:= sol � Simplify�InverseLaplaceTransform
� �

4 � s � s2

�4 � s2� �5 � 2s � s2�
,s,t��//Expand

Out[1590]= � 1

34
�
2 �

17
� ���1�2 �� t � � 1

34
�
2 �

17
� ���1�2 �� t

�
1

17
Cos�2 t	 �

4

17
Sin�2 t	

Last, we use Plot to graph the solution obtained in sol on the interval
�0, 2Π� in Figure 8-3.
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Figure 8-3 In the plot of the solution, we see that the initial conditions are satisfied

In[1591]:= Plot�sol,�t,0,2Π	�

As we have seen in many previous examples, DSolve is able to solve
the initial-value problem as well.

In[1592]:= sol �
DSolve��y���t� � 4y�t� �� Exp��t�Cos�2t�,
y�0� �� 0,
y��0� �� �1	,y�t�,t�

Out[1592]= ��y�t	 
 �
1

68
��t �4 �t Cos�2 t	

�4 Cos�2 t	 Cos�4 t	

�17 Sin�2 t	 � 16 �t Sin�2 t	

�Cos�4 t	 Sin�2 t	

�Cos�2 t	 Sin�4 t	

�4 Sin�2 t	 Sin�4 t	���
Higher-order initial-value problems can be solved with the method of Laplace
transforms as well.

EXAMPLE 8.3.3: Solve y��� � y�� � 6y� � sin 4t, y�0� � 2, y��0� � 0,
y���0� � �1.

SOLUTION: We first note that DSolve is able to quickly find an
explicit solution of the initial-value problem.
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In[1593]:= sol �

DSolve�
y�3��t� � y���t� � 6 y��t� �� Sin�4t�,
y�0� �� 2,y��0� �� 0,y���0� �� �1�,y�t�,t�

Out[1593]= ��y�t	 
 �
1

1000
���3 t �56 � 2125 �3 t � 80 �5 t

�11 �3 t Cos�4 t	 � 2 �3 t Sin�4 t	����
Alternatively, we can use Mathematica to implement the steps encoun-
tered when solving the equation using the method of Laplace trans-
forms, as in the previous two examples. Taking the Laplace transform
of both sides of the equation, we find

In[1594]:= step1 � LaplaceTransform�y�3��t�
�y���t� � 6 y��t� �� Sin�4t�,t,s�

Out[1594]= s2 LaplaceTransform�y�t	,t,s	

�s3 LaplaceTransform�y�t	,t,s	
�6 �s LaplaceTransform�y�t	,t,s	 � y�0	�

�s y�0	 � s2 y�0	 � y��0	

�s y��0	 � y���0	 ��
4

16 � s2

and then we apply the initial conditions, naming the result step2.

In[1595]:= step2 � step1/.�y�0� 
 2,y��0� 
 0,

y���0� 
 �1	

Out[1595]= 1 � 2 s � 2 s2 � s2 LaplaceTransform�y�t	,t,s	

�s3 LaplaceTransform�y�t	,t,s	

�6 ��2 � s LaplaceTransform�y�t	,t,s	� ��

4

16 � s2

Solving for Y �s�, we obtain

In[1596]:= step3 � Solve�step2,
LaplaceTransform�y�t�,t,s��

Out[1596]= ��LaplaceTransform�y�t	,t,s	 

�204 � 32 s � 19 s2 � 2 s3 � 2 s4

�16 � s2� ��6 s � s2 � s3�
��



8.3 Solving Initial-Value Problems with the Laplace Transform 643

-1.5 -1 -0.5 0.5 1 1.5

-0.5

0.5

1

1.5

2

Figure 8-4 Plot of the solution to a third-order initial-value problem

and computing the inverse Laplace transform of step3 with Inverse
LaplaceTransform yields the solution to the initial-value problem.

In[1597]:= sol � InverseLaplaceTransform�step3�1,1,2�,
s,t�//Simplify

Out[1597]=
2125 � 56 ��3 t � 80 �2 t � 11 Cos�4 t	 � 2 Sin�4 t	

1000

Last, a graph of the solution is generated with Plot in Figure 8-4.

In[1598]:= Plot�sol,
t,�3
2
,
3

2
��

Some initial-value problems that involve differential equations with nonconstant
coefficients can also be solved with the method of Laplace transforms. However,
Laplace transforms do not provide a general method for solving equations with
nonconstant coefficients.

EXAMPLE 8.3.4: Solve
�		

		
�

y�� � 2ty� � 4y � 2

y�0� � y��0� � 0.

SOLUTION: DSolve is able to solve this equation.

In[1599]:= sol � DSolve��y���t� � 2t y��t� � 4y�t� �� 2,
y�0� �� 0,y��0� �� 0	,y�t�,t�

Out[1599]= ��y�t	 
 t2
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Using the method of Laplace transforms, we take the Laplace transform
of both sides of the equation.

In[1600]:= step1 � LaplaceTransform�
y���t� � 2t y��t� � 4y�t� �� 2,t,s�

Out[1600]= �4 LaplaceTransform�y�t	,t,s	

�s2 LaplaceTransform�y�t	,t,s	
�2 LaplaceTransform�t y��t	,t,s	

�s y�0	 � y��0	 ��
2

s

Next, we apply the initial conditions.

In[1601]:= step2 � step1 /. �y�0�� > 0,y��0�� > 0	

Out[1601]= �4 LaplaceTransform�y�t	,t,s	

�s2 LaplaceTransform�y�t	,t,s	

�2 LaplaceTransform�t y��t	,t,s	 ��
2

s

This is a first-order linear equation that we are able to solve with
DSolve. First, in step3, we replace LaplaceTransform�y�t�, t, s� with
capy�s�, which represents Y �s�, and LaplaceTransform�0,0,1��y�t�, t, s�
with capy��s�, which represents Y ��s�. Then in step4 we use DSolve
to solve for capy[s].

In[1602]:= step3 �
step2 /.
 LaplaceTransform�y�t�,t,s�� > capy�s�,

LaplaceTransform�0,0,1��y�t�,t,s�� >

capy��s��
Out[1602]= �4 capy�s	 � s2 capy�s	

�2 LaplaceTransform�t y��t	,t,s	 ��
2

s

In[1603]:= Simplify�step3�

Out[1603]= ��4 � s2� capy�s	

�2 LaplaceTransform�t y��t	,t,s	 ��
2

s
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In[1604]:= step4 � DSolve�step3,capy�s�,s�

Out[1604]= ��capy�s	 

�
2 ��1 � s LaplaceTransform�t y��t	,t,s	�

s ��4 � s2�
��

These results indicate that Y �s� � 2s�3 � Ce
1
4 s2�3 ln 3. Recall that if lims��

Y �s� # 0, ��1 �Y �s�� does not exist. Therefore, we must have that C � 0.
Hence, y�t� � ��1 �Y �s�� � ��1 �2s�3� � t2.

In[1605]:= InverseLaplaceTransform� 2

s3
,s,t�

Out[1605]= t2

8.4 Laplace Transforms of Step and
Periodic Functions

8.4.1 Piecewise-Defined Functions: The Unit Step
Function

An important function in modeling many physical situations is the unit step func-
tion,�.

Definition 35 (Unit Step Function). The unit step function,��t � a� � �a�t�, where
a is a number defined by

��t � a� � �a�t� �
�		

		
�

0, t < a

1, t " a.
(8.11)

We can use the function UnitStep to define the unit step function:

UnitStep�t� �
�		

		
�

0, t < 0

1, t " 0

so�a�t� � UnitStep�t � a�.

EXAMPLE 8.4.1: Graph (a) 2��t�, (b) 1
2��t�5�, and (c)��t�2����t�8�.
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Figure 8-5 Plots of combinations of various step functions

SOLUTION: (a) Here, 2��t� � 2��t � 0�, so 2��t� � 2 for t " 0.

(b) In this case, 1
2��t � 5� �

�		

		
�

0, t < 5

1/2, t " 5
so the “jump” occurs at

t � 5.

(c)��t�2����t�8� �
�		

		
�

0, t < 2 or t " 8

1, 2 � t < 8
. These functions are graphed

using Plot and UnitStep in Figure 8-5.

In[1606]:= Plot�
UnitStep�t � 5�
2

,2 UnitStep�t�,

UnitStep�t � 2� � UnitStep�t � 8��,
�t,0,10	,
PlotStyle 
 �GrayLevel�0�,GrayLevel�0.3�,

GrayLevel�0.6�	�

The unit step function is useful in defining functions that are piecewise continu-
ous. For example, we can define the function

g�t� �

�				

				
�

0, t < a

h�t�, a � t < b

0, t " b

as

g�t� � h�t� ���t � a� ���t � b�� .
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Similarly, a function like

f �t� �
�		

		
�

g�t�, 0 � t < a

h�t�, t " a

can be written as
f �t� � g�t� �1 ���t � a�� � h�t���t � a�.

The reason for writing piecewise continuous functions in terms of step functions
is that we encounter functions of this type in solving initial-value problems. Using
our methods in Chapters 4 and 5, we had to solve the problem over each piece
of the function. However, the method of Laplace transforms can be used to avoid
these complicated calculations.

Theorem 27. Suppose that F�s� � � � f �t�� exists for s > b " 0. If a is a positive constant,
then

� � f �t � a���t � a�� � e�asF�s�. (8.12)

EXAMPLE 8.4.2: Find � ��t � 3�5��t � 3��.
SOLUTION: In this case, a � 3 and f �t� � t5. Thus,

� ��t � 3�5��t � 3�� � e�3s
� �t5� � e�3s 5!

s6
�

120
s6

e�3s.

Equivalent results are obtained with Mathematica.

In[1607]:= LaplaceTransform��t � 3�5 UnitStep�t � 3�,t,s�
Out[1607]= �

243 ��3 s

s
�
405 ��3 s �1 � 3 s�

s2

�
270 ��3 s �2 � 6 s � 9 s2�

s3

�
270 ��3 s �2 � 6 s � 9 s2 � 9 s3�

s4

�
45 ��3 s �8 � 24 s � 36 s2 � 36 s3 � 27 s4�

s5

�
3 ��3 s �40 � 120 s � 180 s2 � 180 s3 � 135 s4 � 81 s5�

s6

In most cases, we must calculate � �g�t���t � a�� instead of � �g�t � a���t � a��. To
solve this problem, we let g�t� � f �t � a�, so f �t� � g�t � a�. Therefore,

� �g�t���t � a�� � e�as
� �g�t � a�� . (8.13)
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EXAMPLE 8.4.3: Calculate � �sin t��t � Π��.

SOLUTION: In this case, g�t� � sin t and a � Π. Thus,

� �sin t��t � Π�� � e�Πs
� �sin �t � Π�� � e�Πs

� �� sin t�

� �e�Πs 1
s2 � 1

� �
e�Πs

s2 � 1
.

The same result is obtained using LaplaceTransform.

In[1608]:= LaplaceTransform�Sin�t� UnitStep�t � Π�,t,s�

Out[1608]= �
��Π s

1 � s2

Theorem 28. Suppose that F�s� � � � f �t�� exists for s > b " 0. If a is a positive constant
and y � f �t� is continuous on �0,��, then

�
�1 �e�asF�s�� � f �t � a���t � a�. (8.14)

EXAMPLE 8.4.4: Find (a) ��1 �e�4s

s3 � and (b) ��1 � e�Πs/2

s2 � 16
�.

SOLUTION: (a) If we write the expression
e�4s

s3
in the form e�asF�s�,

we see that a � 4 and F�s� � s�3. Hence, f �t� � ��1 �s�3� � 1
2 t2 and

�
�1 �e�4s

s3 � � f �t � 4���t � 4� �
1
2
�t � 4�2��t � 4�.

(b) In this case, a � Π/2 and F�s� �
1

s2 � 16
. Then, f �t� � ��1 � 1

s2 � 16
� �

1
4 sin 4t and

�
�1 � e�Πs/2

s2 � 16
� � f �t � Π

2
�� �t � Π

2
� � 1

4
sin �4 �t � Π

2
��� �t � Π

2
�

�
1
4

sin 4t� �t � Π
2

� .

For each of (a) and (b), the same results are obtained using Inverse
LaplaceTransform, although we must use Simplify to simplify the
result obtained for (b).
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In[1609]:= InverseLaplaceTransform�Exp��4 s�
s3

,s,t�
Out[1609]=

1

2
��4 � t�2 UnitStep��4 � t	

In[1610]:= step1 � InverseLaplaceTransform�
Exp� � Πs

2
�

s2 � 16
,s,t�

Out[1610]=
1

4
Sin�4 � �

Π

2
� t�� UnitStep� �

Π

2
� t�

In[1611]:= Simplify�step1�

Out[1611]=
1

4
Sin�4 t	 UnitStep� �

Π

2
� t�

8.4.2 Solving Initial-Value Problems

With the unit step function, we can solve initial-value problems that involve piece-
wise continuous functions.

EXAMPLE 8.4.5: Solve y��� 9y �
�		

		
�

1, 0 � t < Π

0, t " Π
subject to y�0� � y��0� � 0.

SOLUTION: In order to solve this initial-value problem, we must com-

pute � � f �t�� where f �t� �
�		

		
�

1, 0 � t < Π

0, t " Π
. This is a piecewise continuous

function so we write it in terms of the unit step function as

f �t� � 1 ���t � 0� ���t � Π�� � 0 ���t � Π�� � ��t� ���t � Π�.

Then,

� � f �t�� � � �1 ���t � Π�� �
1
s
�

e�Πs

s
.

Hence,

� �y��� � 9� �y� � � � f �t��

s2Y �s� � sy�0� � y��0� � 9Y �s� �
1
s
�

e�Πs

s�s2 � 9�Y �s� �
1
s
�

e�Πs

s

Y �s� �
1

s �s2 � 9� � e�Πs

s �s2 � 9� .



650 Chapter 8 Laplace Transform Methods

The same steps are performed next with Mathematica. First, we define

eq to be the equation y�� � 9y �
�		

		
�

1, 0 � t < Π

0, t " Π.

In[1612]:= eq � y���t� � 9 y�t� ��
UnitStep�t� � UnitStep�t � Π�

Next, we use LaplaceTransform to compute the Laplace transform
of each side of the equation, naming the resulting equation step1,

In[1613]:= step1 � LaplaceTransform�eq,t,s�

Out[1613]= 9 LaplaceTransform�y�t	,t,s	

�s2 LaplaceTransform�y�t	,t,s	

�s y�0	 � y��0	 ��
1

s
�
��Π s

s

apply the initial conditions, naming the result step2,

In[1614]:= step2 � step1 /. �y�0�� > 0,y��0�� > 0	

Out[1614]= 9 LaplaceTransform�y�t	,t,s	

�s2 LaplaceTransform�y�t	,t,s	 ��
1

s
�
��Π s

s

and solve step2 for LaplaceTransform[y[t],t,s], naming the
result step3.

In[1615]:= step3 � Solve�step2,
LaplaceTransform�y�t�,t,s��

Out[1615]= ��LaplaceTransform�y�t	,t,s	 

��Π s ��1 � �Π s�

s �9 � s2�
��

Then,

y�t� � ��1 �Y �s�� � ��1 � 1

s �s2 � 9�� ���1 � e�Πs

s �s2 � 9�� .
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Consider ��1 � e�Πs

s �s2 � 9��. In the form of ��1 �e�asF�s��, a � Π and F�s� �

1

s �s2 � 9� . f �t� � ��1 �F�s�� can be found with either a partial fraction

expansion or with equation (8.10):

f �t� � ��1 � 1

s �s2 � 9�� � � t

0
�
�1 � 1

s2 � 9
� dΑ � � t

0

1
3

sin 3Α dΑ

� �
1
3

	1
3

cos 3Α
t

0
�

1
9
�

1
9

cos 3t.

Then,

�
�1 � e�Πs

s �s2 � 9�� � 	1
9
�

1
9

cos �3�t � Π��
��t � Π�
� 	1

9
�

1
9

cos �3t � 3Π�
��t � Π� � 	1
9
�

1
9

cos 3t
��t � Π�.
Combining these results yields the solution

y�t� � ��1 �Y �s�� � ��1 � 1

s �s2 � 9�� ���1 � e�Πs

s �s2 � 9��
�

1
9
�

1
9

cos 3t � 	1
9
�

1
9

cos 3t
��t � Π�.
Equivalent results are obtained with InverseLaplaceTransform
and Simplify.

In[1616]:= sol � InverseLaplaceTransform�
�
�1 � e�Π s

s �9 � s2�
,s,t�

Out[1616]=
1

9
�1 � Cos�3 t	 � �1 � Cos�3 t	� UnitStep��Π � t	�

In[1617]:= Simplify�sol�

Out[1617]=
1

9
�1 � Cos�3 t	 � �1 � Cos�3 t	� UnitStep��Π � t	�

We now graph this solution with Plot in Figure 8-6.

In[1618]:= Plot�sol,�t,0,2Π	�

An equivalent result is obtained using DSolve as shown next.
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1 2 3 4 5 6

-0.2

-0.1

0.1

0.2

Figure 8-6 Plot of y�t�

In[1619]:= sol � DSolve��eq,y�0� �� 0,y��0� �� 0	,y�t�,t�

Out[1619]= ��y�t	 
 1

9
��Cos�3 t	 UnitStep�t	

�Cos�3 t	2 UnitStep�t	

�Sin�3 t	2 UnitStep�t	

�Cos�3 t	 UnitStep��Π � t	

�Cos�3 t	2 UnitStep��Π � t	

�Sin�3 t	2 UnitStep��Π � t	���

8.4.3 Periodic Functions

Another type of function that is encountered in many areas of applied mathemat-
ics is the periodic function.

Definition 36 (Periodic Function). A function y � f �t� is periodic if there is a positive
number T such that f �t � T � � f �t� for all t " 0. The minimum value of T that satisfies
this equation is called the period of y � f �t�.

Due to the nature of periodic functions, we can simplify the calculation of the
Laplace transform of these functions as indicated in the following theorem.

Theorem 29 (Laplace Transform of Periodic Functions). Suppose that y � f �t� is a
periodic function with period T and that y � f �t� is piecewise continuous on �0,��. Then,
� � f �t�� exists for s > 0 and is given by the definite integral

� � f �t�� �
1

1 � e�sT � T

0
e�st f �t� dt. (8.15)
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EXAMPLE 8.4.6: Find the Laplace transform of the periodic function
f �t� � t, 0 � t < 1, and f �t � 1� � f �t�.

SOLUTION: The period of y � f �t� is T � 1. We use Plot to generate
a graph of y � f �t� on the interval �0, 4� in Figure 8-7.

In[1620]:= Clear�f�

f�t � �� f�t � 1�/t � 1

f�t � �� t/0 , t < 1

In[1621]:= Plot�f�t�,�t,0,4	�

We use integration by parts,

� � f �t�� �
1

1 � e�s � 1

0
te�st dt

�
1

1 � e�s

�	

	
�
	� te�st

s

t�1

t�0

� � 1

0

e�st

s
dt
=	
>	
?

�
1

1 � e�s

�	

	
�
�

e�s

s
� 	e�st

s2 
t�1

t�0

=	
>	
?

�
1

1 � e�s
��e�s

s
�

1 � e�s

s2 � � 1 � �s � 1�e�s

s2 �1 � e�s�

or Mathematica

In[1622]:= Simplify�� 1

0
t Exp��s t��t

1 � Exp��s�
�

1 2 3 4

0.2

0.4

0.6

0.8

1

Figure 8-7 Plot of f �t� on the interval �0, 4�
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Out[1622]=
�1 � �s � s

��1 � �s� s2

In[1623]:= term�n � �� LaplaceTransform�UnitStep�t � n�,
t,s�

to compute the Laplace transform. Alternatively, note that

f �t� � t ���t� ���t � 1�� � �t � 1� ���t � 1� ���t � 2��

� �t � 2� ���t � 2� ���t � 3�� �   

� t ���t � 1� ���t � 2� ���t � 3� ���t � 4� �   

� t �
��

n�1

��t � n�

so

� � f �t�� � � �t� ��
�		

		
�

��
n�1

��t � n�
=		
>		
?
� � �t� �

��
n�1

� ���t � n�� .

We use LaplaceTransform and Table

In[1624]:= Table�term�n�,�n,1,7	�

Out[1624]= ���s
s
,
��2 s

s
,
��3 s

s
,
��4 s

s
,
��5 s

s
,
��6 s

s
,
��7 s

s
�

to see that � ���t � n�� �
1
s

e�ns. Next, we use Sum and Together to

calculateFor the geometric series,��
n�1 rn , if �r� < 1,��
n�1 rn �

r
1 � r

.
� � f �t�� � � �t� �

��
n�1

� ���t � n�� �
1
s2
�

��
n�1

e�ns

s

�
1
s

*++++
,

1
s
�

��
n�1

�e�s�n-....
/
�

1
s

�1
s
�

e�s

1 � e�s
� .

In[1625]:= Together�LaplaceTransform�t,t,s�
�

+�
n�1

1

Exp�ns� s
�

Out[1625]=
�1 � �s � s

��1 � �s� s2

Laplace transforms can now be used to solve initial-value problems with periodic
forcing functions more easily.
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EXAMPLE 8.4.7: Solve y�� � y � f �t� subject to y�0� � y��0� � 0 if f �t� �
�		

		
�

sin t, 0 � t < Π

0, Π � t < 2Π
and f �t � 2Π� � f �t�. ( f �t� is known as the half-wave

rectification of sin t.)

SOLUTION: To graph f �t�, we begin by defining g�t� �
�		

		
�

sin t, 0 � t < Π

0, Π � t < 2Π.

In[1626]:= g�t � � Sin�t� UnitStep�Π � t�

Then,

f �t� � g�t� ���t� ���t � 2Π�� � g�t � 2Π� ���t � 2Π� ���t � 4Π�� �   

�
��

n�0

g�t � nΠ� ���t � 2nΠ� ���t � 2�n � 1�Π��

Thus, the graph of f �t� on the interval �0, 2kΠ�, where k represents a
positive integer, is obtained by graphing

fk�t� �
k�1�
n�0

g�t � nΠ� ���t � 2nΠ� ���t � 2�n � 1�Π��

on the interval �0, 2kΠ�. For convenience, we define nthterm[n] to be

g�t � nΠ� ���t � 2nΠ� ���t � 2�n � 1�Π�� .

In[1627]:= nthterm�n � � g�t � 2nΠ�
�UnitStep�t � 2nΠ�
�UnitStep�t � 2 �n � 1� Π��

In[1628]:= f�k ,t � �
k�1�
n�0

nthterm�n�

Here is f2�t�.

In[1629]:= f�2,t�

Out[1629]= Sin�t	 UnitStep�Π � t	

�UnitStep�t	 � UnitStep��2 Π � t	�

�Sin�t	 UnitStep�3 Π � t	

��UnitStep��4 Π � t	 � UnitStep��2 Π � t	�

We graph f �t� on the interval �0, 10Π� with Plot in Figure 8-8.

In[1630]:= Plot�f�5,t�,�t,0,10Π	�
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Figure 8-8 The half-wave rectification of sin t on the interval �0, 10Π�

To solve the initial-value problem we must find � � f �t��. Because the
period is T � 2Π, we have

� � f �t�� �
1

1 � e�2Πs � 2Π

0
e�st f �t� dt �

1
1 � e�2Πs 	� Π

0
e�st sin t dt � � 2Π

Π
e�st  0 dt


�
1

1 � e�2Πs � Π

0
e�st sin t dt.

We use Integrate to evaluate this integral

In[1631]:= step1 � Simplify�� Π

0
Exp��s t� Sin�t��t

1 � Exp��2 Πs�
�

Out[1631]=
�Π s

��1 � �Π s� �1 � s2�

In[1632]:= lapf � step1//ExpandDenominator

Out[1632]=
�Π s

�1 � �Π s � s2 � �Π s s2

and see that

� � f �t�� �
eΠs

�eΠs � 1� �s2 � 1� � 1

�1 � e�Πs� �s2 � 1� .

Alternatively, we can use

f �t� �
��

n�0

g�t � nΠ� ���t � 2nΠ� ���t � 2�n � 1�Π��

to rewrite f �t� as

f �t� �
��

n�0

��1�n sin t��t � nΠ�.

Then,

� � f �t�� � �
�		

		
�

��
n�0

��1�n sin t��t � nΠ�
=		
>		
?
�

��
n�0

� ���1�n sin t��t � nΠ�� .
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We use LaplaceTransform and UnitStep to compute � ���1�n sin t
��t � nΠ��, naming the result nthlap,

In[1633]:= Clear�nthlap�

In[1634]:= nthlap � LaplaceTransform�
��1�n Sin�t� UnitStep�t � nΠ�,t,s�

In[1635]:= TableForm�Table��n,nthlap	,�n,0,8	��

Out[1635]=

0
2

1 � s2

1 �
��Π ���s�

1 � s2

2
��2 Π ���s�

1 � s2

3 �
��3 Π ���s�

1 � s2

4
��4 Π ���s�

1 � s2

5 �
��5 Π ���s�

1 � s2

6
��6 Π ���s�

1 � s2

7 �
��7 Π ���s�

1 � s2

8
��8 Π ���s�

1 � s2

and then use Sum to compute ��
n�0� ���1�n sin t��t � nΠ��.

In[1636]:=
�+
n�0 Exp��n Πs�

1 � s2

Out[1636]=
�Π s

��1 � �Π s� �1 � s2�

Taking the Laplace transform of both sides of the differential equation,
applying the initial conditions, and solving for Y �s� then gives us

� �y��� �� �y� � � � f �t��

s2Y �s� � sy�0� � y��0� � Y �s� �
1

�1 � e�Πs� �s2 � 1�
Y �s� �

1

�1 � e�Πs� �s2 � 1�2 .

Using lapf, we perform the same steps with Mathematica.
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In[1637]:= step1 � LaplaceTransform
�y���t� � y�t�,t,s� �� lapf

Out[1637]= LaplaceTransform�y�t	,t,s	

�s2 LaplaceTransform�y�t	,t,s	

�s y�0	 � y��0	 ��
�Π s

�1 � �Π s � s2 � �Π s s2

In[1638]:= step2 � step1 /. �y�0�� > 0,y��0�� > 0	

Out[1638]= LaplaceTransform�y�t	,t,s	

�s2 LaplaceTransform�y�t	,t,s	 ��

�Π s

�1 � �Π s � s2 � �Π s s2

In[1639]:= step3 � Solve�step2,
LaplaceTransform�y�t�,t,s��

Out[1639]= ��LaplaceTransform�y�t	,t,s	 

�Π s

��1 � �Π s� �1 � s2�2
��

Recall from our work with the geometric series that if �x� < 1, then

1
1 � x

� 1 � x � x2 � x3 �    �
��

n�0

xn.

Because we do not know the inverse Laplace transform of
1

�1 � e�Πs� 1
�1�e�Πs��s2�1�2

, we must use a geometric series expansion of
1

1 � e�Πs

to obtain terms for which we can calculate the inverse Laplace trans-
form. Using x � e�Πs, this gives us

1
1 � e�Πs

� 1 � e�Πs � e�2Πs � e�3Πs �    �
��

n�0

e�nΠs,

so

Y �s� � �1 � e�Πs � e�2Πs � e�3Πs �    � 1�s2 � 1�2

�
1�s2 � 1�2 �

e�Πs�s2 � 1�2 �
e�2Πs�s2 � 1�2 �

e�3Πs�s2 � 1�2 �   

�
��

n�0

e�nΠs�s2 � 1�2 .

Then,

y�t� �
��

n�0

�
�1
�		

		
�

e�nΠs�s2 � 1�2

=		
>		
?

.
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Notice that��1
�		

		
�

1�s2 � 1�2

=		
>		
?

is needed to find all of the other terms. Using

InverseLaplaceTransform,

In[1640]:= Expand�InverseLaplaceTransform� 1

�s2 � 1�2
, s,t��

Out[1640]= �
1

2
t Cos�t	 �

Sin�t	

2

we have ��1
�		

		
�

1�s2 � 1�2

=		
>		
?
� 1

2 �sin t � t cos t�. In fact, we can use Inverse

LaplaceTransform together with Table to compute the inverse
Laplace transform of the first few terms of the series.

In[1641]:= TableForm�
Table�
n,InverseLaplaceTransform�

Exp��n Πs�

�s2 � 1�2
, s,t��,�n,0,5	��

Out[1641]=

0
1

2
��t Cos�t	 � Sin�t	�

1
1

2
���Π � t� Cos�t	

�Sin�t	� UnitStep��Π � t	

2
1

2
����2 Π � t� Cos�t	

�Sin�t	� UnitStep��2 Π � t	

3
1

2
���3 Π � t� Cos�t	

�Sin�t	� UnitStep��3 Π � t	

4
1

2
����4 Π � t� Cos�t	

�Sin�t	� UnitStep��4 Π � t	

5
1

2
���5 Π � t� Cos�t	

�Sin�t	� UnitStep��5 Π � t	

Then,

y�t� �
1
2

� �sin t � t cos t� � �sin�t � Π� � �t � Π� cos�t � Π����t � Π�

� �sin�t � 2Π� � �t � 2Π� cos�t � 2Π����t � 2Π�

� �sin�t � 3Π� � �t � 3Π� cos�t � 3Π����t � 3Π��
�

1
2

��
n�0

�sin�t � nΠ� � �t � nΠ� cos�t � nΠ����t � nΠ�.
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To graph y�t� on the interval �0, kΠ�, where k represents a positive inte-
ger, we note that

�sin�t � nΠ� � �t � nΠ� cos�t � nΠ����t � nΠ� � 0

for all values of t in �0, kΠ� if n " k so we need to graph

1
2

k�1�
n�0

�sin�t � nΠ� � �t � nΠ� cos�t � nΠ����t � nΠ�.

For convenience, we define nthterm to represent

1
2
�sin�t � nΠ� � �t � nΠ� cos�t � nΠ����t � nΠ�.

In[1642]:= nthterm�n � �
1

2
�Sin�t � nΠ� � �t � nΠ� Cos�t � nΠ��

UnitStep�t � nΠ�

Thus, to graph on the interval , we enter the following commands. See
Figure 8-9.

In[1643]:= tograph �
4�

n�0

nthterm�n�

In[1644]:= Plot�tograph,�t,0,5Π	�

2.5 5 7.5 10 12.5 15

-2

2

4

Figure 8-9 Plot of the solution to an initial-value problem with a periodic piecewise
continuous forcing function
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8.4.4 Impulse Functions: The Delta Function

We now consider differential equations of the form ay�� � by� � cy � f �t� where
f �t� is large in magnitude over the short interval centered at t0, t0 � Α � t � t0 � Α,
and zero otherwise. Hence, we define the impulse delivered by the function f �t�
as I�t� � � t0�Α

t0�Α
f �t� dt, or because f �t� � 0 for t on ���, t0 � Α� A �t0 � Α,��,

I�t� � � �

��
f �t� dt.

In order to better understand the impulse function, we let f �t� be defined in the
following manner:

f �t� � ΔΑ �t � t0� �
�		

		
�

1
2Α

, t0 � Α � t � t0 � Α

0, otherwise.

To graph ΔΑ �t � t0� for several values of Α and t0 � 0, we define del.

In[1645]:= del�t ,t0 ,Α � ��
1

2Α
/t0 � Α , t , t0 � Α

del�t ,t0 ,Α � �� 0/t0 � Α > t--t > t0 � Α

For example, entering

In[1646]:= Plot�del�t,0,0.25�,�t,�1,1	�

graphs Δ1/4�t� on the interval ��1, 1�. See Figure 8-10. Similarly, to graph Δi�t� for
i � 0.01, 0.02, 0.03, 0.04, and 0.05, we first define toplot using Table and then
use Plot to graph this set of functions on the interval ��0.1, 0.1�. See Figure 8-11.
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Figure 8-10 Plot of Δ1/4�t� on the interval ��1, 1�
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Figure 8-11 Plots of Δi�t� for i � 0.01, 0.02, 0.03, 0.04, and 0.05

In[1647]:= toplot � Table�del�t,0,Α�,
�Α,0.01,0.05,0.01	�

In[1648]:= grays � Table�GrayLevel�i�,�i,0,0.7,0.7/4	�

Plot�Evaluate�toplot�,�t,�0.1,0.1	,
PlotStyle� > grays�

With this definition, the impulse is given by

I�t� � � t0�Α

t0�Α
f �t� dt � � t0�Α

t0�Α

1
2Α

dt �
1

2Α
��t0 � Α� � �t0 � Α�� �

1
2Α

 2Α � 1.

Notice that the value of this integral does not depend on Α as long as Α # 0. We
now try to create the idealized impulse function by requiring that ΔΑ �t � t0� act on
smaller and smaller intervals. From the integral calculation, we have

lim
Α�0

I�t� � 1.

We also note that
lim
Α�0

ΔΑ �t � t0� � 0, t # t0.

We use these properties to now define the idealized unit impulse function.

Definition 37 (Unit Impulse Function). The idealized unit impulse function (Dirac
delta function) Δ satisfiesThe Dirac delta function is

not a real-valued function of
a single variable. Objects of
this type are called
generalized functions.

Δ �t � t0� � 0, t # t0

� �

��
Δ �t � t0� dt � 1.

(8.16)

The Mathematica function DiracDelta represents the Dirac delta function.
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We now state the following useful theorem involving the unit impulse
function.

Theorem 30. Suppose that y � g�t� is a bounded and continuous function. Then,

� �

��
Δ �t � t0� g�t� dt � g �t0� . (8.17)

The Laplace transform of Δ �t � t0� is found by using the function ΔΑ �t � t0� and
L’Hôpital’s rule.

Theorem 31. For t0 > 0,
� �Δ �t � t0�� � e�st0 . (8.18)

EXAMPLE 8.4.8: Find (a) � �Δ �t � 1��; (b) � �Δ �t � Π��; and (c) � �Δ �t��.

SOLUTION: (a) In this case, t0 � 1, so � �Δ �t � 1�� � e�s. (b) With t0 � Π,
� �Δ �t � Π�� � e�Πs. (c) Because t0 � 0, � �Δ �t�� � � �Δ �t � 0�� � e�s0 � 1.

We obtain the same results using DiracDelta and Laplace-
Transform as shown next. We can compute the Laplace transform of
each individually.

In[1649]:= LaplaceTransform�DiracDelta�t � 1�,t,s�

Out[1649]= ��s

Or, we can use Map to compute the Laplace transform of all three
simultaneously.

In[1650]:= Map�LaplaceTransform�#,t,s�&,
�DiracDelta�t � 1�,
DiracDelta�t � Π�,DiracDelta�t�	�

Out[1650]= ���s,��Π s, 1

EXAMPLE 8.4.9: Solve y�� � y � Δ�t � Π� � 1 subject to y�0� � y��0� � 0.

SOLUTION: As in previous examples, we solve this initial-value prob-
lem by taking the Laplace transform of both sides of the differential
equation,
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In[1651]:= step1 � LaplaceTransform�y���t�
�y�t� �� DiracDelta
�t � Π� � 1,t,s�

Out[1651]= LaplaceTransform�y�t	,t,s	

�s2 LaplaceTransform�y�t	,t,s	

�s y�0	 � y��0	 �� ��Π s �
1

s

applying the initial conditions,

In[1652]:= step2 � step1/.�y�0� 
 0,y��0� 
 0	

Out[1652]= LaplaceTransform�y�t	,t,s	

�s2 LaplaceTransform�y�t	,t,s	 �� ��Π s �
1

s

and solving for Y �s�.

In[1653]:= step3 � Solve�step2,
LaplaceTransform�y�t�,t,s��

Out[1653]= ��LaplaceTransform�y�t	,t,s	 

��Π s ��Π s � s�

s �1 � s2�
��

We find y�t� using InverseLaplaceTransform.

In[1654]:= sol � InverseLaplaceTransform�
step3��1,1,2��,s,t�

Out[1654]= 1 � Cos�t	 � Sin�t	 UnitStep��Π � t	

We can use DSolve to find the solution to the initial-value problem as
follows. The result is graphed with Plot in Figure 8-12.
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Figure 8-12 At t � Π, an impulse is delivered
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In[1655]:= sol � DSolve��y���t�
�y�t� �� DiracDelta�t � Π� � 1,
y�0� �� 0,y��0� �� 0	,y�t�,t�

Out[1655]= ��y�t	 
 �Cos�t	 � Cos�t	2

�Sin�t	2 � Sin�t	 UnitStep��Π � t	

In[1656]:= Plot�y�t�/.sol,�t,0,2Π	�

The forcing function may involve a combination of functions as illustrated in the
following example.

EXAMPLE 8.4.10: Solve y�� � 2y� � y � 1 � Δ�t � Π� � Δ�t � 2Π� subject to
y�0� � y��0� � 0.

SOLUTION: After computing the Laplace transform of each side of
the equation

In[1657]:= step1 � LaplaceTransform�
y���t� � 2 y��t� � y�t� ��
1 � DiracDelta�t � Π�
�DiracDelta�t � 2Π�,t,s�

Out[1657]= LaplaceTransform�y�t	,t,s	

�s2 LaplaceTransform�y�t	,t,s	
�2 �s LaplaceTransform�y�t	,t,s	 � y�0	�

�s y�0	 � y��0	 �� ��2 Π s � ��Π s �
1

s

and applying the initial conditions,

In[1658]:= step2 � step1 /. �y�0�� > 0,y��0�� > 0	

Out[1658]= LaplaceTransform�y�t	,t,s	
�2 s LaplaceTransform�y�t	,t,s	

�s2 LaplaceTransform�y�t	,t,s	 �� ��2 Π s

���Π s �
1

s

we solve for Y �s�

In[1659]:= step3 � Solve�step2,
LaplaceTransform�y�t�,t,s��
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Out[1659]= ��LaplaceTransform�y�t	,t,s	 

��2 Π s ��2 Π s � s � �Π s s�

s �1 � s�2
��

and then compute y�t� � ��1 �Y �s��.

In[1660]:= sol � InverseLaplaceTransform�
1 � e�2 Πs s � e�Π s s

s�1 � s�2
, s,t�

Out[1660]= ��t ��1 � �t � t � �2 Π �2 Π � t� UnitStep��2 Π � t	

��Π �Π � t� UnitStep��Π � t	�

Equivalent results are obtained with DSolve that are then graphed
with Plot in Figure 8-13.

In[1661]:= Clear�y,t,sol�

In[1662]:= sol � DSolve��y���t� � 2 y��t� � y�t� �� 1
�DiracDelta�t � Π� � DiracDelta�t � 2Π�,
y�0� �� 0,y��0� �� 0	,y�t�,t�

Out[1662]= ��y�t	 
 ��t ��1 � �t � t

�2 �2 Π Π UnitStep��2 Π � t	

��2 Π t UnitStep��2 Π � t	

��Π Π UnitStep��Π � t	

��Π t UnitStep��Π � t	�

In[1663]:= Plot�y�t�/.sol,�t,0,4Π	�
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Figure 8-13 Impulses are delivered at t � Π and t � 2Π
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8.5 The Convolution Theorem

8.5.1 The Convolution Theorem

In many cases, we are required to determine the inverse Laplace transform of a
product of two functions. Just as in integral calculus when the integral of the prod-
uct of two functions did not produce the product of the integrals, neither does the
inverse Laplace transform of the product yield the product of the inverse Laplace
transforms. Thus, we state the following theorem.

Theorem 32 (Convolution Theorem). Suppose that f �t� and g�t� are piecewise
continuous on �0,�� and both of exponential order b. Further suppose that� � f �t�� � F�s�
and � �g�t�� � G�s�. Then,

�
�1 �F�s�G�s�� � ��1 �� �� f ( g� �t��� � � f ( g� �t� � � t

0
f �t � Ν�g�Ν� dΝ. (8.19)

In[1664]:= Clear�f,g�

LaplaceTransform� � t

0

f�t � v� g�v��v,t,s�
Out[1664]= LaplaceTransform�f�t	,t,s	

LaplaceTransform�g�t	,t,s	

Note that � f ( g� �t� � � t

0
f �t � Ν�g�Ν� dΝ is called the convolution integral.

EXAMPLE 8.5.1: Compute � f ( g� �t� if f �t� � e�t and g�t� � sin t. Verify
the Convolution Theorem with these functions.

SOLUTION: We use the definition and integration by parts to obtain

� f ( g� �t� � � t

0
f �t � Ν�g�Ν� dΝ � � t

0
e�t�Ν sin Ν dΝ � e�t � t

0
eΝ sin Ν dΝ

� e�t 	1
2

eΝ �sin Ν � cos Ν�
t

0
�

1
2

e�t �et �sin t � cos t� � �sin 0 � cos 0��
�

1
2
�sin t � cos t� �

1
2

e�t .

The same results are obtained with Mathematica. After defining
convolution, which computes � f ( g� �t�,
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In[1665]:= Clear�convolution,f,t,g,v�

convolution�f ,g � �� � t

0

f�t � v� g�v��v

we define f �t� and g�t�

In[1666]:= f�t � � Exp��t�

g�t � � Sin�t�

and then use convolution to compute � f ( g� �t�.

In[1667]:= convolution�f,g�

Out[1667]=
1

2
���t � Cos�t	 � Sin�t	�

Note that � f ( g� �t� � � g ( f � �t�.

In[1668]:= convolution�g,f�

Out[1668]=
1

2
���t � Cos�t	 � Sin�t	�

Now, according to the Convolution Theorem,� � f �t��� �g�t�� � � �� f ( g�
�t��. In this example, we have

F�s� � � � f �t�� � � �e�t� � 1
s � 1

and G�s� � � �g�t�� � � �sin t� �
1

s2 � 1
.

Hence, ��1 �F�s�G�s�� � ��1 � 1
s � 1


1

s2 � 1
� should equal � f ( g� �t�. We

compute ��1 � 1
s � 1


1

s2 � 1
� with InverseLaplaceTransform.

In[1669]:= InverseLaplaceTransform� 1

�s � 1� �s2 � 1�
,s,t�

Out[1669]=
1

2
���t � Cos�t	 � Sin�t	�

Hence,

�
�1 � 1

s � 1


1
s2 � 1

� � 1
2

e�t �
1
2

cos t �
1
2

sin t,

which is the same result as that obtained for � f ( g� �t�.

EXAMPLE 8.5.2: Use the Convolution Theorem to find the Laplace
transform of h�t� � � t

0
cos�t � Ν� sin Ν dΝ.
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SOLUTION: Notice that h�t� � � f ( g� �t�, where f �t� � cos t and g�t� �
sin t. Therefore, by the Convolution Theorem, � �� f ( g� �t�� � F�s�G�s�.
Hence,

� �h�t�� � � � f �t��� �g�t�� � � �cos t�� �sin t� �
s

s2 � 1


1
s2 � 1

�
s�s2 � 1�2 .

The same result is obtained with LaplaceTransform.

In[1670]:= LaplaceTransform� � t

0

Cos�t � v� Sin�v��v,

t,s�//Simplify
Out[1670]=

s

�1 � s2�2

8.5.2 Integral and Integrodifferential Equations

The Convolution Theorem is useful in solving numerous problems. In particular,
this theorem can be employed to solve integral equations, which are equations
that involve an integral of the unknown function.

EXAMPLE 8.5.3: Use the Convolution Theorem to solve the integral
equation

h�t� � 4t � � t

0
h�t � Ν� sin Ν dΝ.

SOLUTION: We first note that the integral in this equation represents
�h ( g� �t�where g�t� � sin t. Therefore, if we apply the Laplace transform
to both sides of the equation, we obtain

� �h�t�� � � �4t� �� �h�t��� �sin t�

H�s� �
4
s2
� H�s�

1
s2 � 1

,

where H�s� � � �h�t��. The same result is obtained with Laplace
Transform.
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In[1671]:= Clear�h�

step1 � LaplaceTransform�
h�t� �� 4t � � t

0

h�t � v� Sin�v��v,t,s�
Out[1671]= LaplaceTransform�h�t	,t,s	 ��

4

s2
�
LaplaceTransform�h�t	,t,s	

1 � s2

Solving for H�s�, we have

H�s� �1 � 1
s2 � 1

� � 4
s2

so H�s� �
4 �s2 � 1�

s4
�

4
s2
�

4
s4

.

In[1672]:= step2 � Solve�step1,
LaplaceTransform�h�t�,t,s��

Out[1672]= ��LaplaceTransform�h�t	,t,s	 
 4 �1 � s2�

s4
��

Then by computing the inverse Laplace transform,

In[1673]:= sol � InverseLaplaceTransform
�step2�1,1,2�,s,t�

Out[1673]= 4 �t � t3

6
�

we find that

h�t� � ��1 � 4
s2
�

4
s4 � � 4t �

2
3

t3.

Laplace transforms are helpful in solving problems of other types as well. Next,
we illustrate how Laplace transforms can be used to solve an integrodifferen-
tial equation, an equation that involves a derivative as well as an integral of the
dependent variable, the unknown function.

EXAMPLE 8.5.4: Solve
dy
dt
� y � � t

0
y�u� du � 1 subject to y�0� � 0.

SOLUTION: Because we must take the Laplace transform of both sides
of this integrodifferential equation, we first compute

��� t

0
y�u� du� � � ��1 ( y� �t�� � � �1�� �y� �

Y �s�
s

.
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Hence,

��dy
dt

� �� �y� ���� t

0
y�u� du� � � �1�

sY �s� � y�0� � Y �s� �
Y �s�

s
�

1
s

s2Y �s� � sY �s� � Y �s� � 1

Y �s� �
1

s2 � s � 1
.

The same steps are carried out with Mathematica.

In[1674]:= step1 � LaplaceTransform�
y��t� � y�t� � � t

0

y�u��u �� 1,t,s�
Out[1674]= LaplaceTransform�y�t	,t,s	

�
LaplaceTransform�y�t	,t,s	

s

�s LaplaceTransform�y�t	,t,s	 � y�0	 ��
1

s

In[1675]:= step2 � step1/.y�0� 
 0

Out[1675]= LaplaceTransform�y�t	,t,s	

�
LaplaceTransform�y�t	,t,s	

s

�s LaplaceTransform�y�t	,t,s	 ��
1

s

In[1676]:= step3 � Solve�step2,
LaplaceTransform�y�t�,t,s��

Out[1676]= ��LaplaceTransform�y�t	,t,s	 
 1

1 � s � s2
��

Because Y �s� �
1

s2 � s � 1
�

1

�s � 1/2�2 � �3/2�2 , y�t� � 2
3
e�t/2 sin


3

2 t.

The same solution, which is then graphed on the interval �0, 3Π� with
Plot in Figure 8-14, is found with InverseLaplaceTransform and
named sol.

In[1677]:= sol � InverseLaplaceTransform
�step3�1,1,2�,s,t�

Out[1677]=
2 ��t/2 Sin� 


3 t
2 �


3
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Figure 8-14 Plot of the solution to an integrodifferential equation

In[1678]:= Plot�sol,�t,0,3Π	�

8.6 Applications of Laplace Transforms,
Part I

8.6.1 Spring–Mass Systems Revisited

Laplace transforms are useful in solving the spring–mass systems that were dis-
cussed in earlier sections. Although the method of Laplace transforms can be used
to solve all problems discussed in the section on applications of higher-order equa-
tions, this method is most useful in alleviating the difficulties associated with
problems that involve piecewise-defined forcing functions. Hence, we investigate
the use of Laplace transforms to solve the second-order initial-value problem that
models the motion of a mass attached to the end of a spring. We found in Chapter
5 that without forcing this situation is modeled by the initial-value problem

�		

		
�

mx�� � cx� � kx � 0

x�0� � Α, x��0� � Β,
(8.20)

where m represents the mass, c the damping coefficient, and k the spring constant
determined by Hooke’s law. We demonstrate how the method of Laplace trans-
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forms is used to solve initial-value problems of this type if the forcing function is
discontinuous.

EXAMPLE 8.6.1: Suppose that a mass with m � 1 is attached to a spring
with spring constant k � 1. If there is no resistance due to damping
determine the displacement of the mass if it is released from its equili-

brium position and is subjected to the force f �t� �
�		

		
�

sin t, 0 � t < Π/2

0, t " Π/2.

SOLUTION: In this case, the constants are m � k � 1 and c � 0. The
initial position is x�0� � 0 and the initial velocity is x��0� � 0. Hence, the
initial-value problem that models this situation is

x�� � x �
�		

		
�

sin t, 0 � t < Π/2

0, t " Π/2
, x�0� � 0, x��0� � 0.

Because we will take the Laplace transform of both sides of the differ-
ential equation, we write f �t� in terms of the unit step function. This
gives us

f �t� � ���t � 0� ���t � Π/2�� sin t � �1 ���t � Π/2�� sin t,

which we graph with Plot in Figure 8-15.

In[1679]:= Plot�Sin�t� �1 � UnitStep�t � Π

2
�,�t,0,Π	�
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Figure 8-15 Plot of the forcing function
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Using the method of Laplace transforms, we compute the Laplace trans-
form of each side of the equation,

In[1680]:= step1 � LaplaceTransform�x���t� � x�t� ��
Sin�t� �1 � UnitStep�t � Π

2
�,t,s�

Out[1680]= LaplaceTransform�x�t	,t,s	

�s2 LaplaceTransform�x�t	,t,s	

�s x�0	 � x��0	 ��
1

1 � s2
�
��

Π s
2 s

1 � s2

apply the initial conditions,

In[1681]:= step2 � step1/.�x�0� 
 0,x��0� 
 0	

Out[1681]= LaplaceTransform�x�t	,t,s	

�s2 LaplaceTransform�x�t	,t,s	 ��

1

1 � s2
�
��

Π s
2 s

1 � s2

and solve the resulting equation for x�t� � ��1 �X�s��.

In[1682]:= step3 � Solve�step2,
LaplaceTransform�x�t�,t,s��

Out[1682]= ��LaplaceTransform�x�t	,t,s	 

��

Π s
2 ��Π s

2 � s�
�1 � s2�2

��
The solution is obtained with InverseLaplaceTransform.

In[1683]:= sol � InverseLaplaceTransform

� �
�1 � e�

Πs
2 s

�1 � s2�2
, s,t�

Out[1683]=
1

4
� � 2 t Cos�t	 � 2 Sin�t	

��Π � 2 t� Cos�t	 UnitStep� �
Π

2
� t��

The same result is obtained with DSolve, which we then graph with
Plot in Figure 8-16.

In[1684]:= Clear�x,t,sol�

sol � DSolve�
x���t� � x�t� �� Sin�t��1 � UnitStep�t � Π

2
�,x�0� �� 0,

x��0� �� 0�,x�t�,t�//Simplify
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Figure 8-16 For t " Π/2, the motion is harmonic

Out[1684]= ��x�t	 
 1

4
� � 2 t Cos�t	 � 2 Sin�t	

��Π � 2 t� Cos�t	 UnitStep� �
Π

2
� t����

In[1685]:= Plot�x�t�/.sol,�t,0,2Π	�

Notice that resonance begins on the interval 0 � t < Π/2. Then, for
t " Π/2, the motion is harmonic. Hence, although the forcing function
is zero for t " Π/2, the mass continues to follow the path defined by x�t�
indefinitely.

EXAMPLE 8.6.2: Suppose that a mass of m � 1 is attached to a spring
with spring constant k � 13. If the mass is subjected to the resistive force
due to damping FR � 4 dx/dt, determine the displacement of the mass if
it is released from its equilibrium position and is subjected to the force

f �t� � 2t �1 ���t � 1�� � 2��t � 1� � 10Δ�t � 3�.

SOLUTION: In this case, the initial-value problem is

�		

		
�

x�� � 4x� � 13x � 2t �1 ���t � 1�� � 2��t � 1� � 10Δ�t � 3�

x�0� � x��0� � 0.

We first graph 2t �1 ���t � 1�� � 2��t � 1� in Figure 8-17.
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Figure 8-17 Plot of 2t �1 ���t � 1�� � 2��t � 1�

In[1686]:= Plot�2t �1 � UnitStep�t � 1��
�2UnitStep�t � 1�,
�t,0,4	,PlotRange� > �0,4	,
AspectRatio� > 1�

Using the method of Laplace transforms, we take the Laplace transform
of each side of the equation,

In[1687]:= step1 � LaplaceTransform�x���t�
�4x��t� � 13x�t� ��
2t �1 � UnitStep�t � 1��

�2UnitStep�t � 1�
�10DiracDelta�t � 3�,t,s�

Out[1687]= 13 LaplaceTransform�x�t	,t,s	

�s2 LaplaceTransform�x�t	,t,s	
�4 �s LaplaceTransform�x�t	,t,s	 � x�0	�

�s x�0	 � x��0	 �� 10 ��3 s �
2

s2

�
2 ��s

s
�
2 ��s �1 � s�

s2

apply the initial conditions,

In[1688]:= step2 � step1 /. �x�0�� > 0,x��0�� > 0	
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Out[1688]= 13 LaplaceTransform�x�t	,t,s	
�4 s LaplaceTransform�x�t	,t,s	

�s2 LaplaceTransform�x�t	,t,s	 ��

10 ��3 s �
2

s2
�
2 ��s

s
�
2 ��s �1 � s�

s2

and solve for X�s� � � �x�t��.

In[1689]:= step3 � Solve�step2,
LaplaceTransform�x�t�,t,s��

Out[1689]= ��LaplaceTransform�x�t	,t,s	 

2 ��3 s ���2 s � �3 s � 5 s2�

s2 �13 � 4 s � s2�
��

The solution to the initial-value problem is obtained with Inverse
LaplaceTransform.

In[1690]:= sol �

InverseLaplaceTransform�
2 �1 � e�s � 5e�3 s s2�

s2 �13 � 4s � s2�
,s,t�//Simplify

Out[1690]= 2 ��24 � �12 � 5 �� ���2�3 �� t
1014

�
�12 � 5 �� ���2�3 �� t � 78 t

1014

�
5

6
� ���2�3 �� ��3�t� � � 1 � �6 � ��3�t��

UnitStep��3 � t	

�
1

1014
�� � 102 � �12 � 5 �� ���2�3 �� ��1�t�

��12 � 5 �� ���2�3 �� ��1�t�

�78 t� UnitStep��1 � t	��
The same result is obtained with DSolve. The solution is graphed with
Plot in Figure 8-18.

In[1691]:= sol � DSolve��x���t� � 4x��t� � 13x�t� ��
2t �1 � UnitStep�t � 1��
�2UnitStep�t � 1�
�10DiracDelta�t � 3�,x�0� �� 0,
x��0� �� 0	,x�t�,t�//Simplify
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Figure 8-18 Note the effect of the impulse delivered at t � 3

Out[1691]= ��x�t	 
 �
2

507
��2 t �12 �2 t � 39 �2 t t � 12 Cos�3 t	

�5 Sin�3 t	 � 845 �6 Sin�9 � 3 t	

� UnitStep��3 � t	

��3 �2 t ��17 � 13 t� � 12 �2 Cos�3 � 3 t	

�5 �2 Sin�3 � 3 t	� UnitStep��1 � t	���
In[1692]:= Plot�x�t�/.sol,�t,0,6	,PlotRange� > All�

The graph of the solution shows the effect of the impulse delivered at
t � 3, which is especially evident when we compare this result to the
solution of

�		

		
�

x�� � 4x� � 13x � 2t �1 ���t � 1�� � 2��t � 1�

x�0� � x��0� � 0

shown in Figure 8-19.
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Figure 8-19 No impulse is delivered
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In[1693]:= sol2 � DSolve��x���t� � 4x��t� � 13x�t� ��
2t �1 � UnitStep�t � 1��
�2UnitStep�t � 1�,x�0� �� 0,
x��0� �� 0	,x�t�,t�//Simplify

Out[1693]= ��x�t	 
 �
2

507
��2 t �12 �2 t � 39 �2 t t

�12 Cos�3 t	 � 5 Sin�3 t	

��3 �2 t ��17 � 13 t� � 12 �2 Cos�3 � 3 t	

�5 �2 Sin�3 � 3 t	� UnitStep��1 � t	���
In[1694]:= Plot�x�t�/.sol2,�t,0,6	,PlotRange� > All�

8.6.2 L–R–C Circuits Revisited

Laplace transforms can be used to solve the L–R–C circuit problems that were
introduced earlier. Recall that the initial-value problem that is used to find the
current is

�			

			
�

L
d2Q
dt2

� R
dQ
dt

�
1
C

Q � E�t�

Q�0� � Q0, I�0� �
dQ
dt
�0� � I0

(8.21)

where L, R, and C represent the inductance, resistance, and capacitance, respec-
tively. Q is the charge of the capacitor and dQ/dt � I, where I is the current. E�t� is
the voltage supply. In particular, the method of Laplace transforms is most useful
when the supplied voltage, E�t�, is piecewise defined.

EXAMPLE 8.6.3: Suppose that we consider a circuit with a capacitor C,
a resistor R, and a voltage supply

E�t� �

�				

				
�

100, 0 � t < 1

200 � 100t, 1 � t < 2

0, t " 2.

If L � 0, find Q�t� and I�t� if Q�0� � 0, C � 10�2 farads, and R � 1005.



680 Chapter 8 Laplace Transform Methods

SOLUTION: Because L � 0, we can state the first-order initial-value
problem as

�						

						
�

100
dQ
dt

� 100Q �

�				

				
�

100, 0 � t < 1

200 � 100t, 1 � t < 2

0, t " 2

Q�0� � 0.

First, we rewrite E�t� in terms of the unit step functions as

E�t� � 100 �1 ���t � 1�� � �200 � 100t� ���t � 1� ���t � 2�� .

When we use Mathematica to define E�t�, we use a lower-case e to
avoid ambiguity with E, which represents e � 2.71828. See Figure 8-20.

In[1695]:= e�t � � 100 �1 � UnitStep�t � 1��
��200 � 100t��UnitStep�t � 1�
�UnitStep�t � 2��

Out[1695]= 100 �1 � UnitStep��1 � t	�

��200 � 100 t� ��UnitStep��2 � t	

�UnitStep��1 � t	�

In[1696]:= Plot�e�t�,�t,0,4	,PlotRange� > �0,100	�

Now, we take the Laplace transform of both sides of the differential
equation,

In[1697]:= step1 � LaplaceTransform�
100q��t� � 100q�t� �� e�t�,t,s�

1 2 3 4

20

40

60

80

100

Figure 8-20 Plot of E�t�
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Out[1697]= 100 LaplaceTransform�q�t	,t,s	
�100 �s LaplaceTransform�q�t	,t,s	

�q�0	� ��
100

s
�
200 ��2 s

s
�
100 ��s

s

�
100 ��s �1 � s�

s2
�
100 ��2 s �1 � 2 s�

s2

apply the initial condition,

In[1698]:= step2 � step1 /. q�0�� > 0

Out[1698]= 100 LaplaceTransform�q�t	,t,s	

�100 s LaplaceTransform�q�t	,t,s	 ��
100

s

�
200 ��2 s

s
�
100 ��s

s

�
100 ��s �1 � s�

s2
�
100 ��2 s �1 � 2 s�

s2

and solve for � �Q�t��.

In[1699]:= step3 � Solve�step2,
LaplaceTransform�q�t�,t,s��

Out[1699]= ��LaplaceTransform�q�t	,t,s	 

��2 s �1 � �s � �2 s s�

s2 �1 � s�
��

The solution to the initial-value problem is obtained with Inverse
LaplaceTransform.

In[1700]:= sol � InverseLaplaceTransform�
e�2 s � e�s � s

s2 �1 � s�
,s,t�

Out[1700]= 1 � ��t � ��3 � �2�t � t� UnitStep��2 � t	

���2 � �1�t � t� UnitStep��1 � t	

The same result is obtained with DSolve.

In[1701]:= sol � DSolve��100q��t�
�100q�t� �� e�t�,q�0� �� 0	,
q�t�,t�//Simplify

Out[1701]= ��q�t	 
 ��t ��1 � �t

���2 � �t ��3 � t�� UnitStep��2 � t	

��� � �t ��2 � t�� UnitStep��1 � t	�

We now compute I � dQ/dt and then graph both Q�t� and I�t� on the
interval �0, 4� in Figure 8-21.
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Figure 8-21 (a) Q�t�, (b) I�t�

In[1702]:= i�t � � D�q�t� /. sol,t�

pq � Plot�q�t� /. sol,�t,0,4	,
DisplayFunction� > Identity�

Π � Plot�i�t�,�t,0,4	,
DisplayFunction� > Identity�

Show�GraphicsArray��pq,Π	��

From the graph, we see that after the voltage source is turned off at
t � 2, the charge approaches zero.

EXAMPLE 8.6.4: Consider the circuit with no capacitor, R � 1005, and

L � 100 H if E�t� �
�		

		
�

100V , 0 � t < 1

0, 1 � t < 2
and E�t � 2� � E�t�. Find the

current I�t� if I�0� � 0.

SOLUTION: The differential equation that models the situation is
100Q��� 100Q� � E�t�. Now, Q� � I, so we can write this equation as 100I�

�100I � E�t�. Hence, the initial-value problem is

�		

		
�

100I� � 100I � E�t�

I�0� � 0.
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Notice that E�t� is a periodic function, so we first compute � �E�t��

In[1703]:= Clear�i,step1,step2�

lape � Simplify�� 1

0
100 Exp��s t��t

1 � Exp��2 s�
�

Out[1703]=
100 �s

s � �s s

and see � �E�t�� �
100

s �1 � e�s�
.

We now compute the Laplace transform of the left side of the
equation, Note that we use i to

represent I instead of I
because I represents the
imaginary number i �


�1.

In[1704]:= step1 �
LaplaceTransform�100 i��t�
�100 i�t�,t,s� �� lape

Out[1704]= 100 LaplaceTransform�i�t	,t,s	
�100 ��i�0	

�s LaplaceTransform�i�t	,t,s	� ��
100 �s

s � �s s

apply the initial condition,

In[1705]:= step2 � step1 /. i�0�� > 0

Out[1705]= 100 LaplaceTransform�i�t	,t,s	

�100 s LaplaceTransform�i�t	,t,s	 ��
100 �s

s � �s s

and solve for � �I�t��.

In[1706]:= step3 � Solve�step2,LaplaceTransform�
i�t�,t,s��

Out[1706]= ��LaplaceTransform�i�t	,t,s	 

�s

�1 � �s� s �1 � s�
��

As we did before, we write a power series expansion of
1

1 � e�s
: We use

1
1 � x

� ��
n�0 ��x�n �

1 � x � x2 � x3 �    .
1

1 � e�s
�

��
n�0

��e�s�n
� 1 � e�s � e�2s � e�3s �    .

Thus,

� �I�t�� �
1

s�s � 1�
�1 � e�s � e�2s � e�3s �    � .
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Because, ��1 � 1
s�s�1�� � 1 � e�t ,

In[1707]:= InverseLaplaceTransform� 1

s �s � 1�
,s,t�

Out[1707]= 1 � ��t

we have that

I�t� � �1 � e�t � � �1 � e��t�1����t � 1�

� �1 � e��t�2����t � 2� � �1 � e��t�3����t � 3� �    .

We can write this function as

I�t� �

�									

									
�

1 � e�t , 0 � t < 1

�e�t � e��t�1�, 1 � t < 2

1 � e�t � e��t�1� � e��t�2�, 2 � t < 3

�e�t � e��t�1� � e��t�2� � e��t�3�, 3 � t < 4

�

To graph I�t� on the interval �0, n�, we note that��t � n� � 0 for t � n so
the graph of I�t� on the interval �0, n� is the same as the graph of

�1 � e�t � � �1 � e��t�1����t � 1� � �1 � e��t�2����t � 2� � �1 � e��t�3����t � 3�

�    � ��1�n�1 �1 � e��t��n�1�����t � �n � 1��.

In[1708]:= Clear�i�

i�n � ��
i�n� � i�n � 1�
���1�n �1 � Exp���t � n���

UnitStep�t � n�

i�0� � 1 � Exp��t�

For example, to graph I�t� on the interval �0, 5� we enter

In[1709]:= i�4�

Out[1709]= 1 � ��t � �1 � �4�t� UnitStep��4 � t	

��1 � �3�t� UnitStep��3 � t	

��1 � �2�t� UnitStep��2 � t	

��1 � �1�t� UnitStep��1 � t	

and then use Plot. See Figure 8-22.

In[1710]:= Plot�i�4�,�t,0,5	�
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Figure 8-22 Plot of I�t� on the interval �0, 5�

Notice that I�t� increases over the intervals where E�t� � 100 and
decreases on those where E�t� � 0.

We can consider the L–R–C circuit in terms of the integrodifferential equation

L
dI
dt
� RI �

1
C � t

0
I�Α� dΑ � E�t�, (8.22)

which is useful when using the method of Laplace transforms to find the current.

EXAMPLE 8.6.5: Find the current I�t� if L � 1 Henry, R � 65, C �
1/9 Farad, E�t� � 1 volt, and I�0� � 0.

SOLUTION: In this case, we must solve the initial-value problem

�		

		
�

dI
dt
� 6I � 9 � t

0
I�Α� dΑ � 1

I�0� � 0.

First, we compute the Laplace transform of each side of the equation,

In[1711]:= Clear�i�

step1 � LaplaceTransform�
i��t� � 6i�t�
�9Integrate�i�Α�,�Α,0,t	� �� 1,
t,s�
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Out[1711]= �i�0	 � 6 LaplaceTransform�i�t	,t,s	

�
9 LaplaceTransform�i�t	,t,s	

s

�s LaplaceTransform�i�t	,t,s	 ��
1

s

apply the initial condition,

In[1712]:= step2 � step1 /. i�0�� > 0

Out[1712]= 6 LaplaceTransform�i�t	,t,s	

�
9 LaplaceTransform�i�t	,t,s	

s

�s LaplaceTransform�i�t	,t,s	 ��
1

s

and solve for � �I�t��.

In[1713]:= step3 � Solve�step2,
LaplaceTransform�i�t�,t,s��

Out[1713]= ��LaplaceTransform�i�t	,t,s	 
 1

�3 � s�2
��

The solution is obtained with InverseLaplaceTransform,

In[1714]:= sol � InverseLaplaceTransform�
step3��1,1,2��,s,t�

Out[1714]= ��3 t t

which we graph with Plot in Figure 8-23.

In[1715]:= Plot�sol,�t,0,3	�
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0.12

Figure 8-23 I�t� � 0 as t � �
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8.6.3 Population Problems Revisited

Laplace transforms can be used to solve the population problems that were dis-
cussed as applications of first-order equations and systems. Laplace transforms
are especially useful when dealing with piecewise-defined forcing functions, but
they are useful in many other cases as well.

EXAMPLE 8.6.6: Let x�t� represent the population of a certain country.
The rate at which the population increases and decreases depends on
the growth rate of the country as well as the rate at which people are
being added to or subtracted from the population due to immigration
or emigration. Hence, we consider the population problem

�		

		
�

x� � kx � 1000 �1 � a sin t�

x�0� � x0.

Solve this problem using Laplace transforms with k � 3, x0 � 2000, and
a � 0.2, 0.4, 0.6, and 0.8. Plot the solution in each case.

SOLUTION: Using the method of Laplace transforms, we begin by
computing the Laplace transform of each side of the equation with
LaplaceTransform,

In[1716]:= step1 � LaplaceTransform�
x��t� � 3 x�t� �� 1000�1 � a Sin�t��,t,s�

Out[1716]= 3 LaplaceTransform�x�t	,t,s	
�s LaplaceTransform�x�t	,t,s	

�x�0	 �� 1000 �1
s
�

a

1 � s2
�

apply the initial condition,

In[1717]:= step2 � step1 /. x�0�� > 2000

Out[1717]= �2000 � 3 LaplaceTransform�x�t	,t,s	

�s LaplaceTransform�x�t	,t,s	 ��

1000 �1
s
�

a

1 � s2
�

and then use Solve to solve step2 for X�s� � � �x�t��.
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In[1718]:= step3 � Solve�step2,
LaplaceTransform�x�t�,t,s��

Out[1718]= ��LaplaceTransform�x�t	,t,s	 

1000 �1 � 2 s � a s � s2 � 2 s3�

s �3 � s� �1 � s2�
��

To find the solution, we use InverseLaplaceTransform and name
the result sol.

In[1719]:= sol �
InverseLaplaceTransform�step3��1,1,2��,

s,t�//Simplify

Out[1719]=
100

3
�10 � �50 � 3 a� ��3 t � 3 a �Cos�t	 � 3 Sin�t	��

We use the result to investigate the population for the values of a using
Plot. See Figure 8-24.

In[1720]:= toplot � Table�sol,�a,0.2,0.8,0.2	�

In[1721]:= grays � Table�GrayLevel�i�,
�i,0,0.7,0.7/4	�

Plot�Evaluate�toplot�,�t,0,25	,
PlotStyle� > grays,PlotRange� > All,
AxesOrigin� > �0,0	�

5 10 15 20 25
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1000

1500
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Figure 8-24 Fluctuations in the size of the population are larger for larger values of a
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Application: The Tautochrone
Suppose that from rest, a particle slides down a frictionless curve under the force
of gravity. What must the shape of the curve be in order for the time of descent to
be independent of the starting position of the particle?

We can determine the shape of the curve using the method of Laplace trans-
forms. Suppose that the particle starts at height y and that its speed is v when it
is at a height of z. If m is the mass of the particle and g is the acceleration due to
gravity, the speed is found by equating the kinetic and potential energies of the
particle with

1
2

mv2 � mg�y � z�

v �
�

2g


y � z.

Let Σ denote the arc length along the curve from its lowest point to the particle.
Then, the time required for the descent is

time � � Σ�y�

0

1
v

dΣ � � y

0

1
v

dΣ
dz

� � y

0

1
v
Φ�z�dz,

where Φ�y� � dΣ/dy. The time is constant and v �


2g


y � z so we have

� y

0

Φ�z�
y � z

dz � c1,

where c1 is a constant. To use a convolution, we multiply by e�sy dy and integrate:

� �

0
e�sy � y

0

Φ�z�
y � z

dz dy � � �

0
e�syc1 dy

� �Φ ( y�1/2� � � �c1� .

Using the Convolution Theorem, we simplify to obtain

� �Φ�� �y�1/2� � c1

s
.

In[1722]:= step1 � LaplaceTransform� � y

0

Φ�z��
y � z

�z �� c1,

y,s�
Out[1722]=



Π LaplaceTransform�Φ�y	,y,s	


s
��

c1

s
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Then, � �Φ� �
c1
Πs

.

In[1723]:= step2 � Solve�step1,
LaplaceTransform�Φ�y�,y,s��

Out[1723]= ��LaplaceTransform�Φ�y	,y,s	 
 c1

Π



s

��
We use InverseLaplaceTransform to compute Φ � ��1 � c1

Πs
� � c1

Π y�1/2 �

ky�1/2.

In[1724]:= step3 � InverseLaplaceTransform�
step2��1,1,2��,s,y�

Out[1724]=
c1

Π


y

Recall that Φ�y� � dΣ/dy represents arc length. Then, Φ�y� � dΣ/dy �
�

1 � �dx/dy�2

and substitution of Φ � ky�1/2 into this equation gives us�
1 � �dx

dy
�2

� ky�1/2 or 1 � �dx
dy

�2

�
k2

y
.

We solve this equation for dx/dy to obtain
dx
dy

�

�
k2

y
� 1. With the substitution

y � k2 sin2 Θ we obtain

dx �

�
k2

k2 sin2 Θ
� 1  2k2 sin Θ cos Θ dΘ �

�
k2 �1 � sin2 Θ�

k2 sin2 Θ
 2k2 sin Θ cos Θ dΘ

�
cos Θ
sin Θ

 2k2 sin Θ cos Θ dΘ � 2k2 cos Θ dΘ

and integration results in x�Θ� � 1
2 k2 �2Θ � sin 2Θ��C1. To find C1, we apply the initial

condition x�0� � 0 to see that C1 � 0 and x�Θ� � 1
2 k2 �2Θ � sin 2Θ�.

In[1725]:= x�Θ ,k � � � 2k2Cos�Θ�2 �Θ

Out[1725]= 2 k2 �Θ
2
�
1

4
Sin�2 Θ	�

Using the identity sin2 Θ � 1
2 �1 � cos 2Θ� yields y�Θ� � k2 sin2 Θ � 1

2 k2 �1 � cos 2Θ�.

In[1726]:= y�theta ,k � � kˆ2 Sin�Θ�ˆ2

Out[1726]= k2 Sin�Θ	2

We use ParametricPlot to graph
�		

		
�

x � x�Θ�

y � y�Θ�
, �Π/2 � Θ � 0 for various values
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Figure 8-25 Increasing k increases the length of the curve

of k in Figure 8-25.

In[1727]:= somegraphs �
Map�ParametricPlot�
�x�Θ,#�,y�Θ,#�	,
�Θ,�Π/2,0	,
DisplayFunction� > Identity�&,
�0.25,0.5,0.75,1,2,3	�

In[1728]:= toshow � Partition�somegraphs,3�

In[1729]:= Show�GraphicsArray�toshow��

The graphs illustrate that increasing the value of k increases the length of the curve.
The time is independent of the choice of y (that is, the choice of Θ). Therefore,

time � � y

0

Φ�z�
y � z

dz � � y

0

ky�1/2
y � z

dz � �2k

6777777778

�
y � z

y

9::::::::;

y

0

� �2k  �1 � 2k.

8.7 Laplace Transform Methods for
Systems

In many cases, Laplace transforms can be used to solve initial-value problems that
involve a system of linear differential equations. This method is applied in much
the same way that it was in solving initial-value problems involving higher-order
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differential equations. In the case of systems of differential equations, however, a
system of algebraic equations is obtained after taking the Laplace transform of
each equation. After solving the algebraic system for the Laplace transform of
each of the unknown functions, the inverse Laplace transform is used to find each
unknown function in the solution of the system.

EXAMPLE 8.7.1: Solve X� � �0 1
1 0

�X � � sin t
2 cos t

� subject to X�0� � �2
1
�.

SOLUTION: Let X�t� � �x�t�
y�t�

�. Then, we can rewrite this initial-value

problem as
�				

				
�

x� � y � sin t

y� � x � 2 cos t

x�0� � 2, y�0� � 0.

In[1730]:= Clear�x,y�

sys � �x��t� �� y�t� � Sin�t�,
y��t� �� x�t� � 2 Cos�t�	

Taking the Laplace transform of both sides of each equation yields the
system

�			

			
�

sX�s� � x�0� � Y �s� �
1

s2 � 1
sY �s� � y�0� � X�s� �

2s
s2 � 1

In[1731]:= step1 � LaplaceTransform�sys,t,s�

Out[1731]= �s LaplaceTransform�x�t	,t,s	 � x�0	 ��
1

1 � s2
� LaplaceTransform�y�t	,t,s	,

s LaplaceTransform�y�t	,t,s	 � y�0	 ��

2 s

1 � s2
� LaplaceTransform�x�t	,t,s	�

and applying the initial condition results in

�			

			
�

sX�s� � Y �s� �
1

s2 � 1
� 2

�X�s� � sY �s� �
2s

s2 � 1
.
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In[1732]:= step2 � step1 /. �x�0�� > 2,y�0�� > 1	

Out[1732]= � � 2 � s LaplaceTransform�x�t	,t,s	 ��

1

1 � s2
� LaplaceTransform�y�t	,t,s	,

�1 � s LaplaceTransform�y�t	,t,s	 ��

2 s

1 � s2
� LaplaceTransform�x�t	,t,s	�

We now use Solve to solve this system of algebraic equations for X�s�
and Y �s�.

In[1733]:= step3 � Solve�step2,
� LaplaceTransform�x�t�,t,s�,
LaplaceTransform�y�t�,t,s�	�

Out[1733]= ��LaplaceTransform�x�t	,t,s	 

�
�1 � 5 s � s2 � 2 s3

��1 � s2� �1 � s2�
,

LaplaceTransform�y�t	,t,s	 


�
�3 � s � 4 s2 � s3

��1 � s2� �1 � s2�
��

We find x�t� and y�t� with InverseLaplaceTransform.

In[1734]:= x�t � �

InverseLaplaceTransform�
�
�1 � 5s � s2 � 2s3

��1 � s2� �1 � s2�
,s,t�//Simplify

y�t � �

InverseLaplaceTransform�
�

�3 � s � 4s2 � s3

��1 � s2� �1 � s2�
,s,t�//Simplify

Out[1734]=
1

4
�5 ��t � 9 �t � 6 Cos�t	�

Out[1734]=
1

4
��5 ��t � 9 �t � 2 Sin�t	�

Last, we graph x�t� and y�t� in Figure 8-26 (a) and
�		

		
�

x � x�t�

y � y�t�
in Fig-

ure 8-26 (b).

In[1735]:= Plot��x�t�,y�t�	,�t,�2,3	,
PlotRange� > ��1,4	,AspectRatio� > 1,
PlotStyle� > �GrayLevel�0�,
GrayLevel�0.5�	�



694 Chapter 8 Laplace Transform Methods

-2 -1 1 2 3

-1

1

2

3

4

2 4 6 8 10

-4

-2

2

4

(a) (b)

Figure 8-26 (a) x�t� (in black) and y�t� (in gray). (b) Parametric plot of x versus y

In[1736]:= ParametricPlot��x�t�,y�t�	,�t,�2,3	,
PlotRange� > ��0,10	,��5,5		,
AspectRatio� > 1�

In some cases, systems that involve higher-order differential equations can be
solved with Laplace transforms.

EXAMPLE 8.7.2: Solve

�				

				
�

x�� � �2x � 4y � cos t

y�� � �x � 2y � sin t

x�0� � x��0� � y�0� � y��0� � 0.

SOLUTION: After defining the system of equations in sys, we take
the Laplace transform of each equation.

In[1737]:= Clear�x,y,t�

In[1738]:= sys � �x���t� �� �2x�t� � 4y�t� � Cos�t�,
y���t� �� �x�t� � 2y�t� � Sin�t�	

Out[1738]= �x���t	 �� �Cos�t	 � 2 x�t	 � 4 y�t	,
y���t	 �� Sin�t	 � x�t	 � 2 y�t	
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In[1739]:= step1 � LaplaceTransform�sys,t,s�

Out[1739]= �s2 LaplaceTransform�x�t	,t,s	
�s x�0	 � x��0	 �� �

s

1 � s2

�2 LaplaceTransform�x�t	,t,s	

�4 LaplaceTransform�y�t	,t,s	,

s2 LaplaceTransform�y�t	,t,s	

�s y�0	 � y��0	 ��
1

1 � s2

�LaplaceTransform�x�t	,t,s	

�2 LaplaceTransform�y�t	,t,s	�
We then apply the initial conditions and solve the resulting algebraic
system of equations for X�s� and Y �s�.

In[1740]:= step2 �
step1 /. �x�0�� > 0,x��0�� > 0,

y�0�� > 0,y��0�� > 0	

Out[1740]= �s2 LaplaceTransform�x�t	,t,s	 �� � s

1 � s2

�2 LaplaceTransform�x�t	,t,s	

�4 LaplaceTransform�y�t	,t,s	,

s2 LaplaceTransform�y�t	,t,s	 ��
1

1 � s2

�LaplaceTransform�x�t	,t,s	

�2 LaplaceTransform�y�t	,t,s	�
In[1741]:= step3 �

Solve�step2,
� LaplaceTransform�x�t�,t,s�,
LaplaceTransform�y�t�,t,s�	�//

Simplify

Out[1741]= ��LaplaceTransform�x�t	,t,s	 

�

4 � 2 s � s3

s2 �4 � 5 s2 � s4�
,

LaplaceTransform�y�t	,t,s	 


2 � s � s2

4 s2 � 5 s4 � s6
��

Finally, we use InverseLaplaceTransform to compute
x�t� � ��1 �X�s�� and y�t� � ��1 �Y �s��.
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In[1742]:= x�t � � InverseLaplaceTransform�
step3��1,1,2��,s,t�

Out[1742]= �
1

2
� t �

1

3
�Cos�t	 � 4 Sin�t	�

�
1

6
�Cos�2 t	 � Sin�2 t	�

In[1743]:= y�t � � InverseLaplaceTransform�
step3��1,2,2��,s,t�

Out[1743]=
1

4
�
t

2
�
1

3
��Cos�t	 � Sin�t	�

�
1

12
�Cos�2 t	 � Sin�2 t	�

We see that the initial conditions are satisfied by graphing x�t� and y�t�

in Figure 8-27 (a) and
�		

		
�

x � x�t�

y � y�t�
in Figure 8-27 (b).

In[1744]:= Plot��x�t�,y�t�	,�t,�Π,4Π	,
PlotRange 
 ��3 Π,2Π	,AspectRatio 
 1,
PlotStyle 

�GrayLevel�0�,GrayLevel�0.5�	�

In[1745]:= ParametricPlot��x�t�,y�t�	,�t,�Π,4Π	,
PlotRange 
 ���12,3	,��3,12		,
AspectRatio 
 1�
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Figure 8-27 (a) x�t� (in black) and y�t� (in gray). (b) Parametric plot of x versus y
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Laplace transform methods are especially useful in solving problems that involve
piecewise-defined, periodic, or impulse functions.

EXAMPLE 8.7.3: Solve

�				

				
�

x� � y � 3Δ�t � Π�

y� � � 1
4 x � 6Δ�t � 2Π�

x�0� � 1, y�0� � �1.

SOLUTION: We proceed in the exact same manner as in the previous
examples. After defining the system of equations,

In[1746]:= Clear�x,y,t�

sys � �x��t� �� y�t� � 3 DiracDelta�t � Π�,
y��t� �� �x�t� � 6 DiracDelta�t � 2Π�	

Out[1746]= �x��t	 �� 3 DiracDelta�Π � t	 � y�t	,
y��t	 �� 6 DiracDelta�2 Π � t	 � x�t	

we use LaplaceTransform to compute the Laplace transform of each
equation

In[1747]:= step1 � LaplaceTransform�sys,t,s�

Out[1747]= �s LaplaceTransform�x�t	,t,s	 � x�0	 ��

3 ��Π s � LaplaceTransform�y�t	,t,s	,
s LaplaceTransform�y�t	,t,s	 � y�0	 ��

6 ��2 Π s � LaplaceTransform�x�t	,t,s	

and apply the initial conditions.

In[1748]:= step2 � step1 /. �x�0�� > 1,y�0�� > �1	

Out[1748]= ��1 � s LaplaceTransform�x�t	,t,s	 ��

3 ��Π s � LaplaceTransform�y�t	,t,s	,
1 � s LaplaceTransform�y�t	,t,s	 ��

6 ��2 Π s � LaplaceTransform�x�t	,t,s	

We then solve the resulting algebraic system of equations for X�s� �
� �x�t�� and Y �s� � � �y�t�� and use InverseLaplaceTransform to
compute x�t� and y�t�.

In[1749]:= step3 � Solve�step2,
� LaplaceTransform�x�t�,t,s�,
LaplaceTransform�y�t�,t,s�	�
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Out[1749]= ��LaplaceTransform�x�t	,t,s	 

��2 Π s �6 � �2 Π s � 3 �Π s s � �2 Π s s�

1 � s2
,

LaplaceTransform�y�t	,t,s	 


�
�1 � 3 ��Π s � �1 � 6 ��2 Π s� s

�1 � s2
��

In[1750]:= x�t � � InverseLaplaceTransform�
step3��1,1,2��,s,t�

Out[1750]= Cos�t	 � Sin�t	 � 6 Sin�t	 UnitStep��2 Π � t	

�3 Cos�t	 UnitStep��Π � t	

In[1751]:= y�t � � InverseLaplaceTransform�
step3��1,2,2��,s,t�

Out[1751]= �Cos�t	 � Sin�t	 � 6 Cos�t	 UnitStep��2 Π � t	

�3 Sin�t	 UnitStep��Π � t	

We see that the initial conditions are satisfied by graphing x�t� and y�t�

in Figure 8-28 (a) and
�		

		
�

x � x�t�

y � y�t�
in Figure 8-28 (b).

In[1752]:= Plot��x�t�,y�t�	,�t,0,4Π	,
PlotRange 
 ��2 Π,2Π	,AspectRatio 
 1,
PlotStyle 
 �GrayLevel�0�,GrayLevel�0.5�	�

2 4 6 8 10 12

-6

-4

-2

2

4

6

-6 -4 -2 2 4 6

-6

-4

-2

2

4

6

(a) (b)

Figure 8-28 (a) x�t� (in black) and y�t� (in gray). (b) Parametric plot of x versus y
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In[1753]:= ParametricPlot��x�t�,y�t�	,�t,0,4Π	,
PlotRange 
 ���2 Π,2Π	,��2 Π,2Π		,
AspectRatio 
 1�

EXAMPLE 8.7.4: Solve

�				

				
�

x� � �17x � f �t�

y� � 1
4 x � y � f �t�

x�0� � y�0� � 0

where f �t� �
�		

		
�

1 � t, 0 � t < 1

3, t " 1.

SOLUTION: We first rewrite f �t� in terms of the unit step function:

f �t� �
�		

		
�

1 � t, 0 � t < 1

3, t " 1
� �1 � t� �1 ���t � 1�� � 3��t � 1�.

Then, we define and graph f �t� in Figure 8-29.

In[1754]:= Clear�x,y,t,f�

f�t � � �1 � t��1 � UnitStep�t � 1��
�3UnitStep�t � 1�

Out[1754]= �1�t��1�UnitStep��1�t	��3UnitStep��1�t	

In[1755]:= Plot�f�t�,�t,0,4	,PlotRange 
 �0,4	,
AspectRatio 
 1�

To solve the initial-value problem, we proceed as in the previous exam-
ples. First, we define the system of equations.

In[1756]:= sys � 
x��t� �� �17 y�t� � f�t�,
y��t� ��

x�t�

4
� y�t� � f�t��

Then, we compute the Laplace transform of each equation,

In[1757]:= step1 � LaplaceTransform�sys,t,s�
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Figure 8-29 A piecewise-defined forcing function

Out[1757]= �s LaplaceTransform�x�t	,t,s	 � x�0	 ��
1

s2
�
1

s
�
2 ��s

s
�
��s �1 � s�

s2

�17 LaplaceTransform�y�t	,t,s	,
s LaplaceTransform�y�t	,t,s	 � y�0	 ��

�
1

s2
�
1

s
�
2 ��s

s
�
��s �1 � s�

s2

�
1

4
LaplaceTransform�x�t	,t,s	

�LaplaceTransform�y�t	,t,s	�
apply the initial conditions,

In[1758]:= step2 � step1 /. �x�0�� > 0,y�0�� > 0	

Out[1758]= �s LaplaceTransform�x�t	,t,s	 ��
1

s2
�
1

s
�
2 ��s

s
�
��s �1 � s�

s2

�17 LaplaceTransform�y�t	,t,s	,
s LaplaceTransform�y�t	,t,s	 ��

�
1

s2
�
1

s
�
2 ��s

s
�
��s �1 � s�

s2

�
1

4
LaplaceTransform�x�t	,t,s	

�LaplaceTransform�y�t	,t,s	�
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and solve the resulting algebraic system of equations for X�s� � � �x�t��
and Y �s� � � �y�t��.

In[1759]:= step3 � Solve�step2,
�LaplaceTransform�x�t�,t,s�,
LaplaceTransform�y�t�,t,s�	�

Out[1759]= ��LaplaceTransform�x�t	,t,s	 

4 ��s �18 � s� ��1 � �s � s � �s s�

s2 �17 � 4 s � 4 s2�
,

LaplaceTransform�y�t	,t,s	 


�
��s ��1 � 4 s� ��1 � �s � s � �s s�

s2 �17 � 4 s � 4 s2�
��

The solution is obtained with InverseLaplaceTransform.

In[1760]:= x�t � � InverseLaplaceTransform�
step3��1,1,2��,s,t�//Simplify

Out[1760]=
1

1156
���2 ��� 1

2 �2 �� t ��2 � ���2008 � 1437 ��
��2008 � 1437 �� �4 � t

�16 �
� 1

2 �2 �� t
�251 � 306 t��

���2888 � 791 �� � 1
2 �4 � � �2888 � 791 ��

��
1
2 �4 � t � 16 �

2 ��� 1
2 �2 �� t

��667 � 306 t��
�UnitStep��1 � t	��

In[1761]:= y�t � � InverseLaplaceTransform�
step3��1,2,2��,s,t�//Simplify

Out[1761]=
1

2312
���2 ��� 1

2 �2 �� t ��2 � ��220 � 557 ��
��220 � 557 �� �4 � t

�8 �
� 1

2 �2 �� t
��55 � 17 t��

����356 � 633 �� � 1
2 �4 � � �356 � 633 ��

��
1
2 �4 � t � �

2 ��� 1
2 �2 �� t

�848 � 136 t��
�UnitStep��1 � t	��

Last, we confirm that the initial conditions are satisfied by graphing x�t�

and y�t� in Figure 8-30 (a) and
�		

		
�

x � x�t�

y � y�t�
in Figure 8-30 (b).
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Figure 8-30 (a) x�t� (in black) and y�t� (in gray). (b) Parametric plot of x versus y

In[1762]:= Plot��x�t�,y�t�	,�t,0,2	,
PlotStyle� > �GrayLevel�0�,GrayLevel�0.5�	�

In[1763]:= ParametricPlot��x�t�,y�t�	,�t,0,2	�

EXAMPLE 8.7.5: Solve

�				

				
�

x� � 2x � 3y � 0

y� � x � 6y � f �t�

x�0� � 1, y�0� � 0

where f �t� �

�				

				
�

0, 0 � t < 1

1, 1 � t < 2

2, 2 � t < 3
and f �t� � f �t � 3�, t " 3.

SOLUTION: We begin by defining and graphing f �t� in Figure 8-31.

In[1764]:= Clear�x,y,t�

In[1765]:= Clear�f�

f�t � �� 0/0 , t < 1

f�t � �� 1/1 , t < 2

f�t � �� 2/2 , t < 3

f�t � �� f�t � 3�/t � 3

In[1766]:= Plot�f�t�,�t,0,9	,PlotRange� > ��1,8	,
AspectRatio� > 1�
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Figure 8-31 A piecewise-defined periodic forcing function

The Laplace transform of the periodic function f �t� is given by equation
(8.15). We use Integrate and Simplify to find � � f �t��, naming the
result lapf.

In[1767]:= lapf � Simplify

�� 2

1
Exp��s t��t � � 3

2
2 Exp��s t��t

1 � Exp��3 s�
�

Out[1767]=
2 � �s

s � �s s � �2 s s

Now we compute the Laplace transform of x� � 2x � 3y � 0

In[1768]:= leq1 � LaplaceTransform�
x��t� � 2x�t� � 3y�t� �� 0,t,s�
/. �x�0�� > 1,y�0�� > 0	

Out[1768]= �1 � 2 LaplaceTransform�x�t	,t,s	
�s LaplaceTransform�x�t	,t,s	
�3 LaplaceTransform�y�t	,t,s	 �� 0

and y� � x � 6y � f �t�. In each case, we apply the initial conditions
as well.

In[1769]:= leq2 � LaplaceTransform�y��t� � x�t� � 6y�t�,
t,s� �� lapf /. �x�0�� > 1,y�0�� > 0	
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Out[1769]= �LaplaceTransform�x�t	,t,s	
�6 LaplaceTransform�y�t	,t,s	
�s LaplaceTransform�y�t	,t,s	 ��

2 � �s

s � �s s � �2 s s

We then use Solve to solve this system of equations for X�s� and Y �s�.

In[1770]:= Solve��leq1,leq2	,
�LaplaceTransform�x�t�,t,s�,
LaplaceTransform�y�t�,t,s�	�

Out[1770]= ��LaplaceTransform�x�t	,t,s	 

1

2 � s
�

3 � � 1 � �2��s� �2�s�
s��s s��2 s s

�
�2 � s� �15 � 8 s � s2�

,

LaplaceTransform�y�t	,t,s	 


�
�1 � �2��s� �2�s�

s��s s��2 s s

15 � 8 s � s2
��

Note that InverseLaplaceTransform cannot be used to compute
x�t� � ��1 �X�s�� and y�t� � ��1 �Y �s��. Instead, we use Apart to rewrite
X�s�.

In[1771]:= Apart� 1

2 � s
�

3 � � 1 �
�2e�2 s�e�s	 �2�s��1�e�2 s�e�s	 s


�2 � s� �15 � 8s � s2�

�
Out[1771]= �

3 �2 � �s�

�1 � �s � �2 s� s �3 � s� �5 � s�
�

6 � s

�3 � s� �5 � s�

InverseLaplaceTransform quickly calculates��1 � s2 � 6s � 6
s�s � 3��s � 5�

�.

In[1772]:= InverseLaplaceTransform� �6 � 6s � s2

s �3 � s� �5 � s�
,

s,t�
Out[1772]= �

2

5
�
11 ��5 t

10
�
5 ��3 t

2

To calculate ��1 � 3 �2 � e�s��1 � e�s � e�2s� s�s � 3��s � 5�
�, we first rewrite the

fraction:

3 �2 � e�s��1 � e�s � e�2s� s�s � 3��s � 5�
�

2 � e�s

1 � e�s � e�2s


3
s�s � 3��s � 5�

�
2 � e�s

1 � e�s � e�2s


1 � e�s

1 � e�s


3
s�s � 3��s � 5�

� � 2
1 � e�3s

�
e�s

1 � e�3s
�

e�2s

1 � e�3s �  3
s�s � 3��s � 5�
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and then use the geometric series
1

1 � x
� ��

n�0 xn:

� 2
1 � e�3s

�
e�s

1 � e�3s
�

e�2s

1 � e�3s �  3
s�s � 3��s � 5�

�

*++++
,
2

��
n�0

e�3ns �
��

n�0

e��3n�1�s �
��

n�0

e��3n�2�s
-....
/


3
s�s � 3��s � 5�

.

Notice that ��1 � 3
s�s � 3��s � 5�

� � 1
5 �

3
10 e�5t � 1

2 e�3t . We name this func-

tion g�t� for later use.

In[1773]:= g�t � � InverseLaplaceTransform�
3

s �3 � s� �5 � s�
,s,t�

Out[1773]= 3 � 1

15
�
��5 t

10
�
��3 t

6
�

Previously, we learned that ��1 �e�asF�s�� � f �t � a���t � a�. Thus,

�
�1
�		

		
�

*++++
,
2

��
n�0

e�3ns �
��

n�0

e��3n�1�s �
��

n�0

e��3n�2�s
-....
/


3
s�s � 3��s � 5�

=		
>		
?
�

2
��

n�0

g�t � 3n���t � 3n� �
��

n�0

g�t � �3n � 1����t � �3n � 1���

��
n�0

g�t � �3n � 2����t � �3n � 2��

and

x�t� � �
2
5
�

11
10

e�5t �
5
2

e�3t � 2
��

n�0

g�t � 3n���t � 3n�

�
��

n�0

g�t � �3n � 1����t � �3n � 1�� �
��

n�0

g�t � �3n � 2����t � �3n � 2��.

We find y�t� in the same way.

In[1774]:= Apart� �

�1 �
�2e�2 s�e�s	 �2�s��1�e�2 s�e�s	 s

15 � 8s � s2
�

Out[1774]=
1

�3 � s� �5 � s�
�

�2 � �s� �2 � s�

�1 � �s � �2 s� s �3 � s� �5 � s�
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We use InverseLaplaceTransform to see that

�
�1 � 3s � 4

s�s � 3��s � 5�
� � 4

15
�

11
10

e�5t �
5
6

e�3t

and

�
�1 �� s � 2

s�s � 3��s � 5�
� � � 2

15
�

3
10

e�5t �
1
6

e�3t .

We name the second result h�t� for later use.

In[1775]:= InverseLaplaceTransform� 4 � 3s

s �3 � s� �5 � s�
,s,t�

Out[1775]=
4

15
�
11 ��5 t

10
�
5 ��3 t

6

In[1776]:= Clear�h�

h�t � � InverseLaplaceTransform� �
�2 � s�

s �3 � s� �5 � s�
,s,t�

Out[1776]= �
2

15
�
3 ��5 t

10
�
��3 t

6

To calculate y�t� � ��1 �Y �s��, we use the results we obtained when
calculating x�t� � ��1 �X�s��.

�
�1 � 2 � e�s

1 � e�s � e�2s


��s � 2�
s�s � 3��s � 5�

� �
�
�1
�		

		
�

*++++
,
2

��
n�0

e�3ns �
��

n�0

e��3n�1�s �
��

n�0

e��3n�2�s
-....
/


��s � 2�
s�s � 3��s � 5�

=		
>		
?
�

2
��

n�0

h�t � 3n���t � 3n� �
��

n�0

h�t � �3n � 1����t � �3n � 1��

�
��

n�0

h�t � �3n � 2����t � �3n � 2��

and

y�t� �
4
15

�
11
10

e�5t �
5
6

e�3t � 2
��

n�0

h�t � 3n���t � 3n�

�
��

n�0

h�t � �3n � 1����t � �3n � 1�� �
��

n�0

h�t � �3n � 2����t � �3n � 2��.

We then graph the solution on the interval �0, 6� in Figure 8-32.
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Figure 8-32 (a) x�t� (in black) and y�t� (in gray). (b) Parametric plot of x versus y

In[1777]:= xapprox�t �

� �
2

5
�
11

10
e�5 t �

5

2
e�3 t

�2 � 6�
n�0

g�t � 3n� UnitStep�t � 3n��
�

6�
n�0

g�t � �3n � 1�� UnitStep�t � �3n � 1��

�
6�
n�0

g�t � �3n � 2�� UnitStep�t � �3n � 2��

In[1778]:= yapprox�t �

�
4

15
�
11

10
e�5 t �

5

6
e�3 t�

�2 � 6�
n�0

h�t � 3n� UnitStep�t � 3n��
�

6�
n�0

h�t � �3n � 1�� UnitStep�t � �3n � 1��

�
6�
n�0

h�t � �3n � 2�� UnitStep�t � �3n � 2��
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In[1779]:= Plot��xapprox�t�,yapprox�t�	,
�t,0,6	,
PlotStyle� > �GrayLevel�0�,GrayLevel�0.5�	,
PlotRange� > ��3,3	,AspectRatio� > 1�

In[1780]:= ParametricPlot��xapprox�t�,yapprox�t�	,
�t,0,6	,
PlotRange� > ��0,1.5	,��1,0.5		,
AspectRatio� > 1�

8.8 Applications of Laplace Transforms,
Part II

8.8.1 Coupled Spring–Mass Systems

The motion of a mass attached to the end of a spring was modeled with a second-
order linear differential equation with constant coefficients in Chapter 5. Similarly,
if a second spring and mass are attached to the end of the first mass, then the model
becomes that of a system of second-order equations. To more precisely state the
problem, let masses m1 and m2 be attached to the ends of springs S1 and S2 having
spring constants k1 and k2, respectively. Then, spring S2 is attached to the base of
mass m1.

Suppose that x�t� and y�t� represent the vertical displacement from the equilib-
rium position of springs S1 and S2, respectively. Because spring S2 undergoes both
elongation and compression when the system is in motion (due to the spring S1

and the mass m2), then according to Hooke’s law, S2 exerts the force k2�y � x� on
m2 while S1 exerts the force �k1x on m1. Therefore, the force acting on mass m1 is
the sum �k1x � k2�y � x� and that acting on m2 is �k2�y � x�. Hence, using Newton’s
second law, F � ma, with each mass, we have the system

�				

				
�

m1
d2x
dt2

� �k1x � k2�y � x�

m2
d2y
dt2

� �k2�y � x�.

(8.23)
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The initial position and velocity of the two masses m1 and m2 are given by x�0�,
x��0�, y�0�, and y��0�, respectively. If external forces F1�t� and F2�t� are applied to the
masses, the system (8.23) becomes

�				

				
�

m1
d2x
dt2

� �k1x � k2�y � x� � F1�t�

m2
d2y
dt2

� �k2�y � x� � F2�t�.

(8.24)

Therefore, the method of Laplace transforms can be used to solve problems of
this type.

EXAMPLE 8.8.1: Consider the spring–mass system with m1 � m2 � 1,
k1 � 3, and k2 � 2. Find the position functions x�t� and y�t� if x�0� � 0,
x��0� � 1, y�0� � 1, and y��0� � 0. (Assume there are no external forces.)

SOLUTION: In order to find x�t� and y�t�, we must solve the initial-
value problem

�							

							
�

d2x
dt2

� �5x � 2y

d2y
dt2

� 2x � 2y

x�0� � 0, x��0� � 1, y�0� � 1, y��0� � 0.

We use LaplaceTransform to take the Laplace transform of both
sides of each equation.

In[1781]:= eqs � �x���t� �� �5x�t� � 2y�t�,
y���t� �� 2x�t� � 2y�t�	

In[1782]:= step1 � LaplaceTransform�eqs,t,s�

Out[1782]= �s2 LaplaceTransform�x�t	,t,s	 � s x�0	
�x��0	 �� �5 LaplaceTransform�x�t	,t,s	
�2 LaplaceTransform�y�t	,t,s	,

s2 LaplaceTransform�y�t	,t,s	 � s y�0	
�y��0	 �� 2 LaplaceTransform�x�t	,t,s	
�2 LaplaceTransform�y�t	,t,s	

We then apply the initial conditions.
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In[1783]:= step2 �
step1 /. �x�0�� > 0,x��0�� > 1,
y�0�� > 1,y��0�� > 0	

Out[1783]= ��1 � s2 LaplaceTransform�x�t	,t,s	 ��
�5 LaplaceTransform�x�t	,t,s	
�2 LaplaceTransform�y�t	,t,s	,

�s � s2 LaplaceTransform�y�t	,t,s	 ��
2 LaplaceTransform�x�t	,t,s	
�2 LaplaceTransform�y�t	,t,s	

We solve this system of algebraic equations for X�s� and Y �s�with Solve.

In[1784]:= step3 �
Solve�step2,�LaplaceTransform�x�t�,t,s�,

LaplaceTransform�y�t�,t,s�	�

Out[1784]= ��LaplaceTransform�x�t	,t,s	 
 �
�2 � 2 s � s2

6 � 7 s2 � s4
,

LaplaceTransform�y�t	,t,s	 �
�2 � 5 s � s3

6 � 7 s2 � s4
��

Taking the inverse Laplace transform with InverseLaplace
Transform yields x�t� and y�t�.

In[1785]:= x�t � �

InverseLaplaceTransform� �
�2 � 2s � s2

6 � 7s2 � s4
,s,t�

Out[1785]=
1

5
�2 Cos�t	 � Sin�t	� �

2

15
�3 Cos�


6 t�
�



6 Sin�


6 t��
In[1786]:= y�t � �

InverseLaplaceTransform� �
�2 � 5s � s3

6 � 7s2 � s4
,s,t�
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Figure 8-33 (a) x�t� (in black) and y�t� (in gray). (b) Parametric plot of x versus y

Out[1786]=
2

5
�2 Cos�t	 � Sin�t	�

�
1

15
�3 Cos�


6 t� �


6 Sin�


6 t��
We graph x�t� and y�t� together in Figure 8-33 (a) and then parametri-
cally in Figure 8-33 (b). Note that y�t� starts at �0, 1� while x�t� has initial
point �0, 0�. Also, the phase plane is different from those discussed in
previous sections. One of the reasons for this is that the equations in the
system of differential equations are second-order instead of first-order.

In[1787]:= Plot��x�t�,y�t�	,�t,0,4Π	,
PlotStyle 
 �GrayLevel�0�,
GrayLevel�0.5�	�

In[1788]:= ParametricPlot��x�t�,y�t�	,�t,0,4Π	,
PlotRange 
 

 �

3

2
,
3

2
�,
 �

3

2
,
3

2
��,

AspectRatio 
 1�
We can illustrate the motion of the spring in nearly the same way as we
did in Chapter 5. First, we define the functions zigzag and spring2.
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In[1789]:= Clear�spring,zigzag,length,points,pairs�

zigzag��a ,b 	,�c ,d 	,n ,eps � ��
Module��length,points,pairs	,

length � d � b

points � Table�b � i length/n,
�i,1,n � 1	�

pairs � Table��a � ��1�ˆi eps,
points��i��	,
�i,1,n � 1	�

PrependTo�pairs,�a,b	�

AppendTo�pairs,�c,d	�

Line�pairs�
�

In[1790]:= spring2�t ,len1 ,len2 ,opts � ��
Show�Graphics�
�zigzag��0,�x�t�	,�0,len1	,20,0.025�,
PointSize�0.025�,Point��0,len1	�,
zigzag��0,�y�t� � len2	,�0,�x�t�	,
20,0.025�,

PointSize�0.075�,Point��0,�x�t�	�,
PointSize�0.05�,
Point��0,�y�t� � len2	�	�,opts,
Axes� > Automatic,
AxesStyle� > GrayLevel�0.5�,
Ticks� > None,
AspectRatio� > 1,
PlotRange� > ���1/2,1/2	,��2.2,1.2		,
DisplayFunction� > Identity�

Next, we define tvals to be a list of 16 evenly spaced numbers
between 0 and 4Π.

In[1791]:= tvals � Table�t,�t,0,4Π,4Π/15	�

Map is then used to apply spring2 to the list of numbers in tvals.

In[1792]:= graphs � Map�spring2�#,1,1�&,tvals�
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Figure 8-34 Visualizing the motion of a coupled spring–mass system

The resulting list of graphics is partitioned into four element subsets
with Partition and displayed using Show and GraphicsArray in
Figure 8-34.

In[1793]:= toshow � Partition�graphs,4�

Show�GraphicsArray�toshow��

If the option DisplayFunction->$DisplayFunction is included
in the spring2 command, we can use a Do loop to generate a set of
graphics that can then be animated as follows.

In[1794]:= Do�spring2�t,1,1,
DisplayFunction� > $DisplayFunction�,
�t,0,4,4/31	�
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8.8.2 The Double Pendulum

In a method similar to that of the simple pendulum in Chapter 5 and that of the
coupled spring–mass system, the motion of a double pendulum as shown in Fig-
ure 8-35 is modeled by the following system of equations using the approximation
sin Θ � Θ for small displacements

�				

				
�

�m1 � m2� �12 d2Θ1

dt2
� m2�1�2

d2Θ2

dt2
� �m1 � m2� �1gΘ1 � 0

m2�2
2 d2Θ2

dt2
� m2�1�2

d2Θ1

dt2
� m2�2gΘ2 � 0

(8.25)

where Θ1 represents the displacement of the upper pendulum and Θ2 that of the
lower pendulum. Also, m1 and m2 represent the mass attached to the upper and
lower pendulums, respectively, while the length of each is given by �1 and �2.
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Figure 8-35 A double pendulum

EXAMPLE 8.8.2: Suppose that m1 � 3, m2 � 1, and each pendulum has
length 16. If Θ1�0� � 1, Θ1

��0� � 1, Θ2�0� � 0, and Θ2
��0� � �1, solve the

double pendulum problem using g � 32. Plot the solution.

SOLUTION: In this case, the system to be solved is

�				

				
�

4  162 d2Θ1

dt2
� 162 d2Θ2

dt2
� 4  16  32Θ1 � 0

162 d2Θ2

dt2
� 162 d2Θ1

dt2
� 16  32Θ2 � 0

which we simplify to obtain

�				

				
�

4
d2Θ1

dt2
�

d2Θ2

dt2
� 8Θ1 � 0

d2Θ2

dt2
�

d2Θ1

dt2
� 2Θ2 � 0.

In the following code, we let x�t� and y�t� represent Θ1�t� and Θ2�t�,
respectively. First, we use DSolve to solve the initial-value problem.

In[1795]:= sol �
DSolve��4 x���t� � y���t� � 8 x�t� �� 0,

x���t� � y���t� � 2 y�t� �� 0,x�0� �� 1,
x��0� �� 1,y�0� �� 0,y��0� �� �1	,
�x�t�,y�t�	,t�



716 Chapter 8 Laplace Transform Methods

Out[1795]= ��x�t	 
 1

8
�4 Cos�2 t	

�4 Cos�2 t

3

� � 3 Sin�2 t	

�


3 Sin�2 t


3
��,

y�t	 

1

4
� � 4 Cos�2 t	 � 4 Cos�2 t


3
�

�3 Sin�2 t	 �


3 Sin�2 t


3
����

We define sys to be the system of equations and use LaplaceTransform
to compute the Laplace transform of each equation.

In[1796]:= step1 � LaplaceTransform�sys,t,s�

Out[1796]= �8 LaplaceTransform�x�t	,t,s	

�s2 LaplaceTransform�y�t	,t,s	 � s y�0	

�4 �s2 LaplaceTransform�x�t	,t,s	
�s x�0	 � x��0	� � y��0	 �� 0,

s2 LaplaceTransform�x�t	,t,s	
�2 LaplaceTransform�y�t	,t,s	

�s2 LaplaceTransform�y�t	,t,s	
�s x�0	 � s y�0	 � x��0	 � y��0	 �� 0

Next, we apply the initial conditions and solve the resulting system of
equations for � �Θ1�t�� � X�s� and � �Θ2�t�� � Y �s�.

In[1797]:= step2 �
step1 /. �x�0�� > 1,x��0�� > 1,y�0�� > 0,

y��0�� > �1	

Out[1797]= �1 � 8 LaplaceTransform�x�t	,t,s	

�4 ��1 � s � s2 LaplaceTransform�x�t	,t,s	�

�s2 LaplaceTransform�y�t	,t,s	 �� 0,

�s � s2 LaplaceTransform�x�t	,t,s	
�2 LaplaceTransform�y�t	,t,s	

�s2 LaplaceTransform�y�t	,t,s	 �� 0

In[1798]:= step3 � Solve�step2,
� LaplaceTransform�x�t�,t,s�,
LaplaceTransform�y�t�,t,s�	�
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Out[1798]= ��LaplaceTransform�x�t	,t,s	 

�
�6 � 8 s � 3 s2 � 3 s3

16 � 16 s2 � 3 s4
,

LaplaceTransform�y�t	,t,s	 


�
�8 s � 3 s2

16 � 16 s2 � 3 s4
��

InverseLaplaceTransform is then used to find Θ1�t� and Θ2�t�.

In[1799]:= x�t � � InverseLaplaceTransform�
�
�6 � 8s � 3s2 � 3s3

16 � 16s2 � 3s4
,s,t�

Out[1799]=
1

8
�4 Cos�2 t	 � 4 Cos�2 t


3
�

�3 Sin�2 t	 �


3 Sin�2 t


3
��

In[1800]:= y�t � � InverseLaplaceTransform�
�

�8 s � 3s2

16 � 16s2 � 3s4
,s,t�

Out[1800]= �Cos�2 t	 � Cos�2 t

3

�
�
3

2
Cos�t	 Sin�t	 �

1

4



3 Sin�2 t


3
�

These two functions are graphed together in Figure 8-36 (a) and para-
metrically in Figure 8-36 (b).

In[1801]:= Plot��x�t�,y�t�	,�t,0,20	,
PlotStyle� > �GrayLevel�0�,
GrayLevel�0.5�	�

In[1802]:= ParametricPlot��x�t�,y�t�	,�t,0,20	,
PlotRange� > ���5/2,5/2	,��5/2,5/2		,
AspectRatio� > 1�

We can illustrate the motion of the pendulum as follows. First, we
define the function pen2.
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Figure 8-36 (a) Θ1�t� (in black) and Θ2�t� (in gray) as functions of t. (b) Parametric plot of
Θ1�t� versus Θ2�t�

In[1803]:= Clear�pen2�

pen2�t ,len1 ,len2 � �� Module��pt1,pt2	,
pt1 � 
len1 Cos�3 Π

2
� x�t��,

len1 Sin�3 Π
2

� x�t���
pt2 � 
len1 Cos�3 Π

2
� x�t��

�len2 Cos�3 Π
2

� y�t��,
len1 Sin�3 Π

2
� x�t��

�len2 Sin�3 Π
2

� y�t���
Show�
Graphics��Line���0,0	,pt1	�,

PointSize�0.05�,Point�pt1�,
Line��pt1,pt2	�,PointSize�0.05�,
Point�pt2�	�,Axes 
 Automatic,
Ticks 
 None,
AxesStyle 
 GrayLevel�0.5�,
PlotRange 
 ���32,32	,��34,0		,

DisplayFunction 
 Identity��
Next, we define tvals to be a list of 16 evenly spaced numbers
between 0 and 10. Map is then used to apply pen2 to the list of numbers
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Figure 8-37 The double pendulum for 16 equally spaced values of t between 0 and 10

in tvals. The resulting set of graphics is partitioned into four element
subsets and displayed using Show and GraphicsArray in Figure 8-37.

In[1804]:= tvals � Table�t,
t,0,10, 10
15

��
In[1805]:= graphs � Map�pen2�#,16,16�&,tvals�

In[1806]:= toshow � Partition�graphs,4�

In[1807]:= Show�GraphicsArray�toshow��

If the option DisplayFunction->$DisplayFunction is included
in the pen2 command, we can use a Do loop to generate a set of graph-
ics that can then be animated.

In[1808]:= Clear�t�

Do�pen2�t,16,16,
DisplayFunction� > $DisplayFunction�,
�t,0,10,10/31	�
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Application: Free Vibration of a Three-Story BuildingSources: M. L. James,
G. M. Smith, J. C. Wolford,
P. W. Whaley, Vibration of
Mechanical and Structural
Systems with Microcomputer
Applications, Harper & Row
(1989), pp. 282–286. Robert
K. Vierck, Vibration Analysis,
Second Edition,
HarperCollins (1979),
pp. 266–290.

If you have ever gone to the top of a tall building like the Sears Tower or Empire
State Building on a windy day you may have been acutely aware of the sway of
the building. In fact, all buildings sway, or vibrate, naturally. Usually, we are only
aware, if ever, of the sway of a building when we are in a very tall building or
in a building during an event like an earthquake. In some tall buildings, like the
John Hancock Building in Boston, the sway of the building during high winds is
reduced by installing a tuned mass damper at the top of the building which oscil-
lates at the same frequency as the building but out of phase. We will investigate
the sway of a three-story building and then try to determine how we would inves-
tigate the sway of a tall building.

We make two assumptions to solve this problem. First, we assume that the mass
distribution of the building can be represented by the lumped masses at the differ-
ent levels. Second, we assume that the girders of the structure are infinitely rigid in
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comparison with the supporting columns. With these assumptions, we can deter-
mine the motion of the building by interpreting the columns as springs in parallel.

Assume that the coordinates x1, x2, and x3 as well as the velocities and accelera-
tions are positive to the right. Also assume that x3 > x2 > x1.

In applying Newton’s second law of motion, recall that we have assumed that
acceleration is in the positive direction. Therefore, we sum forces in the same direc-
tion as the acceleration positively, and others negatively. With this configuration,
Newton’s second law on each of the three masses yields the following system of
differential equations

�k1x1 � k2 �x2 � x1� � m1
d2x1

dt2

�k2 �x2 � x1� � k3 �x3 � x2� � m2
d2x2

dt2

�k3 �x3 � x2� � m3
d2x3

dt2

(8.26)

which we write as

m1
d2x1

dt2
� �k1 � k2� x1 � k2x2 � 0

m2
d2x2

dt2
� k2x1 � �k2 � k3� x2 � k3x3 � 0

m3
d2x3

dt2
� k3x2 � k3x3 � 0

(8.27)

where m1, m2, and m3 represent the mass of the building on the first, second, and
third levels, and k1, k2, and k3, corresponding to the spring constants, represent the
total stiffness of the columns supporting a given floor.

If we attempt to find an exact solution with the method of Laplace transforms,
we find that each denominator of � �x1�t��, � �x2�t��, and � �x3�t�� is a positive func-
tion of s. Therefore, the roots are complex and solutions will involve sines and/or
cosines. (Here, we use x�t�, y�t�, and z�t� in the place of x1�t�, x2�t�, and x3�t�.)

In[1809]:= Clear�x,y,rule,eq1,eq2�

eq1 � m1 x
���t� � �k1 � k2� x�t� � k2 y�t� �� 0

eq2 � m2 y
���t� � k2 x�t� � �k2 � k3� y�t� � k3 z�t� �� 0

eq3 � m3 z
���t� � k3 y�t� � k3 z�t� �� 0
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In[1810]:= step1 � LaplaceTransform��eq1,eq2,eq3	,t,s�

Out[1810]= ��LaplaceTransform�y�t	,t,s	 k2
�LaplaceTransform�x�t	,t,s	 �k1 � k2�

�m1 �s
2 LaplaceTransform�x�t	,t,s	

�s x�0	 � x��0	� �� 0,
�LaplaceTransform�x�t	,t,s	 k2
�LaplaceTransform�z�t	,t,s	 k3
�LaplaceTransform�y�t	,t,s	 �k2 � k3�

�m2 �s
2 LaplaceTransform�y�t	,t,s	

�s y�0	 � y��0	� �� 0,
�LaplaceTransform�y�t	,t,s	 k3
�LaplaceTransform�z�t	,t,s	 k3
�m3 �s

2 LaplaceTransform�z�t	,t,s	

�s z�0	 � z��0	� �� 0

In[1811]:= step2 � Solve�step1,�LaplaceTransform�x�t�,t,s�,
LaplaceTransform�y�t�,t,s�,
LaplaceTransform�
z�t�,t,s�	�//Simplify

Out[1811]= ��LaplaceTransform�z�t	,t,s	 

1

k3 � s2 m3
�s m3 z�0	 � m3 z

��0	

��k3 ��k2 m1 �k3 � s
2 m3� �s x�0	 � x

��0	�

��k1 � k2 � s
2 m1� ��m2 �k3 � s

2 m3� �s y�0	 � y
��0	�

�k3 m3 �s z�0	 � z
��0	�������k22 �k3 � s2 m3�

��k1 � k2 � s
2 m1� ��k

2
3 � �k2 � k3 � s

2 m2�

�k3 � s
2 m3����,

LaplaceTransform�x�t	,t,s	 


�s2 m1 �s
2 m2 m3 � k3 �m2 � m3�� �s x�0	 � x

��0	�

�k2 �s
2 m3 �m1 �s x�0	 � x

��0	� � m2 �s y�0	 � y
��0	��

�k3 �m1 �s x�0	 � x
��0	� � m2 �s y�0	 � y

��0	�

�m3 �s z�0	 � z
��0	�����

�k1 �k2 �k3 � s
2 m3�

�s2 �s2 m2 m3 � k3 �m2 � m3���

�s2 �s2 m1 �s
2 m2 m3 � k3 �m2 � m3��

�k2 �s
2 �m1 � m2� m3 � k3 �m1 � m2 � m3����,

LaplaceTransform�y�t	,t,s	 


���k2 m1 �k3 � s
2 m3� �s x�0	 � x

��0	�

��k1 � k2 � s
2 m1� ��m2 �k3 � s

2 m3� �s y�0	 � y
��0	�

�k3 m3 �s z�0	 � z
��0	������k22 �k3 � s2 m3�

��k1 � k2 � s
2 m1� ��k

2
3 � �k2 � k3 � s

2 m2�

�k3 � s
2 m3�����
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Suppose that k1 � 3, k2 � 2, k3 � 1, m1 � 1, m2 � 2, and m3 � 3 and that the initial
conditions are x�0� � 0, x��0� � 1/4, y�0� � 0, y��0� � �1/2, z�0� � 0, and z��0� � 1.

In[1812]:= step3 � step2 /. �k1� > 3,k2� > 2, x�0�� > 0,k3� > 1,
m1� > 1, m2� > 2, m3� > 3,x

��0�� > 1/4,
y�0�� > 0,y��0�� > �1/2,
z�0�� > 0,z��0�� > 1	//Simplify

Out[1812]= ��LaplaceTransform�z�t	,t,s	 

57 � 76 s2 � 12 s4

12 � 90 s2 � 82 s4 � 12 s6
,

LaplaceTransform�x�t	,t,s	 


18 � 13 s2 � 6 s4

4 �6 � 45 s2 � 41 s4 � 6 s6�
,

LaplaceTransform�y�t	,t,s	 


21 � 23 s2 � 6 s4

12 � 90 s2 � 82 s4 � 12 s6
��

For these values, we use InverseLaplaceTransform to compute x�t� � ��1

�X�s��, y�t� � ��1 �Y �s��, and z�t� � ��1 �Z�s��. First, we compute x�t�. The result is
very long so we do not display it here.

Instead, we use Short to view a portion of this result. Note that several terms
are given in terms of Root. Root[p[x],k] represents

the kth root of the
polynomial equation p�x� � 0.

In[1813]:= x�t � � InverseLaplaceTransform�
18 � 13s2 � 6s4

4 �6 � 45s2 � 41s4 � 6s6�
,s,t�

In[1814]:= Short�x�t�,3�

Out[1814]=
��1� ��1��

48�8�


Root�6 � 45 #1 � 41 #12 � 6 #13&,3	

In this case, we cannot find exact solutions of the equation 6s6 � 41s4 � 45s2 � 6 � 0.
Nevertheless, we can use NRoots to approximate the solutions of this equation.

In[1815]:= NRoots�6 � 45s2 � 41s4 � 6s6 �� 0,s�
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Figure 8-38 The sway of a building is periodic

Out[1815]= s �� �7.70372 � 10�34 � 0.393222 �((

s �� �7.70372 � 10�34 � 0.393222 �((s �� 0. � 1.08402 �((

s �� 0. � 1.08402 �((s �� 7.70372 � 10�34 � 2.34598 �((

s �� 7.70372 � 10�34 � 2.34598 �

Now, we use InverseLaplaceTransform to compute y�t� � ��1 �Y �s�� and
z�t� � ��1 �Z�s��.

In[1816]:= y�t � � InverseLaplaceTransform�
21 � 23s2 � 6s4

2 �6 � 45s2 � 41s4 � 6s6�
,s,t�

In[1817]:= z�t � � InverseLaplaceTransform�
57 � 76s2 � 12s4

2 �6 � 45s2 � 41s4 � 6s6�
,s,t�

The graphs of x�t�, y�t�, and z�t� shown in Figure 8-38 indicate that they are indeed
periodic functions.

In[1818]:= px � Plot�x�t�,�t,0,200	,
DisplayFunction� > Identity�

py � Plot�y�t�,�t,0,200	,
DisplayFunction� > Identity�

pz � Plot�z�t�,�t,0,200	,
DisplayFunction� > Identity�

Show�GraphicsArray��px,py,pz	��

We can construct an outline of a three-story building and observe its vibration. The
width and height of the floors were selected arbitrarily to be 20 and 1, respectively.
See Figure 8-39.
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Figure 8-39 Visualizing the sway of a building

In[1819]:= Clear�bldg�

bldg�t ,opts � ��
Show�Graphics��Line���0,0	,�20,0		�,
PointSize�0.05�,Point��0,0	�,
Point��20,0	�,Line���0,0	,�x�t�,1		�,
Point��x�t�,1	�,Line���20,0	,
�20 � x�t�,1		�,Point��20 � x�t�,1	�,
Line���x�t�,1	,�y�t�,2		�,
Point��y�t�,2	�,
Line���20 � x�t�,1	,�20 � y�t�,2		�,
Point��20 � y�t�,2	�,
Line���y�t�,2	,�z�t�,3		�,
Point��z�t�,3	�,Line���20 � y�t�,2	,
�20 � z�t�,3		�,Point��20 � z�t�,3	�,
Line���z�t�,3	,�20 � z�t�,3		�	,opts,
Axes 
 None,Ticks 
 None,
PlotRange 
 ���2,22	,��1,4		,
DisplayFunction� > Identity��

In[1820]:= graphs � Table�bldg�t�,�t,0.1,6.1,6./24	�
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In[1821]:= toshow � Partition�graphs,5�

Show�GraphicsArray�toshow��

If you include the option DisplayFunction->$DisplayFunction in the bldg
command, you can use a Do loop and animate the resulting graphics as indicated
next.

In[1822]:= Do�bldg�t,DisplayFunction 
 $DisplayFunction�,
�t,0.,5.,5./31	�

Increasing the number of stories increases the size of the system of differential
equations. A five-story building corresponds to a system of five second-order
differential equations; a 50-story building, a system of 50 second-order differen-
tial equations, and so on.



9Eigenvalue Problems and
Fourier Series

In previous chapters, we have seen that many physical situations can be modeled
by either ordinary differential equations or systems of ordinary differential equa-
tions. However, to understand the motion of a string at a particular location and
at a particular time, the temperature in a thin wire at a particular location and a
particular time, or the electrostatic potential at a point on a plate, we must solve
partial differential equations as each of these quantities depends on (at least) two
independent variables.

Wave equation c2uxx � utt

Heat equation ut � c2uxx

Laplace’s equation uxx � uyy � 0

In Chapter 10, we introduce a particular method for solving these partial differ-
ential equations (as well as others). In order to carry out this method, however,
we introduce the necessary tools in this chapter. We begin with a discussion of
boundary-value problems and their solutions.

9.1 Boundary-Value Problems, Eigenvalue
Problems, Sturm–Liouville Problems

9.1.1 Boundary-Value Problems

In previous sections, we have solved initial-value problems. However, at this time
we will consider boundary-value problems which are solved in much the same

727
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way as initial-value problems except that the value of the function and its deriva-
tives are given at two values of the independent variable instead of one. The gen-
eral form of a second-order (two-point) boundary-value problem is

�			

			
�

a2�x�
d2y
dx2

� a1�x�
dy
dx

� a0�x�y � f �x�, a < x < b

k1y�a� � k2
dy
dx
�a� � Α, h1y�b� � h2

dy
dx
�b� � Β

(9.1)

where k1, k2, Α, h1, h2, and Β are constants and at least one of k1, k2 and at least one
of h1, h2 is not zero.

Note that if Α � Β � 0, then we say the problem has homogeneous boundary
conditions. We also consider boundary-value problems that include a parameter
in the differential equation. We solve these problems, called eigenvalue problems,
in order to investigate several useful properties associated with their solutions.

EXAMPLE 9.1.1: Solve
�		

		
�

y�� � y � 0, 0 < x < Π

y��0� � 0, y��Π� � 0.

SOLUTION: Because the characteristic equation is k2�1 � 0 with roots
k1,2 �  i, a general solution of y�� � y � 0 is y � c1 cos x � c2 sin x and it
follows that y� � �c1 sin x � c2 cos x. Applying the boundary conditions,
we have y��0� � c2 � 0. Then, y � c1 cos x. With this solution, we have
y��Π� � �c1 sin Π � 0 for any value of c1. Therefore, there are infinitely
many solutions, y � c1 cos x, of the boundary-value problem, depending
on the choice of c1. In this case, we are able to use DSolve to solve the
boundary-value problem

In[1823]:= sol � DSolve��y���x� � y�x� �� 0,y��0� �� 0
y��Π� �� 0	,y�x�,x�

Out[1823]= ��y�x	 
 C�1	 Cos�x	

We confirm that the boundary conditions are satisfied for any value of
C[1] by graphing several solutions with Plot in Figure 9-1.

In[1824]:= toplot � Table�y�x� /. sol /. C�1�� > i,
�i,�5,5	�

grays � Table�GrayLevel�i�,�i,0,0.5,0.5/10	�

In[1825]:= Plot�Evaluate�toplot�,�x,0,Π	,
PlotStyle 
 grays�
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Figure 9-1 The boundary-value problem has infinitely many solutions

From the result in the example, we notice a difference between initial-value problems
and boundary-value problems: an initial-value problem (that meets the hypotheses of
the Existence and Uniqueness Theorem) has a unique solution while a boundary- See Chapter 4 and

Theorem 2.value problem may have one solution, more than one solution, or no solution.

EXAMPLE 9.1.2: Solve
�		

		
�

y�� � y � 0, 0 < x < Π

y��0� � 0, y��Π� � 1.

SOLUTION: Using the general solution obtained in the previous
example, we have y � c1 cos x � c2 sin x. As before, y��0� � c2 � 0, so
y � c1 cos x. However, because y��Π� � �c1 sin Π � 0 # 1, the boundary
conditions cannot be satisfied with any choice of c1. Therefore, there is
no solution to the boundary-value problem.

As indicated in the general form of a boundary-value problem, the boundary con-
ditions in these problems can involve the function and its derivative. However,
this modification to the problem does not affect the method of solution.

EXAMPLE 9.1.3: Solve
�		

		
�

y�� � y � 0, 0 < x < 1

y��0� � 3y�0� � 0, y��1� � y�1� � 1.
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SOLUTION: The characteristic equation is k2 � 1 � 0 with roots
k1,2 �  1. Hence, a general solution is y � c1ex � c2e�x with deriva-
tive y� � c1ex � c2e�x. Applying y��0� � 3y�0� � 0 yields y��0� � 3y�0� �
c1 � c2 � 3 �c1 � c2� � 4c1 � 2c2 � 0. Because y��1� � y�1� � 1,

y��1� � y�1� � c1e1 � c2e�1 � c1e1 � c2e�1 � 2c1e � 1,

so c1 �
1
2e

and c2 � �
1
e

. Thus, the boundary-value problem has the

unique solution y �
1
2e

ex �
1
e

e�x � 1
2 ex�1 � e�x�1, which we confirm with

Mathematica. See Figure 9-2.

In[1826]:= sol � DSolve��y���x� � y�x� �� 0,y��0� � 3y�0� �� 0,
y��1� � y�1� �� 1	,y�x�,x�

Out[1826]= ��y�x	 
 1

2
��1�x ��2 � �2 x���

In[1827]:= Plot�y�x�/.sol,�x,0,1	,
AspectRatio 
 Automatic�

9.1.2 Eigenvalue Problems

We now consider eigenvalue problems, boundary-value problems that include
a parameter. Values of the parameter for which the boundary-value problem has
a nontrivial solution are called eigenvalues of the problem. For each eigenvalue,
the nontrivial solution that satisfies the problem is called the corresponding eigen-
function.If a value of the parameter

leads to the trivial solution,
then the value is not
considered an eigenvalue of
the problem.

0.2 0.4 0.6 0.8 1

-0.1

0.1

0.2

0.3

Figure 9-2 The boundary-value problem has a unique solution
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In Example 9.1.5 we solve the
same differential equation but
use the boundary conditions
y��0� � 0 and y��p� � 0.

EXAMPLE 9.1.4: Solve the eigenvalue problem y�� � Λy � 0, 0 < x < p,
subject to y�0� � 0 and y�p� � 0.

SOLUTION: Notice that the differential equation in this problem
differs from those solved earlier because it includes the parameter Λ.
However, we solve it in a similar manner by solving the characteristic
equation k2 � Λ � 0. Of course, the values of k depend on the value of
the parameter Λ. Hence, we consider the following three cases.

1. (Λ � 0) In this case, the characteristic equation is k2 � 0 with
roots k1,2 � 0, which indicates that a general solution is y �
c1x � c2. Application of the boundary condition y�0� � 0 yields
y�0� � c1  0 � c2 � 0, so c2 � 0. For the second condition, y�p� �
c1 p � 0, so c1 � 0 and y � 0. Because we obtain the trivial
solution, Λ � 0 is not an eigenvalue.

2. (Λ < 0) To represent Λ as a negative value, we let Λ � �Μ2 < 0.
Then, the characteristic equation is k2 � Μ2 � 0, so k1,2 �  Μ.
Therefore, a general solution is, y � c1eΜx � c1e�Μx (or y �
c1 cosh Μx � c1 sinh Μx). Substitution of the boundary condition
y�0� � 0 yields y�0� � c1 � c2 � 0, so c2 � �c1. Because y�p� � 0
indicates that y � c1eΜp � c1e�Μp � 0, substitution gives us
the equation y�p� � c1eΜp � c1e�Μp � c1 �eΜp � e�Μp�. Notice that
eΜp � e�Μp � 0 only if eΜp � e�Μp which can only occur if Μ � 0
or p � 0. If Μ � 0, then Λ � �Μ2 � �02 � 0 which contra-
dicts the assumption that Λ < 0. We also assumed that p > 0, so
eΜp�e�Μp > 0. Hence, y�p� � c1 �eΜp � e�Μp� implies that c1 � 0, so
c2 � �c1 � 0 as well. Because Λ < 0 leads to the trivial solution
y � 0, there are no negative eigenvalues.

3. (Λ > 0) To represent Λ as a positive value, we let Λ � Μ2 >
0. Then, we have the characteristic equation k2 � Μ2 � 0 with
complex conjugate roots k1,2 �  Μi. Thus, a general solution is
y � c1 cos Μx� c2 sin Μx. Because y�0� � c1 cos Μ 0� c2 sin Μ 0 � c1,
the boundary condition y�0� � 0 indicates that c1 � 0. Hence,
y � c2 sin Μx. Application of y�p� � 0 yields y�p� � c2 sin Μp, so
either c2 � 0 or sin Μp � 0. Selecting c2 � 0 leads to the trivial
solution that we want to avoid, so we determine the values of
Μ that satisfy sin Μp � 0. Because sin nΠ � 0 for integer values
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of n, sin Μp � 0 if Μp � nΠ, n � 1, 2, . . . Solving for Μ, we have
Μ � nΠ/ p, so the eigenvalues are

Λ � Λn � Μ2 � �nΠ
p

�2

, n � 1, 2, . . . .

Notice that the subscript n is used to indicate that the parameter
depends on the value of n. (Notice also that we omit n � 0,
because the value Μ � 0 was considered in Case 1.) For each
eigenvalue, the corresponding eigenfunction is obtained by
substitution into y � c2 sin Μx. Because c2 is arbitrary, we choose
c2 � 1. Therefore, the eigenvalue Λn � �nΠ/ p�2, n � 1, 2, . . . has
corresponding eigenfunction

y�x� � yn�x� � sin
nΠx

p
, n � 1, 2, . . . .

We did not consider negative values of n because sin ��nΠx/ p� �
� sin �nΠx/ p�; the negative sign can be taken into account in the
constant; we do not obtain additional eigenvalues or eigen-
functions by using n � �1, �2, . . . .

We will find the eigenvalues and eigenfunctions in Example 9.1.4 quite useful in
future sections. The following eigenvalue problem will be useful as well.

In Example 9.1.4 we solve the
same differential equation but
use the boundary conditions
y�0� � 0 and y�p� � 0.

EXAMPLE 9.1.5: Solve y�� � Λy � 0, 0 < x < p, subject to y��0� � 0 and
y��p� � 0.

SOLUTION: Notice that the only difference between this problem and
that in Example 9.1.4 is in the boundary conditions. Again, the charac-
teristic equation is k2 � Λ � 0, so we must consider the three cases Λ � 0,
Λ < 0, and Λ > 0. Note that a general solution in each case is the same
as that obtained in Example 9.1.4. However, the final results may differ
due to the boundary conditions.

1. (Λ � 0) Because y � c1x � c2, y� � c1. Therefore, y��0� � c1 � 0,
so y � c2. Notice that this constant function satisfies y��p� � 0
for all values of c2. Hence, if we choose c2 � 1, then Λ � 0 is an
eigenvalue with corresponding eigenfunction y � y0�x� � 1.

2. (Λ < 0) If Λ � �Μ2 < 0, then y � c1eΜx � c2e�Μx and y� � c1ΜeΜx �
c2Μe�Μx. Applying the first condition results in y��0� � c1Μ�c2Μ �
0, so c1 � c2. Therefore, y��p� � c1ΜeΜp � c1Μe�Μp=0 which is not
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possible unless c1 � 0, because Μ # 0 and p # 0. Thus, c1 �
c2 � 0, so y � 0. Because we have the trivial solution, there are
no negative eigenvalues.

3. (Λ > 0) By letting Λ � Μ2, y � c1 cos Μx � c2 sin Μx and y� �
�c1Μ sin Μx � c2Μ cos Μx. Hence, y��0� � c2Μ � 0, so c2 � 0. Con-
sequently, y��p� � �c1Μ sin Μp � 0 which is satisfied if Μp � nΠ,
n � 1, 2, . . . Therefore, the eigenvalues are

Λ � Λn � �nΠ
p

�2

, n � 1, 2, . . . .

Note that we found c2 � 0 in y � c1 cos Μx � c2 sin Μx, so the
corresponding eigenfunctions are

y � yn � cos
nΠx

p
, n � 1, 2, . . .

if we choose c1 � 1.

EXAMPLE 9.1.6: Consider the eigenvalue problem y�� �Λy � 0, y�0� � 0,
y�1� � y��1� � 0. (a) Show that the positive eigenvalues Λ � Μ2 satisfy the
relationship Μ � � tan Μ. (b) Approximate the first eight positive eigen-
values. Notice that for larger values of Μ, the eigenvalues are approxi-
mately the vertical asymptotes of y � tan Μ, so Λn � ��2n � 1�Π/2�2, n � 1,
2, . . . .

SOLUTION: In order to solve the eigenvalue problem, we consider
the three cases.

1. (Λ � 0) The problem y�� � 0, y�0� � 0, y�1� � y��1� � 0 has the
solution y � 0, so Λ � 0 is not an eigenvalue.

In[1828]:= DSolve��y���x� �� 0,y�0� �� 0,
y�1� � y��1� �� 0	,y�x�,x�

Out[1828]= ��y�x	 
 0

2. (Λ < 0) Similarly, y�� � Μ2y � 0, y�0� � 0, y�1� � y��1� � 0 has
solution y � 0, so there are no negative eigenvalues.

In[1829]:= DSolve��y���x� � Μˆ2 y�x� �� 0,y�0� �� 0,
y�1� � y��1� �� 0	,y�x�,x�

Out[1829]= ��y�x	 
 0
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Figure 9-3 The eigenvalues are the x-coordinates of the points of intersection of y � x and
y � � tan x

3. (Λ > 0) If Λ � Μ2 > 0, we solve y�� � Μ2y � 0, y�0� � 0, y�1� � y��1� �
0. In this case, the result returned by DSolve is incorrect.

In[1830]:= DSolve��y���x� � Μˆ2 y�x� �� 0,y�0� �� 0,
y�1� � y��1� �� 0	,y�x�,x�

Out[1830]= ��y�x	 
 0

A general solution of y�� � Μ2y � 0 is y � A cos Μx � B sin Μx. Applying
y�0� � 0 indicates that A � 0, so y � B sin Μx. Applying y�1� � y��1� � 0
where y� � ΜB cos Μx yields B sin Μ � ΜB cos Μ � 0. Because we want to
avoid requiring that B � 0, we note that this condition is satisfied if
� sin Μ � Μ cos Μ or � tan Μ � Μ. To approximate the first eight positive
roots of this equation, we graph y � � tan x and y � x simultaneously
in Figure 9-3. (We only look for positive roots because tan��Μ� � � tan Μ,
meaning that no additional eigenvalues are obtained by considering
negative values of Μ.) The eigenfunctions of this problem are y � sin Μx
where Μ satisfies � tan Μ � Μ.

In[1831]:= Plot���Tan�x�,x	,�x,0,24	,
PlotRange 
 �0,24	,PlotStyle 
 �GrayLevel�0�,
Dashing��0.01	�	,AspectRatio 
 1�

In Figure 9-3, notice that roots are to the right of the vertical asymp-
totes of y � � tan x which are x � �2n � 1�Π/2, n any integer. We use
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FindRoot to obtain approximations to the roots using initial guesses
near the asymptotes. Here, we guess 0.1 unit to the right of �2n � 1�Π/2
for n � 1, 2, . . . , 8.

In[1832]:= kvals � Table�FindRoot� � Tan�x� �� x,
x, �2n � 1� Π

2
� 0.1��,�n,1,8	�

Out[1832]= ��x 
 2.02876,�x 
 4.91318,�x 
 7.97867,
�x 
 11.0855,�x 
 14.2074,�x 
 17.3364,
�x 
 20.4692,�x 
 23.6043

Therefore, the first eight roots are approximately 2.02876, 4.91318,
7.97867, 11.0855, 14.2074, 17.3364, 20.4692, and 23.6043. As x increases,
the roots move closer to the value of x at the vertical asymptotes of
y � � tan x. We can compare the two approximations by finding a for
the first eight vertical asymptotes, x � a.

In[1833]:= Table�N��2n � 1� Π
2

�,�n,1,8	�
Out[1833]= �1.5708,4.71239,7.85398,10.9956,14.1372,

17.2788,20.4204,23.5619

The first eight eigenvalues are approximated by squaring the ele-
ments of kvals. We call this list evals.

In[1834]:= evals � Table�kvals��j,1,2��ˆ2,�j,1,8	�

Out[1834]= �4.11586,24.1393,63.6591,122.889,201.851,
300.55,418.987,557.162

9.1.3 Sturm–Liouville Problems

Because of the importance of eigenvalue problems, we express these problems in
the general form

a2�x�y�� � a1�x�y� � �a0�x� � Λ� y � 0, a < x < b, (9.2)

where a2�x� # 0 on �a, b� and the boundary conditions at the endpoints x � a and
x � b can be written as

k1y�a� � k2y��a� � 0 and h1y�b� � h2y��b� � 0 (9.3)

for the constants k1, k2, h1, and h2 where at least one of h1, h2 and at least one of k1,
k2 is not zero. Equation (9.2) can be rewritten by letting

p�x� � e� a1�x�/a2�x� dx, q�x� �
a0�x�
a2�x�

p�x�, and s�x� �
p�x�
a2�x�

. (9.4)
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By making this change, equation (9.2) can be rewritten as the equivalent equation

d
dx

�p�x�
dy
dx

� � �q�x� � Λs�x�� y � 0, (9.5)

which is called a Sturm–Liouville equation and along with appropriate boundary
conditions is called a Sturm–Liouville problem. This particular form of the equa-
tion is known as self-adjoint form, which is of interest because of the relationship
of the function s�x� and the solutions of the problem.

EXAMPLE 9.1.7: Place the equation x2y�� � 2xy� � Λy � 0, x > 0, in self-
adjoint form.

SOLUTION: In this case, a2�x� � x2, a1�x� � 2x, and a0�x� � 0. Hence,

p�x� � e� a1�x�/a2�x� dx � e� 2x/x2 dx � e2 ln x � x2, q�x� �
a0�x�
a2�x�

p�x� � 0,

and s�x� �
p�x�
a2�x�

�
x2

x2
� 1, so the self-adjoint form of the equation is

d
dx

�x2 dy
dx

� � Λy � 0. We see that our result is correct by differentiating.

Solutions of Sturm–Liouville problems have several interesting properties, two of
which are included in the following theorem.

Theorem 33 (Linear Independence and Orthogonality of Eigenfunctions). If ym�x�
and yn�x� are eigenfunctions of the regular Sturm–Liouville problem

�			

			
�

d
dx

�p�x�
dy
dx

� � �q�x� � Λs�x�� y � 0

k1y�a� � k2y��a� � 0, h1y�b� � h2y��b� � 0.
(9.6)

where m # n, ym�x� and yn�x� are linearly independent and the orthogonality condition� b

a
s�x�ym�x�yn�x� dx � 0 holds.

Because we integrate the product of the eigenfunctions with the function s�x� in
the orthogonality condition, we call s�x� the weighting function.

EXAMPLE 9.1.8: Consider the eigenvalue problem y�� � Λy � 0, 0 <
x < p, subject to y�0� � 0 and y�p� � 0 that we solved in Example 9.1.4.
Verify that the eigenfunctions y1 � sin�Πx/ p� and y2 � sin�2Πx/ p� are
linearly independent. Also, verify the orthogonality condition.
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SOLUTION: We can verify that y1 � sin�Πx/ p� and y2 � sin�2Πx/ p� are
linearly independent by computing the Wronskian.

In[1835]:= Clear�x,p�

caps � 
Sin�Πx
p

�,Sin�2Πx
p

��
ws � Simplify�Det��caps,�xcaps	��

Out[1835]= �
2 Π Sin� Π x

p �3

p

We see that the Wronskian is not the zero function by evaluating it for
a particular value of x; we choose x � p/2.

In[1836]:= ws/.x 

p

2

Out[1836]= �
2 Π

p

Because W �y1, y2� is not zero for all values of x, the two functions are
linearly independent. In self-adjoint form, the equation is y�� � Λy � 0,
with s�x� � 1. Hence, the orthogonality condition is � p

0
ym�x�yn�x� dx � 0,

m # n, which we verify for y1 and y2. Of course, these two
properties hold for any
choices of m and n, m # n.In[1837]:= � p

0

Sin�Πx
p

� Sin�2Πx
p

��x
Out[1837]= 0

9.2 Fourier Sine Series and Cosine Series

9.2.1 Fourier Sine Series

Recall the eigenvalue problem
�		

		
�

y�� � Λy � 0

y�0� � 0, y�p� � 0
that was solved in Example

9.1.4. The eigenvalues of this problem are Λ � Λn � �nΠ/ p�2, n � 1, 2, . . . , with
corresponding eigenfunctions Φn�x� � sin �nΠx/ p�, n � 1, 2, . . . .

We will see that for some functions y � f �x�, we can find coefficients cn so that

f �x� �
��

n�1

cn sin
nΠx

p
. (9.7)
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A series of this form is called a Fourier sine series. To make use of these series, we
must determine the coefficients cn. We accomplish this by taking advantage of the
orthogonality properties of eigenfunctions stated in Theorem 33.

Because the differential equation y�� � Λy � 0 is in self-adjoint form, we have
that s�x� � 1. Therefore, the orthogonality condition is � p

0
sin�nΠx/ p� sin�mΠx/ p� dx,

m # n. In order to use this condition, multiply both sides of f �x� � ��
n�1 cn sin�nΠx/ p�

by the eigenfunction sin�mΠx/ p� and s�x� � 1. Then, integrate the result from x � 0 to
x � p (because the boundary conditions of the corresponding eigenvalue problem
are given at these two values of x). This yields

� p

0
f �x� sin

mΠx
p

dx � � p

0

��
n�1

cn sin
nΠx

p
sin

mΠx
p

dx.

Assuming that term-by-term integration is allowed on the right-hand side of the
equation, we have

� p

0
f �x� sin

mΠx
p

dx �
��

n�1
� p

0
cn sin

nΠx
p

sin
mΠx

p
dx.

Recall that the eigenfunctions Φn�x�, n � 1, 2, . . . are orthogonal, so � p

0
sin�nΠx/ p�

sin�mΠx/ p� dx � 0 if m # 0. On the other hand if m � n,

� p

0
sin

nΠx
p

sin
mΠx

p
dx � � p

0
sin2 nΠx

p
dx

�
1
2 � p

0
�1 � cos

2nΠx
p

� dx

�
1
2

	x � p
2nΠ

sin
2nΠx

p

p

0
�

p
2

.

In[1838]:= � p

0

Sin�nΠx
p

�2
�x

Out[1838]=
p

2
�
p Sin�2 n Π	

4 n Π

Therefore, each term in the sum ��
n�1 cn � p

0
sin�nΠx/ p� sin�mΠx/ p� dx equals zero

except when m � n. Hence, � p

0
f �x� sin�nΠx/ p� dx � 1

2 cn p, so the Fourier sine series
coefficients are given by

cn �
2
p � p

0
f �x� sin

nΠx
p

dx, (9.8)

where we assume that y � f �x� is integrable on �0, p�.



9.2 Fourier Sine Series and Cosine Series 739

EXAMPLE 9.2.1: Find the Fourier sine series for f �x� � x, 0 � x � Π.

SOLUTION: In this case, p � Π. Using integration by parts we have,

cn �
2
Π � Π

0
f �x� sin

nΠx
Π

dx �
2
Π � Π

0
x sin nx dx

�
2
Π

	�1
n

x cos nx
Π
0
�

2
Π � Π

0

1
n

cos nx dx � �
2
n

cos nΠ �
2
Π

	 1
n2

sin nx
Π
0

� �
2
n

cos nΠ �
2
n2
�sin nΠ � sin 0� � �

2
n

cos nΠ.

In[1839]:= � Π

0

2x Sin�nx�

Π
�x

Out[1839]=
2 � � Π Cos�n Π	

n � Sin�n Π	
n2

�
Π

Observe that n is an integer so cos nΠ � ��1�n. Hence, cn � �
2
n
��1�n

� ��1�n�1 2
n

, and the Fourier sine series is

f �x� �
��

n�1

cn sin
nΠx
Π

� 2
��

n�1

��1�n�1 1
n

sin nx

� 2 sin x � sin 2x �
2
3

sin 3x �
1
2

sin 4x �    .

We can use a finite number of terms of the series to obtain a trigono-
metric polynomial that approximates f �x� � x, 0 � x � Π as follows. Let

fk�x� � 2 �k
n�1��1�n�1 1

n
sin nx. Then, fk�x� � fk�1�x� � ��1�k�1 2

k
sin kx. Thus,

to calculate the kth partial sum of the Fourier sine series, we need only

add ��1�k�1 2
k

sin kx to the �k � 1�st partial sum: we need not recompute

all k terms of the kth partial sum if we know the �k � 1�st partial sum.
Using this observation, we define the recursively defined function f to
return the kth partial sum of the series. We use the form f[k_]:=f[k]
=... so that Mathematica “remembers” each fk�x� that is computed.
The advantage of doing so is that Mathematica need not recompute
fk�x� to compute fk�1�x�.
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In[1840]:= Clear�f�

f�k � �� f�k� � f�k � 1� �
2��1�k�1 Sin�kx�

k

f�1� � 2 Sin�x�

In[1841]:= Table��n,f�n�	,�n,1,5	�//TableForm

Out[1841]=

1 2 Sin�x	
2 2 Sin�x	 � Sin�2 x	

3 2 Sin�x	 � Sin�2 x	 �
2

3
Sin�3 x	

4 2 Sin�x	 � Sin�2 x	 �
2

3
Sin�3 x	 �

1

2
Sin�4 x	

5 2 Sin�x	 � Sin�2 x	 �
2

3
Sin�3 x	 �

1

2
Sin�4 x	

�
2

5
Sin�5 x	

We now graph f �x� on �0, Π� along with several of the partial sums of the
sine series in Figure 9-4. As we increase the number of terms used in
approximating f �x�, we improve the accuracy. Notice from the graphs
that none of the partial sums attain the value of f �Π� � Π at x � Π. This
is due to the fact that at x � Π, each of the partial sums yield a value
of 0. Hence, our approximation can only be reliable on the interval 0 <
x < Π. In general, however, we are only assured of accuracy at points of
continuity of f �x� on the open interval.

In[1842]:= somegraphs �
Table�Plot��x,f�n�	,�x,0,Π	,
PlotStyle 
 �GrayLevel�0.5�,
GrayLevel�0�	,
DisplayFunction 
 Identity,Ticks 
 ��0,Π	,
�1,2,3		�,�n,3,30,9	�

toshow � Partition�somegraphs,2�

Show�GraphicsArray�toshow�,AspectRatio 
 1�

EXAMPLE 9.2.2: Find the Fourier sine series for f �x� �
�		

		
�

1, 0 � x < 1

�1, 1 � x � 2.
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Π
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Π

1

2
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1

2

3

Π

1

2

3

Figure 9-4 f �x� � x, 0 � x � Π, shown with the 3rd, 12th, 21st, and 30th partial sums of its
Fourier sine series

SOLUTION: Because f �x� is defined on 0 � x � 2, p � 2. Hence,

cn �
2
2 � 2

0
f �x� sin

nΠx
2

dx �
2

nΠ
��2 cos

nΠ
2
� cos nΠ � 1� .

In[1843]:= cn � � 1

0

Sin�nΠx
2

��x � � 2

1

Sin�nΠx
2

��x
Out[1843]=

2

n Π
�
4 Cos� n Π

2 �
n Π

�
2 Cos�n Π	

n Π

We use Table to calculate a few of the cn’s.
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In[1844]:= Table��n,cn	,�n,1,15	�//TableForm

Out[1844]=

1 0

2
4

Π
3 0
4 0
5 0

6
4

3 Π
7 0
8 0
9 0

10
4

5 Π
11 0
12 0
13 0

14
4

7 Π
15 0

As we can see, most of the coefficients are zero. In fact, only those cn’s
where n is an odd multiple of 2 yield a nonzero value. For example,
c6 � c23 � 2

6Π  4 �
4

3Π , c10 � c25 � 2
10Π  4 �

4
5Π , . . . ,

c2�2n�1� �
4

�2n � 1�Π
, n � 1, 2, . . .

so we have the series

f �x� �
��

n�1

4
�2n � 1�Π

sin
2�2n � 1�Πx

2
�

��
n�1

4
�2n � 1�Π

sin�2n � 1�Πx

�
4
Π

sin Πx �
4

3Π
sin 3Πx �

4
5Π

sin 5Πx �    .

As in Example 9.2.1, we graph f �x� with several partial sums of the
Fourier sine series in Figure 9.2.1.

In[1845]:= Clear�f,g�

g�x � �� 1/0 , x < 1

g�x � �� �1/1 , x , 2

In[1846]:= f�k � �� f�k� � f�k � 1� �
4 Sin��2k � 1� Πx�

�2k � 1� Π

f�1� �
4 Sin�Πx�

Π


In[1847]:= Table��n,f�n�	,�n,1,5	�//TableForm
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Figure 9-5 At the jump discontinuity at x � 1, the Fourier sine series converges to
1
2 �limx�1� f �x� � limx�1� f �x�� � 1

2 �1 � 1� � 0
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Out[1847]=

1
4 Sin�Π x	

Π

2
4 Sin�Π x	

Π
�
4 Sin�3 Π x	

3 Π

3
4 Sin�Π x	

Π
�
4 Sin�3 Π x	

3 Π
�
4 Sin�5 Π x	

5 Π

4
4 Sin�Π x	

Π
�
4 Sin�3 Π x	

3 Π
�
4 Sin�5 Π x	

5 Π

�
4 Sin�7 Π x	

7 Π

5
4 Sin�Π x	

Π
�
4 Sin�3 Π x	

3 Π
�
4 Sin�5 Π x	

5 Π

�
4 Sin�7 Π x	

7 Π
�
4 Sin�9 Π x	

9 Π

Notice that with a large number of terms the approximation is quite
good at values of x where f �x� is continuous.

In[1848]:= somegraphs �
Table�Plot��g�x�,f�n�	,�x,0,2	,
PlotStyle 
 �GrayLevel�0.5�,
GrayLevel�0�	,
DisplayFunction 
 Identity,
PlotRange 
 ��1.5,1.5	,Ticks 
 ��1,2	,
��1.5,1.5		�,�n,1,9	�

toshow � Partition�somegraphs,3�

Show�GraphicsArray�toshow�,AspectRatio 
 1�

The behavior of the series near points of discontinuity (in that the app-
roximation overshoots the function) is called the Gibbs phenomenon.
The approximation continues to “miss” the function even though more
and more terms from the series are used!

In somegraphs, we observe the graph of the error function
Abs[g[x]-f[n]] for n � 1, 2, . . . , 9. Notice that the error remains
“large” at the points of discontinuity, x � 0, 1, 2, even for “large” values
of n. See Figure 9.2.1.

In[1849]:= somegraphs �
Table�Plot�Abs�g�x� � f�n��,�x,0,2	,
DisplayFunction 
 Identity,
PlotRange 
 �0,1	,Ticks 
 ��1,2	,
�0,1		�,�n,1,9	�

toshow � Partition�somegraphs,3�
Show�GraphicsArray�toshow�,AspectRatio 
 1�
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Figure 9-6 The Fourier sine series converges to f �x� on the open intervals where f �x� is continuous
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9.2.2 Fourier Cosine Series

Another important eigenvalue problem that has useful eigenfunctions isWe solved this eigenvalue
problem in Example 9.1.5.

�		

		
�

y�� � Λy � 0

y��0� � y��p� � 0

which has eigenvalues and eigenfunctions given by

Λn �
�		

		
�

0, n � 0

�nΠ/ p�2, n � 1, 2, . . .
and yn�x� �

�		

		
�

1, n � 0

cos�nΠx/ p�, n � 1, 2, . . . .

Therefore, for some functions f �x�, we can find a series expansion of the form

f �x� �
1
2

a0 �
��

n�1

an cos
nΠx

p
. (9.9)

We call this expansion a Fourier cosine series where in the first term (associated
with Λ0 � 0), the constant 1

2 a0 is written in this form for convenience in finding the
formula for the coefficients an, n � 1, 2, . . . . We find these coefficients in a manner
similar to that followed to find the coefficients in the Fourier sine series. Notice
that in this case, the orthogonality condition is � p

0
cos�nΠx/ p� cos�mΠx/ p� dx � 0,

m # n. We use this condition by multiplying both sides of the series expansion by
cos�mΠx/ p� and integrating from x � 0 to x � p. This yields

� p

0
f �x� cos

mΠx
p

dx � � p

0

1
2

a0 cos
mΠx

p
dx � � p

0

��
n�1

an cos
nΠx

p
cos

mΠx
p

dx.

Assuming that term-by-term integration is allowed,

� p

0
f �x� cos

mΠx
p

dx � � p

0

1
2

a0 cos
mΠx

p
dx �

��
n�1

� p

0
an cos

nΠx
p

cos
mΠx

p
dx.

If m � 0, then this equation reduces to

� p

0
f �x� dx � � p

0

1
2

a0 dx �
��

n�1
� p

0
an cos

nΠx
p

dx

where � p

0
cos�nΠx/ p� dx � 0 and � p

0
1
2 a0 dx � 1

2 pa0. Therefore, � p

0
f �x� dx � 1

2 pa0, so

a0 �
2
p � p

0
f �x� dx. (9.10)
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If m > 0, we note that by the orthogonality property � p

0
cos�nΠx/ p� cos�mΠx/ p� dx �

0, m # n. We also note that � p

0
1
2 a0 cos�mΠx/ p� dx � 0 and � p

0
cos2�nΠx/ p� dx � 1

2 p.
Hence, � p

0
f �x� cos�nΠx/ p� dx � 0 � an  1

2 p. Solving for an, we have

an �
2
p � p

0
f �x� cos

nΠx
p

dx, n � 1, 2, . . . . (9.11)

Notice that equation (9.11) is valid for n � 0 because cos
0  Πx

p
� 1.

EXAMPLE 9.2.3: Find the Fourier cosine series for f �x� � x, 0 � x � Π.

SOLUTION: In this case, p � Π. Hence,

a0 �
2
Π � Π

0
x dx �

2
Π

	1
2

x2
Π
0
� Π

and using integration by parts we find that If n is an integer,
cos nΠ � ��1�n and
sin nΠ � 0.

an �
2
Π � Π

0
x cos

nΠx
Π

dx �
2
Π � Π

0
x cos nx dx

�
2
Π

�	1
n

x sin nx
Π
0
� � Π

0

1
n

sin nx dx� � 2
Π

	 1
n2

cos nx
Π
0

�
2

n2Π
�cos nΠ � 1� �

2
n2Π

���1�n � 1� .

Notice that for even values of n, ��1�n � 1 � 0. Therefore, an � 0 if n is
even. On the other hand, if n is odd, ��1�n � 1 � �2. Hence, a1 � � 4

Π ,
a3 � � 4

9Π , a5 � � 4
25Π , . . . ,

a2n�1 � �
4

�2n � 1�2Π
,

so the Fourier cosine series for f �x� is

f �x� �
Π
2
�

��
n�1

2
n2Π

���1�n � 1� cos
nΠx
Π

�
Π
2
�

4
Π

��
n�1

1
�2n � 1�2

cos�2n � 1�x.

We plot the function with several terms of the series in Figure 9-7. Com-
pare these results to those obtained when approximating this function
with a sine series. Which series yields the better approximation with
the fewer number of terms?
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Figure 9-7 Partial sums of the Fourier cosine series shown with f �x� � x, 0 � x � Π on the
left and the absolute value of the difference between the two on the right

In[1850]:= Clear�f�

f�n � �� f�n� � f�n � 1� �
4 Cos��2n � 1� x�

Π�2n � 1�2

f�0� �
Π

2


In[1851]:= p1 � Plot�Evaluate��x,f�1�	�,�x,0,Π	,
PlotStyle 
 �GrayLevel�0.5�,GrayLevel�0�	,
DisplayFunction 
 Identity�

p2 � Plot�Evaluate�Abs�x � f�1���,�x,0,Π	,
DisplayFunction 
 Identity�

p3 � Plot�Evaluate��x,f�2�	�,�x,0,Π	,
PlotStyle 
 �GrayLevel�0.5�,GrayLevel�0�	,
DisplayFunction 
 Identity�

p4 � Plot�Evaluate�Abs�x � f�2���,�x,0,Π	,
DisplayFunction 
 Identity�

Show�GraphicsArray���p1,p2	,�p3,p4		��
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9.3 Fourier Series

9.3.1 Fourier Series

The eigenvalue problem

�		

		
�

y�� � Λy � 0, �p � x � p

y��p� � y�p�, y���p� � y��p�

has eigenvalues

Λn �
�		

		
�

0, n � 0

�nΠ/ p�2, n � 1, 2 . . .

and eigenfunctions

yn�x� �
�		

		
�

1, n � 0

an cos
nΠx

p
� bn sin

nΠx
p

, n � 1, 2 . . .

so we can consider a series made up of these functions. Hence, we write

f �x� �
1
2

a0 �
��

n�1

�an cos
nΠx

p
� bn sin

nΠx
p

� , (9.12)

which is called a Fourier series. As was the case with Fourier sine and Fourier
cosine series, we must determine the coefficients a0, an (n � 1, 2, . . . ), and bn (n � 1,
2, . . . ). Because we use a method similar to that used to find the coefficients in
Section 9.2, we state the value of several integrals next.

� p

�p
cos

nΠx
p

dx � 0

� p

�p
sin

nΠx
p

dx � 0

� p

�p
cos

mΠx
p

sin
nΠx

p
dx � 0

� p

�p
cos

mΠx
p

cos
nΠx

p
dx �

�		

		
�

0, m # n

p, m � n

� p

�p
sin

mΠx
p

sin
nΠx

p
dx �

�		

		
�

0, m # n

p, m � n.

(9.13)
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We begin by finding a0 and an (n � 1, 2, . . . ). Multiplying both sides of equation
(9.12) by cos�mΠx/ p� and integrating from x � �p to x � p (because of the boundary
conditions) yields

� p

�p
f �x� cos

mΠx
p

dx � � p

�p

1
2

a0 cos
mΠx

p
dx

� � p

�p

��
n�1

�an cos
nΠx

p
cos

mΠx
p

� bn sin
nΠx

p
cos

mΠx
p

� dx

� � p

�p

1
2

a0 cos
mΠx

p
dx

�
��

n�1

�� p

�p
an cos

nΠx
p

cos
mΠx

p
dx � � p

�p
bn sin

nΠx
p

cos
mΠx

p
dx� .

If m � 0, we notice that all of the integrals that we are summing have the value
zero. Thus, this equation simplifies to

� p

�p
f �x� dx � � p

�p

1
2

a0 dx

� p

�p
f �x� dx �

1
2

a0  2p

a0 �
1
p � p

�p
f �x� dx.

(9.14)

If m # 0, only one of the integrals on the right-hand side of the equation yields a
value other than zero and this occurs with

� p

�p
cos

mΠx
p

cos
nΠx

p
dx �

�		

		
�

0, m # n

p, m � n

if m � n. Hence,

� p

�p
f �x� cos

nΠx
p

dx � p  an

an �
1
p � p

�p
f �x� cos

nΠx
p

dx, n � 1, 2, . . . .
(9.15)
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We find bn (n � 1, 2, . . . ) by multiplying the series by sin�mΠx/ p� and integrating
from x � �p to x � p. This yields

� p

�p
f �x� sin

mΠx
p

dx � � p

�p

1
2

a0 sin
mΠx

p
dx

� � p

�p

��
n�1

�an cos
nΠx

p
sin

mΠx
p

� bn sin
nΠx

p
sin

mΠx
p

� dx

� � p

�p

1
2

a0 sin
mΠx

p
dx

�
��

n�1

�� p

�p
an cos

nΠx
p

sin
mΠx

p
dx � � p

�p
bn sin

nΠx
p

sin
mΠx

p
dx� .

Again, we note that only one of the integrals on the right-hand side of the equation
is not zero. In this case, we use

� p

�p
sin

mΠx
p

sin
nΠx

p
dx �

�		

		
�

0, m # n

p, m � n

to obtain

� p

�p
f �x� sin

nΠx
p

dx � p  bn

bn �
1
p � p

�p
f �x� sin

nΠx
p

dx, n � 1, 2, . . . .
(9.16)

Definition 38 (Fourier Series). Suppose that y � f �x� is defined on �p � x � p. The
Fourier series for f �x� is

1
2

a0 �
��

n�1

�an cos
nΠx

p
� bn sin

nΠx
p

� , (9.17)

where

a0 �
1
p � p

�p
f �x� dx,

an �
1
p � p

�p
f �x� cos

nΠx
p

dx, n � 1, 2, . . . , and

bn �
1
p � p

�p
f �x� sin

nΠx
p

dx, n � 1, 2, . . . .

(9.18)

The following theorem tells us that the Fourier series for any function converges
to the function except at points of discontinuity.
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Theorem 34 (Convergence of Fourier Series). Suppose that f �x� and f ��x� are piece-
wise continuous functions on �p � x � p. Then the Fourier series for f �x� on �p � x � p
converges to f �x� at every x where f �x� is continuous.

If f �x� is discontinuous at x � a, the Fourier series converges to the average

1
2

� lim
x�a�

f �x� � lim
x�a�

f �x�� .

EXAMPLE 9.3.1: Find the Fourier series for f �x� �
�		

		
�

1, �2 � x < 0

2, 0 � x < 2
where f �x � 4� � f �x�.

SOLUTION: In this case, p � 2. First we find

a0 �
1
2 � 2

�2
f �x� dx �

1
2 � 0

�2
1  dx �

1
2 � 2

0
2  dx � 3,

In[1852]:= a0 �
1

2 � 0

�2
1�x �

1

2 � 2

0

2�x

Out[1852]= 3

an �
1
2 � 2

�2
f �x� cos

nΠx
2

dx �
1
2 � 0

�2
cos

nΠx
2

dx �
1
2 � 2

0
2 cos

nΠx
2

dx � 0,

In[1853]:= an �
1

2 � 0

�2
Cos�nΠx

2
��x � 1

2 � 2

0

2 Cos�nΠx
2

��x
Out[1853]=

3 Sin�n Π	

n Π

and

an �
1
2 � 2

�2
f �x� sin

nΠx
2

dx �
1
2 � 0

�2
sin

nΠx
2

dx �
1
2 � 2

0
2 sin

nΠx
2

dx

�
1

nΠ
�1 � cos nΠ� �

1
nΠ

�1 � ��1�n� .

In[1854]:= bn �
1

2 � 0

�2
Sin�nΠx

2
��x � 1

2 � 2

0

2 Sin�nΠx
2

��x//
Simplify

Out[1854]=
1 � Cos�n Π	

n Π



9.3 Fourier Series 753

Therefore, at the values of x for which f �x� is continuous

f �x� �
3
2
�

��
n�1

�1 � ��1�n� 1
nΠ

sin
nΠx
2

�
3
2
�

2
Π

sin
Πx
2
�

2
3Π

sin
3Πx
2

�
2

5Π
sin

5Πx
2

�    .

We now graph f �x�with several partial sums of the Fourier series. First,
we define pk�x� to be the kth partial sum of the Fourier series and
then f �x�.

In[1855]:= pk �x � ��
3

2
�

k�
n�1

�an Cos�nΠx
2

� � bn Sin�nΠx
2

�
In[1856]:= f�x � �� f�x � 4�/x � 2

f�x � �� 1/�2 , x < 0

f�x � �� 2/0 , x < 2

Given k, the function comp graphs f �x� and pk�x� on the interval ��2, 6�,
which corresponds to two periods of f �x�, as well as the error,��� f �x� � pk�x����. The resulting two graphics objects are displayed side-by-
side.

In[1857]:= comp�k � �� Module��p1,p2	,
p1 � Plot��f�x�,pk�x�	,�x,�2,6	,

PlotRange 
 �0,3	,
PlotStyle 
 �GrayLevel�0.5�,
GrayLevel�0�	,
DisplayFunction 
 Identity�

p2 � Plot�Abs�f�x� � pk�x��,�x,�2,6	,
PlotRange 
 All,
DisplayFunction 
 Identity�

Show�GraphicsArray��p1,p2	���

We then use Map to generate these graphs for k � 3, 5, 11, and 15. See
Figure 9-8.

In[1858]:= Map�comp,�3,5,11,15	�

The graphs show that if we extend the graph of f �x� over more peri-
ods, then the approximation by the Fourier series carries over to those
intervals.
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Figure 9-8 The Fourier series converges to f �x� at points of continuity and to the average
of the left and right-hand limits at points of discontinuity

EXAMPLE 9.3.2: Find the Fourier series for f �x� �
�		

		
�

0, �1 � x < 0

sin Πx, 0 � x < 1
where f �x � 2� � f �x�.

SOLUTION: In this case, p � 1, so a0 � � 1

�1
f �x� dx � � 1

0
sin Πx dx � 2/Π

and
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In[1859]:= a0 � � 1

0

Sin�Πx��x

Out[1859]=
2

Π

an � � 1

�1
f �x� cos nΠx dx � � 1

0
sin Πx cos nΠx dx. The value of this integral

depends on the value of n. If n � 1, we have a1 � � 1

0
sin Πx cos Πx dx �

1
2 � 1

0
sin 2Πx dx � 0, where we use the identity sinΑ cosΑ � 1

2 sin 2Α.

In[1860]:= a1 � � 1

0

Sin�Πx� Cos�Πx��x

Out[1860]= 0

If n # 1, we use the identity sinΑ cos Β � 1
2 �sin�Α � Β� � sin�Α � Β�� to

obtain

an �
1
2 � 1

0
�sin�1 � n�Πx � sin�1 � n�Πx� dx

� �
1
2

	cos�1 � n�Πx
�1 � n�Π

�
cos�1 � n�Πx
�1 � n�Π


1

0

� �
1
2

�	cos�1 � n�Π
�1 � n�Π

�
cos�1 � n�Π
�1 � n�Π


 � 	 1
�1 � n�Π

�
1

�1 � n�Π

� ,

n � 2, 3, . . . .

In[1861]:= an � � 1

0

Sin�Πx� Cos�nΠx��x

Out[1861]= �
1

2 ��1 � n� Π
�

1

2 �1 � n� Π
�
Cos���1 � n� Π	

2 ��1 � n� Π

�
Cos��1 � n� Π	

2 �1 � n� Π

Notice that if n is odd, both 1�n and 1�n are even. Hence, cos�1�n�Πx �
cos�1 � n�Πx � 1, so

an � �
1
2

�	 1
�1 � n�Π

�
1

�1 � n�Π

 � 	 1

�1 � n�Π
�

1
�1 � n�Π


� � 0

if n is odd. On the other hand, if n is even, 1 � n and 1 � n are odd.
Therefore, cos�1 � n�Πx � cos�1 � n�Πx � �1, so

an � �
1
2

�	 �1
�1 � n�Π

�
�1

�1 � n�Π

 � 	 1

�1 � n�Π
�

1
�1 � n�Π


�
�

1
�1 � n�Π

�
1

�1 � n�Π
�

2
�1 � n��1 � n�Π

� �
2

�n � 1��n � 1�Π

if n is even. We confirm this observation by computing several coeffi-
cients.
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In[1862]:= Table��n,an	,�n,1,10	�//TableForm

Out[1862]=

1 0

2 �
2

3 Π
3 0

4 �
2

15 Π
5 0

6 �
2

35 Π
7 0

8 �
2

63 Π
9 0

10 �
2

99 Π

Putting this information together, we can write the coefficients as

a2n � �
2

�2n � 1��2n � 1�Π
, n � 1, 2, . . . .

Similarly, bn � � 1

�1
f �x� sin nΠx dx � � 1

0
sin Πx sin nΠx dx, so if n � 1,

b1 � � 1

0
sin2 Πx dx �

1
2 � 1

0
�1 � cos 2Πx�dx �

1
2

	x � 1
2Π

sin 2Πx
1

0
�

1
2

.

In[1863]:= b1 � � 1

0

Sin�Πx�Sin�Πx��x

Out[1863]=
1

2

If n # 1, we use sinΑ sin Β � 1
2 �cos�Α � Β� � cos�Α � Β��. Hence,

bn �
1
2 � 1

0
�cos�1 � n�Πx � cos�1 � n�Πx� dx �

1
2

	 sin�1 � n�Πx
�1 � n�Π

�
sin�1 � n�Πx
�1 � n�Π


1

0

� 0, n � 2, 3, . . . .

In[1864]:= bn � � 1

0

Sin�Πx�Sin�nΠx��x

Out[1864]=
Sin���1 � n� Π	

2 ��1 � n� Π
�
Sin��1 � n� Π	

2 �1 � n� Π

Therefore, we write the Fourier series as

f �x� �
1
Π
�

1
2

sin Πx �
2
Π

��
n�1

1
�2n � 1��2n � 1�

cos 2nΠx.

We graph f �x� along with several approximations using this series in
the same way as in previous examples. Let

pk�x� �
1
Π
�

1
2

sin Πx �
2
Π

k�
n�1

1
�2n � 1��2n � 1�

cos 2nΠx
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denote the kth partial sum of the Fourier series. Note that

pk�x� �
1
Π
�

1
2

sin Πx �
2
Π

k�1�
n�1

1
�2n � 1��2n � 1�

cos 2nΠx

�
2
Π

1
�2k � 1��2k � 1�

cos 2kΠx � pk�1�x� �
2
Π

1
�2k � 1��2k � 1�

cos 2kΠx.

Thus, to calculate the kth partial sum of the Fourier series, we need only
subtract 2

Π
1

�2k�1��2k�1� cos 2kΠx from the �k � 1�st partial sum: we need not
recompute all k terms of the kth partial sum if we know the �k � 1�st
partial sum. Using this observation, we define the recursively defined
function p to return the kth partial sum of the series.

In[1865]:= p�k � �� p�k� � p�k � 1� �
2 Cos�2kΠx�

Π ��2k � 1� �1 � 2k��

p�0� �
1

Π
�
Sin�Πx�

2


We then define f �x�.

In[1866]:= Clear�f�

f�x � �� 0/�1 , x < 0

f�x � �� Sin�Πx�/0 , x < 1

f�x � �� f�x � 2�/x � 1

We graph f �x� along with the second, sixth, and tenth partial sums of
the series in Figure 9-9.

In[1867]:= Clear�graph�

graph�k � �� Plot��f�x�,p�k�	,�x,�1,3	,
PlotStyle� > �GrayLevel�0.5�,
GrayLevel�0�	,
DisplayFunction� > Identity�

In[1868]:= somegraphs � Map�graph,�2,6,10	�

Show�GraphicsArray�somegraphs��

The corresponding errors are graphed in Figure 9-10.

In[1869]:= error�k � �� Plot�Abs�f�x� � p�k��,�x,�1,3	,
DisplayFunction 
 Identity,
PlotRange 
 All�
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Figure 9-9 The graphs of the 6th and 10th partial sums are virtually indistinguishable from
the graph of f �x�
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Figure 9-10 The Fourier series converges to f �x� on ���,��

In[1870]:= somegraphs � Map�error,�2,6,10	�

Show�GraphicsArray�somegraphs��

9.3.2 Even, Odd, and Periodic Extensions

In the discussion so far in this section, we have assumed that f �x� was defined on
the interval �p < x < p. However, this is not always the case. Sometimes, we must
take a function that is defined on the interval 0 < x < p and represent it in terms of
trigonometric functions. Three ways of accomplishing this task is to extend f �x� to
obtain (a) an even function on �p < x < p; (b) an odd function on �p < x < p; (c) a
periodic function on �p < x < p.

We can notice some interesting properties associated with the Fourier series in
each of these three cases by noting the properties of even and odd functions. If f �x�
is an even function and g�x� is an odd function, then the product � f g��x� � f �x�g�x�
is an odd function. Similarly, if f �x� is an even function and g�x� is an even function,
then � f  g��x� is an even function, and if f �x� is an odd function and g�x� is an odd
function, then � f  g��x� is an even function. Recall from integral calculus that if
f �x� is odd on �p � x � p, then � p

�p
f �x� dx � 0 while if g�x� is even on �p � x �

p, then � p

�p
g�x� dx � 2 � p

0
g�x� dx. These properties are useful in determining the

coefficients in the Fourier series for the even, odd, and periodic extensions of a
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function, because cos�nΠx/ p� and sin�nΠx/ p� are even and odd periodic functions,
respectively, on �p � x � p.

1. The even extension feven�x� of f �x� is an even function. Therefore,

a0 �
1
p � p

�p
feven�x� dx �

2
p � p

0
f �x� dx

an �
1
p � p

�p
feven�x� cos

nΠx
p

dx �
2
p � p

0
f �x� cos

nΠx
p

dx, n � 1, 2, . . .

bn �
1
p � p

�p
feven�x� sin

nΠx
p

dx � 0, n � 1, 2, . . . .

(9.19)

2. The odd extension fodd�x� of f �x� is an odd function, so

a0 �
1
p � p

�p
fodd�x� dx � 0

an �
1
p � p

�p
feven�x� cos

nΠx
p

dx � 0, n � 1, 2, . . .

bn �
1
p � p

�p
feven�x� sin

nΠx
p

dx �
2
p � p

0
f �x� sin

nΠx
p

dx, n � 1, 2, . . . .

(9.20)

3. The periodic extension fp�x� has period p. Because half of the period is
p/2,

a0 �
2
p � p

0
f �x� dx

an �
2
p � p

0
f �x� cos

2nΠx
p

dx, n � 1, 2, . . .

bn �
2
p � p

0
f �x� sin

2nΠx
p

dx, n � 1, 2, . . . .

(9.21)

EXAMPLE 9.3.3: Let f �x� � x on �0, 1�. Find the Fourier series for
(a) the even extension of f �x�; (b) the odd extension of f �x�; (c) the peri-
odic extension of f �x�.

SOLUTION: (a) Here p � 1, so a0 � 2 � 1

0
x dx � 1,

an � 2 � 1

0
x cos nΠx dx �

2
n2Π2

�cos nΠ � 1� �
2

n2Π2
���1�n � 1� , n � 1, 2, . . .

and bn � 0, n � 1, 2, . . . .
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In[1871]:= Remove�a�

a0 � 2 � 1

0

x�x

Out[1871]= 1

In[1872]:= an � 2 � 1

0

x Cos�nΠx��x

Out[1872]= 2 � �
1

n2 Π2
�
Cos�n Π	

n2 Π2
�
Sin�n Π	

n Π
�

Because an � 0 if n is even, we can represent the coefficients with odd

subscripts as a2n�1 � �
4

�2n � 1�2Π2
. Therefore, the Fourier cosine series

is

feven�x� �
1
2
�

��
n�1

4
�2n � 1�2Π2

cos�2n � 1�Πx.

We graph the even extension with several terms of the Fourier cosine
series by first defining f �x� to be the even extension of f �x� on �0, 1�

In[1873]:= Clear�f,p�

f�x � �� �x/�1 , x < 0

f�x � �� x/0 , x < 1

f�x � �� f�x � 2�/x � 1

f�x � �� f�x � 2�/x , �1

and pk�x� �
1
2
��k

n�1
4

�2n � 1�2Π2
cos�2n � 1�Πx.

In[1874]:= pk �x � ��
a0
2
�

k�
n�1

a2n�1 Cos��2n � 1� Πx�

We then graph f �x� together with p1�x� and p5�x� in Figure 9-11.
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Figure 9-11 Even extension

In[1875]:= p1 � Plot��f�x�,p1�x�	,�x,�2,2	,
PlotStyle 
 �GrayLevel�0.5�,
GrayLevel�0�	,
DisplayFunction 
 Identity�

p2 � Plot��f�x�,p5�x�	,�x,�2,2	,
PlotStyle 
 �GrayLevel�0.5�,
GrayLevel�0�	,
DisplayFunction 
 Identity,
PlotRange 
 All�

Show�GraphicsArray��p1,p2	��

(b) For the odd extension fodd�x�, we note that a0 � 0, an � 0, n � 1, 2,

. . . , and bn � 2 � 1

0
x sin

nΠx
p

, dx � �
2

nΠ
cos nΠ � ��1�n�1 2

nΠ
, n � 1, 2, . . . .

In[1876]:= bn � 2 � 1

0

x Sin�nΠx��x

Out[1876]= 2 � �
Cos�n Π	

n Π
�
Sin�n Π	

n2 Π2
�

Hence, the Fourier sine series is

fodd�x� �
��

n�1

��1�n�1 2
nΠ

sin nΠx.

We graph the odd extension along with several terms of the Fourier
sine series in the same manner as in (a). See Figure 9-12.
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Figure 9-12 Odd extension

In[1877]:= Clear�f�

f�x � �� x/�1 , x < 1

f�x � �� f�x � 2�/x � 1

f�x � �� f�x � 2�/x , �1

In[1878]:= pk �x � ��
k�

n�1

bn Sin�nΠx�

In[1879]:= p1 � Plot��f�x�,p5�x�	,�x,�2,2	,
PlotStyle 
 �GrayLevel�0.5�,
GrayLevel�0�	,
DisplayFunction 
 Identity�

p2 � Plot��f�x�,p10�x�	,�x,�2,2	,
PlotStyle 
 �GrayLevel�0.5�,
GrayLevel�0�	,
DisplayFunction 
 Identity�

Show�GraphicsArray��p1,p2	��

(c) The periodic extension has period 2p � 1, so p � 1/2. Thus,

a0 �
1

1/2 � 1

0
x dx � 2 � 1

0
x dx � 1

an � 2 � 1

0
x cos 2nΠx dx �

1
2

cos 2nΠ � 2nΠ sin 2nΠ
n2Π2

�
1

2n2Π2
� 0, n � 1, 2, . . . and

bn � 2 � 1

0
x sin 2nΠx dx � �

1
2
� sin 2nΠ � 2nΠ cos 2nΠ

n2Π2
� �

2nΠ
2n2Π2

� �
1

nΠ
, n � 1, 2, . . . .
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In[1880]:= Remove�a,b�

a0 � 2 � 1

0

x�x

Out[1880]= 1

In[1881]:= an � 2 � 1

0

x Cos�2nΠx��x

Out[1881]= 2 � �
1

4 n2 Π2
�
Cos�2 n Π	

4 n2 Π2
�
Sin�2 n Π	

2 n Π
�

In[1882]:= Table��n,an	,�n,1,5	�

Out[1882]= ��1,0,�2,0,�3,0,�4,0,�5,0

In[1883]:= bn � 2 � 1

0

x Sin�2nΠx��x

Out[1883]= 2 � �
Cos�2 n Π	

2 n Π
�
Sin�2 n Π	

4 n2 Π2
�

In[1884]:= Table��n,bn	,�n,1,5	�

Out[1884]= ��1,�1
Π

�,�2,� 1

2 Π
�,�3,� 1

3 Π
�,�4,� 1

4 Π
�,

�5,� 1

5 Π
��

Hence, the Fourier series for the periodic extension is

fp�x� �
1
2
�

��
n�1

1
nΠ

sin 2nΠx.

We graph the periodic extension with several terms of the Fourier series
in the same way as in (a) and (b). See Figure 9-13.

In[1885]:= Clear�f�

f�x � �� x � 1/�1 , x < 0

f�x � �� x/0 , x < 1

f�x � �� f�x � 2�/x � 1

f�x � �� f�x � 2�/x , �1

In[1886]:= pk �x � ��
a0
2
�

k�
n�1

bn Sin�2nΠx�
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Figure 9-13 Periodic extension

In[1887]:= p1 � Plot��f�x�,p5�x�	,�x,�2,2	,
PlotStyle 
 �GrayLevel�0.5�,
GrayLevel�0�	,
DisplayFunction 
 Identity�

p2 � Plot��f�x�,p10�x�	,�x,�2,2	,
PlotStyle 
 �GrayLevel�0.5�,
GrayLevel�0�	,
DisplayFunction 
 Identity�

Show�GraphicsArray��p1,p2	��

9.3.3 Differentiation and Integration of Fourier Series

Definition 39 (Piecewise Smooth). A function f �x�, �p < x < p is piecewise smooth
if f �x� and all of its derivatives are piecewise continuous.

Theorem 35 (Term-By-Term Differentiation). Let f �x�, �p < x < p, be a continuous
piecewise smooth function with Fourier series

1
2

a0 �
��

n�1

�an cos
nΠx

p
� bn sin

nΠx
p

� .

Then, f ��x�, �p < x < p, has Fourier series

��
n�1

nΠ
p

��an sin
nΠx

p
� bn cos

nΠx
p

� .

In other words, we differentiate the Fourier series for f �x� term-by-term to obtain
the Fourier series for f ��x�.
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Theorem 36 (Term-By-Term Integration). Let f �x�, �p < x < p, be a continuous
piecewise smooth function with Fourier series

1
2

a0 �
��

n�1

�an cos
nΠx

p
� bn sin

nΠx
p

� .

Then, the Fourier series of an antiderivative of f �x� can be found by integrating the Fourier
series of f �x� term-by-term.

EXAMPLE 9.3.4: Use the Fourier series for f �x� � 1
12 x �Π2 � x2�, �Π < x <

Π to show how term-by-term differentiation and term-by-term integra-
tion can be used to find the Fourier series of g�x� � 1

12Π
2� 1

4 x2, �Π < x < Π,
and h�x� � 1

24Π
2x2 �1 � 1

2 x2�, �Π < x < Π.

SOLUTION: After defining f �x� and the substitutions in rule to sim-
plify our results, we calculate a0, an, and bn. (Because f �x� is an odd
function, an � 0, n " 0.)

In[1888]:= Clear�f�

f�x � �
1

12
x �Π2 � x2	

In[1889]:= rule � �Sin�nΠ� 
 0,Cos�nΠ� 
 ��1�n	

a0 �
� Π

�Π
f�x��x

Π
/.rule

Out[1889]= 0

In[1890]:= an �
� Π

�Π
f�x� Cos�nx��x

Π
/.rule

Out[1890]= 0

In[1891]:= bn �
� Π

�Π
f�x� Sin�nx��x

Π
/.rule

Out[1891]= �
��1�n

n3

We define the nth term of ��
n�1 �an cos

nΠx
p

� bn sin
nΠx

p
� in fs[n,x] and

the finite sum
1
2

a0 ��k
n�1 �an cos

nΠx
p

� bn sin
nΠx

p
� in fourier[k].

In[1892]:= fs�n � � an Cos�nx� � bn Sin�nx�

In[1893]:= fourier�k � �� fourier�k� � fourier�k � 1�
�fs�k�
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Figure 9-14 The graph of the third partial sum is indistinguishable from the graph of f �x�

In[1894]:= fourier�0� �
a0
2


We see how quickly the Fourier series converges to f �x� by graphing
together with fourier[1], fourier[2], and fourier[3]. See Fig-
ure 9-14.

In[1895]:= somegraphs �
Table�Plot��f�x�,fourier�k�	,�x,�Π,Π	,
PlotStyle 
 �GrayLevel�0.5�,
GrayLevel�0�	,
DisplayFunction 
 Identity�,�k,1,3	�

Show�GraphicsArray�somegraphs��

Notice that g�x� � 1
12Π

2 � 1
4 x2, �Π < x < Π, is the derivative of f �x�, �Π <

x < Π. Of course, we could compute the Fourier series of f ��x�, �Π <
x < Π, directly by applying the integral formulas with g�x� to find the
Fourier series coefficients. However, the objective here is to illustrate
how term-by-term differentiation of the Fourier series for f �x�, �Π < x <
Π, gives us the Fourier series for f ��x� � g�x�, �Π < x < Π. We calculate
the derivative of f �x� in df[x] in order to make graphical comparisons.
In dfs[n], we determine the derivative of the nth term of the Fourier
series for f �x�, �Π < x < Π, found above, and in dfourier[k], we
calculate the kth partial sum of the Fourier series for f ��x�, �Π < x < Π.Notice that this series does

not include a constant term
because the derivative of 1

2 a0

is zero.
In[1896]:= df�x � � D�f�x�,x�//Simplify

Out[1896]=
1

12
�Π2 � 3 x2�

In[1897]:= dfs�n � � D� fs�n�,x�

Out[1897]= �
��1�n Cos�n x	

n2

In[1898]:= dfourier�k � �� dfourier�k� � dfourier�k � 1�
�dfs�k�dfourier�0� � 0
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Figure 9-15 Fourier series can be differentiated term-by-term

Next, we graph f ��x�, �Π < x < Π, simultaneously with dfourier[1],
dfourier[2], and dfourier[3] in Figure 9-15. Again, the conver-
gence of the Fourier series approximations to f ��x�, �Π < x < Π, is quick.

In[1899]:= somegraphs �
Table�Plot��df�x�,dfourier�k�	,�x,�Π,Π	,
PlotStyle 
 �GrayLevel�0.5�,
GrayLevel�0�	,
DisplayFunction 
 Identity�,�k,1,3	�

Show�GraphicsArray�somegraphs��

Notice that h�x�, �Π < x < Π, is an antiderivative of f �x�, �Π < x <
Π. We calculate this antiderivative in intf[x]. Of course, this is the
antiderivative of f �x� with zero constant of integration because Math-
ematica does not include an integration constant. When we integrate
the terms of the Fourier series of f �x�, �Π < x < Π, a constant term
is not included. However, the Fourier series of the even function h�x� �
1

24Π
2x2 �1 � 1

2 x2�, �Π < x < Π should include the constant term 1
2 ã0.

We calculate the value of ã0 in inta[0] with the integral formula
1
Π � Π

�Π
h�x� dx.

In[1900]:= intf�x � � � f�x��x

Out[1900]=
1

12
�Π2 x2

2
�
x4

4
�

In[1901]:= inta0 �
� Π

�Π
intf�x��x

Π

Out[1901]=
7 Π4

360

In intfs[n,x], we integrate the nth term of the Fourier series of f �x�,
�Π < x < Π, found above to determine the coefficients of cos nx and
sin nx in the Fourier series of h�x�, �Π < x < Π. In intfourier[k,x],
we determine the sum of the first k terms of the Fourier series obtained
by adding 1

2 ã0 to the expression obtained through term-by-term inte-
gration of the Fourier series of f �x�, �Π < x < Π.
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Figure 9-16 Fourier series can be integrated term-by-term

In[1902]:= intfs�n � � � fs�n��x

Out[1902]=
��1�n Cos�n x	

n4

In[1903]:= intfourier�k � �� intfourier�k�

� intfourier�k � 1� � intfs�k�

intfourier�0� �
inta0
2



By graphing h�x�, �Π < x < Π, simultaneously with the approxima-
tion in intfourier[k,x] for k � 1, 2, and 3, we see how the graphs
of Fourier series approximations obtained through term-by-term inte-
gration converge to the graph of h�x�, �Π < x < Π, in intgraph1,
intgraph2, and intgraph3. See Figure 9-16.

In[1904]:= somegraphs �
Table�Plot��intf�x�,intfourier�k�	,
�x,�Π,Π	,PlotStyle 
 �GrayLevel�0.5�,
GrayLevel�0�	,
DisplayFunction 
 Identity�,
�k,1,3	�

Show�GraphicsArray�somegraphs��

9.3.4 Parseval’s Equality

Let f �x�, �p < x < p, be a continuous piecewise smooth function with Fourier
series

1
2

a0 �
��

n�1

�an cos
nΠx

p
� bn sin

nΠx
p

� .



9.3 Fourier Series 769

-3 -2 -1 1 2 3

-1

-0.5

0.5

1

Figure 9-17 f �x� is an odd function

Parseval’s Equality states that

1
p � p

�p
� f �x��2 dx �

1
2

a2
0 �

��
n�1

�a2
n � b2

n� � 2A2
0 �

��
n�1

�a2
n � b2

n� (9.22)

where A0 � 1
2 a0 is the constant term in the Fourier series.

EXAMPLE 9.3.5: Verify Parseval’s Equality for f �x� � 1
12 x �Π2 � x2�, �Π <

x < Π.

SOLUTION: Notice that the function f �x� � 1
12 x �Π2 � x2�, �Π < x < Π, is

odd as we see from its graph in Figure 9-17.

In[1905]:= Clear�f�

f�x � �
1

12
x �Π2 � x2	

Plot�f�x�,�x,�Π,Π	�

Therefore, the only nonzero coefficients in the Fourier series of f �x� are
found in bn. Notice that we simplify the results by using the substitu-
tions defined in rule.

In[1906]:= rule � �Sin�nΠ� 
 0,Cos�nΠ� 
 ��1�n	

bn �
2 � Π

0
f�x� Sin�nx��x

Π
/.rule

Out[1906]= �
��1�n

n3
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Next, we evaluate 1
Π � Π

�Π
� f �x��2 dx.

In[1907]:=
� Π

�Π
f�x�2�x

Π

Out[1907]=
Π6

945

In[1908]:= N� Π6

945
�

Out[1908]= 1.01734

We compare this result with the value of ��
n�1 b2

n by calculating �k
n�1 b2

n

for k � 1, 2, . . . , 20. Notice that this sequence of partial sums converges
quickly to 1.01734, an approximation of 1

945Π
6.

In[1909]:= Table�N� j�
n�1

b2n�,�j,1,20	�
Out[1909]= �0.25,0.265625,0.266997,0.267241,0.267305,

0.267326,0.267335,0.267339,0.267341,
0.267342,0.267342,0.267342,0.267343,
0.267343,0.267343,0.267343,0.267343,
0.267343,0.267343,0.267343

Thus, for the convergent p-seriesA p-series is a series of the
form ��

k�1 k�p . The p-series
converges if p > 1 and
diverges if 0 < p � 1.

��
n�1

b2
n �

��
n�1

	���1�n

n3 
2

�
��

n�1

1
n6

�
1

945
Π6.

9.4 Generalized Fourier Series

In addition to the trigonometric eigenfunctions that were used to form the Fourier
series in Sections 9.2 and 9.3, the eigenfunctions of other eigenvalue problems can
be used to form what we call generalized Fourier series. We will find that these
series will assist in solving problems in applied mathematics that involve physical
phenomena that cannot be modeled with trigonometric functions.

Recall Bessel’s equation of order zero

x2 d2y
dx2

� x
dy
dx

� Λ2x2y � 0. (9.23)
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If we require that the solutions of this differential equation satisfy the boundary
conditions ���y�0���� < � (meaning that the solution is bounded at x � 0) and y�p� � 0,
we can find the eigenvalues of the boundary-value problem

�			

			
�

x2 d2y
dx2

� x
dy
dx

� Λ2x2y � 0���y�0���� < �, y�p� � 0.
(9.24)

A general solution of Bessel’s equation of order zero is y � c1J0�Λx� � c2Y0�Λx�.
Because ���y�0���� < �, we must choose c2 � 0 because limx�0� Y0�Λx� � ��. Hence,
y�p� � c1J0�Λp� � 0. Just as we did with the eigenvalue problems solved earlier in
Section 9.1, we want to avoid choosing c1 � 0, so we must select Λ so that J0�Λp� � 0.

Let Αn represent the nth zero of the Bessel function of order zero, J0�x�, where
n � 1, 2, . . . , which we approximate with BesselJZeros. After loading the Bessel
Zeros package, which is contained in the NumericalMath folder (or directory) by
entering <<NumericalMath‘BesselZeros‘, the command BesselJZeros
[m,n] returns a list of the first n zeros of Jm�x�; BesselJZeros[m,{p,q}]
returns a list of the pth through qth zeros of Jm�x�; BesselJZeros[0,n] returns
a list of the first n zeros of J0�x�.

The function Αn returns the nth zero of J0�x�.

In[1910]:= << NumericalMath‘BesselZeros‘

Αn �� BesselJZeros�0,�n,n	���1��

Therefore, in trying to find the eigenvalues, we must solve J0�Λp� � 0. From our
definition of Αn, this equation is satisfied if Λp � Αn, n � 1, 2, . . . . Hence, the eigen-
values are Λ � Λn � Αn/ p, n � 1, 2, . . . , and the corresponding eigenfunctions are

y�x� � yn�x� � J0 �Λnx� � J0 �Αnx/ p� , n � 1, 2, . . . .

As with the trigonometric eigenfunctions that we found in Sections 9.2 and 9.3,
J0 �Αnx/ p� can be used to build an eigenfunction series expansion of the form

f �x� �
��

n�1

cnJ0 �Αnx
p

� , (9.25)

which is called a Bessel–Fourier series. We use the orthogonality properties of
J0 �Αnx/ p� to find the coefficients cn.

We determine the orthogonality condition by placing Bessel’s equation of order
zero in the self-adjoint form See Theorem 33.

d
dx

�xdy
dx

� � Λ2xy � 0.
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Because the weighting function is s�x� � x, the orthogonality condition is

� p

0
xJ0 �Αnx

p
� J0 �Αmx

p
� dx � 0, n # m.

Multiplying equation (9.25) by xJ0�Αmx/ p� and integrating from x � 0 to x � p yields

� p

0
x f �x�J0 �Αmx

p
� dx � � p

0

��
n�1

cnxJ0 �Αnx
p

� J0 �Αmx
p

� dx

�
��

n�1

cn � p

0
xJ0 �Αnx

p
� J0 �Αmx

p
� dx.

However, by the orthogonality condition, each of the integrals on the right-hand
side of the equation equals zero except for m � n. Therefore,

cn �
� p

0
x f �x�J0 �Αnx

p
� dx

� p

0
x 	J0 �Αnx

p
�
2

dx

, n � 1, n � 2, . . . .

The value of the integral in the denominator can be found through the use of sev-
eral of the identities associated with the Bessel functions. Because Λn � Αn/ p, n � 1,
2, . . . , the function J0�Αnx/ p� � J0�Λnx� satisfies Bessel’s equation of order zero:

d
dx

�x d
dx

J0�Λnx�� � Λ2
nxJ0�Λnx� � 0.

Multiplying by the factor 2x
d
dx

J0�Λnx�, we can write this equation as

d
dx

�x d
dx

J0�Λnx��2

� Λ2
nx2 d

dx
�J0�Λnx��2 � 0.

Integrating each side of this equation from x � 0 to x � p gives us

2Λ2
n � p

0
x �J0�Λnx��2 dx � Λ2

n p2 �J�0�Λn p��2
� Λ2

n p2 �J0�Λn p��2 .

With the substitution Λn p � Αn the equation becomes

2Λ2
n � p

0
x �J0�Λnx��2 dx � Λ2

n p2 �J�0�Αn��2
� Λ2

n p2 �J0�Αn��2 .

Now, J0�Αn� � 0, because Αn is the nth zero of J0�x�. Also, with n � 0, the identity
d
dx
�x�nJn�x�� � �x�nJn�1�x� indicates that J�0�Αn� � �J1�Αn�. Therefore,

2Λ2
n � p

0
x �J0�Λnx��2 dx � Λ2

n p2 ��J1�Αn��2 � Λ2
n p2  0

� p

0
x �J0�Λnx��2 dx �

1
2

p2 �J1�Αn��2 .
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Using this expression in the denominator of cn, the series coefficients are found
with

cn �
2

p2 �J1�Αn��2
� p

0
x f �x�J0 �Αnx

p
� dx, n � 1, 2, . . . . (9.26)

EXAMPLE 9.4.1: Find the Bessel–Fourier series for f �x� � 1 � x2 on
0 < x < 1.

SOLUTION: In this case, p � 1, so

cn �
2

�J1�Αn��2
� 1

0
x �1 � x2� J0 �Αnx

p
� dx

�
2

�J1�Αn��2
�� 1

0
xJ0 �Αnx

p
� dx � � 1

0
x3J0 �Αnx

p
� dx� .

Using the formula,
d
dx
�xnJn�x�� � xnJn�1�x� with n � 1 yields

� 1

0
xJ0 �Αnx

p
� dx � 	 1

Αn
xJ1 �Αnx�
1

0
�

1
Αn

J1 �Αn� .

Note that the factor 1/Αn is due to the chain rule for differentiating the
argument of J1 �Αnx�. We use integration by parts with u � x2 and dv � Integration by parts formula:� u dv � uv � � v du.xJ0 �Αnx� to evaluate � 1

0
x3J0 �Αnx

p � dx. As in the first integral we obtain

v �
1
Αn

xJ1 �Αnx�. Then, because du � 2x dx, we have

� 1

0
x3J0 �Αnx

p
� dx � 	 1

Αn
x3J1 �Αnx�
1

0
�

2
Αn

� 1

0
x2J1 �Αnx� dx

�
1
Αn

J1 �Αn� �
2
Αn

	 1
Αn

x2J2 �Αnx�
1

0

�
1
Αn

J1 �Αn� �
2
Α2

n
J2 �Αn� .

Thus, the coefficients are

cn �
2

�J1�Αn��2
� 1

0
x �1 � x2� J0 �Αnx

p
� dx

�
2

�J1�Αn��2
�� 1

0
xJ0 �Αnx

p
� dx � � 1

0
x3J0 �Αnx

p
� dx�

�
2

�J1�Αn��2
	 1
Αn

J1 �Αn� � � 1
Αn

J1 �Αn� �
2
Α2

n
J2 �Αn��


�
4J2 �Αn�

Α2
n �J1 �Αn��2

, n � 1, 2, . . .
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so that the Bessel–Fourier series is

f �x� �
��

n�1

4J2 �Αn�

Α2
n �J1 �Αn��2

J0 �Αnx� .

We now graph f �x� along with several terms of the series. To do so, we
need to compute the values of J1 �Αn� and J2 �Αn� for various values of n.
Thus, we first load the BesselZeros package and define Αn to be the nth
zero of the Bessel function of the first kind of order zero.Note that you do not need

to reload the BesselZeros
package if you already loaded
it during your current
Mathematica session.

In[1911]:= << NumericalMath‘BesselZeros‘

Αn �� BesselJZeros�0,�n,n	���1��

We list the values of J1 �Αn� and J2 �Αn� for various values of n.

In[1912]:= Table��n,BesselJ�1,Αn�,BesselJ�2,Αn�	,
�n,1,5	�//TableForm

Out[1912]=

1 0.519147 0.431755
2 �0.340265 �0.123283
3 0.271452 0.0627365
4 �0.23246 �0.0394283
5 0.206546 0.0276669

Next, we define f �x� � 1 � x2 and pk�x� � �k
n�1

4J2 �Αn�

Α2
n �J1 �Αn��2

J0 �Αnx�, the

kth partial sum of the Bessel–Fourier series. Note that

pk�x� �
k�1�
n�1

4J2 �Αn�

Α2
n �J1 �Αn��2

J0 �Αnx� �
4J2 �Αk�

Α2
k �J1 �Αk��2

J0 �Αkx�

� pk�1�x� �
4J2 �Αk�

Α2
k �J1 �Αk��2

J0 �Αkx� .

Thus, to calculate the kth partial sum of the Fourier series, we need

only add
4J2 �Αk�

Α2
k �J1 �Αk��2

J0 �Αkx� to the �k � 1�st partial sum: we need not

recompute all k terms of the kth partial sum if we know the �k � 1�st
partial sum. Using this observation, we define the recursively defined
function p to return the kth partial sum of the series.

In[1913]:= f�x � � 1 � x2

In[1914]:= p�k � �� p�k� � p�k � 1�

�
4 BesselJ�2,Αk� BesselJ�0,Αk x�

Α2k BesselJ�1,Αk�2


p�0� � 0



9.4 Generalized Fourier Series 775

0.2 0.4 0.6 0.8 1

0.2
0.4
0.6
0.8
1

0.2 0.4 0.6 0.8 1

0.2
0.4
0.6
0.8
1

0.2 0.4 0.6 0.8 1

0.2
0.4
0.6
0.8
1

Figure 9-18 The Bessel–Fourier series quickly converges to f �x�

The graphs of f �x� and the first three or four partial sums are practically
indistinguishable. See Figure 9-18.

In[1915]:= p2 � Plot�Evaluate��f�x�,p�2�	�,�x,0,1	,
PlotStyle� > �GrayLevel�0.5�,
GrayLevel�0�	,
DisplayFunction� > Identity�

p3 � Plot�Evaluate��f�x�,p�3�	�,�x,0,1	,
PlotStyle� > �GrayLevel�0.5�,
GrayLevel�0�	,
DisplayFunction� > Identity�

p4 � Plot�Evaluate��f�x�,p�4�	�,�x,0,1	,
PlotStyle� > �GrayLevel�0.5�,
GrayLevel�0�	,
DisplayFunction� > Identity�

In[1916]:= Show�GraphicsArray��p2,p3,p4	��

As was the case with Fourier series, we can make a statement about the conver-
gence of the Bessel–Fourier series.

Theorem 37 (Convergence of Bessel–Fourier Series). Suppose that f �x� and f ��x�
are piecewise continuous functions on 0 < x < p. Then the Bessel–Fourier series for f �x�
on 0 < x < p converges to f �x� at every x where f �x� is continuous. If f �x� is discontinuous
at x � a, the Bessel–Fourier series converges to the average

1
2

� lim
x�a�

f �x� � lim
x�a�

f �x�� � 1
2

� f �a�� � f �a��� .

Series involving the eigenfunctions of other eigenvalue problems can be formed
as well.
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EXAMPLE 9.4.2: The eigenvalue problem
�		

		
�

y�� � 2y� � �Λ � 1�y � 0

y�0� � y�2� � 0
has

eigenvalues Λn � ��nΠ/2�2 and eigenfunctions yn�x� � e�x sin�nΠx/2�. Use
these eigenfunctions to approximate f �x� � e�x for 0 < x < 2.

SOLUTION: In order to approximate f �x�, we need the orthogonality
condition for these eigenfunctions. We obtain this condition by placing
the differential equation in self-adjoint form using the formulas given in
equation (9.5). In the general equation, a2�x� � 1, a1�x� � 2, and a0�x� � 0.
Therefore, p�x� � e� 2 dx � e2x and s�x� � p�x�/a2�x� � e2x, so in self-adjoint
form the equation is

d
dx

�e2x dy
dx

� � �Λ � 1�e2xy.

This means that the orthogonality condition, � b

a
s�x�yn�x�ym�x� dx � 0

(m # n), is

� 2

0
e2xe�x sin

mΠx
2

e�x sin
nΠx
2

dx � � 2

0
sin

mΠx
2

sin
nΠx
2

dx � 0, m # n.

We use this condition to determine the coefficients in the eigenfunction
expansion

f �x� �
��

n�1

cnyn�x� �
��

n�1

cne�x sin
nΠx
2

.

Multiplying both sides of this equation by ym�x� � e�x sin�mΠx/2� and
s�x� � e2x and then integrating from x � 0 to x � 2 yields

� 2

0
f �x�e2xe�x sin

mΠx
2

dx � � 2

0

��
n�1

cne�x sin
nΠx
2

e2xe�x sin
mΠx

2
dx

� 2

0
f �x�ex sin

mΠx
2

dx �
��

n�1
� 2

0
cn sin

nΠx
2

sin
mΠx

2
dx.

Each integral in the sum on the right-hand side of the equation is zero
except if m � n. In this case, � 2

0
sin2 �nΠx/2� dx � 1. Therefore,

cn � � 2

0
f �x�ex sin

nΠx
2

dx.
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For f �x� � e�x,

cn � � 2

0
e�xex sin

nΠx
2

dx � � 2

0
sin

nΠx
2

dx � �
2

nΠ
�cos nΠ � 1�.

In[1917]:= cn � � 2

0

Sin�nΠx
2

��x
Out[1917]=

2

n Π
�
2 Cos�n Π	

n Π

Because cos nΠ � ��1�n, we can write the eigenfunction expansion of
f �x� as

f �x� �
��

n�1

�
2

nΠ
���1�n � 1� e�x sin

nΠx
2

� e�x �4
Π

sin
Πx
2
�

4
3Π

sin
3Πx
2

�
4

5Π
sin

5Πx
2

�    � .

We graph f �x� together with

pk�x� �
k�

n�1

�
2

nΠ
���1�n � 1� e�x sin

nΠx
2

for k � 6, 10, and 14 in Figure 9-19.

In[1918]:= f�x � � Exp��x�

In[1919]:= pk �x � ��
k�

n�1

cn Exp��x� Sin�nΠx
2

�
In[1920]:= p6 � Plot��f�x�,p6�x�	,�x,0,3	,

PlotStyle� > �GrayLevel�0.5�,
GrayLevel�0�	,
DisplayFunction� > Identity�

p10 � Plot��f�x�,p10�x�	,�x,0,3	,
PlotStyle� > �GrayLevel�0.5�,
GrayLevel�0�	,
DisplayFunction� > Identity�

p14 � Plot��f�x�,p14�x�	,�x,0,3	,
PlotStyle� > �GrayLevel�0.5�,
GrayLevel�0�	,
DisplayFunction� > Identity�

In[1921]:= Show�GraphicsArray��p6,p10,p14	��
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Figure 9-19 Approximating f �x� � e�x with a generalized Fourier series

EXAMPLE 9.4.3: Use the eigenvalues and eigenfunctions of the eigen-
value problem

�		

		
�

y�� � Λy � 0

y�0� � 0, y�1� � y��1� � 0

to obtain a generalized Fourier series for f �x� � x�1 � x�, 0 < x < 1.The eigenvalues and
corresponding eigenfunctions
for this eigenvalue problem
are found in Example 9.1.6.

SOLUTION: In Example 9.1.6, the eigenvalues of this problem, Λ �
k2, were shown to satisfy the relationship k � � tan k. In the example,
we approximated the first eight roots of this equation to be 2.02876,
4.91318, 7.97867, 11.0855, 14.2074, 17.3364, 20.4692, and 23.6043 entered
in kvals.

In[1922]:= kvals � Table�FindRoot� � Tan�x� �� x,
x, �2n � 1� Π

2
� 0.1��,�n,1,8	�

Out[1922]= ��x 
 2.02876,�x 
 4.91318,�x 
 7.97867,
�x 
 11.0855,�x 
 14.2074,�x 
 17.3364,
�x 
 20.4692,�x 
 23.6043

Let kn represent the nth positive root of k � � tan k. Therefore, the eigen-

functions of
�		

		
�

y�� � Λy � 0

y�0� � 0, y�1� � y��1� � 0
are yn�x� � sin knx. Because of the

orthogonality of the eigenfunctions, we have the orthogonality condi-
tion � 1

0
sin knx sin kmx dx � 0, m # n. If m � n, we have � 1

0
sin2 knx dx �

1
2 �

1
4kn

sin 2kn.

In[1923]:= � 1

0

Sin�kx�2�x

Out[1923]=
1

2
�
Sin�2 k	

4 k
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Therefore,

� 1

0
sin2 knx dx �

2kn � sin 2kn

4kn
�

2kn � 2 sin kn cos kn

4kn
.

With the condition kn � � tan kn or sin kn � �kn cos kn from the eigenvalue
problem, we have

� 1

0
sin2 knx dx �

kn � sin kn cos kn

2kn
�

kn � ��kn cos kn� cos kn

2kn
�

1
2

�1 � cos2 kn� .

To determine the coefficients cn in the generalized Fourier series f �x� ���
n�1 cn sin knx using the eigenfunctions yn�x� � sin knx of the eigenvalue

problem, we multiply both sides of f �x� � ��
n�1 cn sin knx by sin kmx and

integrate from x � 0 to x � 1. This yields

� 1

0
f �x� sin kmx dx � � 1

0

��
n�1

cn sin knx sin kmx dx.

Assuming uniform convergence of the series, we have

� 1

0
f �x� sin kmx dx �

��
n�1

cn � 1

0
sin knx sin kmx dx.

All terms on the right are zero except if m � n. In this case, we have

� 1

0
f �x� sin knx dx � cn � 1

0
sin2 knx dx �

1
2

cn �1 � cos2 kn�
so that

cn �
2

1 � cos2 kn
� 1

0
f �x� sin knx dx.

We approximate the value of cn for n � 1, 2, . . . , 8 in cvals using the
values of k in kvals.

In[1924]:= f�x � �� x �1 � x�

cvals � Table�2 NIntegrate�f�x� Sin��kvals�j,1,2�� x�,�x,0,1	�
1 � Cos�kvals�j,1,2��2 ,

�j,1,8	�
Out[1924]= �0.213285,0.104049,�0.0219788,0.0187303,

�0.00834994,0.00734255,�0.00426841,
0.00387074

We define the sum of the first j terms of ��
n�1 cn sin knx for f �x� �

x�1 � x�, 0 < x < 1, with fapprox[x,n] and then create a table of
fapprox[x,n] for n � 1 to n � 8 in funcs.
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In[1925]:= fapprox�x ,j � ��
j�

n�1

�cvals�n�� Sin��kvals�n,
1,2�� x�

In[1926]:= funcs � Table�fapprox�x,j�,�j,1,8	�

Out[1926]= �0.213285 Sin�2.02876 x	,
0.213285 Sin�2.02876 x	
�0.104049 Sin�4.91318 x	,
0.213285 Sin�2.02876 x	
�0.104049 Sin�4.91318 x	
�0.0219788 Sin�7.97867 x	,
0.213285 Sin�2.02876 x	
�0.104049 Sin�4.91318 x	
�0.0219788 Sin�7.97867 x	
�0.0187303 Sin�11.0855 x	,
0.213285 Sin�2.02876 x	
�0.104049 Sin�4.91318 x	
�0.0219788 Sin�7.97867 x	
�0.0187303 Sin�11.0855 x	
�0.00834994 Sin�14.2074 x	,
0.213285 Sin�2.02876 x	
�0.104049 Sin�4.91318 x	
�0.0219788 Sin�7.97867 x	
�0.0187303 Sin�11.0855 x	
�0.00834994 Sin�14.2074 x	
�0.00734255 Sin�17.3364 x	,
0.213285 Sin�2.02876 x	
�0.104049 Sin�4.91318 x	
�0.0219788 Sin�7.97867 x	
�0.0187303 Sin�11.0855 x	
�0.00834994 Sin�14.2074 x	
�0.00734255 Sin�17.3364 x	
�0.00426841 Sin�20.4692 x	,
0.213285 Sin�2.02876 x	
�0.104049 Sin�4.91318 x	
�0.0219788 Sin�7.97867 x	
�0.0187303 Sin�11.0855 x	
�0.00834994 Sin�14.2074 x	
�0.00734255 Sin�17.3364 x	
�0.00426841 Sin�20.4692 x	
�0.00387074 Sin�23.6043 x	

We graph f �x� � x�1 � x�, 0 < x < 1, simultaneously with the first term
of the generalized Fourier series, funcs[[1]], to observe the accuracy
in Figure 9-20.
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Figure 9-20 Using the first partial sum to approximate f �x� does not result in a very good
approximation
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Figure 9-21 The approximation improves when the number of terms in the partial sum is
increased

In[1927]:= funcs��1��

Out[1927]= 0.213285 Sin�2.02876 x	

In[1928]:= Plot��fapprox�x,1�,f�x�	,�x,0,1	,
PlotStyle 
 �GrayLevel�0�,
GrayLevel�0.5�	�
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Next, we plot the approximation using the sum of the first 2, 4, 6, and
8 terms of the generalized Fourier series and display the results in Fig-
ure 9-21. We see that the approximation improves as the number of
terms increases.

In[1929]:= graphs �
Table�Plot��fapprox�x,j�,f�x�	,�x,0,1	,
PlotRange 
 �0,0.3	,
PlotStyle 
 �GrayLevel�0�,
GrayLevel�0.5�	,
DisplayFunction 
 Identity�,�j,2,8,2	�

In[1930]:= Show�GraphicsArray�Partition�graphs,2���



10Partial Differential
Equations

10.1 Introduction to Partial Differential
Equations and Separation of
Variables

10.1.1 Introduction

We begin our study of partial differential equations with an introduction of some
of the terminology associated with the topic. A linear second-order partial differ-
ential equation (PDE) in the two independent variables x and y has the form

A�x, y�
�2u
�x2

�B�x, y�
�2u
�y�x

�C�x, y�
�2u
�y2

�D�x, y�
�u
�x
�E�x, y�

�u
�y
�F�x, y�u � G�x, y�, (10.1)

where the solution is u�x, y�. If G�x, y� � 0 for all x and y, we say that the equation is
homogeneous. Otherwise, the equation is nonhomogeneous.

EXAMPLE 10.1.1: Classify the following partial differential equations:
(a) uxx � uyy � u; (b) uux � x.

SOLUTION: (a) This equation satisfies the form of the linear second-
order partial differential equation (10.1) with A � C � 1, F � �1, and
B � D � E � 0. Because G�x, y� � 0, the equation is homogeneous.

783
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(b) This equation is nonlinear, because the coefficient of ux is a function
of u. It is also nonhomogeneous because G�x, y� � x.

Definition 40 (Solution of a Partial Differential Equation). A solution of a par-
tial differential equation in some region R of the space of the independent variables is
a function that possesses all of the partial derivatives that are present in the PDE in some
region containing R and satisfies the PDE everywhere in R.

EXAMPLE 10.1.2: Show that u�x, y� � y2 � x2 and u�x, y� � ey sin x are
solutions to Laplace’s equation uxx � uyy � 0.

SOLUTION: For u�x, y� � y2 � x2, ux�x, y� � �2x, uy�x, y� � 2y, uxx�x, y� �
�2, and uyy�x, y� � 2, so we have that uxx � uyy � ��2� � 2 � 0, which we
quickly verify with Mathematica.

In[1931]:= Clear�u�

u�x ,y � � y2 � x2

In[1932]:= D�u�x,y�,�x,2	� � D�u�x,y�,�y,2	�

Out[1932]= 0

Similarly, for u�x, y� � ey sin x, we have ux � ey cos x, uy � ey sin x, uxx �
�ey sin x, and uyy � ey sin x. Therefore, uxx � uyy � ��ey sin x� � ey sin x � 0,
so the equation is satisfied for both functions.

In[1933]:= Clear�u�

u�x ,y � � Exp�y�Sin�x�

In[1934]:= D�u�x,y�,�x,2	� � D�u�x,y�,�y,2	�

Out[1934]= 0

We notice that the solutions to Laplace’s equation differ in form. This
is unlike solutions to homogeneous linear ordinary differential equa-
tions. There, we found that solutions were similar in form. (Recall, all
solutions could be generated from a general solution.)

Some of the techniques used in constructing solutions of homogeneous linear
ordinary differential equations can be extended to the study of partial differen-
tial equations as we see with the following theorem.
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Theorem 38 (Principle of Superposition). If u1, u2, . . . , um are solutions to a linear
homogeneous partial differential equation in a region R, then

c1u1 � c2u2 �    � cmum �
m�

k�1

ckuk,

where c1, c2, . . . , cm are constants is also a solution in R.

The Principle of Superposition will be used in solving partial differential equations
throughout the rest of the chapter. In fact, we will find that equations can have an
infinite set of solutions so that we construct another solution in the form of an
infinite series.

10.1.2 Separation of Variables

A method that can be used to solve linear partial differential equations is called
separation of variables (or the product method). Generally, the goal of the method
of separation of variables is to transform the partial differential equation into a
system of ordinary differential equations each of which depends on only one of
the functions in the product form of the solution. Suppose that the function u�x, y�
is a solution of a partial differential equation in the independent variables x and
y. In separating variables, we assume that u can be written as the product of a
function of x and a function of y. Hence,

u�x, y� � X�x�Y �y�,

and we substitute this product into the partial differential equation to determine
X�x� and Y �y�. Of course, in order to substitute into the differential equation, we
must be able to differentiate this product. However, this is accomplished by fol-
lowing the differentiation rules of multivariate calculus:

ux � X �Y , uxx � X ��Y , uxy � X �Y �, uy � XY �, and uyy � XY ��,

where X � represents dX/dx and Y � represents dY /dy. After these substitutions are
made and if the equation is separable, we can obtain an ordinary differential equa-
tion for X and an ordinary differential equation for Y . These two equations are then
solved to find X�x� and Y �y�.

EXAMPLE 10.1.3: Use separation of variables to find a solution of xux � uy.
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SOLUTION: If u�x, y� � X�x�Y �y�, then ux � X �Y and uy � XY �. The
equation then becomes

xX �Y � XY �,

which can be written as the separated equation

xX �

X
�

Y �

Y
.

Notice that the left-hand side of the equation is a function of x while the
right-hand side is a function of y. Hence, the only way that this situation
can be true is for xX �/X and Y �/Y to both be constant. Therefore,

xX �

X
�

Y �

Y
� k,

so we obtain the ordinary differential equations xX � � kX � 0 and Y � �
ky � 0. We find X first.

xX � � kX � 0

x
dX
dx

� kX

1
X

dX �
k
x

dx

ln �X � � k ln �x� � c1

X�x� � ec1 xk � C1xk.

Similarly, we find

Y � � kY � 0

dY
dy

� kY

1
Y

dY � k dy

ln �Y � � ky � c2

Y �y� � ec2 eky � C2eky.

Therefore, a solution is u�x, y� � X�x�Y �y� � �C1xk� �C2eky� � C3xkeky where
k and C3 are arbitrary constants. DSolve can be used to find a solution
of this partial differential equation as well.

In[1935]:= Clear�x,y,u�

DSolve�x D�u�x,y�,x� �� D�u�x,y�,y�,u�x,y�,
�x,y	�

Out[1935]= ��u�x,y	 
 C�1	�y � Log�x		
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In this result, the symbol C[1] represents an arbitrary differentiable
function. That is, if f is a differentiable function of a single variable,
u�x, y� � f �y � ln x� is a solution to xux � uy, which we verify by substi-
tuting this result into the partial differential equation.

In[1936]:= xD�C�1��y�Log�x��,x� �� D�C�1��y�Log�x��,y�

Out[1936]= True

10.2 The One-Dimensional Heat Equation

One of the more important partial differential equations is the heat equation,

�u
�t

� c2 �
2u
�x2

. (10.2)

In one spatial dimension, the solution of the heat equation represents the temper-
ature (at any position x and any time t) in a thin rod or wire of length p. Because
the rate at which heat flows through the rod depends on the material that makes
up the rod, the constant c2 which is related to the thermal diffusivity of the mate-
rial is included in the heat equation. Several different situations can be considered
when determining the temperature in the rod. The ends of the wire can be held at
a constant temperature, the ends may be insulated, or there can be a combination
of these situations.

10.2.1 The Heat Equation with Homogeneous
Boundary Conditions

The first problem that we investigate is the situation in which the temperature at
the ends of the rod are constantly kept at zero and the initial temperature distribu-
tion in the rod is represented as the given function f �x�. Hence, the fixed end zero
temperature is given in the boundary conditions

u�0, t� � u�p, t� � 0

while the initial temperature distribution is given by

u�x, 0� � f �x�.
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Because the temperature is zero at the endpoints, we say that the problem has
homogeneous boundary conditions, which are important in finding a solution
with separation of variables. We call problems of this type initial-boundary value
problems (IBVP), because they include initial as well as boundary conditions.
Thus, the problem is summarized as

�					

					
�

�u
�t

� c2 �
2u
�x2

u�0, t� � 0, u�p, t� � 0, t > 0

u�x, 0� � f �x�, 0 < x < p.

(10.3)

We solve this problem through separation of variables by assuming that

u�x, t� � X�x�T �t�.

Substitution into the heat equation (10.2) yields

T �

c2T
�

X ��

X
� �Λ

where �Λ is the separation constant. (Note that we selected this constant in order
to obtain an eigenvalue problem that was solved in Example 9.1.4.) Separating the
variables, we have the two equations

T � � c2ΛT � 0 and X �� � ΛX � 0.

Now that we have successfully separated the variables, we turn our attention to
the homogeneous boundary conditions. In terms of the functions X�x� and T �t�,
these boundary conditions become

u�0, t� � X�0�T �t� � 0 and u�p, t� � X�p�T �t� � 0.

In each case, we must avoid setting T �t� � 0 for all t, because if this were the case,
our solution would be the trivial solution u�x, t� � X�x�T �t� � 0. Therefore, we have
the boundary conditions

X�0� � 0 and X� p� � 0,

so we solve the eigenvalue problemSee Example 9.1.4.

�		

		
�

X �� � ΛX � 0

X�0� � 0, X�p� � 0.

The eigenvalues of this problem are Λn � �nΠ/ p�2 with corresponding eigenfunc-
tions Xn�x� � sin�nΠx/ p�. Similarly, a general solution of T � � c2ΛnT � 0 is Tn�t� �
Ae�c2Λnt , where A is an arbitrary constant and Λn � �nΠ/ p�2, n � 1, 2, . . . .
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In[1937]:= DSolve�capt��t� � c2 Λn capt�t� �� 0,capt�t�,t�
Out[1937]= ��capt�t	 
 ��c

2 n2 Π2 t C�1	��
Because X�x� and T �t� both depend on n, the solution u�x, t� � X�x�T �t� does as well.
Hence,

un�x, t� � Xn�t�Tn�t� � cn sin
nΠx

p
e�c2Λnt

where we have replaced the constant A by one that depends on n. In order to find
the value of cn, we apply the initial condition u�x, 0� � f �x�. Notice that

un�x, 0� � cn sin
nΠx

p
e�c2Λn 0 � cn sin

nΠx
p

is satisfied only by functions of the form sin�Πx/ p�, sin�2Πx/ p�, . . . (which, in general,
is not the case). Therefore, we use the principle of superposition to state that

u�x, t� �
��

n�1

un�x, t� �
��

n�1

cn sin
nΠx

p
e�c2Λnt

is also a solution of the problem, because this solution satisfies the heat equation
as well as the boundary conditions. Then, when we apply the initial condition
u�x, 0� � f �x�, we find that

u�x, 0� �
��

n�1

cn sin
nΠx

p
e�c2Λn 0 �

��
n�1

cn sin
nΠx

p
� f �x�.

Therefore, cn represents the Fourier sine series coefficients for f �x�, which are given
by

cn �
2
p � p

0
f �x� sin

nΠx
p

dx, n � 1, 2, . . . .

EXAMPLE 10.2.1: Solve

�				

				
�

ut � uxx, 0 < x < 1, t > 0

u�0, t� � 0, u�1, t� � 0, t > 0

u�x, 0� � 50, 0 < x < 1.

SOLUTION: In this case, c � 1, p � 1, and f �x� � 50. Hence,

u�x, t� �
��

n�1

cn sin nΠx e�Λnt ,

where If n is an integer,
cos nΠ � ��1�n .

cn �
2
1 � 1

0
50 sin nΠx dx � �

100
nΠ

�cos nΠ � 1� � �
100
nΠ

���1�n � 1� ,

and Λn � �nΠ�2.
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In[1938]:= cn � 100 � 1

0

Sin�nΠx��x

Out[1938]= 100 � 1

n Π
�
Cos�n Π	

n Π
�

In[1939]:= Λn � �nΠ�2

Therefore, because cn � 0 if n is even, we write u�x, t� as

u�x, t� �
��

n�1

200
�2n � 1�Π

sin�2n � 1�Πx e��2n�1�2Π2t .

We graph an approximation of u�x, t� at various times by graphing

uk�x, t� �
k�

n�1

200
�2n � 1�Π

sin�2n � 1�Πx e��2n�1�2Π2t

if k � 10 in Figure 10-1.

In[1940]:= uapprox�x ,t � �
41�
n�1

cn Sin�nΠx� Exp��Λn t�

In[1941]:= toplot � Table�uapprox�x,t�,�t,0,1,0.05	�

In[1942]:= grays � Table�GrayLevel�i�,
�i,0,0.7,0.7/20	�
Plot�Evaluate�toplot�,
�x,0,1	,PlotStyle� > grays�

An alternative approach to visualizing the solution is to generate a den-
sity plot of u�x, t� with DensityPlot as shown in Figure 10-2.
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Figure 10-1 u�x, t� for various values of t
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Figure 10-2 A density plot of u�x, t�: t corresponds to the vertical axis and x the horizontal
axis

In[1943]:= DensityPlot�uapprox�x,t�,�x,0,1	,�t,0,0.5	,
PlotPoints� > 30�

In the density plot, darker shades correspond to smaller values of u�x, t� so

DensityPlot works in the
same way as
ContourPlot.

we see that as t increases, the temperature throughout the rod approaches
zero.

10.2.2 Nonhomogeneous Boundary Conditions

The ability to apply the method of separation of variables depends on the presence
of homogeneous boundary conditions as we just saw in the previous problem.
However, with the heat equation, the temperature at the endpoints may not be
held constantly at zero. Instead, consider the case when the temperature at the left-
hand endpoint is T0 # 0 and at the right-hand endpoint it is T1 # 0. Mathematically,
we state these nonhomogeneous boundary conditions as

u�0, t� � T0 and u�p, t� � T1,
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so we are faced with solving the problem

�					

					
�

�u
�t

� c2 �
2u
�x2

u�0, t� � T0, u�p, t� � T1, t > 0

u�x, 0� � f �x�, 0 < x < p.

(10.4)

In this case, we must modify the problem in order to introduce homogeneous
boundary conditions to the problem. We do this by using the physical observance
that as t � �, the temperature in the wire does not depend on t. Hence,

lim
t��

u�x, t� � S�x�, (10.5)

where we call S�x� in equation (10.7) the steady-state temperature. Therefore, we
let

u�x, t� � v�x, t� � S�x�, (10.6)

where v�x, t� is called the transient temperature. We use these two functions to
obtain two problems that we can solve. In order to substitute u�x, t� into the heat
equation, ut � c2uxx, we calculate the derivatives

ut �x, t� � vt �x, t� � 0 and uxx�x, t� � vxx�x, t� � S���x�.

Substitution into the heat equation (10.2) yields

�v
�t

� c2 �
2v
�x2

� c2S��,

so we have the two equations vt � c2vxx and S�� � 0. We next consider the boundary
conditions. Because

u�0, t� � v�0, t� � S�0� � T0 and u�p, t� � v�p, t� � S�p� � T1,

we can choose the boundary conditions for S to be the nonhomogeneous condi-
tions

S�0� � T0 and S�p� � T1

and the boundary conditions for v�x, t� to be the homogeneous boundary condi-
tions

v�0, t� � 0 and v�p, t� � 0.

Of course, we have failed to include the initial temperature. Applying this condi-
tion, we have u�x, 0� � v�x, 0� � S�x� � f �x�, so the initial condition for v is

v�x, 0� � f �x� � S�x�.
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Therefore, we have two problems, one for v with homogeneous boundary condi-
tions and one for S that has nonhomogeneous boundary conditions:

�		

		
�

S�� � 0, 0 < x < p

S�0� � T0, S�p� � T1

and

�				

				
�

vt � c2vxx, 0 < x < p, t > 0

v�0, t� � 0, v�p, t� � 0, t > 0

v�x, 0� � f �x� � S�x�, 0 < x < p.

Because S is needed in the determination of v, we begin by finding the steady-state

temperature and obtain S�x� � T0 �
T1 � T0

p
x.

In[1944]:= Clear�s,t0�

In[1945]:= DSolve��s���x� �� 0,s�0� �� t0,s�p� �� t1	,s�x�,x�

Out[1945]= ��s�x	 
 p t0 � t0 x � t1 x

p
��

We are now able to find v�x, t� by solving the heat equation with homogeneous
boundary conditions for v. Because we solved this problem at the beginning of
this section, we do not need to go through the separation of variables procedure.
Instead, we use the formula that we derived there using the initial temperature
f �x� � S�x�. Therefore,

v�x, t� �
��

n�1

cn sin
nΠx

p
e�c2Λnt , (10.7)

where v�x, 0� � ��
n�1 cn sin

nΠx
p

� f �x� � S�x�. This means that cn represents the

Fourier sine series coefficients for the function f �x� � S�x� given by

cn �
2
p � p

0
� f �x� � S�x�� sin

nΠx
p

dx, n � 1, 2, . . . . (10.8)

EXAMPLE 10.2.2: Solve

�				

				
�

ut � uxx, 0 < x < 1, t > 0

u�0, t� � 10, u�1, t� � 60, t > 0

u�x, 0� � 10, 0 < x < 1.

SOLUTION: In this case, c � 1, p � 1, T0 � 10, T1 � 60, and f �x� � 10.
Therefore, the steady-state solution is

S�x� � T0 �
T1 � T0

p
x � 10 �

60 � 10
1

x � 10 � 50x.

Then, the initial transient temperature is

v�x, 0� � 10 � �10 � 50x� � �50x
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so that the series coefficients in the solution (10.7) are given by equa-
tion (10.8):

cn �
2
1 � 1

0
�50x sin nΠx dx � �100 � 1

0
x sin nΠx dx

�
100
nΠ

cos nΠ �
100
nΠ

��1�n, . . .

In[1946]:= cn � �100 � 1

0

x Sin�nΠx��x

Out[1946]= �100 � �
Cos�n Π	

n Π
�
Sin�n Π	

n2 Π2
�

In[1947]:= Λn � �nΠ�2

so the transient temperature is

v�x, t� �
��

n�1

cn sin
nΠx

p
e�c2Λnt �

��
n�1

��1�n
100
nΠ

sin nΠx e�n2Π2t

and

u�x, t� � v�x, t� � S�x� � 10 � 50x �
��

n�1

��1�n
100
nΠ

sin nΠx e�n2Π2t .

We graph an approximation of u�x, t� for several values of t by graphing

10 � 50x �
30�

n�1

��1�n
100
nΠ

sin nΠx e�n2Π2t .

In[1948]:= uapprox�x ,t � � 10�50x�
30�
n�1

cn Sin�nΠx�Exp��Λnt�

In[1949]:= toplot � Table�uapprox�x,t�,
�t,0,0.5,0.5/20	�

In[1950]:= grays � Table�GrayLevel�i�,�i,0,0.7,0.7/20	�

Plot�Evaluate�toplot�,�x,0,1	,
PlotStyle� > grays�

In Figure 10-3, notice that as t � �, u�x, t� � S�x�.
We generate a density plot of this function in Figure 10-4.

In[1951]:= DensityPlot�uapprox�x,t�,�x,0,1	,�t,0,0.5	,
PlotPoints� > 30�

Notice that the temperature throughout the bar approaches the steady-
state temperature as t increases.
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Figure 10-3 An approximation of u�x, t� for 21 equally spaced values of t between 0 and 0.5
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Figure 10-4 Density plot of an approximation of u�x, t�

10.2.3 Insulated Boundary

Another important situation concerning the flow of heat in a wire involves insu-
lated ends. In this case, heat is not allowed to escape from the ends of the wire.
Mathematically, we express these boundary conditions as

�u
�x
�0, t� � 0 and

�u
�x
�p, t� � 0,



796 Chapter 10 Partial Differential Equations

because the rate at which the heat changes along the x-axis at the endpoints x � 0
and x � p is zero. Therefore, if we want to determine the temperature in a wire of
length p with insulated ends, we solve the initial-boundary-value problem

�						

						
�

�u
�t

� c2 �
2u
�x2

�u
�x
�0, t� � 0,

�u
�x
�p, t� � 0, t > 0

u�x, 0� � f �x�, 0 < x < p.

(10.9)

Notice that the boundary conditions are homogeneous, so we can use separation
of variables to find u�x, t� � X�x�T �t�. By following the steps taken in the solution
of the problem with homogeneous boundary conditions, we obtain the ordinary
differential equations

T � � c2ΛT � 0 and X �� � ΛX � 0.

However, when we consider the boundary conditions

ux�0, t� � X ��0�T �0� � 0 and ux�p, t� � X ��p�T �p� � 0,

we wish to avoid letting T �t� � 0 for all t (which leads to the trivial solution), so
we have the homogeneous boundary conditions

X ��0� � 0 and X ��p� � 0.

Therefore, we solve the eigenvalue problemWe solve this eigenvalue
problem in Example 9.1.5.

�		

		
�

X �� � ΛX � 0, 0 < x < p

X ��0� � 0, X ��p� � 0

to find X�x�. The eigenvalues and corresponding eigenfunctions of this pro-
blem are

Λn �
�		

		
�

0, n � 0

�nΠ/ p�2, n � 1, 2, . . .
and Xn�x� �

�		

		
�

1, n � 0

cos�nΠx/ p�, n � 1, 2, . . . .

Next, we solve the equation T � � c2ΛnT � 0. First, for Λ0 � 0, we have the equation
T � � 0 which has the solution T �t� � A0, where A0 is a constant. Therefore, for
Λ0 � 0, the solution is the product

u0�x, t� � X0�x�T0�t� � A0.

For Λn � �nΠ/ p�2, T � � c2ΛnT � 0 has general solution Tn�t� � ane�c2Λnt . For these
eigenvalues, we have the solution

un�x, t� � Xn�x�Tn�t� � an cos
nΠx

p
e�c2Λnt .
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Therefore, by the Principle of Superposition, the solution is

u�x, t� � A0 �
��

n�1

an cos
nΠx

p
e�c2Λnt .

Application of the initial temperature yields

u�x, 0� � A0 �
��

n�1

an cos
nΠx

p
� f �x�,

which is the Fourier cosine series for f �x� where the coefficient A0 is equivalent to
1
2 a0 in the original Fourier series given in Section 9.2. Therefore,

A0 �
1
2

a0 �
1
2

2
p � p

0
f �x� dx �

1
p � p

0
f �x� dx

and

an �
2
p � p

0
f �x� cos

nΠx
p

dx, n � 1, 2, . . . .

(10.10)

EXAMPLE 10.2.3: Solve

�				

				
�

ut � uxx, 0 < x < Π, t > 0

ux�0, t� � 0, ux�Π, t� � 0, t > 0

u�x, 0� � x, 0 < x < Π.

SOLUTION: In this case, p � Π and c � 1. The Fourier cosine series
coefficients for f �x� � x are given by See Example 9.2.1.

A0 �
1
2

a0 �
1
Π � Π

0
x dx �

Π
2

and

an �
2
Π � Π

0
x cos

nΠx
Π

dx �
2
Πn2

���1�n � 1� , n � 1, 2, . . . .

Therefore, the solution is

u�x, t� �
Π
2
�

��
n�1

4
�2n � 1�2Π

cos��2n � 1�x� e��2n�1�2t ,

where we have used the fact that an � 0 if n is even. We graph an
approximation of u�x, t� by graphing

Π
2
�

40�
n�1

4
�2n � 1�2Π

cos��2n � 1�x� e��2n�1�2t

in Figure 10-5 and then a density plot of this function in Figure 10-6.
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Figure 10-5 An approximation of u�x, t� for 21 equally spaced values of t between 0 and 1
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Figure 10-6 A density plot

In[1952]:= Remove�a�

an �
4

�2n � 1�2 Π


In[1953]:= uapprox�x ,t � �
Π

2
�

40�
n�1

an Cos��2n � 1� x�

�Exp� � �2n � 1�2 t�
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In[1954]:= toplot � Table�uapprox�x,t�,�t,0,1,1/20	�

In[1955]:= grays � Table�GrayLevel�i�,
�i,0,0.7,0.7/20	�

Plot�Evaluate�toplot�,�x,0,Π	,
PlotStyle� > grays�

In[1956]:= DensityPlot�uapprox�x,t�,�x,0,Π	,
�t,0,0.5	,PlotPoints� > 30�

Notice that the temperature eventually becomes A0 � Π/2 throughout
the wire. Temperatures to the left of x � Π/2 increase while those to the
right decrease.

10.3 The One-Dimensional Wave
Equation

The one-dimensional wave equation is important in solving an interesting problem.

10.3.1 The Wave Equation

Suppose that we pluck a string (like a guitar or violin string) of length p and con-
stant mass density that is fixed at each end. A question that we might ask is: “What
is the position of the string at a particular instance of time?” We answer this ques-
tion by modeling the physical situation with a partial differential equation, namely
the wave equation in one spatial variable. We will not go through this derivation as
we did with the heat equation, but we point out that it is based on determining
the forces that act on a small segment of the string and applying Newton’s Second
Law of Motion. The partial differential equation that is found is

c2 �
2u
�x2

�
�2u
�t2

, (10.11)

which is called the (one-dimensional) wave equation. In this equation c2 � T /Ρ,
where T is the tension of the string and Ρ is the constant mass of the string per unit
length. The solution u � u�x, t� represents the displacement of the string from the x-
axis at time t. In order to determine u � u�x, t� we must describe the boundary and
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initial conditions that model the physical situation. At the ends of the string, the
displacement from the x-axis is fixed at zero, so we use the homogeneous bound-
ary conditions

u�0, t� � 0 and u�p, t� � 0

for t > 0. The motion of the string also depends on the displacement and the
velocity at each point of the string at t � 0. If the initial displacement is given by
f �x� and the initial velocity by g�x�, we have the initial conditions

u�x, 0� � f �x� and
�u
�t
�x, 0� � g�x�

for 0 < x < p. Therefore, we determine the displacement of the string with the
initial-boundary-value problem

�						

						
�

c2 �
2u
�x2

�
�2u
�t2

, 0 < x < p, t > 0

u�0, t� � 0, u�p, t� � 0, t > 0

u�x, 0� � f �x�,
�u
�t
�x, 0� � g�x�, 0 < x < p.

(10.12)

Notice that the wave
equation requires two initial
conditions where the heat
equation only needed one.
This is due to the fact that
there is a second derivative
with respect to t while there
is only one derivative with
respect to t in the heat
equation.

This problem is solved through separation of variables by assuming that u�x, t� �
X�x�T �t�. Substitution into the wave equation yields

c2X ��T � XT ��

X ��

X
�

T ��

c2T
� �Λ

so we obtain the two second-order ordinary differential equations

X �� � ΛX � 0 and T �� � c2ΛT � 0.

At this point, we solve the equation that involves the homogeneous boundary
conditions. As was the case with the heat equation, the boundary conditions in
terms of u�x, t� � X�x�T �t� are

u�0, t� � X�0�T �t� � 0 and u�p, t� � X�p�T �t� � 0,

so we have
X�0� � 0 and X�p� � 0.

Therefore, we determine X�x� by solving the eigenvalue problem

�		

		
�

X �� � ΛX � 0, 0 < x < p

X�0� � 0, X�p� � 0
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which we encountered when solving the heat equation and solved in Section 10.2.
The eigenvalues of this problem are

Λn � �nΠ
p

�2

, n � 1, 2, . . .

with corresponding eigenfunctions See Example 9.1.4.

Xn�x� � sin
nΠx

p
, n � 1, 2, . . . .

Next, we solve the equation T �� � c2ΛnT � 0. A general solution is

Tn�t� � an cos �c
Λnt� � bn sin �c

Λnt� � an cos
cnΠt

p
� bn sin

cnΠt
p

,

where the coefficients an and bn must be determined. Putting this information
together, we obtain

un�x, t� � �an cos
cnΠt

p
� bn sin

cnΠt
p

� sin
nΠx

p
,

so by the Principle of Superposition, we have

u�x, t� �
��

n�1

�an cos
cnΠt

p
� bn sin

cnΠt
p

� sin
nΠx

p
.

Applying the initial position yields

u�x, 0� �
��

n�1

an sin
nΠx

p
� f �x�

so an is the Fourier sine series coefficient for f �x�, which is given by

an �
2
p � p

0
f �x� sin

nΠx
p

dx, n � 1, 2, . . . . (10.13)

To determine bn, we must use the initial velocity. Therefore, we compute

�u
�t
�x, t� �

��
n�1

��an
cnΠ

p
sin

cnΠt
p

� bn
cnΠ

p
cos

cnΠt
p

� sin
nΠx

p
.

Then,
�u
�t
�x, 0� �

��
n�1

bn
cnΠ

p
sin

nΠx
p

� g�x�,

so bn
cnΠ

p
represents the Fourier sine series coefficient for g�x�, which means that

bn �
p

cnΠ
2
p � p

0
g�x� sin

nΠx
p

dx �
2

cnΠ � p

0
g�x� sin

nΠx
p

dx, n � 1, 2, . . . . (10.14)
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EXAMPLE 10.3.1: Solve

�				

				
�

uxx � utt , 0 < x < 1, t > 0

u�0, t� � 0, u�1, t� � 0, t > 0

u�x, 0� � x�1 � x�, ut �x, 0� � 0, 0 < x < 1.

SOLUTION: For this problem, c � p � 1, f �x� � x�1 � x�, and g�x� � 0.
With this information and equation (10.13) we compute

an �
2
1 � 1

0
x�1 � x� sin nΠx dx � �

4
n3Π3

cos nΠ �
4

n3Π3
�

4
n3Π3

�1 � ��1�n� ,

n � 1, 2, . . . .

In[1957]:= Remove�a�

an � 2 � 1

0

x �1 � x� Sin�nΠx��x

Out[1957]= 2 � 2

n3 Π3
�
2 Cos�n Π	

n3 Π3
�
Sin�n Π	

n2 Π2
�

With g�x� � 0, we use equation (10.14) to see that the coefficients bn � 0
for all n. Using the fact that an � 0 for even values of n, the solution is

u�x, t� �
��

n�1

8
�2n � 1�3Π3

cos��2n � 1�Πt� sin��2n � 1�Πx�.

We illustrate the motion of the string by graphing

uk�x, t� �
k�

n�1

8
�2n � 1�3Π3

cos��2n � 1�Πt� sin��2n � 1�Πx�

using k � 10 for 16 equally spaced values of t between 0 and 1 in
Figure 10-7.

In[1958]:= u�x ,t � �
10�
n�1

8 Cos��2n � 1� Πt� Sin��2n � 1� Πx�

�2n � 1�3 Π3


In[1959]:= somegraphs �
Table�Plot�u�x,t�,�x,0,1	,
DisplayFunction 
 Identity,

PlotRange 
 ��0.3,0.3	,

Ticks 
 ��0,1	,��0.3,0.3		�,
t,0,1, 1

15
��

toshow � Partition�somegraphs,4�

Show�GraphicsArray�toshow��
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Figure 10-7 Visualizing the motion of a string

To see the motion of the string, you can use a Do loop like

Do[Plot[u[x,t],{x,0,1},PlotRange->{-0.3,0.3},
Ticks->{{0,1},{-0.3,0.3}}],{t,0,2,2/59}]

to generate a sequence of graphs and animate the result.

EXAMPLE 10.3.2: Solve

�				

				
�

uxx � utt , 0 < x < 1, t > 0

u�0, t� � 0, u�1, t� � 0, t > 0

u�x, 0� � sin Πx, ut �x, 0� � 3x � 1, 0 < x < 1.

SOLUTION: The appropriate parameters and initial conditions are
defined first.

In[1960]:= Remove�a,b�

f�x � � Sin�Πx�

g�x � � 3x � 1
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Next, the functions to determine the coefficients an and bn in the series
approximation of the solution u � u�x, t� are defined.

In[1961]:= an � 2 � 1

0

f�x� Sin�nΠx��x

Out[1961]= 2 �Sin���1 � n� Π	
2 ��1 � n� Π

�
Sin��1 � n� Π	

2 �1 � n� Π
�

In[1962]:= bn �
2 � 1

0
g�x� Sin�nΠx��x

nΠ

Out[1962]=
2 � 1

n Π �
4 Cos�n Π	

n Π � 3 Sin�n Π	
n2 Π2

�
n Π

Because n represents an integer, these results indicate that an � 0 for all
n " 1. We use Table to calculate the first 10 values of bn.

In[1963]:= Table��n,bn,bn//N	,�n,1,10	�//TableForm

Out[1963]=

1
10

Π2
1.01321

2 �
3

2 Π2
�0.151982

3
10

9 Π2
0.112579

4 �
3

8 Π2
�0.0379954

5
2

5 Π2
0.0405285

6 �
1

6 Π2
�0.0168869

7
10

49 Π2
0.0206778

8 �
3

32 Π2
�0.00949886

9
10

81 Π2
0.0125088

10 �
3

50 Π2
�0.00607927

The function u defined next computes the nth term in the series
expansion. Hence, uapprox determines the approximation of order k
by summing the first k terms of the expansion, as illustrated with
uapprox[10].

Notice that we define
uapprox[n] so that
Mathematica “remembers”
the terms uapprox that are
computed. That is,
Mathematica need not
recompute uapprox[n-1]
to compute uapprox[n]
provided that
uapprox[n-1] has already
been computed.

In[1964]:= Clear�u,uapprox�

In[1965]:= u�n � � bn Sin�nΠt� Sin�nΠx�

In[1966]:= uapprox�k � �� uapprox�k� � uapprox�k � 1� � u�k�

uapprox�1� � u�1�
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In[1967]:= uapprox�10�

Out[1967]=
10 Sin�Π t	 Sin�Π x	

Π2

�
3 Sin�2 Π t	 Sin�2 Π x	

2 Π2

�
10 Sin�3 Π t	 Sin�3 Π x	

9 Π2

�
3 Sin�4 Π t	 Sin�4 Π x	

8 Π2

�
2 Sin�5 Π t	 Sin�5 Π x	

5 Π2

�
Sin�6 Π t	 Sin�6 Π x	

6 Π2

�
10 Sin�7 Π t	 Sin�7 Π x	

49 Π2

�
3 Sin�8 Π t	 Sin�8 Π x	

32 Π2

�
10 Sin�9 Π t	 Sin�9 Π x	

81 Π2

�
3 Sin�10 Π t	 Sin�10 Π x	

50 Π2

To illustrate the motion of the string, we graph uapprox[10], the
tenth partial sum of the series, on the interval �0, 1� for 16 equally spaced
values of t between 0 and 2 in Figure 10-8.

1
-1

1

1
-1

1

1
-1

1

1
-1

1

1
-1

1

1
-1

1

1
-1

1

1
-1

1

1
-1

1

1
-1

1

1
-1

1

1
-1

1

1
-1

1

1
-1

1

1
-1

1

1
-1

1

Figure 10-8 Visualizing the motion of a string
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In[1968]:= somegraphs �

Table�Plot�Evaluate�uapprox�10��,�x,0,1	,
DisplayFunction 
 Identity,

PlotRange 
 ��3/2,3/2	,

Ticks 
 ��0,1	,��1,1		�,
t,0,2, 2

15
��

toshow � Partition�somegraphs,4�

Show�GraphicsArray�toshow��

If instead we wished to see the motion of the string, we can use a Do
loop to generate many graphs and animate the result. We show a frame
from the resulting animation.

In[1969]:= Do�Plot�Evaluate�uapprox�10��,�x,0,1	,
PlotRange 
 ��3/2,3/2	,

Ticks 
 ��0,1	,��1,1		�,
t,0,2, 2

59
��

10.3.2 D’Alembert’s Solution

An interesting version of the wave equation is to consider a string of infinite
length. Therefore, the boundary conditions are no longer of importance. Instead,
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we simply work with the wave equation with the initial position and velocity func-
tions. In order to solve the problem

�			

			
�

c2 �
2u
�x2

�
�2u
�t2

, �� < x < �, t > 0

u�x, 0� � f �x�,
�u
�t
�x, 0� � g�x�

(10.15)

we use the change of variables r � x � ct and s � x � ct. Using the Chain Rule, we
compute the derivatives uxx and utt in terms of the variables r and s:

ux � urrx � ussx � ur � us,

uxx � �ur � us�r rx � �ur � us�s sx � urr � 2urs � uss,

ut � urrt � usst � cur � cus � c �ur � us� ,

and

utt � c ��ur � us�r rt � �ur � us�s st� � c2 �urr � 2urs � uss� .

Substitution into the wave equation yields

c2uxx � utt

c2 �urr � 2urs � uss� � c2 �urr � 2urs � uss�

4c2urs � 0

urs � 0.

The partial differential equation urs � 0 can be solved by first integrating with
respect to s to obtain

ur � f �r�,

where f �r� is an arbitrary function of r. Then, integrating with respect to r, we have

u�r, s� � F�r� � G�s�,

where F is an antiderivative of f and G is an arbitrary function of s. Returning to
our original variables then gives us

u�x, t� � F�x � ct� � G�x � ct�.

We see that this is the solution that DSolve returns as well. (Note that C[1] and
C[2] represent the arbitrary functions F and G.)

In[1970]:= Clear�u,c,x�

In[1971]:= DSolve�cˆ2 D�u�x,t�,�x,2	� �� D�u�x,t�,�t,2	�,
u�x,t�,�x,t	�

Out[1971]= ��u�x,t	 
 C�1	�t � 

c2 x

c2
� � C�2	�t � 


c2 x

c2
���
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The functions F and G are determined by the initial conditions which
indicate that

u�x, 0� � F�x� � G�x� � f �x�

and

ut �x, 0� � cF ��x� � cG��x� � g�x�.

We can rewrite the second equation by integrating to obtain

F ��x� � G��x� �
1
c

g�x�

F�x� � G�x� �
1
c � x

0
g�v� dv.

Therefore, we solve the system

F�x� � G�x� � f �x�

F�x� � G�x� �
1
c � x

0
g�v� dv

for F�x� and G�x�. Adding these equations yields

F�x� �
1
2

� f �x� �
1
c � x

0
g�v� dv�

and subtracting gives us

G�x� �
1
2

� f �x� �
1
c � x

0
g�v� dv� .

Therefore,

F�x � ct� �
1
2

� f �x � ct� �
1
c � x�ct

0
g�v� dv�

and

G�x � ct� �
1
2

� f �x � ct� �
1
c � x�ct

0
g�v� dv� ,

so the solution is

u�x, t� �
1
2
� f �x � ct� � f �x � ct�� �

1
2c � x�ct

x�ct
g�v� dv. (10.16)
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EXAMPLE 10.3.3: Solve
�		

		
�

uxx � utt , �� < x < �, t > 0

u�x, 0� � 2 �1 � x2��1
, ut �x, 0� � 0.

SOLUTION: Using equation (10.16) with c � 1, f �x� � 2 �1 � x2��1
, and

g�x� � 0, we have the solution

u�x, t� �
1
2
� f �x � ct� � f �x � ct�� �

1
2

	 2
1 � �x � t�2

�
2

1 � �x � t�2



�
1

1 � �x � t�2
�

1
1 � �x � t�2

.

We plot the solution for t � 0 to t � 15 to illustrate the motion of the
string of infinite length in Figure 10-9.

In[1972]:= Clear�u,x,t�

u�x ,t � �
1

1 � �x � t�2
�

1

1 � �x � t�2


-5 5 -5 5 -5 5 -5 5

-5 5 -5 5 -5 5 -5 5

-5 5 -5 5 -5 5 -5 5

-5 5 -5 5 -5 5 -5 5

Figure 10-9 A traveling wave solution
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In[1973]:= somegraphs � Table�
Plot�u�x,t�,�x,�20,20	,
PlotRange 
 �0,2	,
DisplayFunction 
 Identity,
Ticks 
 ���5,5	,�0,5		�,
�t,0,15	�

toshow � Partition�somegraphs,4�

Show�GraphicsArray�toshow��

Alternatively, you can use the following Do loop to generate several
graphs and animate the results to see the motion of the string.

Do[Plot[u[x,t],{x,-20,20},PlotRange->{0,3/2},
AxesStyle->GrayLevel[.5]],{t,1,15}]

D’Alembert’s solution is sometimes referred to as the traveling wave
solution due to the behavior of its graph. The waves appear to move in
opposite directions along the x-axis as t increases, as we can see in the
graphs.

10.4 Problems in Two Dimensions:
Laplace’s Equation

10.4.1 Laplace’s Equation

Laplace’s equation, often called the potential equation, is given by

�2u
�x2

�
�2u
�y2

� 0, (10.17)

in rectangular coordinates and is one of the most useful partial differential equa-
tions in that it arises in many fields of study. These include fluid flows as well
as electrostatic and gravitational potential. Because the potential u � u�x, y� does
not depend on time, no initial condition is required, so we are faced with solv-
ing a pure boundary-value problem when working with Laplace’s equation. The
boundary conditions can be stated in different forms. If the value of the solution
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is given around the boundary of the region, then the boundary-value problem
is called a Dirichlet problem whereas if the normal derivative of the solution is
given around the boundary, the problem is known as a Neumann problem. We
now investigate the solutions to Laplace’s equation in a rectangular region by, first,
stating the general form of the Dirichlet problem:

�					

					
�

�2u
�x2

�
�2u
�y2

� 0, 0 < x < a, 0 < y < b

u�x, 0� � f1�x�, u�x, b� � f2�x�, 0 < x < a

u�0, y� � g1�y�, u�a, y� � g2�y�, 0 < y < b.

(10.18)

This boundary-value problem is solved through separation of variables. We begin
by considering the problem

�					

					
�

�2u
�x2

�
�2u
�y2

� 0, 0 < x < a, 0 < y < b

u�x, 0� � 0, u�x, b� � f �x�, 0 < x < a

u�0, y� � 0, u�a, y� � 0, 0 < y < b.

(10.19)

In this case, we assume that
u�x, y� � X�x�Y �y�

so substitution into Laplace’s equation (10.17) yields

X ��Y � XY �� � 0

X ��

X
� �

Y ��

Y
� �Λ,

where �Λ is the separation constant. Therefore, we have the ordinary differential
equations X �� � ΛX � 0 and Y �� � ΛY � 0. Notice that the boundary conditions along
the lines x � 0 and x � a are homogeneous. In fact, because u�0, y� � X�0�Y �y� � 0
and u�a, y� � X�a�Y �y� � 0, we have X�0� � 0 and X�a� � 0. Therefore, we first solve
the eigenvalue problem

�		

		
�

X �� � ΛX � 0, 0 < x < a

X�0� � 0, X�a� � 0

which was solved with a � p in Section 9.1. There, we found the eigenvalues and See Example 9.1.4.

corresponding eigenfunctions to be Λn � �nΠ/a�2 and Xn�x� � sin�nΠx/a�, n � 1, 2, . . . .
We then solve the equation Y �� � ΛY � 0. From our experience with second-order
equations, we know that Yn�y� � aneΛny � bne�Λny, which can be written in terms of
the hyperbolic trigonometric functions as

Yn�y� � An cosh Λny � Bn sinh Λny � An cosh
nΠy
a

� Bn sinh
nΠy
a

.



812 Chapter 10 Partial Differential Equations

Then, using the homogeneous boundary condition u�x, 0� � X�x�Y �0� � 0, which
indicates that Y �0� � 0, we have

Yn�0� � An cosh 0 � Bn sinh 0 � An � 0,

so An � 0 for all n. Therefore, Yn�y� � Bn sinh Λny, and a solution of equation (10.19)
is

un�x, y� � Bn sinh
nΠy
a

sin
nΠx
a

,

so by the Principle of Superposition,

u�x, y� �
��

n�1

Bn sinh
nΠy
a

sin
nΠx
a

is also a solution, where the coefficients are determined with the boundary condi-
tion u�x, b� � f �x�. Substitution into the solution yields

u�x, b� �
��

n�1

Bn sinh
nΠb

a
sin

nΠx
a

� f �x�,

where Bn sinh�nΠb/a� represents the Fourier sine series coefficients given by

Bn sinh
nΠb

a
�

2
a � a

0
f �x� sin

nΠx
a

dx

Bn �
2

a sinh
nΠb

a

� a

0
f �x� sin

nΠx
a

dx.
(10.20)

EXAMPLE 10.4.1: Solve

�				

				
�

uxx � uyy � 0, 0 < x < 1, 0 < y < 2

u�x, 0� � 0, u�x, 2� � x�1 � x�, 0 < x < 1

u�0, y� � 0, u�1, y� � 0, 0 < y < 2.

SOLUTION: In this case, a � 1, b � 2, and f �x� � x�1 � x�. Therefore,

Bn �
2

sinh 2nΠ � 1

0
x�1 � x� sin nΠx dx �

2
sinh 2nΠ

�� 2
n3Π3

cos nΠ �
2

n3Π3 �
�

4
n3Π3 sinh 2nΠ

�1 � ��1�n� , n � 1, 2, . . .

In[1974]:=
2 � 1

0
x �1 � x� Sin�nΠx��x

Sinh�2nΠ�

Out[1974]= 2 Csch�2 n Π	 � 2

n3 Π3
�
2 Cos�n Π	

n3 Π3
�
Sin�n Π	

n2 Π2
�
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Figure 10-10 Approximating a solution of Laplace’s equation

so the solution is

u�x, y� �
��

n�1

Bn sinh nΠy sin nΠx

�
��

n�1

8
�2n � 1�3Π3 sinh 2�2n � 1�Π

sinh�2n � 1�Πy sin�2n � 1�Πx.

We plot u�x, y� using the first 15 terms of the series solution in Figure 10-10.

In[1975]:= Clear�u�

u�x ,y � �
15�
n�1

8 Sinh��2n � 1� Πy� Sin��2n � 1� Πx�

�2n � 1�3 Π3 Sinh�2 �2n � 1� Π�


In[1976]:= Plot3D�u�x,y�,�x,0,1	,�y,0,2	,
ViewPoint 
 �2.365,2.365,0.514	,
AxesLabel 
 �"x","y","u"	,PlotPoints 
 40�

Alternatively, we can generate a contour or density plot of u�x, y� as
shown in Figure 10-11.

In[1977]:= cplot � ContourPlot�u�x,y�,�x,0,1	,�y,0,2	,
PlotPoints� > 30,
DisplayFunction� > Identity�

dplot � DensityPlot�u�x,y�,�x,0,1	,�y,0,2	,
PlotPoints� > 30,
DisplayFunction� > Identity�

Show�GraphicsArray��cplot,dplot	��

We notice that the value of u�x, y� decreases to zero away from the bound-
ary y � 2.
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Figure 10-11 On the left, a contour plot and on the right, a density plot

Any version of Laplace’s equation on a rectangular region can be solved through
separation of variables as long as we have a pair of homogeneous boundary con-
ditions in the same variable.

EXAMPLE 10.4.2: Solve

�				

				
�

uxx � uyy � 0, 0 < x < Π, 0 < y < 1

u�x, 0� � 0, u�x, 1� � 0, 0 < x < Π

u�0, y� � sin 2Πy, u�Π, y� � 4, 0 < y < 1.

SOLUTION: As we did in the previous problem, we assume that u�x, y�
� X�x�Y �y�. Notice that this problem differs from the previous problem
in that the homogeneous boundary conditions are in terms of the vari-
able y. Hence, when we separate variables, we use a different constant
of separation. This yields

X ��Y � XY �� � 0

X ��

X
� �

Y ��

Y
� Λ,

so we have the ordinary differential equations X �� � ΛX � 0 and Y �� �
ΛY � 0. Therefore, with the homogeneous boundary conditions u�x, 0� �
X�x�Y �0� � 0 and u�x, 1� � X�x�Y �1� � 0, we have Y �0� � 0 and Y �1� � 0.
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The eigenvalue problem

�		

		
�

Y �� � ΛY � 0, 0 < y < 1

Y �0� � 0, Y �1� � 0

has eigenvalues Λn � �nΠ/1�2 � n2Π2, n � 1, 2, . . . and eigenfunctions
Yn�y� � sin nΠy, n � 1, 2, . . . . We then solve the equation X �� � ΛnX � 0
obtaining Xn�x� � anenΠx � bne�nΠx, which can be written in terms of the
hyperbolic trigonometric functions as

Xn�x� � An cosh nΠx � Bn sinh nΠx.

Now, because the boundary conditions on the boundaries x � 0 and
x � Π are nonhomogeneous, we use the Principle of Superposition to
obtain the solution

u�x, y� �
��

n�1

�An cosh nΠx � Bn sinh nΠx� sin nΠy.

Therefore,

u�0, y� �
��

n�1

An sin nΠy � sin 2Πy,

so A2 � 1 and An � 0 for n # 2. Similarly,

u�Π, y� � A2 cosh 2Π2 �
��

n�1

Bn sinh nΠ2 sin nΠy � 4,

which indicates that
��

n�1

Bn sinh nΠ2 sin nΠy � 4 � cosh 2Π2.

Then, Bn sinh nΠ2 are the Fourier sine series coefficients for the constant
function 4 � cosh 2Π2 which are given by

Bn sinh nΠ2 �
2
1 � 1

0
�4 � cosh 2Π2� sin nΠy dy � �2 �4 � cosh 2Π2� 	 1

nΠ
cos nΠy
1

0

� �
2 �4 � cosh 2Π2�

nΠ
���1�n � 1� , n � 1, 2, . . . .

From this formula, we see that Bn � 0 if n is even. Therefore, we express
these coefficients as

B2n�1 �
4 �4 � cosh 2Π2�
�2n � 1�Π

, n � 1, 2, . . .
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Figure 10-12 On the left, a contour plot and on the right, a density plot

so that the solution is

u�x, y� � cosh 2Πx �
��

n�1

4 �4 � cosh 2Π2�
�2n � 1�Π

sin�2n � 1�Πy.

As in the first example, we generate contour and density plots of an
approximation of u. See Figure 10-12.

In[1978]:= Clear�u�

u�x ,y � �

Cosh�2Πx�

�
30�
n�1

4 �4 � Cosh�2Π2�� Sin��2n � 1� Πy�

�2n � 1� Π


In[1979]:= p1 � ContourPlot�u�x,y�,�x,0,Π	,�y,0,1	,
PlotPoints 
 30,
DisplayFunction� > Identity�

p2 � DensityPlot�u�x,y�,�x,0,Π	,�y,0,1	,
PlotPoints 
 30,
DisplayFunction� > Identity�

Show�GraphicsArray��p1,p2	��
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10.5 Two-Dimensional Problems in a
Circular Region

In some situations, the region on which we solve a boundary-value problem or
an initial-boundary-value problem is not rectangular in shape. For example, we
usually do not have rectangular shaped drumheads and the heating elements on
top of the stove are not square. Instead, these objects are typically circular in shape,
so we find the use of polar coordinates convenient. In this section, we discuss
problems of this type by presenting two important problems solved on circular
regions, Laplace’s equation which is related to the steady-state temperature and
the wave equation which is used to find the displacement of a drumhead.

10.5.1 Laplace’s Equation in a Circular Region

In calculus, we found that polar coordinates are useful in solving many problems.
The same can be said for solving boundary-value problems in a circular region.
With the change of variables

�		

		
�

x � r cos Θ

y � r sin Θ

we transform Laplace’s equation in rectangular coordinates, uxx � uyy � 0, to polar
coordinates

�2u
�r2

�
1
r
�u
�r

�
1
r2

�2

�Θ2
� 0, 0 < r < Ρ, �Π < Θ < Π, (10.21)

where Ρ is the radius of the drumhead. Recall that for the solution of Laplace’s
equation in a rectangular region, we had to specify a boundary condition on each
of the four boundaries of the rectangle. However, in the case of a circle, there are
not four sides, so we must alter the boundary conditions. Because in polar coordi-
nates the points �r, Π� and �r,�Π� are equivalent for the same value of r, we want
our solution and its derivative with respect to Θ to match at these points (so that
the solution is smooth). Therefore, two of the boundary conditions are

u�r,�Π� � u�r, Π� and
�u
�Θ
�r,�Π� �

�u
�Θ
�r, Π� (10.22)

for 0 < r < Ρ. Also, we want our solution to be bounded at r � 0, so another
boundary condition is �u�0, Θ�� < � for �Π < Θ < Π. Finally, we specify the value
of the solution around the boundary of the circle r � Ρ to be u�Ρ, Θ� � f �Θ� for
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�Π < Θ < Π. Therefore, we solve the following boundary-value problem to solve
Laplace’s equation (the Dirichlet problem) in a circular region of radius Ρ:

�						

						
�

�2u
�r2

�
1
r
�u
�r

�
1
r2

�2

�Θ2
� 0, 0 < r < Ρ, �Π < Θ < Π

u�r,�Π� � u�r, Π�,
�u
�Θ
�r,�Π� �

�u
�Θ
�r, Π�, 0 < r < Ρ

�u�0, Θ�� < �, u� Ρ, Θ� � f �Θ�, �Π < Θ < Π.

(10.23)

Using separation of variables, we assume that u�r, Θ� � R�r�H�Θ�. Substitution into
Laplace’s equation yields

R��H �
1
r

R�H � RH�� � 0

R��H �
1
r

R�H � �RH��

rR�� � R�

rR
� �

H��

H
� Λ.

Therefore, we have the ordinary differential equations

H�� � ΛH � 0 and r2R�� � rR� � ΛR � 0.

Notice that the boundary conditions given by equation (10.22) imply that

R�r�H��Π� � R�r�H�Π� and R�r�H���Π� � R�r�H��Π�,

so that
H��Π� � H�Π� and H���Π� � H��Π�.

This means that we begin by solving the eigenvalue problem

�		

		
�

H�� � ΛH � 0, �Π < Θ < Π

H��Π� � H�Π�, H���Π� � H��Π�.

The eigenvalues and corresponding eigenfunctions of this problem are

Λn �
�		

		
�

0, n � 0

n2, n � 1, 2, . . .
and Hn�Θ� �

�		

		
�

1, n � 0

an cos nΘ � bn sin nΘ, n � 1, 2, . . . .

Because r2R�� � rR� �Λ2
nR � 0 is a Cauchy–Euler equation, we assume that R�r� � rm:

m�m � 1�r2rm�2 � mrrm�1 � Λnrm � 0

rm �m�m � 1� � m � Λn� � 0.

Therefore,
m2 � Λ2

n � 0 so m �  Λn.
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If Λ0 � 0, then R0�r� � a0 � b0 ln r. However, because we require that the solution
be bounded near r � 0 and limr�0� ln r � ��, we must choose b0 � 0. Therefore,
R0�r� � a0. On the other hand, if Λn � n2, n � 1, 2, . . . , then Rn�r� � anrn � bnr�n.
Similarly, because limr�0� r�n � �, we must let bn � 0, so Rn�r� � anrn. By the
Principle of Superposition, we have the solution

u�r, Θ� � a0 �
��

n�1

rn �an cos nΘ � bn sin nΘ� .

We find the coefficients by applying the boundary condition u�Ρ, Θ� � f �Θ�. This
yields

u�Ρ, Θ� � a0 �
��

n�1

Ρn �an cos nΘ � bn sin nΘ� � f �Θ�

so a0, an, and bn are related to the Fourier series coefficients in the following way:

a0 �
1

2Π � Π

�Π
f �Θ� dΘ,

an �
1
ΠΡn � Π

�Π
f �Θ� cos nΘ dΘ, n � 1, 2, . . . , and

bn �
1
ΠΡn � Π

�Π
f �Θ� sin nΘ dΘ, n � 1, 2, . . . .

(10.24)

EXAMPLE 10.5.1: Solve

�						

						
�

�2u
�r2

�
1
r
�u
�r

�
1
r2

�2

�Θ2
� 0, 0 < r < 2, �Π < Θ < Π

u�r,�Π� � u�r, Π�,
�u
�Θ
�r,�Π� �

�u
�Θ
�r, Π�, 0 < r < 2

�u�0, Θ�� < �, u�2, Θ� � �Θ�, �Π < Θ < Π.

SOLUTION: Notice that f �Θ� � �Θ� is an even function on �Π < Θ < Π.
Therefore, bn � 0 for n � 1, 2, . . . , a0 is given by

a0 �
1

2Π � Π

Π
�Θ� dΘ �

1
Π � Π

0
Θ dΘ �

Π
2

,

In[1980]:=
� Π

0
Θ�Θ

Π
Out[1980]=

Π

2

and an is given by

an �
1

2nΠ � Π

Π
�Θ� cos nΘ dΘ �

1
2n�1Π � Π

0
Θ cos nΘ dΘ

�
1

2n�1n2Π
�cos nΠ � 1� �

1
2n�1n2Π

���1�n � 1� , n � 1, 2, . . . .
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In[1981]:= an �
� Π

0
Θ Cos�nΘ��Θ

Π2n�1
//Simplify

Out[1981]=
21�n ��1 � Cos�n Π	 � n Π Sin�n Π	�

n2 Π

Notice that a2n � 0, n � 1, 2, . . . , while a2n�1 �
�2

22n�1�2n � 1�2Π
, n � 1, 2,

. . . , so the solution is

u�r, Θ� �
Π
2
�

��
n�1

1
22n�2�2n � 1�2Π

r2n�1 cos�2n � 1�Θ.

In the same manner as in previous examples, we graph an approxima-
tion of this solution. See Figure 10-13.

In[1982]:= Clear�u,r,Θ�

u�r ,Θ � �
Π

2
�

20�
n�1

r2n�1 Cos��2n � 1�Θ�

Π22n�2 �2n � 1�2


In[1983]:= ParametricPlot3D��r Cos�Θ�,r Sin�Θ�,u�r,Θ�	,
�r,0,2	,�Θ,�Π,Π	,Boxed 
 False,
PlotPoints 
 35�
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Figure 10-13 Plot of a solution to Laplace’s equation in polar coordinates
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10.5.2 The Wave Equation in a Circular Region

One of the more interesting problems involving two spatial dimensions (x and y)
is the wave equation,

c2 ��2u
�x2

�
�2u
�y2 � � �2u

�t2
. (10.25)

This is due to the fact that the solution to this problem represents something with
which we are all familiar, the displacement of a drumhead. Because drumheads
are circular in shape, we investigate the solution of the wave equation in a circular
region. Therefore, we transform the wave equation into polar coordinates. Pre-
viously, we saw that converting Laplace’s equation from rectangular coordinates
�x, y� to polar coordinates �r, Θ� results in the equation

�2u
�x2

�
�2u
�y2

�
�2u
�r2

�
1
r
�u
�r

�
1
r2

�2u
�Θ2

so it follows that the wave equation in polar coordinates becomes

c2 ��2u
�r2

�
1
r
�u
�r

�
1
r2

�2u
�Θ2 � � �2u

�t2
. (10.26)

If we assume that the displacement of the drumhead from the xy-plane at time t is
the same at equal distances from the origin, we say that the solution u � u�r, Θ� is
radially symmetric. Therefore, �2u/�Θ2 � 0, so the wave equation can be expressed If the solution is radially

symmetric, the value of u

does not depend on the
angle Θ.

in terms of r and t as

c2 ��2u
�r2

�
1
r
�u
�r

� � �2u
�t2

. (10.27)

Of course, to find u � u�r, t� we need the appropriate boundary and initial condi-
tions. Because the circular boundary of the drumhead r � Ρ must be fixed so that
it does not move we say that u�Ρ, t� � 0 for t > 0. Then, as we had in Laplace’s
equation on a circular region, we require that the solution u � u�r, t� be bounded
near the origin, so we have the condition �u�0, t�� < � for t > 0. The initial position
and initial velocity functions are given as functions of r as

u�r, 0� � f �r� and
�u
�t
�r, 0� � g�r�

for 0 < r < Ρ. Therefore, the initial-boundary-value problem to find the displace-
ment u � u�r, t� of a circular drumhead (of radius Ρ) is given by

�						

						
�

c2 ��2u
�r2

�
1
r
�u
�r

� � �2u
�t2

, 0 < r < Ρ, t > 0

u �Ρ, t� � 0, �u�0, t�� < �, t > 0

u�r, 0� � f �r�,
�u
�t
�r, 0� � g�r�, 0 < r < Ρ.

(10.28)
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As with other problems, we are able to use separation of variables to find u � u�r, t�
by assuming that u�r, t� � R�r�T �t�. Substitution into the wave equation yields

c2 �R��T �
1
r

R�T � � RT ��

rR�� � R�

rR
�

T ��

c2T
� �k2,

where �k2 is the separation constant. Separating the variables, we have the ordi-
nary differential equations

r2R�� � rR� � k2r2R � 0 and T �� � c2k2T � 0.

We recognize the equation r2R�� � rR� � k2r2R � 0 as Bessel’s equation of order zero
that has solution

R�r� � c1J0�kr� � c2Y0�kr�,

where J0 and Y0 are the Bessel functions of order zero of the first and second
kind, respectively. In terms of R, we express the boundary condition �u�0, t�� < �
as �R�0�� < �. Therefore, because limr�0� Y0�kr� � ��, we must choose c2 � 0.
Applying the other boundary condition, R�Ρ� � 0, we have

R� Ρ� � c1J0�kΡ� � 0,

so to avoid the trivial solution with c1 � 0, we have kΡ � Αn, where Αn is the nth
zero of J0�x�. Because k depends on n, we write

kn �
Αn

Ρ
.

The solution of T �� � c2k2
nT � 0 is

Tn�t� � An cos cknt � Bn sin cknt,

so with the Principle of Superposition, we form the solution

u�r, t� �
��

n�1

�An cos cknt � Bn sin cknt� J0 �knr� ,
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where the coefficients An and Bn are found through application of the initial posi-
tion and velocity functions. With

u�r, 0� �
��

n�1

AnJ0 �knr� � f �r�

and the orthogonality conditions of the Bessel functions, we find that

An �
� Ρ

0
r f �r�J0 �knr� dr� Ρ

0
r �J0 �knr��2 dr

�
2

�J1 �Αn��2
� Ρ

0
r f �r�J0 �knr� dr, n � 1, 2, . . . .

Similarly, because

�u
�t
�r, 0� �

��
n�1

��cknAn sin cknt � cknBn cos cknt� J0 �knr�

we have

ut �r, 0� �
��

n�1

cknBnJ0 �knr� � g�r�.

Therefore,

Bn �
� Ρ

0
rg�r�J0 �knr� dr

ckn � Ρ

0
r �J0 �knr��2 dr

�
2

ckn �J1 �Αn��2
� Ρ

0
rg�r�J0 �knr� dr, n � 1, 2, . . . .

As a practical matter, in nearly all cases, these formulas are difficult to evaluate.

EXAMPLE 10.5.2: Solve

�						

						
�

�2u
�r2

�
1
r
�u
�r

�
�2u
�t2

, 0 < r < 1, t > 0

u�1, t� � 0, �u�0, t�� < �, t > 0

u�r, 0� � r�r � 1�,
�u
�t
�r, 0� � sin Πr, 0 < r < 1.

SOLUTION: In this case, Ρ � 1, f �r� � r�r � 1�, and g�r� � sin Πr. To cal-
culate the coefficients, we will need to have approximations of the zeros
of the Bessel functions, so we load the BesselZeros package, which is
contained in the NumericalMath folder (or directory) and define Αn to
be the nth zero of y � J0�x�.
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In[1984]:= << NumericalMath‘BesselZeros‘

In[1985]:= Αn �� Αn � BesselJZeros�0,�n,n	���1��

Next, we define the constants Ρ and c and the functions f �r� � r�r � 1�,
g�r� � sin Πr, and kn � Αn/Ρ.

In[1986]:= c � 1

Ρ � 1

f�r � � r �r � 1�

g�r � � Sin�Π r�

kn �� kn �
Αn
Ρ
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The formulas for the coefficients An and Bn are then defined so that
an approximate solution may be determined. (We use lower-case let-
ters to avoid any possible ambiguity with built-in Mathematica func-
tions.) Note that we use NIntegrate to approximate the coefficients
and avoid the difficulties in integration associated with the presence of
the Bessel function of order zero.

In[1987]:= an ��
an � �2 NIntegrate�r f�r� BesselJ�0,kn r�,

�r,0,Ρ	��/ BesselJ�1,Αn�
2

In[1988]:= bn ��
bn � �2 NIntegrate�r g�r� BesselJ�0,kn r�,

�r,0,Ρ	��/�c kn BesselJ�1,Αn�2	
We now compute the first 10 values of An and Bn. Because a and b are
defined using the form an D� an � . . . and bn D� bn � . . ., Mathematica
remembers these values for later use.

In[1989]:= Table��n,an,bn	,�n,1,10	�//TableForm

Out[1989]=

1 1 0.52118
2 0.208466 �0.145776
3 0.00763767 �0.0134216
4 0.0383536 �0.00832269
5 0.00534454 �0.00250503
6 0.0150378 �0.00208315
7 0.00334937 �0.000882012
8 0.00786698 �0.000814719
9 0.00225748 �0.000410202
10 0.00479521 �0.000399219

The nth term of the series solution is defined in u. Then, an approximate
solution is obtained in uapprox by summing the first 10 terms of u.

In[1990]:= u�n ,r ,t � �� �an Cos�c kn t� � bn Sin�c kn t��
BesselJ�0,kn r�

In[1991]:= uapprox�r ,t � �
10�
n�1

u�n,r,t�

We graph uapprox for several values of t in Figure 10-14.
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Figure 10-14 The drumhead for nine equally spaced values of t between 0 and 1.5

In[1992]:= somegraphs �

Table�ParametricPlot3D�
�r Cos�Θ�,r Sin�Θ�,uapprox�r,t�	,
�r,0,1	,�Θ,�Π,Π	,Boxed 
 False,
PlotRange 
 ��1.25,1.25	,
BoxRatios 
 �1,1,1	,Ticks 
 ���1,1	,

��1,1	,��1,1		,

DisplayFunction 


Identity�,
t,0,1.5, 1.5
8

��
toshow � Partition�somegraphs,3�

Show�GraphicsArray�toshow��
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In order to actually watch the drumhead move, we can use a Do loop
to generate several graphs and animate the result. Be aware, however,
that generating many three-dimensional graphics and then animating
the results uses a great deal of memory and can take considerable time,
even on a relatively powerful computer. We show one frame from the
animation that results from the following Do loop.

In[1993]:= Do�ParametricPlot3D�
�r Cos�Θ�,r Sin�Θ�,uapprox�r,t�	,
�r,0,1	,�Θ,�Π,Π	,Boxed 
 False,
PlotRange 
 ��1.25,1.25	,
BoxRatios 
 �1,1,1	,Ticks 
 ���1,1	,

��1,1	,��1,1		�,
t,0,1.5, 1.5
15

��
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The problem that depends on the angle Θ is more complicated to solve. Due to the
presence of �2u/�Θ2 we must include two more boundary conditions in order to
solve the initial-boundary-value problem. So that the solution is a smooth func-
tion, we require the “artificial” boundary conditions

u�r, Π, t� � u�r,�Π, t� and
�u
�Θ

u�r, Π, t� �
�u
�Θ

u�r,�Π, t�

for 0 < r < Ρ and t > 0. Therefore, we solve the problem

�										

										
�

c2 ��2u
�r2

�
1
r
�u
�r

�
1
r2

�2u
�Θ2 � � �2u

�t2
, 0 < r < Ρ, �Π < Θ < Π, t > 0

u�Ρ, Θ, t� � 0, �u�0, Θ, t�� < �, �Π � Θ � Π, t > 0

u�r, Π, t� � u�r,�Π, t�,
�u
�Θ
�r, Π, t� �

�u
�Θ
�r,�Π, t�, 0 < r < Ρ, t > 0

u�r, Θ, 0� � f �r, Θ�,
�u
�t
�r, Π, 0� � g�r, Θ�, 0 < r < Ρ, �Π < Θ < Π .

(10.29)

Using separation of variables and assuming that u�r, Θ, t� � R�r�H�Θ�T �t�, we obtain
that a general solution is given by

u�r, Θ, t� ��
n

a0nJ0 �Λ0nr� cos �Λ0nct� ��
m,n

amnJm �Λmnr� cos �mΘ� cos �Λmnct�

��
m,n

bmnJm �Λmnr� sin �mΘ� cos �Λmnct� ��
n

A0nJ0 �Λ0nr� sin �Λ0nct�

��
m,n

AmnJm �Λmnr� cos �mΘ� sin �Λmnct�

��
m,n

BmnJm �Λmnr� sin �mΘ� sin �Λmnct�

where Jm represents the mth Bessel function of the first kind, Αmn denotes the nth
zero of the Bessel function y � Jm�x�, and Λmn � Αmn/Ρ. The coefficients are given by
the following formulas.

a0n �
� 2Π

0 � Ρ

0
f �r, Θ�J0 �Λ0nr� r dr dΘ

2Π � Ρ

0
�J0 �Λ0nr��2 r dr

amn �
� 2Π

0 � Ρ

0
f �r, Θ�Jm �Λmnr� cos �mΘ� r dr dΘ

Π � Ρ

0
�Jm �Λmnr��2 r dr

bmn �
� 2Π

0 � Ρ

0
f �r, Θ�Jm �Λmnr� sin �mΘ� r dr dΘ

Π � Ρ

0
�Jm �Λmnr��2 r dr

A0n �
� 2Π

0 � Ρ

0
g�r, Θ�J0 �Λ0nr� r dr dΘ

2ΠΛ0nc � Ρ

0
�J0 �Λ0nr��2 r dr
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Amn �
� 2Π

0 � Ρ

0
g�r, Θ�Jm �Λmnr� cos �mΘ� r dr dΘ

ΠΛmnc � Ρ

0
�Jm �Λmnr��2 r dr

Bmn �
� 2Π

0 � Ρ

0
g�r, Θ�Jm �Λmnr� sin �mΘ� r dr dΘ

ΠΛmnc � Ρ

0
�Jm �Λmnr��2 r dr

EXAMPLE 10.5.3: Solve

�																				

																				
�

102 ��2u
�r2

�
1
r
�u
�r

�
1
r2

�2u
�Θ2 � � �2u

�t2
, 0 < r < 1,

�Π < Θ < Π, t > 0

u�1, Θ, t� � 0, �u�0, Θ, t�� < �, �Π � Θ � Π, t > 0

u�r, Π, t� � u�r,�Π, t�,
�u
�Θ
�r, Π, t�

�
�u
�Θ
�r,�Π, t�, 0 < r < 1, t > 0

u�r, Θ, 0� � cos �Πr/2� sin Θ,
�u
�t
�r, Θ, 0�

� �r � 1� cos �ΠΘ/2� , 0 < r < 1,

�Π < Θ < Π.

SOLUTION: To calculate the coefficients, we will need to have approx-
imations of the zeros of the Bessel functions, so we load the BesselZeros
package, which is contained in the NumericalMath folder (or
directory) and define Αmn to be the nth zero of y � Jm�x�. We illustrate
the use of Αmn by using it to compute the first five zeros of y � J0�x�.

In[1994]:= << NumericalMath‘BesselZeros‘

In[1995]:= Αm ,n �� Αm,n � BesselJZeros�m,�n,n	���1��

In[1996]:= Table�Α0,n,�n,1,5	�

Out[1996]= �2.40483,5.52008,8.65373,11.7915,14.9309

The appropriate parameter values as well as the initial condition func-
tions are defined as follows. Notice that the functions describing the
initial displacement and velocity are defined as the product of func-
tions. This enables the subsequent calculations to be carried out using
NIntegrate.
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In[1997]:= Clear�a,f,f1,f2,g1,g2,A,c,g,capa,capb,b�

c � 10

Ρ � 1

f1�r � � Cos�Π r
2

�
f2�Θ � � Sin�Θ�

f�r ,Θ � �� f�r,Θ� � f1�r� f2�Θ�

g1�r � � r � 1

g2�Θ � � Cos�Π Θ
2

�
g�r ,Θ � �� g�r,Θ� � g1�r� g2�Θ�

The coefficients a0n are determined with the function a.

In[1998]:= Clear�a�

In[1999]:= a�n � ��
a�n� �

N��NIntegrate�f1�r� BesselJ�0,Α0,n r� r,
�r,0,Ρ	� NIntegrate�f2�t�,
�t,0,2Π	��/�2Π NIntegrate�r BesselJ�0,Α0,n r�2,
�r,0,Ρ	�	�

Hence, as represents a table of the first five values of a0n. Chop is used
to round off very small numbers to zero.

In[2000]:= as � Table�a�n�//Chop,�n,1,5	�

Out[2000]= �0,0,0,0,0

Because the denominator of each integral formula used to find amn and
bmn is the same, the function bjmnwhich computes this value is defined
next. A table of nine values of this coefficient is then determined.

In[2001]:= bjmn�m ,n � ��
bjmn�m,n� �

N�NIntegrate�r BesselJ�m,Αm,n r�2,�r,0,Ρ	��
Table�Chop�bjmn�m,n��,�m,1,3	,�n,1,3	�
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Out[2001]= ��0.0811076,0.0450347,0.0311763,
�0.0576874,0.0368243,0.0270149,
�0.0444835,0.0311044,0.0238229

We also note that in evaluating the numerators of amn and bmn we must
compute � Ρ

0
r f1�r�Jm �Αmnr� dr. This integral is defined in fbjmn and the

corresponding values are found for n � 1, 2, 3 and m � 1, 2, 3.

In[2002]:= Clear�fbjmn�

fbjmn�m ,n � ��
fbjmn�m,n� �
N�NIntegrate�f1�r� BesselJ�m,Αm,n r� r,
�r,0,Ρ	��

Table�Chop�fbjmn�m,n��,�m,1,3	,�n,1,3	�

Out[2002]= ��0.103574,0.020514,0.0103984,
�0.0790948,0.0275564,0.0150381,
�0.0628926,0.0290764,0.0171999

The formula to compute amn is then defined and uses the information
calculated in fbjmn and bjmn. As in the previous calculation, the coef-
ficient values for n � 1, 2, 3 and m � 1, 2, 3 are determined.

In[2003]:= a�m ,n � ��
a�m,n� �
N��fbjmn�m,n� NIntegrate�f2�t� Cos�m t�,
�t,0,2Π	��/�Π bjmn�m,n���

Table�Chop�a�m,n��,�m,1,3	,�n,1,3	�

Out[2003]= ��0,0,0,�0,0,0,�0,0,0

A similar formula is then defined for the computation of bmn.

In[2004]:= b�m ,n � ��
b�m,n� �
N��fbjmn�m,n� NIntegrate�f2�t� Sin�m t�,
�t,0,2Π	��/�Π bjmn�m,n���

Table�Chop�b�m,n��,�m,1,3	,�n,1,3	�

Out[2004]= ��1.277,0.455514,0.333537,�0,0,0,�0,0,0
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Note that defining the coefficients in this manner a[m_,n_]:=
a[m,n]=...+ and b[m_,n_]:=b[m,n]=..., so that Mathematica
“remembers” previously computed values, reducing computation time.
The values of A0n are found similar to those of a0n. After defining the
function capa to calculate these coefficients, a table of values is then
found.

In[2005]:= capa�n � ��
capa�n� �

N��NIntegrate�g1�r� BesselJ�0,Α0,n r� r,
�r,0,Ρ	�
NIntegrate�g2�t�,�t,0,2Π	��/�2Π c Α0,n NIntegrate�
r BesselJ�0,Α0,n r�

2,�r,0,Ρ	�	�
Table�Chop�capa�n��,�n,1,6	�

Out[2005]= �0.00142231,0.0000542518,0.0000267596,

6.41976 � 10�6, 4.95843 � 10�6, 1.88585 � 10�6

The value of the integral of the component of g, g1, which depends on
r and the appropriate Bessel functions, is defined as gbjmn.

In[2006]:= gbjmn�m ,n � �� gbjmn�m,n� � NIntegrate�g1�r��
BesselJ�m,Αm,nr�r,�r,0,Ρ	�//N

Table�gbjmn�m,n�//Chop,�m,1,3	,�n,1,3	�

Out[2006]= ���0.0743906,�0.019491,�0.00989293,
��0.0554379,�0.0227976,�0.013039,
��0.0433614,�0.0226777,�0.0141684

Then, Amn is found by taking the product of integrals, gbjmn depending
on r and one depending on Θ. A table of coefficient values is generated
in this case as well.

In[2007]:= capa�m ,n � ��
capa�m,n� �
N��gbjmn�m,n� NIntegrate�g2�t� Cos�m t�,
�t,0,2Π	��/�Π Αm,n c bjmn�m,n���

Table�Chop�capa�m,n��,�m,1,3	,�n,1,3	�
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Out[2007]= ��0.0035096,0.000904517,0.000457326,
��0.00262692,�0.00103252,�0.000583116,
��0.000503187,�0.000246002,�0.000150499

Similarly, the Bmn are determined.

In[2008]:= capb�m ,n � ��
capb�m,n� �
N��gbjmn�m,n� NIntegrate�g2�t� Sin�m t�,
�t,0,2Π	��/�Π Αm,n c bjmn�m,n���

Table�Chop�capb�m,n��,�m,1,3	,�n,1,3	�
Out[2008]= ��0.00987945,0.00254619,0.00128736,

��0.0147894,�0.00581305,�0.00328291,
��0.00424938,�0.00207747,�0.00127095

Now that the necessary coefficients have been found, we construct an
approximate solution to the wave equation by using our results. In
the following, term1 represents those terms of the expansion involv-
ing a0n, term2 those terms involving amn, term3 those involving bmn,
term4 those involving A0n, term5 those involving Amn, and term6
those involving Bmn.

In[2009]:= Clear�term1,term2,term3,term4,term5,term6�

term1�r ,t ,n � ��
a�n� BesselJ�0,Α0,n r� Cos�Α0,n c t�

term2�r ,t ,Θ ,m ,n � ��
a�m,n� BesselJ�m,Αm,n r� Cos�m Θ� Cos�Αm,n c t�

term3�r ,t ,Θ ,m ,n � ��
b�m,n� BesselJ�m,Αm,n r� Sin�m Θ� Cos�Αm,n c t�

term4�r ,t ,n � ��
capa�n� BesselJ�0,Α0,n r� Sin�Α0,n c t�

term5�r ,t ,Θ ,m ,n � ��
capa�m,n� BesselJ�m,Αm,n r� Cos�m Θ�
Sin�Αm,n c t�

term6�r ,t ,Θ ,m ,n � ��
capb�m,n� BesselJ�m,Αm,n r� Sin�m Θ�
Sin�Αm,n c t�

Therefore, our approximate solution is given as the sum of these terms
as computed in u.
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In[2010]:= Clear�u�

u�r ,t ,th � ��
5�

n�1

term1�r,t,n� �
3�

m�1

3�
n�1

term2�r,t,th,m,n�

�
3�
m�1

3�
n�1

term3�r,t,th,m,n� �
5�

n�1

term4�r,t,n�

�
3�
m�1

3�
n�1

term5�r,t,th,m,n�

�
3�
m�1

3�
n�1

term6�r,t,th,m,n�

uc � Compile��r,t,th	,u�r,t,th��
Out[2010]= CompiledFunction��r,t,th,u�r,t,th	,

�CompiledCode�	

The solution is compiled in uc. The command Compile is used to com-
pile functions. Compile returns a CompiledFunction which repre-
sents the compiled code. Generally, compiled functions take less time to
perform computations than uncompiled functions although compiled
functions can only be evaluated for numerical arguments.

Next, we define the function tplotwhich uses ParametricPlot3D
to produce the graph of the solution for a particular value of t. Note that
the x and y coordinates are given in terms of polar coordinates.

In[2011]:= Clear�tplot�

tplot�t � �� ParametricPlot3D��r Cos�Θ�,
r Sin�Θ�,uc�r,t,Θ�	,�r,0,1	,�Θ,�Π,Π	,
PlotPoints 
 �20,20	,
BoxRatios 
 �1,1,1	,Shading 
 False,
Axes 
 False,Boxed 
 False,
DisplayFunction 
 Identity�

A table of nine plots for nine equally spaced values of t from t � 0 to
t � 1 using increments of 1/8 is then generated. This table of graphs is
displayed as a graphics array in Figure 10-15.

In[2012]:= somegraphs � Table�tplot�t�,�t,0,1,1/8	�

toshow � Partition�somegraphs,3�

Show�GraphicsArray�toshow��
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Figure 10-15 The drumhead for nine equally spaced values of t from t � 0 to t � 1

Of course, we can generate many graphs with a Do loop and animate
the result as in the previous example. Be aware, however, that gener-
ating many three-dimensional graphics and then animating the results
uses a great deal of memory and can take considerable time, even on a
relatively powerful computer.
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10.5.3 Other Partial Differential Equations

A partial differential equation of the form

a�x, y, u�
�u
�x

� b�x, y, u�
�u
�y

� c�x, y, u� (10.30)

is called a first-order, quasi-linear partial differential equation. In the case when
c�x, y, u� � 0, equation (10.30) is homogeneous; if a and b are independent of u,
equation (10.30) is almost linear; and when c�x, y, u� can be written in the form
c�x, y, u� � d�x, y�u�s�x, y�, equation (10.30) is linear. Quasi-linear partial differential
equations can frequently be solved using the method of characteristics.

EXAMPLE 10.5.4: Use the method of characteristics to solve the initial-

value problem
�		

		
�

�3xtux � ut � xt

u�x, 0� � x.

SOLUTION: For this problem, the characteristic system is

�x/�r � �3xt, x�0, s� � s

�t/�r � 1, t�0, s� � 0

�u/�r � xt, u�0, s� � s.

We begin by using DSolve to solve �t/�r � 1, t�0, s� � 0

In[2013]:= d1 � DSolve��D�t�r�,r� �� 1,t�0� �� 0	,t�r�,r�

Out[2013]= ��t�r	 
 r

and obtain t � r. Thus, �x/�r � �3xr, x�0, s� � s which we solve next

In[2014]:= d2 � DSolve��D�x�r�,r� �� �3 x�r� r,x�0� �� s	,
x�r�,r�

Out[2014]= ��x�r	 
 ��
3 r2
2 s��

and obtain x � se�3r2/2. Substituting r � t and x � se�3r2/2 into �u/�r � xt,
u�0, s� � s and using DSolve to solve the resulting equation yields the
following result, named d3.

In[2015]:= d3 � DSolve�
D�u�r�,r� �� e� 3 r2
2 s r,u�0� �� s�,

u�r�,r�
Out[2015]= ��u�r	 
 1

3
��

3 r2
2 � � 1 � 4 �

3 r2
2 � s��
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To find u�x, t�, we must solve the system of equations

�		

		
�

t � r

x � se�3r2/2

for r and s. Substituting r � t into x � se�3r2/2 and solving for s yields
s � xe3t2/2. Thus, the solution is given by replacing the values obtained
above in the solution obtained in d3. We do this below by using
ReplaceAll (/.) to replace each occurrence of r and s in d3[[1,1,2]],
the solution obtained in d3, by the values r � t and s � xe3t2

/2. The
resulting output represents the solution to the initial-value problem.

In[2016]:= d3��1,1,2�� /. �r� > t,s� > x Exp�3/2 tˆ2�	//
Simplify

Out[2016]=
1

3
� � 1 � 4 �

3 t2
2 � x

In this example, DSolve can also solve this first-order partial differen-
tial equation.

Next, we use DSolve to find a general solution of �3xtux � ut � xt
and name the resulting output gensol.

In[2017]:= gensol �
DSolve��3x t D�u�x,t�,x� � D�u�x,t�,t� �� x t,

u�x,t�,�x,t	�

Out[2017]= ��u�x,t	 
 1

3
��x�3C�1	�1

6
�3t2�2 Log�x	�����

The output

Out[2017]= C�1	� �
3 t2

2
� Log�x	�

represents an arbitrary function of � 3
2 t2 � ln x. The explicit solution is

extracted from gensol with gensol[[1,1,2]], the same way that
results are extracted from the output of DSolve commands involving
ordinary differential equations.

In[2018]:= gensol��1,1,2��

Out[2018]=
1

3
� � x � 3 C�1	�1

6
�3 t2 � 2 Log�x	���

To find the solution that satisfies u�x, 0� � x we replace each occurrence
of t in the solution by 0.

In[2019]:= gensol��1,1,2�� /. t� > 0

Out[2019]=
1

3
� � x � 3 C�1	�Log�x	

3
��
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Thus, we must find a function f �x� so that

�
1
3

x � f �� ln x� � x

f �� ln x� �
4
3

x.

Certainly f �t� � 4
3 e�t satisfies the above criteria. We define f �t� � 4

3 e�t

and then compute f �� ln x� to verify that f �� ln x� � 4
3 x.

In[2020]:= Clear�f�

f�t � � 4 Exp��t�/3

f��Log�x��

Out[2020]=
4 x

3

Thus, the solution to the initial-value problem is given by � 1
3 x� f �� 3

2 t2 �
ln x� which is computed and named sol. Of course, the result returned
is the same as that obtained previously.

In[2021]:= sol � Simplify� �
x

3
� f� �

3 t2

2
� Log�x���

Out[2021]=
1

3
� � 1 � 4 �

3 t2
2 � x

Last, we use Plot3D to graph sol on the rectangle �0, 20� � ��2, 2� in
Figure 10-16. The option ClipFill->None is used to indicate that por-
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Figure 10-16 Plot of u�x, t� � 1
3 x �4e3t2 /2 � 1�
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tions of the resulting surface which extend past the bounding box are
not shown: nothing is shown where the surface is clipped.

In[2022]:= Plot3D�sol,�x,0,20	,�t,�2,2	,
PlotRange 
 �0,30	,PlotPoints 
 30,
ClipFill 
 None,Shading 
 False�
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AAppendix:
Getting Started

Introduction to Mathematica

Mathematica, first released in 1988 by Wolfram Research, Inc.,

http://www.wolfram.com/,

is a system for doing mathematics on a computer. Mathematica combines symbolic
manipulation, numerical mathematics, outstanding graphics, and a sophisticated
programming language. Because of its versatility, Mathematica has established
itself as the computer algebra system of choice for many computer users. Among
the over 1,000,000 users of Mathematica, 28% are engineers, 21% are computer sci-
entists, 20% are physical scientists, 12% are mathematical scientists, and 12% are
business, social, and life scientists. Two-thirds of the users are in industry and gov-
ernment with a small (8%) but growing number of student users. However, due to
its special nature and sophistication, beginning users need to be aware of the spe-
cial syntax required to make Mathematica perform in the way intended. You will
find that calculations and sequences of calculations most frequently used by begin-
ning users are discussed in detail along with many typical examples. In addition,
the comprehensive index not only lists a variety of topics but also cross-references
commands with frequently used options. Mathematica By Example serves as a valu-
able tool and reference to the beginning user of Mathematica as well as to the more
sophisticated user, with specialized needs.

841



842 Appendix

For information, including purchasing information, about Mathematica contact:
Corporate Headquarters:
Wolfram Research, Inc.
100 Trade Center Drive
Champaign, IL 61820
USA
telephone: 217-398-0700
fax: 217-398-0747
email: info@wolfram.com
web: http://www.wolfram.com

Europe:
Wolfram Research Europe Ltd.
10 Blenheim Office Park
Lower Road, Long Hanborough
Oxfordshire OX8 8LN
UNITED KINGDOM
telephone: +44-(0) 1993-883400
fax: +44-(0) 1993-883800
email: info-europe@wolfram.com

Asia:
Wolfram Research Asia Ltd.
Izumi Building 8F
3-2-15 Misaki-cho
Chiyoda-ku, Tokyo 101
JAPAN
telephone: +81-(0)3-5276-0506
fax: +81-(0)3-5276-0509
email: info-asia@wolfram.com

For information, including purchasing information, about The Mathematica Book
contact:

Wolfram Media, Inc.
100 Trade Center Drive
Champaign, IL 61820,
USA
email: info@wolfram-media.com
web: http://www.wolfram-media.com
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A Note Regarding Different Versions of Mathematica

With the release of Version 5 of Mathematica, many new functions and features
have been added to Mathematica. We encourage users of earlier versions of
Mathematica to update to Version 5 as soon as they can. All examples in Math-
ematica By Example, Third Edition, were completed with Version 5. In most cases,
the same results will be obtained if you are using Version 4.0 or later, although
the appearance of your results will almost certainly differ from that presented
here. Occasionally, however, particular features of Version 5 are used and in those
cases, of course, these features are not available in earlier versions. If you are
using an earlier or later version of Mathematica, your results may not appear in
a form identical to those found in this book: some commands found in Version 5
are not available in earlier versions of Mathematica; in later versions some com-
mands will certainly be changed, new commands added, and obsolete commands
removed. For details regarding these changes, please see The Mathematica Book
[28]. You can determine the version of Mathematica you are using during a given
Mathematica session by entering either the command $Version or the command
$VersionNumber. In this text, we assume that Mathematica has been correctly
installed on the computer you are using. If you need to install Mathematica on
your computer, please refer to the documentation that came with the Mathemat-
ica software package.

On-line help for upgrading older versions of Mathematica and installing new
versions of Mathematica is available at the Wolfram Research, Inc. website:

http://www.wolfram.com/.

Getting Started with Mathematica

We begin by introducing the essentials of Mathematica. The examples presented
are taken from algebra, trigonometry, and calculus topics that you are familiar
with to assist you in becoming acquainted with the Mathematica computer algebra
system.

We assume that Mathematica has been correctly installed on the computer you
are using. If you need to install Mathematica on your computer, please refer to the
documentation that came with the Mathematica software package.

Start Mathematica on your computer system. Using Windows or Macintosh
mouse or keyboard commands, activate the Mathematica program by selecting
the Mathematica icon or an existing Mathematica document (or notebook), and
then clicking or double-clicking on the icon.
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If you start Mathematica by selecting the Mathematica icon, a blank untitled
notebook is opened, as illustrated in the following screen shot.

When you start typing, the thin black horizontal line near the top of the window
is replaced by what you type.
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With some operating
systems, Enter evaluates
commands and Return
yields a new line
The Basic Input palette:

Once Mathematica has been started, computations can be carried out immedi-
ately. Mathematica commands are typed and the black horizontal line is replaced
by the command, which is then evaluated by pressing Enter. Note that pressing
Enter or Return evaluates commands and pressing Shift-Return yields a new line.
Output is displayed below input. We illustrate some of the typical steps involved
in working with Mathematica in the calculations that follow. In each case, we type
the command and press Enter. Mathematica evaluates the command, displays the
result, and inserts a new horizontal line after the result. For example, typing N[,
then pressing the Π key on the Basic Input palette, followed by typing ,50] and
pressing the enter key

In[2023]:= N�Π,50�

Out[2023]= 3.141592653589793238462643383279502884197169399375106
2.09749446

returns a 50-digit approximation of Π. Note that both Π and Pi represent the math-
ematical constant Π so entering N[Pi,50] returns the same result.

The next calculation can then be typed and entered in the same manner as the
first. For example, entering
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Figure A-2 A three-dimensional plot

In[2024]:= Plot��Sin�x�,2Cos�2x�	,�x,0,3Π	,
PlotStyle� > �GrayLevel�0�,GrayLevel�0.5�	�

graphs the functions y � sin x and y � 2 cos 2x on the interval �0, 3Π� shown in
Figure A-1. Similarly, entering

In[2025]:= Plot3D�Sin�x � Cos�y��,�x,0,4Π	,�y,0,4Π	,
PlotPoints� > �30,30	�

graphs the function z � sin�x � cos y� for 0 � x � 4Π and 0 � y � 4Π shown in
Figure A-2.

Notice that every
Mathematica command
begins with capital letters and
the argument is enclosed by
square brackets [...].

To type x3 in Mathematica,

press the on the
Basic Input palette, type x

in the base position, and then
click (or tab to) the exponent
position and type 3.

Notice that all three of the following commands

In[2026]:= Solve�x3 � 2x � 1 �� 0�

Out[2026]= ��x 
 1,�x 
 1

2
� � 1 �



5��,�x 
 1

2
� � 1 �



5���
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In[2027]:= Solve�xˆ3 � 2 � x � 1 �� 0�

Out[2027]= 1 1
{{x -> 1}, {x -> - (-1 - Sqrt[5])}, {x -> - (-1 + Sqrt[5])}}

2 2

In[2028]:= Solve�x3 � 2 x � 1 �� 0�

Out[2028]= ��x 
 1,�x 
 1

2
� � 1 �



5��,�x 
 1

2
� � 1 �



5���

solve the equation x3 � 3x � 1 � 0 for x.
In the first case, the input and output are in StandardForm, in the second case,

the input and output are in InputForm, and in the third case, the input and output
are in TraditionalForm. Move the cursor to the Mathematica menu,

select Cell, and then ConvertTo, as illustrated in the following screen shot.

You can change how input and output appear by using ConvertTo or by chang-
ing the default settings. Moreover, you can determine the form of input/output
by looking at the cell bracket that contains the input/output. For example, even
though all three of the following commands look different, all three evaluate� 2Π

0
x3 sin x dx.
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A cell bracket like this means the input is in InputForm; the output is in

OutputForm. A cell bracket like this means the contents of the cell are in

StandardForm. A cell bracket like this means the contents of the cell are
in TraditionalForm. Throughout Mathematica By Example, Third Edition, we dis-
play input and output using InputForm or StandardForm, unless otherwise stated.

To enter code in StandardForm, we often take advantage of the BasicTypesetting
palette, which is accessed by going to File under the Mathematica menu and then
selecting Palettes

followed by BasicTypesetting.
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Use the buttons to create templates and enter special characters. Alternatively, you
can find a complete list of typesetting shortcuts in The Mathematica Book,
Appendix 12, Listing of Named Characters [28].

Mathematica sessions are terminated by entering Quit[] or by selecting Quit
from the File menu, or by using a keyboard shortcut, like command-Q, as with
other applications. They can be saved by referring to Save from the File menu.

Mathematica allows you to save notebooks (as well as combinations of cells) in
a variety of formats, in addition to the standard Mathematica format.

Remark. Input and text regions in notebooks can be edited. Editing input can create
a notebook in which the mathematical output does not make sense in the sequence
it appears. It is also possible to simply go into a notebook and alter input without
doing any recalculation. This also creates misleading notebooks. Hence, common
sense and caution should be used when editing the input regions of notebooks.
Recalculating all commands in the notebook will clarify any confusion.

Five Basic Rules of Mathematica Syntax

In order for the Mathematica user to take full advantage of this powerful software,
an understanding of its syntax is imperative. Although all of the rules of Mathe-
matica syntax are far too numerous to list here, knowledge of the following five
rules equips the beginner with the necessary tools to start using the Mathematica
program with little trouble.
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1. The arguments of all functions (both built-in ones and ones that you define)
are given in brackets [...]. Parentheses (...) are used for grouping
operations; vectors, matrices, and lists are given in braces {...}; and
double square brackets [[...]] are used for indexing lists and tables.

2. Every word of a built-in Mathematica function begins with a capital letter.
3. Multiplication is represented by ( or a space between characters. Enter

2*x*y or 2x y to evaluate 2xy not 2xy.
4. Powers are denoted by ˆ. Enter (8*xˆ3)ˆ(1/3) to evaluate �8x3�1/3 �

81/3�x3�1/3 � 2x instead of 8xˆ1/3, which returns 8x/3.
5. Mathematica follows the order of operations exactly. Thus, entering

(1+x)ˆ1/x returns �1�x�1

x while (1+x)ˆ(1/x) returns �1�x�1/x. Similarly,
entering xˆ3x returns x3  x � x4 while entering xˆ(3x) returns x3x.

Remark. If you get no response or an incorrect response, you may have
entered or executed the command incorrectly. In some cases, the amount
of memory allocated to Mathematica can cause a crash. Like people,
Mathematica is not perfect and errors can occur.

Loading Packages

Although Mathematica contains many built-in functions, some other functions are
contained in packages that must be loaded separately. A tremendous number of
additional commands are available in various packages that are shipped with each
version of Mathematica. Experienced users can create their own packages; other
packages are available from user groups and MathSource, which electronically dis-
tributes Mathematica-related products. For information about MathSource, visit

http://library.wolfram.com/infocenter/MathSource/

or send the message “help” to mathsource@wri.com. If desired, you can pur-
chase MathSource on a CD directly from Wolfram Research, Inc. or you can access
MathSource from the Wolfram Research World Wide Web site

http://www.wri.com or http://www.wolfram.com.

Descriptions of the various packages shipped with Mathematica are found in the
Help Browser. From the Mathematica menu, select Help followed by Add-Ons...
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to see a list of the standard packages.

Information regarding the packages in each category is obtained by selecting the
category from the Help Browser’s menu.

Packages are loaded by entering the command

<<directory‘packagename‘

where directory is the location of the package packagename. Entering the
command <<directory‘Master‘ makes all the functions contained in all the
packages in directory available. In this case, each package need not be loaded
individually. For example, to load the package Shapes contained in the Graphics
folder (or directory), we enter <<Graphics‘Shapes‘.

In[2029]:= << Graphics‘Shapes‘
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Figure A-3 A torus created with Torus

Figure A-4 A Möbius strip and a sphere

After the Shapes package has been loaded, entering

In[2030]:= Show�Graphics3D�Torus�1,0.5,30,30��,Boxed 
 False�

generates the graph of a torus shown in Figure A-3. Next, we generate a Möbius
strip and a sphere and display the two side-by-side using GraphicsArray in
Figure A-4.

In[2031]:= mstrip � Graphics3D�MoebiusStrip�1,0.5,40�,Boxed 
 False�

sph � Graphics3D�Sphere�1,25,25�,Boxed 
 False�

Show�GraphicsArray��mstrip,sph	��

The Shapes package contains definitions of familiar three-dimensional shapes
including the cone, cylinder, helix, and double helix. In addition, it allows us
to perform transformations like rotations and translations on three-dimensional
graphics.
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A Word of Caution

When users take advantage of packages frequently, they often encounter error
messages. One error message that occurs frequently is when a command is entered
before the package is loaded. For example, the command GramSchmidt
[{v1,v2,...,vn}] returns an orthonormal set of vectors with the same span
as the vectors v1, v2, ..., vn. Here, we attempt to use the command GramSchmidt,
which is contained in the Orthogonalization package located in the LinearAlge-
bra folder before the package has been loaded. Mathematica does not yet know
the meaning of GramSchmidt so our input is returned.

In[2032]:= GramSchmidt���1,1,0	,�0,2,1	,�1,0,3		�

Out[2032]= GramSchmidt���1,1,0,�0,2,1,�1,0,3	

At this point, we load the Orthogonalization package, which contains the
GramSchmidt command, located in the LinearAlgebra folder. Several error mes-
sages result.

In[2033]:= << LinearAlgebra‘Orthogonalization‘
GramSchmidt �� shdw � Symbol GramSchmidt appears in multiple contexts

�LinearAlgebra‘Orthogonalization‘, Global‘�

definitions in context LinearAlgebra‘Orthogonalization‘

may shadow or be shadowed by other definitions.

In fact, when we reenter the command, we obtain the same result as that obtained
previously.

In[2034]:= GramSchmidt���1,1,0	,�0,2,1	,�1,0,3		�

Out[2034]= GramSchmidt���1,1,0,�0,2,1,�1,0,3	

However, after using the command Remove, the command GramSchmidt works
as expected. Alternatively, we can quit Mathematica, restart, load the package, and
then execute the command.

In[2035]:= Remove�GramSchmidt�

In[2036]:= GramSchmidt���1,1,0	,�0,2,1	,�1,0,3		�

Out[2036]= �� 1

2
,

1

2
,0�,� �

1

3
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1

3
,

1

3

�,� 1

6
,�

1

6
,

	
2

3
��

Similarly, we can take advantage of other commands contained in the Orthogo-
nalization package like Normalize which normalizes a given vector.

In[2037]:= Normalize��1,2,3	�

Out[2037]= � 1

14

,

	
2

7
,

3

14

�
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Getting Help from Mathematica

Becoming competent with Mathematica can take a serious investment of time.
Hopefully, messages that result from syntax errors are viewed lightheartedly. Ide-
ally, instead of becoming frustrated, beginning Mathematica users will find it chal-
lenging and fun to locate the source of errors. Frequently, Mathematica’s error
messages indicate where the error(s) has (have) occurred. In this process, it is nat-
ural that you will become more proficient with Mathematica. In addition to Math-
ematica’s extensive help facilities, which are described next, a tremendous amount
of information is available for all Mathematica users at the Wolfram Research
website:

http://www.wolfram.com/.

One way to obtain information about commands and functions, including user-
defined functions, is the command ?. ?object gives a basic description and syn-
tax information of the Mathematica object object. ??object yields detailed
information regarding syntax and options for the object object.

EXAMPLE A.1: Use ? and ?? to obtain information about the com-
mand Plot.

SOLUTION: ?Plot uses basic information about the Plot function

while ??Plot includes basic information as well as a list of options and
their default values.
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Options[object] returns a list of the available options associated with object
along with their current settings. This is quite useful when working with a
Mathematica command such as ParametricPlot which has many options.
Notice that the default value (the value automatically assumed by Mathematica)
for each option is given in the output.

EXAMPLE A.2: Use Options to obtain a list of the options and their
current settings for the command ParametricPlot.

SOLUTION: The command Options[ParametricPlot] lists all the
options and their current settings for the command ParametricPlot.

As indicated above, ??object or, equivalently, Information[object] yields
the information on the Mathematica object object returned by both ?object
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and Options[object] in addition to a list of attributes of object. Note that
object may be either a user-defined object or a built-in Mathematica object.

EXAMPLE A.3: Use ?? to obtain information about the commands
Solve and Map. Use Information to obtain information about the
command PolynomialLCM.

SOLUTION: We use ?? to obtain information about the commands
Solve and Map including a list of options and their current settings.

Similarly, we use Information to obtain information about the com-
mand PolynomialLCM including a list of options and their current
settings.

The command Names["form"] lists all objects that match the pattern defined
in form. For example, Names["Plot"] returns Plot, Names["*Plot"] returns
all objects that end with the string Plot, Names["Plot*"] lists all objects that
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begin with the string Plot, and Names["*Plot*"] lists all objects that contain
the string Plot. Names["form",SpellingCorrection->True] finds those
symbols that match the pattern defined in form after a spelling correction.

EXAMPLE A.4: Create a list of all built-in functions beginning with the
string Plot.

SOLUTION: We use Names to find all objects that match the pattern
Plot.

In[2038]:= Names�"Plot"�

Out[2038]= �Plot

Next, we use Names to create a list of all built-in functions beginning
with the string Plot.

In[2039]:= Names�"Plot � "�

Out[2039]= �Plot,Plot3D,Plot3Matrix,PlotDivision,
PlotJoined,PlotLabel,PlotPoints,PlotRange,
PlotRegion,PlotStyle

As indicated above, the ? function can be used in many ways. Entering ?letters*
gives all Mathematica objects that begin with the string letters; ?*letters*
gives all Mathematica objects that contain the string letters; and ?*letters
gives all Mathematica commands that end in the string letters.

EXAMPLE A.5: What are the Mathematica functions that (a) end in
the string Cos; (b) contain the string Sin; and (c) begin with the string
Polynomial?

SOLUTION: Entering

returns all functions ending with the string Cos, entering



858 Appendix

returns all functions containing the string Sin, and entering

returns all functions that begin with the string Polynomial.

Mathematica Help

Additional help features are accessed from the Mathematica menu under Help.
For basic information about Mathematica, go to Help and select Help Browser...
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If you are a beginning Mathematica user, you may choose to select Welcome Screen...

and then select Ten-Minute Tutorial

or Help Browser.
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To obtain information about a particular Mathematica object or function, open the
Help Browser, type the name of the object, function, or topic and press the Go
button. Alternatively, you can type the name of a function that you wish to obtain
help about, select it, go to Help, and then select Find in Help... as we do here with
the DSolve function.
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A typical help window not only contains a detailed description of the command
and its options but also several examples that illustrate the command as well as
hyperlinked cross-references to related commands and The Mathematica Book [28],
which can be accessed by clicking on the appropriate links.

You can also use the Help Browser to access the on-line version of The Mathe-
matica Book [28]. Here is a portion of Section 3.6.3, Operations on Power Series.

The Master Index contains hyperlinks to all portions of Mathematica help.
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Rössler attractor 441
RowReduce 424
Runge-Kutta method 111,

531
of order four 115
of order two 111

S
Saddle point 536
Sarcophagus 134
Save 849
Save As Special... 849

Second law of motion
Newton’s 163

Self-adjoint form
Sturm–Liouville problem

736
Separable differential

equation
definition 46

Separation of variables 46,
785

Series 273
Series

Bessel–Fourier 771
convergence 775

Fourier 749
convergence 752
cosine 746
definition 751
differentiation 764
generalized 770
integration 765
sine 738

p- 770
Series solutions 268

about ordinary points 268
convergence 276

about regular singular
points 281

method of Frobenius 283
Shapes 851, 852
Shift

phase 394
Shift-Return 845
Short 18, 495
Show 31, 122, 380
DisplayFunction 101,

380, 384
GraphicsArray 13, 852
PointSize 380

Simple food chain in
chemostat 594

Simple harmonic motion 321,
329

Simplify 7, 47, 474
Sine series

Fourier 738
Singular point

definition 268
of equation with

polynomial
coefficients

definition 281
irregular

definition 281



INDEX 875

regular
definition 281

SIR model
with vital dynamics 514
without vital dynamics 513

SIS model 98
Smooth

piecewise
definition 764

Solution
D’Alembert’s 806
definition 6
envelope 354
fundamental set 452

definition 185, 449
existence 191, 452

general 18, 217, 452
definition 187

global behavior 556
implicit 8
interesting 440
local behavior 556
meaningful 440
method of Frobenius 283
nontrivial 185
numerical methods

Euler’s method 103, 525,
533

improved Euler’s
method 108

NDSolve 92, 506
Runge–Kutta method

111, 531
of order four 115
of order two 111

partial differential
equation

definition 784
particular 86, 248

definition 216
to system 485

radially symmetric 821
series 268

about ordinary points
268
convergence 276

about regular singular
points 281

method of Frobenius 283
steady-state 357
of system 429, 449
transient 357
vector

definition 449

Solve 9, 79, 202, 480, 514,
856

SolveAlways 224, 240, 633
Sound 372
Spectrum

power 313
Sphere 852
Spiral

stable 548
unstable 548

Spring
aging 370
elastic 321
hard 368
soft 365

Spring–mass system 574, 672
coupled 708

Stable
node 535

degenerate 543, 544
spiral 548
star 543

Standard form
definition 268

StandardForm 847, 848
Star

stable 543
unstable 543

Statistics
NonlinearFit
Nonlinearfit 215

Steady-state charge 389
Steady-state solution 357
Steady-state temperature 792
Step size 103
Streptomyces griseus 89
Sturm–Liouville problem 735

self-adjoint form 736
Sum 654, 657
Superposition

principle of 187, 190, 785
Susceptible-infected–

susceptible model
98

Syntax
basic rules 849

System
autonomous 433, 535, 553
characteristic 836
of differential equations 3,

429
solution 429

linear see Linear system
nonlinear see Nonlinear

system

T
Table 13, 18, 29, 53, 188, 243,

414, 607
GrayLevel 19, 188
Length 18
Short 18

TableForm 90, 628
TakeColumns 419
TakeRows 419
Tangent vector 611
Tautochrone 689
Taylor series 112
Temperature 123

steady-state 792
transient 792
see also Newton’s law of

cooling
Ten-Minute Tutorial 859
Testing for diabetes 211
Together 654
Torus 852
TraditionalForm 847, 848
Trajectories

oblique 129
orthogonal 119

family of 121
Transform

Fourier 312
Laplace see Laplace

transform
Transient solution 357
Transient temperature 792
Transpose 417, 419
Transpose of matrix 417, 419
Traveling wave solution 810
TrigToExp 466
Two-point boundary value

problem 728

U
Undetermined coefficients

method of 86, 222, 352
higher-order equations

239
second-order equations

223
systems 485

Union 516, 607
Uniqueness and Existence

theorem 41, 180, 438
Unit impulse function

definition 662
Unit step function 79

definition 645



876 INDEX

solving initial-value
problems with 649

Unit tangent vector 611
United States

population of 136, 139
UnitStep 79, 622, 645
Unstable

node 536
degenerate 543, 544

spiral 548
star 543

V
Van-der-Pol equation 175,

427, 606
Variation of parameters 86,

248
Cauchy–Euler equations

265
higher-order equations 252
second-order equations

248
systems 490

Variational matrix 553, 588
Vector 415

column 415
constant 485
row 415
solution

definition 449
unit tangent 611

Verhulst, Pierre 138
Verhulst equation (logistic

equation) 54, 138
with predation 141

Vibration of building 720
Violin string 25

W
Wave equation 3, 11, 799

on circular plate 298
in circular region 821
D’Alembert’s solution 806
normal modes 12

Weighting function 736
Welcome Screen... 859
Wronskian 450

definition 181


	Differential Equations with Mathematica
	Copyright Page
	Contents
	Preface
	Chapter 1. Introduction to Differential Equations
	1.1 Definitions and Concepts
	1.2 Solutions of Differential Equations
	1.3 Initial and Boundary-Value Problems
	1.4 Direction Fields

	Chapter 2. First-Order Ordinary Differential Equations
	2.1 Theory of First-Order Equations: A Brief Discussion
	2.2 Separation of Variables
	2.3 Homogeneous Equations
	2.4 Exact Equations
	2.5 Linear Equations
	2.6 Numerical Approximations of Solutions to First-Order Equations

	Chapter 3. Applications of First-Order Ordinary Differential Equations
	3.1 Orthogonal Trajectories
	3.2 Population Growth and Decay
	3.3 Newton’s Law of Cooling
	3.4 Free-Falling Bodies

	Chapter 4. Higher-Order Differential Equations
	4.1 Preliminary Definitions and Notation
	4.2 Solving Homogeneous Equations with Constant Coefficients
	4.3 Introduction to Solving Nonhomogeneous Equations with Constant Coefficients
	4.4 Nonhomogeneous Equations with Constant Coefficients: The Method of Undetermined Coefficients
	4.5 Nonhomogeneous Equations with Constant Coefficients: Variation of Parameters
	4.6 Cauchy–Euler Equations
	4.7 Series Solutions
	4.8 Nonlinear Equations

	Chapter 5. Applications of Higher-Order Differential Equations
	5.1 Harmonic Motion
	5.2 The Pendulum Problem
	5.3 Other Applications

	Chapter 6. Systems of Ordinary Differential Equations
	6.1 Review of Matrix Algebra and Calculus
	6.2 Systems of Equations: Preliminary Definitions and Theory
	6.3 Homogeneous Linear Systems with Constant Coefficients
	6.4 Nonhomogeneous First-Order Systems: Undetermined Coefficients, Variation of Parameters, and the Matrix Exponential
	6.5 Numerical Methods
	6.6 Nonlinear Systems, Linearization, and Classification of Equilibrium Points

	Chapter 7. Applications of Systems of Ordinary Differential Equations
	7.1 Mechanical and Electrical Problems with First-Order Linear Systems
	7.2 Diffusion and Population Problems with First-Order Linear Systems
	7.3 Applications that Lead to Nonlinear Systems

	Chapter 8. Laplace Transform Methods
	8.1 The Laplace Transform
	8.2 The Inverse Laplace Transform
	8.3 Solving Initial-Value Problems with the Laplace Transform
	8.4 Laplace Transforms of Step and Periodic Functions
	8.5 The Convolution Theorem
	8.6 Applications of Laplace Transforms, Part I
	8.7 Laplace Transform Methods for Systems
	8.8 Applications of Laplace Transforms, Part II

	Chapter 9. Eigenvalue Problems and Fourier Series
	9.1 Boundary-Value Problems, Eigenvalue Problems, Sturm–Liouville Problems
	9.2 Fourier Sine Series and Cosine Series
	9.3 Fourier Series
	9.4 Generalized Fourier Series

	Chapter 10. Partial Differential Equations
	10.1 Introduction to Partial Differential Equations and Separation of Variables
	10.2 The One-Dimensional Heat Equation
	10.3 The One-Dimensional Wave Equation
	10.4 Problems in Two Dimensions: Laplace’s Equation
	10.5 Two-Dimensional Problems in a Circular Region

	Appendix: Getting Started
	Introduction to Mathematica
	Loading Packages
	Getting Help from Mathematica

	The Mathematica Menu
	Bibliography
	Index

