

ACADEMIC PRESS

DIFFERENTIAL EOUATIONS WITH MATHEMATICA THIRDEDNION

Martha L. Abell f James P. Braselton

Differential Equations with Mathematica

Third Edition

This Page Intentionally Left Blank

Differential

 Equations with

 Equations with Mathematica

Third Edition

Martha L. Abell James P. Braselton

Senior Acquisition Editor:	Barbara Holland Associate Project Manager: Brandy Palacios Associate Editor:
Marketing Manager: Tom Singer Cover Design: Linda Beattie Composition: Eric Decicco Printer: Maplegra Vail Press Elsevier Academic Press 200 Wheeler Road, Burlington, MA 01803, USA 525 B Street, Suite 1900, San Diego, California 92101-4495, USA 84 Theobald's Road, London WC1X 8RR, UK \$	

This book is printed on acid-free paper. @
Copyright (c) 2004, Elsevier Inc. All rights reserved.
No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher.

Permissions may be sought directly from Elsevier's Science \& Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: $(+44) 1865$ 853333, e-mail: permissions@elsevier.com.uk. You may also complete your request on-line via the Elsevier homepage (http:/ /elsevier.com), by selecting "Customer Support" and then "Obtaining Permissions.'

Library of Congress Cataloging-in-Publication Data
 Application submitted

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library
ISBN: 0-12-041562-3
For all information on all Academic Press publications visit our web site at www.books.elsevier.com

Printed in the United States of America

Contents

Preface xiii
I Introduction to Differential Equations I
1.1 Definitions and Concepts 2
1.2 Solutions of Differential Equations 6
1.3 Initial and Boundary-Value Problems 18
1.4 Direction Fields 26
2 First-Order Ordinary Differential Equations 41
2.1 Theory of First-Order Equations: A Brief Discussion 41
2.2 Separation of Variables 46
Application: Kidney Dialysis 55
2.3 Homogeneous Equations 59
Application: Models of Pursuit 64
2.4 Exact Equations 69
2.5 Linear Equations 74
2.5.1 Integrating Factor Approach 75
2.5.2 Variation of Parameters and the Method of Undetermined Coefficients 86
Application: Antibiotic Production 89
2.6 Numerical Approximations of Solutions to First-Order Equations 92
2.6.1 Built-In Methods 92
Application: Modeling the Spread of a Disease 97
2.6.2 Other Numerical Methods 103
3 Applications of First-Order Ordinary Differential Equations 119
3.1 Orthogonal Trajectories 119
Application: Oblique Trajectories 129
3.2 Population Growth and Decay 132
3.2.1 The Malthus Model 132
3.2.2 The Logistic Equation 138
Application: Harvesting 148
Application: The Logistic Difference Equation 152
3.3 Newton's Law of Cooling 157
3.4 Free-Falling Bodies 163
4 Higher-Order Differential Equations 175
4.1 Preliminary Definitions and Notation 175
4.1.1 Introduction 175
4.1.2 The nth-Order Ordinary Linear Differential Equation 180
4.1.3 Fundamental Set of Solutions 185
4.1.4 Existence of a Fundamental Set of Solutions 191
4.1.5 Reduction of Order 193
4.2 Solving Homogeneous Equations with Constant Coefficients 196
4.2.1 Second-Order Equations 196
4.2.2 Higher-Order Equations 200
Application: Testing for Diabetes 211
4.3 Introduction to Solving Nonhomogeneous Equations with Constant Coefficients 216
4.4 Nonhomogeneous Equations with Constant Coefficients:
The Method of Undetermined Coefficients 222
4.4.1 Second-Order Equations 223
4.4.2 Higher-Order Equations 239
4.5 Nonhomogeneous Equations with Constant Coefficients: Variation of Parameters 248
4.5.1 Second-Order Equations 248
4.5.2 Higher-Order Nonhomogeneous Equations 252
4.6 Cauchy-Euler Equations 255
4.6.1 Second-Order Cauchy-Euler Equations 255
4.6.2 Higher-Order Cauchy-Euler Equations 261
4.6.3 Variation of Parameters 265
4.7 Series Solutions 268
4.7.1 Power Series Solutions about Ordinary Points 268
4.7.2 Series Solutions about Regular Singular Points 281
4.7.3 Method of Frobenius 283
Application: Zeros of the Bessel Functions of the First Kind 295
Application: The Wave Equation on a Circular Plate 298
4.8 Nonlinear Equations 304
5 Applications of Higher-Order Differential Equations 321
5.1 Harmonic Motion 321
5.1.1 Simple Harmonic Motion 321
5.1.2 Damped Motion 332
5.1.3 Forced Motion 346
5.1.4 Soft Springs 365
5.1.5 Hard Springs 368
5.1.6 Aging Springs 370
Application: Hearing Beats and Resonance 372
5.2 The Pendulum Problem 373
5.3 Other Applications 387
5.3.1 L-R-C Circuits 387
5.3.2 Deflection of a Beam 390
5.3.3 Bodé Plots 393
5.3.4 The Catenary 398
6 Systems of Ordinary Differential Equations 4II
6.1 Review of Matrix Algebra and Calculus 411
6.1.1 Defining Nested Lists, Matrices, and Vectors 411
6.1.2 Extracting Elements of Matrices 416
6.1.3 Basic Computations with Matrices 419
6.1.4 Eigenvalues and Eigenvectors 422
6.1.5 Matrix Calculus 426
6.2 Systems of Equations: Preliminary Definitions and Theory 427
6.2.1 Preliminary Theory 429
6.2.2 Linear Systems 446
6.3 Homogeneous Linear Systems with Constant Coefficients 454
6.3.1 Distinct Real Eigenvalues 454
6.3.2 Complex Conjugate Eigenvalues 461
6.3.3 Alternate Method for Solving Initial-Value Problems 474
6.3.4 Repeated Eigenvalues 477
6.4 Nonhomogeneous First-Order Systems: Undetermined Coefficients, Variation of Parameters, and the Matrix Exponential 485
6.4.1 Undetermined Coefficients 485
6.4.2 Variation of Parameters 490
6.4.3 The Matrix Exponential 498
6.5 Numerical Methods 506
6.5.1 Built-In Methods 506
Application: Controlling the Spread of a Disease 513
6.5.2 Euler's Method 525
6.5.3 Runge-Kutta Method 531
6.6 Nonlinear Systems, Linearization, and Classification of Equilibrium Points 535
6.6.1 Real Distinct Eigenvalues 535
6.6.2 Repeated Eigenvalues 543
6.6.3 Complex Conjugate Eigenvalues 548
6.6.4 Nonlinear Systems 552
7 Applications of Systems of Ordinary Differential Equations 567
7.1 Mechanical and Electrical Problems with First-Order Linear Systems 567
7.1.1 $\quad L-R-C$ Circuits with Loops 567
7.1.2 $\quad L-R-C$ Circuit with One Loop 568
7.1.3 $\quad L-R-C$ Circuit with Two Loops 571
7.1.4 Spring-Mass Systems 574
7.2 Diffusion and Population Problems with First-Order Linear Systems 576
7.2.1 Diffusion through a Membrane 576
7.2.2 Diffusion through a Double-Walled Membrane 578
7.2.3 Population Problems 583
7.3 Applications that Lead to Nonlinear Systems 587
7.3.1 Biological Systems: Predator-Prey Interactions, The Lotka-Volterra System, and Food Chains in the Chemostat 587
7.3.2 Physical Systems: Variable Damping 604
7.3.3 Differential Geometry: Curvature 611
8 Laplace Transform Methods 617
8.1 The Laplace Transform 618
8.1.1 Definition of the Laplace Transform 618
8.1.2 Exponential Order 621
8.1.3 Properties of the Laplace Transform 623
8.2 The Inverse Laplace Transform 629
8.2.1 Definition of the Inverse Laplace Transform 629
8.2.2 Laplace Transform of an Integral 635
8.3 Solving Initial-Value Problems with the Laplace Transform 637
8.4 Laplace Transforms of Step and Periodic Functions 645
8.4.1 Piecewise-Defined Functions: The Unit Step Function 645
8.4.2 Solving Initial-Value Problems 649
8.4.3 Periodic Functions 652
8.4.4 Impulse Functions: The Delta Function 661
8.5 The Convolution Theorem 667
8.5.1 The Convolution Theorem 667
8.5.2 Integral and Integrodifferential Equations 669
8.6 Applications of Laplace Transforms, Part I 672
8.6.1 Spring-Mass Systems Revisited 672
8.6.2 L-R-C Circuits Revisited 679
8.6.3 Population Problems Revisited 687
Application: The Tautochrone 689
8.7 Laplace Transform Methods for Systems 691
8.8 Applications of Laplace Transforms, Part II 708
8.8.1 Coupled Spring-Mass Systems 708
8.8.2 The Double Pendulum 714
Application: Free Vibration of a Three-Story Building 720
9 Eigenvalue Problems and Fourier Series 727
9.1 Boundary-Value Problems, Eigenvalue Problems, Sturm-Liouville Problems 727
9.1.1 Boundary-Value Problems 727
9.1.2 Eigenvalue Problems 730
9.1.3 Sturm-Liouville Problems 735
9.2 Fourier Sine Series and Cosine Series 737
9.2.1 Fourier Sine Series 737
9.2.2 Fourier Cosine Series 746
9.3 Fourier Series 749
9.3.1 Fourier Series 749
9.3.2 Even, Odd, and Periodic Extensions 758
9.3.3 Differentiation and Integration of Fourier Series 764
9.3.4 Parseval's Equality 768
9.4 Generalized Fourier Series 770
10 Partial Differential Equations 783
10.1 Introduction to Partial Differential Equations and Separation of Variables 783
10.1.1 Introduction 783
10.1.2 Separation of Variables 785
10.2 The One-Dimensional Heat Equation 787
10.2.1 The Heat Equation with Homogeneous Boundary Conditions 787
10.2.2 Nonhomogeneous Boundary Conditions 791
10.2.3 Insulated Boundary 795
10.3 The One-Dimensional Wave Equation 799
10.3.1 The Wave Equation 799
10.3.2 D'Alembert's Solution 806
10.4 Problems in Two Dimensions: Laplace's Equation 810
10.4.1 Laplace's Equation 810
10.5 Two-Dimensional Problems in a Circular Region 817
10.5.1 Laplace's Equation in a Circular Region 817
10.5.2 The Wave Equation in a Circular Region 821
10.5.3 Other Partial Differential Equations 836
Appendix: Getting Started 841
Introduction to Mathematica 841
A Note Regarding Different Versions of Mathematica 843
Getting Started with Mathematica 843
Five Basic Rules of Mathematica Syntax 849
Loading Packages 850
A Word of Caution 853
Getting Help from Mathematica 854
Mathematica Help 858
The Mathematica Menu 863
Bibliography 865
Index 867

This Page Intentionally Left Blank

Preface

Mathematica's diversity makes it particularly well suited to performing many calculations encountered when solving many ordinary and partial differential equations. In some cases, Mathematica's built-in functions can immediately solve a differential equation by providing an explicit, implicit, or numerical solution; in other cases, Mathematica can be used to perform the calculations encountered when solving a differential equation. Because one goal of elementary differential equations courses is to introduce students to basic methods and algorithms and have the student gain proficiency in them, nearly every topic covered in Differential Equations with Mathematica, Third Edition, includes typical examples solved by traditional methods and examples solved using Mathematica. Differential Equations with Mathematica introduces basic commands and includes typical examples of applications of them. A study of differential equations relies on concepts from calculus and linear algebra so the text also includes discussions of relevant commands useful in those areas. In many cases, seeing a solution graphically is most meaningful so Differential Equations with Mathematica relies heavily on Mathematica's outstanding graphics capabilities.

Differential Equations with Mathematica is an appropriate reference for all users of Mathematica who encounter differential equations in their profession, in particular, for beginning users like students, instructors, engineers, business people, and other professionals using Mathematica to solve and visualize solutions to differential equations. Differential Equations with Mathematica is a valuable supplement for students and instructors at engineering schools that use Mathematica.

Taking advantage of Version 5 of Mathematica, Differential Equations with Mathematica, Third Edition, introduces the fundamental concepts of Mathematica to
solve (analytically, numerically, and / or graphically) differential equations of interest to students, instructors, and scientists. Other features to help make Differential Equations with Mathematica, Third Edition, as easy to use and as useful as possible include the following.

1. Version 5 Compatibility. All examples illustrated in Differential Equations with Mathematica, Third Edition, were completed using Version 5 of Mathematica. Although most computations can continue to be carried out with earlier versions of Mathematica, like Versions 2, 3, and 4, we have taken advantage of the new features in Version 5 as much as possible.
2. Applications. New applications, many of which are documented by references, from a variety of fields, especially biology, physics, and engineering, are included throughout the text.
3. Detailed Table of Contents. The table of contents includes all chapter, section, and subsection headings. Along with the comprehensive index, we hope that users will be able to locate information quickly and easily.
4. Additional Examples. We have considerably expanded the topics in Chapters 1 through 6. The results should be more useful to instructors, students, business people, engineers, and other professionals using Mathematica on a variety of platforms. In addition, several sections have been added to help make locating information easier for the user.
5. Comprehensive Index. In the index, mathematical examples and applications are listed by topic, or name, as well as commands along with frequently used options: particular mathematical examples as well as examples illustrating how to use frequently used commands are easy to locate. In addition, commands in the index are cross-referenced with frequently used options. Functions available in the various packages are cross-referenced both by package and alphabetically.
6. Included CD. All Mathematica code that appears in Differential Equations with Mathematica, Third Edition, is included on the CD packaged with the text.
7. Getting Started. The Appendix provides a brief introduction to Mathematica, including discussion about entering and evaluating commands, loading packages, and taking advantage of Mathematica's extensive help facilities. Appropriate references to The Mathematica Book are included as well.

We began Differential Equations with Mathematica in 1990 and the first edition was published in 1991. Back then, we were on top of the world using Macintosh IIcx's with 8 megs of RAM and 40 meg hard drives. We tried to choose examples that we thought would be relevant to typical users - typically in the context of differential equations encountered in the undergraduate curriculum. Those examples could
also be carried out by Mathematica in a timely manner on a computer as powerful as a Macintosh IIcx.

Now, we are on top of the world with Power Macintosh G4's with 768 megs of RAM and 50 gig hard drives, which will almost certainly be obsolete by the time you are reading this. The examples presented in Differential Equations with Mathematica continue to be the ones that we think are most similar to the problems encountered by beginning users and are presented in the context of someone familiar with mathematics typically encountered by undergraduates. However, for this third edition of Differential Equations with Mathematica we have taken the opportunity to expand on several of our favorite examples because the machines now have the speed and power to explore them in greater detail.

Other improvements to the third edition include:

1. Throughout the text, we have attempted to eliminate redundant examples and added several interesting ones. The following changes are especially worth noting.
(a) In Chapter 2, First-Order Ordinary Differential Equations, we present the integrating factor approach, variation of parameters, and method of undetermined coefficients when solving first-order linear equations.
(b) In Chapter 3, we discuss the Logistic difference equation and give some surprisingly simple ways to generate the classic "Pitchfork diagram" with Mathematica.
(c) Chapter 4, Higher-Order Equations, has been completely reorganized; a new section on nonlinear equations has been added.
(d) Chapter 5, Applications of Higher-Order Equations, has also been completely reorganized. The catenary is now included in the Other Applications section.
(e) Chapter 6, Systems of Ordinary Differential Equations, includes several new examples. See especially Example 6.2.5.
(f) Chapter 7, Applications of Systems, includes several new examples. See especially Examples 7.3.3, 7.3.4, and 7.3.6.
(g) We have included references that we find particularly interesting in the Bibliography, even if they are not specific Mathematica-related texts. A comprehensive list of Mathematica-related publications can be found at the Wolfram website.
```
http://store.wolfram.com/catalog/books/.
```

Finally, we must express our appreciation to those who assisted in this project. We would like to express appreciation to our editors, Tom Singer and Barbara Holland, and our production editor, Brandy Palacios, at Academic Press for providing a pleasant environment in which to work. In addition, Wolfram Research,
especially Misty Mosely, have been most helpful in providing us up-to-date information about Mathematica. Finally, we thank those close to us, especially Imogene Abell, Lori Braselton, Ada Braselton, and Mattie Braselton for enduring with us the pressures of meeting a deadline and for graciously accepting our demanding work schedules. We certainly could not have completed this task without their care and understanding.

Martha Abell
(E-Mail: somatla@gsvms2.cc.gasou.edu)
James Braselton
(E-Mail: jimbras@gsvms2.cc.gasou.edu) Statesboro, Georgia

August, 2003

Introduction to Differential

 Equations

The purpose of Differential Equations with Mathematica, Third Edition, is twofold. First, we introduce and discuss the topics covered in typical undergraduate and beginning graduate courses in ordinary and partial differential equations including topics such as Laplace transforms, Fourier series, eigenvalue problems, and boundary-value problems. Second, we illustrate how Mathematica is used to enhance the study of differential equations not only by eliminating the computational difficulties, but also by overcoming the visual limitations associated with the explicit solutions to differential equations, which are often quite complicated. In each chapter, we first briefly present the material in a manner similar to most differential equations texts and then illustrate how Mathematica can be used to solve some typical problems. For example, in Chapter 2, we introduce the topic of first-order equations. First, we show how to solve certain types of problems by hand and then show how Mathematica can be used to assist in the same solution procedures. Finally, we illustrate how Mathematica commands like DSolve and NDSolve can be used to solve some frequently encountered equations exactly and / or numerically. In Chapter 3 we discuss some applications of first-order equations. Since we are experienced and understand the methods of solution covered in Chapter 2, we make use of DSolve and similar commands to obtain solutions. In doing so, we are able to emphasize the applications themselves as opposed to becoming bogged down in calculations.

The advantages of using Mathematica in the study of differential equations are numerous, but perhaps the most useful is that of being able to produce the graphics associated with solutions of differential equations. This is particularly beneficial in the discussion of applications because many physical situations are

Numerous references like Abell and Braselton's
Mathematica By Example [I] are also available to beginning users of Mathematica.
modeled with differential equations. For example, we will see that the motion of a pendulum can be modeled by a differential equation. When we solve the problem of the motion of a pendulum, we use technology to actually watch the pendulum move. The same is true for the motion of a mass attached to the end of a spring as well as many other problems. In having this ability, the study of differential equations becomes much more meaningful as well as interesting.

If you are a beginning Mathematica user and, especially, new to Version 5.0, the Appendix contains an introduction to Mathematica, including discussions about entering and evaluating commands, loading packages, and taking advantage of Mathematica's extensive help facility.

Although Chapter 1 is short in length, Chapter 1 introduces examples that will be investigated in subsequent chapters. Also, the vocabulary introduced in Chapter 1 will be used throughout the text. Consequently, even though, to a large extent, it may be read quickly, subsequent chapters will take advantage of the terminology and techniques discussed here.

I.I Definitions and Concepts

We begin our study of differential equations by explaining what a differential equation is.

Definition 1 (Differential Equation). A differential equation is an equation that contains the derivative or differentials of one or more dependent variables with respect to one or more independent variables. If the equation contains only ordinary derivatives (of one or more dependent variables) with respect to a single independent variable, the equation is called an ordinary differential equation.

EXAMPLE 1.1.1: Thus, $d y / d x=x^{2} /\left(y^{2} \cos y\right)$ and $d y / d x+d u / d x=u+x^{2} y$ are examples of ordinary differential equations.

The equation $(y-1) d x+x \cos y d y=1$ is an ordinary differential equation written in differential form.

Using prime notation, a solution of the ordinary differential equation $x y^{\prime \prime}+$ $x y^{\prime}+\left(x^{2}-n^{2}\right) y=0$, which is called Bessel's equation, is a function $y=$ $y(x)$ with the property that $x d^{2} y / d x^{2}+x d y / d x+\left(x^{2}-n^{2}\right) y$ is identically the 0 function.

On the other hand,

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=(a-b y) x \tag{1.1}\\
\frac{d y}{d t}=(-m+n x) y
\end{array}\right.
$$

where a, b, m, and n are positive constants, is a system of two ordinary differential equations, called the predator-prey equations. A solution consists of two functions $x=x(t)$ and $y=y(t)$ that satisfy both equations. Predator-prey models can exhibit very interesting behavior as we will see when we study systems in more detail.

Note that a system of differential equations can consist of more than two equations. For example, the basic equations that describe the competition between two organisms, with population densities x_{1} and x_{2}, respectively, in a chemostat are

$$
\left\{\begin{array}{l}
S^{\prime}=1-S-\frac{m_{1} S}{a_{1}+S} x_{1}-\frac{m_{2} S}{a_{2}+S} x_{2} \tag{1.2}\\
x_{1}{ }^{\prime}=x_{1}\left(\frac{m_{1} S}{a_{1}+S}-1\right) \\
x_{2}{ }^{\prime}=x_{2}\left(\frac{m_{2} S}{a_{2}+S}-1\right)
\end{array}\right.
$$

where ' denotes differentiation with respect to $t ; S=S(t), x_{1}=x_{1}(t)$, and $x_{2}=x_{2}(t)$. For equations (1.2), we remark that S denotes the concentration of the nutrient available to the competitors with population densities x_{1} and x_{2}. We investigate chemostat models in more detail in Chapter 9.

If the equation contains partial derivatives of one or more dependent variables, then the equation is called a partial differential equation.

EXAMPLE 1.1.2: Because the equations involve partial derivatives of an unknown function, equations like $u \frac{\partial u}{\partial t}=\frac{\partial u}{\partial x}$ and $u u_{x}+u=u_{y y}$ are partial differential equations. For Laplace's equation, $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \mathrm{a}$ solution would be a function $u=u(x, y)$ such that $u_{x x}+u_{y y}$ is identically the 0 function. A solution $u=u(x, t)$ of the wave equation is a function satisfying $\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}$.

See texts like Giordano, Weir, and Fox's A First Course in Mathematical Modeling [12] and similar texts for detailed descriptions of predator-prey models.

See Smith and Waltman's The Theory of the Chemostat [24] for a detailed discussion of chemostat models.

> The partial differential equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ is known as the heat equation.
> As with systems of ordinary differential equations, systems of partial differential equations can be considered. With exceptions, their study is beyond the scope of this text.

Generally, given a differential equation, our goal in this course will most often be to construct a solution (or a numerical approximation of the solution). The approach to solving an equation depends on various features of the equation. The first level of classification, distinguishing between ordinary and partial differential equations, was discussed above. Generally, equations with higher order are more difficult to solve than those with lower order.

Definition 2 (Order). The order of a differential equation is the order of the highest-order derivative appearing in the equation.

EXAMPLE 1.1.3: Determine the order of each of the following differential equations: (a) $d y / d x=x^{2} /\left(y^{2} \cos y\right)$; (b) $u_{x x}+u_{y y}=0$; (c) $(d y / d x)^{4}=y+x$; and (d) $y^{3}+d y / d x=1$.

SOLUTION: (a) The order of this equation is one because the only derivative it includes is a first-order derivative, $d y / d x$. (b) This equation is classified as second-order because the highest-order derivatives, both $u_{x x}$, representing $\partial^{2} u / \partial x^{2}$, and $u_{y y}$, representing $\partial^{2} u / \partial y^{2}$, are of order two. Hence, Laplace's equation, $u_{x x}+u_{y y}=0$, is a second-order partial differential equation. (c) This is a first-order equation because the highest-order derivative is the first derivative. Raising that derivative to the fourth power does not affect the order of the equation. The expressions

$$
\left(\frac{d y}{d x}\right)^{4} \quad \text { and } \quad \frac{d^{4} y}{d x^{4}}
$$

do not represent the same quantities: $(d y / d x)^{4}$ represents the derivative of y with respect to x raised to the fourth power; $d^{4} y / d x^{4}$ represents the fourth derivative of y with respect to x. (d) Again, we have a first-order equation, because the highest-order derivative is the first derivative.

Linear differential equations are defined in a manner similar to algebraic linear equations that are introduced in algebra and pre-calculus courses.

Definition 3 (Linear Differential Equation). An ordinary differential equation (of order n) is linear if it is of the form

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=f(x), \tag{1.3}
\end{equation*}
$$

where the functions $a_{i}(x), i=0,1, \ldots, n$, and $f(x)$ are given and $a_{n}(x)$ is not the zero function.

If the equation does not meet the requirements of this definition, then the equation is said to be nonlinear. If $f(x)$ is identically equal to the zero function, the linear equation (1.3) is said to be homogeneous.

EXAMPLE 1.1.4: Determine which of the following differential equations are linear: (a) $d y / d x=x^{3}$; (b) $d^{2} u / d x^{2}+u=x^{x}$; (c) $(y-1) d x+x \cos y d y=$ 0 ; (d) $y^{(3)}+y y^{\prime}=x$; (e) $y^{\prime}+x^{2} y=x$; (f) $x^{\prime \prime}+\sin x=0$; (g) $u_{x x}+y u_{y}=0$; and (h) $u_{x x}+u u_{y}=0$.

SOLUTION: (a) This equation is linear, because the nonlinear term x^{3} is the function $f(x)$ of the independent variable in equation (1.3). (b) This equation is also linear. Using u as the dependent variable name does not affect the linearity. (c) Solving for $d y / d x$ we have $d y / d x=(1-$ $y) /(x \cos y)$. Because the right-hand side of this equation includes a nonlinear function of y, the equation is nonlinear in y. However, solving for $d x / d y$, we see that

$$
\frac{d x}{d y}=\frac{\cos y}{1-y} x \quad \text { or } \quad \frac{d x}{d y}-\frac{\cos y}{1-y} x=0 .
$$

This equation is linear in the variable x, if we take the dependent variable to be x and the independent variable to be y in this equation. (d) The coefficient of the y^{\prime} term is y and, thus, depends on y. Hence, this equation is nonlinear. (e) This equation is linear. The term x^{2} is the coefficient function $a_{0}(x)=x^{2}$ of y. (f) This equation, known as the pendulum equation because it models the motion of a pendulum, is nonlinear because it involves a nonlinear function of x, the dependent variable in this case. (t is assumed to be the independent variable.) For this equation, the nonlinear function of x is $\sin x$. (g) This partial differential equation is linear because the coefficient of u_{y} is a function of one of the independent variables. (h) In this case, there is a product of u and one of its derivatives. Therefore, the equation is nonlinear.

In the same manner that we consider systems of equations in algebra, we can also consider systems of differential equations. For example, if x and y represent functions of t, we will learn to solve the system of linear equations

$$
\left\{\begin{array}{l}
d x / d t=a x+b y \\
d y / d t=c x+d y
\end{array}\right.
$$

where a, b, c, and d represent constants and differentiation is with respect to t in Chapter 8. On the other hand, systems (1.1) and (1.2) involve products of the dependent variables (x and $y ; S, x_{1}$, and x_{2}, respectively) so are nonlinear systems of ordinary differential equations.

We will see that linear and nonlinear systems of differential equations arise naturally in many physical situations that are modeled with more than one equation and involve more than one dependent variable.

I. 2 Solutions of Differential Equations

When faced with a differential equation, our goal is frequently, but not always, to determine explicit and/or numerical solutions to the equation.
Definition 4 (Solution). A solution to the nth-order ordinary differential equation

$$
\begin{equation*}
F\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n)}\right)=0 \tag{1.4}
\end{equation*}
$$

on the interval $a<x<b$ is a function $\phi(x)$ that is continuous on the interval $a<x<b$ and has all the derivatives present in the differential equation such that

$$
F\left(x, \phi, \phi^{\prime}, \phi^{\prime \prime}, \ldots, \phi^{(n)}\right)=0
$$

on $a<x<b$.
In subsequent chapters, we will discuss methods for solving differential equations. Here, in order to understand what is meant to be a solution, we either give both the equation and a solution and then verify the solution or use Mathematica to solve equations directly.

EXAMPLE 1.2.1: Verify that the given function is a solution to the corresponding differential equation: (a) $d y / d x=3 y, y(x)=e^{3 x}$; (b) $u^{\prime \prime}+16 u=$ $0, u(x)=\cos 4 x$; and (c) $y^{\prime \prime}+2 y^{\prime}+y=0, y(x)=x e^{-x}$.

SOLUTION: (a) Differentiating y we have $d y / d x=3 e^{3 x}$ so that substitution yields

$$
\frac{d y}{d x}=3 y \quad \text { or } \quad 3 e^{3 x}=3 e^{3 x}
$$

(b) Two derivatives are required in this case: $u^{\prime}=-4 \sin 4 x$ and $u^{\prime \prime}=$ $-16 \cos 4 x$. Therefore,

$$
u^{\prime \prime}+16 u=-16 \cos 4 x+16 \cos 4 x=0
$$

(c) In this case, we illustrate how to use Mathematica. After defining y,

```
In[1]:= Y[x_] = x Exp [-x]
Out[1]= }\mp@subsup{e}{}{-x}\textrm{x
```

If you are a beginning Mathematica user, see the Appendix for help getting started with Mathematica.
we use ' to compute $y^{\prime}=e^{-x}-x e^{-x}$, naming the resulting output dy .

$$
\begin{aligned}
& \operatorname{In}[2]:=d y=y^{\prime}[x] \\
& \text { Out }[2]=e^{-x}-e^{-x} x
\end{aligned}
$$

Similarly, we use ' ' to compute $y^{\prime \prime}=-2 e^{-x}+x e^{-x}$, naming the resulting output d2y.

```
In[3]:= d2y = y'[x]
Out[3]=-2 ex}+\mp@subsup{e}{}{-x}
```

Finally, we compute $y^{\prime \prime}+2 y^{\prime}+y=-2 e^{-x}+2\left(e^{-x}-x e^{-x}\right)+x e^{-x}=0$. The result is not automatically simplified so we use Simplify to simplify the output.

```
In [4]:= d2y + 2dy + y [x]
Out [4] = -2 e}\mp@subsup{e}{}{-x}+2\mp@subsup{e}{}{-x}x+2(\mp@subsup{e}{}{-x}-\mp@subsup{e}{}{-x}x
In[5]:= Simplify[d2y+2dy + y[x]]
Out [5]= 0
```

We obtain the same result by entering

```
In [6]:= Simplify[y' [x] + 2 y' [x] + y [x]]
Out [6]= 0
```

which first computes $y^{\prime \prime}+2 y^{\prime}+y$ and then applies the Simplify command to the result. We graph this solution with Plot. Entering

```
In [7]:= Plot[y[x],{x, -1, 1}]
```

graphs $y(x)=x e^{-x}$ on the interval $[-1,1]$. See Figure 1-1.

Figure 1-1 Plot of $y(x)=x e^{-x}$ on the interval $[-1,1]$

In the previous example, the solution is given as a function of the independent variable. In these cases, the solution is said to be explicit. In solving some differential equations, however, we can only find an equation involving x and y that the solution satisfies. In this case, the solution is said to be implicit.

EXAMPLE 1.2.2: Verify that the given implicit function satisfies the differential equation.

$$
\begin{aligned}
& \text { Function: } 2 x^{2}+y^{2}-2 x y+5 x=0 \\
& \text { Differential Equation: } \frac{d y}{d x}=\frac{2 y-4 x-5}{2 y-2 x}
\end{aligned}
$$

Assuming that $y=y(x)$, $\frac{d y}{d x}=y^{\prime}$.

SOLUTION: We use implicit differentiation to compute the derivative of the equation $2 x^{2}+y^{2}-2 x y+5 y=0$:

$$
\begin{aligned}
4 x+2 y \frac{d y}{d x}-2 x \frac{d y}{d x}-2 y+5 & =0 \\
(2 y-2 x) \frac{d y}{d x} & =2 y-4 x-5 \\
\frac{d y}{d x} & =\frac{2 y-4 x-5}{2 y-2 x} .
\end{aligned}
$$

Hence, the given implicit solution satisfies the differential equation.
We also illustrate how to use Mathematica to differentiate the equation $2 x^{2}+y^{2}-2 x y+5 x=0$ with respect to x. After clearing all prior definitions of x, y, and eq, if any, with Clear we define eq to be the
equation $2 x^{2}+y^{2}-2 x y+5 x=0$. Note how we use a double equals sign (==) to separate the left and right-hand sides of the equation.

$$
\begin{aligned}
\text { In }[8]:= & \text { Clear }[x, y] \\
& \text { eq }=2 x^{2}+y^{2}-2 x y+5 x==0 \\
\text { Out }[8]= & 5 x+2 x^{2}-2 x y+y^{2}==0
\end{aligned}
$$

Next, we use Dt to differentiate eq with respect to x, naming the resulting output step1. The symbol $D t[y, x]$ appearing in the result represents $d y / d x$; step1 represents the equation $4 x+2 y y^{\prime}-2 x y^{\prime}-2 y+5=0$.

```
In[9]:= step1 = Dt [eq, x]
Out[9]=5 + 4x-2 y-2 x Dt [y,x] + 2 y Dt [y,x] == 0
```

Finally, we obtain $y^{\prime}=d y / d x$ by solving the equation step 1 for $D t[y, x]$ with Solve.

$$
\begin{aligned}
& \text { In }[10]:=\text { step } 2=\text { Solve }[\text { step } 1, \operatorname{Dt}[y, x]] \\
& \text { Out }[10]=\left\{\left\{D t[y, x] \rightarrow \frac{5+4 x-2 y}{2(x-y)}\right\}\right\}
\end{aligned}
$$

Generally, to graph an equation of the form $f(x, y)=C$, where C is a constant, we use the ContourPlot command which is used to graph level curves of surfaces: the graph of $f(x, y)=C$ is the same as the graph of the level curve of $z=f(x, y)$ corresponding to $z=C$. Thus, the graph of the equation $2 x^{2}+y^{2}-2 x y+5 x=0$ is the same as the graph of the level curve of $z=f(x, y)=2 x^{2}+y^{2}-2 x y+5 x$ corresponding to 0 . Note how $2 x^{2}+y^{2}-2 x y+5 x$, the left-hand side of the equation eq, is extracted from eq with Part ([[. .]]) : $2 x^{2}+y^{2}-2 x y+5 x$ is the first part of eq.

```
In[11]:= eq\llbracket1]
Out[11]= 5x+2 x'2 - xy+ y'
```

Thus, entering

```
In[12]:= ContourPlot[Evaluate[eq[[1]]], {x, -7, 2},
    {y, -7, 2}, Frame }->\mathrm{ False, Axes }->\mathrm{ Automatic,
    AxesOrigin }->{0,0}\mathrm{ ,
    AxesStyle }->\mathrm{ GrayLevel[0.5],
    PlotPoints }->100,\mathrm{ Contours }->{0}
    ContourShading }->\mathrm{ False]
```


Figure 1-2 Graph of $2 x^{2}+y^{2}-2 x y+5 x=0$
graphs the equation $2 x^{2}+y^{2}-2 x y+5 x=0$ as shown in Figure 1-2 for $-7 \leq x \leq 2$ and $-7 \leq y \leq 2$ (the option Contours - $\{0\}$ instructs Mathematica to graph only the level curve corresponding to 0). The option ContourShading->False specifies to not shade the regions between contours, Frame->False specifies that a frame is not to be placed around the resulting graphics object, Axes - >Automatic specifies that axes are to be placed on the resulting graphics object while the option AxesOrigin->\{0,0\} specifies that they intersect at the point $(0,0)$ and the option AxesStyle->GrayLevel [.5] specifies that they be drawn in a medium shade of gray. The option PlotPoints->100 instructs Mathematica to increase the number of sample points to 100 (the default is 15), helping assure that the resulting graphics object appears smooth. Be sure to enclose eq [[1]] in Evaluate as shown: this ensures that Mathematica evaluates eq[[1]] before sampling points; if Evaluate is not included error messages result. (Note that an alternative way to graph equations is to use the ImplicitPlot command which is contained in the ImplicitPlot package located in the Graphics folder (or directory).) If you are using Version 5.0 (or later) and wish to avoid using Part, you can select the left-hand side of the equation, copy it,

```
Clear[x, Y]
eq=2 ('2}+\mp@subsup{\mathbf{Y}}{}{2}-2xy+5x==
5x+2\mp@subsup{x}{}{2}-2xy+\mp@subsup{y}{}{2}==0
step1 = Dt[eq. I]
5+4x-2y-2xDt[y,x]+2yDt[y,x]==0
```

and then paste it into the ContourPlot command.

See Getting Started in the Appendix.
step1 $=\operatorname{Dt}[$ eq, $x]$
$5+4 x-2 y-2 x D t[y, x]+2 y D t[y, x]==0$
ContourPlot $\left[5 x+2 x^{2}-2 x y+y^{2},\{x,-7,2\},\{y,-7,2\}\right.$,
Frame \rightarrow False, Axes \rightarrow Automatic, Axesorigin $\rightarrow\{0,0\}$.
AxesStyle \rightarrow GrayLevel[.5], PlotPoints $\rightarrow 200$.
Contours $\rightarrow\{0\}$, ContourShading \rightarrow False,
AxesLabel $\left.\rightarrow\left\{{ }^{\prime \prime} \mathbf{x}^{\prime},{ }^{\prime \prime} \mathbf{y}^{\prime}\right\}\right]$

- ContourGraphics -

For details, see Graff's Wave Motion in Elastic Solids [13].

$$
\begin{equation*}
\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}=\frac{1}{c_{0}^{2}} \frac{\partial^{2} w}{\partial t^{2}} \tag{1.5}
\end{equation*}
$$

takes the form

$$
w=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty}\left(A_{m n} \cos \omega_{m n} t+B_{m n} \sin \omega_{m n} t\right) W_{m n},
$$

where $A_{m n}$ and $B_{m n}$ are constants, $\omega_{m n}{ }^{2}=c_{0}^{2}\left(\xi_{n}{ }^{2}+\zeta_{m}{ }^{2}\right), \xi_{n}=n \pi / a, \zeta_{m}=$ $m \pi / b$, and the normal modes, $W_{n m}$, are given by

$$
W_{n m}(x, y)=\sin \xi_{n} x \sin \zeta_{m} y .
$$

(a) Verify that $f_{c}(x, y, t)=\cos \omega_{m n} t W_{m n}(x, y)$ and $f_{s}(x, y, t)=\sin \omega_{m n} t$ $W_{m n}(x, y)$ satisfy the wave equation (1.5) on a rectangular membrane.
(b) Plot the first few normal modes of the membrane.

SOLUTION: After defining $\omega_{m n}{ }^{2}=c_{0}{ }^{2}\left(\xi_{n}{ }^{2}+\zeta_{m}{ }^{2}\right), \xi_{n}=n \pi / a, \zeta_{m}=m \pi / b$, we define $f_{c}(x, y, t)=\cos \omega_{m n} t W_{m n}(x, y)$ and $f_{s}(x, y, t)=\sin \omega_{m n} t W_{m n}(x, y)$.

$$
\begin{aligned}
\operatorname{In}[13]:= & \omega\left[\mathrm{m}_{-}, \mathrm{n}_{-}\right]=\pi \mathrm{c} 0 \sqrt{\frac{\mathrm{n}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{m}^{2}}{\mathrm{~b}^{2}}} ; \\
\operatorname{In}[14]:= & \xi\left[\mathrm{n}_{-}\right]=\frac{\mathrm{n} \pi}{\mathrm{a}} ; \\
& \zeta\left[\mathrm{m}_{-}\right]=\frac{\mathrm{m} \pi}{\mathrm{~b}} ; \\
\operatorname{In}[15]:= & \mathrm{fc}\left[\mathrm{x}_{-}, \mathrm{y}_{-}, \mathrm{t}_{-}\right]= \\
& \operatorname{Cos}[\omega[\mathrm{m}, \mathrm{n}] \mathrm{t}] \operatorname{Sin}[\xi[\mathrm{n}] \mathrm{x}] \operatorname{Sin}[\zeta[\mathrm{m}] \mathrm{y}] ; \\
\operatorname{In}[16]:= & \mathrm{fs}\left[\mathbf{x}_{-}, \mathrm{y}_{-}, \mathrm{t}_{-}\right]= \\
& \operatorname{Sin}[\omega[\mathrm{m}, \mathrm{n}] \mathrm{t}] \operatorname{Sin}[\xi[\mathrm{n}] \mathrm{x}] \operatorname{Sin}[\zeta[\mathrm{m}] \mathrm{y}] ;
\end{aligned}
$$

To verify that $f_{c}(x, y, t)$ satisfies equation (1.5), we compute $\frac{\partial^{2} f_{c}}{\partial x^{2}}, \frac{\partial^{2} f_{c}}{\partial y^{2}}$, and $\frac{\partial^{2} f_{c}}{\partial t^{2}}$ in fcxx, fcyy, and fczz, respectively.

$$
\begin{aligned}
& \text { In [17]: }=\mathrm{fcxx}=\mathrm{D}[\mathrm{fc}[\mathrm{x}, \mathrm{y}, \mathrm{t}],\{\mathrm{x}, 2\}] \\
& \text { Out [17] }=-\frac{n^{2} \pi^{2} \operatorname{Cos}\left[\cos \sqrt{\frac{m^{2}}{b^{2}}+\frac{n^{2}}{a^{2}}} \pi t\right] \operatorname{Sin}\left[\frac{n \pi x}{a}\right] \operatorname{Sin}\left[\frac{m \pi y}{b}\right]}{a^{2}} \\
& \text { In [18]: }=\mathrm{fcyy}=\mathrm{D}[\mathrm{fc}[\mathrm{x}, \mathrm{y}, \mathrm{t}],\{\mathrm{y}, 2\}] \\
& \text { Out }[18]=-\frac{m^{2} \pi^{2} \operatorname{Cos}\left[\cos \sqrt{\frac{m^{2}}{b^{2}}+\frac{n^{2}}{a^{2}}} \pi t\right] \operatorname{Sin}\left[\frac{n \pi x}{a}\right] \operatorname{Sin}\left[\frac{m \pi y}{b}\right]}{b^{2}} \\
& \text { In [19]: }=\mathrm{fctt}=\mathrm{D}[\mathrm{fc}[\mathrm{x}, \mathrm{y}, \mathrm{t}],\{\mathrm{t}, 2\}] \\
& \text { Out [19] }=-\operatorname{co} 0^{2}\left(\frac{m^{2}}{\mathrm{~b}^{2}}+\frac{\mathrm{n}^{2}}{\mathrm{a}^{2}}\right) \pi^{2} \operatorname{Cos}\left[\operatorname{co} \sqrt{\frac{\mathrm{~m}^{2}}{\mathrm{~b}^{2}}+\frac{\mathrm{n}^{2}}{\mathrm{a}^{2}}} \pi \mathrm{t}\right] \\
& \operatorname{Sin}\left[\frac{\mathrm{n} \pi \mathrm{x}}{\mathrm{a}}\right] \operatorname{Sin}\left[\frac{\mathrm{m} \pi \mathrm{y}}{\mathrm{~b}}\right]
\end{aligned}
$$

$\mathrm{fcxx}+\mathrm{fcyy}-1 / c_{0}^{2} \mathrm{fctt}$ is simplified with Simplify; the result is 0 so $f_{c}(x, y, t)$ satisfies equation (1.5).

```
In[20]:= Simplify[fcxx + fcyy-1/c0^2 fctt]//Simplify
Out[20]= 0
```

On the other hand, to verify that $f_{s}(x, y, t)$ satisfies equation (1.5), we compute and simplify

$$
\frac{\partial^{2} f_{s}}{\partial x^{2}}+\frac{\partial^{2} f_{s}}{\partial y^{2}}-\frac{1}{c_{0}^{2}} \frac{\partial^{2} f_{s}}{\partial t^{2}}
$$

in a single step. The result is identically equal to 0 so $f_{s}(x, y, t)$ also satisfies equation (1.5).

```
In[21]:= Simplify[D[fs[x,y,t], {x, 2}] +D[fs[x,y,t],
    {y,2}]-1/co^2D[fs[x,y,t],
    {t, 2}]]//Simplify
Out[21]= 0
```

(b) To graph the normal modes, we choose $a=b=1$. We then use Table and Plot 3D to plot $W_{n m}(x, y), 0 \leq x \leq 1$ and $0 \leq y \leq 1$, for $n=1$, 2,3 , and $4, m=1,2$, and 3 . The resulting array of graphics is displayed as a graphics array using Show and GraphicsArray. In Figure 1-3, the first row corresponds to $n=1$, the second to $n=2$, and so on; the first column corresponds to $m=1$, the second to $m=3$, and so on.

```
In[22]:= tp = Table[Plot3D[Sin[n\pix] Sin[m\piy], {x, 0, 1},
    {y,0,1}, DisplayFunction }->\mathrm{ Identity,
    BoxRatios }->{1,1,1}, PlotPoints -> 45]
    {n, 1, 4}, {m, 1, 3}];
    Show[GraphicsArray[tp]]
```

As indicated in the previous example, without added initial or boundary conditions many differential equations have more than one solution. We further illustrate this property in the following examples where we use the Mathematica command DSolve to solve the indicated equations. Generally, the command

$$
\operatorname{DSolve}\left[F\left[x, y[x], Y^{\prime}[x], \ldots, D[y[x],\{x, n\}]\right]==0, y[x], x\right]
$$

attempts to solve the differential equation (1.4) for y. Detailed help regarding DSolve is obtained by entering ?DSolve or by going to Help under the Mathematica menu

Figure 1-3 $W_{n m}$ for $n=1,2,3$, and $4, m=1,2$, and 3

```
Help Browser..
Find Selected Function... 仓&F
Master Index...
Built-in Functions...
Mathematica Book...
Getting Started/Demos...
Add-ons...
Tutorial..
Why the Beep?... 仓&H
Online Registration...
Startup Palette..
Rebuild Help Index
```

and then selecting Help... Once Mathematica opens the Help Browser, you can either type DSolve and select Go To or select Algebraic Computation followed by Equation Solving and DSolve to obtain a description of the DSolve command, a discussion of its various options, and several examples, as illustrated in the following screen shot.

Figure 1-4 $\quad y=C e^{-\sin x}$ for various values of C

EXAMPLE 1.2.4: Verify that the differential equation $d y / d x=-y \cos x$ has infinitely many solutions.

SOLUTION: We use DSolve to solve this first-order linear equation and name the resulting list sol. We see that the solution is given in terms of a replacement rule and interpret the result to mean that if C [1] is any number, a solution to the equation is $y=\mathrm{C}[1] \mathrm{E}^{-\operatorname{Sin}[\mathrm{x}]}$. In traditional mathematical notation, we could write that $y=C e^{-\sin x}$ is a solution of $d y / d x=-y \cos x$ for any value of C.

```
In[23]:= sol = DSolve[y'[x] == - Cos[x] * y[x], y[x], x]
Out [23]= {{y[x] }->\mp@subsup{\mathbb{e}}{}{-\operatorname{Sin}[x]}\textrm{C}[1]}
```

Thus, the equation has infinitely many solutions. We graph several solutions with Plot in Figure 1-4.

```
In[24]:= toplot = Table[ }\mp@subsup{e}{}{-\operatorname{Sin}[x]}C[1]/.C[1]-> i, {i, -5, 5}]
In[25]:= Plot[Evaluate[toplot], {x, 0, 4\pi}]
```

EXAMPLE 1.2.5: Verify that $y^{\prime \prime}+y=0$ has infinitely many solutions.

SOLUTION: We use DSolve to solve this second-order linear equation and name the resulting list sol. We interpret the result to mean
that if C [1] and C [2] are any numbers, a solution to the equation is $y=\mathrm{C}[1] \operatorname{Cos}[\mathrm{x}]+\mathrm{C}[2] \operatorname{Sin}[\mathrm{x}]$. In traditional mathematical notation, we write that $y=C_{1} \cos x+C_{2} \sin x$ is a solution of $y^{\prime \prime}+y=0$ for any constant values of C_{1} and C_{2}.

```
In[26]:= sol = DSolve[y' [x] + y [x] == 0, y[x], x]
Out [26]= {{y[x] ->C[1] Cos[x] + C[2] Sin[x]}}
```

In particular, this result indicates that $y=C \cos x$ is a solution of $y^{\prime \prime}+y=$ 0 for any value of C (set $\left.C_{2}=0\right)$ and that $y=C \sin x$ is a solution of $y^{\prime \prime}+y=0$ for any value of C (set $C_{1}=0$). Some of the members of the family of solutions are graphed with Plot. First, we use Table to generate a set of eleven functions obtained by replacing C in $y=C \cos x$ by $-2.5,-2,-1.5, \ldots, 1.5,2$, and 2.5 , naming the resulting set toplot 1 and then a set of eleven functions obtained by replacing C in $y=C \sin x$ by $-2.5,-2,-1.5, \ldots, 1.5,2$, and 2.5 , naming the resulting set toplot 2 .

```
In[27]:= toplot1 =
    Table[C[2] Cos[x]-C[1] Sin[x]/.{C[2]-> i,
    C[1]-> 0}, {i, -2.5, 2.5, 0.5}];
toplot2 =
    Table[C[2] Cos[x]-C[1] Sin[x]/.{C[2]-> 0,
    C[1]- > i}, {i, -2.5, 2.5, 0.5}];
```

Then, the set of functions toplot1 and toplot2 are graphed with Plot for $0 \leq x \leq 4 \pi$. Be sure to include toplot1 and toplot 2 within the Evaluate command because Mathematica must evaluate each set of functions before sampling points. Neither graph is displayed as it is generated because we include the option DisplayFunction-> Identity in each Plot command. Instead, we show the graphs side-by-side using GraphicsArray in Figure 1-5.

```
In[28]:= plot1 = Plot[Evaluate[toplot1], {x, 0, 4\pi},
    DisplayFunction- > Identity];
plot2 = Plot[Evaluate[toplot2], {x, 0, 4\pi},
    DisplayFunction- > Identity];
    Show[GraphicsArray[{plot1, plot2}]];
```


Figure 1-5 Plots of $y=C \cos x$ and $y=C \sin x$ for various values of C

I. 3 Initial and Boundary-Value Problems

In many applications, we are not only given a differential equation to solve but we are given one or more conditions that must be satisfied by the solution(s) as well. For example, suppose that we want to find an antiderivative of the function $f(x)=$ $3 x^{2}-4 x$. Then, we solve the differential equation $d y / d x=3 x^{2}-4 x$ by integrating:

$$
\begin{aligned}
& \qquad \begin{array}{l}
\frac{d y}{d x}=3 x^{2}-4 x \Longrightarrow y=\int\left(3 x^{2}-4 x\right) d x \Longrightarrow y=x^{3}-2 x^{2}+C . \\
\text { In }[29]:=\int\left(3 \mathbf{x}^{2}-4 \mathbf{x}\right) \mathrm{d} \mathbf{x} \\
\text { Out }[29]
\end{array}=-2 \mathrm{x}^{2}+\mathrm{x}^{3}
\end{aligned}
$$

Because the solution involves an arbitrary constant and all solutions to the equation can be obtained from it, we call this a general solution. On the other hand, if we want to find a solution that passes through the point $(1,4)$, we must find a solution that satisfies the auxiliary condition $y(1)=4$. Substitution into $y=x^{3}-2 x^{2}+C$ yields $y(1)=1^{3}-2 \cdot 1^{2}+C=4 \Rightarrow C=5$. Therefore, the member of the family of solutions $y=x^{3}-2 x^{2}+C$ that satisfies $y(1)=4$ is $y=x^{3}-2 x^{2}+5$. The following commands illustrate how to graph some members of the family of solutions by substituting various values of C into the general solution. We also graph the solution to the problem

$$
\left\{\begin{array}{l}
y^{\prime}=3 x^{2}-4 x \\
y(1)=4
\end{array}\right.
$$

First, we use Table to generate a table of functions $x^{3}-2 x^{2}+C$ for $C=-10,-8, \ldots$, 8,10 , naming the resulting set of functions toplot. Note that we use c to represent C to avoid conflict with the built-in symbol C. The set of functions toplot is not displayed (for length reasons) because a semi-colon (;) is included at the end of the command. However, we are able to view an abbreviation of toplot with Short. Using Length, we see that toplot contains eleven functions.

```
In[30]:= toplot = Table[-2 x + + x + c, {c, -10, 10, 2}];
    Short[toplot]
    Length[toplot]
```



```
Out [30]= 11
```

To graph the eleven functions contained in toplot and distinguish between the graphs, we use Table and GrayLevel to generate a list of eleven different gray levels. Then, we graph toplot with Plot in Figure 1-6(a). The option PlotStyle->grays instructs Mathematica to display each graph using the corresponding shade of gray.

```
In [31]: = grays = Table[GrayLevel[i], \(\left.\left\{i, 0,0.5, \frac{0.5}{10}\right\}\right]\);
    Plot[Evaluate[toplot], \(\{x,-2,3\}\), PlotStyle \(\rightarrow\) grays,
        AxesStyle \(\rightarrow\) GrayLevel [0.5], PlotRange \(\rightarrow\{-15,15\}]\)
\(\operatorname{In}[32]:=\operatorname{Plot}\left[\mathbf{x}^{3}-2 \mathbf{x}^{2}+5,\{\mathbf{x},-2,3\}\right.\), PlotRange \(\left.\rightarrow\{-15,15\}\right]\)
```

Notice that this first-order equation requires one auxiliary condition to eliminate the unknown coefficient in the general solution. Frequently, the independent variable in a problem is t, which usually represents time. Therefore, we call the auxiliary condition of a first-order equation an initial condition, because it indicates the initial-value (at $t=t_{0}$) of the dependent variable. Problems that involve an initial condition are called initial-value problems.

Figure 1-6 (a) Plot of $y=x^{3}-2 x^{2}+C$ for various values of C. (b) Plot of the solution that satisfies $y(1)=4$

EXAMPLE 1.3.1: Consider the first-order equation

$$
\frac{d v}{d t}=32-v
$$

which is solved to determine the velocity at time $t, v(t)$, of an object of mass $m=1$ subjected to air resistance equivalent to the instantaneous velocity of the object. If the initial velocity of the object is $v(0)=0$, determine the solution that satisfies this initial condition.

SOLUTION: A general solution to this equation is found to be $v(t)=$ $32+C e^{-t}$, where C is a constant, with DSolve.

```
In[33]:= gensol = DSolve[v'[t] == 32-v[t],v[t], t]
Out [33]= {{v[t]->32+ + -t}C[1]}
```

Substituting into the general solution, we have $v(0)=32+C=0$. Hence, $C=-32$, and the solution to the initial-value problem is $v(t)=32-32 e^{-t}$. DSolve can be used to solve this initial-value problem as well.

```
In[34]:= gensol = DSolve[{v'[t] == 32-v[t],
    v[0] == 0},v[t],t]
Out [34]={{v[t]->32 est}(-1+\mp@subsup{e}{}{t})}
```

If DSolve cannot find an exact solution to an initial-value problem or if numerical results are desired, the command

$$
\operatorname{NDSOlve}\left[\left\{y^{\prime}[x]==f[x, y[x]], y[x 0]==y 0\right\}, y[x],\{x, a, b\}\right]
$$

attempts to find a numerical solution to the initial-value problem $\left\{y^{\prime}=f(x, y)\right.$, $\left.y\left(x_{0}\right)=y_{0}\right\}$ valid for $a \leq x \leq b$. We use the Help Browser to obtain information about NDSolve and its options as well as several examples illustrating its use.

Notice that the syntax of the NDSolve command is almost identical to that of the DSolve command, except that we must specify an interval $[a, b]$ on which we want the numerical solution to be valid.

EXAMPLE 1.3.2: Graph the solution to the initial-value problem
$\left\{\begin{array}{l}y^{\prime}=\sin x^{2} \\ y(0)=0\end{array}\right.$
on the interval $[0,10]$. Evaluate $y(5)$.

SOLUTION: In this case, we see that DSolve is able to solve the initialvalue problem although the result is given in terms of the Fresnels function.

Figure 1-7 Plot of the solution of $\left\{\begin{array}{l}y^{\prime}=\sin x^{2} \\ y(0)=0\end{array}\right.$ for $0 \leq x \leq 10$

$$
\begin{aligned}
\operatorname{In}[35]:= & \text { exactsol }=\text { DSolve }\left[\left\{y^{\prime}[\mathbf{x}]==\operatorname{Sin}\left[\mathbf{x}^{2}\right]\right.\right. \\
& \mathbf{y}[0]==0\}, \mathbf{y}[\mathbf{x}], \mathbf{x}] \\
\text { Out }[35]= & \left\{\left\{y[x] \rightarrow \sqrt{\frac{\pi}{2}} \text { FresnelS }\left[\sqrt{\frac{2}{\pi}} x\right]\right\}\right\}
\end{aligned}
$$

Here is Mathematica's description of the Fresnels function.

```
In [36]:= ?Fresnels
    FresnelS[z] gives the Fresnel integral S(z).
```

Using NDSolve, we obtain a numerical solution to the initial-value problem valid on the interval [0, 10]:

```
In [37]:= numsol \(=\operatorname{NDSolve}\left[\left\{y^{\prime}[x]==\operatorname{Sin}\left[x^{2}\right], y[0]==0\right\}\right.\),
    \(\mathbf{y}[\mathbf{x}],\{\mathbf{x}, 0,10\}]\)
```

```
Out [37] \(=\{\{y[x] \rightarrow\) InterpolatingFunction \([\{\{0 ., 10\}\).\(\} ,\)
    <>] [x] \}\}
```

which we graph with Plot in Figure 1-7.

```
In[38]:= Plot[y[x]/.numsol, {x, 0, 10}, PlotRange }->\mathrm{ All]
```

The value of $y(5)$ is found with ReplaceAll (/ .)

```
In[39]:= numsol/.x }->
Out [39]= {{y[5] ->0.527917}}
```

and indicates that $y(5) \approx 0.5279$.

Because first-order equations involve a single auxiliary condition, which is usually referred to as an initial condition, we use the following examples to distinguish between initial-value and boundary-value problems which involve higherorder equations.

EXAMPLE 1.3.3: Consider the second-order differential equation $x^{\prime \prime}+$ $x=0$, which models the motion of a mass with $m=1$ attached to the end of a spring with spring constant $k=1$, where $x(t)$ represents the displacement of the mass from the equilibrium position $x=0$ at time t. A general solution of this differential equation is found to be $x(t)=$ $A \cos t+B \sin t$, where A and B are arbitrary constants, with DSolve.

```
In [40]:= sol = DSolve[ (x'[t] + x [t] == 0, x[t], t]
Out [40] = {{x[t] ->C[1] Cos[t] + C[2] Sin[t]}}
```

Because this is a second-order equation, we need two auxiliary conditions to determine the two unknown constants. Suppose that the initial displacement of the mass is $x(0)=0$ and the initial velocity is $x^{\prime}(0)=1$. This is an initial-value problem because we have two auxiliary conditions given at the same value of t, namely $t=0$. Use these initial conditions to determine the solution of this problem.

SOLUTION: Because we need the first derivative of the general solution, we calculate $x^{\prime}(t)=B \cos t-A \sin t$. Substitution yields $x(0)=A=0$ and $x^{\prime}(0)=B=1$. Hence, the solution is $x(t)=\sin t$. DSolve can solve this initial-value problem as well.

```
In [41]:= DSolve[{\mp@subsup{\mathbf{x}}{}{\prime\prime}[t]+\mathbf{x}[t]==0, x[0] == 0, x'[0] == 1},
    x[t],t]
Out[41]={{x[t]->\operatorname{Sin}[t]}}
```

EXAMPLE 1.3.4: The shape of a bendable beam of length 1 unit that is subjected to a compressive force at one end is described by the graph of the solution $y(x)$ of the differential equation $\frac{d^{2} y}{d x^{2}}+\frac{\pi^{2}}{4} y=0,0<x<1$. If the height of the beam above the x-axis is known at the endpoints $x=0$ and $x=1$, then we have a boundary-value problem. Use the boundary conditions $y(0)=0$ and $y(1)=2$ to find the shape of the beam.

Figure 1-8 A plot of a solution to the beam equation

Later, we will see that under reasonable conditions, initial-value problems have unique solutions. On the other hand, boundary-value problems may have no solutions, infinitely many solutions, or a unique solution.

SOLUTION: First, we use DSolve to find a general solution to the equation. The result indicates that a general solution is $y(x)=A \cos \left(\frac{\pi}{2} x\right)+$ $B \sin \left(\frac{\pi}{2} x\right)$.

$$
\begin{aligned}
& \operatorname{In}[42]:=\text { DSolve }\left[\mathbf{y}^{\prime \prime}[\mathbf{x}]+\frac{\pi^{2}}{4} \mathbf{y}[\mathbf{x}]=\mathbf{=}, \mathbf{y}[\mathbf{x}], \mathbf{x}\right] \\
& \text { Out }[42]=\left\{\left\{y[x] \rightarrow C[1] \operatorname{Cos}\left[\frac{\pi x}{2}\right]+C[2] \operatorname{Sin}\left[\frac{\pi x}{2}\right]\right\}\right\}
\end{aligned}
$$

Applying the condition $y(0)=0$ to the general solution yields

$$
y(0)=A \cos 0+B \sin 0=A=0
$$

Similarly, $y(1)=2$ indicates that

$$
y(1)=B \sin \frac{\pi}{2}=B=2
$$

so the solution to the boundary value problem is $y(x)=2 \sin \left(\frac{\pi}{2} x\right), 0<$ $x<1$. DSolve is also able to solve this boundary value problem.

$$
\begin{aligned}
\text { In }[43]:= & \text { DSolve }\left[\left\{y^{\prime \prime}[x]+\frac{\pi^{2}}{4} y[x]==0, y[0]==0, y[1]==2\right\}\right. \\
& y[x], x] \\
\text { Out }[43]= & \left\{\left\{y[x] \rightarrow 2 \operatorname{Sin}\left[\frac{\pi x}{2}\right]\right\}\right\}
\end{aligned}
$$

This function that describes the shape of the beam is graphed with Plot in Figure 1-8.

$$
\operatorname{In}[44]:=\operatorname{Plot}\left[2 \operatorname{Sin}\left[\frac{\pi \mathbf{x}}{2}\right],\{\mathbf{x}, 0,1\}\right]
$$

We will see that it is usually impossible to find exact solutions of higher-order nonlinear initial-value problems. In those cases, we can often use NDSol ve to generate an accurate approximation of the solution.

EXAMPLE 1.3.5 (Rayleigh's Equation): Rayleigh's equation is the nonlinear equation

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+\left[\frac{1}{3}\left(\frac{d x}{d t}\right)^{2}-1\right] \frac{d x}{d t}+x=0 \tag{1.6}
\end{equation*}
$$

and arises in the study of the motion of a violin string. Graph the solution to Rayleigh's equation on the interval $[0,15]$ if (a) $x(0)=1, x^{\prime}(0)=0$; (b) $x(0)=0.1, x^{\prime}(0)=0$; and (c) $x(0)=0, x^{\prime}(0)=1.9$.

SOLUTION: In each case, we use NDSolve to approximate the solution to the initial-value problem, naming the results numsol1, numsol2, and numsol3, respectively.

```
In[45]:= numsol1 =
    NDSolve[{\mp@subsup{x}{}{\prime\prime}[t]+(\frac{1}{3}\mp@subsup{\mathbf{x}}{}{\prime}[t\mp@subsup{]}{}{2}-1)\mp@subsup{\mathbf{x}}{}{\prime}[t]+\mathbf{x}[t]==0,
    x[0] == 1, x'[0] == 0}, x[t],{t,0, 15}]
Out[45]={{x[t]-> InterpolatingFunction[{{0., 15.}},
    <>][t]}}
In[46]:= numsol2 =
    NDSolve [{x''[t] + (\frac{1}{3}\mp@subsup{x}{}{\prime}[t\mp@subsup{]}{}{2}-1) \mp@subsup{x}{}{\prime}[t]+x[t]==0,
    x[0] == 0.1, x'[0] == 0}, x[t],{t,0,15}]
```

Out $[46]=\{\{x[t] \rightarrow$ InterpolatingFunction $[\{\{0 ., 15\}$.$\} ,$
<>] [t]\}\}
In [47]:= numsol3 =
NDSolve $\left[\left\{x^{\prime \prime}[t]+\left(\frac{1}{3} x^{\prime}[t]^{2}-1\right) x^{\prime}[t]+x[t]==0\right.\right.$,
$\left.\left.\mathbf{x}[0]==0, \mathbf{x}^{\prime}[0]==1.9\right\}, \mathbf{x}[t],\{t, 0,15\}\right]$
Out [47] $=\{\{x[t] \rightarrow$ InterpolatingFunction $[\{\{0 ., 15\}$.$\} ,$
<>] [t] $\}\}$

Figure 1-9 Plot of three solutions of Rayleigh's equation, (1.6)
All three solutions are graphed together on the interval [0,15] with Plot in Figure 1-9. Notice that the solution to (c) appears to be periodic.

```
In[48]:= Plot[Evaluate[x[t]/
    .{numsol1, numsol2, numsol3}],
    {t, 0, 15}, PlotStyle }->\mathrm{ {GrayLevel[0],
        GrayLevel[0.3], GrayLevel[0.6]}]
```


I. 4 Direction Fields

The geometrical interpretation of solutions to first-order differential equations of the form $d y / d x=f(x, y)$ is important to the basic understanding of problems of this type. Suppose that a solution to this equation is a function $y=\psi(x)$, so a solution is the graph of the function ψ. Therefore, if (x, y) is a point on this graph, the slope of the tangent line is given by $f(x, y)$. A set of short line segments representing the tangent lines can be constructed for a large number of points. This collection of line segments is known as the direction field of the differential equation and provides a great deal of information concerning the behavior of the family of solutions. This is due to the fact that by determining the slope of the tangent line for a large number of points in the plane, the shape of the graphs of the solutions can be seen without actually having a formula for them. The direction field for a differential equation provides a geometric interpretation about the behavior of the solutions of the equation. Throughout this text, we will frequently display graphs of various solutions to a differential equation along with a graph of the direction field. Direction fields are generated with the PlotVectorField command, which is
contained in the PlotField package. After loading the PlotField package, which is contained in the Graphics folder (or directory) the command

$$
\text { PlotVectorField }[\{1, f[x, y]\},\{x, x 0, x 1\},\{y, y 0, y 1\}]
$$

graphs the direction field associated with $d y / d x=f(x, y)$ for $x_{0} \leq x \leq x_{1}$ and $y_{0} \leq y \leq$ y_{1}. We use the Help Browser to obtain information abut the commands contained in the PlotField package in the same way that we use the Help Browser to obtain information about built-in Mathematica functions.

\section*{- Graphics `PlotField`}

Anything that assigns a magnitude and direction at each point gives a vector field. Examples include the electromagnetic field and the velocity field of a fluid. Any ordinary differential equation can be used to define a vector field. These vector fields can be visualized by drawing arrows representing the vectors. The direction of the arrow is equal to the direction of the vector field at its base point. The magnitude of the arrow is proportional to the magnitude of the vector field.

This package plots two - dimensional vector fields. For vector field plots in three dimensions, use the package Graphics`PlotField3D`

```
PlotVectorField [ \(\left\{f_{x}, f_{y}\right\}\), \(\{x\), plot the vector field given by the
    \(\left.x \min , x \max \},\left\{y, \min ^{2}, y_{\max }\right\}\right]\) vector-valued function in the range specified
        PlotGradientField \([f,\{x, \quad\) plot the gradient vector field of the scalar-valued function \(f\)
        xmin, xmax \(\},\{y, y m i n, ~ y m a x\}]\)
    PlotHamilt onianField \([f,\{x, \quad\) plot the Hamiltonian vector field of the scalar-valued function \(f\)
    min, max \(\},\{y, \min , \max \}]\)
```

Flotting vector fields in two dimensions.

- This loads the package.
$\ln [1]:=\ll$ Graphics * PlotField* $]$
- The two components of this vector field are eiven by $\sin (x)$ and $\cos (v)$. \mid |

EXAMPLE 1.4.1: Graph the direction field associated with the differential equation $d y / d x=e^{-x}-2 y$.

Figure 1-10 Direction field associated with $d y / d x=e^{-x}-2 y$

SOLUTION: Entering

$$
\begin{aligned}
& \text { In }[49]:=\ll \text { Graphics 'PlotField' } \\
& \text { In }[50]:=\mathrm{p} 1= \text { PlotVectorField }[\{1, \operatorname{Exp}[-\mathbf{x}]-2 y\}, \\
&\left\{\mathbf{x},-\frac{1}{2}, 1\right\},\left\{y,-\frac{3}{4}, \frac{3}{4}\right\}, \text { Axes } \rightarrow \text { Automatic, } \\
& \text { ScaleFunction } \rightarrow(1 \&), \text { AxesOrigin } \rightarrow\{0,0\}, \\
&\text { HeadLength }>0]
\end{aligned}
$$

first loads the PlotField package and then graphs the direction field associated with the equation $d y / d x=e^{-x}-2 y$ in Figure 1-10 for $-1 / 2 \leq$ $x \leq 1$ and $-3 / 4 \leq y \leq 3 / 4$, naming the resulting graphics object p 1 . The option Axes->Automatic specifies that axes are to be placed on the resulting graph, AxesOrigin->\{0,0\} specifies that the axes intersect at the point $(0,0)$, the option ScaleFunction $->(1 \&)$ specifies that the magnitude of each line segment be 1 (this makes them easier to see in the resulting graph), and the option HeadLength->0 instructs Mathematica to not place arrows on the line segments, which would result in vectors. For a complete list of the options and their default values associated with this command, enter Options [PlotVectorField].

A general solution of this first-order linear equation is found to be $y=e^{-x}+C e^{-2 x}$ with DSOlve.

```
In [51] : = Clear[ \(\mathbf{x}, \mathrm{y}, \operatorname{diffeq]}\)
    gensol \(=\operatorname{DSolve}\left[y^{\prime}[\mathbf{x}]==\operatorname{Exp}[-x]-2 y[x], y[x], x\right]\)
Out [51] \(=\left\{\left\{y[x] \rightarrow e^{-x}+e^{-2 x} C[1]\right\}\right\}\)
```

first clears all prior definitions of x, y, and gensol, if any, and then solves the equation $d y / d x=e^{-x}-2 y$ for $y=y(x)$, naming the resulting output gensol. In the DSolve command, the first argument ($\mathrm{y}^{\prime}[\mathrm{x}]==$ $\left.\mathrm{E}^{-\mathrm{x}}-2 \mathrm{y}[\mathrm{x}]\right)$ represents the equation $d y / d x=e^{-x}-2 y$, the second argument ($\mathrm{y}[\mathrm{x}]$) instructs Mathematica that we are solving for $y=y(x)$, and the third argument (x) instructs Mathematica that the independent variable is x. Note that gensol is a nested list. The first part of gensol, extracted with gensol [[1]] , is the list $\left\{y(x) \rightarrow e^{-x}+e^{-2 x} C[1]\right\}$; the first part of this list, extracted with gensol [[1, 1]], is the list $\mathrm{y}(\mathrm{x}) \rightarrow$ $\mathrm{e}^{-\mathrm{x}}+\mathrm{e}^{-2 \mathrm{x}} \mathrm{C}[1]$; and the first part of this list, extracted with gensol $[[1,1,1]]$, is $y(x)$ while the second part of this list (which represents the formula for the solution), extracted with gensol [[1, 1, 2]], is $y=e^{-x}+C e^{-2 x}$. Of course, if you are using Version 5.0 (or later), you can extract these results by selecting, copying, and pasting the results to the desired location in your Mathematica notebook.

```
In[52]:= gensol\llbracket1, 1, 2\rrbracket
Out [52]= }\mp@subsup{\mathbb{e}}{}{-\textrm{x}}+\mp@subsup{\mathbb{e}}{}{-2x}\textrm{C}[1
```

Note that in the formula for the solution the built-in symbol C is used to denote arbitrary constants. Here C [1] represents C in the solution $y=e^{-x}+C e^{-2 x}$.

To graph the solution for various values of the arbitrary constant, we use Table and ReplaceAll (/.) to replace C[1] in the formula for the general solution obtained in gensol by i for $i=-2,-1.75,-1.50$, $\ldots, 1.50,1.75$, and 2 , naming the resulting set of functions toplot. The list toplot is not displayed because a semi-colon (;) is included at the end of the Table command.

```
In[53]:= toplot = Table[(gensol[1, 1, 2\rrbracket)/.C[1] ->i,
    {i, -2, 2, 0.25}];
```

We then use Plot to graph the set of functions toplot for $-1 / 2 \leq x \leq 1$ in Figure 1-11, naming the resulting graphics object p2. The option PlotRange->\{-3/4,3/4\} instructs Mathematica that the range of able to find a general solution of first-order linear equations like this with DSolve.

Figure 1-11 Various solutions of $d y / d x=e^{-x}-2 y$
y-values displayed corresponds to the interval $[-3 / 4,3 / 4]$, AspectRatio->1 specifies that the ratio of the lengths of x and y-axes in the resulting graph is to be 1 , AxesStyle->GrayLevel [.5] specifies that the axes are to be shaded a light gray,

```
PlotStyle->{{GrayLevel[.4],Thickness[0.01]}}
```

specifies that the graphs are to be displayed in a slightly darker shade of gray and that the thickness of each graph be $1 / 100$ of the width of the total graph, and AxesLabel $->\{\mathrm{x}, \mathrm{y}\}$ specifies that the x and y-axes are to be labeled by x and y, respectively.

$$
\begin{aligned}
\text { In }[54]:=\mathrm{p} 2= & \text { Plot[Evaluate }[\text { toplot }],\left\{\mathbf{x},-\frac{1}{2}, 1\right\}, \\
& \text { PlotRange } \rightarrow\left\{-\frac{3}{4}, \frac{3}{4}\right\}, \text { AspectRatio } \rightarrow 1, \\
& \text { AxesStyle } \rightarrow \text { GrayLevel }[0.5], \\
& \text { PlotStyle } \rightarrow\{\{\text { GrayLevel }[0.4], \\
& \text { Thickness }[0.01]\}\}, \\
& \text { AxesLabel } \rightarrow\{\mathbf{x}, \mathrm{y}\}]
\end{aligned}
$$

Notice that we can predict the behavior of the solutions of this equation by observing the direction field, as we confirm with the following

Figure 1-12 Direction field associated with $d y / d x=e^{-x}-2 y$ together with plots of several solutions

Show command in Figure 1-12. This is the purpose of direction fields: most differential equations cannot be solved by the elementary methods covered in an introductory text on differential equations.

```
In[55]:= Show[p2,p1]
```

Mathematica allows us to graph solutions to equations and associated direction fields that would be nearly impossible by traditional methods.

EXAMPLE 1.4.2: Graph the direction field associated with the differential equation

$$
\frac{d y}{d x}=\frac{\cos y-y \cos x}{x \sin y+\sin x-1} .
$$

SOLUTION: As in the previous example, we use PlotVectorField to graph the direction field associated with the equation, in this case for

If you have already loaded the PlotField package during your current Mathematica session and have not quit Mathematica, you need not reload the PlotField package.

Figure 1-13 Direction field associated with $d y / d x=(\cos y-y \cos x) /(x \sin y+\sin x-1)$
$0 \leq x \leq 4 \pi$ and $0 \leq y \leq 4 \pi$ in Figure 1-13, naming the resulting graphics object p1.

$$
\begin{aligned}
& \text { In [56]:= << Graphics'PlotField' } \\
& \operatorname{In}[57]:=\mathrm{p} 1=\operatorname{PlotVectorField}\left[\left\{1, \frac{\operatorname{Cos}[\mathrm{y}]-\mathrm{y} \operatorname{Cos}[\mathrm{x}]}{\mathrm{x} \operatorname{Sin}[\mathrm{Si}]+\operatorname{Sin}[\mathrm{x}]-1}\right\}\right. \text {, } \\
& \{x, 0,4 \pi\},\{y, 0,4 \pi\} \text {, Frame } \rightarrow \text { False, } \\
& \text { Axes } \rightarrow \text { Automatic, AxesOrigin } \rightarrow\{0,0\} \text {, } \\
& \text { Axesstyle } \rightarrow \text { GrayLevel[0.5], } \\
& \text { ScaleFunction } \rightarrow \text { (0.5\&), } \\
& \text { PlotPoints- > 30, HeadLength- > 0] }
\end{aligned}
$$

In this case, we see that we are able to find a general solution of the equation with DSolve if we rewrite the equation as $(x \sin y+\sin x-1) y^{\prime}$ $=\cos y-y \cos x$.

```
In [58]:= Clear[x, y]
    gensol =
    DSolve[(x Sin[y[x]]+Sin[x]-1) y' [x] ==
        Cos[y[x]]-y[x] Cos[x],y[x],x]
```

Solve : : tdep : The equations appear to involve the variables to be solved for in an essentially non-algebraic way.

$$
\begin{aligned}
\text { Out }[58]= & \text { Solve }[-x \operatorname{Cos}[y[x]]-y[x] \\
& +\operatorname{Sin}[x] y[x]==C[1], y[x]]
\end{aligned}
$$

The result indicates that a general solution is $y \sin x-x \cos y-y=C$.
To graph solutions for various values of C, we note that the graph of the equation $y \sin x-x \cos y-y=C$ for various values of C is the same as the graph of the level curves of $z=f(x, y)=y \sin x-x \cos y-y$ for various values of z.

```
In[59]:= toplot = -x Cos[y[x]]-y[x]
    +Sin[x]y[x]/. y[x]->y
Out[59]= - y - x Cos[y] + y Sin[x]
```

We now generate several level curves of toplot for $0 \leq x \leq 4 \pi$ and $0 \leq y \leq 4 \pi$ with ContourPlot in Figure 1-14, naming the resulting graphics object cpl.

```
In[60]:= cp1 = ContourPlot[toplot, {x, 0, 4\pi}, {y, 0, 4\pi},
    ContourShading }->\mathrm{ False, Frame }->\mathrm{ False,
    PlotPoints }->\mathrm{ 150, Axes }->\mathrm{ Automatic,
    AxesOrigin }->{0,0},AxesStyle ->
    GrayLevel[0.5], Contours }->20\mathrm{ ,
    ContourStyle }->\mathrm{ {{GrayLevel[0.4],
    Thickness[0.01]}}]
```

Finally, we use Show to display cp1 and p1 together in Figure 1-15. From these graphs we see that the behavior of the solution depends on the initial condition. Some solutions follow a closed path while others do not.

```
In[61]:= Show[cp1,p1]
```

Mathematica is particularly useful in graphing the direction field associated with a system of equations. After the PlotField package has been loaded by entering <<Graphics'PlotField', the command

```
PlotVectorField[{f[x,y],g[x,y]},{x,x0,x1},{y,y0,y1}]
```

graphs the direction field associated with the system $\left\{\begin{array}{l}x^{\prime}=f(x, y) \\ y^{\prime}=g(x, y)\end{array}\right.$ for $x_{0} \leq x \leq x_{1}$ and $y_{0} \leq y \leq y_{1}$.

Figure 1-14 Various solutions of $d y / d x=(\cos y-y \cos x) /(x \sin y+\sin x-1)$

Figure 1-15 Direction field and various solutions of $d y / d x=(\cos y-y \cos x)$ $/(x \sin y+\sin x-1)$

EXAMPLE 1.4.3 (Competing Species): Under certain assumptions the system of equations

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=x\left(a-b_{1} x-b_{2} y\right) \tag{1.7}\\
\frac{d y}{d t}=y\left(c-d_{1} x-d_{2} y\right)
\end{array}\right.
$$

where $a, b_{1}, b_{2}, c, d_{1}$, and d_{2} represent positive constants, can be used to model the population of two species, represented by $x(t)$ and $y(t)$, competing for a common food supply. Graph the direction field associated with the system if (a) $a=1, b_{1}=2, b_{2}=1, c=1, d_{1}=0.75$, and $d_{2}=2$; and (b) $a=1, b_{1}=1, b_{2}=1, c=0.67, d_{1}=0.75$, and $d_{2}=1$.

SOLUTION: After identifying $f(x, y)=x\left(a-b_{1} x-b_{2} y\right)$ and $g(x, y)=$ $y\left(c-d_{1} x-d_{2} y\right)$, we define f and g.

```
In[62]:= Clear[g, f, x, y]
    f[\mp@subsup{x}{-}{\prime},\mp@subsup{y}{-}{\prime}]=x (a-b1x - b2y);
    g[\mp@subsup{x}{-}{\prime},\mp@subsup{Y}{-}{\prime}]=y(c-d1x - d2y);
```

Then, for (a) we define $a=1, b_{1}=2, b_{2}=1, c=1, d_{1}=0.75$, and $d_{2}=$ 2, load the PlotField package, and graph the direction field associated with the system for $0 \leq x \leq 1$ and $0 \leq y \leq 1$ with PlotVectorField in Figure 1-16.

```
In[63]:= a = 1; b1 = 2; b2 = 1; c = 1; d1 = 0.75; d2 = 2;
In[64]:= << Graphics'PlotField`
    PlotVectorField[{f[x, y], g[x, y]}, {x, 0, 1},
    {y, 0, 1}, Frame }->\mathrm{ False, Axes }->\mathrm{ Automatic,
    AxesLabel }->{x,y},AxesOrigin ->{0, 0}
    AxesStyle }->\mathrm{ GrayLevel[0.5],
    ScaleFunction }->\mathrm{ (1&)]
```

In this case, we see that both the species appear to approach some equilibrium population. In fact, later we will see that this equilibrium

Remember that if you have previously loaded the PlotField package during your current Mathematica session, you do not need to reload the PlotField package.

Figure 1-16 Direction field associated with the competing species system using the parameter values in (a)
population is obtained by solving the system of equations
$\left\{\begin{array}{l}a-b_{1} x-b_{2} y=0 \\ c-d_{1} x-d_{2} y=0\end{array} \quad\right.$ for x and y. For (b), we redefine $a=1, b_{1}=1, b_{2}=1$,
$c=0.67, d_{1}=0.75$, and $d_{2}=1$ and then re-enter the PlotVectorField command. See Figure 1-17.

```
In[65]:= a = 1; b1 = 1; b2 = 1; c = 0.67; d1 = 0.75; d2 = 1;
In [66]:= PlotVectorField[{f[x,y],g[x,y]},{x, 0, 1},
    {y,0,1}, Frame }->\mathrm{ False, Axes }->\mathrm{ Automatic,
    AxesLabel }->{x,y},AxesOrigin ->{0, 0}
    AxesStyle }->\mathrm{ GrayLevel[0.5],
    ScaleFunction }->\mathrm{ (1&)]
```

In this case, we see that it appears as though the species with population given by $y(t)$ eventually dies out while the species with population given by $x(t)$ eventually dominates and approaches some equilibrium population. Later, we will see that this is true and the equilibrium population of the species with population given by $x(t)$ will be found by

Figure 1-17 Direction field associated with the competing species system using the parameter values in (b)
computing the limit as $t \rightarrow \infty$ of the solution to the differential equation $d x / d t=a x-b_{1} x^{2}$.

Often, we can generate the direction field of a higher-order equation by rewriting it as a system of first-order equations.

EXAMPLE 1.4.4 (Rayleigh's Equation): Write Rayleigh's equation,

 (1.6), as a system of two first-order equations. Graph the direction field associated with the resulting system on the rectangle $[-4,4] \times[-4,4]$.SOLUTION: We write Rayleigh's equation as a system by letting $y=$ x^{\prime}. Then Rayleigh's equation, (1.6), becomes

$$
y^{\prime}=x^{\prime \prime}=-\left[\frac{1}{3}\left(x^{\prime}\right)^{2}-1\right] x^{\prime}-x=-\left(\frac{1}{3} y^{2}-1\right) y-x
$$

Figure 1-18 Direction field associated with the Rayleigh system
so Rayleigh's equation is equivalent to the system

$$
\left\{\begin{array}{l}
x^{\prime}=y \\
y^{\prime}=-\left(\frac{1}{3} y^{2}-1\right) y-x
\end{array}\right.
$$

The direction field associated with this system is then graphed with PlotVectorField in Figure 1-18.

```
In[67]:= << Graphics'PlotField`
    pvf = PlotVectorField[{y, -(1/3y^2-1)y-x},
        {x, -4, 4}, {y, -4, 4}, Frame- > False,
    Axes- > Automatic, AxesOrigin- > {0, 0},
    ScaleFunction- > (1&), PlotPoints- > 25]
```

In the direction field, we see that solutions appear to tend to a closed curve, C. We can accurately approximate C. First, we use NDSolve to approximate the solution to the equation if (a) $x(0)=1, y(0)=0$; (b) $x(0)=0.1, y(0)=0$; (c) $x(0)=0, y(0)=1.9$; and (d) $x(0)=-4, y(0)=4$.

```
In[68]:= numsol1 =
    NDSolve[{\mp@subsup{x}{}{\prime}[t] == y[t],
        y'[t] == - (1/3y[t]^2-1) y[t] - x[t],
        x[0] == 1, y[0] == 0},{x[t],y[t]},
        {t, 0, 15}]
```

Out [68] $=\{\{x[t] \rightarrow$ InterpolatingFunction $[\{\{0 ., 15\}\},$.
$<>][t], y[t] \rightarrow$ InterpolatingFunction
$[\{\{0 ., 15\}\},.<>][t]\}\}$
In [69]:= numsol2 =
NDSolve $\left[\left\{x^{\prime}[t]==y[t]\right.\right.$,
$y^{\prime}[t]==-\left(1 / 3 y[t]^{\wedge} 2-1\right) y[t]-x[t]$,
$\mathbf{x}[0]==0.1, y[0]==0\},\{x[t], y[t]\}$,
$\{t, 0,15\}]$
Out [69] $=\{\{x[t] \rightarrow$ InterpolatingFunction $[\{\{0 ., 15\}\},$.
<>] [t],y[t] \rightarrow InterpolatingFunction
$[\{\{0 ., 15\}\},.<>][t]\}\}$
In [70]:= numsol3 =
NDSolve [$\left\{x^{\prime}[t]==y[t]\right.$,
$y^{\prime}[t]==-\left(1 / 3 y[t]^{\wedge} 2-1\right) y[t]-x[t]$,
$x[0]==0, y[0]==1.9\}$,
$\{x[t], y[t]\},\{t, 0,15\}]$
Out [70] $=\{\{x[t] \rightarrow$ InterpolatingFunction $[\{\{0 ., 15\}\},$.
<>] [t],y[t] \rightarrow InterpolatingFunction
$[\{\{0 ., 15\}\},.<>][t]\}\}$
In [71]:= numsol4 =
NDSolve [$\left\{x^{\prime}[t]==y[t]\right.$,
$y^{\prime}[t]==-\left(1 / 3 y[t]^{\wedge} 2-1\right) y[t]-x[t]$,
$x[0]==-4, y[0]==4\}$,
$\{x[t], y[t]\},\{t, 0,15\}]$
Out [71] $=\{\{x[t] \rightarrow$ InterpolatingFunction $[\{\{0 ., 15\}\},$.
<>] [t],y[t] \rightarrow InterpolatingFunction
$[\{\{0 ., 15\}\},.<>][t]\}\}$

We then graph all four solutions for $0 \leq t \leq 15$ with ParametricPlot and show these graphs together with the direction field in Figure 1-19.

Figure 1-19 Solutions of Rayleigh's equation tend to a limit cycle

In the graph, we see that the graph of solution (c) corresponds to C; the graphs of the other solutions all tend to C, which is called a limit cycle.

```
In[72]:= parplot = ParametricPlot[
    Evaluate[{x[t], y[t]}/.
            {numsol1, numsol2, numsol3, numsol4}],
    {t, 0, 15}, Compiled- > False,
    PlotStyle- > {{GrayLevel[0.5],
    Thickness[0.01]}},
    DisplayFunction- > Identity];
In[73]:= Show[pvf, parplot]
```


First-Order Ordinary Differential Equations

We will devote a considerable amount of time in this text to developing explicit, implicit, numerical, and graphical solutions of differential equations. In this chapter we introduce frequently encountered forms of first-order ordinary differential equations and methods to construct explicit, numerical, and graphical solutions of them. Several of the equations along with the methods of solution discussed here will be used in subsequent chapters of the text.

2.I Theory of First-Order Equations: A Brief Discussion

In order to understand the types of first-order initial-value problems that have a unique solution, the following theorem is stated.

Theorem 1 (Existence and Uniqueness). Consider the initial-value problem

$$
\left\{\begin{array}{l}
d y / d x=f(x, y) \tag{2.1}\\
y\left(x_{0}\right)=y_{0} .
\end{array}\right.
$$

If f and $\partial f / \partial y$ are continuous functions on the rectangular region R,

$$
R=\{(x, y) \mid a<x<b, c<y<d\},
$$

containing the point $\left(x_{0}, y_{0}\right)$, there exists an interval $\left|x-x_{0}\right|<h$ centered at x_{0} on which there exists one and only one solution to the differential equation that satisfies the initial condition.

Often, we can use the command

$$
\text { DSolve }\left[\left\{y^{\prime}[x]==f[x, y[x]], y[x 0]==y 0\right\}, y[x], x\right]
$$

to solve the initial-value problem (2.1);

$$
\text { DSolve }\left[y^{\prime}[x]==f[x, y[x]], y[x], x\right]
$$

attempts to find a general solution of $y^{\prime}=f(x, y)$.

EXAMPLE 2.1.1: Solve the initial-value problem

$$
\left\{\begin{array}{l}
d y / d x=x / y \\
y(0)=0 .
\end{array}\right.
$$

Does this result contradict the Existence and Uniqueness Theorem?

SOLUTION: This equation is solved with DSolve to determine the family of solutions $y^{2}-x^{2}=C$.

$$
\begin{aligned}
\text { In }[74]:= & \text { Clear }[\mathbf{x}, \mathrm{y}] \\
& \text { DSolve }\left[\mathrm{y}^{\prime}[\mathbf{x}]==\frac{\mathbf{x}}{\mathrm{y}[\mathbf{x}]}, \mathbf{y}[\mathbf{x}], \mathbf{x}\right] \\
\text { Out }[74]= & \left\{\left\{\mathrm{y}[\mathrm{x}] \rightarrow-\sqrt{\mathrm{x}^{2}+2 \mathrm{C}[1]}\right\},\left\{\mathrm{y}[\mathrm{x}] \rightarrow \sqrt{\mathrm{x}^{2}+2 \mathrm{C}[1]}\right\}\right\}
\end{aligned}
$$

We note that the graph of $y^{2}-x^{2}=C$ for various values of C is the same as the graph of the level curves of $f(x, y)=y^{2}-x^{2}$. Members of this family corresponding to $C=-40,-38, \ldots, 38,40$ are graphed with ContourPlot in Figure 2-1.

```
In[75]:= cvals = Table[i, {i, -40, 40, 2}];
In[76]:= ContourPlot[ [y' - x', {x,-6, 6}, {y,-6, 6},
    PlotPoints }->120\mathrm{ , Contours- > cvals,
    ContourShading }->\mathrm{ False]
```

Application of the initial condition yields $0^{2}-0^{2}=C$, so $C=0$. Therefore, solutions that pass through $(0,0)$, satisfy $y^{2}-x^{2}=0$, so there

Figure 2-1 Plot of $f(x, y)=C$ for various values of C
are two solutions, $y=x$ and $y=-x$, that satisfy the differential equation and the initial condition. Although more than one solution satisfies this initial-value problem, the Existence and Uniqueness Theorem is not contradicted because the function $f(x, y)=x / y$ is not continuous at the point $(0,0)$; the requirements of the theorem are not met.

EXAMPLE 2.1.2: Verify that the initial-value problem $\{d y / d x=y, y(0)$ $=1\}$ has a unique solution.

SOLUTION: In this case, $f(x, y)=y, x_{0}=0$, and $y_{0}=1$. Hence, both f and $\partial f / \partial y=1$ are continuous on all rectangular regions containing the point $\left(x_{0}, y_{0}\right)=(0,1)$. Therefore by the Existence and Uniqueness Theorem, there exists a unique solution to the differential equation that satisfies the initial condition $y(0)=1$.

We can verify this by solving the initial-value problem. The unique solution is $y=e^{x}$, which is computed with DSolve and then graphed

Figure 2-2 Plot of $y=e^{x}$
with Plot in Figure 2-2. Notice that the graph passes through the point $(0,1)$, as required by the initial condition.

```
In[77]:= Clear[x, y, sol]
    sol = DSolve [{y'[x] == y[x],y[0] == 1}, y[x],x]
Out [77]= {{y[x] -> \mathbb{ex}}}
In[78]:= Plot[y[x]/. sol, {x, -1, 1}]
```

EXAMPLE 2.1.3: Show that the initial-value problem

$$
\left\{\begin{array}{l}
x \frac{d y}{d x}-y=x^{2} \cos x \\
y(0)=0
\end{array}\right.
$$

has infinitely many solutions.

SOLUTION: Writing $x y^{\prime}-y=x^{2} \cos x$ in the form $y^{\prime}=f(x, y)$ results in

$$
\frac{d y}{d x}=\frac{x^{2} \cos x+y}{x}
$$

and because $f(x, y)=\left(x^{2} \cos x+y\right) / x$ is not continuous on an interval containing $x=0$, the Existence and Uniqueness Theorem does not guarantee the existence or uniqueness of a solution. In fact, using DSolve we see that a general solution of the equation is $y=x \sin x+C x$ and for every value of $C, y(0)=0$.

Figure 2-3 Every solution satisfies $y(0)=0$

```
In[79]:= Clear[y]
    sol = DSolve[xy'[x]-y[x] == x^2 Cos[x],y[x], x]
Out[79]= {{y[x]->xC[1] +x Sin[x]}}
```

We confirm this graphically by graphing several solutions. First, we use Table to define toplot to be a set of functions obtained by replacing the arbitrary constant in $y(x)$ by $-4,-3, \ldots, 3,4$.

```
In[80]:= toplot = Table[sol[[1, 1, 2]]/.C[1]- > i,
    {i,-4,4}]
Out[80]={-4x+x Sin[x], -3 x + x Sin[x], -2 x + x Sin[x],
    -x+x Sin[x], x Sin[x],x+x Sin[x],
    2x+x Sin[x], 3x+x Sin[x], 4x+x Sin[x]}
```

These functions are then graphed with Plot in Figure 2-3.

```
In[81]:= Plot[Evaluate[toplot], {x, -10, 10},
    PlotRange- > {-10, 10}, AspectRatio- > 1]
```


2.2 Separation of Variables

Definition 5 (Separable Differential Equation). A differential equation that can be written in the form $g(y) y^{\prime}=f(x)$ or $g(y) d y=f(x) d x$ is called a separable differential equation.

Separable differential equations are solved by collecting all the terms involving y on one side of the equation, all the terms involving x on the other side of the equation, and integrating:

$$
g(y) d y=f(x) d x \Longrightarrow \int g(y) d y=\int f(x) d x+C
$$

where C is a constant.

EXAMPLE 2.2.1: Show that the equation

$$
\frac{d y}{d x}=\frac{2 \sqrt{y}-2 y}{x}
$$

is separable, and solve by separation of variables.

SOLUTION: The equation $y^{\prime}=(2 \sqrt{y}-2 y) / x$ is separable because it can be written in the form

$$
\frac{1}{2 \sqrt{y}-2 y} d y=\frac{1}{x} d x .
$$

To solve the equation, we integrate both sides and simplify. Observe that we can write this equation as

$$
\int \frac{1}{2 \sqrt{y}} \frac{1}{1-\sqrt{y}} d y=\int \frac{1}{x} d x+C .
$$

To evaluate the integral on the left-hand side, let $u=1-\sqrt{y}$ so $-d u=$ $\frac{1}{2 \sqrt{y}} d y$. We then obtain

$$
-\int \frac{1}{u} d u=\int \frac{1}{x} d x+C_{1}
$$

so that $-\ln |u|=\ln |x|+C_{1}$. Recall that $-\ln |u|=\ln |u|^{-1}$, so we have

$$
\ln \frac{1}{|u|}=\ln |x|+C_{1} .
$$

Using Mathematica, we have

$$
\begin{aligned}
& \text { In [82] }:=\int \frac{1}{2 \sqrt{\mathrm{Y}}-2 \mathrm{y}} d \mathrm{y} \\
& \text { Out [82] }=\frac{2(-1+\sqrt{\bar{Y}}) \sqrt{\mathrm{Y}} \log [-1+\sqrt{\mathrm{Y}}]}{2 \sqrt{\mathrm{Y}}-2 \mathrm{Y}}
\end{aligned}
$$

which we then simplify with Simplify.

$$
\begin{aligned}
& \operatorname{In}[83]:=\operatorname{Simplify}\left[\frac{2(-1+\sqrt{\mathrm{y}}) \sqrt{\mathrm{y}} \log [-1+\sqrt{\mathrm{y}}]}{2 \sqrt{\mathrm{y}}-2 \mathrm{y}}\right] \\
& \text { Out }[83]=-\log [-1+\sqrt{\mathrm{y}}]
\end{aligned}
$$

The integral on the right-hand side of the equation is computed in the same way.

$$
\begin{aligned}
& \text { In }[84]:=\int \frac{1}{\mathbf{x}} \mathrm{~d} \mathbf{x} \\
& \text { Out }[84]=\log [\mathrm{x}]
\end{aligned}
$$

Simplification yields

$$
\frac{1}{|u|}=e^{\ln |x|+C_{1}}=C_{2}|x|
$$

where $C_{2}=e^{C_{1}}$. Resubstituting we find that

$$
\frac{1}{|1-\sqrt{y}|}=C_{2}|x| \quad \text { or } \quad x=\frac{C_{3}}{1-\sqrt{y}} .
$$

Solving for y shows us that

$$
\begin{aligned}
\sqrt{y}-1 & =\frac{C}{x} \\
\sqrt{y} & =\frac{x+C}{x} \\
y & =\left(\frac{x+C}{x}\right)^{2}
\end{aligned}
$$

is a general solution of the equation $y^{\prime}=(2 \sqrt{y}-2 y) / x$. We obtain the same results with Mathematica,

$$
\begin{aligned}
\text { In }[85]:= & \text { Solve }[-\log [-1+\sqrt{y}]==\log [\mathbf{x}] \\
& + \text { cons, } y] / / \operatorname{Simplify} \\
\text { Out }[85]= & \left\{\left\{y \rightarrow \frac{e^{-2 \text { cons }}\left(1+e^{\operatorname{cons}} x\right)^{2}}{x^{2}}\right\}\right\}
\end{aligned}
$$

where $E^{- \text {cons }}$ represents the arbitrary constant in the solution. We obtain an equivalent result with DSolve. Entering

Note that Log [x] represents the natural logarithm function, $y=\ln x$.

We use cons to represent the arbitrary constant C to avoid ambiguity with the built-in symbol C.

```
In [86]: \(=\) Clear \([\mathbf{x}, \mathrm{y}\) ]
```

$$
\begin{aligned}
& \text { gensol }=\text { DSolve }\left[y^{\prime}[x]==\frac{2 \sqrt{y[x]}-2 y[x]}{x},\right. \\
& y[x], x]
\end{aligned}
$$

Solve : : ifun :
Inverse functions are being used by Solve, so some solutions may not be found.

$$
\text { Out }[86]=\left\{\left\{y[x] \rightarrow \frac{\left(e^{\frac{\mathrm{C}[1]}{2}}+x\right)^{2}}{x^{2}}\right\}\right\}
$$

finds a general solution of the equation which is equivalent to the one we obtained by hand and names the result gensol. The formula for the solution, which is the second part of the first part of the first part of gensol, is extracted from gensol with gensol [$[1,1,2]$]. Alternatively, if you are using Version 5, you can select, copy, and paste the result to any location in the notebook.

$$
\begin{aligned}
& \text { In }[87]:=\text { gensol } \mathbb{1}, 1,2 \rrbracket / / \text { Simplify } \\
& \text { Out }[87]=\frac{\left(e^{\frac{c[1]}{2}}+x\right)^{2}}{x^{2}}
\end{aligned}
$$

To graph the solution for various values of C [1], which represents the arbitrary constant in the formula for the solution, we use Table together with ReplaceAll (/.) to generate a set of functions obtained by replacing $\mathrm{C}[1]$ in the formula for the solution by i for $i=-3,-2.50$, $\ldots, 2.50$, and 3 , naming the resulting set of functions toplot. We view an abbreviation of toplot with Short.

$$
\begin{aligned}
\text { In }[88]:= & \text { toplot }=\text { Table }[\text { gensol }[[1,1,2]] / . C[1] \rightarrow \\
& \text { i, }\{i,-3,3,1 / 2\}] ; \\
& \text { Short }[\text { toplot, } 4] \\
\text { Out }[88]= & \left\{\frac{\left(\frac{1}{e^{3 / 2}}+x\right)^{2}}{x^{2}}, \frac{\left(\frac{1}{e^{5 / 4}}+x\right)^{2}}{x^{2}}, \frac{\left(\frac{1}{e}+x\right)^{2}}{x^{2}}, \frac{\left(\frac{1}{e^{3 / 4}}+x\right)^{2}}{x^{2}},\right. \\
& \frac{\left(\frac{1}{\sqrt{e}}+x\right)^{2}}{x^{2}}, \frac{\left(\frac{1}{e^{1 / 4}}+x\right)^{2}}{x^{2}}, \frac{(1+x)^{2}}{x^{2}}, \frac{\left(e^{1 / 4}+x\right)^{2}}{x^{2}}, \\
& \frac{(\sqrt{e}+x)^{2}}{x^{2}}, \frac{\left(e^{3 / 4}+x\right)^{2}}{x^{2}}, \frac{(e+x)^{2}}{x^{2}}, \frac{\left(e^{5 / 4}+x\right)^{2}}{x^{2}}, \\
& \left.\frac{\left(e^{3 / 2}+x\right)^{2}}{x^{2}}\right\}
\end{aligned}
$$

Figure 2-4 Various solutions of $y^{\prime}=(2 \sqrt{y}-2 y) / x$

We then graph the set of functions toplot with Plot in Figure 2-4.

```
In[89]:= Plot[Evaluate[toplot], {x, -5, 5},
    PlotRange- > {0, 10}, AspectRatio }->\mathrm{ 1]
```

An initial-value problem involving a separable equation is solved through the following steps.

1. Find a general solution of the differential equation using separation of variables.
2. Use the initial condition to determine the unknown constant in the general solution.

EXAMPLE 2.2.2: Solve (a) $y \cos x d x-\left(1+y^{2}\right) d y=0$ and (b) the initialvalue problem $\left\{y \cos x d x-\left(1+y^{2}\right) d y=0, y(0)=1\right\}$.

SOLUTION: (a) Note that this equation can be rewritten as $d y / d x=$ $(y \cos x) /\left(1+y^{2}\right)$. We first use DSolve to solve the equation.

```
In [90]:= soll = DSolve [y'[x] == y[x] Cos[x]/(1+y[x]^2),
    y[x],x]
```

InverseFunction : : ifun :
Inverse functions are being used. Values may be lost for multivalued inverses.

Solve : : ifun :
Inverse functions are being used by Solve, so some solutions may not be found.

$$
\begin{aligned}
\text { Out }[90]=\{ & \left\{y[x] \rightarrow-\sqrt{\operatorname{ProductLog}\left[\mathbb{e}^{2 \mathrm{C}[1]+2 \sin [\mathrm{x}]}\right]}\right\}, \\
& \left.\left\{\mathrm{y}[\mathrm{x}] \rightarrow \sqrt{\operatorname{ProductLog}\left[\mathbb{e}^{2 \mathrm{C}[1]+2 \sin [\mathrm{x}]}\right]}\right\}\right\}
\end{aligned}
$$

In this case, we see that DSolve is able to solve the nonlinear equation, although the result contains the ProductLog function. Given z, the Product Log function returns the principal value of w that satisfies $z=$ $w e^{w}$. A more familiar form of the solution is found using traditional techniques. Separating and integrating gives us

$$
\begin{gathered}
\frac{1+y^{2}}{y} d y=\cos x d x \\
\left(\frac{1}{y}+y\right) d y=\cos x d x \\
\ln |y|+\frac{1}{2} y^{2}=\sin x+C
\end{gathered}
$$

We can also use Mathematica to implement the steps necessary to solve the equation by hand. To solve the equation, we must integrate both the left and right-hand sides which we do with Integrate, naming the resulting output 1 hs and rhs, respectively.

```
In[91]:= lhs = Integrate[(1+y^2)/y,y]
    rhs = Integrate[Cos[x], x]
Out[91]= 桨
Out[91]= Sin[x]
```

Therefore, a general solution to the equation is $\ln |y|+\frac{1}{2} y^{2}=\sin x+C$. We now use ContourPlot to graph $\ln |y|+\frac{1}{2} y^{2}=\sin x+C$ in Figure 2-5 for various values of C by observing that the level curves of $f(x, y)=$ $\ln |y|+\frac{1}{2} y^{2}-\sin x$ correspond to the graph of $\ln |y|+\frac{1}{2} y^{2}=\sin x+C$ for various values of C.

Figure 2-5 Plot of $\ln |y|+\frac{1}{2} y^{2}=\sin x+C$ for various values of C

```
In[92]:= ContourPlot[1hs - rhs, {x, 0, 10}, {y, 0, 10},
    Contours- > 30, PlotPoints- > 150,
    ContourShading- > False]
```

By substituting $y(0)=1$ into this equation, we find that $C=1 / 2$, so the implicit solution is given by $\ln |y|+\frac{1}{2} y^{2}=\sin x+1 / 2$.

$$
\begin{aligned}
\text { In }[93]:= & \text { Clear }[\mathbf{x}, \mathrm{y}, \mathrm{c}] \\
\text { In }[94]:= & \text { Solve[Evaluate }[\text { lhs }==\text { rhs }+\mathrm{c}] / . \\
& \{\mathbf{x}->0, \mathrm{y}->1\}, \mathrm{c}] \\
\text { Out }[94]= & \left\{\left\{\mathrm{c} \rightarrow \frac{1}{2}\right\}\right\}
\end{aligned}
$$

We can also use DSolve to solve the initial value problem as well. The solution is then graphed in Figure 2-6 with Plot.

```
In[95]:= sol2 = DSolve [{y'[x] == y[x] Cos[x]/(1+y[x]^2),
    y[0] == 1}, y[x],x]
Out [95]={{y[x]->\sqrt{}{\mathrm{ ProductLog[ [ (1+2 Sin[x] ] }}}}
In[96]:= Plot[y[x]/.sol2, {x, 0, 10}]
```


Figure 2-6 Plot of the solution that satisfies $y(0)=1$

EXAMPLE 2.2.3: Solve each of the following equations: (a) $y^{\prime}-y^{2} \sin t=$ 0 ; (b) $y^{\prime}=\alpha y\left(1-\frac{1}{K} y\right), K, \alpha>0$ constant.

SOLUTION: (a) The equation is separable:

$$
\begin{aligned}
\frac{1}{y^{2}} d y & =\sin t d t \\
\int \frac{1}{y^{2}} d y & =\int \sin t d t \\
-\frac{1}{y} & =-\cos t+C \\
y & =\frac{1}{\cos t+C}
\end{aligned}
$$

We check our result with DSolve.

$$
\begin{aligned}
& \operatorname{In}[97]:=\text { sola }=\operatorname{DSolve}\left[y^{\prime}[t]-y[t]^{\wedge} 2 \operatorname{Sin}[t]==0, y[t], t\right] \\
& \text { Out }[97]=\left\{\left\{y[t] \rightarrow \frac{1}{-C[1]+\operatorname{Cos}[t]}\right\}\right\}
\end{aligned}
$$

Observe that the result is given as a list. The formula for the solution is the second part of the first part of the first part of sola.

$$
\begin{aligned}
& \operatorname{In}[98]:=\operatorname{sola}[[1,1,2]] \\
& \text { Out }[98]=\frac{1}{-C[1]+\operatorname{Cos}[t]}
\end{aligned}
$$

We then graph the solution for various values of C with Plot in Figure 2-7.

Figure 2-7 Several solutions of $y^{\prime}-y^{2} \sin t=0$

$$
\begin{aligned}
\text { In }[99]:= & \text { toplota }=\text { Table }[\text { sola }[[1,1,2]] / . \\
& C[1]->-i,\{i, 2,10\}] \\
\text { Out }[99]=\{ & \frac{1}{2+\operatorname{Cos}[t]}, \frac{1}{3+\operatorname{Cos}[t]}, \frac{1}{4+\operatorname{Cos}[t]}, \frac{1}{5+\operatorname{Cos}[t]}, \\
& \frac{1}{6+\operatorname{Cos}[t]}, \frac{1}{7+\operatorname{Cos}[t]}, \frac{1}{8+\operatorname{Cos}[t]}, \frac{1}{9+\operatorname{Cos}[t]}, \\
& \left.\frac{1}{10+\operatorname{Cos}[t]}\right\}
\end{aligned}
$$

```
In[100]:= Plot[Evaluate[toplota], {t, 0, 2\pi},
    PlotRange- > {0, 1}, AxesOrigin- > {0, 0}]
```

(b) After separating variables, we use partial fractions to integrate.

$$
\begin{aligned}
y^{\prime} & =\alpha y\left(1-\frac{1}{K} y\right) \\
\frac{1}{\alpha y\left(1-\frac{1}{K} y\right)} d y & =d t \\
\frac{1}{\alpha}\left(\frac{1}{y}+\frac{1}{K-y}\right) & =d t \\
\frac{1}{\alpha}(\ln |y|-\ln |K-y|) & =C_{1}+t \\
\frac{y}{K-y} & =C e^{\alpha t} \\
y & =\frac{C K e^{\alpha t}}{C e^{\alpha t}+1}
\end{aligned}
$$

expression /. x->y replaces all occurrences of x in expression by y. Table [a [k], $\{\mathrm{k}, \mathrm{n}, \mathrm{m}\}$] generates the list a_{n}, a_{n+1}, \ldots, a_{m-1}, a_{m}.
To graph the list of functions list for $a \leq x \leq b$, enter Plot [Evaluate[list], $\{x, a, b\}]$.

We check the calculations with Mathematica. First, we use Apart to find the partial fraction decomposition of $\frac{1}{\alpha y\left(1-\frac{1}{K} y\right)}$.

$$
\begin{aligned}
& \text { In }[101]:=\mathbf{s} 1=\operatorname{Apart}[1 /(\alpha \mathrm{y}(1-1 / \mathrm{k} y)), \mathrm{y}] \\
& \text { Out }[101]=\frac{1}{\mathrm{Y} \alpha}-\frac{1}{(-\mathrm{k}+\mathrm{y}) \alpha}
\end{aligned}
$$

Then, we use Integrate to check the integration.

$$
\begin{aligned}
& \text { In }[102]:=\mathbf{s} 2=\text { Integrate }[s 1, \mathrm{y}] \\
& \text { Out }[102]=\frac{\log [\mathrm{y}]}{\alpha}-\frac{\log [-\mathrm{k}+\mathrm{y}]}{\alpha}
\end{aligned}
$$

Last, we use Solve to solve $\frac{1}{\alpha}(\ln |y|-\ln |K-y|)=c t$ for y.

$$
\begin{aligned}
& \text { In [103] }:=\text { Solve[s2 ==c } \mathrm{t}, \mathrm{y}] \\
& \text { Out [103] }=\left\{\left\{\mathrm{y} \rightarrow \frac{\mathrm{e}^{\mathrm{c}} \mathrm{t} \alpha \mathrm{k}}{-1+\mathrm{e}^{\mathrm{c}} \mathrm{t} \alpha}\right\}\right\}
\end{aligned}
$$

We can use DSolve to find a general solution of the equation

$$
\begin{aligned}
& \text { In }[104]:=\text { solb }=\operatorname{DSolve}\left[y^{\prime}[t]==\alpha y[t] \quad(1-1 / k y[t]),\right. \\
& \quad \mathrm{y}[t], \mathrm{t}] \\
& \text { Out }[104]=\left\{\left\{y[t] \rightarrow \frac{\mathrm{e}^{\mathrm{t}} \alpha \mathrm{k}}{\mathrm{e}^{\mathrm{t} \alpha}-\mathrm{e}^{\mathrm{c}[1]}}\right\}\right\}
\end{aligned}
$$

as well as find the solution that satisfies the initial condition $y(0)=y_{0}$.

$$
\left.\begin{array}{rl}
\text { In }[105]:= & \text { solc }=\text { DSolve }\left[\left\{y^{\prime}[t]==y[t] \quad(1-y[t]),\right.\right. \\
& \left.\left.y[0]==y^{0}\right\}, y[t], t\right]
\end{array}\right\} \begin{aligned}
& \text { Out }[105]=\left\{\left\{y[t] \rightarrow \frac{e^{t} y^{0}}{1-y^{0}+e^{t} y^{0}}\right\}\right\}
\end{aligned}
$$

The equation $y^{\prime}=\alpha y\left(1-\frac{1}{K} y\right)$ is called the Logistic equation (or Verhulst equation) and is used to model the size of a population that is not allowed to grow in an unbounded manner. Assuming that $y(0)>0$,

Logistic growth is discussed in more detail in Section 3.2.2. then all solutions of the equation have the property that $\lim _{t \rightarrow \infty} y(t)=K$.

To see this, we set $\alpha=K=1$ and use PlotVectorField, which is contained in the PlotField package that is located in the Graphics directory to graph the direction field associated with the equation in Figure 2-8.

Figure 2-8 A typical direction field for the Logistic equation

Figure 2-9 A typical direction field for the Logistic equation along with several solutions

```
In[106]:= << Graphics'PlotField`;
    pvf = PlotVectorField[{1,y(1-y)},{t, 0, 5},
            {y, 0, 5/2}, HeadLength-> 0,
                Axes- > Automatic]
```

The property is more easily seen when we graph various solutions along with the direction field as done next in Figure 2-9.

```
In[107]:= toplot = Table[solc[[1, 1, 2]]/.y0- > i/5,
    {i, 1, 12}];
    sols = Plot[Evaluate[toplot],
            {t, 0, 5}, DisplayFunction- > Identity];
    Show[pvf, sols]
```


Application: Kidney Dialysis

The primary purpose of the kidney is to remove waste products, like urea, creatinine, and excess fluid, from blood. When kidneys are not working properly, wastes accumulate in the blood; when toxic levels are reached, death is certain. The leading causes of chronic kidney failure in the United States are hypertension (high blood pressure) and diabetes mellitus. In fact, one-quarter of all patients requiring kidney dialysis have diabetes. Fortunately, kidney dialysis removes waste products from the blood of patients with improperly working kidneys. During the hemodialysis process, the patient's blood is pumped through a dialyser, usually at a rate of 1 to 3 deciliters per minute. The patient's blood is separated from the "cleaning fluid" by a semi-permeable membrane, which permits wastes (but not blood cells) to diffuse to the cleaning fluid; the cleaning fluid contains some substances beneficial to the body which diffuse to the blood. The "cleaning fluid," called the dialysate, is flowing in the opposite direction as the blood, usually at a

Sources: D. N. Burghes and M. S. Borrie, Modeling with Differential Equations, Ellis Horwood Limited, pp. 4I-45. Joyce M. Black and Esther Matassarin-Jacobs, Luckman and Sorensen's
Medical-Surgical Nursing: A Psychophysiologic Approach, Fourth Edition, W. B. Saunders Company (1993), pp. 1509-1519, I775-1808.
rate of 2 to 6 deciliters per minute. Waste products from the blood diffuse to the dialysate through the membrane at a rate proportional to the difference in concentration of the waste products in the blood and dialysate. If we let $u(x)$ represent the concentration of wastes in blood, $v(x)$ represent the concentration of wastes in the dialysate, where x is the distance along the dialyser, Q_{D} represent the flow rate of the dialysate through the machine, and Q_{B} represent the flow rate of the blood through the machine, then

$$
\left\{\begin{array}{l}
Q_{B} u^{\prime}=-k(u-v) \\
-Q_{D} v^{\prime}=k(u-v)
\end{array}\right.
$$

where k is the proportionality constant.
If we let L denote the length of the dialyser and the initial concentration of wastes in the blood is $u(0)=u_{0}$ while the initial concentration of wastes in the dialysate is $v(L)=0$, then we must solve the initial-value problem

$$
\left\{\begin{array}{l}
Q_{B} u^{\prime}=-k(u-v) \\
-Q_{D} v^{\prime}=k(u-v) \\
u(0)=u_{0}, v(L)=0 .
\end{array}\right.
$$

Solving the first equation for u^{\prime} and the second equation for $-v^{\prime}$, we obtain the equivalent system

$$
\left\{\begin{array}{l}
u^{\prime}=-\frac{k}{Q_{B}}(u-v) \\
-v^{\prime}=\frac{k}{Q_{D}}(u-v) \\
u(0)=u_{0}, v(L)=0 .
\end{array}\right.
$$

Adding these two equations results in a separable (and linear) equation in $u-v$,

$$
\begin{aligned}
u^{\prime}-v^{\prime} & =-\frac{k}{Q_{B}}(u-v)+\frac{k}{Q_{D}}(u-v) \\
(u-v)^{\prime} & =-\left(\frac{k}{Q_{B}}-\frac{k}{Q_{D}}\right)(u-v) .
\end{aligned}
$$

Let $\alpha=k / Q_{B}-k / Q_{D}$ and $y=u-v$. Then we must solve the separable equation $y^{\prime}=-\alpha y$, which is done with DSolve, naming the resulting output step1. We then name y the result obtained in step 1 by extracting the formula for $y[x]$ from stepl with Part ([[...]]) and replacing C[1] by c with ReplaceAll (/.).

```
In[108]:= Clear[x,y]
    step1 = DSolve[y'[x] == - 人y[x],y[x],x]
Out[108]= {{y[x] -> \mp@subsup{e}{}{-x\alpha}C[1]}}
```

```
In[109]:= Y = step1\llbracket1, 1, 2\rrbracket/.C[1] }->\textrm{c
Out[109]= C e}\mp@subsup{e}{}{-\textrm{x}\alpha
```

Using the facts that $u^{\prime}=-\frac{k}{Q_{B}}(u-v)$ and $v=u-y$ ，we are able to use DSolve to find $u(x)$ ．

$$
\begin{aligned}
\text { In }[110]:= & \text { step } 2=\operatorname{DSolve}\left[\left\{u^{\prime}[\mathbf{x}]=-\frac{\mathbf{k}}{Q_{\mathrm{B}}} c e^{-\mathrm{x} \alpha}, u[0]==u 0\right\},\right. \\
& \mathrm{u}[\mathrm{x}], \mathrm{x}] \\
\text { Out }[110]= & \left\{\left\{u[\mathrm{x}] \rightarrow \frac{e^{-x \alpha}\left(c k-c e^{x \alpha} k+e^{x \alpha} u 0 \alpha Q_{B}\right)}{\alpha Q_{B}}\right\}\right\}
\end{aligned}
$$

Because $y=u-v, v=u-y$ ．Consequently，because $v(L)=0$ we are able to compute c

Note that we use capl to represent L ．

$$
\begin{aligned}
& \text { In [111]: }=\text { leftside }=\frac{\mathrm{e}^{-\mathrm{x} \alpha}\left(\mathrm{ck}+\mathrm{e}^{\mathrm{x} \alpha} \alpha\left(\mathrm{u} 0-\frac{c \mathrm{k}}{\alpha Q_{\mathrm{B}}}\right) Q_{\mathrm{B}}\right)}{\alpha \mathrm{Q}_{\mathrm{B}}}-\mathrm{y} / . \\
& \text { Out[111] }=-c e^{-\operatorname{cap} 1 \alpha}+\frac{e^{-c a p 1 \alpha}\left(c k+e^{\operatorname{cap} 1 \alpha} \alpha\left(\mathrm{u} 0-\frac{c k}{\alpha Q_{B}}\right) Q_{B}\right)}{\alpha Q_{B}} \\
& \text { In [112]: }=\text { cval }=\text { Solve[leftside }=0, \mathrm{c} \text {] } \\
& \text { out [112] }=\left\{\left\{c \rightarrow \frac{e^{\operatorname{capl} \alpha} u 0 \alpha Q_{B}}{-k+e^{\operatorname{capl} \alpha} k+\alpha Q_{B}}\right\}\right\}
\end{aligned}
$$

and determine u and v ．Next，we substitute the value of C into the formula for u and v ．

$$
\begin{aligned}
& \operatorname{In}[113]:=u=\operatorname{simplify}\left[\frac{e^{-\mathrm{x} \alpha}\left(\mathrm{ck}+\mathrm{e}^{\mathrm{x} \alpha} \alpha\left(\mathrm{u} 0-\frac{c k}{\alpha Q_{\mathrm{B}}}\right) Q_{\mathrm{B}}\right)}{\alpha \mathrm{Q}_{\mathrm{B}}} / .\right. \\
& \text { Out [113] }=\frac{u 0\left(\left(-1+e^{(\text {cap1-x) } \alpha}\right) k+\alpha Q_{B}\right)}{\left(-1+e^{\text {capl } \alpha}\right) k+\alpha Q_{B}} \\
& \text { In[114]:= } \mathrm{v}=\text { Simplify[u-y/.cval【1』] } \\
& \text { Out [114] }=\frac{e^{-\mathrm{x} \alpha}\left(\mathrm{e}^{\mathrm{capl} 1 \alpha}-e^{\mathrm{x} \alpha}\right) \mathrm{u} 0\left(\mathrm{k}-\alpha \mathrm{Q}_{\mathrm{B}}\right)}{\left(-1+\mathrm{e}^{\operatorname{capl\alpha })} \mathrm{k}+\alpha \mathrm{Q}_{\mathrm{B}}\right.}
\end{aligned}
$$

For example，in healthy adults，typical urea nitrogen levels are 11 to 23 milligrams per deciliter，while serum creatinine levels range from 0.6 to 1.2 milligrams per deciliter and the total volume of blood is 4 to 5 liters．

Suppose that hemodialysis is performed on a patient with urea nitrogen level of $34 \mathrm{mg} / \mathrm{dl}$ and serum creatinine level of 1.8 using a dialyser with $k=2.25$ and $L=1$ ． If the flow rate of blood，Q_{B} ，is $2 \mathrm{dl} /$ minute while the flow rate of the dialysate，Q_{D} ， is $4 \mathrm{dl} /$ minute，will the level of wastes in the patient＇s blood reach normal levels after dialysis is performed？

After defining the appropriate constants, we evaluate u and v

$$
\begin{aligned}
\operatorname{In}[115]:=\alpha & =\frac{k}{Q_{\mathrm{B}}}-\frac{\mathrm{k}}{Q_{\mathrm{D}}} ; \\
\mathrm{k} & =2.25 ; \\
\mathrm{capl} & =1 ; \\
\mathrm{Q}_{\mathrm{B}} & =2 ; \\
\mathrm{Q}_{\mathrm{D}} & =4 ; \\
\mathrm{u} 0 & =34+1.8 ;
\end{aligned}
$$

u
v

```
Out[115] = 12.6776 (1.125 + 2.25 (-1+ + © 0.5625(1-x)})
Out [115] = 14.2623 e -0.5625x}(1.75505-\mp@subsup{e}{}{0.5625x}
```

and then graph u and v on the interval [0,1] with Plot in Figure 2-10. Remember that the dialysate is moving in the direction opposite the blood. Thus, we see from the graphs that as levels of waste in the blood decrease, levels of waste in the dialysate increase and at the end of the dialysis procedure, levels of waste in the blood are within normal ranges.

```
In[116]:= p1 = Plot[u, {x, 0, 1}, DisplayFunction }->\mathrm{ Identity];
    p2 = Plot[v,{x, 0, 1}, DisplayFunction }->\mathrm{ Identity];
    Show[GraphicsArray[{p1, p2}]]
```

Typically, hemodialysis is performed 3 to 4 hours at a time 3 or 4 times per week. In some cases, a kidney transplant can free patients from the restrictions of dialysis. Of course, transplants have other risks not necessarily faced by those on dialysis;

Figure 2-10 Remember that the dialysate moves in the opposite direction to the blood
the number of available kidneys also affects the number of transplants performed. For example, in 1991 over 130,000 patients were on dialysis while only 7000 kidney transplants had been performed.

2.3 Homogeneous Equations

Definition 6 (Homogeneous Differential Equation). A differential equation that can be written in the form

$$
M(x, y) d x+N(x, y) d y=0
$$

where

$$
M(t x, t y)=t^{n} M(x, y) \quad \text { and } \quad N(t x, t y)=t^{n} N(x, y)
$$

is called a homogeneous differential equation of degree n.
It is a good exercise to show that an equation is homogeneous if we can write it in either of the forms $d y / d x=F(y / x)$ or $d y / d x=G(x / y)$.

EXAMPLE 2.3.1: Show that the equation $\left(x^{2}+x y\right) d x-y^{2} d y=0$ is homogeneous.

SOLUTION: Let $M(x, y)=x^{2}+x y$ and $N(x, y)=-y^{2}$. Because $M(t x, t y)=$ $(t x)^{2}+(t x)(t y)=t^{2}\left(x^{2}+x y\right)=t^{2} M(x, y)$ and $N(t x, t y)=-t^{2} y^{2}=t^{2} N(x, y)$, the equation $\left(x^{2}+x y\right) d x-y^{2} d y=0$ is homogeneous of degree two.

Homogeneous equations can be reduced to separable equations by either of the substitutions

$$
y=u x \quad \text { or } \quad x=v y .
$$

Generally, use the substitution $y=u x$ if $N(x, y)$ is less complicated than $M(x, y)$ and use $x=v y$ if $M(x, y)$ is less complicated than $N(x, y)$. If a difficult integration problem is encountered after a substitution is made, try the other substitution to see if it yields an easier problem.

EXAMPLE 2.3.2: Solve the equation $\left(x^{2}-y^{2}\right) d x+x y d y=0$.

SOLUTION: In this case, $M(x, y)=x^{2}-y^{2}$ and $N(x, y)=x y$. Then, $M(t x, t y)=t^{2} M(x, y)$ and $N(t x, t y)=t^{2} N(x, y)$ which means that $\left(x^{2}-y^{2}\right) d x$ $+x y d y=0$ is a homogeneous equation of degree two. Assume $x=v y$. Then, $d x=v d y+y d v$ and substituting into the equation and simplifying yields

$$
\begin{aligned}
0 & =\left(x^{2}-y^{2}\right) d x+x y d y \\
& =\left(v^{2} y^{2}-y^{2}\right)(v d y+y d v)+v y \cdot y d y \\
& =\left(v^{2}-1\right)(v d y+y d v)+v d y \\
& =v^{3} d y+y\left(v^{2}-1\right) d v .
\end{aligned}
$$

We solve this equation by rewriting it in the form

$$
\frac{1}{y} d y=\frac{1-v^{2}}{v^{3}} d v=\left(\frac{1}{v^{3}}-\frac{1}{v}\right) d v
$$

and integrating. This yields

$$
\ln |y|=-\frac{1}{2 v^{2}}-\ln |v|+C_{1}
$$

which can be simplified as

$$
\ln |v y|=-\frac{1}{2 v^{2}}+C_{1}, \quad \text { so } \quad v y=C e^{-1 /\left(2 v^{2}\right)}, \text { where } C= \pm e^{C_{1}}
$$

Because $x=v y, v=x / y$, and resubstituting into the above equation yields

$$
x=C e^{-y^{2} /\left(2 x^{2}\right)}
$$

as a general solution of the equation $\left(x^{2}-y^{2}\right) d x+x y d y=0$. We see that DSolve is able to solve the equation as well.

$$
\begin{aligned}
\text { In }[117]:= & \text { Clear }[\mathbf{x}, \mathrm{y}] \\
\text { In }[118]:= & \text { gensol }=\text { DSolve }\left[\mathbf{x}^{2}-\mathbf{y}[\mathbf{x}]^{2}+\mathbf{x} y[\mathbf{x}] \mathrm{y}^{\prime}[\mathrm{x}]=\mathbf{=},\right. \\
& \mathbf{y}[\mathbf{x}], \mathbf{x}] \\
\text { Out }[118]= & \left\{\left\{y[\mathrm{x}] \rightarrow-\sqrt{\mathrm{x}^{2}(C[1]-2 \log [\mathrm{x}])}\right\},\right. \\
& \left.\left\{\mathrm{y}[\mathrm{x}] \rightarrow \sqrt{\mathrm{x}^{2}(C[1]-2 \log [\mathrm{x}])}\right\}\right\}
\end{aligned}
$$

The result means that a general solution of the equation is $y^{2}=$ $x^{2}(C-2 \ln |x|)$. We can graph this implicit solution for various values of C by solving this equation for C

$$
\begin{aligned}
& \text { In }[119]:=\mathrm{f}=\text { Solve }\left[\mathrm{y}^{2}==\text { gensol } \llbracket 1,1,2 \mathbb{1}^{2}, \mathrm{C}[1]\right] \\
& \text { Out }[119]=\left\{\left\{\mathrm{C}[1] \rightarrow \frac{\mathrm{y}^{2}+2 \mathrm{x}^{2} \log [\mathrm{x}]}{\mathrm{x}^{2}}\right\}\right\} \\
& \text { In }[120]:=\mathrm{f} \llbracket 1,1,2 \rrbracket \\
& \text { Out }[120]=\frac{\mathrm{y}^{2}+2 \mathrm{x}^{2} \log [\mathrm{x}]}{\mathrm{x}^{2}} \\
& \text { In }[121]:=\mathrm{f}[[1,1,2]] \\
& \text { Out }[121]=\frac{\mathrm{Y}^{2}+2 \mathrm{x}^{2} \log [\mathrm{x}]}{\mathrm{x}^{2}}
\end{aligned}
$$

and then noting that graphs of the equation $y^{2}=x^{2}(C-2 \ln |x|)$ for various values of C are the same as the graphs of the level curves of the function $f(x, y)=\left(y^{2}+2 x^{2} \ln |x|\right) /\left(2 x^{2}\right)$.

The ContourPlot command graphs several level curves $C=f(x, y)$, C a constant, of the function $z=f(x, y)$. We may instruct Mathematica to graph the level curves of $z=f(x, y)$ for particular values of C by including the Contours option. For example, the level curves of $f(x, y)=\left(y^{2}+2 x^{2} \ln |x|\right) /\left(2 x^{2}\right)$ that intersect the x-axis at $x=1,3 / 2,2, \ldots$, $19 / 2$, and 10 are the contours with values obtained by replacing each occurrence of y in $f(x, y)$ by 0 and x by $1,3 / 2,2, \ldots, 19 / 2$, and 10 which we do now with Table and ReplaceAll (/.), naming the resulting set of ten numbers contourvals.

```
In[122]:= contourvals = Table[(f\llbracket1, 1, 2])/.
    {x->i,y->0}, {i, 1, 10, 1/2}];
```

Then, entering

```
In[123]:= cp1 = ContourPlot[f\llbracket1, 1, 2], {x, 0.01, 10},
    {y, -5, 5}, PlotPoints }->150,\mathrm{ Frame }
    False, Contours }->\mathrm{ contourvals,
    Axes }->\mathrm{ Automatic, AxesOrigin }->{0,0}
    ContourStyle- > {{GrayLevel[0.4],
    Thickness[0.01]}}, ContourShading }
    False, DisplayFunction- > Identity];
```

graphs several level curves of $z=f(x, y)$ for $0.01 \leq x \leq 10$ and $-5 \leq$ $y \leq 5$ and names the resulting graphics object cp1. cp1 is not displayed because we include the DisplayFunction->Identity option in the ContourPlot command. The option Contours->contourvals instructs Mathematica to draw contours with values given in the list

We avoid $x=0$ because $f(x, y)$ is undefined if $x=0$.

Figure 2-11 Various solutions and direction field for the homogeneous equation $\left(x^{2}-y^{2}\right) d x+x y d y=0$
of numbers contourvals. We use PlotVectorField to graph the direction field associated with the equation on the rectangle

```
In[124]:= << Graphics'PlotField`
In[125]:= pvf = PlotVectorField[{1, (y^2-x^2)/(xy)},
    {x,0.01, 10}, {y, -5, 5}, Frame }
    False, Axes }->\mathrm{ Automatic, AxesOrigin }
    {0, 0},AxesStyle }->\mathrm{ GrayLevel [0.5],
    ScaleFunction }->\mathrm{ (0.5&),
    PlotPoints- > 30, HeadLength- > 0,
    DisplayFunction- > Identity];
```

and then display cp 1 and the direction field together with Show in Figure 2-11.

```
In[126]:= Show[cp1,
    pvf, DisplayFunction- > $DisplayFunction]
```

EXAMPLE 2.3.3: Solve $\left(y^{2}+2 x y\right) d x-x^{2} d y=0$.

SOLUTION: In this case, letting $F(t)=t^{2}+2 t$, we note that $d y / d x=$ $F(y / x)=(y / x)^{2}+2(y / x)$ so the equation is homogeneous.

Let $y=u x$. Then, $d y=u d x+x d u$. Substituting into $\left(y^{2}+2 x y\right) d x-x^{2} d y=0$ and separating gives us

$$
\begin{aligned}
\left(y^{2}+2 x y\right) d x-x^{2} d y & =0 \\
\left(u^{2} x^{2}+2 u x^{2}\right) d x-x^{2}(u d x+x d u) & =0 \\
\left(u^{2}+2 u\right) d x-(u d x+x d u) & =0 \\
\left(u^{2}+u\right) d x & =x d u \\
\frac{1}{u(u+1)} d u & =\frac{1}{x} d x .
\end{aligned}
$$

Integrating the left and right-hand sides of this equation with Integrate,

```
In[127]:= Integrate[1/(u(u + 1)), u]
Out[127]= Log[u] - Log[1 +u]
In[128]:= Integrate[1/x, x]
Out[128]= Log[x]
```

exponentiating, resubstituting $u=y / x$, and solving for y gives us

$$
\begin{aligned}
\ln |u|-\ln |u+1| & =-\ln |x|+C \\
\frac{u}{u+1} & =\frac{C x}{x} \\
\frac{\frac{y}{x}}{\frac{y}{x}+1} & =\frac{C x}{x} \\
y & =\frac{C x^{2}}{1-C x} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { In }[129]:=\text { Solve }[(y / x) /(y / x+1)==c x, y] \\
& \text { Out }[129]=\left\{\left\{y \rightarrow-\frac{c x^{2}}{-1+x c}\right\}\right\}
\end{aligned}
$$

We confirm this result with DSolve and then graph several solutions with Plot in Figure 2-12.

Figure 2-12 Graphs of several solutions of $\left(y^{2}+2 x y\right) d x-x^{2} d y=0$

$$
\begin{aligned}
& \text { In [130]: }=\text { sol }=\text { DSolve }\left[y[x]^{\wedge} 2+2 x y[x]-x^{\wedge} 2 y^{\prime}[x]==0,\right. \\
& y[x], x] \\
& \text { Out }[130]=\left\{\left\{y[x] \rightarrow-\frac{x^{2} \mathrm{C}[1]}{-1+\mathrm{xC[1]}}\right\}\right\} \\
& \text { In [131]:= toplot = Table[sol[[1, 1, 2]]/.C[1]->i, } \\
& \text { \{i, -5, 5\}]; Plot[Evaluate[toplot], } \\
& \{x,-5,5\} \text {, PlotRange- }>\{-5,5\} \text {, } \\
& \text { AspectRatio- > Automatic] }
\end{aligned}
$$

Sources: A particularly interesting and fun-to-read discussion of flight paths and models of pursuit can be found in Differential Equations: A Modeling Perspective by Robert L. Borrelli and Courtney S. Coleman and published by John Wiley \& Sons.

Application: Models of Pursuit

Suppose that one object pursues another whose motion is known by a predetermined strategy. For example, suppose that an airplane is positioned at $B(1000,0)$ to fly to another airport $A(0,0)$ that is 1000 miles directly west of its position B, as illustrated in the following figure. Assume that the airplane aims towards A at all times. If the wind goes from south to north at a constant speed, w, and the airplane's speed in still air is b, determine conditions on b so that the airplane eventually arrives at A and describe its path.

As described, the speed of the airplane, b, must be greater than the speed of the wind, $w: b>w$, in order for the plane to arrive at A. Observe that $d x / d t$ describes the airplane's velocity in the x direction:

$$
\frac{d x}{d t}=-b \cos \theta=\frac{-b x}{\sqrt{x^{2}+y^{2}}}
$$

because from right-triangle trigonometry we know that $\cos \theta=$ adjacent/ hypotenuse $=x / \sqrt{x^{2}+y^{2}}$. Similarly,

$$
\frac{d y}{d t}=-b \sin \theta+w=\frac{-b y}{\sqrt{x^{2}+y^{2}}}+w
$$

so

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{\frac{-b y}{\sqrt{x^{2}+y^{2}}}+w}{\frac{-b x}{\sqrt{x^{2}+y^{2}}}}=\frac{b y-w \sqrt{x^{2}+y^{2}}}{b x} .
$$

This is a homogeneous equation (of degree one) because it can be written in the form $d y / d x=F(y / x)$:

$$
\frac{d y}{d x}=\frac{b y-w \sqrt{x^{2}+y^{2}}}{b x}=\frac{y}{x}-\frac{w}{b} \sqrt{1+\left(\frac{y}{x}\right)^{2}} .
$$

Therefore, we must solve the initial-value problem

$$
\left\{\begin{array}{l}
\frac{d y}{d x}=\frac{b y-w \sqrt{x^{2}+y^{2}}}{b x} \\
y(1000)=0
\end{array}\right.
$$

In this case, we see DSolve is both able to find a general solution of the equation

$$
\begin{aligned}
\text { In }[132]:= & \text { Clear }[\mathbf{x}, \mathrm{y}, \mathrm{w}, \mathrm{~b}] \\
& \text { DSolve }\left[\mathrm{y}^{\prime}[\mathbf{x}]==\left(\mathrm{b} y[\mathbf{x}]-\mathrm{w} \operatorname{Sqrt}\left[\mathbf{x}^{\wedge} 2+\mathbf{y}[\mathbf{x}]^{\wedge} 2\right]\right) /(\mathrm{b} \mathbf{x}),\right. \\
& \mathrm{y}[\mathbf{x}], \mathbf{x}] \\
\text { Out }[132]=\{ & \left.\left\{\mathrm{y}[\mathrm{x}] \rightarrow \mathrm{x} \operatorname{Sinh}\left[\mathrm{C}[1]-\frac{\mathrm{w} \log [\mathrm{x}]}{\mathrm{b}}\right]\right\}\right\}
\end{aligned}
$$

as well as solve the initial-value problem.

$$
\begin{aligned}
\text { In }[133]:= & \text { Clear }[\mathbf{x}, \mathrm{y}, \mathrm{~b}, \mathrm{w}] \\
& \text { DSolve }\left[\left\{\mathrm{y}^{\prime}[\mathrm{x}]==\left(\mathrm{b} y[\mathrm{x}]-\mathrm{w} \operatorname{Sqrt}\left[\mathbf{x}^{\wedge} 2+\mathrm{y}[\mathrm{x}] \wedge 2\right]\right) /(\mathrm{b} \mathbf{x}),\right.\right. \\
& \mathrm{y}[1000]==0\}, \mathrm{y}[\mathbf{x}], \mathbf{x}] \\
\text { Out }[133]= & \left\{\left\{\mathrm{y}[\mathrm{x}] \rightarrow \mathrm{x} \operatorname{Sinh}\left[\frac{\mathrm{w} \log [1000]}{\mathrm{b}}-\frac{\mathrm{w} \log [\mathrm{x}]}{\mathrm{b}}\right]\right\}\right\}
\end{aligned}
$$

Alternatively, letting $y=u x$, differentiating to obtain $d y=u d x+x d u$, and substituting into the equation results in the separable equation

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d u}{d x} x+u=\frac{b u x-w \sqrt{x^{2}+u^{2} x^{2}}}{b x} \\
& \frac{d u}{d x} x+u=u-\frac{w}{b} \sqrt{1+u^{2}} \\
& \frac{1}{\sqrt{1+u^{2}}} d u=-\frac{w}{b} \frac{1}{x} d x . \\
& \operatorname{In}[134]:=\operatorname{Clear}[\mathbf{x}, \mathrm{y}, \mathrm{u}] \\
& y=u x ; \\
& \text { eqn }=\operatorname{Dt}[y]==\left(b y-w \operatorname{Sqr} t\left[x^{\wedge} 2+y^{\wedge} 2\right]\right) /(b x) ; \\
& \text { step1 = PowerExpand[Simplify[eqn]] } \\
& \text { Out }[134]=\frac{\sqrt{1+\mathrm{u}^{2}} \mathrm{w}}{\mathrm{~b}}+\mathrm{xDt}[\mathrm{u}]+\mathrm{uDt}[\mathrm{x}]==\mathrm{u}
\end{aligned}
$$

Integrating the left-hand side of this equation yields $\int \frac{1}{\sqrt{1+u^{2}}} d u=$ $\ln \left|u+\sqrt{1+u^{2}}\right|+C_{1}$

```
In[135]:= leftint = Integrate[1/Sqrt[1+u^2],u]
Out[135]= ArcSinh[u]
In[136]:= leftint = TrigToExp[leftint]
Out [136]= Log[u+\sqrt{}{1+\mp@subsup{u}{}{2}}]
```

and integrating the right results in $-\frac{w}{b} \int \frac{1}{x} d x=-\frac{w}{b} \ln |x|+C_{2}$. Note that absolute value bars are not necessary because x and y and, hence, u are nonnegative. Thus, $\ln \left(u+\sqrt{1+u^{2}}\right)=-\frac{w}{b} \ln x+C$.

```
In[137]:= rightint = Integrate[-w/(b x), x] + c
```

Out [137] $=c-\frac{\mathrm{w} \log [\mathrm{x}]}{\mathrm{b}}$

Because $y(1000)=0, C=\frac{w}{b} \ln 1000$

```
In[138]:= cval = Solve[leftint == rightint/.{x-> 1000,u->0},c]
Out[138]={{c}->\frac{\textrm{w}\operatorname{Log[1000]}}{\textrm{b}}}
```

and $\ln \left(u+\sqrt{1+u^{2}}\right)=-\frac{w}{b} \ln x+\frac{w}{b} \ln 1000$.

$$
\begin{aligned}
& \text { In [139] := step2 }=\text { leftint }==\text { rightint/.cval[[1]] } \\
& \text { Out [139] }=\log \left[u+\sqrt{1+\mathrm{u}^{2}}\right]==\frac{\mathrm{w} \log [1000]}{\mathrm{b}}-\frac{\mathrm{w} \log [\mathrm{x}]}{\mathrm{b}}
\end{aligned}
$$

Solving for u gives us

$$
\begin{aligned}
\ln \left(u+\sqrt{1+u^{2}}\right) & =\ln \left(\frac{x}{1000}\right)^{-w / b} \\
u+\sqrt{1+u^{2}} & =\left(\frac{x}{1000}\right)^{-w / b} \\
\sqrt{1+u^{2}} & =\left(\frac{x}{1000}\right)^{-w / b}-u \\
1+u^{2} & =\left(\frac{x}{1000}\right)^{-2 w / b}-2 u\left(\frac{x}{1000}\right)^{-w / b}+u^{2} \\
2 u\left(\frac{x}{1000}\right)^{-w / b} & =\left(\frac{x}{1000}\right)^{-2 w / b}-1 \\
u & =\frac{1}{2}\left[\left(\frac{x}{1000}\right)^{-w / b}-\left(\frac{x}{1000}\right)^{w / b}\right] .
\end{aligned}
$$

$$
\operatorname{In}[140]:=\text { step } 3=\text { Solve }[\text { step } 2, \mathrm{u}]
$$

$$
\text { Out }[140]=\left\{\left\{u \rightarrow-2^{-1-\frac{3 w}{b}} 125^{-\frac{w}{5}} x^{-\frac{w}{b}}\left(-1000^{\frac{2 w}{b}}+x^{\frac{2 w}{b}}\right)\right\}\right\}
$$

Figure 2-13 If $w / b \geq 1$, the airplane never reaches its destination

We solve for y by resubstituting $u=y / x$ and multiplying by x :

$$
\begin{aligned}
& \qquad \begin{aligned}
\frac{y}{x} & =\frac{1}{2}\left[\left(\frac{x}{1000}\right)^{-w / b}-\left(\frac{x}{1000}\right)^{w / b}\right] \\
y & =\frac{1}{2} x\left[\left(\frac{x}{1000}\right)^{-w / b}-\left(\frac{x}{1000}\right)^{w / b}\right] . \\
\text { In }[141]:= & \text { Clear }[y] \\
\mathrm{y}\left[\mathbf{x}_{-}\right]=\mathbf{x} & \text { step } 3[[1,1,2]]
\end{aligned} \\
& \text { Out }[141]=-2^{-1-\frac{3 w}{b}} 125^{-\frac{w}{b}} x^{1-\frac{w}{b}}\left(-1000 \frac{2 w}{b}+x^{\frac{2 w}{b}}\right)
\end{aligned}
$$

We graph y for various values of w / b by setting $b=1$ and then using Table to generate the value of y for $w=0.25,0.50, \ldots, 2.0$. These functions are then graphed with Plot in Figure 2-13. Notice that the airplane never arrives at A if $w / b \geq 1$.

```
In[142]:= b = 1;
    toplot = Table[y[x], {w, 0.25, 2, 0.25}];
    Plot[Evaluate[toplot], {x, 0, 1000},
        PlotRange- > {0, 1000}, AspectRatio- > 1]
```


2.4 Exact Equations

Definition 7 (Exact Differential Equation). A differential equation that can be written in the form

$$
M(x, y) d x+N(x, y) d y=0
$$

where

$$
M(x, y) d x+N(x, y) d y=\frac{\partial f}{\partial x}(x, y) d x+\frac{\partial f}{\partial y}(x, y) d y
$$

for some function $z=f(x, y)$ is called an exact differential equation.
We can show that the differential equation $M(x, y) d x+N(x, y) d y=0$ is exact if and only if $\partial M / \partial y=\partial N / \partial x$.

EXAMPLE 2.4.1: Show that the equation $2 x y^{3} d x+\left(1+3 x^{2} y^{2}\right) d y=0$ is exact and that the equation $x^{2} y d x+5 x y^{2} d y=0$ is not exact.

SOLUTION: Because

$$
\frac{\partial}{\partial y}\left(2 x y^{3}\right)=6 x y^{2}=\frac{\partial}{\partial x}\left(1+3 x^{2} y^{2}\right)
$$

the equation $2 x y^{3} d x+\left(1+3 x^{2} y^{2}\right) d y=0$ is an exact equation. On the other hand, the equation $x^{2} y d x+5 x y^{2} d y=0$ is not exact because

$$
\frac{\partial}{\partial y}\left(x^{2} y\right)=x^{2} \neq 5 y^{2}=\frac{\partial}{\partial x}\left(5 x y^{2}\right) .
$$

(However, the equation $x^{2} y d x+5 x y^{2} d y=0$ is separable.)

If an equation is exact, we can find a function $z=f(x, y)$ such that $M(x, y)=\frac{\partial f}{\partial x}(x, y)$ and $N(x, y)=\frac{\partial f}{\partial y}(x, y)$.

1. Assume that $M(x, y)=\frac{\partial f}{\partial x}(x, y)$ and $N(x, y)=\frac{\partial f}{\partial y}(x, y)$.
2. Integrate $M(x, y)$ with respect to x. (Add an arbitrary function of $y, g(y)$.)
3. Differentiate the result in Step 2 with respect to y and set the result equal to $N(x, y)$. Solve for $g^{\prime}(y)$.
4. Integrate $g^{\prime}(y)$ with respect to y to obtain an expression for $g(y)$. (There is no need to include an arbitrary constant.)

Notice that we do not have to include the constant in calculating $g(y)$ because we combine it with the constant in the general solution.
5. Substitute $g(y)$ into the result obtained in Step 2 for $f(x, y)$.
6. A general solution is $f(x, y)=C$ where C is a constant.
7. If given an initial-value problem, apply the initial condition to determine C.

Remark. A similar algorithm can be stated so that in Step $2 N(x, y)$ is integrated with respect to y.

EXAMPLE 2.4.2: Solve $2 x \sin y d x+\left(x^{2} \cos y-1\right) d y=0$ subject to $y(0)=1 / 2$.

SOLUTION: The equation $2 x \sin y d x+\left(x^{2} \cos y-1\right) d y=0$ is exact because

$$
\frac{\partial}{\partial y}(2 x \sin y)=2 x \cos y=\frac{\partial}{\partial x}\left(x^{2} \cos y-1\right) .
$$

Let $z=f(x, y)$ be a function with $\partial f / \partial x=2 x \sin y$ and $\partial f / \partial y=x^{2} \cos y-1$. Then, integrating $\partial f / \partial x$ with respect to x yields

$$
f(x, y)=\int 2 x \sin y d x=x^{2} \sin y+g(y)
$$

Notice that the arbitrary function $g=g(y)$ of y serves as a "constant" of integration with respect to x. Because we have $\partial f / \partial y=x^{2} \cos y-1$ from the differential equation, and

$$
\frac{\partial f}{\partial y}(x, y)=x^{2} \cos y+g^{\prime}(y)
$$

from differentiation of $f(x, y)$ with respect to $y, g^{\prime}(y)=-1$. Integrating $g^{\prime}(y)$ with respect to y gives us $g(y)=-y$. Therefore, $f(x, y)=x^{2} \sin y-y$, so a general solution of the exact equation is $x^{2} \sin y-y=C$, where C is a constant. Because our solution requires that $y(0)=1 / 2$, we must find the solution in the family of solutions that passes through the point $(0,1 / 2)$. Substituting these values of x and y into the general solution, we obtain $0^{2} \cdot \sin (1 / 2)-1 / 2=C$ so that $C=-1 / 2$. Therefore, the desired solution is $x^{2} \sin y-y=-1 / 2$. We are able to use DSolve to solve the initial-value problem implicitly as well.

```
In[143]:= Clear[x,y]
partsol = DSolve[{2x Sin[y[x]]
    +( (x'\operatorname{Cos}[y[x]]-1) y'[x]==0,y[0] == = \frac{1}{2}},y[x],x]
```


Figure 2-14 Plot of $x^{2} \sin y-y=-1 / 2$

Solve : : tdep : The equations appear to involve the variables to be solved for in an essentially non-algebraic way.

Solve : : tdep : The equations appear to involve the variables to be solved for in an essentially non-algebraic way.
Out [143] $=$ Solve $\left[x^{2} \operatorname{Sin}[y[x]]-y[x]==-\frac{1}{2}, y[x]\right]$
To graph the equation implicitsol, we first load the ImplicitPlot package, which is located in the Graphics folder (or directory) and then we use ImplicitPlot to graph the equation for $-10 \leq x \leq 10$ and $-10 \leq y \leq 10$ in Figure 2-14. We include the option AxesOrigin-> $\{0,0\}$ to specify that the axes intersect at the point $(0,0)$ and the option PlotPoints - >100 to help guarantee that the resulting curves appear smooth.

$$
\begin{aligned}
& \operatorname{In}[144]:=\text { toplot }=x^{2} \operatorname{Sin}[y[x]]-y[x]==-\frac{1}{2} / \cdot y[x]->y \\
& \text { Out }[144]=-y+x^{2} \sin [y]==-\frac{1}{2} \\
& \text { In [145]:= << Graphics'ImplicitPlot' } \\
& \text { In [146]: = ImplicitPlot[toplot, }\{\mathbf{x},-10,10\},\{y,-10,10\} \text {, } \\
& \text { AxesOrigin } \rightarrow\{0,0\} \text {, PlotPoints } \rightarrow \text { 100] }
\end{aligned}
$$

The following example illustrates how we can use Mathematica to assist us in carrying out the necessary steps encountered when solving an exact equation.

EXAMPLE 2.4.3: Solve $\left(2 x-y^{2} \sin (x y)\right) d x+(\cos (x y)-x y \sin (x y)) d y=0$.

SOLUTION: We begin by identifying $M(x, y)=2 x-y^{2} \sin (x y)$ and $N(x, y)=\cos (x y)-x y \sin (x y)$. We then define capm, corresponding to M, and capn, corresponding to N. We then see that the equation is exact because $\partial M / \partial y=\partial N / \partial x$.

```
In[147]:= capm[x-, y-] = 2x- y }\mp@subsup{\mathbf{y}}{}{2}\operatorname{Sin}[\mathbf{xy]}
    capn[x_, y-] = Cos[xy] - xy Sin[xy];
```



```
Out[148]= True
```

Next, we compute $\int M(x, y) d x$ and add an arbitrary function of $y, g[y]$, to the result.

$$
\begin{aligned}
& \operatorname{In}[149]:=\mathrm{f}=\int \operatorname{capm}[\mathrm{x}, \mathrm{y}] \mathrm{d} \mathbf{x}+\mathrm{g}[\mathrm{y}] / / \text { Simplify } \\
& \text { Out }[149]=\mathrm{x}^{2}+\mathrm{y} \operatorname{Cos}[\mathrm{xy}]+\mathrm{g}[\mathrm{y}]
\end{aligned}
$$

Differentiating f with respect to y gives us


```
Out [150]= Cos[xy] - xy Sin[xy] + 'g}[y
```

and because we must have that $\partial f / \partial y=N(x, y)$, we obtain the equation


```
Out[151]= Cos[xy]-xy Sin[xy]+g'[y] == Cos[xy]-xy Sin[xy]
```

which we solve for $g^{\prime}(y)$ with Solve.

```
In[152]:= Solve[\partial}\mp@subsup{\textrm{Y}}{\mathbf{f}}{\mathbf{f}==}=\operatorname{capn}[\mathbf{x},\textrm{y}],\mp@subsup{g}{}{\prime}[\textrm{y}]
Out [152]= {{g'[y]->0}}
```

Thus, $g(y)$ is a (real-valued) constant and a general solution of the equation is $x^{2}+y \cos (x y)=C$. We can graph this general solution for various values of C by observing that the level curves of the function $z=$ $x^{2}+y \cos (x y)$ correspond to the graphs of the equation $x^{2}+y \cos (x y)=C$ for various values of C.

Figure 2-15 Level curves of $z=x^{2}+y \cos (x y)$

```
In[153]:= f = f/.g[y] }\boldsymbol{->}\mathbf{0
Out [153]= x
```

We now use ContourPlot to graph several level curves of $z=x^{2}+$ $y \cos (x y)$ on the rectangle $[0,3 \pi] \times[0,3 \pi]$ in Figure 2-15. In this case, the option Frame->False instructs Mathematica to not place a frame around the resulting graphics object, the option Axes->Automatic specifies that axes are to be placed on the graph, AxesOrigin $->\{0,0\}$ specifies that the axes are to intersect at the point $(0,0)$, AxesStyle-> GrayLevel [.5] specifies that the axes are to be drawn in a light gray, ContourShading->False specifies that the region between contours is to not be shaded and the option PlotPoints->150 helps assure that the resulting contours appear smooth.

```
In[154]:= ContourPlot[f, {x, 0, 3\pi}, {y,0, 3\pi},
    Frame }->\mathrm{ False, Axes }->\mathrm{ Automatic,
    AxesOrigin }->{0,0},\mathrm{ ContourShading }->\mathrm{ False,
    PlotPoints }->\mathrm{ 150]
```

We see that DSolve is able to find an implicit solution of the equation after we rewrite it in the form $\left(2 x-y^{2} \sin (x y)\right)+(\cos (x y)-x y \sin (x y)) y^{\prime}=0$.

```
In[155]:= gensol = DSolve[(2x-y[x]}\mp@subsup{}{}{2}\operatorname{Sin}[\mathbf{xy[x]}]
    +(Cos[xy[x]]-xy[x] Sin[xy[x]]) y'[x] == 0,
    y[x],x]
Solve :: tdep : The equations appear to involve the
    variables to be solved for in an essentially non-algebraic way.
Solve :: tdep : The equations appear to involve the
    variables to be solved for in an essentially non-algebraic way.
Out [155]= Solve[x2 + Cos[xy[x]] y[x] == C[1], y[x]
```

The implicit solution is the first part of gensol.

```
In[156]:= step1 = gensol[1]
Out[156]= x}+\operatorname{Cos[xy[x]]y[x] == C[1]
```

To graph the level curves of $z=x^{2}+y \cos (x y)$, we extract the left-hand side of the equation gensol [[1]] by noting that it is the first part of the first part of gensol

```
In[157]:= step2 = gensol[1, 1\rrbracket
Out[157] = x' + Cos[xy[x]] y[x]
```

and then replacing each occurrence of $\mathrm{y}[\mathrm{x}]$ by y using ReplaceAll (/.).

```
In[158]:= implicitsol = step2/.y[x] }->\mathbf{y
Out [158]= x }\mp@subsup{\textrm{x}}{}{2}+\textrm{y}\operatorname{Cos[xy]
```

Entering

```
In[159]:= ContourPlot[implicitsol, {x, 0, 3\pi}, {y, 0, 3\pi},
    ContourShading }->\mathrm{ False, PlotPoints }->\mathrm{ 150]
```

produces the same graph as that obtained in Figure 2-15.

2.5 Linear Equations

Definition 8 (First-Order Linear Equation). A differential equation of the form

$$
\begin{equation*}
a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=f(x), \tag{2.2}
\end{equation*}
$$

where $a_{1}(x)$ is not identically the zero function, is a first-order linear differential equation.

Assuming that $a_{1}(x)$ is not identically the zero function, dividing equation (2.2) by $a_{1}(x)$ gives us the standard form of the first-order linear equation:

$$
\begin{equation*}
\frac{d y}{d x}+p(x) y=q(x) \tag{2.3}
\end{equation*}
$$

If $q(x)$ is identically the zero function, we say that the equation is homogeneous. The corresponding homogeneous equation of equation (2.3) is

$$
\begin{equation*}
\frac{d y}{d x}+p(x) y=0 \tag{2.4}
\end{equation*}
$$

2.5.I Integrating Factor Approach

Multiplying equation (2.3) by $e^{\int p(x) d x}$ yields

$$
e^{\int p(x) d x} \frac{d y}{d x}+e^{\int p(x) d x} p(x) y=e^{\int p(x) d x} q(x) .
$$

By the product rule and the Fundamental Theorem of Calculus,

$$
\frac{d}{d x}\left(e^{\int p(x) d x} y\right)=e^{\int p(x) d x} \frac{d y}{d x}+e^{\int p(x) d x} p(x) y
$$

so equation (2.3) becomes

$$
\frac{d}{d x}\left(e^{\int p(x) d x} y\right)=e^{\int p(x) d x} q(x)
$$

Integrating and dividing by $e^{\int p(x) d x}$ yields a general solution of $y^{\prime}+p(x) y=q(x)$:

$$
\begin{aligned}
e^{\int p(x) d x} y & =\int e^{\int p(x) d x} q(x) d x \\
y & =\frac{1}{e^{\int p(x) d x}} \int e^{\int p(x) d x} q(x) d x=e^{-\int p(x) d x} \int e^{\int p(x) d x} q(x) d x .
\end{aligned}
$$

The term $\mu(x)=e^{\int p(x) d x}$ is called an integrating factor for the linear equation (2.3). Thus, first-order linear equations can always be solved, although the resulting integrals may be difficult or impossible to evaluate exactly.

As we see with the following command, DSolve is always able to solve firstorder linear differential equations, although the result might contain unevaluated integrals.

```
In[160]:= Clear[x, y, p,q]
    DSolve [y'[x] + p[x] y[x] == q[x], y[x],x]
Out [160] ={{y ym] 
    +e e}\mp@subsup{\int}{K$14523-p[K$14522]dK$14522}{x
    | < w$14559 }\mp@subsup{e}{}{-\mp@subsup{\int}{K$14523}{K$1458}-\textrm{p}[\textrm{K}$14522]dK$14522
q[K$14558] dK$14558}}
```

EXAMPLE 2.5.1: Solve $x d y / d x+y=x \cos x, x>0$.

SOLUTION: First, we place the equation in the form used in the derivation above. Dividing the equation by x yields

$$
\begin{equation*}
\frac{d y}{d x}+\frac{1}{x} y=\cos x, \tag{2.5}
\end{equation*}
$$

where $p(x)=1 / x$ and $q(x)=\cos x$. Then, an integrating factor is

$$
\mu(x)=e^{\int \frac{1}{x} d x}=e^{\ln |x|}=x, \text { for } x>0,
$$

and multiplying equation (2.5) by the integrating factor gives us

$$
\frac{d}{d x}(x y)=x \frac{d y}{d x}+y=x \cos x .
$$

Integrating once we have

$$
x y=\int x \cos x d x
$$

Using the integration by parts formula, $\int u d v=u v-\int v d u$, with $u=x$ and $d v=\cos x d x$, we obtain $d u=d x$ and $v=\sin x$ so

$$
x y=\int x \cos x d x=x \sin x-\int \sin x d x=x \sin x+\cos x+C .
$$

Therefore, a general solution of the equation $x d y / d x+y=x \cos x$ for

If we want to solve the equation for $x<0$, then we would have $e^{\int \frac{1}{x} d x}=e^{\ln |x|}=-x$ for $x<0$. $x>0$ is $y=(x \sin x+\cos x+C) / x$. We see that DSolve is also successful in finding a general solution of the equation.

$$
\begin{aligned}
& \text { In }[161]:=\text { gensol }=\text { DSolve }\left[x y^{\prime}[x]+y[x]==x \operatorname{Cos}[x], y[x], x\right] \\
& \text { Out }[161]=\left\{\left\{y[x] \rightarrow \frac{C[1]}{x}+\frac{\operatorname{Cos}[x]+x \operatorname{Sin}[x]}{x}\right\}\right\}
\end{aligned}
$$

Figure 2-16 Various solutions of $x d y / d x+y=x \cos x, x>0$

As we have seen in previous examples, we can graph the solution for various values of the arbitrary constant by generating a set of functions obtained by replacing the arbitrary constant with numbers using Table and ReplaceAll (/.).

```
In[162]:= toplot = Table[gensol\llbracket1, 1, 2]/.C[1] ->i,
    {i, -4, 4}];
```

In this case, Mathematica generates several error messages, which are not displayed here because the solution is undefined if $x=0$. Nevertheless, the resulting graph shown in Figure 2-16 is displayed correctly.

```
In[163]:= grays = Table[GrayLevel[i], {i,0,0.7,0.7/8}];
    Plot[Evaluate[toplot], {x, 0, 4\pi},
    PlotRange- > {-2\pi, 2\pi}, AspectRatio- > 1,
    PlotStyle- > grays]
```

As with other types of equations, we solve initial-value problems by first finding a general solution of the equation and then applying the initial condition to determine the value of the constant.

EXAMPLE 2.5.2: Solve the initial-value problem $\left\{\begin{array}{l}d y / d x+5 x^{4} y=x^{4} \\ y(0)=-7 .\end{array}\right.$

SOLUTION: As we have seen in many previous examples, DSolve can be used to find a general solution of the equation and the solution to the initial-value problem, as done in gensol and partsol, respectively.

$$
\begin{aligned}
& \text { In [164]:= Clear[} \mathbf{x , y} \text {] } \\
& \text { gensol }=\text { DSolve }\left[y^{\prime}[x]+5 x^{4} y[x]==x^{4}, y[x], x\right] \\
& \text { Out }[164]=\left\{\left\{y[x] \rightarrow \frac{1}{5}+e^{-x^{5}} C[1]\right\}\right\} \\
& \text { In [165] : = partsol = DSolve }\left[\left\{\mathrm{y}^{\prime}[\mathrm{x}]+5 \mathrm{x}^{4} \mathrm{y}[\mathrm{x}]==\mathrm{x}^{4}\right.\right. \text {, } \\
& y[0]==-7\}, y[x], x] \\
& \text { Out }[165]=\left\{\left\{y[x] \rightarrow \frac{1}{5} e^{-x^{5}}\left(-36+e^{x^{5}}\right)\right\}\right\}
\end{aligned}
$$

We now graph the solution to the initial-value problem obtained in partsol with Plot in Figure 2-17.

```
In[166]:= Plot[y[x]/.partsol, {x, -1, 2}]
```

We can also use Mathematica to carry out the steps necessary to solve first-order linear equations. We begin by identifying the integrating factor $e^{\int 5 x^{4} d x}=e^{x^{5}}$, computed as follows with Integrate.

Figure 2-17 The solution of $d y / d x+5 x^{4} y=x^{4}$ that satisfies $y(0)=-7$

$$
\begin{aligned}
& \text { In }[167]:=\text { intfac }=\operatorname{Exp}\left[\int 5 x^{4} d \mathbf{x}\right] \\
& \text { Out }[167]=e^{x^{5}}
\end{aligned}
$$

Therefore, the equation can be written as

$$
\frac{d}{d x}\left(e^{x^{5}} y\right)=x^{4} e^{x^{5}}
$$

so that integration of both sides of the equation yields

$$
\begin{aligned}
& \qquad e^{x^{5}} y=\frac{1}{5} e^{x^{5}}+C . \\
& \text { In }[168]:=\text { rightside }=\int \text { intfacx }{ }^{4} d \mathbf{x} \\
& \text { Out }[168]=\frac{e^{x^{5}}}{5}
\end{aligned}
$$

Hence, a general solution is $y=\frac{1}{5}+C e^{-x^{5}}$. Note that we compute y by using Solve to solve the equation $e^{x^{5}} y=\frac{1}{5} e^{x^{5}}+C$ for y.

```
In [169]:= step1 \(=\) Solve \(\left[\operatorname{Exp}\left[\mathbf{x}^{5}\right] \mathbf{y}==\right.\) rightside \(\left.+\mathrm{c}, \mathrm{y}\right]\)
Out [169] \(=\left\{\left\{y \rightarrow \frac{1}{5} e^{-x^{5}}\left(5 c+e^{x^{5}}\right)\right\}\right\}\)
```

We find the unknown constant C by substituting the initial condition $y(0)=-7$ into the general solution and solving for C.

```
In[170]:= findc = Solve[-7 == step1\llbracket1, 1, 2\rrbracket/. x > 0]
Out [170]={{c}->-\frac{36}{5}}
```

Therefore, the solution to the initial-value problem is $y=\frac{1}{5}-\frac{36}{5} e^{-x^{5}}$.

```
In[171]:= step1\llbracket1, 1, 2\rrbracket/.findc\llbracket1\rrbracket
Out[171] = \frac{1}{5}}\mp@subsup{e}{}{-\mp@subsup{x}{}{5}}(-36+\mp@subsup{e}{}{\mp@subsup{x}{}{5}}
```

We can use DSolve to solve a first-order linear equation even if the coefficient functions are discontinuous or piecewise-defined. In such situations, it is often useful to take advantage of the unit step function. The unit step function, $\mathcal{U}(t)$, is defined by

$$
\mathcal{U}(t)=\left\{\begin{array}{l}
1, t \geq 0 \\
0, t<0
\end{array}\right.
$$

The Mathematica command UnitStep [t] returns $\mathcal{U}(t)$.

See J. D. Murray's Mathematical Biology, Springer-Verlag, 1990, pp. 645-649.

Note that we use lower-case letters to avoid any ambiguity with built-in objects like C and D.

EXAMPLE 2.5.3 (Drug Concentration): If a drug is introduced into the bloodstream in dosages $D(t)$ and is removed at a rate proportional to the concentration, the concentration $C(t)$ at time t is given by

$$
\left\{\begin{array}{l}
d C / d t=D(t)-k C \\
C(0)=0
\end{array}\right.
$$

where $k>0$ is the constant of proportionality.
Suppose that over a 24 -hour period, a drug is introduced into the bloodstream at a rate of $24 / t_{0}$ for exactly t_{0} hours and then stopped so that $D_{t_{0}}(t)=\left\{\begin{array}{l}24 / t_{0}, 0 \leq t \leq t_{0} \\ 0, t>t_{0}\end{array}\right.$. Calculate and then graph $C(t)$ on the interval $[0,30]$ if $k=0.05,0.10,0.15,0.20$, and 0.25 for $t_{0}=4,8,12,16$, and 25 . How does increasing t_{0} affect the concentration of the drug in the bloodstream? Then consider the effect of increasing k.

SOLUTION: To compute $C(t)$, we must keep in mind that $D_{t_{0}}(t)$ is a piecewise-defined function. In terms of the unit step function, $\mathcal{U}(t)$, $D_{t_{0}}(t)=\frac{24}{t_{0}} \mathcal{U}\left(t_{0}-t\right)$.

$$
\text { In }[172]:=d\left[t_{-}, t 0_{-}\right]=24 / t 0 \text { UnitStep }[t 0-t]
$$

$$
\text { Out }[172]=\frac{24 \text { UnitStep }[-t+t 0]}{t 0}
$$

For example, entering $d(t, 4)$ returns $D_{4}(t)=\left\{\begin{array}{l}6,0 \leq t \leq 4 \\ 0, t>4\end{array}\right.$.

```
In[173]:= d[t,4]
Out[173]= 6 UnitStep[4-t]
```

Given k and t_{0}, the function sol returns the solution to the initial-value
problem $\left\{\begin{array}{l}d C / d t=D_{t_{0}}(t)-k C \\ C(0)=0\end{array}\right.$.
In [174]: = Clear[sol, $k, \mathrm{c}, \mathrm{t}, \mathrm{t} 0$]
sol $\left[k_{-}, t 0_{-}\right]:=\operatorname{DSolve}\left[\left\{c^{\prime}[t]==d[t, t 0]-k c[t]\right.\right.$, $c[0]==0\}, c[t], t][[1,1,2]]$

Then, for $k=0.05$ we solve the initial-value probem $\left\{\begin{array}{l}d C / d t=D_{t_{0}}(t)-k C \\ C(0)=0\end{array}\right.$
for $t=4,8,12,16$, and 20 by applying sol to the list $\{4,8,12,16,20\}$.

```
In[175]:= toplot05 = Map[sol[0.05,#]&,
    {4, 8, 12, 16, 20}]
Out[175]={ e e0.05t}(-120.+120. e e.05t
    +146.568 UnitStep[-4.+1.t]
    -120.2.718288.05t UnitStep[-4.+1.t]),
    e}\mp@subsup{e}{}{-0.05t}(-60.+60.\mp@subsup{e}{}{0.05t
    +89.5095 UnitStep[-8.+1. t]
    -60.2.718280.05t UnitStep[-8.+1.t]),
    e}\mp@subsup{e}{}{-0.05t}(-40.+40.\mp@subsup{e}{}{0.05t
    +72.8848UnitStep[-12. + 1. t]
    -40.2.718288.05t}UnitStep[-12.+1.t])
    e}\mp@subsup{e}{}{-0.05t}(-30.+30. e e.05
    +66.7662 UnitStep[-16. + 1.t]
    -30.2.71828 0.05t UnitStep[-16.+1.t]),
    e}\mp@subsup{e}{}{-0.05t}(-24.+24. e e.05
    +65.2388 UnitStep[-20.+1.t]
    -24.2.718288.05t}\mathrm{ UnitStep[-20.+1.t])}
```

These solutions are graphed with Plot in Figure 2-18.

Figure 2-18 As t_{0} increases, the maximum concentration of the drug decreases

```
In[176]:= grays = Table[GrayLevel[i],
    {i,0,0.6,0.15}];
In[177]:= Plot[Evaluate[toplot05], {t, 0, 30},
    PlotRange- > {0, 30}, AspectRatio- > 1,
    PlotStyle- > grays]
```

Similar steps are repeated for $k=0.10,0.15,0.20$, and 0.25 by defining the function toplot. Given k, toplot [k] solves the initial-value problem $\left\{\begin{array}{l}d C / d t=D_{t_{0}}(t)-k C \\ C(0)=0\end{array}\right.$ for $t_{0}=4,8,12,16$, and 20.

```
In[178]:= Clear[toplot, sols]
    toplot[k_] := Map[sol[k, #]&, {4, 8, 12, 16, 20}];
```

We then apply toplot to the list $\{0.1,0.15,0.20,0.25\}$ naming the resulting lists of functions sols.

```
In[179]:= sols = Map[toplot, {0.1, 0.15, 0.2, 0.25}];
```

Each list of functions in sols is then graphed with Plot by applying the pure function

```
Plot[Evaluate[#], {t, 0, 30}, PlotRange ->
{0, 30}, AspectRatio -> 1, PlotStyle -> grays,
DisplayFunction -> Identity] &
to each element of sols with Map.
```

```
In[180]:= toshow = Map[Plot[Evaluate[#], {t, 0, 30},
    PlotRange- > {0, 30}, AspectRatio- > 1,
    PlotStyle- > grays,
    DisplayFunction- > Identity]&, sols]
Out[180]= {-Graphics-, -Graphics-, -Graphics-,
    -Graphics-}
```

Finally, all four graphs are shown together as a graphics array using Show and GraphicsArray in Figure 2-19.

```
In[181]:= Show[GraphicsArray[Partition[toshow, 2]]]
```

From the graphs, we see that as t_{0} is increased, the maximum concentration level decreases and occurs at later times, while increasing k increases the rate at which the drug is removed from the bloodstream.

Figure 2-19 $\quad C(t)$ for various values of t_{0} and k

If the integration cannot be carried out, the solution can often be approximated numerically by taking advantage of numerical integration techniques.

EXAMPLE 2.5.4: Graph the solution to the initial-value problem $y^{\prime}-$ $y \sin (2 \pi x)=1, y(0)=1$ on the interval $[0,2 \pi]$.

SOLUTION: Note that DSolve is successful in finding the solution to the initial-value problem even though the result contains unevaluated integrals.

$$
\begin{aligned}
\text { In }[182]:= & \text { Clear }[\mathbf{x}, \mathrm{y}, \text { partsol }] \\
& \text { partsol }=\operatorname{DSolve}\left[\left\{\mathrm{y}^{\prime}[\mathbf{x}]-\operatorname{Sin}[2 \pi \mathbf{x}] \mathrm{y}[\mathbf{x}]==1,\right.\right. \\
& \mathrm{y}[0]==1\}, \mathbf{y}[\mathbf{x}], \mathbf{x}] \\
\text { Out }[182]= & \left\{\left\{\mathrm { y } [\mathrm { x }] \rightarrow e ^ { - \frac { \operatorname { C o s } [2 \pi \mathrm { x }] } { 2 \pi } } \left(e^{\frac{1}{2 \pi}}-\int_{\mathrm{K} \$ 16674}^{0} e^{\frac{\operatorname{Cos}[2 \mathrm{~K} \$ 16673 \pi]}{2 \pi}} d \mathrm{~K} \$ 16673\right.\right.\right. \\
& \left.\left.\left.+\int_{\mathrm{K} \$ 16674}^{\mathrm{x}} e^{\frac{\operatorname{Cos}[2 \mathrm{~K} \$ 16673 \pi]}{2 \pi}} d \mathrm{~K} \$ 16673\right)\right\}\right\}
\end{aligned}
$$

We can evaluate the result for particular numbers. For example, entering

$$
\begin{aligned}
\text { In }[183]:= & \text { partsol } \mathbb{1}, 1,2 \rrbracket / . \mathbf{x} \rightarrow 1 \\
\text { Out }[183]= & e^{-\frac{1}{2 \pi}}\left(e^{\frac{1}{2 \pi}}-\int_{K \$ 16674}^{0} e^{\frac{\operatorname{Cos}[2 \operatorname{KS16673\pi]}}{2 \pi}} d K \$ 16673\right. \\
& \left.+\int_{K \$ 16674}^{1} e^{\frac{\operatorname{Cos}[2 \text { K\$16673 }]}{2 \pi}} d K \$ 16673\right)
\end{aligned}
$$

returns the value of the solution to the initial-value problem if $x=1$. This result is a bit complicated to understand so we use N to obtain a numerical approximation.

$$
\begin{aligned}
& \text { In }[184]:=\mathrm{N}\left[\mathrm{e}^{-\frac{1}{2 \pi}}\left(\mathrm{e}^{\frac{1}{2 \pi}}+\operatorname{BesselI}\left[0, \frac{1}{2 \pi}\right]\right)\right] \\
& \text { Out }[184]=1.85827
\end{aligned}
$$

To graph the solution on the interval $[0,2 \pi]$, we use NDSolve to generate a numerical solution to the initial-value problem valid for $0 \leq x \leq$ 2π. Generally, the command

```
NDSolve[{deq,ics},fun,{var,varmin,varmax}]
```

returns a numerical solution fun (which is a function of the variable var) of the differential equation deq that satisfies the initial conditions ics valid on the interval [varmin, varmax]. In some cases, the interval on which the solution is returned by NDSolve is smaller than the interval requested.

We see that the syntax for the NDSolve command is nearly the same as the syntax of the DSolve command although we must specify an interval on which we want the approximation to be valid. In this case, including $\{\mathrm{x}, 0,2 \pi\}$ in the NDSolve command instructs Mathematica to (try to) make the resulting numerical solution valid for $0 \leq x \leq 2 \pi$.

Figure 2-20 Plot of a numerical solution to a differential equation

```
In [185]:= numsol = NDSolve[{\mp@subsup{y}{}{\prime}[x]-\operatorname{Sin}[2\pix] y[x]==1,
    y[0] == 1}, y[x], {x, 0, 2\pi}]
Out [185]= {{y[x]-> InterpolatingFunction[{{0., 6.28319}},
    <>][X]}}
```

The resulting output is an InterpolatingFunction which represents an approximate function obtained through interpolation. We can evaluate the result for particular values of x as long as $0 \leq x \leq 2 \pi$. For example, entering

```
In[186]:= numsol/.x }->\mathrm{ 1
Out[186]= {{y[1] -> 1.85827}}
```

approximates the value of the solution to the initial-value problem if $x=1$. Thus, the result means that $y(1) \approx 1.85828$. We can graph the result returned by NDSolve in the same way as we graph results returned by DSolve: entering

```
In[187]:= Plot[numsol\llbracket1, 1, 2\rrbracket, {x, 0, 2\pi}]
```

graphs the solution to the initial-value problem on the interval [$0,2 \pi$] as shown in Figure 2-20. Note that we obtain the same graph by entering Plot [y[x]/.numsol, $\{x, 0,2 \mathrm{Pi}\}]$.

A particular solution is a specific solution to the equation that does not contain any arbitrary constants.

2.5.2 Variation of Parameters and the Method of Undetermined Coefficients

Observe that equation (2.4) is separable:

$$
\begin{aligned}
\frac{d y}{d x}+p(x) y & =0 \\
\frac{1}{y} d y & =-p(x) d x \\
\ln |y| & =-\int p(x) d x+C \\
y & =C e^{-\int p(x) d x} .
\end{aligned}
$$

Notice that any constant multiple of a solution to a linear homogeneous equation is also a solution. Now suppose that y is any solution of equation (2.3) and y_{p} is a particular solution of equation (2.3). Then,

$$
\begin{aligned}
\left(y-y_{p}\right)^{\prime}+p(x)\left(y-y_{p}\right) & =y^{\prime}+p(x) y-\left(y_{p}{ }^{\prime}+p(x) y_{p}\right) \\
& =q(x)-q(x)=0 .
\end{aligned}
$$

Thus, $y-y_{p}$ is a solution to the corresponding homogeneous equation of equation (2.3). Hence,

$$
\begin{aligned}
y-y_{p} & =C e^{-\int p(x) d x} \\
y & =C e^{-\int p(x) d x}+y_{p} \\
y & =y_{h}+y_{p},
\end{aligned}
$$

where $y_{h}=C e^{-\int p(x) d x}$. That is, a general solution of equation (2.3) is

$$
y=y_{h}+y_{p},
$$

where y_{p} is a particular solution to the nonhomogeneous equation and y_{h} is a general solution to the corresponding homogeneous equation. Thus, to solve equation (2.3), we need to first find a general solution to the corresponding homogeneous equation, y_{h}, which we can accomplish through separation of variables, and then find a particular solution, y_{p}, to the nonhomogeneous equation.

If y_{h} is a solution to the corresponding homogeneous equation of equation (2.3) then for any constant $C, C y_{h}$ is also a solution to the corresponding homogeneous equation. Hence, it is impossible to find a particular solution to equation (2.3) of this form. Instead, we search for a particular solution of the form $y_{p}=u(x) y_{h}$, where $u(x)$ is not a constant function. Assuming that a particular solution, y_{p}, to equation (2.3) has the form $y_{p}=u(x) y_{h}$, differentiating gives us

$$
y_{p}^{\prime}=u^{\prime} y_{h}+u y_{h}^{\prime}
$$

and substituting into equation (2.3) results in

$$
y_{p}{ }^{\prime}+p(x) y_{p}=u^{\prime} y_{h}+u y_{h}{ }^{\prime}+p(x) u y_{h}=q(x) .
$$

Because $u y_{h}{ }^{\prime}+p(x) u y_{h}=u\left[y_{h}{ }^{\prime}+p(x) y_{h}\right]=u \cdot 0=0$, we obtain

$$
\begin{aligned}
u^{\prime} y_{h} & =q(x) \\
u^{\prime} & =\frac{1}{y_{h}} q(x) \\
u^{\prime} & =e^{\int p(x) d x} q(x) \\
u & =\int e^{\int p(x) d x} q(x) d t
\end{aligned}
$$

so

$$
y_{p}=u(x) y_{h}=C e^{-\int p(x) d x} \int e^{\int p(x) d x} q(x) d x .
$$

Because we can include an arbitrary constant of integration when evaluating $\int e^{\int p(x) d x} q(x) d x$, it follows that we can write a general solution of equation (2.3) as

$$
\begin{equation*}
y=e^{-\int p(x) d x} \int e^{\int p(x) d x} q(t) d t . \tag{2.6}
\end{equation*}
$$

EXAMPLE 2.5.5 (Exponential Growth): Let $y=y(t)$ denote the size of a population at time t. If y grows at a rate proportional to the amount present, y satisfies

$$
\begin{equation*}
\frac{d y}{d t}=\alpha y, \tag{2.7}
\end{equation*}
$$

where α is the growth constant. If $y(0)=y_{0}$, using equation (2.6) results in $y=y_{0} e^{\alpha t}$. We use DSolve to confirm this result.

```
In [188]: \(=\) DSolve \(\left[\left\{y^{\prime}[t]==\alpha y[t], y[0]==y 0\right\}, y[t], t\right]\)
Out \([188]=\left\{\left\{y[t] \rightarrow e^{\mathrm{t}}{ }^{\alpha} \mathrm{y} 0\right\}\right\}\)
```

EXAMPLE 2.5.6: Solve each of the following equations: (a) $d y / d t=$ $k\left(y-y_{s}\right), y(0)=y_{0}, k$ and y_{s} constant and (b) $y^{\prime}-2 t y=t$.

SOLUTION: By hand, we rewrite the equation and obtain

$$
\frac{d y}{d t}-k y=-k y_{s}
$$

Exponential growth is discussed in more detail in Section 3.2.I.
$d y / d t=k\left(y-y_{s}\right)$ models
Newton's Law of Cooling: the rate at which the temperature, $y(t)$, changes in a heating/cooling body is proportional to the difference between the temperature of the body and the constant temperature, y_{s}, of the surroundings.
Newton's Law of Cooling is discussed in more detail in Section 3.3.

This will turn out to be a lucky guess. If there is not a solution of this form, we would not find one of this form.

Figure 2-21 The temperature of the body approaches the temperature of its surroundings

A general solution of the corresponding homogeneous equation

$$
\frac{d y}{d t}-k y=0
$$

is $y_{h}=C e^{k t}$. Because k and $-k y_{s}$ are constants, we suppose that a particular solution of the nonhomogeneous equation, y_{p}, has the form $y_{p}=A$, where A is a constant.

Assuming that $y_{p}=A$, we have $y_{p}^{\prime}=0$ and substitution into the nonhomogeneous equation gives us

$$
\frac{d y_{p}}{d t}-k y_{p}=-k A=-k y_{s} \quad \text { so } \quad A=y_{s} .
$$

Thus, a general solution is $y=y_{h}+y_{p}=C e^{k t}+y_{s}$. Applying the initial condition $y(0)=y_{0}$ results in $y=y_{s}+\left(y_{0}-y_{s}\right) e^{k t}$.

We obtain the same result with DSolve. We graph the solution satisfying $y(0)=75$ assuming that $k=-1 / 2$ and $y_{s}=300$ in Figure 2-21. Notice that $y(t) \rightarrow y_{s}$ as $t \rightarrow \infty$.

```
In[189]:= sola= DSolve[{y'[t] == k(y[t]-ys),
    y[0] == y0},y[t],t]
Out [189]={{y[t] -> e k t (y0 - ys) + ys }}
In[190]:= tp = sola[[1, 1, 2]]/.{k->-1/2,
    ys-> 300, y0- > 75}; Plot[tp, {t, 0, 10}]
```

(b) The equation is in standard form and we identify $p(t)=-2 t$. Then, the integrating factor is $\mu(t)=e^{\int p(t) d t}=e^{-t^{2}}$. Multiplying the equation by the integrating factor, $\mu(t)$, results in

$$
e^{-t^{2}}\left(y^{\prime}-2 t y\right)=t e^{-t^{2}} \quad \text { or } \quad \frac{d}{d t}\left(y e^{-t^{2}}\right)=t e^{-t^{2}}
$$

Integrating gives us

$$
y e^{-t^{2}}=-\frac{1}{2} e^{-t^{2}}+C \quad \text { or } \quad y=-\frac{1}{2}+C e^{t^{2}} .
$$

We confirm the result with DSolve.

$$
\begin{aligned}
& \text { In }[191]:=\text { DSolve }\left[y^{\prime}[t]-2 t \quad y[t]==t, y[t], t\right] \\
& \text { Out }[191]=\left\{\left\{y[t] \rightarrow-\frac{1}{2}+\mathrm{e}^{\mathrm{t}^{2}} \mathrm{C}[1]\right\}\right\}
\end{aligned}
$$

Application: Antibiotic Production

When you are injured or sick, your doctor may prescribe antibiotics to prevent or cure infections. In the journal article "Changes in the Protein Profile of Streptomyces Griseus during a Cycloheximide Fermentation" we see that production of the antibiotic cycloheximide by Streptomyces is typical of antibiotic production. During the production of cycloheximide, the mass of Streptomyces grows relatively quickly and produces little cycloheximide. After approximately 24 hours, the mass of Streptomyces remains relatively constant and cycloheximide accumulates. However, once the level of cycloheximide reaches a certain level, extracellular cycloheximide is degraded (feedback inhibited). One approach to alleviating this problem to maximize cycloheximide production is to continuously remove extracellular cycloheximide. The rate of growth of Streptomyces can be described by the separable equation

$$
\frac{d X}{d t}=\mu_{\max }\left(1-\frac{1}{X_{\max }} X\right) X
$$

where X represents the mass concentration in $\mathrm{g} / \mathrm{L}, \mu_{\text {max }}$ is the maximum specific growth rate, and $X_{\max }$ represents the maximum mass concentration. We now solve the initial-value problem $\left\{\begin{array}{l}d X / d t=\mu_{\max }\left(1-\frac{1}{X_{\max }} X\right) X \quad \text { with DSolve, naming the } \\ X(0)=1\end{array}\right.$ result soli.

$$
\begin{aligned}
\text { In }[192]:= & \text { Clear }[\mathbf{x}] \\
& \text { soll }=\text { DSolve }\left[\left\{\mathbf{x}^{\prime}[\mathrm{t}]==\mu\left(1-\frac{\mathbf{x}[\mathrm{t}]}{\mathbf{x m a x}}\right) \mathbf{x}[\mathrm{t}],\right.\right. \\
& \mathbf{x}[0]==1\}, \mathbf{x}[\mathrm{t}], \mathrm{t}] \\
\text { Out }[192]= & \left\{\left\{\mathbf{x}[\mathrm{t}] \rightarrow \frac{\mathbb{e}^{\mu t} \mathrm{xmax}}{-1+\mathbb{e}^{\mu t}+\mathrm{xmax}}\right\}\right\}
\end{aligned}
$$

Source: Kevin H. Dykstra and Henry Y. Wang,
"Changes in the Protein Profile of Streptomyces Griseus during a Cycloheximide Fermentation," Biochemical Engineering V, Annals of the New York Academy of Sciences, Volume 56, New York Academy of Sciences (I987), pp. 5II-522.

Note that this equation can be converted to a linear equation with the substitution $y=X^{-1}$.

Figure 2-22 Plot of the mass concentration, $x(t)$

Experimental results have shown that $\mu_{\max }=0.3 \mathrm{hr}^{-1}$ and $X_{\max }=10 \mathrm{~g} / \mathrm{L}$. For these values, we use Plot to graph $X(t)$ on the interval [0,24] in Figure 2-22. Then, we use Table and TableForm to determine the mass concentration at the end of $4,8,12,16,20$, and 24 hours.

```
In[193]:= }\mu=0.3; xmax = 10;
In[194]:= Plot[Evaluate[x[t]/.sol1], {t, 0, 24}]
In[195]:= TableForm[Table[{t, sol1\llbracket1, 1, 2\rrbracket},{t, 4, 24, 4}]]
    4 2.69487
    8.50521
Out[195] = llll
    20 9.78178
    249.93326
```

The rate of accumulation of cycloheximide is the difference between the rate of synthesis and the rate of degradation:

$$
\frac{d P}{d t}=R_{s}-R_{d} .
$$

It is known that $R_{d}=K_{d} P$, where $K_{d}=5 \times 10^{-3} \mathrm{~h}^{-1}$, so $d P / d t=R_{s}-R_{d}$ is equivalent to $d P / d t=R_{s}-K_{d} P$. Furthermore,

$$
R_{s}=Q_{p o} E X\left(1+\frac{P}{K_{l}}\right)^{-1}
$$

where $Q_{p o}$ represents the specific enzyme activity with value $Q_{p o} \approx 0.6 \mathrm{gCH} / \mathrm{g}$ protein $\cdot \mathrm{h}$ and K_{l} represents the inhibition constant. E represents the intracellular

Figure 2-23 Accumulation of the antibiotic
concentration of an enzyme which we will assume is constant. For large values of K_{l} and $t, X(t) \approx 10$ and $\left(1+P / K_{l}\right)^{-1} \approx 1$. Thus, $R_{s} \approx 10 Q_{p o} E$ so

$$
\frac{d P}{d t}=10 Q_{p o} E-K_{d} P
$$

After defining K_{d} and $Q_{p o}$, we solve the initial-value problem $\left\{\begin{array}{l}d P / d t=10 Q_{p o} E-K_{d} P \\ p(24)=0\end{array}\right.$ and then graph $\frac{1}{E} P(t)$ on the interval $[0,24]$ in Figure 2-23.

```
In[196]:= Clear[p]
    k
    Qpo}=0.6
    sol2 = DSolve [{p'[t] == 10Q po cape - k
    p[24] == 0},p[t],t]//Chop
Out[196] = {{p[t]->(-1353.cape + 1200.2.718280.005t}\mathrm{ cape) }\mp@subsup{\mathbb{e}}{}{-0.005t}}
In[197]:= toplot = Expand[\frac{sol2[[1, 1, 2]]}{cape}]
Out[197]= -1353. 央0.005t}+1200.2.718280.005t e e 0.005t
In[198]:= Plot[toplot,{t, 24, 1000}]
```

From the graph, we see that the total accumulation of the antibiotic approaches a limiting value, which in this case is 1200 .

2.6 Numerical Approximations of Solutions to First-Order Equations

2.6.I Built-In Methods

Numerical approximations of solutions to differential equations can be obtained with NDSolve, which is particularly useful when working with nonlinear equations for which DSOlve alone is unable to find an explicit or implicit solution. The command

$$
\operatorname{NDSolve}\left[\left\{y^{\prime}[t]==f[t, y[t]], y[t 0]==y 0\right\}, y[t],\{t, a, b\}\right]
$$

attempts to generate a numerical solution of

$$
\left\{\begin{array}{l}
\frac{d y}{d t}=f(t, y) \\
y\left(t_{0}\right)=y_{0}
\end{array}\right.
$$

valid for $a \leq t \leq b$. In some cases, the interval on which the solution is returned by NDSolve is smaller than the interval requested. You can obtain basic information regarding NDSolve by entering ?NDSolve or detailed information by accessing Mathematica's on-line help facility by selecting Help from the Mathematica menu.

EXAMPLE 2.6.1: Consider

$$
\frac{d y}{d t}=\left(t^{2}-y^{2}\right) \sin y, y(0)=-1 .
$$

(a) Determine y (1). (b) Graph $y(t),-1 \leq t \leq 10$.

SOLUTION: We first remark that DSolve can neither exactly solve the differential equation $y^{\prime}=\left(t^{2}-y^{2}\right) \sin y$ nor find the solution that satisfies $y(0)=-1$.

```
In[199]:= sol = DSolve[y'[t] == (t^2-y[t]^2) Sin[t],
    y[t],t]
Out[199]= BoxData(DSolve[y'[t] == Sin[t] (t }\mp@subsup{\textrm{t}}{}{2}-\textrm{y}[\textrm{t}\mp@subsup{]}{}{2})
    y[t],t])
```


Figure 2-24 Graph of the solution to $y^{\prime}=\left(t^{2}-y^{2}\right) \sin y, y(0)=-1$

```
In[200]:= sol =
    DSolve[{\mp@subsup{y}{}{\prime}[t]==(t^2-y[t]^2) Sin[t],
    y[0] == y0},y[t],t]
Out[200]= BoxData(DSolve[{\mp@subsup{y}{}{\prime}[t]==Sin[t] (t2 - y[t] 2),
    y[0] == y0},y[t],t])
```

However, we obtain a numerical solution valid for $0 \leq t \leq 1000$ using the NDSolve function.

```
In[201]:= sol = NDSolve[{y'[t] == (t^2-y[t]^2) Sin[y[t]],
    y[0] == -1}, y[t], {t,0,1000}]
```

```
Out[201]= BoxData({{y[t] }
    InterpolatingFunction[{{0., 1000.}},
    " <> "][t]}})
```

Entering sol /.t->1 evaluates the numerical solution if $t=1$.

```
In[202]:= sol /.t- > 1
Out [202]= {{y[1] ->-0.766014}}
```

The result means that $y(1) \approx-.766$. We use the Plot command to graph the solution for $0 \leq t \leq 10$ in Figure 2-24.

```
In[203]:= Plot[Evaluate[y[t]/.sol], {t, 0, 10}]
```

EXAMPLE 2.6.2: Graph the solution to the initial-value problem

$$
\left\{\begin{array}{l}
d y / d x=\sin (2 x-y) \\
y(0)=0.5
\end{array}\right.
$$

on the interval $[0,15]$. What is the value of $y(1)$?

SOLUTION: We use NDSolve to approximate the solution to the initial-value problem, naming the resulting output numsol. The resulting InterpolatingFunction is a procedure that represents an approximate function obtained through interpolation.

```
In[204]:= Clear[x,y]
    numsol = NDSolve [{y'[x] == Sin[2x-y[x]],
    y[0] == 0.5},y[x], {x, 0, 15}]
Out [204]= {{y[x] -> InterpolatingFunction[{{0., 15.}},
    <>][x]}}
```

We can evaluate numsol for particular values of x. For example, entering

```
In[205]:= numsol/.x }->\mathrm{ 1
Out[205]= {{y[1] }->0.875895}
```

returns a list corresponding to the value of $y(x)$ if $x=1$. We interpret the result to mean that $y(1) \approx 0.875895$. We then graph the solution returned by NDSolve using Plot in the same way that we graph solutions returned by DSolve. As you probably expect, entering Plot [numsol $[[1,1,2]],\{x, 0,15\}]$ produces the same graph as the one shown in Figure 2-25 generated by the following Plot command.

```
In[206]:= p1 = Plot[y[x]/.numsol, {x, 0, 15}]
```

One way to graph solutions that satisfy different initial conditions is to define a function as we do here. Given i, sol [i] returns a numerical solution to the initial-value problem $y^{\prime}=\sin (2 x-y), y(0)=i$.

```
In[207]:= Clear[\mathbf{x, y, i, sol]}
    sol[i_] := NDSolve[{y'[x] == Sin[2x-y[x]],
    y[0] == i},y[x], {x, 0, 7}];
```


Figure 2-25 Graph of the solution to $y^{\prime}=\sin (2 x-y), y(0)=0.5$

For example, to use sol, we first use Table to define inits to be the list of numbers $i / 2$ for $i=1,2, \ldots, 5$ and then use Map to apply sol to the list of numbers inits. The command

```
interpfunctions=Map[sol,inits]
```

computes sol [i] for each value of i in inits. The result is a nested list consisting of InterpolatingFunction's.

```
In[208]:= inits = Table[\frac{i}{2},{i, 1, 10}];
In[209]:= interpfunctions = Map[sol, inits];
```

We graph the set of InterpolatingFunction's with Plot in the same way as we graph other sets of functions. See Figure 2-26.

```
In[210]:= plot1 = Plot[Evaluate[y[x]/. interpfunctions],
    {x, 0, 7}, PlotRange- > {0, 7},
    AspectRatio- > 1,
    PlotStyle- > GrayLevel[0]]
```

Last, we show these graphs together with the direction field associated with the equation in Figure 2-27.

Figure 2-26 Various solutions of $y^{\prime}=\sin (2 x-y)$

Figure 2-27 Direction field together with various solutions of $y^{\prime}=\sin (2 x-y)$

```
In[211]:= << Graphics`PlotField`
    pvf= PlotVectorField[{1, Sin[2x-y]},
        {x, 0, 7}, {y, 0, 7}, Frame- > False,
        Axes- > Automatic,
        AxesOrigin- > {0, 0}, PlotPoints- > 30,
        HeadLength- > 0,
        ScaleFunction- > (1&),
        DisplayFunction- > Identity,
        DefaultColor- > GrayLevel[0.4]];
In[212]:= Show[pvf,plot1,
    DisplayFunction- > $DisplayFunction]
```


Application: Modeling the Spread of a Disease

Suppose that a disease is spreading among a population of size N. In some diseases, like chickenpox, once an individual has had the disease, the individual becomes immune to the disease. In other diseases, like most venereal diseases, once an individual has had the disease and recovers from the disease, the individual does not become immune to the disease; subsequent encounters can lead to recurrences of the infection.

Let $S(t)$ denote the percent of the population susceptible to a disease at time t, $I(t)$ the percent of the population infected with the disease, and $R(t)$ the percent of the population unable to contract the disease. For example, $R(t)$ could represent the percent of persons who have had a particular disease, recovered, and have subsequently become immune to the disease. In order to model the spread of various diseases, we begin by making several assumptions and introducing some notation.

1. Susceptible and infected individuals die at a rate proportional to the number of susceptible and infected individuals with proportionality constant μ called the daily death removal rate; the number $1 / \mu$ is the average lifetime or life expectancy.
2. The constant λ represents the daily contact rate: on average, an infected person will spread the disease to λ people per day.
3. Individuals recover from the disease at a rate proportional to the number infected with the disease with proportionality constant γ. The constant γ is called the daily recovery removal rate; the average period of infectivity is $1 / \gamma$.
4. The contact number $\sigma=\lambda(\gamma+\mu)$ represents the average number of contacts an infected person has with both susceptible and infected persons.

Source: Herbert W. Hethcote, "Three Basic Epidemiological Models," in Applied Mathematical Ecology, edited by Simon A. Levin, Thomas G. Hallan, and Louis J. Gross, New York, Springer-Verlag (1989), pp. 119-143.

If a person becomes susceptible to a disease after recovering from it (like gonorrhea, meningitis, and streptococcal sore throat), then the percent of persons susceptible to becoming infected with the disease, $S(t)$, and the percent of people in the population infected with the disease, $I(t)$, can be modeled by the system of differential equations

$$
\left\{\begin{array}{l}
\frac{d S}{d t}=-\lambda I S+\gamma I+\mu-\mu S \tag{2.8}\\
\frac{d I}{d t}=\lambda I S-\gamma I-\mu I \\
S(0)=S_{0}, I(0)=I_{0}, S(t)+I(t)=1
\end{array}\right.
$$

This model is called an SIS model (susceptible-infected-susceptible model) because once an individual has recovered from the disease, the individual again becomes susceptible to the disease.

We can write $d I / d t=\lambda I S-\gamma I-\mu I$ as $d I / d t=\lambda I(1-I)-\gamma I-\mu I$ because $S(t)=1-I(t)$ and thus we need to solve the initial-value problem

$$
\left\{\begin{array}{l}
\frac{d I}{d t}=[\lambda-(\gamma+\mu)] I-\lambda I^{2} \tag{2.9}\\
I(0)=I_{0} .
\end{array}\right.
$$

In the following, we use i to represent I, thus avoiding conflict with the built-in constant $I=\sqrt{-1}$. After defining eq, we use DSolve to find the solution to the initial-value problem.

$$
\begin{aligned}
& \operatorname{In}[213]:=e q=i^{\prime}[t]+(\gamma+\mu-\lambda) i[t]==-\lambda i[t]^{2} ; \\
& \operatorname{In}[214]:=\text { sol }=\text { DSolve[\{eq,i[0]==i0\},i[t],t]} \\
& \text { Out }[214]=\left\{\left\{i[t] \rightarrow-\frac{45 \cdot\left(\frac{i 0}{9 .+5 \cdot i 0}\right)^{1 .}}{-5 \cdot e^{0.9 t}+25 \cdot\left(\frac{i 0}{9 .+5 \cdot i 0}\right)^{1 .}}\right\}\right\}
\end{aligned}
$$

We can use this result to see how a disease might spread through a population. For example, we compute the solution to the initial-value problem, which is extracted from sol with sol [$[1,1,2]]$, if $\lambda=0.5, \gamma=0.75$, and $\mu=0.65$. In this case, we see that the contact number is $\sigma=\lambda(\gamma+\mu) \approx 0.357143$.

$$
\begin{aligned}
\operatorname{In}[215]:=\lambda & =0.5 ; \\
\gamma & =0.75 ; \\
\mu & =0.65 ; \\
\sigma & =\frac{\lambda}{\gamma+\mu} \\
& \text { sol } \llbracket 1,1,2 \rrbracket
\end{aligned}
$$

Figure 2-28 The disease is removed from the population

$$
\begin{aligned}
& \text { Out }[215]=0.357143 \\
& \text { Out }[215]=-\frac{45 \cdot\left(\frac{10}{9 .+5 \cdot i 0}\right)^{1 .}}{-5 \cdot e^{0.9 t}+25 \cdot\left(\frac{10}{9 \cdot+5 \cdot i 0}\right)^{1 .}}
\end{aligned}
$$

Next, we use Table to substitute various initial conditions into sol [$[1,1,2]$], naming the resulting set of nine functions toplot1. We then graph the functions in toplot1 for $0 \leq t \leq 5$ in Figure 2-28. Apparently, regardless of the initial percent of the population infected, under these conditions, the disease is eventually removed from the population. This makes sense because the contact number is less than one.

```
In[216]:= toplot1 = Table[sol\llbracket1, 1, 2],{i0, 0.1,0.9,0.1}];
In[217]:= Plot[Evaluate[toplot1], {t, 0, 5}]
```

On the other hand, if $\lambda=1.5, \gamma=0.75$, and $\mu=0.65$, we see that the contact number is $\sigma=\lambda(\gamma+\mu)$.

```
In[218]:= Clear [\lambda,\gamma,\mu,\sigma]
    eq = i'[t] + (\gamma+\mu-\lambda) i[t] == - \lambda i [t] ' }\mp@subsup{}{}{2}
    sol = DSolve[{eq, i[0] == i0},i[t], t];
    \lambda=1.5;
    \gamma=0.75;
    \mu=0.65;
    \sigma=}\frac{\lambda}{\gamma+\mu
    sol\llbracket1, 1, 2\rrbracket
Out[218]= 1.07143
```


Figure 2-29 The disease persists

```
Out \([218]=\left(0.1 e^{1.5} \mathrm{t}\right.\) io \() /\)
    \(\left(0.1 e^{1.4 t_{-}}\right.\)
    \(1.5 e^{1.4} \mathrm{t}\) i0 \(+1.5 \mathrm{e}^{1.5 \mathrm{t}} \mathrm{i} 0\) )
```

Proceeding as before, we graph the solution using different initial conditions in Figure 2-29. In this case, we see that no matter what percent of the population is initially infected, a certain percent of the population is always infected. This makes sense because the contact number is greater than one. In fact, it is a theorem that

```
            lim
In[219]:= toplot2 = Table[sol\llbracket1, 1, 2], {i0, 0.1, 0.9, 0.1}];
    p1 = Plot[Evaluate[toplot2], {t, 0, 5},
        DisplayFunction- > Identity];
In[220]:= toplot3 = Table[sol\llbracket1, 1, 2\rrbracket, {i0, 0.01, 0.09,0.01}];
    p2 = Plot[Evaluate[toplot3], {t, 0, 20},
        DisplayFunction- > Identity];
```

In [221]: $=$ Show[GraphicsArray[\{p1, p2\}]]

The incidence of some diseases, such as measles, rubella, and gonorrhea, oscillates seasonally. To model these diseases, we may wish to replace the constant contact rate λ, by a periodic function $\lambda(t)$. For example, to graph the solution to the SIS model for various initial conditions if (a) $\lambda(t)=3-2.5 \sin 6 t, \gamma=2$, and $\mu=1$ and (b) $\lambda(t)=3-2.5 \sin 6 t, \gamma=1$, and $\mu=1$ we proceed as follows. For (a), we begin by defining λ, γ, and μ, and eq.

```
In[222]:= Clear[\lambda,i,t,\gamma,\mu]
    \lambda[t_] = 3-2.5 Sin[6t];
            \gamma=2;
            \mu=1;
        eq = i'[t] == (\lambda[t] - (\gamma+\mu)) i[t] - \lambda[t] i[t] ' 
Out[222]= i'[t] == -i[t] ' (3-2.5 Sin[6t]) - 2.5i[t] Sin[6t]
```

We will graph the solutions satisfying the initial conditions $I(0)=I_{0}$ for $I_{0}=0.1,0.2$, $\ldots, 0.9$. We begin by defining graph. Given io, graph [i0] graphs the solution to the initial-value problem

$$
\left\{\begin{array}{l}
\frac{d I}{d t}=[\lambda(t)-(\gamma+\mu)] I-\lambda(t) I^{2} \\
I(0)=I_{0}
\end{array}\right.
$$

on the interval $[0,10]$. The resulting graphics object is not displayed because we include the option DisplayFunction->Identity in the Plot command. Next, we use Table to define the list of numbers inits, corresponding to the initial conditions, and then use Map to apply the function graph to the list of numbers inits. We see that the result is a list of nine graphics objects that we name toshow.

```
In[223]:= graph[i0_] := Module[{numsol},
    numsol = NDSolve[{eq, i[0] == i0}, i[t], {t, 0, 10}];
    Plot[i[t]/.numsol, {t, 0, 10},
    DisplayFunction }->\mathrm{ Identity]]
In[224]:= inits = Table[i, {i, 0.1,0.9,0.1}];
    toshow = Map[graph, inits];
```

Finally, we use Show together with the option DisplayFunction-> \$DisplayFunction to view the list of nine graphs toshow in Figure 2-30.

```
In[225]:= Show[toshow, DisplayFunction }->\mathrm{ $DisplayFunction,
    PlotRange }->{0,1}
```

For (b), we proceed in the same manner as in (a). See Figure 2-31.

Figure 2-30 The disease is slowly eliminated from the population

Figure 2-31 The disease persists periodically in the population

```
In[226]:= Clear[\lambda,i,t,\gamma,\mu]
    \lambda[t_] = 3-2.5 Sin[6t];
        \gamma=1;
        \mu=1;
In[227]:= eq = i'[t] == (\lambda[t] - (\gamma+\mu)) i[t] - \lambda[t] i[t] '
Out[227]= i'[t] == i[t] (1-2.5 Sin[6t]) - i[t]}\mp@subsup{}{}{2}(3-2.5\operatorname{Sin}[6t]
In[228]:= graph[i0_] := Module[{numsol},
    numsol = NDSolve[{eq, i[0] == i0}, i[t], {t, 0, 10}];
    Plot[i[t]/.numsol, {t, 0, 10},
    DisplayFunction }->\mathrm{ Identity]]
```

```
In[229]:= inits = Table[i,{i,0.1,0.9,0.1}];
    toshow = graph/@inits;
In[230]:= Show[toshow, DisplayFunction }->\mathrm{ $DisplayFunction,
    PlotRange }->{0,1}
```


2.6.2 Other Numerical Methods

In other cases, you may wish to implement your own numerical algorithms to approximate solutions of differential equations. We briefly discuss three familiar methods (Euler's method, the improved Euler's method, and the Runge-Kutta method) and illustrate how to implement these algorithms using Mathematica. Details regarding these and other algorithms, including discussions of the error involved in implementing them, can be found in most numerical analysis texts or other references like Zwillinger's Handbook of Differential Equations [28].

Euler's Method

In many cases, we cannot obtain an explicit formula for the solution to an initialvalue problem of the form

$$
\left\{\begin{array}{l}
\frac{d y}{d x}=f(x, y) \\
y\left(x_{0}\right)=y_{0}
\end{array}\right.
$$

but we can approximate the solution using a numerical method like Euler's method, which is based on tangent line approximations. Let h represent a small change, or step size, in the independent variable x. Then, we approximate the value of y at the sequence of x-values, $x_{1}, x_{2}, \ldots, x_{n}$, where

$$
\begin{aligned}
x_{1} & =x_{0}+h \\
x_{2} & =x_{1}+h=x_{0}+2 h \\
x_{3} & =x_{2}+h=x_{0}+3 h \\
\quad & \\
x_{n} & =x_{n-1}+h=x_{0}+n h .
\end{aligned}
$$

The slope of the tangent line to the graph of y at each value of x is found with the differential equation $y^{\prime}=d y / d x=f(x, y)$. For example, at $x=x_{0}$, the slope of the tangent line is $f\left(x_{0}, y\left(x_{0}\right)\right)=f\left(x_{0}, y_{0}\right)$. Therefore, the tangent line to the graph of y is

$$
y-y_{0}=f\left(x_{0}, y_{0}\right)\left(x-x_{0}\right) \quad \text { or } \quad y=f\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+y_{0} .
$$

Using this line to find the value of y, which we call y_{1}, at x_{1} then yields

$$
y_{1}=f\left(x_{0}, y_{0}\right)\left(x_{1}-x_{0}\right)+y_{0}=h f\left(x_{0}, y_{0}\right)+y_{0} .
$$

Therefore, we obtain the approximate value of y at x_{1}. Next, we use the point $\left(x_{1}, y_{1}\right)$ to estimate the value of y when $x=x_{2}$. Using a similar procedure, we approximate the tangent line at $x=x_{1}$ with

$$
y-y_{1}=f\left(x_{1}, y_{1}\right)\left(x-x_{1}\right) \quad \text { or } \quad y=f\left(x_{1}, y_{1}\right)\left(x-x_{1}\right)+y_{1} .
$$

Then, at $x=x_{2}$,

$$
y_{2}=f\left(x_{1}, y_{1}\right)\left(x_{2}-x_{1}\right)+y_{1}=h f\left(x_{1}, y_{1}\right)+y_{1} .
$$

Continuing with this procedure, we see that at $x=x_{n}$,

$$
\begin{equation*}
y_{n}=h f\left(x_{n-1}, y_{n-1}\right)+y_{n-1} . \tag{2.10}
\end{equation*}
$$

Using this formula, we obtain a sequence of points of the form $\left(x_{n}, y_{n}\right), n=1,2, \ldots$ where y_{n} is the approximate value of $y\left(x_{n}\right)$.

```
In [231] : \(=\mathbf{x}_{\mathrm{e}}\left[\mathrm{n}_{-}\right]=\mathbf{x}_{0}+\mathrm{nh}\);
    \(y_{e}\left[n_{-}\right]:=y_{e}[n]=h f\left[x_{e}[n-1], y_{e}[n-1]\right]+y_{e}[n-1] ;\)
    \(y_{e}[0]=y_{0} ;\)
```

EXAMPLE 2.6.3: Use Euler's method with (a) $h=0.1$ and (b) $h=0.05$ to approximate the solution of $y^{\prime}=x y, y(0)=1$ on $0 \leq x \leq 1$. Also, determine the exact solution and compare the results.

SOLUTION: Because we will be considering this initial-value problem in subsequent examples, we first determine the exact solution with DSolve and graph the result with Plot, naming the graph p1.

```
In[232]:= Clear[x,y]
    exactsol = DSolve[{y'[x] == xy[x],
    y[0] == 1},y[x],x]
Out[232]={{y[x]->\mp@subsup{e}{}{\frac{\mp@subsup{x}{}{2}}{2}}}}
In[233]:= p1 = Plot[e}\mp@subsup{e}{}{\frac{\mp@subsup{x}{}{2}}{2}},{x,0,1}
    PlotStyle }->\mathrm{ GrayLevel[0.4],
    DisplayFunction- > Identity];
```

To implement Euler's method (2.10), we note that $f(x, y)=x y, x_{0}=0$, and $y_{0}=1$. (a) With $h=0.1$, we have the formula

$$
y_{n}=h f\left(x_{n-1}, y_{n-1}\right)+y_{n-1}=0.1 x_{n-1} y_{n-1}+y_{n-1} .
$$

For $x_{1}=x_{0}+h=0.1$, we have

$$
y_{1}=0.1 x_{0} y_{0}+y_{0}=0.1 \cdot 0 \cdot 1+1=1 .
$$

Similarly, for $x_{2}=x_{0}+2 h=0.2$,

$$
y_{2}=0.1 x_{1} y_{1}+y_{1}=0.1 \cdot 0.1 \cdot 1+1=1.01 .
$$

In the following, we define f, h, x, and y to calculate y_{n} given by equation (2.10). We define ye using the form
ye [n_] : =ye [n] = . . .
so that Mathematica "remembers" the values of ye computed, and thus, when computing ye [n], Mathematica need not recompute ye [n-1] if ye [n-1] has previously been computed.

```
In [234]:= \(\mathbf{f}\left[\mathbf{x}_{-}, \mathbf{y}_{-}\right]=\mathbf{x y}\);
    h = 0.1;
    \(\mathbf{x}_{0}=0\);
    \(y_{0}=1\);
In [235]: \(=\mathbf{x}_{\mathrm{e}}\left[\mathrm{n}_{-}\right]=\mathbf{x}_{0}+\mathrm{nh}\);
    \(y_{e}\left[n_{n}\right]:=y_{e}[n]=h * f\left[x_{e}[n-1]\right.\),
    \(\left.y_{e}[n-1]\right]+y_{e}[n-1] ;\)
    \(\mathrm{Y}_{\mathrm{e}}[0]=\mathrm{y}_{0} ;\)
```

Next, we use Table to calculate the set of ordered pairs $\left(x_{n}, y_{n}\right)$ for $n=0$, $1,2, \ldots, 9,10$, naming the result first, and then TableForm to view first in traditional row-and-column form.

```
In[236]:= first = Table[{xe[n], Ye[n]},{n,0, 10}];
    TableForm[first]
    0 1
    0.1 1
    0.2 1.01
    0.3 1.0302
    0.4 1.06111
Out[236]= 0.5 1.10355
    0.6 1.15873
    0.71.22825
    0.8 1.31423
    0.91.41937
    1. 1.54711
```


Figure 2-32 Comparison of Euler's method to the exact solution using $h=0.1$

To compare these results to the exact solution, we use ListPlot to graph the list of ordered pairs first in t 2 and display t 2 together with p1 with Show in Figure 2-32.

```
In[237]:= lp = Map[Point, first]
Out [237] = {Point[{0, 1}], Point[{0.1, 1}],
    Point[{0.2,1.01}], Point[{0.3, 1.0302}],
    Point[{0.4,1.06111}], Point[{0.5,1.10355}],
    Point[{0.6,1.15873}], Point[{0.7,1.22825}],
    Point[{0.8,1.31423}], Point[{0.9,1.41937}],
    Point[{1., 1.54711}]}
In[238]:= t2 = Graphics[{PointSize[0.02], lp}];
In[239]:= Show[p1, t2,
    DisplayFunction- > $DisplayFunction]
```

Alternatively, we can produce Figure 2-32 using ListPlot together with the option PlotStyle->PointSize[.02] with the following command.

```
In[240]:= t2 = ListPlot[first,
    PlotStyle }->\mathrm{ PointSize[0.02],
    DisplayFunction }->\mathrm{ Identity];
    Show[p1,
    t2, DisplayFunction }->\mathrm{ $DisplayFunction]
```

(b) For $h=0.05$, we use

$$
y_{n}=h f\left(x_{n-1}, y_{n-1}\right)+y_{n-1}=0.05 x_{n-1} y_{n-1}+y_{n-1}
$$

to obtain an approximation. In the same manner as in (a), we define f, h, x, and y to calculate y_{n} given by equation (2.10). Then, we use Table to calculate the set of ordered pairs for $n=0,1,2, \ldots, 19,20$, naming the result second, followed by TableForm to view second in traditional row-and-column form.

```
In [241]:= Remove[\mathbf{x, y, f]}
    f[x_, y_] = x * y;
    h = 0.05;
    \mp@subsup{x}{0}{}}=0
    Yo = 1;
```



```
    Ye[n_] := ye [n] = h * f [x [n [n-1],
        Ye[n-1]] + Ye[n-1];
    Ye[0] = Yo;
In[243]:= second = Table[{榇[n], Ye[n]}, {n, 0, 20}];
    TableForm[second]
    0 1
    0.05 1
    0.1 1.0025
    0.151.00751
    0.2 1.01507
    0.25 1.02522
    0.3 1.03803
    0.351.05361
    0.4 1.07204
    0.451.09348
Out[243]= 0.5 1.11809
    0.551.14604
    0.6 1.17756
    0.651.21288
    0.7 1.2523
    0.75 1.29613
    0.8 1.34474
    0.851.39853
    0.9 1.45796
    0.951.52357
    1. 1.59594
```


Figure 2-33 Comparison of Euler's method to the exact solution using $h=0.05$

We graph the approximation obtained with $h=0.05$ together with the graph of $y=e^{x^{2} / 2}$ in Figure 2-33. Notice that the approximation is more accurate when h is decreased.

```
In[244]:= t3 = ListPlot[second,
    PlotStyle- > PointSize[0.02],
    DisplayFunction- > Identity];
In[245]:= Show[p1, t3,
    DisplayFunction- > $DisplayFunction]
```


Improved Euler's Method

Euler's method can be improved by using an average slope over each interval. Using the tangent line approximation of the curve through (x_{0}, y_{0}), $y=f\left(x_{0}, y_{0}\right)$ $\left(x-x_{0}\right)+y_{0}$, we find the approximate value of y at $x=x_{1}$ which we now call $y_{1}{ }^{*}$:

$$
y_{1}{ }^{*}=h f\left(x_{0}, y_{0}\right)+y_{0} .
$$

With the differential equation $y^{\prime}=f(x, y)$, we find that the approximate slope of the tangent line at $x=x_{1}$ is $f\left(x, y_{1}^{1}\right)$. Then, the average of the two slopes, $f\left(x_{0}, y_{0}\right)$ and $f\left(x_{1}, y_{1}{ }^{*}\right)$, is $\frac{1}{2}\left(f\left(x_{0}, y_{0}\right)+f\left(x_{1}, y_{1}{ }^{*}\right)\right)$, and an equation of the line through $\left(x_{0}, y_{0}\right)$ with slope $\frac{1}{2}\left(f\left(x_{0}, y_{0}\right)+f\left(x_{1}, y_{1}{ }^{*}\right)\right)$ is

$$
y=\frac{1}{2}\left(f\left(x_{0}, y_{0}\right)+f\left(x_{1}, y_{1}{ }^{*}\right)\right)\left(x-x_{0}\right)+y_{0} .
$$

Therefore, at $x=x_{1}$, we find the approximate value of f with

$$
y_{1}=\frac{1}{2}\left(f\left(x_{0}, y_{0}\right)+f\left(x_{1}, y_{1}^{*}\right)\right)\left(x_{1}-x_{0}\right)+y_{0}=\frac{1}{2} h\left(f\left(x_{0}, y_{0}\right)+f\left(x_{1}, y_{1}^{*}\right)\right)+y_{0} .
$$

Continuing in this manner, the approximation at each step of the improved Euler's method depends on the following two calculations:

$$
\begin{align*}
& y_{n}{ }^{*}= h f\left(x_{n-1}, y_{n-1}\right)+y_{n-1} \\
& y_{n}= \frac{1}{2} h\left(f\left(x_{n-1}, y_{n-1}\right)+f\left(x_{n}, y_{n}{ }^{*}\right)\right)+y_{n-1} . \tag{2.11}\\
& \text { In }[246]:=\mathbf{x}_{\mathrm{i}}\left[\mathrm{n}_{-}\right]= \mathbf{x}_{0}+\mathrm{nh} ; \\
& \mathrm{y}_{\mathrm{i}}\left[\mathrm{n}_{-}\right]:= \\
& \mathrm{y}_{\mathrm{i}}[\mathrm{n}]= \frac{1}{2} \mathrm{~h}\left(\mathrm{f}\left[\mathbf{x}_{\mathrm{i}}[\mathrm{n}-1], \mathrm{y}_{\mathrm{i}}[\mathrm{n}-1]\right]\right. \\
&+\mathrm{f}\left[\mathrm{x}_{\mathrm{i}}[\mathrm{n}], \mathrm{hf}\left[\mathrm{x}_{\mathrm{i}}[\mathrm{n}-1], \mathrm{y}_{\mathrm{i}}[\mathrm{n}-1]\right]\right. \\
&\left.\left.+\mathrm{y}_{\mathrm{i}}[\mathrm{n}-1]\right]\right)+\mathrm{y}_{\mathrm{i}}[\mathrm{n}-1] ;
\end{aligned} \quad \begin{aligned}
& \\
& \mathrm{y}_{\mathrm{i}}[0]= \mathrm{y}_{0} ;
\end{align*}
$$

EXAMPLE 2.6.4: Use the improved Euler's method to approximate the solution of $y^{\prime}=x y, y(0)=1$ on $0 \leq x \leq 1$ for $h=0.1$. Also, compare the results to the exact solution.

SOLUTION: In this case, $f(x, y)=x y, x_{0}=0$, and $y_{0}=1$ so equations (2.11) become

$$
\begin{aligned}
y_{n}{ }^{*} & =h x_{n-1} y_{n-1}+y_{n-1} \\
y_{n} & =\frac{1}{2} h\left(x_{n-1} y_{n-1}+x_{n} y_{n}{ }^{*}\right)+y_{n-1}
\end{aligned}
$$

for $n=1,2, \ldots, 10$. For example, if $n=1$, we have

$$
y_{1}{ }^{*}=h x_{0} y_{0}+y_{0}=0.1 \cdot 0 \cdot 1+1=1
$$

and

$$
y_{1}=\frac{1}{2} h\left(x_{0} y_{0}+x_{1} y_{1}{ }^{*}\right)+y_{0}=\frac{1}{2} \cdot 0.1 \cdot(0 \cdot 1+0.1 \cdot 1)+1=1.005 .
$$

Similarly,

$$
y_{2}^{*}=h x_{1} y_{1}+y_{1}=0.1 \cdot 0.1 \cdot 1.005+1.005=1.01505
$$

and

$$
\begin{aligned}
& y_{2}=\frac{1}{2} h\left(x_{1} y_{1}+x_{2} y_{2}{ }^{*}\right)+y_{1}= \\
& \qquad \frac{1}{2} \cdot 0.1 \cdot(0.1 \cdot 1.005+0.2 \cdot 1.01505)+1.005=1.0201755 .
\end{aligned}
$$

In the same way as in the previous example, we define f, x, h and y. We define yi using the form
yi [n_] :=yi [n] = . . .,
so that Mathematica "remembers" the values of ystar and y computed. Thus, to compute yi [n], Mathematica need not recompute yi [n-1] if yi [n-1] has previously been computed.

```
In[247]:= Remove[f, x, y]
    f[x_, y_] = xy;
        h = 0.1;
        x
        yo = 1;
```



```
    yin_n_]:= yin [n] =
        N[\frac{1}{2}h(f[xi[n-1], yi [n-1]]
        +f[\mp@subsup{x}{i}{[}[n],hf[\mp@subsup{x}{i}{[}[n-1],
        yi}[n-1]]+\mp@subsup{y}{i}{}[n-1]])+\mp@subsup{y}{i}{[}[n-1]]
    yi}[0]=\mp@subsup{y}{0}{\prime}
```

We then compute $\left(x_{n}, y_{n}\right)$ for $n=0,1, \ldots, 10$ and name the resulting list of ordered pairs third.


```
    TableForm[third]
    0 1
    0.1 1.005
    0.2 1.02018
    0.3 1.04599
    0.4 1.08322
Out[249]= 0.5 1.13305
    0.6 1.19707
    0.71.27739
    0.8 1.37677
    0.91.49876
    1. 1.64788
```


Figure 2-34 Comparison of the improved Euler's method to the exact solution using $h=0.1$

We graph the approximation obtained using the improved Euler's method together with the graph of the exact solution in Figure 2-34. From the results, we see that the approximation using the improved Euler's method results in a slight improvement from that obtained in the previous example.

```
In[250]:= t4 = ListPlot[third,
    PlotStyle- > PointSize[0.02],
    DisplayFunction- > Identity];
Show[p1, t4,
    DisplayFunction- > $DisplayFunction]
```


The Runge-Kutta Method

In an attempt to improve on the approximation obtained with Euler's method as well as avoid the analytic differentiation of the function $f(x, y)$ to obtain $y^{\prime \prime}, y^{\prime \prime \prime}, \ldots$, the Runge-Kutta method is introduced. Let us begin with the Runge-Kutta method of order two. Suppose that we know the value of y at x_{n}. We now use the point $\left(x_{n}, y_{n}\right)$ to approximate the value of y at a nearby value $x=x_{n}+h$ by assuming that

$$
y_{n+1}=y_{n}+A k_{1}+B k_{2},
$$

where

$$
k_{1}=h f\left(x_{n}, y_{n}\right) \quad \text { and } \quad k_{2}=h f\left(x_{n}+a h, y_{n}+b k_{1}\right) .
$$

We can use the Taylor series expansion of y to obtain another representation of $y_{n+1}=y\left(x_{n}+h\right)$ as follows:

$$
y\left(x_{n}+h\right)=y\left(x_{n}\right)+h y^{\prime}\left(x_{n}\right)+\frac{h^{2}}{2!} y^{\prime \prime}\left(x_{n}\right)+\cdots=y_{n}+h y^{\prime}\left(x_{n}\right)+\frac{h^{2}}{2!} y^{\prime \prime}\left(x_{n}\right)+\cdots
$$

Now, because

$$
y_{n+1}=y_{n}+A k_{1}+B k_{2}=y_{n}+\operatorname{Ahf}\left(x_{n}, y_{n}\right)+B h f\left(x_{n}+a h, y_{n}+\operatorname{bhf}\left(x_{n}, y_{m}\right)\right),
$$

we wish to determine values of A, B, a, and b such that these two representations of y_{n+1} agree. Notice that if we let $A=1$ and $B=0$, then the relationships match up to order h. However, we can choose these parameters more wisely so that agreement occurs up through terms of order h^{2}. This is accomplished by considering the Taylor series expansion of a function $z=F(x, y)$ of two variables about $\left(x_{0}, y_{0}\right)$ which is given by

$$
F\left(x_{0}, y_{0}\right)+\frac{\partial F}{\partial x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+\frac{\partial F}{\partial y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+\cdots
$$

In our case, we have

$$
\begin{aligned}
f\left(x_{n}+a h, y_{n}+b h f\left(x_{n}, y_{m}\right)\right)= & f\left(x_{n}, y_{n}\right)+a h \frac{\partial f}{\partial x}\left(x_{n}, y_{n}\right) \\
& +b h f\left(x_{n}, y_{n}\right) \frac{\partial f}{\partial y}\left(x_{n}, y_{n}\right)+O\left(h^{2}\right) .
\end{aligned}
$$

The power series is then substituted into the following expression and simplified to yield:

$$
\begin{aligned}
y_{n+1} & =y_{n}+\operatorname{Ahf}\left(x_{n}, y_{n}\right)+B h f\left(x_{n}+a h, y_{n}+b h f\left(x_{n}, y_{m}\right)\right) \\
& =y_{n}+(A+B) h f\left(x_{n}, y_{n}\right)+a B h^{2} \frac{\partial f}{\partial x}\left(x_{n}, y_{n}\right)+b B h^{2} f\left(x_{n}, y_{n}\right) \frac{\partial f}{\partial y}\left(x_{n}, y_{n}\right)+O\left(h^{3}\right) .
\end{aligned}
$$

Comparing this expression to the following power series obtained directly from the Taylor series of y,

$$
y\left(x_{n}+h\right)=y\left(x_{n}\right)+h f\left(x_{n}, y_{n}\right)+\frac{1}{2} h^{2} \frac{\partial f}{\partial x}\left(x_{n}, y_{n}\right)+\frac{1}{2} h^{2} \frac{\partial f}{\partial y}\left(x_{n}, y_{n}\right)+O\left(h^{3}\right)
$$

or

$$
y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right)+\frac{1}{2} h^{2} \frac{\partial f}{\partial x}\left(x_{n}, y_{n}\right)+\frac{1}{2} h^{2} \frac{\partial f}{\partial y}\left(x_{n}, y_{n}\right)+O\left(h^{3}\right),
$$

we see that A, B, a, and b must satisfy the following system of nonlinear equations:

$$
A+B=1, \quad a B=\frac{1}{2}, \quad \text { and } \quad b B=\frac{1}{2} .
$$

Therefore, choosing $a=b=1$, the Runge-Kutta method of order two uses the equation:

$$
\begin{align*}
y_{n+1} & =y\left(x_{n}+h\right)=y_{n}+\frac{1}{2} h f\left(x_{n}, y_{n}\right)+\frac{1}{2} h f\left(x_{n}+h, y_{n}+h f\left(x_{n}, y_{n}\right)\right) \tag{2.12}\\
& =y_{n}+\frac{1}{2}\left(k_{1}+k_{2}\right)
\end{align*}
$$

where $k_{1}=h f\left(x_{n}, y_{n}\right)$ and $k_{2}=h f\left(x_{n}+h, y_{n}+k_{1}\right)$.

$$
\begin{aligned}
& \text { In }[251]:=\mathbf{x}_{r}\left[n_{-}\right]=x_{0}+n h ; \\
& \qquad \begin{aligned}
& Y_{r}\left[n_{-}\right]:=y_{r}[n]= \\
& Y_{r}[n-1]+\frac{1}{2} h f\left[x_{r}[n-1], y_{r}[n-1]\right] \\
&+\frac{1}{2} h f\left[x_{r}[n-1]+h, y_{r}[n-1]\right. \\
&\left.+h f\left[x_{r}[n-1], y_{r}[n-1]\right]\right]
\end{aligned} \\
& Y_{r}[0]=y_{0} ;
\end{aligned}
$$

EXAMPLE 2.6.5: Use the Runge-Kutta method of order two with $h=$ 0.1 to approximate the solution of the initial-value problem $y^{\prime}=x y$, $y(0)=1$ on $0 \leq x \leq 1$.

SOLUTION: As with the previous examples, $f(x, y)=x y, x_{0}=0$, and $y_{0}=1$. Therefore, on each step we use the three equations

$$
\begin{aligned}
& k_{1}=h f\left(x_{n}, y_{n}\right)=0.1 x_{n} y_{n}, \\
& k_{2}=h f\left(x_{n}+h, y_{n}+k_{1}\right)=0.1\left(x_{n}+0.1\right)\left(y_{n}+k_{1}\right),
\end{aligned}
$$

and

$$
y_{n+1}=y_{n}+\frac{1}{2}\left(k_{1}+k_{2}\right) .
$$

For example, if $n=0$, then

$$
\begin{aligned}
& k_{1}=0.1 x_{0} y_{0}=0.1 \cdot 0 \cdot 1=0 \\
& k_{2}=0.1\left(x_{0}+0.1\right)\left(y_{0}+k_{1}\right)=0.1 \cdot 0.1 \cdot 1=0.01
\end{aligned}
$$

and

$$
y_{1}=y_{0}+\frac{1}{2}\left(k_{1}+k_{2}\right)=1+\frac{1}{2} \cdot 0.01=1.005
$$

Therefore, the Runge-Kutta method of order two approximates that the value of y at $x=0.1$ is 1.005 .

In the same manner as in the previous two examples, we define a function yr to implement the Runge-Kutta method of order two and use Table to generate a set of approximations for $n=0,1, \ldots, 10$.

```
In[252]:= Remove[f, x, y]
    f[(x_, Y_] = xy;
        h = 0.1;
        x
        Y0 = 1;
In[253]:= }\mp@subsup{\mathbf{x}}{\textrm{r}}{[\mp@code{n_]}=\mp@subsup{\mathbf{x}}{0}{}+\mathbf{nh};
    Yrr [n_] := Y yr [n] =
        Yr[n-1] + < < h f [ (x [n-1],
```



```
        +hf[[\mp@subsup{x}{r}{}[n-1], Yr [n-1]]]
    Yr}[0]=\mp@subsup{Y}{0}{\prime}
In[254]:= rktable1 = Table[{\mp@subsup{x}{r}{}[i], Yr [i]}, {i, 0, 10}];
    TableForm[rktable1]
    0 1
    0.1 1.005
    0.2 1.02018
    0.3 1.04599
    0.4 1.08322
Out[254]= 0.5 1.13305
    0.6 1.19707
    0.7 1.27739
    0.8 1.37677
    0.9 1.49876
    1. 1.64788
```

We then use ListPlot to graph the set of points determined in rktable1. The resulting graphics object, named p2, is not displayed because the option DisplayFunction->Identity is included in the ListPlot command. The graphs in p1 and p2 are shown together with Show in Figure 2-35.

Figure 2-35 Comparison of the Runge-Kutta method of order two to the exact solution using $h=0.1$

```
In[255]:= p2 = ListPlot[rktable1,
    PlotStyle- > PointSize[0.02],
    DisplayFunction }->\mathrm{ Identity];
Show[p1,
    p2,DisplayFunction }->\mathrm{ $DisplayFunction]
```

The terms of the power series expansions used in the derivation of the RungeKutta method of order two can be made to match up to order four. These computations are rather complicated, so they will not be discussed here. However, after much work, the fourth-order Runge-Kutta method approximation at each step is found to be made with

$$
y_{n+1}=y_{n}+\frac{1}{6} h\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right), n=0,1,2, \ldots
$$

where

$$
\begin{align*}
& k_{1}=f\left(x_{n}, y_{n}\right) \\
& k_{2}=f\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} h k_{1}\right) \tag{2.13}\\
& k_{3}=f\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} h k_{2}\right)
\end{align*}
$$

and

$$
k_{4}=f\left(x_{n+1}, y_{n}+h k_{3}\right) .
$$

EXAMPLE 2.6.6: Use the fourth-order Runge-Kutta method with $h=$ 0.1 to approximate the solution of the problem $y^{\prime}=x y, y(0)=1$ on $0 \leq x \leq 1$.

SOLUTION: With $f(x, y)=x y, x_{0}=0$, and $y_{0}=1$, using equations (2.13), the formulas are

$$
y_{n+1}=y_{n}+\frac{0.1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right), n=0,1,2, \ldots
$$

where

$$
\begin{aligned}
& k_{1}=f\left(x_{n}, y_{n}\right)=x_{n} y_{n} \\
& k_{2}=f\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} h k_{1}\right)=\left(x_{n}+\frac{1}{2} \cdot 0.1\right)\left(y_{n}+\frac{1}{2} \cdot 0.1 k_{1}\right) \\
& k_{3}=f\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} h k_{2}\right)=\left(x_{n}+\frac{1}{2} \cdot 0.1\right)\left(y_{n}+\frac{1}{2} \cdot 0.1 k_{2}\right)
\end{aligned}
$$

and

$$
k_{4}=f\left(x_{n+1}, y_{n}+h k_{3}\right)=x_{n+1}\left(y_{n}+0.1 k_{3}\right) .
$$

For $n=0$, we have

$$
\begin{aligned}
& k_{1}=x_{0} y_{0}=0 \cdot 1=0 \\
& k_{2}=\left(x_{0}+\frac{1}{2} \cdot 0.1\right)\left(y_{0}+\frac{1}{2} \cdot 0.1 k_{1}\right)=0.05 \cdot 1=0.05 \\
& k_{3}=\left(x_{0}+\frac{1}{2} \cdot 0.1\right)\left(y_{0}+\frac{1}{2} \cdot 0.1 k_{2}\right)=0.05 \cdot(1+0.0025)=0.050125 \\
& \text { and } \\
& k_{4}=x_{1}\left(y_{0}+0.1 k_{3}\right)=0.1 \cdot(1+0.0050125)=0.10050125 .
\end{aligned}
$$

Therefore,

$$
y_{1}=y_{0}+\frac{0.1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)=1.005012521 .
$$

We list the results for the Runge-Kutta method of order four and compare these results to the exact solution in Figure 2-36. Notice that this

Figure 2-36 Comparison of the fourth-order Runge-Kutta method to the exact solution using $h=0.1$
method yields the most accurate approximation of the methods used to this point.

$$
\begin{aligned}
& \text { In [256]: }=\operatorname{Remove[f,x,y]} \\
& \mathrm{f}\left[\mathrm{x}_{-}, \mathrm{y}_{-}\right]=\mathrm{xy} \text {; } \\
& \text { h = 0.1; } \\
& \mathbf{x}_{0}=0 \text {; } \\
& y_{0}=1 \text {; } \\
& \text { In [257]: }=\mathbf{x}_{\mathbf{r}}\left[\mathrm{n}_{\mathrm{n}}\right]=\mathbf{x}_{0}+\mathrm{nh} \text {; } \\
& \mathrm{y}_{\mathrm{r}}\left[\mathrm{n}_{-}\right]:=\mathrm{y}_{\mathrm{r}}[\mathrm{n}]=\mathrm{y}_{\mathrm{r}}[\mathrm{n}-1]+\frac{1}{6} \mathrm{~h}\left(\mathrm{k}_{1}[\mathrm{n}-1]\right. \\
& \left.+2 k_{2}[n-1]+2 k_{3}[n-1]+k_{4}[n-1]\right) ; \\
& y_{r}[0]=y_{0} ; \\
& \mathrm{k}_{1}\left[\mathrm{n}_{-}\right]:=\mathrm{k}_{1}[\mathrm{n}]=\mathrm{f}\left[\mathrm{x}_{\mathrm{r}}[\mathrm{n}], \mathrm{y}_{\mathrm{r}}[\mathrm{n}]\right] ; \\
& \mathrm{k}_{2}\left[\mathrm{n}_{-}\right]:=\mathrm{k}_{2}[\mathrm{n}]=\mathrm{f}\left[\mathrm{x}_{\mathrm{r}}[\mathrm{n}]+\frac{\mathrm{h}}{2}, \mathrm{y}_{\mathrm{r}}[\mathrm{n}]+\frac{1}{2} \mathrm{~h} \mathrm{k}_{1}[\mathrm{n}]\right] ; \\
& \mathrm{k}_{3}\left[\mathrm{n}_{-}\right]:=\mathrm{k}_{3}[\mathrm{n}]=\mathrm{f}\left[\mathrm{x}_{\mathrm{r}}[\mathrm{n}]+\frac{\mathrm{h}}{2}, \mathrm{y}_{\mathrm{r}}[\mathrm{n}]+\frac{1}{2} \mathrm{~h} \mathrm{k}_{2}[\mathrm{n}]\right] ; \\
& \mathrm{k}_{4}\left[\mathrm{n}_{-}\right]:=\mathrm{k}_{4}[\mathrm{n}]=\mathrm{f}\left[\mathrm{x}_{\mathrm{r}}[\mathrm{n}+1], \mathrm{y}_{\mathrm{r}}[\mathrm{n}]+\mathrm{h} \mathrm{k}_{3}[\mathrm{n}]\right]
\end{aligned}
$$

```
In[258]:= rktable2 = Table[{\mp@subsup{x}{r}{}[i], Yr [i]}, {i, 0, 10}];
    TableForm[rktable2]
    0 1
    0.1 1.00501
    0.2 1.0202
    0.31.04603
    0.4 1.08329
Out[258]= 0.5 1.13315
    0.6 1.19722
    0.7 1.27762
    0.8 1.37713
    0.9 1.4993
    1. 1.64872
In[259]:= p3 = ListPlot[rktable2,
                            PlotStyle- > PointSize[0.02],
    DisplayFunction }->\mathrm{ Identity];
    Show[p1, p3,
    DisplayFunction }->\mathrm{ $DisplayFunction]
```


Applications of First-Order Ordinary Differential

 Equations

When the space shuttle is launched from the Kennedy Space Center, its escape velocity can be determined by solving a first-order ordinary differential equation. The same can be said for finding the flow of electromagnetic forces, the temperature of a cup of coffee, the population of a species, as well as numerous other applications. In this chapter, we show how these problems can be expressed as first-order equations. We will focus our attention on setting up the problems and explaining the meaning of the subsequent solutions because the techniques for solving these problems were discussed in Chapter 2.

3.1 Orthogonal Trajectories

We begin our discussion with orthogonal trajectories, a topic that is encountered in the study of electromagnetic fields and heat flow.

Definition 9 (Orthogonal Curves). Two lines, l_{1} and l_{2}, with slopes m_{1} and m_{2}, respectively, are orthogonal (or perpendicular) if their slopes satisfy the relationship $m_{1}=-1 / m_{2}$. Two curves, \mathcal{C}_{1} and C_{2}, are orthogonal (or perpendicular) at a point if their respective tangent lines to the curves at that point are perpendicular.

EXAMPLE 3.1.1: Use the definition of orthogonality to verify that the curves given by $y=x$ and $y=\sqrt{1-x^{2}}$ are orthogonal at the point $(\sqrt{2} / 2, \sqrt{2} / 2)$.

SOLUTION: First note that the point $(\sqrt{2} / 2, \sqrt{2} / 2)$ lies on both the graph of $y=x$ and $y=\sqrt{1-x^{2}}$. The derivatives of the functions are given by $y^{\prime}=1$ and $y^{\prime}=-x / \sqrt{1-x^{2}}$, respectively.

```
In[260]:= Clear[x,y]
    Y
    Y2 [x_] = \sqrt{}{1-\mp@subsup{\mathbf{x}}{}{2}};
In[261]:= Y Y' [x]
Out[261]= 1
```



```
Out [262]= - - x
```

Hence, the slope of the tangent line to $y=x$ at $(\sqrt{2} / 2, \sqrt{2} / 2)$ is 1 . Substitution of $x=\sqrt{2} / 2$ into $y^{\prime}=-x / \sqrt{1-x^{2}}$ yields -1 as the slope of the tangent line at $(\sqrt{2} / 2, \sqrt{2} / 2)$.

$$
\begin{aligned}
& \operatorname{In}[263]:=\mathrm{y}_{2}{ }^{\prime}\left[\frac{\sqrt{2}}{2}\right] \\
& \text { Out }[263]=-1
\end{aligned}
$$

Thus, the curves are orthogonal at the point $(\sqrt{2} / 2, \sqrt{2} / 2)$ because the slopes of the lines tangent to the graphs of $y=x$ and $y=\sqrt{1-x^{2}}$ at the point $(\sqrt{2} / 2, \sqrt{2} / 2)$ are negative reciprocals. We graph these two curves along with the tangent line to $y=\sqrt{1-x^{2}}$ at $(\sqrt{2} / 2, \sqrt{2} / 2)$ in Figure 3-1 to illustrate that the two are orthogonal. Note that the graphs are displayed correctly even though several error messages, which are not all displayed here, are generated because $y=\sqrt{1-x^{2}}$ is undefined

Figure 3-1 The curves are orthogonal at the point $(\sqrt{2} / 2, \sqrt{2} / 2)$
if $x<-1$ or $x>1$. The option AspectRatio->1 specifies that the ratio of lengths of the x-axis to the y-axis in the resulting graphics object be 1 .

$$
\begin{aligned}
\text { In }[264]:= & \text { Plot }\left[\left\{\mathbf{x}, \sqrt{1-\mathbf{x}^{2}},-\mathbf{x}+\sqrt{2}\right\},\left\{\mathbf{x},-\frac{3}{2}, \frac{3}{2}\right\},\right. \\
& \text { PlotRange } \rightarrow\left\{\left\{-\frac{3}{2}, \frac{3}{2}\right\},\left\{-\frac{3}{2}, \frac{3}{2}\right\}\right\}, \\
& \text { AspectRatio } \rightarrow 1, \text { PlotStyle } \rightarrow\{\text { Dashing }[\{0.01\}], \\
& \text { GrayLevel }[0], \text { GrayLevel }[0.5]\}]
\end{aligned}
$$

```
Plot :: plnr : \sqrt{}{1-\mp@subsup{x}{}{2}}
```

 is not a machine - size real number at \(x=-1.5\).
 The next step in our discussion of orthogonal curves is to determine the set of orthogonal curves to a given family of curves. We refer to this set of orthogonal curves as the family of orthogonal trajectories. Suppose that a family of curves is defined as $F(x, y)=C$ and that the slope of the tangent line at any point on these curves is $d y / d x=f(x, y)$. Then, the slope of the tangent line on the orthogonal trajectory is $d y / d x=-1 / f(x, y)$ so the family of orthogonal trajectories is found by solving the first-order equation $d y / d x=-1 / f(x, y)$.

EXAMPLE 3.1.2: Determine the family of orthogonal trajectories to the family of curves $y=c x^{2}$.

SOLUTION: First, we must find the slope of the tangent line at any point on the parabola $y=c x^{2}$. Differentiating with respect to x results in $d y / d x=2 c x$. However from $y=c x^{2}$, we have that $c=y / x^{2}$. Substitution into $d y / d x=2 c x$ then yields $d y / d x=2 \cdot y / x^{2} \cdot x=2 y / x$ on the parabolas. Hence, we must solve $d y / d x=-x /(2 y)$ to determine the orthogonal trajectories. This equation is separable, so we write it as $2 y d y=-x d x$, and then integrating both sides gives us $2 y^{2}+x^{2}=k$, where k is a constant, which we recognize as a family of ellipses. Note that an equivalent result is obtained with DSolve.

$$
\begin{aligned}
& \text { In }[265]:=\text { sol }=\text { DSolve }\left[\mathrm{y}^{\prime}[\mathrm{x}]=-\frac{\mathbf{x}}{2 \mathrm{y}[\mathbf{x}]}, \mathrm{y}[\mathbf{x}], \mathbf{x}\right] \\
& \text { Out }[265]=\left\{\left\{\mathrm{y}[\mathrm{x}] \rightarrow-\frac{\sqrt{-\mathrm{x}^{2}+4 \mathrm{C}[1]}}{\sqrt{2}}\right\},\left\{\mathrm{y}[\mathrm{x}] \rightarrow \frac{\sqrt{-\mathrm{x}^{2}+4 \mathrm{C}[1]}}{\sqrt{2}}\right\}\right\}
\end{aligned}
$$

We graph several members of the family of parabolas $y=c x^{2}$, the family of ellipses $2 y^{2}+x^{2}=k$, and the two families of curves together. First, we define parabs to be the list of functions obtained by replacing c in $y=c x^{2}$ by nine equally spaced values of c between $-3 / 2$ and $3 / 2$.

$$
\operatorname{In}[266]:=\text { parabs }=\operatorname{Table}\left[c x^{2},\left\{c,-\frac{3}{2}, \frac{3}{2}, \frac{1}{8}\right\}\right] ;
$$

Next, we graph the list of functions parabs for $-3 \leq x \leq 3$ with Plot and name the result p 1 . The graphs in p 1 are not displayed because the option DisplayFunction->Identity is included in the Plot command. We graph several ellipses $2 y^{2}+x^{2}=k$ by using ContourPlot to graph several level curves of $f(x, y)=y^{2}+\frac{1}{2} x^{2}$ and name the result p 2 . Including the option PlotPoints $->120$ helps assure that the ellipses appear smooth in the result. Including the option ContourStyle-> GrayLevel [.4] specifies that the contours be drawn in a light gray. (This will help us distinguish between the ellipses and the parabolas when we show the graphs together.) As with p1, p2 is not displayed. Finally, p1 and p2 are displayed together with Show in Figure 3-2. Notice that these two families appear orthogonal, confirming the results we obtained.

$$
\begin{aligned}
\text { In }[267]:=\mathrm{p} 1= & \text { Plot }[\text { Evaluate }[\text { parabs }],\{x,-3,3\}, \\
& \text { DisplayFunction } \rightarrow \text { Identity }] ;
\end{aligned}
$$

Figure 3-2 The two sets of curves are orthogonal to each other

```
In [268]:= p2 = ContourPlot [ ( }\mp@subsup{\textrm{y}}{}{2}+\frac{\mp@subsup{\mathbf{x}}{}{2}}{2},{x,-3,3},{y,-3,3}
    Contours }->30\mathrm{ , ContourStyle }->\mathrm{ GrayLevel[0.5],
    ContourShading }->\mathrm{ False, PlotPoints }->\mathrm{ 120,
    DisplayFunction }->\mathrm{ Identity];
In[269]:= Show[p1, p2, PlotRange }->{{-3,3},{-3,3}}
    AspectRatio }->1\mathrm{ 1,
    DisplayFunction }->\mathrm{ $DisplayFunction]
```

EXAMPLE 3.1.3 (Temperature): Let $T(x, y)$ represent the temperature at the point (x, y). The curves given by $T(x, y)=c$ (where c is constant) are called isotherms. The orthogonal trajectories are curves along which heat will flow. Determine the isotherms if the curves of heat flow are given by $y^{2}+2 x y-x^{2}=c$.

SOLUTION: We begin by finding the slope of the tangent line at each point on the heat flow curves $y^{2}+2 x y-x^{2}=c$ using implicit differentiation.

```
In [270]:= eq1 = y[x] 2}+2\textrm{x}y[\textrm{x}]-\mp@subsup{\textrm{x}}{}{2}==\textrm{c
```



```
In[271]:= step1 = Dt[eq1, x]
Out[271]= -2x+2y[x]+2x y'[x] +2 y[x] y'[x] == Dt [c, x]
```

Because c represents a constant, $d / d x(c)=0$. We interpret step2 to be equivalent to the equation $2 y y^{\prime}+2 y+2 x y^{\prime}-2 x=0$, where $y^{\prime}=d y / d x$.

```
In[272]:= step2 = step1/.Dt[c, x] }->
Out [272]= -2x+2y[x]+2xy'[x]+2y[x] y'[x]== 0
```

We calculate $y^{\prime}=d y / d x$ by solving step2 for $y^{\prime}[\mathrm{x}]$ with Solve and name the result imderiv.

$$
\begin{aligned}
& \text { In }[273]:=\text { imderiv }=\text { Solve }\left[\text { step } 2, \mathrm{y}^{\prime}[\mathrm{x}]\right] \\
& \text { Out }[273]=\left\{\left\{\mathrm{y}^{\prime}[\mathrm{x}] \rightarrow \frac{\mathrm{x}-\mathrm{y}[\mathrm{x}]}{\mathrm{x}+\mathrm{y}[\mathrm{x}]}\right\}\right\}
\end{aligned}
$$

Thus, $d y / d x=(x-y) /(x+y)$ so the orthogonal trajectories satisfy the differential equation $d y / d x=-(x+y) /(x-y)$.

Writing this equation in differential form as $(x+y) d x+(x-y) d y=0$, we see that this equation is exact because $\partial / \partial y(x+y)=1=\partial / \partial x(x-y)$. Thus, we solve the equation by integrating $x+y$ with respect to x to yield $f(x, y)=\frac{1}{2} x^{2}+x y+g(y)$. Differentiating f with respect to y then gives us $f_{y}(x, y)=x+g^{\prime}(y)$. Then, because the equation is exact, $x+g^{\prime}(y)=x-y$. Therefore, $g^{\prime}(y)=-y$ which implies that $g(y)=-\frac{1}{2} y^{2}$. This means that the family of orthogonal trajectories (isotherms) is given by $\frac{1}{2} x^{2}+x y-$ $\frac{1}{2} y^{2}=k$.

Note that DSolve is able to solve this differential equation.

$$
\begin{aligned}
\text { In }[274]:= & \text { DSolve }\left[\mathbf{y}^{\prime}[\mathbf{x}]==\frac{\mathbf{x}+\mathrm{y}[\mathbf{x}]}{-\mathbf{x}+\mathrm{y}[\mathbf{x}]}, \mathrm{y}[\mathbf{x}], \mathbf{x}\right] / / \text { Simplify } \\
\text { Out }[274]= & \left\{\left\{y[\mathrm{x}] \rightarrow x-\sqrt{e^{2 C[1]}+2 \mathrm{x}^{2}}\right\},\right. \\
& \left.\left\{y[\mathrm{x}] \rightarrow x+\sqrt{e^{2 \mathrm{C}[1]}+2 \mathrm{x}^{2}}\right\}\right\}
\end{aligned}
$$

To graph $y^{2}+2 x y-x^{2}=c$ and $\frac{1}{2} x^{2}+x y-\frac{1}{2} y^{2}=k$ for various values of c and k to see that the curves are orthogonal, we use contourPlot. First, we graph several level curves of $y^{2}+2 x y-x^{2}=c$ on the rectangle $[-4,4] \times[-4,4]$ and name the result cp1. The option Contours $->40$
instructs Mathematica to graph 40 contours instead of the default of ten.

```
In [275]: \(=\mathrm{cp} 1=\) ContourPlot \(\left[\mathbf{y}^{2}+2 \mathbf{x y}-\mathbf{x}^{2},\{\mathbf{x},-4,4\}\right.\),
    \(\{y,-4,4\}\), ContourShading \(\rightarrow\) False,
    Axes \(\rightarrow\) Automatic, Contours \(\rightarrow 40\),
    PlotPoints \(\rightarrow 120\), AxesOrigin \(\rightarrow\{0,0\}\),
    Frame \(\rightarrow\) False,
    DisplayFunction \(\rightarrow\) Identity];
```

Next we graph several level curves of $\frac{1}{2} x^{2}+x y-\frac{1}{2} y^{2}=k$ on the same rectangle and name the result cp 2 . In this case, the option

```
ContourStyle->{{GrayLevel[0.4],Dashing[{0.01}]}}
```

specifies that the contours are to be dashed in a medium gray.

$$
\begin{aligned}
\text { In }[276]:=\mathrm{cp} 2= & \text { ContourPlot }\left[\mathrm{xy}+\frac{\mathbf{x}^{2}}{2}-\frac{\mathrm{y}^{2}}{2},\{\mathrm{x},-4,4\},\right. \\
& \{\mathrm{y},-4,4\}, \text { ContourShading } \rightarrow \text { False, } \\
& \text { Axes } \rightarrow \text { Automatic, Contours } \rightarrow 40, \\
& \text { PlotPoints } \rightarrow 120, \\
& \text { ContourStyle } \rightarrow\{\{\text { GrayLevel }[0.4], \\
& \text { Dashing }[\{0.01\}]\}\}, \text { AxesOrigin } \rightarrow\{0,0\}, \\
& \text { Frame } \rightarrow \text { False, } \\
& \text { DisplayFunction } \rightarrow \text { Identity }] ;
\end{aligned}
$$

The graphs are then displayed side-by-side using Show and Graphics Array in Figure 3-3 and together using Show in Figure 3-4.

Figure 3-3 Several members of each family of curves

Figure 3-4 The two sets of curves are orthogonal to each other

```
In[277]:= Show[GraphicsArray[{cp1, cp2}]]
In[278]:= Show[cp1, cp2,
    DisplayFunction }->\mathrm{ $DisplayFunction]
```

EXAMPLE 3.1.4: Determine the orthogonal trajectories of the family of curves given by $y^{2}-2 c x=c^{2}$. Graph several members of both families of curves on the same set of axes.

SOLUTION: After defining eq to be the equation $y^{2}-2 c x=c^{2}$, we implicitly differentiate.

```
In[279]:= eq = y^2-2cx == c^2;
    step1 = Dt[eq]
Out[279]= -2 xDt[c]-2cDt[x] + 2 y Dt[y] == 2c ct [c]
```

As in the previous examples, we interpret $\mathrm{Dt}[\mathrm{x}]$ to be $1, \mathrm{Dt}[\mathrm{c}$] to be 0 , and Dt [y] to represent $d y / d x$.

```
In[280]:= step2 = step1/.{Dt[c] }->0,\textrm{Dt}[\textrm{x}]->1
Out[280]= -2 c + 2 y Dt[y] == 0
```

The equation $y^{2}-2 c x=c^{2}$ is a quadratic in c. Solving for c,

```
In [281]: = cval = Solve[eq, c]
Out \([281]=\left\{\left\{\mathrm{c} \rightarrow-\mathrm{x}-\sqrt{\mathrm{x}^{2}+\mathrm{Y}^{2}}\right\},\left\{\mathrm{c} \rightarrow-\mathrm{x}+\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}\right\}\right\}\)
```

we choose to substitute the first value into the equation $y d y / d x=c$.

```
In[282]:= imderiv = Solve[step2,Dt[y]]/.cval[[1]]
Out[282]={{Dt[y]->\frac{-x-\sqrt{}{\mp@subsup{x}{}{2}+\mp@subsup{Y}{}{2}}}{y}}}
```

Then, we must solve $\frac{d y}{d x}=\frac{y}{x+\sqrt{x^{2}+y^{2}}}$.

```
In[283]:= de =
    \(y^{\prime}[x]==\) Evaluate \([-1 /\) imderiv \([[1,1,2]] /\).
    \(\mathrm{y} \rightarrow \mathrm{y}[\mathrm{x}]\) ]
```

Out $[283]=y^{\prime}[x]==-\frac{y[x]}{-x-\sqrt{x^{2}+y[x]^{2}}}$
Note that Mathematica is able to solve this equation.

$$
\begin{aligned}
\text { In }[284]:= & \text { DSolve }[\text { de }, \mathrm{y}[\mathrm{x}], \mathrm{x}] / / \text { Simplify } \\
\text { Out }[284]= & \left\{\left\{y[\mathrm{x}] \rightarrow-e^{\frac{\mathrm{C}[1]}{2}} \sqrt{e^{\mathrm{C}[1]}+2 \mathrm{x}}\right\}\right. \\
& \left.\left\{\mathrm{y}[\mathrm{x}] \rightarrow e^{\frac{\mathrm{C}[1]}{2}} \sqrt{e^{\mathrm{C}[1]}+2 x}\right\}\right\}
\end{aligned}
$$

Thus, $y^{2}=4 C^{2}+4 C x$ and replacing $2 C$ with C yields $y^{2}=C^{2}+2 C x$ or $y^{2}-2 C x=c^{2}$, which means that this family of curves is self-orthogonal. We confirm that the family is self-orthogonal with ContourPlot in Figures 3-5 and 3-6.

```
In[285]:= cp1 = ContourPlot[cval[[1, 1, 2]], {x, -10, 10},
    {y, -10, 10}, ContourShading }->\mathrm{ False,
    Frame }->\mathrm{ False, Axes }->\mathrm{ Automatic,
    AxesOrigin }->{0,0},Contours -> 30
    PlotPoints }->\mathbf{120,
    DisplayFunction }->\mathrm{ Identity];
In[286]:= cp2 = ContourPlot[cval[[2, 1, 2]], {x, -10, 10},
    {y, -10, 10}, ContourShading }->\mathrm{ False,
    Frame }->\mathrm{ False, Axes }->\mathrm{ Automatic,
    AxesOrigin }->{0,0},\mathrm{ Contours }->30\mathrm{ ,
    PlotPoints }->\mathrm{ 120,
    DisplayFunction }->\mathrm{ Identity];
```


Figure 3-5 The plots are symmetric about the y-axis

Figure 3-6 The family of curves is self-orthogonal

```
In[287]:= Show[GraphicsArray[{cp1, cp2}]]
```

In [288]:= Show[cp1, cp2,
DisplayFunction \rightarrow \$DisplayFunction]

Application: Oblique Trajectories

If we are given a family of curves that satisfies the differential equation $d y / d x=$ $f(x, y)$ and we want to find a family of curves that intersects this family at a constant angle θ, we must solve the differential equation

$$
\frac{d y}{d x}=\frac{f(x, y) \pm \tan \theta}{1 \mp f(x, y) \tan \theta} .
$$

For example, to find a family of curves that intersects the family of curves $x^{2}+y^{2}=$ c^{2} at an angle of $\pi / 6$, we first implicitly differentiate the equation to obtain

$$
2 x+2 y \frac{d y}{d x}=0 \Longrightarrow \frac{d y}{d x}=-\frac{x}{y}=f(x, y) .
$$

Because $\tan \theta=\tan \pi / 6=1 / \sqrt{3}$, we solve

$$
\frac{d y}{d x}=\frac{-x / y+1 / \sqrt{3}}{1-(-x / y)(1 / \sqrt{3})}=\frac{-x \sqrt{3}+y}{y \sqrt{3}+x},
$$

which is a first-order homogeneous equation. With the substitution $x=v y$, we obtain the separable equation

$$
\frac{1-v \sqrt{3}}{1+v^{2}} d v=\frac{\sqrt{3}}{y} d y
$$

Integrating yields

$$
-\frac{\sqrt{3}}{2} \ln \left(1+v^{2}\right)+\tan ^{-1} v=\sqrt{3} \ln |y|+k_{1}
$$

so

$$
-\frac{\sqrt{3}}{2} \ln \left(1+\frac{x^{2}}{y^{2}}\right)+\tan ^{-1} \frac{x}{y}=\sqrt{3} \ln |y|+k_{1} .
$$

Mathematica finds an equivalent implicit solution.

$$
\begin{aligned}
& \text { In [289] : = soll = DSolve }\left[\mathrm{y}^{\prime}[\mathrm{x}]==\frac{-\sqrt{3} \mathrm{x}+\mathrm{y}[\mathrm{x}]}{\sqrt{3} \mathrm{y}[\mathrm{x}]+\mathrm{x}}, \mathrm{y}[\mathrm{x}], \mathrm{x}\right] / / \\
& \text { FullSimplify }
\end{aligned}
$$

Out [289] = Solve $\left[2 \operatorname{ArcTan}\left[\frac{\mathrm{Y}[\mathrm{x}]}{\mathrm{x}}\right]\right.$

$$
\begin{aligned}
& +\sqrt{3}\left(2 \log [x]+\log \left[1+\frac{Y[x]^{2}}{x^{2}}\right]\right)== \\
& \quad 2 C[1], y[x]]
\end{aligned}
$$

Similarly, for

$$
\frac{d y}{d x}=\frac{-x / y-1 / \sqrt{3}}{1+(-x / y)(1 / \sqrt{3})}=\frac{-x \sqrt{3}-y}{y \sqrt{3}-x}
$$

we obtain

$$
\frac{1+v \sqrt{3}}{1+v^{2}} d v=-\frac{\sqrt{3}}{y} d y
$$

so that the trajectories are

$$
\begin{aligned}
& \qquad \frac{\sqrt{3}}{2} \ln \left(1+\frac{x^{2}}{y^{2}}\right)+\tan ^{-1} \frac{x}{y}=-\sqrt{3} \ln |y|+k_{1} . \\
& \text { In }[290]:=\operatorname{sol2}=\operatorname{DSolve}\left[\mathrm{y}^{\prime}[\mathbf{x}]==\frac{-\sqrt{3} \mathbf{x}-\mathrm{y}[\mathbf{x}]}{\sqrt{3} \mathrm{y}[\mathbf{x}]-\mathbf{x}}, \mathrm{y}[\mathbf{x}], \mathbf{x}\right] \\
& \text { Out }[290]=\operatorname{Solve}\left[-\operatorname{ArcTan}\left[\frac{\mathrm{y}[\mathrm{x}]}{\mathrm{x}}\right]+\frac{1}{2} \sqrt{3} \log \left[1+\frac{\mathrm{y}[\mathrm{x}]{ }^{2}}{\mathrm{x}^{2}}\right]==\right. \\
& C[1]-\sqrt{3} \log [\mathrm{x}], \mathrm{y}[\mathrm{x}]]
\end{aligned}
$$

To confirm the result graphically, we graph several members of each family of curves in Figure 3-7

$$
\begin{aligned}
& \text { In [291]: }=\text { toplot2 }=\text { Solve[sol2[[1]], C[1]]/. } y[x] \rightarrow y \\
& \text { Out }[291]=\left\{\left\{\mathrm { C } [1] \rightarrow \frac { 1 } { 2 } \left(-2 \operatorname{ArcTan}\left[\frac{\mathrm{Y}}{\mathrm{x}}\right]\right.\right.\right. \\
& \left.\left.\left.+2 \sqrt{3} \log [x]+\sqrt{3} \log \left[1+\frac{Y^{2}}{x^{2}}\right]\right)\right\}\right\}
\end{aligned}
$$

Figure 3-7 Several members of each family of curves

```
In[293]:= cp2 = ContourPlot[
    \frac{1}{2}}(-\sqrt{}{3})\operatorname{Log}[1+\frac{\mp@subsup{x}{}{2}}{\mp@subsup{y}{}{2}}]+\operatorname{ArcTan}[\frac{x}{y}
    -\sqrt{}{3}\operatorname{Log[Abs[y]], {x, -10, 10}, {y, -10, 10},}
    Frame }->\mathrm{ False, Contours }->20\mathrm{ ,
    ContourStyle }->\mathrm{ GrayLevel [0], Axes }->\mathrm{ Automatic,
    ContourShading }->\mathrm{ False, PlotPoints }->\mathrm{ 120,
    AxesOrigin }->{0,0}\mathrm{ ,
    DisplayFunction }->\mathrm{ Identity];
```

In [294]: = cp3 = ContourPlot[
$\frac{1}{2} \sqrt{3} \log \left[1+\frac{x^{2}}{y^{2}}\right]+\operatorname{ArcTan}\left[\frac{x}{y}\right]+\sqrt{3} \log [\operatorname{Abs}[y]]$,
$\{x,-10,10\},\{y,-10,10\}$, Frame \rightarrow False,
Contours $\rightarrow 20$, ContourStyle \rightarrow GrayLevel[0],
Axes \rightarrow Automatic, ContourShading \rightarrow False,
PlotPoints \rightarrow 120, AxesOrigin $\rightarrow\{0,0\}$,
DisplayFunction \rightarrow Identity];
In [295]: = Show[GraphicsArray[\{cp1, cp2, cp3\}]]
and then show the curves together in Figure 3-8 to see that they intersect at an angle of $\pi / 6$.

Figure 3-8 The curves intersect at an angle of $\pi / 6$

```
In[296]:= cp4 = Show[cp1, cp2];
    cp5 = Show[cp1, cp3];
    Show[GraphicsArray[{cp4, cp5}]]
```


3.2 Population Growth and Decay

Many interesting problems involving population can be solved through the use of first-order differential equations. These include the determination of the number of cells in a bacteria culture, the number of citizens in a country, and the amount of radioactive substance remaining in a fossil. We begin our discussion by solving a population problem.

3.2.I The Malthus Model

Suppose that the rate at which a population of size $y(t)$ at time t changes is proportional to the population, $y(t)$, at time t. Mathematically, this statement is represented as the first-order initial-value problem

$$
\left\{\begin{array}{l}
d y / d t=k y \tag{3.1}\\
y(0)=y_{0}
\end{array}\right.
$$

where y_{0} is the initial population. If $k>0$, then the population increases (growth) while the population decreases (decay) if $k<0$. Problems of this nature arise in such fields as cell population growth in biology as well as radioactive decay in physics. Equation (3.1) is known as the Malthus model due to the work of the English clergyman and economist Thomas R. Malthus. We solve the Malthus model for all values of k and y_{0} which enables us to refer to the solution in other problems without solving the differential equation again. Rewriting $d y / d t=k y$ in the form $d y / y=k d t$, we see that this is a separable differential equation. Integrating and simplifying results in:

$$
\begin{aligned}
\int \frac{1}{y} d y & =\int k d t \\
\ln |y| & =k t+C_{1} \\
y & =C e^{k t}, \text { where } C=e^{C_{1}} .
\end{aligned}
$$

Notice that because y represents population, $y \geq 0$ and, therefore, $|y|=y$. To find C, we apply the initial condition obtaining $y_{0}=y(0)=C e^{k .0}=C$. Thus, the solution to the initial-value problem (3.1) is

$$
\begin{equation*}
y=y_{0} e^{k t} . \tag{3.2}
\end{equation*}
$$

We obtain the same result with DSolve:

```
In [297]:= Clear[ \(\mathbf{x}, \mathrm{y}, \mathrm{t}\) ]
    DSolve \(\left[\left\{y^{\prime}[t]==k y[t], y[0]==y 0\right\}, y[t], t\right]\)
Out \([297]=\left\{\left\{y[t] \rightarrow \mathbb{e}^{\mathrm{kt}} \mathrm{y} 0\right\}\right\}\)
```

EXAMPLE 3.2.1 (Radioactive Decay): Forms of a given element with different numbers of neutrons are called nuclides. Some nuclides are not stable. For example, potassium-40 $\left({ }^{40} \mathrm{~K}\right)$ naturally decays to reach argon-40 $\left({ }^{40} \mathrm{~K}\right)$. This decay which occurs in some nuclides was first observed, but not understood, by Henri Becquerel (1852-1908) in 1896. Marie Curie, however, began studying this decay in 1898, named it radioactivity, and discovered the radioactive substances polonium and radium. Marie Curie (1867-1934), along with her husband, Pierre Curie (1859-1906), and Henri Becquerel, received the Nobel Prize in Physics in 1903 for their work on radioactivity. Marie Curie subsequently received the Nobel Prize in Chemistry in 1910 for discovering polonium and radium.

Given a sample of ${ }^{40} \mathrm{Ar}$ of sufficient size, after 1.2×10^{9} years approximately half of the sample will have decayed to ${ }^{40} \mathrm{Ar}$. The half-life of a nuclide is the time for half the nuclei in a given sample to decay. We see that the rate of decay of a nuclide is proportional to the amount present because the half-life of a given nuclide is constant and independent of the sample size.

If the half-life of polonium ${ }^{209} \mathrm{Po}$ is 100 years, determine the percentage of the original amount of ${ }^{209} \mathrm{Po}$ that remains after 50 years.

SOLUTION: Let y_{0} represent the original amount of ${ }^{209} \mathrm{Po}$ that is present. Then the amount present after t years is $y(t)=y_{0} e^{k t}$. Because $y(100)=y_{0} / 2$ and $y(100)=y_{0} e^{100 k}$, we solve $y_{0} e^{100 k}=y_{0} / 2$ for e^{k} :

$$
e^{100 k}=\frac{1}{2} \quad \text { or } \quad e^{k}=\left(\frac{1}{2}\right)^{1 / 100}
$$

so

$$
y(t)=y_{0} e^{k t}=y_{0}\left(\frac{1}{2}\right)^{t / 100} .
$$

```
\(\operatorname{In}[298]:=k=-\frac{\log [2]}{100}\);
In [299]: \(=\mathbf{y}\left[\mathrm{t}_{-}\right]=\mathrm{y}_{0} \operatorname{Exp}[k t] ;\)
    Simplify[y[t]]
Out [299] \(=2^{-t / 100} \mathrm{Y}_{0}\)
```

In order to determine the percentage of y_{0} that remains, we evaluate

```
y(50) = y0}(1/2)\mp@subsup{)}{}{5/100}=\mp@subsup{y}{0}{}/\sqrt{}{2}\approx0.7071\mp@subsup{y}{0}{}
    In[300]:= y[50]
Out [300] = 吘
In[301]:= N[y[50]]
Out[301]= 0.707107 yo.
```

Therefore, 70.71% of the original amount of ${ }^{209}$ Po remains after 50 years.

In the previous example, we see that we can determine the percentage of y_{0} that remains even though we do not know the value of y_{0}. Hence, instead of letting $y(t)$ represent the amount of the substance present after time t, we can let it represent the fraction (or percent) of y_{0} that remains after time t. In doing this, we use the initial condition $y(0)=1$ to indicate that 100% of y_{0} is present at $t=0$.

EXAMPLE 3.2.2: The wood of an Egyptian sarcophagus (burial case) is found to contain 63% of the carbon- 14 found in a present day sample. What is the age of the sarcophagus?

SOLUTION: The half-life of carbon-14 is 5730 years. Let $y(t)$ be the percent of carbon-14 in the sample after t years. Then, $y(0)=1$. Because $y(t)=y_{0} e^{k t}, y(5730)=e^{5730 k}$. Solving for k yields:

$$
\begin{aligned}
\ln \left(e^{5730 k}\right) & =\ln \left(\frac{1}{2}\right) \\
5730 k & =\ln \left(\frac{1}{2}\right) \\
k & =\frac{\ln \left(\frac{1}{2}\right)}{5730}=-\frac{\ln 2}{5730} .
\end{aligned}
$$

Thus, $y(t)=e^{k t}=e^{-\frac{\ln 2}{5730} t}=2^{-t / 5730}$.

```
In [302]: = Clear [k, y]
    \(\mathrm{k}=-\frac{\log [2]}{5730} ;\)
\(\operatorname{In}[303]:=y\left[t_{-}\right]=\operatorname{Exp}[k t]\)
Out [303] \(=2^{-t / 5730}\)
```

In this problem, we must find the value of t for which $y(t)=0.63$. Solving the equation $2^{-t / 5730}=0.63=63 / 100$ results in:

$$
\begin{aligned}
2^{-t / 5730} & =\frac{63}{100} \\
\ln \left(2^{-t / 5730}\right) & =\ln \frac{63}{100} \\
-\frac{t}{5730} \ln 2 & =\ln \frac{63}{100} \\
t & =-\frac{5730 \ln \frac{63}{100}}{\ln 2} \approx 3819.48 .
\end{aligned}
$$

We conclude that the sarcophagus is approximately 3819 years old.
An alternative way to approximate the age of the sarcophagus is to first graph $y(t)$ and the line $y=0.63$ with Plot as shown in Figure 3-9. The age of the sarcophagus is the t-coordinate of the point of intersection of $y(t)$ and $y=0.63$.

```
In[304]:= Plot[{y[t], 0.63}, {t, 0, 6000},
    PlotStyle }->\mathrm{ {GrayLevel[0],GrayLevel[0.5]},
    PlotRange }->{0,1}
```


Figure 3-9 The age of the sarcophagus is the t-coordinate of the point of intersection of $y(t)$ and $y=0.63$

We see that the t-coordinate of the point of intersection is approximately $t \approx 3770$. A more accurate approximation is obtained with FindRoot. The command

```
FindRoot[equation,{variable,firstguess}]
```

attempts to find a solution to the equation equation in the variable variable "near" the number firstguess. Thus, entering

```
In[305]:= FindRoot[y[t] == 0.63, {t, 3770}]
Out[305]= {t }->3819.48
```

returns an approximation of the solution to the equation $y(t)=0.63$ using an initial approximation of 3770 .

To observe some of the limitations of the Malthus model, we next consider a population problem in which the rate of growth of the population does not exclusively depend on the population present.

EXAMPLE 3.2.3: The population of the United States was recorded as 5.3 million in 1800. Use the Malthus model to approximate the population for years after 1800 if k was experimentally determined to be 0.03 . Compare these results to the actual population. Is this a good approximation for years after 1800?

SOLUTION: In this example, $k=0.03$ and $y_{0}=5.3$ and our model for the population of the United States at time t (where t is the number of years from 1800) is $y(t)=5.3 e^{0.03 t}$.

```
In[306]:= Clear[k,y,t]
    peq = DSolve[{y'[t] == ky[t],y[0] == y0},
    y[t], t]
Out [306]= {{y[t] -> \mp@subsup{e}{}{kt}y0}}
In[307]:= pop[t_, k_, y0_] = e kt y0
Out[307]= e ekt}y
In[308]:= pop[t, 0.03,5.3]
Out [308]=5.3 e 0.03t
```

Table 3-1 Population of the United States for various years

	Actual Population (in millions)	Value of $y(t)=$ $5.3 e^{0.03 t}$	Year (t)	Actual Population (in millions)	Value of $y(t)=$ $5.3 e^{0.03 t}$
$1800(0)$	5.30	5.30	$1870(70)$	38.56	43.28
$1810(10)$	7.24	7.15	$1880(80)$	50.19	58.42
$1820(20)$	9.64	9.66	$1890(90)$	62.98	78.86
$1830(30)$	12.68	13.04	$1900(100)$	76.21	106.45
$1840(40)$	17.06	17.60	$1910(110)$	92.23	143.70
$1850(50)$	23.19	23.75	$1920(120)$	106.02	193.97
$1860(60)$	31.44	32.06	$1930(130)$	123.20	261.83

Figure 3-10 Over time, the Malthus model does not provide a good model of the growth of the population of the United States

In order to compare this model with the actual population of the United States, census figures for the population of the United States for various years are listed in Table 3-1 along with the corresponding value of $y(t)$.

Although the model appears to closely approximate the data for several years after 1800, the accuracy of the approximation diminishes over time. This is because the population of the United States does not exclusively increase at a rate proportional to the population. Hence, another model which better approximates the population taking other factors into account is needed. The graph of $y(t)=5.3 e^{0.03 t}$ is shown along with the data points in Figure 3-10 to show how the approximation becomes less accurate as t increases.

```
In[309]:= realpop = {{0, 5.3}, {10, 7.24}, {20, 9.64},
    {30, 12.68}, {40, 17.06}, {50, 23.19},
    {60, 31.44}, {70, 38.56}, {80, 50.19},
    {90, 62.98}, {100, 76.21}, {110, 92.23},
    {120, 106.02}, {130, 123.2}};
In[310]:= toshow = ListPlot[realpop,
                            PlotStyle- > PointSize[0.02],
    DisplayFunction }->\mathrm{ Identity];
In[311]:= popplot = Plot[pop[t, 0.03,5.3],{t, 0, 100},
    PlotStyle- > GrayLevel[0.3],
    DisplayFunction- > Identity];
Show[popplot, toshow,
    DisplayFunction- > $DisplayFunction]
```


3.2.2 The Logistic Equation

The logistic equation (or Verhulst equation) is the equation

$$
\begin{equation*}
\frac{d y}{d t}=(r-a y(t)) y(t), \tag{3.3}
\end{equation*}
$$

where r and a are constants. Equation (3.3) was first introduced by the Belgian mathematician Pierre Verhulst to study population growth. The logistic equation differs from the Malthus model in that the term $r-a y(t)$ is not constant. This equation can be written as $d y / d t=(r-a y) y=r y-a y^{2}$ where the term $-y^{2}$ represents an inhibitive factor. Under these assumptions the population is neither allowed to grow out of control nor grow or decay constantly as it was with the Malthus model.

The logistic equation is separable, and, thus, can be solved by separation of variables. We solve equation (3.3) subject to the condition $y(0)=y_{0}$.

Separating variables and using partial fractions to integrate with respect to y, we have

$$
\begin{aligned}
\frac{1}{(r-a y) y} d y & =d t \\
\left(\frac{a}{r} \frac{1}{r-a y}+\frac{1}{r} \frac{1}{y}\right) d y & =d t \\
\left(a \frac{1}{r-a y}+\frac{1}{y}\right) d y & =r d t \\
-\ln |r-a y|+\ln |y| & =r t+C .
\end{aligned}
$$

Using the properties of logarithms to solve this equation for y yields

$$
\begin{gathered}
\qquad \begin{array}{c}
\ln \left|\frac{y}{r-a y}\right|=r t+C \\
\frac{y}{r-a y}= \pm e^{r t+C}=K e^{r t}, \text { where } K= \pm e^{C} \\
y=r\left(\frac{1}{K} e^{-r t}+a\right)^{-1} \cdot \\
\text { In }[312]:=\text { DSolve }\left[\mathrm{y}^{\prime}[\mathrm{t}]==(\mathrm{r}-\mathrm{a} \mathrm{y}[\mathrm{t}]) \mathrm{y}[\mathrm{t}], \mathrm{y}[\mathrm{t}], \mathrm{t}\right] \\
\text { Out }[312]=\left\{\left\{\mathrm{y}[\mathrm{t}] \rightarrow \frac{e^{r t} r}{\mathrm{a} \mathbb{e}^{r t}+\mathbb{e}^{r c[1]}}\right\}\right\}
\end{array}
\end{gathered}
$$

Applying the initial condition $y(0)=y_{0}$ and solving for K, we find that

$$
K=\frac{y_{0}}{r-a y_{0}} .
$$

After substituting this value into the general solution and simplifying, the solution of equation (3.3) that satisfies the initial condition $y(0)=y_{0}$ can be written as

$$
\begin{equation*}
y=\frac{r y_{0}}{a y_{0}+\left(r-a y_{0}\right) e^{-r t}} . \tag{3.4}
\end{equation*}
$$

Notice that if $r>0, \lim _{t \rightarrow \infty} y(t)=r / a$ because $\lim _{t \rightarrow \infty} e^{-r t}=0$. This makes the solution to the logistic equation different from that of the Malthus model in that the solution to the logistic equation approaches a finite nonzero limit as $t \rightarrow \infty$ while that of the Malthus model approaches either infinity or zero as $t \rightarrow \infty$.

```
In[313]:= DSolve[{y'[t] == (r-ay[t]) y[t],
    y[0] == y0},y[t], t]
Out[313]={{y[t]->\frac{\mp@subsup{e}{}{rt}r\mp@subsup{y}{0}{0}}{r-a\mp@subsup{y}{0}{0}+a\mp@subsup{e}{}{rt}\mp@subsup{y}{0}{\prime}}}}
```

EXAMPLE 3.2.4: Use the logistic equation to approximate the population of the United States using $r=0.03, a=0.0001$, and $y_{0}=5.3$. Compare this result with the actual census values shown in Table 3-1. Use the model obtained to predict the population of the United States in the year 2000.

SOLUTION: We substitute the indicated values of r, a, and y_{0} into equation (3.4) to obtain the approximation of the population of the United States at time t, where t represents the number of years since 1800,

$$
y(t)=\frac{0.159}{0.00053+0.02947 e^{-0.03 t}} .
$$

Be sure that you have defined realpop as in Example 3.2.3 before entering the following commands.

$$
\begin{aligned}
& \text { In }[314]:= \\
& \text { Out }[314]= \\
& \begin{aligned}
\text { In }[315]:= & \frac{0.159}{0.00053+0.0294 \mathbb{e}^{-0.03 t}} \\
& \text { realpop }=\text { Union }[\text { realpop, }\{\{140,132.16\}, \\
& \{150,151.33\},\{160,179.32\}, \\
& \{170,203.3\},\{180,226.54\}, \\
& \{190,248.71\}\}] ;
\end{aligned}
\end{aligned}
$$

We compare the approximation of the population of the United States given by the approximation with the actual population obtained from census figures. Note that this model appears to more closely approximate the population over a longer period of time than the Malthus model which was considered in the previous examples as we can see in the graph shown in Figure 3-11.

```
In[316]:= toshow = ListPlot[realpop,
    PlotStyle- > PointSize[0.02],
    DisplayFunction }->\mathrm{ Identity];
In[317]:= popplot = Plot[pop[t], {t, 0, 200},
    PlotStyle }->\mathrm{ GrayLevel[0.3],
    DisplayFunction }->\mathrm{ Identity];
    Show[popplot, toshow,
    DisplayFunction }->\mathrm{ $DisplayFunction]
```

To predict the population of the United States in the year 2000 with this model, we evaluate $y(200)$. Thus, we predict that the population will be approximately 263.74 million in the year 2000. Note that projections of

Figure 3-11 Over time, the logistic equation appears to provide a better model of the population of the United States than the Malthus model
the population of the United States in the year 2000 made by the Bureau of the Census range from 259.57 million to 278.23 million.

```
In[318]:= pop[200]
Out[318]= 263.736
In[319]:= pop[2010]
Out[319]= 300.
```

EXAMPLE 3.2.5 (Logistic Equation with Predation): Incorporating predation into the logistic equation, $y^{\prime}=\alpha y\left(1-\frac{1}{K} y\right)$, results in

$$
\frac{d y}{d t}=\alpha y\left(1-\frac{1}{K} y\right)-P(y)
$$

where $P(y)$ is a function of y describing the rate of predation. A typical choice for P is $P(y)=a y^{2} /\left(b^{2}+y^{2}\right)$ because $P(0)=0$ and P is bounded above: $\lim _{t \rightarrow \infty} P(y)<\infty$.
Remark. Of course, if $\lim _{t \rightarrow \infty} y(t)=Y$, then $\lim _{t \rightarrow \infty} P(y)=a Y^{2} /\left(b^{2}+Y^{2}\right)$. Generally, however, $\lim _{t \rightarrow \infty} P(y) \neq a$ because $\lim _{t \rightarrow \infty} y(t) \leq K \neq \infty$, for some $K \geq 0$, in the predation situation.

If $\alpha=1, a=5$, and $b=2$, graph the direction field associated with the equation as well as various solutions if (a) $K=19$ and (b) $K=20$.

SOLUTION: (a) We define eqn [k] to be

$$
\frac{d y}{d t}=y\left(1-\frac{1}{K} y\right)-\frac{5 y^{2}}{4+y^{2}} .
$$

```
In[320]:= << Graphics'PlotField`
In[321]:= eqn[k_] = y'[t] == y[t](1-1/k y[t])
    -5y[t]^2/(4+y[t]^2);
```

We use PlotVectorField to graph the direction field in Figure 3-12 (a) and then the direction field along with the solutions that satisfy $y(0)=.5, y(0)=.2$, and $y(0)=4$ in Figure 3-12 (b).

```
In[322]:= pvf19 = PlotVectorField[{1, y(1-1/19 y)
    -5y^2/(4 + y^2) }, {t, 0, 10}, {y, 0, 6},
    Axes- > Automatic, HeadLength- > 0,
    DisplayFunction- > Identity];
```


Figure 3-12 (a) Direction field and (b) direction field with three solutions

```
In[323]:= n1 = NDSolve[{eqn[19], y[0] == 0.5},y[t],
    {t, 0, 10}];
    n2 = NDSolve[{eqn[19], y[0] == 2}, y[t],
    {t, 0, 10}];
        n3 = NDSolve[{eqn[19], y[0] == 4}, y[t],
        {t, 0, 10}];
In[324]:= solplot = Plot[Evaluate[y[t]/.{n1, n2, n3}],
    {t, 0, 10}, PlotStyle- >
    Thickness[0.01],
    DisplayFunction- > Identity];
```

The same results can be obtained using Map.

```
In [325]:= numsols = Map[NDSolve[{eqn[19], y[0] == #},
    y[t], {t, 0, 10}]&, {0.5, 2, 4}];
    solplot = Plot[Evaluate[y[t]/.numsols],
    {t, 0, 10}, PlotStyle- >
    Thickness[0.01],
    DisplayFunction- > Identity];
In[326]:= Show[GraphicsArray[{pvf19, Show[pvf19,
    solplot]}]]
```

In the plot, notice that all nontrivial solutions appear to approach an equilibrium solution. We determine the equilibrium solution by solving $y^{\prime}=0$

$$
\begin{aligned}
& \operatorname{In}[327]:=\text { eqn [19] [[2]] } \\
& \text { Out }[327]=\left(1-\frac{y[t]}{19}\right) y[t]-\frac{5 y[t]^{2}}{4+y[t]^{2}}
\end{aligned}
$$

Figure 3-13 Direction field

```
In[328]:= Solve[eqn[19.][[2]] == 0, y[t]]
Out [328]= {{y[t] ->0.}, {y[t] ->0.923351},
    {y[t] ->9.03832-0.785875 i},
    {y[t]->9.03832+0.785875 i}}
```

to see that it is $y \approx 0.923$.
(b) We carry out similar steps for (b). First, we graph the direction field with PlotVectorField in Figure 3-13.

```
In[329]:= pvf20 = PlotVectorField[{1,y(1-1/20 y)
    -5y^2/(4+y^2)}, {t, 0, 10}, {y,0, 20},
    Axes- > Automatic, HeadLength- > 0,
    AspectRatio- > 1/GoldenRatio];
```

We then use Map together with NDSolve to numerically find the solution satisfying $y(0)=.5 i$, for $i=1,2, \ldots, 40$ and name the resulting list numsols. The functions contained in numsols are graphed with Plot in solplot.

```
In[330]:= numsols = Map[NDSolve[{eqn[20], y[0] == #},
    y[t], {t, 0, 10}]&,Table[0.5i, {i, 1, 40}]];
    solplot = Plot[Evaluate[y[t]/.numsols],
    {t, 0, 10}, PlotStyle- > Thickness[0.005],
    DisplayFunction- > Identity];
```

Last, we display the direction field along with the solution graphs in solplot using Show in Figure 3-14.

```
In[331]:= Show[pvf20, solplot]
```

Notice that there are three nontrivial equilibrium solutions that are found by solving $y^{\prime}=0$.

See Smith and Waltman's, The Theory of the Chemostat: Dynamics of Microbial Competition [24], for a detailed discussion of various chemostat models.

Figure 3-14 Direction field with several solutions

```
In[332]:= Solve[eqn[20.][[2]] == 0,y[t]]
Out [332]= {{y[t] ->0.},{y[t] ->0.926741},
    {y[t] -> 7.38645},
    {y[t] }->11.6868}
```

In this case, $y \approx .926$ and $y \approx 11.687$ are stable while $y \approx 7.386$ is unstable.

EXAMPLE 3.2.6 (Growth in the Chemostat): The scaled equations for the growth of a population in a chemostat are

$$
\left\{\begin{array}{l}
\frac{d S}{d t}=1-S-\frac{m S}{a+S} x \tag{3.5}\\
\frac{d x}{d t}=x\left(\frac{m S}{a+S}-1\right) \\
S(0) \geq 0, x(0)>0
\end{array}\right.
$$

where $S(t)$ denotes the concentration of the nutrient at time t for the organism with concentration $x(t)$ at time t. Letting $\Sigma=1-S-x$, we see that $\Sigma^{\prime}=-\Sigma$

```
In [333]: \(=\mathbf{s e q}=1 \mathbf{- s}-\mathbf{m s} \mathbf{x} /(\mathbf{a}+\mathbf{s})\);
    xeq \(=\mathbf{x}(\mathrm{ms} /(\mathrm{a}+\mathrm{s})-1)\);
In [334] \(:=\boldsymbol{\sigma}=\mathbf{1} \mathbf{- s} \mathbf{- x}\);
In [335]: \(=\) seq + xeq \(-\sigma / /\) Simplify
Out [335] = 0
```

and system (3.5) can be written as

$$
\left\{\begin{array}{l}
\frac{d \Sigma}{d t}=-\Sigma \tag{3.6}\\
\frac{d x}{d t}=x\left(\frac{m(1-\Sigma-x)}{a+(1-\Sigma-x)}-1\right) \\
\Sigma(0)>0, x(0)>0 .
\end{array}\right.
$$

Because $\Sigma(t)=\Sigma(0) e^{-t}, \lim _{t \rightarrow \infty} \Sigma(t)=0$ so system (3.6) can be rewritten as the single first-order equation

$$
\begin{equation*}
\frac{d x}{d t}=x\left(\frac{m(1-x)}{a+(1-x)}-1\right) \quad \text { or } \quad \frac{d x}{d t}=x\left[\frac{m(1-x)}{1+a-x}-1\right], 0 \leq x \leq 1, \tag{3.7}
\end{equation*}
$$

where $x(0)>0$. The rest points (or equilibrium points) of equation (3.7) are found by solving

$$
x\left[\frac{m(1-x)}{1+a-x}-1\right]=0
$$

for x.

$$
\begin{aligned}
& \text { In }[336]:=\text { Solve }\left[\left(-1+\frac{\mathbf{m}(1-\mathbf{x})}{1+\mathbf{a}-\mathbf{x}}\right) \mathbf{x}==0, \mathbf{x}\right] \\
& \text { Out }[336]=\left\{\{\mathbf{x} \rightarrow 0\},\left\{\mathbf{x} \rightarrow \frac{-1-a+m}{-1+m}\right\}\right\}
\end{aligned}
$$

For $m \neq 1$, observe that the nonzero rest point can be written as $x=1-\lambda$, where $\lambda=a /(m-1)$ is called the break-even concentration.

$$
\operatorname{In}[337]:=\operatorname{Apart}\left[\frac{-1-a+m}{-1+m}\right]
$$

$$
\text { Out }[337]=1-\frac{a}{-1+m}
$$

We use Plot to graph $y=1-\lambda$ in Figure 3-15.

```
In[338]:= Plot[1-\lambda, {\lambda, 0, 1}, AspectRatio }->\mathrm{ Automatic,
    AxesLabel }->{"\lambda", ""}
```

On the other hand, in Figure 3-16 we use ContourPlot to generate a plot of the level curve of $f(a, m)=(m-a-1) /(m-1)$ corresponding to 0 . Points (a, m) in the white region are points where $1-\lambda$ is positive.

$$
\begin{aligned}
& \operatorname{In}[339]:=\frac{-1-a+m}{-1+m} / \cdot\{a \rightarrow 2, m \rightarrow 6\} \\
& \text { Out }[339]=\frac{3}{5} \\
& \text { In }[340]:=\frac{-1-a+m}{-1+m} / \cdot\{a \rightarrow 8, m \rightarrow 2\} \\
& \text { Out }[340]=-7
\end{aligned}
$$

Figure 3-15 Plot of $y=1-\lambda$

Figure 3-16 The black region corresponds to points (a,m) where $1-\lambda$ is negative

```
In [341]:= ContourPlot[\frac{-1-a+m}{-1+m},{a,0,10},{m,0,10},
    Contours }->{0}, PlotPoints ->200
    AxesLabel }->\mathrm{ {"a", "m"}, Frame }->\mathrm{ False,
    Axes }->\mathrm{ Automatic]
```

To see how a, m, and $x(0)=x_{0}$ affect the solutions of equation (3.7), we define the function x . The command $\mathrm{x}[\mathrm{m}, \mathrm{a}][\mathrm{x} 0]$ plots the solution of equation (3.7) satisfying $x(0)=x_{0}$ for $0 \leq t \leq 10$. You can include Plot options, opts, with $x[m, a][x 0, o p t s]$.

```
In[342]:= Clear[x]
    x[m_, a_] [x0_, opts__] := Module[{\lambda},
            \lambda = a/(m-1);
            numsol = NDSolve[{\mp@subsup{x}{}{\prime}[t] ==
                x[t] (m-1) /(1 +a-x[t]) (1-\lambda-x[t]),
                    x[0] == x0}, x[t],{t, 0, 100}];
            Plot[Evaluate[x[t]/.numsol],
                {t, 0, 10},opts,
                DisplayFunction }->\mathrm{ Identity,
                PlotRange }->{0,1}]
```

For example,

```
In[343]:= g1 = Table[x[4, 2][x0, PlotStyle }->\mathrm{ GrayLevel
                        x[0 + x0/2]], {x0, 0.05, 0.95,0.9/14}];
In[344]:= - = -1-a+m
In[345]:= g1b = Show[g1, DisplayFunction }
    $DisplayFunction]
```

plots solutions to equation (3.7) if $m=4$ and $a=2$ for various initial conditions. The results are shown in Figure 3-17. In this case, we see that all solutions approach the equilibrium solution $x=1 / 3$.

$$
\text { Out }[345]=\frac{1}{3}
$$

On the other hand, entering

```
In[346]:= g2 = Table[x[m, 2][0.2,
    PlotStyle }->\mathrm{ GrayLevel[(9 - m)/8]],
    {m,1.01, 9, 8.99/24}];
In[347]:= g2b = Show[g2,
    DisplayFunction }->\mathrm{ $DisplayFunction];
```


Figure 3-17 If $m=4$ and $a=2$, all solutions of equation (3.7) approach the equilibrium solution $x=1 / 3$

Figure 3-18 If m is sufficiently small, the organism becomes extinct
solves equation (3.7) if $a=2$ and $x_{0}=0.2$ for various values of m. The results are shown in Figure 3-18.

Source: David A. Sanchez,
"Populations and Harvesting," Mathematical Modeling: Classroom Notes in Applied Mathematics, Murray S.
Klamkin, Editor, SIAM (1987), Pp. 3II-3I3.

Application: Harvesting

If we wish to take a constant harvest rate, H (like hunting, fishing, or disease) into consideration, then we might instead modify the logistic equation (3.3) and use the equation

$$
\frac{d P}{d t}=r P-a P^{2}-H
$$

to model the population under consideration. Notice that Mathematica can find a solution to this equation if $r^{2}-4 a H<0$.

$$
\begin{aligned}
\text { In }[348]:= & \text { gensol }=\text { DSolve }\left[p^{\prime}[t]==r p[t]-\operatorname{ap}[t]^{2}\right. \\
& -h, p[t], t] \\
\text { Out }[348]= & \left\{\left\{p [t] \rightarrow \frac { 1 } { 2 a } \left(r+\sqrt{4 a h-r^{2}} \operatorname{Tan}\left[\frac{1}{2}(\right.\right.\right.\right. \\
& -\sqrt{4 a h-r^{2}} t \\
& \left.\left.\left.\left.\left.+\sqrt{4 a h-r^{2}} C[1]\right)\right]\right)\right\}\right\}
\end{aligned}
$$

If H does not depend on P, the equilibrium solutions are found by solving $r P-$ $a P^{2}-H=0$ for P.

$$
\begin{aligned}
& \text { In } \left.[349]:=\text { eqsols }=\text { Solve } r \mathrm{p}-\mathrm{a} \mathrm{p}^{\wedge} 2-\mathrm{h}==0, \mathrm{p}\right] \\
& \text { Out }[349]=\left\{\left\{\mathrm{p} \rightarrow-\frac{-r-\sqrt{-4 a h+\mathrm{r}^{2}}}{2 a}\right\},\left\{\mathrm{p} \rightarrow-\frac{-r+\sqrt{-4 a h+r^{2}}}{2 a}\right\}\right\}
\end{aligned}
$$

Observe that there are two distinct equilibrium solutions if $r^{2}-4 a H>0$. There is one equilibrium solution if $r^{2}-4 a H=0$, and none if $r^{2}-4 a H<0$. Suppose that for a certain species it is found that $r=7 / 10, a=1 / 10$, and $H=1$. Then, the model becomes $d P / d t=\frac{7}{10} P-\frac{1}{10} P^{2}-1$ with equilibrium solutions $P=2$ and $P=5$.


```
Out [350]={{p->5}, {p->2}}
```

Mathematica can solve the initial-value problem $d P / d t=\frac{7}{10} P-\frac{1}{10} P^{2}-1, P(0)=P_{0}$ although the result is very lengthy so we display an abbreviated portion of the solution with Short.

```
In[351]:= exactsol =
    DSolve [{p'[t] == 7/10p[t] - 1/10p[t]^2-1,
        p[0] == p0}, p[t],t];
In[352]:= Short[exactsol]
Out[352]={{p[t]->\frac{<<5>>+5 5<<1>> p0}{<<5>>+\mp@subsup{e}{}{<<1>>}\textrm{p}0}}}
```

Proceeding numerically, we define the function numgraph. Given i, numgraph [i] attempts to graph the numerical solution to $d P / d t=\frac{7}{10} P-\frac{1}{10} P^{2}-1, P(0)=P_{0}$ on the rectangle $[-10,10] \times[-10,10]$. Any options specified are passed through to the plot command.

For these parameter values, the solution obtained in gensol is not valid because $r^{2}-4 a H=9 / 100>0$.

Figure 3-19 A solution to the logistic equation with harvesting

```
In[353]:= Clear[p, numgraph];
    numgraph[i_,opts_-_] :=
        Module[{numsol}, numsol =
            NDSolve[{p'[t] == 7/10p[t] - 1/10p[t]^2 - 1,
                        p[0] == i},p[t], {t, 0, 10}];
            Plot[p[t]/.numsol, {t, 0, 10},opts,
                        DisplayFunction }->\mathrm{ Identity,
                        PlotStyle }->\mathrm{ {{GrayLevel[0],
                        Thickness[0.01]}},
            PlotRange }->{{0,10},{0,10}}
```

]
 For example, entering

```
In[354]:= numgraph[11, PlotRange }->\mathrm{ All,
    DisplayFunction }->\mathrm{ $DisplayFunction]
```

displays the graph of the solution to $d P / d t=\frac{7}{10} P-\frac{1}{10} P^{2}-1, P(0)=11$ for $0 \leq$ $t \leq 10$, which is shown in Figure 3-19. We then use Map to graph the solution of $d P / d t=\frac{7}{10} P-\frac{1}{10} P^{2}-1, P(0)=i, i=1,1 / 2, \ldots, 10$, naming the resulting set of graphs toshow. Notice that Mathematica generates several error messages, not all of which are shown here, because solutions satisfying $P(0)=P_{0}$ for $P_{0}<2$ become unbounded very quickly.

```
In[355]:= toshow = Map[numgraph, Table[i, {i, 1, 10, 1/2}]]
    NDSolve :: ndsz :
        At t == 4.62098, step size is effectively zero;
        singularity or stiff system suspected.
```


Figure 3-20 Solutions to the logistic equation with harvesting with the associated direction field

```
In[356]:= p1 = Show[toshow,
    DisplayFunction }->\mathrm{ $DisplayFunction];
```

The unbounded behavior of the solutions is particularly evident when we display the graphs in toshow together with the direction field associated with the equation in Figure 3-20.

```
In[357]:= << Graphics'PlotField'
    p2 = PlotVectorField[{1,7/10y-1/10y^2-1},
            {x,0,10}, {y,0, 10}, Frame }->\mathrm{ False,
        Axes }->\mathrm{ Automatic, AxesOrigin }->{0,0}
        DefaultColor }->\mathrm{ GrayLevel[0.5],
        ScaleFunction }->\mathrm{ (0.5&), PlotPoints- > 30,
        HeadLength- > 0, DisplayFunction }->\mathrm{ Identity];
In[358]:= Show[p2, p1, DisplayFunction }->\mathrm{ $DisplayFunction,
        PlotRange }->{{0,10},{0,10}}, AspectRatio -> 1]
```

Thus, if $P_{0}<2$ and harvesting is allowed to continue, the species becomes extinct. If $P_{0}>2$, the population of the species has an equilibrium population of $P=5$.

Sources: See texts like Boyce and DiPrima's Elementary Differential Equations and Boundary-Value Problems, [5] and Edwards and Penney's Differential Equations and Boundary Value Problems: Computing and Modeling, [IO] for elementary but precise discussions.

Application: The Logistic Difference Equation

Given x_{0}, the Logistic difference equation is

$$
\begin{equation*}
x_{n+1}=r x_{n}\left(1-x_{n}\right) . \tag{3.8}
\end{equation*}
$$

Assume that $x_{0}=0.5$.
Given r, we use Mathematica to define the function $x_{r}(n)$ using the form

$$
x\left[r_{-}\right]\left[n_{-}\right]:=x[r][n]=. .
$$

so that Mathematica "remembers" the values of $x_{r}(n)$ computed. In doing so, Mathematica need not recompute $x_{r}(n-1)$ to compute $x_{r}(n)$ if $x_{r}(n-1)$ has already been computed.

```
In [359]:= Clear[x]
    \(x\left[r_{-}\right][0]=0.5 ;\)
    \(\mathbf{x}\left[r_{-}\right]\left[n_{-}\right]:=x[r][n]=r x[r][n-1](1-x[r][n-1]) ;\)
```

For example,

```
In[360]:= t4 = Table[x[3.83][n], {n, 1, 50}]
Out [360]= {0.9575,0.155857,0.503896,0.957442,0.156061,
    0.504433,0.957425,0.156121,0.504592,0.957419,
    0.15614,0.504642,0.957417,0.156146,0.504658,
    0.957417,0.156148,0.504664,0.957417,0.156149,
    0.504666,0.957417,0.156149,0.504666,0.957417,
    0.156149,0.504666,0.957417,0.156149,0.504666,
    0.957417,0.156149,0.504666,0.957417,0.156149,
    0.504666,0.957417,0.156149,0.504666,0.957417,
    0.156149,0.504666,0.957417,0.156149,0.504666,
    0.957417,0.156149,0.504666,0.957417,0.156149}
```

computes x_{n} for $n=1,2, \ldots, 50$ if $r=3.83$ in equation (3.8) and

```
In[361]:= ListPlot[t4, PlotJoined }->\mathrm{ True]
```

plots the resulting list and connects successive points with line segments as shown in Figure 3-21.

To investigate how the behavior of equation (3.8) changes as r changes, we enter

```
In[362]:= t1 = Table[{r, x[r][n]}, {r, 2.8,4,1.2/249},
    {n, 101, 300}];
```

which computes a nested list: for 250 equally spaced values of r between 2.8 and 4.0, the list consisting of $\left(r, x_{r}(n)\right)$ for $n=101, \ldots, 300$ is returned. The nested list is converted to a list of ordered pairs with Flatten

Figure 3-21 A 3-cycle

Figure 3-22 The "Pitchfork diagram" for $2.8 \leq r \leq 4.0$

$$
\operatorname{In}[363]:=\text { toshow }=\text { Flatten }[t 1,1] ;
$$

and then plotted with ListPlot in Figure 3-22.

```
In[364]:= ListPlot[toshow, AxesLabel -> {"r", "x"}]
```

However, if you immediately request $x[r][M]$ for a large value of M without computing $\mathrm{x}[\mathrm{r}][\mathrm{n}]$ for n less than M , Mathematica has a difficult time working backwards. We finally abort the calculation.

$$
\operatorname{In}[365]:=\mathbf{x}[3.9][1000]
$$

```
$RecursionLimit : : reclim : Recursion depth of 256 exceeded.
$RecursionLimit : : reclim : Recursion depth of 256 exceeded.
$RecursionLimit : : reclim : Recursion depth of 256 exceeded.
General :: stop : Further output of
    $RecursionLimit : : reclim will be suppressed during this calculation.
Out [365]= $Aborted
```

When using a recursive definition like the one illustrated and to be on the safe side, a calculation like this should be carried out after the first 999 terms are computed. For situations like this, we prefer using Nest. For repeated compositions of a function with itself, Nest [$\mathrm{f}, \mathrm{x}, \mathrm{n}$] computes the composition

$$
\frac{(f \circ f \circ f \circ \cdots f)}{n \text { times }}(x)=\frac{(f(f(f \cdots)))(x)}{n \text { times }}=f^{n}(x) .
$$

In terms of a composition, computing x_{n} in equation (3.8) is equivalent to composing $f(x)=r x(1-x)$ with itself n times.

$$
\begin{aligned}
\text { In }[366]:= & \text { Clear }[\mathrm{f}, \mathrm{p}] \\
& \mathrm{f}\left[\mathbf{r}_{-}\right]\left[\mathbf{x}_{-}\right]:=\mathbf{r} \mathbf{x}(\mathbf{1 - \mathbf { x }}) / / \mathrm{N} ;
\end{aligned}
$$

Thus, entering

$$
\begin{aligned}
\text { In }[367]:= & \operatorname{Table}[\text { Nest }[f[2.5], 0.5, \mathrm{n}],\{\mathrm{n}, 1,50\}] \\
\text { Out }[367]= & \{0.625,0.585938,0.606537,0.596625,0.601659, \\
& 0.599164,0.600416,0.599791,0.600104,0.599948, \\
& 0.600026,0.599987,0.600007,0.599997,0.600002, \\
& 0.599999,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6, \\
& 0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6, \\
& 0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6, \\
& 0.6,0.6,0.6,0.6\}
\end{aligned}
$$

computes x_{n} for $n=1,2, \ldots, 50$ if $r=2.5$ while entering

```
In[368]:= Table[Nest[f[3.5],0.5,n], {n, 1, 50}]
Out [368]={0.875,0.382813,0.826935,0.500898,0.874997,
        0.38282,0.826941,0.500884,0.874997,0.38282,
        0.826941, 0.500884, 0.874997,0.38282,0.826941,
        0.500884, 0.874997, 0.38282,0.826941, 0.500884,
        0.874997,0.38282,0.826941, 0.500884, 0.874997,
        0.38282,0.826941,0.500884,0.874997, 0.38282,
        0.826941, 0.500884,0.874997,0.38282,0.826941,
        0.500884,0.874997,0.38282,0.826941, 0.500884,
        0.874997,0.38282,0.826941,0.500884,0.874997,
        0.38282,0.826941,0.500884,0.874997,0.38282}
```

computes x_{n} for $n=1,2, \ldots, 50$ if $r=3.5$.
You can see how solutions depend on r in a variety of ways. For example, entering the following command computes x_{n} for $n=1000, \ldots, 1050$ for nine equally spaced values of r between 3.2 and 3.9.

Figure 3-23 As r increases, we see chaos

```
In[369]:= t1 = Table[{n,Nest[f[r],0.5,n]},
    {r,3.2,3.9,0.7/8}, {n, 1000, 1050}];
```

Each list is plotted with ListPlot; successive points are connected with line segments because the option PlotJoined->True is included in the ListPlot command.

```
In[370]:= t1b = Map[ListPlot[#,
    PlotJoined }->\mathrm{ True,
    DisplayFunction }->\mathrm{ Identity,
    PlotRange }->{0,1}]&,t1]
```

All nine graphs are shown together as an array using Show and Graphics Array in Figure 3-23.

```
In[371]:= Show[GraphicsArray[Partition[t1b, 3]]]
```

We regenerate the "Pitchfork diagram" with the following commands in Figure 3-24.

```
In[372]:= t1 = Table[{r, Nest[f[r], 0.5,n]},
    {r,2.8,4,1.2/249}, {n,101, 300}];
```


Figure 3-24 A copy of the "Pitchfork diagram"

Figure 3-25 The "Pitchfork diagram" for $3.7 \leq r \leq 4.0$

```
In[373]:= toshow = Flatten[t1, 1];
In[374]:= ListPlot[toshow, AxesLabel }->\mathrm{ {"r", "x"},
    PlotStyle }->\mathrm{ PointSize[0.004]]
```

You can zoom in on areas of interest, as well. In Figure 3-25, we restrict r to $3.7 \leq r \leq 4.0$.

```
In[375]:= t3 = Table[{r, Nest[f[r], 0.5,n]},
    {r,3.7,4.,0.4/349}, {n, 101, 300}];
In[376]:= toshow = Flatten[t3, 1];
In[377]:= ListPlot[toshow, PlotRange }->{{3.7,4},{0,1}}
    PlotStyle }->\mathrm{ PointSize[0.004]]
```


3.3 Newton's Law of Cooling

First-order linear differential equations can be used to solve a variety of problems that involve temperature. For example, a medical examiner can find the time of death in a homicide case, a chemist can determine the time required for a plastic mixture to cool to a hardening temperature, and an engineer can design the cooling and heating system of a manufacturing facility. Although distinct, each of these problems depend on a basic principle, Newton's Law of Cooling, that is used to develop the associated differential equation.

Newton's Law of Cooling: The rate at which the temperature $T(t)$ changes in a cooling body is proportional to the difference between the temperature of the body and the constant temperature T_{s} of the surrounding medium.

Newton's Law of Cooling is modeled with the first-order initial-value problem

$$
\left\{\begin{array}{l}
\frac{d T}{d t}=k\left(T-T_{s}\right) \tag{3.9}\\
T(0)=T_{0}
\end{array}\right.
$$

where T_{0} is the initial temperature of the body and k is the constant of proportionality. If T_{s} is constant, equation (3.9) is separable and separating variables gives us

$$
\frac{1}{T-T_{s}} d T=k d t \quad \text { so } \quad \ln \left|T-T_{s}\right|=k t+C_{1}
$$

Equation (3.9) is also linear.
See Example 2.5.2 where we solved equation (3.9) by viewing it as a linear equation.

Using the properties of the natural logarithm and simplifying yields $T(t)=C e^{k t}+T_{s}$, where $C= \pm e^{C_{1}}$. Applying the initial condition implies that $T_{0}=C+T_{s}$, so $C=T_{0}-T_{s}$. Therefore, the solution of equation (3.9) is

$$
\begin{equation*}
T(t)=\left(T_{0}-T_{s}\right) e^{k t}+T_{s} \tag{3.10}
\end{equation*}
$$

Recall that if $k<0, \lim _{t \rightarrow \infty} e^{k t}=0$. Therefore, $\lim _{t \rightarrow \infty} T(t)=T_{s}$, so the temperature of the body approaches that of its surroundings.

EXAMPLE 3.3.1: A pie is removed from a $350^{\circ} \mathrm{F}$ oven and placed to cool in a room with temperature $75^{\circ} \mathrm{F}$. In 15 minutes, the pie has a temperature of $150^{\circ} \mathrm{F}$. Determine the time required to cool the pie to a temperature of $80^{\circ} \mathrm{F}$ so that it may be eaten.

SOLUTION: In this example, $T_{0}=350$ and $T_{s}=75$. Substituting these values into equation (3.11), we obtain $T(t)=(350-75) e^{k t}+$ $75=275 e^{k t}+75$.

```
In[378]:= step1 = capt s}+\mp@subsup{e}{}{kt}(-\mp@subsup{capt}{s}{}+\mp@subsup{t}{0}{})/
    {to }->350,\mp@subsup{capt s}{s}{}->75
```

Out [378] = 75 + $275 e^{k t}$

To solve the problem we must find k or e^{k}. Because we also know that $T(15)=150, T(15)=275 e^{15 k}=75$. Solving this equation for k or e^{k} gives us:

$$
\begin{array}{rlrl}
275 e^{15 k} & =75 \\
e^{15 k} & =\frac{3}{11} & 275 e^{15 k} & =75 \\
\ln \left(e^{15 k}\right) & =\ln \left(\frac{3}{11}\right) & e^{15 k} & =\frac{3}{11} \\
15 k & =\ln \left(\frac{3}{11}\right) & \text { or } & e^{k}
\end{array}=\left(\frac{3}{11}\right)^{1 / 15} .
$$

Thus, $T(t)=275 e^{-t \ln (11 / 3) / 15}+75=275\left(\frac{11}{3}\right)^{-t / 15}+75$.

$$
\begin{aligned}
& \text { In [379] : }=\text { step } 2=\text { step } 1 / . k \rightarrow \frac{1}{15} \log \left[\frac{3}{11}\right] \\
& \text { Out }[379]=75+253^{\text {t/15 }} 11^{1-\frac{t}{15}}
\end{aligned}
$$

To find the value of t for which $T(t)=80$, we solve the equation $275\left(\frac{11}{3}\right)^{-t / 15}+75=80$ for t :

$$
\begin{aligned}
275\left(\frac{11}{3}\right)^{-t / 15} & =5 \\
\left(\frac{11}{3}\right)^{-t / 15} & =\frac{1}{55} \\
\ln \left(\frac{11}{3}\right)^{-t / 15} & =\ln \left(\frac{1}{55}\right)=-\ln 55 \\
-\frac{t}{15} \ln \left(\frac{11}{3}\right) & =-\ln 55 \\
t & =\frac{15 \ln 55}{\ln \left(\frac{11}{3}\right)} \approx 46.264
\end{aligned}
$$

Figure 3-26 The value of t where $y=T(t)$ and $y=80$ is the solution to the problem

Alternatively, we can graph the solution together with the line $y=80$ as shown in Figure 3-26

```
In[380]:= Plot[{step2, 80},{t, 0, 90},
    PlotStyle }->{\mathrm{ GrayLevel [0], Dashing[{0.01}]},
    PlotRange }->{0,350}
```

and then use FindRoot to approximate the time at which the temperature of the pie reaches $80^{\circ} \mathrm{F}$.

```
In[381]:= FindRoot[step2 == 80, {t, 45}]
Out [381]= {t }->46.264
```

Thus, the pie will be ready to eat after approximately 46 minutes.
An interesting question associated with cooling problems is to determine if the pie reaches room temperature. From the formula, $T(t)=$ $275\left(\frac{11}{3}\right)^{-t / 15}+75$, we see that the component $275\left(\frac{11}{3}\right)^{-t / 15}>0$, so $T(t)=$ $275\left(\frac{11}{3}\right)^{-t / 15}+75>75$. Therefore, the pie never actually reaches room temperature according to our model. However, we see from the graph and from the values in the following table that its temperature approaches $75^{\circ} \mathrm{F}$ as t increases.

The first choice of $C(t)$ has average value of $70^{\circ} \mathrm{F}$; the second choice has an average value of $80^{\circ} \mathrm{F}$.

```
```

In[382]:= Table[{t, step2//N}, {t, 60, 100, 10}]//

```
```

In[382]:= Table[{t, step2//N}, {t, 60, 100, 10}]//
TableForm
TableForm
60 76.5214
60 76.5214
70 75.6398
70 75.6398
Out[382]= 80 75.2691
Out[382]= 80 75.2691
90 75.1132
90 75.1132
10075.0476

```
```

 10075.0476
    ```
```

If the temperature of the surroundings, T_{s}, varies the situation is more complicated. For example, consider the problem of heating and cooling a building. Over the span of a 24 -hour day, the outside temperature, T_{s}, varies so the problem of determining the temperature inside the building becomes more complicated. Assuming that the building has no heating or air conditioning system, the differential equation that needs to be solved to find the temperature $u(t)$ at time t inside the building is

$$
\begin{equation*}
\frac{d u}{d t}=k(C(t)-u(t)), \tag{3.11}
\end{equation*}
$$

where $C(t)$ is a function that describes the outside temperature and $k>0$ is a constant that depends on the insulation of the building. According to this equation, if $C(t)>u(t)$, then $d u / d t>0$, which implies that u increases. On the other hand, if $C(t)<u(t)$, then $d u / d t<0$ which means that u decreases.

EXAMPLE 3.3.2: (a) Suppose that during the month of April in Atlanta, Georgia, the outside temperature in degrees F is given by $C(t)=70-$ $10 \cos (\pi t / 12), 0 \leq t \leq 24$. Determine the temperature in a building that has an initial temperature of $60^{\circ} \mathrm{F}$ if $k=1 / 4$. (b) Compare this to the temperature in June when the outside temperature is $C(t)=80-$ $10 \cos (\pi t / 12)$ and the initial temperature is $70^{\circ} \mathrm{F}$.

SOLUTION: (a) The initial-value problem that we must solve is

$$
\left\{\begin{array}{l}
\frac{d u}{d t}=k\left[70-10 \cos \left(\frac{\pi}{12} t\right)-u\right] \\
u(0)=60
\end{array}\right.
$$

The differential equation can be solved if we write it as $d u / d t+k u=$ $k[70-10 \cos (\pi t / 12)]$ and then use an integrating factor. This gives us

$$
\frac{d}{d t}\left(e^{k t} u\right)=k e^{k t}[70-10 \cos (\pi t / 12)]
$$

Figure 3-27 The temperature in a hypothetical building over a period of 24 hours
so we must integrate both sides of the equation. Of course, solving the equation is most easily carried out through the use of DSolve.

$$
\begin{aligned}
\operatorname{In}[383]:= & \text { soll }= \\
& \text { DSolve }\left[\left\{u^{\prime}[t]==\frac{1}{4}\left(70-10 \operatorname{Cos}\left[\frac{\pi t}{12}\right]-u[t]\right),\right.\right. \\
& u[0]==60\}, u[t], t] / / \operatorname{Simplify} \\
\text { Out }[383]= & \left\{\left\{u [t] \rightarrow \frac { 1 } { 9 + \pi ^ { 2 } } \left(1 0 \left(63+7 \pi^{2}\right.\right.\right.\right. \\
& -e^{-t / 4} \pi^{2}-9 \operatorname{Cos}\left[\frac{\pi t}{12}\right] \\
& \left.\left.\left.\left.-3 \pi \operatorname{Sin}\left[\frac{\pi t}{12}\right]\right)\right)\right\}\right\}
\end{aligned}
$$

We then use Plot to graph the solution for $0 \leq t \leq 24$ in Figure 3-27.

```
In[384]:= Plot[u[t]/.sol1, {t, 0, 24}]
```

Note that the temperature reaches its maximum (approximately $77^{\circ} \mathrm{F}$) near $t \approx 15.5$ hours which corresponds to 3:30 p.m. A more accurate estimate is obtained with FindRoot by setting the first derivative of the solution equal to zero and solving for t.

```
In[385]:= FindRoot[Evaluate[\partialt(sol1\llbracket1, 1, 2\rrbracket) == 0],
    {t, 15}]
```

```
Out [385]= {t }->\mathrm{ 15.1506}
```


Figure 3-28 The plot is almost identical to the plot obtained in (a)
(b) This problem is solved in the same manner as the previous case.

$$
\left.\begin{array}{rl}
\text { In }[386]:= & \text { sol2 }= \\
= & \text { DSolve }\left[\left\{u^{\prime}[t]\right.\right. \\
= & \frac{1}{4}\left(80-10 \operatorname{Cos}\left[\frac{\pi t}{12}\right]-u[t]\right), u[0] \\
& ==70\}, u[t], t] / / \text { Simplify }
\end{array}\right\} \begin{aligned}
\text { Out }[386]= & \left\{\left\{u [t] \rightarrow \frac { 1 } { 9 + \pi ^ { 2 } } \left(1 0 \left(72+8 \pi^{2}\right.\right.\right.\right. \\
& -e^{-t / 4} \pi^{2}-9 \operatorname{Cos}\left[\frac{\pi t}{12}\right] \\
& \left.\left.\left.\left.-3 \pi \sin \left[\frac{\pi t}{12}\right]\right)\right)\right\}\right\}
\end{aligned}
$$

The solution is graphed with Plot in Figure 3-28. From the graph, we see that the maximum temperature appears to occur near $t \approx 15$ hours.

```
In[387]:= Plot[u[t]/.sol2, {t, 0, 24}]
```

Again, a more accurate value is obtained with FindRoot by setting the first derivative of the solution equal to zero and solving for t. This calculation yields 15.15 hours, the same as that in (a).

```
In[388]:= FindRoot[Evaluate[\partialt(sol2\llbracket1, 1, 2\rrbracket) == 0],
    {t, 15}]
```

```
Out [388]= {t }->15.1506
```


3.4 Free-Falling Bodies

The motion of objects can be determined through the solution of first-order initialvalue problems. We begin by explaining some of the theory that is needed to set up the differential equation that models the situation.

Newton's Second Law of Motion: The rate at which the momentum of a body changes with respect to time is equal to the resultant force acting on the body.

Because the body's momentum is defined as the product of its mass and velocity, this statement is modeled as

$$
\frac{d}{d t}(m v)=F,
$$

where m and v represent the body's mass and velocity, respectively, and F is the sum of the forces (the resultant force) acting on the body. Because m is constant, differentiation leads to the well-known equation

$$
m \frac{d v}{d t}=F .
$$

If the body is subjected only to the force due to gravity, then its velocity is determined by solving the differential equation

$$
m \frac{d v}{d t}=m g \quad \text { or } \quad \frac{d v}{d t}=g,
$$

where $g=32 \mathrm{ft} / \mathrm{s}^{2}$ (English system) and $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ (international system). This differential equation is applicable only when the resistive force due to the medium (such as air resistance) is ignored. If this offsetting resistance is considered, we must discuss all of the forces acting on the object. Mathematically, we write the equation as

$$
m \frac{d v}{d t}=\sum(\text { forces acting on the object })
$$

where the direction of motion is taken to be the positive direction. Because air resistance acts against the object as it falls and g acts in the same direction of the motion, we state the differential equation in the form

$$
m \frac{d v}{d t}=m g+\left(-F_{R}\right) \quad \text { or } \quad m \frac{d v}{d t}=m g-F_{R},
$$

where F_{R} represents this resistive force. Note that down is assumed to be the positive direction. The resistive force is typically proportional to the body's velocity, v,
or the square of its velocity, v^{2}. Hence, the differential equation is linear or nonlinear based on the resistance of the medium taken into account.

EXAMPLE 3.4.1: Determine the velocity and displacement functions of an object with $m=1$ slug where 1 slug $=\mathrm{lb} \mathrm{s}^{2} / \mathrm{ft}$, that is thrown downward with an initial velocity of $2 \mathrm{ft} / \mathrm{s}$ from a height of 1000 feet. Assume that the object is subjected to air resistance that is equivalent to the instantaneous velocity of the object. Also, determine the time at which the object strikes the ground and its velocity when it strikes the ground.

SOLUTION: First, we set up the initial-value problem to determine the velocity of the object. Because the air resistance is equivalent to the instantaneous velocity, we have $F_{R}=v$. The formula $m d v / d t=m g-F_{R}$ then gives us $d v / d t=32-v$. Of course, we must impose the initial velocity $v(0)=2$. Therefore, the initial-value problem is

$$
\left\{\begin{array}{l}
d v / d t=32-v \\
v(0)=2
\end{array}\right.
$$

which is both separable and first-order linear. We solve it as a linear first-order equation and so we multiply both sides of the equation by the integrating factor e^{t}, which results in $d / d t\left(e^{t} v\right)=32 t$. Integrating both sides gives us $e^{t} v=32 e^{t}+C$, so $v=32+C e^{-t}$. Applying the initial velocity, we have $v(0)=32+C=2$. Therefore, the velocity of the object is $v=32-30 e^{-t}$. We obtain the same result with DSolve, naming the resulting output step1.

```
In[389]:= Clear[v,t]
    step1 = DSolve[{v'[t] == 32-v[t],v[0] == 2},
        v[t],t]
Out [389]={{v[t] ->2 e et}(-15+16\mp@subsup{\mathbb{e}}{}{t})}
```

To determine the position, or distance traveled at time $t, s(t)$, we solve the first-order equation $d s / d t=32-30 e^{-t}$ with initial displacement $s(0)=0$. Notice that we use the initial displacement as a reference and let $s=s(t)$ represent the distance traveled from this reference point.

```
In [390]: \(=\) step \(2=\operatorname{DSolve}\left[\left\{s^{\prime}[t]==32-30 e^{-t}, s[0]==0\right\}\right.\),
    \(s[t], t]\)
Out \([390]=\left\{\left\{s[t] \rightarrow 2 e^{-t}\left(15-15 e^{t}+16 e^{t} t\right)\right\}\right\}\)
```


Figure 3-29 Plots of $s=s(t)$ and the line $s=1000$

Thus, the displacement of the object at time t is given by $s=32 t+$ $30 e^{-t}-30$.

Because we are taking $s(0)=0$ as our starting point, the object strikes the ground when $s(t)=1000$. Therefore, we must solve $s=32 t+30 e^{-t}-$ $30=1000$. The roots of this equation can be approximated with Find Root. We begin by graphing the function $s=s(t)$ and the line $s=1000$ with Plot in Figure 3-29.

```
In [391]:= Plot[{-30+30e -t + 32t, 1000}, {t, 0, 70},
    PlotStyle }->\mathrm{ {GrayLevel[0], GrayLevel[0.5]}]
```

From the graph of this function, we see that $s(t)=1000$ near $t \approx 35$. To obtain a better approximation, we use FindRoot

```
In[392]:= t00 = FindRoot[-30 + 30 e
    {t, 35}]
Out[392]= {t }->32.1875
```

so the object strikes the ground after approximately 32.1875 seconds.
The velocity at the point of impact is found to be $32.0 \mathrm{ft} / \mathrm{s}$ by evaluating the derivative, $s^{\prime}(t)=v(t)=32-30 e^{-t}$, at the time at which the object strikes the ground, $t \approx 32.1875$.

```
In[393]:= 32-30e-t}/.(t00\llbracket1\rrbracket
Out[393]= 32.
```

EXAMPLE 3.4.2: Determine a solution (for the velocity and the displacement) of the differential equation that models the motion of an object of mass m when directed upward with an initial velocity of v_{0} from an initial displacement y_{0} assuming that the air resistance equals $c v$, where c is constant.

SOLUTION: Because the motion of the object is upward, $m g$ and F_{R} act against the upward motion of the object; $m g$ and F_{R} are in the negative direction. Therefore, the initial-value problem that must be solved in this case is the linear problem,

$$
\left\{\begin{array}{l}
\frac{d v}{d v}=-g-\frac{c}{m} v \\
v(0)=v_{0}
\end{array}\right.
$$

which we solve with DSOlve, naming the resulting output sol.

$$
\begin{aligned}
\operatorname{In}[394]:= & \text { Clear }[v, t, s] \\
& \text { sol }=\text { DSolve }\left[\left\{v^{\prime}[t]==-g-\frac{c v[t]}{m}, v[0]==v 0\right\},\right. \\
\text { Out }[394]= & \left\{\left\{v[t] \rightarrow-\frac{e^{-\frac{c t}{m}}\left(-g m+e^{\frac{c t}{m}} g m-c v 0\right)}{c}\right\}\right\}
\end{aligned}
$$

Next, we use sol to define velocity. This function can be used to investigate numerous situations without re-solving the differential equation each time.

$$
\begin{aligned}
\text { In }[395]:= & \text { velocity }\left[m_{-}, c_{-}, g_{-}, v 0_{-}, t_{-}\right]= \\
& \frac{-g m+c e^{-\frac{c t}{m}}\left(\frac{g m}{c}+v 0\right)}{c} ;
\end{aligned}
$$

For example, the velocity function for the case with $m=128$ slugs, $c=$ $1 / 160, g=32 \mathrm{ft} / \mathrm{s}^{2}$, and $v_{0}=48 \mathrm{ft} / \mathrm{s}$ is $v(t)=88 e^{-4 t / 5}-40$.

$$
\begin{aligned}
& \text { In }[396]:=\text { velocity }\left[\frac{1}{128}, \frac{1}{160}, 32,48, t\right] / / \text { Expand } \\
& \text { Out }[396]=-40+88 e^{-4 t / 5}
\end{aligned}
$$

The displacement function $s(t)$ that represents the distance above the ground at time t is determined by integrating the velocity function. This is accomplished here with DSolve using the initial displacement y_{0}. As
with the previous case, the output is named pos so that the displacement formula may be used to define the function position.

$$
\begin{aligned}
\text { In }[397]:= & \text { pos }=\text { DSolve }\left[\left\{y^{\prime}[t]\right.\right. \\
& ==\operatorname{velocity[m,c,g,v0,t],} \\
& y[0]==y 0\}, y[t], t] \\
\text { Out }[397]= & \left\{\left\{y [t] \rightarrow \frac { 1 } { c ^ { 2 } } \left(e ^ { - \frac { c t } { m } } \left(-g m^{2}+e^{\frac{c t}{m}} g m^{2}\right.\right.\right.\right. \\
& -c e^{\frac{c t}{m}} g m t-c m v 0 \\
& \left.\left.\left.\left.+c e^{\frac{c t}{m}} m v 0+c^{2} e^{\frac{c t}{m}} y 0\right)\right)\right\}\right\} \\
\text { In }[398]:= & \text { position }\left[m m_{-}, c_{-}, g_{-}, v 0_{-}, y 0_{-}, t_{-}\right]= \\
& -\frac{1}{c^{2}}\left(e^{-\frac{c t}{m}}{g m^{2}}^{2}+c g m t+c e^{-\frac{c t}{m}} m v 0\right. \\
& \left.-c^{2}\left(\frac{g^{2}}{c^{2}}+\frac{m v 0}{c}+y 0\right)\right) ;
\end{aligned}
$$

The displacement and velocity functions are plotted in the following using the parameters $m=128$ slugs, $c=1 / 160, g=32 \mathrm{ft} / \mathrm{s}^{2}$, and $v_{0}=$ $48 \mathrm{ft} / \mathrm{s}$ as well as $y_{0}=0$.

The time at which the object reaches its maximum height occurs when the derivative of the displacement is equal to zero. From the graph in Figure 3-30 we see that $s^{\prime}(t)=v(t)=0$ when $t \approx 1$.

$$
\begin{aligned}
\text { In }[399]:= & \text { Plot }\left[\left\{\text { velocity }\left[\frac{1}{128}, \frac{1}{160}, 32,48, \mathrm{t}\right],\right.\right. \\
& \text { position } \left.\left[\frac{1}{128}, \frac{1}{160}, 32,48,0, \mathrm{t}\right]\right\},\{\mathrm{t}, 0,2\}, \\
& \text { PlotStyle } \rightarrow\{\text { GrayLevel }[0], \\
& \text { Dashing }[\{0.01\}]\}]
\end{aligned}
$$

A more accurate approximation, $t \approx 0.985572$, is obtained using Solve together with N

```
In [400]: \(=\) root \(=\mathbf{N}\) [Solve
    \(\left[\partial_{\mathrm{t}}\right.\) position \(\left[\frac{1}{128}, \frac{1}{160}, 32,48,0, \mathrm{t}\right]\)
    \(==0, \mathrm{t}]\) ]
Out \([400]=\{\{t \rightarrow 0.985572\}\}\)
```

or with FindRoot.

```
\(\operatorname{In}[401]:=\) FindRoot \(\left[\operatorname{velocity}\left[\frac{1}{128}, \frac{1}{160}, 32,48, t\right]==0\right.\),
    \(\{t, 1\}]\)
Out \([401]=\{t \rightarrow 0.985572\}\)
```


Figure 3-30 The maximum height of the object occurs when its velocity is 0

We now compare the effect that varying the initial velocity and displacement has on the displacement function. Suppose that we use the same values used earlier for m, c, and g. However, we let $v_{0}=48$ in one function and $v_{0}=36$ in the other. We also let $y_{0}=0$ and $y_{0}=6$ in these two functions, respectively. See Figure 3-31.

$$
\begin{aligned}
\text { In }[402]:= & \text { Plot }\left[\left\{\text { position }\left[\frac{1}{128}, \frac{1}{160}, 32,48,0, \mathrm{t}\right],\right.\right. \\
& \text { position } \left.\left[\frac{1}{128}, \frac{1}{160}, 32,36,6, \mathrm{t}\right]\right\}, \\
& \{t, 0,2\}, \text { PlotStyle } \rightarrow\{\text { GrayLevel }[0], \\
& \text { Dashing }[\{0.01\}]\}]
\end{aligned}
$$

Figure 3-32 demonstrates the effect that varying the initial velocity only has on the displacement function. The values of v_{0} used are 48, 64, and 80 . The darkest curve corresponds to $v_{0}=48$. Notice that as the

Figure 3-31 Varying v_{0} and y_{0}

Figure 3-32 Varying v_{0}
initial velocity is increased the maximum height attained by the object is increased as well.

$$
\begin{aligned}
& \operatorname{In}[403]:=\operatorname{Plot}\left[\left\{\text { position }\left[\frac{1}{128}, \frac{1}{160}, 32,48,0, \mathrm{t}\right],\right.\right. \\
& \text { position }\left[\frac{1}{128}, \frac{1}{160}, 32,64,0, t\right] \text {, } \\
& \text { position } \left.\left[\frac{1}{128}, \frac{1}{160}, 32,80,0, t\right]\right\} \text {, } \\
& \{\mathrm{t}, 0,2\}, \text { PlotStyle } \rightarrow \text { \{GrayLevel [0], } \\
& \text { GrayLevel[0.3], GrayLevel[0.6]\}] }
\end{aligned}
$$

Figure 3-33 indicates the effect that varying the initial displacement and holding all other values constant has on the displacement function.

Figure 3-33 Varying y_{0}

We use values of 0,10 , and 20 for y_{0}. Notice that the value of the initial displacement vertically translates the displacement function.

$$
\begin{aligned}
\text { In }[404]:=\operatorname{Plot} & {\left[\left\{\text { position }\left[\frac{1}{128}, \frac{1}{160}, 32,48,0, \mathrm{t}\right],\right.\right.} \\
& \text { position }\left[\frac{1}{128}, \frac{1}{160}, 32,48,10, \mathrm{t}\right], \\
& \text { position } \left.\left[\frac{1}{128}, \frac{1}{160}, 32,48,20, \mathrm{t}\right]\right\}, \\
& \{\mathrm{t}, 0,2\}, \operatorname{PlotStyle} \rightarrow\{\text { GrayLevel }[0], \\
& \text { GrayLevel }[0.3], \text { GrayLevel }[0.6]\}]
\end{aligned}
$$

We now combine several of the topics discussed in this section to solve the following problem.

EXAMPLE 3.4.3: An object of mass $m=1$ slug is dropped from a height of 50 feet above the surface of a small pond. While the object is in the air, the force due to air resistance is v. However, when the object is in the pond, it is subjected to a buoyancy force equivalent to $6 v$. Determine how much time is required for the object to reach a depth of 25 feet in the pond.

SOLUTION: This problem must be broken into two parts: an initialvalue problem for the object above the pond, and an initial-value problem for the object below the surface of the pond. The initial-value problem above the pond's surface is found to be

$$
\left\{\begin{array}{l}
d v / d t=32-v \\
v(0)=0
\end{array}\right.
$$

However, to define the initial-value problem to find the velocity of the object beneath the pond's surface, the velocity of the object when it reaches the surface must be known. Hence, the velocity of the object above the surface must be determined by solving the initial-value problem above. The equation $d v / d t=32-v$ is separable and solved with DSolve in di.

Figure 3-34 The object has traveled 50 feet when $t \approx 2.5$

```
In[405]:= Clear[v,y]
    d1 = DSolve[{v'[t] == 32-v[t],
    v[0] == 0},v[t],t]
Out [405]={{v[t]->32 e-t}(-1+\mp@subsup{e}{}{t})}
```

In order to find the velocity when the object hits the pond's surface we must know the time at which the distance traveled by the object (or the displacement of the object) is 50 . Thus, we must find the displacement function which is done by integrating the velocity function obtaining $s(t)=32 e^{-t}+32 t-32$.

```
In [406]: \(=\mathrm{p} 1=\mathrm{DSolve}\left[\left\{\mathrm{y}^{\prime}[\mathrm{t}]==\mathrm{e}^{-\mathrm{t}}\left(-32+32 \mathrm{e}^{\mathrm{t}}\right)\right.\right.\),
    \(y[0]==0\}, y[t], t]\)
Out \([406]=\left\{\left\{y[t] \rightarrow 32 e^{-t}\left(1-e^{t}+e^{t} t\right)\right\}\right\}\)
```

The displacement function is graphed with Plot in Figure 3-34. The value of t at which the object has traveled 50 feet is needed. This time appears to be approximately 2.5 seconds.

```
In[407]:= Plot[{㝵t}(32-32 \mp@subsup{e}{}{t}+32\mp@subsup{e}{}{t}t),50},{t,0,5}
    PlotStyle }->\mathrm{ {GrayLevel[0],
    GrayLevel[0.5]}]
```

A more accurate value of the time at which the object hits the surface is found using FindRoot. In this case, we obtain $t \approx 2.47864$. The velocity at this time is then determined by substitution into the velocity function resulting in $v(2.47864) \approx 29.3166$. Note that this value is the initial velocity of the object when it hits the surface of the pond.

```
In[408]:= t1 = FindRoot[p1[[1, 1, 2]] == 50, {t, 2.5}]
Out[408]= {t }->2.47864
In[409]:= v1 = d1[[1, 1, 2]]/. t1
Out[409]= 29.3166
```

Thus, the initial-value problem that determines the velocity of the object beneath the surface of the pond is given by

$$
\left\{\begin{array}{l}
d v / d t=32-6 v \\
v(0)=29.3166
\end{array}\right.
$$

The solution of this initial-value problem is $v(t)=\frac{16}{3}+23.9833 e^{-6 t}$ and integrating to obtain the displacement function (the initial displacement is 0) we obtain $s(t)=3.99722-3.99722 e^{-6 t}+\frac{16}{3} t$. These steps are carried out in d2 and p2.

```
In [410]:= \(\mathrm{d} 2=\mathrm{DSolve}\left[\left\{\mathrm{v}^{\prime}[\mathrm{t}]==32-6 \mathrm{v}[\mathrm{t}]\right.\right.\),
    \(\mathrm{v}[0]==\mathrm{v} 1\}, \mathrm{v}[\mathrm{t}], \mathrm{t}]\)
Out [410] \(=\left\{\left\{v[t] \rightarrow e^{-6 t}\left(23.9832+5.33333 e^{6 t}\right)\right\}\right\}\)
In [411]: = p2 = DSolve[\{y'[t] == d2[[1, 1, 2]],
    \(y[0]==0\}, y[t], t]\)
Out [411] \(=\left\{\left\{y[t] \rightarrow 2.71828^{-6 . t}(-3.99721\right.\right.\)
    \(+3.997212 .71828^{6 . t}\)
    \(+5.333332 .71828^{6 . t}\) t) \}\}
```

This displacement function is then plotted in Figure 3-35 to determine when the object is 25 feet beneath the surface of the pond. This time appears to be near 4 seconds.

```
In[412]:= Plot[{p2[[1, 1, 2]], 25}, {t, 0, 5},
    PlotStyle }->\mathrm{ {GrayLevel[0], GrayLevel[0.5]}]
```

A more accurate approximation of the time at which the object is 25 feet beneath the pond's surface is obtained with FindRoot. In this case, we obtain $t \approx 3.93802$. Finally, the time required for the object to reach the pond's surface is added to the time needed for it to travel 25 feet beneath the surface to see that approximately 6.41667 seconds are required for the object to travel from a height of 50 feet above the pond to a depth of 25 feet below the surface.

Figure 3-35 After approximately 4 seconds, the object is 25 feet below the surface of the pond

```
In[413]:= t2 = FindRoot[p2[[1, 1, 2]] == 25,{t, 4}]
Out[413]= {t }->3.93802
In[414]:= t1[[1, 2]] + t2[[1, 2]]
Out[414]= 6.41667
```

This Page Intentionally Left Blank

Higher-Order Differential

 Equations

In Chapters 2 and 3 we saw that first-order differential equations can be used to model a variety of physical situations. However, many physical situations need to be modeled by higher-order differential equations. In this chapter, we discuss several methods for solving higher-order differential equations.

4.I Preliminary Definitions and Notation

4.I.I Introduction

In the same way as in previous chapters, we can frequently use DSolve to generate exact solutions of higher-order equations and NDSolve to generate numerical solutions to higher-order initial-value problems.

EXAMPLE 4.1.1 (Van-der-Pol Equation): The Van-der-Pol equation, which arises in the study of nonlinear damping, is the nonlinear secondorder equation

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+\mu\left(x^{2}-1\right) \frac{d x}{d t}+x=0 \tag{4.1}
\end{equation*}
$$

(a) If $x(0)=1$ and $x^{\prime}(0)=0$, graph the solution to the Van-der-Pol equation (4.1) on the interval $[0,15]$ for $\mu=1 / 32,1 / 16,1 / 8,1 / 4,1 / 2,1,3 / 2,2$, $3,5,7$, and 9 . (b) Compare the graphs of these solutions to the graph of the solution to the initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}+x=0 \\
x(0)=1, x^{\prime}(0)=0
\end{array}\right.
$$

Figure 4-1 Plot of $x(t)$ if $\mu=1$

SOLUTION: We begin by defining the function vanderpol. Given μ, vanderpol $[\mu]$ solves the initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}+\mu\left(x^{2}-1\right) x^{\prime}+x=0 \tag{4.2}\\
x(0)=1, x^{\prime}(0)=0
\end{array}\right.
$$

```
In[415]:= vanderpol[ [-] :=
    NDSolve [{x" [t] + \mu(x[t] 2}-1)\mp@subsup{x}{}{\prime}[t]+x[t]==0
    x[0] == 1, x'[0] == 0},x[t],{t,0,15}]
```

For example, entering

```
In[416]:= numsol1 = vanderpol[1]
Out [416]={{x[t] }
    InterpolatingFunction[{{0., 15.}},
    <>][t]}}
In[417]:= Plot[x[t]/.numsol1, {t, 0, 15}]
```

returns a numerical solution to the initial-value problem (4.2) if $\mu=1$ and then graphs the result on [0,15], as shown in Figure 4-1. Entering

```
In[418]:= numsol1/.t }->\mathrm{ 1
Out [418]= {{x[1] ->0.497615}}
```

shows us that if $\mu=1, x(1) \approx 0.497615$ and entering

```
In[419]:= Plot[Evaluate[D[numsol1[[1, 1, 2]], t]],
    {t, 0, 15}]
```

graphs the derivative of the numerical solution on the interval $[0,15]$ as shown in Figure 4-2.

Figure 4-2 Plot of $x^{\prime}(t)$ if $\mu=1$

Because we will be graphing the solution for many values of μ, we now define the function solgraph. Given μ, solgraph $[\mu]$ graphs the solution to the initial-value problem (4.2) on [0, 15]. Note that the resulting graph is not displayed because the option DisplayFunction-> Identity is included in the Plot command. Any options included in the solgraph command are passed to the Plot command.

```
In[420]:= Remove[solgraph]
    solgraph[ }\mp@subsup{\mu}{-}{\prime}\mathrm{ ,opts__] := Module[{numsol},
    numsol = vanderpol[ }\mu\mathrm{ ];
            Plot[x[t]/.numsol, {t, 0, 15},opts,
                PlotRange }->{-3,3},Ticks ->{{0, 15}
            {-3, 3}}, DisplayFunction }->\mathrm{ Identity]]
```

For example, entering

```
In[421]:= solgraph[11,
    DisplayFunction }->\mathrm{ $DisplayFunction]
```

displays the graph of the solution to equation (4.2) on the interval $[0,15]$ if $\mu=11$ shown in Figure 4-3. Thus, entering

```
In[422]:= muvals = {1/32, 1/16, 1/8, 1/4, 1/2, 1,
    3/2, 2, 3, 5, 7, 9};
In[423]:= graphs = Map[solgraph, muvals];
```

graphs the solution to the initial-value problem on the interval for $\mu=$ $1 / 32,1 / 16,1 / 8,1 / 4,1 / 2,1,3 / 2,2,3,5,7$, and 9 .

Figure 4-3 Plot of $x(t)$ if $\mu=11$

After partitioning this list of graphics into three-element subsets in toshow with Partition, the resulting array of graphics is displayed with Show and GraphicsArray in Figure 4-4.

```
In[424]:= toshow = Partition[graphs, 3];
    Show[GraphicsArray[toshow]]
```

We find the solution to $\left\{\begin{array}{l}x^{\prime \prime}+x=0 \\ x(0)=1, x^{\prime}(0)=0\end{array}\right.$ with DSolve. The graph of $y=$ cost looks most like the first graph in toshow, corresponding to $\mu=1 / 32$.

```
In[425]:= exactsol =
    DSolve [{x' [t] + x[t] == 0, x[0] == 1,
    x'[0] == 0}, x[t],t]
Out [425]={{x[t] }->\operatorname{Cos[t]}}
```

Last, we show the two graphs together to see how similar they are in Figure 4-5.

```
In[426]:= sol2 = vanderpol[1/32]
Out[426]= {{x[t] }
                                    InterpolatingFunction[{{0., 15.}},
                                    <>][t]}}
In[427]:= Plot[Evaluate[x[t]/.{exactsol, sol2}],
    {t, 0, 15},
    PlotStyle }->\mathrm{ {GrayLevel[0], GrayLevel[0.5]},
    PlotRange }->\mathrm{ {-2, 2}]
```


Figure 4-4 Plot of $x(t)$ if $\mu=1 / 32,1 / 16,1 / 8,1 / 4,1 / 2,1,3 / 2,2,3,5,7$, and 9

Figure 4-5 Plots of $x(t)$ if $\mu=1 / 32$ (in gray) and $y=\cos t$ (in black)

The example illustrates an important difference between linear and nonlinear equations. Exact solutions of linear equations with constant coefficents can often be found. Nonlinear equations can often be approximated by linear equations. Thus, we concentrate our study on linear differential equations.

4.I.2 The n th-Order Ordinary Linear Differential Equation

In order to develop the methods needed to solve higher-order differential equations, we must state several important definitions and theorems. We begin by introducing the types of higher-order equations that we will be solving in this chapter by restating the following definition that was given in Chapter 1.

Definition 10 (Linear Differential Equation). An ordinary differential equation (of order n) is linear if it is of the form

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=f(x), \tag{4.3}
\end{equation*}
$$

For the linear differential equation (4.3), $f(x)$ is called the forcing function.
where the functions $a_{i}(x), i=0,1, \ldots, n$, and $f(x)$ are given and $a_{n}(x)$ is not the zero function.

If $f(x)$ is identically the zero function, equation (4.3) is said to be homogeneous; if $f(x)$ is not the zero function, equation (4.3) is said to be nonhomogeneous; and if the functions $a_{i}(x), i=1,2, \ldots, n$ are constants, equation (4.3) is said to have constant coefficients. An n th-order equation accompanied by the conditions

$$
y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}, \ldots, y^{(n-1)}\left(x_{0}\right)=y_{0}^{(n-1)}
$$

where $y_{0}, y_{0}^{\prime}, \ldots, y_{0}^{(n-1)}$ are constants is called an n th-order initial-value problem. For equation (4.3), the corresponding homogeneous equation is

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0 . \tag{4.4}
\end{equation*}
$$

The following theorem gives sufficient conditions for the existence of a unique solution of the n th-order initial-value problem.

Theorem 2 (Existence and Uniqueness). If $a_{n}(x), a_{n-1}(x), \ldots, a_{1}(x), a_{0}(x)$ and $f(x)$ are continuous throughout an interval I and $a_{n}(x) \neq 0$ for all x in the interval I, then for every x_{0} in I there is a unique solution to the initial-value problem

$$
\left\{\begin{array}{l}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=f(x) \tag{4.5}\\
y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}, \ldots, y^{(n-1)}\left(x_{0}\right)=y_{0}^{(n-1)}
\end{array}\right.
$$

on I where $y_{0}, y_{0}^{\prime}, \ldots, y_{0}^{(n-1)}$ represent arbitrary constants.
Now that we have conditions that indicate the existence of solutions, we become familiar with the properties of the functions that form the solution. We will see that solutions to n th-order ordinary linear differential equations require n solutions with the following property.

Definition 11 (Linearly Dependent and Linearly Independent Functions). Let

$$
S=\left\{f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right\}
$$

be a set of n functions. S is linearly dependent on an interval I if there are constants c_{1}, c_{2}, \ldots, c_{n}, not all zero, so that

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x)=0
$$

for every value of x in the interval I. S is linearly independent if S is not linearly dependent.

It is a good exercise to use the definition of linear dependence to show that a set of two functions is linearly dependent if and only if the two functions are constant multiples of each other.

Definition 12 (Wronskian). Let $S=\left\{f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right\}$ be a set of n functions for which each is differentiable at least $n-1$ times. The Wronskian of $S, W(S)$, denoted by

$$
W(S)=W\left(\left\{f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right\}\right),
$$

is the determinant

$$
W(S)=\left|\begin{array}{cccc}
f_{1}(x) & f_{2}(x) & \cdots & f_{n}(x) \tag{4.6}\\
f_{1}^{\prime}(x) & f_{2}^{\prime}(x) & \cdots & f_{n}^{\prime}(x) \\
\vdots & \vdots & \vdots & \vdots \\
f_{1}^{(n-1)}(x) & f_{2}^{(n-1)}(x) & \cdots & f_{n}^{(n-1)}(x)
\end{array}\right|
$$

EXAMPLE 4.1.2: Compute the Wronskian for each of the following sets of functions: (a) $S=\{\sin x, \cos x\}$ and (b) $S=\{\cos 2 x, \sin 2 x, \sin x \cos x\}$.

SOLUTION: The 2×2 determinant $\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|$ is computed with $a_{11} a_{22}-$ $a_{12} a_{21}$. Thus, for (a) we have

$$
W(S)=\left|\begin{array}{cc}
\sin x & \cos x \\
\frac{d}{d x}(\sin x) & \frac{d}{d x}(\cos x)
\end{array}\right|=\left|\begin{array}{cc}
\sin x & \cos x \\
\cos x & -\sin x
\end{array}\right|=-\sin ^{2} x-\cos ^{2} x=-1 .
$$

For (b), we need to compute the determinant

$$
\left|\begin{array}{ccc}
\cos 2 x & \sin 2 x & \sin x \cos x \\
\frac{d}{d x}(\cos 2 x) & \frac{d}{d x}(\sin 2 x) & \frac{d}{d x}(\sin x \cos x) \\
\frac{d^{2}}{d x^{2}}(\cos 2 x) & \frac{d^{2}}{d x^{2}}(\sin 2 x) & \frac{d^{2}}{d x^{2}}(\sin x \cos x)
\end{array}\right|
$$

The 3×3 determinant $\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$ can be computed in several equivalent ways. For example,

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| .
$$

Here, we take advantage of the Det command, which computes the determinant of a square matrix.

First, we define caps to be the set of functions $S=\{\cos 2 x, \sin 2 x, \sin x \cos x\}$.

```
In[428]:= caps = {Cos[2x], Sin[2x], Sin[x] Cos[x]}
Out[428]= {\operatorname{Cos[2x], Sin[2x], Cos[x] Sin[x]}}
```

Next, we use D to compute the list

$$
\left\{\frac{d}{d x}(\cos 2 x), \frac{d}{d x}(\sin 2 x), \frac{d}{d x}(\sin x \cos x)\right\} .
$$

Note that D automatically computes the derivative (with respect to x) of each function in caps.

```
In[429]:= row2 = D[caps, x]
Out [429]= {-2 Sin[2x],2 Cos[2x], Cos[x] 2 - Sin[x] [ }
```

Similarly, we use D to compute the list

$$
\left\{\frac{d^{2}}{d x^{2}}(\cos 2 x), \frac{d^{2}}{d x^{2}}(\sin 2 x), \frac{d^{2}}{d x^{2}}(\sin x \cos x)\right\} .
$$

```
In[430]:= row3 = D [row2, x]
Out [430]= {-4 Cos[2x], -4 Sin[2 x], -4 Cos[x] Sin[x]}
```

(Note that entering row $3=\mathrm{D}[\mathrm{caps},\{\mathrm{x}, 2\}]$ yields the same result.) Finally, we use Det to see that the determinant

```
In[431]:= {caps, row2, row3}//MatrixForm
Out[431]=(
In[432]:= Det[{caps, row2, row3}]
Out[432]= 0
```

is zero.

In Example 4.1.2, we see that in (a) the Wronskian is not 0 while in (b) the Wronskian is 0 . Moreover, the set of functions in (a) is linearly independent because $y=\sin x$ and $y=\cos x$ are not multiples of each other while the set of functions in (b) is linearly dependent: $\sin 2 x=2 \sin x \cos x$. In fact, we will see that we can often use the Wronskian to determine if a set of functions is linearly dependent or linearly independent.

Before doing so, we define a function wronskian that quickly computes the Wronskian of a set of functions. The command wronskian is defined to compute the Wronskian of a list of n functions list in the variable x by:

1. Defining the variables n, r, and matrix local to the procedure wronskian;
2. Defining n to be the number of functions in list;
3. Defining r [1] to be the $1 \times n$ matrix list. Note that r [1] corresponds to the row vector $\left(f_{1}(x) f_{2}(x) \cdots f_{n}(x)\right)$, which corresponds to the top row of the matrix

$$
\left(\begin{array}{cccc}
f_{1}(x) & f_{2}(x) & \cdots & f_{n}(x) \tag{4.7}\\
f_{1}^{\prime}(x) & f_{2}^{\prime}(x) & \cdots & f_{n}^{\prime}(x) \\
\vdots & \vdots & \vdots & \vdots \\
f_{1}^{(n-1)}(x) & f_{2}^{(n-1)}(x) & \cdots & f_{n}^{(n-1)}(x)
\end{array}\right)
$$

4. Defining $r[k]$ to be the derivative (with respect to x) of $r[k-1] . r[k]$ corresponds to the k th row of the matrix (4.7);
5. Defining matrix to be the matrix (4.7); and
6. Computing and returning the determinant of matrix, corresponding to the Wronskian of list.
```
In[433]:= Clear[wronskian]
wronskian[list_] := Module[{n, r,matrix},
    n = Length[list];
    r[1] = list;
    r[k_] := r[k] = 放r[k-1];
    matrix = Table[r[i],{i, 1,n}];
    Expand[Det[matrix], Trig }->\mathrm{ True]]
```

We illustrate the use of wronskian for the set of functions

$$
\text { caps }=S=\left\{\frac{1}{\sqrt{x}} \sin 4 x, \frac{1}{\sqrt{x}} \cos 4 x\right\}
$$

$$
\operatorname{In}[434]:=\text { wronskian }[\{\operatorname{Sin}[4 \mathbf{x}] / \operatorname{Sqrt}[\mathbf{x}], \operatorname{Cos}[4 \mathbf{x}] / \operatorname{Sqrt}[\mathbf{x}]\}]
$$

$$
\text { Out }[434]=-\frac{4}{x}
$$

Because the Wronskian for these two functions is not 0 and they are both solutions of $4 x^{2} y^{\prime \prime}+4 x y^{\prime}+\left(64 x^{2}-1\right) y=0$, as verified with the following commands,

```
In \([435]:=\mathrm{y} \mathbf{1}\left[\mathbf{x}_{-}\right]=\operatorname{Sin}[4 \mathbf{x}] / \operatorname{Sqr} \mathrm{t}[\mathbf{x}] ;\)
\(\operatorname{In}[436]:=\mathrm{y}^{2}\left[\mathrm{x}_{-}\right]=\operatorname{Cos}[4 \mathrm{x}] / \operatorname{Sqrt}[\mathrm{x}] ;\)
In [437]: \(=-\mathrm{y}[\mathrm{x}]+64 \mathrm{x}^{2} \mathrm{y}[\mathrm{x}]+4 \mathrm{x} \mathrm{y}^{\prime}[\mathrm{x}]+4 \mathrm{x}^{2} \mathrm{y}^{\prime \prime}[\mathrm{x}] / /\).
    \(\left\{\left\{y[x] \rightarrow y 1[x], y^{\prime}[x] \rightarrow y 1^{\prime}[x], y^{\prime \prime}[x] \rightarrow y 1^{\prime \prime}[x]\right\}\right.\),
    \(\left\{y[x] \rightarrow y 2[x], y^{\prime}[x] \rightarrow y^{\prime}[x]\right.\),
    \(\left.\left.y^{\prime \prime}[x] \rightarrow y 2^{\prime \prime}[x]\right\}\right\} / / S i m p l i f y\)
Out \([437]=\{0,0\}\)
```

we can conclude they are linearly independent by the following theorem.
Theorem 3. Let $S=\left\{f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right\}$ be a set of n solutions of equation (4.4) on an interval I. S is linearly independent if and only if $W(S) \neq 0$ for at least one value of x in the interval I.

EXAMPLE 4.1.3: Use the Wronskian to classify each of the following sets of functions as linearly independent or linearly dependent: (a) $S=$ $\left\{1-2 \sin ^{2} x, \cos 2 x\right\}$ and (b) $S=\left\{e^{x}, x e^{x}, x^{2} e^{x}\right\}$.

SOLUTION: (a) Note that both functions in S are solutions of $y^{\prime \prime}+4 y=$ 0 . Here, we must compute the determinant of the 2×2 matrix

$$
\left|\begin{array}{cc}
1-2 \sin ^{2} x & \cos 2 x \\
\frac{d}{d x}\left(1-2 \sin ^{2} x\right) & \frac{d}{d x}(\cos 2 x)
\end{array}\right| .
$$

We use wronskian to compute the determinant

```
In[438]:= wronskian[{1-2Sin[x] 2, Cos[2x]}]
Out[438]= 0
```

and see that the result is 0 . Therefore, the set of functions $S=\left\{1-2 \sin ^{2} x\right.$, $\cos 2 x\}$ is linearly dependent. This makes sense because these functions are multiples of each other: $\cos 2 x=1-2 \sin ^{2} x$.
(b) Note that all three functions in S are solutions of $y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}-y=$

0 . Here, we must compute the determinant

$$
\begin{aligned}
& \qquad\left|\begin{array}{ccc}
e^{x} & x e^{x} & x^{2} e^{x} \\
\frac{d}{d x}\left(e^{x}\right) & \frac{d}{d x}\left(x e^{x}\right) & \frac{d}{d x}\left(x^{2} e^{x}\right) \\
\frac{d^{2}}{d x^{2}}\left(e^{x}\right) & \frac{d^{2}}{d x^{2}}\left(x e^{x}\right) & \frac{d^{2}}{d x^{2}}\left(x^{2} e^{x}\right)
\end{array}\right| \\
& \text { In }[439]:=\text { wronskian }\left[\left\{\operatorname{Exp}[\mathbf{x}], \mathbf{x} \operatorname{Exp}[\mathbf{x}], \mathbf{x}^{2} \operatorname{Exp}[\mathbf{x}]\right\}\right] \\
& \text { Out }[439]=2 e^{3 \mathrm{x}}
\end{aligned}
$$

We conclude that S is linearly independent because the Wronskian of S is not identically zero.

4.I.3 Fundamental Set of Solutions

Obtaining a collection of n linearly independent solutions to the n th-order linear homogeneous differential equation (4.4) is of great importance in solving it.
Definition 13 (Fundamental Set of Solutions). A set S of n linearly independent

A nontrivial solution is one that is not identically the zero function. nontrivial solutions of the nth-order linear homogeneous equation (4.4) is called a fundamental set of solutions of the equation.

EXAMPLE 4.1.4: Show that $S=\left\{e^{-5 x}, e^{-x}\right\}$ is a fundamental set of solutions of the equation $y^{\prime \prime}+6 y^{\prime}+5 y=0$.

SOLUTION: Because

$$
\frac{d^{2}}{d x^{2}}\left(e^{-5 x}\right)+6 \frac{d}{d x}\left(e^{-5 x}\right)+5 e^{-5 x}=25 e^{-5 x}-30 e^{-5 x}+5 e^{-5 x}=0
$$

and

$$
\frac{d^{2}}{d x^{2}}\left(e^{-x}\right)+6 \frac{d}{d x}\left(e^{-x}\right)+5 e^{-x}=e^{-x}-6 e^{-x}+5 e^{-x}=0
$$

each function is a solution of the differential equation. It follows that S is linearly independent because

$$
W(S)=\left|\begin{array}{cc}
e^{-5 x} & e^{-x} \\
-5 e^{-5 x} & -e^{-x}
\end{array}\right|=-e^{-6 x}+5 e^{-6 x}=4 e^{-x} \neq 0
$$

so we conclude that S is a fundamental set of solutions of the equation.
Of course, we can perform the same steps with Mathematica. First, we define caps to be the set of functions S.

```
In[440]:= Clear[x,y, caps]
    caps = {Exp[-5 x], Exp[-x]};
```

To verify that each function in S is a solution of $y^{\prime \prime}+6 y^{\prime}+5 y=0$, we define a function f . $\mathrm{f}[\mathrm{y}]$ computes and returns $y^{\prime \prime}+6 y^{\prime}+5 y$. We then use Map to apply f to each function in caps to see that each function in caps is a solution of $y^{\prime \prime}+6 y^{\prime}+5 y=0$, confirming the result we obtained previously.

```
In[441]:= Clear[f]
    f[y_] := D[y, {x, 2}] + 6D[y,x] + 5y;
In[442]:= f/@caps
Out [442]= {0,0}
```

Next, we define wmat to be the matrix $\left(\begin{array}{cc}e^{-5 x} & e^{-x} \\ -5 e^{-5 x} & -e^{-x}\end{array}\right)$ and display wmat in traditional row-and-column form with MatrixForm.

```
In[443]:= wmat = {caps, \partialxcaps};
    MatrixForm[wmat]
Out[443]=(}\begin{array}{ccc}{\mp@subsup{e}{}{-5x}}&{\mp@subsup{\mathbb{e}}{}{-x}}\\{-5\mp@subsup{e}{}{-5x}}&{-\mp@subsup{e}{}{-x}}\end{array}
```

Det is then used to compute $W(S)$.

```
In[444]:= Det[wmat]
Out[444]=4 e-6x
```

We use a fundamental set of solutions to create what is known as a general solution of an n th-order linear homogeneous differential equation.

Theorem 4 (Principle of Superposition). If $S=\left\{f_{1}(x), f_{2}(x), \ldots, f_{k}(x)\right\}$ is a set of solutions of the nth-order linear homogeneous equation (4.4) and $\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ is a set of k constants, then

$$
f(x)=c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{k} f_{k}(x)
$$

is also a solution of equation (4.4).
$f(x)=c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{k} f_{k}(x)$ is called a linear combination of functions in the set $S=\left\{f_{1}(x), f_{2}(x), \ldots, f_{k}(x)\right\}$. A consequence of this fact is that the linear combination of the functions in a fundamental set of solutions of the n th-order linear homogeneous differential equation (4.4) is also a solution of the differential equation, and we call this linear combination a general solution of the differential equation.

Definition 14 (General Solution). If $S=\left\{f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right\}$ is a fundamental set of solutions of the nth-order linear homogeneous equation

$$
a_{n}(x) y^{(n)}+a_{n-1}(x) y^{(n-1)}+\cdots+a_{1}(x) y^{\prime}+a_{0}(x) y=0,
$$

then a general solution of the equation is

$$
f(x)=c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x)
$$

where $\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ is a set of n arbitrary constants.
In other words, if we have a fundamental set of solutions S, then a general solution of the differential equation is formed by taking the linear combination of the functions in S.

EXAMPLE 4.1.5: Show that $S=\{\cos 2 x, \sin 2 x\}$ is a fundamental set of solutions of the second-order ordinary linear differential equation with constant coefficients $y^{\prime \prime}+4 y=0$.

SOLUTION: First, we verify that both functions are solutions of $y^{\prime \prime}+$ $4 y=0$. Note that we have defined caps to be the set of functions $S=\{\cos 2 x, \sin 2 x\}$. Now, we use Map to apply the function $y^{\prime \prime}+4 y$ to the functions in caps: the command $\operatorname{Map}[D[\#,\{x, 2\}]+4 \# \&$, caps] computes $y^{\prime \prime}+4 y$ for each function y in caps. Thus, we see that given an argument \#, the command $D[\#,\{x, 2\}]+4 \# \&$ computes the sum of the second derivative (with respect to x) of the argument and four times the argument. We conclude that both functions are solutions of $y^{\prime \prime}+4 y$ because the result is a list of two zeros.

```
In[445]:= caps = {Cos[2x], Sin[2x]};
In[446]:= Map[D[#, {x, 2}] + 4#&, caps]
Out [446] = {0, 0}
```

Next, we compute the Wronskian

```
In[447]:= step1 = Det[{caps, 焐caps}]
Out[447]= 2 Cos[2x] 2}+2\operatorname{Sin}[2x\mp@subsup{]}{}{2
In[448]:= Expand[step1,Trig }->\mathrm{ True]
Out[448]= 2
```

to show that the functions in S are linearly independent.
By the Principle of Superposition, $y(x)=c_{1} \cos 2 x+c_{2} \sin 2 x$, where c_{1} and c_{2} are arbitrary constants, is also a solution of the equation. We now graph $y(x)$ for various values of c_{1} and c_{2}. After defining y, we use Table to create a list obtained by replacing c [1] in $y[x]$ by $-1,0$, and 1 and $c[2]$ by $-1,0$, and 1 . We name the resulting list toplot. Note that toplot is a list of lists: toplot consists of three elements each of which is a list consisting of three functions.

```
In[449]:= Clear[y]
    y[x-] = c[1] Cos[2x] +c[2] Sin[2x];
In[450]:= toplot = Table[y[x], {c[1], -1, 1},
    {c[2],-1,1}]
Out [450]= {{-\operatorname{Cos[2x]-Sin[2x],- Cos[2x],}
    - Cos[2x] + Sin[2x]},
    {-Sin[2x],0, Sin[2x]}, {\operatorname{Cos[2x]-Sin[2x],}
        Cos[2x], Cos[2x] + Sin[2x]}}
```

Next, we use Table and GrayLevel to create a list of nine different levels of gray.

```
In[451]:= grays = Table[GrayLevel[i],
    {i,0,0.45,0.45/8}];
```

Finally, we use Plot to graph the nine functions in toplot for $0 \leq$ $x \leq 2 \pi$ in Figure 4-6. The option PlotStyle->grays specifies that the functions are to be graphed using the GrayLevels in the list grays, which helps us distinguish the graphs in the resulting plot.

```
In[452]:= Plot[Evaluate[toplot], {x, 0, 2\pi},
    PlotStyle }->\mathrm{ grays]
```


Figure 4-6 Graphs of various linear combinations of $\cos 2 x$ and $\sin 2 x$

Figure 4-7 Graphs of various linear combinations of $\cos 2 x$ and $\sin 2 x$

Alternatively, we can show the graphs individually in a graphics array as shown in Figure 4-7.

```
In [453]:= toshow = Map[Plot[#, {x, 0, 2\pi},
    DisplayFunction }->\mathrm{ Identity]&,
    Flatten[toplot]]
```

```
Out[453]= {-Graphics-,-Graphics-, -Graphics-,
    -Graphics-, -Graphics-, -Graphics-,
    -Graphics-,-Graphics-,-Graphics-}
In[454]:= Show[GraphicsArray[Partition[toshow, 3]]]
```

The Principle of Superposition is a very important property of linear homogeneous equations and is generally not valid for nonlinear equations and never valid for nonhomogeneous equations.

EXAMPLE 4.1.6: Is the Principle of Superposition valid for the nonlinear equation $t x^{\prime \prime}-2 x x^{\prime}=0$?

SOLUTION: We see that DSolve is able to find a general solution of this nonlinear equation.

$$
\begin{aligned}
\text { In }[455]:=\text { gensol }= & \text { DSolve }\left[t \mathbf{x}^{\prime \prime}[t]-2 \mathbf{x}[t] \mathbf{x}^{\prime}[\mathrm{t}]==0,\right. \\
& \mathbf{x}[\mathrm{t}], \mathrm{t}] \\
\text { Out }[455]=\{\{\mathrm{x}[\mathrm{t}] \rightarrow & \frac{1}{2}(-1 \\
& +\sqrt{-1-8 \mathrm{C}[1]} \operatorname{Tan}\left[\frac{1}{2}(\sqrt{-1-8 \mathrm{C}[1]} \mathrm{C}[2]\right. \\
& +\sqrt{-1-8 \mathrm{C}[1]} \log [\mathrm{t}])])\}\}
\end{aligned}
$$

$x(t)=-1 / 2$ is the solution that satisfies $x(1)=-1 / 2$ and $x^{\prime}(1)=0$.

$$
\left.\begin{array}{rl}
\text { In }[456]:= & \text { gensol }[[1,1,2]] / .\{C[1] \rightarrow 0, C[2] \rightarrow 1 / 4\} \\
\text { Out }[456]= & \frac{1}{2}\left(-1+\dot{1} \operatorname{Tan}\left[\frac{1}{2}\left(\frac{\dot{\mathbb{1}}}{4}+\dot{\mathbb{1}} \log [t]\right)\right]\right) \\
\text { In }[457]:= & \frac{1}{2}(-1+\sqrt{-1+4 C[2]} \\
& \left.\times \operatorname{Tan}\left[\frac{1}{2} \sqrt{-1+4 C[2]}(C[1]+\log [t])\right]\right) / . \\
& \{C[1]->0, C[2]->1 / 4\}
\end{array}\right\} \begin{aligned}
& \text { Out }[457]=-\frac{1}{2}
\end{aligned}
$$

$x(t)=\frac{1}{2}\left(-1+\tan \left(\frac{1}{2} \ln t\right)\right)$ is the solution that satisfies $x(1)=-1 / 2$ and $x^{\prime}(1)=1 / 4$.

$$
\begin{aligned}
\operatorname{In}[458]:= & \frac{1}{2}(-1+\sqrt{-1+4 C[2]} \\
& \left.\times \operatorname{Tan}\left[\frac{1}{2} \sqrt{-1+4 C[2]}(C[1]+\log [t])\right]\right) / . \\
& \{C[1]->0, \mathrm{C}[2]->1 / 2\} \\
\text { Out }[458]= & \frac{1}{2}\left(-1+\operatorname{Tan}\left[\frac{\log [t]}{2}\right]\right)
\end{aligned}
$$

However, the sum of these two solutions is not a solution to the nonlinear equation because $t f^{\prime \prime}-2 f f^{\prime} \neq 0$; the Principle of Superposition is not valid for this nonlinear equation.


```
In[460]:= Simplify[t f'[t] - 2f[t] f'[t]]
Out [460]= 要的[\frac{\operatorname{Log}[t]}{2}\mp@subsup{]}{}{2}
```


4.I.4 Existence of a Fundamental Set of Solutions

The following two theorems tell us that under reasonable conditions, the n th-order linear homogeneous equation (4.4) has a fundamental set of n solutions.

Theorem 5. If $a_{i}(x)$ is continuous on an open interval I for $i=0,1, \ldots, n$, and $a_{n}(x) \neq 0$ for all x in the interval I then the nth-order linear homogeneous equation (4.4),

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0,
$$

has a fundamental set of n solutions.
Theorem 6. Any set of $n+1$ solutions of the nth-order linear homogeneous equation (4.4) is linearly dependent.

We can summarize the results of these theorems by saying that in order to solve the n th-order linear homogeneous differential equation (4.4), we must find a set S of n functions that satisfy the differential equation such that $W(S) \neq 0$.

EXAMPLE 4.1.7: Show that $y=e^{-x}\left(c_{1} \cos 4 x+c_{2} \sin 4 x\right)$ is a general solution of $y^{\prime \prime}+2 y^{\prime}+17 y=0$.

SOLUTION: After defining y, we use D to compute the first and second derivatives (with respect to x) of y.

```
In[461]:= Clear[x,y,c1, c2]
    y[{c1_, c2_}] =
        Exp[-x] (c1 Cos[4x] + c2 Sin[4x]);
In[462]:= D[y[{c1, c2}],{x, 2}]
    D[y[{c1, c2 }],x]
Out[462]= -2 e-x}(4\textrm{c}2\operatorname{Cos[4x] - 4c1 Sin[4x])
    +\mp@subsup{e}{}{-x}}(-16\textrm{c}1\operatorname{Cos[4x]-16 c2 Sin[4 x])
    +\mp@subsup{e}{}{-x}}(\textrm{c}1\operatorname{Cos[4x] + c2 Sin[4x])
Out[462]= e ex}(4\textrm{c}2\operatorname{Cos[4x] - 4 c1 Sin[4x])
    - - - x}(c1\operatorname{Cos[4x] + c2 Sin[4x])
```

You should verify that $S=\left\{e^{-x} \cos 4 x, e^{-x} \sin 4 x\right\}$ is a linearly independent set of functions.

We then compute and simplify $y^{\prime \prime}+2 y^{\prime}+17 y$. Because the result is zero and the set of functions S is linearly independent, $y=e^{-x}\left(c_{1} \cos 4 x\right.$ $\left.+c_{2} \sin 4 x\right)$ is a general solution of the equation.

```
In[463]:= Simplify[D[y[{c1, c2}], {x, 2}]
    +2D[y[{c1, c2}], x] + 17 y[{c1, c2}]]
```

Out [463] = 0

Next, we define cvals to be the set of ordered pairs consisting of $(0,1)$, $(1,0),(2,1)$, and $(1,-2)$ and use Map to compute the value of y for each ordered pair in cvals, naming the resulting set of functions toplot and finally graphing them on the interval $[-1,2]$ with Plot as shown in Figure 4-8.

```
In[464]:= cvals={{0,1},{1,0},{2,1},{1,-2}};
    grays = Table[GrayLevel[i],
        {i,0,0.4,0.4/3}];
    toplot = y/@cvals;
In[465]:= Plot[Evaluate[toplot], {x, -1, 2},
    PlotStyle }->\mathrm{ grays]
```


Figure 4-8 Various solutions of $y^{\prime \prime}+2 y^{\prime}+17 y=0$

4.I.5 Reduction of Order

In the next section, we learn how to find solutions of homogeneous equations with constant coefficients. In doing so, we will find it necessary to determine a second solution from a known solution. We illustrate this procedure, called reduction of order, by considering a second-order equation. In certain situations, we can reduce a second-order equation by making an appropriate substitution to convert the second-order equation to a first-order equation (this reduction in order gives the name to the method). Consider the equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0,
$$

and suppose that $y_{1}=f(x)$ is a solution to this equation. Of course we know from our previous discussion that in order to solve this second-order differential equation, we must have two linearly independent solutions. Hence, we must determine a second linearly independent solution. We accomplish this by attempting to find a solution of the form

$$
y_{2}=v(x) f(x),
$$

where $v(x)$ is not a constant function. Differentiating $y_{2}=v(x) f(x)$ twice we obtain

$$
y_{2}^{\prime}=v^{\prime} f+v f^{\prime} \quad \text { and } \quad y_{2}^{\prime \prime}=v^{\prime \prime} f+2 v^{\prime} f^{\prime}+v f^{\prime \prime} .
$$

```
In [466]: \(=\) Clear[x,y,f,v]
```

 \(\mathrm{y}[\mathrm{x}-\mathrm{]}=\mathrm{v}[\mathrm{x}] \mathrm{f}[\mathrm{x}] ;\)
 In [467]:= $\mathrm{y}^{\prime}[\mathrm{x}]$
$y^{\prime \prime}[x]$
Out [467] $=\mathrm{v}[\mathrm{x}] \mathrm{f}^{\prime}[\mathrm{x}]+\mathrm{f}[\mathrm{x}] \mathrm{v}^{\prime}[\mathrm{x}]$
Out $[467]=2 f^{\prime}[x] v^{\prime}[x]+v[x] f^{\prime \prime}[x]+f[x] v^{\prime \prime}[x]$

If $v(x)$ were constant, y_{1} and y_{2} would be linearly dependent.
$f^{\prime \prime}+p(x) f^{\prime}+q(x) f=0$ because f is a solution to $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$.

Notice that for convenience, we have omitted the argument of these functions. We now substitute y_{2}, y_{2}^{\prime}, and $y_{2}^{\prime \prime}$ into the equation $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$, which gives us

$$
\begin{aligned}
& y^{\prime \prime}+p(x) y^{\prime}+q(x) y=v^{\prime \prime} f+2 v^{\prime} f^{\prime}+v f^{\prime \prime}+p(x)\left(v^{\prime} f+v f^{\prime}\right)+q(x) v f \\
& =f v^{\prime \prime}+\left(2 f^{\prime}+p(x) f\right) v^{\prime}+v\left(f^{\prime \prime}+p(x) f^{\prime}+q(x) f\right) \\
& =f v^{\prime \prime}+\left(2 f^{\prime}+p(x) f\right) v^{\prime}=0 \text {. } \\
& \text { In [468]: }=\text { step1 }=\operatorname{Collect}\left[y^{\prime \prime}[x]+p[x] y^{\prime}[x]+q[x] y[x]\right. \text {, } \\
& \text { \{v[x], v'[x], v" }[x]\}] \\
& \text { Out [468] }=\left(\mathrm{f}[\mathrm{x}] \mathrm{p}[\mathrm{x}]+2 \mathrm{f}^{\prime}[\mathrm{x}]\right) \mathrm{v}^{\prime}[\mathrm{x}] \\
& +\mathrm{v}[\mathrm{x}]\left(\mathrm{f}[\mathrm{x}] \mathrm{q}[\mathrm{x}]+\mathrm{p}[\mathrm{x}] \mathrm{f}^{\prime}[\mathrm{x}]+\mathrm{f}^{\prime \prime}[\mathrm{x}]\right)+\mathrm{f}[\mathrm{x}] \mathrm{v}^{\prime \prime}[\mathrm{x}] \\
& \text { In [469] : = step2 = } \\
& \text { step1/. } \mathrm{f}^{\prime \prime}[\mathrm{x}]+\mathrm{p}[\mathrm{x}] \mathrm{f}^{\prime}[\mathrm{x}]+\mathrm{q}[\mathrm{x}] \mathrm{f}[\mathrm{x}] \rightarrow 0 \\
& \text { Out }[469]=\left(f[x] p[x]+2 f^{\prime}[x]\right) v^{\prime}[x]+f[x] v^{\prime \prime}[x]
\end{aligned}
$$

Therefore, we have the equation $f v^{\prime \prime}+\left(2 f^{\prime}+p(x) f\right) v^{\prime}=0$, which can be written as a first-order equation by letting $w=v^{\prime}$. Making this substitution gives us the linear first-order equation

$$
f w^{\prime}+\left(2 f^{\prime}+p(x) f\right) w=0 \quad \text { or } \quad f \frac{d w}{d x}+\left(2 f^{\prime}+p(x) f\right) w=0,
$$

which is separable, resulting in the separated equation

$$
\begin{gathered}
\qquad \frac{1}{w} d w=\left(-2 \frac{f^{\prime}}{f}-p(x)\right) d x . \\
\text { In }[470]:=\text { step } 3=\text { step } 2 / \cdot\left\{\mathrm{v}^{\prime \prime}[\mathrm{x}] \rightarrow \mathrm{w}^{\prime}[\mathrm{x}], \mathrm{v}^{\prime}[\mathrm{x}] \rightarrow \mathrm{w}[\mathrm{x}]\right\} \\
\text { Out }[470]=\mathrm{w}[\mathrm{x}]\left(\mathrm{f}[\mathrm{x}] \mathrm{p}[\mathrm{x}]+2 \mathrm{f}^{\prime}[\mathrm{x}]\right)+\mathrm{f}[\mathrm{x}] \mathrm{w}^{\prime}[\mathrm{x}]
\end{gathered}
$$

We can solve this equation by integrating both sides of the equation to yield

$$
\begin{aligned}
& \qquad \ln |w|=\ln \left(\frac{1}{f^{2}}\right)-\int p(x) d x \quad \text { so } \quad w=\frac{1}{f^{2}} e^{-\int p(x) d x} . \\
& \text { In }[471]:=\text { step4 }=\text { DSolve }[\text { step } 3==0, \mathbf{w}[\mathbf{x}], \mathbf{x}] \\
& \text { Out }[471]=\left\{\left\{\mathrm{w}[\mathrm{x}] \rightarrow \mathbb{e}^{\int_{\mathrm{K} \$ 439}^{\mathrm{x}} \frac{-\mathfrak{f}[\mathrm{K} \$ 438] \mathrm{p}[\mathrm{~K} \$ 438]-2 \mathrm{f}^{\prime}[\mathrm{K} \$ 438]}{\mathrm{f}[\mathrm{~K} \$ 438]} \mathrm{dK} 438} \mathrm{C}[1]\right\}\right\} \\
& \text { In }[472]:=\text { step5 }=\text { Simplify }[\text { step } 4 \llbracket 1,1,2]] \\
& \text { Out }[472]=\mathbb{e}^{\int_{\mathrm{K} \$ 439}^{\mathrm{x}}\left(-\mathrm{p}[\mathrm{~K} \$ 438]-\frac{2 \mathrm{f}^{\prime}[\mathrm{K} \$ 438]}{\mathrm{f}[\mathrm{~K} \$ 438]}\right) \mathrm{dK} \$ 438} \mathrm{C}[1]
\end{aligned}
$$

Thus, we have the formula

$$
\frac{d v}{d x}=\frac{1}{f^{2}} e^{-\int p(x) d x} \quad \text { or } \quad v(x)=\int \frac{1}{[f(x)]^{2}} e^{-\int p(x) d x} .
$$

```
In [473]:= step6 \(=\int\) step5d \(\mathbf{x}\)
Out \([473]=C[1] \int e^{\int_{K \$ 439}^{\mathrm{x}}\left(-\mathrm{p}[\mathrm{K} \$ 438]-\frac{2 \mathrm{f}^{\prime}[\mathrm{K} \$ 438]}{\mathrm{f}[\mathrm{K} \$ 38]}\right)} \mathrm{dK} \mathrm{\$ 438} d \mathrm{x}\)
```

Therefore, if we have the solution $y_{1}(x)=f(x)$ of the differential equation $y^{\prime \prime}+$ $p(x) y^{\prime}+q(x) y=0$, then we can obtain a second linearly independent solution of the form $y_{2}(x)=v(x) f(x)=v(x) y_{1}(x)$ where

$$
\begin{equation*}
v(x)=\int \frac{1}{\left[y_{1}(x)\right]^{2}} e^{-\int p(x) d x} d x \quad \text { and } \quad y_{2}(x)=y_{1}(x) \int \frac{1}{\left[y_{1}(x)\right]^{2}} e^{-\int p(x) d x} d x \tag{4.8}
\end{equation*}
$$

EXAMPLE 4.1.8: Determine a second linearly independent solution to the differential equation $4 x^{2} y^{\prime \prime}+8 x y^{\prime}+y=0, x>0$, given that $y_{1}=1 / \sqrt{x}$ is a solution.

SOLUTION: In this case, we must divide by $4 x^{2}$ in order to obtain an equation of the form $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$. This gives us the equation $y^{\prime \prime}+2 x^{-1} y^{\prime}+\frac{1}{4} x^{-2} y=0$. Therefore, $p(x)=2 x^{-1}$, and $y_{1}(x)=x^{-1 / 2}$. Using the formula for v, equation (4.8), we obtain

$$
\begin{aligned}
v(x)=\int \frac{1}{\left[y_{1}(x)\right]^{2}} e^{-\int p(x) d x} d x & =\int \frac{1}{\left[x^{-1 / 2}\right]^{2}} e^{-\int 2 / x d x} d x \\
& =\int \frac{1}{x^{-1}} e^{-2 \ln x} d x=\int \frac{1}{x} d x=\ln x, x>0 .
\end{aligned}
$$

Hence, a second linearly independent solution is $y_{2}=x^{-1 / 2} \ln x$; a general solution is $y=x^{-1 / 2}\left(c_{1}+c_{2} \ln x\right)$. Of course, we can take advantage of commands like Integrate to carry out the steps encountered here.

$$
\begin{aligned}
& \operatorname{In}[474]:=\mathrm{p}\left[\mathbf{x}_{-}\right]=\frac{2}{\mathbf{x}} ; \\
& \qquad \mathrm{f}\left[\mathbf{x}_{-}\right]=\frac{1}{\sqrt{\mathbf{x}}} ; \\
& \text { In }[475]:=\mathrm{v}\left[\mathbf{x}_{-}\right]=\int \frac{\operatorname{Exp}\left[-\int \mathrm{p}[\mathbf{x}] \mathrm{d} \mathbf{x}\right]}{\mathrm{f}[\mathbf{x}]^{2}} \mathrm{~d} \mathbf{x} \\
& \text { Out }[475]=\log [\mathrm{x}]
\end{aligned} \quad \begin{aligned}
& \text { In }[476]:=\mathbf{y}\left[\mathbf{x}_{-}\right]=\mathrm{v}[\mathbf{x}] \mathrm{f}[\mathbf{x}] ;
\end{aligned}
$$

Mathematica generates several error messages, which are not all displayed here, when we enter the following Plot command because both

It is a good exercise to show that y_{1} and the solution $y_{2}=v y_{1}$ obtained by reduction of order are linearly independent.

Figure 4-9 Plots of y_{1} (in black) and y_{2} (in gray)
$y_{1}(x)$ and $y_{2}(x)$ are undefined if $x=0$. Nevertheless, the resulting graphs are displayed correctly in Figure 4-9.

```
In[477]:= Plot [{f[x],y[x]},{\mathbf{x},0,\frac{3}{2}},
    PlotStyle }->\mathrm{ {GrayLevel[0.4],
    GrayLevel[0]}, PlotRange }->{-7,7}
```


4.2 Solving Homogeneous Equations with Constant Coefficients

We now turn our attention to solving linear homogeneous equations with constant coefficients. Nonhomogeneous equations are considered in the following sections.

4.2.I Second-Order Equations

Suppose that the coefficient functions of equation $a_{2}(t) y^{\prime \prime}+a_{1}(t) y^{\prime}+a_{0}(t) y=f(t)$ are constants: $a_{2}(t)=a, a_{1}(t)=b$, and $a_{0}(t)=c$ and that $f(t)$ is identically the zero function. In this case, the equation $a_{2}(t) y^{\prime \prime}+a_{1}(t) y^{\prime}+a_{0}(t) y=f(t)$ becomes

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 . \tag{4.9}
\end{equation*}
$$

Now suppose that $y=e^{k t}, k$ constant, is a solution of equation (4.9). Then, $y^{\prime}=k e^{k t}$ and $y^{\prime \prime}=k^{2} e^{k t}$. Substitution into equation (4.9) then gives us

$$
\begin{aligned}
a y^{\prime \prime}+b y^{\prime}+c y & =a k^{2} e^{k t}+b k e^{k t}+c e^{k t} \\
& =e^{k t}\left(a k^{2}+b k+c\right)=0 .
\end{aligned}
$$

Because $e^{k t} \neq 0$, the solutions of equation (4.9) are determined by the solutions of

$$
\begin{equation*}
a k^{2}+b k+c=0, \tag{4.10}
\end{equation*}
$$

called the characteristic equation of equation (4.9).
Theorem 7. Let k_{1} and k_{2} be the solutions of equation (4.10).

1. If $k_{1} \neq k_{2}$ are real and distinct, two linearly independent solutions of equation (4.9) are $y_{1}=e^{k_{1} t}$ and $y_{2}=e^{k_{2} t}$; a general solution of equation (4.9) is

$$
y=c_{1} e^{k_{1} t}+c_{2} e^{k_{2} t} .
$$

2. If $k_{1}=k_{2}$, two linearly independent solutions of equation (4.9) are $y_{1}=e^{k_{1} t}$ and $y_{2}=t e^{k_{1} t} ;$ a general solution of equation (4.9) is

$$
y=c_{1} e^{k_{1} t}+c_{2} t e^{k_{1} t} .
$$

3. If $k_{1,2}=\alpha \pm \beta i, \beta \neq 0$, two linearly independent solutions of equation (4.9) are $y_{1}=e^{\alpha t} \cos \beta t$ and $y_{2}=e^{\alpha t} \sin \beta t$; a general solution of equation (4.9) is

$$
y=e^{\alpha t}\left(c_{1} \cos \beta t+c_{2} \sin \beta t\right)
$$

EXAMPLE 4.2.1: Solve each of the following equations: (a) $6 y^{\prime \prime}+y^{\prime}-$ $2 y=0$; (b) $y^{\prime \prime}+2 y^{\prime}+y=0$; (c) $16 y^{\prime \prime}+8 y^{\prime}+145 y=0$.

SOLUTION: (a) The characteristic equation is $6 k^{2}+k-2=(3 k+2)(2 k-$ 1) $=0$ with solutions $k=-2 / 3$ and $k=1 / 2$. We check with either Factor or Solve.

```
In[478]:= Factor[6k^2+k-2]
    Solve[6k^2+k-2 == 0]
Out[478]=(-1+2 k) (2+3 k)
Out [478]={{k->-\frac{2}{3}},{k->\frac{1}{2}}}
```

Then, a fundamental set of solutions is $\left\{e^{-2 t / 3}, e^{t / 2}\right\}$ and a general solution is

$$
y=c_{1} e^{-2 t / 3}+c_{2} e^{t / 2}
$$

Of course, we obtain the same result with DSolve.

```
In[479]:= DSolve[6y''[t] + y'[t] - 2y[t] == 0,y[t], t]
Out[479]={{y[t]-> e-2 t/3}C[1]+\mp@subsup{e}{}{t/2}C[2]}
```

(b) The characteristic equation is $k^{2}+2 k+1=(k+1)^{2}=0$ with solution $k=-1$, which has multiplicity two, so a fundamental set of solutions is $\left\{e^{-t}, t e^{-t}\right\}$ and a general solution is

$$
y=c_{1} e^{-t}+c_{2} t e^{-t} .
$$

We check the calculation in the same way as in (a).

```
In[480]:= Factor[k^2+2k+1]
    Solve[k^2 + 2k + 1 == 0]
    DSolve[y'\prime[t] + 2y'[t] + y[t] == 0, y[t], t]
Out[480]=(1+k)}\mp@subsup{}{}{2
Out [480]= {{k->-1}, {k->-1}}
Out[480]={{y[t]-> e-t}C[1]+\mp@subsup{e}{}{-t}tC[2]}
```

(c) The characteristic equation is $16 k^{2}+8 k+145=0$ with solutions $k_{1,2}=-\frac{1}{4} \pm 3 i$ so a fundamental set of solutions is $\left\{e^{-t / 4} \cos 3 t, e^{-t / 4} \sin 3 t\right\}$ and a general solution is

$$
y=e^{-t / 4}\left(c_{1} \cos 3 t+c_{2} \sin 3 t\right) .
$$

The calculation is verified in the same way as in (a) and (b).

```
In[481]:= Factor[16k^2 + 8k + 145,
    GaussianIntegers- > True]
    Solve[16k^2 + 8k + 145 == 0]
    DSolve[16y''[t] + 8y'[t] + 145y[t] == 0, y[t], t]
Out[481]= ((1-12 i) + 4 k) ((1 + 12 i) +4 k)
Out [481] = {{k->-\frac{1}{4}-3 i},{k->-\frac{1}{4}+3}\mathbf{i}}
Out[481]={{y[t]-> e tt/4 C[2] Cos[3 t] - e -t/4 C[1]
    Sin[3 t]}}
```

EXAMPLE 4.2.2: Solve

$$
64 \frac{d^{2} y}{d t^{2}}+16 \frac{d y}{d t}+1025 y=0, y(0)=1, \frac{d y}{d t}(0)=2
$$

SOLUTION: A general solution of $64 y^{\prime \prime}+16 y^{\prime}+1025 y=0$ is $y=e^{-t / 8}\left(c_{1} \sin 4 t+c_{2} \cos 4 t\right)$.

```
In [482]:= gensol = DSolve[64y' [t] + \(16 y^{\prime}[t]+1025 y[t]==0\),
        \(y[t], t]\)
Out \([482]=\left\{\left\{y[t] \rightarrow e^{-t / 8} C[2] \quad \operatorname{Cos}[4 t]-e^{-t / 8} C[1]\right.\right.\)
        \(\sin [4 t]\}\}\)
```

Applying $y(0)=1$ shows us that $c_{2}=1$.

```
In[483]:= e1 = y[t]/.gensol[[1]]/.t- > 0
Out[483]= C[2]
```

Computing y^{\prime}

$$
\begin{aligned}
\text { In }[484]:= & \mathrm{D}[\mathrm{y}[\mathrm{t}] / \text {.gensol }[[1]], \mathrm{t}] \\
\text { Out }[484]= & -4 \mathrm{e}^{-\mathrm{t} / 8} \mathrm{C}[1] \operatorname{Cos}[4 \mathrm{t}]-\frac{1}{8} \mathrm{e}^{-\mathrm{t} / 8} \mathrm{C}[2] \operatorname{Cos[4t]} \\
& +\frac{1}{8} e^{-t / 8} \mathrm{C}[1] \operatorname{Sin}[4 \mathrm{t}]-4 \mathrm{e}^{-t / 8} \mathrm{C}[2] \operatorname{Sin}[4 \mathrm{t}]
\end{aligned}
$$

and then $y^{\prime}(0)$, shows us that $-4 c_{1}-\frac{1}{8} c_{2}=2$.

$$
\begin{aligned}
& \text { In }[485]:=e 2=D[y[t] / . \text { gensol }[[1]], t] / . t->0 \\
& \text { Out }[485]=-4 C[1]-\frac{C[2]}{8}
\end{aligned}
$$

Solving for c_{1} and c_{2} with Solve shows us that $c_{1}=-25 / 32$ and $c_{1}=1$.

$$
\begin{aligned}
& \text { In }[486]:=\text { cvals }=\text { Solve }[\{e 1==1, e 2==3\}] \\
& \text { Out }[486]=\left\{\left\{\mathrm{C}[1] \rightarrow-\frac{25}{32}, C[2] \rightarrow 1\right\}\right\}
\end{aligned}
$$

Thus, $y=e^{-t / 8}\left(\frac{17}{32} \sin 4 t+\cos 4 t\right)$, which we graph with Plot in Figure 4-10.

$$
\begin{aligned}
& \text { In }[487]:=\text { sol }=y[t] / . \text { gensol [[1] }] / . \operatorname{cvals[[1]]} \\
& \text { Out }[487]=e^{-t / 8} \operatorname{Cos}[4 t]+\frac{25}{32} e^{-t / 8} \operatorname{Sin}[4 t] \\
& \text { In }[488]:=\operatorname{Plot}[\text { sol, }\{t, 0,8 \pi\}]
\end{aligned}
$$

We verify the calculation with DSolve.

Figure 4-10 The solution to the initial-value problem tends to 0 as $t \rightarrow \infty$

```
In[489]:= DSolve[
    {64y''[t] + 16y'[t] + 1025y[t] == 0,y[0] == 1,
        y'[0] == 2}, y[t], t]
Out[489]={{y[t]-> e
```


4.2.2 Higher-Order Equations

As with second-order equations, solutions of any n th-order linear homogeneous differential equation with constant coefficients are determined by the solutions of the characteristic equation, which is obtained by assuming that $y=e^{k t}$.

Definition 15 (Characteristic Equation). The equation

$$
\begin{equation*}
a_{n} k^{n}+a_{n-1} k^{n-1}+\cdots+a_{2} k^{2}+a_{1} k+a_{0}=0 \tag{4.11}
\end{equation*}
$$

is called the characteristic equation of the nth-order linear homogeneous differential equation with constant coefficients

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0 .
$$

In order to explain the process of finding a general solution of any n th-order linear homogeneous differential equations with constant coefficients, we state the following definition.

Definition 16 (Multiplicity). Suppose that the characteristic equation $a_{n} k^{n}+a_{n-1} k^{n-1}+$ $\cdots+a_{2} k^{2}+a_{1} k+a_{0}=0$ can be written in factored form as $\left(k-k_{1}\right)^{m_{1}}\left(k-k_{2}\right)^{m_{2}} \cdots\left(k-k_{r}\right)^{m_{r}}$, where $k_{i} \neq k_{j}$ for $i \neq j$ and $m_{1}+m_{2}+\cdots+m_{r}=n$. Then the roots of the characteristic
equation are $k=k_{1}, k=k_{2}, \ldots$, and $k=k_{r}$ where the roots have multiplicity m_{1}, m_{2}, \ldots, and m_{r}, respectively.

In the same manner as in the case for a second-order homogeneous equation with real constant coefficients, a general solution of an n th-order linear homogeneous equation with real constant coefficients is determined by the solutions of its characteristic equation. Hence, we state the following rules for finding a general solution of an n th-order linear homogeneous equation for the many situations that may be encountered.

1. If a solution k of equation (4.11) has multiplicity m, m linearly independent solutions corresponding to k are

$$
e^{k t}, t e^{k t}, \ldots, t^{m-1} e^{k t} .
$$

2. If a solution $k=\alpha+\beta i, \beta \neq 0$, of equation (4.11) has multiplicity $m, 2 m$ linearly independent solutions corresponding to $k=\alpha+\beta i($ and $k=\alpha-\beta i)$ are

$$
e^{\alpha t} \cos \beta t, e^{\alpha t} \sin \beta t, t e^{\alpha t} \cos \beta t, t e^{\alpha t} \sin \beta t, \ldots, t^{m-1} e^{\alpha t} \cos \beta t, t^{m-1} e^{\alpha t} \sin \beta t .
$$

Notice that the key to the process is identifying each root of the characteristic equation and the associated solution(s).

EXAMPLE 4.2.3: Solve $12 y^{\prime \prime \prime}-5 y^{\prime \prime}-6 y^{\prime}-y=0$.

SOLUTION: The characteristic equation is

$$
12 k^{3}-5 k^{2}-6 k-1=(k-1)(3 k+1)(4 k+1)=0
$$

with solutions $k_{1}=-1 / 3, k_{2}=-1 / 4$, and $k_{3}=1$.

```
In[490]:= Factor[12k^3-5k^2-6k-1]
Out[490]=(-1+k) (1+3 k) (1+4 k)
```

Thus, three linearly independent solutions of the equation are $y_{1}=e^{-t / 3}$, $y_{2}=e^{-t / 4}$, and $y_{3}=e^{t}$; a general solution is $y=c_{1} e^{-t / 3}+c_{2} e^{-t / 4}+c_{3} e^{t}$. We check with DSolve.

```
In [491]: \(=\) DSolve[12 \(y^{\prime \prime \prime}[t]-5 y^{\prime \prime}[t]-6 y^{\prime}[t]-y[t]==0\),
        \(y[t], t]\)
Out [491] \(=\left\{\left\{y[t] \rightarrow e^{-t / 3} C[1]+e^{-t / 4} C[2]+e^{t} C[3]\right\}\right\}\)
\[
\text { In }[491]:=\operatorname{DSolve}\left[12 y^{\prime \prime}[t]-5 y^{\prime \prime}[t]-6 y^{\prime}[t]-y[t]==0\right.
\]
```

Factor [expression] attempts to factor expression.

EXAMPLE 4.2.4: Solve $y^{\prime \prime \prime}+4 y^{\prime}=0, y(0)=0, y^{\prime}(0)=1, y^{\prime \prime}(0)=-1$.

Enter ?Solve to obtain basic help regarding the Solve function.

SOLUTION: The characteristic equation is $k^{3}+4 k=k\left(k^{2}+4\right)=0$ with solutions $k_{1}=0$ and $k_{2,3}= \pm 2 i$ that are found with Solve.

$$
\begin{aligned}
& \text { In [492]: }=\text { Solve }\left[\mathbf{k}^{\wedge} 3+4 \mathbf{k}==0\right] \\
& \text { Out }[492]=\{\{k \rightarrow 0\},\{k \rightarrow-2 i\},\{k \rightarrow 2 i\}\}
\end{aligned}
$$

Three linearly independent solutions of the equation are $y_{1}=1$, $y_{2}=\cos 2 t$, and $y_{3}=\sin 2 t$. A general solution is $y=c_{1}+c_{2} \sin 2 t+c_{3} \cos 2 t$.

$$
\begin{aligned}
\text { In }[493]:= & \text { gensol }=\text { DSolve }\left[y^{\prime \prime \prime}[t]+4 y^{\prime}[t]==0, y[t], t\right] \\
\text { Out }[493]= & \left\{\left\{y[t] \rightarrow C[3]+\frac{1}{2} C[1] \operatorname{Cos}[2 t]+\frac{1}{2} C[2]\right.\right. \\
& \operatorname{Sin}[2 t]\}\}
\end{aligned}
$$

Application of the initial conditions shows us that $c_{1}=-1 / 4, c_{2}=1 / 2$, and $c_{3}=1 / 4$ so the solution to the initial-value problem is $y=-\frac{1}{4}+$ $\frac{1}{2} \sin 2 t+\frac{1}{4} \cos 2 t$. We verify the computation with DSolve and graph the result with Plot in Figure 4-11.

```
In[494]:= e1 = y[t]/.gensol[[1]]/.t- > 0
Out[494]= C[1]
In[495]:= e2 = D[y[t]/.gensol[[1]], t]/.t->0
    e3 = D[y[t]/.gensol[[1]], {t, 2}]/.t-> 0
Out[495]= C[2]
Out[495]= -2 C[1]
In[496]:= cvals = Solve[{e1 == 0, e2 == 1, e3 == -1}]
Out [496]={{C[1] 位, C[2] -> 1,C[3] }->-\frac{1}{4}}
In[497]:= partsol = DSolve[
    {y'\prime}[t]+4\mp@subsup{y}{}{\prime}[t]==0,y[0]== 0, y'[0] == 1
        y'
Out[497]={{y[t]->-\frac{1}{4}+\frac{1}{4}\operatorname{Cos[2 t] + < }2\mathrm{ ( }\operatorname{Sin}[2 t]}}
In[498]:= Plot[Evaluate[y[t]/.partsol], {t, 0, 2\pi},
    AspectRatio- > Automatic]
```


Figure 4-11 Graph of $y=-\frac{1}{4}+\frac{1}{2} \sin 2 t+\frac{1}{4} \cos 2 t$

EXAMPLE 4.2.5: Solve (a) $4 y^{(4)}+12 y^{\prime \prime \prime}+49 y^{\prime \prime}+42 y^{\prime}+10 y=0$ and (b) $y^{(4)}+4 y^{\prime \prime \prime}+24 y^{\prime \prime}+40 y^{\prime}+100 y=0$.

SOLUTION: (a) The characteristic equation of $4 y^{(4)}+12 y^{\prime \prime \prime}+49 y^{\prime \prime}+$ $42 y^{\prime}+10 y=0$ is $4 k^{4}+12 k^{3}+49 k^{2}+42 k+10=0$. We use Factor to try to factor the characteristic polynomial, but see that Mathematica does not completely factor the polynomial,

$$
\begin{aligned}
& \text { In }[499]:=\text { Factor }\left[4 k^{4}+12 k^{3}+49 k^{2}+42 k+10\right] \\
& \text { Out }[499]=(1+2 k)^{2}\left(10+2 k+k^{2}\right)
\end{aligned}
$$

unless we include the option GaussianIntegers->True in the Factor command.

```
In [500]: \(=\) Factor \(\left[4 k^{4}+12 k^{3}+49 k^{2}+42 k+10\right.\),
    GaussianIntegers \(\rightarrow\) True]
Out [500] \(=((1-3 \dot{i})+k)((1+3 \dot{i})+k)(1+2 k)^{2}\)
```

From the results, we see that the solutions of the characteristic equation are $k=-1 \pm 3 i$ and $k=-1 / 2$ with multiplicity 2 . As you may suspect, we obtain the same results with Solve.

$$
\begin{aligned}
& \text { In [501] }:=\text { Solve }\left[4 \mathrm{k}^{4}+12 \mathrm{k}^{3}+49 \mathrm{k}^{2}+42 \mathrm{k}+10==0\right] \\
& \text { Out [501] }=\left\{\{\mathrm{k} \rightarrow-1-3 \dot{1}\},\{\mathrm{k} \rightarrow-1+3 \dot{1}\},\left\{\mathrm{k} \rightarrow-\frac{1}{2}\right\},\left\{\mathrm{k} \rightarrow-\frac{1}{2}\right\}\right\}
\end{aligned}
$$

Four linearly independent solutions of the equation are then given by $y_{1}=e^{-x} \cos 3 x, y_{2}=e^{-x} \sin 3 x, y_{3}=e^{-x / 2}$, and $y_{4}=x e^{-x / 2}$. This tells us that a general solution is given by

$$
y=e^{-x}\left(c_{1} \cos 3 x+c_{2} \sin 3 x\right)+e^{-x / 2}\left(c_{3}+c_{4} x\right) .
$$

We obtain the same result with DSolve. The formula for the general solution is extracted from gensolc with gensolc $[[1,1,2]]$.

```
In[502]:= gensolc = DSolve[4y'"\prime}[\mathbf{x}]+12\mp@subsup{y}{}{\prime\prime\prime}[\mathbf{x}]+49 \mp@subsup{y}{}{\prime\prime}[\mathbf{x}
    +42 y' [x] + 10y[x] = = 0,y[x],x]
Out[502]= {{y[x]-> e ex/2 C[3]+ ( ex/2 x C[4]
    +\mp@subsup{e}{}{-x}}C[2]\operatorname{Cos[3x]+ }\mp@subsup{\mathbb{e}}{}{-x}C[1] Sin[3x]}
```

In this case，we will graph the general solution for $\left(c_{1}, c_{2}, c_{3}, c_{4}\right)=$ $(1,0,1,0),(0,1,0,1),(1,1,0,1),(1,-1,1,2),(0,2,1,-2)$ ，and（1，$-2,1,2)$ ．We accomplish this by applying the pure function

```
gensolc[[1,1,2]] /. {C[1]->#[[1]],C[2]->#[[2]],
    C[3]->#[[3]],C[4]->#[[4]]} &
```

to the set of ordered quadruples

```
{{1,0,1,0},{0,1,0,1},{1,1,0,1},{1,-1,1,2},{0,2,1,-2},
    {1,-2,1,2}}
```

with Map．Namely，given an argument \＃，the function

```
gensolc[[1,1,2]] /. {C[1]->#[[1]],C[2] ->#[[2]],
    C[3]->#[[3]],C[4]->#[[4]]} &
```

replaces $\mathrm{C}[1]$ in gensolc $[[1,1,2]]$ by the first part of the argu－ ment， $\mathrm{C}[2]$ by the second part， $\mathrm{C}[3]$ by the third part，and $\mathrm{C}[4]$ by the fourth part．

```
In[503]:= toplot = ((gensolc\llbracket1, 1, 2\rrbracket)/.
    {C[1] }->\mathrm{ (#1[1】), C[2] }->\mathrm{ (#1[2】),
    C[3] }->\mathrm{ (#1[4]), C[4] }->\mathrm{ (#1【4】)}&)/@
    {{1,0,1,0},{0,1,0,1},{1, 1,0,1},
    {1,-1, 1, 2}, {0, 2, 1, -2},
    {1,-2, 1, 2}};
```

We then graph the set of functions toplot on the interval［－1，2］with Plot in Figure 4－12．

```
In[504]:= grays = Table[GrayLevel[i],
    {i,0,0.7,0.7/5}];
In[505]:= Plot[Evaluate[toplot], {x, -1, 2},
    PlotStyle }->\mathrm{ grays]
```

（b）The characteristic equation of $y^{(4)}+4 y^{\prime \prime \prime}+24 y^{\prime \prime}+40 y^{\prime}+100 y=0$ is $k^{4}+4 k^{3}+24 k^{2}+40 k+100=0$ which we can solve by factoring

Figure 4-12 Various solutions of $4 y^{(4)}+12 y^{\prime \prime \prime}+49 y^{\prime \prime}+42 y^{\prime}+10 y=0$
$k^{4}+4 k^{3}+24 k^{2}+40 k+100$ using Factor together with the options GaussianIntegers->True

$$
\begin{gathered}
\text { In }[506]:=\text { Factor }\left[k^{4}+4 k^{3}+24 k^{2}+40 k+100,\right. \\
\text { GaussianIntegers } \rightarrow \text { True }]
\end{gathered}
$$

$$
\text { Out }[506]=((1-3 \dot{1})+k)^{2}((1+3 \dot{i})+k)^{2}
$$

or using Solve.

$$
\begin{aligned}
\text { In }[507]:= & \text { Solve }\left[k^{4}+4 k^{3}+24 k^{2}+40 k+100==0\right] \\
\text { Out }[507]= & \{\{k \rightarrow-1-3 \dot{i}\},\{k \rightarrow-1-3 \text { í }\}, \\
& \{k \rightarrow-1+3 \dot{i}\},\{k \rightarrow-1+3 \text { í }\}\}
\end{aligned}
$$

Thus, we see that the solutions of the characteristic equation are $k=$ $-1+3 i$ and $k=-1-3 i$, each with multiplicity 2 , so the corresponding solutions are $y_{1}=e^{-x} \cos 3 x, y_{2}=e^{-x} \sin 3 x, y_{3}=x e^{-x} \cos 3 x$, and $y_{4}=$ $x e^{-x} \sin 3 x$. This tells us that a general solution is given by

$$
y=e^{-x}\left[\left(c_{1}+c_{2} x\right) \cos 3 x+\left(c_{3}+c_{4} x\right) \sin 3 x\right] .
$$

We obtain the same result using DSolve.

$$
\begin{aligned}
\text { In }[508]:=\text { gensold }= & \text { DSolve }[D[y[x],\{x, 4\}] \\
& +4 D[y[x],\{x, 3\}]+24 y^{\prime \prime}[x] \\
& \left.+40 y^{\prime}[x]+100 y[x]==0, y[x], x\right]
\end{aligned}
$$

$$
\begin{aligned}
\text { Out }[508]=\{\{y[x] \rightarrow & \mathbb{e}^{-x} C[3] \operatorname{Cos}[3 x]+\mathbb{e}^{-x} x C[4] \operatorname{Cos}[3 x] \\
& \left.\left.+\mathbb{e}^{-x} C[1] \operatorname{Sin}[3 x]+\mathbb{e}^{-x} x C[2] \operatorname{Sin}[3 x]\right\}\right\}
\end{aligned}
$$

To graph the solution for various values of the constants, we proceed in the same manner as in (a). First, we define a list of ordered quadruples, vals.

$$
\begin{aligned}
\text { In }[509]:=\operatorname{vals}=\{ & \{5,0,1,0\},\{0,1,0,-3\}, \\
& \{1,3,0,1\},\{1,-1,1,2\},\{0,2,1,-2\}, \\
& \{1,-2,5,2\},\{0,-3,0,2\},\{3,0,0,2\}, \\
& \{1,1,1,1\}\} ;
\end{aligned}
$$

We then use Map to replace C[1] in gensold [$[1,1,2]$], which represents the formula for the solution, by the first part of each quadruple in vals, C [2] by the second part, C [3] by the third part, and C [4] by the fourth part.

```
In[510]:= toplot=
    Map [
        gensold\llbracket1, 1, 2\rrbracket/.
            {C[1] }->\mathrm{ (#1[1]), C[2] }->\mathrm{ (#1[2】),
            C[3] }->\mathrm{ (#1[3\), C[4] }->(#1\llbracket4\rrbracket)}&
            vals];
```

We then use Table and Plot to graph each function in toplot on the interval $[-1 / 2,3 / 2]$, naming the resulting list of nine graphics objects ninegraphs. The graphs are not displayed because the option DisplayFunction->Identity is included in the Plot command. (If you do not include this option, each graph is displayed as it is generated.)

```
In[511]:= ninegraphs =
    Table[Plot[toplot\llbracketi], {x, - - 2 , \frac{3}{2}},
    DisplayFunction }->\mathrm{ Identity], {i, 1, 9}];
```

Now, we use Partition to partition the set ninegraphs into three element subsets, naming the resulting 3×3 array of graphics objects todisplay.

```
In[512]:= todisplay = Partition[ninegraphs, 3];
```

We then display the array of graphics objects todisplay using Show together with GraphicsArray in Figure 4-13.

```
In[513]:= Show[GraphicsArray[todisplay]]
```


Figure 4-13 Various solutions of $y^{(4)}+4 y^{\prime \prime \prime}+24 y^{\prime \prime}+40 y^{\prime}+100 y=0$

EXAMPLE 4.2.6: If a is a positive constant, find conditions on the constant b so that $y(x)$ satisfies

$$
\left\{\begin{array}{l}
y^{\prime \prime \prime}+0.344425 y^{\prime \prime}+12.4454 y^{\prime}-4.50047 y=0 \\
y(0)=0, y^{\prime}(0)=a, y^{\prime \prime}(0)=b
\end{array}\right.
$$

and has the property that $\lim _{x \rightarrow \infty} y(x)=0$. (b) For this function, find and classify the first critical point on the interval $[0, \infty)$.

SOLUTION: We use Solve to find (accurate approximations of) the solutions of the characteristic equation $k^{3}+0.344425 k^{2}+12.4454 k-$ $4.50047=0$.

$$
\begin{aligned}
\text { In }[514]:= & \text { Solve }\left[\mathbf{k}^{3}+0.344425 \mathbf{k}^{2}+12.4454 \mathbf{k}\right. \\
& -4.50047==0] \\
\text { Out }[514]=\{ & \{k \rightarrow-0.349491-3.54557 \dot{i}\}, \\
& \{k \rightarrow-0.349491+3.54557 \dot{i}\},\{k \rightarrow 0.354557\}\}
\end{aligned}
$$

Then, a general solution of the equation is

$$
y=c_{1} e^{0.354557 x}+e^{-0.349491 x}\left(c_{2} \cos 3.54557 x+c_{3} \sin 3.54557 x\right) .
$$

Note how we use Chop to replace those numbers in cvals that are very close to zero by zero.

```
```

In[515]:= Clear[y]

```
```

In[515]:= Clear[y]
y[\mp@subsup{x}{-}{\prime}]=\mp@subsup{c}{1}{}\operatorname{Exp}[0.354557 x]
y[\mp@subsup{x}{-}{\prime}]=\mp@subsup{c}{1}{}\operatorname{Exp}[0.354557 x]
+ Exp[-0.349490878289872464 x]
+ Exp[-0.349490878289872464 x]
x (c, Cos[3.54557256737378034 x]
x (c, Cos[3.54557256737378034 x]
+C}\mp@subsup{\mp@code{3}}{3}{}\operatorname{Sin}[3.54557256737378034 x])

```
```

 +C}\mp@subsup{\mp@code{3}}{3}{}\operatorname{Sin}[3.54557256737378034 x])
    ```
```

We now apply the initial conditions and solve for c_{1}, c_{2}, and c_{3}.

```
In[516]:= sys = {y[0] == 0, y'[0] == a, y' [0] == b}
Out[516]={ C
    -0.349490878289872464 C2
    +3.54557256737378034 C == a,
        0.125711 cci-12.4489409565056737 C2
        -2.47829 C3 == b}
```



```
    Simplify
Out[517] = {{\mp@subsup{c}{1}{}->0.0534931a+0.07653 b,
    c}\mp@subsup{c}{2}{}->-0.0534931\textrm{a}-0.07653\textrm{b}
    C}\mp@subsup{]}{3}{}->0.27142\textrm{a}-0.0151966\textrm{b}}
```

We obtain the solution to the initial-value problem by substituting these values back into the general solution.

```
In[518]:= y [\mp@subsup{\mathbf{x_}}{-}{\prime}=\mathbf{y}[\mathbf{x}]/. cvals[[1]]
Out [518]=(0.0534931a+0.07653 b) }\mp@subsup{e}{}{0.354557x
    + (\mp@subsup{e}{}{-0.349490878289872464x}}((-0.0534931a-0.07653 b) 
    x Cos[3.54557256737378034 x]
    +(0.27142a-0.0151966b)
    * Sin[3.54557256737378034x])
```

These results indicate that $\lim _{x \rightarrow \infty} y(x)=0$ if $0.0534931 a+0.07653 b=0$ which leads to $b=-0.698982 a$.

```
In [519] : = bval = Solve[0.0534930859299338479a
    \(+0.0765300173093015523 \mathrm{~b}==0, \mathrm{~b}]\)
Out \([519]=\{\{b \rightarrow-0.698982 a\}\}\)
```

Substituting back into the solution to the initial-value problem yields

$$
\begin{aligned}
& \qquad y=0.282042 a e^{-0.349491 x} \sin 3.54557 x . \\
& \text { In }[520]:= \\
& \text { Out }[520]= \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

Figure 4-14 The first critical point of y occurs at the first 0 of y^{\prime}

To find and classify the first critical point of $y=0.282042 a e^{-0.349491 x}$ $\sin 3.54557 x$, we compute y^{\prime}

```
In[521]:= ' ' [x]
Out [521]= 1.a e e.0.349490878289872464x
    x Cos[3.54557256737378034 x]
    -0.0985711 a e e -0.349490878289872464x
    x Sin[3.54557256737378034x]
```

and graph y^{\prime} / a in Figure 4-14 to locate the first zero of y^{\prime}.

$$
\operatorname{In}[522]:=\operatorname{Plot}\left[\frac{\mathbf{y}^{\prime}[\mathbf{x}]}{a},\{\mathbf{x}, 0,1\}\right]
$$

From the graph, we see that the first zero occurs near 0.4 and with FindRoot we obtain the critical number $x=0.415319$.

```
In [523] \(:=\) critval \(=\) FindRoot \(\left[\frac{\mathbf{y}^{\prime}[\mathbf{x}]}{a}==0,\{\mathbf{x}, 0.4\}\right]\)
Out [523] \(=\{x \rightarrow 0.415319\}\)
```

At this critical number, we use ReplaceAll (/.) to find that $y(0.415319)=0.242759 a$. Because y^{\prime} makes a "simple change in sign" from positive to negative at $x=0.415319$, by the first derivative test ($0.415319,0.242759 a$) is a relative (or local) maximum.

```
In[524]:= y[x]/.critval
Out[524]= 0.242759a
```

To see that $(0.415319,0.242759 a)$ is the absolute maximum, we graph y for various values of a with Plot in Figure 4-15.

Figure 4-15 The maximum value of y is $0.242759 a$

```
In[525]:= toplot = Table[y[x], {a, 0.5, 5, 0.5}];
In[526]:= grays = Table[GrayLevel[i],
    {i, 0,0.8, 0.8/9}];
In[527]:= Plot[Evaluate[toplot], {x, 0, 6},
    PlotStyle }->\mathrm{ grays]
```

EXAMPLE 4.2.7: Find a differential equation with general solution $y=$ $c_{1} e^{-2 t / 3}+c_{2} t e^{-2 t / 3}+c_{3} t^{2} e^{-2 t / 3}+c_{4} \cos t+c_{5} \sin t+c_{6} t \cos t+c_{7} t \sin t+c_{8} t^{2} \cos t+$ $c_{9} t^{2} \sin t$.

SOLUTION: A linear homogeneous differential equation with constant coefficients that has this general solution has fundamental set of solutions

$$
S=\left\{e^{-2 t / 3}, t e^{-2 t / 3}, t^{2} e^{-2 t / 3}, \cos t, \sin t, t \cos t, t \sin t, t^{2} \cos t, t^{2} \sin t\right\} .
$$

Hence, in the characteristic equation $k=-2 / 3$ has multiplicity 3 while $k= \pm i$ has multiplicity 3 . The characteristic equation is

$$
\begin{aligned}
\left(k+\frac{2}{3}\right)^{3}(k-i)^{3}(k+i)^{3}= & k^{9}+2 k^{8}+\frac{13}{3} k^{7}+\frac{170}{27} k^{6}+7 k^{5}+\frac{62}{9} k^{4} \\
& +5 k^{3}+\frac{26}{9} k^{2}+\frac{4}{3} k+\frac{8}{27}
\end{aligned}
$$

where we use Mathematica to compute the multiplication with Expand.

```
In[528]:= Expand[27(k+2/3)^3(k^2 + 1)^3]
Out [528]=8+36 k+78 k
    +117 k}\mp@subsup{}{}{7}+54\mp@subsup{k}{}{8}+27\mp@subsup{k}{}{9
```

Thus, a differential equation obtained with the indicated general solution is

$$
\begin{array}{r}
\frac{d^{9} y}{d t^{9}}+2 \frac{d^{8} y}{d t^{8}}+\frac{13}{3} \frac{d^{7} y}{d t^{7}}+\frac{170}{27} \frac{d^{6} y}{d t^{6}}+7 \frac{d^{5} y}{d t^{5}}+\frac{62}{9} \frac{d^{4} y}{d t^{4}}+5 \frac{d^{3} y}{d t^{3}}+\frac{26}{9} \frac{d^{2} y}{d t^{2}} \\
+\frac{4}{3} \frac{d y}{d t}+\frac{8}{27} y=0 .
\end{array}
$$

Application: Testing for Diabetes

Diabetes mellitus affects approximately 12 million Americans; approximately onehalf of these people are unaware that they have diabetes. Diabetes is a serious disease: it is the leading cause of blindness in adults, the leading cause of renal failure, responsible for approximately one-half of all nontraumatic amputations in the United States. In addition, people with diabetes have an increased rate of coronary artery disease and strokes. People at risk for developing diabetes include those who are obese; those suffering from excessive thirst, hunger, urination, and weight loss; women who have given birth to a baby with weight greater than nine pounds; those with a family history of diabetes; those who are over 40 years of age. People with diabetes cannot metabolize glucose because their pancreas produces an inadequate or ineffective supply of insulin. Subsequently, glucose levels rise. The body attempts to remove the excess glucose through the kidneys: the glucose acts as a diuretic, resulting in increased water consumption. Since some cells require energy, which is not being provided by glucose, fat and protein is broken down and ketone levels rise. Although there is no cure for diabetes at this time, many cases can be effectively managed by a balanced diet and insulin therapy in addition to maintaining an optimal weight. Diabetes can be diagnosed by several tests. In the fasting blood sugar test, a patient fasts for at least four hours, and then the glucose level is measured. In a fasting state, the glucose level in normal adults ranges from 70 to 110 milligrams per milliliter. An adult in a fasting state with consistent readings of over 150 milligrams probably has diabetes. However, people with mild cases of diabetes might have fasting state glucose levels within the normal range because individuals vary greatly. In these cases, a highly accurate test which is frequently used to diagnose mild diabetes is the glucose tolerance test (GTT), which was developed by Drs. Rosevear and Molnar of the

Sources: D. N. Burghess and M. S. Borrie, Modeling with Differential Equations, Ellis Horwood Limited, Pp. II3-I 16. Joyce M. Black and Esther
Matassarin-Jacobs, Luckman and Sorensen's
Medical-Surgical Nursing: A Psychophysiologic Approach, Fourth Edition, W. B.
Saunders Company (1993), Pp. 1775-1808.

Mayo Clinic and Drs. Ackerman and Gatewood of the University of Minnesota. During the GTT, a blood and urine sample are taken from a patient in a fasting state to measure the glucose, G_{0}, hormone, H_{0}, and glycosuria levels, respectively. We assume that these values are equilibrium values. The patient is then given 100 grams of glucose. Blood and urine samples are then taken at $1,2,3$, and 4 hour intervals. In a person without diabetes, glucose levels return to normal after two hours; in diabetics their blood sugar levels either take longer or never return to normal levels.

Let G denote the cumulative level of glucose in the blood, $g=G-G_{0}, H$ the cumulative level of hormones that affect insulin production (like glucagon, epinephrine, cortisone, and thyroxin), and $h=H-H_{0}$. Notice that g and h represent the fluctuation of the cumulative levels of glucose and hormones from their equilibrium values. The relationship between the rate of change of glucose in the blood and the rate of change of the cumulative levels of the hormones in the blood that affects insulin production is

$$
\left\{\begin{array}{l}
g^{\prime}=f_{1}(g, h)+J(t) \\
h^{\prime}=f_{2}(g, h)
\end{array}\right.
$$

where $J(t)$ represents the external rate at which the blood glucose concentration is being increased. If we assume that f_{1} and f_{2} are linear functions, then this system of equations becomes

$$
\left\{\begin{array}{l}
g^{\prime}=-a g-b h+J(t) \\
h^{\prime}=-c h+d g
\end{array}\right.
$$

where a, b, c, and d represent positive numbers. We define these equations in eq1 and eq2.

$$
\begin{aligned}
\operatorname{In}[529]:= & \text { eq1 }=g^{\prime}[t]=-a g[t]-b h[t]+j[t] ; \\
& \text { eq2 }=h^{\prime}[t]==-\mathrm{ch}[t]+d g[t] ;
\end{aligned}
$$

Next, we solve the first equation for $h(t)$

$$
\begin{aligned}
& \operatorname{In}[530]:=\text { step } 1=\text { Solve }[\text { eq } 1, h[t]] \\
& \text { Out }[530]=\left\{\left\{\mathrm{h}[\mathrm{t}] \rightarrow \frac{-\mathrm{ag}[\mathrm{t}]+j[\mathrm{t}]-\mathrm{g}^{\prime}[\mathrm{t}]}{\mathrm{b}}\right\}\right\}
\end{aligned}
$$

and differentiate this result with respect to t to obtain $h^{\prime}(t)$.

```
In[531]:= step2 = 施step1\llbracket1, 1, 2\rrbracket
Out[531]=}\frac{-a\mp@subsup{g}{}{\prime}[t]+\mp@subsup{j}{}{\prime}[t]-\mp@subsup{g}{}{\prime\prime}[t]}{b
```

Substituting these results into the second equation yields the second-order equation with constant coefficients

$$
\begin{gathered}
\frac{1}{b}\left(-g^{\prime \prime}-a g^{\prime}+J^{\prime}\right)=-\frac{c}{b}\left(-g^{\prime}-a g+J\right)+d g \\
g^{\prime \prime}+(a+c) g^{\prime}+(a c+b d) g=J^{\prime}+c J . \\
\text { In } \left.[532]:=\text { step3 }=\text { eq2 } 2 / \text { \{step1 } \mathbb{4} 1,1 \mathbb{1}, \mathrm{~h}^{\prime}[\mathrm{t}] \rightarrow \text { step2 }\right\} \\
\text { Out }[532]=\frac{-a \mathrm{~g}^{\prime}[\mathrm{t}]+\mathrm{j}^{\prime}[\mathrm{t}]-\mathrm{g}^{\prime \prime}[\mathrm{t}]}{\mathrm{b}}== \\
\mathrm{dg}[\mathrm{t}]-\frac{\mathrm{c}\left(-\mathrm{ag}[\mathrm{t}]+\mathrm{j}[\mathrm{t}]-\mathrm{g}^{\prime}[\mathrm{t}]\right)}{\mathrm{b}}
\end{gathered}
$$

For $t>0$ we have that $J(t)=0$ and $J^{\prime}(t)=0$ because the glucose solution is consumed at $t=0$, so for $t>0$ we can rewrite the equation as

$$
\begin{gathered}
\qquad g^{\prime \prime}+(a+c) g^{\prime}+(a c+b d) g=0 . \\
\text { In }[533]:=\text { step4 }=\text { step } 3 / \cdot\left\{j^{\prime}[t] \rightarrow 0, j[t] \rightarrow 0\right\} \\
\text { Out }[533]=\frac{-a g^{\prime}[t]-g^{\prime \prime}[t]}{\mathrm{b}}==\mathrm{dg}[t]-\frac{\mathrm{c}\left(-\mathrm{ag}[\mathrm{t}]-\mathrm{g}^{\prime}[\mathrm{t}]\right)}{\mathrm{b}}
\end{gathered}
$$

We now use DSolve to solve this second-order equation.

$$
\begin{aligned}
\text { In }[534]:= & \text { sol }=\text { DSolve }[\text { step } 4, g[t], t] \\
\text { Out }[534]= & \left\{\left\{g[t] \rightarrow e^{\frac{1}{2}\left(-a-c-\sqrt{a^{2}-2 a c+c^{2}-4 b d}\right) t} C[1]\right.\right. \\
& \left.\left.+e^{\frac{1}{2}\left(-a-c+\sqrt{a^{2}-2 a c+c^{2}-4 b d}\right) t} C[2]\right\}\right\}
\end{aligned}
$$

It might be reasonable to assume that glucose levels fluctuate in a periodic fashion so that the solutions to the equation involve periodic functions. In order to have periodic functions in the solution (like sine and cosine), we must have that $(a+c)^{2}-4(a c+b d)<0$. We now replace $(a+c)^{2}-4(a c+b d)$ with $-4 \omega^{2}$ and $-a-c$ with -2α using ReplaceRepeated (//.)

$$
\begin{aligned}
& \text { In }[535]:= \text { step } 5= \\
&(\operatorname{sol} \llbracket 1,1,2 \mathbb{1}) / / \\
&\left\{\mathbf{a}^{2}-2 \mathbf{a} \mathbf{c}+\mathbf{c}^{2}-4 \mathrm{~b} \mathbf{d} \rightarrow-4 \omega^{2},-\mathbf{a}-\mathbf{c} \rightarrow-\mathbf{\alpha}\right\} \\
& \text { Out }[535]=e^{\frac{1}{2} t\left(-2 \alpha-2 \sqrt{-\omega^{2}}\right)} C[1]+e^{\frac{1}{2} t\left(-2 \alpha+2 \sqrt{-\omega^{2}}\right)} C[2]
\end{aligned}
$$

We then simplify the result with PowerExpand.

```
In[536]:= step6 = PowerExpand[step5]
```


Use ComplexExpand to rewrite step6 in terms of trigonometric functions.

```
In[537]:= step7 = ComplexExpand[step6]
Out[537]= e e
    +i|}(-\mp@subsup{\mathbb{e}}{}{-t\alpha}C[1] Sin[t\omega]+\mp@subsup{\mathbb{e}}{}{-t\alpha}C[2]\operatorname{Sin}[t\omega]
```

We want to choose the constants C [1] and C [2] so that the result is a real-valued function. We begin by using collect to collect together the terms involving $\cos \omega t$ and $\sin \omega t$.

```
In[538]:= step8 = Collect[step7, {Cos[\omegat], Sin[ \omegat]}]
Out [538]=( (\mp@subsup{e}{}{-t\alpha}C[1]+ + \mp@subsup{e}{}{-t\alpha}C[2]) Cos[t \omega]
    +(-i\mathbb{i}\mp@subsup{\mathbb{e}}{}{-t\alpha}C[1]+\dot{\mathbb{i}}\mp@subsup{\mathbb{e}}{}{-t\alpha}C[2])}\operatorname{Sin}[t\omega
```

If possible, we would like to choose $C[1]$ and $C[2]$ so that $C[1]+C[2]$ can be replaced by an arbitrary real constant $\mathrm{C1}$ and -I C[1] + I C[2] can be replaced by an arbitrary real constant c 2 . To see that this is possible, we solve this system of equations for C [1] and C [2] with Solve.

$$
\begin{aligned}
& \text { In }[539]:= \text { toapply }= \\
& \text { Solve }[\{C[1]+C[2]==c 1, \\
&-I C[1]+I C[2]==c 2\},\{C[1], C[2]\}] \\
& \text { Out }[539]=\left\{\left\{C[1] \rightarrow-\frac{1}{2}(-\mathrm{c} 1-\mathbb{i} C 2), C[2] \rightarrow-\frac{1}{2}(-\mathrm{c} 1+\mathbb{i} \mathrm{C} 2)\right\}\right\}
\end{aligned}
$$

Replacing C [1] and C [2] by the values obtained in toapply yields our model.

```
In[540]:= model = Simplify[step8/.(toapply[1])]
```


Thus, $g(t)=e^{-\alpha t}\left(c_{1} \cos \omega t+c_{2} \sin \omega t\right)$ and $G(t)=G_{0}+e^{-\alpha t}\left(c_{1} \cos \omega t+c_{2} \sin \omega t\right)$.
Research has shown that lab results of $2 \pi / \omega>4$ indicate a mild case of diabetes. For example, suppose that we have given the GTT to four patients we suspect of having a mild case of diabetes. The results for each patient are shown in the following table. Which patients, if any, have a mild case of diabetes?

	Patient 1	Patient 2	Patient 3	Patient 4
G_{0}	80.00	90.00	100.00	110.00
$t=1$	85.32	91.77	103.35	114.64
$t=2$	82.54	85.69	98.26	105.89
$t=3$	78.25	92.39	96.59	108.14
$t=4$	76.61	91.13	99.47	113.76

In each case, we must find α, ω, c_{1}, and c_{2} so that $G(t)=G_{0}+e^{-\alpha t}\left(c_{1} \cos \omega t\right.$ $\left.+c_{2} \sin \omega t\right)$ agrees with the data as closely as possible. To accomplish this, we take advantage of the NonlinearFit command that is contained in the NonlinearFit
package which is located in the Statistics folder（or directory）．First，we load the NonlinearFit package．

```
In[541]:= <<Statistics`NonlinearFit`
```

For the first patient，we use NonlinearFit to find values of α, ω, c_{1} ，and c_{2}

```
In[542]:= p1 = NonlinearFit[{{1, 85.32}, {2, 82.54}, {3,78.25},
    {4,76.61}},model + 80, t, {c1, c2, \omega, 人}]
Out [542] = 80 + e e -0.150145t}(2.7639 Cos[1.04611t]
    +5.54293 Sin[1.04611t])
```

and then evaluate $2 \pi / \omega$ for the value of ω obtained to see that the first patient probably has diabetes．

$$
\begin{aligned}
& \operatorname{In}[543]:=\mathrm{N}\left[\frac{2 \pi}{1.04610632215009347}\right] \\
& \text { Out }[543]=6.00626
\end{aligned}
$$

Similarly，we use NonlinearFit to see that Patients 2 and 4 probably do not have diabetes while Patient 3 probably has diabetes．

```
In[544]:= p2 = NonlinearFit[{{1, 91.77}, {2, 85.69}, {3, 92.39},
    {4, 91.13}},model + 90, t, {c1, c2, \omega, 人}]
Out[544]= 90 + e -0.152132t}(3.78531 Cos[2.09345t
    +4.55901 Sin[2.09345t])
In[545]:=N[\frac{2\pi}{8.37663218680484966}}
Out [545]= 0.750085
In[546]:= p3 = NonlinearFit[{{1, 103.35}, {2, 98.26}, {3, 96.59},
    {4, 99.47}},model + 100, t, {c1, c2, \omega, 人}]
Out [546] = 100 + © -0.149988t (4.7609 Cos[1.25572t]
        +2.54189 Sin[1.25572t])
In[547]:= N[\frac{2\pi}{1.25572438795247531}}
Out [547]= 5.00363
```

```
In[548]:= p4=NonlinearFit[{{1, 114.64}, {2, 105.89},
    {3,108.14}, {4, 113.76}}, model + 110, t,
    {c1, c2, \omega, \alpha}]
Out [548]= 110 + e e-14985t}(3.14157 Cos[8.07894t]
    +6.24831 Sin[8.07894t])
In[549]:=N[\frac{2\pi}{1.79575405057308117}}
Out[549]= 3.49891
```


4.3 Introduction to Solving Nonhomogeneous Equations with Constant Coefficients

In the previous section, we learned how to solve the n th-order linear homogeneous equation with real constant coefficients. These techniques are also useful in solving nonhomogeneous equations of the form

$$
\begin{equation*}
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=f(x) \tag{4.12}
\end{equation*}
$$

where the a_{i} 's are constant and $a_{n} \neq 0$. Before describing how to obtain solutions of some nonhomogeneous equations, we need to describe what is meant by a general solution of a linear nonhomogeneous equation.

Definition 17 (Particular Solution). A particular solution, $y_{p}(x)$, of the linear differential equation

$$
a_{n}(x) y^{(n)}+a_{n-1}(x) y^{(n-1)}+\cdots a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=f(x)
$$

is a specific function that contains no arbitrary constants and satisfies the differential equation.

EXAMPLE 4.3.1: Verify that $y_{p}(x)=-\frac{3}{2} \sin x$ is a particular solution of $y^{\prime \prime}-2 y^{\prime}+y=3 \cos x$.

SOLUTION: After defining $y_{p}(x)=-\frac{3}{2} \sin x$,

$$
\begin{aligned}
& \operatorname{In}[550]:=y_{p}\left[x_{-}\right]=-\frac{3 \sin [x]}{2} \\
& \text { Out }[550]=-\frac{3 \operatorname{Sin}[x]}{2}
\end{aligned}
$$

we compute and simplify $y_{p}^{\prime \prime}-2 y_{p}^{\prime}+y_{p}$


```
Out[551]= 3 Cos[x]
```

and see that the result is identically equal to $3 \cos x$.

Suppose that y is any solution and that y_{p} is a particular solution of the nonhomogeneous equation

$$
a_{n}(x) y^{(n)}+a_{n-1}(x) y^{(n-1)}+\cdots+a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=f(x)
$$

and that y_{h} is a general solution of the corresponding homogeneous equation

$$
a_{n}(x) y^{(n)}+a_{n-1}(x) y^{(n-1)}+\cdots+a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0 .
$$

Then, $y-y_{p}$ is a solution of the corresponding homogeneous equation so

$$
y-y_{p}=y_{h} \quad \text { or } \quad y=y_{h}+y_{p} .
$$

Thus, any solution of the nonhomogeneous equation can be written as the sum of a particular solution to the nonhomogeneous equation added to the general solution of the corresponding homogeneous equation.

Definition 18 (General Solution of a Nonhomogeneous Equation). A general solution of the nonhomogeneous equation

$$
a_{n}(x) y^{(n)}+a_{n-1}(x) y^{(n-1)}+\cdots+a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=f(x)
$$

is

$$
y=y_{h}+y_{p}
$$

where y_{h} is a general solution of the corresponding homogeneous equation

$$
a_{n}(x) y^{(n)}+a_{n-1}(x) y^{(n-1)}+\cdots+a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0
$$

and y_{p} is a particular solution to the nonhomogeneous equation.

EXAMPLE 4.3.2: Find a general solution of $y^{\prime \prime}+6 y^{\prime}+13 y=2 e^{-2 x} \sin x$ if

$$
y_{p}=e^{-2 x}\left(-\frac{1}{5} \cos x+\frac{2}{5} \sin x\right)
$$

is a particular solution to the nonhomogeneous equation and

$$
y_{h}=e^{-3 x}\left(c_{1} \cos 2 x+c_{2} \sin 2 x\right)
$$

is a general solution of the corresponding homogeneous equation.

SOLUTION: We first show that $y_{p}=e^{-2 x}\left(-\frac{1}{5} \cos x+\frac{2}{5} \sin x\right)$ is a particular solution of $y^{\prime \prime}+6 y^{\prime}+13 y=2 e^{-2 x} \sin x$. After defining y_{p}, we calculate $y_{p}^{\prime \prime}+6 y_{p}^{\prime}+13 y_{p}$

$$
\begin{aligned}
& \operatorname{In}[552]:=\mathrm{y}_{\mathrm{p}}\left[\mathbf{x}_{-}\right]=-\frac{1}{5} \operatorname{Exp}[-2 \mathbf{x}] \operatorname{Cos}[\mathbf{x}] \\
&+\frac{2}{5} \operatorname{Exp}[-2 \mathbf{x}] \operatorname{Sin}[\mathbf{x}] ; \\
& \operatorname{In}[553]:=\mathrm{y}_{\mathrm{p}}{ }^{\prime \prime}[\mathbf{x}]+6 \mathrm{y}_{\mathrm{p}}{ }^{\prime}[\mathbf{x}]+13 \mathrm{y}_{\mathrm{p}}[\mathbf{x}] / / / \operatorname{Simplify} \\
& \text { Out }[553]=2 \mathbb{e}^{-2 x} \operatorname{Sin}[\mathrm{x}]
\end{aligned}
$$

and see that the result is $2 e^{-2 x} \sin x$. We see that $y_{h}=e^{-3 x}\left(c_{1} \cos \right.$ $2 x+c_{2} \sin 2 x$) is a general solution of the corresponding homogeneous equation $y^{\prime \prime}+6 y^{\prime}+13 y=0$ with DSolve.

```
In[554]:= Clear[y]
    DSolve [\mp@subsup{y}{}{\prime\prime}[x]+6 y'[x] + 13 y[x] == 0,
        y[x], x]
Out [554]= {{y[x]-> \mp@subsup{e}{}{-3x}C[2] Cos[2x] + \mp@subsup{e}{}{-3x}C[1] Sin[2x]}}
```

Thus, a general solution of the equation is $y=y_{h}+y_{p}=e^{-3 x}\left(c_{1} \cos 2 x\right.$ $\left.+c_{2} \sin 2 x\right)+e^{-2 x}\left(-\frac{1}{5} \cos x+\frac{2}{5} \sin x\right)$. We now graph the general solution for various values of the arbitrary constant. To do so, we define $y_{h}=e^{-3 x}\left(c_{1} \cos 2 x+c_{2} \sin 2 x\right)$ and $y(x)=y_{h}(x)+y_{p}(x)$.

Then, we use Table to create a list of functions obtained by replacing c_{1} in $y(x)$ by $-1,0$, and 1 and c_{2} by $-1,0$, and 1 . The resulting list of functions toplot is graphed with Plot in Figure 4-16. The option

Figure 4-16 Various solutions to a nonhomogeneous equation

PlotStyle->grays specifies that the functions are graphed in shades of gray according to the GrayLevels in the list grays.

```
In[557]:= toplot = Table[y[x], {c, c, -1, 1},
    {c, , -1, 1}];
In[558]:= grays = Table[GrayLevel[i],
    {i,0,0.7,0.7/8}];
In[559]:= Plot[Evaluate[toplot], {\mathbf{x},0,2},
    PlotRange }->\mathrm{ All, PlotStyle }->\mathrm{ grays]
```

Techniques for solving nonhomogeneous equations with constant coefficients are discussed in the next two sections. In addition, you can often use DSolve to find a general solution of a linear nonhomogeneous equation.

EXAMPLE 4.3.3: Solve the initial-value problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}+y=\cos \omega x \\
y(0)=y^{\prime}(0)=0
\end{array}\right.
$$

Graph the solution for various values of ω, including $\omega=1$.

SOLUTION: We first use DSolve to solve the initial-value problem. Note that the result is not valid if $\omega=1$.

```
In[560]:= Clear[y]
    DSolve [{\mp@subsup{y}{}{\prime\prime}[x]+y[x]== Cos[\omegax],
    y[0] == 0, y'[0] == 0}, y[x], x]//
    Simplify
Out [560]={{y[x] ->\frac{\operatorname{Cos[x]-\operatorname{Cos[x\omega]}}}{-1+\mp@subsup{\omega}{}{2}}}}
```

In fact, when we graph this solution for various values of ω, Mathematica generates several error messages (not all of which are displayed here) because $\omega=1$ is included in the Table command. Notice that the empty graph corresponds to $\omega=1$.

$$
\begin{aligned}
& \text { In }[561]:=\text { graphs }= \\
& \qquad \begin{aligned}
& \text { abble }\left[\operatorname { P l o t } \left[\frac{\operatorname{Cos}[x]-\operatorname{Cos}[x \omega]}{-1+\omega^{2}},\{x, 0,12 \pi\},\right.\right. \\
& \text { Ticks->\{\{0,12 }\},\{-1,1\}\}, \\
& \text { DisplayFunction } \rightarrow \text { Identity }], \\
& \left.\left\{\omega, 0,2, \frac{2}{8}\right\}\right] ;
\end{aligned}
\end{aligned}
$$

Power : : infy : Infinite expression $\frac{1}{0}$ encountered.
∞ : : indet : Indeterminate expression
0 ComplexInfinity encountered.
From the graphs shown in Figure 4-17, we see that the solution to the initial-value problem is bounded and periodic if $\omega \neq 1$.

```
In[562]:= toshow = Partition[graphs, 3];
In[563]:= Show[GraphicsArray[toshow]]
```

We consider $\omega=1$ separately.

$$
\begin{aligned}
& \text { In [564] : = DSolve }\left[\left\{y^{\prime \prime}[\mathbf{x}]+\mathrm{y}[\mathrm{x}]==\operatorname{Cos}[\mathrm{x}], \mathrm{y}[0]==0\right.\right. \text {, } \\
& \left.\left.y^{\prime}[0]=0\right\}, y[x], x\right] \\
& \text { Out }[564]=\left\{\left\{y [x] \rightarrow \frac { 1 } { 4 } \left(-2 \operatorname{Cos}[x]+2 \operatorname{Cos}[x]^{3}\right.\right.\right. \\
& +2 x \sin [x]+\sin [x] \operatorname{Sin}[2 x])\}\} \\
& \operatorname{In}[565]:=\operatorname{Plot}\left[\frac{\mathbf{x} \operatorname{Sin}[\mathbf{x}]}{2},\{\mathbf{x}, 0,12 \pi\}\right]
\end{aligned}
$$

In Figure 4-18, we see that if $\omega=1$ the solution is unbounded and not periodic.

Figure 4-17 Solutions of $\left\{\begin{array}{l}y^{\prime \prime}+y=\cos \omega x \\ y(0)=y^{\prime}(0)=0\end{array}\right.$ for $\omega \neq 1$

Figure 4-18 Solution of $\left\{\begin{array}{l}y^{\prime \prime}+y=\cos \omega x \\ y(0)=y^{\prime}(0)=0\end{array} \quad\right.$ for $\omega=1$

4.4 Nonhomogeneous Equations with Constant Coefficients: The Method of Undetermined Coefficients

Consider the n th-order linear differential equation with constant coefficients

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=f(x) .
$$

We know that a general solution of this differential equation is given by $y=y_{h}+$ y_{p} where y_{p} is a particular solution of the nonhomogeneous equation and y_{h} is a solution of the corresponding homogeneous equation

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0 .
$$

If $f(x)$ is a linear combination of the functions $1, x, x^{2}, \ldots, e^{k x}, x e^{k x}, x^{2} e^{k x}, \ldots$, $e^{\alpha x} \cos \beta x, e^{\alpha x} \sin \beta x, x e^{\alpha x} \cos \beta x, x e^{\alpha x} \sin \beta x, x^{2} e^{\alpha x} \cos \beta x, x^{2} e^{\alpha x} \sin \beta x, \ldots$ the Method of Undetermined Coefficients provides a method that we can use to determine a particular solution of the nonhomogeneous equation.

Outline of the Method of Undetermined Coefficients

1. Solve the corresponding homogeneous equation for $y_{h}(x)$.
2. Determine the form of a particular solution $y_{p}(x)$. (See Determining the Form of $y_{p}(x)$ next.)
3. Determine the unknown coefficients in $y_{p}(x)$ by substituting $y_{p}(x)$ into the nonhomogeneous equation and equating the coefficients of like terms.
4. Form a general solution with $y(x)=y_{h}(x)+y_{p}(x)$.

Determining the Form of $y_{p}(x)$ (Step 2):

Suppose that $f(x)=b_{1} f_{1}(x)+b_{2} f_{2}(x)+\cdots+b_{j} f_{j}(x)$, where $b_{1}, b_{2}, \ldots, b_{j}$ are constants and each $f_{i}(x), i=1,2, \ldots, j$, is a function of the form $x^{m}, x^{m} e^{k x}, x^{m} e^{\alpha x} \cos \beta x$, or $x^{m} e^{\alpha x} \sin \beta x$.

1. If $f_{i}(x)=x^{m}$, the associated set of functions is

$$
S=\left\{1, x, x^{2}, \ldots, x^{m}\right\} .
$$

2. If $f_{i}(x)=x^{m} e^{k x}$, the associated set of functions is

$$
S=\left\{e^{k x}, x e^{k x}, x^{2} e^{k x}, \ldots, x^{m} e^{k x}\right\}
$$

3. If $f_{i}(x)=x^{m} e^{\alpha x} \cos \beta x$ or $f_{i}(x)=x^{m} e^{\alpha x} \sin \beta x$, the associated set of functions is

$$
\begin{aligned}
& S=\left\{e^{\alpha x} \cos \beta x, x e^{\alpha x} \cos \beta x, x^{2} e^{\alpha x} \cos \beta x, \ldots, x^{m} e^{\alpha x} \cos \beta x,\right. \\
& \left.e^{\alpha x} \sin \beta x, x e^{\alpha x} \sin \beta x, x^{2} e^{\alpha x} \sin \beta x, \ldots, x^{m} e^{\alpha x} \sin \beta x\right\} .
\end{aligned}
$$

For each function $f_{i}(x)$ in $f(x)$, determine the associated set of functions S. If any of the functions in S appears in the general solution to the corresponding homogeneous equation, $y_{h}(x)$, multiply each function in S by x^{r} to obtain a new set $x^{r} S$, where r is the smallest positive integer so that each function in $x^{r} S$ is not a solution of the corresponding homogeneous equation. A particular solution is obtained by taking the linear combination of all functions in the associated sets where repeated functions should appear only once in the particular solution.

4.4.I Second-Order Equations

EXAMPLE 4.4.1: Solve the nonhomogeneous equations (a) $y^{\prime \prime}+5 y^{\prime}$ $+6 y=2 e^{x}$ and (b) $y^{\prime \prime}+5 y^{\prime}+6 y=3 e^{-2 x}$.

SOLUTION: (a) The corresponding homogeneous equation $y^{\prime \prime}+5 y^{\prime}+$ $6 y=0$ has general solution $y_{h}=c_{1} e^{-2 x}+c_{2} e^{-3 x}$.

```
In [566]:= homsol = DSolve[y''[x] + 5 y' [x] + 6 y [x]
    == 0, y[x],x]
Out [566]= {{y[x] 他 -3x}C[1]+\mp@subsup{\mathbb{e}}{}{-2x}C[2]}
```

Next, we determine the form of $y_{p}(x)$. We choose $S=\left\{e^{x}\right\}$ because $f(x)=$ $2 e^{x}$. Notice that e^{x} is not a solution to the homogeneous equation, so we take $y_{p}(x)$ to be the linear combination of the functions in S. Therefore,

$$
\begin{aligned}
& \qquad y_{p}(x)=A e^{x} \\
& \text { In }[567]:=\mathbf{y}_{\mathrm{p}}\left[\mathbf{x}_{-}\right]=\mathrm{a} \operatorname{Exp}[\mathbf{x}] \\
& \text { Out }[567]=\mathrm{a} e^{\mathrm{x}}
\end{aligned}
$$

Substituting this solution into $y^{\prime \prime}+5 y^{\prime}+6 y=2 e^{x}$, we have

$$
\begin{gathered}
\qquad A e^{x}+5 A e^{x}+6 A e^{x}=12 A e^{x}=2 e^{x} \\
\operatorname{In}[568]:=\text { eqn }=\mathbf{y}_{\mathrm{p}}{ }^{\prime \prime}[\mathbf{x}]+5 \mathbf{y}_{\mathrm{p}}{ }^{\prime}[\mathbf{x}]+6 \mathbf{y}_{\mathrm{p}}[\mathbf{x}]==2 \operatorname{Exp}[\mathbf{x}] \\
\text { Out }[568]=12 \text { a } e^{\mathrm{x}}=2 \mathrm{e}^{\mathrm{x}}
\end{gathered}
$$

Equating the coefficients of e^{x} then gives us $A=1 / 6$.

```
In [569] := aval = SolveAlways[eqn, x]
Out [569] = {{a->\frac{1}{6}},{x->-\infty}}
```

Hence, a particular solution is $y_{p}(x)=\frac{1}{6} e^{x}$,

$$
\begin{aligned}
& \operatorname{In}[570]:=y_{p}\left[\mathbf{x}_{-}\right]=a \operatorname{Exp}[\mathbf{x}] / \cdot a \rightarrow \frac{1}{6} \\
& \text { Out }[570]=\frac{e^{x}}{6}
\end{aligned}
$$

and a general solution of the nonhomogeneous equation is

$$
\begin{aligned}
& \qquad y=y_{h}+y_{p}=c_{1} e^{-2 x}+c_{2} e^{-3 x}+\frac{1}{6} e^{x} . \\
& \text { In }[571]:=\text { gensol }=e^{-3 x} C[1]+e^{-2 \mathbf{x}} \mathrm{C}[2]+\mathrm{y}_{\mathrm{p}}[\mathbf{x}] \\
& \text { Out }[571]=\frac{e^{\mathrm{x}}}{6}+\mathrm{e}^{-3 x} \mathrm{C}[1]+\mathrm{e}^{-2 \times} \mathrm{C}[2]
\end{aligned}
$$

In this case, we find the same general solution with DSolve.

```
In [572]:= gensol =
    DSolve \(\left[y^{\prime \prime}[x]+5 y^{\prime}[x]+6 y[x]==2 \operatorname{Exp}[x]\right.\),
        \(y[x], x\), GeneratedParameters \(\rightarrow c\) ]
Out \([572]=\left\{\left\{y[x] \rightarrow \frac{e^{x}}{6}+e^{-3 x} c[1]+e^{-2 x} C[2]\right\}\right\}\)
```

We then graph the general solution for various values of the arbitrary constants in the same way as in other examples. See Figure 4-19.

```
In[573]:= toplot = Table[gensol\llbracket1, 1, 2],
    {c[1], -1, 1}, {c[2], -1, 1}];
grays = Table[GrayLevel[i],
    {i,0,0.7,0.7/8}];
Plot[Evaluate[toplot], {x, -3, 5},
    PlotStyle }->\mathrm{ grays, PlotRange- > {-3, 5},
    AspectRatio- > 1]
```

(b) In this case, we see that $f(x)=3 e^{-2 x}$ so the associated set is $S=\left\{e^{-2 x}\right\}$. However, because $y=e^{-2 x}$ is a solution to the corresponding homogeneous equation, we must multiply each element of this set by x^{r} so that no element is a solution of the corresponding homogeneous equation. We multiply the element of S by x to obtain $x S=\left\{x e^{-2 x}\right\}$ because $x e^{-2 x}$ is not a solution of $y^{\prime \prime}+5 y^{\prime}+6 y=0$. Hence, $y_{p}(x)=A x e^{-2 x}$. Differentiating $y_{p}(x)$ twice

Figure 4-19 Various solutions of $y^{\prime \prime}+5 y^{\prime}+6 y=2 e^{x}$

```
In[574]:= Yp [x_] = ax Exp[-2 x];
    yp}\mp@subsup{}{}{\prime}[\mathbf{x}
    Yp}\mp@subsup{}{}{\prime\prime}[\textrm{x}
Out[574]=a a e 2x}-2a\mp@subsup{e}{}{-2x}\textrm{x
Out[574]=-4a e e-2x}+4a\mp@subsup{e}{}{-2x}
```

and substituting into the nonhomogeneous equation yields

$$
\begin{aligned}
y^{\prime \prime}+5 y^{\prime}+6 y= & -4 A e^{-2 x}+4 A x e^{-2 x}+5\left(A e^{-2 x}-2 A x e^{-2 x}\right)+6 A x e^{-2 x} \\
= & A e^{-2 x}=3 e^{-2 x} \\
\text { In }[575]:= & \text { eqn }=y_{p}{ }^{\prime \prime}[\mathbf{x}]+5 \mathbf{y}_{\mathrm{p}}{ }^{\prime}[\mathbf{x}]+6 \mathrm{y}_{\mathrm{p}}[\mathbf{x}]==3 \operatorname{Exp}[-2 \mathbf{x}] \\
\text { Out }[575]=- & -4 a \mathrm{e}^{-2 \mathrm{x}}+10 \mathrm{a} e^{-2 \mathrm{x}} \mathrm{x}+5\left(\mathrm{a} \mathrm{e}^{-2 \mathrm{x}}-2 \mathrm{a} \mathrm{e}^{-2 \mathrm{x}} \mathrm{x}\right)== \\
& 3 \mathrm{e}^{-2 \mathrm{x}}
\end{aligned}
$$

so $A=3$ and $y_{p}(x)=3 x e^{-2 x}$.

```
In[576]:= aval = SolveAlways[eqn, x]
Out[576]= {{a->3}}
```



```
Out [577]= 3 }\mp@subsup{\mathbb{e}}{}{-2x}\textrm{x
```

A general solution of $y^{\prime \prime}+5 y^{\prime}+6 y=3 e^{-2 x}$ is

$$
y=y_{h}+y_{p}=c_{1} e^{-2 x}+c_{2} e^{-3 x}+3 x e^{-2 x} .
$$

As in (a), we can use DSolve to obtain equivalent results. For example, entering

```
In[578]:= gensol =
    DSolve[{\mp@subsup{y}{}{\prime\prime}[x]+5 y'[x] + 6 y[x] == 3 Exp[-2 x],
    y[0] == a, y'[0] == b}, y[x],x]
Out [578]= {{y[x] ->
    e}\mp@subsup{e}{}{-3x}(3-2a-b-3\mp@subsup{e}{}{x}+3a\mp@subsup{e}{}{x}+b\mp@subsup{e}{}{x}+3\mp@subsup{e}{}{x}x)}
```

solves the equation subject to the initial conditions $y(0)=a$ and $y^{\prime}(0)=b$ and names the resulting output gensol. Thus entering

Figure 4-20 Various solutions of $y^{\prime \prime}+5 y^{\prime}+6 y=3 e^{-2 x}$

```
In[579]:= toplot = Table[gensol\llbracket1, 1, 2], {a, -1, 1},
    {b, -1, 1}];
grays = Table[GrayLevel[i],
    {i, 0,0.7,0.7/8}];
Plot[Evaluate[toplot], {x, -2, 3},
    PlotStyle }->\mathrm{ grays, PlotRange- > {-2, 3},
    AspectRatio- > 1]
```

defines toplot to be the set consisting of nine functions corresponding to the solutions of $y^{\prime \prime}+5 y^{\prime}+6 y=3 e^{-2 x}$ that satisfy the initial conditions $y(0)=a$ and $y^{\prime}(0)=b$ for $a=-1,0$, and 1 and $b=-1,0$, and 1 ; and then graphs the set of functions toplot on the interval $[-2,3]$ in Figure 4-20.

EXAMPLE 4.4.2: Solve

$$
4 \frac{d^{2} y}{d t^{2}}-y=t-2-5 \cos t-e^{-t / 2}
$$

SOLUTION: The corresponding homogeneous equation is $4 y^{\prime \prime}-y=0$ with general solution $y_{h}=c_{1} e^{-t / 2}+c_{2} e^{t / 2}$.

$$
\begin{aligned}
& \text { In }[580]:=\operatorname{DSolve}\left[4 y^{\prime \prime}[t]-y[t]==0, y[t], t\right] \\
& \text { Out }[580]=\left\{\left\{y[t] \rightarrow e^{-t / 2} C[1]+e^{t / 2} C[2]\right\}\right\}
\end{aligned}
$$

A fundamental set of solutions for the corresponding homogeneous equation is $S=\left\{e^{-t / 2}, e^{t / 2}\right\}$. The associated set of functions for $t-2$ is $F_{1}=\{1, t\}$, the associated set of functions for $-5 \cos t$ is $F_{2}=\{\cos t, \sin t\}$, and the associated set of functions for $-e^{-t / 2}$ is $F_{3}=\left\{e^{-t / 2}\right\}$. Note that $e^{-t / 2}$ is an element of S so we multiply F_{3} by t resulting in $t F_{3}=\left\{t e^{-t / 2}\right\}$.

Then, we search for a particular solution of the form

$$
y_{p}=A+B t+C \cos t+D \sin t+E t e^{-t / 2},
$$

where A, B, C, D, and E are constants to be determined.

```
In[581]:= yp[t_] = a + b t + c Cos[t] + d Sin[t]
```

 +e t Exp[-t/2]
    ```
    +e t Exp[-t/2]
Out[581]= a +b t+e e tt/2 t + c Cos[t] +d Sin[t]
```

```
Out[581]= a +b t+e e tt/2 t + c Cos[t] +d Sin[t]
```

```

No element of \(F_{1}\) is contained in \(S\) and no element of \(F_{2}\) is contained in \(S\).

Computing \(y_{p}^{\prime}\) and \(y_{p}^{\prime \prime}\)
\[
\begin{aligned}
\text { In }[582]:= & d y p=y p^{\prime}[t] \\
& d 2 y p=y p^{\prime \prime}[t] \\
\text { Out }[582]= & b+e e^{-t / 2}-\frac{1}{2} e e^{-t / 2} t+d \cos [t]-c \sin [t] \\
\text { Out }[582]= & -e e^{-t / 2}+\frac{1}{4} e e^{-t / 2} t-c \cos [t]-d \operatorname{Sin}[t]
\end{aligned}
\]
and substituting into the nonhomogeneous equation results in
\[
\begin{aligned}
& -A-B t-5 C \cos t-5 D \sin t-4 E e^{-t / 2}=t-2-5 \cos t-e^{-t / 2} . \\
& \operatorname{In}[583]:=\mathrm{eqn}=4 \mathrm{yp}^{\prime \prime}[\mathrm{t}]-\mathrm{yp}[\mathrm{t}]==\mathrm{t}-2-5 \operatorname{Cos}[\mathrm{t}] \\
& -\operatorname{Exp}[-t / 2] \\
& \text { Out [583] }=-\mathrm{a}-\mathrm{b} \mathrm{t}-\mathrm{e} \mathrm{e}^{-\mathrm{t} / 2} \mathrm{t}-\mathrm{c} \operatorname{Cos}[\mathrm{t}]-\mathrm{d} \operatorname{Sin}[\mathrm{t}] \\
& +4\left(-e e^{-t / 2}+\frac{1}{4} e e^{-t / 2} t-c \operatorname{Cos}[t]\right. \\
& -\operatorname{dSin}[t])=-2-e^{-t / 2}+t-5 \operatorname{Cos}[t]
\end{aligned}
\]

Equating coefficients results in
\[
-A=-2 \quad-B=1 \quad-5 C=-5 \quad-5 D=0 \quad-4 E=-1
\]
so \(A=2, B=-1, C=1, D=0\), and \(E=1 / 4\).
\[
\begin{aligned}
\text { In }[584]:= & \text { cvals }= \\
& \text { Solve }[\{-a==-2,-b==1,-5 c==-5,-5 d==0, \\
& -4 e=-1\}] \\
\text { Out }[584]=\{ & \left.\left\{a \rightarrow 2, b \rightarrow-1, c \rightarrow 1, d \rightarrow 0, e \rightarrow \frac{1}{4}\right\}\right\}
\end{aligned}
\]
\(y_{p}\) is then given by \(y_{p}=2-t+\cos t+\frac{1}{4} t e^{-t / 2}\)
\[
\begin{aligned}
& \text { In }[585]:=y p[t] / . \operatorname{cvals}[[1]] \\
& \text { Out }[585]=2-t+\frac{1}{4} e^{-t / 2} t+\operatorname{Cos}[t]
\end{aligned}
\]
and a general solution is given by
\[
y=y_{h}+y_{p}=c_{1} e^{-t / 2}+c_{2} e^{t / 2}+2-t+\cos t+\frac{1}{4} t e^{-t / 2} .
\]

Note that \(-A-B t-5 C \cos t-5 D \sin t-4 E e^{-t / 2}=t-2-5 \cos t-e^{-t / 2}\) is true for all values of \(t\). Evaluating for five different values of \(t\) gives us five equations that we then solve for \(A, B, C, D\), and \(E\), resulting in the same solutions as already obtained.
\[
\begin{aligned}
& \text { In [586]: }=\mathrm{e} 1=\mathrm{eqn} / . \mathrm{t}->0 \\
& \text { Out [586] }=-\mathrm{a}-\mathrm{c}+4(-\mathrm{c}-\mathrm{e})==-8 \\
& \text { In [587] : = e2 = eqn/.t-> } \boldsymbol{e} / 2 \\
& \text { e3 }=\text { eqn/.t-> } \pi \\
& \text { e4 = eqn/.t-> } 1 \\
& \text { e5 = eqn/.t->2 } \\
& \text { Out [587] }=-\mathrm{a}-\mathrm{d}-\frac{\mathrm{b} \pi}{2}-\frac{1}{2} \text { e } \mathrm{e}^{-\pi / 4} \pi+4 \quad\left(-\mathrm{d}-\mathrm{e} \mathrm{e}^{-\pi / 4}\right. \\
& \left.+\frac{1}{8} \text { e } e^{-\pi / 4} \pi\right)=-2-e^{-\pi / 4}+\frac{\pi}{2} \\
& \text { Out [587] }=-\mathrm{a}+\mathrm{c}-\mathrm{b} \pi-\mathrm{e} \mathrm{e}^{-\pi / 2} \pi+4 \text { (c-e } \mathrm{e}^{-\pi / 2} \\
& \left.+\frac{1}{4} \mathrm{e} \mathrm{e}^{-\pi / 2} \pi\right)==3-\mathrm{e}^{-\pi / 2}+\pi \\
& \text { Out [587] }=-\mathrm{a}-\mathrm{b}-\frac{\mathrm{e}}{\sqrt{\mathrm{e}}}-\mathrm{c} \operatorname{Cos[1]} \\
& -d \sin [1]+4\left(-\frac{3 e}{4 \sqrt{e}}-c \quad \cos [1]\right. \\
& -d \operatorname{Sin}[1])==-1-\frac{1}{\sqrt{e}}-5 \operatorname{Cos}[1] \\
& \text { Out [587] }=-\mathrm{a}-2 \mathrm{~b}-\frac{2 \mathrm{e}}{\mathrm{e}}-\mathrm{c} \operatorname{Cos}[2] \\
& -d \sin [2]+4\left(-\frac{e}{2 e}-c \operatorname{Cos}[2]\right. \\
& -\mathrm{d} \operatorname{Sin}[2])=-\frac{1}{\mathrm{e}}-5 \operatorname{Cos}[2] \\
& \text { In [588] : = Solve[\{e1, e2, e3, e4, e5\}, } \\
& \{a, b, c, d, e\}] / / S i m p l i f y \\
& \text { Out [588] }=\left\{\left\{\mathrm{d} \rightarrow 0, \mathrm{~b} \rightarrow-1, \mathrm{a} \rightarrow 2, \mathrm{c} \rightarrow 1, \mathrm{e} \rightarrow \frac{1}{4}\right\}\right\}
\end{aligned}
\]

Last, we check our calculation with DSolve and simplify.
\[
\begin{aligned}
& \text { In }[589]:= \text { sol } 2= \\
& \text { DSolve }\left[4 y^{\prime \prime}[t]-y[t]==t-2-5 \operatorname{Cos}[t]\right. \\
&-\operatorname{Exp}[-t / 2], y[t], t] \\
& \text { Out }[589]=\{\{y[t] \rightarrow \\
& e^{-t / 2} \operatorname{C}[1]+e^{t / 2} C[2]+\frac{1}{4}\left(e^{-t / 2}-2 t\right. \\
&+2 \operatorname{Cos}[t]-4 \operatorname{Sin}[t])+e^{-t / 2}\left(2 e^{t / 2}\right. \\
&+\frac{t}{4}-\frac{1}{2} e^{t / 2} t+\frac{1}{2} e^{t / 2} \operatorname{Cos}[t] \\
&\left.\left.\left.+e^{t / 2} \operatorname{Sin}[t]\right)\right\}\right\}
\end{aligned}
\]
\[
\begin{aligned}
\text { In }[590]:= & \text { Simplify[sol2] } \\
\text { Out }[590]= & \{\{y[t] \rightarrow \\
& \left.\left.\left.\begin{array}{rl}
\frac{1}{4} & e^{-t / 2}\left(1+8 e^{t / 2}+t-4 e^{t / 2} t+4 \quad C[1]\right. \\
& +4
\end{array} e^{t} C[2]\right)+\operatorname{Cos}[t]\right\}\right\}
\end{aligned}
\]

In order to solve an initial-value problem, first determine a general solution and then use the initial conditions to solve for the unknown constants in the general solution.

EXAMPLE 4.4.3: Solve \(y^{\prime \prime}+4 y=\cos 2 t, y(0)=0, y^{\prime}(0)=0\).

SOLUTION: A general solution of the corresponding homogeneous equation is \(y_{h}=c_{1} \cos 2 t+c_{2} \sin 2 t\). For this equation, \(F=\{\cos 2 t\), \(\sin 2 t\}\). Because elements of \(F\) are solutions to the corresponding homogeneous equation, we multiply each element of \(F\) by \(t\) resulting in \(t F=\) \(\{t \cos 2 t, t \sin 2 t\}\). Therefore, we assume that a particular solution has the form
\[
y_{p}=A t \cos 2 t+B t \sin 2 t,
\]
where \(A\) and \(B\) are constants to be determined. Proceeding in the same manner as before, we compute \(y_{p}^{\prime}\) and \(y_{p}^{\prime \prime}\)
```

In[591]:= yp[t_] = a t Cos[2t] +b t Sin[2 t];
yp' [t]
yp" [t]
Out[591]= a Cos[2 t] +2 b t Cos[2 t] +b Sin[2 t]
-2 a t Sin[2 t]
Out[591]=4 b Cos[2 t] - 4 a t Cos[2 t] - 4 a Sin[2 t]
-4 b t Sin[2 t]

```
and then substitute into the nonhomogeneous equation.
```

In [592]:= eqn = yp' [t] + 4yp[t] == Cos[2t]
Out[592]=4 b Cos[2 t] - 4 a t Cos[2 t] - 4 a Sin[2 t]
-4 b t Sin[2 t] +4 (a t Cos[2 t]
+b t Sin[2 t]) == \operatorname{Cos[2 t]}

```

Equating coefficients readily yields \(A=0\) and \(B=1 / 4\). Alternatively, remember that \(-4 A \sin 2 t+4 B \cos 2 t=\cos 2 t\) is true for all values of \(t\).

Evaluating for two values of \(t\) and then solving for \(A\) and \(B\) gives the same result.
```

In[593]:= el = eqn/.t->0
e2 = eqn/.t- > < /4
cvals = Solve[{e1, e2}]
Out[593]= 4 b == 1
Out[593]= -4 a == 0
Out[593]={{a->0,b b 位 }}

```

It follows that \(y_{p}=\frac{1}{4} t \sin 2 t\) and \(y=c_{1} \cos 2 t+c_{2} \sin 2 t+\frac{1}{4} t \sin 2 t\).
```

In[594]:= yp[t]/.cvals[[1]]
Out [594]= \frac{1}{4}t Sin[2 t]
In[595]:= y[t_] = c1 Cos[2t]+c2 Sin[2t]+1/4 t Sin[2t]
Out[595]= c1 }\operatorname{cos[2 t] +c2 }\operatorname{sin}[2t]+\frac{1}{4}t\operatorname{sin}[2 t

```

Applying the initial conditions
```

In[596]:= ' ' [t]
Out[596]= 2 c2 Cos[2 t]+\frac{1}{2}t \operatorname{Cos[2 t] + < }4
-2 c1 Sin[2 t]
In [597]:= cvals = Solve[{y[0] == 0, y'[0] == 0}]
Out[597]= {{c1 }->0,c2->0}

```
results in \(y=\frac{1}{4} t \sin 2 t\), which we graph with Plot in Figure 4-21.
```

In[598]:= y[t]/.cvals[[1]]
Out [598]= \frac{1}{4}t Sin[2 t]
In[599]:= Plot[Evaluate[y[t]/.cvals[[1]]], {t, 0, 16\pi}]

```

We verify the calculation with DSolve.
```

In[600]:= Clear[y]
DSolve[
y''[t] + 4y[t] == Cos[2t], y[0] == 0,
y'[0],== 0}y[t], t]
Out [600]={{y[t] ->\frac{1}{4}t Sin[2 t]}}

```


Figure 4-21 The forcing function causes the solution to become unbounded as \(t \rightarrow \infty\)

Initial-value problems and boundary-value problems can exhibit dramatically different behavior.

EXAMPLE 4.4.4: Show that the boundary-value problem
\[
\left\{\begin{array}{l}
4 y^{\prime \prime}+4 y^{\prime}+37 y=\cos 3 x \\
y(0)=y(\pi)
\end{array}\right.
\]
has infinitely many solutions.

SOLUTION: First, we find a general solution of the corresponding homogeneous equation.
```

In[601]:= Clear[x,y]
homsol =
DSolve [4y' [x] + 4y'[x] + 37y[x] == 0,
y[x],x]
Out[601]={{y[x]-> \mp@subsup{e}{}{-x/2}C[2] Cos[3x]+\mp@subsup{e}{}{-x/2}C[1] Sin[3x]}}

```

Using the Method of Undetermined Coefficients, we find a particular solution to the nonhomogeneous equation of the form \(y_{p}=A \cos 3 x+\) \(B \sin 3 x\). Substitution into the nonhomogeneous equation yields.
```

In[602]:= yp [x_] = capa Cos[3x] + capb Sin[3x];
step1 =
4y ('
Simplify

```
```

Out[602]=(-1 + capa + 12 capb) Cos[3x]
+(-12 capa + capb) Sin[3x] == 0

```

This equation is true for all values of \(x\). In particular, substituting \(x=0\) and \(x=\pi / 6\) yields two equations
```

In[603]:= eq1 = step1/. x-> 0
Out [603]= -1 + capa + 12 capb == 0
In[604]:= eq2 = step1/. x- > \pi/6
Out[604] = -12 capa + capb == 0

```
that we then solve for \(A\) and \(B\)
```

In[605]:= vals = Solve[{eq1, eq2}]
Out [605]={{capa }->\frac{1}{145},\mathrm{ capb }->\frac{12}{145}}

```
to see that \(A=1 / 145\) and \(B=12 / 145\).


```

 +Yp [x]
    ```
Out \([607]=\frac{1}{145} \operatorname{Cos}[3 x]+e^{-x / 2} C[2] \operatorname{Cos}[3 x]\)
    \(+\frac{12}{145} \operatorname{Sin}[3 x]-e^{-x / 2} C[1] \operatorname{Sin}[3 x]\)

Applying the boundary conditions indicates that \(\frac{1}{145}+c_{2}=-\frac{1}{145}-e^{-\pi / 2} c_{2}\)
\[
\begin{aligned}
& \operatorname{In}[608]:=\mathrm{y}[0] \\
& \text { Out }[608]=\frac{1}{145}+\mathrm{C}[2] \\
& \text { In }[609]:=\mathrm{y}[\pi] \\
& \text { Out }[609]=-\frac{1}{145}-e^{-\pi / 2} \mathrm{C}[2]
\end{aligned}
\]
so \(c_{2}=\frac{2}{145\left(1+e^{-\pi / 2}\right)} ; c_{1}\) is arbitrary.
\[
\begin{aligned}
\operatorname{In}[610]:= & \text { cval }=\operatorname{Solve}[\mathrm{y}[0]==\mathrm{y}[\pi]] \\
\text { Out }[610]= & \left\{\left\{\mathrm{C}[2] \rightarrow-\frac{2 \mathbb{e}^{\pi / 2}}{145\left(1+\mathbb{e}^{\pi / 2}\right)}\right\}\right\} \\
\text { In }[611]:= & \mathrm{N}[\mathrm{cval}] \\
\text { Out }[611]= & \{\{\mathrm{C}[2] \rightarrow-0.0114193\}\} \\
\text { In }[612]:= & \mathrm{y}\left[\mathrm{x}_{-}\right]=\mathrm{y}[\mathrm{x}] / \cdot \operatorname{cval}[[1]] \\
\text { Out }[612]= & \frac{1}{145} \operatorname{Cos}[3 \mathrm{x}]-\frac{2 \mathbb{e}^{\frac{\pi}{2}-\frac{x}{2}} \operatorname{Cos}[3 \mathrm{x}]}{145\left(1+\mathbb{e}^{\pi / 2}\right)} \\
& +\frac{12}{145} \operatorname{Sin}[3 \mathrm{x}]-\mathbb{e}^{-\mathrm{x} / 2} \mathrm{C}[1] \operatorname{Sin}[3 \mathrm{x}]
\end{aligned}
\]

Note that DSolve is able to solve this boundary-value problem as well.
```

In[613]:= Clear[\mathbf{x},\textrm{y}]
sol =
DSolve[
{4y'}[x]+4\mp@subsup{y}{}{\prime}[x]+37y[x]== Cos[3x]
y[0] == y[\pi]}, y[x],x,
GeneratedParameters->c]

```
Out \([613]=\{\{y[x] \rightarrow\)
                    \(\left(e^{-x / 2}\left(-24 e^{\pi / 2} \operatorname{Cos}[3 x]+12 e^{\frac{\pi}{2}+\frac{x}{2}} \operatorname{Cos}[3 x]\right.\right.\)
                    \(\times \operatorname{Cos}[6 x]+12 \mathbb{e}^{x / 2} \operatorname{Cos}[3 x] \operatorname{Cos}[6 x]\)
                \(+145 e^{\frac{\pi}{2}+\frac{x}{2}} \operatorname{Sin}[3 x]+145 e^{x / 2} \operatorname{Sin}[3 x]\)
                \(+1740 \mathrm{c}[1] \sin [3 \mathrm{x}]+1740 e^{\pi / 2} \mathrm{c}[1]\)
                \(\times \operatorname{Sin}[3 x]+e^{\frac{\pi}{2}+\frac{x}{2}} \operatorname{Cos}[6 x] \operatorname{Sin}[3 x]\)
                \(+e^{x / 2} \operatorname{Cos}[6 x] \sin [3 x]-e^{\frac{\pi}{2}+\frac{x}{2}} \operatorname{Cos}[3 x]\)
                \(x \operatorname{Sin}[6 x]-e^{x / 2} \operatorname{Cos}[3 x] \operatorname{Sin}[6 x]\)
                \(+12 e^{\frac{\pi}{2}+\frac{x}{2}} \operatorname{Sin}[3 x] \operatorname{Sin}[6 x]\)
                \(\left.\left.+12 e^{x / 2} \operatorname{Sin}[3 x] \sin [6 x]\right)\right) /\)
                \(\left.\left.\left(1740\left(1+e^{\pi / 2}\right)\right)\right\}\right\}\)

Several solutions are then graphed with Plot in Figure 4-22.
```

In[614]:= toplot = Table[sol[[1, 1, 2]], {c[1], -5, 5}];

```


Figure 4-22 The boundary-value problem has infinitely many solutions
```

In[615]:= grays = Table[GrayLevel[i],
{i,0,0.7,0.7/10}];
Plot[Evaluate[toplot], {x, 0, 2\pi},
PlotStyle- > grays]

```

EXAMPLE 4.4.5: Graph the solution to the initial-value problem
\[
\left\{\begin{array}{l}
x^{\prime \prime}+4 x=\sin \omega t \\
x(0)=1, x^{\prime}(0)=0
\end{array}\right.
\]
for various values of \(\omega\), including \(\omega=2\).

SOLUTION: First, we find a general solution of the corresponding homogeneous equation.
```

In[616]:= Clear[x,t]
homsol =
DSolve[x'[t] + 4x[t] == 0, x[t], t]//
Simplify

```


If \(\omega \neq 2\), we can find a particular solution to the nonhomogeneous equation of the form \(x_{p}=A \cos \omega t+B \sin \omega t\). We substitute this function into the nonhomogeneous equation and simplify the result.
```

$\operatorname{In}[617]:=\mathbf{x}_{\mathrm{p}}\left[\mathrm{t}_{-}\right]=\mathrm{a} \operatorname{Cos}[\omega \mathrm{t}]+\mathrm{b} \operatorname{Sin}[\omega \mathrm{t}] ;$
In [618]: $=$ step1 $=\mathbf{x}_{\mathrm{p}}{ }^{\prime \prime}[\mathrm{t}]+4 \mathbf{x}_{\mathrm{p}}[\mathrm{t}]==\sin [\omega \mathrm{t}] / /$
Simplify
Out [618] $=-\left(-4+\omega^{2}\right)(\mathrm{a} \operatorname{Cos}[t \omega]+\mathrm{b} \operatorname{Sin}[t \omega])==\sin [t \omega]$

```

This equation is true for all values of \(t\). In particular, substituting \(t=0\) and \(t=\pi /(2 \omega)\) yields two equations
\[
\begin{aligned}
& \text { In }[619]:=\text { eqn1 }=\text { step } 1 / \cdot \mathrm{t}->0 \\
& \text { Out }[619]=-\mathrm{a}\left(-4+\omega^{2}\right)==0 \\
& \text { In }[620]:=\text { eqn } 2=\text { step } 1 / \cdot \mathrm{t}->\frac{\pi}{2 \omega} \\
& \text { Out }[620]=-\mathrm{b}\left(-4+\omega^{2}\right)==1
\end{aligned}
\]
that we then solve to determine \(A\) and \(B\).
\[
\begin{aligned}
& \text { In }[621]:=\text { coeffs }=\text { Solve }[\{\text { eqn1, eqn2 }\},\{a, b\}] \\
& \text { Out }[621]=\left\{\left\{a \rightarrow 0, b \rightarrow \frac{1}{4-\omega^{2}}\right\}\right\}
\end{aligned}
\]

We then form a particular solution, \(x_{p}\), to the nonhomogeneous equation and a general solution to the nonhomogeneous equation, \(x=x_{h}+x_{p}\).

```

 x[t_] = homsol[[1, 1, 2]] + (
 Out[622]=C[1] Cos[2t] + C[2] Sin[2t] + Sin[t\omega]

```

The solution to the initial-value problem is found by applying the initial conditions
```

In[623]:= cvals = Solve[{x[0] == 1, x'[0] == 0},
{C[1], C[2]}]
Out [623] = {{C[1] }->1,\textrm{C}[2]->\frac{\omega}{2(-4+\mp@subsup{\omega}{}{2})}}

```
and substituting back into the general solution.
\[
\begin{aligned}
& \operatorname{In}[624]:=\operatorname{sol}=\mathbf{x}[t] / . \operatorname{cvals}[[1]] \\
& \text { Out }[624]=\operatorname{Cos}[2 t]+\frac{\omega \operatorname{Sin}[2 t]}{2\left(-4+\omega^{2}\right)}+\frac{\operatorname{Sin}[t \omega]}{4-\omega^{2}}
\end{aligned}
\]

If \(\omega=2\), we can find a particular solution to the nonhomogeneous equation of the form \(x_{p}=t(A \cos 2 t+B \sin 2 t)\). We proceed in the same manner as before.
```

In[625]:= (}\mp@subsup{\textrm{x}}{\textrm{p}}{[t\mp@subsup{t}{-}{\prime}]=t(a\operatorname{Cos[2t] + b Sin[2t]);}
In[626]:= step1 = 竦"[t] + 4
Simplify
Out[626]= 4b Cos[2t] == (1 + 4a) Sin[2t]
In[627]:= eqn1 = step1/.t- > 0
Out[627]= 4 b == 0
In[628]:= eqn2 = step1/.t->\pi/12
Out [628]=2 \sqrt{}{3}b==\frac{1}{2}(1+4a)
In[629]:= coeffs = Solve[{eqn1, eqn2}, {a,b}]
Out [629] = {{a->-\frac{1}{4},\textrm{b}->0}}
In[630]:= 哜[t_] = }\mp@subsup{\mathbf{x}}{\textrm{p}}{[t]
x[t_] = homsol[[1, 1, 2]] + (
Out[630]= - < 4}t t Cos[2t]+C[1] \operatorname{cos[2t] + C[2] Sin[2t]

```
```

In[631]:= cvals = Solve[{\mathbf{x}[0]==1,\mp@subsup{\mathbf{x}}{}{\prime}[0]==0},
{C[1], C[2]}]
Out [631]={{C[1] }->1,\textrm{C}[2]->\frac{1}{8}}
In[632]:= sol = x[t] /. cvals[[1]]
Out [632]= Cos[2t]- -

```

We see that DSolve is able to solve the initial-value problem as well. Note that the result returned is valid for \(\omega \neq 2\).
```

In [633]: = Clear [\mathbf{x}, t]
sola =
DSolve $\left[\left\{x^{\prime \prime}[t]+4 x[t]==\operatorname{Sin}[\omega t]\right.\right.$,
$\left.\left.\mathbf{x}[0]==1, x^{\prime}[0]==0\right\}, x[t], t\right] / /$
Simplify
Out $[633]=\{\{x[t] \rightarrow$
$\left.\left.\frac{2\left(-4+\omega^{2}\right) \operatorname{Cos}[2 t]+\omega \operatorname{Sin}[2 t]-2 \operatorname{Sin}[t \omega]}{2\left(-4+\omega^{2}\right)}\right\}\right\}$

```

We use this result to graph the solution for various values of \(\omega\) in Figure 4-23. Of course, Mathematica generates several error messages, which are not all displayed here, and an empty Plot when it encounters \(\omega=2\) because the solution obtained in sola is undefined if \(\omega=2\).


Figure 4-23 The empty plot corresponds to \(\omega=2\)
```

In[634]:= graphs =
Table[Plot[sola[[1, 1, 2]], {t, 0, 18\pi},
DisplayFunction- > Identity,
Ticks- > {{0, 18\pi}, {-1, 1}},
PlotPoints-> 200], {\omega, 1, 3, 2/8}];
toshow = Partition[graphs, 3];
Show[GraphicsArray[toshow]]
Power :: infy : Infinite expression \frac{1}{0} encountered.
\infty:: indet : Indeterminate expression
0 ComplexInfinity encountered.

```

We also use DSolve to find the solution to the initial-value problem if \(\omega=2\) and then graph the result in Figure 4-24.
```

In[635]:= solb =
DSolve[{x'㐌] + 4x[t] == Sin[2t],
x[0] == 1, x'[0] == 0}, x[t], t]//
Simplify
Out[635]={{x[t]->\frac{1}{8}(-2(-4+t)\operatorname{Cos}[2t]+\operatorname{Sin}[2t])}}
In[636]:= Plot[x[t]/. solb, {t, 0, 18\pi}]

```

The graphs indicate that if \(\omega \neq 2\) the solution to the initial-value problem is bounded and periodic; if \(\omega=2\) the solution is unbounded. We investigate this type of behavior further in Chapter 5.


Figure 4-24 If \(\omega=2\), the solution becomes unbounded as \(t \rightarrow \infty\)

\subsection*{4.4.2 Higher-Order Equations}

Higher-order nonhomogeneous equations are solved in the same way as secondorder equations provided that the forcing function involves appropriate terms, although the calculations can be more complicated.

EXAMPLE 4.4.6: Solve
\[
\frac{d^{3} y}{d t^{3}}+\frac{2}{3} \frac{d^{2} y}{d t^{2}}+\frac{145}{9} \frac{d y}{d t}=e^{-t}, y(0)=1, \frac{d y}{d t}(0)=2, \frac{d^{2} y}{d t^{2}}(0)=-1 .
\]

SOLUTION: The corresponding homogeneous equation, \(y^{\prime \prime \prime}+\frac{2}{3} y^{\prime \prime}+\) \(\frac{145}{9} y^{\prime}=0\), has general solution \(y_{h}=c_{1}+\left(c_{2} \sin 4 t+c_{3} \cos 4 t\right) e^{-t / 3}\) and a fundamental set of solutions for the corresponding homogeneous equation is \(S=\left\{1, e^{-t / 3} \cos 4 t, e^{-t / 3} \sin 4 t\right\}\).
```

In[637]:= DSolve[y'" [t] + 2/3y''[t] + 145/9y'[t] == 0,
y[t],t]//Simplify
Out[637]={{y[t]->C[3]+\frac{3}{145}\mp@subsup{e}{}{-t/3}
*((12 C[1]-C[2]) Cos[4 t] + (C[1]
+12 C[2]) Sin[4 t])}}

```

For \(e^{-t}\), the associated set of functions is \(F=\left\{e^{-t}\right\}\). Because no element of \(F\) is an element of \(S\), we assume that \(y_{p}=A e^{-t}\), where \(A\) is a constant to be determined. After defining \(y_{p}\), we compute the necessary derivatives
```

In[638]:= yp[t_] = a Exp[-t];
yp' [t]
yp" [t]
yp'" [t]
Out[638]= -a e-t
Out[638]= a e et
Out[638]= -a e -t

```
and substitute into the nonhomogeneous equation.
```

In [639]:= eqn = yp'\prime [t] + 2/3yp'\prime[t] + 145/9yp' [t] == Exp [-t]
Out[639]=--\frac{148}{9}}\mathrm{ a }\mp@subsup{e}{}{-t}==\mp@subsup{e}{}{-t

```

Equating coefficients and solving for \(A\) gives us \(A=-9 / 148\) so \(y_{p}=\) \(-\frac{9}{148} e^{-t}\) and a general solution is \(y=y_{h}+y_{p}\).
Remark. SolveAlways [equation, variable] attempts to solve equation so that it is true for all values of variable.
\[
\begin{aligned}
& \text { In }[640]:=\text { SolveAlways }[\text { eqn }, t] \\
& \text { Out }[640]=\left\{\left\{a \rightarrow-\frac{9}{148}\right\}\right\}
\end{aligned}
\]

We verify the result with DSolve.
\[
\begin{aligned}
\text { In }[641]:=\text { gensol }= & \text { DSolve }\left[y^{\prime \prime \prime}[t]+2 / 3 y^{\prime \prime}[t]\right. \\
& \left.+145 / 9 y^{\prime}[t]==\operatorname{Exp}[-t], y[t], t\right] \\
\text { Out }[641]=\{\{y[t] \rightarrow & \left.-\frac{9 e^{-t}}{148}-\left(\frac{3}{145}-\frac{36 i}{145}\right) e^{\left(-\frac{1}{3}-4 i\right.}\right){ }^{t} \mathrm{C}[1] \\
& -\left(\frac{9}{290}-\frac{3 i}{1160}\right) \\
& \left.\times e^{\left(-\frac{1}{3}+4\right.} \mathrm{i}\right) \\
& \mathrm{t}[2]+C[3]\}\}
\end{aligned}
\]

To obtain a real-valued solution, we use ComplexExpand:
\[
\begin{aligned}
& \text { In [642]:= ?ComplexExpand } \\
& \text { "ComplexExpand [expr]expandsexprassuming } \\
& \text { thatallvariablesarereal. ComplexExpand [ } \\
& \text { expr, x1, x2, ...]expandsexprassuming } \\
& \text { thatvariablesmatchinganyofthexiarecomplex." } \\
& \text { In [643]:= s1 = ComplexExpand[y[t]/.gensol[[1]]] } \\
& \text { Out }[643]=-\frac{9 e^{-t}}{148}+C[3]-\left(\frac{3}{145}-\frac{36 i}{145}\right) \\
& \times e^{-t / 3} C[1] \operatorname{Cos}[4 t]-\left(\frac{9}{290}-\frac{3 i}{1160}\right) \\
& \times e^{-t / 3} C[2] \operatorname{Cos}[4 t]+\left(\frac{36}{145}+\frac{3 i}{145}\right) \\
& \times e^{-t / 3} C[1] \operatorname{Sin}[4 t]-\left(\frac{3}{1160}+\frac{9 i}{290}\right) \\
& \times e^{-t / 3} C[2] \operatorname{Sin}[4 t] \\
& \text { In [644]: }=\text { t1 = Coefficient[s1, Exp[-t/3] Cos[4t]] } \\
& \text { Out }[644]=\left(-\frac{3}{145}+\frac{36 i}{145}\right) \quad \mathrm{C}[1]-\left(\frac{9}{290}-\frac{3 \mathrm{i}}{1160}\right) \mathrm{C}[2] \\
& \text { In [645]: }=\text { t2 }=\text { Coefficient[s1, } \operatorname{Exp}[-t / 3] \operatorname{Sin}[4 t]] \\
& \text { Out }[645]=\left(\frac{36}{145}+\frac{3 i}{145}\right) \quad C[1]-\left(\frac{3}{1160}+\frac{9 i}{290}\right) \quad C[2] \\
& \text { In [646] }:=\mathrm{t} 3=\mathrm{C}[3] \\
& \text { Out [646] = C[3] }
\end{aligned}
\]
```

In[647]:= Clear[c1, c2, c3]
s2 = Solve[{t1 == c1, t2 == c2,t3 == c3},
{C[1],C[2],C[3]}]
Out[647] ={{c[1]->(-\frac{1}{6}-2 i) (c1 + i c2),
C[2] }->(-16-\frac{4 i}{3})(\textrm{c}1-\textrm{i}c2),\textrm{C}[3]->\textrm{c}3}

```

The result indicates that the form returned by DSolve is equivalent to
```

In[648]:= s3 =s1/.s2[[1]]//Simplify
Out [648]=c3- - < e et

```

To apply the initial conditions, we compute \(y(0)=1, y^{\prime}(0)=2\), and \(y^{\prime \prime}(0)=-1\)
\[
\begin{aligned}
\text { In }[649]:= & e 1=(s 3 / \cdot t->0)==1 \\
& e 2=(D[s 3, t] / \cdot t->0)==2 \\
& e 3=(D[s 3,\{t, 2\}] / \cdot t->0)==-1 \\
\text { Out }[649]= & -\frac{9}{148}+c 1+c 3==1 \\
\text { Out }[649]= & \frac{9}{148}-\frac{c 1}{3}+4 c 2==2 \\
\text { Out }[649]= & -\frac{9}{148}-\frac{143 \mathrm{c} 1}{9}-\frac{8 c 2}{3}==-1
\end{aligned}
\]
and solve for \(c_{1}, c_{2}\), and \(c_{3}\).
\[
\begin{aligned}
& \text { In }[650]:=\text { cvals }=\text { Solve }[\{e 1, e 2, \text { e3 }\}] \\
& \text { Out }[650]=\left\{\left\{\mathrm{c} 1 \rightarrow-\frac{471}{21460}, \mathrm{c} 2 \rightarrow \frac{20729}{42920}, \mathrm{c} 3 \rightarrow \frac{157}{145}\right\}\right\}
\end{aligned}
\]

The solution of the initial-value problem is obtained by substituting these values into the general solution.
\[
\begin{aligned}
\text { In }[651]:= & \text { s3/.cvals[[1]] } \\
\text { Out }[651]= & \frac{157}{145}-\frac{9 e^{-t}}{148}-\frac{471 e^{-t / 3} \operatorname{Cos}[4 \mathrm{t}]}{21460} \\
& +\frac{20729 \mathrm{e}^{-t / 3} \operatorname{Sin}[4 \mathrm{t}]}{42920}
\end{aligned}
\]

We check by using DSolve to solve the initial-value problem and graph the result with Plot in Figure 4-25.


Figure 4-25 The solution of the equation that satisfies \(y(0)=1, y^{\prime}(0)=2\), and \(y^{\prime \prime}(0)=-1\)
\[
\text { In [653] := realsol = ComplexExpand }[y[t] / . \operatorname{sol}[[1]]]
\]
\[
\begin{aligned}
& \text { Out }[653]= \frac{157}{145}-\frac{9 e^{-t}}{148}-\frac{471 e^{-t / 3} \operatorname{Cos}[4 \mathrm{t}]}{21460} \\
&+\frac{20729 \mathrm{e}^{-\mathrm{t} / 3}}{42920} \operatorname{Sin}[4 \mathrm{t}] \\
& 429
\end{aligned}
\]
\[
\text { In }[654]:=\operatorname{Plot}[\text { realsol, }\{t, 0,2 \pi\},
\]
AspectRatio- > Automatic]

EXAMPLE 4.4.7: Solve
\[
\begin{aligned}
\frac{d^{8} y}{d t^{8}} & +\frac{7}{2} \frac{d^{7} y}{d t^{7}}+\frac{73}{2} \frac{d^{6} y}{d t^{6}}+\frac{229}{2} \frac{d^{5} y}{d t^{5}}+\frac{801}{2} \frac{d^{4} y}{d t^{4}} \\
& +976 \frac{d^{3} y}{d t^{3}}+1168 \frac{d^{2} y}{d t^{2}}+640 \frac{d y}{d t}+128 y=t e^{-t}+\sin 4 t+t .
\end{aligned}
\]

SOLUTION: Solving the characteristic equation
\[
\begin{aligned}
\text { In }[655]:= & \text { Solve }\left[k^{\wedge} 8+7 / 2 k^{\wedge} 7+73 / 2 k^{\wedge} 6+229 / 2 k^{\wedge} 5\right. \\
& +801 / 2 k^{\wedge} 4+976 k^{\wedge} 3+1168 k^{\wedge} 2 \\
& +640 k+128=0] \\
\text { Out }[655]=\{ & \{k \rightarrow-1\},\{k \rightarrow-1\},\{k \rightarrow-1\},\left\{k \rightarrow-\frac{1}{2}\right\}, \\
& \{k \rightarrow-4 \text { i }\},\{k \rightarrow-4 i\},\{k \rightarrow 4 i\},\{k \rightarrow 4 i\}\}
\end{aligned}
\]
\[
\begin{aligned}
& \text { In [652]: }=\text { sol = DSolve }\left[\left\{y^{\prime \prime \prime}[t]+2 / 3 y^{\prime \prime}[t]+145 / 9 y^{\prime}[t]==\right.\right. \\
& \operatorname{Exp}[-t], y[0]==1, y^{\prime}[0]==2 \text {, } \\
& \left.\left.y^{\prime \prime}[0]==-1\right\}, y[t], t\right] \\
& \text { Out }[652]=\left\{\left\{y[t] \rightarrow \frac{157}{145}-\frac{9 e^{-t}}{148}-\left(\frac{471}{42920}-\frac{20729 i}{85840}\right)\right.\right. \\
& \times e^{\left(-\frac{1}{3}-4\right.} \text { i) } t-\left(\frac{471}{42920}\right. \\
& \left.\left.\left.+\frac{20729 \text { i }}{85840}\right) e^{\left(-\frac{1}{3}+4\right.} \text { i) }{ }^{\mathrm{t}}\right\}\right\}
\end{aligned}
\]
shows us that the solutions are \(k_{1}=-1 / 2, k_{2}=-1\) with multiplicity 3 , and \(k_{3,4}= \pm 4 i\), each with multiplicity 2 . A fundamental set of solutions for the corresponding homogeneous equation is
\[
S=\left\{e^{-t / 2}, e^{-t}, t e^{-t}, t^{2} e^{-t}, \cos 4 t, t \cos 4 t, \sin 4 t, t \sin 4 t\right\}
\]

A general solution of the corresponding homogeneous equation is
\[
\begin{aligned}
& y_{h}=c_{1} e^{-t / 2}+\left(c_{2}+c_{3} t+c_{4} t^{2}\right) e^{-t}+\left(c_{5}+c_{7} t\right) \sin 4 t+\left(c_{6}+c_{8} t\right) \cos 4 t . \\
& \text { In [656]: = gensol = DSolve[D[y[t], \{t, 8\}] + 7/2D[y[t], } \\
& \{t, 7\}]+73 / 2 \mathrm{D}[\mathrm{y}[\mathrm{t}],\{\mathrm{t}, 6\}] \\
& +229 / 2 \mathrm{D}[\mathrm{y}[\mathrm{t}],\{\mathrm{t}, 5\}]+801 / 2 \mathrm{D}[\mathrm{y}[\mathrm{t}] \text {, } \\
& \{t, 4\}]+976 \mathrm{D}[\mathrm{y}[\mathrm{t}],\{\mathrm{t}, 3\}] \\
& \text { +1168D[y[t], \{t, 2\}] + 640D[y[t], t] } \\
& +128 \mathrm{y}[\mathrm{t}]=0, \mathrm{y}[\mathrm{t}], \mathrm{t}] \\
& \text { Out [656] }=\{\{y[t] \rightarrow \\
& e^{-t} C[1]+e^{-t} t C[2]+e^{-t} t^{2} C[3] \\
& +e^{-t / 2} C[4]+C[6] \operatorname{Cos}[4 t] \\
& +\mathrm{t} \text { C [8] } \operatorname{Cos}[4 \mathrm{t}]-\mathrm{C}[5] \operatorname{Sin}[4 \mathrm{t}] \\
& -t \operatorname{C}[7] \operatorname{Sin}[4 \mathrm{t}]\}\}
\end{aligned}
\]

The associated set of functions for \(t e^{-t}\) is \(F_{1}=\left\{e^{-t}, t e^{-t}\right\}\). We multiply \(F_{1}\) by \(t^{r}\), where \(r\) is the smallest nonnegative integer so that no element of \(t^{r} F_{1}\) is an element of \(S: t^{3} F_{1}=\left\{t^{3} e^{-t}, t^{4} e^{-t}\right\}\). The associated set of functions for \(\sin 4 t\) is \(F_{2}=\{\cos 4 t, \sin 4 t\}\). We multiply \(F_{2}\) by \(t^{r}\), where \(r\) is the smallest nonnegative integer so that no element of \(t^{r} F_{2}\) is an element of \(S: t^{2} F_{2}=\left\{t^{2} \cos 4 t, t^{2} \sin 4 t\right\}\). The associated set of functions for \(t\) is \(F_{3}=\{1, t\}\). No element of \(F_{3}\) is an element of \(S\).

Thus, we search for a particular solution of the form
\[
y_{p}=A_{1} t^{3} e^{-t}+A_{2} t^{4} e^{-t}+A_{3} t^{2} \cos 4 t+A_{4} t^{2} \sin 4 t+A_{5}+A_{6} t
\]
where the \(A_{i}\) are constants to be determined.

After defining \(y_{p}\), we compute the necessary derivatives
Remark. We have used Table twice for typesetting purposes. You can compute the derivatives using Table \([\{n, D[y p[t],\{t, n\}]\}\), \(\{n, 1,8\}]\).
```

In[657]:= yp[t_] = a[1]t` 3 Exp[-t] +a[2]t`4 Exp[-t]
+a[3]t^2 Cos[4t] +a[4]t^2 Sin[4t]
+a[5] +a[6]t

```
```

Out [657] $=e^{-t} t^{3} a[1]+e^{-t} t^{4} a[2]+a[5]+t a[6]$

```
Out [657] \(=e^{-t} t^{3} a[1]+e^{-t} t^{4} a[2]+a[5]+t a[6]\)
    \(+t^{2} a[3] \operatorname{Cos}[4 t]+t^{2} a[4] \operatorname{Sin}[4 t]\)
    \(+t^{2} a[3] \operatorname{Cos}[4 t]+t^{2} a[4] \operatorname{Sin}[4 t]\)
In[658]:= Table[{n, D[yp[t],{t, n}]},{n, 1, 4}]
Out [658]={{1,3 e -t t a[1]- e-t t a cl]
    +4 e-t t}\mp@subsup{t}{}{3}a[2]-\mp@subsup{e}{}{-t}\mp@subsup{t}{}{4}a[2]+a[6
    +2 t a[3] Cos[4 t] +4 t'a[4] Cos[4 t]
    -4 t' a[3] Sin[4 t]
    +2 t a[4] Sin[4 t]},
    {2,6 e-t}ta[1]-6 \mp@subsup{e}{}{-t}\mp@subsup{t}{}{2}a[1
    +e}\mp@subsup{e}{}{-t}\mp@subsup{t}{}{3}a[1]+12 \mp@subsup{e}{}{-t}\mp@subsup{t}{}{2}a[2]-8 \mp@subsup{e}{}{-t}\mp@subsup{t}{}{3}a[2
    +e-t}\mp@subsup{t}{}{4}a[2]+2 a[3] Cos[4 t]
    -16 t' a[3] Cos[4 t]
    +16 t a[4] Cos[4 t]
    -16 t a[3] Sin[4 t] +2 a[4] Sin[4 t]
    -16 t' a[4] Sin[4 t]},
    {3,6 e-t}a[1]-18 e et t a[1]+9 e-t t ' a[1
    -e-t}\mp@subsup{t}{}{3}a[1]+24 e-t t a[2
    -36 e-t}\mp@subsup{t}{}{2}a[2]+12 e\mp@subsup{e}{}{-t}\mp@subsup{t}{}{3}a[2
    -e-t t a a[2]-96 t a[3] Cos[4 t]
    +24 a[4] Cos[4t]-64 t' a[4] Cos[4t]
    -24 a[3] Sin[4 t] + 64 t' a[3] Sin[4 t]
    -96 t a[4] Sin[4 t]},
    {4,-24 e-t}a[1]+36 e-t t a[1
    -12 e-t t'a[1]+ e-t t a a[1]+24 e-t a[2]
    -96 e-t t a[2]+72 e-t t a a[2]
    -16 e-t}\mp@subsup{t}{}{3}a[2]+\mp@subsup{e}{}{-t}\mp@subsup{t}{}{4}a[2
    -192 a[3] Cos[4 t]
    +256 t' a[3] Cos[4 t]
    -512 t a[4] Cos[4 t]
    +512 t a[3] Sin[4 t]
    -192 a[4] Sin[4 t]
    +256 t' a[4] Sin[4 t]}}
```

$\operatorname{In}[659]:=\operatorname{Table}[\{\mathrm{n}, \mathrm{D}[\mathrm{yp}[\mathrm{t}],\{\mathrm{t}, \mathrm{n}\}]\},\{\mathrm{n}, 5,8\}]$

$$
\begin{aligned}
& \text { Out [659] }=\left\{\left\{5,60 e^{-t} a[1]-60 e^{-t} t a[1]+15 e^{-t} t^{2} a[1]\right.\right. \\
& -e^{-t} t^{3} a[1]-120 e^{-t} a[2]+240 e^{-t} t a[2] \\
& -120 e^{-t} t^{2} a[2]+20 e^{-t} t^{3} a[2]-e^{-t} t^{4} a[2] \\
& +2560 t a[3] \operatorname{Cos}[4 t]-1280 a[4] \\
& \times \operatorname{Cos}[4 t]+1024 t^{2} a[4] \operatorname{Cos}[4 t] \\
& +1280 \text { a[3] } \operatorname{Sin}[4 t]-1024 t^{2} a[3] \\
& \times \operatorname{Sin}[4 t]+2560 t a[4] \operatorname{Sin}[4 t]\}, \\
& \left\{6,-120 e^{-t} a[1]+90 e^{-t} t a[1]-18 e^{-t}\right. \\
& \times t^{2} a[1]+e^{-t} t^{3} a[1]+360 e^{-t} a[2] \\
& -480 e^{-t} t a[2]+180 e^{-t} t^{2} a[2]-24 e^{-t} \\
& \times t^{3} a[2]+e^{-t} t^{4} a[2]+7680 a[3] \operatorname{Cos}[4 t] \\
& -4096 t^{2} a[3] \operatorname{Cos}[4 t]+12288 t a[4] \\
& \times \operatorname{Cos}[4 t]-12288 t a[3] \operatorname{Sin}[4 t] \\
& \left.+7680 \text { a[4] } \operatorname{Sin}[4 t]-4096 t^{2} a[4] \operatorname{Sin}[4 t]\right\}, \\
& \left\{7,210 e^{-t} a[1]-126 e^{-t} t a[1]\right. \\
& +21 e^{-t} t^{2} a[1]-e^{-t} t^{3} a[1]-840 e^{-t} a[2] \\
& +840 e^{-t} t \text { a[2]-252 } e^{-t} t^{2} a[2] \\
& +28 e^{-t} t^{3} a[2]-e^{-t} t^{4} a[2] \\
& -57344 \text { t a[3] Cos[4 t] +43008 a[4] } \\
& \times \operatorname{Cos}[4 t]-16384 t^{2} a[4] \operatorname{Cos}[4 t] \\
& -43008 \text { a[3] } \operatorname{Sin}[4 t]+16384 t^{2} a[3] \\
& x \operatorname{Sin}[4 t]-57344 t a[4] \operatorname{Sin}[4 t]\}, \\
& \left\{8,-336 e^{-t} a[1]+168 e^{-t} t a[1]-24 e^{-t} t^{2}\right. \\
& \times a[1]+e^{-t} t^{3} a[1]+1680 e^{-t} a[2] \\
& -1344 e^{-t} t a[2]+336 e^{-t} t^{2} a[2] \\
& -32 e^{-t} t^{3} a[2]+e^{-t} t^{4} a[2]-229376 a[3] \\
& \times \operatorname{Cos}[4 t]+65536 t^{2} a[3] \operatorname{Cos}[4 t] \\
& -262144 \text { t a[4] } \operatorname{Cos}[4 t]+262144 t a[3] \\
& \times \operatorname{Sin}[4 t]-229376 \text { a[4] } \operatorname{Sin}[4 t] \\
& \left.\left.+65536 t^{2} \text { a[4] } \operatorname{Sin}[4 t]\right\}\right\}
\end{aligned}
$$

and substitute into the nonhomogeneous equation, naming the result eqn. At this point we can either equate coefficients and solve for A_{i} or use the fact that eqn is true for all values of t.

$$
\begin{aligned}
& \operatorname{In}[660]:=\text { eqn }= D[y p[t],\{t, 8\}]+7 / 2 D[y p[t],\{t, 7\}] \\
&+73 / 2 D[y p[t],\{t, 6\}]+229 / 2 D[y p[t], \\
&\{t, 5\}]+801 / 2 D[y p[t],\{t, 4\}] \\
&+976 D[y p[t],\{t, 3\}]+1168 D[y p[t], \\
&\{t, 2\}]+640 D[y p[t], t]+128 y p[t]== \\
& t \operatorname{Exp}[-t]+\operatorname{Sin}[4 t]+t / / \\
& \text { Simplify }
\end{aligned}
$$

```
Out[660]= e (-867 a[1]+7752 a[2]-3468 t a[2]+
    +128 et a[5]+640 et a[6]
    +128 et t a[6])
    -64 (369 a[3]-428 a[4]) Cos[4 t]
    -64 (428 a[3]+369 a[4]) Sin[4 t] ==
        t+ + -t t + Sin[4 t]
```

We substitute in six values of t

```
In[661]:= sysofeqs = Table[eqn/.t->n//N,{n, 0, 5}]
Out[661]= {-867. a[1.]
    +7752. a[2.]
    -64. (369. a[3.]
    -428. a[4.])
    +128. a[5.]
    +640. a[6.] == 0,
        41.8332 (369. a[3.]
    -428. a[4.])
    +48.4354 (428. a[3.]
    +369. a[4.])
    +0.367879 (-867. a[1.]
    +4284. a[2.]
    +347.94 a[5.]
    +2087.64 a[6.]) ==
        0.611077,
    9.312 (369. a[3.]
    -428. a[4.])
    -63.3189 (428. a[3.]
    +369. a[4.])
    +0.135335 (-867. a[1.]
    +816. a[2.]
    +945.799 a[5.]
    +6620.59 a[6.]) ==
        3.26003,
    -54.0067 (369. a[3.]
    -428. a[4.])
    +34.3407 (428. a[3.]
    +369. a[4.])
    +0.0497871 (-867. a[1.]
    -2652. a[2.]
    +2570.95 a[5.]
    +20567.6 a[6.]) ==
        2.61279,
```

```
Out[661]= 61.2902 (369.a[3.]
    -428. a[4.])
    +18.4258 (428. a[3.]
    +369. a[4.])
    +0.0183156 (-867. a[1.]
    -6120. a[2.]
    +6988.56 a[5.]
    +62897.1 a[6.]) ==
        3.78536,
    -26.1173 (369. a[3.]
    -428. a[4.])
    -58.4285 (428. a[3.]
    +369. a[4.])
    +0.00673795
    (-867. a[1.]
    -9588. a[2.]
    +18996.9 a[5.]
    +189969. a[6.]) ==
        5.94663}
```

and then solve for A_{i}.

```
In[662]:= coeffs=
    Solve[sysofeqs, {a[1.], a[2.],a[3.], a[4.],
        a[5.],a[6.]}]
Out [662]= {{a[1.] ->-0.00257819,
        a[2.] ->-0.000288351,
        a[3.] ->-0.0000209413,
        a[4.] ->-0.0000180545,
        a[5.] }->-0.0390625
        a[6.] }->0.0078125}
```

y_{p} is obtained by substituting the values for A_{i} into y_{p} and a general solution is $y=y_{h}+y_{p}$. DSolve is able to find an exact solution.

```
In[663]:= gensol = DSolve[D[y[t], {t, 8}] + 7/2D[y[t],
    {t, 7}] + 73/2D[y[t], {t, 6}]
    +229/2D[y[t], {t, 5}]
    +801/2D[y[t], {t, 4}] + 976D[y[t],
    {t, 3}] + 1168D[y[t], {t, 2}]
    +640D[y[t],t] + 128y[t] ==
    t Exp[-t] + Sin[4t] + t, y[t], t]//
    Simplify
```

$$
\begin{aligned}
\text { Out }[663]=\{\{y[t] \rightarrow & -\frac{5}{128}-\frac{2924806 e^{-t}}{24137569}+\frac{t}{128} \\
& -\frac{86016 e^{-t} t}{1419857}-\frac{1270 e^{-t} t^{2}}{83521}-\frac{38 e^{-t} t^{3}}{14739} \\
& -\frac{e^{-t} t^{4}}{3468}+e^{-t} C[1]+e^{-t} t C[2] \\
& +e^{-t} t^{2} C[3]+e^{-t / 2} C[4] \\
& +\left(\frac{9041976373}{199643253056000}-\frac{107 t^{2}}{5109520}\right. \\
& +C[6]+t\left(-\frac{1568449}{45168156800}\right. \\
& +C[8])) \operatorname{Cos}[4 t] \\
& +\left(\frac{13794625331}{798573012224000}\right. \\
& +\frac{20406 t}{352876225}-\frac{369 t^{2}}{20438080} \\
& -C[5]-t C[7]) \operatorname{Sin}[4 \mathrm{t}]\}\}
\end{aligned}
$$

4.5 Nonhomogeneous Equations with Constant Coefficients: Variation of Parameters

4.5.I Second-Order Equations

A particular solution, y_{p}, is a solution that does not contain any arbitrary constants.

Let $S=\left\{y_{1}, y_{2}\right\}$ be a fundamental set of solutions for equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$. To solve the nonhomogeneous equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)$, we need to find a particular solution, y_{p} of equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)$. We search for a particular solution of the form

$$
\begin{equation*}
y_{p}=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t), \tag{4.13}
\end{equation*}
$$

where u_{1} and u_{2} are functions of t. Differentiating equation (4.13) gives us

$$
y_{p}^{\prime}=u_{1}^{\prime} y_{1}+u_{1} y_{1}^{\prime}+u_{2}^{\prime} y_{2}+u_{2} y_{2}^{\prime}
$$

Assuming that

$$
\begin{equation*}
y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime}=0 \tag{4.14}
\end{equation*}
$$

results in $y_{p}{ }^{\prime}=u_{1} y_{1}{ }^{\prime}+u_{2} y_{2}{ }^{\prime}$. Computing the second derivative then yields

$$
y_{p}^{\prime \prime}=u_{1}^{\prime} y_{1}^{\prime}+u_{1} y_{1}{ }^{\prime \prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{2} y_{2}^{\prime \prime} .
$$

Substituting $y_{p}, y_{p}{ }^{\prime}$, and $y_{p}{ }^{\prime \prime}$ into the equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)$ and using the facts that

$$
u_{1}\left(y_{1}^{\prime \prime}+p y_{1}^{\prime}+q y_{1}\right)=0 \quad \text { and } \quad u_{2}\left(y_{2}{ }^{\prime \prime}+p y_{2}^{\prime}+q y_{2}\right)=0
$$

(because y_{1} and y_{2} are solutions to the corresponding homogeneous equation, $y^{\prime \prime}+$ $p(t) y^{\prime}+q(t) y=0$) results in

$$
\begin{align*}
\frac{d^{2} y_{p}}{d t^{2}}+p(t) \frac{d y_{p}}{d t}+q(t) y_{p}= & u_{1}{ }^{\prime} y_{1}^{\prime}+u_{1} y_{1}{ }^{\prime \prime} \\
& +u_{2}{ }^{\prime} y_{2}{ }^{\prime}+u_{2} y_{2}{ }^{\prime \prime}+p(t)\left(u_{1} y_{1}{ }^{\prime}+u_{2} y_{2}{ }^{\prime}\right) \tag{4.15}\\
& +q(t)\left(u_{1} y_{1}+u_{2} y_{2}\right) \\
= & y_{1}^{\prime} u_{1}^{\prime}+y_{2}{ }^{\prime} u_{2}^{\prime}=f(t) .
\end{align*}
$$

Observe that equation (4.14) and equation (4.5.1) form a system of two linear equations in the unknowns $u_{1}{ }^{\prime}$ and $u_{2}{ }^{\prime}$:

$$
\begin{align*}
y_{1} u_{1}{ }^{\prime}+y_{2} u_{2}^{\prime} & =0 \\
y_{1}{ }^{\prime} u_{1}^{\prime}+y_{2}{ }^{\prime} u_{2}^{\prime} & =f(t) . \tag{4.16}
\end{align*}
$$

Applying Cramer's Rule gives us

$$
u_{1}^{\prime}=\frac{\left|\begin{array}{cc}
0 & y_{2} \tag{4.17}\\
f(t) & y_{2}^{\prime}
\end{array}\right|}{\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1} & y_{2}{ }^{\prime}
\end{array}\right|}=-\frac{y_{2}(t) f(t)}{W(S)} \quad \text { and } \quad u_{2}^{\prime}=\frac{\left|\begin{array}{cc}
y_{1} & 0 \\
y_{1}{ }^{\prime} & f(t)
\end{array}\right|}{\left|\begin{array}{cc}
y_{1} & y_{2} \\
y_{1} & y_{2}
\end{array}\right|}=\frac{y_{1}(t) f(t)}{W(S)},
$$

where $W(S)$ is the Wronskian, $W(S)=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1} & y_{2}{ }_{2}\end{array}\right|$. After integrating to obtain u_{1} and u_{2}, we form y_{p} and then a general solution, $y=y_{h}+y_{p}$.

Summary of Variation of Parameters for Second-Order Equations

Given the second-order equation $a_{2}(t) y^{\prime \prime}+a_{2}(t) y^{\prime}+a_{0}(t) y=g(t)$.

1. Divide by $a_{1}(t)$ to rewrite the equation in standard form, $y^{\prime \prime}+p(t) y^{\prime}+$ $q(t) y=f(t)$.
2. Find a general solution, y_{h}, of the corresponding homogeneous equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$.
3. Let $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$.
4. Let $u_{1}{ }^{\prime}=-\frac{y_{2} f(t)}{W}$ and $u_{2}{ }^{\prime}=\frac{y_{1} f(t)}{W}$.
5. Integrate to obtain u_{1} and u_{2}.
6. A particular solution of $a_{1}(t) y^{\prime \prime}+a_{2}(t) y^{\prime}+a_{0}(t) y=g(t)$ is given by $y_{p}=$ $u_{1} y_{1}+u_{2} y_{2}$.
7. A general solution of $a_{1}(t) y^{\prime \prime}+a_{2}(t) y^{\prime}+a_{0}(t) y=g(t)$ is given by $y=y_{h}+y_{p}$.

EXAMPLE 4.5.1: Solve $y^{\prime \prime}+9 y=\sec 3 t, y(0)=0, y^{\prime}(0)=0,0 \leq t<\pi / 6$.

SOLUTION: The corresponding homogeneous equation is $y^{\prime \prime}+9 y=0$ with general solution $y_{h}=c_{1} \cos 3 t+c_{2} \sin 3 t$. Then, a fundamental set of solutions is $S=\{\cos 3 t, \sin 3 t\}$ and $W(S)=3$, as we see using Det, and Simplify.

```
In[664]:= fs = {Cos[3t], Sin[3t]};
    wm}={fs,D[fs,t]}
    wm//MatrixForm
    wd = Simplify[Det[wm]]
Out [664]=(}\begin{array}{c}{\operatorname{Cos[3 t]}}\\{-3}\\{\operatorname{Sin}[3}
Out [664]= 3
```

We use equation (4.17) to find $u_{1}=\frac{1}{9} \ln \cos 3 t$ and $u_{2}=\frac{1}{3} t$.

```
In[665]:= u1 = Integrate[-Sin[3t] Sec[3t]/3,t]
    u2 = Integrate[Cos[3t] Sec[3t]/3,t]
Out[665]= \frac{1}{9}}\operatorname{Log}[\operatorname{Cos[3 t]]
Out [665] = \frac{t}{3}
```

It follows that a particular solution of the nonhomogeneous equation is

$$
y_{p}=\frac{1}{9} \cos 3 t \ln \cos 3 t+\frac{1}{3} t \sin 3 t
$$

and a general solution is

$$
y=y_{h}+y_{p}=c_{1} \cos 3 t+c_{2} \sin 3 t+\frac{1}{9} \cos 3 t \ln \cos 3 t+\frac{1}{3} t \sin 3 t .
$$

```
In[666]:= yp = u1 Cos[3t]+u2 Sin[3t]
Out[666]=}\frac{1}{9}\operatorname{cos[3 t] Log[\operatorname{Cos[3 t]] + < }
```

Identical results are obtained using DSolve.

$$
\begin{aligned}
\operatorname{In}[667]:= & \text { DSolve }\left[y^{\prime \prime}[t]+9 y[t]==\operatorname{Sec}[3 t], y[t], t\right] \\
\text { Out }[667]=\{\{y[t] \rightarrow & C[2] \operatorname{Cos}[3 t]+\frac{1}{9} \operatorname{Cos}[3 t] \\
& \times \log [\operatorname{Cos}[3 t]]+\frac{1}{3} t \operatorname{Sin}[3 t]-C[1] \\
& \times \operatorname{Sin}[3 t]\}\}
\end{aligned}
$$

Applying the initial conditions gives us $c_{1}=c_{2}=0$ so we conclude that the solution to the initial-value problem is

$$
y=\frac{1}{9} \cos 3 t \ln \cos 3 t+\frac{1}{3} t \sin 3 t
$$

We graph the solution with Plot in Figure 4-26.

```
In[669]:= Plot[Evaluate[y[t]/.sol], {t, 0, \pi/6}]
```


Figure 4-26 The domain of the solution is $-\pi / 6<t<\pi / 6$

The negative sign in the output does not affect the result because C [1] is arbitrary.

$$
\begin{aligned}
& \text { In }[668]:=\operatorname{sol}=\operatorname{DSolve}[\\
& \qquad y^{\prime \prime}[t]+9 y[t]==\operatorname{Sec}[3 t], y[0]==0, y^{\prime}[0] \\
& ==0\}, y[t], t] \\
& \text { Out }[668]=\left\{\begin{aligned}
&\left\{y[t] \rightarrow \frac{1}{9}(\operatorname{Cos}[3 t] \log [\operatorname{Cos}[3 t]]\right. \\
&+3 \operatorname{tin}[3 t])\}\}
\end{aligned}\right.
\end{aligned}
$$

4.5.2 Higher-Order Nonhomogeneous Equations

In the same way as with second-order equations, we assume that a particular solution of the n th-order linear nonhomogeneous equation

$$
y^{(n)}+a_{n-1}(t) y^{(n-1)}+\cdots+a_{2}(t) y^{\prime \prime}+a_{1}(t) y^{\prime}+a_{0}(t) y=f(t)
$$

has the form $y_{p}=u_{1}(t) y_{1}+u_{2}(t) y_{2}+\cdots+u_{n}(t) y_{n}$, where $S=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ is a fundamental set of solutions to the corresponding homogeneous equation

$$
y^{(n)}+a_{n-1}(t) y^{(n-1)}+\cdots+a_{2}(t) y^{\prime \prime}+a_{1}(t) y^{\prime}+a_{0}(t) y=0
$$

With the assumptions

$$
\begin{align*}
y_{1} u_{1}{ }^{\prime}+y_{2} u_{2}{ }^{\prime}+\cdots+y_{n} u_{n}{ }^{\prime} & =0 \\
y_{1}{ }^{\prime} u_{1}{ }^{\prime}+y_{2}{ }^{\prime} u_{2}{ }^{\prime}+\cdots+y_{n}{ }^{\prime} u_{n}{ }^{\prime} & =0 \tag{4.18}\\
& \vdots \\
y_{1}{ }^{(n-2)} u_{1}{ }^{\prime}+y_{2}{ }^{(n-2)} u_{2}{ }^{\prime}+\cdots+y_{n}{ }^{(n-2)} u_{n}{ }^{\prime} & =0
\end{align*}
$$

we obtain the equation

$$
\begin{equation*}
y_{1}{ }^{(n-1)} u_{1}{ }^{\prime}+y_{2}{ }^{(n-1)} u_{2}^{\prime}+\cdots+y_{n}{ }^{(n-1)} u_{n}^{\prime}=f(t) . \tag{4.19}
\end{equation*}
$$

Equations (4.18) and equation (4.19) form a system of n linear equations in the unknowns $u_{1}{ }^{\prime}, u_{2}{ }^{\prime}, \ldots, u_{n}{ }^{\prime}$. Applying Cramer's Rule,

$$
\begin{equation*}
u_{i}^{\prime}=\frac{W_{i}(S)}{W(S)} \tag{4.20}
\end{equation*}
$$

where $W(S)$ is given by equation (4.6),

$$
W(S)=\left|\begin{array}{cccc}
y_{1} & y_{2} & \ldots & y_{n} \\
y_{1}{ }^{\prime} & y_{2}{ }^{\prime} & \ldots & y_{n}{ }^{\prime} \\
\vdots & \vdots & \ldots & \vdots \\
y_{1}{ }^{(n-1)} & y_{2}{ }^{(n-1)} & \ldots & y_{n}{ }^{(n-1)}
\end{array}\right| \text {, }
$$

and $W_{i}(S)$ is the determinant of the matrix obtained by replacing the i th column of

$$
\left(\begin{array}{cccc}
y_{1} & y_{2} & \ldots & y_{n} \\
y_{1}{ }^{\prime} & y_{2}^{\prime} & \ldots & y_{n}^{\prime} \\
\vdots & \vdots & \ldots & \vdots \\
y_{1}{ }^{(n-1)} & y_{2}{ }^{(n-1)} & \ldots & y_{n}{ }^{(n-1)}
\end{array}\right) \quad \text { by } \quad\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
f(t)
\end{array}\right) .
$$

EXAMPLE 4.5.2: Solve $y^{(3)}+4 y^{\prime}=\sec 2 t$.

SOLUTION: A general solution of the corresponding homogeneous equation is $y_{h}=c_{1}+c_{2} \cos 2 t+c_{3} \sin 2 t$; a fundamental set is $S=\{1, \cos 2 t$, $\sin 2 t\}$ with Wronskian $W(S)=8$.

```
In[670]:= yh = DSolve[y"'[t] + 4y'[t] == 0, y[t], t]
Out[670]={{y[t]->C[3]+\frac{1}{2}C[1] Cos[2 t]
    +\frac{1}{2}}\textrm{C}[2] Sin[2 t]}
```



```
                D[s,{t, 2}]};MatrixForm[ws]
Out[671]=(
In[672]:= dws = Simplify[Det[ws]]
Out[672]= 8
```

Using variation of parameters to find a particular solution of the nonhomogeneous equation, we let $y_{1}=1, y_{2}=\cos 2 t$, and $y_{3}=\sin 2 t$ and assume that a particular solution has the form $y_{p}=u_{1} y_{1}+u_{2} y_{2}+u_{3} y_{3}$. Using the variation of parameters formula, we obtain

$$
u_{1}^{\prime}=\frac{1}{8}\left|\begin{array}{ccc}
0 & \cos 2 t & \sin 2 t \\
0 & -2 \sin 2 t & 2 \cos 2 t \\
\sec 2 t & -4 \cos 2 t & -4 \sin 2 t
\end{array}\right|=\frac{1}{4} \sec 2 t
$$

so

$$
\begin{aligned}
& u_{1}=\frac{1}{8} \ln |\sec 2 t+\tan 2 t|, \\
& u_{2}^{\prime}=\frac{1}{8}\left|\begin{array}{llc}
1 & 0 & \sin 2 t \\
0 & 0 & 2 \cos 2 t \\
0 & \sec 2 t & -4 \sin 2 t
\end{array}\right|=-\frac{1}{4} \quad \text { so } \quad u_{2}=-\frac{1}{4} t,
\end{aligned}
$$

and

$$
u_{3}^{\prime}=\frac{1}{8}\left|\begin{array}{ccc}
1 & \cos 2 t & 0 \\
0 & -2 \sin 2 t & 0 \\
0 & -4 \cos 2 t & \sec 2 t
\end{array}\right|=-\frac{1}{2} \tan 2 t \quad \text { so } \quad u_{3}=\frac{1}{8} \ln |\cos 2 t|,
$$

where we use Det and Integrate to evaluate the determinants and integrals. In the case of u_{1}, the output given by Mathematica looks different than the result we obtained by hand but using properties of
logarithms $(\ln (a / b)=\ln a-\ln b)$ and trigonometric identities $\left(\cos ^{2} x+\right.$ $\sin ^{2} x=1, \sin 2 x=2 \sin x \cos x, \cos ^{2} x-\sin ^{2} x=\cos 2 x$, and the reciprocal identities) shows us that

$$
\begin{aligned}
\frac{1}{8}(\ln |\cos t+\sin t|-\ln |\cos t+\sin t|) & =\frac{1}{8} \ln \left|\frac{\cos t+\sin t}{\cos t-\sin t}\right| \\
& =\frac{1}{8} \ln \left|\frac{\cos t+\sin t}{\cos t-\sin t} \cdot \frac{\cos t+\sin t}{\cos t+\sin t}\right| \\
& =\frac{1}{8} \ln \left|\frac{\cos ^{2} t+2 \cos t \sin t+\sin ^{2} t}{\cos ^{2} t-\sin ^{2} t}\right| \\
& =\frac{1}{8} \ln \left|\frac{1+\sin 2 t}{\cos 2 t}\right| \\
& =\frac{1}{8} \ln \left|\frac{1}{\cos 2 t}+\frac{\sin 2 t}{\cos 2 t}\right| \\
& =\frac{1}{8} \ln |\sec 2 t+\tan 2 t|
\end{aligned}
$$

so the results obtained by hand and with Mathematica are the same.

```
In[673]:= u1p = 1/8 Det[{{0, Cos[2t], Sin[2t]},
    {0, -2 Sin[2t], 2 Cos[2t]},
    {Sec[2t], -4 Cos[2t], -4 Sin[2t]}}]//
    Simplify
Out[673]= \frac{1}{4}}\operatorname{Sec}[2t
In[674]:= Integrate[ulp, t]
Out[674]=}-\frac{-}{8}\operatorname{Log}[\operatorname{Cos[t]-\operatorname{Sin}[t]]+\frac{1}{8}}\operatorname{Log}[\operatorname{Cos[t]
    +Sin[t]]
In[675]:= u2p = Simplify[1/8 Det[{{1,0, Sin[2t]},
    {0, 0, 2 Cos[2t]}, {0, Sec[2t],
    -4 Sin[2t]}}]]
Out [675] = - - < 
In[676]:= Integrate[u2p,t]
Out[676]= - t
In[677]:= u3p = Simplify[1/8 Det[{{1, Cos[2t],0},
    {0,-2 Sin[2t], 0}, {0, -4 Cos[2t],
    Sec[2t]}}]]
Out [677] = - - 4
```

```
In[678]:= Integrate[u3p,t]
Out[678]=}\frac{1}{8}\operatorname{Log}[\operatorname{Cos[2 t]]
```

Thus, a particular solution of the nonhomogeneous equation is

$$
y_{p}=\frac{1}{8} \ln |\sec 2 t+\tan 2 t|-\frac{1}{4} t \cos 2 t+\frac{1}{8} \ln |\cos 2 t| \sin 2 t
$$

and a general solution is $y=y_{h}+y_{p}$. We verify the calculations using DSolve, which returns an equivalent solution.

```
In[679]:= gensol =
    DSolve[y'\prime}[t]+4\mp@subsup{y}{}{\prime}[t]==Sec[2t]
        y[t],t]//Simplify
Out[679]={{y[t]->\frac{1}{8}(8C[3]-2 (t-2 C[1]) Cos[2 t]
    - Log[Cos[t] - Sin[t]] + Log[Cos[t]
    + Sin[t]] +(4 C[2] + Log[Cos[2 t]])
    x Sin[2 t])}}
```


4.6 Cauchy-Euler Equations

Generally, solving an arbitrary differential equation is a formidable, if not impossible task, particularly in the case when the coefficients are not constants. However, we are able to solve certain equations with variable coefficients using techniques similar to those discussed previously.
Definition 19 (Cauchy-Euler Equation). A Cauchy-Euler differential equation is an equation of the form

$$
\begin{equation*}
a_{n} x^{n} y^{(n)}+a_{n-1} x^{n-1} y^{(n-1)}+\cdots+a_{1} x y 1+a_{0} y=f(x) \tag{4.21}
\end{equation*}
$$

where $a_{0}, a_{1}, \ldots, a_{n}$ are constants.

4.6.I Second-Order Cauchy-Euler Equations

Consider the second-order homogeneous Cauchy-Euler equation

$$
\begin{equation*}
a x^{2} y^{\prime \prime}+b x y^{\prime}+c y=0 \tag{4.22}
\end{equation*}
$$

where $a \neq 0$. Notice that because the coefficient of $y^{\prime \prime}$ is zero if $x=0$, we must restrict our domain to either $x>0$ or $x<0$ in order to ensure that the theory of second-order equations stated in Section 4.1 holds.

Suppose that $y=x^{m}, x>0$, for some constant m. Substitution of $y=x^{m}$ with derivatives $y^{\prime}=m x^{m-1}$ and $y^{\prime \prime}=m(m-1) x^{m-2}$ into equation (4.22) yields

$$
\begin{aligned}
a x^{2} y^{\prime \prime}+b x y^{\prime}+c y & =a m(m-1) x^{m}+b m x^{m}+c x^{m} \\
& =x^{m}[a m(m-1)+b m+c]=0 .
\end{aligned}
$$

Then, $y=x^{m}$ is a solution of equation (4.22) if m satisfies

$$
\begin{equation*}
a m(m-1)+b m+c=0, \tag{4.23}
\end{equation*}
$$

which is called the characteristic equation (or auxiliary equation) associated with the Cauchy-Euler equation of order two. The solutions of the characteristic equation completely determine the general solution of the homogeneous Cauchy-Euler equation of order two. Let m_{1} and m_{2} denote the two solutions of the characteristic (or auxiliary) equation (4.23):

$$
m_{1,2}=\frac{1}{2 a}\left[-(b-a) \pm \sqrt{(b-a)^{2}-4 a c}\right] .
$$

Hence, we can obtain two real roots, one repeated real root, or a complex conjugate pair depending on the values of a, b, and c. We state a general solution that corresponds to the different types of roots.

Theorem 8. Let m_{1} and m_{2} be the solutions of equation (4.23).

1. If $m_{1} \neq m_{2}$ are real and distinct, two linearly independent solutions of equation (4.22) are $y_{1}=x^{m_{1}}$ and $y_{2}=x^{m_{2}}$; a general solution of (4.22) is

$$
y=c_{1} x^{m_{1}}+c_{2} x^{m_{2}}, x>0 .
$$

2. If $m_{1}=m_{2}$, two linearly independent solutions of equation (4.22) are $y_{1}=x^{m_{1}}$ and $y_{2}=x^{m_{1}} \ln x ;$ a general solution of (4.22) is

$$
y=c_{1} x^{m_{1}}+c_{2} x^{m_{1}} \ln x, x>0 .
$$

3. If $m_{1,2}=\alpha \pm \beta i, \beta \neq 0$, two linearly independent solutions of equation (4.22) are $y_{1}=x^{\alpha} \cos (\beta \ln x)$ and $y_{2}=x^{\alpha} \sin (\beta \ln x)$; a general solution of (4.22) is

$$
y=x^{\alpha}\left[c_{1} \cos (\beta \ln x)+c_{2} \sin (\beta \ln x)\right], x>0 .
$$

```
In [680]: \(=\) Clear \([\mathbf{x}, \mathrm{y}]\)
    gensol \(=\) DSolve \(\left[a x^{2} y^{\prime \prime}[x]+b x y^{\prime}[x]+c y[x]==0\right.\),
        \(y[x], x]\)
Out \([680]=\{\{y[\mathrm{x}] \rightarrow\)
    \(\left.\left.x^{-\frac{-a+b-\sqrt{a^{2}-2 a b+b^{2}-4 a c}}{2 a}} C[1]+x^{-\frac{-a+b+\sqrt{a^{2}-2 a b+b^{2}-4 a c}}{2 a}} C[2]\right\}\right\}\)
```

EXAMPLE 4.6.1: Solve each of the following equations: (a) $3 x^{2} y^{\prime \prime}-2 x y^{\prime}+$ $2 y=0, x>0$; (b) $x^{2} y^{\prime \prime}-x y^{\prime}+y=0, x>0$; (c) $x^{2} y^{\prime \prime}-5 x y^{\prime}+10 y=0, x>0$.

SOLUTION: If $y=x^{m}, y^{\prime}=m x^{m-1}$ and $y^{\prime \prime}=m(m-1) x^{m-2}$, substitution into the differential equation yields

$$
\begin{aligned}
3 x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y & =3 x^{2} \cdot m(m-1) x^{m-2}-2 x \cdot m x^{m-1}+2 x^{m} \\
& =x^{m}[3 m(m-1)-2 m+2]=0 .
\end{aligned}
$$

Hence, the auxiliary equation is

$$
3 m(m-1)-2 m+2=3 m(m-1)-2(m-1)=(3 m-2)(m-1)=0
$$

with roots $m_{1}=2 / 3$ and $m_{2}=1$. Therefore, a general solution is $y=$ $c_{1} x^{2 / 3}+c_{2} x$. We obtain the same results with DSolve. Entering

```
In [681]: = Clear[ \(\mathbf{x}, \mathrm{y}\) ]
    gensol \(=\) DSolve \(\left[3 x^{2} y^{\prime \prime}[x]-2 x y^{\prime}[x]+2 y[x]==0\right.\),
        \(y[x], x]\)
Out [681] \(=\left\{\left\{y[x] \rightarrow x^{2 / 3} C[1]+x C[2]\right\}\right\}\)
```

finds a general solution of the equation, naming the result gensol, and then entering

```
In[682]:= toplot =
    Table[gensol\llbracket1, 1, 2\rrbracket/.{C[1]-> i,
            C[2]->j}, {i, -2, 2, 2}, {j, -2, 2, 2}];
    grays = Table[GrayLevel[i],
        {i, 0,0.7,0.7/8}];
    Plot[Evaluate[toplot], {x, 0, 12},
    PlotStyle }->\mathrm{ grays, PlotRange- > {-6, 6},
    AspectRatio- > 1]
```


Figure 4-27 Various solutions of $3 x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0, x>0$
defines toplot to be the list of functions obtained by replacing c [1] in gensol [[1, 1, 2]] by $-2,0$, and 2 and $\mathrm{C}[2]$ in gensol[[1,1,2]] by $-2,0$, and 2 , and graphs the set of functions toplot on the interval [0,12]. See Figure 4-27.
(b) In this case, the auxiliary equation is

$$
m(m-1)-m+1=m(m-1)-(m-1)=(m-1)^{2}=0
$$

with root $m=1$ of multiplicity 2 . Hence, a general solution is $y=c_{x}+$ $c_{2} x \ln x$. As in the previous example, we see that we obtain the same results with DSolve. See Figure 4-28.

```
In [683]:= Clear[x,y]
    gensol = DSolve [\mp@subsup{x}{}{2}\mp@subsup{y}{}{\prime\prime}[x]-x y' [x] + y [x] == 0,
        y[x],x]
Out[683]= {{y[x] >xC[1] + xC[2] Log[x]}}
In[684]:= toplot=
    Table[gensol\llbracket1, 1, 2\rrbracket/.{C[1]-> i, C[2]-> j},
            {i, -1, 1}, {j, -1, 1}];
        grays = Table[GrayLevel[i],
            {i,0,0.7,0.7/8}];
        Plot[Evaluate[toplot], {x,0.01, 10},
        PlotStyle }->\mathrm{ grays, PlotRange- > {-5, 5},
        AspectRatio- > 1]
```


Figure 4-28 Various solutions of $x^{2} y^{\prime \prime}-x y^{\prime}+y=0, x>0$
(c) The auxiliary equation is given by

$$
m(m-1)-5 m+10=m^{2}-6 m+10=0
$$

with complex conjugate roots $m_{1,2}=\frac{1}{2}(6 \pm \sqrt{36-40})=3 \pm i$. Thus, a general solution is $y=x^{3}\left[c_{1} \cos (\ln x)+c_{2} \sin (\ln x)\right]$.

Again, we see that we obtain equivalent results with DSolve. First, we find a general solution of the equation, naming the resulting output gensol.

```
In[685]:= Clear[x,y]
    gensol = DSolve[ }\mp@subsup{x}{}{2}\mp@subsup{y}{}{\prime\prime}[x]-5x\mp@subsup{y}{}{\prime}[x
    +10 y[x] = = 0, y[x],x]
Out [685]= {{y[x] -> x C C [2] Cos[LOg[x]]
    +x}\mp@subsup{x}{}{3}C[1] Sin[\operatorname{Log}[x]]}
```

Now, we define $y(x)$ to be the general solution obtained in gensol. (The same result is obtained with Part by entering y $\left[x_{-}\right]=$gensol [[1, 1, 2]].)

```
In[686]:= y[x_] = 垔C[2] Cos[LOg[x]]-\mp@subsup{x}{}{3}C[1] Sin[LOg[x]];
```


Figure 4-29 Various solutions of $x^{2} y^{\prime \prime}-5 x y^{\prime}+10 y=0, x>0$

To find the values of $\mathrm{C}[1]$ and $\mathrm{C}[2]$ so that the solution satisfies the initial conditions $y(1)=a$ and $y^{\prime}(1)=b$, we use Solve and name the resulting list cvals.

```
In[687]:= cvals=Solve[{y[1] == a, y'[1] == b },
    {C[1], C[2]}]
Out[687]= {{C[1]->3a-b,C[2]->a}}
```

The solution to the initial-value problem

$$
\left\{\begin{array}{l}
x^{2} y^{\prime \prime}-5 x y^{\prime}+10 y=0 \\
y(1)=a, y^{\prime}(1)=b
\end{array}\right.
$$

is obtained by replacing C [1] and C [2] in $y(x)$ by the values found in cvals.

```
In[688]:= y[x_] = y[x]/.cvals[[1]]
Out[688]= a x }\mp@subsup{\textrm{x}}{}{3}\operatorname{Cos[\operatorname{Log}[x]]-(3a-b) x }\mp@subsup{\textrm{x}}{}{3}\operatorname{Sin}[\operatorname{Log}[x]
```

This solution is then graphed for various initial conditions in Figure 4-29.

```
In [689] : = toplot = Table \([y[x],\{a,-2,2,2\},\{b,-2,2,2\}] ;\)
    grays \(=\) Table[GrayLevel[i], \(\left.\left\{i, 0,0.5, \frac{0.5}{8}\right\}\right]\);
    Plot[Evaluate[toplot], \(\{x, 0,2\}\),
    PlotStyle \(\rightarrow\) grays, PlotRange \(\rightarrow\) All]
```


4.6.2 Higher-Order Cauchy-Euler Equations

The auxiliary equation of higher-order Cauchy-Euler equations is defined in the same way and solutions of higher-order homogeneous Cauchy-Euler equations are determined in the same manner as solutions of higher-order homogeneous differential equations with constant coefficients. In the case of higher-order CauchyEuler equations, note that if a real root r of the auxiliary equation is repeated m times, m linearly independent solutions that correspond to r are $x^{r}, x^{r} \ln x, x^{r}(\ln x)^{2}$, $\ldots, x^{r}(\ln x)^{m-1}$; solutions corresponding to repeated complex roots are generated similarly.

EXAMPLE 4.6.2: Solve $2 x^{3} y^{\prime \prime \prime}-4 x^{2} y^{\prime \prime}-20 x y^{\prime}=0, x>0$.

SOLUTION: In this case, if we assume that $y=x^{m}$ for $x>0$, we have the derivatives $y^{\prime}=m x^{m-1}, y^{\prime \prime}=m(m-1) x^{m-2}$, and $y^{\prime \prime \prime}=$ $m(m-1)(m-2) x^{m-3}$. Substitution into the differential equation and simplification then yields $\left(2 m^{3}-10 m^{2}-12 m\right) x^{m}=0$.

```
In[690]:= Clear[x,y]
    eq = 2 x m y }\mp@subsup{}{}{(3)}[x]-4\mp@subsup{x}{}{2}\mp@subsup{y}{}{\prime\prime}[x]-20x\mp@subsup{y}{}{\prime}[x]==
```



```
In[691]:= y [x_] = 垔
Out[691]= x'
In[692]:= eq
Out[692] = -20mx m}-4(-1+m)m\mp@subsup{x}{}{m}+2(-2+m)(-1+m)m\mp@subsup{x}{}{m}==
In[693]:= Factor[eq[1]]
Out[693]= 2(-6 +m)m(1+m) x m
```

We must solve $2 m^{3}-10 m^{2}-12 m=2 m(m+1)(m-6)=0$ for m because $x^{m} \neq 0$.

```
In [694]:= mvals = Solve[eq, m]
Out [694] \(=\{\{m \rightarrow-1\},\{m \rightarrow 0\},\{m \rightarrow 6\}\}\)
```

We see that the solutions are $m_{1}=0, m_{2}=-1$, and $m_{3}=6$, so a general solution of the equation is $y=c_{1}+c_{2} x^{-1}+c_{3} x^{6}$. As in the previous examples, we see that we obtain the same results with DSolve.

Figure 4-30 Various solutions of $2 x^{3} y^{\prime \prime \prime}-4 x^{2} y^{\prime \prime}-20 x y^{\prime}=0, x>0$

$$
\begin{aligned}
\text { In }[695]:= & \text { Clear }[\mathbf{x}, \mathrm{y}] \\
& \text { gensol }= \\
& \text { DSolve }\left[2 \mathbf{x}^{3} \mathbf{y}^{(3)}[\mathbf{x}]-4 \mathbf{x}^{2} \mathbf{y}^{\prime \prime}[\mathbf{x}]-20 \mathbf{x} \mathbf{y}^{\prime}[\mathbf{x}]==0,\right. \\
& \mathbf{y}[\mathbf{x}], \mathbf{x}] \\
\text { Out }[695]=\{ & \left.\left\{y[\mathrm{x}] \rightarrow \frac{1}{6} \mathrm{x}^{6} \mathrm{C}[1]-\frac{\mathrm{C}[2]}{\mathrm{x}}+\mathrm{C}[3]\right\}\right\}
\end{aligned}
$$

We graph this solutions for various values of the arbitrary constants in the same way as we graph solutions of other equations. See Figure 4-30.

$$
\begin{aligned}
\text { In }[696]:= & \text { toplot }=\text { Table }\left[\frac{c[1]}{x}+c[2]+x^{6} c[3] / . c[2] \rightarrow 0,\right. \\
& \{c[1],-1,1\},\{c[3],-1,1\}] ; \\
& \text { grays }=\text { Table }[\text { GrayLevel }[i],\{i, 0,0.7,0.7 / 8\}] ; \\
& \text { Plot }[\text { Evaluate }[\text { toplot }],\{x, 0,2\}, \\
& \text { PlotRange } \rightarrow\{-10,10\}, \text { PlotStyle } \rightarrow \text { grays }]
\end{aligned}
$$

EXAMPLE 4.6.3: Solve the initial-value problem

$$
\left\{\begin{array}{l}
x^{4} y^{(4)}+4 x^{3} y^{\prime \prime \prime}+11 x^{2} y^{\prime \prime}-9 x y^{\prime}+9 y=0, x>0 \\
y(1)=1, y^{\prime}(1)=-9, y^{\prime \prime}(1)=27, y^{\prime \prime \prime}(1)=1
\end{array}\right.
$$

SOLUTION: Substitution of $y=x^{m}$ into the differential equation $x^{4} y^{(4)}+$ $4 x^{3} y^{\prime \prime \prime}+11 x^{2} y^{\prime \prime}-9 x y^{\prime}+9 y=0$ and simplification leads to the equation

$$
\begin{aligned}
& \left(m^{4}-2 m^{3}+10 m^{2}-18 m+9\right) x^{m}=0 . \\
& \operatorname{In}[697]:=\mathrm{eq}=\mathrm{x}^{4} \partial_{\{\mathrm{x}, 4\}} \mathrm{Y}[\mathrm{x}]+4 \mathrm{x}^{3} \partial_{\{\mathrm{x}, 3\}} \mathrm{Y}[\mathrm{x}]+11 \mathrm{x}^{2}\left(\mathrm{y}^{\prime}\right)^{\prime}[\mathrm{x}] \\
& -9 x y^{\prime}[x]+9 y[x]==0 \text {; } \\
& \text { In [698]: }=\mathbf{y}\left[\mathbf{x}_{-}\right]=\mathbf{x}^{\mathrm{m}} \text {; } \\
& \text { In [699]: }=\text { Factor[eq[[1]]] } \\
& \text { Out [699] }=(-1+m)^{2}\left(9+m^{2}\right) x^{m}
\end{aligned}
$$

We solve

$$
m^{4}-2 m^{3}+10 m^{2}-18 m+9=\left(m^{2}+9\right)(m-1)^{2}=0
$$

for m because $x^{m} \neq 0$.

```
In[700]:= Solve[eq,m]
Out[700]={{m->-3ii },{m->3ii},{m->1},{m->1}}
```

Hence, $m_{1,2}= \pm 3 i$, and $m_{3,4}=1$ is a root of multiplicity 2 , so a general solution of the differential equation is

$$
y=c_{1} \cos (3 \ln x)+c_{2} \sin (3 \ln x)+c_{3} x+c_{4} x \ln x
$$

with first, second, and third derivatives computed as follows.

```
In[701]:= y[\mp@subsup{x}{-}{\prime}]=\mp@subsup{c}{1}{}\operatorname{Cos[3 Log[x]] + (c. Sin[3 Log[x]]}
    +C C x + C C X X Log[x];
In[702]:= Simplify[y'[x]]
    Simplify[y' [x]]
    Simplify[y(3)}[x]
Out [702]= \frac{1}{x}}(-3\operatorname{Sin}[3\operatorname{Log}[x]]\mp@subsup{C}{1}{
    +3 Cos[3 Log[x]] C C + x ( C C + (1 + Log[x]) C4 ) )
Out [702] = \frac{1}{\mp@subsup{x}{}{2}}((-9\operatorname{Cos[3 Log[x]] + 3 Sin[3 Log[x]]) C C }\mp@subsup{C}{1}{}
    -3(\operatorname{Cos[3 Log[x]] + 3 Sin[3 Log[x]]) C C + x C C )}
```



```
    -3(7 Cos[3 Log[x]]-9 Sin[3 Log[x]]) C2
    -x C4)
```

Mathematica may display several error messages because the solution is undefined if $x=0$.

Substitution of the initial conditions then yields the system of equations,

$$
\left\{\begin{array}{l}
c_{1}+c_{3}=1 \\
3 c_{2}+c_{3}+c_{4}=-9 \\
-9 c_{1}-3 c_{2}+c_{4}=27 \\
27 c_{1}-21 c_{2}-c_{4}=1
\end{array}\right.
$$

which has the solution $\left(c_{1}, c_{2}, c_{3}, c_{4}\right)=(-12 / 5,-89 / 30,17 / 5,-7 / 2)$.

$$
\left.\begin{array}{rl}
\text { In }[703]:= & \text { cvals }= \\
& \text { Solve }\left[\left\{y[1]==1, y^{\prime}[1]==-9, y^{\prime \prime}[1]==27,\right.\right. \\
& \left.\left.y^{(3)}[1]==1\right\}\right]
\end{array}\right\}
$$

Therefore, the solution to the initial-value problem is

$$
\begin{aligned}
& \qquad \begin{aligned}
y= & -\frac{12}{5} \cos (3 \ln x)-\frac{89}{30} \sin (3 \ln x)+\frac{17}{5} x-\frac{7}{2} x \ln x . \\
\text { In }[704]:= & y\left[x_{-}\right]=y[x] / . \operatorname{cvals}[[1]] \\
\text { Out }[704]= & \frac{17 x}{5}-\frac{12}{5} \operatorname{Cos}[3 \log [x]]-\frac{7}{2} x \log [x] \\
& -\frac{89}{30} \operatorname{Sin}[3 \log [x]]
\end{aligned}
\end{aligned}
$$

We graph this solution with Plot in Figure 4-31. From the graph shown in Figure 4-31, we see that it might appear to be the case that $\lim _{x \rightarrow 0^{+}} y(x)$ exists.

```
In[705]:= Plot[y[\mathbf{x}],{\mathbf{x},0,1}]
```


Figure 4-31 Plot of the solution to the initial-value problem

Figure 4-32 Zooming in near $x=0$ helps convince us that $\lim _{x \rightarrow 0^{+}} y(x)$ does not exist

However, when we graph the solution on "small" intervals close to the origin as shown in Figure 4-32, we see that $\lim _{x \rightarrow 0^{+}} y(x)$ does not exist.

```
In[706]:= p1 = Plot[y[x], {x, 0.001,0.1},
    Ticks }->{{0.05},Automatic}
    DisplayFunction }->\mathrm{ Identity];
p2 = Plot[y[x], {x,0.00001,0.001},
    Ticks }->{{0.0005},Automatic}
    DisplayFunction }->\mathrm{ Identity];
p3 = Plot [y[x], {x,1. 10-7,0.00001},
    Ticks }->{{5.1\mp@subsup{0}{}{-6}},Automatic}
    DisplayFunction }->\mathrm{ Identity];
Show[GraphicsArray[{p1, p2, p3}]]
```

As expected, we see that DSolve can be used to solve the initial-value problem directly.

```
In[707]:= Clear[x,y]
    partsol =
        DSolve[{eq, y[1] == 1, y'[1] == -9, y''[1] == 27,
            y }\mp@subsup{}{}{(3)}[1]==1},y[x],x
Out[707]={{y[x]->\frac{1}{30}(102x-72\operatorname{Cos[3 Log[x]]}
    -105x Log[x] - 89 Sin[3 Log[x]])}}
```


4.6.3 Variation of Parameters

Of course, Cauchy-Euler equations can be nonhomogeneous in which case the method of variation of parameters can be used to solve the problem.

EXAMPLE 4.6.4: Solve $x^{2} y^{\prime \prime}-x y^{\prime}+5 y=x, x>0$.

SOLUTION: We first note that DSolve can be used to find a general solution of the equation directly.

```
In[708]:= Clear[x, y,gensol]
    gensol = DSolve [\mp@subsup{x}{}{2}}\mp@subsup{\textrm{y}}{}{\prime\prime}[\textrm{x}]-\mathbf{x}\mp@subsup{y}{}{\prime}[x]+5y[x]==x
    y[x],x]
Out[708]={{y[x]->xC[2] Cos[2 Log[x]]+xC[1]
    x Sin[2 Log[x] ] + < 
    x Cos[2 Log[x]] +x Sin[2 Log[x] [ ') }}
```

Alternatively, we can use Mathematica to help us implement variation of parameters. We begin by finding a general solution to the corresponding homogeneous equation $x^{2} y^{\prime \prime}-x y^{\prime}+5 y=0$ with DSolve.

```
In [709]:= homsol = DSolve [ }\mp@subsup{\mathbf{x}}{}{2}\mp@subsup{\mathbf{y}}{}{\prime\prime}[\mathbf{x}]-\mathbf{x y
    y[x],x]
Out [709] = {{y[x] ->xC[2] Cos[2 Log[x]]
    +xC[1] Sin[2 Log[x]]}}
```

We see that a general solution of the corresponding homogeneous equation is $y_{h}=x\left[c_{1} \cos (2 \ln x)+c_{2} \sin (2 \ln x)\right]$. A fundamental set of solutions for the homogeneous equation is $S=\{x \cos (2 \ln x), x \sin (2 \ln x)\}$

```
In[710]:= Y Y [x_] = x Cos[2 Log[x]];
    y2[x_] = x Sin[2 Log[x]];
In[711]:= caps = { ( }\mp@subsup{\mathbf{l}}{1}{}[\mathbf{x}],\mp@subsup{\mathbf{y}}{2}{[}[\mathbf{x}]}
```

and the Wronskian is $W(S)=2 x$.

```
In[712]:= ws = Simplify[Det[{caps, \partialxcaps}]]
Out[712]= 2 x
```

To implement variation of parameters, we rewrite the equation in the standard form

$$
y^{\prime \prime}-\frac{1}{x} y^{\prime}+\frac{5}{x^{2}} y=\frac{1}{x}
$$

by dividing by x^{2} and identify $f(x)=1 / x$. We then use Integrate to compute

$$
\begin{aligned}
& u_{1}=\int \frac{-y_{2}(x) f(x)}{2 x} d x \quad \text { and } \quad u_{2}=\int \frac{y_{1}(x) f(x)}{2 x} d x . \\
& \operatorname{In}[713]:=f\left[\mathbf{x}_{-}\right]=\frac{1}{\mathbf{x}} \text {; } \\
& \text { In [714]: }=\text { ulprime }=-\frac{\mathbf{y}_{2}[\mathbf{x}] \mathrm{f}[\mathbf{x}]}{\mathrm{ws}} \\
& \text { u2prime }=\frac{\mathrm{y}_{1}[\mathrm{x}] \mathrm{f}[\mathrm{x}]}{\mathrm{ws}} \\
& \text { Out [714] }=-\frac{\operatorname{Sin}[2 \log [x]]^{\text {ws }}}{2 x} \\
& \text { Out [714] }=\frac{\operatorname{Cos}[2 \log [\mathrm{x}]]}{2 \mathrm{x}} \\
& \operatorname{In}[715]:=u_{1}\left[\mathbf{x}_{-}\right]=\int u 1 \text { primedl } \mathbf{x} \\
& \mathrm{u}_{2}\left[\mathrm{x}_{-}\right]=\int \mathrm{u} 2 \mathrm{primed} \mathrm{x} \\
& \text { Out }[715]=\frac{1}{2} \operatorname{Cos}[\log [\mathrm{x}]]^{2} \\
& \text { Out [715] }=\frac{1}{4} \operatorname{Sin}[2 \log [x]]
\end{aligned}
$$

A particular solution of the nonhomogeneous equation is given by $y_{p}=$ $y_{1} u_{1}+y_{2} u_{2}$


```
Out[716] = \frac{1}{2}}\textrm{x}\operatorname{Cos[LOg[x]] 2
```

and a general solution is given by $y=y_{h}+y_{p}$.

```
\(\operatorname{In}[717]:=\mathrm{y}\left[\mathrm{x}_{-}\right]=\mathrm{c}_{1} \mathbf{x} \operatorname{Cos}[2 \log [\mathrm{x}]]+\mathrm{C}_{2} \mathbf{x} \operatorname{Sin}[2 \log [\mathrm{x}]]\)
    \(+y_{p}[\mathbf{x}]\)
Out [717] \(=\frac{1}{2} x \operatorname{Cos}[\log [x]]^{2}+x \operatorname{Cos}[2 \log [x]] C_{1}\)
    \(+x \operatorname{Sin}[2 \log [x]] C_{2}\)
```

As in previous examples, we graph this general solution for various values of the arbitrary constants. See Figure 4-33.

```
In[718]:= toplot = Table[y[x], {c, -3, 3}, {c, - 3, 3}];
    grays = Table[GrayLevel[i], {i, 0, 0.7,0.7/8}];
    Plot[Evaluate[toplot], {x, 0, 2},
        PlotStyle }->\mathrm{ grays]
```


Figure 4-33 Various solutions of a nonhomogeneous Cauchy-Euler equation

4.7 Series Solutions

In calculus we learn that Maclaurin and Taylor polynomials can be used to approximate functions. This idea can be extended to approximating the solution of a differential equation. First, we introduce some necessary terminology.

4.7.I Power Series Solutions about Ordinary Points

Definition 20 (Standard Form, Ordinary, and Singular Points). Consider the equation $a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0$ and let $p(x)=a_{1}(x) / a_{2}(x)$ and $q(x)=a_{0}(x) / a_{2}(x)$. Then, the equation $a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0$ is equivalent to $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$, which is called the standard form of the equation. A number x_{0} is an ordinary point of this differential equation if both $p(x)$ and $q(x)$ are analytic at x_{0}. If x_{0} is not an ordinary point, x_{0} is called a singular point.

If x_{0} is an ordinary point of the differential equation $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$, we can write $p(x)=\sum_{n=0}^{\infty} b_{n}\left(x-x_{0}\right)^{n}$, where $b_{n}=p^{(n)}\left(x_{0}\right) / n!$, and $q(x)=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n}$, where $c_{n}=q^{(n)}\left(x_{0}\right) / n$!. Substitution into the equation $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$ results in

$$
y^{\prime \prime}+y^{\prime} \sum_{n=0}^{\infty} b_{n}\left(x-x_{0}\right)^{n}+y \sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n}=0
$$

If we assume that y is analytic at x_{0}, we can write $y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$. Because a power series can be differentiated term-by-term, we can compute the first and
second derivatives of y and substitute back into the equation to calculate the coefficients a_{n}. Thus, we obtain a power series solution of the equation.

Power Series Solution Method about an Ordinary Point

1. Assume that $y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$.
2. After taking the appropriate derivatives, substitute $y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ into the differential equation.
3. Find the unknown series coefficients a_{n}.
4. When applicable, apply any given initial conditions.

Because the differentiation of power series is necessary in this method for solving differential equations, we should make a few observations about this procedure. Consider the Maclaurin series $y=\sum_{n=0}^{\infty} a_{n} x^{n}$. Term-by-term differentiation of this series yields $y^{\prime}=\sum_{n=0}^{\infty} n a_{n} x^{n-1}$. Notice, however, that with the initial index value of $n=0$, the first term of the series is 0 so we rewrite the series in its equivalent form

$$
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n} .
$$

Similarly,

$$
y^{\prime \prime}=\sum_{n=1}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+1)(n+2) a_{n+2} x^{n} .
$$

We make use of these derivatives throughout the section.

EXAMPLE 4.7.1: (a) Find a general solution of $\left(4-x^{2}\right) y^{\prime}+y=0$.
(b) Solve the initial-value problem $\left\{\begin{array}{l}\left(4-x^{2}\right) y^{\prime}+y=0 \\ y(0)=1 .\end{array}\right.$

SOLUTION: Let $y=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then term-by-term differentiation yields $y^{\prime}=d y / d x=\sum_{n=0}^{\infty} n a_{n} x^{n-1}$ and substitution into the differential equation gives us

$$
\begin{aligned}
\left(4-x^{2}\right) \frac{d y}{d x}+y & =\left(4-x^{2}\right) \sum_{n=0}^{\infty} n a_{n} x^{n-1}+\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =\sum_{n=1}^{\infty} 4 n a_{n} x^{n-1}-\sum_{n=1}^{\infty} n a_{n} x^{n+1}+\sum_{n=0}^{\infty} a_{n} x^{n}=0 .
\end{aligned}
$$

Note that the first term in these three series involves x^{0}, x^{2}, and x^{0}, respectively. Thus, if we pull off the first two terms in the first and third series, all three series will begin with an x^{2} term. Doing so, we have

$$
\left(4 a_{1}+a_{0}\right)+\left(8 a_{2}+a_{1}\right) x+\sum_{n=3}^{\infty} 4 n a_{n} x^{n-1}-\sum_{n=1}^{\infty} n a_{n} x^{n+1}+\sum_{n=2}^{\infty} a_{n} x^{n}=0 .
$$

Unfortunately, the indices of these three series do not match, so we must change two of the three to match the third. Substitution of $n+1$ for n in $\sum_{n=3}^{\infty} 4 n a_{n} x^{n-1}$ yields

$$
\sum_{n+1=3}^{\infty} 4(n+1) a_{n+1} x^{n+1-1}=\sum_{n=2}^{\infty} 4(n+1) a_{n+1} x^{n}
$$

Similarly, substitution of $n-1$ for n in $\sum_{n=1}^{\infty} n a_{n} x^{n+1}$ yields

$$
\sum_{n-1=1}^{\infty}(n-1) a_{n-1} x^{n-1+1}=\sum_{n=2}^{\infty}(n-1) a_{n-1} x^{n}
$$

Therefore, after combining the three series, we have the equation

$$
\left(4 a_{1}+a_{0}\right)+\left(8 a_{2}+a_{1}\right) x+\sum_{n=2}^{\infty}\left[a_{n}+4(n+1) a_{n+1}-(n-1) a_{n-1}\right] x^{n}=0
$$

Because the sum of the terms on the left-hand side of the equation is zero, each coefficient must be zero. Equating the coefficients of x^{0} and x to zero yields $a_{1}=-\frac{1}{4} a_{0}$ and $a_{2}=-\frac{1}{8} a_{1}=\frac{1}{32} a_{0}$. When the series coefficient $a_{n}+4(n+1) a_{n+1}-(n-1) a_{n-1}$ is set to zero, we obtain the recurrence relation $a_{n+1}=\frac{(n-1) a_{n-1}-a_{n}}{4(n+1)}$ for the indices in the series, $n \geq 2$. After defining the recursively defined function a,

$$
\begin{aligned}
\operatorname{In}[719]:= & \text { Clear }[a, n] \\
& a\left[n_{-}\right]:=a[n]=\frac{(n-2) a[n-2]-a[n-1]}{4 n} ; \\
& a[0]=a 0 ; \\
& a[1]=-\frac{a 0}{4} ;
\end{aligned}
$$

we use the formula to determine the values of a_{n} for $n=2,3, \ldots$, 11, and give these values in the following table. In this case, note that we define a using the form a [n_] :=a [n] = . . . so that Mathematica "remembers" the values of a [n] computed. Thus, for particular values of n, Mathematica need not recompute $a[n-1]$ and $a[n-2]$ to compute a [n] if these values have previously been computed.

```
In[720]:= TableForm[Table[{n,a[n]},{n,0,11}]]
    0 a0
    1-\frac{a0}{4}
    2 a0
    3-
    4 11a0
    5 - - <1a0
Out [720]= 6 }\frac{69\textrm{aO}}{65536
    7 - < 187a0
    8 }\frac{1843a0}{8388608
    9-
    10 12767a0
    11-}\frac{32965a0}{1073741824
```

Therefore,

$$
y=a_{0}-\frac{1}{4} a_{0} x+\frac{1}{32} a_{0} x^{2}-\frac{3}{128} a_{0} x^{3}+\frac{11}{2048} a_{0} x^{4}-\frac{31}{8192} a_{0} x^{5}+\cdots
$$

(b) When we apply the initial condition $y(0)=1$, we substitute $x=0$ into the general solution obtained in (a) and set the result equal to 1 . Hence, $a_{0}=1$,

```
In[721]:= a0 = 1;
    TableForm[Table[{n, a[n]},{n,0,11}]]
```

$$
\begin{array}{ccl}
0 & 1 \\
1 & -\frac{1}{4} \\
2 & \frac{1}{32} \\
3 & -\frac{3}{128} \\
4 & \frac{11}{2048} \\
\hline 5 & -\frac{31}{8192} \\
\text { Out }[721]= & 6 & \frac{69}{65536} \\
7 & -\frac{187}{262144} \\
8 & \frac{1843}{8388608} \\
9 & -\frac{4859}{33554432} \\
10 & \frac{12767}{268435456} \\
11 & -\frac{32965}{1073741824}
\end{array}
$$

so the series solution of the initial-value problem is

$$
y=1-\frac{1}{4} x+\frac{1}{32} x^{2}-\frac{3}{128} x^{3}+\frac{11}{2048} x^{4}-\frac{31}{8192} x^{5}+\cdots
$$

Notice that the equation $\left(4-x^{2}\right) y^{\prime}+y=0$ is separable, so we can compute the solution directly with separation of variables by rewriting the equation as $-\frac{1}{y} d y=\frac{1}{4-x^{2}} d x$. Integrating yields $\ln y=\frac{1}{4}(\ln |x-2|-\ln \mid x+$ $2 \mid)=+C \ln \left|\frac{x-2}{x+2}\right|^{1 / 4}+C$. Applying the initial condition $y(0)=1$ results in $y=\left|\frac{x-2}{x+2}\right|^{1 / 4}$. Nearly identical results are obtained with DSolve.

$$
\operatorname{In}[722]:=\operatorname{Clear}[\mathrm{x}, \mathrm{y}]
$$

exactsol =

$$
\text { DSolve }\left[\left\{\left(4-x^{2}\right) y^{\prime}[x]+y[x]==0, y[0]==1\right\}\right.
$$

$$
\mathrm{y}[\mathrm{x}], \mathrm{x}]
$$

Out [722] $=\left\{\left\{\mathrm{y}[\mathrm{x}] \rightarrow \frac{(1-\mathrm{i})(-2+\mathrm{x})^{1 / 4}}{\sqrt{2}(2+\mathrm{x})^{1 / 4}}\right\}\right\}$
In [723]: $=$ formula $=\operatorname{Simplify}\left[-\frac{(-1)^{3 / 4}(-2+\mathbf{x})^{1 / 4}}{(2+\mathbf{x})^{1 / 4}}\right]$
Out [723] $=-(-1)^{3 / 4}\left(\frac{-2+x}{2+x}\right)^{1 / 4}$

Figure 4-34 Comparison of exact solution to a polynomial approximation of the solution

We can approximate the solution of the problem by taking a finite number of terms of the series solution.

$$
\begin{aligned}
\text { In }[724]:= & \text { yapprox }=\sum_{i=0}^{10} a[i] \mathbf{x}^{i} \\
\text { Out }[724]= & 1-\frac{x}{4}+\frac{x^{2}}{32}-\frac{3 x^{3}}{128}+\frac{11 x^{4}}{2048}-\frac{31 x^{5}}{8192}+\frac{69 x^{6}}{65536} \\
& -\frac{187 x^{7}}{262144}+\frac{1843 x^{8}}{8388608}-\frac{4859 x^{9}}{33554432}+\frac{12767 x^{10}}{268435456}
\end{aligned}
$$

The graph of the polynomial approximation of degree 10 is shown in Figure 4-34 along with the solution obtained through separation of variables.

```
In[725]:= p1 = Plot[{formula, yapprox}, {x, -2, 2},
    PlotStyle }->\mathrm{ {GrayLevel[0.5],
    GrayLevel[0]}]
```

The graph shows that the accuracy of the approximation decreases near $x= \pm 2$, which are the singular points of the differential equation. (The reason for this is discussed in the theorem following this example.)

Alternatively, we can take advantage of Series to help us form a series solution of the problem.

First, we use Series to compute the first few terms of the power series expansion for the left-hand side of the equation about $x=0$ and name the result serapprox.

```
In[726]:= Clear[x,y]
    serapprox = Series [(4-\mp@subsup{x}{}{2})\mp@subsup{y}{}{\prime}[x]+y[x],
    {x,0,10}]
```

$$
\begin{aligned}
\text { Out }[726]= & \left(y[0]+4 y^{\prime}[0]\right)+\left(y^{\prime}[0]+4 y^{\prime \prime}[0]\right) x \\
& +\left(-y^{\prime}[0]+\frac{y^{\prime \prime}[0]}{2}+2 y^{(3)}[0]\right) x^{2} \\
& +\left(-y^{\prime \prime}[0]+\frac{1}{6} y^{(3)}[0]+\frac{2}{3} y^{(4)}[0]\right) x^{3} \\
& +\left(-\frac{1}{2} y^{(3)}[0]+\frac{1}{24} y^{(4)}[0]+\frac{1}{6} y^{(5)}[0]\right) x^{4} \\
& +\left(-\frac{1}{6} y^{(4)}[0]+\frac{1}{120} y^{(5)}[0]+\frac{1}{30} y^{(6)}[0]\right) x^{5} \\
& +\left(-\frac{1}{24} y^{(5)}[0]+\frac{1}{720} y^{(6)}[0]+\frac{1}{180} y^{(7)}[0]\right) x^{6} \\
& +\left(-\frac{1}{120} Y^{(6)}[0]+\frac{Y^{(7)}[0]}{5040}+\frac{Y^{(8)}[0]}{1260}\right) x^{7} \\
& +\left(-\frac{1}{720} y^{(7)}[0]+\frac{Y^{(8)}[0]}{40320}+\frac{Y^{(9)}[0]}{10080}\right) x^{8} \\
& +\left(-\frac{Y^{(8)}[0]}{5040}+\frac{Y^{(9)}[0]}{362880}+\frac{Y^{(10)}[0]}{90720}\right) x^{9} \\
& +\left(-\frac{Y^{(9)}[0]}{40320}+\frac{Y^{(10)}[0]}{3628800}+\frac{Y^{(11)}[0]}{907200}\right) x^{10}+0[x] 11
\end{aligned}
$$

Then, we use LogicalExpand to form the system of equations obtained by equating each coefficient in serapprox to zero.

$$
\begin{aligned}
\text { In }[727]:= & \text { sysofeqs = LogicalExpand }[\text { serapprox }==0] \\
\text { Out }[727]= & Y[0]+4 Y^{\prime}[0]==0 \& \& y^{\prime}[0]+4 Y^{\prime \prime}[0]==0 \& \& \\
& -Y^{\prime}[0]+\frac{Y^{\prime \prime}[0]}{2}+2 Y^{(3)}[0]==0 \& \& \\
& -Y^{\prime \prime}[0]+\frac{1}{6} Y^{(3)}[0]+\frac{2}{3} Y^{(4)}[0]==0 \& \& \\
& -\frac{1}{2} Y^{(3)}[0]+\frac{1}{24} Y^{(4)}[0]+\frac{1}{6} Y^{(5)}[0]==0 \& \& \\
& -\frac{1}{6} Y^{(4)}[0]+\frac{1}{120} Y^{(5)}[0]+\frac{1}{30} Y^{(6)}[0]==0 \& \& \\
& -\frac{1}{24} Y^{(5)}[0]+\frac{1}{720} Y^{(6)}[0]+\frac{1}{180} Y^{(7)}[0]==0 \& \& \\
& -\frac{1}{120} Y^{(6)}[0]+\frac{Y^{(7)}[0]}{5040}+\frac{Y^{(8)}[0]}{1260}==0 \& \& \\
& -\frac{1}{720} Y^{(7)}[0]+\frac{Y^{(8)}[0]}{40320}+\frac{Y^{(9)}[0]}{10080}==0 \& \& \& \\
& -\frac{Y^{(8)}[0]}{5040}+\frac{Y^{(9)}[0]}{362880}+\frac{Y^{(10)}[0]}{90720}==0 \& \& \\
& -\frac{Y^{(9)}[0]}{40320}+\frac{Y^{(10)}[0]}{3628800}+\frac{Y^{(11)}[0]}{907200}==0
\end{aligned}
$$

We want to solve this system of equations for $y^{\prime}(0), y^{\prime \prime}(0), \ldots, y^{(11)}(0)$ so that the results are in terms of $y(0)$. (Note that the symbol $\partial_{\{\mathrm{x}, \mathrm{i}\}} \mathrm{y}[\mathrm{x}]$
represents $D[y[x],\{x, i\}]$ so the same result is obtained by entering vars=Table[D[y[x],\{x, i\}]/.(x -> 0), \{i,1,11\}].)

$$
\begin{aligned}
\text { In }[728]:= & \text { vars }=\operatorname{Table}\left[\partial_{\{x, i\}} Y[\mathbf{x}] / . \mathbf{x} \rightarrow 0,\{\mathbf{i}, 1,11\}\right] \\
\text { Out }[728]= & \left\{\mathrm{Y}^{\prime}[0], \mathrm{Y}^{\prime \prime}[0], \mathrm{Y}^{(3)}[0], \mathrm{Y}^{(4)}[0], \mathrm{Y}^{(5)}[0], \mathrm{Y}^{(6)}[0],\right. \\
& \left.\mathrm{Y}^{(7)}[0], \mathrm{Y}^{(8)}[0], \mathrm{Y}^{(9)}[0], \mathrm{Y}^{(10)}[0], \mathrm{Y}^{(11)}[0]\right\}
\end{aligned}
$$

We then use Solve to solve the system of equations sysofeqs for the unknowns specified in vars.

$$
\begin{aligned}
& \text { In [729]: }=\text { sols = Solve[sysofeqs, vars] } \\
& \text { Out [729] }=\left\{\left\{\mathrm{y}^{\prime}[0] \rightarrow-\frac{\mathrm{Y}[0]}{4}, \mathrm{y}^{\prime \prime}[0] \rightarrow \frac{\mathrm{Y}[0]}{16}\right.\right. \text {, } \\
& \mathrm{Y}^{(3)}[0] \rightarrow-\frac{9 \mathrm{Y}[0]}{64}, \mathrm{Y}^{(4)}[0] \rightarrow \frac{33 \mathrm{Y}[0]}{256} \text {, } \\
& \mathrm{Y}^{(5)}[0] \rightarrow-\frac{465 \mathrm{Y}[0]}{1024}, \mathrm{Y}^{(6)}[0] \rightarrow \frac{3105 \mathrm{y}[0]}{4096} \text {, } \\
& \mathrm{Y}^{(7)}[0] \rightarrow-\frac{58905 \mathrm{y}[0]}{16384}, \mathrm{Y}^{(8)}[0] \rightarrow \frac{580545 \mathrm{y}[0]}{65536} \text {, } \\
& \mathrm{Y}^{(9)}[0] \rightarrow-\frac{13775265 \mathrm{Y}[0]}{262144} \text {, } \\
& \mathrm{Y}^{(10)}[0] \rightarrow \frac{180972225 \mathrm{Y}[0]}{1048576} \text {, } \\
& \left.\left.\mathrm{Y}^{(11)}[0] \rightarrow-\frac{5140067625 \mathrm{y}[0]}{4194304}\right\}\right\}
\end{aligned}
$$

The power series solution is formed by substituting these values into the power series for $y(x)$ about $x=0$ with ReplaceAll (/.).

$$
\begin{aligned}
\text { In }[730]:= & \text { sersol }=\text { Series }[y[x],\{\mathbf{x}, 0,11\}] / . \text { sols }[[1]] \\
\text { Out }[730]= & y[0]-\frac{1}{4} y[0] x+\frac{1}{32} y[0] x^{2}-\frac{3}{128} y[0] x^{3} \\
& +\frac{11 y[0] x^{4}}{2048}-\frac{31 y[0] x^{5}}{8192}+\frac{69 y[0] x^{6}}{65536} \\
& -\frac{187 y[0] x^{7}}{262144}+\frac{1843 y[0] x^{8}}{8388608}-\frac{4859 y[0] x^{9}}{33554432} \\
& +\frac{12767 y[0] x^{10}}{268435456}-\frac{32965 y[0] x^{11}}{1073741824}+O[x]^{12}
\end{aligned}
$$

The solution to the initial-value problem is obtained by replacing each occurrence of $y(0)$ in sersol by 1 .

$$
\begin{aligned}
\text { In }[731]:= & \text { sol }=\text { sersol } / \cdot y[0] \rightarrow 1 \\
\text { Out }[731]= & 1-\frac{x}{4}+\frac{x^{2}}{32}-\frac{3 x^{3}}{128}+\frac{11 x^{4}}{2048}-\frac{31 x^{5}}{8192}+\frac{69 x^{6}}{65536}-\frac{187 x^{7}}{262144} \\
& +\frac{1843 x^{8}}{8388608}-\frac{4859 x^{9}}{33554432}+\frac{12767 x^{10}}{268435456}-\frac{32965 x^{11}}{1073741824} \\
& +O[\mathrm{x}]^{12}
\end{aligned}
$$

A proof of this theorem can be found in more advanced texts, such as Rabenstein's Introduction to Ordinary Differential Equations, [22].

Remember that this result cannot be evaluated for particular values of x because of the o-term indicating the omitted higher-order terms of the series. To obtain an approximation of the solution that can be evaluated for particular values of x, use Normal to remove the O-term.

$$
\begin{aligned}
\text { In [732] : }= & \text { polyapprox = Normal[sol] } \\
\text { Out [732] }= & 1-\frac{x}{4}+\frac{x^{2}}{32}-\frac{3 x^{3}}{128}+\frac{11 x^{4}}{2048}-\frac{31 x^{5}}{8192}+\frac{69 x^{6}}{65536}-\frac{187 x^{7}}{262144} \\
& +\frac{1843 x^{8}}{8388608}-\frac{4859 x^{9}}{33554432}+\frac{12767 x^{10}}{268435456}-\frac{32965 x^{11}}{1073741824}
\end{aligned}
$$

The following theorem explains where the approximation of the solution of the differential equation by the series is valid.

Theorem 9 (Convergence of a Power Series Solution). Let $x=x_{0}$ be an ordinary point of the differential equation $a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0$ and suppose that R is the distance from $x=x_{0}$ to the closest singular point of the equation. Then the power series solution $y=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ converges at least on the interval $\left(x_{0}-R, x_{0}+R\right)$.

The theorem indicates that the approximation may not be as accurate near singular points of the equation. Hence, we understand why the approximation in Example 4.7.1 breaks down near $x= \pm 2$, the closest singular point to the ordinary point $x=0$. Of course, $x=0$ is not an ordinary point for every differential equation. However, because the series $y=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ is easier to work with if $x_{0}=0$, we can always make a transformation so that we can use $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ to solve any linear equation. For example, suppose that $x=x_{0}$ is an ordinary point of a linear equation. Then, if we make the change of variable $t=x-x_{0}$, then $t=0$ corresponds to $x=x_{0}$, so $t=0$ is an ordinary point of the transformed equation.

EXAMPLE 4.7.2 (Legendre's Equation): Legendre's equation is the equation

$$
\begin{equation*}
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+k(k+1) y=0, \tag{4.24}
\end{equation*}
$$

where k is a constant, named after the French mathematician Adrien Marie Legendre (1752-1833). Find a general solution of Legendre's equation.

SOLUTION: In standard form, the equation is

$$
\frac{d^{2} y}{d x^{2}}-\frac{2 x}{1-x^{2}} \frac{d y}{d x}+\frac{k(k+1)}{1-x^{2}} y=0 .
$$

There is a solution to the equation of the form $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ because $x=0$ is an ordinary point. This solution will converge at least on the interval $(-1,1)$ because the closest singular points to $x=0$ are $x= \pm 1$.

Substitution of this function and its derivatives

$$
y^{\prime}=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n} \quad \text { and } \quad y^{\prime \prime}=\sum_{n=0}^{\infty}(n+1)(n+2) a_{n+2} x^{n}
$$

into Legendre's equation (4.24) and simplifying the results yields

$$
\begin{aligned}
& {\left[2 a_{2}+k(k+1) a_{0}\right]+\left[-2 a_{1}+k(k+1) a_{1}+6 a_{3}\right] x+\sum_{n=4}^{\infty} n(n-1) a_{n} x^{n-2}} \\
& -\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n}-\sum_{n=2}^{\infty} 2 n a_{n} x^{n}+\sum_{n=2}^{\infty} k(k+1) a_{n} x^{n}=0 .
\end{aligned}
$$

After substituting $n+2$ for each occurrence of n in the first series and simplifying, we have

$$
\begin{aligned}
& {\left[2 a_{2}+k(k+1) a_{0}\right]+\left[-2 a_{1}+k(k+1) a_{1}+6 a_{3}\right] x+\sum_{n=2}^{\infty}\left\{(n+2)(n+1) a_{n+2}\right.} \\
& \left.+[-n(n-1)-2 n+k(k+1)] a_{n}\right\} x^{n}=0 .
\end{aligned}
$$

Equating the coefficients to zero, we find a_{2}, a_{3}, and a_{n+2} with Solve.

$$
\left.\begin{array}{rl}
\text { In }[733]:= & \text { Clear }[a, k] \\
& \text { Solve }\left[2 a_{2}+k(k+1) a_{0}==0, a_{2}\right] \\
\text { Out }[733]= & \left\{\left\{a_{2} \rightarrow-\frac{1}{2} k(1+k) a_{0}\right\}\right\} \\
\text { In }[734]:= & \text { Solve }\left[-2 a_{1}+k(k+1) a_{1}+6 a_{3}==0, a_{3}\right] \\
\text { Out }[734]= & \left\{\left\{a_{3} \rightarrow \frac{1}{6}\left(2 a_{1}-k a_{1}-k^{2} a_{1}\right)\right\}\right\} \\
\text { In }[735]:= & \text { genform }= \\
& \text { Solve }[\\
\qquad(n+2)(n+1) a_{n+2}+(-n(n-1) \\
& \left.-2 n+k(k+1)) a_{n}=0, a_{n+2}\right]
\end{array}\right\} \begin{aligned}
\text { Out }[735]= & \left\{\left\{a_{2+n} \rightarrow-\frac{\left(k+k^{2}-n-n^{2}\right) a_{n}}{2+3 n+n^{2}}\right\}\right\} \\
\text { In }[736]:= & \text { Factor }[\text { genform }[[1,1,2]]] \\
\text { Out }[736]= & -\frac{(k-n)(1+k+n) a_{n}}{(1+n)(2+n)}
\end{aligned}
$$

We obtain a formula for a_{n} by replacing each occurrence of n in a_{n+2} by $n-2$.

$$
\begin{aligned}
& \text { In }[737]:=\text { genform }[[1,1,2]] / \cdot n->n-2 \\
& \text { Out }[737]=-\frac{\left(2+k+k^{2}-(-2+n)^{2}-n\right) a_{-2+n}}{2+3(-2+n)+(-2+n)^{2}}
\end{aligned}
$$

Using this formula, we find several coefficients with Table.

$$
\begin{aligned}
& \operatorname{In}[738]:=\mathrm{a}_{\mathrm{n}_{-}}:=\mathrm{a}_{\mathrm{n}}=\frac{\left(-2-\mathrm{k}-\mathrm{k}^{2}+(-2+\mathrm{n})^{2}+\mathrm{n}\right) \mathrm{a}_{-2+\mathrm{n}}}{(-1+\mathrm{n}) \mathrm{n}} ; \\
& a_{1}=a 1 \text {; } \\
& \mathrm{a}_{0}=\mathrm{a} 0 \text {; } \\
& \text { In [739]:= Table }\left[\left\{n, a_{n}\right\},\{n, 2,10\}\right] / / \text { TableForm } \\
& 2 \frac{1}{2} \mathrm{aO}\left(-k-k^{2}\right) \\
& 3 \frac{1}{6} \text { al }\left(2-k-k^{2}\right) \\
& 4 \frac{1}{24} \mathrm{aO}\left(-\mathrm{k}-\mathrm{k}^{2}\right)\left(6-\mathrm{k}-\mathrm{k}^{2}\right) \\
& 5 \frac{1}{120} \text { al }\left(2-k-k^{2}\right)\left(12-k-k^{2}\right) \\
& 6 \frac{1}{720} \text { ao }\left(-k-k^{2}\right)\left(6-k-k^{2}\right)\left(20-k-k^{2}\right) \\
& 7 \frac{\mathrm{a} 1\left(2-\mathrm{k}-\mathrm{k}^{2}\right)\left(12-\mathrm{k}-\mathrm{k}^{2}\right)\left(30-\mathrm{k}-\mathrm{k}^{2}\right)}{5040} \\
& \text { Out [739] }=8 \frac{\mathrm{a} 0\left(-\mathrm{k}-\mathrm{k}^{2}\right)\left(6-\mathrm{k}-\mathrm{k}^{2}\right)}{40320} \\
& +\frac{\left(20-\mathrm{k}-\mathrm{k}^{2}\right)\left(42-\mathrm{k}-\mathrm{k}^{2}\right)}{40320} \\
& 9 \frac{\mathrm{a} 1\left(2-\mathrm{k}-\mathrm{k}^{2}\right)\left(12-\mathrm{k}-\mathrm{k}^{2}\right)}{362880} \\
& +\frac{\left(30-\mathrm{k}-\mathrm{k}^{2}\right)\left(56-\mathrm{k}-\mathrm{k}^{2}\right)}{362880} \\
& 10 \frac{\mathrm{a} 0\left(-\mathrm{k}-\mathrm{k}^{2}\right)\left(6-\mathrm{k}-\mathrm{k}^{2}\right)\left(20-\mathrm{k}-\mathrm{k}^{2}\right)}{3628800} \\
& +\frac{\left(42-\mathrm{k}-\mathrm{k}^{2}\right)\left(72-\mathrm{k}-\mathrm{k}^{2}\right)}{3628800}
\end{aligned}
$$

Hence, we have the two linearly independent solutions

$$
\begin{aligned}
y_{1}= & a_{0}\left(1-\frac{k(k+1)}{2!} x^{2}+\frac{(2-k)(3+k) k(k+1)}{4!} x^{4}\right. \\
& \left.-\frac{(4-k)(5+k)(2-k)(3+k) k(k+1)}{6!} x^{6}+\cdots\right)
\end{aligned}
$$

and

$$
\begin{aligned}
y_{2}= & a_{1}\left(x-\frac{(k-1)(k+2)}{3!} x^{3}+\frac{(3-k)(4+k)(k-1)(k+2)}{5!} x^{5}\right. \\
& \left.-\frac{(5-k)(6+k)(3-k)(4+k)(k-1)(k+2)}{7!} x^{7}+\cdots\right)
\end{aligned}
$$

so a general solution of Legendre's equation (4.24) is

$$
\begin{aligned}
y= & y_{1}+y_{2} \\
y_{1}= & a_{0}\left(1-\frac{k(k+1)}{2!} x^{2}+\frac{(2-k)(3+k) k(k+1)}{4!} x^{4}\right. \\
& \left.-\frac{(4-k)(5+k)(2-k)(3+k) k(k+1)}{6!} x^{6}+\cdots\right) \\
& +a_{1}\left(x-\frac{(k-1)(k+2)}{3!} x^{3}+\frac{(3-k)(4+k)(k-1)(k+2)}{5!} x^{5}\right. \\
& \left.-\frac{(5-k)(6+k)(3-k)(4+k)(k-1)(k+2)}{7!} x^{7}+\cdots\right) .
\end{aligned}
$$

Note that DSolve is able to find a general solution as well-the result is given in terms of the functions LegendreP and LegendreQ, Mathematica's linearly independent solutions of Legendre's equation.

$$
\begin{aligned}
\text { In }[740]:= & \text { DSolve }\left[\left(1-\mathbf{x}^{2}\right) \mathbf{y}^{\prime \prime}[\mathbf{x}]-2 \mathbf{x} \mathbf{y}^{\prime}[\mathbf{x}]\right. \\
& +\mathbf{k}(\mathbf{k}+1) \mathbf{y}[\mathbf{x}]==0, \mathbf{y}[\mathbf{x}], \mathbf{x}] \\
\text { Out }[740]= & \{\{y[\mathrm{x}] \rightarrow C[1] \text { LegendreP }[\mathrm{k}, \mathrm{x}] \\
& +C[2] \text { LegendreQ }[k, x]\}\}
\end{aligned}
$$

An interesting observation from the general solution to Legendre's equation is that the series solutions terminate for integer values of k. If k is an even integer, the first series terminates while if k is an odd integer the second series terminates. Therefore, polynomial solutions are found for integer values of k. Because these polynomials are useful and are encountered in numerous applications, we have a special notation for them: $P_{n}(x)$ is called the Legendre polynomial of degree n and represents an nth degree polynomial solution to Legendre's equation. The Mathematica command LegendreP [n, x] returns $P_{n}(x)$.

We use Table together with LegendreP to list the first few Legendre polynomials.

```
In[741]:= toplot = Table[LegendreP[n, x], {n, 0, 5}];
```


Figure 4-35 Plots of the first few Legendre polynomials

$$
\begin{aligned}
& \text { TableForm[toplot] } \\
& 1 \\
& x \\
\text { Out }[741]= & -\frac{1}{2}+\frac{3 x^{2}}{2} \\
& -\frac{3 x}{2}+\frac{5 x^{3}}{2} \\
& \frac{3}{8}-\frac{15 x^{2}}{4}+\frac{35 x^{4}}{8} \\
& \frac{15 x}{8}-\frac{35 x^{3}}{4}+\frac{63 x^{5}}{8}
\end{aligned}
$$

We graph these polynomials for $-2 \leq x \leq 2$ in Figure 4-35.

$$
\begin{aligned}
\text { In }[742]:= & \text { grays } \left.=\text { Table[GrayLevel }[i],\left\{i, 0,0.6, \frac{0.6}{5}\right\}\right] ; \\
& \text { Plot }[\text { Evaluate }[\text { toplot], }\{x,-2,2\}, \\
& \text { PlotRange } \rightarrow\{-2,2\}, \text { AspectRatio } \rightarrow 1, \\
& \text { PlotStyle } \rightarrow \text { grays }]
\end{aligned}
$$

Another interesting observation about the Legendre polynomials is that they satisfy the relationship $\int_{-1}^{1} P_{m}(x) P_{n}(x) d x=0, m \neq n$, called an orthogonality condition, which we verify with Integrate for $m, n=0$, $1, \ldots, 6$.

$$
\begin{aligned}
\text { In }[743]:= & \operatorname{Table}\left[\int_{-1}^{1} \text { LegendreP }[n, x] \text { LegendreP }[m, x] d x,\right. \\
& \{n, 0,6\},\{\mathrm{m}, 0,6\}] / / \text { TableForm } \\
& 2 \\
& 0 \\
0 & \frac{2}{3}
\end{aligned} 0
$$

Note that the entries down the diagonal of this result correspond to the value of $\int_{-1}^{1}\left[P_{n}(x)\right]^{2} d x$ for $n=0,1, \ldots, 6$ and indicate that $\int_{-1}^{1}\left[P_{n}(x)\right]^{2} d x=$ $2 /(2 n+1)$.

4.7.2 Series Solutions about Regular Singular Points

In the previous section, we used a power series expansion about an ordinary point to find (or approximate) the solution of a differential equation. We noted that these series solutions may not converge near the singular points of the equation.

In this section, we investigate the problem of obtaining a series expansion about a singular point. We begin with the following classification of singular points.

Definition 21 (Regular and Irregular Singular Points). Let $x=x_{0}$ be a singular point of $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 . x=x_{0}$ is a regular singular point of the equation if both $\left(x-x_{0}\right) p(x)$ and $\left(x-x_{0}\right)^{2} q(x)$ are analytic at $x=x_{0}$. If $x=x_{0}$ is not a regular singular point, then $x=x_{0}$ is called an irregular singular point of the equation.

Sometimes this definition is difficult to apply. Therefore, we supply the following definition for polynomial coefficients $p(x)$ and $q(x)$ of the equation $y^{\prime \prime}+p(x) y^{\prime}+$ $q(x) y=0$.

Definition 22 (Singular Points of Equations with Polynomial Coefficients). Suppose that $p(x)$ and $q(x)$ are polynomials with no common factors. If after reducing $p(x)$ and $q(x)$ to lowest terms, the highest power of $x-x_{0}$ in the denominator of $p(x)$ is 1 and the highest power of $x-x_{0}$ in the denominator of $q(x)$ is 2 , then $x=x_{0}$ is a regular singular point of the equation. Otherwise, it is an irregular singular point.

EXAMPLE 4.7.3: Classify the singular points of each of the following equations: (a) $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\mu^{2}\right) y=0$ (Bessel's equation), and (b) $\left(x^{2}-16\right)^{2} y^{\prime \prime}+(x-4) y^{\prime}+y=0$.

SOLUTION: (a) In standard form, Bessel's equation is

$$
\frac{d^{2} y}{d x^{2}}+\frac{1}{x} \frac{d y}{d x}+\left(1-\frac{\mu^{2}}{x^{2}}\right) y=0
$$

so $x=0$ is a singular point of this equation because $p(x)=1 / x$ is not analytic at $x=0$. Because $x p(x)=1$ and $x^{2}\left(1-\frac{\mu^{2}}{x^{2}}\right)=x^{2}-\mu^{2}, x=0$ is a regular singular point. We see that DSolve is able to find a general solution of Bessel's equation, although the result is given in terms of the Bessel functions, BesselJ and Bessely.

```
In [744]: \(=\) DSolve \(\left[\mathbf{x}^{2} \mathbf{y}^{\prime \prime}[\mathbf{x}]+\mathbf{x} \mathrm{y}^{\prime}[\mathbf{x}]+\left(\mathrm{x}^{2}-\mu^{2}\right) \mathrm{y}[\mathbf{x}]==0\right.\),
    \(y[x], x]\)
\(\begin{aligned} \text { Out }[744]= & \{\{\mathrm{y}[\mathrm{x}] \rightarrow \operatorname{Bessel}[\mu, \mathrm{x}] \mathrm{C}[1] \\ & +\operatorname{Bessel} \mathrm{Y}[\mu, \mathrm{x}] \mathrm{C}[2]\}\}\end{aligned}\)
```

(b) In standard form, the equation is

$$
\begin{array}{r}
\frac{d^{2} y}{d x^{2}}+\frac{x-4}{\left(x^{2}-16\right)^{2}} \frac{d y}{d x}+\frac{1}{\left(x^{2}-16\right)^{2}} y=0 \quad \text { or } \\
\frac{d^{2} y}{d x^{2}}+\frac{1}{(x-4)(x+4)^{2}} \frac{d y}{d x}+\frac{1}{(x-4)^{2}(x+4)^{2}} y=0 .
\end{array}
$$

Thus, the singular points are $x=4$ and $x=-4$. For $x=4$, we have

$$
(x-4) p(x)=(x-4) \frac{1}{(x-4)(x+4)^{2}}=\frac{1}{(x+4)^{2}}
$$

and

$$
(x-4)^{2} q(x)=(x-4)^{2} \frac{1}{(x-4)^{2}(x+4)^{2}}=\frac{1}{(x+4)^{2}} .
$$

Both of these functions are analytic at $x=4$, so $x=4$ is a regular singular point.

For $x=-4$,

$$
(x+4) p(x)=(x+4) \frac{1}{(x-4)(x+4)^{2}}=\frac{1}{(x-4)(x+4)},
$$

which is not analytic at $x=-4$. Thus, $x=-4$ is an irregular singular point. DSolve is unable to find a general solution of this equation.

4.7.3 Method of Frobenius

Now we illustrate how a series expansion about a regular singular point can be used to solve an equation.
Theorem 10 (Method of Frobenius). Let $x=x_{0}$ be a regular singular point of $y^{\prime \prime}+$ $p(x) y^{\prime}+q(x) y=0$. Then this differential equation has at least one solution of the form

$$
y=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n+r},
$$

where r is a constant that must be determined. This solution is convergent at least on some interval $\left|x-x_{0}\right|<R, R>0$.

EXAMPLE 4.7.4: Find a general solution of $x y^{\prime \prime}+(1+x) y^{\prime}-\frac{1}{16 x} y=0$.

SOLUTION: First, we note that in standard form this equation is

$$
\frac{d^{2} y}{d x^{2}}+\frac{1+x}{x} \frac{d y}{d x}-\frac{1}{16 x^{2}} y=0
$$

Thus, $x=0$ is a singular point. Moreover, because $x p(x)=x \cdot \frac{1+x}{x}=1+x$ and $x^{2} q(x)=x^{2} \cdot-\frac{1}{16 x^{2}}=-16$ are both analytic at $x=0$, we classify $x=0$ as a regular singular point. By the Method of Frobenius, there is at least one solution of the form $y=\sum_{n=0}^{\infty} a_{n} x^{n+r}$. Differentiating this function twice, we obtain

$$
y^{\prime}=\sum_{n=0}^{\infty} a_{n}(n+r) x^{n+r-1} \quad \text { and } \quad y^{\prime \prime}=\sum_{n=0}^{\infty} a_{n}(n+r)(n+r-1) x^{n+r-2}
$$

Substituting these series into the differential equation yields

$$
\begin{aligned}
& x \sum_{n=0}^{\infty} a_{n}(n+r)(n+r-1) x^{n+r-2}+(1+x) \sum_{n=0}^{\infty} a_{n}(n+r) x^{n+r-1} \\
& -\frac{1}{16 x} \sum_{n=0}^{\infty} a_{n} x^{n+r}=0 \\
& \sum_{n=0}^{\infty} a_{n}(n+r)(n+r-1) x^{n+r-1}+\sum_{n=0}^{\infty} a_{n}(n+r) x^{n+r-1}+\sum_{n=0}^{\infty} a_{n}(n+r) x^{n+r} \\
& -\sum_{n=0}^{\infty} \frac{1}{16} a_{n} x^{n+r-1}=0 .
\end{aligned}
$$

Notice that the first term in three of the four series begins with an x^{r-1} term while the first term in $\sum_{n=0}^{\infty} a_{n}(n+r) x^{n+r}$ begins with an x^{r} term, so we must pull off the first terms in the other three series so that they match. Hence,

$$
\begin{aligned}
& {\left[r(r-1)+r-\frac{1}{16}\right] a_{0} x^{r-1}+\sum_{n=1}^{\infty} a_{n}(n+r)(n+r-1) x^{n+r-1}} \\
& +\sum_{n=1}^{\infty} a_{n}(n+r) x^{n+r-1}+\sum_{n=0}^{\infty} a_{n}(n+r) x^{n+r}-\sum_{n=1}^{\infty} \frac{1}{16} a_{n} x^{n+r-1}=0 .
\end{aligned}
$$

Changing the index in the third series by substituting $n-1$ for each occurrence of n, we have

$$
\sum_{n-1=0}^{\infty} a_{n-1}(n-1+r) x^{n-1+r}=\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r-1}
$$

After simplification, we have

$$
\begin{aligned}
& {\left[r(r-1)+r-\frac{1}{16}\right] a_{0} x^{r-1}+\sum_{n=1}^{\infty}\left\{\left[(n+r)(n+r-1)+(n+r)-\frac{1}{16}\right] a_{n}\right.} \\
& \left.+(n+r-1) a_{n-1}\right\} x^{n+r-1}=0 .
\end{aligned}
$$

We equate the coefficients to zero to find the coefficients and the value of r. Assuming that $a_{0} \neq 0$ so that the first term of our series solution is not zero, we have from the first term the equation

$$
r(r-1)+r-\frac{1}{16}=0
$$

called the indicial equation, because it yields the value of r. In this case,

$$
\begin{aligned}
& \text { In }[745]:=\text { Solve }[r(r-1)+r-1 / 16==0] \\
& \text { Out }[745]=\left\{\left\{r \rightarrow-\frac{1}{4}\right\},\left\{r \rightarrow \frac{1}{4}\right\}\right\}
\end{aligned}
$$

the roots are $r_{1}=1 / 4$ and $r_{2}=-1 / 4$. Starting with the larger of the two roots, $r_{1}=1 / 4$, we assume that $y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+1 / 4}=x^{1 / 4} \sum_{n=0}^{\infty} a_{n} x^{n}$. Equating the series coefficient to zero, we have

$$
\left[\left(n+\frac{1}{4}\right)\left(n+\frac{1}{4}-1\right)+\left(n+\frac{1}{4}\right)-\frac{1}{16}\right] a_{n}+\left(n+\frac{1}{4}-1\right) a_{n-1}=0,
$$

which we solve for a_{n}.

$$
\begin{aligned}
\text { In }[746]:= & \text { Solve }[\\
& \left(\left(n+\frac{1}{4}\right)\left(n+\frac{1}{4}-1\right)+\left(n+\frac{1}{4}\right)-\frac{1}{16}\right) a_{n} \\
& \left.+\left(n+\frac{1}{4}-1\right) a_{n-1}==0, a_{n}\right] \\
\text { Out }[746]= & \left\{\left\{a_{n} \rightarrow-\frac{(-3+4 n) a_{-1+n}}{2 n(1+2 n)}\right\}\right\}
\end{aligned}
$$

Several of these coefficients are calculated using this formula with Table.

$$
\begin{aligned}
& \operatorname{In}[747]:=a_{n_{-}}:=a_{n}=-\frac{(-3+4 n) a_{-1+n}}{2\left(n+2 n^{2}\right)} \\
& \mathrm{a}_{0}=\mathrm{aO} \text {; } \\
& \text { TableForm[Table[\{n, } \left.\left.\left.a_{n}\right\},\{n, 0,10\}\right]\right] \\
& 0 \text { a0 } \\
& 1-\frac{\mathrm{aO}}{6} \\
& 2 \frac{\mathrm{aO}}{24} \\
& 3-\frac{\mathrm{a} 0}{112} \\
& 4 \frac{13 a 0}{8064} \\
& \text { Out }[747]=\quad 5-\frac{221 a 0}{887040} \\
& 6 \frac{17 a 0}{506880} \\
& 7-\frac{17 \mathrm{a0}}{4257792} \\
& 8 \frac{29 a 0}{68124672} \\
& 9-\frac{29 \mathrm{a0}}{706019328} \\
& 10 \frac{1073 a 0}{296528117760}
\end{aligned}
$$

Therefore, one solution to the equation is

$$
y_{1}=a_{0} x^{1 / 4}\left(1-\frac{1}{6} x+\frac{1}{24} x^{2}-\frac{1}{112} x^{3}+\frac{13}{8064} x^{4}+\cdots\right)
$$

For $r_{2}=-1 / 4$, we assume that $y_{2}=\sum_{n=0}^{\infty} a_{n} x^{n-1 / 4}=x^{-1 / 4} \sum_{n=0}^{\infty} a_{n} x^{n}$. Then, we have

$$
\left[\left(n-\frac{1}{4}\right)\left(n-\frac{1}{4}-1\right)+\left(n-\frac{1}{4}\right)-\frac{1}{16}\right] b_{n}+\left(n-\frac{1}{4}-1\right) b_{n-1}=0
$$

which we solve for b_{n} with Solve.

```
In [748]:= Solve[
    \(\left(\left(n-\frac{1}{4}\right)\left(n-\frac{1}{4}-1\right)+\left(n-\frac{1}{4}\right)-\frac{1}{16}\right) b_{n}\)
    \(\left.+\left(n-\frac{1}{4}-1\right) b_{n-1}==0, b_{n}\right]\)
Out \([748]=\left\{\left\{\mathrm{b}_{\mathrm{n}} \rightarrow-\frac{(-5+4 \mathrm{n}) \mathrm{b}_{-1+\mathrm{n}}}{2 \mathrm{n}(-1+2 \mathrm{n})}\right\}\right\}\)
```

The value of several coefficients determined with this formula are computed as well.

$$
\begin{aligned}
& \operatorname{In}[749]:=b_{n_{-}}:=b_{n}=-\frac{(-5+4 n) b_{-1+n}}{2\left(-n+2 n^{2}\right)} \\
& \mathrm{b}_{0}=\mathrm{b} 0 \text {; } \\
& \text { TableForm[Table[\{n, } \left.\left.\left.\mathrm{b}_{\mathrm{n}}\right\},\{\mathrm{n}, 0,10\}\right]\right] \\
& 0 \text { bo } \\
& 1 \frac{\mathrm{~b} 0}{2} \\
& 2-\frac{\mathrm{b} 0}{8} \\
& 3 \frac{7 \mathrm{bo}}{240} \\
& 4-\frac{11 \mathrm{bo} 0}{1920} \\
& \text { Out [749] }=5 \quad \frac{11 \mathrm{b0}}{11520} \\
& 6-\frac{19 \mathrm{b0}}{138240} \\
& 7 \frac{437 \mathrm{bo}}{25159680} \\
& 8-\frac{437 \mathrm{b0}}{223641600} \\
& 9 \frac{13547 \mathrm{b0}}{68434329600} \\
& 10-\frac{713 \mathrm{~b} 0}{39105331200}
\end{aligned}
$$

Therefore, a second linearly independent solution of the equation obtained with $r_{2}=-1 / 4$ is

$$
y_{2}=b_{0} x^{-1 / 4}\left(1+\frac{1}{2} x-\frac{1}{8} x^{2}+\frac{7}{240} x^{3}-\frac{11}{1920} x^{4}+\cdots\right)
$$

and a general solution of the differential equation is $y=c_{1} y_{1}+c_{2} y_{2}$ where c_{1} and c_{2} are arbitrary constants. Notice that these two solutions are linearly independent, because they are not scalar multiples of one another.

We see that DSolve is able to find a general solution of the equation as well, although the result is given in terms of the functions HypergeometricU and LaguerreL.

$$
\begin{aligned}
\text { In }[750]:=\text { gensol } 1= & \text { DSolve }\left[\mathbf{x} \mathbf{y}^{\prime \prime}[\mathbf{x}]+(1+\mathbf{x}) \mathbf{y}^{\prime}[\mathbf{x}]\right. \\
& \left.-\frac{\mathbf{y}[\mathbf{x}]}{16 \mathbf{x}}==0, \mathbf{y}[\mathbf{x}], \mathbf{x}\right] \\
\text { Out }[750]=\{\{y[\mathrm{x}] \rightarrow & e^{-\mathrm{x}} \mathrm{x}^{1 / 4} \mathrm{C}[1] \text { HypergeometricU }\left[\frac{5}{4}, \frac{3}{2}, \mathrm{x}\right] \\
& \left.\left.+e^{-\mathrm{x}} \mathrm{x}^{1 / 4} \mathrm{C}[2] \text { LaguerreL }\left[-\frac{5}{4}, \frac{1}{2}, \mathrm{x}\right]\right\}\right\}
\end{aligned}
$$

In the previous example, we found the indicial equation by direct substitution of the power series solution into the differential equation. In order to derive a general formula for the indicial equation, suppose that $x=0$ is a regular singular point of the differential equation $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$. Then the functions $x p(x)$ and $x^{2} q(x)$ are analytic at $x=0$, which means that both of these functions have a power series in x with a positive radius of convergence. Hence,

$$
x p(x)=p_{0}+p_{1} x+p_{2} x^{2}+\cdots \quad \text { and } \quad x^{2} q(x)=q_{0}+q_{1} x+q_{2} x^{2}+\cdots
$$

and

$$
p(x)=\frac{p_{0}}{x}+p_{1}+p_{2} x+p_{3} x^{2}+\cdots \quad \text { and } \quad q(x)=\frac{q_{0}}{x^{2}}+\frac{q_{1}}{x}+q_{2}+q_{3} x+\cdots
$$

Substitution of these series into the differential equation $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$ and multiplying through by the first term in the series for $p(x)$ and $q(x)$, we see that the lowest term in the series involves x^{n+r-2} :

$$
\begin{aligned}
& \sum_{n=0}^{\infty} a_{n}(n+r)(n+r-1) x^{n+r-2}+\sum_{n=0}^{\infty} a_{n} p_{0}(n+r) x^{n+r-2} \\
& +\left(p_{1}+p_{2} x+p_{3} x^{2}+\cdots\right) \sum_{n=0}^{\infty} a_{n}(n+r) x^{n+r-1}+\sum_{n=0}^{\infty} a_{n} q_{0} x^{n+r-2} \\
& +\left(\frac{q_{1}}{x}+q_{2}+q_{3} x^{2}+\cdots\right) \sum_{n=0}^{\infty} a_{n} x^{n+r}=0
\end{aligned}
$$

Then, with $n=0$, we find that the coefficient of x^{r-2} is

$$
\begin{aligned}
-r a_{0}+r^{2} a_{0}+r a_{0} p_{0}+a_{0} q_{0} & =a_{0}\left[r^{2}+\left(p_{0}-1\right) r+q_{0}\right] \\
& =a_{0}\left[r(r-1)+p_{0} r+q_{0}\right]=0 .
\end{aligned}
$$

Thus, for any equation of the form $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$ with regular singular point $x=0$, we have the indicial equation

$$
\begin{equation*}
r(r-1)+p_{0} r+q_{0}=0 . \tag{4.25}
\end{equation*}
$$

The values of r that satisfy the indicial equation are called the exponents or indicial roots and are

$$
\begin{equation*}
r_{1,2}=\frac{1}{2}\left(1-p_{0} \pm \sqrt{1-2 p_{0}+p_{0}^{2}-4 q_{0}}\right) . \tag{4.26}
\end{equation*}
$$

Note that $r_{1} \geq r_{2}$ and $r_{1}-r_{2}=\sqrt{1-2 p_{0}+p_{0}{ }^{2}-4 q_{0}}$.
Several situations can arise when finding the roots of the indicial equation.

1. If $r_{1} \neq r_{2}$ and $\sqrt{1-2 p_{0}+p_{0}{ }^{2}-4 q_{0}}$ is not an integer, then there are two linearly independent solutions of the equation of the form

$$
y_{1}=x^{r_{1}} \sum_{n=0}^{\infty} a_{n} x^{n} \quad \text { and } \quad y_{2}=x^{r_{2}} \sum_{n=0}^{\infty} b_{n} x^{n} .
$$

2. If $r_{1} \neq r_{2}$ and $\sqrt{1-2 p_{0}+p_{0}^{2}-4 q_{0}}$ is an integer, then there are two linearly independent solutions of the equation of the form

$$
y_{1}=x^{r_{1}} \sum_{n=0}^{\infty} a_{n} x^{n} \quad \text { and } \quad y_{2}=c y_{1} \ln x+x^{r_{2}} \sum_{n=0}^{\infty} b_{n} x^{n} .
$$

3. If $r_{1}-r_{2}=\sqrt{1-2 p_{0}+p_{0}^{2}-4 q_{0}}=0$, then there are two linearly independent solutions of the problem of the form

$$
y_{1}=x^{r_{1}} \sum_{n=0}^{\infty} a_{n} x^{n} \quad \text { and } \quad y_{2}=y_{1} \ln x+x^{r_{1}} \sum_{n=0}^{\infty} b_{n} x^{n} .
$$

In any case, if y_{1} is a solution of the equation, a second linearly independent solution is given by

$$
y_{2}=y_{1}(x) \int \frac{1}{\left[y_{1}(x)\right]^{2}} e^{-\int p(x) d x} d x,
$$

which can be obtained through reduction of order.
Note that when solving a differential equation in Case 2, first attempt to find a general solution using $y_{2}=x^{r_{2}} \sum_{n=0}^{\infty} b_{n} x^{n}$, where r_{2} is the smaller of the two roots. However, if the contradiction $a_{0}=0$ is reached, then find solutions of the form $y_{1}=x^{r_{1}} \sum_{n=0}^{\infty} b_{n} x^{n}$ and $y_{2}=c y_{1} \ln x+x^{r_{2}} \sum_{n=0}^{\infty} b_{n} x^{n}$.

The examples here do not illustrate the possibility of complex-valued roots of the indicial equation. When this occurs, the equation is solved using the procedures of Case 1. The solutions that are obtained are complex, so they can be transformed into real solutions by taking the appropriate linear combinations, such as those discussed for complex-valued roots of the characteristic equation of CauchyEuler differential equations.

Also, we have not mentioned if a solution can be found with an expansion about an irregular singular point. If $x=x_{0}$ is an irregular singular point of $y^{\prime \prime}+p(x) y^{\prime}+$
$q(x) y=0$, there may or may not be a solution of the form $y=x^{r} \sum_{n=0}^{\infty} a_{n} x^{n}$ for some number r.

EXAMPLE 4.7.5 (Bessel's Equation): Bessel's equation (of order μ), named after the German astronomer Friedrich Wilhelm Bessel, is

$$
\begin{equation*}
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-\mu^{2}\right) y=0 \tag{4.27}
\end{equation*}
$$

where $\mu \geq 0$ is a constant. Solve Bessel's equation.

SOLUTION: To use a series method to solve Bessel's equation, we first write the equation in standard form as

$$
\frac{d^{2} y}{d x^{2}}+\frac{1}{x} \frac{d y}{d x}+\frac{x^{2}-\mu^{2}}{x^{2}} y=0,
$$

so $x=0$ is a regular singular point. Using the Method of Frobenius, we assume that there is a solution of the form $y=\sum_{n=0}^{\infty} a_{n} x^{n+r}$. We determine the value(s) of r with the indicial equation. Because $x p(x)=x \cdot 1 / x=1$ and $x^{2} q(x)=x^{2} \cdot\left(x^{2}-\mu^{2}\right) / x^{2}=x^{2}-\mu^{2}, p_{0}=1$ and $q_{0}=-\mu^{2}$. Hence, the indicial equation is

$$
r(r-1)+p_{0} r+q_{0}=r(r-1)+r-\mu^{2}=r^{2}-\mu^{2}=0
$$

with roots $r_{1,2}= \pm \mu$. Therefore, we assume that $y=\sum_{n=0}^{\infty} a_{n} x^{n+\mu}$ with derivatives $y^{\prime}=\sum_{n=0}^{\infty}(n+\mu) a_{n} x^{n+\mu-1}$ and $y^{\prime \prime}=\sum_{n=0}^{\infty}(n+\mu)(n+\mu-1) a_{n} x^{n+\mu-2}$. Substitution into Bessel's equation and simplifying the result yields

$$
\begin{aligned}
& {\left[\mu(\mu-1)+\mu-\mu^{2}\right] a_{0} x^{\mu}+\left[(1+\mu) \mu+(1+\mu)-\mu^{2}\right] a_{1} x^{\mu+1}} \\
& +\sum_{n=2}^{\infty}\left\{\left[(n+\mu)(n+\mu-1)+(n+\mu)-\mu^{2}\right] a_{n}+a_{n-2}\right\} x^{n+\mu}=0 .
\end{aligned}
$$

Notice that the coefficient of $a_{0} x^{\mu}$ is zero. After simplifying the other coefficients and equating them to zero, we have $(1+2 \mu) a_{1}=0$ and $\left[(n+\mu)(n+\mu-1)+(n+\mu)-\mu^{2}\right] a_{n}+a_{n-2}=0$, which we solve for a_{n}.

$$
\begin{aligned}
\text { In }[751]:= & \text { Remove }[a] \\
& \text { Solve }[((n+\mu)(n+\mu-1) \\
& \left.\left.+(n+\mu)-\mu^{2}\right) a_{n}+a_{n-2}==0, a_{n}\right] \\
\text { Out }[751]= & \left\{\left\{a_{n} \rightarrow-\frac{a_{-2+n}}{n(n+2 \mu)}\right\}\right\}
\end{aligned}
$$

From the first equation, $a_{1}=0$. Therefore, from $a_{n}=-\frac{a_{n-2}}{n(n+2 \mu)}, n \geq 2$, so that $a_{n}=0$ for all odd n. We use the formula for a_{n} to calculate several of the coefficients that correspond to even indices.

$$
\begin{aligned}
\text { In }[752]:= & a_{n_{-}}:=a_{n}=-\frac{a_{-2+n}}{n(n+2 \mu)} ; \\
& a_{0}=\mathbf{a 0 ;} \\
\text { In }[753]:= & \text { Table }\left[\left\{n, a_{n}\right\},\{n, 2,10,2\}\right] / / \text { TableForm } \\
& 2-\frac{a 0}{2(2+2 \mu)} \\
& 4 \frac{a 0}{8(2+2 \mu)(4+2 \mu)} \\
\text { Out }[753]= & 6-\frac{a 0}{48(2+2 \mu)(4+2 \mu)(6+2 \mu)} \\
& 8 \frac{a 0}{384(2+2 \mu)(4+2 \mu)(6+2 \mu)(8+2 \mu)} \\
& 10-\frac{a 0}{3840(2+2 \mu)(4+2 \mu)} \\
& \times \frac{1}{(6+2 \mu)(8+2 \mu)(10+2 \mu)}
\end{aligned}
$$

A general formula for these coefficients is given by

$$
a_{2 n}=\frac{(-1)^{n} a_{0}}{2^{2 n!}(1+\mu)(2+\mu) \cdots(n+\mu)}, \quad n \geq 2 .
$$

Our solution can then be written as

$$
y_{1}=\sum_{n=0}^{\infty} a_{2 n} x^{2 n+\mu}=\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{\mu}}{(1+\mu)(2+\mu) \cdots(n+\mu)}\left(\frac{x}{2}\right)^{2 n+\mu} .
$$

If μ is an integer, then by using the gamma function, $\Gamma(x)$, we can write this solution as

$$
\begin{equation*}
y_{1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma(1+\mu+n)}\left(\frac{x}{2}\right)^{2 n+\mu} . \tag{4.28}
\end{equation*}
$$

This function, denoted $J_{\mu}(x)$, is called the Bessel function of the first kind of order μ. The command BesselJ $[\mu, \mathrm{x}]$ returns $J_{\mu}(x)$. We use BesselJ to graph $J_{\mu}(x)$ for $\mu=0,1,2,3$, and 4 in Figure 4-36. Notice that these functions have numerous zeros. We will need to know these values in subsequent sections.

```
In[754]:= toplot = Table[BesselJ [ }\mu,\mathbf{x}],{\mu,0,4}]
    grays = Table[GrayLevel[i],
    {i, 0,0.6,0.6/4}];
```


Figure 4-36 The first five Bessel functions of the first kind

```
In[755]:= Plot[Evaluate[toplot], {x, 0, 10},
    PlotStyle }->\mathrm{ grays]
```

For the other root, $r_{2}=-\mu$, of the indicial equation, a similar derivation yields a second linearly independent solution of Bessel's equation,

$$
y_{1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma(1-\mu+n)}\left(\frac{x}{2}\right)^{2 n-\mu},
$$

which is the Bessel function of the first kind of order $-\mu$ and is denoted $J_{-\mu}(x)$. Now, we must determine if the functions $J_{\mu}(x)$ and $J_{-\mu}(x)$ are linearly independent. Notice that if $\mu=0$, then these two functions are the same. If $\mu>0$, then $r_{1}-r_{2}=\mu-(-\mu)=2 \mu$. If 2μ is not an integer, then by the Method of Frobenius, the two solutions $J_{\mu}(x)$ and $J_{-\mu}(x)$ are linearly independent. Also, we can show that if 2μ is an odd integer, $J_{\mu}(x)$ and $J_{-\mu}(x)$ are linearly independent. In both of these cases, a general solution is given by $y=c_{1} J_{\mu}(x)+c_{2} J_{-\mu}(x)$.

If μ is not an integer, we define the Bessel function of the second kind of order $\mu, Y_{\mu}(x)$, by the linear combination

$$
\begin{equation*}
Y_{\mu}(x)=\frac{1}{\sin \mu \pi}\left[\cos \mu \pi J_{\mu}(x)-J_{-\mu}(x)\right] \tag{4.29}
\end{equation*}
$$

of the functions $J_{\mu}(x)$ and $J_{-\mu}(x)$. The command BesselY $[\mu, \mathrm{x}]$ returns $Y_{\mu}(x)$. We can show that $J_{\mu}(x)$ and $Y_{\mu}(x)$ are linearly independent, so a general solution of Bessel's equation of order μ can be represented by

$$
y=c_{1} J_{\mu}(x)+c_{2} Y_{\mu}(x),
$$

Figure 4-37 The Bessel functions of the second kind tend to $-\infty$ as $x \rightarrow 0^{+}$
which is the form of the general solution returned by using Mathematica's DSolve command to solve Bessel's equation.

$$
\begin{aligned}
\text { In }[756]:= & \text { gensol }= \\
& \text { DSolve }\left[\mathbf{x}^{2} \mathbf{y}^{\prime \prime}[\mathbf{x}]+\mathbf{x} \mathbf{y}^{\prime}[\mathbf{x}]\right. \\
& \left.+\left(\mathbf{x}^{2}-\mu^{2}\right) \mathbf{y}[\mathbf{x}]=\mathbf{=}, \mathbf{y}[\mathbf{x}], \mathbf{x}\right] \\
\text { Out }[756]=\{\{\mathrm{y}[\mathrm{x}] \rightarrow & \operatorname{Bessel}[\mu, \mathrm{x}] \mathrm{C}[1]+\operatorname{Bessel}[\mu, \mathrm{x}] \mathrm{C}[2]\}\}
\end{aligned}
$$

We use Bessely to graph the functions $\mu=0,1,2,3$, and 4 in Figure 4-37. Notice that $\lim _{x \rightarrow 0^{+}} Y_{\mu}(x)=-\infty$. This property will be important in several applications in later chapters.

```
In[757]:= toplot = Table[BesselY[ }\mu,\mathbf{x}],{\mu,0,4}]
    grays = Table[GrayLevel[i],
    {i,0,0.6,0.6/4}];
In[758]:= Plot[Evaluate[toplot], {x, 0, 10},
    PlotStyle }->\mathrm{ grays, PlotRange }->{-9,1}
```

A more general form of Bessel's equation is expressed in the form

$$
\begin{equation*}
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(\lambda^{2} x^{2}-\mu^{2}\right) y=0 \tag{4.30}
\end{equation*}
$$

Through a change of variables, we can show that a general solution of this equation defined on the interval $0<x<\infty$ is

$$
y=c_{1} J_{\mu}(\lambda x)+c_{2} Y_{\mu}(\lambda x) .
$$

Figure 4-38 Plots of $J_{0}(x), J_{0}(2 x)$, and $J_{0}(4 x)$

```
In[759]:= gensol =
    DSolve [\mp@subsup{x}{}{2}\mp@subsup{y}{}{\prime\prime}[x]+x y'[x]+(\mp@subsup{\lambda}{}{2}\mp@subsup{x}{}{2}-\mp@subsup{\mu}{}{2})y[x]==0,
        y[x],x]
```


We graph the functions $J_{0}(x), J_{0}(2 x)$, and $J_{0}(4 x)$ in Figure 4-38. Notice that for larger values of the parameter λ, the graph of the function intersects the x-axis more often.

```
In[760]:= Plot[{BesselJ[0, x], BesselJ[0, 2 x],
    BesselJ[0,4x]}, {x,0,10},
    PlotStyle }->\mathrm{ {GrayLevel[0], GrayLevel[0.3],
        GrayLevel[0.6]}]
```

EXAMPLE 4.7.6: Find a general solution of each of the following equations: (a) $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-16\right) y=0$ and (b) $x^{2} y^{\prime \prime}+x y^{\prime}+\left(9 x^{2}-4\right) y=0$.

SOLUTION: (a) In this case, $\mu=4$ so a general solution is $y=c_{1} J_{4}(x)+$ $c_{2} Y_{4}(x)$. We graph this solution for various choices of the arbitrary constants in Figure 4-39.

```
In[761]:= Clear[x,y]
    sol1 = DSolve [\mp@subsup{x}{}{2}\mp@subsup{y}{}{\prime\prime}[x]+x\mp@subsup{y}{}{\prime}[x]
        +(\mp@subsup{x}{}{2}-16)y[x]==0,y[x],x]
```

Out [761] $=\{\{y[x] \rightarrow \operatorname{Bessel}[4, x] C[1]+\operatorname{Bessely}[4, x] C[2]\}\}$

Figure 4-39 Solutions of $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-16\right) y=0$

```
In[762]:= toplot =
    Table[sol1[[1, 1, 2]]/. {C[1]-> i, C[2]->j},
            {i, -1, 1}, {j, -1, 1}];
    grays = Table[GrayLevel[i], {i, 0, 0.8,0.8/8}];
In[763]:= Plot[Evaluate[toplot], {x, 0, 20},
    PlotRange }->{-\frac{1}{2},\frac{3}{4}},\mathrm{ PlotStyle }->\mathrm{ grays]
```

(b) Using the parametric Bessel's equation (4.30) with $\lambda=3$ and $\mu=2$, we have $y=c_{1} J_{2}(3 x)+c_{2} Y_{2}(3 x)$. We graph this solution for several choices of the arbitrary constants in Figure 4-40.

Figure 4-40 Solutions of $x^{2} y^{\prime \prime}+x y^{\prime}+\left(9 x^{2}-4\right) y=0$

```
In[764]:= Clear[x,y]
    sol2 = DSolve [\mp@subsup{x}{}{2}\mp@subsup{y}{}{\prime\prime}[x]+x\mp@subsup{y}{}{\prime}[x]
    +(9 x' 2 4) y[x] == 0,y[x],x]
Out [764]= {{y[x] -> BesselJ[2,3x] C[1]
    +BesselY[2, 3 x] C[2]}}
In[765]:= toplot=
    Table[sol2[[1, 1, 2]]/.{C[1]-> i, C[2]-> j},
        {i, -1, 1}, {j, 0, 1}];
    grays = Table[GrayLevel[i],
                            {i,0,0.8,0.8/5}];
In[766]:= Plot[Evaluate[toplot], {\mathbf{x},0,10},
    PlotRange }->{-\frac{1}{2},\frac{1}{2}},\mathrm{ PlotStyle }->\mathrm{ grays]
```


Application: Zeros of the Bessel Functions of the First Kind

As indicated earlier, zeros of the Bessel functions of the first kind will be used in applications in later chapters. Here, we graph the first nine Bessel functions of the first kind on the interval $[0,40]$ and show all nine graphs together as a GraphicsArray in Figure 4-41.

```
In[767]:= besselarray =
    Table[Plot[BesselJ[n, x], {x, 0, 40},
            DisplayFunction }->\mathrm{ Identity], {n, 0, 8}];
        toshow = Partition[besselarray, 3];
        Show[GraphicsArray[toshow]]
```

To approximate the zeros, we take advantage of the BesselZeros package that is contained in the NumericalMath folder (or directory). We obtain information about the BesselZeros package using Mathematica's help facility, as indicated in the following screen shot.

\section*{NumericalMath`BesselZeros`}

Exact solutions to many partial differential equations can be expressed as infirite sums over the zeros of some Bessel function or functions. For example, the solution $U(r, t)$ to the heat equation in canonical units on the unit disc with initial temperature $U(r, 0)=0$ and boundary condition $U(1, t)=1$ is given by

$$
U(r, \mathrm{t})=1-2 \sum_{n=1}^{\infty} \frac{J_{0}\left(\alpha_{n} r\right)}{\alpha_{n} J_{1}\left(\alpha_{n}\right)} e^{-\alpha_{n}^{2} t}
$$

where the α_{n} are the positive zeros of $J_{0} . \alpha_{1} \approx 2.40483 . \alpha_{2} \approx 5.52008 . \alpha_{3} \approx 8.65373$. etc. Using FindRoot it is not difficult to find any single desired zero if you can find a good pair of starting values. This package automatically chooses starting values and uses FindRoot to efficiently produce lists of zeros of various Bessel functions.

To use the package, we first load it by entering
<<NumericalMath`BesselZeros'.

Thus, entering

```
In [768]:= <<NumericalMath'BesselZeros
In [769] := Table[BesselJZeros[ \(\mu, 5],\{\mu, 0,4\}] / /\) TableForm
    2.404835 .520088 .6537311 .791514 .9309
    3.831717 .0155910 .173513 .323716 .4706
Out [769]= 5.135628 .4172411 .619814 .79617 .9598
    6.380169 .7610213 .015216 .223519 .4094
    \(7.5883411 .064714 .372517 .616 \quad 20.8269\)
```

returns a table of the first five zeros of the Bessel functions $J_{\mu}(x)$ for $\mu=0,1,2,3$, and 4. (The first row corresponds to the zeros of $J_{0}(x)$, the second row to the zeros

Figure 4－41 Plots of the first nine Bessel functions of the first kind
of $J_{1}(x)$ ，and so on．）Later，we will need to calculate particular zeros．Let α_{n} denote the nth zero of $J_{0}(x)$ ．We define α_{n} as follows and then calculate the 50th zero of $J_{0}(x)$ ．Defining α_{n} in this manner allows us to calculate particular zeros；not a list．

```
In[770]:= 暞 := 稆 = BesselJZeros[0,{n, n}][[1]]
In[771]:= 稆
Out[771]= 156.295
```

Next，we generate a list of the first 10 zeros of $J_{0}(x)$ ．

```
In[772]:= Table[的, {n, 1, 10}]
Out[772]={2.40483,5.52008, 8.65373,11.7915, 14.9309,
    18.0711,21.2116, 24.3525,27.4935,30.6346}
```

More generally，let $\alpha_{m, n}$ denote the nth zero of $J_{m}(x)$ ．We define $\alpha_{m, n}$ as follows．

Thus，entering

$$
\begin{aligned}
& \text { In }[774]:=\alpha_{25,30} \\
& \text { Out }[774]=130.328
\end{aligned}
$$

returns the 30th zero of $J_{25}(x)$ ；entering

```
In[775]:= Table[的,n, {n, 1, 5}]
Out [775]= {2.40483,5.52008, 8.65373,11.7915,14.9309}
```

returns a list of the first five zeros of $J_{0}(x)$; and entering

```
In[776]:= Table[的,n, {m, 0, 4}, {n, 1, 5}]//TableForm
    2.40483 5.52008 8.65373 11.7915 14.9309
    3.83171 7.01559 10.1735 13.323716.4706
Out[776]= 5.13562 8.41724 11.6198 14.796 17.9598
    6.38016 9.76102 13.0152 16.2235 19.4094
    7.58834 11.0647 14.3725 17.616 20.8269
```

returns a table of the first five zeros of the Bessel functions $J_{\mu}(x)$ for $\mu=0,1,2,3$, and 4. (The first row corresponds to the zeros of $J_{0}(x)$, the second row to the zeros of $J_{1}(x)$, and so on.)

For a classic approach to the subject see Graff's Wave Motion in Elastic Solids, [13].

Application: The Wave Equation on a Circular Plate

The vibrations of a circular plate satisfy the equation

$$
\begin{equation*}
D \nabla^{4} w(r, \theta, t)+\rho h \frac{\partial^{2} w(r, \theta, t)}{\partial t^{2}}=q(r, \theta, t), \tag{4.31}
\end{equation*}
$$

where $\nabla^{4} w=\nabla^{2} \nabla^{2} w$ and ∇^{2} is the Laplacian in polar coordinates, which is defined by

$$
\nabla^{2}=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}} .
$$

Assuming no forcing so that $q(r, \theta, t)=0$ and $w(r, \theta, t)=W(r, \theta) e^{-i \omega t}$, equation (4.31) can be written as

$$
\begin{equation*}
\nabla^{4} W(r, \theta)-\beta^{4} W(r, \theta)=0, \quad \beta^{4}=\omega^{2} \rho h / D . \tag{4.32}
\end{equation*}
$$

For a clamped plate, the boundary conditions are $W(a, \theta)=\partial W(a, \theta) / \partial r=0$ and after much work (see [13]) the normal modes are found to be

$$
\begin{equation*}
W_{n m}(r, \theta)=\left[J_{n}\left(\beta_{n m} r\right)-\frac{J_{n}\left(\beta_{n m} a\right)}{I_{n}\left(\beta_{n m} a\right)} I_{n}\left(\beta_{n m} r\right)\right]\binom{\sin n \theta}{\cos n \theta} . \tag{4.33}
\end{equation*}
$$

In equation (4.33), $\beta_{n m}=\lambda_{n m} / a$ where $\lambda_{n m}$ is the m th solution of

$$
\begin{equation*}
I_{n}(x) J_{n}{ }^{\prime}(x)-J_{n}(x) I_{n}{ }^{\prime}(x)=0, \tag{4.34}
\end{equation*}
$$

where $J_{n}(x)$ is the Bessel function of the first kind of order n and $I_{n}(x)$ is the modified Bessel function of the first kind of order n, related to $J_{n}(x)$ by $i^{n} I_{n}(x)=J_{n}(i x)$. The Mathematica command BesselI $[\mathrm{n}, \mathrm{x}]$ returns $I_{n}(x)$.

EXAMPLE 4.7.7: Graph the first few normal modes of the clamped circular plate.

SOLUTION: We must determine the value of $\lambda_{n m}$ for several values of n and m so we begin by defining eqn $[\mathrm{n}][\mathrm{x}]$ to be $I_{n}(x) J_{n}{ }^{\prime}(x)-J_{n}(x) I_{n}{ }^{\prime}(x)$. The m th solution of equation (4.34) corresponds to the m th zero of the graph of eqn [n] [x] so we graph eqn [n$][\mathrm{x}]$ for $n=0,1,2$, and 3 with Plot in Figure 4-42.

$$
\begin{aligned}
\text { In }[777]:= & \text { eqn }\left[n_{-}\right]\left[x_{-}\right]:=\operatorname{BesselI}[n, x] D[\operatorname{Bessel} J[n, x], x] \\
& -\operatorname{Bessel}[n, x] D[\operatorname{BesselI}[n, x], x]
\end{aligned}
$$

The result of the Table and Plot command is a list of length four

```
In[778]:= p1 = Table[Plot[eqn[n][x], {x, 0, 25},
    PlotRange }->{-10,10}\mathrm{ ,
    DisplayFunction }->\mathrm{ Identity], {n, 0, 3}]
```

Out [778]= \{-Graphics-, -Graphics-, -Graphics-,
-Graphics-\}

Figure 4-42 Plot of $I_{n}(x) J_{n}{ }^{\prime}(x)-J_{n}(x) I_{n}{ }^{\prime}(x)$ for $n=0$ and 1 in the first row; $n=2$ and 3 in the second row
so we use Partition to create a 2×2 array of graphics which is displayed using Show and GraphicsArray.

```
In[779]:= p2 = Show[GraphicsArray[Partition[p1, 2]]]
```

To determine $\lambda_{n m}$ we use FindRoot. Recall that to use FindRoot to solve an equation an initial approximation of the solution must be given. For example,

```
In [780]:= lambda01 = FindRoot[eqn[0][x] == 0, {x, 3.04}]
Out [780]= {x->3.19622}
```

approximates λ_{01}, the first solution of equation (4.34) if $n=0$. However, the result of FindRoot is a list. The specific value of the solution is the second part of the first part of the list, lambda01, extracted from the list with Part ([[...]]).

```
In[781]:= lambda01[[1, 2]]
Out[781]= 3.19622
```

We use the graphs in Figure 4-42 to obtain initial approximations of each solution.

Thus,

```
In[782]:= \lambda0s = Map[FindRoot[eqn[0][x] == 0,
    {x, #}][[1, 2]]&,
    {3.04,6.2, 9.36, 12.5, 15.7}]
Out [782]= {3.19622,6.30644,9.4395,12.5771, 15.7164}
```

approximates the first five solutions of equation (4.34) if $n=0$ and then returns the specific value of each solution. We use the same steps to approximate the first five solutions of equation (4.34) if $n=1,2$, and 3 .

```
In[783]:= \lambda1s = Map[FindRoot[eqn[1][x] == 0,
    {x,#}][[1, 2]]&,
    {4.59,7.75, 10.9, 14.1, 17.2}]
Out[783] = {4.6109, 7.79927,10.9581, 14.1086, 17.2557}
In[784]:= \lambda2s = Map[FindRoot[eqn[2][x] == 0,
    {x, #}][[1, 2]]&,
    {5.78, 9.19, 12.4, 15.5, 18.7}]
Out [784]= {5.90568,9.19688,12.4022,15.5795,18.744}
In[785]:= \lambda3s = Map[FindRoot[eqn[3][x] == 0,
    {x, #}][[1, 2]]&,
    {7.14, 10.5, 13.8, 17, 20.2}]
Out[785]={7.14353,10.5367,13.7951,17.0053,20.1923}
```

All four lists are combined together in $\lambda \mathrm{s}$.


```
Out [786]= {{3.19622,6.30644, 9.4395,12.5771, 15.7164},
    {4.6109,7.79927,10.9581, 14.1086,17.2557},
    {5.90568,9.19688,12.4022,15.5795,18.744},
    {7.14353, 10.5367, 13.7951,
    17.0053, 20.1923}}
```

For $n=0,1,2$, and 3 and $m=1,2,3,4$, and $5, \lambda_{n m}$ is the m th part of the $(n+1)$ st part of $\lambda \mathrm{s}$.

Observe that the value of a does not affect the shape of the graphs of the normal modes so we use $a=1$ and then define $\beta_{n m}$.

```
In[787]:= a = 1;
\(\operatorname{In}[788]:=\beta\left[\mathrm{n}_{-}, \mathrm{m}_{-}\right]:=\lambda \mathrm{s}[[\mathrm{n}+1, \mathrm{~m}]] / \mathrm{a}\)
```

ws is defined to be the sine part of equation (4.33)

```
In[789]:= ws[n_, m_] [r, 0] := (BesselJ[n, \beta[n,m] r]
    -BesselJ[n, \beta[n,m] a]
    /BesselI[n, \beta[n,m]a]
    BesselI[n, \beta[n,m] r])
    x Sin[n |]
```

and wc to be the cosine part.

Figure 4-43 The sine part of $W_{34}(r, \theta)$

```
In[790]:= wc[n_, m_] [r, 0] := (Besselv[n, \beta[n,m] r]
    -BesselJ [n, \beta[n,m] a]
    /BesselI[n, \beta[n,m] a]
    BesselI[n, \beta[n,m] r])
    x Cos[n0]
```

We use ParametricPlot3D to plot ws and wc. For example,

```
In[791]:= ParametricPlot3D[{r Cos[0], r Sin[0],
    ws[3,4][r, 0]}, {r, 0, 1}, {0, -\pi, \pi},
    PlotPoints }->\mathrm{ 60]
```

graphs the sine part of $W_{34}(r, \theta)$ shown in Figure 4-43. We use Table together with ParametricPlot3D followed by Show and GraphicsArray to graph the sine part of $W_{n m}(r, \theta)$ for $n=0,1,2$, and 3 and $m=1$, 2, 3, and 4 shown in Figure 4-44.

```
In[792]:= ms = Table[ParametricPlot3D[{r Cos[0],
    r Sin[0],ws[n,m][r, 谅}, {r, 0, 1},
    {0, -\pi,\pi}, DisplayFunction }->\mathrm{ Identity,
    PlotPoints }->30\mathrm{ , BoxRatios }->{1,1,1}]
    {n, 0, 3}, {m, 1, 4}]
```

Out [792] = \{\{-Graphics3D-, -Graphics3D-, -Graphics3D-,
-Graphics3D-\}, \{-Graphics3D-, -Graphics3D-,
-Graphics3D-, -Graphics3D-\}, \{-Graphics3D-,
-Graphics3D-, -Graphics3D-, -Graphics3D-\},
\{-Graphics3D-, -Graphics3D-, -Graphics3D-,
-Graphics3D- \} \}

```
In[793]:= Show[GraphicsArray[ms]]
```

Identical steps are followed to graph the cosine part shown in Figure 4-45.

```
In[794]:= mc= Table[ParametricPlot3D[{r Cos[0],
    r Sin[0],wc[n,m][r, 谅}, {r, 0, 1},
    {0, -\pi,\pi}, DisplayFunction }->\mathrm{ Identity,
    PlotPoints }->30\mathrm{ , BoxRatios }->{1,1,1}]
    {n, 0, 3}, {m, 1, 4}]
```


Figure 4-44 The sine part of $W_{n m}(r, \theta): n=0$ in row $1, n=1$ in row $2, n=2$ in row 3 , and $n=3$ in row 4 ($m=1$ to 4 from left to right in each row)

```
Out[794]= {{-Graphics3D-, -Graphics3D-, -Graphics3D-,
    -Graphics3D-}, {-Graphics3D-, -Graphics3D-,
    -Graphics3D-,-Graphics3D-}, {-Graphics3D-,
    -Graphics3D-, -Graphics3D-, -Graphics3D-},
    {-Graphics3D-, -Graphics3D-, -Graphics3D-,
    -Graphics3D-} }
```

In [795]:= Show[GraphicsArray[mc]]

Figure 4-45 The cosine part of $W_{n m}(r, \theta): n=0$ in row $1, n=1$ in row $2, n=2$ in row 3 , and $n=3$ in row 4 ($m=1$ to 4 from left to right in each row)

4.8 Nonlinear Equations

Generally, rigorous results regarding nonlinear equations are very difficult to obtain. In many cases, analysis is best carried out numerically and/or graphically. In other situations, rewriting the equation as a system can be of benefit, which is discussed in Chapter 6.

However, if a nonlinear equation can be solved with currently known techniques, Mathematica can often find a solution for you.

EXAMPLE 4.8.1: Solve $4 y\left(y^{\prime}\right)^{2} y^{\prime \prime}=\left(y^{\prime}\right)^{4}+3$.

SOLUTION: Mathematica can solve this nonlinear equation with DSolve.

$$
\begin{aligned}
\text { In }[796]:= & \operatorname{DSolve}\left[4 y[x] y^{\prime}[\mathbf{x}]^{\wedge} 2 y^{\prime \prime}[\mathbf{x}]==y^{\prime}[\mathbf{x}]^{\wedge} 4+3,\right. \\
& \mathrm{y}[\mathbf{x}], \mathrm{x}] \\
\text { Out }[796]=\{ & \left\{y[x] \rightarrow 3 e^{-4 C[1]}+\frac{33^{1 / 3} e^{\frac{4 C[1]}{3}}(x+C[2])^{4 / 3}}{42^{2 / 3}}\right\}, \\
& \left\{y[x] \rightarrow 3 e^{-4 C[1]}\right. \\
& \left.-\frac{33^{1 / 3}(1-i \operatorname{i} \sqrt{3}) e^{\frac{4 C[1]}{3}}(x+C[2])^{4 / 3}}{82^{2 / 3}}\right\}, \\
& \left\{y[x] \rightarrow 3 e^{-4 C[1]}\right. \\
& \left.\left.-\frac{33^{1 / 3}(1+\dot{i} \sqrt{3}) e^{\frac{4 C[1]}{3}}(x+C[2])^{4 / 3}}{82^{2 / 3}}\right\}\right\}
\end{aligned}
$$

Proceeding by hand, let $p=y^{\prime}$. Then,

$$
y^{\prime \prime}=p^{\prime}=\frac{d p}{d x}=\frac{d y}{d x} \frac{d p}{d y}=p \frac{d p}{d y} .
$$

With this substitution, we obtain a first-order separable equation.

$$
\begin{aligned}
4 p^{3} y \frac{d p}{d y} & =3+p^{4} \\
\frac{4 p^{3}}{3+p^{4}} d p & =\frac{1}{y} d y \\
\ln \left(3+p^{4}\right) & =\ln |y|+c_{1} \\
3+p^{4} & =c_{1} y \\
p & = \pm\left(c_{1} y-3\right)^{1 / 4} .
\end{aligned}
$$

Because $p=d y / d x$,

$$
\pm \frac{1}{\left(c_{1} y-3\right)^{1 / 4}} d y=d x
$$

and integrating and simplifying the result gives us

$$
\begin{aligned}
& \frac{4}{3 c_{1}}\left(c_{1} y-3\right)^{3 / 4}=x+c_{2} \\
& \frac{256}{81 c_{4}}\left(c_{1} y-3\right)^{3}=\left(x+c_{2}\right)^{4} .
\end{aligned}
$$

Figure 4-46 Various solutions of $4 y\left(y^{\prime}\right)^{2} y^{\prime \prime}=\left(y^{\prime}\right)^{4}+3$ shown together

```
In[797]:= Integrate[4p^3/(3+p^4),p]
Out[797]= Log[3+p
In[798]:= Integrate[1/Y, y]
Out[798]= Log[y]
In[799]:= Integrate[(c1 y - 3)^(-1/4), y]
Out [799] = 午(-3+c1Y)\mp@subsup{)}{}{3/4}
```

We plot various solutions by graphing level curves of

$$
f(x, y)=\frac{256}{81 c_{4}}\left(c_{1} y-3\right)^{3}-\left(x+c_{2}\right)^{4}
$$

corresponding to 0 for various values of c_{1} and c_{2} in Figures 4-46 and 4-47.

$$
\begin{aligned}
& \text { In [800]: }=\mathrm{g} 1=\mathrm{Table}\left[-(\mathrm{c} 2+\mathrm{x})^{4}+\frac{256(-3+\mathrm{c} 1 \mathrm{y})^{3}}{81 \mathrm{c} 1^{4}},\right. \\
& \{c 1,1,5\},\{c 2,-1,1\}] / / \text { Flatten; } \\
& \text { In [801]: = g2 = }
\end{aligned}
$$

Figure 4-47 Various solutions of $4 y\left(y^{\prime}\right)^{2} y^{\prime \prime}=\left(y^{\prime}\right)^{4}+3$ shown as an array

```
In[802]:= Show[g2, Frame }->\mathrm{ False, Axes }->\mathrm{ Automatic,
    AxesOrigin }->{0,0}\mathrm{ ,
    DisplayFunction }->\mathrm{ $DisplayFunction]
In[803]:= Show[GraphicsArray[Partition[g2, 3]]]
```

EXAMPLE 4.8.2: Solve $\left\{\begin{array}{l}x^{2} y^{\prime \prime}+\left(y^{\prime}\right)^{2}-2 x y^{\prime}=0 \\ y(2)=5, y^{\prime}(2)=1 .\end{array}\right.$

SOLUTION: Mathematica can find the solution to the initial-value problem, which we then graph with Plot in Figure 4-48.

```
In [804]: = sol = DSolve \(\left[\left\{\mathrm{x}^{\wedge} 2 \mathrm{y}^{\prime \prime}[\mathrm{x}]+\mathrm{y}^{\prime}[\mathrm{x}]^{\wedge} 2-2 \mathrm{x} \mathrm{y}^{\prime}[\mathrm{x}]==0\right.\right.\),
    \(\left.\left.y[2]==5, y^{\prime}[2]==1\right\}, y[x], x\right]\)
Out \([804]=\left\{\left\{y[x] \rightarrow \frac{1}{2}\left(14-4 x+x^{2}-8 \log [4]+8 \log [2+x]\right)\right\}\right\}\)
In [805]:= Plot[y[x]/.sol, \{x, 0, 10\}]
```

By hand, we proceed as before by letting $p=y^{\prime}$. Then $p^{\prime}=y^{\prime \prime}$ and the equation becomes

$$
\begin{aligned}
x^{2} \frac{d p}{d x}+p^{2}-2 x p & =0 \\
x^{2} d p+\left(p^{2}-2 x p\right) d x & =0
\end{aligned}
$$

which is first-order homogeneous of degree 2 . Solving for p

Figure 4-48 Plot of the solution to the initial-value problem

```
In [806]: \(=\) DSolve \(\left[x^{\wedge} 2 p^{\prime}[x]+\left(p[x]^{\wedge} 2-2 x p[x]\right)==0, p[x], x\right]\)
Out \([806]=\left\{\left\{p[x] \rightarrow \frac{x^{2}}{x+C[1]}\right\}\right\}\)
```

and then integrating the result gives us

$$
\begin{gathered}
\qquad p=\frac{d y}{d x}=\frac{x^{2}}{x+c_{1}} \\
d y=\frac{x^{2}}{x+c_{1}} d x \\
y=\frac{1}{2} x^{2}-c_{1} x+c_{1}^{2} \ln \left|x+c_{1}\right|+c_{2} . \\
\text { In }[807]:=\mathbf{y}=\text { Integrate }\left[\frac{\mathbf{x}^{2}}{\mathbf{x}+\mathbf{c} 1}, \mathbf{x}\right]+\mathbf{c} 2 \\
\text { Out }[807]=c 2-\mathrm{c} 1 \mathrm{x}+\frac{\mathrm{x}^{2}}{2}+\mathrm{c} 1^{2} \log [\mathrm{c} 1+\mathrm{x}]
\end{gathered}
$$

Applying the initial conditions gives us the nonlinear system

$$
\begin{aligned}
2-2 c_{1}+c_{2}+c_{1}^{2} \ln \left|2+c_{1}\right| & =5 \\
2-c_{1}+\frac{c_{1}^{2}}{2+c_{1}} & =1 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { In }[808]:=\mathbf{f 1}=\mathbf{y} / . \mathbf{x} \rightarrow 2 \\
& \text { Out }[808]=2-2 \mathrm{c} 1+\mathrm{c} 2+\mathrm{c} 1^{2} \mathrm{Log}[2+\mathrm{c} 1] \\
& \text { In }[809]:=\mathbf{f} 2=\mathrm{D}[\mathbf{y}, \mathbf{x}] / \cdot \mathbf{x} \rightarrow 2 \\
& \text { Out }[809]=2-\mathrm{c} 1+\frac{\mathrm{c} 1^{2}}{2+\mathrm{c} 1}
\end{aligned}
$$

We can see the solution to this system by graphing each equation with Contourplot as shown in Figure 4-49.

```
In[810]:= cp1 = ContourPlot[f1, {c1, -5, 10}, {c2, -5, 10},
    Contours }->{5}, PlotPoints -> 120
    ContourShading }->\mathrm{ False,
    DisplayFunction }->\mathrm{ Identity];
cp2 = ContourPlot[f2, {c1, -5, 10}, {c2, -5, 10},
    Contours }->{1},\mathrm{ ContourShading }->\mathrm{ False,
    PlotPoints }->\mathrm{ 120,
    ContourStyle }->\mathrm{ GrayLevel[0.4],
    DisplayFunction }->\mathrm{ Identity];
Show[cp1, cp2, DisplayFunction }
    $DisplayFunction, Frame }->\mathrm{ False,
    Axes }->\mathrm{ Automatic,
    AxesOrigin }->{0,0}
```


Figure 4-49 The nonlinear system of equations has a unique solution

By hand, solving the second equation for c_{1} gives us $c_{1}=2$. Substituting into the first equation and solving for c_{2} gives us $c_{2}=7-4 \ln 4$. We confirm the result with Solve.

$$
\begin{aligned}
& \text { In }[811]:=\text { cvals }=\text { Solve }[\{f 1==5, f 2==1\}] \\
& \text { Out }[811]=\{\{\mathrm{c} 2 \rightarrow 7-4 \log [4], \mathrm{c} 1 \rightarrow 2\}\} \\
& \text { In }[812]:=\mathrm{y} / . \operatorname{cvals}[[1]] \\
& \text { Out }[812]=7-2 \mathrm{x}+\frac{\mathrm{x}^{2}}{2}-4 \log [4]+4 \log [2+\mathrm{x}]
\end{aligned}
$$

Of course, in many cases numerical results are most meaningful.

Sources: See texts like Jordan and Smith's Nonlinear Ordinary Differential Equations, [I7].

EXAMPLE 4.8.3 (Duffing's Equation): Duffing's equation is the secondorder nonlinear equation

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+k \frac{d x}{d t}-x+x^{3}=\Gamma \cos \omega t, \tag{4.35}
\end{equation*}
$$

where k, Γ, and ω are positive constants. Depending upon the values of the parameters, solutions to Duffing's equation can exhibit very interesting behavior.

SOLUTION: To investigate solutions we define the function duffingplot. Given k, Γ, and ω,

$$
\text { duffingplot }[k, \Gamma, \omega][\{x 0, y 0\},\{t, a, b\}]
$$

graphs the solution to the initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}+k x^{\prime}-x+x^{3}=\Gamma \cos \omega t \tag{4.36}\\
x(0)=x_{0}, x^{\prime}(0)=y_{0}
\end{array}\right.
$$

for $a \leq t \leq b$. If $\{t, a, b\}$ is omitted, the default is $900 \leq t \leq 1000$. Any options included are passed to the Plot command.

```
In[813]:= Clear[duffingplot]
    duffingplot[k_, capgamma_, 的][{x\mp@subsup{0}{-}{},y\mp@subsup{0}{-}{\prime}},
                ts_:{t, 900,1000},opts_--] :=
            Module[{numsol},
                numsol = NDSolve[{\mp@subsup{\mathbf{x}}{}{\prime\prime}[t]+k\mp@subsup{\mathbf{x}}{}{\prime}[t]-\mathbf{x}[t]
            +x[t]^3 == capgamma Cos[\omegat],
                                    x[0] == x0, x'[0] == y0}, x[t],
                                    ts,MaxSteps }->100000]
            Plot[x[t]/.numsol, ts,opts]
        ]
```

For example, entering

```
In[814]:= duffingplot[0.3,0.5, 1.2][{0, 0}]
```

plots the solution to the initial-value problem (4.36) shown in Figure $4-50$ if $k=0.3, \Gamma=0.5, \omega=1.2$, and $x_{0}=y_{0}=0$. You can use duffingplot to see how varying the parameters affects the solutions. For example, suppose that $k=0.3, \omega=1.2, x_{0}=0$, and $y_{0}=1$. To see how the solutions vary depending on the value of Γ, we define kvals to be a list of 12 equally spaced numbers between 0 and 0.8 and then use Map to apply duffingplot to the list kvals. In this case, we generate a short-term plot for $0 \leq t \leq 50$. The resulting graphics are not displayed because we include the option DisplayFunction->Identity in the duffingplot command.

```
In [815]:= kvals = Table[k, \{k, 0, 0.8, 0.8/11\}];
In [816]:= toshow =
    Map[duffingplot[0.3, \#, 1.2][\{0, 1\},
        \(\{t, 0,50\}\), PlotRange \(\rightarrow\{-3,3\}\),
        DisplayFunction \(\rightarrow\) Identity] \&, kvals]
```


Figure 4-50 Solution to Duffing's equation if $k=0.3, \Gamma=0.5, \omega=1.2$, and $x_{0}=y_{0}=0$

$$
\begin{aligned}
\text { Out }[816]=\{ & \text {-Graphics-, -Graphics-, -Graphics-, , } \\
& \text {-Graphics-, -Graphics-, -Graphics- } \\
& \text {-Graphics-, -Graphics-, -Graphics-, - } \\
& \text { Graphics-, -Graphics-, -Graphics- }\}
\end{aligned}
$$

We then use Partition, Show, and GraphicsArray to display the list of graphics toshow in Figure 4-51.

```
In[817]:= Show[GraphicsArray[Partition[toshow, 3]]]
```

We enter nearly identical commands to generate the long-term plot shown in Figure 4-52.

```
In[818]:= toshow =
    Map[duffingplot[0.3,#,1.2][{0,1},
        {t, 900, 1000}, PlotRange }->{-3,3}
        DisplayFunction }->\mathrm{ Identity]&, kvals]
```

The Fourier transform, $X_{k}(k=1,2, \ldots, N)$ of N equally spaced values of a time series list $=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ is

$$
\begin{equation*}
X_{k}=\frac{1}{\sqrt{N}} \sum_{n=1}^{N} x_{n} e^{2 \pi i(n-1)(k-1) / N} \tag{4.37}
\end{equation*}
$$

Figure 4-51 Short-term plot: depending upon the value of Γ, some solutions to Duffing's equation exhibit chaotic behavior

The Mathematica command Fourier [list] computes the Fourier transform of list. The power spectrum, $P\left(\omega_{k}\right)(k=1,2, \ldots, N)$, of the list $\left\{X_{1}, X_{2}, \ldots, X_{N}\right\}$ is

$$
\begin{equation*}
P\left(\omega_{k}\right)=X_{k} \bar{X}_{k}=\left|X_{k}\right|^{2} . \tag{4.38}
\end{equation*}
$$

The power spectrum helps detect dominant frequencies. See Jordan and Smith [17].

We define the function duffingpower to compute the power spectrum of Duffing's equation. Given the appropriate parameter values and initial conditions, duffingpower returns $P\left(\omega_{2000}\right)$. The 2000 sample points are the value of $x\left(t_{n}\right)$ for $t_{n}=0.5 n, n=1, \ldots, 2000$.

Figure 4-52 Long-term plot: depending upon the value of Γ, some solutions to Duffing's equation exhibit chaotic behavior

```
In[819]:= Show[GraphicsArray[Partition[toshow, 3]]]
In[820]:= Clear[duffingpower,s2,s3]
    duffingpower[k_, capgamma_, 的][{x\mp@subsup{0}{_}{\prime},y0_},
    omegak_:2000] :=
    Module[{numsol, s2, s3},
            numsol = NDSolve[{x'^[t] +k x'[t] - x[t]
            +x[t]^3 == capgamma Cos[\omegat],
            x[0] == x0, x'[0] == y0},
            x[t],{t,0,1000},
            MaxSteps }->100000]
        s2 = Table[x[t]/.numsol[[1]],
            {t,0.5,1000,0.5}];
            s3 = Map[Abs[#]^2&,
            Fourier[s2]][[omegak]]
    ]
```


Figure 4-53 Power spectrum of Duffing's equation using $k=0.3, \Gamma=0.5$, and $x_{0}=y_{0}=0$: the horizontal axis corresponds to ω; the vertical axis to the power spectrum $P\left(\omega_{2000}\right)$

As an illustration, we set $k=0.3, \Gamma=0.5$, and $x_{0}=y_{0}=0$ and then compute the power spectrum for 300 equally spaced values of ω between 0 and 3.

```
In[821]:= t1 = Table[{\omega,
    duffingpower[0.3,0.5,\omega][{0,0}]},
    {\omega, 0, 3, 3./299}];
```

We use LogListPlot, which is contained in the Graphics package that is located in the Graphics folder (or directory), to plot the list of points t1 so that Mathematica uses a logarithmic scale on the y-axis (the vertical axis). See Figure 4-53.

```
In[822]:= << Graphics'Graphics`
In[823]:= LogListPlot[t1, PlotJoined }->\mathrm{ True,
    PlotRange }->\mathrm{ All]
```

For a second-order equation like this, it is often desirable to generate a parametric plot of $x(t)$ versus $x^{\prime}(t)$. To do so, we set $y=x^{\prime}$. Then, $y^{\prime}=$ $x^{\prime \prime}$ and we see that Duffing's equation (4.35) can be rewritten as the nonlinear system

$$
\begin{align*}
x^{\prime} & =y \\
y^{\prime}+k y-x+x^{3} & =\Gamma \cos \omega t . \tag{4.39}
\end{align*}
$$

We define the function duffingparamplot to graph solutions of the initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime}=y \\
y^{\prime}+k y-x+x^{3}=\Gamma \cos \omega t \\
x(0)=x_{0}, y(0)=y_{0}
\end{array}\right.
$$

in the same way as we defined duffingplot.

```
In[824]:= Clear[duffingparamplot, x, y]
    duffingparamplot[k_, capgamma_, 的][{x\mp@subsup{0}{-}{\prime},y\mp@subsup{0}{-}{\prime}},
    ts_:{t, 800, 1000},
        opts_--] :=
        Module[{numsol},
        numsol = NDSolve[{y'[t] + ky[t] - x [t]
        +x[t]^3 == capgamma Cos[\omegat],
                        y[t] == x'[t], x[0] == x0, y[0] == y0},
                        {x[t],y[t]},ts,
                MaxSteps }->\mathrm{ 100000];
        ParametricPlot[Evaluate[{x[t],y[t]}
        /.numsol],ts,opts]
        ]
```

For example, entering

```
In[825]:= duffingparamplot[0.3, 0.5, 0.2][{0, 1},
    {t, 800, 1000}]
```

plots $x(t)$ versus $x^{\prime}(t)$ if $k=0.3, \Gamma=0.5, \omega=0.2, x(0)=0$, and $y(0)=$ $x^{\prime}(0)=1$ as shown in Figure 4-54.

With the following commands, we set $k=0.3, \Gamma=0.5, x(0)=0$, and $y(0)=x^{\prime}(0)=1$. We then plot $x(t)$ versus $x^{\prime}(t)$ for 12 equally spaced values of ω between 0 and 1.5.

```
In[826]:= kvals = Table[k, {k, 0, 1.5, 1.5/11}];
In[827]:= toshow =
    Map[duffingplot[0.3, 0.5, #][{0, 1},
                {t, 0, 50}, PlotRange }->{-3,3}
            DisplayFunction }->\mathrm{ Identity]&, kvals]
```


Figure 4-54 A parametric plot of $x(t)$ versus $x^{\prime}(t)$ for a solution to Duffing's equation

The results are shown as an array in Figure 4-55.

```
In[828]:= Show[GraphicsArray[Partition[toshow, 3]]]
```

The long-term plot shown in Figure 4-56 is generated with nearly identical commands.

```
In[829]:= toshow =
    Map[duffingparamplot[0.3,0.5, #][{0,1},
    {t, 800, 1000},
                        PlotRange }->{{-3,3},{-3,3}}
                AspectRatio }->1\mathrm{ ,
                DisplayFunction }->\mathrm{ Identity]&,
                kvals]
```

```
In[830]:= Show[GraphicsArray[Partition[toshow, 3]]]
```

The Poincaré plots (or returns) are obtained by plotting

$$
\begin{aligned}
x & =x(2 n \pi / \omega) \\
x^{\prime} & =y(2 n \pi / \omega) .
\end{aligned}
$$

We define the function duffingpoincareplot to generate Poincaré plots for Duffing's equation.

Figure 4-55 Short-term plot: sensitivity of solutions of Duffing's equation to ω

```
In [831]:= Clear[duffingpoincareplot, x, y, t1]
    duffingpoincareplot[k-,
    capgamma_, 的][{x\mp@subsup{0}{-}{\prime},y\mp@subsup{0}{-}{\prime}},ns_:{n, 1, 2000},
            opts_--] := Module[{numsol, t1},
            numsol = NDSolve[{y'[t] + k x'[t] - x[t]
            +x[t]^3 == capgamma Cos[\omegat],
                y[t] == x'[t], x[0] == x0, y[0] == y0},
                {x[t],y[t]},{t,0,12000},
            MaxSteps }->1000000]
            t1 = Table[{x[t],y[t]}
            /.numsol[[1]]/.t->2n\pi/\omega,ns];
            ListPlot[t1]
        ]
```


Figure 4-56 Long-term plot: sensitivity of solutions of Duffing's equation to ω

Figure 4-57

In Figure 4-57, we use duffingpoincareplot to generate a Poincaré plot for Duffing's equation if $k=0.3, \Gamma=0.4, \omega=1.2, x(0)=0$, and $y(0)=x^{\prime}(0)=1$.

```
In[832]:= f1 = duffingpoincareplot[0.3, 0.5,1.2]
    [{0, 1}];
```


Applications of Higher-Order Differential

 Equations

In Chapter 4, we discussed several techniques for solving higher-order differential equations. In this chapter, we illustrate how some of these methods can be used to solve initial-value problems that model physical situations.

5.I Harmonic Motion

5.I.I Simple Harmonic Motion

Suppose that a mass is attached to an elastic spring that is suspended from a rigid support such as a ceiling. According to Hooke's law, the spring exerts a restoring force in the upward direction that is proportional to the displacement of the spring.

Hooke's Law: $F=k s$, where $k>0$ is the constant of proportionality or spring constant, and s is the displacement of the spring.

A spring has natural length b. When a mass is attached to the spring, it is stretched s units past its natural length to the equilibrium position $x=0$. When the system is put into motion, the displacement from $x=0$ at time t is given by $x(t)$.

By Newton's Second Law of Motion, $F=m a=m d^{2} x / d t^{2}$, where m represents mass and a represents acceleration. If we assume that there are no other forces
acting on the mass, then we determine the differential equation that models this situation in the following way:

$$
\begin{aligned}
m \frac{d^{2} x}{d t^{2}} & =\sum(\text { forces acting on the system }) \\
& =-k(s+x)+m g \\
& =-k s-k x+m g
\end{aligned}
$$

At equilibrium $k s=m g$, so after simplification, we obtain the differential equation

$$
m \frac{d^{2} x}{d t^{2}}=-k x \quad \text { or } \quad m \frac{d^{2} x}{d t^{2}}+k x=0
$$

The two initial conditions that are used with this problem are the initial displacement $x(0)=\alpha$ and initial velocity $d x / d t(0)=\beta$. Hence, the function $x(t)$ that describes the displacement of the mass with respect to the equilibrium position is found by solving the initial-value problem

$$
\left\{\begin{array}{l}
m \frac{d^{2} x}{d t^{2}}+k x=0 \tag{5.1}\\
x(0)=\alpha, \frac{d x}{d t}(0)=\beta
\end{array}\right.
$$

The differential equation in initial-value problem (5.1) disregards all retarding forces acting on the motion of the mass.

The solution $x(t)$ to this problem represents the displacement of the mass at time t. Based on the assumptions made in deriving the differential equation (the positive direction is down), positive values of $x(t)$ indicate that the mass is beneath the equilibrium position while negative values of $x(t)$ indicate that the mass is above the equilibrium position.

EXAMPLE 5.1.1: A mass weighing 60 lb stretches a spring 6 inches. Determine the function $x(t)$ that describes the displacement of the mass if the mass is released from rest 12 inches below the equilibrium position.

SOLUTION: First, the spring constant k must be determined from the given information. By Hooke's law, $F=k s$, so we have $60=k \cdot 0.5$. Therefore, $k=120 \mathrm{lb} / \mathrm{ft}$. Next, the mass, m, must be determined using $F=m g$. In this case, $60=m \cdot 32$, so $m=15 / 8$ slugs. Because $k / m=64$

Figure 5-1 Simple harmonic motion
and 12 inches equals 1 foot, the initial-value problem that needs to be solved is

$$
\left\{\begin{array}{l}
x^{\prime \prime}+64 x=0 \\
x(0)=1, x^{\prime}(0)=0
\end{array}\right.
$$

This problem is now solved with DSolve, and the resulting output is named de1.

```
In[833]:= Clear[x,t, de1]
    de1 =
    DSolve[{x'; [t] + 64 x [t] == 0, x [0] == 1,
        x'[0] == 0}, x[t], t]
Out [833]= {{x[t] }->\operatorname{Cos[8t]}}
```

We graph the solution with Plot in Figure 5-1.

```
\(\operatorname{In}[834]:=\operatorname{Plot}\left[\mathbf{x}[t] / . \operatorname{de1},\left\{t, 0, \frac{\pi}{2}\right\}\right]\)
```

In order to better understand the relationship between the formula obtained in this example and the motion of the mass on the spring, an alternate approach is taken here. We begin by defining sol to be the solution to the initial-value problem: given t, sol [t] returns the value of $\cos 8 t$.

```
In[835]:= Clear[sol]
In[836]:= sol[t_] = de1[[1, 1, 2]]
Out[836]= Cos[8t]
```

Then, the function zigzag is defined to produce a list of points joined by line segments to represent the graphics of a spring. Given ordered

Note that we will always have $a=c$.
pairs (a, b) and (c, d), a positive integer n, and a "small" number ϵ, zigzag $[\{a, b\},\{c, d\}, n, e p s]$ connects the set of points

$$
\begin{array}{r}
(a, b),\left(a-\epsilon, b+\frac{d-b}{n}\right),\left(a-\epsilon, b+2 \frac{d-b}{n}\right), \ldots,\left(a+(-1)^{i} \epsilon, b+i \frac{d-b}{n}\right), \ldots \\
\left(a+(-1)^{n-1} \epsilon, b+(n-1) \frac{d-b}{n}\right),(c, d)
\end{array}
$$

with line segments.

```
In[837]:= Clear[spring, zigzag, length, points, pairs]
    zigzag[{\mp@subsup{a}{-}{\prime},\mp@subsup{b}{-}{\prime}},{\mp@subsup{c}{-}{\prime},\mp@subsup{d}{-}{\prime}},\mp@subsup{n}{-}{\prime},\mp@subsup{\epsilon}{-}{\prime}]:=
    Module[{length, points, pairs},
            length = d - b;
            points = Table[b + ilength 
        pairs = Table[{a+(-1)'\epsilon, points\llbracketi\rrbracket],
            {i,1,n-1}];
        PrependTo[pairs, {a,b}];
        AppendTo[pairs, {c, d}];
        Line[pairs]]
```

The function spring produces the graphics of a point (the mass attached to the end of the spring) as well as that of the spring obtained with zigzag. The result of entering spring [t] when displayed with Show looks like a spring with a mass attached.

```
In[838]:= spring[t_] :=
    Show[
        Graphics[{zigzag[{0, -sol[t]},
            {0,1}, 20,0.05], PointSize[0.075],
        Point[{0, -sol[t]}]}], Axes }->\mathrm{ Automatic,
        AxesStyle }->\mathrm{ GrayLevel[0.5],Ticks }->\mathrm{ None,
        PlotRange }->{{-1,1},{-\frac{3}{2},\frac{3}{2}}}\mathrm{ ,
        AspectRatio }->1\mathrm{ , DisplayFunction }->\mathrm{ Identity]
```

A list of graphics is produced in somegraphs for values of t from $t=0$ to $t=\pi / 2$ using increments of $\pi / 16$.

```
In [839]:= somegraphs = Table[spring[t], {t,0, 年, 元}16}
Out[839]= {-Graphics-,-Graphics-, -Graphics-,
    -Graphics-, -Graphics-, -Graphics-,
    -Graphics-,-Graphics-,-Graphics-}
```

This list of nine graphics objects is then partitioned into groups of three with Partition in toshow for use with GraphicsArray.

```
In[840]:= toshow = Partition[somegraphs, 3]
Out[840]= {{-Graphics-, -Graphics-, -Graphics-},
    {-Graphics-, -Graphics-, -Graphics-},
    {-Graphics-,-Graphics-,-Graphics-} }
```

We then display the array of graphics objects toshow with Show and GraphicsArray in Figure 5-2. We see that the plots displayed show

Figure 5-2 Simple harmonic motion: a spring
the displacement of the mass at the values of time from $t=0$ to $t=\pi / 2$ using increments of $\pi / 16$.

```
In[841]:= Show[GraphicsArray[toshow]]
```

In order to achieve an animation so that we can see the motion of the spring, we use a Do loop. For example, entering

$$
\begin{aligned}
\text { In }[842]:= & \text { Do }[\text { Show }[\text { spring }[t], \\
& \text { DisplayFunction } \rightarrow \text { \$DisplayFunction }], \\
& \left.\left\{t, 0, \frac{\pi}{2}, \frac{\pi}{118}\right\}\right]
\end{aligned}
$$

displays spring [t] for t-values from $t=0$ to $t=\pi / 2$ using increments of $\pi / 118$. To animate these graphs, select the cell bracket of the graphs to be animated, go to the menu under Cell and select Animate Selected Graphics. Alternatively, after selecting the graphs to be animated, you can use the keyboard shortcut Command-Y to animate the selected graphics.

When these graphs are animated, as indicated in the following screen shot, we can see the motion of the spring.

> Do[Shov[spring $[t]$,
> DisplayFunction \rightarrow \$DisplayFunction $].$
> $\left.\left\{t, 0, \frac{\pi}{2}, \frac{\pi}{118}\right\}\right]$

Remember that positive values of $x(t)$ indicate that the mass is beneath the equilibrium position while negative values of $x(t)$ indicate that the

Figure 5-3 Simple harmonic motion illustrated with a spring and a plot
mass is above the equilibrium position. To see this, we graph $x(t)$ in Figure 5-3.

$$
\begin{aligned}
\text { In }[843]:=\text { graph }= & \text { Plot }\left[\text { sol }[t],\left\{t, 0, \frac{\pi}{2}\right\},\right. \\
& \text { PlotStyle } \rightarrow \text { GrayLevel }[0.3], \\
& \text { AxesStyle } \rightarrow \text { GrayLevel }[0.6], \\
& \text { Ticks } \rightarrow\{\{1\},\{-1,1\}\}, \\
& \text { PlotRange } \rightarrow\left\{-\frac{3}{2}, \frac{3}{2}\right\}, \\
& \text { AspectRatio } \rightarrow 1, \\
& \text { DisplayFunction } \rightarrow \text { Identity }] ;
\end{aligned}
$$

Then, we define p . Given t , p [t] generates a graphics object consisting of the graph of $x(t)$ on the interval [$0, \pi / 2$], which is named graph, and a "small" point placed at $(t, x(t))$.

```
In[844]:= p[t_] := Module[{dp},
    dp =
    Graphics[{PointSize[0.07],
    Point[{t, sol[t]}]}]; Show[graph,
    dp,DisplayFunction }->\mathrm{ Identity]]
```

We then use Table and GraphicsArray to generate a set of graphics objects consisting of the graphs of spring [t] and p [t], shown side-by-side, for t-values from $t=0$ to $t=\pi / 2$ using increments of $\pi / 10$.

$$
\begin{aligned}
\text { In }[845]:=\text { moregraphs }= & \text { Table }[\text { GraphicsArray }[\{\text { spring }[t], \\
& \left.p[t]\}],\left\{t, 0, \frac{\pi}{2}, \frac{\pi}{10}\right\}\right] ;
\end{aligned}
$$

The list moregraphs is then partitioned into two element subsets and displayed using Show and GraphicsArray in Figure 5-3.

```
In[846]:= toshow = Partition[moregraphs, 2];
In[847]:= Show[GraphicsArray[toshow]]
```

As before, we can use a Do loop to generate several graphs and animate the result to see the motion of the spring, as indicated in the following screen shot.

```
In[848]:= graphs =
    Do[Show[GraphicsArray[{spring[t], p[t]}],
    DisplayFunction }->\mathrm{ $DisplayFunction],
    {t,0, 否, 元
```

graphs =
Do[Shov[Graphicsarray[\{spring[t]. p[t]\}].
DisplayFunction \rightarrow \$DisplaFFunction].
$\left.\left\{t, 0, \frac{\pi}{2}, \frac{\pi}{118}\right\}\right]$
3
3
3
3

Notice that the displacement function $x(t)=\cos 8 t$ indicates that the spring-mass system never comes to rest once it is set into motion. The solution is periodic, so the mass moves vertically, retracing its motion. Hence, motion of this type is called simple harmonic motion.

EXAMPLE 5.1.2: An object with mass $m=1$ slug is attached to a spring with spring constant $k=4$. (a) Determine the displacement function of the object if $x(0)=\alpha$ and $x^{\prime}(0)=0$. Plot the solution for $\alpha=1,4,-2$. How does varying the value of α affect the solution? Does it change the values of t at which the mass passes through the equilibrium position? (b) Determine the displacement function of the object if $x(0)=0$ and $x^{\prime}(0)=\beta$. Plot the solution for $\beta=1,4,-2$. How does varying the value of β affect the solution? Does it change the values of t at which the mass passes through the equilibrium position?

SOLUTION: For (a), the initial-value problem we need to solve is

$$
\left\{\begin{array}{l}
x^{\prime \prime}+4 x=0 \\
x(0)=\alpha, x^{\prime}(0)=0
\end{array}\right.
$$

for $\alpha=1,4,-2$. We now determine the solution to each of the three problems with DSolve. For example, entering

```
In[849]:= Clear[x]
    de2 = DSolve [{x''[t] + 4 x [t] == 0, x[0] == 1,
        x'[0] == 0}, x[t], t]
Out [849]={{x[t] }->\operatorname{Cos[2t]}}
```

solves the initial-value problem if $\alpha=1$ and names the result de2. Note that the formula for the solution is the second part of the first part of the first part of de2 and is extracted from de2 with Part ([[. . .]]) by entering de $2[[1,1,2]]$. Alternatively, if you are using Version 5 you can select and copy the formula in the output and paste it to any location. Similarly, entering

```
In[850]:= de3 = DSolve[{\mp@subsup{x}{}{\prime\prime}[t] + 4 x [t] == 0, x[0] == 4,
    x'[0] == 0}, x[t], t]
Out [850]= {{x[t] ->4 Cos[2t]}}
```


Figure 5-4 Simple harmonic motion: varying the initial displacement

```
In[851]:= de4 = DSolve[{x'[t] + 4 x[t] == 0, x[0] == -2,
    x'[0] == 0}, x[t], t]
Out[851]= {{x[t] ->-2 Cos[2t]}}
```

solves

$$
\left\{\begin{array} { l }
{ x ^ { \prime \prime } + 4 x = 0 } \\
{ x (0) = 4 , x ^ { \prime } (0) = 0 }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
x^{\prime \prime}+4 x=0 \\
x(0)=-2, x^{\prime}(0)=0
\end{array}\right.\right.
$$

naming the results de3 and de4, respectively. We graph the solutions on the interval $[0, \pi]$ with Plot in Figure 5-4. Note how we use Map to extract the formula for each solution from de 2 , de3, and de4.

```
In[852]:= toplot = Map[#\llbracket1, 1, 2\rrbracket&,{de2, de3, de4}]
Out [852]= {Cos[2t],4 Cos[2t],-2 Cos[2t]}
In[853]:= Plot[Evaluate[toplot], {t, 0, \pi},
    PlotStyle }->\mathrm{ {GrayLevel[0], GrayLevel[0.3],
    GrayLevel[0.6]}]
```

We see that the initial position affects only the amplitude of the function (and direction in the case of the negative initial position). The mass passes through the equilibrium position $(x=0)$ at the same time in all three cases.

For (b), we need to solve the initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}+4 x=0 \\
x(0)=0, x^{\prime}(0)=\beta
\end{array}\right.
$$

for $\beta=1,4,-2$. In this case, we define a procedure d that, given β, returns the solution to the initial-value problem.

Figure 5-5 Simple harmonic motion: varying the initial velocity

```
In[854]:= d[\beta_] := Module[{},
    DSolve[{x"[t] + 4x[t] == 0,
    x[0] == 0, x'[0] == \beta}, x[t],t]]
```

We then use Map to apply d to the list of numbers $\{1,4,-2\}$ and name the resulting output solutions. (Note that the same result is obtained by using the keyboard shortcut for Map, /@, and entering solutions=d/@\{1,4,-2\}.)

```
In [855]:= solutions = Map[d,{1, 4, -2}]
Out [855]={{{x[t]->\frac{1}{2}\operatorname{sin}[2t]}},
    {{x[t] }->2\operatorname{Sin}[2t]}},{{x[t]->-\operatorname{Sin}[2t]}}
```

We see that solut ions consists of three lists. For example, the solution to the initial-value problem when $\beta=-2$ is contained in the third list in solutions. We now extract the formula for the solution with Part ([[...]]).

```
In[856]:= solutions[[3, 1, 1, 2]]
Out[856]= - Sin[2t]
```

All three solutions are graphed together on $[0,2 \pi]$ with Plot in Figure 5-5.

```
In[857]:= Plot[Evaluate[x[t]/.solutions], {t, 0, 2\pi},
    PlotStyle }->\mathrm{ {GrayLevel[0], GrayLevel[0.3],
    GrayLevel[0.6]}]
```


5.1.2 Damped Motion

Equation (5.1) disregards all retarding forces acting on the motion of the mass and a more realistic model which takes these forces into account is needed.

Studies in mechanics reveal that resistive forces due to damping are functions of the velocity of the motion. Hence, for $c>0, F_{R}=c d x / d t, F_{R}=c(d x / d t)^{3}$, or $F_{R}=c \operatorname{sgn}(d x / d t)$, where

$$
\operatorname{sgn}\left(\frac{d x}{d t}\right)=\left\{\begin{array}{l}
1, d x / d t>0 \\
0, d x / d t=0 \\
-1, d x / d t<0
\end{array}\right.
$$

are typically used to represent the damping force. Incorporating damping into equation (5.1) and assuming that $F_{R}=c d x / d t$, the displacement function, $x(t)$, is found by solving the initial-value problem

$$
\left\{\begin{array}{l}
m \frac{d^{2} x}{d t^{2}}+c \frac{d x}{d t}+k x=0 \tag{5.2}\\
x(0)=\alpha, \frac{d x}{d t}(0)=\beta
\end{array}\right.
$$

From our experience with second-order ordinary differential equations with constant coefficients in Chapter 4, the solutions to initial-value problems of this type greatly depend on the values of m, k, and c.

Suppose we assume that solutions of the differential equation have the form $x(t)=e^{r t}$. Because $x^{\prime}=r e^{r t}$ and $x^{\prime \prime}=r^{2} e^{r t}$, we have by substitution into the differential equation $m r^{2} e^{k t}+c r e^{r t}+k e^{r t}=0$, so $e^{r t}\left(m r^{2}+c r+k\right)=0$. The solutions to the characteristic equation are

$$
r=\frac{-c \pm \sqrt{c^{2}-4 m k}}{2 a}
$$

Hence, the solution depends on the value of the quantity $c^{2}-4 m k$. In fact, problems of this type are characterized by the value of $c^{2}-4 m k$ as follows.

1. $c^{2}-4 m k>0$. This situation is said to be overdamped because the damping coefficient c is large in comparison to the spring constant k.
2. $c^{2}-4 m k=0$. This situation is described as critically damped because the resulting motion is oscillatory with a slight decrease in the damping coefficient c.
3. $c^{2}-4 m k>0$. This situation is called underdamped because the damping coefficient c is small in comparison with the spring constant k.

EXAMPLE 5.1.3: Classify the following differential equations as overdamped, underdamped, or critically damped. Also, solve the corresponding initial-value problem using the given initial conditions and investigate the behavior of the solutions.
(a) $\frac{d^{2} x}{d t^{2}}+8 \frac{d x}{d t}+16 x=0$ subject to $x(0)=0$ and $\frac{d x}{d t}(0)=1$; and
(b) $\frac{d^{2} x}{d t^{2}}+5 \frac{d x}{d t}+4 x=0$ subject to $x(0)=1$ and $\frac{d x}{d t}(0)=1$.

SOLUTION: For (a), we identify $m=1, c=8$, and $k=16$ so that $c^{2}-4 m k=0$, which means that the differential equation $x^{\prime \prime}+8 x^{\prime}+16 x=0$ is critically damped. After defining de1, we solve the equation subject to the initial conditions and name the resulting output soll. We then graph the solution shown in Figure 5-6 by selecting and copying the result given in soll to the subsequent Plot command. If you prefer working with InputForm, the formula for the solution to the initialvalue problem is extracted from soll with soll [$[1,1,2]$].

Figure 5-6 Critically damped motion

Figure 5-7 Overdamped motion

Thus, entering Plot $[$ sol $[[1,1,2]],\{t, 0,4\}]$ displays the same graph as that obtained with the following Plot command. Note that replacing soll[[1,1,2]] with Evaluate[x[t]/.sol1] in the Plot command also produces the same result.

```
In[858]:= Clear[de1, x,t]
    de1 = x''[t] + 8 x'[t] + 16 x [t] == 0;
    sol1 = DSolve[{de1, x[0] == 0, x'[0] == 1},
        x[t],t]
Out [858]= {{x[t] -> \mp@subsup{e}{}{-4t}t}}
In[859]:= Plot[ [ -4t}t,{t, 0, 4}
```

For (b), we proceed in the same manner. We identify $m=1, c=5$, and $k=4$ so that $c^{2}-4 m k=9$ and the equation $x^{\prime \prime}+5 x^{\prime}+4 x=0$ is overdamped. We then define de 2 to be the equation and the solution to the initial-value problem obtained with DSolve, sol2 and then graph $x(t)$ on the interval [0, 4] in Figure 5-7.

```
In[860]:= Clear[de2, x,t]
    de2 = x''[t] + 5 x'[t] + 4 x [t] == 0;
    sol2 = DSolve[{de2, x[0] == 1, x'[0] == 1},
        x[t],t]
Out [860]={{x[t]->\frac{1}{3}\mp@subsup{e}{}{-4t}(-2+5\mp@subsup{e}{}{3t})}}
In[861]:= Plot[sol2[[1, 1, 2]], {t, 0, 4}]
```

EXAMPLE 5.1.4: A $16-\mathrm{lb}$ weight stretches a spring 2 feet. Determine the displacement function if the resistive force due to damping is $F_{R}=$ $\frac{1}{2} d x / d t$ and the mass is released from the equilibrium position with a downward velocity of $1 \mathrm{ft} / \mathrm{sec}$.

SOLUTION: Because $F=16 \mathrm{lb}$, the spring constant is determined with $16=k \cdot 2$. Hence, $k=8 \mathrm{lb} / \mathrm{ft}$. Also, $m=16 / 32=1 / 2$ slug. Therefore, the differential equation is $\frac{1}{2} x^{\prime \prime}+\frac{1}{2} x^{\prime}+8 x=0$ or $x^{\prime \prime}+x^{\prime}+16 x=0$. The initial position is $x(0)=0$ and the initial velocity is $x^{\prime}(0)=1$. Thus, we must solve the initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}+x^{\prime}+16 x=0 \\
x(0)=0, x^{\prime}(0)=1
\end{array}\right.
$$

which is now solved with DSolve.

$$
\begin{aligned}
& \text { In [862] : = Clear[} \mathbf{x}, \mathrm{t} \text {, deq, sol] } \\
& \text { deq }= \\
& \text { DSolve }\left[\left\{x^{\prime \prime}[t]+x^{\prime}[t]+16 x[t]==0, x[0]==0,\right.\right. \\
& \left.\left.x^{\prime}[0]==1\right\}, x[t], t\right] \\
& \text { Out }[862]=\left\{\left\{x[t] \rightarrow \frac{2 e^{-t / 2} \operatorname{Sin}\left[\frac{3 \sqrt{7} t}{2}\right]}{3 \sqrt{7}}\right\}\right\} \\
& \operatorname{In}[863]:=\operatorname{sol}\left[t_{-}\right]=\frac{2 e^{-\frac{t}{2}} \operatorname{Sin}\left[\frac{3}{2} \sqrt{7} t\right]}{3 \sqrt{7}} ;
\end{aligned}
$$

Solutions of this type have several interesting properties. First, the trigonometric component of the solution causes the motion to oscillate. Also, the exponential portion forces the solution to approach zero as t approaches infinity. These qualities are illustrated in the plot of the solution shown in Figure 5-8.

```
In[864]:= Plot[sol[t],{t, 0, 2\pi}]
```

Physically, the displacement of the mass in this case oscillates about the equilibrium position and eventually comes to rest in the equilibrium position. Of course, with our model the displacement function $x(t) \rightarrow 0$

Figure 5-8 Underdamped motion
as $t \rightarrow \infty$, but there is no number T such that $x(t)=0$ for $t>T$ as we might expect from the physical situation. Hence, our model only approximates the behavior of the mass. Notice also that the solution is bounded above and below by the exponential term of the solution $e^{-t / 2}$ and its reflection through the horizontal axis, $-e^{-t / 2}$. This is illustrated with the simultaneous display of these functions in Figure 5-9.

$$
\begin{aligned}
\operatorname{In}[865]:= & \operatorname{Plot}\left[\left\{\operatorname{sol}[t], \frac{2}{3 \sqrt{7} \operatorname{Exp}\left[\frac{\mathrm{t}}{2}\right]},-\frac{2}{3 \sqrt{7} \operatorname{Exp}\left[\frac{\mathrm{t}}{2}\right]}\right\},\right. \\
& \{\mathrm{t}, 0,2 \pi\}, \\
& \text { PlotStyle } \rightarrow\{\text { GrayLevel }[0], \text { GrayLevel }[0.5], \\
& \text { GrayLevel }[0.5]\}]
\end{aligned}
$$

Figure 5-9 The solution shown with its envelope functions

Other questions of interest include: (1) When does the mass first pass through its equilibrium point? (2) What is the maximum displacement of the spring?

The time at which the mass passes through $x=0$ can be determined in several ways. The solution equals zero at the time that $\sin \left(\frac{3}{2} \sqrt{7} t\right)$ first equals zero after $t=0$ which occurs when $\frac{3}{2} \sqrt{7} t=\pi$. We use Solve to solve this equation for t and then use N to approximate the time. (Note that \% refers to the most recent output.)

$$
\begin{aligned}
\text { In }[866]:= & \text { Solve }\left[\frac{3 \sqrt{7} t}{2}==\pi, t\right] \\
& \mathbf{N}[\%] \\
\text { Out }[866]= & \left\{\left\{t \rightarrow \frac{2 \pi}{3 \sqrt{7}}\right\}\right\} \\
\text { Out }[866]= & \{\{t \rightarrow 0.791607\}\}
\end{aligned}
$$

Alternatively, we can approximate the time with FindRoot.

```
In[867]:= FindRoot[sol[t] == 0, {t, 0.7}]
Out[867]= {t }->0.791607
```

Similarly, the maximum displacement of the spring is found by finding the first value of t for which the derivative of the solution is equal to zero as done here with FindRoot.

```
In[868]:= cp1 = FindRoot[sol'[t] == 0, {t, 0.4}]
Out[868]= {t }->0.364224
```

The maximum displacement is then given by evaluating the solution for the value of t obtained with FindRoot.

```
In[869]:= N[sol[t]/.cp1]
Out[869]= 0.208377
```

Another interesting characteristic of solutions to undamped problems is the time between successive maxima and minima of the solution, called the quasiperiod. This quantity is found by first determining the time at which the second maximum occurs with FindRoot. Then, the difference between these values of t is taken to obtain the value 1.58321 .

```
In[870]:= cp2 = FindRoot[sol'[t] == 0,{t, 2}]
Out [870]= {t }->1.94744
```

```
In[871]:= cp2[[1, 2]] - cp1[[1, 2]]
Out[871]= 1.58321
```

To investigate the solution further, an animation can be created with the zigzag and spring commands, which were defined previously. We redefine zigzag and spring.

```
In[872]:= Clear[spring, zigzag, length, points, pairs]
    zigzag[{a, b_}, {c_, d_}, n_, 的] :=
    Module[{length, points, pairs},
                            length = d - b;
    points = Table[b + i length 
    pairs = Table[{a+(-1)'\epsilon, points\llbracketi\rrbracket},
    {i,1,n-1}];
    PrependTo[pairs, {a,b}];
    AppendTo[pairs, {c, d}];
    Line[pairs]]
In[873]:= spring[t_] :=
    Show[
            Graphics[{zigzag[{0, -sol[t]}, {0, 0.25},
            20,0.05], PointSize[0.075],
            Point[{0, -sol[t]}]}], Axes }->\mathrm{ Automatic,
            AxesStyle }->\mathrm{ GrayLevel[0.5],Ticks }->\mathrm{ None,
            PlotRange }->{{-1,1}
            {-0.25,0.25}}, AspectRatio }->1\mathrm{ ,
            DisplayFunction }->\mathrm{ Identity]
```

Next, we display a graphics array consisting of spring [t] for t-values from $t=0$ to $t=4$ using increments of 4/15 in Figure 5-10.

$$
\begin{aligned}
\text { In }[874]:= & \text { somegraphs }=\text { Table }\left[\operatorname{spring}[t],\left\{t, 0,4, \frac{4}{15}\right\}\right] ; \\
& \text { toshow = Partition [somegraphs, 4]; } \\
& \text { Show[GraphicsArray[toshow]] }
\end{aligned}
$$

Figure 5-10 The motion of an underdamped spring

To generate an animation, we use a Do loop. We show a screen shot of the resulting animation.

$$
\begin{aligned}
\text { In }[875]:= & \operatorname{Do}[\text { Show }[\text { spring }[t], \\
& \text { DisplayFunction } \rightarrow \text { \$DisplayFunction }], \\
& \left.\left\{t, 0,6, \frac{6}{99}\right\}\right]
\end{aligned}
$$

We can also compare the motion of the spring to the graph of the solution as shown in Figure 5-11.

```
In[876]:= graph = Plot[sol[t], {t, 0, 2\pi},
        PlotStyle }->\mathrm{ GrayLevel[0.3],
        AxesStyle }->\mathrm{ GrayLevel[0.6],
        Ticks }->{{2,4,6},{-0.2,0.2}}
        PlotRange }->{-0.25,0.25}
        AspectRatio }->1\mathrm{ ,
        DisplayFunction- > Identity];
In[877]:= p[t_]:= Module[{dp},
        dp =
        Graphics[{PointSize[0.07],
        Point[{t, sol[t]}]}]; Show[graph,
        dp, DisplayFunction }->\mathrm{ Identity]]
In[878]:= toshow =
    Partition[Table[GraphicsArray[{spring[t],
        p[t]}],{t, 0,4,\frac{4}{9}}],2];
    Show[GraphicsArray[toshow]]
```


Figure 5-11 Visualizing underdamped motion with a spring and a plot

Alternatively, we can use a Do loop to generate graphics and animate the result. We show a screen shot obtained from animating the resulting graphics from the following Do loop.

```
In[879]:= graphs =
    Do[Show[GraphicsArray[{spring[t], p[t]}],
            DisplayFunction }->\mathrm{ $DisplayFunction],
            {t,0,6, \frac{6}{49}}]
```

graphs =
Do[Shov[Graphicshrray[(spring[t]. p[t] $]$].
DispląFunction \rightarrow \$DisplayFunction].
$\left.\left\{t, 0,6, \frac{6}{49}\right\}\right]$

EXAMPLE 5.1.5: Suppose that we have the initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}+c x^{\prime}+6 x=0 \tag{5.3}\\
x(0)=0, x^{\prime}(0)=1
\end{array}\right.
$$

where $c=2 \sqrt{6}, 4 \sqrt{6}$, and $\sqrt{6}$. Determine how the value of c affects the solution of the initial-value problem.

SOLUTION: We begin by defining the function d . Given $\mathrm{c}, \mathrm{d}[\mathrm{c}]$ solves the initial-value problem (5.3).

Figure 5-12 Depending on the value of $c>0$, the motion can be critically damped, overdamped, or underdamped

```
In [880]:= Clear[x,t,d]
d[c_] :=
    DSolve[{x'[t] + c x' [t] + 6 x [t] == 0, x[0] == 0,
        x
```

We then use Map and d to find the solution of the initial-value problem for each value of c, naming the resulting list somesols.

$$
\begin{aligned}
\text { In }[881]:= & \text { somesols }=\mathrm{d} / @\{2 \sqrt{6}, 4 \sqrt{6}, \sqrt{6}\} \\
\text { Out }[881]=\{ & \left\{\left\{x[t] \rightarrow e^{-\sqrt{6} t} t\right\}\right\}, \\
& \left\{\left\{x[t] \rightarrow-\frac{e^{(-3 \sqrt{2}-2 \sqrt{6}) t}-e^{(3 \sqrt{2}-2 \sqrt{6}) t}}{6 \sqrt{2}}\right\}\right\} \\
& \left.\left\{\left\{x[t] \rightarrow \frac{1}{3} \sqrt{2} e^{-\sqrt{\frac{3}{2}} t} \operatorname{Sin}\left[\frac{3 t}{\sqrt{2}}\right]\right\}\right\}\right\}
\end{aligned}
$$

Note that each case results in a different classification: $c=2 \sqrt{6}$, critically damped; $c=4 \sqrt{6}$, overdamped; and $c=\sqrt{6}$, underdamped.

All three solutions are graphed together on the interval [0, 4] in Figure 5-12 using different GrayLevel settings.

```
In[882]:= Plot[Evaluate[x[t]/.somesols], {t, 0, 4},
    PlotStyle }->\mathrm{ {GrayLevel[0], GrayLevel[0.3],
    GrayLevel[0.6]}]
```

EXAMPLE 5.1.6: Consider the system

$$
\left\{\begin{array}{l}
x^{\prime \prime}+f(t) x^{\prime}+\frac{5}{4} x=0, t>0 \\
x(0)=0, x^{\prime}(0)=1
\end{array}\right.
$$

where

$$
f(t)=\left\{\begin{array}{l}
1,0 \leq t<\pi \\
3, \pi \leq t<2 \pi
\end{array} \quad f(t)=f(t-2 \pi), t \geq 2 \pi\right.
$$

in which damping oscillates periodically: the rate at which energy is taken away from the system fluctuates periodically. Find the displacement $x(t)$ for $0 \leq t \leq 4 \pi$.

SOLUTION: For $0<t<\pi$, the solution to the initial-value problem is found by solving

$$
\left\{\begin{array}{l}
x^{\prime \prime}+x^{\prime}+\frac{5}{4} x=0 \\
x(0)=0, x^{\prime}(0)=1
\end{array}\right.
$$

which is found with DSolve and named Y1. Similarly, for $\pi<t<2 \pi$, we solve

$$
\left\{\begin{array}{l}
x^{\prime \prime}+3 x^{\prime}+\frac{5}{4} x=0 \\
x(\pi)=a, x^{\prime}(\pi)=b
\end{array}\right.
$$

where $\mathrm{a}=\mathrm{x} 1$ [Pi] and $\mathrm{b}=\mathrm{x} 1^{\prime}$ [Pi] and name the result y 2 .

$$
\begin{aligned}
& \text { In[883]:= Clear[sol] } \\
& \text { sol = } \\
& \text { DSolve }\left[\left\{x^{\prime \prime}[t]+x^{\prime}[t]+\frac{5 x[t]}{4}=0, x[0]=0,\right.\right. \\
& \left.\left.x^{\prime}[0]=1\right\}, x[t], t\right] \\
& \text { Out [883] }=\left\{\left\{x[t] \rightarrow e^{-t / 2} \operatorname{Sin}[t]\right\}\right\} \\
& \text { In [884]:= Clear [} \mathbf{x 1} 1, \mathbf{x} \text {, sol2, a, b] } \\
& \text { x1[t_] = sol[[1, 1, 2]]; } \\
& \text { a = x1[} \pi \text {]; } \\
& \mathrm{b}=\mathrm{x} 1^{\prime}[\pi] \text {; } \\
& \text { sol2 }= \\
& \text { DSolve }\left[\left\{x^{\prime \prime}[t]+3 x^{\prime}[t]+\frac{5 x[t]}{4}=0\right.\right. \text {, } \\
& \left.\left.x[\pi]=a, x^{\prime}[\pi]=b\right\}, x[t], t\right]
\end{aligned}
$$

$$
\text { Out }[884]=\left\{\left\{x[t] \rightarrow-\frac{1}{2} e^{-5 t / 2}\left(-e^{2 \pi}+e^{2 t}\right)\right\}\right\}
$$

In a similar way, we find the solution for $2 \pi<t<3 \pi$ in y3 and the solution for $3 \pi<t<4 \pi$ in Y 4 .

```
In[885]:= Clear[ }\mathbf{x}2,\mathbf{x},\operatorname{sol3, a,b]
    x2[t_] = sol2[[1, 1, 2]];
    a = x2[2 \pi];
    b = x2'[2\pi];
    sol3 =
        DSolve [{x'[t] - x' [t] + \frac{5x[t]}{4}==0,
        x[2\pi] == a, x'[2\pi] == b}, x[t],t]
Out [885] = {{x[t] }
        -\frac{1}{2}\mp@subsup{e}{}{-4\pi+\frac{t}{2}}(-\operatorname{Cos}[t]+\mp@subsup{e}{}{2\pi}\operatorname{Cos}[t]
            +3 Sin[t]- \mp@subsup{e}{}{2\pi}\operatorname{Sin}[t])}}
In[886]:= Clear[x3, x, sol4, a, b]
    x3[t_] = sol3[[1, 1, 2]];
    a = x3[3\pi];
    b = x3'[3\pi];
    sol4 =
        DSolve[{\mp@subsup{x}{}{\prime\prime}[t]+3\mp@subsup{x}{}{\prime}[t]+\frac{5x[t]}{4}==0,
        x[3\pi] == a, x'[3\pi] == b}, x[t],t]
Out [886]={{x[t]->\frac{1}{2}\mp@subsup{\mathbb{e}}{}{\pi-\frac{5t}{2}}(-\mp@subsup{\mathbb{e}}{}{4\pi}+\mp@subsup{\mathbb{e}}{}{2t})}}
In[887]:= x4[t_] = sol4[[1, 1, 2]];
```

We see the damped motion of the system by graphing the pieces of the solution individually and then displaying them together with Show in Figure 5-13.

Figure 5-13 Harmonic motion with periodic damping

```
In[888]:= plot1 = Plot[x1[t], {t, 0, \pi},
                                    DisplayFunction }->\mathrm{ Identity];
plot2 = Plot[x2[t], {t, \pi, 2\pi},
    DisplayFunction }->\mathrm{ Identity];
plot3 = Plot[x3[t], {t, 2\pi, 3\pi},
    DisplayFunction }->\mathrm{ Identity];
plot4 = Plot[x4[t], {t, 3\pi, 4\pi},
    DisplayFunction }->\mathrm{ Identity];
show4 = Show[plot1, plot2, plot3, plot4,
    DisplayFunction }->\mathrm{ $DisplayFunction]
```


5.I. 3 Forced Motion

In some cases, the motion of the spring is influenced by an external driving force, $f(t)$. Mathematically, this force is included in the differential equation that models the situation as follows:

$$
m \frac{d^{2} x}{d t^{2}}=-k x-c \frac{d x}{d t}+f(t)
$$

The resulting initial-value problem is

$$
\left\{\begin{array}{l}
m x^{\prime \prime}+c x^{\prime}+k x=f(t) \tag{5.4}\\
x(0)=\alpha, x^{\prime}(0)=\beta .
\end{array}\right.
$$

Therefore, differential equations modeling forced motion are nonhomogeneous and require the Method of Undetermined Coefficients or Variation of Parameters for solution. We first consider forced motion that is undamped.

EXAMPLE 5.1.7: An object of mass $m=1$ slug is attached to a spring with spring constant $k=4$. Assuming there is no damping and that the object is released from rest in the equilibrium position, determine the position function of the object if it is subjected to an external force of (a) $f(t)=0,(\mathrm{~b}) f(t)=1$, (c) $f(t)=\cos t$, and (d) $f(t)=\sin t$.

SOLUTION: First, we note that we must solve the initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}+4 x=f(t) \\
x(0)=0, x^{\prime}(0)=0
\end{array}\right.
$$

for each of the forcing functions in (a), (b), (c), and (d). Because we will be solving this initial-value problem for various forcing functions, we begin by defining the function fm . Given a function $\mathrm{f}=f(t)$, $\mathrm{fm}[\mathrm{f}]$ returns the formula for the solution to this initial-value problem.

```
In[889]:= Clear[x,t]
    fm[f_]:=
    DSolve [{\mp@subsup{x}{}{\prime\prime}[t] + 4 x [t] == f, x[0] == 0,
                x'[0] == 0}, x[t], t][[1, 1, 2]]
```

Next, we define fs to be the forcing functions in (a)-(d).

We then use Map to apply fm to fs and name the resulting list of functions somesols.

```
In[891]:= somesols = Map[fm, fs]
Out[891]={0,\frac{1}{4}(1-\operatorname{Cos[2t]),}
    \frac{1}{12}(-4\operatorname{Cos}[2t]+3\operatorname{Cos}[t]\operatorname{Cos[2t]}
    + Cos[2t] Cos[3t] + 3 Sin[t] Sin[2t]
    + Sin[2t] Sin[3t]), \frac{1}{12}(-3\operatorname{Cos[2t] Sin[t]}
    -2 Sin[2t] + 3 Cos[t] Sin[2t]
    - Cos[3t] Sin[2t]+\operatorname{Cos[2t] Sin[3t])}}
```

Negative values of x indicate that the mass is above the equilibrium position; positive values indicate that the mass is below the equilibrium position.

Figure 5-14 Forced motion without damping

From the result, we see that for (a) the solution is $x(t)=0$. Physically, this solution indicates that because there is no forcing function, no initial displacement from the equilibrium position, and no initial velocity, the object does not move from the equilibrium position.

The nontrivial solutions in (b), (c), and (d) are then graphed on the interval $[0,2 \pi]$ with Plot in Figure 5-14.

```
In[892]:= grays = Table[GrayLevel[i], {i, 0, 0.7,
    0.7/3}];
    Plot[Evaluate[somesols],
    {t, 0, 2\pi}, PlotStyle }->\mathrm{ grays,
    PlotRange }->\mathrm{ All]
```

From the graph, we see that for (b) the object never moves above the equilibrium position. This makes sense because $0 \leq \cos 2 t \leq 1: x(t)=$ $\frac{1}{4}(1-\cos 2 t)$ for all t. For (c), we see that the mass passes through the equilibrium position twice (near $t=2$ and $t=4$) over the period. For (d), we again see that the resulting motion is periodic, although different from that observed in (c).

When we studied nonhomogeneous equations, we considered equations in which the nonhomogeneous function was a solution of the corresponding homogeneous equation. This situation is modeled by the initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}+\omega^{2} x=F_{1} \cos \omega t+F_{2} \sin \omega t+G(t) \tag{5.5}\\
x(0)=\alpha, x^{\prime}(0)=\beta
\end{array}\right.
$$

where $\omega>0, F_{1}$ and F_{2} are constants, and $G=G(t)$ is a function of t. In this case, we say that ω is the natural frequency of the system because the solution of the corresponding homogeneous equation, $x^{\prime \prime}+\omega^{2} x=0$, is $x_{h}=c_{1} \cos \omega t+c_{2} \sin \omega t$.

Note that one of the constants F_{1} or F_{2} can equal zero and $G=G(t)$ can be identically the zero function.

EXAMPLE 5.1.8: Investigate the effect that the forcing functions (a) $f(t)=\cos 2 t$ and (b) $f(t)=\sin 2 t$ have on the solution of the initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}+4 x=f(t) \\
x(0)=0, x^{\prime}(0)=0
\end{array}\right.
$$

SOLUTION: We take advantage of the function fm defined in Example 5.1.7. In the same manner as in Example 5.1.7, we use Map to apply fm to each of the forcing functions in (a) and (b). (Note that entering

```
moresols=fm/@{Cos[2 t],Sin[2 t]}
```

produces the same result.)

```
In[893]:= moresols = Map[fm,{Cos[2t], Sin[2t]}]
Out [893]={\frac{1}{16}(-\operatorname{Cos[2t] + Cos[2t] Cos[4t]}
    +4t Sin[2t] + Sin[2t] Sin[4t]),
        \frac{1}{16}}(-4t\operatorname{Cos[2t] + Sin[2t]
        - Cos[4t] Sin[2t]+\operatorname{Cos[2t] Sin[4t])}}
```

From the result, we see that the nonperiodic function $y=t \sin 2 t$ appears in the result for (a) while the nonperiodic function $y=t \cos 2 t$ appears in the result for (b). In each case, we see that the amplitude increases without bound as t increases, as illustrated in Figure 5-15. This indicates that the spring-mass system will encounter a serious problem in that the mass will eventually hit its support (like a ceiling or beam) or its lower boundary (like the ground or floor).

```
In[894]:= Plot[Evaluate[moresols], {t, 0, 2\pi},
    PlotStyle }->\mathrm{ {GrayLevel[0], GrayLevel[0.4]}]
```


Figure 5-15 Resonance

The phenomenon illustrated in Example 5.1.8 is called resonance and can be extended to other situations such as vibrations of an aircraft wing, skyscraper, glass, or bridge. Some of the sources of excitation that lead to the vibration of these structures include unbalanced rotating devices, vortex shedding, strong winds, rough surfaces, and moving vehicles. Therefore, the engineer has to overcome many problems when structures and machines are subjected to forced vibrations.

EXAMPLE 5.1.9: How does slightly changing the value of the argument of the forcing function change the solution of the initial-value problem given in Example 5.1.8? Use the functions (a) $f(t)=\cos 1.9 t$ and (b) $f(t)=\cos 2.1 t$ with the initial-value problem.

SOLUTION: As in Example 5.1.8, we take advantage of the function fm defined in Example 5.1.7. (Note that entering

```
moresols=Map[fm,{\operatorname{Cos[1.9 t],Sin[2.1 t]}]}
```

produces the same result as that obtained using / @, the keyboard shortcut for Map.)

```
In[895]:= moresols = fm/@{Cos[1.9t],Sin[2.1t]}
```


Figure 5-16 Resonance?

```
Out[895]= {-2.5641 e 0.t}\operatorname{Cos[2.t]
    +2.5 e 0.t Cos[0.1t] Cos[2.t]
    +0.0641026 e 0.t}\operatorname{Cos[2.t] Cos[3.9t]
    +0. e 0.t Sin[2.t]
    +2.5 e 0.t}\operatorname{Sin}[0.1t] Sin[2.t]
    +0.0641026 e 0.t Sin[2.t] Sin[3.9t],
    0. e 0.t}\operatorname{Cos[2.t]
    -2.5 e 0.t Cos[2.t] Sin[0.1t]
    +2.56098 e.t.}\operatorname{Sin}[2.t
    -2.5 e 0.t Cos[0.1t] Sin[2.t]
    -0.0609756 e 0.t Cos[4.1t] Sin[2.t]
    +0.0609756 e 0.t}\operatorname{Cos[2.t] Sin[4.1t]}
```

The result shows that each solution is periodic and bounded. These solutions are then graphed in Figure 5-16 to reveal the behavior of the curves. If the solutions are plotted over only a small interval, however, resonance seems to be present.

```
In[896]:= Plot[Evaluate[moresols], {t, 0, 2\pi},
    PlotStyle }->\mathrm{ {GrayLevel[0], GrayLevel[0.4]}]
```

Compare Figure 5-16 to the graph generated in Example 5.1.8.

However, the functions obtained with fm clearly indicate that there is no resonance. This is further indicated by graphing the solutions over a longer time interval in Figure 5-17.

```
In[897]:= Plot[moresols\llbracket1], {t, 0, 40\pi}, PlotPoints }->\mathrm{ 200]
In[898]:= Plot[moresols\llbracket2], {t, 0, 40\pi}, PlotPoints -> 200]
```


Figure 5-17 No resonance: the solution is periodic

Let us investigate in detail initial-value problems of the form

$$
\left\{\begin{array}{l}
x^{\prime \prime}+\omega^{2} x=F \cos \beta t, \omega>0, \omega \neq \beta \tag{5.6}\\
x(0)=0, x^{\prime}(0)=0
\end{array}\right.
$$

A general solution of the corresponding homogeneous equation is $x_{h}=c_{1} \cos \omega t+$ $c_{2} \sin \omega t$. Using the Method of Undetermined Coefficients, we assume that there is a particular solution to the nonhomogeneous equation of the form $x_{p}=A \cos \beta t+$ $B \sin \beta t$.

$$
\operatorname{In}[899]:=\mathbf{x}_{\mathrm{p}}\left[\mathrm{t}_{-}\right]=\mathrm{a} \operatorname{Cos}[\beta \mathrm{t}]+\mathrm{b} \operatorname{Sin}[\beta \mathrm{t}] ;
$$

Next, we calculate the corresponding derivatives of this solution

```
In[900]:= }\mp@subsup{\mathbf{x}}{\textrm{p}}{}\mp@subsup{}{}{[}[\textrm{t}
Out [900]= b \beta Cos[t \beta] - a \beta Sin[t \beta]
In[901]:= 业"[t]
```


and substitute into the nonhomogeneous equation $x^{\prime \prime}+\omega^{2} x=F \cos \beta t$.


```
Out[902]= - - 4}\mp@subsup{e}{}{-5\pi/2}(\mp@subsup{\beta}{}{2}-\mp@subsup{\omega}{}{2}
    (2(-1+\mp@subsup{e}{}{2\pi})\operatorname{Cos}[t\beta]-(-5+\mp@subsup{e}{}{2\pi})\operatorname{Sin}[t\beta])==f\operatorname{Cos}[t\beta]
```

This equation is true for all values of t. In particular, substituting $t=0$ and $t=$ $\pi /(2 \beta)$ yields two equations

```
In[903]:= eq1 = step1/.t-> 0
Out[903]= -a ( }\mp@subsup{\beta}{}{2}-\mp@subsup{\omega}{}{2})==\textrm{f
In[904]:= eq2 = step1/.t-> 揗
Out[904] = -b ( }\mp@subsup{\beta}{}{2}-\mp@subsup{\omega}{}{2})==
```

that we then solve for A and B to see that $A=\frac{F}{\omega^{2}-\beta^{2}}$ and $B=0$ and a general solution of the nonhomogeneous equation is

$$
x=c_{1} \cos \omega t+c_{2} \sin \omega t+\frac{F}{\omega^{2}-\beta^{2}} \cos \beta t .
$$

Application of the initial conditions yields the solution

$$
x=\frac{F}{\omega^{2}-\beta^{2}}(\cos \beta t-\cos \omega t)=\frac{F}{\beta^{2}-\omega^{2}}(\cos \omega t-\cos \beta t) .
$$

We can use DSolve and Simplify to solve the initial-value problem (5.6) as well.

$$
\begin{aligned}
& \text { In }[905]:= \operatorname{DSolve}\left[\left\{\mathbf{x}^{\prime \prime}[\mathrm{t}]+\omega^{2} \mathbf{x}[\mathrm{t}]==\mathbf{f} \operatorname{Cos}[\beta \mathrm{t}], \mathbf{x}[0]==0,\right.\right. \\
&\left.\left.\mathbf{x}^{\prime}[0]==0\right\}, \mathbf{x}[\mathrm{t}], \mathrm{t}\right] / / \operatorname{Simplif} \mathbf{y} \\
& \text { Out }[905]=\left\{\left\{\mathbf{x}[\mathrm{t}] \rightarrow \frac{\mathrm{f}(\operatorname{Cos}[\mathrm{t} \beta]-\operatorname{Cos}[\mathrm{t} \omega])}{-\beta^{2}+\omega^{2}}\right\}\right\}
\end{aligned}
$$

Using the trigonometric identity $\frac{1}{2}[\cos (\alpha-\beta)-\cos (\alpha+\beta)]=\sin \alpha \sin \beta$, we have

$$
x=\frac{2 F}{\omega^{2}-\beta^{2}} \sin \left(\frac{\omega+\beta}{2} t\right) \sin \left(\frac{\omega-\beta}{2} t\right) .
$$

These solutions are of interest because of what they indicate about the motion of the spring under consideration. Notice that the solution can be represented as

$$
x=A(t) \sin \left(\frac{\omega+\beta}{2} t\right), \quad \text { where } \quad A(t)=\frac{2 F}{\omega^{2}-\beta^{2}} \sin \left(\frac{\omega-\beta}{2} t\right)
$$

Therefore, if the quantity $\omega-\beta$ is small, $\omega+\beta$ is relatively large in comparison. Hence, the function $\sin \left(\frac{\omega+\beta}{2} t\right)$ oscillates quite frequently because it has period
$\pi /(\omega+\beta)$. Meanwhile, the function $\sin \left(\frac{\omega-\beta}{2} t\right)$ oscillates relatively slowly because it has period $\pi /|\omega-\beta|$, so the functions $\pm \frac{2 F}{\omega^{2}-\beta^{2}} \sin \left(\frac{\omega-\beta}{2} t\right)$ form an envelope for the solution.

EXAMPLE 5.1.10: Solve the initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}+4 x=f(t) \\
x(0)=0, x^{\prime}(0)=0
\end{array}\right.
$$

with (a) $f(t)=\cos 3 t$ and (b) $f(t)=\cos 5 t$.

SOLUTION: Again, we use $f m$, defined in Example 5.1.7, to solve the initial-value problem in each case.

```
In[906]:= Clear[x,t]
    fm[f_] :=
        DSolve [{\mp@subsup{\mathbf{x}}{}{\prime\prime}[t]+4 x[t] == f, x[0] == 0,
                x'[0] == 0}, x[t], t][[1, 1, 2]]
In[907]:= fs = {Cos[3t], Cos[5t]};
In[908]:= somesols = Map[fm, fs]
Out[908]={\frac{1}{20}(4\operatorname{Cos[2t]-5 Cos[t] Cos[2t]}
    + Cos[2t] Cos[5t]+5 Sin[t] Sin[2t]
    + Sin[2t] Sin[5t]),
    \frac{1}{84}(4\operatorname{Cos[2t]-7 Cos[2t] Cos[3t]}
    +3 Cos[2t] Cos[7t]
    +7 Sin[2t] Sin[3t]
    +3 Sin[2t] Sin[7t])}
```

The solution for (a) is graphed in Figure 5-18 and named p1 for later use.

```
In[909]:= p1 = Plot[somesols[[1]],{t, 0,6\pi}]
```

Using the formula obtained earlier for the functions that "envelope" the solution, we have $x(t)= \pm \sin \left(\frac{1}{2} t\right)$. These functions are graphed in p2 and displayed with p1 with Show in Figure 5-19.

Figure 5-18 The forcing function causes beats

Figure 5-19 The envelope functions show the beats more clearly

$$
\begin{aligned}
& \operatorname{In}[910]:=p 2=\operatorname{Plot}\left[\left\{\frac{2}{5} \sin \left[\frac{t}{2}\right],-\frac{2}{5} \operatorname{Sin}\left[\frac{t}{2}\right]\right\},\{t, 0,6 \pi\},\right. \\
& \text { PlotStyle } \rightarrow \text { GrayLevel[0.5], } \\
& \text { DisplayFunction } \rightarrow \text { Identity]; } \\
& \text { Show[p1, p2] }
\end{aligned}
$$

For (b), the graph of the solution with the envelope functions $x(t)=$ $\pm \frac{2}{21} \sin \left(\frac{3}{2} t\right)$ is as follows. See Figure 5-20.

$$
\begin{aligned}
\text { In }[911]:= & \text { Plot }\left[\left\{\text { somesols }[[2]], \frac{2}{21} \sin \left[\frac{3 t}{2}\right],\right.\right. \\
& \left.-\frac{2}{21} \operatorname{Sin}\left[\frac{3 t}{2}\right]\right\},\{t, 0,4 \pi\}, \\
& \text { PlotStyle } \rightarrow\{\text { GrayLevel }[0], \text { GrayLevel }[0.5], \\
& \text { GrayLevel }[0.5]\}]
\end{aligned}
$$

Figure 5-20 Beats are seen more clearly when shown with the envelope functions

Out [911] = -Graphics-

Oscillations like those illustrated in the previous example are called beats because of the periodic variation of amplitude. This phenomenon is commonly encountered when two musicians (especially bad ones) try to simultaneously tune their instruments or when two tuning forks with almost equivalent frequencies are played at the same time.

We now consider spring problems that involve forces due to damping as well as external forces. In particular, consider the following initial-value problem:

$$
\left\{\begin{array}{l}
m x^{\prime \prime}+c x^{\prime}+k x=\rho \cos \lambda t \tag{5.7}\\
x(0)=\alpha, x^{\prime}(0)=\beta .
\end{array}\right.
$$

Problems of this nature have solutions of the form $x(t)=h(t)+s(t)$, where $\lim _{t \rightarrow \infty}$ $h(t)=0$ and $s(t)=c_{1} \cos \lambda t+c_{2} \sin \lambda t$.

The function $h(t)$ is called the transient solution while $s(t)$ is called the steadystate solution. Therefore, as t approaches infinity, the solution $x(t)$ approaches the steady-state solution. Note that the steady-state solution corresponds to the particular solution obtained through the Method of Undetermined Coefficients or Variation of Parameters.

EXAMPLE 5.1.11: Solve the initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}+4 x^{\prime}+13 x=\cos t \\
x(0)=0, x^{\prime}(0)=1
\end{array}\right.
$$

that models the motion of an object of mass $m=1$ attached to a spring with spring constant $k=13$ that is subjected to a resistive force of $F_{R}=$ $4 x^{\prime}$ and an external force of $f(t)=\cos t$. Identify the transient and steadystate solutions.

SOLUTION: First, DSolve is used to obtain the solution of this nonhomogeneous problem.

```
In[912]:= deq =
    Simplify[
        DSolve[{x'; t ] + 4 x'[t] + 13 x [t] == Cos[t],
                x[0] == 0, (' [0] == 1}, x[t], t]]
Out[912]={{x[t]->\frac{1}{40}\mp@subsup{e}{}{-2t}(3\mp@subsup{e}{}{2t}\operatorname{Cos[t]-3 Cos[3t]}
    +\mp@subsup{e}{}{2t}}\operatorname{Sin}[t]+11\operatorname{Sin}[3t])}
```

The solution is then graphed over the interval $[0,5 \pi]$ in plot 1 to illustrate the behavior of this solution. See Figure 5-21.

```
In[913]:= plot1 = Plot[x[t]/.deq, {t, 0, 5\pi}]
```

The transient solution is $h=e^{-2 t}\left(-\frac{3}{40} \cos 3 t+\frac{11}{40} \sin 3 t\right)$ and the steadystate solution is $s=\frac{3}{40} \cos t+\frac{1}{40} \sin t$. We graph the steady-state solution

The Method of Undetermined Coefficients could be used to find this solution as well.

Figure 5-21 Forced motion with damping

Figure 5-22 Forced motion with damping shown with its steady-state solution
over the same interval so that it can be compared to plot1 and then we show the two graphs together with Show in Figure 5-22.

$$
\begin{aligned}
\operatorname{In}[914]:= & \operatorname{ss}\left[t_{-}\right]=\frac{1}{40}(3 \operatorname{Cos}[t]+\operatorname{Sin}[t]) ; \\
\operatorname{In}[915]:= & \operatorname{ssplot}= \\
& \text { Plot[ss[t],\{t,0,5T\},} \\
& \text { PlotStyle } \rightarrow \text { GrayLevel [0.4], } \\
& \text { DisplayFunction } \rightarrow \text { Identity]; } \\
& \text { Show[plot1, ssplot] }
\end{aligned}
$$

Figure 5-23 The transient solution quickly tends to 0

Notice that the two curves appear identical for $t>2.5$. The reason for this is shown in the plot of the transient solution in Figure 5-23, which becomes quite small near $t=2.5$.

$$
\begin{aligned}
\operatorname{In}[916]:= & \operatorname{Plot}\left[\frac{1}{40} \operatorname{Exp}[-2 t]\left(-\frac{3 \operatorname{Cos}[3 t]}{40}+\frac{11 \operatorname{Sin}[3 t]}{40}\right),\right. \\
& \{t, 0, \pi\}]
\end{aligned}
$$

Notice also that the steady-state solution corresponds to a particular solution to the nonhomogeneous differential equation as verified here with Simplify.

```
In[917]:= Simplify[ss'[t] + 4ss'[t] + 13ss[t]]
Out[917]= Cos[t]
```

Instead of solving initial value problems that model the motion of damped and undamped systems as functions of time only, we can consider problems that involve an arbitrary parameter. In doing this, we can obtain a new understanding of the phenomena of resonance and beats.

EXAMPLE 5.1.12: Solve (a) $\left\{\begin{array}{l}x^{\prime \prime}+4 x^{\prime}+13 x=\cos \omega t \\ x(0)=0, x^{\prime}(0)=0\end{array}\right.$;
(b) $\left\{\begin{array}{l}x^{\prime \prime}+4 x=\cos \omega t \\ x(0)=0, x^{\prime}(0)=0\end{array}\right.$. Plot the solution for various values of ω near the natural frequency of the system.

SOLUTION: (a) We solve the initial-value problem and simplify the result with Simplify for arbitrary ω in sol, extract the solution with Part ([[. .]]), and define it to be $u[t, \omega]$.

```
In[918]:= Clear[sol]
    sol =
    DSolve[{\mp@subsup{x}{}{\prime\prime}[t] + 4 x'[t] + 13 x [t] == Cos[\omegat],
        x[0] == 0, x'[0] == 0}, x[t], t]//Simplify
Out[918]={{x[t]->(\mp@subsup{\mathbb{e}}{}{-2t}(6(-13+\mp@subsup{\omega}{}{2})\operatorname{Cos[3t]}
            -6 e}\mp@subsup{e}{}{2t}(-13+\mp@subsup{\omega}{}{2})\operatorname{Cos}[t\omega
            -4((13+\mp@subsup{\omega}{}{2})}\operatorname{Sin}[3t
            -6 e 2t}\omega\operatorname{Sin}[t\omega]))
            /(6(169-10 \omega}\mp@subsup{}{}{2}+\mp@subsup{\omega}{}{4}))}
```

$\operatorname{In}[919]:=u\left[t_{-}, \omega_{-}\right]=\operatorname{sol}[[1,1,2]] ;$

We can graph the solution for $0 \leq \omega \leq 6$ using increments of 0.25 in a Do command in order to animate the resulting plots. We show a screen shot from the resulting animation.

```
In[920]:= Do[Plot[u[t, \omega],{t, 0, 10}, PlotPoints }->\mathrm{ 30,
    PlotRange }->{-0.1,0.1}],{\omega,0,6,0.5}
```

```
\(\operatorname{Do}[P l o t[u[t, \omega],\{t, 0,10\}, P l o t P o i n t s \rightarrow 30\),
    PlotRange \(\rightarrow\{-1, .1\}],\{\omega, 0,6,0.5\}]\)
```


We can also observe how the motion approaches and then moves away from resonance using a GraphicsArray as shown in Figure 5-24.

Figure 5-24 Varying ω

```
In[921]:= \omegagraph[\mp@subsup{\omega}{-}{\prime}]:= Plot[u[t, \omega], {t, 0, 10},
    PlotPoints }->30, PlotRange -> {-0.1,0.1}
    Ticks }->{{5,10},{-0.1,0.1}}
    DisplayFunction }->\mathrm{ Identity]
In[922]:= graphs = Table[\omegagraph[\omega], {\omega, 0, 6, 0.25}];
In[923]:= toshow = Partition[graphs, 3];
    Show[GraphicsArray[toshow]]
```

On the other hand, we can graph the three-dimensional surface $u[t, \omega]$ to see how the motion depends on the value of ω. See Figure 5-25.

```
In[924]:= Plot3D[u[t, \omega],{t, 0, 10}, {\omega, 0, 6},
    PlotPoints }->\mathrm{ 30]
```

(b) In a similar way, we solve $\left\{\begin{array}{l}x^{\prime \prime}+4 x=\cos \omega t \\ x(0)=0, x^{\prime}(0)=0\end{array}\right.$ for arbitrary ω in sol.

```
In[925]:= Clear[u, sol]
            sol =
            DSolve[{x'[t] + 4 x [t] == Cos[\omegat], x[0] == 0,
                x'[0] == 0}, x[t], t]//Simplify
```


Figure 5-25 Cross-sections of the three-dimensional plot are solutions of the initial-value problem

```
Out \([925]=\left\{\left\{\mathrm{x}[\mathrm{t}] \rightarrow \frac{\operatorname{Cos}[2 \mathrm{t}]-\operatorname{Cos}[\mathrm{t} \omega]}{-4+\omega^{2}}\right\}\right\}\)
In [926] := u[t., \(\left.\omega_{-}\right]=\operatorname{sol}[[1,1,2]] ;\)
```

Using the following Do loop, we can animate the solution for $0 \leq \omega \leq$ 3 using a stepsize of 0.1 to observe how the solution behaves as ω approaches the natural frequency of the system, 2 . We show a screen shot from the resulting animation. Note that Mathematica generates several error messages when it encounters $\omega=2$ because the solution obtained with DSolve is not defined if $\omega=2$. Nevertheless, Mathematica accurately displays the graphs of the solutions for $\omega \neq 2$.

```
In [927]:= Do[Plot[u[t, \omega], {t, 0, 10}, PlotPoints }->30
    PlotRange }->{-2,2}],{\omega,0,4,0.25}
```

Do $[P 1 o t[u[t, \omega],\{t, 0,10\}$, PlotPoints $\rightarrow 30$,
PlotRange $\rightarrow\{-2,2\}],\{\omega, 0,4,0.25\}]$

In addition, we can use a GraphicsArray to observe the behavior of the function as shown in Figure 5-26.

```
In[928]:= Clear[\omegagraph]
    \omegagraph[\omega_] := Plot[u[t, \omega], {t, 0, 10},
        PlotPoints }->30, PlotRange -> {-2, 2}
            Ticks }->{{5,10},{-2,2}}
            DisplayFunction }->\mathrm{ Identity]
```


Figure 5-26 The solution is periodic unless $\omega=2$

$$
\begin{aligned}
\text { In }[929]:= & \text { graphs }=\operatorname{Table}\left[\omega \operatorname{graph}[\omega],\left\{\omega, 0,4, \frac{4}{11}\right\}\right] ; \\
\text { In }[930]:= & \text { toshow }=\text { Partition [graphs, } 3] ; \\
& \text { Show[GraphicsArray[toshow]] }
\end{aligned}
$$

We can see this behavior in the three-dimensional graph of $u[t, w]$ in Figure 5-27 as well.

```
In[931]:= Plot3D[u[t, \omega], {t, 0, 10}, {\omega, 0, 3},
    PlotPoints }->\mathrm{ 30]
```


Figure 5-27 Cross-sections of the three-dimensional plot are solutions of the initial-value problem for various values of ω

5.1.4 Soft Springs

In the case of a soft spring, the spring force weakens with compression or extension. For springs of this type, we model the physical system with

$$
\left\{\begin{array}{l}
x^{\prime \prime}+c x^{\prime}+k x-j x^{3}=f(t) \tag{5.8}\\
x(0)=\alpha, x^{\prime}(0)=\beta
\end{array}\right.
$$

where j is a positive constant.

EXAMPLE 5.1.13: Approximate the solution to

$$
\left\{\begin{array}{l}
x^{\prime \prime}+0.2 x^{\prime}+10 k x-0.2 x^{3}=-9.8 \\
x(0)=\alpha, x^{\prime}(0)=\beta
\end{array}\right.
$$

for various values of α and β in the initial conditions.

SOLUTION: After stating this nonlinear differential equation in eq, we define the function $\mathrm{s}[\alpha, \beta]$ to approximate the solution to the initialvalue problem with NDSolve for specified values of α and β.

Figure 5-28 The spring does not converge to its equilibrium position

```
In[932]:= Clear[eq]
    eq = x''[t] + 0.2 x'[t] + 10x[t] - 0.2 x[t] [ ==
    -9.8;
In[933]:= s[\mp@subsup{\alpha}{-}{\prime},\mp@subsup{\beta}{-}{\prime}]:=NDSolve[{eq, x[0]==\alpha,\mp@subsup{\mathbf{x}}{}{\prime}[0]==\beta},
    x[t], {t, 0, 15}];
```

We then define values for α in vals so that we can solve the initialvalue problem using $x(0)=\alpha$ for the numbers in vals and $x^{\prime}(0)=0$ in sols. The results are graphed in Figure 5-28. We notice that $x(t) \rightarrow-1$ as $t \rightarrow \infty$.

```
In[934]:= vals = {-1, -0.5, 0, 0.5, 1};
In[935]:= grays = Table[GrayLevel[i],
    {i,0,0.8,0.8/4}];
In[936]:= sols = Map[s[#, 0]&, vals];
In[937]:= one = Plot[Evaluate[x[t]/.sols], {t, 0, 15},
    PlotStyle }->\mathrm{ grays]
```

Similarly in sols2, we use the numbers in vals as the initial velocity in the initial-value problem. We graph these approximate solutions in Figure 5-29.

```
In[938]:= sols2 = Map[s[0, #1]&, vals];
In[939]:= two = Plot[Evaluate[x[t]/.sols2],
    {t, 0, 15}, PlotStyle }->\mathrm{ grays]
```

In each of the two previous sets of initial conditions, we see that $x(t)$ approaches a limit as $t \rightarrow \infty$. However, this is not always the case.

Figure 5-29 Varying the initial velocity in a soft spring

If we consider larger values of α as defined in vals2, we find that solutions are unbounded. Because of this, we must use a smaller interval for t in the NDSolve command in $\operatorname{s2} 2 \alpha, \beta]$. Otherwise, we do not obtain meaningful results. The approximate results are graphed in Figure 5-30.

```
In[940]:= s2[\mp@subsup{\alpha}{-}{\prime},\mp@subsup{\beta}{-}{\prime}]:= NDSolve[{eq, x[0] == 人,
    x'[0] == \beta}, x[t], {t, 0, 0.4}];
In[941]:= vals2 = {-10, -9, -8, 8, 9, 10};
In[942]:= sols3 = s2[#1, 0]&/@vals2;
In[943]:= three = Plot[Evaluate[x[t]/.sols3],
    {t, 0, 0.4}, PlotStyle }->\mathrm{ grays]
```


Figure 5-30 The spring becomes weak

5.1.5 Hard Springs

In the case of a hard spring, the spring force strengthens with compression or extension. For springs of this type, we model the physical system with

$$
\left\{\begin{array}{l}
x^{\prime \prime}+c x^{\prime}+k x+j x^{3}=f(t) \tag{5.9}\\
x(0)=\alpha, x^{\prime}(0)=\beta
\end{array}\right.
$$

where j is a positive constant.

EXAMPLE 5.1.14: Approximate the solution to

$$
\left\{\begin{array}{l}
x^{\prime \prime}+0.3 x+0.04 x^{3}=0 \\
x(0)=\alpha, x^{\prime}(0)=\beta
\end{array}\right.
$$

for various values of α and β in the initial conditions.

SOLUTION: First, we define the undamped nonlinear differential equation in eq. Then, we define $s[\alpha, \beta]$ to numerically approximate the solution to the initial-value problem for given values of α and β.

```
In[944]:= Clear[eq]
    eq = x't[t] + 0.3 x[t] + 0.04 x[t] 3 == 0;
In[945]:= Clear[s]
    s[\mp@subsup{\alpha}{-}{},\mp@subsup{\beta}{-}{\prime}]:= NDSolve [{eq, x[0] == \alpha, x'[0] == \beta},
                        x[t], {t, 0, 15}];
```

We approximate the solution using the constants defined in vals4 as the initial displacement, $x(0)=\alpha$. These numerical solutions are then graphed in Figure 5-31. Notice that solutions with larger amplitudes have smaller periods as expected with a hard spring.

```
In[946]:= vals4 = {1, 2, 3, 4, 5};
    sols4 = Table[s[vals4[[i]], 0][[1, 1, 2]],
    {i, 1, 5}];
In[947]:= grays = Table[GrayLevel[i],
    {i, 0,0.8, 0.8/4}];
In[948]:= five = Plot[Evaluate[sols4], {t, 0, 15},
    PlotStyle }->\mathrm{ grays]
```


Figure 5-31 Varying the initial displacement of a hard spring

In a similar manner, we use the values in vals4 as the initial velocity $x^{\prime}(0)=\beta$. In Figure 5-32, we see that when the amplitude is large, the spring strengthens so that the period of the motion is decreased.

```
In[949]:= sols5 = Table[s[0, vals4[[i]]][[1, 1, 2]],
    {i, 1, 5}];
In[950]:= six = Plot[Evaluate[sols5], {t, 0, 15},
    PlotStyle }->\mathrm{ grays]
```


Figure 5-32 Varying the initial velocity of a hard spring

5.1.6 Aging Springs

In the case of an aging spring, the spring constant weakens with time. For springs of this type, we model the physical system with

$$
\left\{\begin{array}{l}
x^{\prime \prime}+c x^{\prime}+k(t) x=f(t) \tag{5.10}\\
x(0)=\alpha, x^{\prime}(0)=\beta
\end{array}\right.
$$

where $k(t) \rightarrow 0$ as $t \rightarrow \infty$.

EXAMPLE 5.1.15: Approximate the solution to

$$
\left\{\begin{array}{l}
x^{\prime \prime}+4 e^{-t / 4} x=0 \\
x(0)=\alpha, x^{\prime}(0)=\beta
\end{array}\right.
$$

for various values of α and β in the initial conditions.

SOLUTION: First, we state the differential equation in eq and then we define $\mathrm{s}[\alpha, \beta]$ to solve the initial value problem for given values of α and β. Using the numbers in vals4 as the initial displacement and using 0 as the initial velocity, we approximate the solution to five initial value problems in sols6. We graph these numerical solutions in Figure 5-33. Notice that the period of the oscillations increases over time due to the diminishing value of the spring constant.

```
In[951]:= Clear[eq]
    eq = x' [t] ] 4 Exp [- - t
In[952]:= Clear[s]
    s[\mp@subsup{\alpha}{-}{\prime},\mp@subsup{\beta}{-}{\prime}]:= NDSolve [{eq, x[0] == \alpha, x'[0] == \beta},
        x[t], {t, 0, 30}];
In[953]:= vals4 = {1, 2, 3, 4, 5};
    sols6 = Table[s[vals4[[i]], 0][[1, 1, 2]],
    {i, 1, 5}];
In[954]:= grays = Table[GrayLevel[i],
    {i, 0,0.8,0.8/4}];
In[955]:= seven = Plot[Evaluate[sols6], {t, 0, 30},
    PlotStyle }->\mathrm{ grays]
```


Figure 5-33 Varying the initial displacement of an aging spring

```
In[956]:= Clear[s2]
    s2[\mp@subsup{\alpha}{-}{\prime},\mp@subsup{\beta}{-}{\prime}]:=
    NDSolve[{eq, x[0] == 人, x'[0] == \beta}, x[t],
    {t, 0, 100}];
In[957]:= vals4 = {1, 2, 3, 4, 5};
    sols7 = Table[s2[vals4[[i]], 0][[1, 1, 2]],
    {i, 1, 5}];
In[958]:= eight = Plot[Evaluate[sols7], {t, 0, 100},
    PlotStyle }->\mathrm{ grays]
```

Choosing a longer time interval in the NDSolve command as we do in $s 2[\alpha, \beta]$, we see that eventually the motion is not oscillatory. See Figure 5-34.

Figure 5-34 An aging spring eventually stops working

Application: Hearing Beats and Resonance

In order to hear beats and resonance, we solve the initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}+\omega^{2} x=F \cos \beta t \tag{5.11}\\
x(0)=\alpha, x^{\prime}(0)=\beta
\end{array}\right.
$$

for each of the following parameter values: (a) $\omega^{2}=6000^{2}, \beta=5991.62, F=2$; and (b) $\omega^{2}=6000^{2}, \beta=6000, F=2$.

First, we define the function sol which given the parameters, solves the initialvalue problem (5.11).

```
In[959]:= Clear[\mathbf{x,t,f,sol]}
```



```
    DSolve [{\mp@subsup{\mathbf{x}}{}{\prime\prime}[t]+\mp@subsup{\omega}{}{2}\mathbf{x}[t]== f Cos[\betat], x[0] == 0,
            x'[0] == 0}, x[t], t][[1, 1, 2]]
```

Thus, our solution for (a) is obtained by entering

```
In[961]:= a = sol[6000,5991.62, 2]
Out[961] = -0.0000199025 e e.t Cos[6000.t]
    +0.0000198886 e 0.t}\operatorname{Cos[8.38t] Cos[6000.t]
    +1.38986\times10-8}\mp@subsup{e}{}{0.t}\operatorname{Cos[6000.t] Cos[11991.6t]
    +0. e}\mp@subsup{e}{}{0.t}\operatorname{Sin}[6000.t
    +0.0000198886 e 0.t}\operatorname{Sin}[8.38t] Sin[6000.t]
    +1.38986\times10-8}\mp@subsup{e}{}{0.t}\operatorname{Sin}[6000.t] Sin[11991.6t
```

To hear the function we use Play in the same way that we use Plot to see functions. The values of a correspond to the amplitude of the sound as a function of time. See Figure 5-35.

```
In[962]:= Play[a, {t, 0, 6}]
```

Similarly, the solution for (b) is obtained by entering

```
In[963]:= b = sol [6000, 6000, 2]
Out[963]=}\frac{1}{72000000}(-2\operatorname{Cos}[6000t]+2\operatorname{Cos[6000t]}\mp@subsup{}{}{3
    +12000t Sin[6000t] + Sin[6000t] Sin[12000t])
```

We hear resonance with Play. See Figure 5-36.

Figure 5-35 Hearing and seeing beats

Figure 5-36 Hearing and seeing resonance

5.2 The Pendulum Problem

Suppose that a mass m is attached to the end of a rod of length L, the weight of which is negligible.

We want to determine the equation that describes the motion of the mass in terms of the displacement $\theta(t)$ which is measured counterclockwise in radians from the axis shown above. This is possible if we are given an initial displacement and an initial velocity of the mass. A force diagram for this situation is shown as follows.

Notice that the forces are determined with trigonometry using the diagram. Here, $\cos \theta=m g / x$ and $\sin \theta=m g / y$, so we obtain the forces $x=m g \cos \theta$ and $y=m g \sin \theta$, indicated as follows.

Because the momentum of the mass is given by $m d s / d t$, the rate of change of the momentum is

$$
\frac{d}{d t}\left(m \frac{d s}{d t}\right)=m \frac{d^{2} s}{d t^{2}}
$$

where s represents the length of the arc formed by the motion of the mass. Then, because the force $y=m g \sin \theta$ acts in the opposite direction of the motion of the mass, we have the equation

$$
\begin{equation*}
m \frac{d^{2} s}{d t^{2}}=-m g \sin \theta \tag{5.12}
\end{equation*}
$$

Using the relationship from geometry between the length of the arc, the length of the rod, and the angle $\theta, s=L \theta$, we have the relationship

$$
\frac{d^{2} x}{d t^{2}}=\frac{d^{2}}{d t^{2}}(L \theta)=L \frac{d^{2} \theta}{d t^{2}}
$$

Hence, the displacement $\theta(t)$ satisfies $m L d^{2} \theta / d t^{2}=-m g \sin \theta$ or

$$
\begin{equation*}
m L \frac{d^{2} \theta}{d t^{2}}+m g \sin \theta=0 \tag{5.13}
\end{equation*}
$$

which is a nonlinear equation. However, because we are only concerned with small displacements, we note from the Maclaurin series for $\sin \theta, \sin \theta=\theta-\frac{1}{3!} \theta^{3}+$ $\frac{1}{5!} \theta^{5}-\cdots$, that for small values of $\theta, \sin \theta \approx \theta$. Therefore, with this approximation, we obtain the linear equation

$$
\begin{equation*}
m L \frac{d^{2} \theta}{d t^{2}}+m g \theta=0 \quad \text { or } \quad \frac{d^{2} \theta}{d t^{2}}+\frac{g}{L} \theta=0 \tag{5.14}
\end{equation*}
$$

which approximates the original equation (5.13). If the initial displacement is given by $\theta(0)=\theta_{0}$ and the initial velocity is given by $\theta^{\prime}(0)=v_{0}$, then we have the initialvalue problem

$$
\left\{\begin{array}{l}
\frac{d^{2} \theta}{d t^{2}}+\frac{g}{L} \theta=0 \tag{5.15}\\
\theta(0)=\theta_{0}, \frac{d \theta}{d t}(0)=v_{0}
\end{array}\right.
$$

to find the displacement function $\theta(t)$.
Suppose that $\omega^{2}=g / L$ so that the differential equation becomes $\theta^{\prime \prime}+\omega^{2} \theta=0$, which has general solution

$$
\theta(t)=c_{1} \cos \omega t+c_{2} \sin \omega t
$$

Application of the initial conditions $\theta(0)=\theta_{0}$ and $\theta^{\prime}(0)=v_{0}$ shows us that

$$
\begin{equation*}
\theta(t)=\theta_{0} \cos \omega t+\frac{\nu_{0}}{\omega} \sin \omega t \tag{5.16}
\end{equation*}
$$

is the solution of equation (5.15), where $\omega=\sqrt{g / L}$. We can write this function solely in terms of a cosine function that includes a phase shift with

$$
\begin{equation*}
\theta(t)=\sqrt{\theta_{0}^{2}+\frac{\nu_{0}^{2}}{\omega^{2}}} \cos (\omega t-\phi), \tag{5.17}
\end{equation*}
$$

where

$$
\phi=\cos ^{-1}\left(\frac{\theta_{0}}{\sqrt{\theta_{0}^{2}+\frac{v_{0}^{2}}{\omega^{2}}}}\right) \quad \text { and } \quad \omega=\sqrt{\frac{g}{L}}
$$

Note that the approximate period of $\theta(t)$ is $T=2 \frac{\pi}{\omega}=2 \pi \sqrt{\frac{L}{g}}$.

EXAMPLE 5.2.1: Determine the displacement of a pendulum of length $L=32$ feet if $\theta(0)=0$ and $\theta^{\prime}(0)=1 / 2$ using both the linear and nonlinear models. What is the period? If the pendulum is part of a clock that ticks once for each time the pendulum makes a complete swing, how many ticks does the clock make in one minute?

SOLUTION: The linear initial-value problem that models this situation is

$$
\left\{\begin{array}{l}
\theta^{\prime \prime}+\theta=0 \\
\theta(0)=0, \theta^{\prime}(0)=1 / 2
\end{array}\right.
$$

because $g / L=32 / 32=1$. We use DSolve to find a general solution of the equation

```
In[964]:= gensol = DSolve[\mp@subsup{x}{}{\prime\prime}[t] + x[t] == 0, x[t], t]
Out[964]= {{x[t] ->C[1] Cos[t] + C[2] Sin[t]}}
```

and the solution to the initial-value problem

$$
\left\{\begin{array}{l}
\theta^{\prime \prime}+\theta=0 \\
\theta(0)=a, \theta^{\prime}(0)=b
\end{array}\right.
$$

```
In[965]:= BoxData(eq = DSolve[{x'[t] + x[t] == 0,
    x[0] == a, x'[0] == b}, x[t], t])
Out[965]={{x[t] ->a Cos[t] +b Sin[t]}}
```

In this case, we have that $a=0$ and $b=1 / 2$ so substituting these values into eq $[[1,1,2]]$ results in the solution to the initial-value problem.

```
In[966]:= pen = eq[[1, 1, 2]]/.{a->0,b b 1/2};
```

The period of this function is

$$
T=2 \pi \sqrt{\frac{L}{g}}=2 \pi \sqrt{\frac{32 \mathrm{ft}}{32 \mathrm{ft} / \mathrm{s}^{2}}}=2 \pi \mathrm{~s}
$$

Therefore, the number of ticks made by the clock per minute is calculated with the conversion

$$
\frac{1 \mathrm{rev}}{2 \pi \mathrm{~s}} \times \frac{1 \text { tick }}{1 \mathrm{rev}} \times \frac{60 \mathrm{~s}}{1 \mathrm{~min}} \approx 9.55 \text { ticks } / \mathrm{min}
$$

Figure 5-37 Plot of the solution to the nonlinear initial-value problem

Hence, the clock makes approximately 9.55 ticks in one minute. To solve the nonlinear equation, we use NDSolve to generate a numerical solution to the initial-value problem valid for $0 \leq t \leq 20$.

```
In[967]:= BoxData (numsol = NDSolve[{\mp@subsup{\mathbf{x}}{}{\prime}[t]
    + Sin[x[t]] == 0, x[0] == 0, x'[0] == 1/2},
        x[t],{t, 0, 20}])
Out[967]= BoxData({{x[t] }
    InterpolatingFunction[{{0., 20.}},
    " <> "][t]}})
```

We then graph this solution on the interval $[0,20]$ in Figure 5-37.

```
In[968]:= plot1 = Plot[x[t]/.numsol, {t, 0, 20},
    PlotRange }->\mathrm{ All]
```

The solution pen is also graphed on the interval [0,20], the resulting graph is named plot2, and then plot 1 and plot 2 are displayed together with Show in Figure 5-38.

```
In[969]:= plot2 = Plot[pen, {t, 0, 20},
    PlotStyle }->\mathrm{ GrayLevel[0.4],
    DisplayFunction }->\mathrm{ Identity];
    Show[plot1, plot2]
```

The graphs indicate that the error between the two functions increases as t increases, which is confirmed by graphing the absolute value of the difference of the two functions shown in Figure 5-39.

```
In[970]:= plot3 = Plot[Abs[pen-x[t]]/.numsol, {t, 0, 20}]
```


Figure 5-38 Solution of the linear (in gray) and nonlinear (in black) initial-value problems shown together

Figure 5-39 The linear approximation approximates the nonlinear solution very well until t becomes large

Suppose that the pendulum undergoes a damping force that is proportional to the instantaneous velocity. Then, the force due to damping is given as $F_{R}=b d \theta / d t$. Incorporating this force into the sum of the forces acting on the pendulum, we have the nonlinear equation $L \theta^{\prime \prime}+b \theta^{\prime}+g \sin \theta=0$. Again, using the approximation $\sin \theta \approx \theta$ for small values of t, we obtain the linear equation $L \theta^{\prime \prime}+b \theta^{\prime}+g \theta=0$ which approximates the situation. Thus, we solve the initial-value problem

$$
\left\{\begin{array}{l}
L \frac{d^{2} \theta}{d t^{2}}+b \frac{d \theta}{d t}+g \theta=0 \tag{5.18}\\
\theta(0)=\theta_{0}, \frac{d \theta}{d t}(0)=v_{0}
\end{array}\right.
$$

to find the displacement function $\theta(t)$.

EXAMPLE 5．2．2：A pendulum of length $L=8 / 5 \mathrm{ft}$ is subjected to the resistive force $F_{R}=32 / 5 d \theta / d t$ due to damping．Determine the displace－ ment function if $\theta(0)=1$ and $\theta^{\prime}(0)=2$ ．

SOLUTION：The initial－value problem that models this situation is

$$
\left\{\begin{array}{l}
\frac{8}{5} \frac{d^{2} \theta}{d t^{2}}+\frac{32}{5} \frac{d \theta}{d t}+32 \theta=0 \\
\theta(0)=0, \frac{d \theta}{d t}(0)=2
\end{array}\right.
$$

Simplifying the differential equation，we obtain $\theta^{\prime \prime}+4 \theta^{\prime}+20 \theta=0$ ，and then using DSolve，we find the solution to the initial－value problem，

```
In[971]:= sol = DSolve[{采[t] + 4 目[t] + 200[t] == 0,
    0[0] == 1, 目[0] == 2}, 0[t], t]
```


which is then graphed with Plot in Figure 5－40．

```
In[972]:= 0[t_] = e - tt (Cos[4t] + Sin[4t]);
In[973]:= Plot[0[t],{t, 0, 2}]
```

Notice that the damping causes the displacement of the pendulum to decrease over time．

Figure 5－40 A solution to the damped pendulum equation

To see the pendulum move, we define the procedure pen. Given t, len, and opts, where opts are any options of the Show command, pen [$t, l e n, o p t s]$ declares the variable pt1 to be local to the procedure pen, defines pt1 to be the point

$$
\left(\text { len } \cos \left(\frac{3}{2} \pi t+\theta(t)\right), \text { len } \sin \left(\frac{3}{2} \pi t+\theta(t)\right)\right)
$$

and connects the points pt1 and $(0,0)$ with a line segment. Note that PointSize is used so that pt1 is slightly enlarged in the resulting graphics object. The resulting graphics object looks like the pendulum of length $L=$ len at time t.

```
In[974]:= Clear[pen]
    pen[t., len_,opts__-]:= Module[{pt1},
        pt1 ={len Cos[\frac{3\pi}{2}+0[t]],
        len Sin [\frac{3\pi}{2}+0[t]]};
        Show [
            Graphics[{Line[{{0, 0}, pt1}],
            PointSize[0.05], Point[pt1]}],
            Axes }->\mathrm{ Automatic, Ticks }->\mathrm{ None,
            AxesStyle }->\mathrm{ GrayLevel[0.5],
            PlotRange }->{{-2,2},{-2,0}}, opts]
```

For example, entering

$$
\begin{aligned}
& \text { In }[975]:=\operatorname{pen}\left[1, \frac{8}{5}, \text { DisplayFunction } \rightarrow \text { Identity }\right] \\
& \text { Out }[975]=\text {-Graphics }-
\end{aligned}
$$

produces a graphics object corresponding to a pendulum of length $L=1$ at time $t=1$. The resulting graphics object is not displayed because the option DisplayFunction->Identity, which is an option of Show, is included in the pen command. On the other hand,

$$
\operatorname{In}[976]:=\operatorname{pen}\left[1, \frac{8}{5}\right]
$$

produces and displays a graphics object corresponding to a pendulum of length $L=8 / 5$ at time $t=1$ as shown in Figure 5-41.

Figure 5-41 A pendulum

To see the pendulum at various times, we use Table and pen to generate a table consisting of graphics corresponding to a pendulum of length $L=8 / 5$ at time t from $t=0$ to $t=\pi / 2$ using increments of $2 / 15$. The resulting list of 16 graphics objects is then partitioned into four element subsets with Partition and the array of graphics objects toshow is displayed with Show and GraphicsArray in Figure 5-42.

Figure 5-42 A damped pendulum comes to rest

```
In[977]:= somegraphs =
    Table[pen[t, 䂞,
            DisplayFunction }->\mathrm{ Identity],
            {t,0,2, 年}}]
    toshow = Partition[somegraphs, 4];
    Show[GraphicsArray[toshow]]
```

On the other hand, to see the pendulum move, we can use a Do loop to generate several graphs and then animate the result. We show a screen shot of one frame of the resulting animation.

$$
\operatorname{In}[978]:=\operatorname{Do}\left[\operatorname{pen}\left[t, \frac{8}{5}\right],\left\{t, 0,2, \frac{2}{119}\right\}\right]
$$

$\operatorname{Do}\left[\operatorname{pen}\left[t, \frac{8}{5}\right],\left\{t, 0,2, \frac{2}{119}\right\}\right]$

Notice that from our approximate solution, the displacement of the pendulum becomes very close to zero near $t=2$, which was our observation from the graph of $\theta(t)=e^{-2 t}(\cos 4 t+2 \sin 4 t)$ in Figure 5-40.

Our last example investigates the properties of the nonlinear differential equation.

EXAMPLE 5.2.3: Graph the solution to the initial-value problem

$$
\left\{\begin{array}{l}
\frac{d^{2} \theta}{d t^{2}}+0.5 \frac{d \theta}{d t}+\theta=0 \tag{5.19}\\
\theta(0)=\theta_{0}, \frac{d \theta}{d t}(0)=v_{0}
\end{array}\right.
$$

subject to the following initial conditions.

θ_{0}	v_{0}	θ_{0}	v_{0}	θ_{0}	v_{0}	θ_{0}	v_{0}
-1	0	-0.5	0	0.5	0	1	0
0	-2	0	-1	0	1	0	2
1	1	1	-1	-1	1	-1	-1
1	2	1	3	-1	4	-1	5
-1	2	-1	3	1	-4	1	-5

SOLUTION: We begin by defining eq to be $\theta^{\prime \prime}+0.5 \theta^{\prime}+\sin \theta=0$.

```
In[979]:= Clear[eq, t, 0, s]
```


To avoid retyping the same commands, we define the procedure s. Given an ordered pair $\left(\theta_{0}, v_{0}\right)$ and any options opts of the Show command, s[\{theta0,v0\},opts] first declares the variables numsol and numgraph local to the procedure s, uses NDSolve to define numsol to be a numerical solution of the initial-value problem (5.19) valid for $0 \leq t \leq 15$, generates, but does not display, a graph of the resulting numerical solution on the interval [0,15], and then displays the result with Show using any options opts passed through the s command.

```
In[980]:= s[{theta0_,v0_},opts_--] := Module[{numsol},
    numsol = NDSolve[{eq, 0[0] ==
    theta0, 的[0] == v0}, 0[t], {t, 0, 15}];
    numgraph = Plot[0[t]/.numsol, {t, 0, 15},
    DisplayFunction }->\mathrm{ Identity];
    Show[numgraph,opts]]
```

Thus, we see that entering

```
In[981]:= s[{-1,0}]
Out[981]= -Graphics-
```


Figure 5-43 Plot of the solution of equation (5.19) that satisfies $\theta_{0}=-1$ and $v_{0}=0$
does not display the graph of the solution to equation (5.19) if $\theta_{0}=-1$ and $v_{0}=0$ but entering

$$
\text { In [982] }:=s[\{-1,0\}, \text { DisplayFunction } \rightarrow \text { \$DisplayFunction] }
$$

displays the graph of the solution shown in Figure 5-43. Thus, to graph the solutions that satisfy the initial conditions

θ_{0}	v_{0}	θ_{0}	v_{0}	θ_{0}	v_{0}	θ_{0}	v_{0}
-1	0	-0.5	0	0.5	0	1	0

we first define t1 to be the initial conditions, use Map to apply s to t1, and then use Show together with the option DisplayFunction-> \backslash \$DisplayFunction to display the resulting graphs in Figure 5-44.

Figure 5-44 Varying the initial displacement in the pendulum equation

```
In[983]:= t1 = {{-1, 0}, {-0.5, 0}, {0.5,0},{1,0}};
    toshow1 = Map[s, t1]; Show[toshow1,
    DisplayFunction }->\mathrm{ $DisplayFunction]
```

Similarly, entering

```
In[984]:= t2 = {{0, -2}, {0, -1}, {0, 1}, {0, 2}};
    toshow2 = s/@t2; Show[toshow2,
    DisplayFunction }->\mathrm{ $DisplayFunction]
```

defines t 2 to be the list of ordered pairs corresponding to the initial conditions

θ_{0}	v_{0}	θ_{0}	v_{0}	θ_{0}	v_{0}	θ_{0}	v_{0}
0	-2	0	-1	0	1	0	2

toshow2 to be the resulting list of graphics objects obtained by applying s to each ordered pair in t2, and then displays the list of graphics toshow2 together in Figure 5-45. The solutions that satisfy the remaining initial conditions

θ_{0}	v_{0}	θ_{0}	v_{0}	θ_{0}	v_{0}	θ_{0}	v_{0}
1	1	1	-1	-1	1	-1	-1
1	2	1	3	-1	4	-1	5
-1	2	-1	3	1	-4	1	-5

Figure 5-45 Varying the initial velocity in the pendulum equation

Figure 5-46 Varying the initial displacements and velocity in the pendulum equation are graphed in the same manner in Figures 5-46, 5-47, and 5-48.

```
In[985]:= t3 = {{1, 1}, {1, -1}, {-1, 1}, {-1, -1}};
    toshow3 = s/@t3; Show[toshow3,
    DisplayFunction }->\mathrm{ $DisplayFunction]
In[986]:= t4 = {{1, 2}, {1, 3}, {-1, 4}, {-1, 5}};
    toshow4 = s/@t4; Show[toshow4,
    DisplayFunction }->\mathrm{ $DisplayFunction]
```


Figure 5-47 Varying the initial displacements and velocity in the pendulum equation

Figure 5-48 Varying the initial displacements and velocity in the pendulum equation

```
In[987]:= t5 = {{-1, 2}, {-1, 3}, {1, -4}, {1, -5}};
    toshow5 = s/@t5; Show[toshow5,
    DisplayFunction }->\mathrm{ $DisplayFunction]
```


5.3 Other Applications

5.3.I $L-R-C$ Circuits

Second-order nonhomogeneous linear ordinary differential equations arise in the study of electrical circuits after the application of Kirchhoff's law. Suppose that $I(t)$ is the current in the $L-R-C$ series electrical circuit where L, R, and C represent the inductance, resistance, and capacitance of the circuit, respectively.

The voltage drops across the circuit elements shown in the following table have been obtained from experimental data where Q is the charge of the capacitor and $d Q / d t=I$.

Circuit Element	Voltage Drop
Inductor	$L \frac{d I}{d t}$
Resistor	$R I$
Capacitor	$\frac{1}{C} Q$

Our goal is to model this physical situation with an initial-value problem so that we can determine the current and charge in the circuit. For convenience, the terminology used in this section is summarized in the following table.

Electrical Quantities	Units
Inductance (L)	Henrys (H)
Resistance (R)	Ohms (Ω)
Capacitance (C)	Farads (F)
Charge (Q)	Coulombs (C)
Current (I)	Amperes (A)

The physical principle needed to derive the differential equation that models the $L-R-C$ series circuit is stated as follows.

Kirchhoff's Law: The sum of the voltage drops across the circuit elements is equivalent to the voltage $E(t)$ impressed on the circuit.

Applying Kirchhoff's law, therefore, yields the differential equation

$$
L \frac{d I}{d t}+R I+\frac{1}{C} Q=E(t)
$$

Using the fact that $d Q / d t=I$, we also have $d^{2} Q / d t^{2}=d I / d t$. Therefore, the equation becomes

$$
L \frac{d^{2} Q}{d t^{2}}+R \frac{d Q}{d t}+\frac{1}{C} Q=E(t)
$$

which can be solved by the Method of Undetermined Coefficients or the Method of Variation of Parameters. Hence, if the initial charge and current are $Q(0)=Q_{0}$ and $I(0)=Q^{\prime}(0)=I_{0}$, then we must solve the initial-value problem

$$
\left\{\begin{array}{l}
L \frac{d^{2} Q}{d t^{2}}+R \frac{d Q}{d t}+\frac{1}{C} Q=E(t) \tag{5.20}\\
Q(0)=Q_{0}, I(0)=\frac{d Q}{d t}(0)=I_{0}
\end{array}\right.
$$

for the charge $Q(t)$. This solution can then be differentiated to find the current $I(t)$.

EXAMPLE 5.3.1: Consider the $L-R-C$ circuit with $L=1$ Henry, $R=40$ Ohms, $C=4000$ Farads, and $E(t)=24$ volts. Determine the current in this circuit if there is zero initial current and zero initial charge.

SOLUTION: Using the indicated values, the initial-value problem that we must solve is

$$
\left\{\begin{array}{l}
Q^{\prime \prime}+40 Q^{\prime}+4000 Q=24 \\
Q(0)=0, I(0)=Q^{\prime}(0)=0
\end{array}\right.
$$

DSolve is used to obtain the solution to the nonhomogeneous problem in cirl.

```
In[988]:= Clear[q]
    cir1 = DSolve[{q'[t]
        +40 q'[t] + 4000 q[t] = = 24,q[0] == 0,
            q
```

Note that we use lower-case letters to avoid any possible ambiguity with built-in Mathematica functions

These results indicate that in time the charge approaches the constant value of $3 / 500$, which is known as the steady-state charge. Also, due to the exponential term, the current approaches zero as t increases. This limit is indicated by the graph of $Q(t)$ in Figure 5-49, as well.


```
In[989]:= q[t_] = cir1[[1, 1, 2]];
In[990]:= Plot[q[t], {t, 0, 0.35}, PlotRange }->\mathrm{ All]
```

The current, $I(t)$, is obtained by differentiating the charge, $Q(t)$, which is graphed in Figure 5-50.

```
In[991]:= q'[t]//Simplify
Out[991]= \frac{2}{5}}\mp@subsup{e}{}{-20t}\operatorname{Sin}[60t
In[992]:= Plot[q'[t], {t, 0, 0.35}, PlotRange }->\mathrm{ All]
```


Figure 5-49 Plot of the charge

Figure 5-50 Plot of the current

5.3.2 Deflection of a Beam

An important mechanical model involves the deflection of a long beam that is supported at one or both ends as shown in the following figure.

Assuming that in its undeflected form the beam is horizontal, then the deflection of the beam can be expressed as a function of x.

Suppose that the shape of the beam when it is deflected is given by the graph of the function $y(x)=-s(x)$, where x is the distance from one end of the beam and s the measurement of the vertical deflection from the equilibrium position. The boundary value problem that models this situation is derived as follows.

Let $m(x)$ equal the turning moment of the force relative to the point x and $w(x)$ represent the weight distribution of the beam. These two functions are related by the equation

$$
\begin{equation*}
\frac{d^{2} m}{d x^{2}}=w(x) . \tag{5.21}
\end{equation*}
$$

Also, the turning moment is proportional to the curvature of the beam. Hence,

$$
\begin{equation*}
m(x)=\frac{E I}{\left[\sqrt{1+\left(\frac{d s}{d x}\right)^{2}}\right]^{3}} \frac{d^{2} s}{d x^{2}}, \tag{5.22}
\end{equation*}
$$

where E and I are constants related to the composition of the beam and the shape and size of a cross-section of the beam, respectively. Notice that this equation is, unfortunately, nonlinear. However, this difficulty is overcome with an approximation. For small values of s, the denominator of the right-hand side of equation (5.22) can be approximated by the constant 1 . Therefore, equation (5.22) is simplified to

$$
\begin{equation*}
m(x)=E I \frac{d^{2} s}{d x^{2}} . \tag{5.23}
\end{equation*}
$$

Equation (5.23) is linear and can be differentiated twice to obtain

$$
\begin{equation*}
\frac{d^{2} m}{d x^{2}}=E I \frac{d^{4} s}{d x^{2}} . \tag{5.24}
\end{equation*}
$$

Equation (5.24) can then be used with equation (5.21) relating $m(x)$ and $w(x)$ to obtain the single fourth-order linear nonhomogeneous differential equation

$$
\begin{equation*}
E I \frac{d^{4} s}{d x^{4}}=w(x) . \tag{5.25}
\end{equation*}
$$

Boundary conditions for this problem may vary. In most cases, two conditions are given for each end of the beam. Some of these conditions are specified in pairs. For example, at $x=a$ these include: $s(a)=0, s^{\prime}(a)=0$ (fixed end); $s^{\prime \prime}(a)=0, s^{\prime \prime \prime}(a)=0$ (free end); $s(a)=0, s^{\prime \prime}(a)=0$ (simple support); and $s^{\prime}(a)=0, s^{\prime \prime \prime}(a)=0$ (sliding clamped end).

The following example investigates the effects that a constant weight distribution function $w(x)$ has on the solution to these boundary-value problems.

Note that we use

 (lower-case) e to represent E to avoid conflict with the built-in constant E and (lower-case) i to represent I to avoid conflict with the built-in constant I.EXAMPLE 5.3.2: Solve the beam equation over the interval $0 \leq x \leq 1$ if $E=I=1, w(x)=48$, and the following boundary conditions are used: $s(0)=0, s^{\prime}(0)=0$ (fixed end at $x=0$); and
(a) $s(1)=0, s^{\prime \prime}(1)=0($ simple support at $x=1)$;
(b) $s^{\prime \prime}(1)=0, s^{\prime \prime \prime}(1)=0$ (free end at $x=1$);
(c) $s^{\prime}(1)=0, s^{\prime \prime \prime}(1)=0$ (sliding clamped end at $\left.x=1\right)$; and
(d) $s(1)=0, s^{\prime}(1)=0($ fixed end at $x=1)$.

SOLUTION: DSolve is used to obtain the solution to this nonhomogeneous problem. In de1, the solution that depends on E, I, and w is given.

```
In[993]:= Clear[e,i,w,s]
    de1 =
    DSolve[{eiD[s[x], {x,4}] == w, s[0] == 0,
    s'[0] == 0, s[1] == 0, s'[1] == 0}, s[x],x]
Out[993]={{s[x]->\frac{3w\mp@subsup{x}{}{2}-5w\mp@subsup{x}{}{3}+2w\mp@subsup{x}{}{4}}{48ei}}}
```

We can visualize the shape of the beam by graphing $y=-s(x)$. Thus, we define toplot 1 to be the negative of the solution obtained in de1.

```
In[994]:= toplot1 = - de1[[1, 1, 2]]/.{e 
    w }->48}
```

Similar steps are followed to determine the solution to each of the other three boundary value problems. The corresponding functions to be graphed are named toplot2, toplot3, and toplot4. (Note that $\partial_{\{\mathrm{x}, 4\}} \mathrm{S}[\mathrm{x}]$ represents $\mathrm{D}[\mathrm{s}[\mathrm{x}],\{\mathrm{x}, 4\}]$, the fourth derivative of $s(x)$.)

```
In[995]:= de2 =
    DSolve \(\left[\left\{\right.\right.\) e i \(\partial_{\{x, 4\}} s[x]==w, s[0]==0\),
    \(\left.\left.s^{\prime}[0]=0, s^{(3)}[1]==0, s^{\prime \prime}[1]==0\right\}, s[x], x\right]\)
Out [995] \(=\left\{\left\{\mathrm{s}[\mathrm{x}] \rightarrow \frac{6 \mathrm{w} \mathrm{x}^{2}-4 \mathrm{wx}^{3}+\mathrm{w} \mathrm{x}^{4}}{24 \mathrm{ei}}\right\}\right\}\)
In [996]: \(=\) toplot \(2=-\operatorname{de} 2[[1,1,2]] / .\{e \rightarrow 1, i \rightarrow 1\),
    w \(\rightarrow 48\) \};
In [997]: \(=\) de3 =
    DSolve \(\left[\left\{e\right.\right.\) i \(\partial_{\{x, 4\}} s[x]==w, s[0]==0\),
        \(\left.\left.s^{\prime}[0]==0, s^{(3)}[1]==0, s^{\prime}[1]==0\right\}, s[x], x\right]\)
Out [997] \(=\left\{\left\{s[x] \rightarrow \frac{4 \mathrm{wx}^{2}-4 \mathrm{wx}^{3}+\mathrm{w} \mathrm{x}^{4}}{24 \mathrm{ei}}\right\}\right\}\)
```


Figure 5-51 Solutions to the beam equation

```
In [998] := toplot3 \(=-\operatorname{de} 3[[1,1,2]] / .\{e \rightarrow 1, i \rightarrow 1\),
    \(\mathrm{w} \rightarrow 48\);
In [999] : \(=\) de4 \(=\operatorname{DSolve}\left[\left\{\mathrm{ei} \partial_{\{\mathrm{x}, 4\}} \mathrm{s}[\mathrm{x}]=\mathrm{w}, \mathrm{s}[0]==0\right.\right.\),
    \(\left.\left.s^{\prime}[0]==0, s[1]==0, s^{\prime}[1]==0\right\}, s[x], x\right]\)
Out [999] \(=\left\{\left\{s[\mathrm{x}] \rightarrow \frac{\mathrm{w} \mathrm{x}^{2}-2 \mathrm{w} \mathrm{x}^{3}+\mathrm{w} \mathrm{x}^{4}}{24 \mathrm{ei}}\right\}\right\}\)
In [1000]: \(=\) toplot \(4=-\operatorname{de} 4[[1,1,2]] / .\{e \rightarrow 1, i \rightarrow 1\),
    \(\mathrm{w} \rightarrow 48\) \};
```

In order to compare the effects that the varying boundary conditions have on the resulting solution, all four functions are graphed together with Plot on the interval [0, 1] in Figure 5-51.

```
In[1001]:= Plot[{toplot1, toplot2, toplot3, toplot4},
    {x,0,1},
    PlotStyle }->\mathrm{ {GrayLevel[0], GrayLevel[0.2],
    GrayLevel[0.4], Dashing[{0.01}]}]
```


5.3.3 Bodé Plots

Consider the differential equation

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+2 c \frac{d x}{d t}+k^{2} x=F_{0} \sin \omega t \tag{5.26}
\end{equation*}
$$

where c and k are positive constants with $c<k$ so that the equation $x^{\prime \prime}+2 c x^{\prime}+$ $k^{2} x=0$ is underdamped. To find a particular solution, we can consider the complex
exponential form of the forcing function, $F_{0} e^{i \omega t}$, which has imaginary part $F_{0} \sin \omega t$. Assuming a solution of the form $z_{p}(t)=A e^{i \omega t}$, substitution into the differential equation yields $A\left(-\omega^{2}+2 i c \omega+k^{2}\right)=F_{0}$. Because $k^{2}-\omega^{2}+2 i c \omega=0$ only when $k=\omega$ and $c=0$, we find that

$$
A=\frac{F_{0}}{k^{2}-\omega^{2}+2 i c \omega}
$$

or

$$
A=\frac{F_{0}}{k^{2}-\omega^{2}+2 i c \omega} \cdot \frac{k^{2}-\omega^{2}-2 i c \omega}{k^{2}-\omega^{2}-2 i c \omega}=\frac{k^{2}-\omega^{2}-2 i c \omega}{\left(k^{2}-\omega^{2}\right)^{2}+4 c^{2} \omega^{2}} F_{0}=H(i \omega) F_{0} .
$$

Therefore, a particular solution is $z_{p}(t)=H(i \omega) F_{0} e^{i \omega t}$. Now, we can write $H(i \omega)$ in polar form as $H(i \omega)=M(\omega) e^{i \phi(\omega)}$, where

$$
M(\omega)=\frac{1}{\sqrt{\left(k^{2}-\omega^{2}\right)+4 c^{2} \omega^{2}}} \quad \text { and } \quad \phi(\omega)=\cot ^{-1}\left(\frac{\omega^{2}-k^{2}}{2 c \omega}\right),-\pi \leq \phi \leq 0 .
$$

A particular solution can then be written as

$$
z_{p}(t)=M(\omega) F_{0} e^{i \omega t} e^{i \phi(\omega)}=M(\omega) F_{0} e^{i(\omega t+\phi(\omega))}
$$

with imaginary part $M(\omega) F_{0} \sin (\omega t+\phi(\omega))$, so we take the particular solution to be $x_{p}(t)=M(\omega) F_{0} \sin (\omega t+\phi(\omega))$. Comparing the forcing function to x_{p}, we see that the two functions have the same form but with differing amplitudes and phase shifts. The ratio of the amplitude of the particular solution (or steady-state), $M(\omega) F_{0}$, to that of the forcing function, F_{0}, is $M(\omega)$ and is called the gain. Also, x_{p} is shifted in time by $|\phi(\omega)| / \omega$ radians to the right, so $\phi(\omega)$ is called the phase shift. When we graph the gain and the phase shift against ω (using a $\log _{10}$ scale on the ω-axis) we obtain the Bodé plots. Engineers refer to the value of $20 \log _{10} M(\omega)$ as the gain in decibels.

EXAMPLE 5.3.3: Solve the initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}+2 x^{\prime}+4 x=\sin 2 t \\
x(0)=1 / 2, x^{\prime}(0)=1 .
\end{array}\right.
$$

(a) Graph the solution simultaneously with the forcing function $f(t)=$ $\sin 2 t$. Approximate $M(2)$ and $\phi(2)$ using this graph. (b) Graph the corresponding Bodé plots. Compare the values of $M(2)$ and $\phi(2)$ with those obtained in (a).

SOLUTION: First, we define the nonhomogeneous differential equation in eq. Next, we solve the initial-value problem in sol.

$$
\begin{aligned}
\text { In }[1002]:= & \text { Clear }[\text { eq }] \\
& \text { eq }=\mathbf{x}^{\prime \prime}[\mathrm{t}]+2 \mathbf{x}^{\prime}[\mathrm{t}]+4 \mathbf{x}[\mathrm{t}]==\sin [2 \mathrm{t}] ; \\
& \text { sol = DSolve }[\{\mathrm{eq}, \\
& \left.\left.\mathbf{x}[0]==\frac{1}{2}, \mathbf{x}^{\prime}[0]==1\right\}, \mathbf{x}[\mathrm{t}], \mathrm{t}\right] / / \text { Simplify } \\
\text { Out }[1002]= & \left\{\left\{\mathrm { x } [\mathrm { t }] \rightarrow \frac { 1 } { 1 2 } e ^ { - t } \left(-3 \mathrm{e}^{\mathrm{t}} \operatorname{Cos}[2 \mathrm{t}]\right.\right.\right. \\
& +9 \operatorname{Cos}[\sqrt{3} \mathrm{t}]+7 \sqrt{3} \operatorname{Sin}[\sqrt{3} \mathrm{t}])\}\}
\end{aligned}
$$

We extract the formula for the solution with sol [[1, 1, 2]] and graph it simultaneously with $f(t)=\sin 2 t$ using a lighter level of gray for the graph of $f(t)=\sin 2 t$ in Figure 5-52. Clicking inside the graphics cell and holding down the Command key, we use the cursor to see that a minimum value of the forcing function occurs near 5.49 and a minimum value of sol [$[1,1,2]]$ happens near 6.26. Therefore, the solution is shifted approximately $6.26-5.49=0.77$ units to the right. Returning to the solution containing $\omega t+\phi(\omega)=2\left(t+\frac{1}{2} \phi(2)\right)$, we see that $\frac{1}{2} \phi(2) \approx-0.77$, so $\phi(2) \approx-1.54$. Using a similar technique (with the Command key and cursor), we approximate the amplitude of the steady-state solution (after it dies down) to be 0.255 . Therefore from the graph, $M(2) \approx 0.255$.

Figure 5-52 Plots of $x(t)$ and $f(t)=\sin 2 t$

Figure 5-53 A log-log plot of $M(\omega)^{20}$

```
In[1003]:= Plot[{sol[[1, 1, 2]], Sin[2t]},{t, 0, 10},
    PlotStyle }->\mathrm{ {GrayLevel[0],
    GrayLevel[0.5]}]
```

```
In[1004]:= 6.26-5.49
```

Out [1004] = 0.77
(b) In the equation $x^{\prime \prime}+2 x^{\prime}+4 x=\sin 2 t, 2 c=2$ and $k^{2}=4$. Therefore, $c=1$ and $k=2$. We define the gain function based on these constants in $m[w]$. Because the graph of $M(\omega)$ is a log-log graph, we load the Graphics package to take advantage of the LogLogPlot command. We graph $\mathrm{m}[\mathrm{w}]$ ^ 20 because engineers are interested in $20 \log _{10} M(\omega)=$ $\log _{10} M(\omega)^{20}$. See Figure 5-53. In (a), we obtained $M(2) \approx 0.255$. With the formula for $M(\omega)$, we find that $M(2)=0.25$.

```
In[1005]:= k=2;
    c = 1;
    m[\mp@subsup{w}{-}{}]:=\frac{1}{\sqrt{}{(\mp@subsup{k}{}{2}-\mp@subsup{w}{}{2}\mp@subsup{)}{}{2}+4\mp@subsup{c}{}{2}\mp@subsup{w}{}{2}}}
In[1006]:= << Graphics'Graphics`
In[1007]:= LogLogPlot[m[w] 20, {w, 0.1, 10}]
In[1008]:= N[m[2]]
Out[1008]= 0.25
```

The branch of $y=\cot ^{-1} x$ used by Mathematica is not continuous at $x=0$ as seen in Figure 5-54.

Figure 5-54 Plot of Mathematica's inverse cotangent function

```
In[1009]:= Plot[ArcCot[x], {x, -10, 10}]
```

However, we can construct a function continuous at $x=0$ as we do in newarccot. See Figure 5-55.

```
In[1010]:= Clear[newarccot]
    newarccot[x_] := ArcCot[x]/; x \geq 0
    newarccot[x_] := ArcCot[x]+\pi/; x < 0
In[1011]:= Plot[newarccot[x], {x, -10, 10}]
```

Using newarccot, we are able to graph $\phi(\omega)$ in Figure 5-56. We define $\phi(\omega)$ so that it returns an angle between -180° and 0°.

Figure 5-55 The branch is continuous at $x=0$

Figure 5-56 Plot of $\phi(\omega)$

In (a), we found $\phi(2) \approx-1.54$ (radians). Here, we see that $\phi(2)=$ -90°. However, $-\pi / 2 \approx-1.57$, so the approximations of $M(2)$ and $\phi(2)$ obtained in (a) are quite accurate.

```
In[1012]:= Clear[\phi]
    \phi[\mp@subsup{w}{-}{}]:=\frac{180 newarccot[\frac{\mp@subsup{w}{}{2}-\mp@subsup{k}{}{2}}{2\textrm{cw}}]}{\pi}-180
In[1013]:= Plot[\phi[w],{w, 0.1, 10}]
In[1014]:= N[\phi[2]]
Out[1014]= -90.
```


5.3.4 The Catenary

The solution of the second-order nonlinear equation

$$
\left\{\begin{array}{l}
\frac{d^{2} y}{d x^{2}}=\frac{1}{a} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} \\
y(0)=a, \frac{d y}{d x}(0)=0
\end{array}\right.
$$

is called a catenary.

$$
\begin{aligned}
\text { In }[1015]:= & \text { DSolve }\left[\left\{y^{\prime \prime}[x]==1 / a \operatorname{Sqrt}\left[1+y^{\prime}[x]^{\wedge} 2\right], y[0]==a,\right.\right. \\
& \left.\left.y^{\prime}[0]==0\right\}, y[x], x\right] \\
\text { Out }[1015]=\{ & \left\{y[x] \rightarrow a \operatorname{Cosh}\left[\frac{x}{a}\right]\right\},\left\{y[x] \rightarrow 2 a+a \operatorname{Cosh}\left[\frac{-\dot{1} a \pi+x}{a}\right]\right\}, \\
& \left.\left\{y[x] \rightarrow 2 a+a \operatorname{Cosh}\left[\frac{\dot{1} a \pi+x}{a}\right]\right\}\right\}
\end{aligned}
$$

A flexible wire or cable suspended between two poles of the same height takes the shape of the catenary,

$$
\begin{equation*}
y=c+a \cosh \left(\frac{x}{a}\right), \quad a>0 . \tag{5.27}
\end{equation*}
$$

EXAMPLE 5.3.4: A flexible cable with length 150 feet is to be suspended between two poles with height 100 feet. How far apart must the poles be spaced so that the bottom of the cable is 50 feet off the ground?

SOLUTION: Let $2 s$ denote the distance the poles must be separated and $f(x, c, a)=c+a \cosh \left(\frac{x}{a}\right)$.

$$
\begin{aligned}
& \text { In }[1016]:=\mathrm{f}\left[\mathbf{x}_{-}, \mathrm{c}_{-}, \mathrm{a}_{-}\right]=c+\mathrm{a} \operatorname{Cosh}[\mathbf{x} / \mathrm{a}] \\
& \text { Out }[1016]=\mathrm{c}+\mathrm{a} \\
& \operatorname{Cosh}\left[\frac{\mathrm{x}}{\mathrm{a}}\right]
\end{aligned}
$$

At the endpoints, $x=-s$ and $x=s$,
$f(-s, c, a)=f(s, c, a)=c+a \cosh \left(\frac{s}{a}\right)=100$ or $\cosh ^{2}\left(\frac{s}{a}\right)=\left(\frac{100-c}{a}\right)^{2}$.
The minimum of f is attained at $x=0$ and must be 50 :

$$
\begin{equation*}
f(0, c, a)=a+c=50 . \tag{5.29}
\end{equation*}
$$

The length of the wire is 150 feet so by the arc length formula

$$
\begin{align*}
& \int_{-s}^{s} \sqrt{1+\left(\frac{d f}{d x}\right)^{2}} d x=2 a \sinh \left(\frac{s}{a}\right)=150 \quad \text { or } \quad \sinh ^{2}\left(\frac{s}{a}\right)=\left(\frac{75}{a}\right)^{2} . \tag{5.30}\\
& \text { In }[1017]:=\operatorname{df}=\mathrm{D}[\mathrm{f}[\mathbf{x}, \mathrm{c}, \mathrm{a}], \mathbf{x}] \\
& \text { Out }[1017]=\operatorname{Sinh}\left[\frac{\mathrm{x}}{\mathrm{a}}\right] \\
& \text { In }[1018]:=\text { length }=\text { Integrate }[\operatorname{Sqrt}[1+\mathrm{df} \wedge 2], \\
& \{\mathbf{x},-\mathrm{s}, \mathrm{~s}\}] / / \text { PowerExpand }
\end{aligned}, \begin{aligned}
\text { Out }[1018]= & 2 \text { a } \operatorname{Sinh}\left[\frac{\mathrm{S}}{\mathrm{a}}\right]
\end{align*}
$$

```
In[1019]:= f[-s,c,a] == 100
    eq1 = f[s,c,a] == 100
    eq2 = f[0, c, a] == 50
    eq3 = length == 150
Out [1019]= c+a Cosh [\frac{S}{a}}]==10
Out [1019]=c+a Cosh [\frac{S}{a}}]==10
Out[1019]= a + c == 50
Out[1019]= 2 a Sinh [\frac{S}{a}}]==15
```

Mathematica can solve equations (5.28), (5.29), and (5.30) for s, a, and c as they are written.

```
In[1020]:= vals = Solve[{eq1, eq2, eq3}, {s,a,c}]
Out [1020] ={{c }->\frac{75}{4},\textrm{s}->\frac{125}{4}\operatorname{ArcCosh}[\frac{13}{5}],a->\frac{125}{4}}
In[1021]:= vals//N
Out[1021]= {{c->18.75,s }->\mathrm{ [ 50.2949,a }->31.25}
```

The system can also be solved by hand if you use the identity $\cosh ^{2} x-$ $\sinh ^{2} x=1$. Subtracting equation (5.30) from equation (5.28) gives us

$$
\begin{equation*}
1=\cosh ^{2}\left(\frac{s}{a}\right)-\sinh ^{2}\left(\frac{s}{a}\right)=\left(\frac{100-c}{a}\right)^{2}-\left(\frac{75}{a}\right)^{2} . \tag{5.31}
\end{equation*}
$$

We use ContourPlot to graph equations (5.29) and (5.31) together in Figure 5-57. The coordinates of the intersection point, (a, c) are the solutions to the system $\{(5.29),(5.31)\}$.

$$
\begin{aligned}
& \text { In [1022] }:=\mathrm{p} 1=\text { ContourPlot }\left[\frac{4375-200 \mathrm{c}+\mathrm{c}^{2}}{\mathrm{a}^{2}}\right. \text {, } \\
& \{a, 0.01,50\},\{c, 0,50\} \text {, Contours- }>\{1\} \text {, } \\
& \text { ContourShading- > False, } \\
& \text { DisplayFunction- > Identity]; } \\
& \text { p2 = ContourPlot[a+c, } \\
& \{a, 0.01,50\},\{c, 0,50\} \text {, Contours- }>\{50\} \text {, } \\
& \text { ContourShading- > False, } \\
& \text { DisplayFunction- > Identity]; } \\
& \text { Show[p1, } \\
& \text { p2, DisplayFunction- > \$DisplayFunction]; }
\end{aligned}
$$

Figure 5-57 Graph of equations (5.29) and (5.31) together

Solving equations (5.29) and (5.31) for a and c with Solve gives us $a=125 / 4$ and $c=75 / 4$.

$$
\begin{aligned}
\text { In }[1023]:= & \text { acvals }=\text { Solve }\left[\left\{((100-c) / a)^{\wedge} 2\right.\right. \\
& \left.\left.-(75 / a)^{\wedge} 2==1, a+c==50\right\},\{a, c\}\right] \\
\text { Out }[1023]= & \left\{\left\{c \rightarrow \frac{75}{4}, a \rightarrow \frac{125}{4}\right\}\right\}
\end{aligned}
$$

Substituting these values into equation (5.28) and solving for s gives us $s=\frac{125}{5} \cosh ^{-1}(13 / 5) \approx 50.2949$.

$$
\begin{aligned}
& \text { In }[1024]:=\text { eq1b }=\text { eq1/.acvals }[[1]] \\
& \text { Out }[1024]=\frac{75}{4}+\frac{125}{4} \operatorname{Cosh}\left[\frac{4 s}{125}\right]==100 \\
& \text { In }[1025]:=\text { Solve }[\text { eq1b,s }] \\
& \text { Out }[1025]=\left\{\left\{s \rightarrow-\frac{125}{4} \operatorname{ArcCosh}\left[\frac{13}{5}\right]\right\},\right. \\
& \left.\qquad\left\{s \rightarrow \frac{125}{4} \operatorname{ArcCosh}\left[\frac{13}{5}\right]\right\}\right\}
\end{aligned}
$$

Figure 5-58 The two poles and cable using the s, c, and a values obtained in Example 5.3.4

```
In[1026]:= N[%]
Out [1026]= {{s }->-50.2949},{s->50.2949}
```

Using these values, we visualize the cable and poles in Figure 5-58.

```
In[1027]:= p1 = Graphics[{Thickness[0.02],
    Line [{{-50.2949, 0}, {-50.2949, 100}}],
    Line[{{50.2949, 0}, {50.2949, 100}}]}];
    p2 = Plot [f[x, 午
    50.2949}, DisplayFunction- > Identity];
    Show[p1, p2, Axes- > Automatic,
    AxesOrigin- > {0, 0}]
```

Using the same notation as Example 5.3.4, if a flexible cable with length 150 feet is suspended between two poles with height 100 feet, the distance between the two poles, $2 s$, satisfies $0<s<75$. Let h denote the distance from the bottom of the cable to the ground. Then,

$$
\begin{align*}
f(-s, c, a)=f(s, c, a) & =100, \\
f(0, c, a) & =h, \text { and } \\
\int_{-s}^{s} \sqrt{1+\left(\frac{d f}{d x}\right)^{2}} d x & =2 a \sinh \left(\frac{s}{a}\right)=150 . \tag{5.32}
\end{align*}
$$

```
In[1028]:= f[-s,c,a] == 100
    eq1 = f[s,c, a] == 100
    eq2 = f[0,c,a] == h
    eq3 = length == 150
Out \([1028]=c+a \operatorname{Cosh}\left[\frac{s}{a}\right]==100\)
Out \([1028]=\mathrm{c}+\mathrm{a} \operatorname{Cosh}\left[\frac{\mathrm{S}}{\mathrm{a}}\right]==100\)
Out [1028] = \(\mathrm{a}+\mathrm{c}==\mathrm{h}\)
Out \([1028]=2\) a \(\operatorname{Sinh}\left[\frac{S}{a}\right]==150\)
```

We use Solve to solve system (5.32) for s, c, and a. Mathematica returns two solutions.

$$
\begin{aligned}
& \text { In [1029]: = posheights = Solve[\{eq1, eq2, eq3\}, \{s, c, a\}] } \\
& \text { Out [1029] }=\left\{\left\{\mathrm{c} \rightarrow \frac{-4375+\mathrm{h}^{2}}{2(-100+\mathrm{h})}\right.\right. \text {, } \\
& \mathrm{s} \rightarrow-\frac{\left(4375-200 \mathrm{~h}+\mathrm{h}^{2}\right) \operatorname{ArcCosh}\left[\frac{-15625+200 \mathrm{~h}-\mathrm{h}^{2}}{4375-200 \mathrm{~h}+\mathrm{h}^{2}}\right]}{2(-100+\mathrm{h})}, \\
& \left.\mathrm{a} \rightarrow \frac{4375-200 \mathrm{~h}+\mathrm{h}^{2}}{-200+2 \mathrm{~h}}\right\},\left\{\mathrm{c} \rightarrow \frac{-4375+\mathrm{h}^{2}}{2(-100+\mathrm{h})},\right. \\
& \mathrm{s} \rightarrow \frac{\left(4375-200 \mathrm{~h}+\mathrm{h}^{2}\right) \operatorname{ArcCosh}\left[\frac{-15625+200 \mathrm{~h}-\mathrm{h}^{2}}{4375-200 \mathrm{~h}+\mathrm{h}^{2}}\right]}{2(-100+\mathrm{h})}, \\
& \left.\left.a \rightarrow \frac{4375-200 \mathrm{~h}+\mathrm{h}^{2}}{-200+2 \mathrm{~h}}\right\}\right\}
\end{aligned}
$$

We are assuming that a is positive so the meaningful solution is the one for which a is positive. We graph each a, s, and c for each component given in posheights in Figure 5-59.

Figure 5-59 Mathematica gives two solutions to system (5.32); the second solution is the meaningful one because $a>0$

```
In[1030]:= p1 = Plot[Evaluate[{a,s, c}/.posheights[[1]]],
    {h, 0, 100}, PlotStyle- >
    {GrayLevel[0], Dashing[{0.01}],
    GrayLevel[0.5]}, PlotRange- > {0, 100},
    DisplayFunction- > Identity];
p2 = Plot[Evaluate[{a,s,c}/.posheights[[2]]],
    {h, 0, 100}, PlotStyle- >
    {GrayLevel[0], Dashing[{0.01}],
    GrayLevel[0.5]}, PlotRange- > {0, 100},
    DisplayFunction- > Identity];
    Show[GraphicsArray[{p1, p2}]]
```

Using the results of the second solution given by Mathematica, we are able to generate a graphics array illustrating the position of the poles and the cable for various heights, h, in Figure 5-60.

```
In[1031]:= Clear[wire]
    wire[h_, opts_-_] := Module[{a, s, c, p1, p2},
    a= 4375-200 h+\mp@subsup{h}{}{2}
    s=-\frac{(4375-200 h+\mp@subsup{h}{}{2})}{(ArcCosh[\frac{-15625+200 h-\mp@subsup{h}{}{2}}{4375-200 h+\mp@subsup{h}{}{2}}]}
    c= = -4375+\mp@subsup{h}{}{2}
    p1 = Graphics[{Thickness[0.02], Line[{{-s,0},
            {-s, 100}}], Line[{{s, 0}, {s, 100}}]}];
    p2 = Plot[c+aCosh[x/a], {x, -s, s},
        DisplayFunction- > Identity];
    Show[p1, p2, Axes- > Automatic, AxesOrigin- > {0, 0},
    PlotRange- > {{-75, 75}, {0, 110}}, opts,
    DisplayFunction- > Identity] ]})
```


Figure 5-60 An array illustrating how two poles of height 100 feet can be connected by a flexible cable of length 150 feet

```
In[1032]:= graphs = Table[wire[n], {n, 26, 99, (99-26)/15}];
    toshow = Partition[graphs, 4];
    Show[GraphicsArray[toshow]]
```

EXAMPLE 5.3.5: According to our electric utility, Excelsior Electric Membership Corp (EMC), Metter, Georgia, due to terrain, easements, and so on, the average distance between utility poles ranges from 325 to 340 feet. Each pole is approximately 40 feet long with 6 feet buried so that the length of the pole from the ground to the top of the pole is 34 feet. The Georgia Department of Transportation states that the maximum height of a truck using interstates, national, and state routes is $13^{\prime} 6^{\prime \prime}$. However, special permits may be granted by the DOT for heights up to 18^{\prime} $0^{\prime \prime}$. With these restrictions in mind, EMC maintains a minimum clearance of 20^{\prime} under those lines it installs during cooler months because expansion causes lines to sag during warmer months. For the obvious reasons, EMC prefers that the distance from its lines to the ground is greater than $18^{\prime} 6^{\prime \prime}$ at all times.

Find c and a so that $f(x, c, a)=c+a \cosh \left(\frac{x}{a}\right)$ models this situation.

SOLUTION: Centering $f(x, c, a)=c+a \cosh \left(\frac{x}{a}\right)$ at $x=0$, we require that

$$
\begin{align*}
f(-170, c, a)=f(170, c, a) & =34, \text { and } \tag{5.33}\\
f(0, c, a) & =20 .
\end{align*}
$$

```
In[1033]:= f[x_, c_, a_] = c + a Cosh[x/a]
Out[1033]= c+a Cosh[\frac{x}{a}
In[1034]:= df = D[f[x, c, a], x]
Out[1034]= Sinh [\frac{x}{a}}
In[1035]:= f[170,c,a]
Out[1035]= c+a Cosh[\frac{170}{a}}
In[1036]:= f[0, c,a]
Out[1036] = a +c
```

Mathematica cannot solve system (5.33) exactly with Solve

$$
\begin{aligned}
& \text { In }[1037]:=\text { Solve }\left[\left\{c+a \operatorname{Cosh}\left[\frac{170}{a}\right]==34,\right.\right. \\
& \qquad a+c=20\},\{a, c\}]
\end{aligned} \begin{aligned}
& \text { Solve :: "tdep": "Theequationsappeartoinvolve } \\
& \text { transcendentalfunctionsofthevariablesin } \\
& \text { anessentiallynon - algebraicway." } \\
& \text { Out }[1037]=\text { Solve }\left[\left\{c+a \operatorname{Cosh}\left[\frac{170}{a}\right]==40,\right.\right. \\
& \qquad a+c==20\},\{a, c\}]
\end{aligned}
$$

but using ContourPlot to graph the equations $f(170, c, a)=34$ and $f(0, c, a)=20$ together as shown in Figure 5-61 shows us that the system does have a solution.

Figure 5-61 Graphs of equations $f(170, c, a)=40$ and $f(0, c, a)=20$: the intersection point is difficult to see

```
In[1038]:= cp1 = ContourPlot[f[170, c, a],
    {c, -3000, 0}, {a, 1, 3000},
    Contours- > {34},
    ContourShading- > False,
    PlotPoints->200,
    AxesOrigin- > {0, 0}, Frame- > False,
    Axes->Automatic,
    DisplayFunction- > Identity,
    AxesLabel- > {"c", "a"}];
    cp2 = ContourPlot[a+c, {c, -3000, 0},
    {a,1, 3000}, Contours-> {20},
    ContourShading- > False,
        PlotPoints- > 200,
        AxesOrigin- > {0, 0}, Frame- > False,
        Axes- > Automatic,
        DisplayFunction- > Identity,
        AxesLabel- > {"c", "a"}];
        g1 = Show[cp1, cp2,
        DisplayFunction- > $DisplayFunction]
```

We use FindRoot to find the solution.

Figure 5-62 Plot of $f(170,20-a, a)$ and $a=34$ together: the solution for a is much easier to see

$$
\begin{aligned}
\text { In }[1039]:= & \text { FindRoot }\left[\left\{c+a \operatorname{Cosh}\left[\frac{170}{a}\right]==34, a+c==20\right\},\right. \\
& \{a, 1500\},\{c,-1500\}] \\
\text { Out }[1039]= & \{a \rightarrow 1034.47, c \rightarrow-1014.47\}
\end{aligned}
$$

However, using $c=20-a$ we graph $f(170,20-a, a)$ and $a=34$ together in Figure 5-62. The solution is much easier to see in Figure 5-62 than in Figure 5-61.

```
In[1040]:= Plot[{f[170, 20-a, a], 34}, {a, 0, 3000},
    PlotStyle- > {GrayLevel[0],
    GrayLevel[0.6]},
    PlotRange- > {{0, 2000}, {0, 200}},
    AspectRatio- > 1, AxesLabel- > {"a", ""}]
```

Now, we obtain the same results with FindRoot and Solve as we did previously with FindRoot.

```
In[1041]:= aval = FindRoot[f[170, 20-a,
    a] == 34, {a, 1100}]
Out[1041]= {a->1034.47}
In[1042]:= aval[[1, 2]]
Out[1042]= 1034.47
```


Figure 5-63 A graphic illustrating how a utility line like an electrical cable may be connected between two poles of equal height

```
In[1043]:= cval = 20-a/.aval[[1]]
Out[1043]= -1014.47
In[1044]:= length/.{s- > 170, aval[[1]]}
Out[1044]= 341.532
In[1045]:= Solve[a+c == 20, c]
Out[1045]={{c->20-a}}
```

With the results obtained above, we generate a plot illustrating the hanging wire in Figure 5-63.

```
In[1046]:= p1b = Graphics[{Thickness[0.01],
    Line [{{-170, 0}, {-170, 34}}],
    Line[{{170, 0}, {170, 34}}]}];
    p2b = Plot[Evaluate[f[x, cval,
        aval[[1, 2]]]], {x, -170, 170},
        DisplayFunction- > Identity];
        Show[p1b, p2b, Axes- > None,
            AxesOrigin- > {0, 0},
            AspectRatio- > Automatic]
```

This Page Intentionally Left Blank

Systems of Ordinary Differential Equations

6.I Review of Matrix Algebra and Calculus

Because of their importance in the study of systems of linear equations, we now review matrices and the operations associated with them.

6.I.I Defining Nested Lists, Matrices, and Vectors

In Mathematica, a matrix is a list of lists where each list represents a row of the matrix. Therefore, the $m \times n$ matrix

$$
\mathbf{A}=\left(\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \cdots & a_{m n}
\end{array}\right) .
$$

is entered with $\mathrm{A}=\{\{\mathrm{a} 11, \mathrm{a} 12, \ldots, \mathrm{a} 1 \mathrm{n}\},\{\mathrm{a} 21, \mathrm{a} 22, \ldots, \mathrm{a} 2 \mathrm{n}\}, \ldots,\{\mathrm{am1}$, $a m 2, \ldots$ amn $\}\}$. For example, to use Mathematica to define m to be the matrix $\mathbf{A}=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$ enter the command

$$
\mathrm{m}=\{\{\mathrm{a} 11, \mathrm{a} 12\},\{\mathrm{a} 21, \mathrm{a} 22\}\} .
$$

The command $m=\operatorname{Array}[a,\{2,2\}]$ produces a result equivalent to this. Once a matrix A has been entered, it can be viewed in the traditional row-and-column

As when using

TableForm, the result of using MatrixForm is no longer a list that can be manipulated using
Mathematica commands. Use
MatrixForm to view a matrix in traditional row-and-column form. Do not attempt to perform matrix operations on a MatrixForm object.
form using the command MatrixForm [A]. You can quickly construct 2×2 matrices by clicking on the \mid (㗊 \mid button from the BasicTypesetting palette, which is accessed by going to File under the Mathematica menu, followed by Palettes and then BasicTypesetting.

Alternatively, you can construct matrices of any dimension by going to the Mathematica menu under Input and selecting Create Table/Matrix/Palette...

Get Graphics Coordinates...
3D ViewPoint Selector...
Color Selector...
Record Sound...
Get File Path...
Create Table/Matrix/Palette...
Create Button
Edit Button...
Create Hyperlink...
Create Automatic Numbering Object...
Create Value Display Object...
Convert Automatic Objects to Literal
Copy Input from Above
Copy Output from Above
Start New Cell Below
Complete Selection
Make Template

The resulting pop-up window allows you to create tables, matrices, and palettes. To create a matrix, select Matrix, enter the number of rows and columns of the matrix, and select any other options. Pressing the OK button places the desired matrix at the position of the cursor in the Mathematica notebook.

EXAMPLE 6.1.1: Use Mathematica to define the matrices $\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{22} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)$ and $\left(\begin{array}{llll}b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{22} & b_{23} & b_{24}\end{array}\right)$.

SOLUTION: In this case, both Table $\left[a_{i, j},\{i, 1,3\},\{j, 1,3\}\right]$ and Array [a, $\{3,3\}$] produce equivalent results when we define matrixa to be the matrix

$$
\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{22} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

The commands MatrixForm or TableForm are used to display the results in traditional matrix form.

```
In[1047]:= Clear[a, b, matrixa, matrixb]
In[1048]:= matrixa = Table[ai,j, {i, 1, 3},{j, 1, 3}]
Out[1048]= {{a, (a,1, a a,2, a a,3},
```


In[1049]:= MatrixForm[matrixa]

$$
\begin{aligned}
& \text { Out }[1049]=\left(\begin{array}{lll}
a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,1} & a_{2,2} & a_{2,3} \\
a_{3,1} & a_{3,2} & a_{3,3}
\end{array}\right) \\
& \begin{aligned}
\text { In }[1050]:= & \text { matrixa }=\operatorname{Array}[a,\{3,3\}] \\
\text { Out }[1050]= & \{\{a[1,1], a[1,2], a[1,3]\}, \\
& \{a[2,1], a[2,2], a[2,3]\}, \\
& \{a[3,1], a[3,2], a[3,3]\}\}
\end{aligned}
\end{aligned}
$$

In [1051]:= MatrixForm[matrixa]

$$
\text { Out }[1051]=\left(\begin{array}{lll}
a[1,1] & a[1,2] & a[1,3] \\
a[2,1] & a[2,2] & a[2,3] \\
a[3,1] & a[3,2] & a[3,3]
\end{array}\right)
$$

We may also use Mathematica to define nonsquare matrices.

```
In[1052]:= matrixb = Array[b, {2, 4}]
Out[1052]= {{b[1, 1], b[1, 2],b[1,3],b[1,4]},
    {b[2, 1], b[2, 2], b[2,3],b[2,4]}}
```

In [1053] := MatrixForm[matrixb]
Out [1053] $=\binom{\mathrm{b}[1,1] \mathrm{b}[1,2] \mathrm{b}[1,3] \mathrm{b}[1,4]}{\mathrm{b}[2,1] \mathrm{b}[2,2] \mathrm{b}[2,3] \mathrm{b}[2,4]}$

Equivalent results would have been obtained by entering Table $\left[\mathrm{b}_{\mathrm{i}, \mathrm{j}}\right.$, \{i, 1, 2\}, \{j, 1, 4\}].

More generally the commands Table[f[i,j],\{i,imax\},\{j,jmax\}] and Array [f, $\{\mathrm{imax}, \mathrm{jmax}\}$] yield nested lists corresponding to the imax \times jmax matrix

$$
\left(\begin{array}{cccc}
f(1,1) & f(1,2) & \cdots & f(1, \text { jmax }) \\
f(2,1) & f(2,2) & \cdots & f(2, \text { jmax }) \\
\vdots & \vdots & \vdots & \vdots \\
f(\text { imax }, 1) & f(\text { imax } 2) & \cdots & f(\text { imax, jmax })
\end{array}\right) .
$$

Table[f[i,j],\{i,imin,imax,istep\},\{j,jmin,jmax,jstep\}] returns the list of lists

```
{{f[imin,jmin],f[imin,jmin+jstep],..., f[imin,jmax]},
    {f[imin+istep,jmin],...,f[imin+istep,jmax]},
        ...,{f[imax,jmin],...,f[imax,jmax] }}
```

and the command
Table[f[i,j,k,...],\{i,imin,imax,istep\},\{j,jmin,jmax,jstep\}, \{k,kmin,kmax,kstep\},...]
calculates a nested list; the list associated with i is outermost. If istep is omitted, the stepsize is one.

In Mathematica, a vector is a list of numbers and, thus, is entered in the same manner as lists. For example, to use Mathematica to define the row vector vector v to be $\left(v_{1} v_{2} v_{3}\right)$ enter vector $\mathrm{v}=\{\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3\}$. Similarly, to define the column vector vector v to be $\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)$ enter vector $v=\{v 1, v 2, v 3\}$ or vector $v=$ $\{\{\mathrm{v} 1\},\{\mathrm{v} 2\},\{\mathrm{v} 3\}\}$. For a 2×1 vector, you can use the (믐) button on the BasicTypesetting palette. Generally, with Mathematica you do not need to distinguish between row and column vectors: Mathematica performs computations with vectors and matrices correctly as long as the computations are well-defined.

With Mathematica, you do not need to distinguish between row and column vectors. Provided that computations are well-defined, Mathematica carries them out correctly Mathematica warns of any ambiguities when they (rarely) occur.

EXAMPLE 6.1.2: Define the vector $\mathbf{w}=\left(\begin{array}{c}-4 \\ -5 \\ 2\end{array}\right)$, vectorv to be the vector $\left(\begin{array}{llll}v_{1} & v_{2} & v_{3} & v_{4}\end{array}\right)$, and zerovec to be the vector $\left(\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right)$.

SOLUTION: To define w, we enter

```
In[1054]:= w = {-4, -5, 2}
Out [1054] = {-4, -5, 2}
```

or

```
In[1055]:= w = {{-4},{-5},{2}};
    MatrixForm[w]
Out [1055] =( (-4
```

To define vectorv, we use Array.

```
In[1056]:= vectorv = Array[v, 4]
Out[1056]= {v[1],v[2],v[3],v[4]}
```

Equivalent results would have been obtained by entering Table[v_{i}, \{i, 1, 4\}]. To define zerovec, we use Table.

```
In[1057]:= zerovec = Table[0, {5}]
Out [1057]= {0,0,0,0,0}
```

The same result is obtained by going to Input under the Mathematica menu and selecting Create Table/Matrix/Palette...

```
In[1058]:=( (0 0 0 0 0
Out [1058]= {{0,0,0,0,0}}
```


6.I. 2 Extracting Elements of Matrices

For the 2×2 matrix $m=\left\{\left\{a_{1,1}, a_{1,2}\right\},\left\{a_{2,1}, a_{2,2}\right\}\right\}$ defined earlier, $m[[1]]$ yields the first element of matrix m which is the list $\left\{a_{1,1}, a_{1,2}\right\}$ or the first row of $\left.m ; m[2,1]\right]$ yields the first element of the second element of matrix m which is $a_{2,1}$. In general, if m is an $i \times j$ matrix, $m[[i, j]]$ or Part [$m, i, j]$ returns the unique element in the i th row and j th column of \mathbf{m}. More specifically, $m[[i, j]]$ yields the j th part of the i th part of \mathbf{m}; list [[i]] or Part [list, i] yields the i th part of list; list [[$i, j]$] or Part [list, $i, j]$ yields the j th part of the i th part of list, and so on.

EXAMPLE 6.1.3: Define mb to be the matrix $\left(\begin{array}{rrr}10 & -6 & -9 \\ 6 & -5 & -7 \\ -10 & 9 & 12\end{array}\right)$. (a) Extract the third row of mb. (b) Extract the element in the first row and third column of mb. (c) Display mb in traditional matrix form.

SOLUTION: We begin by defining the command mb. mb[[i,j]] yields the (unique) number in the i th row and j th column of mb. Observe how various components of mb (rows and elements) can be extracted and how mb is placed in MatrixForm.

$$
\begin{aligned}
& \text { In }[1059]:=\operatorname{mb}=\{\{10,-6,-9\},\{6,-5,-7\}, \\
& \qquad\{-10,9,12\}\} ; \\
& \text { In }[1060]:=\text { MatrixForm }[\mathrm{mb}] \\
& \text { Out }[1060]=\left(\begin{array}{rrr}
10 & -6 & -9 \\
6 & -5 & -7 \\
-10 & 9 & 12
\end{array}\right)
\end{aligned}
$$

```
In[1061]:= mb[[3]]
Out [1061]= {-10, 9, 12}
In[1062]:= mb[[1, 3]]
Out[1062]= -9
```

If m is a matrix, the i th row of m is extracted with $m[[i]]$. The command Transpose [m] yields the transpose of the matrix m, the matrix obtained by interchanging the rows and columns of m. We extract columns of m by computing Transpose [m] and then using Part to extract rows from the transpose. Namely, if m is a matrix, Transpose [m] [[i]] extracts the i th row from the transpose of m which is the same as the i th column of m.

EXAMPLE 6.1.4: Extract the second and third columns from \mathbf{A} if $\mathbf{A}=$ $\left(\begin{array}{ccc}0 & -2 & 2 \\ -1 & 1 & -3 \\ 2 & -4 & 1\end{array}\right)$.

SOLUTION: We first define matrixa and then use Transpose to compute the transpose of matrixa, naming the result ta, and then displaying ta in MatrixForm.

```
In[1063]:= matrixa = {{0, -2, 2}, {-1, 1, -3},
    {2,-4, 1}};
In[1064]:= ta = Transpose[matrixa];
    MatrixForm[ta]
Out[1064]=(}(\begin{array}{ccc}{0}&{-1}&{2}\\{-2}&{1}&{-4}\\{2}&{-3}&{1}\end{array}
```

Next, we extract the second column of matrixa using Transpose together with Part ([[...]]). Because we have already defined ta to be the transpose of matrixa, entering ta [[2]] would produce the same result.

```
In[1065]:= Transpose[matrixa][[2]]
Out [1065]= {-2, 1, -4}
```

To extract the third column, we take advantage of the fact that we have already defined ta to be the transpose of matrixa. Entering Transpose [matrixa] [[3]] produces the same result.

```
In[1066]:= ta[[3]]
Out [1066]= {2,-3,1}
```

Other commands that can be used to manipulate matrices are included in the MatrixManipulation package, which is contained in the Linear Algebra folder (or directory).

After this package has been loaded,

```
In[1067]:= << LinearAlgebra`MatrixManipulation`
```

we can use commands like TakeColumns and TakeRows to extract columns and rows from a given matrix. For example, entering

```
In[1068]:= TakeColumns[matrixa, {2}]//MatrixForm
Out [1068] =( 
```

extracts the second column of the matrix \mathbf{A} defined in the previous example and displays the result in MatrixForm while entering

```
In[1069]:= TakeColumns[matrixa, {2, 3}]//
    MatrixForm
Out[1069]=(}\begin{array}{rrr}{-2}&{2}\\{1}&{-3}\\{-4}&{1}\end{array}
```

extracts the second and third columns of \mathbf{A} and displays the result in Matrix Form.

6.I.3 Basic Computations with Matrices

Mathematica performs all of the usual operations on matrices. Matrix addition $(\mathbf{A}+\mathbf{B})$, scalar multiplication $(k \mathbf{A})$, matrix multiplication (when defined) (AB), and combinations of these operations are all possible. The transpose of $\mathbf{A}, \mathbf{A}^{t}$, is obtained by interchanging the rows and columns of \mathbf{A} and is computed with the command Transpose [A]. If \mathbf{A} is a square matrix, the determinant of \mathbf{A} is obtained with Det [A].

If \mathbf{A} and \mathbf{B} are $n \times n$ matrices satisfying $\mathbf{A B}=\mathbf{B A}=\mathbf{I}$, where \mathbf{I} is the $n \times n$ matrix with 1 s on the diagonal and 0 s elsewhere (the $n \times n$ identity matrix), \mathbf{B} is called the inverse of \mathbf{A} and is denoted by \mathbf{A}^{-1}. If the inverse of a matrix \mathbf{A} exists, the inverse is found with Inverse [A]. Thus, assuming that $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ has an inverse ($a d-b c \neq 0$), the inverse is

$$
\begin{aligned}
& \text { In }[1070]:=\text { Inverse }[\{\{\mathrm{a}, \mathrm{~b}\},\{\mathrm{c}, \mathrm{~d}\}\}] \\
& \text { Out }[1070]=\left\{\left\{\frac{\mathrm{d}}{-\mathrm{b} c+\mathrm{a} d},-\frac{\mathrm{b}}{-\mathrm{b} c+\mathrm{a} d}\right\},\left\{-\frac{c}{-b c+a d}, \frac{a}{-b c+a d}\right\}\right\}
\end{aligned}
$$

EXAMPLE 6.1.5: Let $A=\left(\begin{array}{rrr}3 & -4 & 5 \\ 8 & 0 & -3 \\ 5 & 2 & 1\end{array}\right)$ and $B=\left(\begin{array}{rrr}10 & -6 & -9 \\ 6 & -5 & -7\end{array}\right)$. Compute
(a) $\mathbf{A}+\mathbf{B}$; (b) $\mathbf{B}-4 \mathbf{A}$; (c) the inverse of $\mathbf{A B}$; (d) the transpose of $(\mathbf{A}-2 \mathbf{B}) \mathbf{B}$; and $(\mathrm{e}) \operatorname{det} \mathbf{A}=|\mathbf{A}|$.

SOLUTION: We enter ma (corresponding to \mathbf{A}) and mb (corresponding to \mathbf{B}) as nested lists where each element corresponds to a row of the matrix. We suppress the output by ending each command with a semicolon.

$$
\begin{aligned}
\operatorname{In}[1071]:=\mathrm{ma}= & \{\{3,-4,5\},\{8,0,-3\},\{5,2,1\}\} ; \\
\operatorname{mb}= & \{\{10,-6,-9\},\{6,-5,-7\}, \\
& \{-10,9,12\}\} ;
\end{aligned}
$$

Entering

$$
\begin{aligned}
& \text { In }[1072]:=\mathrm{ma}+\mathrm{mb} / / \text { MatrixForm } \\
& \text { Out }[1072]=\left(\begin{array}{ccc}
13 & -10 & -4 \\
14 & -5 & -10 \\
-5 & 11 & 13
\end{array}\right)
\end{aligned}
$$

adds matrix ma to mb and expresses the result in traditional matrix form. Entering

$$
\begin{aligned}
& \text { In }[1073]:=\mathrm{mb}-4 \mathrm{ma} / / \text { MatrixForm } \\
& \text { Out }[1073]=\left(\begin{array}{ccc}
-2 & 10 & -29 \\
-26 & -5 & 5 \\
-30 & 1 & 8
\end{array}\right)
\end{aligned}
$$

subtracts four times matrix ma from mb and expresses the result in traditional matrix form. Entering

$$
\begin{aligned}
\text { In }[1074]:= & \text { Inverse[ma.mb]//MatrixForm } \\
\text { Out }[1074]= & \left(\begin{array}{ccc}
\frac{59}{380} & \frac{53}{190} & -\frac{167}{380} \\
-\frac{223}{570} & -\frac{92}{95} & \frac{979}{570} \\
\frac{49}{114} & \frac{18}{19} & -\frac{187}{114}
\end{array}\right.
\end{aligned}
$$

computes the inverse of the matrix product AB. Similarly, entering

```
In[1075]:= Transpose[(ma - 2mb) .mb]//MatrixForm
Out[1075]=(}\begin{array}{cccc}{-352}&{-90}&{384}\\{269}&{73}&{-277}\\{373}&{98}&{-389}\end{array}
```

computes the transpose of $(\mathbf{A}-2 \mathbf{B}) \mathbf{B}$ and entering

```
In[1076]:= Det[ma]
Out[1076]= 190
```

computes the determinant of ma.

EXAMPLE 6.1.6: Compute $\mathbf{A B}$ and $\mathbf{B A}$ if $\mathbf{A}=\left(\begin{array}{rrrr}-1 & -5 & -5 & -4 \\ -3 & 5 & 3 & -2 \\ -4 & 4 & 2 & -3\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{rr}1 & -2 \\ -4 & 3 \\ 4 & -4 \\ -5 & -3\end{array}\right)$.

SOLUTION: Because \mathbf{A} is a 3×4 matrix and \mathbf{B} is a 4×2 matrix, $\mathbf{A B}$ is defined and is a 3×2 matrix. We define matrixa and matrixb with the following commands.

$$
\begin{aligned}
& \text { In }[1077]:=\text { matrixa }=\left(\begin{array}{rrrr}
-1 & -5 & -5 & -4 \\
-3 & 5 & 3 & -2 \\
-4 & 4 & 2 & -3
\end{array}\right) ; \\
& \text { In }[1078]:=\text { matrixb }=\left(\begin{array}{rr}
1 & -2 \\
-4 & 3 \\
4 & -4 \\
-5 & -3
\end{array}\right) ;
\end{aligned}
$$

Remember that you can also define matrices by going to Input under the Mathematica menu and selecting Create Table/Matrix/Palette.... After entering the desired number of rows and columns and pressing the OK button, a matrix template is placed at the location of the cursor that you can fill in.

We then compute the product, naming the result ab , and display ab in MatrixForm.

```
In[1079]:= ab = matrixa.matrixb;
    MatrixForm[ab]
Out[1079]=(}\begin{array}{rlr}{19}&{19}\\{-1}&{15}\\{3}&{21}\end{array}
```

However, the matrix product BA is not defined and Mathematica produces error messages when we attempt to compute it.

```
        In[1080]:= matrixb.matrixa
Dot :: dotsh :
    Tensors {{1,-2}, {-4, 3}, {4,-4}, {-5, -3}}
        and {{-1, -5, -5, -4}, {-3,5,3,-2},
            {-4,4,2,-3}} have incompatible shapes.
        Out [1080]={{1,-2},{-4,3},{4,-4},{-5,-3}}.
                        {{-1,-5,-5,-4},
                        {-3,5,3,-2},{-4,4,2,-3}}
```


6.I. 4 Eigenvalues and Eigenvectors

Let \mathbf{A} be an $n \times n$ matrix. The number λ is an eigenvalue of \mathbf{A} if there is a nonzero vector, \mathbf{v}, called an eigenvector, satisfying

$$
\begin{equation*}
\mathbf{A} \mathbf{v}=\lambda \mathbf{v} \tag{6.1}
\end{equation*}
$$

We find the eigenvalues of \mathbf{A} by solving the characteristic polynomial

$$
\begin{equation*}
|\mathbf{A}-\lambda \mathbf{I}|=0 \tag{6.2}
\end{equation*}
$$

for λ. Once we find the eigenvalues, the corresponding eigenvectors are found by solving

$$
\begin{equation*}
(\mathbf{A}-\lambda \mathbf{I}) \mathbf{v}=\mathbf{0} \tag{6.3}
\end{equation*}
$$

for \mathbf{v}.
If \mathbf{A} is a square matrix,
Eigenvalues [A]
finds the eigenvalues of \mathbf{A},
Eigenvectors [A]
finds the eigenvectors, and
Eigensystem [A]
finds the eigenvalues and corresponding eigenvectors.

> CharacteristicPolynomial [A, lambda]
finds the characteristic polynomial of \mathbf{A} as a function of λ.

EXAMPLE 6.1.7: Find the eigenvalues and corresponding eigenvectors for each of the following matrices. (a) $\mathbf{A}=\left(\begin{array}{rr}-3 & 2 \\ 2 & -3\end{array}\right)$; (b) $\mathbf{A}=\left(\begin{array}{rr}1 & -1 \\ 1 & 3\end{array}\right)$;
(c) $\mathbf{A}=\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$; (d) $\mathbf{A}=\left(\begin{array}{ll}-1 / 4 & 2 \\ -8 & -1 / 4\end{array}\right)$.

SOLUTION: (a) We begin by finding the eigenvalues. Solving

$$
|\mathbf{A}-\lambda \mathbf{I}|=\left|\begin{array}{cc}
-3-\lambda & 2 \\
2 & -3-\lambda
\end{array}\right|=\lambda^{2}+6 \lambda+5=0
$$

gives us $\lambda_{1}=-5$ and $\lambda_{2}=-1$.
Observe that the same results are obtained using Characteristic Polynomial and Eigenvalues.

```
In[1081]:= capa = {{-3, 2}, {2,-3}};
    CharacteristicPolynomial[capa, \lambda]//Factor
    e1 = Eigenvalues[capa]
```

Out [1081] $=(1+\lambda)(5+\lambda)$
Out $[1081]=\{-5,-1\}$

We now find the corresponding eigenvectors. Let $\mathbf{v}_{1}=\binom{x_{1}}{y_{1}}$ be an eigenvector corresponding to λ_{1}, then

$$
\begin{aligned}
\left(\mathbf{A}-\lambda_{1} \mathbf{I}\right) \mathbf{v}_{1} & =\mathbf{0} \\
{\left[\left(\begin{array}{rr}
-3 & 2 \\
2 & -3
\end{array}\right)-(-5)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right]\binom{x_{1}}{y_{1}} } & =\binom{0}{0} \\
\left(\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right)\binom{x_{1}}{y_{1}} & =\binom{0}{0},
\end{aligned}
$$

which row reduces to

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)\binom{x_{1}}{y_{1}}=\binom{0}{0} .
$$

That is, $x_{1}+y_{1}=0$ or $x_{1}=-y_{1}$. Hence, for any value of $y_{1} \neq 0$,

$$
\mathbf{v}_{1}=\binom{x_{1}}{y_{1}}=\binom{-y_{1}}{y_{1}}=y_{1}\binom{-1}{1}
$$

is an eigenvector corresponding to λ_{1}. Of course, this represents infinitely many vectors. But, they are all linearly dependent. Choosing $y_{1}=1$ yields $\mathbf{v}_{1}=\binom{-1}{1}$. Note that you might have chosen $y_{1}=-1$ and obtained $\mathbf{v}_{1}=\binom{1}{-1}$. However, both of our results are "correct" because these vectors are linearly dependent.

Similarly, letting $\mathbf{v}_{2}=\binom{x_{2}}{y_{2}}$ be an eigenvector corresponding to λ_{2} we solve $\left(\mathbf{A}-\lambda_{2} \mathbf{I}\right) \mathbf{v}_{1}=\mathbf{0}$:

$$
\left(\begin{array}{rr}
-2 & 2 \\
2 & -2
\end{array}\right)\binom{x_{2}}{y_{2}}=\binom{0}{0} \quad \text { or } \quad\left(\begin{array}{rr}
1 & -1 \\
0 & 0
\end{array}\right)\binom{x_{2}}{y_{2}}=\binom{0}{0}
$$

Thus, $x_{2}-y_{2}=0$ or $x_{2}=y_{2}$. Hence, for any value of $y_{2} \neq 0$,

$$
\mathbf{v}_{2}=\binom{x_{2}}{y_{2}}=\binom{y_{2}}{y_{2}}=y_{2}\binom{1}{1}
$$

is an eigenvector corresponding to λ_{2}. Choosing $y_{2}=1$ yields $\mathbf{v}_{2}=\binom{1}{1}$. We confirm these results using RowReduce.

```
In[1082]:= i2 = {{1, 0}, {0, 1}};
    ev1 = capa - e1[[1]] i2
Out [1082]= {{2, 2}, {2, 2}}
In[1083]:= RowReduce[ev1]
Out [1083]= {{1, 1}, {0, 0}}
In[1084]:= ev2 = capa - e1[[2]] i2
    RowReduce [ev2]
Out [1084]= {{-2, 2}, {2, -2 }}
Out [1084]= {{1,-1}, {0,0}}
```

We obtain the same results using Eigenvectors and Eigensystem.

```
In[1085]:= Eigenvectors[capa]
    Eigensystem[capa]
Out [1085]= {{-1, 1}, {1, 1}}
Out [1085]= {{-5,-1}, {{-1, 1}, {1, 1}}}
```

(b) In this case, we see that $\lambda=2$ has multiplicity 2 . There is only one linearly independent eigenvector, $\mathrm{v}=\binom{-1}{1}$, corresponding to λ.

```
In[1086]:= capa = {{1, -1}, {1, 3}};
    Factor[CharacteristicPolynomial[capa, \lambda]]
    Eigenvectors[capa]
    Eigensystem[capa]
Out[1086]= (-2+\lambda)}\mp@subsup{}{}{2
Out [1086]= {{-1, 1}, {0,0}}
Out [1086]= {{2, 2}, {{-1, 1}, {0, 0}}}
```

(c) The eigenvalue $\lambda_{1}=2$ has corresponding eigenvector $\mathbf{v}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.

The eigenvalue $\lambda_{2,3}=-1$ has multiplicity 2 . In this case, there are two linearly independent eigenvectors corresponding to this eigenvalue:

```
\mp@subsup{\mathbf{v}}{\mathbf{2}}{=}=(\begin{array}{r}{-1}\\{0}\\{1}\end{array})\mathrm{ and }\mp@subsup{\mathbf{v}}{\mathbf{3}}{=}=(\begin{array}{r}{-1}\\{1}\\{0}\end{array}).
In[1087]:= capa = {{0, 1, 1}, {1,0, 1}, {1, 1, 0}};
    Factor[CharacteristicPolynomial[capa, \lambda]]
    Eigenvectors[capa]
    Eigensystem[capa]
Out[1087]= - (-2+\lambda) (1+\lambda)}\mp@subsup{}{}{2
Out [1087]= {{-1,0,1}, {-1, 1, 0}, {1, 1, 1}}
Out [1087]= {{-1,-1,2},{{-1,0,1},{-1,1,0},{1,1,1}}}
```

(d) In this case, the eigenvalues $\lambda_{1,2}=-\frac{1}{4} \pm 4 i$ are complex conjugates. We see that the eigenvectors $\mathbf{v}_{1,2}=\binom{0}{2} \pm\binom{ 1}{0} i$ are complex conjugates as well.

```
In[1088]:= capa = {{-1/4, 2}, {-8, -1/4}};
    Eigenvectors[capa]
    Eigensystem[capa]
Out[1088]= {{i, 2}, {-i, 2}}
Out[1088]={{-\frac{1}{4}-4 i,-\frac{1}{4}+4 i},{{i,2},{-i, 2}}}
```


6.I.5 Matrix Calculus

Definition 23 (Derivative and Integral of a Matrix). The derivative of the $m \times n$ matrix

$$
\mathbf{A}(t)=\left(\begin{array}{ccccc}
a_{11}(t) & a_{12}(t) & a_{13}(t) & \cdots & a_{1 n}(t) \\
a_{21}(t) & a_{22}(t) & a_{23}(t) & \cdots & a_{2 n}(t) \\
a_{31}(t) & a_{32}(t) & a_{33}(t) & \cdots & a_{3 n}(t) \\
\vdots & \vdots & \vdots & & \vdots \\
a_{m 1}(t) & a_{m 2}(t) & a_{m 3}(t) & \cdots & a_{m n}(t)
\end{array}\right),
$$

where $a_{i j}(t)$ is differentiable for all values of i and j, is

$$
\frac{d}{d t} \mathbf{A}(t)=\left(\begin{array}{ccccc}
\frac{d}{d t} a_{11}(t) & \frac{d}{d t} a_{12}(t) & \frac{d}{d t} a_{13}(t) & \cdots & \frac{d}{d t} a_{1 n}(t) \\
\frac{d}{d t} a_{21}(t) & \frac{d}{d t} a_{22}(t) & \frac{d}{d t} a_{23}(t) & \cdots & \frac{d}{d t} a_{2 n}(t) \\
\frac{d}{d t} a_{31}(t) & \frac{d}{d t} a_{32}(t) & \frac{d}{d t} a_{33}(t) & \cdots & \frac{d}{d t} a_{3 n}(t) \\
\vdots & \vdots & \vdots & & \vdots \\
\frac{d}{d t} a_{m 1}(t) & \frac{d}{d t} a_{m 2}(t) & \frac{d}{d t} a_{m 3}(t) & \cdots & \frac{d}{d t} a_{m n}(t)
\end{array}\right) .
$$

The integral of $\mathbf{A}(t)$, where $a_{i j}(t)$ is integrable for all values of i and j, is

$$
\int \mathbf{A}(t) d t=\left(\begin{array}{ccccc}
\int a_{11}(t) d t & \int a_{12}(t) d t & \int a_{13}(t) d t & \cdots & \int a_{1 n}(t) d t \\
\int a_{21}(t) d t & \int a_{22}(t) d t & \int a_{23}(t) d t & \cdots & \int a_{2 n}(t) d t \\
\int a_{31}(t) d t & \int a_{32}(t) d t & \int a_{33}(t) d t & \cdots & \int a_{3 n}(t) d t \\
\vdots & \vdots & \vdots & & \vdots \\
\int a_{m 1}(t) d t & \int a_{m 2}(t) d t & \int a_{m 3}(t) d t & \cdots & \int a_{m n}(t) d t
\end{array}\right) .
$$

EXAMPLE 6.1.8: Find $\frac{d}{d t} \mathbf{A}(t)$ and $\int \mathbf{A}(t) d t$ if $\mathbf{A}(t)=\left(\begin{array}{ccc}\cos 3 t & \sin 3 t & e^{-t} \\ t & t \sin t^{2} & e^{t}\end{array}\right)$.

SOLUTION: We find $\frac{d}{d t} \mathbf{A}(t)$ by differentiating each element of $\mathbf{A}(t)$ with D.

```
In[1089]:= a = {{Cos[3t], Sin[3t], Exp[-t]},
    {t,t Sin[t^2], Exp[t]}};
    D[a,t]//MatrixForm
Out[1089]=(}\begin{array}{ccc}{-3\operatorname{Sin}[3t]}&{3\operatorname{Cos}[3t]}&{-\mp@subsup{e}{}{-t}}\\{1}&{2\mp@subsup{t}{}{2}\operatorname{Cos}[\mp@subsup{t}{}{2}]+\operatorname{Sin}[\mp@subsup{t}{}{2}]}&{\mp@subsup{e}{}{t}}\end{array}
```

Similarly, we find $\int \mathbf{A}(t) d t$ by integrating each element of $\mathbf{A}(t)$ with Integrate.

In [1090] $:=$ Integrate $[\mathrm{a}, \mathrm{t}] / /$ MatrixForm
Out [1090] $=\left(\begin{array}{ccc}\frac{\operatorname{Sin}[3 t]}{3} & -\frac{\operatorname{Cos}[3 t]}{3} & -e^{-t} \\ \frac{t^{2}}{2} & -\frac{\operatorname{Cos}\left[t^{2}\right]}{2} & e^{t}\end{array}\right)$
Note that Mathematica does not include an arbitrary constant of integration with each anti-derivative.

6.2 Systems of Equations: Preliminary Definitions and Theory

Up to this point, we have focused our attention on solving differential equations that involve one dependent variable. However, many physical situations are modeled with more than one equation and involve more than one dependent variable. For example, if we want to determine the population of two interacting populations such as foxes and rabbits, we would have two dependent variables which represent the two populations where these populations depend on one independent variable which represents time. Situations like this lead to systems of differential equations which we study in this chapter. For example, we encountered a nonlinear initial-value problem like this Van-der-Pol initial-value problem,

$$
\left\{\begin{array}{l}
x^{\prime \prime}+\left(x^{2}-1\right) x^{\prime}+x=0 \\
x(0)=1, x^{\prime}(0)=1
\end{array}\right.
$$

in Chapter 4. If we let $x^{\prime}=y$, then

$$
y^{\prime}=x^{\prime \prime}=-\left[\left(x^{2}-1\right) x^{\prime}+x\right]=\left(1-x^{2}\right) y-x,
$$

so the second-order equation $x^{\prime \prime}+\left(x^{2}-1\right) x^{\prime}+x=0$ is equivalent to the system of first-order differential equations

$$
\left\{\begin{array}{l}
x^{\prime}=y \\
y^{\prime}=\left(1-x^{2}\right) y-x
\end{array}\right.
$$

Figure 6-1 In the limit as $t \rightarrow \infty$, the solution is periodic
and the initial-value problem is equivalent to the initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime}=y \\
y^{\prime}=\left(1-x^{2}\right) y-x \\
x(0)=1, y(0)=1 .
\end{array}\right.
$$

We use NDSolve to generate a numerical solution to this initial-value problem valid for $0 \leq t \leq 25$.

```
In[1091]:= numsol =
    NDSolve[{\mp@subsup{x}{}{\prime}[t]==y[t],
    y'[t] == (1-x[t] ')}\mathbf{y}[t]-x[t]
    x[0] == 1, y[0] == 1},{x[t],y[t]},{t,0,25}]
Out[1091]= {{x[t] }
    InterpolatingFunction[{{0., 25.}}, <>] [t],
    y[t] }->\mathrm{ InterpolatingFunction[
                        {{0., 25.}},<>][t]}}
```

We can use this result to approximate the solution for various values of t. For example, entering

```
In[1092]:= {x[t],y[t]}/.numsol/.t- > 1
Out [1092]= {{1.29848,-0.367035}}
```

shows us that $x(1) \approx 1.29848$ and $x^{\prime}(1)=y(1) \approx-0.367035$. We use Plot to graph $x(t)$ and $y(t)$ (the graph of $y(t)$ is in gray) in Figure 6-1.

```
In[1093]:= Plot[Evaluate[{x[t], y[t]} /. numsol], {t, 0, 25},
        PlotStyle- > {GrayLevel[0], GrayLevel[0.5]}]
```


Figure 6-2 The solution approaches a limit cycle

Because we let $x^{\prime}=y$, notice that $y(t)>0$ when $x(t)$ is increasing and $y(t)<0$ when $x(t)$ is decreasing. The observation that these solutions are periodic is further confirmed by a graph of $x(t)$ (the horizontal axis) versus $y(t)$ (the vertical axis) generated with ParametricPlot in Figure 6-2. We see that as t increases, the solution approaches a certain fixed path, called a limit cycle.

```
In[1094]:= ParametricPlot[{x[t], y[t]}/.numsol, {t, 0, 25},
    PlotRange-> {{-3, 3}, {-3, 3}},
    AspectRatio- > 1, Compiled- > False]
```

We will find that nonlinear equations are more easily studied when they are written as a system of equations.

6.2.I Preliminary Theory

Definition 24 (System of Ordinary Differential Equations). A system of ordinary differential equations is a simultaneous set of equations that involves two or more dependent variables that depend on one independent variable. A solution of the system is a set of functions that satisfies each equation on some interval I.

If the differential equations in the system of differential equations are linear equations, we say that the system is a linear system of differential equations or a linear system.

EXAMPLE 6.2.1: Show that $\left\{\begin{array}{l}x=\frac{1}{5} e^{-t}\left(e^{t}-\cos 2 t-3 \sin 2 t\right) \\ y=-e^{-t}(\cos 2 t-\sin 2 t)\end{array}\right.$ is a solution to the system $\left\{\begin{array}{l}x^{\prime}-y=0 \\ y^{\prime}+5 x+2 y=1 .\end{array}\right.$

SOLUTION: The set of functions is a solution to the system of equations because

```
In[1095]:= Clear[\mathbf{x},\textrm{y},\textrm{t}]
    x[t_] = \frac{1}{5}\operatorname{Exp}[-t](\operatorname{Exp}[t]-\operatorname{Cos[2t]-3 Sin[2t]);}
    y[t_] = - Exp[-t] (Cos[2t]-Sin[2t]);
In[1096]:= x'[t] - y[t]//Simplify
Out[1096]= 0
```

and

```
In[1097]:= y'[t] + 5x[t] + 2y[t]//Simplify
Out[1097]= 1
```

We graph this solution in several different ways. First, we graph the solution $\left\{\begin{array}{l}x=x(t) \\ y=y(t)\end{array}\right.$ parametrically with ParametricPlot in Figure 6-3. Then, we graph $x(t)$ and $y(t)$ together as functions of t in Figure 6-4.

```
In[1098]:= ParametricPlot[{x[t],y[t]}, {t, 0, 3\pi},
    PlotRange }->{{-0.5,1}
    {-1, 0.5}}, AspectRatio }->1
    Plot[{x[t],Y[t]},{t,0,3\pi},
    PlotStyle }->\mathrm{ {GrayLevel[0],GrayLevel[0.5]},
    PlotRange }->{-1,0.5}
```

Notice that $\lim _{t \rightarrow \infty} x(t)=\frac{1}{5}$ and $\lim _{t \rightarrow \infty} y(t)=0$. Therefore, in the parametric plot, the points on the curve approach $(1 / 5,0)$ as t increases.

Figure 6-3 x (on the horizontal axis) versus y (on the vertical axis)

Figure 6-4 x (in black) and y (in gray) as functions of t

We will discuss techiques for solving systems in the following sections. For now, we make the following remarks. First, we saw previously that you can often use NDSolve to generate a numerical solution of a system, which is of particular benefit with nonlinear systems. DSolve can also often be used to find solutions of linear systems and, in a few special cases, nonlinear systems.

EXAMPLE 6.2.2: Solve $\left\{\begin{array}{l}x^{\prime}=2 y \\ y^{\prime}=-\frac{1}{4} x\end{array} \quad\right.$ and $\quad\left\{\begin{array}{l}x^{\prime}=2 y \\ y^{\prime}=-\frac{1}{4} x \\ x(0)=2, y(0)=1 .\end{array}\right.$

SOLUTION: DSolve can find a general solution of this linear system.

$$
\begin{aligned}
& \text { In }[1099]:=\text { gensol }= \text { DSolve }\left[\left\{x^{\prime}[t]==2 y[t], y^{\prime}[t]==\right.\right. \\
&-1 / 4 x[t]\},\{x[t], y[t]\}, t] \\
& \text { Out }[1099]=\left\{\left\{x[t] \rightarrow C[1] \operatorname{Cos}\left[\frac{t}{\sqrt{2}}\right]+2 \sqrt{2} C[2] \operatorname{Sin}\left[\frac{t}{\sqrt{2}}\right],\right.\right. \\
&\left.\left.y[t] \rightarrow C[2] \operatorname{Cos}\left[\frac{t}{\sqrt{2}}\right]-\frac{C[1] \operatorname{Sin}\left[\frac{t}{\sqrt{2}}\right]}{2 \sqrt{2}}\right\}\right\}
\end{aligned}
$$

Similarly, DSolve can solve the initial-value problem. The resulting list is named partsol.

$$
\begin{aligned}
& \text { In }[1100]:=\text { partsol }= \text { DSolve }\left[\left\{\mathbf{x}^{\prime}[\mathrm{t}]==2 \mathbf{y}[\mathrm{t}],\right.\right. \\
& \mathbf{y}^{\prime}[\mathrm{t}]==-1 / 4 \mathbf{x}[\mathrm{t}], \mathbf{x}[0]==2, \\
&\mathrm{y}[0]==1\},\{\mathbf{x}[\mathrm{t}], \mathbf{y}[\mathrm{t}]\}, \mathrm{t}] \\
& \text { Out }[1100]=\left\{\left\{\mathrm{x}[\mathrm{t}] \rightarrow 2\left(\operatorname{Cos}\left[\frac{\mathrm{t}}{\sqrt{2}}\right]+\sqrt{2} \operatorname{Sin}\left[\frac{\mathrm{t}}{\sqrt{2}}\right]\right),\right.\right. \\
& y[\mathrm{t}] \rightarrow\left.\left.\frac{1}{2}\left(2 \operatorname{Cos}\left[\frac{\mathrm{t}}{\sqrt{2}}\right]-\sqrt{2} \operatorname{Sin}\left[\frac{\mathrm{t}}{\sqrt{2}}\right]\right)\right\}\right\}
\end{aligned}
$$

We use Plot to graph the x and y components of the solution individually and ParametricPlot to graph them parametrically. See Figure 6-5.

```
In[1101]:= p1 = Plot[{x[t], y[t]}/.partsol,
    {t, 0,4 Sqrt[2]\pi},
    PlotStyle }->\mathrm{ {GrayLevel[0],
    GrayLevel[0.3]},
    AxesLabel }->{"t", "x,y"}
    DisplayFunction }->\mathrm{ Identity];
    p2 = ParametricPlot[{x[t],y[t]}/.partsol,
    {t, 0, 2 Sqrt[2]\pi}, AxesLabel }->{"x", "y"}
    AspectRatio }->\mathrm{ Automatic,
    DisplayFunction }->\mathrm{ Identity];
    Show[GraphicsArray[{p1, p2}]]
```


Figure 6-5 (a) Plots of x (in black) and y (in gray). (b) Parametric plot of x versus y

Figure 6-6 Direction field associated with the system together with the solution to the initial-value problem

For an autonomous system like this, we use PlotVectorField to graph the direction field associated with the system. PlotVectorField is contained in the PlotField package that is located in the Graphics folder (or directory). After loading the PlotField package,
In [1102]:= << Graphics'PlotField'
we use PlotVectorField to graph the direction field associated with the system and then display the direction field together with the solution to the initial-value problem in Figure 6-6.

An autonomous system is one for which the independent variable does not explicitly occur in the equations.

```
In[1103]:= pvf= PlotVectorField[{2 y, -1/4x},{x, -6, 6},
```

In[1103]:= pvf= PlotVectorField[{2 y, -1/4x},{x, -6, 6},
{y, -3, 3}, DisplayFunction }->\mathrm{ Identity];
{y, -3, 3}, DisplayFunction }->\mathrm{ Identity];
Show[pvf, p2, PlotRange }->{{-6,6},{-3,3}}
Show[pvf, p2, PlotRange }->{{-6,6},{-3,3}}
AspectRatio }->\mathrm{ Automatic,
AspectRatio }->\mathrm{ Automatic,
DisplayFunction }->\mathrm{ \$DisplayFunction,
DisplayFunction }->\mathrm{ \$DisplayFunction,
Axes }->\mathrm{ Automatic, AxesLabel }->\mathrm{ {"x", "y"}];

```
    Axes }->\mathrm{ Automatic, AxesLabel }->\mathrm{ {"x", "y"}];
```

In fact, we can show the direction field together with several solutions. With the following command, we use Map to apply a pure function to the list $\{0.5,1,1.5,2,2.5\}$ that solves the system if $x(0)=0$ and $y(0)=i$ for $i=0.5,1.0, \ldots, 2.5$.

$$
\begin{aligned}
& \text { In [1104]: = severalsols = } \\
& \text { Map [DSolve [}\left\{\mathbf{x}^{\prime}[\mathrm{t}]==2 \mathrm{y}[\mathrm{t}]\right. \text {, } \\
& \left.y^{\prime}[t]==-1 / 4 x[t], x[0]==2, y[0]==\#\right\} \text {, } \\
& \{x[t], y[t]\}, t] \&,\{0.5,1,1.5,2,2.5\}] \\
& \text { Out }[1104]=\left\{\left\{\left\{x[t] \rightarrow 2 . \operatorname{Cos}\left[\frac{t}{\sqrt{2}}\right]+1.41421 \operatorname{Sin}\left[\frac{t}{\sqrt{2}}\right]\right.\right.\right. \text {, } \\
& y[t] \rightarrow 0.5 \operatorname{Cos}\left[\frac{t}{\sqrt{2}}\right] \\
& \left.\left.-0.707107 \sin \left[\frac{t}{\sqrt{2}}\right]\right\}\right\} \text {, } \\
& \left\{\left\{x[t] \rightarrow 2\left(\cos \left[\frac{t}{\sqrt{2}}\right]+\sqrt{2} \sin \left[\frac{t}{\sqrt{2}}\right]\right),\right.\right. \\
& \left.\left.y[t] \rightarrow \frac{1}{2}\left(2 \cos \left[\frac{t}{\sqrt{2}}\right]-\sqrt{2} \sin \left[\frac{t}{\sqrt{2}}\right]\right)\right\}\right\}, \\
& \left\{\left\{x[t] \rightarrow 2 . \operatorname{Cos}\left[\frac{t}{\sqrt{2}}\right]+4.24264 \operatorname{Sin}\left[\frac{t}{\sqrt{2}}\right]\right.\right. \text {, } \\
& y[t] \rightarrow 1.5 \operatorname{Cos}\left[\frac{t}{\sqrt{2}}\right] \\
& \left.\left.-0.707107 \sin \left[\frac{t}{\sqrt{2}}\right]\right\}\right\} \text {, } \\
& \left\{\left\{x[t] \rightarrow 2\left(\operatorname{Cos}\left[\frac{t}{\sqrt{2}}\right]+2 \sqrt{2} \sin \left[\frac{t}{\sqrt{2}}\right]\right),\right.\right. \\
& \left.\left.y[t] \rightarrow \frac{1}{2}\left(4 \operatorname{Cos}\left[\frac{t}{\sqrt{2}}\right]-\sqrt{2} \operatorname{Sin}\left[\frac{t}{\sqrt{2}}\right]\right)\right\}\right\}, \\
& \left\{\left\{x[t] \rightarrow 2 . \operatorname{Cos}\left[\frac{t}{\sqrt{2}}\right]+7.07107 \operatorname{Sin}\left[\frac{t}{\sqrt{2}}\right]\right.\right. \text {, } \\
& y[t] \rightarrow 2.5 \operatorname{Cos}\left[\frac{t}{\sqrt{2}}\right] \\
& \left.\left.\left.-0.707107 \sin \left[\frac{t}{\sqrt{2}}\right]\right\}\right\}\right\}
\end{aligned}
$$

We then use ParametricPlot to graph the solutions obtained in severalsols together and display them with the direction field, named pvf, in Figure 6-7.

Figure 6-7 Direction field associated with the system together with several solutions of the system

```
In[1105]:= p3 = ParametricPlot[{x[t],
    y[t]}/.severalsols,
    {t, 0, 2Sqrt[2]\pi}, Compiled }->\mathrm{ False,
    DisplayFunction }->\mathrm{ Identity];
Show[pvf, p3, PlotRange }->{{-6,6},{-3,3}}
    AspectRatio }->\mathrm{ Automatic,
    DisplayFunction }->\mathrm{ $DisplayFunction,
    Axes }->\mathrm{ Automatic, AxesLabel }->\mathrm{ {"x", "y"}];
```

EXAMPLE 6.2.3: The Jacobi elliptic functions satisfy the nonlinear system

$$
\left\{\begin{array}{l}
d u / d t=v w \\
d v / d t=-u w \\
d w / d t=-k^{2} u v .
\end{array}\right.
$$

Use Mathematica to solve this system.

The system is nonlinear because of the products of the dependent variables u, v, and w.
For this system, t is the independent variable; $u=u(t)$, $v=v(t)$, and $w=w(t)$ are the dependent variables.

SOLUTION: Although Mathematica generates several error messages, we see that Mathematica is able to find a general solution of the system, although the result is given in terms of the Jacobi elliptic function, JacobiSN.

$$
\begin{aligned}
\text { In }[1106]:=\text { gensol }= & \text { DSolve }\left[\left\{u^{\prime}[t]==\right.\right. \\
& v[t] w[t], v^{\prime}[t]==-u[t] w[t], \\
& \left.w^{\prime}[t]==-k^{\wedge} 2 u[t] v[t]\right\}, \\
& \{u[t], v[t], w[t]\}, t]
\end{aligned}
$$

Solve : : ifun : Inverse functions are being used by Solve, so some solutions may not be found.

Solve : : ifun : Inverse functions are being used by Solve, so some solutions may not be found.

Solve : : ifun : Inverse functions are being used by Solve, so some solutions may not be found .

General : : stop : Further output of Solve : : ifun will be suppressed during this calculation.

$$
\begin{aligned}
& \text { Out [1106] }=\{\{u[t] \rightarrow \sqrt{2} \sqrt{C[1]} \text { JacobiSN }[\sqrt{2} t \sqrt{C[2]} \\
& \left.-\sqrt{2} \sqrt{\mathrm{C}[2]} \mathrm{C}[3], \frac{\mathrm{k}^{2} \mathrm{C}[1]}{\mathrm{C}[2]}\right], \\
& v[t] \rightarrow-\sqrt{ }(2 C[1]-2 C[1] \text { JacobiSN }[\sqrt{2} t \sqrt{C[2]} \\
& \left.\left.-\sqrt{2} \sqrt{\mathrm{C}[2]} \mathrm{C}[3], \frac{\mathrm{k}^{2} \mathrm{C}[1]}{\mathrm{C}[2]}\right]^{2}\right), \\
& w[t] \rightarrow-\sqrt{ }\left(2 C[2]-2 k^{2} C[1] \text { JacobiSN }[\sqrt{2} t \sqrt{C[2]}\right. \\
& \left.\left.\left.-\sqrt{2} \sqrt{\mathrm{C}[2]} \mathrm{C}[3], \frac{\mathrm{k}^{2} \mathrm{C}[1]}{\mathrm{C}[2]}\right]^{2}\right)\right\}, \\
& \{u[t] \rightarrow \sqrt{2} \sqrt{C[1]} \text { JacobiSN }[\sqrt{2} t \sqrt{C[2]} \\
& \left.-\sqrt{2} \sqrt{\mathrm{C}[2]} \mathrm{C}[3], \frac{\mathrm{k}^{2} \mathrm{C}[1]}{\mathrm{C}[2]}\right] \text {, } \\
& \mathrm{v}[\mathrm{t}] \rightarrow \sqrt{ }(2 \mathrm{C}[1]-2 \mathrm{C}[1] \text { JacobiSN }[\sqrt{2} \mathrm{t} \sqrt{\mathrm{C}[2]} \\
& \left.\left.-\sqrt{2} \sqrt{\mathrm{C}[2]} \mathrm{C}[3], \frac{\mathrm{k}^{2} \mathrm{C}[1]}{\mathrm{C}[2]}\right]^{2}\right), \\
& w[t] \rightarrow \sqrt{ }\left(2 C[2]-2 k^{2} C[1] \text { JacobiSN }[\sqrt{2} t \sqrt{C[2]}\right. \\
& \left.\left.\left.-\sqrt{2} \sqrt{C[2]} C[3], \frac{\mathrm{k}^{2} \mathrm{C}[1]}{\mathrm{C}[2]}\right]^{2}\right)\right\}, \\
& \{u[t] \rightarrow \sqrt{2} \sqrt{C[1]} \text { JacobiSN }[-\sqrt{2} t \sqrt{C[2]} \\
& \left.+\sqrt{2} \sqrt{\mathrm{C}[2]} \mathrm{C}[3], \frac{\mathrm{k}^{2} \mathrm{C}[1]}{\mathrm{C}[2]}\right], \\
& v[t] \rightarrow-\sqrt{ }(2 C[1]-2 C[1] J a c o b i S N[-\sqrt{2} t \sqrt{C[2]} \\
& \left.\left.+\sqrt{2} \sqrt{\mathrm{C}[2]} \mathrm{C}[3], \frac{\mathrm{k}^{2} \mathrm{C}[1]}{\mathrm{C}[2]}\right]^{2}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \text { Out }[1106]=w[t] \rightarrow \sqrt{ }\left(2 \mathrm{C}[2]-2 \mathrm{k}^{2} \mathrm{C}[1]\right. \\
& \text { SuperscriptBox (JacobiSN }[-\sqrt{2} t \sqrt{C[2]}+\text {) } \\
& \left.\left.\left.\times \sqrt{2} \sqrt{\mathrm{C}[2]} \mathrm{C}[3], \frac{\mathrm{k}^{2} \mathrm{C}[1]}{\mathrm{C}[2]}\right]^{2}\right)\right\} \text {, } \\
& \{u[t] \rightarrow \sqrt{2} \sqrt{C[1]} \text { JacobiSN }[-\sqrt{2} t \sqrt{C[2]} \\
& \left.+\sqrt{2} \sqrt{\mathrm{C}[2]} \mathrm{C}[3], \frac{\mathrm{k}^{2} \mathrm{C}[1]}{\mathrm{C}[2]}\right] \text {, } \\
& v[t] \rightarrow \sqrt{ }(2 C[1]-2 C[1] \text { JacobiSN }[-\sqrt{2} t \sqrt{C[2]} \\
& \left.\left.+\sqrt{2} \sqrt{\mathrm{C}[2]} \mathrm{C}[3], \frac{\mathrm{k}^{2} \mathrm{C}[1]}{\mathrm{C}[2]}\right]^{2}\right) \text {, } \\
& w[t] \rightarrow-\sqrt{ }\left(2 C[2]-2 k^{2} C[1] J a c o b i S N[-\sqrt{2} t \sqrt{C[2]}\right. \\
& \left.\left.\left.\left.+\sqrt{2} \sqrt{\mathrm{C}[2]} \mathrm{C}[3], \frac{\mathrm{k}^{2} \mathrm{C}[1]}{\mathrm{C}[2]}\right]^{2}\right)\right\}\right\}
\end{aligned}
$$

We use the Help Browser to obtain information regarding the JacobiSN function as indicated in the following screen shot.

As with other equations, under reasonable conditions, a solution to a system of differential equations always exists.

Theorem 11 (Existence and Uniqueness). Assume that each of the functions

$$
f_{1}\left(t, x_{1}, x_{2}, \ldots, x_{n}\right), f_{2}\left(t, x_{1}, x_{2}, \ldots, x_{n}\right), \ldots, f_{n}\left(t, x_{1}, x_{2}, \ldots, x_{n}\right)
$$

and the partial derivatives $\partial f_{1} / \partial x_{1}, \partial f_{2} / \partial x_{2}, \ldots, \partial f_{n} / \partial x_{n}$ are continuous in a region R containing the point $\left(t_{0}, y_{1}, y_{2}, \ldots, y_{n}\right)$. Then, the initial-value problem

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=f_{1}\left(t, x_{1}, x_{2}, \ldots, x_{n}\right) \tag{6.4}\\
x_{2}^{\prime}=f_{2}\left(t, x_{1}, x_{2}, \ldots, x_{n}\right) \\
\vdots \\
x_{n}^{\prime}=f_{n}\left(t, x_{1}, x_{2}, \ldots, x_{n}\right) \\
x_{1}\left(t_{0}\right)=y_{1}, x_{2}\left(t_{0}\right)=y_{2}, \ldots x_{n}\left(t_{0}\right)=y_{n}
\end{array}\right.
$$

has a unique solution

$$
\left\{\begin{array}{l}
x_{1}=\phi_{1}(t) \tag{6.5}\\
x_{2}=\phi_{2}(t) \\
\vdots \\
x_{n}=\phi_{n}(t)
\end{array}\right.
$$

on an interval I containing $t=t_{0}$.

DSolve is not able to find an explicit solution to this nonlinear system.

EXAMPLE 6.2.4: Show that the initial-value problem

$$
\left\{\begin{array}{l}
d x / d t=2 x-x y \\
d y / d t=-3 y+x y \\
x(0)=2, y(0)=3 / 2
\end{array}\right.
$$

has a unique solution.

SOLUTION: In this case, we identify $f_{1}(t, x, y)=2 x-x y$ and $f_{2}(t, x, y)=$ $-3 y+x y$ with $\partial f_{1} / \partial x=2-y$ and $\partial f_{2} / \partial y=-3+x$. All four of these functions are continuous on a region containing ($0,2,3 / 2$). Thus, by the Existence and Uniqueness Theorem, a unique solution to the initialvalue problem exists. In this case, we use NDSolve to approximate the solution to this nonlinear problem valid for $0 \leq t \leq 10$.

Figure 6-8 $\quad x(t)$ (in black) and $y(t)$ (in gray) as functions of t

```
In[1107]:= Clear[x,y]
    numsol =
        NDSolve[{\mp@subsup{x}{}{\prime}[t]==2x[t]-x[t]y[t], y'[t]==
        -3y[t]+x[t]y[t],x[0]==2,y[0]== 茬},
            {x[t],y[t]},{t, 0, 10}]
```

Out [1107] $=\{\{x[t] \rightarrow$ InterpolatingFunction $[$
$\{\{0 ., 10\}\},.<>][t]$,
$y[t] \rightarrow$ InterpolatingFunction [
$\{\{0 ., 10\}\},.<>][t]\}\}$

As illustrated previously, we can use this result to approximate $x(t)$ and $y(t)$ for various values of t. For example,

```
In[1108]:= {x[t],y[t]}/.numsol/.t- > 4
Out [1108]= {{4.26901, 2.62469}}
```

shows us that $x(4) \approx 4.26901$ and $y(4) \approx 2.62469$. Next, we use Plot to graph $x(t)$ and $y(t)$ individually in Figure 6-8 and ParametricPlot to graph the parametric equations $\left\{\begin{array}{l}x=x(t) \\ y=y(t)\end{array}\right.$ in Figure 6-9 for $0 \leq t \leq 10$.

$$
\begin{aligned}
\text { In }[1109]:=\mathrm{p} 1= & \operatorname{Plot}[\text { Evaluate }[\{\mathrm{x}[\mathrm{t}], \mathrm{y}[\mathrm{t}]\} / .(\text { numsol } \llbracket 1 \mathbb{1})], \\
& \{\mathrm{t}, 0,10\}, \text { PlotStyle } \rightarrow\{\text { GrayLevel }[0], \\
& \text { GrayLevel }[0.5]\}, \text { AspectRatio } \rightarrow \frac{1}{2}, \\
& \text { PlotRange } \rightarrow\{0,5\}]
\end{aligned}
$$

Later, we will see that a system like this is used to model a basic predator-prey relationship. In such a model, x and y represent population sizes (or ratios) so we are only interested in solutions where both of these quantities are greater than or equal to 0 .

Figure 6-9 $x(t)$ and $y(t)$ are periodic

The graphs illustrate that the solution to the initial-value problem is periodic.

In fact, all meaningful (or interesting) solutions to the equation are periodic. Meaningful (or interesting) solutions are ones for which both x and y are greater than 0 and neither is constant. To see this, we use PlotVectorField to graph the direction field associated with the system. We display the direction field together with the solution to the initial-value problem in Figure 6-10.

```
In[1110]:= << Graphics'PlotField`
    pvf=PlotVectorField[{2x - xy,
        -3y + xy}, {x,0, 5}, {y,0,5},
        DisplayFunction }->\mathrm{ Identity];
    Show[p2, pvf]
```

Although the Existence and Uniqueness Theorem, Theorem 11, guarantees the existence and uniqueness of a solution, the behavior of the solutions of a system can be remarkably complicated, even for systems that appear quite simple.

Figure 6-10 The direction field indicates that all meaningful solutions are periodic

EXAMPLE 6.2.5 (Rössler Attractor): The Rössler attractor is the system

$$
\left\{\begin{array}{l}
x^{\prime}=-y-z \tag{6.6}\\
y^{\prime}=x+a y \\
z^{\prime}=b x-c z+x z
\end{array}\right.
$$

See texts like Jordan and Smith's Nonlinear Ordinary Differential Equations [17] for discussions of ways to analyze systems like the Rössler attractor and the Lorenz equations.

Observe that system (6.6) is nonlinear because of the product of the x and z terms in the z^{\prime} equation.

If $a=0.4, b=0.3, x_{0}=1, y_{0}=0.4$, and $z_{0}=0.7$, how does the value of c affect solutions to the initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime}=-y-z \tag{6.7}\\
y^{\prime}=x+a y \\
z^{\prime}=b x-c z+x z \\
x(0)=x_{0}, y(0)=y_{0}, z(0)=z_{0} ?
\end{array}\right.
$$

SOLUTION: By the Existence and Uniqueness Theorem, initial-value problem (6.7) will always have a unique solution.

We define the function rosslerplot:

$$
\text { rosslerplot }[a, b, c][\{x 0, y 0, z 0\},\{t, a, b\}]
$$

1. solves the initial-value problem (6.7) for $a \leq t \leq b$,
2. generates parametric plots of $x(t)$ versus $y(t), y(t)$ versus $z(t), x(t)$ versus $z(t)$, and $x(t)$ versus $y(t)$ versus $z(t)$, and displays the four graphics as a graphics array, and
3. returns a numerical solution to the initial-value problem (6.7) valid for $a \leq t \leq b$.

If $\{t, a, b\}$ is omitted from the rosslerplot function, the default is $950 \leq t \leq 1000$. Any options included are passed to the Show command.

```
In[1111]:= rosslerplot[\mp@subsup{a}{-}{\prime},\mp@subsup{b}{-}{\prime},\mp@subsup{c}{-}{\prime}][{x\mp@subsup{0}{-}{\prime},y\mp@subsup{0}{-}{\prime}
            z0_},ts_:{t, 950,1000},opts_--] :=
    Module[{numsol}, numsol =
        NDSolve[{\mp@subsup{x}{}{\prime}[t] == - y [t] - z[t],
            y'[t] == x[t] +ay[t],
            z'[t] == b x[t] - c z [t]
            +x[t]z[t], x[0] == x0,
            y[0] == y0, z[0] == z0},
            {x[t],y[t], z[t]},
            ts,MaxSteps }->\mathrm{ 100000];
    pla = ParametricPlot[
            Evaluate[{x[t],y[t]}/.numsol], ts,
            PlotPoints }->\mathrm{ 1000, AspectRatio }->1\mathrm{ ,
            AxesLabel }->\mathrm{ {"x", "y"},
            DisplayFunction }->\mathrm{ Identity];
        p1b = ParametricPlot[
            Evaluate[{x[t], z[t]}/.numsol], ts,
            PlotPoints }->\mathrm{ 1000, AspectRatio }->1\mathrm{ ,
            AxesLabel }->\mathrm{ {"x", "z"},
            PlotRange }->\mathrm{ All,
            DisplayFunction }->\mathrm{ Identity];
        plc = ParametricPlot[
            Evaluate[{y[t], z[t]}/.numsol], ts,
            PlotPoints }->\mathrm{ 1000, AspectRatio }->1\mathrm{ ,
            AxesLabel }->\mathrm{ {"y", "z"}, PlotRange }->\mathrm{ All,
            DisplayFunction }->\mathrm{ Identity];
```

```
In[1111]:= p1d = ParametricPlot3D[
    Evaluate[{x[t], y[t], z[t]}/.numsol],
    ts, PlotPoints }->\mathrm{ 3000,
    BoxRatios }->{1,1,1}
    AxesLabel }->\mathrm{ {"x", "y", "z"},
    PlotRange }->\mathrm{ All,
    DisplayFunction }->\mathrm{ Identity];
    Show[GraphicsArray[{{p1a, plb},
        {plc, pld}}],
        opts]; numsol]
```

For example, entering

```
In[1112]:= rosslerplot[0.4, 0.3,4.44][{1, 0.4,0.7},
    {t, 800, 1000}]
Out[1112]= {{x[t] 隹稙erpolatingFunction[{{800.,
    1000.}}, <>][t],
    y[t] }->\mathrm{ InterpolatingFunction[{{800.,
    1000.}}, <>][t], z[t] }
    InterpolatingFunction[{{800.,
    1000.}},<>][t]}}
```

generates the plots shown in Figure 6-11, which corresponds to plots for our problem if $c=4.44$.

For the given values of a, b, x_{0}, y_{0}, and z_{0}, we will vary c by using $c=1.4,2.4,2.6,3.4$. We then use Map to apply rosslerplot to the list $\{1.4,2.4,2.6,3.4\}$. The resulting list, which corresponds to the numerical solutions to the initial-value problems is named $r 1$; the resulting graphs are shown in Figure 6-12.

```
In[1113]:= r1 =
    Map[rosslerplot[0.4, 0.3, #][{1, 0.4,0.7},
        {t, 800, 1000}]&, {1.4, 2.4, 2.6, 3.4}]
```



```
                                1000.}}, <>][t],
        y[t] I InterpolatingFunction[{{800.,
                        1000.}}, <>][t],
            z[t] }->\mathrm{ InterpolatingFunction[{{800.,
                1000.}}, <>][t]}},
```



```
                    1000.}}, <>][t],
        y[t] }->\mathrm{ InterpolatingFunction[{{800.,
                        1000.}}, <>][t],
        z[t] }->\mathrm{ InterpolatingFunction[{{800.,
                        1000.}}, <>][t]}},
```


Figure 6-11 Solutions to the Rössler attractor if $a=0.4, b=0.3$, and $c=4.44$

```
Out[1113]= {{x[t] -> InterpolatingFunction[{{800.,
    1000.}}, <>][t],
    y[t] }->\mathrm{ InterpolatingFunction[{{800.,
    1000.}}, <>][t],
    z[t] }->\mathrm{ InterpolatingFunction[{{800.,
    1000.}}, <>] [t]}},
```



```
    1000.}}, <>][t],
    y[t] }->\mathrm{ InterpolatingFunction[{{800.,
    1000.}}, <>][t],
    z[t] }->\mathrm{ InterpolatingFunction[{{800.,
    1000.}}, <>][t]}}}
```

In Figure 6-12, we see that the value of c dramatically affects the longterm behavior of the solutions: $c=1.4$ results in a single limit cycle, $c=2.4$ results in a 2 -cycle, $c=2.6$ results in a 4 -cycle, and $c=3.4$ and $c=4.44$ (see Figure 6-12) appear to be "chaotic."

Figure 6-12 Solutions to the Rössler attractor if $a=0.4, b=0.3$, and $c=1.4,2.4,2.6,3.4$

We designed the rosslerplot function to return the numerical solutions instead of the graphics in case further manipulation of the numerical solutions is needed. For example, entering

```
In[1114]:= r2 = Map[Plot[Evaluate[{x[t], y[t],
    z[t]}/.#], {t, 950, 1000},
    PlotStyle }->\mathrm{ {GrayLevel[0],
    GrayLevel[0.3], Dashing[{0.01}]},
    PlotPoints }->1000
    DisplayFunction }->\mathrm{ Identity]&, rl];
    Show[GraphicsArray[Partition[r2, 2]]]
```


Figure 6-13 Plots of $x(t)$ (in black), $y(t)$ (in gray), and $z(t)$ (dashed) if $a=0.4, b=0.3$, and $c=1.4,2.4,2.6,3.4$
graphs each of the solutions $x(t), y(t)$, and $z(t)$ in $r 1$. The resulting array is shown in Figure 6-13.

6.2.2 Linear Systems

We now turn our attention to linear systems.
We begin our study of linear systems of ordinary differential equations by introducing several definitions along with some convenient notation.

Let

$$
\mathbf{X}(t)=\left(\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right), \quad \mathbf{A}(t)=\left(\begin{array}{cccc}
a_{11}(t) & a_{12}(t) & \ldots & a_{1 n}(t) \\
a_{21}(t) & a_{22}(t) & \ldots & a_{2 n}(t) \\
\vdots & \vdots & \ldots & \vdots \\
a_{n 1}(t) & a_{n 2}(t) & \ldots & a_{n n}(t)
\end{array}\right), \quad \text { and } \quad \mathbf{F}(t)=\left(\begin{array}{c}
f_{1}(t) \\
f_{2}(t) \\
\vdots \\
f_{n}(t)
\end{array}\right) .
$$

Then, the homogeneous system of first-order linear differential equations

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=a_{11}(t) x_{1}+a_{12}(t) x_{2}+\cdots+a_{1 n} x_{n}(t) \tag{6.8}\\
x_{2}^{\prime}=a_{21}(t) x_{1}+a_{22}(t) x_{2}+\cdots+a_{2 n} x_{n}(t) \\
\vdots \\
x_{n}^{\prime}=a_{n 1}(t) x_{1}+a_{n 2}(t) x_{2}+\cdots+a_{n n} x_{n}(t)
\end{array}\right.
$$

is equivalent to

$$
\begin{equation*}
\mathbf{X}^{\prime}(t)=\mathbf{A}(t) \mathbf{X}(t) \tag{6.9}
\end{equation*}
$$

and the nonhomogeneous system

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=a_{11}(t) x_{1}+a_{12}(t) x_{2}+\cdots+a_{1 n} x_{n}(t)+f_{1}(t) \tag{6.10}\\
x_{2}^{\prime}=a_{21}(t) x_{1}+a_{22}(t) x_{2}+\cdots+a_{2 n} x_{n}(t)+f_{2}(t) \\
\vdots \\
x_{n}^{\prime}=a_{n 1}(t) x_{1}+a_{n 2}(t) x_{2}+\cdots+a_{n n} x_{n}(t)+f_{n}(t)
\end{array}\right.
$$

is equivalent to

$$
\begin{equation*}
\mathbf{X}^{\prime}(t)=\mathbf{A}(t) \mathbf{X}(t)+\mathbf{F}(t) \tag{6.11}
\end{equation*}
$$

For the nonhomogeneous system (6.11), the corresponding homogeneous system is system (6.9).

EXAMPLE 6.2.6: (a) Write the homogeneous system $\left\{\begin{array}{l}x^{\prime}=-5 x+5 y \\ y^{\prime}=-5 x+y\end{array}\right.$
in matrix form. (b) Write the nonhomogeneous system $\left\{\begin{array}{l}x^{\prime}=x+2 y-\sin t \\ y^{\prime}=4 x-3 y+t^{2}\end{array}\right.$ in matrix form.

SOLUTION: (a) The homogeneous system $\left\{\begin{array}{l}x^{\prime}=-5 x+5 y \\ y^{\prime}=-5 x+y\end{array}\right.$ is equivalent to the system $\binom{x}{y}^{\prime}=\left(\begin{array}{ll}-5 & 5 \\ -5 & 1\end{array}\right)\binom{x}{y}$. (b) The nonhomogeneous system $\left\{\begin{array}{l}x^{\prime}=x+2 y-\sin t \\ y^{\prime}=4 x-3 y+t^{2}\end{array} \quad\right.$ is equivalent to $\binom{x}{y}^{\prime}=\left(\begin{array}{rr}1 & 2 \\ 4 & -3\end{array}\right)\binom{x}{y}+\binom{-\sin t}{t^{2}}$.

With our notation,
$\binom{x}{y}^{\prime}=\binom{x^{\prime}}{y^{\prime}}$

The n th-order linear equation

$$
\begin{equation*}
y^{(n)}(t)+a_{n-1}(t) y^{(n-1)}+\cdots+a_{2}(t) y^{\prime \prime}+a_{1}(t) y^{\prime}+a_{0}(t) y=f(t), \tag{6.12}
\end{equation*}
$$

The n th-order linear equation is discussed in Chapter 4.
discussed in previous chapters, can be written as a system of first-order equations as well. Let $x_{1}=y, x_{2}=d x_{1} / d t=y^{\prime}, x_{3}=d x_{2} / d t=y^{\prime \prime}, \ldots, x_{n-1}=d x_{n-2} / d t=y^{(n-2)}$, $x_{n}=d x_{n-1} / d t=y^{(n-1)}$. Then, equation (6.12) is equivalent to the system

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=x_{2} \tag{6.13}\\
x_{2}^{\prime}=x_{3} \\
\vdots \\
x_{n-1}^{\prime}=x_{n} \\
x_{n}^{\prime}=-a_{n-1} x_{n}-\cdots-a_{2} x_{3}-a_{1} x_{2}-a_{0} x_{1}+f(t)
\end{array}\right.
$$

which can be written in matrix form as

$$
\left(\begin{array}{c}
x_{1} \tag{6.14}\\
x_{2} \\
\vdots \\
x_{n-1} \\
x_{n}
\end{array}\right)^{\prime}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-a_{0} & -a_{1} & -a_{2} & \cdots & -a_{n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n-1} \\
x_{n}
\end{array}\right)+\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
f(t)
\end{array}\right) .
$$

EXAMPLE 6.2.7: Write the equation $y^{\prime \prime}+5 y^{\prime}+6 y=\cos t$ as a system of first-order differential equations.

SOLUTION: We let $x_{1}=y$ and $x_{2}=x_{1}^{\prime}=y^{\prime}$. Then,

$$
x_{2}^{\prime}=y^{\prime \prime}=\cos t-6 y-5 y^{\prime}=\cos t-6 x_{1}-5 x_{2}
$$

so the second-order equation $y^{\prime \prime}+5 y^{\prime}+6 y=\cos t$ is equivalent to the system

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=x_{2} \\
x_{2}^{\prime}=\cos t-6 x_{1}-5 x_{2}
\end{array}\right.
$$

which can be written in matrix form as

$$
\binom{x_{1}}{x_{2}}^{\prime}=\left(\begin{array}{rr}
0 & 1 \\
-6 & -5
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{0}{\cos t} .
$$

At this point, given a system of ordinary differential equations, our goal is to construct either an explicit, numerical, or graphical solution of the system of equations.

We now state the following theorems and terminology which are used in establishing the fundamentals of solving systems of differential equations. In each case, we assume that the matrix $\mathbf{A}=\mathbf{A}(t)$ in the systems $\mathbf{X}^{\prime}(t)=\mathbf{A}(t) \mathbf{X}(t)$ (equation (6.9)) and $\mathbf{X}^{\prime}(t)=\mathbf{A}(t) \mathbf{X}(t)+\mathbf{F}(t)$ (equation (6.11)) is an $n \times n$ matrix.

Definition 25 (Solution Vector). A solution vector (or solution) of the system $\mathbf{X}^{\prime}(t)=$ $\mathbf{A}(t) \mathbf{X}(t)+\mathbf{F}(t)$ (equation (6.11)) on the interval I is an $n \times 1$ matrix (or vector) of the form

$$
\mathbf{X}(t)=\left(\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right),
$$

where the $x_{i}(t)$ are differentiable functions that satisfies $\mathbf{X}^{\prime}(t)=\mathbf{A}(t) \mathbf{X}(t)+\mathbf{F}(t)$ on I.
Consider the homogeneous linear system $\mathbf{X}^{\prime}(t)=\mathbf{A}(t) \mathbf{X}(t)$, where

$$
\mathbf{X}(t)=\left(\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right) \quad \text { and } \quad \mathbf{A}(t)=\left(\begin{array}{cccc}
a_{11}(t) & a_{12}(t) & \ldots & a_{1 n}(t) \\
a_{21}(t) & a_{22}(t) & \ldots & a_{2 n}(t) \\
\vdots & \vdots & \ldots & \vdots \\
a_{n 1}(t) & a_{n 2}(t) & \ldots & a_{n n}(t)
\end{array}\right)
$$

for which $a_{i j}(t)$ is continuous for all $1 \leq i \leq n$ and $1 \leq j \leq n$.
Let $\left\{\boldsymbol{\Phi}_{i}\right\}_{i=1}^{m}=\left\{\left(\begin{array}{c}\left(\Phi_{1 i}\right. \\ \Phi_{2 i} \\ \vdots \\ \Phi_{m i}\end{array}\right)\right\}_{i=1}^{m}$ be a set of m solutions of $\mathbf{X}^{\prime}(t)=\mathbf{A}(t) \mathbf{X}(t)$. We define linear dependence and independence of the set of vectors $\left\{\boldsymbol{\Phi}_{i}\right\}_{i=1}^{m}$ in the same way as we define linear dependence and independence of sets of functions. The set $\left\{\boldsymbol{\Phi}_{i}\right\}_{i=1}^{m}$ is linearly dependent on an interval I means that there is a set of constants $\left\{c_{i}\right\}_{i=1}^{m}$ not all zero such that $\sum_{i=1}^{m} c_{i} \boldsymbol{\Phi}_{i}=\mathbf{0}$; otherwise, the set is linearly independent.

Definition 26 (Fundamental Set of Solutions). Any set $\left\{\boldsymbol{\Phi}_{i}\right\}_{i=1}^{n}=\left\{\left(\begin{array}{c}\Phi_{1 i} \\ \Phi_{2 i} \\ \vdots \\ \Phi_{n i}\end{array}\right)\right\}_{i=1}^{n}$ of n linearly independent solution vectors of $\mathbf{X}^{\prime}(t)=\mathbf{A}(t) \mathbf{X}(t)$ on an interval I is called a fundamental set of solutions of $\mathbf{X}^{\prime}(t)=\mathbf{A}(t) \mathbf{X}(t)$ on I.

We can determine if a set of vectors is linearly independent or linearly dependent by computing the Wronskian.

Theorem 12. The set $\left\{\boldsymbol{\Phi}_{i}\right\}_{i=1}^{n}=\left\{\left(\begin{array}{c}\Phi_{1 i} \\ \Phi_{2 i} \\ \vdots \\ \Phi_{n i}\end{array}\right)\right\}_{i=1}^{n}$ is linearly independent if and only if the

Wronskian

$$
W\left(\left\{\boldsymbol{\Phi}_{i}\right\}_{i=1}^{n}\right)=\left|\boldsymbol{\Phi}_{1} \mathbf{\Phi}_{2} \cdots \boldsymbol{\Phi}_{n}\right|=\left|\begin{array}{cccc}
\Phi_{11} & \Phi_{12} & \ldots & \Phi_{1 n} \\
\Phi_{21} & \Phi_{22} & \ldots & \Phi_{2 n} \\
\vdots & \vdots & \ldots & \vdots \\
\Phi_{n 1} & \Phi_{n 2} & \ldots & \Phi_{n n}
\end{array}\right| \neq 0 .
$$

EXAMPLE 6.2.8: Which of the following is a fundamental set of solutions for

$$
\binom{x}{y}^{\prime}=\left(\begin{array}{rr}
-2 & -8 \\
1 & 2
\end{array}\right)\binom{x}{y} ?
$$

(a) $S_{1}=\left\{\binom{\cos 2 t}{\sin 2 t},\binom{\sin 2 t}{\cos 2 t}\right\}$; (b) $S_{2}\left\{\binom{-2 \sin 2 t+2 \cos 2 t}{\sin 2 t},\binom{4 \cos 2 t}{\sin 2 t-\cos 2 t}\right\}$.

SOLUTION: We first remark that the equation $\binom{x}{y}^{\prime}=\left(\begin{array}{rr}-2 & -8 \\ 1 & 2\end{array}\right)\binom{x}{y}$ is equivalent to the system $\left\{\begin{array}{l}x^{\prime}=-2 x-8 y \\ y^{\prime}=x+2 y \quad . \quad \text { (a) Differentiating we }\end{array}\right.$ see that

$$
\binom{\cos 2 t}{\sin 2 t}^{\prime}=\binom{-2 \sin 2 t}{2 \cos 2 t} \neq\binom{-2 \cos 2 t-8 \sin 2 t}{\cos 2 t+2 \sin 2 t}
$$

which shows us that $\binom{\cos 2 t}{\sin 2 t}$ is not a solution of the system.

```
In[1115]:= a={{-2, - 8}, {1, 2}};
In[1116]:= v1 = {Cos[2t], Sin[2t]};
```



```
Out[1117]= {-2 Sin[2t], 2 Cos[2t]}
In[1118]:= a.v1
Out[1118]= {-2 Cos[2t] - 8 Sin[2t], Cos[2t] + 2 Sin[2t]}
```

Therefore, S_{1} is not a fundamental set of solutions.
（b）First we verify that $\binom{-2 \sin 2 t+2 \cos 2 t}{\sin 2 t}$ is a solution of the system．

```
In[1119]:= v2 = {-2 Sin[2t] + 2 Cos[2t], Sin[2t]};
In[1120]:= 垤v2
Out[1120]= {-4 Cos[2t] - 4 Sin[2t], 2 Cos[2t]}
In[1121]:= Simplify[a.v2]
Out[1121]= {-4(\operatorname{Cos[2t] + Sin[2t]), 2 Cos[2t]}}
In[1122]:= Simplify[垬v2 == a.v2]
Out[1122] = True
```

Next，we see that $\binom{4 \cos 2 t}{\sin 2 t-\cos 2 t}$ is a solution of the system．

```
In[1123]:= v3 = {4 Cos[2t], Sin[2t] - Cos[2t]}
Out[1123]= {4 Cos[2t], - Cos[2t] + Sin[2t]}
In[1124]:= }\mp@subsup{\partial}{\textrm{t}}{}\textrm{v}
Out[1124]= {-8 Sin[2t], 2 Cos[2t] + 2 Sin[2t]}
In[1125]:= Simplify[a.v3]
Out[1125]= {-8 Sin[2t],2(\operatorname{Cos[2t] + Sin[2t])}}
In[1126]:= Simplify[垬v3 == a.v3]
Out[1126]= True
```

To see that these vectors are linearly independent，we compute the Wronskian．

```
In[1127]:= m1 = Transpose[{v2, v3}];
    MatrixForm[m1]
In[1128]:= Simplify[Det[m1]]
Out[1128]= -2
```

Thus，the set S_{2} is a set of two linearly independent solutions of the system and，consequently，a fundamental set of solutions．

The following theorem implies that a fundamental set of solutions cannot contain more than n vectors，because the solutions would not be linearly independent．

Theorem 13. Any $n+1$ nontrivial solutions of $\mathbf{X}^{\prime}(t)=\mathbf{A}(t) \mathbf{X}(t)$ are linearly dependent. Finally, we state the following theorems, which state that a fundamental set of solutions of $\mathbf{X}^{\prime}(t)=\mathbf{A}(t) \mathbf{X}(t)$ exists and a general solution can (theoretically) be constructed.

Theorem 14. There is a set of n nontrivial linearly independent solutions of $\mathbf{X}^{\prime}(t)=$ $\mathbf{A}(t) \mathbf{X}(t)$.
Theorem 15 (General Solution). Let $S=\left\{\boldsymbol{\Phi}_{i}\right\}_{i=1}^{n}=\left\{\left(\begin{array}{c}\Phi_{1 i} \\ \Phi_{2 i} \\ \vdots \\ \Phi_{n i}\end{array}\right)\right\}_{i=1}^{n}$ be a set of n linearly independent solutions of $\mathbf{X}^{\prime}(t)=\mathbf{A}(t) \mathbf{X}(t)$. Then every solution of $\mathbf{X}^{\prime}(t)=\mathbf{A}(t) \mathbf{X}(t)$ is a linear combination of these solutions.
In this case, S is said to be a fundamental set of solutions of $\mathbf{X}^{\prime}(t)=\mathbf{A}(t) \mathbf{X}(t)$; a general solution of $\mathbf{X}^{\prime}(t)=\mathbf{A}(t) \mathbf{X}(t)$ is

$$
\mathbf{X}(t)=c_{1} \boldsymbol{\Phi}_{1}(t)+c_{2} \mathbf{\Phi}_{2}(t)+\cdots+c_{n} \boldsymbol{\Phi}_{n}(t) .
$$

Definition 27 (Fundamental Matrix). Let $\left\{\boldsymbol{\Phi}_{i}\right\}_{i=1}^{n}=\left\{\left(\begin{array}{c}\Phi_{1 i} \\ \Phi_{2 i} \\ \vdots \\ \Phi_{n i}\end{array}\right)\right\}_{i=1}^{n}$ be a fundamental set of solutions for $\mathbf{X}^{\prime}(t)=\mathbf{A}(t) \mathbf{X}(t)$. Then

$$
\boldsymbol{\Phi}(t)=\left(\begin{array}{llll}
\boldsymbol{\Phi}_{1} & \boldsymbol{\Phi}_{2} & \cdots & \boldsymbol{\Phi}_{n}
\end{array}\right)=\left(\begin{array}{cccc}
\Phi_{11} & \Phi_{12} & \ldots & \Phi_{1 n} \\
\Phi_{21} & \Phi_{22} & \ldots & \Phi_{2 n} \\
\vdots & \vdots & \ldots & \vdots \\
\Phi_{n 1} & \Phi_{n 2} & \ldots & \Phi_{n n}
\end{array}\right)
$$

is called a fundamental matrix of the system $\mathbf{X}^{\prime}(t)=\mathbf{A}(t) \mathbf{X}(t)$. Thus, a general solution of the system $\mathbf{X}^{\prime}(t)=\mathbf{A}(t) \mathbf{X}(t)$ can be written as $\mathbf{X}(t)=\mathbf{\Phi}(t) \mathbf{C}$, where $\mathbf{C}=\left(\begin{array}{c}c_{1} \\ c_{2} \\ \vdots \\ c_{n}\end{array}\right)$ is a constant vector.

If $\boldsymbol{\Phi}=\left(\begin{array}{llll}\boldsymbol{\Phi}_{1} & \boldsymbol{\Phi}_{2} & \cdots & \boldsymbol{\Phi}_{n}\end{array}\right)$ is a fundamental matrix for $\mathbf{X}^{\prime}=\mathbf{A X}, \boldsymbol{\Phi}^{\prime}=\mathbf{A} \boldsymbol{\Phi}$:

$$
\begin{aligned}
\boldsymbol{\Phi}^{\prime} & =\left(\begin{array}{llll}
\boldsymbol{\Phi}_{1}^{\prime} & \boldsymbol{\Phi}_{2}^{\prime} & \cdots & \boldsymbol{\Phi}_{n}^{\prime}
\end{array}\right) \\
& =\left(\begin{array}{llll}
\mathbf{A} \boldsymbol{\Phi}_{1} & \mathbf{A} \boldsymbol{\Phi}_{2} & \cdots & \mathbf{A} \boldsymbol{\Phi}_{n}
\end{array}\right) \\
& =\mathbf{A}\left(\begin{array}{llll}
\boldsymbol{\Phi}_{1} & \boldsymbol{\Phi}_{2} & \cdots & \boldsymbol{\Phi}_{n}
\end{array}\right) \\
& =\mathbf{A} \boldsymbol{\Phi} .
\end{aligned}
$$

EXAMPLE 6.2.9: Show that $\boldsymbol{\Phi}=\left(\begin{array}{cc}e^{-2 t} & -3 e^{5 t} \\ 2 e^{-2 t} & e^{5 t}\end{array}\right)$ is a fundamental matrix for the system $\mathbf{X}^{\prime}(t)=\left(\begin{array}{rr}4 & -3 \\ -2 & -1\end{array}\right) \mathbf{X}(t)$. Use the matrix to find a general solution of $\mathbf{X}^{\prime}(t)=\left(\begin{array}{rr}4 & -3 \\ -2 & -1\end{array}\right) \mathbf{X}(t)$.

SOLUTION: Because $\binom{e^{-2 t}}{2 e^{-2 t}}^{\prime}=\binom{-2 e^{-2 t}}{-4 e^{-2 t}}=\left(\begin{array}{c}4 \\ 4 \\ -3 \\ -1\end{array}\right)\binom{e^{-2 t}}{2 e^{-2 t}}$ and $\binom{-3 e^{5 t}}{e^{5 t}}^{\prime}$ $=\binom{-15 e^{5 t}}{5 e^{5 t}}=\binom{4-3}{-2}\binom{-3 e^{5 t}}{e^{5 t}}$, both $\mathbf{X}_{1}=\binom{e^{-2 t}}{2 e^{-2 t}}$ and $\mathbf{X}_{2}=\binom{-3 e^{5 t}}{e^{5 t}}$ are solutions of the system $\mathbf{X}^{\prime}(t)=\left(\begin{array}{rr}4 & -3 \\ -2 & -1\end{array}\right) \mathbf{X}(t)$. Alternatively, we show that $\boldsymbol{\Phi}^{\prime}(t)$ and $\binom{4-3}{-2-1} \boldsymbol{\Phi}(t)$ are the same.

$$
\begin{aligned}
\operatorname{In}[1129]:= & a=\{\{4,-3\},\{-2,-1\}\} ; \\
& \Psi\left[t_{-}\right]= \\
& \{\{\operatorname{Exp}[-2 t],-3 \operatorname{Exp}[5 t]\}, \\
& \{2 \operatorname{Exp}[-2 t], \operatorname{Exp}[5 t]\}\} ;
\end{aligned}
$$

MatrixForm[[[t]]

Out [1129] $=\left(\begin{array}{cc}e^{-2 t} & -3 e^{5 t} \\ 2 e^{-2 t} & e^{5 t}\end{array}\right)$
$\operatorname{In}[1130]:=\Psi^{\prime}[t] / /$ MatrixForm
Out $[1130]=\left(\begin{array}{cc}-2 e^{-2 t} & -15 e^{5 t} \\ -4 e^{-2 t} & 5 e^{5 t}\end{array}\right)$
In [1131]:= a. $\left.\mathrm{I}_{\mathrm{L}} \mathrm{t}\right] / /$ MatrixForm
Out [1131] $=\left(\begin{array}{cc}-2 e^{-2 t} & -15 e^{5 t} \\ -4 e^{-2 t} & 5 e^{5 t}\end{array}\right)$
The solutions are linearly independent because the Wronskian is not the zero function.

```
In[1132]:= Det[\Psi[t]]
Out[1132]= 7e 3t
```

A general solution is given by

$$
\begin{aligned}
\mathbf{X}(t)=\mathbf{\Phi}(t) \mathbf{C}=\left(\begin{array}{cc}
e^{-2 t} & -3 e^{5 t} \\
2 e^{-2 t} & e^{5 t}
\end{array}\right)\binom{c_{1}}{c_{2}} & =\binom{c_{1} e^{-2 t}-3 c_{2} e^{5 t}}{2 c_{1} e^{-2 t}+c_{2} e^{5 t}} \\
& =c_{1}\binom{e^{-2 t}}{2 e^{-2 t}}+c_{2}\binom{-3 e^{5 t}}{e^{5 t}} .
\end{aligned}
$$

6.3 Homogeneous Linear Systems with Constant Coefficients

Now that we have covered the necessary terminology, we can turn our attention to solving linear systems with constant coefficients. Let

$$
\mathbf{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ldots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right)
$$

be an $n \times n$ matrix with real-valued entries and let $\left\{\lambda_{k}\right\}$ be the eigenvalues and $\left\{\mathbf{v}_{k}\right\}$ the corresponding eigenvectors of \mathbf{A}. Then a general solution of the system $\mathbf{X}^{\prime}=\mathbf{A X}$ is determined by the eigenvalues and corresponding eigenvectors of \mathbf{A}. For the moment, we consider the cases when the eigenvalues of \mathbf{A} are distinct and real or the eigenvalues of \mathbf{A} are distinct and complex. We will consider the case when A has repeated eigenvalues (eigenvalues of multiplicity greater than one) separately.

6.3.I Distinct Real Eigenvalues

Let λ be an eigenvalue of \mathbf{A} with corresponding eigenvector \mathbf{v}. Then,

Eigenvectors corresponding to distinct eigenvalues are linearly independent.

$$
\begin{aligned}
\lambda \mathbf{v} & =\mathbf{A} \mathbf{v} \\
\lambda \mathbf{v} e^{\lambda t} & =\mathbf{A} \mathbf{v} e^{\lambda t} \\
\frac{d}{d t}\left(\mathbf{v} e^{\lambda t}\right) & =\mathbf{A}\left(\mathbf{v} e^{\lambda t}\right)
\end{aligned}
$$

which shows that $\mathbf{v} e^{\lambda t}$ is a solution of $\mathbf{X}^{\prime}=\mathbf{A X}$.
If the eigenvalues $\left\{\lambda_{k}\right\}_{k=1}^{n}$ of \mathbf{A} are distinct with corresponding eigenvectors $\left\{\mathbf{v}_{k}\right\}_{k=1}^{n}$,

$$
S=\left\{\mathbf{v}_{1} e^{\lambda_{1} t}, \mathbf{v}_{2} e^{\lambda_{2} t}, \ldots, \mathbf{v}_{n} e^{\lambda_{n} t}\right\}
$$

is a fundamental set of solutions for $\mathbf{X}^{\prime}=\mathbf{A X}$ because

$$
\left.\begin{aligned}
& W(S)=\left|\begin{array}{lll}
\mathbf{v}_{1} e^{\lambda_{1} t} & \mathbf{v}_{2} e^{\lambda_{2} t} & \ldots \\
\mathbf{v}_{n} e^{\lambda_{n} t}
\end{array}\right| \\
&=e^{\left(\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}\right) t} \mid \mathbf{v}_{1} \mathbf{v}_{2} \ldots \\
& \mathbf{v}_{n}
\end{aligned} \right\rvert\, \neq 0 .
$$

Therefore, a general solution of $\mathbf{X}^{\prime}=\mathbf{A X}$ is

$$
\mathbf{X}=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+c_{2} \mathbf{v}_{2} e^{\lambda_{2} t}+\cdots+c_{n} \mathbf{v}_{n} e^{\lambda_{n} t}
$$

and a fundamental matrix for $\mathbf{X}^{\prime}=\mathbf{A X}$ is

$$
\boldsymbol{\Phi}=\left(\begin{array}{lll}
\mathbf{v}_{1} e^{\lambda_{1} t} & \mathbf{v}_{2} e^{\lambda_{2} t} & \cdots
\end{array} \mathbf{v}_{n} e^{\lambda_{n} t}\right) .
$$

Remark. After you have loaded the PlotField package,

```
PlotVectorField[{f[x,y],g[x,y]},{x,a,b},{y,c,d}]
```

generates a basic direction field for the system $\left\{x^{\prime}=f(x, y), y^{\prime}=g(x, y)\right\}$ for $a \leq x \leq b$ and $c \leq y \leq d$.

EXAMPLE 6.3.1: Solve (a) $\left\{\begin{array}{l}x^{\prime}=5 x-y \\ y^{\prime}=3 y\end{array} \quad\right.$ and (b) $\mathbf{X}^{\prime}=\left(\begin{array}{ll}-1 / 2 & -1 / 3 \\ -1 / 3 & -1 / 2\end{array}\right) \mathbf{X}$.

SOLUTION: (a) In matrix form the system is $\mathbf{X}^{\prime}=\left(\begin{array}{rr}5 & -1 \\ 0 & 3\end{array}\right) \mathbf{X}$. We find the eigenvalues of $\mathbf{A}=\left(\begin{array}{rr}5 & -1 \\ 0 & 3\end{array}\right)$ with Eigensystem. The results indicate that the eigenvalues are $\lambda_{1}=3$ and $\lambda_{2}=5$ with corresponding eigenvectors $\mathbf{v}_{1}=\binom{1}{2}$ and $\mathbf{v}_{2}=\binom{1}{0}$, respectively.

```
In[1133]:= a={{5,-1},{0, 3}};
In[1134]:= Eigensystem[a]
Out [1134]= {{3,5},{{1,2},{1,0}}}
```

Therefore, $S=\left\{\binom{1}{2} e^{3 t},\binom{1}{0} e^{5 t}\right\}$ is a fundamental set of solutions of the system, a general solution is

$$
\mathbf{X}=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+c_{2} \mathbf{v}_{2} e^{\lambda_{2} t}=c_{1}\binom{1}{2} e^{3 t}+c_{2}\binom{1}{0} e^{5 t},
$$

and a fundamental matrix is $\boldsymbol{\Phi}=\left(\begin{array}{cc}e^{3 t} & e^{5 t} \\ 2 e^{3 t} & 0\end{array}\right)$. We can write the general solution as $\left\{\begin{array}{l}x=c_{1} e^{3 t}+c_{2} e^{5 t} \\ y=2 c_{1} e^{3 t}\end{array} \quad\right.$ or as $\mathbf{X}=\left(\begin{array}{cc}e^{3 t} & e^{5 t} \\ 2 e^{3 t} & 0\end{array}\right)\binom{c_{1}}{c_{2}}$.

We can use DSolve to find a general solution as well.

```
In[1135]:= DSolve[
    Thread[{\mp@subsup{x}{}{\prime}[t], y'[t]} == a.{x[t],y[t]}],
    {x[t],y[t]},t]
Out[1135]={{x[t]->\mp@subsup{\mathbb{e}}{}{5t}C[1]-\frac{1}{2}\mp@subsup{\mathbb{e}}{}{3t}(-1+\mp@subsup{\mathbb{e}}{}{2t})C[2],
    y[t] }->\mp@subsup{\mathbb{e}}{}{3t}C[2]}
```

We can graph the solution parametrically for various values of c_{1} and c_{2} with ParametricPlot. First, we use Table to generate a list corresponding to replacing c_{1} and c_{2} in $\left\{\begin{array}{l}x=c_{1} e^{3 t}+c_{2} e^{5 t} \\ y=2 c_{1} e^{3 t}\end{array}\right.$ by $-2,-1,0,1$, and 2. The result in step1, however, is not a list of ordered pairs of functions corresponding to $\left\{\begin{array}{l}x=x(t) \\ y=y(t)\end{array}\right.$; it is a nested list.

$$
\begin{aligned}
\text { In }[1136]:= & \text { step } 1=T a b l e\left[\left\{c_{1} e^{3 t}+c_{2} e^{5 t}, 2 c_{1} e^{3 t}\right\},\right. \\
& \left.\left\{c_{1},-2,2\right\},\left\{c_{2},-2,2\right\}\right] \\
\text { Out }[1136]= & \left\{\left\{\left\{-2 e^{3 t}-2 e^{5 t},-4 e^{3 t}\right\},\left\{-2 e^{3 t}-e^{5 t},-4 e^{3 t}\right\},\right.\right. \\
& \left\{-2 e^{3 t},-4 e^{3 t}\right\},\left\{-2 e^{3 t}+e^{5 t},-4 e^{3 t}\right\}, \\
& \left.\left\{-2 e^{3 t}+2 e^{5 t},-4 e^{3 t}\right\}\right\}, \\
& \left\{\left\{-e^{3 t}-2 e^{5 t},-2 e^{3 t}\right\},\left\{-e^{3 t}-e^{5 t},-2 e^{3 t}\right\},\right. \\
& \left\{-e^{3 t},-2 e^{3 t}\right\},\left\{-e^{3 t}+e^{5 t},-2 e^{3 t}\right\}, \\
& \left.\left\{-e^{3 t}+2 e^{5 t},-2 e^{3 t}\right\}\right\},\left\{\left\{-2 e^{5 t}, 0\right\},\right. \\
& \left.\left\{-e^{5 t}, 0\right\},\{0,0\},\left\{e^{5 t}, 0\right\},\left\{2 e^{5 t}, 0\right\}\right\}, \\
& \left\{\left\{e^{3 t}-2 e^{5 t}, 2 e^{3 t}\right\},\left\{e^{3 t}-e^{5 t}, 2 e^{3 t}\right\},\right. \\
& \left\{e^{3 t}, 2 e^{3 t}\right\},\left\{e^{3 t}+e^{5 t}, 2 e^{3 t}\right\}, \\
& \left.\left\{e^{3 t}+2 e^{5 t}, 2 e^{3 t}\right\}\right\},\left\{\left\{2 e^{3 t}-2 e^{5 t}, 4 e^{3 t}\right\},\right. \\
& \left\{2 e^{3 t}-e^{5 t}, 4 e^{3 t}\right\},\left\{2 e^{3 t}, 4 e^{3 t}\right\}, \\
& \left.\left.\left\{2 e^{3 t}+e^{5 t}, 4 e^{3 t}\right\},\left\{2 e^{3 t}+2 e^{5 t}, 4 e^{3 t}\right\}\right\}\right\}
\end{aligned}
$$

To create a list of ordered pairs of functions that we can graph with ParametricPlot, we use Flatten.

```
In[1137]:= toplot = Flatten[step1, 1]
```

$$
\text { Out } \begin{aligned}
{[1137]=\{ } & \left\{-2 e^{3 t}-2 e^{5 t},-4 e^{3 t}\right\}, \\
& \left\{-2 e^{3 t}-e^{5 t},-4 e^{3 t}\right\},\left\{-2 e^{3 t},-4 e^{3 t}\right\}, \\
& \left\{-2 e^{3 t}+e^{5 t},-4 e^{3 t}\right\},\left\{-2 e^{3 t}+2 e^{5 t},-4 e^{3 t}\right\}, \\
& \left\{-e^{3 t}-2 e^{5 t},-2 e^{3 t}\right\},\left\{-e^{3 t}-e^{5 t},-2 e^{3 t}\right\}, \\
& \left\{-e^{3 t},-2 e^{3 t}\right\},\left\{-e^{3 t}+\mathbb{e}^{5 t},-2 e^{3 t}\right\}, \\
& \left\{-e^{3 t}+2 e^{5 t},-2 e^{3 t}\right\},\left\{-2 e^{5 t}, 0\right\}, \\
& \left\{-e^{5 t}, 0\right\},\{0,0\},\left\{e^{5 t}, 0\right\},\left\{2 e^{5 t}, 0\right\}, \\
& \left\{e^{3 t}-2 \mathbb{e}^{5 t}, 2 e^{3 t}\right\},\left\{e^{3 t}-e^{5 t}, 2 e^{3 t}\right\}, \\
& \left\{e^{3 t}, 2 e^{3 t}\right\},\left\{e^{3 t}+e^{5 t}, 2 e^{3 t}\right\}, \\
& \left\{e^{3 t}+2 \mathbb{e}^{5 t}, 2 \mathbb{e}^{3 t}\right\},\left\{2 e^{3 t}-2 e^{5 t}, 4 \mathbb{e}^{3 t}\right\}, \\
& \left\{2 e^{3 t}-e^{5 t}, 4 \mathbb{e}^{3 t}\right\},\left\{2 e^{3 t}, 4 e^{3 t}\right\}, \\
& \left.\left\{2 e^{3 t}+\mathbb{e}^{5 t}, 4 \mathbb{e}^{3 t}\right\},\left\{2 e^{3 t}+2 e^{5 t}, 4 \mathbb{e}^{3 t}\right\}\right\}
\end{aligned}
$$

Next, we use ParametricPlot to graph the list of parametric functions in toplot and name the resulting graphics object pp1.

```
In[1138]:= pp1 = ParametricPlot[Evaluate[toplot],
    {t, -1, 1}, PlotStyle- > GrayLevel[0],
    DisplayFunction- > Identity];
```

To show the graphs of the solutions together with the direction field associated with the system, we first load the PlotField package

```
In[1139]:= << Graphics`PlotField`
```

and then use PlotVectorField to graph the direction field associated with the system on the rectangle $[-5,5] \times[-5,5]$, naming the resulting graphics object pvf.

```
In[1140]:= pvf = PlotVectorField[{5x-y, 3y},
    {x,-5, 5}, {y, -5, 5},
    ScaleFunction-> (1&),
    DefaultColor- > GrayLevel[0.5],
    DisplayFunction- > Identity];
```

Show is then used to display the graphs together in Figure 6-14.

```
In[1141]:= Show[pvf,pp1,
    PlotRange-> {{-5, 5}, {-5, 5}},
    AspectRatio- > 1, Axes- > Automatic,
    DisplayFunction- > $DisplayFunction]
```

Notice that each curve corresponds to the parametric plot of the pair $\left\{\begin{array}{l}x=x(t) \\ y=y(t)\end{array}\right.$. Because both eigenvalues are positive, all solutions move

Figure 6-14 All nontrivial solutions move away from the origin as t increases
away from the origin as t increases. The arrows on the vectors in the direction field show this behavior.
(b) With Eigensystem, we see that the eigenvalues and eigenvectors of $\mathbf{A}=\left(\begin{array}{ll}-1 / 2 & -1 / 3 \\ -1 / 3 & -1 / 2\end{array}\right)$ are $\lambda_{1}=-1 / 6$ and $\lambda_{2}=-5 / 6$ and $\mathbf{v}_{1}=\binom{-1}{1}$ and $\mathbf{v}_{2}=\binom{1}{1}$, respectively.

$$
\begin{aligned}
\text { In }[1142]:=\text { capa }=\{ & \{-1 / 2,-1 / 3\},\{-1 / 3,-1 / 2\}\} ; \\
& \text { Eigensystem }[\text { capa }]
\end{aligned}
$$

$$
\text { Out }[1142]=\left\{\left\{-\frac{5}{6},-\frac{1}{6}\right\},\{\{1,1\},\{-1,1\}\}\right\}
$$

Then $\mathbf{X}_{1}=\binom{-1}{1} e^{-t / 6}$ and $\mathbf{X}_{2}=\binom{1}{1} e^{-5 t / 6}$ are two linearly independent solutions of the system so a general solution is $\mathbf{X}=\left(\begin{array}{cc}-e^{-t / 6} & e^{-5 t / 6} \\ e^{-t / 6} & e^{-5 t / 6}\end{array}\right)\binom{c_{1}}{c_{2}}$; a fundamental matrix is $\boldsymbol{\Phi}=\left(\begin{array}{cc}-e^{-t / 6} & e^{-5 t / 6} \\ e^{-t / 6} & e^{-5 t / 6}\end{array}\right)$.

Figure 6-15 Direction field for $\mathbf{X}^{\prime}=\mathbf{A X}$

We use DSolve to find a general solution of the system by entering

```
In[1143]:= gensol = DSolve[{\mp@subsup{x}{}{\prime}[t] == -1/2x[t] - 1/3y[t],
        y'[t] == -1/3x[t] - 1/2y[t]},
        {x[t],y[t]},t]
Out[1143]={{x[t]-> 㐌 t/6 C[1]- - et/6 C[2],
    Y[t] }->\mp@subsup{e}{}{-5 t/6}C[1]+\mp@subsup{e}{}{-t/6}C[2]}
```

We graph the direction field with PlotVectorField, which is contained in the PlotField package located in the Graphics directory, in Figure 6-15.

```
In[1144]:= << Graphics'PlotField`
```

In[1145]:= pvf=

```
In[1145]:= pvf=
    PlotVectorField[{-1/2x-1/3y, -1/3x-1/2y},
    PlotVectorField[{-1/2x-1/3y, -1/3x-1/2y},
        {x, -1, 1}, {y, -1, 1}, Axes- > Automatic]
```

```
        {x, -1, 1}, {y, -1, 1}, Axes- > Automatic]
```

```

Several solutions are also graphed with ParametricPlot and shown together with the direction field in Figure 6-16.

You do not need to reload the PlotField package if you have already loaded it during your current Mathematica session.


Figure 6-16 Direction field for \(\mathbf{X}^{\prime}=\mathbf{A X}\) along with various solution curves
\[
\begin{aligned}
\text { In }[1146]:=\text { initsol }= & \text { DSolve }\left[\left\{x^{\prime}[t]==-1 / 2 x[t]-1 / 3 y[t],\right.\right. \\
& y^{\prime}[t]==-1 / 3 x[t]-1 / 2 y[t], \\
& \mathbf{x}[0]==x 0, y[0]==y 0\}, \\
& \{\mathbf{x}[t], y[t]\}, t]
\end{aligned}
\]
\[
\begin{aligned}
\text { Out }[1146]=\{ & \left\{x[t] \rightarrow-e^{-5} t / 6\left(\frac{1}{2}(-x 0-y 0)\right.\right. \\
& \left.+\frac{1}{2} e^{2 t / 3}(-x 0+y 0)\right), y[t] \rightarrow \\
& \left.\left.e^{-5 t / 6}\left(\frac{1}{2} e^{2 t / 3}(-x 0+y 0)+\frac{x 0+y 0}{2}\right)\right\}\right\}
\end{aligned}
\]
```

In[1147]:= t1 = Table[ParametricPlot[Evaluate[{x[t],
y[t]}/.initsol/.{x0->1,y0->i}],
{t, 0, 15}, DisplayFunction- > Identity,
PlotStyle- > GrayLevel[0.3]],
{i, -1, 1, 2/8}];
t2 = Table[ParametricPlot[Evaluate[{x[t],
y[t]}/.initsol/.{x0->-1, y0- > i}],
{t, 0, 15}, DisplayFunction- > Identity,
PlotStyle- > GrayLevel[0.3]],
{i, -1, 1, 2/8}];

```
```

In[1147]:= t3 = Table[ParametricPlot[Evaluate[{x[t],
y[t]}/.initsol/.{x0-> i, y0- > 1}],
{t, 0, 15}, DisplayFunction- > Identity,
PlotStyle- > GrayLevel[0.3]],
{i, -1, 1, 2/8}];
t4 = Table[ParametricPlot[Evaluate[{x[t],
y[t]}/.initsol/.{x0- > i, y0- > -1}],
{t, 0, 15}, DisplayFunction- > Identity,
PlotStyle- > GrayLevel[0.3]],
{i, -1, 1, 2/8}];
In[1148]:= Show[t1, t2, t3, t4,
pvf, DisplayFunction- > \$DisplayFunction,
AspectRatio- > Automatic]

```

\subsection*{6.3.2 Complex Conjugate Eigenvalues}

If A has complex conjugate eigenvalues \(\lambda_{1,2}=\alpha \pm \beta i, \beta \neq 0\), and corresponding eigenvectors \(\mathbf{v}_{1,2}=\mathbf{a} \pm \mathbf{b} i\), then one solution of \(\mathbf{X}^{\prime}=\mathbf{A X}\) is
\[
\begin{aligned}
\mathbf{X}=\mathbf{v}_{1} e^{\lambda_{1} t} & =(\mathbf{a}+\mathbf{b} i) e^{(\alpha+\beta i) t}=e^{\alpha t}(\mathbf{a}+\mathbf{b} i) e^{i \beta t}=e^{\alpha t}(\mathbf{a}+\mathbf{b} i)(\cos \beta t+i \sin \beta t) \\
& =e^{\alpha t}(\mathbf{a} \cos \beta t-\mathbf{b} \sin \beta t)+i e^{\alpha t}(\mathbf{b} \cos \beta t+\mathbf{a} \sin \beta t) \\
& =\mathbf{X}_{1}(t)+i \mathbf{X}_{2}(t) .
\end{aligned}
\]

Now, because \(\mathbf{X}\) is a solution of the system, \(\mathbf{X}^{\prime}=\mathbf{A X}\), we have \(\mathbf{X}_{1}^{\prime}+i \mathbf{X}_{2}^{\prime}=\mathbf{A} \mathbf{X}_{1}+\) \(i \mathbf{A} \mathbf{X}_{2}\). Equating the real and imaginary parts of this equation yields \(\mathbf{X}_{1}^{\prime}=\mathbf{A} \mathbf{X}_{1}\) and \(\mathbf{X}_{2}^{\prime}=\mathbf{A} \mathbf{X}_{2}\). Therefore, \(\mathbf{X}_{1}\) and \(\mathbf{X}_{2}\) are solutions of \(\mathbf{X}^{\prime}=\mathbf{A X}\), so any linear combination of \(\mathbf{X}_{1}\) and \(\mathbf{X}_{2}\) is also a solution. We can show that \(\mathbf{X}_{1}\) and \(\mathbf{X}_{2}\) are linearly independent, so this linear combination forms a portion of a general solution of \(\mathbf{X}^{\prime}=\mathbf{A X}\).

Theorem 16. If \(\mathbf{A}\) has complex conjugate eigenvalues \(\lambda_{1,2}=\alpha \pm \beta i, \beta \neq 0\), and corresponding eigenvectors \(\mathbf{v}_{1,2}=\mathbf{a} \pm \mathbf{b}\), then two linearly independent solutions of \(\mathbf{X}^{\prime}=\mathbf{A X}\) are
\[
\mathbf{X}_{1}=e^{\alpha t}(\mathbf{a} \cos \beta t-\mathbf{b} \sin \beta t) \quad \text { and } \quad \mathbf{X}_{2}=e^{\alpha t}(\mathbf{b} \cos \beta t+\mathbf{a} \sin \beta t) .
\]

Notice that in the case of complex conjugate eigenvalues, we are able to obtain two linearly independent solutions from knowing one of the eigenvalues and an eigenvector that corresponds to it.

We use Euler's formula, \(e^{i \theta}=\cos \theta+i \sin \theta\).

Observe that our chosen eigenvectors are scalar multiples of the eigenvectors found with Mathematica.

EXAMPLE 6.3.2: Solve (a) \(\left\{\begin{array}{l}x^{\prime}=\frac{1}{2} y \\ y^{\prime}=-\frac{1}{8} x\end{array}\right.\) and (b) \(\left\{\begin{array}{l}d x / d t=-\frac{1}{4} x+2 y \\ d y / d t=-8 x-\frac{1}{4} y .\end{array}\right.\)

SOLUTION: (a) In matrix form the system is equivalent to the system \(\mathbf{X}^{\prime}=\left(\begin{array}{cc}0 & 1 / 2 \\ -1 / 8 & 0\end{array}\right) \mathbf{X}\). As in (a), we use Eigensystem to see that the eigenvalues and eigenvectors of \(\mathbf{A}=\left(\begin{array}{cc}0 & 1 / 2 \\ -1 / 8 & 0\end{array}\right)\) are \(\lambda_{1,2}=0 \pm \frac{1}{4} i\) and \(\mathbf{v}_{1,2}=\binom{1}{0} \pm\binom{ 0}{1 / 2} i\).
```

In[1149]:= capa={{0,1/2}, {-1/8, 0}};
Eigensystem[capa]

```
Out [1149] \(=\left\{\left\{-\frac{i}{4}, \frac{i}{4}\right\},\{\{2\right.\) i, 1\}, \(\{-2\) i, 1 \(\}\}\}\)

Two linearly independent solutions are then \(\mathbf{X}_{1}=\binom{1}{0} \cos \frac{1}{4} t-\binom{0}{1 / 2}\) \(\sin \frac{1}{4} t=\binom{\cos \frac{1}{4} t}{-\frac{1}{2} \sin \frac{1}{4} t}\) and \(\mathbf{X}_{2}=\binom{1}{0} \sin \frac{1}{4} t+\binom{0}{1 / 2} \cos \frac{1}{4} t=\binom{\sin \frac{1}{4} t}{\frac{1}{2} \cos \frac{1}{4} t}\) and a general solution is \(\mathbf{X}=c_{1} \mathbf{X}_{1}+c_{2} \mathbf{X}_{2}=\left(\begin{array}{ccc}\cos \frac{1}{4} t & \sin \frac{1}{4} t \\ -\frac{1}{2} \sin \frac{1}{4} t & \frac{1}{2} \cos \frac{1}{4} t\end{array}\right)\binom{c_{1}}{c_{2}}\) or \(x=\) \(c_{1} \cos \frac{1}{4} t+c_{2} \sin \frac{1}{4} t\) and \(y=-c_{1} \frac{1}{2} \sin \frac{1}{4} t+\frac{1}{2} c_{2} \cos \frac{1}{4} t\).

As before, we use DSolve to find a general solution.
\[
\begin{aligned}
& \text { In }[1150]:=\text { gensol }= \text { DSolve }\left[\left\{\mathbf{x}^{\prime}[\mathrm{t}]==1 / 2 \mathrm{y}[\mathrm{t}], \mathbf{y}^{\prime}[\mathrm{t}]==\right.\right. \\
&-1 / 8 \mathbf{x}[\mathrm{t}]\},\{\mathbf{x}[\mathrm{t}], \mathbf{y}[\mathrm{t}]\}, \mathrm{t}] \\
& \text { Out }[1150]=\left\{\left\{\mathrm{x}[\mathrm{t}] \rightarrow-2 \mathrm{C}[1] \operatorname{Cos}\left[\frac{t}{4}\right]+2 \mathrm{C}[2] \operatorname{Sin}\left[\frac{t}{4}\right],\right.\right. \\
&\left.\left.y[t] \rightarrow C[2] \operatorname{Cos}\left[\frac{t}{4}\right]+C[1] \operatorname{Sin}\left[\frac{t}{4}\right]\right\}\right\}
\end{aligned}
\]

Initial-value problems for systems are solved in the same way as for other equations. For example, entering
\[
\begin{aligned}
\text { In }[1151]:=\text { partsol }= & \text { DSolve }\left[\left\{x^{\prime}[t]==1 / 2 y[t],\right.\right. \\
& y^{\prime}[t]==-1 / 8 x[t], x[0]==1, \\
& y[0]==-1\},\{x[t], y[t]\}, t]
\end{aligned}
\]


Figure 6-17 (a) Graph of \(x(t)\) and \(y(t)\).(b) Parametric plot of \(x(t)\) versus \(y(t)\)
\[
\begin{array}{r}
\text { Out }[1151]=\left\{\left\{x[t] \rightarrow-2\left(-\frac{1}{2} \operatorname{Cos}\left[\frac{t}{4}\right]+\operatorname{Sin}\left[\frac{t}{4}\right]\right),\right.\right. \\
\left.\left.y[t] \rightarrow-\operatorname{Cos}\left[\frac{t}{4}\right]-\frac{1}{2} \quad \operatorname{Sin}\left[\frac{t}{4}\right]\right\}\right\}
\end{array}
\]
finds the solution that satisfies \(x(0)=1\) and \(y(0)=-1\).
We graph \(x(t)\) and \(y(t)\) together as well as parametrically with Plot and ParametricPlot, respectively, in Figure 6-17.
```

In[1152]:= p1 = Plot[Evaluate[{x[t], y[t]}/.partsol],
{t, 0, 8\pi}, PlotStyle- > {GrayLevel[0],
GrayLevel[0.4]},
DisplayFunction- > Identity];
p2 = ParametricPlot[
Evaluate[{x[t],y[t]}/.partsol],
{t, 0, 8\pi}, DisplayFunction- > Identity,
AspectRatio- > Automatic];
Show[GraphicsArray[{p1, p2 }]]

```

We can also use PlotVectorField and ParametricPlot to graph the direction field and/or various solutions as we do next in Figure 6-18.
\[
\begin{aligned}
& \text { In [1153]: }=\operatorname{pvf}=\text { PlotVectorField[\{1/2y, -1/8x\}, } \\
& \{x,-2,2\},\{y,-1,1\} \text {, } \\
& \text { DisplayFunction- > Identity]; } \\
& \text { In [1154]: }=\text { initsol }=\text { DSolve }\left[\left\{x^{\prime}[t]==1 / 2 y[t]\right.\right. \text {, } \\
& y^{\prime}[t]==-1 / 8 x[t], x[0]=x 0 \text {, } \\
& y[0]==y 0\},\{x[t], y[t]\}, t] \\
& \text { Out }[1154]=\left\{\left\{x[t] \rightarrow-2\left(-\frac{1}{2} x 0 \cos \left[\frac{t}{4}\right]-y_{0} \sin \left[\frac{t}{4}\right]\right)\right.\right. \text {, } \\
& \left.\left.y[t] \rightarrow y 0 \quad \cos \left[\frac{t}{4}\right]-\frac{1}{2} x 0 \quad \sin \left[\frac{t}{4}\right]\right\}\right\}
\end{aligned}
\]


Figure 6-18 Notice that all nontrivial solutions are periodic
```

In[1155]:= t1 = Table[ParametricPlot[Evaluate[{x[t],
y[t]}/.initsol/.{x0- > i,
y0->i}], {t, 0, 8\pi},
DisplayFunction- > Identity,
PlotStyle- > GrayLevel[0.3]],
{i, 0, 1, 1/8}];
In[1156]:= Show[t1,pvf,
DisplayFunction- > \$DisplayFunction,
AspectRatio- > Automatic]

```
(b) In matrix form, the system is equivalent to the system \(\mathbf{X}^{\prime}=\left(\begin{array}{cc}-\frac{1}{4} & 2 \\ -8 & -\frac{1}{4}\end{array}\right) \mathbf{X}\). The eigenvalues and corresponding eigenvectors of \(\mathbf{A}=\left(\begin{array}{cc}-\frac{1}{4} & 2 \\ -8 & -\frac{1}{4}\end{array}\right)\) are found to be \(\lambda_{1,2}=-\frac{1}{4} \pm 4 i\) and \(\mathbf{v}_{1,2}=\binom{0}{2} \pm\binom{ 1}{0} i\) with Eigensystem.
\[
\begin{aligned}
\text { In }[1157]:= & \text { capa }=\{\{-1 / 4,2\},\{-8,-1 / 4\}\} ; \\
& \text { Eigensystem }[\text { capa }] \\
\text { Out }[1157]= & \left\{\left\{-\frac{1}{4}-4 \text { i, }-\frac{1}{4}+4 i\right\},\{\{i, 2\},\{-i, 2\}\}\right\}
\end{aligned}
\]

A general solution is then
\[
\begin{aligned}
\mathbf{X} & =c_{1} \mathbf{X}_{1}+c_{2} \mathbf{X}_{2} \\
& =c_{1} e^{-t / 4}\left(\binom{1}{0} \cos 4 t-\binom{0}{2} \sin 4 t\right)+c_{2} e^{-t / 4}\left(\binom{1}{0} \sin 4 t+\binom{0}{2} \cos 4 t\right) \\
& =e^{-t / 4}\left[c_{1}\binom{\cos 4 t}{-2 \sin 4 t}+c_{2}\binom{\sin 4 t}{2 \cos 4 t}\right]=e^{-t / 4}\left(\begin{array}{cc}
\cos 4 t & \sin 4 t \\
-2 \sin 4 t & 2 \cos 4 t
\end{array}\right)\binom{c_{1}}{c_{2}}
\end{aligned}
\]
or \(x=e^{-t / 4}\left(c_{1} \cos 4 t+c_{2} \sin 4 t\right)\) and \(y=e^{-t / 4}\left(2 c_{2} \cos 4 t-2 c_{1} \sin 4 t\right)\). We confirm this result using DSolve. Notice that the result returned by Mathematica contains the hyperbolic trigonometric functions.
\[
\begin{aligned}
& \text { In [1158]: = gensol = DSolve }\left[\left\{\mathbf{x}^{\prime}[\mathrm{t}]==\right.\right. \\
& -1 / 4 x[t]+2 y[t], y^{\prime}[t]== \\
& -8 x[t]-1 / 4 y[t]\},\{x[t], y[t]\}, t] \\
& \text { Out [1158] }=\left\{\left\{x [ t ] \rightarrow C [ 2 ] \quad \left(-\frac{1}{2} i \operatorname{Cos}\left[\left(4+\frac{i}{4}\right) t\right]\right.\right.\right. \\
& +\frac{1}{2} i \operatorname{Cosh}\left[\left(\frac{1}{4}+4 \quad i\right) t\right] \\
& +\frac{1}{2} \sin \left[\left(4+\frac{i}{4}\right) t\right]-\frac{1}{2} \text { i } \sinh \left[\left(\frac{1}{4}\right.\right. \\
& +4 \text { i) } t])+C[1]\left(-\frac{1}{2} \operatorname{Cos}\left[\left(4+\frac{i}{4}\right) t\right]\right. \\
& -\frac{1}{2} \operatorname{Cosh}\left[\left(\frac{1}{4}+4 \quad i\right) t\right] \\
& -\frac{1}{2} \text { i } \operatorname{Sin}\left[\left(4+\frac{i}{4}\right) t\right]+\frac{1}{2} \sinh \left[\left(\frac{1}{4}\right.\right. \\
& +4 \text { i) } t]), y[t] \rightarrow C[2] \quad\left(\operatorname{Cos}\left[\left(4+\frac{i}{4}\right) t\right]\right. \\
& +\operatorname{Cosh}\left[\left(\frac{1}{4}+4 \text { i) } t\right]\right. \\
& \left.+i \sin \left[\left(4+\frac{i}{4}\right) t\right]-\sinh \left[\left(\frac{1}{4}+4 \quad i\right) t\right]\right) \\
& +\operatorname{C}[1] \quad\left(-i \quad \operatorname{Cos}\left[\left(4+\frac{i}{4}\right) \quad t\right]\right. \\
& +i \operatorname{Cosh}\left[\left(\frac{1}{4}+4 i\right) t\right]+\operatorname{Sin}\left[\left(4+\frac{i}{4}\right) t\right] \\
& \text {-i } \left.\left.\operatorname{Sinh}\left[\left(\frac{1}{4}+4 \text { i) } t\right]\right)\right\}\right\}
\end{aligned}
\]

In [1159]: \(=\) gensol [ [1, 1, 2] ]
Out [1159] = C[2] \(\left(-\frac{1}{2}\right.\) i \(\operatorname{Cos}\left[\left(4+\frac{i}{4}\right) \quad t\right]+\frac{1}{2}\) i \(\operatorname{Cosh}\left[\left(\frac{1}{4}\right.\right.\)
\[
\begin{aligned}
& +4 \text { i) } t]+\frac{1}{2} \operatorname{Sin}\left[\left(4+\frac{i}{4}\right) t\right] \\
& \left.-\frac{1}{2} i \sinh \left[\left(\frac{1}{4}+4 i\right) t\right]\right) \\
& +\mathrm{C}[1] \quad\left(-\frac{1}{2} \operatorname{Cos}\left[\left(4+\frac{i}{4}\right) \quad \mathrm{t}\right]-\frac{1}{2} \operatorname{Cosh}\left[\left(\frac{1}{4}\right.\right.\right. \\
& +4 \text { i) } t]-\frac{1}{2} \text { i } \sin \left[\left(4+\frac{i}{4}\right) t\right] \\
& +\frac{1}{2} \sinh \left[\left(\frac{1}{4}+4 \text { i) } t\right]\right)
\end{aligned}
\]

In [1160]: = ComplexExpand[gensol[[1, 1, 2]]]//Simplify Out [1160] \(=(\mathrm{C}[1] \operatorname{Cos}[4 \mathrm{t}]-\mathrm{C}[2] \operatorname{Sin}[4 \mathrm{t}])\left(-\operatorname{Cosh}\left[\frac{t}{4}\right]\right.\) \(\left.+\operatorname{Sinh}\left[\frac{t}{4}\right]\right)\)
\(\operatorname{In}[1161]:=(C[1] \operatorname{Cos}[4 t]-C[2] \operatorname{Sin}[4 t])\left(-e^{-t / 4}\right)\)
```

In[1162]:= ComplexExpand[gensol[[1, 2, 2]]]//Simplify
Out[1162]= 2 (C[2] Cos[4 t] + C[1] Sin[4 t]) (Cosh[\frac{t}{4}]
- Sinh [\frac{t}{4}])
In[1163]:= 2 (C[2] Cos[4 t] + C[1] Sin[4 t]) (e (t/4)

```

In this case, we obtained the real form of the solution by selecting the portion of the expression that we wanted to write in terms of exponential functions
```

gensol[[1, 1, 2]]
$C[2]\left(-\frac{1}{2} I \operatorname{Cos}\left[\left(4+\frac{I}{4}\right) t\right]+\frac{1}{2} I \operatorname{Cosh}\left[\left(\frac{1}{4}+4 I\right) t\right]+\frac{1}{2} \operatorname{Sin}\left[\left(4+\frac{I}{4}\right) t\right]-\frac{1}{2} I \operatorname{Sinh}\left[\left(\frac{1}{4}+4 I\right) t\right]\right)+$
$\mathrm{C}[1]\left(-\frac{1}{2} \operatorname{Cos}\left[\left(4+\frac{I}{4}\right) \mathrm{t}\right]-\frac{1}{2} \operatorname{Cosh}\left[\left(\frac{1}{4}+4 I\right) \mathrm{t}\right]-\frac{1}{2} \mathrm{I} \operatorname{Sin}\left[\left(4+\frac{I}{4}\right) \mathrm{t}\right]+\frac{1}{2} \operatorname{Sinh}\left[\left(\frac{1}{4}+4 I\right) \mathrm{t}\right]\right)$

```

ComplexExpand[gensol[[1, 1, 2]]]//Simplify
\((C[1] \operatorname{Cos}[4 t]-C[2] \operatorname{Sin}[4 t])\left(-\operatorname{Cosh}\left[\frac{t}{4}\right]+\operatorname{Sinh}\left[\frac{t}{4}\right]\right.\)
\((C[1] \operatorname{Cos}[4 t]-C[2] \operatorname{Sin}[4 t])\left(-E^{-t / 4}\right)\)

and then accessed TrigToExp from the Algebraic Manipulation palette
\begin{tabular}{|c|}
\hline 『 \\
\hline Expand[■] \\
\hline Factor[■] \\
\hline Together[ \({ }_{\text {] }}\) ] \\
\hline Apart[!] \\
\hline Cancel[-] \\
\hline Simplify[ \({ }^{\text {d }}\) \\
\hline FullSimplify[ \\
\hline TrigExpand[ \\
\hline TrigFactor[ \\
\hline TrigReduce[ \\
\hline ExpToTrig[■ \\
\hline TrigToExp[ \\
\hline FowerExpand[ \\
\hline ComplexExpand \\
\hline
\end{tabular}
to obtain the result.


Figure 6-19 Various solutions and direction field associated with the system
```

 ComplexExpand[gensol[[1, 2, 2]]] // Simplify
 2(C[2]\operatorname{Cos[4t] +C[1] Sin[4t])(\operatorname{cosh}[\frac{t}{4}]-\operatorname{Sinh}[\frac{t}{4}])})=()
 2 (c[[2] Cos[4t]+[[1] Sin[4 t])(\mp@subsup{\mathbf{E}}{}{*/4})

```

We use PlotVectorField and ParametricPlot to graph the direction field associated with the system along with various solutions in Figure 6-19.
\[
\begin{aligned}
& \text { In [1164]: }=\mathrm{pvf}=\text { PlotVectorField }[\{-1 / 4 \mathrm{x}+2 \mathrm{y},-8 \mathrm{x}-1 / 4 \mathrm{y}\} \text {, } \\
& \{x,-1,1\},\{y,-1,1\}, \text { Axes }->\text { Automatic, } \\
& \text { DisplayFunction- > Identity]; } \\
& \text { In [1165] : = initsol }=\text { DSolve }\left[\left\{x^{\prime}[t]==-1 / 4 x[t]+2 y[t]\right.\right. \text {, } \\
& y^{\prime}[t]==-8 x[t]-1 / 4 y[t], x[0]==x 0 \text {, } \\
& y[0]==y 0\},\{x[t], y[t]\}, t] \\
& \text { Out [1165] }=\left\{\left\{x[t] \rightarrow x 0 \operatorname{Cos}[4 t] \operatorname{Cosh}\left[\frac{t}{4}\right]+\frac{1}{2} y_{0}\right.\right. \\
& \times \operatorname{Cosh}\left[\frac{t}{4}\right] \quad \operatorname{Sin}[4 t]-x 0 \operatorname{Cos}[4 t] \\
& \times \sinh \left[\frac{t}{4}\right]-\frac{1}{2} y^{0} 0 \sin [4 t] \sinh \left[\frac{t}{4}\right],
\end{aligned}
\]
\[
\begin{aligned}
& \text { Out }[1165]=y[t] \rightarrow 2\left(\frac{1}{2} y 0 \quad \operatorname{Cos}[4 t] \operatorname{Cosh}\left[\frac{t}{4}\right]\right. \\
& -x 0 \operatorname{Cosh}\left[\frac{t}{4}\right] \quad \operatorname{Sin}[4 t] \\
& -\frac{1}{2} y^{0} \operatorname{Cos}[4 t] \quad \operatorname{Sinh}\left[\frac{t}{4}\right] \\
& \left.\left.+x 0 \sin \left[4 \text { t] sinh }\left[\frac{t}{4}\right]\right)\right\}\right\} \\
& \text { In [1166]: = t1 = Table[ParametricPlot[ } \\
& \text { Evaluate[\{x[t], y[t]\}/.initsol/. } \\
& \{x 0->1, y 0->i\}],\{t, 0,15\} \text {, } \\
& \text { DisplayFunction- > Identity, } \\
& \text { PlotStyle- > GrayLevel[0.3]], } \\
& \text { \{i, -1, 1, 2/8\}]; } \\
& \text { In [1167]:= Show[t1, pvf, DisplayFunction- > } \\
& \text { \$DisplayFunction, PlotRange- > \{\{-1, 1\}, } \\
& \text { \{-1, 1\}\}, AspectRatio- > Automatic] }
\end{aligned}
\]

Last, we illustrate how to solve an initial-value problem and graph the resulting solutions by finding the solution that satisfies the initial conditions \(x(0)=100\) and \(y(0)=10\) and then graphing the results with Plot and ParametricPlot in Figure 6-20.
```

In [1168] : = partsol = DSolve $\left[\left\{x^{\prime}[t]==-1 / 4 x[t]+2 y[t]\right.\right.$,
$y^{\prime}[t]==-8 x[t]-1 / 4 y[t], x[0]==100$,
$y[0]==10\},\{x[t], y[t]\}, t]$
Out $[1168]=\left\{\left\{x[t] \rightarrow 100 \quad \operatorname{Cos}[4 t] \quad \operatorname{Cosh}\left[\frac{t}{4}\right]\right.\right.$
$+5 \operatorname{Cosh}\left[\frac{t}{4}\right] \operatorname{Sin}[4 t]-100 \operatorname{Cos}[4 t]$
$\sinh \left[\frac{t}{4}\right]-5 \operatorname{Sin}[4 \quad t] \operatorname{Sinh}\left[\frac{t}{4}\right]$,
$y[t] \rightarrow 2\left(5 \operatorname{Cos}[4 t] \quad \operatorname{Cosh}\left[\frac{t}{4}\right]\right.$
$-100 \operatorname{Cosh}\left[\frac{t}{4}\right] \operatorname{Sin}[4 t]$
$-5 \operatorname{Cos}[4 t] \operatorname{Sinh}\left[\frac{t}{4}\right]$
$\left.\left.\left.+100 \operatorname{Sin}[4 \operatorname{t}] \operatorname{Sinh}\left[\frac{t}{4}\right]\right)\right\}\right\}$
In [1169]: $=\mathrm{p} 1=\mathrm{Plot}[$ Evaluate $[\{\mathrm{x}[\mathrm{t}], \mathrm{y}[\mathrm{t}]\} / . \mathrm{partsol}]$,
$\{t, 0,20\}$, PlotStyle- > \{GrayLevel [0],
GrayLevel[0.4]\},
DisplayFunction- > Identity,
PlotRange- > All];

```


Figure 6-20 (a) Graph of \(x(t)\) and \(y(t)\). (b) Parametric plot of \(x(t)\) versus \(y(t)\). (For help with Show and GraphicsArray use the Help Browser)
```

In[1169]:=
p2 = ParametricPlot[
Evaluate[{x[t],y[t]}/.partsol],
{t, 0, 20}, DisplayFunction- > Identity,
AspectRatio- > Automatic];
Show[GraphicsArray[{p1, p2}]]

```

Notice the spiraling motion of the vectors in the direction field. This is due to terms in the solution formed by a product of exponential and trigonometric functions.

Initial-value problems can be solved through the use of eigenvalues and eigenvectors as well.

EXAMPLE 6.3.3: Solve \(\left\{\begin{array}{l}x^{\prime}=-\frac{1}{2} x-y+64 z \\ y^{\prime}=-\frac{1}{4} y-16 z \\ z^{\prime}=y-\frac{1}{4} z \\ x(0)=1, y(0)=-1, z(0)=0 .\end{array}\right.\)

SOLUTION: In matrix form, the system is equivalent to \(\mathbf{X}^{\prime}=\mathbf{A X}\), where \(\mathbf{A}=\left(\begin{array}{ccc}-1 / 2 & -1 & 64 \\ 0 & -1 / 4 & -16 \\ 0 & 1 & -1 / 4\end{array}\right)\). The eigenvalues and corresponding eigenvectors of \(\mathbf{A}\) are found with Eigensystem.
\[
\begin{aligned}
& \text { In }[1170]:= \text { Clear }[\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}] \\
& \text { In }[1171]:= \mathrm{a}= \\
& \qquad\left\{\left(-\frac{1}{2},-1,64\right\},\left\{0,-\frac{1}{4},-16\right\},\right. \\
&\left.\left\{0,1,-\frac{1}{4}\right\}\right\} ; \\
& \text { In }[1172]:= \text { Eigensystem }[\mathrm{a}] \\
& \text { Out }[1172]=\left\{\left\{-\frac{1}{2},-\frac{1}{4}-4 \dot{1},-\frac{1}{4}+4 \dot{1}\right\},\right. \\
&\{\{1,0,0\},\{16 \dot{1},-4 \dot{1}, 1\},\{-16 \dot{1}, 4 \dot{1}, 1\}\}\}
\end{aligned}
\]

These results mean that the eigenvalue \(\lambda_{1}=-1 / 2\) has corresponding eigenvector \(\mathbf{v}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)\) so one solution of the system is \(\mathbf{X}_{1}=\mathbf{v}_{1} e^{\lambda_{1} t}=\) \(\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) e^{-t / 2}\). An eigenvector corresponding to \(\lambda_{2}=-1 / 4+4 i\) is \(\mathbf{v}_{2}=\left(\begin{array}{c}-16 i \\ 4 i \\ 1\end{array}\right)=\) \(\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)+\left(\begin{array}{r}-16 \\ 4 \\ 0\end{array}\right) i\). Thus, two linearly independent solutions that correspond to the complex conjugate pair of eigenvalues \(\lambda_{2,3}=-1 / 4 \pm 4 i\) are
\[
\mathbf{X}_{2}=e^{-t / 4}\left[\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \cos 4 t-\left(\begin{array}{r}
-16 \\
4 \\
0
\end{array}\right) \sin 4 t\right]=\left(\begin{array}{c}
16 \sin 4 t \\
-4 \sin 4 t \\
\cos 4 t
\end{array}\right) e^{-t / 4}
\]
and
\[
\mathbf{X}_{3}=e^{-t / 4}\left[\left(\begin{array}{r}
-16 \\
4 \\
0
\end{array}\right) \cos 4 t+\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \sin 4 t\right]=\left(\begin{array}{c}
-16 \cos 4 t \\
4 \cos 4 t \\
\sin 4 t
\end{array}\right) e^{-t / 4} .
\]

Hence, a general solution of the system is
\[
\begin{aligned}
\mathbf{X} & =c_{1} \mathbf{X}_{1}+c_{2} \mathbf{X}_{2}+c_{3} \mathbf{X}_{3} \\
& =c_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) e^{-t / 2}+c_{2}\left(\begin{array}{c}
16 \sin 4 t \\
-4 \sin 4 t \\
\cos 4 t
\end{array}\right) e^{-t / 4}+c_{3}\left(\begin{array}{c}
-16 \cos 4 t \\
4 \cos 4 t \\
\sin 4 t
\end{array}\right) e^{-t / 4} \\
& =\left(\begin{array}{c}
c_{1} e^{-t / 2}+16 e^{-t / 4}\left(-c_{3} \cos 4 t+c_{2} \sin 4 t\right) \\
4 e^{-t / 4}\left(c_{3} \cos 4 t-c_{2} \sin 4 t\right) \\
e^{-t / 4}\left(c_{2} \cos 4 t+c_{3} \sin 4 t\right)
\end{array}\right)
\end{aligned}
\]
a fundamental matrix is
\[
\boldsymbol{\Phi}=\left(\begin{array}{ccc}
e^{-t / 2} & 16 e^{-t / 4} \sin 4 t & -16 e^{-t / 4} \cos 4 t \\
0 & -4 e^{-t / 4} \sin 4 t & 4 e^{-t / 4} \cos 4 t \\
0 & e^{-t / 4} \cos 4 t & e^{-t / 4} \sin 4 t
\end{array}\right)
\]
```

In[1173]:= x[t_] = c. Exp[-t/2]
+16 Exp[-t/4](c. (
y[t_] = 4 Exp [-t/4]
(-c.c}\operatorname{Sin}[4t]+\mp@subsup{c}{3}{}\operatorname{Cos[4t]);
z[t_] =
Exp[-t/4](c)

```

We solve the initial-value problem by applying the initial condition
\[
\begin{aligned}
& \mathbf{X}(0)=\left(\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right) \\
& \\
& \text { In }[1174]:=\text { sysofeqs }=\{x[0]==1, y[0]==-1, z[0]==0\} \\
& \\
& \text { Out }[1174]=\left\{\mathrm{C}_{1}-16 \mathrm{C}_{3}==1,4 \mathrm{C}_{3}==-1, \mathrm{C}_{2}==0\right\}
\end{aligned}
\]
and solving the resulting system of equations for \(c_{1}, c_{2}\), and \(c_{3}\).
\[
\begin{aligned}
& \text { In }[1175]:=\text { cvals }=\text { Solve } \text { [sysofeqs] } \\
& \text { Out }[1175]=\left\{\left\{c_{2} \rightarrow 0, c_{1} \rightarrow-3, c_{3} \rightarrow-\frac{1}{4}\right\}\right\}
\end{aligned}
\]

Substitution of these values into the general solution yields the solution to the initial-value problem.
\[
\begin{aligned}
\text { In }[1176]:= & \mathbf{x}\left[t_{-}\right]=\mathbf{x}[t] / . \operatorname{cvals}[[1]] \\
& \mathbf{y}\left[t_{-}\right]=\mathbf{y}[t] / \cdot \operatorname{cvals}[[1]] \\
& \mathbf{z}\left[t_{-}\right]=\mathbf{z}[t] / \cdot \operatorname{cvals}[[1]] \\
\text { Out }[1176]= & -3 \mathbb{e}^{-t / 2}+4 e^{-t / 4} \operatorname{Cos}[4 t] \\
\text { Out }[1176]= & -e^{-t / 4} \operatorname{Cos}[4 t] \\
\text { Out }[1176]= & -\frac{1}{4} \mathbb{e}^{-t / 4} \operatorname{Sin}[4 t]
\end{aligned}
\]

We graph \(x(t), y(t)\), and \(z(t)\) with Plot in Figure 6-21 and a parametric plot of \(\left\{\begin{array}{l}x=x(t) \\ y=y(t) \\ z=z(t)\end{array}\right.\) in three dimensions with ParametricPlot 3D in Figure 6-22.


Figure 6-21 \(\quad x(t)\) (in black), \(y(t)\) (in gray), and \(z(t)\) in light gray


Figure 6-22 The solution to the initial-value problem tends to \((0,0,0)\) as \(t \rightarrow \infty\)
```

In[1177]:= Plot[{x[t], y[t], z[t]}, {t, 0, 3\pi},
PlotRange }->{-2\pi,\pi},\mathrm{ AspectRatio }->1\mathrm{ ,
PlotStyle }->\mathrm{ {GrayLevel[0], GrayLevel[0.3],
GrayLevel[0.6]}]

```
```

In[1178]:= ParametricPlot3D[{x[t],y[t], z[t]},
{t, 0, 3\pi}, BoxRatios }->{1,1,1}\mathrm{ ,
PlotPoints }->200

```

As in previous examples, we see that DSolve is able to find a general solution of the system as well as solve the initial-value problem, although the results are given in terms of complex exponentials.
\[
\begin{aligned}
& \text { In [1179]: = Clear [ } \mathbf{x}, \mathbf{y}, \mathbf{z}] \\
& \text { gensol = } \\
& \text { DSolve }\left[\left\{x^{\prime}[t]==-\frac{x[t]}{2}-y[t]+64 z[t],\right.\right. \\
& y^{\prime}[t]==-\frac{y[t]}{4}-16 z[t], \\
& \left.z^{\prime}[t]==y[t]-\frac{z[t]}{4}\right\}, \\
& \{x[t], y[t], z[t]\}, t] \\
& \text { Out [1179] }=\left\{\left.\left\{x[t] \rightarrow e^{-t / 2} C[1]-2 e^{\left(-\frac{1}{2}-4 i\right.}\right) t \right\rvert\,-2 e^{4 i t}+e^{t / 4}\right. \\
& \left.+\mathbb{e}^{\left(\frac{1}{4}+8 i\right) t}\right) C[2] \\
& -8 \dot{i} e^{\left(-\frac{1}{4}-4 \dot{i}\right) t}\left(-1+e^{8 \dot{i} t}\right) C[3], \\
& y[t] \rightarrow \frac{1}{2} e^{\left(-\frac{1}{4}-4 i\right) t}\left(1+e^{8 \dot{i} t}\right) C[2] \\
& +2 \dot{i} e^{\left(-\frac{1}{4}-4 \dot{i}\right) t}\left(-1+\mathbb{e}^{8 \dot{i} t}\right) C[3], \\
& z[t] \rightarrow-\frac{1}{8} \dot{i} e^{\left(-\frac{1}{4}-4 i\right) t}\left(-1+e^{8 \mathrm{i} t}\right) C[2] \\
& \left.\left.+\frac{1}{2} e^{\left(-\frac{1}{4}-4 \dot{i}\right) t}\left(1+e^{8 \dot{i} t}\right) C[3]\right\}\right\} \\
& \text { In [1180]: }=\text { Clear }[\mathbf{x}, \mathrm{y}, \mathrm{z}] \\
& \text { partsol = } \\
& \text { DSolve }\left[\left\{x^{\prime}[t]==-\frac{x[t]}{2}-y[t]+64 z[t],\right.\right. \\
& y^{\prime}[t]==-\frac{y[t]}{4}-16 z[t] \text {, } \\
& z^{\prime}[t]==y[t]-\frac{z[t]}{4}, x[0]==1 \text {, } \\
& y[0]==-1, z[0]==0\} \text {, } \\
& \{x[t], y[t], z[t]\}, t]
\end{aligned}
\]
\[
\begin{aligned}
\text { Out }[1180]=\{ & \left\{x[t] \rightarrow e^{\left(-\frac{1}{2}-4 \dot{i}\right) t}\left(-3 e^{4 \dot{i} t}+2 e^{t / 4}+2 e^{\left(\frac{1}{4}+8 \dot{i}\right) t}\right),\right. \\
y[t] & \rightarrow-\frac{1}{2} e^{\left(-\frac{1}{4}-4 \dot{i}\right) t}\left(1+e^{8 \dot{i} t}\right) \\
& \left.\left.z[t] \rightarrow \frac{1}{8} \dot{i} e^{\left(-\frac{1}{4}-4 \dot{i}\right) t}\left(-1+e^{8 \dot{i} t}\right)\right\}\right\}
\end{aligned}
\]

To see that \(x(t), y(t)\), and \(z(t)\) are real-valued functions, we use Complex Expand together with Simplify or ExpToTrig together with Simplify as follows.
```

In[1181]:= x[t_] =
ExpToTrig[
e
//Simplify
Out[1181]=((-3+4 Cos[4t]) Cosh[\frac{t}{8}]
+(3+4\operatorname{Cos[4t]) Sinh [\frac{t}{8}}])
(\operatorname{Cosh}[\frac{3t}{8}]-\operatorname{sinh}[\frac{3t}{8}])
In[1182]:= y[t_] =
ComplexExpand[
4I e
Out[1182]= - e-t/4}\operatorname{Cos[4t]
In[1183]:= z[t_] =
ComplexExpand[
e
Out[1183]= - < 4}\mp@subsup{e}{}{-t/4}\operatorname{Sin}[4t

```

\subsection*{6.3.3 Alternate Method for Solving Initial-Value Problems}

An alternate method can be used to solve initial-value problems.
Let \(\boldsymbol{\Phi}(t)\) be a fundamental matrix for the system of equations \(\mathbf{X}^{\prime}(t)=\mathbf{A}(t) \mathbf{X}(t)\). Then, a general solution is \(\mathbf{X}(t)=\boldsymbol{\Phi}(t) \mathbf{C}\), where \(\mathbf{C}\) is a constant vector. If the initial
condition \(\mathbf{X}(0)=\mathbf{X}_{0}\) is given, then
\[
\begin{aligned}
\mathbf{X}(0) & =\boldsymbol{\Phi}(0) \mathbf{C} \\
\mathbf{X}_{0} & =\boldsymbol{\Phi}(0) \mathbf{C} \\
\mathbf{C} & =\boldsymbol{\Phi}^{-1}(0) \mathbf{X}_{0} .
\end{aligned}
\]

Therefore, the solution to the initial-value problem \(\left\{\begin{array}{l}\mathbf{X}^{\prime}(t)=\mathbf{A}(t) \mathbf{X}(t) \\ \mathbf{X}(0)=\mathbf{X}_{0}\end{array}\right.\) is \(\mathbf{X}(t)=\) \(\boldsymbol{\Phi}(t) \boldsymbol{\Phi}^{-1}(0) \mathbf{X}_{0}\).

EXAMPLE 6.3.4: Use a fundamental matrix to solve the initial-value problem \(\mathbf{X}^{\prime}=\left(\begin{array}{rr}1 & 1 \\ 4 & -2\end{array}\right) \mathbf{X}\) subject to \(\mathbf{X}(0)=\binom{1}{-2}\).

SOLUTION: We first remark that you can use DSolve to solve the initial-value problem directly with the command
\[
\begin{aligned}
& \text { In }[1184]:=\text { Clear }[\mathbf{x}, \mathrm{y}] \\
& \\
& \qquad \begin{aligned}
& \text { DSolve }\left[\left\{\mathbf{x}^{\prime}[\mathrm{t}]==\mathbf{x}[\mathrm{t}]+\mathrm{y}[\mathrm{t}],\right.\right. \\
& \mathbf{y}^{\prime}[\mathrm{t}]==4 \mathbf{x}[\mathrm{t}]-2 \mathrm{y}[\mathrm{t}], \mathbf{x}[0]==1, \\
&\mathrm{y}[0]==-2\},\{\mathbf{x}[\mathrm{t}], \mathrm{y}[\mathrm{t}]\}, \mathrm{t}]
\end{aligned} \\
& \text { Out }[1184]=\left\{\begin{aligned}
\left\{\mathrm{x}[\mathrm{t}] \rightarrow \frac{1}{5} e^{-3 t}\left(3+2 e^{5 t}\right),\right. \\
\left.\left.\qquad y[t] \rightarrow \frac{2}{5} e^{-3 t}\left(-6+e^{5 t}\right)\right\}\right\}
\end{aligned}\right.
\end{aligned}
\]

The eigenvalues and corresponding eigenvectors of \(\mathbf{A}=\left(\begin{array}{rr}1 & 1 \\ 4 & -2\end{array}\right)\) are found with Eigensystem.
```

In[1185]:= a={{1, 1}, {4, -2 }};
Eigensystem[a]

```
Out \([1185]=\{\{-3,2\},\{\{-1,4\},\{1,1\}\}\}\)

Hence, the eigenvalues are \(\lambda_{1}=-3\) and \(\lambda_{2}=2\) with corresponding eigenvectors \(\mathbf{v}_{1}=\binom{-1}{4}\) and \(\mathbf{v}_{1}=\binom{1}{1}\), respectively. A fundamental matrix is then given by \(\boldsymbol{\Phi}(t)=\left(\begin{array}{ll}-e^{3 t} & e^{2 t} \\ 4 e^{3 t} & e^{2 t}\end{array}\right)\).
```

In[1186]:= \Psi[t_] = {{-\operatorname{Exp}[-3t], Exp[2t]},
{4 Exp[-3t], Exp[2t]}};
MatrixForm[\Psi[t]]
Out[1186]=(

```

Inverse [A] finds the inverse of the square matrix \(\mathbf{A}\), if \(\mathbf{A}\) is invertible.

We calculate \(\boldsymbol{\Phi}^{-1}(0)\) with Inverse.
\[
\begin{aligned}
& \text { In }[1187]:=\text { Inverse }[\Psi[0]] / / \text { MatrixForm } \\
& \text { Out }[1187]=\left(\begin{array}{cc}
-\frac{1}{5} & \frac{1}{5} \\
\frac{4}{5} & \frac{1}{5}
\end{array}\right)
\end{aligned}
\]

Hence, the solution to the initial-value problem is \(\mathbf{X}(t)=\boldsymbol{\Phi}(t) \boldsymbol{\Phi}^{-1}(0) \mathbf{X}_{0}\).
\[
\begin{aligned}
& \text { In }[1188]:=\text { sol }=\Psi[t] . \text { Inverse }[\Psi[0]] \cdot\{1,-2\} / / \\
& \text { Simplify } \\
& \text { Out }[1188]=\left\{\frac{1}{5} e^{-3 t}\left(3+2 e^{5 t}\right), \frac{2}{5} e^{-3 t}\left(-6+e^{5 t}\right)\right\}
\end{aligned}
\]

As in the previous examples, we graph \(x(t)\) and \(y(t)\) together in Figure 6-23 (a) and parametrically in (b).

(a)

Figure 6-23 (a) \(x(t)\) (in black) and \(y(t)\) (in gray). (b) Parametric plot of \(x(t)\) versus \(y(t)\)
```

In[1189]:= Plot[Evaluate[sol], {t, -1, 3},
PlotStyle- > {GrayLevel[0], GrayLevel[0.5]},
PlotRange- > {-2, 2}, AspectRatio- > 1]
In[1190]:= ParametricPlot[sol, {t, -1, 3}]

```

\subsection*{6.3.4 Repeated Eigenvalues}

We now consider the case of repeated eigenvalues, which is more complicated than the other cases because two situations can arise. An eigenvalue of multiplicity \(m\) may have \(m\) corresponding linearly independent eigenvectors or it can have fewer than \(m\) corresponding linearly independent eigenvectors. In the case of \(m\) linearly independent eigenvectors, a general solution is found in the same manner as the case of \(n\) distinct eigenvalues.

EXAMPLE 6.3.5: Solve \(\mathbf{X}^{\prime}=\left(\begin{array}{lll}1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4\end{array}\right) \mathbf{X}\).

SOLUTION: The eigenvalues and corresponding eigenvectors of \(\mathbf{A}=\left(\begin{array}{lll}1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4\end{array}\right)\) are found with Eigensystem. In [1191]: = Clear[ \(\mathbf{x}, \mathrm{y}, \mathrm{z}, \mathrm{a}\) ] \(a=\{\{1,-3,3\},\{3,-5,3\},\{6,-6,4\}\} ;\)

Eigensystem[a]
Out [1191] \(=\{\{-2,-2,4\}\),
\(\{\{-1,0,1\},\{1,1,0\},\{1,1,2\}\}\}\)
From the results, we see that the eigenvalue \(\lambda_{1,2}=-2\) of multiplicity 2
has two corresponding linearly independent eigenvectors, \(\mathbf{v}_{1}=\left(\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right)\)
and \(\mathbf{v}_{2}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)\). An eigenvector corresponding to \(\lambda_{3}=4\) is \(\mathbf{v}_{3}=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)\) so a
fundamental set of solutions for the system is \(S=\left\{\left(\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right) e^{-2 t},\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right) e^{-2 t}\right.\), \(\left.\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right) e^{4 t}\right\}\). A general solution is then
\[
\begin{aligned}
\mathbf{X} & =c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+c_{2} \mathbf{v}_{2} e^{\lambda_{2} t}+c_{3} \mathbf{v}_{3} e^{\lambda_{3} t} \\
& =c_{1}\left(\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right) e^{-2 t}+c_{2}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) e^{-2 t}+c_{3}\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right) e^{4 t} \\
& =\left(\begin{array}{c}
\left(c_{1}-c_{2}\right) e^{-2 t}+c_{3} e^{4 t} \\
c_{1} e^{-2 t}+c_{3} e^{4 t} \\
c_{2} e^{-2 t}+2 c_{3} e^{4 t}
\end{array}\right)
\end{aligned}
\]
and a fundamental matrix is
\[
\boldsymbol{\Phi}=\left(\begin{array}{ccc}
e^{-2 t} & -e^{-2 t} & e^{4 t} \\
e^{-2 t} & 0 & e^{4 t} \\
0 & e^{-2 t} & 2 e^{4 t}
\end{array}\right)
\]

Of course, DSolve can be used to find a general solution of the system as well, although the form is slightly different than that obtained above.
\[
\begin{aligned}
& \text { In [1192]: = DSolve[ } \\
& \text { Thread }\left[\left\{x^{\prime}[t], y^{\prime}[t], z^{\prime}[t]\right\}==\right. \\
& \text { a. }\{x[t], y[t], z[t]\}] \text {, } \\
& \{x[t], y[t], z[t]\}, t] / / S i m p l i f y \\
& \text { Out }[1192]=\left\{\left\{x [ t ] \rightarrow \frac { 1 } { 2 } e ^ { - 2 t } \left(\left(1+e^{6 t}\right) C[1]\right.\right.\right. \\
& \left.-\left(-1+e^{6 t}\right)(C[2]-C[3])\right), \\
& y[t] \rightarrow \frac{1}{2} e^{-2 t}\left(\left(-1+e^{6 t}\right) C[1]\right. \\
& \left.-\left(-3+e^{6 t}\right) C[2]+\left(-1+e^{6 t}\right) C[3]\right), \\
& z[t] \rightarrow \mathbb{e}^{-2 t}\left(\left(-1+\mathbb{e}^{6 t}\right) C[1]+C[2]\right. \\
& \left.\left.\left.-e^{6 t} C[2]+e^{6 t} C[3]\right)\right\}\right\}
\end{aligned}
\]

Because an eigenvalue of multiplicity 2 can have only one corresponding eigenvector, let us first restrict our attention to a system where the repeated eigenvalue \(\lambda_{1}=\lambda_{2}\) of \(\mathbf{A}\) has only one corresponding eigenvector \(\mathbf{v}_{1}\). We obtain one solution, \(\mathbf{X}_{1}=\mathbf{v}_{1} e^{\lambda_{1} t}\), to the system \(\mathbf{X}^{\prime}=\mathbf{A X}\) that corresponds to the eigenvalue \(\lambda_{1}\) of A. We now seek a second linearly independent solution corresponding to \(\lambda_{1}\) in a
manner similar to that considered in the case of repeated characteristic roots of higher-order equations. In this case, however, we suppose that the second linearly independent solution corresponding to \(\lambda_{1}\) is of the form
\[
\mathbf{X}_{2}=\left(\mathbf{v}_{2} t+\mathbf{w}_{2}\right) e^{\lambda_{1} t} .
\]

In order to find \(\mathbf{v}_{2}\) and \(\mathbf{w}_{2}\), we substitute \(\mathbf{X}_{2}\) into \(\mathbf{X}^{\prime}=\mathbf{A X}\). Because \(\mathbf{X}_{2}^{\prime}=\lambda_{1}\left(\mathbf{v}_{2} t+\right.\) \(\left.\mathbf{w}_{2}\right) e^{\lambda_{1} t}+\mathbf{v}_{2} e^{\lambda_{1} t}\), we have
\[
\begin{aligned}
\mathbf{X}_{2}^{\prime} & =\mathbf{A} \mathbf{X}_{2} \\
\lambda_{1}\left(\mathbf{v}_{2} t+\mathbf{w}_{2}\right) e^{\lambda_{1} t}+\mathbf{v}_{2} e^{\lambda_{1} t} & =\mathbf{A}\left(\mathbf{v}_{2} t+\mathbf{w}_{2}\right) e^{\lambda_{1} t} \\
\lambda_{1} \mathbf{v}_{2} t+\left(\lambda_{1} \mathbf{w}_{2}+\mathbf{v}_{2}\right) & =\mathbf{A} \mathbf{v}_{2} t+\mathbf{A} \mathbf{w}_{2} .
\end{aligned}
\]

Equating coefficients yields \(\lambda_{1} \mathbf{v}_{2}=\mathbf{A} \mathbf{v}_{2}\) and \(\lambda_{1} \mathbf{w}_{2}+\mathbf{v}_{2}=\mathbf{A} \mathbf{w}_{2}\). The equation \(\lambda_{1} \mathbf{v}_{2}=\) \(\mathbf{A} \mathbf{v}_{2}\) indicates that \(\mathbf{v}_{2}\) is an eigenvector of \(\mathbf{A}\) that corresponds to \(\lambda_{1}\), so we choose \(\mathbf{v}_{2}=\mathbf{v}_{1}\). We simplify the equation \(\lambda_{1} \mathbf{w}_{2}+\mathbf{v}_{2}=\mathbf{A} \mathbf{w}_{2}\) :
\[
\begin{aligned}
\lambda_{1} \mathbf{w}_{2}+\mathbf{v}_{2} & =\mathbf{A} \mathbf{w}_{2} \\
\mathbf{v}_{2} & =\mathbf{A} \mathbf{w}_{2}-\lambda_{1} \mathbf{w}_{2} \\
\mathbf{v}_{2} & =\left(\mathbf{A}-\lambda_{1} \mathbf{I}\right) \mathbf{w}_{2} .
\end{aligned}
\]

Because \(\mathbf{v}_{2}=\mathbf{v}_{1}, \mathbf{w}_{2}\) satisfies the equation
\[
\left(\mathbf{A}-\lambda_{1} \mathbf{I}\right) \mathbf{w}_{2}=\mathbf{v}_{1} .
\]

Therefore, a second linearly independent solution corresponding to the eigenvalue \(\lambda_{2}\) has the form
\[
\mathbf{X}_{2}=\left(\mathbf{v}_{1} t+\mathbf{w}_{2}\right) e^{\lambda_{1} t},
\]
where \(\mathbf{w}_{2}\) satisfies \(\left(\mathbf{A}-\lambda_{1} \mathbf{I}\right) \mathbf{w}_{2}=\mathbf{v}_{1}\).

EXAMPLE 6.3.6: Find a general solution of \(\mathbf{X}^{\prime}=\left(\begin{array}{rr}-8 & -1 \\ 16 & 0\end{array}\right) \mathbf{X}\).

SOLUTION: We first note that DSolve can find a general solution of the system.
```

In[1193]:= DSolve[{\mp@subsup{\mathbf{x}}{}{\prime}[t]==-8\mathbf{x}[t]-y[t],
\mp@subsup{y}{}{\prime}}[t]==16x[t]},{x[t],y[t]},t

```

```

 y[t] -> 16 e e-4t t C[1] + e e-4t (1 + 4t) C[2]}}
    ```

LinearSolve [A, b] solves \(\mathbf{A x}=\mathbf{b}\) for \(\mathbf{x}\).

We find the eigenvalues and corresponding eigenvectors of \(\mathbf{A}=\left(\begin{array}{rr}-8 & -1 \\ 16 & 0\end{array}\right)\) with Eigensystem.
\[
\begin{aligned}
\text { In }[1194]:= & \mathbf{a}=\left(\begin{array}{cc}
-8 & -1 \\
16 & 0
\end{array}\right) ; \\
& \text { Eigensystem }[a] \\
\text { Out }[1194]= & \{\{-4,-4\},\{\{-1,4\},\{0,0\}\}\}
\end{aligned}
\]

Hence, \(\lambda_{1,2}=-4\) and an eigenvector that corresponds to \(\lambda_{1}=-4\) is \(\mathbf{v}_{1}=\binom{1}{4}\) and one solution to the system is \(\mathbf{X}_{1}=\binom{-1}{4} e^{-4 t}\); there is not a second linearly independent eigenvector corresponding to this repeated eigenvalue.

Therefore, to find \(\mathbf{w}_{2}=\binom{x_{2}}{y_{2}}\) in a second linearly independent solution \(\mathbf{X}_{2}=\left(\mathbf{v}_{1} t+\mathbf{w}_{2}\right) e^{\lambda_{1} t}\), we solve \(\left(\mathbf{A}-\lambda_{1} \mathbf{I}\right) \mathbf{w}_{2}=\mathbf{v}_{1}\), which in this case is
\[
\left(\begin{array}{rr}
-4 & -1 \\
16 & 4
\end{array}\right)\binom{x_{2}}{y_{2}}=\binom{-1}{4},
\]
with LinearSolve.
\[
\begin{aligned}
\text { In }[1195]:= & \text { LinearSolve }[a+4 \text { IdentityMatrix }[2], \\
\text { Out }[1195]= & \{-1,4\}]
\end{aligned}
\]

We can use Solve to solve the system as well,
\[
\begin{aligned}
& \text { In [1196] } \left.:=\text { Solve }\left[\left\{-4 \mathbf{x}_{2}-\mathbf{y}_{2}==-1,16 \mathbf{x}_{2}+4 \mathbf{y}_{2}=\mathbf{=}\right\}\right\}\right] \\
& \text { Out }[1196]=\left\{\left\{\mathbf{x}_{2} \rightarrow \frac{1}{4}-\frac{Y_{2}}{4}\right\}\right\}
\end{aligned}
\]
which indicates that \(x_{2}=\frac{1}{4}\left(1-y_{2}\right)\). Choosing \(y_{2}=0, x_{2}=1 / 4\). With \(\mathbf{w}_{2}=\binom{1 / 4}{0}\), a second linearly independent solution is
\[
\mathbf{X}_{2}=\left[\binom{-1}{4} t+\binom{1 / 4}{0}\right] e^{-4 t}
\]
and a general solution is
\[
\mathbf{X}=c_{1}\binom{-1}{4} e^{-4 t}+c_{2}\left[\binom{-1}{4} t+\binom{1 / 4}{0}\right] e^{-4 t}
\]
a fundamental matrix for the system is
\[
\Phi=\left(\begin{array}{cc}
-1 & -t+1 / 4 \\
4 & 4 t
\end{array}\right) e^{-4 t}
\]


Figure 6-24 All solutions tend to \((0,0)\) as \(t \rightarrow \infty\)

We now graph several solutions of the system as well as the direction field associated with the system in Figure 6-24.
```

In[1197]:= sol =
c
+C
In[1198]:= step1 = Table[sol, {cc, -2, 2},
{c, -2, 2}];
In[1199]:= toplot = Flatten[step1, 1];
In[1200]:= pp1 = ParametricPlot[Evaluate[toplot],
{t, -1, 1}, PlotStyle- > GrayLevel [0],
DisplayFunction- > Identity];
In[1201]:= << Graphics'PlotField`
In[1202]:= pvf= PlotVectorField[{-8x - y, 16x},
{x, -40, 40}, {y, -40, 40},
DisplayFunction- > Identity,
DefaultColor- > GrayLevel[0.5],
ScaleFunction- > (1\&)];

```
```

In[1203]:= line = Plot[-4x, {x, -30, 40},
PlotStyle- >
{{GrayLevel[0.3], Thickness[0.01]}},
DisplayFunction- > Identity];
In[1204]:= Show[pvf,pp1, line,
PlotRange- > {{-40, 40}, {-40, 40}},
Axes- > Automatic, AspectRatio- > 1,
DisplayFunction- > \$DisplayFunction]

```

In Figure 6-24, notice that the behavior of these solutions differs from those of the other systems solved earlier in the section. This is due to the repeated eigenvalues.

A similar method is carried out in the case that an eigenvalue of \(\mathbf{A}\) has multiplicity 3. Suppose that \(\lambda_{1}=\lambda_{2}=\lambda_{3}\) has only one linearly independent corresponding eigenvector \(\mathbf{v}_{1}\). In this situation, one solution of \(\mathbf{X}^{\prime}=\mathbf{A X}\) is \(\mathbf{X}_{1}=\mathbf{v}_{1} e^{\lambda_{1} t}\). We assume that two other linearly independent solutions have the form
\[
\mathbf{X}_{2}=\left(\mathbf{v}_{2} t+\mathbf{w}_{2}\right) e^{\lambda_{1} t} \quad \text { and } \quad \mathbf{X}_{3}=\left(\frac{1}{2} \mathbf{v}_{3} t^{2}+\mathbf{w}_{3} t+\mathbf{u}_{3}\right) e^{\lambda_{1} t}
\]

Substitution of these solutions into the system of differential equations \(\mathbf{X}^{\prime}=\mathbf{A X}\) yields the following system of equations that is solved for the unknown vectors \(\mathbf{v}_{2}, \mathbf{w}_{2}, \mathbf{v}_{3}, \mathbf{w}_{3}\), and \(\mathbf{u}_{3}\) :
\[
\left\{\begin{array}{l}
\lambda_{1} \mathbf{v}_{2}=\mathbf{A} \mathbf{v}_{2} \\
\left(\mathbf{A}-\lambda_{1} \mathbf{I}\right) \mathbf{w}_{2}=\mathbf{v}_{2} \\
\lambda_{1} \mathbf{v}_{3}=\mathbf{A} \mathbf{v}_{3} \\
\left(\mathbf{A}-\lambda_{1} \mathbf{I}\right) \mathbf{w}_{3}=\mathbf{v}_{3} \\
\left(\mathbf{A}-\lambda_{1} \mathbf{I}\right) \mathbf{u}_{3}=\mathbf{w}_{3} .
\end{array}\right.
\]

Similar to the previous case, \(\mathbf{v}_{1}=\mathbf{v}_{2}=\mathbf{v}_{3}, \mathbf{w}_{2}=\mathbf{w}_{3}\), and the vector \(\mathbf{u}_{3}\) is found by solving the system
\[
\left(\mathbf{A}-\lambda_{1} \mathbf{I}\right) \mathbf{u}_{3}=\mathbf{w}_{2} .
\]

Hence, the three solutions have the form
\[
\mathbf{X}_{1}=\mathbf{v}_{1} e^{\lambda_{1} t}, \quad \mathbf{X}_{2}=\left(\mathbf{v}_{1} t+\mathbf{w}_{2}\right) e^{\lambda_{1} t}, \quad \text { and } \quad \mathbf{X}_{3}=\left(\frac{1}{2} \mathbf{v}_{1} t^{2}+\mathbf{w}_{2} t+\mathbf{u}_{3}\right) e^{\lambda_{1} t}
\]

Notice that this method is generalized for instances when the multiplicity of the repeated eigenvalue is greater than 3 .

EXAMPLE 6.3.7: Solve \(\mathbf{X}^{\prime}=\left(\begin{array}{rrr}1 & 1 & 1 \\ 2 & 1 & -1 \\ -3 & 2 & 4\end{array}\right) \mathbf{X}\).

SOLUTION: After defining A, we can also use DSolve to find a general solution of the system.
\[
\begin{aligned}
& \text { In [1205] : = DSolve[ } \\
& \text { Thread [\{ } \left.x^{\prime}[t], y^{\prime}[t], z^{\prime}[t]\right\}== \\
& \text { a. }\{x[t], y[t], z[t]\}] \text {, } \\
& \{x[t], y[t], z[t]\}, t] \\
& \text { Out }[1205]=\left\{\left\{x[t] \rightarrow-\mathbb{e}^{2 t}(-1+t) C[1]\right.\right. \\
& +\mathbb{e}^{2 t} t C[2]+\mathbb{e}^{2 t} t C[3], \\
& y[t] \rightarrow-\frac{1}{2} e^{2 t}(-4+t) t C[1] \\
& +\frac{1}{2} e^{2 t}\left(2-2 t+t^{2}\right) C[2] \\
& +\frac{1}{2} e^{2 t}(-2+t) t C[3], \\
& z[t] \rightarrow \frac{1}{2} e^{2 t}(-6+t) t C[1]-\frac{1}{2} e^{2 t}(-4+t) t C[2] \\
& \left.\left.-\frac{1}{2} \mathbb{e}^{2 t}\left(-2-4 t+t^{2}\right) C[3]\right\}\right\}
\end{aligned}
\]

Alternatively, we can use the eigenvalues and corresponding eigenvectors to construct a general solution.

The eigenvalues and corresponding eigenvectors of \(\mathbf{A}=\left(\begin{array}{rrr}1 & 1 & 1 \\ 2 & 1 & -1 \\ -3 & 2 & 4\end{array}\right)\) are found with Eigensystem.
```

In[1206]:= a = {{1, 1, 1}, {2, 1, -1}, {-3, 2, 4}};
Eigensystem[a]

```
Out \([1206]=\{\{2,2,2\},\{\{0,-1,1\},\{0,0,0\},\{0,0,0\}\}\}\)

Here, \(\lambda_{1,2,3}=2\) has multiplicity 3 and has one eigenvector, \(\mathbf{v}_{1}=\left(\begin{array}{r}0 \\ -1 \\ 1\end{array}\right)\), that corresponds to it; there are not 1 or 2 other linearly independent eigenvectors corresponding to \(\lambda=2\). One solution of the system is
\(\mathbf{X}_{1}=\left(\begin{array}{r}0 \\ -1 \\ 1\end{array}\right) e^{2 t}\). The vector \(\mathbf{w}_{2}=\left(\begin{array}{l}x_{2} \\ y_{2} \\ z_{2}\end{array}\right)\) in the second linearly independent solution of the form \(\mathbf{X}_{2}=\left(\mathbf{v}_{1} t+\mathbf{w}_{2}\right) e^{2 t}\) is found by solving the system \(\left(\mathbf{A}-\lambda_{1} \mathbf{I}\right) \mathbf{w}_{2}=\mathbf{v}_{1}\). We can solve this system with Solve or LinearSolve. Here we use LinearSolve
```

In[1207]:= LinearSolve[a-2 IdentityMatrix[3],
{0, -1, 1}]
Out [1207] = {-1, -1,0}

```
to see that \(\mathbf{w}_{2}=\left(\begin{array}{r}-1 \\ -1 \\ 0\end{array}\right)\), so \(\mathbf{X}_{2}=\left(\left(\begin{array}{r}0 \\ -1 \\ 1\end{array}\right) t+\left(\begin{array}{r}-1 \\ -1 \\ 0\end{array}\right)\right) e^{2 t}\). Finally, we must determine the vector \(\mathbf{u}_{3}=\left(\begin{array}{l}x_{3} \\ y_{3} \\ z_{3}\end{array}\right)\) in the third linearly independent solution \(\mathbf{X}_{3}=\left(\frac{1}{2} \mathbf{v}_{1} t^{2}+\mathbf{w}_{2} t+\mathbf{u}_{3}\right) e^{\lambda_{1} t}\) by solving the system \(\left(\mathbf{A}-\lambda_{1} \mathbf{I}\right) \mathbf{u}_{3}=\) \(\mathrm{w}_{2}\).
```

In[1208]:= Solve[
(a-2 IdentityMatrix[3]).{\mp@subsup{x}{3}{},\mp@subsup{y}{3}{\prime},\mp@subsup{z}{3}{}}==
{-1, -1, 0}]

```

Solve : : svars :
Equations may not give solutions
\[
\begin{aligned}
& \text { for all "solve" variables. } \\
& \text { Out }[1208]=\left\{\left\{\mathrm{x}_{3} \rightarrow-2, \mathrm{y}_{3} \rightarrow-3-\mathrm{z}_{3}\right\}\right\}
\end{aligned}
\]

Therefore, \(x_{3}=-2\) and \(y_{3}=-3-z_{3}\). We select \(z_{3}=0\) so \(y_{3}=-3\). Hence, \(\mathbf{u}_{3}=\left(\begin{array}{r}-2 \\ -3 \\ 0\end{array}\right)\) and a third linearly independent solution is \(\mathbf{X}_{3}=\) \(\left(\frac{1}{2}\left(\begin{array}{r}0 \\ -1 \\ 1\end{array}\right) t^{2}+\left(\begin{array}{r}-1 \\ -1 \\ 0\end{array}\right) t+\left(\begin{array}{r}-2 \\ -3 \\ 0\end{array}\right)\right) e^{2 t}\). A general solution is then given by
\[
\begin{aligned}
\mathbf{X} & =c_{1} \mathbf{X}_{1}+c_{2} \mathbf{X}_{2}+c_{3} \mathbf{X}_{3} \\
& =c_{1}\left(\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right) e^{2 t}+c_{2}\left(\left(\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right) t+\left(\begin{array}{r}
-1 \\
-1 \\
0
\end{array}\right)\right) e^{2 t}+c_{3}\left(\frac{1}{2}\left(\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right) t^{2}+\left(\begin{array}{r}
-1 \\
-1 \\
0
\end{array}\right) t+\left(\begin{array}{r}
-2 \\
-3 \\
0
\end{array}\right)\right) e^{2 t} \\
& =\left(\begin{array}{c}
-c_{2}+c_{3}(-t-2) \\
-c_{1}+c_{2}(-t-1)+c_{3}\left(-\frac{1}{2} t^{2}-t-3\right) \\
c_{1}+c_{2} t+\frac{1}{2} c_{3} t^{2}
\end{array}\right) e^{2 t} .
\end{aligned}
\]

\subsection*{6.4 Nonhomogeneous First-Order Systems: Undetermined Coefficients, Variation of Parameters, and the Matrix Exponential}

In Chapter 4, we learned how to solve nonhomogeneous differential equations through the use of Undetermined Coefficients and Variation of Parameters. Here we approach the solution of systems of nonhomogeneous equations using those methods.

Let
\[
\mathbf{X}(t)=\left(\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right), \quad \mathbf{A}(t)=\left(\begin{array}{cccc}
a_{11}(t) & a_{12}(t) & \ldots & a_{1 n}(t) \\
a_{21}(t) & a_{22}(t) & \ldots & a_{2 n}(t) \\
\vdots & \vdots & \ldots & \vdots \\
a_{n 1}(t) & a_{n 2}(t) & \ldots & a_{n n}(t)
\end{array}\right), \quad \text { and } \quad \mathbf{F}(t)=\left(\begin{array}{c}
f_{1}(t) \\
f_{2}(t) \\
\vdots \\
f_{n}(t)
\end{array}\right) .
\]

A general solution of the homogeneous system \(\mathbf{X}^{\prime}=\mathbf{A X}\) is \(\mathbf{X}=\boldsymbol{\Phi}(t) \mathbf{C}\), where \(\boldsymbol{\Phi}(t)=\left(\begin{array}{llll}\boldsymbol{\Phi}_{1} & \boldsymbol{\Phi}_{2} & \cdots & \boldsymbol{\Phi}_{n}\end{array}\right)\) is a fundamental matrix for the system \(\mathbf{X}^{\prime}=\mathbf{A X}\) and \(\mathbf{C}=\) \(\left(\begin{array}{c}c_{1} \\ c_{2} \\ \vdots \\ c_{n}\end{array}\right)\) is
is an \(n \times 1\) constant vector.

Let \(\mathbf{X}\) be any solution of \(\mathbf{X}^{\prime}=\mathbf{A X}+\mathbf{F}(t), \mathbf{X}_{h}=\boldsymbol{\Phi}(t) \mathbf{C}\) a general solution of the corresponding homogeneous system, \(\mathbf{X}^{\prime}=\mathbf{A X}\), and \(\mathbf{X}_{p}\) a particular solution of the nonhomogeneous system.

Then, \(\mathbf{X}-\mathbf{X}_{p}\) is a solution of the corresponding homogeneous system, \(\mathbf{X}^{\prime}=\mathbf{A X}\), so \(\mathbf{X}-\mathbf{X}_{p}=\mathbf{X}_{h}\) and, consequently, \(\mathbf{X}=\mathbf{X}_{h}+\mathbf{X}_{p}\).

Thus, to find a general solution of \(\mathbf{X}^{\prime}=\mathbf{A X}+\mathbf{F}(t)\), we note that if \(\mathbf{X}_{p}\) is a particular solution of the equation then all other solutions to the equation can be written in the form
\[
\mathbf{X}=\frac{\boldsymbol{\Phi}(t) \mathbf{C}+\mathbf{X}_{p} .}{\mathbf{X}_{h}}
\]

\subsection*{6.4.I Undetermined Coefficients}

We use the method of undetermined coefficients to find a particular solution of a nonhomogeneous system in much the same way as we approached nonhomogeneous higher-order equations in Chapter 4. The main difference is that the coefficients are constant vectors when we work with systems.

A particular solution to a system of ordinary differential equations is a set of functions that satisfy the system but do not contain any arbitrary constants. That is, a particular solution to a system is a set of specific functions, containing no arbitrary constants, that satisfy the system.
\(\mathbf{X}_{h}=\boldsymbol{\Phi} \mathbf{C}\) is a general solution of the corresponding homogeneous equation, \(\mathbf{X}^{\prime}=\mathbf{A X}\).

EXAMPLE 6.4.1: Solve \(\left\{\begin{array}{l}x^{\prime}=2 x+y+\sin 3 t \\ y^{\prime}=-8 x-2 y \\ x(0)=0, y(0)=1 .\end{array}\right.\)

SOLUTION: In matrix form, the system is equivalent to \(\mathbf{X}^{\prime}=\left(\begin{array}{rr}2 & 1 \\ -8 & -2\end{array}\right) \mathbf{X}\) \(+\binom{\sin 3 t}{0}\). We find a general solution of the corresponding homogeneous system \(\mathbf{X}^{\prime}=\left(\begin{array}{rr}2 & 1 \\ -8 & -2\end{array}\right) \mathbf{X}\) with DSolve.
```

In[1209]:= homsol =
DSolve[{x'[t] == 2 x [t] + y [t],
y'[t] == - 8 x[t] - 2 y[t]}, {x[t],y[t]},
t]//Simplify

```
Out \([1209]=\{\{x[t] \rightarrow C[1] \operatorname{Cos}[2 t]+(2 C[1]\)
    \(+C[2]) \operatorname{Cos}[t] \operatorname{Sin}[t]\),
    \(y[t] \rightarrow C[2] \operatorname{Cos}[2 t]-(4 C[1]\)
                        \(+C[2]) \operatorname{Sin}[2 t]\}\}\)

These results indicate that a general solution of the corresponding homogeneous system is
\[
\begin{aligned}
& \mathbf{X}_{h}=\left(\begin{array}{cc}
-\cos 2 t-\sin 2 t & \sin 2 t-\cos 2 t \\
4 \sin 2 t & 4 \cos 2 t
\end{array}\right)\binom{c_{1}}{c_{2}} . \\
& \text { In }[1210]:=\mathbf{x}_{\mathrm{h}}\left[\mathrm{t}_{-}\right]=\binom{\mathbf{x}[\mathrm{t}]}{\mathrm{y}[\mathrm{t}]} / \text { homsol }[[1]] ;
\end{aligned}
\]

Thus, we search for a particular solution of the nonhomogeneous system of the form \(\mathbf{X}_{p}=\mathbf{a} \sin 3 t+\mathbf{b} \cos 3 t\), where \(\mathbf{a}=\binom{a_{1}}{a_{2}}\) and \(\mathbf{b}=\binom{b_{1}}{b_{2}}\). After defining \(\mathbf{A}=\left(\begin{array}{rr}2 & 1 \\ -8 & -2\end{array}\right)\) and \(\mathbf{X}_{p}=\mathbf{a} \sin 3 t+\mathbf{b} \cos 3 t\), we substitute \(\mathbf{X}_{p}\) into the nonhomogeneous system.
\[
\begin{aligned}
& \operatorname{In}[1211]:=\text { capa }=\left(\begin{array}{rr}
2 & 1 \\
-8 & -2
\end{array}\right) ; \\
& \operatorname{In}[1212]:=\mathbf{x}_{\mathrm{p}}\left[\mathrm{t}_{-}\right]=\binom{\mathrm{a}_{1}}{\mathrm{a}_{2}} \operatorname{Sin}[3 \mathrm{t}]+\binom{\mathrm{b}_{1}}{\mathrm{~b}_{2}} \operatorname{Cos}[3 \mathrm{t}] ;
\end{aligned}
\]
```

$\operatorname{In}[1213]:=$ step $1=\mathbf{x}_{\mathrm{p}}{ }^{\prime}[\mathrm{t}]==\operatorname{capa} \cdot \mathbf{x}_{\mathrm{p}}[\mathrm{t}]+\binom{\operatorname{Sin}[3 \mathrm{t}]}{0} / /$
Simplify
Out $[1213]=\left\{\left\{-3 \operatorname{Sin}[3 t] b_{1}+3 \operatorname{Cos}[3 t] a_{1}\right\}\right.$,
$\left\{-3 \sin [3 t] b_{2}\right.$
$\left.\left.+3 \operatorname{Cos}[3 t] \mathrm{a}_{2}\right\}\right\}==$
$\left\{\left\{2 \operatorname{Cos}[3 t] \mathrm{b}_{1}+\operatorname{Cos}[3 t] \mathrm{b}_{2}\right.\right.$
$\left.+\operatorname{Sin}[3 t]\left(1+2 a_{1}+a_{2}\right)\right\}$,
$\left\{-2\left(4 \operatorname{Cos}[3 t] b_{1}+\operatorname{Cos}[3 t] b_{2}\right.\right.$
$\left.\left.\left.+\operatorname{Sin}[3 t]\left(4 a_{1}+a_{2}\right)\right)\right\}\right\}$

```

The result represents a system of equations that is true for all values of \(t\). In particular, substituting \(t=0\) yields
```

In[1214]:= eq1 = step1/.t->0
Out[1214]={{3{{1, 1},{4,-2}} } },
{3{{1,1},{4,-2}} } }}==
{{2 \mp@subsup{\textrm{b}}{1}{}+\mp@subsup{\textrm{b}}{2}{}},{-2(4\mp@subsup{\textrm{b}}{1}{}+\mp@subsup{\textrm{b}}{2}{})}}

```
which is equivalent to the system of equations
\[
\left\{\begin{array}{l}
3 a_{1}=2 b_{1}+b_{2} \\
3 a_{2}=-2\left(4 b_{1}+b_{2}\right)
\end{array}\right.
\]

Similarly, substituting \(t=\pi / 2\) results in
\[
\begin{aligned}
\text { In }[1215]:= & \text { eq2 }=\text { step } 1 / \cdot \mathrm{t}->\pi / 2 \\
\text { Out }[1215]= & \left\{\left\{3 \mathrm{~b}_{1}\right\},\left\{3 \mathrm{~b}_{2}\right\}\right\}== \\
& \left\{\left\{-1-2 \mathrm{a}_{1}-\mathrm{a}_{2}\right\},\right. \\
& \left.\left\{-2\left(-4 \mathrm{a}_{1}-\mathrm{a}_{2}\right)\right\}\right\}
\end{aligned}
\]
which is equivalent to the system of equations
\[
\left\{\begin{array}{l}
3 b_{1}=-1-2 a_{1}-a_{2} \\
3 b_{2}-2\left(-4 a_{1}-a_{2}\right) .
\end{array}\right.
\]

We now use Solve to solve these four equations for \(a_{1}, a_{2}, b_{1}\), and \(b_{2}\)
\[
\begin{aligned}
& \text { In }[1216]:=\text { coeffs }=\text { Solve }[\{\text { eq1 }, \text { eq2 }\}] \\
& \text { Out }[1216]=\left\{\left\{\mathrm{b}_{1} \rightarrow-\frac{3}{5}, \mathrm{~b}_{2} \rightarrow 0, \mathrm{a}_{1} \rightarrow-\frac{2}{5}, \mathrm{a}_{2} \rightarrow \frac{8}{5}\right\}\right\}
\end{aligned}
\]
and substitute into \(\mathbf{X}_{p}\) to obtain a particular solution to the nonhomogeneous system.

```

Out [1217] = {{- - 3

```

A general solution to the nonhomogeneous system is then given by \(\mathbf{X}=\mathbf{X}_{h}+\mathbf{X}_{p}\).
\[
\begin{aligned}
\operatorname{In}[1218]:= & \mathbf{x}\left[\mathrm{t}_{-}\right]=\mathbf{x}_{\mathrm{h}}[\mathrm{t}]+\mathbf{x}_{\mathrm{p}}[\mathrm{t}] \\
\text { Out }[1218]= & \left\{\left\{\mathrm{C}[1] \operatorname{Cos}[2 \mathrm{t}]-\frac{3}{5} \operatorname{Cos}[3 \mathrm{t}]\right.\right. \\
& \left.(2 \mathrm{C}[1]+\mathrm{C}[2]) \operatorname{Cos}[\mathrm{t}] \operatorname{Sin}[\mathrm{t}]-\frac{2}{5} \operatorname{Sin}[3 \mathrm{t}]\right\}, \\
& \{\mathrm{C}[2] \operatorname{Cos}[2 \mathrm{t}]-(4 \mathrm{C}[1]+\mathrm{C}[2]) \operatorname{Sin}[2 \mathrm{t}] \\
& \left.\left.+\frac{8}{5} \operatorname{Sin}[3 t]\right\}\right\}
\end{aligned}
\]

To solve the initial-value problem, we apply the initial condition and solve for the unknown constants.
\[
\begin{aligned}
& \text { In }[1219]:=\mathbf{x}[0] \\
& \text { Out }[1219]=\left\{\left\{-\frac{3}{5}+C[1]\right\},\{C[2]\}\right\} \\
& \text { In }[1220]:=\text { cvals }=\operatorname{Solve}[\mathbf{x}[0]==\{\{0\},\{1\}\}] \\
& \text { Out }[1220]=\left\{\left\{C[1] \rightarrow \frac{3}{5}, C[2] \rightarrow 1\right\}\right\}
\end{aligned}
\]

We obtain the solution by substituting these values back into the general solution.
```

In[1221]:= x[t_] = x[t]/.cvals[[1]]//Flatten//
Simplify
Out [1221]={\frac{1}{5}(3\operatorname{Cos[2t]-3 Cos[3t]}
+11 Cos[t] Sin[t] - 2 Sin[3t]),
Cos[2t]-\frac{17}{5}}\operatorname{Sin}[2t]+\frac{8}{5}\operatorname{Sin}[3t]

```

We confirm this result by graphing \(x(t)\) (in black) and \(y(t)\) (in gray) together in Figure 6-25 (a) as well as parametrically in (b).
```

In[1222]:= Plot[Evaluate[x[t]],{t, 0, 4\pi},
PlotStyle }
{GrayLevel[0], GrayLevel[0.5]},
PlotRange }->{-2\pi,2\pi},\mathrm{ AspectRatio }->1
In[1223]:= ParametricPlot[x[t], {t, 0, 4\pi},
PlotRange }->{{-6,5},{-5,6}}
AspectRatio }->\mathrm{ 1, Compiled }->\mathrm{ False]

```


Figure 6-25 (a) \(x(t)\) (in black) and \(y(t)\) (in gray). (b) Parametric plot of \(x(t)\) versus \(y(t)\)

Finally, we note that DSolve is able to find a general solution of the nonhomogeneous system
```

In[1224]:= Clear[\mathbf{x},\textrm{y},\textrm{t}]
gensol =
Simplify[
DSolve[{x'[t] == 2 x[t] + y[t] + Sin[3t],
y'[t] == - 8 x [t] - 2 y [t]}, {x[t],
y[t]},t]]
Out [1224]={{x[t]->C[1] Cos[2t]-\frac{3}{5}\operatorname{Cos[3t]}
+C[2] Cos[t] Sin[t] + C[1] Sin[2t]
- -
-(4C[1] + C[2]) Sin[2t]
+\frac{8}{5}}\operatorname{Sin}[3t]}

```
as well as solve the initial-value problem.
```

In[1225]:= partsol =
Simplify[
DSolve[{x'[t] == 2 x[t] + y[t] + Sin[3t],
y'[t] == - 8 x[t] - 2 y [t], x[0] == 0,
y[0] == 1}, {x[t],y[t]},t]]

```
\[
\begin{aligned}
& \text { Out [1225] }=\left\{\left\{x[t] \rightarrow \frac{1}{10}(6 \operatorname{Cos}[2 t]\right.\right. \\
& -6 \operatorname{Cos}[3 t]+11 \operatorname{Sin}[2 t] \\
& -4 \operatorname{Sin}[3 t]) \text {, } \\
& y[t] \rightarrow \operatorname{Cos}[2 t]-\frac{17}{5} \operatorname{Sin}[2 t] \\
& \left.\left.+\frac{8}{5} \operatorname{Sin}[3 t]\right\}\right\} \\
& \text { In [1226]:= partsol[[1, 1, 2]]//ExpToTrig// } \\
& \text { Simplify } \\
& \text { Out [1226] }=\frac{1}{10}(6 \operatorname{Cos}[2 t] \\
& -6 \operatorname{Cos}[3 t]+11 \operatorname{Sin}[2 t]-4 \operatorname{Sin}[3 t]) \\
& \text { In [1227]:= partsol[[1, 2, 2]]//ExpToTrig// } \\
& \text { Simplify } \\
& \text { Out [1227] }=\operatorname{Cos}[2 t]-\frac{17}{5} \operatorname{Sin}[2 t]+\frac{8}{5} \operatorname{Sin}[3 t]
\end{aligned}
\]

\subsection*{6.4.2 Variation of Parameters}

Generally, the method of undetermined coefficients is difficult to implement for nonhomogeneous linear systems as the choice for the particular solution must be very carefully made.

Variation of parameters is implemented in much the same way as for first-order linear equations.

Let \(\boldsymbol{\Phi}\) be a fundamental matrix for the corresponding homogeneous system. We assume that a particular solution has the form \(\mathbf{X}_{p}=\boldsymbol{\Phi} \mathbf{U}(t)\). Differentiating \(\mathbf{X}_{p}\) gives us
\[
\mathbf{X}_{p}^{\prime}=\Phi^{\prime} \mathbf{U}+\boldsymbol{\Phi} \mathbf{U}^{\prime}
\]

Substituting into equation \(\mathbf{X}^{\prime}=\mathbf{A X}+\mathbf{F}(t)\) results in
\[
\begin{aligned}
\Phi^{\prime} \mathbf{U}+\boldsymbol{\Phi} \mathbf{U}^{\prime} & =\mathbf{A} \boldsymbol{\Phi} \mathbf{U}+\mathbf{F} \\
\boldsymbol{\Phi} \mathbf{U}^{\prime} & =\mathbf{F} \\
\mathbf{U}^{\prime} & =\boldsymbol{\Phi}^{-1} \mathbf{F} \\
\mathbf{U} & =\int \boldsymbol{\Phi}^{-1} \mathbf{F} d t
\end{aligned}
\]
where we have used the fact that \(\boldsymbol{\Phi}^{\prime} \mathbf{U}-\mathbf{A} \boldsymbol{\Phi} \mathbf{U}=\left(\boldsymbol{\Phi}^{\prime}-\mathbf{A} \boldsymbol{\Phi}\right) \mathbf{U}=\mathbf{0}\). It follows that
\[
\begin{equation*}
\mathbf{X}_{p}=\boldsymbol{\Phi} \int \boldsymbol{\Phi}^{-1} \mathbf{F} d t \tag{6.15}
\end{equation*}
\]

A general solution is then
\[
\begin{aligned}
\mathbf{X} & =\mathbf{X}_{h}+\mathbf{X}_{p} \\
& =\boldsymbol{\Phi} \mathbf{C}+\boldsymbol{\Phi} \int \boldsymbol{\Phi}^{-1} \mathbf{F} d t \\
& =\boldsymbol{\Phi}\left(\mathbf{C}+\int \boldsymbol{\Phi}^{-1} \mathbf{F} d t\right)=\boldsymbol{\Phi} \int \boldsymbol{\Phi}^{-1} \mathbf{F} d t
\end{aligned}
\]
where we have incorporated the constant vector \(\mathbf{C}\) into the indefinite integral \(\int \Phi^{-1} \mathbf{F} d t\).

EXAMPLE 6.4.2: Solve the initial-value problem
\[
\mathbf{X}^{\prime}=\left(\begin{array}{rr}
1 & -1 \\
10 & -1
\end{array}\right) \mathbf{X}-\binom{t \cos 3 t}{t \sin t+t \cos 3 t}, \quad \mathbf{X}(0)=\binom{1}{-1} .
\]

Remark. In traditional form, the system is equivalent to
\[
\left\{\begin{array}{l}
x^{\prime}=x-y-t \cos 3 t \\
y^{\prime}=10 x-y-t \sin t-t \cos 3 t,
\end{array} \quad x(0)=1, y(0)=-1 .\right.
\]

SOLUTION: The corresponding homogeneous system is \(\mathbf{X}_{h}^{\prime}=\left(\begin{array}{rr}1 & -1 \\ 10 & -1\end{array}\right) \mathbf{X}_{h}\).
The eigenvalues and corresponding eigenvectors of \(\mathbf{A}=\left(\begin{array}{rr}1 & -1 \\ 10 & -1\end{array}\right)\) are \(\lambda_{1,2}= \pm 3 i\) and \(\mathbf{v}_{1,2}=\binom{1}{10} \pm\binom{ 3}{0} i\), respectively.
```

In[1228]:= capa = {{1, -1},{10,-1}};
Eigensystem[capa]

```
Out [1228]= \{\{-3 i, 3 i \(\},\{\{1-3 i, 10\},\{1+3 i, 10\}\}\}\)

A fundamental matrix is \(\boldsymbol{\Phi}=\left(\begin{array}{cc}\sin 3 t & \cos 3 t \\ \sin 3 t-3 \cos 3 t \cos 3 t+3 \sin 3 t\end{array}\right)\) with inverse \(\boldsymbol{\Phi}^{-1}=\left(\begin{array}{cc}\frac{1}{3} \cos 3 t+\sin 3 t & -\frac{1}{3} \cos 3 t \\ -\frac{1}{3} \sin 3 t+\cos 3 t & \frac{1}{3} \sin 3 t\end{array}\right)\).
```

In[1229]:= fm={{Sin[3t], Sin[3t]-3\operatorname{Cos[3t]},}
{Cos[3t], Cos[3t] + 3 Sin[3t]}}//Transpose;
fminv = Inverse[fm]//Simplify
Out [1229]={{\frac{1}{3}\operatorname{Cos[3 t] + Sin[3 t], Cos[3 t]}
- -
\frac{1}{3}}\operatorname{Sin}[3 t]}

```

We now compute \(\boldsymbol{\Phi}^{-1} \mathbf{F}(t)\)
```

In[1230]:= ft={-t Cos[3t],-t Sin[t]-t Cos[3t]};
step1 = fminv.ft
Out [1230] ={(-t Cos[3 t] - t Sin[t]) (Cos[3 t]
-\frac{1}{3}}\operatorname{Sin}[3 t])-t \operatorname{Cos[3 t] (}\frac{1}{3}\operatorname{Cos[3 t]
+ Sin[3 t]), 支 t Cos[3 t] [
+\frac{1}{3}}(-t \operatorname{Cos[3 t]
-t Sin[t])}\operatorname{sin}[3 t]

```
and \(\int \Phi^{-1} \mathbf{F}(t) d t\).
```

In[1231]:= step2 = Integrate[step1,t]
Out [1231]={\frac{1}{864}}(-288\mp@subsup{t}{}{2}+36 \operatorname{Cos[2 t}
-216 t Cos[2 t] - 9 Cos[4 t]
+108 t Cos[4 t] - 16 Cos[6 t]
+48 t Cos[6 t]
+108 Sin[2 t] + 72 t Sin[2 t]
-27 Sin[4 t] - 36 t Sin[4 t]
-8 Sin[6 t]-96 t Sin[6 t]), 位
(72 t' - 36 Cos[2t] + 9 Cos[4 t]
+4 Cos[6 t] +24 t Cos[6 t]
-72 t Sin[2 t] + 36 t Sin[4 t]
-4 Sin[6 t] + 24 t sin[6 t])}

```

A general solution of the nonhomogeneous system is then \(\boldsymbol{\Phi}\left(\int \boldsymbol{\Phi}^{-1} \mathbf{F}(t)\right.\) \(d t+\mathbf{C})\).
```

In[1232]:= Simplify[fm.step2]

```
\[
\begin{aligned}
\text { Out }[1232]=\{ & \frac{1}{288}\left(27 \operatorname{Cos}[t]-4\left(\left(1+6 t+18 t^{2}\right)\right.\right. \\
& \times \operatorname{Cos}[3 t]+27 t \sin [t]-\operatorname{Sin}[3 t] \\
& \left.\left.+6 t \operatorname{Sin}[3 t]+18 t^{2} \operatorname{Sin}[3 t]\right)\right) \\
& \frac{1}{288}\left(-36 t \operatorname{Cos}[t]-4\left(1-6 t+18 t^{2}\right)\right. \\
& \times \operatorname{Cos}[3 t]-45 \sin [t]-4 \sin [3 t] \\
& \left.\left.-24 t \sin [3 t]+72 t^{2} \sin [3 t]\right)\right\}
\end{aligned}
\]

It is easiest to use DSolve to solve the initial-value problem directly as we do next.
\[
\begin{aligned}
\text { In }[1233]:=\text { check }= & \operatorname{DSolve}\left[\left\{\mathbf{x}^{\prime}[\mathrm{t}]=\mathbf{x}[\mathrm{t}]\right.\right. \\
& -\mathrm{y}[\mathrm{t}]-\mathrm{t} \operatorname{Cos}[3 \mathrm{t}], \mathrm{y}^{\prime}[\mathrm{t}]==10 \mathbf{x}[\mathrm{t}]-\mathrm{y}[\mathrm{t}] \\
& -\mathrm{t} \operatorname{Sin}[\mathrm{t}]-\mathrm{t} \operatorname{Cos}[3 \mathrm{t}], \mathbf{x}[0]==1, \\
& \mathrm{y}[0]==-1\},\{\mathbf{x}[\mathrm{t}], \mathrm{y}[\mathrm{t}]\}, \mathrm{t}] \\
\text { Out }[1233]=\{\{\mathrm{x}[\mathrm{t}] \rightarrow & \frac{1}{288}(-9 \operatorname{Cos}[\mathrm{t}]+297 \operatorname{Cos}[3 \mathrm{t}] \\
& -72 \mathrm{t}^{2} \operatorname{Cos}[3 \mathrm{t}]+36 \mathrm{t} \operatorname{Sin}[\mathrm{t}] \\
& +192 \operatorname{Sin}[3 \mathrm{t}]-24 \mathrm{t} \operatorname{Sin}[3 \mathrm{t}]), \\
\mathrm{y}[\mathrm{t}] \rightarrow & \frac{1}{288}(-9 \operatorname{Cos}[\mathrm{t}]-36 \mathrm{t} \operatorname{Cos}[\mathrm{t}] \\
& -279 \operatorname{Cos}[3 \mathrm{t}]-72 \mathrm{t} \operatorname{Cos}[3 \mathrm{t}] \\
& -72 \mathrm{t}^{2} \operatorname{Cos}[3 \mathrm{t}]-45 \operatorname{Sin}[\mathrm{t}] \\
& +36 \mathrm{t} \operatorname{Sin}[\mathrm{t}]+1107 \operatorname{Sin}[3 \mathrm{t}] \\
& -24 \mathrm{t} \operatorname{Sin}[3 \mathrm{t}]-216 \operatorname{t} \operatorname{Sin}[3 \mathrm{t}])\}\}
\end{aligned}
\]

After using ?Evaluate to obtain basic information regarding the Evaluate function, the solutions are graphed with Plot and Para metricPlot in Figure 6-26.


Figure 6-26 (a) Graph of \(x(t)\) (in black) and \(y(t)\) (in gray). (b) Parametric plot of \(x(t)\) versus \(y(t)\)
```

In[1234]:= ?Evaluate
"Evaluate[expr]causesexprtobeevaluatedeven
ifitappearsastheargumentofafunction
whoseattributesspecifythatitshouldbe
heldunevaluated."
In[1235]:= p1 = Plot[Evaluate[{x[t], y[t]}/.check],
{t, 0, 8\pi}, PlotStyle- > {GrayLevel[0],
GrayLevel[0.4]},DisplayFunction- >
Identity];
p2 = ParametricPlot[Evaluate[{x[t],
y[t]}/.check], {t, 0, 8\pi},
DisplayFunction- > Identity,
AspectRatio- > Automatic];
Show[GraphicsArray[{p1, p2}]]

```

EXAMPLE 6.4.3: Solve \(\left\{\begin{array}{l}x^{\prime}=-3 x+2 y+e^{t} \sec t \\ y^{\prime}=-10 x+5 y+e^{t} \csc t, \quad 0<t<\pi . \\ x(\pi / 4)=3, y(\pi / 4)=-1\end{array}\right.\)

SOLUTION: To implement the method of Variation of Parameters, we proceed in the same manner as before. First, we find a general solution of the corresponding homogeneous system.
```

In[1236]:= Clear[x,y,a]
a=(}$$
\begin{array}{cc}{-3}&{2}\\{-10}&{5}\end{array}
$$)
In[1237]:= homsol = DSolve[
Thread[{\mp@subsup{x}{}{\prime}[t], y'[t]} ==
a.{x[t],y[t]}],
{x[t],y[t]},t]//
FullSimplify;

```

This result means that a general solution of the corresponding homogeneous system is
\[
\mathbf{X}_{h}=\left(\begin{array}{cc}
e^{t}(-\cos 2 t+2 \sin 2 t) & e^{t}(2 \cos 2 t+\sin 2 t) \\
5 e^{t} \sin 2 t & 5 e^{t} \cos 2 t
\end{array}\right)\binom{c_{1}}{c_{2}}
\]
and a fundamental matrix is given by
\[
\begin{gathered}
\mathbf{\Phi}=\left(\begin{array}{cc}
e^{t}(-\cos 2 t+2 \sin 2 t) & e^{t}(2 \cos 2 t+\sin 2 t) \\
5 e^{t} \sin 2 t & 5 e^{t} \cos 2 t
\end{array}\right) \\
\operatorname{In}[1238]:=\Psi\left[\mathrm{t}_{-}\right]= \\
\left(\begin{array}{cc}
\operatorname{Exp}[\mathrm{t}](-\operatorname{Cos}[2 \mathrm{t}]+2 \operatorname{Sin}[2 \mathrm{t}]) & \operatorname{Exp}[\mathrm{t}](2 \operatorname{Cos}[2 \mathrm{t}]+\operatorname{Sin}[2 \mathrm{t}]) \\
5 \operatorname{Exp}[\mathrm{t}] \operatorname{Sin}[2 \mathrm{t}] & 5 \operatorname{Exp}[\mathrm{t}] \operatorname{Cos}[2 \mathrm{t}]
\end{array}\right) ;
\end{gathered}
\]

Next, we compute \(\mathbf{X}_{p}(t)=\boldsymbol{\Phi}(t) \int \boldsymbol{\Phi}^{-1}(t) \mathbf{F}(t) d t\). The result is very lengthy so we suppress the resulting output by including a semi-colon at the end of the command.
```

In[1239]:= inverse\Psi = Inverse[\Psi[t]]//Simplify;
MatrixForm[inverse\Psi]
Out[1239]=(($$
\begin{array}{cc}{\mp@subsup{e}{}{-t}\operatorname{Cos[2t]}}&{\frac{1}{5}\mp@subsup{\mathbb{e}}{}{-t}(2\operatorname{Cos}[2t]+\operatorname{Sin}[2t])}\\{\mp@subsup{e}{}{-t}\operatorname{Sin}[2t]}&{\frac{1}{5}\mp@subsup{\mathbb{e}}{}{-t}(\operatorname{Cos}[2t]-2\operatorname{Sin}[2t])}\end{array}
$$)
In[1240]:= f[t_] =(($$
\begin{array}{l}{\operatorname{Exp}[t]\operatorname{Sec}[t]}\\{\operatorname{Exp}[t]\operatorname{Csc}[t]}\end{array}
$$);
x
\Psi[t].Integrate[Inverse[\Psi[t]].f[t], t]//
Simplify;

```

However, we view abbreviations of \(x(t)\) and \(y(t)\) with Short.
```

In[1241]:= }\mp@subsup{\mathbf{x}}{\textrm{p}}{}[\textrm{t}][[1]]//\mathrm{ Short
Out[1241]= {e e
In[1242]:= }\mp@subsup{\mathbf{x}}{\textrm{p}}{}[\textrm{t}][[2]]//\mathrm{ Short
Out [1242]= {-\mp@subsup{\mathbb{e}}{}{t}(<<<1>>)}

```

Finally, we form a general solution of the nonhomogeneous system.
\[
\operatorname{In}[1243]:=\mathbf{x}\left[t_{-}\right]=\Psi[t] \cdot\binom{c_{1}}{c_{2}}+\mathbf{x}_{\mathrm{p}}[\mathrm{t}] / / \text { Simplify; }
\]

To solve the initial-value problem, we substitute \(t=\pi / 4\) into the general solution
```

In[1244]:= x[\pi/4]//FullSimplify

```
\[
\begin{aligned}
& \text { Out [1244] }=\left\{\left\{e ^ { \pi / 4 } \left(-2 \sqrt{2}-2 \log \left[\operatorname{Cos}\left[\frac{\pi}{8}\right]-\operatorname{Sin}\left[\frac{\pi}{8}\right]\right]\right.\right.\right. \\
& +2 \log \left[\operatorname{Cos}\left[\frac{\pi}{8}\right]+\operatorname{Sin}\left[\frac{\pi}{8}\right]\right] \\
& \left.\left.+\log \left[\operatorname{Tan}\left[\frac{\pi}{8}\right]\right]+2 \mathrm{C}_{1}+\mathrm{C}_{2}\right)\right\}, \\
& \left\{e ^ { \pi / 4 } \left(-2 \sqrt{2}+2 \log \left[\operatorname{Sec}\left[\frac{\pi}{8}\right]\right]\right.\right. \\
& -5 \log \left[\operatorname{Cos}\left[\frac{\pi}{8}\right]-\operatorname{Sin}\left[\frac{\pi}{8}\right]\right] \\
& +2 \log \left[\operatorname{Sin}\left[\frac{\pi}{8}\right]\right]+5 \log \left[\operatorname{Cos}\left[\frac{\pi}{8}\right]\right. \\
& \left.\left.\left.\left.+\operatorname{Sin}\left[\frac{\pi}{8}\right]\right]+5 \mathrm{c}_{1}\right)\right\}\right\}
\end{aligned}
\]
and solve \(\left\{\begin{array}{l}x(\pi / 4)=3 \\ y(\pi / 4)=-1\end{array}\right.\) for \(c_{1}\) and \(c_{2}\).
\[
\begin{aligned}
\text { In }[1245]:=\text { cvals } & =\operatorname{Solve}\left[\mathbf{x}[\pi / 4]==\binom{3}{-1}\right] \\
\text { Out }[1245]=\left\{\left\{C_{2} \rightarrow\right.\right. & \frac{1}{5} e^{-\pi / 4}\left(17+6 \sqrt{2} e^{\pi / 4}+e^{\pi / 4} \log \left[\operatorname{Cos}\left[\frac{\pi}{8}\right]\right]\right. \\
& \left.-e^{\pi / 4} \log \left[\operatorname{Sin}\left[\frac{\pi}{8}\right]\right]\right), \\
\mathrm{C}_{1} \rightarrow & \frac{1}{5} e^{-\pi / 4}\left(-1+2 \sqrt{2} e^{\pi / 4}+2 e^{\pi / 4} \log \left[\operatorname{Cos}\left[\frac{\pi}{8}\right]\right]\right. \\
& +5 \mathbb{e}^{\pi / 4} \log \left[\operatorname{Cos}\left[\frac{\pi}{8}\right]\right. \\
& \left.-\operatorname{Sin}\left[\frac{\pi}{8}\right]\right]-2 \mathbb{e}^{\pi / 4} \log \left[\operatorname{Sin}\left[\frac{\pi}{8}\right]\right] \\
& \left.\left.\left.-5 \mathbb{e}^{\pi / 4} \log \left[\operatorname{Cos}\left[\frac{\pi}{8}\right]+\operatorname{Sin}\left[\frac{\pi}{8}\right]\right]\right)\right\}\right\}
\end{aligned}
\]

This result is rather complicated so we compute more meaningful approximations with N .
```

In[1246]:= numcvals = N[cvals]
Out [1246] = {{\mp@subsup{c}{2}{}.->3.42352, c, 隹 - 0.0543264}}

```

The solution to the initial-value problem is obtained by substituting these numbers back into the general solution.
\[
\operatorname{In}[1247]:=\mathbf{x}\left[t_{-}\right]=\mathbf{x}[t] / . \operatorname{cvals}[[1]] / / \mathbf{N}
\]
```

Out[1247]= {{2.71828索(-4. Cos[t] + Cos[2.t]
* (Log[Cos[0.5t]-1.Sin[0.5t]]
-1. Log[\operatorname{Cos[0.5t] + Sin[0.5t]])}
+0.0543264 (Cos[2.t] - 2. Sin[2.t])
+(-1. Log[Cos[0.5t]]-2. Log[Cos[0.5t]
-1. Sin[0.5t]]+\operatorname{Log}[Sin[0.5t]]
+2. Log[\operatorname{Cos[0.5t] + Sin[0.5t]]) Sin[2.t]}
+3.42352(2. Cos[2.t] + Sin[2.t]))},
{2.71828t (17.1176 Cos[2.t] - 1. Cos[2.t]
* (Log[\operatorname{Cos[0.5t]]-1. Log[Sin[0.5t]])}
+4. Sin[t] - 2. Cos[t] (4.
+(2. Log[Cos[0.5t]]+5. Log[Cos[0.5t]
-1. Sin[0.5t]]-2. Log[Sin[0.5t]]
-5. Log[\operatorname{Cos[0.5t] + Sin[0.5t]]) Sin[t])}
-0.271632 Sin[2.t])}}

```

We confirm that the initial conditions are satisfied by graphing \(x(t)\) and \(y(t)\) on the interval \((0, \pi / 2)\) in Figure 6-27.
```

In[1248]:= Plot[Evaluate[x[t]],{t,0, 交},
PlotStyle }->\mathrm{ {GrayLevel[0], GrayLevel[0.5]}]

```


Figure 6-27 \(x(t)\) (in black) and \(y(t)\) (in gray)

\subsection*{6.4.3 The Matrix Exponential}

Definition 28 (Matrix Exponential). If \(\mathbf{A} t\) is \(n \times n\), the matrix exponential is defined by
\[
\begin{equation*}
e^{\mathbf{A} t}=\exp (\mathbf{A} t)=\mathbf{I}+\mathbf{A} t+\frac{1}{2!} \mathbf{A}^{2} t^{2}+\cdots=\sum_{n=0}^{\infty} \frac{1}{n!} \mathbf{A}^{n} t^{n} \tag{6.16}
\end{equation*}
\]

Use the command MatrixExp to compute the matrix exponential of a matrix. For example, here we use MatrixExp to calculate \(e^{\mathbf{A} t}\) if \(\mathbf{A}=\left(\begin{array}{rr}1 & 0 \\ -2 & 3\end{array}\right)\).
```

In[1249]:= MatrixExp[{{t, 0},{-2t, 3t}}]
Out[1249]= {{\mp@subsup{e}{}{t},0},{\mp@subsup{e}{}{t}-\mp@subsup{e}{}{3t},\mp@subsup{e}{}{3t}}}

```

Differentiating the series (6.16) term-by-term shows us that \(\frac{d}{d t}\left(e^{\mathbf{A} t}\right)=\mathbf{A} e^{\mathbf{A} t}\) so \(e^{\mathbf{A} t}\) satisfies the differential equation \(\mathbf{X}^{\prime}=\mathbf{A X}\). We can use the matrix exponential \(e^{\mathbf{A} t}\) to solve the linear first-order system \(\mathbf{X}^{\prime}=\mathbf{A X}+\mathbf{F}(t)\) in much the same way that we used the integrating factor \(e^{\int p(x) d x}\) to solve the linear first-order equation \(y^{\prime}\) \(+p(x) y=q(x)\). Moreover, \(e^{\mathbf{A} t}\) is a fundamental matrix for the homogeneous system; \(\left(e^{\mathbf{A} t}\right)^{-1}=e^{-\mathbf{A} t}\); and if \(t=0, e^{\mathbf{A} t}=\mathbf{I}\).

To solve the system \(\mathbf{X}^{\prime}=\mathbf{A X}+\mathbf{F}(t)\), we first rewrite it as \(\mathbf{X}^{\prime}-\mathbf{A X}=\mathbf{F}(t)\). Now, multiply both sides of the equation by \(e^{-\mathbf{A} t}\) and integrate:
\[
\begin{aligned}
e^{-\mathbf{A} t}\left(\mathbf{X}^{\prime}-\mathbf{A} \mathbf{X}\right) & =e^{-\mathbf{A} t} \mathbf{F}(t) \\
\frac{d}{d t}\left(e^{-\mathbf{A} t} \mathbf{X}\right) & =e^{-\mathbf{A} t} \mathbf{F}(t) \\
e^{-\mathbf{A} t} \mathbf{X} & =\int e^{-\mathbf{A} t} \mathbf{F}(t) d t+\mathbf{C} \\
\mathbf{X} & =e^{\mathbf{A} t} \int e^{-\mathbf{A} t} \mathbf{F}(t) d t+e^{\mathbf{A} t} \mathbf{C}
\end{aligned}
\]
where \(C\) is an arbitrary constant vector.
If, in addition, we are given the initial condition \(\mathbf{X}\left(t_{0}\right)=\mathbf{X}_{0}\), the solution to the initial-value problem \(\left\{\begin{array}{l}\mathbf{X}^{\prime}=\mathbf{A} \mathbf{X}+\mathbf{F}(t) \\ \mathbf{X}\left(t_{0}\right)=\mathbf{X}_{0}\end{array}\right.\) is
\[
\mathbf{X}=\int_{t_{0}}^{t} e^{\mathbf{A}(t-s)} \mathbf{F}(s) d s+e^{\mathbf{A}\left(t-t_{0}\right)} \mathbf{X}_{0}
\]

EXAMPLE 6.4.4: Solve \(\mathbf{X}^{\prime}=\left(\begin{array}{rr}2 & 5 \\ -4 & -2\end{array}\right) \mathbf{X}+\binom{\cos 4 t}{\sin 4 t}\).

SOLUTION: Here, \(\mathbf{A}=\left(\begin{array}{rr}2 & 5 \\ -4 & -2\end{array}\right)\). We compute \(e^{\mathbf{A} t}\) with MatrixExp.
\[
\left.\begin{array}{rl}
\text { In }[1250]:= & a=\left(\begin{array}{cc}
2 & 5 \\
-4 & -2
\end{array}\right) ; \\
\text { In }[1251]:= & \text { expa = MatrixExp[at]//ExpToTrig// } \\
& \text { FullSimplify; }
\end{array}\right] \begin{aligned}
& \text { MatrixForm[expa] } \\
& \text { Out }[1251]=( \left(\begin{array}{cc}
\operatorname{Cos}[4 t]+\frac{1}{2} \operatorname{Sin}[4 t] & \frac{5}{4} \operatorname{Sin}[4 t] \\
-\operatorname{Sin}[4 t] & \operatorname{Cos}[4 t]-\frac{1}{2} \operatorname{Sin}[4 t]
\end{array}\right)
\end{aligned}
\]

A general solution of the system is then given by \(\mathbf{X}=e^{\mathbf{A} t} \int e^{-\mathbf{A} t} \mathbf{F}(t) d t\) \(+e^{\mathbf{A} t} \mathbf{C}\). We compute \(e^{-\mathbf{A} t}, \int e^{-\mathbf{A} t} \mathbf{F}(t) d t\), and \(e^{\mathbf{A} t} \int e^{-\mathbf{A} t} \mathbf{F}(t) d t\).
\[
\begin{aligned}
& \text { In [1252]: = invexpa = Inverse[expa]//Simplify; } \\
& \text { MatrixForm[invexpa] } \\
& \operatorname{Out}[1252]=\left(\begin{array}{cc}
\operatorname{Cos}[4 t]-\frac{1}{2} \operatorname{Sin}[4 t] & -\frac{5}{4} \operatorname{Sin}[4 t] \\
\operatorname{Sin}[4 t] & \operatorname{Cos}[4 t]+\frac{1}{2} \operatorname{Sin}[4 t]
\end{array}\right) \\
& \operatorname{In}[1253]:=\mathrm{f}\left[\mathrm{t}_{-}\right]=\binom{\operatorname{Cos}[4 \mathrm{t}]}{\operatorname{Sin}[4 t]} ; \\
& \text { In [1254]:= step1 = invexpa.f[t]//Simplify; } \\
& \text { MatrixForm[step1] } \\
& \text { Out }[1254]=\binom{\frac{1}{8}(-1+9 \operatorname{Cos}[8 t]-2 \sin [8 t])}{\frac{1}{4}-\frac{1}{4} \operatorname{Cos}[8 t]+\operatorname{Sin}[8 t]} \\
& \text { In [1255]: = step2 = Integrate[step1, t]//Simplify; }
\end{aligned}
\]

\section*{MatrixForm[step2]}

Out \([1255]=\binom{\frac{1}{64}(-8 t+2 \operatorname{Cos}[8 t]+9 \sin [8 t])}{\frac{1}{32}(8 t-4 \operatorname{Cos}[8 t]-\sin [8 t])}\)
In [1256]: = step3 = expa.step2//Simplify;

MatrixForm[step3]
Out \([1256]=\binom{\frac{1}{64}((2-8 t) \cos [4 t]+(9+16 t) \sin [4 t])}{\frac{1}{32}((-4+8 t) \cos [4 t]-\sin [4 t])}\)

Then, we form our general solution.
\[
\begin{aligned}
\text { In }[1257]:= & \text { gensol }=\text { step3 }+ \text { expa } \cdot\binom{c_{1}}{c_{2}} / / \text { Simplify } \\
\text { Out }[1257]=\{ & \left\{\frac{1}{64}((2-8 t) \operatorname{Cos}[4 t]+(9+16 t) \operatorname{Sin}[4 t])\right. \\
& \left.+\left(\operatorname{Cos}[4 t]+\frac{1}{2} \operatorname{Sin}[4 t]\right){C_{1}}+\frac{5}{4} \operatorname{Sin}[4 t] \mathrm{C}_{2}\right\}, \\
& \left\{\frac{1}{32}((-4+8 t) \operatorname{Cos}[4 t]-\operatorname{Sin}[4 t])\right. \\
& \left.\left.-\operatorname{Sin}[4 t] \mathrm{C}_{1}+\left(\operatorname{Cos}[4 t]-\frac{1}{2} \operatorname{Sin}[4 t]\right){C_{2}}\right\}\right\}
\end{aligned}
\]

To graph the solution parametrically for various values of the arbitrary constant, we use Flatten to convert gensol to a list of the form \(\{x(t), y(t)\}\).
\[
\begin{aligned}
\text { In }[1258]:= & \text { step } 1=\text { Flatten [gensol] } \\
\text { Out }[1258]= & \left\{\frac{1}{64}((2-8 t) \operatorname{Cos}[4 t]+(9+16 t) \operatorname{Sin}[4 t])\right. \\
& +\left(\operatorname{Cos}[4 t]+\frac{1}{2} \operatorname{Sin}[4 t]\right) C_{1}+\frac{5}{4} \operatorname{Sin}[4 t] C_{2}, \\
& \frac{1}{32}((-4+8 t) \operatorname{Cos}[4 t]-\operatorname{Sin}[4 t]) \\
& \left.-\operatorname{Sin}[4 t] C_{1}+\left(\operatorname{Cos}[4 t]-\frac{1}{2} \operatorname{Sin}[4 t]\right) C_{2}\right\}
\end{aligned}
\]

Next, we use Table together with Flatten to create a set of parametric functions that we will graph with ParametricPlot.
```

In[1259]:= toplot =
Flatten[Table[step1, {cc, -1, 1},
{c, -1, 1}], 1];

```

Now, we define paramgraph. Given a list of the form \(\{x(t), y(t)\}\), paramgraph parametrically graphs \(\left\{\begin{array}{l}x=x(t) \\ y=y(t)\end{array}\right.\) for \(-3 \pi \leq t \leq 3 \pi\). The resulting graphics object is not displayed.
```

In[1260]:= paramgraph[list_] :=
ParametricPlot[list, {t, -3\pi, 3\pi},
PlotRange }->{{-5,5},{-5,5}}
Ticks }->{{-5,5},{-5,5}}
AspectRatio }->\mathrm{ 1,
DisplayFunction }->\mathrm{ Identity]

```

We then use Map to apply paramgraph to the list of parametric functions toplot.


Figure 6-28 Parametric plots of various solutions to the nonhomogeneous system
```

In[1261]:= somegraphs = Map [paramgraph, toplot]
Out[1261]= {-Graphics-, -Graphics-, -Graphics-,
-Graphics-, -Graphics-, -Graphics-,
-Graphics-, -Graphics-,-Graphics-}

```

The resulting list of nine graphics objects is partitioned into three element subsets with Partition. All nine graphs are then shown together using Show and GraphicsArray in Figure 6-28.

In Chapter 8, we will also see that Laplace transforms can often be used to solve systems of this type.
```

```
In[1262]:= toshow = Partition[somegraphs, 3];
```

```
In[1262]:= toshow = Partition[somegraphs, 3];
    Show[GraphicsArray[toshow]]
```

```
    Show[GraphicsArray[toshow]]
```

```

If a system of differential equations contains derivatives of order greater than one, we can often rewrite it as a system of first-order equations.

EXAMPLE 6.4.5: Solve \(\left\{\begin{array}{l}-2 \frac{d^{2} x}{d t^{2}}-2 \frac{d y}{d t}=0 \\ \frac{d^{2} y}{d t^{2}}+y-\frac{d x}{d t}=\cos t \\ x(0)=2, x^{\prime}(0)=1, y(0)=1, y^{\prime}(0)=2 .\end{array}\right.\)

SOLUTION: To rewrite the system as a system of first-order equations, we let \(z=d x / d t\) and \(w=d y / d t\). Then, \(d z / d t=d^{2} x / d t^{2}\) and \(d w / d t\) \(=d^{2} y / d t^{2}\). Substituting into the first equation we have \(-2 d z / d t-2 w=0\) so \(d z / d t=-w\). Similarly, substituting into the second equation yields \(d w / d t+y-z=\cos t\) so \(d w / d t=-y+z+\cos t\). Therefore, the original system is equivalent to the system of first-order equations
\[
\left\{\begin{array}{l}
d x / d t=z \\
d y / d t=w \\
d z / d t=-w \\
d w / d t=-y+z+\cos t \\
x(0)=2, y(0)=1, z(0)=1, w(0)=2
\end{array}\right.
\]

In matrix form, the initial-value problem is equivalent to \(\mathbf{X}^{\prime}=\mathbf{A X}\) \(+\mathbf{F}(t), \mathbf{X}(0)=\left(\begin{array}{l}2 \\ 1 \\ 1 \\ 2\end{array}\right)\), where
\[
\mathbf{X}=\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right), \quad \mathbf{A}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & -1 \\
0 & -1 & 1 & 0
\end{array}\right), \quad \text { and } \quad \mathbf{F}(t)=\left(\begin{array}{c}
0 \\
0 \\
0 \\
\cos t
\end{array}\right) .
\]

Using the exponential matrix, the solution to the initial-value problem is given by
\[
\mathbf{X}=\int_{0}^{t} e^{\mathbf{A}(t-s)} \mathbf{F}(s) d s+e^{\mathbf{A} t}\left(\begin{array}{l}
2 \\
1 \\
1 \\
2
\end{array}\right)
\]

First, we define A and then use MatrixExp together with ExpToTrig and FullSimplify to compute \(e^{\mathbf{A} t}\).
\[
\begin{aligned}
\text { In }[1263]:= & a=\left\{\begin{aligned}
&\{0,0,1,0\},\{0,0,0,1\}, \\
&\{0,0,0,-1\},\{0,-1,1,0\}\} ; \\
& \text { In }[1264]:= \text { expa = }
\end{aligned}\right) \\
& \text { FatrixExp }[a t] / / \text { ExpToTrig } / / \\
& \text { MatrixForm[expa] }
\end{aligned}
\]
Out [1264] =
\[
\left(\begin{array}{cccc}
1 & \frac{1}{4}(2 t-\sqrt{2} \operatorname{Sin}[\sqrt{2} t]) & \frac{1}{4}(2 t+\sqrt{2} \operatorname{Sin}[\sqrt{2} t]) & -\operatorname{Sin}\left[\frac{t}{\sqrt{2}}\right]^{2} \\
0 & \operatorname{Cos}\left[\frac{t}{\sqrt{2}}\right]^{2} & \operatorname{Sin}\left[\frac{t}{\sqrt{2}}\right]^{2} & \frac{\operatorname{Sin}[\sqrt{2} t]}{\sqrt{2}} \\
0 & \operatorname{Sin}\left[\frac{t}{\sqrt{2}}\right]^{2} & \operatorname{Cos}\left[\frac{t}{\sqrt{2}}\right]^{2} & \left.-\frac{\operatorname{Sin}[\sqrt{2} t]}{\sqrt{2}}\right] \\
0 & -\frac{\operatorname{Sin}[\sqrt{2} t]}{\sqrt{2}} & \frac{\operatorname{Sin}[\sqrt{2} t]}{\sqrt{2}} & \operatorname{Cos}[\sqrt{2} t]
\end{array}\right)
\]

The matrix \(e^{\mathbf{A}(t-s)}\) is obtained by replacing each occurrence of \(t\) in \(e^{\mathbf{A} t}\) by \(t-s\).
\[
\operatorname{In}[1265]:=\text { expats }=\operatorname{expa} / \cdot \mathrm{t}->\mathrm{t}-\mathrm{s} ;
\]

Next, we compute \(e^{\mathbf{A}(t-s)} \mathbf{F}(s)\) and integrate the result.
```

In[1266]:= f[t_] = {{0},{0},{0},{Cos[t]}};
MatrixForm[f[t]]
Out[1266]=(}$$
\begin{array}{c}{0}\\{0}\\{0}\\{\operatorname{Cos[t]}}\end{array}
$$
In[1267]:= tointegrate = expats.f[s]//Simplify;
MatrixForm[tointegrate]

```
\[
\begin{aligned}
& -\operatorname{Cos}[s] \operatorname{Sin}\left[\frac{-s+t}{\sqrt{2}}\right]^{2} \\
& \operatorname{Out}[1267]=\left(\begin{array}{l}
\frac{\operatorname{Cos}[s] \operatorname{Sin}[\sqrt{2}(-s+t)]}{\sqrt{2}} \\
\\
-\frac{\operatorname{Cos}[s] \operatorname{Sin}[\sqrt{2}(-s+t)]}{\sqrt{2}[s] \operatorname{Cos}[\sqrt{2}(-s+t)]}
\end{array}\right. \\
& \text { In [1268]:= step2 = Simplify[ } \int_{0}^{t} \text { tointegrateds] ; } \\
& \text { MatrixForm[step2] } \\
& \operatorname{Out}[1268]=\left(\begin{array}{c}
-\sin [t]+\frac{\sin [\sqrt{2} t]}{\sqrt{2}} \\
\operatorname{Cos}[t]-\operatorname{Cos}[\sqrt{2} t] \\
-\operatorname{Cos}[t]+\operatorname{Cos}[\sqrt{2} t]
\end{array}\right) \\
& -\operatorname{Sin}[t]+\sqrt{2} \operatorname{Sin}[\sqrt{2} t]
\end{aligned}
\]

Finally, we form the solution to the initial-value problem. Note that the first and second rows correspond to \(x\) and \(y\), respectively.
\[
\begin{aligned}
\text { In }[1269]:= & \mathbf{x} 0=\{\{2\},\{1\},\{1\},\{2\}\} ; \\
\text { In }[1270]:= & \operatorname{sol}=\operatorname{step} 2+\operatorname{expa} . \mathbf{x} 0 / / \operatorname{Simplify;} \\
& \text { MatrixForm}[\operatorname{sol}] \\
& \begin{aligned}
& 2+t-\operatorname{Sin}[t]-2 \operatorname{Sin}\left[\frac{t}{\sqrt{2}}\right]^{2}+\frac{\operatorname{Sin}[\sqrt{2} t]}{\sqrt{2}} \\
& \text { Out }[1270]=\binom{1+\operatorname{Cos}[t]-\operatorname{Cos}[\sqrt{2} t]+\sqrt{2} \operatorname{Sin}[\sqrt{2} t]}{1-\operatorname{Cos}[t]+\operatorname{Cos}[\sqrt{2} t]-\sqrt{2} \operatorname{Sin}[\sqrt{2} t]} \\
& 2 \operatorname{Cos}[\sqrt{2} t]-\operatorname{Sin}[t]+\sqrt{2} \operatorname{Sin}[\sqrt{2} t]
\end{aligned}
\end{aligned}
\]

We confirm that the initial conditions are satisfied by graphing \(x(t)\) and \(y(t)\) together in Figure 6-29 and parametrically in Figure 6-30.
\[
\begin{aligned}
& \text { In }[1271]:=\operatorname{Plot}[ \\
& \qquad \begin{aligned}
&\left\{1+t+\operatorname{Cos}[\sqrt{2} t]-\operatorname{Sin}[t]+\frac{\operatorname{Sin}[\sqrt{2} t]}{\sqrt{2}},\right. \\
&1+\operatorname{Cos}[t]-\operatorname{Cos}[\sqrt{2} t]+\sqrt{2} \operatorname{Sin}[\sqrt{2} t]\}, \\
&\{t, 0,12\}, \operatorname{PlotRange}>\{-2,10\}, \\
& \text { PlotStyle-> GrayLevel }[0], \\
&\text { GrayLevel }[0.5]\}, \\
& \text { AspectRatio->1]}
\end{aligned}
\end{aligned}
\]


Figure 6-29 \(\quad x(t)\) (in black) and \(y(t)\) (in gray)


Figure 6-30 Parametric plot of \(x(t)\) versus \(y(t)\)
\[
\begin{aligned}
\text { In }[1272]:= & \text { ParametricPlot }[ \\
& \left\{1+t+\operatorname{Cos}[\sqrt{2} t]-\operatorname{Sin}[t]+\frac{\operatorname{Sin}[\sqrt{2} t]}{\sqrt{2}},\right. \\
& 1+\operatorname{Cos}[t]-\operatorname{Cos}[\sqrt{2} t]+\sqrt{2} \operatorname{Sin}[\sqrt{2} t]\}, \\
& \{t, 0,12\}, \operatorname{PlotRange}->\{-6,6\}, \\
& \text { AspectRatio- }>1]
\end{aligned}
\]

\subsection*{6.5 Numerical Methods}

Because it may be difficult or even impossible to construct an explicit solution to some systems of differential equations, we now turn our attention to discussing some numerical methods that are used to construct numerical solutions to systems of differential equations.

\subsection*{6.5.I Built-In Methods}

Numerical approximations of solutions to systems of ordinary differential equations can be obtained with NDSolve. This command is particularly useful when working with nonlinear systems of equations for which DSolve alone is unable to find an explicit or implicit solution.

EXAMPLE 6.5.1: Consider the nonlinear system of equations
\[
\left\{\begin{array}{l}
x^{\prime}=\mu x+y-x\left(x^{2}+y^{2}\right)  \tag{6.17}\\
y^{\prime}=\mu y-x-y\left(x^{2}+y^{2}\right) .
\end{array}\right.
\]
(a) Graph the direction field associated with the system for \(\mu=2,1\), \(1 / 4\), and \(-1 / 2\). (b) For each value of \(\mu\) in (a), approximate the solution that satisfies the initial conditions \(x(0)=0\) and \(y(0)=1 / 2\). Use each numerical solution to approximate \(x(5)\) and \(y(5)\).

SOLUTION: After loading the PlotField package, we define the function dfield. Given \(\mu\), dfield \([\mu]\) graphs the direction field associated
with the system (6.17) on the rectangle \([-2,2] \times[-2,2]\). The resulting graphics object is not displayed because we include the option DisplayFunction->Identity in the PlotVectorField command.
```

In[1273]:= << Graphics'PlotField`
In[1274]:= dfield[[_] :=
PlotVectorField[
{\mux+y-x (\mp@subsup{x}{}{2}+\mp@subsup{y}{}{2}),\muy-x-y (\mp@subsup{x}{}{2}+\mp@subsup{y}{}{2})},
{x,-2, 2},{y,-2, 2},
ScaleFunction }->\mathrm{ (1\&), Axes }->\mathrm{ Automatic,
AxesOrigin }->{0,0}\mathrm{ , PlotPoints }->20\mathrm{ ,
DefaultColor }->\mathrm{ GrayLevel[0.5],
DisplayFunction }->\mathrm{ Identity];

```

We use dfield to graph the direction field associated with the system for \(\mu=2,1,1 / 4\), and \(-1 / 2\).
\[
\begin{aligned}
\text { In }[1275]:= & \operatorname{pvfa}=\operatorname{dfield}[2] ; \\
& p v f b=\operatorname{dfield}[1] ; \\
& p v f c=\operatorname{dfield}\left[\frac{1}{4}\right] ; \\
& p v f d=\operatorname{dfield}\left[-\frac{1}{2}\right] ;
\end{aligned}
\]

Show together with GraphicsArray is used to display all four graphs together in Figure 6-31. The direction field indicates that the behavior of the solutions strongly depends on the value of \(\mu\).
```

In[1276]:= Show[GraphicsArray[
{{pvfa, pvfb}, {pvfc, pvfd}}]]

```

Now, we use NDSolve to generate a numerical approximation to the initial-value problem if \(\mu=2\).
\[
\left.\begin{array}{rl}
\text { In }[1277]:=\text { sys }=\{ & \left\{x^{\prime}[t]==\mu x[t]+y[t]\right. \\
& -\mathbf{x}[t]\left(x[t]^{2}+y[t]^{2}\right), \\
& y^{\prime}[t]==\mu y[t]-\mathbf{x}[t]-y[t]\left(x[t]^{2}\right. \\
& \left.\left.+y[t]^{2}\right), x[0]==0, y[0]==1 / 2\right\} ;
\end{array}\right\} \begin{aligned}
\text { In }[1278]:=\mu=2 ;
\end{aligned}
\]


Figure 6-31 The behavior of solutions to the nonlinear system depends strongly on the value of \(\mu\)
\[
\begin{array}{r}
\text { Out }[1278]=\{\{\mathrm{x}[\mathrm{t}] \rightarrow \mathrm{InterpolatingFunction}[ \\
\quad\{\{0 ., 10 .\}\},<>][\mathrm{t}], \\
\mathrm{y}[\mathrm{t}] \rightarrow \text { InterpolatingFunction }[ \\
\{\{0 ., 10 .\}\},<>][\mathrm{t}]\}\}
\end{array}
\]

We use ReplaceAll (/.) to see that \(x(5) \approx-1.35612\) and \(y(5) \approx 0.401167\).
\[
\begin{aligned}
& \text { In }[1279]:=\text { sola/.t->5 } \\
& \text { Out }[1279]=\{\{x[5] \rightarrow-1.35612, y[5] \rightarrow 0.401167\}\}
\end{aligned}
\]

We use Plot to graph \(x(t)\) and \(y(t)\) for \(0 \leq t \leq 10\) in Figure 6-32. Notice that the solution appears to become periodic.


Figure 6-32 If \(\mu=2\), the solution to the initial-value problem approaches a limit cycle
```

In[1280]:= Plot[Evaluate[{x[t],y[t]} /. sola],
{t, 0, 10}, PlotStyle- > {GrayLevel[0],
GrayLevel[0.5]}]

```

This is further confirmed by graphing the solution parametrically and showing it together with the direction field in Figure 6-33.
```

In[1281]:= ppa = ParametricPlot[{x[t], y[t]} /. sola,
{t, 0, 10}, Compiled- > False,
PlotRange-> {{-2, 2}, {-2, 2}},
AspectRatio- > 1,
PlotStyle- > GrayLevel[0],
DisplayFunction- > Identity];
In[1282]:= Show[pvfa,ppa,
DisplayFunction- > \$DisplayFunction]

```

For the remaining values of \(\mu\), we define the function numsol. Given \(\mu\), numsol \([\mu]\) generates a numerical solution to the initial-value problem.
\[
\begin{aligned}
& \text { In }[1283]:=\operatorname{Clear}[\mu] \\
& \qquad \begin{aligned}
\text { numsol }\left[\mu_{-}\right]:= & \text {NDSolve }\left[\left\{x^{\prime}[t]==\mu x[t]+y[t]\right.\right. \\
& -x[t]\left(x[t]^{2}+y[t]^{2}\right), \\
& y^{\prime}[t]=\mu y[t]-x[t]-y[t] \\
& \left(x[t]^{2}+y[t]^{2}\right), x[0]==0, \\
& y[0]==1 / 2\},\{x[t], y[t]\}, \\
& \{t, 0,10\}] ;
\end{aligned}
\end{aligned}
\]

We use numsol to solve each initial-value problem. Note that Mathematica does not display any output because we have included a


Figure 6-33 The direction field highlights the location of the limit cycle
semi-colon at the end of each command. (You could use Map [sol [\#] \&, \(\{1,1 / 4,-1 / 2\}]\) to obtain an equivalent result.)
```

In[1284]:= solb = numsol[1];
solc = numsol[1/4];
sold = numsol[-1/2];

```

As before, we use ReplaceAll (/.) to approximate the value of each solution if \(t=5\).
\[
\begin{aligned}
\text { In }[1285]:= & \{\text { solb, solc, sold }\} / . t->5 \\
\text { Out }[1285]=\{ & \{\{x[5] \rightarrow-0.958856, y[5] \rightarrow 0.283647\}\}, \\
& \{\{x[5] \rightarrow-0.479456, y[5] \rightarrow 0.141833\}\}, \\
& \{\{x[5] \rightarrow-0.032173, y[5] \rightarrow 0.00951576\}\}\}
\end{aligned}
\]

For each numerical solution, we use Plot to graph \(x(t)\) and \(y(t)\) for \(0 \leq\) \(t \leq 10\) in Figure 6-34. Notice that the solutions corresponding to positive values of \(\mu\) appear to become periodic while the solution corresponding to the negative value of \(\mu\) appears to tend towards zero.


Figure 6-34 If \(\mu\) is positive, the solutions approach a limit cycle; if \(\mu\) is negative, the solutions tend to 0
```

In[1286]:= pb = Plot[Evaluate[{x[t], y[t]} /. solb],
{t, 0, 10}, PlotStyle- >
{GrayLevel[0], GrayLevel[0.5]},
DisplayFunction- > Identity];
pc = Plot[Evaluate[{x[t],y[t]}/.solc],
{t, 0, 10}, PlotStyle- >
{GrayLevel[0], GrayLevel[0.5]},
DisplayFunction- > Identity];
pd = Plot[Evaluate[{x[t],y[t]}/. sold],
{t, 0, 10}, PlotStyle- >
{GrayLevel[0], GrayLevel[0.5]},
PlotRange- > All,
DisplayFunction- > Identity];

```
In [1287]:= Show[GraphicsArray[\{pb, pc, pd\}]]

These results are further confirmed when we graph each solution parametrically and display the graphs with the direction fields generated in (a) in Figure 6-35.


Figure 6-35 If \(\mu\) is positive, the solutions approach a limit cycle; if \(\mu\) is negative, the solutions tend to 0
```

In[1288] := ppb = ParametricPlot[{x[t], y[t]}/.solb,
{t, 0, 10}, Compiled- > False,
PlotRange- > {{-2, 2}, {-2, 2}},
AspectRatio- > 1,
PlotStyle- > GrayLevel[0],
DisplayFunction- > Identity];
ppc = ParametricPlot[{x[t], y[t]}/.solc,
{t, 0, 10}, Compiled- > False,
PlotRange- > {{-2, 2}, {-2, 2}},
AspectRatio- > 1,
PlotStyle- > GrayLevel [0] ,
DisplayFunction- > Identity];
ppd = ParametricPlot[{x[t], y[t]} /. sold,
{t, 0, 10}, Compiled- > False,
PlotRange-> {{-2, 2}, {-2, 2}},
AspectRatio- > 1,
PlotStyle- > GrayLevel[0],
DisplayFunction- > Identity];
In[1289] := graphb = Show[pvfb, ppb];
graphc = Show[pvfc, ppc];
graphd = Show[pvfd, ppd];
In[1290] := Show[GraphicsArray[
{graphb, graphc, graphd}]]

```

In the cases corresponding to the positive values of \(\mu\), we see in the direction field that all solutions appear to tend to a closed curve. Can we find the curve in each case? If \(\mu=2\), we see that the solution that satisfies \(x(0)=0\) and \(y(0)=1.41\) will be periodic. Similarly, if \(\mu=1 / 4\), we see that the solution that satisfies \(x(0)=0\) and \(y(0)=0.482\) will be periodic. On the other hand, if \(\mu=1\), we need not approximate the solution. From the graph, we see that the solution that satisfies \(x(0)\) \(=0\) and \(y(0)=1\) will be periodic. It is relatively easy to verify that the solution that satisfies these initial conditions is \(\left\{\begin{array}{l}x=\cos t \\ y=\sin t\end{array}\right.\)

\section*{Application: Controlling the Spread of a Disease}

If a person becomes immune to a disease after recovering from it and births and deaths in the population are not taken into account, then the percent of persons susceptible to becoming infected with the disease, \(S(t)\), the percent of people in the population infected with the disease, \(I(t)\), and the percent of the population recovered and immune to the disease, \(R(t)\), can be modeled by the system
\[
\left\{\begin{array}{l}
S^{\prime}=-\lambda S I  \tag{6.18}\\
I^{\prime}=\lambda S I-\gamma I \\
R^{\prime}=\gamma I \\
S(0)=S_{0}, I(0)=I_{0}, R(0)=0 .
\end{array}\right.
\]

Because \(S(t)+I(t)+R(t)=1\), once we know \(S(t)\) and \(I(t)\), we can compute \(R(t)\) with \(R(t)=1-S(t)-I(t)\). This model is called an SIR model without vital dynamics because once a person has had the disease the person becomes immune to the disease and because births and deaths are not taken into consideration. This model might be used to model diseases that are epidemic to a population: those diseases that persist in a population for short periods of time (less than one year). Such diseases typically include influenza, measles, rubella, and chickenpox.

If \(S_{0}<\gamma / \lambda, I^{\prime}(0)=\lambda S_{0} I_{0}-\gamma I_{0}<\lambda \frac{\gamma}{\lambda} I_{0}-\gamma I_{0}=0\). Thus, the rate of infection immediately begins to decrease; the disease dies out. On the other hand, if \(S_{0}>\) \(\gamma / \lambda, I^{\prime}(0)=\lambda S_{0} I_{0}-\gamma I_{0}>\lambda \frac{\gamma}{\lambda} I_{0}-\gamma I_{0}=0\) so the rate of infection first increases; an epidemic results.

Although we cannot find explicit formulas for \(S, I\), and \(R\) as functions of \(t\), we can, for example, solve for \(I\) in terms of \(S\). The equation \(\frac{d I}{d S}=-\frac{(\lambda S-\gamma) I}{\lambda S I}=-1+\frac{\rho}{S^{\prime}}\), \(\rho=\gamma / \lambda\), is separable:
\[
\frac{d I}{d S}=-1+\frac{\rho}{S} \Longrightarrow d I=\left(-1+\frac{\rho}{S}\right) d S \Longrightarrow I=-S+\rho \ln S+C
\]
and applying the initial condition results in
\[
I_{0}=-S_{0}+\rho \ln S_{0}+C \Longrightarrow C=I_{0}+S_{0}-\rho \ln S_{0}
\]
so \(I=-S+\rho \ln S+I_{0}+S_{0}-\rho \ln S_{0} \Longrightarrow I+S-\rho \ln S=I_{0}+S_{0}-\rho \ln S_{0}\).
When diseases persist in a population for long periods of time, births and deaths must be taken into consideration. If a person becomes immune to a disease after recovering from it and births and deaths in the population are taken into account, then the percent of persons susceptible to becoming infected with the disease, \(S(t)\),

Sources: Herbert W. Hethcote, "Three Basic Epidemiological Models," Applied Mathematical Ecology, edited by Simon A. Levin, Thomas G. Hallan, and Louis J. Gross, Springer-Verlag (1989), pp. I I9-I43. Roy M. Anderson and Robert M. May, "Directly Transmitted Infectious Diseases: Control by Vaccination," Science, Volume 215 (February 26, 1982), pp. 1053-1060. J. D. Murray, Mathematical Biology, Springer-Verlag (1990), pp. 611-618.
and the percent of people in the population infected with the disease, \(I(t)\), can be modeled by the system
\[
\left\{\begin{array}{l}
S^{\prime}=-\lambda S I+\mu-\mu S  \tag{6.19}\\
I^{\prime}=\lambda S I-\gamma I-\mu I \\
S(0)=S_{0}, I(0)=I_{0} .
\end{array}\right.
\]

This model is called an SIR model with vital dynamics because once a person has had the disease the person becomes immune to the disease and because births and deaths are taken into consideration. This model might be used to model diseases that are endemic to a population: those diseases that persist in a population for long periods of time ( 10 or 20 years). Smallpox is an example of a disease that was endemic until it was eliminated in 1977. We use Solve to see that the solutions to the system of equations
\[
\left\{\begin{array}{l}
-\lambda S I+\mu-\mu S=0 \\
\lambda S I-\gamma I-\mu I=0
\end{array}\right.
\]
are \(S=1, I=0\) and \(S=\frac{\gamma+\mu}{\lambda}, I=\frac{\mu[\lambda-(\gamma+\mu)]}{\lambda(\gamma+\mu)}\).
\[
\begin{aligned}
\operatorname{In}[1291]:= & \text { eq } 1=-\lambda \mathbf{s i}+\mu-\mu \mathbf{s} ; \\
& \text { eq2 }=\lambda \text { si }-\gamma \mathbf{i}-\mu \mathbf{i} ; \\
\text { In }[1292]:= & \text { eqpts }=\operatorname{solve}[\{\text { eq1 }==0, \text { eq2 }==0\},\{s, i\}] \\
\text { Out }[1292]= & \left\{\{i \rightarrow 0, s \rightarrow 1\},\left\{i \rightarrow-\frac{\mu(\gamma-\lambda+\mu)}{\lambda(\gamma+\mu)}, s \rightarrow \frac{\gamma+\mu}{\lambda}\right\}\right\}
\end{aligned}
\]

These two points are called equilibrium points because they are constant solutions to the system.

Because \(S(t)+I(t)+R(t)=1\), it follows that \(S(t)+I(t) \leq 1\). The following table shows the average infectious period, \(1 / \gamma, \gamma\), and typical contact numbers, \(\sigma\), for several diseases during certain epidemics.
\begin{tabular}{|c|c|l|l|}
\hline Disease & \(1 / \gamma\) & \multicolumn{1}{|c|}{\(\gamma\)} & \multicolumn{1}{|c|}{\(\sigma\)} \\
\hline Measles & 6.5 & 0.153846 & 14.9667 \\
Chickenpox & 10.5 & 0.0952381 & 11.3 \\
Mumps & 19 & 0.0526316 & 8.1 \\
Scarlet fever & 17.5 & 0.0571429 & 8.5 \\
\hline
\end{tabular}

Let us assume that the average lifetime, \(1 / \mu\), is 70 so that \(\mu=0.0142857\).

For each of the diseases listed in the previous table, we use the formula \(\sigma=\) \(\nu(\gamma+\mu)\) to calculate the daily contact rate \(\lambda\).
\begin{tabular}{|c|c|}
\hline Disease & \multicolumn{1}{c|}{\(\lambda\)} \\
\hline Measles & 2.51638 \\
Chickenpox & 1.23762 \\
Mumps & 0.54203 \\
Scarlet fever & 0.607143 \\
\hline
\end{tabular}

Diseases like those listed above can be controlled once an effective and inexpensive vaccine has been developed. Since it is virtually impossible to vaccinate everybody against a disease, we would like to know what percentage of a population needs to be vaccinated to eliminate a disease. A population of people has herd immunity to a disease means that enough people are immune to the disease so that if it is introduced into the population, it will not spread throughout the population. In order to have herd immunity, an infected person must infect less than one uninfected person during the time the person is infectious. Thus, we must have
\[
\sigma S<1
\]

Since \(I+S+R=1\), when \(I=0\) we have that \(S=1-R\) and, consequently, herd immunity is achieved when
\[
\begin{aligned}
\sigma(1-R) & <1 \\
\sigma-\sigma R & <1 \\
-\sigma R & <1-\sigma \\
R>\frac{\sigma-1}{\sigma} & =1-\frac{1}{\sigma} .
\end{aligned}
\]

For each of the diseases listed above, we estimate the minimum percentage of a population that needs to be vaccinated to achieve herd immunity.
\begin{tabular}{|c|c|}
\hline Disease & Minimum value of \(R\) to achieve herd immunity \\
\hline Measles & 0.933186 \\
Chickenpox & 0.911505 \\
Mumps & 0.876544 \\
Scarlet fever & 0.882354 \\
\hline
\end{tabular}

Using the values in the previous tables, for each disease we graph the direction field and several solutions \(\left\{\begin{array}{l}S=S(t) \\ I=I(t)\end{array}\right.\) parametrically. For measles, we proceed as
follows. After loading the PlotField package, we define \(\mu, \gamma, \sigma\), and \(\lambda\). For these values, we graph the direction field associated with the system on the rectangle \([0,1] \times[0,1]\). Because \(S(t)+I(t) \leq 1\), we are only concerned with solutions of the system that are below the line \(S+I=1\).
```

In[1293]:= << Graphics'PlotField`
p1 = Plot[1-x, {x, 0, 1},
PlotStyle }->\mathrm{ Thickness[0.0075],
DisplayFunction }->\mathrm{ Identity];
\mu=0.0142857;
\gamma=0.153846;
\sigma=14.9667;
\lambda=\sigma(\gamma+\mu);
eq1 = - \lambda si + }\mu-\mu\textrm{s}
eq2 = \lambdasi-\gammai-\mui;
pvf1 = PlotVectorField[{eq1, eq2},
{s,0,1}, {i, 0, 1},
ScaleFunction }->\mathrm{ (1\&), PlotPoints }->20\mathrm{ ,
DefaultColor }->\mathrm{ GrayLevel[0.5],
DisplayFunction }->\mathrm{ Identity];

```

Next, we define two lists of ordered pairs and use Union to join the two lists. The points in initconds1 are "close" to the \(S\) axis while the points in initconds2 are close to the \(I\) axis. We will graph the solutions that satisfy these initial conditions.
```

In[1294]:= initconds1 = Table[{i/10,0.01}, {i, 1, 9}];
initconds2 = Table[{1-i/10,i/10}, {i, 1, 9}];
initconds = Union[initconds1, initconds2];

```

Now we define the function numgraph. Given an ordered pair ( \(S_{0}, I_{0}\) ), numgraph generates a numerical solution to the initial-value problem (6.19) and graphs the result.


Figure 6-36 Using an SIR model to model measles
```

In[1295]:= numgraph[{s0_,i0_}]:= Module[{numsol},
numsol = NDSolve[{s'[t] == - \lambdas [t] i[t] + \mu - \mus[t],
i'[t] == \lambdas[t]i[t] - \gammai[t] - \mui[t],
s[0] == s0,i[0] == i0},{s[t],i[t]},{t, 0, 20}];
ParametricPlot[{s[t],i[t]}/.numsol, {t, 0, 20},
PlotStyle- > GrayLevel[0], Compiled- > False,
DisplayFunction- > Identity]]

```

We then use Map to apply numgraph to the list initconds. Show is used to display all three graphics objects together in Figure 6-36. In the result, we see that the (nontrivial) solutions approach the equilibrium point.
```

In[1296]:= toshow = Map[numgraph, initconds];
Show[pvf1, toshow, p1,
PlotRange- > {{0, 1}, {0, 1}},
AspectRatio- > 1,
DisplayFunction- > \$DisplayFunction,
Axes- > Automatic]

```

For the remaining three diseases, we change the values of \(\mu, \gamma, \sigma\), and \(\lambda\) and reenter the code. Here are the results for chickenpox. See Figure 6-37.


Figure 6-37 Using an SIR model to model chickenpox
\[
\begin{aligned}
& \text { In[1297] }:=\mu=0.0142857 \text {; } \\
& \gamma=0.0952381 ; \\
& \sigma=11.3 ; \\
& \lambda=\sigma(\gamma+\mu) ; \\
& \text { eq1 }=-\lambda s i+\mu-\mu s ; \\
& \text { eq2 = } \lambda \mathrm{si}-\gamma \mathrm{i}-\mu \mathrm{i} \text {; } \\
& \text { pvf1 = PlotVectorField[\{eq1, eq2\}, } \\
& \{s, 0,1\},\{i, 0,1\} \text {, } \\
& \text { ScaleFunction-> (1\&), PlotPoints->20, } \\
& \text { DefaultColor-> GrayLevel[0.5], } \\
& \text { DisplayFunction- > Identity]; } \\
& \text { numgraph[\{s0_, i0_\}]:= Module[\{numsol\}, } \\
& \text { numsol }=\text { NDSolve [ }\left\{s^{\prime}[t]==-\lambda s[t] i[t]\right. \\
& +\mu-\mu s[t], i^{\prime}[t]==\lambda s[t] i[t] \\
& -\gamma i[t]-\mu i[t], s[0]==s 0, i[0]==i 0\}, \\
& \{s[t], i[t]\},\{t, 0,20\}] ; \\
& \text { ParametricPlot[\{s[t],i[t]\}/. } \\
& \text { numsol, }\{t, 0,20\} \text {, }
\end{aligned}
\]
```

In[1297]:= PlotStyle- > GrayLevel[0],
Compiled- > False,
DisplayFunction- > Identity]]
In[1298]:= toshow = Map[numgraph, initconds];
Show[pvf1, toshow, p1,
PlotRange- > {{0, 1}, {0, 1}},
AspectRatio->1,
DisplayFunction- > \$DisplayFunction,
Axes- > Automatic]

```

Similar results are obtained for mumps. See Figure 6-38.
```

In[1299]:= }\mu=0.0142857
\gamma=0.0526316;
\sigma=8.1;
\lambda=\sigma(\gamma+\mu);
eq1 = - \lambda si + }\mu-\mu\textrm{s}
eq2 = \lambdasi-\gammai-\mui;
pvf1 = PlotVectorField[{eq1, eq2},
{s,0, 1}, {i, 0, 1},
ScaleFunction- > (1\&), PlotPoints- > 20,
DefaultColor- > GrayLevel[0.5],
DisplayFunction- > Identity];
numgraph[{s\mp@subsup{0}{-}{\prime},i\mp@subsup{0}{-}{\prime}}]:= Module[{numsol},
numsol =
NDSolve[
{s'[t] == - \lambdas[t] i[t] + \mu - \mus[t],
i'[t] == \lambdas[t] i[t] - \gammai[t] - \mui[t],
s[0] == s0,i[0] == iO},
{s[t],i[t]},{t, 0, 40}];
ParametricPlot[
{s[t],i[t]}/. numsol,
{t, 0, 40}, PlotStyle- > GrayLevel[0],
Compiled- > False,
DisplayFunction- > Identity]]

```


Figure 6-38 Using an SIR model to model mumps
```

In[1300]:= toshow = Map[numgraph, initconds];
Show[pvf1, toshow, p1,
PlotRange- > {{0, 1}, {0, 1}},
AspectRatio- > 1,
DisplayFunction- > \$DisplayFunction,
Axes- > Automatic]

```

Last, we generate graphs for scarlet fever. See Figure 6-39. In all four cases, we see that all solutions approach the equilibrium point, which indicates that although the epidemic runs its course, the disease is never completely removed from the population.
\[
\begin{aligned}
\operatorname{In}[1301]:= & \mu=0.0142857 ; \\
& \gamma=0.0571429 ; \\
& \sigma=8.5 ; \\
& \lambda=\sigma(\gamma+\mu) ; \\
& \text { eq1 }=-\lambda s i+\mu-\mu s ; \\
& \text { eq2 }=\lambda s i-\gamma i-\mu i ;
\end{aligned}
\]


Figure 6-39 Using an SIR model to model scarlet fever
```

In[1301]:= pvf1 = PlotVectorField[{eq1, eq2},
{s,0, 1}, {i, 0, 1},
ScaleFunction- > (1\&), PlotPoints- > 20,
DefaultColor- > GrayLevel[0.5],
DisplayFunction- > Identity];
numgraph[{s\mp@subsup{0}{-}{\prime},i\mp@subsup{0}{-}{\prime}}]:= Module[{numsol},
numsol =
NDSolve[
{s'[t] == - \lambdas[t] i[t] + \mu - \mus[t],
i'[t] == \lambdas[t] i[t] - \gammai[t] - \mui[t],
s[0] ==s0,i[0] == i0},
{s[t],i[t]},{t, 0, 40}];
ParametricPlot[
{s[t],i[t]}/. numsol,
{t, 0, 40}, PlotStyle- > GrayLevel[0],
Compiled- > False,
DisplayFunction- > Identity]]
In[1302]:= toshow = Map[numgraph, initconds];
Show[pvf1, toshow, p1,
PlotRange- > {{0, 1}, {0, 1}},
AspectRatio- > 1,
DisplayFunction- > \$DisplayFunction,
Axes- > Automatic]

```

NDSolve can be used to generate numerical solutions of systems that involve more than one differential equation as well.

EXAMPLE 6.5.2 (FitzHugh-Nagumo Equation): Under certain assumptions, the FitzHugh-Nagumo equation that arises in the study of the impulses in a nerve fiber can be written as the system of ordinary differential equations
\[
\left\{\begin{array}{l}
d V / d \xi=W  \tag{6.20}\\
d W / d \xi=F(V)+R-u W \\
d R / d \xi=\frac{\epsilon}{u}(b R-V-a) \\
V(0)=v_{0}, W(0)=W_{0}, R(0)=R_{0}
\end{array}\right.
\]
where \(F(V)=\frac{1}{3} V^{3}-V\). (a) Graph the solution to the FitzHugh-Nagumo equation that satisfies the initial conditions \(V(0)=1, W(0)=0\), and \(R(0)=1\) if \(\epsilon=0.08, a=0.7, b=0\), and \(u=1\). (b) Graph the solution that satisfies the initial conditions \(V(0)=1, W(0)=0.5\), and \(R(0)=0.5\) if \(\epsilon=0.08, a=0.7, b=0.8\), and \(u=0.6\).

SOLUTION: We begin by defining the function fnsol, which given the appropriate parameter values and initial conditions returns a numerical solution of system (6.20). If \(\{\xi, \mathrm{a}, \mathrm{b}\}\) is not included after the initial conditions, the default solution is valid for \(0 \leq \xi \leq 100\); any options included are passed to the NDSolve command. In this case, we use lower-case letters to avoid any ambiguity with built-in Mathematica functions.
```

In[1303]:= Clear[fnsol]
fnsol[\mp@subsup{\epsilon}{-}{\prime},\mp@subsup{a}{-}{\prime},\mp@subsup{b}{-}{\prime},\mp@subsup{u}{-}{\prime}][{v\mp@subsup{0}{-}{\prime},w\mp@subsup{0}{-}{\prime},r\mp@subsup{0}{-}{\prime}},
\xis_:{\xi,0,100},opts_--] :=
NDSolve [{\mp@subsup{v}{}{\prime}[\xi]== w[\xi], w'[\xi] ==
1/3v[\xi]^3-v[\xi] +r[\xi]-uw[\xi], r'[\xi] ==
\epsilon/u (br[\xi] - v[\xi] - a),v[0] == v0,w[0] ==
w0,r[0] == r0}, {v[\xi],
w[\xi],r[\xi]}, \xis,opts]

```

For (a), we enter
```

In[1304]:= sola = fnsol[0.08, 0.7, 0, 1][{1, 0, 1}]

```
```

Out $[1304]=\{\{\mathrm{v}[\xi] \rightarrow$ InterpolatingFunction $[\{\{0 ., 100\}$.$\} ,$
<>] [乡],
$\mathrm{w}[\xi] \rightarrow$ InterpolatingFunction $[\{\{0 ., 100\}$.$\} ,$
<>] [ξ],
$r[\xi] \rightarrow$ InterpolatingFunction $[\{\{0 ., 100\}\},$.
<>] [$\xi]\}\}$

```

We then graph the solution functions parametrically with ParametricPlot3D and then individually with Plot. The option Plot-Points->200 is included in the ParametricPlot3D to help assure that the resulting graph is smooth. Using Show and GraphicsArray, both plots are shown in Figure 6-40.
```

In[1305]:= pp1 = ParametricPlot3D[
Evaluate[{w[\xi],v[\xi], r[\xi]}/.sola],
{\xi,0,100}, PlotRange }->{{-1,1}\mathrm{ ,
{-1, 1}, {-1, 1}}, BoxRatios }->{1,1,1}\mathrm{ ,
PlotPoints }->500\mathrm{ ,
DisplayFunction }->\mathrm{ Identity];
In[1306]:= pa = Plot[Evaluate[{w[\xi],v[\xi],r[\xi]}/.sola],
{\xi, 0, 100}, PlotStyle }->{\mathrm{ GrayLevel[0],
GrayLevel[0.3], Dashing[{0.01}]},
DisplayFunction }->\mathrm{ Identity];

```
In [1307] : = Show[GraphicsArray[\{pp1, pa\}]]

(a)

(b)

Figure 6-40 For \(0 \leq \xi \leq 50\) : (a) parametric plot of \(W\) versus \(V\) versus \(R\); (b) \(W\) (in black), \(V\) (in gray), and \(R\) (dashed)

(a)

(b)

Figure 6-41 For \(0 \leq \xi \leq 15\) : (a) parametric plot of \(W\) versus \(V\) versus \(R\); (b) \(W\) (in black), \(V\) (in gray), and \(R\) (dashed)

For (b), we specify that we want the solution to be valid for \(0 \leq \xi \leq 15\) so enter
```

In[1308]:= solb = fnsol[0.08, 0.7,0.8, 0.6]
[{1, 0.5,0.5}, {\xi, 0, 15}]
Out[1308]= {{v[\xi]-> InterpolatingFunction[{{0., 15.}},
<>][\xi],
w[\xi] }->\mathrm{ InterpolatingFunction [
{{0., 15.}}, <>] [\xi],
r[\xi]-> InterpolatingFunction[{{0., 15.}},
<>][\xi]}}

```

Parametric plots and individual plots are generated in the same way as in (a). See Figure 6-41.
```

In[1309]:= pp2 = ParametricPlot3D[Evaluate[
{w[\xi],v[\xi],r[\xi]}/.solb], {\xi, 0, 15},
PlotRange }->{{-1,1},{-1,1},{-1,1}}
BoxRatios }->{1,1,1}, PlotPoints ->500
DisplayFunction }->\mathrm{ Identity];
In[1310]:= pb = Plot[Evaluate[{w[\xi],v[\xi],r[\xi]}/.solb],
{\xi,0, 15}, PlotStyle }->\mathrm{ {GrayLevel[0],
GrayLevel[0.3], Dashing[{0.01}]},
DisplayFunction }->\mathrm{ Identity];

```
In [1311]: \(=\) Show[GraphicsArray[\{pp2, pb\}]]

In other cases, you may wish to implement your own numerical algorithms to approximate solutions of differential equations. We briefly discuss two familiar methods (Euler's method and the Runge-Kutta method) and illustrate how to implement these algorithms using Mathematica. Details regarding these and other algorithms, including discussions of the error involved in implementing them, can be found in most numerical analysis texts or other references like the Zwillinger's Handbook of Differential Equations, [29].

\subsection*{6.5.2 Euler's Method}

Euler's method for approximation that was discussed for first-order equations may be extended to include systems of first-order equations. The initial-value problem
\[
\left\{\begin{array}{l}
d x / d t=f(t, x, y)  \tag{6.21}\\
d y / d t=g(t, x, y) \\
x\left(t_{0}\right)=x_{0}, y\left(t_{0}\right)=y_{0}
\end{array}\right.
\]
is approximated at each step by the recursive relationship based on the Taylor expansion of \(x\) and \(y\) :
\[
\left\{\begin{array}{l}
x_{n+1}=x_{n}+h f\left(t_{n}, x_{n}, x_{n}\right)  \tag{6.22}\\
y_{n+1}=y_{n}+h g\left(t_{n}, x_{n}, x_{n}\right)
\end{array}\right.
\]
where \(t_{n}=t_{0}+n h, n=0,1,2, \ldots\).

EXAMPLE 6.5.3: Use Euler's method with \(h=0.1\) to approximate the solution of the initial-value problem
\[
\left\{\begin{array}{l}
d x / d t=x-y+1 \\
d y / d t=x+3 y+e^{-t} \\
x(0)=0, y(0)=1
\end{array}\right.
\]

Compare these results to those of the exact solution of the system of equations.

SOLUTION: We use the same notation as in equations (6.21) and (6.22): \(f(x, y)=x-y+1, g(x, y)=d y / d t=x+3 y+e^{-t}, t_{0}=0, x_{0}=0\), and \(y_{0}=1\), so we use the formulas
\[
\left\{\begin{array}{l}
x_{n+1}=x_{n}+h\left(x_{n}-y_{n}+1\right) \\
y_{n+1}=y_{n}+h\left(x_{n}+3 y_{n}+e^{-t_{n}}\right)
\end{array}\right.
\]
where \(t_{n}=0.1 n, n=0,1,2, \ldots\).
For example, if \(n=0\), then
\[
\left\{\begin{array}{l}
x_{1}=x_{0}+h\left(x_{0}-y_{0}+1\right)=0 \\
y_{1}=y_{0}+h\left(x_{0}+3 y_{0}+e^{-t_{0}}\right)=1.4
\end{array}\right.
\]

The exact solution of this initial-value problem is found to be
\[
\left\{\begin{array}{l}
x(t)=-\frac{3}{4}-\frac{1}{9} e^{-t}+\frac{31}{36} e^{2 t}-\frac{11}{6} t e^{2 t} \\
y(t)=\frac{1}{4}-\frac{2}{9} e^{-t}+\frac{35}{36} e^{2 t}+\frac{11}{6} t e^{2 t}
\end{array}\right.
\]
with DSolve.
\[
\begin{aligned}
& \text { In [1312]: }=\text { partsol = } \\
& \text { DSolve }\left[\left\{\mathbf{x}^{\prime}[\mathrm{t}]=\mathbf{x}[\mathrm{t}]-\mathrm{y}[\mathrm{t}]+1\right.\right. \text {, } \\
& y^{\prime}[t]==x[t]+3 y[t]+\operatorname{Exp}[-t], \\
& \mathbf{x}[0]==0, y[0]==1\},\{x[t], y[t]\}, t] \\
& \text { Out }[1312]=\left\{\left\{x[t] \rightarrow-\frac{1}{36} e^{-t}\left(4+27 e^{t}-31 e^{3 t}+66 e^{3 t} t\right),\right.\right. \\
& \left.\left.y[t] \rightarrow \frac{1}{36} e^{-t}\left(-8+9 e^{t}+35 e^{3 t}+66 e^{3 t} t\right)\right\}\right\} \\
& \operatorname{In}[1313]:=\operatorname{xex}\left[t_{-}\right]=-\frac{3}{4}-\frac{\operatorname{Exp}[-t]}{9}+\frac{31 \operatorname{Exp}[2 t]}{36} \\
& -\frac{11}{6} t \operatorname{Exp}[2 t] ; \\
& \operatorname{In}[1314]:=\operatorname{yex}\left[\mathrm{t}_{-}\right]=\frac{1}{4}-\frac{2 \operatorname{Exp}[-\mathrm{t}]}{9}+\frac{35 \operatorname{Exp}[2 \mathrm{t}]}{36} \\
& +\frac{11}{6} t \operatorname{Exp}[2 t] ;
\end{aligned}
\]

We display the results obtained with this method (in columns three and five) and compare them to the actual function values (in columns four and six).
```

In [1315]: $=$ Clear $[f, g, t, h, x, y]$
$\mathrm{f}\left[\mathrm{t}_{-}, \mathrm{x}_{-}, \mathrm{y}_{-}\right]=\mathrm{x}-\mathrm{y}+1$;
$g\left[t_{-}, x_{-}, y_{-}\right]=x+3 y+\operatorname{Exp}[-t] ;$
h = 0.1;
t [$\left.\mathrm{n}_{-}\right]:=\mathrm{t} 0+\mathrm{nh}$;
to $=0$;
x_{e} [n_]:=
$\mathrm{x}_{\mathrm{e}}[\mathrm{n}]=$
\mathbf{x}_{e} [n-1]
$+h f\left[t[n-1], x_{e}[n-1], Y_{e}[n-1]\right] ;$
$Y_{e}\left[n_{-}\right]:=$
$\mathrm{Y}_{\mathrm{e}}[\mathrm{n}]=$
$Y_{e}[n-1]$
$+h g\left[t[n-1], x_{e}[n-1], Y_{e}[n-1]\right] ;$
$\mathbf{x}_{\mathrm{e}}[0]=0$;
$y_{e}[0]=1$;

```
```

In[1316]:= Table[{n,t[n], x [n], xex[t[n]],
ye[n], yex[t[n]]}, {n, 0, 10}]//
TableForm

```
\begin{tabular}{llllll}
0 & 0 & 0 & 0 & 1 & 1 \\
1 & 0.1 & 0 & -0.0226978 & 1.4 & 1.46032 \\
2 & 0.2 & -0.04 & -0.103346 & 1.91048 & 2.06545 \\
3 & 0.3 & -0.135048 & -0.265432 & 2.5615 & 2.85904 \\
4 & 0.4 & -0.304703 & -0.540105 & 3.39053 & 3.89682 \\
Out \([1316]=\) & 0.5 & -0.574227 & -0.968408 & 4.44425 & 5.24975 \\
6 & 0.6 & -0.976074 & -1.60412 & 5.78076 & 7.00806 \\
7 & 0.7 & -1.55176 & -2.51737 & 7.47226 & 9.28638 \\
8 & 0.8 & -2.35416 & -3.79926 & 9.60842 & 12.23 \\
9 & 0.9 & -3.45042 & -5.56767 & 12.3005 & 16.0232 \\
10 & 1. & -4.9255 & -7.97468 & 15.6862 & 20.8987
\end{tabular}

We also graph the approximation with the actual solution in Figure 6-42.


Figure 6-42 Euler's method using \(h=0.1\) : (a) comparison of \(x_{n}\) to \(x(t)\); (b) comparison of \(y_{n}\) to \(y(t)\); (c) comparison of \(\left(x_{n}, y_{n}\right)\) to \((x(t), y(t))\)
```

In[1317]:= xs = Table[{t[n], 㐌[n]},{n,0, 10}];
In[1318]:= p1 = ListPlot[xs,
PlotStyle- > PointSize[0.03],
DisplayFunction- > Identity];
p2 = Plot[xex[t], {t, 0, 1},
DisplayFunction- > Identity];
p3 = Show[p1, p2];
In[1319]:= ys = Table[{t[n], Ye[n]}, {n,0,10}];
In[1320]:= p4 = ListPlot[ys,
PlotStyle- > PointSize[0.03],
DisplayFunction- > Identity];
p5 = Plot[yex[t], {t, 0, 1},
DisplayFunction- > Identity];
p6 = Show[p4,p5];
In[1321]:= both = Table[{榇[n], Ye[n]}, {n, 0, 10}];
In[1322]:= p7 = ListPlot[both,
PlotStyle- > PointSize[0.03],
DisplayFunction- > Identity];
p8 = ParametricPlot[{xex[t],yex[t]},
{t, 0, 1}, DisplayFunction- >
Identity];
p9 = Show[p7, p8];
In[1323]:= Show[GraphicsArray[{p3, p6, p9}]]

```


Figure 6-43 Euler's method using \(h=0.05\) : (a) comparison of \(x_{n}\) to \(x(t)\); (b) comparison of \(y_{n}\) to \(y(t)\); (c) comparison of \(\left(x_{n}, y_{n}\right)\) to \((x(t), y(t))\)

Because the accuracy of this approximation diminishes as \(t\) increases, we attempt to improve the approximation by decreasing the increment size. We do this next by entering the value \(h=0.05\) and repeating the procedure which was followed above. See Figure 6-43.
```

In[1324]:= Clear[f,g,t,h, x, y]
f[t_, (x, Y-] = x - y + 1;
g[t., x_, y-] = x + 3y + Exp [-t];
h = 0.05;
t[n_] := t0 + nh;
t0 = 0;
x
xe[n] =
xe[n-1]
+hf[t[n-1], xe[n-1], Ye[n-1]];
Ye[n_]:=
Ye[n] =
Ye[n-1]
+h g[t[n-1], xe[n-1], Ye[n-1]];
xe[0] = 0;
Ye[0] = 1;
In[1325]:= Table[{t[n], xe[n], xex[t[n]], ye[n],
yex[t[n]]}, {n, 0, 20}]//TableForm

```
```

 0 0 0 1 1
 0.05 0 -0.00532454 1.4 1.21439
 0.1 -0.04 -0.0226978 1.91048 1.46032
 0.15-0.135048-0.054467 2.5615 1.74231
 0.2 -0.304703-0.103346 3.39053 2.06545
 0.25-0.574227-0.172465 4.44425 2.43552
 0.3 -0.976074 -0.265432 5.78076 2.85904
 0.35-1.55176 -0.386392 7.47226 3.34338
 0.4 -2.35416 -0.540105 9.60842 3.89682
 0.45-3.45042 -0.732029 12.3005 4.52876
 Out[1325]=0.5 -4.9255 -0.968408 15.6862 5.24975
0.55 -5.90609 -1.25639 17.8232 6.07171
0.6 -7.04255 -1.60412 20.2302 7.00806
0.65-8.35619 -2.02091 22.9401 8.07394
0.7 -9.871 -2.51737 25.9894 9.28638
0.75-11.614 -3.10558 29.419 10.6645
0.8 -13.6157 -3.79926 33.2748 12.23
0.85-15.9102 -4.61405 37.6077 14.0071
0.9 -18.5361 -5.56767 42.4747 16.0232
0.95-21.5366 -6.68027 47.9395 18.3088
1. -24.9604 -7.97468 54.0729 20.8987
In[1326]:= xs = Table[{t[n], 首[n]},{n, 0, 20}];
In[1327]:= p1 = ListPlot[xs,
PlotStyle- > PointSize[0.03],
DisplayFunction- > Identity];
p2 = Plot[xex[t], {t, 0, 1},
DisplayFunction- > Identity];
p3 = Show[p1, p2];
In[1328]:= ys = Table[{t[n], Ye[n]},{n,0, 20}];
In[1329]:= p4 = ListPlot[ys,
PlotStyle- > PointSize[0.03],
DisplayFunction- > Identity];
p5 = Plot[yex[t], {t, 0, 1},
DisplayFunction- > Identity];
p6 = Show[p4, p5];
In[1330]:= both = Table[{xe[n], Ye[n]},{n, 0, 20}];
In[1331]:= p7 = ListPlot[both,
PlotStyle- > PointSize[0.03],
DisplayFunction- > Identity];

```
```

In[1331]:= p8 = ParametricPlot[{xex[t], yex[t]},
{t, 0, 1}, DisplayFunction- >
Identity];
p9 = Show[p7, p8];
In[1332]:= Show[GraphicsArray[{p3, p6, p9}]]

```

Notice that the approximations are more accurate with the smaller value of \(h\). We also see this in the graphs that compare the approximation with the exact solution.

\subsection*{6.5.3 Runge-Kutta Method}

Because we would like to be able to improve the approximation without using such a small value for \(h\), we seek to improve the method. As with first-order equations, the Runge-Kutta method can be extended to systems. In this case, the recursive formula at each step is
\[
\left\{\begin{array}{l}
x_{n+1}=x_{n}+\frac{1}{6} h\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)  \tag{6.23}\\
y_{n+1}=y_{n}+\frac{1}{6} h\left(m_{1}+2 m_{2}+2 m_{3}+m_{4}\right)
\end{array}\right.
\]
where
\[
\begin{array}{ll}
k_{1}=f\left(t_{n}, x_{n}, y_{n}\right) & m_{1}=g\left(t_{n}, x_{n}, y_{n}\right) \\
k_{2}=f\left(t_{n}+\frac{1}{2} h, x_{n}+\frac{1}{2} h k_{1}, y_{n}+\frac{1}{2} h m_{1}\right) & m_{2}=g\left(t_{n}+\frac{1}{2} h, x_{n}+\frac{1}{2} h k_{1}, y_{n}+\frac{1}{2} h m_{1}\right) \\
k_{3}=f\left(t_{n}+\frac{1}{2} h, x_{n}+\frac{1}{2} h k_{2}, y_{n}+\frac{1}{2} h m_{2}\right) & m_{3}=g\left(t_{n}+\frac{1}{2} h, x_{n}+\frac{1}{2} h k_{2}, y_{n}+\frac{1}{2} h m_{2}\right) \\
k_{4}=f\left(t_{n}+h, x_{n}+h k_{3}, y_{n}+h m_{3}\right) & m_{4}=g\left(t_{n}+h, x_{n}+h k_{3}, y_{n}+h m_{3}\right) \tag{6.27}
\end{array}
\]

EXAMPLE 6.5.4: Use the Runge-Kutta method to approximate the solution of the initial-value problem from Example 2
\[
\left\{\begin{array}{l}
d x / d t=x-y+1 \\
d y / d t=x+3 y+e^{-t} \\
x(0)=0, y(0)=1
\end{array}\right.
\]
using \(h=0.1\). Compare these results to those of the exact solution of the system of equations as well as those obtained with Euler's method.

SOLUTION: We use equations (6.23) and (6.24) with \(f(x, y)=x-y+1\), \(g(x, y)=x+3 y+e^{-t}, t_{0}=0, x_{0}=0, y_{0}=1\), and \(h=0.1\).

We show the results obtained with this method and compare them to the exact values.
```

In[1333]:= Clear[t0, f, g, x, y, t, k1, k2, k3,
k4,m1,m2,m3,m4, xr, yr]
f[t_, (x, Y_] = x - y + 1;
g[t+, (x, y-] = x + 3y + Exp[-t];
t0 = 0;
h = 0.1;
t[n_] := t0 + nh
x[n_] :=
x[n] =
x[n-1]
+\frac{1}{6}h(k1[n-1]+2k2[n-1]+2 k3[n-1]
+k4[n-1]);
x[0] = 0;
y[n_] :=
y[n] =
y[n-1]
+\frac{1}{6}h(m1[n-1] + 2m2[n-1] + 2m3[n-1]
+m4[n-1]);
y[0] = 1;

```
\[
\begin{aligned}
& \text { In }[1334]:=\mathrm{k} 1\left[\mathrm{n}_{-}\right]:= \\
& \qquad \begin{aligned}
\mathrm{k} 2\left[\mathrm{n}_{-}\right]:= & \mathrm{n}]=\mathrm{f}[\mathrm{t}[\mathrm{n}], \mathrm{x}[\mathrm{n}], \mathrm{y}[\mathrm{n}]] ; \\
\mathrm{k} 2[\mathrm{n}]= & \mathrm{f}\left[\mathrm{t}[\mathrm{n}]+\frac{\mathrm{h}}{2}, \mathrm{x}[\mathrm{n}]+\frac{\mathrm{hk} 1[\mathrm{n}]}{2},\right. \\
& \left.\mathrm{y}[\mathrm{n}]+\frac{\mathrm{hm} 1[\mathrm{n}]}{2}\right] ;
\end{aligned}
\end{aligned}
\]
```

In[1334]:= k3[n_] :=

```

```

 y[n] + hm2[n]
 k4[n_] :=
k4[n] = f[t[n] +h, x[n] +h k3[n],
y[n] +hm3[n]];
m1[n_] := m1[n] = g[t[n], x[n],y[n]];
m2[n_] :=
m2[n] = g[t[n] + \frac{h}{2},x[n]+\frac{hk1[n]}{2},
y[n] + (m1[n]}\mp@code{2}]
m3[n_] :=

```

```

 y[n] + (m2[n]}\mp@code{2}]
 m4[n_] :=
 m4[n] = g[t[n] +h, x[n] +h k3[n],
 y[n] +hm3[n]];
 In[1335]:= Table[{t[n],x[n], xex[t[n]],y[n],
yex[t[n]]}, {n, 0, 10}]//TableForm
0 0 0 1 1
0.1 -0.0226878-0.0226978 1.46031 1.46032
0.2-0.10332 -0.103346 2.06541 2.06545
0.3-0.265382 -0.265432 2.85897 2.85904
0.4-0.540021 -0.540105 3.8967 3.89682
Out[1335]=0.5-0.968273 -0.968408 5.24956 5.24975
0.6-1.60391 -1.60412 7.00778 7.00806
0.7-2.51707 -2.51737 9.28596 9.28638
0.8-3.79882 -3.79926 12.2294 12.23
0.9 -5.56704 -5.56767 16.0223 16.0232
1. -7.97379 -7.97468 20.8975 20.8987

```

Notice that the Runge-Kutta method is much more accurate than Euler's method. In fact, the Runge-Kutta with \(h=0.1\) is more accurate than Euler's method with \(h=0.05\). We also observe the accuracy of the approximation in the graphs that compare the approximation to the exact solution in Figure 6-44.


Figure 6-44 Runge-Kutta method using \(h=0.1\) : (a) comparison of \(x_{n}\) to \(x(t)\); (b) comparison of \(y_{n}\) to \(y(t)\); (c) comparison of \(\left(x_{n}, y_{n}\right)\) to \((x(t), y(t))\)
```

In[1336]:= xs = Table[{t[n], x[n]},{n,0,10}];
In[1337]:= p1 = ListPlot[xs,
PlotStyle- > PointSize[0.03],
DisplayFunction- > Identity];
p2 = Plot[xex[t], {t, 0, 1},
DisplayFunction- > Identity];
p3 = Show[p1, p2];
In[1338]:= ys = Table[{t[n],y[n]},{n,0,10}];
In[1339]:= p4 = ListPlot[ys,
PlotStyle- > PointSize[0.03],
DisplayFunction- > Identity];
p5 = Plot[yex[t], {t, 0, 1},
DisplayFunction- > Identity];
p6 = Show[p4, p5];
In[1340]:= both = Table[{x[n],y[n]}, {n,0, 10}];
In[1341]:= p7 = ListPlot[both,
PlotStyle- > PointSize[0.03],
DisplayFunction- > Identity];
p8 = ParametricPlot[{xex[t],yex[t]},
{t, 0, 1}, DisplayFunction- >
Identity];
p9 = Show[p7, p8];
In[1342]:= Show[GraphicsArray[{p3, p6, p9}]]

```

\subsection*{6.6 Nonlinear Systems, Linearization, and Classification of Equilibrium Points}

We now turn our attention to the systems of equations of the form
\[
\left\{\begin{array}{l}
d x / d t=f(x, y)  \tag{6.28}\\
d y / d t=g(x, y)
\end{array}\right.
\]

This system is autonomous, because \(f(x, y)\) and \(g(x, y)\) do not depend explicitly on the independent variable \(t\).

Definition 29 (Equilibrium Point). A point ( \(x_{0}, y_{0}\) ) is an equilibrium point of system (6.28) if \(f\left(x_{0}, y_{0}\right)=0\) and \(g\left(x_{0}, y_{0}\right)=0\).

Before discussing nonlinear systems, we first investigate properties of systems of

Equilibrium points are also called rest points. the form
\[
\left\{\begin{array}{l}
d x / d t=a x+b y  \tag{6.29}\\
d y / d t=c x+d y
\end{array}\right.
\]
where \(\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c \neq 0\), which have only one equilibrium point: \((0,0)\). We have solved many systems of this type by using the eigenvalues and corresponding eigenvectors of \(\mathbf{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\).

\subsection*{6.6.I Real Distinct Eigenvalues}

If \(\lambda_{1}\) and \(\lambda_{2}\) are real eigenvalues of \(\mathbf{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\) where \(\lambda_{2}<\lambda_{1}\), with corresponding eigenvectors \(\mathbf{v}_{1}\) and \(\mathbf{v}_{2}\), respectively, a general solution of system (6.29) is
\[
\begin{equation*}
\mathbf{X}=\binom{x}{y}=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+c_{2} \mathbf{v}_{2} e^{\lambda_{2} t}=e^{\lambda_{1} t}\left[c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2} e^{\left(\lambda_{2}-\lambda_{1}\right) t}\right] . \tag{6.30}
\end{equation*}
\]
1. Suppose that both eigenvalues are negative. If we assume that \(\lambda_{2}<\lambda_{1}<0\), then \(\lambda_{2}-\lambda_{1}<0\). Then \(e^{\left(\lambda_{2}-\lambda_{1}\right) t}\) and \(e^{\lambda_{1} t}\) are very small for large values of \(t\). If \(c_{1} \neq 0\), then \(\lim _{t \rightarrow \infty} \mathbf{X}=\mathbf{0}\) in one of the directions determined by \(\mathbf{v}_{1}\) or \(-\mathbf{v}_{1}\). If \(c_{1}=0\), then \(\mathbf{X}=c_{2} \mathbf{v}_{2} e^{\lambda_{2} t}\). Again, because \(\lambda_{2}<0, \lim _{t \rightarrow \infty} \mathbf{X}=\mathbf{0}\) in the directions determined by \(\mathbf{v}_{2}\) or \(-\mathbf{v}_{2}\). In this case, \((0,0)\) is a stable node.
2. Suppose that both eigenvalues are positive. If \(0<\lambda_{2}<\lambda_{1}\), then \(e^{\lambda_{1} t}\) and \(e^{\lambda_{2} t}\) both become unbounded as \(t\) increases. If \(c_{1} \neq 0\), then \(\mathbf{X}\) becomes unbounded in either the direction of \(\mathbf{v}_{1}\) or \(-\mathbf{v}_{1}\). If \(c_{1}=0\), then \(\mathbf{X}\) becomes unbounded in the directions given by \(\mathbf{v}_{2}\) or \(-\mathbf{v}_{2}\). In this case, \((0,0)\) is an unstable node.
3. Suppose that the eigenvalues have opposite sign. Then, if \(\lambda_{2}<0<\lambda_{1}\) and \(c_{1} \neq 0, \mathbf{X}\) becomes unbounded in either the direction of \(\mathbf{v}_{1}\) or \(-\mathbf{v}_{1}\) as it did in (2). However, if \(c_{1}=0\), then due to the fact that \(\lambda_{2}<0, \lim _{t \rightarrow \infty} \mathbf{X}=\) \(\mathbf{0}\) along the line determined by \(\mathbf{v}_{2}\). If the initial point \(\mathbf{X}(0)\) is not on the line determined by \(\mathbf{v}_{2}\), then the line given by \(\mathbf{v}_{1}\) is an asymptote for the solution. We say that \((0,0)\) is a saddle point in this case.

EXAMPLE 6.6.1: Classify the equilibrium point \((0,0)\) of the systems:
(a) \(\left\{\begin{array}{l}x^{\prime}=5 x+3 y \\ y^{\prime}=-4 x-3 y\end{array} ;\right.\) (b) \(\left\{\begin{array}{l}x^{\prime}=x-2 y \\ y^{\prime}=3 x-4 y\end{array}\right.\); (c) \(\left\{\begin{array}{l}x^{\prime}=-x-2 y \\ y^{\prime}=3 x+4 y\end{array}\right.\).

SOLUTION: (a) We find the eigenvalues and corresponding eigenvectors of \(\mathbf{A}=\left(\begin{array}{rr}5 & 3 \\ -4 & -3\end{array}\right)\) with Eigensystem.

In [1343]: \(=\) Clear \([\mathbf{a}, \mathbf{x}, \mathrm{y}]\)
\(a=\left(\begin{array}{cc}5 & 3 \\ -4 & -3\end{array}\right)\);
Eigensystem[a]
Out \([1343]=\{\{-1,3\},\{\{-1,2\},\{-3,2\}\}\}\)
Because these eigenvalues have opposite sign, \((0,0)\) is a saddle point. Eigenvectors corresponding to \(\lambda_{1}=-1\) and \(\lambda_{2}=3\) are \(\mathbf{v}_{1}=\binom{-1}{2}\) and \(\mathbf{v}_{2}=\binom{-3}{2}\), respectively. Hence the solution becomes unbounded in the directions associated with the positive eigenvalue, \(\mathbf{v}_{2}=\binom{3}{2}\) and \(-\mathbf{v}_{2}=\) \(\binom{3}{-2}\). Along the line through \((0,0)\) determined by \(\mathbf{v}_{1}=\binom{1}{2}\), the solution approaches \((0,0)\). We see this when we graph various solutions and display the results together with the direction field associated with the system. First, we use DSolve to find a general solution of the system.
\[
\begin{aligned}
\text { In }[1344]:=\text { gensol }= & \text { DSolve }\left[\left\{\mathbf{x}^{\prime}[\mathrm{t}]==5 \mathbf{x}[\mathrm{t}]\right.\right. \\
& +3 \mathrm{y}[\mathrm{t}], \\
\mathrm{y}^{\prime}[\mathrm{t}]= & -4 \mathbf{x}[\mathrm{t}]-3 \mathrm{y}[\mathrm{t}]\},\{\mathbf{x}[\mathrm{t}], \mathrm{y}[\mathrm{t}]\}, \mathrm{t}] \\
\text { Out }[1344]=\{\{\mathrm{x}[\mathrm{t}] \rightarrow & \frac{1}{2} e^{-t}\left(-1+3 e^{4 t}\right) \mathrm{C}[1] \\
& +\frac{3}{4} e^{-t}\left(-1+e^{4 t}\right) \mathrm{C}[2], \\
\mathrm{y}[\mathrm{t}] \rightarrow & -e^{-\mathrm{t}}\left(-1+e^{4 t}\right) \mathrm{C}[1] \\
& \left.\left.-\frac{1}{2} e^{-t}\left(-3+e^{4 t}\right) \mathrm{C}[2]\right\}\right\}
\end{aligned}
\]

Then, we use Table and Flatten to create a list of ordered pairs \(\{x(t), y(t)\}\), corresponding to the solution for various values of the arbitrary constants. These functions are then graphed with ParametricPlot.
```

In[1345]:= toplot =
Flatten[
Table[
{- e-t}C[1]-3\mp@subsup{e}{}{3t}C[2]
2e}\mp@subsup{e}{}{-t}C[1]+2\mp@subsup{e}{}{3t}C[2]}/
{C[1]->i,C[2]->j},
{i, -0.5,0.5,0.25},
{j, -0.5,0.5,0.25}], 1];
In[1346]:= somegraphs = ParametricPlot[
Evaluate[toplot], {t, -3, 3},
PlotRange }->{{-1,1},{-1,1}}
AspectRatio }->1,\mathrm{ PlotStyle }->\mathrm{ GrayLevel[0],
DisplayFunction }->\mathrm{ Identity];
In[1347]:= p4 = Plot[{-2x,- 立}
PlotStyle }
{{GrayLevel[0], Dashing[{0.02}],
Thickness[0.01]},
{GrayLevel[0.2], Dashing[{0.02}],
Thickness[0.01]}},
DisplayFunction }->\mathrm{ Identity];

```

We graph the direction field associated with the system with PlotVectorField. Last, all graphs are displayed together with Show in Figure 6-45.


Figure 6-45 The origin is a saddle point
```

In[1348]:= << Graphics'PlotField`
In[1349]:= pvf1 = PlotVectorField[
{5x+3y, -4x-3y}, {x, -1, 1},
{y,-1, 1},
DefaultColor }->\mathrm{ GrayLevel[0.5],
PlotPoints }->20\mathrm{ ,
ScaleFunction }->\mathrm{ (0.05\&),
DisplayFunction }->\mathrm{ Identity];
In[1350]:= Show[pvf1, somegraphs,p4,
DisplayFunction }->\mathrm{ \$DisplayFunction,
PlotRange }->{{-1,1},{-1,1}}
AspectRatio }->\mathrm{ 1,
Axes }->\mathrm{ Automatic, AxesOrigin }->{0,0}\mathrm{ ,
DisplayFunction }->\mathrm{ \$DisplayFunction]

```
(b) In this case, the eigenvalues \(\lambda_{1}=-1\) and \(\lambda_{2}=-2\) are both negative.
\[
\begin{aligned}
\text { In }[1351]:= & \mathbf{a}=\left(\begin{array}{ll}
1 & -2 \\
3 & -4
\end{array}\right) ; \\
& \text { Eigensystem }[a] \\
\text { Out }[1351]= & \{\{-2,-1\},\{\{2,3\},\{1,1\}\}\}
\end{aligned}
\]

Hence, \((0,0)\) is a stable node. Corresponding eigenvectors are \(\mathbf{v}_{1}=\binom{1}{1}\) and \(\mathbf{v}_{2}=\binom{2}{3}\). Therefore, the solutions approach \((0,0)\) along the lines through the origin determined by these vectors, \(y=x\) and \(y=\frac{3}{2} x\). We see this in the graph of the direction field and graphs of several solutions to the system. First, we graph the direction field associated with the system.
```

In[1352]:= << Graphics'PlotField'
In[1353]:= Clear[\mathbf{x},\mathbf{y},\mathbf{x}0,\mp@subsup{\mathbf{y}}{0}{0},\mathrm{ sol]}
pvf1 = PlotVectorField[{x-2y, 3x-4y},
{x, -1, 1}, {y, -1, 1},
DefaultColor }->\mathrm{ GrayLevel[0.5],
PlotPoints }->20\mathrm{ ,
ScaleFunction }->\mathrm{ (0.5\&),
DisplayFunction }->\mathrm{ Identity];

```

Then we use DSolve to solve the initial-value problem \(\left\{\begin{array}{l}x^{\prime}=x-2 y \\ y^{\prime}=3 x-4 y \\ x(0)=x_{0}, y(0)=y_{0} .\end{array}\right.\)
```

In[1354]:= gensol =
DSolve[{\mp@subsup{x}{}{\prime}[t] == x[t] - 2 y [t],
y'[t] == 3x[t] - 4 y [t], x[0] == x0,
y[0] == y0},{x[t],y[t]},t]//Simplify
Out [1354]={{x[t] ->\mp@subsup{\mathbb{e}}{}{-2t}((-2+3\mp@subsup{\mathbb{e}}{}{t})\textrm{x0}-2(-1+\mp@subsup{\mathbb{e}}{}{t})\textrm{y}0),

```


Given an ordered pair \(\left\{x_{0}, y_{0}\right\}, \operatorname{sol}\left[\left\{\mathrm{x}_{0}, \mathrm{y}_{0}\right\}\right]\) returns the solution that satisfies \(x(0)=x_{0}\) and \(y(0)=y_{0}\).
```

In[1355]:= sol[{x0_, y0_}]=
{ et}(3x0-2y0+2\mp@subsup{e}{}{-t}(-x0+y0))
e}\mp@subsup{e}{}{-t}(3x0-2y0+3\mp@subsup{e}{}{-t}(-x0+y0))}

```

We then generate several lists of ordered pairs with Table
```

In[1356]:= initconds1 =
Table[{-1, i}, {i, -1, 1, 2/9}];
initconds2 =
Table[{1, i}, {i, -1, 1, 2/9}];
initconds3 =
Table[{i, 1}, {i, -1, 1, 2/9}];
initconds4 =
Table[{i, -1}, {i, -1, 1, 2/9}];

```
and use Union to join them together.
```

In[1357]:= initconds = initconds1Uinitconds2U
initconds3 U initconds4;

```

Map is used to apply sol to the list initconds. The resulting list of parametric functions is graphed with ParametricPlot.
```

In[1358]:= toplot = Map[sol, initconds];
In[1359]:= somegraphs = ParametricPlot[Evaluate[toplot],
{t, -3, 3}, PlotRange }->{{-1,1}
{-1, 1}}, AspectRatio }->1\mathrm{ ,
PlotStyle }->\mathrm{ GrayLevel[0],
DisplayFunction }->\mathrm{ Identity];
In[1360]:= p4 = Plot [{x, 㐌
PlotStyle }
{{GrayLevel[0], Dashing[{0.02}],
Thickness[0.01]},
{GrayLevel[0.2], Dashing[{0.02}],
Thickness[0.01]}},
DisplayFunction }->\mathrm{ Identity];

```

Finally, all the graphics are displayed together with Show in Figure 6-46.
```

In[1361]:= Show[pvf1, somegraphs, p4,
DisplayFunction }->\mathrm{ \$DisplayFunction,
PlotRange }->{{-1,1},{-1,1}}
AspectRatio }->\mathrm{ 1,
Axes }->\mathrm{ Automatic, AxesOrigin }->{0,0}

```


Figure 6-46 The origin is a stable node
(c) Because the eigenvalues \(\lambda_{1}=2\) and \(\lambda_{1}=1\) are both positive, \((0,0)\) is an unstable node.
```

In[1362]:= a = (-1 -2
Eigensystem[a]

```
```

Out [1362]= {{1, 2}, {{-1, 1}, {-2, 3}}}

```
```

Out [1362]= {{1, 2}, {{-1, 1}, {-2, 3}}}

```

Note that the corresponding eigenvectors are \(\mathbf{v}_{1}=\binom{-2}{3}\) and \(\mathbf{v}_{2}=\binom{-1}{1}\), respectively. Hence, the solutions become unbounded along the lines passing through the origin determined by these vectors, \(y=-\frac{3}{2} x\) and \(y=-x\). As before, we see this in the graph of the direction field and various solutions of the system. See Figure 6-47.
\[
\begin{aligned}
\text { In }[1363]:=\operatorname{pvf1~}= & \text { PlotVectorField }[\{-\mathbf{x}-2 \mathrm{y}, 3 \mathrm{x}+4 \mathrm{y}\}, \\
& \{\mathbf{x},-1,1\},\{\mathrm{y},-1,1\}, \\
& \text { DefaultColor } \rightarrow \text { GrayLevel }[0.5], \\
& \text { PlotPoints } \rightarrow 20, \\
& \text { ScaleFunction } \rightarrow(0.05 \&), \\
& \text { DisplayFunction } \rightarrow \text { Identity]; }
\end{aligned}
\]


Figure 6-47 The origin is an unstable node
```

In[1364]:= gensol =
DSolve[{x'[t] == -x[t] - 2 y[t],
y'[t] == 3x[t] + 4y[t],
x[0] == x0, y[0] == y0},
{x[t],y[t]},t]
Out [1364] = {{x[t]) - e t (-3x0 + 2 e t x0 - 2 y0 + 2 e ety0),
y[t] -> e e
In[1365]:= sol[{x\mp@subsup{0}{-}{\prime},\mathbf{y}\mp@subsup{0}{-}{\prime}}]=
{-\mp@subsup{e}{}{t}(-3x0-2y0+2\mp@subsup{e}{}{t}(x0+y0)),
et
In[1366]:= initconds =
Table[{0.5t Cos[2\pit],0.5t Sin[2\pit]},
{t,0,1, 位}];
In[1367]:= toplot = Map[sol, initconds];
In[1368]:= somegraphs =
ParametricPlot[Evaluate[toplot],
{t, -3, 3}, PlotRange }->{{-1,1},{-1,1}}
AspectRatio }->1,\mathrm{ PlotStyle }->\mathrm{ GrayLevel[0],
DisplayFunction }->\mathrm{ Identity];

```
```

In[1369]:= p4 = Plot [{-x, - - mx
PlotStyle }
{{GrayLevel[0], Dashing[{0.02}],
Thickness[0.01]},
{GrayLevel[0.2], Dashing[{0.02}],
Thickness[0.01]}},
DisplayFunction }->\mathrm{ Identity];
In[1370]:= Show[pvf1, somegraphs, p4,
DisplayFunction }->\mathrm{ \$DisplayFunction,
PlotRange }->{{-1,1},{-1,1}}
AspectRatio }->1\mathrm{ ,
Axes }->\mathrm{ Automatic, AxesOrigin }->{0,0}

```

\subsection*{6.6.2 Repeated Eigenvalues}

We recall from our previous experience with repeated eigenvalues of a \(2 \times 2\) system that the eigenvalue can have two linearly independent eigenvectors associated with it or only one eigenvector associated with it. Hence, we investigate the behavior of solutions in this case by considering both of these possibilities.
1. Suppose that the eigenvalue \(\lambda=\lambda_{1}=\lambda_{2}\) has two corresponding linearly independent eigenvectors \(\mathbf{v}_{1}\) and \(\mathbf{v}_{2}\). Then, a general solution is
\[
\mathbf{X}=c_{1} \mathbf{v}_{1} e^{\lambda t}+c_{2} \mathbf{v}_{2} e^{\lambda t}
\]

Hence, if \(\lambda>0\), then \(\mathbf{X}\) becomes unbounded along the line through the origin determined by the vector \(c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}\) where \(c_{1}\) and \(c_{2}\) are arbitrary constants. In this case, we call the equilibrium point a degenerate unstable node (or an unstable star). On the other hand, if \(\lambda<0\), then \(\mathbf{X}\) approaches \((0,0)\) along these lines, and we call \((0,0)\) a degenerate stable node (or stable star). Note that the name "star" was selected due to the shape of the solutions.
2. Suppose that \(\lambda=\lambda_{1}=\lambda_{2}\) has only one corresponding eigenvector \(\mathbf{v}_{1}\). Hence, a general solution is
\[
\mathbf{X}=c_{1} \mathbf{v}_{1} e^{\lambda t}+c_{2}\left(\mathbf{v}_{1} t+\mathbf{w}_{2}\right) e^{\lambda t}=\left(c_{1} \mathbf{v}_{1}+c_{2} \mathbf{w}_{2}\right) e^{\lambda t}+c_{2} \mathbf{v}_{1} t e^{\lambda t}
\]
where \((\mathbf{A}-\lambda \mathbf{I}) \mathbf{w}_{2}=\mathbf{v}_{1}\). We can more easily investigate the behavior of this solution if we write this solution as
\[
\mathbf{X}=t e^{\lambda t}\left[\frac{1}{t}\left(c_{1} \mathbf{v}_{1}+c_{2} \mathbf{w}_{2}\right)+c_{2} \mathbf{v}_{1}\right] .
\]

If \(\lambda<0, \lim _{t \rightarrow \infty} t e^{\lambda t}=0\) and \(\lim _{t \rightarrow \infty}\left[\frac{1}{t}\left(c_{1} \mathbf{v}_{1}+c_{2} \mathbf{w}_{2}\right)+c_{2} \mathbf{v}_{1}\right]=c_{2} \mathbf{v}_{1}\). Hence, the solutions approach \((0,0)\) along the line determined by \(\mathbf{v}_{1}\), and we call \((0,0)\) a degenerate stable node. If \(\lambda>0\), the solutions become unbounded along this line, and we say that \((0,0)\) is a degenerate unstable node.

EXAMPLE 6.6.2: Classify the equilibrium point \((0,0)\) in the systems:
(a) \(\left\{\begin{array}{l}x^{\prime}=x+9 y \\ y^{\prime}=-x-5 y\end{array} ;\right.\) (b) \(\left\{\begin{array}{l}x^{\prime}=2 x \\ y^{\prime}=2 y\end{array}\right.\).

SOLUTION: (a) Using Eigensystem,
```

In [1371] : $=a=\left(\begin{array}{cc}1 & 9 \\ -1 & -5\end{array}\right)$;
Eigensystem[a]
Out $[1371]=\{\{-2,-2\},\{\{-3,1\},\{0,0\}\}\}$

```
we see that \(\lambda_{1}=\lambda_{2}=-2\) and that there is only one corresponding eigenvector. Therefore, because \(\lambda=-2<0,(0,0)\) is a degenerate stable node. Notice that in the graph of several members of the family of solutions of this system along with the direction field shown in Figure 6-48, which


Figure 6-48 The origin is a degenerate stable node
we generate using the same technique as in part (b) of the previous example, the solutions approach \((0,0)\) along the line in the direction of
\[
\begin{aligned}
& \mathbf{v}_{1}=\binom{-3}{1}, y=-\frac{1}{3} x . \\
& \text { In }[1372]:= \\
& \text { In }[1373]:= \\
& \text { Clear }[\mathbf{x}, \mathrm{y}] \\
& \operatorname{pvfl}= \\
& \text { PlotVectorField }[\{\mathbf{x}+9 \mathbf{y},-\mathbf{x}-5 \mathbf{y}\}, \\
&\{\mathbf{x},-1,1\},\{\mathrm{y},-1,1\}, \\
& \text { DefaultColor } \rightarrow \text { GrayLevel }[0.5], \\
& \text { PlotPoints } \rightarrow 20, \\
& \text { ScaleFunction } \rightarrow(0.5 \&), \\
&\text { DisplayFunction } \rightarrow \text { Identity }] ;
\end{aligned}
\]
In [1374]:= Simplify[
\[
\text { DSolve }\left[\left\{x^{\prime}[t]==x[t]+9 y[t],\right.\right.
\]
\[
y^{\prime}[t]==-x[t]-5 y[t], x[0]==x 0,
\]
\[
y[0]==y 0\},\{x[t], y[t]\}, t]]
\]
\[
\text { Out }[1374]=\left\{\left\{x[t] \rightarrow e^{-2 t}(x 0+3 t x 0+9 t y 0),\right.\right.
\]
\[
\left.\left.y[t] \rightarrow e^{-2 t}(y 0-t(x 0+3 y 0))\right\}\right\}
\]
\[
\operatorname{In}[1375]:=\operatorname{sol}\left[\left\{\mathbf{x} 0_{-}, y 0_{-}\right\}\right]=
\]
\[
\left\{\frac{x 0+3 t x 0+9 t y 0}{e^{2 t}}, \frac{-(t x 0)+y 0-3 t y 0}{e^{2 t}}\right\}
\]

In [1376]: \(=\) initconds1 =
\[
\operatorname{Table}[\{-1, i\},\{i,-1,1,2 / 9\}] ;
\]
initconds2 \(=\)
        Table[\{1, i\}, \{i,-1,1,2/9\}];
            initconds3 =
        Table[\{i, 1\}, \{i,-1, 1, 2/9\}];
            initconds4 =
        Table[\{i, -1\}, \{i, -1, 1, 2/9\}];
In [1377]:= initconds = initconds1 Uinitconds2U
                initconds3 U initconds4;
In [1378]:= toplot = Map[sol, initconds];
In [1379]: \(=\) somegraphs =
                                    ParametricPlot[Evaluate[toplot],
                                    \(\{t,-3,3\}\), PlotRange \(\rightarrow\{\{-1,1\},\{-1,1\}\}\),
                                    AspectRatio \(\rightarrow\) 1, PlotStyle \(\rightarrow\) GrayLevel[0],
                                    DisplayFunction \(\rightarrow\) Identity];
```

In[1380]:= p4 = Plot [\frac{-\mathbf{x}}{3},{x,-1,1},
PlotStyle }
{{GrayLevel[0], Dashing[{0.02}],
Thickness[0.01]}},
DisplayFunction }->\mathrm{ Identity];
In[1381]:= Show[pvf1, somegraphs, p4,
DisplayFunction }->\mathrm{ \$DisplayFunction,
PlotRange }->{{-1,1},{-1,1}}
AspectRatio }->1\mathrm{ ,
Axes }->\mathrm{ Automatic, AxesOrigin }->{0,0}

```
(b) We have \(\lambda_{1}=\lambda_{2}=2\) and two linearly independent vectors, \(\mathbf{v}_{1}=\binom{1}{0}\) and \(\mathbf{v}_{2}=\binom{0}{1}\). (Note: The choice of these two vectors does not change the value of the solution, because of the form of the general solution in this case.)
```

In [1382] : = $a=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$;
Eigensystem[a]
Out $[1382]=\{\{2,2\},\{\{0,1\},\{1,0\}\}\}$

```

Because \(\lambda=2>0\), we classify \((0,0)\) as a degenerate unstable node (or star). Some of these solutions along with the direction field are graphed in Figure 6-49 in the same manner as in part (c) of the previous example. Notice that they become unbounded in the direction of any vector in the \(x y\)-plane because \(\mathbf{v}_{1}=\binom{1}{0}\) and \(\mathbf{v}_{2}=\binom{0}{1}\).
```

In[1383]:= Clear[\mathbf{x,y]}
pvf1 = PlotVectorField[{2x, 2y}, {x, -1, 1},
{y, -1, 1}, DefaultColor }
GrayLevel[0.5], PlotPoints }->20\mathrm{ ,
ScaleFunction }->\mathrm{ (0.5\&),
DisplayFunction }->\mathrm{ Identity];
In[1384]:= Simplify[DSolve[{x'[t] == 2x[t],
y'[t] == 2 y[t],
x[0] == x0, y[0] == y0},{x[t],y[t]},t]]
Out[1384]= {{x[t] -> \mp@subsup{e}{}{2t}x0,y[t]->\mp@subsup{e}{}{2t}y0}}

```


Figure 6-49 The origin is a degenerate unstable node
\[
\begin{aligned}
& \text { In }[1385]:=\operatorname{sol}\left[\left\{x 0_{-}, y^{\left.0_{-}\right\}}\right]=\left\{e^{2 t} x 0, e^{2 t} y 0\right\} ;\right. \\
& \begin{aligned}
& \text { In }[1386]:= \text { initconds }=\operatorname{Table}[\{0.05 \operatorname{Cos}[2 \pi t], \\
&0.05 \operatorname{Sin}[2 \pi t]\}, \\
&\left.\left\{t, 0,1, \frac{1}{24}\right\}\right] ;
\end{aligned}
\end{aligned}
\]

In[1387]:= toplot = Map[sol, initconds];

In [1388]:= somegraphs =
ParametricPlot[Evaluate[toplot],
\(\{t,-3,3\}\), PlotRange \(\rightarrow\{\{-1,1\},\{-1,1\}\}\),
AspectRatio \(\rightarrow 1\), PlotStyle \(\rightarrow\) GrayLevel[0],
DisplayFunction \(\rightarrow\) Identity];
```

In[1389]:= Show[pvf1, somegraphs,
DisplayFunction }->\mathrm{ \$DisplayFunction,
PlotRange }->{{-1,1},{-1,1}}
AspectRatio }->\mathrm{ 1,
Axes }->\mathrm{ Automatic, AxesOrigin }->{0,0}

```

\subsection*{6.6.3 Complex Conjugate Eigenvalues}

We have seen that if the eigenvalues of the system (6.29) are \(\lambda_{1,2}=\alpha \pm \beta i, \beta \neq 0\), with corresponding eigenvectors \(\mathbf{v}_{1,2}=\mathbf{a} \pm \mathbf{b} i\), two linearly independent solutions of the system are
\[
\mathbf{X}_{1}=e^{\alpha t}(\mathbf{a} \cos \beta t-\mathbf{b} \sin \beta t) \quad \text { and } \quad \mathbf{X}_{2}=e^{\alpha t}(\mathbf{b} \cos \beta t+\mathbf{a} \sin \beta t) .
\]

Hence, a general solution is \(\mathbf{X}=c_{1} \mathbf{X}_{1}+c_{2} \mathbf{X}_{2}\), so there are constants \(A_{1}, A_{2}, B_{1}\), and \(B_{2}\) so that \(x\) and \(y\) are given by
\[
\mathbf{X}=\binom{x}{y}=\binom{A_{1} e^{\alpha t} \cos \beta t+A_{2} e^{\alpha t} \sin \beta t}{B_{1} e^{\alpha t} \cos \beta t+B_{2} e^{\alpha t} \sin \beta t} .
\]
1. If \(\alpha=0\), the solution is
\[
\mathbf{X}=\binom{x}{y}=\binom{A_{1} \cos \beta t+A_{2} \sin \beta t}{B_{1} \cos \beta t+B_{2} \sin \beta t} .
\]

Hence, both \(x\) and \(y\) are periodic and \((0,0)\) is classified as a center. Note that the motion around these circles or ellipses is either clockwise or counterclockwise for all solutions.
2. If \(\alpha \neq 0\), then \(e^{\alpha t}\) is present in the solution. This term causes the solution to spiral around the equilibrium point. If \(\alpha>0\), then the solution spirals away from \((0,0)\), so we classify \((0,0)\) as an unstable spiral. Otherwise, if \(\alpha<0\), the solution spirals towards \((0,0)\), so we say that \((0,0)\) is a stable spiral.

EXAMPLE 6.6.3: Classify the equilibrium point \((0,0)\) in each of the fol-
lowing systems: (a) \(\left\{\begin{array}{l}x^{\prime}=-y \\ y^{\prime}=x\end{array}\right.\); (b) \(\left\{\begin{array}{l}x^{\prime}=\frac{1}{2} x-\frac{153}{32} y \\ y^{\prime}=2 x-y\end{array}\right.\).

SOLUTION: (a) The eigenvalues are found to be \(\lambda_{1,2}= \pm i\).
```

$\operatorname{In}[1390]:=a=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$;
Eigensystem[a]
Out $[1390]=\{\{-\dot{1}, \dot{\mathbb{1}}\},\{\{-\dot{1}, 1\},\{\dot{1}, 1\}\}\}$

```

Because these eigenvalues have zero real part (and, hence, are purely imaginary), \((0,0)\) is a center. Several solutions along with the direction field are graphed in Figure 6-50.


Figure 6-50 The origin is a center
```

In[1391]:= Clear[[x,y]
pvf1 = PlotVectorField[{-y, x}, {x, -1, 1},
{y, -1, 1}, DefaultColor }
GrayLevel[0.5], PlotPoints }->20\mathrm{ ,
ScaleFunction }->\mathrm{ (0.5\&),
DisplayFunction }->\mathrm{ Identity];

```
```

In[1392]:= Simplify[DSolve[{x'[t] == - y[t],

```
In[1392]:= Simplify[DSolve[{x'[t] == - y[t],
    y'[t] == x[t], x[0] == x0,
    y'[t] == x[t], x[0] == x0,
    y[0] == y0},{x[t],y[t]},t]]
    y[0] == y0},{x[t],y[t]},t]]
Out[1392]= {{x[t] -> x0 Cos[t] - y0 Sin[t],
    y[t] }->\textrm{y}0\operatorname{Cos[t] + x0 Sin[t]}}
In[1393]:= sol[{x0_, y0_}] = {x0 Cos[t] - y0 Sin[t],
                                    y0 Cos[t] + x0 Sin[t]};
In[1394]:= initconds = Table[{0,i},
    {i,0,1, 1/14}];
In[1395]:= toplot = Map[sol, initconds];
```

```
In[1396]:= somegraphs =
    ParametricPlot[Evaluate[toplot],
    {t, 0, 2\pi}, PlotRange }->{{-1,1},{-1,1}}
    AspectRatio }->1,\mathrm{ PlotStyle }->\mathrm{ GrayLevel[0],
    DisplayFunction }->\mathrm{ Identity];
```

In [1397]: = Show[pvf1, somegraphs,
DisplayFunction \rightarrow \$DisplayFunction,
PlotRange $\rightarrow\{\{-1,1\},\{-1,1\}\}$,
AspectRatio \rightarrow 1,
Axes \rightarrow Automatic, AxesOrigin $\rightarrow\{0,0\}]$
(b) The eigenvalues are found to be $\lambda_{1,2}=-1 / 4 \pm 3 i$.

$$
\begin{aligned}
\text { In }[1398]:= & a=\left(\begin{array}{cc}
1 / 2 & -153 / 32 \\
2 & -1
\end{array}\right) ; \\
& \text { Eigensystem }[a]
\end{aligned}
$$

$$
\begin{aligned}
\text { Out }[1398]=\{ & \left\{-\frac{1}{4}-3 i \mathbb{i},-\frac{1}{4}+3 \dot{i}\right\}, \\
& \left.\left\{\left\{\frac{3}{8}-\frac{3 i}{2}, 1\right\},\left\{\frac{3}{8}+\frac{3 i}{2}, 1\right\}\right\}\right\}
\end{aligned}
$$

Thus, $(0,0)$ is a stable spiral, because $\alpha=-1 / 4<0$. Several solutions along with the direction field are graphed in Figure 6-51 in the same way that we have done before.

Figure 6-51 The origin is a stable spiral

```
In[1399]:= Clear[\mathbf{x, y]}
    pvf1 = PlotVectorField[{1/2x-153/32y,
        2x-y}, {x, -1, 1}, {y, -1, 1},
        DefaultColor }->\mathrm{ GrayLevel[0.5],
        PlotPoints }->20\mathrm{ , ScaleFunction }
        (0.5&),DisplayFunction }->\mathrm{ Identity];
In[1400]:= FullSimplify[DSolve[{\mp@subsup{\mathbf{x}}{}{\prime}[t] ==
    1/2x[t] - 153/32y[t],
        y'[t] == 2x[t] - y[t], x[0] == x0,
        y[0] == y0},{x[t],y[t]}, t]]
Out [1400]={{x[t]->\frac{1}{32}\mp@subsup{e}{}{-t/4}
    (32x0 Cos[3t] + (8x0 - 51 y0) Sin[3t]),
        y[t] }->\frac{1}{12}\mp@subsup{e}{}{-t/4
        (12 y0 Cos[3t] + (8x0-3 y0) Sin[3t])}}
In[1401]:= sol[{x0_, y0_}] =
    {\frac{1}{32}\mp@subsup{e}{}{-t/4}
        (32x0 Cos[3t] + (8x0 - 51y0) Sin[3t]),
        1
            (12y0 Cos[3t] + (8x0 - 3y0) Sin[3t])};
In[1402]:= initconds =
    Table[{1, i}, {i, -1, 1, 2/4}];
In[1403]:= toplot = Map[sol, initconds];
In[1404]:= somegraphs =
    ParametricPlot[Evaluate[toplot],
        {t, 0, 4\pi}, PlotRange }->{{-1,1},{-1,1}}
        AspectRatio }->1,\mathrm{ PlotStyle }->\mathrm{ GrayLevel[0],
        DisplayFunction }->\mathrm{ Identity];
In[1405]:= Show[pvf1, somegraphs,
    DisplayFunction }->\mathrm{ $DisplayFunction,
    PlotRange }->{{-1,1},{-1,1}}
    AspectRatio }->\mathrm{ 1,
    Axes }->\mathrm{ Automatic, AxesOrigin }->{0,0}
```


6.6.4 Nonlinear Systems

When working with nonlinear systems, we can often gain a great deal of information concerning the system by making a linear approximation near each equilibrium point of the nonlinear system and solving the linear system. Although the solution to the linearized system only approximates the solution to the nonlinear system, the general behavior of solutions to the nonlinear system near each equilibrium is the same as that of the corresponding linear system in most cases. The first step towards approximating a nonlinear system near each equilibrium point is to find the equilibrium points of the system and the matrix for linearization near each point as defined below.

Recall from multivariate calculus that if $z=F(x, y)$ is a differentiable function, the tangent plane to the surface S given by the graph of $z=F(x, y)$ at the point $\left(x_{0}, y_{0}\right)$ is

$$
z=F_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+F_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+F\left(x_{0}, y_{0}\right) .
$$

Hence, near each equilibrium point $\left(x_{0}, y_{0}\right)$ of the nonlinear system

$$
\left\{\begin{array}{l}
d x / d t=f(x, y) \\
d y / d t=g(x, y)
\end{array}\right.
$$

the system can be approximated with

$$
\left\{\begin{array}{l}
d x / d t=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right) \\
d y / d t=g_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+g_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+g\left(x_{0}, y_{0}\right) .
\end{array}\right.
$$

Then, because $f\left(x_{0}, y_{0}\right)=0$ and $g\left(x_{0}, y_{0}\right)=0$, the approximate system is

$$
\left\{\begin{array}{l}
d x / d t=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) \\
d y / d t=g_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+g_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
\end{array}\right.
$$

which can be written in matrix form as

$$
\binom{d x / d t}{d y / d t}=\left(\begin{array}{l}
f_{x}\left(x_{0}, y_{0}\right) \tag{6.31}\\
f_{y}\left(x_{0}, y_{0}\right) \\
g_{x}\left(x_{0}, y_{0}\right)
\end{array} g_{y}\left(x_{0}, y_{0}\right)\binom{x-x_{0}}{y-y_{0}} .\right.
$$

Note that we often call system (6.31) the linearized system corresponding to the nonlinear system due to the fact that we have removed the nonlinear terms from the original system. Now that the system is approximated by a system of the form $\left\{\begin{array}{l}d x / d t=a x+b y \\ d y / d t=c x+d y\end{array} \quad\right.$ an equilibrium point $\left(x_{0}, y_{0}\right)$ of the system $\left\{\begin{array}{l}d x / d t=f(x, y) \\ d y / d t=g(x, y)\end{array} \quad\right.$ is
classified by the eigenvalues of the matrix

$$
\mathbf{J}=\left(\begin{array}{ll}
f_{x}\left(x_{0}, y_{0}\right) & f_{y}\left(x_{0}, y_{0}\right) \tag{6.32}\\
g_{x}\left(x_{0}, y_{0}\right) & g_{y}\left(x_{0}, y_{0}\right)
\end{array}\right)
$$

which is called the Jacobian matrix. Of course, this linearization must be carried out for each equilibrium point. After determining the matrix for linearization for each equilibrium point, the eigenvalues for the matrix must be found. Then, we classify each equilibrium point according to the following criteria.

Classification of Equilibrium Points

Let $\left(x_{0}, y_{0}\right)$ be an equilibrium point of the system $\left\{\begin{array}{l}d x / d t=f(x, y) \\ d y / d t=g(x, y)\end{array}\right.$ and let λ_{1} and λ_{2} be the eigenvalues of the Jacobian matrix, (6.32).

1. Suppose that λ_{1} and λ_{2} are real. If $\lambda_{1}>\lambda_{2}>0$, then $\left(x_{0}, y_{0}\right)$ is an unstable node; if $\lambda_{2}<\lambda_{1}<0$, then $\left(x_{0}, y_{0}\right)$ is a stable node; and if $\lambda_{2}<0<\lambda_{1}$, then (x_{0}, y_{0}) is a saddle.
2. Suppose that $\lambda_{1,2}=\alpha \pm \beta i, \beta \neq 0$. If $\alpha<0,\left(x_{0}, y_{0}\right)$ is a stable spiral; if $\alpha>0$, (x_{0}, y_{0}) is an unstable spiral; and if $\alpha=0,\left(x_{0}, y_{0}\right)$ may be a center, unstable spiral, or stable spiral. Hence, we can draw no conclusion.

We will not discuss the case if the eigenvalues are the same or one eigenvalue is zero. For analyzing nonlinear systems, we state the following useful theorem.

Theorem 17. Suppose that $\left(x_{0}, y_{0}\right)$ is an equilibrium point of the autonomous nonlinear system

$$
\left\{\begin{array}{l}
d x / d t=f(x, y) \\
d y / d t=g(x, y)
\end{array}\right.
$$

Then, the relationships in the following table hold for the classification of $\left(x_{0}, y_{0}\right)$ in the nonlinear system and that in the associated linearized system.

| Associated Linearized System | Nonlinear System |
| :--- | :--- |
| Stable Node | Stable Node |
| Unstable Node | Unstable Node |
| Stable Spiral | Stable Spiral |
| Unstable Spiral | Unstable Spiral |
| Saddle | Saddle |
| Center | No Conclusion |

The Jacobian matrix is also called the variational matrix.

An autonomous system

 does not explicitly depend on the independent variable, t. That is, if you write the system omitting all arguments, the independent variable (typically t) does not appear.More generally, for the autonomous system of the form

$$
\begin{align*}
x_{1}{ }^{\prime} & =f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
x_{2}{ }^{\prime} & =f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& \vdots \tag{6.33}\\
x_{n}{ }^{\prime} & =f_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{align*}
$$

an equilibrium (or rest) point, $E=\left(x_{1}{ }^{*}, x_{2}{ }^{*}, \ldots, x_{n}{ }^{*}\right)$, of equation (6.33) is a solution of the system

$$
\begin{gather*}
f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0 \\
f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0 \tag{6.34}\\
\vdots \\
f_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0 .
\end{gather*}
$$

The Jacobian of equation (6.33) is

$$
\mathbf{J}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\
\vdots & \vdots & \cdots & \vdots \\
\frac{\partial f_{n}}{\partial x_{1}} & \frac{\partial f_{n}}{\partial x_{2}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right) .
$$

The rest point, E, is locally stable if and only if all the eigenvalues of $\mathbf{J}(E)$ have negative real part. If E is not locally stable, E is unstable.

EXAMPLE 6.6.4: Find and classify the equilibrium points of

$$
\left\{\begin{array}{l}
d x / d t=1-y \\
d y / d t=x^{2}-y^{2}
\end{array}\right.
$$

SOLUTION: We begin by finding the equilibrium points of this nonlinear system by solving $\left\{\begin{array}{l}1-y=0 \\ x^{2}-y^{2}=0 .\end{array}\right.$

$$
\begin{aligned}
\operatorname{In}[1406]:= & \text { Clear }[f, g] \\
& f\left[x_{-}, y_{-}\right]=1-y ; \\
& g\left[x_{-}, y_{-}\right]=\mathbf{x}^{2}-y^{2} ;
\end{aligned}
$$

```
In[1407]:= Solve[{f[x,y] == 0, g[x,y] == 0}]
Out [1407]= {{y }->1,\textrm{x}->-1},{y->1,x->1}
```

Because $f(x, y)=1-y$ and $g(x, y)=x^{2}-y^{2}, f_{x}(x, y)=0, f_{y}(x, y)=-1$, $g_{x}(x, y)=2 x$, and $g_{y}(x, y)=-2 y$, so the Jacobian matrix is $\mathbf{J}=\left(\begin{array}{cc}0 & -1 \\ 2 x & -2 y\end{array}\right)$.

```
In[1408]:= jac = {{D[f[x,y], x],D[f[x,y],y]},
    {D[g[x,y], x],D[g[x,y],y]}};
    MatrixForm[jac]
Out [1408] =( ccc}00-1 (2x -2 y )
```

Next, we obtain the linearized system about each equilibrium point.
For (1, 1), we obtain $\lambda_{1,2}=-1 \pm i$. Because these eigenvalues are complex-valued with negative real part, we classify $(1,1)$ as a stable spiral.

```
In[1409]:= jac/. {x-> 1, y- > 1}//Eigenvalues
Out [1409]= {-1 - i्1, -1 + i}
```

For ($-1,1$), we obtain $\lambda_{1}=-1+\sqrt{3}>0$ and $\lambda_{2}=-1-\sqrt{3}<0$, so $(-1,1)$ is a saddle.

```
In[1410]:= jac/.{x->-1, y- > 1}//Eigenvalues
Out [1410] = {-1 - \sqrt{}{3},-1+\sqrt{}{3}}
```

We graph solutions to this nonlinear system obtained using NDSolve together with the direction field associated with the nonlinear system in Figure 6-52. We can see how the solutions move towards and move away from the equilibrium points by observing the arrows on the vectors in the direction field.

```
In[1411]:= << Graphics'PlotField'
In[1412]:= pvf= PlotVectorField[{f[x,y], g[x, y]},
    {x, -3/2, 3/2}, {y, -1, 2},
    Axes-> Automatic, AxesOrigin-> {0, 0},
    ScaleFunction- > (1&),
    DefaultColor- > GrayLevel[0.5],
    DisplayFunction- > Identity];
```


Figure 6-52 Linearization gives us information about the local behavior of solutions near equilibrium points but not information about the global behavior of the solution

```
In [1413]:= numgraph[{x0, y0_}] := Module[{numsol},
            numsol = NDSolve[{x'[t] == f[x[t], y[t]],
                    y'[t] == g[x[t],y[t]], x[0] == x0,
                    y[0] == y0},{x[t],y[t]},
                    {t,0,15}];
    ParametricPlot[
                        {x[t],y[t]} /. numsol, {t, 0, 15},
        PlotStyle- > GrayLevel[0],
        Compiled- > False,
        DisplayFunction- > Identity]
    ]
In[1414]:= initconds1 =
    Table[{-3/2,i}, {i, -1, 2, 3/24}];
In[1415]:= initconds2 =
    Table[{i, 2},{i, -3/2, 3/2, 3/14}];
In[1416]:= initconds = initconds1U initconds2;
In[1417]:= somegraphs = Map[numgraph,initconds];
```

```
In[1418]:= Show[pvf, somegraphs,
    PlotRange- > {{-3/2, 3/2}, {-1, 2}},
    AspectRatio }->1,\mathrm{ Axes }->\mathrm{ Automatic,
    AxesOrigin }->{0,0}\mathrm{ ,
    DisplayFunction- > $DisplayFunction]
```

EXAMPLE 6.6.5 (Duffing's Equation): Consider the forced pendulum equation with damping,

$$
\begin{equation*}
x^{\prime \prime}+k x^{\prime}+\omega \sin x=F(t) . \tag{6.35}
\end{equation*}
$$

Recall the Maclaurin series for $\sin x: \sin x=x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\frac{1}{7!} x^{7}+\ldots$. Using $\sin x \approx x$, equation (6.35) reduces to the linear equation $x^{\prime \prime}+k x^{\prime}+\omega x=$ $F(t)$.

On the other hand, using the approximation $\sin x \approx x-\frac{1}{6} x^{3}$, we obtain $x^{\prime \prime}+k x^{\prime}+\omega\left(x-\frac{1}{6} x^{3}\right)=F(t)$. Adjusting the coefficients of x and x^{3} and assuming that $F(t)=F \cos \omega t$ gives us Duffing's equation:

$$
\begin{equation*}
x^{\prime \prime}+k x^{\prime}+c x+\epsilon x^{3}=F \cos \omega t, \tag{6.36}
\end{equation*}
$$

where k and c are positive constants.
Let $y=x^{\prime}$. Then, $y^{\prime}=x^{\prime \prime}=F \cos \omega t-k x^{\prime}-c x-\epsilon x^{3}=F \cos \omega t-k y-c x-\epsilon x^{3}$ and we can write equation (6.36) as the system

$$
\begin{align*}
& x^{\prime}=y \\
& y^{\prime}=F \cos \omega t-k y-c x-\epsilon x^{3} . \tag{6.3}
\end{align*}
$$

Assuming that $F=0$ results in the autonomous system

$$
\begin{align*}
x^{\prime} & =y \\
y^{\prime} & =-c x-\epsilon x^{3}-k y . \tag{6.38}
\end{align*}
$$

The rest points of system equation (6.38) are found by solving

$$
\begin{array}{r}
y=0 \\
-c x-\epsilon x^{3}-k y=0
\end{array}
$$

resulting in $E_{0}=(0,0)$.

```
In[1419]:= Solve[{y== 0, -c x - \epsilon x^3-k y == 0},{x,y}]
```

$$
\begin{aligned}
\text { Out }[1419]=\{ & \{y \rightarrow 0, x \rightarrow 0\},\left\{y \rightarrow 0, x \rightarrow-\frac{i \sqrt{c}}{\sqrt{\epsilon}}\right\}, \\
& \left.\left\{y \rightarrow 0, x \rightarrow \frac{i \sqrt{c}}{\sqrt{\epsilon}}\right\}\right\}
\end{aligned}
$$

We find the Jacobian of equation (6.38) in s1, evaluate the Jacobian at E_{0},

$$
\begin{aligned}
\text { In }[1420]:= & \mathbf{s} 1=\left\{\{0,1\},\left\{-\mathbf{c}-3 \epsilon \mathbf{x}^{\wedge} 2,-\mathbf{k}\right\}\right\} ; \\
& \mathbf{s} 2=\mathbf{s} 1 / . \mathbf{x}->0 \\
\text { Out }[1420]= & \{\{0,1\},\{-c,-k\}\}
\end{aligned}
$$

and then compute the eigenvalues with Eigenvalues.

$$
\begin{aligned}
& \text { In }[1421]:=s 3=\text { Eigenvalues[s2] } \\
& \text { Out }[1421]=\left\{\frac{1}{2}\left(-k-\sqrt{-4 c+k^{2}}\right), \frac{1}{2}\left(-k+\sqrt{-4 c+k^{2}}\right)\right\}
\end{aligned}
$$

Because k and c are positive, $k^{2}-4 c<k^{2}$ so the real part of each eigenvalue is always negative if $k^{2}-4 c \neq 0$. Thus, E_{0} is locally stable.

For the autonomous system

$$
\begin{align*}
x^{\prime} & =f(x, y) \tag{6.39}\\
y^{\prime} & =g(x, y)
\end{align*}
$$

Bendixson's theorem states that if $f_{x}(x, y)+g_{y}(x, y)$ is a continuous function that is either always positive or always negative in a particular region R of the plane, then system (6.39) has no limit cycles in R. For equation (6.38) we have

$$
\frac{d}{d x}(y)+\frac{d}{d y}\left(-c x-\epsilon x^{3}-k y\right)=-k
$$

which is always negative. Hence, equation (6.38) has no limit cycles and it follows that E_{0} is globally, asymptotically stable.

```
In[1422]:= D[y, x] +D[-c x - \epsilon x^3 - k y, y]
Out[1422]= -k
```

We use PlotVectorField and ParametricPlot to illustrate two situations that occur. In Figure 6-53 (a), we use $c=1, \epsilon=1 / 2$, and $k=3$. In this case, E_{0} is a stable node. On the other hand, in Figure 6-53 (b), we use $c=10, \epsilon=1 / 2$, and $k=3$. In this case, E_{0} is a stable spiral.

```
In[1423]:= << Graphics'PlotField`
    pvf1 = PlotVectorField[{y,-x-1/2x^3-3y},
        {x,-2.5, 2.5}, {y, -2.5, 2.5},
        DisplayFunction- > Identity];
```


Figure 6-53 (a) The origin is a stable node. (b) The origin is a stable spiral

```
In[1424]:= numgraph[init_, c,, opts_--] := Module
    [{numsol},
    numsol = NDSolve[{\mp@subsup{x}{}{\prime}[t]== y[t],
        y'[t] ==
        -c x[t] - 1/2x[t]^3-3y[t],
        x[0] == init[[1]],
        y[0] == init[[2]]},
        {x[t],y[t]},{t, 0, 10}];
    ParametricPlot[Evaluate[{x[t],
    y[t]}/.numsol], {t, 0, 10},opts,
    DisplayFunction- > Identity]]
In[1425]:= i1 = Table[numgraph[{2.5,i}, 1],
        {i, -2.5, 2.5, 1/2}];
    i2 = Table[numgraph[{-2.5,i}, 1],
        {i, -2.5, 2.5, 1/2}];
    i3 = Table[numgraph[{i, 2.5}, 1],
        {i, -2.5, 2.5, 1/2}];
    i4 = Table[numgraph[{i, -2.5}, 1],
    {i, -2.5, 2.5, 1/2}];
In[1426]:= c1 = Show[i1, i2,i3,i4,pvf1,
    PlotRange- > {{-2.5, 2. 5}, {-2.5, 2.5}},
    AspectRatio- > Automatic];
```

See texts like Jordan and Smith's Nonlinear Ordinary Differential Equations [I7] for discussions of ways to analyze systems like the Rössler attractor and the Lorenz equations.

```
```

In[1427]:= pvf2 = PlotVectorField[{y, -10x-1/2x^3-3y},

```
```

In[1427]:= pvf2 = PlotVectorField[{y, -10x-1/2x^3-3y},
{x,-2.5, 2.5}, {y, -2.5, 2.5},
{x,-2.5, 2.5}, {y, -2.5, 2.5},
DisplayFunction- > Identity];
DisplayFunction- > Identity];
In[1428]:= il = Table[numgraph[{2.5,i}, 10],
In[1428]:= il = Table[numgraph[{2.5,i}, 10],
{i, -2.5, 2.5, 1/2}];
{i, -2.5, 2.5, 1/2}];
i2 = Table[numgraph[{-2.5, i}, 10],
i2 = Table[numgraph[{-2.5, i}, 10],
{i, -2.5, 2.5, 1/2}];
{i, -2.5, 2.5, 1/2}];
i3 = Table[numgraph[{i, 2.5}, 10],
i3 = Table[numgraph[{i, 2.5}, 10],
{i, -2.5, 2.5, 1/2}];
{i, -2.5, 2.5, 1/2}];
i4 = Table[numgraph[{i, -2.5}, 10],
i4 = Table[numgraph[{i, -2.5}, 10],
{i, -2.5, 2.5, 1/2}];
{i, -2.5, 2.5, 1/2}];
In[1429]:= c2 = Show[i1, i2,i3,i4, pvf2,
In[1429]:= c2 = Show[i1, i2,i3,i4, pvf2,
PlotRange- > {{-2.5, 2. 5}, {-2.5, 2. 5}},
PlotRange- > {{-2.5, 2. 5}, {-2.5, 2. 5}},
AspectRatio- > Automatic];
AspectRatio- > Automatic];
In[1430]:= Show[GraphicsArray[{c1, c2}]]

```
```

In[1430]:= Show[GraphicsArray[{c1, c2}]]

```
```

Although linearization can help you determine local behavior near rest points, the long-term behavior of solutions to nonlinear systems can be quite complicated, even for deceptively simple looking systems.

EXAMPLE 6.6.6 (Lorenz Equations): The Lorenz equations are

$$
\left\{\begin{array}{l}
d x / d t=a(y-x) \tag{6.40}\\
d y / d t=b x-y-x z \\
d z / d t=x y-c z
\end{array}\right.
$$

Graph the solutions to the Lorenz equations if $a=7, b=27.2$, and $c=3$ if the initial conditions are $x(0)=3, y(0)=4$, and $z(0)=2$.

SOLUTION: So that you can experiment with different parameters and initial conditions, we define the function lorenzsol. Given the appropriate parameters and initial conditions,

$$
\text { lorenzsol [a,b, c] [\{x0,y0, zo\}] }
$$

returns a numerical solution of the Lorenz equations (6.40) that satisfies $x(0)=x_{0}, y(0)=y_{0}$, and $z(0)=z_{0}$ and is valid for $0 \leq t \leq 1000$. Because the behavior of solutions can be quite intricate, we include the option MaxSteps->100000 to help Mathematica capture the oscillatory behavior in the long-term solution.

```
In[1431]:= lorenzsol[a_, b_, c_] [{x\mp@subsup{0}{-}{\prime},y\mp@subsup{0}{-}{\prime},z\mp@subsup{0}{-}{\prime}},
    ts_:{t, 0, 1000},opts__] :=
    Module[{numsol},
    numsol = NDSolve[{x'[t] ==
        -ax[t] + ay[t],
        y'[t] == bx[t] - y[t] - x[t] z[t],
        z'[t] == x[t] y[t] - cz[t], x[0] == x0,
        y[0] == y0, z[0] == z0}, {x[t],y[t],z[t]},
        ts,MaxSteps }->\mathrm{ 100000]
    ]
```

We then use lorenzplot to generate a numerical solution for our parameter values and initial conditions.

```
In[1432]:= n2 = lorenzsol[7, 27.2, 3][{3, 4, 2}]
Out[1432]= {{x[t] 隹 InterpolatingFunction[{{0.,
    1000.}}, <>][t],
    y[t] }->\mathrm{ InterpolatingFunction[{{0.,
        1000.}}, <>][t],
    z[t] -> InterpolatingFunction[{{0.,
        1000.}}, <>][t]}}
```

We generate a short-term plot of the solution in Figure 6-54

```
In[1433]:= Plot[Evaluate[{x[t], y[t], z[t]}/.n2],
    {t, 0, 25}, PlotStyle }->\mathrm{ {GrayLevel[0],
    GrayLevel[0.3],
    Dashing[{0.01}]}, PlotPoints }->\mathrm{ 1000]
```

and a long-term plot in Figure 6-55.

```
In[1434]:= Plot[Evaluate[{x[t], y[t], z[t]}/.n2],
    {t, 950, 1000}, PlotStyle }->\mathrm{ {GrayLevel[0],
    GrayLevel[0.3],
    Dashing[{0.01}]}, PlotPoints }->\mathrm{ 1000]
```

In Figures 6-54 and 6-55 the oscillatory nature of the solutions is very difficult to see. We use ParametricPlot and ParametricPlot3D to generate parametric plots of the solutions in Figure 6-56.

Figure 6-54 Plots of $x(t)$ (in black), $y(t)$ (in gray), and $z(t)$ (dashed) for $0 \leq t \leq 25$

Figure 6-55 Plots of $x(t)$ (in black), $y(t)$ (in gray), and $z(t)$ (dashed) for $950 \leq t \leq 1000$

```
In[1435]:= pla = ParametricPlot[Evaluate[{x[t],
    y[t]}/.n2], {t, 0, 25}, PlotPoints }->1000
    AspectRatio }->1,AxesLabel -> {"x", "y"}
    DisplayFunction }->\mathrm{ Identity];
    p1b = ParametricPlot[Evaluate[{x[t],
        z[t]}/.n2], {t, 0, 25}, PlotPoints }->1000
        AspectRatio }->\mathrm{ 1, AxesLabel }->\mathrm{ {"x", "z"},
        DisplayFunction }->\mathrm{ Identity];
```


Figure 6-56 (a) x versus y; (b) y versus z; (c) x versus $z ;$ (d) x versus y versus z

```
In[1435]:= plc = ParametricPlot[Evaluate[{y[t],
                                    z[t]}/.n2], {t, 0, 25}, PlotPoints }->1000
                                    AspectRatio }->\mathrm{ 1, AxesLabel }->\mathrm{ {"Y", "z"},
                                    DisplayFunction }->\mathrm{ Identity];
p1d = ParametricPlot3D[Evaluate[{x[t],
    y[t], z[t]}/.n2], {t, 0, 25},
    PlotPoints }->3000, BoxRatios ->{1, 1, 1}
    AxesLabel -> {"x", "y", "z"},
    DisplayFunction }->\mathrm{ Identity];
Show[GraphicsArray[{{p1a, p1b}, {p1c, p1d}}]]
```

Of course, you could combine all of these commands into a single function. For example, given the appropriate parameter values

$$
\text { lorenzplot }[a, b, c][\{x 0, y 0, z 0\},\{t, a, b\}]
$$

solves the Lorenz system using initial conditions $x(0)=x_{0}, y(0)=y_{0}$, and $z(0)=z_{0}$ for $a \leq t \leq b$, generates parametric plots of x versus y, y versus z, x versus z, and x versus y versus z, and displays the four resulting plots as a graphics array. If $\{t, a, b\}$ is omitted, the default is $950 \leq t \leq 1000$.

The chaotic nature of the solutions to the Lorenz equations using these parameter values is seen more clearly in Figure 6-56 than in Figures 6-54 or 6-55.

```
In[1436]:= lorenzplot[a_, b_, c_][{x0_,y0_, z0_},
            ts_:{t, 950, 1000},opts_-_] :=
        Module[{numsol},
        numsol = NDSolve[{x'[t] ==
            -ax[t] + ay[t],
            y'[t] == b x[t] - y[t] - x[t] z[t],
            z'[t] == x[t] y[t] - c z[t], x[0] == x0,
            y[0] == y0, z[0] == z0},{x[t],
            y[t], z[t]},ts,MaxSteps }->\mathrm{ 100000];
pla = ParametricPlot[
                Evaluate[{x[t], y[t]}/.numsol], ts,
                PlotPoints }->\mathrm{ 1000, AspectRatio }->1\mathrm{ ,
                AxesLabel }->\mathrm{ {"x", "y"},
                DisplayFunction }->\mathrm{ Identity];
plb = ParametricPlot[
            Evaluate[{x[t], z[t]}/.numsol], ts,
            PlotPoints }->1000\mathrm{ , AspectRatio }->1\mathrm{ ,
            AxesLabel -> {"x", "z"},
            DisplayFunction }->\mathrm{ Identity];
plc = ParametricPlot[
            Evaluate[{y[t], z[t]}/.numsol], ts,
            PlotPoints }->1000\mathrm{ , AspectRatio }->1\mathrm{ ,
            AxesLabel }->\mathrm{ {"y", "z"},
            DisplayFunction }->\mathrm{ Identity];
p1d = ParametricPlot3D[
                            Evaluate[{x[t], y[t], z[t]}/.numsol],
            ts, PlotPoints }->3000\mathrm{ , BoxRatios }->{1
            1, 1}, AxesLabel }->\mathrm{ {"x", "y", "z"},
            DisplayFunction }->\mathrm{ Identity];
Show[GraphicsArray[{{p1a, p1b},
    {p1c, pld}}],opts]]
```


Figure 6-57 Changing b from 27.2 to 28: (a) x versus y; (b) y versus z; (c) x versus z; (d) x versus y versus z

For example, entering

```
In[1437]:= lorenzplot[7, 28, 3][{3, 4, 2}]
```

generates the four plots shown in Figure 6-57, corresponding to changing b from 27.2 to 28 . Again, we obtain a chaotic solution.

This Page Intentionally Left Blank

Applications of Systems of Ordinary Differential

7.I Mechanical and Electrical Problems with First-Order Linear Systems

7.I.I $L-R-C$ Circuits with Loops

As indicated in Chapter 5, an electrical circuit can be modeled with an ordinary differential equation with constant coefficients. In this section, we illustrate how a circuit involving loops can be described as a system of linear ordinary differential equations with constant coefficients. This derivation is based on the following principles.

Kirchhoff's Current Law: The current entering a point of the circuit equals the current leaving the point.
Kirchhoff's Voltage Law: The sum of the changes in voltage around each loop in the circuit is zero.

As was the case in Chapter 5, we use the following standard symbols for the components of the circuit:

$$
\begin{aligned}
I(t) & =\text { current, where } I(t)=\frac{d Q}{d t}(t), \\
Q(t) & =\text { charge } \\
R & =\text { resistance }
\end{aligned}
$$

$$
\begin{aligned}
C & =\text { capacitance }, \\
V & =\text { voltage }, \text { and } \\
L & =\text { inductance } .
\end{aligned}
$$

The relationships corresponding to the drops in voltage in the various components of the circuit that were stated in Chapter 5 are also given in the following table.

| Circuit Element | Voltage Drop |
| :---: | :---: |
| Inductor | $L \frac{d I}{d t}$ |
| Resistor | $R I$ |
| Capacitor | $\frac{1}{C} Q$ |
| Voltage Source | $-V(t)$ |

7.1.2 $L-R-C$ Circuit with One Loop

In determining the drops in voltage around the circuit, we consistently add the voltages in the clockwise direction. The positive direction is directed from the negative symbol towards the positive symbol associated with the voltage source. In summing the voltage drops encountered in the circuit, a drop across a component is added to the sum if the positive direction through the component agrees with the clockwise direction. Otherwise, this drop is subtracted. In the case of the following $L-R-C$ circuit with one loop involving each type of component, the current is equal around the circuit by Kirchhoff's Current Law as illustrated in Figure 7-1.

Also, by Kirchhoff's Voltage Law, we have the sum

$$
R I+L \frac{d I}{d t}+\frac{1}{C} Q-V(t)=0
$$

Figure 7-1 A simple $L-R-C$ circuit

Solving this equation for $d I / d t$ and using the relationship between I and $Q, d Q / d t=$ I, we have the following system of differential equations with initial conditions on charge and current, respectively:

$$
\left\{\begin{array}{l}
d Q / d t=I \tag{7.1}\\
d I / d t=-\frac{1}{L C} Q-\frac{R}{L} I+\frac{V(t)}{L} \\
Q(0)=Q_{0}, I(0)=I_{0} .
\end{array}\right.
$$

EXAMPLE 7.1.1: Determine the charge and current in an $L-R-C$ circuit with $L=1, R=2, C=4 / 3$, and $V(t)=e^{-t}$ if $Q(0)=Q_{0}$ and $I(0)=I_{0}$.

SOLUTION: We begin by modeling the circuit with the system of differential equations

$$
\left\{\begin{array}{l}
d Q / d t=I \\
d I / d t=-\frac{3}{4} Q-2 I+e^{-t}
\end{array}\right.
$$

which can be written in matrix form as

$$
\binom{d Q / d t}{d I / d t}=\left(\begin{array}{cc}
0 & 1 \\
-3 / 4 & -2
\end{array}\right)\binom{Q}{I}+\binom{0}{e^{-t}} .
$$

We solve the initial-value problem with DSolve, naming the result sol.

```
In[1438]:= Clear[q, i]
    sol = DSolve[{D[q[t],t] == i[t],
        D[i[t],t] == -3/4q[t] - 2i[t] + Exp[-t],
        q[0] == q0,i[0] == i0}, {q[t],i[t]},t]
Out[1438]={{q[t]->\frac{1}{2}\mp@subsup{e}{}{-3t/2}(4-8\mp@subsup{e}{}{t/2}+4\mp@subsup{e}{}{t}-2i0
    +2 e}\mp@subsup{e}{}{t}i0-q0+3\mp@subsup{e}{}{t}q0)
    i[t] }->-\frac{1}{4}\mp@subsup{e}{}{-3t/2}(12-16\mp@subsup{e}{}{t/2}+4\mp@subsup{e}{}{t}-6i
    +2 es i0 - 3q0 + 3 et q0)}}
```

We now select, copy, and paste the formulas obtained in sol for Q and I, respectively, and then use Expand to distribute the $e^{-3 t / 2}$ term through the parentheses.

$$
\begin{aligned}
\text { In }[1439]:= & \text { Expand }\left[\frac { 1 } { 2 } e ^ { - 3 t / 2 } \left(-4-8 e^{t / 2}-2(-4+i 0)\right.\right. \\
& \left.\left.+2 e^{t}(-4+i 0)-q 0+3 e^{t}(4+q 0)\right)\right] \\
\text { Out }[1439]= & 2 e^{-3 t / 2}-4 e^{-t}+2 e^{-t / 2}-e^{-3 t / 2} i 0 \\
& +e^{-t / 2} i 0-\frac{1}{2} e^{-3 t / 2} q 0+\frac{3}{2} e^{-t / 2} q 0 \\
\text { In }[1440]:= & \text { Expand }\left[-\frac{1}{4} e^{-3 t / 2}\left(-16 e^{t / 2}-6(-4+i 0)\right.\right. \\
& \left.\left.+2 e^{t}(-4+i 0)-3(4+q 0)+3 e^{t}(4+q 0)\right)\right] \\
\text { Out }[1440]= & -3 e^{-3 t / 2}+4 e^{-t}-e^{-t / 2}+\frac{3}{2} e^{-3 t / 2} i 0 \\
& -\frac{1}{2} e^{-t / 2} i 0+\frac{3}{4} e^{-3 t / 2} q 0-\frac{3}{4} e^{-t / 2} q 0
\end{aligned}
$$

The result indicates that $\lim _{t \rightarrow \infty} Q(t)=\lim _{t \rightarrow \infty} I(t)=0$ regardless of the values of Q_{0} and I_{0}. This is confirmed by graphing $Q(t)$ (in black) and $I(t)$ (in gray) together (choosing $Q(0)=I(0)=1$) in Figure 7-2 as well as parametrically in Figure 7-3.

```
In[1441]:= Plot[Evaluate[{q[t],i[t]}/.sol/.
    {q0->1, i0->1}], {t, 0, 10},
    PlotStyle }->\mathrm{ {GrayLevel[0], GrayLevel[0.5]}]
```


Figure 7-2 $Q(t)$ (in black) and $I(t)$ (in gray) for $0 \leq t \leq 10$

Figure 7-3 Parametric plot of Q versus I for $0 \leq t \leq 10$

```
In[1442]:= ParametricPlot[
    Evaluate[{q[t],i[t]}/.sol/.
    {q0 
```


7.I. $3 L-R-C$ Circuit with Two Loops

The differential equations that model the circuit become more difficult to derive as the number of loops in the circuit increases. For example, consider the circuit in Figure 7-4 that contains two loops.

Figure 7-4 A two-loop circuit

In this case, the current through the capacitor is equivalent to $I_{1}-I_{2}$. Summing the voltage drops around each loop, we have:

$$
\left\{\begin{array}{l}
R_{1} I_{1}+\frac{1}{C} Q-V(t)=0 \tag{7.2}\\
L \frac{d I_{2}}{d t}+R_{2} I_{2}-\frac{1}{C} Q=0
\end{array}\right.
$$

Solving the first equation for I_{1} we find that $I_{1}=\frac{1}{R_{1}} V(t)-\frac{1}{R_{1} C} Q$ and using the relationship $d Q / d t=I=I_{1}-I_{2}$ we have the following system:

$$
\left\{\begin{array}{l}
\frac{d Q}{d t}=-\frac{1}{R_{1} C} Q-I_{2}+\frac{1}{R_{1}} V(t) \tag{7.3}\\
\frac{d I_{2}}{d t}=\frac{1}{L C} Q-\frac{R_{2}}{L} I_{2}
\end{array}\right.
$$

EXAMPLE 7.1.2: Find $Q(t), I(t), I_{1}(t)$, and $I_{2}(t)$ in the $L-R-C$ circuit with two loops given that $R_{1}=R_{2}=C=1$ and $V(t)=e^{-t}$ if $Q(0)=3$ and $I_{2}(0)=1$.

SOLUTION: The nonhomogeneous system that models this circuit is

$$
\left\{\begin{array}{l}
d Q / d t=-Q-I_{2}+e^{-t} \\
d I_{2} / d t=Q-I_{2}
\end{array}\right.
$$

with initial conditions $Q(0)=3$ and $I_{2}(0)=1$. We solve the initial-value problem with DSolve naming the result sol. We define $Q(t)$ and $I_{2}(t)$ to be the results.

```
In[1443]:= Clear[q,i]
    sol = DSolve[{D[q[t],t] == -q[t] - i2[t] + Exp[-t],
        D[i2[t],t] == q[t] - i2[t],q[0] == 3,
        i2[0] == 1},{q[t],i2[t]},t]
Out[1443]={{q[t] ->3 e-t Cos[t],
    i2[t] }\mp@subsup{|}{\mp@subsup{e}{}{-t}}{(\operatorname{Cos}[t\mp@subsup{]}{}{2}+3\operatorname{Sin}[t]+\operatorname{Sin}[t\mp@subsup{]}{}{2})}}
In[1444]:= q[t_] = sol[[1, 1, 2]];
In[1445]:= i2[t_] = sol[[1, 2, 2]];
```

We verify that these functions satisfy the system by substituting back into each equation and simplifying the result with Simplify.

```
In[1446]:= D[q[t],t]-(-q[t] - i2[t] + Exp[-t])//
    Simplify
Out[1446]= 0
In[1447]:= D[i2[t], t] - (q[t] - i2[t])//Simplify
Out[1447]= 0
```

We use the relationship $d Q / d t=I$ to find $I(t)$

```
In[1448]:= i[t_] = D[q[t], t]
Out[1448]=-3 e}\mp@subsup{\mathbb{e}}{}{-t}\operatorname{Cos[t] - 3 e}\mp@subsup{\mathbb{e}}{}{-t}\operatorname{Sin}[t
```

and then $I_{1}(t)=I(t)+I_{2}(t)$ to find $I_{1}(t)$.

```
In[1449]:= i1[t_] = i[t] + i2[t]
Out[1449]= e}\mp@subsup{e}{}{-t}-3\mp@subsup{e}{}{-t}\operatorname{Cos[t]
```

We graph $Q(t), I(t), I_{1}(t)$, and $I_{2}(t)$ with Plot and display the result using Show and GraphicsArray in Figure 7-5.

Figure 7-5 $Q(t), I(t), I_{1}(t)$, and $I_{2}(t)$ for $0 \leq t \leq 5$

```
In[1450]:= p1 = Plot[q[t], {t, 0, 5}, PlotRange }->\mathrm{ All,
    DisplayFunction }->\mathrm{ Identity];
    p2 = Plot[i[t], {t, 0, 5}, PlotRange }->\mathrm{ All,
        DisplayFunction }->\mathrm{ Identity];
    p3 = Plot[i1[t], {t, 0, 5}, PlotRange }->\mathrm{ All,
        DisplayFunction }->\mathrm{ Identity];
    p4 = Plot[i2[t], {t, 0, 5}, PlotRange }->\mathrm{ All,
        DisplayFunction }->\mathrm{ Identity];
    Show[GraphicsArray[{{p1, p2}, {p3, p4}}]]
```


7.1. 4 Spring-Mass Systems

The displacement of a mass attached to the end of a spring was modeled with a second-order linear differential equation with constant coefficients in Chapter 5. This situation can then be expressed as a system of first-order ordinary differential equations as well. Recall that if there is no external forcing function, then the second-order differential equation that models this situation is $m x^{\prime \prime}+c x^{\prime}+k x=0$, where m is the mass attached to the end of the spring, c is the damping coefficient, and k is the spring constant found with Hooke's law. This equation is transformed into a system of equations by letting $x^{\prime}=y$ so that $y^{\prime}=x^{\prime \prime}=-\frac{k}{m} x-\frac{c}{m} x^{\prime}$ and then solving the differential equation for $x^{\prime \prime}$. After substitution, we have the system

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=y \tag{7.4}\\
\frac{d y}{d t}=-\frac{k}{m} x-\frac{c}{m} y .
\end{array}\right.
$$

In previous chapters, the displacement of the spring was illustrated as a function of time. However, problems of this type may also be investigated using the phase plane.

EXAMPLE 7.1.3: Solve the system of differential equations to find the displacement of the mass if $m=1, c=0$, and $k=1$.

SOLUTION: In this case, the system is $\left\{\begin{array}{l}d x / d t=y \\ d y / d t=-x\end{array}\right.$ which in matrix form is $\mathbf{X}^{\prime}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) \mathbf{X}$. A general solution is found with DSolve and named gensol for later use.

```
In[1451]:= Clear[x,y]
    gensol = DSolve[{D[x[t],t] == y[t],
    D[y[t],t] == -x[t]},{x[t], y[t]},t]
```



```
    y[t] }->\mathrm{ C[2] Cos[t] - C[1] Sin[t]}}
```

Note that this system is equivalent to the second-order differential equation $x^{\prime \prime}+x=0$, which we solved in Chapters 4 and 5 . At that time, we found a general solution to be $x(t)=c_{1} \cos t+c_{2} \sin t$ which is equivalent to the first component of $\mathbf{X}=\binom{x(t)}{y(t)}$, the result obtained with DSolve. Also notice that $(0,0)$ is the equilibrium point of the system. The eigenvalues of $\mathbf{A}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ are $\lambda= \pm i$,

```
In [1452]:= Eigenvalues[(ccc
Out[1452]= {-i, i
```

so we classify the origin as a center.
We graph several members of the phase plane for this system with ParametricPlot in Figure 7-6.

Figure 7-6 The origin is a center

```
In[1453]:= toplot = Flatten[
    Table[{x[t],y[t]}/.gensol/.
    {C[1] ->i,C[2] 倓,{i, -3, 3},
    {j, 0, 3}], 2];
In[1454]:= ParametricPlot[Evaluate[toplot],
    {t, 0, 2\pi}, PlotRange }->{{-5,5},{-5,5}}
    AspectRatio }->1
```


7.2 Diffusion and Population Problems with First-Order Linear Systems

7.2.I Diffusion through a Membrane

Solving problems to determine the diffusion of a substance (such as glucose or salt) in a medium (like a blood cell) also leads to systems of first-order linear ordinary differential equations. For example, suppose that two solutions of a substance are separated by a membrane where the amount of the substance that passes through the membrane is proportional to the difference in the concentrations of the solutions. The constant of proportionality is called the permeability, P, of the membrane. Therefore, if we let x and y represent the concentration of each solution, and V_{1} and V_{2} represent the volume of each solution, respectively, then the system of differential equations is given by

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=\frac{P}{V_{1}}(y-x) \tag{7.5}\\
\frac{d y}{d t}=\frac{P}{V_{2}}(x-y)
\end{array}\right.
$$

where the initial concentrations of x and y are given.

EXAMPLE 7.2.1: Suppose that two salt concentrations of equal volume V are separated by a membrane of permeability P. Given that $P=V$, determine each concentration at time t if $x(0)=2$ and $y(0)=10$.

SOLUTION: In this case, the initial-value problem that models the situation is

$$
\left\{\begin{array}{l}
d x / d t=y-x \\
d y / d t=x-y \\
x(0)=2, y(0)=10
\end{array}\right.
$$

A general solution of the system is found with DSolve and named gensol.

$$
\begin{aligned}
& \text { In [1455]:= Clear[} \mathbf{x}, \mathrm{y} \text {] } \\
& \text { gensol = DSolve[\{D[x[t], t]==y[t]-x[t], } \\
& D[y[t], t]=x[t]-y[t]\}, \\
& \{x[t], y[t]\}, t] \\
& \text { Out [1455] }=\left\{\left\{x[t] \rightarrow \frac{1}{2} e^{-2 t}\left(1+e^{2 t}\right) C[1]\right.\right. \\
& +\frac{1}{2} \mathbb{e}^{-2 t}\left(-1+e^{2 t}\right) C[2], y[t] \rightarrow \\
& \left.\left.\frac{1}{2} \mathbb{e}^{-2 t}\left(-1+\mathbb{e}^{2 t}\right) C[1]+\frac{1}{2} \mathbb{e}^{-2 t}\left(1+\mathbb{e}^{2 t}\right) C[2]\right\}\right\}
\end{aligned}
$$

We then apply the initial conditions and use Solve to determine the values of the arbitrary constants.

```
In [1456] \(:=\) cvals \(=\operatorname{Solve}\left[\left\{\left(-e^{-2 t} C[1]+C[2] / . t->0\right)=2\right.\right.\),
    \(\left.\left.\left(e^{-2 t} C[1]+C[2] / . t->0\right)==10\right\}\right]\)
Out \([1456]=\{\{C[1] \rightarrow 4, C[2] \rightarrow 6\}\}\)
```

The solution is obtained by substituting these values back into the general solution.

```
In[1457]:= sol = gensol/.cvals[[1]]
Out [1457]= {{x[t]->3 \mp@subsup{e}{}{-2t}(-1+\mp@subsup{\mathbb{e}}{}{2t})+2\mp@subsup{\mathbb{e}}{}{-2t}(1+\mp@subsup{\mathbb{e}}{}{2t}),
    y[t] }->2\mp@subsup{e}{}{-2t}(-1+\mp@subsup{e}{}{2t})+3\mp@subsup{e}{}{-2t}(1+\mp@subsup{e}{}{2t})}
```

Of course, DSolve can be used to solve the initial-value problem directly as well.

$$
\begin{aligned}
& \text { In [1458]: }=\text { sol }=\text { DSolve }[\{\mathrm{D}[\mathrm{x}[\mathrm{t}], \mathrm{t}]==\mathrm{y}[\mathrm{t}]-\mathrm{x}[\mathrm{t}] \text {, } \\
& D[y[t], t]==x[t]-y[t], x[0]==2, \\
& y[0]==10\},\{x[t], y[t]\}, t] \\
& \text { Out }[1458]=\left\{\left\{x[t] \rightarrow 2 \mathbb{e}^{-2 t}\left(-2+3 \mathbb{e}^{2 t}\right), y[t] \rightarrow\right.\right. \\
& \left.\left.2 e^{-2 t}\left(2+3 e^{2 t}\right)\right\}\right\}
\end{aligned}
$$

We graph this solution parametrically with ParametricPlot in Figure 7-7(a). We then graph $x(t)$ and $y(t)$ together in Figure 7-7(b). Notice

Figure 7-7 (a) Parametric plot of x versus y. (b) $x(t)$ (in black) and $y(t)$ (in gray)
that each concentration approaches 6 which is the average value of the two initial concentrations.

```
In[1459]:= p1 = ParametricPlot[{x[t],y[t]}/.sol,
    {t, 0, 5}, Compiled }->\mathrm{ False,
    PlotRange }->{{0,10},{0,10}}
    AspectRatio }->1\mathrm{ , AxesOrigin }->{0,0}\mathrm{ ,
    DisplayFunction }->\mathrm{ Identity];
In[1460]:= p2 = Plot[Evaluate[{x[t], y[t]}/.sol],
    {t,0,5}, PlotRange }->{0,10}\mathrm{ ,
    PlotStyle }->\mathrm{ {GrayLevel[0],
    GrayLevel[0.5]},
    DisplayFunction }->\mathrm{ Identity];
```

In [1461]: = Show[GraphicsArray[\{p1, p2\}]]

7.2.2 Diffusion through a Double-Walled Membrane

Next, consider the situation in which two solutions are separated by a doublewalled membrane, where the inner wall has permeability P_{1} and the outer wall has permeability P_{2} with $0<P_{1}<P_{2}$. Suppose that the volume of solution within the inner wall is V_{1} and that between the two walls is V_{2}. Let x represent the concentration of the solution within the inner wall and y the concentration between the
two walls. Assuming that the concentration of the solution outside the outer wall is constantly C, we have the following system of first-order ordinary differential equations

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=\frac{P_{1}}{V_{1}}(y-x) \tag{7.6}\\
\frac{d y}{d t}=\frac{1}{V_{2}}\left[P_{2}(C-y)+P_{1}(x-y)\right] \\
x(0)=x_{0}, y(0)=y_{0} .
\end{array}\right.
$$

EXAMPLE 7.2.2: Given that $P_{1}=3, P_{2}=8, V_{1}=2, V_{2}=10$, and $C=10$, determine x and y if $x(0)=2$ and $y(0)=1$.

SOLUTION: In this case, we must solve the initial-value problem

$$
\left\{\begin{array}{l}
d x / d t=\frac{3}{2}(y-x) \\
d y / d t=-\frac{11}{10} y+\frac{3}{10} x+8 \\
x(0)=2, y(0)=1
\end{array}\right.
$$

A general solution of the corresponding homogeneous system is found with DSolve.

$$
\begin{aligned}
& \text { In [1462]: }=\text { Clear [} \mathbf{x}, \mathrm{y} \text {] } \\
& \text { homsol }=\text { DSolve }\left[\left\{x^{\prime}[t]==\frac{3}{2} y[t]-\frac{3}{2} x[t]\right.\right. \text {, } \\
& \left.y^{\prime}[t]=-\frac{11}{10} y[t]+\frac{3}{10} x[t]\right\},\{x[t], \\
& y[t]\}, t] \\
& \text { Out [1462] }=\left\{\left\{x[t] \rightarrow \frac{1}{14} e^{-2 t}\left(9+5 e^{7 t / 5}\right) C[1]\right.\right. \\
& +\frac{15}{14} \mathbb{e}^{-2 t}\left(-1+e^{7 t / 5}\right) C[2], \\
& y[t] \rightarrow \frac{3}{14} e^{-2 t}\left(-1+e^{7 t / 5}\right) C[1] \\
& \left.\left.+\frac{1}{14} e^{-2 t}\left(5+9 e^{7 t / 5}\right) C[2]\right\}\right\}
\end{aligned}
$$

The result indicates that a fundamental matrix for the corresponding homogeneous system is $\boldsymbol{\Phi}(t)=\left(\begin{array}{cc}-3 e^{-2 t} & \frac{5}{3} e^{-3 t / 5} \\ e^{-2 t} & e^{-3 t / 5}\end{array}\right)$.

$$
\operatorname{In}[1463]:=\Phi\left[t_{-}\right]=\left(\begin{array}{cc}
-3 e^{-2 t} & \frac{5}{3} e^{-3 t / 5} \\
e^{-2 t} & e^{-3 t / 5}
\end{array}\right) ;
$$

Therefore, using the method of variation of parameters, the solution to the initial-value problem is given by

$$
\begin{aligned}
& \mathbf{X}(t)=\boldsymbol{\Phi}(t) \mathbf{\Phi}^{-1}(0) \mathbf{X}(0)+\boldsymbol{\Phi}(t) \int_{0}^{t} \boldsymbol{\Phi}^{-1}(u) \mathbf{F}(u) d u . \\
& \operatorname{In}[1464]:=\operatorname{sol}=\Phi[t] \cdot(\text { Inverse }[\Phi[t]] / \cdot t \rightarrow 0) \cdot\binom{2}{1} \\
& \left.+\Phi[t] \cdot \int_{0}^{t} \text { Inverse[} \Phi[u]\right] \cdot\binom{0}{8} d u / / \text { Simplify; } \\
& \text { MatrixForm[sol] } \\
& \text { Out }[1464]=\binom{10+\frac{9 e^{-2 t}}{2}-\frac{25}{2} e^{-3 t / 5}}{10-\frac{3 e^{-2 t}}{2}-\frac{15}{2} e^{-3 t / 5}}
\end{aligned}
$$

Of course, DSolve can be used to solve the initial-value problem directly, as well.

$$
\begin{aligned}
& \text { In }[1465]:=\text { sol }=\operatorname{DSolve}\left[\left\{\mathbf{x}^{\prime}[t]==\frac{3}{2}(y[t]-\mathbf{x}[t]),\right.\right. \\
& \qquad y^{\prime}[t]==-\frac{11 y[t]}{10}+\frac{3 \mathbf{x}[t]}{10}+8, \mathbf{x}[0]==2, \\
& \qquad y[0]==1\},\{\mathbf{x}[t], y[t]\}, t]
\end{aligned} \begin{aligned}
\text { Out }[1465]=\left\{\left\{x[t] \rightarrow \frac{1}{2} e^{-2 t}\left(9-25 e^{7 t / 5}+20 e^{2 t}\right),\right.\right. \\
\left.\left.y[t] \rightarrow \frac{1}{2} e^{-2 t}\left(-3-15 e^{7 t / 5}+20 e^{2 t}\right)\right\}\right\}
\end{aligned}
$$

We graph this solution parametrically in addition to graphing the two functions simultaneously in Figure 7-8. Notice that initially $x(t)>y(t)$. However, the two graphs intersect at a value of t near $t \approx 0.2$ so that the value of the two functions approaches 10 , which is the concentration of the solution outside the outer wall, as t increases.

```
In[1466]:= p1 = ParametricPlot[{x[t],y[t]}/.sol,
    {t, 0, 7}, Compiled }->\mathrm{ False,
    PlotRange }->{{0,10},{0,10}}
    AspectRatio }->1,\mathrm{ AxesOrigin }->{0,0}\mathrm{ ,
    DisplayFunction }->\mathrm{ Identity];
In[1467]:= p2 = Plot[Evaluate[{x[t], y[t]}/.sol],
    {t, 0, 7}, PlotRange }->{0,10}\mathrm{ ,
    PlotStyle }->\mathrm{ {GrayLevel[0],
    GrayLevel[0.5]},
    DisplayFunction }->\mathrm{ Identity];
```


Figure 7-8 (a) Parametric plot of x versus y. (b) $x(t)$ (in black) and $y(t)$ (in gray) for $0 \leq t \leq 7$

```
In[1468]:= Show[GraphicsArray[{p1,p2}]]
```

Last, we plot the solution parametrically for various initial conditions.

$$
\begin{aligned}
& \text { In [1469]: = sol = DSolve }\left[\left\{x^{\prime}[t]==\frac{3}{2}(y[t]-x[t]),\right.\right. \\
& y^{\prime}[t]=-\frac{11 y[t]}{10}+\frac{3 x[t]}{10}+8, x[0]==x 0, \\
& y[0]=y 0\},\{x[t], y[t]\}, t] \\
& \text { Out [1469] }=\left\{\left\{x [t] \rightarrow \frac { 1 } { 1 4 } e ^ { - 2 t } \left(60-200 e^{7 t / 5}+140 e^{2 t}\right.\right.\right. \\
& \left.+9 \mathrm{x} 0+5 \mathrm{e}^{7 \mathrm{t} / 5} \mathrm{x} 0-15 \mathrm{y} 0+15 e^{7 t / 5} \mathrm{y} 0\right) \text {, } \\
& y[t] \rightarrow \frac{1}{14} e^{-2 t}\left(-20-120 e^{7 t / 5}+140 e^{2 t}\right. \\
& \left.\left.\left.-3 x 0+3 e^{7 t / 5} x 0+5 y 0+9 e^{7 t / 5} y 0\right)\right\}\right\}
\end{aligned}
$$

Notice how the formulas for $x(t)$ and $y(t)$ are extracted from sol with Part ([[. .]]). The formula for $x(t)$ is the second part of the first part of the first part of sol; the formula for $y(t)$ is the second part of the second part of the first part of sol.

```
In[1470]:= sol[[1, 1, 2]]
    sol[[1, 2, 2]]
Out[1470]=}\frac{1}{14}\mp@subsup{e}{}{-2t}(60-200\mp@subsup{e}{}{7t/5}+140\mp@subsup{\mathbb{e}}{}{2t
    +9 x0 + 5 e 7t/5 x0 - 15 y0 + 15 e 7t/5 y0)
```


Figure 7-9 Both concentrations approach 10, regardless of the initial conditions

$$
\begin{aligned}
\text { Out }[1470]= & \frac{1}{14} e^{-2 t}\left(-20-120 e^{7 t / 5}\right. \\
& \left.+140 e^{2 t}-3 x 0+3 e^{7 t / 5} x 0+5 y 0+9 e^{7 t / 5} y_{0}\right)
\end{aligned}
$$

Then, we use Table and Flatten to construct a list of (pairs of) functions to be plotted with ParametricPlot. Short is used to display an abbreviated portion of toplot.

```
In[1471]:= toplot = Flatten[
    Table[{sol[[1, 1, 2]], sol[[1, 2, 2]]},
    {x0, 0, 10, 2}, {y0, 0, 10, 2}], 1];
    Short[toplot, 2]
```

Out [1471] = $\{\ll 1 \gg, \ll 34 \gg,\{10,10\}\}$

The list of functions in toplot is then graphed with ParametricPlot for $0 \leq t \leq 7$ in Figure 7-9.

```
In[1472]:= ParametricPlot[Evaluate[toplot], {t, 0, 7},
    PlotRange }->{{0,10},{0,10}}
    AspectRatio }->\mathrm{ 1]
```


7.2.3 Population Problems

In Chapter 3, population problems were discussed that were based on the principle that the rate at which a population grows (or decays) is proportional to the number present in the population at any time t. Hence, if $x(t)$ represents the population at time $t, d x / d t=k x$ for some constant k. This idea can be extended to problems involving more than one population and leads to systems of ordinary differential equations. We illustrate several situations through the following examples. Note that in each problem, we determine the rate at which a population of size P changes with the equation

$$
\frac{d P}{d t}=(\text { rate entering })-(\text { rate leaving })
$$

We begin by determining the population in two neighboring territories. Suppose that the population x and y of two neighboring territories depends on several factors. The birth rate of x is a_{1} while that of y is b_{1}. The rate at which citizens of x move to y is a_{2} while that at which citizens move from y to x is b_{2}. Finally, the mortality rate of each territory is disregarded. Determine the respective populations of these two territories for any time t.

Using the principles of previous examples, we have that the rate at which population x changes is

$$
\frac{d x}{d t}=a_{1} x-a_{2} x+b_{1} y=\left(a_{1}-a_{2}\right) x+b_{2} y
$$

while the rate at which population y changes is

$$
\frac{d y}{d t}=b_{1} y-b_{2} y+a_{2} x=\left(b_{1}-b_{2}\right) y+a_{2} x .
$$

Therefore, the system of equations that must be solved is

$$
\left\{\begin{array}{l}
d x / d t=\left(a_{1}-a_{2}\right) x+b_{1} y \tag{7.7}\\
d y / d t=a_{2} x+\left(b_{1}-b_{2}\right) y
\end{array}\right.
$$

where the initial populations of the two territories $x(0)=x_{0}$ and $y(0)=y_{0}$ are given.

EXAMPLE 7.2.3: Determine the populations $x(t)$ and $y(t)$ in each territory if $a_{1}=5, a_{2}=4, b_{1}=-1$, and $b_{2}=1$ given that $x(0)=60$ and $y(0)=10$.

SOLUTION: In this example, the initial-value problem that models the situation is

$$
\left\{\begin{array}{l}
d x / d t=x+y \\
d y / d t=4 x-2 y \\
x(0)=60, y(0)=10
\end{array}\right.
$$

which we solve with DSolve.

```
In[1473]:= Clear[x,y]
    sol = DSolve [{x'[t] == x[t] + y [t],
    y'[t] == 4 x [t] - 2 y [t], x[0] == 60,
    y[0] == 10},{x[t],y[t]},t]
Out [1473]={{x[t]->10 e e-3t}(1+5\mp@subsup{e}{}{5t})
    y[t] }->10\mp@subsup{e}{}{-3t}(-4+5\mp@subsup{e}{}{5t})}
```

We graph these two population functions with Plot in Figure 7-10. Notice that as t increases, the two populations are approximately the same.

Figure 7-10 As t increases, the two populations are approximately the same

```
In[1474]:= Plot[Evaluate[{x[t], y[t]}/.sol],
    {t,0,1.2},
    PlotStyle }->\mathrm{ {GrayLevel[0], GrayLevel[0.5]}]
```

Population problems that involve more than two neighboring populations can be solved with a system of differential equations as well. Suppose that the population of three neighboring territories x, y, and z depends on several factors. The birth rates of x, y, and z are a_{1}, b_{1}, and c_{1}, respectively. The rate at which citizens of x move to y is a_{2} while that at which citizens move from x to z is a_{3}. Similarly, the rate at which citizens of y move to x is b_{2} while that at which citizens move from y to z is b_{3}. Also, the rate at which citizens of z move to x is c_{2} while that at which citizens move from z to y is c_{3}. Suppose that the mortality rate of each territory is ignored in the model.

The system of equations in this case is similar to that derived in the previous example. The rate at which population x changes is

$$
\frac{d x}{d t}=a_{1} x-a_{2} x-a_{3} x+b_{2} y+c_{2} z=\left(a_{1}-a_{2}-a_{3}\right) x+b_{2} y+c_{2} z
$$

while the rate at which population y changes is

$$
\frac{d y}{d t}=b_{1} y-b_{2} y-b_{3} y+a_{2} x+c_{3} z=\left(b_{1}-b_{2}-b_{3}\right) y+a_{2} x+c_{3} z
$$

and that of z is

$$
\frac{d z}{d t}=c_{1} z-c_{2} z-c_{3} z+a_{3} x+b_{3} y=\left(c_{1}-c_{2}-c_{3}\right) z+a_{3} x+b_{3} y .
$$

Hence, we must solve the 3×3 system

$$
\left\{\begin{array}{l}
d x / d t=\left(a_{1}-a_{2}-a_{3}\right) x+b_{2} y+c_{2} z \tag{7.8}\\
d y / d t=\left(b_{1}-b_{2}-b_{3}\right) y+a_{2} x+c_{3} z \\
d z / d t=\left(c_{1}-c_{2}-c_{3}\right) z+a_{3} x+b_{3} y
\end{array}\right.
$$

where the initial populations $x(0)=x_{0}, y(0)=y_{0}$, and $z(0)=z_{0}$ are given.

EXAMPLE 7.2.4: Determine the population of the three territories if $a_{1}=3, a_{2}=0, a_{3}=2, b_{1}=4, b_{2}=2, b_{3}=1, c_{1}=5, c_{2}=3$, and $c_{3}=0$ if $x(0)=50, y(0)=60$, and $z(0)=25$.

Figure 7-11 Three neighboring territories

SOLUTION: We solve the initial-value problem

$$
\left\{\begin{array}{l}
d x / d t=x+2 y+3 z \\
d y / d t=y \\
d z / d t=2 x+y+2 z \\
x(0)=50, y(0)=60, z(0)=25
\end{array}\right.
$$

with DSolve.

```
In[1475]:= Clear[x,y]
    sol = DSolve[{x'[t] == x [t] + 2 y [t]
        +3z[t], y'[t] == y[t], z'[t] == 2 x [t] + y[t]
        +2z[t],x[0] == 50,y[0] == 60, z[0] == 25},
        {x[t],y[t], z[t]},t]
Out [1475]={{x[t]-> 舟t}(-3-10\mp@subsup{e}{}{2t}+63\mp@subsup{\mathbb{e}}{}{5t})
    y[t] }->60\mp@subsup{e}{}{t},z[t]->\mp@subsup{e}{}{-t}(2-40\mp@subsup{e}{}{2t}+63\mp@subsup{e}{}{5t})}
```

The graphs of these three population functions are generated with Plot in Figure 7-11. We notice that although y was initially greater than populations x and z, these populations increase at a much higher rate than does y.

```
In[1476]:= Plot[Evaluate[{x[t], y[t], z[t]}/.sol],
    {t, 0, 0.5},
    PlotStyle }->\mathrm{ {GrayLevel[0], GrayLevel[0.3],
    GrayLevel[0.6]}]
```


7.3 Applications that Lead to Nonlinear Systems

Several special equations and systems that arise in the study of many areas of applied mathematics can be solved using the techniques of Chapter 6. These include the predator-prey population dynamics problem, the Van der Pol equation that models variable damping in a spring-mass system, and the BonhoefferVan der Pol (BVP) oscillator. We begin by considering the Lotka-Volterra system, which models the interaction between two populations.

7.3.1 Biological Systems: Predator-Prey Interactions, The Lotka-Volterra System, and Food Chains in the Chemostat

The Lotka-Volterra System

Let $x(t)$ and $y(t)$ represent the number of members at time t of the prey and predator populations, respectively. (Examples of such populations include fox/rabbit and shark/seal.) Suppose that the positive constant a is the birth rate of $x(t)$ so that in the absence of the predator $d x / d t=a x$ and that c is the death rate of y which indicates that $d y / d t=-c y$ in the absence of the prey population. In addition to these factors, the number of interactions between predator and prey affects the number of members in the two populations. Note that an interaction increases the growth of the predator population and decreases the growth of the prey population, because an interaction between the two populations indicates that a predator overtakes a member of the prey population. In order to include these interactions in the model, we assume that the number of interactions is directly proportional to the product of $x(t)$ and $y(t)$. Therefore, the rate at which $x(t)$ changes with respect to time is $d x / d t=a x-b x y$. Similarly, the rate at which $y(t)$ changes with respect to time is $d y / d t=-c y+d x y$. Therefore, we must solve the Lotka-Volterra system

$$
\left\{\begin{array}{l}
d x / d t=a x-b x y \tag{7.9}\\
d y / d t=-c y+d x y
\end{array}\right.
$$

subject to the initial populations $x(0)=x_{0}$ and $y(0)=y_{0}$.

The Jacobian matrix is also called the variational matrix.

EXAMPLE 7.3.1: Find and classify the equilibrium points of the LotkaVolterra system.

SOLUTION: We solve $\left\{\begin{array}{l}a x-b x y=0 \\ -c y+d x y=0\end{array}\right.$ to see that the equilibrium points are $(0,0)$ and $(c / d, a / b)$.

$$
\begin{aligned}
\text { In }[1477]:= & \mathbf{f}\left[\mathbf{x}_{-}, \mathbf{y}_{-}\right]=\mathrm{ax}-\mathrm{b} \mathbf{x y ;} \\
& \mathrm{~g}\left[\mathbf{x}_{-}, \mathrm{y}_{-}\right]=-\mathrm{c} \mathbf{y}+\mathrm{dxy} ; \\
& \text { Solve }[\{\mathrm{f}[\mathrm{x}, \mathrm{y}]==0, \mathrm{~g}[\mathrm{x}, \mathrm{y}]==0\},\{\mathbf{x}, \mathrm{y}\}] \\
\text { Out }[1477]= & \left\{\{\mathrm{x} \rightarrow 0, \mathrm{y} \rightarrow 0\},\left\{\mathrm{x} \rightarrow \frac{\mathrm{c}}{\mathrm{~d}}, \mathrm{y} \rightarrow \frac{\mathrm{a}}{\mathrm{~b}}\right\}\right\}
\end{aligned}
$$

To classify these equilibrium points, we first calculate the Jacobian matrix of the nonlinear system.

$$
\begin{aligned}
\text { In }[1478]:= & j a c=\binom{\mathrm{D}[\mathrm{f}[\mathrm{x}, \mathrm{y}], \mathrm{x}] \mathrm{D}[\mathrm{f}[\mathrm{x}, \mathrm{y}], \mathrm{y}]}{\mathrm{D}[\mathrm{~g}[\mathrm{x}, \mathrm{y}], \mathrm{x}] \mathrm{D}[\mathrm{~g}[\mathrm{x}, \mathrm{y}], \mathrm{y}]} ; \\
& \text { MatrixForm}[\mathrm{jac}] \\
\text { Out }[1478]= & \left(\begin{array}{cc}
\mathrm{a}-\mathrm{b} \mathrm{y} & -\mathrm{bx} \\
\mathrm{dy} & -\mathrm{c}+\mathrm{dx}
\end{array}\right)
\end{aligned}
$$

At $(0,0)$, we have $\mathbf{J}(0,0)=\left(\begin{array}{rr}a & 0 \\ 0 & -c\end{array}\right)$ with eigenvalues $\lambda_{1}=-c$ and $\lambda_{2}=a$.

```
In[1479]:= jac/.{x->0,y->0}//Eigenvalues
Out[1479]= {a,-c}
```

Because these eigenvalues are real with opposite sign, we classify $(0,0)$ as a saddle; $(0,0)$ is unstable. Similarly, at $(c / d, a / b)$, we have $\mathbf{J}(c / d, a / b)=$ $\left(\begin{array}{cc}0 & -b c / d \\ a d / b & 0\end{array}\right)$ with eigenvalues $\lambda_{1,2}= \pm i \sqrt{a c}$.

$$
\begin{aligned}
& \text { In }[1480]:=j a c / \cdot\{x->c / d, y->a / b\} / / \text { Eigenvalues } \\
& \text { Out }[1480]=\{-\dot{i} \sqrt{a} \sqrt{c}, \dot{i} \sqrt{a} \sqrt{c}\}
\end{aligned}
$$

Therefore, the point $(c / d, a / b)$ is classified as a center in the linearized system. We show the direction field associated with the system using the values $a=2, b=1, c=3$, and $d=1$ in Figure 7-12. The direction field indicates that all solutions oscillate about the center.

Figure 7-12 Typical direction field associated with the Lotka-Volterra system

```
In[1481]:= << Graphics'PlotField'
    PlotVectorField[{2x-xy, -3y + xy},
    {x, 0, 15}, {y, 0, 15}, Axes- > Automatic,
    AxesOrigin- > {0, 0}, ScaleFunction- > (1&),
    PlotPoints- > 30]
```

This observation is confirmed by graphing several curves in the phase plane of the system for these values of a, b, c, and d. See Figure 7-13.

```
In[1482]:= Clear[x,y,t,s]
    graph[s0_] := Module[{numsol, pp, pxy},
                        GraphicsArray[{pxy,pp}]]
            numsol =
            NDSolve[{\mp@subsup{x}{}{\prime}[t] == 2 x [t] - x [t] y[t],
                y'[t] == -3 y[t] + x[t] y[t], x[0] == 3s0,
                y[0] == 2s0}, {x[t],y[t]},{t,0, 15}];
    pp = ParametricPlot[{x[t],y[t]}/.numsol,
            {t, 0, 4}, Compiled }->\mathrm{ False,
            PlotRange }->{{0,15},{0,15}}
            AspectRatio }->1,Ticks -> {{3}, {2}}
            DisplayFunction }->\mathrm{ Identity];
```


Figure 7-13 Typical solutions of the Lotka-Volterra system

```
In[1482]:= pxy = Plot[Evaluate[{x[t], y[t]}/.numsol],
        {t,0,15},
        PlotStyle }->\mathrm{ {GrayLevel[0],
        GrayLevel[0.5]}, PlotRange }->{0,15}\mathrm{ ,
        AspectRatio }->\mathrm{ 1,
        Ticks-> {{5, 10}, {5, 10}},
        DisplayFunction }->\mathrm{ Identity];
In[1483]:= graphs = Table[graph[s],{s,0.1, 2, 1.9/9}];
In[1484]:= toshow = Partition[graphs, 2];
    Show[GraphicsArray[toshow]]
```

Notice that all of the solutions oscillate about the center. These solutions reveal the relationship between the two populations: prey, $x(t)$, and predator, $y(t)$. As we follow one cycle counterclockwise beginning, for example, near the point $(3,2)$, we notice that as $x(t)$ increases, then $y(t)$ increases until $y(t)$ becomes overpopulated. Then, because the prey
population is too small to supply the predator population, $y(t)$ decreases which leads to an increase in the population of $x(t)$. At this point, because the number of predators becomes too small to control the number in the prey population, $x(t)$ becomes overpopulated and the cycle repeats itself.

An interesting variation of the Lotka-Volterra equations is to assume that a depends strongly on environmental factors and might be given by the differential equation

$$
\begin{equation*}
\frac{d a}{d t}=-a x+\bar{a}+k \sin (\omega t+\phi), \tag{7.10}
\end{equation*}
$$

where the term -ax represents the loss of nutrients due to species $x ; \bar{a}, k, \omega$, and ϕ are constants. Observe that incorporating equation (7.10) into system (7.9) results in a nonautonomous system.

EXAMPLE 7.3.2: Suppose that $x(0)=y(0)=a(0)=0.5, b=d=1$, $c=0.5, \bar{a}=0.25, k=0.125$, and $\phi=0$. Plot $x(t)$ and $y(t)$ if $\omega=0.1,0.25$, $0.5,0.75,1,1.25,1.5$, and 2.5 .

SOLUTION: Given the appropriate parameter values and initial conditions, solgraph solves

$$
\left\{\begin{array}{l}
d x / d t=a x-b x y \tag{7.11}\\
d y / d t=-c y+d x y \\
d a / d t=-a x+\bar{a}+k \sin (\omega t+\phi) \\
x(0)=x_{0}, y(0)=y_{0}, z(0)=z_{0}
\end{array}\right.
$$

plots $x(t)$ (in black) and $y(t)$ (in gray), parametrically plots $\left\{\begin{array}{l}x=x(t) \\ y=y(t)\end{array}\right.$, and displays the results side-by-side. Any options included are passed to the Show command. If $\{t, a, b\}$ is omitted from the solgraph command, the default is $\{t, 0,40\}$.

```
In[1485]:= solgraph[b,},\mp@subsup{d}{-}{\prime},\mp@subsup{c}{-}{\prime},aba\mp@subsup{r}{-}{\prime},\mp@subsup{\mathbf{k}}{-}{},\mp@subsup{\omega}{-}{\prime},\mp@subsup{\phi}{-}{}
    [{x\mp@subsup{0}{-}{\prime},y\mp@subsup{0}{-}{\prime},a\mp@subsup{0}{-}{\prime}},ts_:{t, 0, 40},
    opts__-] := Module[{numsol, p1, p2},
            numsol = NDSolve[{\mp@subsup{x}{}{\prime}[t]==a[t] x[t]
            -bx[t]y[t], y'[t] == -cy[t]
            +dx[t]y[t], a'[t] == -a[t] x[t]
            +abar + k Sin[\omegat + \phi], x[0] == x0,
            y[0] == y0,a[0] == a0},
            {x[t],y[t],a[t]},ts];
            p1 = ParametricPlot[{x[t],y[t]}/.numsol,
                ts, Compiled }->\mathrm{ False,
                PlotRange }->{{0,1},{0,1}}
                AspectRatio }->\mathrm{ Automatic,
                DisplayFunction }->\mathrm{ Identity,
                AxesLabel }->{"x", "y"},Ticks -> {{0, 1}
                {0,1}}];
            p2 = Plot[Evaluate[{x[t],
                y[t]}/.numsol], ts,
                PlotStyle }->\mathrm{ {GrayLevel[0],
                GrayLevel[0.4]}, PlotRange }->{0,1}\mathrm{ ,
                DisplayFunction }->\mathrm{ Identity,
                AxesLabel }->\mathrm{ {"t", "x, y"},
                Ticks }->\mathrm{ {Automatic, {0, 1}}];
        Show[GraphicsArray[{p2, p1}],opts]
    ]
```

For example, entering

```
In[1486]:= solgraph[1, 1, 0.5, 0.25,0.125, 0.3,0]
    [{0.5,0.5,0.5}]
```

graphs the solution to the initial-value problem (7.11) for our parameter values and initial conditions if $\omega=0.3$ shown in Figure 7-14. We then use Map to apply solgraph to the list of numbers $\{0.01,0.1,0.25,0.5$, $0.75,1,1.25,1.5,2.5\}$. The resulting plots are not displayed because we include the option DisplayFunction->Identity in the solgraph command.

```
In[1487]:= solgraph[1, 1, 0.5, 0.25,0.125,0.3,0]
    [{0.5, 0.5, 0.5}, {t, 0, 50},
    DisplayFunction }->\mathrm{ Identity]
Out[1487]= -GraphicsArray-
```


Figure 7-14 $\quad a=a(t), \omega=0.3$

```
In[1488]:= toshow = Map[solgraph[1, 1, 0.5,0.25,0.125,
    #,0][{0.5,0.5,0.5},{t, 0, 50},
    DisplayFunction }->\mathrm{ Identity]&,
    {0.1, 0.25, 0.5, 0.75,1, 1.25, 1.5, 2.5}]
```

Out [1488] = \{-GraphicsArray-, -GraphicsArray-,
-GraphicsArray-, -GraphicsArray-,
-GraphicsArray-, -GraphicsArray-,
-GraphicsArray-, -GraphicsArray-\}

Partition is used to partition toshow into two element subsets and the resulting array of graphics is displayed using Show and Graphics Array in Figure 7-15.

```
In[1489]:= Show[GraphicsArray[Partition[toshow, 2]]]
```

(Note that if instead you had entered

```
In[1490]:= Show[GraphicsArray[Partition[toshow, 1]]]
```

the plots would have been displayed vertically instead of side-by-side.) From the graphs, we see that larger values of ω appear to stabilize the populations of both species; smaller values of ω appear to cause the size of the populations to oscillate widely.

Figure 7-15 Varying ω

7.3.I.I Simple Food Chain in a Chemostat

See Smith and Waltman's, The Theory of the Chemostat: Dynamics of Microbial Competition [24] for a detailed discussion of various chemostat models. Previously, we discussed growth in the chemostat in Example 3.2.6.

The equations that describe a simple food chain in a chemostat are

$$
\left\{\begin{array}{l}
\frac{d S}{d t}=1-S-\frac{m_{1} x S}{a_{1}+S} \tag{7.12}\\
\frac{d x}{d t}=\frac{m_{1} x S}{a_{1}+S}-x-\frac{m_{2} x y}{a_{2}+x} \\
\frac{d y}{d t}=\frac{m_{2} x y}{a_{2}+x}-y \\
S(0)=S_{0}, x(0)=x_{0}, y(0)=y_{0}
\end{array}\right.
$$

In system (7.12), y (the predator) consumes x (the prey) and x consumes the nutrient S.

Now let $\Sigma=1-S-x-y$. Then $\Sigma^{\prime}=-S^{\prime}-x^{\prime}-y^{\prime}=-(1-S-x-y)=-\Sigma$ so $\Sigma=\Sigma_{0} e^{-t}$ and $\lim _{t \rightarrow \infty} \Sigma=0$. In the limit as $t \rightarrow \infty, \Sigma=0=1-S-x-y$ so $S=1-x-y$ and system (7.12) becomes

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=\frac{m_{1} x(1-x-y)}{1+a_{1}-x-y}-x-\frac{m_{2} x y}{a_{2}+x} \tag{7.13}\\
\frac{d y}{d t}=\frac{m_{2} x y}{a_{2}+x}-y \\
x(0)=x_{0}, y(0)=y_{0}
\end{array}\right.
$$

The analysis of system (7.13) is quite technical and beyond the scope of this text. We illustrate how Mathematica can assist in carrying out a few of the computations needed when analyzing system (7.13).

The rest points of system (7.13) are found by solving

$$
\left\{\begin{array}{l}
\frac{m_{1} x(1-x-y)}{1+a_{1}-x-y}-x-\frac{m_{2} x y}{a_{2}+x}=0 \\
\frac{m_{2} x y}{a_{2}+x}-y=0 .
\end{array}\right.
$$

$$
\begin{aligned}
& \text { In [1491]: }=\mathbf{x e q}=\mathbf{x}(\mathrm{m} 1(1-\mathrm{x}-\mathrm{y}) /(1+\mathrm{a} 1-\mathrm{x}-\mathrm{y})-1-\mathrm{m} 2 \mathrm{y} /(\mathrm{a} 2+\mathrm{x})) ; \\
& \mathrm{yeq}=\mathrm{y}(\mathrm{~m} 2 \mathrm{x} /(\mathrm{a} 2+\mathrm{x})-1) ; \\
& \text { In [1492]: }=\text { rps }=\operatorname{Solve}[\{\mathbf{x e q}==0, y e q==0\},\{x, y\}] / / \text { Simplify } \\
& \text { Out [1492] }=\left\{\{x \rightarrow 0, y \rightarrow 0\},\left\{y \rightarrow 0, x \rightarrow \frac{-1-a 1+m 1}{-1+m 1}\right\}\right. \text {, } \\
& \left\{y \rightarrow \frac{1}{2(-1+m 2)}(-1-2 a 2+a 2 m 1+a 1(-1+m 2)\right. \\
& +m 2+\sqrt{ }\left((1+a 2 m 1-m 2)^{2}+a 1^{2}(-1+m 2)^{2}\right. \\
& +2 \mathrm{a} 1(-1+\mathrm{m} 2)(-1+\mathrm{a} 2 \mathrm{~m} 1+\mathrm{m} 2))) \text {, } \\
& \left.x \rightarrow \frac{a 2}{-1+m 2}\right\}, \\
& \left\{y \rightarrow \frac{1}{2(-1+m 2)}(-1-2 a 2+a 2 m 1+a 1(-1+m 2)+m 2\right. \\
& -\sqrt{ }\left((1+a 2 m 1-m 2)^{2}+a 1^{2}(-1+m 2)^{2}\right. \\
& +2 \mathrm{a} 1(-1+\mathrm{m} 2)(-1+\mathrm{a} 2 \mathrm{~m} 1+\mathrm{m} 2))) \text {, } \\
& \left.\left.x \rightarrow \frac{a 2}{-1+m 2}\right\}\right\}
\end{aligned}
$$

From the results, we see that $E_{0}=(0,0)$ is a rest point. If the appropriate quantities are positive, another boundary rest point may exist as well as an interior rest point.

In jac, we compute the Jacobian, \mathbf{J}, of system (7.12).

$$
\begin{aligned}
& \text { In [1493]: }=\text { jac }=\{\{D[x e q, x], D[x e q, y]\},\{D[y e q, x], D[y e q, y]\}\} \\
& \text { Out [1493] }=\left\{\left\{-1+\frac{m 1(1-x-y)}{1+a 1-x-y}-\frac{m 2 y}{a 2+x}\right.\right. \\
& +x\left(\frac{m 1(1-x-y)}{(1+a 1-x-y)^{2}}-\frac{m 1}{1+a 1-x-y}+\frac{m 2 y}{(a 2+x)^{2}}\right), \\
& \left.x\left(-\frac{m 2}{a 2+x}+\frac{m 1(1-x-y)}{(1+a 1-x-y)^{2}}-\frac{m 1}{1+a 1-x-y}\right)\right\}, \\
& \left.\left\{\left(-\frac{\mathrm{m} 2 \mathrm{x}}{(\mathrm{a} 2+\mathrm{x})^{2}}+\frac{\mathrm{m} 2}{\mathrm{a} 2+\mathrm{x}}\right) \mathrm{y},-1+\frac{\mathrm{m} 2 \mathrm{x}}{\mathrm{a} 2+\mathrm{x}}\right\}\right\}
\end{aligned}
$$

See Chapter 3 of Smith and Waltman's The Theory of the Chemostat: Dynamics of
Microbial Competition [24] for a detailed analysis of system (7.12).

At $E_{0}, \mathbf{J}\left(E_{0}\right)$ is

$$
\begin{aligned}
& \text { In }[1494]:=j 0=j a c / . r p s[[1]] / / \text { FullSimplify } \\
& \text { Out }[1494]=\left\{\left\{-1+\frac{\mathrm{m} 1}{1+\mathrm{a} 1}, 0\right\},\{0,-1\}\right\}
\end{aligned}
$$

with eigenvalues

$$
\begin{aligned}
& \text { In }[1495]:=\text { Eigenvalues }[j 0] \\
& \text { Out }[1495]=\left\{-1,-1+\frac{\mathrm{m} 1}{1+\mathrm{a} 1}\right\}
\end{aligned}
$$

In the context of the problem, it is desirable for E_{0} to be unstable. Thus, we require that $m_{1}>1$ and

$$
-1+\frac{m_{1}}{a_{1}+1}>0 \quad \text { or, equivalently, } \quad 1-\frac{a_{1}}{m_{1}-1}<0
$$

We define λ_{i} to be $\lambda_{i}=\frac{a_{i}}{m_{i}-1}$.

With this assumption, the boundary point $E_{1}=\left(1-\frac{a_{1}}{m_{1}-1}, 0\right)=\left(1-\lambda_{1}, 0\right)$ exists. At $E_{1}, \mathbf{J}\left(E_{1}\right)$ is given by

$$
\begin{aligned}
\text { In }[1496]:= & j 1=j a c / . r p s[[2]] / / \text { FullSimplify } \\
\text { Out }[1496]=\{ & \left\{\frac{(1+a 1-\mathrm{m} 1)(-1+\mathrm{m} 1)}{\mathrm{a} 1 \mathrm{~m} 1},\right. \\
& \left.(1+\mathrm{a} 1-\mathrm{m} 1)\left(\frac{-1+\mathrm{m} 1}{\mathrm{a} 1 \mathrm{~m} 1}-\frac{\mathrm{m}}{1+\mathrm{a} 1+\mathrm{a} 2-(1+\mathrm{a} 2) \mathrm{m} 1}\right)\right\}, \\
& \left.\left\{0,-1+\frac{(1+\mathrm{a} 1-\mathrm{m} 1) \mathrm{m} 2}{1+\mathrm{a} 1+\mathrm{a} 2-(1+\mathrm{a} 2) \mathrm{m} 1}\right\}\right\}
\end{aligned}
$$

with eigenvalues

$$
\begin{aligned}
& \text { In [1497] }:=\text { Eigenvalues }[j 1] \\
& \text { Out }[1497]=\left\{\frac{(1+\mathrm{a} 1-\mathrm{m} 1)(-1+\mathrm{m} 1)}{\mathrm{a} 1 \mathrm{~m} 1},-1+\frac{(1+\mathrm{a} 1-\mathrm{m} 1) \mathrm{m} 2}{1+\mathrm{a} 1+\mathrm{a} 2-(1+\mathrm{a} 2) \mathrm{m} 1}\right\}
\end{aligned}
$$

E_{1} may be stable or unstable. It can be shown that E_{1} is stable if $\lambda_{1}+\lambda_{2}>1$ and a saddle (unstable) if $\lambda_{1}+\lambda_{2}<1$. If an interior rest point exists, Mathematica can compute the Jacobian as well as the eigenvalues. At E_{A}, the $\mathbf{J}\left(E_{A}\right)$ is

$$
\begin{aligned}
& \text { In[1498]:= j3 = jac/.rps[[3]]//FullSimplify } \\
& \text { Out [1498] }=\left\{\left\{-\left(2 \left(a 1^{2}(-1+m 2)^{2}\right.\right.\right.\right. \\
& -(-1+m 1)(1+a 2 m 1-m 2) \\
& \times\left(1+a 2 m 1-m 2+\sqrt{ }\left((1+a 2 m 1-m 2)^{2}\right.\right. \\
& +a 1^{2}(-1+m 2)^{2}+2 a 1 \\
& \times(-1+m 2)(-1+a 2 m 1+m 2))) \\
& -\mathrm{a} 1(-1+\mathrm{m} 2)(2-2 \mathrm{~m} 2 \\
& +m 1(-1+a 2(m 1-2 m 2)+m 2) \\
& +\sqrt{ }\left((1+a 2 m 1-m 2)^{2}\right. \\
& +a 1^{2}(-1+m 2)^{2}+2 a 1(-1+m 2) \\
& \times(-1+a 2 m 1+m 2)))) \\
& \text { /(m2 SuperscriptBox ((1 + a1 + a2 m1 - m2 } \\
& -\mathrm{a} 1 \mathrm{~m} 2+\sqrt{ }\left((1+\mathrm{a} 2 \mathrm{~m} 1-\mathrm{m} 2)^{2}+\right) \\
& \times a 1^{2}(-1+m 2)^{2}+2 a 1(-1+m 2) \\
& \left.\times(-1+a 2 m 1+m 2)))^{2}\right) \text {, } \\
& -\left(2 \left(a 1^{2}(-1+m 2)^{2}+a 1(-1+m 2)\right.\right. \\
& \times\left(-2+2 a 2 m 1+2 m 2-\sqrt{ }\left((1+a 2 m 1-m 2)^{2}\right.\right. \\
& +a 1^{2}(-1+m 2)^{2}+2 a 1(-1+m 2) \\
& \times(-1+a 2 m 1+m 2))) \\
& +(1+a 2 m 1-m 2) \\
& \times\left(1+a 2 m 1-m 2+\sqrt{ }\left((1+a 2 m 1-m 2)^{2}\right.\right. \\
& +a 1^{2}(-1+m 2)^{2}+2 a 1 \\
& \times(-1+m 2)(-1+a 2 m 1+m 2)))) \\
& \text { /SuperscriptBox ((1+a1 + a2 m1-m2-a1 m2 } \\
& +\sqrt{ }\left((1+a 2 m 1-m 2)^{2}+\right) a 1^{2}(-1+m 2)^{2} \\
& \left.+2 \mathrm{a} 1(-1+\mathrm{m} 2)(-1+\mathrm{a} 2 \mathrm{~m} 1+\mathrm{m} 2)))^{2}\right\} \text {, } \\
& \left\{\frac{1}{2 \mathrm{a} 2 \mathrm{~m} 2}((-1+\mathrm{m} 2)(-1+\mathrm{a} 2(-2+\mathrm{m} 1)\right. \\
& +\mathrm{a} 1(-1+\mathrm{m} 2)+\mathrm{m} 2 \\
& +\sqrt{ }\left((1+a 2 m 1-m 2)^{2}+a 1^{2}(-1+m 2)^{2}\right. \\
& +2 \mathrm{a} 1(-1+\mathrm{m} 2)(-1+\mathrm{a} 2 \mathrm{~m} 1+\mathrm{m} 2)))), 0\}\}
\end{aligned}
$$

The command Eigenvalues [j3] returns the eigenvalues of $j 3$; however, the result is very lengthy so it is not shown here for length considerations. Refer to Chapter 3 of Smith and Waltman, [24].

Incorporating a second predator, z, of x into system (7.14) results in

$$
\left\{\begin{array}{l}
\frac{d S}{d t}=1-S-\frac{m_{1} x S}{a_{1}+S} \tag{7.14}\\
\frac{d x}{d t}=\frac{m_{1} x S}{a_{1}+S}-x-\frac{m_{2} x y}{a_{2}+x}-\frac{m_{3} x z}{a_{3}+x} \\
\frac{d y}{d t}=\frac{m_{2} x y}{a_{2}+x}-y \\
\frac{d z}{d t}=\frac{m_{3} x z}{a_{3}+x}-z \\
S(0)=S_{0}, x(0)=x_{0}, y(0)=y_{0}, z(0)=z_{0}
\end{array}\right.
$$

In the same way as with system (7.14), we let $\Sigma=1-S-x-y-z$. Then, $\Sigma^{\prime}=-\Sigma$ so $\lim _{t \rightarrow \infty} \Sigma=0$. Substitution of Σ into system (7.14) and taking the limit $t \rightarrow \infty$ results in

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=\frac{m_{1} x(1-x-y-z)}{1+a_{1}-x-y-z}-x-\frac{m_{2} x y}{a_{2}+x}-\frac{m_{3} x z}{a_{3}+x} \tag{7.15}\\
\frac{d y}{d t}=\frac{m_{2} x y}{a_{2}+x}-y \\
\frac{d z}{d t}=\frac{m_{3} x z}{a_{3}+x}-z \\
S(0)=S_{0}, x(0)=x_{0}, y(0)=y_{0}, z(0)=z_{0} .
\end{array}\right.
$$

System (7.15) can exhibit very interesting behavior.

EXAMPLE 7.3.3: Let $a_{1}=.3, a_{2}=.4, m_{1}=8, m_{2}=4.5$, and $m_{3}=5.0$. If $x(0)=.1, y(0)=.1$, and $z(0)=.3$, how does varying a_{3} affect the solutions of system (7.15)?

SOLUTION: We define the function predplot:

```
predplot[{a1,a2,a3},{m1,m2,m3}][{x0,y0,z0},{t,a,b}
,opts]
```

solves system (7.15) subject to the initial conditions $x(0)=x_{0}, y(0)=y_{0}$, and $z(0)=z_{0}$ for $a \leq t \leq b$, plots $x(t)$ (in black), $y(t)$ (in gray), and $z(t)$ (dashed), parametrically plots x versus y versus z, displays the resulting plots side-by-side, and returns a numerical solution to the initial-value problem. Any options included are passed to the Show command. If
you do not include any options and omit $\{t, a, b\}$, the default is $0 \leq$ $t \leq 100$.

```
In[1499]:= Clear[predplot];
    predplot[{a1_,a2_,a3_},{m1_,m2_,m3_}][
            {x\mp@subsup{0}{_}{\prime},y\mp@subsup{0}{-}{\prime},z\mp@subsup{0}{-}{\prime}},ts_:{t, 0,100},opts_-] :=
            Module[{numsol, p1, p2, p3},
            numsol = NDSolve[
                {x'[t] ==
                x[t]
                            (m1 (1-x[t]-y[t]-z[t])/
                                    (a1 + 1-x[t]
                                    -y[t]-z[t])-1-
                                    y[t] m2 /(a2 + x[t])
                                    -z[t] m3/(a3+x[t])),
                    y'[t] == y[t] (m2x[t]/(a2+x[t])-1),
                    z'[t] == z[t] (m3 x[t]/(a3+x[t]) - 1),
                    x[0] == x0,y[0] == y0, z[0] == z0},
                    {x[t],y[t],z[t]},ts,MaxSteps }->\mathrm{ 100000];
            p1 = Plot[Evaluate[{x[t],y[t],
                        z[t]}/.numsol],
                ts, PlotRange }->{0,1}\mathrm{ ,
                    PlotStyle }->\mathrm{ {GrayLevel[0],
                    GrayLevel[0.3],
                    Dashing[{0.01}]},
                    DisplayFunction }->\mathrm{ Identity,
                    Ticks }->{{ts[[2]],ts[[3]]},{0,1}}
                    AxesLabel ->{"t",""}];
            p2 = ParametricPlot3D[
                        Evaluate[{x[t],y[t], z[t]}/.numsol],
                        ts, PlotRange }->{{0,1},{0,1},{0,1}}
                        AxesLabel ->{"x", "y", "z"},
                        BoxRatios }->{1,1,1}\mathrm{ ,
                        DisplayFunction }->\mathrm{ Identity,
                        Ticks }->{{0,1},{0,1},{0,1}}
                        ViewPoint-> {2.21, 2.211, 1.294},
                        Boxed }->\mathrm{ False, PlotPoints }->2000]\mathrm{ ;
            Show[GraphicsArray[{p1, p2}],opts];
            numsol
            ]
```

For example, entering

```
In[1500]:= predplot[{0.3,0.4,0.455},{8,4.5,5.}]
    [{0.1,0.1,0.3}, {t, 50, 60}]
```


Figure 7-16 If $a_{3}=0.455, y$ and z coexist

```
Out[1500]= {{x[t] -> InterpolatingFunction[{{50., 60.}},
    <>][t],
    y[t] I InterpolatingFunction[{{50., 60.}},
    <>][t],
    z[t] InterpolatingFunction[{{50., 60.}},
    <>][t]}}
```

plots the solutions shown in Figure 7-16 using our parameter values and initial conditions for $50 \leq t \leq 60$ if $a_{3}=0.455$. We vary a_{3} in $t 1$.

```
In[1501]:= t1 = Table[predplot[{0.3,0.4, a3}, {8, 4.5,5.}]
    [{0.3,0.1, 0.2}, {t, 50, 60}],
    {a3,0.35,0.55,0.2/29}];
```

The resulting graphs result in a striking animation.
t1 = Table[predplot[\{, 3, .4, a3\}, \{8, 4.5, 5.0\}][$\{.3,1, .2\},\{t, 50,60\}]$, \{a3, . $35, .55, .2 / 29\}]$;

You can also visualize the cycles by displaying all the parametric plots together. In $t 1$, each result is an approximate solution that we can use. In the following, we use ParametricPlot3D to graph each solution.

```
In[1502]:= toshow = Table[ParametricPlot3D[
    Evaluate[{z[t], y[t], x[t]}/.
    t1[[i]][[1]]], {t, 50, 60},
    PlotRange }->{{0,1},{0,1},{0,1}}
AxesLabel }->\mathrm{ {"z", "y", "x"},
BoxRatios }->{1,1,1}\mathrm{ ,
DisplayFunction }->\mathrm{ Identity,
Ticks }->{{0,1},{0,1},{0,1}}
ViewPoint- > {1.47, 2.424, 1.847},
Boxed }->\mathrm{ False, PlotPoints }->2000]
{i, 1, 30}];
```

The results are displayed together with Show in Figure 7-17.

Figure 7-17 In an animation, you can see the limit cycle move from the $x z$-plane to the $x y$-plane as a_{3} increases

```
In[1503]:= Show[toshow, DisplayFunction- >
    $DisplayFunction]
```

In the plots we see that if a_{3} is small, z dominates the predator population, if a_{3} is large, y dominates the predator population. For moderate values, y and z coexist.

7.3.I. 2 Long Food Chain in a Chemostat

In system (7.12), y predates on x. Incorporating a predator z of y into system (7.12) results in

$$
\left\{\begin{array}{l}
\frac{d S}{d t}=1-S-\frac{m_{1} x S}{a_{1}+S} \tag{7.16}\\
\frac{d x}{d t}=\frac{m_{1} x S}{a_{1}+S}-x-\frac{m_{2} x y}{a_{2}+x} \\
\frac{d y}{d t}=\frac{m_{2} x y}{a_{2}+x}-y-\frac{m_{3} y z}{a_{3}+y} \\
\frac{d z}{d t}=\frac{m_{3} y z}{a_{3}+y}-z .
\end{array}\right.
$$

As with system (7.12), in the limit as $t \rightarrow \infty, S=1-x-y-z$ so system (7.16) can be rewritten as

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=x\left[f_{1}(1-x-y-z)-1\right]-y f_{2}(x) \tag{7.17}\\
\frac{d y}{d t}=y\left[f_{2}(x)-1\right]-z f_{3}(y) \\
\frac{d z}{d t}=z\left[f_{3}(y)-1\right]
\end{array}\right.
$$

where

$$
\begin{equation*}
f_{i}(u)=\frac{m_{i} u}{a_{i}+u} . \tag{7.18}
\end{equation*}
$$

Of course, rigorous analysis of system (7.17) is even more complicated than the analysis of system (7.12).

EXAMPLE 7.3.4: Let $a_{1}=.08, a_{2}=.23, m_{1}=10, m_{2}=4.0$, and $m_{3}=3.5$. If $x(0)=.3, y(0)=.1$, and $z(0)=.2$, how does varying a_{3} affect the solutions of system (7.17)?

SOLUTION: We define longchainplot in the same way as we defined predplot in Example 7.3.3.

```
In[1504]:= longchainplot[{a1_, a2_, a3_}, {m1_,m2_,m3_}][
    {x\mp@subsup{0}{-}{\prime},y\mp@subsup{0}{-}{\prime},z\mp@subsup{0}{-}{\prime}},ts\mp@subsup{s}{-}{\prime}{t,0,100}] :=
        Module[{numsol}, numsol = NDSolve[
                        {\mp@subsup{x}{}{\prime}[t] ==
                x [t]
                            (m1 (1 - x[t] - y[t] - z[t])/
                            (a1 + 1-x[t] - y[t] - z[t]) - 1) -
                y[t] m2 x[t]/(a2 + x[t]),
                y'[t] == y[t] (m2 x[t]/(a2+x[t]) - 1) -
                        z[t] m3 y[t]/(a3 + y[t]),
                z'[t] == z[t] (m3 y[t]/(a3 + y[t]) - 1),
                x[0] == x0, y[0] == y0, z[0] == z0},
                {x[t],y[t], z[t]},ts,MaxSteps }->\mathrm{ 100000];
            p1 =
            Plot[Evaluate[{x[t], y[t], z[t]}/.numsol],
                ts, PlotRange }->{0,1}\mathrm{ ,
                PlotStyle }->\mathrm{ {GrayLevel[0],
                    GrayLevel[0.3], Dashing[{0.01}]},
                    DisplayFunction }->\mathrm{ Identity,
                    Ticks }->\mathrm{ {{ts[[2]], ts[[3]]},{0, 1}},
                AxesLabel }->\mathrm{ {"t", ""}];
        p2 = ParametricPlot3D[
            Evaluate[{x[t],y[t], z[t]}/.numsol],
            ts, PlotRange }->{{0,1},{0,1},{0,1}}
            AxesLabel }->\mathrm{ {"x", "y", "z"},
            BoxRatios }->{1,1,1}
            DisplayFunction }->\mathrm{ Identity,
            Ticks }->{{0,1},{0,1},{0,1}}
            ViewPoint- > {2.21, 2.211, 1.294},
            Boxed }->\mathrm{ False, PlotPoints }->2000]
    Show[GraphicsArray[{p1, p2}]];
    numsol
    ]
```

For example, entering

```
In[1505]:= longchainplot[{0.08, 0.23,0.4},{10,4, 3.5}]
    [{0.3,0.1, 0.2}, {t, 50, 60}]
Out[1505]= {{x[t] -> InterpolatingFunction
    [{{50., 60.}}, <>][t],
```



```
    <>][t], z[t] -> InterpolatingFunction[{{50.
    ,60.}}, <>][t]}}
```


Figure 7-18 $x(t)$ (in black), $y(t)$ (in gray), and $z(t)$ (dashed) if $a_{3}=.4$ for $0 \leq t \leq 60$
plots the solution of system (7.17) using our parameter values and initial conditions if $a_{3}=.4$ for $50 \leq t \leq 60$ in Figure 7-18. In Figure 7-19, we plot the solutions using the given parameter values and initial conditions using $a_{3}=0.3,0.26,0.24,0.22$, and 0.2 for $975 \leq t \leq 1000$. In the plots, we see that the solution appears chaotic for $a_{3} \approx .2$.

```
In[1506]:= r1 = Map[longchainplot[{0.08, 0.23,#},
    {10,4,3.5}][{0.3,0.1, 0.2},
    {t, 975, 1000}]&, {0.3,0.26,0.24,0.22,0.2}]
```

The apparent chaotic behavior for $a_{3}=.2$ is more apparent in Figure 7-20, where we graph the solution for $1100 \leq t \leq 1200$.

```
In[1507]:= longchainplot[{0.08, 0.23,0.2},{10,4, 3.5}]
    [{0.3,0.1, 0.2}, {t, 1100, 1200}]
```


7.3.2 Physical Systems: Variable Damping

In some physical systems, energy is fed into the system when there are small oscillations while energy is taken from the system when there are large oscillations. This indicates that the system undergoes "negative damping" for small oscillations and "positive damping" for large oscillations. A differential equation that models this situation is Van-der-Pol's equation.

Figure 7-20 The solution appears to be chaotic if $a_{3}=.2$

EXAMPLE 7.3.5 (Van-der-Pol's equation): In the introduction to Chapter 6 , we saw that Van-der-Pol's equation $x^{\prime \prime}+\mu\left(x^{2}-1\right) x^{\prime}+x=0$ is equivalent to the system

$$
\left\{\begin{array}{l}
x^{\prime}=y \\
y^{\prime}=\mu\left(1-x^{2}\right) y-x
\end{array}\right.
$$

Classify the equilibrium points, use NDSolve to approximate the solutions to this nonlinear system, and plot the phase plane.

SOLUTION: We find the equilibrium points by solving
$\left\{\begin{array}{l}y=0 \\ \mu\left(1-x^{2}\right) y-x=0\end{array}\right.$. From the first equation, we see that $y=0$. Then,
substitution of $y=0$ into the second equation yields $x=0$. Therefore, the only equilibrium point is $(0,0)$. The Jacobian matrix for this system is

$$
\mathbf{J}(x, y)=\left(\begin{array}{cc}
0 & 1 \\
-1-2 \mu x y & -\mu\left(x^{2}-1\right)
\end{array}\right) .
$$

The eigenvalues of $\mathbf{J}(0,0)$ are $\lambda_{1,2}=\frac{1}{2}\left(\mu \pm \sqrt{\mu^{2}-4}\right)$.

$$
\begin{aligned}
\text { In }[1508]:= & \text { Clear }[\mathrm{f}, \mathrm{~g}] \\
& \mathrm{f}\left[\mathrm{x}_{-}, \mathrm{y}-\right]=\mathrm{y} ; \\
& \mathrm{g}\left[\mathrm{x}_{-}, \mathrm{y}-\mathrm{f}=-\mathrm{x}-\mu\left(\mathrm{x}^{2}-1\right) \mathrm{y} ;\right. \\
\operatorname{In}[1509]:= & \mathrm{jac}=\binom{\mathrm{D}[\mathrm{f}[\mathrm{x}, \mathrm{y}], \mathrm{x}] \mathrm{D}[\mathrm{f}[\mathrm{x}, \mathrm{y}], \mathrm{y}]}{\mathrm{D}[\mathrm{~g}[\mathrm{x}, \mathrm{y}], \mathrm{x}] \mathrm{D}[\mathrm{~g}[\mathrm{x}, \mathrm{y}], \mathrm{y}]} ;
\end{aligned}
$$

```
In [1510] \(:=\) jac \(/ .\{\mathbf{x}->0, \mathbf{y}->0\} / /\) Eigenvalues
Out [1510] \(=\left\{\frac{1}{2}\left(\mu-\sqrt{-4+\mu^{2}}\right), \frac{1}{2}\left(\mu+\sqrt{-4+\mu^{2}}\right)\right\}\)
```

Notice that if $\mu>2$, then both eigenvalues are positive and real. Hence, we classify $(0,0)$ as an unstable node. On the other hand, if $0<\mu<2$, then the eigenvalues are a complex conjugate pair with a positive real part. Hence, $(0,0)$ is an unstable spiral. (We omit the case $\mu=2$ because the eigenvalues are repeated.)

We now show several curves in the phase plane that begin at various points for various values of μ. First, we define the function sol, which given μ, x_{0}, and y_{0}, generates a numerical solution to the initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime}=y \\
y^{\prime}=\mu\left(1-x^{2}\right) y-x \\
x(0)=x_{0}, y(0)=y_{0}
\end{array}\right.
$$

and then parametrically graphs the result for $0 \leq t \leq 20$.

```
In[1511]:= Clear[sol]
    sol[\mp@subsup{\mu}{-}{\prime},{x\mp@subsup{0}{-}{\prime},y\mp@subsup{0}{-}{\prime}},opts_--] :=
    Module[{eqone, eqtwo, solt},
    eqone = x'[t] == y[t];
    eqtwo = y' [t] == \mu(1-x[t] ' ) y[t] - x[t];
    solt = NDSolve[{eqone, eqtwo, x[0] == x0,
        y[0] == y0}, {x[t],y[t]},{t, 0, 20}];
    ParametricPlot[{x[t],y[t]}/.solt,
    {t, 0, 20}, Compiled }->\mathrm{ False, opts]]
```

We then use Table and Union to generate a list of ordered pairs initconds that will correspond to the initial conditions in the initialvalue problem.

```
In[1512]:= initconds1 = Table[{0.1 Cos[t], 0.1Sin[t]},
                                    {t, 0, 2\pi, 2\pi/9}];
    initconds2 = Table[{-5, i}, {i, -5, 5, 10/9}];
    initconds3 = Table[{5,i}, {i, -5, 5, 10/9}];
    initconds4 = Table[{i, 5}, {i, -5, 5, 10/9}];
    initconds5 = Table[{i, -5}, {i, -5, 5, 10/9}];
```

```
In[1513]:= initconds = initconds1U initconds2U
    initconds3 U initconds4 U initconds5;
```

We then use Map to apply sol to the list of ordered pairs in initconds for $\mu=1 / 2$.

```
In[1514]:= somegraphs1 = Map[sol[1/2, #, DisplayFunction- >
    Identity]&, initconds];
In[1515]:= phase1 = Show[somegraphs1,
    PlotRange-> {{-5, 5},{-5, 5}},
    AspectRatio- > 1, Ticks- > {{-4, 4},
    {-4, 4}}];
```

Similarly, we use Map to apply sol to the list of ordered pairs in initconds for $\mu=1,3 / 2$, and 3 .

```
In[1516]:= somegraphs2 = Map[sol[1, #, DisplayFunction- >
                                    Identity]&, initconds];
In[1517]:= phase2 = Show[somegraphs2,
    PlotRange- > {{-5, 5}, {-5, 5}},
    AspectRatio- > 1, Ticks-> {{-4, 4},
    {-4, 4}}];
In[1518]:= somegraphs3 = Map[sol[3/2, #, DisplayFunction- >
                                    Identity]&, initconds];
In[1519]:= phase3 = Show[somegraphs3,
    PlotRange- > {{-5, 5}, {-5, 5}},
    AspectRatio- > 1, Ticks- > {{-4, 4},
    {-4, 4}}];
In[1520]:= somegraphs4 = Map[sol[3, #, DisplayFunction- >
                        Identity]&, initconds];
In[1521]:= phase4 = Show[somegraphs3,
    PlotRange-> {{-5, 5}, {-5, 5}},
    AspectRatio- > 1, Ticks- > {{-4, 4},
    {-4, 4}}];
```

We now show all four graphs together in Figure 7-21. In each figure, we see that all of the curves approach a curve called a limit cycle. Physically,

Figure 7-21 Solutions to the Van-der-Pol equation for various values of μ
the fact that the system has a limit cycle indicates that for all oscillations, the motion eventually becomes periodic, which is represented by a closed curve in the phase plane.

```
In[1522]:= Show[GraphicsArray[
    {{phase1, phase2},{phase3, phase4}}]]
```

On the other hand, in Figure 7-22 we graph the solutions that satisfy the initial conditions $x(0)=1$ and $y(0)=0$ parametrically and individually for various values of μ. Notice that for small values of μ the system more closely approximates that of the harmonic oscillator because the

Figure 7-22 The solutions to the Van-der-Pol equation satisfying $x(0)=1$ and $y(0)=0$ individually (x in black and y in gray) for various values of μ
damping coefficient is small. The curves are more circular than those for larger values of μ.

```
In[1523]:= Clear[\mathbf{x},\mathbf{y},\textrm{t},\mathbf{s}]
    graph[\mp@subsup{\mu}{-}{}] := Module[{numsol, pp, pxy},
        numsol = NDSolve[{\mp@subsup{x}{}{\prime}[t]== y[t],
        y'[t] == \mu(1-x[t] ')}\textrm{y}[\textrm{t}]-\textrm{x}[\textrm{t}]
        x[0] == 1,
        y[0] == 0},{x[t],y[t]},{t, 0, 20}];
    pp = ParametricPlot[{x[t],y[t]}/.numsol,
        {t, 0, 20}, Compiled }->\mathrm{ False,
        PlotRange }->{{-5,5},{-5,5}}
        AspectRatio }->1,Ticks ->{{-4,4}
        {-4,4}}, DisplayFunction }->\mathrm{ Identity];
        pxy = Plot[Evaluate[{x[t],y[t]}/.numsol],
        {t, 0, 20},
        PlotStyle }->\mathrm{ {GrayLevel[0],
            GrayLevel[0.5]}, PlotRange }
            {-5,5}, AspectRatio }->1\mathrm{ ,
        Ticks-> {{5, 10, 15}, {-4, 4}},
        DisplayFunction }->\mathrm{ Identity];
    GraphicsArray[{pxy, pp}]]
In[1524]:= graphs = Table[graph[i],
    {i, 0.25, 3, 2.75/9}];
In[1525]:= toshow = Partition[graphs, 2];
    Show[GraphicsArray[toshow]]
```


7.3.3 Differential Geometry: Curvature

Let C be a piecewise-smooth curve with parametrization $\mathbf{r}(t)=\langle x(t), y(t)\rangle, a \leq t \leq b$. The unit tangent vector to C at t is

$$
\begin{equation*}
\mathbf{T}=\frac{\mathbf{r}^{\prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|} \tag{7.19}
\end{equation*}
$$

Refer to Gray's outstanding text, Modern Differential Geometry of Curves and Surfaces[14] which incorporates Mathematica throughout.

The arc length function, $s=s(t)$, is defined by

$$
\begin{equation*}
s(t)=\int_{a}^{t}\left\|\mathbf{r}^{\prime}(u)\right\| d u=\int_{a}^{t} \sqrt{\left(\frac{d x}{d u}\right)^{2}+\left(\frac{d y}{d u}\right)^{2}} d u \tag{7.20}
\end{equation*}
$$

Solving equation (7.20) for t, we have $t=t(s)$ and the parametrization of C with respect to arc length is $\mathbf{r}(s)=\langle x(t(s)), y(t(s))\rangle$. When C is parametrized by arc length, $\left\|\mathbf{r}^{\prime}(s)\right\|=1$ so the unit tangent vector (7.19) is given by $\mathbf{T}(s)=\mathbf{r}^{\prime}(s)$. The curvature of $C, \kappa(s)$, is

$$
\begin{equation*}
\kappa(s)=\left\|\frac{d \mathbf{T}}{d s}\right\| . \tag{7.21}
\end{equation*}
$$

Thus, for the curve C parametrized by arc length, $\kappa(s)=\left\|\mathbf{r}^{\prime \prime}(s)\right\|$.
Conversely, a given curvature function determines a plane curve: the curve C parametrized by arc length with curvature $\kappa(s)$ has parametrization $\mathbf{r}(s)=\langle x(s), y(s)\rangle$ where

$$
\left\{\begin{array}{l}
d x / d s=\cos \theta \tag{7.22}\\
d y / d s=\sin \theta \\
d \theta / d s=\kappa \\
x(a)=c, y(a)=d, \theta(0)=\theta_{0} .
\end{array}\right.
$$

You can often use NDSolve to solve system (7.22).

EXAMPLE 7.3.6: Plot the curve C for which $\kappa(s)=e^{-s}+e^{s}$ for $-5 \leq s \leq 5$ if $x(0)=y(0)=\theta(0)=0$.

SOLUTION: After defining $\kappa(s)=e^{-s}+e^{s}$,

$$
\operatorname{In}[1526]:=\kappa[s]=\operatorname{Exp}[-\mathbf{s}]+\operatorname{Exp}[s] ;
$$

we use NDSol ve to solve system (7.22) using the initial conditions $x(0)=$ $y(0)=\theta(0)=0$ for $-5 \leq s \leq 5$.

```
In[1527]:= t1 = NDSolve[{x'[s] == Cos[0[s]],
                        y'[s] == Sin[0[s]],
            \mp@subsup{0}{}{\prime}}[\textrm{s}]==\kappa[\textrm{s}],\textrm{x}[0]==0,\textrm{y}[0]==0
        0[0] == 0},
            {x[s],y[s], 0[s]},{s,-5,5}]
Out[1527]= {{x[s]-> InterpolatingFunction[{{-5.,5.}},
            <>][s],
            y[s] }->\mathrm{ InterpolatingFunction[{{-5., 5.}},
            <>][s],
            0[s] }->\mathrm{ InterpolatingFunction
            <>][s],[{{-5.,5.}}, <>][s]}}
```


Figure 7-23 For this curve, $\kappa(s)=e^{-s}+e^{s}$

We use ParametricPlot to graph the result in Figure 7-23.

```
In[1528]:= ParametricPlot[Evaluate[{x[s],y[s]}/.t1],
    {s, -5, 5}, AspectRatio }->\mathrm{ Automatic,
    PlotRange }->\mathrm{ All]
```

Even relatively simple curvature functions can yield remarkable curves. To illustrate, we define the function curvek. Given a function $\kappa(s)$, $\operatorname{curvek}[\kappa[\mathrm{s}],\{\mathrm{s}, \mathrm{a}, \mathrm{b}\}$, opts] solves system (7.22) using the initial conditions $x(0)=y(0)=\theta(0)=0$ for $a \leq s \leq b$, and parametrically plots the result. Any options are passed to the Parametric Plot command. If you do not include $\{s, a, b\}$ and do not include any options, the default is $-15 \leq s \leq 15$.

```
In[1529]:= Clear[curvek, k];
curvek[k_, ss_:{s, -15, 15},opts_--] :=
    Module[{numsol},
        numsol = NDSolve[{x'[s] == Cos[0[s]],
        y'[s] == Sin[0[s]],
                        0
                        {x[s],y[s],0[s]},ss];
        ParametricPlot[Evaluate[{x[s], y[s]}/.numsol],
            ss, opts, AspectRatio }->\mathrm{ Automatic]
    ]
```


Figure 7-24 You can generate stunning curves by specifying a curvature function

We illustrate the use of curvek using $\kappa(s)=s+\sin s, s J_{1}(s), s J_{2}(s), s \sin (\sin s)$, $s \sin \left(\sin ^{2} s^{2}\right)$, and $|s \sin (\sin s)|$. All six plots are shown together as an array in Figure 7-24.

```
In[1530]:= к[s_] = s+Sin[s];
    p1 = curvek[\kappa[s], {s, -40, 40}, PlotPoints }->480
        AspectRatio }->\mathrm{ 1, DisplayFunction }->\mathrm{ Identity];
In[1531]:= p2 = curvek[s BesselJ[1, s], {s, -40, 40},
    PlotPoints }->\mathrm{ 120,
        DisplayFunction }->\mathrm{ Identity];
In[1532]:= p3 = curvek[s BesselJ[2, s], {s, -40, 40},
    PlotPoints }->\mathrm{ 120,
    DisplayFunction }->\mathrm{ Identity];
In[1533]:= }\boldsymbol{k[s_] = s Sin[Sin[s]];
    p4 = curvek[ < [s], {s, -40, 40},
    PlotPoints }->480\mathrm{ ,
    AspectRatio }->1\mathrm{ , DisplayFunction }->\mathrm{ Identity];
In[1534]:= к[s_] =s Sin[Sin[s^2]^2];
    p5 = curvek[\kappa[s], {s, -15, 15},
    PlotPoints }->480\mathrm{ ,
        AspectRatio }->1\mathrm{ , PlotRange }->{{-3,3},{-3,3}}
        DisplayFunction }->\mathrm{ Identity];
In[1535]:= к[s_] = Abs[s Sin[Sin[s]]];
    p6 = curvek[\kappa[s], {s, -40, 40}, PlotPoints }->480
        AspectRatio }->1,\mathrm{ DisplayFunction }->\mathrm{ Identity];
In[1536]:= Show[GraphicsArray[{{p1, p2}, {p3, p4},
        {p5, p6}}]]
```

This Page Intentionally Left Blank

Laplace Transform Methods

In previous chapters we have investigated solving the n th-order linear equation

$$
\begin{equation*}
a_{n}(x) y^{(n)}+a_{n-1}(x) y^{(n-1)}+\cdots+a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=f(x) \tag{8.1}
\end{equation*}
$$

for y. We have seen that if the coefficients $a_{i}(x)$ are numbers, we can find a general solution of the equation by first solving the characteristic equation of the corresponding homogeneous equation, forming a general solution of the corresponding homogeneous equation, and then finding a particular solution to the nonhomogeneous equation. If the coefficients $a_{i}(x)$ are not constants, the situation is more difficult. In particular cases, like when equation (8.1) is a Cauchy-Euler equation, similar techniques can be used. In other cases, we might be able to use a series to find a solution. In each of these situations, however, the function $f(x)$ has typically been a smooth function. If $f(x)$ is not a smooth function, like when $f(x)$ is a piecewise-defined or periodic function, solving equation (8.1) can be substantially more difficult.

In this chapter, we discuss a technique that transforms equation (8.1) into an algebraic equation that can often be solved so that a solution to the differential equation can be obtained.

8.I The Laplace Transform

8.I.I Definition of the Laplace Transform

Definition 30 (Laplace Transform). Let $f(t)$ be a function defined on the interval $[0, \infty)$. The Laplace transform of $f(t)$ is the function (of s)

$$
\begin{equation*}
\mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t \tag{8.2}
\end{equation*}
$$

The command
LaplaceTransform[f[t],t,s]
computes the Laplace transform of $f(t)$.
Because the Laplace transform yields a function of s, we often use the notation $\mathcal{L}\{f(t)\}=F(s)$ to denote the Laplace transform of $f(t)$.

EXAMPLE 8.1.1: Compute $\mathcal{L}\{f(t)\}$ if $f(t)=1$.

SOLUTION: Using the definition, equation (8.2), we have

$$
\begin{aligned}
\mathcal{L}\{f(t)\} & =\int_{0}^{\infty} e^{-s t} d t=\lim _{M \rightarrow \infty} \int_{0}^{M} e^{-s t} d t=\lim _{M \rightarrow \infty}\left[-\frac{1}{s} e^{-s t}\right]_{t=0}^{t=M} \\
& =-\frac{1}{s} \lim _{M \rightarrow \infty}\left(e^{-s M}-1\right)=-\frac{1}{s}(0-1)=\frac{1}{s}, s>0 .
\end{aligned}
$$

Notice that in order for $\lim _{M \rightarrow \infty} e^{-s M}=0$, we must require that $s>0$. (Otherwise, the limit does not exist.) We can use Integrate to evaluate this integral as well.

$$
\begin{aligned}
& \text { In }[1537]:=\text { step } 1=\int_{0}^{\text {capm }} \operatorname{Exp}[-s t] d t \\
& \text { Out }[1537]=\frac{1-e^{-c a p m s}}{s}
\end{aligned}
$$

However, Mathematica cannot evaluate $\lim _{M \rightarrow \infty} e^{-s M}$ because Mathematica does not assume that $s>0$.

```
In[1538]:= step2 = Limit[step1, capm }->\infty\mathrm{ ]
Out [1538]= Limit [\frac{1-\mp@subsup{e}{}{-capms}}{s}, capm }->\infty
```

Alternatively, we can use Integrate to evaluate the improper integral

$$
\begin{aligned}
\text { In [1539] : }= & \int_{0}^{\infty} \operatorname{Exp}[-s t] d t \\
\text { Out [1539] = } & \operatorname{If}\left[\operatorname{Re}[s]>0, \frac{1}{s},\right. \\
& \text { Integrate }\left[e^{-s t},\{t, 0, \infty\},\right. \\
& \text { Assumptions } \rightarrow \operatorname{Re}[s] \leq 0]]
\end{aligned}
$$

or use the command LaplaceTransform to compute $\mathcal{L}\{f(t)\}$.

```
In[1540]:= LaplaceTransform[1,t,s]
Out[1540]= 茬
```

EXAMPLE 8.1.2: Compute $\mathcal{L}\{f(t)\}$ if $f(t)=e^{a t}$.

SOLUTION: As before, we have

$$
\begin{aligned}
\mathcal{L}\{f(t)\} & =\int_{0}^{\infty} e^{-s t} f(t) d t=\int_{0}^{\infty} e^{-s t} e^{a t} d t=\int_{0}^{\infty} e^{-(s-a) t} d t \\
& =\lim _{M \rightarrow \infty}\left[-\frac{1}{s-a} e^{-(s-a) t}\right]_{t=0}^{t=M}=-\frac{1}{s-a} \lim _{M \rightarrow \infty}\left(e^{-(s-a) M}-1\right) \\
& =\frac{1}{s-a}, s>a .
\end{aligned}
$$

Notice that we must require $s>a$ so that $\lim _{M \rightarrow \infty} e^{-(s-a) M}=0$. Laplace Transform can be used to compute the Laplace transform of this function as well.

$$
\begin{aligned}
& \text { In }[1541]:=\text { LaplaceTransform }[\operatorname{Exp}[a t], t, s] \\
& \text { Out }[1541]=\frac{1}{-a+s}
\end{aligned}
$$

The formula $\mathcal{L}\left\{e^{a t}\right\}=\frac{1}{s-a}$ can now be used to avoid using the definition.

EXAMPLE 8.1.3: Compute: (a) $\mathcal{L}\left\{e^{-3 t}\right\}$ and (b) $\mathcal{L}\left\{e^{5 t}\right\}$.

SOLUTION: We have that (a) $\mathcal{L}\left\{e^{-3 t}\right\}=\frac{1}{s-(-3)}=\frac{1}{s+3}, s>-3$, and (b) $\mathcal{L}\left\{e^{5 t}\right\}=\frac{1}{s-5}, s>5$.

With Mathematica, we use Map to apply the pure function Laplace Transform [\#, $t, s]$ \& to the list of functions $\left\{e^{-3 t}, e^{5 t}\right\}$ to compute both Laplace transforms in a single step.

```
In[1542]:= Map[LaplaceTransform[#,t,s]&,
    {Exp[-3t], Exp[5t]}]
Out[1542]={\frac{1}{3+s},\frac{1}{-5+S}}
```

In most cases, using the definition of the Laplace transform to calculate the Laplace transform of a function is a difficult and time-consuming task.

EXAMPLE 8.1.4: Compute (a) $\mathcal{L}\left\{t^{3}\right\}$; (b) $\mathcal{L}\{\sin a t\}$; and (c) $\mathcal{L}\{\cos a t\}$.

SOLUTION: To compute $\mathcal{L}\left\{t^{3}\right\}$ by hand requires application of integration by parts three times. Instead, we proceed with Integrate. First we compute $\int_{0}^{M} t^{3} e^{-s t} d t$ and then $\int_{0}^{\infty} t^{3} e^{-s t} d t=\lim _{M \rightarrow \infty} \int_{0}^{M} t^{3} e^{-s t} d t$.

$$
\begin{aligned}
\text { In }[1543]:= & \int_{0}^{\mathrm{capm}} \mathrm{t}^{3} \operatorname{Exp}[-\mathrm{st}] \mathrm{dt} \mathrm{t} \\
\text { Out }[1543]= & \frac{6-e^{-\mathrm{capms}}\left(6+6 \mathrm{capm} \mathrm{~s}+3 \operatorname{capm}^{2} \mathrm{~s}^{2}+\mathrm{capm}^{3} \mathrm{~s}^{3}\right)}{\mathrm{s}^{4}} \\
\text { In }[1544]:= & \int_{0}^{\infty} \mathrm{t}^{3} \operatorname{Exp}[-\mathrm{st}] \mathrm{d} \mathrm{t} \\
\text { Out }[1544]= & \operatorname{If}\left[\operatorname { R e } [\mathrm { s }] > 0 , \frac { 6 } { s ^ { 4 } } , \text { Integrate } \left[e^{-s t} t^{3},\right.\right. \\
& \{t, 0, \infty\}, \text { Assumptions } \rightarrow \operatorname{Re}[s] \leq 0]]
\end{aligned}
$$

The integrals that result when computing $\mathcal{L}\{\sin a t\}$ and $\mathcal{L}\{\cos a t\}$ using the definition of the Laplace transform each require the use of integration by parts twice. Instead, we use LaplaceTransform to compute each Laplace transform.

```
In[1545]:= Clear[t,s]
    Map[LaplaceTransform[#, t, s]&,
        {t',}\operatorname{Sin}[at],\operatorname{Cos[at]}}
Out [1545]={\frac{6}{\mp@subsup{s}{}{4}},\frac{a}{\mp@subsup{a}{}{2}+\mp@subsup{s}{}{2}},\frac{s}{\mp@subsup{a}{}{2}+\mp@subsup{s}{}{2}}}
```

We now discuss the linearity property that enables us to use the transforms that we have found thus far to find the Laplace transform of other functions.

Theorem 18 (Linearity Property). Let a and b be constants, and suppose that $\mathcal{L}\{f(t)\}$ and $\mathcal{L}\{g(t)\}$ exist. Then,

$$
\mathcal{L}\{a f(t)+b g(t)\}=a \mathcal{L}\{f(t)\}+b \mathcal{L}\{g(t)\} .
$$

EXAMPLE 8.1.5: Calculate (a) $\mathcal{L}\{6\} ;$ (b) $\mathcal{L}\left\{5-2 e^{-t}\right\}$.

SOLUTION: Using the results obtained in previous examples, we have for (a)

$$
\mathcal{L}\{6\}=6 \mathcal{L}\{1\}=6 \cdot \frac{1}{s}=\frac{6}{s} ;
$$

and for (b)

$$
\mathcal{L}\left\{5-2 e^{-t}\right\}=5 \mathcal{L}\{1\}-2 \mathcal{L}\left\{e^{-t}\right\}=5 \cdot \frac{1}{s}-2 \cdot \frac{1}{s-(-1)}=\frac{5}{s}-\frac{2}{s+1} .
$$

8.I.2 Exponential Order, Jump Discontinuities, and Piecewise-Continuous Functions

In calculus, we learn that some improper integrals diverge, which indicates that the Laplace transform may not exist for some functions. Therefore, we present the following definitions and theorems so that we can better understand the types of functions for which the Laplace transform exists.

Definition 31 (Exponential Order). A function $y=f(t)$ is of exponential order b if there are numbers $b, M>0$, and $T>0$ such that

$$
|f(t)| \leq M e^{b t}
$$

for $t>T$.
In the following sections, we will see that the Laplace transform is particularly useful in solving equations involving piecewise or recursively defined functions.

Definition 32 (Jump Discontinuity). A function $y=f(t)$ has a jump discontinuity at $t=c$ on the closed interval $[a, b]$ if the one-sided limits $\lim _{t \rightarrow c^{+}} f(t)$ and $\lim _{t \rightarrow c^{-}} f(t)$ are finite, but unequal, values. $y=f(t)$ has a jump discontinuity at $t=a$ if $\lim _{t \rightarrow a^{+}} f(t)$ is a finite value different from $f(a) . y=f(t)$ has a jump discontinuity at $t=b$ if $\lim _{t \rightarrow b^{-}} f(t)$ is a finite value different from $f(b)$.

Definition 33 (Piecewise Continuous). A function $y=f(t)$ is piecewise continuous on the finite interval $[a, b]$ if $y=f(t)$ is continuous at every point in $[a, b]$ except at finitely many points at which $y=f(t)$ has a jump discontinuity.

A function $y=f(t)$ is piecewise continuous on $[0, \infty)$ if $y=f(t)$ is piecewise continuous on $[0, N]$ for all N.

Theorem 19 (Sufficient Condition for Existence of $\mathcal{L}\{f(t)\}$). Suppose that $y=f(t)$ is a piecewise continuous function on the interval $[0, \infty)$ and that it is of exponential order b for $t>T$. Then, $\mathcal{L}\{f(t)\}$ exists for $s>b$.

EXAMPLE 8.1.6: Find the Laplace transform of $f(t)=\left\{\begin{array}{l}-1,0 \leq t<4 \\ 1, t \geq 4 .\end{array}\right.$

SOLUTION: Because $y=f(t)$ is a piecewise continuous function on $[0, \infty)$ and of exponential order, $\mathcal{L}\{f(t)\}$ exists. We use the definition and evaluate the integral using the sum of two integrals.

$$
\begin{aligned}
\mathcal{L}\{f(t)\} & =\int_{0}^{\infty} f(t) e^{-s t} d t=\int_{0}^{4}-1 \cdot e^{-s t} d t+\int_{4}^{\infty} e^{-s t} d t \\
& =\left[\frac{1}{s} e^{-s t}\right]_{t=0}^{t=4}+\lim _{M \rightarrow \infty}\left[-\frac{1}{s} e^{-s t}\right]_{t=4}^{t=M} \\
& =\frac{1}{s}\left(e^{-4 s}-1\right)-\frac{1}{s} \lim _{M \rightarrow \infty}\left(e^{-M s}-e^{-4 s}\right)=\frac{1}{s}\left(2 e^{-4 s}-1\right) .
\end{aligned}
$$

Using Cases (/ ;), we define and graph this piecewise-defined function in Figure 8-1.

```
In[1546]:= Clear[f]
    f[t_] := -1/; 0 <t<4
    f[t_] := 1/; t \geq 4
In[1547]:= Plot[f[t],{t, 0, 8}]
```

However, the LaplaceTransform command is unable to compute the Laplace transform of $y=f(t)$ when f is defined in this manner. To compute the Laplace transform using Mathematica, we take advantage of the UnitStep function, which is defined by

$$
\text { UnitStep }[\mathrm{t}]=\left\{\begin{array}{l}
0, t<0 \\
1, t \geq 0 .
\end{array}\right.
$$

Figure 8-1 Plot of a piecewise-defined function

Thus, $y=f(t)$ is given by UnitStep [t-4]-UnitStep [4-t]. After defining $y=f(t)$ in this manner, we see that LaplaceTransform is then able to compute $\mathcal{L}\{f(t)\}$.

```
In[1548]:= Clear[f]
    f[t_] = UnitStep[t - 4] - UnitStep[4-t];
In[1549]:= LaplaceTransform[f[t],t,s]
Out [1549]= 㚅-4s
```


8.I.3 Properties of the Laplace Transform

The definition of the Laplace transform is not easy to apply to most functions. Therefore, we now discuss several properties of the Laplace transform so that numerous transformations can be made without having to use the definition. Most of the properties discussed here follow directly from our knowledge of integrals.

Theorem 20 (Shifting Property). If $\mathcal{L}\{f(t)\}=F(s)$ exists for $s>b$, then

$$
\begin{equation*}
\mathcal{L}\left\{e^{a t} f(t)\right\}=F(s-a) . \tag{8.3}
\end{equation*}
$$

EXAMPLE 8.1.7: Find the Laplace transform of (a) $f(t)=e^{-2 t} \cos t$ and (b) $f(t)=4 t e^{3 t}$.

SOLUTION: (a) In this case, $f(t)=\cos t$ and $a=-2$. Using $F(s)=$ $\mathcal{L}\{\cos t\}=\frac{s}{s^{2}+1}$, we replace each s with $s-a=s+2$. Therefore,

$$
\mathcal{L}\left\{e^{-2 t} \cos t\right\}=\frac{s+2}{(s+2)^{2}+1}=\frac{s+2}{s^{2}+4 s+5} .
$$

(b) Using the linearity property, we have $\mathcal{L}\left\{4 t e^{3 t}\right\}=4 \mathcal{L}\left\{t e^{3 t}\right\}$. To apply the shifting property we have $f(t)=t$ and $a=3$, so we replace s in $F(s)=\mathcal{L}\{t\}=s^{-2}$ by $s-a=s-3$.

Therefore,

$$
\mathcal{L}\left\{4 t e^{3 t}\right\}=\frac{4}{(s-3)^{2}} .
$$

Identical results are obtained with LaplaceTransform.

```
In[1550]:= LaplaceTransform[Exp[-2t] Cos[t],t, s]
Out[1550]= }\frac{2+s}{5+4s+\mp@subsup{s}{}{2}
In[1551]:= LaplaceTransform[4t Exp[3t],t,s]
Out[1551]= }\frac{4}{(-3+s\mp@subsup{)}{}{2}
```

In order to use the Laplace transform to solve differential equations, we will need to be able to compute the Laplace transform of the derivatives of an arbitrary function, provided the Laplace transform of such a function exists.

Theorem 21 (Laplace Transform of the First Derivative). Suppose that $y=f(t)$ is a piecewise continuous function on the interval and that it is of exponential order b for $t \geq T$. Then, for $s>b$

$$
\begin{equation*}
\mathcal{L}\left\{f^{\prime}(t)\right\}=s \mathcal{L}\{f(t)\}-f(0) . \tag{8.4}
\end{equation*}
$$

```
In[1552]:= Clear[f]
    LaplaceTransform[f'[t],t,s]
```

Out [1552] $=-\mathrm{f}[0]+\mathrm{s}$ LaplaceTransform $[\mathrm{f}[\mathrm{t}], \mathrm{t}, \mathrm{s}]$

Using induction, a direct consequence of the theorem is
Theorem 22 (Laplace Transform of the Higher Derivatives). If $f^{(i)}(t)$ is a continuous function on $[0, \infty)$ for $i=0,1, \ldots, n-1$ and $f^{(n)}(t)$ is piecewise continuous on $[0, \infty)$ and of exponential order b, then for $s>b$

$$
\begin{equation*}
\mathcal{L}\left\{f^{(n)}(t)\right\}=s^{n} \mathcal{L}\{f(t)\}-s^{n-1} f(0)-\cdots-s f^{(n-2)}(0)-f^{(n-1)}(0) . \tag{8.5}
\end{equation*}
$$

We use LaplaceTransform to compute the Laplace transform of $f^{(i)}(t)$ for $i=1$, $2,3,4,5$.

```
In[1553]:= derivs = Table[D[f[t],{t,n}],{n, 1, 5}]
Out[1553]={ f'[t], f'[t], f(3) [t], f(4) [t], f(5) [t]}
In[1554]:= Map[LaplaceTransform[#, t, s]&, derivs]
Out[1554]={-f[0] + s LaplaceTransform[f[t],t,s],
    -sf[0] + S' LaplaceTransform[f[t],t,s] - f'[0],
    -s'f[0]+ S SaplaceTransform[f[t],t,s]
    -s f'[0] - f''[0],
    -s s}f[0]+\mp@subsup{s}{}{4}\mathrm{ LaplaceTransform[f[t],t,s]
    -s}\mp@subsup{}{}{2}\mp@subsup{f}{}{\prime}[0]-s\mp@subsup{f}{}{\prime\prime}[0]-\mp@subsup{f}{}{(3)}[0]
    -s 4}f[0]+\mp@subsup{s}{}{5}\mathrm{ LaplaceTransform[f[t],t,s]-s}\mp@subsup{\mp@code{S}}{}{3}\mp@subsup{f}{}{\prime}[0
    -S' }\mp@subsup{\textrm{f}}{}{\prime\prime}[0]-S\mp@subsup{\textrm{f}}{}{(3)}[0]-\mp@subsup{\textrm{f}}{}{(4)}[0]
```

We will use this theorem and corollary in solving initial-value problems. However, we can also use them to find the Laplace transform of a function when we know the Laplace transform of the derivative of the function.

EXAMPLE 8.1.8: Find $\mathcal{L}\left\{\sin ^{2} k t\right\}$.

SOLUTION: We can use the theorem to find the Laplace transform of $f(t)=\sin ^{2} k t$. Notice that $f^{\prime}(t)=2 k \sin k t \cos k t=k \sin 2 k t$. Then, because $\mathcal{L}\left\{f^{\prime}(t)\right\}=s \mathcal{L}\{f(t)\}-f(0)$ and

$$
\mathcal{L}\left\{f^{\prime}(t)\right\}=\mathcal{L}\{k \sin 2 k t\}=k \frac{2 k}{s^{2}+(2 k)^{2}}=\frac{2 k^{2}}{s^{2}+4 k^{2}},
$$

we have $\frac{2 k^{2}}{s^{2}+4 k^{2}}=s \mathcal{L}\{f(t)\}-0$. Therefore, $\mathcal{L}\{f(t)\}=\frac{2 k^{2}}{s\left(s^{2}+4 k^{2}\right)}$. As in previous examples, we see that the same results are obtained with LaplaceTransform.

$$
\begin{aligned}
& \text { In }[1555]:=\text { LaplaceTransform }\left[\operatorname{Sin}[k t]^{2}, t, s\right] \\
& \text { Out }[1555]=\frac{2 k^{2}}{4 k^{2} s+s^{3}}
\end{aligned}
$$

Theorem 23 (Derivatives of the Laplace Transform). Suppose that $F(s)=\mathcal{L}\{f(t)\}$ where $y=f(t)$ is a piecewise continuous function on $[0, \infty)$ and of exponential order b. Then, for $s>b$,

$$
\begin{equation*}
\mathcal{L}\left\{t^{n} f(t)\right\}=(-1)^{n} \frac{d^{n} F}{d s^{n}}(s) . \tag{8.6}
\end{equation*}
$$

EXAMPLE 8.1.9: Find the Laplace transform of (a) $f(t)=t \cos 2 t$ and (b) $f(t)=t^{2} e^{-3 t}$.

SOLUTION: (a) In this case, $n=1$ and $F(s)=\mathcal{L}\{\cos 2 t\}=\frac{s}{s^{2}+4}$. Then

$$
\left.\begin{array}{rl}
\mathcal{L}\{t \cos 2 t\}= & (-1) \frac{d}{d s}\left(\frac{s}{s^{2}+4}\right)=-\frac{\left(s^{2}+4\right)-s \cdot 2 s}{\left(s^{2}+4\right)^{2}}=\frac{s^{2}-4}{\left(s^{2}+4\right)^{2}} . \\
\text { In }[1556]:= & \text { LaplaceTransform }[t \operatorname{Cos}[2 t], t, s] / / \\
& \quad \text { Simplify }
\end{array}\right\} \begin{aligned}
\text { Out }[1556]= & \frac{-4+s^{2}}{\left(4+s^{2}\right)^{2}}
\end{aligned}
$$

(b) Because $n=2$ and $F(s)=\mathcal{L}\left\{e^{-3 t}\right\}=\frac{1}{s+3}$, we have

$$
\begin{aligned}
& \qquad \mathcal{L}\left\{t^{2} e^{-3 t}\right\}=(-1)^{2} \frac{d^{2}}{d s^{2}}\left(\frac{1}{s+3}\right)=\frac{2}{(s+3)^{2}} . \\
& \text { In }[1557]:=\text { LaplaceTransform }\left[\mathrm{t}^{2} \operatorname{Exp}[-3 \mathrm{t}], \mathrm{t}, \mathrm{~s}\right] \\
& \text { Out }[1557]=\frac{2}{(3+\mathrm{s})^{3}}
\end{aligned}
$$

EXAMPLE 8.1.10: Find $\mathcal{L}\left\{t^{n}\right\}$.

SOLUTION: Using the theorem with $\mathcal{L}\left\{t^{n}\right\}=\mathcal{L}\left\{t^{n} \cdot 1\right\}$, we have $f(t)=1$. Then, $F(s)=\mathcal{L}\{1\}=s^{-1}$. Calculating the derivatives of F, we obtain

$$
\begin{aligned}
& \frac{d F}{d s}(s)=-\frac{1}{s^{2}} \\
& \frac{d^{2} F}{d s^{2}}(s)=\frac{2}{s^{3}} \\
& \frac{d^{3} F}{d s^{3}}(s)=-\frac{3 \cdot 2}{s^{4}} \\
& \vdots \\
& \frac{d^{n} F}{d s^{n}}(s)=(-1)^{n} \frac{n!}{s^{n+1}} .
\end{aligned}
$$

Therefore,

Recall that for nonnegative
integers $n, \Gamma(n+1)=n!$.

EXAMPLE 8.1.11: Compute the Laplace transform of $f(t), f^{\prime}(t)$, and $f^{\prime \prime}(t)$ if $f(t)=(3 t-1)^{3}$.

SOLUTION: First, $f(t)=(3 t-1)^{3}=27 t^{3}-27 t^{2}+9 t-1$ and $\mathcal{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}$ so

$$
\begin{aligned}
& \mathcal{L}\{f(t)\}=27 \frac{3!}{s^{4}}-27 \frac{2!}{s^{3}}+9 \frac{1}{s^{2}}-\frac{1}{s}=\frac{1}{s^{4}}\left(162-54 s+9 s^{2}-s^{3}\right) . \\
& \text { In }[1559]:=\text { Clear[f] } \\
& \qquad f[t-]=(3 t-1)^{3} ; \\
& \qquad \begin{array}{l}
\mathrm{f}=\text { LaplaceTransform }[\mathrm{f}[\mathrm{t}], \mathrm{t}, \mathrm{~s}] \\
\text { Out }[1559]=\frac{162}{\mathrm{~s}^{4}}-\frac{54}{\mathrm{~s}^{3}}+\frac{9}{\mathrm{~s}^{2}}-\frac{1}{\mathrm{~s}}
\end{array}
\end{aligned}
$$

By the previous theorem, $\mathcal{L}\left\{f^{\prime}(t)\right\}=s \mathcal{L}\{f(t)\}-f(0)$. Hence, $\mathcal{L}\left\{f^{\prime}(t)\right\}=s \cdot \frac{1}{s^{4}}\left(162-54 s+9 s^{2}-s^{3}\right)-f(0)=\frac{1}{s^{3}}\left(162-54 s+9 s^{2}-s^{3}\right)+1=$ $\frac{9}{s^{3}}\left(18-6 s+s^{2}\right)$.

```
In[1560]:= lfprime = LaplaceTransform[f'[t],t, s]//
    Expand
```



```
In[1561]:= slf-f[0]//Expand
```


Similarly $\mathcal{L}\left\{f^{\prime \prime}(t)\right\}=s^{2} \mathcal{L}\{f(t)\}-s f(0)-f^{\prime}(0)$:

$$
\begin{aligned}
& \mathcal{L}\left\{f^{\prime \prime}(t)\right\}=s^{2} \frac{1}{s^{4}}\left(162-54 s+9 s^{2}-s^{3}\right)-s f(0)-f^{\prime}(0)=\frac{54}{s^{2}}(3-s) . \\
& \text { In }[1562]:=\begin{array}{l}
\text { lfdoubleprime }= \\
\left.\quad \text { Expand[LaplaceTransform }\left[\mathbf{f}^{\prime \prime}[t], t, s\right]\right] \\
\text { Out }[1562]=\frac{162}{s^{2}}-\frac{54}{s}
\end{array} \\
& \text { In }[1563]:=\operatorname{Expand}\left[\mathbf{s}^{2} \mathbf{l f}-\mathbf{s} \mathbf{f}[0]-\mathbf{f}^{\prime}[0]\right] \\
& \text { Out }[1563]=\frac{162}{s^{2}}-\frac{54}{s}
\end{aligned}
$$

Using the properties of the Laplace transform, we can compute the Laplace transform of a large number of frequently encountered functions. We use Map, Laplace Transform, and TableForm to compute a table of the Laplace transform of several frequently encountered functions.

```
In[1564]:= r1 = {1, Exp[at], Sin[kt], Cos[kt], Sinh[kt],
    Cosh[kt], t^n, t^n Exp[at],
    Exp[at] Sin[kt],
    Exp[at] Cos[kt],
    Exp[at] Sinh[kt],
    Exp[at] Cosh[kt]};
```

$$
\begin{aligned}
& \text { In [1565] := Map[\{\#, LaplaceTransform[\#, t, s]\}\&, r1]//TableForm } \\
& 1 \quad \frac{1}{\mathrm{~s}} \\
& \mathbb{e}^{a t} \quad \frac{1}{-a+s} \\
& \operatorname{Sin}[k t] \quad \frac{k}{k^{2}+s^{2}} \\
& \operatorname{Cos}[k t] \quad \frac{s}{k^{2}+s^{2}} \\
& \operatorname{Sinh}[k t] \quad \frac{k}{-k^{2}+s^{2}} \\
& \text { Out }[1565]=\operatorname{Cosh}[k t] \quad \frac{s}{-\mathrm{k}^{2}+\mathrm{s}^{2}} \\
& t^{\mathrm{n}} \quad \mathrm{~s}^{-1-\mathrm{n}} \text { Gamma [1+n] } \\
& e^{a t} t^{n} \quad(-a+s)^{-1-n} \text { Gamma }[1+n] \\
& e^{a t} \operatorname{Sin}[k t] \quad \frac{k}{a^{2}+k^{2}-2 a s+s^{2}} \\
& e^{a t} \operatorname{Cos}[k t] \frac{-a+s}{a^{2}+k^{2}-2 a s+s^{2}} \\
& e^{a t} \sinh [k t] \frac{k}{a^{2}-k^{2}-2 a s+s^{2}} \\
& e^{a t} \operatorname{Cosh}[k t] \frac{-a+s}{a^{2}-k^{2}-2 a s+s^{2}}
\end{aligned}
$$

8.2 The Inverse Laplace Transform

8.2.I Definition of the Inverse Laplace Transform

In the previous section, we were concerned with finding the Laplace transform of a given function either through the use of the definition of the Laplace transform or with one of the numerous properties of the Laplace transform. At that time, we discussed the sufficient conditions for the existence of the Laplace transform. In this section, we will reverse this process: given a function $F(s)$ we want to find a function $f(t)$ such that $\mathcal{L}\{f(t)\}=F(s)$.

Definition 34 (Inverse Laplace Transform). The inverse Laplace transform of the function $F(s)$ is the unique continuous function $f(t)$ on $[0, \infty)$ that satisfies $\mathcal{L}\{f(t)\}=$ $F(s)$. We denote the inverse Laplace transform of $F(s)$ as

$$
\begin{equation*}
f(t)=\mathcal{L}^{-1}\{F(s)\} . \tag{8.7}
\end{equation*}
$$

If the only functions that satisfy this relationship are discontinuous on $[0, \infty)$, we choose a piecewise continuous function on $[0, \infty)$ to be $\mathcal{L}^{-1}\{F(s)\}$.

The table of Laplace transforms listed in the previous section is useful in finding the inverse Laplace transform of a given function. Also, the command

```
InverseLaplaceTransform[F[s],s,t]
```

can often find $\mathcal{L}^{-1}\{F(s)\}$.

EXAMPLE 8.2.1: Find the inverse Laplace transform of (a) $F(s)=\frac{1}{s-6}$,
(b) $F(s)=\frac{2}{s^{2}+4}$,
(c) $F(s)=\frac{6}{s^{4}}$, and
(d) $F(s)=\frac{6}{(s+2)^{4}}$.

SOLUTION: (a) Because $\mathcal{L}\left\{e^{6 t}\right\}=\frac{1}{s-6}, \mathcal{L}^{-1}\left\{\frac{1}{s-6}\right\}=e^{6 t}$. (b) $\mathcal{L}\{\sin 2 t\}$ $=\frac{2}{s^{2}+2^{2}}=\frac{2}{s^{2}+4}$ so $\mathcal{L}^{-1}\left\{\frac{2}{s^{2}+4}\right\}=\sin 2 t$. (c) Note that $\mathcal{L}\left\{t^{3}\right\}=\frac{3!}{s^{4}}=\frac{6}{s^{4}}$ so $\mathcal{L}^{-1}\left\{\frac{6}{s^{4}}\right\}=t^{3}$. (c) $F(s)=\frac{6}{(s+2)^{4}}$ is obtained from $F(s)=\frac{6}{s^{4}}$ by substituting $s+2$ for s. Therefore by the shifting property, $\mathcal{L}\left\{e^{-2 t} t^{3}\right\}=\frac{6}{(s+2)^{4}}$, so $\mathcal{L}^{-1}\left\{\frac{6}{(s+2)^{4}}\right\}=e^{-2 t} \mathcal{L}^{-1}\left\{\frac{6}{s^{4}}\right\}=e^{-2 t} t^{3}$. In the same way that we use LaplaceTransform to calculate $\mathcal{L}\{f(t)\}$ we use InverseLaplace Transform to calculate $\mathcal{L}^{-1}\{F(s)\}$.

```
In[1566]:= InverseLaplaceTransform[ }\frac{1}{s-6},s,t
Out[1566]= e et
```

Here, we use Map to apply the pure function InverseLaplace Transform $[\# 1, s, t] \&$ to the list of functions $\left\{\frac{2}{s^{2}+4}, \frac{6}{s^{4}}, \frac{6}{(s+2)^{4}}\right\}$.

$$
\begin{aligned}
\text { In }[1567]:= & \operatorname{Map}[\text { InverseLaplaceTransform }[\# 1, s, t] \&, \\
& \left.\left\{\frac{2}{s^{2}+4}, \frac{6}{s^{4}}, \frac{6}{(s+2)^{4}}\right\}\right] \\
\text { Out }[1567]= & \left\{2 \operatorname{Cos}[t] \operatorname{Sin}[t], t^{3}, e^{-2 t} t^{3}\right\}
\end{aligned}
$$

Theorem 24 (Linearity Property of the Inverse Laplace Transform). Suppose that $\mathcal{L}^{-1}\{F(s)\}$ and $\mathcal{L}^{-1}\{G(s)\}$ exist and are continuous on $[0, \infty)$. Also, suppose that a and b are constants. Then,

$$
\begin{equation*}
\mathcal{L}^{-1}\{a F(s)+b G(s)\}=a \mathcal{L}^{-1}\{F(s)\}+b \mathcal{L}^{-1}\{G(s)\} . \tag{8.8}
\end{equation*}
$$

EXAMPLE 8.2.2: Find the inverse Laplace transform of (a) $F(s)=\frac{1}{s^{3}}$,
(b) $F(s)=-\frac{7}{s^{2}+16}$, and (c) $F(s)=\frac{5}{s}-\frac{2}{s-10}$.

SOLUTION: (a) $\mathcal{L}^{-1}\left\{\frac{1}{s^{3}}\right\}=\mathcal{L}^{-1}\left\{\frac{1}{2} \frac{2}{s^{3}}\right\}=\frac{1}{2} \mathcal{L}^{-1}\left\{\frac{2}{s^{3}}\right\}=\frac{1}{2} t^{2}$.

$$
\begin{aligned}
& \text { In [1568] }:=\text { InverseLaplaceTransform }\left[\frac{1}{\mathbf{s}^{3}}, \mathbf{s}, \mathrm{t}\right] \\
& \text { Out }[1568]=\frac{\mathrm{t}^{2}}{2}
\end{aligned}
$$

(b) $\mathcal{L}^{-1}\left\{-\frac{7}{s^{2}+16}\right\}=-7 \mathcal{L}^{-1}\left\{\frac{1}{s^{2}+16}\right\}=-7 \mathcal{L}^{-1}\left\{\frac{1}{4} \frac{4}{s^{2}+4^{2}}\right\}=-\frac{7}{4} \mathcal{L}^{-1}$ $\left\{\frac{4}{s^{2}+4^{2}}\right\}=-\frac{7}{4} \sin 4 t$.

$$
\text { In [1569] := InverseLaplaceTransform }\left[-\frac{7}{\mathrm{~s}^{2}+16}, \mathrm{~s}, \mathrm{t}\right]
$$

$$
\text { Out }[1569]=-\frac{7}{4} \operatorname{Sin}[4 t]
$$

(c) $\mathcal{L}^{-1}\left\{\frac{5}{s}-\frac{2}{s-10}\right\}=5 \mathcal{L}^{-1}\left\{\frac{1}{s}\right\}-2 \mathcal{L}^{-1}\left\{\frac{1}{s-10}\right\}=5-2 e^{10 t}$.

$$
\text { In [1570]:= InverseLaplaceTransform }\left[\frac{5}{s}-\frac{2}{s-10}, s, t\right]
$$

$$
\text { Out }[1570]=5-2 e^{10 t}
$$

Of course, the functions $F(s)$ that are encountered do not have to be of the forms previously discussed. For example, sometimes we must complete the square in the denominator of $F(s)$ before finding $\mathcal{L}^{-1}\{F(s)\}$.

EXAMPLE 8.2.3: Determine $\mathcal{L}^{-1}\left\{\frac{s}{s^{2}+2 s+5}\right\}$.

SOLUTION: Notice that all of the forms of $F(s)$ in the table of Laplace transforms involve a term of the form $s^{2}+k^{2}$ in the denominator. However, through shifting, this term is replaced by $(s-a)^{2}+k^{2}$. We obtain
a term of this form in the denominator by completing the square. This yields

$$
\frac{s}{s^{2}+2 s+5}=\frac{s}{\left(s^{2}+2 s+1\right)+4}=\frac{s}{(s+1)^{2}+4} .
$$

Because the variable appears in the numerator, we must write it in the form $s+1$ in order to find the inverse Laplace transform. Doing so, we find that

$$
\frac{s}{s^{2}+2 s+5}=\frac{s}{\left(s^{2}+2 s+1\right)+4}=\frac{(s+1)-1}{(s+1)^{2}+4} .
$$

Hence,

$$
\begin{aligned}
\mathcal{L}^{-1}\left\{\frac{s}{s^{2}+2 s+5}\right\} & =\mathcal{L}^{-1}\left\{\frac{(s+1)-1}{(s+1)^{2}+4}\right\} \\
& =\mathcal{L}^{-1}\left\{\frac{s+1}{(s+1)^{2}+2^{2}}\right\}-\frac{1}{2} \mathcal{L}^{-1}\left\{\frac{2}{(s+1)^{2}+2^{2}}\right\} \\
& =e^{-t} \cos 2 t-\frac{1}{2} e^{-t} \sin 2 t
\end{aligned}
$$

As in previous examples, we see that InverseLaplaceTransform quickly finds $\mathcal{L}^{-1}\left\{\frac{s}{s^{2}+2 s+5}\right\}$.

$$
\begin{aligned}
& \text { In }[1571]:=\mathbf{s} 1=\text { InverseLaplaceTransform }\left[\frac{\mathbf{s}}{\mathbf{s}^{2}+2 \mathbf{s}+5}, \mathbf{s}, \mathrm{t}\right] \\
& \text { Out }[1571]=\frac{1}{4} e^{(-1-2 i) t}\left((2-\dot{i})+(2+\dot{i}) e^{4 i t}\right) \\
& \text { In }[1572]:=\operatorname{Exp} \text { ToTrig[s1]//FullSimplify } \\
& \text { Out }[1572]=\frac{1}{2} e^{-t}(2 \operatorname{Cos}[2 t]-\operatorname{Sin}[2 t])
\end{aligned}
$$

We assume that $F(s)$ is reduced to lowest terms.

In other cases, partial fractions must be used to obtain terms for which the inverse Laplace transform can be found. Suppose that $F(s)=P(s) / Q(s)$, where $P(s)$ and $Q(s)$ are polynomials of degree m and n, respectively. If $n>m$, the method of partial fractions can be used to expand $F(s)$. Recall from calculus, that there are many possible situations that can be solved through partial fractions. We illustrate three cases in the examples that follow.

Linear Factors (Nonrepeated)

In this case, $Q(s)$ can be written as a product of linear factors, so

$$
Q(s)=\left(s-q_{1}\right)\left(s-q_{2}\right) \cdots\left(s-q_{n}\right),
$$

where $q_{1}, q_{2}, \ldots, q_{n}$ are distinct numbers. Therefore, $F(s)$ can be written as

$$
F(s)=\frac{A_{1}}{s-q_{1}}+\frac{A_{2}}{s-q_{2}}+\cdots+\frac{A_{n}}{s-q_{n}},
$$

where $A_{1}, A_{2}, \ldots, A_{n}$ are constants that must be determined.

EXAMPLE 8.2.4: Find $\mathcal{L}^{-1}\left\{\frac{3 s-4}{s(s-4)}\right\}$.

SOLUTION: In this case, we have distinct linear factors in the denominator. Hence, we write $F(s)$ as

$$
\frac{3 s-4}{s(s-4)}=\frac{A}{s}+\frac{B}{s-4} .
$$

Multiplying both sides of this equation by the lowest common denominator $s(s-4)$, we have

$$
3 s-4=A(s-4)+B s=(A+B) s-4 A .
$$

Equating the coefficients of s as well as the constant terms, we see that the system of equations

The set $\{s, 1\}$ is linearly independent.

$$
\left\{\begin{array}{l}
A+B=3 \\
-4 A=-4
\end{array}\right.
$$

must be satisfied. Mathematica can solve this system of equations with Solve or we can solve the equation $3 s-4=A(s-4)+B s=(A+B) s-4 A$ for A and B with SolveAlways.

$$
\begin{aligned}
& \text { In }[1573]:=\text { SolveAlways }[3 s-4==(a+b) s-4 a, s] \\
& \text { Out }[1573]=\{\{a \rightarrow 1, b \rightarrow 2\}\}
\end{aligned}
$$

Hence, $A=1$ and $B=2$. Therefore,

$$
\frac{3 s-4}{s(s-4)}=\frac{1}{s}+\frac{2}{s-4}
$$

so

$$
\mathcal{L}^{-1}\left\{\frac{3 s-4}{s(s-4)}\right\}=\mathcal{L}^{-1}\left\{\frac{1}{s}+\frac{2}{s-4}\right\}=1+2 e^{4 t}
$$

or we can use InverseLaplaceTransform as shown in the previous examples.

Apart [f [x]] computes the partial fraction decomposition of the rational function $f(x)$.

$$
\begin{aligned}
& \text { In }[1574]:=\text { InverseLaplaceTransform }\left[\frac{3 s-4}{s(s-4)}, s, t\right] \\
& \text { Out }[1574]=1+2 e^{4 t}
\end{aligned}
$$

Note that we can compute the partial fraction decomposition of $\frac{3 s-4}{s(s-4)}$ with Apart.

$$
\begin{aligned}
& \text { In }[1575]:=\operatorname{Apart}\left[\frac{3 \mathbf{s}-4}{\mathbf{s}(\mathbf{s}-4)}\right] \\
& \text { Out }[1575]=\frac{1}{4-s}+\frac{3}{-4+s}+\frac{1}{s}
\end{aligned}
$$

Repeated Linear Factors

If $s-q$ is a factor of $Q(s)$ of multiplicity k, the terms in the partial fraction expansion of $F(s)$ that correspond to this factor are

$$
\frac{A_{1}}{s-q}+\frac{A_{2}}{(s-q)^{2}}+\cdots+\frac{A_{k}}{(s-q)^{k}},
$$

where $A_{1}, A_{2}, \ldots, A_{k}$ are constants that must be found.

EXAMPLE 8.2.5: Calculate $\mathcal{L}^{-1}\left\{\frac{5 s^{2}+20 s+6}{s^{3}+2 s^{2}+s}\right\}$.

SOLUTION: After using Apart

$$
\begin{aligned}
& \text { In }[1576]:=\text { Apart }\left[\frac{5 s^{2}+20 s+6}{s^{3}+2 s^{2}+s}\right] \\
& \text { Out }[1576]=\frac{6}{s}+\frac{9}{(1+s)^{2}}-\frac{1}{1+s}
\end{aligned}
$$

we see that

$$
\frac{5 s^{2}+20 s+6}{s^{3}+2 s^{2}+s}=\frac{6}{s}-\frac{1}{s+1}+\frac{9}{(s+1)^{2}} .
$$

Therefore,

$$
\begin{aligned}
\mathcal{L}^{-1}\left\{\frac{5 s^{2}+20 s+6}{s^{3}+2 s^{2}+s}\right\} & =\mathcal{L}^{-1}\left\{\frac{6}{s}-\frac{1}{s+1}+\frac{9}{(s+1)^{2}}\right\} \\
& =\mathcal{L}^{-1}\left\{\frac{6}{s}-\frac{1}{s+1}+9 \frac{1}{(s+1)^{2}}\right\} \\
& =6-e^{-t}+9 t e^{-t}
\end{aligned}
$$

As expected, we obtain the same results using InverseLaplace Transform.

```
In [1577]:= InverseLaplaceTransform[\frac{5\mp@subsup{s}{}{2}+20s+6}{\mp@subsup{s}{}{3}+2\mp@subsup{s}{}{2}+s},\textrm{s},\textrm{t}]
```


Irreducible Quadratic Factors

If $(s-a)^{2}+b^{2}$ is a factor of $Q(s)$ of multiplicity k that cannot be reduced to linear factors, the partial fraction expansion of $F(s)$ corresponding to $(s-a)^{2}+b^{2}$ is

$$
\frac{A_{1} s+B_{1}}{(s-a)^{2}+b^{2}}+\frac{A_{2} s+B_{2}}{\left[(s-a)^{2}+b^{2}\right]^{2}}+\cdots+\frac{A_{k} s+B_{k}}{\left[(s-a)^{2}+b^{2}\right]^{k}} .
$$

EXAMPLE 8.2.6: Find $\mathcal{L}^{-1}\left\{\frac{2 s^{3}-4 s-8}{\left(s^{2}-s\right)\left(s^{2}+4\right)}\right\}$.

SOLUTION: As in the previous example, we use Apart

$$
\begin{aligned}
& \text { In }[1578]:=\operatorname{Apart}\left[\frac{2 \mathbf{s}^{3}-4 \mathbf{s}-8}{\left(\mathbf{s}^{2}-\mathbf{s}\right)\left(\mathbf{s}^{2}+4\right)}\right] \\
& \text { Out }[1578]=-\frac{2}{-1+s}+\frac{2}{s}+\frac{2(2+\mathbf{s})}{4+s^{2}}
\end{aligned}
$$

to obtain the partial fraction decomposition. Thus,

$$
\begin{aligned}
\mathcal{L}^{-1}\left\{\frac{2 s^{3}-4 s-8}{\left(s^{2}-s\right)\left(s^{2}+4\right)}\right\}= & 2 \mathcal{L}^{-1}\left\{\frac{1}{s}\right\}-2 \mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\} \\
& +2 \mathcal{L}^{-1}\left\{\frac{s}{s^{2}+4}\right\}+2 \mathcal{L}^{-1}\left\{\frac{2}{s^{2}+4}\right\} \\
& =2-2 e^{t}+2 \cos 2 t+2 \sin 2 t .
\end{aligned}
$$

In [1579] := InverseLaplaceTransform $\left[\frac{2 s^{3}-4 s-8}{\left(s^{2}-s\right)\left(s^{2}+4\right)}, s, t\right]$
Out [1579] $=2\left(1-e^{t}+\operatorname{Cos}[2 t]+\operatorname{Sin}[2 t]\right)$

8.2.2 Laplace Transform of an Integral

We have seen that the Laplace transform of the derivatives of a given function can be found from the Laplace transform of the function. Similarly, the Laplace transform of the integral of a given function can also be obtained from the Laplace transform of the original function.

Theorem 25 (Laplace Transform of an Integral). Suppose that $F(s)=\mathcal{L}\{f(t)\}$ where $y=f(t)$ is a piecewise continuous function on $[0, \infty)$ and of exponential order b. Then, for $s>b$,

$$
\begin{equation*}
\mathcal{L}\left\{\int_{0}^{t} f(\alpha) d \alpha\right\}=\frac{1}{s} \mathcal{L}\{f(t)\} . \tag{8.9}
\end{equation*}
$$

The theorem implies that

$$
\begin{equation*}
\mathcal{L}^{-1}\left\{\frac{1}{s} \mathcal{L}\{f(t)\}\right\}=\int_{0}^{t} f(\alpha) d \alpha \tag{8.10}
\end{equation*}
$$

EXAMPLE 8.2.7: Compute $\mathcal{L}^{-1}\left\{\frac{1}{s(s+2)}\right\}$.

SOLUTION: In this case, $\frac{1}{s(s+2)}=\frac{1}{s} \frac{1}{s+2}$, so $\mathcal{L}\{f(t)\}=\frac{1}{s+2}$. Therefore, $f(t)=\mathcal{L}^{-1}\left\{\frac{1}{s+2}\right\}=e^{-2 t}$. With the previous theorem, we then have

$$
\mathcal{L}^{-1}\left\{\frac{1}{s(s+2)}\right\}=\int_{0}^{t} e^{-2 \alpha} d \alpha=\frac{1}{2}\left(1-e^{-2 t}\right) .
$$

Note that the same result is obtained with InverseLaplaceTransform

$$
\begin{aligned}
& \text { In }[1580]:=\text { InverseLaplaceTransform }\left[\frac{1}{\mathbf{s}(\mathbf{s}+2)}, \mathbf{s}, \mathrm{t}\right] \\
& \text { Out }[1580]=\frac{1}{2}-\frac{e^{-2 t}}{2}
\end{aligned}
$$

or through a partial fraction expansion of $\frac{1}{s(s+2)}: \frac{1}{s(s+2)}=\frac{1}{2 s}-\frac{1}{2(s+2)}$, $\mathcal{L}^{-1}\left\{\frac{1}{s(s+2)}\right\}=\mathcal{L}^{-1}\left\{\frac{1}{2 s}-\frac{1}{2(s+2)}\right\}=\frac{1}{2}-\frac{1}{2} e^{-2 t}$.

The following theorem is useful in determining if the inverse Laplace transform of a function $F(s)$ exists.

Theorem 26. Suppose that $y=f(t)$ is a piecewise continuous function on $[0, \infty)$ and of exponential order b. Then,

$$
\lim _{s \rightarrow \infty} F(s)=\lim _{s \rightarrow \infty} \mathcal{L}\{f(t)\}=0 .
$$

EXAMPLE 8.2.8: Determine if the inverse Laplace transform of the functions exists for (a) $F(s)=\frac{2 s}{s-6}$; and (b) $F(s)=\frac{s^{3}}{s^{2}+16}$.

SOLUTION: In both cases, we find $\lim _{s \rightarrow \infty} F(s)$. If this value is not zero, then $\mathcal{L}^{-1}\{F(s)\}$ cannot be found. (a) $\lim _{s \rightarrow \infty} F(s)=\lim _{s \rightarrow \infty} \frac{2 s}{s-6}=2 \neq 0$, so $\mathcal{L}^{-1}\left\{\frac{2 s}{s-6}\right\}$ does not exist. (b) $\lim _{s \rightarrow \infty} F(s)=\lim _{s \rightarrow \infty} \frac{s^{3}}{s^{2}+16}=\infty \neq 0$. Thus, $\mathcal{L}^{-1}\left\{\frac{s^{3}}{s^{2}+16}\right\}$ does not exist.

8.3 Solving Initial-Value Problems with the Laplace Transform

Laplace transforms can be used to solve certain initial-value problems. Typically, when we use Laplace transforms to solve an initial-value problem for a function y, we do the following.

1. Compute the Laplace transform of each term in the differential equation.
2. Solve the resulting equation for $\mathcal{L}\{y(t)\}$.
3. Determine y by computing the inverse Laplace transform of $\mathcal{L}\{y(t)\}$.

The advantage of this method is that through the use of the property

$$
\mathcal{L}\left\{f^{(n)}(t)\right\}=s^{n} \mathcal{L}\{f(t)\}-s^{n-1} f(0)-\cdots-s f^{(n-2)}(0)-f^{(n-1)}(0)
$$

we transform a linear differential equation to an algebraic equation.

EXAMPLE 8.3.1: Solve the initial-value problem $y^{\prime}-4 y=e^{4 t}, y(0)=0$.

SOLUTION: We begin by taking the Laplace transform of both sides of the differential equation and then solving for $\mathcal{L}\{y(t)\}=Y(s)$. Because $\mathcal{L}\left\{y^{\prime}(t)\right\}=s Y(s)-y(0)=s Y(s)$, we have

$$
\begin{aligned}
\mathcal{L}\left\{y^{\prime}-4 y\right\} & =\mathcal{L}\left\{e^{4 t}\right\} \\
\mathcal{L}\left\{y^{\prime}\right\}-4 \mathcal{L}\{y\} & =\frac{1}{s-4} \\
s Y(s)-4 Y(s) & =\frac{1}{s-4} \\
(s-4) Y(s) & =\frac{1}{s-4} \\
Y(s) & =\frac{1}{(s-4)^{2}} .
\end{aligned}
$$

We carry out the same steps with Mathematica. After computing the Laplace transform of each side of the equation,

```
In[1581]:= step1 = LaplaceTransform
    [y'[t] - 4y[t] == Exp[4t],t,s]
Out[1581]= -4 LaplaceTransform[y[t],t,s]
    +s LaplaceTransform[y[t],t,s] - y[0] == \frac{1}{-4+s}
```

we apply the initial condition

```
In[1582]:= step2 = step1/.y[0] }->
Out[1582]= -4 LaplaceTransform[y[t],t,s]
    +s LaplaceTransform[y[t], t, s] == = 1
```

and solve the resulting equation for $\mathcal{L}\{y(t)\}=Y(s)$.

$$
\begin{aligned}
\text { In }[1583]:= & \text { step } 3=\text { Solve }[\text { step } 2, \\
& \text { LaplaceTransform }[y[t], t, s]] \\
\text { Out }[1583]= & \left\{\left\{\text { LaplaceTransform }[y[t], t, s] \rightarrow \frac{1}{(-4+s)^{2}}\right\}\right\}
\end{aligned}
$$

Hence, by using the shifting property with $\mathcal{L}\{t\}=s^{-2}$, we have

$$
y(t)=\mathcal{L}^{-1}\left\{\frac{1}{(s-4)^{2}}\right\}=t e^{4 t}
$$

Figure 8-2 In the plot, we see that the initial condition is satisfied

Identical results are obtained using InverseLaplaceTransform.

```
In[1584]:= sol = InverseLaplaceTransform[
    step3\llbracket1, 1, 2\rrbracket, s, t]
```

Out [1584] $=e^{4 t} t$

We then graph the solution with Plot in Figure 8-2.

```
In[1585]:= Plot[sol, {t, 0, 1}]
```

We can also use DSolve to solve the initial-value problem directly.

```
In[1586]:= DSolve[{\mp@subsup{y}{}{\prime}[t]-4y[t]== Exp[4t],y[0]==0},
    y[t],t]
Out [1586]= {{y[t] -> \mp@subsup{e}{}{4t}t}}
```

As we can see, Laplace transforms are useful in solving nonhomogeneous equations. Hence, problems in Chapter 4 for which the methods of undetermined coefficients or variation of parameters were difficult to apply may be more easily solved through the method of Laplace transforms.

EXAMPLE 8.3.2: Use Laplace transforms to solve $y^{\prime \prime}+4 y=e^{-t} \cos 2 t$ subject to $y(0)=0$ and $y^{\prime}(0)=-1$.

SOLUTION: We proceed by computing the Laplace transform of each side of the equation with LaplaceTransform

$$
\begin{aligned}
\text { In }[1587]:= & \text { step } 1=\text { LaplaceTransform } \\
& {\left[y^{\prime \prime}[t]+4 y[t]==\operatorname{Exp}[-t]\right.} \\
& \operatorname{Cos}[2 t], t, s] \\
\text { Out }[1587]= & 4 \text { LaplaceTransform }[y[t], t, s] \\
& +s^{2} \text { LaplaceTransform }[y[t], t, s] \\
& -s y[0]-y^{\prime}[0]==\frac{1+s}{5+2 s+s^{2}}
\end{aligned}
$$

and then applying the initial conditions $y(0)=0$ and $y^{\prime}(0)=-1$ with ReplaceAll (/.), naming the result step2.

```
In[1588]:= step2 = step1/.{y[0] }->0,\mp@subsup{\textrm{y}}{}{\prime}[0]->-1
Out[1588]= 1 + 4 LaplaceTransform[y[t],t,s]
    + s}\mp@subsup{}{}{2}\mathrm{ LaplaceTransform[y[t], t, s] == 直 (s
```

Next, we solve step2 for the Laplace transform of $y(t)$ and simplify the result, naming the resulting output step3

$$
\begin{aligned}
& \text { In }[1589]:= \text { step }= \\
& \text { Solve }[\text { step } 2, \\
&\text { LaplaceTransform }[y[t], t, s]] \\
& \text { Out }[1589]=\{ \{\text { LaplaceTransform }[y[t], t, s] \rightarrow \\
&\left.\left.\frac{-4-s-s^{2}}{\left(4+s^{2}\right)\left(5+2 s+s^{2}\right)}\right\}\right\}
\end{aligned}
$$

and use InverseLaplaceTransform to compute the inverse Laplace transform of step3, naming the result sol.

$$
\begin{aligned}
\text { In }[1590]:= & \text { sol }=\text { Simplify }[\text { InverseLaplaceTransform } \\
& {\left.\left[-\frac{4+\mathbf{s}+\mathbf{s}^{2}}{\left(4+\mathbf{s}^{2}\right)\left(5+2 \mathbf{s}+\mathbf{s}^{2}\right)}, s, t\right]\right] / / \text { Expand } } \\
\text { Out }[1590]= & \left(\frac{1}{34}-\frac{2 \dot{i}}{17}\right) \mathbb{e}^{(-1-2 i) t}+\left(\frac{1}{34}+\frac{2 \dot{i}}{17}\right) e^{(-1+2 i) t} \\
& -\frac{1}{17} \operatorname{Cos}[2 t]-\frac{4}{17} \operatorname{Sin}[2 t]
\end{aligned}
$$

Last, we use Plot to graph the solution obtained in sol on the interval $[0,2 \pi]$ in Figure 8-3.

Figure 8-3 In the plot of the solution, we see that the initial conditions are satisfied

```
In[1591]:= Plot[sol, {t, 0, 2\pi}]
```

As we have seen in many previous examples, DSolve is able to solve the initial-value problem as well.

```
In[1592]:= sol =
    DSolve[{\mp@subsup{y}{}{\prime\prime}[t]+4y[t]== Exp[-t] Cos[2t],
        y[0] == 0,
        y'[0] == -1}, y[t], t]
Out[1592]={{y[t]->-\frac{1}{68}\mp@subsup{e}{}{-t}(4\mp@subsup{e}{}{t}\operatorname{Cos[2t]}
            -4 Cos[2t] Cos[4t]
            +17 Sin[2t]+16 e t}\operatorname{Sin}[2t
            + Cos[4t] Sin[2t]
            - Cos[2t] Sin[4t]
            -4 Sin[2t] Sin[4t])}}
```

Higher-order initial-value problems can be solved with the method of Laplace transforms as well.

EXAMPLE 8.3.3: Solve $y^{\prime \prime \prime}+y^{\prime \prime}-6 y^{\prime}=\sin 4 t, y(0)=2, y^{\prime}(0)=0$, $y^{\prime \prime}(0)=-1$.

SOLUTION: We first note that DSolve is able to quickly find an explicit solution of the initial-value problem.

```
In[1593]:= sol =
    DSolve [{y(3)}[t]+\mp@subsup{y}{}{\prime\prime}[t]-6 \mp@subsup{y}{}{\prime}[t]==\operatorname{sin}[4t]
        y[0] ==2, y'[0] == 0, y' [0] == -1}, y[t], t]
Out [1593] = {{y[t]->-\frac{1}{1000}(\mp@subsup{e}{}{-3t}(56-2125 \mp@subsup{e}{}{3t}+80\mp@subsup{e}{}{5t}
    -11 e }\mp@subsup{}{}{3t}\operatorname{Cos}[4t]+2\mp@subsup{e}{}{3t}\operatorname{Sin}[4t]))}
```

Alternatively, we can use Mathematica to implement the steps encountered when solving the equation using the method of Laplace transforms, as in the previous two examples. Taking the Laplace transform of both sides of the equation, we find

$$
\begin{aligned}
\text { In }[1594]:= & \text { step } 1=\text { LaplaceTransform }\left[y^{(3)}[t]\right. \\
& \left.+y^{\prime \prime}[t]-6 y^{\prime}[t]==\operatorname{Sin}[4 t], t, s\right] \\
\text { Out }[1594]= & s^{2} \text { LaplaceTransform }[y[t], t, s] \\
& +s^{3} \text { LaplaceTransform }[y[t], t, s] \\
& -6(s \text { LaplaceTransform }[y[t], t, s]-y[0]) \\
& -s y[0]-s^{2} y[0]-y^{\prime}[0] \\
& -s y^{\prime}[0]-y^{\prime \prime}[0]==\frac{4}{16+s^{2}}
\end{aligned}
$$

and then we apply the initial conditions, naming the result step2.

$$
\begin{aligned}
\text { In }[1595]:= & \text { step } 2=\text { step } 1 / .\left\{y[0] \rightarrow 2, y^{\prime}[0] \rightarrow 0,\right. \\
& \left.y^{\prime \prime}[0] \rightarrow-1\right\} \\
\text { Out }[1595]= & 1-2 s-2 s^{2}+s^{2} \text { LaplaceTransform }[y[t], t, s] \\
& +s^{3} \text { LaplaceTransform }[y[t], t, s] \\
& -6(-2+s \text { LaplaceTransform }[y[t], t, s])== \\
& \frac{4}{16+s^{2}}
\end{aligned}
$$

Solving for $Y(s)$, we obtain

```
In[1596]:= step3 = Solve[step2,
    LaplaceTransform[y[t],t,s]]
Out[1596]={{LaplaceTransform[y[t],t,s]->
    -204+32s+19\mp@subsup{s}{}{2}+2\mp@subsup{s}{}{3}+2\mp@subsup{s}{}{4}
```


Figure 8-4 Plot of the solution to a third-order initial-value problem
and computing the inverse Laplace transform of step3 with Inverse LaplaceTransform yields the solution to the initial-value problem.

$$
\begin{aligned}
& \text { In }[1597]:=\text { sol = InverseLaplaceTransform[step3匹1, 1, 2], } \\
& \text { s,t]//Simplify }
\end{aligned} \quad \begin{aligned}
& \text { Out }[1597]=\frac{2125-56 \mathbb{e}^{-3 t}-80 \mathbb{e}^{2 t}+11 \operatorname{Cos}[4 t]-2 \sin [4 t]}{1000}
\end{aligned}
$$

Last, a graph of the solution is generated with Plot in Figure 8-4.

$$
\operatorname{In}[1598]:=\operatorname{Plot}\left[\text { sol },\left\{\mathrm{t},-\frac{3}{2}, \frac{3}{2}\right\}\right]
$$

Some initial-value problems that involve differential equations with nonconstant coefficients can also be solved with the method of Laplace transforms. However, Laplace transforms do not provide a general method for solving equations with nonconstant coefficients.

EXAMPLE 8.3.4: Solve $\left\{\begin{array}{l}y^{\prime \prime}+2 t y^{\prime}-4 y=2 \\ y(0)=y^{\prime}(0)=0 .\end{array}\right.$

SOLUTION: DSolve is able to solve this equation.

$$
\begin{aligned}
& \text { In }[1599]:=\text { sol }=\operatorname{DSolve}\left[\left\{y^{\prime \prime}[t]+2 t y^{\prime}[t]-4 y[t]==2,\right.\right. \\
& \left.\left.\qquad y[0]==0, y^{\prime}[0]==0\right\}, y[t], t\right] \\
& \text { Out }[1599]=\left\{\left\{y[t] \rightarrow t^{2}\right\}\right\}
\end{aligned}
$$

Using the method of Laplace transforms, we take the Laplace transform of both sides of the equation.

```
In[1600]:= step1 = LaplaceTransform[
    y'}[\textrm{t}]+2\textrm{t}\mp@subsup{\textrm{y}}{}{\prime}[\textrm{t}]-4y[t]==2,t,s
Out[1600]= -4 LaplaceTransform[y[t],t,s]
    +s}\mp@subsup{}{}{2}\mathrm{ LaplaceTransform[y[t],t, s]
    +2 LaplaceTransform[t y'[t], t, s]
    -s y[0]- y'[0]== 年
```

Next, we apply the initial conditions.

```
In[1601]:= step2 = step1/.{y[0]->0, y'[0]- > 0}
Out[1601]= -4 LaplaceTransform[y[t],t,s]
    +s}\mp@subsup{}{}{2}\mathrm{ LaplaceTransform[y[t], t, s]
    +2 LaplaceTransform[t y'[t], t, s] == \frac{2}{s}
```

This is a first-order linear equation that we are able to solve with DSolve. First, in step3, we replace LaplaceTransform[y[t], t, s] with capy[s], which represents $Y(s)$, and LaplaceTransform ${ }^{(0,0,1)}[y[t], \mathrm{t}, \mathrm{s}]$ with capy'[s], which represents $Y^{\prime}(s)$. Then in step4 we use DSolve to solve for capy [s].

```
In[1602]:= step3 =
    step2 /.
        { LaplaceTransform[y[t],t, s]- > capy[s],
                        LaplaceTransform}\mp@subsup{}{}{(0,0,1)}[y[t],t,s]->
                    capy'[s]}
Out[1602]= -4 capy[s]+ s}\mp@subsup{}{}{2}\mathrm{ capy[s]
    +2 LaplaceTransform[t y'[t],t,s] == \frac{2}{s}
In[1603]:= Simplify[step3]
Out[1603]= (-4+ s' }\mp@subsup{}{}{2})\mathrm{ capy[s]
    +2 LaplaceTransform[t y'[t], t, s] == = 2
```

$$
\begin{aligned}
\text { In }[1604]:= & \text { step4 }=\text { DSolve }[\text { step } 3, \text { capy }[s], s] \\
\text { Out }[1604]= & \{\{\operatorname{capy}[s] \rightarrow \\
& \left.\left.-\frac{2\left(-1+s \text { LaplaceTransform }\left[t y^{\prime}[t], t, s\right]\right)}{s\left(-4+s^{2}\right)}\right\}\right\}
\end{aligned}
$$

These results indicate that $Y(s)=2 s^{-3}+C e^{\frac{1}{4} s^{2}-3 \ln 3}$. Recall that if $\lim _{s \rightarrow \infty}$ $Y(s) \neq 0, \mathcal{L}^{-1}\{Y(s)\}$ does not exist. Therefore, we must have that $C=0$. Hence, $y(t)=\mathcal{L}^{-1}\{Y(s)\}=\mathcal{L}^{-1}\left\{2 s^{-3}\right\}=t^{2}$.

```
In[1605]:= InverseLaplaceTransform[\frac{2}{\mp@subsup{s}{}{3}},\textrm{s},\textrm{t}]
```

Out $[1605]=t^{2}$

8.4 Laplace Transforms of Step and Periodic Functions

8.4.I Piecewise-Defined Functions: The Unit Step Function

An important function in modeling many physical situations is the unit step function, \mathcal{U}.

Definition 35 (Unit Step Function). The unit step function, $\mathcal{U}(t-a)=\mathcal{U}_{a}(t)$, where a is a number defined by

$$
\mathcal{U}(t-a)=\mathcal{U}_{a}(t)=\left\{\begin{array}{l}
0, t<a \tag{8.11}\\
1, t \geq a
\end{array}\right.
$$

We can use the function UnitStep to define the unit step function:

$$
\text { UnitStep }[\mathrm{t}]=\left\{\begin{array}{l}
0, t<0 \\
1, t \geq 0
\end{array}\right.
$$

so $\mathcal{U}_{a}(t)=$ UnitStep[t -a$]$.

EXAMPLE 8.4.1: Graph (a) $2 \mathcal{U}(t)$, (b) $\frac{1}{2} \mathcal{U}(t-5)$, and (c) $\mathcal{U}(t-2)-\mathcal{U}(t-8)$.

Figure 8-5 Plots of combinations of various step functions

SOLUTION: (a) Here, $2 \mathcal{U}(t)=2 \mathcal{U}(t-0)$, so $2 \mathcal{U}(t)=2$ for $t \geq 0$.
(b) In this case, $\frac{1}{2} \mathcal{U}(t-5)=\left\{\begin{array}{l}0, t<5 \\ 1 / 2, t \geq 5\end{array}\right.$ so the "jump" occurs at $t=5$.
(c) $\mathcal{U}(t-2)-\mathcal{U}(t-8)=\left\{\begin{array}{l}0, t<2 \text { or } t \geq 8 \\ 1,2 \leq t<8\end{array}\right.$. These functions are graphed using Plot and UnitStep in Figure 8-5.

$$
\begin{aligned}
\text { In }[1606]:= & \text { Plot }\left[\left\{\frac{\text { UnitStep }[t-5]}{2}, 2 \text { UnitStep }[t],\right.\right. \\
& \text { UnitStep }[t-2]-\text { UnitStep }[t-8]\}, \\
& \{t, 0,10\}, \\
& \text { PlotStyle } \rightarrow\{\text { GrayLevel [0], GrayLevel }[0.3], \\
& \text { GrayLevel }[0.6]\}]
\end{aligned}
$$

The unit step function is useful in defining functions that are piecewise continuous. For example, we can define the function

$$
g(t)=\left\{\begin{array}{l}
0, t<a \\
h(t), a \leq t<b \\
0, t \geq b
\end{array}\right.
$$

as

$$
g(t)=h(t)[\mathcal{U}(t-a)-\mathcal{U}(t-b)] .
$$

Similarly, a function like

$$
f(t)=\left\{\begin{array}{l}
g(t), 0 \leq t<a \\
h(t), t \geq a
\end{array}\right.
$$

can be written as

$$
f(t)=g(t)[1-\mathcal{U}(t-a)]+h(t) \mathcal{U}(t-a)
$$

The reason for writing piecewise continuous functions in terms of step functions is that we encounter functions of this type in solving initial-value problems. Using our methods in Chapters 4 and 5, we had to solve the problem over each piece of the function. However, the method of Laplace transforms can be used to avoid these complicated calculations.

Theorem 27. Suppose that $F(s)=\mathcal{L}\{f(t)\}$ exists for $s>b \geq 0$. If a is a positive constant, then

$$
\begin{equation*}
\mathcal{L}\{f(t-a) \mathcal{U}(t-a)\}=e^{-a s} F(s) \tag{8.12}
\end{equation*}
$$

EXAMPLE 8.4.2: Find $\mathcal{L}\left\{(t-3)^{5} \mathcal{U}(t-3)\right\}$.

SOLUTION: In this case, $a=3$ and $f(t)=t^{5}$. Thus,

$$
\mathcal{L}\left\{(t-3)^{5} \mathcal{U}(t-3)\right\}=e^{-3 s} \mathcal{L}\left\{t^{5}\right\}=e^{-3 s} \frac{5!}{s^{6}}=\frac{120}{s^{6}} e^{-3 s}
$$

Equivalent results are obtained with Mathematica.

$$
\begin{aligned}
\text { In }[1607]:= & \text { LaplaceTransform }\left[(t-3)^{5} \text { UnitStep }[t-3], t, s\right] \\
\text { Out }[1607]= & -\frac{243 e^{-3 s}}{s}+\frac{405 e^{-3 s}(1+3 s)}{s^{2}} \\
& -\frac{270 e^{-3 s}\left(2+6 s+9 s^{2}\right)}{s^{3}} \\
& +\frac{270 e^{-3 s}\left(2+6 s+9 s^{2}+9 s^{3}\right)}{s^{4}} \\
& -\frac{45 e^{-3 s}\left(8+24 s+36 s^{2}+36 s^{3}+27 s^{4}\right)}{s^{5}} \\
& +\frac{3 e^{-3 s}\left(40+120 s+180 s^{2}+180 s^{3}+135 s^{4}+81 s^{5}\right)}{s^{6}}
\end{aligned}
$$

In most cases, we must calculate $\mathcal{L}\{g(t) \mathcal{U}(t-a)\}$ instead of $\mathcal{L}\{g(t-a) \mathcal{U}(t-a)\}$. To solve this problem, we let $g(t)=f(t-a)$, so $f(t)=g(t+a)$. Therefore,

$$
\begin{equation*}
\mathcal{L}\{g(t) \mathcal{U}(t-a)\}=e^{-a s} \mathcal{L}\{g(t+a)\} \tag{8.13}
\end{equation*}
$$

EXAMPLE 8.4.3: Calculate $\mathcal{L}\{\sin t \mathcal{U}(t-\pi)\}$.

SOLUTION: In this case, $g(t)=\sin t$ and $a=\pi$. Thus,

$$
\begin{aligned}
\mathcal{L}\{\sin t \mathcal{U}(t-\pi)\} & =e^{-\pi s} \mathcal{L}\{\sin (t+\pi)\}=e^{-\pi s} \mathcal{L}\{-\sin t\} \\
& =-e^{-\pi s} \frac{1}{s^{2}+1}=-\frac{e^{-\pi s}}{s^{2}+1}
\end{aligned}
$$

The same result is obtained using LaplaceTransform.

```
In[1608]:= LaplaceTransform[Sin[t] UnitStep[t - \pi],t,s]
Out[1608]= - 焦-\pis
```

Theorem 28. Suppose that $F(s)=\mathcal{L}\{f(t)\}$ exists for $s>b \geq 0$. If a is a positive constant and $y=f(t)$ is continuous on $[0, \infty)$, then

$$
\begin{equation*}
\mathcal{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) \mathcal{U}(t-a) . \tag{8.14}
\end{equation*}
$$

EXAMPLE 8.4.4: Find (a) $\mathcal{L}^{-1}\left\{\frac{e^{-4 s}}{s^{3}}\right\}$ and (b) $\mathcal{L}^{-1}\left\{\frac{e^{-\pi s / 2}}{s^{2}+16}\right\}$.

SOLUTION: (a) If we write the expression $\frac{e^{-4 s}}{s^{3}}$ in the form $e^{-a s} F(s)$, we see that $a=4$ and $F(s)=s^{-3}$. Hence, $f(t)=\mathcal{L}^{-1}\left\{s^{-3}\right\}=\frac{1}{2} t^{2}$ and

$$
\mathcal{L}^{-1}\left\{\frac{e^{-4 s}}{s^{3}}\right\}=f(t-4) \mathcal{U}(t-4)=\frac{1}{2}(t-4)^{2} \mathcal{U}(t-4)
$$

(b) In this case, $a=\pi / 2$ and $F(s)=\frac{1}{s^{2}+16}$. Then, $f(t)=\mathcal{L}^{-1}\left\{\frac{1}{s^{2}+16}\right\}=$ $\frac{1}{4} \sin 4 t$ and

$$
\begin{aligned}
\mathcal{L}^{-1}\left\{\frac{e^{-\pi s / 2}}{s^{2}+16}\right\} & =f\left(t-\frac{\pi}{2}\right) \mathcal{U}\left(t-\frac{\pi}{2}\right)=\frac{1}{4} \sin \left[4\left(t-\frac{\pi}{2}\right)\right] \mathcal{U}\left(t-\frac{\pi}{2}\right) \\
& =\frac{1}{4} \sin 4 t \mathcal{U}\left(t-\frac{\pi}{2}\right) .
\end{aligned}
$$

For each of (a) and (b), the same results are obtained using Inverse LaplaceTransform, although we must use Simplify to simplify the result obtained for (b).

$$
\begin{aligned}
& \operatorname{In}[1609]:=\operatorname{InverseLaplaceTransform}\left[\frac{\operatorname{Exp}[-4 \mathrm{~s}]}{s^{3}}, \mathrm{~s}, \mathrm{t}\right] \\
& \text { Out }[1609]=\frac{1}{2}(-4+t)^{2} \text { Unitstep }[-4+t] \\
& \text { In [1610]:= step1 = InverseLaplaceTransform[} \\
& \left.\frac{\operatorname{Exp}\left[-\frac{\pi s}{2}\right]}{s^{2}+16}, s, t\right] \\
& \text { Out }[1610]=\frac{1}{4} \sin \left[4\left(-\frac{\pi}{2}+t\right)\right] \operatorname{UnitStep}\left[-\frac{\pi}{2}+t\right] \\
& \text { In [1611]:= Simplify[step1] } \\
& \text { Out }[1611]=\frac{1}{4} \operatorname{Sin}[4 t] \operatorname{Unitstep}\left[-\frac{\pi}{2}+t\right]
\end{aligned}
$$

8.4.2 Solving Initial-Value Problems

With the unit step function, we can solve initial-value problems that involve piecewise continuous functions.

EXAMPLE 8.4.5: Solve $y^{\prime \prime}+9 y=\left\{\begin{array}{l}1,0 \leq t<\pi \\ 0, t \geq \pi\end{array} \quad\right.$ subject to $y(0)=y^{\prime}(0)=0$.

SOLUTION: In order to solve this initial-value problem, we must compute $\mathcal{L}\{f(t)\}$ where $f(t)=\left\{\begin{array}{l}1,0 \leq t<\pi \\ 0, t \geq \pi\end{array}\right.$. This is a piecewise continuous function so we write it in terms of the unit step function as

$$
f(t)=1[\mathcal{U}(t-0)-\mathcal{U}(t-\pi)]+0[\mathcal{U}(t-\pi)]=\mathcal{U}(t)-\mathcal{U}(t-\pi) .
$$

Then,

$$
\mathcal{L}\{f(t)\}=\mathcal{L}\{1-\mathcal{U}(t-\pi)\}=\frac{1}{s}-\frac{e^{-\pi s}}{s}
$$

Hence,

$$
\begin{aligned}
\mathcal{L}\left\{y^{\prime \prime}\right\}+9 \mathcal{L}\{y\} & =\mathcal{L}\{f(t)\} \\
s^{2} Y(s)-s y(0)-y^{\prime}(0)+9 Y(s) & =\frac{1}{s}-\frac{e^{-\pi s}}{s} \\
\left(s^{2}+9\right) Y(s) & =\frac{1}{s}-\frac{e^{-\pi s}}{s} \\
Y(s) & =\frac{1}{s\left(s^{2}+9\right)}-\frac{e^{-\pi s}}{s\left(s^{2}+9\right)} .
\end{aligned}
$$

The same steps are performed next with Mathematica. First, we define eq to be the equation $y^{\prime \prime}+9 y=\left\{\begin{array}{l}1,0 \leq t<\pi \\ 0, t \geq \pi .\end{array}\right.$

$$
\begin{aligned}
\text { In }[1612]:=\text { eq }=y^{\prime \prime}[t] & +9 y[t]== \\
& \text { UnitStep }[t]-\text { UnitStep }[t-\pi] ;
\end{aligned}
$$

Next, we use LaplaceTransform to compute the Laplace transform of each side of the equation, naming the resulting equation step1,

```
In[1613]:= step1 = LaplaceTransform[eq, t, s]
Out[1613]= 9 LaplaceTransform[y[t],t, s]
    +s}\mp@subsup{}{}{2}\mathrm{ LaplaceTransform[y[t],t,s]
    -s y[0]- y'[0]== \frac{1}{s}-\frac{\mp@subsup{e}{}{-\pis}}{s}
```

apply the initial conditions, naming the result step2,

$$
\begin{aligned}
\text { In }[1614]:= & \text { step } 2=\text { step } 1 / \cdot\left\{y[0]->0, y^{\prime}[0]->0\right\} \\
\text { Out }[1614]= & 9 \text { LaplaceTransform }[y[t], t, s] \\
& +s^{2} \text { LaplaceTransform }[y[t], t, s]==\frac{1}{s}-\frac{e^{-\pi s}}{s}
\end{aligned}
$$

and solve step 2 for LaplaceTransform $[y[t], t, s]$, naming the result step3.

$$
\begin{aligned}
& \text { In }[1615]:= \text { step } 3= \\
& \text { Solve }[\text { step } 2, \\
&\text { LaplaceTransform }[y[t], t, s]] \\
& \text { Out }[1615]=\{ \left\{\begin{array}{l}
\text { LaplaceTransform }[y[t], t, s] \rightarrow \\
\\
\\
\left.\left.\frac{e^{-\pi s}\left(-1+e^{\pi s}\right)}{s\left(9+s^{2}\right)}\right\}\right\}
\end{array}\right.
\end{aligned}
$$

Then,

$$
y(t)=\mathcal{L}^{-1}\{Y(s)\}=\mathcal{L}^{-1}\left\{\frac{1}{s\left(s^{2}+9\right)}\right\}-\mathcal{L}^{-1}\left\{\frac{e^{-\pi s}}{s\left(s^{2}+9\right)}\right\} .
$$

Consider $\mathcal{L}^{-1}\left\{\frac{e^{-\pi s}}{s\left(s^{2}+9\right)}\right\}$. In the form of $\mathcal{L}^{-1}\left\{e^{-a s} F(s)\right\}, a=\pi$ and $F(s)=$ $\frac{1}{s\left(s^{2}+9\right)} \cdot f(t)=\mathcal{L}^{-1}\{F(s)\}$ can be found with either a partial fraction expansion or with equation (8.10):

$$
\begin{aligned}
f(t) & =\mathcal{L}^{-1}\left\{\frac{1}{s\left(s^{2}+9\right)}\right\}=\int_{0}^{t} \mathcal{L}^{-1}\left\{\frac{1}{s^{2}+9}\right\} d \alpha=\int_{0}^{t} \frac{1}{3} \sin 3 \alpha d \alpha \\
& =-\frac{1}{3}\left[\frac{1}{3} \cos 3 \alpha\right]_{0}^{t}=\frac{1}{9}-\frac{1}{9} \cos 3 t .
\end{aligned}
$$

Then,

$$
\begin{aligned}
\mathcal{L}^{-1}\left\{\frac{e^{-\pi s}}{s\left(s^{2}+9\right)}\right\} & =\left[\frac{1}{9}-\frac{1}{9} \cos (3(t-\pi))\right] \mathcal{U}(t-\pi) \\
& =\left[\frac{1}{9}-\frac{1}{9} \cos (3 t-3 \pi)\right] \mathcal{U}(t-\pi)=\left[\frac{1}{9}+\frac{1}{9} \cos 3 t\right] \mathcal{U}(t-\pi)
\end{aligned}
$$

Combining these results yields the solution

$$
\begin{aligned}
y(t) & =\mathcal{L}^{-1}\{Y(s)\}=\mathcal{L}^{-1}\left\{\frac{1}{s\left(s^{2}+9\right)}\right\}-\mathcal{L}^{-1}\left\{\frac{e^{-\pi s}}{s\left(s^{2}+9\right)}\right\} \\
& =\frac{1}{9}-\frac{1}{9} \cos 3 t-\left[\frac{1}{9}+\frac{1}{9} \cos 3 t\right] \mathcal{U}(t-\pi)
\end{aligned}
$$

Equivalent results are obtained with InverseLaplaceTransform and Simplify.

$$
\begin{aligned}
& \text { In }[1616]:=\text { sol }=\text { InverseLaplaceTransform }[\\
& \qquad \\
& \qquad \begin{aligned}
\left.-\frac{-1+\mathbf{e}^{-\pi s}}{\mathbf{s}\left(9+\mathbf{s}^{2}\right)}, \mathbf{s}, \mathrm{t}\right]
\end{aligned} \\
& \text { Out }[1616]=\frac{1}{9}(1-\operatorname{Cos}[3 t]-(1+\operatorname{Cos}[3 t]) \operatorname{UnitStep}[-\pi+t]) \\
& \text { In }[1617]:=\text { Simplify[sol] } \\
& \text { Out }[1617]=\frac{1}{9}(1-\operatorname{Cos}[3 t]-(1+\operatorname{Cos}[3 t]) \text { UnitStep }[-\pi+t])
\end{aligned}
$$

We now graph this solution with Plot in Figure 8-6.

```
In[1618]:= Plot[sol, {t, 0, 2\pi}]
```

An equivalent result is obtained using DSolve as shown next.

Figure 8-6 Plot of $y(t)$

```
In[1619]:= sol = DSolve[{eq, y[0] == 0, y'[0] == 0}, y[t], t]
Out[1619]={{y[t]->\frac{1}{9}(-\operatorname{Cos[3t] UnitStep[t]}
    +Cos[3t] [}\mp@subsup{}{}{2}\mathrm{ UnitStep[t]
    +Sin[3t] [
    - Cos[3t] UnitStep [-\pi + t]
    -Cos[3t] [}\mp@subsup{}{}{2}\mathrm{ UnitStep [-л+t]
    - Sin[3t] [}\mp@subsup{}{}{2}\mathrm{ UnitStep [-л+t])}}
```


8.4.3 Periodic Functions

Another type of function that is encountered in many areas of applied mathematics is the periodic function.

Definition 36 (Periodic Function). A function $y=f(t)$ is periodic if there is a positive number T such that $f(t+T)=f(t)$ for all $t \geq 0$. The minimum value of T that satisfies this equation is called the period of $y=f(t)$.
Due to the nature of periodic functions, we can simplify the calculation of the Laplace transform of these functions as indicated in the following theorem.

Theorem 29 (Laplace Transform of Periodic Functions). Suppose that $y=f(t)$ is a periodic function with period T and that $y=f(t)$ is piecewise continuous on $[0, \infty)$. Then, $\mathcal{L}\{f(t)\}$ exists for $s>0$ and is given by the definite integral

$$
\begin{equation*}
\mathcal{L}\{f(t)\}=\frac{1}{1-e^{-s T}} \int_{0}^{T} e^{-s t} f(t) d t \tag{8.15}
\end{equation*}
$$

EXAMPLE 8.4.6: Find the Laplace transform of the periodic function $f(t)=t, 0 \leq t<1$, and $f(t+1)=f(t)$.

SOLUTION: The period of $y=f(t)$ is $T=1$. We use Plot to generate a graph of $y=f(t)$ on the interval $[0,4]$ in Figure 8-7.

```
In[1620]:= Clear[f]
    f[t_] := f[t - 1]/; t \geq 1
    f[t_] := t/; 0 < t < 1
In[1621]:= Plot[f[t],{t, 0, 4}]
```

We use integration by parts,

$$
\begin{aligned}
\mathcal{L}\{f(t)\} & =\frac{1}{1-e^{-s}} \int_{0}^{1} t e^{-s t} d t \\
& =\frac{1}{1-e^{-s}}\left\{\left[-\frac{t e^{-s t}}{s}\right]_{t=0}^{t=1}+\int_{0}^{1} \frac{e^{-s t}}{s} d t\right\} \\
& =\frac{1}{1-e^{-s}}\left\{-\frac{e^{-s}}{s}-\left[\frac{e^{-s t}}{s^{2}}\right]_{t=0}^{t=1}\right\} \\
& =\frac{1}{1-e^{-s}}\left(-\frac{e^{-s}}{s}+\frac{1-e^{-s}}{s^{2}}\right)=\frac{1-(s+1) e^{-s}}{s^{2}\left(1-e^{-s}\right)}
\end{aligned}
$$

or Mathematica

$$
\operatorname{In}[1622]:=\operatorname{Simplify}\left[\frac{\int_{0}^{1} \mathrm{t} \operatorname{Exp}[-\mathrm{st}] \mathrm{dt}}{1-\operatorname{Exp}[-\mathrm{s}]}\right]
$$

Figure 8-7 Plot of $f(t)$ on the interval $[0,4]$

$$
\begin{aligned}
& \text { Out }[1622]=\frac{-1+e^{s}-s}{\left(-1+e^{s}\right) s^{2}} \\
& \text { In }[1623]:=\text { term[n_] := LaplaceTransform[UnitStep[t-n], } \\
& t, s]
\end{aligned}
$$

to compute the Laplace transform. Alternatively, note that

$$
\begin{aligned}
f(t)= & t[\mathcal{U}(t)-\mathcal{U}(t-1)]+(t-1)[\mathcal{U}(t-1)-\mathcal{U}(t-2)] \\
& +(t-2)[\mathcal{U}(t-2)-\mathcal{U}(t-3)]+\cdots \\
= & t-\mathcal{U}(t-1)-\mathcal{U}(t-2)-\mathcal{U}(t-3)-\mathcal{U}(t-4)-\cdots \\
= & t-\sum_{n=1}^{\infty} \mathcal{U}(t-n)
\end{aligned}
$$

so

$$
\mathcal{L}\{f(t)\}=\mathcal{L}\{t\}-\mathcal{L}\left\{\sum_{n=1}^{\infty} \mathcal{U}(t-n)\right\}=\mathcal{L}\{t\}-\sum_{n=1}^{\infty} \mathcal{L}\{\mathcal{U}(t-n)\}
$$

We use LaplaceTransform and Table

$$
\begin{aligned}
& \text { In }[1624]:=\operatorname{Table}[\operatorname{term}[n],\{n, 1,7\}] \\
& \text { Out }[1624]=\left\{\frac{e^{-s}}{s}, \frac{e^{-2 s}}{s}, \frac{e^{-3 s}}{s}, \frac{e^{-4 s}}{s}, \frac{e^{-5 s}}{s}, \frac{e^{-6 s}}{s}, \frac{e^{-7 s}}{s}\right\}
\end{aligned}
$$

to see that $\mathcal{L}\{\mathcal{U}(t-n)\}=\frac{1}{s} e^{-n s}$. Next, we use Sum and Together to calculate

$$
\begin{aligned}
\mathcal{L}\{f(t)\} & =\mathcal{L}\{t\}-\sum_{n=1}^{\infty} \mathcal{L}\{\mathcal{U}(t-n)\}=\frac{1}{s^{2}}-\sum_{n=1}^{\infty} \frac{e^{-n s}}{s} \\
& =\frac{1}{s}\left(\frac{1}{s}-\sum_{n=1}^{\infty}\left(e^{-s}\right)^{n}\right)=\frac{1}{s}\left(\frac{1}{s}-\frac{e^{-s}}{1-e^{-s}}\right) .
\end{aligned}
$$

$$
\begin{aligned}
\text { In }[1625]:= & \text { Together[LaplaceTransform }[t, t, s] \\
& \left.-\sum_{n=1}^{\infty} \frac{1}{\operatorname{Exp}[\mathrm{~ns}] s}\right] \\
\text { Out }[1625]= & \frac{-1+e^{s}-s}{\left(-1+e^{s}\right) s^{2}}
\end{aligned}
$$

Laplace transforms can now be used to solve initial-value problems with periodic forcing functions more easily.

EXAMPLE 8.4.7: Solve $y^{\prime \prime}+y=f(t)$ subject to $y(0)=y^{\prime}(0)=0$ if $f(t)=$ $\left\{\begin{array}{l}\sin t, 0 \leq t<\pi \\ 0, \pi \leq t<2 \pi\end{array}\right.$ and $f(t+2 \pi)=f(t) .(f(t)$ is known as the half-wave rectification of $\sin t$.)

SOLUTION: To graph $f(t)$, we begin by defining $g(t)=\left\{\begin{array}{l}\sin t, 0 \leq t<\pi \\ 0, \pi \leq t<2 \pi\end{array}\right.$

```
In[1626]:= g[t_] = Sin[t] UnitStep[\pi-t];
```

Then,

$$
\begin{aligned}
f(t) & =g(t)[\mathcal{U}(t)-\mathcal{U}(t-2 \pi)]+g(t-2 \pi)[\mathcal{U}(t-2 \pi)-\mathcal{U}(t-4 \pi)]+\cdots \\
& =\sum_{n=0}^{\infty} g(t-n \pi)[\mathcal{U}(t-2 n \pi)-\mathcal{U}(t-2(n+1) \pi)]
\end{aligned}
$$

Thus, the graph of $f(t)$ on the interval [$0,2 k \pi$], where k represents a positive integer, is obtained by graphing

$$
f_{k}(t)=\sum_{n=0}^{k-1} g(t-n \pi)[\mathcal{U}(t-2 n \pi)-\mathcal{U}(t-2(n+1) \pi)]
$$

on the interval [$0,2 k \pi$]. For convenience, we define nthterm [n] to be

$$
\begin{aligned}
& \begin{aligned}
& g(t-n \pi)[\mathcal{U}(t-2 n \pi)-\mathcal{U}(t-2(n+1) \pi)] \\
& \text { In [1627]: }=\text { nthterm }\left[n_{-}\right]= g[t-2 n \pi] \\
& \quad(\text { UnitStep }[t-2 n \pi] \\
&\quad \text { UnitStep }[t-2(n+1) \pi]) ; \\
& \text { In }[1628]:=\mathrm{f}\left[k_{-}, \mathrm{t}_{-}\right]=\sum_{\mathrm{n}=0}^{\mathrm{k}-1} n t h t e r m[\mathrm{n}] ;
\end{aligned}
\end{aligned}
$$

Here is $f_{2}(t)$.

```
In[1629]:= f[2,t]
Out[1629]= Sin[t] UnitStep[\pi-t]
    (UnitStep[t] - UnitStep [-2\pi+t])
    +Sin[t] UnitStep[3\pi-t]
    (-UnitStep [-4\pi+t] + UnitStep [-2\pi+t])
```

We graph $f(t)$ on the interval $[0,10 \pi]$ with Plot in Figure 8-8.

```
In[1630]:= Plot[f[5,t], {t, 0, 10\pi}]
```


Figure 8-8 The half-wave rectification of $\sin t$ on the interval [0,10 $]$

To solve the initial-value problem we must find $\mathcal{L}\{f(t)\}$. Because the period is $T=2 \pi$, we have

$$
\begin{aligned}
\mathcal{L}\{f(t)\} & =\frac{1}{1-e^{-2 \pi s}} \int_{0}^{2 \pi} e^{-s t} f(t) d t=\frac{1}{1-e^{-2 \pi s}}\left[\int_{0}^{\pi} e^{-s t} \sin t d t+\int_{\pi}^{2 \pi} e^{-s t} \cdot 0 d t\right] \\
& =\frac{1}{1-e^{-2 \pi s}} \int_{0}^{\pi} e^{-s t} \sin t d t .
\end{aligned}
$$

We use Integrate to evaluate this integral

$$
\begin{aligned}
& \text { In }[1631]:=\text { step1 }=\operatorname{simplify}\left[\frac{\int_{0}^{\pi} \operatorname{Exp}[-s t] \operatorname{Sin}[t] d t}{1-\operatorname{Exp}[-2 \pi s]}\right] \\
& \text { Out }[1631]=\frac{\mathbb{e}^{\pi s}}{\left(-1+\mathbb{e}^{\pi s}\right)\left(1+s^{2}\right)} \\
& \text { In }[1632]:=\operatorname{lapf}=\text { step1//ExpandDenominator } \\
& \text { Out }[1632]=\frac{e^{\pi s}}{-1+\mathbb{e}^{\pi s}-s^{2}+\mathbb{e}^{\pi s} s^{2}}
\end{aligned}
$$

and see that

$$
\mathcal{L}\{f(t)\}=\frac{e^{\pi s}}{\left(e^{\pi s}-1\right)\left(s^{2}+1\right)}=\frac{1}{\left(1-e^{-\pi s}\right)\left(s^{2}+1\right)}
$$

Alternatively, we can use

$$
f(t)=\sum_{n=0}^{\infty} g(t-n \pi)[\mathcal{U}(t-2 n \pi)-\mathcal{U}(t-2(n+1) \pi)]
$$

to rewrite $f(t)$ as

$$
f(t)=\sum_{n=0}^{\infty}(-1)^{n} \sin t \mathcal{U}(t-n \pi) .
$$

Then,

$$
\mathcal{L}\{f(t)\}=\mathcal{L}\left\{\sum_{n=0}^{\infty}(-1)^{n} \sin t \mathcal{U}(t-n \pi)\right\}=\sum_{n=0}^{\infty} \mathcal{L}\left\{(-1)^{n} \sin t \mathcal{U}(t-n \pi)\right\} .
$$

We use LaplaceTransform and UnitStep to compute $\mathcal{L}\left\{(-1)^{n} \sin t\right.$ $\mathcal{U}(t-n \pi)\}$, naming the result nthlap,

$$
\begin{aligned}
& \text { In [1633]:= Clear[nthlap] } \\
& \text { In [1634]:= nthlap = LaplaceTransform[} \\
& \left.(-1)^{n} \operatorname{Sin}[t] \operatorname{UnitStep}[t-n \pi], t, s\right] ; \\
& \text { In [1635] : = TableForm[Table[\{n, nthlap }\},\{n, 0,8\}]] \\
& 0 \frac{2}{1+s^{2}} \\
& 1-\frac{e^{-\pi(i+s)}}{1+s^{2}} \\
& 2 \frac{e^{-2 \pi(i+s)}}{1+\mathrm{s}^{2}} \\
& 3-\frac{e^{-3 \pi(i+s)}}{1+s^{2}} \\
& \text { Out }[1635]=4 \frac{e^{-4 \pi(i+s)}}{1+s^{2}} \\
& 5-\frac{e^{-5 \pi(i+s)}}{1+\mathrm{s}^{2}} \\
& 6 \frac{e^{-6 \pi(i+s)}}{1+\mathrm{s}^{2}} \\
& 7-\frac{e^{-7 \pi(i+s)}}{1+s^{2}} \\
& 8 \frac{e^{-8 \pi(i+s)}}{1+s^{2}}
\end{aligned}
$$

and then use Sum to compute $\sum_{n=0}^{\infty} \mathcal{L}\left\{(-1)^{n} \sin t \mathcal{U}(t-n \pi)\right\}$.

$$
\begin{aligned}
& \operatorname{In}[1636]:=\frac{\sum_{\mathrm{n}=0}^{\infty} \operatorname{Exp}[-\mathrm{n} \pi \mathrm{~s}]}{1+\mathbf{s}^{2}} \\
& \text { Out }[1636]=\frac{\mathbb{e}^{\pi \mathrm{s}}}{\left(-1+\mathbb{e}^{\pi s}\right)\left(1+s^{2}\right)}
\end{aligned}
$$

Taking the Laplace transform of both sides of the differential equation, applying the initial conditions, and solving for $Y(s)$ then gives us

$$
\begin{aligned}
\mathcal{L}\left\{y^{\prime \prime}\right\}+\mathcal{L}\{y\} & =\mathcal{L}\{f(t)\} \\
s^{2} Y(s)-s y(0)-y^{\prime}(0)+Y(s) & =\frac{1}{\left(1-e^{-\pi s}\right)\left(s^{2}+1\right)} \\
Y(s) & =\frac{1}{\left(1-e^{-\pi s}\right)\left(s^{2}+1\right)^{2}} .
\end{aligned}
$$

Using lapf, we perform the same steps with Mathematica.

```
In[1637]:= step1 = LaplaceTransform
    [y';
Out[1637]= LaplaceTransform[y[t],t,s]
    +s}\mp@subsup{}{}{2}\mathrm{ LaplaceTransform[y[t],t,s]
    -s y [0]- y' [0] == =
In[1638]:= step2 = step1/.{y[0]->0, y'[0]-> 0}
Out[1638]= LaplaceTransform[y[t],t,s]
    + s
        \frac{\mp@subsup{\mathbb{e}}{}{\pis}}{-1+\mp@subsup{\mathbb{e}}{}{\pis}-\mp@subsup{S}{}{2}+\mp@subsup{\mathbb{e}}{}{\pis}\mp@subsup{s}{}{2}}
In[1639]:= step3 = Solve[step2,
        LaplaceTransform[y[t],t,s]]
Out[1639]={{LaplaceTransform[y[t],t,s]->
    䑤采
```

Recall from our work with the geometric series that if $|x|<1$, then

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots=\sum_{n=0}^{\infty} x^{n}
$$

Because we do not know the inverse Laplace transform of $\frac{1}{\left(1-e^{-\pi s}\right) \frac{1}{\left(1-e^{-\pi s}\right)\left(s^{2}+1\right)^{2}}}$, we must use a geometric series expansion of $\frac{1}{1-e^{-\pi s}}$ to obtain terms for which we can calculate the inverse Laplace transform. Using $x=e^{-\pi s}$, this gives us

$$
\frac{1}{1-e^{-\pi s}}=1+e^{-\pi s}+e^{-2 \pi s}+e^{-3 \pi s}+\cdots=\sum_{n=0}^{\infty} e^{-n \pi s}
$$

so

$$
\begin{aligned}
Y(s) & =\left(1+e^{-\pi s}+e^{-2 \pi s}+e^{-3 \pi s}+\cdots\right) \frac{1}{\left(s^{2}+1\right)^{2}} \\
& =\frac{1}{\left(s^{2}+1\right)^{2}}+\frac{e^{-\pi s}}{\left(s^{2}+1\right)^{2}}+\frac{e^{-2 \pi s}}{\left(s^{2}+1\right)^{2}}+\frac{e^{-3 \pi s}}{\left(s^{2}+1\right)^{2}}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{e^{-n \pi s}}{\left(s^{2}+1\right)^{2}} .
\end{aligned}
$$

Then,

$$
y(t)=\sum_{n=0}^{\infty} \mathcal{L}^{-1}\left\{\frac{e^{-n \pi s}}{\left(s^{2}+1\right)^{2}}\right\} .
$$

Notice that $\mathcal{L}^{-1}\left\{\frac{1}{\left(s^{2}+1\right)^{2}}\right\}$ is needed to find all of the other terms. Using InverseLaplaceTransform,

$$
\begin{aligned}
& \text { In }[1640]:=\text { Expand[InverseLaplaceTransform } \\
& \left.\qquad\left[\frac{1}{\left(s^{2}+1\right)^{2}}, s, t\right]\right] \\
& \text { Out }[1640]=-\frac{1}{2} t \operatorname{Cos}[t]+\frac{\operatorname{Sin}[t]}{2}
\end{aligned}
$$

we have $\mathcal{L}^{-1}\left\{\frac{1}{\left(s^{2}+1\right)^{2}}\right\}=\frac{1}{2}(\sin t-t \cos t)$. In fact, we can use Inverse LaplaceTransform together with Table to compute the inverse Laplace transform of the first few terms of the series.

```
In[1641]:= TableForm[
    Table[{n, InverseLaplaceTransform[
                    Exp[-n\pis]
    0}\frac{1}{2}(-t\operatorname{Cos}[t]+\operatorname{Sin}[t]
    1 \frac{1}{2}((-\pi+t)\operatorname{Cos[t]}
        -Sin[t]) UnitStep[-\pi+t]
    2 \frac{1}{2}}(-(-2\pi+t)\operatorname{cos}[t
        +Sin[t]) UnitStep[-2\pi+t]
Out[1641]=3
        -Sin[t]) UnitStep[-3\pi+t]
        4\frac{1}{2}}(-(-4\pi+t)\operatorname{Cos}[t
        +Sin[t]) UnitStep [-4\pi+t]
        5 \frac{1}{2}}((-5\pi+t)\operatorname{Cos[t]
        -Sin[t]) UnitStep[-5\pi+t]
```

Then,

$$
\begin{aligned}
y(t)= & \frac{1}{2}\{(\sin t-t \cos t)+[\sin (t-\pi)-(t-\pi) \cos (t-\pi)] \mathcal{U}(t-\pi) \\
& +[\sin (t-2 \pi)-(t-2 \pi) \cos (t-2 \pi)] \mathcal{U}(t-2 \pi) \\
& +[\sin (t-3 \pi)-(t-3 \pi) \cos (t-3 \pi)] \mathcal{U}(t-3 \pi)\} \\
= & \frac{1}{2} \sum_{n=0}^{\infty}[\sin (t-n \pi)-(t-n \pi) \cos (t-n \pi)] \mathcal{U}(t-n \pi) .
\end{aligned}
$$

To graph $y(t)$ on the interval $[0, k \pi]$, where k represents a positive integer, we note that

$$
[\sin (t-n \pi)-(t-n \pi) \cos (t-n \pi)] \mathcal{U}(t-n \pi)=0
$$

for all values of t in $[0, k \pi]$ if $n \geq k$ so we need to graph

$$
\frac{1}{2} \sum_{n=0}^{k-1}[\sin (t-n \pi)-(t-n \pi) \cos (t-n \pi)] \mathcal{U}(t-n \pi)
$$

For convenience, we define nthterm to represent

$$
\begin{gathered}
\frac{1}{2}[\sin (t-n \pi)-(t-n \pi) \cos (t-n \pi)] \mathcal{U}(t-n \pi) \\
\operatorname{In}[1642]:=\text { nthterm }\left[\mathrm{n}_{-}\right]= \\
\frac{1}{2}(\sin [\mathrm{t}-\mathrm{n} \pi]-(\mathrm{t}-\mathrm{n} \pi) \operatorname{Cos}[\mathrm{t}-\mathrm{n} \pi]) \\
\text { UnitStep }[\mathrm{t}-\mathrm{n} \pi] ;
\end{gathered}
$$

Thus, to graph on the interval, we enter the following commands. See Figure 8-9.

$$
\begin{aligned}
& \operatorname{In}[1643]:=\text { tograph }=\sum_{\mathrm{n}=0}^{4} \text { nthterm }[\mathrm{n}] ; \\
& \text { In }[1644]:=\text { Plot }[\text { tograph },\{t, 0,5 \pi\}]
\end{aligned}
$$

Figure 8-9 Plot of the solution to an initial-value problem with a periodic piecewise continuous forcing function

8.4.4 Impulse Functions: The Delta Function

We now consider differential equations of the form $a y^{\prime \prime}+b y^{\prime}+c y=f(t)$ where $f(t)$ is large in magnitude over the short interval centered at $t_{0}, t_{0}-\alpha \leq t \leq t_{0}+\alpha$, and zero otherwise. Hence, we define the impulse delivered by the function $f(t)$ as $I(t)=\int_{t_{0}-\alpha}^{t_{0}+\alpha} f(t) d t$, or because $f(t)=0$ for t on $\left(-\infty, t_{0}-\alpha\right) \cup\left(t_{0}+\alpha, \infty\right)$,

$$
I(t)=\int_{-\infty}^{\infty} f(t) d t
$$

In order to better understand the impulse function, we let $f(t)$ be defined in the following manner:

$$
f(t)=\delta_{\alpha}\left(t-t_{0}\right)=\left\{\begin{array}{l}
\frac{1}{2 \alpha}, t_{0}-\alpha \leq t \leq t_{0}+\alpha \\
0, \text { otherwise }
\end{array}\right.
$$

To graph $\delta_{\alpha}\left(t-t_{0}\right)$ for several values of α and $t_{0}=0$, we define del.

$$
\begin{aligned}
\operatorname{In}[1645]:= & \operatorname{del}\left[t_{-}, t 0_{-}, \alpha_{-}\right]:=\frac{1}{2 \alpha} / ; \mathrm{t} 0-\alpha \leq \mathrm{t} \leq \mathrm{t} 0+\alpha \\
& \operatorname{del}\left[\mathrm{t}_{-}, \mathrm{t} 0_{-}, \alpha_{-}\right]:=0 / ; \mathrm{t} 0-\alpha>\mathrm{t}| | \mathrm{t}>\mathrm{t} 0+\alpha
\end{aligned}
$$

For example, entering

```
In[1646]:= Plot[del[t, 0, 0.25], {t, -1, 1}]
```

graphs $\delta_{1 / 4}(t)$ on the interval $[-1,1]$. See Figure 8-10. Similarly, to graph $\delta_{i}(t)$ for $i=0.01,0.02,0.03,0.04$, and 0.05 , we first define toplot using Table and then use Plot to graph this set of functions on the interval $[-0.1,0.1]$. See Figure 8-11.

Figure 8-10 Plot of $\delta_{1 / 4}(t)$ on the interval $[-1,1]$

Figure 8-11 Plots of $\delta_{i}(t)$ for $i=0.01,0.02,0.03,0.04$, and 0.05

```
In[1647]:= toplot = Table[del[t, 0, 人],
    {\alpha,0.01,0.05,0.01}];
In[1648]:= grays = Table[GrayLevel[i], {i, 0, 0.7,0.7/4}];
    Plot[Evaluate[toplot], {t, -0.1, 0.1},
    PlotStyle- > grays]
```

With this definition, the impulse is given by

$$
I(t)=\int_{t_{0}-\alpha}^{t_{0}+\alpha} f(t) d t=\int_{t_{0}-\alpha}^{t_{0}+\alpha} \frac{1}{2 \alpha} d t=\frac{1}{2 \alpha}\left[\left(t_{0}+\alpha\right)-\left(t_{0}-\alpha\right)\right]=\frac{1}{2 \alpha} \cdot 2 \alpha=1 .
$$

Notice that the value of this integral does not depend on α as long as $\alpha \neq 0$. We now try to create the idealized impulse function by requiring that $\delta_{\alpha}\left(t-t_{0}\right)$ act on smaller and smaller intervals. From the integral calculation, we have

$$
\lim _{\alpha \rightarrow 0} I(t)=1 .
$$

We also note that

$$
\lim _{\alpha \rightarrow 0} \delta_{\alpha}\left(t-t_{0}\right)=0, t \neq t_{0} .
$$

We use these properties to now define the idealized unit impulse function.
Definition 37 (Unit Impulse Function). The idealized unit impulse function (Dirac delta function) δ satisfies

$$
\begin{gather*}
\delta\left(t-t_{0}\right)=0, t \neq t_{0} \\
\int_{-\infty}^{\infty} \delta\left(t-t_{0}\right) d t=1 \tag{8.16}
\end{gather*}
$$

The Mathematica function DiracDelta represents the Dirac delta function.

We now state the following useful theorem involving the unit impulse function.

Theorem 30. Suppose that $y=g(t)$ is a bounded and continuous function. Then,

$$
\begin{equation*}
\int_{-\infty}^{\infty} \delta\left(t-t_{0}\right) g(t) d t=g\left(t_{0}\right) . \tag{8.17}
\end{equation*}
$$

The Laplace transform of $\delta\left(t-t_{0}\right)$ is found by using the function $\delta_{\alpha}\left(t-t_{0}\right)$ and L'Hôpital's rule.

Theorem 31. For $t_{0}>0$,

$$
\begin{equation*}
\mathcal{L}\left\{\delta\left(t-t_{0}\right)\right\}=e^{-s t_{0}} . \tag{8.18}
\end{equation*}
$$

EXAMPLE 8.4.8: Find (a) $\mathcal{L}\{\delta(t-1)\} ;$ (b) $\mathcal{L}\{\delta(t-\pi)\}$; and (c) $\mathcal{L}\{\delta(t)\}$.

SOLUTION: (a) In this case, $t_{0}=1$, so $\mathcal{L}\{\delta(t-1)\}=e^{-s}$. (b) With $t_{0}=\pi$, $\mathcal{L}\{\delta(t-\pi)\}=e^{-\pi s}$. (c) Because $t_{0}=0, \mathcal{L}\{\delta(t)\}=\mathcal{L}\{\delta(t-0)\}=e^{-s .0}=1$. We obtain the same results using DiracDelta and LaplaceTransform as shown next. We can compute the Laplace transform of each individually.

```
In[1649]:= LaplaceTransform[DiracDelta[t-1],t,s]
Out[1649]= e es
```

Or, we can use Map to compute the Laplace transform of all three simultaneously.

```
In[1650]:= Map[LaplaceTransform[#,t,s]&,
    {DiracDelta[t-1],
    DiracDelta[t-\pi], DiracDelta[t]}]
Out [1650]= {e es, e e-\pis,1}
```

EXAMPLE 8.4.9: Solve $y^{\prime \prime}+y=\delta(t-\pi)+1$ subject to $y(0)=y^{\prime}(0)=0$.

SOLUTION: As in previous examples, we solve this initial-value problem by taking the Laplace transform of both sides of the differential equation,

$$
\begin{aligned}
\text { In }[1651]:= & \text { step }= \\
& \text { LaplaceTransform }\left[y^{\prime \prime}[t]\right. \\
& +\mathrm{y}]==\operatorname{DiracDelta} \\
& \quad[t-\pi]+1, t, s] \\
\text { Out }[1651]= & \text { LaplaceTransform }[y[t], t, s] \\
& +s^{2} \text { LaplaceTransform }[y[t], t, s] \\
& -s y[0]-y^{\prime}[0]==e^{-\pi s}+\frac{1}{s}
\end{aligned}
$$

applying the initial conditions,

$$
\begin{aligned}
\text { In }[1652]:= & \text { step } 2=\text { step } 1 / \cdot\left\{y[0] \rightarrow 0, y^{\prime}[0] \rightarrow 0\right\} \\
\text { Out }[1652]= & \text { LaplaceTransform }[y[t], t, s] \\
& +s^{2} \text { LaplaceTransform }[y[t], t, s]==e^{-\pi s}+\frac{1}{s}
\end{aligned}
$$

and solving for $Y(s)$.

```
In[1653]:= step3 = Solve[step2,
                                    LaplaceTransform[y[t], t, s]]
Out [1653] \(=\{\{\) LaplaceTransform \([y[t], t, s] \rightarrow\)
    \(\left.\left.\frac{e^{-\pi s}\left(e^{\pi s}+s\right)}{s\left(1+s^{2}\right)}\right\}\right\}\)
```

We find $y(t)$ using InverseLaplaceTransform.

```
In [1654]:= sol = InverseLaplaceTransform[
    step3[[1, 1, 2]], s, t]
Out [1654] = \(1-\operatorname{Cos}[t]-\operatorname{Sin}[t] \operatorname{UnitStep}[-\pi+t]\)
```

We can use DSolve to find the solution to the initial-value problem as follows. The result is graphed with Plot in Figure 8-12.

Figure 8-12 At $t=\pi$, an impulse is delivered

```
In[1655]:= sol = DSolve[{4'[t]
    +y[t] == DiracDelta[t-\pi]+1,
    y[0] == 0, y'[0] == 0}, y[t], t]
Out[1655]={{y[t] ->- Cos[t] + Cos[t] 2
                        +Sin[t] 2 - Sin[t] UnitStep [-\pi+t]}}
In[1656]:= Plot[y[t]/.sol, {t, 0, 2\pi}]
```

The forcing function may involve a combination of functions as illustrated in the following example.

EXAMPLE 8.4.10: Solve $y^{\prime \prime}+2 y^{\prime}+y=1+\delta(t-\pi)+\delta(t-2 \pi)$ subject to $y(0)=y^{\prime}(0)=0$.

SOLUTION: After computing the Laplace transform of each side of the equation

```
In[1657]:= step1 = LaplaceTransform[
    y'}[\textrm{t}]+2\mp@subsup{y}{}{\prime}[\textrm{t}]+\textrm{y}[\textrm{t}]=
    1 + DiracDelta[t-\pi]
    +DiracDelta[t-2\pi],t,s]
Out[1657]= LaplaceTransform[y[t],t,s]
    +s}\mp@subsup{}{}{2}\mathrm{ LaplaceTransform[y[t],t,s]
    +2(s LaplaceTransform[y[t],t,s] - y[0])
    -s y[0]- Y'[0]== e}\mp@subsup{e}{}{-2\pis}+\mp@subsup{e}{}{-\pis}+\frac{1}{s
```

and applying the initial conditions,

```
In[1658]:= step2 = step1/.{y[0]-> 0, y'[0]->0}
Out[1658]= LaplaceTransform[y[t],t,s]
    +2 s LaplaceTransform[y[t],t,s]
    +s}\mp@subsup{}{}{2}\mathrm{ LaplaceTransform[y[t], t, s] == e e
    +e}\mp@subsup{e}{}{-\pis}+\frac{1}{s
```

we solve for $Y(s)$

```
In[1659]:= step3 = Solve[step2,
    LaplaceTransform[y[t],t,s]]
```

$$
\begin{aligned}
\text { Out }[1659]=\{ & \{\text { LaplaceTransform }[y[t], t, s] \rightarrow \\
& \left.\left.\frac{e^{-2 \pi s}\left(e^{2 \pi s}+s+\mathbb{e}^{\pi s} s\right)}{s(1+s)^{2}}\right\}\right\}
\end{aligned}
$$

and then compute $y(t)=\mathcal{L}^{-1}\{Y(s)\}$.

$$
\begin{aligned}
\text { In }[1660]:= & \text { sol }=\text { InverseLaplaceTransform }[\\
& \left.\frac{1+e^{-2 \pi s} \mathbf{s}+e^{-\pi \mathbf{s}} \mathbf{s}}{\mathbf{s}(1+\mathbf{s})^{2}}, \mathbf{s}, \mathrm{t}\right] \\
\text { Out }[1660]= & \mathbb{e}^{-t}\left(-1+e^{t}-t-e^{2 \pi}(2 \pi-t) \text { UnitStep }[-2 \pi+t]\right. \\
& \left.-\mathbb{e}^{\pi}(\pi-t) \operatorname{Unitstep}[-\pi+t]\right)
\end{aligned}
$$

Equivalent results are obtained with DSolve that are then graphed with Plot in Figure 8-13.

```
In[1661]:= Clear[y,t,sol]
```



```
    +DiracDelta[t-\pi] + DiracDelta[t-2\pi],
    y[0] == 0, y'[0] == 0}, y[t], t]
Out [1662]= {{y[t] -> \mp@subsup{\mathbb{e}}{}{-t}(-1+\mp@subsup{\mathbb{e}}{}{t}-t
    -2 e 2\pi}\pi\mathrm{ | UnitStep [-2 }\pi+\textrm{t}
    +\mp@subsup{e}{}{2\pi}}\mathrm{ t UnitStep [-2 }\pi+t
    - © }\mp@subsup{\mathbb{e}}{}{\pi}\pi\mathrm{ UnitStep [-л+t]
    +\mp@subsup{\mathbb{e}}{}{\pi}t\mathrm{ UnitStep [-л+t])}}}
In[1663]:= Plot[y[t]/.sol, {t, 0, 4\pi}]
```


Figure 8-13 Impulses are delivered at $t=\pi$ and $t=2 \pi$

8.5 The Convolution Theorem

8.5.I The Convolution Theorem

In many cases, we are required to determine the inverse Laplace transform of a product of two functions. Just as in integral calculus when the integral of the product of two functions did not produce the product of the integrals, neither does the inverse Laplace transform of the product yield the product of the inverse Laplace transforms. Thus, we state the following theorem.

Theorem 32 (Convolution Theorem). Suppose that $f(t)$ and $g(t)$ are piecewise continuous on $[0, \infty)$ and both of exponential order b. Further suppose that $\mathcal{L}\{f(t)\}=F(s)$ and $\mathcal{L}\{g(t)\}=G(s)$. Then,

$$
\begin{aligned}
\mathcal{L}^{-1}\{F(s) G(s)\}= & \mathcal{L}^{-1}\{\mathcal{L}\{(f * g)(t)\}\}=(f * g)(t)=\int_{0}^{t} f(t-v) g(v) d v . \\
\text { In }[1664]:= & \text { Clear }[f, g] \\
& \text { LaplaceTransform }\left[\int_{0}^{\mathrm{t}} \mathrm{f}[\mathrm{t}-\mathrm{v}] \mathrm{g}[\mathrm{v}] \mathrm{d} \mathbf{v}, \mathrm{t}, \mathrm{~s}\right] \\
\text { Out }[1664]= & \text { LaplaceTransform }[\mathrm{f}[\mathrm{t}], \mathrm{t}, \mathrm{~s}] \\
& \text { LaplaceTransform }[\mathrm{g}[\mathrm{t}], \mathrm{t}, \mathrm{~s}]
\end{aligned}
$$

Note that $(f * g)(t)=\int_{0}^{t} f(t-v) g(v) d v$ is called the convolution integral.

EXAMPLE 8.5.1: Compute $(f * g)(t)$ if $f(t)=e^{-t}$ and $g(t)=\sin t$. Verify the Convolution Theorem with these functions.

SOLUTION: We use the definition and integration by parts to obtain

$$
\begin{aligned}
(f * g)(t) & =\int_{0}^{t} f(t-v) g(v) d v=\int_{0}^{t} e^{-t+v} \sin v d v=e^{-t} \int_{0}^{t} e^{v} \sin v d v \\
& =e^{-t}\left[\frac{1}{2} e^{v}(\sin v-\cos v)\right]_{0}^{t}=\frac{1}{2} e^{-t}\left[e^{t}(\sin t-\cos t)-(\sin 0-\cos 0)\right] \\
& =\frac{1}{2}(\sin t-\cos t)+\frac{1}{2} e^{-t}
\end{aligned}
$$

The same results are obtained with Mathematica. After defining convolution, which computes $(f * g)(t)$,

```
In[1665]:= Clear[convolution, f, t, g, v];
    convolution[f_, g-]:= = 
```

we define $f(t)$ and $g(t)$

$$
\begin{aligned}
\operatorname{In}[1666]:= & f\left[t_{-}\right]=\operatorname{Exp}[-t] ; \\
& g\left[t_{-}\right]=\sin [t] ;
\end{aligned}
$$

and then use convolution to compute $(f * g)(t)$.

$$
\begin{aligned}
& \text { In }[1667]:=\text { convolution }[f, g] \\
& \text { Out }[1667]=\frac{1}{2}\left(e^{-t}-\operatorname{Cos}[t]+\operatorname{Sin}[t]\right)
\end{aligned}
$$

Note that $(f * g)(t)=(g * f)(t)$.

$$
\begin{aligned}
& \text { In }[1668]:=\text { convolution }[g, f] \\
& \text { Out }[1668]=\frac{1}{2}\left(e^{-t}-\operatorname{Cos}[t]+\operatorname{Sin}[t]\right)
\end{aligned}
$$

Now, according to the Convolution Theorem, $\mathcal{L}\{f(t)\} \mathcal{L}\{g(t)\}=\mathcal{L}\{(f * g)$ $(t)\}$. In this example, we have

$$
F(s)=\mathcal{L}\{f(t)\}=\mathcal{L}\left\{e^{-t}\right\}=\frac{1}{s+1} \text { and } G(s)=\mathcal{L}\{g(t)\}=\mathcal{L}\{\sin t\}=\frac{1}{s^{2}+1}
$$

Hence, $\mathcal{L}^{-1}\{F(s) G(s)\}=\mathcal{L}^{-1}\left\{\frac{1}{s+1} \cdot \frac{1}{s^{2}+1}\right\}$ should equal $(f * g)(t)$. We compute $\mathcal{L}^{-1}\left\{\frac{1}{s+1} \cdot \frac{1}{s^{2}+1}\right\}$ with InverseLaplaceTransform.

$$
\begin{aligned}
& \text { In }[1669]:=\text { InverseLaplaceTransform }\left[\frac{1}{(s+1)\left(s^{2}+1\right)}, s, t\right] \\
& \text { Out }[1669]=\frac{1}{2}\left(e^{-t}-\operatorname{Cos}[t]+\operatorname{Sin}[t]\right)
\end{aligned}
$$

Hence,

$$
\mathcal{L}^{-1}\left\{\frac{1}{s+1} \cdot \frac{1}{s^{2}+1}\right\}=\frac{1}{2} e^{-t}-\frac{1}{2} \cos t+\frac{1}{2} \sin t,
$$

which is the same result as that obtained for $(f * g)(t)$.

EXAMPLE 8.5.2: Use the Convolution Theorem to find the Laplace transform of $h(t)=\int_{0}^{t} \cos (t-v) \sin v d v$.

SOLUTION: Notice that $h(t)=(f * g)(t)$, where $f(t)=\cos t$ and $g(t)=$ $\sin t$. Therefore, by the Convolution Theorem, $\mathcal{L}\{(f * g)(t)\}=F(s) G(s)$. Hence,

$$
\mathcal{L}\{h(t)\}=\mathcal{L}\{f(t)\} \mathcal{L}\{g(t)\}=\mathcal{L}\{\cos t\} \mathcal{L}\{\sin t\}=\frac{s}{s^{2}+1} \cdot \frac{1}{s^{2}+1}=\frac{s}{\left(s^{2}+1\right)^{2}}
$$

The same result is obtained with LaplaceTransform.

$$
\begin{aligned}
& \text { In }[1670]:=\text { LaplaceTransform }\left[\int_{0}^{t} \operatorname{Cos}[t-v] \operatorname{Sin}[v] d v,\right. \\
& \\
& \text { Out }[1670]=\frac{s}{\left(1+s^{2}\right)^{2}}
\end{aligned}
$$

8.5.2 Integral and Integrodifferential Equations

The Convolution Theorem is useful in solving numerous problems. In particular, this theorem can be employed to solve integral equations, which are equations that involve an integral of the unknown function.

EXAMPLE 8.5.3: Use the Convolution Theorem to solve the integral equation

$$
h(t)=4 t+\int_{0}^{t} h(t-v) \sin v d v
$$

SOLUTION: We first note that the integral in this equation represents $(h * g)(t)$ where $g(t)=\sin t$. Therefore, if we apply the Laplace transform to both sides of the equation, we obtain

$$
\begin{aligned}
\mathcal{L}\{h(t)\} & =\mathcal{L}\{4 t\}+\mathcal{L}\{h(t)\} \mathcal{L}\{\sin t\} \\
H(s) & =\frac{4}{s^{2}}+H(s) \frac{1}{s^{2}+1}
\end{aligned}
$$

where $H(s)=\mathcal{L}\{h(t)\}$. The same result is obtained with Laplace Transform.

```
In[1671]:= Clear[h]
    step1 = LaplaceTransform[
    h[t] == 4t + \int [ h [t-v] Sin[v]dv,t,s]
Out[1671]= LaplaceTransform[h[t],t,s] ==
    \frac{4}{\mp@subsup{s}{}{2}}+\frac{\mathrm{ LaplaceTransform[h[t],t,s]}}{1+\mp@subsup{s}{}{2}}
```

Solving for $H(s)$, we have

$$
\begin{aligned}
& H(s)\left(1-\frac{1}{s^{2}+1}\right)=\frac{4}{s^{2}} \quad \text { so } \quad H(s)=\frac{4\left(s^{2}+1\right)}{s^{4}}=\frac{4}{s^{2}}+\frac{4}{s^{4}} \\
& \text { In }[1672]:=\text { step2 }=\text { Solve[step1, } \\
& \text { LaplaceTransform }[h[t], t, s]] \\
& \text { Out }[1672]=\left\{\left\{\text { LaplaceTransform }[h[t], t, s] \rightarrow \frac{4\left(1+s^{2}\right)}{s^{4}}\right\}\right\}
\end{aligned}
$$

Then by computing the inverse Laplace transform,

$$
\begin{aligned}
& \text { In }[1673]:=\text { sol }=\text { InverseLaplaceTransform } \\
& \text { [step } 2 \llbracket 1,1,2 \rrbracket, s, t] \\
& \text { Out }[1673]=4\left(t+\frac{t^{3}}{6}\right)
\end{aligned}
$$

we find that

$$
h(t)=\mathcal{L}^{-1}\left\{\frac{4}{s^{2}}+\frac{4}{s^{4}}\right\}=4 t+\frac{2}{3} t^{3} .
$$

Laplace transforms are helpful in solving problems of other types as well. Next, we illustrate how Laplace transforms can be used to solve an integrodifferential equation, an equation that involves a derivative as well as an integral of the dependent variable, the unknown function.

EXAMPLE 8.5.4: Solve $\frac{d y}{d t}+y+\int_{0}^{t} y(u) d u=1$ subject to $y(0)=0$.

SOLUTION: Because we must take the Laplace transform of both sides of this integrodifferential equation, we first compute

$$
\mathcal{L}\left\{\int_{0}^{t} y(u) d u\right\}=\mathcal{L}\{(1 * y)(t)\}=\mathcal{L}\{1\} \mathcal{L}\{y\}=\frac{Y(s)}{s} .
$$

Hence,

$$
\begin{aligned}
\mathcal{L}\left\{\frac{d y}{d t}\right\}+\mathcal{L}\{y\}+\mathcal{L}\left\{\int_{0}^{t} y(u) d u\right\} & =\mathcal{L}\{1\} \\
s Y(s)-y(0)+Y(s)+\frac{Y(s)}{s} & =\frac{1}{s} \\
s^{2} Y(s)+s Y(s)+Y(s) & =1 \\
Y(s) & =\frac{1}{s^{2}+s+1} .
\end{aligned}
$$

The same steps are carried out with Mathematica.

$$
\begin{aligned}
& \text { In [1674]: = step1 = LaplaceTransform[} \\
& \left.y^{\prime}[t]+y[t]+\int_{0}^{t} y[u] d u==1, t, s\right] \\
& \text { Out [1674] = LaplaceTransform[y[t], t, s] } \\
& +\frac{\text { LaplaceTransform }[y[t], t, s]}{s} \\
& +s \text { LaplaceTransform[y[t], } t, s]-y[0]==\frac{1}{s} \\
& \text { Because } Y(s)=\frac{1}{s^{2}+s+1}=\frac{1}{(s+1 / 2)^{2}+(\sqrt{3} / 2)^{2}}, y(t)=\frac{2}{\sqrt{3}} e^{-t / 2} \sin \frac{\sqrt{3}}{2} t \text {. }
\end{aligned}
$$

The same solution, which is then graphed on the interval $[0,3 \pi]$ with Plot in Figure 8-14, is found with InverseLaplaceTransform and named sol.

```
In[1677]:= sol = InverseLaplaceTransform
    [step3[1, 1, 2\rrbracket, s, t]
Out[1677]=}\frac{2\mp@subsup{e}{}{-t/2}\operatorname{Sin}[\frac{\sqrt{}{3}t}{2}]}{\sqrt{}{3}
```


Figure 8-14 Plot of the solution to an integrodifferential equation

```
In[1678]:= Plot[sol, {t, 0, 3\pi}]
```


8.6 Applications of Laplace Transforms, Part I

8.6.I Spring-Mass Systems Revisited

Laplace transforms are useful in solving the spring-mass systems that were discussed in earlier sections. Although the method of Laplace transforms can be used to solve all problems discussed in the section on applications of higher-order equations, this method is most useful in alleviating the difficulties associated with problems that involve piecewise-defined forcing functions. Hence, we investigate the use of Laplace transforms to solve the second-order initial-value problem that models the motion of a mass attached to the end of a spring. We found in Chapter 5 that without forcing this situation is modeled by the initial-value problem

$$
\left\{\begin{array}{l}
m x^{\prime \prime}+c x^{\prime}+k x=0 \tag{8.20}\\
x(0)=\alpha, x^{\prime}(0)=\beta
\end{array}\right.
$$

where m represents the mass, c the damping coefficient, and k the spring constant determined by Hooke's law. We demonstrate how the method of Laplace trans-
forms is used to solve initial-value problems of this type if the forcing function is discontinuous.

EXAMPLE 8.6.1: Suppose that a mass with $m=1$ is attached to a spring with spring constant $k=1$. If there is no resistance due to damping determine the displacement of the mass if it is released from its equilibrium position and is subjected to the force $f(t)=\left\{\begin{array}{l}\sin t, 0 \leq t<\pi / 2 \\ 0, t \geq \pi / 2 .\end{array}\right.$

SOLUTION: In this case, the constants are $m=k=1$ and $c=0$. The initial position is $x(0)=0$ and the initial velocity is $x^{\prime}(0)=0$. Hence, the initial-value problem that models this situation is

$$
x^{\prime \prime}+x=\left\{\begin{array}{l}
\sin t, 0 \leq t<\pi / 2 \\
0, t \geq \pi / 2
\end{array} \quad, x(0)=0, x^{\prime}(0)=0 .\right.
$$

Because we will take the Laplace transform of both sides of the differential equation, we write $f(t)$ in terms of the unit step function. This gives us

$$
f(t)=[\mathcal{U}(t-0)-\mathcal{U}(t-\pi / 2)] \sin t=[1-\mathcal{U}(t-\pi / 2)] \sin t
$$

which we graph with Plot in Figure 8-15.

$$
\operatorname{In}[1679]:=\operatorname{Plot}\left[\operatorname{Sin}[t]\left(1-\operatorname{UnitStep}\left[t-\frac{\pi}{2}\right]\right),\{t, 0, \pi\}\right]
$$

Figure 8-15 Plot of the forcing function

Using the method of Laplace transforms, we compute the Laplace transform of each side of the equation,

$$
\begin{aligned}
\text { In }[1680]:= & \text { step }=\text { LaplaceTransform }\left[\mathbf{x}^{\prime \prime}[t]+\mathbf{x}[t]==\right. \\
& \text { Sin } \left.[t]\left(1-\text { UnitStep }\left[t-\frac{\pi}{2}\right]\right), t, s\right] \\
\text { Out }[1680]= & \text { LaplaceTransform }[x[t], t, s] \\
& +S^{2} \text { LaplaceTransform }[x[t], t, s] \\
& -s x[0]-x^{\prime}[0]==\frac{1}{1+s^{2}}-\frac{e^{-\frac{\pi s}{2}} s}{1+s^{2}}
\end{aligned}
$$

apply the initial conditions,

$$
\begin{aligned}
\text { In }[1681]:= & \text { step } 2=\text { step } 1 / \cdot\left\{\mathbf{x}[0] \rightarrow 0, \mathbf{x}^{\prime}[0] \rightarrow 0\right\} \\
\text { Out }[1681]= & \text { LaplaceTransform }[x[t], t, s] \\
& +s^{2} \operatorname{LaplaceTransform~}[x[t], t, s]== \\
& \frac{1}{1+s^{2}}-\frac{e^{-\frac{\pi s}{2}} s}{1+s^{2}}
\end{aligned}
$$

and solve the resulting equation for $x(t)=\mathcal{L}^{-1}\{X(s)\}$.

$$
\begin{aligned}
\text { In }[1682]:= & \text { step } 3=\text { Solve }[\text { step } 2, \\
& \text { LaplaceTransform }[x[t], t, s]] \\
\text { Out }[1682]=\{ & \left\{\begin{array}{l}
\text { LaplaceTransform }[x[t], t, s] \rightarrow \\
\\
\\
\\
\left.\left.\frac{e^{-\frac{\pi s}{2}}\left(e^{\frac{\pi s}{2}}-s\right)}{\left(1+s^{2}\right)^{2}}\right\}\right\}
\end{array}\right.
\end{aligned}
$$

The solution is obtained with InverseLaplaceTransform.

$$
\begin{aligned}
\text { In }[1683]:= & \text { sol }=\text { InverseLaplaceTransform } \\
& {\left[-\frac{-1+e^{-\frac{\pi s}{2}} \mathbf{s}}{\left(1+\mathbf{s}^{2}\right)^{2}}, \mathbf{s}, \mathrm{t}\right] } \\
\text { Out }[1683]= & \frac{1}{4}(-2 t \operatorname{Cos}[t]+2 \operatorname{Sin}[t] \\
& \left.-(\pi-2 t) \operatorname{Cos}[t] \operatorname{UnitStep}\left[-\frac{\pi}{2}+t\right]\right)
\end{aligned}
$$

The same result is obtained with DSolve, which we then graph with Plot in Figure 8-16.

$$
\begin{aligned}
& \text { In }[1684]:=\text { Clear }[x, t, \text { sol }] \\
& \qquad \begin{aligned}
& \text { sol }=\text { DSolve }\left[\left\{\mathbf{x}^{\prime \prime}[\mathrm{t}]+\mathbf{x}[\mathrm{t}]==\operatorname{Sin}[\mathrm{t}]\right.\right. \\
&\left(1-\text { UnitStep }\left[\mathrm{t}-\frac{\pi}{2}\right]\right), \mathbf{x}[0]==0, \\
&\left.\left.\mathbf{x}^{\prime}[0]==0\right\}, \mathbf{x}[\mathrm{t}], \mathrm{t}\right] / / \text { Simplify }
\end{aligned}
\end{aligned}
$$

Figure 8-16 For $t \geq \pi / 2$, the motion is harmonic

$$
\begin{aligned}
& \text { Out }[1684]=\{\{x[t] \rightarrow \frac{1}{4}(-2 t \operatorname{Cos}[t]+2 \operatorname{Sin}[t] \\
&\left.\left.\left.-(\pi-2 t) \operatorname{Cos}[t] \operatorname{UnitStep}\left[-\frac{\pi}{2}+t\right]\right)\right\}\right\} \\
& \text { In }[1685]:=\operatorname{Plot}[x[t] / . \operatorname{sol},\{t, 0,2 \pi\}]
\end{aligned}
$$

Notice that resonance begins on the interval $0 \leq t<\pi / 2$. Then, for $t \geq \pi / 2$, the motion is harmonic. Hence, although the forcing function is zero for $t \geq \pi / 2$, the mass continues to follow the path defined by $x(t)$ indefinitely.

EXAMPLE 8.6.2: Suppose that a mass of $m=1$ is attached to a spring with spring constant $k=13$. If the mass is subjected to the resistive force due to damping $F_{R}=4 d x / d t$, determine the displacement of the mass if it is released from its equilibrium position and is subjected to the force

$$
f(t)=2 t[1-\mathcal{U}(t-1)]+2 \mathcal{U}(t-1)+10 \delta(t-3)
$$

SOLUTION: In this case, the initial-value problem is

$$
\left\{\begin{array}{l}
x^{\prime \prime}+4 x^{\prime}+13 x=2 t[1-\mathcal{U}(t-1)]+2 \mathcal{U}(t-1)+10 \delta(t-3) \\
x(0)=x^{\prime}(0)=0
\end{array}\right.
$$

We first graph $2 t[1-\mathcal{U}(t-1)]+2 \mathcal{U}(t-1)$ in Figure 8-17.

Figure 8-17 Plot of $2 t[1-\mathcal{U}(t-1)]+2 \mathcal{U}(t-1)$

```
In[1686]:= Plot[2t(1-UnitStep[t - 1])
    +2UnitStep[t-1],
    {t, 0, 4}, PlotRange- > {0, 4},
    AspectRatio- > 1]
```

Using the method of Laplace transforms, we take the Laplace transform of each side of the equation,

$$
\begin{aligned}
\text { In }[1687]:= & \text { step }= \\
& \text { LaplaceTransform }\left[\mathbf{x}^{\prime \prime}[t]\right. \\
& +4 \mathbf{x}^{\prime}[t]+13 x[t]== \\
& 2 t(1-\text { UnitStep }[t-1]) \\
& +2 \text { UnitStep }[t-1] \\
& +10 \text { DiracDelta }[t-3], t, s] \\
\text { Out }[1687]= & 13 \text { LaplaceTransform }[x[t], t, s] \\
& +s^{2} \text { LaplaceTransform }[x[t], t, s] \\
& +4(s \text { LaplaceTransform }[x[t], t, s]-x[0]) \\
& -s x[0]-x^{\prime}[0]==10 e^{-3 s}+\frac{2}{s^{2}} \\
& +\frac{2 e^{-s}}{s}-\frac{2 e^{-s}(1+s)}{s^{2}}
\end{aligned}
$$

apply the initial conditions,

```
In[1688]:= step2 = step1/.{\mathbf{x[0]-> 0, (' [0]-> 0}}
```

```
Out[1688]= 13 LaplaceTransform[x[t],t,s]
    +4 s LaplaceTransform[x[t],t,s]
    +s}\mp@subsup{}{}{2}\mathrm{ LaplaceTransform[x[t],t,s] ==
    10 e}\mp@subsup{e}{}{-3s}+\frac{2}{\mp@subsup{s}{}{2}}+\frac{2\mp@subsup{e}{}{-s}}{s}-\frac{2\mp@subsup{e}{}{-s}(1+s)}{\mp@subsup{s}{}{2}
```

and solve for $X(s)=\mathcal{L}\{x(t)\}$.

```
In[1689]:= step3 = Solve[step2,
    LaplaceTransform[x[t],t,s]]
```

Out [1689] $=\{\{$ LaplaceTransform[x[t],t,s] \rightarrow
$\left.\left.\frac{2 e^{-3 s}\left(-e^{2 s}+e^{3 s}+5 s^{2}\right)}{s^{2}\left(13+4 s+s^{2}\right)}\right\}\right\}$

The solution to the initial-value problem is obtained with Inverse LaplaceTransform.

$$
\begin{aligned}
& \text { In[1690]: = sol = } \\
& \text { InverseLaplaceTransform [} \\
& \left.\frac{2\left(1-e^{-s}+5 e^{-3 s} s^{2}\right)}{s^{2}\left(13+4 s+s^{2}\right)}, s, t\right] / / S i m p l i f y \\
& \text { Out }[1690]=2\left(\frac{\left.-24+(12-5 i) e^{(-2-3 i}\right) t}{1014}\right. \\
& +\frac{(12+5 i) e^{(-2+3 i) t}+78 t}{1014} \\
& -\frac{5}{6} \dot{i} e^{(-2-3 \text { i })(-3+t)}\left(-1+e^{6 \dot{i}(-3+t)}\right) \\
& \text { UnitStep [-3 + t] } \\
& -\frac{1}{1014}\left(\left(-102+\left(12-5 \text { ii) } e^{(-2-3 i)(-1+t)}\right.\right.\right. \\
& +\left(12+5 \text { i) } e^{(-2+3 \text { i })(-1+t)}\right. \\
& +78 t) \text { UnitStep }[-1+t]) \text {) }
\end{aligned}
$$

The same result is obtained with DSolve . The solution is graphed with Plot in Figure 8-18.

```
In[1691]:= sol = DSolve[{\mp@subsup{\mathbf{x}}{}{\prime\prime}[t] + 4\mp@subsup{\mathbf{x}}{}{\prime}[t] + 13x[t] ==
    2t (1 - UnitStep[t-1])
    +2UnitStep[t-1]
    +10DiracDelta[t-3],x[0] == 0,
    x'[0] == 0}, x[t], t]//Simplify
```


Figure 8-18 Note the effect of the impulse delivered at $t=3$

```
Out [1691] \(=\left\{\left\{x[t] \rightarrow-\frac{2}{507} e^{-2 t}\left(12 e^{2 t}-39 e^{2 t} t-12 \operatorname{Cos}[3 t]\right.\right.\right.\)
    \(+5 \operatorname{Sin}[3 t]+845 e^{6} \operatorname{Sin}[9-3 t]\)
    \(\times\) UnitStep [ \(-3+\) t]
    \(+\left(3 e^{2 t}(-17+13 t)+12 e^{2} \operatorname{Cos}[3-3 t]\right.\)
    \(\left.+5 e^{2} \operatorname{Sin}[3-3 t]\right)\) UnitStep \(\left.\left.\left.[-1+t]\right)\right\}\right\}\)
In [1692]:= Plot[x[t]/.sol, \{t, 0, 6\}, PlotRange- >All]
```

The graph of the solution shows the effect of the impulse delivered at $t=3$, which is especially evident when we compare this result to the solution of

$$
\left\{\begin{array}{l}
x^{\prime \prime}+4 x^{\prime}+13 x=2 t[1-\mathcal{U}(t-1)]+2 \mathcal{U}(t-1) \\
x(0)=x^{\prime}(0)=0
\end{array}\right.
$$

shown in Figure 8-19.

Figure 8-19 No impulse is delivered

```
In[1693]:= sol2 = DSolve[{\mp@subsup{\mathbf{x}}{}{\prime\prime}[t]+4\mp@subsup{\mathbf{x}}{}{\prime}[t]+13x[t] ==
    2t (1 - UnitStep[t-1])
    +2UnitStep[t-1], x[0] == 0,
    x'[0] == 0}, x[t], t]//Simplify
Out [1693] ={{x[t]->-\frac{2}{507}\mp@subsup{e}{}{-2t}(12\mp@subsup{e}{}{2t}-39\mp@subsup{e}{}{2t}t
    -12 Cos[3t] +5 Sin[3t]
    +(3 e 2t}(-17+13t)+12 \mp@subsup{e}{}{2}\operatorname{Cos[3-3t]
    +5 e}\mp@subsup{e}{}{2}\operatorname{Sin}[3-3t]) UnitStep[-1+t])}
In[1694]:= Plot[x[t]/.sol2, {t, 0, 6}, PlotRange- > All]
```


8.6.2 $L-R-C$ Circuits Revisited

Laplace transforms can be used to solve the $L-R-C$ circuit problems that were introduced earlier. Recall that the initial-value problem that is used to find the current is

$$
\left\{\begin{array}{l}
L \frac{d^{2} Q}{d t^{2}}+R \frac{d Q}{d t}+\frac{1}{C} Q=E(t) \tag{8.21}\\
Q(0)=Q_{0}, I(0)=\frac{d Q}{d t}(0)=I_{0}
\end{array}\right.
$$

where L, R, and C represent the inductance, resistance, and capacitance, respectively. Q is the charge of the capacitor and $d Q / d t=I$, where I is the current. $E(t)$ is the voltage supply. In particular, the method of Laplace transforms is most useful when the supplied voltage, $E(t)$, is piecewise defined.

EXAMPLE 8.6.3: Suppose that we consider a circuit with a capacitor C, a resistor R, and a voltage supply

$$
E(t)=\left\{\begin{array}{l}
100,0 \leq t<1 \\
200-100 t, 1 \leq t<2 \\
0, t \geq 2
\end{array}\right.
$$

If $L=0$, find $Q(t)$ and $I(t)$ if $Q(0)=0, C=10^{-2}$ farads, and $R=100 \Omega$.

SOLUTION: Because $L=0$, we can state the first-order initial-value problem as

$$
\left\{\begin{array}{l}
100 \frac{d Q}{d t}+100 Q=\left\{\begin{array}{l}
100,0 \leq t<1 \\
200-100 t, 1 \leq t<2 \\
0, t \geq 2
\end{array}\right. \\
Q(0)=0 .
\end{array}\right.
$$

First, we rewrite $E(t)$ in terms of the unit step functions as

$$
E(t)=100[1-\mathcal{U}(t-1)]+(200-100 t)[\mathcal{U}(t-1)-\mathcal{U}(t-2)] .
$$

When we use Mathematica to define $E(t)$, we use a lower-case e to avoid ambiguity with E , which represents $e \approx 2.71828$. See Figure 8-20.

```
In[1695]:= e[t_] = 100(1 - UnitStep[t - 1])
    +(200-100t) (UnitStep[t - 1]
    -UnitStep[t-2])
Out [1695]= 100(1 - UnitStep[-1 + t])
    +(200-100t) (-UnitStep[-2 + t]
    +UnitStep[-1 + t])
In[1696]:= Plot[e[t], {t, 0, 4}, PlotRange-> {0, 100}]
```

Now, we take the Laplace transform of both sides of the differential equation,

```
In[1697]:= step1 = LaplaceTransform[
                        100q'[t] + 100q[t] == e[t],t,s]
```


Figure 8-20 Plot of $E(t)$

$$
\begin{aligned}
\text { Out }[1697]= & 100 \text { LaplaceTransform }[q[t], t, s] \\
& +100(\mathrm{~s} \text { LaplaceTransform }[\mathrm{q}[\mathrm{t}], \mathrm{t}, \mathrm{~s}] \\
& -\mathrm{q}[0])==\frac{100}{\mathrm{~s}}-\frac{200 e^{-2 \mathrm{~s}}}{\mathrm{~s}}+\frac{100 e^{-s}}{\mathrm{~s}} \\
& -\frac{100 e^{-s}(1+s)}{s^{2}}+\frac{100 e^{-2 s}(1+2 s)}{s^{2}}
\end{aligned}
$$

apply the initial condition,

$$
\begin{aligned}
\text { In }[1698]:= & \text { step } 2=\text { step } 1 / \cdot q[0]->0 \\
\text { Out }[1698]= & 100 \text { LaplaceTransform }[q[t], t, s] \\
& +100 \mathrm{~s} \text { LaplaceTransform }[q[t], t, s]==\frac{100}{s} \\
& -\frac{200 e^{-2 s}}{s}+\frac{100 e^{-s}}{s} \\
& -\frac{100 e^{-s}(1+s)}{s^{2}}+\frac{100 e^{-2 s}(1+2 s)}{s^{2}}
\end{aligned}
$$

and solve for $\mathcal{L}\{Q(t)\}$.

```
In[1699]:= step3 = Solve[step2,
    LaplaceTransform[q[t],t,s]]
```

Out [1699] $=\{\{$ LaplaceTransform[q[t],t,s] \rightarrow

$$
\left.\left.\frac{e^{-2 s}\left(1-e^{s}+e^{2 s} s\right)}{s^{2}(1+s)}\right\}\right\}
$$

The solution to the initial-value problem is obtained with Inverse LaplaceTransform.

$$
\begin{aligned}
& \text { In }[1700]:=\text { sol }=\text { InverseLaplaceTransform }[\\
&\left.\frac{e^{-2 s}-e^{-s}+s}{s^{2}(1+\mathbf{s})}, s, t\right]
\end{aligned}
$$

```
Out [1700] = \(1-e^{-t}+\left(-3+e^{2-t}+t\right)\) UnitStep \([-2+t]\)
    \(-\left(-2+\mathbb{e}^{1-t}+t\right)\) UnitStep \([-1+t]\)
```

The same result is obtained with DSolve.

```
In[1701]:= sol = DSolve[{100q'[t]
    +100q[t] == e[t],q[0] == 0},
    q[t],t]//Simplify
Out[1701]={{q[t] -> \mp@subsup{e}{}{-t}(-1+\mp@subsup{e}{}{t}
    +(\mp@subsup{e}{}{2}+\mp@subsup{\mathbb{e}}{}{t}(-3+t)) UnitStep[-2+t]
    -(\mathbb{e}+\mp@subsup{\mathbb{e}}{}{t}(-2+t)) UnitStep[-1+t])}}
```

We now compute $I=d Q / d t$ and then graph both $Q(t)$ and $I(t)$ on the interval [0, 4] in Figure 8-21.

Figure 8-21 $\begin{array}{ll}\text { (a) } Q(t),(b) I(t)\end{array}$

```
In[1702]:= i[t_] = D[q[t]/.sol, t];
    pq = Plot[q[t] /. sol, {t, 0, 4},
    DisplayFunction- > Identity];
    \pi=Plot[i[t], {t, 0, 4},
    DisplayFunction- > Identity];
    Show[GraphicsArray[{pq, \pi}]]
```

From the graph, we see that after the voltage source is turned off at $t=2$, the charge approaches zero.

EXAMPLE 8.6.4: Consider the circuit with no capacitor, $R=100 \Omega$, and $L=100 H$ if $E(t)=\left\{\begin{array}{l}100 V, 0 \leq t<1 \\ 0,1 \leq t<2\end{array}\right.$ and $E(t+2)=E(t)$. Find the current $I(t)$ if $I(0)=0$.

SOLUTION: The differential equation that models the situation is $100 Q^{\prime \prime}+100 Q^{\prime}=E(t)$. Now, $Q^{\prime}=I$, so we can write this equation as $100 I^{\prime}$ $+100 I=E(t)$. Hence, the initial-value problem is

$$
\left\{\begin{array}{l}
100 I^{\prime}+100 I=E(t) \\
I(0)=0
\end{array}\right.
$$

Notice that $E(t)$ is a periodic function, so we first compute $\mathcal{L}\{E(t)\}$

```
In[1703]:= Clear[i, step1, step2]
lape \(=\operatorname{Simplify}\left[\frac{\int_{0}^{1} 100 \operatorname{Exp}[-\mathrm{st}] \mathrm{dt}}{1-\operatorname{Exp}[-2 \mathrm{~s}]}\right]\)
Out \([1703]=\frac{100 e^{s}}{s+e^{s} s}\)
and see \(\mathcal{L}\{E(t)\}=\frac{100}{s\left(1+e^{-s}\right)}\).
```

We now compute the Laplace transform of the left side of the equation,

$$
\begin{aligned}
\text { In }[1704]:= & \text { step } 1= \\
& \text { LaplaceTransform[100 } i^{\prime}[t] \\
& +100 i[t], t, s]==1 \text { ape } \\
\text { Out }[1704]= & 100 \text { LaplaceTransform }[i[t], t, s] \\
& +100(-i[0] \\
& +s \text { LaplaceTransform[i[t],t,s])==} \\
& \frac{100 e^{s}}{s+e^{s} s}
\end{aligned}
$$

apply the initial condition,

$$
\begin{aligned}
\text { In }[1705]:= & \text { step } 2=\text { step } 1 / . \mathbf{i}[0]->0 \\
\text { Out }[1705]= & 100 \text { LaplaceTransform }[i[t], t, s] \\
& +100 \mathrm{~s} \text { LaplaceTransform }[i[t], t, s]== \\
& \frac{100 e^{s}}{s+e^{s} s}
\end{aligned}
$$

and solve for $\mathcal{L}\{I(t)\}$.

$$
\begin{aligned}
& \text { In }[1706]:=\text { step } 3=\text { Solve[step } 2, \text { LaplaceTransform }[\\
& \text { } \begin{array}{c}
\text { }[t], t, s]] \\
\text { Out }[1706]=\{\{\text { LaplaceTransform }[i[t], t, s] \rightarrow \\
\left.\left.\frac{e^{s}}{\left(1+e^{s}\right) s(1+s)}\right\}\right\}
\end{array}
\end{aligned}
$$

As we did before, we write a power series expansion of $\frac{1}{1+e^{-s}}$:

$$
\frac{1}{1+e^{-s}}=\sum_{n=0}^{\infty}\left(-e^{-s}\right)^{n}=1-e^{-s}+e^{-2 s}-e^{-3 s}+\cdots .
$$

Thus,

$$
\mathcal{L}\{I(t)\}=\frac{1}{s(s+1)}\left(1-e^{-s}+e^{-2 s}-e^{-3 s}+\cdots\right) .
$$

Note that we use i to represent I instead of I because I represents the imaginary number $i=\sqrt{-1}$.

Because, $\mathcal{L}^{-1}\left\{\frac{1}{s(s+1)}\right\}=1-e^{-t}$,

$$
\begin{aligned}
& \text { In }[1707]:=\text { InverseLaplaceTransform }\left[\frac{1}{s(s+1)}, s, t\right] \\
& \text { Out }[1707]=1-e^{-t}
\end{aligned}
$$

we have that

$$
\begin{aligned}
I(t)= & \left(1-e^{-t}\right)-\left(1-e^{-(t-1)}\right) \mathcal{U}(t-1) \\
& +\left(1-e^{-(t-2)}\right) \mathcal{U}(t-2)-\left(1-e^{-(t-3)}\right) \mathcal{U}(t-3)+\cdots .
\end{aligned}
$$

We can write this function as

$$
I(t)=\left\{\begin{array}{l}
1-e^{-t}, 0 \leq t<1 \\
-e^{-t}+e^{-(t-1)}, 1 \leq t<2 \\
1-e^{-t}+e^{-(t-1)}-e^{-(t-2)}, 2 \leq t<3 \\
-e^{-t}+e^{-(t-1)}-e^{-(t-2)}+e^{-(t-3)}, 3 \leq t<4 \\
\vdots
\end{array}\right.
$$

To graph $I(t)$ on the interval $[0, n]$, we note that $\mathcal{U}(t-n)=0$ for $t \leq n$ so the graph of $I(t)$ on the interval $[0, n]$ is the same as the graph of

$$
\begin{aligned}
\left(1-e^{-t}\right)-\left(1-e^{-(t-1)}\right) \mathcal{U}(t-1)+ & \left(1-e^{-(t-2)}\right) \mathcal{U}(t-2)-\left(1-e^{-(t-3)}\right) \mathcal{U}(t-3) \\
+ & \cdots+(-1)^{n-1}\left(1-e^{-[t-(n-1)]}\right) \mathcal{U}(t-(n-1)) .
\end{aligned}
$$

```
In[1708]:= Clear[i]
    i[n_] :=
        i[n] = i[n-1]
            +(-1)n}(1-\operatorname{Exp}[-(t-n)]
                        UnitStep[t-n]
    i[0] = 1- Exp[-t];
```

For example, to graph $I(t)$ on the interval $[0,5]$ we enter

```
In[1709]:= i[4]
Out [1709]= 1- - e
    -(1- e 3-t})\mathrm{ UnitStep[-3+t]
    +(1- e 2-t})\mathrm{ UnitStep [-2 + t]
    -(1- e 1-t})\mathrm{ UnitStep [-1 + t]
```

and then use Plot. See Figure 8-22.

```
In[1710]:= Plot[i[4],{t, 0, 5}]
```


Figure 8-22 Plot of $I(t)$ on the interval [0,5]

Notice that $I(t)$ increases over the intervals where $E(t)=100$ and decreases on those where $E(t)=0$.

We can consider the $L-R-C$ circuit in terms of the integrodifferential equation

$$
\begin{equation*}
L \frac{d I}{d t}+R I+\frac{1}{C} \int_{0}^{t} I(\alpha) d \alpha=E(t) \tag{8.22}
\end{equation*}
$$

which is useful when using the method of Laplace transforms to find the current.

EXAMPLE 8.6.5: Find the current $I(t)$ if $L=1$ Henry, $R=6 \Omega, C=$ $1 / 9 \operatorname{Farad}, E(t)=1$ volt, and $I(0)=0$.

SOLUTION: In this case, we must solve the initial-value problem

$$
\left\{\begin{array}{l}
\frac{d I}{d t}+6 I+9 \int_{0}^{t} I(\alpha) d \alpha=1 \\
I(0)=0
\end{array}\right.
$$

First, we compute the Laplace transform of each side of the equation,

```
In[1711]:= Clear[i]
    step1 = LaplaceTransform[
            i'[t] + 6i[t]
            +9Integrate[i[\alpha],{\alpha,0,t}] == 1,
            t,s]
```

```
Out[1711]= -i[0] + 6 LaplaceTransform[i[t],t,s]
    +\frac{9 LaplaceTransform[i[t],t,s]}{s}
    +s LaplaceTransform[i[t],t,s]== \frac{1}{s}
```

apply the initial condition,

```
In[1712]:= step2 = step1/.i[0]- > 0
Out[1712]= 6 LaplaceTransform[i[t],t, s]
    9 LaplaceTransform[i[t],t,s]
    +s LaplaceTransform[i[t],t,s]== \frac{1}{s}
```

and solve for $\mathcal{L}\{I(t)\}$.

```
In[1713]:= step3 = Solve[step2,
    LaplaceTransform[i[t],t,s]]
```


The solution is obtained with InverseLaplaceTransform,

```
In[1714]:= sol = InverseLaplaceTransform[
    step3[[1, 1, 2]], s, t]
Out[1714]= e e-3t}
```

which we graph with Plot in Figure 8-23.

```
In[1715]:= Plot[sol, {t, 0, 3}]
```


Figure 8-23 $\quad I(t) \rightarrow 0$ as $t \rightarrow \infty$

8.6.3 Population Problems Revisited

Laplace transforms can be used to solve the population problems that were discussed as applications of first-order equations and systems. Laplace transforms are especially useful when dealing with piecewise-defined forcing functions, but they are useful in many other cases as well.

EXAMPLE 8.6.6: Let $x(t)$ represent the population of a certain country. The rate at which the population increases and decreases depends on the growth rate of the country as well as the rate at which people are being added to or subtracted from the population due to immigration or emigration. Hence, we consider the population problem

$$
\left\{\begin{array}{l}
x^{\prime}+k x=1000(1+a \sin t) \\
x(0)=x_{0} .
\end{array}\right.
$$

Solve this problem using Laplace transforms with $k=3, x_{0}=2000$, and $a=0.2,0.4,0.6$, and 0.8 . Plot the solution in each case.

SOLUTION: Using the method of Laplace transforms, we begin by computing the Laplace transform of each side of the equation with LaplaceTransform,

```
In[1716]:= step1 = LaplaceTransform[
        x'[t] + 3 x [t] == 1000(1 +a Sin[t]), t, s]
Out[1716]= 3 LaplaceTransform[x[t],t, s]
    +s LaplaceTransform[x[t],t,s]
    -x[0] == 1000( }\frac{1}{s}+\frac{a}{1+\mp@subsup{s}{}{2}}
```

apply the initial condition,

```
In[1717]:= step2 = step1/. x[0]- > 2000
Out[1717] = -2000 + 3 LaplaceTransform[x[t],t,s]
    +s LaplaceTransform[x[t],t,s] ==
        1000(\frac{1}{s}+\frac{a}{1+\mp@subsup{s}{}{2}})
```

and then use Solve to solve step 2 for $X(s)=\mathcal{L}\{x(t)\}$.

```
In[1718]:= step3 = Solve[step2,
    LaplaceTransform[x[t],t,s]]
Out[1718]={{LaplaceTransform[x[t],t,s]->
    1000(1+2s+as+\mp@subsup{s}{}{2}+2\mp@subsup{s}{}{3})
```

To find the solution, we use InverseLaplaceTransform and name the result sol.

```
In[1719]:= sol =
    InverseLaplaceTransform[step3[[1, 1, 2]],
                s,t]//Simplify
Out[1719]= \frac{100}{3}(10+(50+3a) e}\mp@subsup{e}{}{-3t}-3a(\operatorname{Cos[t]-3 Sin[t]))
```

We use the result to investigate the population for the values of a using Plot. See Figure 8-24.

```
In[1720]:= toplot = Table[sol, {a, 0.2,0.8,0.2}];
In[1721]:= grays = Table[GrayLevel[i],
                            {i, 0,0.7,0.7/4}];
                Plot[Evaluate[toplot], {t, 0, 25},
                    PlotStyle- > grays, PlotRange- > All,
                        AxesOrigin- > {0, 0}]
```


Figure 8-24 Fluctuations in the size of the population are larger for larger values of a

Application: The Tautochrone

Suppose that from rest, a particle slides down a frictionless curve under the force of gravity. What must the shape of the curve be in order for the time of descent to be independent of the starting position of the particle?

We can determine the shape of the curve using the method of Laplace transforms. Suppose that the particle starts at height y and that its speed is v when it is at a height of z. If m is the mass of the particle and g is the acceleration due to gravity, the speed is found by equating the kinetic and potential energies of the particle with

$$
\begin{aligned}
\frac{1}{2} m v^{2} & =m g(y-z) \\
v & =\sqrt{2 g} \sqrt{y-z}
\end{aligned}
$$

Let σ denote the arc length along the curve from its lowest point to the particle. Then, the time required for the descent is

$$
\text { time }=\int_{0}^{\sigma(y)} \frac{1}{v} d \sigma=\int_{0}^{y} \frac{1}{v} \frac{d \sigma}{d z}=\int_{0}^{y} \frac{1}{v} \phi(z) d z
$$

where $\phi(y)=d \sigma / d y$. The time is constant and $v=\sqrt{2 g} \sqrt{y-z}$ so we have

$$
\int_{0}^{y} \frac{\phi(z)}{\sqrt{y-z}} d z=c_{1}
$$

where c_{1} is a constant. To use a convolution, we multiply by $e^{-s y} d y$ and integrate:

$$
\begin{aligned}
\int_{0}^{\infty} e^{-s y} \int_{0}^{y} \frac{\phi(z)}{\sqrt{y-z}} d z d y & =\int_{0}^{\infty} e^{-s y} c_{1} d y \\
\mathcal{L}\left\{\phi * y^{-1 / 2}\right\} & =\mathcal{L}\left\{c_{1}\right\} .
\end{aligned}
$$

Using the Convolution Theorem, we simplify to obtain

$$
\begin{gathered}
\qquad \mathcal{L}\{\phi\} \mathcal{L}\left\{y^{-1 / 2}\right\}=\frac{c_{1}}{s} . \\
\text { In }[1722]:=\text { step1 = LaplaceTransform }\left[\int_{0}^{\mathrm{y}} \frac{\phi[\mathbf{z}]}{\sqrt{\mathrm{Y-z}}} \mathbb{d} \mathbf{z}==\mathbf{c} 1,\right. \\
\mathrm{y}, \mathrm{~s}] \\
\text { Out }[1722]=\frac{\sqrt{\pi} \text { LaplaceTransform }[\phi[\mathrm{y}], \mathrm{Y}, \mathrm{~s}]}{\sqrt{\mathrm{s}}}==\frac{\mathrm{c} 1}{\mathrm{~s}}
\end{gathered}
$$

Then, $\mathcal{L}\{\phi\}=\frac{c_{1}}{\sqrt{\pi s}}$.

$$
\begin{aligned}
\text { In }[1723]:=\text { step } 2= & \text { Solve }[\text { step } 1, \\
& \text { LaplaceTransform }[\phi[y], y, s]]
\end{aligned}
$$

Out $[1723]=\left\{\left\{\operatorname{LaplaceTransform}[\phi[y], y, s] \rightarrow \frac{c 1}{\sqrt{\pi} \sqrt{s}}\right\}\right\}$
We use InverseLaplaceTransform to compute $\phi=\mathcal{L}^{-1}\left\{\frac{c_{1}}{\sqrt{\pi s}}\right\}=\frac{c_{1}}{\pi} y^{-1 / 2}=$ $k y^{-1 / 2}$.

$$
\begin{aligned}
& \text { In }[1724]:=\text { step3 }=\begin{array}{r}
\text { InverseLaplaceTransform }[\\
\text { step } 2[[1,1,2]], s, y]
\end{array} \\
& \text { Out }[1724]=\frac{c 1}{\pi \sqrt{Y}}
\end{aligned}
$$

Recall that $\phi(y)=d \sigma / d y$ represents arc length. Then, $\phi(y)=d \sigma / d y=\sqrt{1+(d x / d y)^{2}}$ and substitution of $\phi=k y^{-1 / 2}$ into this equation gives us

$$
\sqrt{1+\left(\frac{d x}{d y}\right)^{2}}=k y^{-1 / 2} \quad \text { or } \quad 1+\left(\frac{d x}{d y}\right)^{2}=\frac{k^{2}}{y}
$$

We solve this equation for $d x / d y$ to obtain $\frac{d x}{d y}=\sqrt{\frac{k^{2}}{y}-1}$. With the substitution $y=k^{2} \sin ^{2} \theta$ we obtain

$$
\begin{aligned}
d x & =\sqrt{\frac{k^{2}}{k^{2} \sin ^{2} \theta}-1} \cdot 2 k^{2} \sin \theta \cos \theta d \theta=\sqrt{\frac{k^{2}\left(1-\sin ^{2} \theta\right)}{k^{2} \sin ^{2} \theta}} \cdot 2 k^{2} \sin \theta \cos \theta d \theta \\
& =\frac{\cos \theta}{\sin \theta} \cdot 2 k^{2} \sin \theta \cos \theta d \theta=2 k^{2} \cos \theta d \theta
\end{aligned}
$$

and integration results in $x(\theta)=\frac{1}{2} k^{2}(2 \theta+\sin 2 \theta)+C_{1}$. To find C_{1}, we apply the initial condition $x(0)=0$ to see that $C_{1}=0$ and $x(\theta)=\frac{1}{2} k^{2}(2 \theta+\sin 2 \theta)$.

$$
\begin{aligned}
& \text { In }[1725]:=\mathbf{x}\left[\theta_{-}, \mathbf{k}_{-}\right]=\int 2 \mathbf{k}^{2} \operatorname{Cos}[\theta]^{2} \mathrm{~d} \theta \\
& \text { Out }[1725]=2 \mathrm{k}^{2}\left(\frac{\theta}{2}+\frac{1}{4} \operatorname{Sin}[2 \theta]\right)
\end{aligned}
$$

Using the identity $\sin ^{2} \theta=\frac{1}{2}(1-\cos 2 \theta)$ yields $y(\theta)=k^{2} \sin ^{2} \theta=\frac{1}{2} k^{2}(1-\cos 2 \theta)$.

$$
\begin{aligned}
& \text { In }[1726]:=\mathrm{y}\left[\text { theta } \mathrm{a}_{-}, \mathbf{k}_{-}\right]=\mathbf{k}^{\wedge} 2 \operatorname{Sin}[\theta]^{\wedge} 2 \\
& \text { Out }[1726]=\mathrm{k}^{2} \operatorname{Sin}[\theta]^{2}
\end{aligned}
$$

We use ParametricPlot to graph $\left\{\begin{array}{l}x=x(\theta) \\ y=y(\theta)\end{array} \quad,-\pi / 2 \leq \theta \leq 0\right.$ for various values

Figure 8-25 Increasing k increases the length of the curve
of k in Figure 8-25.

```
In[1727]:= somegraphs =
    Map[ParametricPlot[
    {x[0,#],y[0,#]},
    {0,-\pi/2, 0},
    DisplayFunction- > Identity]&,
    {0.25, 0.5, 0.75, 1, 2, 3}];
In[1728]:= toshow = Partition[somegraphs, 3];
In[1729]:= Show[GraphicsArray[toshow]]
```

The graphs illustrate that increasing the value of k increases the length of the curve. The time is independent of the choice of y (that is, the choice of θ). Therefore,

$$
\text { time }=\int_{0}^{y} \frac{\phi(z)}{\sqrt{y-z}} d z=\int_{0}^{y} \frac{k y^{-1 / 2}}{\sqrt{y-z}} d z=-2 k\left[\sqrt{\frac{y-z}{y}}\right]_{0}^{y}=-2 k \cdot-1=2 k .
$$

8.7 Laplace Transform Methods for Systems

In many cases, Laplace transforms can be used to solve initial-value problems that involve a system of linear differential equations. This method is applied in much the same way that it was in solving initial-value problems involving higher-order
differential equations. In the case of systems of differential equations, however, a system of algebraic equations is obtained after taking the Laplace transform of each equation. After solving the algebraic system for the Laplace transform of each of the unknown functions, the inverse Laplace transform is used to find each unknown function in the solution of the system.

EXAMPLE 8.7.1: Solve $\mathbf{X}^{\prime}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \mathbf{X}+\binom{\sin t}{2 \cos t}$ subject to $\mathbf{X}(0)=\binom{2}{1}$.

SOLUTION: Let $\mathbf{X}(t)=\binom{x(t)}{y(t)}$. Then, we can rewrite this initial-value problem as

$$
\left\{\begin{array}{l}
x^{\prime}=y+\sin t \\
y^{\prime}=x+2 \cos t \\
x(0)=2, y(0)=0 .
\end{array}\right.
$$

$$
\begin{aligned}
& \text { In }[1730]:=\text { Clear }[x, y] \\
& \qquad \begin{aligned}
\text { sys }=\left\{x^{\prime}[t]\right. & ==y[t]+\operatorname{Sin}[t], \\
y^{\prime}[t] & =x[t]+2 \cos [t]\} ;
\end{aligned}
\end{aligned}
$$

Taking the Laplace transform of both sides of each equation yields the system

$$
\left.\begin{array}{rl}
& \left\{\begin{array}{l}
s X(s)-x(0)=Y(s)+\frac{1}{s^{2}+1} \\
s Y(s)-y(0)=X(s)+\frac{2 s}{s^{2}+1}
\end{array}\right. \\
\text { In }[1731]:= & \text { step1 = LaplaceTransform }[s y s, t, s]
\end{array}\right\} \begin{aligned}
\text { Out }[1731]= & \{s \text { LaplaceTransform }[\mathrm{x}[\mathrm{t}], \mathrm{t}, \mathrm{~s}]-\mathrm{x}[0]== \\
& \frac{1}{1+\mathrm{s}^{2}}+\operatorname{LaplaceTransform}[\mathrm{y}[\mathrm{t}], \mathrm{t}, \mathrm{~s}], \\
& \mathrm{sLaplaceTransform}[\mathrm{y}[\mathrm{t}], \mathrm{t}, \mathrm{~s}]-\mathrm{y}[0]== \\
& \left.\frac{2 \mathrm{~s}}{1+\mathrm{s}^{2}}+\operatorname{LaplaceTransform}[\mathrm{x}[\mathrm{t}], \mathrm{t}, \mathrm{~s}]\right\}
\end{aligned}
$$

and applying the initial condition results in

$$
\left\{\begin{array}{l}
s X(s)-Y(s)=\frac{1}{s^{2}+1}+2 \\
-X(s)+s Y(s)=\frac{2 s}{s^{2}+1} .
\end{array}\right.
$$

$$
\begin{aligned}
\text { In }[1732]:= & \text { step } 2=\text { step } 1 / .\{x[0]->2, y[0]->1\} \\
\text { Out }[1732]= & \left\{\begin{array}{l}
-2+\text { s LaplaceTransform }[x[t], t, s]== \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
-1+s^{2}+\text { s LaplaceTransform }[y[t], t, s]== \\
1+s^{2}
\end{array}+\text { LaplaceTransform }[x[t], t, s]\right\}
\end{aligned}
$$

We now use Solve to solve this system of algebraic equations for $X(s)$ and $Y(s)$.

$$
\begin{aligned}
& \text { In[1733]:= step3 = Solve[step2, } \\
& \text { \{ LaplaceTransform[x[t], } t, s] \text {, } \\
& \text { LaplaceTransform[y[t], } t, s]\}] \\
& \text { Out [1733] }=\{\{\text { LaplaceTransform }[x[t], t, s] \rightarrow \\
& -\frac{-1-5 s-s^{2}-2 s^{3}}{\left(-1+s^{2}\right)\left(1+s^{2}\right)}, \\
& \text { LaplaceTransform[y[t],t,s] } \rightarrow \\
& \left.\left.-\frac{-3-s-4 s^{2}-s^{3}}{\left(-1+s^{2}\right)\left(1+s^{2}\right)}\right\}\right\}
\end{aligned}
$$

We find $x(t)$ and $y(t)$ with InverseLaplaceTransform.

$$
\left.\begin{array}{l}
\text { In }[1734]:=\mathrm{x}\left[\mathrm{t}_{-}\right] \\
\text {InverseLaplaceTransform }[\\
\\
\\
\left.-\frac{-1-5 \mathrm{~s}-\mathrm{s}^{2}-2 \mathrm{~s}^{3}}{\left(-1+\mathrm{s}^{2}\right)\left(1+\mathrm{s}^{2}\right)}, \mathrm{s}, \mathrm{t}\right] / / \text { Simplify } \\
\mathrm{y}\left[\mathrm{t}_{-}\right]
\end{array}\right)=\begin{aligned}
& \text { InverseLaplaceTransform }[\\
&\left.-\frac{-3-\mathrm{s}-4 \mathrm{~s}^{2}-\mathrm{s}^{3}}{\left(-1+\mathrm{s}^{2}\right)\left(1+\mathrm{s}^{2}\right)}, \mathrm{s}, \mathrm{t}\right] / / \text { Simplify }
\end{aligned}
$$

Out $[1734]=\frac{1}{4}\left(5 e^{-t}+9 e^{t}-6 \operatorname{Cos}[t]\right)$
Out $[1734]=\frac{1}{4}\left(-5 e^{-t}+9 e^{t}+2 \operatorname{Sin}[t]\right)$
Last, we graph $x(t)$ and $y(t)$ in Figure 8-26 (a) and $\left\{\begin{array}{l}x=x(t) \\ y=y(t)\end{array}\right.$ in Figure 8-26 (b).

```
In[1735]:= Plot[{x[t], y[t]},{t, -2, 3},
    PlotRange- > {-1, 4}, AspectRatio- > 1,
    PlotStyle- > {GrayLevel[0],
    GrayLevel[0.5]}]
```


Figure 8-26 (a) $x(t)$ (in black) and $y(t)$ (in gray). (b) Parametric plot of x versus y

```
In[1736]:= ParametricPlot[{x[t],y[t]},{t, -2, 3},
    PlotRange-> {{0, 10}, {-5, 5}},
    AspectRatio- > 1]
```

In some cases, systems that involve higher-order differential equations can be solved with Laplace transforms.

EXAMPLE 8.7.2: Solve $\left\{\begin{array}{l}x^{\prime \prime}=-2 x-4 y-\cos t \\ y^{\prime \prime}=-x-2 y+\sin t \\ x(0)=x^{\prime}(0)=y(0)=y^{\prime}(0)=0 .\end{array}\right.$

SOLUTION: After defining the system of equations in sys, we take the Laplace transform of each equation.

```
In[1737]:= Clear[\mathbf{x},\textrm{y},\textrm{t}]
In[1738]:= sys = {x'[tt] == -2x[t] - 4y[t] - Cos[t],
    y''[t] == -x[t] - 2y[t] + Sin[t]}
Out[1738]= {x''[t] == - Cos[t] - 2x[t] - 4 y[t],
    y'[t] == Sin[t] - x[t] - 2 y [t]}
```

$$
\begin{aligned}
\text { In }[1739]:= & \text { step1 }=\text { LaplaceTransform }[s y s, t, s] \\
\text { Out }[1739]= & \left\{s^{2} \text { LaplaceTransform }[x[t], t, s]\right. \\
& -s x[0]-x^{\prime}[0]==-\frac{s}{1+s^{2}} \\
& -2 \text { LaplaceTransform }[x[t], t, s] \\
& -4 \text { LaplaceTransform }[y[t], t, s], \\
& s^{2} \text { LaplaceTransform }[y[t], t, s] \\
& -s y[0]-y^{\prime}[0]==\frac{1}{1+s^{2}} \\
& - \text { LaplaceTransform }[x[t], t, s] \\
& -2 \text { LaplaceTransform }[y[t], t, s]\}
\end{aligned}
$$

We then apply the initial conditions and solve the resulting algebraic system of equations for $X(s)$ and $Y(s)$.

```
In[1740]:= step2 =
    step1/.{x[0]-> 0, x'[0]-> 0,
        y[0]->0, y'[0]->0}
Out[1740]={s'LaplaceTransform[x[t],t,s] == - = s
    -2 LaplaceTransform[x[t],t, s]
    -4 LaplaceTransform[y[t],t, s],
    s}\mp@subsup{s}{}{2}\mathrm{ LaplaceTransform[y[t],t,s] == = 1
    -LaplaceTransform[x[t],t,s]
    -2 LaplaceTransform[y[t],t,s]}
```

In[1741]: = step3 =
Solve[step2,
\{ LaplaceTransform[x[t], $t, s]$,
LaplaceTransform[y[t], $t, s]\}] / /$
Simplify
Out [1741] $=\{\{$ LaplaceTransform $[x[t], t, s] \rightarrow$
$-\frac{4+2 s+s^{3}}{s^{2}\left(4+5 s^{2}+s^{4}\right)}$,
LaplaceTransform[y[t],t,s] \rightarrow
$\left.\left.\frac{2+s+s^{2}}{4 s^{2}+5 s^{4}+s^{6}}\right\}\right\}$

Finally, we use InverseLaplaceTransform to compute $x(t)=\mathcal{L}^{-1}\{X(s)\}$ and $y(t)=\mathcal{L}^{-1}\{Y(s)\}$.

$$
\begin{aligned}
\text { In }[1742]:= & \mathbf{x}\left[t_{-}\right]=\text {InverseLaplaceTransform }[\\
\text { Out }[1742]= & -\frac{1}{2}-t+\frac{1}{3}(\operatorname{Cos}[t]+4 \operatorname{Sin}[t]) \\
& +\frac{1}{6}(\operatorname{Cos}[2 t]-\operatorname{Sin}[2 t]) \\
\text { In }[1743]:= & \left.\left.y\left[t_{-}\right]=\operatorname{InverseLaplaceTransform}[1,2]\right], \mathrm{s}, \mathrm{t}\right]
\end{aligned}
$$

We see that the initial conditions are satisfied by graphing $x(t)$ and $y(t)$ in Figure 8-27 (a) and $\left\{\begin{array}{l}x=x(t) \\ y=y(t)\end{array}\right.$ in Figure 8-27 (b).

```
In[1744]:= Plot[{x[t],y[t]},{t, -\pi, 4\pi},
        PlotRange }->{-3\pi,2\pi},\mathrm{ AspectRatio }->1
        PlotStyle }
        {GrayLevel[0], GrayLevel[0.5]}]
In[1745]:= ParametricPlot[{x[t],y[t]},{t, -\pi, 4\pi},
        PlotRange }->{{-12,3},{-3,12}}
        AspectRatio }->1
```


Figure 8-27 (a) $x(t)$ (in black) and $y(t)$ (in gray). (b) Parametric plot of x versus y

Laplace transform methods are especially useful in solving problems that involve piecewise-defined, periodic, or impulse functions.

EXAMPLE 8.7.3: Solve $\left\{\begin{array}{l}x^{\prime}=y+3 \delta(t-\pi) \\ y^{\prime}=-\frac{1}{4} x+6 \delta(t-2 \pi) \\ x(0)=1, y(0)=-1 .\end{array}\right.$

SOLUTION: We proceed in the exact same manner as in the previous examples. After defining the system of equations,

```
In[1746]:= Clear[x,y,t]
    sys = {\mp@subsup{x}{}{\prime}[t] == y[t] + 3 DiracDelta[t - \pi],
        y'[t] == -x[t] + 6 DiracDelta[t - 2\pi]}
```

Out $[1746]=\left\{x^{\prime}[t]==3\right.$ DiracDelta $[\pi-t]+y[t]$,
$y^{\prime}[t]==6$ DiracDelta $\left.[2 \pi-t]-x[t]\right\}$
we use LaplaceTransform to compute the Laplace transform of each equation

```
In[1747]:= step1 = LaplaceTransform[sys,t, s]
Out[1747]= {s LaplaceTransform[x[t],t,s] - x[0] ==
    3 e
    s LaplaceTransform[y[t],t,s]-y[0] ==
    6 e
```

and apply the initial conditions.

```
In[1748]:= step2 = step1/.{x[0]-> 1, y[0]->-1}
Out[1748]= {-1 + s LaplaceTransform[x[t],t,s] ==
    3 e
    1 + s LaplaceTransform[y[t],t,s] ==
    6 e
```

We then solve the resulting algebraic system of equations for $X(s)=$ $\mathcal{L}\{x(t)\}$ and $Y(s)=\mathcal{L}\{y(t)\}$ and use InverseLaplaceTransform to compute $x(t)$ and $y(t)$.

```
In[1749]:= step3 = Solve[step2,
    { LaplaceTransform[x[t],t,s],
    LaplaceTransform[y[t],t,s]}]
```

$$
\begin{aligned}
\text { Out }[1749]=\{ & \{\text { LaplaceTransform }[\mathrm{x}[\mathrm{t}], \mathrm{t}, \mathrm{~s}] \rightarrow \\
& \frac{e^{-2 \pi s}\left(6-e^{2 \pi s}+3 e^{\pi s} s+e^{2 \pi s} s\right)}{1+s^{2}}, \\
& \text { LaplaceTransform }[\mathrm{y}[\mathrm{t}], \mathrm{t}, \mathrm{~s}] \rightarrow \\
& \left.\left.-\frac{-1-3 e^{-\pi s}-\left(1-6 e^{-2 \pi s}\right) \mathrm{s}}{-1-s^{2}}\right\}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { In }[1750]:=\mathbf{x}\left[t_{-}\right]=\text {InverseLaplaceTransform }[\\
&\text { step } 3[[1,1,2]], s, t]
\end{aligned}
$$

$$
\text { Out }[1750]=\operatorname{Cos}[t]-\operatorname{Sin}[t]+6 \operatorname{Sin}[t] \operatorname{UnitStep}[-2 \pi+t]
$$

$$
-3 \operatorname{Cos}[t] \text { UnitStep }[-\pi+t]
$$

$$
\begin{array}{r}
\text { In }[1751]:=y\left[t_{-}\right]=\text {InverseLaplaceTransform }[\\
\\
\quad \text { step } 3[[1,2,2]], s, t]
\end{array}
$$

```
Out[1751]= - Cos[t] - Sin[t] + 6 Cos[t] UnitStep[-2\pi+t]
    +3 Sin[t] UnitStep[-\pi + t]
```

We see that the initial conditions are satisfied by graphing $x(t)$ and $y(t)$ in Figure 8-28 (a) and $\left\{\begin{array}{l}x=x(t) \\ y=y(t)\end{array}\right.$ in Figure 8-28 (b).

```
In[1752]:= Plot[{x[t],y[t]},{t, 0, 4\pi},
    PlotRange }->{-2\pi,2\pi},\mathrm{ AspectRatio }->1\mathrm{ ,
    PlotStyle }->\mathrm{ {GrayLevel[0], GrayLevel[0.5]}]
```


(a)
(b)

Figure 8-28 (a) $x(t)$ (in black) and $y(t)$ (in gray). (b) Parametric plot of x versus y

```
In[1753]:= ParametricPlot[{x[t], y[t]}, {t, 0, 4\pi},
    PlotRange }->{{-2\pi,2\pi},{-2\pi,2\pi}}
    AspectRatio }->\mathrm{ 1]
```

EXAMPLE 8.7.4: Solve $\left\{\begin{array}{l}x^{\prime}=-17 x+f(t) \\ y^{\prime}=\frac{1}{4} x-y-f(t) \\ x(0)=y(0)=0\end{array} \quad\right.$ where $f(t)=\left\{\begin{array}{l}1+t, 0 \leq t<1 \\ 3, t \geq 1 .\end{array}\right.$

SOLUTION: We first rewrite $f(t)$ in terms of the unit step function:

$$
f(t)=\left\{\begin{array}{l}
1+t, 0 \leq t<1 \\
3, t \geq 1
\end{array}=(1+t)[1-\mathcal{U}(t-1)]+3 \mathcal{U}(t-1) .\right.
$$

Then, we define and graph $f(t)$ in Figure 8-29.

```
In[1754]:= Clear[x, y,t,f]
    f[t_] = (1 + t) (1 - UnitSStep[t - 1])
        +3UnitStep[t-1]
Out [1754]=(1+t)(1-UnitStep[-1 + t]) + 3 UnitStep[-1 + t]
In[1755]:= Plot[f[t], {t, 0, 4}, PlotRange }->{0,4}
    AspectRatio }->\mathrm{ 1]
```

To solve the initial-value problem, we proceed as in the previous examples. First, we define the system of equations.

$$
\begin{aligned}
\text { In }[1756]:=s y s= & \left\{x^{\prime}[t]==-17 y[t]+f[t],\right. \\
& \left.y^{\prime}[t]==\frac{x[t]}{4}-y[t]-f[t]\right\} ;
\end{aligned}
$$

Then, we compute the Laplace transform of each equation,

```
In[1757]:= step1 = LaplaceTransform[sys,t, s]
```


Figure 8-29 A piecewise-defined forcing function

$$
\begin{aligned}
\text { Out }[1757]=\{ & \text { s LaplaceTransform }[x[t], t, s]-x[0]== \\
& \frac{1}{s^{2}}+\frac{1}{s}+\frac{2 e^{-s}}{s}-\frac{e^{-s}(1+s)}{s^{2}} \\
& -17 \text { LaplaceTransform }[y[t], t, s] \\
& s \text { LaplaceTransform }[y[t], t, s]-y[0]== \\
& -\frac{1}{s^{2}}-\frac{1}{s}-\frac{2 e^{-s}}{s}+\frac{e^{-s}(1+s)}{s^{2}} \\
& +\frac{1}{4} \text { LaplaceTransform }[x[t], t, s] \\
& - \text { LaplaceTransform }[y[t], t, s]\}
\end{aligned}
$$

apply the initial conditions,

$$
\begin{aligned}
\text { In }[1758]:= & \text { step } 2=\text { step } 1 /\{\mathbf{x}[0]->0, y[0]->0\} \\
\text { Out }[1758]= & \{s \text { LaplaceTransform }[x[t], t, s]== \\
& \frac{1}{s^{2}}+\frac{1}{s}+\frac{2 e^{-s}}{s}-\frac{e^{-s}(1+s)}{s^{2}} \\
& -17 \text { LaplaceTransform }[y[t], t, s], \\
& s \text { LaplaceTransform }[y[t], t, s]== \\
& -\frac{1}{s^{2}}-\frac{1}{s}-\frac{2 e^{-s}}{s}+\frac{e^{-s}(1+s)}{s^{2}} \\
& +\frac{1}{4} \text { LaplaceTransform }[x[t], t, s] \\
& - \text { LaplaceTransform }[y[t], t, s]\}
\end{aligned}
$$

and solve the resulting algebraic system of equations for $X(s)=\mathcal{L}\{x(t)\}$ and $Y(s)=\mathcal{L}\{y(t)\}$.

$$
\begin{aligned}
& \text { In }[1759]:=\text { step }=\text { Solve }[\text { step } 2, \\
& \\
& \quad \text { } \quad \text { LaplaceTransform }[\mathbf{x}[t], t, s], \\
& \quad \text { LaplaceTransform }[y[t], t, s]\}] \\
& \text { Out }[1759]=\left\{\begin{array}{l}
\{\text { LaplaceTransform }[x[t], t, s] \rightarrow \\
\\
\\
\frac{4 e^{-s}(18+s)\left(-1+e^{s}+s+e^{s} s\right)}{s^{2}\left(17+4 s+4 s^{2}\right)}, \\
\\
\\
\text { LaplaceTransform }[y[t], t, s] \rightarrow \\
\\
\\
\\
\left.\left.-\frac{e^{-s}(-1+4 s)\left(-1+e^{s}+s+e^{s} s\right)}{s^{2}\left(17+4 s+4 s^{2}\right)}\right\}\right\}
\end{array}\right.
\end{aligned}
$$

The solution is obtained with InverseLaplaceTransform.

$$
\begin{aligned}
& \text { In [1760]:= } \mathbf{x}\left[t_{-}\right] \text {= InverseLaplaceTransform[} \\
& \text { step3[[1, 1, 2]], s, t]//Simplify } \\
& \text { Out }[1760]=\frac{1}{1156}\left(e ^ { - 2 \text { i } - (\frac { 1 } { 2 } + 2 \text { i }) t } \left(e^{2 \text { i }}((-2008-1437 \text { ii })\right.\right. \\
& -\left(2008-1437 \text { ii) } e^{4 i t}\right. \\
& \left.+16 e^{\left(\frac{1}{2}+2 i\right) t}(251+306 t)\right) \\
& -\left((2888-791 \text { ii }) e^{\frac{1}{2}+4 \dot{i}}+(2888+791 \text { ii })\right. \\
& \left.x e^{\frac{1}{2}+4 i t}+16 e^{2 \dot{i}+\left(\frac{1}{2}+2 \dot{i}\right) t}(-667+306 t)\right) \\
& \times \text { UnitStep }[-1+\mathrm{t}]) \text {) } \\
& \text { In [1761] := } \mathrm{y}\left[\mathrm{t}_{-}\right]=\text {InverseLaplaceTransform[} \\
& \text { step3[[1, 2, 2]], s, t]//Simplify } \\
& \text { Out [1761] }=\frac{1}{2312}\left(e ^ { - 2 \dot { i } - (\frac { 1 } { 2 } + 2 \dot { i }) t } \left(\mathbb{e}^{2 \dot{i}}((220-557 \dot{i})\right.\right. \\
& +(220+557 \text { ii }) \mathbb{e}^{4 i \mathrm{t}} \\
& \left.+8 e^{\left(\frac{1}{2}+2 i\right) t}(-55+17 t)\right) \\
& +\left((-356-633 \dot{i}) e^{\frac{1}{2}+4 \dot{i}}-(356-633 \dot{i})\right. \\
& \left.\left.\times \mathbb{e}^{\frac{1}{2}+4 i t}+\mathbb{e}^{2 i+\left(\frac{1}{2}+2 i\right.}\right) t(848-136 t)\right) \\
& \times \text { UnitStep [-1 }+\mathrm{t}]) \text {) }
\end{aligned}
$$

Last, we confirm that the initial conditions are satisfied by graphing $x(t)$ and $y(t)$ in Figure 8-30 (a) and $\left\{\begin{array}{l}x=x(t) \\ y=y(t)\end{array}\right.$ in Figure 8-30 (b).

Figure 8-30 (a) $x(t)$ (in black) and $y(t)$ (in gray). (b) Parametric plot of x versus y

```
In[1762]:= Plot[{x[t], y[t]},{t, 0, 2},
    PlotStyle- > {GrayLevel[0], GrayLevel[0.5]}]
In[1763]:= ParametricPlot[{x[t], y[t]},{t, 0, 2}]
```

EXAMPLE 8.7.5: Solve $\left\{\begin{array}{l}x^{\prime}+2 x+3 y=0 \\ y^{\prime}-x+6 y=f(t) \\ x(0)=1, y(0)=0\end{array} \quad\right.$ where $f(t)=\left\{\begin{array}{l}0,0 \leq t<1 \\ 1,1 \leq t<2 \\ 2,2 \leq t<3\end{array}\right.$ and $f(t)=f(t-3), t \geq 3$.

SOLUTION: We begin by defining and graphing $f(t)$ in Figure 8-31.

```
In[1764]:= Clear[\mathbf{x},\textrm{y},\textrm{t}]
In[1765]:= Clear[f]
    f[t_] := 0/; 0 < t < 1;
    f[t_] := 1/; 1 < t < 2;
    f[t_] := 2/; 2 < t < 3
    f[t_] := f[t-3]/; t\geq 3;
In[1766]:= Plot[f[t], {t, 0, 9}, PlotRange- > {-1, 8},
    AspectRatio- > 1]
```


Figure 8-31 A piecewise-defined periodic forcing function

The Laplace transform of the periodic function $f(t)$ is given by equation (8.15). We use Integrate and Simplify to find $\mathcal{L}\{f(t)\}$, naming the result lapf.

$$
\begin{aligned}
\text { In }[1767]:= & \text { lapf }= \\
& \text { Simplify } \\
& {\left[\frac{\int_{1}^{2} \operatorname{Exp}[-\mathrm{s} t] d \mathrm{t}+\int_{2}^{3} 2 \operatorname{Exp}[-\mathrm{st}] \mathrm{dt}}{1-\operatorname{Exp}[-3 \mathrm{~s}]}\right] }
\end{aligned}
$$

Out $[1767]=\frac{2+\mathbb{e}^{s}}{s+\mathbb{e}^{s} s+\mathbb{e}^{2 s} s}$
Now we compute the Laplace transform of $x^{\prime}+2 x+3 y=0$

```
In[1768]:= leq1 = LaplaceTransform[
    x'[t] + 2x[t] + 3y[t] == 0, t, s]
    /. {x[0]-> 1, y[0]->0}
```

Out [1768] = -1 + 2 LaplaceTransform[x[t],t,s]
$+s$ LaplaceTransform[x[t], $t, s]$
+3 LaplaceTransform[y[t],t,s] ==0
and $y^{\prime}-x+6 y=f(t)$. In each case, we apply the initial conditions as well.

```
In[1769]:= leq2 = LaplaceTransform[y'[t] - x[t] + 6y[t],
    t,s] == lapf /. {x[0]-> 1,y[0]-> 0}
```

```
Out[1769]= -LaplaceTransform[x[t],t, s]
    +6 LaplaceTransform[y[t], t, s]
    +s LaplaceTransform[y[t],t,s] ==
    \frac{2+\mp@subsup{\mathbb{e}}{}{s}}{\textrm{S}+\mp@subsup{\mathbb{e}}{}{\mathbf{s}}\textrm{S}+\mp@subsup{\mathbb{e}}{}{2s}\textrm{s}}
```

We then use Solve to solve this system of equations for $X(s)$ and $Y(s)$.

$$
\left.\begin{array}{rl}
\text { In }[1770]:= & \text { Solve }[\{\text { leq1, leq2 }\}, \\
& \text { \{LaplaceTransform }[x[t], t, s], \\
& \text { LaplaceTransform }[y[t], t, s]\}]
\end{array}\right\} \begin{aligned}
\text { Out }[1770]=\{ & \{\text { LaplaceTransform }[x[t], t, s] \rightarrow \\
& \frac{1}{2+s}+\frac{3\left(-1-\frac{\left(2+e^{s}\right)(2+s)}{s+e^{s} s+e^{2} s}\right)}{(2+s)\left(15+8 s+s^{2}\right)}, \\
& \text { LaplaceTransform }[y[t], t, s] \rightarrow \\
& \left.\left.-\frac{-1-\frac{\left(2+e^{s}\right)(2+s)}{s+e^{s} s+e^{2 s} s}}{15+8 s+s^{2}}\right\}\right\}
\end{aligned}
$$

Note that InverseLaplaceTransform cannot be used to compute $x(t)=\mathcal{L}^{-1}\{X(s)\}$ and $y(t)=\mathcal{L}^{-1}\{Y(s)\}$. Instead, we use Apart to rewrite $X(s)$.

$$
\begin{aligned}
& \text { In }[1771]:=\operatorname{Apart}\left[\frac{1}{2+\mathbf{s}}+\frac{3\left(-1-\frac{\left(2 e^{-2 s}+e^{-s}\right)(2+\mathbf{s})}{\left(1+e^{-2 s}+e^{-s}\right) \mathbf{s}}\right)}{(2+\mathbf{s})\left(15+8 \mathbf{s}+\mathbf{s}^{2}\right)}\right] \\
& \text { Out }[1771]=-\frac{3\left(2+\mathbb{e}^{s}\right)}{\left(1+e^{s}+\mathbb{e}^{2 s}\right) \mathbf{s}(3+\mathbf{s})(5+s)}+\frac{6+s}{(3+s)(5+s)}
\end{aligned}
$$

InverseLaplaceTransform quickly calculates $\mathcal{L}^{-1}\left\{\frac{s^{2}+6 s-6}{s(s+3)(s+5)}\right\}$.

$$
\begin{aligned}
& \text { In [1772]: }=\text { InverseLaplaceTransform }\left[\frac{-6+6 \mathbf{s}+\mathbf{s}^{2}}{\mathbf{s}(3+\mathbf{s})(5+\mathbf{s})},\right. \\
& \qquad \mathbf{s}, \mathrm{t}] \\
& \text { Out }[1772]=-\frac{2}{5}-\frac{11 e^{-5 t}}{10}+\frac{5 e^{-3 t}}{2}
\end{aligned}
$$

To calculate $\mathcal{L}^{-1}\left\{\frac{3\left(2+e^{-s}\right)}{\left(1+e^{-s}+e^{-2 s}\right) s(s+3)(s+5)}\right\}$, we first rewrite the fraction:

$$
\begin{aligned}
\frac{3\left(2+e^{-s}\right)}{\left(1+e^{-s}+e^{-2 s}\right) s(s+3)(s+5)} & =\frac{2+e^{-s}}{1+e^{-s}+e^{-2 s}} \cdot \frac{3}{s(s+3)(s+5)} \\
& =\frac{2+e^{-s}}{1+e^{-s}+e^{-2 s}} \cdot \frac{1-e^{-s}}{1-e^{-s}} \cdot \frac{3}{s(s+3)(s+5)} \\
& =\left(\frac{2}{1-e^{-3 s}}+\frac{e^{-s}}{1-e^{-3 s}}+\frac{e^{-2 s}}{1-e^{-3 s}}\right) \cdot \frac{3}{s(s+3)(s+5)}
\end{aligned}
$$

and then use the geometric series $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$:

$$
\begin{aligned}
& \left(\frac{2}{1-e^{-3 s}}+\frac{e^{-s}}{1-e^{-3 s}}+\frac{e^{-2 s}}{1-e^{-3 s}}\right) \cdot \frac{3}{s(s+3)(s+5)}= \\
& \quad\left(2 \sum_{n=0}^{\infty} e^{-3 n s}+\sum_{n=0}^{\infty} e^{-(3 n+1) s}+\sum_{n=0}^{\infty} e^{-(3 n+2) s}\right) \cdot \frac{3}{s(s+3)(s+5)} .
\end{aligned}
$$

Notice that $\mathcal{L}^{-1}\left\{\frac{3}{s(s+3)(s+5)}\right\}=\frac{1}{5}+\frac{3}{10} e^{-5 t}-\frac{1}{2} e^{-3 t}$. We name this function $g(t)$ for later use.

$$
\begin{array}{r}
\text { In }[1773]:=g\left[t_{-}\right]=\text {InverseLaplaceTransform }[\\
\left.\qquad \frac{3}{s(3+s)(5+s)}, s, t\right]
\end{array}
$$

$$
\text { Out }[1773]=3\left(\frac{1}{15}+\frac{e^{-5 t}}{10}-\frac{e^{-3 t}}{6}\right)
$$

Previously, we learned that $\mathcal{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) \mathcal{U}(t-a)$. Thus,

$$
\begin{aligned}
& \mathcal{L}^{-1}\left\{\left(2 \sum_{n=0}^{\infty} e^{-3 n s}+\sum_{n=0}^{\infty} e^{-(3 n+1) s}+\sum_{n=0}^{\infty} e^{-(3 n+2) s}\right) \cdot \frac{3}{s(s+3)(s+5)}\right\}= \\
& \quad 2 \sum_{n=0}^{\infty} g(t-3 n) \mathcal{U}(t-3 n)+\sum_{n=0}^{\infty} g(t-(3 n+1)) \mathcal{U}(t-(3 n+1))+ \\
& \\
& \quad \sum_{n=0}^{\infty} g(t-(3 n+2)) \mathcal{U}(t-(3 n+2))
\end{aligned}
$$

and

$$
\begin{aligned}
x(t)= & -\frac{2}{5}-\frac{11}{10} e^{-5 t}+\frac{5}{2} e^{-3 t}+2 \sum_{n=0}^{\infty} g(t-3 n) \mathcal{U}(t-3 n) \\
& +\sum_{n=0}^{\infty} g(t-(3 n+1)) \mathcal{U}(t-(3 n+1))+\sum_{n=0}^{\infty} g(t-(3 n+2)) \mathcal{U}(t-(3 n+2)) .
\end{aligned}
$$

We find $y(t)$ in the same way.

$$
\begin{aligned}
& \text { In }[1774]:=\operatorname{Apart}\left[-\frac{-1-\frac{\left(2 e^{-2 \mathbf{s}}+\mathrm{e}^{-\mathbf{s}}\right)(2+\mathbf{s})}{\left(1+\mathrm{e}^{-2 \mathbf{s}}+\mathrm{e}^{-\mathbf{s}}\right) \mathbf{s}}}{15+8 \mathbf{s}+\mathbf{s}^{2}}\right] \\
& \text { Out }[1774]=\frac{1}{(3+\mathbf{s})(5+\mathbf{s})}+\frac{\left(2+\mathbb{e}^{s}\right)(2+\mathbf{s})}{\left(1+\mathbb{e}^{s}+\mathbb{e}^{2 s}\right) \mathbf{s}(3+\mathbf{s})(5+\mathbf{s})}
\end{aligned}
$$

We use InverseLaplaceTransform to see that

$$
\begin{aligned}
& \mathcal{L}^{-1}\left\{\frac{3 s+4}{s(s+3)(s+5)}\right\}=\frac{4}{15}-\frac{11}{10} e^{-5 t}+\frac{5}{6} e^{-3 t} \\
& \text { and } \\
& \mathcal{L}^{-1}\left\{-\frac{s+2}{s(s+3)(s+5)}\right\}=-\frac{2}{15}+\frac{3}{10} e^{-5 t}-\frac{1}{6} e^{-3 t} .
\end{aligned}
$$

We name the second result $h(t)$ for later use.

$$
\begin{aligned}
& \text { In }[1775]:=\text { InverseLaplaceTransform }\left[\frac{4+3 s}{s(3+\mathbf{s})(5+\mathbf{s})}, \mathbf{s}, \mathrm{t}\right] \\
& \text { Out }[1775]=\frac{4}{15}-\frac{11 \mathrm{e}^{-5 t}}{10}+\frac{5 e^{-3 t}}{6} \\
& \text { In }[1776]:=\text { Clear }[\mathrm{h}]
\end{aligned}
$$

$$
\mathrm{h}\left[\mathrm{t}_{-}\right]=\text {InverseLaplaceTransform }
$$

$$
\left[-\frac{(2+s)}{s(3+s)(5+s)}, s, t\right]
$$

$$
\text { Out }[1776]=-\frac{2}{15}+\frac{3 e^{-5 t}}{10}-\frac{e^{-3 t}}{6}
$$

To calculate $y(t)=\mathcal{L}^{-1}\{Y(s)\}$, we use the results we obtained when calculating $x(t)=\mathcal{L}^{-1}\{X(s)\}$.

$$
\begin{aligned}
& \mathcal{L}^{-1}\left\{\frac{2+e^{-s}}{1+e^{-s}+e^{-2 s}} \cdot \frac{-(s+2)}{s(s+3)(s+5)}\right\}= \\
& \mathcal{L}^{-1}\left\{\left(2 \sum_{n=0}^{\infty} e^{-3 n s}-\sum_{n=0}^{\infty} e^{-(3 n+1) s}-\sum_{n=0}^{\infty} e^{-(3 n+2) s}\right) \cdot \frac{-(s+2)}{s(s+3)(s+5)}\right\}= \\
& \\
& \quad 2 \sum_{n=0}^{\infty} h(t-3 n) \mathcal{U}(t-3 n)-\sum_{n=0}^{\infty} h(t-(3 n+1)) \mathcal{U}(t-(3 n+1)) \\
& \quad-\sum_{n=0}^{\infty} h(t-(3 n+2)) \mathcal{U}(t-(3 n+2))
\end{aligned}
$$

and

$$
\begin{aligned}
y(t)= & \frac{4}{15}-\frac{11}{10} e^{-5 t}+\frac{5}{6} e^{-3 t}+2 \sum_{n=0}^{\infty} h(t-3 n) \mathcal{U}(t-3 n) \\
& -\sum_{n=0}^{\infty} h(t-(3 n+1)) \mathcal{U}(t-(3 n+1))-\sum_{n=0}^{\infty} h(t-(3 n+2)) \mathcal{U}(t-(3 n+2)) .
\end{aligned}
$$

We then graph the solution on the interval $[0,6]$ in Figure 8-32.

Figure 8-32 (a) $x(t)$ (in black) and $y(t)$ (in gray). (b) Parametric plot of x versus y

$$
\begin{aligned}
& \text { In }[1777]:=\text { xapprox }\left[t_{-}\right] \\
&=-\frac{2}{5}-\frac{11}{10} e^{-5 t}+\frac{5}{2} e^{-3 t} \\
&+2\left(\sum_{n=0}^{6} g[t-3 n] \text { UnitStep }[t-3 n]\right) \\
&-\sum_{n=0}^{6} g[t-(3 n+1)] \text { UnitStep }[t-(3 n+1)] \\
&-\sum_{n=0}^{6} g[t-(3 n+2)] \text { UnitStep }[t-(3 n+2)] ;
\end{aligned}
$$

$$
\begin{aligned}
& \text { In }[1778]:=\text { yapprox }\left[t_{-}\right] \\
&= \frac{4}{15}-\frac{11}{10} e^{-5 t}+\frac{5}{6} e^{-3 t}+ \\
&+2\left(\sum_{n=0}^{6} h[t-3 n] \text { UnitStep }[t-3 n]\right) \\
&-\sum_{n=0}^{6} h[t-(3 n+1)] \operatorname{UnitStep}[t-(3 n+1)] \\
&-\sum_{n=0}^{6} h[t-(3 n+2)] \operatorname{UnitStep}[t-(3 n+2)] ;
\end{aligned}
$$

```
In [1779]:= Plot[{xapprox[t], yapprox[t]},
    {t, 0, 6},
    PlotStyle- > {GrayLevel[0], GrayLevel[0.5] },
    PlotRange- > {-3, 3}, AspectRatio- > 1]
In[1780]:= ParametricPlot[{xapprox[t], yapprox[t]},
    {t, 0, 6},
    PlotRange-> {{0, 1.5},{-1, 0.5}},
    AspectRatio- > 1]
```


8.8 Applications of Laplace Transforms, Part II

8.8.I Coupled Spring-Mass Systems

The motion of a mass attached to the end of a spring was modeled with a secondorder linear differential equation with constant coefficients in Chapter 5. Similarly, if a second spring and mass are attached to the end of the first mass, then the model becomes that of a system of second-order equations. To more precisely state the problem, let masses m_{1} and m_{2} be attached to the ends of springs S_{1} and S_{2} having spring constants k_{1} and k_{2}, respectively. Then, spring S_{2} is attached to the base of mass m_{1}.

Suppose that $x(t)$ and $y(t)$ represent the vertical displacement from the equilibrium position of springs S_{1} and S_{2}, respectively. Because spring S_{2} undergoes both elongation and compression when the system is in motion (due to the spring S_{1} and the mass m_{2}), then according to Hooke's law, S_{2} exerts the force $k_{2}(y-x)$ on m_{2} while S_{1} exerts the force $-k_{1} x$ on m_{1}. Therefore, the force acting on mass m_{1} is the sum $-k_{1} x+k_{2}(y-x)$ and that acting on m_{2} is $-k_{2}(y-x)$. Hence, using Newton's second law, $F=m a$, with each mass, we have the system

$$
\left\{\begin{array}{l}
m_{1} \frac{d^{2} x}{d t^{2}}=-k_{1} x+k_{2}(y-x) \tag{8.23}\\
m_{2} \frac{d^{2} y}{d t^{2}}=-k_{2}(y-x) .
\end{array}\right.
$$

The initial position and velocity of the two masses m_{1} and m_{2} are given by $x(0)$, $x^{\prime}(0), y(0)$, and $y^{\prime}(0)$, respectively. If external forces $F_{1}(t)$ and $F_{2}(t)$ are applied to the masses, the system (8.23) becomes

$$
\left\{\begin{array}{l}
m_{1} \frac{d^{2} x}{d t^{2}}=-k_{1} x+k_{2}(y-x)+F_{1}(t) \tag{8.24}\\
m_{2} \frac{d^{2} y}{d t^{2}}=-k_{2}(y-x)+F_{2}(t)
\end{array}\right.
$$

Therefore, the method of Laplace transforms can be used to solve problems of this type.

EXAMPLE 8.8.1: Consider the spring-mass system with $m_{1}=m_{2}=1$, $k_{1}=3$, and $k_{2}=2$. Find the position functions $x(t)$ and $y(t)$ if $x(0)=0$, $x^{\prime}(0)=1, y(0)=1$, and $y^{\prime}(0)=0$. (Assume there are no external forces.)

SOLUTION: In order to find $x(t)$ and $y(t)$, we must solve the initialvalue problem

$$
\left\{\begin{array}{l}
\frac{d^{2} x}{d t^{2}}=-5 x+2 y \\
\frac{d^{2} y}{d t^{2}}=2 x-2 y \\
x(0)=0, x^{\prime}(0)=1, y(0)=1, y^{\prime}(0)=0
\end{array}\right.
$$

We use LaplaceTransform to take the Laplace transform of both sides of each equation.

```
In[1781]:= eqs = {x'新] == - 5x[t] + 2y[t],
    y''[t] == 2x[t] - 2y[t]};
In[1782]:= step1 = LaplaceTransform[eqs, t, s]
Out[1782]= {s'LaplaceTransform[x[t],t,s]-sx[0]
    -x'[0] == -5 LaplaceTransform[x[t],t,s]
    +2 LaplaceTransform[y[t],t,s],
        s}\mp@subsup{}{}{2}LaplaceTransform[y[t],t,s] - sy[0]
        -y'[0] == 2 LaplaceTransform[x[t],t,s]
        -2 LaplaceTransform[y[t],t, s]}
```

We then apply the initial conditions.

```
In[1783]:= step2 =
    step1 /. {x[0]-> 0, x'[0]-> 1,
    y[0]->1, y'[0]->0}
Out[1783]= {-1+ s}\mp@subsup{\mp@code{N}}{}{2}\mathrm{ LaplaceTransform[x[t],t,s] ==
    -5 LaplaceTransform[x[t],t, s]
    +2 LaplaceTransform[y[t],t,s],
    -s+ s}\mp@subsup{}{}{2}\mathrm{ LaplaceTransform[y[t],t,s] ==
    2 LaplaceTransform[x[t],t,s]
    -2 LaplaceTransform[y[t], t, s]}
```

We solve this system of algebraic equations for $X(s)$ and $Y(s)$ with Solve.

```
In[1784]:= step3 =
    Solve[step2, {LaplaceTransform[x[t],t,s],
        LaplaceTransform[y[t], t, s]}]
Out [1784]={{LaplaceTransform[x[t],t,s]->-\frac{-2-2s- s}{~}={
    LaplaceTransform[y[t],t,s] - -2-5s-\mp@subsup{s}{}{3}
```

Taking the inverse Laplace transform with InverseLaplace Transform yields $x(t)$ and $y(t)$.

$$
\begin{aligned}
\operatorname{In}[1785]:= & \mathbf{x}\left[\mathrm{t}_{-}\right]= \\
& \text {InverseLaplaceTransform }\left[-\frac{-2-2 \mathbf{s}-\mathbf{s}^{2}}{6+7 \mathbf{s}^{2}+\mathbf{s}^{4}}, \mathbf{s}, \mathrm{t}\right] \\
\text { Out }[1785]= & \frac{1}{5}(2 \operatorname{Cos}[t]+\operatorname{Sin}[t])-\frac{2}{15}(3 \operatorname{Cos}[\sqrt{6} t] \\
& -\sqrt{6} \operatorname{Sin}[\sqrt{6} t]) \\
\text { In }[1786]:= & y\left[t_{-}\right]= \\
& \text {InverseLaplaceTransform }\left[-\frac{-2-5 s-s^{3}}{6+7 \mathbf{s}^{2}+\mathbf{s}^{4}}, \mathbf{s}, t\right]
\end{aligned}
$$

Figure 8-33 (a) $x(t)$ (in black) and $y(t)$ (in gray). (b) Parametric plot of x versus y

$$
\begin{aligned}
\text { Out }[1786]= & \frac{2}{5}(2 \operatorname{Cos}[t]+\operatorname{Sin}[t]) \\
& +\frac{1}{15}(3 \operatorname{Cos}[\sqrt{6} t]-\sqrt{6} \operatorname{Sin}[\sqrt{6} t])
\end{aligned}
$$

We graph $x(t)$ and $y(t)$ together in Figure 8-33 (a) and then parametrically in Figure 8-33 (b). Note that $y(t)$ starts at $(0,1)$ while $x(t)$ has initial point $(0,0)$. Also, the phase plane is different from those discussed in previous sections. One of the reasons for this is that the equations in the system of differential equations are second-order instead of first-order.

```
In[1787]:= Plot[{x[t],y[t]},{t,0,4\pi},
    PlotStyle }->\mathrm{ {GrayLevel[0],
    GrayLevel[0.5]}]
In[1788]:= ParametricPlot[{x[t],y[t]},{t,0,4\pi},
    PlotRange }->{{-\frac{3}{2},\frac{3}{2}},{-\frac{3}{2},\frac{3}{2}}}
    AspectRatio }->1\mathrm{ ]
```

We can illustrate the motion of the spring in nearly the same way as we did in Chapter 5. First, we define the functions zigzag and spring2.

```
In[1789]:= Clear[spring, zigzag, length, points, pairs]
    zigzag[{a, , b_}, {c_, d_}, n_, eps_] :=
    Module[{length, points, pairs},
            length = d - b;
            points = Table[b + i length/n,
                    {i,1,n-1}];
            pairs = Table[{a+(-1)^ieps,
                    points[[i]]},
                    {i,1,n-1}];
            PrependTo[pairs, {a,b}];
            AppendTo[pairs, {c, d}];
            Line[pairs]
            ]
In[1790]:= spring2[t_, len1_, len2_, opts_-_] :=
    Show[Graphics[
    {zigzag[{0,-x[t]}, {0, len1}, 20, 0.025],
    PointSize[0.025], Point[{0, len1}],
    zigzag[{0, -y[t] - len2}, {0, -x[t]},
            20,0.025],
    PointSize[0.075], Point[{0,-x[t]}],
    PointSize[0.05],
    Point[{0,-y[t] - len2}]}], opts,
    Axes->Automatic,
    AxesStyle- > GrayLevel[0.5],
    Ticks- > None,
    AspectRatio- > 1,
    PlotRange- > {{-1/2, 1/2}, {-2.2, 1.2}},
    DisplayFunction- > Identity]
```

Next, we define tvals to be a list of 16 evenly spaced numbers between 0 and 4π.

```
In[1791]:= tvals = Table[t, {t, 0, 4\pi, 4\pi/15}];
```

Map is then used to apply spring2 to the list of numbers in tvals.

```
In[1792]:= graphs = Map[spring2[#, 1, 1]&, tvals];
```


Figure 8-34 Visualizing the motion of a coupled spring-mass system

The resulting list of graphics is partitioned into four element subsets with Partition and displayed using Show and GraphicsArray in Figure 8-34.

```
In[1793]:= toshow = Partition[graphs, 4];
    Show[GraphicsArray[toshow]]
```

If the option DisplayFunction->\$DisplayFunction is included in the spring 2 command, we can use a Do loop to generate a set of graphics that can then be animated as follows.

```
In[1794]:= Do[spring2[t, 1, 1,
    DisplayFunction- > $DisplayFunction],
    {t, 0, 4, 4/31}]
```


8.8.2 The Double Pendulum

In a method similar to that of the simple pendulum in Chapter 5 and that of the coupled spring-mass system, the motion of a double pendulum as shown in Figure 8-35 is modeled by the following system of equations using the approximation $\sin \theta \approx \theta$ for small displacements

$$
\left\{\begin{array}{l}
\left(m_{1}+m_{2}\right) l_{1}^{2} \frac{d^{2} \theta_{1}}{d t^{2}}+m_{2} l_{1} l_{2} \frac{d^{2} \theta_{2}}{d t^{2}}+\left(m_{1}+m_{2}\right) l_{1} g \theta_{1}=0 \tag{8.25}\\
m_{2} l_{2}^{2} \frac{d^{2} \theta_{2}}{d t^{2}}+m_{2} l_{1} l_{2} \frac{d^{2} \theta_{1}}{d t^{2}}+m_{2} l_{2} g \theta_{2}=0
\end{array}\right.
$$

where θ_{1} represents the displacement of the upper pendulum and θ_{2} that of the lower pendulum. Also, m_{1} and m_{2} represent the mass attached to the upper and lower pendulums, respectively, while the length of each is given by l_{1} and l_{2}.

Figure 8-35 A double pendulum

EXAMPLE 8.8.2: Suppose that $m_{1}=3, m_{2}=1$, and each pendulum has length 16. If $\theta_{1}(0)=1, \theta_{1}{ }^{\prime}(0)=1, \theta_{2}(0)=0$, and $\theta_{2}{ }^{\prime}(0)=-1$, solve the double pendulum problem using $g=32$. Plot the solution.

SOLUTION: In this case, the system to be solved is

$$
\left\{\begin{array}{l}
4 \cdot 16^{2} \frac{d^{2} \theta_{1}}{d t^{2}}+16^{2} \frac{d^{2} \theta_{2}}{d t^{2}}+4 \cdot 16 \cdot 32 \theta_{1}=0 \\
16^{2} \frac{d^{2} t_{2}}{d t^{2}}+16^{2} \frac{d^{2} \theta_{1}}{d t^{2}}+16 \cdot 32 \theta_{2}=0
\end{array}\right.
$$

which we simplify to obtain

$$
\left\{\begin{array}{l}
4 \frac{d^{2} \theta_{1}}{d t^{2}}+\frac{d^{2} \theta_{2}}{d t^{2}}+8 \theta_{1}=0 \\
\frac{d^{2} \theta_{2}}{d t^{2}}+\frac{d^{2} \theta_{1}}{d t^{2}}+2 \theta_{2}=0
\end{array}\right.
$$

In the following code, we let $x(t)$ and $y(t)$ represent $\theta_{1}(t)$ and $\theta_{2}(t)$, respectively. First, we use DSolve to solve the initial-value problem.

```
In[1795]:= sol =
    DSolve [{4 x't[t] + y' [ t ] + 8 x [ t] == 0,
    \mp@subsup{x}{}{\prime\prime}[t]+\mp@subsup{y}{}{\prime\prime}[t]+2y[t]==0,x[0]==1,
    x'[0] == 1, y[0] == 0, y'[0] == -1},
    {x[t],y[t]},t]
```

$$
\begin{aligned}
& \text { Out }[1795]=\{\{x[t] \rightarrow
\end{aligned} \begin{aligned}
8 & \frac{1}{8} \operatorname{Cos}[2 t] \\
& +4 \operatorname{Cos}\left[\frac{2 t}{\sqrt{3}}\right]+3 \sin [2 t] \\
& \left.+\sqrt{3} \sin \left[\frac{2 t}{\sqrt{3}}\right]\right), \\
y[t] \rightarrow & \frac{1}{4}\left(-4 \operatorname{Cos}[2 t]+4 \operatorname{Cos}\left[\frac{2 t}{\sqrt{3}}\right]\right. \\
& \left.\left.\left.-3 \sin [2 t]+\sqrt{3} \sin \left[\frac{2 t}{\sqrt{3}}\right]\right)\right\}\right\}
\end{aligned}
$$

We define sys to be the system of equations and use LaplaceTransform to compute the Laplace transform of each equation.

```
In[1796]:= step1 = LaplaceTransform[sys,t, s]
Out[1796]= {8 LaplaceTransform[x[t],t,s]
    + s}\mp@subsup{}{}{2}\mathrm{ LaplaceTransform[y[t], t, s] - sy[0]
    +4 ( s
    -sx[0]-x'[0]) - y'[0] == 0,
    s'LaplaceTransform[x[t],t,s]
    +2 LaplaceTransform[y[t],t, s]
    +s}\mp@subsup{}{}{2}\mathrm{ LaplaceTransform[y[t],t, s]
    -sx[0]-sy[0]-x'[0]- y'[0] == 0}
```

Next, we apply the initial conditions and solve the resulting system of equations for $\mathcal{L}\left\{\theta_{1}(t)\right\}=X(s)$ and $\mathcal{L}\left\{\theta_{2}(t)\right\}=Y(s)$.

```
In[1797]:= step2 =
    step1 /. {x[0]- > 1, x'[0]-> 1, y[0]-> 0,
            y'[0]->-1}
Out[1797]= {1 + 8 LaplaceTransform[x[t],t,s]
    +4(-1-s+ s}\mp@subsup{}{}{2}\mathrm{ LaplaceTransform[x[t],t,s])
    +s}\mp@subsup{}{}{2}\mathrm{ LaplaceTransform[y[t],t,s] = = 0,
        -s+ s}\mp@subsup{}{}{2}\mathrm{ LaplaceTransform[x[t],t,s]
        +2 LaplaceTransform[y[t], t, s]
        +s}\mp@subsup{}{}{2}\mathrm{ LaplaceTransform[y[t],t,s] == 0}
In[1798]:= step3 = Solve[step2,
                            { LaplaceTransform[x[t],t,s],
                            LaplaceTransform[y[t], t, s]}]
```

$$
\begin{aligned}
& \text { Out [1798] }=\{\{\text { LaplaceTransform }[x[t], t, s] \rightarrow \\
& -\frac{-6-8 s-3 s^{2}-3 s^{3}}{16+16 s^{2}+3 s^{4}}, \\
& \text { LaplaceTransform[y[t],t,s] } \rightarrow \\
& \left.\left.-\frac{-8 s+3 s^{2}}{16+16 s^{2}+3 s^{4}}\right\}\right\}
\end{aligned}
$$

InverseLaplaceTransform is then used to find $\theta_{1}(t)$ and $\theta_{2}(t)$.

$$
\begin{aligned}
\text { In }[1799]:= & \mathbf{x}\left[t_{-}\right]=\text {InverseLaplaceTransform }[\\
& \left.-\frac{-6-8 \mathbf{s}-3 \mathbf{s}^{2}-3 s^{3}}{16+16 s^{2}+3 s^{4}}, s, t\right] \\
\text { Out }[1799]= & \frac{1}{8}\left(4 \operatorname{Cos}[2 t]+4 \operatorname{Cos}\left[\frac{2 t}{\sqrt{3}}\right]\right. \\
& \left.+3 \operatorname{Sin}[2 t]+\sqrt{3} \operatorname{Sin}\left[\frac{2 t}{\sqrt{3}}\right]\right) \\
\text { In }[1800]:= & \mathbf{y}\left[t_{-}\right]=\operatorname{InverseLaplaceTransform}[\\
& \left.-\frac{-8 s+3 s^{2}}{16+16 s^{2}+3 s^{4}}, s, t\right]
\end{aligned}
$$

These two functions are graphed together in Figure 8-36 (a) and parametrically in Figure 8-36 (b).

```
In[1801]:= Plot[{x[t], y[t]},{t, 0, 20},
    PlotStyle- > {GrayLevel[0],
    GrayLevel[0.5]}]
In[1802]:= ParametricPlot[{x[t],y[t]},{t, 0, 20},
    PlotRange-> {{-5/2,5/2}, {-5/2, 5/2}},
    AspectRatio- > 1]
```

We can illustrate the motion of the pendulum as follows. First, we define the function pen2.

(a)

(b)

Figure 8-36 (a) $\theta_{1}(t)$ (in black) and $\theta_{2}(t)$ (in gray) as functions of t. (b) Parametric plot of $\theta_{1}(t)$ versus $\theta_{2}(t)$

$$
\begin{aligned}
& \text { In[1803]: = Clear[pen2] } \\
& \text { pen2[t-, len1_, len2_] := Module[\{pt1, pt2\}, } \\
& \mathrm{pt} 1=\left\{\operatorname{len} 1 \operatorname{Cos}\left[\frac{3 \pi}{2}+\mathrm{x}[\mathrm{t}]\right],\right. \\
& \left.\operatorname{len} 1 \sin \left[\frac{3 \pi}{2}+x[t]\right]\right\} ; \\
& p t 2=\left\{\operatorname{len} 1 \operatorname{Cos}\left[\frac{3 \pi}{2}+x[t]\right]\right. \\
& +\operatorname{len} 2 \operatorname{Cos}\left[\frac{3 \pi}{2}+y[t]\right], \\
& \text { len } 1 \sin \left[\frac{3 \pi}{2}+x[t]\right] \\
& \left.+\operatorname{len} 2 \sin \left[\frac{3 \pi}{2}+y[t]\right]\right\} ; \\
& \text { Show [} \\
& \text { Graphics [\{Line[\{ } 0,0\}, \operatorname{pt1}\}] \text {, } \\
& \text { PointSize[0.05], Point[pt1], } \\
& \text { Line[\{pt1, pt2\}], PointSize[0.05], } \\
& \text { Point[pt2]\}], Axes } \rightarrow \text { Automatic, } \\
& \text { Ticks } \rightarrow \text { None, } \\
& \text { AxesStyle } \rightarrow \text { GrayLevel[0.5], } \\
& \text { PlotRange } \rightarrow\{\{-32,32\},\{-34,0\}\} \text {, } \\
& \text { DisplayFunction } \rightarrow \text { Identity]] }
\end{aligned}
$$

Next, we define tvals to be a list of 16 evenly spaced numbers between 0 and 10 . Map is then used to apply pen 2 to the list of numbers

Figure 8-37 The double pendulum for 16 equally spaced values of t between 0 and 10
in tvals. The resulting set of graphics is partitioned into four element subsets and displayed using Show and GraphicsArray in Figure 8-37.

```
In[1804]:= tvals = Table[t,{t, 0, 10, \frac{10}{15}}];
In[1805]:= graphs = Map[pen2[#, 16, 16]&, tvals];
In[1806]:= toshow = Partition[graphs, 4];
In[1807]:= Show[GraphicsArray[toshow]]
```

If the option DisplayFunction->\$DisplayFunction is included in the pen2 command, we can use a Do loop to generate a set of graphics that can then be animated.

```
In[1808]:= Clear[t]
    Do[pen2[t, 16, 16,
        DisplayFunction- > $DisplayFunction],
        {t, 0, 10, 10/31}]
```

Sources: M. L. James, G. M. Smith, J. C. Wolford, P. W. Whaley, Vibration of Mechanical and Structural Systems with Microcomputer Applications, Harper \& Row (1989), pp. 282-286. Robert K. Vierck, Vibration Analysis, Second Edition, HarperCollins (1979), pp. 266-290.

Clear[t]
Do[pen2[t,16,16, DisplayFunction-
>\$DisplayFunction].\{t,0,10.10/31\}]

Application: Free Vibration of a Three-Story Building

If you have ever gone to the top of a tall building like the Sears Tower or Empire State Building on a windy day you may have been acutely aware of the sway of the building. In fact, all buildings sway, or vibrate, naturally. Usually, we are only aware, if ever, of the sway of a building when we are in a very tall building or in a building during an event like an earthquake. In some tall buildings, like the John Hancock Building in Boston, the sway of the building during high winds is reduced by installing a tuned mass damper at the top of the building which oscillates at the same frequency as the building but out of phase. We will investigate the sway of a three-story building and then try to determine how we would investigate the sway of a tall building.

We make two assumptions to solve this problem. First, we assume that the mass distribution of the building can be represented by the lumped masses at the different levels. Second, we assume that the girders of the structure are infinitely rigid in
comparison with the supporting columns. With these assumptions, we can determine the motion of the building by interpreting the columns as springs in parallel.

Assume that the coordinates x_{1}, x_{2}, and x_{3} as well as the velocities and accelerations are positive to the right. Also assume that $x_{3}>x_{2}>x_{1}$.

In applying Newton's second law of motion, recall that we have assumed that acceleration is in the positive direction. Therefore, we sum forces in the same direction as the acceleration positively, and others negatively. With this configuration, Newton's second law on each of the three masses yields the following system of differential equations

$$
\begin{align*}
-k_{1} x_{1}+k_{2}\left(x_{2}-x_{1}\right) & =m_{1} \frac{d^{2} x_{1}}{d t^{2}} \\
-k_{2}\left(x_{2}-x_{1}\right)+k_{3}\left(x_{3}-x_{2}\right) & =m_{2} \frac{d^{2} x_{2}}{d t^{2}} \tag{8.26}\\
-k_{3}\left(x_{3}-x_{2}\right) & =m_{3} \frac{d^{2} x_{3}}{d t^{2}}
\end{align*}
$$

which we write as

$$
\begin{align*}
m_{1} \frac{d^{2} x_{1}}{d t^{2}}+\left(k_{1}+k_{2}\right) x_{1}-k_{2} x_{2} & =0 \\
m_{2} \frac{d^{2} x_{2}}{d t^{2}}-k_{2} x_{1}+\left(k_{2}+k_{3}\right) x_{2}-k_{3} x_{3} & =0 \tag{8.27}\\
m_{3} \frac{d^{2} x_{3}}{d t^{2}}-k_{3} x_{2}+k_{3} x_{3} & =0
\end{align*}
$$

where m_{1}, m_{2}, and m_{3} represent the mass of the building on the first, second, and third levels, and k_{1}, k_{2}, and k_{3}, corresponding to the spring constants, represent the total stiffness of the columns supporting a given floor.

If we attempt to find an exact solution with the method of Laplace transforms, we find that each denominator of $\mathcal{L}\left\{x_{1}(t)\right\}, \mathcal{L}\left\{x_{2}(t)\right\}$, and $\mathcal{L}\left\{x_{3}(t)\right\}$ is a positive function of s. Therefore, the roots are complex and solutions will involve sines and/or cosines. (Here, we use $x(t), y(t)$, and $z(t)$ in the place of $x_{1}(t), x_{2}(t)$, and $x_{3}(t)$.)

```
In[1809]:= Clear[x,y,rule, eq1, eq2]
    eq1 = m_ m}\mp@subsup{\mathbf{x}}{}{\prime\prime}[t]+(\mp@subsup{k}{1}{}+\mp@subsup{k}{2}{})\mathbf{x}[t]-\mp@subsup{k}{2}{}y[t]==0
    eq2 = m
    eq3 = m}\mp@subsup{m}{3}{\prime\prime}[t]-\mp@subsup{k}{3}{}y[t]+\mp@subsup{k}{3}{}z[t]==0
```

```
In[1810]:= step1 = LaplaceTransform[{eq1, eq2, eq3}, t, s]
Out[1810]= {-LaplaceTransform[y[t],t,s] k
    +LaplaceTransform[x[t],t,s] (k (k+ k
    +m
    -s x[0] - x'[0]) == 0,
    -LaplaceTransform[x[t],t,s] k
    -LaplaceTransform[z[t],t,s] k
    +LaplaceTransform[y[t],t,s] ( }\mp@subsup{\textrm{k}}{2}{}+\mp@subsup{k}{3}{}
    +m}\mp@subsup{m}{2}{(s}\mp@subsup{s}{}{2}LaplaceTransform[y[t],t,s
    -s y[0] - y'[0]) == 0,
    -LaplaceTransform[y[t],t, s] k
    +LaplaceTransform[z[t], t, s] k
    +m}\mp@subsup{m}{3}{(s}\mp@subsup{s}{}{2}LaplaceTransform[z[t],t,s
    -s z[0] - z'[0]) == 0}
In[1811]:= step2 = Solve[step1, {LaplaceTransform[x[t],t, s],
    LaplaceTransform[y[t],t,s],
    LaplaceTransform[
    z[t],t,s]}]//Simplify
Out[1811]={{LaplaceTransform[z[t],t,s]->
    \frac{1}{\mp@subsup{k}{3}{}+\mp@subsup{s}{}{2}\mp@subsup{m}{3}{}}(\textrm{s m}}\mp@subsup{\textrm{m}}{3}{}z[0]+\mp@subsup{m}{3}{}\mp@subsup{z}{}{\prime}[0
    -(k
    +(\mp@subsup{k}{1}{}+\mp@subsup{k}{2}{}+\mp@subsup{s}{}{2}\mp@subsup{m}{1}{})(-\mp@subsup{m}{2}{\prime}(\mp@subsup{k}{3}{}+\mp@subsup{s}{}{2}\mp@subsup{m}{3}{})(sy[0]+\mp@subsup{y}{}{\prime}[0])
    -k}\mp@subsup{\textrm{k}}{3}{}\mp@subsup{m}{3}{}(\textrm{sz}[0]+\mp@subsup{\textrm{z}}{}{\prime}[0]))))/(-\mp@subsup{k}{2}{2}(\mp@subsup{k}{3}{}+\mp@subsup{\textrm{s}}{}{2}\mp@subsup{m}{3}{}
    +(k
    (k
    LaplaceTransform[x[t],t,s] }
    ( s}\mp@subsup{}{}{2}\mp@subsup{m}{1}{}(\mp@subsup{s}{}{2}\mp@subsup{m}{2}{}\mp@subsup{m}{3}{}+\mp@subsup{k}{3}{(}(\mp@subsup{m}{2}{}+\mp@subsup{m}{3}{\prime}))(sx[0]+\mp@subsup{x}{}{\prime}[0]
    +k}\mp@subsup{\textrm{k}}{2}{(}\mp@subsup{\textrm{s}}{}{2}\mp@subsup{m}{3}{(
    +k}\mp@subsup{\textrm{k}}{3}{(m}(\textrm{m
    +m
    ( k
    +s}\mp@subsup{s}{}{2}(\mp@subsup{s}{}{2}\mp@subsup{m}{2}{}\mp@subsup{m}{3}{}+\mp@subsup{k}{3}{}(\mp@subsup{m}{2}{}+\mp@subsup{m}{3}{}))
    +s}\mp@subsup{\mp@code{N}}{}{2}(\mp@subsup{s}{}{2}\mp@subsup{m}{1}{}(\mp@subsup{s}{}{2}\mp@subsup{m}{2}{}\mp@subsup{m}{3}{}+\mp@subsup{k}{3}{}(\mp@subsup{m}{2}{}+\mp@subsup{m}{3}{})
    +k}\mp@subsup{k}{2}{(s}(\mp@subsup{s}{}{2}(\mp@subsup{m}{1}{}+\mp@subsup{m}{2}{})\mp@subsup{m}{3}{}+\mp@subsup{k}{3}{(}(\mp@subsup{m}{1}{}+\mp@subsup{m}{2}{}+\mp@subsup{m}{3}{}))))
    LaplaceTransform[y[t],t,s] }
    -(-k}\mp@subsup{\textrm{k}}{2}{}\mp@subsup{m}{1}{}(\mp@subsup{k}{3}{}+\mp@subsup{s}{}{2}\mp@subsup{m}{3}{})(sx[0]+\mp@subsup{x}{}{\prime}[0]
    +(k1+ k
    -k}\mp@subsup{\mp@code{3}}{3}{\prime
    +( (k1 + k
    (k
```

Suppose that $k_{1}=3, k_{2}=2, k_{3}=1, m_{1}=1, m_{2}=2$, and $m_{3}=3$ and that the initial conditions are $x(0)=0, x^{\prime}(0)=1 / 4, y(0)=0, y^{\prime}(0)=-1 / 2, z(0)=0$, and $z^{\prime}(0)=1$.

$$
\begin{aligned}
\text { In }[1812]:=\text { step3 }= & \text { step2 } / .\left\{\mathrm{k}_{1}->3, \mathrm{k}_{2}->2, \mathrm{x}[0]->0, \mathrm{k}_{3}->1,\right. \\
& \mathrm{m}_{1}->1, \mathrm{~m}_{2}->2, \mathrm{~m}_{3}->3, \mathbf{x}^{\prime}[0]->1 / 4, \\
& \mathrm{y}[0]->0, \mathrm{y}^{\prime}[0]->-1 / 2, \\
& \left.\mathrm{z}[0]->0, \mathrm{z}^{\prime}[0]->1\right\} / / \text { Simplify }
\end{aligned}
$$

Out [1812] $=\{\{$ LaplaceTransform $[z[t], t, s] \rightarrow$

$$
\begin{gathered}
\frac{57+76 s^{2}+12 s^{4}}{12+90 s^{2}+82 s^{4}+12 s^{6}}, \\
\text { LaplaceTransform }[x[t], t, s] \rightarrow \\
\frac{18-13 s^{2}+6 s^{4}}{4\left(6+45 s^{2}+41 s^{4}+6 s^{6}\right)}, \\
\text { LaplaceTransform }[y[t], t, s] \rightarrow \\
\left.\left.\frac{21-23 s^{2}-6 s^{4}}{12+90 s^{2}+82 s^{4}+12 s^{6}}\right\}\right\}
\end{gathered}
$$

For these values, we use InverseLaplaceTransform to compute $x(t)=\mathcal{L}^{-1}$ $\{X(s)\}, y(t)=\mathcal{L}^{-1}\{Y(s)\}$, and $z(t)=\mathcal{L}^{-1}\{Z(s)\}$. First, we compute $x(t)$. The result is very long so we do not display it here.

Instead, we use Short to view a portion of this result. Note that several terms are given in terms of Root.

$$
\begin{aligned}
& \text { In }[1813]:=\mathbf{x}\left[\mathrm{t}_{-}\right]=\text {InverseLaplaceTransform }[\\
& \left.\qquad \frac{18-13 \mathbf{s}^{2}+6 \mathbf{s}^{4}}{4\left(6+45 \mathbf{s}^{2}+41 \mathbf{s}^{4}+6 \mathbf{s}^{6}\right)}, \mathbf{s}, \mathrm{t}\right] ; \\
& \text { In }[1814]:=\operatorname{Short}[\mathbf{x}[t], 3] \\
& \text { Out }[1814]=\frac{e^{\ll 1 \gg}(\ll 1 \gg)}{48 \ll 8 \gg \sqrt{\operatorname{Root}\left[6+45 \# 1+41 \# 1^{2}+6 \# 1^{3} \&, 3\right]}}
\end{aligned}
$$

In this case, we cannot find exact solutions of the equation $6 s^{6}+41 s^{4}+45 s^{2}+6=0$. Nevertheless, we can use NRoots to approximate the solutions of this equation.

$$
\operatorname{In}[1815]:=\text { NRoots }\left[6+45 s^{2}+41 s^{4}+6 s^{6}==0, s\right]
$$

Root [p[x],k] represents the k th root of the polynomial equation $p(x)=0$.

Figure 8-38 The sway of a building is periodic

$$
\begin{aligned}
\text { Out }[1815]=s & ==-7.70372 \times 10^{-34}-0.393222 \dot{i}| | \\
& s==-7.70372 \times 10^{-34}+0.393222 \dot{i}| | s==0 .-1.08402 \dot{i}| | \\
& s==0 .+1.08402 \dot{i}| | s==7.70372 \times 10^{-34}-2.34598 \dot{i}| | \\
& s==7.70372 \times 10^{-34}+2.34598 \dot{i}
\end{aligned}
$$

Now, we use InverseLaplaceTransform to compute $y(t)=\mathcal{L}^{-1}\{Y(s)\}$ and $z(t)=\mathcal{L}^{-1}\{Z(s)\}$.

$$
\begin{aligned}
& \text { In }[1816]:=y\left[t_{-}\right]=\text {InverseLaplaceTransform }[\\
&\left.\frac{21-23 s^{2}-6 s^{4}}{2\left(6+45 s^{2}+41 s^{4}+6 s^{6}\right)}, s, t\right] ;
\end{aligned}
$$

In [1817]:= $\mathbf{z}\left[t_{-}\right]=$InverseLaplaceTransform[

$$
\left.\frac{57+76 s^{2}+12 s^{4}}{2\left(6+45 s^{2}+41 s^{4}+6 s^{6}\right)}, s, t\right] ;
$$

The graphs of $x(t), y(t)$, and $z(t)$ shown in Figure 8-38 indicate that they are indeed periodic functions.

```
In[1818]:= px = Plot[x[t], {t, 0, 200},
    DisplayFunction- > Identity];
    py = Plot[y[t], {t, 0, 200},
    DisplayFunction- > Identity];
pz=Plot[z[t], {t, 0, 200},
    DisplayFunction- > Identity];
    Show[GraphicsArray[{px, py, pz}]]
```

We can construct an outline of a three-story building and observe its vibration. The width and height of the floors were selected arbitrarily to be 20 and 1 , respectively. See Figure 8-39.

Figure 8-39 Visualizing the sway of a building

```
In[1819]:= Clear[bldg]
    bldg[t_,opts_-_] :=
            Show[Graphics[{Line[{{0, 0}, {20, 0} }],
            PointSize[0.05], Point[{0, 0}],
            Point[{20,0}], Line [{{0,0}, {x[t], 1}}],
            Point[{x[t], 1}], Line[{{20, 0},
            {20 + x[t], 1}}], Point[{20+x[t], 1}],
            Line[{{x[t], 1}, {y[t], 2}}],
            Point[{y[t], 2}],
            Line[{{20 + x [t], 1}, {20 + y [t], 2}}],
            Point[{20 + y[t], 2}],
            Line[{{y[t], 2}, {z[t], 3}}],
            Point[{z[t], 3}], Line[{{20+y[t], 2},
            {20+z[t], 3}}], Point[{20+z[t], 3}],
            Line[{{z[t], 3}, {20+z[t], 3}}]},opts,
            Axes }->\mathrm{ None, Ticks }->\mathrm{ None,
            PlotRange }->{{-2,22},{-1,4}}
            DisplayFunction- > Identity]]
```

In [1820]:= graphs = Table[bldg[t], \{t, 0.1, 6.1, 6./24\}];

```
In[1821]:= toshow = Partition[graphs, 5];
    Show[GraphicsArray[toshow]]
```

If you include the option DisplayFunction->\$DisplayFunction in the bldg command, you can use a Do loop and animate the resulting graphics as indicated next.

```
In[1822]:= Do[bldg[t, DisplayFunction }->\mathrm{ $DisplayFunction],
    {t, 0., 5., 5./31}]
```

Do[bldg[t, DisplayFunction \rightarrow SDisplayFunction].
\{t, 0.0.5.0.5.0/31\}]

$100 \%>\square$

Increasing the number of stories increases the size of the system of differential equations. A five-story building corresponds to a system of five second-order differential equations; a 50 -story building, a system of 50 second-order differential equations, and so on.

Eigenvalue Problems and

 Fourier Series

In previous chapters, we have seen that many physical situations can be modeled by either ordinary differential equations or systems of ordinary differential equations. However, to understand the motion of a string at a particular location and at a particular time, the temperature in a thin wire at a particular location and a particular time, or the electrostatic potential at a point on a plate, we must solve partial differential equations as each of these quantities depends on (at least) two independent variables.

| Wave equation | $c^{2} u_{x x}=u_{t t}$ |
| :--- | :--- |
| Heat equation | $u_{t}=c^{2} u_{x x}$ |
| Laplace's equation | $u_{x x}+u_{y y}=0$ |

In Chapter 10, we introduce a particular method for solving these partial differential equations (as well as others). In order to carry out this method, however, we introduce the necessary tools in this chapter. We begin with a discussion of boundary-value problems and their solutions.

9.1 Boundary-Value Problems, Eigenvalue Problems, Sturm-Liouville Problems

9.I.I Boundary-Value Problems

In previous sections, we have solved initial-value problems. However, at this time we will consider boundary-value problems which are solved in much the same
way as initial-value problems except that the value of the function and its derivatives are given at two values of the independent variable instead of one. The general form of a second-order (two-point) boundary-value problem is

$$
\left\{\begin{array}{l}
a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=f(x), a<x<b \tag{9.1}\\
k_{1} y(a)+k_{2} \frac{d y}{d x}(a)=\alpha, h_{1} y(b)+h_{2} \frac{d y}{d x}(b)=\beta
\end{array}\right.
$$

where $k_{1}, k_{2}, \alpha, h_{1}, h_{2}$, and β are constants and at least one of k_{1}, k_{2} and at least one of h_{1}, h_{2} is not zero.

Note that if $\alpha=\beta=0$, then we say the problem has homogeneous boundary conditions. We also consider boundary-value problems that include a parameter in the differential equation. We solve these problems, called eigenvalue problems, in order to investigate several useful properties associated with their solutions.

EXAMPLE 9.1.1: Solve $\left\{\begin{array}{l}y^{\prime \prime}+y=0,0<x<\pi \\ y^{\prime}(0)=0, y^{\prime}(\pi)=0 .\end{array}\right.$

SOLUTION: Because the characteristic equation is $k^{2}+1=0$ with roots $k_{1,2}= \pm i$, a general solution of $y^{\prime \prime}+y=0$ is $y=c_{1} \cos x+c_{2} \sin x$ and it follows that $y^{\prime}=-c_{1} \sin x+c_{2} \cos x$. Applying the boundary conditions, we have $y^{\prime}(0)=c_{2}=0$. Then, $y=c_{1} \cos x$. With this solution, we have $y^{\prime}(\pi)=-c_{1} \sin \pi=0$ for any value of c_{1}. Therefore, there are infinitely many solutions, $y=c_{1} \cos x$, of the boundary-value problem, depending on the choice of c_{1}. In this case, we are able to use DSolve to solve the boundary-value problem

```
In[1823]:= sol = DSolve [{\mp@subsup{y}{}{\prime\prime}[x]+y[x]== 0, \mp@subsup{y}{}{\prime}[0]== 0
    y'[\pi] == 0}, y[x],x]
Out [1823]= {{y[x] ->C[1] Cos[x]}}
```

We confirm that the boundary conditions are satisfied for any value of C [1] by graphing several solutions with Plot in Figure 9-1.

```
In[1824]:= toplot = Table[y[x]/.sol/.C[1]-> i,
    {i, -5, 5}];
    grays = Table[GrayLevel[i],{i, 0, 0.5,0.5/10}];
In[1825]:= Plot[Evaluate[toplot], {x, 0, \pi},
    PlotStyle }->\mathrm{ grays]
```


Figure 9-1 The boundary-value problem has infinitely many solutions

From the result in the example, we notice a difference between initial-value problems and boundary-value problems: an initial-value problem (that meets the hypotheses of the Existence and Uniqueness Theorem) has a unique solution while a boundaryvalue problem may have one solution, more than one solution, or no solution.

See Chapter 4 and Theorem 2.

EXAMPLE 9.1.2: Solve $\left\{\begin{array}{l}y^{\prime \prime}+y=0,0<x<\pi \\ y^{\prime}(0)=0, y^{\prime}(\pi)=1 .\end{array}\right.$

SOLUTION: Using the general solution obtained in the previous example, we have $y=c_{1} \cos x+c_{2} \sin x$. As before, $y^{\prime}(0)=c_{2}=0$, so $y=c_{1} \cos x$. However, because $y^{\prime}(\pi)=-c_{1} \sin \pi=0 \neq 1$, the boundary conditions cannot be satisfied with any choice of c_{1}. Therefore, there is no solution to the boundary-value problem.

As indicated in the general form of a boundary-value problem, the boundary conditions in these problems can involve the function and its derivative. However, this modification to the problem does not affect the method of solution.

EXAMPLE 9.1.3: Solve $\left\{\begin{array}{l}y^{\prime \prime}-y=0,0<x<1 \\ y^{\prime}(0)+3 y(0)=0, y^{\prime}(1)+y(1)=1 .\end{array}\right.$

If a value of the parameter leads to the trivial solution, then the value is not considered an eigenvalue of the problem.

SOLUTION: The characteristic equation is $k^{2}-1=0$ with roots $k_{1,2}= \pm 1$. Hence, a general solution is $y=c_{1} e^{x}+c_{2} e^{-x}$ with derivative $y^{\prime}=c_{1} e^{x}-c_{2} e^{-x}$. Applying $y^{\prime}(0)+3 y(0)=0$ yields $y^{\prime}(0)+3 y(0)=$ $c_{1}-c_{2}+3\left(c_{1}+c_{2}\right)=4 c_{1}+2 c_{2}=0$. Because $y^{\prime}(1)+y(1)=1$,

$$
y^{\prime}(1)+y(1)=c_{1} e^{1}-c_{2} e^{-1}+c_{1} e^{1}+c_{2} e^{-1}=2 c_{1} e=1,
$$

so $c_{1}=\frac{1}{2 e}$ and $c_{2}=-\frac{1}{e}$. Thus, the boundary-value problem has the unique solution $y=\frac{1}{2 e} e^{x}-\frac{1}{e} e^{-x}=\frac{1}{2} e^{x-1}-e^{-x-1}$, which we confirm with Mathematica. See Figure 9-2.

$$
\left.\begin{array}{rl}
\text { In }[1826]:= & \text { sol }=\text { DSolve }\left[\left\{y^{\prime \prime}[\mathbf{x}]-\mathrm{y}[\mathrm{x}]==0, \mathrm{y}^{\prime}[0]+3 \mathrm{y}[0]==0,\right.\right. \\
& \left.\left.\mathbf{y}^{\prime}[1]+\mathrm{y}[1]==1\right\}, \mathrm{y}[\mathrm{x}], \mathrm{x}\right]
\end{array}\right\} \begin{aligned}
\text { Out }[1826]= & \left\{\left\{\mathrm{y}[\mathrm{x}] \rightarrow \frac{1}{2} \mathbb{e}^{-1-\mathrm{x}}\left(-2+\mathbb{e}^{2 \mathrm{x}}\right)\right\}\right\} \\
\text { In }[1827]:= & \text { Plot }[\mathrm{y}[\mathrm{x}] / . \operatorname{sol},\{\mathbf{x}, 0,1\}, \\
& \text { AspectRatio } \rightarrow \text { Automatic }]
\end{aligned}
$$

9.1. 2 Eigenvalue Problems

We now consider eigenvalue problems, boundary-value problems that include a parameter. Values of the parameter for which the boundary-value problem has a nontrivial solution are called eigenvalues of the problem. For each eigenvalue, the nontrivial solution that satisfies the problem is called the corresponding eigenfunction.

Figure 9-2 The boundary-value problem has a unique solution

EXAMPLE 9.1.4: Solve the eigenvalue problem $y^{\prime \prime}+\lambda y=0,0<x<p$, subject to $y(0)=0$ and $y(p)=0$.

In Example 9.1.5 we solve the same differential equation but use the boundary conditions $y^{\prime}(0)=0$ and $y^{\prime}(p)=0$.

SOLUTION: Notice that the differential equation in this problem differs from those solved earlier because it includes the parameter λ. However, we solve it in a similar manner by solving the characteristic equation $k^{2}+\lambda=0$. Of course, the values of k depend on the value of the parameter λ. Hence, we consider the following three cases.

1. $(\lambda=0)$ In this case, the characteristic equation is $k^{2}=0$ with roots $k_{1,2}=0$, which indicates that a general solution is $y=$ $c_{1} x+c_{2}$. Application of the boundary condition $y(0)=0$ yields $y(0)=c_{1} \cdot 0+c_{2}=0$, so $c_{2}=0$. For the second condition, $y(p)=$ $c_{1} p=0$, so $c_{1}=0$ and $y=0$. Because we obtain the trivial solution, $\lambda=0$ is not an eigenvalue.
2. $(\lambda<0)$ To represent λ as a negative value, we let $\lambda=-\mu^{2}<0$. Then, the characteristic equation is $k^{2}-\mu^{2}=0$, so $k_{1,2}= \pm \mu$. Therefore, a general solution is, $y=c_{1} e^{\mu x}+c_{1} e^{-\mu x}$ (or $y=$ $\left.c_{1} \cosh \mu x+c_{1} \sinh \mu x\right)$. Substitution of the boundary condition $y(0)=0$ yields $y(0)=c_{1}+c_{2}=0$, so $c_{2}=-c_{1}$. Because $y(p)=0$ indicates that $y=c_{1} e^{\mu p}+c_{1} e^{-\mu p}=0$, substitution gives us the equation $y(p)=c_{1} e^{\mu p}-c_{1} e^{-\mu p}=c_{1}\left(e^{\mu p}-e^{-\mu p}\right)$. Notice that $e^{\mu p}-e^{-\mu p}=0$ only if $e^{\mu p}=e^{-\mu p}$ which can only occur if $\mu=0$ or $p=0$. If $\mu=0$, then $\lambda=-\mu^{2}=-0^{2}=0$ which contradicts the assumption that $\lambda<0$. We also assumed that $p>0$, so $e^{\mu p}-e^{-\mu p}>0$. Hence, $y(p)=c_{1}\left(e^{\mu p}-e^{-\mu p}\right)$ implies that $c_{1}=0$, so $c_{2}=-c_{1}=0$ as well. Because $\lambda<0$ leads to the trivial solution $y=0$, there are no negative eigenvalues.
3. $(\lambda>0)$ To represent λ as a positive value, we let $\lambda=\mu^{2}>$ 0 . Then, we have the characteristic equation $k^{2}+\mu^{2}=0$ with complex conjugate roots $k_{1,2}= \pm \mu i$. Thus, a general solution is $y=c_{1} \cos \mu x+c_{2} \sin \mu x$. Because $y(0)=c_{1} \cos \mu \cdot 0+c_{2} \sin \mu \cdot 0=c_{1}$, the boundary condition $y(0)=0$ indicates that $c_{1}=0$. Hence, $y=c_{2} \sin \mu x$. Application of $y(p)=0$ yields $y(p)=c_{2} \sin \mu p$, so either $c_{2}=0$ or $\sin \mu p=0$. Selecting $c_{2}=0$ leads to the trivial solution that we want to avoid, so we determine the values of μ that satisfy $\sin \mu p=0$. Because $\sin n \pi=0$ for integer values
of $n, \sin \mu p=0$ if $\mu p=n \pi, n=1,2, \ldots$ Solving for μ, we have $\mu=n \pi / p$, so the eigenvalues are

$$
\lambda=\lambda_{n}=\mu^{2}=\left(\frac{n \pi}{p}\right)^{2}, n=1,2, \ldots .
$$

Notice that the subscript n is used to indicate that the parameter depends on the value of n. (Notice also that we omit $n=0$, because the value $\mu=0$ was considered in Case 1.) For each eigenvalue, the corresponding eigenfunction is obtained by substitution into $y=c_{2} \sin \mu x$. Because c_{2} is arbitrary, we choose $c_{2}=1$. Therefore, the eigenvalue $\lambda_{n}=(n \pi / p)^{2}, n=1,2, \ldots$ has corresponding eigenfunction

$$
y(x)=y_{n}(x)=\sin \frac{n \pi x}{p}, n=1,2, \ldots
$$

We did not consider negative values of n because $\sin (-n \pi x / p)=$ $-\sin (n \pi x / p)$; the negative sign can be taken into account in the constant; we do not obtain additional eigenvalues or eigenfunctions by using $n=-1,-2, \ldots$.

In Example 9.I. 4 we solve the same differential equation but use the boundary conditions $y(0)=0$ and $y(p)=0$.

EXAMPLE 9.1.5: Solve $y^{\prime \prime}+\lambda y=0,0<x<p$, subject to $y^{\prime}(0)=0$ and $y^{\prime}(p)=0$.

SOLUTION: Notice that the only difference between this problem and that in Example 9.1.4 is in the boundary conditions. Again, the characteristic equation is $k^{2}+\lambda=0$, so we must consider the three cases $\lambda=0$, $\lambda<0$, and $\lambda>0$. Note that a general solution in each case is the same as that obtained in Example 9.1.4. However, the final results may differ due to the boundary conditions.

1. $(\lambda=0)$ Because $y=c_{1} x+c_{2}, y^{\prime}=c_{1}$. Therefore, $y^{\prime}(0)=c_{1}=0$, so $y=c_{2}$. Notice that this constant function satisfies $y^{\prime}(p)=0$ for all values of c_{2}. Hence, if we choose $c_{2}=1$, then $\lambda=0$ is an eigenvalue with corresponding eigenfunction $y=y_{0}(x)=1$.
2. $(\lambda<0)$ If $\lambda=-\mu^{2}<0$, then $y=c_{1} e^{\mu x}+c_{2} e^{-\mu x}$ and $y^{\prime}=c_{1} \mu e^{\mu x}-$ $c_{2} \mu e^{-\mu x}$. Applying the first condition results in $y^{\prime}(0)=c_{1} \mu-c_{2} \mu=$ 0 , so $c_{1}=c_{2}$. Therefore, $y^{\prime}(p)=c_{1} \mu e^{\mu p}-c_{1} \mu e^{-\mu p}=0$ which is not
possible unless $c_{1}=0$, because $\mu \neq 0$ and $p \neq 0$. Thus, $c_{1}=$ $c_{2}=0$, so $y=0$. Because we have the trivial solution, there are no negative eigenvalues.
3. $(\lambda>0)$ By letting $\lambda=\mu^{2}, y=c_{1} \cos \mu x+c_{2} \sin \mu x$ and $y^{\prime}=$ $-c_{1} \mu \sin \mu x+c_{2} \mu \cos \mu x$. Hence, $y^{\prime}(0)=c_{2} \mu=0$, so $c_{2}=0$. Consequently, $y^{\prime}(p)=-c_{1} \mu \sin \mu p=0$ which is satisfied if $\mu p=n \pi$, $n=1,2, \ldots$. Therefore, the eigenvalues are

$$
\lambda=\lambda_{n}=\left(\frac{n \pi}{p}\right)^{2}, n=1,2, \ldots
$$

Note that we found $c_{2}=0$ in $y=c_{1} \cos \mu x+c_{2} \sin \mu x$, so the corresponding eigenfunctions are

$$
y=y_{n}=\cos \frac{n \pi x}{p}, n=1,2, \ldots
$$

if we choose $c_{1}=1$.

EXAMPLE 9.1.6: Consider the eigenvalue problem $y^{\prime \prime}+\lambda y=0, y(0)=0$, $y(1)+y^{\prime}(1)=0$. (a) Show that the positive eigenvalues $\lambda=\mu^{2}$ satisfy the relationship $\mu=-\tan \mu$. (b) Approximate the first eight positive eigenvalues. Notice that for larger values of μ, the eigenvalues are approximately the vertical asymptotes of $y=\tan \mu$, so $\lambda_{n} \approx[(2 n-1) \pi / 2]^{2}, n=1$, $2, \ldots$.

SOLUTION: In order to solve the eigenvalue problem, we consider the three cases.

1. $(\lambda=0)$ The problem $y^{\prime \prime}=0, y(0)=0, y(1)+y^{\prime}(1)=0$ has the solution $y=0$, so $\lambda=0$ is not an eigenvalue.
```
In[1828]:= DSolve[{\mp@subsup{y}{}{\prime\prime}[x]== 0,y[0] == 0,
    y[1] + y'[1] == 0},y[x],x]
Out[1828]= {{y[x] >0}}
```

2. $(\lambda<0)$ Similarly, $y^{\prime \prime}-\mu^{2} y=0, y(0)=0, y(1)+y^{\prime}(1)=0$ has solution $y=0$, so there are no negative eigenvalues.
```
In[1829]:= DSolve[{y" [x] - - ^2 y [x] == 0, y[0] == 0,
    y[1] + y'[1] == 0},y[x],x]
```


Figure 9-3 The eigenvalues are the x-coordinates of the points of intersection of $y=x$ and $y=-\tan x$
3. $(\lambda>0)$ If $\lambda=\mu^{2}>0$, we solve $y^{\prime \prime}+\mu^{2} y=0, y(0)=0, y(1)+y^{\prime}(1)=$ 0 . In this case, the result returned by DSolve is incorrect.

```
In[1830]:= DSolve[{\mp@subsup{y}{}{\prime\prime}[x]+\mp@subsup{\mu}{}{\wedge}2y[x]== 0,y[0] == 0,
    y[1] + y'[1] == 0}, y[x],x]
Out [1830]= {{y[x] ->0}}
```

A general solution of $y^{\prime \prime}+\mu^{2} y=0$ is $y=A \cos \mu x+B \sin \mu x$. Applying $y(0)=0$ indicates that $A=0$, so $y=B \sin \mu x$. Applying $y(1)+y^{\prime}(1)=0$ where $y^{\prime}=\mu B \cos \mu x$ yields $B \sin \mu+\mu B \cos \mu=0$. Because we want to avoid requiring that $B=0$, we note that this condition is satisfied if $-\sin \mu=\mu \cos \mu$ or $-\tan \mu=\mu$. To approximate the first eight positive roots of this equation, we graph $y=-\tan x$ and $y=x$ simultaneously in Figure 9-3. (We only look for positive roots because $\tan (-\mu)=-\tan \mu$, meaning that no additional eigenvalues are obtained by considering negative values of μ.) The eigenfunctions of this problem are $y=\sin \mu x$ where μ satisfies $-\tan \mu=\mu$.

```
In[1831]:= Plot[{-Tan[x], x}, {x, 0, 24},
    PlotRange }->{0,24}, PlotStyle -> {GrayLevel[0]
    Dashing[{0.01}]}, AspectRatio }->\mathrm{ 1]
```

In Figure 9-3, notice that roots are to the right of the vertical asymptotes of $y=-\tan x$ which are $x=(2 n-1) \pi / 2, n$ any integer. We use

FindRoot to obtain approximations to the roots using initial guesses near the asymptotes. Here, we guess 0.1 unit to the right of $(2 n-1) \pi / 2$ for $n=1,2, \ldots, 8$.

$$
\begin{aligned}
& \text { In [1832]: }=\text { kvals }=\text { Table[FindRoot }[-\operatorname{Tan}[\mathbf{x}]=\mathbf{x} \text {, } \\
& \left.\left.\left\{x, \frac{(2 n-1) \pi}{2}+0.1\right\}\right],\{n, 1,8\}\right] \\
& \text { Out }[1832]=\{\{x \rightarrow 2.02876\},\{x \rightarrow 4.91318\},\{x \rightarrow 7.97867\} \text {, } \\
& \{x \rightarrow 11.0855\},\{x \rightarrow 14.2074\},\{x \rightarrow 17.3364\}, \\
& \{x \rightarrow 20.4692\},\{x \rightarrow 23.6043\}\}
\end{aligned}
$$

Therefore, the first eight roots are approximately 2.02876, 4.91318, $7.97867,11.0855,14.2074,17.3364,20.4692$, and 23.6043. As x increases, the roots move closer to the value of x at the vertical asymptotes of $y=-\tan x$. We can compare the two approximations by finding a for the first eight vertical asymptotes, $x=a$.

```
In [1833]:= Table[N[\frac{(2n-1)\pi}{2}],{n,1,8}]
Out [1833]= {1.5708,4.71239,7.85398, 10.9956, 14.1372,
    17.2788,20.4204,23.5619}
```

The first eight eigenvalues are approximated by squaring the elements of kvals. We call this list evals.

```
In[1834]:= evals = Table[kvals[[j, 1, 2]]^2, {j, 1, 8}]
Out [1834]= {4.11586, 24.1393,63.6591, 122.889, 201.851,
    300.55,418.987, 557.162}
```


9.I. 3 Sturm-Liouville Problems

Because of the importance of eigenvalue problems, we express these problems in the general form

$$
\begin{equation*}
a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+\left[a_{0}(x)+\lambda\right] y=0, a<x<b, \tag{9.2}
\end{equation*}
$$

where $a_{2}(x) \neq 0$ on $[a, b]$ and the boundary conditions at the endpoints $x=a$ and $x=b$ can be written as

$$
\begin{equation*}
k_{1} y(a)+k_{2} y^{\prime}(a)=0 \quad \text { and } \quad h_{1} y(b)+h_{2} y^{\prime}(b)=0 \tag{9.3}
\end{equation*}
$$

for the constants k_{1}, k_{2}, h_{1}, and h_{2} where at least one of h_{1}, h_{2} and at least one of k_{1}, k_{2} is not zero. Equation (9.2) can be rewritten by letting

$$
\begin{equation*}
p(x)=e^{\int a_{1}(x) / a_{2}(x) d x}, \quad q(x)=\frac{a_{0}(x)}{a_{2}(x)} p(x), \quad \text { and } \quad s(x)=\frac{p(x)}{a_{2}(x)} . \tag{9.4}
\end{equation*}
$$

By making this change, equation (9.2) can be rewritten as the equivalent equation

$$
\begin{equation*}
\frac{d}{d x}\left(p(x) \frac{d y}{d x}\right)+(q(x)+\lambda s(x)) y=0 \tag{9.5}
\end{equation*}
$$

which is called a Sturm-Liouville equation and along with appropriate boundary conditions is called a Sturm-Liouville problem. This particular form of the equation is known as self-adjoint form, which is of interest because of the relationship of the function $s(x)$ and the solutions of the problem.

EXAMPLE 9.1.7: Place the equation $x^{2} y^{\prime \prime}+2 x y^{\prime}+\lambda y=0, x>0$, in selfadjoint form.

SOLUTION: In this case, $a_{2}(x)=x^{2}, a_{1}(x)=2 x$, and $a_{0}(x)=0$. Hence, $p(x)=e^{\int a_{1}(x) / a_{2}(x) d x}=e^{\int 2 x / x^{2} d x}=e^{2 \ln x}=x^{2}, q(x)=\frac{a_{0}(x)}{a_{2}(x)} p(x)=0$, and $s(x)=\frac{p(x)}{a_{2}(x)}=\frac{x^{2}}{x^{2}}=1$, so the self-adjoint form of the equation is $\frac{d}{d x}\left(x^{2} \frac{d y}{d x}\right)+\lambda y=0$. We see that our result is correct by differentiating.

Solutions of Sturm-Liouville problems have several interesting properties, two of which are included in the following theorem.

Theorem 33 (Linear Independence and Orthogonality of Eigenfunctions). If $y_{m}(x)$ and $y_{n}(x)$ are eigenfunctions of the regular Sturm-Liouville problem

$$
\left\{\begin{array}{l}
\frac{d}{d x}\left(p(x) \frac{d y}{d x}\right)+(q(x)+\lambda s(x)) y=0 \tag{9.6}\\
k_{1} y(a)+k_{2} y^{\prime}(a)=0, h_{1} y(b)+h_{2} y^{\prime}(b)=0
\end{array}\right.
$$

where $m \neq n, y_{m}(x)$ and $y_{n}(x)$ are linearly independent and the orthogonality condition $\int_{a}^{b} s(x) y_{m}(x) y_{n}(x) d x=0$ holds.
Because we integrate the product of the eigenfunctions with the function $s(x)$ in the orthogonality condition, we call $s(x)$ the weighting function.

EXAMPLE 9.1.8: Consider the eigenvalue problem $y^{\prime \prime}+\lambda y=0,0<$ $x<p$, subject to $y(0)=0$ and $y(p)=0$ that we solved in Example 9.1.4. Verify that the eigenfunctions $y_{1}=\sin (\pi x / p)$ and $y_{2}=\sin (2 \pi x / p)$ are linearly independent. Also, verify the orthogonality condition.

SOLUTION: We can verify that $y_{1}=\sin (\pi x / p)$ and $y_{2}=\sin (2 \pi x / p)$ are linearly independent by computing the Wronskian.

```
In[1835]:= Clear[\mathbf{x,p}
    caps ={ Sin [\frac{\pix}{p}],\operatorname{Sin}[\frac{2\pix}{p}]};
    ws = Simplify[Det[{caps, \partialxcaps}]]
Out[1835]=--\frac{2\piSin [\frac{\pix}{p}\mp@subsup{]}{}{3}}{p}
```

We see that the Wronskian is not the zero function by evaluating it for a particular value of x; we choose $x=p / 2$.

$$
\begin{aligned}
& \text { In }[1836]:=\mathrm{ws} / \cdot \mathrm{x} \rightarrow \frac{\mathrm{p}}{2} \\
& \text { Out }[1836]=-\frac{2 \pi}{\mathrm{p}}
\end{aligned}
$$

Because $W\left\{y_{1}, y_{2}\right\}$ is not zero for all values of x, the two functions are linearly independent. In self-adjoint form, the equation is $y^{\prime \prime}+\lambda y=0$, with $s(x)=1$. Hence, the orthogonality condition is $\int_{0}^{p} y_{m}(x) y_{n}(x) d x=0$, $m \neq n$, which we verify for y_{1} and y_{2}.

Of course, these two properties hold for any choices of m and $n, m \neq n$.

9.2 Fourier Sine Series and Cosine Series

9.2.1 Fourier Sine Series

Recall the eigenvalue problem $\left\{\begin{array}{l}y^{\prime \prime}+\lambda y=0 \\ y(0)=0, y(p)=0\end{array}\right.$ that was solved in Example
9.1.4. The eigenvalues of this problem are $\lambda=\lambda_{n}=(n \pi / p)^{2}, n=1,2, \ldots$, with corresponding eigenfunctions $\phi_{n}(x)=\sin (n \pi x / p), n=1,2, \ldots$.

We will see that for some functions $y=f(x)$, we can find coefficients c_{n} so that

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} c_{n} \sin \frac{n \pi x}{p} . \tag{9.7}
\end{equation*}
$$

A series of this form is called a Fourier sine series. To make use of these series, we must determine the coefficients c_{n}. We accomplish this by taking advantage of the orthogonality properties of eigenfunctions stated in Theorem 33.

Because the differential equation $y^{\prime \prime}+\lambda y=0$ is in self-adjoint form, we have that $s(x)=1$. Therefore, the orthogonality condition is $\int_{0}^{p} \sin (n \pi x / p) \sin (m \pi x / p) d x$, $m \neq n$. In order to use this condition, multiply both sides of $f(x)=\sum_{n=1}^{\infty} c_{n} \sin (n \pi x / p)$ by the eigenfunction $\sin (m \pi x / p)$ and $s(x)=1$. Then, integrate the result from $x=0$ to $x=p$ (because the boundary conditions of the corresponding eigenvalue problem are given at these two values of x). This yields

$$
\int_{0}^{p} f(x) \sin \frac{m \pi x}{p} d x=\int_{0}^{p} \sum_{n=1}^{\infty} c_{n} \sin \frac{n \pi x}{p} \sin \frac{m \pi x}{p} d x .
$$

Assuming that term-by-term integration is allowed on the right-hand side of the equation, we have

$$
\int_{0}^{p} f(x) \sin \frac{m \pi x}{p} d x=\sum_{n=1}^{\infty} \int_{0}^{p} c_{n} \sin \frac{n \pi x}{p} \sin \frac{m \pi x}{p} d x
$$

Recall that the eigenfunctions $\phi_{n}(x), n=1,2, \ldots$ are orthogonal, so $\int_{0}^{p} \sin (n \pi x / p)$ $\sin (m \pi x / p) d x=0$ if $m \neq 0$. On the other hand if $m=n$,

$$
\begin{aligned}
\int_{0}^{p} \sin \frac{n \pi x}{p} \sin \frac{m \pi x}{p} d x & =\int_{0}^{p} \sin ^{2} \frac{n \pi x}{p} d x \\
& =\frac{1}{2} \int_{0}^{p}\left(1-\cos \frac{2 n \pi x}{p}\right) d x \\
& =\frac{1}{2}\left[x-\frac{p}{2 n \pi} \sin \frac{2 n \pi x}{p}\right]_{0}^{p}=\frac{p}{2} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { In [1838] : }=\int_{0}^{p} \operatorname{Sin}\left[\frac{n \pi x}{p}\right]^{2} d x \\
& \text { Out }[1838]=\frac{p}{2}-\frac{p \operatorname{Sin}[2 n \pi]}{4 n \pi}
\end{aligned}
$$

Therefore, each term in the sum $\sum_{n=1}^{\infty} c_{n} \int_{0}^{p} \sin (n \pi x / p) \sin (m \pi x / p) d x$ equals zero except when $m=n$. Hence, $\int_{0}^{p} f(x) \sin (n \pi x / p) d x=\frac{1}{2} c_{n} p$, so the Fourier sine series coefficients are given by

$$
\begin{equation*}
c_{n}=\frac{2}{p} \int_{0}^{p} f(x) \sin \frac{n \pi x}{p} d x, \tag{9.8}
\end{equation*}
$$

where we assume that $y=f(x)$ is integrable on $[0, p]$.

EXAMPLE 9.2.1: Find the Fourier sine series for $f(x)=x, 0 \leq x \leq \pi$.

SOLUTION: In this case, $p=\pi$. Using integration by parts we have,

$$
\begin{aligned}
c_{n} & =\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin \frac{n \pi x}{\pi} d x=\frac{2}{\pi} \int_{0}^{\pi} x \sin n x d x \\
& =\frac{2}{\pi}\left[-\frac{1}{n} x \cos n x\right]_{0}^{\pi}+\frac{2}{\pi} \int_{0}^{\pi} \frac{1}{n} \cos n x d x=-\frac{2}{n} \cos n \pi+\frac{2}{\pi}\left[\frac{1}{n^{2}} \sin n x\right]_{0}^{\pi} \\
& =-\frac{2}{n} \cos n \pi+\frac{2}{n^{2}}(\sin n \pi-\sin 0)=-\frac{2}{n} \cos n \pi . \\
& \text { In }[1839]:=\int_{0}^{\pi} \frac{2 \mathbf{x} \sin [\mathrm{nx}]}{\pi} d \mathbf{x} \\
& \text { Out }[1839]=\frac{2\left(-\frac{\pi \cos [\mathrm{n} \pi]}{n}+\frac{\sin [\mathrm{n} \pi]}{\mathrm{n}^{2}}\right)}{\pi}
\end{aligned}
$$

Observe that n is an integer so $\cos n \pi=(-1)^{n}$. Hence, $c_{n}=-\frac{2}{n}(-1)^{n}$ $=(-1)^{n+1} \frac{2}{n}$, and the Fourier sine series is

$$
\begin{aligned}
f(x) & =\sum_{n=1}^{\infty} c_{n} \sin \frac{n \pi x}{\pi}=2 \sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n} \sin n x \\
& =2 \sin x-\sin 2 x+\frac{2}{3} \sin 3 x-\frac{1}{2} \sin 4 x+\cdots .
\end{aligned}
$$

We can use a finite number of terms of the series to obtain a trigonometric polynomial that approximates $f(x)=x, 0 \leq x \leq \pi$ as follows. Let $f_{k}(x)=2 \sum_{n=1}^{k}(-1)^{n+1} \frac{1}{n} \sin n x$. Then, $f_{k}(x)=f_{k-1}(x)+(-1)^{k+1} \frac{2}{k} \sin k x$. Thus, to calculate the k th partial sum of the Fourier sine series, we need only add $(-1)^{k+1} \frac{2}{k} \sin k x$ to the $(k-1)$ st partial sum: we need not recompute all k terms of the k th partial sum if we know the $(k-1)$ st partial sum. Using this observation, we define the recursively defined function f to return the k th partial sum of the series. We use the form $\mathrm{f}\left[\mathrm{k} _\right]:=\mathrm{f}[\mathrm{k}]$ $=.$. so that Mathematica "remembers" each $f_{k}(x)$ that is computed. The advantage of doing so is that Mathematica need not recompute $f_{k}(x)$ to compute $f_{k+1}(x)$.

```
In[1840]:= Clear[f]
    f[k-]:=f[k]=f[k-1]+\frac{2(-1)}{(k+1}\operatorname{Sin}[kx]
    f[1] = 2 Sin[x];
In[1841]:= Table[{n, f[n]},{n, 1, 5}]//TableForm
    1 2 Sin[x]
    2 2 Sin[x] - Sin[2 x]
    32 Sin[x]-\operatorname{Sin}[2x]+\frac{2}{3}}\operatorname{Sin}[3x
Out[1841]=42 Sin[x]-\operatorname{Sin}[2x] + < 
    5 2 Sin[x]- Sin[2x] + < < Sin[3x]-\frac{1}{2}}\operatorname{Sin}[4x
    +\frac{2}{5}}\operatorname{sin}[5x
```

We now graph $f(x)$ on $[0, \pi]$ along with several of the partial sums of the sine series in Figure 9-4. As we increase the number of terms used in approximating $f(x)$, we improve the accuracy. Notice from the graphs that none of the partial sums attain the value of $f(\pi)=\pi$ at $x=\pi$. This is due to the fact that at $x=\pi$, each of the partial sums yield a value of 0 . Hence, our approximation can only be reliable on the interval $0<$ $x<\pi$. In general, however, we are only assured of accuracy at points of continuity of $f(x)$ on the open interval.

```
In[1842]:= somegraphs =
    Table[Plot[{x, f[n]}, {x,0, \pi},
            PlotStyle }->\mathrm{ {GrayLevel[0.5],
            GrayLevel[0]},
            DisplayFunction }->\mathrm{ Identity, Ticks }->{{0,\pi}
            {1, 2, 3}}], {n, 3, 30, 9}];
    toshow = Partition[somegraphs, 2];
    Show[GraphicsArray[toshow], AspectRatio }->\mathrm{ 1]
```

EXAMPLE 9.2.2: Find the Fourier sine series for $f(x)=\left\{\begin{array}{l}1,0 \leq x<1 \\ -1,1 \leq x \leq 2 .\end{array}\right.$

Figure 9-4 $f(x)=x, 0 \leq x \leq \pi$, shown with the 3rd, 12th, 21st, and 30th partial sums of its Fourier sine series

SOLUTION: Because $f(x)$ is defined on $0 \leq x \leq 2, p=2$. Hence,

$$
\begin{aligned}
& \quad c_{n}=\frac{2}{2} \int_{0}^{2} f(x) \sin \frac{n \pi x}{2} d x=\frac{2}{n \pi}\left(-2 \cos \frac{n \pi}{2}+\cos n \pi+1\right) . \\
& \text { In }[1843]:=c_{n_{-}}=\int_{0}^{1} \sin \left[\frac{\mathbf{n} \pi \mathbf{x}}{2}\right] d \mathbf{x}-\int_{1}^{2} \sin \left[\frac{\mathbf{n} \pi \mathbf{x}}{2}\right] d \mathbf{x} \\
& \text { Out }[1843]=\frac{2}{\mathrm{n} \pi}-\frac{4 \operatorname{Cos}\left[\frac{\mathrm{n} \pi}{2}\right]}{\mathrm{n} \pi}+\frac{2 \operatorname{Cos}[\mathrm{n} \pi]}{\mathrm{n} \pi}
\end{aligned}
$$

We use Table to calculate a few of the $c_{n}{ }^{\prime}$ s.

```
In[1844]:= Table[{n, cm, {n, 1, 15}]//TableForm
    1 0
    2 \frac{4}{\pi}
    4 0
    5 0
    6 
Out[1844]= 8}0
    10}\frac{4}{5\pi
    1 1 0
    120
    1 3 0
    14}\frac{4}{7\pi
    15 0
```

As we can see, most of the coefficients are zero. In fact, only those c_{n} 's where n is an odd multiple of 2 yield a nonzero value. For example, $c_{6}=c_{2.3}=\frac{2}{6 \pi} \cdot 4=\frac{4}{3 \pi}, c_{10}=c_{2.5}=\frac{2}{10 \pi} \cdot 4=\frac{4}{5 \pi}, \ldots$,

$$
c_{2(2 n-1)}=\frac{4}{(2 n-1) \pi}, n=1,2, \ldots
$$

so we have the series

$$
\begin{aligned}
f(x) & =\sum_{n=1}^{\infty} \frac{4}{(2 n-1) \pi} \sin \frac{2(2 n-1) \pi x}{2}=\sum_{n=1}^{\infty} \frac{4}{(2 n-1) \pi} \sin (2 n-1) \pi x \\
& =\frac{4}{\pi} \sin \pi x+\frac{4}{3 \pi} \sin 3 \pi x+\frac{4}{5 \pi} \sin 5 \pi x+\cdots .
\end{aligned}
$$

As in Example 9.2.1, we graph $f(x)$ with several partial sums of the Fourier sine series in Figure 9.2.1.

```
In[1845]:= Clear[f,g]
    g[x_] := 1/; 0 < x < 1
    g[x_] := -1/; 1 < x < 2
In[1846]:= f[k_]:=f[k]=f[k-1]+\frac{4\operatorname{Sin}[(2k-1)\pix]}{(2k-1)\pi}
    f[1] = 4 Sin[\pix]
In[1847]:= Table[{n, f[n]},{n, 1, 5}]//TableForm
```

-1.5 2
1.5 Cos
1.5~2
-1. 5
-1.5
-1.5

Figure 9-5 At the jump discontinuity at $x=1$, the Fourier sine series converges to $\frac{1}{2}\left(\lim _{x \rightarrow 1^{-}} f(x)+\lim _{x \rightarrow 1^{+}} f(x)\right)=\frac{1}{2}(1-1)=0$

$$
\begin{aligned}
& \frac{4 \sin [\pi x]}{\pi} \\
2 & \frac{4 \sin [\pi x]}{\pi}+\frac{4 \sin [3 \pi x]}{3 \pi} \\
& 3 \frac{4 \sin [\pi x]}{\pi}+\frac{4 \sin [3 \pi x]}{3 \pi}+\frac{4 \sin [5 \pi x]}{5 \pi} \\
\text { Out }[1847]= & 4 \frac{4 \sin [\pi x]}{\pi}+\frac{4 \sin [3 \pi x]}{3 \pi}+\frac{4 \sin [5 \pi x]}{5 \pi} \\
& +\frac{4 \sin [7 \pi x]}{7 \pi} \\
5 & \frac{4 \sin [\pi x]}{\pi}+\frac{4 \sin [3 \pi x]}{3 \pi}+\frac{4 \sin [5 \pi x]}{5 \pi} \\
& +\frac{4 \sin [7 \pi x]}{7 \pi}+\frac{4 \sin [9 \pi x]}{9 \pi}
\end{aligned}
$$

Notice that with a large number of terms the approximation is quite good at values of x where $f(x)$ is continuous.

```
In[1848]:= somegraphs =
    Table[Plot[{g[x], f[n]}, {x, 0, 2},
        PlotStyle }->\mathrm{ {GrayLevel[0.5],
        GrayLevel[0]},
        DisplayFunction }->\mathrm{ Identity,
        PlotRange }->{-1.5,1.5},Ticks ->{{1, 2}
        {-1.5, 1.5}}], {n, 1, 9}];
    toshow = Partition[somegraphs, 3];
    Show[GraphicsArray[toshow], AspectRatio }->\mathrm{ 1]
```

The behavior of the series near points of discontinuity (in that the approximation overshoots the function) is called the Gibbs phenomenon. The approximation continues to "miss" the function even though more and more terms from the series are used!

In somegraphs, we observe the graph of the error function Abs $[\mathrm{g}[\mathrm{x}]-\mathrm{f}[\mathrm{n}]$] for $n=1,2, \ldots, 9$. Notice that the error remains "large" at the points of discontinuity, $x=0,1,2$, even for "large" values of n. See Figure 9.2.1.

```
In[1849]:= somegraphs =
    Table[Plot[Abs[g[x]-f[n]], {x, 0, 2},
        DisplayFunction }->\mathrm{ Identity,
        PlotRange }->{0,1},Ticks ->{{1, 2}
        {0, 1}}], {n, 1, 9}];
    toshow = Partition[somegraphs, 3];
    Show[GraphicsArray[toshow], AspectRatio }->\mathrm{ 1]
```


Figure 9-6 The Fourier sine series converges to $f(x)$ on the open intervals where $f(x)$ is continuous

We solved this eigenvalue problem in Example 9.I.5.

9.2.2 Fourier Cosine Series

Another important eigenvalue problem that has useful eigenfunctions is

$$
\left\{\begin{array}{l}
y^{\prime \prime}+\lambda y=0 \\
y^{\prime}(0)=y^{\prime}(p)=0
\end{array}\right.
$$

which has eigenvalues and eigenfunctions given by

$$
\lambda_{n}=\left\{\begin{array}{l}
0, n=0 \\
(n \pi / p)^{2}, n=1,2, \ldots
\end{array} \quad \text { and } \quad y_{n}(x)=\left\{\begin{array}{l}
1, n=0 \\
\cos (n \pi x / p), n=1,2, \ldots .
\end{array}\right.\right.
$$

Therefore, for some functions $f(x)$, we can find a series expansion of the form

$$
\begin{equation*}
f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{p} . \tag{9.9}
\end{equation*}
$$

We call this expansion a Fourier cosine series where in the first term (associated with $\lambda_{0}=0$), the constant $\frac{1}{2} a_{0}$ is written in this form for convenience in finding the formula for the coefficients $a_{n}, n=1,2, \ldots$. We find these coefficients in a manner similar to that followed to find the coefficients in the Fourier sine series. Notice that in this case, the orthogonality condition is $\int_{0}^{p} \cos (n \pi x / p) \cos (m \pi x / p) d x=0$, $m \neq n$. We use this condition by multiplying both sides of the series expansion by $\cos (m \pi x / p)$ and integrating from $x=0$ to $x=p$. This yields

$$
\int_{0}^{p} f(x) \cos \frac{m \pi x}{p} d x=\int_{0}^{p} \frac{1}{2} a_{0} \cos \frac{m \pi x}{p} d x+\int_{0}^{p} \sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{p} \cos \frac{m \pi x}{p} d x .
$$

Assuming that term-by-term integration is allowed,

$$
\int_{0}^{p} f(x) \cos \frac{m \pi x}{p} d x=\int_{0}^{p} \frac{1}{2} a_{0} \cos \frac{m \pi x}{p} d x+\sum_{n=1}^{\infty} \int_{0}^{p} a_{n} \cos \frac{n \pi x}{p} \cos \frac{m \pi x}{p} d x .
$$

If $m=0$, then this equation reduces to

$$
\int_{0}^{p} f(x) d x=\int_{0}^{p} \frac{1}{2} a_{0} d x+\sum_{n=1}^{\infty} \int_{0}^{p} a_{n} \cos \frac{n \pi x}{p} d x
$$

where $\int_{0}^{p} \cos (n \pi x / p) d x=0$ and $\int_{0}^{p} \frac{1}{2} a_{0} d x=\frac{1}{2} p a_{0}$. Therefore, $\int_{0}^{p} f(x) d x=\frac{1}{2} p a_{0}$, so

$$
\begin{equation*}
a_{0}=\frac{2}{p} \int_{0}^{p} f(x) d x . \tag{9.10}
\end{equation*}
$$

If $m>0$, we note that by the orthogonality property $\int_{0}^{p} \cos (n \pi x / p) \cos (m \pi x / p) d x=$ $0, m \neq n$. We also note that $\int_{0}^{p} \frac{1}{2} a_{0} \cos (m \pi x / p) d x=0$ and $\int_{0}^{p} \cos ^{2}(n \pi x / p) d x=\frac{1}{2} p$. Hence, $\int_{0}^{p} f(x) \cos (n \pi x / p) d x=0+a_{n} \cdot \frac{1}{2} p$. Solving for a_{n}, we have

$$
\begin{equation*}
a_{n}=\frac{2}{p} \int_{0}^{p} f(x) \cos \frac{n \pi x}{p} d x, n=1,2, \ldots \tag{9.11}
\end{equation*}
$$

Notice that equation (9.11) is valid for $n=0$ because $\cos \frac{0 \cdot \pi x}{p}=1$.

EXAMPLE 9.2.3: Find the Fourier cosine series for $f(x)=x, 0 \leq x \leq \pi$.

SOLUTION: In this case, $p=\pi$. Hence,

$$
a_{0}=\frac{2}{\pi} \int_{0}^{\pi} x d x=\frac{2}{\pi}\left[\frac{1}{2} x^{2}\right]_{0}^{\pi}=\pi
$$

and using integration by parts we find that

$$
\begin{aligned}
a_{n} & =\frac{2}{\pi} \int_{0}^{\pi} x \cos \frac{n \pi x}{\pi} d x=\frac{2}{\pi} \int_{0}^{\pi} x \cos n x d x \\
& =\frac{2}{\pi}\left\{\left[\frac{1}{n} x \sin n x\right]_{0}^{\pi}-\int_{0}^{\pi} \frac{1}{n} \sin n x d x\right\}=\frac{2}{\pi}\left[\frac{1}{n^{2}} \cos n x\right]_{0}^{\pi} \\
& =\frac{2}{n^{2} \pi}(\cos n \pi-1)=\frac{2}{n^{2} \pi}\left[(-1)^{n}-1\right] .
\end{aligned}
$$

If n is an integer,
$\cos n \pi=(-1)^{n}$ and
$\sin n \pi=0$.

Notice that for even values of $n,(-1)^{n}-1=0$. Therefore, $a_{n}=0$ if n is even. On the other hand, if n is odd, $(-1)^{n}-1=-2$. Hence, $a_{1}=-\frac{4}{\pi}$, $a_{3}=-\frac{4}{9 \pi}, a_{5}=-\frac{4}{25 \pi}, \ldots$,

$$
a_{2 n-1}=-\frac{4}{(2 n-1)^{2} \pi}
$$

so the Fourier cosine series for $f(x)$ is

$$
f(x)=\frac{\pi}{2}-\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi}\left[(-1)^{n}-1\right] \cos \frac{n \pi x}{\pi}=\frac{\pi}{2}-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}} \cos (2 n-1) x .
$$

We plot the function with several terms of the series in Figure 9-7. Compare these results to those obtained when approximating this function with a sine series. Which series yields the better approximation with the fewer number of terms?

Figure 9-7 Partial sums of the Fourier cosine series shown with $f(x)=x, 0 \leq x \leq \pi$ on the left and the absolute value of the difference between the two on the right

$$
\begin{aligned}
& \text { In [1850]:= Clear[f] } \\
& f\left[n_{-}\right]:=f[n]=f[n-1]-\frac{4 \operatorname{Cos}[(2 n-1) x]}{\pi(2 n-1)^{2}} \\
& \mathrm{f}[0]=\frac{\pi}{2} ; \\
& \text { In [1851]: }=\mathrm{p} 1=\operatorname{Plot}[E v a l u a t e[\{\mathbf{x}, \mathrm{f}[1]\}],\{\mathbf{x}, 0, \pi\} \text {, } \\
& \text { PlotStyle } \rightarrow \text { \{GrayLevel[0.5], GrayLevel[0]\}, } \\
& \text { DisplayFunction } \rightarrow \text { Identity]; } \\
& \mathrm{p} 2=\mathrm{Plot}[\text { Evaluate[Abs[x-f[1]]], }\{\mathrm{x}, 0, \pi\} \text {, } \\
& \text { DisplayFunction } \rightarrow \text { Identity]; } \\
& \text { p3 }=\operatorname{Plot}[E v a l u a t e[\{x, f[2]\}],\{x, 0, \pi\} \text {, } \\
& \text { PlotStyle } \rightarrow \text { \{GrayLevel[0.5], GrayLevel[0]\}, } \\
& \text { DisplayFunction } \rightarrow \text { Identity]; } \\
& \mathrm{p} 4=\operatorname{Plot}[\text { Evaluate[Abs[x-f[2]]], }\{x, 0, \pi\}, \\
& \text { DisplayFunction } \rightarrow \text { Identity]; } \\
& \text { Show[GraphicsArray[\{\{p1, p2\}, \{p3, p4\}\}]] }
\end{aligned}
$$

9.3 Fourier Series

9.3.I Fourier Series

The eigenvalue problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}+\lambda y=0,-p \leq x \leq p \\
y(-p)=y(p), y^{\prime}(-p)=y^{\prime}(p)
\end{array}\right.
$$

has eigenvalues

$$
\lambda_{n}=\left\{\begin{array}{l}
0, n=0 \\
(n \pi / p)^{2}, n=1,2 \ldots
\end{array}\right.
$$

and eigenfunctions

$$
y_{n}(x)=\left\{\begin{array}{l}
1, n=0 \\
a_{n} \cos \frac{n \pi x}{p}+b_{n} \sin \frac{n \pi x}{p}, n=1,2 \ldots
\end{array}\right.
$$

so we can consider a series made up of these functions. Hence, we write

$$
\begin{equation*}
f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{p}+b_{n} \sin \frac{n \pi x}{p}\right) \tag{9.12}
\end{equation*}
$$

which is called a Fourier series. As was the case with Fourier sine and Fourier cosine series, we must determine the coefficients $a_{0}, a_{n}(n=1,2, \ldots)$, and $b_{n}(n=1$, $2, \ldots$). Because we use a method similar to that used to find the coefficients in Section 9.2, we state the value of several integrals next.

$$
\begin{align*}
\int_{-p}^{p} \cos \frac{n \pi x}{p} d x & =0 \\
\int_{-p}^{p} \sin \frac{n \pi x}{p} d x & =0 \\
\int_{-p}^{p} \cos \frac{m \pi x}{p} \sin \frac{n \pi x}{p} d x & =0 \tag{9.13}\\
\int_{-p}^{p} \cos \frac{m \pi x}{p} \cos \frac{n \pi x}{p} d x & =\left\{\begin{array}{l}
0, m \neq n \\
p, m=n
\end{array}\right. \\
\int_{-p}^{p} \sin \frac{m \pi x}{p} \sin \frac{n \pi x}{p} d x & =\left\{\begin{array}{l}
0, m \neq n \\
p, m=n
\end{array}\right.
\end{align*}
$$

We begin by finding a_{0} and $a_{n}(n=1,2, \ldots)$. Multiplying both sides of equation (9.12) by $\cos (m \pi x / p)$ and integrating from $x=-p$ to $x=p$ (because of the boundary conditions) yields

$$
\begin{aligned}
\int_{-p}^{p} f(x) \cos \frac{m \pi x}{p} d x= & \int_{-p}^{p} \frac{1}{2} a_{0} \cos \frac{m \pi x}{p} d x \\
& +\int_{-p}^{p} \sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{p} \cos \frac{m \pi x}{p}+b_{n} \sin \frac{n \pi x}{p} \cos \frac{m \pi x}{p}\right) d x \\
= & \int_{-p}^{p} \frac{1}{2} a_{0} \cos \frac{m \pi x}{p} d x \\
& +\sum_{n=1}^{\infty}\left(\int_{-p}^{p} a_{n} \cos \frac{n \pi x}{p} \cos \frac{m \pi x}{p} d x+\int_{-p}^{p} b_{n} \sin \frac{n \pi x}{p} \cos \frac{m \pi x}{p} d x\right) .
\end{aligned}
$$

If $m=0$, we notice that all of the integrals that we are summing have the value zero. Thus, this equation simplifies to

$$
\begin{align*}
\int_{-p}^{p} f(x) d x & =\int_{-p}^{p} \frac{1}{2} a_{0} d x \\
\int_{-p}^{p} f(x) d x & =\frac{1}{2} a_{0} \cdot 2 p \tag{9.14}\\
a_{0} & =\frac{1}{p} \int_{-p}^{p} f(x) d x .
\end{align*}
$$

If $m \neq 0$, only one of the integrals on the right-hand side of the equation yields a value other than zero and this occurs with

$$
\int_{-p}^{p} \cos \frac{m \pi x}{p} \cos \frac{n \pi x}{p} d x=\left\{\begin{array}{l}
0, m \neq n \\
p, m=n
\end{array}\right.
$$

if $m=n$. Hence,

$$
\begin{align*}
\int_{-p}^{p} f(x) \cos \frac{n \pi x}{p} d x & =p \cdot a_{n} \tag{9.15}\\
a_{n} & =\frac{1}{p} \int_{-p}^{p} f(x) \cos \frac{n \pi x}{p} d x, n=1,2, \ldots
\end{align*}
$$

We find $b_{n}(n=1,2, \ldots)$ by multiplying the series by $\sin (m \pi x / p)$ and integrating from $x=-p$ to $x=p$. This yields

$$
\begin{aligned}
\int_{-p}^{p} f(x) \sin \frac{m \pi x}{p} d x= & \int_{-p}^{p} \frac{1}{2} a_{0} \sin \frac{m \pi x}{p} d x \\
& +\int_{-p}^{p} \sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{p} \sin \frac{m \pi x}{p}+b_{n} \sin \frac{n \pi x}{p} \sin \frac{m \pi x}{p}\right) d x \\
= & \int_{-p}^{p} \frac{1}{2} a_{0} \sin \frac{m \pi x}{p} d x \\
& +\sum_{n=1}^{\infty}\left(\int_{-p}^{p} a_{n} \cos \frac{n \pi x}{p} \sin \frac{m \pi x}{p} d x+\int_{-p}^{p} b_{n} \sin \frac{n \pi x}{p} \sin \frac{m \pi x}{p} d x\right) .
\end{aligned}
$$

Again, we note that only one of the integrals on the right-hand side of the equation is not zero. In this case, we use

$$
\int_{-p}^{p} \sin \frac{m \pi x}{p} \sin \frac{n \pi x}{p} d x=\left\{\begin{array}{l}
0, m \neq n \\
p, m=n
\end{array}\right.
$$

to obtain

$$
\begin{align*}
\int_{-p}^{p} f(x) \sin \frac{n \pi x}{p} d x & =p \cdot b_{n} \tag{9.16}\\
b_{n} & =\frac{1}{p} \int_{-p}^{p} f(x) \sin \frac{n \pi x}{p} d x, n=1,2, \ldots
\end{align*}
$$

Definition 38 (Fourier Series). Suppose that $y=f(x)$ is defined on $-p \leq x \leq p$. The Fourier series for $f(x)$ is

$$
\begin{equation*}
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{p}+b_{n} \sin \frac{n \pi x}{p}\right) \tag{9.17}
\end{equation*}
$$

where

$$
\begin{align*}
& a_{0}=\frac{1}{p} \int_{-p}^{p} f(x) d x, \\
& a_{n}=\frac{1}{p} \int_{-p}^{p} f(x) \cos \frac{n \pi x}{p} d x, n=1,2, \ldots, \text { and } \tag{9.18}\\
& b_{n}=\frac{1}{p} \int_{-p}^{p} f(x) \sin \frac{n \pi x}{p} d x, n=1,2, \ldots .
\end{align*}
$$

The following theorem tells us that the Fourier series for any function converges to the function except at points of discontinuity.

Theorem 34 (Convergence of Fourier Series). Suppose that $f(x)$ and $f^{\prime}(x)$ are piecewise continuous functions on $-p \leq x \leq p$. Then the Fourier series for $f(x)$ on $-p \leq x \leq p$ converges to $f(x)$ at every x where $f(x)$ is continuous.

If $f(x)$ is discontinuous at $x=a$, the Fourier series converges to the average

$$
\frac{1}{2}\left(\lim _{x \rightarrow a+} f(x)+\lim _{x \rightarrow a-} f(x)\right) .
$$

EXAMPLE 9.3.1: Find the Fourier series for $f(x)=\left\{\begin{array}{l}1,-2 \leq x<0 \\ 2,0 \leq x<2\end{array}\right.$ where $f(x+4)=f(x)$.

SOLUTION: In this case, $p=2$. First we find

$$
\begin{aligned}
& a_{0}=\frac{1}{2} \int_{-2}^{2} f(x) d x=\frac{1}{2} \int_{-2}^{0} 1 \cdot d x+\frac{1}{2} \int_{0}^{2} 2 \cdot d x=3, \\
& \text { In }[1852]:=\mathrm{a}_{0}=\frac{1}{2} \int_{-2}^{0} 1 d \mathbf{d} \mathbf{x}+\frac{1}{2} \int_{0}^{2} 2 d \mathbf{x} \\
& \text { Out }[1852]=3 \\
& a_{n}=\frac{1}{2} \int_{-2}^{2} f(x) \cos \frac{n \pi x}{2} d x=\frac{1}{2} \int_{-2}^{0} \cos \frac{n \pi x}{2} d x+\frac{1}{2} \int_{0}^{2} 2 \cos \frac{n \pi x}{2} d x=0, \\
& \text { In }[1853]:=\mathrm{a}_{\mathrm{n}-}=\frac{1}{2} \int_{-2}^{0} \operatorname{Cos}\left[\frac{\mathrm{n} \pi \mathbf{x}}{2}\right] d \mathbf{x}+\frac{1}{2} \int_{0}^{2} 2 \operatorname{Cos}\left[\frac{\mathrm{n} \pi \mathbf{x}}{2}\right] d \mathbf{x} \\
& \text { Out }[1853]=\frac{3 \sin [\mathrm{n} \pi]}{\mathrm{n} \pi}
\end{aligned}
$$

and

$$
\begin{aligned}
& \begin{array}{l}
\begin{aligned}
& \begin{array}{l}
n=\frac{1}{2} \int_{-2}^{2} f(x) \sin \frac{n \pi x}{2} d x
\end{array}=\frac{1}{2} \int_{-2}^{0} \sin \frac{n \pi x}{2} d x+\frac{1}{2} \int_{0}^{2} 2 \sin \frac{n \pi x}{2} d x \\
&=\frac{1}{n \pi}(1-\cos n \pi)=\frac{1}{n \pi}\left(1-(-1)^{n}\right) .
\end{aligned} \\
\text { In }[1854]:=\mathrm{b}_{\mathrm{n}-}=\frac{1}{2} \int_{-2}^{0} \sin \left[\frac{\mathrm{n} \pi \mathbf{x}}{2}\right] \mathrm{d} \mathbf{x}+\frac{1}{2} \int_{0}^{2} 2 \sin \left[\frac{\mathrm{n} \pi \mathbf{x}}{2}\right] d \mathbf{x} / / \\
\text { Simplify }[1854]=\frac{1-\operatorname{Cos}[\mathrm{n} \pi]}{\mathrm{n} \pi}
\end{array}
\end{aligned}
$$

Therefore, at the values of x for which $f(x)$ is continuous

$$
\begin{aligned}
f(x)=\frac{3}{2}+\sum_{n=1}^{\infty}\left[1-(-1)^{n}\right] \frac{1}{n \pi} \sin \frac{n \pi x}{2}= & \frac{3}{2}+\frac{2}{\pi} \sin \frac{\pi x}{2}+\frac{2}{3 \pi} \sin \frac{3 \pi x}{2} \\
& +\frac{2}{5 \pi} \sin \frac{5 \pi x}{2}+\cdots .
\end{aligned}
$$

We now graph $f(x)$ with several partial sums of the Fourier series. First, we define $p_{k}(x)$ to be the k th partial sum of the Fourier series and then $f(x)$.

$$
\begin{aligned}
\operatorname{In}[1855]:= & \mathrm{p}_{\mathrm{k}_{-}}\left[\mathrm{x}_{-}\right]:=\frac{3}{2}+\sum_{\mathrm{n}=1}^{\mathrm{k}}\left(\mathrm{a}_{\mathrm{n}} \operatorname{Cos}\left[\frac{\mathrm{n} \pi \mathrm{x}}{2}\right]+\mathrm{b}_{\mathrm{n}} \operatorname{Sin}\left[\frac{\mathrm{n} \pi \mathrm{x}}{2}\right]\right) \\
\operatorname{In}[1856]:= & \mathrm{f}\left[\mathrm{x}_{-}\right]:=\mathrm{f}[\mathrm{x}-4] / ; \mathrm{x} \geq 2 \\
& \mathrm{f}\left[\mathrm{x}_{-}\right]:=1 / ;-2 \leq \mathrm{x}<0 \\
& \mathrm{f}\left[\mathrm{x}_{-}\right]:=2 / ; 0 \leq \mathrm{x}<2
\end{aligned}
$$

Given k, the function comp graphs $f(x)$ and $p_{k}(x)$ on the interval $[-2,6]$, which corresponds to two periods of $f(x)$, as well as the error, $\left|f(x)-p_{k}(x)\right|$. The resulting two graphics objects are displayed side-byside.

```
In[1857]:= comp[k_] := Module[{p1, p2},
    p1 = Plot[{f[x], pk[x]}, {x, -2, 6},
            PlotRange }->{0,3}\mathrm{ ,
            PlotStyle }->\mathrm{ {GrayLevel[0.5],
            GrayLevel[0]},
                DisplayFunction }->\mathrm{ Identity];
    p2 = Plot[Abs[f[x] - pk[x]], {x, -2, 6},
            PlotRange }->\mathrm{ All,
            DisplayFunction }->\mathrm{ Identity];
    Show[GraphicsArray[{p1, p2}]]]
```

We then use Map to generate these graphs for $k=3,5,11$, and 15 . See Figure 9-8.

```
In[1858]:= Map[comp, {3, 5, 11, 15}]
```

The graphs show that if we extend the graph of $f(x)$ over more periods, then the approximation by the Fourier series carries over to those intervals.

Figure 9-8 The Fourier series converges to $f(x)$ at points of continuity and to the average of the left and right-hand limits at points of discontinuity

EXAMPLE 9.3.2: Find the Fourier series for $f(x)=\left\{\begin{array}{l}0,-1 \leq x<0 \\ \sin \pi x, 0 \leq x<1\end{array}\right.$
where $f(x+2)=f(x)$.

SOLUTION: In this case, $p=1$, so $a_{0}=\int_{-1}^{1} f(x) d x=\int_{0}^{1} \sin \pi x d x=2 / \pi$ and

$$
\begin{aligned}
& \text { In [1859] }:=a_{0}=\int_{0}^{1} \operatorname{Sin}[\pi \mathbf{x}] d \mathbf{x} \\
& \text { Out }[1859]=\frac{2}{\pi}
\end{aligned}
$$

$a_{n}=\int_{-1}^{1} f(x) \cos n \pi x d x=\int_{0}^{1} \sin \pi x \cos n \pi x d x$. The value of this integral depends on the value of n. If $n=1$, we have $a_{1}=\int_{0}^{1} \sin \pi x \cos \pi x d x=$ $\frac{1}{2} \int_{0}^{1} \sin 2 \pi x d x=0$, where we use the identity $\sin \alpha \cos \alpha=\frac{1}{2} \sin 2 \alpha$.

$$
\begin{aligned}
& \operatorname{In}[1860]:=\mathbf{a}_{1}=\int_{0}^{1} \operatorname{Sin}[\pi \mathbf{x}] \operatorname{Cos}[\pi \mathbf{x}] d \mathbf{x} \\
& \text { Out }[1860]=0
\end{aligned}
$$

If $n \neq 1$, we use the identity $\sin \alpha \cos \beta=\frac{1}{2}[\sin (\alpha-\beta)+\sin (\alpha+\beta)]$ to obtain

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
a_{n}= \\
= \\
=-\frac{1}{2} \int_{0}^{1}\left[\frac{\cos (1-n) \pi x}{(1-n) \pi}+\frac{\cos (1+n) \pi x}{(1+n) \pi}\right]_{0}^{1} \\
=
\end{array} \\
\quad n=2, \frac{1}{2}\left\{\left[\frac{\cos (1-n) \pi}{(1-n) \pi}+\frac{\cos (1+n) \pi}{(1+n) \pi}\right]-\left[\frac{1}{(1-n) \pi}+\frac{1}{(1+n) \pi}\right]\right\},
\end{array} \\
& \text { In [1861]:=} \mathrm{a}_{\mathrm{n}-}=\int_{0}^{1} \sin [\pi \mathrm{x}] \cos [\mathrm{n} \pi \mathbf{x}] \mathrm{d} \mathbf{x} \\
& \text { Out }[1861]=-\frac{1}{2(-1+\mathrm{n}) \pi}+\frac{1}{2(1+\mathrm{n}) \pi}+\frac{\operatorname{Cos}[(-1+\mathrm{n}) \pi]}{2(-1+\mathrm{n}) \pi} \\
& \quad-\frac{\operatorname{Cos}[(1+\mathrm{n}) \pi]}{2(1+\mathrm{n}) \pi}
\end{aligned}
$$

Notice that if n is odd, both $1-n$ and $1+n$ are even. Hence, $\cos (1-n) \pi x=$ $\cos (1+n) \pi x=1$, so

$$
a_{n}=-\frac{1}{2}\left\{\left[\frac{1}{(1-n) \pi}+\frac{1}{(1+n) \pi}\right]-\left[\frac{1}{(1-n) \pi}+\frac{1}{(1+n) \pi}\right]\right\}=0
$$

if n is odd. On the other hand, if n is even, $1-n$ and $1+n$ are odd. Therefore, $\cos (1-n) \pi x=\cos (1+n) \pi x=-1$, so

$$
\begin{aligned}
a_{n} & =-\frac{1}{2}\left\{\left[\frac{-1}{(1-n) \pi}+\frac{-1}{(1+n) \pi}\right]-\left[\frac{1}{(1-n) \pi}+\frac{1}{(1+n) \pi}\right]\right\} \\
& =\frac{1}{(1-n) \pi}+\frac{1}{(1+n) \pi}=\frac{2}{(1-n)(1+n) \pi}=-\frac{2}{(n-1)(n+1) \pi}
\end{aligned}
$$

if n is even. We confirm this observation by computing several coefficients.

$$
\begin{aligned}
& \text { In [1862]: }=\text { Table }\left[\left\{n, a_{n}\right\},\{n, 1,10\}\right] / / \text { TableForm } \\
& 10 \\
& \text { - }-\frac{2}{3 \pi} \\
& 30 \\
& 4-\frac{2}{15 \pi} \\
& \text { Out [1862] }=\begin{array}{ll}
5 & 0 \\
6 & -\frac{2}{35 \pi} \\
7 & 0
\end{array} \\
& \begin{array}{ll}
8 & -\frac{2}{63 \pi} \\
9 & 0
\end{array} \\
& 10-\frac{2}{99 \pi}
\end{aligned}
$$

Putting this information together, we can write the coefficients as

$$
a_{2 n}=-\frac{2}{(2 n-1)(2 n+1) \pi}, n=1,2, \ldots .
$$

Similarly, $b_{n}=\int_{-1}^{1} f(x) \sin n \pi x d x=\int_{0}^{1} \sin \pi x \sin n \pi x d x$, so if $n=1$,

$$
\begin{aligned}
& b_{1}=\int_{0}^{1} \sin ^{2} \pi x d x=\frac{1}{2} \int_{0}^{1}(1-\cos 2 \pi x) d x=\frac{1}{2}\left[x-\frac{1}{2 \pi} \sin 2 \pi x\right]_{0}^{1}=\frac{1}{2} . \\
& \quad \text { In }[1863]:=\mathrm{b}_{1}=\int_{0}^{1} \sin [\pi \mathbf{x}] \sin [\pi \mathbf{x}] d \mathbf{x} \\
& \text { Out }[1863]=\frac{1}{2}
\end{aligned}
$$

If $n \neq 1$, we use $\sin \alpha \sin \beta=\frac{1}{2}[\cos (\alpha-\beta)-\cos (\alpha+\beta)]$. Hence,

$$
\begin{aligned}
b_{n}=\frac{1}{2} \int_{0}^{1}[\cos (1-n) \pi x-\cos (1+n) \pi x] d x & =\frac{1}{2}\left[\frac{\sin (1-n) \pi x}{(1-n) \pi}-\frac{\sin (1+n) \pi x}{(1+n) \pi}\right]_{0}^{1} \\
& =0, n=2,3, \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \text { In }[1864]:=b_{n_{-}}=\int_{0}^{1} \operatorname{Sin}[\pi \mathbf{x}] \sin [n \pi x] d \mathbf{x} \\
& \text { Out }[1864]=\frac{\operatorname{Sin}[(-1+n) \pi]}{2(-1+n) \pi}-\frac{\operatorname{Sin}[(1+n) \pi]}{2(1+n) \pi}
\end{aligned}
$$

Therefore, we write the Fourier series as

$$
f(x)=\frac{1}{\pi}+\frac{1}{2} \sin \pi x-\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)(2 n+1)} \cos 2 n \pi x .
$$

We graph $f(x)$ along with several approximations using this series in the same way as in previous examples. Let

$$
p_{k}(x)=\frac{1}{\pi}+\frac{1}{2} \sin \pi x-\frac{2}{\pi} \sum_{n=1}^{k} \frac{1}{(2 n-1)(2 n+1)} \cos 2 n \pi x
$$

denote the k th partial sum of the Fourier series. Note that

$$
\begin{aligned}
p_{k}(x)= & \frac{1}{\pi}+\frac{1}{2} \sin \pi x-\frac{2}{\pi} \sum_{n=1}^{k-1} \frac{1}{(2 n-1)(2 n+1)} \cos 2 n \pi x \\
& -\frac{2}{\pi} \frac{1}{(2 k-1)(2 k+1)} \cos 2 k \pi x=p_{k-1}(x)-\frac{2}{\pi} \frac{1}{(2 k-1)(2 k+1)} \cos 2 k \pi x .
\end{aligned}
$$

Thus, to calculate the k th partial sum of the Fourier series, we need only subtract $\frac{2}{\pi} \frac{1}{(2 k-1)(2 k+1)} \cos 2 k \pi x$ from the $(k-1)$ st partial sum: we need not recompute all k terms of the k th partial sum if we know the $(k-1)$ st partial sum. Using this observation, we define the recursively defined function p to return the k th partial sum of the series.

$$
\begin{aligned}
\operatorname{In}[1865]:= & \mathrm{p}\left[\mathrm{k}_{-}\right]:=\mathrm{p}[\mathrm{k}]=\mathrm{p}[\mathrm{k}-1]-\frac{2 \operatorname{Cos}[2 \mathrm{k} \pi \mathrm{x}]}{\pi((2 \mathrm{k}-1)(1+2 k))} \\
& \mathrm{p}[0]=\frac{1}{\pi}+\frac{\operatorname{Sin}[\pi \mathrm{x}]}{2} ;
\end{aligned}
$$

We then define $f(x)$.

```
In[1866]:= Clear[f]
    \(\mathrm{f}\left[\mathrm{x}_{-}\right]:=0 / ;-1 \leq x<0\)
    \(\mathrm{f}\left[\mathrm{x}_{-}\right]:=\operatorname{Sin}[\pi \mathrm{x}] / ; 0 \leq \mathrm{x}<1\)
    \(\mathrm{f}\left[\mathrm{x}_{-}\right]:=\mathrm{f}[\mathrm{x}-2] / ; \mathrm{x} \geq 1\)
```

We graph $f(x)$ along with the second, sixth, and tenth partial sums of the series in Figure 9-9.

```
In[1867]:= Clear[graph]
    graph[k_] := Plot[{f[x], p[k]}, {x, -1, 3},
        PlotStyle- > {GrayLevel[0.5],
        GrayLevel[0]},
        DisplayFunction- > Identity];
In[1868]:= somegraphs = Map[graph, {2, 6, 10}];
    Show[GraphicsArray[somegraphs]]
```

The corresponding errors are graphed in Figure 9-10.

```
In[1869]:= error[k_] := Plot[Abs[f[x]-p[k]],{x, -1, 3},
    DisplayFunction }->\mathrm{ Identity,
    PlotRange }->\mathrm{ All];
```


Figure 9-9 The graphs of the 6th and 10th partial sums are virtually indistinguishable from the graph of $f(x)$

Figure 9-10 The Fourier series converges to $f(x)$ on $(-\infty, \infty)$

```
In[1870]:= somegraphs = Map[error, {2, 6, 10}];
    Show[GraphicsArray[somegraphs]]
```


9.3.2 Even, Odd, and Periodic Extensions

In the discussion so far in this section, we have assumed that $f(x)$ was defined on the interval $-p<x<p$. However, this is not always the case. Sometimes, we must take a function that is defined on the interval $0<x<p$ and represent it in terms of trigonometric functions. Three ways of accomplishing this task is to extend $f(x)$ to obtain (a) an even function on $-p<x<p$; (b) an odd function on $-p<x<p$; (c) a periodic function on $-p<x<p$.

We can notice some interesting properties associated with the Fourier series in each of these three cases by noting the properties of even and odd functions. If $f(x)$ is an even function and $g(x)$ is an odd function, then the product $(f \cdot g)(x)=f(x) g(x)$ is an odd function. Similarly, if $f(x)$ is an even function and $g(x)$ is an even function, then $(f \cdot g)(x)$ is an even function, and if $f(x)$ is an odd function and $g(x)$ is an odd function, then $(f \cdot g)(x)$ is an even function. Recall from integral calculus that if $f(x)$ is odd on $-p \leq x \leq p$, then $\int_{-p}^{p} f(x) d x=0$ while if $g(x)$ is even on $-p \leq x \leq$ p, then $\int_{-p}^{p} g(x) d x=2 \int_{0}^{p} g(x) d x$. These properties are useful in determining the coefficients in the Fourier series for the even, odd, and periodic extensions of a
function, because $\cos (n \pi x / p)$ and $\sin (n \pi x / p)$ are even and odd periodic functions, respectively, on $-p \leq x \leq p$.

1. The even extension $f_{\text {even }}(x)$ of $f(x)$ is an even function. Therefore,

$$
\begin{align*}
& a_{0}=\frac{1}{p} \int_{-p}^{p} f_{\text {even }}(x) d x=\frac{2}{p} \int_{0}^{p} f(x) d x \\
& a_{n}=\frac{1}{p} \int_{-p}^{p} f_{\text {even }}(x) \cos \frac{n \pi x}{p} d x=\frac{2}{p} \int_{0}^{p} f(x) \cos \frac{n \pi x}{p} d x, n=1,2, \ldots \tag{9.19}\\
& b_{n}=\frac{1}{p} \int_{-p}^{p} f_{\text {even }}(x) \sin \frac{n \pi x}{p} d x=0, n=1,2, \ldots
\end{align*}
$$

2. The odd extension $f_{\text {odd }}(x)$ of $f(x)$ is an odd function, so

$$
\begin{align*}
& a_{0}=\frac{1}{p} \int_{-p}^{p} f_{\text {odd }}(x) d x=0 \\
& a_{n}=\frac{1}{p} \int_{-p}^{p} f_{\text {even }}(x) \cos \frac{n \pi x}{p} d x=0, n=1,2, \ldots \tag{9.20}\\
& b_{n}=\frac{1}{p} \int_{-p}^{p} f_{\text {even }}(x) \sin \frac{n \pi x}{p} d x=\frac{2}{p} \int_{0}^{p} f(x) \sin \frac{n \pi x}{p} d x, n=1,2, \ldots
\end{align*}
$$

3. The periodic extension $f_{p}(x)$ has period p. Because half of the period is $p / 2$,

$$
\begin{align*}
& a_{0}=\frac{2}{p} \int_{0}^{p} f(x) d x \\
& a_{n}=\frac{2}{p} \int_{0}^{p} f(x) \cos \frac{2 n \pi x}{p} d x, n=1,2, \ldots \tag{9.21}\\
& b_{n}=\frac{2}{p} \int_{0}^{p} f(x) \sin \frac{2 n \pi x}{p} d x, n=1,2, \ldots
\end{align*}
$$

EXAMPLE 9.3.3: Let $f(x)=x$ on $(0,1)$. Find the Fourier series for (a) the even extension of $f(x)$; (b) the odd extension of $f(x)$; (c) the periodic extension of $f(x)$.

SOLUTION: (a) Here $p=1$, so $a_{0}=2 \int_{0}^{1} x d x=1$,
$a_{n}=2 \int_{0}^{1} x \cos n \pi x d x=\frac{2}{n^{2} \pi^{2}}(\cos n \pi-1)=\frac{2}{n^{2} \pi^{2}}\left[(-1)^{n}-1\right], n=1,2, \ldots$
and $b_{n}=0, n=1,2, \ldots$.

$$
\begin{aligned}
& \text { In }[1871]:=\text { Remove }[a] \\
& \qquad a_{0}=2 \int_{0}^{1} x d x \mathbf{x}
\end{aligned}
$$

Out [1871] = 1

$$
\begin{aligned}
& \operatorname{In}[1872]:=a_{n_{-}}=2 \int_{0}^{1} \mathbf{x} \operatorname{Cos}[n \pi \mathbf{x}] d \mathbf{x} \\
& \text { Out }[1872]=2\left(-\frac{1}{n^{2} \pi^{2}}+\frac{\operatorname{Cos}[n \pi]}{n^{2} \pi^{2}}+\frac{\operatorname{Sin}[n \pi]}{n \pi}\right)
\end{aligned}
$$

Because $a_{n}=0$ if n is even, we can represent the coefficients with odd subscripts as $a_{2 n-1}=-\frac{4}{(2 n-1)^{2} \pi^{2}}$. Therefore, the Fourier cosine series is

$$
f_{\text {even }}(x)=\frac{1}{2}-\sum_{n=1}^{\infty} \frac{4}{(2 n-1)^{2} \pi^{2}} \cos (2 n-1) \pi x .
$$

We graph the even extension with several terms of the Fourier cosine series by first defining $f(x)$ to be the even extension of $f(x)$ on $(0,1)$

$$
\begin{aligned}
\text { In }[1873]:= & \text { Clear }[\mathrm{f}, \mathrm{p}] \\
& \mathrm{f}\left[\mathrm{x}_{-}\right]:=-\mathrm{x} / ;-1 \leq \mathrm{x}<0 \\
& \mathrm{f}\left[\mathrm{x}_{-}\right]:=\mathrm{x} / ; 0 \leq \mathrm{x}<1 \\
& \mathrm{f}\left[\mathrm{x}_{-}\right]:=\mathrm{f}[\mathrm{x}-2] / ; \mathrm{x} \geq 1 \\
& \mathrm{f}\left[\mathrm{x}_{-}\right]:=\mathrm{f}[\mathrm{x}+2] / ; \mathrm{x} \leq-1
\end{aligned}
$$

and $p_{k}(x)=\frac{1}{2}-\sum_{n=1}^{k} \frac{4}{(2 n-1)^{2} \pi^{2}} \cos (2 n-1) \pi x$.

$$
\operatorname{In}[1874]:=p_{k_{-}}\left[x_{-}\right]:=\frac{a_{0}}{2}+\sum_{n=1}^{k} a_{2 n-1} \operatorname{Cos}[(2 n-1) \pi x]
$$

We then graph $f(x)$ together with $p_{1}(x)$ and $p_{5}(x)$ in Figure 9-11.

Figure 9-11 Even extension

$$
\begin{aligned}
\text { In }[1875]:=\mathrm{p} 1= & \text { Plot }\left[\left\{f[\mathrm{x}], \mathrm{p}_{1}[\mathrm{x}]\right\},\{\mathrm{x},-2,2\},\right. \\
& \text { PlotStyle } \rightarrow\{\text { GrayLevel }[0.5], \\
& \text { GrayLevel }[0]\}, \\
& \text { DisplayFunction } \rightarrow \text { Identity }] ; \\
\mathrm{p} 2= & \text { Plot }\left[\left\{f[\mathrm{x}], \mathrm{p}_{5}[\mathrm{x}]\right\},\{\mathrm{x},-2,2\},\right. \\
& \text { PlotStyle } \rightarrow\{\text { GrayLevel }[0.5], \\
& \text { GrayLevel }[0]\}, \\
& \text { DisplayFunction } \rightarrow \text { Identity, } \\
& \text { PlotRange } \rightarrow \text { All]; }
\end{aligned}
$$

```
Show[GraphicsArray[{p1, p2 }]]
```

(b) For the odd extension $f_{\text {odd }}(x)$, we note that $a_{0}=0, a_{n}=0, n=1,2$, \ldots, and $b_{n}=2 \int_{0}^{1} x \sin \frac{n \pi x}{p}, d x=-\frac{2}{n \pi} \cos n \pi=(-1)^{n+1} \frac{2}{n \pi}, n=1,2, \ldots$.

$$
\begin{aligned}
& \text { In }[1876]:=b_{n_{-}}=2 \int_{0}^{1} x \sin [n \pi x] d x \\
& \text { Out }[1876]=2\left(-\frac{\cos [n \pi]}{n \pi}+\frac{\sin [n \pi]}{n^{2} \pi^{2}}\right)
\end{aligned}
$$

Hence, the Fourier sine series is

$$
f_{\text {odd }}(x)=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{2}{n \pi} \sin n \pi x .
$$

We graph the odd extension along with several terms of the Fourier sine series in the same manner as in (a). See Figure 9-12.

Figure 9-12 Odd extension

```
In[1877]:= Clear[f]
    f[x_] := x/; -1 < x < 1
    f[x_] := f[x-2]/; x \geq 1
    f[x_] := f[x+2]/; x < -1
In [1878]:= p pk- [\mp@subsup{x}{-}{}]:= \mp@subsup{\sum}{n=1}{k}\mp@subsup{\textrm{b}}{\textrm{n}}{}\operatorname{Sin}[\textrm{n}\pi\mathbf{x}]
In[1879]:= p1 = Plot[{f[x], p [x]},{x, -2, 2},
    PlotStyle }->\mathrm{ {GrayLevel[0.5],
    GrayLevel[0]},
    DisplayFunction }->\mathrm{ Identity];
p2 = Plot[{f[x], p plo m]}, {x, -2, 2},
    PlotStyle }->\mathrm{ {GrayLevel[0.5],
    GrayLevel[0]},
    DisplayFunction }->\mathrm{ Identity];
Show[GraphicsArray[{p1, p2}]]
```

(c) The periodic extension has period $2 p=1$, so $p=1 / 2$. Thus,

$$
\begin{aligned}
& a_{0}=\frac{1}{1 / 2} \int_{0}^{1} x d x=2 \int_{0}^{1} x d x=1 \\
& a_{n}=2 \int_{0}^{1} x \cos 2 n \pi x d x=\frac{1}{2} \frac{\cos 2 n \pi+2 n \pi \sin 2 n \pi}{n^{2} \pi^{2}}-\frac{1}{2 n^{2} \pi^{2}}=0, n=1,2, \ldots \text { and } \\
& b_{n}=2 \int_{0}^{1} x \sin 2 n \pi x d x=-\frac{1}{2} \frac{-\sin 2 n \pi+2 n \pi \cos 2 n \pi}{n^{2} \pi^{2}}=-\frac{2 n \pi}{2 n^{2} \pi^{2}}=-\frac{1}{n \pi}, n=1,2, \ldots
\end{aligned}
$$

$$
\begin{array}{r}
\text { In }[1880]:=\text { Remove }[\mathrm{a}, \mathrm{~b}] \\
\\
\qquad a_{0}=2 \int_{0}^{1} x d \mathbf{x}
\end{array}
$$

Out [1880]=1

$$
\begin{aligned}
& \text { In }[1881]:=a_{n_{-}}=2 \int_{0}^{1} \mathbf{x} \operatorname{Cos}[2 n \pi x] d \mathbf{x} \\
& \text { Out }[1881]=2\left(-\frac{1}{4 n^{2} \pi^{2}}+\frac{\operatorname{Cos}[2 n \pi]}{4 n^{2} \pi^{2}}+\frac{\operatorname{Sin}[2 n \pi]}{2 n \pi}\right) \\
& \text { In }[1882]:=\operatorname{Table}\left[\left\{n, a_{n}\right\},\{n, 1,5\}\right] \\
& \text { Out }[1882]=\{\{1,0\},\{2,0\},\{3,0\},\{4,0\},\{5,0\}\} \\
& \text { In }[1883]:=b_{n_{-}}=2 \int_{0}^{1} \mathbf{x} \operatorname{Sin}[2 n \pi x] d \mathbf{x} \\
& \text { Out }[1883]=2\left(-\frac{\operatorname{Cos}[2 n \pi]}{2 n \pi}+\frac{\operatorname{Sin}[2 n \pi]}{4 n^{2} \pi^{2}}\right) \\
& \text { In }[1884]:=\operatorname{Table}\left[\left\{n, b_{n}\right\},\{n, 1,5\}\right] \\
& \text { Out }[1884]= \\
& \\
& \qquad\left\{\left\{1,-\frac{1}{\pi}\right\},\left\{2,-\frac{1}{2 \pi}\right\},\left\{3,-\frac{1}{3 \pi}\right\},\left\{4,-\frac{1}{4 \pi}\right\},\right. \\
& \\
& \left.\quad\left\{5,-\frac{1}{5 \pi}\right\}\right\}
\end{aligned}
$$

Hence, the Fourier series for the periodic extension is

$$
f_{p}(x)=\frac{1}{2}-\sum_{n=1}^{\infty} \frac{1}{n \pi} \sin 2 n \pi x .
$$

We graph the periodic extension with several terms of the Fourier series in the same way as in (a) and (b). See Figure 9-13.

```
In[1885]:= Clear[f]
```

 \(\mathrm{f}\left[\mathrm{x}_{-}\right]:=\mathrm{x}+1 /\); \(-1 \leq \mathrm{x}<0\)
 \(\mathrm{f}\left[\mathrm{x}_{-}\right]:=\mathrm{x} / ; 0 \leq \mathrm{x}<1\)
 \(\mathrm{f}\left[\mathrm{x}_{-}\right]:=\mathrm{f}[\mathrm{x}-2] / ; \mathrm{x} \geq 1\)
 \(f\left[x_{-}\right]:=f[x+2] / ; x \leq-1\)
 $\operatorname{In}[1886]:=p_{k_{-}}\left[x_{-}\right]:=\frac{a_{0}}{2}+\sum_{n=1}^{k} b_{n} \operatorname{Sin}[2 n \pi x]$

Figure 9-13 Periodic extension

$$
\begin{aligned}
& \text { In }[1887]:=\mathrm{p} 1= \text { Plot }\left[\left\{f[\mathrm{x}], \mathrm{p}_{5}[\mathrm{x}]\right\},\{\mathrm{x},-2,2\},\right. \\
& \text { PlotStyle } \rightarrow\{\text { GrayLevel }[0.5], \\
&\text { GrayLevel }[0]\}, \\
& \text { } \operatorname{DisplayFunction~} \rightarrow \text { Identity]; } \\
& \mathrm{p} 2= \text { Plot }\left[\left\{f[\mathrm{x}], \mathrm{p}_{10}[\mathrm{x}]\right\},\{\mathrm{x},-2,2\},\right. \\
& \text { PlotStyle } \rightarrow\{\text { GrayLevel }[0.5], \\
&\text { GrayLevel }[0]\}, \\
&\text { DisplayFunction } \rightarrow \text { Identity }] ; \\
& \text { Show }[\text { GraphicsArray }[\{\mathrm{p} 1, \mathrm{p} 2\}]]
\end{aligned}
$$

9.3.3 Differentiation and Integration of Fourier Series

Definition 39 (Piecewise Smooth). A function $f(x),-p<x<p$ is piecewise smooth if $f(x)$ and all of its derivatives are piecewise continuous.

Theorem 35 (Term-By-Term Differentiation). Let $f(x),-p<x<p$, be a continuous piecewise smooth function with Fourier series

$$
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{p}+b_{n} \sin \frac{n \pi x}{p}\right) .
$$

Then, $f^{\prime}(x),-p<x<p$, has Fourier series

$$
\sum_{n=1}^{\infty} \frac{n \pi}{p}\left(-a_{n} \sin \frac{n \pi x}{p}+b_{n} \cos \frac{n \pi x}{p}\right) .
$$

In other words, we differentiate the Fourier series for $f(x)$ term-by-term to obtain the Fourier series for $f^{\prime}(x)$.

Theorem 36 (Term-By-Term Integration). Let $f(x),-p<x<p$, be a continuous piecewise smooth function with Fourier series

$$
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{p}+b_{n} \sin \frac{n \pi x}{p}\right)
$$

Then, the Fourier series of a antiderivative of $f(x)$ can be found by integrating the Fourier series of $f(x)$ term-by-term.

EXAMPLE 9.3.4: Use the Fourier series for $f(x)=\frac{1}{12} x\left(\pi^{2}-x^{2}\right),-\pi<x<$ π to show how term-by-term differentiation and term-by-term integration can be used to find the Fourier series of $g(x)=\frac{1}{12} \pi^{2}-\frac{1}{4} x^{2},-\pi<x<\pi$, and $h(x)=\frac{1}{24} \pi^{2} x^{2}\left(1-\frac{1}{2} x^{2}\right),-\pi<x<\pi$.

SOLUTION: After defining $f(x)$ and the substitutions in rule to simplify our results, we calculate a_{0}, a_{n}, and b_{n}. (Because $f(x)$ is an odd function, $a_{n}=0, n \geq 0$.)

$$
\begin{aligned}
& \text { In[1888]: = Clear[f] } \\
& f\left[x_{-}\right]=\frac{1}{12} \times\left(\pi^{2}-x^{2}\right) ; \\
& \text { In [1889] : }=\text { rule }=\left\{\operatorname{Sin}[n \pi] \rightarrow 0, \operatorname{Cos}[n \pi] \rightarrow(-1)^{n}\right\} ; \\
& a_{0}=\frac{\int_{-\pi}^{\pi} f[x] d x}{\pi} / . \text { rule } \\
& \text { Out [1889] }=0 \\
& \text { In [1890] }:=a_{n_{-}}=\frac{\int_{-\pi}^{\pi} f[x] \operatorname{Cos}[n x] d x}{\pi} / \text {.rule } \\
& \text { Out [1890] = } 0 \\
& \text { In [1891] }:=b_{n_{-}}=\frac{\int_{-\pi}^{\pi} f[\mathbf{x}] \sin [n \mathbf{x}] d \mathbf{x}}{\pi} / \text {.rule } \\
& \text { Out [1891] }=-\frac{(-1)^{n}}{n^{3}}
\end{aligned}
$$

We define the nth term of $\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{p}+b_{n} \sin \frac{n \pi x}{p}\right)$ in $\mathrm{fs}[\mathrm{n}, \mathrm{x}]$ and the finite sum $\frac{1}{2} a_{0}+\sum_{n=1}^{k}\left(a_{n} \cos \frac{n \pi x}{p}+b_{n} \sin \frac{n \pi x}{p}\right)$ in fourier $[\mathrm{k}]$.

```
In[1892]:= fs[n_] = an Cos[nx] + (bn Sin[nx];
In[1893]:= fourier[k_] := fourier[k] = fourier[k-1]
    +fs[k];
```


Figure 9-14 The graph of the third partial sum is indistinguishable from the graph of $f(x)$

$$
\operatorname{In}[1894]:=\text { fourier }[0]=\frac{a_{0}}{2} ;
$$

We see how quickly the Fourier series converges to $f(x)$ by graphing together with fourier [1], fourier [2], and fourier [3]. See Figure 9-14.

```
```

In[1895]:= somegraphs =

```
```

In[1895]:= somegraphs =
Table[Plot[{f[x], fourier[k]}, {x, -\pi, \pi},
Table[Plot[{f[x], fourier[k]}, {x, -\pi, \pi},
PlotStyle }->\mathrm{ {GrayLevel[0.5],
PlotStyle }->\mathrm{ {GrayLevel[0.5],
GrayLevel[0]},
GrayLevel[0]},
DisplayFunction }->\mathrm{ Identity], {k, 1, 3}];
DisplayFunction }->\mathrm{ Identity], {k, 1, 3}];
Show[GraphicsArray[somegraphs]]

```
```

 Show[GraphicsArray[somegraphs]]
    ```
```

Notice that $g(x)=\frac{1}{12} \pi^{2}-\frac{1}{4} x^{2},-\pi<x<\pi$, is the derivative of $f(x),-\pi<$ $x<\pi$. Of course, we could compute the Fourier series of $f^{\prime}(x),-\pi<$ $x<\pi$, directly by applying the integral formulas with $g(x)$ to find the Fourier series coefficients. However, the objective here is to illustrate how term-by-term differentiation of the Fourier series for $f(x),-\pi<x<$ π, gives us the Fourier series for $f^{\prime}(x)=g(x),-\pi<x<\pi$. We calculate the derivative of $f(x)$ in $\mathrm{df}[\mathrm{x}]$ in order to make graphical comparisons. In dfs [n], we determine the derivative of the nth term of the Fourier series for $f(x),-\pi<x<\pi$, found above, and in dfourier [k], we calculate the k th partial sum of the Fourier series for $f^{\prime}(x),-\pi<x<\pi$.

```
In[1896]:= df[x_] = D[f[x], x]//Simplify
```

In[1896]:= df[x_] = D[f[x], x]//Simplify
Out [1896] = \frac{1}{12}(\mp@subsup{\pi}{}{2}-3\mp@subsup{x}{}{2})
Out [1896] = \frac{1}{12}(\mp@subsup{\pi}{}{2}-3\mp@subsup{x}{}{2})
In[1897]:= dfs[n_] = D[fs[n], x]
In[1897]:= dfs[n_] = D[fs[n], x]
Out [1897]= - (-1)n Cos[nx]
Out [1897]= - (-1)n Cos[nx]
In[1898]:= dfourier[k_] := dfourier[k] = dfourier[k-1]
In[1898]:= dfourier[k_] := dfourier[k] = dfourier[k-1]
+dfs[k]; dfourier[0] = 0;

```
    +dfs[k]; dfourier[0] = 0;
```

Notice that this series does not include a constant term because the derivative of $\frac{1}{2} a_{0}$ is zero.

Figure 9-15 Fourier series can be differentiated term-by-term

Next, we graph $f^{\prime}(x),-\pi<x<\pi$, simultaneously with dfourier [1], dfourier[2], and dfourier[3] in Figure 9-15. Again, the convergence of the Fourier series approximations to $f^{\prime}(x),-\pi<x<\pi$, is quick.

```
In[1899]:= somegraphs =
    Table[Plot[{df[x], dfourier[k]}, {x, -\pi,\pi},
                PlotStyle }->\mathrm{ {GrayLevel[0.5],
                GrayLevel[0]},
                DisplayFunction }->\mathrm{ Identity], {k, 1, 3}];
                    Show[GraphicsArray[somegraphs]]
```

Notice that $h(x),-\pi<x<\pi$, is an antiderivative of $f(x),-\pi<x<$ π. We calculate this antiderivative in int $\mathrm{f}[\mathrm{x}]$. Of course, this is the antiderivative of $f(x)$ with zero constant of integration because Mathematica does not include an integration constant. When we integrate the terms of the Fourier series of $f(x),-\pi<x<\pi$, a constant term is not included. However, the Fourier series of the even function $h(x)=$ $\frac{1}{24} \pi^{2} x^{2}\left(1-\frac{1}{2} x^{2}\right),-\pi<x<\pi$ should include the constant term $\frac{1}{2} \tilde{a}_{0}$. We calculate the value of \tilde{a}_{0} in inta [0] with the integral formula $\frac{1}{\pi} \int_{-\pi}^{\pi} h(x) d x$.

$$
\begin{aligned}
& \text { In }[1900]:=\operatorname{intf}\left[\mathbf{x}_{-}\right]=\int f[\mathbf{x}] d \mathbf{x} \\
& \text { Out }[1900]=\frac{1}{12}\left(\frac{\pi^{2} x^{2}}{2}-\frac{x^{4}}{4}\right) \\
& \text { In }[1901]:=\text { inta }_{0}=\frac{\int_{-\pi}^{\pi} \operatorname{intf}[\mathbf{x}] d \mathbf{x}}{\pi} \\
& \text { Out }[1901]=\frac{7 \pi^{4}}{360}
\end{aligned}
$$

In intfs $[\mathrm{n}, \mathrm{x}$], we integrate the nth term of the Fourier series of $f(x)$, $-\pi<x<\pi$, found above to determine the coefficients of $\cos n x$ and $\sin n x$ in the Fourier series of $h(x),-\pi<x<\pi$. In intfourier $[k, x]$, we determine the sum of the first k terms of the Fourier series obtained by adding $\frac{1}{2} \tilde{a}_{0}$ to the expression obtained through term-by-term integration of the Fourier series of $f(x),-\pi<x<\pi$.

Figure 9-16 Fourier series can be integrated term-by-term

$$
\begin{aligned}
& \text { In [1902] := intfs[n_] }=\int \mathrm{fs}[\mathrm{n}] \mathrm{d} \mathbf{x} \\
& \text { Out [1902] }=\frac{(-1)^{\mathrm{n}} \operatorname{Cos}[\mathrm{nx}]}{\mathrm{n}^{4}} \\
& \text { In [1903]:= intfourier [k_] := intfourier[k] } \\
& \text { = intfourier [k-1] +intfs[k]; } \\
& \text { intfourier }[0]=\frac{\text { inta }_{0}}{2} \text {; }
\end{aligned}
$$

By graphing $h(x),-\pi<x<\pi$, simultaneously with the approximation in intfourier $[k, x]$ for $k=1,2$, and 3 , we see how the graphs of Fourier series approximations obtained through term-by-term integration converge to the graph of $h(x),-\pi<x<\pi$, in intgraph1, intgraph2, and intgraph3. See Figure 9-16.

```
In[1904]:= somegraphs =
    Table[Plot[{intf[x], intfourier[k]},
        {x, -\pi, \pi}, PlotStyle }->\mathrm{ {GrayLevel[0.5],
        GrayLevel[0]},
        DisplayFunction }->\mathrm{ Identity],
        {k, 1, 3}];
    Show[GraphicsArray[somegraphs]]
```


9.3.4 Parseval's Equality

Let $f(x),-p<x<p$, be a continuous piecewise smooth function with Fourier series

$$
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{p}+b_{n} \sin \frac{n \pi x}{p}\right)
$$

Figure 9-17 $f(x)$ is an odd function

Parseval's Equality states that

$$
\begin{equation*}
\frac{1}{p} \int_{-p}^{p}[f(x)]^{2} d x=\frac{1}{2} a_{0}^{2}+\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)=2 A_{0}^{2}+\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right) \tag{9.22}
\end{equation*}
$$

where $A_{0}=\frac{1}{2} a_{0}$ is the constant term in the Fourier series.

EXAMPLE 9.3.5: Verify Parseval's Equality for $f(x)=\frac{1}{12} x\left(\pi^{2}-x^{2}\right),-\pi<$ $x<\pi$.

SOLUTION: Notice that the function $f(x)=\frac{1}{12} x\left(\pi^{2}-x^{2}\right),-\pi<x<\pi$, is odd as we see from its graph in Figure 9-17.

$$
\begin{aligned}
\operatorname{In}[1905]:= & \text { Clear }[f] \\
& f\left[x_{-}\right]=\frac{1}{12} x\left(\pi^{2}-x^{2}\right) ; \\
& \text { Plot }[f[x],\{x,-\pi, \pi\}]
\end{aligned}
$$

Therefore, the only nonzero coefficients in the Fourier series of $f(x)$ are found in b_{n}. Notice that we simplify the results by using the substitutions defined in rule.

$$
\begin{aligned}
& \text { In }[1906]:=\text { rule }=\left\{\operatorname{Sin}[n \pi] \rightarrow 0, \operatorname{Cos}[n \pi] \rightarrow(-1)^{n}\right\} ; \\
& \\
& \qquad b_{n_{-}}=\frac{2 \int_{0}^{\pi} f[x] \operatorname{Sin}[n x] d x}{\pi} / . r u l e \\
& \text { Out }[1906]= \\
& -\frac{(-1)^{n}}{n^{3}}
\end{aligned}
$$

Next, we evaluate $\frac{1}{\pi} \int_{-\pi}^{\pi}[f(x)]^{2} d x$.

$$
\begin{aligned}
& \operatorname{In}[1907]:=\frac{\int_{-\pi}^{\pi} f[\mathbf{x}]^{2} d \mathbf{x}}{\pi} \\
& \text { Out [1907] }=\frac{\pi^{6}}{945} \\
& \text { In [1908] }:=\mathrm{N}\left[\frac{\pi^{6}}{945}\right] \\
& \text { Out }[1908]=1.01734
\end{aligned}
$$

We compare this result with the value of $\sum_{n=1}^{\infty} b_{n}^{2}$ by calculating $\sum_{n=1}^{k} b_{n}^{2}$ for $k=1,2, \ldots, 20$. Notice that this sequence of partial sums converges quickly to 1.01734 , an approximation of $\frac{1}{945} \pi^{6}$.

$$
\begin{aligned}
\text { In }[1909]:= & \operatorname{Table}\left[N\left[\sum_{\mathrm{n}=1}^{j} \mathrm{~b}_{\mathrm{n}}^{2}\right],\{\mathbf{j}, 1,20\}\right] \\
\text { Out }[1909]= & \{0.25,0.265625,0.266997,0.267241,0.267305, \\
& 0.267326,0.267335,0.267339,0.267341, \\
& 0.267342,0.267342,0.267342,0.267343, \\
& 0.267343,0.267343,0.267343,0.267343, \\
& 0.267343,0.267343,0.267343\}
\end{aligned}
$$

A p-series is a series of the form $\sum_{k=1}^{\infty} k^{-p}$. The p-series converges if $p>1$ and diverges if $0<p \leq 1$.

Thus, for the convergent p-series

$$
\sum_{n=1}^{\infty} b_{n}^{2}=\sum_{n=1}^{\infty}\left[-\frac{(-1)^{n}}{n^{3}}\right]^{2}=\sum_{n=1}^{\infty} \frac{1}{n^{6}}=\frac{1}{945} \pi^{6} .
$$

9.4 Generalized Fourier Series

In addition to the trigonometric eigenfunctions that were used to form the Fourier series in Sections 9.2 and 9.3, the eigenfunctions of other eigenvalue problems can be used to form what we call generalized Fourier series. We will find that these series will assist in solving problems in applied mathematics that involve physical phenomena that cannot be modeled with trigonometric functions.

Recall Bessel's equation of order zero

$$
\begin{equation*}
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\lambda^{2} x^{2} y=0 . \tag{9.23}
\end{equation*}
$$

If we require that the solutions of this differential equation satisfy the boundary conditions $|y(0)|<\infty$ (meaning that the solution is bounded at $x=0$) and $y(p)=0$, we can find the eigenvalues of the boundary-value problem

$$
\left\{\begin{array}{l}
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\lambda^{2} x^{2} y=0 \tag{9.24}\\
|y(0)|<\infty, y(p)=0
\end{array}\right.
$$

A general solution of Bessel's equation of order zero is $y=c_{1} J_{0}(\lambda x)+c_{2} Y_{0}(\lambda x)$. Because $|y(0)|<\infty$, we must choose $c_{2}=0$ because $\lim _{x \rightarrow 0+} Y_{0}(\lambda x)=-\infty$. Hence, $y(p)=c_{1} J_{0}(\lambda p)=0$. Just as we did with the eigenvalue problems solved earlier in Section 9.1, we want to avoid choosing $c_{1}=0$, so we must select λ so that $J_{0}(\lambda p)=0$.

Let α_{n} represent the nth zero of the Bessel function of order zero, $J_{0}(x)$, where $n=1,2, \ldots$, which we approximate with BesselJZeros. After loading the Bessel Zeros package, which is contained in the NumericalMath folder (or directory) by entering <<NumericalMath'BesselZeros', the command BesselJZeros [m, n] returns a list of the first n zeros of $J_{m}(x)$; BesselJZeros [m, $\{\mathrm{p}, \mathrm{q}\}$] returns a list of the p th through q th zeros of $J_{m}(x)$; BesselJZeros [0,n] returns a list of the first n zeros of $J_{0}(x)$.

The function α_{n} returns the nth zero of $J_{0}(x)$.

```
In[1910]:= << NumericalMath'BesselZeros`
    \mp@subsup{\alpha}{~}{\prime}
```

Therefore, in trying to find the eigenvalues, we must solve $J_{0}(\lambda p)=0$. From our definition of α_{n}, this equation is satisfied if $\lambda p=\alpha_{n}, n=1,2, \ldots$. Hence, the eigenvalues are $\lambda=\lambda_{n}=\alpha_{n} / p, n=1,2, \ldots$, and the corresponding eigenfunctions are

$$
y(x)=y_{n}(x)=J_{0}\left(\lambda_{n} x\right)=J_{0}\left(\alpha_{n} x / p\right), n=1,2, \ldots
$$

As with the trigonometric eigenfunctions that we found in Sections 9.2 and 9.3, $J_{0}\left(\alpha_{n} x / p\right)$ can be used to build an eigenfunction series expansion of the form

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} c_{n} J_{0}\left(\frac{\alpha_{n} x}{p}\right) \tag{9.25}
\end{equation*}
$$

which is called a Bessel-Fourier series. We use the orthogonality properties of $J_{0}\left(\alpha_{n} x / p\right)$ to find the coefficients c_{n}.

We determine the orthogonality condition by placing Bessel's equation of order zero in the self-adjoint form

$$
\frac{d}{d x}\left(x \frac{d y}{d x}\right)+\lambda^{2} x y=0
$$

Because the weighting function is $s(x)=x$, the orthogonality condition is

$$
\int_{0}^{p} x J_{0}\left(\frac{\alpha_{n} x}{p}\right) J_{0}\left(\frac{\alpha_{m} x}{p}\right) d x=0, n \neq m
$$

Multiplying equation (9.25) by $x J_{0}\left(\alpha_{m} x / p\right)$ and integrating from $x=0$ to $x=p$ yields

$$
\begin{aligned}
\int_{0}^{p} x f(x) J_{0}\left(\frac{\alpha_{m} x}{p}\right) d x & =\int_{0}^{p} \sum_{n=1}^{\infty} c_{n} x J_{0}\left(\frac{\alpha_{n} x}{p}\right) J_{0}\left(\frac{\alpha_{m} x}{p}\right) d x \\
& =\sum_{n=1}^{\infty} c_{n} \int_{0}^{p} x J_{0}\left(\frac{\alpha_{n} x}{p}\right) J_{0}\left(\frac{\alpha_{m} x}{p}\right) d x
\end{aligned}
$$

However, by the orthogonality condition, each of the integrals on the right-hand side of the equation equals zero except for $m=n$. Therefore,

$$
c_{n}=\frac{\int_{0}^{p} x f(x) J_{0}\left(\frac{\alpha_{n} x}{p}\right) d x}{\int_{0}^{p} x\left[J_{0}\left(\frac{\alpha_{n} x}{p}\right)\right]^{2} d x}, n=1, n=2, \ldots
$$

The value of the integral in the denominator can be found through the use of several of the identities associated with the Bessel functions. Because $\lambda_{n}=\alpha_{n} / p, n=1$, $2, \ldots$, the function $J_{0}\left(\alpha_{n} x / p\right)=J_{0}\left(\lambda_{n} x\right)$ satisfies Bessel's equation of order zero:

$$
\frac{d}{d x}\left(x \frac{d}{d x} J_{0}\left(\lambda_{n} x\right)\right)+\lambda_{n}^{2} x J_{0}\left(\lambda_{n} x\right)=0 .
$$

Multiplying by the factor $2 x \frac{d}{d x} J_{0}\left(\lambda_{n} x\right)$, we can write this equation as

$$
\frac{d}{d x}\left(x \frac{d}{d x} J_{0}\left(\lambda_{n} x\right)\right)^{2}+\lambda_{n}^{2} x^{2} \frac{d}{d x}\left[J_{0}\left(\lambda_{n} x\right)\right]^{2}=0
$$

Integrating each side of this equation from $x=0$ to $x=p$ gives us

$$
2 \lambda_{n}^{2} \int_{0}^{p} x\left[J_{0}\left(\lambda_{n} x\right)\right]^{2} d x=\lambda_{n}^{2} p^{2}\left[J_{0}^{\prime}\left(\lambda_{n} p\right)\right]^{2}+\lambda_{n}^{2} p^{2}\left[J_{0}\left(\lambda_{n} p\right)\right]^{2} .
$$

With the substitution $\lambda_{n} p=\alpha_{n}$ the equation becomes

$$
2 \lambda_{n}^{2} \int_{0}^{p} x\left[J_{0}\left(\lambda_{n} x\right)\right]^{2} d x=\lambda_{n}^{2} p^{2}\left[J_{0}^{\prime}\left(\alpha_{n}\right)\right]^{2}+\lambda_{n}^{2} p^{2}\left[J_{0}\left(\alpha_{n}\right)\right]^{2}
$$

Now, $J_{0}\left(\alpha_{n}\right)=0$, because α_{n} is the nth zero of $J_{0}(x)$. Also, with $n=0$, the identity $\frac{d}{d x}\left(x^{-n} J_{n}(x)\right)=-x^{-n} J_{n+1}(x)$ indicates that $J_{0}^{\prime}\left(\alpha_{n}\right)=-J_{1}\left(\alpha_{n}\right)$. Therefore,

$$
\begin{aligned}
2 \lambda_{n}^{2} \int_{0}^{p} x\left[J_{0}\left(\lambda_{n} x\right)\right]^{2} d x & =\lambda_{n}^{2} p^{2}\left[-J_{1}\left(\alpha_{n}\right)\right]^{2}+\lambda_{n}^{2} p^{2} \cdot 0 \\
\int_{0}^{p} x\left[J_{0}\left(\lambda_{n} x\right)\right]^{2} d x & =\frac{1}{2} p^{2}\left[J_{1}\left(\alpha_{n}\right)\right]^{2}
\end{aligned}
$$

Using this expression in the denominator of c_{n}, the series coefficients are found with

$$
\begin{equation*}
c_{n}=\frac{2}{p^{2}\left[J_{1}\left(\alpha_{n}\right)\right]^{2}} \int_{0}^{p} x f(x) J_{0}\left(\frac{\alpha_{n} x}{p}\right) d x, n=1,2, \ldots \tag{9.26}
\end{equation*}
$$

EXAMPLE 9.4.1: Find the Bessel-Fourier series for $f(x)=1-x^{2}$ on $0<x<1$.

SOLUTION: In this case, $p=1$, so

$$
\begin{aligned}
c_{n} & =\frac{2}{\left[J_{1}\left(\alpha_{n}\right)\right]^{2}} \int_{0}^{1} x\left(1-x^{2}\right) J_{0}\left(\frac{\alpha_{n} x}{p}\right) d x \\
& =\frac{2}{\left[J_{1}\left(\alpha_{n}\right)\right]^{2}}\left\{\int_{0}^{1} x J_{0}\left(\frac{\alpha_{n} x}{p}\right) d x-\int_{0}^{1} x^{3} J_{0}\left(\frac{\alpha_{n} x}{p}\right) d x\right\} .
\end{aligned}
$$

Using the formula, $\frac{d}{d x}\left(x^{n} J_{n}(x)\right)=x^{n} J_{n-1}(x)$ with $n=1$ yields

$$
\int_{0}^{1} x J_{0}\left(\frac{\alpha_{n} x}{p}\right) d x=\left[\frac{1}{\alpha_{n}} x J_{1}\left(\alpha_{n} x\right)\right]_{0}^{1}=\frac{1}{\alpha_{n}} J_{1}\left(\alpha_{n}\right) .
$$

Note that the factor $1 / \alpha_{n}$ is due to the chain rule for differentiating the argument of $J_{1}\left(\alpha_{n} x\right)$. We use integration by parts with $u=x^{2}$ and $d v=$ $x J_{0}\left(\alpha_{n} x\right)$ to evaluate $\int_{0}^{1} x^{3} J_{0}\left(\frac{\alpha_{n} x}{p}\right) d x$. As in the first integral we obtain

Integration by parts formula: $\int u d v=u v-\int v d u$. $v=\frac{1}{\alpha_{n}} x J_{1}\left(\alpha_{n} x\right)$. Then, because $d u=2 x d x$, we have

$$
\begin{aligned}
\int_{0}^{1} x^{3} J_{0}\left(\frac{\alpha_{n} x}{p}\right) d x & =\left[\frac{1}{\alpha_{n}} x^{3} J_{1}\left(\alpha_{n} x\right)\right]_{0}^{1}-\frac{2}{\alpha_{n}} \int_{0}^{1} x^{2} J_{1}\left(\alpha_{n} x\right) d x \\
& =\frac{1}{\alpha_{n}} J_{1}\left(\alpha_{n}\right)-\frac{2}{\alpha_{n}}\left[\frac{1}{\alpha_{n}} x^{2} J_{2}\left(\alpha_{n} x\right)\right]_{0}^{1} \\
& =\frac{1}{\alpha_{n}} J_{1}\left(\alpha_{n}\right)-\frac{2}{\alpha_{n}^{2}} J_{2}\left(\alpha_{n}\right) .
\end{aligned}
$$

Thus, the coefficients are

$$
\begin{aligned}
c_{n} & =\frac{2}{\left[J_{1}\left(\alpha_{n}\right)\right]^{2}} \int_{0}^{1} x\left(1-x^{2}\right) J_{0}\left(\frac{\alpha_{n} x}{p}\right) d x \\
& =\frac{2}{\left[J_{1}\left(\alpha_{n}\right)\right]^{2}}\left\{\int_{0}^{1} x J_{0}\left(\frac{\alpha_{n} x}{p}\right) d x-\int_{0}^{1} x^{3} J_{0}\left(\frac{\alpha_{n} x}{p}\right) d x\right\} \\
& =\frac{2}{\left[J_{1}\left(\alpha_{n}\right)\right]^{2}}\left[\frac{1}{\alpha_{n}} J_{1}\left(\alpha_{n}\right)-\left(\frac{1}{\alpha_{n}} J_{1}\left(\alpha_{n}\right)-\frac{2}{\alpha_{n}^{2}} J_{2}\left(\alpha_{n}\right)\right)\right] \\
& =\frac{4 J_{2}\left(\alpha_{n}\right)}{\alpha_{n}^{2}\left[J_{1}\left(\alpha_{n}\right)\right]^{2}}, n=1,2, \ldots
\end{aligned}
$$

Note that you do not need to reload the BesselZeros package if you already loaded it during your current Mathematica session.
so that the Bessel-Fourier series is

$$
f(x)=\sum_{n=1}^{\infty} \frac{4 J_{2}\left(\alpha_{n}\right)}{\alpha_{n}^{2}\left[J_{1}\left(\alpha_{n}\right)\right]^{2}} J_{0}\left(\alpha_{n} x\right) .
$$

We now graph $f(x)$ along with several terms of the series. To do so, we need to compute the values of $J_{1}\left(\alpha_{n}\right)$ and $J_{2}\left(\alpha_{n}\right)$ for various values of n. Thus, we first load the BesselZeros package and define α_{n} to be the nth zero of the Bessel function of the first kind of order zero.

```
In[1911]:= << NumericalMath'BesselZeros`
    \mp@subsup{n}{n}{\prime}
```

We list the values of $J_{1}\left(\alpha_{n}\right)$ and $J_{2}\left(\alpha_{n}\right)$ for various values of n.

```
In[1912]:= Table[{n, Besselv[1, 的], Besselv[2, 人n]},
    {n, 1, 5}]//TableForm
    1 0.519147 0.431755
    2 -0.340265-0.123283
Out[1912]= 3 0.271452 0.0627365
    4-0.23246 -0.0394283
    50.206546 0.0276669
```

Next, we define $f(x)=1-x^{2}$ and $p_{k}(x)=\sum_{n=1}^{k} \frac{4 J_{2}\left(\alpha_{n}\right)}{\alpha_{n}^{2}\left[J_{1}\left(\alpha_{n}\right)\right]^{2}} J_{0}\left(\alpha_{n} x\right)$, the k th partial sum of the Bessel-Fourier series. Note that

$$
\begin{aligned}
p_{k}(x) & =\sum_{n=1}^{k-1} \frac{4 J_{2}\left(\alpha_{n}\right)}{\alpha_{n}^{2}\left[J_{1}\left(\alpha_{n}\right)\right]^{2}} J_{0}\left(\alpha_{n} x\right)+\frac{4 J_{2}\left(\alpha_{k}\right)}{\alpha_{k}^{2}\left[J_{1}\left(\alpha_{k}\right)\right]^{2}} J_{0}\left(\alpha_{k} x\right) \\
& =p_{k-1}(x)+\frac{4 J_{2}\left(\alpha_{k}\right)}{\alpha_{k}^{2}\left[J_{1}\left(\alpha_{k}\right)\right]^{2}} J_{0}\left(\alpha_{k} x\right) .
\end{aligned}
$$

Thus, to calculate the k th partial sum of the Fourier series, we need only add $\frac{4 J_{2}\left(\alpha_{k}\right)}{\alpha_{k}^{2}\left[J_{1}\left(\alpha_{k}\right)\right]^{2}} J_{0}\left(\alpha_{k} x\right)$ to the ($k-1$)st partial sum: we need not recompute all k terms of the k th partial sum if we know the $(k-1)$ st partial sum. Using this observation, we define the recursively defined function p to return the k th partial sum of the series.

```
\(\operatorname{In}[1913]:=\mathbf{f}\left[\mathbf{x}_{-}\right]=\mathbf{1}-\mathbf{x}^{2}\);
In [1914] := \(\mathrm{p}\left[\mathrm{k}_{-}\right]:=\mathrm{p}[\mathrm{k}]=\mathrm{p}[\mathrm{k}-1]\)
    \(+\frac{4 \text { Bessel } J\left[2, \alpha_{k}\right] \operatorname{Bessel} J\left[0, \alpha_{k} \mathrm{x}\right]}{\alpha_{k}^{2} \operatorname{Bessel} J\left[1, \alpha_{k}\right]^{2}} ;\)
        \(p[0]=0 ;\)
```


Figure 9-18 The Bessel-Fourier series quickly converges to $f(x)$

The graphs of $f(x)$ and the first three or four partial sums are practically indistinguishable. See Figure 9-18.

```
In[1915]:= p2 = Plot[Evaluate[{f[x], p[2]}],{x, 0, 1},
    PlotStyle- > {GrayLevel[0.5],
    GrayLevel[0]},
    DisplayFunction- > Identity];
    p3 = Plot[Evaluate[{f[x], p[3]}], {x, 0, 1},
    PlotStyle- > {GrayLevel[0.5],
    GrayLevel[0]},
    DisplayFunction- > Identity];
    p4 = Plot[Evaluate[{f[x], p[4]}], {x, 0, 1},
    PlotStyle- > {GrayLevel[0.5],
    GrayLevel[0]},
    DisplayFunction- > Identity];
In[1916]:= Show[GraphicsArray[{p2, p3, p4}]]
```

As was the case with Fourier series, we can make a statement about the convergence of the Bessel-Fourier series.

Theorem 37 (Convergence of Bessel-Fourier Series). Suppose that $f(x)$ and $f^{\prime}(x)$ are piecewise continuous functions on $0<x<p$. Then the Bessel-Fourier series for $f(x)$ on $0<x<p$ converges to $f(x)$ at every x where $f(x)$ is continuous. If $f(x)$ is discontinuous at $x=a$, the Bessel-Fourier series converges to the average

$$
\frac{1}{2}\left(\lim _{x \rightarrow a^{+}} f(x)+\lim _{x \rightarrow a^{-}} f(x)\right)=\frac{1}{2}\left(f\left(a^{+}\right)+f\left(a^{-}\right)\right)
$$

Series involving the eigenfunctions of other eigenvalue problems can be formed as well.

EXAMPLE 9.4.2: The eigenvalue problem $\left\{\begin{array}{l}y^{\prime \prime}+2 y^{\prime}-(\lambda-1) y=0 \\ y(0)=y(2)=0\end{array}\right.$ has eigenvalues $\lambda_{n}=-(n \pi / 2)^{2}$ and eigenfunctions $y_{n}(x)=e^{-x} \sin (n \pi x / 2)$. Use these eigenfunctions to approximate $f(x)=e^{-x}$ for $0<x<2$.

SOLUTION: In order to approximate $f(x)$, we need the orthogonality condition for these eigenfunctions. We obtain this condition by placing the differential equation in self-adjoint form using the formulas given in equation (9.5). In the general equation, $a_{2}(x)=1, a_{1}(x)=2$, and $a_{0}(x)=0$. Therefore, $p(x)=e^{\int 2 d x}=e^{2 x}$ and $s(x)=p(x) / a_{2}(x)=e^{2 x}$, so in self-adjoint form the equation is

$$
\frac{d}{d x}\left(e^{2 x} \frac{d y}{d x}\right)-(\lambda-1) e^{2 x} y
$$

This means that the orthogonality condition, $\int_{a}^{b} s(x) y_{n}(x) y_{m}(x) d x=0$ ($m \neq n$), is

$$
\int_{0}^{2} e^{2 x} e^{-x} \sin \frac{m \pi x}{2} e^{-x} \sin \frac{n \pi x}{2} d x=\int_{0}^{2} \sin \frac{m \pi x}{2} \sin \frac{n \pi x}{2} d x=0, m \neq n
$$

We use this condition to determine the coefficients in the eigenfunction expansion

$$
f(x)=\sum_{n=1}^{\infty} c_{n} y_{n}(x)=\sum_{n=1}^{\infty} c_{n} e^{-x} \sin \frac{n \pi x}{2} .
$$

Multiplying both sides of this equation by $y_{m}(x)=e^{-x} \sin (m \pi x / 2)$ and $s(x)=e^{2 x}$ and then integrating from $x=0$ to $x=2$ yields

$$
\begin{aligned}
\int_{0}^{2} f(x) e^{2 x} e^{-x} \sin \frac{m \pi x}{2} d x & =\int_{0}^{2} \sum_{n=1}^{\infty} c_{n} e^{-x} \sin \frac{n \pi x}{2} e^{2 x} e^{-x} \sin \frac{m \pi x}{2} d x \\
\int_{0}^{2} f(x) e^{x} \sin \frac{m \pi x}{2} d x & =\sum_{n=1}^{\infty} \int_{0}^{2} c_{n} \sin \frac{n \pi x}{2} \sin \frac{m \pi x}{2} d x .
\end{aligned}
$$

Each integral in the sum on the right-hand side of the equation is zero except if $m=n$. In this case, $\int_{0}^{2} \sin ^{2}(n \pi x / 2) d x=1$. Therefore,

$$
c_{n}=\int_{0}^{2} f(x) e^{x} \sin \frac{n \pi x}{2} d x
$$

For $f(x)=e^{-x}$,

$$
\begin{aligned}
& c_{n}=\int_{0}^{2} e^{-x} e^{x} \sin \frac{n \pi x}{2} d x=\int_{0}^{2} \sin \frac{n \pi x}{2} d x=-\frac{2}{n \pi}(\cos n \pi-1) . \\
& \text { In }[1917]:=c_{\mathrm{n}-}=\int_{0}^{2} \sin \left[\frac{\mathrm{n} \pi \mathbf{x}}{2}\right] d \mathbf{x} \\
& \text { Out }[1917]=\frac{2}{\mathrm{n} \pi}-\frac{2 \cos [\mathrm{n} \pi]}{\mathrm{n} \pi}
\end{aligned}
$$

Because $\cos n \pi=(-1)^{n}$, we can write the eigenfunction expansion of $f(x)$ as

$$
\begin{aligned}
f(x) & =\sum_{n=1}^{\infty}-\frac{2}{n \pi}\left((-1)^{n}-1\right) e^{-x} \sin \frac{n \pi x}{2} \\
& =e^{-x}\left(\frac{4}{\pi} \sin \frac{\pi x}{2}+\frac{4}{3 \pi} \sin \frac{3 \pi x}{2}+\frac{4}{5 \pi} \sin \frac{5 \pi x}{2}+\cdots\right) .
\end{aligned}
$$

We graph $f(x)$ together with

$$
p_{k}(x)=\sum_{n=1}^{k}-\frac{2}{n \pi}\left((-1)^{n}-1\right) e^{-x} \sin \frac{n \pi x}{2}
$$

for $k=6,10$, and 14 in Figure 9-19.

```
In[1918]:= f[\mathbf{x_}]=\operatorname{Exp}[-\mathbf{x}];
In[1919]:= p pk- [\mp@subsup{x}{-}{\prime}]:= \mp@subsup{\sum}{n=1}{k}\mp@subsup{c}{n}{}\operatorname{Exp}[-\textrm{x}]\operatorname{Sin}[\frac{\textrm{n}\pi\mathbf{x}}{2}];
In[1920]:= p6 = Plot[{f[x], p6[x]},{\mathbf{x, 0, 3},}
    PlotStyle- > {GrayLevel[0.5],
    GrayLevel[0]},
    DisplayFunction- > Identity];
    p10 = Plot[{f[x], p (10 [x]}, {x, 0, 3},
                            PlotStyle- > {GrayLevel[0.5],
            GrayLevel[0]},
            DisplayFunction- > Identity];
            p14 = Plot[{f[x], p ( 
            PlotStyle- > {GrayLevel[0.5],
            GrayLevel[0]},
            DisplayFunction- > Identity];
```

In [1921]:= Show[GraphicsArray[\{p6, p10, p14\}]]

Figure 9-19 Approximating $f(x)=e^{-x}$ with a generalized Fourier series

EXAMPLE 9.4.3: Use the eigenvalues and eigenfunctions of the eigenvalue problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}+\lambda y=0 \\
y(0)=0, y(1)+y^{\prime}(1)=0
\end{array}\right.
$$

to obtain a generalized Fourier series for $f(x)=x(1-x), 0<x<1$.

SOLUTION: In Example 9.1.6, the eigenvalues of this problem, $\lambda=$ k^{2}, were shown to satisfy the relationship $k=-\tan k$. In the example, we approximated the first eight roots of this equation to be 2.02876, $4.91318,7.97867,11.0855,14.2074,17.3364,20.4692$, and 23.6043 entered in kvals.

$$
\begin{aligned}
& \text { In }[1922]:=\text { kvals }=\operatorname{Table}[\text { FindRoot }[-\operatorname{Tan}[\mathbf{x}]=\mathbf{x}, \\
& \left.\left.\qquad\left\{\mathbf{x}, \frac{(2 \mathrm{n}-1) \pi}{2}+0.1\right\}\right],\{\mathrm{n}, 1,8\}\right] \\
& \text { Out }[1922]=\left\{\begin{aligned}
\{ & \{\mathrm{x} \rightarrow 2.02876\},\{\mathrm{x} \rightarrow 4.91318\},\{\mathrm{x} \rightarrow 7.97867\}, \\
& \{\mathrm{x} \rightarrow 11.0855\},\{\mathrm{x} \rightarrow 14.2074\},\{\mathrm{x} \rightarrow 17.3364\}, \\
& \{\mathrm{x} \rightarrow 20.4692\},\{\mathrm{x} \rightarrow 23.6043\}\}
\end{aligned}\right.
\end{aligned}
$$

Let k_{n} represent the nth positive root of $k=-\tan k$. Therefore, the eigenfunctions of $\left\{\begin{array}{l}y^{\prime \prime}+\lambda y=0 \\ y(0)=0, y(1)+y^{\prime}(1)=0\end{array}\right.$ are $y_{n}(x)=\sin k_{n} x$. Because of the orthogonality of the eigenfunctions, we have the orthogonality condition $\int_{0}^{1} \sin k_{n} x \sin k_{m} x d x=0, m \neq n$. If $m=n$, we have $\int_{0}^{1} \sin ^{2} k_{n} x d x=$ $\frac{1}{2}-\frac{1}{4 k_{n}} \sin 2 k_{n}$.

$$
\begin{aligned}
& \text { In }[1923]:=\int_{0}^{1} \operatorname{Sin}[k x]^{2} d \mathbf{x} \\
& \text { Out }[1923]=\frac{1}{2}-\frac{\operatorname{Sin}[2 k]}{4 k}
\end{aligned}
$$

Therefore,

$$
\int_{0}^{1} \sin ^{2} k_{n} x d x=\frac{2 k_{n}-\sin 2 k_{n}}{4 k_{n}}=\frac{2 k_{n}-2 \sin k_{n} \cos k_{n}}{4 k_{n}} .
$$

With the condition $k_{n}=-\tan k_{n}$ or $\sin k_{n}=-k_{n} \cos k_{n}$ from the eigenvalue problem, we have
$\int_{0}^{1} \sin ^{2} k_{n} x d x=\frac{k_{n}-\sin k_{n} \cos k_{n}}{2 k_{n}}=\frac{k_{n}-\left(-k_{n} \cos k_{n}\right) \cos k_{n}}{2 k_{n}}=\frac{1}{2}\left(1+\cos ^{2} k_{n}\right)$.
To determine the coefficients c_{n} in the generalized Fourier series $f(x)=$ $\sum_{n=1}^{\infty} c_{n} \sin k_{n} x$ using the eigenfunctions $y_{n}(x)=\sin k_{n} x$ of the eigenvalue problem, we multiply both sides of $f(x)=\sum_{n=1}^{\infty} c_{n} \sin k_{n} x$ by $\sin k_{m} x$ and integrate from $x=0$ to $x=1$. This yields

$$
\int_{0}^{1} f(x) \sin k_{m} x d x=\int_{0}^{1} \sum_{n=1}^{\infty} c_{n} \sin k_{n} x \sin k_{m} x d x
$$

Assuming uniform convergence of the series, we have

$$
\int_{0}^{1} f(x) \sin k_{m} x d x=\sum_{n=1}^{\infty} c_{n} \int_{0}^{1} \sin k_{n} x \sin k_{m} x d x
$$

All terms on the right are zero except if $m=n$. In this case, we have

$$
\int_{0}^{1} f(x) \sin k_{n} x d x=c_{n} \int_{0}^{1} \sin ^{2} k_{n} x d x=\frac{1}{2} c_{n}\left(1+\cos ^{2} k_{n}\right)
$$

so that

$$
c_{n}=\frac{2}{1+\cos ^{2} k_{n}} \int_{0}^{1} f(x) \sin k_{n} x d x .
$$

We approximate the value of c_{n} for $n=1,2, \ldots, 8$ in cvals using the values of k in kvals.

$$
\begin{aligned}
& \text { In }[1924]:=f\left[\mathbf{x}_{-}\right]:=\mathbf{x}(1-\mathbf{x}) \\
& \text { cvals = Table }\left[\frac{2 \text { NIntegrate }[f[\mathbf{x}] \operatorname{Sin}[(k v a l s \llbracket j, 1,2 \rrbracket) \mathbf{x}],\{\mathbf{x}, 0,1\}]}{1+\operatorname{Cos}[k v a l s \llbracket j, 1,2 \rrbracket]^{2}},\right. \\
& \text { Out }[1924]=\begin{aligned}
&\{j, 1,8\}] \\
&-0.213285,0.104049,-0.0219788,0.0187303, \\
&0.00387074\}
\end{aligned}
\end{aligned}
$$

We define the sum of the first j terms of $\sum_{n=1}^{\infty} c_{n} \sin k_{n} x$ for $f(x)=$ $x(1-x), 0<x<1$, with fapprox $[\mathrm{x}, \mathrm{n}]$ and then create a table of fapprox $[\mathrm{x}, \mathrm{n}]$ for $n=1$ to $n=8$ in funcs.

$$
\begin{aligned}
& \text { In [1925] := fapprox[} \left.\mathbf{x}_{-}, j_{-}\right]:=\sum_{n=1}^{j}(c v a l s \llbracket n \rrbracket) \operatorname{Sin}[(k v a l s \llbracket n \text {, } \\
& \text { 1, 2】) } x \text {]; } \\
& \text { In [1926]:= funcs = Table[fapprox[x, j], \{j, 1, 8\}] } \\
& \text { Out [1926] = }\{0.213285 \operatorname{Sin}[2.02876 x] \text {, } \\
& 0.213285 \operatorname{Sin}[2.02876 x] \\
& +0.104049 \operatorname{Sin}[4.91318 x] \text {, } \\
& 0.213285 \operatorname{Sin}[2.02876 x] \\
& +0.104049 \operatorname{Sin}[4.91318 x] \\
& -0.0219788 \operatorname{Sin}[7.97867 x] \text {, } \\
& 0.213285 \operatorname{Sin}[2.02876 x] \\
& +0.104049 \operatorname{Sin}[4.91318 x] \\
& -0.0219788 \operatorname{Sin}[7.97867 x] \\
& +0.0187303 \operatorname{Sin}[11.0855 \mathrm{x}] \text {, } \\
& 0.213285 \operatorname{Sin}[2.02876 x] \\
& +0.104049 \operatorname{Sin}[4.91318 x] \\
& -0.0219788 \operatorname{Sin}[7.97867 x] \\
& +0.0187303 \text { Sin[11.0855 x] } \\
& -0.00834994 \operatorname{Sin}[14.2074 \mathrm{x}] \text {, } \\
& 0.213285 \operatorname{Sin}[2.02876 x] \\
& +0.104049 \operatorname{Sin}[4.91318 x] \\
& -0.0219788 \operatorname{Sin}[7.97867 \mathrm{x}] \\
& +0.0187303 \operatorname{Sin}[11.0855 \mathrm{x}] \\
& -0.00834994 \operatorname{Sin}[14.2074 \mathrm{x}] \\
& +0.00734255 \operatorname{Sin}[17.3364 \mathrm{x}] \text {, } \\
& 0.213285 \operatorname{Sin}[2.02876 x] \\
& +0.104049 \operatorname{Sin}[4.91318 \mathrm{x}] \\
& -0.0219788 \operatorname{Sin}[7.97867 \mathrm{x}] \\
& +0.0187303 \operatorname{Sin}[11.0855 \mathrm{x}] \\
& -0.00834994 \operatorname{Sin}[14.2074 \mathrm{x}] \\
& +0.00734255 \operatorname{Sin}[17.3364 \mathrm{x}] \\
& -0.00426841 \operatorname{Sin}[20.4692 x] \text {, } \\
& 0.213285 \operatorname{Sin}[2.02876 x] \\
& +0.104049 \sin [4.91318 x] \\
& -0.0219788 \operatorname{Sin}[7.97867 x] \\
& +0.0187303 \operatorname{Sin}[11.0855 \mathrm{x}] \\
& -0.00834994 \operatorname{Sin}[14.2074 \mathrm{x}] \\
& +0.00734255 \operatorname{Sin}[17.3364 \mathrm{x}] \\
& -0.00426841 \operatorname{Sin}[20.4692 x] \\
& +0.00387074 \operatorname{Sin}[23.6043 x]\}
\end{aligned}
$$

We graph $f(x)=x(1-x), 0<x<1$, simultaneously with the first term of the generalized Fourier series, funcs [[1]] , to observe the accuracy in Figure 9-20.

Figure 9-20 Using the first partial sum to approximate $f(x)$ does not result in a very good approximation

Figure 9-21 The approximation improves when the number of terms in the partial sum is increased

```
In[1927]:= funcs[[1]]
Out[1927]= 0.213285 Sin[2.02876x]
In[1928]:= Plot[{fapprox[x, 1], f[x]},{\mathbf{x, 0, 1},}
    PlotStyle }->\mathrm{ {GrayLevel[0],
    GrayLevel[0.5]}]
```

Next, we plot the approximation using the sum of the first 2, 4, 6, and 8 terms of the generalized Fourier series and display the results in Figure $9-21$. We see that the approximation improves as the number of terms increases.

```
In[1929]:= graphs =
    Table[Plot[{fapprox[x, j], f[x]},{x, 0, 1},
            PlotRange }->{0,0.3}
            PlotStyle }->\mathrm{ {GrayLevel[0],
            GrayLevel[0.5]},
            DisplayFunction }->\mathrm{ Identity], {j, 2, 8, 2}];
In[1930]:= Show[GraphicsArray[Partition[graphs, 2]]]
```


Partial Differential

 Equations

I O.I Introduction to Partial Differential Equations and Separation of Variables

10.1.I Introduction

We begin our study of partial differential equations with an introduction of some of the terminology associated with the topic. A linear second-order partial differential equation (PDE) in the two independent variables x and y has the form

$$
\begin{equation*}
A(x, y) \frac{\partial^{2} u}{\partial x^{2}}+B(x, y) \frac{\partial^{2} u}{\partial y \partial x}+C(x, y) \frac{\partial^{2} u}{\partial y^{2}}+D(x, y) \frac{\partial u}{\partial x}+E(x, y) \frac{\partial u}{\partial y}+F(x, y) u=G(x, y) \tag{10.1}
\end{equation*}
$$

where the solution is $u(x, y)$. If $G(x, y)=0$ for all x and y, we say that the equation is homogeneous. Otherwise, the equation is nonhomogeneous.

EXAMPLE 10.1.1: Classify the following partial differential equations:
(a) $u_{x x}+u_{y y}=u$; (b) $u u_{x}=x$.

SOLUTION: (a) This equation satisfies the form of the linear secondorder partial differential equation (10.1) with $A=C=1, F=-1$, and $B=D=E=0$. Because $G(x, y)=0$, the equation is homogeneous.
(b) This equation is nonlinear, because the coefficient of u_{x} is a function of u. It is also nonhomogeneous because $G(x, y)=x$.

Definition 40 (Solution of a Partial Differential Equation). A solution of a partial differential equation in some region R of the space of the independent variables is a function that possesses all of the partial derivatives that are present in the PDE in some region containing R and satisfies the PDE everywhere in R.

EXAMPLE 10.1.2: Show that $u(x, y)=y^{2}-x^{2}$ and $u(x, y)=e^{y} \sin x$ are solutions to Laplace's equation $u_{x x}+u_{y y}=0$.

SOLUTION: For $u(x, y)=y^{2}-x^{2}, u_{x}(x, y)=-2 x, u_{y}(x, y)=2 y, u_{x x}(x, y)=$ -2 , and $u_{y y}(x, y)=2$, so we have that $u_{x x}+u_{y y}=(-2)+2=0$, which we quickly verify with Mathematica.

```
In[1931]:= Clear[u]
    u[\mp@subsup{x}{-}{\prime},\mp@subsup{y}{-}{\prime}]=\mp@subsup{y}{}{2}-\mp@subsup{x}{}{2};
In[1932]:= D[u[x,y],{x,2}] + D[u[x,y],{y, 2}]
Out[1932]= 0
```

Similarly, for $u(x, y)=e^{y} \sin x$, we have $u_{x}=e^{y} \cos x, u_{y}=e^{y} \sin x, u_{x x}=$ $-e^{y} \sin x$, and $u_{y y}=e^{y} \sin x$. Therefore, $u_{x x}+u_{y y}=\left(-e^{y} \sin x\right)+e^{y} \sin x=0$, so the equation is satisfied for both functions.

```
In[1933]:= Clear[u]
    u[\mp@subsup{x}{-}{\prime},\mp@subsup{y}{-}{\prime}]=\operatorname{Exp}[y]\operatorname{Sin}[x];
In[1934]:= D[u[x,y], {x, 2}] + D[u[x,y], {y, 2}]
Out[1934]= 0
```

We notice that the solutions to Laplace's equation differ in form. This is unlike solutions to homogeneous linear ordinary differential equations. There, we found that solutions were similar in form. (Recall, all solutions could be generated from a general solution.)

Some of the techniques used in constructing solutions of homogeneous linear ordinary differential equations can be extended to the study of partial differential equations as we see with the following theorem.

Theorem 38 (Principle of Superposition). If $u_{1}, u_{2}, \ldots, u_{m}$ are solutions to a linear homogeneous partial differential equation in a region R, then

$$
c_{1} u_{1}+c_{2} u_{2}+\cdots+c_{m} u_{m}=\sum_{k=1}^{m} c_{k} u_{k}
$$

where $c_{1}, c_{2}, \ldots, c_{m}$ are constants is also a solution in R.
The Principle of Superposition will be used in solving partial differential equations throughout the rest of the chapter. In fact, we will find that equations can have an infinite set of solutions so that we construct another solution in the form of an infinite series.

I0.I.2 Separation of Variables

A method that can be used to solve linear partial differential equations is called separation of variables (or the product method). Generally, the goal of the method of separation of variables is to transform the partial differential equation into a system of ordinary differential equations each of which depends on only one of the functions in the product form of the solution. Suppose that the function $u(x, y)$ is a solution of a partial differential equation in the independent variables x and y. In separating variables, we assume that u can be written as the product of a function of x and a function of y. Hence,

$$
u(x, y)=X(x) Y(y),
$$

and we substitute this product into the partial differential equation to determine $X(x)$ and $Y(y)$. Of course, in order to substitute into the differential equation, we must be able to differentiate this product. However, this is accomplished by following the differentiation rules of multivariate calculus:

$$
u_{x}=X^{\prime} Y, \quad u_{x x}=X^{\prime \prime} Y, \quad u_{x y}=X^{\prime} Y^{\prime}, \quad u_{y}=X Y^{\prime}, \quad \text { and } \quad u_{y y}=X Y^{\prime \prime},
$$

where X^{\prime} represents $d X / d x$ and Y^{\prime} represents $d Y / d y$. After these substitutions are made and if the equation is separable, we can obtain an ordinary differential equation for X and an ordinary differential equation for Y. These two equations are then solved to find $X(x)$ and $Y(y)$.

EXAMPLE 10.1.3: Use separation of variables to find a solution of $x u_{x}=u_{y}$.

SOLUTION: If $u(x, y)=X(x) Y(y)$, then $u_{x}=X^{\prime} Y$ and $u_{y}=X Y^{\prime}$. The equation then becomes

$$
x X^{\prime} Y=X Y^{\prime},
$$

which can be written as the separated equation

$$
\frac{x X^{\prime}}{X}=\frac{Y^{\prime}}{Y}
$$

Notice that the left-hand side of the equation is a function of x while the right-hand side is a function of y. Hence, the only way that this situation can be true is for $x X^{\prime} / X$ and Y^{\prime} / Y to both be constant. Therefore,

$$
\frac{x X^{\prime}}{X}=\frac{Y^{\prime}}{Y}=k
$$

so we obtain the ordinary differential equations $x X^{\prime}-k X=0$ and $Y^{\prime}-$ $k y=0$. We find X first.

$$
\begin{aligned}
x X^{\prime}-k X & =0 \\
x \frac{d X}{d x} & =k X \\
\frac{1}{X} d X & =\frac{k}{x} d x \\
\ln |X| & =k \ln |x|+c_{1} \\
X(x) & =e^{c_{1}} x^{k}=C_{1} x^{k} .
\end{aligned}
$$

Similarly, we find

$$
\begin{aligned}
Y^{\prime}-k Y & =0 \\
\frac{d Y}{d y} & =k Y \\
\frac{1}{Y} d Y & =k d y \\
\ln |Y| & =k y+c_{2} \\
Y(y) & =e^{c_{2}} e^{k y}=C_{2} e^{k y} .
\end{aligned}
$$

Therefore, a solution is $u(x, y)=X(x) Y(y)=\left(C_{1} x^{k}\right)\left(C_{2} e^{k y}\right)=C_{3} x^{k} e^{k y}$ where k and C_{3} are arbitrary constants. DSolve can be used to find a solution of this partial differential equation as well.

```
In[1935]:= Clear[\mathbf{x},\mathbf{y},\textrm{u}]
    DSolve [x D [u[x,y], x] == D [u[x, y], y],u[x,y],
        {x,y}]
Out [1935]= {{u[x,y] ->C[1][y+ Log[x]]}}
```

In this result, the symbol C [1] represents an arbitrary differentiable function. That is, if f is a differentiable function of a single variable, $u(x, y)=f(y+\ln x)$ is a solution to $x u_{x}=u_{y}$, which we verify by substituting this result into the partial differential equation.

```
In[1936]:= xD[C[1][y+LOg[x]], x] == D[C[1][y+LOg[x]], y]
Out[1936]= True
```


10.2 The One-Dimensional Heat Equation

One of the more important partial differential equations is the heat equation,

$$
\begin{equation*}
\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} . \tag{10.2}
\end{equation*}
$$

In one spatial dimension, the solution of the heat equation represents the temperature (at any position x and any time t) in a thin rod or wire of length p. Because the rate at which heat flows through the rod depends on the material that makes up the rod, the constant c^{2} which is related to the thermal diffusivity of the material is included in the heat equation. Several different situations can be considered when determining the temperature in the rod. The ends of the wire can be held at a constant temperature, the ends may be insulated, or there can be a combination of these situations.

I0.2.I The Heat Equation with Homogeneous Boundary Conditions

The first problem that we investigate is the situation in which the temperature at the ends of the rod are constantly kept at zero and the initial temperature distribution in the rod is represented as the given function $f(x)$. Hence, the fixed end zero temperature is given in the boundary conditions

$$
u(0, t)=u(p, t)=0
$$

while the initial temperature distribution is given by

$$
u(x, 0)=f(x)
$$

Because the temperature is zero at the endpoints, we say that the problem has homogeneous boundary conditions, which are important in finding a solution with separation of variables. We call problems of this type initial-boundary value problems (IBVP), because they include initial as well as boundary conditions. Thus, the problem is summarized as

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} \tag{10.3}\\
u(0, t)=0, u(p, t)=0, t>0 \\
u(x, 0)=f(x), 0<x<p .
\end{array}\right.
$$

We solve this problem through separation of variables by assuming that

$$
u(x, t)=X(x) T(t) .
$$

Substitution into the heat equation (10.2) yields

$$
\frac{T^{\prime}}{c^{2} T}=\frac{X^{\prime \prime}}{X}=-\lambda
$$

where $-\lambda$ is the separation constant. (Note that we selected this constant in order to obtain an eigenvalue problem that was solved in Example 9.1.4.) Separating the variables, we have the two equations

$$
T^{\prime}+c^{2} \lambda T=0 \quad \text { and } \quad X^{\prime \prime}+\lambda X=0
$$

Now that we have successfully separated the variables, we turn our attention to the homogeneous boundary conditions. In terms of the functions $X(x)$ and $T(t)$, these boundary conditions become

$$
u(0, t)=X(0) T(t)=0 \quad \text { and } \quad u(p, t)=X(p) T(t)=0 .
$$

In each case, we must avoid setting $T(t)=0$ for all t, because if this were the case, our solution would be the trivial solution $u(x, t)=X(x) T(t)=0$. Therefore, we have the boundary conditions

$$
X(0)=0 \quad \text { and } \quad X(p)=0
$$

so we solve the eigenvalue problem

$$
\left\{\begin{array}{l}
X^{\prime \prime}+\lambda X=0 \\
X(0)=0, X(p)=0
\end{array}\right.
$$

The eigenvalues of this problem are $\lambda_{n}=(n \pi / p)^{2}$ with corresponding eigenfunctions $X_{n}(x)=\sin (n \pi x / p)$. Similarly, a general solution of $T^{\prime}+c^{2} \lambda_{n} T=0$ is $T_{n}(t)=$ $A e^{-c^{2} \lambda_{n} t}$, where A is an arbitrary constant and $\lambda_{n}=(n \pi / p)^{2}, n=1,2, \ldots$.

```
In [1937]: \(=\) DSolve \(\left[\operatorname{capt}^{\prime}[t]+c^{2} \lambda_{n} \operatorname{capt}[t]==0, \operatorname{capt}[t], t\right]\)
Out [1937] \(=\left\{\{\right.\) capt [ t\(\left.\left.] \rightarrow \mathbb{e}^{-\mathrm{c}^{2} \mathrm{n}^{2} \pi^{2} \mathrm{t}} \mathrm{C}[1]\right\}\right\}\)
```

Because $X(x)$ and $T(t)$ both depend on n, the solution $u(x, t)=X(x) T(t)$ does as well. Hence,

$$
u_{n}(x, t)=X_{n}(t) T_{n}(t)=c_{n} \sin \frac{n \pi x}{p} e^{-c^{2} \lambda_{n} t}
$$

where we have replaced the constant A by one that depends on n. In order to find the value of c_{n}, we apply the initial condition $u(x, 0)=f(x)$. Notice that

$$
u_{n}(x, 0)=c_{n} \sin \frac{n \pi x}{p} e^{-c^{2} \lambda_{n} \cdot 0}=c_{n} \sin \frac{n \pi x}{p}
$$

is satisfied only by functions of the form $\sin (\pi x / p), \sin (2 \pi x / p), \ldots$ (which, in general, is not the case). Therefore, we use the principle of superposition to state that

$$
u(x, t)=\sum_{n=1}^{\infty} u_{n}(x, t)=\sum_{n=1}^{\infty} c_{n} \sin \frac{n \pi x}{p} e^{-c^{2} \lambda_{n} t}
$$

is also a solution of the problem, because this solution satisfies the heat equation as well as the boundary conditions. Then, when we apply the initial condition $u(x, 0)=f(x)$, we find that

$$
u(x, 0)=\sum_{n=1}^{\infty} c_{n} \sin \frac{n \pi x}{p} e^{-c^{2} \lambda_{n} \cdot 0}=\sum_{n=1}^{\infty} c_{n} \sin \frac{n \pi x}{p}=f(x) .
$$

Therefore, c_{n} represents the Fourier sine series coefficients for $f(x)$, which are given by

$$
c_{n}=\frac{2}{p} \int_{0}^{p} f(x) \sin \frac{n \pi x}{p} d x, n=1,2, \ldots
$$

EXAMPLE 10.2.1: Solve $\left\{\begin{array}{l}u_{t}=u_{x x}, 0<x<1, t>0 \\ u(0, t)=0, u(1, t)=0, t>0 \\ u(x, 0)=50,0<x<1 .\end{array}\right.$

SOLUTION: In this case, $c=1, p=1$, and $f(x)=50$. Hence,

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} \sin n \pi x e^{-\lambda_{n} t},
$$

where

$$
c_{n}=\frac{2}{1} \int_{0}^{1} 50 \sin n \pi x d x=-\frac{100}{n \pi}(\cos n \pi-1)=-\frac{100}{n \pi}\left((-1)^{n}-1\right),
$$

and $\lambda_{n}=(n \pi)^{2}$.

$$
\begin{aligned}
& \text { In }[1938]:=c_{n_{-}}=100 \int_{0}^{1} \operatorname{Sin}[n \pi x] d \mathbf{x} \\
& \text { Out }[1938]=100\left(\frac{1}{\mathrm{n} \pi}-\frac{\operatorname{Cos}[\mathrm{n} \pi]}{\mathrm{n} \pi}\right) \\
& \text { In }[1939]:=\lambda_{\mathrm{n}_{-}}=(\mathrm{n} \pi)^{2}
\end{aligned}
$$

Therefore, because $c_{n}=0$ if n is even, we write $u(x, t)$ as

$$
u(x, t)=\sum_{n=1}^{\infty} \frac{200}{(2 n-1) \pi} \sin (2 n-1) \pi x e^{-(2 n-1)^{2} \pi^{2} t} .
$$

We graph an approximation of $u(x, t)$ at various times by graphing

$$
u_{k}(x, t)=\sum_{n=1}^{k} \frac{200}{(2 n-1) \pi} \sin (2 n-1) \pi x e^{-(2 n-1)^{2} \pi^{2} t}
$$

if $k=10$ in Figure 10-1.

$$
\begin{aligned}
& \text { In [1940]: = uapprox }\left[\mathrm{x}_{-}, \mathrm{t}_{-}\right]=\sum_{\mathrm{n}=1}^{41} \mathrm{c}_{\mathrm{n}} \operatorname{Sin}[\mathrm{n} \pi \mathrm{x}] \operatorname{Exp}\left[-\lambda_{\mathrm{n}} \mathrm{t}\right] \text {; } \\
& \text { In [1941]:= toplot = Table[uapprox[x, t], \{t, 0, 1, 0.05\}]; } \\
& \text { In [1942]:= grays = Table[GrayLevel[i], } \\
& \{i, 0,0.7,0.7 / 20\}] ; \\
& \text { Plot[Evaluate[toplot], } \\
& \{\mathrm{x}, 0,1\} \text {, PlotStyle- > grays] }
\end{aligned}
$$

An alternative approach to visualizing the solution is to generate a density plot of $u(x, t)$ with DensityPlot as shown in Figure 10-2.

Figure 10-1 $u(x, t)$ for various values of t

Figure 10-2 A density plot of $u(x, t): t$ corresponds to the vertical axis and x the horizontal axis

```
In[1943]:= DensityPlot[uapprox[x, t], {x, 0, 1}, {t, 0, 0.5},
    PlotPoints- > 30]
```

In the density plot, darker shades correspond to smaller values of $u(x, t)$ so we see that as t increases, the temperature throughout the rod approaches zero.

I O.2.2 Nonhomogeneous Boundary Conditions

The ability to apply the method of separation of variables depends on the presence of homogeneous boundary conditions as we just saw in the previous problem. However, with the heat equation, the temperature at the endpoints may not be held constantly at zero. Instead, consider the case when the temperature at the lefthand endpoint is $T_{0} \neq 0$ and at the right-hand endpoint it is $T_{1} \neq 0$. Mathematically, we state these nonhomogeneous boundary conditions as

$$
u(0, t)=T_{0} \quad \text { and } \quad u(p, t)=T_{1},
$$

DensityPlot works in the same way as
ContourPlot.
so we are faced with solving the problem

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} \tag{10.4}\\
u(0, t)=T_{0}, u(p, t)=T_{1}, t>0 \\
u(x, 0)=f(x), 0<x<p
\end{array}\right.
$$

In this case, we must modify the problem in order to introduce homogeneous boundary conditions to the problem. We do this by using the physical observance that as $t \rightarrow \infty$, the temperature in the wire does not depend on t. Hence,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} u(x, t)=S(x), \tag{10.5}
\end{equation*}
$$

where we call $S(x)$ in equation (10.7) the steady-state temperature. Therefore, we let

$$
\begin{equation*}
u(x, t)=v(x, t)+S(x), \tag{10.6}
\end{equation*}
$$

where $v(x, t)$ is called the transient temperature. We use these two functions to obtain two problems that we can solve. In order to substitute $u(x, t)$ into the heat equation, $u_{t}=c^{2} u_{x x}$, we calculate the derivatives

$$
u_{t}(x, t)=v_{t}(x, t)+0 \quad \text { and } \quad u_{x x}(x, t)=v_{x x}(x, t)+S^{\prime \prime}(x) .
$$

Substitution into the heat equation (10.2) yields

$$
\frac{\partial v}{\partial t}=c^{2} \frac{\partial^{2} v}{\partial x^{2}}+c^{2} S^{\prime \prime}
$$

so we have the two equations $v_{t}=c^{2} v_{x x}$ and $S^{\prime \prime}=0$. We next consider the boundary conditions. Because

$$
u(0, t)=v(0, t)+S(0)=T_{0} \quad \text { and } \quad u(p, t)=v(p, t)+S(p)=T_{1},
$$

we can choose the boundary conditions for S to be the nonhomogeneous conditions

$$
S(0)=T_{0} \quad \text { and } \quad S(p)=T_{1}
$$

and the boundary conditions for $v(x, t)$ to be the homogeneous boundary conditions

$$
v(0, t)=0 \quad \text { and } \quad v(p, t)=0
$$

Of course, we have failed to include the initial temperature. Applying this condition, we have $u(x, 0)=v(x, 0)+S(x)=f(x)$, so the initial condition for v is

$$
v(x, 0)=f(x)-S(x) .
$$

Therefore, we have two problems, one for v with homogeneous boundary conditions and one for S that has nonhomogeneous boundary conditions:

$$
\left\{\begin{array} { l }
{ S ^ { \prime \prime } = 0 , 0 < x < p } \\
{ S (0) = T _ { 0 } , S (p) = T _ { 1 } }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
v_{t}=c^{2} v_{x x}, 0<x<p, t>0 \\
v(0, t)=0, v(p, t)=0, t>0 \\
v(x, 0)=f(x)-S(x), 0<x<p
\end{array}\right.\right.
$$

Because S is needed in the determination of v, we begin by finding the steady-state temperature and obtain $S(x)=T_{0}+\frac{T_{1}-T_{0}}{p} x$.

```
In[1944]:= Clear[s,t0]
In[1945]:= DSolve[{s'[x] == 0, s[0] == t0, s[p] == t1},s[x], x]
Out [1945] = {{s[x]->\frac{pt0-t0x+t1x}{p}}}
```

We are now able to find $v(x, t)$ by solving the heat equation with homogeneous boundary conditions for v. Because we solved this problem at the beginning of this section, we do not need to go through the separation of variables procedure. Instead, we use the formula that we derived there using the initial temperature $f(x)-S(x)$. Therefore,

$$
\begin{equation*}
v(x, t)=\sum_{n=1}^{\infty} c_{n} \sin \frac{n \pi x}{p} e^{-c^{2} \lambda_{n} t}, \tag{10.7}
\end{equation*}
$$

where $v(x, 0)=\sum_{n=1}^{\infty} c_{n} \sin \frac{n \pi x}{p}=f(x)-S(x)$. This means that c_{n} represents the Fourier sine series coefficients for the function $f(x)-S(x)$ given by

$$
\begin{equation*}
c_{n}=\frac{2}{p} \int_{0}^{p}(f(x)-S(x)) \sin \frac{n \pi x}{p} d x, n=1,2, \ldots . \tag{10.8}
\end{equation*}
$$

EXAMPLE 10.2.2: Solve $\left\{\begin{array}{l}u_{t}=u_{x x}, 0<x<1, t>0 \\ u(0, t)=10, u(1, t)=60, t>0 \\ u(x, 0)=10,0<x<1 .\end{array}\right.$

SOLUTION: In this case, $c=1, p=1, T_{0}=10, T_{1}=60$, and $f(x)=10$.
Therefore, the steady-state solution is

$$
S(x)=T_{0}+\frac{T_{1}-T_{0}}{p} x=10+\frac{60-10}{1} x=10+50 x .
$$

Then, the initial transient temperature is

$$
v(x, 0)=10-(10+50 x)=-50 x
$$

so that the series coefficients in the solution (10.7) are given by equation (10.8):

$$
\begin{aligned}
& c_{n}=\frac{2}{1} \int_{0}^{1}-50 x \sin n \pi x d x=-100 \int_{0}^{1} x \sin n \pi x d x \\
& =\frac{100}{n \pi} \cos n \pi=\frac{100}{n \pi}(-1)^{n}, \ldots \\
& \operatorname{In}[1946]:=c_{n_{-}}=-100 \int_{0}^{1} x \sin [n \pi x] d x \\
& \text { Out [1946] }=-100\left(-\frac{\operatorname{Cos}[n \pi]}{n \pi}+\frac{\operatorname{Sin}[n \pi]}{n^{2} \pi^{2}}\right) \\
& \text { In [1947]: }=\lambda_{\mathrm{n}_{-}}=(\mathrm{n} \pi)^{2} \text {; }
\end{aligned}
$$

so the transient temperature is

$$
v(x, t)=\sum_{n=1}^{\infty} c_{n} \sin \frac{n \pi x}{p} e^{-c^{2} \lambda_{n} t}=\sum_{n=1}^{\infty}(-1)^{n} \frac{100}{n \pi} \sin n \pi x e^{-n^{2} \pi^{2} t}
$$

and

$$
u(x, t)=v(x, t)+S(x)=10+50 x+\sum_{n=1}^{\infty}(-1)^{n} \frac{100}{n \pi} \sin n \pi x e^{-n^{2} \pi^{2} t} .
$$

We graph an approximation of $u(x, t)$ for several values of t by graphing

$$
\begin{aligned}
& 10+50 x+\sum_{n=1}^{30}(-1)^{n} \frac{100}{n \pi} \sin n \pi x e^{-n^{2} \pi^{2} t} . \\
& \text { In [1948]: } \left.=\text { uapprox[} x_{-}, t_{-}\right]=10+50 x+\sum_{n=1}^{30} c_{n} \operatorname{Sin}[n \pi x] \operatorname{Exp}\left[-\lambda_{n} t\right] \text {; } \\
& \text { In [1949]: }=\text { toplot }=\text { Table[uapprox[x, t], } \\
& \{t, 0,0.5,0.5 / 20\}] ; \\
& \text { In [1950]:= grays = Table[GrayLevel[i], \{i, 0, 0.7, 0.7/20\}]; } \\
& \text { Plot[Evaluate[toplot], }\{\mathrm{x}, 0,1\} \text {, } \\
& \text { PlotStyle- > grays] }
\end{aligned}
$$

In Figure 10-3, notice that as $t \rightarrow \infty, u(x, t) \rightarrow S(x)$.
We generate a density plot of this function in Figure 10-4.

```
In[1951]:= DensityPlot[uapprox[x, t], {x, 0, 1}, {t, 0, 0.5},
    PlotPoints- > 30]
```

Notice that the temperature throughout the bar approaches the steadystate temperature as t increases.

Figure 10-3 An approximation of $u(x, t)$ for 21 equally spaced values of t between 0 and 0.5

Figure 10-4 Density plot of an approximation of $u(x, t)$

I 0.2.3 Insulated Boundary

Another important situation concerning the flow of heat in a wire involves insulated ends. In this case, heat is not allowed to escape from the ends of the wire. Mathematically, we express these boundary conditions as

$$
\frac{\partial u}{\partial x}(0, t)=0 \quad \text { and } \quad \frac{\partial u}{\partial x}(p, t)=0,
$$

We solve this eigenvalue problem in Example 9.I.5.
because the rate at which the heat changes along the x-axis at the endpoints $x=0$ and $x=p$ is zero. Therefore, if we want to determine the temperature in a wire of length p with insulated ends, we solve the initial-boundary-value problem

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} \tag{10.9}\\
\frac{\partial u}{\partial x}(0, t)=0, \frac{\partial u}{\partial x}(p, t)=0, t>0 \\
u(x, 0)=f(x), 0<x<p
\end{array}\right.
$$

Notice that the boundary conditions are homogeneous, so we can use separation of variables to find $u(x, t)=X(x) T(t)$. By following the steps taken in the solution of the problem with homogeneous boundary conditions, we obtain the ordinary differential equations

$$
T^{\prime}+c^{2} \lambda T=0 \quad \text { and } \quad X^{\prime \prime}+\lambda X=0 .
$$

However, when we consider the boundary conditions

$$
u_{x}(0, t)=X^{\prime}(0) T(0)=0 \quad \text { and } \quad u_{x}(p, t)=X^{\prime}(p) T(p)=0,
$$

we wish to avoid letting $T(t)=0$ for all t (which leads to the trivial solution), so we have the homogeneous boundary conditions

$$
X^{\prime}(0)=0 \quad \text { and } \quad X^{\prime}(p)=0
$$

Therefore, we solve the eigenvalue problem

$$
\left\{\begin{array}{l}
X^{\prime \prime}+\lambda X=0,0<x<p \\
X^{\prime}(0)=0, X^{\prime}(p)=0
\end{array}\right.
$$

to find $X(x)$. The eigenvalues and corresponding eigenfunctions of this problem are

$$
\lambda_{n}=\left\{\begin{array}{l}
0, n=0 \\
(n \pi / p)^{2}, n=1,2, \ldots
\end{array} \quad \text { and } \quad X_{n}(x)=\left\{\begin{array}{l}
1, n=0 \\
\cos (n \pi x / p), n=1,2, \ldots .
\end{array}\right.\right.
$$

Next, we solve the equation $T^{\prime}+c^{2} \lambda_{n} T=0$. First, for $\lambda_{0}=0$, we have the equation $T^{\prime}=0$ which has the solution $T(t)=A_{0}$, where A_{0} is a constant. Therefore, for $\lambda_{0}=0$, the solution is the product

$$
u_{0}(x, t)=X_{0}(x) T_{0}(t)=A_{0} .
$$

For $\lambda_{n}=(n \pi / p)^{2}, T^{\prime}+c^{2} \lambda_{n} T=0$ has general solution $T_{n}(t)=a_{n} e^{-c^{2} \lambda_{n} t}$. For these eigenvalues, we have the solution

$$
u_{n}(x, t)=X_{n}(x) T_{n}(t)=a_{n} \cos \frac{n \pi x}{p} e^{-c^{2} \lambda_{n} t} .
$$

Therefore, by the Principle of Superposition, the solution is

$$
u(x, t)=A_{0}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{p} e^{-c^{2} \lambda_{n} t} .
$$

Application of the initial temperature yields

$$
u(x, 0)=A_{0}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{p}=f(x),
$$

which is the Fourier cosine series for $f(x)$ where the coefficient A_{0} is equivalent to $\frac{1}{2} a_{0}$ in the original Fourier series given in Section 9.2. Therefore,

$$
A_{0}=\frac{1}{2} a_{0}=\frac{1}{2} \frac{2}{p} \int_{0}^{p} f(x) d x=\frac{1}{p} \int_{0}^{p} f(x) d x
$$

and

$$
\begin{equation*}
a_{n}=\frac{2}{p} \int_{0}^{p} f(x) \cos \frac{n \pi x}{p} d x, n=1,2, \ldots \tag{10.10}
\end{equation*}
$$

EXAMPLE 10.2.3: Solve $\left\{\begin{array}{l}u_{t}=u_{x x}, 0<x<\pi, t>0 \\ u_{x}(0, t)=0, u_{x}(\pi, t)=0, t>0 \\ u(x, 0)=x, 0<x<\pi .\end{array}\right.$

SOLUTION: In this case, $p=\pi$ and $c=1$. The Fourier cosine series coefficients for $f(x)=x$ are given by

$$
A_{0}=\frac{1}{2} a_{0}=\frac{1}{\pi} \int_{0}^{\pi} x d x=\frac{\pi}{2}
$$

and

$$
a_{n}=\frac{2}{\pi} \int_{0}^{\pi} x \cos \frac{n \pi x}{\pi} d x=\frac{2}{\pi n^{2}}\left[(-1)^{n}-1\right], n=1,2, \ldots .
$$

Therefore, the solution is

$$
u(x, t)=\frac{\pi}{2}-\sum_{n=1}^{\infty} \frac{4}{(2 n-1)^{2} \pi} \cos ((2 n-1) x) e^{-(2 n-1)^{2} t},
$$

where we have used the fact that $a_{n}=0$ if n is even. We graph an approximation of $u(x, t)$ by graphing

$$
\frac{\pi}{2}-\sum_{n=1}^{40} \frac{4}{(2 n-1)^{2} \pi} \cos ((2 n-1) x) e^{-(2 n-1)^{2} t}
$$

in Figure 10-5 and then a density plot of this function in Figure 10-6.

Figure 10-5 An approximation of $u(x, t)$ for 21 equally spaced values of t between 0 and 1

Figure 10-6 A density plot
In [1952]:= Remove [a]

$$
a_{n_{-}}=\frac{4}{(2 n-1)^{2} \pi}
$$

$$
\begin{aligned}
& \operatorname{In}[1953]:=\text { uapprox }\left[\mathbf{x}_{-}, \mathrm{t}_{-}\right]=\frac{\pi}{2}-\sum_{\mathrm{n}=1}^{40} \mathrm{a}_{\mathrm{n}} \operatorname{Cos}[(2 \mathrm{n}-1) \mathrm{x}] \\
& \times \operatorname{Exp}\left[-(2 n-1)^{2} t\right] \text {; }
\end{aligned}
$$

```
In[1954]:= toplot = Table[uapprox[x, t], {t, 0, 1, 1/20}];
In[1955]:= grays = Table[GrayLevel[i],
    {i,0,0.7,0.7/20}];
    Plot[Evaluate[toplot], {x, 0, \pi},
    PlotStyle- > grays]
In[1956]:= DensityPlot[uapprox[x,t], {\mathbf{x},0,\pi},
    {t, 0, 0.5}, PlotPoints-> 30]
```

Notice that the temperature eventually becomes $A_{0}=\pi / 2$ throughout the wire. Temperatures to the left of $x=\pi / 2$ increase while those to the right decrease.

10.3 The One-Dimensional Wave Equation

The one-dimensional wave equation is important in solving an interesting problem.

10.3.1 The Wave Equation

Suppose that we pluck a string (like a guitar or violin string) of length p and constant mass density that is fixed at each end. A question that we might ask is: "What is the position of the string at a particular instance of time?" We answer this question by modeling the physical situation with a partial differential equation, namely the wave equation in one spatial variable. We will not go through this derivation as we did with the heat equation, but we point out that it is based on determining the forces that act on a small segment of the string and applying Newton's Second Law of Motion. The partial differential equation that is found is

$$
\begin{equation*}
c^{2} \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}}, \tag{10.11}
\end{equation*}
$$

which is called the (one-dimensional) wave equation. In this equation $c^{2}=T / \rho$, where T is the tension of the string and ρ is the constant mass of the string per unit length. The solution $u=u(x, t)$ represents the displacement of the string from the x axis at time t. In order to determine $u=u(x, t)$ we must describe the boundary and

Notice that the wave equation requires two initial conditions where the heat equation only needed one. This is due to the fact that there is a second derivative with respect to t while there is only one derivative with respect to t in the heat equation.
initial conditions that model the physical situation. At the ends of the string, the displacement from the x-axis is fixed at zero, so we use the homogeneous boundary conditions

$$
u(0, t)=0 \quad \text { and } \quad u(p, t)=0
$$

for $t>0$. The motion of the string also depends on the displacement and the velocity at each point of the string at $t=0$. If the initial displacement is given by $f(x)$ and the initial velocity by $g(x)$, we have the initial conditions

$$
u(x, 0)=f(x) \quad \text { and } \quad \frac{\partial u}{\partial t}(x, 0)=g(x)
$$

for $0<x<p$. Therefore, we determine the displacement of the string with the initial-boundary-value problem

$$
\left\{\begin{array}{l}
c^{2} \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}}, 0<x<p, t>0 \tag{10.12}\\
u(0, t)=0, u(p, t)=0, t>0 \\
u(x, 0)=f(x), \frac{\partial u}{\partial t}(x, 0)=g(x), 0<x<p
\end{array}\right.
$$

This problem is solved through separation of variables by assuming that $u(x, t)=$ $X(x) T(t)$. Substitution into the wave equation yields

$$
\begin{aligned}
c^{2} X^{\prime \prime} T & =X T^{\prime \prime} \\
\frac{X^{\prime \prime}}{X} & =\frac{T^{\prime \prime}}{c^{2} T}=-\lambda
\end{aligned}
$$

so we obtain the two second-order ordinary differential equations

$$
X^{\prime \prime}+\lambda X=0 \quad \text { and } \quad T^{\prime \prime}+c^{2} \lambda T=0
$$

At this point, we solve the equation that involves the homogeneous boundary conditions. As was the case with the heat equation, the boundary conditions in terms of $u(x, t)=X(x) T(t)$ are

$$
u(0, t)=X(0) T(t)=0 \quad \text { and } \quad u(p, t)=X(p) T(t)=0,
$$

so we have

$$
X(0)=0 \quad \text { and } \quad X(p)=0 .
$$

Therefore, we determine $X(x)$ by solving the eigenvalue problem

$$
\left\{\begin{array}{l}
X^{\prime \prime}+\lambda X=0,0<x<p \\
X(0)=0, X(p)=0
\end{array}\right.
$$

which we encountered when solving the heat equation and solved in Section 10.2. The eigenvalues of this problem are

$$
\lambda_{n}=\left(\frac{n \pi}{p}\right)^{2}, n=1,2, \ldots
$$

with corresponding eigenfunctions

$$
X_{n}(x)=\sin \frac{n \pi x}{p}, n=1,2, \ldots .
$$

Next, we solve the equation $T^{\prime \prime}+c^{2} \lambda_{n} T=0$. A general solution is

$$
T_{n}(t)=a_{n} \cos \left(c \sqrt{\lambda_{n}} t\right)+b_{n} \sin \left(c \sqrt{\lambda_{n}} t\right)=a_{n} \cos \frac{c n \pi t}{p}+b_{n} \sin \frac{c n \pi t}{p},
$$

where the coefficients a_{n} and b_{n} must be determined. Putting this information together, we obtain

$$
u_{n}(x, t)=\left(a_{n} \cos \frac{c n \pi t}{p}+b_{n} \sin \frac{c n \pi t}{p}\right) \sin \frac{n \pi x}{p},
$$

so by the Principle of Superposition, we have

$$
u(x, t)=\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{c n \pi t}{p}+b_{n} \sin \frac{c n \pi t}{p}\right) \sin \frac{n \pi x}{p} .
$$

Applying the initial position yields

$$
u(x, 0)=\sum_{n=1}^{\infty} a_{n} \sin \frac{n \pi x}{p}=f(x)
$$

so a_{n} is the Fourier sine series coefficient for $f(x)$, which is given by

$$
\begin{equation*}
a_{n}=\frac{2}{p} \int_{0}^{p} f(x) \sin \frac{n \pi x}{p} d x, n=1,2, \ldots \tag{10.13}
\end{equation*}
$$

To determine b_{n}, we must use the initial velocity. Therefore, we compute

$$
\frac{\partial u}{\partial t}(x, t)=\sum_{n=1}^{\infty}\left(-a_{n} \frac{c n \pi}{p} \sin \frac{c n \pi t}{p}+b_{n} \frac{c n \pi}{p} \cos \frac{c n \pi t}{p}\right) \sin \frac{n \pi x}{p} .
$$

Then,

$$
\frac{\partial u}{\partial t}(x, 0)=\sum_{n=1}^{\infty} b_{n} \frac{c n \pi}{p} \sin \frac{n \pi x}{p}=g(x),
$$

so $b_{n} \frac{c n \pi}{p}$ represents the Fourier sine series coefficient for $g(x)$, which means that

$$
\begin{equation*}
b_{n}=\frac{p}{c n \pi} \frac{2}{p} \int_{0}^{p} g(x) \sin \frac{n \pi x}{p} d x=\frac{2}{c n \pi} \int_{0}^{p} g(x) \sin \frac{n \pi x}{p} d x, n=1,2, \ldots \tag{10.14}
\end{equation*}
$$

EXAMPLE 10.3.1: Solve $\left\{\begin{array}{l}u_{x x}=u_{t t}, 0<x<1, t>0 \\ u(0, t)=0, u(1, t)=0, t>0 \\ u(x, 0)=x(1-x), u_{t}(x, 0)=0,0<x<1 .\end{array}\right.$

SOLUTION: For this problem, $c=p=1, f(x)=x(1-x)$, and $g(x)=0$. With this information and equation (10.13) we compute

$$
\begin{array}{r}
a_{n}=\frac{2}{1} \int_{0}^{1} x(1-x) \sin n \pi x d x=-\frac{4}{n^{3} \pi^{3}} \cos n \pi+\frac{4}{n^{3} \pi^{3}}=\frac{4}{n^{3} \pi^{3}}\left[1-(-1)^{n}\right] \\
n=1,2, \ldots .
\end{array}
$$

$$
\begin{aligned}
& \text { In [1957]: }=\text { Remove }[a] \\
& \qquad \begin{array}{l}
a_{n-}=2 \int_{0}^{1} x(1-x) \operatorname{Sin}[n \pi x] d x \\
\text { Out [1957] }=
\end{array} 2\left(\frac{2}{n^{3} \pi^{3}}-\frac{2 \operatorname{Cos}[n \pi]}{n^{3} \pi^{3}}-\frac{\operatorname{Sin}[n \pi]}{n^{2} \pi^{2}}\right)
\end{aligned}
$$

With $g(x)=0$, we use equation (10.14) to see that the coefficients $b_{n}=0$ for all n. Using the fact that $a_{n}=0$ for even values of n, the solution is

$$
u(x, t)=\sum_{n=1}^{\infty} \frac{8}{(2 n-1)^{3} \pi^{3}} \cos ((2 n-1) \pi t) \sin ((2 n-1) \pi x) .
$$

We illustrate the motion of the string by graphing

$$
u_{k}(x, t)=\sum_{n=1}^{k} \frac{8}{(2 n-1)^{3} \pi^{3}} \cos ((2 n-1) \pi t) \sin ((2 n-1) \pi x)
$$

using $k=10$ for 16 equally spaced values of t between 0 and 1 in Figure 10-7.

$$
\begin{aligned}
& \text { In [1958] : }=u\left[\mathbf{x}_{-}, \mathrm{t}_{-}\right]=\sum_{\mathrm{n}=1}^{10} \frac{8 \operatorname{Cos}[(2 \mathrm{n}-1) \pi \mathrm{t}] \operatorname{Sin}[(2 \mathrm{n}-1) \pi \mathrm{x}]}{(2 \mathrm{n}-1)^{3} \pi^{3}} ; \\
& \text { In [1959]: }=\text { somegraphs = } \\
& \text { Table[Plot }[u[x, t],\{x, 0,1\} \text {, } \\
& \text { DisplayFunction } \rightarrow \text { Identity, } \\
& \text { PlotRange } \rightarrow\{-0.3,0.3\} \text {, } \\
& \text { Ticks } \left.\rightarrow\{\{0,1\},\{-0.3,0.3\}\}],\left\{t, 0,1, \frac{1}{15}\right\}\right] \text {; } \\
& \text { toshow = Partition[somegraphs, 4]; } \\
& \text { Show[GraphicsArray[toshow]] }
\end{aligned}
$$

Figure 10-7 Visualizing the motion of a string

To see the motion of the string, you can use a Do loop like

```
Do[Plot[u[x,t],{x,0,1},PlotRange->{-0.3,0.3},
        Ticks->{{0,1},{-0.3,0.3}}],{t,0,2,2/59}]
```

to generate a sequence of graphs and animate the result.

EXAMPLE 10.3.2: Solve $\left\{\begin{array}{l}u_{x x}=u_{t t}, 0<x<1, t>0 \\ u(0, t)=0, u(1, t)=0, t>0 \\ u(x, 0)=\sin \pi x, u_{t}(x, 0)=3 x+1,0<x<1 .\end{array}\right.$

SOLUTION: The appropriate parameters and initial conditions are defined first.

$$
\begin{aligned}
\operatorname{In}[1960]:= & \text { Remove }[\mathrm{a}, \mathrm{~b}] \\
& \mathrm{f}\left[\mathbf{x}_{-}\right]=\operatorname{Sin}[\pi \mathbf{x}] ; \\
& \mathrm{g}\left[\mathbf{x}_{-}\right]=3 \mathbf{x}+1 ;
\end{aligned}
$$

Next, the functions to determine the coefficients a_{n} and b_{n} in the series approximation of the solution $u=u(x, t)$ are defined.

$$
\begin{aligned}
& \text { In }[1961]:=a_{n_{-}}=2 \int_{0}^{1} f[\mathbf{x}] \sin [\mathrm{n} \pi \mathbf{x}] d \mathbf{x} \\
& \text { Out }[1961]=2\left(\frac{\operatorname{Sin}[(-1+\mathrm{n}) \pi]}{2(-1+\mathrm{n}) \pi}-\frac{\operatorname{Sin}[(1+\mathrm{n}) \pi]}{2(1+\mathrm{n}) \pi}\right) \\
& \text { In }[1962]:=\mathrm{b}_{\mathrm{n}_{-}}=\frac{2 \int_{0}^{1} \mathrm{~g}[\mathbf{x}] \sin [\mathrm{n} \pi \mathbf{x}] d \mathbf{x}}{\mathrm{n} \pi} \\
& \text { Out }[1962]=\frac{2\left(\frac{1}{\mathrm{n} \pi}-\frac{4 \cos [\mathrm{n} \pi]}{\mathrm{n} \pi}+\frac{3 \sin [\mathrm{n} \pi]}{\mathrm{n}^{2} \pi^{2}}\right)}{\mathrm{n} \pi}
\end{aligned}
$$

Because n represents an integer, these results indicate that $a_{n}=0$ for all $n \geq 1$. We use Table to calculate the first 10 values of b_{n}.

Notice that we define uapprox [n] so that Mathematica "remembers" the terms uapprox that are computed. That is, Mathematica need not recompute uapprox [n-1] to compute uapprox [n] provided that uapprox [$\mathrm{n}-1$] has already been computed.

$$
\begin{aligned}
& \text { In [1963] : = Table[\{n, } \left.\left.\mathrm{b}_{\mathrm{n}}, \mathrm{~b}_{\mathrm{n}} / / \mathrm{N}\right\},\{\mathrm{n}, 1,10\}\right] / / \text { TableForm } \\
& 1 \frac{10}{\pi^{2}} \quad 1.01321 \\
& 2-\frac{3}{2 \pi^{2}}-0.151982 \\
& 3 \frac{10}{9 \pi^{2}} \quad 0.112579 \\
& 4-\frac{3}{8 \pi^{2}}-0.0379954 \\
& \text { Out [1963] }=\begin{array}{lll}
5 & \frac{2}{5 \pi^{2}} & 0.0405285 \\
6 & -\frac{1}{6 \pi^{2}} & -0.0168869
\end{array} \\
& 7 \quad \frac{10}{49 \pi^{2}} \quad 0.0206778 \\
& 8-\frac{3}{32 \pi^{2}}-0.00949886 \\
& 9 \frac{10}{81 \pi^{2}} \quad 0.0125088 \\
& 10-\frac{3}{50 \pi^{2}}-0.00607927
\end{aligned}
$$

The function u defined next computes the nth term in the series expansion. Hence, uapprox determines the approximation of order k by summing the first k terms of the expansion, as illustrated with uapprox [10].

```
In[1964]:= Clear[u, uapprox]
In[1965]:= u[n_] = bn Sin[n\pit] Sin[n\pix];
In[1966]:= uapprox[k_] := uapprox[k] = uapprox[k-1] +u[k];
    uapprox[1] = u[1];
```

$$
\begin{aligned}
& \text { In [1967]: = uapprox[10] } \\
& \text { Out }[1967]=\frac{10 \operatorname{Sin}[\pi t] \operatorname{Sin}[\pi x]}{\pi^{2}} \\
& -\frac{3 \operatorname{Sin}[2 \pi t] \operatorname{Sin}[2 \pi x]}{2 \pi^{2}} \\
& +\frac{10 \operatorname{Sin}[3 \pi t] \operatorname{Sin}[3 \pi x]}{9 \pi^{2}} \\
& -\frac{3 \operatorname{Sin}[4 \pi t] \operatorname{Sin}[4 \pi x]}{8 \pi^{2}} \\
& +\frac{2 \operatorname{Sin}[5 \pi t] \operatorname{Sin}[5 \pi x]}{5 \pi^{2}} \\
& -\frac{\operatorname{Sin}[6 \pi t] \operatorname{Sin}[6 \pi x]}{6 \pi^{2}} \\
& +\frac{10 \operatorname{Sin}[7 \pi t] \operatorname{Sin}[7 \pi x]}{49 \pi^{2}} \\
& -\frac{3 \operatorname{Sin}[8 \pi t] \operatorname{Sin}[8 \pi x]}{32 \pi^{2}} \\
& +\frac{10 \operatorname{Sin}[9 \pi t] \operatorname{Sin}[9 \pi x]}{81 \pi^{2}} \\
& -\frac{3 \operatorname{Sin}[10 \pi \mathrm{t}] \operatorname{Sin}[10 \pi \mathrm{x}]}{50 \pi^{2}}
\end{aligned}
$$

To illustrate the motion of the string, we graph uapprox [10], the tenth partial sum of the series, on the interval [0,1] for 16 equally spaced values of t between 0 and 2 in Figure 10-8.

Figure 10-8 Visualizing the motion of a string

```
In[1968]:= somegraphs =
    Table[Plot[Evaluate[uapprox[10]], {x, 0, 1},
        DisplayFunction }->\mathrm{ Identity,
        PlotRange }->{-3/2,3/2}
        Ticks }->{{0,1},{-1,1}}],{t,0,2,\frac{2}{15}}]
toshow = Partition[somegraphs, 4];
Show[GraphicsArray[toshow]]
```

If instead we wished to see the motion of the string, we can use a Do loop to generate many graphs and animate the result. We show a frame from the resulting animation.

```
In [1969] : = Do[Plot[Evaluate[uapprox[10]], \(\{\mathbf{x}, 0,1\}\),
    PlotRange \(\rightarrow\{-3 / 2,3 / 2\}\),
    Ticks \(\left.\rightarrow\{\{0,1\},\{-1,1\}\}],\left\{t, 0,2, \frac{2}{59}\right\}\right]\);
```

Do[Plot[Eqaluate[uapprox[10]], $\{x, 0,1\}$,
PlotRange $\rightarrow\{-3 / 2,3 / 2\}$.
Ticks $\left.\rightarrow\{\{0,1\},\{-1,1\}\}] .\left\{t, 0,2, \frac{2}{59}\right\}\right]:$

I 0.3.2 D'Alembert's Solution

An interesting version of the wave equation is to consider a string of infinite length. Therefore, the boundary conditions are no longer of importance. Instead,
we simply work with the wave equation with the initial position and velocity functions. In order to solve the problem

$$
\left\{\begin{array}{l}
c^{2} \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}},-\infty<x<\infty, t>0 \tag{10.15}\\
u(x, 0)=f(x), \frac{\partial u}{\partial t}(x, 0)=g(x)
\end{array}\right.
$$

we use the change of variables $r=x+c t$ and $s=x-c t$. Using the Chain Rule, we compute the derivatives $u_{x x}$ and $u_{t t}$ in terms of the variables r and s :

$$
\begin{aligned}
u_{x} & =u_{r} r_{x}+u_{s} s_{x}=u_{r}+u_{s}, \\
u_{x x} & =\left(u_{r}+u_{s}\right)_{r} r_{x}+\left(u_{r}+u_{s}\right)_{s} s_{x}=u_{r r}+2 u_{r s}+u_{s s}, \\
u_{t} & =u_{r} r_{t}+u_{s} s_{t}=c u_{r}-c u_{s}=c\left(u_{r}-u_{s}\right),
\end{aligned}
$$

and

$$
u_{t t}=c\left[\left(u_{r}-u_{s}\right)_{r} r_{t}+\left(u_{r}-u_{s}\right)_{s} s_{t}\right]=c^{2}\left(u_{r r}-2 u_{r s}+u_{s s}\right) .
$$

Substitution into the wave equation yields

$$
\begin{aligned}
c^{2} u_{x x} & =u_{t t} \\
c^{2}\left(u_{r r}+2 u_{r s}+u_{s s}\right. & =c^{2}\left(u_{r r}-2 u_{r s}+u_{s s}\right) \\
4 c^{2} u_{r s} & =0 \\
u_{r s} & =0 .
\end{aligned}
$$

The partial differential equation $u_{r s}=0$ can be solved by first integrating with respect to s to obtain

$$
u_{r}=f(r),
$$

where $f(r)$ is an arbitrary function of r. Then, integrating with respect to r, we have

$$
u(r, s)=F(r)+G(s),
$$

where F is an antiderivative of f and G is an arbitrary function of s. Returning to our original variables then gives us

$$
u(x, t)=F(x+c t)+G(x-c t) .
$$

We see that this is the solution that DSolve returns as well. (Note that C [1] and C [2] represent the arbitrary functions F and G.)

```
In[1970]:= Clear[u, c, x]
In[1971]:= DSolve[c^2 D[u[x, t], {x, 2}] == D[u[x,t], {t, 2}],
    u[x,t], {x,t}]
```


The functions F and G are determined by the initial conditions which indicate that

$$
u(x, 0)=F(x)+G(x)=f(x)
$$

and

$$
u_{t}(x, 0)=c F^{\prime}(x)+c G^{\prime}(x)=g(x) .
$$

We can rewrite the second equation by integrating to obtain

$$
\begin{aligned}
F^{\prime}(x)-G^{\prime}(x) & =\frac{1}{c} g(x) \\
F(x)-G(x) & =\frac{1}{c} \int_{0}^{x} g(v) d v .
\end{aligned}
$$

Therefore, we solve the system

$$
\begin{aligned}
& F(x)+G(x)=f(x) \\
& F(x)-G(x)=\frac{1}{c} \int_{0}^{x} g(v) d v
\end{aligned}
$$

for $F(x)$ and $G(x)$. Adding these equations yields

$$
F(x)=\frac{1}{2}\left(f(x)+\frac{1}{c} \int_{0}^{x} g(v) d v\right)
$$

and subtracting gives us

$$
G(x)=\frac{1}{2}\left(f(x)-\frac{1}{c} \int_{0}^{x} g(v) d v\right) .
$$

Therefore,

$$
F(x+c t)=\frac{1}{2}\left(f(x+c t)+\frac{1}{c} \int_{0}^{x+c t} g(v) d v\right)
$$

and

$$
G(x-c t)=\frac{1}{2}\left(f(x-c t)-\frac{1}{c} \int_{0}^{x-c t} g(v) d v\right),
$$

so the solution is

$$
\begin{equation*}
u(x, t)=\frac{1}{2}(f(x+c t)+f(x-c t))+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(v) d v . \tag{10.16}
\end{equation*}
$$

EXAMPLE 10.3.3: Solve $\left\{\begin{array}{l}u_{x x}=u_{t t},-\infty<x<\infty, t>0 \\ u(x, 0)=2\left(1+x^{2}\right)^{-1}, u_{t}(x, 0)=0 .\end{array}\right.$

SOLUTION: Using equation (10.16) with $c=1, f(x)=2\left(1+x^{2}\right)^{-1}$, and $g(x)=0$, we have the solution

$$
\begin{aligned}
u(x, t) & =\frac{1}{2}(f(x+c t)+f(x-c t))=\frac{1}{2}\left[\frac{2}{1+(x+t)^{2}}+\frac{2}{1+(x-t)^{2}}\right] \\
& =\frac{1}{1+(x+t)^{2}}+\frac{1}{1+(x-t)^{2}} .
\end{aligned}
$$

We plot the solution for $t=0$ to $t=15$ to illustrate the motion of the string of infinite length in Figure 10-9.

$$
\begin{aligned}
\operatorname{In}[1972]:= & \text { Clear }[u, x, t] \\
& u\left[\mathbf{x}_{-}, \mathrm{t}_{-}\right]=\frac{1}{1+(\mathrm{x}+\mathrm{t})^{2}}+\frac{1}{1+(\mathrm{x}-\mathrm{t})^{2}} ;
\end{aligned}
$$

Figure 10-9 A traveling wave solution

```
In[1973]:= somegraphs = Table[
    Plot[u[x, t], {x, -20, 20},
    PlotRange }->{0,2}\mathrm{ ,
    DisplayFunction }->\mathrm{ Identity,
    Ticks }->{{-5,5},{0,5}}]
        {t, 0, 15}];
toshow = Partition[somegraphs, 4];
Show[GraphicsArray[toshow]]
```

Alternatively, you can use the following Do loop to generate several graphs and animate the results to see the motion of the string.

```
Do[Plot [u[x,t], {x,-20,20},PlotRange->{0,3/2},
    AxesStyle->GrayLevel[.5]],{t,1,15}]
```

D'Alembert's solution is sometimes referred to as the traveling wave solution due to the behavior of its graph. The waves appear to move in opposite directions along the x-axis as t increases, as we can see in the graphs.

10.4 Problems in Two Dimensions: Laplace's Equation

10.4.I Laplace's Equation

Laplace's equation, often called the potential equation, is given by

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \tag{10.17}
\end{equation*}
$$

in rectangular coordinates and is one of the most useful partial differential equations in that it arises in many fields of study. These include fluid flows as well as electrostatic and gravitational potential. Because the potential $u=u(x, y)$ does not depend on time, no initial condition is required, so we are faced with solving a pure boundary-value problem when working with Laplace's equation. The boundary conditions can be stated in different forms. If the value of the solution
is given around the boundary of the region, then the boundary-value problem is called a Dirichlet problem whereas if the normal derivative of the solution is given around the boundary, the problem is known as a Neumann problem. We now investigate the solutions to Laplace's equation in a rectangular region by, first, stating the general form of the Dirichlet problem:

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0,0<x<a, 0<y<b \tag{10.18}\\
u(x, 0)=f_{1}(x), u(x, b)=f_{2}(x), 0<x<a \\
u(0, y)=g_{1}(y), u(a, y)=g_{2}(y), 0<y<b .
\end{array}\right.
$$

This boundary-value problem is solved through separation of variables. We begin by considering the problem

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0,0<x<a, 0<y<b \tag{10.19}\\
u(x, 0)=0, u(x, b)=f(x), 0<x<a \\
u(0, y)=0, u(a, y)=0,0<y<b
\end{array}\right.
$$

In this case, we assume that

$$
u(x, y)=X(x) Y(y)
$$

so substitution into Laplace's equation (10.17) yields

$$
\begin{aligned}
X^{\prime \prime} Y+X Y^{\prime \prime} & =0 \\
\frac{X^{\prime \prime}}{X} & =-\frac{Y^{\prime \prime}}{Y}=-\lambda,
\end{aligned}
$$

where $-\lambda$ is the separation constant. Therefore, we have the ordinary differential equations $X^{\prime \prime}+\lambda X=0$ and $Y^{\prime \prime}-\lambda Y=0$. Notice that the boundary conditions along the lines $x=0$ and $x=a$ are homogeneous. In fact, because $u(0, y)=X(0) Y(y)=0$ and $u(a, y)=X(a) Y(y)=0$, we have $X(0)=0$ and $X(a)=0$. Therefore, we first solve the eigenvalue problem

$$
\left\{\begin{array}{l}
X^{\prime \prime}+\lambda X=0,0<x<a \\
X(0)=0, X(a)=0
\end{array}\right.
$$

which was solved with $a=p$ in Section 9.1. There, we found the eigenvalues and We then solve the equation $Y^{\prime \prime}-\lambda Y=0$. From our experience with second-order equations, we know that $Y_{n}(y)=a_{n} e^{\lambda_{n} y}+b_{n} e^{-\lambda_{n} y}$, which can be written in terms of the hyperbolic trigonometric functions as

$$
Y_{n}(y)=A_{n} \cosh \lambda_{n} y+B_{n} \sinh \lambda_{n} y=A_{n} \cosh \frac{n \pi y}{a}+B_{n} \sinh \frac{n \pi y}{a} .
$$

Then, using the homogeneous boundary condition $u(x, 0)=X(x) Y(0)=0$, which indicates that $Y(0)=0$, we have

$$
Y_{n}(0)=A_{n} \cosh 0+B_{n} \sinh 0=A_{n}=0,
$$

so $A_{n}=0$ for all n. Therefore, $Y_{n}(y)=B_{n} \sinh \lambda_{n} y$, and a solution of equation (10.19) is

$$
u_{n}(x, y)=B_{n} \sinh \frac{n \pi y}{a} \sin \frac{n \pi x}{a},
$$

so by the Principle of Superposition,

$$
u(x, y)=\sum_{n=1}^{\infty} B_{n} \sinh \frac{n \pi y}{a} \sin \frac{n \pi x}{a}
$$

is also a solution, where the coefficients are determined with the boundary condition $u(x, b)=f(x)$. Substitution into the solution yields

$$
u(x, b)=\sum_{n=1}^{\infty} B_{n} \sinh \frac{n \pi b}{a} \sin \frac{n \pi x}{a}=f(x),
$$

where $B_{n} \sinh (n \pi b / a)$ represents the Fourier sine series coefficients given by

$$
\begin{align*}
B_{n} \sinh \frac{n \pi b}{a} & =\frac{2}{a} \int_{0}^{a} f(x) \sin \frac{n \pi x}{a} d x \\
B_{n} & =\frac{2}{a \sinh \frac{n \pi b}{a}} \int_{0}^{a} f(x) \sin \frac{n \pi x}{a} d x . \tag{10.20}
\end{align*}
$$

EXAMPLE 10.4.1: Solve $\left\{\begin{array}{l}u_{x x}+u_{y y}=0,0<x<1,0<y<2 \\ u(x, 0)=0, u(x, 2)=x(1-x), 0<x<1 \\ u(0, y)=0, u(1, y)=0,0<y<2 .\end{array}\right.$

SOLUTION: In this case, $a=1, b=2$, and $f(x)=x(1-x)$. Therefore,

$$
\begin{aligned}
B_{n} & =\frac{2}{\sinh 2 n \pi} \int_{0}^{1} x(1-x) \sin n \pi x d x=\frac{2}{\sinh 2 n \pi}\left(-\frac{2}{n^{3} \pi^{3}} \cos n \pi+\frac{2}{n^{3} \pi^{3}}\right) \\
& =\frac{4}{n^{3} \pi^{3} \sinh 2 n \pi}\left[1-(-1)^{n}\right], n=1,2, \ldots \\
& \operatorname{In}[1974]:=\frac{2 \int_{0}^{1} \mathbf{x}(1-\mathbf{x}) \sin [\mathrm{n} \pi \mathbf{x}] \mathrm{dx}}{\operatorname{Sinh}[2 \mathrm{n} \pi]} \\
& \text { Out }[1974]=2 \operatorname{Csch}[2 \mathrm{n} \pi]\left(\frac{2}{\mathrm{n}^{3} \pi^{3}}-\frac{2 \operatorname{Cos}[\mathrm{n} \pi]}{\mathrm{n}^{3} \pi^{3}}-\frac{\operatorname{Sin}[\mathrm{n} \pi]}{\mathrm{n}^{2} \pi^{2}}\right)
\end{aligned}
$$

Figure 10-10 Approximating a solution of Laplace's equation
so the solution is

$$
\begin{aligned}
u(x, y) & =\sum_{n=1}^{\infty} B_{n} \sinh n \pi y \sin n \pi x \\
& =\sum_{n=1}^{\infty} \frac{8}{(2 n-1)^{3} \pi^{3} \sinh 2(2 n-1) \pi} \sinh (2 n-1) \pi y \sin (2 n-1) \pi x .
\end{aligned}
$$

We plot $u(x, y)$ using the first 15 terms of the series solution in Figure 10-10.

```
In[1975]:= Clear[u]
    u[\mp@subsup{x}{-}{\prime},\mp@subsup{y}{-}{\prime}]=\mp@subsup{\sum}{n=1}{15}\frac{8\operatorname{sinh}[(2n-1)\piy]\operatorname{sin}[(2n-1)\pix]}{(2n-1\mp@subsup{)}{}{3}\mp@subsup{\pi}{}{3}\operatorname{Sinh}[2(2n-1)\pi]};
In[1976]:= Plot3D[u[x,y], {x, 0, 1}, {y, 0, 2},
    ViewPoint }->{2.365,2.365,0.514}
    AxesLabel }->\mathrm{ {"x", "y", "u"}, PlotPoints }->40
```

Alternatively, we can generate a contour or density plot of $u(x, y)$ as shown in Figure 10-11.

```
In[1977]:= cplot = ContourPlot[u[x,y], {x, 0, 1}, {y, 0, 2},
                        PlotPoints- > 30,
                            DisplayFunction- > Identity];
dplot = DensityPlot[u[x,y], {x, 0, 1}, {y, 0, 2},
    PlotPoints- > 30,
    DisplayFunction- > Identity];
Show[GraphicsArray[{cplot, dplot}]]
```

We notice that the value of $u(x, y)$ decreases to zero away from the boundary $y=2$.

Figure 10-11 On the left, a contour plot and on the right, a density plot

Any version of Laplace's equation on a rectangular region can be solved through separation of variables as long as we have a pair of homogeneous boundary conditions in the same variable.

EXAMPLE 10.4.2: Solve $\left\{\begin{array}{l}u_{x x}+u_{y y}=0,0<x<\pi, 0<y<1 \\ u(x, 0)=0, u(x, 1)=0,0<x<\pi \\ u(0, y)=\sin 2 \pi y, u(\pi, y)=4,0<y<1 .\end{array}\right.$

SOLUTION: As we did in the previous problem, we assume that $u(x, y)$ $=X(x) Y(y)$. Notice that this problem differs from the previous problem in that the homogeneous boundary conditions are in terms of the variable y. Hence, when we separate variables, we use a different constant of separation. This yields

$$
\begin{aligned}
X^{\prime \prime} Y+X Y^{\prime \prime} & =0 \\
\frac{X^{\prime \prime}}{X} & =-\frac{Y^{\prime \prime}}{Y}=\lambda,
\end{aligned}
$$

so we have the ordinary differential equations $X^{\prime \prime}-\lambda X=0$ and $Y^{\prime \prime}+$ $\lambda Y=0$. Therefore, with the homogeneous boundary conditions $u(x, 0)=$ $X(x) Y(0)=0$ and $u(x, 1)=X(x) Y(1)=0$, we have $Y(0)=0$ and $Y(1)=0$.

The eigenvalue problem

$$
\left\{\begin{array}{l}
Y^{\prime \prime}+\lambda Y=0,0<y<1 \\
Y(0)=0, Y(1)=0
\end{array}\right.
$$

has eigenvalues $\lambda_{n}=(n \pi / 1)^{2}=n^{2} \pi^{2}, n=1,2, \ldots$ and eigenfunctions $Y_{n}(y)=\sin n \pi y, n=1,2, \ldots$. We then solve the equation $X^{\prime \prime}-\lambda_{n} X=0$ obtaining $X_{n}(x)=a_{n} e^{n \pi x}+b_{n} e^{-n \pi x}$, which can be written in terms of the hyperbolic trigonometric functions as

$$
X_{n}(x)=A_{n} \cosh n \pi x+B_{n} \sinh n \pi x .
$$

Now, because the boundary conditions on the boundaries $x=0$ and $x=\pi$ are nonhomogeneous, we use the Principle of Superposition to obtain the solution

$$
u(x, y)=\sum_{n=1}^{\infty}\left(A_{n} \cosh n \pi x+B_{n} \sinh n \pi x\right) \sin n \pi y .
$$

Therefore,

$$
u(0, y)=\sum_{n=1}^{\infty} A_{n} \sin n \pi y=\sin 2 \pi y,
$$

so $A_{2}=1$ and $A_{n}=0$ for $n \neq 2$. Similarly,

$$
u(\pi, y)=A_{2} \cosh 2 \pi^{2}+\sum_{n=1}^{\infty} B_{n} \sinh n \pi^{2} \sin n \pi y=4
$$

which indicates that

$$
\sum_{n=1}^{\infty} B_{n} \sinh n \pi^{2} \sin n \pi y=4-\cosh 2 \pi^{2}
$$

Then, $B_{n} \sinh n \pi^{2}$ are the Fourier sine series coefficients for the constant function $4-\cosh 2 \pi^{2}$ which are given by

$$
\begin{aligned}
B_{n} \sinh n \pi^{2} & =\frac{2}{1} \int_{0}^{1}\left(4-\cosh 2 \pi^{2}\right) \sin n \pi y d y=-2\left(4-\cosh 2 \pi^{2}\right)\left[\frac{1}{n \pi} \cos n \pi y\right]_{0}^{1} \\
& =-\frac{2\left(4-\cosh 2 \pi^{2}\right)}{n \pi}\left[(-1)^{n}-1\right], n=1,2, \ldots
\end{aligned}
$$

From this formula, we see that $B_{n}=0$ if n is even. Therefore, we express these coefficients as

$$
B_{2 n-1}=\frac{4\left(4-\cosh 2 \pi^{2}\right)}{(2 n-1) \pi}, n=1,2, \ldots
$$

Figure 10-12 On the left, a contour plot and on the right, a density plot
so that the solution is

$$
u(x, y)=\cosh 2 \pi x+\sum_{n=1}^{\infty} \frac{4\left(4-\cosh 2 \pi^{2}\right)}{(2 n-1) \pi} \sin (2 n-1) \pi y .
$$

As in the first example, we generate contour and density plots of an approximation of u. See Figure 10-12.

```
In[1978]:= Clear[u]
    u[\mp@subsup{x}{-}{\prime},\mp@subsup{Y}{-}{\prime}]=
    Cosh[2\pix]
    + \sum n=1 }\frac{4(4-\operatorname{Cosh}[2\mp@subsup{\pi}{}{2}])\operatorname{sin}[(2n-1)\piy]}{(2n-1)\pi}
In[1979]:= p1 = ContourPlot[u[x, y], {x, 0, \pi}, {y, 0, 1},
            PlotPoints }->30\mathrm{ ,
            DisplayFunction- > Identity];
            p2 = DensityPlot[u[x,y], {x, 0, \pi}, {y, 0, 1},
            PlotPoints }->30\mathrm{ ,
            DisplayFunction- > Identity];
            Show[GraphicsArray[{p1, p2}]]
```


I 0.5 Two-Dimensional Problems in a Circular Region

In some situations, the region on which we solve a boundary-value problem or an initial-boundary-value problem is not rectangular in shape. For example, we usually do not have rectangular shaped drumheads and the heating elements on top of the stove are not square. Instead, these objects are typically circular in shape, so we find the use of polar coordinates convenient. In this section, we discuss problems of this type by presenting two important problems solved on circular regions, Laplace's equation which is related to the steady-state temperature and the wave equation which is used to find the displacement of a drumhead.

10.5.I Laplace's Equation in a Circular Region

In calculus, we found that polar coordinates are useful in solving many problems. The same can be said for solving boundary-value problems in a circular region. With the change of variables

$$
\left\{\begin{array}{l}
x=r \cos \theta \\
y=r \sin \theta
\end{array}\right.
$$

we transform Laplace's equation in rectangular coordinates, $u_{x x}+u_{y y}=0$, to polar coordinates

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}=0,0<r<\rho,-\pi<\theta<\pi, \tag{10.21}
\end{equation*}
$$

where ρ is the radius of the drumhead. Recall that for the solution of Laplace's equation in a rectangular region, we had to specify a boundary condition on each of the four boundaries of the rectangle. However, in the case of a circle, there are not four sides, so we must alter the boundary conditions. Because in polar coordinates the points (r, π) and $(r,-\pi)$ are equivalent for the same value of r, we want our solution and its derivative with respect to θ to match at these points (so that the solution is smooth). Therefore, two of the boundary conditions are

$$
\begin{equation*}
u(r,-\pi)=u(r, \pi) \quad \text { and } \quad \frac{\partial u}{\partial \theta}(r,-\pi)=\frac{\partial u}{\partial \theta}(r, \pi) \tag{10.22}
\end{equation*}
$$

for $0<r<\rho$. Also, we want our solution to be bounded at $r=0$, so another boundary condition is $|u(0, \theta)|<\infty$ for $-\pi<\theta<\pi$. Finally, we specify the value of the solution around the boundary of the circle $r=\rho$ to be $u(\rho, \theta)=f(\theta)$ for
$-\pi<\theta<\pi$. Therefore, we solve the following boundary-value problem to solve Laplace's equation (the Dirichlet problem) in a circular region of radius ρ :

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}=0,0<r<\rho,-\pi<\theta<\pi \tag{10.23}\\
u(r,-\pi)=u(r, \pi), \frac{\partial u}{\partial \theta}(r,-\pi)=\frac{\partial u}{\partial \theta}(r, \pi), 0<r<\rho \\
|u(0, \theta)|<\infty, u(\rho, \theta)=f(\theta),-\pi<\theta<\pi
\end{array}\right.
$$

Using separation of variables, we assume that $u(r, \theta)=R(r) H(\theta)$. Substitution into Laplace's equation yields

$$
\begin{aligned}
R^{\prime \prime} H+\frac{1}{r} R^{\prime} H+R H^{\prime \prime} & =0 \\
R^{\prime \prime} H+\frac{1}{r} R^{\prime} H & =-R H^{\prime \prime} \\
\frac{r R^{\prime \prime}+R^{\prime}}{r R} & =-\frac{H^{\prime \prime}}{H}=\lambda .
\end{aligned}
$$

Therefore, we have the ordinary differential equations

$$
H^{\prime \prime}+\lambda H=0 \quad \text { and } \quad r^{2} R^{\prime \prime}+r R^{\prime}-\lambda R=0
$$

Notice that the boundary conditions given by equation (10.22) imply that

$$
R(r) H(-\pi)=R(r) H(\pi) \quad \text { and } \quad R(r) H^{\prime}(-\pi)=R(r) H^{\prime}(\pi),
$$

so that

$$
H(-\pi)=H(\pi) \quad \text { and } \quad H^{\prime}(-\pi)=H^{\prime}(\pi) .
$$

This means that we begin by solving the eigenvalue problem

$$
\left\{\begin{array}{l}
H^{\prime \prime}+\lambda H=0,-\pi<\theta<\pi \\
H(-\pi)=H(\pi), H^{\prime}(-\pi)=H^{\prime}(\pi)
\end{array}\right.
$$

The eigenvalues and corresponding eigenfunctions of this problem are

$$
\lambda_{n}=\left\{\begin{array}{l}
0, n=0 \\
n^{2}, n=1,2, \ldots
\end{array} \quad \text { and } \quad H_{n}(\theta)=\left\{\begin{array}{l}
1, n=0 \\
a_{n} \cos n \theta+b_{n} \sin n \theta, n=1,2, \ldots
\end{array}\right.\right.
$$

Because $r^{2} R^{\prime \prime}+r R^{\prime}-\lambda_{n}^{2} R=0$ is a Cauchy-Euler equation, we assume that $R(r)=r^{m}$:

$$
\begin{aligned}
m(m-1) r^{2} r^{m-2}+m r r^{m-1}-\lambda_{n} r^{m} & =0 \\
r^{m}\left[m(m-1)+m-\lambda_{n}\right] & =0 .
\end{aligned}
$$

Therefore,

$$
m^{2}-\lambda_{n}^{2}=0 \quad \text { so } \quad m= \pm \lambda_{n} .
$$

If $\lambda_{0}=0$, then $R_{0}(r)=a_{0}+b_{0} \ln r$. However, because we require that the solution be bounded near $r=0$ and $\lim _{r \rightarrow 0^{+}} \ln r=-\infty$, we must choose $b_{0}=0$. Therefore, $R_{0}(r)=a_{0}$. On the other hand, if $\lambda_{n}=n^{2}, n=1,2, \ldots$, then $R_{n}(r)=a_{n} r^{n}+b_{n} r^{-n}$. Similarly, because $\lim _{r \rightarrow 0^{+}} r^{-n}=\infty$, we must let $b_{n}=0$, so $R_{n}(r)=a_{n} r^{n}$. By the Principle of Superposition, we have the solution

$$
u(r, \theta)=a_{0}+\sum_{n=1}^{\infty} r^{n}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right)
$$

We find the coefficients by applying the boundary condition $u(\rho, \theta)=f(\theta)$. This yields

$$
u(\rho, \theta)=a_{0}+\sum_{n=1}^{\infty} \rho^{n}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right)=f(\theta)
$$

so a_{0}, a_{n}, and b_{n} are related to the Fourier series coefficients in the following way:

$$
\begin{align*}
& a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta) d \theta, \\
& a_{n}=\frac{1}{\pi \rho^{n}} \int_{-\pi}^{\pi} f(\theta) \cos n \theta d \theta, n=1,2, \ldots, \text { and } \tag{10.24}\\
& b_{n}=\frac{1}{\pi \rho^{n}} \int_{-\pi}^{\pi} f(\theta) \sin n \theta d \theta, n=1,2, \ldots .
\end{align*}
$$

EXAMPLE 10.5.1: Solve $\left\{\begin{array}{l}\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}=0,0<r<2,-\pi<\theta<\pi \\ u(r,-\pi)=u(r, \pi), \frac{\partial u}{\partial \theta}(r,-\pi)=\frac{\partial u}{\partial \theta}(r, \pi), 0<r<2 \\ |u(0, \theta)|<\infty, u(2, \theta)=|\theta|,-\pi<\theta<\pi .\end{array}\right.$

SOLUTION: Notice that $f(\theta)=|\theta|$ is an even function on $-\pi<\theta<\pi$. Therefore, $b_{n}=0$ for $n=1,2, \ldots, a_{0}$ is given by

$$
\begin{aligned}
& \quad a_{0}=\frac{1}{2 \pi} \int_{\pi}^{\pi}|\theta| d \theta=\frac{1}{\pi} \int_{0}^{\pi} \theta d \theta=\frac{\pi}{2}, \\
& \text { In }[1980]:=\frac{\int_{0}^{\pi} \theta d \theta}{\pi} \\
& \text { Out }[1980]=\frac{\pi}{2}
\end{aligned}
$$

and a_{n} is given by

$$
\begin{aligned}
a_{n} & =\frac{1}{2^{n} \pi} \int_{\pi}^{\pi}|\theta| \cos n \theta d \theta=\frac{1}{2^{n-1} \pi} \int_{0}^{\pi} \theta \cos n \theta d \theta \\
& =\frac{1}{2^{n-1} n^{2} \pi}(\cos n \pi-1)=\frac{1}{2^{n-1} n^{2} \pi}\left[(-1)^{n}-1\right], n=1,2, \ldots .
\end{aligned}
$$

$$
\begin{aligned}
& \text { In }[1981]:=a_{n_{-}}=\frac{\int_{0}^{\pi} \theta \operatorname{Cos}[n \theta] d \theta}{\pi 2^{n-1}} / / \operatorname{Simplify} \\
& \text { Out }[1981]=\frac{2^{1-n}(-1+\operatorname{Cos}[n \pi]+n \pi \operatorname{Sin}[n \pi])}{n^{2} \pi}
\end{aligned}
$$

Notice that $a_{2 n}=0, n=1,2, \ldots$, while $a_{2 n-1}=\frac{-2}{2^{2 n-1}(2 n-1)^{2} \pi^{\prime}}, n=1,2$, \ldots, so the solution is

$$
u(r, \theta)=\frac{\pi}{2}-\sum_{n=1}^{\infty} \frac{1}{2^{2 n-2}(2 n-1)^{2} \pi} r^{2 n-1} \cos (2 n-1) \theta
$$

In the same manner as in previous examples, we graph an approximation of this solution. See Figure 10-13.

```
In[1982]:= Clear[u, r, 0]
    u[\mp@subsup{r}{-}{\prime},\mp@subsup{0}{-}{}]=\frac{\pi}{2}-\mp@subsup{\sum}{n=1}{20}\frac{\mp@subsup{r}{}{2n-1}\operatorname{Cos[(2n-1)0]}}{\pi\mp@subsup{2}{}{2n-2}(2n-1\mp@subsup{)}{}{2}};
In[1983]:= ParametricPlot3D[{r Cos[0],r Sin[0],u[r, 是},
    {r, 0, 2}, {0, -\pi, \pi}, Boxed }->\mathrm{ False,
    PlotPoints }->\mathrm{ 35]
```


Figure 10-13 Plot of a solution to Laplace's equation in polar coordinates

I 0.5.2 The Wave Equation in a Circular Region

One of the more interesting problems involving two spatial dimensions (x and y) is the wave equation,

$$
\begin{equation*}
c^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)=\frac{\partial^{2} u}{\partial t^{2}} . \tag{10.25}
\end{equation*}
$$

This is due to the fact that the solution to this problem represents something with which we are all familiar, the displacement of a drumhead. Because drumheads are circular in shape, we investigate the solution of the wave equation in a circular region. Therefore, we transform the wave equation into polar coordinates. Previously, we saw that converting Laplace's equation from rectangular coordinates (x, y) to polar coordinates (r, θ) results in the equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}
$$

so it follows that the wave equation in polar coordinates becomes

$$
\begin{equation*}
c^{2}\left(\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}\right)=\frac{\partial^{2} u}{\partial t^{2}} \tag{10.26}
\end{equation*}
$$

If we assume that the displacement of the drumhead from the $x y$-plane at time t is the same at equal distances from the origin, we say that the solution $u=u(r, \theta)$ is radially symmetric. Therefore, $\partial^{2} u / \partial \theta^{2}=0$, so the wave equation can be expressed in terms of r and t as

$$
\begin{equation*}
c^{2}\left(\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}\right)=\frac{\partial^{2} u}{\partial t^{2}} . \tag{10.27}
\end{equation*}
$$

Of course, to find $u=u(r, t)$ we need the appropriate boundary and initial conditions. Because the circular boundary of the drumhead $r=\rho$ must be fixed so that it does not move we say that $u(\rho, t)=0$ for $t>0$. Then, as we had in Laplace's equation on a circular region, we require that the solution $u=u(r, t)$ be bounded near the origin, so we have the condition $|u(0, t)|<\infty$ for $t>0$. The initial position and initial velocity functions are given as functions of r as

$$
u(r, 0)=f(r) \quad \text { and } \quad \frac{\partial u}{\partial t}(r, 0)=g(r)
$$

for $0<r<\rho$. Therefore, the initial-boundary-value problem to find the displacement $u=u(r, t)$ of a circular drumhead (of radius ρ) is given by

$$
\left\{\begin{array}{l}
c^{2}\left(\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}\right)=\frac{\partial^{2} u}{\partial t^{2}}, 0<r<\rho, t>0 \tag{10.28}\\
u(\rho, t)=0,|u(0, t)|<\infty, t>0 \\
u(r, 0)=f(r), \frac{\partial u}{\partial t}(r, 0)=g(r), 0<r<\rho
\end{array}\right.
$$

If the solution is radially symmetric, the value of u does not depend on the angle θ.

As with other problems, we are able to use separation of variables to find $u=u(r, t)$ by assuming that $u(r, t)=R(r) T(t)$. Substitution into the wave equation yields

$$
\begin{aligned}
c^{2}\left(R^{\prime \prime} T+\frac{1}{r} R^{\prime} T\right) & =R T^{\prime \prime} \\
\frac{r R^{\prime \prime}+R^{\prime}}{r R} & =\frac{T^{\prime \prime}}{c^{2} T}=-k^{2},
\end{aligned}
$$

where $-k^{2}$ is the separation constant. Separating the variables, we have the ordinary differential equations

$$
r^{2} R^{\prime \prime}+r R^{\prime}+k^{2} r^{2} R=0 \quad \text { and } \quad T^{\prime \prime}+c^{2} k^{2} T=0
$$

We recognize the equation $r^{2} R^{\prime \prime}+r R^{\prime}+k^{2} r^{2} R=0$ as Bessel's equation of order zero that has solution

$$
R(r)=c_{1} J_{0}(k r)+c_{2} Y_{0}(k r),
$$

where J_{0} and Y_{0} are the Bessel functions of order zero of the first and second kind, respectively. In terms of R, we express the boundary condition $|u(0, t)|<\infty$ as $|R(0)|<\infty$. Therefore, because $\lim _{r \rightarrow 0^{+}} Y_{0}(k r)=-\infty$, we must choose $c_{2}=0$. Applying the other boundary condition, $R(\rho)=0$, we have

$$
R(\rho)=c_{1} J_{0}(k \rho)=0,
$$

so to avoid the trivial solution with $c_{1}=0$, we have $k \rho=\alpha_{n}$, where α_{n} is the nth zero of $J_{0}(x)$. Because k depends on n, we write

$$
k_{n}=\frac{\alpha_{n}}{\rho} .
$$

The solution of $T^{\prime \prime}+c^{2} k_{n}^{2} T=0$ is

$$
T_{n}(t)=A_{n} \cos c k_{n} t+B_{n} \sin c k_{n} t
$$

so with the Principle of Superposition, we form the solution

$$
u(r, t)=\sum_{n=1}^{\infty}\left(A_{n} \cos c k_{n} t+B_{n} \sin c k_{n} t\right) J_{0}\left(k_{n} r\right),
$$

where the coefficients A_{n} and B_{n} are found through application of the initial position and velocity functions. With

$$
u(r, 0)=\sum_{n=1}^{\infty} A_{n} J_{0}\left(k_{n} r\right)=f(r)
$$

and the orthogonality conditions of the Bessel functions, we find that

$$
A_{n}=\frac{\int_{0}^{\rho} r f(r) J_{0}\left(k_{n} r\right) d r}{\int_{0}^{\rho} r\left[J_{0}\left(k_{n} r\right)\right]^{2} d r}=\frac{2}{\left[J_{1}\left(\alpha_{n}\right)\right]^{2}} \int_{0}^{\rho} r f(r) J_{0}\left(k_{n} r\right) d r, n=1,2, \ldots
$$

Similarly, because

$$
\frac{\partial u}{\partial t}(r, 0)=\sum_{n=1}^{\infty}\left(-c k_{n} A_{n} \sin c k_{n} t+c k_{n} B_{n} \cos c k_{n} t\right) J_{0}\left(k_{n} r\right)
$$

we have

$$
u_{t}(r, 0)=\sum_{n=1}^{\infty} c k_{n} B_{n} J_{0}\left(k_{n} r\right)=g(r)
$$

Therefore,

$$
B_{n}=\frac{\int_{0}^{\rho} r g(r) J_{0}\left(k_{n} r\right) d r}{c k_{n} \int_{0}^{\rho} r\left[J_{0}\left(k_{n} r\right)\right]^{2} d r}=\frac{2}{c k_{n}\left[J_{1}\left(\alpha_{n}\right)\right]^{2}} \int_{0}^{\rho} r g(r) J_{0}\left(k_{n} r\right) d r, n=1,2, \ldots
$$

As a practical matter, in nearly all cases, these formulas are difficult to evaluate.

EXAMPLE 10.5.2: Solve $\left\{\begin{array}{l}\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}=\frac{\partial^{2} u}{\partial t^{2}}, 0<r<1, t>0 \\ u(1, t)=0,|u(0, t)|<\infty, t>0 \\ u(r, 0)=r(r-1), \frac{\partial u}{\partial t}(r, 0)=\sin \pi r, 0<r<1 .\end{array}\right.$

SOLUTION: In this case, $\rho=1, f(r)=r(r-1)$, and $g(r)=\sin \pi r$. To calculate the coefficients, we will need to have approximations of the zeros of the Bessel functions, so we load the BesselZeros package, which is contained in the NumericalMath folder (or directory) and define α_{n} to be the nth zero of $y=J_{0}(x)$.

\section*{NumericalMath`BesselZeros`}

Exact solutions to many partial differential equations can be expressed as infinite sums over the zeros of some Bessel function or functions. For example, the solution $U(r, t)$ to the heat equation in canonical units on the unit disc with initial temperature $U(r, 0)=0$ and boundary condition $U(1, t)=1$ is given by

$$
U(r, t)=1-2 \sum_{n=1}^{\infty} \frac{J_{0}\left(\alpha_{n} r\right)}{\alpha_{n} J_{1}\left(\alpha_{n}\right)} e^{-\alpha_{n}^{2} t}
$$

where the $\alpha_{n 1}$ are the positive zeros of $J_{0} . \alpha_{1} \approx 2.40483 . \alpha_{2} \approx 5.52008 . \alpha_{3} \approx 8.65373$. etc. Using FindRoot it is not difficult to find any single desired zero if you can find a good pair of starting values. This package automatically chooses starting values and uses FindRoot to efficiently produce lists of zeros of various Bessel functions.

$$
\begin{aligned}
& \text { BesselJZeros [nu, } n \text {] give a list of the first } n \text { zeros of } J_{v}(x) \\
& \text { BesselYZeros [} n u, n \text {] give a list of the first } n \text { zeros of } Y_{V}(x) \\
& \text { BesselJPrimeZeros [} n u, n \text {] give a list of the first } n \text { zeros of } J_{v}^{\prime}(x) \\
& \text { BesselYPrimeZeros [nu, } n \text {] give a list of the first } n \text { zeros of } Y_{V}^{\prime}(x) \\
& \text { BesselJYJYZeros [} n u, \text { lambda, } n \text {] give a list of the first } n \text { zeros of } J_{v}(x) Y_{v}(\lambda x)-J_{v}(\lambda x) Y_{v}(x) \\
& \text { BesselJPrimeYPrimeJPrimeYPrim: give a list of } n \text { zeros of } J_{v}^{\prime}(x) Y_{v}^{\prime}(\lambda x)-J_{v}^{\prime}(\lambda x) Y_{v}^{\prime}(x) \\
& \text { eZeros[nu, lambda, } n \text {] } \\
& \text { Bessel.JPrimeYJYPrimeZeros[give a list of } n \text { zeros of } J_{v}^{\prime}(x) Y_{v}(\lambda x)-J_{v}(\lambda x) Y_{v}^{\prime}(x) \\
& n u \text {, lambda, } n
\end{aligned}
$$

$$
100 \%>C
$$

In [1984]:= << NumericalMath'BesselZeros'

$$
\text { In }[1985]:=\alpha_{n_{-}}:=\alpha_{n}=\operatorname{BesselJZeros[0,\{ n,n\}][[1]]}
$$

Next, we define the constants ρ and c and the functions $f(r)=r(r-1)$, $g(r)=\sin \pi r$, and $k_{n}=\alpha_{n} / \rho$.

$$
\begin{aligned}
\text { In }[1986]:=c & =1 ; \\
\rho & =1 ; \\
f\left[r_{-}\right] & =r(r-1) ; \\
g\left[r_{-}\right] & =\operatorname{Sin}[\pi r] ; \\
k_{n_{-}} & :=k_{n}=\frac{\alpha_{n}}{\rho} ;
\end{aligned}
$$

The formulas for the coefficients A_{n} and B_{n} are then defined so that an approximate solution may be determined. (We use lower-case letters to avoid any possible ambiguity with built-in Mathematica functions.) Note that we use NIntegrate to approximate the coefficients and avoid the difficulties in integration associated with the presence of the Bessel function of order zero.

```
In[1987]:= a an_ :=
    an}=(2NIntegrate[rf[r] BesselJ[0, kn r]
                                    {r,0, \rho}])/BesselJ[1, 稆] ';
In[1988]:= b bn_ :=
    b
                    {r,0, \rho}])/(c kn BesselJ[1, 人n}\mp@subsup{]}{}{2}
```

We now compute the first 10 values of A_{n} and B_{n}. Because a and b are defined using the form $\mathrm{a}_{\mathrm{n}_{-}}:=\mathrm{a}_{\mathrm{n}}=\ldots$ and $\mathrm{b}_{\mathrm{n}_{-}}:=\mathrm{b}_{\mathrm{n}}=\ldots$, Mathematica remembers these values for later use.

```
In[1989]:= Table[{n, an, bn}, {n, 1, 10}]//TableForm
    1 1 0.52118
    2 0.208466 -0.145776
    3 0.00763767 -0.0134216
    40.0383536 -0.00832269
Out[1989]= 5 0.00534454-0.00250503
    6 0.0150378 -0.00208315
    7 0.00334937-0.000882012
    8 0.00786698-0.000814719
    9 0.00225748-0.000410202
    10 0.00479521-0.000399219
```

The nth term of the series solution is defined in u. Then, an approximate solution is obtained in uapprox by summing the first 10 terms of u.

```
In[1990]:= u[n_, r_, t_] := (an Cos[ckn
    BesselJ[0, kn r];
```


We graph uapprox for several values of t in Figure 10-14.

Figure 10-14 The drumhead for nine equally spaced values of t between 0 and 1.5

```
In[1992]:= somegraphs =
    Table[ParametricPlot3D[
        {r Cos[0],r Sin[0], uapprox[r,t]},
        {r, 0, 1}, {0,-\pi,\pi}, Boxed }->\mathrm{ False,
        PlotRange }->{-1.25,1.25}
        BoxRatios }->{1,1,1},Ticks ->{{-1, 1}
        {-1, 1}, {-1, 1}},
        DisplayFunction }
        Identity], {t, 0, 1.5, \frac{1.5}{8}}];
        toshow = Partition[somegraphs, 3];
    Show[GraphicsArray[toshow]]
```

In order to actually watch the drumhead move, we can use a Do loop to generate several graphs and animate the result. Be aware, however, that generating many three-dimensional graphics and then animating the results uses a great deal of memory and can take considerable time, even on a relatively powerful computer. We show one frame from the animation that results from the following Do loop.

```
In[1993]:= Do[ParametricPlot3D[
    {r Cos[0],r Sin[0], uapprox[r,t]},
    {r,0,1},{0,-\pi,\pi}, Boxed }->\mathrm{ False,
    PlotRange }->{-1.25,1.25}
    BoxRatios }->{1,1,1},Ticks ->{{-1, 1}
    {-1, 1}, {-1, 1}}], {t, 0, 1.5, 隹直 }];
```


The problem that depends on the angle θ is more complicated to solve. Due to the presence of $\partial^{2} u / \partial \theta^{2}$ we must include two more boundary conditions in order to solve the initial-boundary-value problem. So that the solution is a smooth function, we require the "artificial" boundary conditions

$$
u(r, \pi, t)=u(r,-\pi, t) \quad \text { and } \quad \frac{\partial u}{\partial \theta} u(r, \pi, t)=\frac{\partial u}{\partial \theta} u(r,-\pi, t)
$$

for $0<r<\rho$ and $t>0$. Therefore, we solve the problem

$$
\left\{\begin{array}{l}
c^{2}\left(\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}\right)=\frac{\partial^{2} u}{\partial t^{2}}, 0<r<\rho,-\pi<\theta<\pi, t>0 \tag{10.29}\\
u(\rho, \theta, t)=0,|u(0, \theta, t)|<\infty,-\pi \leq \theta \leq \pi, t>0 \\
u(r, \pi, t)=u(r,-\pi, t), \frac{\partial u}{\partial \theta}(r, \pi, t)=\frac{\partial u}{\partial \theta}(r,-\pi, t), 0<r<\rho, t>0 \\
u(r, \theta, 0)=f(r, \theta), \frac{\partial u}{\partial t}(r, \pi, 0)=g(r, \theta), 0<r<\rho,-\pi<\theta<\pi .
\end{array}\right.
$$

Using separation of variables and assuming that $u(r, \theta, t)=R(r) H(\theta) T(t)$, we obtain that a general solution is given by

$$
\begin{aligned}
u(r, \theta, t)= & \sum_{n} a_{0 n} J_{0}\left(\lambda_{0 n} r\right) \cos \left(\lambda_{0 n} c t\right)+\sum_{m, n} a_{m n} J_{m}\left(\lambda_{m n} r\right) \cos (m \theta) \cos \left(\lambda_{m n} c t\right) \\
& +\sum_{m, n} b_{m n} J_{m}\left(\lambda_{m n} r\right) \sin (m \theta) \cos \left(\lambda_{m n} c t\right)+\sum_{n} A_{0 n} J_{0}\left(\lambda_{0 n} r\right) \sin \left(\lambda_{0 n} c t\right) \\
& +\sum_{m, n} A_{m n} J_{m}\left(\lambda_{m n} r\right) \cos (m \theta) \sin \left(\lambda_{m n} c t\right) \\
& +\sum_{m, n} B_{m n} J_{m}\left(\lambda_{m n} r\right) \sin (m \theta) \sin \left(\lambda_{m n} c t\right)
\end{aligned}
$$

where J_{m} represents the m th Bessel function of the first kind, $\alpha_{m n}$ denotes the nth zero of the Bessel function $y=J_{m}(x)$, and $\lambda_{m n}=\alpha_{m n} / \rho$. The coefficients are given by the following formulas.

$$
\begin{aligned}
& a_{0 n}=\frac{\int_{0}^{2 \pi} \int_{0}^{\rho} f(r, \theta) J_{0}\left(\lambda_{0 n} r\right) r d r d \theta}{2 \pi \int_{0}^{\rho}\left[J_{0}\left(\lambda_{0 n} r\right)\right]^{2} r d r} \quad a_{m n}=\frac{\int_{0}^{2 \pi} \int_{0}^{\rho} f(r, \theta) J_{m}\left(\lambda_{m n} r\right) \cos (m \theta) r d r d \theta}{\pi \int_{0}^{\rho}\left[J_{m}\left(\lambda_{m n} r\right)\right]^{2} r d r} \\
& b_{m n}=\frac{\int_{0}^{2 \pi} \int_{0}^{\rho} f(r, \theta) J_{m}\left(\lambda_{m n} r\right) \sin (m \theta) r d r d \theta}{\pi \int_{0}^{\rho}\left[J_{m}\left(\lambda_{m n} r\right)\right]^{2} r d r} A_{0 n}=\frac{\int_{0}^{2 \pi} \int_{0}^{\rho} g(r, \theta) J_{0}\left(\lambda_{0 n} r\right) r d r d \theta}{2 \pi \lambda_{0 n} c \int_{0}^{\rho}\left[J_{0}\left(\lambda_{0 n} r\right)\right]^{2} r d r}
\end{aligned}
$$

$$
A_{m n}=\frac{\int_{0}^{2 \pi} \int_{0}^{\rho} g(r, \theta) J_{m}\left(\lambda_{m n} r\right) \cos (m \theta) r d r d \theta}{\pi \lambda_{m n} c \int_{0}^{\rho}\left[J_{m}\left(\lambda_{m n} r\right)\right]^{2} r d r} B_{m n}=\frac{\int_{0}^{2 \pi} \int_{0}^{\rho} g(r, \theta) J_{m}\left(\lambda_{m n} r\right) \sin (m \theta) r d r d \theta}{\pi \lambda_{m n} c \int_{0}^{\rho}\left[J_{m}\left(\lambda_{m n} r\right)\right]^{2} r d r}
$$

EXAMPLE 10.5.3: Solve $\left\{\begin{aligned} & 10^{2}\left(\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}\right)=\frac{\partial^{2} u}{\partial t^{2}}, 0<r<1, \\ &-\pi<\theta<\pi, t>0 \\ & u(1, \theta, t)=0,|u(0, \theta, t)|<\infty,-\pi \leq \theta \leq \pi, t>0 \\ & u(r, \pi, t)=u(r,-\pi, t), \frac{\partial u}{\partial \theta}(r, \pi, t) \\ &=\frac{\partial u}{\partial \theta}(r,-\pi, t), 0<r<1, t>0 \\ & u(r, \theta, 0)=\cos (\pi r / 2) \sin \theta, \frac{\partial u}{\partial t}(r, \theta, 0) \\ &=(r-1) \cos (\pi \theta / 2), 0<r<1, \\ &-\pi<\theta<\pi .\end{aligned}\right.$

SOLUTION: To calculate the coefficients, we will need to have approximations of the zeros of the Bessel functions, so we load the BesselZeros package, which is contained in the NumericalMath folder (or directory) and define $\alpha_{m n}$ to be the nth zero of $y=J_{m}(x)$. We illustrate the use of α_{mn} by using it to compute the first five zeros of $y=J_{0}(x)$.

```
In[1994]:= << NumericalMath`BesselZeros`
```



```
In[1996]:= Table[\alpha0,n,{n, 1, 5}]
Out[1996]={2.40483,5.52008, 8.65373,11.7915,14.9309}
```

The appropriate parameter values as well as the initial condition functions are defined as follows. Notice that the functions describing the initial displacement and velocity are defined as the product of functions. This enables the subsequent calculations to be carried out using NIntegrate.

```
In[1997]:= Clear[a,f,f1, f2, g1, g2, A, c, G, capa, capb,b]
    c= 10;
    \rho=1;
    f1[r_] = Cos[\frac{\pir}{2}];
    f2[\mp@subsup{0}{-}{\prime}]=\operatorname{Sin}[0];
```



```
    g1[r_] = r-1;
    g2[\mp@subsup{0}{-}{}]=\operatorname{Cos}[\frac{\pi0}{2}];
    g[r_, 识]:= g[r, 的 = g1[r] g2[0];
```

The coefficients $a_{0 n}$ are determined with the function a．

```
In[1998]:= Clear[a]
In[1999]:= a[n_] :=
    a[n] =
        N[(NIntegrate[f1[r] Besselv[0, 人 0,n}r]r
            {r, 0, \rho}] NIntegrate[f2[t],
            {t,0, 2\pi}]) /
            (2\piNIntegrate[r BesselJ [0, 人0,n r] 2,
            {r,0, \rho}])];
```

Hence，as represents a table of the first five values of $a_{0 n}$ ．Chop is used to round off very small numbers to zero．

```
In[2000]:= as = Table[a[n]//Chop, {n, 1, 5}]
Out [2000]= {0,0,0,0,0}
```

Because the denominator of each integral formula used to find $a_{m n}$ and $b_{m n}$ is the same，the function bj mn which computes this value is defined next．A table of nine values of this coefficient is then determined．

```
In [2001]: \(=\) bjmn[m_, \(\left.n_{-}\right]:=\)
    \(\operatorname{bjmn}[m, n]=\)
        \(\mathrm{N}\left[\right.\) NIntegrate \(\left.\left[\mathrm{r} \operatorname{Bessel} \mathrm{J}\left[\mathrm{m}, \alpha_{\mathrm{m}, \mathrm{n}} \mathrm{r}\right]^{2},\{r, 0, \rho\}\right]\right]\)
    Table[Chop [bjmn [m, n] ], \{m, 1, 3\}, \{n, 1, 3\}]
```

```
Out [2001]= {{0.0811076,0.0450347,0.0311763},
    {0.0576874,0.0368243,0.0270149},
    {0.0444835,0.0311044,0.0238229}}
```

We also note that in evaluating the numerators of $a_{m n}$ and $b_{m n}$ we must compute $\int_{0}^{\rho} r f_{1}(r) J_{m}\left(\alpha_{m n} r\right) d r$. This integral is defined in $£ b j \mathrm{mn}$ and the corresponding values are found for $n=1,2,3$ and $m=1,2,3$.

```
In[2002]:= Clear[fbjmn]
    fbjmn[m_, n_] :=
            fbjmn[m,n] =
```



```
                {r,0, \rho}]]
    Table[Chop[fbjmn[m,n]],{m, 1, 3}, {n, 1, 3}]
Out [2002] = {{0.103574,0.020514,0.0103984},
    {0.0790948,0.0275564,0.0150381},
    {0.0628926,0.0290764,0.0171999}}
```

The formula to compute $a_{m n}$ is then defined and uses the information calculated in fbjmn and bj mn. As in the previous calculation, the coefficient values for $n=1,2,3$ and $m=1,2,3$ are determined.

```
In[2003]:= a[m_, n_] :=
    a [m,n] =
        N[(fbjmn[m,n] NIntegrate[f2[t] Cos[mt],
            {t, 0, 2\pi}])/(\pibjmn[m,n])];
    Table[Chop[a[m,n]], {m, 1, 3}, {n, 1, 3}]
Out [2003]= {{0,0,0}, {0,0,0}, {0,0,0}}
```

A similar formula is then defined for the computation of $b_{m n}$.

```
In[2004]:= b[m_, n_] :=
    b [m,n] =
            N[(fbjmn[m,n] NIntegrate[f2[t] Sin[mt],
                {t, 0, 2\pi}])/(\pibjmn[m,n])];
    Table[Chop[b[m,n]],{m, 1, 3}, {n, 1, 3}]
Out [2004]= {{1.277,0.455514,0.333537}, {0,0,0}, {0,0,0}}
```

Note that defining the coefficients in this manner a［m＿，n_{-}］：＝ $a[m, n]=\ldots+$ and $b\left[m_{-}, n_{-}\right]:=b[m, n]=\ldots$ ，so that Mathematica ＂remembers＂previously computed values，reducing computation time． The values of $A_{0 n}$ are found similar to those of $a_{0 n}$ ．After defining the function capa to calculate these coefficients，a table of values is then found．

```
In[2005]:= capa[n_] :=
    capa[n] =
        N[(NIntegrate[g1[r] BesselJ [0, 人0,n r] r,
            {r, 0, \rho}]
            NIntegrate[g2[t], {t, 0, 2\pi}])/
                        (2\pic ( }\mp@subsup{\alpha}{0,n}{}\mathrm{ NIntegrate[
            r BesselJ[0, 人 0,n r] 2, {r, 0, \rho}])];
    Table[Chop[capa[n]], {n, 1, 6}]
Out [2005]= {0.00142231,0.0000542518,0.0000267596,
    6.41976 < 10-6,4.95843 < 10-6,1.88585\times10-6 }
```

The value of the integral of the component of $g, g 1$ ，which depends on r and the appropriate Bessel functions，is defined as gbjmn．

```
In[2006]:= gbjmn[m_, n_] := gbjmn[m,n] = NIntegrate[g1[r]*
    BesselJ[m, 的,n}r]r,{r,0,\rho}]//
    Table[gbjmn[m, n]//Chop, {m, 1, 3}, {n, 1, 3}]
Out [2006] = {{-0.0743906,-0.019491,-0.00989293},
    {-0.0554379,-0.0227976,-0.013039},
    {-0.0433614,-0.0226777,-0.0141684}}
```

Then，$A_{m n}$ is found by taking the product of integrals，gbj mn depending on r and one depending on θ ．A table of coefficient values is generated in this case as well．

```
In[2007]:= capa[m_, n_] :=
    capa[m,n] =
            N[(gbjmn[m,n] NIntegrate[g2[t] Cos[mt],
                {t, 0, 2\pi}])/(\pi \alpham,n c bjmn[m,n])];
    Table[Chop[capa[m, n] ], {m, 1, 3}, {n, 1, 3}]
```

```
Out [2007] = {{0.0035096,0.000904517,0.000457326},
    {-0.00262692,-0.00103252,-0.000583116},
    {-0.000503187, -0.000246002,-0.000150499}}
```

Similarly，the $B_{m n}$ are determined．

```
In[2008]:= capb[m_, n_] :=
    capb[m,n] =
        N[(gbjmn[m, n] NIntegrate[g2[t] Sin[mt],
            {t, 0, 2\pi}])/(\pi \alpham,n c bjmn[m,n])];
    Table[Chop[capb[m,n]],{m, 1, 3}, {n, 1, 3}]
Out [2008]= {{0.00987945,0.00254619,0.00128736},
    {-0.0147894,-0.00581305,-0.00328291},
    {-0.00424938,-0.00207747,-0.00127095}}
```

Now that the necessary coefficients have been found，we construct an approximate solution to the wave equation by using our results．In the following，term1 represents those terms of the expansion involv－ ing $a_{0 n}$ ，term2 those terms involving $a_{m n}$ ，term3 those involving $b_{m n}$ ， term4 those involving $A_{0 n}$ ，term5 those involving $A_{m n}$ ，and term6 those involving $B_{m n}$ ．

```
In[2009]:= Clear[term1, term2, term3, term4, term5, term6]
term1[r_, t_, n_] :=
    a[n] BesselJ[0, 人0,nr] Cos[\alpha0,n}\mathbf{ct];
term2[r_, th, 证, m, n_] :=
```



```
term3[\mp@subsup{r}{-}{\prime},\mp@subsup{t}{-}{\prime},\mp@subsup{0}{-}{},\mp@subsup{m}{-}{\prime},\mp@subsup{n}{-}{\prime}]:=
```



```
term4[\mp@subsup{r}{-}{\prime},\mp@subsup{t}{-}{\prime},\mp@subsup{n}{-}{\prime}]:=
    capa[n] BesselJ[0, 人0,n r] Sin[ 人 0,n C t];
term5[\mp@subsup{r}{-}{\prime},\mp@subsup{t}{-}{\prime},\mp@subsup{0}{-}{},\mp@subsup{m}{-}{\prime},\mp@subsup{n}{-}{\prime}]:=
```



```
    Sin[\alpham,nct];
```



```
    Sin[ }\mp@subsup{\alpha}{m,n}{c
```

Therefore，our approximate solution is given as the sum of these terms as computed in u ．

```
In [2010]:= Clear[u]
    u[r_, t_, th_] :=
    \sum ni=1 term1[r,t,n]+ \sum = in=1 }\mp@subsup{\sum}{n=1}{3}\operatorname{term2[r,t,th,m,n]
    + \sum min= }\mp@subsup{\sum}{n=1}{3}\operatorname{term3[r,t,th,m,n]+ \sum m
    + \sum < m=1 }\mp@subsup{\sum}{n=1}{3}\operatorname{term5[r,t,th,m,n]
    + \sum m
    uc = Compile [{r,t,th}, u[r,t,th]]
Out [2010]= CompiledFunction[{r,t,th},u[r,t,th],
    -CompiledCode-]
```

The solution is compiled in uc. The command Compile is used to compile functions. Compile returns a CompiledFunction which represents the compiled code. Generally, compiled functions take less time to perform computations than uncompiled functions although compiled functions can only be evaluated for numerical arguments.

Next, we define the function tplot which uses ParametricPlot 3D to produce the graph of the solution for a particular value of t. Note that the x and y coordinates are given in terms of polar coordinates.

```
In[2011]:= Clear[tplot]
    tplot[t_] := ParametricPlot3D[{r Cos[0],
    r Sin[0], uc[r, t, 䜣}, {r, 0, 1}, {0, -\pi, \pi},
    PlotPoints }->{20,20}
    BoxRatios }->{1,1,1},\mathrm{ Shading }->\mathrm{ False,
    Axes }->\mathrm{ False, Boxed }->\mathrm{ False,
    DisplayFunction }->\mathrm{ Identity]
```

A table of nine plots for nine equally spaced values of t from $t=0$ to $t=1$ using increments of $1 / 8$ is then generated. This table of graphs is displayed as a graphics array in Figure 10-15.

```
In[2012]:= somegraphs = Table[tplot[t], {t, 0, 1, 1/8}];
    toshow = Partition[somegraphs, 3];
    Show[GraphicsArray[toshow]]
```


Figure 10-15 The drumhead for nine equally spaced values of t from $t=0$ to $t=1$

Of course, we can generate many graphs with a Do loop and animate the result as in the previous example. Be aware, however, that generating many three-dimensional graphics and then animating the results uses a great deal of memory and can take considerable time, even on a relatively powerful computer.

I 0.5.3 Other Partial Differential Equations

A partial differential equation of the form

$$
\begin{equation*}
a(x, y, u) \frac{\partial u}{\partial x}+b(x, y, u) \frac{\partial u}{\partial y}=c(x, y, u) \tag{10.30}
\end{equation*}
$$

is called a first-order, quasi-linear partial differential equation. In the case when $c(x, y, u)=0$, equation (10.30) is homogeneous; if a and b are independent of u, equation (10.30) is almost linear; and when $c(x, y, u)$ can be written in the form $c(x, y, u)=d(x, y) u+s(x, y)$, equation (10.30) is linear. Quasi-linear partial differential equations can frequently be solved using the method of characteristics.

EXAMPLE 10.5.4: Use the method of characteristics to solve the initialvalue problem $\left\{\begin{array}{l}-3 x t u_{x}+u_{t}=x t \\ u(x, 0)=x .\end{array}\right.$

SOLUTION: For this problem, the characteristic system is

$$
\begin{aligned}
& \partial x / \partial r=-3 x t, \\
& x(0, s)=s \\
& \partial t / \partial r=1, \\
& t(0, s)=0 \\
& \partial u / \partial r=x t, \\
& u(0, s)=s \text {. }
\end{aligned}
$$

We begin by using DSolve to solve $\partial t / \partial r=1, t(0, s)=0$

```
In[2013]:= d1 = DSolve[{D[t[r],r] == 1, t[0] == 0},t[r],r]
Out [2013]= {{t[r] ->r}}
```

and obtain $t=r$. Thus, $\partial x / \partial r=-3 x r, x(0, s)=s$ which we solve next

```
In \([2014]:=\mathrm{d} 2=\mathrm{DSolve}[\{\mathrm{D}[\mathrm{x}[\mathrm{r}], \mathrm{r}]==-3 \mathrm{x}[\mathrm{r}] \mathrm{r}, \mathrm{x}[0]==\mathrm{s}\}\),
    \(\mathbf{x}[r], r]\)
Out \([2014]=\left\{\left\{x[r] \rightarrow e^{-\frac{3 x^{2}}{2}} s\right\}\right\}\)
```

and obtain $x=s e^{-3 r^{2} / 2}$. Substituting $r=t$ and $x=s e^{-3 r^{2} / 2}$ into $\partial u / \partial r=x t$, $u(0, s)=s$ and using DSolve to solve the resulting equation yields the following result, named d3.

$$
\begin{aligned}
& \text { In }[2015]:=\mathrm{d} 3=\operatorname{DSolve}\left[\left\{\mathrm{D}[\mathrm{u}[\mathrm{r}], \mathrm{r}]==\mathrm{e}^{-\frac{3 r^{2}}{2}} \mathrm{~s} \mathbf{r}, \mathrm{u}[0]=\mathbf{s}\right\},\right. \\
& \qquad \mathrm{u}[\mathrm{r}], \mathrm{r}] \\
& \text { Out }[2015]=\left\{\left\{\mathrm{u}[r] \rightarrow \frac{1}{3} e^{-\frac{3 r^{2}}{2}}\left(-1+4 e^{\frac{3 r^{2}}{2}}\right) \mathrm{s}\right\}\right\}
\end{aligned}
$$

To find $u(x, t)$, we must solve the system of equations

$$
\left\{\begin{array}{l}
t=r \\
x=s e^{-3 r^{2} / 2}
\end{array}\right.
$$

for r and s. Substituting $r=t$ into $x=s e^{-3 r^{2} / 2}$ and solving for s yields $s=x e^{3 t^{2} / 2}$. Thus, the solution is given by replacing the values obtained above in the solution obtained in $d 3$. We do this below by using ReplaceAll (/.) to replace each occurrence of r and s in $\mathrm{d} 3[[1,1,2]$], the solution obtained in d3, by the values $r=t$ and $s=x e^{3 t^{2}} / 2$. The resulting output represents the solution to the initial-value problem.

```
\(\operatorname{In}[2016]:=\mathrm{d} 3[[1,1,2]] / .\left\{r->t, s->x \operatorname{Exp}\left[3 / 2 t^{\wedge} 2\right]\right\} / /\)
    Simplify
Out \([2016]=\frac{1}{3}\left(-1+4 e^{\frac{3 t^{2}}{2}}\right) \mathrm{x}\)
```

In this example, DSolve can also solve this first-order partial differential equation.

Next, we use DSolve to find a general solution of $-3 x t u_{x}+u_{t}=x t$ and name the resulting output gensol.

```
In[2017]:= gensol =
    DSolve[-3xtD[u[x,t], x] + D[u[x,t],t] == xt,
    u[x,t], {x,t}]
Out [2017] = {{u[x,t] -> \frac{1}{3}(-x+3C[1][\frac{1}{6}(3\mp@subsup{t}{}{2}+2\operatorname{Log}[x])])}}
```

The output

$$
\text { Out }[2017]=C[1]\left[-\frac{3 t^{2}}{2}-\log [x]\right]
$$

represents an arbitrary function of $-\frac{3}{2} t^{2}-\ln x$. The explicit solution is extracted from gensol with gensol $[[1,1,2]]$, the same way that results are extracted from the output of DSolve commands involving ordinary differential equations.

```
In[2018]:= gensol[[1, 1, 2]]
Out [2018]= 支}(-x+3C[1][\frac{1}{6}(3\mp@subsup{t}{}{2}+2\operatorname{Log}[x])]
```

To find the solution that satisfies $u(x, 0)=x$ we replace each occurrence of t in the solution by 0 .

```
In[2019]:= gensol[[1, 1, 2]]/.t->0
Out [2019]= \frac{1}{3}}(-x+3C[1][\frac{\operatorname{Log}[x]}{3}]
```

Thus, we must find a function $f(x)$ so that

$$
\begin{aligned}
-\frac{1}{3} x+f(-\ln x) & =x \\
f(-\ln x) & =\frac{4}{3} x .
\end{aligned}
$$

Certainly $f(t)=\frac{4}{3} e^{-t}$ satisfies the above criteria. We define $f(t)=\frac{4}{3} e^{-t}$ and then compute $f(-\ln x)$ to verify that $f(-\ln x)=\frac{4}{3} x$.

```
In[2020]:= Clear[f]
    f[t_] = 4 Exp[-t]/3;
    f[-Log[x]]
Out [2020]= 矢
```

Thus, the solution to the initial-value problem is given by $-\frac{1}{3} x+f\left(-\frac{3}{2} t^{2}-\right.$ $\ln x$) which is computed and named sol. Of course, the result returned is the same as that obtained previously.

$$
\begin{aligned}
& \operatorname{In}[2021]:=\text { sol }=\text { Simplify }\left[-\frac{\mathbf{x}}{3}+f\left[-\frac{3 \mathrm{t}^{2}}{2}-\log [\mathbf{x}]\right]\right] \\
& \text { Out }[2021]=\frac{1}{3}\left(-1+4 e^{\frac{3 t^{2}}{2}}\right) \mathrm{x}
\end{aligned}
$$

Last, we use Plot3D to graph sol on the rectangle $[0,20] \times[-2,2]$ in Figure 10-16. The option ClipFill->None is used to indicate that por-

Figure 10-16 Plot of $u(x, t)=\frac{1}{3} x\left(4 e^{3 t^{2} / 2}-1\right)$
tions of the resulting surface which extend past the bounding box are not shown: nothing is shown where the surface is clipped.

```
In[2022]:= Plot3D[sol, {x, 0, 20},{t, -2, 2},
    PlotRange }->{0,30},\mathrm{ PlotPoints }->30\mathrm{ ,
    ClipFill }->\mathrm{ None, Shading }->\mathrm{ False]
```

This Page Intentionally Left Blank

Appendix: Getting Started

Introduction to Mathematica

Mathematica, first released in 1988 by Wolfram Research, Inc.,
http://www.wolfram.com/,
is a system for doing mathematics on a computer. Mathematica combines symbolic manipulation, numerical mathematics, outstanding graphics, and a sophisticated programming language. Because of its versatility, Mathematica has established itself as the computer algebra system of choice for many computer users. Among the over 1,000,000 users of Mathematica, 28% are engineers, 21% are computer scientists, 20% are physical scientists, 12% are mathematical scientists, and 12% are business, social, and life scientists. Two-thirds of the users are in industry and government with a small (8%) but growing number of student users. However, due to its special nature and sophistication, beginning users need to be aware of the special syntax required to make Mathematica perform in the way intended. You will find that calculations and sequences of calculations most frequently used by beginning users are discussed in detail along with many typical examples. In addition, the comprehensive index not only lists a variety of topics but also cross-references commands with frequently used options. Mathematica By Example serves as a valuable tool and reference to the beginning user of Mathematica as well as to the more sophisticated user, with specialized needs.

For information, including purchasing information, about Mathematica contact: Corporate Headquarters:
Wolfram Research, Inc.
100 Trade Center Drive
Champaign, IL 61820
USA
telephone: 217-398-0700
fax: 217-398-0747
email: info@wolfram.com
web: http://www.wolfram.com

Europe:

Wolfram Research Europe Ltd.
10 Blenheim Office Park
Lower Road, Long Hanborough
Oxfordshire OX8 8LN
UNITED KINGDOM
telephone: +44-(0) 1993-883400
fax: +44-(0) 1993-883800
email: info-europe@wolfram.com

Asia:
Wolfram Research Asia Ltd.
Izumi Building 8F
3-2-15 Misaki-cho
Chiyoda-ku, Tokyo 101
JAPAN
telephone: +81-(0)3-5276-0506
fax: +81-(0)3-5276-0509
email: info-asia@wolfram.com

For information, including purchasing information, about The Mathematica Book contact:

Wolfram Media, Inc.
100 Trade Center Drive
Champaign, IL 61820,
USA
email: info@wolfram-media.com
web: http://www.wolfram-media.com

A Note Regarding Different Versions of Mathematica

With the release of Version 5 of Mathematica, many new functions and features have been added to Mathematica. We encourage users of earlier versions of Mathematica to update to Version 5 as soon as they can. All examples in Mathematica By Example, Third Edition, were completed with Version 5. In most cases, the same results will be obtained if you are using Version 4.0 or later, although the appearance of your results will almost certainly differ from that presented here. Occasionally, however, particular features of Version 5 are used and in those cases, of course, these features are not available in earlier versions. If you are using an earlier or later version of Mathematica, your results may not appear in a form identical to those found in this book: some commands found in Version 5 are not available in earlier versions of Mathematica; in later versions some commands will certainly be changed, new commands added, and obsolete commands removed. For details regarding these changes, please see The Mathematica Book [28]. You can determine the version of Mathematica you are using during a given Mathematica session by entering either the command \$Version or the command \$VersionNumber. In this text, we assume that Mathematica has been correctly installed on the computer you are using. If you need to install Mathematica on your computer, please refer to the documentation that came with the Mathematica software package.

On-line help for upgrading older versions of Mathematica and installing new versions of Mathematica is available at the Wolfram Research, Inc. website:

> http://www.wolfram.com/.

Getting Started with Mathematica

We begin by introducing the essentials of Mathematica. The examples presented are taken from algebra, trigonometry, and calculus topics that you are familiar with to assist you in becoming acquainted with the Mathematica computer algebra system.

We assume that Mathematica has been correctly installed on the computer you are using. If you need to install Mathematica on your computer, please refer to the documentation that came with the Mathematica software package.

Start Mathematica on your computer system. Using Windows or Macintosh mouse or keyboard commands, activate the Mathematica program by selecting the Mathematica icon or an existing Mathematica document (or notebook), and then clicking or double-clicking on the icon.

If you start Mathematica by selecting the Mathematica icon, a blank untitled notebook is opened, as illustrated in the following screen shot.

When you start typing, the thin black horizontal line near the top of the window is replaced by what you type.

Once Mathematica has been started, computations can be carried out immediately. Mathematica commands are typed and the black horizontal line is replaced by the command, which is then evaluated by pressing Enter. Note that pressing Enter or Return evaluates commands and pressing Shift-Return yields a new line. Output is displayed below input. We illustrate some of the typical steps involved in working with Mathematica in the calculations that follow. In each case, we type the command and press Enter. Mathematica evaluates the command, displays the result, and inserts a new horizontal line after the result. For example, typing $N[$, then pressing the π key on the Basic Input palette, followed by typing ,50] and pressing the enter key

```
In[2023]:= N[\pi,50]
Out[2023]= 3.141592653589793238462643383279502884197169399375106
```

$$
2.09749446
$$

returns a 50 -digit approximation of π. Note that both π and Pi represent the mathematical constant π so entering $\mathrm{N}[\mathrm{Pi}, 50]$ returns the same result.

The next calculation can then be typed and entered in the same manner as the first. For example, entering

With some operating systems, Enter evaluates commands and Return yields a new line The Basic Input palette:

Figure A-1 A two-dimensional plot

Figure A-2 A three-dimensional plot

Notice that every
Mathematica command begins with capital letters and the argument is enclosed by square brackets [...].

To type x^{3} in Mathematica, press the \square° on the

Basic Input palette, type x in the base position, and then click (or tab to) the exponent position and type 3 .

```
In[2024]:= Plot[{Sin[x], 2 Cos[2x]},{x, 0, 3\pi},
    PlotStyle- > {GrayLevel[0], GrayLevel[0.5]}]
```

graphs the functions $y=\sin x$ and $y=2 \cos 2 x$ on the interval $[0,3 \pi]$ shown in Figure A-1. Similarly, entering

```
In[2025]:= Plot3D[Sin[x+Cos[y]], {x, 0, 4\pi}, {y, 0, 4\pi},
    PlotPoints- > {30, 30}]
```

graphs the function $z=\sin (x+\cos y)$ for $0 \leq x \leq 4 \pi$ and $0 \leq y \leq 4 \pi$ shown in Figure A-2.

Notice that all three of the following commands

$$
\begin{aligned}
& \text { In }[2026]:=\text { Solve }\left[x^{3}-2 x+1==0\right] \\
& \text { Out }[2026]=\left\{\{x \rightarrow 1\},\left\{x \rightarrow \frac{1}{2}(-1-\sqrt{5})\right\},\left\{x \rightarrow \frac{1}{2}(-1+\sqrt{5})\right\}\right\}
\end{aligned}
$$

```
In[2027]:= Solve[x^3-2*\mathbf{x + 1 == 0]}
Out[2027]={{x -> 1}, {x -> - - (-1 - Sqrt[5])}, {x -> - - - (-1 + Sqre [5]) } }
In [2028]:= Solve[\mp@subsup{\mathbf{x}}{}{3}-2\mathbf{x}+1== 0]
Out [2028]={{x->1},{x->\frac{1}{2}(-1-\sqrt{}{5})},{x->\frac{1}{2}(-1+\sqrt{}{5})}}
```

solve the equation $x^{3}-3 x+1=0$ for x ．
In the first case，the input and output are in StandardForm，in the second case， the input and output are in InputForm，and in the third case，the input and output are in TraditionalForm．Move the cursor to the Mathematica menu，

```
Mathematica File Edit Cell Format Input Kernel Find Window Help
```

select Cell，and then ConvertTo，as illustrated in the following screen shot．

Cell	Format	Input	Kernel	Find	Window	Help	
Convert To				－	InputFor		人281
Display As				$\stackrel{\rightharpoonup}{*}$	\checkmark OutputFor		
Default Input FormatType				－	Standard	Form	人ि8N
Default Output FormatType				$\stackrel{\rightharpoonup}{*}$	Tradition	alform	仓\＆T
Default Inline FormatType				－	PostScrip		
Cell Properties				$\stackrel{\rightharpoonup}{*}$	Bitmap		
Cell Grouping				$\stackrel{\rightharpoonup}{ }$	PICT		
Divide Cell				$\triangle 88 \mathrm{D}$	Bitmap P	ICT	
Merge Cells				0.88 M	Embedde	d PS PICT	
					QuickTim		
Animate Selected Graphics Play Sound							
Rerender Graphics							
Rerender and Save Graphics							
Make Standard Size							
Align－Selected Graphics．．．							
Cell Size Statistics．．．							

You can change how input and output appear by using ConvertTo or by chang－ ing the default settings．Moreover，you can determine the form of input／output by looking at the cell bracket that contains the input／output．For example，even though all three of the following commands look different，all three evaluate $\int_{0}^{2 \pi} x^{3} \sin x d x$ ．

$$
\text { Integrate }\left[x^{\wedge} 3 * \operatorname{Sin}[x],\{x, 0,2 * \operatorname{Pi}\}\right]
$$

$$
\begin{aligned}
& \int_{0}^{2 \pi} x^{3} \sin [x] d x \\
& \int_{0}^{2 \pi} x^{3} \sin (x) d x
\end{aligned}
$$

A cell bracket like this means the input is in InputForm; the output is in OutputForm. A cell bracket like this means the contents of the cell are in StandardForm. A cell bracket like this means the contents of the cell are in TraditionalForm. Throughout Mathematica By Example, Third Edition, we display input and output using InputForm or StandardForm, unless otherwise stated.

To enter code in StandardForm, we often take advantage of the BasicTypesetting palette, which is accessed by going to File under the Mathematica menu and then selecting Palettes

followed by BasicTypesetting.

Use the buttons to create templates and enter special characters. Alternatively, you can find a complete list of typesetting shortcuts in The Mathematica Book, Appendix 12, Listing of Named Characters [28].

Mathematica sessions are terminated by entering Quit [] or by selecting Quit from the File menu, or by using a keyboard shortcut, like command-Q, as with other applications. They can be saved by referring to Save from the File menu.

Mathematica allows you to save notebooks (as well as combinations of cells) in a variety of formats, in addition to the standard Mathematica format.

Remark. Input and text regions in notebooks can be edited. Editing input can create a notebook in which the mathematical output does not make sense in the sequence it appears. It is also possible to simply go into a notebook and alter input without doing any recalculation. This also creates misleading notebooks. Hence, common sense and caution should be used when editing the input regions of notebooks. Recalculating all commands in the notebook will clarify any confusion.

Five Basic Rules of Mathematica Syntax

In order for the Mathematica user to take full advantage of this powerful software, an understanding of its syntax is imperative. Although all of the rules of Mathematica syntax are far too numerous to list here, knowledge of the following five rules equips the beginner with the necessary tools to start using the Mathematica program with little trouble.

1. The arguments of all functions (both built-in ones and ones that you define) are given in brackets [...]. Parentheses (...) are used for grouping operations; vectors, matrices, and lists are given in braces $\{\ldots\}$; and double square brackets [[. . .]] are used for indexing lists and tables.
2. Every word of a built-in Mathematica function begins with a capital letter.
3. Multiplication is represented by $*$ or a space between characters. Enter $2 * x * y$ or 2 x y to evaluate $2 x y$ not 2 xy .
4. Powers are denoted by ${ }^{\wedge}$. Enter $\left(8 * x^{\wedge} 3\right)^{\wedge}(1 / 3)$ to evaluate $\left(8 x^{3}\right)^{1 / 3}=$ $8^{1 / 3}\left(x^{3}\right)^{1 / 3}=2 x$ instead of $8 \mathrm{x}^{\wedge} 1 / 3$, which returns $8 \mathrm{x} / 3$.
5. Mathematica follows the order of operations exactly. Thus, entering $(1+\mathrm{x})^{\wedge} 1 / \mathrm{x}$ returns $\frac{(1+x)^{1}}{x}$ while $(1+\mathrm{x})^{\wedge}(1 / \mathrm{x})$ returns $(1+x)^{1 / x}$. Similarly, entering $\mathrm{x}^{\wedge} 3 \mathrm{x}$ returns $x^{3} \cdot x=x^{4}$ while entering $\mathrm{x}^{\wedge}(3 \mathrm{x})$ returns $x^{3 x}$.

Remark. If you get no response or an incorrect response, you may have entered or executed the command incorrectly. In some cases, the amount of memory allocated to Mathematica can cause a crash. Like people, Mathematica is not perfect and errors can occur.

Loading Packages

Although Mathematica contains many built-in functions, some other functions are contained in packages that must be loaded separately. A tremendous number of additional commands are available in various packages that are shipped with each version of Mathematica. Experienced users can create their own packages; other packages are available from user groups and MathSource, which electronically distributes Mathematica-related products. For information about MathSource, visit
http://library.wolfram.com/infocenter/MathSource/
or send the message "help" to mathsource@wri. com. If desired, you can purchase MathSource on a CD directly from Wolfram Research, Inc. or you can access MathSource from the Wolfram Research World Wide Web site

> http: / /www. wri . com or http: / /www. wolfram. com.

Descriptions of the various packages shipped with Mathematica are found in the Help Browser. From the Mathematica menu, select Help followed by Add-Ons...

```
Help Browser...
Find Selected Function... 仓%F
Master Index...
Built-in Functions.
Mathematica Book.
Getting Started/Demos...
Add-ons...
Why the Beep?... ©s%H
Online Registratio
Rebuild Help Index
```

to see a list of the standard packages.

Information regarding the packages in each category is obtained by selecting the category from the Help Browser's menu.

Packages are loaded by entering the command
<<directory'packagename'
where directory is the location of the package packagename. Entering the command <<directory 'Master' makes all the functions contained in all the packages in directory available. In this case, each package need not be loaded individually. For example, to load the package Shapes contained in the Graphics folder (or directory), we enter <<Graphics 'Shapes '.

```
In[2029]:= << Graphics'Shapes`
```


Figure A-3 A torus created with Torus

Figure A-4 A Möbius strip and a sphere

After the Shapes package has been loaded, entering

```
In[2030]:= Show[Graphics3D[Torus[1, 0.5, 30, 30]], Boxed }->\mathrm{ False]
```

generates the graph of a torus shown in Figure A-3. Next, we generate a Möbius strip and a sphere and display the two side-by-side using GraphicsArray in Figure A-4.

```
In[2031]:= mstrip = Graphics3D[MoebiusStrip[1, 0.5,40], Boxed ->False];
    sph = Graphics3D[Sphere[1, 25, 25], Boxed ->False];
    Show[GraphicsArray[{mstrip,sph}]]
```

The Shapes package contains definitions of familiar three-dimensional shapes including the cone, cylinder, helix, and double helix. In addition, it allows us to perform transformations like rotations and translations on three-dimensional graphics.

A Word of Caution

When users take advantage of packages frequently, they often encounter error messages. One error message that occurs frequently is when a command is entered before the package is loaded. For example, the command GramSchmidt [\{v1,v2,..., vn\}] returns an orthonormal set of vectors with the same span as the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$. Here, we attempt to use the command GramSchmidt, which is contained in the Orthogonalization package located in the LinearAlgebra folder before the package has been loaded. Mathematica does not yet know the meaning of GramSchmidt so our input is returned.

```
In[2032]:= GramSchmidt[{{1, 1, 0}, {0, 2, 1},{1, 0, 3}}]
Out [2032]= GramSchmidt[{{1, 1, 0}, {0, 2, 1}, {1, 0, 3}}]
```

At this point, we load the Orthogonalization package, which contains the GramSchmidt command, located in the LinearAlgebra folder. Several error messages result.

```
In[2033]:= << LinearAlgebra`Orthogonalization'
GramSchmidt : : shdw : Symbol GramSchmidt appears in multiple contexts
{LinearAlgebra`Orthogonalization`,Global`};
definitions in context LinearAlgebra 'Orthogonalization'
may shadow or be shadowed by other definitions.
```

In fact, when we reenter the command, we obtain the same result as that obtained previously.

```
In[2034]:= GramSchmidt[{{1, 1, 0}, {0, 2, 1}, {1, 0, 3}}]
Out [2034]= GramSchmidt[{{1, 1, 0}, {0, 2, 1}, {1, 0, 3}}]
```

However, after using the command Remove, the command GramSchmidt works as expected. Alternatively, we can quit Mathematica, restart, load the package, and then execute the command.

```
In[2035]:= Remove[GramSchmidt]
In[2036]:= GramSchmidt[{{1, 1, 0},{0, 2, 1},{1, 0, 3}}]
Out [2036] ={{\frac{1}{\sqrt{}{2}},\frac{1}{\sqrt{}{2}},0},{-\frac{1}{\sqrt{}{3}},\frac{1}{\sqrt{}{3}},\frac{1}{\sqrt{}{3}}},{\frac{1}{\sqrt{}{6}},-\frac{1}{\sqrt{}{6}},\sqrt{}{\frac{2}{3}}}}
```

Similarly, we can take advantage of other commands contained in the Orthogonalization package like Normalize which normalizes a given vector.

```
In[2037]:= Normalize[{1, 2, 3}]
Out [2037] ={\frac{1}{\sqrt{}{14}},\sqrt{}{\frac{2}{7}},\frac{3}{\sqrt{}{14}}}={\mp@code{}}
```


Getting Help from Mathematica

Becoming competent with Mathematica can take a serious investment of time. Hopefully, messages that result from syntax errors are viewed lightheartedly. Ideally, instead of becoming frustrated, beginning Mathematica users will find it challenging and fun to locate the source of errors. Frequently, Mathematica's error messages indicate where the error(s) has (have) occurred. In this process, it is natural that you will become more proficient with Mathematica. In addition to Mathematica's extensive help facilities, which are described next, a tremendous amount of information is available for all Mathematica users at the Wolfram Research website:
http://www.wolfram.com/.

One way to obtain information about commands and functions, including userdefined functions, is the command ?. ?object gives a basic description and syntax information of the Mathematica object object. ??object yields detailed information regarding syntax and options for the object object.

EXAMPLE A.1: Use ? and ? ? to obtain information about the command Plot.

SOLUTION: ?Plot uses basic information about the Plot function

?Plot

Plot[f, $\{x$, ximin, $x i m a x\}]$ generates a plot of f as a function of
$\{x, x \min , x \max \}]$ plots several functions $f i$. More...

while ? ? Plot includes basic information as well as a list of options and their default values.

```
?2 Plot
Plot [f, \(\{x, x m i n, x m a x\}]\) generates a plot of \(f\) as a
    function of \(x\) from xmin to \(x\) max. Plot [\{f1, f2. .
    \(\{x\), xmin, xmax\}\} plots several functions fi. More...
Attributes [Plot \(]=\{\) HoldAll, Protected \(\}\)
Options [Plot] \(=\left\{\right.\) AspectRatio \(\rightarrow \frac{1}{\text { GoldenRotio }}\)
    Axes \(\rightarrow\) Automatic, AxesLabel \(\rightarrow\) None, AxesOrigin \(\rightarrow\) Automatic
    AxesStyle \(\rightarrow\) Automatic, Background \(\rightarrow\) Automatic,
    Coloroutput \(\rightarrow\) Automatic. Compiled \(\rightarrow\) True
    DefaultColor \(\rightarrow\) Automatic, DefaultFont : \(\rightarrow\) \$DefaultFont,
    DisplayFunction: \(\rightarrow\) \$DisplayFunction, Epilog \(\rightarrow\}\),
    FormatType: \(\rightarrow\) \$FormatType, Frame \(\rightarrow\) False, FrameLabel \(\rightarrow\) None
    FrameStyle \(\rightarrow\) Automatic, FrameTicks \(\rightarrow\) Automatic,
    GridLines \(\rightarrow\) None, ImageSize \(\rightarrow\) Automatic, MaxBend \(\rightarrow 10\).
    PlotDivision \(\rightarrow 30\)., PlotLabel \(\rightarrow\) None, PlotPoints \(\rightarrow 25\),
    PlotRange \(\rightarrow\) Automatic, PlotRegion \(\rightarrow\) Automatic,
    PlotStyle \(\rightarrow\) Automatic, Prolog \(\rightarrow\}\), RotateLabel \(\rightarrow\) True,
    TextStyle: \(\rightarrow\) \$TextStyle, Ticks \(\rightarrow\) Automatic \(\}\)
```

Options [object] returns a list of the available options associated with object along with their current settings. This is quite useful when working with a Mathematica command such as ParametricPlot which has many options. Notice that the default value (the value automatically assumed by Mathematica) for each option is given in the output.

EXAMPLE A.2: Use Options to obtain a list of the options and their current settings for the command ParametricPlot.

SOLUTION: The command Options [ParametricPlot] lists all the options and their current settings for the command ParametricPlot.

> Options[ParametricPlot]
> \{AspectRatio $\rightarrow \frac{1}{\text { GoldenRatio }}$, Axes \rightarrow Automatic,
> AxesLabel \rightarrow None, AxesOrigin \rightarrow Automatic,
> AxesStyle \rightarrow Automatic, Background \rightarrow Automatic,
> Coloroutput \rightarrow Automatic, Compiled \rightarrow True,
> DefaultColor \rightarrow Automatic, DefaultFont \rightarrow \$DefaultFont, DisplayFunction: \rightarrow \$DisplayFunction, Epilog $\rightarrow\}$, FormatType \rightarrow \$FormatType, Frame \rightarrow False, FrameLabel \rightarrow None, FrameStyle \rightarrow Automatic, FrameTicks \rightarrow Automatic, GridLines \rightarrow None, ImageSize \rightarrow Automatic, MaxBend $\rightarrow 10 .$, PlotDivision \rightarrow 30., PlotLabel \rightarrow None, PlotPoints $\rightarrow 25$, PlotRange \rightarrow Automatic, PlotRegion \rightarrow Automatic, PlotStyle \rightarrow Automatic, Prolog $\rightarrow\}$, RotateLabel \rightarrow True, TextStyle: \rightarrow \$TextStyle, Ticks \rightarrow Automatic $\}$

As indicated above, ??object or, equivalently, Information [object] yields the information on the Mathematica object object returned by both ?object
and Options [object] in addition to a list of attributes of object. Note that object may be either a user-defined object or a built-in Mathematica object.

EXAMPLE A.3: Use ?? to obtain information about the commands Solve and Map. Use Information to obtain information about the command PolynomialLCM.

SOLUTION: We use ? ? to obtain information about the commands Solve and Map including a list of options and their current settings.

?? Solve

Solve[eqns, vars] attempts to solve an equation or set of equations for the variables vars. Solve eqns, vars, elims] attempts to solve the equations for vars, eliminating the variables elims. More...

Attributes [Solve] $=$ \{Protected $\}$

Options[Solve] $=\{$ InverseFunctions \rightarrow Automatic,
MakeRules \rightarrow False, Method \rightarrow 3, Mode \rightarrow Generic, Sort \rightarrow True,
VerifySolutions \rightarrow Automatic, WorkingPrecision $\rightarrow \infty$)
?? Hap
Map [f, expr] or f / e expr applies f to each element on the first level in expr. Map[f, expr, levelspec] applies f to parts of expr specified by levelspec. More...
Attributes [Map] $=\{$ Protected $\}$
Options [Map] $=\{$ Heads \rightarrow False $\}$

Similarly, we use Information to obtain information about the command PolynomialLCM including a list of options and their current settings.

```
Information[PolynomialLCM]
PolynomiallcM[poly1, poly2, the least common multiple of the polynomials polyi. PolynomiallCM[poly1, poly2. Modulus->p] evaluates the LCM modulo the prime \(p\)
Attributes [PolynomiallCM] \(=\) \{Listable, Protected \(\}\)
Options[PolynomiallCM] \(=\) \{Extension \(\rightarrow\) None, Modulus \(\rightarrow 0\), Trig \(\rightarrow\) False\}
```


The command Names ["form"] lists all objects that match the pattern defined in form. For example, Names ["Plot"] returns Plot, Names ["*Plot"] returns all objects that end with the string Plot, Names ["Plot*"] lists all objects that
begin with the string Plot, and Names ["*Plot*"] lists all objects that contain the string Plot. Names ["form", SpellingCorrection->True] finds those symbols that match the pattern defined in form after a spelling correction.

EXAMPLE A.4: Create a list of all built-in functions beginning with the string Plot.

SOLUTION: We use Names to find all objects that match the pattern plot.

```
In[2038]:= Names["Plot"]
Out[2038]= {Plot}
```

Next, we use Names to create a list of all built-in functions beginning with the string Plot.

```
In[2039]:= Names["Plot * "]
Out[2039]= {Plot, Plot3D, Plot3Matrix, PlotDivision,
    PlotJoined, PlotLabel, PlotPoints, PlotRange,
    PlotRegion, PlotStyle}
```

As indicated above, the ? function can be used in many ways. Entering ? letters* gives all Mathematica objects that begin with the string letters; ?*letters* gives all Mathematica objects that contain the string letters; and ?*letters gives all Mathematica commands that end in the string letters.

EXAMPLE A.5: What are the Mathematica functions that (a) end in the string Cos; (b) contain the string Sin; and (c) begin with the string Polynomial?

SOLUTION: Entering

returns all functions ending with the string Cos, entering

returns all functions containing the string Sin, and entering

returns all functions that begin with the string Polynomial.

Mathematica Help

Additional help features are accessed from the Mathematica menu under Help. For basic information about Mathematica, go to Help and select Help Browser...

If you are a beginning Mathematica user, you may choose to select Welcome Screen...

and then select Ten-Minute Tutorial

This tutorial is a brief slide-show introduction to Mathematica. It gives you the basics you need to start hamessing the power of the world's most sophisticated technical computing system.

You can change the examples in any of the slides, and re-evaluate them in place. Normally changes you make will not be saved. To save them, explicitly use Save As... in the File menu

The top of each slide has a toolbar with buttons to navigate between slides. After you have closed this tutorial you can always open it again from the Help menu.

Begin Tutorial

or Help Browser.

To obtain information about a particular Mathematica object or function, open the Help Browser, type the name of the object, function, or topic and press the Go button. Alternatively, you can type the name of a function that you wish to obtain help about, select it, go to Help, and then select Find in Help... as we do here with the DSolve function.

Help Browser		
DSolve		
Built-in Functions	Add-ons	The Mathematica Book
Getting Started/Demos	Other Information	Master Index
DSolve		
- DSolve eqn, $y, x]$ solves a differential equation for the function y. with independent variable x. - DSolve $\left[\left(e q n_{1}, e q n_{2}, \ldots\right),\left(y_{1}, y_{2}, \ldots\right), x\right]$ solves a list of differential equations. - DSolve[eqn, y, $\left.\left\{x_{1}, x_{2}, \ldots\right)\right]$ solves a partial differential equation.		
- DSolve $[$ eqn, $y[x], x]$ gives solutions for $y[x]$ rather than for the function y itself. - Example: DSolve $\left[y^{\prime}[x]=2\right.$ a $\left.x, y[x], x\right] \rightarrow\left\{\left\{y[x] \rightarrow a x^{2}+C[1]\right\}\right\}$. - Differential equations must be stated in terms of derivatives such as $y^{\prime}[x]$, obtained with D, not total derivatives obtained with Dt . -5.0 The list of equations given to DSolve can include algebraic ones that do not involve derivatives. -5.0 DSolve generates constants of integration indexed by successive integers. The option GeneratedPa rameters specifies the function to apply to each index. The default is GeneratedParameters->C. which yields constants of integration C[1], C[2],... .		
100\% ${ }^{\text {c }}$		

A typical help window not only contains a detailed description of the command and its options but also several examples that illustrate the command as well as hyperlinked cross-references to related commands and The Mathematica Book [28], which can be accessed by clicking on the appropriate links.

You can also use the Help Browser to access the on-line version of The Mathematica Book [28]. Here is a portion of Section 3.6.3, Operations on Power Series.

The Master Index contains hyperlinks to all portions of Mathematica help.

This Page Intentionally Left Blank

The Mathematica Мепи

E Mathematica File Edit Cell Format Input Kernel Find Window Help

File		Edit		Cell
		Undo	*z	
		Cut	$8 \times$	Conver To
New	${ }_{\text {xN }}$	Copy	\%c	
		Paste	*V	Defaut hout Formatipee
		Clear	08 x	Defautit Inine formatrye
$\begin{aligned} & \text { Open Spec } \\ & \text { Import... } \\ & \text { Close } \end{aligned}$		Paste As	:	${ }^{\text {coll Properites }}$
Ssue.	*	Save Selection As	-	
	oxs.	Selectall	*A	Merge Cells oxm
Sove As Special.		Motion	*	${ }_{\text {An }}^{\text {Alimsate selected Craph }}$
Palenes		Expression Input	-	Receneref Craphics
Ceneate Notesoox tom Pietere		Make 20	ORY	Recernder and Save Grap
Prinung Sertings		Check Balance	0*8	Make Standrars size
	oxp	Check Spelling...	*	Cell Ste satsico.
Format		Input		Kernel
Style Screen Style Environment Printing Style Environment				
	oxo			
swe sheet	,			
Font			oxv	
¢		Cotice poin		
		Clasere memon	${ }^{\circ}$.	Evaluation
	:			Antern tatuation
Word WrappingCell Dingbat				
		Comeren lumomut Oobect of		Saut kemel
Show Ruler		Coprosutiom	K1	Nocteooeks kern
		Corn	起	Kernel Confouration Optio
Magnifation	,		- ${ }_{\text {ox }}$	

Find	Window		Help		
Find... ${ }^{\text {a }}$ \%					
Enter Selection \%E					
Find Next \%G					
Find Previous Find in Cell Tags Replace	Minimize \quad gM		Help Browser... Find Selected Function... Master Index...	08F	
Replace and Find Again O*R	Zoom	\mathscr{H}			
Replace All			Built-in Functions... Mathematica Book... Getting Started/Demos... Add-ons... Tutorial...		
Open Selected scrott to setection Co Back	Stack Windows				
	Tile Windows Wide				
	Tile Windows Tall				
Add/Remove Cell Tags... Cell Tags Show Cell Tags Cell Tags from in/Out Names Make Index...			Why the Beep?... Online Registration... Startup Palette...	©*H	
	Bring All to Front			ox	
	Messages			Rebuild Help Index	

This Page Intentionally Left Blank

Bibliography

[1] Abell, Martha and Braselton, James, Mathematica By Example, Third Edition, Academic Press, 2004.
[2] Abell, Martha and Braselton, James, Modern Differential Equations, Second Edition, Harcourt, 2001.
[3] Apostol, Tom, Mathematical Analysis, Second Edition, Addison-Wesley, 1974.
[4] Barnsley, Michael, Fractals Everywhere, Second Edition, Morgan Kaufmann, 2000.
[5] Boyce, William E. and DiPrima, Richard C., Elementary Differential Equations and Boundary-Value Problems, Seventh Edition, John Wiley \& Sons, 2000.
[6] Coddington, Earl and Levinson, Norman, Theory of Ordinary Differential Equations, Robert E. Krieger Publishing Company/McGraw Hill, 1955/1984.
[7] Corduneanu, C., Principles of Differential and Integral Equations, Chelsea Publishing, 1977.
[8] Devaney, Robert L. and Keen, Linda (eds.), Chaos and Fractals: The Mathematics Behind the Computer Graphics, Proceedings of Symposia in Applied Mathematics, Volume 39, American Mathematical Society, 1989.
[9] Edwards, C. Henry and Penney, David E. Calculus with Analytic Geometry, Fifth Edition, Prentice Hall, 1998.
[10] Edwards, C. Henry and Penney, David E. Differential Equations and Boundary Value Problems: Computing and Modeling, Third Edition, Pearson/Prentice Hall, 2004.
[11] Gaylord, Richard J., Kamin, Samuel N., and Wellin, Paul R., Introduction to Programming with Mathematica, Second Edition, TELOS/Springer-Verlag, 1996.
[12] Giordano, Frank R., Weir, Maurice D., and Fox, William P., A First Course in Mathematical Modeling, Third Edition, Thomson/Brooks/Cole, 2003.
[13] Graff, Karl F., Wave Motion in Elastic Solids, Oxford University Press/Dover, 1975/1991.
[14] Gray, Alfred, Modern Differential Geometry of Curves and Surfaces, Second Edition, CRC Press, 1997.
[15] Gray, John W., Mastering Mathematica: Programming Methods and Applications, Second Edition, Academic Press, 1997.
[16] Herriott, Scott R., College Algebra through Functions and Models, Preliminary Edition, Brooks/Cole, 2002.
[17] Jordan, D.W. and Smith, Peter, Nonlinear Ordinary Differential Equations: An Introduction to Dynamical Systems, Third Edition, Oxford Applied and Engineering Mathematics, Oxford University Press, 1999.
[18] Kyreszig, Erwin, Advanced Engineering Mathematics, Eighth Edition, John Wiley \& Sons, 1999.
[19] Larson, Roland E., Hostetler, Robert P., and Edwards, Bruce H., Calculus with Analytic Geometry, Sixth Edition, Houghton Mifflin, 1998.
[20] Maeder, Roman E., The Mathematica Programmer II, Academic Press, 1996.
[21] Maeder, Roman E., Programming in Mathematica, Third Edition, Addison-Wesley, 1996.
[22] Rabenstein, Albert L., Introduction to Ordinary Differential Equations, Academic Press, 1966.
[23] Robinson, Clark, Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, Second Edition, CRC Press, 1999.
[24] Smith, Hal L. and Waltman, P., The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge University Press, 1995.
[25] Stewart, James, Calculus: Concepts and Contexts, Second Edition, Brooks/Cole, 2001.
[26] Weisstein, Eric W., CRC Concise Encyclopedia of Mathematics, CRC Press, 1999.
[27] Wolfram, Stephen, A New Kind of Science, Wolfram Media, 2002.
[28] Wolfram, Stephen, The Mathematica Book, Fourth Edition, Wolfram Media, 2004.
[29] Zwillinger, Daniel, Handbook of Differential Equations, Second Edition, Academic Press, 1992.

Index

Symbols

\$Version 843
\$VersionNumber 843
' 7
', 7
(...) 850
. 420
/ . 22, 29, 53
//. 213
/; 622
/@ 331
= 9
? 854,857
?? 854
[...] 850
[[. . .]] 9, 416, 850
\{. . . \} 850
$\pi 845$

A

Abs 744
Add-Ons... 850
Algebraic Manipulation 466
TrigToExp 466
Animate Selected Graphics 326
Antibiotic production 89
Apart 53, 634, 704
Application
antibiotic production 89
controlling spread of a disease 513
drug concentration 80
exponential growth 87
free vibration of a three-story building 720
harvesting 148
hearing beats and resonance 372
kidney dialysis 55
logistic difference equation 152
modeling spread of a disease 97
models of pursuit 64
oblique trajectories 129
radioactive decay 133
tautochrone 689
testing for diabetes 211
wave equation on circular plate 298
zeros of Bessel functions of first kind 295
Arc length function 612
Array 411, 414

Attractor

Rössler 441
Autonomous system 433, 535, 553
Auxiliary condition 18
Auxiliary equation 256, 261
Average period of infectivity 97

B

BasicInput 845, 846
BasicTypesetting 412, 415, 848
Beam deflection 390
Beats 356
hearing 372
Becquerel, Henri 133
Bendixson's theorem 558
Bessel, Friedrich Wilhelm 289
Bessel function
of first kind 290, 291
modified 299
zeros of 295
of second kind 291
Bessel's equation 2, 282, 289, 770
Bessel-Fourier series 771
convergence 775
BesselI 299
BesselJ 282, 290
BesselJZeros 296, 771, 824, 829
Bessely 282, 291, 292
BesselZeros 295, 774, 823, 829
BesselJZeros 296, 771, 824, 829
Bodé plots 393
Boundary conditions
homogeneous 728
Boundary-value problem 23, 727

Break-even concentration 145
Building vibration 720

C

C 18
Cases (/;) 622
Catenary 398
Cauchy-Euler equation
definition 255
higher-order 261
characteristic/auxiliary equation 261
second-order 255
characteristic/auxiliary equation 256
variation of parameters 265
Cell
Animate Selected
Graphics 326
ConvertTo 847
Center 548
Characteristic (auxiliary) equation 197, 256, 261
definition 200
Characteristic polynomial 422
Characteristic system 836
CharacteristicPolynomial 422, 423
Characteristics
method of 836
Charge
steady-state 389
Chemostat
growth 144
scaled equations for 144
long food chain 602
models 3
simple food chain 594
Chop 208, 830
Circuit
$L-R-C 387,679$
with loops 567
one loop 568
two loops 571
Circular plate
wave equation 298
Circular region
Laplace's equation 817
wave equation 821
Clear 8
ClipFill 838
Coefficients
constant 180
Collect 214
Command key and cursor 395
Command-Y 326
Competing species 35
Compile 834
CompiledFunction 834
ComplexExpand 213, 240, 474
Compositions of function 154
Concentration break-even 145
Constant coefficients 180
Contact number 97
Continuous
piecewise
definition 622
ContourPlot 9, 33, 42, 50, 61,73, 124
Axes 10, 73
AxesOrigin 10, 73
AxesStyle 10, 73
Contours 10, 61, 124
ContourShading 10, 73
ContourStyle 122, 125
DisplayFunction 61
Evaluate 10
Frame 10, 73
PlotPoints 10, 73, 122
Controlling spread of disease 513
Convergence of a power series solution 276
ConvertTo 847
Convolution integral 667
Convolution theorem 667
Cooling
Newton's law of 87, 157
Corresponding
eigenfunction 730
homogeneous equation 75 , 180
Cosine series
Fourier 746
Coupled spring-mass system 708
Cramer's rule 249, 252
Create Table/ Matrix/Palette... 412, 415, 421
Matrix 413
Curie, Marie 133
Curie, Pierre 133
Curvature 612

Curve(s) orthogonal definition 119
parametrization with respect to arc length 612
smooth length of 399
Cycle
limit 40, 429, 608
Cycloheximide 89

D

D 80, 182, 187, 275, 426
Daily contact rate 97
Daily death removal rate 97
Daily recovery removal rate 97
D'Alembert's solution 806
Damped motion 332, 574
critically damped 333
overdamped 332
underdamped 333
Damping
nonlinear 175
variable 604
Decay
radioactive 133
Decibel 394
Deflection of a beam 390
Degenerate
stable node 543, 544
unstable node 543, 544
Delta function 662
DensityPlot 790
Dependence linear 181, 449
Derivative
of Laplace transform 626
of matrix 426
Det 182, 419
Determinant 419
Diabetes mellitus 55, 211
testing for 211
Dialysate 55
Dialyser 55
Dialysis 55
Difference equation logistic 152
Differential equation
definition 2
exact
definition 69
homogeneous
definition 59
linear see Linear
differential equation
nonlinear 304
definition 5
order of
definition 4
reduction of 193
ordinary
definition 2
first-order 41
system definition 429
partial see Partial differential equation (PDE)
separable
definition 46
solution see Solution
system 3
linear see Linear system
nonlinear see Nonlinear system
ordinary definition 429
Differential geometry
curvature 612
Differentiation implicit 8
Diffusion
through double-walled membrane 578
through membrane 576
Dirac delta function 662
Laplace transform of 663
DiracDelta 662
Direction field 26
Dirichlet problem 811, 818
Discontinuity
jump
definition 621
Disease
controlling spread of 513
endemic 514
epidemic 513
modeling spread of 97
Do 326, 713, 803, 827
Double pendulum 714
Drug concentration 80
Drumhead 821
DSolve 13, 23, 29, 32, 47, 60, 70, 79, 92, 122, 175, $431,456,715,836,860$
Dt 9
Duffing's equation 310, 557

E
E 392, 680
Eigenfunctions
corresponding 730
orthogonality of 736
Eigensystem 422, 424, 455, 536
Eigenvalue 422, 606, 730
Eigenvalue problem 728, 730
Eigenvalues 422, 423, 598
Eigenvector 422
Eigenvectors 422, 424
Endemic disease 514
Enter 845
Envelope function 354
Epidemic disease 513
Equation
Bessel's 2, 282, 289, 770
Cauchy-Euler
definition 255
higher-order 261
characteristic/
auxiliary equation 261
second-order 255 characteristic/ auxiliary equation 256
variation of parameters 265
characteristic 197, 256, 261
definition 200
Duffing's 310, 557
FitzHugh-Nagumo 522
heat 4, 787
homogeneous boundary conditions 787
insulated boundary 795
nonhomogeneous boundary conditions 791
indicial 284, 287
integral 669
integrodifferential 670
Laplace's 3, 4, 784, 810
in circular region 817
Legendre's 276
Lorenz 560
potential 810
Rössler 441
Sturm-Liouville 736
Van-der-Pol 175, 427, 606
wave 3, 11, 799
on circular plate 298
in circular region 821
D'Alembert's solution 806
normal modes 12
Equilibrium (rest) point 514
classification 553
definition 535
locally stable 554
unstable 554
Errors
when loading packages 853
Euler equation see Cauchy-Euler equation
Euler's formula 461
Euler's method 103, 525, 533 improved 108
Evaluate 10, 17, 493
Even extension 759
Exact differential equation definition 69
Existence and Uniqueness
theorem 41, 180, 438
Expand 211, 570
Exponential matrix definition 498
Exponential growth 87
Exponential order definition 621
Exponents 288
ExpToTrig 474, 503
Extension
even 759
odd 759
periodic 759

F

Factor 197, 201
GaussianIntegers 198, 203
Fasting blood sugar test 211
Feedback inhibition 89
File
Palettes
Algebraic Manipulation 466
BasicTypesetting 412, 415, 848
Quit 849
Save 849
Save As Special... 849
Find in Help... 860
FindRoot 136, 171, 209, 300, 735
First-order equations exact 69
homogeneous 59
linear 74
standard form 75
separable 46
theory 41
FitzHugh-Nagumo equation 522
Flatten 153, 456
Flight paths 64
Force
resistive 163
Forced motion 346, 672
damped 356
undamped 347
Forcing function 5, 180
Fourier 313
Fourier
cosine series 746
series 749
convergence 752
definition 751
differentiation 764
generalized 770
integration 765
sine series 738
transform 312
Free-falling bodies 163
Frequency
natural 349
Fresnels 21
Frobenius method of 283
FullSimplify 503
Function
arc length 612
Bessel see Bessel function
composition 154
Dirac delta 662
envelope 354
even extension 759
forcing 5, 180
generalized 662
impulse 661
idealized 662
Jacobi elliptic 435
linear combination 187
linearly dependent 181
linearly independent 181, 736
natural $\log 47$
odd extension 759
periodic
definition 652
Laplace transform of 652
periodic extension 759
piecewise continuous
definition 622
piecewise smooth definition 764
unit impulse 662
unit step 79
definition 645
solving initial-value problems with 649
weighting 736
Fundamental matrix
definition 452
Fundamental set of solutions 452
definition 185, 449
existence 191, 452
Fundamental theorm of calculus 75

G

Gain 394
Generalized Fourier series 770
Generalized function 662
Gibbs phenomenon 744
Glucose tolerance test (GTT) 211
GramSchmidt 853
Graphics
animation 326

Graphics

Graphics
LogListPlot 315
LogLogPlot 396
ImplicitPlot ImplicitPlot 10,71
PlotField 516
PlotVectorField 27, 33, 54, 97, 433, 455, 457, 459, 507
Shapes 851, 852
GraphicsArray 13,852
Graylevel 19, 188
Growth
exponential 87
Growth constant 87

H

Half-life 133
Half-wave rectification 655
Harmonic motion 321
aging springs 370
damped motion 332, 574
forced motion 346, 672
damped 356
undamped 347
hard springs 368
simple 321, 329
soft springs 365
Harvesting 148
Heat equation 4, 787
homogeneous boundary conditions 787
insulated boundary 795
nonhomogeneous boundary conditions 791
Help 13, 858
? 854, 857
? ? 854
Add-Ons... 850
Find in Help... 860
Information 855
Options 855
Help Browser 850, 858, 860, 861
BesselZeros 296, 824
DSolve 15, 860
Go 860
JacobiSN 437
MatrixManipulation 418
NDSolve 21
PlotField 27
Herd immunity 515
Homogeneous boundary conditions 728
Homogeneous differential equation
corresponding 75, 180
definition 59
linear 5, 75, 180
with constant coefficients higher order 200 second-order 196
linear partial 783
Homogeneous linear system 447
with constant coefficients 454, 535
complex conjugate eigenvalues 461, 548
distinct real eigenvalues 454, 535
repeated eigenvalues 477, 543
corresponding 447
Hooke's Law 321
Hypergeometricu 287
Hypertension 55

I

I 392, 683
Idealized unit impulse function 662
Immunity
herd 515
Implicit differentiation 8
Implicit solution 8
ImplicitPlot
ImplicitPlot 10, 71
ImplicitPlot 10, 71
AxesOption 71
PlotPoints 71
Improved Euler's method 108
Impulse 661
idealized 662
Independence linear 181, 449, 736
Indicial equation 284, 287
Indicial roots 288
Information 855
Initial condition 19
Initial-boundary value problem 788
Initial-value problem 19, 23 n th-order 180

Input

Create Table/
Matrix/Palette... 412,
415, 421
Matrix 413
InputForm 333, 847, 848
Integral
convolution 667
of matrix 426
Integral equation 669
Integrate $50,426,618,619$, 656
Integrating factor 75
Integration by parts 773
Integrodifferential equation 670
InterpolatingFunction 85, 94
Inverse 419, 476
Inverse Laplace transform
definition 629
determination of existence 636
linearity property 630
use of partial fractions in finding
irreducible quadratic factors 635
nonrepeated linear factors 632
repeated linear factors 634
Inverse of matrix 419
InverseLaplaceTransform 630, 717
Irregular singular point
definition 281
Isotherms 123

J

Jacobi elliptic functions 435
Jacobian matrix 553, 554, 588, 606
JacobiSN 435
Jump discontinuity
definition 621

K

Kidney dialysis 55
Kirchhoff's law 387, 388
current 567
voltage 567

L

L-R-C circuit 387, 679
with loops 567 one loop 568 two loops 571
LaguerreL 287
Laplace transform
applications double pendulum 714
$L-R-C$ circuits 679
population problems 687
spring-mass systems 672 coupled 708
tautochrone 689
vibration of building 720
definition 618
derivatives of 626
of Dirac delta function 663
of first derivative 624
of higher derivatives 625
of integral 635
inverse
definition 629
determination of existence 636
linearity property 630
use of partial fractions in finding irreducible quadratic factors 635
nonrepeated linear
factors 632
repeated linear factors 634
linearity property 621
methods for systems 691
of periodic function 652
shifting property 624
solving initial-value problems with 637
sufficient condition for existence 622
Laplace's equation 3, 4, 784, 810
in circular region 817
LaplaceTransform 618, $619,620,628,716$
Laplacian in polar coordinates 298
Legendre, Adrien Marie 276
Legendre polynomial of degree $n 279$
orthogonality condition 280
LegendreP 279
LegendreQ 279
Legendre's equation 276
Length 18
Length of smooth curve 399
Life expentancy 97
Limit cycle 40, 429, 608

Linear Algebra

MatrixManipulation 418
TakeColumns 419
TakeRows 419
Orthogonalization 853
GramSchmidt 853
Normalize 853
Linear combination of functions 187
Linear differential equation 6
definition 5, 180
first-order
definition 74
standard form 75
homogeneous 5, 75, 180
with constant coefficients higher order 200 second-order 196
corresponding 75, 180
nonhomogeneous 180
nonhomogeneous with constant coefficients 216
general solution 217
method of
undetermined
coefficients 222, 352
higher-order
equations 239
second-order
equations 223
variation of
parameters 248
higher-order
equations 252
second-order
equations 248
nonhomogeneous partial 783
n th-order 180
particular solution 86, 248
definition 216
see also Differential
equation; Linear system
Linear system 6, 430, 446
homogeneous 447
with constant
coefficients 454, 535
complex conjugate
eigenvalues 461,548
distinct real
eigenvalues 454, 535
repeated eigenvalues 477, 543
corresponding 447
Laplace transform
methods 691
nonhomogeneous 447
first-order 485 matrix exponential 498
method of undetermined coefficients 485 variation of parameters 490
Linearity property of inverse Laplace transform 630
of Laplace transform 621
Linearization 552
Linearly dependent
functions 181
vectors 449
Linearly independent functions 181, 736 vectors 449

LinearSolve 480
List
nested 414
ListPlot 106, 153
DisplayFunction 114
PlotJoined 155
PlotStyle 106
Log 47
LogicalExpand 274
Logistic difference equation 152
Logistic equation 54, 138 with predation 141
LogListPlot 315
LogLogPlot 396
Long food chain in chemostat 602
Lorenz equations 560
Lotka-Volterra system 587

M

Maclaurin series 269, 375
Malthus, Thomas R. 132
Malthus model 132
Map 82, 95, 187, 331, 434, 608, 628, 718, 856
Master Index 861
MathSource 850

Matrix 413

Matrix 411
basic computations 419
derivative 426
determinant 419
extracting elements 416
fundamental definition 452
integral 426
inverse 419
Jacobian 553, 554, 588, 606
product 420
transpose 417, 419
variational 553, 588
Matrix exponential definition 498
MatrixExp 498, 503
MatrixForm 186, 412, 416

MatrixManipulation 418

TakeColumns 419
TakeRows 419
Membrane
diffusion through 576
double-walled
diffusion through 578
permeability 576
Menu 863

Method of characteristics 836
Method of Frobenius 283
Möbius strip 852
Modeling spread of disease 97
Models of pursuit 64
Momentum 163
Motion
damped 332, 574
forced 346, 672
damped 356
undamped 347
harmonic 321 simple 321, 329
Newton's second law of 163
Multiplicity
definition 200

N

N $84,496,845$
Names 856,857
SpellingCorrection 857
Natural frequency 349
Natural logarithm function 47
NDSolve 20, 22, 25, 38, 84, 92, 175, 431, 506, 522, 606
MaxSteps 560
Nest 154
Nested list 414
Neumann problem 811
Newton's law of cooling 87, 157
Newton's second law of motion 163
NIntegrate 825, 829
Node
stable 535 degenerate 543, 544
unstable 536
degenerate 543, 544
Nonhomogeneous linear differential equation 180
with constant coefficients 216
general solution
definition 217
method of undetermined coefficients 222,352
higher-order equations 239 second-order equations 223
variation of parameters 248
higher-order equations 252 second-order equations 248
partial 783
Nonhomogeneous linear system 447
first-order 485
matrix exponential 498
method of undetermined coefficients 485
variation of parameters 490
Nonlinear damping 175
Nonlinear differential equation 304
definition 5
Nonlinear system 6, 535, 552
autonomous 535, 553
classification of equilibrium points 553
linearized system corresponding 552
NonlinearFit 215

NonlinearFit

NonlinearFit 215
Nontrivial solution 185
Normal 276
Normal modes 12, 298
Normalize 853
NRoots 723
Nuclides 133
Numerical methods
Euler's method 103, 525, 533
improved Euler's method 108
NDSolve 92, 506
Runge-Kutta method 111, 531
of order four 115
of order two 111

NumericalMath

BesselZeros 295, 774, 823, 829
BesseluZeros 296, 771, 824, 829

O

Oblique trajectories 129
Odd extension 759
Options 28,380,855
Order
of differential equation 4 reduction of 193
exponential definition 621
Ordinary differential equation
definition 2
first-order 41
system definition 429
Ordinary point
definition 268
Orthogonal curves definition 119
Orthogonal trajectories 119
family of 121
Orthogonality condition 280, 736
Orthogonalization 853
GramSchmidt 853
Normalize 853
OutputForm 848

P

p-series 770
Packages 850
errors messages 853
Palettes
Algebraic Manipulation 466
BasicTypesetting 412, 415, 848
Parameters
variation of 86, 248
Cauchy-Euler equations 265
higher-order equations 252
second-order equations 248
systems 490
ParametricPlot 39, 429, 456, 690
ParametricPlot3D 302, 471, 834
PlotPoints 523
Parametrization of curve 612
Parseval's equality 769
Part ([[...]]) 9, 416, 850

Partial differential equation (PDE) 3
heat 4, 787
homogeneous boundary conditions 787
insulated boundary 795
nonhomogeneous boundary conditions 791
Laplace's equation 3, 4, 784, 810
in circular region 817
linear second-order 783
homogeneous 783
nonhomogeneous 783
potential equation 810
quasi-linear
first-order 836
almost linear 836
homogeneous 836
linear 836
solution definition 784
wave equation $3,11,799$
on circular plate 298
in circular region 821
D'Alembert's solution 806
normal modes 12
Particular solution 86, 248
definition 216
to system 485
Partition 178
Pendulum 373
damped 378, 557
double 714
equation 5,557
Period 652
Periodic extension 759
Periodic function
definition 652
Laplace transform of 652
Permeability 576
Perpendicular curves 119
Phase shift 394
Pi 845
Piecewise continuous
definition 622
Piecewise smooth
definition 764
"Pitchfork diagram" 155
Play 372
Plot
Bodé 393
Poincaré 317
Plot 7, 17, 53, 135, 260, 854

AspectRatio 30, 121
AxesLabel 30
AxesStyle 30
DisplayFunction 17, 122
Evaluate 17, 493
PlotRange 29
PlotStyle 19, 30, 188, 219
Plot3D 13
ClipFill 838
PlotField 516
PlotVectorField 27,33, 54, 97, 433, 455, 457, 459, 507
PlotVectorField 27,33, 54, 97, 433, 455, 457, 459, 507
Axes 28
AxesOrigin 28
DisplayFunction 507
HeadLength 28
ScaleFunction 28
Poincaré plot (return) 317
Point
equilibrium 514
classification 553
definition 535
locally stable 554
unstable 554
ordinary definition 268
saddle 536
singular definition 268
irregular definition 281
regular definition 281
Polar coordinates
Laplacian 298
Polynomial
characteristic 422
PolynomialLCM 856
Pond
motion in 170
Population problems 687
growth and decay 132
United States 136, 139
three neighbouring territories 585
two neighbouring territories 583
Potential equation 810
Power spectrum 313
PowerExpand 213
Predator-prey 440, 587
equations 3, 587
see also Chemostat

Principle of superposition 187, 190, 785
Problem
boundary-value 23,727
Dirichlet 811,818
eigenvalue 728, 730
initial-boundary value 788
initial-value 19, 23 n th-order 180
Neumann 811
Sturm-Liouville 735
self-adjoint form 736
Product Log function 50
Product method 785
ProductLog 50
Pursuit models 64

Q

Quasiperiod 337
Quit 849

R
Radially symmetric solution 821
Radioactive decay 133
Radioactivity 133
Rayleigh's equation 25, 37
Reduction of order 193
Regular singular point definition 281
Remove 853
ReplaceAll (/.) 22, 29, 53
Replacement rule 16
ReplaceRepeated (//.) 213
Resistive force 163
Resonance 350
hearing 372
Rest point see Equilibrium (rest) point
Return 845
Root 723
Rössler attractor 441
RowReduce 424
Runge-Kutta method 111, 531
of order four 115
of order two 111

S

Saddle point 536
Sarcophagus 134
Save 849
Save As Special... 849

Second law of motion
Newton's 163
Self-adjoint form
Sturm-Liouville problem 736
Separable differential equation
definition 46
Separation of variables 46, 785
Series 273
Series
Bessel-Fourier 771
convergence 775
Fourier 749
convergence 752
cosine 746
definition 751
differentiation 764
generalized 770
integration 765
sine 738
p-770
Series solutions 268
about ordinary points 268
convergence 276
about regular singular points 281
method of Frobenius 283
Shapes 851, 852
Shift
phase 394
Shift-Return 845
Short 18, 495
Show 31, 122, 380
DisplayFunction 101, 380,384
GraphicsArray 13, 852
PointSize 380
Simple food chain in
chemostat 594
Simple harmonic motion 321, 329
Simplify 7, 47, 474
Sine series
Fourier 738
Singular point
definition 268
of equation with polynomial coefficients
definition 281
irregular definition 281
regular definition 281
SIR model
with vital dynamics 514
without vital dynamics 513
SIS model 98
Smooth piecewise
definition 764
Solution
D'Alembert's 806
definition 6
envelope 354
fundamental set 452
definition 185, 449
existence 191, 452
general 18, 217, 452
definition 187
global behavior 556
implicit 8
interesting 440
local behavior 556
meaningful 440
method of Frobenius 283
nontrivial 185
numerical methods
Euler's method 103, 525, 533
improved Euler's method 108
NDSolve 92, 506
Runge-Kutta method 111, 531 of order four 115 of order two 111
partial differential equation
definition 784
particular 86, 248
definition 216
to system 485
radially symmetric 821
series 268
about ordinary points 268 convergence 276
about regular singular points 281
method of Frobenius 283
steady-state 357
of system 429, 449
transient 357
vector
definition 449

Solve 9, 79, 202, 480, 514, 856
SolveAlways 224, 240, 633
Sound 372
Spectrum
power 313
Sphere 852
Spiral
stable 548
unstable 548
Spring
aging 370
elastic 321
hard 368
soft 365
Spring-mass system 574, 672 coupled 708
Stable node 535 degenerate 543, 544
spiral 548
star 543
Standard form definition 268
StandardForm 847, 848
Star
stable 543
unstable 543
Statistics

NonlinearFit

Nonlinearfit 215
Steady-state charge 389
Steady-state solution 357
Steady-state temperature 792
Step size 103
Streptomyces griseus 89
Sturm-Liouville problem 735
self-adjoint form 736
Sum 654, 657
Superposition principle of 187, 190, 785
Susceptible-infectedsusceptible model 98
Syntax
basic rules 849
System
autonomous 433, 535, 553
characteristic 836
of differential equations 3, 429
solution 429
linear see Linear system nonlinear see Nonlinear system

T

Table 13, 18, 29, 53, 188, 243, 414, 607
GrayLevel 19, 188
Length 18
Short 18
TableForm 90, 628
TakeColumns 419
TakeRows 419
Tangent vector 611
Tautochrone 689
Taylor series 112
Temperature 123
steady-state 792
transient 792
see also Newton's law of cooling
Ten-Minute Tutorial 859
Testing for diabetes 211
Together 654
Torus 852
TraditionalForm 847, 848
Trajectories
oblique 129
orthogonal 119 family of 121
Transform
Fourier 312
Laplace see Laplace transform
Transient solution 357
Transient temperature 792
Transpose 417, 419
Transpose of matrix 417, 419
Traveling wave solution 810
TrigToExp 466
Two-point boundary value problem 728

U

Undetermined coefficients
method of $86,222,352$
higher-order equations 239
second-order equations 223
systems 485
Union 516, 607
Uniqueness and Existence theorem 41, 180, 438
Unit impulse function definition 662
Unit step function 79
definition 645
solving initial-value problems with 649
Unit tangent vector 611
United States
population of 136,139
UnitStep 79, 622, 645
Unstable
node 536
degenerate 543, 544
spiral 548
star 543

V

Van-der-Pol equation 175, 427, 606
Variation of parameters 86, 248
Cauchy-Euler equations 265
higher-order equations 252
second-order equations 248
systems 490
Variational matrix 553, 588
Vector 415
column 415
constant 485
row 415
solution
definition 449
unit tangent 611
Verhulst, Pierre 138
Verhulst equation (logistic equation) 54, 138
with predation 141
Vibration of building 720
Violin string 25

W

Wave equation 3, 11, 799
on circular plate 298
in circular region 821
D'Alembert's solution 806 normal modes 12
Weighting function 736
Welcome Screen... 859
Wronskian 450 definition 181

