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Preface to the Second Edition 

Since its publication in 1992, Difference Equations and Inequalities has 
been received very positively by the international scientific community. Its 
success prompted a request from the publisher for an updated edition. 

In this edition, besides a new chapter on the qualitative properties of 
solutions of neutral difference equations, new material has been added in all the 
existing chapters of the first edition. This includes a variety of interesting 
examples from real world applications, new theorems, over 200 additional 
problems and 400 further references. 

The theory of difference equations has grown at an accelerated pace in the 
past decade. It now occupies a central position in applicable analysis and will 
no doubt continue to play an important role in mathematics as a whole. It is 
hoped that this new edition will be a timely and welcomed reference. 

It is a pleasure to thank all those who have helped in the preparation of this 
edition. I would especially like to thank Ms. Maria Allegra of Marcel Dekker, 
Inc., whose help was instrumental in the successful completion of this project. 

Ravi P. Agarwal 

Preface to the First Edition 

Examples of discrete phenomena in nature abound and yet somehow the 
continuous version has commandeered all our attention - perhaps owing to that 
special mechanism in human nature that permits us to notice only what we have 
been conditioned to. Although difference equations manifest themselves as 
mathematical models describing real life situations in probability theory, 
queuing problems, statistical problems, stochastic time series, combinatorial 
analysis, number theory, geometry, electrical networks, quanta in radiation, 
genetics in biology, economics, psychology, sociology, etc., unfortunately, these 
are only considered as the discrete analogs of differential equations. It is an 
indisputable fact that difference equations appeared much earlier than 

V 



vi Preface to the First Edition 

differential equations and were instrumental in paving the way for the 
development of the latter. It is only recently that difference equations have 
started receiving the attention they deserve. Perhaps this is largely due to the 
advent of computers, where differential equations are solved by using their 
approximate difference equation formulations. This self-contained monograph 
is an in-depth and up-to-date coverage of more than 400 recent publications and 
may be of interest to practically every user of mathematics in almost every 
discipline. 

It is impossible to acknowledge individually colleagues and friends to 
whom I am indebted for assistance, inspiration and criticism in writing this 
monograph. I must, however, express my appreciation and thanks to Ms. 
Rubiah Tukimin for her excellent and careful typing of the manuscript. 

Ravi P. Agarwal 
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Chapter 1 
Preliminaries 

We begin this chapter with some notations which are used throughout 
this monograph. This is followed by some classifications namely: linear 
and nonlinear higher order difference equations, linear and nonlinear first 
order difference systems, and initial and boundary value problems. W e  
also include several examples of initial and boundary value problems, as 
well as real world phenomena from diverse fields which are sufficient to 
convey the importance of the serious qualitative as well as quantitative 
study of difference equations. The discrete Rolle's theorem, the discrete 
Mean value theorem, the discrete Taylor's formula, the discrete I'Hospital's 
rule, the discrete Kneser's theorem are stated and proved by using some 
simple inequalities. 

1.1. Notations 

Throughout, we shall use some of the following notations: W = {0,1,. . .} 
the set of natural numbers including zero, W ( a )  = { a ,  a + 1, . . .} where 
a E W, W(a ,  b - 1) = { a , a  + 1, .  .. , b - l} where a. < b - 1 < 00 
and a ,  b E N. Any one of these three sets will be denoted by m. The 
scalar valued functions on m will be denoted by the lower case letters 
u.(k),  ~ ( k ) ,  . . . whereas the vector valued functions by the bold  face let- 
ters u(k), v ( k ) ,  . . . and the matrix valued functions by the calligraphic 
letters U ( k ) ,  V ( k ) ,  . . . . Let f ( k )  be a function defined on m, then for 
all k l ,  k-2 E and kl > kz ,  E:& f ( e )  = 0 and n:lk1 f ( e )  = 1, i.e. 
enlpty sums and products are t,aken to be 0 and 1 respectively. If k 
and k + 1 are in m, then for this function f ( k )  we define the shift 
op e ra t o r  E as E f ( k )  = f(k + 1). In general, for a positive integer m 
if k and k +'m are in m, then E"f ( k )  = E [ E " - l f ( k ) ]  = f ( k  + m,). 
Similarly, the forwa7.d and backward d i f f e r e n c e  op e ra t o r s  A and V 
are defined as A f ( k )  = f(k + 1) - f ( k )  and V f ( k )  = f ( k )  - f(k - 1) 
respectively. The higher order differences for a positive integer m are de- 
fined as A " f ( k )  = A [Arn,- ' f(k)]  . Let I be the iden,tity op e ra t o r ,  i.e. 
If(k) = f ( k ) ,  then obviously A = E - 1 and for a positive integer m 



2 Chapter 1 

we may deduce the relations 

and 

m 

(1.1.2) E " f ( k )  = (I  + A)"f(k) = c ( I I ' ) A i f ( k ) ,  Ao = I. 
i = O  

l, 

As usual R denotes the real line and R.+ the set of nonnegative reals. 
For t E R and m a nonnegative integer the factorial  expression, (t)'") 
is defined as (t) '") = nzil(t - i ) .  Thus, in particular for each k E 
IN, = k! .  

1.2. Difference Equations 

A d i f f e r e n c e  equation in one independent variable k E m and one 
unknown u.(k) is a functional equation of the form 

(1.2.1) f(k,?L(k),?L(k + l), . . . , u ( k  + n)) = 0, 

where f is a given function of IC and the values of u.(k) at IC E m. If 
(1.1.2) are substituted in (1.2.1) the latter takes the form 

(1.2.2) g(k,u(k),Au(k),...,AnZl,(k)) = 0. 

It was this notation which led (1.2.1) to the nanle difference equation. 

The o rd e r  of (1.2.1) is defined to be the difference between the largest 
and smallest arguments explicitly involved, e.g. the equation u(k + 3) - 
3 u ( k  + 2) + 7u(k  + 1) = 0 is of order two, whereas w,(k + 10) = k(k  - 1) 
is of order zero. 

The difference equation (1.2.1) is l inear if it is of the form 

(1.2.3) 
n, C a i ( k ) u ( k  + 2 )  = b(k) .  

.i=O 

If b(k) is different from zero for at least one k E m, then (1.2.3) is a 
nonhom,ogen.eous linear difference equation. Corresponding to (1.2.3) the 
equation 

n 

(1.2.4) C a i ( k ) u ( k + i )  = 0 
i=O 
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is callcd a homogeneous linear difference equation. 

Equation (1.2.1) is said to be nor.nral if it is of the form 

(1.2.5) u,(k + n) = f ( k ,  u , (k ) ,  7/4k + l), ' . , u ( k  + n, - 1)) 

or 

or 

(1.2.7) A " ' I / . ( ~ )  = f ( k ,  ~ ( k ) ,  ~ ( k  + l), . . . , ~ ( k  + TZ - 1)). 

We shall also consider system of difference equations 

(1.2.8) u(k  + 1) = f ( k , u ( k ) ) ,  k E m 
where U and f are 1 x n vectors with c:orrlponerlts w,i and f i ,  1 5 i 5 n, 
respectively. 

The nth order equation (1.2.5) is equivalent to the system 

Ui(k + 1) = U.i+I(k), 1 5 1: 5 R - 1 

?/,"(k + 1) = f ( k , l / , l ( k ) , 7 / , 2 ( k ) , ' . ' ,  Un(k) ) ,  k E W (1.2.9) 

in the scnse that ~ ( k )  is a solution of (1.2.5) if and only if 

(1.2.10) 7/>i(k) = v ( k  + i - l), 1 5 1: 5 R .  

A system of linear difference equations has the form 

(1.2.11) U ( k +  1) = A(k )u (k )  + b ( k ) ,  k 

where A(k )  is a given norlsingular n x n  matrix with elcrrlcnts a, i j (k ) ,  1 5 
i , j  5 n,, b(k )  is a givcn n, X 1 vector with corrlporlents b i ( k ) ,  1 5 i 5 
n,, u(k) is an unknown R X 1 vector with components u , i (k) ,  1 5 i 5 n,. 

If b ( k )  is different from zero for at least one k E m, then the system 
(1.2.11) is called rlorlhorrlogcrlcolls. Corresponding to (1.2.1 1) the system 

(1.2.12) u ( k +  1) = A(k )u (k ) ,  k E 'R 

is said to be homogeneous. 
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If a o ( k ) q , ( k )  # 0 for all k E m, then the nth order equation (1.2.3) 
is equivalent to the system (1.2.11) where 

(1.2.13) A(k) = 

and 

(1.2.14) 

It1 the above difference equations (systems) t,he funckions arc assumed 
to be defined in all of their arguments. Therefore, not all the systems can 
be written as higher order difference equations, e.g. 

7 I . l ( I c  + 1) = 211(k) + k.z(k) 

~ z ( k  + 1) = ( k  - 1 )~1(k )  + ~ z ( k ) ,  k E IN. 

1.3. Initial Value Problems 

is said to be a solu.tion, of the given nth order difference equation on 
if the values of u ( k )  reduce the difference equation to an identity over 
W. Similarly, a function u(k) defined on wl is a solution of the given 
difference system 011 provided the values of u(k) reduce the difference 
system to an equality over N. 

- 

The gen,eral solution of an nth order difference equation is a solution 
w(k) which depends on n, arbitrary constants, i.e. ~ ( k ,  cl,. . . ,c,) where 
ci E R, 1 5 i 5 R. W e  observe that these constants ci can be taken as 
periodic f u m c t i o n ~ ~  ci (k)  of period one, i.e. ci(k + 1) = c i ( k ) ,  k E mn-l. 

Similarly, for the systems the general solution depends on an arbitrary 
vector. 
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For a given n.th order difference equation 011 m we are usually inter- 
ested in a particu.lar solution, on mm, i.e. thc one for which the first n, 
consecutive values termed as initial condition,s 

(13.1) u ( a + i - l )  = W,i, l < i < n  

or 

(1.3.2) A""u(~) = I I , ~ ,  1 5 i 5 n, ( a  = 0 if ET = IN) 

are prescribed. Each of the differcnc:e equations (1.2.1), ..., (1.2.7) togcther 
with (1.3.1) or (13.2) is called an initial va lu e  pgroblem,. Similarly, the 
system (1.2.8) together with 

(1 3.3) U(.) = U 0 

is called an initial value problem. For the linear systems (1.2.11) and 
(1.2.12) we shall also consider more general initial condition 

(1.3.4) u(k0) = uo, 

where k.0 E m 1  is fixed. 

For k = a ,  equation (1.2.5) becomes 

~ ( a .  + n) = f ( a ,  ~ ( a ) ,  u.(a + I), . . . , u(a, + R - 1)). 

Using the initial corldit,iorls (1.3.1), we find 

Hence the value of ~ ( a  + n) is uniquely determined in terms of known 
quantities. Next, setting k = a + 1 in (1.2.5) and using the values of 
v,(a + l), . . . , u (n  + n) we find that u ( a  + 1 + n) is uniquely deter- 
mined. Now using irlductive arguments it is easy to see that the initial 
value problem (1.2.5), (13.1) has a unique solution u ( k ) ,  k E W ,  and it 
can be constructed recursively. Because of this reason difference equations 
are also called r e c um iu e  relatl,on.s. The ezisten,ce and uniquen,ess of 
each of the initial value problems (1.2.5), (1.3.2); (1.2.6), (1.3.1) or (1.3.2); 
(1.2.7), (1.3.1) or (1.3.2); (1.2.8), (1.3.3) follow similarly. For the initial 
value problem (1.2.11), (1.3.4) the existence and uniqueness of the solution 
u ( k ) ,  ko 5 k E is now obvious, whcreas for ko 2 k E m we need to 
write (1.2.11) as 

(1.3.5) ~ ( k )  = d-l(k)u(k + 1) - d-'(k)b(k) 



ant1 from this u(k0 - 1) and then u(k0 - 2) ant1 so forth, can be obtained 
miquely. 

Finally, WC note that the initial value problem (1.2.3), (1.3.1) need not 
have a solution or a unique solution, e.g. the problcrrl k u ( k  + 2) - u,(k) = 
0, k E I N ,  ~ ( 0 )  = 1, u , ( l )  = 0 has no sollltion. In fact, for k = 0 the 
difference equation gives ~ ( 0 )  = 0, which violates the initial conditions. 
Also, the initial value problem ICu(k+ 2) -7/,(k) 
0 has infinitely many solutions 

. ,  

odd 

for k even, 

if ao(k)a, ( k )  # 0 for all 

1.4. Some Examples: Initial Value Problems 

The following cxamples provide a variety of situations of oc:mrrcrlc'e of 
initial value problems. 

Example 1.4.1. Let k 2 1 given points i n  a plane be s ~ ~ h  that any thrcc 
of them arc noncollinear. WC shall find the 1111rr1bcr of straight lines that 
can be forrncd by joining together cvcry pair of points. For this, let ~ ( k )  
represents the nurrltm of suc.11 lincs. Let a new point t x  added to the set 
of k points, which is also rlorlcdlirlcar with any other pair. The rn1mt)cr 
of lines can now be written as ~ ( k  + 1). This ~ ( k  + 1) ('an be found from 
~ ( k )  by adding the k IKW possible lines from the new (IC + 1)th point to 
each of thc previous k poirltk Thnls, it follows that 

(1.4.1) ?/,(k + 1) = U ( k )  + k ,  IC E IN(1). 

Since when k = 1 there is no pair of points, it is obvions that 

(1.4.2) ?/,(l) = 0. 

The first, order initial value problem (1.4.1), (1.4.2) has a unique solution 
~ ( k )  = (1/2)k(k - l), k E W(1).  

Example 1.4.2. In nllmber theory the following result is fundanlental: 

Theorem 1.4.1. Every positive integer greater than one can be expressed 
as the product of only a single set of prime nu~rhers. 
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The classical method of proving that thcre is no greatest prime mnnber 
is as follows: Suppose the contrary he true and the finite system of primes 
is ?!(1), ?)(a), . . , u ( k )  where ~ ( 1 )  < ~(2 )  < . . . < o ( k ) .  Then, the rlurrlber 
m = ~J(~)TJ(~)..-II(~) + 1 is prime to ~ ( 1 ) ~  ?1(2),...,v(k) . Hence, from 
Theorem 1.4.1, m is a prime which is greater than ~ ( k ) .  

Let us write t,his process of dcrivation of 'greater primes' from 'lesser 
primes' thus 

Then, we have 

Thus, the problem gives rise to a nonlincar difference equatiou, which by 
writing u(k)  = ~ ( k )  - (1/2) takes the compact form 

(1.4.3) u(k+ 1) = u 2 ( k )  + 4, k E nv(1). 
1 

Further, since ~ ( 1 )  = 2, for the difference equation (1.4.3) we find the 
initial condition 

(1.4.4) W. ( l )  = 3/2. 

Example 1.4.3. Consider the definite integral 

(1.4.5) 

It can easily be seen that 0 < u ( k )  < u ( k  - 1) and u ( k )  + 0 as k + m, 
also 

(1.4.6) ~ ( k  + 1) = 1 - ( k  + 1 ) ? ~ ( k )  

(1.4.7) ~ ( 1 )  = -. 
1 
e 
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With 1/e correct to any number of places, the difference equation 
(1.4.6) provides unrealistic values. Indeed, rounding all the calculations to 
six decimal places, we obtain 

~ ~ ( 1 )  = 0.367879 
~ ( 2 )  = 0.264242 
~ ( 3 )  = 0.207274 
~ ( 4 )  = 0.170904 
~ ( 5 )  = 0.145480 
~ ( 6 )  = 0.127120 

~ ( 7 )  = 0.110160 
w.(8) = 0.118720 

~ ( 1 0 )  = 1.684800 

~ ( 1 2 )  = 211.393600. 

~ ( 9 )  = -0.068480 

~ ( 1 1 )  = -17.532800 

Example 1.4.4. Let PK(~) = x k : = O a ( k ) t k  be a given polynomial 
of degree K .  Consider the problem of finding a polynomial Q K ( ~ )  = 
x A : = o ~ ( k ) t k  of degree K such that QK(t )  - Q L ( t )  = PK(~), t E R. 
This leads to the following initial value problem 

K 

K 

(1.4.8) ~ ( k )  = ( k  + l)?I,(k + 1) + ~ ( k ) ,  k E W(0, K - 1) 

(1.4.9) u(K)  = a ( K ) .  

Example 1.4.5. Often we need to compute the value of P K ( ~ )  = 
Cf=(=,a(k) tk  at some to E R. The cornputation of a ( k ) t b  = a(k)  x 
t o  x . . . x to needs k multiplications, and hence to find PK(t0) we require 
in total K ( K  + 1)/2 multiplications and K summations. Homer's 
m,eth,od is an algorith,m (a list of instructions specifying a sequence of 
operations to be uscd i n  solving a certain problem) which reduces these 
rrmltiplications to only K and the same number of sumrnations. 

At t = to, we begin with the representation 

Thus, if the numbers ~ ( k )  are obtained from the scheme 

(1.4.10) ~ ( k )  = a ( k )  + t o ~ ( k  + l), k E N(O,K - 1) 

(1.4.11) w.(K) = a ( K ) ,  

then v.(O) = PK(t(=,). 

It is easy to see that the initial value problem (1.4.10), (1.4.11) is equiv- 
alent to 

(1.4.12) ~ ( k  + 1) 1 a ( K  - k - 1) + t o ~ ( k ) ,  k E W(0, K - 1) 

(1.4.13) ~ ( 0 )  = a ( K )  

and u ( K )  = P ~ ( t 0 ) .  
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Example 1.4.6. Consider the initial value problem 

(1.4.14) (t + 1 ) ~ "  + y'+ ty = 0 

(1.4.15) ~ ( 0 )  = 1, ~ ' ( 0 )  = 0. 

Evidently t = 0 is an ordinary point of the differential equation (1.4.14). 
Insertion of y ( t )  = CEO 7r(k)tk into (1.4.14) yields 

cc cc cc cc c k (k - l )?r (k ) t " "+x  k ( k - l ) l r ( k ) % " " + ~  k u ( k ) t k " + x  v,(k)t"+l = 0, 
1.=0 A:=O b:=O k.=O 

which is the same as 
cc 

2 ~ ( 2 )  + v.(l) + c [ ( k  + l )ku,(k  + 1) + ( k  + 2)(k + l ) v . (k  + 2 )  
k=1 

+ ( k  + 1)11.(k + 1) + ~ . ( k  - l)] tk = 0. 

Thus, on equating thc coefficients of tk to zero, we obtain 

(1.4.16) 2 ~ . ( 2 )  +u(1) = 0 

(1.4.17) ~ ( k + 2 )  = -- ( k  + %(k+l)-  1 
( k  + 2 )  ( k  + l ) ( k  + 2) 

u ( k - l ) ,  k E N(1). 

From the initial conditions (1.4.15) it is obvious that u(0)  = 1, u(1) = 0 
and from (1.4.16) WC find v.(2) = 0. Thus, i n  turn we have a third order 
difference equation (1.4.17) together with the initial conditions 

(1.4.18) U,(()) = 1, u(1) = 0, ~ ( 2 )  = 0. 

Example 1.4.7. A system of polynomials {Pk:(t)}, k E N is called an 
orthonorrrlal system with respect to rlormegative wcight function w ( t )  over 
the interval [cy, [I] , if 
1. Pk: (t) is a polynomial of degree k 

W e  will writc 

(1.4.19) P k ( t )  = a(k ) t k  + b(k)t"" + '. ' 
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(:,q,k-l = a ( k  - l ) / u ( k ) .  To obtain ck ,k  we cornpare the coefficients of tk, 

this gives ck,A; = - - b ( k )  h(k + 1) 
a(k) a ( k  + 1) ' 

Thus, (1.4.20) takes the form 

(1.4.21) t P k ( t )  = a ( k )  h ( k )  b (k  + 1) 
a(k + 1) a ( k  + 1) 

Hence, on identifying Pk(t) as v.(k) we observe that any three succes- 
sive orthonormal polynomials satisfy the second order difference equation 
(1.4.21). 

In particular, if w ( t )  = (1 -t2)"I2 and /? = --cy = 1, then (1.4.21) rc- 
duces to known recurrence formula for the Chebysh,ev polynmm,ials denoted 

by TL: ( t )  

(1.4.22) T k + l ( t )  = 2tT,:(t) - a(k)Tk-l(t), k E W(1) 

where a(1) = fi and a(k)  = 1 for all k E N(2) .  

The initial functions for (1.4.22) are defined to be 

(1.4.23) 

Example 1.4.8. Let g(u) = 0 be a system of n nonlinear equations 
i n  n unknowns I L ~ ,  . . . , U , .  Newton's me thod  for solving this system is 
in fact an initial value problem of the type (1.2.8), (1.3.3) where 
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1.5. Boundary Value Problems 

Another choice to pin out the solution u(k) of a given difference system 
011 N(a, h - 1) can be described as follows: Let B ( a ,  h) be the space of 
all real R vector functions defined on W(a, h) and 3 be an operator 
mapping B(a ,  h)  into R", then our concern is that u(k) must satisfy 
tllc boundary condition 

(1.5.1) F [ U ]  = 0. 

System (1.2.8) or (1.2.11) or (1.2.12) together with (1.5.1) is called a bomd-  
ary oalue pr.oblern,. Obviously, initial c:ondition (1.3.3) as well as (1.3.4) 
is a special case of (1.5.1). The tcrrn bolmdary (:onclition c'orrlcs from the 
fact that .F allows the possibility of tlcfiuing cwlditiorls at the points a. 
and b of W(a, h) .  For example, let kl < . . . < k,. (T 2 2) be sorne fixed 
points in N(a, h ) ,  t,hen we seek a solution u(k) of the diffcrcncc system 
on N(k.1, k,. - 1) satisfying 

(1.5.2) $i(U(k-l), .'. ,u(k,,.)) = 0, 1 5 i 5 n 

In the case when .F is lirlcar we shall prefer to write the boundary 
condition (1.5.1) as 

(1 5.3) L[u] = 1, 

where thc vector 1 is known. Similarly, if 4i, 1 5 i 5 R are linear, then 
(1.5.2) will be written as 

(1.5.4) 

(1.5.5) 
i= l  q=l 

It is of interest to note that (1.5.4), or equivalently (1.5.5), include i n  
particxlar the 



12 Chapter 1 

(i) Periodic Conditions: T = 2 and for simplicity we let k.1 = 0, = K 

(1.5.6) u(0) = u ( K ) .  

(ii) Implicit Separated Conditions: 

(1.5.7) x ~ , i ( ~ , ) , ~ u , ~ ( k , ; )  = 1 5 i 5 T (2 5 T 5 n ,  but fixed) 
n, 

q= 1 

where s1 = 1,2 , .  . . ,pl; . . . ; S,,. = 1,2, . . . ,[j,. and C:=, [ji = n. 
The subscript i ( . s i )  allows thc possibility that a t  thc same point ki 

several boundary conditions arc prescribed. 

(iii) Separated Conditions: 

(1.5.8) U+")(k.L) = P ,,,, Z ( S & ) ,  1 5 i 5 T (2 5 T 5 n,, but fixed) 

whcre .s,i, 1 5 i 5 T arc the same as in (1.5.7). 

I n  (1.5.8) the subscript i (s i )  allows the possibility that the set of 
variables spccificd at  the boundary points may not be disjoint. For instance 
if n = 7, T = 4, ul(kl), 7Lg(kl), 7~2(k2), ug(kg),  ~ 1 ( k 4 ) ,  u ~ ( k 4 )  and 
7~7(k4 ) ,  then u,1 is fixed at  kl and k4, and 71,s is fixed a t  kl and kg, 
whcrcas no condition is prcscribcd for 764 and 71,s. The indexing for the 
boundary conditions is specified by I(1) = 1, I(2) = 3, 2(1) = 2, 3(1) = 
3, 4(1) = 1,4(2) = 6 and 4(3) = 7. 

For a given nth ordcr diffcrcncc equation on N ( a , b  - 1) WC shall 
consider sorrle of the following conditions. 

(i) Niccoletti Conditions: 

~ = I c ~ < I c ~ + 1 < ~ ~ < k ~ + 1 < ~ ~ ~ < k , ~ ~ < k , _ ~ + 1 < k , = b - 1 + ~ ,  

where cach ki E N(u ,  b - 1 + v.) 

(1 5.9) ~ ( k i )  = Ai,  1 5 i 5 n. 
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(iii) Abel-Gontscharoff Conditions: 

(iv) (n,p) Conditions: 

A”u(a.) = A ; ,  0 5 i 5 R - 2 
(1.5.12) 

A”v.(b - 1 + n. - p )  B, (0 5 p 5 n, - 1, but fixed). 

(v) (p, n,) Conditions: 

A ” u ( ~ )  = I?, (0 5 p 5 R - 1, but fixed) 
(15.13) 

A’~?r(b+ 1) = Ai, O 5 i 5 n, - 2. 

1.6. Some Examples: Boundary Value Problems 

The following examples are sufficient to dernonstrate how discrete bound- 
ary value problems appear. 

Example 1.6.1. Consider a string of length K + 1, whose mass may 
be neglected, which is stretched betwecn two fixed cnds A and B with a 
force f and is loaded at intervals 1 with K cqual masses M not 
under the influence of gravity, and which is slightly disturbed so that the 
tension in the string is constant along each segment and equal to f. Let 
7 J (k ) ,  1 5 k 5 K (Figure 1.6.1) be the ordirlatcs at tirrle t of the K 
particles. Then, the restoring force in the negative direction is given by 
F ( k )  = f [ ( u ( k  - 1) - v (k ) )  + ( ~ ( k  + 1) - ~ ( k ) ) ] .  Thus, by Newtonj’s second 

law the equation of motion of the kt11 particle is 
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Figure 1.6.1. 

Since each particle is vibrating, let v ( k )  = w.(k) cos(wt + 4) in the 
above equation, to obtain 

- u h f u , ( k )  + f ( - u . ( k  - 1) + 2u,(k) - U>(k + 1)) = 0, 

which is the same as 

(1.6.1) u,(k + 1) - cu.(k) + u ( k  - 1) = 0, k E IN(1,K) 

where c = 2 - ( w 2 ~ / f ) .  

This second order homogeneous difference equation represents the am- 
plitude of the motion of every particle except the first and last. In order 
that it may represent these also, it is necessary to suppose that v (0 )  and 
v ( K  + 1) are both zero, although there are no particles corresponding to 
the values of k equal to 0 and K + 1. With this understanding, we find 
that 

(1.6.2) ~ ~ ( 0 )  = u,(K + 1) = 0. 

Equation (1.6.1) together with (1.6.2) is a second order boundary value 
problem. 

Example 1.6.2. Consider the electric circuit shown in Figure 1.6.2. As- 
sume that V0 = A is a given voltage and VK+~ = 0, and the shaded 
region indicates the ground where the voltage is zero. Each resistance in 
the horizontal branch is equal to R and in the vertical branches equal to 
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4R. W e  want to find the voltage Vk for 1 2 k 5 K .  For this, according 
to K i d o f f  ' S  curren,t law, the sum of the currents flowing into a junction 
point is equal to the sum of the currents flowing away from the junction 
point. Applying this law at the junction point corresponding to the voltage 
Vj:+l, WC have 

I k + l  = h + 2  + i k + l .  

Using Ohlm 'S law, I = VIR, the above equation can be replaced by 

K: - K:+1 - K:+1 - K:+2 &.+l - 0 
R + 4R ' R 

- 

which is on identifying Vk. as w.(k) leads to the second order difference 
equation 

(1.6.3) 4~,(lC + 2) - 9 ~ ( k  + 1) + 4 ~ ( k . )  = 0, k E N(0, K - 1) 

and the bo'undary conditions arc 

(1.6.4) v.(O) = A, ?],(K + 1) = 0. 

7 ,,,,,,,,,,,,,,,, ~, I t , I I _ I , I , _ .  

Figure 1.6.2. 

Example 1.6.3. To test whether a batch of articles is satisfactory, we 
introduce a scoring system. The score is initially set at (K /? )  + (n  - 1). 
If a randomly sampled item is found to be defective, we subtract (TI - 1). 
If it is acceptable, we add 1. The procedure stops when the score reaches 
either K + (n - 1) or less than (n  - 1). If K + (n. - l), the batch is 
accepted; if less than (n, - l), it is rejected. Snppose that the probability 
of selecting an acceptable item is p, and q = 1 -p.  Let Pj. denote the 
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probability that the batch will be rejected when the score is at  k .  Then 
after the next choice, the score will be increased by 1 with probability p 
or decreased by (n, - 1) with probability q. Thus 

4 = P k + 1  + qpk-(n,-l),  

which on identifying P k  as u ( k )  can be written as the n,th order difference 
equation 

1 
P P 

(1.6.5) ~ ( k  + n.) - -u(k  + n - 1) + - ~ ( k )  cl = 0, k E N(0, K - 1) 

with the boundary conditions 

(1.6.6) u ( 0 )  = u(1) = ' ' ' = u(n. - 2) = 1, 7f4K - 1 + n,) = 0. 

Example 1.6.4. To overcome thc difficulty realized in Example 1.4.3, 
using the known behavior of u ( k ) ,  Dorn and RilcCracken [l61 used the 
famous recurrence algorithm proposed by Miller [34]. They took u ( K )  = 0 
for suffic:icrltly large K and recursed (1.4.6) backward. To chxk  the 
accuracy of results, they arbitrarily chose K1 > ( K )  and obtained another 
set of values of the integral (1.4.5). Thc search for K and K1 continues 
urltil thc results agree to the desired degree of accuracy. However, this 
rrlet,hod does not appear to be practicable. To cvaluate the integral (1.4.5) 
we notice that u ( k )  also satisfies 

(1.6.7) ~ ( k  + 2) = ( k  + l ) ( k  + 2 ) ~ ( k )  - ( k  + l), k E N(0, K - 1) 

together with 

(1.6.8) v,(l) = 1 - u(0)  

and for sufficiently large K ,  w.(K+2) = u ( K + l )  and hence (1.4.6) implies 

(1.6.9) 
1 

u ( K +  1) = - 
K + 3 '  

The boundary value problem (1.6.7) ~ (1.6.9) will be solved satisfactorily 
later in Example 8.5.2. 

Example 1.6.5. For the continuous boundary value problem 

(1.6.10) V'' = f ( t ,  !/l 
(1.6.11) Y(Q) = A ,  ?/(P) = B 
the following result is well known [SO]: 
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Theorem 1.6.1. Let f ( t ,  y) be continuous 011 [a, a ]  x R and 

(1.6.12) 

Then, the boundary value problem (1.6.10), (1.6.11) has a urlique solution. 

However, even if f ( t ,  W) = f ( t )y+g(t)  the analytical solution of (1.6.10), 
(1.6.11) may not be determined. Faccd with this difficulty we find an 
approximate solution of (1.6.10) , (1.6.11) by employing discrctc variable 
mcthods. One of such well known and widely used discrete rnetllods is due 
to Nom,e,row which is defined as follows: W e  introduce the set { t k } ,  wherc 
t k ;  = cy + kh,, h = ( a  - cr)/(K + l), k E W(O,K + 1). Let u,(k) be the 
approximation to the true solution y ( t )  of (1.6.10), (1.6.11) at t = t k .  We 
assume that 7r(k) satisfics the following second order diffcrence cqnatiorl 

(1.6.13) u ( k  + 1) - 27r(k) + u ( k  - 1) = -h,2( f (O + ( k  - l ) h , u ( k  - 1)) 
1 
12 

+ lOf ( cu+  kh,,Il,(k)) + f (0  + ( k  + l)h, ,u,(k + l))), k E IN(1,K) 

together with the boundary conditions 

(1.6.14) ~ ( 0 )  = A ,  ?/,(K + 1) = B 

The existerlcc and uniqueness of the boundary value problem (1.6.13), 
(1.6.14) and its uscfulness in coI1juction with initial valuc rncthods will be 
given in later chapters. 

Example 1.6.6. Let [cy,@ be a given intcrval, and P : a = to < tl 
< . .. < tK+l  = be a fixed partition. W e  scck a function Sp( t )  E 
C(2) [a ,p ]  which coincides with a cubic polynomial in each subinterval 
[tk-I,tk], k E IN(1,K + 1) and satisfies S,(tk) = yk:, k E N(0, K + 1) 
where the ordinates yk arc prescribed. The function Sp(t)  is called a 
cubic spline with respect to the partition P. 

Designating S g ( t ~ . )  by M k ,  k E N ( 0 , K  + 1) the linearity of Sg( t )  
in each subinterval [tk-l, t k ] ,  k E W(1, K + 1) implics that 

(1.6.15) 

where hk = tl; - t k - 1 .  If we integrate twice (1.6.15) and evaluate the 
constants of integration, we obtain the equations 
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and 

From (1.6.17), we have 

In virtue of (1.6.15) and (1.6.16), the functions S$( t )  and S p ( t )  are 
continuous on [a, 01. The continuity of Sb(t)  at t = t~; yields by means 
of (1.6.18) and (1.6.19) the following secorld order difference equation 

k E W(1, K ) .  

0nc:e two appropriate boundary conditions, say, MO and M K + ~  are 
prescribed, the solution of (1.6.20) serves to determine Sp( t )  in each 
subinterval [tI;-l, tk]. 

Difference equation (1.6.20) can be used to find an approximate solution 
of the problem (1.6.10), (1.6.11). For this, we observe that Mc; are given 
to be f(tk,yl ;)  and the problem is to find V I ; ,  k E N(0, K + 1). Thus, 
if i n  particular hI; = h,  k E W (  1, K + 1) then once again we have t~; = 
N i- kh, h = (p - a ) / ( K  + 1) and on identifying yk as u(k)  we need to 
solve the following difference equation 

(1.6.21) u ( k  + 1) - 2u,(k) + u(k  - 1) = - h 2 ( f ( o  + ( k  - l )h ,u (k  - 1)) 
1 
6 

+ 4 f ( a  + kh, 4 k ) )  + f(o + ( k  + l ) h ,  w.(k + l))), k E N(1, K )  

together with the boundary conditions (1.6.14). 

Example 1.6.7. Let in a domain D C RK+’ the function q5(tl,. . . , t ~ + ~ )  
be given for which third order derivatives exist. Then, a necessary condition 
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for a maximlml or mininlurrl is that 

(1.6.22) 

If (1.6.22) is satisfied at  ( t i ,  . . . , tk+,), then a sufficient condition for 
a minimurn at this point is that all the deterrrlinants 

D(0)  = I 

all a12 

a21 0,22 0,23 

(1.6.23) D ( k )  = , ... ... ... 

ak-1,k-z a,A:-1+1 o,A.--~,A. 
0 , k J - l  a k , L  

k E N(1, K + 1) 

arc positivc. Further, a sufficient condition for a maxiImnl is tjhat D(k ) ,  k E 
W(0, K + 1) alternate in sign. 

It is interesting to note that D(k )  is the solution of t,he initial value 
problem 

(1.6.24) D ( k )  = ar:~:D(k - 1) - a , z , k - l D ( k  - 2), k E IN(2,K + 1) 

(1.6.25) D(0)  = 1, D(1) = a l l .  

Now consider the problem of minimizing the finite sum 

K 

(1.6.26) 4 = c f ( k , % P ) ,  
L=O 

where U is to be determined as a function of k ,  and where p = Au(k). 

The necessary condition (1.6.22) for a minimum gives a second order 
difference equation 

(1.6.27) - = 
au ( k )  

where f ( k )  = f ( k , u , p ) .  

In case u(0) and/or u(K+1) are variable as well as U ' S  at intermediate 
points, we have in addition to (1.6.27) the relations 

(1.6.28) ftL(0) - f , ( O )  = 0 
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and/or 

In the contrary case, we assume that ~ ( 0 )  and u (K  + 1) are fixed 

(1.630) u(0)  = c, w.(K + 1) = D. 

The solution of the boundary value problem (1.6.27), (1.6.30) in the 
case w.(O) and v . ( K  + 1) are fixed, or (1.6.27) -~ (1.6.29) in the other case, 
is called a critical function. This critical function provides a minimum if 
the solution of (1.6.24), (1.6.25) is positive for all k for which u(k)  is 
variable. If, on the other hand, D ( k )  alternates i n  sign then it gives a 
maxirnum. 

In partic:ular, for the function f(k,u,p) = 4u2 + 3 p 2 ,  equation (1.6.27) 
takes the form 

(1.6.31) 3ll (k + 2) - 10v,(k + 1) + 3?f , (k)  = 0. 

The solution of the boundary value problem (1.6.31), (1.6.30) appears as 

Further, since for this function qbu(l:).u,(k. = 20 and &(k)u(k"l) = -6, the 
initial value problem (1.6.24), (1.6.25) reduces to 

(1.6.33) D(k  + 2) - 20D(k + 1) + 36D(k) = 0 
(1.6.34) D(0)  = 1, D(1) = 20. 

The solution of (1.6.33), (1.6.34) can be written as 

(1.6.35) D(k)  = - ( 1 8 k + 1  - 
1 
16 

2k+7 . 

From (1.6.35) it is clear that D ( k )  > 0 as long as k > 0, and 
consequently qb = CkK_,(4u2 + 3p2)  is a minimum when w.(k) is given by 
(1.6.32). 

Example 1.6.8. Consider thc potential equation 

(1.6.36) 

over the rectangle 0 5 z 5 CY, 0 5 y 5 p. We shall assume that the 
values of u(x ,y )  are specified on thc bourldary of the rectangle. If we 
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I I I ~ ~ K ,  1 < e < L  

where X = h,:/hz. 

Let us define the K+2 vectors u(k) of order L x  1 by u(k) = ( u k , ~ ) ,  

1 5 L 5 L.  Since we are given the values ( 7 ~ 0 ~ )  and (u,K+I,p), we have, 
say 

(1.6.38) u(0) = C ,  u(K + 1) = d. 
Next, we define an L x L matrix Q = (q;.j), where 

{ 
{ 

(2+2X) if i = j  

4 ; '  = -X if Ii - jl = 1 13 

0 otherwise. 

W e  also define vectors r(k) of order L x 1 by r (k )  = (TA:,!), 1 5 L 5 L 
where 

if I = 1 

r k , p  = Xll,k,L+l if I = L 
0 otherwise. 

Clearly, the vectors r(k) are given by the boundary conditions on the 
edges v = 0 and v = B. With these notations, (1.6.37) can be written as 
the second order difference system 

subject to the boundary conditions (1.6.38). 

If we define v(k) by u(k + 1) = v(k), then (1.6.39) is equivalent to 
the first order systerrl 

u(k + 1) = v(k) 
(1.6.40) 

v(k + 1) = - u(k) + Qv(k )  - r (k  + l), 0 5 k < K - 1 

and the boundary conditions (1.6.38) are the same as 

(1.6.41) ~ ( 0 )  = C ,  v ( K )  = d. 
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1.7. Some Examples: Real World Phenomena 

The following examples illustrate the irrlportancc of difference equations 
to some real world problems. 

Example 1.7.1. (Hardy-Weinberg Law). Every characteristic: of an 

individual, like height or color of the hair, is dct,errrlirlctl by a pair of genes, 
one obtained from the father and the othcr from the mother. Every gene 
occurs in two forms, a dorrlinant denoted by D and a rcc.cssivc denoted by 
R. Thus with respcct to a charac:t,cristic, an irdividual may be a dorrlirlarlt 
DD,  a hybrid DR or RD or a rcc:cssivc RR. 

In the k t h  gcrlcratkm, lct thc proportions of tlo1ninants, hybrids and 
rcccssivc be p(k), q ( k ) ,  r ( k )  so that 

(1.7.1) p (k )  + q ( k )  + ~ ( k )  = 1, p (k )  2 0, q ( k )  2 0, ~ ( k )  2 0. 

WC assume that individuals, in this gcI1cration rrlatc at, randorrl. Then, 
p(k + 1) = the probability that an irltlividual in the ( k  + 1)th generation 
is a tlornirlant (DD)  = (probability that this irldividllal gets a D from 
the father) x (probability that this intlividld gct,s a D from the mother), 
i.c. 

or 

(1.7.2) 

Similarly, 

(1.7.3) 

and 

(1.7.4) 

so that 

(1.7.5) 

1 2 

T(k  + 1) = ( T ( k )  + @ k ) )  

p(k + 1) + q(k  + 1) + T(k + 1) 

as cxpected. Similarly, 
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(1.7.6) 

and 

(1.7.7) q(k+2) = q ( k +  l), r (k+2)  = r ( k +  1) 

so that the proportions of dominants, 1lyt)rids and recessive in the (k+2)th 
generation arc the sarne as ill the ( k  + 1)th generation. Thus ill any popw 
lation i n  which random mating takes place with respect to a characteristic, 
the proportions of dominants, hybrids and recessive do not change after the 
first generation. Equations (1.7.2) ~ (1.7.4) is a set of difference equations 
of the first order. 

Example 1.7.2. (Improvcmerlt Through Elimination of Recessives). Sup- 
pose the recessive are undesirable and so we do not allow the recessive in 
any generation to breed. Let p(k) ,  q ( k ) ,  r ( k )  be the proportions of 
dominants, hybrids and recessives before elimination of recessives and let 
p1 ( k ) ,  q1 ( k ) ,  0 be the proportions after the elimination, then 

Now we assurrle random mating and let p(k + l), q(k  + l), ~ ( k  + 1) be 
the proportions i n  the next generation before elimination of recessives, then 
using (1.7.2) - (1.7.4), we get 

(1.7.9) 
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(1.7.11) 
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After clirnination of recessives, let the ncw proportions be p1 (k + l), (I1 ( k -  + 
l), 0 so that 

(1.7.12) - - - 
Pl(k + 1) 41(k + 1) 1 1 
p(k + 1) q(k + 1) p(k + 1) + q(k + 1) 1 - 

- - - 

and 

(1.7.13) 

Equation (1.7.13) can be solved rather easilv, to obtain 

(1.7.14) 
1 

(Il(k.1 = - 
c + $ k ’  

where c is an arbitrary constant. From (1.7.14) it is char that ql(k)  --f 0 
as k + 03, i.e. dtinlately we would be lcft with all dominants. Equation 
(1.7.14) also determines the rate at which hybrids disappear. 

Example 1.7.3. (Traffic in Channels). Consider a channel, for example a 
telephone line, and suppose that two clcrnentary informations 5’1 and 5’2 

of duration kl and k2 respectively can be combined in order to obtain a 
message. Let k be a time interval greater than bot,h kl and kz. WC are 
interested in the number of messages u ( k )  of length k .  Thcse messages 
can be divided in two groups: those ending with S1 and those ending with 
5 ’2 .  The number of messages in the first group is u(k - ICl) while in the 
second group is u (k  - k2). Then, WC have 

(1.7.15) u ( k )  = u ( k  - k , )  + w,(k - kz).  

Suppose, for simplicity, that IC1 = 1 and kz = 2. Then, equation (1.7.15) 
becomes u(k )  = u ( k  - 1) + u ( k  - 2). Clearly, for this equation initial 
conditions are u(1) = 1, 4 2 )  = 2. This initial value problem defines the 
Fibonacci numbers (see Problem 1.9.16). 

Example 1.7.4. (Queuing Theory). Consider a queuc of individuals or 
telephone calls in a channel. Let P k ( t )  be the probability of k items 
arriving at time t and we have Pk(t) = 1. 

Let AAt be the probability of a single arrival during the small time 
interval At and suppose that the probability of more than one arrival in 
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the same interval is negligible. Let pAt be the probability of corrlpleting 
the service in the interval At. W e  shall assume that the service is a 
Poisson process, i.e. the probability of no arrivals in At is 1 - XAt 
and the probability of the service not corrlpleted in At, no departures, 
is 1 - XAt.  The following model describes the situation where at the 
beginning thcrc are no items in the single channel queue and the service is 
made on a first come. first served basis 

Pk(t+At) = P k : ( t ) ( l - X A t ) ( l - f l A t )  + Pk:-l(t)XAt + Pk:+l( t )pAt ,  k 2 1 

Po(t + At) = Po(t)(l - X A t )  + Pl(t)pAt.  

These equations indicate that the probability that at time t + At there 
are k items i n  line is equal t,o the surn of three terms: 

1. The probability of already having k items at time t rndtiplied by the 
probability of no arrivals during At ancl the probability of no departure 
in the same interval. 

2. The probability of having k - 1 items at t,irrlc t rnultiplicd by the 
probability of a new arrival in At. 
3. The probability of having k + 1 items at time t rrlultiplicd by the 
probability of a departure in At. 

Taking the limit as t -+ 0, we obtain 

P;:(:) = - ( X  + p)Pk:(t) + XP&l( t )  + pPk+l ( t ) ,  k 2 1 
PA(t) = - X P o ( t )  + pP1(t). 

It  is important to know how the above system behaves for large t ,  i.e. if 
the limit Pk = h t . + m  p k ( t )  exists. The probability of Pk describes the 
steady state of the problem, and so derivatives are zero. H ~ ~ l c e  Pk satisfy 
the difference equations 

(1.7.16) PPk+l - ( X  + p)Pk: + XP,:-, = 0 

(1.7.17) -XPo + /LP1 = 0 

and the relation Pk: = 1, which simply states that in the system we 
must have either no item, or more items. The solution of this problem can 
be written as 

X 
P 

~k = (1 - p)p':, p = - < 1 (we assume) 

which is called the geornetric distribution. For this distribution important 
statistical parameters are: 
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(i) The cxpected number in the system, i.e. 

M 

L = p p k  = - P 
1 -p’ 

I:=O 

(ii) The variancr 

M 

k=O 

(iii) The expected nurnber i n  the line 

W 

L,  = C ( k  - p)Pk = pL. 

1.8. Finite Difference Calculus 

Here we shall dcvclop discrete version of Rolle’s theorem, thc Mean value 
theorem, Taylor’s formula, 1’Hospital’s rulc, Kncser’s thcorcm etc., which 
arc of irltlepcndcnt interest and will be repeatedly llscd in latcr chapters. 

For thc function ~ ( k )  = (0, 1, 0} WC have Au,(k) = { l ,  -l}. Thus, 
Rollc’s theorern which plays a key role i n  the dcvelopIrmlt of continuous 
calculus is not valid for the discrcte functions. However, it can be viewed 
in tcrnls of the sign c:hangcs of the function ~ ( k )  and of Au,(k). 

Definition 1.8.1. For a given function w.(k) defined 011 lN(a,, h ) ,  we say 
k = a. is a .node for u.(k) if U(Q) = 0, and a < k 5 b is a n.ode for 
u(k) if either u ( k )  = 0 or u ( k  - 1)u(k) < 0. (This dcfinition can be 
generalized in several different ways, e.g. sec Definition 6.16.1.) 

Theorem 1.8.1. (Discxte Rollc’s Theorem). S~~pposc that the function 
~ ( k )  is defined on IN( 1, ,717,) and has P ,  nodes and that Au(k) on 
l N ( 1 , ~ r ~  - 1) has Qm, nodes. Then, Q.m, 2 P,, - 1. 

Proof. Thc result is obvious if ‘ m  = 2. Assume m > 2 and that the 
result holds if m is replaced by an integer i < nr. If P, = Pm,-l, 

then the result holds. Suppose therefore that k = m is a nodc, so that 
P ,  = P,-l + 1. WC can also suppose that P,-1 2 1. Now we have the 
following cases to consider. 

Case 1. u ( 7 r r )  = u( , r r/ .  - 1) = 0. Then, obviously Q”,, = QmP1 + 1. 
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Case 2. u(7r1.) = 0, u( , r r ) ,  - 1) # 0, say, 7 / , ( 7 n  - 1) > 0. Let k = i be the 
largest, node for ~ ( 1 ) ~  71(2), . . . , with i 5 m - 1. Hence, P, = Pll,-l and 
Q?, 2 P,-l- 1. We consider the alternatives 7/.(i) = 0 or 7 / , ( 2 ) 7 / , ( i - l )  < 0. 
In the first alternative i < m - 1 and 7 r ( i  + 1) > 0, so t,hat Au(i) > 0, 
while Au,(m - 1) < 0, so that QTn 2 Qi + 1 2 Pm,,-l = P,,, - 1. In the 
scc:ond alternative u.(,rn - 1) > 0 irrlplics that ~ ( i )  > 0, 7r(i - 1) < 0, so 
that Au(i - 1) > 0. Again Au(nr - 1) < 0 irrlplics the desired result. 

Case 3. u ( r r / , ) u ( ' r r t , - 1 )  < 0, say, u ( m )  < 0, u( ' rr ) ,-1 )  > 0. Tllc: arguments 
here arc as in the last case. I 

Theorem 1.8.2. (Discrete Mean Value Tllcorcrn). Suppose tjhat, t,hc 
func:tion u(k)  is defined on W ( n ,  b). Then, there exists a E W ( a + l ,  b-l) 
suc:h that 

(1.8.1) A?r(r.) 5 5 Vu( c) 
I/@) - 7 / 4 0 , )  

b - Q 

or 

(1.8.2) A?/.( c) 2 
714 b )  - 7I (a,) 

0 - a  
2 V?/, (c). 

Proof. Let f ( k )  be a ftlnctiorl tlefincd on IN(u., h ) ,  and let it, attain its 
maxirnunl at  c, whcrc c E W(o. + 1, b - 1). Then, f(c) 2 f ( c  + k ) ,  k E 
N(0, b - c) and f ( c )  2 f ( c  - k ) ,  k E IN(0, c - a,) .  Therefore, it follows 
that f ( c  - k )  - f ( c )  5 0 5 f ( c )  - f ( c  + k ) ,  k E W(0, rnirl{b - c ,  c - a } ) .  
Similarly, if f(k) attains its rnirliIrnlrr~ at  c E W ( a  + 1, 0 - l),  then 
f ( c  - k )  - f ( c )  2 0 2 f(c) - f ( c  + k ) ,  k E IN(0, min{b - c ,  c - a } ) .  

Let g(k)  be a function defined on W(a . , b ) ,  such that ,9(a) = ,9(b) .  
Thcn, g ( k )  will attain its maximurn or minirnum at some c E N(o, + 1, b -  
1). (If g(k) is a constant, then we can take any point of lN(a + 1, b - l).) 

We define an auxiliary function 71(k) 011 W(a ,  b) as follows 

?/(IC) = u,(lc) - 
u ( b )  - I/,( a )  

b - a  
k .  

Obviously, ?)(a) = v ( b )  = (bu (a )  - a .u (h ) )/(b  - U ) .  Therefore, there exists 
some c E N(a ,  + 1, b - 1) such that 

U(. - IC) - 
u ( b )  - .(a) U(b )  -.(a) 

( c  - IC)] - - 
b - a  b - U. 

u ( b )  - u ( a )  
b - a  (C+ k )  , 

b - a  1 
k E W(0, min{b - c, c - a } )  



which is the same as 

w,(c-k)-U,(c)+ k i ( 2 )  0 5 (2 )  u(C-u(c+k)+ 
U,@) - .(a) U,( b )  - U( a,) 

b - a  k b - a  
and hence 

v,(c - k )  - 74c) U, (b) - 71. ( a )  W,(.) - U,(C + k )  
k i (2 )  - I ( L )  b - a  k 1 

k E N ( l , n l i n { b - c , c - a } ) .  

Thus, in particular for k = 1 it follows that 

Corollary 1.8.3. Suppose that the function u(k )  is defined on N ( a ,  b ) ,  
and M = rrlax { jAu(k)l : k E N ( a ,  b - l)} . Then, 

(1.8.3) 

Lemma 1.8.4. (Product Forrndae). Let v ( k )  and ~ ( k )  be defined 011 
lN(a.). Then, for all k E N(Q) 

(1.8.4) A [ u ( k ) ~ ( k ) ]  = ~ ( k  + l )Av(k )  + v(k)Au,(k) = v(k + l ) A ~ , ( k )  

+ u ( k ) A v ( k )  

and 

L:- l  k-l 

(1.8.5) 

Theorem 1.8.5. (Discrete Taylor's Formula). Let ~ ( k )  be defined on 

JN(a). Then, for all k E lN(a) and n. 2. 1 

n-l ( k  - Q)(i) . 1 k-n, 
(1.8.6) ~ ( k )  = c Azu(.)+- c ( k - e - l ) c n ' ) A " u ( C ) .  

i !  
i = O  

(n - I)! 
!=a 

Proof. The proof is by induction. For n = 1, (1.8.6) is the samc as 

I;-1 

u ( k )  = .(a) + c h ( [ )  = u ( a )  + 7 4 k )  - .(U) = u ( k ) .  
P=a 
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Assuming (1.8.6) is true for n, = m,, then since 

k - In. c ( k  - C - l)(m-l)A"u.(C) = - - C Ae(k - C ) ( m ' ) A m ' ~ ( C )  
t=a 

1 
m, 

t=a 

identity (1.8.5) provides 

C=a 

from which (1.8.6) follows for n, = ' m ,  + 1. I 

Corollary 1.8.6. Let u,(k) be defined on lN(a). Then, for all k E lN(a) 
and 0 5 m S n - 1 

Remark 1.8.1. In the right side of (1.8.6) the first term is Newton,'s 
forward differen,ce in,terpolating polyn,omial, whereas the second term is 
the rem.ain,der. Obviously, for the remainder Lagrange's analog is not 
expected, however since 

n-l ( k  - .)W 
(1.8.8) 71.(k) - c Aau(a,) 

i !  
i = O  

one has an error estimate only in terms of An,u(k).  

Theorem 1.8.7. (Discrete I'Hospital's Rule). Let u(k) and ~ ( k )  bc 
defined on N(u) and v(k)  > 0, Av(k) < 0 for all large k in N(a ) .  
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Then, if limk+cc u,(k) = limk.-,cc v(k) = 0 

Au( k )  U. (k )  71, ( k )  All. ( k )  

4 k )  71 ( k )  AI)( k )  ’ 
(1.8.9) lim inf - L lim irlf - 

API ( k )  
L lim sup - L lirrl sup - 

Proof. Let kl E N(a)  be sufficiently large so that for all k E 
W(kl), ~ ( k )  > 0 and Av(k) < 0. We assume that 

Au( k )  
2 c for all k E W(kl), A71 ( k )  

Letting p + c c ,  WC find - u(k )  L -c71(k), which is t,he same as 

11. ( k )  - 2 c for all k E IN(kl ) .  
71 ( k )  

Since the same holds with the inequalities reversed, (1.8.9) holds. I 

Corollary 1.8.8. Let ~ ( k )  and v(k )  be as in Thcorcm 1.8.7. Then, 

4 k )  Au, ( k)  
k - c c  v(k )  
lim - = c provided lim - = c exists. 

k:-m Av(k) 

Theorem 1.8.9. (Discrete 1’Hospital’s Rule). Let u.(k) and v(k )  be 
defined on W(u )  and v(k)  > 0, Av(k) > 0 for all largc k in W ( u ) .  
Then, if lirnk,, v(k)  = cc 

(1.8.10) lim - A’lL(k) = c implies lim - - c. 
7 4  k )  

k.-m Pl(k) 
- 

k - c c  Av(k )  

Au. ( k )  Proof. lim - - - c (finite) implies that for every given E > 0 there 

exists a largc ICl in W(a) such that 
!%-cc Av(k) 

( c -  ~ ) A v ( k )  5 A P I , ( ~ )  5 (c+ c)Au(k)  for all k E W(k1). 

Surrlming the above inequality, we find 

(c - E ) [ V ( k  + p )  - v(k ) ]  L u(k + p )  - u ( k )  
5 (c + ~)[v(k +p)  - .(/c)] for all k E W(k1) and 0 < p E W, 
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which is the same as 

Letting p -+ m in the above inequality leads to (1.8.10). 

If c is infinite, say, m (the case - m can be treated similarly) then 
for an arbitrary C > 0 there exists kz E W ( a )  large so that 

i.e. 
Au(k) 2 CAv(k) .  

Summing thc above inequality, we find 

zr(IC+p) - q r ( I C )  2 C [ 7 / ( k + p )  - ~ ( k ) ]  for all k E N(k2) and 0 < p  E W. 

I/, ( k )  
Taking p + m in the abovc inequality gives lirn - > c. 

k-m v(k)  - 
I 

Lemma 1.8.10. Let 1 5 5 R - 1 and u ( k )  be defined on W(a. ) .  
Then, 

(i) liminfk.m Am,u(k) > 0 implies limk-m A'%(k) = m, 0 5 i 5 
'm. - 1 

(ii) lirnsupk,, Amu,(IC) < 0 implies linlk:jm A'u(IC) = - m, 0 5 
i 5 *rn - 1. 

Proof. linlinf Amu,(k) > 0 implies that there exists a large IC1 E W ( a )  

such that Am,u(k) 2 c > 0 for all k E IN(k1). Since 
k - m  

k-l 

Am-'u(k) = A"-'u(kl) + C Amu(f?) 
e=?,:l 

it follows that A"-'u(k) 2 A"-lu(kl)+~(k-kl), and hence lirrl A"-lu(IC) 
= m. The rest of the proof is by induction. The case (ii) can be treated 
similarly. I 

Theorem 1.8.11. (Discrete Kncscr's Theorem). Let u(k) be defined on 
JN(a), and ~ ( k )  > 0 with Anu(k) of constant sign on N(a )  and not 
identically zero. Then, there exists an integer m ,  0 5 'm, 5 n with n + r r ~  
odd for An,u,(k) 5 0 or n + ' m .  even for A n , u ( k )  2 0 and such that 

m 5 n-l implies (-l)m,+iAiu,(k) > 0 for all IC E IN(a), m 5 i 5 n - i  

k:-m 
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Proof. There arc two c:ascs to considcr. 

Case 1.  Anu(k) 5 0 on JN(a). First we shall prove that An,"u(k) > 
0 on IN(.). If not, then there exists some kl  2 a in N(a )  such 
that A"-lw,(kl) 5 0. Since An,-'u(k) is decreasing and not identically 
constant on lN(a) ,  there exists k2 E IN(k1) such that An-'u(k) 5 
An-lu(k2) < A"-lu(kl) 5 0 for all k E IN(kz),  But, from Lerrlrrla 1.8.10 
we find limA.-,m u ( k )  = -m which is a contradiction to w,(k) > 0. Thus, 

n, - 1 with n + m odd and 

An.-' ~ ( k )  > 0 on IN(a,) and there exists a srnallest integer m ,  0 5 m ,  5 

(1.8.11) ( - 1 ) 7 r i + i a i ~ r ( k )  > 0 on ~ ( o . ) ,  ' m  5 5 n, - I. 

Next let 'rrt > 1 and 

(1.8.12) am-l u,(k) < 0 or1 N ( a ) ,  

then once again from Lemma 1.8.10 it follows that 

(1.8.13) am-2 u ( k )  > 0 011 N(a). 

Inequalities (1.8.11) ~~ (1.8.13) can be unified to 

(-1)b-2)+i Aiu.(k)  > 0 on lN(a), m - 2 5 i 5 n - 1 

which is a contradiction to the definition of m .  So, (1.8.12) fails and 

hence lirnk:+m A"l u(k) > 0. If 'm > 2, we find from Lemma 1.8.10 
that linlk-m A'u,(k) = m, 1 5 i 5 m .  - 2. Thus, A"u,(k) > 0 for all 
large k E N(a ) ,  1 5 i 5 m - 1. 

Case 2. Anu,(k) 2 0 on N(a) .  Let k3 E N(k2) be such that 
An,-1u(k3) 2 0, then since An"u.(k) is nondecreasing and not iden- 
tically constant, there exists some k4 E N ( k 3 )  such that An-lu(k) > 0 
for all k E N ( k 4 ) .  Thus, lim,++m An-' u(k) > 0 and from Lenlrrla 1.8.10 
limA:+m Aiu(k)  = CO, 1 5 i 5 n - 2 and so AZu(k) > 0 for all large 
k in IN(a), 1 5 i 5 n - 1. This proves the theorem for m, = n. In 
case An"u(k) < 0 for all k E N ( a ) ,  we find from Lemma 1.8.10 that 

u,(k)  > 0 for all k E N(a). The rest of the proof is the same as in 
Case 1. I 

Am,- 1 u ( k )  2 0 on IN(a). From (1.8.11), A"-lu(k) is nondecreasing and 

An-2 

Corollary 1.8.12. Let u ( k )  be defined on N(a), and u,(k) > 0 with 
Anu(k) 5 0 on N(a )  and not identically zero. Then, there exists a large 
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k l  in N(a) such that for all k E N(k.1) 

(1.8.14) u(k) 2 ~ 1 (2n,-rn-l 
(n - I)! 

k )  ( k  - kl)(-. 

Hence, after (7n - 1) summations, we obtain (1.8.14). I 

Corollary 1.8.13. Let v,(k) be as in Corollary 1.8.12 and bounded. 
Then, 

(i) IimL.-cc A"u(k) = 0, 1 5 i L n - 1 

(ii) (-1)'i+1an-i7~,(k) 2 0 for all k E N ( a ) ,  1 5 i 5 n - 1. 

Proof. Part (i) follows from Lemma 1.8.10. Also, for Part (ii) we note that 
in the conclusion of Theorem 1.8.11, n - 1 ,  cannot be greater than 1. I 



34 Chapter 1 

Corollary 1.8.14. let 71(k) be as in Corollary 1.8.12. Then, cxactly one 

of the following is true 

(i) limk.m Ai71,(k) = 0, 1 5 i 5 R - 1 

(ii) there is an odd integer j, 1 5 j 5 n,-l such that limk.m An,-"71,(k) = 
0 for 1 5 i 5 j-1, limA:-m An,-Ju,(k) 2 0 (finite), lirnk.m An-j-' u(k) > 
0 and limk+m Aiu(k) = CO, 0 5 i 5 n - j - 2. 

Proof. The proof is contained in Theorem 1.8.11 and Corollary 1.8.13. I 

1.9. Problems 

1.9.1. Evaluate the following 

A2 
(i) A3(1 - k ) ( ~  - 2k)(1 -SIC), (ii) anea'+P, (iii) -k3, (iv) - 

E E k 3  ' 

1.9.2. Let v.(k) and ~ i ( k )  be defined 011 m,. Show that for all k E E 
(i)  A[u(k) + ~ ( k ) ]  = Au,(k) + A7j(k) 

(ii) Acu(k)  = cAw,(k), c is a constant 

a2k.3 

(Y and /3 are constants 

(iv) A tank = sec2 k 

(v) Aseck  = - 

tan 1 
1 - tan1 tank 
A cos k 

cos(k + 1) cos k 

(vii) Asinh(ak + p)  = 

(viii) Acosh(trk + p) = 
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1.9.4. Show that for all T, k,,rr) E IN 

1.9.5. Show that t,hc nth forward as well as backward difference of a 
polynornial of n,th degree is a constant. 

1.9.7. Let t,he functions ~ ( k )  and ~ ( k )  be defined on IN(1). Prove 
that 

P \ 

Relation (1.9.1) is called Abel's trun,s formation. Usc it to show that 

C 8 2 E  = ( k  - 1)2k+1 + 2. 

1.9.8. Let ~ ( k )  bc defined on W,. Show that for all k E W 
n, 

A"?/,(lc) = C(-l)"-" (;) ( u ( k  + 1:) - u ( k ) ) .  
i=l 
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1.9.9. Show that 

u ( k )  = q ( k ) !  + C+l )k (k ) !  + ( k ) !  - + - - - - (T 5k 1 k + l  , 
4 2 [  2 I) 

is the general solution of the secmid order difference equation 

u ( k  + 2) - (IC + 2 ) ( k  + l ) v , (k )  = ( k  + 3)!, k E W. 

1.9.10. Let u ( k )  be defined on IN(a).  Show that for all k E W ( a )  

A:-l 1:- 1 

This result is known as Mon,t.mor.t's theorern. In particular dedwe that 
CO 

1.9.12. Let the function ~ ( k )  he defined on W and the series S ( t )  = 
M c $tk converges absolutcly. Show that 
k=O 

In particular deduce that 

c- 
CO 

tk = et(t2 + t - I). 
k=O 

1.9.13. Show that the continued fraction 
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together with the initial conditions 

Show that 
t 

(1.9.2) (i) - t t t  + - = -cot,h- 
e t - 1  2 2 2 

1 B = -- 
2'  l B21:+1 = 0, k E IN(1) 

(ii) relation (1.9.2) can be writtcrl as 

-( 2ZA: 2k o ) B 2 1 : + T (  2 2 k . - 2  2k 2)B21:-2+"-+- 
1 

with Bo = 1 

(iii) use part (ii) to determine B2, Bq, B6 and B8 

1.9.15. The Euler. n.v.mbers E,+ are defined by the relation 

(1.9.3) 

Show that 

(i) EZL,+I = 0, k E W 
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(ii) relation (1.9.3) can he written as 

i= 1 
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In particular, show that 

to show that u,(k) satisfies the initial value problem 

76(k + 1) - 2cosz u ( k )  + u ( k  - 1) = 0, k E IN(1) 

?/.(0) = 0, ?].(l) = T. 

Further, prove that v,(k) = 7r(sin kx/ sin x ) .  

1.1 +L 
1.9.21. Let u,(k) = ~ d t ,  k E N. Show that 

(i) u.(k) is the solution of the initial value problem 

1 
(1.9.4) u ( k +  1) + h ( k )  - 

k +  1’  
k € N  

6 
(1.9.5) ?1.(0) = 111 - 

5 
(ii) 0 < u(k + 1) < u(k) and ~ ( k )  ”+ 0 as k ”+ 00 
(iii) U (  11) obtained from (1.9.4), (1.9.5) by rounding off all the calculations 
to six tlecimal places is negative. 
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. 2  tk 
1.9.22. Let, u ( k )  = - d t ,  k E W. Show that 

(i) ~ ( k )  is the solution of thc initial value problem 

5 + t  

2k+l 

k +  1' 
(1.9.6) u ( k +  1) +5u,(k)  = - k € N  

7 
(1.9.7) u(0)  = ln- 

5 
(ii) 0 < ~ ( k )  < u ( k +  I), k E W(1) and u ( k )  -+ m as k + m 

(iii) corrlput,e ~ ( 5 0 )  from (1.9.6), (1.9.7) by rounding off all the calculations 
to cight dccimal placcs and compare it with u (50 )  = 0.63425992E + 13. 

y l  +k 
1.9.23. Lct ~ ( k )  = d t ,  k E IN. Show that 

(i) ~ ( k )  satisfics the difference equation 

(1.9.8) ~ ( k  + 2) + w,(k + 1) + ~ ( k )  = - k E W  

(ii) 0 < 7r(k + 1) < u (k ) ,  k E W and ~ ( k )  + 0 as k -+ m 

(iii) corrlputc u,(O) and ~ ( 1 )  directly, and thcrl compute ~ ( k ) ,  k E 
IN(2,lO) from (1.9.8). 

1.9.24. Thc valuc of 7r can be calculated by llsirlg lirn ksin - = T .  Let 

~ ( k )  = ksin - and u ( k )  = ~('2~') = 2k sin (2"":~) . Setting Q = 2-"7r, 

l 

k +  1'  

7r 

T 
L- W k 

k. ." 

from the trigonornetric idcntity sin = di (1 - d-) it follows 
2 

that 

(1.9.9) u(k+ 1) = 2L+1 /;( 1 - 7) 1 - (2-"u(k)) 

(1.9.10) = d%(k)//=, k € W(1).  

Use (1.9.9) ((1.9.10)) with w.( l )  = 2 to compute u(2),7/,(3),. . . ,  and 
convince yourself that u,(k) ft T (v.(k) 4 7r) as k + m. Explain why? 

O0 t'i 
1.9.25. W e  compute the value of et = c - by truncating the infinite 

k=O 
k! 

K tL 
series after K + 1 terms, i.e. ? , (K)  = c u ( k ) ,  where u ( k )  = -, 

k! F=n 
gives an approximate value of et. Thus, using the computer et can be 
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c:onvcniently evaluated by the system of difference equations 

t 
k+l (1.9.11) 

7r(k + 1) = -u(k),  u ( 0 )  = 1, It1 < 1 

‘U(k + 1) = V ( k )  + 71.(k + l), ~ ( 0 )  = 1, k E W ( 0 , K  - 1). 

Also, if It1 > 1 thcn t = [t] + t ” ,  wherc [t] is thc integer value of t and 
t* its fractional part, and et = e[t ]et * .  The first factor e[‘] is computed 
by 

and the second factor et*  by the scheme (1.9.11). 

Use the above algorithm for K = 10 to corrlputc the values of e2.3 
and e&.? .  

1.9.27. Show that in system form the boundary value problem (1.6,5), 
(1.6.6) can be written as 

1.9.28. A drug of amount U,O is administered once every six hours. 
Let u ( k )  denote the amount of the drug in the blood system at the kth 
interval, and let body eliminate a certain fraction q of the drug during 
each time interval. Show that 

(i) u ( k  + 1) = (1 - q)u,(k) + u o  

(iii) lim ~ . ( k )  = -. U, 0 

k-W 4 
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1.9.29. k letters to each of which corresponds an envelope are placed in 
the envelops at random. If u ( k )  is the number of ways i n  which all letters 
go wrong, show that 

(i) u ( k )  = ( k  - 1)(u(k  - 1) + u ( k  - 2)) 

(ii) u(k)  - kv(k - 1) = (-1)~’-~(71,(2) - 2~1,(1)) = 

k!  

(iv) the probability that all k letters go wrong is given by the first ( k -  1) 
terms in the expansion of 1 - e- ’ .  

1.9.30. (Gambler’s Ruin). Let a gambler with capital k dollars play 
against a rich adversary. Let the probabilities of his winning and losing one 
dollar in m y  gamc be p a d  q, respectively, where p + q = 1, and 
let p(k) be the probability of his lxirlg ultirnatcly ruined. At t,hc next, 
game, the probability of his winning is p and if hc wins, his capital wo~lltl 
1)ccorne k + 1 and the probability of his ultirnat,c ruin would be p(k + 1). 
On the other hand if he loses at, the next game, his capital would bcc:ornc 
k - 1 and the probability of his Illtimatc rllirl would be p(k - 1). Bccallsc 

these arc the only two possibilities, we have 

(1.9.12) p(k) = pp(k + 1) + qp(k - 1) 

Now let the garnbler decide to stop this game when his capital becomes K 
dollars so that the probability of his being rllincd when his starting capital 
is K dollars, is zero, i.e. p ( K )  = 0. Similarly, when his starting capital 
is zero, he is already ruined, so we have p(0) = 1. Thus, 

(1.9.13) p ( 0 )  = 1, p ( K )  = 0. 

Verify that the solution of the boundary value problem (1.9.12), (1.9.13) 
(:an be written as 

1.9.31. I n  the previous problem let N ( k )  denote the expected number 
of games before the gambler is ruined. If he wins at thc next game, his 
capital becomes k + 1 and the expected number of games would then be 
N ( k  + 1) and if he loses, his capital becomes k - 1 and the expected 
number of games would be only N ( k  - 1). This leads to the boundary 
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value problem 

(1.9.14) N ( k )  = pN (k  + 1) + q N ( k  - 1) + 1 

(1.9.15) N(O) = N(K) = 0. 

Verify that the sollltion of the boundary value problem (1.9.14), (1.9.15) 
can be written as 

K 1 -AL' x = - # l  Q 
P 

1.9.32. Suppose a sack cwnt,ains T red and W white rl~arblcs. A marble 
is drawn at rantlorn from the sack, its color is rlotctl and it is replaced. This 
procedure is repcat,ctl k times. Show that U ( k ,  P) thc nwr1t)cr of ways 
of obtaining P reti 1narl)lcs among t,hc k draws satisfies the difference 
(quation 

(1.9.16) U ( k , P )  = T U ( k  - l,! - 1) + UIU(k - 1 , P ) .  

Also show that, U ( k ,  P) = ~'~d-' satisfies the diffcrcncc equation ( 9  
(1.9.16). 

2, -2,3,3, -7, O} .  
1.9.33. Vcrify t,he discrete Rolle's theorem for the firlit,c sequence {O ,1 ,  -1, 

1.9.34. Verify the discrete mean value theorern and the irlcquality (1.8.3) 
for the finite s e q ~ ~ c ~ ~ c ' e  {S, 7,12,9,36, l O O } .  

1.9.35. Let u(k) be dcfirml on lN(a).  Then, for all k E JN(a,p),  
where p E JN(a), and 0 5 m 5 R - 1 show that 

1.9.36. Let v ( k )  be defined on W(o,). Show that for all k E N(a )  and 
m, 2 1 
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1.9.37. Let u ( k )  and v(k )  be defined on W,. Show that for all k E 
the following discrete Leibn,itz ' formula holds 

1.9.38. Construct examples to show that the converse of Corollary 1.8.8 
as well as of Theorem 1.8.9 is not necessarily true. 

1.9.39. Let u,(k) be as in Corollary 1.8.12. Show that 

unless limA.+m Aiu(k)  = 0, 0 5 i 5 n - 1. The exceptional casc Inay arise 
only whcn n, is odd. 

1.10. Notes 

Bcsidcs E ,  A, V and A-' ot,hcr opcrators ,U and 6 and their inter 
relationships are readily available in several classical books, e.g. Book [8], 
Cogan ant1 Norrnan [13], Fort [19], Gcl'forld [20], Jordan [25], Miller [35], 
Milne -Thornson [37], Richardson [30], and Spicgal [41]. Elementary discus- 
sions of finite difference equations and various applications arc included as 
a part of difference calculus or differcrltial equations i n  some of the above 
books, and also i n  Brand [g], Brugnano and Trigiante [lo], Chorlton [la], 
Derrick and Grossman [15], Finizio and Ladas [18], Hildebrand [23], Pin- 
ney 1381. The books by Agarwal and Wong [3], Ahlbrandt and Peterson [5], 
Batchelder [7], Elaydi [17], Goldbcrg [all, Jerri [24], Kclley and Peterson 
[26], Kocic: and Ladas [27], Lakshmikantham and Trigiante [as], Levy and 
Lessmarl [31], Mickens [32,33], Miller [36], and Sharkovsky, Maistrenko and 
Romarmlko [40] deal exclusively with difference equations. Example 1.4.2 
is taken from Levy and Lessrnan [31]. Example 1.4.3 and Problem 1.9.21 
which show computational difficulties are from Dorn and NIcCrackcn [l61 
and Dahlquist and Bj6rck [l41 respectively. Cash [l11 ancl Wimp [42] have 
devoted their monographs to the solutions of linear as well as nonlinear UII- 

stable recurrence relations (also, see our chapter 8). Elementary discussion 
of boundary value problems for difference equations has been included in 
several above books, whereas the monograph by Atkinson [6] and the paper 
by Hartman [22] have attracted many researchers (also, sec our Chapters 
8-12). For the treatment of spline functions we refer to the most cited 
monograph by Ahlberg, Nilson and Walsh [4]. Exarrlple 1.6.7 is from Fort 
[19]. The discrete Rolle's theorem is due to Hartman [22], whereas the 
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discrete mean value theorem is essentially new. The rest of the results in 
Section 1.8 are contairled in Agarwal [l], also sec [2]. Recently, there has 
been an attempt to unify the theories of differential and difference equa- 
tions. For this, t,he so called ca1culw.s OR t2,rn.e scales has been developed, 
see Lakshmikantham, Sivasundaram and Kaymakcalan [as]. 
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Chapter 2 
Linear Initial Value Problems 

This chapter investigates the fmdaIrmlta1 theory and the essential tech- 
niques ernployet1 in the study of lincar initial value problems. An inherent 
propert,y which makes linear systems simple to deal with, is the super- 
position principle. We begin this chapt,er with this principle ant1 discnss 
some of its conscql1enc:cs. Then, we collect several definitions ancl rcsldts 
from algebra whic:h arc used in later chaptcrs also. Next, the c:onc:cpt of 
linearly independerlt func:t,ions, the Casoratiarl matrix, the furldarnerltal 
matrix sollltion, arid its explicit representation along with its properties 
arc discussed ill detail. Hcre an interesting example from Markov chains is 
also illustrated. This is followed by thc rncthod of variation of constants 
for the solutions of nonhomogeneous differcncc systems. Next we discuss 
acljoint systems and develop adjoint identities which are used in Chapt,er 
8. Then, we consider the systems with constant coefficients and provide 
some corlstn1c:tive methods for their closed form solutions. These methods 
do not use Jordan form and can easily be mastered. A very important 
aspect of the qualitative study of the solutions of difference systems is their 
periodicity. I n  Sections 2.9 and 2.10 respectively, WC provide necessary and 
sufficient conditions so that the solutions of a given systern are periodic 
and almost periodic. Eventhough, higher order equations are expressible 
as difference systems, they merit some special attention. I n  Section 2.11 we 
incorporate the method of variation of c,onstants, the concepts of exact and 
adjoint equations, and Lagrange’s and Green’s identities. This is followed 
by the method of generating functions, which is a very elegant technique 
for obtaining the closed form solutions of higher order difference equations. 
Higher order difference equations with constant coefficients find an appli- 
cation in computing the roots of a given polynornial. This classical method 
originally clue to Bernoulli is presented in Section 2.13. Bernoulli’s method 
also provides the motivation of several important results, e.g. Poincark’s 
and Perron’s theorems, which we discuss in Section 2.14. I n  Section 2.15 we 
introduce and illustrate the regular and singular perturbation techniques 
for the construction of the solutions of difference equations. 

48 
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2.1. Introduction 

An important characteristic property of linear systems, which makes 
them especially simple to treat, is the supe,rposi,tion, pr.inci,ple: If u (k )  is 
a solution of the system u ( k + l )  = A(k)u(k )+b' (k ) ,  k E W and v (k )  is 
a solution of v(k + 1) = A(k )v (k )  + b2 (k ) ,  k E then z(k) = q u ( k )  + 
czv(k) is a solution of the system z(k+l)  = A ( k ) z ( k ) + ~ ~ b l ( k ) + ~ ~ b ~ ( k ) .  
For this, WC have 

z(k + 1) = q u ( k  + 1) + QV(k + 1) 
= c l (A (k )u (k )  + b l ( k ) )  + ~ z ( A ( k ) ~ ( k )  + b2 (k ) )  

A ( k ) ( ~ l u ( k )  + C Z V ( ~ ) )  + c lb l ( k )  + czb2(k) 

= A ( k ) z ( k )  + clb'(k) + czb2(k),  k E iR .  

Thus, i n  particular, if bl(k) = b2 (k )  = 0 for all k E E, i.e. u(k )  
arid v(k) arc solutions of thc hornogcrlcous system (1.2.12), then clu(k) + 
t.zv(IC) is also a solution. Herlc.c, sollltiorls of thc homogcneolls systcrn 
(1.2.12) form a vcctor spacc. Further, if u(k) is a solution of (1.2.11) 
on El, then v(k) is also a solution of (1.2.11) on W, if and only if 
u(k)  - ~ ( k )  is a solution of (1.2.12) on Nl. Hence, the gcneral solution 
of (1.2.11) is obtained by adding to a particular solution of (1.2.11) the 
general solution of the corrcsportding homogcnco~ls systcrn (1.2.12). 

2.2. Preliminary Results from Algebra 

For our ready reference we collect here several fundarr~ental concepts 
and results from algebra. 

Lemma 2.2.1. Consider the system of n linear equations 

(2.2.1) AU = V, 

where A is an n x n matrix anti U ,  v are n dimensional vectors. 
Then, if 

(i) Rank A = n, i.e. det A # 0, the system (2.2.1) possesses a unique 
solution. Alternatively, the homogeneous system Au = 0 possesses only 
the trivial solution. 

(ii) Rank A = n - m (1 5 m 5 n), the system (2.2.1) possesses a 
solution if and only if 

(2.2.2) Bv = 0, 

where B is an m. x n, matrix whose row vectors are linearly independent 
vectors d",  1 5 i 5 'm satisfying d i A  = 0. 
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In case (2.2.2) holds, any solution of (2.2.1) can be given by 

Chapter 2 

m 

u = C N i C i  + s v ,  
a= 1 

where C Y ; ,  1 5 i 5 m, are arbitrary constants and c', 1 5 i 5 ' m  are 
' m ,  linearly independent column vectors satisfying Aca = 0 and S is an 
n, x n matrix independent of v such that A S p  = p for any column 
vector p satisfying B p  = 0. 

The matrix S in Lemma 2.2.1 is not unique. 

The number X, real or complex, is called an eigen,walue of the matrix 
A if there exists a nonzero real or complex vector v such that AV = A V .  
The vector v is called an eigen,wector corresponding to the cigenvaluc X. 
From Lcrnnla 2.2.1, X is an cigcnvaluc of A if and only if it is a solution 
of t,hc ch,ar.acter.istic equation. p(X) = det (A - XI) = 0. Since the matrix 
A is of order n,, p(X) is a polynomial of dcgrcc cxac:tly n., and is callcd 
the ch,ar.acter.istic polyn,orn,ial of A. Therefore, the matrix A has exactly 
R eigenvalues counting with thcir multiplicities. 

In case the eigerlvalucs XI, . . . , X ,  of A arc distinct it is easy to find 
the corresponding eigenvectors v l ,  . . . , vn .  For this, first we note that for 
the fixed eigenvalue X, of A at least one of the cofactors of (aii - X,) 
in the matrix (A - X$) is nonzero. If not, then from (2.16.1) it follows 
that $(X) = - [cofactor of (a l l  - X)] - ... - [cofactor of (ann. - X)], and 
hence p'(X,) = 0, i.e. X, was a multiple root which is a contradiction to 
our assurnption that X, is simple. Now let the cofactor of ( a k k  - X,) be 
different from zero, then one of thc possible nonzero solution of the system 
(A - X,I)vj = 0 is = cofactor of ak:i in (A  - XjZ) ,  1 5 i 5 R,  i # 
k ,  = cofactor of ( a k k - X , )  in (A-XjZ). Since for this choke of v,, it 
follows from (2.16.3) that every equation, except the kth one, of the system 
(A - XjZ)vj = 0 is satisfied, and for the kt11 equation from (2.16.2), we 
have C:==l,iZk ak.i X [cofactor of Q ? ]  + ( q : k  - Xj)[cofactor of (akk - X,)] = 
det ( A  - X j I ) ,  which is also zero. In conclusion this v, is the eigenvector 
corresponding to the eigenvalue X,. 

Example  2.2.1. The characteristic polynomial for the matrix A = [ 5 ] is p(X) = -X3+7X2-14X+8 = -(X--l)(X-2)(X-4). Thus, 

the eigenvalues are X1 = 1, X2 = 2 and X3 = 4. To find the corresponding 
eigenvectors we have to consider the systems ( A  - XiZ)v' = 0, i = 1,2,3. 

0 1 2  
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For X1 = 1, we find (A - X1Z) = . Since the cofactor of 

(a11 - X,) = 1 # 0, we can take vi = 1, and thcn v i  = cofactor of 

a12 = -1, vi = cofactor of a13 = 1, i.c. v1 = . Next, for X2 = 2 

WC have ( A  - X Z Z )  = . Since thc cofactor of (a22 - X,) = 0 

the choice v; = cofactor of (a22 - X,) is not correct. However, cofactor 
of (a,11 - X,) = cofactor of (a33 - X,) = -1 # 0 and we can take 
v; = -1 (?l,” = -I), thcn ZJ,Z = cofactor of a12 = 0, v,” = cofactor 

For thc cigcnvalucs and eigenvectors of an n, X n matrix A WC have 
the followirlg basic; result. 

Theorem 2.2.2. Lct XI,. . . ,X,, be distinct cigenvalues of an n x 
n, matrix A and v l , .  . . , vm be corresponding cigcnvectors. Then, 
v l ,  . . . , v” arc linearly independent. 

Since p(X) is a polynorrlial of dcgree n, and A” for all normcgative 
integers m is defined, p ( A )  is a well defined matrix. For this matrix 
p(A) we state the following well known result. 

Theorem 2.2.3. (Cayley Hamilton Theorem). Let A be an n x n 

matrix and let p(X) = det (A - XI). Then, p(d)  = 0. 

If A is a nonsingular matrix, thcn for cvery positive integer m ,  dl/” 

is a well defined matrix. This important result is stated i n  

Theorem 2.2.4. Let A be a nonsingular n. X n matrix. Then, for every 
positive integer ‘rn there exists an n X n matrix L3 such that am = d. 

Let z1,z2,. . . , z ,  be real or complex numbers. The matrix 
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is called Vanderm.on,de’s matrix. Its determinant is given by 

det V ( z l , z 2 , .  . . , z , )  = (.i - Z j ) ,  

l<j<i<n 

which is different from zero if zi # zj  for all i and j .  

A real normed vector space is a real vector space V in which to each 
vector U there corresponds a real nnmber JJuJI, called the norm of U, 
which satisfies the following conditions 

(i) llull 2 0, and //U// = 0 if and only if U = 0 
(ii) for eac,h c E l R ,  JJcuJJ = JcJJJu/I  

(iii) the triangle inequality IIu + v11 5 llull + l[vII. 

I n  the vector space R” the following three norms arc in co1rlmon use: all- 

solute norm jjuJJ1 = cy=1 JuiJ, Euclidean nor111 /ju112 = (ET=, lu,i12) , 
and rnaxirnum norm IIulIm = IrlaxI<,<, ” l?/,,, I. 

1/2 

The notations 11 . I l l ,  / /  . 112 and 1 1  . llm arc ,justified tmausc of the 
fact that, all these norms are special cases of a more general norm l/ullp = 

(C”=, Iu.,l”)l’p, p 2 1. 

The set of all n, x n matrices with real elements c a n  be considered as 
equivalent to the vector space R”’, with a spccial nlultiplicative operation 
addcd into the vector space. Thus, a matrix norm should satisfy the usual 
three requirements of a vector norm and, i n  addition, we require 

(iv) JJABJJ 5 JJAJJllBJl for all n x n matrices A, B 
(v) compatibility with the vector norm, i.e. if I( . I l f  is the norm in R”, 
then IIAuII* 5 llAllIJuII* for all U E R” and any n X n matrix A. 

Once in R” a norm 11 . 11% is defined then an associated matrix norm 
is usually defined by 

(2.2.3) 

From this the condition (v) is immediately satisfied. To show (iv) we use 
(v) twice, to obtain 

IIABull* = IIA(WIl* 5 l l . 4 1 1 1 1 ~ u l l *  5 l l ~ l l l l ~ l l l l ~ l l *  
and hence for all U # 0, we have 
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or 

The norm of the matrix A induced by the vector norm IIuII* will be 
denoted by llAll+. For the three norms llulll, ( I u ( I 2  and l \ u l l W  the 
corresponding matrix norms are llAll1 = maxl<jsn, Cy=l laijl, llAll2 = 
d m  and 11A11, = maxl<isn C,"=, \a,ijl, where for a given n x n 
matrix B with eigenvalues X I ,  . . . , X ,  not necessarily distinct p(B)  is 
called the spectral radiu,s of B and defined as p(B)  = max{ / X i \ ,  1 5 i 5 
n} . 

- 

A sequence {U"} i n  a normed linear space V is said to converge 
to U E V if and only if Ilu - U'"\( --f 0 as ' m  --f CO. In particxlar, a 
sequence of R x R matrices {A,} is said to converge to a matrix A if 

IIA - A, 11 4 0 as 'rrt, "-f c m .  Further, if A, = (0;;"') and A = (aii), 

then it is the sarnc as o,~,~?) "-f ni3 for all 1 5 i ,  j 5 R. Conlbining this 
definition with the Cauchy c:rit,erion for sequences of real numbers, WC have: 
the sequence {Am} corlvergcs to a limit if and only if ))Ah - ApJJ -+ 0 
as k ,  t 4 CO. The series c:=, A ,  is said to converge if and only if the 
sequence of its partial sums {C,"=, A , }  is convergent. For example, the 

( 

O0 An, 
exponential series e" = Z +  c - converges for any matrix A. Indeed, 

n= 1 
n!  

it follows from 

Hence, for any n x n matrix A, e" is an n. X n well defined matrix. 
Further, since e",-" = eA-" = Z , it follows that (det e") (det e-") = 
1, i.e. the matrix e" is always nonsingular. 

(At)" 
n! 

Similarly, for a real number t ,  eAt is defined as eAt = Z + C -. 

Since each element of eAt defined as a convergent power series, eAt is 
differentiable and it follows that 

n=l 

Antn-1 W (At)"" 
(e"')' = C - 

( n  - l)! 
AeAt = eAtA. 

n=l n,= 1 

In a normed linear space V norms 1 1  . 1 1  and 11 . I[* are said to be 
equivalent if there exist positive constants m and M such that for all 
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U E V,  ,rrt,IIuII 5 IIuII* 5 MIIulI. It  is well known that in R" all the 
norms are equivalent. Hence, unless otherwise stated, in R" we shall 
always consider 1 1  . 111 norm and the subscript 1 will be dropped. 

m 

(2.3.1) c (Y2Ui(k) = 0 
i=l 

110~s for all k E R,. Conversely, if the relation (2.3.1) implies that (Y; = 
0, 1 5 i 5 m then u"(k) are said to be Iinewly i n d e p e n d e r ~ t .  

For the given functions U' ( k ) ,  1 5 i 5 R dcfirlcd on W1 thc n, x R 
- 

matrix ( 714  ( k ) )  is (:allcc1 t,he Caso~~at~an  ,rr/mtr,iz of thcsc func:tiorls. We 
shall denote it by the syrhol C(ul, ... ,u")(k) and when there is 110 

ambiguity by C(k).  The det C(k) is closely related to the question of 
whether or not ui((k) are linearly independent on W,. 

Lemma 2.3.1. If det C(k) of n functions u"(k-), 1 5 i 5 n, defined 011 

m1 is different from zero for at least one k.0 E m,, tllcn u"(l~),  1 5 i 5 R 
are linearly indeperdcrlt on El. 

Proof. Let c be a nonzero vector such that C(k)c = ciui(k) = o 
for all k E El, i.e. ui(k) are linearly dependent on NI .  Hence, if 
ko E m 1  be such that det C(k-0) # 0, then in particular C(k0)c = 0. 
However, from Lerrlrrla 2.2.1 this is possible only when c = 0. Thus, ui(k) 
are linearly independent on El. D 

- 

- 

Thc converse of Lcrrma 2.3.1 is not nccessarily true, e.g. ul(k) = [ ] , u2(k) = [ :i ] arelinearly indcpendent on W. But, detC(ul, U') 

( k )  = 0 for all k E IN. 

Lemma 2.3.2. Let ui(k), 1 5 i 5 n be lirlcarly independent solutions 
on of the homogeneous system (1.2.12) on m. Then, det C(k)  # 0 
for all k E F 7 1 .  

Proof. Lct k.0 E W1 be such that det C(k.0) = 0, then from Lemma 2.2.1 
thcre exists a nonzero vector c such that C ( k - 0 ) ~  = Cy=l ciuZ(k0) = 0. 
Since u(k) = Cy=l ciui(k) is a solution of (1.2.12) and u(k0) = 0, from 
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the uniqueness of the solutions it follows that, u(k) = 0 for all k E ml. 
From this, the linear independence of u i ( k )  on E1 implies that c = 0. 
This contradiction completes the proof. I 

On combining the Lemmas 2.3.1 and 2.3.2 WC have the following: 

Theorem 2.3.3. The solutions ui(k), 1 5 i 5 n of the system (1.2.12) 
are linearly independent on m1 if and only if there exists at least one 
ko E m1 such that, det C(k0) # 0. 

As a consequence of this result the solutions u i ( k ) ,  1 5 i 5 n of the 
system (1.2.12) satisfying the initdial conditions 

(2.3.2) ui(ko) = e" = (0, ..., 0, 1,0, 1 5 i _< n, k.0 E 

arc linearly irldcpcrldcnt on IN1. This proves the existencc of n, linearly 
irldcpcrldent, solutions of the svstcrrl (1.2.12) on El. Now let u(k) be any 
solution of the syst,crrl (1.2.12) on NI, tlml u(k) = Cy=l u, i ( /~o)u" (k ) ,  
where u'(k) arc the sollltions of the initial value problems (1.2.12), (2.3.2). 
For this, let v ( k )  = cyyl ~ , ~ ( k o ) u " ( k )  then v ( k )  is a solution of (1.2.12) 
and v(ko)  = Cy=, u,~~(ko)u"(ko) = Cy=1 u,;(ko)ei = u(k.0). Thus, from the 
uniqueness of the solutions it follows that u(k) = v(k)  for all k E ml. 
Thus, cvery solution of the system (1.2.12) can bc expressed as a linear 
combination of the n. linearly indcpcrldent solutions of (1.2.12), (2.3.2). 
In conclusion we firld that the vector space of all solutions of the system 
(1.2.12) is of dimension n., and any solution u(k) of (1.2.12) can be 

written as 

n 

(2.3.3) u(k) = C u , i ( k o ) u i ( k )  = U ( k ) u ( k o ) ,  
i=l 

where U ( k 0 )  = 1. Further, if v ' (k ) ,  1 5 i 5 n is any set of linearly 
independent solutions of (1.2.12) then its general solution u(k) appears 
as 

n 

(2.3.4) u(k) = C C i V i ( k )  = V ( k ) C ,  
i=l 

where c is an arbitrary vector. 

2.4. Matrix Linear Systems 

Since each column of the matrix U ( k )  defined i n  the previous section is 
a solution of (1.2.12), it is obvious that it is a solution of the matrix linear 
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system 

(2.4.1) U ( k +  1) = d(k)U(k), k ER. 
Further, to emphasize the initial point ko in (2.3.2) the matrix U ( k )  
will be denoted as U ( k ,  ko). This matrix U ( k ,  ICo) is called principal 
fv.ndamwn.ta1 matr.ix and has the property that U(ko ,  ko) = Z. 

Any n X n matrix V ( k )  whose columns are lirlcarly independent 
solutions of the system (1.2.12) is called a fwndarr/~n,tal matrix. Obviously, 
V ( k )  is a solution of the matrix linear system (2.4.1), however V(k.0) need 
not be Z. It is straightforward to obtain principal fundamental matrix 
U ( k , k o )  from a given fundamental matrix V ( k ) ,  indeed U ( k , k ~ )  = 
V ( ~ ) V - ' ( ~ O ) ,  and conversely ~ ( k )  = ~ ( k ,  k o ) ~ ( k o )  on 5 7 1  follows from 
the miquerms of the solutions. 

If V ( k )  is a fwldarrlcrltal matrix of the system (1.2.12) and C is 
any rmrlsingular matrix, thcn V ( k ) C  is also a fundamental matrix, how- 
ever c V ( k )  need not even be a solution of (2.4.1). Furtllcr, if W ( k )  is 
any other fundanlental matrix of (1.2.12), thcn W ( k )  = U ( k ,  ko)W(ko) = 
U ( k ,  k o ) V ( k o ) V " ( k ~ ) W ( k ~ )  = V ( k ) V - ' ( k o ) W ( k o ) ,  i.e. V ( k )  and W ( k )  
arc equivalent. 

The following result gives an explicit reprcscrltatiorl of U ( k ,  ko). 

Theorem 2.4.1. The following holds 

I k-l U d ( k 0  + k - 1 - e )  for all ko I: k E m 1  

(2.4.2) U ( k , k o )  = P=ko 

ko-l 

JJ -A-'([) for all ko 2 k E T V l .  
e= k, 
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Corollary 2.4.2. If A(k) is a constant matrix A, then 

Corollary 2.4.3. Let V ( k )  be any furlriamental matrix of the system 
(1.2.12). Then, 

[ E det A(!) for all ko 5 k E E1 
(2.4.4) det V ( k )  = det V(k.0) 

P=l:o 

Now as an applic,ation of somc of t,hc above results WC illustrate thc 
following: 

Example  2.4.1. (Markov Chains). Let a systcrn be capable of 1)cirlg in 
n, possible states 1,. . . , n, and let the probability of transition from state 
i to state j i n  time interval k to k + 1 be p i J .  Let p;(k) denote the 
probability that the system is in state 2: at time k ,  i = 1,. . . , n, then at 
time k + 1 it can be in any one of the states 1, . . . , n.. It can t x  in thc ith 
state at time k + 1 in R cxdusive ways sinc:c it could have been in any 
one of the n. states 1, .  . . , R at t h e  k and it could have transited from 
that state to ith state in time intmval ( k ,  k + 1). B y  using the theorerns 
of total and compound probability, we get 

(2.4.5) pi(k + 1) = .&p,(k), i = 1 7 7  .'. R 

n 

j=1 

or 

(2.4.6) p(k + 1) = Ap(k) 

where p(k) is the probability vector and A = ( p i j )  is a matrix, all of whose 
elements lie between zero and unity. Further the sum of elements of every 
column is unity, since the sum of elements of the jth column cy='=, pi, 
denotes t,he sum of the probabilities of the system going from the j th state 
to any other state and this sum must be one. It is clear from Corollary 
2.4.2 that the sol~~tiorl of (2.4.6) can be written as p(k )  = A'p(0). 

For the matrix A appearing in (2.4.6) it is clear that 1x1 5 1 for all 
the eigenvalues, and X = 1 is an eigenvalue. Now the probability vector 
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will not change if p(k+ 1) = p(k) so that from (2.4.6), (X-d)p(k) = 0. 
Thus, if p is the cigenvector of thc matrix A corresponding to unit 
eigenvalue, then p does not changc, i.e. if the system starts with propcrty 
p at time 0, it will always remain in this state. We also note that if 
the system starts from any other probability vector, it will ultirrlately be 
described by the probability vector p as t -+ m. 

As a special case, suppose WC have a machine which can be in two states 
working or non working. Let thc probability of its transition from working 
to 11011~ working be cy, of its transition from nowworking to working be 
p, thcrl the system of difference equations is 

p1(k + 1) = (1 - u)p1(k) + /jpz(k) 
pz(k + 1) = fYPl(k) + (1 - j j ) p 2 ( k ) .  

2.5. Variation of Constants Formula 

Let V ( k )  h any fundarnerltal matrix of (1.2.12) and c(k) be a functiorl 
defined 011 W,. WC define ~ ( k )  = V(k)c(k) and demand u(k) to be 
thc solution of the initial value problem (1,2.11), (1.3.4). For this, it is 
necxssary that u(k-0) = V(ko)c(ko) = uo, i.e. c(ko) = ~ - l ( l ~ ~ ) u O .  
Further, for k E we have 

~ ( k  + 1) = V ( k  + l)c(k+l) = d(k)u(k) + b (k )  = d(k)V(k)c(k)+ b(k) 

= V ( k  + l)c(k) + b (k )  

and hence 
V ( k +  l)Ac(k) = b (k ) ,  

or 
Ac(k) = V- ' ( k+ l ) b ( k ) ,  ~ E W .  

Thus, for all ko 5 k E m1 
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1.0 

~ ( k )  = c(k.0) - C V-'(P)b(P - 1). 
P=k+l  

Therefore, for all ko 5 k E m1 the solution of t,hc initial value problcnl 
(1.2.11), (1.3.4) can l ~ c  writtcn as 

I e= h.0 + 1 1 k 

~ ( k )  = V ( k )  V-l(kO)uo + C V-'(P)b(P - 1) 

k 

(2.5.1) = U ( k ,  k - 0 ) ~ '  + c U ( k ,  ko)U- l (P ,  k-o)b(P - 1) 
P=ko+l  

ancl for all k.0 2 k E W1 
LO 

(2.5.2) u(k) = U ( k ,  kO)U0 - c U ( k ,  k-o)U-'(C, ko)b(Y - 1). 
e=h+l  

Fllrt,hcr, the gcrlcral solution u(k) of (1.2.11) in tcrrns of V ( k )  appears 
as 

(2.5.3) u(k) = V ( k ) c +  c V(k)V-'(!)b(P- 1) for all k.0 5 k E 
k 

P=ko+l 
I :  0 

(2.5.4) = V ( k ) c -  c V(k)V-'(C)b(P-l) for all ko 2 k E W,. 
P=l:+l 

2.6. Green's Matrix 

The kernel G ( k ,  l) = U ( k ,  k ~ ) U - ~ ( t ,  ko) is called the Gr.een,'s matr.Zz of 
the system (1.2.12) arid it is defined for all k ,  C E m 1  although its use in 
(2.5.1) is required only for k 2 P 2 ko + 1, whereas in (2.5.2) only for 
k + 1 5 C 5 ko. The following properties of G(k,C) are immediate 

(i)  ~ ( k ,  IC) = z for all E 

(ii) G-'(Ic,c) = G( [ ,  k )  for all IC,! E E1 
(iii) ~ ( k ,  C )  = ~ ( k ,  .)G(., C) for all k ,  T ,  C E E1 
(iv) G ( k  + 1,C) = d(k)G(k ,C)  for all k E m, C E W1 

(v) G(k,C+ 1) = G(k,C)d"(l) for all k E El, P E 

(vi) G(k,C) = nT=o d ( k  - 1 - T )  for all k 2 C in m1 

(vii) G ( k ,  C )  = U",: d- l (T )  for all l 2 k in E1 
k-l-f? 
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(viii) if d ( k )  is a constant matrix A ,  then G ( k , t )  = G(k - t) = dkPe 
for all IC, t E W,. 

On combining some of the above results, we have the following: 

Theorem 2.6.1. The solution of the initial value problem (1.2.11), (1.3.4) 
can be written as 

I:-l 

2.7. Adjoint Systems 

Let u(k) be a nontrivial solution of thc homogeneous system (1.2.12). 
We shall find the function v(k) so that vT(k)u(k) = c for all k E K'. 
For this, it is necessary that 

vT(k + I ) U ( ~  + 1) = v T ( k ) u ( ~ )  = c for all X: E R, 
i.e. 

vr(k  + 1)d(k)u(k)  = vT(k)u(k) for all k E R, 
which implies that v(k) is a solution of the linear homogeneous system 

(2.7.1) ~ ( k )  = dT(k )v (k+  l), k EFT. 

The system (2.7.1) is called the adjoin,t systecm. of (1.2.12). 

In terms of the principal fundamental matrix U ( k ,  ko) of (1.2.12), the 
function v(k) can be written as 

(2.7.2) v(k) = [U'(k, IC0)] -l v(ko), k E RI. 
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For this, we have 

v(k- + 1) = [IAT(k + 1, ICo)]" v(k0) = [ ( A ( k ) U ( k ,  IC~))~]-' v(k0) 

= [AT(k)]-l [U"(k,ko)]-l v(k.0) = [AT(k)]-l v ( k ) ,  

which is the same as (2.7.1). 

Now let V ( k )  be any fundamental rrlatrix of the adjoint system (2,7.1), 
then 

(2.7.3) V T ( k )  = V T ( k +  1)d(k) ,  k E R. 
Prernldtiplying (1.2.11) by V T ( k  + l), to obtain 

(2.7.4) V T ( k  + l)u(k + 1) = V T ( k  + l)d(k)u(k) + VT(k + l)b(k). 

Postrrlu!tiplyirlg (2.7.3) by u(k), to gct 

(2.7.5) VT(k)u(k) = V T ( k  + l)A(IC)u(k). 

From (2.7.4) arid (2.7.5), WC have 

(2.7.6) A [VT(k)u(k)] = VT(k + l )b(k) .  

Thus, it follows that 

(2.7.7) u(k) = [VT(k)]-' V"(ko)u(ICo) + c [V"(k)]-' VT( ! )b ( !-  1) 
k 

t=k0+1 

for all ko 5 IC E 
ko 

(2.7.8) = [V'(k)]-l VT(k0)u(ko) - c [V'(IC)]-' VT(I?)b(!  - 1) 

and 

~ ( k , e )  = [ ~ ~ ( / c ) l - l  VT(I?)  for all I C , ~  E ~ 1 .  

Finally, we note that if v ( k )  is any column of V ( k ) ,  i.c. a solution of 
(2.7.1), then (2.7.7) and (2.7.8) provide 
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n, A n 

i= 1 

(2.7.10) 
P=!,:+l i=l 

for all k.0 2 k E W1. 
Equations (2.7.9) and (2.7.10) will be referred to as adj0in.t iden,,tities. 

2.8. Systems with Constant Coefficients 

For the difference system 

(2.8.1) ~ ( k  + 1) = Au(k), k E Z 

where A is a nonsingular constant matrix and Z is the set of all intcgcrs 
including zero, thc general solution car1 be writtcrl as 

(2.8.2) ~ ( k )  = AkC, k E Z 

where c is an arbitrary constant vector. Thus, to find the general solution 
of (2.8.1) we need to find the general expression for A", where k E Z. 
This is not an easy task except in few exceptional cases. 

Example 2.8.1. For the matrix A = it is easily seen that 

Ak= [ cos(h/2) sin(k.irl2) for all k E Z. Therefore, the general 

solution of (2.8.1) with this A can be written as 
- si11(k7r/2) cos(k7r/2) 1 

In the following we shall show that the eigenvalues and eigenfunctions 
of the matrix A can be used to find the general solution of (2.8.1). 

Theorem 2.8.1. Let Xi (l/&), i = 1,. . . ,n be the distinct eigenval- 
ues of the matrix A(A-l) and vi ,  i = 1, ... , T I  be the corresponding 
eigenvectors. Then, the set 
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is a fundamental set of solutions of (2.8.1). 

Proof. Since vi is an eigenvector of A(A") corresponding t,o the 
eigenvalue X i  (l/Xi), we find that 

u " ( k +  1) = viX:+l = XiviX; = Avi,A; = Aui (k ) ,  k 2 0 

Thus, u i (k )  is a solution of (2.8.1). To show that (2.8.3) is a fundamental 
set, WC note that det C(O) = det [ v1 ,  .. . ,vn, ]  # 0, sincc v l ,  .. . , v n  
arc lirlcarly irldcpcrldent from Thcorcnl 2.2.2. Thc rcsult now follows from 
Tllcorcrrl 2.3.3. I 

Obviollsly, from Thcorcrrl 2.8.1 it follows that 

Example 2.8.2. Using the results of Example 2.2.1, Thcorcnl 2.8.1 cm- 
dudes that, the set 

for all k E Z 

is a fundamental set of solutions of the differerlcc system (2.8.1) with A = [ a  ; ;]. 
Unfortunately, when the matrix A has m. < n distinct cigcnvalues, 

then the computation of A' is not casy. However, since the solution 
y ( t )  = edt of the matrix -differential system 

(2.8.5) J"(t) = AY(t) ,  Y ( 0 )  = Z 
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and Ak for all nonnegative integers k are related by A" = yck:)(0), all 
the known expressions for edt can be used to compute A k .  

Lemma 2.8.2. Let X1, ... , X , ,  'm, 5 n be distinct eigenvalues of the 
matrix A with multiplicities TI, . . . , T ,  respectively, so that 

(2.8.6) p(X) = (X - X1)T'l . '. (X - 

then 

m. 

i=l 

where 

(2.8.8) q;(X) = 

(2.8.9) 

Proof. Relations (2.8.8) and (2.8.9) imply that 

1 = .1(X)q1(X) + . '. + am.(X)qm(X). 

This relation has been derived from the characteristic equation p(X) = 
0 of A, and therefore, using Caylcy Hamilton Theorem 2.2.3, we must 
have 

Since the matrices X i 1  and A - XiZ commute and = eAztZ, 
we have 

Prcrrlultiplyirlg both sides of this equation by u,L(A)qi(A), and observing 
that qi(A)(A-Xil)Tt = p(A) = 0, and consequently, qi(A)(A-Xil)j = 0 
for all j 2 ~ i ,  it follows that 

,rl - 1 

ai(A)qi(A)eAt = eAatai(A)qi(A) c {+(A - 
j=O 3. 

XiZ))flJ 
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Surrlrrling this relation from i = 1 to 'm, and using (2.8.10), we obtain 
(2.8.7). I 

Theorem 2.8.3. Let the notations and hypotheses of Lerrlrrla 2.8.2 be 
satisfied. Then, for all nonnegative integers k 

Proof. Differentiating (2.8.7), k tirncs and substituting t = 0 gives 
(2.8.11). I 

Corollary 2.8.4. If * m  = R ,  i.e. A has n, distinct eigenvalues, then 
a,;(A) = (l/qb(X,,))Z, and (2.8.11) reduces to 

(2.8.13) 

Corollary 2.8.6. If m ,  = 2 and r1 = (n - l), r2 = 1, then we have 

and (2.8.11) reduces to 
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Now since (A - X2Z) = (A - X1Z) - (X2 - X1)Z, we find 

Thus, by Cayley-Hamilton Theorem 2.2.3 we get (A - XIZ)" = (X2 - 
X1)(A-XIZ)n,-l. Using this relation repeatedly, WC obtain (A-XIZ)n+j-l = 
(X2 - X,)j(A - X1Z)"-'. It  therefore follows that 

Lemma 2.8.7. (Putzcr's Algorithm). Let, XI, . . . , X, bc thc eigcnvalucs 
of thc matrix A whic.11 arc arranged in some arbitrary, but spcczified order. 
Then, 

(2.8.15) 

(Note that each eigenvalue in the list is repeated according to its multi- 
plicity. Further, since the matrices (A-XJ )  and (A-XjZ) commute, we 
can for convenience adopt the convention that (A-XjZ) follows (A-XJ) 
if i > j.) 

Proof. It  suffices to show that y( t )  defined by y( t )  = rj+l(t)Pj 
satisfies (2.8.5). For this, we define ro(t) = 0. Then, it follows that 

n.- 1 n-l 

m - l  m- l  
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n,-2 

(2.8.16) = C { (X:,+l - X n ) P j  + ( A  - Xj+lZ)Pj} ~j+ l ( t )  
3=0 

n,-2 

= ( A  - X , Z )  C Pjrj+l(t)  
j=O 

= ( A  - X , Z )  ( Y ( t )  - Tn,(t)Pn,-l) 
(2.8.17) = ( A  - L Z ) Y ( t )  - ~ , ( t ) P n ,  

where to obtain (2.8.16) and (2.8.17) we have used Pj+l = ( A -  X,+lZ)'p, 
and P ,  = (A-X ,Z ) P , - l  rcspeckively. Now by Cayley~-Harrlilton Theorem 
2.2.3, P ,  = p(A)  = 0, and therefore (2.8.17) reduces to y'(t) = A y ( t ) .  
Finally, to complete the proof we note that y(0) = = 
TI (0)Z zz 1. B 

Theorem 2.8.8. (Discrete Plltzcr's Algorithrrl). Let the rlotatiorls and 
hypothcscs of Lcrnrrla 2.8.7 \)c sat,isficd. Then, for all norlrlcgativc irltcgcrs 
k 

n- 1 

(2.8.18) 

where 

Proof. Diffcrentiating (2.8.15), k times and substituting t = 0 gives 
(2.8.18), whcrc w J ( k )  = ~;":'(0), 1 5 j 5 n, (cf. Problem 2.16.7). B 

Example 2.8.3. Consider a 3 x 3 matrix A having all the three 
eigenvalues equal to XI. To usc Theorem 2.8.8, we note that w l ( k )  = 
A t ,  w2(k )  = kX!-l ,  w3(k)  = (1/2)k(k - 1)X:"' is the solution set of the 
system 

W l ( k +  1) = X lW l ( k ) ,  Wl(0) = 1 

w2(k + 1) = X1w2(k) + Wl(k), w2(0) = 0 

wg(k + 1) = X1w3(k) + wz(k), w3(0) = 0. 

Thus, it follows that 

(2.8.20) AA' = X t Z  + kXk-' ( A  - XIZ) + - k ( k  - l ) X f p 2 ( A  - X 1 1 ) 2 ,  
1 
2 
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which is exactly the same as (2.8.13) for n = 3. 

2 1 -1 
In particular, the matrix A = -3 -1 l4 ] has all its eigenvalues [ 

cqllal to - 1, and hcrlce from (2.8.20) we obtain 

1 
2 

2 - 3 k  - 3 k 2  -2k k + k 2  
A" = -(-l) 2 

-9k - 9k2 -6k 2 + 3k + 3k2 

Similarly, the math-ix A = has all its eigenvalues equal 

to 1, and hence from (2.8.20) we obtain 

! ( k  - l ) ( k  - 2) -2k(k - 2) k (k  - 1) 
A" = 1 k ( k  - 1) -2(k + l)(k - 1) k ( k  + 1) 

2 
k ( k  + 1) -2k(k + 2) ( k  + 2)(k + 1) 

Example 2.8.4. Consider a 3x3 matrix A with eigenvalues XI, XI, X2. 
To use Theorem 2.8.8 we note that 

and hence 

which is preciscly the samc as (2.8.14) for n = 3. 

In particular, the matrix A = [ i :1 3 ] has thc eigenvalucs 

- 1, -1,l and hence from (2.8.21) WC find 

(-1y 0 2 (1 - ( - 1 ) k )  

AL = 

1 

Remark 2.8.1. From Problem 2.16.8 we notc that the explicit represen- 
tations obtained for A", k E W in fact hold for all k E Z. 
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Once an explicit representation for A", k E Z is known, the general 
solution of the nonhomogeneous difference system 

(2.8.22) U ( k +  1) = Au(k) + b(k) ,  ,k E z 

can be written as 

(2.8.23) u ( k )  = A'c + x A ' " b ( l -  1) for all k E W 
I; 

P= 1 
0 

(2.8.24) = A'c- c A"-Pb(t- 1) for all nonpositive integers k. 
P = k + l  

2.9. Periodic Linear Systems 

A function ~ ( k )  defined on m~ is callcd pwiodic of period K > 0 
if for all k E 

(2.9.1) ?/,(A-+ K )  = ?/,(A-) 

Geormtric:ally, this means that the graph of ~ ( k )  rcpcats itself in sllccrssivc 
intervals of length K.  For example, the funct,iorl cos k-ir is periodic: on 
IN with the pcriod K = 2. For coIlvcnicI1(:c, WC shall asslme that, K 
is the smallest positive intcger for whic:h (2.9.1) holds. If each component 
u i ( k ) ,  1 5 i 5 n of u(k) and each clerrlent a,,i3 ( k ) ,  1 5 i, j 5 n of 
A(k)  arc periodic of period K ,  then u ( k )  and A(k)  are said to be 
periodic of period K .  The system (1.2.11) and i n  particular (1.2.12) is said 
to be periodic of period K if A(k)  and b(k) are periodic of period K .  
Periodicity of solutions of difference systems is an interesting and important 
aspect of qualitative study. We shall provide certain characterizat,ions for 
the existence of such solutions of linear difference systems. 

Theorem 2.9.1. Let the difference system (1.2.11) be periodic of period 
K on IN. Then, it has a periodic solution u(k) of period K if and only 
if u(0) = u ( K ) .  

Proof. Let u(k) be a periodic solution of period K ,  then by definit,ion 
it is necessary that u(0) = u ( K ) .  To show sufficiency, let u ( k )  be a 
solution of (1.2.11) satisfying u(0) = u ( K ) .  If v(k) = u(k + K ) ,  then  it 
follows that v ( k  + 1) = u(k + 1 + K )  = A ( k  + K ) u ( k  + K )  + b(k + K )  = 
A(k)v(k) + b(k) ,  i.e. v(k) is a solution of (1.2.11). However, since 
v(0) = u ( K )  = u(O), the uniqueness of the initial value problems implies 
that u(k) = v(k) = u ( k  + K ) ,  and hence u ( k )  is periodic of period 
K.  I 
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Corollary 2.9.2. Let the system (1.2.12) be periodic of period K on 

W. Further, let V ( k )  be a fundamental matrix of (1.2.12). Then, the 
difference system (1.2.12) llas a norltrivial periodic solution u(k) of period 
K if and only if det ( V ( 0 )  - V ( K ) )  = 0. 

Proof. We know that the general solution of (1.2.12) is u(k) = V ( k ) c ,  
whcrc c is an arbitrary constant vector. This u(k) is periodic of period 
K if and only if V(0)c  = V ( K ) c ,  i.e. the system (V(0 )  - V ( K ) ) c  = 0 
has a rlorltrivial solution vcc:t,or c. But, from Lemma 2.2.1 this svstcrrl has 

a nontrivial solution if and only if det (V(0 )  - V ( K ) )  = 0. I 

Corollary 2.9.3. If A(k )  is a constant matrix A then the difference 
syst,crrl (1.2.12) has a nontrivial periodic solution if alltl only if the matrix 
(1 - AK) is sirlgldar. 

Corollary 2.9.4. Let, t,hc tliffcrcrlcc svstcrrl (1.2.11) 1)c pcriotlic: of period 
K .  Thcn, it has a Ilrliqlx periodic solution of period K if ant1 o d v  if t,llc 
syst,crn (1.2.12) docs not, havo a pcriotlic: sollltiou of pcriotl K othcr than 
thc trivial OIIC. 

Proof. Let V ( k )  be a fllrldarrlcrlt,al matrix of (1.2.12). Thcrl, the gcrlcral 
sollltiorl of (1.2.11) can h: writt,crl as 

k 

~ ( k )  = V ( k ) c  + C V (k )V- l ( t ) b ( f  - l), 
P= 1 

where c is an arbit,rary constant vector. This u(k) is periodic of period 
K if ant1 only if 

K 

V(0 )c  = V ( K ) c  + C V(K)V- ' ( t )b ( t  - l), 
P= 1 

i.e. the system 

K 

(V(0)  - V ( K ) ) c  = C V(K)V- ' ( t )b ( t  - 1) 
P = 1  

llas a unique solution vector c. But, from Lemma 2.2.1 this system has a 
unique solution if and only if det (V(0 )  - V ( K ) )  # 0. Now the conclusion 
follows from Corollary 2.9.2. I 

Theorem 2.9.5. Let thc difference system (1.2.12) be periodic of period 
K on W, arid U ( k ,  U) be its principal fundarncntal matrix. Then, the 
following hold 
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(i) U ( k  + K,O) = U(k,O)U(K,O), and hcncc U ( k  + K,O) is also a 
fundamental matrix of (1.2.12) 
(ii) (Floquet's Theorem) there exists a periodic rlonsirlg~llar matrix P ( k )  
of period K and a constant matrix R s11c:h that 

(2.9.2) U(k ,O)  = P(k)Rk  

(iii) the transforrrlation 

(2.9.3) u (k )  = P (k )v (k )  

reduccs the system (1.2.12) to the system 

(2.9.4) v ( k  + 1) = RV(/?). 

Proof. (i) Sinc.c thc system (1.2.12) is pcriotlic i t  is ( k m  that U ( k + K ,  0) 
is its matrix solllt,iorl. Furthcr, from the tlcfirlitim of prirlc4pal flmdarrlcrlt,al 
matrix det U ( k  + K , O )  # 0. Thus, U ( k  + K, 0 )  is a f~lrldarrlcntal matrix 
of (1.2.12). Now sincc both sides of U ( k  + K,O) = U(k,O)U(K,O) arc the 
same at  k = 0, this identity for all k E W follows from the uniqucncss 
of the initial value problems. 

(ii) Sincc thc matrix U ( K ,  0) = n,";' A ( K  - 1 - P) is rlonsinglllar, from 
Theorem 2.2.4 it is possible to find the matrix R sl1c:ll that U I I K ( K ,  0) = 
R. Thus, from (i)  it follows that 

(2.9.5) U ( k  + K, 0 )  = U ( k ,  O)R? 

Let ~ ( k )  be a matrix defined by the relation P ( k )  = U ( ~ , O ) R - ~ .  
Then, using (2.9.5) we have 

P ( k + K )  = U ( k + K ,  0 ) x - k - K  = U ( k ,  0 ) R K R - k - K  = U ( k ,  0 ) R - k  = P ( k ) .  

Hence, P ( k )  is periodic of period K. Further, since U ( k , O )  and R-k 
are nonsingular det P(k)  # 0. 

(iii) From the transformation (2.9.3) and the relation (2.9.2), we have 

u (k  + 1) = P(k + l ) v ( k  + 1) = U ( k  + l,O)R-"-lv(k + 1) 

= A(k)U(k ,O)R-k" '~(k + 1) = A(k )P ( k )R- l v ( k  + l), 
and hence 

A ( k ) P ( k ) R - l v ( k  + 1) = A(k )u (k )  = A(k ) 'P (k )v (k ) ,  
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i.e. 

d ( k ) P ( k )  [R-'v(k + 1) - v ( k ) ]  = 0. 

However, since A(/)  as well as P ( k )  is norlsinglllar it is nccessary that 
R-lv(k  + 1) - v(k) = 0. I 

2.10. Almost Periodic Linear Systems 

A function u(k), k E Z is said to be alm,o.st per.iodic if for any positive 
F thcre exists a positive integer N ( F )  such that any set consisting N 
consccutive integers contains at least one integer p with the property that 

(2.10.1) IIu(k+p) - u(k)II < €, k E z. 

In the above definition p is called an E al,m.ost period of u(k), or an 
f translation, n,umber~ .  

The following properties of almost periodic functions arc fundarnental: 

(PI) A function u ( k ) ,  k E Z is almost periodic if and only if it is normal. 

(P2) A function u (k ) ,  k E Z is almost periodic if and only if thcre exists 
an almost periodic funckion f ( t ) ,  t E R suc:h that u(k) = f(k), k E Z. 
(P3) If u(k)  and ~ ( k ) ,  k E Z arc almost periodic functions and c E R, 
then the following functions arc almost periodic on Z : (i) c 7 ~ ( k ) ,  (ii) 
w.(k) + v ( k ) ,  (iii) w.(k)v(k), (iv) 71,(k)/u(k) provided Iv(k)l 2 m, > 0 
for every k E Z, (v) u.(k + t ) ,  where e is a fixed integer. 

(P4) An almost periodic function u ( k ) ,  k E Z is bounded. 

(PS) Let v ( k ) ,  k E Z be a surnrnable function, i.e. 

v = c jv(k)( < 00. 
k € Z  

Then for any almost periodic function ~ ( k ) ,  k E Z the function w(k )  
dcfined by 

w(k )  = x u ( t ) ? r ( k  - e),  k E Z 
P€Z 
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is also almost periodic. 
(P6) Let v.(k) ,  k E Z be an almost periodic function. Then the limit 

lim 
u(k + 1) + . . . + u(k + m )  

m-cc  rrj, 

exists uniformly with respect to k E Z, and is independent of k .  This 
number is called the m.ean, va1w.e of u ( k )  and is usually denoted by 
M ( 4 k ) ) .  
(P7) Let ~ ( k ) ,  k E Z be an almost periodic: function, and let U(k )  
be defined as follows: U ( 0 )  is chosen arbitrarily, and U ( k  + 1) - U ( k )  = 
~ ( k ) ,  k E Z. Then, U ( k ) ,  k E Z is almost periodic: if and orlly if it is 
bounded. 

The main result of this scc:tion is ernbodisd in the following: 

Theorem 2.10.1. Let the func:t,ion b ( k ) ,  k E Z be almost periodic.. 
Then, a sollltioll u ( k ) ,  k E Z of (2.8.22) is ahlost periodic: if and only if 
it is l)o~lrldetl. 

Proof. From (P4) an almost periodic solllt,iorl u(k), k E Z of (2.8.22) 
is bo~~ndet l ,  and Ilence ws need only to show that the bourldcdrless of 
u(k), k E Z implies its almost periodicity. It is well known that there 
exists a rlorlsirlglllar matrix 7 suc:h that 7-ld7 = B is an upper 
triangular matrix, i.e. B has the form 

where Xi ,  i = 1, .  .. , n  are the eigenvalues of A (or B). I n  (2.8.22) we 
use the substitut,ion u(k) = 7 v ( k ) ,  to obtain 

(2.10.2) ~ ( k  + 1) = Bv(k) + 7-’b(k), k E Z. 

Obviously, the system (2.10.2) is of the form as (2.8.22) with 7-’b(k) 
an almost periodic function, but reduces considerably the difficulty in dis- 
cussing the almost periodicity of its solutions. In fact, the general case of 
an arbitrary matrix A is now reduced to the scalar case. Indeed, the last 
equation of the system (2.10.2) is of the form 

(2.10.3) z ( k +  1) = X z ( k )  + c ( k ) ,  k E Z 

where X is any nurnbcr, and c ( k ) ,  k E Z is an almost periodic function. 
All we need to show that any bounded solution z ( k ) ,  k E Z of (2.10.3) 
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is almost periodic. It will then imply that the n,th component vn,(k) ,  k E 
Z of the solution v ( k ) ,  k E Z of (2.10.2) is alrnost periodic:. Then, 
substituting PI ,  ( k )  in the (n,- 1)th equation of (2.10.2) we obtain again an 
equation of the form (2.10.3) for ~ j ~ , - ~ ( k ) ,  and so on. Therefore, WC need to 
discuss only (2.10.3). There are three distinct cases: 1. 1x1 < 1, 2. 1x1 > 1, 
and 3. 1x1 = I. 
Case 1. From (2.10.3), we have 

(2.10.4) z(k+p+l)-z(k+l) = X(z(k+p)-z(k))+(c(k+p)-c(k)), k E Z 

and since z ( k ) ,  k E Z is bounded, we obtain 

(2.10.5) sup lz (k  + p )  - z (k ) l  5 (1 - I X l ) - l  sup Ic(k + p )  - c(k)l. 
k:€Z I:€z 

Now (2.10.5) shows that, any (1 - IXl)c almost period of ~ ( k )  is an c 
almost, period for z( k ) .  Ahcovcr, if (.(X-) is pcriodic then z ( k )  is pcriodic 
of the same period. 

Case 2. O r m  again fro111 (2.10.4), WC get 

(2.10.6) sup Iz(k + p )  - z (k ) l  5 (1x1 - 1)-1 sup jc(k + p )  - c(k)l. 
I:Ez k E Z  

From (2.10.6) the almost periodicity of z ( k )  is clear. 

Case 3. In this case WC write X = for some real CY, and multiply 
both sides of (2.10.3) by ei("+')a, to obtain 

e i ( k + l ) a  z ( k  + 1) = e"""z(k) + eiaeika c(k) ,  k E z 

which with obvious notations can be written as 

(2.10.7) Z ( k  + 1) - Z (k )  = q k ) ,  k E z. 

Now (P7) implies that Z ( k ) ,  k E Z is almost periodic. Finally, since 
z ( k )  = e - i k a Z ( k ) ,  k E Z the function z ( k ) ,  k E Z is almost periodic, as 
it is the product of two almost periodic functions. I 

2.11. Higher Order Linear Equations 

In Section 1.2 we have seen that if a o ( k ) a , ( k )  # 0 for all k E m 
then the n,th order difference equation (1.2.3) can be written i n  the system 
form (1.2.11) where the matrix d ( k )  and the vector b(k) are defined in 
(1.2.13) and (1.2.14) respectively, and the relation between the ~~rlkr~own 
vector u(k) and the solution ~ ( k )  of (1.2.3) is given in (1.2.10). W e  
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arc interestcd in finding an explicit representation of the general solution 
of (1.2.3) in terms of lirlcarly iIltlepcndent solutions of (1.2.4). For this, we 
note that for the given functions 111 ( k ) ,  . . . , u n , ( k )  on mn the Casoratian, 
m,utTix C(u,l,. . . , u n ) ( k ) ,  or i n  short C ( k ) ,  reduces to 

which is dcfir~cd for all k E W,. The results armlogous to Lemmas 2.3.1, 
2.3.2 and Thcorcrn 2.3.3 can bc stated as follows: 

n. 

(2.11.4) 
i = l  
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where C . ; ,  1 5 i 5 n are arbitrary constants. 

Example 2.11.1. The functions vI  ( k )  = 1, 712(k) = k 2 ,  k E W are 
linearly independent solutions of the difference equation 

(2.11.5) (2k + 1)~(k + 2) - 4(k + l ) ~ ( k  + 1) + (2k + 3)u,(k) = 0, k E W 

whereas its linearly independent solutions satisfying (2.11.2) with a = 0 
are u1(k) = 1 - k 2 ,  7 ~ 2 ( k )  = k 2 .  Similarly, for the difference equation 

(2.11.6) ( ( k  + 113 - IL(k: + 2) - ( ( k  + 213 - ?/.(x7 + 1) 

+ ( ( k :  + - ( k  + 1)s) ?/,(k) = 0, IC E W 
linearly indcpendcrlt solutions are 111 ( k )  = 1, 112(k) = k3, whereas thc 
ones satisfying (2.11.2) arc ul(k) = 1 - k3, u2(k )  = /c3. 

Now let, ~ 1 i ( k ) ,  1 5 i 5 R be any fixctl set of linearly irldcperldcrlt 
solutions of (1.2.4). We shall t:ornput,c the first t:omponcnt, say, z ( k ,  P) of 
the vector V(k )V- l ( l )b (P  - 1). For this, we note that, 

111 (k) 7 1 ,  ( k )  ... 

V(k)V-l (P)b(P - 1) = ... ... ... 

711(/c+n-1) ..' ? I n ( k + ? l - 1 )  ! x  

0 

0 

an( (  - 1) 
b ( e  - 1) 

cofactor of ~ ~ ( e +  n - 1) I b ( e  - 1) 
a,(/? - 1) 

cofactor of v,([ + R - 1) 

and hence 

= G(k , e )  
b ( e  - 1) 

an( [  - 1) ' 
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where 

(2.11.7) 

This function G(k,  e) is called the Green’s f ~ m c t i o n  of the equation 
(1.2.4) and it is defined for all k E an,, li E NI. The following properties 
of G ( k ,  e )  are immediate 

(i) G ( k , t )  = 0 for all P E W ( k  - n + 2, k )  and k E W ,  
(ii) G(k ,P )  = 0 for all k E W(P,P+n,-2) and .t E wl, and G(P+n,-l,P) 
= l  

(iii) for a fixed P E RI, w(k)  = G(k,P) is a solution of (1.2.4) 
(iv) G(k,  P) is indeperltient of the set of lincarly irltlepcrldent solutions 
~ ; ( k ) ,  1 5 i 5 n, of (1.2.4). 

Since t,he first component i n  (2.5.3) is the general solution ~ ( k )  of 
(1.2.3), from the above corlsidcrations it follows that 

n I:--n+l 

(2.11.8) ~ . ( k )  = C c , ~ ~ i ( k )  + C G ( k , e )  
b(li - 1) 

k E an. 
an,([ - 1) ’ i=l P=a+l 

Example 2.11.2. From Example 2.11.1 and (2.11.8) it is clear that the 
general solution of the nonhomogeneous difference equation 

(2.11.9) (2k + 1)u(k + 2) - 4(k + l ) u ( k  + 1) + (2k + 3)u,(k) 

= (2k+ 1)(2k+3), k E W 

can be written as 

1 e2 
k-l i 1 k2 (2P - 1)(2P+ 1) 

(2P - 1) 
1 (e+ 

k - l  

= c1 + c2k2 + - k ( k  - 1)(4k + 1). 
1 
6 
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Definition 2.11.1. The difference equation (1.2.4) 011 W is said to be 
exact if tllerc exist functions b i ( k ) ,  0 5 i 5 n, - 1 defined on W are slxh 
that 

L i=o i=O 

The above c:ondition holds if and only if 

ao(k-) = - bO(k) 

a , ( k )  = b , - l ( k  + 1). 

(2.11.12) ~ ; ( k )  = b , - l ( k  + 1) - b,;(k),  1 2 i 5 n - 1 

These equations imply the r1cc:cssary arid sltfficicnt, c:ondition for the cxact- 
ncss of the cquation (1.2.4) 

n, 

(2.11.13) C U , - i ( k  + i) = 0, k E IN. 
,i=O 

Definition 2.11.2. A function ~ ( k )  defined on W is said to be a 

rn,v,ltip,lie7. of (1.2.4) if the equation . ~ ~ ( k ) u ~ ~ ( k ) u ( k  + 1:) = 0 is exact. 

For ~ ( k - )  to be a rrlultiplicr of (1.2.4) it is necessary and sufficient that 
v(k )  is a solution of thc equation 

The above equation is called the adjoint of (1.2.4). The adjoint of 
(2.11.14) known as the adjoint of the adjoint is therefore 

n 

(2.11.15) c u+(k  + n,)w(k + i) = 0. 
i = O  
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This equation is the same as (1.2.4). Ir~dced, if we put e = k +n,, then 
(2.11.15) becomes 

c ai(e)ul(e - 77, + i) = 0, e E N(n,). 
i = O  

Thus, if u ( k )  is a solution of (1.2.4), then v(k + n) is a solution of 
(2.11.15). 

Lct i n  the equation (2.11.14), k be k - n, and ~ ( k  -v, )  = z(k), so 
that it takes the form 

n 

(2.11.16) ~ a , - ; ( k - n + i ) z ( k + i )  = 0, k E N. 
i=O 

This equation is c:alled thc tmrrspose of (1.2.4). 

Now we shall develop tllc disc:rctc Lagrange’s identity and the discxte 
Grccn’s forrrlula. For this, we shall dcnot,e the operator 

(2.11.17) L[u(k) ]  = c ai(k)lr(k + i )  
n. 

1=0 

and its adjoint 

(2.11.18) L*[v (k ) ]  = c an,-.i(k+i)?l(k+i) = C ai(k+n-i)l l(k+n-i) .  
i = O  i=O 

From thew operators, it is easy to obtain 

U(k)L[?/,(k)] - U,(k)L*[?/(k - v,)] 
n, 

= c [ai(k)?l(k)?/,(k + i) - ai(k - i )7 l (k  - i )u,(k)] 
i= 1 

(2.11.19) 

which is the required discrete Lagr.an,ge’s identity. On summing this 
identity from k = kl to k2 where kl < k2 and k l ,  E W, we find the 
discrete Green,’s form.uda 

k.2 

(2.11.20) c [v (k )L [u(k ) ]  - U(k)L*[? / ( k  - n ) ] ]  
k=k1 
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This formula can be used to deduce the relation between the solutions 
of (1.2.4) and its adjoint equation (2.11.14) (cf. Problem 2.16.23). 

In particular, i n  (2.11.20) let u (k )  be a solution of the equation (1.2.4)1 
v(k - n) = z(k) be a solution of the nonhomogeneous transpose equation 

(2.11.21) L*[w(k-n)]  = L*[z(k)] = b ( k ) ,  

kl = 0, k.2 = K and z ( K  + i )  = 0, 1 5 i 5 n to obtain 

(2.11.22) = 5 12 *,;(-E)?,,(i - P) 1 z(n,  - P) 

K 

Example 2.11.3. Consider the problem of c:orrlputing the sum c b ( k )  X 

u , (k) ,  where ~ ( k )  is a solution of the second order equation 
L:=O 

(2.11.23) ao(k)U(k) i- O.l(k f 1)?/,(k + 1) + O , z ( k  + 2)7/.(k + 2) = 0, 

and b ( k ) ,  k E JN(0,K) is a given function. For this, WC note that the 
nonhomogeneous transpose equation (2.11.21) reduces to 

(2.11.24) az(k)~(k) + ~ l ( k ) . ~ ( k  + 1) + ~ , o ( k ) z ( k  + 2) = b ( k ) ,  

and tlms if z ( K  + 1) = z ( K  + 2) = 0, the relation (2.11.22) gives 

K 

(2.11.25) c b(k)v.(k) = [ O , l ( O ) U ( O )  + az(l)u.(l)] z(1) + a~(0)?1,(O)z(O). 
k:=O 

This ingenious way of computing the sum which avoids the cornpiitation of 
any u(k)  except u(0) and ~ ( 1 )  is due to Clenshaw [S]. 

2.12. Method of Generating Functions 

To solve the nth order nonhomogeneous difference equation 

n. 

(2.12.1) Pn(E)71,(k) = C a i u > ( k  + i) = b ( k ) ,  k E I N ,  aoan, # 0 
i=O 
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where U,L ,  0 5 i 5 R are constants several methods are known. For exam- 
ple, the method of undetermined coefficients and the operational rrlethod 
arc given i n  Problems 2.16.39 and 2.16.41 respectively. Here we shall discuss 
the rncthod of gencrating functions whose importance is in its simplicity, 
and the theory is parallel to the Laplace transform method in ordinary 
differential equations with constant coefficients. 

Definition 2.12.1. For a given function u ( k ) ,  k E W the gen,erutin,g 
fw,nction is defined by the series 

03 

(2.12.2) U ( S )  = G ( u ( ~ ) )  = C ~ ( k ) . s ’ ,  
I F 0  

where it is assumed that there exists a constant c > 0 so that, the above 
series converges for all I s 1  5 c. 

In partic:ular, if S = I/” then t,he series (2.12.2) is called Lau,rant 
tr.ansfo.r..rnatio~, or 2 transformation of ~ ( k ) .  To rcsolvc thc problem of 
coIlvcrgcIl(:e in this case, WC note that, in most of our app1ic:ations WC will 
have 17~(k)l 5 p‘, where p 2 0 is some suitable constant. Therefore, the 
d’Alernbert ratio test for the convcrgence guarantees that (2.12.2) converges 
for all 121 > p. 

For example, G(0) = 0, G([j’) = CT=,/j’.s” = 1/(1 - ,h), which 
convcrges for all Is1 < l/Ifjl, (1 # 0. However, G ( k ! )  = C;”=, k!s’ 
converges only for S = 0, i.e. the function k! docs not possess a gcnerat,ing 
function. 

In the following Table 2.12.1 the first eight entries provide the general 
rclationships between the generated and generating functions. All of these 
relations easily follow from the Definition 2.12.1, and find importance i n  
solving the difference equation (2.12.1). In particular, entry 8 can be de- 
duced by first noticing that 

and then writing k = i - f? and using the fact that l! ranges only from 
0 to i for a fixed value of i ,  to deduce that 
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Usually, we write 

i i 

u(i) * .(i) = c U. ( i  - e)71(e) = c v.(l)v(i - e) = v( i )  * U, (Z ) ,  

C=O C=O 

and rcfer to the rcsult as the conwolution of u,(i) and 7 1 ( i ) .  Thus, if U(S) 
generates u ( k )  and V ( s )  generates v (k ) ,  then U(s )V ( s )  generates 
U , ( k )  * 7 / (k ) .  

The remaining entries 9 to 21 in Table 2.12.1 are somc of the most 
frcquerltly used specific relations. Throughout this table T is a rlormegative 
integer. 

Tablc 2.12.1 

Gcncrating Functions 

II. ( k )  U ( S )  = G ( u ( k ) )  

1. U, ( k )  

2. 0714 k )  + /h (k )  

3. U.(k + T), T E W(1) 

U.(k - T), k E W ( T )  4. 
0, otherwisc 

5 .  k'r'U.(k), T E N(1) 

6. ( k ) % ( k ) ,  T E W(1) 

7.  ( k  + r)( ' )u(k  + T), T E f 

S T  U ( S )  

d"U(s) 
.ST - 

ds' 

d' U ( S )  
ds' 

U(.s)V(s) 

S T  

1 
(1 - cas) 

eas 11. 
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12. ( k )  (..) 

13. k' 

19. 

20. - (Bernoulli numbers) 

21. ~ ( k )  (Fibonacci numbers) 

Bk 
k !  

r!sT 

(1 - .S )T+l  

r !  
(1 - i j j S ) T + l  

1 - scosh cy 

1 - 2scosh o + s 2  

ssirlh o 

1 - 2scosh Q + .s2 

1 - cos CY 

1 - 2ps cos CY + [ P S 2  

(0  + /h) ' 
.S 

es - 1 

1 - S - S 2  

S 

For the given function b ( k ) ,  k E W and the solution ~ ( k ) ,  k E W of 
thc difference equation (2.12.1) let B(.$) arid U(S) be the corresponding 
generating functions. Thus, on using the crltries 2 and 3 from the Tablc 
2.12.1 i n  (2.12.1) it follows that 

which is on arranging the terms gives 

c;z; (E;=o Un,- jU ( i  - j))  si + s"B( . s )  
(2.12.3) U(S)  = 

ansn,p (1,'s) 

where p(X) = Cy=o(ai/an,)Xi is the characteristic cquation of the horno- 
geneous difference equation 

(2.12.4) Pn (E )u ( k )  = E a , u , ( k  + i )  = 0, IC E W, aoan # 0 
n 

i = O  

(cf. Problem 2.16.35). 
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For the right side of (2.12.3) we use the Table 2.12.1 to recover the 
solution w.(k), k E: W of (2.12.1). If some terms do not appear in the list 
of special functions given in the table, then entries 1 to 8 may be used to 
obtain the desired functions. The solution obtained in this way satisfies the 
given initial conditions u(0), . . . , ~ ( n  - 1). 

Example  2.12.1. For t,he first order difference equation ~(k+l )-au . ( k )  = 
b ( k ) ,  k E W equation (2.12.3) reduces to 

Since from the entry 14 of the Table 2.12.1, WC have G(ak) = 1/(1 - as), 

entry 4 gives G { ::-l' IC E W(1) } = s/(l -as). Now the use of entry 8 
otherwise 

provides G [x:=, &'b(k - j ) ]  = ( s / ( l - a s ) ) L ? ( s ) .  Therefore, the solution 

can he written as 

I: 

which is thc sarm as 

Example  2.12.2. For the second order difference equat>ion 

w,(k + 2) + a1v,(k + 1) + aou(k) = b ( k ) ,  k E W 

equation (2.12.3) reduces to 

U(s )  = 
U ( 0 )  f ('U(1) $- 0,1'U(O)).S + .S2B(.S) 

1 + a1.s + aos2 

Thus, if we write G(w(k) )  = 1/(1 + als + aos 2 ) and U(-1) = v(-2) = 0, 
then it follows that 

I; 

u ( k )  = v.(O)v(k) + (u(1) + qu (O ) )v (k  - 1) + c .(j - 2)b(lc - j). 
j=O 

Now let X1 and X2 be the roots of the equation X2 + alX + a0 = 0, 
so that 

1 1 
1 + a1s + aOS2 (1 - X l S ) ( l  - Xz") (X, 

- - - - 
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and hence from the entry 14 of Table 2.12.1 it follows t,hat 

2.13. Bernoulli's Method 

Suppose that we are given a polynorrlial equation 

n. 

(2.13.1) C  ai^^ = 0, a0 # 0, a ,  = 1 
i=O 

whose roots X I ,  . . . , X ,  arc distinct. On the basis of the coefficients a , ,  0 5 
i 5 n WC' consider the tlifferer1c.e equation (2.12.4) whose gcrleral sol~ltior~ 
we know (:an be writtcn as 

(2.13.2) .(IC) = c& + . . . + 

If l X i l  L qlX11, for all 1: = 2,- . . ,72 with q < 1, then for large k E W, 
we have 

v.(IC) = CIA:' + O(lqX1lli), 

which is the same as 

u ( k )  = X; (c1 + O(lqlk')) . 

Therefore, we obtain 

and hence for the root X1 we obtain the formula 

(2.13.3) 
tL(k + 1) 

lim 
I:+m u ( k )  

= X I ,  provided c1 # 0. 

If cl = 0, then (2.13.2) reduces to u ( k )  = c2X$ + 3 . .  + cn,A$, which is 
a solution of the (n - 1)th order difference equation 
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where hi, 0 5 1: 5 R - 1 are suitable constants. Thus, if c1 = 0 then it 
is neccssary that for all IC E IN 

I I/,( k )  ... u ( k  + R - 1) 1 = o .  

I 7 / , ( k f 7 ? - 1 )  ". u.(k+2n,-2) 

The above condition WC can easily verify for k = 0. Of course, if 
D(0) # 0 then c 1  # 0. 111 particular, WC can alwavs choosc 

(2.13.5) 7l(i) = 0, 0 5 1: 5 R - 2, u(n, - 1) = 1 

for which D(0)  # 0. 

Remark 2.13.1. Bv llsing the su1,stitlItion X = 1/X in (2.13.1), it is 
possitdc to obt,ain Ininirrulrn modulus root, of (2.13.1). 

If the ratio ~ ( k  + n , )/u (k  + R - 1) oscillates wit,hout, t,erlding to limit,, 
then WC (:an suspect that (2.13.1) has complex roots whic41 arc largest in  
rnodulus. To compute these complex roots, let X1 = (Y + i/j anti its 
conjllgatc X2 = o-zjj have the rrlaxirrmm rrlotlullls and are not repeated. If 
we write XI = and X2 = pe-ie where p2 = (l2 +p2 and pcos 6 = Q ,  

then from Problern 2.16.5 it follows that the terms corresponding to XI 
and X2 in (2.13.2) can be written as 

(2.13.6) p': ( c 1  cos ICB + c2 sin k ~ ) .  

Thercfore, as k + cc it follows that 

(2.13.7) ?/.(IC) 21 pk (c1 cos k6 + c2 sin k 6 ) .  

If w.(k) were given by the right side of (2.13.7), then it would satisfy the 
difference equation 

(2.13.8) w,(k + 2) - 2pcosQu(k + 1) + p2w,(IC) = 0, k E IN 

The above equation can be considered as a relation involving two u11- 
knowns p and Q. To determine these unknowns, we replace k by IC - 1 
in (2.13.8) to get 

(2.13.9) ?/,(IC + 1) - 2pc0~6w,(k) + p2u(k - 1) = 0, IC E N(1). 

Thus, the approximate relations (2.13.8) and (2.13.9) give 

(2.13.10) 
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where 

(2.13.11) v(k )  = u 2 ( k  + 1) - u(k)u,(k  + 2) and w(k)  = u,(k)w,(k + 1) 

-u(k - l)u.(k + 2). 

Hence, unless c l  = c2 = 0 i n  (2.13.2) the ratios 71(k)/u(k - 1) and 
w(k)/v (k  - 1) will tend to p2 and 2pcos 8 as k + CO, from which p 
and 8, and consequently CY and p can be obtained. In conclusion the 
desired maximum rrlodullls pair X1, X2 of complex roots can be computed. 

If XI is a rcpeatcd real root of mmlltiplicity 2, i.e. X1 = X2 and 
all other roots arc of smaller modulus, then the cornbination of the terms 
corresponding to X1 and X2 in (2.13.2) is of the form X ? ( q  + czk ) .  AS 
k 4 CO, ~ r ( k )  must tcrltl to suc:h a term, and hence u ( k )  must satisfy the 
rclatiorl 

From the approximate relations (2.13.12) and (2.13.13), WC easily obtain 

(2.13.14) 

where ~ ( k )  arid w ( k )  arc defined in (2.13.11). 

2.14. Poincare’s and Perron’s Theorems 

The main conclusion from Ber~loulli’s method which interests here most, 
can be stated as follows: If v.(k) is any arbitrarily chosen solution of the 
difference equation (2.12.4), then lirnk-m(u,(k + l)/u(k)) is equal to one 
of the roots of the charackcristic equation (2.13.1) provided all these roots 
are distinct in modulus. A generalization of this result is embodied in the 
following: 

Theorem 2.14.1. (Poincarb’s Theorem). Let in the homogeneous dif- 
fercncc equation (1.2.4), an(k) = 1, ao(k )  # 0 for all k E JN and 
limk+m ai(k)  = ai,  0 5 i 5 n - 1. Further, let the roots Xi ,  1 5 i 5 n of 
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the equation (2.13.1) have distinct moduli. Then, for every solution w.(k) 
of (1.2.4) 

(2.14.1) 
u ( k  + 1) 

lim = Xi 
k-m u ( k )  

for some 1 5 i 5 n. 

Proof. For each 0 5 i 5 n - 1 let ai( k )  = a,& + a,i( k ) ,  wherc a, (IC) = 
a i ( k )  - a , .  Since ai(k)  + cyi(k) + 0 as k "-f CO. In system form 
equation (1.2.4) can be written as 

(2.14.2) ~ ( k +  1) = Au(IC) +B(IC)u(IC), k E IN 

whcre the matriccs A and B ( k )  are 

A =  

... 1 0 '.. 

0 

... ... ... B(k)  = 
0 .'. 0 

--(Yg(k) ... -an,- l (k)  

Since the roots of (2.13.1) have distinct moduli, WC can arrange them so that 

V is thc Vanderrnonde matrix made up of the eigenvalues XI, ... ,X, 
of A which are the roots of (2.13.1), and D is the diagonal matrix 
V = diag (X,, ... ,Xn,). Thus, the system (2.14.2) is the same as 

(XI( < (X2( < ... < \An , ( .  Now from Problem 2.16.45, A = VDV-', where 

(2.14.3) U(k + 1) = VDV- 'u(k)  + B ( k ) u ( k ) ,  k E IN. 

In the above system, let 

(2.14.4) v(k) = V - I u ( k )  

t o  obtain the new system 

(2.14.5) v(k + 1) = Dv(k)  + C(k)v(k), 

where C ( k )  = V-'B(k)V.  
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but this is a contradiction to the definition of j .  Hcncc, there exists a 

ko 5 kl  E IN s1lffic:iently large so that for all kl 5 k E IN the function 
C(k)  assunles a fixed value less than or equal to n.. W e  shall now show 
that the ratios 

(2.14.9) 

tend to zero. For this, it is clear that (Iuj(k)l / lvp(.k)I)  5 c 5 1 for all 
k E IN(k.1). This means that a is an upper limit for (2.14.9), and hence 
WC can extract a sybsequer1cc { k i }  C IN(kl) for which (2.14.9) converges 
to c. If j > C, then from (2.14.7) (with j = C) and (2.14.8) we have 

Thus, on taking the limit, we obtain 

This implies that 
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Finally, from (2.14.4) WC have 

n, 

%= 1 i = l . i # P  

Thus, lirrl  = X p  follows irrlrrlcdiately from l i m  - - -0, lL  
'U(k + 1) 7 ! j  ( k )  

I:-00 74k)  k-00 ?JP(k)  
j # e < n .  I 

A refinement of Poirlcark's theorem is due to Perron which is stated in 
the following: 

Theorem 2.14.2. (Perron's Theorern). Let the conditions of Theorem 
2.14.1 be satisfied. Then, the difference equation (1.2.4) has a fundamental 
set of solutions u i ( k ) ,  1 <_ i 5 n, with the property 

lim = Xi .  U h ( k  + 1) 
k-CO .U.%(k) 

Example 2.14.1. Consider the difference equation 

2k - 1 ) v.(k+1)+2 (l + " - ) u,(k) = 0, k E IN 
k2-2k-1 k2-2k-1 

for which 2" arid k2 are the solutions. Thus, the general solution of this 
difference equation can be written as ~ ( k )  = q2'+c2k2. Sincc k 2 / P  4 o 
as k + 00, it is clear that limk,,(v.(k + l ) /u (k ) )  = 2, which is a root 
of t h  characteristic equation X2 - 3X + 2 = 0. 
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Example 2.14.2. The condition in Poincark's tlworem that the roots of 
the cllaracteristic equation have distinct moduli is essential. For this, we 
consider the difference equation 

2.15. Regular and Singular Perturbations 

The basic: itlea of regular pcrt,url)at,iorl t8cc:hrliqllc rclatcs t h  urlkrlowrl 
solution of the iuitial value problem (1.2.4), (1.3.1) with the known sollltiorls 
of an infinitc related initial value problems, and can be exhibited as follows: 
Lct the auxiliary difference equation 

n,- 1 

(2.15.1) c cui(k)?/,(k + 2) + a.n(k)7/ , (k  + n,) = 0 
i=O 

together with the initial corditions (1.3.1) can be solved explicitly to obtain 
its solution u o ( k ) .  We write the equation (1.2.4) in the form 

n,- 1 c (U.i (k)  + a i ( k )  - cui(k)) u ( k  + i) + U,(k )U, (k  + n) = 0: 
i=O 

which is thc same as 

n,- 1 n,-l 

(2.15.2) c CWi(k)U(k + i) + a , ( k ) u ( k  + n) = c Ci(k)V.(k + i), 
i =O  i=O 

where q ( k )  = cu,(k) - a i ( k ) ,  0 5 7: 5 n - 1. WC introduce a parameter E 

and consider the new difference equation 
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Obviously, for E = 1 this new differencc equation is the same as (2.15.2). 
W e  look for the solution of (2.15.3), (1.3.1) having the form 

(2.15.4) u ( k )  = 

For this, it is necessary to have 

l 

m =O L i=o 

and 

m =O 

Thus, 011 equating the c:ocfficicnts of e r n ,  ' r n  = 0, 1, . . . we find t,he infinite 
system of initial value problems 

n-l 

(2.15.5) ~ r v i ( k ) ? P ( k + i )  +o. , (k)v .O(k+n)  = 0, U 0 ( u + i  - 1) = ?/,i, 

i=O 

l < i < n  

n,- 1 n,- 1 

(2.15.6). c c ~ i ( k ) ~ " ( k  + i) + u , ( k ) ~ " ( k  + 71.) = c ci(k)u"- '(k + i), 
i=O i=O 

w . m ( a . + i - l )  = 0, l l i l n ,  711=1,2 , . . .  . 

This infinite system can be solved recursively. Indeed, from our initial 
assumption the solution ~ , ' ( k )  of (2.15.5) can be obtained explicitly, and 
t h u s  the term ci(k)uo(k+i) in (2.15.6)l is known; consequently the 
solution ul(k) of the nonhomogeneous initial value problem (2.15.6)1 can 
be obtained by the method of variation of parameters. Continuing in this 
way the functions u2 ( k ) ,  u 3  ( k ) ,  . . . can similarly be obtained. Finally, the 
solution of the original problem is obtained by summing the series (2.15.4) 
for E = 1. 

The above formal perturbativc procedure is not only applicable for the 
initial value problem (1.2.4), (1.3.1) but also can be employed to a variety of 
linear as well as nonlinear problems. The implementation of this powerful 
tcchniquc consists in the following three basic steps: 
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(i) Conversion of the given problem into a perturbation problem by 
introducing the small parameter E. 

(ii) Assumption of the solution in the form of a perturbation series and 
the computation of the coefficients of that series. 

(iii) Finally, obtaining the solution of the original problem by summing 
the perturbation series for the appropriate value of c .  

It is clear that the parameter E i n  the original problem can be in- 
troduced in an infinite number of ways, however the perturbed problem 
is meaningful only if the zeroth order solution, i.e. u o ( k )  is obtainable 
explicitly. Further, in a large number of applied problems this parameter 
occurs naturally. 

The pertltrhation method naturally leads to the question: Under what 
conditions docs the perturbation series converge and actually represent a 
solution of the original prol)lcm? Unfortunately, often perturbation series 
arc divergent, however this is not necessarily bad tm:ausc a good approxi- 
mation to the solut,iorl when c is very small can be obtained by surrlrning 
only first few tcrms of the series. 

Example 2.15.1. Consider the initial value problem 

3 
(2.15.7) ~ ( k  + 2) - 2 ~ ( k  + 1) + - ~ ( k )  = 0, ?L(()) = 1, ~ , ( l )  = - 1 

4 2 

for which u(k)  = 1/2' is the unique solution. We convert (2.15.7) into a 
perturbation problem 

(2.15.8) A%(k)  = E (+) , u ( 0 )  = 1, u(1) = - 1 

2 

and assume that its solution can be written as perturbation series (2.15.4). 
This leads to an infinite system of initial value problems 

1 
2 

L P V , O ( k )  = 0, 7 r 0 ( 0 )  = 1, UO(1) = - 

1 

4 
A2um(k) = -um-'(k), ~ " ( 0 )  = um,(l) = 0, m = 1,2, 

which can be solved recursively, to obtain 
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Thus, the solution w.(k, F) of the perturbation problem (2.15.8) appears as 

Example 2.15.2. Consider Airy's differential cqlmtiorl y"-ty = 0, t 2 0 
together with the initial conditions y(0) = 1, y'(0) = 0. The simplest 
difference equation approxinlatiorl to this initial valw problcrn is 

(2.15.9) 
4k- + 2) - h ( k  + 1) + 7 1 ( , q  - ( k  + 1 ) ~ 4 k )  = 0, k- E IN 

= ~ ( 1 )  = 1 

where h > 0 is an arbitrary constant step size, and u(k) approximates 
the solution y ( t )  at t k  = kh. 

W e  convert (2.15.9) into a perturbation problem 

~ ~ ~ ( k )  = €((IC+ 1)h,3u(k)), v . ( ~ )  = v . ( ~ )  = I 

and assun~e that its solution can be written as perturbation scrics (2.15.4). 
This leads to an infinite system of initial value problems 

A2uO(k) = 0, uO(0) = UO(1) = 1 

~ 2 ~ 7 y r c )  = (IC + 1 ) ~ ~ 7 " ( k ) ,  w , y o )  = T/~myl )  = 0, = 1,2,. . . 

which can be solved recursively, to obtain 

w,O(k) = 1 

?l2@) = - ( k  + 1)(5)(2k + l )h6 
z 
6! 
2 

9! 
u3(k)  = - ( k  + 1)(7)(14k2 + 7k - 6)h9 
... 
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Thus, a uniform approximation to the solution u,(k) of (2.15.9) can be 
taken as 

u.(k) 21 1 + -p + p h 3  + -(k + p ( 2 k  + 1 ) ~  
1 2 

3! 6! 
2 + ? ( k  + 1)(7)(14k2 + 7k - 6)hZ9. 

This approximation is exact for k E W(0,7). 

In many practical problems one often meets cases where the parameter 
E is involved in the diffcrcnce equation in such a way that the method of 
regular perturbation cannot be applied. In the literature such problems 
are known as singular pcrturbation problems, and to understand these we 
consider the following: 

Example 2.15.3. For the initial value problem 

explicit solution can be writtcrl as 

(2.15.11) 
1 

1°C 
u,(k) = - [ ( C Y 1  - COO) + ((Yo - Nl)Ek] , 

for which it follows that 

Suppressing the small parameter E in (2.15.10), the resulting dcgencrate 
first order equation is 

(2.15.12) V O ( k  + 2) - 7P(k + 1) = 0. 

Obviously, for (2.15.12) the initial conditions ~ ~ ( 0 )  = NO, t ~ ~ ( 1 )  = cul are 
inconsistent unless a0 = ( ~ 1 .  Thus, (2.15.10) is said to be in the singularly 
perturbed form, and a boun,dary layer. occurs at k = 0. 

If WC seek the solution of (2.15.10) in the regular perturbation series 
form (2.15.4), then it leads to the system of first order difference equations 

u.O(k + 2) - uyk + 1) = 0, I P ( 0 )  = (Yo, VP(1 )  = Nl 

u,”(k + 2) - u”(k + 1) = 7r”-l(k + 1) - u.”-l(k), u”(0) = u,”(l) = 0, 
m .  = 1,2,. . . 
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which can be solved only if the initial conditions are consistent, i.e. (YO = 
01. Further, in such a case it is easy to obtain uo (k )  = (YO, u " ( k )  = 
0, 'm, = 1,2, .  . . , and hence (2.15.4) reduces to just u ( k )  = (YO which is 
indeed a solution of (2.15.10). 

Now ignoring the terms with coefficients of t and higher powers of c 
in (2.15.11), the zeroth order approximate solution appears as 

(2.15.13) u ( k )  = a1 + tyoo - 01). 

The first part of this solution, i.e. cy1 is called the 0 u . k  solution,, as 
it is valid outside the boundary layer. This satisfies only one of the initial 
conditions ~ ( 1 )  = cy1. The second part of this solution, i.e. ((YO - 0 1 )  is 
called the in,n.er SOht iOTL  which recovers the lost initial condition u(0) = 
cy0. 

The preserlce of 6' in (2.15.13) sllggests that the inner solution has 
thc transformation , u J ( ~ )  = u ( k ) / c ' .  Using this transformation in (2.15.10) 
anti dividing throughout with F'+' lcads to thc difference equation 

(2.15.14) fW(k + 2) - (1 + E)W(k + 1) + Wl(k) = 0. 

Putting f = 0 in the above equation gives the degenerate equation 

-zO(k+1) +zO(k )  = 0. 

This equation is solved with the initial condition 

.yo) = u(0)  - CY1 = (Yo - CY1 

to obtain zo(k) = (YO - al, which is the same as the inner solution 

Thus the total zeroth order solution of (2.15.10) is composed of the 
outer and inner solutions and given by 

u ( k )  = 7/0(k) + €%O(k). 

Utilizing the above ideas we write the solution w,(k) of (2.15.10) as the 
sum of two solutions 

(2.15.15) u ( k )  = v ( k )  + E%(k), 

where v(k )  and z ( k )  are the outer and inner solutions. Substituting 
(2.15.15) in (2.15.10) and separating the terms, we obtain two equations 

(2.15.16) w(k + 2) - (1 + E)ll(k + 1) + W ( k )  = 0 
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and 

(2.15.17) EZ(k + 2) - (1 + E ) Z ( k  + 1) + Z(k)  = 0. 

For solving these equations, we assunle that 

W W 

(2.15.18) v(k )  = c trn.7lrn,(k), Z(k)  = c ErnZ"(k) .  

m.=O m,=O 

Snbstitnting the above series solutions in  (2.15.16) and (2.15.17) respec- 
tively leads to the systems 

Q ( k  + 2) - vO(k + 1) = 0 
(2.15.19) P ( k  + 2) -?,"(/c + 1) = ?,""(k + 1) - V'"(k), 

m .  = 1,2,. . . 

Finally, the series solution of (2.15.10) is written as 

m W 

(2.15.22) u ( k )  = c Ern.Vrn,(k) + fk c E?P ( k ) .  
m,=O m.=O 

The above systems (2.15.19) ~ (2.15.21) can easily be solved to obtain 
approximations of u,(k) up to any order. For example, tllc zeroth order 
approximation is the same as (2.15.13), as it should be, and the first order 
approximation appears as 

u.(k) [cy1 - ((Yo - cy1)€] + E k [ ( Q O  - Q l )  + f(O0 - ..l)]. 

2.16. Problems 

2.16.1. Show that the functions ul(k) = c (#  0) and uz(k) = l/(k+l)(2) 
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satisfy the nonlinear difference equation 

A2u(k )  + 3(k + 1)k  
( k  + 3) 

u(k)Au,(k) = 0, 

but ul(k) + u,z(k) does not satisfy the given difference equation. (This 
shows that the principle of superposition holds good only for the linear 
equations.) 

2.16.2. Let XI,. . . , X ,  be the (not necessarily distinct) eigenvalues of 
an n x n, matrix A. Show that 

(i) the eigenvalues of AT are X1, . . . , X, 

(ii) for any c:onstant CY the eigenvalues of (YA are 0x1, . . . , cwXn 

(iii) C:=l X i  = T r A  = cy=, aii 

(iv) X i  = det A 
(v) if A-' exists then the eigcrlvalucs of A-' are l /Xl ,  . . . , l / X ,  

(vi) for any polynomial Pk (t) the eigcnvallm of Pk (A)  are Pn: (XI), . . . , 
P k ( X , , )  
(vii) if A is upper (lower) triangular, i.e. a..;l = 0, i > j (i < j ) ,  then 
the eigcrlvalues of A are the diagonal elements of A 
(viii) if A is real and X1 is complex with thc c:orrespondirlg eigenvector 
vl ,  then thcre exists at least one i, 2 5 i 5 R such that X i  = XI and 
for such an i ,  V' is the corresponding eigenvector. 

2.16.3. (i) Let the n, x n matrix A(t) = (a , ; j ( t ) )  be such that 

(ii) An (n - 1) X (n - 1) determinant obtained by deleting ith row and 
j th column of a given n x n matrix A is called the m,inor Z,ij of the 
element ai,. W e  define the cofactor of a;j as ~ ~ i j  = (-l)i+jEaj. Show 
that 

(2.16.2) 

n 

(2.16.3) c aijcukj = 0 if i # k .  
j=1 
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2.16.4. Let the functiorls ui(k.), 1 5 i 5 n, be defined on IN and 
l i r r i ~ ~ ~ ( ~ / , ~ ( k ) / ~ / , ~ + ~ ( k ) )  = 0, 1 5 i 5 n. - 1. Show that these functions arc 
linearly independent. 

2.16.5. Let u(k) be a complex solution of the homogeneous system 
(1.2.12) on H. Show that both the rcal and imaginary parts of u(k) are 
solutions of (1.2.12). 

2.16.6. Let U(k ,  k.0) and V ( k ,  ko) be the principal fundamental matrix 
solutions of (1.2.12) and (2.7.1) respectively. Show that V T ( k ,  ko )U(k ,  ko) = 
1. 

2.16.8. Let the notations and hypotheses of Lernrrla 2.8.2 be satisficd. 
Show that for all k E IN 

which is the same as (2.8.11) with k replaced by - k ,  i.e. (2.8.11) indeed 
holds for all k E Z. 
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2.16.10. Find the general solution of the homogeneous difference system 
(2.8.1), where the matrix A is given by 

0 1 1  

1 1 0  

[ -1 0 ] , (vi) [ 8 -5 ;4] . 

-1 1 0 5 -3 -2 

0 3  -4 3 

6 

2.16.11. Find the general solution of the nonhorrlogeneous difference 
system (2.8.22) where the matrix A and the vector b(k )  arc given by 

(4 [ -"J i,' ] 1 [ ] ( 4  [ -3 4 ] 7 [ 1/2 ] 
(iii) [ :S ;l I' ] , [ B ] (iv) [ _", ] , [ 2: ] . -4 S 2  1 

2.16.12. Two spheres of masses M and ( M  > g m )  ant1 the coefficient 
of restitution e lie on a smooth horizontal surface with the line of centers 
right angle to two walls which are perfectly elastic. h1 is projected at 'rr1 
with velocity U while m is initially at rest. W e  shall find the velocities 
just before the kt11 impact between the balls. For this, let u.(k) and ~ ( k )  
be the velocities of M and m. just before the kt11 impact. The velocities 
of M and m ,just before the (k+l)th impact arc ?/,(k+l) and u(k+l); 
thus the Velocities just after the kth impact are 714k + 1) and v ( k  + 1) 
since the wall is perfectly elastic. The momentum equation is 

-2 2 5"+1 

1 

(2.16.4) Mu.(k) + ,rrtw(k) = - mv(k  + 1) + Mu(k + I). 
W e  also have the relation 

(2.16.5) -e(u.(k) - v (k ) )  = u ( k  + I) + ~ ( k  + I). 
Solve the system (2.16.4), (2.16.5) with the initial condition 

(2.16.6) 7 4 1 )  = U, v(1) = 0. 

In particular, if M = 4m and e = 1, show that 

3U 5U 4 
v ( k )  = -   COS(^ - i)e + -coSke, e = tan-' - 

2 2 3' 
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2.16.13. Consider the difference system (2.8.19) to show that 

W l ( k )  = X! 

W j ( k  + 1) = X y u + l ( q ,  j = 2 , .  . . ,n.  k 

2.16.14. Let for the given n X n matrix A the spectral radius 
p(d)  = p0 < p. Consider the difference system (2.8.19) to show that 

be the characteristic polynoIrlia1 of the matrix A. Show that, 

(i) Ak, k E W is the unique solution of the nth order matrix tliffercnce 
initial valllc problcrn 

(ii) if v. i (k ) ,  1 5 i 5 n are the sohltions of the equation 

7 / 4 n  + k )  + cn,-lu(n + k - 1) + ' '. + q u ( k  + 1) + cou,(k) = 0, k E W 

U i ( j  - 1) = 6 i j ,  1 5  2 , j  5 72 

then 
Ak = v , l ( k ) Z + 7 ~ ~ ( k ) d + . . . + ~ .  , ( k ) A n - ' ,  k E W 

(iii) use (ii) to find the general solution of the system (2.8.1) with A = [ i  i ] .  
2.16.16. Let the difference system (1.2.12) be periodic of period K 
on W. Show that the nurrlber of linearly independent periodic solutions of 
(1.2.12) of period K is the same as of the adjoint system (2.7.1). 

2.16.17. Let the difference system (1.2.11) be periodic of period K on 
N. Further, let v ( k )  be a periodic solution of (2.7.1) of period K. Show 
that the system (1.2.11) has a periodic solution of period K if and only if 
C,"=, vT(! )b(l  - 1) = 0. 
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2.16.18. A function u ( k )  dcfirlcd 011 m~ is c:alled periodic of th,e second 
kin,d of period K > 0 and multiplier p if for all k E W, u , (k+K)  = pu,(k). 
In particular it is said to be an,ti-per.iodic of period K if p = -1. Consider 
the first order difference equation 

where M > 0 is a constant which depends on A only. Further, if b (k )  
is almost periodic:, then so is u(k). 

2.16.21. (Discrete Abcl's Formula). Let ~ ' ( k ) ,  . . . , u " ( k )  be the so- 
lutiorls 011 w ,  of the hornogencous equation (1.2.4). Show that for all 
k E W, 

det C ( k  + 1) = (-l)n,- det C(k ) ,  
a,n(k.) 
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are linearly irldcpendcrlt solutions of (2.16.8). 

2.16.25. The adjoint of each of the following difference equations can be 
solved to obtain two linearly irldeperldcrlt solutions. Use Prot)lern 2.16.24 
to find their general solutions 

(i) ( k  + l)(k + 2 ) ~ ( k  + 2) - u ( k )  = 0 

(ii) u ( k  + 2) + ( k  + I)u.(k + I) - kv.(k) = 0. 

2.16.26. Show that if one solution ul(k) of the difference equation 
(1.2.4) is known then its order can be reduc:cd to n, - 1. I n  particular, if 
ul(k) is a solution of (2.16.8) then show that its second solution u ~ ( k )  
can be written as 

k-l /-l 

?/,2(k) = U l ( k . )  c n M/ul(P)?L1(! f 1). 
/=a r=a n2 (TI 
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2.16.27. For each of the following diffcrcrlce equations one solution is 
known. Use Problem 2.16.26 to find the second solution 

(i) ( k  + ~ ) ' u ( k )  - (IC2 + 3k + l ) u (k  + 1) + k u ( k  + 2) = 0, ?1,1(k) = 1 

(ii) (k+l)(k+2)~~(k)-2k(k+2)u(k+l)+k(k+l)u,(IC+2) = 0, ul(k) = IC 

(iii) k2u,(k) + u ( k  + 1) - u(k + 2) = 0, ul(k) = ( k  - I)! 

(iv) ( k + l ) u ( k ) - u ( k + 1 ) - ( k + 4 ) u ( k + 2 )  =0,  ul(k) = 1 
(IC + l ) ( k  + 2)' 

2.16.28. Let one solution of (2.16.8) be 4 ( k )  times thc othcr, where 
4 ( k ) ,  k E N(a )  is a known function. Show that the order of (2.16.8) can 
be reduced to enc. In particular for the difference equation 

it is known that u,(k) arid k 2 u ( k )  arc the solutions. Find u(k ) .  

2.16.29. Let, one solution of (2.16.8) be thc square of the othcr solution. 
Show that thc order of (2.16.8) can be redwed to onc. In particular for the 
differerlcc cquatiorl 

k~,(k+2)-(k+2)(k2+3k+1)lr(k-+1)+(k+1)3(k+2)?r(k) =o, k~ ~ ( 1 )  

it is known that u.(k) and ~ ' ( k )  arc the solutions. Find ~ ( k ) .  

2.16.30. Let the product of the two solutions of (2.16.8) be a constant. 
Show that the order of (2.16.8) can be reduced to one. In particular for the 
difference equation 

( k  + 2)(2k + l ) u ( k  + 2) - 4(k + + 1) + k(2k+ 3)u(k) = 0, k E IN(1) 

it is known that u(k) and l / u ( k )  are the solutions. Find u,(k) .  

2.16.31. Let the difference equations 

(2.16.10) u(k + 2) + Ul(k)?L(k + 1) + az(k)u(k) = 0, k E IN 

and 

(2.16.11) 71(k + 2) + b l (k )V(k  + 1) + bz(k)v(k) = 0, k E IN 
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In particular find the general solution of (2.11.5) given that (2.11.5) and 
(2.11.6) have a solution in common. 

2.16.32. Show that by means of the transformation v ( k )  = r ( k ) u ( k )  
the difference equation (2.16.10) can be reduced to the forms 

7)(k + 2) + ? i (k  + 1) + b z ( k ) v ( k )  = 0 

and 
v(k + 2) + b l ( k ) U ( k  + 1) + o ( k )  = 0. 

2.16.34. Show that the f1:rlctiorl ~ ( k ) ,  k E IN is a solution of the n,th 
order linear homogeneous differcncc equation with constant coefficicnts if 
arid only if for all k E W 

I v.(k + n,) ' ' . u,(k + 2n) 1 
and D(u , (k ) ,  . . . , u.(k + n - 1)) # 0. 

2.16.35. Consider the difference equation (2.12.4). Show that 

(i) its characteristic equation is 

(2.16.12) 

(ii) if X1 # ... # X, are the roots of (2.16.12), then A!, 1 5 i 5 n are 
n linearly independent solutions of (2.12.4), and in this case the Green's 
flmction defined in (2.11.7) reduccs to 
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(iii) if X1 # . . . # X, ( n ,  < n) are the roots of (2.16.12) with multiplicities 
7-1,. . . , T,,, respectively, then X:, . . . , ( / c ) (~L - ' ) x~  , 1 5 i 5 m are n. 
linearly independent solutions of (2.12.4) 

(iv) if X1 is the root of (2.16.12) with rnultiplicity R ,  then the Grcen's 
function defined in (2.11.7) rcducm to 

G(k,P) = ( k  - W - , )  
(n - l)! 

(v) if X,, ... , X ,  (2 5 'rn < n )  arc the distinct roots of (2.16.12), where 
X1 has rnultiplicity Ad 2 1 and X2, . . . , X,,, have rrlultiplicity one, so that, 
n, = M + 'rr). - 1, then the Grcen's function defined in (2.11.7) rcdnccs to 

(vi) if X I ,  X, arc the tlistirlct Ioots of (2.16.12) with rrlultiplicitics r1 
and 7-2, then the Grccn's fnnction dcfi~lcd in (2.11.7) rctlllccs to 

2.16.36. Find the Green's function for the following diffcrcncc equatiorls 

(i) (E - - I ) ( E  - S)(E - 4)u(k) = o 
(ii) ( E 2  + ~ ) ~ . u ( k )  = o 
(iii) ( E  + I ) ~ ( E  - 2)2w,(k) = o 
(iv) (E - 1 ) , ( E  - 2 ) 3 ( ~  - 3 ) 2 u ( k )  = o 

(E - I ) ( E  - 2 ) ( ~  + 1 ) 3 ( ~  - 1/2)24k-) = o 
(vi) (E - 1) ' (E - 2 ) 2 ( ~  - 3 ) ( ~  - 4)w,(k) = 0. 

2.16.37. Show that the kth order determinant 

a 1 0 0  
l a 1 0  
O l a l  Dk = . .  

O l a  
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solution, arid the solution of simultaneous algebraic equations, which is of- 
ten tedious. Recently, Gupta [10,11] has proposed an easier method to find 
a particular solution of the difference equation 

n. 

(2.16.14) C h i E n . - ' ? r ( k )  = a';f ,(k),  k E JN 
i=O 

where a, bi ,  0 5 i 5 R, bo # 0, b ,  # 0 are constants, and fm,(k) 
is a polynomial of degree ' m  in k (better written in factorial powers cf. 
Problem 1.9.17). The first step of the method is to use the substitution 
~ ( k )  = ak'v(k) which transforms (2.16.14) to 

n 

(2.16.15) C b & 4 n - ' ; 7 1 ( k )  = fn2,(k) ,  k. E W 
/=o 

which in terms of A appears as 

n. 

(2.16.16) CC;An- ' ? : ( k )  = f m ( k ) ,  k E IN 
i=O 

where we assume that CO # 0, c ,  # 0. Difference equation (2.16.16) is 
now operated successively ' m  times by A so that finally the right side 
reduces to a constant. This results in a set of srrt. + 1 difference equations, 
last of which has a particular solution 

Next we substitute (2.16.17) in the last but one equation in the set of m+l 
difference equations obtained, to get A"-lv(k).  W e  continue this hack 
substitution in this set until from the first equation, i.e. (2.16.16) we find 
v ( k ) .  Finally, a particular solution of (2.16.14) is obtained from the relation 
u(k)  = a",@). 

If in (2.16.16), c,-,. = 0, 0 5 T 5 S - 1, c,-" # 0, i.e. Asv(k) is the 
lowest order term, then the above procedure provides a particular solution 
for ASu(k) .  Now S applications of the process of antidifferencing and the 
relation ~ ( k )  = a';v(k) lead to a particular solution of (2.16.14). 

If the right side of (2.16.14) is of the form a k f p ( k )  + b k f q ( k )  where 
f p ( k )  and fq ( k )  are the polynomials of degree p arid q in k,  then 
a particular solution of (2.16.14) c m  be obtained by a combination of the 
principle of superposition and the above method. 



Linear Initial Value Problems 109 

(vii) if Q T ( k )  is a polynomial of degree T, then 

Pgl(E)Q,.(k) = pT1(I + A)QT(k) = A-mP&(A)QT(k-) 

where 0 5 'm 5 n and Pn,-m(0) # 0. 

Further, use these relations to find the particular solutions of the difference 
equations given in Problem 2.16.39. 
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2.16.42. Use the method of generating functions to find the solutions of 
the difference equations given in Problcrn 2.16.39. 

2.16.43. The method of generating functions can also be uscd to solve 
the difference equation (1.2.3) provided u i ( k ) ,  0 5 1: 5 n, are polynomials. 
Solve the following initial value problems 

(i) ( k  + I ) u ( k  + I) - u,(k) = 0, ~ ( 0 )  = 7 

(ii) ( k + l ) ( k + 2 ) u ~ ( k + 2 ) - 2 ( k + l ) u ( k - + l ) - 3 u ( k )  = 0, ~ ( 0 )  =?/.(l) = 2 

(iii) u ( k  + 2) - u ( k  + 1) - ( k  + l ) u ( k )  = 0, ~ ( 0 )  = ~ ~ ( 1 )  = 1. 

2.16.44. Use Bernoulli’s method to c:ornputc maximllln and minirmlrrl 
modulus roots of thc following polyuornial equations 

(i)  YO03X4 - 5ci60X3 + 3815X2 - 109OX + 112 = 0 

(ii) X’ + x4 - 5  = 0 
(iii) 49X4 + ?X3 + 16X2 - SSX + 9 = 0. 

2.16.45. Let A and B be two n, x n matrices. WC sav that A and 
B arc ,similw if and only if thcrc cxists a rlousirlglllar matrix ’P such 
that P- ’AP = B. Show that 

(i) v ( k )  is a solution of t,hc difference system v(k + 1) = Bv(k) if and 
only if u(k) = P v ( k )  is a solution of the diffcrcmc:c svstcnl (2.8.1) 

(ii) if t,he matrix A in (2.14.2) has the distinct cigcnvalues X I ,  . . . , X ,  
then A = VVV-’, whcrc V = V(X1, . . . , X,) is the Vandcrrnondc’s 
matrix ant1 V = diug ( X I ,  . . , X,) is the diagonal matrix. 

2.16.46. Consider thc differcnc:c equation 

(2.16.19) u ( k  + 2) +pu(k + 1) + q 4 k )  = 0, k E IN 

and let X I ,  X2 be the roots of the equation X2 + pX + q = 0. Show that 

(i) if X1 = X2 = X, then for evcry solution ~ ( k )  of (2.16.19), 

lim = x  u(k + 1) 
k-m u,(k) 

(ii) if X1 = -X2, then there exists a solution u ( k )  of (2.16.19) for which 
u ( k  + 1) 

lirn does not exist. 
!%-m ?L(k) 

2.16.47. For each solution ~ ( k )  of thc either of difference equations 

(i) u,(k + 2) - 
( k  + 2) + 2 (-1 )k  

( k  + 2)2(k + 3) 
7r(k) = 0, k E IN 
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1 
(ii) u(k  + 2) + - k + l  

k + 4  k + 4  
u(k  + 1) - - u ( k )  = 0, k E IN 

show that lim does not exist. 
v(k + 1) 

k-cc u ( k )  

2.16.48. Let in the homogeneous difference equation (1.2.4), a n ( k )  = 
1, no(k) # 0 for all k E W and lirrlk:-cc a i ( k )  = ai, 0 5 i 5 72-1. Further, 
let (Y be a nnrrlbcr whose modulus is greater than that of every root of 

(2.13.1). Show that for every solution u ( k )  of (1.2.4), lim - = 0. 

2.16.49. Corlsider the difference cquation 

W>( k) 
k-cc (Yk 

(2.16.20) u,(k + 2) - [2 + Ul(k)]W,(k + 1) + [l + UO(IC)]U(k) = 0, k E IN 

whcrc a.o(k) ,  ( k )  4 0 as n. + 00 arid for suffic:icnt,ly large k ,  o 1  ( k )  2 
0, a1(k)  -aO(k) 2 0. Show that for every solution ? / , ( IC )  of (2.16.20) whic:h 

is not itlcrltically zero for large k ,  lim = 1. 
l/.( k + 1) 

L , - c c  u ( k )  

2.16.50. For the diffcrcncc equation 

u(k + 2) + a,(k)u(k + 1) + a o (k ) u (k )  = 0, k E IN 

show that for every solution u.(k) which is not identically zero for large 

IC ,  lim = 0. 
W.(k + 1) 

k-cc ? / , ( IC )  

2.16.51. (Poincari: Type Result for Nonlinear Equations). Let the dif- 
ference equation (1.2.5) be better written as 
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Show that for all nonnegative solutions u(k) of (2.16.21) 

l l (k + 1) 
lint = X*: 

I:+m ?/,(/c) 

where X* > 0 is the unique nonnegative solution of the equation X" = 
f(1, X,. ' ' , Xrn-1). 

2.16.52. Consider the initial value problem 

(2.16.22) 
u(k+2) + p(k ,  F)U(k+l) + q ( k ,  E)?/,(k) = r ( k ,  E ) ,  k E N(a, h)  

?/,(U) = A, ?/.(a + 1) = B 

M M 

i=O i=O i=O 

2.16.53. Show that the zeroth ordcr approximation to thc singular 
pcrturbation problem 
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2.16.54. Explain why the singular perturbation series for the difference 
equation 

(2.16.24) EZl.(k + 2) + a7r(k + 1) + 7r(k) = 0, a >> F 

satisfying ~ ( 0 )  = 00 ,  ~ ( 1 )  = 01  cannot be developed. However, the 
terrrlinal point problem (2.16.24), u, (K + 1) = ( Y K + ~ ,  w.(K) = CYK exhibits 
a nice boundary layer 1)ehavior as k -+ K + 1, and is well behaved for all 
k E IN(0,K) as E --f 0. 

2.17. Notes 

For linear difference equations one of the elegant features is the close 
similaritv to the theory of linear differential equations. Therefore, most of 
our discussion i n  Sections 2.1 2.8 runs parallel to the theory of differential 
cquations presented in Agarwal and Gupta [l ] .  In particxlar some of thcse 
results here arc i n  very compact form as cwrlparcd to what is available in 
several well known books on differcnc:c equations, however there is some 
similarity and overlapping with Lakshmikanthanl ant1 Trigiantc [l81 and 
Miller [21]. Discrete Putzer’s algorithm has appeared i n  LaSallc [19]. Pcri- 
odic systems have been treated in Agarwal and Poperlda [a], Corduncanu 
[7], Halanay [la], Pang and Agarwal [25] and Sugiyama [27]. Almost peri- 
odicity of a discrete function was first introdnccd bv Waltller [28,29]. The- 
orem 2.10.1 is due to Corduneanu [7]. The content of Section 2.11 is also 
parallel to thc theory of differential equations. The method of generating 
functions to solve difference equations is onc of the classical techniques and 
can be found in almost every book on difference equations. The classical 
Bernoulli’s method which is presented in Section 2.13 is based on Hilde- 
brand [l41 and John [15]. The extension of Bernoulli’s method known as 
the quotient-difference algorithm provides sinnlltaneous approximations to 
all the roots of polynomial equations is available in Henrici [13]. Poincark’s 
theorem can be found in Gel’fond [g], Milne-Thornson [22] and Norlund 
[24], however the present compact proof is adapted from Lakshmikantham 
and Trigiantc [18]. The proof of Perron’s theorem is available in Evgrafov 
[8] and Meschkowski [20]. Several refinements of these results are estab- 
lished in Zhao ~Hua [30]. Regular and singular perturbation methods are 
extensively used in obtaining approximate analytic solutions of differential 
equations. However, for difference equations this powerful technique does 
not appear to have been explored to its fullest, for instance see Bender and 
Orszag [4], Comstock and Hsiao [6], and Naidu and Rao [23]. In Section 
2.15 we touch upon this technique and look forward to its further develop- 
ments. Problems 2.16.15, and 2.16.35 and 2.16.36, respectively are based 
on the work of Kwapisz [17], and Peterson and Schneider [as]. Poincar6’s 
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theorem for nonlinear equations given as Problem 2.16.51 is due to Krausc 
[16]. Problem 2.16.52 models a recent contribution of Balla [3]. 
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Chapter 3 
Miscellaneous Difference 

Equations 

In rlumerical integration of a differential equation a standard approach is 
to replace it by a suitable difference equation whose solution can be obtained 
in a stable rrlanncr and without troubles from  round^ off errors. However, 
often the qualitative properties of the solutions of the difference equation 
are quite tlifferent from the sollltiorls of the c:orrcsporltling differential equa- 
tions. In this chapter we shall caref1dly choose t1ifferenc:e equation approx- 
imations of several well krlvwn ordinary and partial differential equations, 
and show that the solutions of these difference equations preserve most of 
the properties of the corresponding differential equations. We begin with 
Clairaut’s, Euler’s and Riccati’s difference equations which are known for 
quite sometime. This is followed by Bernoulli’s difference equation which 
can be solved in a closed form. Next we consider the Verhulst difference 
equation and show that its solutions correctly mimic: the true solutions of 
the Vcrhulst differential equation. Then, we develop the ‘best’ discrete ap- 
proximations of the linear differential equations with constant coefficients. 
Here, as an example, simple harmonic oscillator differential equation is best 
discretized. This is followed by Duffing’s difference equation which can be 
solved explicitly and whose solutions have precise agreement with the so- 
lutions of Duffing’s differential equation. Next we consider van der Pol’s 
difference equation, which like van del Pol’s differential equation cannot be 
solved, however the solutions of both the equations have same qualitative 
features. Then, we deal with Hill’s and in particular Mathieu’s difference 
equations, and provide conditions for basically periodic solutions of period 
7r and 27r. This leads to a classification of four different types of periodic 
solutions, which is a well known result for thc solutions of Hill’s differ- 
ential equation. Next we shall show that Weierstrass’ elliptic differential 
equations can be discretized in such a way that the solutions of the re- 
sulting difference equations exactly coincide with the corresponding values 
of the elliptic functions. In Section 3.12 we analyze Volterra’s difference 
equations, their trajectories have the same closed form expression as for 
the Voltcrra’s differential equations. Then, we provide several methods to  

116 
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solve linear partial difference equations with constant coefficients in two 
independent variables. This is followed by the best discretizatiorls of Wave 
equation, FitzHugh-Nagurno’s equation, Korteweg-de Vries’ equation and 
Modified K d V  equation. Finally, in Section 3.18 we shall formulate discrete 
Lagrange’s equations of motion. 

3.1. Clairaut’s Equation 

The discrete analog of Clairaut’s differential equation y = ty’ + f(y’) 
appears as 

(3.1.1) ~ ( k )  = kAu(k)  + f(A~(k)), k E IN 

where f is some nonlinear function. 

I n  the above differen<:<: equation let ~ ( k )  = A u ( k ) ,  so that 

(3.1.2) u(k )  = k V ( k )  + f ( v ( k ) )  

and 

7l (k)  = ( k  + l ) v ( k  + 1) - kv(k) + f ( a ( k  + 1)) - f ( v ( k ) ) ,  

which is the same as 

( k .  + l )A? i (k )  + f ( l / ( k )  + A u ( ~ ) )  - f(~(k)) = 0. 

Therefore, either 

(3.1.3) Av(k) = 0 

or 

(3.1.4) 

Equation (3.1.3) implies that u(k) = c (constant), and from (3.1.2) we get 
the solution 

(3.1.5) u(k) = kc+ f ( c ) .  

Equation (3.1.4) may lead to a second (singular) solution. 

Example 3.1.1. Consider the Clairaut difference equation 

(3.1.6) u(k )  = kAu(k)  + ( A u . ( ~ ) ) ~ ,  k E W 
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for which ~ ( k )  = kc + c2 is a solution. Further, the equation (3.1.4) for 
(3.1.6) reduces to 

(3.1.7) v(k + 1) + 4 k )  + k + 1 = 0. 

The solution of (3.1.7) can be written as v ( k )  = ~ ( - 1 ) ~  - (1/2)k - (1/4), 
and hence the second solution of (3.1.6) is 

2 

v(k)  = - +] - -k2.  
1 
4 

Example 3.1.2. Consider the Clairaut difference equation 

(3.1.8) 

for which u(k) = kc  + (l/<:) is a solution. Further, thc equation (3.1.4) 
for (3.1.8) reduces to 

(3.1.9) 
1 

W(k)?J(k+ 1) = - 
k +  1 '  

The solntion of (3.1.9) can be written as 

Therefore, the second solution of (3.1.8) takes the form u.(k) = u ( 0 )  + 
? ] ( c ) .  I n  particular, for c = 1, ~ ( 0 )  = 1 the first niric vallles of 

u(k) are 1,2,3,7/2,25/6,109/24,203/40,431/80,3273/560. 

3.2. Euler's Equation 

The discrete analog of Euler's differential equation E:='=, ~ i t Z y ( ~ )  = 0 
appears as 

n 

(3.2.1) C a i (k  + i - l)(")Aiu(k) = 0, k E IN(l), a'=,an. # 0 
i=O 

where ai ,  0 5 i 5 n are constants. 

We seek the solution of (3.2.1) in the form 

(3.2.2) 
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where X may be a complex number, however k + X is different from a 

negative integer. Since 

from (3.2.1) it follows that 

(3.2.3) 

But r(IC + X)/r(k) # 0, and hence it follows that 

n 

i=O 

Thus, (3.2.2) is a solution of (3.2.1) if and only if X is a root of the 
polynomial (3.2.4). 

Example 3.2.1. For the Elder difference equation 

(3.2.5) ( k  + l)kA2?,,(k) - 6kA?L(k) + 107r(k) = 0, k E W(1) 

the polynomial (3.2.4) reduces to X2 - 7X  + 10 = 0. Thus, 

are linearly indeperldcnt solutions of (3.2.5). 

Example 3.2.2. For the Euler difference equation 

(3.2.6) (IC + l )kA2?r(k) + 7ICAu(k) + 9 u ( k )  = 0, k E IN(4) 

the polynomial (3.2.4) reduces to X' + 6X + 9 = 0 which has the repeated 
roots - 3, -3. Thus, 

is a solution of (3.2.6). To find the second linearly independent solution, 
we note that (3.2.6) is the same as 

( k  + l ) k u ( k  + 2) + k(5 - 2k)U,(k + 1) + ( k  - 3)2?L(k) = 0. 
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Thus, we can use Problem 2.16.26 to find 

Example 3.2.3. For the Euler difference equation 

(3.2.7) 4(k + l)kA2v.(k) + 4kAu(k)  + 9U(k) = 0 

the polynomial (3.2.4) reduces to 4X2 + 9 = 0. Thus, 

are linearly independent solutions of (3.2.7). 

3.3. Riccati's Equation 

The discrete analog of Riccati's differential equation y'+o(t)y2+@(t)y+ 
y(t) = 0 appears as 

(3.3.1) u ( k ) u ( k  + 1) +p(k)u(k + 1) + q ( k ) u ( k )  + ~ ( k )  = 0, k E IN 

If ~ ( k )  0, then the substitution u(k) = l/w(k) in (3.3.1) gives the 

first order linear difference equation 

(3.3.2) q(k)v(k + 1) + p(k)w(k) + 1 = 0, 
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which can be solved by using standard methods. 

If r ( k )  0, then the substitution u ( k )  = ( v ( k  + I ) /v (k ) )  - p(k)  in 
(3.3.1) leads to the second order linear difference equation 

(3.3.3) ~ ( k  + 2) + [q (k )  - p(k + l ) ] ~ ( k  + 1) + [ ~ ( k )  - p (k )q (k ) ]~/ (k )  = 0. 

Since the equation (3.3.1) is of first order its general solution should de- 
pend on only one arbitrary constant, eventhough the solution of the trans- 
formed second order equation (3.3.3) contains two arbitrary constants. This 
fact can easily be seen as follows: Let '111 ( k )  ancl 7'2(k) be linearly inde- 
pendent solutions of (3.3.3) NO that its general solution can be written as 
n ( k )  = clvl(k) + c2?/2(k). Thus, t,he solution of (3.3.1) takes the form 

which is the same as 

where the constant C: = q / c 1  

In general it is not possible to find a solution of (3.3.1) but if a particular 
solution, say, u l ( k )  is known then by the substitution u ( k )  = u . l (k)  + 
(1/'11(k)) it reduces to a first order linear difference equation 

(3.3.4) [q(k)  + ?/, l(k + 1 ) ] ~ ( k  + 1) + b ( k )  + V,1(k)]?/(k) + 1 = 0, 

which can be solved to obtain the solution of the form 

(3.3.5) u(k) = cq!)(k) + @ ( k ) ,  

and hence the general solution of (3.3.1) can be written as 

(3.3.6) 

Now let, u ( k ) ,  ul(k), u z ( k )  and u.g (k)  be any four different solutions 
of (3.3.1). Then, from the above considerations it is clear that each v(k)  = 
l / ( u ( k ) - u l ( k ) ) ,  v l (k )  = 1/(u,2(k)-u1(k)) and ~ ( k )  = l / ( w ( k ) - u l ( k ) )  
is a solution of the same first order nonhomogeneous difference equation 
(3.3.4). Therefore, 
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as well as 

Chapter 3 

is a solution of the first order homogeneous difference equation 

(3.3.7) [ q ( k )  + W.l(k + 1)]v(k + 1) + I;o(k) + Ul(k)]V(k) = 0. 
Herlcc, it follows that 

(3.3.8) 

Example 3.3.1. Consider the first order diffcrcrlcc equation 

(3.3.9) 

(3.3.10) 7i(k + 1) = 2p - 

where 2 p  = (N + S)/y and v = D / y 2 .  Equation (3.3.10) is infact a 
Riccati’s cquat,ion 

(33.11) V ( k ) ? / ( k  + 1) - 2P?/(k)  + v = 0, k € IN 

and by the substitution 71(k) = w(k + I ) /w(k)  rcduces to the linear 
equation of second order 

(3.3.12) W(k f 2) - 2/LLw(k + 1) + V W ( k )  = 0, k E m. 
In particdar, if a = 2, [j = -2, v = 1 and S = 0, thcn (3.3.9) reduces 
to 

(3.3.13) 
2 

? b ( k + l )  = 2--, k € N  
?L( k )  
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whose general solution can be written as 

Riccati difference equations appear in rr1athematic:al biology, optics, 
chernistry and several other t)ranchcs of mathematic:s. WC present here 
few such examples. 

Example 3.3.2. (Distillation of a Binary Liquid). The distillation of a 
binary ideal mixture of two liquids is realized by a colllrnI1 of K plates, 
at the top of which t,here is a corldenser and at the bottom there is a 
heater. At the base of the column there is a feeder of new liquid to still. A 
stream of vapor, whose composition becomes richer from the more volatile 
component, procecds from one plate to the next one until it reaches the 
condenser from which part of the liquid is removed and part returns to the 
last plate. On each plate, which is at different tcmperaturc, the vapor phase 
will be in equilibrium with a liquid phase. Thus a liquid steam proceeds 
from the top to the bottom. We assunle tjhat liquids as well as vapors are 
ideal so that Raoult's and Dalton's laws apply. 

Let v ( i ) ,  i = 1,2 be the mole fraction of t,he i th  component in the vapor 
phase and u(i) the mole fraction of the same component i n  the liquid phase. 
Since the sum of the nlolc fraction in each phase is 1, ~ ( 1 )  + v(2) = 1 
and u(1) + u(2) = 1. In a moderate range of the temperature the relative 
volatility defined as N = (?1(1)~(2)/~(2)u(l)) is considered constant. If 
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cy > 1 then the first component is morc volatile. For simplicity, now we 
shall consider only the more volatile component. Setting v(1) = W and 
U( 1) = U, we have 

(3.3.15) CY= 
?/(l - U , )  

u(l - v )  ’ 
which WC shall assume holds every time the two phases are in equilibrium. 

On the kth plate two componcnts arc in equilibrium in the two phases. 
Let u ( k )  be the rnole fraction of the nmre volatile component i n  the liquid 
phase, 71*(k) the mole fraction i n  vapor phase of the same component, and 
u ( k )  the mole fraction of thc same component leaving the plate k .  If we 
assume that the efficiency of the plate is 100 percent, then v* (k )  = 71(k). 
Moreover, part, of the liquid will fall down with mole rate of d and the 
vapor will go up with rnole rate of V. Lct D bc the nmlc rate of the 
product, which is withdrawn from the cxmdcnser. Consider now the system 
starting from the kt11 plate (above the point where new liquid enters into 
the apparatlls) arid the condenser. We can write the balance equation 

(3.3.16) Vv(k  + 1) = d v ( k )  + Dz, 

where z is the rnole fraction of the liquid withdrawn from the condenser. 
To this equation we need to add the definition of relative volatility that will 
hold €or the equilibrium of the two phases at, each plate 

‘71.(/?)(1 - U ( k ) )  cy= 
u (k ) ( l  - U ( k ) )  ’ 

which gives 

(3.3.17) 

From (3.3.16) and (3.3.17), we get 

(3.3.18) u ( k ) u ( k  - 1) +pu(k) + qu(k - 1) + T = 0, 

where 

1 D z ( a  - 1) - Va DZ 
p = -  

(1 - 1 , 4 =  d ( a  - 1) 
, T =  

d ( a  - 1)‘ 

Equation (3.3.18) is a Riccati equation (3.3.1) with constant coefficients. 

Example 3.3.3. An object is placed between two concave mirrors A and 
B of focal lengths f l  and fi respectively. The mirrors are a distance 2n 
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apart. The object is placed at C, a distance d from A.  The object C 
forms an image in A at distance v(1) from A.  This image then becomes 
the object for mirror B and forms an image in it which is i n  its turn the 
next object for A.  This image is now a distance u(2) from A.  Thus, WC 

have 

Generally, 

Eliminating v(k )  between these two equations, we obtain 

7 ~ ( k )  [4Q.f2 - f1f2 + 2af1 - 40.~1 + 4a [afl - flf2j 
?/,(/c + 1) = 4 k . I  I f1 + f2 - 2 4  + [-f1f2 + 2 d l I  

1 

which is cxactly of the form (3.3.9). 

Example 3.3.4. Pielou's logistic equation 1251 

is a special case of (3.3.9). 

3.4. Bernoulli's Equation 

Bernoulli's differential equation 

(3.4.1) Y' + d t ) ? )  = q(t)y", Q # 0,1 

is one of the few nonlinear differential equations which can be solved ex- 
plicitly. The obvious discretizatiorls of (3.4.1) are 

(3.4.2) u ( k  + 1) - u(k)  + hp(k)u(k) = hq(k)ua(k) 
and 

(3.4.3) u ( k  + 1) - u ( k  - 1) + 2hp(k)?L(k) = 2hq(k)ua(k), 

where 71(k) approximates the true solution y ( t )  at the discrete points 
tk = kh, k E IN, h > 0 is the step size and p(k) = p ( t k ) ,  q ( k )  = q(tk). 
However, besides other difficulties (see next section), none of the above 
discrete equations can be solved i n  the closed form. Thus, to find a discrete 
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analog of (3.4.1) which can be solved explicitly, we rewrit,e this differcntial 
equation as 

(3.4.4) y - " ( t ) y ' ( t )  + p ( t ) y l - " ( t )  = q(t). 

Since by the mean value theorcrrl of differential calculus 

Yl-"(tI:+l) - y1-"(tI;) = h,(l - ..)?j-"(p)y'(p), 

? l P " ( k  + 1) - ?l,l-"(k) + p(k)712-"(k) = q ( k ) ,  
h,(l - Q) 

which for k E W is the sanlc as 

which has the closed form solutior~ 

A:-l I: I:-1 

w(k )  = ui(0) I - I ( l - h ( l b l + o ) ) + C  [n(l - h,(l - N ) p ( T ) )  1 h(l*)q(l) 

and hence the solution of (3.4.5) appears as 

I:-1 

(3.4.6) u ( k )  = [ ~ - ~ ( 0 )  n(l - h ( l  - a)p(C)) 
L P=O 

l.. 1.- 1 

!=l T=P 

3.5. Verhulst's Equation 

The Verlnllst diffcrerltial equation 

(3.5.1) Y' = BY - YY2 (B,  Y > 0) 
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is a particular case of Bernoulli's differential equation (3.4.1). It is used 
to model a singular population ecological system with a growth term Py 
modified by an inhibiting term -yy2,  e.g. Jones and Sleeman [13]. Often 
(3.5.1) is also called as differen,tial equation. of logistics and its solution 
known as logistic law of growth, can be written as 

(3.5.2) 

For the differential equation (3.5.1) the discrete approxirrlations (3.4.2) 
and (3.4.3) reduce to 

(3.5.3) U(k  + 1) - u(k)  = hu(k) (P - yu,(k))  

and 

respcctively, which carmot be solved explicitly. Besides this difficxlty, these 
difference cqnations as well as several other nonlinear difference equation 
approximations of (3.5.1) produce solutions which are qualitatively quitc 
different from the true solutions. This type of solutions irl the rlurneri- 
(:a1 integration of differential cqnations have beer1 given several names like 
ph,anto,m., ,9h,ost and spuriovs  solution,^. The discrete approximation 
(3.4.5) for the equation (3.5.1) reduces to 

(3.5.5) v.(k + 1) - u ( k )  = h@ - y u ( k ) ) u ( k  + 1) 

for which the solution (3.4.6) becomes 

(3.5.6) 

For small values of h this solution tends to the solution of the differ- 
ential equation (35.1)' i.e. (3.5.2). Further, for h < l/P this solution 
exhibits the correct qualitative features, namely 

0 < u,(O) < P/y, v(k)  4 a/-y without oscillation from below, 

4 0 )  = P/r, u ( k )  = P/r for all k ,  
4 0 )  > P/?' u ( k )  -+ /j/y without oscillation from above. 

For h 2 l/P, phantom solutions arise. In fact for h = l/p, u(k)  = 
P/? for all k E IN regardless of the value of u ( O ) ,  and for h > l/P 
oscillations occur. 



128 Chapter 3 

However, phantom solutions can be easily eliminated by considering the 
following nonlinear difference equation approximation of (3.5.1) 

which can also be solved to obtain the closed form solution 

(3.5.8) 

Obviously, for all h > 0 this solution u.(k) = y ( t k ) ,  and hence (3.5.7) is 
an approximation of (3.5.1) which has no spllrious solutions. In corlclusion, 
although i n  general the qualitative behavior of the solutions of the discrete 
approximations is different from the true solutions of differential equations, 
oft,en it is possible to choose discretixations which reveal true behavior. 

3.6. Best Discrete Approximations: 
Harmonic Oscillator Equation 

For a given differential equation a differcrlcc equation (preferably of the 
same order) approximation is called best if the solution of the difference 
equation is the same as of the differential equation at the discrete points. 
Of course, best approximation is not unique, e.g. (3.5.7) as well as (3.19.9) 
both have the same solution (3.5.8) and v ( k )  = y(kh , ) .  

From the elementary theory of differential equations the general solution 
of the equation 

(3.6.1) 

where X I , .  . . , X ,  are distinct complex constants can be written as 

n 

(3.6.2) y ( t )  = C c,exZt + w ( t ) ,  
i=l 

where cl, .. . ,cn arc arbitrary constants, and w ( t )  is any particular 
solution of (3.6.1). We shall find a difference equation 

(3.6.3) ( E  - P I ) .  '. ( E  - P L , ) U ( k )  = 4 k ) ,  
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from (3.6.2) it follows that 

( E  - e”1h) . . . ( E  - e ’ , ~ ” )  u (k )  = ( E  - e”1h) . . . ( E  - e”vh 1 4 k - L  
i.e. i n  (3.6.3) the constants pi are e”th, 1 5 i 5 n and the function 
v ( k )  is ( E  - e X l h )  . . . ( E  - e”..”) w(k ) .  

Example 3.6.1. Considcr the simple harmonic oscillator equation 

(3.6.4) y” + w2y = sinyt, 

whose general solution can be written as 

1 
sin yt if y # W 

W( t )  = cl cos wt + c 2  sin wt + 
coswt if y = W. 

Thcrvforc, the best, differcncc cqllation approxirrlatiorl of (3.6.4) is 

( E  - ( E  - e”iwh) U(,+) 
1 

sin ykh if y # W 

- - ( E  - eiwh) ( E  - e”iwh W2 - y2 

2w 
coswkh, if y = W, 

which is the same as 

( E 2  - 2coswhE + 1) ~ ( k )  

(3.6.5) 
A 2 u ( k )  

4wP2 sin2 iwh  
+ w2v.(k + 1) 1 - [l - ] siny(k+l)h, if y # w  

sinw(k + l )h,  if y = W. 

sin2 $yh 

- - sin2 iwh, 
w h. 

2 tan $wh 

In particular, if y = 0, W = 1, y(0) = 0 then the solution of (3.6.4) is 
y ( t )  = csirlt whose primitive period T = 2n, and thc solution of (3.6.5) 
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is u(k) = csinkh. If the primitive period T is divided into 2p equal 
intervals of length h,, so that T = 2ph,, then it follows that h = n/p, and 
v,(k) = c sin(kn/p) whose period T = 27r is the same as for the solution 
~ ( t )  = csint. This is in contrast with the denominator 4sin2(h,/2) in the 
resulting (3.6.5) replaced by the usual h,’, which has a solution with points 
off the solution curve y(t) = csin t and with period T = 4psin(.rr/2p). 
This period tends to the correct value 2n only in the limit of large p, i.e. 
small h. 

3.7. Duffing’s Equation 

The classical nonlinear Duffing’s equation 

(3.7.1) v’’ + ay + by3 = 0 

describes the undamped unforced vibration of an arlharmonic oscillator, of 
a h,ard or soft spring, or of a sinlplc pcrldulurrl. The wcll know11 [20] 
analytic: solutions of (3.7.1) i n  terms of thc Jacobian clliptic functions [l] 
m ,  dn,, sn, arid the cornpletc elliptic integral of the first kind K ,  with 
‘m. as the parameter, 0 L m < 1, on which these fur1c:tiorls and integral 
depend, can bc written as follows: 

case I 11 111 

constant b > 0 , a  > - i b A 2  b > 0,  b < O,a > -bA2 
constraints -bA2 < a < i b A 2  

parameter m, i b A 2 /  ( a  + bA’) 2 [l + u / ( b A 2 ) ]  -4bA2/ ( a  + i b A 2 )  

For the differential equation (3.7.1) a variety of discrctizatiorls are pos- 
sible, however 

(3.7.2) h-2(u(lc + 1) - 2u(k) + u(k - 1)) + m ( k )  

+ -b?L’(k)(u(k + 1) + ~ ( k  - 1)) = 0, k E IN l 

2 
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or equivalently, 

(3.7.3) - ( ~ ( k + l ) + u ( k - 1 ) ) ( 2 + b ~ ~ ( k ) h , ~ ) - ( 2 - a h , ~ ) ~ ( k )  = 0, k E IN 

is particularly interesting, because it can be solved in closed form, nloreover, 
gives periodic solutions. 

1 
2 

To establish sufficient condit,ions so that the solutions of (3.7.3) are 
periodic, we approxirrlat,c the boundary conditions for the cases I and I1 as 

(3.7.4) ~ ( 0 )  = A and U-1 )  = ?],(l), 

whcrcas for the case I11 as 

(3.7.5) ~ ( 0 )  = 0 and ?/,(p) = A when u(p - 1) = 714p + l), 
whcrc p is a positive irlt,cgcx 

Theorem 3.7.1. If for the givcn (.onstants Q., b and A ard anv positive 
intcgcr p, the step size h, > 0 (:an be c:hoscn so that ?/,(p+ 1) = ?),(p- l), 
then the sollltion ~ ( k )  of (3.7.3) satisfying (3.7.4) is periodic: of period 
T = 2ph,. 

Proof. Equation (3.7.3) for k = p - 1 and k = p + 1 gives 

ard 

- ( ~ , ( p  + 2) + ~ ( p ) ) ( 2  + h 2 ( p  + 1)h,2) - (2 - uh2)u,(p + 1) = 0; 
1 
2 

the condition '"(p + 1) = "(p - l), thercforc forces "(p + 2) = "(p - 2). 
Similarly, now (3.7.3) for k = p-2 and k = p+2 forces u,(p+3) = u(p-3), 
and so on, until k = 1 and k = 2p- 1 forces u.(2p) = ~ ( 0 )  = A. Finally, 
k = 0 and k = 2p forces u,(2p+ 1) = U(-1) = u,( l ) .  

With u.(2p) = ~ ~ ( 0 )  and u(2p + 1) = u ( l ) ,  (3.7.3) gives u,(2p + k )  = 
u ( k ) ,  completing the proof of the theorem. I 

Theorem 3.7.2. If for the given constants U ,  b and A and any positive 
integer p, the stepsize h > 0 can be chosen so that, (3.7.5) is satisfied, 
then t,he solution u ( k )  of (3.7.3) is an odd function which is periodic with 
period T = 4ph,. 

Proof. Thc proof is similar to that of Theorcrn 3.7.1. I 
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To solve the difference equation (3.7.3) for the case I, we note that the 
function c n  [ ( a  + bA2)l/’t] is periodic of period 4 K / ( a  + bA2)’/’, and 
hence c n ( t )  is periodic of period 4 K ,  and cn , (2kK/p ) ,  k E IN is periodic 
of period 2p. For an integer p > 2, let 

(3.7.6) ~ ( k )  = A c n ( 2 k K / p )  

be a trial solution of (3.7.3). Since cn(0)  = 1, cn( t )  = en(-t) ,  and 

A c n ( 2 K / p  - 2 K )  = Acrt (2K - 2K/p )Acn , (2 (p  - l ) K / p )  = u(p - l), this 
trial solution correctly satisfies the boundary conditions (3.7.4) as well as 
u,(p + 1) = ”(p - 1). Of course, this solution is valid if for the given 
constraints b > 0 and a > - (1 /2 )bA2 ,  the associated parameter ‘ m  lies 
in the allowed interval (0 , l )  and h, is real. 

u,(p+l) = A c n ( a ( p + l ) K / p )  = A c n ( 2 K + 2 K / p )  = A c n ( 2 K / p + 2 K - 4 K )  = 

Now since ~ ( 0 )  = A and U-1)  = ?/,(l), equation (3.7.3) gives 

(3.7.7) 11,( 1) = 
2 - ah,2 

2 + bA2h,2 
A .  

Thus, the parameter ‘ m  (and hence the step size h, and the period T )  is 
determined by first suhtituting (3.7.6) into (3.7.7), giving 

(3.7.8) cn. ( 2 K / p )  = 
2 - ah2 

2 + bA2h,2 

and then (3.7.6) into (3.7.3), giving 

(3.7.9) 
A c n ( 2 k K / p ) c n ( 2 K / p )  

1 - m s n 2 ( 2 k K / p ) s n 2 ( 2 K / p )  
[2 + b A 2 h 2 c n 2 ( 2 k K / p ) ]  

= ( 2  - ah ,2 )Acn(2kK/p ) ,  

where we have used the formula 

C.(. + U) + cn(u ,  - U) = 2cnu cnu 
1 - m.sn.% sn2u ’ 

Using (3.7.8) into (3.7.9) simplifies to 

[ ( 2  + b A 2 h 2 ) m  s n 2 ( 2 K / p )  - bA2h2]  s n 2 ( 2 k K / p )  = 0,  

which is satisfied for all IC provided 

(3.7.10) 7n,sn2(2K/p) = b A 2 h 2 / ( 2  + bA2h,’). 

Now eliminating h,’ from (3.7.8) and (3.7.10) gives 

(3.7.11) 
bA2 

m, = - 
a + bA2 

[l + c.(aK/p)]-l. 
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This is a transcendental equation for n ,  (noting that K depends on ,m). 
The constraints b > 0 and a > -(1/2)bA2 ensure that the parameter 
'm,, depending on the ratio bA2/(a + bA2) as well as on p (assumed > 2), 
falls in the required interval 0 < 'm, < 1. 

The stepsizc h can now be calculated from (3.7.8) 

(3.7.12) 
2 2[1 - 4 2 K / p ) ]  

h =  
a + bA2cn(2K/p) 

giving real h for p > 2. Alternatively, (3.7.11) gives 

(3.7.13) h, = 2 2 27rr(a, + bA2) - hA2 
m(a2 - b2A4) + b2A4 ' 

The period is finally dcdwcd from T = 2ph,, completing t,he details of 
a valid periodic solution. Thus, if thc stcp size h, is detcrrrlirlcd from 
(3.7.13) using tllc solution !m(< 1) of (3.7.11)? tllen the solution of (3.7.3) 
givcs, apart from round  off errors, an exac:t,ly periodic: solutiorl. 

It is easy to verify that the solution of (3.7.1) is obtained in the limit 
as p + m, for then K/p + 0, h, + 0 and 'rr1 + ibA2/(a + bA'). 
Since c m / .  = 1 - ( l / 2 ) ~ . ~  + O(u4), equation (3.7.12) gives as p "-f 00, T = 
2ph + 4K/(a+bA2)l12. Finally, v.(k) = Ar:n,(2kK/p) = Acn,(2kKh/ph) + 
Acn,[(a. + hA2)l12t] = y(t). 

To solve the difference equation (3.7.3) for the case 11, let 

(3.7.14) u(k)  = Adn,(kK/p), p > 2 an integer 

be a trial solution. This trial solution correctly satisfies the boundary COII- 

ditions (3.7.4) as well as u ( p  + 1) = u(p - 1). Of  course, this solution is 
valid if for the given constraints b > 0 and - bA2 < a < -(1/2)bA2, the 
associated parameter m lies in the allowed interval (0,1) and h is real. 
For this, following exactly as i n  case I, equations corresponding to (3.7.8), 
(3.7.11) ~~ (3.7.13) for (3.7.14) are obtained and these equations appear as 

(3.7.15) 

(3.7.16) 

(3.7.17) 

dn(K/p) = 
2 - ah,2 

2 + bA2h,2 

2 2[1 - dn , (K/p ) ]  
h =  

a + bA2dn(K/p) 
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(3.7.18) h2 = 2 
2(0, + bA2)  - *mbA2 
- b2A4)  + ,rr/,b2A4 ' 

dn.( 71. + 71)  + dn,( 71, - 71)  = 
2 d n ~  dnu 

1 - ~rrt.sn,2~1,.sn,211 

For b > 0 and - bA2 < a < -(1/2)hA2 and for p > 2,  the parameter 
'rrt in (3.7.16) falls in the required interval 0 < m < 1 so that the solution 
is valid. Fllrt,hcr, for p > 2,  h, in (3.7.17) or in  (3.7.18) is real. The period 
is finally dcduccti from T = 2ph,. 

Again it, is casy to vcrifv that the solution of (3.7.1) is obtained in t,hc 
h i t  as p + 03, for t,hcrl K/p "-f 0, h, + 0 and *rrt "-$ 2 [ l + a / ( h A 2 ) ] .  Sincc 
d m / ,  = 1 - ( 1 / 2 ) , r r ~ / , ~  + O(7r4), cqllation (3.7.17) givcs as p + CO, T = 
2ph + 2 K / A ( t 1 / 2 ) ' 1 ~ .  Firlally, u ( k )  = A d n ( k K / p )  = Adn,(kh,K/ph,) + 
A d n [ n ( t 1 / 2 ) ~ / ~ t ]  = y ( t ) .  

For thc case I11 WC try for any positive irltcgcr p 

(3.7.19) 7r(k) = A s n , ( k K / p ) ,  

which sat,isfic:s (3.7.5). For k = p, (3.7.3) L' "lvcs 

(3.7.20) ?/,(p - 1) = 
2 - 

2 + bA2h2 
A 

and (3.7.19) wit,h k = p - 1 givcs 

(3.7.21) ~ ( p  - 1) = A m [ K  - ( K / p ) ]  = A ( m  ( K /p) 
dn, ( K/p) ' 

Now using tllc forrrlllla 

sn (w.  + 71)  + ~ ~ ( 7 1 .  - 71) = 2 
s m  cnn dnu 

1 - ,rr~sn,2~1,.sn,2~1 

and substituting (3.7.19) in (3.7.3) L' 'Ives 

Asn,(kK/p).n(K/p)dn(K/p) 
1 - m m 2  ( kK/p) sn,2 (K/p)  

[ 2 $ b A 2 h 2 m 2 ( k K / p ) ]  = (2 -ah ,2 )Asn(kK/p ) ,  

which with (3.7.20) and (3.7.21) simplifies to 

[2$rn,m2(K/p) + bA2h,2] m 2 ( k K / p )  = 0. 
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The above equation is sat,isfied for all k provided 

(3.7.22) 

Combining (3.7.20) ~ (3.7.22), we obtain 

1 
2 

m,.m2( K/p) = - -bA2h2. 

(3.7.23) 

With the constraints h < 0 and 0. > -[)A2, we have 0 < m < 1 as 

required for a valid solution. 

bA2 1 - cn,(K/p)dn,(K/p) 
711 = - - 

a 1 - m 2 ( K / p )  

The step size h, can be c:alculated from (3.7.22) 

(3.7.24) 
2711 (K/p) 

bA2 
h2 = - 

or using (3.7.20) ant1 (3.7.21), 

(3.7.25) 

The vallle of h, is real and the period is T = 4ph~ 

In the limit as p + CO, K/p 4 0,  h, 4 0 and n ,  + -bA2/ (2a .  + 
[ )A2) ,  T = 4ph, + 4K (a+  ( b / 2 ) A 2 ) ’ / 2 ,  ant1 u ( k )  + Asn[(a+ (l1/2)A~)l/~t] 
= y(t). 

For the linear problem b = 0 and 0. > 0 ,  Duffing’s equation (3.7.1) 
and its approximation (3.7.2) sirnplifics to 

(3.7.26) y/‘ + m) = 0 

and 

(3.7.27) h,C2(u(k + 1) - %/,(/C) + v.(k - 1)) + a?r(k) = 0 

respectively. For b = 0 it follows for the cases I and I11 that m = 0, K = 
7r/2, cn, = cos and .m = sin. Case I1 docs not arise. Thus, for case I, 
(3.7.6), (3.7.12) and the time period T rcduce to ~ ( k )  = Acos(k-ir/p), h, = 
2aP1I2 sin(-ir/2p) and T = 4pa-1/2 sin(-ir/2p); whereas for the case I11 
(3.7.19), (3.7.20) and (3.7.21) give u,(k) = Asin(kr/2p), h = (2/a)l/’[l - 
c0s(-ir/2p)]’/~, arid finally the time period T = 4p(2/a)1/2[l-c:os(-ir/2p)]’/2. 

3.8. van der Pol’s Equation 

The following properties of the van der Pol differential equation 
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(3.8.1) I/”- X(1 -y2)y’+ y = 0, X > 0 

Chapter 3 

have been studied cxtcnsively [14,20]: 

(1) When X = 0, all solutions are periodic with period T = 27r and the 
trajectories in the (W, W’) phase plane are circles of arbitrary radius. 

(2) When X > 0, periodic solutions exist. 

(3) In the phase plane, the limit cycles approach the circle of radius 2 as 
X + 0. 

(4) The pcriod T for pcriodic solutions increases with X, pcrturbation 
theory giving the result 

(3.8.2) 

For the tliffcrential cquation (3.8.1) WC shall study the discxetization 

(3.8.3) 
~ ( k  + 1) - 27/,(k) + ?/,(k - 1) 7/4k + 1) + 7/4k - 1) ‘1 

4 sin2 (h,/2) 2 cos h, I 
u.(k + 1) - 1r(k - 1) 

x [ 2sinh, 
+ u(k)  = 0, k E IN(1) 

and show that: 

(0) For small h,, the difference equation (3.8.3) approximates the differ- 
ential equation (3.8.1). 

(I) When X = 0, all solutions are periodic with period 27r and the points 
i n  the phase plane ( ~ ( k ) ,  (u.(k + 1) - u ( k  - 1))/2sinh) lic on circles of 
arbitrary radius. 

(11) When X > 0 pcriodic solutions exist. 

(111) In the phase plane, the points corresponding to periodic solutions in 
the limit X “+ 0 lic on the circle of radius 2. 

(IV) The period T for periodic solutions increases with X, with T as 
i n  (3.8.2) as h + 00. 

The property (0) is obvious from the cxpansions 

u,(k + 1) - 2u(k) + u(k - 1) 
= W” + O(h,2) 

4 sin2(h/2) 

71. ( k )  
qr(k + 1) + u(k - 1) 

2 cos h, 
= y2 + O(h2) 

u(k  + 1) - u ( k  - 1) 
= I/’ + O(h2). 

2 sin h 
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To establish the property (I), (3.8.3) for X = 0 reduces to 

(3.8.4) 
v (k  + 1) - 2v(k)  + v(k  - 1) 

4 sin2 (h/2) 
+ v ( k )  = 0, k E IN(1) 

where ~ ( k )  has been replaced by v ( k ) .  The solution of (3.8.4) is 

v(k)  = c1 cos kh, + c2 sin kh, 

and since 
7j(k + 1) - ? / (k  - 1) 

2 sin h 
= - cl sin kh, + cos kh 

the points in the phase plane ( ~ ( k ) ,  ( ? / ( k  + 1) - u ( k  - 1))/2sirlh) lie on 
circles of radius (c: + fixcd by the initial conditions. 

For furthcr analysis of (3.8.3) we rcwrik it to as 

(3.8.5) ~ ( k  + l)[(* - p { ( *  - u ( k ) ( u ( k  + 1) + ?r(k - l))}] - c 2 ~ r ( k )  

+ ~ ( k  - l)[(.+ p{<: - ~ ( k ) ( ~ ( k  + 1) + ~ . ( k  - l))}] = 0, 

where 

(3.8.6) 11, = X tan(h,/2) and c = 2 cos h,. 

To force periodic solutions, h will not be arbitrary but will depend 
on the parameter X, and to emphasize this we shall sometimes write 
h, = h,(X). Further, when X = 0 (and hence p = 0) c will be replaced by 
d(= 2c:osh,(O)), and as above ~ ( k )  by 7 ~ ( k )  whic:h satisfies the difference 
equation 

(3.8.7) 7J (k  f 1) - dV(k)  + V ( k  - 1) = 0. 

To establish property (11) we shall prove the following: 

Theorem 3.8.1. If for given X > 0 and any integer p 2 3 the step -size 
h is chosen so that 

(3.8.8) ~ ( 0 )  = 0, ~ ( k )  > 0, 1 5  k <p-l, .(p) = 0, w,(p+l) z -u( l )  

then the solution of the difference equation (3.8.3) is periodic with primitive 
period T = 2ph. 

Proof. Equation (3.8.5) for k = p + 1 and k = 1 on using (3.8.8) gives 

u ( p  + 2){c - p(c + u( l )u (p + a))} + C 2 W > ( l )  = 0 
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and 
u ( ~ ) { c  - ,U(C - ~,(1)1/,(2))} - c2u(1) = 0. 

Comparing the above equations, we obtain "(p + 2) = -v.(2). 

Now a similar procedure for k = p + 2 and k = 2 gives u,(p + 3) = 
-7143). Continuing in this way until for k = 2p - 1 and k = p - 1 we 
deduce u(2p) = -?/,(p) = 0. Continuirlg still further gives u(2p+k) = v,(k) 
for all k E IN, establishing periodicity with period T = 2ph.. I 

As WC shall subsequently be c:onccrned only with periodic: solntions we 
henceforth assurrle that 1/40) = .(p) = 0 and "(p + 1) = -?/,(l). 

For the case p = 3 with T = 6h, the periodic solutions of the 
tliffcrencc equation (3.8.3) ('an be obtained in closed form. Indeed with 
~ ( 0 )  = ~ ( 3 )  = 0, ~ ( 4 )  = -?/,(l), (3.8.5) for k = 1,2 arid 3 gives 

? L ( ~ ) [ c  - //,(C - ?L( l)@))] - c~?/,( 1) = 0 

-~'?/,(2) + , I / , ( ~ ) [ c  + p((: - 1/,(1)?/,(2))] = 0 

- ~ ( l ) ~ ( l  - / L )  + ~ . ( 2 ) ~ ( 1  +/l,) = 0, 

which car1 be solved, to obtain 

Further, from (3.8.6) we find 

(3.8.9) 
-(l + X') + (9 - 14X2 + 9X4)'/' 

cos h(X) = 
4(1 - X') 7 

which enables h to be determined, so that exactly periodic solutions with 
period T = 6h are obtained. I n  particular, for X = 0.5, equation (3.8.9) 
determines h rv 1.15 and consequently T E 6.93. 

For the case p = 4 with T = 8h the periodic solutions of the 
difference equation (3.8.3) can again be obtained in closed form. With 
u(0)  = ~ ( 4 )  = 0, ~ ( 5 )  = -v,(l), (3.8.5) and (3.8.6) give 
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In part,icular, for X = 0.5, equation (3.8.10) determines h, = 0.810 and 
hence T 'v 6.55. 

In Figure 3.8.1 we illustrate the results for p = 3 and 4, the discrete 
points for p = 3 and 4 are marked as X and o respectively. For the 
comparison purpose, the solution curve for the differential equation (3.8.1) 
is also included. Figurc 3.8.2 represents the points and the trajectory i n  the 
phase plane. I n  the limiting case X + 0 (recall that we replace u.(k) by 
v ( k )  and c by d) for p = 3, wc find h, = 7r/3, T = 27r, ~ ( 1 )  = ~ ( 2 )  = &, 
whcrcas for p = 4, h, = 7r/4, T = 27r, ~ ( 1 )  = ~ ( 3 )  = 4, ~ ( 2 )  = 2. 
As shown i n  Figure 3.8.3 thcsc points lie exactly on the solution c11rvc 
y ( t )  = 2 sin t for the differential equation and thc points i n  the phase plane 
(Figurc 3.8.4) lie on t,he circle of radills 2. 

or 
u(k+l)-u(k-l) 

2sinh . I > ~ r  -1 u(k) 

Figure 3.8.1 Figure 3.8.2 

Y' 
or 

v(k+l)-v(k-l) 

-1 - t or kh 

-2 - 

Figure 3.8.3 Figure 3.8.4 

Now WC shall prove the property (111). For this, above we have shown 
that for p = 3 and 4 the periodic solutions of (3.8.3) for X "+ 0 
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give discrete points on the solution curve y(t) = 2 sin t of the differential 
cquation and the points in the phase plane lie on the circle of radius 2. 
To establish this in general, since T = 2ph the solution of (3.8.4) is 
71(k) = Asin(h/p), thus, what we need to show is that A = 2. 

W e  use (3.8.5) to express ~ ( k )  in terms of u ( k  + 1) and u(k  - 1) as 

(3.8.11) l/,( k )  = 
c{(l + p)u(lc - 1) + (1 - p)u,(k + l)} 

c2 - p(u,2(k + 1) - u2(k  - 1)) 

and similarly, 

(3.8.12) u,(p - k )  = c:{ (1 + p)u.(p - k - 1) + (1 - p)u.(p - k + l ) }  
c2 - p(u2(p - k + 1) - u2(p - k - 1)) 

or 

(3.8.13) ?/,(p - k )  = c:{ (1 - p)u(p - k + 1) + (1 + p)u(p - k + l)} 
+ p(?i2(p - k - 1) - ~ / , ~ ( p  - k + 1)) 

so that 

(3.8.14) up(p - I:) = L P ( k )  

and for k = p ,  (3.8.11) gives 

(3.8.15) V > ( l )  - "(p - 1) = p(u(1) + U& - 1)). 

W e  shall analyze the difference equation for small p (and hence by 
(3.8.6) small X) and consider thc lirniting case p --f 0. The cases p 
evcn and p odd require slightly different treatment and it is convenient to 
define q = [(p - l)/2]. 

From (3.8.11) and (3.8.13) we find thc matrix equation 

(3.8.16) C' ( ~ - ~ ( u ( k )  - u(p - k ) ) ]  

= c-2[{(1+ p)u(k - 1) + (1 - p ) u ( k  + 1)}(u2(p - k - 1) 

- uI2(p - k + l))] + c-'[{(l - p)u(p - k + 1) 

+ (1 + p)w.(p - k - l )}(u,2(k  + 1) - W?(k - l))] 

- [u(k  + 1) + u(p - k - 1) - ( u ( k  - 1) + .(p - k + l))], 
where, for example, [p-'(u(k) - u(p - k))] signifies the q X 1 colurnn 
with kt11 element p-l(u(k) - u(p - k ) )  and C1 is the q x q symmetric 
tridiagonal matrix 

- c; -1 0 0 .'. 
- 

0 0  
-1 c; -1 0 .'. 0 0  

c = 

- 0 0 0 0 .'. -1 c;+s - 

0 -1 c; -1 .'. 0 0 1 

. . . . . . . . . . , . . . . . . . ... 
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with c;: = C - ~ { C ~ - ~ ( U ~ ( ~ + ~ ) - - ~ ( I C - ~ ) ) } { C ~ + ~ , ( ~ . ~ ( ~ - ~ - ~ ) - U ~ ( ~ -  

k + l ) ) } ,  k = 1 , 2 , . . . q  andS=O if p isevenand 1 if p isodd. 

Ifwenow let u ( k )  = Asin(k.lr/p)[l+cun,y+O(pz)], and hence ~ ( p - k )  = 
Asin(k.lr/p)[ l-~).k,p+O(p~)],  then pL- l (u (k ) -u . (p -k ) )  = 2Acuk: sin(kn/p)+ 
O(p) .  From (3.8.15) we can deduce cy1 = 1 but the remaining ~ ) . k  are 
unknown. In the limit p + 0, u ( k )  “+ ~ ( k )  = Asin(kr/p), “(p - k )  “-f 
?)(p - k )  = ?/( IC) ,  c:: “-f d = 2cos(r/p), and the matrix equation (3.8.16) 
has the limiting form 

(3.8.17) D[2Aak sin(kr/p)] = 4Asin(r/p) [c:os(k-ir/p){A2 sin2(k-ir/p)-l}] , 
where the matrix D is the same as Cl with c:. replaced by d for all 
k =  1,2;..,q. 

The q x 1 cohmln z = [c:os(k-ir/p)] is t,hc first column of D-’ and 
henc:c z T D  = [l, 0 , .  . . ,O] .  Thus, operating on (3.8.17) with zT gives 

2Asin(r/p) = 4Asi11(-ir/p)z~[~:o~(IC-ir/~){A~ sin2(k-ir/p) - l}]. 

This leads to the equation 

k:=l 

However, since c:=, sin2(2kr/p) = p/4 and c::=, c o s 2 ( k r / p )  = (p - 
2)/4, the above equality immediately gives A = 2. This completes the 
proof of property (111). Thus, for all p 2 3 t,he discrete points in tllc phase 
plane lie on the circle of radius 2. 

It is convenicnt to use hcreafter v(k)  = 2sin(kr/p), and to note that 
the matrix equation (3.8.17) with A = 2 reduces to 

(3.8.18) D [4~k,  sin(k~/p)] = - 8 si1l(n/p)[cos(3kr/p)]. 

The remaining cuk: can now be evaluated and appear as 

(3.8.19) 

To establish property (IV) for the perturbation expansion of the period 
T i n  terms of X, we need to solve the difference equation O(p3) by letting 

+ o ( ~ ~ ) } ,  c = d ( 1  - vp2 + O(p4)}, where ~ ( k )  = 2sin(kr/p), d = 
2cos(-ir/p), uk: are given by (3.8.19) and use is made of (3.8.14) and the 

U ( ~ )  = ? ) ( IC)  (1 + cukp + pkp2 + 0 ( ~ 3 ) }  , k-1 = 4 k )  (1 - + pkp2 
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fact that c is an even function of p. The terms of order p2 in (3.8.11) 
vield the matrix equation 

(3.8.20) D+ [@k7’(k) l  = d7[7’(k-)I + [74k)l + [Y(k)I + [Z(k) l ,  

where w(k )  = ~ ~ ~ 1 ~ ( k ) ( 7 ~ ( k + l ) - 7 ~ ( k - l ) ) ,  y ( k )  = 2d-’w(k) (cu~:+lv~(k + 1) 

and D+ is the (q+ 1 -S) X (q+ 1 -S) matrix with the same elcrrlcnts as in 
D except i n  the last row the non zero elements are 6 - 2, d - S instead of 
- 1, d + 6. This non syrnrnetric matrix D+ is of order (p - l)/2 when 
p is odd and order p/2 when p is even. The degenerate case p = 3 
is excluded so that the analysis proceeds on the assurrlption that, p 2 4. 
To detcrrrlirlc 7 without involving the unwanted [jk: WC use the fact that 
D+ is a singular matrix with the left eigenvector r*, corresponding to 

its eigerlvaluc zero, given bv r = [ ~ ( k - ) ]  if p is odd and r = [ [ 7 4 1  ] if 

p is cvcn. Since rTD+ = [0, . . . ,U], operating 011 (3.8.20) with rT gives 

(3.8.21) o = d~p-*[71(~-)] + rT [w (k ) ]  + rT[y(k)]  + r T [ z ( k ) ] .  

-0~:-1?) ’ (k  - l)), Z ( k )  = ~~:-~7~(k-l)-~~:+17’(k+l), k = 1,2;..,q+1-6 

Now an clerrlcntary cornputation gives dr*[u(k)]  = 2p cos(7r/pj, rT [ ~ ( k ) ]  
= psec(-ir/p), rT[?j(k)]  = -2psec:(7r/p) and r * [ ~ ( k ) ]  = (p/2)scc(-ir/p). 
Thus, from (3.8.21) it follows that 7 = (1/4) sec2(7r/p), p 2 4. 

The pcrturtmtion expansion for the period T now follows. If WC let 
h, = (n/p) + F, then c = 2c:os h, = 2cos(7r/p) { l  - F tan(-ir/p)} , which 
cornpared wit11 c = d { 1 - qp2 + 0(p4)} and using p = X tar1(h/2) gives 

X2 
4 

F tan(-ir/p) 7 ~ ’  tan2(7r/2p) 21 - sec2(7r/p) tan2(7r/2p). 

The period T is now determined from T = 2ph, = 27r {l + (q/7r) }  , 
i.e. 

T = 27r l+ { ptan2(-ir/2p) X2 + , . , . 
47r cos2(-ir/p) tan(r/p) l 

This perturbation expansion, validated for p 2 4, gives in the limit 
p + m, or h 4 0, (3.8.2). 

3.9. Hill’s Equation 

Consider the second order linear homogeneous differential equation 

(3.9.1) ?/II + . ( t)y = 0, 
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where the function a.(t) is periodic, whose period without loss of generality 
is taken to be K .  A corresponding difference equation can be obtained by 
choosing h, = "/p (p a positive integer) and approximating (3.9.1) by 

(3.9.2) 

where H z  = h2 + O(hz3) ,  a ( k )  = a(k + p). In the limit h, -+ 0, the 
difference equation (3.9.2) converges to thc differential equation (3.9.1), 
but the precise form of the function H = H(h,) is left undecided. 

Lemma 3.9.1. If the solutio11 of the difference equation (3.9.2) satisfies 

u,(k + 1) - 2?l.(k) + u.(k - 1) 
H2 

+ a ( k ) u ( k )  = 0, k E N(1) 

(3.9.3) ?l@) = S?f,(O), u , ( p+ 1) = .su.(l), 

where S is a 11011zcro constant, t,hcn for all k E N(1) 

(3.9.4) ?/,(!c + p) = .S?/,( k ) .  

Proof. The proof is similar to t,hat of Theorem 3.7.1. I 

Theorem 3.9.2. The difference equation (3.9.2) has a solution of the 
form 

(3.9.5) u ( k )  = exp(ivkh,)P,(k), 

where v is a (:onstant and Pv(k) is periodic, i.e. P , ( k  + p )  = P,(k). 

Proof. Although its proof can be deduced from Thcorern 2.9.5, WC shall 
provide an alternative proof which is intrinsic. The difference equation 
(3.9.2) taken togethcr with the conditions (3.9.3) can be represented by the 
matrix eqllatiorl 

(3.9.6) G(.s)u = 0, 

where G(s )  is the p x p matrix 

(3.9.7) G ( s )  = 

and 

9 ( 0 )  -1 0 ... 0 0 -s-1 
-1 g(1) -1 . .' 0 0 0 
0 -1 g(2) '.' 0 0 0 

0 0 0 ". , 9 ( p - 3 )  -1 0 
0 0 0 ..' -1 g(p-2) -1 

"S 0 0 .'. 0 -1 .&-l) 

. . . . . . . . . . . . ... ... ... 

g(k) = 2 -  H 2 a ( k ) ,  IC ~ l N ( 0 , p -  l), U = ( u ( O ) , . . . , u . ( p - l ) )  T. 
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A nontrivial solution of (3.9.6) requires that detG(s) = 0. The Laplace cx- 
pansion of the determinant using the first and the last rows yields d e t  G(s )  = 
4(g) - S - s-l ,  where @(g) is a real valued funct,ion of g(O), . . . , g ( p  - 1) 
but independent of S. Thus, the characteristic equation equivalent to 
det G(s) = 0 is the quadratic .S’ - @(g).s + 1 = 0, which has at least one 
root called ch,uructeristic exponent, and it can be written as S = exp(iv7-r). 
For this value of S ,  the corresponding solution of (3.9.6) is written as 

(3.9.8) u(k) = cxp(ivkh,)P,(k), 

B y  Lcmrna 3.9.1, v(k + p) = exp(ivh,p)u(k), so that P,(k + p) = 
cxp(-iv(k + p)h , )u(k  + p) = cxp(-ivkh)u(k) = P,,(k), which completes 
the proof of the theorem. I 

It is clear that in the characteristic exponent, S = cxp(ivx) the constant 
v <:an be rcp1ac:cd by v + 2k‘, where k‘ is an arbitrary int,eger, and thc 
product of the roots of the c:haracteristic cquathn s 2  - $(g).s + 1 = 0 is 
unity. 

A s  for the differential equat,ion (3.9.1), any solution of (3.9.2) or cquiv- 
alcntly of (3.9.6) is defined within an arbitrary multip1ic:ative constant. To 
conform with the usual convention for Mathieu flmctions WC shall adopt 
the normalization YJV’ = p/2. 

A s  a conscqlm1ce of Theorem 3.9.2 the unstable and stable solutions 
of tjhe difference equation (3.9.2) arc scparatcd by 4(g) = k2, or by 
d e t  G ( f 1 )  = 0. For 141 < 2, the imaginary part of v is nowzero and 
u ( k )  + cc either as k + cc or as k -+ -cc, the sollltion being 
unstable. On the other hard, if 141 > 2, v is real, u ( k )  remains finite as 
k + &cc, and the solution is stable. For 4 # f2, or det G(&l )  # 0, the 
characteristic equation has two distinct roots S and S-’  and hence yields 
two linearly independent solutions. But for 4 = 2, or det G(1) = 0, 
only one root S = 1 is obtained and the corresponding solution has period 
ph, = 7-r since u.(k + p )  = u ( k ) .  And for 4 = -2, or det G(-1) = 0, 
there is only one root S = -1 and the corresponding solution has period 
2ph, = 27r since u(k+p)  = - u ( k ) .  A s  in the Floquet theory [S], these two 
periodic solutions, one of period x and the other of period 27-r are called 
basically--periodic so1ution.s. 

For Hill’s diffcrcntial equation the function a ( t )  i n  (3.9.1) is not only 
periodic of period 7-r but is also an even function. Thus, in the corrcspond- 
ing difference equation (3.9.2) WC take a.(k) = a(-k) ,  or equivalently 
a (k )  = n(p - k ) .  Without loss of generality and to simplify the situation, 
p is hereafter taken to be an even integer, and the integer T is defined by 
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T = p/2. Now, since g(k) = g(k-p) the matrices G ( f l )  corresponding to 
the basically--periodic solutions display a syrrlrrletry which can be exploited 
to reduce them to direct sums. For G(1) and G ( - l )  we introduce the 
symmetric orthogonal transformations 

1 
U.(O)  = ? I ( O ) ,  U.(k) = -(71(k) + "(p - k = 1, '. ' , r - 1 

U(.) = l)(?-), u ( k )  = " " ( k )  - ?'(P - k ) ) ,  k = r + 1, '. ' ,p - 1 
(3.9.9) v5 1 

v5 
and 

1 
u ( O ) = W ( O ) ,  u . ( ~ ) = - ( u ~ ( ~ ) - u I ( ~ - ~ ) ) ,  k = l , . . . , r - l  

(3.9.10) fi 1 
W,(.) = W(?-), u ( k )  = " ( W ( k )  + w(p-k) ) ,  k = T,' . . ,p-l. v5 

These trarlsforrrlations ~ F ~ I K C  the matrices to thc following direct S I I ~ I S  

(3.9.11) G(1) - c2 + S 2  

g - 1 )  - c1 +SI, 
where the rnat,ric:cs C2, S2 ,  Cl, S1 are of ordcrs r + 1, r - 1, r ant1 r, 
and 

(3.9.12) C., = 

(3.9.13) S 2  = 

(3.9.14) C1 = 

g(0) -4 0 "' 0 0 0 
-fi g(1) -1 .'. 0 0 0 

0 -1 9(2) '.. 0 0 0 

0 .'. g(r-2)  -1 0 
0 ... -1 g(r-l )  -v5 

0 0 0 ..' 0 -a g(7-1 

... 

0 0 
0 0 

... ... ... ... ... ... 

g('- 1) -1 0 ... 0 0 0  
-1 g(r- 2) -1 ..' 0 0 0  
0 -1 g(?" 3) ... 0 0 0  

0 0 0 ." 9(3) -1 0 
0 0 0 ... -1 g(2) -1 

... ... ... . . . . . . . . . . . . 

0 0 0 ... 0 -1 

g(0) -fi 0 '.' 0 0 0 
-Jz g(1) -1 ... 0 0 0 

0 -1 g(2 )  '.' 0 0 0 

0 0 .'. ,g(r-3)  -1 0 
0 0 0 ' ' I  -1 g(T-2) -1 
0 0 0 '.' 0 -1 g(r - 1) 

... ... ... ... ... ... 

0 
... 
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(3.9.15) S1 = 

' d r )  Jz 0 ... 0 0 0  
Jz g(r-1) -1 ... 0 0 0  
0 -1 g(r-2)  ... 0 0 0  

0 0 ." g(3) -1 0 
0 0 0 I . .  -1 g(2) -1 
0 0 0 ... 0 -1 d l )  

... ... ... . . . . . . . . . . . . 
0 

These four matrices are called basic matrices. Corresponding to these 
matrices there arc four types of periodic solution vectors, which in antici- 
pation of the notation used i n  the theory of WIathieu functions, arc denoted 
by ce and se.  Thc distinguishing properties of these solutions are listed 
in Table 3.9.1. Thus, for det C2 = 0 or det S 2  = 0, det G(1) = 0 and the 
solutions have period 7r. For det C1 = 0 or det S1 = 0,  det G(-1) = 0 
so that solutions have period 27l. 

Table 3.9.1. 

basic matrix solution vector period syrrlmctry 
C2 ce even 7r even, synmctric about 7r/2 
S 2  se even T odd, antisymrnctric abont 7r/2 
C1 ce odd 27r even, antisymmetric: about rr/2 
S1 se odtl 271 odd, symmetric about 7r/2 

For det Cz = 0, the non trivial solution satisfying C2v1 = 0 may be 
denoted as v1 = (v(()), . . . , ~ ( r ) ) ~ .  Then, the corresponding basically pcri- 
odic solution of the difference equation is obtairled from the transformation 
(3.9.9): ~ ( k )  = (U(()), (1/&)~(1), . . . , (1/fi)U(T - I),'U(r), (1/fi)'U(T - 

l), . . . , ( 1 / & ) ~ ( 1 ) ) ~ ,  and since it is of period ph, = K ,  it is an even 
function and symmetric about rh = 7r/2. It is classified as being of type 
ce even. 

For det Sz = 0, if the 11011- trivial solution satisfying &v2 = 0 is 
written as v2 = (u(r+ l), . . . , v(p- then the corresponding se even 
solution of period 7r of thc difference equation is ~ ( k )  = (0, ( l / f i ) ~ ( p  - 
1 ) , ~ ~ ~ , ( 1 / ~ ) ~ ~ ( ~ + 1 ) , 0 , - ( l / ~ ) ~ ~ ( r + 1 ) , ~ ~ ~ , - ( l / ~ ) w ( p - 1 ) ) ~ ,  which 
is an odtl function and antisymmetric about 7r/2. 

For det Cl = 0, if the norl-trivial solution satisfying Clwl = 0 is w1 = 
(w(O),  . . . , w( r  - then the corresponding ce odd solution of period 
27r of the difference equation is u(k) = (w(O),  ( l /&)w( l ) ,  . . . , ( l / d ) w ( r -  
l ) , O ,  - ( l / f i ) w ( r -  l), . . . , -(l/fi)u~(l))~, which is an even function an- 
tisymmetric about 7r/2. 
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Finally, if for det S1 = 0 the non-trivial solution satisfying S1w2 = 0 
is w2 = (w(r) ,w(r  + l), . . . , w(p - then the corrcspordirlg se odd 
solution of period 27r of the difference equation is u(k )  = (0, -( l/f i )w(p- 

which is an odd function symmetric about 7r/2. 
1),“~,-(1/JZ)w(r+l),m(r),-(1/JZ)w(r+1),.’.,-(1/JZ)w(p-1))~, 

These solutions representing the basic types are mutually orthogonal 
over the interval 2ph = 27r is clear from the fact that over this interval 
thc solution vectors are rcspcctively (uT(k), ~ * ( k ) ) ~ ,  (uT (k ) ,  ~ ~ ( k ) ) ~ ,  
(UT(!+ - U T ( k ) ) T ,  ( u T ( k ) ,  - UT(k ) )T .  

Thus, the general features of the basic ally^ periodic: sollitions of the Hill’s 
difference equation (3.9.2) are precisely the same as for thc Hill’s differential 
equation (3.9.1). 

3.10. Mathieu’s Equation 

Mathieu’s differential cqnatiorl 

(3.10.1) y” + (0. - 2qcos2t)y = 0, 

where a and q are real parameters, ou:urs i n  diverse class of applied 
problems [19]. Infact, it is the most important example of the Hill’s dif- 
ferential equation (3.9.1), the function a ( t )  = a - 2qcos2t is even and 
periodic with period 7r. For the corresponding difference equation (3.9.2) 
we take 

(3.10.2) 
U(k + 1) - 2u(k) + u(k - 1) 

H2 + (a, - 2qcos2kh,)~r(k) = 0 

and so i n  (3.9.6) the function ,9(k) = 2 - H 2 ( a  - 2qcos2kh,). 

Thus, the theory developed for the difference equation (3.9.2) applies 
to the difference equation (3.10.2) and i n  particular the basically -periodic 
solutions are of the four types designated by ce even, se even, ce odd and 
se odd (Table 3.9.1). In particular, if we choose H2 = 4a-1 sin2 +h& 
then (3.10.2) becomes 

(3.10.3) 
u ( k  + 1) - 21r(k) + u.(k - 1) 

4a-1 sin2 +h& 
+ (a  - 2qcos2kh)~(k)  = 0 

and in (3.9.6) the function g(k) reduces to g(k) = 2 cos h& + 8qa-l X 

sin2 $h&cos2kh,, with h = r/p = n/(2T). 

A particular advantage of (3.10.3) is that in the case of q = 0 solutions 
of (3.10.1) and (3.10.3) are the same. Further, in this case g(k) = 2cos h& 
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which is independent of k ,  and the basic determinants can be evaluated 
explicitly. Indeed, from Problems 2.16.37 and 3.19.25 it follows that Dk = 
sin kh& cosech h,&, k 2 0, det C2 = -4 sinn&/2 sin h,&, det S2 = 
sin 7r&i/2 cosech h&, det Cl = det S1 = 2 cos ~ 6 1 2 .  

3.11. Weierstrass’ Elliptic Equations 

It is well--krlown [l] that the Weierstrass elliptic function p(z) satisfies 
the first order nonlinear differential equation of the second degree 

(3.11.1) P’(.)2 = 4P(7-) - - 93 3 

and the consequent second order nodincar differential eqtlation of the first 
degree 

(3.11.2) p”(z) = 6p(z) - -92. 2 1  

2’ 

The functiort p(.) is an cven function of z, p(z) - z-2 is aualytic at 
z = 0 ancl equal to 0 at, z = 0, and the constants ~2 and g3 are the 
so callcd invariants. 

To obtain the best difference equation approximations of (3.11.1) and 
(3.11.2) we can use the addition forrrmla for p (z ) ,  

Indeed, if p(kh) = u(k), 

1 
4 

u ( k +  1) = - 

Solving this equation for 

k = 0,1, .  . . then we have 

p’(kh,) - p’(h) 

u,(k) -- ?/,(l) I’ - u(k) - u ( l ) ,  k # 1. 

p’(kh), to obtain 

p’(kh) = p’(h,) 31 2(u(k) - u , ( l ) ) ( ~ ( k  + 1) + ~ ( k )  + ~ ( 1 ) ) ~ ’ ~ .  

Squaring the above equation and using (3.11.1) leads to 

-4(u(k) - ~ , ( 1 ) ) ~ ( k  + 1) + 4 ~ ( l ) u ( k )  + 8u2(1) - 92 

= f 4p’(h)(u(k + 1) + u(k) + u(1))’l2. 

Squaring the above equation and using (3.11 .l) now gives the best difference 
equation approximation of (3.11.1) 

(3.11.3) (u(k) - ~ ( l ) ) ~ u ’ ( k  + 1) - 4u,(l)u(k)-(u(l) + u ( k ) )  - ,92-(w.(l) 1 1 
2 2 
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To recognizc this differcnce equation as an approximation for small h to 
the differential equation (3.11.1) requires rearranging (3.11.3) to the form 

(3.11.4) (u.(k + 1) - ~ ( k ) ) ~ ~ ( l )  = 411,(k)~(k + l )-(u,(k) + v,(k + 1)) 1 
2 

+93(u,(k) + u,(k + 1)) . 1 
For small h,, ~ ( 1 )  = p(h,)  = hV2 + O(h,') so that ( ~ ( k  + 1) - 

~,(k) )u , '/~( l )  = p'(z) + O(h,),  and to O(h,) ,  (3.11.4) becorncs (3.11.1) 
as required. 

The best differcnce equation approximation to the second order cliffer- 
cntial eqllation (3.11.2) can be obtained by differencing (3.1 1.4), in which 
for convenieIlcc, k is replaced by k - 1. From the sinlplc identities 

A ( ~ ( k ) - ~ , ( k - - l ) ) '  = (1r(k+1)-w(k-1))(u(k+1)-2u(k)+u(k-1)) 

A [ u ( ~  - l ) u ( k ) ( ~ , ( k  - 1) +.(IC))] 

= (u.(k + 1) - w,(k - l))U(k)(U(k + 1) + u(k) + u(k - 1)) 

A(u.(k - 1) + ~ ( k ) )  ~ , ( k  + 1) - ~ , ( k  - 1) 

= (u(k + 1) - u,(k - 1)) [u"k)(v(k + 1) + ?L(k - 1)) + p u ( k )  l 1  
follows the best second order difference equation 

(3.11.5) (~(k+1)-2~(k)+u(k-l ) )u( l )  = 2u(k)(u(k+I)+u(k)+u(k-1)) 

For small h,  (u(k + 1) - 21r(k) + u ( k  - l ) )u ( l )  = p"(z) + O(h2) and 
2 u ( k ) ( ~ ( k  + 1) + u ( k )  + u ( k  - 1)) = 6 p ( z )  + O(h') ,  and hence to O ( h ) ,  
(3.11.5) becomes (3.11.2). 
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3.12. Volterra's Equations 

Volterra equations [36] 

(3.12.1) 
x' = ax - O,X?J 

y' = - C?] + (:x!/, a > 0, c > 0 

describe an ecological system of two competing populations 
and prey x. In (3.12.1) the feasibility constraints x 2 0, 
always explicitly stdated but are irrlplicitly mdcrstood tmausc the x and 
y represent the 1111rrlber i n  the corrlpcting populat,ions. The system (3.12.1) 
adrrlit,s periodic solutions with closed phase trajectories 

(3.12.2) (:(x - 1x1 x) + a.(?) - I11 ?/) = const. 

A typical trajectory for a = 2, c = 1 ancl initial conditions x0 = 4.25, ?/o = 
1 (originally consideret1 by Voltcrra [YG]) is shown i n  Figure 3.12.1. As t 
increases, thc point, (x, y) travcrsc>s thc trajectory i n  the anticlockwise 
clircctiorl ABCDA through the cxtrcrr~c points A, B, C, D whcrc .T = 1 or 
v =  1. 

O L  1 2 3 4 
> x  

Figure 3.12.1. 

An obvious rlonlincar differcnce systcrrl approximating (3.12.1) is 

Au(k)  = a u ( k ) ( l  - v(k ) )h  

Av(k)  = C?/(k)(U(k) - l ) h ,  

where u.(k) = x ( t ~ : ) ,  ~ ( k )  = v ( t ~ : ) ,  tA: = kh, k E W, h > 0 but numerical 
experiments for a # c have indicated that, if periodic solutions for this 
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system are sought, spurious solut,ions with negativc ~ ( k )  or ~ ( k )  can 
arise. To overcome this difficulty, we rewrite the system (3.12.1) as 

(3.12.3) 
(x - lnx)’ = - o(x - I)(y - 1) 

( y  - Iny)’ = c(x - I)(y - 1) 

and to negotiate with the possible difficulties at the extrerrle points whcn 
R: = 1 or when y = 1 approxirrlatc it for ~ ( k )  > 1, ~ ( k  + 1) > 1 or 

~ ( k )  < 1, ~ ( k  + 1) < 1 by the discrete system 

(3.12.4) 
A ( u ( ~ )  - 11lu(k)) = - a(u.(k) - 1)(?1(k + 1) - l ) h  

A(?i (k)  - 111?/(k)) = C(?r(k)  - 1)(? i (k  + 1) - l ) h ,  

and for 7r(k + 1) < 1, 71(k) > 1 or u ( k  + 1) > 1, ~ ( k )  < 1 by the discretc 
svst,cnl 

A(u(k)  - l r ~ ~ ( k ) )  = - 0,(7r(k + 1) - 1)(,0(k) - l )h ,  

A(l/(k)  - 11171(k)) = c . ( ~ ( k  + 1) - l ) ( ~ ( k )  - l)h,. 
(3.12.5) 

From both the systems (3.12.4), (3.12.5) it trivially follows that 

c A ( ~ ( k )  - ln~r(k) )  + a A ( ~ ( k )  - h ‘ f i (k ) )  = 0, 

which L’ rives 

(3.12.6) C(?/,(k) - lIl‘U(k)) + a(7i(k) - 111?1(k)) = COIist 

This is precisely the same as (3.12.2). A particular trajectory for the givcrl 
values of a., c as shown i n  Figure 3.12.1 can be specified by one initial 
point, say the extreme point A(x”, 1) with x” > 1, so that (3.12.6) 
becomes 

(3.12.7) c(?/.(k) - h ? L ( k ) )  + a(7i(k) - lIl?/(k)) = ~ ( d ’  - hx”) + a .  

The c:oordinatcs of the three remaining points B(1, y ” ) ,  C ( d ,  1) and 
D(1, y’) then can be determined from 

n(y” - l n  y” - I) = a(y‘ - h y ’  - 1) = c(d’ - 1nx” - I), y’ < 1 < y” 

ant1 
x’ - 1nx’ = x” - Inx”, x’ < 1 < x”. 

Finally, we notc that once cxtrerne points A, B, C and D of a particular 
trajcctory are known then this trajectory ( v ( k ) , v ( k ) )  from the systems 
(3.12.4), (3.12.5) can bc realized. For this, it is corlvcnicnt to consider a 
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trajectory in four segments [AB), [BC), [CD), [DA), where the notation 
[AB) implies that the point A but not the point B is included. In 
particular, for the trajectory in Figure 3.12.1 we can begin with the point 
A so that v.(0) = X'', v(0) = 1 and for the segment [AB) the system 
(3.12.4) can be executed, similarly over the segments [BC), [CD), [DA) the 
systems (3.12.5), (3.12.4), (3.12.5) can be used. Thus, in conclusion the 
difference systems (3.12.4), (3.12.5) correctly approximates the Volterra 
differential equations (3.12.1). 

3.13. Elementary Partial Difference Equations: 
Riccati's Extended Form 

For a f ~ ~ r ~ t i o n  of two independent variables 71,(k,l), ( k ,  l) E W x W 
we introduce four basic difference operators: E~:71,(k,l) = u.(k + l,(), 
Egu , (k , f )  = 7r(k,P + l), &U(k , l )  = u (k  + l,!) - ? L ( k , l ) ,  Apu(k,P) = 
?r(k, l + 1) - ~ ( k ,  P ) .  It follows imrncdiatclv that, for all 7 ,  Q rlonrlegative 
integers ElEJ71,(k, P) = 7 ~ ( k  + 7, r! + Q),  and for X, p arbitrary constants 
and $(EL., E p )  a polynomial, say, of tlcgree ' r n  and R i n  E k  arid 
Ep, $ ( E L : , E ~ ) X ' ~ ~  = $ ( X , p ) X T p q .  A partial difference equation in two 
independent variables ( k ,  l) E W X W is a functional equation involving 
u,(k + 7, l + Q ) ,  7, Q = 0,1,2,. . . . If a partial difference equation contains 
~ ( k ,  l) and u(k + 'm, l + R), where 'm. and n, are the largest nonnegative 
integers, then the equation is said to be of order ( , r n , n ) ,  i.e. of order 71)  

with respect to k ,  and of order n with respect to l. The general linear 
partial difference equation of order (111, n,) with constant coefficients has 
the form 

(3.13.1) $(Eh Ef)u.(k,q = b ( k , O ,  

where b ( k ,  l) is a known function of ( k ,  P )  E W X W. If b(k,  e )  is 
different from zero for at least one (k ,P )  E W X W, then (3.13.1) is 
a nonhomogeneous linear partial difference equation. Corresponding to 
(3.13.1) the equation 

(3.13.2) ($(l&, E e ) u ( k , l )  = 0 

is called a homogeneous partial difference equation. 

The general solution of a given partial difference equation contains CYX- 

tairl arbitrary functions of k and l. In the case of linear partial difference 
equation of order (m,n) with constant coefficients the general solution 
contains exactly m arbitrary functions of the variable k ,  or n arbitrary 
functions of the variable l. If w(k, l) is the general solution of the ho- 
mogeneous difference equation (3.13.2), and w ( k , l )  is any solution of the 
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nonhomogeneous difference equation (3.13.1), then the general solution of 
(3.13.1) is given by u ( k ,  P) = v(k, P) + w(k ,  l). 

The main purpose of this section is to discuss several methods to solve 
linear partial difference equations with constant coefficients. 

Symbolic Method. In (3.13.2) we can assume that  EA:, Et) = n : = l ( E k  
-&.(Ej))Pp, where pT,  1 5 T 5 q are positive integers, such that 
p1 + . . . + p.r = ' m ,  and $,.(E[), 1 5 T 5 q may be irratiorlal functions 
of El. Since the separate factors of q 5 ( E k ,  E l )  are commutative, and the 
equation (3.13.2) is linear, its general solution will he the su~n of the general 
solutions of the separate equations ( E k  - q~,,-(EC))r'r.u(k, P) = 0, 1 5 T 5 q. 

First, we consider the partial difference cquatiorl 

(3.13.3) 7/,(k+l,P)-~~,(IC,[+l)-~j~/,(k,P) = ( E k - ~ E p - / j ) ~ ( k , t )  = 0, 

whcrc (Y and arc constants. Since this cquat,iorl can bc writtcrl as 
E k u ( I C ,  P) = ((YEP + / j ) u ( k ,  P), and ((YEP +/l) has no effect on thc variable 
k ,  it can be solved to obtain its general solution 

where c is an arbitrary funct,ion of the variable P. 

The solution of (3.13.3) can also be obtained by writing it as Epu(k, P) = 
(-x> (1 - 9) u ( k ,  P) and proceccling as txforc. Indeed, wc have 

(3.13.5) 

where d is an arbitrary fmction of IC. 

Next we consider the partial difference equation 

(3.13.6) (El; - C Y E ~  - ,L l)T~~(IC, l?)  = 0, 

where T is a positive integer. Defining Ep = (YE( + ,/3 and using the fact 
that (Ek-Eg)"u(k, l) = 0 has the solution u.(IC, P) = (Et)k c' :=, k i- lc i ( l ) ,  
where ci ,  1 5 i 5 T are arbitrary functions of e, we obtain the solution 
of (3.13.6) 
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Similarly, the solution in terms of T arbitrary functions di(k), 1 5 i 5 
T can be written as 

(3.13.8) 

(3.13.9) 7r (k ,P)  = p7r(k + l,! - 1) + qu(k - l , P  + l), p + q = I 

Lagrange's method reqnires that pX2 - Xp + qp2 = 0. This determines 
X,(p) = p ant1 X 2 ( p )  = pq/p. This gives two particular solutions 
u 1  ( k ,  P) = pk+' and 71,2(k, P) = (q/p)kp'+e. Summing tllcsc expressions, we 
fincl E ~ ( I C ,  /?) = S-", dl(p)pk+'dp and ~ 2 ( k ,  P) = Jym d z ( p ) ( q / p )  k p k+/d ,/L, 

where dl(/,,) and &(p) are chosen so that the integrals are defined. 
From this we corlc:ludc that the general solution of (3.13.9) is u (k , t )  = 
9( k + t) + (q/p)'h( k + P), where 9 and h, are arbitrary functions of k + P. 
Example 3.13.2. For the partial difference equation 

(3.13.10) w,(k + 3, P) - 37r(k + 2, e + 1) + 374k + 1, e + 2) - u(k,  P + 3) = 0 

Lagrange's mctlmd requires that X3 - 3 ~ ' p  + - p' = (X - p,)3 = 0. 
rherefore, X = p is a triple root and linearly independent particular 
solutions are p':+', kpk+', and k2pk+p. Multiplying each of these ex- 
pressions by an arbitrary function of p and summing gives the general 
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solution u(k,P) = f ( k  + P )  + kg(k + P) + k2h,(k + l), where f ,  9 and h, 
are arbitrary functions of k + P. 
Separat ion of Variables M e t h o d .  This rnethod is ofthl applicable to 
linear partial difference equations having the form 

(3.13.11) 4(Ek,Ep,k,P) = 0, 

where 4 is a polynorrlial function of EA: and Ep. WC asslme that 
the solution of (3.13.11) can be written as u(k,l) = U(k)V(P) and its 
substitution in (3.13.11) leads to 

(3.13.12) 

Under these assllrrlptions, U(!") and V(P) satisfy the following ortlirlary 
tliffcrcncc rquations 

(3.13.13) 
fl(Ek, kW(k.1 = (Yf2(Ek, ! " ) U ( k )  

!/I(Et,P)V(P) (y,92(EP,l)v(l), 

where (Y is an arbitrary constant. 

Oncc the solution U ( k ) ,  V(k) of (3.13.13) is known, we can sum ovcr 
C Y ,  as in  Lagrange's method, to obtain additional solutions. 

E x a m p l e  3.13.3. For both the partial difference equations (3.13.9), 
(3.13.10) the Separation of variables ~ncthotl docs not work. For the equa- 
tion 

(3.13.14) u ( k ,  l + 1) = u ( k  - 1, P) + ku(k, l) 
Lagrange's method fails, however the Separation of variables method is 
applicable. Indeed, if we let u(k,l) = U(k)V(P), then 

U(k)V(P + 1) = U ( k  - l)V(f) + kU(k)V(l), 
which is the sarrle as 

V(P + 1) - U ( k  - 1) + kU(k)  

v ( 4  u(k) 
- - - Q, 

where (Y is an arbitrary constant. Therefore, U(k )  and V(!) satisfy the 
first order ordinary difference equations 

(a - k ) U ( k )  = U ( k -  1) 

V(P + 1) = QV([), 
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which can bc solved to obtain 

Summing over cy now gives 

where c is an arbitrary function of a. 

Laplace's Method. This method is applicable when the sum or thc 
differencr of the argllnlents of all w.(k + T, I! + 7 )  that appear i n  a partial 
difference equation is a constant. For example, in the diffcrcrlce equation 
(3.13.9) thes~lnloftheargurrlentsofall z r ( k ,L ) ,  u ( k + I , P - l ) ,  u (k- l , l+ l )  
is a constant, k- + 1. If WC set k + = ' r n  and dcfirlc 71( k )  = U( k ,  m - k ) ,  
then equation (3.13.9) 1m:ornes 

7i(k)  = p7(k + 1) + qv(k - l), 

which is a sccond order ordinary difference cquation whose solution is 

(3.13.15) 

However, since an arbitrary constant can be considered a function of an- 
other constant, we recover the solution of (3.13.9) by replacing c1 and c2 

in (3.13.15) by c l ( k  + e )  and cz(k + e ) .  
There arc several norllinear partial difference equations which can be 

reduced to linear equations by means of special transformations. As an 
cxample, we shall consider Riccati's ezten.ded form,, which is a system of 
nonlinear partial difference equations 

(3.13.16) 

u,(k + l , e  + l) = 
7I(k + 1,e + 1) = 

ou(k,  e )  + Bv(k ,  t )  + y 
p ( k ,  e )  + qv(k, l) + T 
p u ( k , P )  + vv(k , ! )  + V  
pu(k, e )  + q71(k, e )  + r ' 

where cy, /?, y, p, v, 7 ,  p, q and r are constants. 

From (3.13.16) it follows that if X, E and C are undetermincd multi- 
pliers, thcn 
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(3.13.17) 
u(k+ l,[+ 1) - v(k + 1, e + 1) 

cru(k,e) + pv(k,e) + y p U ( k , e )  + Uv(k,e)  + 77 
- 

1 
pu(k, e )  + p ( k ,  P) + r 

- - 

- Xu(k + 1, e + 1) + @(lC + 1, e + 1) + < - 
(CYX+~LE+pC)'U.(k,e)+(px+ul+qC)1~(lC,e)+(yX+77€+rC)' 

Now suppose that X, and C are chosen so that 

(3.13.18) 

where h, is an unknown constant. The c:ondition that X, ( and C are 
not to be zero demands that 

(3.13.19) 

This is a cubic equation in h, and provides three values of h, say, h,l, h.2 
and h 3 ,  and for each of these values WC can find the corresponding values 
of X, < and C from the system (3.13.18), i.e. h,i "+ (X i ,  ti, Ci), i = 1,2,3. 

This allows us to replace (3.13.17) by the new set of equations 

(3.13.20) 
U l ( k +  l,[+ 1) - U2(k+ l,[+ 1) - U3(k+ l,[+ 1) 

h,l U1 ( k  e) h2U2(k,O hf3U3(k, P) ' 
- - 

where U i ( k , e )  = Xiw,(k,C) + &v(k,P)  + <i, i = 1,2,3. 

From the equations (3.13.20) it follows that 

Ul(k+ l , e +  1) - h1 U~(k,e) 
U3(k + l,! + 1) h3 U 3 ( k , [ )  

- -~ 

(3.13.21) U2(k + l,[ + 1) h2 Uz(k,e) 
U3(k + 1, e + 1) h3 U3(k, e )  

which are of the form U (  k + 1, + 1) = /?U( k ,  l), and hence can be solved 
to obtain 

- - " 
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where cl, c 2  and c3 are arbitrary functions of k - L.  

Thus, on using the expressions for Ui(k,e), i = 1 , 2 , 3  in (3.13.22) ,  we 
find 

3.14. Wave Equation 

From Example 3.6.1 it is clear that the function ? / , ( I C )  = A sin wkh,, IC E 
IN is a solution of the second order differerlce cquation 

tL(k + 1) - 271.(k) + t/ ,(k - 1) 2 + W ?/,(/c) = 0. 
4w-2 sin2 iwh,  

Further, as h, -+ 0, ~ ( k )  tends to y(t)  = A s i n w t  ant1 the above difference 
equation converges to t,hc differential equation y” + w2v = 0. 

The function @(x,  t )  = A sir1 w(x+ct) is a solution of t,llo one dirrlcnsiorlal 
wave equation 

(3.14.1)  4+t = c2#)2z. 

To obtain the partial difference equation corresponding to this solution, WC 

use the discretization x = kh, l ,  t = th2, k ,  e E W where h,l > 0, h.2 > 0 
are step-sizes, and represent 4(z,t) = #(kh,l,th,2) = u,(k,l!). 

Thus. it follows that 

and 
u ( k ,  e + 1) - 2V,(k,l) + U(k, e - 1) 

~ w - ~ c - ~  sin2 
+ w2c2u(k,P) = 0,  

whence 
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As hl, h2 "+ 0 this linear second order partial difference equation 
converges to (3.14.1). The function 4(3:,t) = Asinw(3: - ct) is also a 
solution of both the equations (3.14.1) and (3.14.2). 

The analysis can be extended to a solution consisting of a sum of two 
terms, e.g. $(x, t) = Al sinwl(3: + ct) + A2 sin w2(z + ct). Indeed from the 
relation 

$ ( X  + h,l , t )  - (coswlh,l + cosw2h,l)@(~,t) + + ( X  - h,l,t) 

= (coswlhl - cosw2hl)[Al sinwl(z + ct) - A:!sinw2(5 + ct)] 

follows the required partial difference equation 

~ ( k , / ! +  1) - ( C O S W ~ C ~ , ~  + coswz(:h,z)u,(k,P) + ~ ( k , !  - 1) 
(COS w l ~ h , 2  - COS W Z C ~ , ~ )  

(3.14.3) 

- ~ . ( k  + l,[) - (<:oswlh,l + ~oswzh, l )~(k ,P )  + ~ ( k  - l,!) 
- 

( c o s u ~ ~ , ~  - ~ 0 ~ w 2 h . l )  

Since as h,, "-f 0 arid h2 -+ 0, cosw1& + cos w2&2 -+ 2, coswlch,z - 

c o s ~ ~ h , ~  -+ h,:(w:-w;)/2 difference equation (5.143) converges to (3.14.1). 

For the general solution u(x, t) = Erl Ai sinwi(3: + ct) of the Wave 
eqtlation (3.14.1) it is not possible to find a simple partial difference equa- 
tion. The appearancc of W in the dcrlonlirlator 4wP2 sin2 iwh  loses the 
advantagc er1,joyed by the usual approximation term h2.  

C O S W ~ C ~ , ~  -+ C2h,:(W; - wT)/2, coswlh,l + <:oswzh,l -+ 2, coswlh,l - 

3.15. FitzHugh-Nagumo's Equation 

The partial differential equation 

was considered by FitzHugh and Nagurno in modelling the propagation of 
a nerve pulse [6], has the solitary~-wave solution 

(3.15.2) 4(x ,  t )  = A tanh(v3: + wt). 

To obtain the partial difference equation corresponding to this solution, 
once again we use the discretization 3: = kh,l, t = l?h,2, k ,  l E W where 
hl, h,2 > 0 are step-sizes, and represent +(x, t) = 4(kh,l, /!ha) = u ( k ,  l?). 

From u.(k, P) = A tanh(vkh1 + wlhz) it follows that 

u(k,l?+ 1) - u ( k , / ! )  = A t a n h ~ h , z ( A - ~ 7 ~ ( k , / ! ) ' l , , ( k , l ? +  1) -l), 
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which is 011 combining with an obvious extension of (3.19.25) gives the 
required partial difference equation 

(3.15.3) 
?],(!€,e+ 1) - u ( k , t )  u ( k  + l,[) - 2?1(k,l)  + u ( k  - l,[) 

w-l tanh whz 
- - - WA 

2qP2 tanh’ qh,l 

I n  the limit hl,  h,z + 0, this partial difference equation gives 

4t = -4  - wA + w A - I ~ ’  + $4 - l 

2 xx 

which is the same as (3.15.1). Thus, the partial difference equation (3.15.3) 
is the best discretization of the partial differential equation (3.15.1). 

3.16. Korteweg-de Vries’ Equation 

The partial differential equation 

(3.16.1) 4x.m - 34: + 4t = 0, 

which, when differentiated with respect to z and the substitution = t/j 
is made, gives the Korteweg-de Vries equation in the usual form 

(3.16.2) l j j z X 2  - 6 4 4 ~ ~  + li/t = 0. 

W e  shall determine a partial difference equation for the single--soliton 
solution #(x, t )  = -2w tanh(wz - 4w3t) of thc equation (3.16.1) by consid- 
ering the equations satisfied by 4(.7;., t )  = A tanh(wz + qt) and ~ ( k ,  e )  = 
A tanh(wkh1 + VLhz). 

From (3.19.24) follows the relation 

u,(k + l,[) - u ( k  - l,[) 1 u ( k ,  l! + 1) - u ( k ,  e - 1) 1 
‘ 1 ~ ( k + l , e ) + u , ( k - l , e ) s i r l l l 2 w h l  u(k ,e+l )+u. (k , l l- l ) s in112qh,~’  

which, when used with an obvious extension of (3.19.26) gives the required 
partial difference equation 

- - 

(3.16.3) 
u ( k + 3 , e ) - 3 ? r ( k + l , e ) + 3 7 1 . ( ~ - 1 , e ) - u ( k . - 3 , e )  

(w-l sinh 2 ~ h ~ ) ~  

+GwA-’ cosh 2whl [ u(k+l,!) + u ( k - l , e )  l[ w-l sinh 2wh,l 

u(k+3,!) + u ( k - 3 , l )  u ( k + l , ! )  - u ( k - l , l )  

W3 u ( k  + 3, e )  + 7r(k - 3,l) u ( k ,  e + 1) - u ( k ,  e - 1) 
q u . ( k , e + l ) + u ( k , e - l )  

-4- [ ] = 0. 
7-l sinh 2qh2 
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Thc limiting partial differential equation is 

(3.16.4) 

When A = -2w and q = -4w3 so that 4 ( x ,  t )  = -2w tanh(wn: - 4w3t), 
and the equation (3.16.4) is the same as (3.16.1). Thus, in this case the 
partial difference equation (3.16.3) is the best discretization of the partial 
differential equation (3.16.1). 

3.17. Modified KdV Equation 

Consider the modified Kortewcg de Vries cquation [6,37] i n  the form 

(3.17.1) 4m.Z + W24X + 4t = 0 

for which the solitary wave solution is 4(n:, t )  = wsech (wn: - w 3 t ) .  

W e  shall deterrrlinc differential and difference equations satisfied by 
&(x ,  t )  = Ascch (wx + qt) and u ( k ,  P) = Asech (wkhl + q!h,2). 

From (3.19.27) follows the relation 

u(k+ l,[) - u(k - l,[) 1 - v ( k ,  P + 1) - w,(k, a - 1) 1 
u(k+1,P )+w, (k-1 ,e ) tar lhwhl  ?l . (k,P+l)+~(k,e-1)ta111177h2' 

which, when used with an obvious extension of (3.19.29) gives the required 
partial difference cquation 

(3.17.2) 

- 

u ( k  + 3 , P )  - 3u(k  -t 1,P) + 374k - 1,P)  - w.(k - 3 , P )  
(2w-1 sinh ~ h ~ ) ~  

cosh 3whl 

+3~~A-~w,(k , , ) (u (k + 3,t) + w,(k - 3,t))x 

cosh whl cosh 2wh1 [ v.(k + 1, e )  - v,(k - 1, e )  

U(k + 3,P) + v.(k - 3,P) w,(k,! + 1) - 1L(k,!. - 1) 
u ( k , L + l ) + u , ( k , e - l )  

2w-1 tanh whl I 
] = 0. 

27-1 tanhqhz 

The limiting partial differential equation is 

(3.17.3) 
W" 

77 
+ 6 ~ ~ A - ~ 4 ' 4 ,  - -4t = 0. 

When A = W and q = -w3 so that 4(x,t) = wtanh(wz - w3t), 
and the equation (3.17.3) is the same as (3.17.1). Thus, in this rase the 



162 Chaptcr 3 

partial difference equation (3.17.2) is the best discretization of the partial 
differential equation (3.17.1). 

3.18. Lagrange’s Equations 

Consider a holonornic mechanical system, with q = q(t) = q l ( t ) ,  . . . , qn,(t) 
the generalized coordinates, with potential energy V(q ) ,  and kinetic en- 

ergy 

(3.18.1) 

in which aij = a,j.i. Lagrange’s equations of motion give the nonconscrva- 
tive generalized forces as 

(3.18.2) 

We shall discrctizc these equations so that the following two properties arc 
preserved. 

n 

(3.18.3) - ( T + V )  = I F , . & . ,  
d 

dt 
,.=l 

which leads to the energy integral T + V = constant, when the power of 
the norlcorlscrvative generalized forces, given by the right side of (3.18.3) is 
zero. 

(Pz) If the variable q,. is cyclic, i.c. T and V both are independent 
of q,, then (3.18.2) reduces to 

(3.18.4) 

or in integrated form 

(3.18.5) 

Thus, if the impulse of the nonconservative force corresponding to the cyclic 
variable, given by the left side of (3.18.5) is zero, then the generalized mo- 
mentum corresponding to this variable, given by the right side of (3.18.5), 
is also zero. 

Since the discretization of (3.18.2) will involvc partial differences, first 
we shall provide a general formula for the partial differences. For this, let 
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(3.18.6) 

If f is independent of q,,., then 

(3.18.7) 

If the time t is discretized at t,irrlc instants t ( k ) ,  k = 0,1 , .  . . then 
the aim is to choose a discrete analog of the partial derivative, which we 

shall denote by 

(3.18.8) 

so that the disc:rctc analogs of (3.18.6) and (3.18.7) arc satisfied. 111 (3.18.81, 
A,. will b e  called the (forward) partial difference operator. The tlisc:ret,e 
analog of (3.18.6) is 
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If all the six paths along the edges of the cube from A to D are given equal 
wcight, then in the representation of A l f ( k ) ,  say, the edges A E  and CD 
occur twice and edges BG and HF once so that the corresponding general 
representation is 

92 

In the case of n variables, the general representation of the partial 
difference is 

- f [ q r ( k ) ,  4T(k)? qJ(k + l)]], 
where thc summation is taken over all disjoint subsets I ,  J of {1,2,. . . , n}/ 
{T} such that IU {r} U J = {l, 2, ... ,n}. For cxample, the third term in 
(3.18.11) with T = 1 corresponds to I = {3}, J = {a}, N ( I )  = N ( J )  = 1. 
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From this construction, it is clear that (3.18.12) satisfies the requirements 
expressed by (3.18.9) and (3.18.10). 

The discrete analog of the Lagrange equations of motion (3.18.2) we 
shall consider are of the form 

(3.18.13) F,.(k) = - l a  At( k )  

which arc augmented with thc trapczoidal smoothing formlla 

(3.18.14) 

These discrete Lagrange's equations (3.18.13), (3.18.14) satisfy tllc dis- 
cret,e analogs of (3.18.3) and (3.18.4), namcly 

and for a c:yclic variable qT(k) 

(3.18.16) F,.(k) = A c a . , . j ( k ) q j ( k )  / A t ( k ) .  
( i l l  ) 

For this, (3.18.16) is immediate from (3.18.13) because the partial tlif- 
ference operator A,. forces A,,.f(k) = 0 if f is independent of q. To 
show (3.18.15) we multiply (3.18.13) by &.(/c), use (3.18.14) and sum 
over from T = 1 to T = n, to get 
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which is from (3.18.9) is the same as 

= A T ( k )  + AV(!?) 

Now we shall show that the smoothing forrlnlla (3.18.14) is not only 
a sufficient corditiorl for (3.18.15) to be valid but also a rlcccssary cordi- 
tiorl. For this, we asslme Lagrange's eqlmtiorls of thc form (rrlultiplying 
throughout by Aq,,. ( k ) )  

Surrmirlg (3.18.17) from T = 1 to T = R and using (3.18.9), to obtain 
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which 011 comparing with (3.18.15) leads t,o what is required to prove 

. 

where use has bcen made of the syrrmctry ai, = a3i. Equating t 
cicnts of n; j (k  + 1) and a;, ( k )  in turn leads to 

(3.18.18) 

= i l , ,(k + I 

Putting j = i arid subtracting (3.18.19) from (3.18.18) L' 'Ives 

2 W [ [ i i ( k  + 1) - i i ( k ) ]  = $ ( k  + 1) - &k)  At( k )  

from which the smoothing formula (3.18.14) follows irrlmcdiately. The cx- 
pression for Q is obtained by substituting (3.18.14) into (3.18.19) 

(3.18.20) 
1 .  Q(4L,G3) = -[q.;(k)Qj(k + 1) + (ri(k + 1)4j(k)]. 
2 

When Q is inserted into (3.18.17) it can be replaced by tli(k.)qj(k + 1) 
becausc of aiJ = aji. 

3.19. Problems 

3.19.1. Show that u,(k) = ck2+c2 is a solution of the difference equation 

u(k)  = - ( k 2  + Au. ( k )  
(2k  + 1) 

k E IN. 

3.19.2. Show that u(k )  = cak:+c2 is a solution of thc difference equation 
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3.19.3. Show that ~ ( k )  = ~2~~ - (3/16)c3 is a solution of the difference 
equation 

1 1 
- u ( k )  = -Atr(k - 1) - 14-3k ' (Au(k  - 
4 3 9 

3.19.4. Solve the following Euler's diffcrence equations 

(i) ( k  + l ) k A 2 u ( k )  + kAu.(k) - (1/4)u(k)  = 0, k E W(1) 

(ii) ( k  + l )kA2v, (k)  - kAv.(k) + u ( k )  = 0, k E W(1) 

(iii) ( k  + 1)kA2u(k )  - 3kAv.(k) - 91r(k) = 0, k E IN(1). 

3.19.5. Find the general solution of the Riccati equation 

?r(k)u(k  + 1) +pu,(k + 1) + qv,(k) + T = 0 ,  k E IN 

whcrc p, q and T arc c:orlstarlts. In particular, solve for 

(. 1) p = 6 ,  4 - 1 ,  ?-=l2  

(ii) p = 5,  q = 1, T = 9 
(iii) p = 2, q = 2, T = 8. 

3.19.6. Show that 

is the general solution of the Riccati equation u ( k ) u ( k  + 1) +pu(k + 1) + 
qu(k) = 0, k E W. 

3.19.7. Find the general solution v.(k) of each of the following dif- 
ference equations. Further, if u ( k )  is periodic thcn firld its period, or 
linlk-oo u ( k )  if the limit exists. 

(i) u ( k  + 1) = 2 - - 3 

11. ( k )  

11. ( k )  
1 

(ii) v.(k + 1) = 2 + - 

(iii) u ( k  + 1) = 

3.19.8. Use proper transformations to show that the following nonlinear 
equations can be reduced to lirlear equations which can be solved easily 
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(3.19.1) 

(3.19.2) 

Show that the trarlsforrnation w,(k) = scot v(k )  reduces (3.19.2) to the 
simple equation ~ ( k  + 1) = 2v(k ) ,  and hence the solution of (3.19.2) can 
be written as w , ( k )  = &icot(c2')), wherc c is a11 arbitrary constant. 

3.19.11. Show that the solution ~ ( k )  = (1/0)2-"' of the recurrence 
relation 

1 
(3.19.4) ~ ( 0 )  = - 

2ff 
can be obtained as follows: 

(i) the transformation 071,(k) = v (k )  - ~ ( k  - 1)' U - 1 )  = 0 reduces 
(3.19.3), (3.19.4) t,o the second order problem 

(3.19.5) 7 / ( k +  1) = v ( k )  + 5 1 (v (k )  - v(k - 1))2 

1 - l J ( k )  
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1 
(3.19.6) W(-l) = 0, ~ ( 0 )  = - 

2 

(ii) the solution of the first ordcr problem 

(3.19.7) 
1 1 
2 2 w ( k +  1) = - (w(k )  + l), w(0) = - 

is also the solution of (3.19.5). 

3.19.12. For an arbitrary constant c show t,hat the solut,ion of the first 
order equation 

(3.19.8) 

is also a solution of the sccwrld ordcr equation (3.19.5). Thc trarlsforrrlatiorl 
w ( k )  = z ( k ) +  1 rcdwcs (3.19.8) to t,hc form (3.19.1) or (3.19.2), ant1 hcncc 
find the gcncral solution of the sccwld ortlcr cq1mtiorl (3.19.5). 

3.19.13. For an arbitrarv (:onstant c show that the solution of thc first 
order equation 71(k + 1) (1 + ??(/c)) + U( A-) = c is also a solution of the 
second ordcr equation 

?/,(k+2) = u ( k )  
(1 + U(k)?/,(k + 1)) 

1 + ?1,2(k + 1) . 

3.19.14. Difference equations which can be expressed in the form 

are called hom,o,gen,eous equation,s. Solve the following homogeneous dif- 
fercrlcc equations 

(i) uj2(k + 1) - 12u.(k + l ) u ( k )  + 27u2(k) = 0 
(ii) ~ . ~ ( k  + 1) + (2k - 4)?r(k + l ) u ( k )  - 8 k u 2 ( k )  = 0. 

3.19.15. (Cornp0un.d h t e l e s t ) .  Assume that the amount P is deposited 
in a saving account, and together with the interest, is kept t,here for k 
time periods, at the interest rate of c per period. Show that the value 
u , (k)  of the account at the end of the kth period will be u,(k) = P(1+ c )k .  

3.19.16. ( P e l i od i c  Payment ofAnmu,ities). Assume that at the beginning 
of each time period for the next k periods we deposit i n  a saving account 
the fixed amount P, at the int,erest rate of c (compounded) per period. 
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Show that t,he valuc of the account immediately after the kth payment will 
bc ~ ( k )  = P((1  + - 1 ) / ~  

3.19.17. (Periodic Pay,m.en.t t o  Pa?) o f f  a Loan,). Show that thc pcriodic 
payment P necessary to pay off a loan A in K periods at an interest 
rate of c per period is P = Ac{ 1 - (1 + c)-K}-’.  

3.19.18. Show that for the differential equation (3.5.1) the differerlcc 
equation approximation 

(3.193) 7r(k + 1) - yw,(k + 1))76(k) 

has the saulc solution (3.5.8), and hence it is also a best approximation of 
(3.5.1). 

3.19.19. Duffing’s equation + lo?) + 90y3 = 0 togcthcr with thc 
initial cwrlditions y(0) = 1, y‘(O) = O has thc solution y ( t )  = c:n(lOt), 
pararrlctcr ‘rn = 0.45 and the time period T = 0.72555. For each p = 
2‘. II = 1,2 ,” . ,5  use (3.7.3), (3.7.4), (3,7,11), (3.7.13) and T = 2ph 
with Q = 10, b = 90, A = 1 to c:ompute the approximate solution 7 r ( l c ) ,  

approximate parameter ‘ m ,  step size h and the approximate time pcriod T. 

3.19.20. Duffing’s cquation y” - 241) + 321j3 = 0 together with the 
initial conditions y(0) = 1, ?J’(O) = O has the solution y(t) = d11(4t), 
pararrlctcr ‘rrt = 0.5 and thc time pcriod T = 0.92704. For each p = 
2‘, II = 1 , 2 , . ” , 5  usc (3.7.3), (3.7.4), (S.7.16), (3.7.18) and T = 2ph, 
with a = -24, b = 32, A = 1 to c:orrlputc the approximate solution 7r (k ) ,  
approximate parameter m ,  step-size h, and t,he approximatc time pcriod T .  

3.19.21. Duffing’s equation ? J ” + G ? J - ~ ? / ~  = 0 togcthcr with the boundary 
conditions y(0) = 0, y(t )  = 1 for the least t > 0 for which ?~’(t) = 0 
has the solut,ion y ( t )  = s n ( 2 t ) ,  parameter ‘ r n  = 0.5 and the tirrlc period 
T = 3.70815. For each p = 2f, II = 1 , 2 , . . . , 5  usc (3.7.3), (3.7.5), (3.7.23), 
(3.7.25) arid T = 4ph, with a = G, b = -4, A = 1 to compute the 
approximatc solution U( k ) ,  approximat,c paramctcr 111, step -size h, and the 
approximate time pcriod T. 

3.19.22. Show that i n  case I for the Duffing equation (3.7.1) thc bcst 
difference cquat,ion approximation is 

(u(k + 1) + u ( k  - 1)) [dn” + --u”(k)sn2] = 2u(k )cn  

satisfying (3.7.4), where sn = sn[ (a  + bA2)1/2h,],  and similarly c:n and 
dn, i.e. its solution u ( k )  = Acn[(a + bA2)1/2kh,] = y(kh , ) .  

711, 

A2 
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3.19.23. Show that i n  case I1 for the Duffing equation (3.7.1) the best 
diffcrence equation approximat,ion is 

1 
( u ( k  + 1) + v,(k - 1)) cm2 + "u2 (k ) sn  = 2u(k)dn [ A2 21 

satisfying (3.7.4), whcre sn = ~n[A(b/2)~/~h] ,  and similarly cn and dn, 
i.e. its solution u(k)  = Adr1[A(b/2)~/~kh,] = ~ ( k h ) .  

3.19.24. Show that in case I11 for the Duffing equation (3.7.1) the best 
difference equation approximation is 

( u ( k  + 1) + u ( k  - 1)) [l - -u2(k)sn2] = 2?r(k)c:I1 dn 
m 
A2 

satisfvirlg (9.7.5), where sn = sn[(o, + (bA2/2))1/2h], and similarly cn 
and dn, i.e. its solut,ion u ( k )  = Asrl[(a + (bA2/2))'/'kh,] = y(kh , ) .  

3.19.25. Let D1 = 1, and for k 2 2, D & ( I ) , . . . , g ( k  - 1)) 

= det 

g(k - 1) -1 0 ... 0 0 0  
-1 g (k-2 )  -1 "' 0 0 0  
0 -1 g(k -3) '.' 0 0 0 

0 "' g(3) -1 0 
0 0 0 ... -1 g(2) -1 
0 0 0 ... 0 -1 9(1)  

... ... 

0 0 
... . . . . . . . . . . . . 

Show that for all k E W(1) 
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3.19.26. For the differential equation (3.11.1) show that O(h ) ,  O(h2) ,  
and O( hI4) discrctizatiorls are 

( A ~ ( k ) / h ) ~  = 4 ~ . ~ ( k )  - gau(k )  - ~ 3 ,  

- h2 [ ( u ( k ) u ( k  + 1) + + 93(w.(k) + u ( k  + 1)) . 1 
3.19.27. For the differential equation (3.11.2) show that, O(h,),  0(/x2), 
and O(h4) discretizations are 

- h2 [ u 2 ( k ) ( a ( k  + 1) + u.(k - 1)) + -92u.(k) + ,93 . 
1 
2' I 

3.19.28. Use the Symbolic method to solve the following partial difference 
equations 

(i) u ( k  + l,[) = 3 u ( k , l +  I) 
(ii) u ( k  + a,!) = 9u(k,l i  + 1) 

(iii) u ( k  + 1, li + 1) = 7r(k + 1, li) + u ( k ,  e) 
(iv) u ( k , l i + 2 )  = 7 4 k + 1 , l i ) + u ( k , l i ) .  

3.19.29. The Operational method given in Problem 2.16.41 to find 
a particular solution of the nonhomogcIlcous ordinary diffcrcnce equation 
(2.12.1) can be extended easily to nonhomogeneous partial difference equa- 
tion (3.13.1). Use this extended method to find particular solutions of the 
following nonhomogeneous partial difference equations 

(i) u ( k  + 1,li) - 2u(k, l! + 1) = 4k212 + 3k21 + 2kli2 + Gk + 7! + 8 
(ii) u.(k + 1, li + 1) + 3u(k ,  li) = 4'(2k2 + kl + C2 + 7 k  + 3) 
(iii) u ( k + 2 , l + 2 ) - 1 1 1 ~ ( I C + l , l i + 1 ) + 2 3 u ( k , & )  = k l i + k + l i + 2  

(iv) u ( k  + I,!+ 1) + 2 u ( k , t )  = 3"(k2  + P  + I). 
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3.19.30. Consider the first order partial difference equation (cwG,+PEp+ 
y ) u ( k , P )  = b ( k , P ) ,  whcrc cy, p, and y are constants, and b(k,P) 
satisfies (aEk + /?Et + y ) b ( k ,  P) = 0. Show that its particular solution can 
be writtcn as 

--(k + P)b(k, P) if y # 0 
1 

u ( k , P )  = 
c(k  + P) if y = 0, 

wllcre c is an arbitrary function of k + P. 
3.19.31. Consider the partial difference equations given i n  Problem 
3.19.28 and the corresporlding homogeneo1ls partial difference equations 
given in P r o l h n  3.19.29. If possible use Lagrange’s and the nlethod of 
Scparation of variables to solve thcsc hornogcrlcous cquatiorls. 

3.19.32. Use Laplace’s method to solve thc following part,ial difference 
equations 

(i) u(k,  P) + 2 4 k  - 1, P - I) = P 
(ii) u ( k , P )  - k u ( k  - 1,P - 1) = 0 

(iii) v.(k + 4 ,P )  - 4v.(k + 3,P + 1) + Gu(k + 2, P + 2) - 4u(k + 1, P + 3) 
+ 7r(k,P+4) = 0 

(iv) u ( k  + 4, P) - 167r(k, P + 4) = 0. 

3.19.33. Let 4 i ( E k ,  E p ) ,  i = 1,2,3,4 bc polyrlomial functions of the 
operators Ek and Et, and f(k,P), g(k,P) hc given fllnctions of k: and 
P. The relationship 

defines a pair of simultaneous linear partial difference equations for the func- 
tions u ( k ,  P) and ~ ( k ,  P). These equations can be arranged to obtain two 
partial differencc cquat,iorls involving u(k ,  P) anti u ( k ,  P) separately. The 
solutions of thcsc equations contain a number of arbitrary functions, how- 
ever substitution of these solutions back into (3.19.10) determines proper 
nltrnbcr of arbitrary functions which should be present in the final solution. 

Solve the following simultarleous linear partial difference equations 
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(ii) 2(2E& - l)u,(k,C) - (3E& - l )? l (k , l )  = 1 
2(E& - l ) u ( k , l )  + (E& - l ) u ( k , l )  = k. 

3.19.34. Use proper transformations to show that the followiIlg nonlinear 
equations can be reduced to linear equations which can be solved easily 

(i) v.(k + l,[) = [u.(k,P+ 1)]p, p is a constant 

(ii) ~ ( k  + I,[ + 1) = [u(k + I , l ) ]p [u , (k , t ) ]q ,  p and q are constants 

(iii) [ ~ ( k  + I,[ + I)]” = a[v.(k + I,[)]“ + b [ u , ( k , l ) ] p ,  p is a constant. 

3.19.35. The Clairaut exten,ded fovm, is a nonlinear partial difference 
equation 

~ ( k ,  P) = kAku(k,  l) + l A f ~ ( k ,  P) + f ( A ~ : ? / , ( k ,  l), A p ~ ( k ,  P)). 

Show that its solntion is u,(k,P) = c lk  + c 2 P  + f (cl, Q ) ,  where c l  and 
c2 are arbitrary (:onstants. In particular, solve the following equations 

(i) u ( k ,  P) = kAkv.(k, l) + PApu(k, l) + (&v,(k,  P))3 ~in~(Ap?r (k ,P ) )~  

(ii) ? r ( k , f ) [ 1  + k + l! + u ( k ,  l + 1) + ?r(k + 1, P) - ~ ( k ,  P)] 
= k u . ( k + 1 , l ) + l u ( k , P + 1 ) + u , ( k + l , P ) v . ( k , l + 1 ) .  

3.19.36. Show that the partial difference equation 

(3.19.11) u ( k +  1,f + 1) - a ( k , l ) u ( k , P )  = b(k,P) 

can be solved as follows: 

(i) the solution of the equation 

(3.19.12) u(k+ l,[+ 1) -u(k,P) = b ( k , l )  

can be written as u ( k ,  e )  = c(k - P) + b(7 ,  l - + T ) ,  where c is an 
arbitrary function of k - P 
(ii) a particular solution ul(k,P) of the homogeneous difference equa- 
tion u ( k  + l,!? + l) - u (k , l ) u , ( k ,  l) = 0 can be obtained by using the 
transformation u ( k , l )  = lnu(k ,P) .  
(iii) elimination of u ( k , l )  between (3.19.11) and the equation u,l(k + 
l,[+ 1) - a(k,l)ul(k,l) = 0 leads to a equation of the type (3.19.12). 

3.19.37. John and Robert engage in transactions with each other. The 
result of each transaction is that a coin passes from one to the other. The 
probability of a transaction being to John’s advantage is p. Each proposes 
to retire when and if he acquires K coins. W e  shall find the probability 
of John’s retiring. For this, let k and P be the Ilunlber of coins John 
and Robert possess at any stage. Then k and P are positive integers 
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and k + P = M ,  a constant. Let u ( k , l )  be the probability of John 
finally succeeding, as estimated at the k ,  e stage. The probability of John 
finally retiring is the probability of John gaining a coin at the next step and 
thereafter finally winning the necessary nurnber K ,  plus the probability 
of John losing the next coin and thereafter firlally winning the necessary 
number. 

Now if John wins a coin at, the ( k ,  P) stage the probability of his winning 
K finally is u,(k + 1, P - l), while if John loses a coin at the ( k ,  l) stage 
the probability of his finally acquiring K is u,(k - 1, P + 1). Hence 

(3.19.13) U(k,P) = p u . ( k + 1 , P - 1 ) + ( 1 - p ) u ( k - 1 , e + l ) .  

Next, when John has K coins, Robert has AI - K ,  the probability of 
John retiring is 1. Thus, 

(3.19.14) ? / , ( K ,  M - K )  = 1. 

(3.19.15) v.(M - K ,  K )  = 0. 

(ii) if k = P = K / 2  and p = 1/2, then 71, = 1/2 

(iii) if k = P = K / 2  and p = 1/3, then the probability of Robert retiring 
is 1/(1 + 2"K/2).  

( k  + P)! . 3.19.38. Show that - 1s the total number of ways to reach the 

point ( k ,  P) E W X IN from (O,O), while always moving parallel to the 
positive direction of the coordirlatc axes by one unit. 

3.19.39. Solve thc following Riccati's extended form partial difference 
systems 

k !  P! 

?l(k,  P) + 2 
u ( k ,  P) - w(k, P) 

?L(k, P) + 1 
u ( k ,  P) - u ( k ,  e )  

v (k+ l,[+ 1) = 

w(k + 1,e + 1) = 
(4 
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u ( k  + 1,c + 1) = 

?l(k + 1,c + 1) = 
(ii) 

U(k ,  e )  - u(k ,  c )  + 1 
u ( k ,  C) - ~ ( k ,  C) 

U(k ,  k) + v ( k ,  C) - 2 

u ( k ,  C) - ?l(k,  C) . 

3.19.40. Show that both the functions A tanwkh,, Acot wkh satisfy the 
same difference equation 

(3.19.16) 
A%(k  - 1) 
wP2 tan2 wh 

- 2 ~ ~ ~ , ( k ) - ~ ~ A - ~ ~ ~ ( k ) ( ? ~ ( k + l ) + ~ ( k - 1 ) )  = 0, 

which as h, 4 0 converges to the differential equation 

(3.19.17) yll - 2w2y - 2 W 2 ~ - 2 y 3  = o 

for which A t,an wt, A cot wt  arc solutions, i.e. for the differential equation 
(3.19.17) the differcncc equation approximation (3.19.16) is the best. 

3.19.41. Show that both the functions Acsc wlch,, Asec wkh, satisfy the 
same difference equation 

which as h --f 0 converges to the differential cqtlatiorl 

(3.19.19) yl’ + w2y - 2 W 2 ~ - 2 W 3  = o 

for which Acsc wt, Asec w t  are solutions, i.e. for the differential equation 
(3.19.19) the difference equation approxirnation (3.19.18) is the best. 

3.19.42. Show that both the functions Asinh wlch, Acosh wkh satisfy 
the same difference equation 

(3.19.20) 
A%(k - 1) 

4~-~s inh~(wh/2 )  
- W2?1,(k) = 0, 

which as h, + 0 converges to the differential equation 

(3.19.21) y’l-W y = 0 

for which Asinh wt, Acosh wt are solutions, i.e. for the differential equation 
(3.19.21) the difference equation approximation (3.19.20) is the best. 

3.19.43. Show that the function Acsch wkh satisfies the difference 
equation 

2 

(3.19.22) 
A2u(k - l) - W%(k) -w2A-2u2(k)(u(k+1)+u(k-1)) = 0, 
w-2sinh2wh cosh2(wh/2) 
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which as h, -+ 0 converges to the differential equation 

(3.19.23) - w2y - 2W2~-2y3 = 0 

for which Acsch wt is a solution, i.e. for the differential equation (3.19.23) 
the difference equation approximation (3.19.22) is the best. 

3.19.44. Show that the function Atanh wkh satisfies the diffcrence 
equations 

(3.19.24) 
u.(k + 1) - u(k - 1) 714k + 1) + u ( k  - 1) - 

w-lsinh2wh, 
- W A ( l  - AP2u2(k)), 

27~ ( k )  

(3.19.25) 
A271.(k - 1) 

wP2tanh2wh, 
+ 2w211.(k) - ~ ~ A - ~ ~ ~ ( k ) ( u ( k  + 1) + 71,(k - 1)) = 0, 

and 

(3.19.26) 
u.(k + 3) - 3u(k + 1) + 3u(k - 1) - 7L(k - 3) 

(w-lsinh 2 ~ h , ) ~  

+ GwA-lcosh 2wh, 
u,(k + 3) + ?L(k - 3) u ( k  + 1) - u,(k - 1) 
u ( k  + 1) + w,(k - 1) w-lsinh 2wh 12 

(3.19.27) 
u ( k  + 1) - u ( k  - 1) 

= -w( l  - A-2u2(k))1/2 
U(k+l) + u ( k - l )  

2w-1 tanh wh  2 1 

(3.19.28) 
A2u(k - 1) w2u,(k) 
w-2sinh2wh, cosh2(wh/2) 

- +W2A-2u2(k)(u,(k+l)+u(k-l)) = 0, 

and 

(3.19.29) 
u.(k + 3) - 3v4k + 1) + 3v,(k - 1) - 71(k - 3) 

(2w-lsinh ~ h ) ~  
cosh 3wh, 
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+ 3 ~ ~ A - ~ ? r ( k ) ( u , , ( k  + 3) + u,(k - 3))cosh wh,cosh 2wh X 

w,(k+l)-u,(k-l) u(k+3)+u.(k-3) u , ( k + l ) - u ( k - l )  
- U 2  [ ] =o, 2w-ltanh wh, u ( k + l ) + u ( k - l )  l[ 2w-ltanh wh 

which as h + 0 converges to the respective differential equations 

Y1 = - 4 1  -A-  Y ) ?l, 
yll-  w2?J + 2 W 2 ~ - 2 y 3  = 0, 

2 2 112 

and 

y"' + - w2y' = 0. 

3.19.46. The solution @ ( x 7  t) of the nonlincar ,reaction, adwection, equa- 
tion, 

(3.19.32) O(z,t) = 
f (z - t) 

e-t + (I - e-t)f (z - t )  ' 

In (3.19.32) use z = kh,, t = eh, where k ,  l E IN and h > 0 is the step" 
size, and use the representation 4(z,t) = 4(kh,!h,) = u,(k,C), f(x - t) = 
f ( ( k- ! )h )  = f i ,  and note the property that f;+' = to obtain the 
following bcst possible discretization of (3.19.30) 

7r(k , l+ 1) - u,(k - l,[) = (eh - l )v , (k  - l , l)( l  - u ( k , l +  1)). 

3.19.47. For the nonlinear d i f f u s i on  equation 

(3.19.33) 4t = 4 4 z z  

use z = kh,l, t = eh2 where k ,  e E IN and h l ,  h2 > 0 are step-sizes, 
and represent $(x, t) = +(khl, eh2) = u ( k , ! ) ,  to obtain the following 
discretizations 

(3.19.34) 
u,(k, [+l) - u ( k ,  e )  u,(k+l,C) -2u(k,t) + u ( k - l , [ )  

h2 
= u(k,  e+ 1) 

h: I 
(explicit) 
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(3.19.35) 
u ( k , l + l )  - u ( k , l )  U(k+l,t+l) - 2v,(k,e+l) + u ( k - l , l + l )  

= u ( k ,  4) 
h2 h, 1.  

(implicit) 

Show that both (3.19.34) and (3.19.35) are the best discretizations of (3.19. 
33) in the sense that 

(a/2)2 +L?. + y 
d)(.,t) = 5 - at 

where CY,  p, y, 6 are constants, is a solution of all the three equations 
(3.19.33) (3.19.35). 

3.20. Notes 

Discrete Clairaut, Euler and Riccati equations are discussed i n  almost 
every classical book 011 diffcrencx equations, e.g. Milnc: Thomson [23]. For 
several recent results to Riccati equation see Agarwal and Balla [a], and 
Blandzi and Poperlda [4]. The discrete analog of Bernoulli’s differential 
equation considered in Section 3.4 appears to be new. For the Verhulst dif- 
ferential equation several possible difference equation approximations have 
been analyzed in Hoppensteadt and Hynlan [12], May [16-181, Yarnaguti 
et. al. [38 -401. The discretization considered i n  Section 3.5 is based on 
Potts [as]. Best possible difference equation approximations of the linear 
differential equations with constant coefficients are available in Potts [28], 
and Reid [35]. The nonlinear difference equations approximating Duffing’s 
differential equation considered in Section 3.7 as well as i n  Problems 3.19.22 

3.19.24 are taken from Potts [26,27]. The discrete van der Pol’s equation 
(3.8.3) is studied i n  Potts [30]. The discussion of Hill’s difference equation 
and i n  particular of Mathieu’s difference equation is borrowed from Potts 
[31]. The analogy between the continuous and discrete Floquet theories 
has been discussed from a different point of view by Hochstadt [ l l ] .  Best 
difference equation approximations of Weierstrass’ elliptic equations are 
considered in Potts [33]. The discrete Volterra’s systems (3.12.4), (3.12.5) 
have appeared in the work of Potts [29]. An elcnlentary treatment of partial 
difference equations is available at several places, e.g. Boole [5], and Levy 
and Lessman [15]. Best partial difference approximations of Wave equation, 
FitzHugh-Nagumo’s equation, Korteweg-de Vries’ equation and Modified 
K d V  equation are due to Potts [32]. The determination of partial difference 
equations analogs of nonlinear partial differential equations has also been 
considered in Hirota [lo]. Using the smoothing formula of Greenspan [g], 
Gotusso [7], and Neurnann and Tourasis [24] have considered special dis- 
cretizatiorls of Lagrange’s equations of motion. Our discussion in Section 
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3.18 is based on Potts [34]. For several other related results to this chapter 
see Gotusso and Veneziani [8], Meyer-Spasche and Duchs [21], and Mickcns 

[ W .  
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Chapter 4 
Difference Inequalities 

It is well recognized that the inequalities furnish a very general compari- 
son principle in studying many qualitative as well as quantithtive properties 
of solutions of related equations. The celebrated Gronwall’s inequality is 
but one of the exarrlples for a monotone operator K i n  which the cx- 
act solution of W = p + Kw provides an upper hound on all solutions 
of the inequality U 5 p + Ku. On the basis of various motivations this 
inequality has been extended and applied irl various contexts. We begin 
this chapter with Gronwall type inequalities, and iIlclude, i n  particular, the 
practically important case of weakly singular discrete kernels. This is fol- 
lowed by several nonlinear versions of Gronwall irlequality which have been 
established recently and are of irrmerlse value. To deal with inequalities 
involving higher order differences a usual procedure is to convert them to 
their cquivalent systems and then, either obtain the estimates in terms of 
rrlaxirnal solutions of the related difference systems; or use a suitable norm 
and treat the resulting inequalities as in the scalar case, which provides 
uniform bounds for all the comporlerlts of the systems. In Section 4.3 WC 

shall deal with these type of inequalities directly and obtain the estirnates 
in terms of known functions. Then, we shall move to finite linear as well 
as nonlincar difference inequalities and wherever possible provide upper 
bomds in terms of known quantities. In Sections 4.5 and 4.6, respectively, 
we shall consider discrete Opial arid Wirtinger type inequalities. 

In what follows, unless otherwise stated, all the functions which ap- 
pear in the inequalities are assumed to be defined and nonnegative i n  their 
domains of definition. 

4.1. Gronwall Inequalities 

Theorem 4.1.1. Let for all k E N(a )  the following inequality be satisfied 

184 



Difference Inequalities 185 

Then, for all k E N(u)  

Proof. Define a function v ( k )  on IN(a,) as follows 

k-l 

v ( k )  = c f(t)u(t). 

For this function, we have 

(4.1.3) Av(k) = f ( k ) u ( k ) ,  ~J(o , )  = 0 

Since u ( k )  5 p(k) + q ( k ) u ( k ) ,  and f ( k )  2 0, from (4.1.3) WC get 

(4.1.4) ?,(k + 1) - (1 + q ( k ) f ( k ) ) u ( k )  5 p(k)f(k). 

Because 1 + q ( k ) f ( k )  > 0 for all k E W ( a ) ,  we can multiply (4.1.4) by 
I'$=:=,(l + q(t)f(t))- ' ,  to obtain 

Summing the above inequality from a to k - 1, and using .(a) = 0, to 
get 

IC-l F 

t = a  

which is the same as 

k-l I:-1 

The result (4.1.2) follows from (4.1.5) and the inequality v.(k) 5 p(k)  + 
q ( k b ( k ) .  

Remark 4.1.1. The above proof obviously holds if p(k) and u ( k )  in 
Theorem 4.1.1 change sign on lN(a).  Further, the inequality (4.1.2) is the 
best possible i n  the sense that equality in (4.1.1) implies equality in (4.1.2). 
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Corollary 4.1.2. Let in Theorem 4.1.1, p(k) = p  and q(k)  = q for all 
k E N(a). Then, for all k E N(a) 

I;-l 

4 k )  5 P U (1 + sf([)). 
C=a 

Proof. It  follows from (4.1.2) and Problem 1.9.10. D 

Corollary 4.1.3. Let i n  Theorem 4.1.1, p(k) bc nondecreasing and 
q ( k )  2 1 for all k E N(a,). Then, for all k E N ( a )  

Proof. For suc:h p(k )  and q ( k )  the inequality (4.1.2) provides 

Theorem 4.1.4. Let for all k E N(a )  the following inequality be satisfied 

r 

(4.1.6) U ( k )  6 p(k) + q ( k )  c E,i(k,V.), 
i= 1 

where 

I:-l e ,  -1 

Pl=a 

Then, for all k E N ( a )  

I:-1 

(4.1.8) v(k)  5 p(k)+q(k) c 
f=a 

Pz=a I,=a 

Proof. Define a function v(k )  on N(a )  as follows 
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7' r 

I C A&(k ,p )  + 7 ~ ( k )  C AE,(k,  4 ) .  
i=l i =  1 

Rest of the proof is similar to that of Theorcrrl 4.1.1. I 

Condition ( c ) .  We say t,hat (:onclition ( c )  is sat,isficti if for all k E N(n) 
thc irleqllalitv (4.1.6) holds, where 

fii(k) = f ; ( k ) ,  1 I i I T, 
fi+l..j(k) = f,;+2,;(k) = . . . = f7 ' , i (k)  = g,(k), 1 I i 6 T - 1. 
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Now as in  Theorem 4.1.1, we find 

(4.1.17) 

Adding (4.1.14), (4.1.15)j, 3 I j I: T and using (4.1.17), we obtain 

r-2 / r - l  \ 

Now once again as in Theorem 4.1.1, we get 

(4.1.18) 
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Continuing in this way, we find 

r--i+l 

Since ~ ( k )  = u l ( k )  5 p(k )  + q(k)vl(k), the result (4.1.10)j, 1 i j I T 
follows from (4.1.17), (4.1.18) and (4.1.19)j, 3 5 j 2 T. I 

Theorem 4.1.6. Let for all k E lN(a) the following inequality be satisfied 

Then, for all k E W(a . )  

wherc 

Proof. The proof is by induction. For T = 1, inequality (4.1.20) reduces 
to (4.1.1) with p(k) = po(k), q(k) = pl(k) and f ( k )  = q l ( k ) .  Tklus, 
from Theorem 4.1.1, u ( k )  5 Dl[;oo(k)] = FlIpo(k)] ,  i.e. (4.1.21)l is true. 
Assume that the result is true for some j ,  where 1 < j 5 T - 1. Then, 
to prove for j + 1 WC have 

and from (4.1.21)j1 we find 

In  the above inequality we use the definition of Fj and the fact that 
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Corollary 4.1.7. Lct in addition to hypotheses of Theorcm 4.1.6, pi(k) 2 
1 for all k E N(a. ) ,  1 5 i I T. Then, for all k E N(a )  

Proof. For such pi (k ) ,  1 5 i I T inequality (4.1.20) can be written as 

(4.1.1) with p(k) = n p i ( k ) ,  q ( k )  = n p i ( k )  and f ( k )  = c q i (k ) .  I 
1' r 1' 

i=O i=l i=l 

Corollary 4.1.8. Let in addition to hypotheses of Theorem 4.1.6, po(k) > 
0 and nondecreasing, pi ( k )  2 1, 1 L i 5 T and nondecreasing when 
2 5 i I T for all k E N(a) .  Then, for all k E N(a )  

(4.1.23),,. ~ ( k )  L G,r[.po(k)l, 

where 
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Proof. The proof is by induction. For r = 1, Corollary 4.1.3 gives that 
u ( k )  5 Gl[po (k) ] .  Let the result be true for some j, where 1 < j 5 r-l, 
then to prove for j + 1 we have (4.1.22). Since in (4.1.22) the part in 
brackets is positive and nondecreasing, we find 

[ 
L - l  

I=a 1 ~ , ( k )  5 G,  PO(^) + P,+I(~) C q j + l ( l ) U , ( e )  . 

In the above inequality using the definition of G j ,  we obtain 

which also givcs 

Now an application of Problem 4.7.1 gives w.(k) 5 G j + l b o ( k ) ] .  I 

Remark 4.1.2. I n  Corollary 4.1.8 the rcquirement po(k) > 0 is not 
essential. Infact, if po(k) = 0 for some k ,  then we can replace PO( k )  by 
po(k) + E for any 6 > 0. The conclusion then follows by letting E ”+ 0 in 
the resulting inequalities. 

Theorem 4.1.9. Let for all k ,  r E JN(u) such that k 5 r the following 
inequality be satisfied 

(4.1.24) 4.1 2 4 k )  - 4 ( r )  C f ( o 4 4 ,  
T’ 

I=k+l 

where u(k) is not necessarily nonnegative. Then, for all k ,  r E JN(a), k 5 r 

(4.1.25) 7 4 7 - 1  2 714k) n (1 + d ~ ) f ( W ,  
r 

P=k+l 

and (4.1.25) is the best possible. 

Proof. Inequality (4.1.24) can be written as 
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Let ~ ( k )  be the right side of (4.1.26), then for all k ,  T E IN(a), k 5 T it 
follows that ~ ( k )  5 w(k), and 

A v ( ~ )  - q ( r ) f ( k  + l ) ~ . ( k  + I), V(.) V,(.). 

Since q ( r ) f ( k  + 1) 2 0 and ~ ( k  + 1) 5 v(k + l), we find the inequality 

which easily provides 

r 

(4.1.27) ?l (k)  5 rl[ (1 + q(.)f(e))?f>(T). 
Y=k+l 

where c1 > 0, c2 > 0 and h > 0. Then, for all k E IN 

Proof. From (4.1.28), it is inlrnediate that 

e=o L r = O  

I:--1 
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r!+"--l l 

Now consider the function 4(t)  = (k--7 -t)-1/2t-1/2, 0 < t < k - -7 (2 
2). This function is strictly convex on thc given interval and attains its 
minimum at t = ( k  - .)/a. Thus, 

k-7-1 k-7-1 c ( k  - -7 - f)-'/2[-1/2 = c 4( f )  5 l o k - T  q5(t)dt; 
P= 1 P= 1 

this is an immediate consequence of interpreting the given sun1 as a lower 

Rierrlann sum, with the rcctarlglc for the subinterval - - IC--7 IC-T 

(if k - T is cvcn), or [ 2 ' 2  (if k - T is odd) missing. 

But 

[ 2 ' 2  + l1 
k - 7 - 1  k - ~ + l  1 

(4.131) 
.k--7. 

f$(t)dt = (1 - t*)"/2t,'/2dt1 = B lo' 
I n  an analogous fashion, we have 

1.-1 

(4.1.32) X ( k  - [)-l12 5 ( k  - t ) - W t  = 2IC1I2. 
P = 1  l o k  

Using (4.1.31) and (4.1.32) i n  (4.1.30), we obtain 

Now tllc result (4.1.29) follows as an application of Corollary 4.1.3. I 

4.2. Nonlinear Inequalities 

Our first result for thc nonlinear case is connected with the following 
inequality 

(4.2.1) 

where 
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and aiJ, 1 5 j 5 i ,  1 5 i 5 T are nonnegative constants and the constant 
q > 0. 

In the following result we shall dcnote ai = c,=, aij and Q = i 

maxl<i<,. ai. 

Theorem 4.2.1. Let for all k E JN(a) the inequality (4.2.1) be satisfied. 
Then, for all k E N ( a )  

" 

(4.2.4) ~ ( k )  5 p(k) [q lPa + (1 - c ~ ) Q ( k ) ]  , if N # 1 
111-a 

where 

i= 1 

and when cy > 1, we assume that q l - a + ( l - a ) Q ( k )  > 0 for all k E N(a , ) .  

Proof. The inequality (4.2.1) can bc written as u(k)  5 p(k )v (k ) ,  where 

1 

v(k)  = q + c Hz(k,?/,). 
i=l 

Thus, on using thc nondecreasing nature of ~ ( k ) ,  we find 

Since t l ( k )  2 q, we get 

If a = 1, (4.2.3) immediately follows on using .(U) = q,  and the fact 
that ~ ( k )  5 p(k)w(k).  

If Q # 1, we have 
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and from (4.2.5), we obtain 

(4.2.6) 
AV'-, ( k )  

l-Cl I A Q ( k ) .  

Summing the inequality (4.2.6), we find 

~ ( k )  I [ql-, + (1 - a ) Q ( k ) ]  
l/l-a 

and the result (4.2.4) follows from ~ ( k )  5 p(k)u(k) .  I 

Theorem 4.2.2. Let for all k E N(a )  the following irlequality be satisfied 

(4.2.7) ?/,(k) 5 p(k )  + q(k) 

where 1 5 T < 00. Then, for all k E N(a) 

where 

Proof. We note that the function e ( k )  is the solution of the initial value 
problem 

(4.2.10) A e ( k )  = - f ( k ) g ( k ) e ( k  + I), e(a) = 1. 

Define thc function ~ ( k )  by 

k ;- l  

(4.2.11) ? / ( k )  = e ( k )  c f(e)?L"(e). 
e=a 

For the function v ( k ) ,  from (4.2.7) and (4.2.10), we obtain 

(4.2.12) v(k + 1) - v ( k )  5 p(k)f1/'(k)e1/'(k + 1) 
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Now we sum (4.2.12) from a to k - 1, transpose the second sum 
from the right side to left side, form the r th  root on both sides, and apply 
Minkowski's inequality for sums to the right sidc, to obtain 

L-1 f ( e ) s"(e )v ( e )  111. 

+ (5 1 + f ( ! ) q ' r ( t )  ) 
Transpose the second term of the right side of (4.2.13) to left si& to obtain 
the left sidc of the form w(t)  = (c + t)'I' - tl/' (c 2 0, T 2 1). Since 
~ ' ( t )  5 O for all t 2 0, WC may replacc t by a larger quantity without 
destroying inequality (4.2.13). In this regard, we note that 

k-l /P-l \ 

e=a / 
k- 1 /L-l \ 

Hence, (4.2.13) implies that 

i.e. 

Using (4.2.14) in (4.2.7) the result (4.2.8) follows. I 

For thc next result we shall need the following class of functions: 
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as long as 

Proof. From the hypothescs, inequality (4.2.15) provides that 

71, ( k )  
e(  k )  

'1' 1 

i=l 

where 
ra k - l  

p*(k) = p(k) + x 4i(t)Wi(744). 
i = l  t = a  

Since p*(k) is nondecreasing, as i n  Corollary 4.1.3, we find 

(4.2.17) 
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(4.2.20) 

Using (4.2.20) i n  (4.2.19) and sllrrlrrlirlg, t,o obtain 
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and from this U,( k)  5 niz: .li ( k )  follows on using the same arguments as 
for the case 7-2 = 1. This completes the proof. I 

Theorem 4.2.4. I n  addition to the hypotheses of Theorem 4.2.3 let 
pi(k), 1 5 i 5 7-2 be nondccrcasing for all k E lN(a).  Then, for all 
k E N ( a )  

rz  

u,(k) 5 p(k)u*(k) rI J ? ( k ) ,  
i=1 

where v*(lc) is the same as ~ ( k )  in Theorem 4.2.3 with e(k )  = 1, 

L i=l 

as long as 

and Gj,  1 5 j 5 7-2 are the same as in Theorern 4.2.3, 

Proof. The proof is similar to that of Theorern 4.2.3. I 

Theorem 4.2.5. Let for all k E nV(a,) the following inequality be satisfied 

as long as 

where G1 is the same as i n  Theorem 4.2.3. 

Proof. The proof is similar to that of Theorem 4.2.3. I 
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Theorem 4.2.6. Let in Theorem 4.2.5 hypotheses (i) and (ii) be replaced 
by (i) p(k )  is positive arid nondecreasing, (ii) W1 is positive, c:ontinuous, 
nondecreasing and submultiplicative on [0, m). Then, for all k E W(a) 

as long as 

G1(l) + c E, ( k ,  E D m  (GT1) , 
7'2 

i=l 

where G1 is the same as in Theorem 4.2.3. 

Proof. WC follow as in Corollary 4.1.3 to get 

r l 

which provides that 

Let w(k )  be the right side of (4.2.23), then WC have 

r'2 

I c A & ( k ,  wl(P.*)/p)Wl(w(k)). 
i=l 

In the above inequality we use the same arguments as i n  Theorem 4.2.3, to 
obtain 

i i=l 1 'l'? 

~ ( k )  I G;' Gl(1) +C Ei (k ,  W,(p~*)/p) 

and from this the inequality (4.2.22) follows. I 

4.3. Inequalities Involving Differences 

Theorem 4.3.1. Let for all k E JN(a,) the following inequality be satisfied 
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i=O I=a 

Proof. Dcfinc a function ~ ( k )  011 N(a) as follows 

n, 1:- 1 

i=O P=a 

then (4.3.1) can be written as 

(4.3.5) An7L(k) 5 p(k )  + q ( k ) ? / ( k ) .  

From the definition of ?)(/c), WC have 

n 

A7/ (k )  = C q ; ( k ) A ' % ( k ) .  
i=O 

Thus, from (1.8.7) and (4.3.5), we obtain 
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Now on using the nondecreasing nature of v (k ) ,  the above inequality gives 

A 4 k )  5 41(k) + 42(k)4/(k).  

The rest of the proof is similar to that of Thcorem 4.1.1. I 

Corollary 4.3.2. Let in Theorem 4.3.1, Aiu(a)  = 0, 0 5 i 5 R - 1, 
p(k)  be nondecreasing and q(k)  = 1 for all k E W(a . ) .  Then, for all 
k E W(a . )  

A:-l 

an’4k) 5 P(k) (1 + 43([)), 
P=a 

where 

Proof. The proof is sirnilar to that, of Corollary 4.1.3 and uses the cquality 



Difference Inequalities 203 

Then, as i n  Theorem 4.3.1, WC get 

where 

where 
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which provides 7 1 ,  (k) 5 &(IC). Continuing this way, we easily find u i ( k )  5 
BnPi+2(IC), i = n + 1,n, .  .. ,2. Finally, we use ~ 2 ( k )  5 B,(k) in (4.3.7), 
to obtain 

which gives 711 ( k )  5 B,+1 (IC). I 

Remark 4.3.1. I n  Theorcrn 4.3.3 we need q ( k )  2 1 only to prove 
the conclusion (4.3.6),+1. Therefore, instead of q ( k )  2 1 it is enough to 
assume that 1 + q*(k)(q(k) - 1) 2 0 for all k E I N ( a ) .  Further, if there is 
no condition on q ( k ) ,  then an immediate upper estimate car1 be obtained 
from the inequality 

Theorem 4.3.4. Let for all k E N(a) thc following inequality be satisfied 

where p(k) is positivc and nondecreasing. Then, for all IC E lN(a) 

where 

and & ( k )  is thesameas &(/c) with p(k) = 0, as long as l-x:z:p(t) x 
qk(e)e"(e + 1) > 0. 

Proof. Since p(k )  is positive and nondecreasing, inequality (4.3.10) 
implies that 
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Let v(k)  be the right side of (4.3.12), then 

k-n+i l 

which is the same as 

(4.3.13) A [ e ( k ) ~ ( k ) ]  5 p(k)$3(k)e- ' (k  + l ) [ e ( k  + l ) ~ ( k ) ] ~  

Thus, from (4.3.13) we obtain 

- A [ e ( k ) ~ ( k ) ] - '  5 p(k)43(k)e- ' (k  + l), 

4.4. Finite Systems of Inequalities 

Let the subscript i range over the integers 1,. . . , n and T be some 
fixed positive integer such that 1 5 T 5 n. The subscripts p arid q range 
over the integers 1, . . . , T arid T + 1, . . . , n rcspectivelv. 

Definition 4.4.1. The function f ( k 7  U) is said to possess m.ized monoton,e 
pr,opeTty if (i) f p ( k ,  U) is nondecreasing in u 1  . . . U,. and nonincreasing 
in uzL,.+l, . . . , U ,  for all fixed k E lN(a),  and (ii) f q ( k 7  U) is nonincreasing 
in u1, . . . , U,,. and nondecreasing in u,+1, . . . , uIn,. In particular f ( k ,  U) 
is said to possess non,decreasing p,roperty if f , , ( k ,  U) is nondecreasing in 
IL~,... ,ujn for all fixed k E IN(a). 
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Definition 4.4.2. The function v(k) defined on m(.) is said to 
be a r m d e r  a n d  (n - r )  over fun,ction, with respect to the system 
u(k+l) = f(k,u(k)) if v,(k+l) 5 f,(k,v(k)) and v,(k+l) 2 f,(k,v(k)) 
for all IC E N(a). If v(k )  satisfies the reverse inequalities, then it is said 
to be r over and (n - r )  un,der function, 

Theorem 4.4.1. Let the function f(k, U) possess mixed rrlonotorle 
property. Further, let there exist two funckions v(k) and w(k) defined 
on m(.) such that 

? , , ( k t  1) F f,(k,v(k)), 7,,(k + 1) 2 f , (k ,V(k) )  
WP(k  + 1) 2 fp(k-,w(k.)), UJg (k .  + 1) L f,(k.,W(k.)) 

(4.4.1) ~ ~ ( 0 , )  F U J , ( Q , ) ,  v,(.) 2 U J , ( O , ) .  

Then, for all k E W(o) 

(4.4.2) ?J/,( k )  5 W,( k ) ,  ?lq (k) 2 ?l],( k )  . 

Proof. Define a fl1nction z(k) as follows: z , ( k )  = w,,(k) - vp(k)  arid 
z q ( k )  = v,(k) - w,(k).  B y  iIlductior1 we shall show that, z i ( k )  2 0 for all 
k E IN(a,). For this, from (4.4.1), z1(0,) 2 0. Let z i ( k )  2 0 for some fixed 
k E W(. + l), then since f (k, U) is mixed rnonot,one, WC have 

Tjp(k + 1) L f p ( k , V ( k ) )  5 f , ( k , W ( k ) )  5 UJ,(k+ 1) 

and 

UJ, (k+ 1) I f,(k-,W(k.)) 5 f , ( k V ( k ) )  F Tj,(k+ l), 

i.e. z i ( k  + I)  2 0.  I 

Corollary 4.4.2. Let the fullctiorl f ( k ,  U) be nondecreasing. Further, 
let there exist two functions v(k) and w(k) defined 011 m(.) such that 

v(k + 1) 5 f(k,v(k)),  w(k+ 1) 2 f(k,w(k)),  V(.) 5 W(.). 

Then, for all k E W(o.), v(k) 5 w(k). 

Corollary 4.4.3. Let the functions v(k), w(k) be r under and (n , -r)  
over, r over and (n, - r )  under functions with respect to the system 
u ( k  + 1) = f(k, ~ ( k ) )  respcckively. Further, let the vector valued function 
f(k, U) possess mixed monotone property. If V(.) = W(.) = U(.) = uo, 
where u(k) is the sollltion of the problem u(k + 1) = f(k,u(k)), U(.) = 
U’, then for all k E IN(.) 

q , ( k )  F U!,(k) L Wp(k ) ,  l’,(k) 2 U ’ , ( k )  2 UU’,(k). 
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Theorem 4.4.4. Let for all k E N(a )  the following inequality be satisfied 

where u(k) and p(k) are not necessarily nonnegative. Then, for all 

k E N(a )  

I: I;- l-P 

(4.4.4) u(k)  I p(k) + B ( k )  c n (Z+C(k - 1 - 7 )  x 
F=a+l T=O 

B(k - 1 - .))C([ - l)p(P - 1). 

Proof. Define a function v (k )  on N(a) as follows 

I.-1 

v(k) = C C ( P ) U ( L ) .  
F=a 

Thcn, as in Theorem 4.1.1, we have 

As an application of Corollary 4.4.3, WC find that v(k) 2 w ( k ) ,  where 
w ( k )  is the solution of the problem 

w(k + 1) = (Z + C(k )B (k ) )w (k )  + C(k)p(k), W(.) = 0. 

Thus, from Theorem 2.6.1 it follows that 

C ( t  - l)p(t - 1). 

The result (4.4.4) now follows from the inequality u(k) 5 p(k) + 
B(k )v (k ) .  m 

Remark 4.4.1. The inequality (4.4.4) is the best possible, however at 
the cost of several matrix multiplications which may not be feasible. Thus, 
from a practical point of view it is not of much use. In our next two results 
we shall provide explicit upper estimates, however these are not the best 
possible. 
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Theorem 4.4.5. Let for all k E N(a )  the inequalitv (4.4.3) be satisfied, 
and p(k) is not necessarily nonnegative. Then, for all k E N(a )  

k-l k-l 

(4.4.5) ui(k.1 5 pi(k)  + max b i j ( k ) C r v ( ~ )  n (1 + ~(.r)), 
l<j<n, 

(=a r=P+1 

where 

Proof. Taking corrlporlerlts of (4.4.3), to obtain 

n 

(4.4.6) 76, ( k )  5 P i ( k )  + C hj;j(k),li, ( k ) ,  
j=l 

where 

n k-l 

(4.4.7) 9 ( k )  = C c .,.,.(P)lL,.(P). 

n n  

n r n 

5 a ( k )  + [ j ( k ) l i ( k )  

an hence, as i n  Thcorern 4.1.1 we have 

/=a r=P+l 

The result (4.4.5) now follows frorn (4.4.6). I 

Theorem 4.4.6. Let for all k E N(a )  the inequality (4.4.3) be satisfied, 
and p(k) is not necessarily nonnegative. Then, for all k E N ( a )  

k - 1  k-l 

U*(k )  5 p* (k )  + b*(k)  C p * ( L ) r * ( B )  (1 + h * ( . r ) C * ( T ) ) ,  

F=a r=P+l 
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Proof. Taking rnaxinla in (4.4.6) over 1 5 i 5 n, we obtain 

(4.4.8) w.*(k) 5 p* (k )  + = p q k ) ? i , ( k ) ,  
n, 

j = 1  

where b ; ( k )  = nlaxl<j<n, bi;(k).  Next from (4.4.7), we find 

n, !,-l !,-l 

(4.4.9) 71;(k) 5 x x , j r ( P ) 7 / 3 P )  = c C j ( t ) 7 f , * ( U ) ,  
r=l I=a P=a 

where Ci (k )  = c;=, Cjr (k ) .  

Using (4.4.9) in (4.4.8), we find 

n, !,-l 

(4.4.10) w.*(k) 5 p*(k) + C b ; ( k )  c cJ(P)?/,*(!) 
j=1 I=a 

k-l 

5 p*(k) + b*(k)  c (.*(P)?/,*(!). 
I=a 

Now the result follows from Theorem 4.1.1. I 

Remark 4.4.2. An explicit upper cstirnatc for ~ * ( k )  can also be provided 
by the inequality (4.4.10) which has been considered in Theorem 4.1.6. I 

4.5. Opial Type Inequalities 

Theorem 4.5.1. Let u ( k )  be nondecreasing for all k E IN(a) and 
W,(.) = 0. Then. 

(i) if p > 0, 

(4.5.1) 

where H ( 0 )  = 

H ( k  - a )  

q > O , p + q > l  o r p < O ,  q < O  

I;-l k - l  

q(p + q)- ’ ,  and for k E W(u + 1) 
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where h(0) = q ( p  + q)-’, and for k E W ( a  + 1) 
h,(k - a )  = mi11 

p(k - a)”” q(k - a + 1)“ 

(P + 4 )  ’ ( P + 4 )  

Furthcr, in particular 

(iii) if p 2 1, q 2 1 thcn (4.5.1) holds with H ( k  - a )  replaced by 
q ( k  - a + l)”(p + 4)-1 

(iv) if p 5 0, q < 0 then (4.5.1) holds with H ( k  - a,) replaced by 
J(k - a ) ,  where J ( 0 )  = q ( p  + S)”, and for k E W(o. + 1) 

I; 

J ( k  - a,) = 1 +p(p + q)-1 c (P - a,)”-’ 
e=.+2 

(v) if p 2 0, p + q < 0 thcn (4.5.2) holds with h(k - a )  replaced by 
.7(k - a ) .  

Proof. For all I] E W ( a )  and p+q # 0, we define v ( I ] + I )  = (A,u,(L))*+g,  
so that (AV.([))¶ = v q ” ( P  + l),  where T = (p + q)-‘. Since v.([ + 1) = 
CL=, A ~ , ( T ) ,  by Holdcr’s inequality WC havc 

v.([+ 1) <_ (C- a,+ CW(~+ 1) = W(/!+ I),  if p +  q 2 1 GI. ) r  

and 

u ( l t 1 )  2 w(e+l>, if p + q < O  or O < p + q < l .  

Thereforc, if p 2 0, p + q 2 1 or p 5 0 and eithcr p + q < 0 or 
0 < p + q 5 1, then tP(k.+ I )  5 W”(! + I), and 

whilc if p 5 0, p+q 2 1 or p 2 0 and cithcr p+q < 0 or 0 < p + q  5 1, 
then ~ r ” ( l +  1) 2 W”([+ l), and 

k-1 k-l 
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Thus, (i) and (ii) will follow if we can prove 

W e  shall prove (4.5.3) by induction on k E IN(a.). Clearly, it holds for 
k = a. + 1 since H(1) 2 1. Assurrx that it holds for k ,  and otxxrve that 

Now sincc v(k+ 1) 2 0 for all k E IN(a.), the c:lassical result of arithm3ic: 
and geometric means for pq > 0 gives 

i 
I: 

5 (k-a.+l)p q r 7 i ( k + i ) + p ~ ( k - a + l ) - ' C 1 : ( e + l )  

= Q ( k  - a. + l), say 

P=a 

sincc pr + qr = 1. Hence, from (4.5.5) we get 

(4.5.6) C wqT(t+l)uf'(t+l) 5 H(k - a )  c . I , ( t+l)+qr(k-a,+l)p~(k+l)  
6; I:-l 

P=a P=a 

I: 

+ pr(k - a + 1)p-1 C W([ + 1) 
P=a 

I: 

5 H ( k -  
P=a 

since H ( k  - U )  2 qr(k - a + 1)" and H ( k  - a + 1) 2 H ( k  - a)+ 
pr(k - a + I ) p- l ,  which proves (4.5.3). For pq < 0, one can easily see 
that ~ q ' ~ ( k  + l )wp(k  + 1) 2 Q ( k  - a + l), so that (4.5.4) will follow by 
proceeding as above. 
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To prove (iii), consider H1(k  - a )  = qr (k  - U + for p 2 1, 2 1. 
We have H 1  (1) = qr2P 2 1, and 

A H 1 ( k  - a) = qr [ ( k  - a + 2)P - ( k  - a + l)P] 
>_ qr [ ( k  - a + 1 ) P  + p(k - a + l)+ - ( k  - a + l )P] 

>_ pr(k - a + l ) p- l ,  

where we have used the Bcrnoulli inequality. Thus, as above up to (4.5.6), 
we get 

k k-l c ~ ~ ‘ ( 8  f l ) ? uP ( !  + 1) 5 qr(k - a. + 1)” c v(! + 1) + qr(k - a + 1)” 
P =a P=a 

b: 

X v ( k  + 1) + A H ’ ( k  - a )  1 7 ~ ( C  + 1) 
I=a 

b: 

5 H’(k - a + 1) c ?,(P + 1). 
!=a 

This cornpletcs the proof of (iii). 

Finally, to prove (iv) and (v) we note that for all k- E W(a ,  + 1) 

A J ( k  - a - 1) = pr(k - a)”” 

and 
J ( k  - a) 2 1 2 qr(k - a +  if p < 0 and q < 0 

but 

J ( k  - a,) 5 1 5 qr(k - a + if p 2 0 and p +  q < 0. 

This completcs the proof of Theorem 4.5.1. I 

Remark 4.5.1. The conclusion (iii) fails to hold if p < 1. For this, 
consider p = 1/2, q = 1, a = 1, k = 2, v . ( l )  = 1 and 42) = 2. 

Remark 4.5.2. Consider p 2 1, q = 1, a = 1 and ~ ( k )  = k - 1. The 
conclusion (iii) gives 

i.e. (4.5.1) yields a better estimate than that of obtained by simply con- 
paring areas. 
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Theorem 4.5.2. Let u ( k )  be such that u(a)  = u ( b )  = 0 and not 
necessarily nonnegative on N(a ,  b) .  Then, 

If (U + b)  is even then the inequality (4.5.7) is the best possible. 

Proof. Since .(a) = u (b )  = 0, we have 

L:-l b- 1 

u ( k )  = c AV,([), ~ ( k )  = - c Au([), k = a + 1,. . . , b  - 1. 
F=a F=k 

Hence, we find 

b- 1 k b- 1 

P=a+l I=a+l 

L: b- 1 

To complete the proof let ( U  + b)  be even, and u.(k) = ( a , ,  - - - 

I k - T I  
a"  , k E N(a ,  b)  so that U(.) = u ( b )  = 0, lAu(k)l = 1 for all 

ic: E N ( u ,  b" l), 
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i.c. equality holds in (4.5.7). I 

4.6. Wirtinger Type Inequalities 

Let Oi E (0, l), pi > 0, i = 1,. . . ,n, P ,  = Cy=lpi, and (T = 
( l/Pn,) c;=l P i e < .  

Theorem 4.6.1. Let, f ( 8 )  bc a positive C(2)(0, I )  function s11c:h that 
f ’ ( 8 ) f ” ( 8 )  # O on (O , l ) ,  arid 

(4.6.1) 

whcrc 

(i) If 

(4.6.2) 

(ii) If 

(4.6.3) 

where 

i 

[ f ’ (Q)12  - f ( G ) f ” ( Q )  = p ,  0 < 8 < l 

I n  (4.6.2) and (4.6.3) equality holds if and only if 81 = . . . = 8 ,  = (T. 

Proof. We shall use tile following notation: 

Thus to prove (4.6.2) and (4.6.3) we must establish: 

(i) If f ” ( 8 )  < O on (O,l), then FP(@) 2 0. 
(ii) If f “ ( 8 )  > O on (0, l ) ,  then F,(@) 5 0. 
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Also equality holds in (i) and (ii) if and only if Oi = a, i = 1, . . . , n. 

First, a direct computation in (4.6.4) confirms that F,(R) = 0, and 
hence in (i) and (ii) equality holds when 0 = R. Next, we consider a line 
segment which joins 0 = (ell . . . ,On,) and R = (a,. . . ,a), i.e. 

(4.6.5) 
e(t) = (Ol(t), ’. . , Q n , ( t ) ) ,  

& ( t )  = to + (1 - t p i ,  i = l , . ’ .  ,n, t E [0,1]. 

Case (i) If f ” ( 6 )  < 0 on (0, I ) ,  then f’(6) is decreasing 011 (0 , I )  and 
hence the following irleqllality holds 

Thus, if f ’ ( f 3 )  > 0 then 
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Next, differentiating Fp(O( t ) )  = Fp(t) and using (4.6.7), we find 
n n 

i=l i=l 
n, 

(4.6.10) = 2 c ,  z p i ( 0  - Qi)[f’(n) - f’(Qi(t))]f’(Qi(t)). 
i=l 

From this equality for both (4.6.8) and (4.6.9) WC have Fi ( t )  = Fi (O( t ) )  
< 0, i.e. F,(O(t)) is decrcasing on [0,1]. 

Case (ii) If f ” ( 0 )  > 0 011 (0, I ) ,  then f’(0) is increasing on ( 0 , I )  and 
hence the following inequality holds 

p; (a  - Q J ( f ’ ( u )  - f’(Q,(t))) > 0, i = l,”.,TL, I E [0,1]. 

n, 

(4.6.12) c p , ; ( u  - Qi)[f’(a) - f’(Qi(t))]f’(Qi(t)) < 0, c, < 0. 
i=l  

Now from the cqmlity (4.6.10) for both (4.6.11) and (4.6.12) we have 
F , @ )  = F i ( O ( t ) )  > 0, i.e. F,(O(t)) is increasing 011 [O, 11. I 

Corollary 4.6.2. Let in Theorcm 4.6.1, I = 7r/2. Then, the following 
inequalities hold 

where c, = P,  tan(a),  and 

n 

p; sin(8i) c o s ( ~ i )  2 P ,  cos(a) - C pi c o s ( ~ i )  
i=l 

where cn, = P, cot(u). 

In the above inequalities the equality holds if and only if 81 = . . . = 
Q ,  = a. 



Proof. It suffices to note that the functions sin(0) and cos(0), 0 E 
(0,7r/2) satisfy the differential equation (4.6.1) with p = 1. D 

In the following result we shall extend the class of functions by relaxing 
the condition (4.6.1) to 

Theorem 4.6.3. Let, f(0) be a positive C(’)(O, I )  func:tiorl s11c:h that 
f ’ (Q)f”(Q) # 0 011 ( 0 , I ) .  

(1) If 

(4.6.13) (0 - Q )  (If’(Q)12 - f ( Q ) f ” ( Q )  - /I) 5 0 

for B E ( 0 ,  I ) ,  whcrc p is a (wlstmt, t1m1 

(11) f”(B) < 0 ancl f’(B) > 0 on ( 0 , I )  imply (4.6.2) 

(Iz) f”(0) > 0 and f’(0) < 0 011 (0,I)  imply (4.6.3). 

(11) If 

(4.6.14) 

for 8 E (0, I ) ,  wherc p is a constant, tllcrl 

(111) f”(0) < 0 and f ’ (0)  < 0 011 (0 , I )  imply (4.6.2) 

(112) f”(0) > 0 and f’(B) > 0 on (0 , I )  imply (4.6.3). 

In the abovc irlcqualities c ,  = P , f ( o ) / f ’ ( a ) ,  and equality holds if and 

only if 01 = o, i = 1,. . . , n,. 

Proof. As in Theorem 4.6.1 it suffices to show that 

(11) if f”(0) < 0 and f’(B) > O on (O,I), then F,(@) 2 O 
(12) if f”(B) > 0 and f’(0) < 0 on ( ( ) , I ) ,  then F,((->) 5 0 
(111) if f”(0) < 0 and f’(0) < 0 on ( O , I ) ,  then F,((->) 2 0 
(112) if f”(0) > 0 and f’(0) > 0 on (&l), then F,(@) 5 0. 

(I) From (4.6.6) and (4.6.13), we have 

n n 



218 Chapter 4 

Now there arc two cases: (11) f ”  < 0 and f ’  > 0, and (12) f ”  > 0 and 
f ’  < 0. Let us consider the case (Ii): If f ” ( 0 )  < 0 and f ’ ( B )  > 0 on 
( 0 , l )  then (4.6.8) holds. Differentiating F,(O(t)) and using (4.6.15) and 
(4.6.8) it, follows that, 

F : ( w ) )  
n, n, 

= - C ,  CP~( ( J  - 6i)[f’(~z(t))1~ - c ,  C P ~ ( Q  - e i ) f (e , ( t )) f”(e , (1)) 
i=l i=l  

n, 

+ 2 ~ , f ’ ( a )  CP.;(O - e i ) f ’ ( s j ( t ) )  
i=l 

n 

< 2 ~ n  C P ~ ( O  - ei)[f’(g) - f’(ei(t)) ]f ’ (e,, . (t) )  < 0. 
i= l  

The case (11) now follows as i n  Tllrorern 4.6.1. The other cases (‘all be 
proved similarly. I 

Corollary 4.6.4. Let f ( B )  be a positive I )  ft1nc:tion s11c:h that 
f ’ ( B ) f “ ( 0 )  # 0 011 (0 , l ) .  

(1) If 

(4.6.16) f ’ ( @ ) f ” ( @ )  - f ( Q ) f ” ’ ( Q )  2 0 

for B E ( 0 , I )  , then 

(11) f ” ( 0 )  < 0 and f ’ ( B )  > 0 on (0 , I )  imply (4.6.2) 

(I2) f ” ( @ )  > 0 and f ’ ( B )  < 0 on (0 , I )  imply (4.6.3). 

(11) If 

(4.6.17) f ’ ( O ) f ” ( Q )  - f ( Q ) f ” ’ ( Q )  5 0 

for B E (O,Z), then 

( I l l )  f ” ( 0 )  < 0 and f’(0) 0 on (0 , I )  irrlply (4.6.2) 

(112) f ” ( 0 )  > 0 and f ’ ( B )  > 0 on (0 , I )  inlply (4.6.3) 

In the above inequalities c ,  = P,f(a)/f’(g), and equality holds if and 
only if Bi = a, i = 1,.  . . ,R. 

Proof. Inequality (4.6.16) implies that the func:tion 

h(B) = [f’(Q)I2 - f ( W ” ( Q  
is monotonically increasing on (0, I ) .  Let h,(o) = p ,  then (4.6.16) leads to 
the condition (4.6.13). Similarly, (4.6.17) irnplies condition (4.6.14). I 
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4.7. Problems 

4.7.1. Let in Theorem 4.1.1, p(k)  = q ( k )  for all k E lN(a) .  Show that 
for all k E W(Q) 

k-l 

?/ , (k )  I p(k) (1 + p ( P ) f ( f ) ) .  
t=a  

4.7.2. Lct i n  Theorem 4.1.4, T = 2, p(k )  = 710, q(k) = 1 and fll(k) = 
fz1(k) for all k E N(a ) .  Show that for all k E N(a) 

whcrc 

4.7.3. Let for all k E N(n )  the following incquality be satisfied 

Show that for all k E N(a )  

where P ( k )  = max{p(r) : T E N(a ,  k ) } ,  and Q ( k , f )  = rnax{q(r,f) : T E 
N(a , ,  k ) } .  

4.7.4. Lct for all k E IN(o.) the following inequality be satisfied 

whcrc p and u ( k )  are not necessarily ncnnegative. Show that for all 
k. E N ( a )  
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4.7.5. Let for all k E IN the following inequality be satisfied 
R.-' 

2 ( k )  5 2 + C(U(! + 1) + V , ( ! ) ) b ( ! ) U ( ! )  + cl(!)]. 
C=O 

Show that for all IC E N 
L: - 1 

74k) 5 Q ( k )  + ~ ( 4 1  
I=O 

where 

V--2 

C; = (clr(l - Q ) ) " ~ ( v ( I  - Q)), = (1 + C x j  + xu-1 
j=O 
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and when Q > 1, we assume that ql-a+( l  - a ) Q ( k )  > 0 for all k E N ( a ) .  

4.7.10. Prove Theorem 4.2.4. 

4.7.11. Prove Theorem 4.2.5. 

4.7.12. Let for all k E N ( a )  the following inequality be satisfied 

4 k )  5 P(k) + q(k)h c f(Qw(714q) , Cr: ) 
where the functions h and W arc continuous, positive and nondecreasing 
on [0, m). Further, i n  addition W is subadditive and submultiplicative. 
Show that for all k E N ( u )  



222 Chapter 4 

as long as 

k- l  

f ( l ) W ( q ( P ) )  E Dorrr(G-'). 

4.7.13. Let for all k E N(a )  the following inequality be satisfied 

k-l 

u ( k )  I p(k) + q(k)W-l c f (C)W(l/, (P))  , 
L a  ) 

where the function W is increasing, (:OIIVCX and sllbIrlllltiplicativt: on 
[0, CO) and W(O) = 0, lirn~,+m W ( u )  = CO. Show that, for all k E W(a )  

1:-1 

? L ( / ? )  5 p(k) + q(k)W-l c o ( P ) W ( p ( P ) t r - l ( P ) ) f ( e )  x 
( P=u  

r=P+l i 
k-l 

(1 + P(7)W(~( . ) I I j - l ( . ) ) f (7 ) )  7 

where the functions ~ ( k )  and a ( k )  arc positive and a ( k )  + / j ( k )  = 1 
for all k E N(a ) .  

4.7.14. Let for all k E N(a)  the following inequality be satisfied 

1:- 1 

U ( k )  I P(k) + c q(k,  P)W(u.(P)) ,  
P =a 

where the function W is continuous, positive and nondecreasing on [0, CO). 
Show that for all IC E N(a )  

1:-1 

G ( P ( k ) )  + c Q ( k , P )  , 
!=U 1 

where P ( k )  and Q ( k , l )  are defined in Problem 4.7.3, and G ( w )  = 

W > WO 2 0, as long as 

k-l 

G ( P ( k ) )  + c Q ( k ,  P) E Do.m.(G-'). 
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where the function W is continuous, positive and nondecresing on [0, m). 
Show that for all k,  T E IN(a.), k 5 T 

where 

as long as 

4.7.16. Let for all k ,  T E IN(a) such that k 5 T the following inequality 
be satisfied 

where the function W is positive, increasing, convex and submultiplicative 
on (0, CO) and limu+m W(?].) = m. Show that for all k,  T E IN(a), k 5 T 

where the functions cw(k) and P (k )  are positive and ~ ( k )  + P ( k )  = 1 
for all k E IN(a). 

4.7.17. Let the conditions of Theorem 4.3.3 be satisfied and n = 1. 
Show that for all k E W(a )  
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where 

P=a r=a 

4.7.18. Lct for all k E W(a . )  thc following inequality be satisfied 



Diffcrence Inequalities 225 

4.7.20. Let for all k E N ( a )  the following inequality be satisfied 

n I:-l 

A"u(k) 5 p + c c qi(a)(A"u(li))"(Ai.(a))a., 
i=O P=a 

where cy, ai, 0 5 i 5 n are nonnegative constants and the constant 
p > 0. Show that for all k E N(n)  

[ 
I:-l 

/=a 1 '  
1/1-a-/3 

A n , , ( k )  5 p 1 + (1 - a -p) x @(P) 
whcrc i-3 = maxo<i<n, oi such that 1 - (Y - [j < 0, and 

" 

as long as 1 + (1 - cy - 13) 4(e)  > 0. 

4.7.21. Let for all k E N(a)  the following inequality he satisfied 

7' 

Anu, (k)  5 p ( k ) + x r ~ ~ ( k ) x q ~ ( e ) W  
I.-l 

j=1 P=a 

where (i) p(k) is positive and nondecreasing, ( i i )  ;o,(k) 2 1, 1 5 j 5 T, 
(iii) W is c:ontirluous, positive, nondecxeasing and submultiplicative 011 

[0, m). Show that for all k E W(u.)  

whcrc @ ( k )  is the same as @ l ( k )  defined in (4.3.3) with p(k) replaced 
by p(k) n':=, pj ( k )  and q i (k )  = 1, 0 5 i 5 n,; the function G is dcfincd 
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4.7.22. Let thc function f ( k ,  U) possess mixed monotone property. 
Further, let u(k, E )  be the solution of the problem 

up(k + 1) = f*(IC,U(k)) + E ,  uq(k + 1) = f q ( I C , u ( k ) )  - 6 

.*(a) = U,; + E ,  uq(a) = u q  - E  0 

on W(a). Show that for 0 < € 1  < €2 and for all IC E N(a )  

4.7.23. Let the function f ( k ,  U) possess mixed monotonc property. 
Further, k t  v(k) be defined on lN(a) and satisfy the inequalities 

k-l I:-l 

7lp(k)  I ?+,(a.) + C fp(t,v(t)), vq(k )  2 *oq(a,) + C f,(t,v(t)). 
P=a I=a 

Show that for all k E N(a) 

where u(k) is the solution of the problem Au(k) = f(k,u(k)), U(.) = 
V(.). 

4.7.24. Let w,(k), k E IN(0,b) be such that u ( 0 )  = 0. Show that 

h - l  . - b-l 

4.7.26. Let u(k), k E W(0, b )  be such that ~ ( 0 )  = u ( b )  = 0. Show that 

h- 1 b-l  
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where l 2 1, rrt, 2 1 and 

P ( y )  , if b odd 

(F) l + '171. 

e + 711, 

, if b even. 
b+2 

4.7.27. Let ~ ( k ) ,  ~ ( k ) ,  k E W(0, h )  be nondecreasing and 11,(0) = 
~ ( 0 )  = 0. Show that 

k=O k=O 

where G(t)  = Jot ds/f(s), t 2 0 
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4.7.30. Let ~ ( k ) ,  k E N(0, b + n - 1) be such that Aju(0) = 0, (0 5 
) i 5 j 5 n - 1. Further, let the numbers 2 0, 'm, > 0 be such that 
C + m 2 1. Show that 

b- 1 b- 1 

c IAiu,(k)lPIAnu,(k)lm 5 c ~ , - ~  [(t~)("-~)]'c lAnu(k)lP+m,, 
k=O h=O 

where 

where T > 1 and 

b- l  n, n,- 1 

where 

4.7.33. Let in Theorem 4.6.1 condition (4.6.1) is replaced by 

f ( Q ) f " ( Q )  = a.0 + f ' ( . ) f ' ( Q )  + azf'(Q)[f'(Q) - f ' ( 4  
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Show that 

(i) If a2 + 1 > 0, then inequalities (4.6.2) and (4.6.3) hold. 

(ii) If a2 + 1 < 0, thcn inequalities (4.6.2) and (4.6.3) with reverse sign 
hold. 

4.8. Notes 

In the last few years Gronwall type inequalities have become a subject 
in its own right, especially because of the required clcrrlerltary Inathematics 
and their applicability in diverse fields. The Ilotcs of Beesack [IS] ~ ~ 1 1 -  

tairls an excellent account of these irlequalit,ics till 1975, whereas the survey 
paper of Agarwal and Thandapani [S] gives extensive generalizations of sev- 
eral known resultjs and provides a large nurrlbcr of rcfcrcncxs. The discrete 
Gronwall irleqllality seems to have appcarcd first in the work of R4ikeladxe 
[29], and now it serves as a furltianlt:nt,al tool i n  proving cor1vcrgenc.c of the 
t1isc:retc variable methods for ordinary, partial as well as integral equatiorls; 
and it is therefore, available in alrrlost every book 011 r1umeric:al analy- 
sis. Theorem 4.1.1 is due to Pachpatte [Sl], whereas Theorem 4.1.4 whose 
several particular cases have beer1 studied by Pachpatte [33,34], 5 ugwarna .., 

[42,43] and several others, is from Agarwal arid Thandapani [S]. Theorem 
4.1.5 improves a result proved i n  Agarwal and Thandapani [7]. Theorem 
4.1.6 is taken from Agarwal and Thandapani [S]. The several inticpendent 
variables analog of Theorem 4.1.9 is proved in Chapter 13. Theorem 4.1.10 
is essentially due to McKec [as], however its proof is adapted from Brunrlcr 
and Houwen [20]. More general singular discrete inequalitics arc available 
in Beesack [19], Dixon and Mckee [22,23], McKee [28], Popcrlda [40]. The 
first nonlinear discrete Gronwall inequality has appeared in Hull ant1 Lux- 
emburg [24]. Theorem 4.2.1 is taken from Agarwal and Thandapani [S], 
whereas Theorcm 4.2.2 is due to Willett and Wong [45]. Rest of the results 
in Section 4.2 arc from Agarwal and Tharldapani [4] and i n  particular in- 
ch& several results of Pachpatte [S1 541. All the results in Section 4.3 are 
taken from Agarwal and Thandapani [2]. Theorem 4.4.1 is due to Agarwal 
[l]. Multidirnensional analogs of Theorems 4.4.4 and 4.4.5 are provided 
in Chapter 13. Theorem 4.5.1 is adapted from Lee [27], and it gencral- 
izes a result of Wong [46]. An extensivc generalization of Theorem 4.5.1 
is giver1 by Beesack [17]. Theorem 4.5.2 is taken from the work of Lasota 
[as]. Wirtinger type inequalities presented in Section 4.6 are due to Agar- 
wal et. al. [l51 and extend the results of Tang [44], Zhang [48-51]. Opial 
and Wirtinger type inequalities once again appear in Chapters 12 and 13. 
For several other related results refer to Agarwal et. al. [6,8 141, Bainov 
and Sirrlenov [16], Corllan arid Wang [all, Jones [as], Mitrinovic', PeFaric' 
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and Fink [30], Pachpatte [35], Pang and Agarwal [36], Popenda [37~ 391, 
Redheffer and Walter [41], Yang and You [47]. 
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Chapter 5 
Qualitative Properties of 

Solutions of Difference 
Systems 

This chapter provides methods and suitable criterion that describe the 
nature and behavior of solutions of difference systems, without actually 
constructing or approximating t,herrl. Since in contrast with differential 
equations, tllc existence and uniqueness of solutions of discrete initial value 
problems is already glmrantced we shall begin with the continuous dcpen- 
der1c:c 011 the initial conditions ancl para1net.ers. This is followed by the 
asymptotic 1)ehavior of solutions of linear as well as nonlinear diffcrerlce 
systems. In particular, easily vcrifiable sufficient conditions arc obtained 
so that the solutions of perturbed systems remain bounded or eventually 
tent1 to zero, provided the solutions of the unperturbed systems have the 
same property. Next we introduce various types of stability and give sev- 
eral examples to illustrate these notions. Then, for the stability of linear 
systems we provide necessary and sufficient conditions in terms of their 
fundamental matrices. This includes certain concepts which are of corn- 
putatiorlal importance. This is followed by the cornparison between the 
stability and bourldedness of the solutions of linear systems with those 
of perturbed nonlinear systems. Next we develop a nonlinear variation of 
constants forrrlula and give its application which establishes its importance. 
Then, for the linear difference systems we define ordinary and exponential 
dichotomies, provide necessary and sufficient conditions so that these sys- 
tems have dichotomies, and use these dichotomies to study the behavior 
of the solutions of perturbed nonlinear difference systems. Then, we intro- 
duce Lyapunov functions and emphasize their importance i n  the study of 
stability properties of solutions of autonomous as well as non autonomous 
difference systems. This is followed by the stability of solutions of several 
discrete models appearing i n  population dynamics. Next, assuming cer- 
tain stability propertics of the given difference systems, we shall provide 
the construction of the Lyapunov functions. These results known as con- 
verse theorems are then used to study the total stability of the solutions 
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of difference systems. Then, we define the concept of practical stability of 
the solutions, which goes beyond the classical Lyapunov stability theory 
and finds some applications i n  nurrlerical analysis. Finally, we shall intro- 
duce the concept of mutual stability of the solutions of two given difference 
systems, which provides bounds on the solutions in tube like domains. 

In what follows, throughout WC shall assume that the functions appear- 
ing in the nonlinear systems under study are continuous with respect to 
the dependent variable, although in several results this restriction is not 
essential. 

5.1. Dependence on Initial Conditions 
and Parameters 

The initial value problem (1.2.8), (1.3.3) as well as 

(5.1.1) A u ( ~ )  = f(k,u(k)), U(.) = U 
0 

describes a model of a physical problem i n  which oftcn some parameters 
such as lengths, masses, tcmperaturc etc. are involved. The values of thesc 
paramcters can be measured only up to a certain degree of accuracy. Thus, 
in (5.1.1) the initial vector uo as well as the function f(k,u) may t)c 
subject to some errors either by necessity or for convenience. Hence, it 
is important to know how the solution of (5.1.1) changes when uo and 
f(k,u) arc slightly altered. W e  shall answer this question quantitatively 
in the following: 

Theorem 5.1.1. Let the following conditions be satisfied 

(i) f(k,u) isdefinedon W ( a ) x R "  andforall (k,u),  ( k , v )  ~ W ( a ) x l R "  

where X(k )  is a nonnegative function defined on N ( a )  

(ii) g(k,u) is defined on W(a.)  x R" and for all (k,u) E N(a )  x R" 

where ~ ( k )  is a nonnegative function defined on W(a). 

Then, for the solutions u(k) and v(k) of the initial value problems (5.1.1) 
and 

(5.1.4) Av(k) = f(k,v(k))  + g(k,v(k)), V(.) = V 0 
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the following inequality holds 

I:-l 

(5.1.5) ~ ~ u ( k ) - v ( k ) ~ ~  5 l l u o  - - ' / I  + c p ( I ) )  k E N ( a )  
P=a 

Proof. Since the problems (5.1.1) and (5.1.4) are equivalent to 

k;-l 

u(k) = uo + c f(P, U(!)) 
P=a 

I.-1 I:-1 

u(k) - v(k) = uo - v o  + C(f ( l ,u (P) )  - f(P,v(P))) - Cg(L,v(O)) 
P=a B=a 

Thns, from (5.1.2) and (5.1.3) it, follows that 

( 
k-l 1:- 1 

P=a ) P=a 

llU(k) - v(k)// I llU0 - V0ll + c Cl([) + c X(P)IlU(P) - v(!)II 

Now an application of Corollary 4.1.3 imrnediatcly gives (5.1.5). I 

Hereafter, to emphasize the dependence of the initial point ( a ,  U') we 
shall denote the solutions of the initial value problems (1.2.8), (1.3.3), and 
(5.1.1) as u(k, a ,uo ) .  111 our next result we shall show that u(k,a,uO) is 
differentiable with respect to U'. 

Theorem 5.1.2. Let for all (k,u) E lN(a.) x R" the function f (k,u)  be 
defined and the partial derivative i)f/i)u exist. Further, let the solution 
u(k) = u(k ,a ,uO)  of the initial valuc problem (1.2.8), (1.3.3) exist on 
IN(a), and let J ( k , a , u o )  = i ) f (k ,u(k ,a ,uO))/h Then, the matrix 
V ( k ,  a ,  U') = d u ( k ,  a ,  uO)/duO exists and is the solution of the initial value 
problem 

(5.1.6) V ( k  + 1,a,u0) = J ( ~ , ~ , u O ) V ( ~ , U , U O ) ,  V ( U , ~ , U ' )  = 1. 

Proof. Since u(k,o.,uo) is the solution of (1.2.8), (1.3.3) we have 

u(k+ 1,a,u0) = f(k,u(k,a,uO)),  u(a ,a , ,u  0 = u 0 . 
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Thus, differentiation with respect to uo gives 

du(k + 1) - iJf(k,u(k)) au(k) all(.) 
dU0 dU auo ' duo 

- " = 1. 

The result (5.1.6) now follows from the definitions of J ( k )  and I.'(k). I 

Theorem 5.1.3. Let for all (k ,u)  E N(a) x R" the function f(k,u) 
be defined, and for all ( k , ~ ) ,  (k,v)  E N(a) x R" 

(5.1.7) I l f ( k  U) - f ( k ,  v)ll I g ( k  I b  - VII), 

where g ( k ,  r) is defined on N ( a )  x R+ and nondercasing in T for any 
fixed k E N ( a ) .  Further, let the solutions u(k,a,ui), i = 1,2 of (5.1.1) 
exist on lN(a) .  Then, for all k E N(a) 

(5.1.8) IlU(k, a, ul )  - U(k,  a, u2)ll I .(k, a, TO), 

where r ( k )  = ~ ( k ,  a, r o )  is the solution of thc initial vallle problem 

(5.1.9) A r ( k )  = g ( k , r ( k ) ) ,  .(a) To ( 2  //U1 - u211). 

Proof. Since 

t=a  

and .(a) 2 ~ ( a ) ,  the inequality (5.1.8) follows by induction. I 

Remark 5.1.1. If ~ ( k ,  a, 0) = 0 for all k E N ( a ) ,  and r ( k ,  a, T O )  4 0 
as TO -+ 0, then from (5.1.8) it is clear that the solution u(k, a, U') of 
(5.1.1) continuously depends on U'. 

Now we shall consider the following initial value problem 

(5.1.10) Au(k)  = f(k,u(k),p), U(.) = U' 
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where p E R" is a parameter such that IIp - poll 5 S (> 0) ancl po 
is a fixed vector in R". For a given p such that IIp - p'// L S we 
shall assume that the solution u(k,p) = u(k ,a ,uO,p )  of (5.1.10) exists 
on IN(a). 

Theorem 5.1.4. Let for a.11 k E IN(a), U E R", p E R" such that I/p- 
poll 5 S the function f(k, U, p) is defined, and the following inequalities 
hold 

llf(k, U,P) - f (k ,  v, P)II 5 X(k)llu - VI1 

I l f ( ~ , U , P 1 )  - f(k,U,P2)/l 5 P(k)llPl - P2/L 

and 

where X(k) and p(k)  are nonnegative functions defined on N(a ) .  Then, 
for the solutions u(k, a ,  u l , p l )  and u(k, a ,  u2, p') of (5.1.10) the following 
inequality holds 

I lu(k,a ,ul ,pl )  - U ( k , V 2 , P 2 ) / I  

( k- l  P=a ) /=a 

!,-l 

5 llul - u211 + //p1 - p211 c , I ( [ )  (1 + X([)), k E IN (a ) .  

Proof.  The proof is similar to that of Theorem 5.1.1. I 

Theorem 5.1.5. Let for all k E IN(a), U E R", p E R- such that 
llp-poll 5 6 the function f(k, U, p) be defined and the partial derivatives 
af/3u and Bf/ap exist. Further, let the solution u(k, p) = u(k, a ,  uo, p) 
of (5.1.10) exist on IN(a), and let J ( k , a , u o , p )  = Bf(k,u(k,p) ,p)/au 
and K(k,a,u.' ,p) = af (k ,u(k ,p) ,p)/ap.  Then, the matrix V(k ,a ,uo ,p )  
= du(k, U ,  U', p)/& exists and is the solution of the initial value problem 

AV(k,a,uO,p) = J - ( k , a ,  u0,p)V(k,a,uO,p) + K(k ,a ,u ' ,p )  

V(a ,a ,uo,p)  = 0. 

Proof.  The proof is similar to that of Theorem 5.1.2. I 

Remark 5.1.2. If p E R" is such that IIp - poll is sufficiently small, 
then we have a first order upprozl;mution of the solution u(k, p) of (5.1.10) 
which is given by 

U(k,P)  = U(kPO) + ~ ( k , a , u O , p O ) ( p  - PO). 

As an example, for the problem Av,(k) = - Xu(k) ,  ~ ( 0 )  = 1, 0 5 X 5 2 
it follows that u ( k ,  X) = (1 - X)", u ( k , O )  = 1, w(k, 0, 1,O)  = - k ,  and 
hence for srrlall X > 0, u(k, X) 1 - kX.  
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Theorem 5.1.6. Let for all k E IN(a, b -  l), U E R", p E R" such that 
I/p -poll 5 6 the function f ( k ,  u, p) be dcfincd and limp+po f (k ,  u, p) = 
f ( k ,  U, p') uniformly i n  k and U. Then, for a given t > 0 there exists 
a v ( € )  5 6 such that I/p - poll 5 7 implies 

IIu(k,a,,u',p) - u(k, o.,uo,po)ll 5 F ,  k E N(a, b )  

where u(k,a,u',p) and u(k,a,uO,pO) are the solutions of (5.1.10). 

Proof. The proof is clemcntary. I 

5.2. Asymptotic Behavior of Linear Systems 

For a given difference system one of the pioneer problems is thc study 
of ultimate behavior of its solutions. In particular, for linear syskrns we 
shall provide sufficient conditions on thc known quantitics so that all their 
solutions remain bounded or tend to zero as k 4 cc. Thus, from the prac- 
tical point of vicw the rcsults WC shall tliscllss arc vcry important because 
an explicit form of the solutions is not rlcctlctl. 

WC begirl with thc diffcrcncc system (2.8.1) 011 W. Since every solution 
of tjhis system is of the form Akc, all sollltions of (2.8.1) arc bounded on 
IN if and only if supI:Ew IIA'ljl 5 c < 00. Further, all solutions of (2.8.1) 
tcntl to zero as k + cc if and only if /IAkll + 0 as k + DC). 

Definition 5.2.1. Thc cigcnvalue X; of the matrix A is said to be 
semisimple if a,;(A)q,i(A)(A - X1Z) = 0, where ni(A) and ql(A) arc 
the same as i n  Lcrrlma 2.8.2. 

As an cxample, for thc matrix A = Z thc multiplc eigenvalue X = 1 
is scmisirrlple. 

From the representation (2.8.11) of Ak it is clcar that supkEm IlA'll 5 
c if and only if the eigenvalucs of A have modulus lcss than or equal to 
onc, and those of modulus one arc semisimple. Further, IIA"Il 4 0 as 
k + m if and only if the eigenvalues of the matrix A are inside the 
unit disc. For the constant matriccs of t,hc form (1.2.13), i.c. arising from 
the difference equation (2.12.4) it is known that the semisimple eigenvalues 
are only simple. Thus, in particular all solutions of (2.12.4) are bounded 
011 N if and only if the roots of the cl1arac:tcristic equation (2.16.12) have 
modulus lcss than or equal to one, and thosc of modulus onc are simplc. 

The drawback in the above conclusions is that we must know i n  advance 
all the eigenvalues of the matrix A .  However, if n is large then solving 
the characteristic equation p(X) = 0 of A becomes quite complicated. 
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In such a situation, we assume that X is a complex variable and use the 
transformation X = (1 + z ) / ( l  - z), which maps the circle 1x1 = 1 into 
the imaginary axis !Re z = 0; the interior of the circle 1x1 < 1 into the 
half plane Re z < 0; and the point X = 1 into z = 0. Thus, the 
eigenvalues of A have modulus less than one if and only if the roots of the 
polynomial 

have negative real parts. In (5.2.1) the constants bi, 0 5 i 5 n are real 
and we may assume that bo > 0. For this, the following result is well 
known. 

Theorem 5.2.1. (Hurwitz's Theorcm). A ncccssary and sufficicnt condi- 
tion for the negativity of the rcal parts of all the roots of the polynomial 
(5.2.1) is the positivity of all the principal minors of the H w w i t z  m,utrix 

- 
bl  bo 0 0 ... 0 
b3 62 h1 bo . . . 0 

(5.2.2) ' H ,  = h5 h4 b3 b2 ' . . 0 .  
. . . . . . . . . . . . . . . . . . 

0 0 0 0 ... b, - - 

It can be shown that this condition implies bi > 0, 0 5 i 5 n. Thus, 
positivity of the coefficients in (5.2.1) is a necessary condition but not a 
sufficient condition for the real parts of all the roots of (5.2.1) to be negative. 
For n = 2,3,4 the nccessary and sufficient condition reduces to 

n = 2 : bo > 0 ,  bl > 0,  bz > 0. 
n = 3 : bo > 0,  bl > 0,  b2 > 0,  b3 > 0,  blb2 - b3bo > 0. 
n = 4 : bo > 0,  bl > 0,  b2 > 0 ,  b3 > 0,  b4 > 0,  

blb2b3 -bob: - b4bl > 0. 

0 1  
Example  5.2.1. For the matrix A = [ 0 0 ] the character- 

isticequation is X3+X2+X+0.2 = 0. Thesubstitution X = ( l + z ) / ( l - z )  
transforms this equation to z3+2z2+3z+4 = 0, for which blbz-bsbo > 0. 
Thercfore, all solutions of the system (2.8.1) with this A tend to zero as 
k "+ m. 

-0.2 -1 -1 

Now we shall consider the difference system 

(5.2.3) ~ ( k  + 1) = (A+ B(k ) )v (k ) ,  k E IN 
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where B ( k )  is an n x R matrix with elernerlts b i j ( k ) ,  1 5 i , j  5 n. 
System (5.2.3) can be regarded as a perturbed system of (2.8.1). The 
following result provides sufficierlt conditions on the matrix B (k )  so that 
all solutions of (5.2.3) remain bounded if all solutions of (2.8.1) are bounded. 

Theorem 5.2.2. Let all solutions of the difference system (2.8.1) be 
bounded on W. Then, all solutions of (5.2.3) are bounded on W provided 

(5.2.4) 
P=O 

Proof. In (2.6.3) let the nonhomogeneous term b(k) be B (k )v (k ) ,  
that each solution v(k) such that v(0) = vo of (5.2.3) also satisfies 

k 

(5.2.5) v(k) = A":' + c Ak"'B(t - l )v(P - 1). 
P=l  

Now since all solutions of (2.8.1) arc bourltied, there cxist,s a constant 
sllc.11 that, supI:Em IIAkII = c. Hence, for all k E W we have 

L:- 1 

llv(k)ll 5 CO + c:c l l ~ ~ 4 l l l l ~ ~ ~ ~ l l ~  
F=O 

where CO = cJJvo)) .  

Applying Corollary 4.1.2 to the above inequality, we obtain 

so 

c 

The result now follows from (5.2.4). 1 

The next result gives sufficient conditions on the matrix B ( k )  so that 
all solutions of (5.2.3) tend to zero as k + 00 provided all solutions of 
(2.8.1) tend to zero as k + 00. 

Theorem 5.2.3. Let all solutions of the differcrlce system (2.8.1) tend to 
zero as k + 00. Then, all solutions of (5.2.3) tend to zero as k + 00 
provided 

(5.2.6) I lB(k)( (  --t 0 as k 4 CO. 

Proof. Since all solutions of (2.8.1) tend to zero as k 4 CO, all the 
eigenvalues of A lie i n  the unit disc. Thus, there exist constants c and 
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0 < 6 < 1 such that (IA”I/ 5 CS‘ for all k E N. Further, because of 
(5.2.6), for a given constant c1 > 0 there exists a sufficiently large kl E W 
such that IIB(k)ll 5 c1 for all k E N(k1 ) .  Hence, for all k E W(kl) 
equation (5.2.5) gives 

I:1 k 

llv(k)II 5 cS”’Iv01~+Ccs‘.-“~B(17-1)III~V(e-l)~I+ C C6~-%~\\V(17-1)~~, 
e=1 t=k1+1 

which can be written as 

k-l 

(5.2.7) w ( k )  L CO -t c2 C W([), 

f=k1 

whcrc 

Now i n  view of Corollary 4.1.2 from (5.2.7), we obtain 

and hence 

(5.2.8) 11v(k)11 5 Co6k(1 + c p 1  5 CO [6(1 + C#kl  . 

Finally, because of (5.2.6) WC can always choose c1 < (1 - S)/C so that 
6(l+c2) = 6(l+cc1/6) < 1, and hencc the result follows from (5.2.8). B 

Conditions (5.2.4) and (5.2.6) are restricted to smallness property on 
B(k)  as k 00. Obviously, condition (5.2.4) is stronger than (5.2.6) 
and hence in Theorem 5.2.3 condition (5.2.6) can be replaced by (5.2.4), 
however in Theorem 5.2.2 condition (5.2.4) cannot be replaced by (5.2.6). 
For this, we have 

Example 5.2.2. Consider the difference systems 

(5.2.9) 
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From Example 2.8.1 we know that a fundamental system of solutions 

of (5.2.9) is and hence all solutions 

of (5.2.9) are bounded. However, a fundamental system of solutions of 

(5.2.10) is 

nontrivial solutions of (5.2.10) are unbounded as k --f cm. Further, we note 
that IlB(k)/l --f 0 as k "-f c m ,  while C,"=, IlB(e)II = C,"=,2/(e+l) = c m .  

cos(k7r/2) ] , [ sin(kn/2) ] 
- sin(IC7~/2) c:os(kn/2) 

( k  + 1) cos(lcn/2) (' + 
- ( k  + 2) sin(ICn/2) ( k  + 2) cos(kn/2) 

Next we shall consider the difference system 

(5.2.11) v(k + 1) = Av(k) + b ( k ) ,  k E IN. 

Theorem 5.2.4. Suppose that the function b ( k )  is such that 

for all large k E I N ,  where c3 and 7 are nonnegative constants. Then, 
every solution v(k) of the differenc:e systcrn (5.2.11) satisfies 

(5.2.13) Ilv(k)II 5 c4vL' 

for all k E W, where c4 and v are nonnegative cxmstants. 

Proof. From the given hypothesis on b ( k )  there exists a Icl E N such 
that (5.2.12) holds for all IC 2 ICl. Therefore, for every solution v(k) such 
that v(0) = v' of (5.2.11), inequality (5.2.12) in (2.6.3) implies that 

where we have assumed that ((A"(( 5 c6!, 7 # 61, and v = max{q,61}, 
and 

For the case 7 = 61 the above proof needs an obvious modification. I 

As a consequence of (5.2.13) we find that all solutions of the system 
(5.2.11) tend to zero as IC 4 cm provided v < 1. 
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Now we shall stlldy the behavior of solutions of the difference system 
(1.2.12) 011 W as IC 4 c m .  W e  shall prove two results which involve the 
eigenvalues of the matrix A T ( k ) d ( k ) ,  which obviously are functions of IC. 

Theorem 5.2.5. If the largest eigenvalue M ( k )  of the matrix AT(IC)A(k) 
is such that supkEw n!=, M ( [ )  < 00, then all solutions of (1.2.12) are 

bounded. Further, if R:=, M ( ! )  4 0 as IC -+ 00 then all solutions of 
(1.2.12) tend to zero. 

Proof. Let u(k) b e  a solution of ( 1 . 2 ~ 2 ) ~  then Iu(k)12 = uT(IC)u(k). 
Thus, it follows that 

lU(k + 1)12 = + q U ( k  + 1) = U T ( ~ ) ~ T ( ~ ) ~ ( k ) U ( k ) .  

Now, since the matrix AT(k)d(IC) is symmetric and M ( k )  is its largest 
eigenvalue, it is clear that 

uT(IC) ( A T ( k ) A ( k ) )  u(k) 5 M ( k ) I ~ ( k ) 1 ~ .  

Thus, for all k E W it follows that 

0 5 lu(k+ 1)12 5 M(k)Iu(k)12 

and hence 

IU(k)l2 L [+)) IU(O)l2 

from which the conclusions are obvious. I 

Theorem 5.2.6. If the smallest eigenvalue m,(IC) of the matrix dT(k)A(IC) 
is such that limsupk,a7 nr=,,m(k) = 00, then all solutions of (1.2.12) 
are unbounded. 

k 

Proof. As i n  the proof of Theorem 5.2.5 for all IC E W it is easily seen 
that 

lu(k + 1)12 2 .m(k)lU(k)l2,  
which on using the fact that m ( k )  > 0 for all k E IN gives 

from which thc conclusion is immediate. I 

Example 5.2.3. Consider the difference system 

0 1 
(5.2.14) 
" 

k + l  1 + k 2  
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Since for this system 

1 1 

AT(k )A (k )  = (1 + IC)2 (1 + k ) ( l  + P )  

(1 + k ) ( l  + k2)  (1 + k2)2 

I 1 
l +  

1 1 A: 
it follows that M ( k )  1 + - 

(1 + k ) 2  + (1 + k2)2 '  Thus, M ( [ )  < 
l=O 

< c m ,  and hencc all solutions of (5.2.14) 

are boundcd. 
C=O 

Example 5.2.4. For the difference system 

it is easy to find M ( k )  = - 
as k + cm all solutions of (5.2.15) tend to zero. 

Example 5.2.5. Consider the difference system 

l l 

(1 + k)2 + (1 + k 2 ) 2 '  
Since nbo ~ ( t )  + 0, 

,- 

Since the system 

it follows that for all k ,  M ( k )  = 4 and m ( k )  = 1/16 therefore both the 
above theorems cannot be applied. However, for this system the principal 
fundamental matrix is 

Thus, all solutions of (5.2.16) tend to cc as k "-f m. It is also interesting to 
note that the eigenvalues of this matrix A(k) are f 2 - l I 2 ,  which lie inside 
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the unit disc. Thus, for the boundedness of the solutions of (1.2.12) we need 
stronger conditions compared to those needed for the system (2.8.1). 

Example 5.2.6. For the difference system 

the principal fundamental matrix U ( k ,  0) = 1 1 1 . Hence, all 

solutions of (5.2.17) are bounded. However, 
(k: + 113 

Definition 5.2.2 Let V ( k )  be a fundamental matrix of (1.2.12). The 
system (1.2.12) is said to be un.ijo~m,ly boun,ded if there exists a constant 
c suc:h that 

Obviously, if (5.2.18) holds then every solution of (1.2.12) is bounded. 
However, from Example 5.2.6 the converse need not hold. But for the 
system (2.8.1) condition (5.2.18) is the same as supo leskE~ IIAk'-'ll = 
supkEw l(AkII 5 c, and hence the boundedness of the solutions of (2.8.1) 
implies (5.2.18). 

With respect to the difference system (1.2.12) we shall consider the 
perturbed system 

(5.2.19) ~ ( k  + 1) = (A(k) + B (k ) ) v (k ) ,  k E IN 

where B(k)  is an n x n matrix with elements bi j ( lc ) ,  1 5 i, j 5 n,. 

Theorem 5.2.7. Let the system (1.2.12) be uniformly bounded, and the 
condition (5.2.4) be satisfied. Then, all solutions of (5.2.19) are bounded. 
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Proof. Let V ( k )  be a fundamental matrix of the difference system 
(1.2.12). I n  (2.5.3) let the nonhomogeneous term be B(k )v (k )  so that 
each solution v(k) such that v(0) = vo of (5.2.19) also satisfies 

k 

(5.2.20) ~ ( k )  = V(k)V"(0)vo + C V(k)V-'(!)B(P - l)v(! - 1). 
P= 1 

Thus, it follows that 

L.- 1 

llv(k.)Il L ~ l l V O 1 l  +(.c I l ~ ( ~ ) l l l l v ( ~ ) l l .  
P=O 

The rest of the proof is similar to that of Theorem 5.2.2. I 

Example 5.2.7. Consider the difference system 

(5.2.21) u (k  + 1) = 
- ( 

0 

i 1 

( k  + 2)1/4 
0 

1 for which V ( k )  = 
0 

( k  + l ) ( k  + 2) 
matrix. Thus, all solutions of (5.2.21) tend to 0 

0 
v(k)v-'(e) = (e  + l)([ + 2) 

( k  + l ) ( k  + 2) 
uniformly bounded. 

1 
1 as 

the 

is a f11 

k +  

sys t cm 

.ndarncntal 

CO. Since 

(5.2.21) is 

For the difference system (5.2.21) we consider the perturbed system 

(5.2.22) v(k+l )  = 
k + l  
k + 3  
- 

l 

which can be solved to obtain 
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In system (5.2.22), clearly IlB(k)(i + 0 as k + m, however its solution 

(5.2.23) tends to 2-3/4 v(0) # 0 (unless u l ( 0 )  = 0) as k + m. 

Thus, for the systems (1.2.12) and (5.2.19) Theorem 5.2.3 does not hold. 

Theorem 5.2.8. Let all solutions of (1.2.12) tend to zero as k + m. 
Then, all solutions of (5.2.19) tend to zero as k -+ m provided 

[ O I  

(5.2.24) 

where V ( k )  is a fundamental matrix of (1.2.12). 

Proof. For each solution v (k )  such that v(0) = vo of (5.2.19) repre- 
sentation (5.2.20) implies that 

k-1 

llv(k)II I IlV(k)II [.. + c IIV-l(p+ 1)B(e)llllv~ll)ll] I 

P=O 

whcrc (:a = (IV-l(0)v0//. Now since all solutions of (1.2.12) tend to zero 
as k + m, there exists a constant c > 0 suc:h that supL.EN IIV(k)Il 5 c. 

Thcrcfore, it follows that 

and hence 

Now the conclusion follows from (5.2.24) and the fact that IlV(k)ll 4 0 as 
k + m .  B 

5.3. Asymptotic Behavior of Nonlinear Systems 

With respect to the difference system (2.8.1), now we shall consider the 
perturbed system 
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(5.3.1) v(k + 1) = Av(k) + g(k,v(k)), k E IN 

where the function g (k ,  v)  is defined on IN X R" 

Theorem 5.3.1. Let for all (k,v)  E W X R" the function g(k,v) 
satisfy 

where h,(k) is a nonnegative function defined on IN. Then, 

(i) all solutions of (5.3.1) are bounded provided all solutions of (2.8.1) are 
bounded and c,"=, h(t )  < M 

(ii) all solutions of (5.3.1) tend to zero as k "+ M provided all solutions 
of (2.8.1) tend to zero and h,(k) + 0 as k --f M. 

Proof. In (2.6.3) let the nonhorrlogeneous term b(k)  hc g(k,v(k)), so 

that, each solution v(k) such that v(0) = vo of (5.3.1) also satisfies 

I: 

(5.3.3) v(k) = Akvo + c Ak"'g(t - 1, ~ ( t  - 1)) 
@=l 

Thus, from (5.3.2) it follows that 

The rest of the proof of part (i) ((ii)) is the same as that of Theorcm 5.2.2 
(Theorem 5.2.3). I 

For the difference system (1.2.12) we shall consider the perturbed system 

(5.3.4) ~ ( k  + 1) = A(k)v(k) + g(k,v(k)), k E N 

where the function g(k,  v )  is defined on IN X R". 

Theorem 5.3.2. Let the function g(k,  v)  be as in Theorem 5.3.1. Then, 

(i) all solutions of (5.3.4) are bounded provided all solutions of (1.2.12) 
are uniforrnly bounded and C,"=, h ( [ )  < 00 
(ii) all solutions of (5.3.4) tend to zero as k "+ M provided all solutions 
of (1.2.12) tend to zero and C,"=, jjV"(P + l ) l lh(t )  < m, where V ( k )  is 

a fundamental matrix of (1.2.12). 
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Proof.  Let V(k) be a fundamental matrix of the difference system 
(1.2.12). In (2.5.3) let the nonhomogeneous term be g(k,v(k))  so that 
each solution v ( k )  such that v(0) = vo  of (5.3.4) also satisfies 

k 

(5.3.5) v(k) = v(k)v"(o)vO + c V(k )v- l ( t ) g ( l -  l , v ( l -  1)). 
P= 1 

The rest of the proof of part (i) ((ii)) is the same as that of Theorem 5.2.7 
(Theorern 5.2.8). B 

Theorem 5.3.3. Let for all ( k ,  U) E IN X R" the furlction f(k, U) be 
defined and 

(5.3.6) Ilf(k,u)ll I g(k,  IIUII), 

where g(k, r) is defined for all (k, r) E IN x R.+ arld monotone non- 
decreasing in  T for any fixed k E W. Further, let for r o  2 0 the 
solution r ( k )  = r (k ,O,rO)  of (5.1.9) be t)oundcd 011 W. Then, any solu- 
tion u(k) = u(k,O,uo) of (5.1.1) such that //uo/ (  I r o  is bounded 011 IN 
and has a limit as k + CO. 

Proof. For l l u o i /  5 r o  it is easy to deduce that I/u(k, 0, U') 11 5 r(k, 0, T O ) .  
Since, by assumption, r ( k ,  0, r o )  is bounded on W it follows that for each 
lluo/l 5 r o  the solution u(k,O,uo) of (5.1.1) is bounded on N. Further, 
for any 0 < kl < k E N and lluo 1) I r o ,  we have 

k- l  k-1 

Ilu(k) - u(k1)Il I c Ilf(e,U(t))ll I c dl, IIU(e)ll) 
P 4 : 1  e = k ,  

I:- 1 

I c g ( ! , r ( l ) )  = r(k) - r(k1). 

P=kl 

Now since g ( k , r )  is nonnegative, the solution r (k ,O, ro )  of (5.1.9) is 
nondecreasing in  k, and hence the boundedness of this solution implies 
that r ( k , 0 , r o )  tends to a finite limit as k + m. Thus, for any E > 0 we 
can choose kl > 0 sufficiently large so that 0 5 r ( k )  - r(k1) I 6 for all 
k E N(k1). But, this implies that Ilu(k) - u(k1)11 5 E for all k E N(k1) ,  
which proves that u(k) tends to a limit as k "+ m. B 

Remark 5.3.1. Let linlk+w u(k, 0, U') = uw arld limk+m r ( k ,  0, r o )  = 
r w .  Since uw = uo + C E o f ( l , u ( l ) ) ,  it follows that lluwII 2 lluoll - 
~ ~ o g ( l , r ( l ) )  = lluo\\ - ro3 + T O .  Thus, if 0 5 rm - r o  < lluoll 5 TO, 
then uw # 0. 
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Corollary 5.3.4. Let U(k ,O)  be the principal furldamental matrix of 
the difference system (l.2.12), and the function g(k,v) be defined for all 
(k ,v )  E WxR", andsatisfy theinequality ~~U-'(k+l,0)g(k,U(k,O)w)~J 5 
h , ( k ) ~ ~ w ~ ~ ,  where h,(k) is a nonnegative function defined on IN such that c,"=, h,(!) < CO. Then, for any solution v(k) = v(k, 0, v') of (5.3.4) the 
function U - l ( k ,  O)v(k) has a finite limit as k --f m. 

Proof. The transformation U(k,O)w(k) = v(k) reduces (5.3.4) to 
Aw(k) = W 1 ( k +  l,O)g(k,zA(k,O)w(k)). Now the resnlt, is a direct conse- 
quence of Theorem 5.3.3. I 

Remark 5.3.2. Let limA:+m w(k) = linlk-+w U-'(k,O)v(k) = c, arid 
u(k) = U ( k , O ) c  be the solution of (1.2.12) satisfying u(0) = c. Then, 
since v(k) - u(k) = U(k,O)(w(k) - c), if all solutions of (1.2.12) are 
bounded t,hcn llv(k) - u(k)jj 5 IlzA(k,O)/lllw(k) - c/I + 0 as k 4 CO. 
Thus, for each solution v(k) of (5.3.4) there cxists a solution of (1.2.12) 
s ~ ~ h  that liIrlA.-m(v(k) - u(k)) = 0. 

5.4. Concepts of Stability 

Let the solution u(k) = u(k,o,,u') of (1.23) exist for all k E IN(a). 
For this solution we shall define various concepts of stability and through 
examplcs show that these concepts are not, i n  gcrlcral, equivalent. 

Definition 5.4.1. The solution u(k) is said to be 

(i) Stable if, for each 6 > 0, there exists a 6 = S ( F , ~ )  such that, for 
any solution U(k) = u(k,o.,$) of (l.2.8), the inequality l[$ - uo l l  < S 
implies Ilii(k) - u(k)II < F for all k E IN(a). 

(ii) h s t a b l e  if it is not stable. 

(iii) Attractive if there exists a S = 6 ( a )  such that, for any solution 
u(k) = u(lc,a,$) of (1.2.8), the inequality I l i ?  - < S implies 
IlU(k) - u(k)II --f 0 as k + CO. 

(iv) Asymptot ical ly Stable if it is stable and attractive. 

(v) lJn,ifoor.rnly Stable if it is stable and S is irldeperldent of a ,  or 

cquivalerltly, if for each t > 0, there exists a S = S(€) > 0 such that, for 
any solution E(k)  = u ( k , a , $ )  of (1.2.8), the inequalities a 5 k1 E N(a )  
arid IjTi(k1) - u(k1)ll < S imply IlU(k) - u(k)ll < E for all k E N(k1) .  

(vi) Vnifoor.m,ly Attractive if it is attractive and S is independent of a. 

(vii) Un.ifor.m.ly Asym,ptotically Stable if it is ~rlifornlly stable and uni- 
formly attractive. 

- 
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(viii) Globally Attractive if it is attractive for all $ E R". 
(ix) Globally Asymptotically Stable if it is stable and globally attractive. 

(x) Str.on,gl?~ Stable if, for each E > 0, there exists a S = h ( 6 )  > 0 
such that, for any solution E ( k )  = u ( k , a , $ )  of (1.2.8), thc inequalities 
a 5 kl  E N(ai) and / l i i (k l )  - u(k1)11 < 6 imply llii(k) - u(k)II < F for all 
k E N(0.). 

(xi) Expon,en,t?;alk] Asymptotically Stable if there exists a X > 0 and, 
for any given E > 0, there exists a 6 = S(€) > 0 s11c:h that, for any 
solution U(k) = u(k,a,$)  of (1.2.8), thc inequalities Q 5 kl E W(n) 
and Ilii(k1) - u(k1)ll < 6 imply Ilii(k) - u(k)II < fexp(-X(k - k l ) )  for 
all k E W( k-l) . 

(xii) s p  Stable if it is stable and for some p > 0, C:"=, IIii(t)-u(l)ll" < c a .  

R e m a r k  5.4.1. Strong stability implies Ilniforrrl stability which, irl turn, 
leads to stability; and cxporlcntial asymptotic stability irnplics llniforrrl 
asynlptot,ic stability which, i n  t1lrn, gives asymptotic stability. However, 
the converse of these statements is, in general, not true. 

Example  5.4.1. The solution ~ ( k )  = e-k of the difference equation 

is stable but not uniformly stable, while u ( k  + 1) = e - 'u , (k) ,  'I/. 2 0 
e U ( k ) ,  11 < 0 

the trivial soiution is unstable. 

Example  5.4.2. The trivial ( in fact any) solution of u ( k  + 1) = u,(k) is 
strongly, but not asymptotically stable. 

Example  5.4.3. For both the systems (5.2.10) and (5.2.16) the trivial 
solution is unstable. 

Example  5.4.4. The trivial solution of u ( k  + 1) = e-lv,(k) is cxponen- 
tially asymptotically stable. 

Example  5.4.5. The trivial solution of v,(k + 1) = .'(/c) is uniformly 
asymptotically stable. For this, we note that for all a E W and c E R 
the solution of this difference equation is E(k) = ~ ( k ,  a ,  c )  = c 2 k - a .  Thus, 

for kl 2 a ,  IE(k1) - u(k1)I  = I C  < 6 = 1, i.e. IcI < 1 implies 
p - a  

and hence the trivial solution is uniformly attractive. Further, lE(k l )  - 
u(k1)l = IcI < S = min(1,E) implies IZ(k) - u(k) l  = I C  2 k 1 - a  2"L"1 --2k1-" 

X 
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lc12"1-" < E for all k 2 k.1,  and hence the trivial solution is uniformly 
stable. It is also clear that the trivial solution of this equation is not globally 
attractive. 

Example 5.4.6. For all a E IN and c E IR the solution E ( k )  = 
u(k, a ,  c) of the difference equation u ( k  + 1) = ecos ' u , ( k )  is 'iL(k) = 

c cxp . Thus, the trivial solution of this dif- 

ference equation is uniformly stable but not asymptotically stable. 

Example 5.4.7. For all a E IN(1) and (I E R the solution E ( k )  = 
u ( k , a , c )  of the difference equation u,(k + 1) = e-l/"u.(k) is 'iL(k) = 

sin(k - 1/2) - sin(a - 1/2) ( 2 sin(l/2) 1 
/ k-l-\ 

cexp [ - c i,) . Thus, the trivial solution of this difference equation is 
P=" 

asymptotically stable. However, it is not uniformly attractive. For this, 
". 

it suffices to note that u,(2k + 1 , k  + 1,c) = ccxp (- 5 :) , and 
1=1:+1 

21: . 

Hence, the trivial solution is not uniformly asyrnpt,otically stable. 

Example 5.4.8. For all a. E W(1) and c E R the solution U ( k )  = 

u(k, a ,  c )  of the difference equation u.(k+ 1) = - k u ( k )  is ~ ( k )  = ca/k .  
k + l  

Thus, the trivial solution of this difference equation is asymptotically stablc. 
However, since C,"=, Icla/l = m, it is not s1 "stable. 

Remark 5.4.2. Since C,"=, ~ ~ i i ( ! ) - u ( l ) ~ ~ ~  < 00 implies IlZ(k)-u(k)ll "+ 
0 as k + c m ,  s,-stability implies asymptotic stability. However, from 
Example 5.4.8 the converse is not necessarily true. 

Remark 5.4.3. Exponential asymptotic stability implies s,-stability. 
For this, we note that /li i (k) - u(k)II < Eexp(-X(k - a ) ) ,  a E IN with 

X > O gives C,"=, I l ~ ( l )  - u(C)II, < EP 

Remark 5.4.4. Let the difference system (1.2.8) be autonomous, i.e. of 
the form 

1 
1 - e"XP 

< c m .  

(5.4.1) u(k+ 1) = f(u(k)) 

and f(0) = 0, so that it admits the trivial solution ~ ( k )  = 0, k E 
IN(a). For the trivial solution of (5.4.1) the uniform stability and stability 
concepts coincide. For this, if u(k) = u(k, a ,  U') is a solution of (5.4.1) 
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then U(k) = u(k - a,O,u') is also a solution of (5.4.1). Further, since 
U(.) = U(a) it follows that u(k) = U(k) for all k E N(a). Thus, for 
(5.4.1) we can always take a = 0, and if the trivial solution is stable for 
a = 0, then it is stable for all a ,  which means that stability is uniform. 
However, for the nontrivial solutions of (5.4.1) Example 5.4.1 shows that 
stability does not imply uniform stability. 

Example 5.4.9. Every solution of the difference equation u ( k  + 1) = 
u,(k) + 1 is of the form u(k) = U,(.) + k - a ,  and hence it is stable but 
not bounded. 

has a two parameter family of solutions 

where cl and c2 are arbitrary constants. The trivial solution u . l (k)  = 
0, 11,2(k) 0 of this system is stable but all its other solutions are unstable. 
However, every solution of this system is bounded. 

From the above two examples it is clear that the concepts of stability 
and boundedness of solutions are, in general, independent of each other. 
However, in the case of the homogeneous linear difference system (1.2.12) 
these concepts are equivalent. 

Theorem 5.4.1. All solutions of the difference system (1.2.12) are stable 
if and only if they are bounded on lN(a).  

Proof. If all solutions of (1.2.12) are bounded, then there exists a positive 
constant c such that IlU(k,a)ll 5 c for all k E lN(a),  where U ( k , a )  is 
the principal fundamental matrix of (1.2.12). If E > 0, then I l i i ' '  - U'/( < 
€/c = S > 0 implies 

and hence all solutions of (1.2.12) are stable. 

Conversely, if all solutions of (1.2.12) are stable, then in particular, the 
trivial solution, i.e. u(k ,a . ,O)  0 is stable. Therefore, given any F > 0, 
there exists a S > 0 such that l l u o l l  < S implies that //u(k,a,u')ll < t 
for all k E W(a). However, since u(k,a,u')  = U ( k , a ) u o ,  we find that 
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S 
2 

l lu(k,a,uo)l l  = IIU(k,a)uoJI < E. Now let uo be a vector -e3, then WC 

have IIU(k,a)uoll = IluJ(k)lIZ < F, where uj(k) is the j th column of 

U(k , a , ) .  Thcrefore, it follows that IlU(k,o,)II = maxl<j<, IIuj(,k)ll < -. 
Hence, for any solution u(k,a,u0) of thc difference system (1.2.12) WC 

havc IIu(k,O,uo)II = IIU(k,O)uoll < T1luoll, i.e. all solutions of (1.2.12) 

are t)omded. I 

S 

2E 

S " 

26 

Corollary 5.4.2. All solut,ions of (2.8.1) are stable if and only if the 
eigenvalues of A have modulus less than or equal to one, and those of 
modulus one are semisimple. 

Remark 5.4.5. I n  Definition 5.4.1 the cxistcncc of thc solution u(k) 
of (1.2.8) OII N(a )  is assumed. In general, WC can consider this special 
solution to be the trivial solution. This assurnption would t x  at oncx clear 
if we consider the trarlsforrrlatiorl w(k) = v ( k )  - u(k), where v ( k )  
is any solution of (1.2.8). Since v ( k )  is a solution of (1.2.8), it follows 
that v ( k  + 1) = w(k + 1) + u(k + 1) = f(k,w(k) + u(k)) and hence 
w(k + 1) = f(k,w(IC) + ~ ( I c ) )  - f(k,u(k)) = T(k, w(k)), say. Obviously, 
this new system 

(5.4.2) w(k + 1) = T(IC,w(k)) 

admits the trivial solution w(k) 0. Thus, the stability of the solution 
u(k) of (1.2.8) is equivalent to the stability of the trivial solution of (5.4.2). 

Definition 5.4.2. The points Ti E R" which satisfy the algcbraic 
equation f (IC, E) = Ti are called critical points of (1.2.8). A critical point 
is also referred to as a poin,t  of e q u i l i b r i w n  or s t a t i o n a r g  p o i n t  or Test 
poin, t  or s i n g u l a r  point or fixed point or  h i t  p0in.t. 

If ii E R" is a critical point of (1.2.8), then obviously u(k) = ii is a 
solution of (1.2.8). From Remark 5.4.5 each nonzero critical point of (1.2.8) 
can bc transformed to the origin. 

Example 5.4.11. For the difference equation 7r(k + 1) = u 2 ( k )  there 
are two critical points U. = 0 and B = 1. From Example 5.4.5 it is clear 
that the point U = 0 is uniformly asymptotically stable, whereas U. = 1 
is unstable. 

Example 5.4.12. For the difference equation u.(k + 1) = v,(k)(2 - u ( k ) )  
there are two critical points ti = 0 and B = 1. From its solution B(k) = 



Qualitative Propcrties of Solutions of Difference Systems 255 

u(k ,a ,c )  = 1 - (1 - c)'"" it is clear that the point ;ii: = 0 is unstable, 
whereas ;ii: = 1 is uniformly asymptotically stable. 

5.5. Stability of Linear Systems 

Let the solutions of the nonhomogeneous difference system (1.2.11) ex- 
ist on N(a ) .  Since the definition of stability involves only the difference 
between the neighboring solutions, it follows, from the superposition prin- 
ciple that any solution u(k) = u(k,a,uO) of (1.2.11) is stable if and only 
if the trivial solution of the homogeneous system (1.2.12) is stable. This, in 
turn implies that if the solution u ( k )  of (1.2.11) is stable then every other 
solution of (1.2.11) is stable. This means that the conditions for the stabil- 
ity of linear systems are independent of the particular solution we consider 
and of the nonhomogeneous term b(k) .  Therefore, to say the linear system 
(1.2.12) is stable (all its solutions arc stable) is more appropriate than to 
say a particular solution of (1.2.12) is stable. The same argument holds for 
the other types of stability. However, from Examples 5.4.11 and 5.4.12 it 
is clear that t,his argument docs not hold for nonlinear systems. 

Theorem 5.5.1. Let U(k ,a , )  be the principal fundarncntal matrix of 
(1.2.12). Then, the difference system (1.2.12) is 

(i) stable if arid only if there exists a positive constant c such that 

(5.5.1) IlU(k,a)ll I c for all k E N ( a )  

(ii) uniformly stable if and only if there exists a positive constant c such 
that 

(5.5.2) 114(k,e)ll = ~ ~ U ( k , a ) U - l ( i ? , u ) ~ ~  I c for all a I e 5 k E N ( a ) ,  

i.e. uniformly bounded 
(iii) strongly stable if and only if there exists a positive constant c such 
that 

(5.5.3) I I~ (k ,a ) l l  I c, \ l ~ - ~ ( k , u ) l l  5 c for all IC E ~ ( a )  

(iv) asymptotically stable if and only if 

(5.5.4) IIU(k, u)II + 0 as k "+ 00 

(v) uniformly asymptotically stable if and only if there exist positive 
constants c and X such that 

(5.5.5) llG(k,e)ll = I l ~ ( k , a ) ~ - l ( e , a ) l l  I r:exp(-X(k -e ) )  
for all a 5 e 5 k E N(a )  

l 



256 Chapter 5 

Proof. (i) See Theorem 5.4.1. 

(ii) Let u(k) = u (k , a ,uO )  be a solution of (1.2.12). Then, for any kl E 

N(a )  we have u ( k )  = U(k,a)U-l(kl,a)u(kl). If condition (5.5.2) holds, 
then we have llu(k)ll 5 ~~~(IC,kl)~ll\u(kl)~~ 5 c}/u(kl)ll for all k E IN(kl) .  
Therefore, if E > 0 then a 5 k1 and llu(k1)ll < ~/(2c) = S(€) > 0 
imply llu(k)II < E for all k E IN(k1). Conversely, if (1.2.12) is uniformly 
stable, then for a given E > 0 there exists a S = S(€) > 0 such that 
a. 5 k l  E N(a )  and llu(k1)ll < 6 imply Jlu(k)II < c for all k E W(k.1). 

Thus, WC have ~~ZA(k,u)U-l(kl,a)u(ICl)~( < E for all k E lN(kl).  The rest 
of the proof is similar to that of Theorem 5.4.1. 

(iii) If (5.5.3) holds, then for a given E > 0 we can choose S = (c/2c2). 
Thus, if a 5 kl  E IN(a) and \lu(k1)11 < 6, then we have llu(k)ll = 

for all k E lN(a). Therefore, (1.2.12) is strongly stable. Conversely, 
if (1.2.12) is strongly stable, then WC have IIU(k,u)ZA-'(kl,a)u(k.l)ll < c 

for all k E W ( a )  whcncvcr a 5 kl and IIu(kl)ll < 6 hold. Since 
~ ( k l ) ,  Ilu(k1) 1 1  < S is arbitrary, WC can conc:ludc as i n  the proof of Theorem 
5.4.1 that 

(5.5.6) llU(k, a)U-l(kl, .)I1 < c,  

where c = 2~/6. From the definition of strong stability, it is clear that S, 
and hence c, is independent of a and kl as wcll as of k .  Putting 
IC1 = a and k = a in estimate (5.5.6), we obtain respectively, the first and 
second bound in (5.5.3). 

(iv) Every solution of (1.2.12) can be expressed as u(k) = u(k ,a ,uO)  = 
U ( k , a ) u o .  From (5.5.4) it is clear that there exists a constant c such that 
IIU(k,a)ll 5 c for all IC E JN(a). Thus, llu(IC)II 5 cl luol l ,  and hence every 
solution of (1.2.12) is bounded. Therefore, from Theorem 5.4.1 the system 
(1.2.12) is stable. Further, Ilu(IC)ll + 0 as k + m, and hence the system 
(1.2.12) is asymptotically stable. Conversely, if (1.2.12) is asymptotically 
stable, then its trivial solution u ( k , a ,  0) = 0 is asymptotically stable. 
Hence, IIu(IC,a,u')/l + 0 as k + m provided l l u o l l  < 6, but this 
implies that IIU(k, u)ll + 0 as IC + m. 

(v) Since (5.5.5) implies (5.5.2) the system (1.2.12) is uniformly stable. 
Further, if u(k) = u(IC,a,u0) is any solution of (1.2.12) then u(k) = 
U(k ,a . ) u o  =ZA(k,a)U-'(ICl,a)u(kl), andhenceforall k E IN(kl) ,  ~ l u ( k ) ~ ~  5 
IIU(k,a)ZA-'(kl,a)/lllu(ICl)ll 5 c(Iu(k1)ll exp(-X(k - IC1)). Thus, it follows 
that llu(k)ll + 0 independent of k l ,  and hence the system (1.2.12) is 
uniforrnly attractive. Therefore, the system (1.2.12) is uniformly asymptot- 
ically stable. Conversely, if the system (1.2.12) is uniformly asymptotically 

l l ~ ( ~ , a , ) ~ - l ( ~ l , ~ ) ~ ( ~ l ) l l  I 11~(~,~)1111~-1(~1,~)1111~(~1)11 I "211~(kl)l l  < 
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where cl = c7-l and 771/K(f) = e-’. I 

Remark 5.5.1. The sthbility of the system (2.8.1) implies the uniform 
stability of this system. However, from Example 5.2.6 it is clear that this 
is not, true for the system (1.2.12). 

Remark 5.5.2. As a consequence of Theorem 5.5.1 (v), we see that for 
linear systems, uniform asymptotic stability implies exponential asynlp- 
totic stability. However, this is not true for the nonlinear systems. For 

example, the general solution of the equation u ( k  + 1) = is 
11. ( k )  

JGTqiq 
u ( k )  = 4.1 

(1 + 2u.2(u)(k - a))’/2‘ 
Thus, the trivial solution of this equation is 

uniformly asymptotically stable but not cxponcntially asymptotically sta- 
ble. 

Remark 5.5.3. From Theorem 5.5.1 (iv), it is clear that, the system 
(2.8.1) is asymptotically stable, and hence uniformly asymptotically stable 
which, in turn, implies exponentially asymptotically stable, if and only if 
the eigenvalues of A lic inside the unit disk. 

Definition 5.5.1. The difference system (1.2.12) is said to be r e s t r i c t i v e l y  
stuble if, together with its adjoint system (2.7.1) it is stable. 

If U(k ,a . )  is the principal fundamental matrix of (1.2.12) then from 
(2.7.2) it is clear that [UT(k,a)]-’ is the principal fundamental matrix of 
(2.7.1). Thus, from Theorem 5.5.1 (i) the following result. is immediate. 

Theorem 5.5.2. Let U ( k , u )  be the principal fundamental matrix of 
(1.2.12). Then, the difference system (1.2.12) is restrictively stable if and 
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Remark 5.5.4. From Theorem 5.5.1 (iii) and Theorem 5.5.2 it follows 
that, for linear homogeneous systems, restrickivc stability and strong sta- 
bility are equivalent. Thus, for such systems restrictive stability implies 
uniform stability which, in turn, gives stability. 

Definition 5.5.2. The difference system (1.2.12) is said to be re- 
ducible (reducible to zero) if there exists an R x R matrix L ( k )  which, 
together with its irlverse L - ' ( k ) ,  is defined and bounded on N ( a )  such 
that L"(k + l ) A ( k ) L ( k )  is a constant (identity) matrix on N(u ) .  

Since the transformation u(k) = L (k ) v ( k )  converts the system (1.2.12) 
into v(k + 1) = C - l ( k  + l )A ( k ) L ( k ) v ( k ) ,  from the above definition it 
is clear that u(k) = L(k )v (k )  transforms (1.2.12) into a system with 
constant coefficients (into the system v(k + 1) = v(k)). 

Theorem 5.5.3. The difference system (1.2.12) i s  rest,rictively stable if 
and only if it is reducible to zero. 

Proof. Let U ( k ,  U )  be the principal fundamental matrix of (1.2.12). If 
the system (1.2.12) is restrictively stable then from Theorem 5.5.2 there 
exists a positive constant c such that (5.5.7) holds. Consider now the 
transformation u(k) = U ( k ,  u)v(k) ,  which converts the system into U ( k +  
l ,a)(v(k+l) -v(k)) = 0, which in turn, implies v ( k + 1 )  = v(k). Hence, 
(1.2.12) is reducible to zero. Conversely, if (1.2.12) is reducible to zero, 
then there exists a matrix L ( k )  such that L- ' (k  + l ) A ( k ) L ( k )  = Z, 
and hence L ( k  + 1) = A ( k ) L ( k ) ,  i.e. L ( k )  is a fundamental matrix of 
(1.2.12). Since L ( k ) ,  together with its inverse L"(k) is bounded on 
N ( a )  from Theorem 5.5.2 the system (1.2.12) is restrictively stable. 

Theorem 5.5.4. The difference system (1.2.12) is uniformly stable if it 
is stable, and reducible. 

Proof. Since (1.2.12) is reducible, u(k) = L (k )v (k )  transforms it into 
v(k + 1) = Bv(k) ,  where B = L- ' (k  + l ) A ( k ) L ( k ) .  Let U(k,a.)  be 
the principal fundamental matrix of (1.2.12). B y  Theorem 5.5.1 (i), the 
stability of (1.2.12) implies that U ( k , a )  is bounded on N(a). If V ( k )  
is a fundamental matrix of v ( k  + 1) = Bv(k ) ,  then it is easy to see 
that U ( k , a )  = C(k)V(k)V"(a,)L- ' (a) .  Thus, it follows that V ( k )  = 
C- ' ( k )U(k ,u )C(u )V(a )  is bounded on N(a).  Therefore, the system v(k+ 
1) = Bv(k)  is stable and, in fact, uniformly stable. Hence, from (5.5.2), 
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it is clear that IIV(k)V-'(!)ll 5 c for some positive constant c and 
0. 5 !I k E lN(u). Therefore, 

~ ~ u ( k , u ) u - ~ ( / ? , a ) ~ ~  = / /L(k)V(k)V-1(e)c- ' (e) \ l  

I 1 1 ~ ~ ~ ~ 1 1 1 1 ~ ~ ~ ~ ~ - 1 ~ ~ ~ 1 1 1 1 ~ - 1 ~ ~ ~ 1 1  5 c1 
for some positive constant c1 and a 5 l 5 k E lN(a). Thus, the system 
(1.2.12) is uniformly stable. I 

Let for a fixed e E N(a )  the solution u(k) = u(k, e ,  U(/?)) (U(!) # 0) of 
(1.2.12) exist on ~ ( e )  and FT(!) = {/c E ~ ( e )  : u(k) # O} is infinite. Let 

S(c,!) = E(!) E R" : 5 E }  . Thus, if E(!) E 6 ( ~ , ! )  then 

U(!) = U(!) + llu(!) lid, where lldll 5 E ,  i.e. the vector E(!) approximates 
U(/?) with the relative error at most c. Let U(k) = u(k,!,U(l)) be the 
solution of (1.2.12) which exists on IN(!). Thus, if V ( k )  is any fur~damental 
matrix of (1.2.12) then it follows that 

i IIU(l) - U(/?) I /  
IIU(4 I I  - 

- ~ ( k )  - ~ ( k )  = V(k)V-'(P)(u( ! )  + ~ ~ u ( ! ) ~ ~ d  - U(!)) 

and hence 

(5.5.8) sup IlS(k) - 4k)Il - IIu(!)ll ~p) ( k ) v- l ( l ) d~~ 

U(/?) E 6 ( F ,  e) llu(k) I 1  
- 

l l u ( k )  1 1  Ildll=t 

k E X(!) 
= a(!, k)E, 

where 

(5.5.9) 

Definition 5.5.3. The index of stability for the forward computation of 
u(k) = u(k,!,u(!)) at l is a ( k )  = sup 

then (1.2.12) is said to be stable for u(k) ut l. 

Definition 5.5.4. If for each K E m(!) there exists a constant C = 

P<I:EX(t) 
a(!, k ) .  If a ( k )  < CO, 

C ( W  > 0 such that sllP{t<k.fl(p), a(!, k )  = C < 00, then (1.2.12) 
is said to be weakly stable for u(k). 

Definition 5.5.5. If sup{ t ,kEm(a)  I,>I) a ( ! , k )  = C < CO,  then (1.2.12) is 

said to be .stable for u(k). 

Theorem 5.5.5. The difference system (1.2.12) is stable for u(k) at ! 
if and only if it is weakly stable for u(k). 

3 
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Proof. From (5.5.9) for all k E S([), we have 

CY( [  + 1, k )  2 (cond A(.t))-'o(t, k )  

Now combining thc abovc results, to obtain 

(cond A(t))-'a(t, k )  5 o(t + 1, k )  5 ( c o d  A(.t))a(&, k ) ,  

and taking a sup over k leads to 

(cond d(t))-lCy(.t) 5 a(.t + 1) 5 (cond A(t))cu(.t), 

which proves the desircd result. I 

Definition 5.5.6. If any one of the Definitions 5.5.3 ~ 5.5.5 is not satisficd 
then the term stable is replaced by mstable. 

Remark 5.5.5. If (1.2.12) is stable for u ( k )  then it is weakly stable for 
u(k), however thc converse is not true. 

Example 5.5.1. For the systcrn u ( k  + 1) = [ ,!j ] u(k) a funda- 

mental matrix is V ( k )  = [ ] = [vl(k),v2(k)l. Since l\v1(k)ll= 

2k + 1, llv2(k)II = 2, for u(k) = vl(k) 

a( . t , k )  = 
(2t + 1)(2k - 2.t + 1) 

(2k + 1) , k > e  
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and hence ~ ( 1 )  = 21 + 1. Thus, the system is stable for v'(k) at any 1 
and also weaklv stable, but not stable. 

Example 5.5.2. For the system u(k + 1) = 

and hence a ( t )  = 3. Thus, the system is stable for vl(k), which in turn 
implies weakly stablc and stable at any 1. 

111 the following result for simplicity we s M I  assume that R(!) = IN(!). 

Theorem 5.5.6. Let, n 2 2 and let the difference system (1.2.12) have 
a solution u*(k) s~lch that 

(5.5.10) 

Then, (1.2.12) is unstable for u(k) = u(k, 1, U(!)) at every B. Conversely, 
if (1.2.12) is unstable for u(k) in the following rnamer 

(5.5.11) lim supa(1, k )  = 03 for some fixed 1 E IN(a) 

then a solution u*(k) of (1.2.12) exists having the property (5.5.10). 

Proof. Since for any nonsingular constant matrix B and any ma- 

IIW(k)BJ/llB" 1 1  it follows that limsupk., \iW(k)Bll = 03 if and only if 
limsup,,, \\W(k)ll = 03. If (5.5.10) holds then u(k) and u*(k) are lin- 
early independent solutions of (1.2.12). Therefore, they may be completed 
to form a fundarnental matrix V ( k )  = [u(k), u*(k), u3(k), . . . , ~ " ( k ) ] .  For 
this fundamental matrix it follows that ~ ~ V ( k ) / ~ ~ u ( k ) ~ ~ ~ ~  2 ~~u*(k)Il/~~u(k)~~. 
Thus, from the previous consideration with W ( k )  = V ( k ) / l l u ( k ) / /  and 
B = I Iu ( ! )~~V~-~(~)  it follows that lim supk+W a([, k )  = 03 for cvcry 
1 E N(a ) .  Thus, (1.2.12) is unstable for u(k) at every 1. 

h:- W 

trix W ( k ) ,  Ilw(IC)Bll 5 IIW(k)II IlBll and l l ~ ( k ) l l  = Ilw(k)BB-lII 5 

Conversely, let (5.5.11) holds and V ( k )  be a fundamental matrix 
of (1.2.12). Once again considering W ( k )  = V(k) / l lu (k) I I  and B = 
1 ~ ~ ( 1 ) ~ ~ V - ~ ( t )  in the above relation yields lin1supk,, ~ ~ V ( k ) / l l u ( k ) l \ ~ \  = 
00. Let IIV(k)II = l \ ~ ~ ( ~ ) ( k ) I l ,  1 < ~ ( k )  5 R. Obviously, there exists an in- 
teger T, 1 < T < n such that ~ ( k )  = T for infinitely nlarlv k .  Letting k + 



CO over this sut)sequence of IN(!) shows that lirn supk,, ~ ~ u T ( k ) ~ ~ / ~ ~ u ( k ) ~ ~  
= CO, and taking u " ( k )  = u"(k)  c:onclndes the proof of the theorem. I 

Now for a fixed P E IN(a) we shall consider the solutio11 v(k) = 
v(k,P,v(!)) of (1.2.11) which is assurrled to exist on IN(!). For this 
solution we can clefine the corresponding R(!) and 6 ( F ,  P) t)y replacing 
u ( k )  and E(!) by v(k) and V([). Since the general solution u(k) 
of (1.2.11) in terms of the fundamental matrix V ( k )  of (1.2.12) can be 
written as u(k) = V ( k ) c  + v(k), the solution V ( k )  = v(k,!,V(!)) has 
the representation V(k) = V(k)V-l(P)llv(l)Ild + v(k). Thus, (5.5.8) and 
(5.5.9) hold with u(k) and E(k) replaced by v(k) and V ( k ) .  

Definition 5.5.7. The differencc system (1.2.11) is said to be stable for 
v( k )  if there exist,s a constant C > 0 s11c.h that sup 

C < CO, where Z(P, k )  is the same as C Y ( ! ,  k )  replacing u(P) and u(k) 
by v(!) and v(k-). Otherwise, (1.2.11) is said to be mstablc for v(k). 

Theorem 5.5.7. Lct n, 2 2 and Ict thc hornogc~lc~ous system (1.2.12) 
have a solution u*(k) swh that lirrlA.+m Ilv(k)ii/llu*(k-)// = 0. Thcrl, the 
rlorlholrlogerleolls difference system (1.2.11) is urlstablc for v(k-) at any P. 

- 
{ ! , k a T ( a ) ,  k > P }  

cw(P, k )  = 

Proof. The proof is clcar from Tllcorcrrl 5.5.6. I 

5.6. Stability of Nonlinear Systems 

In Section 5.3 WC have considered the difference syst,crns (5.3.1) and 
(5.3.4) as the perturbed systems of (2.8.1) and (1.2.12) respectively, and 
provided sufficient conditions on the rlonlirlear perturbed function g(k, v)  
so that the asynlpt,otic properties of the unperturbed systems are maim 
taincd for the perturbed systcrns. Analogously, we expect that under c m -  
tain conditions on the function g (k ,  v)  stability propertics of the unper- 
turbed systems carry through for the perturbed systems. 

Theorem 5.6.1. Let for all (k,v)  E IN(u) x R" the function g(k,v) 
satisfy (5.3.2), where h(k) is a rlonncgative function defined on N(a )  
and c,"=, h(!) < 03. Thcn, the trivial solution v(k, a ,  0) 0 of (5.3.4) 
is urlifornlly (and asymptotically; or exponentially asymptotically) stable 
provided the trivial solution u(k-,a,O) E 0 of (1.2.12) is unifornlly (and 
asvmptotically; or miforrrlly asymptotically) stable. 

Proof. From the condition (5.3.2) it is clear that the system (5.3.4) admits 
the trivial solution. Since in terms of the principal fundamental matrix 
U(k , o , )  the solution v(k) = v(k,o.,vo) of (5.3.4) for k 2 k l  E N(a )  can 
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be written as 

anti therefore for all k E IN(k1) 

( (5.6.2) llv(k.)II 5 ~ ~ / / V ( ~ 1 ) 1 1  exp c c h,(!)) L LllV(kl)Il, 

k-l 

P=1:1 

where L = ccxp (c XI=, h, ([ ) )  . From (5.6.2) tllc Imiforrn stabilitv of the 
trivial sollltioIl of (5.3.4) is obvious. 

cc 

Now if in addition to the uIliforrr1 stabilitv of the trivial solution of 
(1.2.12), it is asymptotically stable also, then from Thcorcm 5.5.1 (iv), 
lIU(k, a)il + 0 as k + CO. Thercforc, for every E > 0 there exists a 
k l  E IN(a.) sufficiently large so that for all k 2 kl  

Il~(~,a)U-l(kl,a)v(k.l)ll 
1:1- l  11 [ F=a 

= U ( k , a )  vo + c u-yt + l ,a)g(l,v(l)) 

k-l 

Thus, the inequality (5.6.2) can be rcplaccd by llv(k)11 < eexp 

from which limA:-co v(k)  = 0 is immediate. 

If the trivial solution of (1.2.12) is unifornlly asymptotically stable then 
on using Theorem 5.5.1 (v) in (5.6.1), WC obtain 

which is the samc as 
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and hence 

k-l 

Ilv(k)II 5 ce-x(L.-L:l) llv(~1)Il exp (U? c h,(!)) 
C = l q  

5 Mllv(k1)jj exp(-A(k - k l ) ) ,  k E ]N(kl) 

where M = cexp (cex C,”=, h(!)) . From the above inequality it is clcar 
that the trivial solution of (5.3.4) is exponentially asymptotically stable. B 

Theorem 5.6.2. Let for all (k,v) E N ( a )  x R” thc function g(k,v) 
satisfy 

(5.6.3) llg(k?v)ll 5 QIIVII, 

wlmc a > 0 is sufficiently small. Then, the trivial solution v( k ,  a, 0) 0 
of (5.3.4) is exponentially asymptoticzdly stable provided the trivial solutiorl 
u(k,a,O) = 0 of (1.2.12) is uniformly asymptotically stable. 

Proof. The proof is similar to t,hat of Theorem 5.6.1. I 

Corollary 5.6.3. Lct for all (k,v) E lN(o.) x R” the function g(k,v) 
satisfy 

(5.6.4) I ldk~V)ll  = O(11V11). 

Then, the trivial solution v(k, a, 0) 0 of (5.3.1) is exponentially asymp- 
totically stable provided all eigenvalues of the matrix A are inside the unit 
disc. 

Next we statc the following rcsult whose proof diffcrs slightly from Corol- 
lary 5.6.3. 

Theorem 5.6.4. Let g(k,v) be as in Corollary 5.6.3, and the trivial 
solution u(k,a,0) 0 of (2.8.1) is unstable. Then, the trivial solution 
v(k,a,0) = 0 of (5.3.1) is unstable. 

Corollary 5.6.3 and Theorem 5.6.4 fail to embrace the critical case, i.e. 
when all the eigenvalues of the matrix A arc inside the unit disc, and that 
of at least one eigenvalue has the modulus one. In this critical case, the 
nonlinear function g (k ,v )  bcgins to influcnce the stability of the trivial 
solution of the system (5.3.1), and gcncrally it is impossible to test for 
stability on the basis of eigenvalues of A. For examplc, the trivial solution 
of the difference equation 

u ( k  + 1) = u(k) + u ( k )  - 1 

jd”lJ 
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is stable if c = 0, asynlptotically stable if c > 0, and unstable if c < 0. 

Definition 5.6.1. A matrix P is said to be a projection, if P2 = P. If 
P is a projection, then so is (1 - P). Two such projections, whose slml 
is 1 and hence whose product is 0, are said to be supplemen.tary. 

Lemma 5.6.5. Let V ( k )  be an invertible matrix which is defined on 
W ( a )  and let P be a projection. If there exists a constant c > 1 such 
that 

k- l  

(5.6.5) c IlV(k)PV-'(!+ l)\\ I c for all k E N(a )  
/=a 

then there exists a constant c1 such that 

(5.6.6) 

Proof. We can obviously suppose that P # 0. Since for any I! E W ( a ) ,  
we have llV(I!+ 1)Pll > 0, it follows that 

and, after substitution in (5.6.7), we get r ( k )  2 (c/. - l ) r ( k  - l), which 
implies r ( k )  2 (c/.- l) ' -"-lr(a+ l), k E W ( a +  1). Using this inequality 
in (5.6.7), we find 

Therefore, if we choose c1 = max { / /V(a)PI / ,  (.'/c - l ) \ \V (a  + 1)PII) , the 
resulting inequality (5.6.6) follows from (5.6.8). I 
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Lemma 5.6.6. Let V ( k )  be an invertible matrix which is defined on 
N(a )  and let P be a projec:tion. If there exists a constant c > 0 suc:h 
that 

Proof. For any P E N ( a ) ,  WC have IlV(l + 1)Pcll > 0. Thus, for 
kl E W(k) from 

Therefore, C,"=, IlV(l + 1)PcIl-l exists arid so limsupI.+03 / / V ( k  + 
1)PcII-l = 0, or limsupI.,03 IlV(k + 1)Pcll = cm. I 

Theorem 5.6.7. Suppose that there exists a constant c > 1 such that 
for all k E N ( a )  

k-1 

(5.6.10) c IlU(k, a)U-'(P + 1, .)I1 I c, 
e=a 

where U ( k , a )  is the principal fundamental matrix of (1.2.12). Further, 
suppose that for all (k,v) E IN(a) x R" the function g(k ,v )  satisfies the 
irlequality (5.6.3) with cy < c-'. Then, the trivial solution v(k,a.,O) 0 
of (5.3.4) is asymptotically stable. 

Proof. By Lemma 5.6.5, U ( k , a )  + 0 as k + m and i n  particu- 
lar U ( k , a )  is bounded, i.e. therc exists a constant /3 > 0 swh that 
llU(k,a)ll I p .  Thus, from (5.6.1) with k l  = a, (5.6.3) and (5.6.10) it 
follows that 
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where U ( k , a )  is the principal furldarrlcrltal matrix of (1.2.12), and 'P is a 
projection. Further, supposc that for all (k,v)  E W ( a )  x R" the function 
g(k,v) satisfies the inequality (5.6.3) with o < c-'. Then, the following 
hold 

(i) if v(k) = v(k,a,vO) is a bounded solution of (5.3.4) such that 
llv(k)ll 5 /lr for all k E W ( a ) ,  then v(k) 4 0 as k -+ m 

(ii) there exists a const,ant y > 0, indcpcrldcrlt of g, such that for all 
k E N ( a )  

(5.6.12) llv(k)ll 5 (1 - ~.)-l-Y//Pv(a)ll. 

Proof. Let the solution v(k) of (5.3.4) b e  bourlded. Then, from (5 .6.3) ,  
(5.6.11) and Lernnla 5.6.5 the furlction 

!,-l 

w(k) = v(k) - U ( k ,  a)Pv(n) - c U ( k ,  a)PU-l(!  + 1, a)g(!, v(!)) 

00 

e=a 

+ c U ( k ,  .)(I - 'P)u-l ( e  + 1, a)g(!, v(!)) 
e=k 
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exists and is bounded for all k E lN(a).  Moreover, it follows that 

i.e. w(k) is a solution of (1.2.12). Obviously, ?W(.) = 0 ant1 so 
~ ( k )  = U ( k , a . ) ( I  - P )w(a ) .  But, by Lemma 5.6.6 this is possible only if 
(I - ?)W(,) = 0, i.e. w(k )  0. Therefore, 

6-1 

v(k) = U ( k ,  a )Pv (a )  + c U ( k ,  a)PU-l(C + 1, .)g((, v([)) 

00 

t=a 

- C U ( k , u ) ( Z - P ) U - l ( e +  l,a)g(t,v(C)). 
e=6 

Since by Lernrna 5.6.5 condition (5.6.11) implies that IIU(k,a)Pll 4 0, 
there exists a positive constant y such that IjU(k,a)Pll L y for all 
k E N(a ) .  Thus, from (5.6.3) and (5.6.11) it follows that 

and hence (5.6.12) holds. The proof of part (i) is the same as in Theorem 
5.6.7. I 

Corollary 5.6.9. If P # Z in (5.6.11), then the trivial solution 
v(k,a,O) 0 of (5.3.4) is unstable. 

Proof. If the trivial solution of (5.3.4) is stable, then for each F > 0 we 
can find S > 0 such that 0 < I/voII < S implies Ilv(k, a, vo)ll < F for all 
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k E N(a ) .  However, since P # Z we can choose vo so that P v O  = 0. 
But, then (5.6.12) gives a contradiction. I 

Corollary 5.6.10. If A(k )  = A ( A ( k )  is periodic of period K )  and no 
eigenvalue of A ( U ( K ,  a)) lie on the unit circle, and (5.6.3) holds, then 
the conclusions (i) and (ii) of Theorem 5.6.8 are true. 

Proof. If d ( k )  = A, then U ( k ,  a) = dk-" and there exists a projection 
P such that 

IIAL:-apA-(@+1-") 1 1  5 cpk-@-l if k E N(li + 1) 

and 
IIA""(Z - p)A-(@+'-")I/ 5 cpfil-k if li E W(k - 1) 

where c > 0 and 0 < p < 1. 

If A ( k )  is periodic of period K ,  then there exists a projection P 
such that 

llU(k,U,)PUF(li + 1,a)ll 5 clpl k-@-l if k E W(C + 1) 

l l u ( k , a ) ( Z - P ) U - ~ ( e +  1,a)ll 5 clpp,+l-" if li E W(k - 1) 

where c1 > O and 0 < p1 < 1. I 

5.7. Nonlinear Variation of Constants 

In the previous sections the variation of constants formula developed i n  
Section 2.5 for linear difference systems has been repeatedly used to study 
asymptotic and stability properties of solutions of the perturbed difference 
systems. The main purpose of this section is to use the same technique to 
represent the solution v(k, a, U') of the perturbed system 

(5.7.1) v(k + 1) = f(k,v(k)) + g(k,v(k)), k E N(a) 

in terms of the solution u(k, a, U') of the unperturbed system (1.2.8). 

Theorem 5.7.1. Let for all IC E W ( a ) ,  U E R" the functions f(k,u) 
and g(k, U) be defined, af/3u exist and continuous and invertible. If for 
each uo E R" the solution u(k,a,uo) of (1.2.8) exists on N ( a ) ,  then 
any solution v(k) = v(IC,a,u0) of (5.7.1) satisfies the equation 

k-l 

(5.7.2) v(k, a ,  UO) = U W-l(C+l, a, W([), w(l+l))g(C, v([)) 
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whcrc 

1 

(5.7.3) W ( k ,  a ,  W(!), W(! + 1)) = .I' V ( k ,  a ,  SW(!+ 1) + (1 - s )w(P ) )ds ,  
0 

V ( k , a , u o )  = au(k,a,u0)/i3u0 is defined i n  Thcorerrl 5.1.2, and w(k) 
satisfies the implicit cquation 

1:-l 

(5.7.4) w(k) = uo + c w-ye + 1, a ,  W([), W(! + l ) ) g ( l ,  U(!, a ,  W(!))). 

t=a 

Proof. The method of variation of constants requires determining a func- 
tion w(k) so that v(k, a,uo)  = u ( k , a ,  w(k)), W(.) = U'. Therefore, 

v(k+l,a,uO) = u ( ~ + l , a , w ( k + l ) ) - u ( k + l , a , w ( ~ ) ) + u ( k + l , a , w ( k ) )  

= f(k,u(k,u.,w(k))) + g(k,u(k,a,,w(k))) 

frorrl which, WC get, 

u(k + l ,a ,w(k  + 1)) - u ( k  + l ,o,,w(k)) = g(k,u(k,a,w(k))). 

which is the same as 
P1 

1 0  
V ( k  + 1, a ,  sw(k + 1) + (1 - s)w(k))d.s(w(k + 1) - w(k)) 

W ( k +  l ,a,w(k),w(k+ l))(w(k+ 1) -w(k)) = g(k,u(k,a,w(k))). 

The above equation is equivalent to (5.7.4) from which (5.7.2) immediately 
follows. I 

Theorem 5.7.2. Let the assumptions of Theorem 5.7.1 be satisficd. Then, 

(5.7.5) v(k,a,uO) = u(k,a,uO) + W(k,a,w(k),uO) x 
1:-1 c W-1(! + 1, a ,  W(!), w ( l +  l))g(!,v(!)). 
P=a 
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Proof. Since 

" ( k ,  a ,  sw(k) + (1 - S)UO) = V ( k , a ,  sw(k) + (1 - s)uO)(w(k) - UO) 
d u  
d S 

integration from S = 0 to 1 yields 

1 

u(k, a ,  w(k ) )  = u(k, a ,  uO) + .i, V ( k ,  a ,  .sw(k) + (1 - .s)u0)ds(w(k) - UO), 

which from (5.7.3) and (5.7.4) is the same as (5.7.5). I 

Corollary 5.7.3. If f(k,u) = d(k)u, then (5.7.5) reduces to (5.3.5) 
with a = 0. 

Proof. Since in this case u(k,O,uo) = U(k,O)uo, where ZA(k,O) is 
the principal fundamental matrix of (1.2.12), it follows that V ( k ,  0, U') = 
U ( k ,  0) = W ( k ,  0, W(!), W(!+ 1)). From this the result is immediate. I 

Example 5.7.1. For tllc diffcrcncc equation ~ r ( k + l )  = we have 
11, ( k )  

1 + 16(k) 
160 1 

w,(k, a ,  1 P )  = . Therefore, V ( k ,  a ,  11,') = 
1 + 7rO(k - a )  (1 + 1LO( k - a))Z ' 

and 

1 
W ( k ,  a ,  UI(k), W(! + 1)) = 

1 + W ( k ) ( k  - (?,))(l + UJ(! f l ) ( k  - a ) )  

and W - l ( k ,  a ,  W(!), W(! + 1)) = (1 + w ( ! ) ( k  - a ) ) ( I  + W(! + l ) ( k  - a ) ) .  

Theorem 5.7.4. Let the following conditions be satisfied 

(i) for all k E lN(a)  the solution v(k,a,uO) of (5.7.1) admits a 
representation (5.7.2) 
(ii) for each uo E R" there exist positive constants E and X such that 
llu(k, a ,  U"ll I fIlU0ll CXP(-X(k - a ) )  
(iii) for all k E N(a )  

(5.7.6) IlW-'(k + l , a ,  w(k),w(k + l ) )g (k ,  u(k, a ,  w(k)))ll 

I P(k)llW(k)II + q(k)llw(k + l)ll, 

where p(k )  and q ( k )  are nonnegative functions, q ( k )  < 1, and 

Then, the following inequality holds 
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Proof. From (5.7.4) and (5.7.6), we find 

which easily determines 

Therefore, from (5.7.2) it follows that 

5.8. Dichotomies 

Let U ( k ,  a,) be the principal fundamental matrix of the difference sys- 
tem (1.2.12). The system (1.2.12) is said to possess an exponen,tial di- 
ch,otorn.y if there exists a projection P ,  and positive constants 7, v, a 
and such that for all k ,  E lN(u) 

(5.8.1) 
llU(k, a)PU-l(e, a)II 5 (0  < p1 = e-a < l), k E IN([) 
I ~ U ( ~ , U ) ( Z - P ) U - ~ ( ~ , U ) ~ ~  5 vpP,-'(~ < p2 = e-p < I), e E ~ ( k ) .  

It is said to possess an o~dinmry dichloto.my if the inequalities (5.8.1) hold 
with cy = p = 0, i.e. p1 = p2 = 1. Thus, for the ordinary dichotomy 

In particular the system (2.8.1) has an exponenth1 dichotomy if and 
only if 110 eiegnvalues of A lie 011 the unit circle. Further, it has an 
ordinary dichotomy if and only if all eigenvalues of A which lie on the 
unit circle are semisimple. 

From Theorem 5.5.1 (v) the system (1.2.12) has an exponential di- 
chotomy with P = Z if ant1 only if it is uniformly asymptotically stable, 
and from Theorem 5.5.1 (ii) an ordinary dichotomy with P = Z if and 
only if it is uniformly stable. I n  the general case it is convenient to write 
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where 71, v1 and (1 are positive constants and c is an arbitrary 
vector. Suppose the projection P has rank T, then the first inequality 
of (5.8.3) says that there is a r-dimensional subspace of solutions tending 
to zero uniformly and exponentially as k + c a .  The second inequality of 
(5.8.3) says that there is a supplementary (n - r)-dimensional subspace 
of solutions tending to infinity uniformly and exponentially as k + ca. 
The third inequality of (5.8.3) says that the angle between two subspaces 
remains bounded away from zero. 

Remark 5.8.1. If p1 < 1 or p2 < 1 and JJA(k)Ij 5 M for all 
k E N(Q), then the third inequality (5.8.3) is implied by the previous two 
inequalities. For this, it is clear that for all k E N(a.) and T E W 

T 

(5.8.4) U ( k  + r, a )  = d ( k  + T - i )U (k ,  U) .  

i=l 

Further for any positive integer T, we have 

I IWk + .r,a)PU-l(k.,411 5 71p;o 
JJV(k + .,.)(I - P)ZA-l(k,a)ll 2 vF1pyT+, 

where Q = IlU(k, a)PU-l(k ,a) l l  and 4 = JIU(k,a)(Z-P)U-l(k,a)JJ. There- 
fore, it follows that 

/ ~ Q - ~ U ( ~ + ~ , U ) P U - ~ ( ~ , U ) + ~ - ~ U ( ~ + . ~ , ~ ) ( Z - P ) U - ~ ( ~ , ~ . ) ( (  2 +, 
where $ = vl'p;' - WC can always choose r > 0 so large that 
$ > 0. Thus, (5.8.4) gives 

((Q"U(k, u )PU-l (k ,  U )  + $-lU(k, .)(Z - P ) U - l ( k ,  .)I1 2 7/lAd-T. 

The left side of this inequality can be written in the form 

114-1~ + (0-1 - 4 - y ( k ,  a ) ~ ~ - l ( l c ,  5 4-1 + 18-1 - 4-110 

= 4-1(1+ 14- el) I 24-1, 

where we have used the fact that I$ - 1 9 1  <_ 1. Hence, 4 5 2g-l" and, 
by symmetry, also 0 5 2$-1M'. Thus, in the third inequality (5.8.3), 
= 2$-'MT, where r is so large that + = v,'py' - 71p; > 0. 
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Remark 5.8.2. If p1 = p2 = 1, then ( (A(k)/)  5 M for all k E 
w ( a )  does not imply the third inequality (5.8.3). For this, consider the 

system u(k + 1) = [ h 3 u(k) for which ZA(k, 0) = [; :l. If 

P = [ ;  i l l  then the first two inequalities (5.8.3) arc satisfied with 

p1 = p2 = 1, but the third inequality (5.8.3) is not satisfied. 

Remark 5.8.3. If p1 < 1 and p2 < 1 but 11A(IC)11 is not bounded, 
then the third inequality (5.8.3) need not be satisfied. For this, consider the 

system u(k + 1) = 1 u(k) for which ZA( k ,  0) = 
e J 

L 

(5.8.3) are satisfied with p1 = p2 = e-', but t,hc third inequality (5.8.3) 
is not, satisfied. 

Now we shall provide necessary and sufficient conditions for the expo- 
nential dichotomy of the difference system (1.2.12). For simplicity we shall 
assume that llA(k)ll 5 M (2  1) for all k E W ( a ) ,  and p1 = p2 = 
p < 1, ql = v1 = C so that from Remark 5.8.1 t,he system (1.2.12) has 
exponential dichotomy if and only if 

IlU(k, a)PII F < p L : - W l ,  .)Pll, E W ( 4  
IlU(k,a)(Z - P)\\ I <pf -qu( l ,a ) (Z  - ? ) I \ ,  e E lN(k) .  

(5.8.5) 

First WC shall prove a lemma which is rlccded in the main results. 

Lemma 5.8.1. Suppose that the difference system (1.2.12) has cxponcn- 
tial dichotomy for k 2 K E lN(a).  Then, it has exponential dichotomy on 

N(a) .  

Proof. Clearly, ~ ~ Z A ( k , u ) ( Z - P ) ~ ~  5 M"-"II(Z-P)II, and from thc second 
inequality (5.8.5),  we have I IU(K,a)(Z-P)((  <_ Cp'-K(/U(&,a)(Z-P)II for 
all l 2 K. Let a 5 k 5 K 5 l. Then, from these inequalities it follows 
that 
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)IU(k,a)(Z - P)]] # 0 for every k E W ( a ) ,  C1 # 0. Therefore, it follows 
that 

and hence 

We choose K E W(1) sufficiently large and 0 < Q < 1 so that 
Q-' = (l/2)(<"p-K - <pK) .  Then, from (5.8.7) and (5.8.8) we obtain 

IIU(e)II 5 Q sup{llu(k)ll : I/! - kl 5 K ,  e ,  k E N(a ) ,  e 2 K } .  I 

Theorem 5.8.3. Suppose that there exist constants 0 < 8 < 1 and 
K E W(1), such that for every solution u(k) of (1.2.12) condition (5.8.6) 
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is satisfied. Thcn, the diffcrence system (1.2.12) has an exponential di- 
chotomy. 

Proof. Let V be the set of vectors U' E R" for which the solution 
u(k) of (1.2.12) satisfying U(.) = U' is bounded. Obviously, V is a 
linear spacc. Let u(k) be a solution of (1.2.12) with U(.) E V. Since a 
contradiction with (5.8.6) results from linlsupk.-, llu(k)ll > 0, we have 
limk,, llu(k)II = 0. For any C E IN(a) we conclude again by (5.8.6) that 
max{IIu(li)Il,...,IIu(e+ K - l)\\} = max{llu(k)II : k = ! , e +  l,...}, 

l I 4 k ) l l  5 emax{II~(C)ll,...,ilu(C+K-l)ll} 

for k = l + K ,  C + K + 1, . . . and by induction 

Since ( j  - i ) K  2 C - IC ,  it follows that 

(5.8.11) llu(k)II 5 <p'-'((u(C)l\ with p = and C = 

Let W be a complcrnentary space to V, (i.c. R" = V + W). Put  
S = sup{s(w) : W E W\{O}}. Since S = sup{s(w) : W E W, llwll = I}, 
we obtain by a compactness argument that S < 00. 

Let P be the projection on V along W. Then from (5.8.10) and 
(5.8.11) the dichotomy (5.8.5) holds for k ,  C 2 S -with p = el lK and 
= M2(K-1)/3-1. Now Lemma 5.8.1 completes the proof. B 
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A s  an application of ordinary dichotomy of (1.2.12) on N(a)  we shall 
prove the following result. 

Theorem 5.8.4. Suppose that the following conditions are satisfied 

(i) the system (1.2.12) has the ordinary dichotomy (5.8.2) with 7 = v 
on N(a )  

(ii) for all (k,u),  (k,v) E N(a )  x R" the inequality (5.1.2) holds, where 

c,"=, I l f ( 6  0) I I  < W? c,"=, A([) < Co. 

Then, there exists a homeomorphism between the bounded solutions v(k) 
of the difference system (1.2.11) on N(a)  and the bounded solutions w(k) 
of the difference system 

(5.8.12) ~ ( k  + 1) = d(k)w(k)  + b(k)  + f ( k ,  w(k)) ,  k E N(a). 

Moreover, the differcncc betwcen the corresponding solutions of (1.2.11) 
and (5.8.12) tends to zero as k 4 cc if U ( k , a ) P  4 0 as k 4 00. 

Proof. Let k-1 E N(a )  be so large that B = 7czk, X([) < 1. Let 
B ( N ( k l ) )  be the space of all real n vector functions defined and bounded 
on W(kl) .  On this space we define an operator 7 as follows 

k 

(5.8.13) 7 w ( k )  = ~ ( k )  + c U ( k ,  a)PU-'(e, a)f(! - 1, W([ - 1)) 
P=k1-+1 

m 

- c U ( k , a ) ( Z - P ) U - ' ( e , a ) f ( e -  l ,w([- 1)). 
e = k + l  

The infinite sum is obviously convergent, and since 

T maps B ( N ( k l ) )  into itself. Moreover, for all w'(k),  w2(k) E 
B(IN(k1)) it follows that 

Therefore, by the contraction mapping theorem T has a unique fixed point 
w(k) E B ( I N ( k l ) ) ,  i.e. w(k) = 'Tw(k). Thus, from (5.8.13) it follows 
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that 

k 

~ ( k t l )  - v(k+l )  = A ( k )  C ZA(k,a)PU-'(!,a)f(! - 1,w(! - 1)) 
k l : l + l  

+U(k + 1, a)PU- l ( k  + l ,a)f(k, w(k)) 
00 

- A ( k )  C U(k,a)(Z-P)U-l(e,a)f(e-I,w(!-l)) 
+ U ( k +  1,a)(Z--P)U-'(k+ I,a,)f(k,w(k)) 

e= L+ 

= d(k) (w(k)  - ~ ( k ) )  + f(k,w(k)) .  

Hence, if v(k) is a solution of (1.2.11), then w(k) is a solution of (5.8.12) 
with w ( k )  E B(IN(k.1)). Conversely, if w(k)  is a solution of (5.8.12) with 
w (k )  E B(IN(kl)),  then v(k) defined by (5.8.13) with w(k) = Tw(k) is 
a bounded solution of (1.2.11). Thcrcfore, (5.8.13) with w(k)  = Tw(k )  
establishes a one to one correspondence between tllc bo~~rlded sollltiorls of 

(1.2.11) and (5.8.12) for k f N(k1).  Consider now, for k E W(kl),  vo(k) 
a bounded solution of (1.2.1 1) ant1 wo(k) the c:orrcsponding bo1lnded 
solntion of (5.8.12). Thcn, from (5.8.13) with w ( k )  = Tw(k) and the 
corresponding equation with the replaccrnent of v(k) and w(k) by 
vo(k)  and wo(k), we obtain 

and 

Thus, it follows that 

(1 + Q)-ll lv(k)  - V0(k)ll L ljw(k) - w0(k)/1 5 (1 - e)-l I Iv(k)  - V0(k)11, 

which shows that the one to-~onc correspondence between the bounded so- 
lutions of (1.2.11) and (5.8.12) for k E IN(k1) is continuous and its inverse 
is continuous, so it is a homeomorphism. But  the solutions of (1.2.11) and 
(5.8.12) are defined for all k E IN(a.) and are uniquely determined by the 
initial data, so we have actually a homeomorphism on N(a ) .  

Now let E > 0 be given and choose k-2 E W(kl) so large that 
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Example  5.8.1. Let in equation (5.8.12), A(k )  = 1 
2 - k  0 2 k  O I , b(k)  = 

U ( k , O )  = 2I:(k-1)/2 
O I  

if we take P = ] , then IlU(k, O)PU-l(t,  0)ll = 2('-k)(p+L'- ' ) /2  < - [ 
1 = 7 ,  k E IN(!); Iltr(k,O)(Z - P)U"(P,O)II = 2(k-p)(p+L,-1)/2 < 1 = 

e E  IN(^); Ilf(k,u) - f(k,v)ll 5 2-"//~ - V I I ,  c;02-p = 2 < CO,  
- 

C;"=, Ilf(k, 0)II = 0. Thcreforc, all t,he hypothcses of Theorem 5.8.4 are 
satisfied. 

Theorem 5.8.5.  Suppose that the following conditions arc satisfied 

(i) the inequality (5.6.11) holds 

(ii) for all ( k , u ) ,  (k ,v )  where k E IN(a) and llull 5 S, llvll < S, 
g(k,O) = 0, and 

(5.8.14) l l d k ,  U) - g(k,  v)ll 5 Xllu - VI17 

where CA < 1. 

Then, for all k E IN(u) there exists a unique bounded solution v(k) 
of the difference system (5.3.4) on IN(a) such that %(U) = W', and 
llw'll 5 (1 - cX)GM-', where M is a constant depending only on A ( k ) .  
Moreover, v(k) depends continuously on W'. 

Proof.  By Lemma 5.6.5 we find that there exists a constant M depend- 
ing only on A ( k )  such that, for all IC E IN(a), IIU(k,a)PJI < M. Let 
& ( N ( a ) )  = {v (k)  E B( IN(a ) )  : llv(k)II < S } ,  where B(IN(a)) is defined 
in Theorem 5.8.4. 0 x 1  B6(W(a)) we define an operator T as follows 

I:-1 

(5.8.15) Tv (k )  = U ( k ,  a )Pv (u )  + x U ( k ,  a )PU-l (e+ l,a)g(e,v(!)) 
t=a  

m 

- ~ U ( I C , a ) ( z - P ) U - 1 ( e +  l ,u )g(e ,v (e ) ) .  
P=k 
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Choose 0 5 61 < S so that Mllw'll 5 (1 - cX)S1. Then, if v(k) E 

B61(N(a)), 

~ ~ 7 v ( k ) ~ ~  5 MllWOll +cXllv(k)ll 5 (1 - C A ) &  +CA61 = 61. 

Thus 7 maps B61(N(a))  into itself. Further, for vl(k),  v2(k) E 
B6,(lN(a)), we obtain 

Il7vl(k) - 7v2(k)II 5 CXllV'(k) - v2(k)ll. 

Therefore, by the contraction mapping theorem 7 has a nniquc fixed 
point v(k) E B & ( N ( u ) ) ,  i.e. v(k) = 7 v ( k ) .  This fixed point is indeed a 
solution of (5.3.4) on N ( a )  follows as in Theorem 5.8.3. Now let v'(k) 
be the solution of (5.3.4) on N(a )  when W' is replaced by w1 such that 
llw'll 5 (1 -- cX)SM-'. Then, we find 

Ilv(k) - v'(k)ll 5 MllwO - W111 + cXllv(k) - v'(k)ll 

from which it follows that 

Ilv(k) - vl(k)ll 5 (1 - cX)-1M11wO - w y .  

Thus, v(k) continuously depends on W'. I 

The last theorem here deals with the situation where the difference 
system (1.2.12) on N(a)  has an exponential dichotomy and gives an expo- 
nential estimate on the bounded solutions of (5.3.4). 

Theorem 5.8.6. Suppose that the following conditions are satisfied 

(i) the system (1.2.12) has the exponential dichotomy (5.8.1) on N ( n )  

(ii) inequality (5.6.3) holds, where 

Q = cy [q ( l -  p1)-1 + vpa(1 - p2)-l] < 1 

-< = I n  p1 + cyV(pl(1 - 0)) - l  < 0. 
and 

Then, every bounded solution v(k) of the difference system (5.3.4) satisfies 

(5.8.16) llv(k)ll 5 (1 - Q)-17711V(k1)IIexP(-~(k - h ) )  

for all n 5 k1 5 k E N(a ) .  

Proof. Clearly, conditions (i) and (ii) of the theorem imply the hypotheses 
of Theorem 5.6.8. Thus, every bounded solution ~ ( k )  of (5.3.4) on N(u)  
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5.9. Lyapunov's Direct Method 
for Autonomous Systems 

It  is wcll known that, a mec1lanic:al system is stable if its total energy 
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E, which is the sum of potential energy V and the kinetic energy T ,  i.e. 
E = V + T continuously tlecreascs. These two energies are always positive 
quantities and are zero when thc system is conlplctcly at rest. Lyapunov's 
direct method uscs a generalizcd energy function to study the stability of 
the solutions. For differential systems this method has been uscd since 
1892, while for difference systcms its use is recent. The main advantage 
of this approach is that thc stability can be obtained without any prior 
knowledge of the solutions. Here WC shall study this fruitful technique for 
thc autonomous difference system (5.4.1). For this, throughout we shall 
assurne that f(0) = 0 and f(u) # 0 for U # 0 i n  some neighborhood of 
the origin so that (5.4.1) adrnits thc trivial solution u(k) = u(k, a, 0) 0, 
and the origin is an isolated critical point of the difference system (5.4.1). 

Lct (1 be an open sct in R" containing the origin. Supposc V(u)  
is a scalar contirnlous function defined on fI, i.e. V E C[n, R], and 
V(0) = 0. For t,his function we need the following: 

Definition 5.9.1. V(u) is said to t x  positive de@rt,ite on R if and 
only if V (u )  > 0 for U # 0, U E (1. 

Definition 5.9.2. V (u )  is said to bc p o s i t i v e  semidef in, i te on (1 if 
V(u) 2 0 (with equality only at, certain points) for all U E 0. 

Definition 5.9.3. V(u)  is said to be negative d e j h i t e  (negative se,rnidef- 
i71ite) on f1 if and only if -V(u )  is positive dcfinitc (positive sernidefinitc) 
011 a. 

Definition 5.9.4. A function 4 ( ~ )  is said to belong to the class K if and 
only if 4 E C[[O,p),R+], @(0) = 0, and $(T) is strictly monotonically 
increasing i n  T. 

Since V(u )  is continuous, for sufficiently srnall T, 0 < c I T I d we 
have 

where llull = T. I n  (5.9.1) the right sides are monotonic: functions of T 

and can be estimated i n  terms of functions belonging to thc class K. Thus, 
there exist two funckions 4, li, E K such that 

(5.9.2) 

The left side of (5.9.2) provides an alternative definition for the positive 
definiteness of V (u )  as follows: 
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Definition 5.9.5. The function V(u)  is said to be positive definite on 

R if and only if V(0) = 0 and there exists a function #(T) E K such that 
+(T) 5 V(U) ,  llull = T, U E (1. 

Let S, be the sct S, = {U E R" : llull 5 p}, and u(k) = u(k ,a ,uO)  
be any solution of (5.4.1) such that llu(k)II < p for all k E W(u.). Since 
(5.4.1) is autonomous we can always assume that n = 0. Along the solution 
u(k) = u(k,O, U') of (5.4.1) we shall consider the variation of the function 
V(u)  as AV(u(k) )  = V(u(k + 1)) - V(u(k)) = V(f (u (k ) ) )  - V(u(k)) .  
The auxiliary function V(u)  is called a Lyapmov jmction,.  

Theorem 5.9.1. If there exists a positive definite scalar function V(u)  E 
C[S,,R+] s11ch that AV(u(k,O,u')) I 0 for any solution u(k) = 
u(k,O,u') of (5.4.1) such that llu(k)11 < p, then the trivial solution 
u(k,O,O) 0 of t,hc difference system (5.4.1) is stable. 

Proof .  Since V(u)  is positive definitc, thcrc exists a func:t,ion 4 E K 
s11c:h that q5(\iuil) 6 V(u)  for all U E S,,. Let, 0 < F < p be given. Since 
V(u )  is c:ontirluous and V(O) = 0, we can find a 6 = S(F) > 0 such that 
//U'(/ < 6 implies that V(uo)  < @ ( e ) .  If the trivial solution of (5.4.1) is 
unstable, then there exists a solution u(k) = u(k, 0, U') of (5.4.1) s11c:h 
that llu'll < 6 satisfies F 5 llu(k1)ll < p for some kl E W(1). However, 
since AV(u(k) )  5 0 as long as llu(k)ll < p ,  we have V(u(k1)) 5 V(u'), 
and hence 

d e )  I 4(llu(~1)11) I V ( U ( h ) )  I V b ' )  < @(E), 

which is not truc. Thus, if llu'll < 5 then llu(k)II < F for all k E W. 
This implies that the trivial solution of (5.4.1) is stable. I 

Theorem 5.9.2. If there exists a positive definite scalar function V(u)  E 
C[S,, R+] such that AV(u(k ,  0, U')) I - C Y (  Iju(k, 0, uo)/I) ,  where a E K, 
for any solution u(k) = u(k,O,u') of (5.4.1) s~lch that llu(k)11 < p, 
then the trivial solution u(k, 0,O) =: 0 of the difference system (5.4.1) is 
asymptotically stable. 

Proof.  Since all the conditions of Theorem 5.9.1 are satisfied, the trivial 
solution of (5.4.1) is stable. Therefore, given 0 < F < p, suppose that 
thcre exist S > 0, X > 0 and a solution u(k) = u(k,O,u') of (5.4.1) S I K ~  

that 

(5.9.3) X 5 IIu(k)II < F ,  k E W, llu'// < 6. 

Since for this solution 11u(k)11 2 X > 0 for all k E W, there exists a 
constant d > 0 such that ~~(l lu(k) l l )  2 d for all k E W. Hence, we have 
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AV(u(k)) 5 -d < 0, k E IN. This implies that 

A:- 1 

V(u(k)) = V(uo) + xAV(u(r?)) 5 V(uo) - kd 
F=O 

and for sufficiently large k the right side will become negative, which 
contradicts V(u) being positive definite. Hence, no such X exists for which 
(5.9.3) holds. Further, since V(u(k)) is a positive and decreasing function 
of k ,  it follows that limk+m V(u(k)) = 0. Therefore, lirnk...+m llu(k)11 = 
0, and this implies that the trivial solution of (5.4.1) is asymptotically 
stable. I 

Theorem 5.9.3. If there exists a scalar function V(u) E C[S,, R], V(0) = 
0 such that AV(u(k,O, U')) 2 c~(Ilu(k,O,u~)II), where cy E I C ,  for any 
solution u(k) = u(k,O, U') of (5.4.1) such that llu(k)II < p, and if in 
everv neighborhood H of the origin H c S, there is a point U' where 
V(uo) > 0, thcn the trivial solution u(k, 0,0) 0 of the difference system 
(5.4.1) is unstable. 

Proof. Lct T > 0 be sufficiently srnall so that the set S, = {U E R" : 
llull 5 r} C S,,. Let M = maxllulls, V(u), where M is finite since V is 
continuous. Let T I  be such that 0 < TI < T, then by t,he hypotheses there 
exists a point uo E R" such that 0 < llu'll < r1 and V(uo) > 0. Along 
the solution u(k) = u(k,O, U'), k E I N ,  AV(u(k)) > 0, and therefore 
V(u(k)) is an increasing function and V(u(0)) = V(uo) > 0. This implies 
that this solution u(k) cannot approach the origin. Thus, it follows that 
infkEN AV(u(k)) = d > 0, and therefore, V(u(k)) 2 V(uo) + kd for 
k E IN. But the right side of this inequality can be made greater than M 
for k sufficiently large, which implies that u(k) must leave the set S,,.. 
Thus, the trivial solution of (5.4.1) is unstable. I 

Example 5.9.1. For the difference system 

where c is a constant, we consider the positive definite function V(u1, ua) = 
U: + U; 011 R = R'. A simple computation gives AV(ul(k),w.z(k)) = 
c2(w,:(k) + ~ , ; ( k ) ) ~ .  Thus, if c = 0 then 4V(ul(k),uz(k)) 0, and the 
trivial solution of the resulting difference system (5.9.4) is stable. However, 
if c # 0 then the trivial solution of (5.9.4) is unstable. 
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Example 5.9.2. For the difference systcm 

where c1 and c2 are constants, WC consider the positive definite function 
V(u1, ~ 2 )  = U,: + U,; on R = R2. Then, 

If c? < 1, c; < 1 then, since 

the trivial solution of (5.9.5j is asymptotically stable. 

If c: > 1, c: > 1 then let (~~1(k),uz(k)) E S,. c R', where T is so 

small that 

AV(W>l(k), U2(k) )  2 ( ~ !T2 - 1) .:(IC) + (- - l) W.;@) > 0. 

Therefore, the trivial solution of (5.9.5) is unstable. 

Theorem 5.9.4. If thcre arc positive definite matrices B and C such 
that 

(5.9.6) A ~ B A - B  = - c  
then the system (2.8.1) is asymptotically stable. Conversely, if (2.8.1) is 
asymptotically stable, then givcn C, (5.9.6) has a unique solution B. 
Further, if C is positive definite then B is positive definite. 

Proof. For the difference system (2.8.1), we take V(u(k)) = uT(k)Bu(k), 
where B is a symmetric positive definite matrix. The condition AV(u(k)) 
< 0 forces that uT(k)ATBAu(k) - uT(k)Bu(k) < 0, i.e. we must have 
ATBA - B = -C, where C is any positive definite matrix. 

Conversely, suppose that the system (2.8.1) is asymptotically stable then 
all the eigenvalues of A lie in the unit disc. If (5.9.6) has a solution, then 

m 

- C(AT )~CAA :  = ~ ( A T ) " ( A T B A  - B ) A ~  = (AT)"+~BA"+~ - B, 
m 

?,F0 
Y 

k = O  
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Letting *rn + cm, WC see that the solut,ion must be 

(5.9.7) 

This is indeed a solution of (5.9.6), and obviously if C is posit,ive definite 
then B is positive definite. I 

Definition 5.9.6. The orbit C(uo) of (5.4.1) through U' is defined 
by C(uo) = {U E R" : U = u(k,O,uO), k E W}, whcrc u(k,O,u') is the 
solution of (5.4.1) which is assumed to exist for all k E W. 

Definition 5.9.7. The positil~e h i t  set O(U') is the set of all limit 
points of C(u'), i.e. a point U E O(u') if there exists a sequence {kg} of 
integers such that kp + cm as fl + 03 and u(kp, 0, U') -+ U as e + cm. 
Definition 5.9.8. A set H C R" is callcd an inuar.ian,t set of (5.4.1) 
if U' E H implies that u(k,O,uo) E H for all k E W, i.e. f(H) = H.  

Definition 5.9.9. The region, of att,raction of th,e origin, of (5.4.1) is the 
set of all points U' E R" such that limk+03 u(k, 0, U') = 0. If in  addition 
the origin is stable then this set is called the re,qion, of asymptotic stability. 

Definition 5.9.10. The disthnce from a point U to a set H is defined 

by 
d(u, H )  = inf d(u,v) where d(u,v) = IIu - V I ] .  

v E H  

Theorem 5.9.5. Let u(k,O,uO) be a bounded solution of (5.4.1) on 
W. Then, the positive limit set fl(u') is a nonempty and invariant set of 
(5.4.1). Also, u(k,O,u') approaches O(U') as k + 03. 

Proof. Since u(k, 0, U') is bounded for all k E W, its orbit C(uo) lies 
i n  the interior of some closed sphere S of finite radius. Now, consider an 
infinite sequence {u(kt, 0, U')}, ! = 1,2,. . . in S such that Ilu(ke, 0, uo)ll 
is bounded. Then, there exists a subsequence {u(kp,,, 0, U')} which con- 
verges to a point v E S. B y  Definition 5.9.7, v E O(U'), and hence 
O(U') is nonempty. To see that fl(u') is invariant, let W E O(uo), 
then by Definition 5.9.7 there exists a sequence { k t }  of integers such 
that kt -+ 03 as e + cm and u(k~,O,u') + W as ! -+ c m .  
However, since the solution u(k, 0, U') continuously depends on U', 

WC have lim~..+03 u(k,O, u(kg, 0,u')) = u(k, 0, W ) .  Thus, the relation 
U(~,O,U(~~,O,U')) = u(k + kg,~,u') gives lirnt,, u(k + ~C,O,U') = 
u(k,O,w). This implies that u(k,O,w) E O(U'), and hence O(U') 
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is invariant with respect to (5.4.1). W e  now claim that u(k,O, U') ap- 
proaches R(u') as k + c c .  Suppose this is not true, then there exists a 
positive number F and a sequence { k t }  of integers such that kt + cc 
as I! + cc and IIu(kt,O,u') - W// 2 6 for all W E R(u'). This Inearls 
that the sequence of points {u(kp, 0, U')} is away from R(u0). From the 
boundedness property of u(k,O, U') there is, as we have seen, a subse- 
quence { ~ ( k t , , ~ ,  0, U')} which converges to a point v E R(u'). This is a 
contradiction. Hence, u(k,O,u') approaches fl(u') as k -+ cc. I 

Theorem 5.9.6. Assume that there exists a positive definite scalar func- 
tion V(u) E C[R,lR+] such that AV(u(k,O, U')) 5 0 for any solution 
u(k) = u(k,O,u') of (5.4.1) which remains in R for all k E IN. Let 
U' E R and the solution u(k,O,u') of (5.4.1) be bounded for all k E IN 
and let C(uo)  c R. Then, if the positive limit set R(u') of u(k,O,u0) 
lies in R, then A V ( w )  = 0 for all W E R(u'). 

Proof. Let U', u2 E R(u'). Then, by Definition 5.9.7 there exist two 
sequences { k t } ,  of integers, each of which approaches infinity, such 
that u(kp, 0, U') = u1 and linlm,-m u(k,, 0, U') = u2. Since 
AV(u(k ,o ,  U')) 5 0, ~ ( u ( k ,  0, U')) is a r1orlinc:reasin.g function of k. 
Further, V(u(k,O,u')) is bounded below because V is positive definite 
in R. Therefore, limk-m V(u(k, 0, U')) = v, say, exists. Thus, by the 
continuity of V i n  R, we have V(u') = V(u2) = v.  This implies that 
V(u) = V in R(u'). Moreover, by Theorem 5.9.5, it is clear that R(u') 
is a positively invariant set, i.e. if W E R(u') then u ( ~ , o , w )  E R(u') for 
all k E IN. Therefore, for each W E R(u'), we obtain 

AV(w) = AV(u(O,O, W)) = AV(u(k,O, w))/k=O = A(v) 1 0. I 

For any p 2 0, let C, be a component of G, = {U E R" : V(u)  5 p} 
containing the origin. For p = 0, we get the origin. Assunle that C, is 
a closed and bounded subset of R. The following result includes Theorem 
5.9.2. 

Theorem 5.9.7. Assume that there exists a positive definite scalar func- 
tion V(u )  E C[R,lR+] such that AV(u(k,O, U')) 5 0 for any solution 
u(k) = u(k,O,u') of (5.4.1) which remains in (1 for all k E IN. Let the 
set E = {U E C, : AV(u )  = 0}, and M be the largest invariant set 
of E C C,. Then, every solution u(k,O,u') of (5.4.1) starting in C,  
approachcs M as k + cc. 

Proof. Let u(k,O,u') be the solution of (5.4.1) such that U' E C,. 
From the conditions on V(u)  it is clear that this solution u(k,O,u') 
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must remain in C, for all k E W. This implies that u(k,O,u') is 
bounded on N. Because C, is closed and bounded, the positive limit 
set R(uo) of u(k,O,uo) lies in C,. Therefore, by Theorem 5.9.6, 
A V ( w )  = 0 at all points W E s2(uo), and hence, by the definition of 
set E ,  O(U') c E. Moreover, from Theorem 5.9.5 it is clear that C2(uo) 
is a nonempty, invariant set and that s2(u0) C M .  Hence, u(k,O,u') 
approaches O(U') as k + 00, and consequently approaches M as 
k + 00. I 

Remark 5.9.1. From the assumptions of Theorem 5.9.7 it is easy to 
conclude that the trivial solution u(k,O,O) 0 of (5.4.1) is stable. To 
obtain its asymptotic stability, we need M = (0). For example, if the 
conditions of Theorem 5.9.2 are satisfied with S, replaced by C,, then 
E is the origin, and therefore M = (0). 

Remark 5.9.2. Theorem 5.9.7 not only gives sufficient conditions for 
asymptotic stability but also indicates the size of the region of asymptotic 
stability. Such a region is at least as large as the largest invariant set 
contained in R .  In particular, the interior of C, is contairlcd in this 
region. 

Theorem 5.9.8. Assume that there exist,s a positive definite scalar func- 
tion V(u) E C[R",R+] such that 

(i) V (u)  -+ 00 as llull 4 00 

(ii) AV(u(k, 0, U')) 5 0 for any solution u(k) = u(k,O,u') of (5.4.1) 
for all k E W. 

Then, all solut,ions of (5.4.1) are bounded on W. 

Proof. For any solution u(k) = u(k, 0 , ~ ' )  of (5.4.1) it is easy to see that 
~#(~~u(k,O,u')~~) 5 V(u(k,O,u')) 1. V(uo) ,  where 4 E K. This shows that 
IIu(k,O,u')II is bounded by a constant depending only upon U'. Since 
uo is arbitrary, all solutions of (5.4.1) are bounded on W. I 
Corollary 5.9.9. In addition to the assumptions of Theorem 5.9.8, if the 
origin is the only invariant subset of E = {U E R" : AV(u) = 0} then the 
trivial solution u(k, 0,O) 0 of (5.4.1) is globally asymptotically stable. 

Corollary 5.9.10. In Theorem 5.9.8, if condition (ii) is replaced by 
AV(u(k,O, U')) 5 -cy(/Iu(k,O,u')/j), where cy E K ,  for any solution 
u(k) = u(k,O, U') of (5.4.1), then the trivial solution u(k,O,O) 0 of 
(5.4.1) is globally asymptotically stable. 

R.emark 5.9.3. If a system has more than one critical point, then none 
of these critical points is globally asymptotically stable. 
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5.10. Lyapunov's Direct Method 
for Non-Autonomous Systems 

W e  shall extend the method of Lyaplmov functions to study the stability 
properties of the solutions of the difference system (1.2.8). For this we shall 
assume that f (k ,O)  = 0 for all k E lN(a) so that (1.2.8) admits the trivial 
solution. It is clear that a Lyapunov function for the system (1.2.8) rrlust 
depend on both k and U, i.e. V = V(k,u).  

Definition 5.10.1. A real valued function V(k, U) defined on W ( a )  X S, 
is said to bc positive definite if and only if v(k, 0) = 0 for all k E m(u,), 
arid there exists a function +(r) E K: such that, 4(r)  5 V ( k , u ) ,  llull = 
T, (k,u) E W ( a )  x S,. It is ,negative defin.ite if V(k ,u)  5 -+(T). 

Definition 5.10.2. A real valued function V(k ,u )  defined on N(a )  xS, 
is said to be decrescen,t if arid only if V(k, 0) = 0 for all k E N ( a ) ,  
and thcrc exists a function $(T) E K: snch that V(k ,u)  5 $(T), \lull = 
T, (k,u) E N(a.) x S,. 

Let u(k) = u(k, a,uo) be any solution of (1.2.8) such that \lu(k)II < p 
for all k E IN(a). Along with this solution we shall consider the variation of 
the function V ( k ,  U) as A V ( k ,  u(k)) = V ( k  + 1, u(k + 1)) - V(k, u(k)) = 
V ( k  + 1, f ( k ,  u(k))) - V(k, u(k)). 

The following two thcorcms regarding the stability and asymptotic sta- 
bility of the trivial solution of (1.2.8) arc parallel to the results in the 
autonomous case. 

Theorem 5.10.1. If there exists a positive definite scalar function V(k, 
U) E C[IN(a) X S,,R+] such that AV(k, u(k,a,u0)) 5 0 for any solution 
u(k) = u(k,a.,uo) of (1.2.8) such that llu(k)ll < p,  then the trivial 
solution u(k, a, 0) E 0 of the difference system (1.2.8) is stable. 

Theorem 5.10.2. If there exists a positive definite scalar function V ( k ,  
U) E C[N(a) xS,, R+] such that AV(k,  u(k, a, U')) 5 -a( Ilu(k, a, uo)ll), 
whcrc a E K, for any solution u(k) = u(k,a,uO) of (1.2.8) s~lch that, 
llu(k)ll < p, then the trivial solution u(k,a,O) 0 of the difference 
system (1.2.8) is asyrrlptotically stable. 

Theorem 5.10.3. Let in addition to the hypotheses of Theorem 5.10.1 
(Theorem 5.10.2) the function V ( k ,  U) be dccrescent also. Then, the 
trivial solution u(k, a, 0) S 0 of the diffcrcnce system (1.2.8) is uniformly 
(uniformly asymptotically) stable. 
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Proof. Since V(k,  U) is positive definite and decrescent, there exist 
functions 4, 41 E ti such that 4(11u11) 5 V(k, U) 5 $ ( ~ ~ u ~ ~ )  for all 
(k ,u)  E N(a )  X S,. For each t, 0 < c < p,  we choose a S = S(€) > 0 
such that 4j(S) < 4 ( ~ ) .  We now claim that the trivial solution of (1.2.8) is 
uniformly stable, i.e. if k1 2 a and llu(kl)ll < S, then Ilu(k)II < E for all 
k 2 k l .  If this is not true, then there exists some k2 > kl such that ICl 2 a 
and IIu(k,)ll < S imply E 5 llu(k2)11 < p. However, AV(k ,u (k ) )  5 0 
implies that V(k,u(k) )  5 V(k l ,u (k l ) )  for all k E N(kl), thus it follows 
that 

I +(S) 4 ( E )  

This contradiction completes the proof. The uniform asymptotic stability 
of the trivial solution of (1.2.8) can be proved similarly. I 

We shall now formulate a result which provides sufficient conditions for 
the trivial solution of the difference system (1.2.8) to be unstable. 

Theorem 5.10.4. if there exists a scalar function V(k ,u )  E V[N (a )  X 

S,, R] such that 

(i) IV(k,u)) 5 1i/(llull) for all (k,u)  E N(a)  x S,, where $ E ti 

(ii) for every S > 0 there exists an U' with llu'll 5 S such that 
V(a,uO) < 0 

(iii) AV(k,u(k,a ,u' ) )  5 -4(lIu(k,u, uo)ll), where 4 E t i ,  for any 
solution u(k) = u(k,a,u') of (1.2.8) such that llu(k)ll < p, 

then tjhe trivial solution u(k,a,O) = 0 of the difference system (1.2.8) is 
unstable. 

Proof. Let the trivial solut,ion of (1.2.8) be stable. Then, for every t > 0 
such that t < p,  there exists a 6 = ~ ( E , u )  > 0 such that llu'll < S 
implies that IIu(k)ll = Ilu(k, a,u')II < E for all k E lN(a) .  Let U' be such 
that //U'\\ < S and V(a,u') < 0. Since \\U')) < 6, we haw 11u(k)11 < E. 
Hence, condition (i) gives 

Now from condition (iii), it follows that V(k, u(k)) is a decreasing function, 
and therefore for every k E N(a ) ,  we obtain V(k,u(k)) I V(a,u') < 0. 
This implies that IV(k,u(k))I 2 IV(a,u')I. Hence, from condition (i) we 
get Ilu(k)II 2 $-l( lv(a ,uo)l ) .  
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From condition (iii) again, we have A V ( k , u ( k ) )  5 -4(\lu(k)ll), and 
hence 011 sumrrling this inequality between a and k - 1, we obtain 

I:-l 

V ( k ,  u(k)) I v(% uO) - c 4(II4e)ll) .  
I=a 

However, since 11u(k)11 2 ~ ~ - l ( ~ V ( u , u o ) ~ ) ,  it is clear that $(IIu(k)il) 2 
~(~~-l(~V(u,uo)~)). Thus, we have 

V ( k ,  4k)) I V ( %  uO) - ( k .  - a)4($-1(lv(a, U0)l)). 

But  this shows that limk.m V ( k ,  u(k)) = -00, which contradicts (5.10.1). 
Hence, the trivial solution of (1.2.8) is unstable. I 

Theorem 5.10.5. Let g(k, T) be defined on N(a) x R+ and nondccreas- 
ing i n  T for anv fixed k E lN(a) .  Further, let there exist a positive definite 
scalar function V ( k , u )  E C[lN(a) x S,,R+] such that for all k E lN(u.) 

AV(k,u(k,a,uO))  5 g ( k ,  V ( k , U ( k , U , U O ) ) )  

for any solution u(k) = u(k-,a,uO) of (1.2.8) such that IIu(k)\/ < p. 
Then, the trivial solution u ( k ,  a, 0) 0 of (1.2.8) is stable (asymptotically 
stable) provided the trivial solution r ( k , a , O )  0 of (5.1.9) is stable 
(asymptotically stable). 

If in addition the function V ( k ,  U )  is decrescent also, then the t,rivial 
solution u(k, Q ,  0) = 0 of (1.2.8) is uniformly stable (uniformly asymp- 
totically stable) provided the trivial solution r ( k , a , O )  0 of (5.1.9) is 
uniformly stable (uniformly asymptotidly stable). 

Proof. If V(., U(.)) 5 ~ ( a ) ,  then it is easy to deduce that V ( k ,  u(k)) 5 
~ ( k ) .  From this the conclusions are immediate. I 

Theorem 5.10.6. If there exists a positive definite scalar function V ( k ,  
U) E C[N(a )  x S,,R+] such that AV(k ,u ( k , a ,uo ) )  5 - c//u(k,a ,u0) l l~  
for any solution u(k) = u(k ,a ,uo )  of (1.2.8) such that Ilu(k)II < p, 
then the trivial solution u(k, a ,  0) = 0 of the difference system (1.2.8) is 
sP- stable. 

Proof. Since all the conditions of Theorem 5.10.1 are satisfied, the trivial 
solution of (1.2.8) is stable. Therefore, given 0 < E < p there exists a 
S = h ( € ,  a,) such that l l u o l l  < S implies that Ilu(k, a,uo)ll < F. Let 
W ( k )  = V ( k , ~ ( k ) )  + CC::: I I u ( ! ) ~ ~ ” .  Then, A W ( k )  = AV(k ,u (k ) )  + 
cl/u(k)/I” 5 0, and hence W ( k )  5 W ( a )  = V ( a , u o )  for all k E lN(a).  
Therefore, C!:: IIu(!)II” 5 ( l / c ) V ( u , u o ) ,  and hence C,“=, IIu(e)IIP < 
m. I 
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5.11. Stability of Discrete Models 

in Population Dynamics 

The basic model equations which concern us here are of the form (5.4.1) 
where for each i ,  1 5 i 5 n, ui(k) is nonnegative for all k E W and the 
f i  are nonnegative functions of u1, ... ,un. In the context of population 
biology ui(k) is related to the magnitude of the population of the ith 
species at time k (although each population varies continuously, v.i(k) can 
be thought of as representing, say, the maxima, average or total population 
of the ith species at time k ) .  To study the stability properties of the critical 
points of such systems we need to modify slightly some of the results proved 
in Section 5.9. For this, first we give a variation of the original definition 
of Lyapunov functions. 

Definition 5.11.1. Lct, R+ be any set in IRf. The scalar function 
V(u)  defined on R+ is said to be a Lyapurlov function of (5.4.1) provided 

(i)  V is continuous, and 

(ii) A V ( u )  = V(f (u) )  - V(u)  5 0 for all U E R+. 

Theorem 5.11.1. Let U = U be a critical point of the difference system 
(5.4.1), and lct there exist a Lyapunov function V(u) of (5.4.1) on R: 
with a unique global minimum at U, V(u)  "-f 00 as llull -+ cc arid 
11.i -+ O+ for each i ,  1 5 i 5 n and AV(u) < O for all U E al., with 
U # U then U is globally asymptotically stable. 

Theorem 5.11.2. Suppose that there exists a Lyapurlov function V(u) 
of (5.4.1) on Rl., and V(u)  -+ cc as llull -+ m. Let the set E = 
{U E R; : A V ( u )  = 0}, and M be the largest invariant set of E. If 
M is compact, then every solution u(k,O,uO) of (5.4.1) starting in R: 
approachcs M as k "-f m. 

For population models the set M often consists of the origin and the 
positive critical point U of (5.4.1). To prove that ii is globally asymp- 
totically stable by Theorem 5.11.2 we need to establish that no solution 
starting in Rnf can approach the origin as k "-f m. W e  state as a sepa- 
rate theorem, the case when M consists either of ii or the origin as well 
as U. 

Theorem 5.11.3. Suppose that the conditions of Theorem 5.11.2 are 
satisfied, and either (i) M = {U}, or (ii) M = {O,U}, and no solution 
starting in Rnf can approach 0 as k "-f 00, then ii is globally 
asymptotically stable. 
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Remark 5.11.1. If we can express the system (5.4.1) in the form 

PL,(k + 1) = Ui(k)f,(U(k)), 1 5 i 5 n 

where each f i  is positive, then no solution starting in IR: can approach 
the origin as k + 03 provided f . i ( O )  > 1 for some i, 1 5 i 5 n. 

Example 5.11.1. Consider the model given by 

(5.11.1) w,(k + 1) = X?/,(k)/(I  + c r u (k ) ) ’ ,  k E IN 
where u ( k )  and u ( k  + 1) are the populations in successive generations, 
X is the finite nett rate of increase (X > 1) and cr and p are constants 
defining the density dependent feedback term. The positive critical point 
of this model is at U, = (1 - B)/(crB), where B = X-’/’ (0 < B 1). If 
we make the change of variable 11 = u/E,  then equation (5.11.1) bccorncs 

(5.11.2) w(k + 1) = 71(k) / (Q + (1 - f I )V(k) )P .  

A V ( ~ )  = [ l I l v  - plIi(e + (1 - Q ) ? , ) I ~  - [ 1 ~ ~ ~ ~ ] 2  

Let V(?)) = (11i7J)2, then 

= -p lI1(e + (1 - q 4 [ 2  lr l  ?I - p lI1(e + (1 - 

The function ln(B+(l -B )? ) )  is negative for 11 E ( 0 , l )  and positive for 11 E 
( 1 , ~ ) .  It rcrnains tocxarnine thc function h(v )  = 21Ii7~-~1rl(B+(l-B)w). 
NOW, h(1) = 0, h(w) < 0 as 7) + 0+, h(71) - ln(?~~-P/(l-B)fl) a s v  + 03 

and h’(?)) = [26’ + u(1 - Q)(2 - p)]/[v(B+ (1 - 1 9 ) 1 1 ) ] .  If we restrict p so 
that 0 < [j 5 2, then h,(w) > 0 as 71 + 03 and h’(?)) > 0 for all W > 0. 
This implies that h(w) < 0 for ‘U E (0, l )  and h(u) > 0 for W E ( l ,~ ) ,  
i.e. AV(w) < 0 for all ‘U > 0 and w # 1. Hence, from Theorem 5.11.1 
the critical point 77 = 1 of (5.11.2) (or equivalently, B = (1 - B)/(crB) of 
(5.11.1)) is globally asvrnptotically stable if E (0,2]. 

Example 5.11.2. Consider the two species cornpetition model given by 

(5.11.3) 

wherc X1 and X2 are the finitc rates of increase of the two species, 71 
and 72 are the competition coefficients and ( ~ 1 ,  ( ~ 2 ,  PI and p2 are 
constants defining the form of the feedback relationships. If we scale the 
populations with respect to their carrying capacities ~i = (l/Q,i - l)/cri, 

where Bi = XL1/P’, 0 < Qi < 1, i = 1,2, then we can rewrite the equations 
as 

(5.11.4) 

U.l(k + 1) = X lU l ( k ) [ l+  CYl(Ul(k) + Tlw,2(k))]-” 

7L2(k + 1) = X 2 ~ 2 ( k ) [ l +  0 2 ( ~ 2 ( k )  + 72~1(k) ) ]-” ,  k E IN 

~ ( k  + 1) = t j l ( k ) [ e l  + (1 - e,)(wl(k) + dlw2(k))]-P1 

a 2 ( k  + 1) = W2(k)[e2 + (1 - e 2 ) ( 7 4 k )  + d 2 w 1 ( ~ ) ) ] - ~ z ,  
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where dl = ylr2/rl  and dz = yzrl/rz. The positive critical point of 
(5.11.4) is given by F1 = (1 - d l ) / ( l  - dl&), 112 = (1 - d 2 ) / ( 1  - dl&),  
where E (0 , l ) .  For the critical point we shall show that the system is 
globallv asvrnptotically stable if 81 = 82  = Q and B,, E (0, l], i = 1 , 2 .  For 
this, we need the following two elerncntary inequalities 

(5.11.5) h ( l - t )  5 -t for all t E (-m, l),  with equality only when t = 0, 
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Example 5.11.3. Consider the model given by 

(5.11.7) u ( k  + 1) = 7r(k)cxp(r(l - u , ( k ) / X ) ) ,  k E W 

where T is the growth rate and X is the carrying c:apacity. We shall show 
that thc critical point E = X of (5.11.7) is globally asymptotically stablc, 
if T E (0,2]. For this, let 'U = ?],/X so that the equation (5.11.7) becomes 

(5.11.8) v ( k  + 1) = l i ( k )  cxp(r(1 - 7 I ( k ) ) ) .  

Let V(.) = (U - I)', then 

AV(?))  = - 71h,(71)[1 - exp(r(1 - U))], 

whcrc h(v) = T I ~ x ~ ( T ( ~ - v ) ) + T I - ~ .  Now h,(O) < 0, h(1) = 0 and h , ( l ~ )  > 0 
for 71 2 2. Consider 71 E (0,2) with I I  # 1. Obviously, h(v)  = 0 if 

2 - l1 1 
T = (A) l11 (") . If ?I E (0, l), thcn let W = - > 1 so that 

1 - 1) 

T =  W ( l I l ( l + ~ )  -l+:)} = w{F(-l)p+lc+Fy} p=1 p p=l 

1 
Similarly, if v E (1, a), then let W = - 

l1 - 1 
> 1 so that 

Hence, for T E (0,2] we have that h(?)) < 0 for v E (0,1) arid h(v)  > 0 
for 'U E ( 1 , ~ ) .  Thus, V ( v )  is a Lyapunov function of (5.11.8) i n  R+. 
The set of points in R+ where AV(u)  = 0 consists only of 0 and 
1, and from Remark 5.11.1 no solution starting in R+ can approach 0 
as k --f 00. Thcrefore, from Theorem 5.11.3 the critical point 5 = 1 
of (5.11.8) (or equivalently, E = X of (5.11.7)) is globally asymptotically 
stable if T E (0,2]. 

Example 5.11.4. A model of two competing species is 

- 

Ul (k+ l )  = Ul(k)exp(Tl[Xl-cullv.l(k)-CY12W~2(k)]/Xl) 

u,2(k+1) = ~ 2 ~ ~ ~ ~ ~ P ~ ~ 2 ~ ~ 2 - ~ 2 1 ~ ~ 1 ~ ~ ~ - - 2 2 ~ 2 ~ ~ ~ 1 / ~ 2 ~ ,  k E IN 
(5.11.9) 

where ~i and X, are growth rates and carrying capacities and aiJ the 
competition cocfficients. If we scale the populations with respcct to thcir 
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carrying capacities and let dl1 = ( ~ 1 1 ,  dl2 = a 1 2 X 2 / X l r  d21 = a 2 1 X 1 / X 2  

and d22 = 0 2 2  the system (5.11.9) becomes 

(5.11.10) 
v l ( k  + 1) = 711(k) eXp(Tl[1 - dll?il(k) - d12'IJ2(k)]) 

7%2(k + 1) = v2(k)exp(rz[l - dzlvl(k) - d22712(k ) ] ) .  

The positive critical point of this system occurs at 'iT1 = (d22-d12)/D, F2 = 
(dl1 - dzl)/D, where D = dlld22 - d12d21. Now following similar lines as 
in Examples 5.11.2 and 5.11.3 it follows that this critical point of (5.11.10) 
is globally asymptotically stable provided r1 = r2 = T whcrc T E (0, l]. 

Now let u ( k )  denote the adult breeding population in the year k and 
suppose the recruitment to the breeding population takes place R - 1 (n > 
1) years after birth. A model of this type is provided by the so called 
d e l a y d i f f e r e m e  equ.ation, 

(5.11.11) u(k + 1) = SU(k) + (1 - S)g(u(k - n + l)), k E W 

where S E [0, 11 is a survival c:oeffic:ient and the term ( l-S)g(u(k-n,+l))  
rcpreserh recruitment. In system form equation (5.11.11) can be written 
as 

U i ( k  + 1) = Ui+l(k), 2 = 1 ." n - 1 

+ 1) = SU.n(k) + (1 - S)g(u1(k)) ,  
(5.11.12) 

7 ,  

where u(k )  E R; for each k E W and is defined by 

(5.11.13) .i(k) = ?L(k + i - n), i = 1,. . ' ,R. 

In what follows we assume that no solution of (5.11.11) in which the 
populations are initially positive can approach the origin as k 4 CO. If 
the origin is a critical point, i.e. g(0)  = 0, then a sufficient condition for 
no solution to approach the origin is g'(0) > 1. 

Theorem 5.11.4. Let U = be a positive critical point of the delay 
difference equation (5.11.11), i.e. U = g@). If there exists a convex 
function V ( v )  which is a Lyapunov function of the scalar equation 

(5.11.14) v (k+ 1) = g(u(k))  

on R+ and V ( v )  4 cc as v -+ CO then E of (5.11.11) is globally 
asymptotically stable. 

Proof. Comparing the system (5.11.12) with (5.4.1), we have 

- 

V(fL(U)) = V(V.L+l), i = 1 7 1  .'. n - 1 
V(fn.(U)) = V ( S % ?  + (1 - S ) g ( w ) )  5 W ( % )  + (1 - S ) V ( g ( w ) ) .  
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Example 5.11.5. Consider the stock recruitrnent model 

(5.11.15) u.(k + 1) = S7L(k) + ru.(IC - n + 1) 
1 + wu(k - n. + 1) ' 

where the critical population is given by WE = - - 1, and the 

parameters r and S satisfy 0 < 1 - S < r < 1. The associated scalar 
equation corresponding to (5.11.14) is 

(1 - S)  

(5.11.16) v ( k +  1) = 
7-7) (IC) 

(1 - S)(1+ wv(k ) ) '  

Let the convex function V(.) bc V(v) = 1v - cl. Since 

we find that V(g(v)) I v(71) for all v > 0. Thus, V(.) is a Lyapunov 
function of (5.11.16) in R+. Therefore, by Theorem 5.11.4 the critical 
point E of (5.11.15) is globally asyrnptotically stable. 
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Example 5.11.6. Consider the stock rccruitInent modcl 

(5.11.17) ~ . ( k  + 1) = S U ( ~ )  + X U ( ~  - n, + 1) exp(-q~,(k - n, + l)), 
where the critical population is given by X exp(-qZ) = 1 - S, and the 

parameters X and S satisfy 0 < - < e’. The associated scalar 

eqmtion corresponding to (5.11.14) is 

(5.11.18) 

X 
(1-S) - 

x 
74k + 1) = - v(k )  cxp(-qv(k)). 

(1 - S )  
X 

l - S  
If we let T = 111 - arid Z = X = ~/q, then (5.11.18) is the same 

as (5.11.7). However, in Example 5.11.3 WE have seen that for (5.11.7) 
the function V(?].) = (71. - X)2 is a Lyapurlov function in R+ provided 
T E (0,2]. Therefore, by Theorem 5.11.4 the critical point E of (5.11.17) 
is globally asymptotically stable. 

5.12. Converse Theorems 

All the results discussed i n  Sections 5.9 and 5.10 provide only sldficicnt 
conditions, they give 110 idea on how to construct Lyaplmov functions for 
a given difference system. In fact, there is no general rrlethod to construct 
such functions. But ,  here assurrling certain stability properties of the given 
difference system we shall providc the construction of the Lyapurlov func- 
tions. These types of results arc called corlvcrse theorems and play a very 
important role in studying the properties of solutions of perturbed systems. 

Theorem 5.12.1. Suppose that the linear system (1.2.12) is uniformly 
asymptotically stable. Then, there exist constants c > 1, X > 0 and a 
scalar function V(k ,u )  in N(a )  x S, such that 

(4 llull 5 V(k.14 5 cllull 

(5.12.1) A V ( ~ ,  u(k)) 5 - (1 - e-’)V(k, u(k)) 

(ii) for any solution u(k) = u(k,a ,u0)  of (1.2.12) such that llu(k)11 < p 

(iii) for k E N ( a ) ,  U, v E S,, 

(5.12.2) IV(k, U) - V ( k ,  v)l 5 cllu - v/I. 

Proof. Since (1.2.12) is miformly asymptotically stable, from Theorern 
5.5.1 (v) there exist constants c > 1 and X > 0 ~ 1 1 ~ 1 1  that the solution 
~ ( k )  = u(k, a.,uo) of (1.2.12) with u(k) E S,, E ~ ( a )  satisfies 

(5.12.3) l l 4 k ) I l  5 cexP(-X(k. - ~ ) ) 1 1 ~ ( ~ ) 1 1  
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whic:h is t,hc same as (5.12.1). 

Finally, from the linearity of (1.2.12), it is obvious that 

u(k + 7, k ,  U) - u(k + 7, k ,  v )  = u(k + 7, k ,  U 

and herlce, from the ticfinition of V(k,  U), we have 

IV(k,u) - V(k,V)l 5 sup Ilu(k + 7-, k ,  U) - u(k + 
T E N  

Remark 5.12.1. In view of Rerrlark 5.5.2 and Tllcorcrrl 5.10.3, Theo- 
rem 5.12.1 can also 1)c regartlcd as a CoIlversc tllcorerrl for the cxpormltial 
asyrnptot,ic: stabilit,y of (1.2.12). 

Lemma 5.12.2. The trivial sollltiorl u(k, a ,  0) E 0 of (1.2.8) is miforrrlly 
stable if and 011ly if therc cxists a function E IC such that llu(k)ll 5 
$(\Iu(!)II), k- E IN(!), whenever 2 a and IIu(l!)II < p. 

Proof. The sufficicncv of the given condition is obvious. We shall 
show that this condition is also rlcccssary. Suppose the trivial solution 
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u(k, a ,  0) 0 of (1.2.8) is uniforrrlly stable. Then, for a given F such that 
0 < E < p, there exists a S = S ( F )  > 0 sllch that the inequalities e 2 a 
and IIu(e)II < S imply llu(k)11 < E for all k E N(t). Let 61 = SI(€) be the 
least upper bound of all numbers S. Clearly, if e 2 a and IIu(P)II 5 51 
then llu(k)II < E for k 2 e. Also, for every 52 > S1 there exists some 

k-1 2 e and some u(k-1) E S,, llu(k1)ll 5 62, such that llu(k)II exceeds 
the value E at some value of k 2 kl. Obviously, the function &(E) is 
positive for F > 0, nondecreasing, and tends to zero as E "--f 0, but it may 
be discontinuous. However, WC can always choose a positive, continuous, 
and monotonically increasing function 8 = 8 ( ~ )  satisfying 8(~) 5 s~(F). 
Let li/ be the inverse function of 8. Then, for u(k) E S,, e 2 Q arid 
llu(P)l/ 5 8, there exists an 61 > 0 such that e 2 a and IIu(e)II 5 8(~1) 
imply llu(k)il 5 61 5 li,( llu(!)II) for k 2 e. I 

Theorem 5.12.3. Suppose that the trivial solution u(k,a,O) = 0 of 
(1.2.8) is uniforrnly stable. Then, there exists a positive definite and decres- 
cent scalar function V ( k ,  U) in N(a) x S, s11c:h that, A v ( ~ ,  u(k, a ,  U')) 5 
0 for any solution u(k) = u(k,a,u') of (1.2.8) with llu(k)11 < p. 

Proof. Define a scalar function 

(5.12.5) V(k,u) = sup lju(k+7,k,u)ll. 
T E N  

Clearly, supTEm /lu(k + T ,  k ,  u)II 2 Ilu(k, k ,  u)ll = IIuII. Moreover, from 
Lemma 5.12.2 there cxists a function li/ E K such that llu(k + 7, k ,  U)/[ 5 
$(llu(k, k ,  U[[) = $(llu/l), for all T E IN. Thus, V(k, U) 5 $(~~u~~). 

Next, for every solution u(k) = u(k, a, U') such that IIu(k)ll < p, we 
have 

v(k, U(k, a, U')) = SUP IlU(k + 7, k ,  U(k, O., U'))ll 
T E N  

= sup Ilu(k + T,a,u')//. 
T E N  

Thus, it follows that 

V(k + 1, u(k + 1, a,u')) = sup llu(k + 1 + 7, a ,  u0)l1 
T E N  

= V(k, u(k, a., U')). I 

Theorem 5.12.4. Suppose that the trivial solution u(k, a,O) 0 of 
(1.2.8) is -5,-stable arid IIu(k,a,u')ll 5 h(k)$(IIu'II), where .4'/ E K and 
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the function h,(k) is defined and nonnegative on IN with C,“=, h p ( C )  = 
H < m. Then, there exists a positive definite and decrescent scalar function 
V ( k ,  U )  in N(u)  X S, such that A V ( k ,  u ( k ,  a ,  U’ ) )  5 -IIu(k, Q,  uo)ll” for 
any solution u(k )  = u(k ,n ,u0)  of (1.2.8) with Ilu(k)II < p. 

Proof. Define a scalar function 

CO 

(5.12.6) V ( k ,  U )  = c lju(k + 7, k ,  u)II”. 
7=0 

Clearly, V ( k , u )  2 IIuI lP .  Morcover, V ( k 7  U )  5 $ ~ ( ~ ~ u ~ ~ )  hP(r)  = 
Hli/”(llull). Also, 

CO 

A V ( ~ , U ( ~ , Q , , U O ) )  = ~ ~ ~ ~ ( k + ~ + l , k + l , ~ ( k + 1 , ~ , u ~ ) ) ~ j ”  
7=0 

00 

- 1 llu(k + 7, k ,  u (k ,  U ,  U0) ) l l ”  

T T 0  
cc CO 

= “llU(k, a, UO))ll”. I 

Theorem 5.12.5. Suppose that the trivial solution u(k,a,O) 0 
of (1.2.8) is uniformly asymptotically stable, and for all ( k , u ) ,  ( k , v )  E 
IN(a) X S,, the function f(k, U )  satisfies the Lipschitz condition 

(5.12.7) l l f(k,  U )  - f ( k 7  v)ll 5 LllU - 

Then, there exists a positive definite and decrcsccnt scalar function V ( k ,  U )  

in lN(a)xS,, such that AV(k ,u (k ,a ,u0 ) )  5 - ~ ~ ( ~ ~ u ( k + 1 7 u , u o ) ~ ~ ) ,  where 
IJ E K, and V ( k , u )  satisfies the Lipschitz condition (5.12.2). 

Proof. Define a scalar function G ( r )  such that G(0) = G’(0) = 
0 ,  G’(r )  > 0, and G”(r)  > 0. Let Q > 1. Since G(r)  = si d t l  Ji’ G”(t)dt, 

and G ( ~ / Q )  = dtl si1 ~ ” ( t ) d t ,  on setting tl = tz/cy, we obtain 

G(r/rw) = ( l/a )  J i  d t z  si”” G”(t)dt < (l/rw) si dtz siz G”(t)dt = ( l / a )  
x G ( r ) .  Now define a scalar function V ( k ,  U )  as 

(5.12.8) V ( ~ , U )  = SUP G ( l l ~ ( k  + T ,  k,~)Il)-. 
1 + ar 
1 + 7  

T € I N  

Then, for 7 = 0, we get G(lluj1) 5 V ( k , u ) .  Since thc trivial solution 
u(k,a,O) 0 of (1.2.8) is uniforrrlly stable, by Lcrnma 5.12.2, we have 
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I V(k ,u (k ,a ,uO) )  1 - [ (l+Tl)(l+(Y+(YTl) 
O - - l  1 ,  

from which, we obtain 

However, (5.12.7) gives \lu(k + l)il L Ilf(k,u(k))ll 5 Ll/u(k)ll, and hence 
llu(k)II 2 (l/L)llu(k + 1)11. Therefore, we obtain 

Sincc K is a decreasing function, the function 41 is strictly increasing; 
and since G(0) = 0, it is clear that li/ E K. Now we shall find a 
function G so that V satisfics the Lipsehitz condition (5.12.2). For this, 
OIKC agairl since the trivial solution of (1.2.8) is urlifornlly asvmptotically 
stable, for p > 0 there exists a 6(p) such that for u l ,  u2 E 
the solutions u(k,a, ,ul) ,  u(k,a ,u2) of (1.2.8) remain i n  S,. Setting 
r1 = llu(k + T1,k,ul)ll and r2 = I/u(k + T1,k,u2)ll. Since G ( r )  is 
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and hence 

V(k ,u2)  = G ( ~ ~ u ( ~ + T ~ , ~ , u ~ ) I I ) -  
1 + 071  2 V(k,u' )  - cyAllul - u211. 
1 + T1 

Thus, in both cases r2 2 r1 and r1 2 7-2, V(k,  U) satisfics the inequality 

V (k ,u2)  - V(k,u' )  2 - cvAllul - u211. 

B y  interchanging the roles of u1 and u2 in this inequality, we obtain 

V(k,u' )  - V(k ,u2)  2 - cvAllu' - u211, 

and hence, by combining the two foregoing inequalities, we get 

IV(k,ul )  - V(k,u2)1 5 cvAllu' - u211, 

which is the same as (5.12.2) with c = aA. I 

5.13. Total Stability 

Converse theorems developed in the preceding section can be used to 
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obtain certain stability properties of the solutions of perturbed difference 
systems. We shall show that the uniform asymptotic stability of the trivial 
solution of (1.2.8) has also certain stability property under different classes 
of permanent perturbat,ions. 

Definition 5.13.1. The trivial solution u(k,a,0) 0 of (1.2.8) is said 
to be totally stable (or, stable under constantly acting perturbations) 
if, for cvcry c > 0, therc cxist two positive numbcrs 61 = &(c)  and 
62 = 62(6) such that, for every solution v(k) = v(k,a,vo) of (5.7.1) thc 
inequalities a 5 kl E N(a )  and llv(kl)/\ < 61 imply that llv(k)11 < E for 
all k E JN(a), provided llg(k,v)ll < 62 for llvll < 6 ,  k E N(a). 

Theorem 5.13.1. If the trivial solution u(k,a,0) 0 of (1.2.8) is 
uniformly asymptotically stable and for all (k,u),  (k,v)  E N(a) x S,, the 
function f(k,u) satisfies the Lipschitz condition (5.12.7), then it is totally 
stable. 

Proof. Let, u(k) = u(k,a,u0) be a solution of (1.2.8). From the hy- 
pothcses of Ilniforrn asvmptotic stabilit,y of the trivial solution of (1.2.8) and 
Theorem 5.12.5 it follows that for 0 < c < p, there cxists a 0 < 6 (c )  < p 
such that the inequalities a. 5 k l  E N(o.) anti IIu(k1)ll < 6(c)  imply 
llu(k)II < E for all k E JN(k l ) .  Morcovcr, there exists a scalar funct,ion 
V(k,u) i n  N(a) x S,, such that 

(i) . . ( 1 1 ~ 1 1 )  L V ( k , U )  L P(lluIl), where %P E K: 
(ii) AV(k,u(k)) I -$lIu(k + 1)11), li, E K: 
(iii) V(k,  U) satisfies t,he Lipschitz condition (5.12.2). 

Let 0 < c1 < 6(r), and choose 61 > 0, 62 > 0 so that y(261) < 
o(c1), 62 I 61, and 62 < $(61)/c. Suppose that €1 is so srnall that 
Lc1 + 62 < 6(c).  Let Ilg(k,v)ll < 62 for llvll < 6 1 .  Then, for llvll < €1, 

we have llu(k + I,k,v)ll = Ilf(k,u(k,k,v))l/ = llf(k,v)ll I ,561, and 
~ ~ v ( k + l , k , v ) - u ( k + 1 , k , v ) ~ ~  = Ilg(k,v)ll <S,, also lIv(k+l,k,v)ll L 
Ltl  + 62 < S(€). Therefore, for llvll < 6 ,  it follows that 

V ( k + l , v ( k + 1 , k , v ) ) - V ( k , v ( k , k , v ) )  

= V ( k + l , u ( k + 1 , k , v ) ) - V ( k , v ) + V ( k + l , v ( k + 1 , k , v ) )  

- V ( k  + 1, u(k + 1, k ,  v))  
I - 1i/(llu(k + l ,k,v)l l)  + cllv(k + l , k , v )  - u(k + l ,k,v)ll 
L - ?/j(lIu(k + 1, k,v)ll) + c62 

(5.13.1) < - 1i,(llu(k + 1, k,v)ll) + +(61). 
Now suppose that there is an integer k.1 > a and a v', //v1  1 1  < 61 such 
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that IIv(k,a,vl)(l < €1 for all k E IN(0,k.l -l), arid ~ ~ v ( k l , u , v l ) \ ~  2 F'. 
It then follows that 

Corollary 5.13.2. Suppose that the conditions of Theorern 5.13.1 are 
satisfied, and for all (k,v)  E N(a )  x S,, Ilg(k,v)ll < p(k)\\vll, where 
p(k)  + 0 monotonically as k + CO. Then, the trivial solution v(k, a,, 0) 
0 of (5.7.1) is uniforrrlly asymptotically stable. 

Proof. As in Theorem 5.13.1, we find 

5.14. Practical Stability 

Here we shall introduce another type of stability, which is somewhat 
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connected with total stability, but finds importance in the numerical corn- 
putation of the solutions of recurrence relations where certain errors cannot 
be made arbitrarily small. 

Definition 5.14.1. The trivial solution u(k,a,O) 0 of (1.2.8) is said 
to be pTactically stable, if there exists a neighborhood S of the origin 
and kl E N(a) sllch that the solution v(k,a,,v') of (5.7.1) remains in 
S for all k E IN(k1). 

Theorem 5.14.1. Suppose that for all (k,u),  (k-,v) E N(a) x R the 
function f(k,u) satisfies the Lipschitz condition (5.12.7) with L < 1, 
and Ilg(k,v)ll < 6. Then, the trivial solution u(k, n ,  0) = 0 of (1.2.8) is 
practically stable. 

Proof. Let v(k) = v(k,a,,v') be a solution of (5.7.1). For this solution 
obviously we have Ilv(k + 1)11 5 Lllv(k)11 + 6, and hence llv(k)ll 5 
Lk:-all~oI/ + S/(1 - L ) .  Thus, if we choose kl E N(a )  suitably, then for 
all E IN(kl), llv(k-)II < 1 + 6(1 -L)-' = p, i.e. v(k) E S,. I 
Theorem 5.14.2. Sllpposc that there exist two scalar func:tions V(u), 
W(u) E C[f2,lR], sllch that for all U E 0 ,  V(u) 2 0, and AV(u) = 
V(f(k, U) + g (k ,  U)) - V(u) _< W(u) 5 CY,  where CY 2 0 is some constant. 
Let z = {U E L : ~ ( u )  2 o}, 0 = sup{V(u) : U E Z }  arid S = {U E L : 
V(u) 5 ,l3 + a}. Then, every solution of (5.7.1) which rcrnairls in R and 
enters in S for k = k l  rerrlains i n  S for all k E IN(k1). 

Proof. Let v(k) = v(k, a, v') bc a solution of (5.7.1). If v(k.1, a ,  v') E S, 
then V(v(/q,a,v')) 5 @+cy, and ~ ( v ( / c + ~ , a , v ' ) )  5 v(v(kl,a,v'))+ 
W(v(kl,a,v')). If W(v(kl,a,v')) 5 0, then V(v(kl+l,a,,v')) 5 P+a. 
Also, if v(kl, a,v') E 2, then because V(v(kl,a,v')) 5 0, again it 
follows that V(v(kl + l ,a ,vo))  5 [3 + CY, i.e. v(kl + 1, a,v') E S. Now 
an easy irlduction cxmpletes the proof. I 
Corollary 5.14.3. Let i n  addition to the conditions of Theorem 5.14.2, 
d = sup{W(u) : U E R - S} < 0, then cvery solution of (5.7.1) which 
remains in R must enter in S in a finite number of steps. 

Proof. From AV(u) 5 W(u) for the solution v(k) = v(k,o.,vo), we 
get v(v(/c, a ,  vo)) 5 ~ ( v ' )  + C::,' ~ ( v ( e ,  a, v')> 5 ~ ( v ' )  -t d(k - a ) ,  
from which it follows that V(v(k,a,v')) 4 -CO as k --f CO. But, 
V(v(k, a, v')) 2 [)+CY for v(k, a, v') E R-S. This contradiction completcs 
the proof. I 

5.15. Mutual Stability 

Consider the difference systems (5.1.1) and 
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(5.15.1) Av(k) = g(k,v(k)), 

where the functioIls f (k ,  U) and g ( k ,  v )  are defined on lN(a.) x R, and 
the scalar difference equations (5.1.9) and 

(5.15.2) AR(k)  = h(k, R ( k ) ) ,  

where the functions g(k,  r) and h,(k ,  R )  are defincd 011 N(a )  x R+, 
h(k, r) 5 g ( k ,  r), arid nondecreasing i n  the second argurncnt for any fixed 
k E N(a). 

Definition 5.15.1. Any two solutions u(k) = u(k, a, U') and v(k) = 
v(k,o, ,vo)  of the tfifferencc systems (5.1.1) and (5.15.1) are said to he 

(i) Mutu.ally Stable if, for cach 61 > 0, there exist 61 = Sl(61, a,), 62 = 
62(€1,a,) and 62 = c2(Flrn. )  such that O < 6 2  < 62 5 61 < 61 and 
62 6 JJuo - voJ/ I 61 imp1.v 6 2  < JJu(k) - v(k)Jj < 61 for all k E ~ ( a ) .  

(ii) Mutu,all?~ Att,ractl.we if there cxist 61 = &(a.) and 62 = & ( a ) ,  such 
that O 6 S2 5 61 ancl 62 5 jluo-voII 5 61 imply that Ilu(k) -v(k)ll --f o 
as k 4 CO. 

(iii) Mutuallg Asymn,ptoticall?y Stable if they arc rrlutually stable and rnu- 
tually attractivc. 

Definition 5.15.2. Any two solutions r ( k )  = r ( k , a , r o )  and R(k)  = 
R(k,  a, R') of the difference equations (5.1.9) and (5.15.2) are said to be 

(i) Mu,tually Stable if, for cach 71 > 0, there exist v1 = vl (v1, a ) ,  v2 = 
v2(771, a) and 772 = 772(771, a )  such that 0 < 72 < v2 L v1 < 71 and 
v2 L Ro 5 ro 5 v1 imply 72 < R(k) I r ( k )  < 71 for all k E ~ ( a ) .  

(ii) Mu.tu.ally Attractive if there cxist S1 = &(a) and 62 = &(a), such 
that O 5 62 5 61 and 62 5 R' 5 r o  5 61 imply that ~ ( k )  5 r(k) for all 
k E IN(a) and r(k) - R(k) +O as IC-+ M. 

(iii) Mutu,ally Asymptotically Stable if they are rnutually stable and mu- 
tually attractive. 

Theorem 5.15.1. In addition to the hypothcscs on the functions f(k, U), 
g(k,v), , 9 ( k , r )  and h , ( k ,R)  assume that for all (k,u),  (k,v)  E N(a )  x R 

Then, any two solutions u(k) = u(k, a,uo) and v(k) = v(k,a,v0) of 
(5.1.1) and (5.15.1) are mutually stable; or rnutually attractive; or mutually 
asymptotically stable, providcd any two solutions r ( k )  = r ( k , a , r o )  and 
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R ( k )  = R(k ,  a, R') of (5.1.9) and (5.15.2) are mutually stable; or mutually 
attractive; or rnutually asymptotically stable. 

Proof. If 0 L Ro 5 lluo - v'// 5 TO, then it is easy to deduce that 

R(k,  a, RO) I Ilu(k, a, UO) - v(k, Q, VO) 1 1  5 T(k,  a, P )  
from which the conclusions are immediate. I 

Now let the scalar function V(k,  U, v)  be defined, nonnegative and con- 
tinuous in N(a )  X R x R, arld suppose that for each k. E N(a ) ,  V(k,  U, v )  = 
0 if arld ordy if U = v .  Further, let LV(k,u,v)  denote the expression 

AV(k, u ,v)  = V ( k  + 1, U + f(k, U), v + g(k,  v))  - V(k,  U, v) .  

Theorem 5.15.2. In addition to the hypotheses on the functions ,9(k, T) 
and h(k ,  R )  assnIne that there exists a scalar function V ( k ,  U, v )  E C[lN(a) 
xR x 0, R+] such that 

h(k.3 V(k., U, v))  F AV(k,  U, v)  I g(k, V(k,  U, v ) ) .  

Further, assume that 

(P(IIu - vll) I V ( k , U , V )  I li~(lIU - V I ) ,  

where (P and .IC, E K. Then, any two solutions u(k) = u(k.,a,uo) arld 
v(k) = v(k, a, v') of (5.1.1) and (5.15.1) are mutually stable provided any 
two solutions ~ ( k )  = r ( k , a , r O )  and E ( k )  = R ( k ,  a ,RO)  of (5.1.9) and 
(5.15.2) are rnutually stable. 

Proof. If 0 5 Eo 5 V ( a ,  U', v') 5 TO, then it is easy to deduce that 

R(k,a,RO) 5 V(k,u(IC,a,uO),v(k,a,vO)) 5 r (k,a , rO) 

from which the conclusion follows. I 

5.16. Problems 

5.16.1. Let f(k, U) be defined on N(a )  x R", arld let g(k ,r )  = 
s u p l l u - u ~ l l ~ r  ~ ~ f ( k , u ) ~ ~ ,  where uo E R" is arbitrary. Show that the 
solution u(k, a, U') of (5.1.1) existing on N(a )  satisfies the inequality 
((u(k,u,uo) -uo( (  I r ( k , a , O )  wherc r (k ,a ,O)  is the solution of (5.1.9). 

5.16.2. Assume that g ( k , r )  is nonnegative on N(a)  x R and nonde- 
creasing in T for T > 0 and fixed k. E N(a). Show that the following are 
equivalent 
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(i) given any ro3 > 0 there exists ko E IN(a) and a solution r ( k ,  IC0, r O )  
of the difference equation (5.1.9) such that 

5.16.3. Prove Theorem 5.1.4. 

5.16.4. Prove Theorenl 5.1.5. 

5.16.5. Prove Theorem 5.1.6. 

5.16.6. Suppose that every solution of (1.2.12) is bourlded (tends to zero 
as k 4 m). Show that every solution of (1.2.11) is bounded (tends to zero 
as k --f m) provided at least, one of its solutions is bounded (tends to zero 
as k --f m). 

5.16.7. Let the system (1.2.12) be uniforIrlly bounded, and CEO llb(!)ll 
< 00. Show that every solution of (1.2.11) is bounded. 

5.16.8. Consider the difference system (1.2.12) where d(k) is a complex 
n x n matrix. Show that 

(i) if lirnk-, llu(k)II exists as a finite number for every solution U of 
(1.2.12), then it has a nontrivial solution u0 satisfying limk,, uo(k) = 0, 
if and only if limA:-w n;=:=, dct [A(!)] = 0 

(ii) if A * ( k ) d ( k )  5 Z (* denotes the conjugate transpose) on IN, then 
lixnk-, 11u(k)11 exists as a finite limit for every solution U of (1.2.12) 

(iii) if A*(k)A(k) 5 Z on W and limn,-, n;=:=,det [A([)] = 0, then 
(1.2.12) has a nontrivial solution uo with limk-, ug(k) = 0 

(iv) if limk-w IIu(k)ll 5 co exists for all solutions U of (1.2.12) 
and limk-, n;=, Idet,d(l)I = 00, then it has a solution u0 such t,hat 

limA:-, IIuo(k)ll = 00. 

5.16.9. Let the difference system (1.2.11) be periodic of period K on 
IN. Show that every solution of (1.2.11) is unbounded if it does not have 
periodic solutions of period K .  

5.16.10. Let the difference system (1.2.12) be periodic of period K on 
N. Further, let the condition (5.2.4) hold. Show that 

(i) all solutions of (5.2.19) are bounded provided all solutions of (1.2.12) 
are bounded 
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(ii) all solutions of (5.2.19) tend to zero as k + cm provided all solutions 
of (1.2.12) tend to zcro as k --f 00. 

5.16.11. Let for all (k,u) E W X R" the functions f'(k,u), i = 1,2 
be defirlcd, and for all (k,u),  (k,v)  

IIU - v + fl(k-,u) - f2(k ,v)// 5 IIU - VI1 + s ( k ,  I b  - VII), 

where ,9(k,r)  is defined for all ( k , r )  E W x R+, and T + g ( k , r )  is 
norldecreasing i n  T for any fixcd k E W. Further, lct for each TO 2 0 the 
solution ~ ( k )  = ~ ( k ,  0 ,  TO) of (5.1.9) tend to zero as k + cm. Then, for thc 
solut,iorls ui(k) = ui(k,0,u2), i = 1,2 of Au(k) = fi(k,u(k)), ui(0) = 
U', i = 1,2 show that lirrl~-m(ul(k) - u2(k)) = 0. 

5.16.12. Let for all (k,u) E W x IR" the function f(k,u) be defined, 
arid for all ( k ,  U), ( k ,  v )  

IIU - v + f ( k ,  4 - f(kv)Il I IIU - VI1 + s ( k . ,  //U - vll), 

where g ( k , r )  is as in Problcrn 5.16.11. Further, let for each TO 2 0 thc 
solution r(k)  = ~ ( k , o , r O )  of A r ( k )  = g ( k , r ( k ) )  + ]lf(k,O)ll, r (0 )  = TO 
tend to zero as k + cm. Show that for each uo E R" the solution 
u(k) = u(k,0,u0) of (5.1.1) tends to zcro as k + cm. 

5.16.13. Let in addition to the conditions on the functions f(k, U) 
and g ( k , r )  in Problcrn 5.16.12, f(k,u) be periodic of period K ,  i.e. 
f(k + K ,  U) = f(k, U), and let (5.1.1) have a bounded solution. Show that 
the systxm (5.1.1) has a pcriodic solution of period X. 

5.16.14. Consider the difference system (5.3.1) on Z arid assume that 
g is periodic with respect to the first argumcnt. Show that, if therc cxists 
a bounded solution v ( k )  of (5.3.1) which is uniformly stable, then (5.3.1) 
has a11 almost periodic solution. 

5.16.15. Consider the difference system (5.3.1) on Z and ass11111e that 
g is almost periodic from Z to R" urlifornlly with respect to the second 
argument in any bounded set. Moreover, let g satisfy the monotonicity 
condition 

(5.16.1) < g(k,v) - g(k ,  W), v - W  > 2 q v  - w112, L > 1 

for any k E Z and any v ,  W E R". Show that if (5.3.1) has a bounded 
solution on Z, then this solution is almost periodic. 

5.16.16. Consider thc difference system (1.2.8) on IN and assume that 
limn,-m f(k, U) = fm(u) urliforrrlly with respcct to the second argument 
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in any bounded set. Moreover, let f satisfy the monotonicity condition 
(5.16.1) for any k E IN and v ,  W E R". Show that if (1.2.8) has a bounded 
solution u(k), k E N then u(k) is convergent, i.e. u ( k )  E c (the space 
of convergent sequences). 

5.16.17. Consider the second order difference system 

(5.16.2) u(k + 2) = f(k,u(k),u(k + l)), k E z 
and assunle that f is almost periodic from Z to R" uniformly with 
respect to the second and third arguments in any bounded set. Moreover, 
let f satisfy the monotonicity condition 

< f(k,u,v)-f(k,Ti,-J), u-ii+v-V > 2 L (llu -u/(2 + ( (v  " q 2 )  , L > 1 

for any k E Z and any u,v,Ti,V E R". Show that if (5.16.2) has a 
bounded solution 011 Z, then this solution is almost periodic. 

5.16.18. Consider the difference systcrrl (5.16.2) on IN and assI1Inc that 
limk-m f(k,u, v) = fm(u,v)  uniforrrlly with respect to the second and 
third argurrlcnts in  any boundcd set. Moreover, let f satisfy the following 
monotonicity cmndition with respect to the second and third argurrlcnts 

< f (k ,u ,v)  -f(k,Ti,v), u-Ti> 2 L((u-iq2,  L > 1 

and 

<f(k,U,V)-f(k,u,V),  v - - J >  2 L((V-V( l2 ,  L > 1  

for anv k E W and any U, v, i i ,V E R". Show that if (5.16.2) has a 
bounded solution u(k), k E IN then u(k) is convergent. 

5.16.19. Consider the difference system (5.3.1) on 2 and assume that 
g is almost periodic from Z to R" uniformly with respect to the 
second argument i n  any bountlcd set. Moreover, let g satisfy a Lipschitz 
condition ( (g(k ,  U) - g(k ,  v)\\  5 Lllu - v / /  for all ( k ,  U), ( k ,  v)  E Z x R", 
and moduli of eigerlvalucs of A are different from 1. Show that (5.3.1) 
admits a unique almost periodic solution provided the Lipschitz constant 
L is small enough. 

5.16.20. Consider the difference equation 

(5.16.3) u ( k  + 1) = [ a ( k )  + b(k)]u.(k) ,  k E W. 

Let h,(k) > 0, k E IN be a nonincreasing function, o.(k) # 0, k E W 

arid c m 1 < ca. Show that there exists a function $ ( k )  
cc 1 

e= 1 
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so that the change of variable u(k) = q5(k),u(k) transforms (5.16.3) into 
v(X- + 1) = a(k)u(X-) .  Further, show that the solutions of (5.16.3) can be 
written as 

6:- 1 

u ( k )  = (1 + o(h,(X- - 1))) J-J a(P)v(X-0). 

/=ko 

5.16.21. Consider the difference equation 

(5.16.4) u(X- + 1) = X(X-)u(X-) + h(X-)u(k - m ) ,  X- E W(1) 

where 'rr1 > 1 is an integer, and the functions X and b satisfy 

Show that (5.16.4) has a solution ~ ( k )  such that 

5.16.22. Consider the difference equation 

(5.16.5) u(k + 2) = ~ ~ u ( k )  + q(k)u.(k - m), k 6 W(1) 

where m > 1 is an integer and q ( k )  E P .  Show that (5.16.5) has a pair 
of solutions u 1  (IC) and uz(X-) such that as X- + 03 

and 

5.16.23. Consider the (n + 1)th order difference equation 

n 

(5.16.6) w.(k + 1) = C ( c i  + di(k))u(~- - i), X- E IN 
i=O 

where ci, 0 5 i 5 n are complex constants and &(X-), k E I N ,  0 5 i 5 n 
are complex functions. Let X0 be a simple root of the characteristic 
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71, ( k )  
lim = 1. 

(xo + - X;"d, ( I ; ) )  

5.16.24. (Discrete Levinson's Pcrt,urbation Lemrna). Consider thc dis- 
crctr matrix systcm 

(5.16.7) U ( k  + 1) = [A(k) + B ( k ) ] U ( k ) ,  k E N(a) 

where A ( k )  = diag{X l (k ) , . . . ,X , (k ) }  with X,(k) # 0 for all 1 5  i 5 n, 
and k E N(a) .  Thc system (5.16.7) is said to have a Levinson's dichoto,/n,y 
if there exist constants M > 0 and N > 0 such that for each index pair 
(i, j ) ,  i # j ,  cithcr 

or 

Use Theorem 5.8.4 to show that if the systcm (5.16.7) has a Levinson's 
dichotorny and 

then thc fundamental matrix U ( k )  of (5.16.7) satisfies 

I;-1 

~ ( k )  = (I+ o(I)) A(!) as k -+ CO. 
eZa 

5.16.25. Consider the difference system 

(5.16.8) u(k + 1) = A ( k ) u ( k )  + B ( k ) u ( k  - 7a), k E IN(1) 

whcrc ' m  > 1 is an integer, A ( k )  = diag(Al(k), . . . , X,(k)) with & ( k )  # 0 
forall l < i < n  and k ~ l N ( 1 ) .  Supposethattherecxistsa q E { l , . . . , n , }  
such that 
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where > 0, and 

where 

Show that for ko E W sufficiently large, syst,cm (5.16.8) has a solution 
U,( k )  sudl that 

(5.16.9) u(k. + 1) = ( A  + B (k ) )u (k ) ,  k E IN(1) 
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5.16.27. (Poincari. Type Reslllt, for Linear Systems). Consider the dif- 
fercncc system 

(5.16.10) u ( k  + 1) = (A+ B ( k ) ) u ( k ) ,  k E IN 

D ( k )  = (T/*€)-l7*B(k)<, k E W. 

5.16.28. Assume that ZA(k,a) is the principal fundamental rnatrix of 

the difference system 

(5.16.11) a~(k) = A ( k ) ~ ( k ) ,  k E IN(a) 

such that llD(k)ZA(k,u)l\ 5 P ( k : ) ,  k E N(a , )  where D ( k )  is a nonsirlgular 
matrix and P ( k )  is a positive function defined 011 IN(a). Further assume 
that the function g ( k ,  v) is defined and continuous on N ( a )  X R" and 
satisfies / /U- ' ( k+  l,~,)g(k,[~(k)~-'(k)v)Il 5 h,(k, IIvlI), where h ( k , r )  is 
defined for all ( k ,  r )  E N ( a )  x R+, and nondecreasing in r for any fixed 
k E W ( a ) .  Show that 
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(i) if C,“=, h,(t ,  y) < cm for all O 5 y < c c ,  then given any solution 
u(k) = U ( k , a ) [  of (5.16.11) with ll<li sufficiently small, there exists a 
solution v(k) of 

(5.16.12) Av(k) = A(k)v(k )  + g(k,v(k)) ,  k E W(a) 

such that, \\D(k)(v(k) - u(k))11 = o(p (k ) )  as k “+ cc 
(ii) if the difference equat,iorl (5.1.9) has a positive and bounded solution 011 

W(a,) ,  then corresponding to each solution v(k) of (5.16.12) with llv(a)II 
small enough, there is a [ E R” such that [ /D(k ) (v (k )  - U ( k ,  .)[)l1 = 
o (P (k ) )  as k + cm. 

(iii) if all solutions of (5.1.9) are bounded on lN(a),  then corresponding 
to each solution v(k) of (5.16.12) there exists a solution u(k) of (5.16.11) 
such that I/D(k) (v(k)  - u(k))ll = o(/j(k))  as k + c c .  

5.16.29. Let the system (2.8.1) be stable (asymptotically stable) and 
the condition (5.2.4) be satisfied. Show that the system (5.2.3) is stable 
(asvmptotically stable). 

5.16.30. Let the difference system (1.2.12) be periodic of period K on 
W. Show that the stability of (1.2.12) implies its uniform stability. 

5.16.31. Let E be an equilibriurrl point of the difference equation 
u ( k  + 1) = f ( u ( k ) ) ,  where f is continuously differentiable at E. Show 
that 

(i) if [f’(E)l < 1, then E is an asymptotically stable point 

(ii) if If’(E)l > 1, then E is an unstable point 

(iii) if f’(E) = 1 and f ” ( E )  # 0, then E is an unstable point 

(iv) if f’(E) = 1, f ” ( E )  = 0 and f”’(E) > 0, then E is an unstable 
point 

(v) if f’(E) = 1, f ” ( E )  = 0 and f”’(E) < 0, then E is an asymptotically 
stable point 

(vi) if f’(E) = -1 and - 2f’”(E) - 3[f”(E)I2 < 0, then E is an 
asymptotically stable point 

(vii) if f’(Z) = -1 and -2f”’(E) -3[f”(E);)12 > 0, then E is an unstable 
point. 

5.16.32. Let a be in the domain of f and m be a positive integer. 
Then a. is called m, periodic if it is a fixed point of f ” ,  i.e. f ” ( a )  = a.  
This means a is an equilibrium point of the difference equation u ( k  + 
1) = g(u(k)), where g = f ” .  The periodic orbit of a denoted as 
O+(a) = {a, f ( a ) ,  . . . , f”-’(a.)} is called a m, cycle. 
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Euler’s method when applied to logistic differential equation 

V’ = - W ) ,  t > 0, ?do) = Il.(o) 
leads to the first order difference equation 

(5.16.13) 714k + 1) = 4 k )  + ryh?l.(k)(l - u . ( k ) ) ,  k E W 

which, after writing w(k) = cyhu(k)/(l + a h )  and a = 1 + a h ,  becomes 
the quadratic map 

(5.16.14) 7i(k + 1) = a v ( k ) ( l  - v ( k ) ) ,  k E m. 
This is the logistic m,odel of the growth of populations i n  successive gen- 
eration. Of  particular interest to population biologists is the case cy > 0 
so that ah, > 0, and u(0) > 0. Show that the solution u ( k )  of (5.16.13) 

(i) converges monotonically to the stable equilibrium point U = 1 
whenever 0 < ah < 1 

(ii) converges oscillating to the stable equilibrium point 71. = 1 whenever 
1 < oh, < 2 

(iii) when ah, = 2, the system bifurcates t,o give 2 cycle which is stable 
for 2 < a h <  & 
(iv) as a h  increases above 2, sucxcssive bifurcations give rise to a 
cascade of period doublings, prodncing cycles of periods 2,4, .  . . ,2“ where 
.S is a positive integer, for ah in the range 2 < a h  < 2.569946.. . 

(v) as a h  increases further to lie i n  the interval 2.569946. . . < a h  < 3, 
the behavior is aperiodic or chaotic with solution curves resembling those 
of random processes 

(vi) the numerical solution diverges for a h  > 3. 

5.16.33. An equilibrium point E of u(k  + 1) = f ( u ( k ) )  is called 
sem,i-stable from the righ,t if given E > 0 there exists S > 0 such that if 
0 < u(0)  -E < 6, then u,(k) --?I < E. Sem-stable from the left is defined 
similarly. If in addition limk,,, ~ ( k )  = U whenever 0 < ~ ( 0 )  -U < 7 (0 < 
E - u(0)  < v ) ,  then U is said to be semi-asymptotically stable from 
the right (left). Suppose that if f ’ ( E )  = 1, f ” ( E )  # 0. Show that U is 
semi-asymptotically stable from the right (left) if f ” ( U )  < (>) 0. 

5.16.34. Show that for the difference equation ~ ( k  + 2) + pu(k + 1) + 
qu, (k)  = 0 the equilibrium point E = 0 is asymptotically stable if and 

onlyif l + p + q > O ,  l - p + q > O ,  1 - q > 0 .  

5.16.35. (Samuelson’s Interaction Model). The economy of a nation is 
nlodeled by considering four discrete functions: the national income u.(k) ,  
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the consumer expenditure C ( k )  used to purchase goods, the investment 
I ( k ) ,  and the government expenditure G(k) .  The definition of u,(k) is 

(5.16.15) u.(k) = I ( k )  + C ( k )  + G(k) .  

Following Sam~~clsorl [88] we make the following assumptions: 

(a) Consurner cxpcndit,ure C ( k )  is proportional to the national incorm 
u.(k - 1) in the preceding year k - 1, i.c. 

(5.16.16) C ( k )  = a!7L(k - l), 

where 0 < a! < 1 is usually called the mar;qin,al p,ropen,sity to con.swue. 

(11) Invcstrrlerlt I(k) is proportional to the increase in consllrnption 
C ( k )  - C ( k  - I), i.e. 

(5.16.17) I(k) = p(C (k )  - C ( k  - l ) ) ,  

where p > 0 is called the relation,. 

(c:) Governnmlt, expcnditnrc G ( k )  is constant, i.e. 

(5.16.18) G ( k )  = G. 

Combining (5.16.15) - (5.16.18), we get 

(5.16.19) ~ ( k  + 2) -  CY(^ + p ) ~ . ( k  -+ 1) + c ~ p ~ ( k )  - G = 0. 

Use Problem 5.16.34 to study the asymptotic stability of the equilibrium 
state of the national incornc ?i: = G/(1 - a!). 

5.16.36. The following difference equation provides how the red blood 
cells (RBC) count changes in thc body 

(5.16.20) An(k) = - S ( k )  + M ( k ) ,  

where R(k) ,  S ( k )  and M (  k ) ,  respectively, represent on day k the 
number of RBC, the nurrlber of RBC removed by the spleen, and the rlurnber 
of RBC created by thc bone narrow. WC assume that, 

(5.16.21) S ( k )  = OR(k),  0 < a! < 1 

where (Y is the fraction of RBC rcmoved by the spleen, and 

(5.16.22) M ( k )  = (YPR(k- l), p > 0 

where ,6 is the production constant, equal to the ratio of the number of 
new RBC created to those lost on the previous day. 
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Combination of (5.16.20) ~- (5.16.22) gives 

(5.16.23) R(k + 2) = (1 - cY)R(k + 1) + cuPR(k) 

Find conditions on 0, P so that homeostasis in the RBC count occurs, 
i.e. R ( k )  is essentially constant or at least asymptotic:ally constant. 

5.16.37. (The Cobweb Model). Let p(k )  denote the price of a commodity 
in the year k ,  and let q(k) be the amount, of the commodity available in 
the market in the year IC. W e  make the following assumptions: 

(a) Amount of the commodity produced this year and available for sale 
is a linear function of the price of the commodity in the last year, i.e. 

(5.16.24) q ( k )  = 0 + Dp(k - l), 

where p > 0 since if the last year's price was high, t,he amount available 
this year would also be high. 

(b) The price of the commodity this year is a linear function of the 
amount available this year, i.e. 

(5.16.25) P(k) = r+Sq(k), 

where 6 < 0 since if q(k) is large the price would be low. 
From (5.16.24) and (5.16.25) show that 

(i) (p(k)-p) = (/jS)(p(k-l)--p), p =  (oS+y)/(l-pS) and hence p(k)  
oscillates aromd the equilibrium point p, i.e. (p(k)  -p)(p(IC+l) -F) < 0. 
Further, if 1,OlSl < 1 the equilibrium price p is asymptotically stable, and 
if l[jSl > 1 it is unstablc. 

(ii) (q(k)  - q) = (P6)(q(k  - 1) -g), ?j = (a + ijjy)/(l - a s )  and hence 
q ( k )  oscillates around the equilibrium commodity 7. Further, if l[% < 1 
the equilibrium commodity ?j is asyrnptotically stable, and if [PSI > 1 it, 
is unstable. 

5.16.38. Discuss the stability of the equilibrium point p of the extended 
Cobweb model for which 

(p(k) -p) = c(l - p)(p(k - 1) -F) + cp(p(k - 2) -p), 

where c is the ratio of slopes of supply and demand curves and 0 5 p 5 1 
represents the expectation of suppliers about pricc reversal. 

5.16.39. Discuss the stability of the equilibrium point 72 = 0 of the 
Harrod-Domar growth model 

V(k + 2) = (1 f 'u)U(k + 1) - ('U + S)'U(k), 
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where s = 1 - c is the nlargirlal propensity to save and I )  is the power of 
the accelerator. 

5.16.40. To settle the wage dispute between labor and rnanagerrlent the 
following system occ:urs (see [59]) 

M ( k  + 1) = M ( k )  + u ( L ( k )  - M ( k ) )  
L ( k  + 1) = L ( k )  - [ j ( L ( k )  - M ( k ) ) ,  

where M ( k )  and L ( k ) ,  respectively, are managerrlent's offer and labor's 
demand at the kt11 step, 0 < (Y < 1, 0 < fj < 1 and M ( 0 )  < L(0) .  Show 
that 

(ii) if 0 < (Y + < 1 therl M ( k )  and L ( k )  converge monotonically to 
aL(0)  + PM(0)  

0 + p 111 = 

5.16.41. Let u ( k )  and ~ ( k )  denote military budgets for the year k 
for the countries A and B, respect,ively. Richardson [86] proposed that 
yearly changes in the military budget are related by the following system 

where and 0 are d e f m s e  coefficients and give a measure of how one 
country reacts to the current military budget of the other country; a 
and p arc fatigue coefficients and measure the possible negative economic 
consequences of increasing the military budgets; and y and 6 are called the 
grievances which are independent of the military budgets, but reflect factors 
such as internal political and economic considerations, dissatisfaction with 
previous political interactions betwcen the countries A and B, and so 
on. Show that if F, 0, a, p, y, 6 are nonnegative anti cwp > r0 then 
the equilibrium solution 

of (5.16.26) is stable. 
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5.16.42. Show that for the difference system 

the trivial solution is globally attractive but unstable. 

5.16.43. Consider the difference system u(k + 1) = Au(k) + b, where 
A is an n x n, nonnegative matrix and b is an n x 1 vector. Show that 

(i) if p(A) < 1 and b 2 0, then thc equation 

(5.16.27) IT = AE+b 

has a nonnegative solution which is asymptoticallv stable 

(ii) if b > 0 and (5.16.27) has a positive solution, then p ( d )  < 1. 

5.16.44. Let, for a fixed P E IN(o,) the solution u(k) = u(k,P, ~(f!)) 
of (1.2.12) exist 011 IN(!), and u(k) # 0 for all IC E N(f!). Further, let 
for some fundarncntal set of solutions {u”(IC)} of (1.2.12) the quantities 
~~u‘(k)~~/\\u(k)~~ be bolmlcd. Show that (1.2.12) is weakly stable for u(IC). 

5.16.45. Prove Theorem 5.6.2. 

5.16.46. Prove Corollary 5.6.3. 

5.16.47. Prove Theorem 5.6.4. 

5.16.48. Let f(u) E C(l ) [R,R”] ,  f(0) = 0 and f(u) # 0 for U # 0 in 
62, and let A = (aji(0)/i)uj) bc the Jacobian matrix of f at U = 0. 
Show that the trivial solution u(k, 0,O) 0 of the difference systcm (5.4.1) 
is 

(i) asymptotically stable if all the eigenvalues of A are inside the unit 
disc 

(ii) urlstablc if there is an eigenvalue of A with magnitude greater than 
one 

(iii) stable or unstable if all the eigenvalues of A are inside the unit disc, 
and that of at least one eigenvalue has t,he rrlodulus one. 

5.16.49. Let for all k E N ( a ) ,  llull < p (> 0) the function f (k,u)  be 
defined, f ( k ,  0) z 0, and satisfy the inequality 

//U + f(ku)II 5 l l u l l  + dk Ilull) 
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where g(k ,r )  is defined for all ( k ,  r) E N(a )  X R+, g(k ,O)  0, and 
r + g(k, r) is nondecreasing in r for each fixed k E N(a). Show that the 
stability properties of the trivial solution r (k ,a ,O)  0 of (5.1.9) imply 
the c,orresponding stability properties of the trivial solution u(k, CL,  0) = 0 
of (5.1.1). 

5.16.50. Let M ( k , a )  bc the principal fundamental matrix of the 
difference system (1.2.12), and the function g(k ,v )  he defined for all 
(k,v)  E N(a) X R”, g ( k ,  0) = 0, and satisfy the inequality IlM-’(k + 
l ,a )g (k ,U(k ,a)w) l l  5 h,(k, [lwll), where h,(k ,r)  is defined for all ( k , r )  E 
N(a) X R+, and nondecreasing in r for any fixed k E N(a). Show 
that the stability properties of (1.2.12) imply the corresponding stability 
properties of the trivial solution v(k, a, 0) 0 of (5.3.4) provided for each 
r o  2 0 the solution r ( k , a , r o )  of Ar(k)  = h , ( k , r ( k ) ) ,  .(a,) = TO is 
bounded on N(a). 

5.16.51. Let for all k E N(o.), llull < p (> 0 )  the function f(k,u) be 
defined, f(k,O) 0, and satisfy the irlequality ~ ~ f ( k , u ) ~ ~  I g ( k ,  IIuII), 
where g ( k , r )  is defined for all ( k , r )  E N(a) X R+, g ( k , 0 )  3 0, and 
g(k, r) is nondec:reasing in r for any fixed k E IN(a). Show that the 
stability properties of the trivial solution r ( k ,  a, 0) 0 of 

(5.16.28) ~ ( k :  + 1) = ))X + hd(k)))r(k.) + g(k, ~ ( k ) )  

imply the corresponding stability properties of the trivial solution u(k, a, 0) 
0 of 

~ ( k  + 1) = (Z + hd(k))u(k) + f(k, ~ ( k ) ) ,  

where h, is a positive constant. (In (5.16.28), llZ+ hdII can be less than 
1). 

5.16.52. Suppose that (i) for all k E N(a), llull < p (> 0) the function 
f(k,u) is defined, f(k,O) e 0 the Jacobian matrix f,(k,u) exists, ant1 
for every F > 0 there exists a S = S(€) such that 

IKk ,  4 - fll(k, 0)UII I 4 1 4 1  

provided llull < S(c), (ii) the inequality 

holds. Show that the trivial solution 
ically stable. 

+ f,(/i,O)// - 1) < 0 

u(k,a,,O) = 0 of (5.1.1) is asyrnptot- 
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5.16.53. Suppose that (i) f(k,u) is as in (i) of Problerrl 5.16.52, (ii) 
there exists a positive constant (T such that IIZ+f,(k, 0)ll- I < -0 for all 
k E N(n), (iii) g(k,u) is defined for all k E N(a), ~~u~~ < p ,  g(k,O) E 0, 
and llg(k,u)/l 5 p ( k ) ,  where p (k )  "-f 0 as k 4 CO. Show that the 
trivial solution u(k, a,O) 0 of Au(k) = f(k,u(k)) + g(k,u(k)) is 
asymptotically stable. 

5.16.54. Consider the summary difference systerrl of convolution type 

1:-l 

(5.16.29) u(k + 1) = Au(k) + 1 B (k  - 1 - [)U([), k E W, ~ ( 0 )  = uo 
e=o 

and its perturbed systcrn 

(5.16.30) 
1:-1 

v(k + I) = AV(!)  + C B(k - 1 - P)v(P) + g ( k ) ,  k E I N ,  ~ ( 0 )  = UO 

f=O 

where A and B ( k ) ,  k E W are R x n rrlatriccs, g : IN "-f R", ant1 
B ( - k )  = 0 ,  k E rN(1). 

(i) The difference resolvent matrix R ( k )  associated with the linear 
system (5.16.29) is the solution of the matrix equation 

1:-l 

(5.16.31) R ( k  + 1) = AR(k)  + c B(k - 1 - [)R(!), R(0) = z. 
P=O 

Show that in terms of rcsolvent rrlatrix R ( k )  of (5.16.29) t,hc solution 
v(k) of (5.16.30) can be written as 

k - l  

(5.16.32) v(k) = R(k)uo + c R ( k  - 1 - !)g([). 
f =o 

(ii) For the system (5.16.30) with A = 0 the resolvent matrix %!(!c) is 
the solution of the matrix equation 

- A-l 

(5.16.33) R ( k )  = - B (k )  + c B(k - 1 - !)?z(e), k E N. 
P=O 

Show that in terms of resolvent matrix E ( k )  of (5.16.30) with A = 0 the 
solution ~ ( k )  of (5.16.30) with A = 0 can be written as 

1:-l 

(5.16.34) v(k) = g(k) - C E ( k  - 1 - P)g(P). 
e=o 
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5.16.55. Let L ( k , ! ) ,  B(k,13), ( k , t )  E W(k-0) xW(k-0) be R X R  matrices 
such that L,  B are zero for all k ,  ! < ko. Show that the following discrete 
Fu,bi,n.i. 'S theorem holds 

k-l k-l 

F=ko U=kO 

where U : W( ko) -+ R". 

5.16.56. Consider the summary difference system 

(5.16.35) 

Au(k) = d(k)u(k) + C B(k,P)u(t) + g ( k ) ,  k E W(ko), u(k0) = u o  
k- 1 

/=L:o 

where d(k), B ( k , ! ) ,  k , !  E N(k0) are n X n matrices, and g : W(k-0) 3 

R". Assume that there exists a n X R matrix L ( k ,  !) dcfincd on W(ko )  x 
IN(k-0) satisfying 

(5.16.36) 
k-l 

~(k,P)+L(k,a+l)-L(k,P)+L(k,~+l)d(e)+~L(k,.+1)B(.,e) = 0. 
U=/ 

Use Problem 5.16.55 to show that (5.16.35) is equivalent to the linear dif- 
ference system 

(5.16.37) Av(k) = -Ji(k)v(k) + L ( k ,  k0)uo +g(k), ~ ( k o )  = uo 

where - 
A ( k )  d ( k )  - L ( k , k )  

k-l 

g(!?) = g ( k )  + c L ( k , t  + l )g(t ) .  
e=k0 

5.16.57. Show that the inequalities (5.8.1) are equivalent to the incqual- 
ities (5.8.3). 

5.16.58. Suppose that in the difference system (1.2.12) thc nlatrix d ( k )  
is upper triangular and invertible for all k E W(a). Show that (1.2.12) has 
cxpormltial dichotomy if and only if the corresponding diagonal system 

~ ( k  + 1) = ding ( ~ l l ( k ) ,  . . . , ~ , ~ ~ , ( k ) ) ~ ( k ) ,  k E N(a) 

has an exponential dichotomy. 
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5.16.59. Let for all U E R" the function f(u) be defined, f ( 0 )  = 0 
and f(u) # 0 if U # 0. Show that the region of attraction of the origin 
of (5.4.1) is an open set in R". 
5.16.60. Let f(u) be as in Problem 5.16.59. Further, let there exist 
a scalar function V ( u )  E C[R",R] such that A2V (u ( k ,  0, uo)) > 0 if 
u(k,0,uo) # 0, where u(k) = u(k,O,uo) is the solution of (5.4.1). Show 
that for any uo E R", either u(k, 0, U') is unbounded or it tends to zero 
as k -+ 00. Likewise, if A2V(u(k ,O ,u0) )  < 0, u(k,O,uo) # 0. 

5.16.61. Let for all 11. E IR the function f ( u )  be defined, f ( 0 )  = 0 
and f ( u )  # 0 if U # 0. For the system 

U l ( k +  1) = U z ( k )  

u z ( k  + 1) = U l ( k )  + f(u,(k)), 
where A(uz (k ) f (u l ( k ) ) )  > 0 rise Problem 5.16.60 with V ( u ( k ) )  = 
u l ( k ) u 2 ( k )  to show that its each solution is either unbounded or tends 
to zcso. 

5.16.62. Let f ( u )  bc as i n  Problrn~ 5.16.59. Fllrthcr, Ict thcse cxist 
two positive definite scalar functions V ( u )  E C[R", R+] and W(u) E 
C[R", R,] such that 

V ( u ( k  + 1,0, UO)) = (1 + W(u(k, 0 ,  uO) ) )V (u (k ,  0,  UO)) - W ( u ( k ,  0, U") 

for any solution u(k) = u(k,O,uo) of (5.4.1). Show that the region of 
asymptotic stability of the origin of (5.4.1) is D = {U E R" : V ( u )  < l}. 
5.16.63. Suppose that (i) f ( k ,  U) is as in (i) of Problem 5.16.52, (ii) for 
all ( k ,  U) E N ( n )  x S,, there exists a scalar function V ( k ,  U) satisfying 
the Lipschitz condition (5.12.2), and llull 5 V ( k , u )  5 cI/u(/, (iii) for any 
solution v (k )  of Av(k )  = f,(k,O)v(k) the inequality A V ( k , v ( k ) )  5 - !,-l 

p ( k ) V ( k , v ( k ) )  is satisfied, where lirrlsup - c/~(li) < 0. Show that 

the trivial solution u(k, a, 0) EE 0 of (5.1.1) is asymptotically stable. 

1 

k-- k - a  
f=a 

5.16.64. The trivial solution u(k,a,O) = 0 of (1.2.8) is said to be 
gmera l ized exponential ly asym,ptotically stable if for any solution u(k) = 
u(k ,u ,uo)  of (1.24, //u(k,a,uO)// 5 c ( k ) / / u O ) /  exp(p(a)-p(k)), k E N(u) ,  
where the functions c ( k )  > 1 and p(k)  > 0 are defincd 011 lN(a) ,  p ( 0 )  = 
0 if a = 0, p(k )  is strictly rnorlotonically increasing and p(k) -+ 00 as k + 
ca. Suppose that the difference system (1.2.12) is generalized exponcntially 
asyrnptotically stable. Show that there exists a scalar function V ( k ,  U) i n  
N(a )  x S,, such that 

(9 l l 4 l  5 V ( k , U )  5 4 k ) l l ~ I l  
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(iii) /V(k,u) - V(k,v)I 5 c(k)llu - v11 for k E TiV(n), U, v E S,. 

5.16.65. Suppose that the difference systcrrl (1.2.12) is gcrmdized cx- 
ponentially asymptotkally stable, arid the fmctioll g(k, v) is tlefirlcd 
011 N(a) x S,, and llg(k,v)// 5 h, (k ,  / / V I / ) ,  where h,(k ,r)  is dcfirlcd 
for all ( k ,  r )  E W(a) x R+, h,(k,O) 0, arid T + h , ( k , r )  is non- 
tlecrcasing in T for any fixed k E W(o.). Show that thcx stability or 
asymptotic staldity of the trivial solution r ( k ,  a,O) 3 0 of A r ( k )  = 
-(I-exp(-Ap(k)))r(k)+c(k+I)h(k,r(k)) implies tdhc stability or asymp- 
totic: stability of the trivial sollltion v ( k ,  o,, 0)  E 0 of (5.3.4). 

5.17. Notes 
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value problems sec Agarwal [S], Lakshrrlikarltharrl and Deo [53], Shcrlg and 
Agarwal [9O,91]. Ordinary and exponential dichotomies in thc continuous 
case have been studicd cxtcrlsivcly by Coppcl [2O], Masscra and Schaffcr 
[63], Palmer [79], ant1 are vcrv useful i n  the construction of the sohltions of 
boundary value problems on infinite intervals, e.g. Mattheij [65,66]. The 
exponential dichotorrly dcfirlctl in (5.8.5) is equivalcnt to that of Henry’s 
[45]. Lernrrla 5.8.1 and Theore~ns 5.8.2 and 5.8.3 arc 1)orrowcd from Pa- 
pashinopoulos and Schinas [Sl] ,  whereas Theorems 5.8.4 ~ 5.8.6 arc from 
Schinas [89]. The c:orltinuous analogs of thcsc results arc available in Cop- 
pel [19,2O]. The theory of Lyapnov functions to study stability propertdies 
of differential equations has been extensively exploited sincc 1892, while 
its use for the difference cquations is recent. Various continuous results 
established i n  Halm [38], Halanay [41], Lakshrrlikarlt,harrl and Lccla [SO], 
Lassalle anti Lefschctz [54], Malkin [GO], Yoshizawa [lO2], Zubov [l031 and 
several others, havc been disc:rctizc by Diamond [23,24], Frccnlarl 1321, Gor- 
do11 [36,37], Hllrt [47], Kalgan and Bertram [48], Lassallc [SS], Ort,cga [75], 
Pachpattc [76], Sllgiyarna 193 981, Stgii ant1 Kalgan [X)] .  Applimtions of 
Lyapunov functions to study stability propcrtics of scvcral discrctc rrlodcls 
in population dynarrlics is rnainly t 1 1 ~  to Fiscllcr l26 511. Modcls i n  Ex- 
amples 5.11.1 5.11.4 arc due to Haskcll [42], Haskell and Comincs [43], 
Moran [73] and Brickcr [87], and May [67] respectively. Model (5.11.11) 
has been crnploved by Allen [7], Clark [17], ant1 the International Whaling 
Commission [49]. Theorem 5.11.4 is from Fisher and Gogh [SO]. Modcls in 
Examples 5.11.5 and 5.11.6 are from Beaverton and Holt [12], and Bricker 
1871. For the differential equations, t,otal stability has been studied widely 
i n  Halanay [41], Lakshrrlikarltharrl and Leela 1501. Total stability results in 
the discrete case are due to Ortega [75]. Practical stability discussed i n  
Section 5.14 is defined i n  Hurt [47] and Ortega [75]. Results on rrlutual 
stability are borrowed from Pachpatte [76]. Several related results on the 
asymptotic behavior and stat)ility properties of solutions of difference svs- 
terns havc also appeared in Agarwal and Pang [4], Agarwal and P i t  UK [S], 
Aulbach [g], Bcnz aid and Lutz [lo], Bykov and Lincnko [14], Castillo and 
Pinto [15], Chen and W u  [16], Coffman 1181, Cordunearlu [all, Driver [25], 
Goh [35], Halanay [39,4O], Heincn [44], Lakshmikantharn, Leela and Mar- 
tynyuk [52], Luca and Talpalaru [58], Maslovskaya [61162] l MBt6 and Nevai 
[64], Medina and Pinto [6811 Mcdina [69], Medirla and Pinto [7O], Mcdina 
[71] , Naulin and Pinto [74], Pang and Agarwal [8O] ~ Pcil and Peterson [sa], 
Petrovanu [83], Pituk [84], Rao [85], Smith [92], Trench [ lOO, lO l ]  etc. An 
alterrlative treatrncnt of some of the results discussed here is available in 
Lakshrnikantharn and Trigiante [51]. Problems 5.16.14 ~ 5.16.19 arc based 

on the work of Corduneanu [22] and Moadab [72]. Also for sorrlc rcc:cnt 
contributions on the almost periodic solut,ions sec Hong and Nunez 1461. 
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Chapter 6 
Qualitative Properties of 
Solutions of Higher Order 

Difference Equations 
Throughout this chapter by a solution u ( k )  of a given difference cqua- 

tion we shall mean a nontrivial solution which exists on W(a )  for some 
a E W. This solution is called oscillatory if for any kl E W(a , )  there 
exists a k2 E W(k1) such that u(ka)u(k2 + 1) 5 0. Thc given diffcr- 
cnce cquation itsclf is callcd oscillatory if all its solutions are oscillatory. If 
the solution u ( k )  is not oscillatory then it is said to bc n,onoscl;llator.y. 
Equivalently, the solution u ( k )  is nonoscillatory if it is eventually positive 
or negative, i.e. there exists a kl E N ( a )  such that u ( R ) u ( k  + 1) > 0 
for all k E IN(k1) .  The given difference equation is called nonoscilla- 
tory if all its solutions are nonoscillatory. A given difference equation call 
have both oscillatory as well as nonoscillatory solutions, e.g. the cqua- 

tion A2u.(lc) + -Au(k) + - u ( k )  = 0, k E W has an oscillatory solution 

u ( k )  = (-1)” and a nonoscillatory solution 71(k) = (1/3)k. For a nonneg- 
ative integer p, FP denotes the class of all functions u(k) defincd or1 
W(a )  such that ]u(lc)l = O((k)(P))  as k ”+ m. A solution u,(k) which 
belongs to FP will be called a FP solution. For exarrlple, for the above 
difference equation u ( k )  = (-1)” is a 3’0 solution. The solution u ( k )  is 
callcd T-type if it changes sign arbitrarily but is ultinlately nonnegative 
or nonpositive. The main objective of this chapter is to offer a systematic 
treatment of oscillation and nonoscillation theory of difference equations. 

8 4 
3 3 

6.1. General Properties of Solutions of 
(6.1.1) p(k)u(k + 1) +p(k - l ) u ( k  - 1) = q(k )u (k ) ,  k E W(1) 

where the functions p and q are defined on W and IN(1) respectively, 
and p(k) > 0 for all k E W. Equation (6.1.1) equivalcntly can be writtcn 
as 

(6.1.2) -A(p(k - l )A?),(k - 1)) + f (k) . ( l c )  = 0, k E W(1) 



336 Chapter 6 

where f(k) = q ( k )  - p ( k )  - p(k - 1). 

W e  shall establish the following properties of the solutions of the differ- 
ence equation (6.1.1) some of which will be needed later. 

(PI) If 71(k) and w ( k )  arc two linearly independent solutions of (6.1.1), 
then A[;D(k - 1)(v(k - l )w ( k )  - v ( k ) w ( k  - l))] = 0, and hence for all 
k E W there exists a constant c # 0 such that 

(6.1.3) p ( k ) ( u ( k ) w ( k  + 1) - ?I(k + l ) w ( k ) )  = c. 

(Pz) If w(k) is of fixed sign on W ( k l ) ,  where kl E IN then (6.1.3) 
implies that A(71(k)/w(k))  is of fixed sign on W ( k l ) ,  i.e. v(k )/w(k )  
is monotonic. However, it is not possible if v(k)  is oscillatory. Thus, if 
v ( k )  is oscillatory then w(k)  is also oscillat,ory, and then every solution of 
(6.1.1) is oscillatory. 111 coIdI1sior1, if one solution of (6.1.1) is oscillatory 
(rlonoscillat,ory) thcm the eqlmtion itself is oscillatory (nonoscillatory). 

(PS) For the solution u ( k )  = c lu(k )  + c y w ( k )  of (6.1.1), if the system 

has no solution, then there exist values of cl and Q ,  not both zero, such 
that c l u ( k l )  + c p ( k 1 )  = C 1 7 1 ( k z )  + czw(k2) = 0, i.e. u ( k )  vanishes at 
k1 and kz .  Thus, if every solution u ( k )  of (6.1.1) vanishes at most once 
on W, then given any two values u(k1 )  and u ( k z )  uniquely determine 
16( k ) .  

(P4) If Iq(k)l 2 p(k - 1) +p(k ) ,  k E W(1) and v(k)  is a solution of 
(6.1.1) such that for some kl E IN, I7I(kl + 1)1 2 /w(kl)l then by an easy 
induction it follows that jv(k + 1)1 2 Iu(k)I for all k E W(kl). Further, 
if there exists a fmction c (k )  2 0, k E N(1) such that C" F(k) = m, 
arid lq(k)l 2 (1 +e(k ) )p (k )  +p(k- l), then Iv(k+ 1)1 2 (1 +c(k))lu(k)l 
for all k E lN(kl ) ,  and corlsequcrltly Iw(k)l -+ CO as k 4 m. 

(PS) If q ( k )  2 p(k  - 1) +p(k ) ,  k E W(1) arid ~ ( k )  is a solution of (6.1.1) 
such that v(0)  = v(1)  = 1, then 11(k+ 1) 2 ?1(k) 2 1 for all k E I N ,  and 
hencc ~ ( k )  is nonoscillatory. Therefore, by (Pz) the difference equation 
(6.1.1) is nonoscillatory. 

(PG) If Iq(k)l 2 p(k - 1) +p(k ) ,  k E W(1) then given any two values 
u(k1) and ~ ( k z ) ,  kl # k z ,  k l ,  IC:! E W llrliquely determine the solution 
u ( k )  of (6.1.1). 
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(P7) If u ( k )  is a rlor~oscillatory solution of (6.1.1), say, eventually positive, 
then q ( k ) u ( k )  must be eventually positive. Thus, if the function q ( k )  is 
oscillatory or eventually negative, then the equation (6.1.1) is oscillatory. 

(P8)  Let u ( k )  be a nonoscillatory solution of (6.1.2), say, positive for 
all k E IN(k l ) ,  and f(k) 2 0 for all k E- W(1). Since for the function 
v ( k )  = u ( k ) p ( k  - l )Au(k  - l), A ? / ( k )  = p ( k ) ( A ~ , ( k ) ) ~  + f ( k ) u I 2 ( k )  2 0, if 
there exists a kz E lN(k1) such tjhat Au(k2) > 0 then Au(k)  > 0 for all 
k E W(k2). Therefore, either w,(k) is eventually increasing or event~~ally 
nonincreasing. 

(P,) If in (PS), in addition f ( k )  # 0 for infinitely many k, then the 
solution w(k) > 0, k E W(k1) which is eventually norli~lcreasing is actually 
decreasing. For this, if A u ( k )  5 0 for all k E W(kz), wherc k2 2 kl  
then for any k g  > k2 so that f ( k g )  # 0, from (6.1.2) WC have 

Thm, A,u(k) < 0 for all k E W(k.2, k~ - 1). However, since k3 is 
arbitrary, it follows that Au(k) < 0 for all k E W(k2), and hence u(k) 
is eventually decreasing. 

(Plo) Thc difference equation 

(6.1.4) C Y ( ~ ) W . ( ~  + 1) + / j ( k ) u ( k )  + y ( k ) ~ , ( k  - 1) = 0, k E W(1) 

wherc the functions a, p and y are defined on lN(1) and a ( k )  > 0, 
y ( k )  > 0, can be written as (6.1.1) by defining the coefficients p(k) 
inductively as p(0) = 1, p(k) = p(k  - l ) c ~ ( k ) / y ( k ) ,  k E W(1) with 

q ( k )  = - P ( k ) P ( k ) / 4 k ) ,  E W(1). 

6.2. Boundedness of Solutions of (6.1.1) 

The following results provide necessary as well as sufficient conditions 
SO that all solutions of the difference equation (6.1.1) are bounded. 

Theorem 6.2.1. In the difference equation (6.1.1) assume that f(k) = 
q ( k )  -p(k) -p (k  - 1) 2 0 for all k E IN(1), and f ( k )  # 0 for infirlitely 
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many k .  Then, every solution of (6.1.1) is bounded on N if and only if 

(6.2.1) 

(6.2.2) u.(k + 1) = u(k1 + 1) + p(kz)Au(k1) c l 

P = L : 1 + 1  Po 

it follows that 

from which it is clear that if u ( k )  is bounded then (6.2.1) must be satisfied. 

Conversely, let u ( k )  be an unbounded solution of (6.1.1) so that by 
(P5) and (PS) there exists a kz E W such that ~ ( k )  > 0 and Au(k) > 0 
for all k E W(k.2). Then, by (6.1.2) we get 

p ( k ) A ~ ( k )  p(k - l )Au(k  - 1) - 
u ( k )  u ( k  - 1) 

, k E IN(k2 + 1) 

which yields 
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and hence 

Let ~ ( t )  = U(/?) + ( t  - e)Au(t), e 5 t 5 e + 1. Then, ~ ' ( t )  = Au(e) and 
~ ( t )  2 U,([). Hence, we have 

Next, since f ( k )  # 0 for infinitely many k ,  we can choose kg 2 k2 +l 
so that f ( k 3 )  # 0. Then, we find 

Thus, if (6.2.1) holds then (6.2.6) implies that CEl(l/p(P)) < c m .  This 
together with (6.2.1) in (6.2.4), in view of (6.2.5) implies that lnu(k) is 
bounded. This contradiction completes the proof. I 

Corollary 6.2.2. The difference equation (6.1.1) has unbounded solutions 
if either of the following holds 

(i) C;l(Me)) = cm 
(ii) f ( k )  2 t(k)p(k)  for all k E W(1), where ~ ( k )  2 0 and Czl c([) = cm 

(iii) limsupk,m(l/p(k)) C:=, f ( l . 1  = c > 0. 

Corollary 6.2.3. Suppose that P ( k )  > 0 for all k E W, F ( k )  2 0 for 
all k E IN(1), and F ( k )  # 0 for infinitely many k .  Suppose further that 
P ( k )  2 p(k) and C:==, F(!)  5 c!=, f(!), for all k E W(1). Then, all 
solutions of the difference equation 

(6.2.7) A ( P ( k  - l ) A ~ ( k  - 1)) = F ( k ) ~ ( k ) ,  k E W(1) 

are bounded provided all solutions of (6.1.2) are bounded. 

Theorem 6.2.4. Assumc that q ( k )  - p(k) - p(k - 1) 5 0 for all 
k E W(1). Further, assume that the equation (6.1.1) is nonoscillatory 
and C"( l/p(/? ) )  < cm. Then, all solutions of (6.1.1) are bounded on W. 

Proof. Let u(k) be any solution of (6.1.1). W e  can assume that 
u ( k )  > 0 for all k E IN(kl), where kl E W is sufficiently large. Since 
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u ( k  - 

and hence 

u(k + 1) - u ( k )  5 [u(k) - u ( k  - l)], 
p(k - 1) 

P(k) 
which gives 

(6.2.8) 
d 

u,(k + 1) 5 u,(k) + - k E W(k1) 
P(k) 

where a! is a constant. 

Now from (6.2.8) we easily gct 

Thnls, from our hypothcses u ( k )  is boundcd on W. I 

Theorem 6.2.5. Assume that f ( k )  = q(k)  - p(k) - p(k - 1) 2 0 
for all k E W(1). Then, for every solution u(k)  of (6.1.1) the function 
4(k)  = p(k)Au,(  k )  is bounded on IN if and only if 

(6.2.9) 

Proof. Following as in Theorem 6.2.1 thc solution u ( k )  of (6.1.1) satisfy- 
ing U(k1)  = 1, u.(kl + 1) = 2 cxists and u,(k) > 0 and Au,(k) > 0 for all 
k E N ( k 1 ) .  For this ~ ( k ) ,  since A(p(k)Au(k) )  = f ( k  + l)u(k: + 1) 2 0 
for all k E N ( h ) ,  we have p(k)Au(k)  2 p(k l )Au(k l ) ,  and hence 

A ( p ( k ) A ~ ( k ) )  = f ( k  + 1 ) u ( k  + 1) 
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which gives that 

Thus, if p(k)Au(k)  is bounded then (6.2.9) rrnlst hold. 

Conversely, we may assume that u(k) is eventually positive. By (P8) 
we may also assume that v.(k) is cvcntually increasing or nonincrcasing. If 
~ ( k )  is cvent,ually nonincreasing, t,hen p(k)Au(k)  5 0 for all large k .  Fur- 
ther, A(p(k)Au(k) )  = f ( k + l ) v . ( k + l )  > 0, which means that p(k)Au(k)  
is nondecreasing as well, and hence p(k) Au(k) must be bounded on N. 

Now assnme that ~ ( k )  is cventldly increasing. Then, there exists a 
E IN such that ~ ( k )  > 0 and Au,(k) > 0 for all k E W(k.2). Thus, it 

follows that 

(;;L;A;L)) = 
p ( k ) A ~ ( k ) A ~ ( k  + 1) - f ( k  + l ) ~ , ~ ( k  + 1) 1 

p(k)p(k + l )Av. (k)Au(k + 1) 5- 
P(k + 1) 

and hence 
u ( k  + 1) u ( k 2  + 1) 1 

p ( k ) A ~ ( k )  p(k2)A~(k2) 5 
+ T=kz+l c p(.)' 

This implies that 

Q ( p ( k ) A ~ ( k ) )  - f ( k  + l)~(k: + 1) f ( k + l ) ~ ( k 2  + 1) + 5 f ( k +  1) - 
p( k )  Au( k )  p(k)Av,(k) P ( k 2 ) 4 k 2 )  T=k:2+1 P(T) ' 

which on using an argument similar to the one uscd in thc derivation of 
(6.2.5) leads to 

2 ln(p(k + l)Aw.(k + 1)) - In(p(k2 + l)Au(k2 + 1)). 

Furthermore, by reasoning similar to that used in obtaining (6.2.6), we get 
~ ~ o o = l : z + l  f(C+ 1) < 00. But, this and (6.2.9) in (6.2.10) then implies that, 
p(k)Au,(k) is bounded on IN. I 
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6.3. Recessive and Dominant Solutions of (6.1.1) 

W e  begin with the following: 

Definition 6.3.1. If there exist two linearly independent solutions ~ ( k )  
and v ~ ( k )  of (6.1.1) such that ? ~ ( k ) / w ~ ( k )  4 0 as k --f 03, then v(k) is 
called recessive and w(k )  is called domin,an,t solv,tion, of (6.1.1). 

Recessive solutions of (6.1.1) are unique up to a constant factor. For 
this, if v l (k )  and ?iz(k) both are linearly independerlt recessive solutions 
of (6.1.1), then by the Definition 6.3.1 there exists a solution wl (k )  so 

that u l ( k )  and w1(k) are linearly independent and lirrl  - - - 0. 

However, since (6.1.1) is linear and hon10ge11eous, there exist constants c1 
and c2 (f 0) such that wl(k)  = c l q ( k )  + c2~12(k ) .  But, then 

211 (k.1 
!,:-+cc w1(k) 

implies that l i r n  - - - CO,  i.e. lim - 112 ( k )  111 (k.1 
k+CO ?l1 ( k )  !,:-m 712 ( k )  

= 0, and hence 111 ( k )  is 

recessive and v 2  ( k )  is dominant. 

Example 6.3.1. For the difference equation u . ( k t l ) + u ( k -  1) = 2v,(k) ,  
k E N(1) the recessive and dominant solutions are ~ ( k )  = 1, w(k )  = k .  

Example 6.3.2. For the difference equation k2u(k+l )+(k-1)2u(k- l )  = 
k ( 2 P  - 1) 

v.(k), the recessive and donlirlant solutions are v(k )  = l/k, 
k + l  

Example 6.3.3. Since for the difference equation u ( k  + 1) + u(k - 1) = 
0, k E N(1) two linearly independent solutions are cos(k7r/2) and 
sin(k7r/2), it does not have recessive and dominant solutions. 

Theorem 6.3.1. If the difference equation (6.1.1) is nonoscillatory, then 
it has a recessive solution ~ ( k )  and a dominant solution w(k)  such that 

(6.3.1) 

and 

(6.3.2) 
CO 

1 c p( t )w( t )w(P  + 1) 
< CO. 
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Proof. Let ~ ( k )  and w(k )  be two linearly independent solutions of 
(6.1.1) so that the relation (6.1.3) holds. Since (6.1.1) is nonoscillatory 
there exists a sufficiently large kl E W so that 71(k) # 0 and w(k)  # 0 
for all k E IN(k.1). Then, 

(6.3.3) 

A(%) = 7J(k + l ) W ( k )  - 'Ii(k)'UJ(k + 1) p(k) - "c 
UJ(k)W(k + 1) p0 - p(~-)uJ (k )uJ (k  + 1) ' 

Since ~ / p ( k ) ~ ( k ) ~ ~ ( k  + 1) is of one sign for all k E IN(k1), we find that 

71(k)/w(k) is monotone, and hence lim - - - L exists. If L = 2 ~ 0 0 ,  

then w ( k )  is recessive and v(k )  is dominant solution. If L = 0, then 
~ ( k )  is recessivc and w(k) is dominant solution. If 0 < ILI < m, then we 

consider the solution z(k) = ~ ( k )  - Lw(k ) .  Since l i r n  - = 0, from 

Problem 2.16.4 it is clcar that, z(k) and w(k)  are linearly independent. 
Thus, renaming if necessary, we can always find a rcccssivc solution v ( k )  
and a donlinant solution w ( k ) .  

'II ( k )  
I:-m w(k)  

4 k . I  
L:-m w(k )  

From (6.3.3), we have 

Sincc - "(lc) 4 0, as k + 00 we must have (6.3.2). Starting with 
71J(k) 

A (z) a similar argument proves (6.3.1). I 

Corollary 6.3.2. Suppose that the difference equation (6.1.1) is nonoscil- 
latory. If w(k )  is a solution of (6.1.1) such that (6.3.2) holds, then w(k)  is 

m 

dominant and ~ ( k )  = W( k )  c l 
is recessive. Similarly, if 

I =I. p( e )uJ ( e )w( e  + 1) 
~ ( k )  is a solution of (6.1.1) such that (6.3.1) holds, then v(k)  is recessive 

and ~ ( k )  = ~ ( k )  c is dominant, where k1 is large 
e=kl 

enough so that ? I ( [ )  # 0 for all e 6 W(k1) .  

. ... 

/,-l 1 
p ( l ) ' I I ( l ) ' I J ( e  + 1) 

Proof. If w(k)  is a solution of (6.1.1) such that (6.3.2) holds, then 
m 

l 

= c p ( l ) w ( l ) w ( l  + 1) is also a solution of (6.1.1). Further, 
P= I: 
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arid w(k )  is dominant. The other case can be proved similarly. I 

Corollary 6.3.3. Suppose that the difference equation (6.1.1) is nonoscil- 
latory. Then, 71(k) is the recessive solution if and only if (6.3.1) holds. 
Similarly, w(k )  is the donlirlant solution if and only if (6.3.2) holds. 

Remark 6.3.1. If all solutions of (6.1.1) are bounded, then the recessive 
solution rrlust converge to zero. 

Theorem 6.3.4. If q ( k )  2 p(k - 1) + p(k), k E W(1) then there 
exists a recessive solution v(k )  and a dominant solution ~ ( k )  such that 
~ ( k )  > 0, ~ ( k f l )  5 ?)(IC)  and w(k) > 0, w(k+ 1) 2 w(k) .  Suppose there 
exists a function ~ ( k )  2 0, k E W(1) such that 

cc 

(6.3.4) q ( k )  - (1 + ~(k))p(k) -p (k  - 1) 2 0 and c F([) = cc 
then w(k )  ”--f DC) as k + DC). If there exists a function y(k) 2 0, k E W(1) 
such that 

cc 

(6.3.5) q ( k )  -p(k)  - (1 + y(IC))p(k - 1) 2 0 and Cy([) = cc 

then u ( k )  --f 0 as IC ”+ cm. 

Proof. Let w(k)  be the solution of the initial value problem (6.l.l), 
w(0 )  = 1, w(1) = 1. Then, by (PS), w(k  + 1) 2 w(k )  for all k E IN. 
Now by Problem 6.24.3, there exists a solution u ( k )  of (6.1.1) such that 

> 0 and v ( k  + 1) 5 v ( k )  for all k E IN. Therefore, v(k )/w(k )  is 
positive and monotone decreasing to some limit L. If L = 0, then v(k )  
is recessive and w(k) is dominant. If L > 0, then ~ ( k )  -Lw(IC) > 0 and 
A(u(k)  - Lw (k ) )  5 0 for all IC E W. Indeed, if there is some kl E W so 
that v(k1) - Lw(IC1) = 0, then u ( k )  -Lw(k )  = 0 for all k E IN(kl), hut 
this contradicts the fact that v ( k )  and w(k)  are linearly indepcnderlt. 

Since lim = 0, renaming if nec:essary, we have the existence 

of a dominant solution w(k)  and a recessive solution v(k ) .  

v (k )  - Lw(k )  
k : - + c c  ~ ( k )  

If condition (6.3.4) is satisfied, then (P4) implies that w(k) -+ cc as 
k -+ c m .  Finally, if condition (6.3.5) is satisfied then once again from Prob- 
lem 6.24.3, there exists a solution v(k )  of (6.1.1) such that ~ ( k )  > 0 

and 71(k + 1) 5 v(k ) .  But, then 71(k - 1) = q(k)71(k) - P(k)V(k + 1) 
p(k - 1) 2 
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q ( k ) - p ( k ) v ( k )  2 (1 + y(k ) )v (k ) ,  and hence ~ ( k )  5 ~(O)ni=~(1 + 
$!))-l + 0 as k + m, i.e. ~ ( k )  + 0 as k -+ 00. Clearly, this 
w(k) must be recmsive, because u(k)/w(k)  + 0 as k + m, where w(k )  
is the dominant solution defined earlier. I 

P(k  - 1) 

Theorem 6.3.5. Let q ( k )  2 p(k - 1) +p(k), k E N(1) and let 7r(k)  be 
an eventually positive and increasing solution of (6.1.1). Then, ~ ( k )  is a 
dominant solution. 

Proof. By Theorem 6.3.4 there exists a recessive solution v(k )  > 0 which 
is nonincreasing, a dorrlinant solution w(k)  > 0 which is nondecrcasing, 
and constants c1 and c2 # 0 such that w,(k) = clv(k) + c2w(k). 

Since lirn - - - 0 and w.(k) is evcntllally positive it follows that 
7 4  k )  

I:-00 w(k )  

?L(k) 1 1 2 
w(k )  - 2 

cicrltly large k E W, - > -Q, i.e. - < - which implies 

0 5 -  <- Therefore, we have - l’(’) + 0 as k + m, which 
71. ( k )  

means u,(k) is a dominant solution. I 

?/ , (k)  - C27l) (  k )  ’ 
v ( k )  2?l(k) 
u ( k )  - c2w(k) .  

Theorem 6.3.6. Assume that q ( k )  2 p(k - 1) + p(k), k E IN(1) and 
thc difference equation (6.1.1) has unbounded solutions. Further, assume 
that ~ ( k )  is an eventually positive solution of (6.1.1). Then, u ( k )  is a 
dominant solution if and only if u(k) is eventually increasing. 

Proof. The sufficiency part is Theorem 6.3.5. For the nccessity part, 
suppose w,(k) is a dominant solut,ion. Then, by (P*) either u ( k )  is 
eventually increasing or eventually nonincreasing. W e  shall assume that 
v,(k) is cventually nonincrcasing and arrive at a contradiction. Since ~ ( k )  
is dominant, there exists a recessive solution v(k )  of (6.1.1) which is 
linearly independent from ~ ( k ) .  Further, we can choose kl E W so large 
that v ( k )  > 0 and ~ ( k )  > 0 for all k E W(k1) and by Theorem 
6.3.4, 7 ~ ( k  + 1) 5 71(k). Now, let w(k )  be an unbounded solution of 
(6.1.1). Then, there exists constants c1 and c2 such that ~ ( k )  = 
c lw. (k )+c~v(k) .  But, this means that an unbounded solution can be written 
as a linear combination of two eventually positive nonincreasing solutions. 
This contradiction completes the proof. D 

Remark 6.3.2. If the conditions of Theorem 6.3.6 are satisfied, then 
from (PS) the solution ~ ( k )  is recessive if and only if u ( k )  is eventually 
nonincreasing. Further, if q ( k )  - p(k - 1) - p(k )  # 0 for infinitely many 
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k ,  then by (P,) 1loninc:reasing Carl be changed to decreasing. 

Theorem 6.3.7. Assume that q ( k )  2 p(k  - 1) +p(k ) ,  k E W(1) and the 
difference equation (6.1.1) has unbounded solutions. Then, (6.1.1) has a 
recessive solution which converges to zero provided (6.1.1) has a dominant 
solution U J ( ~ )  such that p(k)A711(k) + cm as k + c m .  Further, if (6.1.1) 
has a recessive solution which converges to zero, then all dominant solutions 
w(k) of (6.1.1) satisfy p(k )Aw(k )  + CO as k 4 c a .  

Proof. Following as i n  Theorcrrl 6.2.1 the solution w(k) of (6.1.1) satis- 
fying w(k.1) = 1, w ( k l  + 1) = 2 exists and ~ ( k )  > 0 and Aw(k) > 0 
for all k E W(k-1). By Theorem 6.3.5, w ( k )  is dorninarlt arid by Corol- 
lary 6.3.3, w(k) satisfies (6.3.2). Thus, by Corollary 6.3.2 the function 

is a recessive solution of (6.1.1). We also 

note that 7u(k)  + CO as k + 00, ot,hcrwise ~ ( k )  and w(k )  arc lirlcarly 
irldcpcrlticnt bo~mded solutions of (6.1.1), and thcn 110 solution of (6.1.1) is 
unt)oundcd. Now since A(p(A-)Au(k)) 2 0 for all k E JN(kl), we have 
p(k )Au(k )  2 p(P)Au(P) for all kl 5 P 5 k ,  and 11crlc.e it follows that 

m 

4 k )  = w ( k )  c 1 

~(P)vJ(P)uJ(P + 1) 
e=k  

m 

,U(k) = w(k )  1 l 

e=A: p(C)w(&)w(li + 1) 

W ( k )  - - lim 

(6.3.6) 

Next, since 0 I p(k )Aw(k )  I p(k  + l )Aw(k + 1) and 0 5 w(k)  I 
w ( k + l ) ,  wehavc p (k )Aw(k )w (k+l )  <p(k-+l )Aw(k+l )w(k+2) ,  thus 
w(k )  + cm as k -+ cm implies that limk,,p(k)Aw(k)w(k + 1) = c m .  
Therefore, it follows that 

m 
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- l i r n  
U1 ( k )  

P-00 p ( P ) A W ( ! ) U J ( P  i- 1) 

1 
= linl 

P-m p(P)Au1(t) ' k E W(k1 + 1). 
Thus, 011 combining the above 

(6.3.7) lint 
1 

P-cc p ( t ) A w ( l )  5 

Theorem 6.3.8. Assume that f(k) = g ( k )  - p(k) - p(k - 1) 2 0 for 
all k E W(1) and the difference equation (6.1.1) has Ilnbollnded sol~~tions. 
Then, every recessive solution of (6.1.1) converges to zero if and only if 

Proof. Following as in Theorern 6.2.1 the solution u,(k) of (6.1.1) satisfy- 
ing u(k1 )  = 1, u,(kl + 1) = 2 exists and u ( k )  > 0 and Au(k) > 0 for all 
k E W(k1) .  Also, p ( k ) A u ( k )  is positive and increasing. B y  Theorem 6.3.6 
this u ( k )  is a dorrlirmnt solution of (6.1.1). Further, in view of (6.3.8), 
Tllcorem 6.2.5 implies that p(k)Au(k)  is unbounded. Therefore, as an 
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application of Theorem 6.3.7 we find that the recessive solutions of (6.1.1) 
tend to zero as k 4 m. 

Conversely, if recessive solutions of (6.1.1) converge to zero as k + m, 
then Theorem 6.3.7 implies that there exists a dominant solution u ( k )  of 
(6.1.1) such that p(k)Av.(k) is unbounded. Now appealing to Theorem 
6.2.S we find that the condition (6.3.8) must be satisfied. D 

Corollary 6.3.9. If f ( k )  2 c (k )p (k- l )  for all k E W(1) and c” E([) = 
CO, then (6.1.1) has recessive solutions which converge to zero as k + m. 

Corollary 6.3.10. Every recessive solution of 

(6.3.9) A2u(k-  1) = j ( k ) ~ ( k ) ,  k E W(1) 

converges to zero if and only if tf(t + 1) = CO. 

6.4. Oscillation and Nonoscillation for (6.1.1) 

We shall prove few reslllts which provide sufficient conditions on the 
functions p and q so that all solutions of (6.1.1) are either oscillatory or 
norloscillatory. 

Theorem 6.4.1. If q(k)  5 min(p(k),p(k - 1)) for all sufficiently large 
k E W, then (6.1.1) is oscillatory. 

Proof. Let u ( k )  be a nonoscillatory solution of (6.1.1), which we can 
assume to be positive for all large k E N. Then, from (PT) we can also 
assume that q(k)  > 0 for all large k E W. However, then equation 

(6.1.1) simultaneously implies that u(k + 1) < -u(k) and u(k - 1) < q ( k )  
P(k) 

This contradiction completes the proof. D 

Corollary 6.4.2. If q ( k )  5 p(k) and if p(k)  is eventually nonincreasing, 
then (6.1.1) is oscillatory. 

Corollary 6.4.3. If q ( k )  5 p(k - 1) and if p(k )  is eventually nonde- 
creasing, then (6.1.1) is oscillatory. 

Theorem 6.4.4. If q(k)  5 p(k - 1) for all sufficiently large k E IN, 
and C” l/p([) < m, then (6.1.1) is oscillatory. 

Proof. Let u(k) be as in Theorem 6.4.1 so that once again we arrive at 
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u ( k  - 1) < v.(k) for all large k E N. Since we have assumed that (6.1.1) 
is nonoscillatory by Theorem 6.2.1 there exists a recessive solution u ( k )  

such that c l / p ( ! ) u ( l ) u ( l  + 1) = 00. But, since for any nonoscillatory 
solution u , (k) ,  WC have u ( k )  < ~(kfl) for all large k,  say, k E N(kl) ,  
so it follows that 

cc 

which is a contradiction. B 

6.5. Riccati Type Transformations for (6.1.1) 

In addition to the hypotheses on the functions p and q in (6.1.1), 
throughout we shall assurrle that q ( k )  > 0 for all k E W( 1). Let ~ ( k )  
be a solution of (6.1.1) such that u. (k)  # 0 for all k E W(a.) .  For this 
solution u ( k )  we use the substit,Iltions ~ ( k )  = u,(k + I ) / u ( k ) ,  w(k )  = 
p ( k ) ~ ( k  + I)/u,(k) and z ( k )  = q ( k  + l )u . (k  + I ) / ( p ( k ) u ( k ) ) ,  k E W ( a )  in 
(6.1.1) to obtain the corresponding first order nonlirlear difference equations 

(6.5.1) p(k)w(k) +p(k - l ) / v ( k  - 1) = q ( k ) ,  k E W ( a  + 1) 

and 

(6.5.3) 

where h(k)  = p2(k)/(q(k)q(k + 1)). 

Since the above difference equations (6.5.1) -~ (6.5.3) are particular cases 
of (3.3.1), these will be called Riccati type diflerence equations and the sub- 
stitut,ions used to obtain them will be termed as Riccati type transforma- 
t iom. 

Theorem 6.5.1. The following conditions are equivalent: 

(i) Equation (6.1.1) is nonoscillatory. 

(ii) Equation (6.5.1) has a positive solution ~ ( k ) ,  k E IN(a). 
(iii) Equation (6.5.2) has a positive solution w ( k ) ,  k E IN(o.). 

(iv) Equation (6.5.3) has a positive solution ~ ( k ) ,  k E W ( a ) .  



350 Chapter 6 

Proof. If (6.1.1) is nonoscillatory and u ( k ) ,  k E IN is its any solution, 
then there exists an a E IN such that u.(k)u,(k + 1) > 0 for all k E IN(a,). 

The necessity of the conditions (ii) (iv) then follows immediately from 
thc transformations which lead to eqnatiorls (6.5.1) ~ (6.5.3). 

Convcrsely, if v ( k ) ,  k E IN(a.) is a positive solution of (6.5.1), then we 
Inay let .(a) = 1, w.(k + 1) = v ( k ) u ( k )  for all k E IN(a). This defincs a 
positive solution ~ ( k )  of (6.1.1) for all k E IN(n). Further, given u(a,) 

and ~ ( a ,  + I), w,(k) for all k E IN(0,a - 1) can be constructed directly 
from (6.1.1). This u ( k )  is a nonoscillatory solution of (6.1.1). Similar 
arguments hold for thc equations (6.5.2) and (6.5.3). I 

Lemma 6.5.2. Let h ( k )  2 g(k) > 0, k E N(1) and let u , (k)  be a 
solution of 

(6.5.4) h ( k ) u ( k )  + l/w.(k - 1) = 1, k E N(1) 

with u.(k) > 0 for all k E IN. Then, the equation 

(6.5.5) g ( k ) a ( k )  + l /?l(k - 1) = 1, k E IN(1) 

has a soh~tion ~ ( k )  satisfying v (k )  2 u.(k) > 1 for all k E N. 

Proof. Sincc thc solution ~ ( k )  > 0 for all k E IN, equation (6.5.4) 
implies that l/u(k - 1) < 1, i.c. ~ ( k )  > 1 for all k E IN. Now we define 
v (k ) ,  k E IN by choosing v (0 )  2 u(0)  and letting ~ ( k )  to satisfy (6.5.5) 
for all k E lN(1). Since from (6.5.4) and (6.5.5), we have 

if ~ ( k  - 1) 2 ~ ( k  - l), then it follows that g(k)v(k) 2 h ( k ) u ( k ) ,  and 
hence u ( k )  2 ( h , ( k ) / g ( k ) ) u ( k )  2 u ( k ) .  Thus, by induction v(k )  is wcll 
defined and u ( k )  2 u ( k )  > 1 for all k E IN. I 

Theorem 6.5.3. If q(k )q (k  + l) 5 (4 - e ) p 2 ( k )  for some E > 0 and all 
sufficiently large k E W, then the difference cquation (6.1.1) is oscillatory. 

Proof. If E 2 4, then the conclusion is obvious from (P7). Thus, we 
can assume that 0 < E < 4. If (6.1.1) is nonoscillatory, then (6.5.3) has 
a positive solution t ( k )  on N ( a )  for sufficiently large a E IN. Since 
h ( k )  = p2(k)/(q(k)q(k + 1)) 2 (4 - E)-', say, on N(a), from Lemma 
6.5.2 WC conclude that the equation 

(6.5.6) (4 - €)-%(IC) + 1/F(k - 1) = 1, k E IN(a + 1) 
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has a solution F (k )  which satisfies F (k )  2 z ( k )  > 1 for all k E W ( a ) .  
W e  now define the positive function u ( k )  on IN(a) by letting .(a) = 
I ,  v . ( ~ + I )  = ( ~ - - E ) - ~ / ~ F ( ~ ) V , ( I ~ )  for all /c E ~ ( a ) ,  i.e. 7r(k) is a positive 
solution of the difference equation 

(6.5.7) ~ ( k  + 1) + 7r(k - 1) = (4 - ~ ) " ~ u , ( k ) ,  k E N ( u  + 1). 

B u t  this is impossible because (6.5.7) is oscillatory, since it has the solutions 

cos kB and sin kB, k E N( l), where B = tan-' (4: - y 2 .  ' 
Example 6.5.1. Consider the difference equation (6.1.1) with p(k)  = 1 
and q ( k )  = ( ( k  + l)'/' + ( k  - l)1/2)/k1/2. This equation is nonoscillatory 
because it has a solution w,(k) = IC1/', k E W(1). Obviously, q ( k )  < 2 
and q ( k )  -+ 2 as k 4 CO, hence q(k)q(k + 1) < 4 and ~ ( k )  = 
4 - g(k)q(k+ 1) -+ 0 as k + CO. Thus, we have g ( k ) q ( k +  1) = 4 - ~ ( k ) ,  
but, t,he differencc equation is nonoscillatory. Therefore, in Theorem 6.5.3 
t h  incquality condition cannot be replaced by the weaker condition 

where ~ ( k )  > 0 and ~ ( k )  + 0 as k 4 03. 

Corollary 6.5.4. If q ( k )  5 p(k - 1) and p(k)/p(k - 1) 2 (4 - F)-' for 
some F > 0 and all sufficiently large k E IN, then (6.1.1) is oscillatory. 

Theorem 6.5.5. If q ( k ) q ( k + l )  2 4p2(k) for all sufficiently large k E IN, 
then the difference equation (6.1.1) is nonoscillatory. 

Proof. From the given hypothesis h(k)  = p2(k)/(q(k)q(k+ 1)) 5 1/4 on 
N ( a )  for sufficiently large a E W. Construct a solution z ( k )  of (6.5.3) 

inductively by defining .(U) = 2 and z ( k )  = - (1 - -) 
k E N(a + 1). We note that if z ( k  - 1) 2 2 for any k E IN(a), then 

h , ( k ) z ( k )  2 l/2, so z ( k )  2 4 .  - = 2. Therefore, z ( k )  is well defined. 

W e  thus have a positive solution of (6.5.3), and now Theorern 6.5.1 implies 
that (6.1.1) is nonoscillatory. I 

1 1 

h(k) z (k  - 1) 

1 
2 

Corollary 6.5.6. If q ( k )  2 max(p(k - l), 4p(k)) for all sufficiently large 
k E W, then (6.1.1) is nonoscillatory. 

Corollary 6.5.7. If q ( k )  2 p(k - 1) arid p(k)/p(k - 1) 5 1/4 for all 
sufficiently large k E IN, then (6.1.1) is nonoscillatory. 
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Theorem 6.5.8. If the difference equation (6.1.1) is nonoscillatory, then 
there exists an a E IN(1) such that for any k E IN(.) and any e 2 0 

(6.5.8) h(k)h , (k  + 1) '. ' h(k + e )  < 4-'. 

Proof. Let u.(k) be a solution of (6.1.1) such that u ( k )  # 0 for all 
k E IN(a). Let ~ ( k )  = p(k)u(k + l ) /u ( k ) ,  k E W ( a , ) .  Then, from (6.5.2) 
we can write 

q(k)q(k  + 1) = p2(k)(l + l/cy(k - 1))(1 + a ( k ) ) ,  

where a ( k )  = w(k)w(k  + l)/p2(k) > 0. 

Thus, from a similar expression for q ( k  + l ) q ( k  + 2) it follows that 

q ( k ) $ ( k  + l ) q ( k  + 2) 
= p2(k)p2(k + 1)(1 + l/cw(k - 1))(1 + rw(k))(l + l/cw(k))(l + CY(k + 1)) 
2 p2(k)p2(k + 1)(1 + l/cr(k - 1))4(1 + ( ~ ( k  + 1)). 

Procecdirlg induc:tively, we obtain 

q (k )q2 (k+l ) . ' . q2 (k+e )q (k+e+1)  

> 4'p2(k) . . .p2(k+t) ,  
2 p2(k) ...p2(k + e)(l + l /a (k  - 1))4'(1 + c ~ ( k  + e ) )  

which is by the definition of h(k) is the same as (6.5.8). D 

Remark 6.5.1. Theorern 6.5.3 is included in Theorern 6.5.8. Indeed, if 
h,(k) 2 1/(4 - E) for all k E IN(a), then h(k)h(k  + 1) ... h(k + e )  2 
1/(4 - E)'+' > 4-', if k E IN(a) and l is large enough. Thus, (6.1.1) is 
oscillatory. 

Corollary 6.5.9. If l in1infp(k)4-~ = 0 and &l q ( C ) /  n:==,p( l )  is 
bounded, say by M ,  as k 4 CO then (6.1.1) is oscillatory. 

Proof. If (6.1.1) is nonoscillatory, then Theorem 6.5.8 implies that for 
some a E IN(1) and all /? 2 0 

However, the left side of the above inequality is bounded above by M2p(a+ 
e + l ) / q ( u ) ,  thus M 2 p ( a  + l + l)/q(a) > 4', which implies that p(" + 
+ 1)4-(a+'+1) > q(a)/(M24.+l) for all e 2 0. But this contradicts our 

assumption. D 
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Example 6.5.2. In Theorem 6.5.8 inequality (6.5.8) is only a necessary 
condition for nonoscillation. For this, i n  (6.1.1) let p(k) = 1 for all k E W, 
q ( 2 k )  = 2-142-" arid q(2k - 1) = 4"-' for all k E W(1). For this choice 
of p(k) and q ( k )  the inequality (6.5.8) is satisfied. However, (6.1.1) is 
oscillatory. If not, then (6.5.3) has a positive solution z ( k )  defined for all 
k sufficiently large. Further, l / z ( k  - 1) < 1, i.e. z(k - 1) > 1. Since 
h(2k) = 1/8 and h(2k - 1) = 1/2, (6.5.3) implics that 

(6.5.9) ~ ( 2 k )  = 8(1 - l / z (2k  - 1)) 

and 

(63.10) z(2k - 1) = 2(l - l/z(2k - 2)). 

Substitution of (6.5.10) in (6.5.9) yields 

(6.5.11) ~ ( 2 k )  = 4 - 4/(~(2k - 2) - 1). 

Since z(2k - 2) > 1 arid z(2k) > 1, (6.5.11) irnplics that z(2k - 2) > 2 
and z ( 2 k )  < 4. Thus, 

(6.5.12) 2 < .(l) < 4 if P is even and sufficiently large. 

Now from (6.5.11) and (6.5.12), WC find that 4 - 4/(z(l) - 1) > 2 for 
all even l sufficiently large. But this implies that .(l) > 3, hence from 
(6.5.11) weget 4-4/(z(l)-1) > 3, i.e. .(l) > 5 for alleven P sufficiently 
large. This contradicts (6.5.12), and thus for this choice of p(k)  and q ( k )  
the difference equation (6.1.1) is oscillatory. 

Theorem 6.5.10. If p2(kp) 2 q(kp)q(kt  + 1) for a scquerlce { k t }  C W 
such that kg "+ 00 as l + 00, then the difference equation (6.1.1) is 
oscillatory. 

Proof. If (6.1.1) is nonoscillatory, then (6.5.3) has a positive solution 
z ( k )  for all k E lN(a). However, then from (G.5.3), h , ( k ) z ( k )  < 1 and 
z ( k )  > 1 for all E W ( U +  I), so h,(k) < 1, i.e. p2(k )  < q ( k ) q ( k +  1) 
for all k E N(a  + 1). This contradiction implies that (6.1.1) must be 
oscillatory. I 

Corollary 6.5.11. If lirrlsuph(k) > 1, then (6.1.1) is oscillatory. 

Corollary 6.5.12. If lirnsup(l/k) c:=, h ( [ )  > 1, then (6.1.1) is oscilla- 
tory. 

Proof. If (6.1.1) is nonoscillatory, then as in Theorem 6.5.10 we have 
p2(k) < q ( k ) q ( k +  1) for all k E W ( a ) .  Thus, it follows that c:=, h,([) < 
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k - n + 1, and hence ( l / k )  c:==, h(!) < 1 + ( L / k )  for some constant L. 
But this leads to a contradiction to our hypothesis, and (61.1) is oscilla- 
tory. I 

Corollary 6.5.13. If c,"=, h-"(!) < cm for some cy > 0, then (6.1.1) 
is oscillatory. 

Proof. From Holder's inequality with indices X and p, we have 

I. r I :  

Hence, if we choose X = (1 + ..)/cy and p = 1 + cy, then the above 
inequality leads to 

1 
l/" 

- k c /?,(l!) 2 [ k /  5-4 
e= 1 !!=l 

1 
L:-m k 

k 

Therefore, lim - c h(!) = m, and from Corollary 6.5.12 equation (6.1.1) 

is oscillatory. I 

Corollary 6.5.14. If x(q(!)/p(e - 1))" < cm for some cy > 0, and 

for sufficiently large k E W either of the following holds 

(i) p(k)/p(k - 1) 2 F > 0 

P=l 

00 

e= 1 

( 4  q ( k )  I P(k), 
then (6.1.1) is oscillatory. 

Corollary 6.5.15. If x ( q ( ! ) / p ( ! ) ) "  < cm for some cy > 0, and for 

sufficiently large k E IN either of the following holds 
e= 1 

m 
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(i) p(k - I ) /p (k )  2 F > O 

(ii) q(k  + 1) I p (k ) ,  

then (6.1.1) is oscillatory. 

6.6. Riccati Type Transformations for 

(6.6.1) A(p(k)Av(k) )  + T(k)U(k  + 1) = 0, k E IN 

where the functions p and T are defined on W, and p(k)  > 0 for all 
k E IN. Obviously, the difference equation (6.6.1) is equivalent to (6.1.1) 
with q ( k )  = p(k) +p(k  - 1) - r ( k  - 1). If u ( k )  is a solntion of (6.6.1) with 
v. (k)v, (k+l)  > 0 for all k E lN(a ) ,  then the Riccati type transformation WC 

let v (k )  = p(k )Au(k )/u (k ) .  Sincc v ( k )  + p(k) = p(k)u,(k + 1) /u(k)  > 0, 
this leads to Riccati type difference equation 

(6.6.2) Al) (k)  + 71(k)71(k + 1) + r(k)v(k) 
P(k-1 

+ r(k) = 0, k E N(a , )  

(6.6.3) Av(k) + 112 ( k )  
v(k )  + p(k )  

+ r ( k )  = 0, k E IN(a.). 

Lemma 6.6.1. Thc difference equation (6.6.1) is nonoscillatory if and 
only if there exists a furlctiorl w(k )  dcfirled on IN with w(k )  > -p(k), 
k E IN(a) for some 

(6.6.4) Aw(k) 

or equivalently 

(6.6.5) 

a E IN, satisfying 

1112 ( k )  
+ w(k )  + p(k)  

+ T(k) I 0. 

Proof. Since the necessity part is obvious, we need to prove only the 
sufficiency part. For this, let ~(0,) = 1, z(k) = niI:(l + w(f )/p (e ) ) ,  
k E N(a ,  + 1) then z ( k )  > 0 for all k E IN(n) and 

(6.6.6) A(p(k)Az(k) )  + r ( k ) z ( k  + 1) 5 0. 

Therefore, by Problem 6.24.17 it follows that (6.6.1) is nonoseillatory. D 
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Theorem 6.6.2. Assume that 

(6.6.7) 

and the difference equation (6.6.1) is nonoscillatory. Then, the following 
are equivalent 

(6.6.8) (i) 

(6.6.9) (ii) 

(iii) 

- I: P 

for any nonoscillatory solution ~ ( k )  of (6.6.1) with u ( k )  
x ~ ( k  + 1) > 0, k E W(a) ,  the function ~ ( k )  = p(k)Au(k)/u(k) ,  
k E W(a) satisfies 

(6.6.10) < m. 
P=a 

Proof. Clearly (i) implies (ii). To show that (ii) implies (iii) suppose to 
the contrary that there is a nonoscillatory solution u(k) of (6.6.1) such 
that v(k )  = p(k)Au(k)/u(k)  > -p(k) for all k E W(a) and 

(6.6.11) 

From (6.6.3), we have 

k 
7 2  ( e )  k 

(6.6.12) 
7'(k + + C U(!) +p(!) 

+ C?-(!)  = 74.) 

t=a C=a 

and therefore for all k E N(a) 
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From (6.6.9), (6.6.11) and (6.6.13), we obtain 

lirn - C(-v(Q + 1)) = 00 
A;-CO k 

F=a 

and hence 

(6.6.14) 

Let P ( k )  = v2(k )/ (u (k )  + p(k)), k E IN(n). Then, P ( k )  2 0 and 
P ( k )  = 0 if and only if ~ ( k )  = 0. Let A ( k )  = v 2 ( k ) / P ( k )  if v(k )  # 0 
ancl A ( k )  = 0 if a ( k )  = 0. Then, we have p(k) 2 A ( k )  - ~ ( k )  and 1lcnc:c 

I: I: 

F=a P=a P=a 

Thus, in view of (6.6.7) arid A ( k )  2 0 it follows that 

L: 

(6.6.16) 

Thcrcfore, on dividing both sides of (6.6.13) by k1l2, and in the resulting 
equat,iorl using (6.6.9) and (6.6.16) leads to 

(6.6.17) 

Now since 

from (6.6.17), we have 

(6.6.18) lirn sup k-1/2 C P ( [ )  < 00. 
x: 

I;-00 P=a 

On thc other hand, from (6.6.18) thcrc is an M > 0 such that 
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Therefore, it follows that 

and hencc from (6.6.14) (6.6.16), WC have 

I: 

linl k - 3 / 2  x p ( e )  = CO,  
A.-m 

P=a 

which corlt,radic:ts (6.6.7). 

Finally, we shall show that (iii) implies (i) .  Lct v ( k )  be as in (iii) arid 
let B ( k )  = c!=, I * u ( ! ) l .  Then, WC havc 

where L = c,"=, P(!).  Herlcc, WC havc 

B(k-1 5 { 2L, ( 2 L p ) 1 / 2 }  
1: 

Thus, from (6.6.7) it follows that lim,,.+m(l/k)B(k) = 0, so that IimI:+m 
( l / k )  c:=a(-7,(! + 1)) = 0. The result, (i) now follows by lctting k 4 CO 

in (6.6.13). I 

Corollary 6.6.3. Lct (6.6.7) hold. Then, (6.6.1) is oscillatory in case 
cithcr of the following satisfied 

or 

P 
(6.6.20) 
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Remark 6.6.1. Suppose that (6.6.7) and (6.6.9) hold. Then, if (6.6.1) is 

nonoscillatory WC can define the constant c = linl - 
I . - m  k 

1 A; p 

P=O T=O 

Theorem 6.6.4. Let (6.6.7) and (6.6.9) hold. 

(i) If (6.6.1) is nonoscillatory, then thcrc cxists a function v (k )  on IN 
such that ~ ( k )  > -p(k), k E N(a) for so111e a E IN and 

(ii) If there cxist a function v ( k )  on N suc:h that v(k)  > -p(k), k E 
nV(u), and a constant c 1  satisfying 

or 

(6.6.21) follows by letting k + 00 in (6.6.13) and then replacing a by k .  

(ii) Supposc that (6.6.7) and (6.6.9) hold and therc exists a constant 
k - l  

c1 such that (6.6.22) or (6.6.23) holds. Let w(k)  = c1 - Er(!) + 

~ ( k )  2 0 or v(k)  I w ( k )  5 0, we have 

and hence 

712(k) > W 2 (  k )  
v ( k )  +p(k )  - w(k)  +p(k ) '  
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Now as an application of Lenlrrla 6.6.1 we find that (6.6.1) is nonoscillatory. 
I 

Theorem 6.6.5. Assume that 

(6.6.24) 

(6.6.25) 

(6.6.26) 

Then, the difference equation (6.6.1) is oscillatory. 

Proof. Suppose to the contrary that (6.6.1) is rlorloscillatory and let 
u(k) be any nonoscillatory solution. Let ~ ( k )  = p(k)Au(k)/v. (k)  for 
k E W(o.). Sirice condition (6.6.7) follows from (6.6.24), Theorem 6.6.2 and 
(6.6.25) imply that (6.6.11) holds. But, from (6.6.13) we have 

1 
I; h e  

lim sup - c(-~(P + 1)) 2 l i rn  inf C C v2 
k-cc /=a 

k-cc 
P=a r=a 47) +P(.) 

- - 
W1 

which is impossible from - v(/? + 1) < p(/? + 1) and (6.6.24). D 

Theorem 6.6.6. Assurrle that the difference eqmtion (6.6.1) is nonoscil- 
latory and 

(6.6.27) there exists an M > 0 with 0 5 p(k) 5 M for all k E W. 

Then, the following are equivalent 

(i) Cf=or(B) exists 

(ii) (6.6.8) holds 

(iii) (6.6.9) holds 
(iv) for any nonoscillatory solution u,(k) of (6.6.1) with w ( k ) u ( k + l )  > 0, 
k E W(o,), the function ~ ( k )  = p(k)Au(k)/u(k) ,  k E N(a.) satisfies 
(6.6.10). 

cc 
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Proof. Obviously (i) implies (ii), and (ii) implies (iii). Theorem 6.6.2 
shows that (iii) and (iv) are equivalent. Therefore, we need only to show 
that (iv) implies (i). But  this is immediate by letting k -+ -M in (6.6.12) 
and observing that (iv) implies u ( k )  + 0 as k -+ m. I 

Corollary 6.6.7. If the assumptions of Theorem 6.6.6 hold then the 
following are equivalent 

(i) C E o r ( l )  = --M 
(ii) (6.6.25) holds 

(iii) there exists a nonoscillatory solution u ( k )  of (6.6.1) with u,(k)v.(k+ 
1) > 0 on N(a )  for some a E IN such that the function v ( k )  = 
p(k)Au(k)/u(k)  > -p(k) ,  k E IN(a) satisfies (6.6.11). 

Corollary 6.6.8. Let (6.6.9) and (6.6.27) hold. If Czo~(! )  does not 
exist then (6.6.1) is oscillat,ory. 

Corollary 6.6.9. Let (6.6.27) hold. If 

then (6.6.1) is oscillatory. 

Theorem 6.6.10. If there exist two sequences { k t }  and { m e }  of 
integers with 2 kt + 1 such that kt -M as Y + 00 and 

me-l 

(6.6.28) c .(.) 2 p(ke) + P ( W )  
r = k e  

then (6.6.1) is oscillatory. 

Proof. Suppose that (6.6.1) is nonoscillatory. Then, there exists a nonoscil- 
latory solution v,(k) such that u ( k ) u ( k  + 1) > 0 for all k E JN(a) for 
some n E IN. Let o ( k )  = p(k)Au(k)/u,(k) .  Then, 71(k) satisfies (6.6.3) 
and v ( k )  > -p(k) for all k E IN(u). W e  will show that 

holds for all k E W(o. + 1) and then this contradiction will prove the 
theorem. 
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From (6.6.3), we have 

Therefore, (6.6.29) holds for k = a + 1. For any k E W(a + 2), from 
(6.6.3) we have 

I:-1 I:- 1 c .(e) = v(a+l )-v (k )-  c w 2 ( e )  < 'U(U+l) + p(k). 
P=a+l 

w(l)+p(l) P=a+l 

However, since 

(6.6.29) follows immediately. I 

6.7. Olver Type Comparison Results 

W e  shall develop several comparison theorems which are useful in esti- 
mating the growth of the solutions of second order difference equations. 

Theorem 6.7.1. Let u ( k )  and w(k), k E W be thc solutions of the 
difference equations (2.16.10) and (2.16.11) respectively, where 

bz (k )  2 az(k) > 0 and b l ( k )  + bz(k) i a l ( k )  + az(k) i - 1. 

If w ( 1 )  - u(1) 2 v(0)  - u,(O) 2 0 and u(1) 2 max(v.(O),O), then fr(k) 
and v(k)  are nondecreasing and u ( k )  5 v(k )  for all k E W. 

Proof. Since u ( k  + 2) - u ( k  + I) = - ( a l ( k )  + ~ ( k )  + l)u(k + 1) + 
az(k)(u(k + 1) - u ( k ) )  from u.(l)  2 u(0)  and u(1) 2 0 it follows that 
4 2 )  - u(1) 2 0, and now by induction WC get u(k + 1) - v.(k) 2 0 for 
all k E IN. The proof for v(k  + 1) - w(k) 2 0 for all k E N is similar. 
Next, since 

(v(k + 2) - u ( k  + 2)) - (v (k  + 1) - u ( k  + 1)) 

= - (a1(k) + az(k) + l ) (v (k  + 1) - u ( k  + 1)) 

- [(bl(k-) + b z ( k ) )  - (al(k) + az(k))I.(k + 1) 

+ az(k) [ (v(k + 1) - u ( k  + 1)) - ( v ( k )  - u ( k ) ) ]  

+ ( b z ( k )  - az(k))[v(k + 1) - 4 k ) l  
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if v(k + 1) - u(k + 1) 2 ~ ( k )  - u,(k) 2 0, as is the case for k = 0, the 
facts 71(k) 2 0 and ~ ( k  + 1) - v(k) 2 0 imply that (w(k + 2) - ~ ( k  + 
2)) - (v (k  + 1) - u ( k  + 1)) 2 0. The resulting inequality ~ ( k )  2 u.(k) now 
follows by induction. I 
Corollary 6.7.2. Let u,(k) and ? ~ ( k ) ,  k E IN be the solutions of (6.1.1) 
and 

(6.7.1) pl(k)?J(k + 1) +pl(k - 1)?i(k - 1) = ql(k)?)(k), k E m(1) 

where the functions pl and q1 are defined on IN and IN(1) respectively, 
and pl(k) > 0 for all k E IN. Further, let 

p1(k - 1) p(k  - 1) m(k) P l (k  - 1) q ( k )  P(k - 1) 

P1 ( k )  P(k-1 Pl(k) Pl(k.1 P(k) P(k) 2- and - - 2"- 2 1  

and ?1(1) 3 u . ( l )  2 0, ~ ( 0 )  2 ?I,(()) 2 0, also ?1(1)-?1(0) 2 ?6(1)-u(o) 2 0. 
Then, ~ ( k  + 1) - ~ ( k )  2 ~ ( k  + 1) - ~ ( k )  ant1 o ( k )  2 ~ ( k )  for all k E IN. 

Theorem 6.7.3. Let u,(k) be the solutiorl of the difference equation 
(2.16.10), where a l (k )  + ~ ( k )  5 -1, a ~ ( k )  > 0 and u(0)  > 0, p = 
?~(1)/?1,(0)  2 1. Then, u,(k) is nontiecxcasing- and 

(6.7.2) u.(O)[min(p, X)]" 5 ~ ( k )  5 u(O)[rnax(p, A)]", 

where X, A arc the largest roots of the equations 1 + CYX + PA2 = 0, 
1 + A A +BA2 = 0, and [j = (infaZ(k))-', L? = ( s ~ l p a ~ ( k ) ) - ~ ,  Q: = 
-1 + psup(a.l(k) + a 2 ( k ) )  and A = -1 + Binf (a l (k )  + ~ ( k ) ) .  

Remark 6.7.1. B and (Y always exist. When ,!J = cc the left hand 
inequality is omitted and when A = -cc the right hand inequality is 
omitted. When A and P exist, we have - (Y 2 1 + 0, -A  2 1 + B, 
P 2 B, - < -, A 2 -, A 2 X, and 

A a  1 
B - [j B 

Proof. B y  Theorem 6.7.1 t,he solution u ( k )  of (2.16.10) is a nondecreasing 
function of k .  Let p 2 X, and define h(k)  = u (o )x~ ,  to otltain 
h(0)  = w.(0), h(1) = Xu(O), and h(k)  + ah(k  + 1) + Ph,(k + 2) = 0. Thus, 

i n  Theorem 6.7.1 taking (2.16.10) as h,(k + 2) + -h,(k + 1) + --h(k) = 0 
Q: 1 

P P 
and (2.16.11) as (2.16.10), then a2(k) 2 - > 0, al(k) + a2(k) 5 - 

1 1+Q: 

B P 
- - 
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sup(al(k)+az(k)) 5 -1, u ( l ) - h ( l )  = (p-X)u.(O) 2 0 = u(O)-h(O), and 
h,(l) = Xu(0) 2 max(h(0),0), and in conclusion WC have u(0)X"  5 v.(k). 

For the case p < X, let h(k) = u(0)p' so that h(0) = u (0 ) ,  

- 1  
h,( l )  = ~(l),  and h(k)  + 6h(k + 1) + ph,(k + 2) = 0, where 6 = 

-p[j- - and P = nlax P, - . Thus, in Theorem 6.7.1 taking (2.16.10) 

as h(k  + 2) + y h ( k  + 1) + -h,(k) = 0 and (2.16.11) as (2.16.10), then 

P ( t) 
6 1 
D B 

1 i  
P - p P P az(k) L - > T > 0, al(k) + a z ( k )  5 - I: - 2 -1, where we 

l+cy l+& 

1+6 
have used the idcntities - 1 l + &  + 1 = (1 - p)(/? - -)//?, - - 

L? P R - -1, 

" 1  1 1+6 l+.cy "cy ' 1 
if p = -, and if a = P > -, then - - - - - 

P P B P P p - z =  
- - 

This completes thc proof of the left- hand inequality (6.7.2). To prove 
the right hand incquality (6.7.2), for p 5 A we consider the function 

A 
B h(k)  = U.(O)A' togct h,(O) = u(o ) ,  h , ( l )  = u ( 0 ) ~  and h(k+2)+"h(k+ 

l )+ "h ( k )  = 0. Now an application of Theorem 6.7.1 gives u ( k )  5 w,(O)A'. 

For p > A we define h(k)  = u ( 0 ) p k  so that h,(O) = u(O), h ( l )  = v.(l) 
A 1 1 

and h,(k+2)+Th(~+1)+Th(k) = 0, where B = B and A = -BP--. 
B B P 

Once again Theorern 6.7.1 gives u.(k) 5 u(0)p'. This completes the proof 
of the theorem. I 
Theorem 6.7.4. Let u ( k )  be the solution of the difference equation 
(2.16.10), where n l (k )  5 0 and ~ ( k )  < 0 and w.(O) > 0, p = u(l)/u(O) 2 
1. Then, (6.7.2) holds, whcrc X, A are the same as in Theorem 6.7.3, 
but P = (supuz(k))-', B = (infa2(k))-', LY = P sup al (k )  and A = 
B inf u1(k) .  

Proof. Let p 2 X, and assume that u,(k) 2 u(0)X' and u ( k  + 1) 2 
u (O)X '+ ' ,  which is true whcn k = 0. Then, the difference equation 
(2.16.10) gives 

1 
B 

u ( k  + 2) = -a1(k)u(k + 1) - az(k)u(k) 2 - -U(O)X"'1 - -?/,(O)A' 
cy 1 

P P 

=(; 2 --X - - U ( 0 ) X k  = U(O)XL '+2 ,  
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which is the required inequality. 

Now let p < X. Since the roots of the equation 1 + cut + [It2 = 0 
1 1 

are X and -, and /3 < 0, it follows that - < p < X, and hence 

1+ap+/7p2 > 0. Assume that v.(k) 2 u,(O)p' and u ( k + l )  2 v.(O)p'+', 
which is the case when k = 0. Then, from (2.16.10) WC find 

PA PA 

u,(k + 2) = - a1(k)u.(k + 1) - a z ( k ) u ( k )  2 --p - - u(0)pA' ('1 
> 71,(O)p'+~. 

The right-hand inequality (6.7.2) can be proved i n  a similar way. 

6.8. Sturm Type Comparison Results 

I n  addit,ion to the given hypotheses on the functions p, q, p1 and 
q1 in  (6.1.1) and (6,7.1), throughout, WC shall assume that q ( k )  > 0 and 
q l ( k )  > 0 for all k E N(1). 

Theorem 6.8.1. If p(k )  2 pl(k) and q ( k )  5 q l ( k )  for all sufficiently 
large k E W and (6.1.1) is nonoscillatory, then (6.7.1) is also nonoscillatory. 
Furthermore, if u(k)  is a solution of (6.1.1) with u ( k )  > 0 for all 
k E N ( a )  and if 71(k) is a solution of (6.7.1) satisfying pl(a)v(a+l)/u(a)  2 
p(a)u(a. + l ) / u ( a )  with .(U) > 0, then v ( k  + l)/v(k) 2 u.(k + l ) /u (k )  
for all k E N ( a ) .  If, in addition v(.) 2 .(U) then t ~ ( k )  2 u ( k )  for all 
k E N(a ) .  

Proof. Let u ( k )  and v ( k )  be as above, and w ( k )  = p(k)u.(k+ l)/w,(k) 
for all k E N ( a ) .  Then, (6.1.1) irnplics that 

(6.8.1) ~ ( k  + 1) = q(k  + 1) - p2(k)/w(k) ,  k E N ( a )  

Let w l ( k )  = pl(k)w(k + l ) / v ( k )  for all k E N(a )  such that v(k )  # 0. 
Then, for k E W(a )  such that v ( k )  and v ( k  + 1) arc nonzero, w1(k) 
and w l ( k  + 1) arc defined, w(k )  # 0, and (6.7.1) implies 

(6.8.2) w ( k  + 1) = ql(k + 1) -p;(WuJ l@) 

For such values of k ,  we subtract (6.8.1) from (6.8.2), and arrangc the 
terms, to obtain 
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From the hypotheses, w(k)  > 0 for all k E N ( a ) .  If w l ( k )  2 w ( k )  the 
right side of (6.8.3) is then nonnegative, hence wl(k  + 1) 2 w(k + 1) > 
0. In particular, from the hypotheses, wl (a )  2 w ( a )  and v(a) and 
? ) (a  + 1) are positive. Thus, w l ( a  + 1) is defined and (6.8.3) implies 
that w l ( a  + 1) 2 w ( a  + 1) > 0. Furthermore, v(a, + 2) > 0 since 
v(a. + 2) = wl (a  + 2)v(a  + l)/pl(a + l), and hence wl (a  + 2) is defined. 
Proceeding inductivcly, we conch~de that w1 ( k )  2 w ( k )  and ~ ( k )  > 0 for 
all k E lN(a) .  Hence (6.7.1) is nonoscillatory and that 

(6.8.4) 
?l(k + 1) p(k) u,(k + 1) 

2 -  2 + l), k E N ( a ) .  
v ( k )  p1(k) u ( k )  u,( k )  

Finally, if 71(a) 2 ?/,(a) then (6.8.4) implies that u ( a  + 1) 2 -u(a + 
1) 2 .(a + 1). Proceeding inductivcly, we obtain v(k )  2 u ( k )  for all 

v(.) 
71, ( a )  

k E N ( a ) .  I 

Corollary 6.8.2. Let (6.1.1) be norlosc:illatory, and there exist positive 
fur1c:tiorls v( k )  and W( k )  satisfying 

(6.8.5) p(k)71(k + 1) + p(k - l)v(k - 1) 5 q(k)v(k) ,  k E N ( a )  

and 

(6.8.6) p ( k ) w ( k  + 1) +p(k - l )w(k  - 1) 2 q(k)w(k),  k E N(a). 

If w(a  + l ) /w (a )  2 v (a  + l )/w(u) ,  then (6.1.1) has a solution u ( k )  
satisfying 

If i n  addition, W(.) 2 U,(.) 2 ?)(Q), then w ( k )  2 ~ ( k )  2 ~ ( k ) ,  k E N(a).  

Proof. Given v ( k )  and w ( k )  as above, we dcfirle the functions q1(k) 
and q 2 ( k )  by 

p(k)v(k + 1) +p(k - 1)71(k - 1) = ql(k)PI(k),  k E N(a )  

and 

p ( k ) w ( k  + 1) +p(k - l )m(k  - 1) = q2(k)w(k),  k E N(a) .  

Then, q l ( k )  5 q ( k )  5 q2(k), k E N(a ) .  Let ~ ( k )  be the solution of 
(6.1.1) satisfying ?],(a) = ? / (a )  and u(a  + 1) = ?/(a + 1). Thc conclusion 
now follows imrnediatcly from Theorem 6.8.1. I 
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Corollary 6.8.3. The difference equation (6.1.1) is nonoscillatory if and 
only if there exists a function v(k)  satisfying o ( k )  > 0 and p(k)v(k + 
1) + p(k - l ) v ( k  - 1) 5 q(k)v(k) for all sufficiently large k E IN. 

Now corresponding to (6.5.3) for the equation (6.7.1) we shall consider 
the difference equation 

(6.8.8) H(k )Z ( k )  + l /Z ( k  - 1) = 1, k E IN(a + 1) 

where H ( k )  = p:(k)/(ql(k)ql(k + 1)). 

Theorem 6.8.4. If h(k)  2 H (k )  for all sufficiently large k E IN and 
(6.1.1) is nonoscillatory, then (6.7.1) is also nonoscillatory. 

Proof. The proof is contained in Lemma 6.5.2. I 

Remark 6.8.1. If p(k) 2 p l (k )  and q(k) 5 ql(k) for all sufficiently 
large k E IN, then h,(k) 2 H (k ) .  Thus, the first part of Theorem 6.8.1 is 
included in Theorem 6.8.4. 

Remark 6.8.2. If p(k)  5 pl(k) and q(k)-p(k)-p(k-l) L q l ( k ) - p l ( k ) -  
pl ( k  - 1) for all sufficiently large k E IN, and (6.1.1) is nonoscillatory, 
then by Problem 6.24.18 equation (6.7.1) is also nonoscillatory. 

6.9. Variety of Properties of Solutions of 

(6.9.1) p ( k ) ~ ( k  + 1) +p(k - l)z(k - 1) = q(k)z(k) + ~ ( k ) ,  k E JN(1) 

where the functions p,  q and T are defined on IN, IN(1) and JN(1) 
respectively, and p(k) > 0 for all k E IN. 

The following properties of the solutions of (6.9.1) can be deduced rather 
easily. 

(Q1)  Any nontrivial solution u ( k )  of (6.1.1) can vanish at most once 
on IN if and only if any two values z ( k 1 )  and z ( k z ) ,  kl # ka, uniquely 
determine the solution z ( k )  of (6.9.1). 

( & Q )  If (i) q ( k )  2 p(k - 1) +p(k) ,  ~ ( k )  2 0 for all k E IN(a, b ) ,  1 5 
a < b, and (ii) z ( k )  is a solution of (6.9.1) such that .(a) 2 0 and 
.(U) 2 z ( a  - l), then z ( k  + 1) 2 z ( k )  2 0 for all k E IN(a,b).  If 
i n  addition to (i) and (ii) at least one of the following conditions hold, 
namely (iii) .(U) > 0, (iv) q(a) > p(a - 1) + p(a) and .(a) > 0, 
or (v) .(U) > z ( a  - l), then z ( k  + 1) > z ( k )  for all k E lN(a,b).  
Further, if (i) holds for all k E IN(a), and i n  addition to (ii) either (vi) 
C" ~ ( l ) / p ( ! )  = CO, or (vii) there exists a function ~ ( k )  2 0 defined on 
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IN(a), such that q ( k )  2 (1 + e(k))p(k) + p(k - 1) and c" F([) = m, 
then z ( k )  4 m as k "+ m. 

( Q 3 )  Suppose that q(k) 2 p(k - 1) + p(k) for all k E N ( u , b ) ,  
h > a +  1, and z ( k )  is a solution of (6.9.1) defined by .(a) = z (b )  = 0. If 
r ( k )  2 0 (< 0), k E IN(o.,b) then z ( k )  5 0 (2 0), k E N ( a , b ) .  Further, 
if r ( a  + 1) > 0 (< 0) then z ( k )  0 (> O), k E N ( u  + 1, h - 1). 

(Q4) If q ( k )  2 p(k - 1) +p(k), r ( k )  2 0 (< 0) for all large k E IN and 
c" r ( l ) /p ( l )  = m (-m), then there exists a solution z ( k )  of (6.9.1) 
such that z ( k )  + m (-m) as k -+ m. 

(Qj)  For the solutions u(k) and z ( k )  of either (6.1.1) or (6.9.1), we 
define W ( v . ,  z ) ( k )  = p(k)(v,(k + l)z(k) - z ( k  + 1 ) u ( k ) ) .  If u ( k )  and z ( k )  
are solutions of (6.1.1) and (6.9.1) respectively, then for any k E JN(a) 

1. 

(6.9.2) W ( v . , z ) ( k )  = - 1 r( l )w,(P) + W ( u ,  .)(U) 

P=a+l 

Definition 6.9.1. A particlllar solution z ( k )  of (6.9.1) is said to be 
recessive if z (k )/w(  k )  4 0 as k -+ m, where w(k)  is a dominant 
solution of (6.1.1). 

Theorem 6.9.1. If the difference equation (6.1.1) has a recessive solution 
o ( k )  and a dominant solution w(k )  such that C" r(l)v(l) exists and 
( u ( k ) / w ( k ) )  C;==, r ( l ) w ( l )  + 0 as k + m, then (6.9.1) has a recessive 
solution. 

Proof. We may assume that the solutions v(k )  and w(k )  of (6.1.1) 
are such that (6.1.3) holds for all k E IN with c = 1. Thus, the general 
solution z ( k )  of (6.9.1) can be written as 

k: 

z ( k )  = C l V ( k )  + czw(k) - c r ( l ) ( v ( k ) w ( l )  - w ( k ) v ( l ) )  
/=l 

Therefore, if c2 = -C,"=, r ( t i ) a ( l ) ,  then we find that 

from which it follows that z (k )/w(k )  -+ 0 as k 4 cm. I 
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Corollary 6.9.2. If for everv solution u(k)  of (6.1.1), I F l  r(l)71.(!) 

exist,s and if (6.1.1) has recessive and dominant solutions, then (6.9.1) has 
a recessive solution. 

Example 6.9.1. For the difference equation z(k+l)+z(k-l)  = 2z(k)+l ,  
k E W(1) the general solution is z ( k )  = c1 + cak + k ( k  + l)/& and hence 
it has no recessive solution. 

Hereafter, we shall assume that in (6.9.1) the function r ( k )  is not 
eventuallv identically equal to zero. 

Theorem 6.9.3. Let u,(k)  and z ( k )  be the solutions of (6.1.1) and 
(6.9.1) respectively, and W ( u ,  z ) ( k )  is eventually of one sign. Then, (6.1.1) 
is nonoscillatory if and only if z ( k )  is a nonoscillatory solution of (6.9.1), 
which is equivalent to stating that (6.1.1) is oscillatory if and only if z ( k )  
is an oscillatory solut,ion of (6.9.1). 

Proof. Suppose that (6.1.1) is nonoscillatory and a E IN is large enough 
so that u(k) > 0 and p(k ) (u (k  + l ) z ( k )  - z ( k  + l ) u ( k ) )  2 0 for all 
k E IN(.). Then, u,(k + l ) z ( k ) / u ( k )  2 z ( k  + 1) for all k E IN(a). Let 
ICl 2 n be the first integer so that z (k l )  5 0, if such an integer exists. 
Then, z ( k )  5 0 for all k E W(kl). If z ( k )  0 on W ( k 1 )  then there exists 
an integer k2 2 kl  such that z ( k 2 )  < 0, which implies that z ( k )  < 0 for 
all k E IN(k2). If z ( k )  z 0 on IN(k l ) ,  then r(k)  E 0 on IN(kl) ,  which 
we are excluding. If k-1 does not exist, then z ( k )  > 0 for all k E lN(a).  
Thus, in either case z ( k )  is nonoscillatory. The arguments are similar if 
we had assumed p(k)(u.(k + l )z (k)  - z ( k  + l ) u ( k ) )  5 0 or u(k) < 0. 

On the other hand, we assume that z ( k )  is nonoscillatory, say positive, 
for all k E N(n ) ,  and assume that p(k)(u(k + I ) z ( k )  - z ( k  + 1)u,(k)) 2 O 
on lN(a) .  Then, u ( k +  1) 2 u , ( k ) z ( k+  l)/z(k) for all k E N(a ) .  If u ( k )  
is an oscillatory solution of (6.1.1), then there exists a k l  E IN(a) such 
that u(k1) > 0. Bwt then the previous inequality implies that u ( k )  > 0 
for all k E JN(kl), which is a contradiction. A similar argument holds if 
p(k ) (u (k+1)~(k )-z (k+1)u (k ) )  5 O or if z ( k )  is eventually negative. I 

Corollary 6.9.4. If the difference equation (6.1.1) is nonoscillatory and 
r(k)  is eventually of one sign, then (6.9.1) is nonoscillatory. 

Proof. Let u(k )  and z ( k )  be the solutions of (6.1.1) and (6.9.1) 
respectively. We may choose a E W large enough so that u ( k ) r ( k )  is of 
fixed sign for all k E N ( a ) .  Then, from (6.9.2) it follows that W ( u , z ) ( k )  
is of one sign. The result now follows from Theorem 6.9.3. I 
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Corollary 6.9.5. If the difference equation (6.1,l) is oscillatory (nonoscil- 
latory) and if there exists a solution u ( k )  of (6.1.1) such that c" ~ ( l ) u ( e )  
= cc or - c c ,  then (6.9.1) is oscillatory (nonoscillatory). 

Corollary 6.9.6. Suppose r ( k )  has the form h , ( k )u (k ) ,  where h(k)  is of 
one sign and u ( k )  is a solution of (6.1.1). If the difference equation (6.1.1) 
is oscillatory (nonoscillatory), then (6.9.1) is oscillatory (nonoscillatory). 

Corollary 6.9.7. If q(k) 5 -p(k) - p(k - 1) for all large k E W and 
r ( k )  = ( - l ) k h ( k ) ,  where h(k)  is of one sign, then (6.9.1) is oscillatory. 

Theorem 6.9.8. Suppose that c" r ( ! ) u ( l )  exists for cvery solution 
u ( k )  of (6.1.l), and (6.1.1) is oscillatory (nonoscillatory). Thcn, the differ- 
ence equation (6.9.1) has at most one nonoscillatory (oscillatory) solution. 

Proof. Suppose that (6.1.1) is oscillatory and F ( k )  is a nonoscillatory 
solution of (6.9.1). Consider any other solution z ( k )  of (6.9.1) of the form 
z ( k )  = ~ ( k )  +cu,(k) (c # 0), whcrc 7r(k) is a solution of (6.1.1). Let v(k)  
be a solution of (6.1.1) which is lincarly indcpcI1dcnt of u(k) such that 
W(uI,71)(k) = 1. Then, we have 

(6.9.3) W ( z ,  w)(k) = W ( F ,  71)(k) + c. 
From (6.9.2) and the hypothesis, lirn~:-, W(Z,  w)(k) exists. If the limit is 
nonzero, then the oscillatory behavior of ~ ( k )  and Theorem 6.9.3 would im- 
ply that Z(k) oscillates, which is a contradiction. Thus, limk-, W ( 7 ,  U) 
(IC) = 0. However, then (6.9.3) gives lirnk-, W ( z ,  ~ ) ( k )  = c (# 0), and 
now again from Theorem 6.9.3 it follows that z ( k )  is oscillatory. 

Next, assume that (6.1.1) is nonoscillatory and 'F(k) is an oscillatory 
solution of (6.9.1). Choose z(k), c, u ( k )  and ~ ( k )  as above. Based on 
the previous argument, we must have limk,, W ( 7 ,  .)(IC) = 0. Again this 
implies in (6.9.3) that limk,, W ( z , v ) ( k )  = c # 0, which by Theorem 
6.9.3 leads to that z ( k )  is nonoscillatory. I 

6.10. Variety of Properties of Solutions of 

(6.10.1) A2u(IC - 1) +p(k)uy(k) = 0 ,  k E W(1) 

where the function p is defined on W(1) and y is a quotient of odd 
positive integers. 

The following properties of the solutions of (6.10.1) are immediate. 

( R I )  I f  u ( k )  is a nontrivial solution of (6.10.1) with u(a)u(a + 1) 5 0 
for some a E I N ,  then either .(a) # 0 or u(u + 1) # 0. If, in addition, 



Qualitativc Properties of Solutions of Higher Order DifT Eqns. 371 

a E W(1) and ~ ( a )  = 0, then u ( a + l )  = -u,(a- 1). Thus, an oscillatory 
solution of (6.10.1) must change sign infinitely often. 

( R z )  Assume that p(k) 5 0 for all k E W(1), and for every a E W( l), 
p(k) < 0 for some k E W ( a  + 1). If v.(k) is a solution of (6.10.1) with 
714a - 1) 5 W,(.) and U,(.) 2 0 for some a E N(1), then u,(k) and 
Au,(k) are nondecreasing and nonnegative for all k E W ( a ) .  Similarly, if 
u,(a - 1) 2 .(a) and U,(.) 5 0 for some a E W(1), then u.(k) and 
Au.(,k) are nonincreasing and nonpositive for all k E W ( a ) .  
(&) If p(k )  is as in ( R z ) ,  then all nontrivial solutions of (6.10.1) are 
nonoscillatory and eventually monotonic. 

(R , )  Assume that p(k) 2 0 for all k E W(1), and for every a E W(l) ,  
p(k) > 0 for some k E W ( a  + 1). If u(k) is a nonoscillatory solution of 
(6.10.1) such that ~ ( k )  > 0 for all k E W ( a ) ,  then u ( k  + 1) > ~ ( k )  and 
0 < Au(k + 1) 5 Au(k)  for all k E W ( a ) .  A similar argument holds if 
u,(k) is eventually negativc. 

Theorem 6.10.1. If p(k) is as i n  ( R z ) ,  and ~ ( k )  and v(k )  are solutions 
of (6.10.1) satisfying 

(6.10.2) u.(b) 5 (<) v(b )  and 7 r ( b + l )  > (2 )  u ( b + 1 )  for some b E W 

then ~ ( k )  > w(k) for all k E W(b+2) ,  u(k)  < v(k )  for all k E W(0, b - l ) ,  
and w.(k) - v(k)  is increasing for all k E W. Furthermore, 

(6.10.3) u ( k )  - w(k) 2 (k  - b ) ( u ( b +  1) - w(b+ 1)) for all k E W ( b +  1) 

and 

(6.10.4) u ( k )  - v(k)  5 ( b  - k + l ) ( u ( b )  - ?)(h))  for all k E W(0, b) .  

Proof. Let w(k )  = u ( b + k )  - w(b+k), then from (6.10.2) it is clear that 
w(0)  5 (<) 0 and w(1) > ( 2 )  0. B y  induction we shall show that 

(6.10.5) WI(k) 2 - 
k - l  w(k  - 1) 2 0, k E IN(2). 

For this, since from (6.10.1) we have 

A2u(b) = - p ( b  + l)uY(b + I) 2 - p(b + l ) ~ Y ( b  + 1) = A2v(b) 

it follows that 

4 2 )  2 2 4 1 )  - w(0)  (> 0) 2 241 )  2 0, 
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i.e. (6.10.5) is true for k = 2. Now let (6.10.5) be true for k = C, then 
as before WC have A2u(b + C - 1) 2 A 2 u ( b  + e - l), and hence 

w(C + 1) 2 2w(C) - W([ - 1). 

Thus, from (6.10.5) for k = C it follows that 

i.e. (6.10.5) holds for k = C + 1 also. 

Now from (6.10.5) and the fact that u~(2) > 0, it is dear that u(k )  > 
v(k)  for all k E W ( b  + a), and u ( k )  - 71(k) is increasing on N ( b  + I). 

Further, since w(k )  2 -. - . . . y ( l )  we find that u ~ ( k )  2 kw(l ) ,  

which is the same as (6.10.3). 

k k - l  2 
k - l  k - 2  

To prove the conclusions of the theorem for k E N(0, b - l), let 
u,1(k) = -u,(b + 1 - k )  and v I ( k )  = -u (b  + 1 - k ) ,  k E N ( O , b  + I) .  
Then, ul (k )  and q ( k )  are solutions of (6.10.1) with p(k) replaced by 
p ( b  + 1 - k ) .  Now applying the above results to ?/ , l (k)  and v l ( k )  with 
b = 0 completes the proof. I 

Remark 6.10.1. In (R,) we assumed that 4 a )  2 ?] , (a-l )  and U,(.) 2 0 
and concluded that u ( k )  was nondecreasing for all k E W(a ) .  If we 
assume that .(a) > u (a  - 1) 2 0, then Theorem 6.10.1 implies that 
v,(k) is strictly increasing and u,(k) + cm as k + cm. For this, let 
z ( k )  be a solution of (6.10.1) defined by .(a) = z ( a  - 1) = u(a  - 1). 
Now we apply Theorem 6.10.1 with b = a - 1. Since u ( h )  = z ( b )  and 
u ( b  + 1) > z ( b  + l), we have u ( k )  - z ( k )  > u.(k - 1) - t ( k  - 1) for all 

is strictly increasing on m(.). For all k E W ( a )  we also conclude that 

where .(a) - u(a  - 1) > 0. Thus, u ( k )  -+ cm as k + cm. 

Corollary 6.10.2. If p(k)  is as in (Rz),  and u,(k) and u(k) are 
solutions of (6.10.1) satisfying .(a) = . (U) and u ( b )  = a ( b )  for some 
a < b, a ,  b E W, then u(k) = 71(k) for all k E W. 

Lemma 6.10.3. If p(k) is as in (R,) ,  then for any a 2 1 there exists 
a unique solution u ( k )  of (6.10.1) such that u(0) = u g  and W,(.) = 0, 
where u,g is any positive constant. 

Proof. Let z ( k )  be a solution of (6.10.1) such that .(a) = 0. If 
z ( a  - 1) > 0 and z(a - 2) 5 z ( a  - l), then (R,) implies that .(a) 2 

k E N(a + 1). Thus, ~ ( k )  - ~ ( k  - 1) > ~ ( k )  - ~ ( k  - 1) 2 0, SO ~ ( k )  

u,(k) > u ( k ) - z ( k )  2 (k-a+l ) (v , (a )-z (a ) )  = ( k - a + l ) ( u ! ( a ) - U ( a - l ) ) ,  
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z(a - 1) > 0, which is a contradiction. Thus, z ( a  - 2) > z(a - 1) > 0. 
Proceeding in this way, we obtain 

(6.10.6) z ( 0 )  > z(1) > . .' > z(a - 1) > .(a) = 0. 

Since .(a,) = 0, if z(a - 1) is also specified then z ( k )  is uniquely 
determined for all k E W(0,a) by (6.10.1). Thus, in particular z ( 0 )  is 
determined by z(a-1). Let f be the mapping from z(a-1) to z ( 0 ) .  From 
(6.10.1), it is clear that each z ( k ) ,  k E N(0, a-2) continuously depends on 
z ( a - l ) ,  and so in particular the function z ( 0 )  = f(z(a-1)) is continuous. 
If we let z ( a  - 1) = Q ,  then (6.10.6) implies that f (?Lo)  > uo, if we let 
z ( a  - 1) = 0, so that .(a) = z(a - l) = 0, then z ( k )  E 0 so f ( 0 )  = 0. 
Thus, since f is continuous, thcre exists p, 0 < < uo such that 
f(/?) = ~ 0 .  Therefore, there exists a solution w,(k) of (6.10.1) determirled 
by ~ ( a )  = 0 and u ( a  - 1) = p, which must satisfy ~ ( 0 )  = UO. Finally, 
the uniqueness of this solution follows from Corollary 6.10.2. I 

Theorem 6.10.4. If p(k) is as in (Rz),  then (6.10.1) has a positive 
nonincreasing solution ~ ( k )  and a positive strictly increasing solution 
v ( k )  such that, v ( k )  -+ 00 as k -+ M. In addition, the nonincreasing 
solution u ( k )  is uniquely dcterrnirmi once v,(O) is specified. 

Proof. If we choose, say, v (0 )  = 1 and ~ ( 1 )  > 1 then the existence 
of an increasing solution v ( k )  satisfying the stated properties is an irnme- 
diate consequence of Remark 6.10.1. To show the existence of a positive 
nonincreasing solution ~ ( k )  of (6.10.1), by Lemma 6.10.3 it is clear that 
for each t! 2 1, thcre is a unique solution u ' (k ) ,  k E IN of (6.10.1) such 
that 

(6.10.7) w,P(O) = U O ,  .'(l) = 0. 

Further, in view of (6.10.6) we know that for every t 2 1 

(6.10.8) 710 2 d ( k )  > u f ( k  + 1) 2 0, k E N(o,e - 1). 

We claim that for cvery e 2 1 

(6.10.9) U'+'@) > u f ( k ) ,  k E IN(1). 

For this, by Theorem 6.10.1 it suffices to show that ~ ' ~ ~ ( 1 )  > ~' (1 ) .  
Suppose to the contrary, that U!( 1) 2 U,'+' (1). If U'( 1) = U'+'( l), then 
since W.' (0) = up+' (0), the solutions U' ( k )  and U' ( k  + 1) are identically 
equal, however, then since d ( l )  = U'+'([ + 1) = 0, both ~ ' ( k )  and 
u f ( k  + 1) are identically 0, which contradicts ~ ' ( 0 )  = uo > 0. If 
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d(1)  > u'+'(l), then from Theorem 6.10.1 we have u ' (k)  > d + ' ( k )  for 
all k E IN(1), but then i n  particular for k = l we find 0 = U' ( [ )  > 
u'+'(t) > W,'+'(! + 1) = 0, which is also a contradiction. Therefore, 
(6.10.9) holds. 

Combining (6.10.8) and (6.10.9) WC find that for each k E W(1) the 
&sequence { ~ ' ( k ) }  is increasing, bounded above by Q ,  and is eventually 
positive. Let u(k) = limp-+m 7re(k) for each k E IN. Then, 0 < u ( k )  5 u g ,  

k E W and from (6.10.8) we have ~ ( k )  2 u ( k  + l), k E N. Now since 
for each e E W(1), d ( k )  is a solution of (6.1.1), we have Azu'(k - 1) = 
-p(k)(u'(k))Y. Thus, as .!? + 00, WC find that u(k) is a nonincreasing 
but positive solution of (6.1.1). 

Finally, we shall show that this solution ~ ( k )  is uniquc, once 210 is 
specified. For this, let z(k) be another positive, nonincreasing solution of 
(6.1.1) such that z ( 0 )  = uo. Then, either z(1) < ?/,(l), z(1) > ?/,(l), or 
z(1) = 4 1 ) .  

If z(1) < w,(1) ,  then there exists an integcr and a solution d(k) 
defined by (6.10.7) such that z(1) < w,'(l)  < ~ ( 1 ) .  Sinc:c u'(0) = z ( 0 )  and 
d(1) > z(l), Theorem 6.10.1 implies that ,'(IC) > z ( k )  for all k E W(1). 
But, then in particular, 0 = d(l) > .(e), we have a contradiction. 

If z(1) > u ( l ) ,  then Theorem 6.10.1 implies that z(k) - u,(k) 2 
k(z(1) - .(l)), k E IN(1). This means that z ( k )  becomes unbounded as 
k -+ 00, which is again a contradiction. 

Thus, z(1) = u(1) and hence z(k) = u ( k )  for all k E W. I 

Theorem 6.10.5. If p(k) is as in (R4) and y > 1, then the difference 
equation (6.10.1) is oscillatory if and only if C,"=, [p(!) = 00. 

Proof. Let u(k) be a nonoscillatory solution of (6.10.1), and u(k)  > 0 
for all k E lN(a). B y  (&), u ( k )  is increasing 
and nonincreasing for all k E lN(a). W e  multiply 
ku-7(k) and sum, to obtain 

k-l 

which is from (1.8.5) is the same as 

k-l 

and Au(k)  is positive 
both sides of (6.10.1) by 

k E W ( a  + 1) 

A:- 1 
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In view of (R4) and the hypotheses, the above equality implies that 

k-l 

(6.10.10) C A ~ . ( c ) A ( c ~ - Y ( ~ ) )  -+ 03 as /c + m. 
(=a 

W e  shall show that (6.10.10) is impossible. For this, we note that Au(k) > 
0 implies that A(u-Y(k)) < 0, and hence 

1:-l L-l C AU(C)A(C~,-~(C)) = C [ U - ~ ( C  + l)Au,(C) + CAU.(C)A(U-~(C))] 
t=a P=a 

!%-l 

5 c u P ( C  + l ) A U ( C ) .  
P=a 

Thus, it suffices to show that 

00 

(6.10.11) c K Y ( P  + l )Au(f )  < W. 
P=a 

Let ~ ( t )  = U([) + (t  - C)Au,(II), C 5 t 5 f + 1. Thcn, .(C) = u,(II), 
T ( C +  1) = u ( C  + 1) and ~ ' ( t )  = Au.(P) > 0, II < t < C + 1. Thus, ~ ( t )  is 
continuous and increasing for t 2 a. W e  then have 

.t+1 r+ l 
K Y ( C  + l)Au.(C) = .I, U-?([  + l )Au,(C)dt = T-y(C + l)r '( t)dt  

< le+1 r-7(t)r'(t)dt = - [rl-y(C + 1) - rl-Y(t) ]  . 
1 

1 - 7  

This implies that 

However, since y > 1 and T is an increasing function, it follows that 
(6.10.11) holds. This completes the sufficiency proof. The necessity part is 
contained in the sufficiency part of the next result. I 

Theorem 6.10.6. If p(k) is as in (&), then (6.10.1) has a bounded 
nonoscillatory solution if and only if C" &(C) < W. 

Proof. It  is easy to verify that any solution u ( k )  of 

00 

(6.10.12) u(k)  = 1 - c (C - k)p(C)u,y(C) 
e = L + 1  
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is also a solution of (6.10.1). W e  choose a E IN so large that 

Consider the Banach space l; of all bounded real functions v (k ) ,  
k E IN(a) with the norm defined as 11v11 = sup lu (k) l ,  k E IN(a). W e  define 
a closed, bounded subset S of e& as, S = {W E : 1/2 I ~ ( k )  5 l}. 
Let T be an operator T : S + S such that 

M 

(To)(k)  = 1 - C (l- k )p ( l )~ . ’ ( l ) ,  k E IN(a). 
P=k+l 

To see that the rangc of T is in S, we note that if 7) E S, then 
(Tv ) (k )  >_ 1 - ~ ~ = , : + , ( l  - k ) p ( l )  2 (1/2). Clearly, (Tv ) ( k )  I 1. Furt,her, 
since t,he mean value theorem applied to the function r ( t )  = tY implies 
that for any 71 and W E S, Ivy(k) - wY(k) l  5 2ylv(k) - w(k)l  for all 
IC E IN( U,) , we have 

M 

I (T?) ) (k)  - (Tw)(k) l  I C (l - k)p(l)lv’(l) - w’(l)I 
@=!,:+l 

M 

I 27ll.l) - 4 1  c (l - k ) P ( l )  

I ,Il. - 4 1 .  
I=k:+I 

1 

Therefore, (ITw - Twll 5 (1/2)11?1 - w I I ,  and hence T is contracting on 
S. Thus, T has a unique fixed point in S, which is our desired bounded, 
nonoscillatory solution of (6.10.12). 

To prove the (:oI1vcrse1 let u ( k )  be a nonoscillatory solution of (6.10.1), 
and u ( k )  > 0 for all IC E IN(a). B y  (&), u(k) is increasing for all 
k E lN(a) .  Thus, u ( k )  is bounded above and below by positive constants 
for all IC E IN(a). Now since any solution ~ ( k )  of (6.10.1) also satisfies 

(6.10.13) k(u(IC + 1) - u(IC)) = a(u(a + 1) - . ( U ) )  + ~ ( k )  - . (U)  

k 

- c @(/3)u’(l), k E N(a )  
t=a+l 

if C:==,lp(l) --f CO as k --f CO, the right side of (6.10.13) must then 
approach to - CO. This implies that the left side of (6.10.13) is eventually 
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negative. But  this contradicks the fact that .(X-) is increasing. This 
completes the proof. I 

Theorem 6.10.7. If p(k) is as in (R4) and 0 < y < 1, then all solutions 
of (6.10.1) are oscillatory if and only if c" P p ( [ )  = CO. 

Proof. Let u ( k )  be a nonoscillatory solution of (6.10.1), and u ( k )  > 0 
for all k E N(a). B y  (&), v,(k) is increasing and Au.(k) is positive and 
nonincreasing for all k E IN(a). Thus, for all k E lN(2a) we have 

k 
2 
-Au,(k - l), 

B y  hypothesis, the second sum in (6.10.14) approaches 00 as k 4 CO, 
so the first tcrm approaches - m. To show this is irrlpossible, let r ( t )  = 
.(e) + ( t  - l)Au.(e), e 5 t 5 C+ 1, C 2 a so that, r is positive, continllow 
and increasing. Further, let s(t) = r( t  + 1) - r ( t )  > 0, t 2 a so that ,S is 
continuous, s'(t) = AV,([) - Av,(C- 1) = A2u(t - 1) 5 0 for C - 1 < t < 
which implies S is nonincreasing and s ( t )  5 .?(e - 1) = Au(e - 1). Then, 
for C -  1 t < e ,  we have 

A2u(C - 1) - 'p A2u(t - 1) 
( A U ( ~  - l))? - 1-1 (Au(e - I))? dt. 

Thus, it follows that 

6: 
A2u(C - 1) 1 c (Au(C - l))? L 3 dt = - [s~"  ( k )  - sl--Y (2a - l)] . 

I=2a 1-7 

But sl-?(k) > 0 for all k E W(a.), so the sum on the left in the above 
inequality is bounded below. This contradiction completes the sufficiency 
proof. The necessity part is contained in the sufficiency part of the next 
result. I 

Definition 6.10.1. A solution u(k) of (6.10.1) is said to have asymp- 
totically positively bomded diflerences if there exist positive constants cl 
and c2 such that c1 I Au.(k) 5 c2 for all k E N(a) for some a E N(1). 
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Theorem 6.10.8. If p(k )  is as in (R4), then (6.10.1) has a solution with 
asymptotically positively bounded differences if and only if c" Pp([) < 
m. 

Proof. Assume that c" P p ( [ )  < c c ,  and choose a large enough so 
that cP" , ,Pp( l i )  < l/2. Let u ( k )  bc the solution of (6.10.1) satisfying 
. (U) = 0, u.(a+ 1) = 1, so that Au.(a) = 1. We want to show that 1/2 5 
Au(k) 5 1 for all k E lN(a). For this, suppose that 1/2 5 Au(k) 5 1 
for all k E N(a,m - 1). Then, ~ ( k )  > 0 for all k E N(a ,m) .  However, 
then from (6.10.1), A2u,(k - 1) 5 0 for all k E N(a,n/, ) .  Thus, for all 
k E W(a + 1,m) it follows that 

~ ( k )  5 ~ ( a )  + ( k  - ~ ) A u ( u )  ( k -  U,) 5 k .  

Now from (6.10.1) and the above inequalities we obtain 
m m 

Au.(rrr) = ~ u , ( a )  - C P(+Y(P) 2 1 - C ~ ( P ) C Y  2 -. 
1 
2 

P=a+l P=a+l 

Also, since Au.(k) is nonincrcasing, we fincl that Au(m) 5 Au(a) = 1. 
Thus, 1/2 L Au(n~)  5 1, arid now by i r l d ~ ~ t i o n  l/2 5 Au(k) 5 1 holds 
for all k E lN(a.). 

Conversely, let u,(k) be a solution of (6.10.1) which has asymptotically 
positively bounded differences. Then, as in Theorem 6.10.7 we find that 
u.(k) 2 (k/2)Av.(k - 1) for all k E W(2a.). Thus, for all k E W(2a + 1) 
it follows that 

L: 
l k  

27 
Av(2a) - Au.(k) = C p(l)uY(J1) 2 - C p(C)P(Au( !- l))? 

P=2a+l P=2a+l 

But this implies that C"p(l? )P < c c .  I 

Example 6.10.1. Consider the difference equation (6.10.1) with y = 1/3 
and p(k) = ( k  + 1)4/3 { ( k  + + 2(k + l)-4 + k - 4 } ,  k E W(1). For 
this difference equation ~ ( k )  = (- l ) " (k  + l)-4 is an oscillatory solution. 
Further, since @(l!) < cc and p ( l )  > 0, by Theorem 6.10.6 it 
also has a bounded nonoscillatory solution. Thus, the difference equation 
(6.10.1) can have both oscillatory as well as nonoscillatory solutions. 

6.11. Oscillation and Nonoscillation for 

(6.11.1) A ( r ( k ) A u ( k ) )  + f ( k ) F ( u , ( k ) )  = 0, k E N(a) 
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where the functions r, f and F are defined in their domain of definition. 
Further, v.F(w.) > 0 for U # 0, r ( k )  > 0 for all k E W ( a ) ,  and 
R ~ , ~  + 03, where R ~ , ~  = I / ~ ( P ) ,  j E ~ ( a ) ,  k E w(j  + 1). 
Theorem 6.11.1. Suppose that in (6.11.1) the function F (v . )  is contin- 
uous on R, and 

(i) r ( k )  is rlorldecreasing on W ( a )  
. k-l 

Then, every bounded solution v.(k) of (6.11.1) is either oscillatory or such 
that lirrlinf~-co Iv,(k)I = 0. 

Proof. Suppose that there exists a bourldcd nonoscillatory solution ~ ( k )  
of (6.1 1 .I), and let U( k )  > 0 for all k 2 kl  > a (a similar argurnent 
holds for v.(k) < 0). If lim infA,-m v ( k )  > 0, then thcrc is a k2 2 kl  and 
constants cl, c2 such that, 0 < c1 5 v ( k )  5 c 2  for all k E W(k2). Thus, 
from the given hypotheses there exist constants MI, M2 > 0 such that 

(6.11.2) 0 < M1 < F ( u ( k ) )  

From (6.11.1), we have 

k 

(6.11.3) c tA(r(P)A71.(P)) 
F = k z  

Further, since from (1.8.5) 

and 

k L C r(t)Au(t) = ~(k+l)~(k+l)-~(k2+1)~(k2+1)- C ~(t+l)Ar(P)  
I=kz+l e=k2+1 

the hypothesis (i) implies that 
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On the other hand, from (6.11.2) it follows that 

where p = M1 /M2.  

Combining (6.11.3) (6.11.5), we find 

k 
kr(k+l)~~r(k+l)-k2T(k2)Aw.(lC2)-c~T(k+l) 5 -M2 C e(plf+(li)+f"(e)), 

t = k 2  

which implies that 

Therefore, from the hypothesis (ii) we conclude that kAu(k+l)  -m 
as k -+ m. But, then there exists a kg 2 k2 such that Au(k+ 1) 5 -l/k 
for all k E I N ( ~ c ~ ) ,  and this gives v,(k + 1) 5 u(k3 + 1) - EFIL~ 
which implies that limk-m u ( k )  = -m. This contradicts our assumption 
that w.(k) > 0 for all k E IN(k1). I 

Theorem 6.11.2. Suppose that in (6.11.1) the function F ( u )  is con- 
tinuous on R, f ( k )  > 0 for all k E N ( a ) ,  and there exist functions 
@(U) E C(')[R,R] and h ( k )  defined on N ( a )  such that 

(i) IF(u)I 2 l@(u)l, @'(U) 2 E > 0, u@(u) > 0 for U. # 0 

(ii) h(k)  > 0 for all k E N(a) ,  and 

Then, the difference equatjiorl (6.11.1) is oscillatory. 

Proof. Suppose that there cxists a nonoscillatory solution u.(k) of 
(6.11. l), and let U( k )  > 0 for all k 2 kl > a (a similar argument holds 
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for u ( k )  < 0). It follows from equation (6.11.1) that A(r(k )Au(k) )  5 0, 
and hence ~ ( k ) A u ( k )  is nonincreasing for k 2 k l .  W e  will first show 
that r(k)Au(k)  2 0 for all k E N(k.1). If r(kz)Au.(kz)  = c < 0 for 
some 2 ICl, then r (k )Au(k)  I c for all k E N(k-2). But, this implies 
u.(k) 5 w,(kz) + l/.([) + -03, as k + cc which contradicts the 
fact that u(k) > 0 for all k E IN(k1). Thus, r(k)Au(k)  2 0 for all 
k E IN(kl) ,  and this implies that u ( k )  is nondecreasing on IN(k1). In 
view of (i), from (6.11.1) we have A(r(k)Au, (k) )  + f ( k ) 4 ( u , ( k ) )  5 0, and 
so 

(6.11.6) 

Using the inequalities v (k+ 1) 5 v ( k ) ,  4 ( u ( k ) )  I 4 ( u ( k +  1)) and (6.11.6) 
in the above inequality, we get 

I -/?,(/c) [ f(k) - - ( - 3 2 ]  , IC E N(k1).  

Summing the above inequality from kl to k ,  we obtain 

c1 > 0 is a finite constant. But, this contradicts condition (ii) and the 
proof is complete. I 
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Corollary 6.11.3. Suppose that f ( k )  2 0 on W(a.) and that there 
exists a function h(k)  > 0 on N(a )  such that 

Then, the difference equation 

(6.11.8) A2u(k) + f ( k ) w , ( k )  = 0, k E W(U) 

is oscillatory. 

Remark 6.11.1. If f ( k )  2 on W(1), N > 0, then if we let 

h,(k) = k ,  the assertion of Corollary 6.11.3 holds. 

Theorem 6.11.4. Suppose that in (6.11.1) thc function F ( u )  is contin- 
uous on R, f ( k )  2 0 for all k E W(a , ) ,  and 

(i) there exist two nondec:rcasing functions 4 E C[R, R] and E 

C[(O, m), (0, m)) such that 

l+Ck 

IF(.)/ 2 I$(w,)l, VM$(U.) > 0 for 11. # 0 

and 

(ii) there exists a nondecreasing function 
r (k )Ap(k)  is nonincreasing on W(u )  and 

(6.11.10) 

p(k) > 0 on N(a) such that 

m. 

Then, the difference equation (6.11.1) is oscillatory. 

Proof. Assume the contrary. Then, as in Theorem 6.11.2 for a nonoscil- 
latory solution u,(k) > 0, k f W(kl), k1 > a we have u,(k)  5 u(k + l), 
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Since A [ 4 ( u ( k ) ) $ ( R k l , k ) ]  2 0, v(k)  2 0 for all k E m ( k 1 ) ,  (i) and (ii) 
in the above equalit,y imply that 

B y  the assumptions the equation (6.11.1) gives 

Thus, in view of the monotonicity of w(k) and r (k )Ap(k) ,  from (6.11.11) 
and (6.11.12), we obtain 

IC E lN(IC1) .  

Since for u(k)/,8 5 t 5 u(lc + l)/,O, we have [4(t)$(t)]" 2 [@(u(k + 
l)/P)$(u(IC + l)/P)]-', it follows that 

Using the above inequality in (6.11 
ity from kl to k leads to 

L. 14) and summing the resulting inequal- 

The above inequality in view of (6.11.9) and p(k)  2 0, IC E nV(k1) gives 

which contradicts (6.11.10). I 
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Corollary 6.11.5. Suppose that f ( k )  2 0 for all k E N(a), and there 
exists a constant cr > 0 such that 

(6.11.15) 03. 

Then, the difference equation 

(6.11.16) A ( r ( k ) A u ( k ) )  + f(k)w.(k) = 0, k E N(u) 

is oscillatory. 

Proof. I n  Theorem 6.11.4 let q5(u) = 11, +(U) = ua and p(k) = 
Ra.k. I 

Remark 6.11.2. In (6.11.15) the constant (Y cannot be zero. For this, we 
note that the equation A 2 u ( k ) + ( ( 2 m " - m ) / m ) u ( k )  
= 0 has a nonoscillatory solution u , (k)  = m and the condition 
C" ef(e)  = 03 holds. 

Corollary 6.11.6. Suppose that f ( k )  2 0 for all k E N ( a ) ,  and 
c" f( l)Ra,e = m. Then, the difference equation 

is oscillatory. 

Proof. In Theorem 6.11.4 let q5(u) = Iw,U,la sgn U, Q > 1, $(U,) = 1 and 

~ ( k )  = Ra,k:.  

6.12. Asymptotic Behavior of Solutions of 

where the functions r, f, F and 9 are defined in their domain of 
definition. Further, uF(u)  > 0 for 11 # 0, r ( k )  > 0 for all k E N(a) ,  
and R a , k  + 00, where Rj,k = l/.([), j E N(a ) ,  k E N ( j  + 1). 

Theorem 6.12.1. Suppose that the following conditions hold 

(i) f ( k )  2 cr > 0 for all k E N(a )  

(ii) IF(u)l is bounded away from zero if 1 2 1 1  is bounded away from zero 

(iii) the function G(k )  = g(() is bounded on IN(a). 

Then, for every nonoscillatory solution ~ ( k )  of (6.12.1), linlk-co u,(k) = 0. 
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Proof. In system form equation (6.12.1) is equivalent to 

A?l.(k) = (v (k )  + G ( k ) ) / r ( k )  

A v ( ~ )  = - f ( k ) F ( ~ ( k ) ) .  
(6.12.2) 

If u ( k )  is a nonoscillatory solution of (6.12.1), then we can assume that 
u,(k) > 0 eventually (the case u,(k) < 0 can be similarly treated). First 
we shall show that lirrl infk,, u(k) = 0. If not, then tllere exist kl  2 a 
and a positive constant c1 such that F(u. (k ) )  2 c1 for all k E IN(k.1). 

From (6.12.2) it follows that 

k 

v(k + 1) - ? / ( k l )  = - c f ( l ) F ( u ( ! ) )  
e=L1 

k 

5 -c1 C f ( e )  + -03 as IC + 03. 
P=kl 

We then have Au(k)  = ( v ( k )  + G ( k ) ) / r ( k )  5 -l/r(k) for all k E IN(k2), 
for some k2 2 k l .  This implies that u,(k) 5 u , ( k z ) - ~ ~ ~ ~ 2  l/.(!) + -03, 
as k + m. But, this contradicts the fact that ~ ( k )  is eventually positive. 
From the above argument, we also have 

00 

(6.12.3) C f ( l ) F ( ? l . ( ! ) )  < m. 

If limsupk,, u,(k) = y > 0, then there exists a sequence { k j }  C IN, 
such that u ( 5 )  + y as j + m. Hence, there is j ( 0 )  (k,(o) 2 U )  such 
that u (k j )  2 y/2 and F(u . (k j ) )  2 c 2  for all j 2 j ( O ) ,  where c2 is a 
positive constant. But, then WC have 

k, j c f ( W ( u , ( l ) )  2 c f ( k e ) F ( u ( k e ) )  2 ac2( j  - j ( 0 )  + 1) + m 
l = j ( O )  

as j "+ 03, so that C" f ( t ) F ( u ( l ) )  = m, which contradicts (6.12.3). I 

Theorem 6.12.2. In addition to the condition (ii) let 

(iv) f(k) > 0 for all k E N(a), and C" f ( l )  = m 
(v) lirnA:-OO g ( k ) / f ( k )  = 0. 

Then, for every nonoscillatory solution u ( k )  of (6.12.1), lirninf Iu,(k)I = 0. 

Proof. Let ~ ( k )  be a nonoscillatory solution of (6.12.1), say, ~ ( k )  > 0 
for all k E IN(kl), where k l  2 a. Then, ~ ( k )  is also a nonoscillatory 

k-00 
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solution of 

A ( r ( k ) A ~ r ( k ) )  + [f(k) - g(k)/F(~~,(k))~F(~~,(~)) = 0, k E IN(k1). 

Suppose that lim infk,, v.(k) > 0, then by the hypotheses there exists 
a positive constant c such that F(u, (k ) )  2 c for all k E IN(kl). Thus, 
by (v) there exists a k2 2 k1 such that g (k ) / ( f ( k ) F (v , ( k ) ) )  < l/2 for all 
k E W ( k 2 ) .  This implies that 

f ( k ) " S ( k ) / F ( 4 k ) )  = f ( k )  11 - . dk ) / ( f (k )F (u (k ) ) ) l  2 yf("), k E W(k2). 
1 

So from (iv) we get C"[f(l") - g(B)/F(u,(k))]  = CO. But, then by Prob- 
lem 6.24.30, u(k)  must be oscillatory. This contradiction completes the 
proof. I 

Theorem 6.12.3. I n  addition to the condition (iv) let 

(vi) F ( v . )  is c:ontinuous at U, = 0 

(vii) lirninfk,, g(t)/ f(t)  2 c > o for cvery j E ~ ( n ) .  

Then, no solution of (6.12.1) approaches zero. 

Proof. Let u(k)  be a solution of (6.12.1) which approaches zero. Then, 
by the hypotheses on the function F there exists a kl 2 a such that 
F ( u ( k ) )  < c/4 for all k E N(k1). Hence, from the equation (6.12.1) we 
have 

k 

which by (vii) yields 

c c  C 
2 --+- = - > 0, 

4 2  4 

for all large k .  But, (iv) in the above inequality implies that r ( k ) A u ( k )  + 
CO as k 4 CO, which in turn leads to the contradictive conclusion that 
u(k) + CO as k + CO. I 

Remark 6.12.1. If we replace conditions (iv) and (vii) by 

(iv)' f(k) < 0 for all k E W(u ) ,  and C" f (e)  = -m 
(vii)' limsupk:,, g ( [ ) /  C:=, f (c)  5 c < o for every j E ~ ( a ) ,  
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then the assertion of Theorem 6.12.3 holds. 

Theorem 6.12.4. Suppose that the following conditions hold 

(viii) F ( u )  is locally bounded in lR 
6x1 C" I f ( l ) l  < C O ,  C" g([) = CO. 
Then, every solution of (6.12.1) is unbounded. 

Proof. Let u ( k )  be a bounded solution of (6.12.1), i.e. Iu(k)l 5 M ,  
where M is a positive constant. Then, by (viii) there exist constants L1 

and L2 such that L1 5 F ( u ( k ) )  5 La. But then, from (6.12.1) and (ix), 
we obtain 

~ ( k  + l ) A ~ ( k  + 1) - T ( u ) A u ( ~ )  
k k k 

L C g ( e )  - LZ C f+( e )  - ~1 C f - ( e )  -+ CO, as IC -+ CO. 
e=a t=a t=a 

However, this leads to that u ( k )  -+ CO. This contradiction completes the 
proof. I 

6.13. k', and c0 Solutions of 

(6.13.1) A2u(k) + f ( k , u ( k ) )  = 0, k E IN(a). 

Theorem 6.13.1. Let for all ( k , u )  E N(a)  x R the function f ( k , u )  
be defined and 

(6.13.2) 

Then, if u ( k )  E e2 is a solution of (6.13.1), there exists an integer kl 2 
a ( a  2 2) such that u ( k )  = 0 for all k E W(kl). 

Proof. Let u ( k )  be a solution of (6.13.1) such that C,"=, Iu(C)I2 < CO, 

Then, limk,, u(k) = 0, and hence limk,, Au(k) = limk,, A2u(k)  = 
0. Summing equation (6.13.1) from k to m, we obtain Au(m + 1) - 
Au(k) = - CLk f ( e , u ( e ) ) ,  and thus as m -+ m, we find Au(k) = 
C,"=*=, f ( t , u ( e ) ) .  Summing this equation from m to IC ,  we get 

1 
If(k1u)l I $-214. 

k m  

(6.13.3) u ( k  + 1) - u (m )  = x x f ( e , u ( l ) )  
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from (6.13.3) it, follows that 

03 

(6.13.4) u ( k )  = - E(! - k + l)f(!,u(J)), k E rN(a). 
f=,: 

Therefore, 

CSp=,:(f - 
k E N ( a ) ,  

(6.13.5) A2v(k) I sk-2w(k) for all k E JN(a). 

From the definition of v ( k )  and Schwarz's inequality, we obtain 

1 

Thus, it follows that 

112 

(6.13.6) w(k)  = m v ( k )  _< ( g  lu,(t?)l2) for all k E lN(a) .  

Hence. we have 

(6.13.7) w ( k )  3 0 and w(k )  > 0 for all k E lN(a.). 
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From thc relations 

(6.13.8) A2w(k) = -A2t,(k) + 2 A ~ ( k ) A f i  + q 1 ( k ) A 2 m  

and 

(6.13.9) Au(k) = -Aw(k) + u,(k)A- 

we find that 

1 1 

4 m 

which i n  view of (6.13.5) ~~ (6.13.7) gives 

(6.13.10) Az(k) 5 ~ ( k )  + @ ( k ) z ( k ) ,  

where 

(6.13.11) z ( k )  = - Aw(k )  
k - 1  

and 

(6.13.13) 
2(k - 1) 1 

p ( k )  = - 
k& 

A&-  IC '  

It is easy to see that 

(6.13.14) -- < P ( k )  < - F, k E N(a ) .  
1 1 
k 

Further, since 

7 &Ti - 2 + & ( r n - M )  
a ( k )  = - - 

k& 2k& + ( r n + & ) ( & + r n )  

from the elementary inequalities 

1 4 

(m+ &H&+ m) 
k E N ( a )  



Chapter 6 

11 ( k )  

7) ( k )  

> o  
k E  

IN(a), and hcr1c:c w(k) is inc:reasing, but this contradicts (6.13.7). If 
there exists an integer K 2 n such that z ( ~ )  nL:'(l + [$(e))-' = 
p < 0, then z(k)n;::( l  + /$(l))-' < p for all k E W(K + l),  i.e. 
z ( k )  < pnf : : ( l  + P(t)). However, sincc 1 + /j(B) > (l? - l)/t it follows 
that z ( k )  < p(a - l ) / ( k  - l), and hence from (6.13.11), WC find Aw~(k) < 
p ( u - I ) ,  i.e. w(k) < w ( K + I ) + p ( a - I ) ( k - K - I )  for all k E IN(K+2). 
But, this implies that w(k)  3 -00, and again WC get a contradiction to 
(6.13.7). 

Combining the above arguments, we find that our assumption v ( k )  > 0 
for all k E W(n) is not correct, and this corrlplctcs the proof. I 

Theorem 6.13.2. Let for all (k,u.) E I N ( n )  x R the function f(k,u) 
be defined and 

(6.13.16) I f (k ,u , ) l  5 k-qlu,], q > 5/2. 

Then, if w.(k) E CO is a solution of (6.13.1) then there exists an integer 
kl  2 a (a >_ 4) such that u ( k )  = 0 for all k E N(k1). 

Proof. Let u ( k )  be a solution of (6.13.1) such that lirn~~-co I ~ ( k ) l  = 0. 
Then, limk.co Au,(k) = lirrl,+,m A 2 u ( k )  = 0. Thus, for this solution also 
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the relation (6.13.3) holds. Further, since there exists a constant c > 0 
such that Iv,(k)l 5 c for all k E IN(a), we find that 

for all ’m. E IN(a.). Therefore, this solution also has the representation 
(6.13.4). Now as i n  Theorem 6.13.1 we define is(k-) = CzI.(t - k + 

L and apply similar analysis to sec that there exists a positive integer 
k ,  
k-1 suc:h that w.(k) = 0 for all k E IN(k1). I 

6.14. Oscillation and Nonoscillation for 

where cy and L3 are real fixed constants, A,u(k) = u ( k  + 1) - cuu(k), 
AZw.(k) = A,[A,v.(k)], Apu(k) = u(k + 1) - /hr(k), and f is defined 
on IN x R2. 

Theorem 6.14.1. Let cy > 0 and S = IN x { ( u , ~ )  E ]R2 : W + (L? - cy)?/, 
= 0). Further, let 

(i) f (k ,u . ,v )  = 0 if ( k ,u ,v )  E S 

(ii) f(k, U ,  v) [W + (p - a)?),] + a [ v  + ( ~ j  - cy)71,12 > o if (/c, U ,  W )  E IN x IR’\S. 

Then, the difference equation (6.14.1) is nonoscillatory. 

Proof. W e  observe that (k,w.(k),Apv,(k)) E S is equivalent to u.(k + 
1) - cuu(k) = 0. Therefore, if the solution v,(k) of (6.14.1) is such that for 
a fixed kl E IN, (kl , Ir(kl) ,Apu.(kl) )  E S, then from the hypothesis (i), it 
follows that Atu,(kl) = 0. However, since 

A : ~ . ( k l )  = A , u ( ~ ,  + 1) - c ~ A , ~ ( k 1 )  = ~ . ( k l  + 2 )  - ~ ~ , ( k l  + 1) = O 

inductively, we have v.(kl +e)  - cyv(k1 + - 1) = 0, E IN(l), and hence 
U ( [ )  = ~ ‘ - ~ l u ( k l ) ,  l E IN(k1). This solution is of course nonoscillatory. 

Now let ~ ( k )  be a solution of (6.14.1) such that for any k E IN, 
( k ,  u ( k ) ,  A p ( k ) )  S, and this solution is oscillatory. Then, there exists 
a k2 E IN such that u (k2 )  > 0, u(k2 + 1) 5 0 and hence A,u(kz) 0. 
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Setting k = kz in (6.14.1) and multiplying the resulting equation by 
Aau(k2) gives 

&71,(k .2)&~,(k2 + 1) = f (kz,u,(kz),  A p 4 k - 2 ) )  [ A p u ( k z )  

+(P - C Y ) U , ( ~ ~ ) ]  + ( ~ [ A p ~ ( k 2 )  + (0 - ( ~ ) ~ ( k 2 ) ] ~ .  

Therefore, from the hypothesis (ii) ,  we find that Aaw,(k2)Aau(k2+1) > 0, 
and hcnce Aa7/,(kz + 1) < 0. Repeating this reasoning we get A,u,(k) < 0 
for all k E N(k2) .  This implies that u ( k )  < 0 for all k E N ( k 2  + a), 
which contradicts our asslimption. The proof for the case u ( k 2 )  2 0, 
u(k2 + 1) < 0 is similar. I 

Theorem 6.14.2. Let (Y > 0 and T = N x {(W,, W) E R' : W + /-iu = O} . 
Further, let 

f (k ,v . ,w) (w + P.) + Q(?) + /h)[. + ( p  - CY)4 > 0 

if ( k ,u ,v )  E N x lR2\T. 

Then, the diffcrcnce equation (6.14.1) is nonoscillatory. 

Proof. We observe that ( k ,  ~ ( k ) ,  Aou(k) )  E T is cquivalent to w,(k+l) = 
0. Since WC consider only nontrivial solution, there exists a kl E N such 
that u ( k l  + 1) = Apv.(kl) + Pv.(kl) # 0. Setting k = kl i n  (6.14.1) and 
rnultiplying the resulting equation by u(kl + 1) givcs 

u(kl+l)A,u(kl+l) = f ( k l , I / , ( k l ) , A p W , ( k l ) ) u . ( k l + 1 )  

+ a ~ . ( k l + l ) A , ~ ( k l )  

= f ( ~ I , u , ( ~ I ) ,  Apu(k1)) (Apu (k~)+l?~ , (k~) )  

+a ( A P 4 k l ) + P 4 k l ) )  [ap.(kl)+(l?-~)W,(~l)]. 

Hence, from the givcn hypothesis it follows that u(kl + l)A,u(kl + 1) > 0. 
If u(kl + 1) > 0, then A,u(kl + 1) > 0 implies u(kl + 2) > au(kl + 
1) > 0. Repeating the above reasoning WC obtain A,w,(k) > 0 for all 
k E IN(k.1 + l), and from this u ( k )  > ~ y ~ ' - ~ l " l  u(k1 + 1) > 0 for all 
k E lN (k .1  + 2). This solution is positive and therefore nonoscillatory. A 
similar proof holds for u(k1 + 1) < 0. I 

Theorem 6.14.3. Let cy = P = 1 and 

f ( k , u , ,  .)(W, + v )  2 o if (k ,u , 'u )  E IN x R ~ .  

Then, the diffcrence equation (6.14.1) is nonoscillatory. 

Proof. Suppose there exists an oscillatory solution v,(k) of (6.14.1). Then, 
there exist k1, k2 E N such that w,(kl) 5 0, u ( k 2 )  2 0, N ( k l  + 1, k2 - 1) 
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is nonempty and finite, and there exists a P E W(k1 + 1, k2 - 1) such 
that .(P) > 0 (the case U([) < 0 can be considered similarly) and 
simultaneously u(e) > ( 2 )  U(! + l), U(/?) 2 (> 0) u,(P - 1). Thus, 
A24! - 1) = Au(P) - Au(t  - 1) < 0. But, setting k = P - 1 in (6.14.1) 
and rnultiplying the resulting equation by .(C) gives 

u(l)A2u(P - 1) = U ( P ) f ( P -  1, v,([ - l), Awl(! - 1)) 

and hence, from the given hypothesis we have u(P)A2u(I! - 1) > 0, i.e. 
A2u(P - 1) > 0. This contradiction cornplctes the proof. I 

Theorem 6.14.4. Let in Theorem 6.14.1 the inequality sign > be 
replaccd by < at both the places. Then, the difference equation (6.14.1) 
is oscillatory. 

Proof. Suppose ~ ( k )  is a nonoscillatory solution of (6.14.1) which is 
positive for all k E W ( a ) ,  whcre a E IN. If there is some kl E IN(a) 
so that ( k l ,u (k l ) ,Apu (k l ) )  E S, thcn as in Theorcm 6.14.1, we find that 
U(!) = &klw, (k l ) ,  I! E N(k-l). However, sincc o( < 0 this solution is 
oscillatory. Thus, for all k E IN(a.), (k ,rr(k) ,Apu(k) )  E IN x R2\S. But, 
then for all k E IN(a,) 

A , u ( ~  + l)A,w.(k) = A a w . ( k ) f  ( k , ~ ( k ) ,  A p ~ , ( k ) )  + ~ y ( A , u ( k ) ) ~  < 0, 

i.e. A,u(k + l)A,u(k) = a“+’A ( ~ ( k  + l)/a’+’) a”+lA(u (k )/~k : )  < 
0. T h w ,  if k is even then A (v.(k + l)/&+’) A(u(k)/ak) > 0. If 
A(u(k)/ru’) > 0, thcn u ( l c  + l)/&-’ > w.(k)/cu” > 0. Thcrefore, 
u ( k  + 1) < 0 and we obtain a contradiction. Hcnce, it turns out to be that, 
A(u(k)/a’) < 0. Then, A (u(k + l)/cu’+’) < 0, i.e. u ( k  + 2 ) / ~ ’ + ~  < 
u ( k  + 1)/ak’+l < 0 which implics that u(k + 2) < 0. This contradiction 
cornplctes thc proof. I 

Theorem 6.14.5. Let in Theorem 6.14.2 the inequality sign > be 
replaced by < at both the places. Then, the difference cquation (6.14.1) 
is oscillatory. 

Proof. Similar reasoning as in the proof of Theorem 6.14.2 gives us 
u.(kl + l)Aaw.(kl + 1) = u(k1 + l)?r(kl + 2) - cm2(k1 + 1) < 0. But  this 
inequality holds only for an oscillatory solution. I 

6.15. Oscillation and Nonoscillation for 

k E N(a)  
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where the functions r, f ,  F and g are defined in their domain of 
definition. Further, r(k)  > 0 for all k E lN(a),  and R a , k  4 00, where 

= e=j  l/r(e), j E w(a), k E nu(j + 1). 

For the difference equation (6.15.1) cach result we shall prove will require 
some of the following conditions: 

(cl) f ( k )  2 0 for all k E IN(a) 

(Q) there cxists a constant M1 such that F(k,w,,u) 2 M1 

(cg) there exists a constant M2 such that F ( k , ~ , u )  5 M2 
(cq) there exists a constant M > 0 such that IE(k,  U , ,  U)] 5 M 
( C S )  there exists a function 4 ( k )  such that g(k, W,, 71) 2 + ( k )  
( Q )  there exists a function $ ( k )  such that g ( k ,  TI,, v )  5 $ ( k )  
( q )  F ( k ,  U, 11) is bounded from above if TI. is bounded 

( c * )  F ( k ,  U ,  U) is bourldcd from below if TI, is bounded 

( Q )  W,F(k,W.,V) 2 0 
(c10) w.F(k, W., 71 )  5 0 

d k ) .  

( ~ 1 1 )  there exist fmctions p(k )  arid q ( k )  such that p(k )  5 F ( k , u , v )  5 

Theorem 6.15.1. Suppose that conditions (cl), (cg) and (CS) hold and 
for every constant c > 0 

k-l 
1 [-l 

(6.15.2) lirn inf C - C(@(j) - M z f ( j ) )  - C R , , ~  > 0. 
l:-cc [ t=a .(e> j=a 1 

Then, all solutions of (6.15.1) are eventually positive. 

Proof. Let u(k)  be a solution of (6.15.1). Applying conditions (cl), (cg) 

and (cj), we obtain 

A ( ~ ( k ) A u , ( k ) )  2 4 ( k )  '- M2 f ( k ) ,  IC E lN(a). 

Therefore, it follows that 

k-l . R - l  - L - l  

Now in view of the conditions on ~ ( k ) ,  there exist constants c > 0 and 
kl E N ( a )  such that 

k-l - 
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Hence, from (6.15.2) we have 

lim infu(k) 2 linlirlf - ~ 2 f ( j ) )  - C R , , ~  
k-cc k - c c  

Thus, v,(k) is eventually positive. B 

R e m a r k  6.15.1 If we replace (6.15.2) in Theorem 6.15.1 by the stronger 
condition C"(+([ )  - M 2 f ( l ) )  = m, then every solution u(k )  of (6.15.1) 
satisfies limk-cc u ( k )  = m rnonotonically. Indeed, then from (6.15.1) 
we obtain r(k)Av, (k)  2 r(a)Av.(a) + x;::(+([) - M z f ( l ) )  + m as 
k + m. Thus, there exists a ICl E N(a) such that Au(lc) 2 l / r ( k )  for 
all k E W(kl), from which the conclusion follows. 

The proofs of thc following results arc similar to that of Theorem 6.15.1 
and therefore are omitted. 

Theorem 6.15.2. Suppose that c:orlditions (cl), ( c a )  and ( c 6 )  hold arid 
for every constant c > 0 

rk-l - p-l 1 

Then, all solutions of (6.15.1) arc cventually negative. 

R e m a r k  6.15.2. If in Theorern 6.15.2 WC replace (6.15.3) by the condi- 
tion C"($ ( [ )  - M l f ( C ) )  = -m, then every solution of (6.15.1) satisfies 
lirn~:-oo U( k )  = -m rnonotonic:ally. 

Theorem 6.15.3. Suppose that conditions (cl), ( C S )  and ( q )  hold and 
for all constants c l ,  c 2  > 0 

Then, all bounded solutions of (6.15.1) are eventually positive. 

Theorem 6.15.4. Suppose that conditions (c1), (cg) and (c*)  hold and 
for all constants cl, c2 > 0 
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Then, all bounded solutions of (6.15.1) are eventually negative. 

Theorem 6.15.5. Suppose that conditions ( Q )  and ( C S )  hold and for 
every constant c > 0 

Then, all solution of (6.15.1) are eventually positive. 

Theorem 6.15.6. Suppose that conditions (c4) and ( c g )  hold and for 
every constant c > 0 

Then, all solutions of (6.15.1) arc eventually negative. 

Remark 6.15.3. Replacing (6.15.6) and (6.15.7) by Ccc(q5(e) -Mlj(e) l )  
= cm and C"($(e)+Mlj(e) l )  = -cm rcspcctively, yield analogous results 
to those i n  Remarks 6.15.1 and 6.15.2. 

Theorem 6.15.7. Suppose that conditions ( C S ) ,  (c7) and (cg) hold and 
for all constants cl, c2 > 0 

rk-l . p--l 1 
(6.15.8) C A C(4(j) - cllf(j) l)  - c2Ra,k > 0. 

k-cc  
t=a j=a 1 

Then, all bounded solutions of (6.15.1) are eventually positive. 

Theorem 6.15.8. Suppose that conditions ( c g )  ~ (cg) hold and for all 
constants cl, c2 > 0 

rk-l . p-l 1 

Then, all bounded solutions of (6.15.1) are eventually negative. 

Theorem 6.15.9. Suppose that f ( k )  = 1 and conditions ( C S ) ,  (cc)  and 
(cl1) hold. Further, let for every constant c > 0 and all large s E N ( a )  

k-l 

(6.15.10) liminf C - C(q!~(j) - p ( j ) )  + C R , , ~ :  < o 
e-1 

k-cc [ t=s .(e) j=s 1 
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and 

Thcn, the difference equation (6.15.1) is oscillatory. 

Proof. Let u.(k) he a nonoscillatory solution of (6.15.1), say u.(k)  > 0 
for all .S 5 k E lN(a) .  Then, from (6.15.1) we have 

@ ( k )  - q ( k )  5 A(r(k)Au.(k))  5 $(k) -p(k), k E W(s). 

Now following as in Theorem 6.15.1, WC obtain 

6:-1 ~ t - l  

Condition (6.15.10) then yields a contradiction to thc assumption that, 
u(k) > 0 for all k E lN(s). A similar proof holds if ~ ( k )  < 0 for 
all k E lN(s). I 

Theorem 6.15.10. Suppose that f ( k )  1 and conditions (CS), (c6) and 
(c9) hold. Further, let for every constant c > 0 and all large S E N(a )  

and 

Then, the difference equation (6.15.1) is oscillatory. 

Theorem 6.15.11. Suppose that f(k) = 1 and conditions (CS), (c6) 

and (qo) hold. Further, let for every constant c > 0 and large .S E lN(a) ,  

6:-l 1 e-1 

h i  inf C - C $ ( j )  + c&,k: 
6:-a? [ t=s j = s  
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Then, all bounded solutions of the difference equation (6.15.1) are oscilla- 
tory. 

6.16. Variety of Properties of Solutions of 

(6.16.1) A411.(k - 2) = p(k)u,(k), k E N(2)  

where the function p is defined and positive on IN(2). W e  begin with 
the following definition which generalizes the concept of node introducml 
in Definition 1.8.1 and is due to Hartrnan [51]. 

Definition 6.16.1. Let u(k )  be a function defined on W, we say k E W 
is a gen.e~ulized ze'/'o for u ( k )  if one of the following holds: 

(6.16.2) v.(k) = 0 

(6.16.3) k E IN(1) and u ( k  - l)u(k) < 0, k E IN(l), and there exists 
an integer m ,  1 < m 5 k suc:h that 

(6.16.4) ( - l ) m ? ~ , ( k  - ,rrr)u(k) > 0, and u ( j )  = 0 for all j E W(k - ' m  + 
1, k - 1). 

A generalized zero for ~ ( k )  is said to be of order 0, 1, or pm. > 1, 
according to whether condition (6.16.2), (6.16.3), or (6.16.4), respectively, 
holds. I n  particular, a generalized zero of order 0 will simply be called a 
zero, and a generalized zero of order one will again be called a node. 

Obviously, if u ( a )  = v.(u + 1) = u(a + 2) = u(a  + 3) = 0 for some 

a E IN, then u ( k )  E 0 is the only solution of (6.16.1). Thus, a nontrivial 
solution of (6.16.1) can have zeros at no more than three consecutive values 
of k .  In Theorem 6.16.1 we shall show that a nontrivial solution of (6.16.1) 
cannot have a generalized zero of order m > 3. However, a solution of 
(6.16.1) can have arbitrarily many consecutive nodes, as it is clear from 
u.(k) = (-l)k, which is a solution of A4u.(k - 2) = 16u.(k). 

The following properties of the solutions of (6.16.1) are furldamental 
and will be used subsequently. 

(SI) If w.(k) is a nontrivial solution of (6.16.1) and if 
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for some k = a E W(2), then (6.16.5) holds for ail k E W(a), with strict 
inequality in (6.16.5~) for all k E W ( a  + a), strict inequality in (6.16.5b) 
for all k E W(a + l), and strict inequality in (6.16.5~:) and (6.16.5d) for 
all k E W ( a  + 3). Furthermore, 

(6.16.6) A4u(k - 2) 2 0 for all k E W ( a )  

with strict inequality for all k E IN(a+2), and u,(k) ,  Au,(k), and A2u.(k) 
all tend to m as k 4 m. 

(S2) If u.(k) is a nontrivial solution of (6.16.1) and if 

(b) Au.(k) 2 0, (a) u(k.1 L 0, 
(6.16.7) 

(c) A2u.(k) 2 0, (d) A3u.(k) 2 0 

for some k = a E W, then (6.16.7) holds for all k E W(o.), with strict 
inequality in (6.16.7a,b,d) for all k E W(a + S), and i n  (6.16.7~) for all 
k E W ( a  + 4). Furthcrrnorc, 

(6.16.8) n4u.(k) 2 o for all E W(a,) 

with strict inequality for all k E W(a+2), and u.(k) ,  A u ( k ) ,  and A2u,(k) 
all tend to m as k m. 

(5 ’3 )  If u ( k )  is a nontrivial solution of (6.16.1) and if 

(6.16.9) 
(a) u.(k) 2 0, (b) Au(k - 1) 5 0, 
(c) A%(k - 1) 2 0, (d) A3u.(k - 1) 5 0 

for some k = a E W(3), then (6.16.9) holds for all k E W(2,a), and 

(6.16.10) a 4 u ( k  - 2) 2 0 for all IC E ~ ( 2 , a ) .  

Furthermore, u(0)  > u(1) > 0, and Au(0) < 0. Strict inequality holds in 
(6.16.9a) and (6.16.10) for all k E W(2,a - 2) if a E W(4), in (6.16.9b) 
for all k E W(2,a - l), and in (6.16.9c,d) for all k E IN(2,a - 3) if 
a E W(5). 

(S4) Let a E W(2). If u,(k) is a solution of (6.16.1) with u ( a )  = 0, 
u ( a  - 1) 2 0, u(a + 1) 2 0, u (a  - 1) and u ( a  + 1) not both zero, then at 
least one of the following conditions must be true: (i) Either u ( k )  > 0 for 
all k E W(a+2), or (ii) u,(k) < 0 for all k E IN(O,a - 1). In particular, 
u ( k )  cannot have generalized zeros of any order at both QI and p, where 
(Y E W(0, a - 1) and p E W(a + 2). An analogous statement holds for the 
hypotheses u (a  - 1) 5 0 and u (a  + 1) 5 0. 

Theorem 6.16.1. If u ( k )  is a nontrivial solution of (6.16.1) with zeros 
at three consecutive values of k,  say a ,  a +  1 and a+  2, then u ( k )  has 
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no other generalized zeros. If ?/,(a+ 3) > 0 (< 0), then Au,(k)  2 0 (5 0) 
for all k ,  and the inequality is strict if k E W(a + 2) or k E IN(0, a - 1). 
In particular, if N E W(0, a. - 1) and E W(a + 3), then u (a )u , (@ < 0. 

Proof. Clearly Au(a,) = A2u(a) = 0. Since the solution u,(k) is 
nontrivial, we may assume that u (a  + 3) > 0. Thus, A3u(a)  > 0 and by 
(Sz), u ( k )  is positive and strictly increasing on IN(a+3). Next, let v ( k )  = 
- u ( k ) .  Then, ?)(a+ 1) = 0, Av(a,) = 0, A271(n.) = 0 and A371(a) < 0. If 
0. E W(2), then (S3) implies that v (k )  is positive and strictly decreasing 
on W(0, a). Thus, u,(k) is negative and strictly increasing on IN(0, a,). If 
a = 1, then we again assume that u(af3) = u(4) > 0. Then, by (6.10.1), 
A4v.(0) = p(2)u(2) = 0. But, A411.(0) = u(4)+u(O), so ~ ( 0 )  = -w.(4) < 0 
and Au,(O) = ~ ( 1 )  - ~ ~ ( 0 )  > 0, as claimed. If a. = 0, then the part of the 
conclusion concerning k 5 a - 1 is empty. This completes the proof. I 

Theorem 6.16.2. Let a E W(1), and suppose that ~ ( k )  is a solution 
of (6.16.1) with .(a) = 0, v.(a + 1) = 0, u(a, + 2) # 0, but a + 2 is 
a generalized zero for u ( k ) .  Then, ~ ( k )  has no other generalized zeros. 
If u ( a  + 2) > 0 (< 0), then Au(k) 2 0 (5 0) for all k E W, with 
strict inequality for all k E W ( a  + 2) or k E W(0, a - 1). In particular, if 
N E W(0, a - 1) and /3 E N(a .  + 2), then u ( N ) u ( ~ )  < 0. 

Proof. Since u ( a  + 2) # 0, we can assume that u(a. + 2) > 0. Since 
.(a) = v.(a. + 1) = 0, a + 2 cannot be a generalized zero of order 1 or 2, 
and Theorem 6.16.1 implies that the order cannot be great,er than 3. Thus, 
a + 2 is a generalized zero of order 3, which implies that u(u - 1) < 0. 
Nowsincefrom(6.16.1),wehave u(a ,+3)-4u(a+2)+Gu(a+1)-4v.(a)+ 
u ( a  - 1) = p(" + I ) u ( a  + I), or v.(a + 3) = 4w4a + 2) - u,(a - I), 
it follows that A3u(a) = ?/.(a + 3) - 3u(a + 2) + 3u(a + 1) - U,(.) = 

Clearly, A2u,(a) > 0, A 4 a )  = 0 and ?/,(a) = 0, thus by (SZ) ,  u(k) 
is positive and strictly increasing on W ( a  + 3). For k E W(O,a ) ,  let 
v ( k )  = -.(/c). Then, v(.) = 0, Av(a - 1) < 0, A271(a - 1) > 0 and 
A311(a - 1) < 0. If a E W(3), then as in Theorem 6.16.1, (S3) yields 
the result. If a = 2, then ~ ( 2 )  = u(3) = 0, u(1) < 0, u(4)  > 0, 
and Au(1) > 0. B y  (6.16.1), we have A4u(0) = p ( 2 ) ~ ( 2 )  = 0. But, 
A4u(0) = u(4)  - 4u(3) + &(a) - 4v.(l) + ~ ( 0 )  = w.(4) - 4u,(l) + u ( 0 ) ,  
and so 4u(1) - ~ ~ ( 0 )  = 4 4 )  > 0. Hence, u(0)  < 4 u ( l )  < 0, and 
u (0 )  - u(1) < 3 u ( l )  < 0. Therefore, u,(O) < 0 and Au(0) > 0, as 
claimed. If a = 1, then ~ ( 1 )  = w,(2) = 0, u.(3) # 0, and a + 2 = 3 
is a generalized zero. It follows from the definition of a generalized zero 
that this must be a generalized zero of ordcr 3, so that if ~ ( 3 )  > 0 then 
~ ~ ( 0 )  < 0. Hence, Au,(O) > 0, which completes the proof. I 

4~,(a+2)-~(a-l)-3~.(~~+2)+3~.(0,+1)-7~(a)  = u(a+2)-uZ(a-1) > 0. 
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Corollary 6.16.3. If w,(k) is a nontrivial solution of (6.16.1) with 
generalized zeros at cy and [j and a zero at a ,  where cy+ 1 < a < [j - 1, 
then u (a -  l ) u ( a +  1) < 0. In particular, u(k) does not have a generalized 
zero at a + 1. 

Proof. Since Q + 1 < a < p - 1, from Theorem 6.16.1 it follows that 
u (a  + 1) and u(a - 1) both cannot be zero. If u,(a + l)u(a - 1) 2 0, 
then (S,) implies that 7r (k )  cannot have generalized zeros at both cy and 
/l, which is a contradiction. Thus, u (a  - l ) u ( a  + 1) < 0. I 

Corollary 6.16.4. If u ( k )  is a nontrivial solution of (6.16.1) with 
u ( a )  = u ( a )  = l@) = 0, where a < a < /3 - 1, then w.(a + 1) # 0. 

Corollary 6.16.5. If a nontrivial solution w,(k) of (6.16.1) has a zero at 
(Y and a generalized zero at p, where cy < /3, then ~ ( k )  carmot, have 
consecutive zeros at a., a + 1 where (Y < a < - 1. 

Remark 6.16.1. Corollary 6.16.5 says that if a solution u(k )  of (6.16.1) 
has four or more zeros, then no two zeros can occur at consecutive values of 
k ,  unless they are the first two zeros or the last two zeros. For example, 
consider the function w.(k) = { -4,0,0, -1,O, 1,0,0,4,15, .  . .} which is a 
solution of A4u,(k - 2) = 5w,(k) with ~ ( 1 )  = -4. This solution is positive 
and increasing for all k E W(9) follows from (SI) with a = 7. Also, the 
terms ~ ( 3 )  through w.(7) illustrate Corollary 6.16.3. 

Theorem 6.16.6. If two nontrivial solutions ~ ( k )  and ~ ( k )  of (6.16.1) 
have three zeros in common, then u ( k )  and v(k)  are linearly dependent, 
i.e. specifying any three zeros uniquely determines a nontrivial solution up 
to a multiplicative constant. 

Proof. If U(Q)  = .(a) = u (a  + 1) = ?)(a) = v(.) = v(a+ I) = 0, for some 
a and a ,  where 0 5 a < a ,  then by Theorem 6.16.1, u ( a + 2 )  # 0 and 
w(a + 2) # 0. Define w ( k )  = 71(a + 2 ) u ( k )  - u (a  + 2)v(k) .  Since w(k)  
is a linear combination of u(k) and ~ ( k ) ,  it is a solution of (6.16.1). 
However, w ( a )  = W(.) = w ( a  + 1) = w(a + 2) = 0, and so w(k )  must 
be the trivial solution of (6.16.1) by Theorem 6.16.1. Since .(a + 2) and 
v (a  + 2) are nonzero, u ( k )  and v(k)  must be constant multiples of each 
other. 

Next, if u ( a )  = U(.) = ,U(@) = .(CY) = .(a) = 7 4 9 )  = 0, where 
cy < a < p -  1, then by Corollary 6.16.5, u ( a+  1) # 0 and v ( a +  1) # 0. 
Define w(k )  = v (a  + l ) u ( k )  - u(a + l )v (k ) .  Clearly, w ( a )  = W(.) = 
w(a+ 1) = W(/?) = 0, which contradicts Corollary 6.16.4 unless w(k)  = 0. 
Bu t  this means u ( k )  and v(k) are constant multiples of each other. This 
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completes the proof. I 

Definition 6.16.2. A solution u,(k) of (6.16.1) is called recessive if there 
exists an a E IN such that for all k E IN(a) 

(6.16.11) u ( k )  > 0, Au(k) 5 0, A2ul(k) 2 0 and A3u(k)  5 0. 

Let w."(k) be the solution of (6.16.1) satisfying u"(m,) = u m ( m + l )  = 
um(m + 2) = 0 and u"(0) = 1 where m E W(1). For each m, u" (k )  
exists and is unique. The existence is clear from Theorem 6.16.1 and a 
norrnalization, while the uniqueness follows from Theorem 6.16.6. Note 
that by construction 

(6.16.12) O 5 um . (k )  5 1 for all k E W(O,m+ 2). 

Also, Theorem 6.16.1 implies that 

(6.16.13) u,"(k) 2 u."(k+ 1) for all k E IN. 

We now consider 71). sequence { u m ( l ) } .  By (6.16.12), 0 5 um,(l) 5 1 
for all 'm, E W(1), thus limsup,-,{u,7n(l)} exists, we call it u(1). 
Then, there exists a subsequence { m l t }  C IN(1) such that urn,le(l) -+ 
u,(l) as C -+ m. Next, consider nr-sequence ( ~ ~ ( 2 ) ) .  By (6.16.12) 
lim supe-, ~ , ~ l P ( 2 )  exists, we call it 42). Also, there exists a subsequence 
{ m z t }  C {mlp} such that ?1,"~~(2) "-f u(2) (and ~ ~ ~ ~ ~ ( 1 )  -+ u, ( l ) )  as 
C -+ m. In a similar fashion, by considering {u"(3)}, we can arrive at 
a subsequence {m)!} and a limit u(3) such that ( k )  -+ u ( k )  as 
l "-f m, k E IN(1,3). Clearly, ~ ~ 3 ( ( 0 )  = 1, for all C. 

Recall that by definition, for any k and any m 

(6.16.14) um(k  + 2) - 4~."(k + 1) + 6 ~ " ( k )  - 4um(k - l) + ~ " ( k  - 2) 

= p(k )u" (k ) .  

Consider (6.16.14) with k = 2 and 'm replaced by ~ ~ 3 e .  We can 
conclude that lime-+, 71."~'(4) exists, we call it u(4). Now replace k 
by 3 in (6.16.14) and conclude the existence of lime-, ~ ~ ~ ~ ( 5 )  = 45). 
Proceeding inductively, we conclude that lirnf-, = u(k) exists 
for any k E IN. Replacing m by ,17131 in (6.16.14) and letting C "--f m, 
we conclude that u(k) is a solution of (6.16.1). Also, 

(6.16.15) u ( k )  2 u ( k +  1) 2 0. 

This follows from (6.16.13) by replacing m by n ~ g p ,  fixing IC ,  and letting 
l -+ m. From (6.16.15), we conclude that 

(6.16.16) lim u ( k )  exists, and we shall call it L. 
I;-, 
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W e  will now show that this u ( k )  is a recessive solution of (6.16.1). 

Theorem 6.16.7. The solution u,(k) constructed above is a recessive 
solution of (6.16.1). In addition A71.(k), A2v,(k) and A3v,(k) all mono- 
tonically approach zero as k "+ m. 

Proof. W e  will first show that (6.16.11) is satisfied. B y  (6.16.13) and 
Theorem 6.16.1, 71,"3e(m3p + 3) < 0. Choosing 7 n 3 g  2 3 and using (S3) 
with a = 'rn3p + 1, we can conclude that for any k such that 2 5 k 5 
7n,3p + 1, Aurn.3e(k - 1) 5 0, A2w."3e(k - 1) 2 0 and A3v,-3e(k - 1) 5 0. 
Letting C "+ m implies that u ( k )  satisfies (6.16.11) for a = 1 and is 
recessive. W e  notc that u ( k )  also satisfies (6.16.11) for a = 0. Concerning 
the monotonicity, we choose any k E lN(2) and any nr3p 2 k .  Then, 
A271,nL3u ( k  - 1) 2 0 which means Aum3e ( k )  2 Aum3e ( k  - l), and hence 
0 5 -A71,"3e(k) 5 - A ~ . ~ ~ ~ ( k - l ) .  Taking the limit as I! -+ m implies that 
A71.(k) is nlonotonic:ally decreasing in absolute value. B y  (6.16.16), since 
4 k )  monot~onically approaches a finite limit, A714k) + 0 as k + m. 
The argument that A2w.(k) and A37r(k) rnorlotonically approach zero is 
similar. 

By Theorem 6.16.7 this recessive solution v.(k) of (6.16.1) can be 
written as 

* m  

(6.16.17) u ( k - 2 2 ) = L + ~ ~ ( I ! - k + l ) ( C - k + 2 ) ( C - k + 3 ) p ( C ) u ( f ? ) .  6 I 
P=!% 

Corollary 6.16.8. If c" t3p(C) = m, then the recessive solution v.(k) 
of (6.16.1) constructed above approaches zero as k + m. 

Corollary 6.16.9. Suppose that u ( k )  and ~ ( k )  are two recessive 
solutions of (6.16.1) such that v,(.) = .(a). If u ( k )  2 w(k) for all 
IC E lN(a) ,  then v,(k) v (k ) .  

Proof. Let L = lim~,, u,(k) and M = limk:,, ~ ( l c ) .  By hypothesis, 
L 2 M .  Thus, if w ( k )  = u , ( k ) - v ( k ) ,  then from (6.16.17) with k = a+2 
we have 

From this we conclude that 7 ~ ( k )  w(IC). I 

6.17. Asymptotic Behavior of Solutions of 

(6.17.1) A " u . ( ~ )  + f (IC,u(k), Au(k ) ,  . . . , An"u(k)) = 0, k E W 
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whcre the function f is defined on IN x R". 

Theorem 6.17.1. Assume that the function f ( k ,  U O , .  . . , un-l) for all 
( k ,  u,o, .  . . , un-1) E N x R" satisfies 

(6.17.2) 
n-l 

(6.17.3) 

Then, the difference equation (6.17.1) has solutions which are asymptotic 

such that a , - l  # 0. 

Proof. Let u,(k) be a solution of (6.17.1), then from Corollary 1.8.6 for 
any a. E W(1), it follows that 

to c,=, n-l  ai(/^)(^) as IC + m, where a i ,  o 5 i I n - 1 are constants 

(6.17.5) 

where 

where 
k-n+m n-l 
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Using (6.17.6) in the above equality, to obtain 

k - l  n-I 

!=a i =O  

Therefore, as an application of Corollary 4.1.2, we find 

l 

and hence from (6.17.3) there exists a finite constant c > 0 such that 
F ( k )  5 c. Thus, inequality (6.17.6) implies that 

(6.17.7) lA"u,(k)l 5 c(k)("-'-") , O < ' m , m . < n - l .  

Next, from (6.17.4) we have 

k: - 1 
(6.17.8) An-'7~(k) = An-l7r(a.) - C f (l, .(l), Au.(l), . . . , A"-'u.(~)) . 

!=a 

Since condition (6.17.3) implies that c" c;:: P i ( [ )  < 00, 
we find from (6.17.2) and (6.17.7) that the sum in (6.17.8) converges as 
k -+ 00 and therefore limk,, An-' u ( k )  exists and is a finite number. 
To ensure that this limit is not zero, we choose a so large that 1 - 
cc,"=,  C;I:(l)(n-l-i)pi(l) > 0 and impose the condition A"-'u(a) = 
1 on the solution of (6.17.1). This solution has the desired asymptotic 
property. B 

Corollary 6.17.2. Under the hypotheses of Theorem 6.17.1 equation 
(6.17.1) has nonoscillatory solutions. 

Theorem 6.17.3. If there exists a constant c > 0 such that for any 
function u(k) defined on W, liminfk,, u ( k )  > c (lirnsupk-03 u ( k )  < 
-c) 

03 

(6.17.9) C f (l, .(l), A u ( l ) ,  . . . , An-lu( l ))  = f 00, 

then every nonoscillatory solution u(k) of (6.17.1) satisfies liminf lu(k)l  5 c. 

Proof. Let u(k) be a nonoscillatory solution of (6.17.1), say u(k)  > 0 for 
all k 2 a, and assume that liminfk,, u(k) > c. The case u ( k )  < 0 for 
all k 2 a can be treated similarly. From (6.17.8) and (6.17.9) it is clear that 
limk,, A"-lu(k) = -00, and therefore limsupk,OO An.-lu(k) < 0. 

k,- 03 
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But, then Lemma 1.8.10 implies that lim1:-, u ( k )  = -03, which is a 
contradiction to our assumption that ~ ( k )  > 0. I 

Lemma 6.17.4. Consider the difference equation 

1: 

(6.17.11) u,(k) = - ( k ) ( " )  c f(e)/(e)(r"+1) 
I=a+l 

is the solution of (6.17.10) satisfying U,(.) = 0. Since f is of corlstant 
sign for all larg-c k ,  the summation C,"=,+, f(!)/(e)(-+') exists on the 
extended real line. If the value of this sunlmatiorl is differcnt from zcro, 
thcn the result follows. If it is zero, then let p(k) = J"X,+, f(e)/(e)(",+I) 
and q ( k )  = l / ( / ~ ) ( ~ )  so that Ap(k) = f('+ ancl ~ g ( k )  = 

( k  + 1)("+1) 
m - 

( k  + 1) (m,+l) . 
Thus, Corollary 1.8.8 is applicable and we find that 

Therefore, limn,, u ( k )  = &cm. I 

Theorem 6.17.5. Assume that thcre exist integers p, Q,  T such that 
0 5 T 5 n - 1, 0 5 q 5 p 5 n - T - 1, ancl for every nonoscillatory 
u ( k )  E FP with lirn infk,, lu(k)l/(k)(q) # 0 

Proof. Let u(k) be a nonoscillatory FP solution with liminf - 
Without loss of generality, we assume that u(k )  > 0 on IN(kl), where 

I 4 k ) I  # 0. 
IC-, ( k ) ( d  
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k-1 > max{ 1, T}. The case v.(k) < 0 can be treated similarly. W e  define 

k-l 

Rtj(k)  = C (!!)(i)Aj~.(t + S )  
e=kl 

and from (1.8.5) find 

Since VR:?i,j-l(k) = ( k -  l ) ( i- l )Aj- lu , (k+s) ,  the above equation takes 
the form 

RtJ(k)  = kVv(k)  - (k l ) ( i )Aj- lu(k l  + S )  - i ~ ( k ) ,  

where v ( k )  = R:T;,j-l(k). Thus, we find that 

(6.17.13) Vv(k) - -O(k) + - = 0, U(k1)  = 0, kl  > 7- 

where f ,S , (k)  = -(k l ) ( i )AJ " lu (k l  + S )  - R:j(k). 

i f , S .  ( k )  
k k 

Let i = T, j = n, and s = 0, then from (6.17.1) we have 

k-l 

f ,O , (k )  = -(kl) ( 'r)An-lu,(kl)  + C ( ! ! ) ( l " f  ( [ , U , ( [ ) ,  Au.(t), . . . , An-lu,(l)) 
t = k : l  

and from (6.17.12), f:n,(k) is nonoscillatory arid lirnk-W I f&(k) l  = m. 
Thus, from Lemma 6.17.4, we get 

(6.17.14) linl w(k) = lim Ri - l , n - l (k )  = f m. 
k - c c  k-m 

Next, since f:-l,m,-l(k) = -(k1)(T-1)An-2 u ( k 1 f l )  - R:-l,n-l(k), from 
(6.17.14), we find f:-l,m,-l(k) to be nonoscillatory and lim lj~-l,m,-l(k)l = 

m. Thus, Lemrna 6.17.4 is again applicable and we obtain lim Rr-2,n"2(k) 

= f m .  Continuing this way, we find lim Rb,n,-,r(k) = f m .  However, 

from the definition Rg,n,-T(k) = An-'"lu(k + T )  - A"-T-lu.(kl + T), and 
hence we have lim A"-T"u,(k) = *m. The case lirrl An-r-lu(k) = 
-m is impossible from Lerrma 1.8.10, since it contradicts the fact that 

k-W 
2 

k-cc 

k-m 

k : - W  k-cc 

u ( k )  is positive, and thus lirn A"-T-lu(k) = m. 
A:-00 

Since u ( k )  > 0 and belongs to F,, there exists a constant c > 0 
such that u,(k) < c(k) (")  for large k E W. Thus, the function w(k )  = 



408 Chapter 6 

u(k) - c (k ) (p )  is negative for large 7~ E IN, but since p 5 R. - T - 1, 
we find l i m ~ ~ - + ,  w(k)  = limn,, (u(k) - c (k ) (P ) )  = 00, 
which from Lemma 1.8.10 leads to a contradiction that w(k)  is negative. 
This completes the proof. I 

Remark 6.17.1. If in Theorem 6.17.5, p = 0 then as conclusion we have 
that, for all bounded nonoscillatory solutions of (6.17.1), liminf Iu(k)I = 0. 

li-m 

6.18. Asymptotic Behavior, Oscillation and 
Nonoscillation for 

(6.18.1) Anu(k)  + h (k ) F  (k,u(k),A~(k);..,A"-l~(k)) 
= 9 ( k - , ~ ( k ) , A v . ( k ) , . . . , A ~ ' - ~ ~ ( ~ ) ) ,  k E IN 

where the functions h ,  F and g arc defined in their domain of definition. 

Theorem 6.18.1. Assume that there exist integers p, T such that 0 5 
T 5 n - 1, 0 5 p 5 n, - T - 1, and for every nonoscillatory U( k )  E FP with 
lirrlirlfk-m Iu(k)I # 0 there exist constants A ,  B (depending on ~ ( k ) )  
such that A B  > 0, and for all large k E IN, A 5 F ( k ,  v.(k) ,  Av,(k) ,  . . . , 
An"u(k)) 5 B, and for such ~ ( k )  there exists a nonnegative function 
G(k) defined for all large k such that Ig(k, u ( k ) ,  A u ( k ) ,  ... , A"-lw,(k))l 5 
G(k) .  Further, assume that for all constants c 1  > 0 and c2 > 0 

M 

C(l)(.) [clh+(.!?) - h-( ! ! )  - c ~ G ( . ! ? ) ]  = 00 

or 
03 C(l)(.) [ ~ l h - ( l )  - h+(.!?) - c ~ G ( . ! ? ) ]  = 00, 

where h,+(k) = max{h(k), 0} and h-(k)  = max{-h(k), O}. Then, for all 
nonoscillatory FP solutions ~ ( k )  of (6.18.1), liminfk:,, lu(k)l = 0. 

Proof. For any nonoscillatory FP solution with liminfk:,, lu(k)l # 0, 
we f i r d  for all large kl  5 k E W that 
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Thus, for A and B positive 

and, for A and B negative 

I: 

- A  c [*h,-(!) - A  - h,+([) - - A  
t=k1 

Now it is obvious that for f ( k , - . . )  = h , ( k ) F ( k , . . . )  - g(k,  ...) the con- 
ditions of Theorem 6.17.5 with q = 0 are satisfied, thus the conclusion 
follows. I 

Now for the difference equation (6.18.1) each result we shall prove will 
require some of the following conditions: 

(dl) h,(k)  = 1 for all k E IN 
( d 2 )  h,(k) > 0 for all large k E IN 

(d3) h ( k )  2 0 for all k E IN 

(d4) g ( k , u ( k ) ,  A u ( k ) ,  . ' ' , An-'u(k)) = g(k) 
(d5)  there exists a function G l ( k )  such that .9(k, u ( k ) ,  Au(k), . . . , An-' 
~ ~ ( k ) )  2 Gl(k)  
( d e )  there exists a function G2(k) such that g(k, u.(k),  Au(k) ,  . . . ,An,-' 
u(k-1) I G2(k) 
(d7 )  there exists a nonnegative function G ( k )  such that 1g(k, u.(k) ,  Au(k) ,  
... ,An-'u(k))l I G ( k )  

( d g )  if u1 # 0, then u1F(k,111,u2;..,un) 2 0 

(dg)  if u1 # 0, then u 1 F ( k , u 1 , u 2 , . . . , ~ ~ ~ )  5 0 
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(dlo) condition ( d s )  and F(k , u l , u2 ,  ... ,urn) is bounded away from zero 
if u1 is bounded away from zero 

(d l l )  there exists a constant L such that F ( k , u ( k ) ,  Au(k), . . . ,An,-' 
w.(k)) 5 L 

?L(k)) 2 M .  
(dl2) there exists a constant M suc:h that F ( k , u ( k ) ,  Au(k), . . . ,An,-' 

Theorem 6.18.2. Assume that conditions ( dz ) ,  (d7) and (dlo) hold and 

Proof. We shall show that thc hypotheses of Theorem 6.17.5 with p = 
T = 0 arc satisfied. Lct u ( k )  1)c sonlc function defined on W such that 
lirninfk-m u,(k)  > 0. Then, from (d lo )  tllcrc cxist A > 0 and kl  E W 
s11c:h that F ( k , ? ~ ( k ) , A u ( k ) ,  . .., A n - ' u ( k ) )  2 A for all k E lN(kl ) .  
Lct k-2 2 k-1 t x  large eno~lgh so that h,(k) > 0 for all k E W(k2). If 
C" G ( [ )  < cm, then 

k: k c [h,(l)F(C, . . .) - g([ ,  . . .)] 2 c [Ah([) - G ( [ ) ]  -+ m 
e=k, P=k2 

as k + m and the conclusion follows. Further, if G ( k ) / h ( k )  + 0 as 

k + m, then we can choose k g  2 k2 such that - G(k )  5 A for all 

k E W( kg), and WC find 
h ( k )  2 

as k + cm. The case lim S U ~ ~ ; + ~  v.(k) < 0 can be treated similarly. B 

Theorem 6.18.3. Assume that conditions ( d l ) ,  ( 4 )  and ( d ~ )  are satis- 
fied. Then, for any nonoscillatory or T--type solution u ( k )  of (6.18.1) 
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Proof. From Theorem 1.8.5 any solution u ( k )  of (6.18.1) for any k E N 
can be written as 

n-l 

(6.18.3) ~ ( k )  = c ( k  - kl ) ( i )  
Aiu(kl) 

i=o i !  

Thus, if u ( k )  is nonoscillatory or T-- type then u ( k )  2. 0 or ~ ( k )  5 0 
for all k 2 k2 2 k l .  If u.(k) 2 0, then from (6.18.3), we find 

and, if u,(k) 5 0 then 

also, in either case 

This conlpletes the proof. I 

Theorem 6.18.4. Assume that conditions (dl),  (d4) and ( d g )  hold and 
for every constant c > 0 

and 
k, - n, c ( k  - e - ~ ) ( ~ " ) g ( e )  + ] - - -m. 

k-m 

Then, every bounded solution of (6.18.1) is oscillatory. 
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(6.18.4) 

and, if v.(k) 5 0 then 

(6.18.5) 

Next, let kc3 2 k2 be sufficiently large so that for some c > 0 

for all k E W(k3). 

Then, from (6.18.4) and (6.18.5), we find 

and 

and from the hypotheses 
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Thus, in either case we get a contradiction to our assumption that u ( k )  
is bounded. I 

Corollary 6.18.5. Assume that conditions (dl), (d4) and (d8) hold and 
for every constant c > 0 

1 

Then, every solution of (6.18.1) is oscillatory or T-type. 

Theorem 6.18.6. Assume that conditions (&), ( d j )  and (dll)  hold and 
for every constant c > 0 

l 

Then, all solutions of (6.18.1) are nonoscillatory or nonnegative T~ tvpe. 
Further, if strict inequality holds in (6.18.6), then equation (6.18.1) is 
nonoscillatory. 

Proof. From the given hypotheses, we find that Anu(k)  = g(k, ...) 
- h , ( k ) F ( k , . . - )  2 Gl(k)  - Lh(k) .  Thus, for any kl E N, we have 

Therefore, there exists a 2 kl sufficiently large so that 

Hence, from (6.18.6) we find that lirn irlfl:-w u ( k )  2 0, and from this the 
conclusion follows. I 

Theorem 6.18.7. Assume that conditions (ds) ,  (de) and (dlz) hold and 
for every constant c > 0 

I 1:- 00 1 1:-n 

(6.18.7) limsup c ( k  - e - l)("-')(Gz(l) - M h ( l ) )  + ~ ( k ) ( ~ - ' )  5 0. 
L J 
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Then, all solutiorls of (6.18.1) are nonoscillatory or nonpositive T--typc. 
Further, if strict inequality holds in (6.18.7), then equation (6.18.1) is 
nonoscillatory. 

Proof. The proof is similar to that of Theorem 6.18.6. 

6.19. Oscillation and Nonoscillation for 

where the functions f i ,  F,, 1 5 i 5 m are defined in their domain of 
definition. 

Theorem 6.19.1. In equation (6.19.1), WC assume 

(i) f L ( k )  2 0 for all k E W and 1 5 i 5 ' r n  

(ii) U . ~ F ~ ( U , ~ ,  .. . > 0 for v1 # 0 and 1 5 1: 5 'rrr 

(iii) there is an index j E W(1, m,) such that FJ (w,~, . . . , un,) is continuous 
at  (ul, 0, .  . . ,0) with 111 # 0, and 

(a) Fj(Xul,. . . , = X2af1F'(?~1,. . . , v f n )  for all (?/, l , . .  . , U , )  E 
R" and X E R, where cy is some nonnegative integer 

(b) C" fj(l) = m. 

Then, (1) if R is even, difference equation (6.19.1) is oscillatory 

(2) if n is odd, every solution v.(k) of (6.19.1) is either oscillatory 
or tends monotonically to zero together with Aiw,(k), 1 5 i 5 n - 1. 

Proof. Let v(k) be a nonoscillatory solution of (6.19.1), which must 
then eventually be of fixed sign. Let u(k) > 0 for all k E W(k1).  For this 
solution our hypothesis implies that Anu(k)  5 0 for all k E W(k1). If R is 

even, then from Problem 1.9.39, we have lim - - 
Since F"(u1, . . . , v , )  is continuous at  (u1,0, . . . ,0) with # 0, for any 
E > 0 there exists k2 2 kl such that for all k E W(k2) 

AZu.(k) 
k-+m u ( k )  

- O , l < i < n - l .  

From (ii), Fj(l,O,...,O) > 0 and wemay assume 0 < E < F'(l,O,...,O) . 

From Theorem 1.8.11, we have Au(k) > 0, An"u.(k) > 0, also as a con- 
sequence u ( k )  > c > 0 for all k E lN(k2). Define v(k) = An-'v(k)/u(k), 
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Surnrning the above inequality, we obtain from (iii) that 

1:- 1 

5 -[Fj ( l ,O, . - ,O)  - € p  c f j ( l ) .  
e = k : 2  

In thc above inequality right side tends to - cc as k + 00, whereas left 
side remains boundcd. This contradicts our assumption that u(k )  > 0 for 
all k E IN(lc1). 

If n is odd, then the casc (ii) of Corollary 1.8.14 is impossible because 
we get a contradiction as in the case n even. Thus, we assume lim 71(k) = 

d > 0, linl Aiu(k)  = 0, 1 5 i 5 n - 1. From the continuity of Fj 

and hypothesis (ii), we find limk+m Fj ( u ( k ) ,  Au(k), . . . , An"u(k)) = 
F'(d, 0, . . . , 0) > 0. Therefore, Fj > 0 for all IC E IN(ks) ,  where k3 2 k2. 
Now, from (6.19.1), we have 

k + w  

k - w  

An.(IC) 5 - f j ( k ) F J  (u(lc),Au(k);..,An-lu(k)). 

Summing the above inequality, to obtain 

k-l 

-An'"u.(k) + An-'u(k3) 2 c f j (C )F j  (u(e),Au(e),...,A""u.(e)) . 
e=k3 

If we let k tend to infinity in the above incquality, we have a contradiction 
that A"-lu(ks) >_ c c .  Thus, limk+mu(k) = 0. 

Finally, we note that with a slight modification in the results Theorem 
1.8.11, Corollary 1.8.14 and Problem 1.9.39 the case w,(k) < 0 eventually 
can be similarly considered. I 
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Theorem 6.19.2. Let in Theorem 6.19.1 the hypotheses (iii) (a) is 
replaced by 

(iii) (a)' for any T, 2 5 T 5 n. and any c 2 0, lim inf Fj(ul, . . . , w,~, )  > 0 
or 00 as u,1 "+ DC),. . . , u,-1 -+ CO, U ,  + c, u,,,.+1 + 0,.  . . , U ,  + 0 and in 
addition 

(iv) Fi ( -v . l , . . . , - u , )  = -Ri(u1,...,u,) for all ( Z L ~ , . . . , ~ , ~ )  E R", 1 5  
i 5 m .  

Then, the conclusions of Thcorcm 6.19.1 hold. 

Proof. Let ~ ( k )  be a nonoscillatory solution of (6.19.1). Since condition 
(iv) irnplics that - ~ ( k )  is again a solution of (6.19.1), without loss of 
generality we can assume that 7r(k) > 0 for all k E W ( k 1 ) .  Then, as in 
Theorem 6.19.1, An,u,(k) 5 0 and A"-'u(k) > 0 for all k E IN(k.1). 

Therefore, from (6.19.1), we find 

A n , ( k )  5 - f j (k)F' ( ~ , ( k ) ,  A u ( ~ ) ,  . . . , A n , - ' , ( k ) )  , k E IN(k-l) 

and hence 

k-1 

(6.19.2) A"-'U(kl)  > c f j ( l ) F j  ( ~ ( l ) ,  Au,( l ) ,  . .. , A n - ' u ( l ) )  . 
t=k:1 

W e  distinguish two cases: 

Case 1. There cxists a p ,  1 5 p 5 n-l such that lirrl Ai u ( k )  = DC) for 

0 5 i 5 p - l ,  linl APu(k) = c  > 0 and lirn Aiu(k) = 0 for p+1 5 i < 
n-1. Then, from (iii) (a)', liminfk-ooFj (~(k),Au(k),...,A~-'~(k)) 2 
E > 0. So, there cxists a k2 2 k-1 such that F j ( u ( k ) ,  A u ( k ) ,  . .. , A n - ' u ( k ) )  
2 E > 0 for all k E W ( k 2 ) .  Replacing kl by k2 in (6.19.2), we find 

k-W 

k - c c  
- 

k :-cc  

and this leads to a contradiction. 

Case 2. Limk,,u(k) = c > O arid limk:-cc A"u.(k) = O for 1 5 
i 5 n - 1. If c < 00, then since FJ is contiriuous for every 0 < E < 
Fj(c,O, ... ,0) there exists a k2 2 kl  such that Fj (c ,O,  ... ,0) - E < 
F3 ( ~ ( k ) ,  Au(k) ,  . . . , An"u(k ) )  for all k E W ( k 2 ) ,  and from (6.19.2) we 
get 

&:-l 

A"U(k2) > [F& 0, .  . ' ,O) - F] c f j ( l ) ,  
e=kz  
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which is again a contradiction. If c = CO, then also from (iii) (a)' we 
have a contradiction. This completes the proof. I 

Theorem 6.19.3. Let in addition to the hypotheses (i) and (ii) 

(iii)' there is an index j E W(1, m) such that F3 (~1,. . . , U") is continuous 
at (U', 0 , .  . . ,0) with u,1 # 0, and 

(6.19.3) C( e ) " - " f j ( e )  = CO. 

Then, (1) if n is evcn, every bounded solution of (6.19.1) is oscillatory 

(2) if n is odd, every bounded solution of (6.19.1) is oscillatory or 
tends to zero monotonically. 

Proof. Assuming u,(k) > 0 (the case w.(k) < 0 can be similarly treated) 
is bomdcd on W(k1). Then, An,w(k) 5 0 for all k E W(kl) ,  and 
from Corollary 1.8.13 we have lirnA+,m A'u(k) = 0, 1 5 i 5 n - 1. Also, 
Au(k) 2 0 if n is even, whereas for n, odd Au(k) 5 0 for all k E W(k.1). 
Since ~ ( k )  is bountlcd, we find for n even .(CO) = c > 0, and for n 
odd either .(CO) = c > 0 or ~ ( c o )  = 0. Thus, to cornplete t,he proof we 
need to consider the case ? , , (CO) = c > 0 whcthcr n is even or odd. 

Since F3 is continuous, we find lirn F-J (U( k ) ,  Au( IC), . . . , A"-'u.( k ) )  = 

F'(c, 0, . . . ,O) > c > 0. Hence, there exists a k2 2 kl such that 
Fj(c,O, t . .  ,0) - E < F' ( ~ ( k ) ,  Au(k), . . . , A""u(IC)) for all k E W(k2). 

k-co 

From the equation (6.19.1), WC have 

A"u(k) + [F,(c,O,...,O) - ~ ] f ~ ( k )  < 0, k E W(k2) .  

Multiplying the above inequality by and summing from 
to k - 1, and using Problem 1.9.36, to obtain 

k-1 

+ [Fj(", 0, '. ' ,O) - E] 1 (e)("-q-,(e) < 0. 
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Thus, from Corollary 1.8.13, we get 

where L is some finite constant. But, the above inequality in view of 
(6.19.3) leads to a contradiction to our assumption that u(k)  is bounded. I 

Our next result is for the even order difference equations, so in (6.19.1) 
we shall assume that R = 2p, where p 2 1. 

Theorem 6.19.4. Let in addition to the hypotheses (i), (ii) and (iv) 

(v) I # 4, where I denotes the set of all indices i for which the 
function Fi(u1, . . . , u2,) is nondecreasing with respect to each variable 
u,2, u 4 , .  . . , uzp and nonincreasing with respect to U s ,  u , ~ ,  . . . , 1 1 , 2 ~ - 1  as well 

as the function -Fi (u1,  0, . . . ,0) is nonincreasing on (0, CO) 

(vi) there exists an eventually positive function + ( k ) ,  k E W such that 

1 
21.1 

for every c 2 1. 

Then, every bounded solution of (6.19.1) with n. = 2p is oscillatory. 

Proof. Assuming u ( k )  > 0 is bounded on W(k1).  Then, A2Pu(k) 5 0 for 
all k E W ( k l ) ,  and from Corollary 1.8.13 we have limk,, A’u(k)  = 0, 
1 5 i 5 2p - 1, and (-l)i+1A2P-iu(k) 2 0, 1 5 i 5 2p - 1. W e  define 

A2P-1u(22p-%) 
the transformation v(k )  = - 

U ( k )  
4 ( k )  5 0 ,  k E IN(kl) ,  and 

obtain 

Therefore, from the equation (6.19.1) and the hypothesis (v) it follows that 
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Since Au,(k+l) > 0 and A2p”(Au(k)) 5 0, Corollary 1.8.12 is applicable 
and, we find a k2 2 kl  such that 

which is the same as 

Using the above inequality in (6.19.4), we get 

+ v2(k + l )qqk)u(k+l)  ( k  + 1 - k p - 2 )  
@ ( k  + l ) u ( k )  (2p - a)! ] , k E JN(k2). 

the tcrms insidc thc 

1 (2p- a)! (A4(k))’ 
“ 

4 ( k  + 1 - k z p p - 2 )  4( k )  

bracket, say, A are 

1 (2p-2)! - 
2 ( k  + 1 - k2)  (2p-2) ““l 4( k )  

k E IN(k2). 

Using this in (6.19.5), we obtain 

(6.19.6) Av(k) 2 4 ( k )  c f i  (22p-21C) Fi(U,(k),O,’.’,O) 
U,( k )  

i € I  

Next, from Thcorcm 1.8.5, we have 

and hence there exists some c 2 1 such that 

u ( k )  5 c(k)(2”-1), k E W(k2) 

Using this in (6.19.6), we find 
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Summing up the above inequality, we find from (vi) that ~ ( k )  is eventually 
positive, which is a contradiction. Hence the result follows. I 

Corollary 6.19.5. Let in addition to the hypotheses (i), (ii) and (iv) 

(vii) 1 # 8, where I denotes the set of all indices i for which the 
function Fi(w.1, . . . , 71,2,,) is nondecreasing with respect to each variable 
IQ,  u4, . . . , u,zP and nonincreasing with respect to 11,3 , 7 ~ 5  , . . . , Z L ~ ~ -  1 , arid 
Fi(Xu1,0,...,0) = XFi(u1,0,...,0) for all E R and real X # O  

(viii) there exists an eventually positive function 4 ( k ) ,  k E W such that 

#)(e) c fi ( 2 2 p - 2 e )  Fi(l,O,. ‘. , 0) - - 1 (2p - 2)!(A4(4)2 

4 ( e / 2 ) ( 2 p - 2 ) 4 ( e )  

Then, every bounded solution of (6.19.1) with n, = 2p is oscillatory 

6.20. Oscillation and Nonoscillation for 

(6.20.1) u ( k  + 1) - u , (k)  + p ( k ) ~ ( k  - m )  = 0, k E W 

Therefore, 1 - ~ ~ ~ ~ ~ p ( ! )  2 0, and hence 1 2 lirrl supk2+03 xe=k2 kz+m p(l?). 
This contradiction completes the proof. I 
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Theorem 6.20.2. Sllppose that 

(6.20.2) Iim inf p (k )  = c > 0 and lim supp(k) > 1 - c. 
!%+W A:-W 

Then, the following hold 

(6.20.3) (i) 71(k + 1) - 71(k) +p(k)71(k - m )  5 0, k E IN 

has no eventually positive solution 

(6.20.4) (ii) w(k  + 1) - w(k )  + p(k)w(k - Srn) 2 0 ,  k E W 

has no eventually negative solution 

(iii) difference equation (6.20.1) is oscillatory 

Proof. Assume that v ( k )  is an cvcnt~~ally positive solution of (6.20.3), i.e. 
there exists a kl E W(1) such that v (k )  > 0 for all k E IN (k l ) .  Let E > 
0, 0 < E < c and k2 2 kl  be such that p(k) 2 C-E > 0 for all k E W(k2).  
Let kg = max{k1+m, k2} so that ~ ( k )  2 p(k)7~(k-,m) 2 (c-t)v(k-1) for 
all k E IN(k3), since v(k )  is nonirlcreasing for all k E IN(k.3). On the other 
hard,  we have 0 2 71(k+1)-v(k)+p(k)~(k--rrb) 2 u(k+l )+v (k ) (p (k )- l )  
for all k E IN(ks), so that v(k)(p(k) - 1 + c - 6)  5 0 for all k E JN(k-3). 

Thus, it follows that p(k )  5 1 - c + E for all k E W(k3), and hence 
lirn supL:+m p(k)  5 1 - c + F. However, since E > 0 is arbitrary we have 
Iinlsupk,,p(k) 5 1 - c. This contradicts (6.20.2) and the proof of (i) is 
complete. The conclusion (ii) follows from (i)  by letting v ( k )  = -w(k)  
for an eventually negative solution w(k )  of (6.20.4). Finally, (iii) follows 
from (i) and (ii). I 

Theorem 6.20.3. Suppose that 

(6.20.5) Iiminfp(k) = c > mm./(7r/ ,  + I)”+’. 
I:- W 

Then, the conclusions of Theorem 6.20.2 hold. 

Proof. Assumc the contrary and let 71(k) be a solution of (6.20.3) with 
v(k )  > 0 for all k E JN(k1). Setting r(k)  = 71(k)/v(k + 1) and dividing 
the inequality (6.20.3) by v ( k )  and arranging the terms, we obtain 

(6.20.6) [r(k)]- ’  5 1 - p(k)r(k  - m )  . . . r (k  - l), k E N ( k 1  + m ) .  

From (6.20.5), p(k )  > 0 for all k E lN(k2), where k2 2 k l .  Setting 
k3 = rnax(k1 +m,  IQ}, it follows that ~ ( k )  is nonincreasing on W(k3) ,  
and so r ( k )  2 1 for all k E W(k3). Also, r ( k )  is bounded above ~ 

otherwise (6.20.5) and (6.20.6) imply that r ( k )  < 0 for arbitrarily large 
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k .  If we set lim infA.,oo r ( k )  = p, then from (6.20.6), we get 

V/,) ' ' , r ( k  - 

< 1 - c p ,  

which gives that c < - p-' < rnax- P"+l - p21 j jm+l - (,m + 1)"+1 ' 
< But this con- 

tradicts (6.20.5), ant1 the proof of (i) is complete. The conclusions (ii) and 
(iii) can he proved similarly. I 

Remark 6.20.1. For the difference equation 

13 - 1 m m ,  

(6.20.8) (?7(k)]-l = 1 - p(k)q(k - m ) .  . . v ( k  - l), k E IN 

has a positive solution. For this, we dcfinc 

(6.20.9) 
' rn  + l 

~ ( i  - ,m) = q = - > 1, O < i < m - l  
'W/, 

and 

(6.20.10) q(0)  = (1 -p(O)T(-VL) "(-l))-1 > 1. 

From (6.20.9) and (6.20.10) it follows that ~ ( 0 )  < q, so we define 

~ ( 1 )  = (1 - p(1)q(-m + 1) . . .q(o))-' < Q 

and now by induction 1 < ~ ( k )  < q for all k = 2,3, .  . . so that q ( k )  is a 

solution of (6.20.8). Next defining w.( i  - ,m) = , 0 5 i < p m ,  
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u,(k) = 
u.(k - 1) 

rl(k - 1) ' 
k E W(1) it follows that this u,(k) is a nonoscillatory 

solution of (6.20.1). I 

In Theorem 6.20.3 the left side of the inequality (6.20.5) can be irn- 
proved. This is thc content of our next result. 

Theorem 6.20.5. Assume that p(k)  2 0 for all k E IN and 

(6.20.11) 

Then, the conclusions of Theorern 6.20.2 hold 

Proof. We shall prove only (iii), whercas (i) and (ii) can be provcd 
analogously. Let u ( k )  be a nonoscillatory solution of (6.20.1), which we 
can assume to be positjive eventually, and sincc p(k) 2 0 this solution 
~ ( k )  is eventually decrcasing. Therefore, or1 using v,(k) 5 u ( k  - m,) i n  
(6.20.1), eventually we obtain 

p(k) 5 1 - u ( k  + l ) / u , ( k )  

and hence 011 using arithmetic and geomctric means inequality, we find 

. k-l . k-l 

5 1 - ( u . ( k ) / u ( k  - m))'/? 
Setting (Y = 7 n m / ( m  + l)"+', from (6.20.11) we can choose a constant p 
such that for k sufficiently large CY < 5 (l/m) ~ ~ ~ ~ _ , p ( C ) .  Therefore, 

from (6.20.12) for all large k ,  (w,(k)/u(k - m) ) ' /m  5 1 - P, which in 
particular implies that 0 < P < 1. Now since maxo<x<l " [(l - X)X1/m] = 
allm, we have 1 - X 5 C Y ~ / ~ X - ~ / "  for 0 < X 5 1, and hence it follows 
that ( v , ( k ) / u ( k  - 5 C Y ' / ~ / T " / ~  , which is the same as 

(6.20.13) P - u ( k )  5 w.(k - m). 
cy 

Now using (6.20.13) instead of u ( k )  5 u(k - m) in (6.20.1) and re- 
peating the arguments, we find ( p / c ~ ) ~ u ( k )  < u ( k  - 772) for all large k .  
Thus, by induction, for every n E IN(1) there exists an integer k ,  such 
that for all k E IN(k,) 

(6.20.14) ( E), v.(k) 5 u(k - m). 
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Next, for sufficiently large k ,  Ci=:=k-m,p(P) 2 C:I:-,p(P) 2 m/3 = 
M ,  say. Since /3 > a, we can choose n such that 

(6.20.15) (E)" > ($)2. 

For this spccific value of n, we consider k sufficiently large, say, k* 
so that for all k 2 k* ,  all thc above inequalities are satisfied. Then, for 
each k 2 k* + 'm. there exists an integer & with k - m, 5 & 5 k so that 

CP=k:--nLp(P) 2 ( M / 2 )  arid Ct=np(P) 2 (M/2). From (6.20.1) and the 
nonincreasing nature of w,(k), we have 

L: 

z 
-U(k - 771.) 5 U(& + 1) - u ( k  - m )  = c (.(P + 1) - .(l)) 

L = k - m  

M -  
I ---u,(k 2 - m )  

(6.20.16) 

Similarly, we find 

M -  
-u(k - m) < u,(k - m). 
2 

1: 

- U , ( & )  5 u ( k  + 1) - U(&) = C(?@ + 1) - .(P)) 
e=k 

M 
5 --u(k 2 - m) 

and so 

(6.20.17) 

CorrlbiIling- (6.20.14), (6.20.16) and (6.20.17), we g-ct 

M 
2 

- u ( k  -.In.) 5 U(&). 
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But this contradicts (6.20.15) and the proof is complete. I 

6.21. Oscillation and Nonoscillation for 
m 

(6.21.1)h A,u(k) + 6C fi(k)Fi(u.(gi(k))) = 0,  k E I N ,  6 = &I 
i=l 

where Q > 0 is a real fixed constant, A,u(k)  = u ( k  + 1) - a u ( k ) ,  
for each i ,  1 5 i 5 * m ,  fi is defined on I N ,  Fi is defined on R,, and 
{gi(k)} C N. Further, we shall assume that 

(i) f i ( k )  2 0 for all k E W, 1 5 i 5 m 
(ii) limI;.OOgi(k) = 00, 1 5 i 5 'm 

(iii) u.Fi(u) > 0 for 71, # 0, 1 5 i 5 m,. 

Theorem 6.21.1. Let CY 2 1 and let there exist an index j E IN(1,m) 
such that lF'(u)l is bounded away from zero if 1u.l is bounded away from 
zero, and 

00 

(6.21.2) c ( Y - p f , ( e )  = 03. 

Then, every solution u,(k) of (6.21.1)1 is either oscillatory or u ( k )  = .(CY'"). 

Proof. Let v.(k) be a nonoscillatory solution of (6.21.1)1, and suppose 
that u.(k) > 0 eventually. Then, there exists a kl E W such that 
u.(k) > 0 and u(gi(k)) > 0, 1 5 i 5 m for all k E W(kl). Therefore, we 
have A,u(k) = a"+'A(u(k)/a") 5 0 for all k E IN(kl). Hence, a P k u ( k )  
is nonincreasing for all k E IN(kl), thus limk,, ~ y - ~ u ( I c )  = p 2 0 exists. 
W e  shall show that p = 0. Suppose p > 0, then there exists k2 E W(kl) 
such that u ( g j ( k ) )  2 ~ c @ J ( ' )  2 p for all k E W ( k 2 ) ,  and from the given 
hypotheses there exists a positive constant c such that Fj(v,(gj(k))) 2 c 

for all k E W(k2) .  

On the other hand from (6.21.1)1, we have 

(6.21.3) A(u(k)/a") + . .-k"'fj(k)F,(~(g,(k))) 5 0, k E IN(kl) 

and hence 

But, in view of (6.21.2) this leads to a contradiction to our assumption 
that u(k) > 0 eventually. The case u(k) < 0 eventually can be treated 
similarly. I 
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Theorem 6.21.2. Let there exist an index j E IN(1, ,m) and a positive 
constant L such that 

lF'(u,)l 2 L.1~1 for u E R, 
IN, = { k  E W : gj(k)  5 k }  is an infinite set, 

~ f j ( k ) a g j ( ~ ) - ~ . - l  > - 1 for all k E ~ j .  

Then, the difference equation (6.21.1)1 is oscillatory. 

Proof. Let u.(k) be as in Theorem 6.21.1 so that u ( k ) / a "  is nonin- 
creasing for all IC E N(k l ) .  Thus, for all k E INj n IN(kl) it follows that 
u(g j (k ) )  2 u ( ~ ) c P J ( ~ ) - ~ ' .  On the other hand, WC have 

w,(k + 1) 5 au(k )  - f3(k)Fj(7l,( ,q:,(k))) ,  k E W(k1) 

5 NW>(k) - Lf,(k)zL(g,(k)), k E IN(k1) 

5 au, (k)  (1 - L f , ( k ) a g J ( + k - - l  ) 5 0, k E IN, n lN(kl). 

But, this contradicts our assurrlptiorl that u ( k )  > 0 eventually. A sirnilar 
contradiction holds for W.(/?) < 0 cventmllv. I 

Theorem 6.21.3. Let CY 2 1 and let, there exist an index j E IN(l,nr,) 
such that F,(?],) is nondecreasing on R\{O}, and 

(6.21.4) /' < 03 and 
0 F,( t )  

< 03 for every p > 0, 

00 

(6.21.5) c X(N, (e ) )df" (e )  = 0 0 )  

where x(JN,(e)) is the characteristic function of thc set IN,([) defined in 
Theorem 6.21.2. Then, the difference equation (6.21.1)l is oscillatory. 

Proof. Let u,(k) be as in Theorem 6.21.1 so that u,(k)/ak is non- 
increasing for all k E IN(kl), and the inequality (6.21.3) holds. Let 
k2 E IN(kl) be so large that gj(k)  2 kl for all k E IN(k2). Hence, for 
all k E INj n N(k2), we have u ( g j ( k ) )  2 u ( k ) / a k ,  and consequently 
F' (u(g j (k) ) )  2 F'(u,(k) /ak) .  Then, from (6.21.3) it follows that 

-a(u,(l~)/(.~')/~~(u(k)/CY~:) 2 d - l f , ( k ) ,  k E IN, n  IN(^). 
u,(k + 1) u ( k )  5 t 5 F,  [F,(t)l" 2 [ 4 ( 4 k ) / a  11 , However, since for ak+l 

the above inequality implies 

k -1 

-k-1 dt - IC E IN, n W(k2). 
FAt )  ' 
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This, surnming over k leads to the inequality 

But, from (6.21.4) and (6.21.5) this leads to a contradiction. A similar 
argument holds for u ( k )  < 0 eventually. I 

Theorem 6.21.4. Let 0 < Q 5 1 and let there exist an index j E 
IN( 1, m )  such that FJ (W,) is Ilorldccrcasing on IR\{O}, arid 

Then, cvery solution u ( k )  of (6.21.1)-1 is oscillatory or 1u(k)1 4 03 as k -+ 
00. 

The result now follows from (6.21.6). The case v,(k) < 0 can be treated 
analogously. I 

6.22. Oscillation and Nonoscillation for 

(6.22.1) A (p(k) (Au(k) )" )  + g(k + l ) f ( u ( k  + 1)) = 0, k E W 
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where c is a quotient of positive odd integers, p(k ) ,  k E W is a positive 
function, and q ( k )  is defined on W(1). In what follows we shall assume 
that 

(i) u f ( u , )  > 0 for U # 0, and 

(ii) f(u) - f ( u )  = g(u,u)(u - U)&, U , U  # 0 where g : IR X R "+ R is 
nonnegative and 6 is a quotient of positive odd integers. 

We shall need the following: 

L e m m a  6.22.1. Lct the function G ( k , l , u )  : W(k.0) X W(k0)  X R+ + IR 
be nondecreasing in U for fixed k and l. Further, let for k E W(k0) 

1.-l 

(6.22.2) u(k) 2 (I) a ( k )  + c G(k,Y ,u( ! ) )  
P=k:o 

and 

(6.22.3) ~ ( k )  = ~ ( k )  + C G(k,Y,7j( l ) ) ,  
1:-1 

P=ko 

where a ( k ) ,  k E IN(k0) is a given function. Thcn, u ( k )  2 (<)v (k )  for all 
k E W(k0) .  

L e m m a  6.22.2. Let u(k ) ,  k E IN be a solution of (6.22.1), arid let there 
exist a positive number p, and integers a ,  b, c such that 0 5 a I b < c. 
Further, let p(k), k E W(a )  be a positive function, and the following 
inequality holds 

Proof. Let w(k )  = p(k) (Au(k) )"p(k) ,  k E IN. Then, w(lC)Au,(k) 
= p (k ) (A~ ( l c ) ) "+~p (k )  > 0, k E W and 

Aw(k )  = A ( p ( k ) ( A ~ ( k ) ) " )  p(k + 1) + p ( k ) ( A ~ ( k ) ) " A p ( k )  
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(6.22.7) 

/, \ k-l , n ,  , , n . . \ I "\ \ , A I n\ \ I; 

I = b  J \"'\"J 

k E W(b, c). 

Now suppose that u ( k )  is positive. Then, (6.22.8) implies that -w(k )  
> 0, or equivalently Au(k)  < 0, k E W ( b , c ) .  Let z ( k )  = -w(k)  = 
-p(k)(Au(k))"p(k) .  Then, (6.22.8) becomes 

Define 

k ,  e E W@, c ) ,  3: E R+. 
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Since Au,(k) < 0, k E W(b7 c), we observe that for fixed k,C, G(k,C,x) 
is nondecreasing in 5. With a(k)  = p f ( u ( k ) ) ,  we apply Lemma 6.22.1, 
to get 

where v(k )  satisfies 

provided 74k) E R+ for all k E IN(b,c) .  From (6.22.12) we find 

.-,- , -// J 

- ( - A ~ ( k ) ) ' g ( u , ( k  + l), 7r(k)) 
- 

f ( ? l , ( k ) ) f ( ? / , ( k  + 1)) 
? J (  k ) .  

On the other hand, we have 

(6.22.14) A [ -1 ?I ( k )  = A?i(k) ?J(k)g( l l (k + l ) , ?~(k ) ) (A?~(k ) ) '  

f (4k)) f ( 4 k  + 1)) " f ( u , ( k ) ) f ( ? l , ( k  + 1)) 
- 

Equating (6.22.13) and (6.22.14), we obtain A7)(k) = 0, and so v(k)  = 
v ( b )  = ,rrLj(u,(b)), k E W ( b , c ) .  The inequality (6.22.5) is now immediate 
from (6.22.11). 

If u,(k) is negative, then (6.22.8) gives w(k) > 0, or equivalently 
A 4 k )  > 0, k E W ( b , c ) .  Let z ( k )  = w(k )  = p ( k ) ( A ~ ( k ) ) ~ p ( k ) .  Then, 
(6.22.8) becomes 

With G(k, e ,  x )  defined as in (6.22.10), we note that for fixed k ,  C, G(k ,  C, x )  
is nondecreasing. Applying Lemma 6.22.1 with a(k) = - p f ( u ( k ) ) ,  we get 
(6.22.11) where v ( k )  satisfies 

Now as in the earlier case Av(k) = 0, and hence v ( k )  = w(b) = 
- p f ( u ( b ) ) .  Thus, the inequality (6.22.11) is the same as (6.22.6). B 
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R e m a r k  6.22.1. If u,(k) is a positive solution of (6.22.1) and if there 
exists a positive function p(k) such that ( ~ l z l ( k ) ) ~ A p ( k )  5 0, k E N 

(6.22.16) 

and 

(6.22.17) 

then 

For otherwise there would exist nomcgativr integers a,, b ,  c and a posit,ive 
p such that (6.22.4) holds. But, then i n  view of Lemma 6.22.2, (6.22.5) 
holds for k E W ( b ) .  This implies that, 

However, then by means of (6.22.17), w,(k) will tend to - m, which is 
a contradiction. 

L e m m a  6.22.3. Suppose that 

(6.22.19) 

(6.22.20) l i m  If(.)\ = 00 
l 4 + ~  

and 

M 

(6.22.21) -m < - y q ( P +  1) < m. 
e=o 

If u(k) is a positive solution or a negative solution of (6.22.1), then 

(6.22.22) 
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(6.22.23) 

and 

for all large k .  

Proof. Lct u(k) be a positive solution of (6.22.1). Taking p(k) = 1, 
Remark 6.22.1 shows that (6.22.22) is true. Now by means of the same 
reasoning used to derive (6.22.7), we have 

'"l ~ ( P ) ( A ~ L ( P ) ) " + ~ , ~ ( w . ( P  + l), u ( P ) )  

P=S 

m 

= 
+ c + + 1 f ( . (P)) f (u(P + 1)) 

p(C)(au(P))"+6g(7r(B,(~ + l), ,(P)) 
P=!% e=l: 

for any S and k satisfying 0 5 B 5 k ,  wherc 

W e  claim that p = 0. Indeed, if f-3 < 0 we choose an integer k so large 
that 

2 -- > 0, k > b > s  13 
2 
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By Lemma 6.22.2, we find 

But, then (6.22.19) implies that u,(k) tends to - 00, which is a contra- 
diction. 

If > 0, then by (6.22.21), (6.22.22) and (6.22.25), we have 

and hence Au(k)  > 0 for all large k .  Let d be a nonnegative integer 
such that 

(6.22.26) 

From (6.22.26) it follows that 

which on summation, and then employing (6.22.19) leads to 

(6.22.27) 
k-cc 
lim u.(k)  = 00. 

O n  the other hand, for k > d ,  we have 

" - - /3 f(u(k + 1)) 
2 f(u(d)) ' 

which shows that f (u (k+ l ) )  < cc for all large k .  But, i n  view of (6.22.27) 
and (6.22.20) this is a contradiction. 

The proof for the case u ( k )  is a negative solution of (6.22.1) is simi- 
lar. I 
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Remark 6.22.2. I n  view of the proof of Lemma 6.22.3, under the condi- 
tions (6.22.19) and (6.22.21) equation (6.22.25) holds and p 2 0. Thus, 
if 

(6.22.28) 

then (Au(k))"/  f (u (k ) )  2 0 for all large k. 

Lemma 6.22.4. Suppose that (6.22.19), (6.22.21) and (6.22.28) hold. If 
u ( k )  is a nonoscillatory solution of (6.22.1), then u(k)(Aw,(k))" 2 0 for 
all large k.  

Theorem 6.22.5. Suppose in addition to (6.22.19) ~ (6.22.21) the follow- 
ing hold 

for evcry F > 0, and 

(6.22.30) 

Then, every solution of (6.22.1) is oscillatory. 

Proof. Let v.(k) be an evcntually positive solution of (6.22.1). Then, the 
equality (6.22.24) holds. Since the second term in the right side of (6.22.24) 

Now taking 0th root on both 
integer a to k - 1, we get 

sides, summing from a sufficiently large 

u(k:+l) dt 

5 I,,,) ( f ( t ) ) l / u  

for all k > a. But, in view of (6.22.29) and (6.22.30) as k + 00 thc above 
inequality leads to a contradiction. The case when u ( k )  is an eventually 
negative solution is considered similarly. I 
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Theorem 6.22.6. Suppose that c7 = T and conditions (6.22.19), (6.22.21) 
and (6.22.28) hold. Further suppose that g(u, 71 )  2 v > 0 for all U ,  v # 0, 
and there exists a positive function p(k), k E W such that 

Then, every solution of (6.22.1) is oscillatory. 

Proof. Let 71.(k) be an eventually positive solution of (6.22.1). Then, in 
view of Lemma 6.22.4, A71,(k) 2 0 for all large k .  Further, 

for all large IC, where we have used the fact that f is nondecreasing. 
Summing the above irlequality from a sufficiently large integer a to k - 1, 
we obtain 

p ( a ) p ( a ) M a )  

f ( d . 1 )  1 

which contradicts (6.22.31). The case when u.(k) is negative is similarly 
proved. I 

Example 6.22.1. Consider the difference equation 

(6.22.32) A ( ( k  - l ) - P A ~ , ( k ) )  + + 
)?/.(IC + l)IYsgn u(k  + 1) = 0, 

1 

k E N(2) 
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where y > 1, cy > 0 and /S > 0. When p 2 CY, we have 

Thus, Theorem 6.22.5 implies that every solution of (6.22.32) is oscillatory. 

Example 6.22.2. Consider the difference equation 

(6.22.33) A2u.(k) + - u ( k t 1 )  = 0, k € W  

where y > 1/4. If we take p(k) = k ,  k E W then 

( k  + 1)2 

Example 6.22.3. Consider the difference equation 

(6.22.34) A ( L A u ( k )  + - k + l  ) ( k +  
( u ( k  + 1) + u3(k + 1)) = 0, 

k E IN(1). 

Since the corresponding g(u., W) satisfies 

g(u,  W) = 1 + Uf2  + uW + v2 2 l -t 2lUII7II - I71IIWI 2 1 

if we take p(k) = k for k 2 1, then 

when y > 1/4. Thus, Theorem 6.22.6 implics that every solution of 
(6.22.34) is oscillatory provided y > 1/4. 

6.23. Oscillation and Nonoscillation for 

(6.23.1) u,(t) - u(t - T )  + p ( t ) u ( t  - 0) = 0, 
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where t 2 0 is a continuous variable, T > 0, 0 > 0 and p E C(R+, R+). 

By a solution of (6.23.1) we mean a continuous function 71, E C ( [ t o  - 
rnax{T,g},co),R) which satisfies (6.23.1) for t 2 t o .  A solution u.(t)  
of (6.23.1) is said to be oscillatory if it is neither eventually positive nor 
eventually negative. Otherwise, the solution is called n,onoscillatory. 

We shall first present some sufficient conditions under which all solutions 
of (6.23.1) oscillate. Next, we will establish some oscillation criteria for the 
nonlincar difference equation 

(6.23.2) u, ( t )  - 7r(t - T )  + p ( t ) H ( u ( t  - 0)) = 0. 

Finally, we will provide sufficient conditions which guarantee oscillation of 
all solutions of the forced equation 

(6.23.3) u,(t)  - u,(t - T) + p ( t ) u ( t  - 0) = f ( t ) .  

Theorem 6.23.1. Assume that 

(i) limsup,,, q(t) > 0 
(ii) 0 = m7 + Q, m is a positive integer and 6' E [0, T ) ,  and there exists 
a positive number T such that 

m-l  

(6.23.4) 

Then, every solution of (6.23.1) is oscillatory. 

Proof. Suppose to the contrary, and let u ( t )  be an eventually positive 
solution of (6.23.1). Let ~ ( t )  = ~ ~ - r u ( ~ ) d ~ s  > 0. Then, z ' ( t )  = ~ ( t )  - 
u(t - T )  = -p(t)u(t - 0) 5 0. Integrating (6.23.1) from t - T to t ,  we 
have 

(6.23.5) z ( t )  - r( t  - T) + q ( t ) z ( t  - g) 5 0. 

Define a set of real numbers by 

(6.23.6) S ( r )  = { X  > 0 : z ( t )  - (1 - Xq(t))r(t - T )  5 0,  eventually}. 

From (6.23.5), ~ ( t )  - (1 - q ( t ) ) z ( t  - 7) 5 0, i.e. 1 E S ( Z ) ,  and so S ( r )  
is nonempty. If X E S ( r ) ,  then 0 < r ( t )  5 (1 - Xq(t))r(t - T ) ,  and 



438 Chapter G 

hence, 1 - Xq(t) > 0, eventllally. Therefore, S ( z )  C E. Thus, WC reach 
to a contradiction, if E is empty. Now, condition (i) implies that E is 
bonnded. Hence, S(%)  is bounded. Let p E S ( z ) .  Then, 

Z ( t  - T) 5 (1 - pLg(t - T ) ) Z ( t  - 27) 
711- 1 

I . . . 5 (1 - pq(t - i ~ ) ) z ( t  - v),.) 

i=l 

5 n (1 - pq(t - i T ) ) Z ( t  - g ) .  

i=l 

Using the above inequality in (6.23.5), we obtain 

B y  definition (6.23.6) and the abovc inequality, we find 

(6.23.7) 
m - 1 

sup (1 - pq(t - i.)) 

On the other hand, (6.23.4) irnplics that thcrc exists a number p E (0 , l )  
such that 

and hence 

(6.23.8) 

In view of (6.23.7) and (6.23.8), p/P E S ( z ) .  Repeating this procedure, 
we obtain pfpT E S@), r = 1,2,... which contradicts the boundedness 
of S ( Z ) .  I 

Corollary 6.23.2. In addition to the condition (i) assume that for some 
m, # 1 

(6.23.9) 

Then, every solution of (6.23.1) is oscillatory. 
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Remark 6.23.1. The above oscillatory criteria for (6.23.1) can be used 
to the equation 

(6.23.10) u( t )  - cu(t - T )  + p ( t ) u ( t  - 0) = 0. 

In fact, the substitution v ( t )  = c-,/'u(t) reduces (6.23.10) to 

u(t)  - o(t - 7 )  + d T p ( t ) u ( t  - g) = 0. 

Theorem 6.23.3. In addition to conditions (i) and (ii) assume that 

(iii) H E C(R,R), w,H(u )  > 0 for 0 < \U,\ 5 C Y ,  H is concave and there 
exists a small positive number S such that 

H ( U , )  2 U, 0 5 U 5 6 

H ( U , )  5 U,,  0 2 I/. 2 -6. 
and 

Then, every solut,ion of (6.23.2) is oscillatory. 

Proof. Suppose to the contrary, and let v.(t) be an eventually positive 
solution of (6.23.2) and z(t) = JtPT u(s)d.s. Then, z ' ( t )  5 0 eventually 
and limt-, z ( t )  = /3 2 0 exists. Integrating (6.23.2) from t - T to t 
and using Jensen's inequality, WC obtain 

t 

z(t) - z ( t  - T )  + q ( t ) H ( z ( t  - 0)) 5 0. 

If /3 > 0, let t ,  + M where t ,  satisfy q(t,)  = limsup,,, q(t) 
in the above inequality, we get lirn supt-, q( t )H([ j )  5 0, which is a con- 
tradiction. Therefore, limt+, z ( t )  = 0. From (iii) the above inequality 
leads to (6.23.5). Now as in Theorem 6.23.1 this gives a contradiction. Sim- 
ilarly, we can prove that (6.23.2) has no eventually negative solution. I 

Theorem 6.23.4. Assume that 

(iv) p ( t )  = p > 0, and p = 1 and 0 = T do not hold sinlultaneously 

(v) H E C(R,R), u,H(u)  > 0 for 0 < l u l  5 cy, H is concave and 

(6.23.11) H ( U . 1  lim - = 1. 

Then, oscillation of (6.23.1) implies oscillation of (6.23.2). 

Proof. From Problerrl 6.24.87 it is clear that every solution of (6.23.1) 
with p ( t )  = p oscillates if and only if the characteristic equation 

(6.23.12) D(X )  = 1 - e"XT + = 0 

?L-0 l/. 
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has 110 real roots. 

WC claim that there exists EO > 0 such that for (E( < €0 the equation 

(6.23.13) 1 - e-AT + (1 - t )pe-Au = 0 

has no real roots. If T > 0, then D(co)  = 1 arld D(-oa) = -CO. It 
follows that (6.23.12) has real roots. Thereforc, 0 2 7. If 0 = T, (6.23.1) 
becomes 

u ( t )  + (p - l)w.(t - g) = 0. 

Every solution of the above equation oscillates if and only if p 2 1. In view 
of (iv) we will not consider the case p = 1. If p > 1, it is clear that there 
exists EO > 0 such that for I E /  < EO, (1 - €)p > 1. Hence, (6.23.13) has 
110 real roots. Now we consider the case T < 0. In this case, the minimum 
of D(X) for X E R is positive. Let m = D(&) = nlirlA,RD(X) and 

G(E,X) = 1 - e- +p(1  - €)e-'", 

where /c( < 1. - = Te-AT - np(1 - c ) e P A u .  Obviously, -(O, XO) = 0. 

We consider the equation "(c, X) = 0 in the neighborhood of the point 
(0, XO). By implicit function theorem, there exists a continuous function 

X = X ( f )  defined on a neighborhood of F = 0, such that -((F, X ( € ) )  0 
and X0 = X(0). Therefore, the unique minimum point X(€) of G(€, X) is 
continuous with respect to F. Hence, lime+O X ( € )  = XO, arld therefore 

AT 

3G i3G 
ax dX 

3G 
3 X  

i3G 
ax 

lim 1 - e"X(C)T + p(1 - c)e-A(e)u ( -+ pe-'O' = m .  
E-0 

Thus, there exists EO > 0 such that 

Hence, (6.23.13) has no real roots for < €0, which implies that every 
solution of the equation 

(6.23.14) u(t) - u(t  - T) + p(l  - €)7L(t - 0) = 0 

is oscillatory. 

Now we claim that every solution of (6.23.2) is oscillatory. Suppose to 
the contrary, and lct u(t)  be an eventually positive solution of (6.23.2) and 
z ( t )  = JtPT u(s)ds > 0. Then, z ' ( t )  = u ( t ) - u ( t - ~ )  = -pH(u(t-a)) 5 0. 
Integrating (6.23.2) from t - 7 to t and using Jensen's inequality, we get 

(6.23.15) t ( t )  - t ( t  - T) + p H ( t ( t  - 0)) 5 0. 

t 
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As in the proof of Theorem 6.23.3, limt,, z ( t )  = 0. For E > 0, there 
exists 6 > 0 such that 

(6.23.16) (1 -€)U, < H(u)  < (1 + E ) U  for 0 < 1 ~ 1  < S. 

From (6.23.15) and (6.23.16), we obtain 

Z ( t )  - Z ( t  - 7 )  +p(1 - E ) Z ( t  - 0) 5 0, 

which in view of Problem 6.24.88 inlplics that (6.23.14) has an eventually 
positive solution. This contradiction completes the proof. I 

Now we shall consider the difference equation (6.23.3). Let f be 
continuous for t 2 T. W e  define 

Then, T E C(IR,R). Let 

00 

Theorem 6.23.5. Assume that p E C(R+,R+) and for any positive 
number N there exist two sequences { t i } ,  { t i }  such that ti+l - ti 2 
r, t’,+l - ti 2 r, i = 1,2, ... and 

(6.23.17) 

and 

(6.23.18) 
i=l 

where q is defined as before. Then, every solution of (6.23.3) is oscillatory. 
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Proof. We rewrite (6.23.3) in the form 

(6.23.19) ( ~ ( t )  - F ( t ) )  - ( ~ ( t  - 7) - F ( t  - T)) + p ( t ) ~ ( t  - 0) = 0. 

Suppose to the contrary, and let u( t )  be an eventually positive solution of 

(6.23.19). Let z ( t )  = E(t) - F( t ) .  Then (6.23.19) becomes 

(6.23.20) z ' ( t )  + p ( t ) u ( t  - a) = 0. 

Th~rs, z ' ( t )  5 0, t 2 T.  If z ( t )  < 0 eventually, then 0 < E ( t )  < F( t )  
eventually, which contradicts (6.23.18). Therefore, z ( t )  is positive and 
limt,, z ( t )  = a 2 0 exists. Integrating (6.23.20) from T to 03, we 
obtain J ,"p ( t )u ( t - -a )d t  < 00. Since z ( t )  > 0, WC have E(t) > F( t ) ,  and 
llcrlce E ( t )  2 F+ (t), t 2 T. There exists k > 0 such that t k  - T 2 T f a ,  
and hence 

which contradicts (6.23.17). Similarly, we can show t,hat (6.23.19) has no 
everlt,ually negative solutions. I 

Theorem 6.23.6. Assnrnc t,hat 

(6.23.21) 

and 

(6.23.22) 

SPO q( t )F+( t -o )d t  = m 

/m q ( t ) E ( t  - 0 ) d t  = Co. 

Then, every solution of (6.23.3) is oscillatory. 

Proof. It is sufficient to prove that (6.23.21) and (6.23.22) imply (6.23.17) 
and (6.23.18). Suppose to the contrary that (6.23.17) is false. Then there 
exists N* such that 

00 

Cq(ti)F+(ti - 0) < N* 
i=l 

for any sequence { t i }  with ti - ti-l 2 T ,  i = 1,2, . . . . In  particular, for 
any t E [O, T ) ,  

03 c q(t f iT)F+(t + i7 - 0) < N*. 
i=l 
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Now, by the Lebesgue dominated convergence theorem, we have 

which contradicts (6.23.21). Similarly, we car1 show that (6.23.18) holds. I 

Example 6.23.1. Consider the difference equation 

(6.23.23) u( t )  - ?r(t - ./a) + 2?r(t - 57r/2) = sin t + cost .  

In this case, f ( t )  = sint + cost, F ( t )  = sirit, F ( t )  = Jt-T,2 sin sds = 
sint - cost ,  and q(t) = 2. Obviously, corditions (6.23.21) and (6.23.22) 
hold. Therefore, evcrv solution of (6.23.23) oscillates. I n  fact, ~ ( t )  = cost 
is a such solution of (6.23.23). 

- t 

6.24. Problems 

6.24.1. Consider the difference equation (6.1.1), and assume that in 
addition to the given hypotheses on the functions p and q, C" l/p(P) = 
cc and all its solutions are bounded. Show that (6.1.1) is oscillatory. 

6.24.2. Consider the difference equation (6.1.1) and assume that in 
addition to the given hypotheses on the flmctions p and q ,  C" Iq(t)l < 
cc and p(k) is eventually either nondecreasing or nonincreasing and 
bounded below by a positive constant. Show that all solutions of (6.1.1) 
are bounded. 

6.24.3. Consider the difference equation (6.1.1) and assume that in 
addition to the given hypotheses on the functions p and q,  q ( k )  2 
p(k - 1) +p(k ) ,  k E IN(1). Show that (6.1.1) has a solution u ( k )  such 
that u(k) > 0 and u(k  + 1) 5 u(k) for all k E IN. 

6.24.4. If the difference equation (6.1.1) is rlorloscillatory, then show 
that it has two linearly independent solutions 71(k) and ~ ( k )  such that 
C" [ ; . (P ) (v ( t )u ( l+ 1) + w ( t ) w ( t  + 1))I-l < cc. However, the converse of 
this is not true. 

6.24.5. Consider the difference equation (6.1.1) and assume that i n  
addition to the given hypotheses on the functions p and q ,  all its solutions 
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are bounded. Show that all solutions of the perturbed difference equation 

p(k)71,(k + 1) +p(k - 1)?1,(k - 1) = ( q ( k )  + r (k ) ) 'U(k ) ,  k E W(1) 

are bounded provided c" ir(l)l < c m .  

6.24.6. Consider the difference equation (6.1.1) and assume that in 
addition to the given hypotheses on the functions p and q, q(k) 2 
p(k" 1) +p(k), k E IN(1). Show that a dominant solution of (6.1.1) cannot 
converge to zero as k -+ 03. 

6.24.7. Give examples to show that in Theorems 6.3.6 -- 6.3.8 the hy- 
pothesis of having "unbounded solutions" carmot be omitted. 

6.24.8. Consider the difference equation 

(6.24.1) p(k)ll.(k+l)+p(rC-l)u(k.-l) = q ( k ) ~ , ( k ) + X r ( k ) ~ , ( k ) ,  k E W(1) 

where the functions p, q and T are defined 011 W, W(1) and N(1) 
respectively, p(k) > 0 and r ( k )  > 0 for all k ,  and X is a real or 
complex number. Equation (6.24.1) is called l im i t  point (LP) if for some 
X there is a solution 714k) such that c,"=, r ( t ! ) l ~ , ( e ) 1 ~  = 03, otherwise 
(6.24.1) is called h a t -  circle (LC). Show that 

(i) If I m  X # 0, then there is a solution ~ ( k )  of (6.24.1) such that 
r(F)l~,(e)1~ < cm, also if for some X = X0 equation (6.24.1) is LC 

then it is LC for any value of X 

(ii) if c" = CO and (6.1.1) is nonoscillatory, then (6.24.1) is 
LP 
(iii) if x " ( r ( l ) r ( e  + l))1/2/p(t) = c m ,  thcrl (6.24.1) is LP 
(iv) if Iq(k)l 2 p(k) +p(k - 1) for all k E W(l) ,  then (6.24.1) is LP 
(v) if for some real X either 

q ( k )  L p(k)(r(k)/r(k + 1))l'Z +p(k - l)(T(k)/T(k - 1 ) y  + Xr(k) ,  

or 

q(k)  5 - p(k)(r(k)/r(k + - p(k - l)(r(k)/r(k - 1))1/2 + Xr(k) 

for all k E lN(2), then equation (6.24.1) is LP. 

6.24.9. Consider the difference equation (6.1.1) and assume that in 
addition to the given hypotheses on the functions p and q, q ( k )  > 0 for 
all k E W(1), and n:==, q(li)/n:=,p(t) is bounded as k -+ cm. Show 
that 
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(i) if (6.1.1) is nonoscillatory, then all its solutions are bounded 

(ii) if CE1pp-l(P) = 00, then (6.1.1) is oscillatory. 

6.24.10. Consider the difference equation (6.6.1) and asslme that in 
addition to the given hypotheses on the functions p and T, (6.6.9) and 
(6.6.27) hold. Show that 

(i) If (6.6.1) is nonoscillatory, then there exists a function ~ ( k )  > 
-p(k), k E N(a )  for some a E IN, satisfying 

(ii) If there exists a function o ( k )  > -p(k), k E IN(a) for some a E IN, 
satisfying 

W 

+ c .(P) 2 0 
C=k C=k 

then (6.6.1) is nonoscillatory. 

6.24.11. Consider the diffcrcnce equation (6.1.1) and assume that in 
addition to the given hypotheses on the functions p and q, q ( k )  > 0 for 
all k E IN(1). Also, let h(k)  = p2(k)/(q(k)q(k + 1)). Show that equation 
(6.1.1) is nonoscillatory if and only if there is an eventually positive function 
v (k ) ,  k E IN such that 

In particular, equation (6.1.1) is nonoscillatory if there exists an integer K 
such that the inequality 

( d q r Z i + r n )  ( & ( q + d W )  5 1 

holds for all k E N(K). 

6.24.12. Let the functions p, q, h be as in Problem 6.24.11, and let 
h(k)  = supCEW 4'h,(k)h(k + 1) ... h(k  + e ) .  Show that equation (6.1.1) is 
nonoscillatory if there exists an integer K such that the inequality 

- 

m f k  

- c 1 - h,(m,) - Tl(m + k + 1) 
k k 1 

C=m.+l 
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holds for all m > K and k E W(1). 

6.24.13. Let the functions p, q be as in Problem 6.24.11, and let q ( k )  
be periodic of period 2, i.e. q(2k) = a and q(2k - 1) = b. Show that 
(6.1.1) is oscillatory if and only if f i  + fi > 1. 

6.24.14. Consider the differencc equations (6.1.1) and (6.7.1) and assume 
that in addition to the given hypotheses on the functions p, q, p1 arld 
q l ,  q(k) >p(k )+p (k- l )  arld ql(k) 2 ~ 1 ( k ) + p l ( k - l )  for all k E W(1). 
Further, let ~ ( k )  be a positivc solution of (6.1.1) such that 

p1(k)u,(k + 1) +p1(k - 1)u(k - 1) I q1(k)u(k) 

for all k E W(1). Show that 

(i) equation (6.7.1) has a nontrivial solution ~ ( k )  such that 0 5 ~ ( k )  5 
c u ( k )  for all k E W, where c is some constant,. Further, if Au(k) 5 0 
then Av(k) 5 0 for all k E W 
(ii) if in addition ~ ( k )  is recessive and converges to zero, then (6.7.1) has 
a recessive solution which converges to zero. 

6.24.15. Consider the difference equations (6.1.1) and (6.7.1) and assume 
that in addition to the given hypotheses on the functions p, q, p1 and 

ql, q ( k )  2 p(k) +p(k  - I), ql(k) 2 pl(k) +p l ( k  - l), p(k)  2 pl (k )  and 
q ( k )  5 q l ( k )  for all k E lN(1). Further, let w,(k) and v ( k ) ,  k E IN be 
thc solutions of (6.1.1) arld (6.7.1) satisfying v(1) - u ( l )  2 v(0) -u,(O) 2 0 
and u.(l )  2 ~ ~ ( 0 )  2 0. Show that v(k) - u,(k) 2 v(k  - 1) - u,(k - 1) 2 0, 
and in particular v (  k )  2 u ( k )  for all k E W. 

6.24.16. Let the functions p, q, p1 and q1 be as in Problem 6.24.15. 
Further, let u ( k )  and v ( k ) ,  k E IN be the recessive solutions of (6.1.1) 
and (6.1.7) satisfying u(0) > v(0) 2 0. Show that u ( k )  2 v ( k )  for all 
k E W. 

6.24.17. Show that the difference equation (6.6.1) is nonoscillatory if and 
only if there exists a function v(k)  satisfying v(k )  > 0 and A(p(k)Av(k) )  
+r(k)v(k + 1) 5 0 for all sufficiently large k E IN. 

6.24.18. Let in the diffcrerlce equations (6.1.2) and (6.2.7), P ( k )  I p(k) 
and F ( k )  5 f(k) for all sufficiently large k E IN(1). Show that if (6.2.7) 
is nonoscillatory then (6.1.2) is nonoscillatory. 

6.24.19. Consider the difference equations (6.1.1) and (6.9.1) and assume 
that in addition to the given hypotheses on the functions p, q and T, ~ ( k )  
is not eventually identically equal to zero. If (6.1.1) is oscillatory and if 
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r ( k )  is eventually of one sign, thcn show that any nonoscillatory solution 
of (6.9.1) must eventually be of the same sign as of r ( k ) .  

6.24.20. Consider the second order difference equation 

IC E W(1) 

where c, p and q are real functions such that c ( k )  - p(k) 2 0 and 
c ( k )  > 0 for IC E IN(ICo) ,  IC0 2 0. Let p be a positive function defined on 
IN. We define 

F ( k )  = p(k)q(kt(\/c(k-l)p(k-l)-Jp(k)(c(k-l)-p(k-l)) , IC E IN(IC0).  
2 

Show that 

(i) if thcre exist a positive function p on IN, and a subsequence 
{ICn,} C I N ,  I C ,  + m as n + m such that for any K 

then any nonoscillatory solution U of (6.24.2) satisfics u ( l c ) A u ( k )  2 0 
eventually 

(ii) if in addition to (6.24.3), linlsupA:,03 F ( [ )  = m, then (6.24.2) 
is oscillatory. In particular, let p(k - 1) = l / k ,  k E W(1) to show that 
the difference equation 

A: 

a(kall.(k - 1)) + ~ca~~,(k: - 1) + (+(IC + 1)3v.(k) = 0, IC E ~ ( 1 )  

is oscillatory 

= 00, K 2 IC0 then (6.24.2) 
k - m  k 

is oscillatory 

thcn (6.24.2) is oscillatory 



448 Chapter G 

(v) if in addition to (6.24.3) for every K 2 ko there exists k 2 K such 
that c(k  - 1) - q ( k )  - p(k - 1) < 0, then (6.24.2) is oscillatorv 
(vi) if in addition to limsupk,, C p = k o  F ( [ )  = CO, k 

for evcry large K 2 ko, then (6.24.2) is oscillatory 
(vii) if therc exists a positive function p defined on IN such that 

eventually, and if there exists a subsequence { k , }  C IN, k ,  -+ CO as 

n, --f cc and a constant M 2 0 such that 

.(rcn,)+(:(rcn-1)-~(kn,-l)-q(k-,)-Mp(k~,-l)~~(kn-l) ( ~ ( k ,  - 1) -p(kn - 1)) 5 0 

then (6.24.2) is oscillatory. 

6.24.21. Consider the Riccati equation 

(6.24.4) v.(k + 1) = c ( k ) u ( k )  + f ( k ) u ( k ) v . ( k  + 1) + g(k), k E N(a) 

where the limits limk,, c (k )  = c(00), Ic(cm)l < 1 and limk:-, 9 ( k )  = 0 
exist, and assume that f ( k )  is bounded, i.e. I f ( k ) l  5 F, say. Show that 
(6.24.4) has a solution w.(k) such that u ( k )  -+ 0 as k -+ 00. Moreover, 
such a solution is unique. 

6.24.22. Let the coefficients of equation (6.24.4) have representations 

(6.24.5) 

as k -+ CO with I C 0 1  > 1 and fixed K 2 1. Show that there exists 
a unique solution u.(k) of (6.24.4) such that u ( k )  + 0 as k "+ cc. 
Moreover. 

where Ui, 1 5 i 5 K can be dctermined by formally substituting (6.24.5) 
and (6.24.6) into (6.24.4). 
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6.24.23. Consider the difference equations (6.10.1) and 

(6.24.7) A2v(k - 1) + q(k )vY(k )  = 0, k E N(1) 

where the functions p and q are defined on W(1) and for all k E 
N(1),  0 2 q ( k )  2 p (k ) ,  and y is a quotient of odd positive integers. If 
v ( k )  and v ( k )  are positive solutions of (6.10.1) and (6.24.7), respectively, 
satisfying u( l ) -v ( l )  2 u(O)-v(O)  2 0, then show that u(k+l)-v(k+l) 2 
u ( k )  - v(k )  2 0 for all k E N, and thus u ( k )  2 ~ ( k )  for all k E IN. 

6.24.24. Consider the difference equations (6.10.1) and (6.24.7) and 
assume that p, q and y are as in Problenl 6.24.23. Further, assume that 
for every a E N(1) there exist k1, k2 E W ( a  + 1) such that p(k1) < 
0, q ( k . 2 )  < 0. If u ( k )  and v(k )  are unique positive nonincreasing solutions 
(cf. Theorem 6.10.4) of (6.10.1) and (6.24.7), respectively, satisfying ~ ~ ( 0 )  = 
v ( ( ) ) ,  then show that ~ ( k )  2 v,(k) for all k E IN(1). 

6.24.25. Consider the difference equation 

(6.24.8) ~ , ( k  + 1) + 2?~(k )  + ~ ( k  - 1) = p ( k ) ~ , ' ( k ) ,  k E N(1), > I 

where the function p is defined on N(1), p(k )  2 4 for all k E W(1), 
and C,"=, ln(p(!) - 3) = m. If u(k) is a solution of (6.24.8) defined 
by ~ ~ ( 0 )  = 1, u.(l) = 2, then show that u ( k  + 1) 2 u ( k )  2 1 for all 
k E N(1), and u ( k )  -+ m as k "-f m. 

6.24.26. Consider the difference equation (6.10.1) and assurne that p(k)  
is as in (R4), and C" Pp(!) < ca. Show that 

(i) if y > 1 and u ( k )  is an oscillatory solution of (6.10.1), then there 
exist increasing sequences { k t } ,  { kJ } C N, kt -+ 00 and IC, -+ ca such 
that Au(kt)  -+ 00 and Au(kj)  -+ -m as k -+ m arid j + CO 

(ii) if 0 < y < 1 and u ( k )  is an oscillatory solution of (6.10.1), then 
A u ( k )  + 0 as k "-f m. 

6.24.27. Consider the nth (n > 1) order nonlinear difference equation 

(6.24.9) A (p(k - 1) (A"-'u,(k - l))6) + q ( k ) d ( k )  = 0, k E W(1) 

where p, q : W(1) + R are defined, S is a quotient of odd positive integers, 
and p(k) > 0, k E w(I), Cp" , , (~/p ( ! ) ) ' /~  = 00, q ( k )  > O, IC E ~(1). 
Show that 

(i) if u (k )  is a nonnegative solution of the inequality 

(6.24.10) A (p(k - 1) (A"-'u(k - l))6) + q ( k ) d ( k )  5 0, k E W(1) 
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then An-'u,(k) 2 0 eventually 

(ii) if u ( k )  is a nonpositive solution of the inequality 

(6.24.11) A (p(k - 1) (A"-'u,(k - l))') + q(k)u6(k) 2 0, IC E IN(1) 

then An-'u,(k) 5 0 eventually 

(iii) if u ( k )  is a nonoscillatory solution of (6.24.9), then u(k )An- 'u , ( k )  2 
0 eventually 

(iv) if (6.24.10) ((6.24.11)) has an eventually nonnegative (nonpositive) 
solution, then (6.24.9) also has an eventually nonnegative (nonpositive) 
solution 

(v) if 0 < ~ ( k )  5 q ( k ) ,  k E N(1) and the equation 

A (p(k - 1) (An-lu,(k - l))') + ~(k)u6(k) = 0, k E N(1) 

oscillates, then (6.24.9) also oscillates 

(vi) if s(k)  2 p (k ) ,  k E N(1) and the equation 

A ( s ( k  - 1) (An-'u(k - 1))') + q ( k ) d ( k )  = 0, k E N(1) 

oscillates, then (6.24.9) also oscillates 

(vii) if n is even all bounded solutions of (6.24.9) oscillate if and only if 

(6.24.12) 2 kn-2 (2 2 = CO, IC0 E IN(1) 
k=ko e=k+ l  

(viii) if R is odd all bounded solutions of (6.24.9) oscillate or monotonically 
tend to zero if and only if (6.24.12) holds. 

6.24.28. Consider the difference equation (6.11.1), and assume that in 
addition to the given hypotheses on the functions T, f and F, F ( v . )  
is continuous on R, C" l / ( ~ ( t ) R , , e )  = CO, and C" R,,e+l(cf+(t) + 
f-(l)) = m, for every constant c > 0. Show that every bounded solution 
u(k)  of (6.11.1) is either oscillatory, or such that limirlfk:-m (u(k)l  = 0. 

6.24.29. Consider the difference equation (6.11.1), and assume that in 
addition to tjhe given hypotheses on the functions T, f and F, F ( u )  is 
continuous on R, f ( k )  2 0 for all k E N(a), and C" R,,ef(l) = 00. 
Show that all bounded solutions of (6.11.1) are oscillatory. 

6.24.30. Consider the diffcrence equation (6.11.1), and assume that in 
addition to the given hypotheses on the functions T, f and F, IF(u)I is 
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bounded away from zero if is bounded away from zero, f(k) 2 0 for 
all k E W ( a ) ,  and C" f ( e )  = 00. Show that (6.11.1) is oscillatory. 

6.24.31. Suppose that the hypotheses of Theorem 6.11.4 are satisfied 
except the condition (6.11.9). Show that every bounded solution of (6.11.1) 
is oscillatory. 

6.24.32. Suppose that in (6.11.1) the function F ( v . )  is continuous 
on IR, f( k )  2 O for all k E N(a),  T (  k )  is nondecreasing on IN(a), 
there exists a nondecreasing function 4 E C[IR,IR] such that IF(u.)I 2 
l4(u3)1, ~IM#(u) > 0, ?L # O and 

and, there exists a nondecreasing function p(k)  > 0 such that Ap(k)  is 
nonirlcrcasing for all k E IN(a) and C" p ( ! ) f ( ! ) / ~ ( ! )  = 00. Show that 
the difference equation (6.11 .I) is oscillatory. 

6.24.33. Show that the following difference equations are oscillatory 

(i) A27r(k) + k-27r(k) = 0, k E IN(1) 
(ii) a2u. (k )  + k-3/2(l~1 k)- lu (k )  = 0, k E ~ ( 1 )  

(iii) A(kAu.(k) )  + k-l (111k)-~~.~(k )  = 0, k E IN(2) 

(iv) A(kAv.(k))+2k~1(lnk)-2(1~~1nk)-1Ju.(k)~3~2sgn ~ ( k )  = 0, k E W(4). 

6.24.34. Let, in thc differenceequation A(~(k-l)Au(k-1))+f(k)F(u(k)) 
= 0, k E W(1) the functions T ,  f and F be defined in their domain 
of definitions. Further, let F be nondecreasing and v .F(u)  > 0 for 
71 # 0, r ( k )  > O for all E IN and C" ~ / r ( e )  = 00, C" f ( e )  = 00. 
Show that this difference equation is oscillatory. 

6.24.35. Let in Theorem 6.12.1 condition (i) be replaced by (i)' f ( k )  2 0 
for all k E W ( a ) ,  and C" f ( e )  = 00. Show that every solution u(k) of 
(6.12.1) is either oscillatory or linlinfA:-m l u ( k ) \  = 0. 

6.24.36. Consider the difference equation (6.12.1), and assume that 
in addition to the given hypotheses on the functions T ,  f, F and 9 ,  
the function G ( k )  = CFz:g(e) is bounded on W(u,), C" f f ( e )  = 
00, C" f - ( P )  exists, to every pair of constants cl, c2 with 0 < c1 < c2 

there corresponds a pair of constants L1, L2 with 0 < L1 5 IF(u)I 5 L2 

for every 11 with c1 5 lu,l 5 ca. Show that every bounded solution u.(k) 
of (6.12.1) is either oscillatory or such that lirrlinfk-cc Iv,(k)l = 0. 
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6.24.37. The classical secant ,meth,od for solving f ( t )  = 0 is given by 

For f ( t )  = t2  it becomes 

tL:-lh 
tk-1 + tL. tk+l = 

Show that its solution satisfying to = 1, tl = 1/2 gives the reciprocal of 
the Fibonacci numbers. 

6.24.38. Consider the second order difference equation 

(6.24.13) A ( r (k )Au(k) )  + f ( k , u ( k  + l), Au(k)) = 0, k E IN 

where r ( k )  is a positive function, and f : IN X R2 + R. In system from 
(6.24.13) can be written as 

(6.24.14) A l ~ ( k )  = ~ ( k ) / ~ ( k ) ,  Aw(k) = - f (k,71(k + l ) , ~ ( k ) / ~ ( k ) ) .  

Let the functions V ( k ,  71, W) and W ( k ,  71, 111) be defined and continuous 
for k 2 K E I N ,  v > 0, lwl < m and k 2 K E IN,  71 < 0, lwl < m 
respectively. Further, let 

(i) V (k , v ,w )  + cc uniformly for W > 0 and IwI < m as k "+ m, 
and W ( k , v , w )  + m uniformly for W < 0 and I U I I  < m as k m 

(ii) A ~ 2 ) ( k , v , w ) = V ( k + 1 , ~ ( k + 1 ) , w ( k + 1 ) ) - V ( k , 7 1 ( k ) , w ( k ) ) < O  
for all sufficiently large k ,  wherc (71(k),w(k)) is a solution of (6.24.14) 
such that v ( k )  > 0 for all large k 

(iii) AW(Z)(k,7I,W) = W ( k +  1 , a ( k +  l ) , u / ( k +  l ) ) - W ( k , v ( k ) , w ( k ) )  5 0 
for all sufficiently large k ,  where ( v ( k ) , w ( k ) )  is a solution of (6.24.14) 
such that v (k )  < 0 for all large k .  

Show that every solution of (6.24.13) is oscillatory. 

6.24.39. Let in the difference equation A i u ( k )  = f ( k , u ( k - ) ) ,  k E JN(a), 
a # 0 the function f ( k , u )  be defined for all ( k , ~ )  E IN(a) x R, and 
If(k,u)I  5 ( 1 /2 ) c~~k-~1~1 .  If u(k) E is a solution of this difference 
equation, then show that there exists an integer kl 2 a ( a  2 2) such that 
w,(k) = 0 for all k E IN(k1). 

6.24.40. Consider the difference equation (6.15.1), and assume that in 
addition to the given hypotheses on the functions T, F and g, f ( k )  1, 
and there exist nonnegative functions X(k)  and p(k)  on IN(a) such 



Qualitative Properties of Solutions of Higher Order Diff. Eqns. 453 

that 1,g(k,u.,v)l < X(k) and \F(k,7~,71)1 5 p(k)Iu\. Show that, every 
solution u ( k )  of (6.15.1) satisfies Iv,(k)I = O(Ra,k)  as k + 00 provided 
C" X(l) < 00 and C" p(I?)R,.g < 00. 

6.24.41. Consider the difference equation (6.15.1), and assume that in 
addition to the given hypotheses or1 thc functions T, F and g, f ( k )  1, 
and u .F (k ,u , u )  2 0. Further, assume that there exists a nonnegative 
function X(k) on W ( a )  such that Ig(k ,7 / , ,~)1  5 X ( k ) .  Show that every 
nonoscillatory solution u,(k) of (6.15.1) satisfies 

6.24.42. Let u (k )  be defined on W(a,, b + n )  and An,7,(k) 2 0 for all 
k E N ( a , , b ) ,  A'.(.) > 0, 0 5 1: 5 R - 1. Show that Ai7r(k) > 0 for all 
k E W ( a , b + n - i ) ,  O < i < n - l .  

6.24.43. Show that the solution of thc initial value problem 

u ( k + 3 )  = 

u(0)  = u(1) = 4 2 )  = 1 

1 + 7r(k + l ) u ( k  + 2) 
W,( k )  

, k E N  

is an integer. 

6.24.44. Consider the difference equation (6.20.1). Let C > m m , / ( m  + 

-pk > !! + m + 1, where {pk} + 03 and {q~:} are arbitrary sequences. 

If p(k) 2 C ,  k E G then show that all solutions of (6.20.1) are oscillatory. 

6.24.45. Consider t,he difference equation 

U 

m 

(6.24.15) A3u(k) + C f i ( k ) F i ( u ( k  + l ) ,Au.(k + 1)) = 0, k E IN 
i=l 

where the functions f i  and F,, 1 < i 5 'm are defined in their domain 
of definition, f i ( k )  > 0 for all k E W arid (1/u)Fi(u,v) 2 c > 0. Show 
that 

(i) if u ( k )  is a nonoscillatory solution of (6.24.15), then for all large 
k E W either 

(6.24.16) sgrl u(k) = sg11 A2u,(k) # sg11 Au.(k),  
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or 

(6.24.17) sgn u.(k) = sgn Av,(k) = sgn A2u,(k) 

(ii) if u.(k) is a solution of (6.24.15), then the function G ( k )  = 2u,(k)A2u,(k) 
- ( A u ( ~ ) ) ~  is nonirmeasing, and hence either G ( k )  2 0 for all k E IN, 
or there exists a T E IN such that G ( k )  < 0 for all IC E N(T) 

(iii) if for the solution u,(k) of (6.24.15), G(k )  2 0 for all k E IN then 

cc 

(v) if there exists an index j E W(1, , m )  suc:h that f j ( k )  2 d > 0, then 
the following arc equivalent 

(a) for the solution w.(IC) of (6.24.15), G(k)  2 0 for all k E IN 

(b) the solution ?/,(IC) + 0 as k --f co 
(c) G ( k )  + 0 as k + 00 

(vi) if there exists an index j E N(1, , m )  s11c:h that C" f j ( e )  = m, 
then 

(a) 110 nonoscillatory solution ~ ( k )  of (6.24.15) can be bounded away 
from zero 

(b) relations (6.24.16) arc satisfied 

( c )  the solution ~ ( k )  of (6.24.15) is oscillatory provided for this 
solution G ( k )  < 0 for all k E W ( T ) .  

6.24.46. Consitlcr the initial value problem 
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6.24.47. Consider the difference equation 

(6.24.18) ( - l )"LP"U(k)  = p(k)u(k + R), k E IN 

where p(k)  2 0 and C"p (k )  < 00. Show that 

(i) equation (6.24.18) is nonoscillatory if 

(ii) equation (6.24.18) is oscillatory if 

6.24.48. Considcr thc nordincar tliffercncc cquations 

(6.24.19) A n ~ / . ( k )  + q ( k ) f ( ~ ( k ) )  = 0, k E JN(1) 

(6.24.20) A"7~(k) + Q ( k ) F ( u ( k ) )  = 0, k E IN(1). 

W e  say (6.24.19) or (6.24.20) has Property (A) if for n, even, cvery solution 
is oscillatory, and for n odd, cvery solution u ( k )  is either oscillatory or 
satisfies u ( k )  + 0 as k + CO. Assume that 0 < q(k)  5 Q ( k ) ,  k E 
IN(l), f ,  F : IR + R are continuous with u f ( u , )  > 0 and u.F(w,) > 0 for 
U # 0, f(u,) is increasing i n  U,, and F(u,)sgn U 2 f(u,)sgn 11. for all U,. 

Show that if (6.24.19) has Property (A),  then so does (6.24.20). 

6.24.49. Consider thc difference equation 

with u(-p), . . . , ~ ( 0 )  given. If there exists a nontrivial function Ik = 
Ik:(u,(k -p), ..., ~ ( k ) )  such that for evcry solution u ( k ) ,  k E IN(-p) of 
(6.24.21), Ik, k E IN is a constant, i.e. Ik+l = I,:, k E IN then (6.24.21) is 
said to possess in,variance property. The function I,: is called the in,variunt 
of (6.24.21). Show that Lynms  difleren.ce equation 

(6.24.22) u.(k + 1) = 
0. + U( k )  
U(k - 1) ' k E I N  
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where w,(- - l ) ,  u(0)  and a are positive possesses the invariant 

(Equation (6.24.22) occurs in number theory [76,77], and finds applications 
in Gconletry [72] as well as in frieze patterns [26,27]). 

6.24.50. Show that the difference equation 

u.(k + 1) = 
cYu(k) + p 

(yv.(k) + 6)u,(k - 1)' 
k € N  

where ?),(-l), u.(O), (1, p, y and 6 are positive possesses the invariant 

Ik = (113 + cUU.(k - 1) + a U ( k )  + 6U,(k - l ) ~ ( k ) )  

6.24.51. Show tjhat the differcncc equation 

7r(k + 1) = 
a, + b ( k ) u ( k )  + ~ ( k ) 7 1 . ~ ( k )  

( c (k  + 1) + e(k)u.(k)  + f u 2 ( k ) ) u , ( k  - 1) ' k € W  

where b ( k ) ,  c ( k )  and e ( k )  are positive periodic functions of period 1, 
i.e. constants, or 2; a. and f are positive constants, and u(-I), u(O) 
are positive numbers, possesses the invariant 

0. b(k - 1) 
I,: = + c(k  - 1) u ( k  - 1) u ( k )  

U(k - l ) u ( k )  v,(k) u ( k )  
+ c(k)- 

w.(k - 1) 
+- 

+ e ( k  - 1)u(k)  + f u ( k  - l ) u ( k )  + + e ( k  - 2)v,(k - 1). 
b(k - 2) 
u ( k  - 1) 

6.24.52. Show that the system of difference equations 

u(k+ 1) = 
a(k )v (k )  + A 

(C  9 A  Q'>\ 1r(k - 1) 
\U.P'f.Lr)) 

where ~ ( k )  and b(k)  are positive periodic functions of period 1, i.e. 
constants, or 2, and A ,  w,(-l) ,  u ( - l ) ,  u(O), ~ ( 0 )  are positive possesses 
the invariant 
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6.24.53. Show that every positive solution (w, (k ) ,v (k ) )  of the system 
(6.24.23) with n ( k )  = b(k)  z 1, A > 0 has the property v,(k + 5) = 
v (  k ) ,  v (  k + 5) = v.(k) if and only if A = 1. Hence, if A = 1 and 
?],(-I), ?)(-I), u (O) ,  v (0 )  are positive, all positive solutions are periodic 
of period 10. 

6.24.54. Show that the system of difference equations 

max{a(k)v(k), A }  
u,(k + 1) = 

,^ -. -.x 1L(k - 1) 
(ti.24.24) 

where a ( k )  and b(k) are positive periodic functions of period 1, i.e. 
constants, or 2, and A, u(-l), ?)(-l), u ( O ) ,  ~ ( 0 )  are positive possesses 
the invariant 

x max{a(k-l)v(k-l), A ,  b(k-2)w1(k)} max{b(k-l)u(k-l), A,a(k-2)~(k)}. 

In particular, for n ( k )  = b(k) = 
(6.24.24) are periodic of period 

6.24.55. Consider the system 

u.(k + 1) = 
(6.24.25) 

A = 1 show that all positive solutions of 
10. 

where a E (0, CO),  p, q are positive integers, and U - p ) ,  . . . , u ( 0 ) ,  v ( -q ) ,  
. . . , w(0) are positive numbers. For (6.24.25) it is clear that (1 + a,  1 + U,) 
is the unique equilibrium point. Show that 

(i) every positive solution (w, (k ) ,v (k ) )  of (6.24.25) oscillates about 
(1 + a ,  1 + a ) ,  i.e. either w.(k) or v(k)  oscillates about 1 +a. 

(ii) if (u (k ) , v (k ) )  is a positive solution of (6.24.25) and at least one of 
the integers p, q is odd then for k 2 27- + 3, T = max{p, q} 

r 

e= I 

(iii) if (u (k ) ,w(k ) )  is a positive solution of (6.24.25), a > 1, and both 
the integers p, q are even then the functions u (k ) ,  v(k) are bounded 
above 
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(iv) if a > 1 then the equilibrium point (1 + a ,  1 + a )  of (6.24.25) is 
globally asymptotically stable. 

6.24.56. Consider the nth order nonlinear difference equation 

(6.24.26) ~ , ( k )  = f ( ~ , ( k - 1 ) , ’ ~ 1 ( k - 2 ) ; . . , ~ ( k - ~ ) ) ,  kEIN(1 )  

where f : Rf + R+ and thc initial values u.(l -n,), . . . , ~ ( 0 )  are nonneg- 
ative. Equation (6.24.26) is said to be perm.unen,t if there exist constants 
L,  M 2 0 such that for every solution ?/.(IC) of (6.24.26) there is a pos- 
itive integer ko = kO(u(1 - n), ... , u ( 0 ) )  such that ~ ( k )  E [ L , M ]  for 
all k E IN(k0). Any compact interval having this property is called ub- 
s o r h g  in,terwal for (6.24.26). It  is clear that absorbing interval contains all 
attracting and limit sets, and thus permanence is a stronger concept than 
boundcdness. As an example, we note that the solution of the first order 
differenc:c equation 

(6.24.27) 
1 

u ( k )  = 
UP ( k  - 1) 

where p, u,(O) > 0 can be writtcrl as u(k) = ( w , ( O ) ) ( - J ’ ) ” .  Thus, if 0 < 
p < 1 the unique equilibriunl point of (6.24.27) is globally asymptotically 
stable, and henc:c (6.24.27) is perrrlarlcnt. However, for p = 1 whilc every 
solution of (6.24.27) is bounded and periodic of period 2 (if v.(O) # l), 
(6.24.27) is no longer perrnancrlt; and if p > 1, evcry solution of (6.24.27) 
with v.(O) # 1 is unbounded. 

(i) Let g(u) : Rf --f R+, and f (u)  5 g(u) for all U E R;. Further, 
let g be nondecreasing in each of its n arguments and the equation 

(6.24.28) ~ ( k )  = g ( ~ ( k  - l), ~ ( k  - 2), . . . , ~ ( k  - n)), k E lN(1) 

is permanent, Show that (6.24.26) is permanent. Also, if all solutions of 
(6.24.28) arc bounded, then so are all solutions of (6.24.26). 

(ii) Let there exist 0 5 a < 1, b 2 0 such that for all U E R:, 
f (u)  5 allullm + b. Show that (6.24.26) is permanent. 

(iii) Let g(u) : R: + R+, and lirnsupllul130+mg(u) < 1. Show that 
the equation 

u,(k) = w,(k -p)g(v.(k - l ) , u , ( k  - 2), . . ’ , u ( k  - n)), k E JN(1) 

where 1 5 p 5 n is permanent. 

6.24.57. Consider the difference equation 

(6.24.29) A77’~,(k) + f ( k ,  ~ ( k ) ,  ~ ( k  + l), . . I ,  ~ ( k  + n - 1)) = ~ ( k ) ,  k E N 
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where A E C[ [E ,  m), R+] is nondecreasing and - m. Further, 

W W 

Show that every solution ~ ( k )  of (6.24.29) has the property 

6.24.58. With respect to the diffcrcnc:e equation (6.20.1) assume that 
m E IN(1), p(k)  2 0, k E I N ,  

Show that equation (6.20.1) is oscillatory. 

6.24.59. Suppose the conditions in Problem 6.24.58 are satisfied. Show 
that (6.20.3) has no eventually positive solution, and (6.20.4) has 110 even- 
tually negative solution. 

6.24.60. With respect to the diffcrcnce equation (6.20.1) assume that 

'm. E IN(1), p(k)  2 0, k E IN, C y = o p ( k )  = m and limsup C p(!) < 
k-l 

k-W f=l:-m 
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1. Show that for every solution ~ ( k ) ,  k E INU(-m,. . . , -1,0} of (6.20.1) 
there exists a constant c and ko E IN such that 

In particular, every solution of (6.20.1) tends to zero as k + cm. 

6.24.61. Consider the difference equation 

(6.24.30) u ( k  + 1) - ~ ( k )  = q(k)w.(k - m), k E IN 

where m ,  > 1 is an integer and q ( k )  E L" for some positive integer p. 
Show that for any ko E IN such that 

exists and is finite 

(iii) for evcry E R there exists a solution ~ ( k )  of (6.24.30) through 
ko which satisfies (6.24.31). 

6.24.62. Consider the difference equation 

(6.24.32) u,(k + 1) - ~ ( k )  + p ( k ) f ( u ( k  - m ) )  = 0, k E IN 

where 'm E IN(1) is fixed, and the functions p and f are defined on IN 

and R, respectively. Let 7~, f (u)  > 0, '11 # 0 and lim inf - f ('11) = M ,  0 < 
M < c m .  Show that (6.24.32) is oscillatory if either of the following holds 

U-0 U 
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(i) CM > m m / ( ~ r n  + where c = lirnirlfk+mp(k) > 0, 

(ii) f is nondecreasing on R, p(k)  2 o for all E IN and limsup C 
p(P) > -. 

1, 

!%-m 

1 

M 

f=k-m 

6.24.63. Consider the difference equation 

(6.24.33) ~ ( k  + 1) - ~ ( k )  + p(k)(l + ~ ( k ) ) ~ ( k  - TT/,)  = 0, k E W 

whcre m E IN(1) is fixed, and the function p(k)  2 0 is defined on W 
Show that 

(i) if (6.20.5) holds, then every solution w,(k) of (6.24.33) such that 
1 + ~ ( k )  > 0 for all k 2 -'m, is oscillatory 

(ii) if (6.20.7) holds, then there exists a nonoscillatory solution u ( k )  of 
(6.24.33) such that 1 + u ( k )  > 0 for all k 2 -m. 

6.24.64. Consider the difference equation 

r 

(6.24.34) w,(k + 1) - w,(k) + x p i ( k ) u ( k  - , m i )  = 0, k E W 
i=l 

where T, mi E LPJ(l), 1 5 i 5 T are fixed and the f~lnctions pi are defined 
on W. Show that (6.24.34) is oscillatory if either of the following holds 

(iii) pi(k) 2 0, k E W, 1 5 i 5 r and lirninf 
( m ) "  

k-m (Th, + 1)"+1' 

where ,riz = rnin(m1, . . . , m,} 
(iv) Iirninfk,, C;=-, pi(k) = c > O and limsupk+m C;='=, pi(k)  = 1 -c .  

6.24.65. Consider the difference equation 

(6.24.35) v,(k + 1) - u(k)  +p(k )u (k  - m,) = A g ( k ) ,  k E IN 

where m E IN(1) is fixed , and the functions p and g are defined on 
W, and p(k) 2 0 for all k E W. Show that (6.24.35) is oscillatory if 
either of the following holds 
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(i) for each k E IN there exists k l  E IN(k+l) such that g(k)g(kl )  < 0, 

(ii) there exist two constants cl < c2 and two sequences {ki}  and { k j }  
in W such that ,g(ki) = cl, g ( k j )  = c2 and c1 5 g(k) 5 c2 for all 
k E IN, and the condition (6.20.5) is satisfied. 

6.24.66. Suppose that p(k )  2 0 and cy=;' p ( k + [ )  > 0 for all k E W. 
Show that 

(i) if ?)(/C) is a solution of (6.20.3) such that ~ ( k )  > 0 for all k >_ - m ,  
then (6.20.1) has a solution ~ ( k )  such that 0 < v.(k) 5 ~ ( k )  for all 
k 2 -m and lirnA-,, ?/.(IC) = 0 

(ii) if there exists a number y E ( 0 , l )  such that p(k) < y arid 
1:-1 n (1 - : F ( I ) )  >_ y for all k E m, wllcrc P(k) = c p(k )  for k E IN 

p ( 0 )  for k < 0, 
f=k"m 

then (6.20.1) has a solution ~ ( k )  which is positivc for k 2 --7n arid is 
such that lirnL:-, u ( k )  = 0. 

6.24.67. Consider thc Pielou logistic: delay equation 

(6.24.363) 

where a > 1, /) > 0 and 'rn. E W. Show that 

(i) the positive equilibriwrl E = (a - 1)/p of (6.24.36) is asymp- 
totically stable if a < 1 + 2~cos~rr/ur/(2*rr~ + 1) and unstable if CY > 
1 + 2a cosm.rr/(2rn + I) 
(ii) thc positive equilibrium of (6.24.36) is globally asyrnptotically 
stable if (a - l)(,m, - 1) 5 1 

(iii) equation (6.24.36) is permanent 

(iv) every positive solution of (6.24.36) oscillates about thc positive equi- 
librium E if and only if CY > 1 + Cy,rn,"/(m + l)"+'. 

6.24.68. Consider the difference cquatiorl 

(6.24.37) u ( k  + 1) = 
a + bu(k) 

A + u ( k  - 1) ' k E N  

whcre a, b,A > 0 and v,(-l), ~ ( 0 )  are arbitrary positive numbers. Show 
that the unique positive equilibrium point of (6.24.37) 

- ( b  - A)  + J ( b  - A ) 2  + 4a 
U =  

2 
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is globally asymptotically stable provided one of the following holds: 

(i) A > b 
(ii) Ab 2 a and h 2 A 
(iii) Ab < a 5 2A(b + A)  and b 2 A 

6.24.69. Let 0 5 a < 1, b 2 0. Show that the unique equilibrium point 
E = b/(l - a) of the difference equation 

u ( k )  = arnax (u ( k- l ) , . . . , v . ( k-n ) }+b ,  k ~ W ( 1 )  

is globally asymptotically stable. 

6.24.70. Consider the discrete logist,ic delay equation 

where T, pm, > 0, pi 2 0, 0 5 a 5 ' r n  - 1 and ' m  E W. Show that 

(i) the positive equilibriurn E = 1/P where P = czopi of (6.24.38) is 
a global attractor of all positive solutions of (6.24.38) if T 5 P[m# - (m. - 

l)po+ 

(ii) if 'm + T # 1, every positive solution of (6.24.38) oscillates about the 
positive equilibriurn B 

has no positive roots. 

if and only if the equation 

r 
m 

x - 1 + - C p i x - "  = 0 D 
i=o 

6.24.71. Consider the discrete model of Nicholson's blowflies [85] 

(6.24.39) u(IC+l)-u(k) = -Su(k)+pu(IC-~m)exp(-au(k-~n)), IC E W 

where 0 < 6 < 1, p, a > 0 and m ,  E W. Show that 

(i) if p 5 S, then the zero solution of (6.24.39) is uniformly asyrrlptotically 
stable, and every nonnegative solution of (6.24.39) tends to zero as IC 4 cc 

(ii) equation (6.24.39) is wmijormly persistent if and only if p > 6, i.e. 
for the solution u ( k )  with the given u(-m), . . . , ~ ~ ( 0 )  2 0 there exists an 
77 > 0 such that lirn infA.,, ~ ( k )  2 
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(iii) if p > S and [(l - S)"m-l - l] ln(p/S) 5 1, then the positive 
equilibrium E = (l/a) ln(p/S) is globally asymptotically stable 

(iv) if p > 6 and 6 (ln(pj6) - 1) (711. + > m"(1 - then 
every positive solution of (6.24.39) oscillates about the positive equilibrium - 
U,. 

6.24.72. Consider the difference equation 

(6.24.40) h ( k )  +p(k)u(7(k ) )  = 0, k E N 

where r : IN + Z, r(k) < IC ,  k E IN, ~ ( k )  2 0 for k E .r-'(O) = min{t : 
.(e) 2 O}, and limk,, r(k) = CO. Show that 

(i) if thcre exists a positive function A ( k ) ,  k E INU{-l} such that 

1 -p'(k)A(IC - 1) > 0, k E [ 0 , ~ - ~ ( 0 ) )  
I:-1 

A ( k  - 1) (1 -p+(t )A( t  - 1)) 2 1, k E N ( ~ - l ( 0 ) )  
P=7(k : )  

then (6.24.40) has a positive solution. In particular, the equation 

AW.(k) + p ( k ) u ( k  - 2) = 0, k E IN 

where 

i 114, k is odd 

= -1/8, k is even 

has a positive solution 

(ii) if ~ ~ ~ ~ ~ I : ) p + ( t )  5 1/4, k E W where p f ( t )  0 for t < 0, then 
(6.24.40) has a positive solution. In particular, the equation 

&f.(k) + - .([%l -1) = 0, k € W  
8(k  + 1) 

has a positive solution 

(iii) if p(k) 2 0 eventually, and 

then equation (6.24.40) is oscillatory 

(iv) if the equation 
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has a positive solution v(k ) ,  k E lN(~(0 ) )  where 0 5 p(k) 5 q(k) and 
c i = o p ( l )  > 0 for k E (711 : ~ ( 0 )  5 T(,rn,) 5 0}, then (6.24.40) has a 
positive solution on I N ( T ( O ) ) .  

6.24.73. Consider the difference equation 

(6.24.41) Au(k)  + f(k, u ( k  - , m ) )  = 0, k E N(a) 

where m E IN, f : lN(u) x R 4 R is contirluo~~s with f ( k ,  0) = 0. Assurrle 
that there exists a positive function p(k), k E N(a) such that 

and 
k + 2 m  

Further, assume that for every constant c # 0, cz"=, I f ( k ,  c)\ = c a .  Show 
that every solution of (6.24.41) tends to zero as k --f c a .  

6.24.74. Consider the difference equation (6.21.1)1, and assume that in 
addition to the given hypotheses on the functions f i ,  g,; and F, ,  0 < 
cy < 1. Show that every solution u,(k) of (6.21.1)1 is either oscillatory or 
u ( k )  = 0 ( l / k )  . 

6.24.75. Consider the difference equation (6.21.1)1, and assume that in 
addition to the given hypotheses on the funct,ions f i ,  gi and F,, a 2 1, 
and there exists an index j E IN(1, m,) such that Fj  is nonincreasing 011 

R\ { 0) , and 

*ca for any c # 0. 

Show that (6.21.1)1 is oscillatory. 

6.24.76. Consider the difference equation (6.21.1)1, and assurrle that in 
addition to the given hypotheses on the functions fi, ,qi and F,, 0 < cy < 
1, and there exists an index j E W(1,rn) such that (6.21.2) holds, and 

lim inf Fj(u) = a > 0, lirn sup F j ( u )  = p < 0. 
U'O+ U-0- 

Show that (6.21.1)l is oscillatory. 

6.24.77. Consider the difference equation (6.21.1)-1, and assume that 
i n  addition to the given hypotheses on the functions f i ,  gi and Fi, cy > 
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1. Show that every solution u(k) of (6.21.1)-1 is either oscillatory or 
Iu(k)I "+ 00 as k 4 00. 

6.24.78. Consider the difference equation (6.21.1)-1, and assume that in 
addition to the given hypotheses on the functions f i ,  gi and Fi, 0 < LY 5 
1, and there exists an index j E IN(1, m,) such that Fj is nonincreasing 
on R\{O}, and 

Show that (6.21.1)-1 is oscillatory. 

6.24.79. Consider the difference equation (6.21.1)-1, and assume that in 
addition to the given hypotheses on the functions f i 7  gi arid F, ,  a 2 1, 
and there exists an index j E N(1, m) such that Fj is nondecreasing on 
R\ { 0 } , and 

where x(Rj(k)) is the characteristic function of the set f l j  = { k  E N : 
gj(k)  > k } .  Show that (6.21.1)-1 is oscillatory. 

6.24.80. Consider the difference equation with constant coefficients 

m. 

u.(k + 1) - w,(k) + x p j u ( k  - j )  = 0, m E N(I), R E N. 
j=O 

Show that this difference equation is oscillatory if and only if the charac- 
teristic equation 

m 

j=O 

has no positive roots. In particular, show that the difference equation u(k+ 
1) - 4 k )  +pu(k--rn) = 0 is oscillatory if and only if p > m.m/(,rr~+ 

6.24.81. Consider the second order difference equation 

m 

(6.24.42) A2ul(k) + Cpi (k )u (g i (k ) )  = 0, k E W(1) 
i=l 

wherc pi : IN -+ R+, {gi(k)} C N(1) and limA:,mgi(k) = 00, i = 
1, . . . , m.  A function U defined on IN is said to be a proper so1u.tio.n of 
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(6.24.42) if it satisfies (6.24.42) on W(1) and sup{lu.(k)l : k 2 K} > 0 

for K E W( 1). Show that if lim inf fl > 0, i = 1, . . . , m and for any 

X E [0,1) there exists F > 0 such that 
k : - c c  k 

or 

then every proper solution of (6.24.42) is oscillatory. 

6.24.82. Consider the second order difference equation 
771 

(6.24.43) A21r(k) + p(k)  c Gill. (,9i(k)) = 0, k E W(1) 
i=l 

where p : W -+ R+, {gi(k)} C IN(l), li1r1k+cc,9i(k) = m and c i  E 

(0, CO), i = 1, ... , m .  Show that if 0 < N I  = liminf m and 
L.-co k 

then every proper solution of (6.24.43) is oscillatory. In particular, show 
that every solution of the equation A2u.(k) + p(k)u,(k) = 0, k E IN(1) is 

M 

oscillatory if lim inf k c  p ( l )  > 1/4. 
_- 

I:-cc P= k 

6.24.83. Consider the difference equation 

m, 

(6.24.44) A2u(k) = h(k )  + c fi(k)Fi(u(gi(k))), k E W(u) 
i=l 

where for each i ,  1 5 i 5 m,, Fi(u.) is defined on R, nondecreasing and 
u,Fi(u) > 0 for U. # 0, and 

i=l i=I 

also for all k E W(u),  ck &(l) is bounded. Show that for every bounded 
nonoscillatory solution u.(k) of (6.24.44), liminfI:.cc lu(k)l = 0. 
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6.24.84. Consider the difference equation 

m 

(6.24.45) A 2 n k ( k )  = C f i ( k , U , ( k ) , I r ( g i ( k ) ) ) ,  IC E IN(n) 
i= 1 

where for each i ,  1 5 i 5 m .  

(i) f+,(k,u,, v )  is defined 011 N(a)  X R2, and continuous for all U and 'U 

(ii) if U, 71 > O then 7 1 , f i ( k , u , v )  > O 
(iii) {gi(k)} C IN(a), ,q i (k)  5 k and limL:-Mgi(k) = m. 

Further, there exists an index j ,  1 5 j 5 m. such that f j ( k ,  U,, 11) is in- 

creasing in U, and 71 for all large IC, and for every N # 0, C !2n,-1fj(C, a, 

CY) = +m. Show that for every nonoscillatory solution u ( k )  of (6.24.45) 
either 1u(k)1 + O or lu(k)l "--f m as k "--f CS. 

6.24.85. Consider the second ordcr nonlinear quasilinear difference equa- 
tion 

(6.24.46) A (a(k) la~, (k) l " "Au(k))  + q(IC + l ) f ( u ( IC  + 1)) = 0, 

M 

k E IN(k-0) 

where ko E IN, a > 0 and 

(i) u ( k )  > 0 for all k E IN(IC0) and R ( k )  = l/(~(!))'/~ "-f cc as 
k " t m  

(ii) q ( k )  is defined on N(k0)  and is allowed to change sign infinitely 
often 

(iii) f : R --f R is continuous and u f ( u )  > 0 for all U # 0 
(iv) f ( u )  - f ( u )  = g(u,u)(u, - W) for all U ,  W 

nonnegative function 

(v) q(k)  is (conditionally) summablc on N(ICo), 

M M 

# 0, where g is a 

i.e. 

1) 

exists and is finite, in which case the function Q ( k )  = q ( C  + 1) is 
well-defined on N(ko) ,  and 

(vi) linllul+oo f ( u )  = m. 

Show that 
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1. if v.(k) is such that u ( k )  # 0 on IN(ko), then for any a > 0 and 

K E JN(k0) 

where a ( k )  and f satisfy conditions (i), (iii) and (iv) 

2. if ~ ( k )  is a nonoscillatory solution of (6.24.46) such that lirninf (u(k) l  

> 0, thcn 
k-CO 

k E JN(k.0) 

3. if u 9 ( ~ , 7 1 )  >_ f ( u )  for w, ,u # 0 and Q ( k )  >_ 0 for k E N(ko),  
then every nonoscillatory solution u,(k) of (6.24.46) satisfies eventually 'a 
priori' estimate c1 5 1u(k)1 5 c z n ( k )  for some positive constants c1 and 
c2 (depending on w.(k)) 

4. if Q ( k )  2 0 for all k E IN(ko), then a necessary condit,ion for (6.24.46) 
to have a nonoscillatory solution which tends to a nonzero constant as 
k -+ 03 is that 

5. if Q ( k )  2 0 for all k E W(k.0) and a.(k) is nondecreasing, t ,hen 
- ,  . 

a sufficient condition for (6.24.46) to have a nonoscillatory solution which 
tends to a nonzero constant as k + 00 is that 

where A ( k )  = Q ( k ) / a ( k )  
6. if Q ( k )  2 0 for all k E IN(ko), then a necessary and sufficient 
condition for (6.24.46) to have a nonoscillatory solution which tends to a 
nonzero constant as k + 03 is that 

CO 

)l/" < 03 
k:=ko 

7. if Q ( k )  2 0 for all k E W(k0) and g ( u , u )  2 X > 0 for u , u  # 0, 
then a necessary condition for (6.24.46) to have a nonoscillatory solution 
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8. if 
00 K - ]  

thcn all solutions of (6.24.46) are oscillatory 

9. if Q ( k )  2 0 for all k E W(ko), g(u,,v) 2 X > 0 for u , , t~  # 0, 

thcn all solutions of (6.24.46) arc oscillatory 

10. thc difference equation 

A ( k l A ~ ( k ) ( ~ - l A ~ ( k ) )  + 2"(2k + 1)up(k + 1) = 0, k E N(1) 

whcre 2 1 is the ratio of odd positive integers is oscillatory 

11. the difference equation 

where CY > 1 and p is the ratio of odd positive integers such that 
1 p < a2 < 201 + 3 is oscillatory. 

6.24.86. Consider the Voltcrra summation equation 

k-l 

(6.24.47) 4 k )  = P(k) + C L ( k , Q 9  (.(e)) ? k E 
e=o 

whcre 

(i) the function p(k)  is bounded on IN 
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(ii) L(IC,e) > 0 for IC 2 e E W, L ( k , e )  = 0 if k < e ,  L ( k , t )  is 
nondecreasing i n  k for every e E W, lirnA;+m C!::, L(k,/!)  < 00 for 

k 2 IC0 E IN, and h,(k, K )  = CEO L ( k ,  e) 5 S(K) < 00 for all k E IN 

(iii) g : IR -+ IR is continuous, w,g(u) > 0 for U # 0 and ,9(71,)/71, 5 M 
for all 'U, # 0 and M > 0. 

Show that all unbounded solutions of (6.24.47) are oscillatory. 

6.24.87. Consider the difference equation 

(6.24.48) u( t )  - v,(t - T) + Cpi 'U, ( t  - .i) = 0, t 2 0 
m. 

i=l 

whcrc 0 < r 5 01 < . . . < urn, and pi > 0, i = 1,.  . . , m .  Show that the 
following are equivalent 

(i) every solution of (6.24.48) is oscillatory 

(ii) the characteristic: equation 

m 

has no real roots. 

6.24.88. Show that every solution of (6.24.48) oscillates if and only if 
the inequality 

m 

W.(t) - U(t - T) f x p i ' U . ( t  - Oi )  5 0, t 2 0 
.i= 1 

has no eventually positive solutions. 

6.24.89. Consider the difference equation (6.23.1) with p ( t )  p > 0. 
Show that every solution of (6.23.1) oscillatcs if and only if pTou > T'(O - 

7)". 

6.24.90. Suppose that conditions of Theorem 6.23.4 are satisfied, and 
p'u" > ~ ~ ( u  - T)~-'. Show that equation (6.23.2) is oscillatory. 

6.24.91. Consider the difference equation 

(6.24.49) w.(t)  - 1 L ( t  - 7) - p(t)u(t  + u) = 0, t 2 0 

where r > 0, c7 > 0 and p E C(R+, R+). Assume that 

lirn inf .i, .t+u 7- 

t-W e q(s)ds > -, 
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whcrc q(t) = nlint-,<,<tp(s). " Show that equation (6.24.49) is oscillatory. 
In particular, examine the differcnce equation 

1 
W , ( t )  - u(t  - 7r/2) = "U(t + 77r/4) 

fi 
for which u(t)  = sint is an oscillatory solution. 

6.24.92. Consider the nonlinear differcnce equation 

m 

(6.24.50) W.(t) - U ( t  - T )  + x p { f i ( U , ( t  - ( T i ) )  = 0, t 2 0 
i=l 

where 0 < T 5 01 < . .. < cm, and pi > 0, i = 1,. . . ,m,; f i  E C(IR, R), 
~l . f i (u . )  > O for u # 0, lirn,,o f i ( ~ , ) / u  = 1, f i ( u )  is convex for 71. > 0, 
and f i ( u )  is concave for W. < 0, i = 1,.  . . , ' m  Show that 

(i) oscillation of thc difference equation 

m 

u( t )  - u(t - T )  + (1 - F )  C p i ? / , ( t  - ai) = 0, € E (0, l), t 2 0 
i= 1 

implies the oxillation of (6.24.50) 

(ii) if 

m 

w. ( t )  - u(t - T )  + (1 + E) &%W,(% - .i) = 0, E E (0, l), t 2 0 
i=l 

has positive solutions, so does (6.24.50) 

i=l 

has no real roots, then there exists EO > 0 such that 

m 

1 - e-', + (1 - €1 C p i e - x u '  = 0, 161 < €0  

i=l 

also has no real roots 

(iv) equation (6.24.50) is oscillatory if and only if (6.24.49) is oscillatory. 

6.24.93. Consider the differencc equation 

00 

(6.24.51) (-l)"+lA"~(k) + C p ( i ) u ( k  - ~ i )  = 0, (n  2 1) 
i=O 



Qualitative Properties of Solutions of Higher Order Diff. Eqns. 473 

where p(k) > 0, k E W and { ~ i }  is a sequence of integers such that 
0 5 TO < 71 < . . . . A solution ~ ( k ) ,  k E Z of (6.24.51) is called positive if 
v.(k) > 0 for every k E Z, and bounded at 00 if lirr~supL~+m v,(k) < m. 
Show that 

(i) for n even, (6.24.51) has a positive solution which is bounded at 00 
if and only if the characteristic equation of (6.24.51), i.e. 

M 

(6.24.52) - .(l - X)" + -yp(?:)X"*  = 0 
" 

i=O 

has a root in (0,1) 
(ii) for TI odd, (6.24.51) has a positive solution if and only if (6.24.52) 
has a root in (0 , l ) .  

6.25. Notes 
The qualitative properties of solutions of higher order differential equa- 

tjions with and without deviating arguments has been the subject of rnany 
investigations, e.g. Graef [39] has cited over 100 publications, while the re- 
cent monograph by Ladde, Lakshmikantham and Zhang [70] refers to over 
300 papers. But, the similar investigations for the higher order difference 
equations have gained momentum only recently. The general properties of 
solutions of (6.1.1) collected in Section 6.1 are from Cheng, L i  and Patula 
[22], Fort [36], and Patula [89]. Theorems 6.2.1 and 6.2.5 and Corollaries 
6.2.2 and 6.2.3 are due to Cheng, L i  and Patula [22], whereas Theorem 
6.2.4 is taken from Patula (891. Recessive and dominant solutions of (6.1.1) 
are introduced i n  Olver and Sookne [87]. Theorems 6.3.1 and 6.3.4 and 
Corollaries 6.3.2 and 6.3.3 are adapted from Patula [89], whereas all other 
results in Section 6.3 have appeared in Cheng, L i  and Patula [22]. Results 
in Section 6.4 are borrowed from Patula [89]. Section 6.5 is based on Hooker 
and Patula [55], Kwong, Hooker and Patula [66]. Several other related re- 
sults are available in Hooker, Kwong and Patula [59]. For the second order 
difference systems similar results have been investigated in Ahlbrandt and 
Hooker [g], Chen and Erbe [19]. Results in Section 6.6 are adapted from 
Chen and Erbe [18]. Olver's type comparison results in Section 6.7 have 
appeared in Olvcr [86]. Section 6.8 contains the work of Hooker and Patula 
[55], KWOII~, Hooker and Patula [66]. More precise Sturmian comparison 
theorems are available in Cheng [21]. Results in Section 6.9 arc based on 
Patula [go]. All the results in Section 6.10 are due to Hooker and Patula 
[57]. Results in Section 6.11 are adapted from Szrnanda [114]. Theorems 
6.12.1 ~ 6.12.4 are taken from Szmanda [112], whereas Theorems 6.13.1 and 
6.13.2 are by Popenda and Schmeidel [96]. Theorerns 6.14.1 ~ 6.14.5 are 
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borrowed from PopeIda [loo]. Results in Section 6.15 consist the work of 
Samanda [115]. Results in Section 6.16 are based on Hooker and Patula 
[58]. All the results in Sections 6.17 ~ 6.19 are due to Agarwal [2-41. Simi- 
lar results for the differential equations with deviating arguments are also 
available i n  Agarwal [l], Thandapani ant1 Agarwal [119]. Theorems 6.20.1 
6.20.4 are from Erbc and Zhang [35], whereas Theorem 6.20.5 is by Ladas, 
Philos and Sficas [67]. Results in Section 6.21 are taken from Popenda 
and Szmanda [98]. All thc results in Section 6.22 are adapted from L i  
and Cheng [74]. However, more general results which are given in Problem 
6.24.85 were published earlier by Thandapani, Manuel and Agarwal [l28]. 
Section 6.23 is based on the recent work of Zhang, Yan and Choi [147]. 
The terms limit point and lirnit-~c:irclc are due to Atkinson [lo]. Related 
properties of solutions of higher order difference equations have also been 
discussed in Agarwal et. al. [5,6], Ahlbrarldt and Hooker [7,8], Balla [ll], 
Bykov ct. al. [l2 141, Carnowis et. al. [15], Chen et. al. [16,17], Chcng et. 
al. [20,23 251, Dornshlak [28 301, Do+j [Yl], Driver et. al. [32], Drozdowicz 
and Popcrlda [ U ]  ~ Dunkel [34], Gopalsarny [37], Grace et. al. [38], Graef 
et. al. [40 421, Grove et. al. [43], Gllrncy ct. al. [44], Gyijri et. al. [45 481, 
Hart,rnan and Wirltncr [49,50], He 152,531, Hinton and Lewis [54], Hooker 
[56], Jaroma [GO], Kivcntidis [Cl ] ,  Kocic: and Ladas [62], Kong and Zettl 
[Cis], Korczak and Migda [64], Kulenovic and Budirmwic [65], Ladas et. al. 
[68,69], Lalli arid Zhang [71], Li et. al. [73,75], McCarthy 1781, Medim et. 
al. [79 -821, Mingarclli [83], Moulton [84], Papasc:hinopoulos and Scllirlas 
[88], Philos et. al. [91-931, Popcnda et. al. [94,95,97,99,101], Risha [102], 
Schinas [103], Sedaghat [104], Srnith and Taylor, Jr. [105], So and Yu [106], 
Stavroulakis [107], Szafranski et. al. [l08 1101, SzInanda [111,113,116,117], 
Tang and Y u  [118], Thandapani et. al. [120-127], Trench [lag], J. Wong 
et. al. [130], P.J .Y. Wong and Agarwal [131~~159], Wouk [140], Yan and 
Yan [141], Yang and Zhang [142], Yu et. al. [143], Zhang et. al. [144-1481, 
Zhou and Yan [149]. 
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Chapter 7 
Qualitative Properties of 

Solutions of Neutral 
Difference Equations 

A neutral differential equation involves the highest order derivative of 
the unknown function with and without delays. Analogous to this, in the 
discrcte case, a neutral difference equation involves the highest order dif- 
ference of the unknown function with and without delays. Although, often 
neutral difference equations can be written as higher order difference equa- 
tions, it is convenient to study the behavior of solutions of these cquations 
directly. The main aim of this chapter is to prescnt recently developed 
theory of oscillation and norloscillatjion of neutral difference equations. 

7.1. Oscillation and Nonoscillation for 

(7.1.1) A ( u ( ~ )  + p ~ , ( k  - 7)) + q(k)v , (k  - O )  = 0, k E N 

where p is a constant, the function q(k)  is defined on W, 7 is a positive 
integer and o is a nonnegative integer. 

Let p = rnax{T,O}. Then, by a solution, of (7.1.1) we mean a function 
U( k )  whic,h is defined for k 2 -p and satisfies t,he equation (7.1.1) for 
k E W. Clearly, if 

are given, then (7.1.1) has a unique solution, and it can be constructed 
recursively. In what follows we shall assume that the function q ( k )  is 
not identically zero. A nontrivial solution u ( k )  of (7.1.1) is said to be 
oscillatoTy, and similarly for later equations, if for every 0 < K E W 
there exists a k 2 K such that u(k)u(k  + 1) 5 0. The equation (7.1.1) 
itself is called oscillatory if all its solutions are oscillatory. Otherwise, it is 
called non,oscillatory. A given difference equation of the type (7.1.1) can 
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have both oscillatory as well as nonoscillatory solutions, e.g. the differerlcc 
equation 

WC begin with the following: 

Lemma 7.1.1. Let q ( k )  2 0 for all k E IN and let ~ ( k )  bc an 
eventually positive solution of (7.1.1). Set z ( k )  = v, (k)  + pu(k - 7). 

(a) If p = -1, then z ( k )  > 0 and Az(k) 5 0 cvcntually. 

(b) If - 1 < p < 0, then z ( k )  > 0 and h ( k )  < 0 cverltually. 

(c) If p < -1 and c;P_, q ( k )  = c c ,  then z ( k )  < O and A z ( k )  5 0 
evcntuallv. 

Proof. Since q ( k )  0, from thc equation (7.1.1), we have A z ( k )  = 
-q(k)u,(k - o) 5 0, eventually, so z ( k )  carmot be eventually identi- 
cally zero. Thus, it follows that z ( k )  is cvcntually positive or eventually 
negative. 

On letting k + cc in the above incquality, we find v , (K  + ~ k )  to be 
negative, which is a contradiction to ~ ( k )  > 0. This proves (a). 

Thc proof of (l)) is similar to that of (a). 

To prove (c), again from (7.1.1), we have A z ( k )  = -q(k)v(k -0) 5 0, 
for all large k .  W e  shall prove that z ( k )  < 0, eventually. If not, then 

i.e. 

u ( k )  2 -p?r(k - T), k 2 K 

which implies that 

0 < u ( K - 7 )  5 (- l/p)u(K)  5 '.' 5 ( - l /p ) jU (K+( j- l )T ) ,  j = 1,2, "'. 
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On letting j + cm in thc abovc inequality, we get ~ ( k )  4 cm as k -+ cm 
But, then since 

A z ( k )  = - q(k)u.(k - 7 )  5 - Lq(k)  for large k ,  

whcre L is a positive number. 011 summing the last irlequality, we obtain 

I. 

which implies that z ( k )  -+ -cm as k + CO. This contradicts the fact that 
z ( k )  2 0 for k 2 K .  I 

Now we shall establish sevcral oscillation criteria for the difference equa- 
tion (7.1.1). The obtained results depend on the values of thc pararnetcr 

P .  

Theorem 7.1.2. Assnme that p = -1, q ( k )  2 0 for k E W(1), and for 
a positive integer K ,  

cc 

!,:=K 

Then, the equation (7.1.1) is oscillatory. 

Proof. Assurnc thc contrary. Without loss of generality let ~ ( k )  be 
an eventually positive solution of (7.1.1). By Lemma 7.1.1(a), z ( k )  = 
u,(k) + pu,(k - 7) > 0 and Ar(k)  5 0, eventually. This implics that 
l in~~:-m z ( k )  = U 2 0 exists. 

On summing (7.1.1) from K to k, WC get 

k: 

r(k + 1) - z ( K )  + c q(l)u,(t - 0) = 0. 
P= K 

On letting k -+ cm in thc abovc equation, WC obtain 

(7.1.4) 
03 

z ( K )  2 c q(e)u(e - a). 
e= K 

Now setting minK<C<K+,- U,((  - 7) = S > 0, WC find from z ( k )  = ? ~ , ( k )  - 
u.(k - 7) > 0 for C Y K  that u ( k )  2 S for k L K.  Thus, from (7.1.4) 
we have 

cc 03 

00 > z ( K  +a) 2 c q(e)v,(e- a) L S c Q([), 
C=K+a e = K + u  

which contradicts condition (7.1.3). I 
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Example 7.1.1. Consider the difference equation 

(7.1.5) A(v,(k) - v,(k - T ) )  + q(k)v,(k - U )  = 0 ,  k E N 

where T and U are positive integers, and 

7 (5 a) -l 
q ( k )  = ( k + l ) ( k - T +  1) 

P = l  

It  is clear that C,"=, q ( t )  < cm for K 2 T.  Thus, the equation (7.1.5) 
does not satisfy the assumption (7.1.3) of Theorem 7.1.2. In fact, (7.1.5) 
has a nonoscillatory solution u ( k )  = C:,, l/t. 

Example 7.1.2. Consider the differcnce equation 

(7.1.6) a( l l , (k )  - U . ( k  - T ) )  f 4?1,(k - U )  = 0, k E W 

where T arid U are odd and even positive integers. Equation (7.1.6) sat- 
isfies the assumptions of Theorem 7.1.2, and therefore the equation (7.1.6) 
is oscillatory. I n  fact, v,(k) = (-l)'+' is an oscillatory solution of (7.1.6). 

In Theorem 7.1.2 the condition (7.1.3) can be weakened by 

cc CO 

(7.1.7) 

This we shall prove in the following: 

Theorem 7.1.3. The conclusion of Theorem 7.1.2 holds even if (7.1.3) is 
replaced by (7.1.7). 

Proof. Since (7.1.3) implies that the equation (7.1.1) is oscillatory, it 
suffices to show that all solutions of (7.1.1) oscillate in the case that 

cc 

(7.1.8) 
k = K  

Assume, for the sake of contradiction, that (7.1.1) has an eventually positive 
solution u(k). Then, by Lemma 7.1.1(a), z(k) = u(k) - u ( k - - ~ )  > 0 and 
A z ( k )  5 0, eventually. Thus, eventually u ( k )  > u(k - T ) ,  which implies 
that there exist a constant L > 0 and K E W sufficiently large such that 
v,(k - p) 2 L ,  k 2 K .  Thus, from A z ( k )  = -q(lc)u(k - U )  it follows that 
A z ( k )  5 -Lq(k) ,  k 2 K and hence z ( k )  2 LCz,q(t), IC 2 K ,  which 
is the same as 

M 

(7.1.9) 
P=k 
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Now let I ( k )  denote the greatest integer part of ( k  - K ) / T ,  then we have 

which together with Az(k)  = -q(k)u(k - 0) yields 

(7.1.10) Az(k) 5 - H ( k ) ,  

where 
W 

H ( k )  = I ( k ) L q ( k )  c dl). 
I=L 

B y  noting the fact that I ( k ) / k  -+ l / ~  as k -+ CO, we have 

Thus, (7.1.7) and (7.1.11) imply that cy=, H ( k )  = CO, which together 
with (7.1.10) leads to z ( k )  "-f -cc as k -+ CO. This contradicts the 
hypothesis that z ( k )  is eventually positive. I 

Example 7.1.3. For the neutral difference equation 

(7.1.12) A(u(k)  - ~ ( k  - 7)) + K Q u . ( k  - 0) = 0, N E (1,3/2] 

condition (7.1.7) is satisfied. Therefore, by Theorem 7.1.3 the equation 
(7.1.12) is oscillatory. However, the condition (7.1.3) does not satisfy. 

Theorem 7.1.4. 
all large k ,  and 

(7.1.13) 

Assume that - 1 < p  < 0, c7 > T, q(k) 1 q(k  - T )  for 

lim inf q( k)  > 
k:-m (c7 + 1)"+1. 

Then, the equation (7.1.1) is oscillatory. 

Proof. If not, we can assume that ~ ( k )  is an eventually positivc solution. 
Let z ( k )  = u.(k) + pu(k - T) and w(k )  = ~ ( k )  + p z ( k  - T ) .  By Lemma 
7.1.1(b), we know that z ( k )  > 0, A z ( k )  < 0 and w(k )  > 0, Aw(k) < 0. 
In fact, 

(7.1.14) 

Aw(k) = h ( k )  +pAz(k  - T )  

= -q(k)u(k - 0) - pq(k - 7 ) u ( k  - 7 - 0) 

5 -q(k)  (v,(k - 0) + pu.(k - 7 - 0)) 

= - q ( k ) z ( k  -0) 5 0. 
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Since limk,, z(k) = b 2 0 exists, we get 

Therefore, w ( k )  > 0 for all large k .  On the other hand, 

w(k)  = z ( k )  + p z ( k  - 7 )  5 (1 + p ) z ( k ) ,  

which is the same as 

(7.1.15) 

From (7.1.14) and (7.1.15), we have 

(7.1.16) Aw(k) 5 - q(k)z(k - a )  5 - - q ( k )  w(k - U) .  

By Theorem 6.20.3, in view of condition (7.1.13), thc equation (7.1.16) has 
no eventually positive solution, which is a contradiction. I 

Example 7.1.4. Consider the difference equation 

1 + p  

(7.1.17) A ( ~ ( k )  - T u ( k  - 1) + 1 ) ( 6 k 2 + k - 3 ) ( k - 2 )  
8k(k  + l ) ( k  - 1) 

U(k - 2) = 0, 

k 2 3. 

It is easy to see that q ( k )  > q ( k  - 1) for all large IC and that the 
condition (7.1.13) is satisfied. Therefore, by Theorem 7.1.4 the equation 
(7.1.17) is oscillatory. I n  fact, u(k)  = (-1)"2""/k is such a solution. 

Theorem 7.1.5. Assume that - 1 < p < 0, 7 > U, q ( k )  2 0, q ( k )  2 
q(k - T )  for all large k ,  and 

(7.1.18) lim infq(k) > ~(6) E l 

I:-cc b"+ 1 

(6 - 1)(1 +pi') 

where 6 E (1, (-p)-'/') is the unique real root of the equation 

(7.1.19) 1 + pb' = ( b  - l)(a + opb' - p7b'). 

Then, the equation (7.1.1) is oscillatory. 

Proof. Suppose the contrary, and let w,(k) be an eventually positive 
solution of (7.1.1). By Lemma 7.1.1(b)] z ( k )  > 0 and h ( k )  < 0 
eventually. From (7.1.14)] we have 

(7.1.20) a ( Z ( k )  + pZ(k - T ) )  + q(k)Z(k - U )  5 0. 
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Setting y ( k )  = z ( k  - l)/z(k), then y ( k )  2 1 for all large k .  Dividing 
(7.1.20) by z ( k ) ,  we get 

5 1 + p  (y(k - 7 + 1) ' '. y ( k )  - y(k  - T + 2) ' ' ' y ( k ) )  

- q ( k ) y ( k  - 0 + 1) ."y( k ) .  

From (7.1.21), y ( k )  is bounded above. We set, liminfk.,, y(k) = b 2 1. 
It is clear that b is finite. From (7.1.21), we have 

Hence, it follows that 

(7.1.22) liminf q(k)  5 F ( b ) ,  
k - c c  

where 

(7.1.23) F(b)  = 
(1 + pb')(b - 1) 

b"+ 1 

From F'( ! ) )  = 0, we get the equation 

(7.1.24) 1 + pb' + ( b  - 1) [;07bT - 0(1 + pb')] = 0. 

Equation (7.1.24) has a unique real root 6 in [l, CO). Further, it is easy 
to see that F(6) is a rrlaximum value of F ( b )  on [l, CO). Thus, we 
have lirrl infl:..+oo q(k)  5 F ( b ) .  However, this cnntradicts the condition 
(7.1.18). D 

Theorem 7.1.6. Assume that p < -1, 7 > 0, cr=lq(k) = 00, 
q(k)  1. q ( k  - 7 )  for all large k ,  and 

(7.1.25) - lim inf q( k )  > 
(T - (T - l)'-" 

!%-m (T-0) ' - "  . 

Then, the cquation (7.1.1) is oscillatory. 

Proof. Suppose the contrary, and let v.(k) be an eventually positive 
solution of the equation (7.1.1). By Lemma 7.1.1(c), we have z ( k )  < 0 
and A z ( k )  5 0. Define w(k) = z ( k )  + p z ( k  - T), then we have w ( k )  > 
0, A w ( k )  2 0 eventually. Note that w(k)  5 (1 +p)z (k  - T ) ,  and hence 
z ( k  - T )  5 w ( k ) / ( l  + p ) .  Thus, it follows that 

Aw(k)  = A z ( k )  + pAz(k - T )  

= -q(k)u.(k - 0) - pq(k - r)u(k  - 0 + 7) 
2 - q ( k ) z ( k  - 0) 2 0, 
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which provides 

(7.1.26) 0 5 Aw(k )  + q ( k ) z ( k  - o) 5 Azo(k) + * w ( k  - 0 + T )  

Set y ( k )  = w(k  + l )/w(IC) 2 1. Then, thc inequality (7.1.26) leads to 

(7.1.27) y ( k )  2 1 - * y ( k )  '. . y ( k  f (T - fT) - 1). 

From condition (7.1.25), we know that y ( k )  is bounded above. Now, 
taking limit infimum on both sidcs of (7.1.27), we gct 

l + p  

l + p  

where b = lirn infk;,, y ( k ) .  From (7.1.28), we have 

which contradicts condition (7.1.25). I 

Theorem 7.1.7. Assume that p < -1, T > cr, q ( k )  = 00, and 

(7.1.29) 
1 (. - 0 - 1)"1 
p k-cc (T ' 
- - lim inf q( k)  > 

Then, the equation (7.1.1) is oscillatory. 

Proof. If not, let u ( k )  be an eventually positive solution. Note that 
z ( k )  = u (k )  + p ( k  - 7) > pu(k - T ) .  From the equation (7.1.1), we have 

(7.1.30) A z ( k )  = - q ( k ) u ( k - a )  5 - - z ( k+  d k )  (7- -0)). 

The rest of the proof is similar to that of Theorem 7.1.6. In fact, the condi- 
tion (7.1.29) leads to the fact that the inequality (7.1.30) has no eventually 
negative solution, whereas Lemma 7.1.1(c) implies that z ( k )  is eventually 
negative. I 

Theorem 7.1.8. Assume that p > 0, c7 > T ,  cyyl q ( k )  = 00, q ( k )  2 
q(k  - T), and 

P 

(7.1.31) lirn inf q( IC) > (0 - 7)" 
(c7 - T + 1)"l. 

Then, the equation (7.1.1) is oscillatory. 
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Proof. The proof is similar to that of Theorem 7.1.6. I 

E x a m p l e  7.1.5. For the difference equation 

(7.1.32) A ( ~ ( k )  + 3 ~ ( k  - 1) + - ) 3 ( k - 3 )  
2k - 7 

v , (k -3 )  = 0, k 2 4 

all the conditions of Theorem 7.1.8 are satisficd. Thcrcfore, the cquation 
(7.1.32) is oscillatory. In fact, v,(k) = (-1)"k is such a solution. 

7.2. Existence and Asymptotic Behavior 
of Nonoscillatory Solutions of (7.1.1) 

Hcre, we shall study the cxistencc and asymptotic behavior of nonoscil- 
latory solutions of the cquation (7.1.1) when q ( k )  is cithcr eventually 
posit,ivc or negativc. WC begin with the following theorcm which gives suf- 
ficient conditions for thc cxistcncc of a positivc solution of (7.1.1), when 
q ( k )  is eventually positive. 

Theorem 7.2.1. Assume that - 1 5 p 5 0, q ( k )  > 0 for all large 
k 2 K - r, and there exists a constant v* > 1 s11c:h that 

Then, the equation (7.1.1) has a positive solution. 

Proof. Let T be a constant such that T E (1, v* ) ,  and let 

(7.2.2) v ( K  - p) = . " = v ( K  - 1) = T. 

W e  define 

k = K , K + l , . . .  . 

From (7.2.3), it is clcar that 

v ( K )  = 1 + q (K) v (K ) rU - p  q ( K )  @+--l(?- - l), 
4(K - 7 )  
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From (7.2.1), we have 

so that 71(K) /~  5 1. Hence, it follows that 1 < v(K)  5 T < v* .  B y  
induction, we can show that ~ ( k )  is well defined bv (7.2.3). Next, we 
define 4 e )  - 1 

1) (C) 
U)(!) = - , I ? = K - p , K - p + l ; . .  

then from (7.2.3), we have 

!i 
l 

= 1 + q ( k )  n (1 - w(!))-1 
1 - w(k)  

P d - U  

or 
k-l 

(7.2.4) ~ ( k )  = q ( k )  (1 - U J ( ~ ) ) - '  

k k - u  

where k = K ,  K + 1,. .. and 1 > w(k) > 0. Lct z ( K  - p )  = 1, and 

z ( k +  1) = z(k)(l - ~ ( k ) ) ,  k > K - p  

so that 
l:- 1 

z ( k )  = n (1 - W ( ! ) ) ,  z ( k )  > 0 
t = K - p  

and 

(7.2.5) A z ( k )  = - w ( k ) z ( k )  < 0, i.e. ~ ( k )  = - - 

On substituting (7.2.5) into (7.2.4), we get 

Az( k )  

4 k )  ' 

Az( k )  z ( k  - U)  

z( k )  z ( k )  
-- = - 

z ( k  - r) 

which is the same as 

(7.2.6) - 
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Finally, we define 

(7.2.7) ~ ( k )  = - A z ( k  + a) 
d k  + 0) > 0, k = K - p , K - p + l , . . .  . 

From (7.2.6) and (7.2.7), we have 

(7.2.8) z ( k  - 0) = l/(k - 0) +py(k - 7 - 0). 

O n  combining (7.2.8) and (7.2.7), we find that y ( k )  defined in (7.2.7) is a 
positive solution of (7.1.1). a 

In  view of Theorem 7.2.1 and Problem 7.17.9 the following corollary is 

immediate. 

Corollary 7.2.2. If q ( k )  = q > 0, then the equation (7.1.1) is oscillatory 
if and only if 

Remark 7.2.1. If 7 = 0, 0 2 1, then (7.2.9) is equivalent to 

(7.2.10) 

and hence, (7.2.10) is a necessary and sufficient condition for (7.1.1) to be 
oscillatory. 

Remark 7.2.2. If T > 0, 0 2 1, then (7.2.10) implies (7.2.9) and 
therefore (7.2.10) is a sufficient condition for (7.1.1) to be oscillatory. 

Remark 7.2.3. If 0 = 0, T 2 1, then (7.2.9) reduces to 

Thus, it is sufficient to have 

From (7.2.12) we obtain the sufficient condition 

q > 1-p-2J-p  

for (7.1.1) to be oscillatory. 
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Next, we shall establish conditions for the existence of a dccaving pos- 
itive solution of (7.1.1). For this, we shall need the Knastcr--Tarski fixed 
point theorem [ S ] .  We recall that a non-empty and closed subset E of a 
Banach space X is called a co.ne if it possesses the following properties: 

(1) if N E R+ and U, E E ,  then (YU. E E 
(2) if U,, 11 E E, then U + I)  E E ,  and 

(3) if U, E E - {0}, then -11. @ E .  

A Banach space X is partially ordered if it contains a cone E with 
nonempty interior. The ordering 5 i n  X is then defined as follows: 

Let S be a subset of a partially ordered Banach space X. Set 

- 
S = {U E X : ‘11 5 U. for every 71 E S}.  

We say that the point 11,o E X is the suprcrnum of S if u o  E 3 and for 
everv U, E 3, U 5 160. The infimum of S is defined i n  a similar way. 

Theorem 7.2.3. (Knaster- Tarski Fixed Point Theorem). Let X be a 
partially ordered Banach space with ordering 5 . Let S be a subset of 
X with the property that the infirnum of S belongs to S and every noli- 
empty subset of S has a suprernum which belongs to S. Let 7 : S + S 
be an increasing mapping, i.e. U, 3 U implies that 7 u  5 ‘TV.  Then, 7 
has a fixed point in S. 

Remark 7.2.4. I n  Knastcr-Tarski fixed point theorenl the continuity of 
T is not required. 

Theorem 7.2.4. Assume that - 1 < p 5 0, and 

(7.2.13) - 

Then, equation (7.1.1) has a positive solution u(k) satisfying lirn u(k)  = 0. 

Proof. Consider the Banach space 1: of all real functions v = ~ ( k )  
where k 2 K with sup norm 11t)/( = lu (k) I .  W e  define a subset 
S of as 

k-m 

- 

S = { U  E 1: : 0 5 v (k )  5 1, k 2 K } .  

We define a partial ordering on l& in the usual way, i.e. for U, v E l:, 
U 5 U means that ~ ( k )  5 v(k) for k 2 K .  Thus, if for any U ,  II E 
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lz, u(k) = ?)(IC) for all k >> 1 we will consider such functions to be the 
same. Then, for every subset A of S both inf A and supA exist in 
S. Now, we define an operator 7 : S 4 12 as follows 

(7.2.14) 7 v ( k )  = { L K1 ( L  K + p )  

By (7.2.13) it is clear that 7.9 C S, and that 7 is an increasing mapping. 
By Knaster-Tarski fixed point Theorem 7.2.3 there is a U E S ~ 1 1 ~ 1 1  that 

IC 
IC--7 

m 

(7.2.15) ~ ( k )  = - pw(k - T) (-) + k x  
e=l:  

q(P)u(f. - 0) , k L K 1  C-a 

and v ( k )  > 0 for k 2 K1. If WC set ~ r ( k )  = u(k)/IC, then from (7.2.15) 
we have 

m 

u ( k )  = - pu(k - 7) + c q(t)u(C - 0) 
e=b 

and so A(u(IC) + p ( k  - T ) )  + q(k)u.(k - 0) = 0,  k 2 K1, which shows that 
u ( k )  is a positive solution of the equation (7.1.1) with l im~.-+mu(k)  = 
0. I 

Example 7.2.1. For the difference equation 

(7.2.16) a ( u ( k )  - z u ( k  - 1) + k - l  ) 2(k+2)(k+3) 
u ( k  - 1) = 0 

it is easy to sec that conditions of Theorem 7.2.4 are satisfied. Thcrefore, the 
equation (7.2.16) has a decaying positive solution. In fact, ~ ( k )  = l/(k+2) 
is such a solution. 

Theorem 7.2.5. Assume that -1 < p < 0, q(k) 2 0, k E W, Eryl q(k) 
= 00, and for any subsequence { k t }  C { k } ,  C,"=, q(ke) = 00. Then, every 
nonoscillatory solution of the equation (7.1.1) tends to zero as k 4 00. 

Proof. If not, let u(k) be an eventually positive solution of (7.1.1). By 
Lenlrna 7.1.1(b), z ( k )  > 0 and Az(k )  < 0 eventually, where z ( k )  = 
u(k)+pu(k--7). Then, limk,, z ( k )  = T 2 0 exists. On summing (7.1.1) 
from K to k ,  we have 

k 

z ( k  + 1) - z ( K )  = - c q(e)u.(a - a), 
!=K 
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which implies that 
CO 

1 q(l)u(l- 0) < 00. 

Example 7.2.2. Consider the difference equation 

B y  Theorcm 7.2.5 cvery nonoscillatory solution of (7.2.18) tends to zero as 
k 4 00. In fact, v.(k) = e-k is such a solution. 

Our next result improves Thcorem 7.2.5 considerably. 

Theorem 7.2.6. Assume that [p/ < 1, q(k)  2 0, k E W and c?==, q ( k )  
= 00. Then, evcry nonoscillatory solution of thc equation (7.1.1) tends to 
zero as k "+ m. 

Proof. Assume that u,(k) be an cventually positive solution of (7.1.1). 
To be specific, let u(k) > 0 for k 2 K. Let t ( k )  = u(k)  +pu,(k - r), k 2 
K + p, then Az(k)  = -q(k)w,(k - a) 5 0. Thus, z ( k )  is nonincreasing 
for I C > _  K + p .  

We shall first show that u(k) is bounded. In fact, if u(k) is unbounded, 
then thcre exists an increasing sequence of integers {ki} such that ki 2 
K + T, ki -+ 00 as i 4 00 and that u(ki) "+ 00, where w.(ki) = 
max{u(k) : K - p 5 k 5 ki} .  This implies z (k i )  2 7r(ki) - (p(u(ki - T) 2 
(1 - lpl)u,(ki) + m as i --f m, which is impossible since t ( k )  is 
nonincreasing. Thus, u ( k )  is bounded, and therefore t ( k )  is bounded. 
Hence, limA7-, z ( k )  = (Y E R exists. This implies that 

c q(k )u (k  - a) = c (-Az(k) )  = t ( K +  0) -a 
k:=K+u k=K+u 

and hence the condition cEl q(k)  = 00 implies that lim infk,,, u ( k )  = 
0. 
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Now we shall prove that (I = 0. If not, then we shall arrive on a 
contradiction for the case cy > 0. The proof for (Y < 0 is similar. 

For N > 0, we note that p > 0. In fact, p 5 0 implies that 
w.(k) = z (k ) -p71 , ( k -~ )  2 z ( k )  2 N. Thus, liminfk,, u ( k )  >_ cy > 0 which 
contradicts lim infl:-oo u ( k )  = 0. Now i n  view of lim infk,,, u,(k) = 0 
we can find an increasing sequence of integers { k j }  such that 

(7.2.19) 
j-cc 
lim k, = 00 and 

j-cc 
lim u,(k3) = 0. 

Thus, from lim~~+, z ( k )  = LY we have 

(7.2.20) Z(k3) - Z ( k j  - 'T) = U(kj) - (1 -p)'71,(k3 - 'T) -p'U(kj - 2 7 )  + 0 

as j -+ cm. Now (7.2.19), (7.2.20) and the fact, that p > 0 imply that 
Iimj-cc u,(k, - 'T) = 0 and u ( k j  - 27) = 0, which in turn imply 
that z ( k i  - 7 )  = u(k j  - T )  + p714k.j - 27) + 0 as j + c m .  But, this 
contradicts the assurrlption that cy > 0. Hence, limk" z ( k )  = 0. 

Next, let = lim supl:.cc u ( k ) .  Thcn, thcre exists a sequence of inte- 
gers {km,} such that lirrl,n,-cc km, = cm and lirrlm+cc u,(km,) = p .  W e  
shall show that = 0. Since limk-m z ( k )  = 0, if p = 0 then obvi- 
ously = 0. If p # 0, then the relation z ( k , )  - u.(k,) = p u . ( k ,  - T )  

implies that limm,+cc .,(km - 'T) = - p / p ,  which in view of ,B > 0, for 
0 < p < 1 leads to a contradiction that u(k) is eventually positive, and 
for - 1 < p < 0 contradicts the fact that lirrl~up~.~ u,(k) = p. 

Summing up the above discussion it follows that linlk+cc u(k) = 0. I 

Theorem 7.2.7. Assume that the conditions of Lemma 7.1.1(c) hold. 
Then, every nonoscillatory solution of the equation (7.1.1) tends to m or 
-m as k + m .  

Proof. Let u ( k )  be an eventually positive solution of (7.1.1). B y  Lemma 
7.1.1(c), we have z ( k )  < 0, A z ( k )  5 0 eventually. Therefore, 0 > 
lirnk:-cc z ( k )  = T 2 -m. W e  shall show that T = -cm. Assume that 
- m < T < 0. On summing (7.1.1) from K to k ,  we get 

which implies that 
W c q(t)u(t - 0) < m. 
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Since C,"=, q(e) = CO, we have lim infL++, u ( k )  = 0, i.e. there exists a 
subsequence { k j }  such that lirnj-+, kj = DC) and limj,, u,(k, -7) = 0. 
On the other hand t . (k j )  > pw.(k, - T ) ,  i.e. 

(7.2.21) 0 < -  
Z ( k j )  

P 
< .(kj - T ) ,  

which inlplies that limj-+, z ( k J )  = 0, a contradiction. Therefore, 
z ( k )  = "00. From (7.2.21) we have Iirnk-, u,(k) = m. The proof for the 
eventually negative solution is similar. I 

Example 7.2.3. Consider the difference equation 

(7.2.22) A (u(k) - 8 4 k  - 2)) + 8 ( k 2  - 4k - 6) 
( k  - 3)2 

u(k -3) = 0, k >  6. 

B y  Theorem 7.2.7, every nonoscillatory solution of (7.2.22) tends to CO or 
-ca. 111 fact, u ( k )  = k 2 P  is such a solution. 

Next, we shall discuss the asymptotic behavior of nonoscillatory solu- 
tions of the equation (7.1.1) when q(k)  is eventually negative. For this it 
is convenient to write (7.1.1) in the following form 

(7.2.23) A ( ~ ( k )  +pu.(k - T ) )  = q ( k ) ~ . ( k  - a), q ( k )  > 0, k E W. 

We begin with the remark that the equation (7.2.23) can have oscillatory 
solutions. For example, 

A(u(k)  - ~ ( k  - 1)) = 
4k2 - 2 

k ( k  + 1) - 

has a solution u ( k )  = (- l ) "/k which is oscillatory. However, the equation 
(7.2.23) always has a nonoscillatory solution. This we shall prove in our 
next theorem. 

Theorem 7.2.8. The equation (7.2.23) always has a positive solution. 

Proof. For q ( k )  2 0 one can find a function h(k)  such that 1 q(t )h( l )  

= CO, and 

03 

e=, 

Now we define a sequence as 
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Then, it follows that 

(7.2.24) 

B y  1’Hopital’s rule Theorem 1.8.9, we have 

1 k 
(7.2.25) - C q(e)z(e - 0) 4 o as k ”+ m. 

4 k . I  p=ko 

With l5 and S as defined in Theorem 7.2.4 we define an operator 7 
as follows 

(7.2.26) 

( 1 ,  K I k - I K I  

where K = K1 - max{cr, T }  and K1 is chosen so large that 

(7.2.27) 

for k 2 K1. We note that, in vicw of (7.2.24) and (7.2.25), such an integer 
K1 does exist. By (7.2.26) and (7.2.27) we have 0 5 7 v ( k )  5 1 for 
k 2 K, which implies that 7s S. Thus, by Schauder’s fixed point 
theorem it follows that there exists an element ‘II E S such that 7 v  = v .  
Hence, we have 

(7.2.28) 

1, K I IC IK1 .  

It is clear that v(k)  > 0 for IC 2 K .  Now we set u(k) = v(k)z(k)  > 0, 
so that from (7.2.28), we find 

1 
2 

k - l  

(7.2.29) u ( k )  = - - pu(k - 7) + c q(l)Tl(e- G),  k 2 K1 + 1 
e=K1 
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which is the same as (7.2.23). It is clear that this ~ ( k )  is a positive sohltion 
of (7.2.23). I 

From the expression (7.2.29) describing the solution of (7.2.23), WC can 
get more information about the solutions of (7.2.23). In fact, WC have the 
following: 

Corollary 7.2.9. (i) If p 5 0, (7.2.23) has a positive solution ~ ( k )  
with u(k)  = T ,  where r is either a positive nuIrlber or m. 

(ii) If p = -1, (7.2.23) has a solution ~ ( k )  with limk:-CO u(k)  = m. 

(iii) If p < -1, (7.2.23) has a solution u(k)  with u ( k )  2 (-p)("-"O)/'x 
U( k o ) ,  which implies t,hat t,he solution tends to infinity exponentially. 
(iv) If - 1 5 p 5 0 and q(l) = m, (7.2.23) has a solution ~ ( k )  
with limk.m u ( k )  = m. 

(v) If - 1 < p < 0 and q(P) = m, then every bounded solution 
of (7.2.23) is either oscillatory or tends to zero as k + 03. 

Proof. From (7.2.29), we have 

from which (i) and (ii) follow irnrnediatcly, and (iii) follows from 

The assertion (iv) follows from (7.2.29) directly. In order to prove (v), we 
let v,(k) to be a bounded positive solution of (7.2.23), then Az(k) 2 
0, limk,, z ( k )  = T exists, where T is finite. If r > 0, then 

(7.2.30) 
CO 

T - z (k0 )  = 1 q ( l ) u ( l  - 0). 

In this case v,(k) 2 r/2, and (7.2.30) leads to ~ ~ n ~ o  q(f?) < 00 which is 
a contradiction. If r < 0 

which implies that limk.m u(k) = 0. R 

Example 7.2.4. Consider the difference equation 

(7.2.31) A(v,(lc) - u(k - 1)) = q(k).u.(k - l), k 2 2 
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where q(k) = k 2  - k + 1. By Corollary 7.2.9, (7.2.31) has a solution for 
which limk,, u ( k )  = M. In fact, ~ ( k )  = k !  is such a solution of (7.2.31). 

When p < -1 the difference equation (7.2.23), besides having a solution 
tending to infinity exponentially, can have a nonoscillatory solution which 
tends to a nonzero constant as k 4 00. For example, thc difference 
equation 

has a bounded nonoscillatory solution v,(k) = ( k  + l ) / k .  

Theorem 7.2.10. Assume that p < -1, and 

00 

(7.2.33) 
P=ko 

Thcn, every bounded nonoscillatorv solution of the equation (7.2.23) satis- 
fies lirninfk+OO \ u ( k ) 1  = 0. 

Proof. Let ~ ( k )  be a bounded positive solution of (7.2.23). Then, 
h ( k )  >_ 0, where z(k) = u ( k )  + pu.(k - T ) .  If z ( k )  > 0, then the 
boundedness implies that limk:-, z(k) = r > 0. In which case w.(k) >_ 
z ( k )  2 r /2  > 0 for all sufficicntly largc k. From (7.2.23), we have 

M M 

which is a contradiction. If z ( k )  < 0 then limk+m z(k) = p 5 0, we also 
have xzko q(l)u(C - 0) < M, which implies that liminfk,, ~ ( k )  = 
0. We shall prove that l i n l ~ u p ~ , ~  u ( k )  = 0 also. If there exist two 
subsequences {k’} and {k”} such that 

linl supu(k) = lirn u.(k’) = (Y > O 
k-00 k’-m 

and 
liminf u ( k )  = lim u (k” )  = 0, 

k:-W k‘“m 

then 
lim z ( k + ~ )  = k ) 2 ~ w , ( k ’ ’ + ~ )  2 0, 

k-m 

which implies that /3 = 0. Then, we have 
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i.e. limp-+m u(k’ + T) = -pa > cy, which contradicts the definition of 
CY. Therefore, limk,, u(k) = 0. I 

Example 7.2.5. Consider the difference equation 

(7.2.34) A ( ~ ( k )  - 2 ~ ( k  - 1)) = 
k + 3  

k ( k  + 1) U(k - l), 

which satisfies the assumptions of Theorem 7.2.10. In fact, (7.2.34) has a 
solution u ( k )  = l / k .  

Next, we shall study the existence of positive solutions of the equation 
(7.1.1) defined for k 2 K E IN, subject to the condition 

(7.2.35) 
k=K 

Theorem 7.2.11. Assume that p # -1, and that, the condition (7.2.35) 
holds. Then, the equation (7.1.1) has a positive solution. 

Proof. We need to consider the following five cases: 

Case 1. - 1 < p  5 0. 

Choose a positive integer KO 2 K sufficiently large such that K O  -p >_ 
K, and 

Consider the Banach space I: of all real functions U = u ( k )  where 
IC 2 K with the sup norm, i.e. 1 1 ~ 1 1  = supk>K Iu(k)l. W e  define a subset 
S of ~g as 

- 

Clearly, S is a closed and convex subset of l:. W e  define an operator 
7 : S 4 as follows 

This mapping 7 is completely continuous, and for every U = u ( k )  E 
S, k 2 KO, WC have 
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and 

7 4 k )  L l + P + S  
4 (-1 - p )  - 2(l + p )  - 

4 3 .  
Hence, 7s C S. Thus, from Schauder’s fixed point theorem it follows that 
there exists an element 11, E S such that 7 7 1 ,  = 11.. It  is easily seen that 
this U = ~ ( k )  is a positive solution of the equation (7.1.1). 

Case 2. p < -1 

Let KO L K be such that, KO + r - 2 K ,  and 

k=Ko+r 

Consider the Banach space l: as in the proof of Case 1. Set 

S = {U, E 1: : -- u.(k) 5 -2p, ti 2 K . 

Clearly, S is a closed and convex subset of l:. We define an operator 
7 : S + 1: as follows 

P 
2- 1 

This mapping 7 is completely continuous, and for every 11. = ~ ( k )  E 
S ,  k L KO it follows that 7 u  E S, i.e. 7s c S. Thus, from Schauder’s 
fixed point theorem there exists an element U E S such that ‘TU = U. 
This U, = ~ ( k )  is a positive solution of (7.1.1). 

Case 3. 0 < p < 1. 

Let KO 2 K be such that KO - p 2 K, and 

Let 1: be as in the proof of Case 1. Set 

S = {U E 1, : 2(1 -p) 5 U,(/€) I: 4, k 2 K } .  K 

Clearly, S is a closed and convex subset of 1:. Define 7 : S ”+ 1: as 
follows 
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This mapping 7 is completely continuous, and 7.5 c S. Thus, from 
Schauder's fixed point theorem there exists an element U, E S such that 
7u = U. This U = u ( k )  is a positive solution of (7.1.1). 

Case 4. p = 1. 

Let KO 2 K bc such that KO + -r - o 2 K ,  and 

Let be as in Case 1. Then, 

S = {?I. E 15 : 2 5 76(k) 5 4, k 2 K }  

is a closed and convex subset of lg. Defirlc 7 : S 3 l5 as follows 

f 00 I:+2rj-1 



Qualitative Propertics of Solutions of Neutral D X  Eqns. 507 

Let lz be as i n  Case 1. Then, 

S = {U E l: : 2(p - 1) 5 U ( k )  5 4p, k 2 K }  

is a closed and convex subset of l:. Define 7 : S 4 l,: as follows 

Clearly 7 is conlpletely continuous, and 7s c S. Thus, from Sclmuder’s 
fixed point theorem there exists an elernent 11. E S such that ‘Tu, = U. 
This U, = ? / , ( IC )  is a positive solution of (7.1.1) for k 2 KO + 7. I 

In the following example WC shall show that Theorern 7.2.11 docs not 
hold when p = -1. 

Example 7.2.6. Corlsidcr the difference cquat,iorl 

(7.2.36) 
1 a (v,(k) - 7/4k - 1)) + - u,(k - 1) 1 0, k 2 2. 

k ln2 k 

Since 

it is clear that the condition (7.2.35) holds. We shall show that the equation 
(7.2.36) has no positive solutions. Otherwise, assume that (7.2.36) has a 
positive solution u.(k) satisfying u ( k  - 1) > 0, k 2 KO 2 2 for sorrlc 
KO 2 2. Set z ( k )  = v.(k) - u(k - 1) for k 2 KO. Then, by (7.2.36), WC 

have 

(7.2.37) 
1 

A z ( ~ )  = - - 
k 1n2 k 

u(k - 1) < 0, k 2 KO. 

We need to consider the following two possible cases: 

(a) If z ( k )  is eventually negative, then by (7.2.37) we see that there exist 
an N > 0 and a positive integer K1 2 KO such that z ( k )  5 -a, i.e. 
u(k)  5 -a + u(k - 1) for k 2 K1. But, then by induction it follows that 

u,(k + K1) 5 - kcu + u ( K 1 )  4 - 03 as k + 03 

which contradicts the positivity of u ( k ) .  

(b) If z ( k )  is eventually positive, then there exists an integer K2 2 K1 
such that z ( k )  > 0 for all k 2 K Z .  Now, we let lirrlL:-- z ( k )  = /3 2 0, 
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and sum (7.2.37) from k 2 K2 to m, to obtain 

00 

(7.2.38) 
p - z(k) + c T?b(S 1 - 1) = 0, 

S = k  
S 111 .f 

which irrlplics that 
00 

1 
u.(k - 1) < DC). 

On the other hand, since u, (k)  - u.(k - 1) > 0 for k 2 K Z ,  it follows that 
therc exists a positivc constant L such that u ( k )  2 L for k 2 KZ. 011 

substituting this into (7.2.38), we get 

i.e. 
L 

l11 k 
From thc abovc inequality it follows that 

u,(k) 2 ~ , ( k  - 1) + -, k 2 K2 + 1. 

Hence. WC find 

Since 

we obtain from thc last inequality that 

This shows that the casc (b) is also not possible. 

Remark 7.2.5. On combining Theorern 7.2.11 and Example 7.2.6, we 
conclude that 1q(k)j = DC) is a necessary condition for the oscillation 
of all solutions of (7.1.1) when p # -1. 



Qualitative Properties of Solutions of Neutral Diff Eqns. 509 

7.3. Oscillation and Comparison Theorems for (7.1.1) 

Here, we shall present some oscillation criteria for the equation (7.1.1) 
by using comparison results. For this, first we shall establish a comparison 
theorem which gives a necessary and sufficient condition for the oscillation 
of all solutions of (7.1.1). This result will be used further in later sections for 
determining sufficient conditions for thc oscillation of difference equations 
with mixed arguments as well as the equations with nonlinear terms. 

Theorem 7.3.1. Assume that - 1 < p 5 0 and q ( k )  > 0 eventually. 
Then, the equation (7.1.1) is oscillatory if and only if 

(7.3.1) A ( ~ ( k )  + p ~ ( k  - T ) )  + q ( k ) . ~ ( k  - 0 )  < 0, k E IN 

has no cverltually positive solution. 

Proof. The sufficiency is obvious. Suppose u,(k) is an eventually positive 
solution of (7.3.1). We shall prove that (7.1.1) also has a positive solution. 
Let z ( k )  = ~ ( k )  + pu.(k - T ) ,  then A z ( k )  < 0, z ( k )  > 0 cvcntually. We 
clcfinc 

(73.2) 
A z ( k )  
4 k )  

Ui(IC) = - - > 0, k 2 K.  

It is clear that w(k )  < 1 for k 2 K .  Incquality (7.3.1) can bc written as 

(7.3.3) Az(k) + q ( k ) z ( k  - 0)  - p- d l c )  q ( k - r ) u ( k - 7 " 0 )  < 0. 
q(k: - 

Dividing (7.3.3) by z ( k )  and using (7.3.2), we obtain 

(7.3.4) 
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It is not difficult to prove that 

I k-l 

Next, we define 

z ( K )  = 1, Z ( k +  1) = ~(k)(l - X(k)), k > K 

so that 
I:-] 

.(k) = (1 -A(!)) > 0, k 2 K .  
L= K 

Thus, h ( k )  = - z ( k ) X ( k )  < 0, or 

(7.3.7) 
A Z  ( k )  X(k) = - - 

4 k . I  > 0. 

which is the same as 

Let 

Combining (7.3.8) and (7.3.9), we obtain 

(7.3.10) ~ ( k  - 0) - ~ ( k  - U )  -pu(k - 7 - U )  = 0, k 2 K + p,. 
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Now substituting (7.3.10) into (7.3.9), we find 

A ( ~ ( k )  + p ~ ( k  - T ) )  + q(k)U(k - U )  = 0, k 2 K + p,. 

Hence, u ( k ) ,  k 2 K + p - U is a positive solution of (7.1.1). I 

The following results illustrate some applications of Theorem 7.3.1. 

For the difference equation 

we havc the following: 

Theorem 7.3.2. Assume that the assumptions of Theorcm 7.3.1 hold, 
and that 

Then, the oscillation of (7.1.1) implies that of (7.3.11). 

Proof. If not, without loss of generality lct u ( k )  be an cventually positive 
solution of (7.3.11). Then, it is clcar that (7.3.1) has an evcntually positive 
solution which contradicts the conclusion of Theorern 7.3.1. I 

Remark 7.3.1. From Thcorcrn 7.3.1 the oscillation of (7.1.1) implies the 
same for the difference equation 

A ( ~ , ( k )  + p ~ ( k  - T ) )  + q ( k ) ~ . ( k  - 0) + h , ( k ) ~ ( k  + 7) = 0, k E W 

where - 1 < p 5 0, q(k) 2 0, h(k)  2 0 eventually, T E N(l),  and 
U,  7 E N. 

Our next result is for the equations (7.1.1) and 

(7.3.12) A ( ~ ( k )  + j j ~ ( k  - 7)) + h ( k ) ~ ( k  - U )  = 0, k E W. 

Theorem 7.3.3. Assume that p, p E (-1,0], and for large k E IN 

(7.3.13) h,(k) 2 q(k) > 0 

and 

(7.3.14) 
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Then, the oscillation of (7.1.1) implies that of (7.3.12). 

Proof. If not, let w(k) be a positive solution of (7.3.12) for k 2 K.  Then, 
as in the proof of Theorem 7.3.1, there exists a function w(k)  E (0,1) such 
that 

(7.3.15) 
I;-l !,-l 

w ( k )  = h ( k )  rI (1 - w ( t ) ) - l  - p  h(k) w ( k - T )  J-J (1 -W(!))-! 
t?=k-u 

h ( k  - T )  
e=k-r 

Thus, in view of (7.3.13) and (7.3.14), the inequality (7.3.4) follows from 
(7.3.15). This leads to the contradiction that (7.1.1) has a positive solu- 
tion. I 

Corollary 7.3.4. If p = p = 0, then for the equations 

(7.3.16) A7l.(k) + q ( k ) ~ ( k  - a) = 0, k E W 

and 

(7.3.17) A7i(k) + h ( k ) ~ ( k  - a) = 0, k E IN 

with h ( k )  2 q(k)  > 0, for large k E IN the oscillation of (7.3.16) implies 
that of (7.3.17). 

Proof. The proof is immediate from Theorem 7.3.3. I 

Remark 7.3.2. It  is easy to extend the above rcsults for the equation 

(7.3.18) A (v.(k) + p ( k  - T)) + c qi(k)v,(k - oi) = 0, k E IN 

where ai, 1 5 i I: T are nonnegative integers. 

r 

i=l 

7.4. Global Asymptotic Stability Criterion for (7.1.1) 

The trivial solution of (7.1.1) is said to be globally asym,ptoticall?g sta- 
ble if every solution u(k) of (7.1.1) tends to zero as k + ca. 

The main result of this section is embodied in the following: 

Theorem 7.4.1. Suppose Ipl < 1, q(k)  > 0, k E IN and ~ ~ = o q ( k )  = 
ca. Then, the trivial solution of (7.1.1) is globally asymptotically stable 
provided 

k:+2u 

(7.4.1) 
+ + "'1 I=k: 1 + c q(t) < 2. 

k-cc 
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Proof. W e  split the proof into the following steps: 

Step 1. Let u,(k) be a convergent solution of (7.1.1) which tends to 
some constant CY. If cr # 0, we can assume without loss of generality 
that cr > 0. Then, there is an integer K such that v.(k - CT) >  CY/^ for 
k > K.  Thus, from (7.1.1) it follows that 

A(lL(k) + p ( k  - 7)) > - CY- ‘(‘) k > K .  
2 ’  

Summing the above inequality, we get 

k 

u,(k)  +pu(k - T) 5 u ( K )  +pv. (K  - T )  - - c ‘(e). cr 
2 !=K 

This i n  view of c;”=, q(k)  = m implies that u (k )  + pu(k - T) tends 
to - m as k + m. But, this contradicts our assumption that u ( k )  is 
convergent. Hence, every solution of (7.1.1) which is cxmvergent will tend 
t,o zero. 

Step 2. Equation (7.1.1) can be written as 

I:- 1 

v,(k) + p ~ r ( k  - T) - 1 ‘(l+ C T ) U , ( ~ )  + q(k + a)u(k) = 0, k E IN. 
P=k:-u 

Let 

k-l 

(7.4.2) v ( k )  = u ( k )  +pu(k - T )  - c q(e + .).(e) 
f5k-U  

then 

(7.4.3) A v ( k )  = - ‘ ( ~ + c T ) u , ( ~ ) ,  IC E N  

and 

~ ( k  + 1) + ~ ( k )  = 21j(k) - q(k + a)u (k ) .  

Therefore, we have 

(7.4.4) 7P(k + 1) - d ( k )  

= ( -q(k  + a )u (k ) )  (2v(k) - q(k + g)v . (k ) )  

q ( k  + ~ ) v , ~ ( k )  - 2u2(k)  - 2pu(k)u,(k - 7 )  
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5 q(k + a) q(k + a ) ~ , ~ ( k )  - 2u2(IC) + l p 1 ( ~ ~ ( k )  + u 2 ( k  - T)) { 
!%-l 

+ c q(P+ a) ( 2 ( t )  3- U 2 ( k ) )  . 
e=k-u 1 

Step 3. Let u(k)  be a solution of (7.1.1) such that u ( k )  defined in (7.4.2) 
converges to, say, p. W e  shall show that u,(k) converges to @/(l + p). 
For this, we note from (7.4.3) that 

m c q(P + a )u ( l )  = 74K) - p ,  
/=K 

which implies that linlA:+w q(k + a )~r (k )  = 0, and limk.+w ~ ~ ~ ~ - u  q(P + 
a)u, ( l )  = 0. Thus, 

which contradicts (7.4.5) 

Let W+ = lim sup w,( IC), W -  = lim inf u(IC) and let { k m }  and {S,} 
be two integer sequences such that IC, + 00 and S, ”+ CO as ‘m -+ CO 

and W+ = lirnm-+m u(km), W- = lirn,.+m ~ ( ~ 5 , ) .  Consider the following 
two cases: (i) 0 5 p < 1, and (ii) - 1 < p < 0. In the first case, we 
have 

and 
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Thus, 0 5 W+ - W- 5 p(w+ - W - )  so that W+ = W- = p/(l +p). 

In thc second case, we have 

W+ = linl u,(k,) = linl (u.(k,,) + pu.(k, - 7) - pu(k, - T ) )  
m,- CO rn. - 00 

= /?-p lim v.(km -7) 5 p -pw+ 
m-cc 

and 

W- = lim 7 1 , ( s m , )  = lirrl (u,(s,) + pu(.s, - 7) - p u ( s ,  - T ) )  
m+cc m . + m  

= /3 - p  lim u(s ,  - T )  2 p - p w - .  
m.-m 

Thus, W+ 5 p/(l + p )  5 W - ,  which implies W+ = W -  = []/(l +p). 
Hence, if ~ ( k )  defined in (7.4.2) converges, then so does ~ ( k ) .  

Step 4. WC shall construct a nonnegative Lyapmov functional V which 
is eventually nonincxasing along thc solutions of (7.1.1). Let u ( k )  be a 
solution of (7.1.1), and let 71(k) be defined by (7.4.3). Let 

P ( k )  = k E W 

e=k--7 

IC-l L:-l 

Thcn, P ( k ) ,  Q ( k ) ,  R(k)  2 0, k E IN and 

AP(k)  = v2(k + 1) - .2(k) 

AQ(k) = \p/q(k + 7 + 0)?1.’(k) - lp\q(k + ~ r ) ~ z ( k  - 7 )  

AR(lc) = 6 q(k+a)q(l+2a)uZ(k) - c q(k+a)q( l+ o)u2(l) .  
IC-l 

P=l:+l-u e=k;-a 

Therefore, 

V ( u ( k ) )  = P ( k )  + Q ( k )  + R ( k )  2 0, k E IN. 

Further, i n  view of (7.4.4) it follows that 

AV(w.(k)) = A ( P ( k )  + Q ( k )  + R ( k ) )  



516 Chapter 7 

Thus, (7.4.1) implies 

for all large k ,  where E is some sufficiently small positive number. This 
shows that 

lim V(u (k ) )  = lim ( P ( k )  + Q ( k )  + R(k))  = p 2 0 
k : - c c  k - c c  

and 
M 

E c q(k  + o ) u 2 ( k )  5 v ( ~ ( K ) )  - lirn V(U( IC:  + 1)) = v ( ~ ( K ) )  - p, 
k = K  

k-M 

where K is sorrle large integer, which implies that 

m 

(7.4.6) C q ( k  + a)u2(k)  < DC). 
k=O 

Next, we note that corlditiorl (7.4.1) implies 

so that 

for all large k .  Similarly, the condition (7.4.1) implies 

I: - 1 



Qualitative Properties of Solutions of Neutral D iK  Eqns. 517 

for all large k .  Therefore, in view of (7.4.6), R(k)  and Q ( k )  tend to 
zero. This shows that 

linl I v ( l ~ ) (  = lirn ~ P ( I C ) / ~ / ~  = p1/2. 

W e  now claim that u ( k )  converges. If p = 0 it is trivial, and if p > 0 
it suffices to show that ~ ( k )  is everltnally positive or negative. If not, we 
pick a nurnbcr E such that 0 < E < p112 and let K be a positive integer 
such that 

I.-cc L:-m 

(7.4.7) p 1 / 2 - ~  < I ~ ( k ) l  < p 1 l 2 + ~ ,  k = K , K + l , . .  

and let 

1 = { k  2 K : ~ ( k )  > O} and J = {IC 2 K : ~ ( k )  < O}. 

Since ~ ( k )  is ncithcr eventually positive nor cvcntuallv negative, 1 and 
J arc unbounded, thus we can pick a divergent scqucncc of irlkgers k ,  
such that K 5 kl < k.2 < . . . < k.i, k ,  E I and /c7, + 1 E .I. Then, 
71(k; + 1) < 0 and u ( k . ~ )  > 0. Furthcrrnorc, i n  view of (7.4.7) we have 

But  then (7.4.3) leads to 

(7.4.8) 
0 < 2(p1/2 - E) < q(ki + O)U,(k i )  = U(kJ  - 71(ki + 1) < 2(p'/2 + F), i 2 1 

i.e. q(ki + ~ ) u , ( k i )  is bounded. But, then (7.4.6) and (7.4.8) imply that 
~ ( k i )  converges to zero, for otherwise 0 < limi-m q(ki + l)w,(kj)w,(ki) = 0. 
Finally, condition (7.4.1) implies that q(k) is bourlded so that q(k i  + 
l)w,(ki) converges to zero as i -+ m, but this contradicts (7.4.8). We 
have thus shown that v ( k )  converges. I 

7.5. Oscillation and Nonoscillation for 
(7.5.1) A ( ~ ( k )  + p ~ ( k  - T))+q(k) l l . (k -Ol) -h(k)U(k-O2)  = 0, k E W 

where T E W(1), 01, 02 E W and the functions q(k) ,  h,(k) are nonnegative 
011 W. 

Theorem 7.5.1. Assume that - 1 < p 5 0, q(k) 2 0, h(k)  2 0, 01 > 
02 + 1 and q(k)  - h ( k  - (01 - 02)) 2 0 (g 0), 

(7.5.2) 
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(7.5.3) A z ( ~ )  + ( q ( k )  - h,(k - (01 - 0 2 ) ) )  ~ ( k  - 01) = 0 

is oscillatory. Then, the equation (7.5.1) is oscillatory. 

Proof. If rlot, let ?/ , (k )  bc a positive solution of (7.5.1). We define 
z ( k )  = u ( k )  + p ( k  - T), and 

I:-1 

(7.5.4) w(k )  = z ( k )  - c h,(P)u(P - 02) 
f=k-(u1-02) 

so that 

I=K- (u1-u2)  1 
whic:h is impossible. Thus, we rrlust have lirrl~+m w ( k )  = T, where T 

is finite. Hence, u ( k )  is bounded and therefore from (7.5.4), we find 
IiIrl~.+m z(k) = T. If T < 0, tllcn for k sufficiently largc u ( k )  + p ( k  - 
T) 5 r/2 < 0. It, follows that ~ ( k )  --f 0 and her1c:c z ( k )  + 0 as 
k + 00. Conscqucntly, T cannot be negative. Therefore, T 2 0, and 
since Aw(k )  5 0, we have ~ ( k )  2 0, i.e. u,(k) 2 z ( k )  2 w(k ) .  On 
substituti~lg t,his into (7.5.5), we obtain 

A w ( ~ )  + ( q ( k )  - h,(k - (01 - 0 2 ) ) )  ~ ( k  - 01) 5 0. 

Sir1c:c q ( k )  - h,(k - (01 - ‘72)) 0, Aw(k) 0, it follows that w(k )  > 0 
evcntually, which implies that (7.5.3) has a positive solution. This contra- 
dicts the assumption that (7.5.3) is osc:illat,ory. I 
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Remark 7.5.1. From Theorcm 6.20.3 it is clear that thc equation (7.5.3) 
is oscillatory if 

Example 7.5.1. Consider the difference equatiorl 

(7.5.6) Au(k)  + q(k)u(k - 4 )  - h, (k )u(k  - 1) = 0, k 2 4 

wherc 
2(k - 3) k - l  

q(k) = - 
X:+l 

h,(k) = 
k ( k  + 1) ’  b 

Equation (7.5.6) satisfies all the assumptions of Theorem 7.5.1. Thcrcforc, 
all solutions of (7.5.6) are oscillatory. In fact, u(k) = ( - l ) k / k  is such a 
solution. 

7.6. Oscillation and Nonoscillation for 

Theorem 7.6.1. Assurrle that p 2 0, q ( k )  5 0 for all large k ,  and 
there exists a function h,(k) such that 

(7.6.2) Ah,(k)  = F ( k )  and linlsuph,(k) = m, linlinf h,(k) = -m. 

Then, every bounded solution of (7.6.1) is oscillatory. 

Proof. Let u,(k) be a bounded positive solution of (7.6.1). Then, for 
z ( k )  = ~ ( k )  +pu(k - T), WC have A ( z ( ~ )  - h(k ) )  = --q(k)u,(k - 0) 2 0, 
i.e. z(k) - h(k) is rlondccreasing eventually. Since z(k) > 0 and bounded, 
and h(k)  is oscillatory, we must have z ( k )  2 h (  k )  for all large k .  But, 
this contradicts the assurnption (7.6.2). I 

Example 7.6.1. Consider the difference equation (7.6.1) with p = 1, T = 
0 = 2, and 

!,:-m I.-00 

q(k) = - (2k + l)(k - 2) + 4k3 - 6k2 - 2k + 2 
k ( k 2  - 1) 

F ( k )  = (-qk+1(2k + l), h(k) = (-l)% 

This equation satisfies all the c:onditions of Theorem 7.6.1, arid thercfore 
every bounded solution of this equation is oscillatory. One such solution is 
u ( k )  = ( - l ) k/k .  
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Theorem 7.6.2. Assume that p 2 0, q ( k )  2 0 for all large k ,  and the 
assumption (7.6.2) holds. Then, the equation (7.6.1) is oscillatory. 

Proof. Suppose the contrary, and without loss of generality, let w,(k) 
be a positive solution of (7.6.1). Then, for z ( k )  = ~ ( k )  + p ( k  - T ) ,  

we have A ( z ( k )  - h,(k))  = -q(k)u,(k - a) L 0, i.e. z ( k )  - h(k)  is 
nor~ir~creasing evcntually. If z ( K )  - h ( K )  5 0 for some K E W, then 
z ( k )  5 h(k)  for all k 2 K ,  which in view of (7.6.2) contradicts the 
positiveness of z ( k ) .  Therefore, z ( k )  - h,(k) > 0 for all k 2 K ,  and so 

limk+m(z(k) - h ( k ) )  = cy 2 0 exists. From (7.6.2) there exists a sequence 
{ k j }  such that limj+m h,(kj)  = -m. However, since limj+m(z(kj) - 
h,(k,)) = cy > 0, z ( k j )  cannot be eventually positive. This contradiction 
completes the proof. I 

Example  7.6.2. Consider the difference equation 

(7.6.3) A ( ~ ( k )  + ~ ( k  - 2)) + - ~ ( k  - 2) = (-1)""(2k+l), k 2 3. 
2k-3 

k - 2  

For this equation all the assurrlptions of Theorem 7.6.2 arc satisfied, and 
therefore this equation is oscillatory. One such solntion of (7.6.3) is ~ ( k )  = 
(-l)% 

Remark  7.6.1. For p 2 0, q ( k )  2 0, condition (7.6.2) ensures that 
all solutions of (7.6.1) are oscillatory. But, for p 2 0, q ( k )  5 0 condi- 
tion (7.6.2) guarantees oscillation of only bounded solutions. I n  fact, the 
difference equation (7.6.1) for k 2 2 with p = 1, T = 2, a = 1, 

p(k)  = - 
4k + 2(-1)A:k + - 2 

( k  - 1)2 
, F ( k )  = (-1)k'f'(2k + 1) 

has a nonoscillatory solution u ( k )  = IC2. 

Remark  7.6.2. From the proofs it is clear that Theorems 7.6.1 and 7.6.2 
hold even for the forced diffcrcnce equations with variable coefficients of 
the type 

(7.6.4) A (u(k) +p(k)7r(k - T ) )  + q ( k ) u ( k  - 0) = F ( k ) ,  k E N 

provided p(k) 2 0 for all large k .  

Theorem 7.6.3. Assume that p 2 p(k) 2 0, where p is a positive 
number, q ( k )  2 0 and there exists a constant L > 0 such that q ( k )  5 
Lq(k-7) .  Let A h ( k )  = F ( k )  and denote h,+(k) = max{h,(k),O}, h,-(k)  = 
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max{-h,(k), 0). If 

m 

(7.6.5) c q(k  + (7)h,+(k) = 00, 
k = K  

then the equation (7.6.4) is oscillatory. 

Proof. If not, we can assume that u.(k) is an eventually positive solution. 
Then, for z(k) = ~ ( k ) + p ( k ) ~ , ( k - ~ ) ?  we have h ( z ( k ) - h , ( k ) )  = - q ( k ) ~ , ( k -  
0) 5 0. Thus, as in Thcorern 7.6.2, we have z ( k ) - h , ( k )  > 0 for all k 2 K ,  
and hence z ( k )  >_ h,+(k) for all k 2 K ,  also lirnk,,(z(k) - h(k)) = 
(Y 2 0 exists. Consequently, C,"=, q ( P ) u ( l  - Q)  < 00. Now, i n  view of 
p 2 p(k )  2 0 and q ( k )  5 Lq(k  - T )  it follows that 

CO m 

= c q ( k + a ) u ( k )  + c q (k+a ) p (k ) . l f , ( k -T )  < 0 0 ,  
I:= K I:=K 

which contradicts (7.6.5). I 

Example  7.6.3. Consider thc differerlce equation (7.6.4) for k 2 2 with 
p(k) = 1, T = (7 = 2, 

4k3 - 6k2  - 2k + 2 ( k  - 2)(2k + 1) 2k+ 1 
d k )  = k(k2  - 1) 

- 
k ( k  + 1) 

, F ( k )  = (-l)!"+'- 
k ( k  + 1) ' 

It is easy to see that q ( k )  --f 2 as k + CO,  h(k) = ( - l ) k/k?  and 
Cy=l p(k- + a)h ,+(k)  = m. Therefore, this equation is oscillatory. In fact, 
u ( k )  = (- l ) "/k  is such a solution. 

7.7. Oscillation and Nonoscillation for 

(7.7.1) A (u , (k)  - -p(k)? f , (k  - T)) + q ( k ) ~ ( k  - C) 0, k E IN 

where T is a positive and (7 is a nonnegative integer, and the functions 
p(k) and q ( k )  are defined on W, q ( k )  2 0 and is not identically zero. 

We shall need the following: 

L e m m a  7.7.1. Asslme that there exists a positive integer K such that 

(7.7.2) p ( K  + h )  5 1 for e E W 
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then for any eventually positive solution v ( k )  of the inequality 

Proof. Let kl  be a positive integer such that ~ ( k  - p) > 0 for all 
k E JN(kl ) ,  where again p = max{r,a} .  Then, by (7.7.3) we have 

A z ( k )  5 - q(k)v(k - 0) 5 0 for all k E IN(kl) ,  

which implies that z ( k )  is nonincreasing for k E IN(k1). HCIICE, if z ( k )  > 
0 does not hold, then we would have evcntually z ( k )  < 0. Thus, there 
exist an integer k2 > k-1 and a constant a > 0 such that z ( k )  5 -a for 
all k E IN(k.2).  Therefore, we have 

(7.7.4) ~ ( k )  5 - +p(k )u (k  - T) for all k E JN(k-2). 

Now choose a positive integer k3 sllcll that K + k3r 2 k2. Then, bv 
(7.7.2) and (7.7.4), we have for j = 0,1, .. . 

M 

(7.7.5) 

exist, and let 

M 

(7.7.6) 
P= I 

Further, assume that p(k )  2 1, k E IN, arid the functions v(k )  and 
z ( k )  be as in Lemma 7.7.1. Then, z ( k )  < 0 and A z ( k )  5 0 for all largc 
k E N. 

Proof. Clearly, z ( k )  is eventually noninc:reasing. W e  assumc that z ( k )  > 
0 eventually. Since p(k)  2 1, k E IN it follows that v(k )  > v ( k  - 7). 
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Hence, there exists a constant M > 0 and a positive integer kl such 
that v (k  - p) 2 M for all k E W(k1). Then, by (7.7.3) WC have Az(k )  5 
- M q ( k )  for k E W(k.1). Herm, it follows that 

which in view of p(k)  2 1, k E W yields 

(7.7.7) v(k) 2 V ( k  - r) + MHo(k ) ,  k E JN(k.1). 

Lct I l ( k )  he the grcatcst intcgcr value of ( k  - /cl)/.. Then, we have 

74k) 2 M [Ho(k)  + '. ' + Ho(k - (Il(k) - l).)] + ? / ( k  - Il(k).) 

2 M [Ho(k) + " ' + Ho(k - (I l(k) - l).)], k 2 kl + 7. 
This in vicw of thc fact that Ho(k) is tlcc:rcasing, WC get 

and consequently (7.7.8) yields 

(7.7.9) A z ( k )  5 - - kq (k )Ho(k )  for k E W(k2). 
M 
2 r  

In case .S = 0, a direct surnrrlation of (7.7.9) leads to a contradiction. 
Therefore, supposc that S # 0. Summing (7.7.9) from k to 00, we 
have z ( k )  2 (n/1/2~)H1(k) for k E W(k2). This together with (7.7.3) and 
p(k) 2 1, k E W yields 

(7.7.10) ~ ( k )  2 ~ ( k  - T )  + --Hl(k) for k E IN(k2). 
M 
27 
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Now let 12(k) be the greatest integer value of ( k - k 2 ) / r .  Then, as earlier, 
on using the fact that Hl(k) is decreasing, we get 

v(k)  > -12(k)H1(k) ,  k 2 k2 +r. 
M 
27- 

Thus, for k 2 k2 + r + a, 
M M 
27 27 

A z ( k )  5 - -q (k ) I z ( k  - O ) H l ( k  - a )  5 - -q(k)12(k - a ) H 1 ( k ) .  

Since k / l z ( k  - a) --f T as k + 00, there exists a positive integer 
k3 2 k2 + r + cr such that 12(k  - a) 2 k/(27) for k E JN(k3). Hence, 

M 
A z ( k )  5 - - 

(27)z 
k ( k ) H l ( k ) ,  k- E N ( k 3 )  

which gives 
M 

z ( k )  2 - H 2 ( k ) ,  k E JN(k3). 
(27) 

Thm, WC have 

il.1 w(k) 2 v ( k - r )  + - H Z ( k ) ,  k E W(k3).  

By repeating the above procedure, we can choose a positive integer k4 2 
k3 + T + a such that 

A z ( k )  5 - T k q ( k ) H 2 ( k ) ,  k E W(k4) .  
M 

(27) 

In general, there exists a sequence {ki }  of positive integers such that 

M 
b ( k )  5 - -kq(k)Ht-l(k), k E N(kZ+l). 

(271% 

In particular, we have 

M 
A z ( k )  5 - - 

( 2 T ) S + l  
k-q(k)Hs(k), E JN(ks+z), 

which in view of (7.7.6) irrlplies that z ( k )  + -cc as k + 00. This is a 
contradiction, and hence z ( k )  < 0 eventually. I 

Theorem 7.7.3. Assume that there exists a nonnegative integer S such 
that the functions H,(k) ,  j = 0,1, .  . . , s defined in (7.7.5) exist and (7.7.6) 
holds. Further, let p(k) 1. Then, the equation (7.7.1) is oscillatory. 
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Proof. The proof is imnlediat,e from Lemmas 7.7.1 and 7.7.2. I 

Remark 7.7.1. Theorem 7.7.3 with S = 0 reduces to Theorem 7.1.3. 

Example 7.7.1. Consider the difference equation 

(7.7.11) A(u.(k) - 7r(k - T ) )  + 1 
( k  + 1)I.G 

u.(k - 0) = 0, IC E IN 

and hencc 

Thus, we have 

i.e. condition (7.1.7) is not satisfied, and so Theorem 7.1.3 is not applicable. 

which implies 

Finally, since 
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it follows that 
03 c kq(k )Hi l ( k )  = 03. 

k A . 1  

Thus, with S = 2 conditions of Theorem 7.7.3 are satisfied, and hence the 
equation (7.7.11) is oscillatory. 

Theorem 7.7.4. In Theorern 7.7.3 the corldition p(k) 1 can be 
replaced by p( k )  2 1, k E W and that there exists a positive integer K 
such that p ( K  + CT) = 1 for C E IN. 

Proof. Thc proof is immediate from Lenmas 7.7.1 and 7.7.2. B 

Example  7.7.2. The difference equation 

(7.7.12) A ( u ( ~ )  - p ( k ) ~ ( k  - 2))  + l 
v(k  - 2) = 0, k E IN 

( k  + 1) l .S  

where p ( 0 )  = 4, p(1) = 1, p(k + 2) = p (k ) ,  k E W satisfics all the 
cxmtlitions of Theorern 7.7.4. Thns, the cqllation (7.7.12) is oscillatory. 

Theorem 7.7.5. In Tllcorcnl7.7.3 thc condition p(k) = 1 can be  replaced 
by p(k - cr)q(k) 2 q(k  - T), k 2 p and that therc exists a positive integer 
K such that (7.7.2) holds. 

Proof. If not, (7.7.1) would have an cventually positive solution ~ ( k ) .  
Then, by Lemma 7.7.1 there exists a positive integcr ko such that z ( k )  = 
v,(k) - p(k)7r(k - T) > 0 for k E W(k-0). Now from (7.7.1), we have 

& ( k )  = -q(k)u,(k - a) 
= -q(k)  [ z ( k  - (I) +p(k  - (7)u,(k - a - .)l 
= - q ( k ) z ( k  - 0) - q(k)p(k  - (7)U(k - (7 - 7) 
I: - q ( k ) z ( k  - a) - q ( k  - .r)7r(k - 0 - 7 )  

= - q ( k ) z ( k  - a) + A z ( k  - T ) ,  k 2 k.0 + T + (I 
i.e. 

But, Lernrna 7.7.2 implies that (7.7.13) cannot have an eventually positive 
solution. whic:h is a contradiction. I 

Theorem 7.7.6. In Theorern 7.7.3 the condition p(k) = 1 can be 
replaced by p(k )  2 1, k E W and that p(k - a ) q ( k )  5 q(k  - T )  for 
k 2 p. 
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Proof. If not, (7.7.1) would have an eventually positive solution u,(k).  
Then, by Lemma 7.7.2 there exists a positive integer kl such that z ( k )  = 
u,(k) -p(k)u,(k - T) < 0 for k E W(k.1). Now from (7.7.1), we have 

Az(k )  = -q(k)v,(k - a) 

= - q ( k )  [ z ( k  - 0) + p(k - a)v.(k - 0 - T ) ]  

2 - q ( k ) z ( k  - 0 )  - q ( k  - a)u (k  - a - T )  

= -q (k )Z (k  - 0) + a Z ( k  - T ) ,  

which shows that - z ( k )  is an eventually positive solution of the inequality 

(7.7.14) A ( w ( ~ )  - ~ ( k  - T ) )  + q ( k ) ~ ( k  - 0 )  5 0. 

But, Lemmas 7.7.1 and 7.7.2 imply that (7.7.14) cannot have an eventually 
positive solution, whic:ll is a c:ontradic:tiorl. I 

Example 7.7.3. The difference equation 

1 
(7.7.15) A ~ ( k )  - - ( k + 2  k + l  ) ( k  + l ) W  u ( k  - 1) + U(k  - 1) = 0, k E IN 

satisfies all the conditions of Theorem 7.7.6. Thus, the equation (7.7.15) is 
oscillatory. 

7.8. Oscillation and Nonoscillation for 

(7.8.1) A ( r ( k ) u ( k )  - p ( k ) ~ ( k  - T)) + q(k)v.(k - ~ ( k ) )  = 0, k E IN 

where T E W(1) and the functions ~ ( k )  > 0, p(k )  2 0, q ( k )  2 0, o ( k )  E 
IN for all k E W, and lirn~,,(k - a ( k ) )  = CO. 

It is clear that the solutions of equation (7.8.1) are defined for k 2 
-p, where p = max { T ,  rnaxkEIN(a(k) - k ) }  . We will also need the 
corresponding difference inequality 

(7.8.2) A ( ~ ( k ) ~ ( k )  - p ( k ) ~ ( k  - T)) + q(k)U(k  - ~ ( k ) )  5 0, k E IN 

WC begin with the following: 

Lemma 7.8.1. Assume that there exists a positive integer K such that 
either 

(7.8.3) p ( K  5 1, e E IN(1) 
?-(K + ( e  - 1 ) T )  
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or 

Further, assume that there does not exist a kl E N such that q ( k )  = 0 
on IN(k.1). Let, u (k )  be an eventually positive solution of the equation 
(7.8.1) (or inequality (7.8.2)) and define z ( k )  = ~ ( k ) u ( k )  - p(k)u(k - 7). 
Then, there i s  a k2 E W such that z ( k )  > 0 and A z ( k )  5 0 on W(k.2). 

Proof. W e  shall prove the lcmnla for (7.8.1), the proof for (7.8.2) is similar. 
From (7.8.1), we have A z ( k )  = - q ( k ) v ( k  - n ( k ) )  5 0 eventually. Now 
since q ( k )  0 on IN(k1) for any k.1 E W, z ( k )  must be nonincreasing and 
carmot be eventually constant. Hcnce, there cxists a E IN(k,) such that 
either z(k) > 0 or z ( k )  < 0, k E IN(k.2). Let z ( k )  < 0, k E N(k.2). Then, 
O < ~ ( k ) u ( k )  < p(k)u(k - 7) wl1ic:h implies t,hat p(k) > 0 011 W(k2) .  
There exists a constant, m < 0 and k3 2 k2 s11c.h that z(k) 5 m < 0 on 
N(k3) ,  i.e. 

(7.8.5) r (k )u . (k )  5 ' rn + p(k)u(k - 7). 

We choose an integer k* sufficiently large so that I< + k * ~  2 k g .  

If (7.8.3) holds, then from (7.8.5) we have 

T(K + (k* + ~)T)TI , (K  + ( k*  + k ) ~ )  
5 ' rn  + p ( K  + (IC* + k ) ~ ) u , ( K  + (k* + k - 1 ) ~ )  

= ' r n  + 
r ( K  + ( k *  + k - 1)7) 

5 ' rn  + T (K  + (k*  + k - 1 ) ~ ) u , ( K  + (k* + k - 1 ) ~ ) .  

This inequality by induction leads to 

T ( K  + ( k *  + k)T)?L(K + (k* + k)T) 5 km, + T ( K  + k*r )u (K + k*T)  

The right side of the above inequality tends to - 00 as IC + 00, arid this 
implies that u ( k )  is eventually negative, which is a contradiction. Hence, 
~ ( k )  > 0 011 N(k2).  

If (7.8.4) holds, then from (7.8.5) WC have 

u(K  + ( k*  + k)T) 5 
'rn p ( K  + ( k *  + k)7) x 

T ( K  + (k* + k ) T )  T ( K  + (k* + k)7) + 
u ( K  + (k* + k - 1)r) 

L 
m 

T ( K  + ( k*  + k)7) + u(K + ( k *  + k - 1)T). 
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The right side of the above inequality tends to - CO as k + CO, which 
is again a contradiction. Hence, z ( k )  > 0 on W(k2) .  I 

Theorem 7.8.2. with respect to difference equation (7.8.1) assume that 
(7.8.3) or (7.8.4) hold and q ( k )  0 on any infinite interval. Further, 
assume that either 

(7.8.6) p(k) + q ( k ) a ( k )  > 0 

or 

(7.8.7) a ( k )  > O and q(P) 0 for f E W ( k , K * )  

where K* = rnin{f : f - cr(f) < k 5 f + 1 - a([ + l)}. Then, the equa- 
tion (7.8.1) is oscillatory if and only if (7.8.2) does not have an eventually 
positive solution. 

Proof. The sufficiency is obvious. Supposc ~ ( k )  is an eventually posit,ive 
solution of (7.8.2). W e  shall prove that (7.8.1) also has a positive solution. 
Let z ( k )  = ~ ( k ) u ( I c )  - p(k)w,(k - 7). Then, by Lenlma 7.8.1 there exists 
a k2 E W such that' A z ( k )  5 0 and z ( k )  > 0 011 W(k2) .  Thus, 
lirr1k.03 z ( k )  2 0 exists. Hence, A z ( k )  + q ( k ) u ( k  - cr(k)) 5 0 on W(k.2). 
Summing this inequality from k to CO, we obtain 

Therefore, it follows that 

This implies that 

M 

(7.8.8) r(k)u.(k) 2 p(k)w,(k - T) + x q ( f ) u ( t  - .(e)) on IN(k2). 

Let kg E W be the least integer such that (7.8.8) holds for all k E 
IN(k3), and set = rnax(7, rnaxk>k:,{k3 - ( k  - ~ ( k ) ) } } .  We also consider 
the set of functions 

- 
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Thus, for each k ,  {un , , (k )}  is a decreasing sequence and ~ , ( k )  2 0. 
Thercfore, the limit exists. We let v(k )  = lirnm+cc 71m,(k) for k 2 kg - 8. 
Then, it follows that T v ( k )  = ~ ( k ) ,  i.e. 

1 
r(k)w,(k) 

(7.8.11) v ( k )  = lp(k)?l(k - T)W,(k - T) 

WC necd to show that w ( k )  > O for k 2 IC3 - 8. Supposc there cxists 
a K 2 kg - sllch that tu (K) = 0 and W( k )  > 0 for k3 - /j 5 k < K. 
Then, K 2 kg and from (7.8.12), WC get 

Thus, we must have p ( K )  = 0 and 

(7.8.13) q(e )w( l-  g([)) = O for all li E IN(K). 

Hence, either q ( K )  = 0 or o ( K )  = 0, so condition (7.8.6) cannot hold. 
Thcrcfore, we assume that condition (7.8.7) holds, i.c. g ( K )  > 0 and 
q(l) 0 for l E W ( K , K * ) ,  where K* = min{l : l? - .(l) < K 5 
l+l-o(li+l)}. But, thiscontradicts (7.8.13), since l -o ( l )  < K implies 
that w ( l  - o( l ) )  > 0 and this in turn implies q(l) = 0 on N ( K , K * ) .  
Hence, u ~ ( k )  > 0 for k 2 kg - /?. Clearly, this w(k )  is a solution of (7.8.1) 
011 IN(k3). B 

7.9. Oscillatory and Asymptotic Behavior for 
(7.9.1) A (u(k) + p(k)u(k - T)) + q ( k ) f ( u ( k  - g)) = 0, k E IN 

where p(k)  and q ( k )  are such that q ( k )  2 0 for all k E IN, and are not 
zero for infinitely many values of k ,  7 E W(1), 0 E W, and f : IR 4 IR 
is continuous with w, f (u )  > 0 for W, # 0. We shall need the following 
condition in several results that follow: 

(7.9.2) f (u)  is bonded away from zero if W. is bounded away from zero. 
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W e  begin with the following lemma which will be used frequently. 

Lemma 7.9.1. Let v.(k) be a nonoscillatory solution of (7.9.1). Set 
.(k) = u ( k )  + p(k)u(k- - 7 ) .  

(a) If v,(k) is eventually positive (negative), then z ( k )  is eventually 
nonincreasing (nondecreasing). 

(b) If u ( k )  is eventually positive (negative) and there exists a constant 
P1 such that 

(7.9.3) -1 < P1 5 p (k ) ,  

then eventually z ( k )  > 0 ( z ( k )  < 0). 

(c:) If i n  addition to (7.9.2) 

(7.9.4) 
M 

C q ( k )  = m 

and there exists a constant P2 such that 

(7.9.5) -1 < P2 5 p(k )  5 0, 

then z ( k )  + 0 as k + cm. 
(d) Suppose that (7.9.2) and (7.9.4) hold, and there exists a constant P3 
such that 

(7.9.6) p(k) 5 P3 < - 1. 

If u(k) is eventually positive (negative), then eventually z ( k )  < 0 ( z ( k )  > 
0). 
(e) Suppose that (7.9.2) and (7.9.4) hold, and there exists a constant P4 
such that 

(7.9.7) P4 5 p(k)  5 0. 

If u ( k )  is eventually positive (negative), then limk-m z ( k )  exists and its 
value is either 0 or - m (0 or m). 

(f) Suppose that (7.9.2) and (7.9.4) hold, and there exist constants P3 
and P4 such that 

(7.9.8) P4 5 p(k) 5 P3 < - 1. 

If u ( k )  is eventually positive (negative), then limk,, z ( k )  = “00 
(limk-.+M z(k) = m). 

Proof. All parts will be proved for solutions that are eventually positive. 
The arguments for the case of eventually negative solutions are similar. 
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(a) From (7.9.1) it follows that A z ( k )  = -q(k)f(u,(k  - a)) 5 0 for all 
large k .  Thus, z ( k )  is eventually nonincreasing. 

(b) If u,(k) is eventually positive arid the conclusion does not hold, then 
since by (a) z ( k )  is nonincreasing, it follows that eventually either z ( k )  
0 or z ( k )  < 0. Now z(k) = 0 implies that A z ( k )  = - q ( k ) f ( u ( k - a ) )  S 0, 
but this contradicts the fact that q ( k )  0 for infinitely manv k .  If 
z (k )  < 0, then u ( k )  < -p(k)w,(k - T )  so p(k) < 0. Frorn (7.9.3) it 
follows that - 1 < P1 < 0 and v.(k) < -Plw,(k - 7). Thus, by induction, 
we obtain u.(k + j ~ )  5 (-Pl)ju(k) for all positive integers j .  Hence, 
u ( k )  + 0 as k “-f m. But this, together with the fact that p(k) is 
bounded, implies that z ( k )  decreases to zero as k + m. This contradicts 
the fact that z ( k )  < 0 and completes the proof of (h). 

( c )  Note first, that (7.9.5) implies (7.9.3) with P1 replaced by Pz. If 
u(k) is eventually positive, then (a) and (b) imply that z ( k )  is eventually 
positive and nonincreasing. Therefore, z ( k )  --f L 2 0 as k 4 CO. Now 
suppose that, L > 0. B y  (7.9.5), we have z ( k )  5 u ( k ) .  Thus, there exists 
an integer kl 2 ko E IN such that L 5 z ( k  - 0) 5 u(k - 0) for k 2 kl. 
Herm, from (7.9.1) and (7.9.2), it follows that & ( k )  5 -Llq(k) for some 
positivc constant L1. Summing the last inequality, WC obtain 

1:- 1 

which as k + CO, in view of (7.9.4), implies that z ( k )  ”+ -ca. This is a 
contradiction. 

((1) Suppose u(k )  is eventually positive. If the conclusion does not hold, 
then eventually z ( k )  2 0, i.e. u.(k) + p(k)u.(k- - T )  2 0. Thus, from 
(7.9.6), we have u.(k) 2 -P3u(k - 7) for sufficiently large k.  It follows 
by induction that for each positive integer j ,  u ( k  + j ~ )  2 ( -P3 ) j u , (k ) ,  
which implies that u.(k) + m as k -+ m. Thus, (7.9.1) and (7.9.2) imply 
that there exist a positive integer IC:! and a positive constant L2 such 
that A z ( k )  = -q(k) f (v . (k  -a)) 5 -L:!q(k) for k 2 k2. On summing the 
last inequality, we get 

k-l 

o L: z ( k )  5 z(k2) - L:! C q(t) ”+ - m as k + m, 
/=k2 

which is a contradiction. 

(e) For ~ ( k )  eventually positive, we have from (7.9.1) that A z ( k )  5 0 
for all sufficiently large k .  Hence, z(k) -+ L3 < CO as k -+ c a .  If 
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L3 > -00, then summing (7.9.1), we obtain 

M 

Cq(P) f (u(P - a)) = z ( k )  - L3 < c m .  

1=6: 

The last inequality, in view of (7.9.2) arid (7.9.4) irnplics that lim irlf u ( k )  

= 0. Let IC3 2 k.0 be such that ~ ( k  - 7) > 0 for k 2 k3. If L3 < 0, therc 
exists k4 2 k3 so that 

L,- 03 

We then have from (7.9.7) that 

03 

7"(k4) = z(k4) - P ( k 4 ) l b ( k * - 7 )  5 L3 + c q ( P ) f ( u ( P - g ) )  - P47L(k4-T) 

P d ; 4  

L3 L3 - L3 < L3"" - - 
4 4  2 '  

which contradicts u ( k )  > 0. If L3 > 0, thcn by (7.0.7) WC find that 
v,(k) 2 z ( k )  > L3 for k 2 kg. Thereforc, it follows from (7.9.2) that, there 
exists a cxmstant L4 > 0 such that 

W 

e=!% 

which implies that z(k) "-t 00 as k 4 00 contradicting z ( k )  + L3 < 00. 
Thus, either L3 = 0 or - c m .  

(f) Note that (7.9.8) implies that (7.9.6) and (7.9.7) hold. Hence, for ~ ( k )  
eventually positive from (a), (d) and (e), we have Az(k )  5 0, z ( k )  < 0 
and z ( k )  + 0 or -00 as k "-$ m. Clearly, z ( k )  + -m as k 4 m. I 

Theorem 7.9.2. Suppose there exist positive constants q and B such 
that 

(7.9.10) If(.)/ 2 B1u for all U ,  

and 

(7.9.11) 0 5 p (k ) ,  k E  W. 

Then, every nonoscillatory solution of (7.9.1) tends to 0 as k "+ c m .  
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Proof. Let u ( k )  be an eventually positive solution of (7.9,1), say v,(k) > 
0, u,(k - T )  > 0 and w,(k - a) > 0 for k 2 ko E IN. B y  parts (a) 
and (b) of Lemma 7.9.1, z ( k )  is eventually positive and nonincreasing, so 
z ( k )  4 L5 2 0 as k + m. Summing the equation (7.9.1) from k to m 
for k 2 ko, we obtain 

m 

z ( k )  = L5 + c 9(")f(u,(! - a)), k 2 ko. 
P=k 

Now by (7.9.9) and (7.9.10), we get 

03 03 

9 B - 5 ( l -  0) I c 9 ( 4 ) f ( u , ( l -  a)) = z ( k )  - Lj < 03, 
P=B P=k 

which implies that u ( k )  4 0 as k -+ m. The proof is similar when ~ ( k )  
is eventually negative. I 

Example 7.9.1. The difference equation 

satisfies all the conditions of Theorem 7.9.2, and hence all nonoscillatory 
solutions tend to zero as k 4 m. In fact, u ( k )  = 1/2k is such a solution. 

Theorem 7.9.3. If (7.9.2), (7.9.4) and (7.9.5) are satisfied, then every 
nonoscillatory solution of (7.9.1) tends to zero as k + m. 

Proof. Let u.(k) be an eventually positive solution of (7.9.1). First we 
will prove that u,(k) is bounded. B y  Lemma 7.9.1(a), (b) and (c), we see 
that 0 < z ( k )  5 M for some positive constant M and so, by (7.9.5) we 
have 

(7.9.12) 4 k )  I - P211,(k - T )  + M .  

Assume that ? ~ ( k )  is not bounded. Then, there exists a subsequence { k i }  
of IN, so that limi+m u(k,) = m and u(ki )  = maxr:,<j<B, u ( j ) ,  i = 
1,2, ... . From (7.9.12), for i sufficiently large, we get 

u(k.i) 5 - P2~ , (k . i )  + M 

and so 

(1 + Pz)u(h) I M ,  

which as i -+ m leads to a contradiction. 
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NOW suppose that lirn S U ~ ~ ; - ~  ~ ( k )  = cy > 0. Then, there exists a 
subsequence {ki} of W, with kl  large enough so that u ( k )  > 0 for 
k > k l  - T and u(ki)  + LY as i + m. Then, from (7.9.5), we have 

Z(ki) 2 w.(k;) + P21L(ki - r) 

u*(ki - r) 2 - -(7L(k.i) - Z(ki)) .  
p2 

and so 
1 

As i + m, we obtain 

Since - P2 E (0, l), it follows that (Y = 0, i.e. u.(k) -+ 0 as k + m. 
The arguments when u(k)  is eventually rlcgativc are similar. I 

Example 7.9.2. Theorern 7.9.3 implies that all nonoscillatory solutions 
of the difference equation 

a u(k) - -?r(k - 2) + 
( 2  ) 2 k ( k +  l ) ( k -  2) 

( k  - 1)2(k2 - 7k + 4) 
u3 (k-1 )  = 0, k . 2 7  

tend to zero as k -+ 00. One such solution is u ( k )  = l / k .  

The above results guarantee that under certain appropriate conditious 
all nonoscillatory solutions of (7.9.1) tend to zero if q ( k )  2 q or ErzK q ( k )  
= m holds. It is natural to ask if the same conclusion holds provided 

(7.9.13) c d k . 1  < 
cc 

!%=K 

The following result gives a partial answer to this question. 

Theorem 7.9.4. Let in addition to the condition (7.9.5) the function f 
be nondecreasing. Further, let there exist a positive nondecreasing function 
h(k) such that h,(k) + 00 as k + m, and for sufficiently large k 

(7.9.14) - 

Then, the equation (7.9.1) has a positive solution which tends to zero as 
k "-f m. 

Proof. Consider the Banach space l: of all real functions v = v (k ) ,  k 2 
K with the sup norm 117111 = supk>K Iw(k)l. k t  S be a subset of l: 
defined as 

- 

S = { v  E l& : 0 5 U(/€) 5 1, k 2 K}. 
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7 4 k )  = -p(k )v (k  - T )  h’(k) + h(k)  5 q ( e ) f  (-) , k > K .  h(k - T )  h(! - 
L=k 

By (7.9.14), it is clcar that IS C_ S, and the nondecreasing nature of 
f implies that I is an increasing mapping. Thus, Theorem 7.2.3 is 
applicable, and there exists a U E S such that 7 w  = I ) ,  i.c. 

k > K  

and v ( k )  2 0 for k 2 K.  If we sct v,(k) = w(k)/h , (k) ,  then from (7.9.15), 
WC have 

M 

u ( k )  = - p ( k ) u , ( k  - 7 )  + c q (P ) f ( u , ( !  - a)), k > K 
B =A: 

i.e. ~ ( k )  is a positive solution of the equation (7.9.1) with limr.+m ~ ( k )  = 
0. I 

Example 7.9.3. Consider the diffcrence equation 

(7.9.16) A ( u ( k )  - i u ( k  - 1) + 2(4k+13),5u1/5(k - 3) = 0, k 2 3. 

It is easy to see that all conditions of Theorem 7.9.4 are satisfied wit,h 
h(k) = 2k. Therefore, (7.9.16) has a positive solution which tends to zcro 
as k 4 c c .  In fact, u ( k )  = 1/2” is such a solution. 

Theorem 7.9.5. If (7.9.2), (7.9.4) and (7.9.8) arc satisfied, then every 
nonoscillatory solution of (7.9.1) tends to oc) or - cc as k 4 c c .  

Proof. The proof is immediate from Lemma 7.9.l(f). I 

Example 7.9.4. The difference equation 

1 1 
4 

4k + l u ( k  - 1) + (7.9.17) a - - 1 3 
k - l  

uQ(k-2)  = 0, k > 3 
( k  - 2)a 

where 0 < a 5 1 is a ratio of odd positive integers satisfies all conditions 
of Theorem 7.9.5. Therefore, all nonoscillatory solutions of (7.9.17) tend to 
& cc as k 4 CO. In fact, u. (k)  = k is such a solution. 
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Theorem 7.9.6. Suppose that (7.9.2), (7.9.4) and (7.9.5) hold. If f is 
a nondecreasing fllrlction such that 

(7.9.18) 1" 5 < 00 and > - 00 for all cr > 0, 

then the equation (7.9.1) is oscillatory. 

Proof. Suppose that (7.9.1) has a nonoscillatory solution u,(k) .  If w.(k) > 
0 for k 2 ko, thcn by Lemma 7.9.l(a) and (1)) there exists a kl 2 ko 
such that u.(k - 7 )  > 0, u ( k  - 0) > 0, z ( k )  > 0 arld Az(k )  5 0 for 
k 2 k l .  We note that (7.9.5) irrlplics that z ( k )  I u ( k )  and therefore from 
(7.9.1), we have 

A z ( k )  + q ( k ) f ( z ( k  - 0)) I 0 

A z ( k )  + s ( k ) f ( z ( k ) )  I 0 

and so, WC obtairl 

or 

Now for z ( k +  1) 5 t I z(k) we havc f(t) 5 f ( z ( k ) ) ,  and so 

Summing both sides of the above inequality from k.2 to k ,  we get 

which contradicks the condition 
eventually negative is similar. 

(7.9.4). The proof for the case .(k) 
I 

Theorem 7.9.7. Suppose that (7.9.2), (7.9.4) and (7.9.8) hold. If T > ~7 
and f is a nondecreasing function such that 

O0 dt 
(7.9.19) 1 f( dt 

E t )  
< 00 for all E > 0, 

then the equation (7.9.1) is oscillatory. 

Proof. If not, then there exists a nonoscillatory solution u.(k) of (7.9.1), 
and let u(k) > 0 for k 2 k ~ .  From Lenma 7.9.l(a) arld (f) there exists a 
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kl 2 k.0 such that ~ ( k  - T )  > 0, u ( k  - 0) > 0, z ( k )  < 0 and A z ( k )  I 0 
for k 2 k l .  Then, from (7.5.8) WC have 

P4?/,(k - T )  5 p(k)U(k - T )  < Z ( k )  < 0 

(7.9.20) 

Now for z(k)/P4 5 t 5 z ( k  + l)/P4, WC have f ( z ( k  + l)/P4) 2 f ( t ) ,  
and so 

Using (7.9.21) in (7.9.20) and surrlnlirlg both sides from k2 to k ,  WC gct 

But  this in view of (7.9.19) contradicts (7.9.4). The proof for the case u.(k) 
eventually negative is similar. I 

Example 7.9.5. Theorem 7.9.6 implies that all solutions of 
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is oscillatory. In fact, one such solution of (7.9.22) is u(k )  = ( - l ) ” e k .  

Similarly, Theorem 7.9.7 implies that all solutions of 

are oscillatory. One such solution of (7.9.23) is ~ ( k )  = ( - l ) k / k .  

Theorem 7.9.8. Suppose that (7.9.11) holds. Then, all unbounded 
solutions of the equation (7.9.1) are oscillat,ory. 

Proof. Suppose the contrary. Without loss of generality, let u ( k )  be an 
unbounded and event~~allv positive solution of (7.9.1). B y  Lernrna 7.9.l(a) 
and (h), we have z (  k )  > 0 and A z ( k )  5 0 eventually. Hence, 

(7.9.24) z ( k )  ”-f L E [ O , C O )  as k + 03 

Now, in view of (7.9.11), z ( k )  2 u(k )  and (7.9.24) show that u,(k) is 
bounded, which is a contradiction. I 

Example 7.9.6. Theorem 7.9.8 implies that all unbounded solutions of 

(7.9.25) A ( u ( ~ )  + k ~ ( k  - 1)) + (2k2 - 2k - 1) 
( k  - 3)” 

~ “ ( k  - 3) = 0, k 2 4 

are oscillatory, where (Y E (0, 0 3 )  is the ratio of odd positive integers. One 
such solution of (7.9.25) is w.(k) = ( - l ) k k .  

Now we shall study the difference equation (7.9.1) when q ( k )  is even- 
tually negative. For this it is convenient to write (7.9.1) in the following; 
form 

(7.9.26) A ( u . ( ~ )  + p ( k ) ~ , ( k  - 7)) = q ( k ) f ( u . ( k  - Q)), k E W. 

Theorem 7.9.9. Suppose that conditions (7.9.11) and (7.9.13) hold, and 
f is nondccreasing. Further, suppose that 

(7.9.27) / f( = CO and 
’0° dt 

. c  t )  
- m for all c > 0. 

Then, all nonoscillatory solutions of (7.9.26) are bounded. 

Proof. Let u(k )  be a nonoscillatory solution of (7.9.26), and let ko E W 
be such that Iu(k)I # 0 for all k E W(k0). If u ( k )  > 0 for all k 2 ko, 
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then w.(k - T - 0) > 0 for all k >_ k.0 + T + CJ = k l .  Thus, from (7.9.11) 
it follows that z ( k )  = u ( k )  +p(k )u (k  - 7 )  > 0 and Az(k)  2 0 for all 
k E lN(kl) .  Hence, z ( k )  is nondecxeasing and satisfies z ( k )  2 u,(k) for 
all k 2 k l .  Thcrefore, in view of the fact that f is nondecreasing, we find 

W k )  = q(k ) f (u (k  - g) )  I q(k ) f (z (k  - 0)) L q(k)f(z(k-)) 

(7.9.28) 

Sincc z ( k )  5 t 5 z ( k  + 1) implies f ( t )  2 f ( z ( k ) ) ,  from (7.9.28) it follows 

Sunlrning the last inequality from k.1 to k - 1, WC obtain 

and by (7.9.13) and (7.9.27) we find that z ( k )  is bounded from above. 
Now 0 < v.(k) 5 z ( k )  implies that u(k) is also bounded from above. The 
proof for the case when u ( k )  is eventually negative is similar. I 

Corollary 7.9.10. Suppose that i n  addition to the hypothesis of The- 
orem 7.9.9, p(k) 4 m as k ”+ m. Further, suppose that u (k )  is a 
nonoscillatory solution of (7.9.26). Thcn, u ( k )  4 0 as k 4 m. 

Proof. If v,(k) is eventually positive, then from Theorem 7.9.9, z(k) is 
eventually positive, nondecreasing and boundcd above. Thus, there exists 
a constant L > 0 such that 

p(k)u,(k - T )  < z ( k )  < L 

for sufficiently large k .  Thus, 

Thc proof is similar when u ( k )  is eventually negative. I 

Example 7.9.7. The difference equation 
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satisfies all the hypothesis of Theorem 7.9.9 and has a bounded rlonoscilla- 
tory solution u ( k )  = 1 - e-". However, Corollary 7.9.10 does riot apply 
to (7.9.29) since p(k )  E 1. 

The difference equation 

(7.9.30) A(u.(k)  + u,(k - 2)) = (e - 1)(1+ e"2)e"21'+3u,3(k - l), k E IN 

has an unbounded 1lonosc:illatory solution u ( k )  = ek.  Clearly, (7.9.30) 
satisfies all the conditions of Tlleorem 7.9.9 except (7.9.27). 

Theorem 7.9.11. In addition to (7.9.2) and (7.9.4) assume that p(k)  5 p 
for some constant p. Further, assume that u ( k )  is a bounded nonoscilla- 
tory solution of (7.9.26). Then, liminfAy-oo (u,(IC)I = 0. 

Proof. Let 7 r ( I C )  be a bounded nonoscillatory solution of (7.9.26) with 
~ ( k )  2 c > 0 for k E W(k.0). Then, u ( k  - T - U )  2 c for all IC 2 
k.0 + T + a = k l .  Now (7.9.2) implies that f ( 4 k  - U ) )  2 M ,  k E IN(kl) 
for some M > 0. Hence, A z ( k )  = q ( k ) f ( u ( k  - a)) 2 M q ( k ) ,  k E W ( k l ) .  
Thus, 

A:-l 

z(k) = z(kl) + M  C q(~) .-+ m as IC + CO. 

However, since u,(k) is bounded, say 0 < u.(k) 5 13, we have z ( k )  5 
B + pB. This contradiction completes t,he proof. I 

Corollary 7.9.12. Suppose that hypothesis of Theorem 7.9.11 hold. 
Then, every bounded solution of (7.9.26) is either oscillatory or tends to 
zero as k -+ m. 

e=kl 

Corollary 7.9.13. If (7.9.2), (7.9.4) hold, and p(k )  5 0 then every 
nonoscillatory solution u ( k )  satisfies liminfk,,, ( u ( k ) (  = 0, or Iv,(k)( -+ 
CO as k + CO. 

Example 7.9.8. The difference equation 

(7.9.31) A(u(k)-2u.(k-1)) = 
( k  - l ) "-l (k + 3) 

k ( k  + 1) 
lv.(k- 1)l"sg.n v,(& I), 

k E N(2) 

where Q 2 1 satisfies all the assumptions of Theorem 7.9.11 and it has a 
bounded nonoscillatory solution u ( k )  = l / k  for which lim inf u(IC) = 0. 

I:+m 

The difference cquatiorl 

(7.9.32) A(u.(k) -221(k-l)) = 
( k  + 3)(k - l)" 

k."+l(k + 1) 
lu(IC-I)("sgn u(k--I) ,  

IC E N(2) 
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where Q > 0 has a bounded nonoscillatory solution w,(k) = 1 + l / k  for 
which liminfl:,, u.(k) = 1. Clearly, the equation (7.9.32) satisfies all the 
assumptions of Theorem 7.9.11 except condition (7.9.4). 

Corollary 7.9.12 implies that every bounded solution of the difference 
equation 

(7.9.33) +4k-2) )  = ( k - q 3  - 2k - 3 ($1:) + (k-l)(k-2) 1 u 3 ( ~ - ~ ) ,  

k E W(3) 

is either oscillatory or tends to zero as k -+ m. One such solution of 
(7.9.33) is ~ ( k )  = ( - - ~ ) ~ / k .  

Corollary 7.9.13 implies that every nonoscillatory solution u(k) of the 
equation 

1 
k - 2  
-7/,(k - 

k > O + l  

where 0 < CY 5 1 and 0 E W(1) satisfies either linlinfl:.m Iu(k)I = 0, 
or lu,(k)l -+ 00 as k -+ 00. One such solution of (7.9.34) is w,(k) = k .  

Theorem 7.9.14. 111 addition to (7.9.4), (7.9.8) and (7.9.18) assume that 
U 2 T and f is nondecreasing. Thcn, every nonoscillatory solution u ( k )  
of (7.9.26) satisfies lu(k)l -+ m as IC -+ 00. 

Proof. Let ~ ( k )  be a nonoscillatory solution of (7.9.26). If u(k) is 
eventually positive, then there exists ko E IN such that v,(k - T - U )  > 0 
for k E W(k0). Again, let z ( k )  = u(k)+p(k)w.(k-r) then since & ( k )  2 
0 for k E IN(ko), z ( k )  is nondecreasing for k E IN(k0) .  Therefore, 
z ( k )  ”+ L > -00 as k -+ m. If L 5 0 then z(k) < 0 for k 2 ICo, and 
hence 

0 > z ( k )  = ?r(k) + p ( k ) u ( k  -7) > P4w,(k - T ) ,  k 2 /co. 

Thus, it follows that ~ ( k )  > z(k  + T ) / P ~  for k 2 ko. Now since U 2 T 

and f is nondecreasing, we find 

so that 
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Since for z(k + l)/P4 5 t 5 z ( k ) / P 4  we have f (z(k)/P4) 2 f ( t ) ,  it 
follows that 

Surnming the last inequality from ko to k - 1 and taking the limit as 
k + m, we obtain 

which in view of (7.9.4) and (7.9.18) is irnpossiblc. Thus, L > 0.  Now let 
,471 2 ko be such that 0 < z(k) 5 ~ ( k )  + P3v.(k - T) for k 2 k l .  Then, 
v,( k )  2 -P3u.(k - T) and by induction, we have u ( k  + j ~ )  2 (-P3)Ju(k) 
for cach positive integer j .  But, this implies that ~ ( k )  + m as k "-f m. 
The proof is similar when ~ ( k )  is cvcntuallv negativc. B 

Corollary 7.9.15. If thc conditions of Thcorcm 7.9.14 hold, then every 
solution u,(k) of (7.9.26) is either oscillatory or satisfies lu(k)l  + m as 
k + m. 

E x a m p l e  7.9.9. The difference equation 

(7.9.35) A(v.(k) - 2v.(k - 1)) = 12(2)2k/3u.'/3(k - 3), k E W(1) 

satisfies all t,he conditions of Corollary 7.9.15. Hence, every solution of 
(7.9.35) is either oscillatory or tends to * cc as k + m. One such 
solution of (7.9.35) is u ( k )  = ( - 1 ) ~ 2 ~ .  

7.10. Oscillation and Nonoscillation for 

(7.10.1)s A ( u ( k )  + p ( k ) ~ ( k  + ST)) - q ( k ) f ( ~ ( ~ ( k ) ) )  = F ( k ) ,  k E W 

where S = 51,  T E IN(l), a ( k )  E I N ,  IC E IN with limk:,, a ( k )  = 
m, p(k) 2 0 eventually, q ( k )  2 0 eventually, unless otherwise stated, and 
f : R "-f R is continuous with t ~ f ( 7 1 )  > 0 for 'U. # 0. 

Theorem 7.10.1. Assume that q ( k )  2 0 eventually, and 

(i) there exists an oscillatory function h(k)  such that Ah,(k)  = F ( k )  
(ii) limsupA,,, h,(k) = m and IiminfA++, h,(k) = -CO. 

Then, every bounded solution of (7.10.1)s is oscillatory. 

Proof. The proof is similar to that of Theorern 7.6.1. B 
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Theorem 7.10.2. Assume that q ( k )  5 0 eventually, and the assumptions 
(i) and (ii) hold. Then, the equation (7.10.1)s is oscillatory. 

Proof. The proof is similar to that of Theorem 7.6.2. I 

Now we shall consider the case when (7.10.1)6 is superlinear, i.e. when 
f satisfies the condition 

Au,(l) 
f(u) is nondecreasing for 'U. # 0, < m  

(7.10.2) 00 

and C Au(e) > -m where ko E IN( 1). 
f(-.(l + 1)) e=k0 

For convenience, we set 

A ,  = { k E IN : ~ ( k )  > k + (Y + l}, o/ is a positive integer. 

Theorem 7.10.3. I n  addition to the assumptions (i), (ii) and (7.10.2) 
assume that 

(iii) the func:tion h,(k)  is periodic with period T, i.e. h(k f T) = h,(k) 

6.1 C & A ,  d k . 1  = m. 
Then, (1) the equation (7.10.1)-1 is oscillatory provided 0 5 p(k)  < p 
< 1 and a = 0 

(2) the equation (7.10.1)1 is oscillatory provided 1 < p 5 p(k )  < v 
and CY = T. 

Proof. Let ~ ( k )  be a nonoscillatory solution of (7.10.1)6, which we 
assurne to be eventually positive. Then, there exists an integcr ko E W 
such that v.(k) > 0, u ( k  + ST) > 0 arid 7r(a(k)) > 0 for k E W ( k o ) .  
We define z ( k )  = u ( k )  + p(k)u(k + ST) and w(k)  = z ( k )  - h, (k ) .  Then, 
Aw(k )  = q ( k ) f ( u ( n ( k ) ) )  2 0, k E W ( k 0 ) .  We claim that ~ ( k )  > 0 for 
k 2 ko. Otherwise, w(k )  5 0 for k 2 kl  for some kl 2 ko,  and hence 
z ( k )  - h,(k) 5 0, i.e. 0 < z ( k )  5 h , ( k ) ,  k E W(k1) which contradicts the 
fact that h ( k )  is oscillatory. Now we consider the following two cases: 

Case 1. S = -1 and 0 < p ( k )  < p  < 1. Since 

u(k) = w ( k )  + h ( k )  - p ( k ) u ( k  - T )  

= W ( k )  + h(k)  - p ( k ) ( W ( k  - T )  + h,(k - T) - p(k - 7)1/,(k - 27)) 

i n  view of (iii) and Aw(k) 2 0, k E W(k0) we can choose k2 sufficiently 
large so that 

(7.10.3) ~ ( k )  2 (1 - p ) ( w ( k )  + h, (k ) )  for k E N(k2) .  



546 Chapter 7 

Now WC choose an integer kg 2 such that 

(7.10.4) u.(k) 2 (1 -p ) (w (k )  + h(k-3)) = <(LC), k E W(k3).  

It  isclear that Aw(k) = A<(k)/(l-p), and ( ( k )  2 (l-p)(211(k3)+h,(k3)) > 
0 for k 2 k3. 

Case 2. 6 = 1 and 1 < p 5 p(k)  < U. Once again from the definitions 
of z ( k )  and w ( k ) ,  WC have 

1 u,(k) = ( w ( k  - T )  i- h(k - T )  - v(k - T ) )  
p(k - T )  

1 - - 
p(k - T )  

w(k  - T )  + h,(k - T )  - (w (k  - 27) 
p(k - 27) 

+h,(k - 27) - u(k - 2T)) . 1 
Tllus, i n  view of (iii) and A u ~ ( k )  2 0, k E W ( k o )  WC can choost kq 2 k,, 
suffic:icntly large so that 

(7.10.5) 
p - 1 

u(k)  2 - ( w ( k  - T )  + h,(k - T ) ) ,  k E W(k4) .  
/"U 

(7.10.6) ~ ( k )  2 - - l ( u : ( k  - T )  + h,(kS - 7)) = ( ( k  - T ) ,  k 2 k3. 
P 

It is clear that 

where 

Now dividing (7.10.7) by f ( B ( k  + 1)) and then summing over A, n 
lN(k6 ,  k )  = D ,  and using the fact that B(k + 1) 2 B(a (k )  - C Y )  on the set 
D, we obtain 
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which contradicts q ( k )  = 03. This conlplctes the proof of the 
theorem. I 

In our next result we shall assume that t,he function f satisfies the 
condit,ion 

Theorem 7.10.4. Assurnc that there exists an integer 7 2 2 suc:h that 
a ( k )  - U 2 k. + 7 ,  k E IN (U is defined below). Further, in addition to (i), 
(iii) and (7.10.9) suppose that 

(7.10.10) 

Then, (1) the equation (7.10.1)-1 is oscillatorv provided 0 5 p(k) < p < 1, 
y* = 1/M(1 - p )  and cy = 0 

(2) the equation (7.10.1)1 is oscillatory provided 1 < /-L 5 p(k) < v,  
y* = pv/M(p - 1) and cy = 7. 

Proof. Suppose for the sake of contradiction (7.10.1)h has a nonoscillatory 
solution v.(k) which is eventually positivc. Then, as in Theorem 7.10.3 in 
view of (7.10.9) it follows that 

(7.10.11) A w ( ~ )  2 M q ( k ) u ( a ( k ) ) ,  k E N(k.0). 

Now we consider the two cases 1. S = -1 and 0 5 p(k) < p < 1, and 2. 
6 = 1 and 1 < /-L 5 p(k) < v, and proceed as i n  Theorem 7.10.3 to obtain 
(7.10.4) and (7.10.6), respectively. Next, we use (7.10.4) and (7.10.6) in 
(7.10.11), to get 

(7.10.12) A w ( k )  2 / j q ( k ) ~ ( k +  77 - U ) ,  k 2 K 

where K is sufficiently large, and 

( M ( 1  - p ) ,  (P = O if w(k)  = [ ( k )  

But, now (7.10.10) irnplics that the inequality (7.10.12) has no cvent,wdly 
positive solution, which is a contradiction. I 
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Example 7.10.1. Consider the difference equation 

(7.10.13) A(U,(k) + U(k  - 2)) - (2k  - 3 ) l ~ . ( k  + 4)1'sg11 ~ . ( k  + 4) 

= (-1)"+1(2k+ l), k E W, X 2 1. 

Here F ( k )  = (-1)"+'(2k+ 1) and h(k) = (-1)". All the hypotheses of 
Theorem 7.10.1 are satisfied and hence every bounded solution of (7.10.13) 
is oscillatory. When X = 1 one such solution is v ( k )  = (-l)IC. 

Example 7.10.2. Consider the difference cquatiorl 

(7.10.14)6 A ( u ( k )  + p u ( k  + 26)) - 3 (Y;;) - ju(a(k))/'sgn u ( a ( k ) )  

- - 2(4)"+1 , k E W ,  X L 1  

where S = fl, p is a norlrq#,ive real number, anti g ( k )  E I N ,  k E IN 
with limk-W a ( k )  = 00. We take h,(k) = (-1)' with period 2. First, 
let X > 1 and suppose that a ( k )  has the forms k + a ,  CL is a positive 
integer; k + (-1)' or k", a. > 1, a is a real number. We apply Theorem 
7.10.3 to conclude that 

(i) (7.10.14)-1 is oscillatory when 0 5 p < 1 

(ii) (7.10.14)1 is oscillatory when p > 1. 

Now suppose that X = 1 and that a ( k )  - a 2 k + q, where q 2 
2, cy = 0 when 6 = -1 arid cy = 2 when 6 = 1. W e  use Theorem 7.10.4 
to conclude that 

(i) (7.10.14)-1 is oscillatory if 0 5 p < 1, cy = 0 arid 

(i) (7.10.14)l is oscillatory if p > 1, U = 2 and 

It is easy to verify that for p = 2, S = 1, X = 1 arid g ( k )  k. + 7, 
equation (7.10.14)1 has an oscillatory solution u ( k )  = (-1)". 

7.11. Oscillation and Asymptotic Behavior for 

(7.11.1) A2(u(k)  + p ( k ) u ( k  - 7)) + q ( k ) f ( u ( k  + 1 - a)) = 0, k E IN 
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where p(k)  and q ( k )  are such that q ( k )  2 0 for all k E IN, and are not 
zero for infinitely marly values of k ,  7 E IN(1), o E IN, and f : IR + IR 
is continuous with t ~ . f ( u )  > 0 for 91. # 0. 

We shall need the following: 

Lemma 7.11.1. Suppose that there exists a function b ( k ) ,  k E IN such 
that 

(7.11.2) b(k)  = O ( k )  as k + cc and b(k) 5 p(k )  5 0 

and let u.(k) be a nonoscillatory solution of (7.11.1). 

(a) If (7.9.2), (7.9.4), (7.11.2) hold and u. (k)  is eventually positive, then 
z(k) = u,(k) +p(k)v,(k - 7 )  and A z ( k )  are either both nonincreasing with 

(7.11.3) lim z ( k )  = lirn A z ( k )  = - cc 

or A z ( k )  is nonirlcxasing with 

L,- cc k-W 

(7.11.4) lim A z ( k )  = 0, A z ( k )  > 0 and z ( k )  < 0 for all large k .  
I:-cc 

(b) If (7.9.2), (7.9.4), (7.11.2) hold and 71,(k) is eventually negative, thcn 
z ( k )  and A z ( k )  are either both nondecxeasing with 

(7.11.5) lirn z ( k )  = lirn A z ( k )  = 00 

or h ( k )  is nondecreasing with 

A:-cc !,:-cc 

(7.11.6) lirn A z ( k )  = 0, A z ( k )  < 0 and z(k) > 0 for all large k .  
k - c c  

(c) If i n  addition to (7.9.2) and (7.9.4) there exists a P1 < 0 such that 

(7.11.7) p1 5 p(k )  5 0 

and ~ ( k )  is eventually positive, then either (7.11.3) holds or A z ( k )  is 
nonincreasing with 

(7.11.8) lirn z ( k )  = lim A z ( k )  = 0, A z ( k )  > 0 and z(k) < 0 
k-03 k-cc 

for all largc k .  

(d) If (7.9.2), (7.9.4) and (7.11.7) hold and u(k) is eventually negativc, 
then either (7.11.5) holds or A z ( k )  is nondecreasing with 

(7.11.9) lim z ( k )  = lirn A z ( k )  = 0, A z ( k )  < 0 and z(k) > 0 
k- cc A : - c c  

for all large k .  
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(e )  If (7.9.2), (7.9.4), (7.11.7) hold and PI 2 -1, then (7.11.8) holds 
when U,( k )  is cventuallv positive and (7.11.9) holds when u ( k )  is eventually 
negative. 

Proof. Let u,(k) be an eventually positive solution of (7.11.1). Then, 
there exists an integer kl  2 k.0 such that ? / , ( k - ~ - a )  > 0 for k E IN(k-1). 

(a) From (7.11.1), we have A 2 z ( k )  = - q ( k ) f ( w ( k  + 1 - C))  5 0 for 
k E IN(k l ) ,  whic:h implies that, A z ( k )  is rmrlincreasing for all k 2 k1, 

so z ( k )  is monotonic. 

If there exists k2 2 k.1 suc:h that Az(k.2) 5 0, then sincc q ( k )  is 
not identically zero for large k ,  there exists k3 2 k2 s11c.h that A z ( k )  5 
A z ( k 3 )  < 0 for k 2 k g ,  and a surrlrrlation shows that z ( k )  + -CO as 
k + CO. Moreover, A z ( k )  + L where 0 > L 2 -CO. If L = - C O ,  
clearly (7.11.3) holds. If L > - C O ,  slmlrnirlg (7.11.1) from k3 to k - 1 
gives 

k - l  

Az(k)  = A z ( k 3 )  - c q ( P ) f ( u ( P  + 1 - a)). 
P=k3 

Letting k + CO, WC obtain 
cc C q ( P ) f ( ? r ( P  + 1 - C ) )  = A z ( k 3 )  - L  < CO. 

P=k, 

The last inequality togcthcr with (7.9.2) ancl (7.9.4) implies 

(7.11.10) 

Since L < 0 a surnrnation shows that z ( k )  is eventually negative, so we 
r:hoosc k4 2 k3 suc:h that Az(k) < L / 2  for k > IC4 and z(k4) < 0. 
This implies that 

z ( k )  5 z (k4 )  + ( k  - k 4 ) L / 2  < L ( k  - k4)/2 for k 2 k4 

and hence z(k) < Lk/4 for k > 2k4. From (7.11.2), we have 

b ( k ) ~ ( k  - T )  5 p ( k ) ~ ( k  - T )  < ~ ( k )  < L k / 4 .  

Thus, ~ ( k -  T )  > L k / ( 4 b ( k ) ) ,  which in view of (7.11.2) irrlplics that u(k )  
is bourldcd from below. But, this contradicts (7.11.10). Hence, we conc:lude 
that A z ( k )  > 0 for k 2 k l ,  and thcreforc Az(k)  + L 2 0 as k 3 cc 
sincc h ( k )  is nonincreasing for k 2 k l .  Sunlrrlirlg (7.11.1), we obtain 

W 

A z ( k )  = L + c q ( e ) f ( ? / , ( e  + 1 - a)), 
P=k 
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which again implies that liIninf~~-m ~ ( k )  = 0. But, this is inlpossible if 
L > 0 since then A z ( k )  > L and we would have 7 1 4  k )  2 z( k )  + cc 
as k "-f 00. Hence, we conc:lude that L = 0. Furthermore, if there 
exists a k j  2 k l  such that z (k5 )  2 0, then A z ( k )  > 0 implies that 
z ( k )  2 z (k6 )  > 0 for k 2 kg 2 k j ,  which again contradicts (7.11.10). 
Therefore, z(k) < 0 for k 2 k l ,  which c.ompletes the proof of (a). 

(h) The proof is similar to that of (a). 

(c) First we note that (7.11.7) implies (7.11.2). Thus, from (a) either 
(7.11.3) or (7.11.4) holds. If (7.11.3) holds, WC are done so suppose that 
(7.11.4) holds. Then, A z ( k )  > 0 and z(k) < 0 and frorrl the proof 
of (a) WC obtain (7.11.10). Thus, z ( k )  4 L1 5 0. If L1 < 0, then 
u ( k )  + Plv.(k - T )  5 v ( k )  + p ( k ) u ( k  - T )  = z ( k )  < L1 for k 2 k l .  But 
(7.11.10) implies that there exists an increasing seqlmlce of integers {IC,} 
and u ( k j  - T )  + 0 as j + 00, which contradicts u ( k )  > 0. Thus, we 
co11c:hlde that z ( k )  "-f 0 as k + 00 and the proof of part (c) is complete. 

( d )  The proof is similar to t,hat of (c). 

(e) Suppose that ~ ( k )  is eventually positive and that (7.11.8) docs not 
hold. Then, from part (c), (7.11.3) holds so z(k) < 0 for all large k .  
Sincc Pl 2 -1, 

U ( k )  < - p(k)lI ,(k - T )  5 - Pi'U(k - T )  5 76(k - T )  

for all large k .  But the last inequality irrlplies that ~ ( k )  is hounded which 
contradicts (7.11.3). Therefore, (7.11.8) holds when u ( k )  is eventually 
positive, The argument for the case when u ( k )  is eventually negative is 
similar. I 

Theorem 7.11.2. If (7.9.2), (7.9.4) and (7.9.5) hold, then every nonoscil- 
latory solution v.(k) of (7.11.1) tends to zero as k "+ m. 

Proof. If w,(k) is eventually positive, then by part ( e )  of Lemma 7.11.1, 
(7.11.8) holds. Thus, z ( k )  < 0 for all sufficiently large k .  Then, we have 
u.(k) < - - p ( k ) u ( k - ~ )  5 - P ~ u ( k - r ) ,  and hence u ( k + r )  5 -P2u(k). B y  
induction it follows that for sufficiently large k ,  v.(k + j ~ )  5 (-P2)ju(k) 
for every positive integer j .  But, this implies that v.(k) -+ 0 as k + cc. 
The proof for the case u ( k )  eventually negative is similar. I 

Example 7.11.1. The difference equation 

(7.11.11) A2 (v,(k) - e-(T-l)u,(k - 7)) + ( e  - l)3e2k:-3"fi u , ( k + l - C T )  

= 0, k > r + o  
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satisfies all conditions of Theorem 7.11.2 for T > 2, a > 2. In fact, 
u ( k )  = ePk is a nonoscillatory solution of (7.11.11) which tends to zero as 
k -+ m. 

Theorem 7.11.3. Suppose that p(k)  2 0 and let ~ ( k }  be a nonoscil- 
latory solution of (7.11.1). Then, 

(i) 1u(k)1 5 c lk  for some constant c1 > 0 and all k 2 ko E W 

(ii) if k/p(k) is bourlded, then ~ ( k )  is bounded 

(iii) if k/p(k) + 0 as k -+ 00, then u ( k )  + 0 as k + m. 

Proof. Let u ( k )  be an eventually positive solutiorl of (7.11.1) and let K 2 
k.0 besuch that u ( k - r )  > 0 and u ( k - a )  > 0 for k > K.  From (7,11.1), 
wehave A 2 z ( k )  5 0 for k > K. Thus, z ( k )  5 z ( K ) + A z ( K ) ( k - K )  5 clk 
for some eonst,ant c1 > 0 and all sufficiently large k .  Clearly, u ( k )  5 c l k  
if p(k )  2 0, and hencc (i) follows. Furthermore, since p(k)u(k-a) 5 q k ,  
(ii) and (iii) are irnmcdiate. The proof when ~ ( k )  is eventually negative 
is similar. B 

Example 7.11.2. For the difference equations 

a 2 ( ( ? l . ( k ) + k u ( k - 1 ) ) +  
2 

( k  + l ) ( k  + 2)(k + 3)(k - 3)3 
u3(k-3)  = 0, k > 4  

and 

a2 + e k ( ~ r l  - I)) + e3k--j 
( k  + 1)2 ( k ( k f 2 )  

111 ~ - e2'-'(e - 

= 0, k > 3  

conclusions (i), (ii) and (iii) of Theorem 7.11.3 respectively follow. W e  also 
note that for these equations respectively k ,  k / ( k  + 1) and are 
nonoscillatory solutions. 

Theorem 7.11.4. If (7.9.2), (7.9.4) and (7.9.8) hold, then every bounded 
solution of (7.11.1) is either oscillatory or tends to zero as k + m. 

Proof. Assume that (7.11.1) has a bounded nonoscillatory solution u (k )  
which is eventually positive, say for k > k-1 > ko. B y  Lemma 7.11.1(c) 
either (7.11.3) or (7.11.8) holds. Condition (7.9.8) and the fact that v,(k) is 
bounded implies that (7.11.3) cannot hold. From (7.11.8) we have z ( k )  < 0 
and z ( k )  -+ 0 as k + m. Hence, for any E > 0 there exists K > k1 
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such that --E < z ( k )  < u,(k)+P3u(k-~) or u ( k - ~ )  < (-1/P3)(u(k)+€) 
for k 2 K .  Thus, we have 

and hence 

Continuing this, for all posit,ivc integers 'm,, we obtain 

Let ,u = 1 + l / P 3  > 0. Sincc u.(lc) is boundcd therc cxists a constant 
L > 0 such that u(k )  < L for k 2 ko. Now c:hoosc m 1  large enough so 
that (-l/P3)rn, < f/(pM) for 'rrt > 'm1. Then, from (7.11.12), we have 

E 
7 r ( k )  < - + f [l - (-1/P3)"] /[l + 1/P3] < 2f/pI.. 

P 

Since E is arbitrary, thc above inequality implies that u ( k )  + 0 as 
k "+ m. The proof whcn v.(k) is eventually negative is similar. I 

Example 7.11.3. The difference equation 

satisfies all conditions of Theorem 7.11.4 and has the solution v.(k) = 2-k 
which tends to zero as k "+ m. 

Theorem 7.11.5. If (7.9.2), (7.9.4) and (7.11.7) with P1 2 -1 hold, 
then every unbourlded solution of (7.11.1) is oscillatory. 

Proof. Part (e)  of Lemma 7.11.1 implies that all nonoscillatory solutions 
of (7.11.1) are bounded and hence the result follows. I 

Example 7.11.4. The difference equation 

- 1) = 0, k 2 2 

satisfies all conditions of Theorem 7.11.5 arid has an unbounded oscillatory 
solution u (k )  = (-1)'P. 
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Theorem 7.11.6. Suppose in addition to (7.11.7) with Pl 2 -1, the 
function f is nondecreasing such that (7.9.19) holds, and 

(7.11.13) F (&4) = C O ,  ko E IN. 

Then, all unbounded solutions of (7.11.1) are oscillatory. 

Proof. Suppose (7.11.1) has an urhourldcd solution ~ ( k )  such that 
v,(k - T - U )  > 0 for k 2 k l  2 ko. Then, for z ( k )  = u ( k )  + p(k)u(k - T )  

it is clear that A 2 z ( k )  5 0. Hence, A z ( k )  is rlonincreasing and z ( k )  
is rnonotonic. Now, if z ( k )  is eventually negative, t,hen by (7.11.7) with 
PI 2 -1, we have 

k=ko I=k 

4 k )  5 -p (k )u (k  - T )  5 ?r(k - T ) ,  

which contradicts the assurrlption that u ( k )  is whourldcd. Thcrcforc, 
z(k) 2 0 cvcrltually. Furthermore, if A z ( k )  is evcutually ncgativc, then 
clearly z ( k )  is eventually negative which, as above, is a c:ontradic:tion. 
Thus, WC have z ( k )  > 0 and A z ( k )  > 0 for k 2 kl. Sincc 0 < z ( k )  5 
u(k) and f is nondecreasing, we have 

A 2 z ( k )  + q(k) f (z (k  + 1 - U ) )  5 0 for k 2 K = kl - 1 + a 

For each k 2 K, a summation of the above inequality from k to k2-1 > k 
leads to 

L.2 - 1 

A z ( k 2 )  - A z ( k )  + f ( z (k  + 1 - U ) )  c q(P) 5 0 
I= L; 

so that 
k n - l  

f ( z ( k  + 1 - 0)) C q(t) 5 Az(k )  - Az(k2). 
P=k 

Letting kz "+ CO,  we obtain 

00 

f ( z ( k  + 1 - u ) ) C ~ ( O )  5 AZ(IC)  5 ~ z ( k  - U )  for k 2 K. 
e= k: 

Thus, 
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which in view of (7.11.13) contradicts (7.9.19). I 

Example 7.11.5. The difference equation 

(7.11.14) A2 ( u , ( k )  - ;?/,(IC - 2)) + U3(k - 1) = 0, IC 2 2 
( k  - 113 

CO 

(7.11.15) 1 q ( P ) f ( [ l  - p ( ( +  1 - .)]c) = C O ,  k-0 E N 
e=ko 

which contradicts (7.11.15). The proof for thc case when I/.( k )  is eventually 
negative is sirrlilar. I 
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Example 7.11.6. The difference equation 

satisfies all hypotheses of Theorern 7.11.7 and hence it is oscillatory. One 
suck1 solution is W,( k )  = (- I)'. 

Theorem 7.11.8. If (7.9.2) and (7.9.4) hold and p(k)  is not eventually 
negative, then any solution 7r(k) of (7.11.1) is either oscillatory or satisfies 
lirninfA:.-+m ( u ( k ) (  = 0. 

Proof. Let ~ ( k )  be a nonoscillatory solution of (7.11.1), say u, (k-r -a)  > 
0, k 2 kl  2 ko E IN. Then, (7.11.1) implies that A z ( k )  is nonoscillatory 
and z(k) is monotonic. If there exists k.2 2 kl  such that A z ( k 2 )  5 0, 
then there exists k3 > kz such that A z ( k )  5 Az(k3) < 0 for k 2 kg 

and so z ( k )  -+ -m as k + m. But, this c,ont,radic:ts the fact that p(k )  
is not eventually negative. Hence, A z ( k )  > 0 for k 2 kl and thcreforc 
Az(k)  + L 2 0 as k -+ m. Summing (7.11.1) from k to m, we obtain 

A z ( k )  = L + C q ( l ) f ( w . ( l  + 1 - Q)), 

CO 

e= L, 

which irnplics in view of (7.9.2) and (7.9.4) that lirrl infk-03 w,(k) = 0. The 
proof when w.(k - T - U )  < 0 for k 2 kl is similar. I 

Example 7.11.7. The difference equation 

satisfies all conditions of Theorem 7.11.8. Here w,(k) = (-1)"/2' is a 
solution of (7.11.16) satisfying the conc:lusion of Theorem 7.11.8. For the 
difference equation (7.11.16), Theorem 7.11.7 does not apply since (7.11.15) 
does not hold. 

7.12. Classification of Solutions for 
(7.12.1) a(a(+(U(k) +p(l~)u(k:  - T))) + q ( l ~  + ~)f(?l,(lc + I - 0 ) )  = 0, 

k € I N  

where T E IN(l), o E N, functions a . (k ) ,  p (k ) ,  q ( k )  are defined on 
W, a ( k )  > 0 for all k E W and q ( k )  is not identically zero for large k )  
and the continuous function f : IR + R is such that 71,f(u,) > 0 for all 
U # 0, and f(u) - f ( v )  = g(u,v)(u - v )  for U, 71 # 0, where g(u, v )  is 
a nonnegative function. 
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A nonoscillatory solution ~ ( k )  of (7.12.1) is said to be weakly oscilla- 
tory if Au.(k) changes sign for arbitrarily large values of k .  

Let S denote the set of all nontrivial solutiorls of (7.12.1). 111 view of 
their asymptotic behavior, all solutions of (7.12.1) may be a priori divided 
into the following classes: 

M+ = { u ( k )  E S : there exists an integer K E W such that u,(k)Au.(k)  2 

hf- = {u(k) E S : w , ( k )  is nonoscillatory and there exists an integer 

OS = {w,(k) E S : for every integer K E W, there exists k 2 K such 

W O S  = {w,(k) E S : u. (k)  is nonoscillatory and for every K E W, there 

0 for all k E IN(K)}; 

K E W such that u.(k)Au.(k) 5 0 for all k E W(K)}; 

that ~ r ( k ) u ( k  + 1) 5 0); 

exists k 2 K such that Au,(k)A7r(k + 1) 5 O}. 

In the following results WC shall provide sdfkicnt conditions which CII- 

sure the existence and norlexiste1lc:c of the solutions of (7.12.1) i n  the above 
four classes when q ( k )  is nonnegative, and c:hangcs sign for large k E W. 
WC shall also study the asyrrlptotic behavior of nonoscillatory solutions of 
(7.12.1). 

Theorem 7.12.1. With respect to the difference equation (7.12.1) assume 
that the following hold 

(i) p(k) is nonnegative, and nondecreasing for all k E W 
I;-1 

Then, M +  = 8. 

Proof. Suppose that the equation (7.12.1) has a solution ~ ( k )  E M + .  
Since u(k)Av.(k) 2 0 for all k E IN implies that ~ ( k )  is nonoscillatory, 
without loss of generality we can assume that there exists an integer kl  2 
ko E W such that ~ ( k )  > 0, Au(k) 2 0, u ( k  - p) > 0, Au(k - p) 2 0 
for all k 2 k l .  In fact, for u ( k )  < 0, u(k - p) < 0 for all large k E W 
the proof is similar. Set z ( k )  = u(k) + p ( k ) u , ( k  - T ) ,  then in view of (i) , 
z ( k )  > 0 and Az(k)  2 0 for all k 2 ICl. From the equation (7.12.1), we 
have 
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and hencc 

Thus, from (ii) we find 

lim inf 
n ( k ) A z ( k )  - 

!++cc f ( 4 k  - 0)) 
- -00, 

which c:ontradicts the assurnptiorl that & ( k )  2 0 for all large k .  I 

Example 7.12.1. In Theorern 7.12.1 the assumption (ii) cannot be 
dropped. For this, we consider the difference equation 

3(k - 2)a 
(,(k-2))a 

= 0, k E N(4) 

where o > 0 is the ratio of odd positive integers. For this diffcrence 
equation assumption (i) holds, but (ii) is violated. The equation (7.12.3) 
has a solution ~ ( k )  = ( k  - 1 ) / k  E M+. 

Theorem 7.12.2. With respect to the difference equation (7.12.1) assume 
that the following hold 

(iii) T 2 1 and - 1 5 p(k )  5 0 
(iv) q ( k )  2 0 for all k 2 ko E N 

(v) lim C + 1) = 00 
k-l 

I:-co 
P=ko 

Proof. As in Theorcm 7.12.1, let (7.12.1) have a solution u ( k )  E M+ 
such that u,(k) > 0, Av.(k) 2 0, u ( k  - p) > 0, Au(k - p) 2 0 for 
all k 2 kl 2 ko. Again, set z ( k )  = u ( k )  + p(k)u,(k - 7). Then, in 
view of the assnrnption (iii) and the fact that u ( k )  E M + ,  we have 
z ( k )  > u ( k  - T )  +p(k).u.(k - T )  >_ 0 for all k 2 k l .  Since equation (7.12.1) 
is the same as A ( u ( k ) A z ( k ) )  = - q ( k + l ) f ( u ( k + 1 - ~ ) ) ,  k E N(kl), frorn 
condition (iv) it follows that u ( k ) A z ( k )  is nonincreasing for all k E N(k1) .  
Now suppose that u ( k ) A z ( k )  < 0 for all k E W(kl), then there exists 
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an integer k2 > k r  such that a ( k ) A z ( k )  5 a(k2)Az(k2) < 0 for all 
k E IN(k2). Hence, we have 

which i n  view of (vi) implies that z ( k )  4 -03 as k 4 m, which is a 
contradiction. Thus, a ( k ) A z ( k )  2 0. Now following as i n  Theorem 7.12.1, 
and using the condition (v), we obtain 

which is the required contradiction. B 

Example 7.12.2. I n  Theorern 7.12.2 sorrle of the assumptions cannot be 
dropped. For this, WC consider the difference equation 

(7.12.4) A ( k ’ A ( u ( k )  - 2u(k  - 1))) + - 2k + 1 
k - 2  

for which conditions (iv) and (v) are satisfied, whereas (iii) and (vi) are 
violated. The equation (7.12.4) has a solution w,(k) = k E M+. 

Theorem 7.12.3. With respect to the difference equation (7.12.1) assume 
that either (a) or (b) holds, where 

u ( k  - 2) = 0, k E IN(3) 

(a) T 5 g, and 

(vii) condition (7.9.18) holds 

(viii) f is submultiplicative 

(ix) p(k) is nonnegative, and nonincreasing for all k E IN 
I: e- 1 

(b) conditions (vi) and (ix) hold, and 

(xi) g(k)  > 0 for all large k E IN. 

Then, M- = 0. 

Proof. Let (a) hold, and that (7.12.1) has a solution w.(k) E M-.  Without 
loss of generality we can assume that there exists an integer kl 2 ko E IN 
such that w,(k) > 0, Au(k) 5 0, u(k - p) > 0, Aw,(k -p) 5 0 for all 
IC E IN(k1). The proof is similar if u ( k )  < 0 and Aw.(k) 2 0 for all large 
k .  Let z ( k )  = u(k) +p(k)w,(k - T ) ,  then in view of (ix), z ( k )  > 0 and 
A z ( k )  5 0 for all k E IN(k1). Thus, on rewriting (7.12.2) as 
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Since ~ ( k )  is nonincreasing and 7- 5 0, we have z ( k )  I ( l + p ( k ) ) u . ( k - ~ ) ,  
and hence in view of (viii), we obtain 

On cxmlbining (7.12.5) and (7.12.6), WC find 

Now, for z ( k  + 1) 5 t 5 z ( k ) ,  we have l / f ( t )  2 l / f ( z ( k ) ) ,  and hence it 
follows that, 

’ z ( , )  dt AZ( k )  

I,,,+l) m 2 ” 
f (4k)) ’ 

Using the above inequality in (7.12.7) and surnrning the resulting irlcquality 
from kl to k ,  we get 

which i n  view of (x) implies that 

(7.12.8) 

But, this contradicts (vii), and hence (a) implies that M- = 0. 

Now suppose that (b) holds. We proceed as earlier and define w ( k )  = 
a ( k ) A z ( k ) ,  k E N(k1). Then, from (7.12.1) we have 

A,- 1 

(7.12.9) w(k) = w(k1) - c q(P + l ) f ( u , ( t  + 1 - 0)). 
P=L:1 
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Hence, it follows that 

Summing the last inequality from k-1 to k and using (vi), we get 

which contradicts the assumption that z ( k )  > 0 for all k E IN(kl ) .  Thus, 
(b) implies that M- = 0. I 

Example 7.12.3. Some of the assumptions in Theorem 7.12.3 are essen- 
tial. For this, we consider the neutral difference equations 

?/,(/c - 2) = 0, k E W 

and 

(7.12.11) A (41A (u(k) + :u , (k - l ) ) )  +42(k-1)/3 (21(k4))1/3 = 0, k E IN. 

For both of these equations ~ ( k )  = 1/2k is a solution, and hence M -  # (b. 
For the equation (7.12.10) assumption (x) holds, while the condition (vii) is 
not satisfied. But, for the equation (7.12.11) assumption (x) does not hold, 
while condition (vii) is satisfied. Moreover, condition (vi) is not satisfied 
for either of the equations (7.12.10) and (7.12.11). 

Theorem 7.12.4. With respect to the difference equation (7.12.1) assume 
that in addition to the conditions (v), (vi) and (xi) the following holds 

(xii) -1 < p(1) 5 p(k) 5 0, for all k 2 ko E N. 
Then, M- = 0. 

Proof. Suppose that (7.12.1) has a solution u ( k )  E M-. Once again 
without loss of generality we assume that there exists an integer kl 2 ko E 
N such that u ( k )  > 0, Au(k) 5 0, u,(k -p) > 0, Au(k  -p) 5 0 for all 
k E W(k1) .  Let z ( k )  = u ( k )  +p(k )u (k  - 7). W e  claim that z ( k )  > 0 
for all k E N(k1). Indeed, if z ( k )  5 0, then in view of (xii) we have 
u,(k) < -p(l)u(k - T ) ,  which is the same as u(k + T )  < -p( l )u (k ) ,  
and therefore v.(k + j ~ )  < (--p(l))ju,(k), but this leads to u.(k) + 0 as 
k -+ 03, which is a contradiction. Since the equation (7.12.1) is the same 
as A(u(k )Az (k ) )  = -q(k + l ) f ( u . ( k  + 1 - a)), k E IN(k1) it follows that 
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~ ( k ) A z ( k )  is decreasing for k E W(k1). Now, proceeding as in Theorem 
7.12.2, in view of (vi) we find a(k )Az(k )  > 0, k E N ( k l ) .  W e  define 
w(k)  = ( u ( k ) A z ( k ) ) / . f ( z ( k ) ) ,  k E W(k1) to obtairl 

From z(k) = u ( k )  + p ( k ) u , ( k - ~ ) ,  we have in view of (xii) that z ( k + l )  5 
u ( k + l ) .  Since u,(k) E M - ,  weobtain z ( k + l )  5 u , ( k + l )  <u(k+ l-a ) .  
Thus, f ( z ( k  + 1)) 5 f ( u ( k  + 1 - a)) for k E W(k1). Using this inequality 
in (7.12.12) and summing the resulting inequality, WC get 

k:- 1 

e=kl 

which becausc of (v) implies that w(k)  4 -00 as k + 00. This contra- 
diction completes the proof. I 

Theorem 7.12.5. With respect to the difference equation (7.12.1) assume 
that i n  addition to the condition (iv) thc following hold 

(xiii) T is an odd positive integcr 

(xiv) p(k) 'p 5 0 for all k E nV(k0) 

Then, W O S  = 0. 

Proof. Let u ( k )  be a weakly oscillatory solution of (7.12.1). Without 
loss of generality we assume that therc exists an intcger kl 2 ko E IN 
such that u ( k )  > 0, u,(k - p) > 0 for all IC E N(kl). The proof for 
the case u ( k )  < 0, u.(k - p) < 0 for all large k E W is similar. Let 
z ( k )  = ~ ( k )  + p"(k - T ) .  Then, we have A z ( k )  = Au(k)  + pAu(k - 
T ) ,  Az(k + 1) = Au(k + 1) +pAu,(IC - T + l), and 

(7.12.13) Az(k)Az(k+l)  = Aw. (~ )Av , (~  + 1) +p(A~, (k )A~. ( l c  + 1 - T )  

+~u,(k+~)hu(k-~))+p~~u(k:-~)A~(k+~-~). 

Thus, in view of (xiii) and (xiv), we find A z ( k ) A z ( k  + 1) 5 0. Hence, 
A z ( k )  is oscillatory. Definc w(k)  = a(k )Az(k ) ,  so that w ( k )  is also 
oscillatory. On the other hand, from (7.12.1) we have Aw(k) = - q ( k  + 
l ) f (w . ( k+ l-a ) ) ,  k E N(k1) and hence (iv) implies that Aw(k) 5 0, and 
SO w(k )  is nonincreasing. This contradic.tion completes the proof. I 

Remark 7.12.1. From the above proof it is clear that Theorem 7.12.4 
rernairls valid even if the condition (iv) is replaced by 
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(iv)' q ( k )  5 0 for all k E IN(k0). 

Theorem 7.12.6. With respect to the difference equation (7.12.1) assume 
that in addition to the conditions (v) and (vi) the following holds 

(x.) p(k) "p 2 O for all k E W(k0). 

Then, every solution of (7.12.1) is cither oscillatory or weakly oscillatory. 

Proof. From Theorem 7.12.1 it is clear that M+ = 0. Hence, to complete 
the proof it suffices to show that M- = 0. For this, let 7r(k) be a solution 
of (7.12.1) which is in the class M - .  For this solution, as earlier we assume 
that u,(k) > 0, Au(k)  5 0, u(k-p) > 0, Au(k-p) 5 0 for all k E IN(kl) ,  
and define z ( k )  = v.(k) +pu(k - 7). Then, in view of (xv), z ( k )  > 0 
and A z ( k )  5 0 for all k E IN(k1). Again, we define w(k )  = a, (k )Az(k)  
so that ~ ( k )  5 0, k E W(k-l), and from the equation (7.12.1), we have 
(7.12.9). Thus, from Abcl's transformation Problern 1.9.7 it follows that 

k- 1 

From the above relation, and the condition (v) with kl sufficiently large, 
we find that w(k)  5 ~ ( k l ) ,  i.e. A z ( k )  5 w(k l )/a (k )  < 0. The rest of 
the proof of M- = 0 is the same as that of Theorem 7.12.3(b). I 

Theorem 7.12.7. With rcspect to thc difference equation (7.12.1) assume 
that in addition to the hypotheses of Thcorem 7.12.4, 7 2 1. Then, every 
solution of (7.1'2.1) is either oscillatory or weakly oscillatory. 

Proof. The proof follows from that of Theorems 7.12.2 and 7.12.4. I 

Theorem 7.12.8. With respect to the difference equation (7.12.1) assume 
that in addition to the conditions (iv) ~ (vi) and (xiii) the inequality - 1 _< 
p(k )  p 5 0 holds. Then, every solution of (7.12.1) belongs to the class 
os. 
Proof. The proof follows from that of Theorems 7.12.2, 7.12.4 and 7.12. 
5 .  I 

Theorem 7.12.9. If conditions (viii) ~ (x) are satisfied, then for every 
solution w.(k) E M -  of (7.12.1), lirn~+oo u(k) = 0. 
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Proof. The proof follows from the same arguments as in the proof of 
Theorem 7.12.3(a), and the fact that (7.12.8) implies that lirnk-oo z ( k )  = 
0, arld z ( k )  2 v,(k) for all k E W(k1) .  I 

Theorem 7.12.10. With respect to the difference equation (7.12.1) as- 
sunle that in addition to the condition (i) the f~~rlctiorl p(k) is bounded 
and the Eollowing holds 

Then, cvery solution of (7.12.1) in the class M+ is urlbo~~rldcd 

Proof. Let v.(k) be a solution of (7.12.1) in M+. As i n  Theorern 
7.12.1 without loss of generality WC assume that there exists an integer 
k.1 2 /c0 E W such that w.(k) > 0, A u ( k )  2 0, ~ ( k - p , )  > 0, Av,(k-p) 2 0 
for all k E JN(kl), arld set z ( k )  = ~ ( k )  +p(k)u,(k - T), so that, z ( k )  > 0 
and A z ( k )  2 0 for all k E N(k1). For the function 

U(k )AZ (k )  
I" 1 

1 
$ ( k )  = - 

f ( v , ( k  - a)) c q j '  
e=k l  

we have 

A ( 4 k ) M k ) )  1 : 1  A4(k) = - 
Az ( k )  

f ( u ( k  + 1 - 0)) c .(p) - f ( u ( k  + 1 - 0)) 
/=kl 

+ u(k )Az(rc )g (v . (k-a) ,v , (k "a ) )av . ( l c- l )  

f(lf.(k - a))f(w,(k + 1 - 0)) 

Summing the last inequality, we obtain 

Since A z ( k ) / f ( u ( k  + 1 - a)) is positive for k E W ( k l ) ,  the following 
limit exists 

W e  clairrl that ,fl = CO. Indeed, if p < 00, then (xvi) combined with 
(7.12.14) lcads to limk:.m w(k) = 00, which is a contradiction to the fact 
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that W( k )  is negative for all k E W(kl). Now for all k 2 kl , we have 
f ( 4 k  + 1 - 0)) 2 f(u(kl + 1 - 0)) = c, and consequently 

I:-1 

5 - [ z ( k )  - z (k1 ) ] .  
1 c f ( U ( l +  1 - 0)) c 

P = k 1  

Thus, it follows that limI:+M z ( k )  = 00. Finally, since z ( k )  = 7r(k) + 
p(k)v,(k - T )  5 (1 + p(k))w.(k) the boundcdness of p(k)  implies that 
limk+OO v.(k) = 00. I 

Corollary 7.12.11. Assume that T 5 0 and the conditions (vii), (viii), 
(x), (xv) and (xvi) hold. Then, every bounded solution of (7.12.1) is either 
oscillatory, or weakly oscillatory. 

Proof. The proof follows from Theorems 7.12.3(a) and 7.12.10. I 

7.13. Existence of Solutions for (7.12.1) 

In the previous section, to establish oscillatory behavior of solutions 
of (7.12.1), we have provided sufficient conditions which ensure that the 
classes M + ,  M -  and W O S  are empt,y. Thc purpose of this section is 
to prove the existence of solutions of (7.12.1) in these classes. 

Theorem 7.13.1. With respect to the difference equation (7.12.1) assume 
that the following hold 

(i) T is an even positive integer 

(ii) p ( k )  p >_ 0 and # 1 for all k E W 

(iii) q ( k )  > 0 for all large values of k 

Then, M+ # 8. 

Proof. W e  shall prow the existence of positive solutions of (7.12.1) in the 
class M + ,  the existence of negative solutions in M+ is similar. 

First assume that 0 5 p < 1. Let C = max{lf(u.)I : 3(1-p) 5 U 5 4). 
Choose a positive integer K 2 k.0 sufficiently large, so that 
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Consider the Banach space BK of all real functions 7r(k) ,  k E N(K-p )  
with the sup norm ((U,(( = supkEN(K-p,) ( u ( k ) I .  We define a subset S of 
BK as 

S = (71. E BK : 3(1 - p )  5 ~ ( k )  5 4, k E N(K -p)}. 

Clearly, S is a bo~mded, closed and convex subset of B K .  Now, we define 
an operator T : S 4 BK as follows 

From the hypotheses this operator T is continuous, and for U. E S, i n  
view of 0 5 p < 1, we have 

and, sinlilarlv 
 TU(^) 2 3(1 --p), k E N(K -/L). 

Thus, T ( S )  C S. Therefore, by the Schaudcr fixed point theorem T has 
a fixed point U. E S. It is clear that this ~ ( k )  is a positive solution of 
(7.12.1). 

Now assume that p > 1. Let C = max{If(u.)l : 2(p - 1) 5 U. 5 4p). 
Choose a positive integer K 2 ko sufficiently large, so that 

Let BK be as above, and let 

S = {U, E BK : 2(p - 1) 5 ~ ( k )  5 4p, k E N(K - p)}. 

Again, S is a bounded, closed and convex subset of BK.  Define an 
operator T : S -+ BK as follows 
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For this continuous operator also it is easy to see that T(S )  C S, and 
hence, by the Schauder fixed point theorem T has a fixed point U E S. 
Once again, it is clear that this u ( k )  is a positive solution of (7.12.1). 

Thus, we have established the existence of positive solutions for the 
equation (7.12.1), when p 2 0, p # 1. Next, we shall show that M+ # 0. 
For this, suppose that ~ ( k )  E WOS. Let kl 2 k.0 E W be such that 
u ( k )  > 0, u.(k - p) > 0 for all k E W(k-l). Let z ( k )  = u,(k) +pv,(k - 7). 
Then, as in Theorem 7.12.5, we obtain (7.12.13), which in view of (i) and (ii) 
implies that Az(k )Az (k+l )  5 0, and hence, A z ( k )  is oscillatory. Define 
w(k)  = a,(k)Az(k) ,  so that w(k )  is also oscillatory. On the other hand, 
from (7.12.1), we have Aw(k )  = - q ( k + l ) f ( u . ( k + l - a ) ) ,  k E W(kl), and 
hence, (iii) implies that Aw(k) 5 0, and so w(k )  is nonincreasing. This 
contradiction shows that u ( k )  $! WOS. Also, from Theorem 7.12.3(b), we 
have u.(k) $! M - .  Thus, u , (k)  E M + .  I 

Example 7.13.1. Consider the differcncc equation 

( ~ ( k )  + 21/,(k - 2)) + (?/,(k - 2113 = 0, 
3 ) ( k  - 2)3k(k + 1) 

k E W(3) 

for which all the conditions of Theorem 7.13.1 are satisfied. Thus, it follows 
that (7.13.1) has a solution u(k )  i n  the class M +  such that 2 5 u(k) 5 8 
for all sufficiently large k .  It also has an unbounded solution w,(k) = k ,  
which also belongs to the class M+.  

Theorem 7.13.2. With respect to the difference equation (7.12.1) assume 
that in addition to the condition (iii) the following hold 

(vi) T is an odd positive integer 

(vii) p(k) p 5 0 and # -1 for all k E IN 
cc . k-l 

Proof. W e  shall prove the existence of positive solutions of (7.12.1) in 
the class M' U M - ,  the existence of negative solutions in M+ U M -  is 
similar. 

First assume that - 1 < p 5 0. Let C = rnax{lf(u)l : 2(1 + p)/3 5 
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S = 
3 

Clearly, S is a bounded, closed and convex subset of BK. Now, we define 
an operator T : S -+ BK as follows 

This operator T is continuous, and it is easy to see that T ( S )  C S, and 
hence, by the Schauder fixed point theorem T has a fixed point 11, E S. 
This fixed point is a positive solution of (7.12.1). 

Now assume that p < -1. Let C = max{lf(u)1 : -p/2 5 U, 5 -2p}. 
Let K 2 ko be so large that 

Let BK be as above, and let 

S = { u t ~ K : - - < u ( k ) < - 2 p ,  P ~ E N ( K - ~ ) }  

Again, S is a bounded, closed and convex subset of BK. Define an 
operator T : S + BK as follows 

2 -  

1 1 1 1 
-p - 1 - -'U(k+T) f - c - c Q ( [ i - ~ ) f ( U ( < i - - c 7 ) ) ,  

TU( IC) = P p P=k+r '(l) [=K 

k > K  
T u ( K ) ,  K - p  5 k 5 K.  

For this continuous operator also it is easy to see that T ( S )  C S, and 
hence, by the Schauder fixed point theorem T has a fixed point U, E S. 
Once again, it is clear that this fixed point is a positive solution of (7.12.1). 
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This proves the existence of positive solutions u ( k )  for the equation 
(7.12.1), when p <_ 0, p # -1. Further, from Theorem 7.12.5, we have 
u ( k )  $! WOS.  Thus, in conclusion we find that u ( k )  E M +  U M - .  I 

Example 7.13.2. For the difference equations 

(7.13.2) A (4"A (?r(k)  - 4u.(k - 1)))+7 (4"'') (~,(k-2))' = 0, k E W(3) 

and 

k E W(3) 

all the conditions of Theorem 7.13.2 are satisfied. I n  fact, u ( k )  = 2k E M' 
is a solution of (7.13.2), and u ( k )  = 2Tk E M- is a solution of (7.13.3). 

Theorem 7.13.3. With respect to the differenc:c equation (7.12.1) assume 
that i n  addition to conditions (i), ( i i ) ,  (iii) and (viii) thc following holds 

(ix) lim C q(e + 1) = c m .  

Then, M- # 8. 

Proof. Once again we shall prove the existence of positive solutions of 
(7.12.1) i n  the class M - ,  the existence of negative solutions in M -  
follows similarly. 

k-l 

k-cc 
e=k0 

First assume that 0 5 p < 1. Let C = max{lf(u)l : 5(1 - p)/2 5 W. 5 
4}, and let K 2 k-0 be such that 

cc 1 CC-Cdt+l) 5 2. 1 - p  

k = K  a(k)  e=K 

Let BK be as before, and S C BK be defined as 

S = {U E BK : ?(l - p )  5 ~ ( k )  5 4, k E W ( K  -p) . 
2 1 

Clearly, S is a bounded, closed and convex subset of B K .  Define an 
operator T : S "+ BK as follows 
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This operator T is continuous, and as earlier it is easy to see that T ( S )  C 
S. Therefore, by the Schauder fixed point theorern T has a fixed point 
71. E S. It is clear that this 71,(k) is a positive solution of (7.12.1). 

Now assume that p > 1. Let C = rnax(lf(7r)l : 5(p- l)/2 5 W, 5 4p}, 
and Ict K 2 k.0 be such that 

Let BK be as above, and 

Again, S is a bounded, closed and convex subsct of BK. Define an 
operator T : S + BK as follows 

For this continuous operator also it is easy to see that T ( S )  S, and 
hence, by the Schauder fixed point theorern T has a fixed point W. E S. 
Oncc again, it is clear that this u(k)  is a positive solution of (7.12.1). 

Thus, we have obtained thc existence of positive solutions u, (k )  for 
the equation (7.12.1), when p 2 0, p # 1. From the proof of Theorem 
7.13.1, u ( k )  6 WOS, and also from Theorem 7.12.1, ~ ( k )  M+.  Hence, 
U ( k )  E M - .  I 

Example 7.13.3. Consider thc difference equation 

(7.13.4) A (4"A (u.(k) + 4u(k - 2))) + 17 (28(k-1)/5 (v,(k - 1))3'5 = 0, 1 
k E N(2) 

for which all thc conditions of Theorem 7.13.3 are satisfied. I n  fact, u ( k )  = 
2 4 :  ' 1s a solution of (7.13.4) which belongs to the class M-.  
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Then, W O S  # 0. 

Proof. Suppose the result is not true, then there exists a solution ~ ( k )  
of (7.12.1) such that eventually, either 

(7.13.5) ~ ( k )  > 0 and Au(k) > 0, or 

(7.13.6) ~ ( k )  > O and Au(k) < O for all k E W(K -p) 
holds. Assume that (7.13.5) holds. Let z ( k )  = u(k)  +pu(k - T ) ,  so that 
the equation (7.12.1) car1 be written as A ( a ( k ) A z ( k ) )  = -q (k+  l ) f ( ? r ( k +  

w(k)  > 0 so that Aw(k) 5 -q (k+  l), k E IN(K). Now, sunlnling the last 
inequality from K to k - 1 with K sufficiently large, WC obtain 

1 - g)). Let ~ ( k )  = ( a ( k ) A ~ ( k ) ) / f ( v , ( k  + 1 - g ) ) ,  k E W(K). ThcI1, 

1.- 1 

e= K 

In the above inequality the right side, in view of condit,ion (xi), tends to 
- CO. But, this contradicts the fact that V J ( ~ )  > 0. 

Next assume that (7.13.6) holds. From condition (xi) WC find that there 
exists an integer K1 2 K such that 

1:-1 

(7.13.7) C q(l+ 1) > 0. 
P=K1 

For this, we set F ( k )  = C:::, q( l  + 1) and define K1 = sup{k 2 K : 
F ( k )  = O}.  Clearly, F(K1)  = 0 and F ( k )  > 0 for k > K1. Then, 
C::;, q(e + 1) = F ( k )  - F ( K 1 )  = F ( k )  > 0. Now from (7.13.6), (7.13.7) 
and Abel’s transformation Problem 1.9.7 it follows for k > K1 that 

k-l 

t k K ]  

1:-1 L : - l  

= f ( ~ ( k + l - ~ ) )  C q(l+1) - C Af(~l.(e+l-~)) 
!=K1 e=K1 

Thus, on summing (7.12.1) from K1 to k - 1, WC get 

k-l 

u(k)Az(k)  - a ( K l ) A z ( K 1 )  = - C q(l+ l ) f (v , ( l  + 1 - g ) )  < 0. 
I=K1 
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Hence, a ( k ) A z ( k )  < a (K l )Az (K l ) .  It is clear that Az(K1)  < 0. There- 
fore, A z ( k )  < a(Kl)Az(Kl)/a, ( lc ) .  Again summing from K1 to k - 1, 
we obtain 

I;-1 - 

which in view of (iv) implies that z ( k )  --f -m as k "-f m. But, by 
(7.13.6) we have z ( k )  > 0. This contradiction completes the proof. D 

Example 7.13.4. Consider the difference equation 

(7.13.8) A (kA ( ~ , ( k )  + 2 ~ ( k  - 2))) + ( - l ) y l 2 k  + 6) 

(2 - (-1)q3 
- = 0, 

k E IN(2) 

for which all t,he conditions of Theorem 7.13.4 are satisfied. In fact, ?/,(/c) = 
2 + E WOS is a solution of (7.13.8). 

Theorem 7.13.5. With respect to the difference equation (7.12.1) assume 
that the conditions (i), (iii) ,  (iv), (x) and (xi) are satisfied. Then, OS # 0. 

Proof. The result follows from the proof of Theorem 7.13.1, and Theorems 
7.12.1 and 7.12.3(b). D 

7.14. Oscillation of Mixed Difference Equations 

Here we shall establish criteria for the oscillation of second order differ- 
ence equations 

(7.14.1)~ A2(7,,(k)+a7/,(k-~)-bu(k+-r))+fi[q(k)l/,(k-~)+p(k)~,(k+r])] = 0 

(7.14.2)6 A2(u(k)-~~(k-~)+b~/,(k+~))+S[g(k)~(k-~)+p(k)~.(k+~)] = 0 

(7.14.3)6 A2(u(k)+~u(k--r)+b~~(k+~))+s[so.)] = 0 

and 

(7.14.4)~ A2(~.(k)-~~(k-~)"h~.(k+~))+S[q(k)~(k-c7)+p(~)l/.(k+~)] = 0, 

where 6 = fl, a, b arc nonnegative real numbers, 7, c7 and r] are 
positive integers, p(k)  and q ( k )  are nonnegative functions on W, and 
p(k f T )  = p(k), q ( k  f T )  = q ( k ) ,  k E W. 

W e  shall need the following: 

Lemma 7.14.1. Assume that p(k) and q ( k )  are nonnegative functions, 
and (T and r] are positive integers, r] > 2. Then, the following hold: 
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(7.14.5) 

then the difference inequality 

(7.14.6) A271(k) 2 p(k)v(k + 7) 
has no eventually positive solution v(k)  which satisfies Aiu(k) > 0 
eventually, i = 0,1,2. 

(11) If 

(7.14.7) 

then the difference inequality 

(7.14.8) & ( k )  2 q ( k ) z ( k  -.) 

has no eventually positive solution z ( k )  which satisfies (- l ) iAiz (k )  > 0 
eventually, i = 0,1,2. 

Proof. (I) Let v(k)  be an eventually positive solution of (7.14.6) such 
that A i u ( k )  > 0 eventually, i = 1,2. Summing (7.14.6) from k to 
S, S L k 2 kl  (say) 

S 

Av(s + 1) - Av(k) 2 x p ( I ? ) u ( P +  r]) 
I=k 

or 

S 

(7.14.9) Av(s + 1) L Cp( I? )u( I?  + v) .  
P=k 

Next, summing (7.14.9) from k to k + r] - 2, k 2 k l ,  we have 

= c ( k + v - I ? -  
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Thus, we see that 

1:+q-2 c ( k + q  - P -  l)p(P) 5 1, 
P=k 

which contradicts (7.14.5). This completes the proof of (I). 

(11) Let z ( k )  be an eventually positive solution of (7.14.8) such that 
A z ( k )  < 0 and A 2 z ( k )  > 0 eventually. 111 view of the rrlorlotorlicity of 
A z ( k ) ,  we obtain for every k 2 i >_ IC1 

(7.14.10) -z(i) 5 ( A z ( k ) ) ( k  - i + 1). 

Thus, for every e ,  k with k - c 5 P 5 k and k 2 k.2 2 kl 

and therefore, by (7.14.10) WC have 

z(! - c) 2 (-Az(k - a ) ) ( k  - P + 1) 

Now 

or 

which contradicts (7.14.7). This completes the proof of (11). I 

Theorem 7.14.2. Let b > 0, q > 2 and 0 > T .  If 

(7.14.12) 

then (7.14.1)-1 is oscillatory. 
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Proof. Let U(k) be an eventually positive solution of (7.14.1)-1, say 
u (k )  > 0 for k 2 ko 2 0. Set 

(7.14.13) z ( k )  = w.(k) + av.(k - T )  - bw,(k + T ) .  

Then, 

(7.14.14) A 2 z ( k )  = q(k)u(k - 0) +p(k)w,(k + 7) 2 O for k 2 kl 2 ko, 

which irrlplies that A ’ z ( k ) ,  i = 0,1 are eventually of one sign. Therefore, 
either 

(I) z ( k )  < 0 eventually, or (11) z ( k )  > O eventually. 

(I) Assume z ( k )  < 0 for k 2 k l .  Set 

(7.14.15) 0 < y ( k )  = - z ( k )  = bu(k+T)-a,v,(k-T)-w,(k) 5 b u ( k + ~ ) .  

There exists k2 2 kl such that 

(7.14.16) u ( k )  2 -y(k - T) for k 2 k2. 

Using (7.14.16) in (7.14.14), we have 

1 
b 

a2y(k)  + -y(k - (0 + T ) )  5 0 for IC 2 k2. 

Since A2y(k)  5 0 and y (k )  > 0 for k 2 k2, we have A y ( k )  > 0 for 
k 2 k g  2 k2. There exist an integer K 2 k3 and a constant c > 0 such 
that 

y(k - (0 + T ) )  L c for k 2 K.  

A2y(k) + ;q(k) I 0 for k 2 K 

q(k)  
b 

Thus 
c 

and hence 

k-l 

o < ~ y ( l ~ )  5 A ~ ( K )  - C q(t) 4 - 00 as IC ”+ 00, 
P= K 

which is a contradiction. 

(11) Assume z(k) > 0 for k 2 ICl. Set 

(7.14.17) w(k)  = z ( k )  + a z ( k  - 7 )  - bz(k  + 7). 
Then, 

(7.14.18) A2w(k) = q ( k ) z ( k  - 0) + p(k)z(k + 7) 
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and 

Using the procedure of (I) we see that w(k )  > 0 eventually. Now, there 
are two possibilities to consider: 

(i) Az(k) > 0 eventually, arid (ii) Az(k)  < 0 eventuallv. 

Suppose (i) holds. There exist positive constants c1 and c2 and an 
integer K1 2 ICl such that 

Thus 
a2w(k )  2 c l q ( k )  + ~ p ( k )  for 2 K1 

and henct 
Aw(k) + m and w(k) + m as k + m. 

Therefore, we conclude that Aiw(k) > 0, i = 0,1,2 for k >_ K1. From 
(7.14.18) and the facts that z ( k )  is an increasing sequence, and p(k )  and 
q(k) are periodic of period 7, we obtain 

A2W(k - T )  = q(k - T ) z ( k  - 7 - 0) + p(k - T ) z ( k  - T i- v )  
= q ( k ) z ( k  - T - 0) + p(k)z(k - 7 + 7) 
L q ( k ) z ( k  - 0) +p(k)z(k + 7 )  
= A2w(k)  for k 2 K1. 

Using this fact in (7.14.19), we obtain 

or 

(7.14.20) A2w(k)  2 - 
I t a  

w (k+q)  for k 2 K1. 

But in view of Lemma 7.14.1 (I) and condition (7.14.11), inequality (7.14. 
20) has no eventually positive solution w ( k )  with Aiw(k )  > 0, i = 0,1,2 
eventually, which is a contradiction. Next, suppose (ii) holds. First, we 
claim that z ( k )  + 0 monotonically as k + m. Otherwise, z ( k )  -+ c > 0 
as k + m. There exists an integer K2 2. kl  such that 

z ( k  - 0) 2 - and z ( k  +v) 2 - for k 2 Kz. 
2 2 
C C 
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Thus 
a2w (k )  2 2 (q(l~) +p(k)) for IC 2 K Z  

2 
and hence 

Aw(k) +a and w(k )  --+a as k + c c .  

From (7.14.17), WC see that w(k )  < 00 for all k 2 K Z ,  which is a 
contradiction. Therefore, we conclude that z ( k )  + 0, w ( k )  + 0 and 
A2w(k) 4 0 monotonically as k 4 cc and so, one can easily see that 
Aw(k )  < 0 for k 2 KZ.  From (7.14.18) and the facts that z ( k )  is a 
decreasing sequence, and p(k) arid q ( k )  are periodic of period 7, we 
have 

A ' w ( ~  - T )  = q(k  - ~)z(k - 7 - 0) +p(k - T ) z ( ~  - T + q)  

= q(k)z(k - 7- - a) + p ( k ) z ( k  - 7 + q) 

2 q ( k ) z ( k  - 0) + p ( k ) z ( k  + q )  

= A2w(k) for k 2 ~ 2 .  

Using this fact, i n  (7.14.19), we obtain 

(1 + a)A2w(k - 7 )  2 g(k)w(k - a) 

or 

(7.14.21) 

But i n  view of Lemma 7.14.1 (11) and condition (7.14.12), inequality (7.14. 
21) has no eventually positive solution w ( k )  with (-l)'A'w(k) > 0, i = 
0,1,2 eventually, which is a contradiction. I 

Theorem 7.14.3. Let b > 0 and 77 > T + 2. If 

k+q-r-Z 

(7.14.22) 

(7.14.23) 
k 

lirrlsup c ( k  - /i + l)q(C) > b 
k:-m 

!=k-(U+T) 

then (7.14.1)1 is oscillatory. 

Proof. Let v.(k) be an eventually positive solution of (7,14.1)1, say 
~ ( k )  > 0 for k 2 k.0 2 0. Define z(k) as i n  (7.14.13) and obtain 

(7.14.24) A 2 z ( k )  = -q(k)v.(k-a)-p(k)v,(k+q) 5 0 for k 2 ICl 2 ko. 
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As in Theorem 7.14.2, we consider the two cases (I) and (11). 

(I) Assume z ( k )  < 0 for k 2 k l .  Set y(k)  as in (7.14.15) and obtain 
(7.14.16). Using (7.14.16) in (7.14.24), we have 

or 

The rest of the proof is similar to that of Theorem 7.14.2 cases (11)--(i) and 
(II)-~(ii) respectively. 

(11) Assume z ( k )  > 0 for k 2 kl. Set w(k)  as in (7.14.17) and obtain 

A2w(k)  + q ( k ) z ( k  - 0) + p ( k ) ~ ( k  + 7 )  = 0 

A2 (w(k-) + aw(k - 7 )  - bw(k + T)) + q ( k ) ~ ( k  - g) + p ( k ) ~ ( k  + 7 )  = 0. 

It is easy to check that w(k )  > 0 and Aw(k) > 0 and A z ( k )  > 0 for 
k 2 k2 2 kl .  Thus, there exist positive constants c1 and c 2  and an 
integer K 2 k2 such that 

and hence 
A2ur(k) + c lq (k )  +cap(k) 5 0 for k 2 K 

Thus, 

k- 1 

0 < Aw(k) 5 Aw(K) - c (clq(k) + c ~ p ( k ) )  --f -cc as k -+ 00, 
[=K 

which is a contradiction. I 

Next, we give the following two criteria for the oscillation of (7.14.2)6, 6 
= *l. 

Theorem 7.14.4. Let a > 0 and > T + 2. If 
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(7.14.26) lirnsup 1 ( k  - l + l ) q ( l )  > 1 + h 
k-03 

then (7.14.2)1 is oscillatory. 

Proof. Thc proofs of Thcorcms 7.14.4 and 7.14.5 can t)c modeled on that 
of Thcorcrns 7.14.2 and 7.14.3. B 
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which implies that A " z ( k ) ,  i = 0 , l  are eventually of one sign. Next, we 
set 

(7.14.32) w(k )  = z ( k )  + az(k  - 7) + bz(k + 7). 

(7.14.33) A2w(k) = g(k)z(k - 0) +p(k)z(k + 7 )  

and 

(7.14.34) A ' ( w ( ~ )  + o , w ( ~ - T )  + b ~ ( k + ~ ) )  = q ( k ) ~ ( k - g )  +p(k)z(k+v).  

Now, we consider the two cases: 

(i) A z ( k )  > 0 for k 2 k2, and (ii) A z ( k )  < 0 for k 2 k2. 

(i) Assume A z ( k )  > 0, k 2 k2. Then Aw(k )  > 0 for k 2 k3 2 k2 and 

A271J(k - T )  = q(k - T ) Z ( k  - 7 - 0) + p(k - 7-)Z(k - 7- + 7T) 

= q ( k ) z ( k  - 7- - g)  + p(k )z (k  - 7- + v )  
5 q ( k ) z ( k  - g)  + p(k )z (k  + 7) = A ' w ( ~ ) ,  k 2 kg 2 kq 

and 

From (7.14.34), we see that 

(1 + a + b)A2w(k + 7 )  2 p(k )w(k  +v), k 2 k4 

or 

A'w(k) 2 '(lc) W ( k  f (7 - T))l k >_ kq. 
l + a + b  

The rest of the proof is similar to that of Theorem 7.14.2 (11) (i). 

(ii) Assume A z ( k )  < 0, k 2 kz.  Then Aw(k) < 0 for k 2 K1 2 kz 
and for k 2 K Z  2 K1 we have 

A'w(k - T) 2 A2w(k)  2 A'w(k + 7-) 
and from (7.14.34), we have 

(1 + a + b)A2w(k - 7) 2 q(k)w(k - 0) 
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The rest of the proof is similar to that of Theorem 7.14.2 (11) (ii). I 

Theorem 7.14.7. If C:?=,:, q ( k )  = CO,  or C ? L : , p ( k )  = CO, then the 
equation (7.14.3)1 is oscillatory. 

Proof. The proof is similar to those of earlier results. I 

Finally, WC present the following two theorems for the oscillation of 
(7.14.4)6, 6 = fl. 

Theorem 7.14.8. If conditions (7.14.5) and (7.14.7) hold, then (7.14.4)-1 
is oscillatory. 

Proof. Let v.(k) be an cvcrltllally positivc sollition of (7.14.4)-1, say 
u ( k )  > 0 for k 2 k-0 2 0. Sct 

(7.14.35) z ( k )  = ?/,(/c) - aw.(k - 7 )  - bv(k + T) 

a2z(k) = q(k)v.(k - a )  +p(k )u (k  + 7) 2 o for k 2 k.1 2 ko, 

which implies that A ’ z ( k ) ,  i = 0 , l  are eventually of oncl sign. Next, WC 

considcr the two cases (I) and (11) as i n  Theorem 7.14.2. 

(I) Suppose that z ( k )  < 0 for k 2 k l .  Set 

(7.14.36) 0 < ~ ( k )  = -.(X-) = O U ( ~  - T )  + bu,(k + 7) - ~ ( k )  

and hence WC see that 

A2y(k) + q(k)u , (k  - g) +p(k)u,(k + 7) = 0 

and conclude that & ( k )  > 0 for k 2 k2 2 k l .  

Next, we let 

(7.14.37) V ( k )  = ay(k - 7 )  + by(k + T) - y ( k ) .  

Then 

A ~ v ( ~ c )  = q(k)y(k - a )  + p ( k ) y ( k  + 7) 2 o for IC 2 kl 2 ko, 

which implies that A V ( k )  is eventually of one sign. Now, we consider the 
two cases: 
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(i) AV(k)  > 0 for k >_ k l  and (ii) AV(k)  < 0 for k 2 k l .  

(i)  Suppose that AV(k) > 0 for k 2 k1. Then, for thc function V ( k )  
defined in (7.14.37), WC obtain 

A2V(k)  = q(k ) l / ( k  - C) + p ( k ) l / ( k  + 7) 
and 

A2 (a.V(k - C) + b V ( k  + 7) - V ( k ) )  = q (k )V (k  - 0) +p(k )V ( k  + 7). 
As in Thcorcrn 7.14.2 (11) -(i) ,  WC sec that, V ( k )  > 0 and AV(k)  > 0 
eventually and 

(a, + b)A2V(k + T) 2 p (k )V ( k  +V) 

or 

The rest of thc proof is similar to that of Thcorcm 7.14.2 (11) (i). 

(ii) AV(k )  < 0 for k 2 k l .  As in  Thcorem 7.14.2 (11) (i i) ,  WC observe 
that V ( k )  > 0 and AV(k) < 0 event~~ally ancl hcrlcc, WC obthin 

(a  + h)A2V(k - T )  2 q ( k ) V ( k  - 0) 

or 

(. - T)) eventually. 

Again, the rest of the proof is similar to that of Theorem 7.14.2 (11) (ii). 

(11) Suppose that z ( k )  > 0 for k 2 kl. The proof of this case is similar 
to that of Theorem 7.14.3 (11). 

Theorem 7.14.9. Let a. + b > 0, (T > T and 77 > T + 2. If 

k:+q--r-2 

(7.14.39) 

then (7.14.4)1 is oscillatory. 

Proof. The proof is similar to those of earlier results. 
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7.15. Oscillation and Nonoscillation for 
(7.15.1) A n ( ~ , ( k )  + p ( k ) u ( k  - T ) )  + q ( k ) f ( ~ , ( k  - C ) )  = 0, k E IN 

where T E IN(l), C E IN, functions p (k ) ,  q ( k )  are defined on IN, q ( k )  2 
0, k E IN, and is not eventually identically zero, the continuous function 
f : IR + R is such that 1 ~ f ( 1 ~ )  > 0 for all U, # 0. Further, with respect 
to (7.15.1), WC shall assume that there exists a func:tion F : R + R such 
that F is continuous and nondecreasing and satisfies the inequality 

-F(-w,v)  2 F ( u w )  2 CF(u)F(71) for W,, 71 > 0, 

where C is a positive constant, and 

Theorem 7.15.1. (a) Let R bc even. If 0 5 p(k)  < 1, and 

then the equation (7.15.1) is oscillatory. 

(b) Let R be odd. If 0 5 p(k)  5 P1 < 1, where P1 is a constant, arid 

for every M E (0, l), then every solution of (7.15.1) either oscillates or 
tends to zero as k + CO. 

Proof. Let u ( k )  be a nonoscillatory solution of (7.1Ei.1) with u(k) > 
0, w,(k - T )  > 0 and u ( k  - 0) > 0 for all k 2 ko 2 KO. Setting- 
z(k) = u ( k )  +p(k)v.(k - T ) ,  WC get z(k) 2 u(k) > 0 and 

(7.15.2) A " z ( k )  = - q ( k ) f ( u ( k  -0)) < 0, k E W(k0). 

It follows from Theorern 1.8.11 that for n 2 2, 

(7.15.3) A"Z(k) > 0, k E W(k0). 

W e  claim that A z ( k )  5 0 eventually. This is obvious from the equation 
(7.15.1) in the case n = 1. For n 2 2, we suppose on the contrary that 
b ( k )  > 0 for k 2 kl  > ko .  Then, 
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(7.15.4) 
( l -p (k ) ) z (k )  I z(k)-p(k)z(k-7) = v.(k)-p(k)p(k-7)71,(k-227) I u ( k )  

for k 2 > k l .  Since z ( k )  is positive and increasing, it follows from 
Corollary 1.8.12 and (7.15.4) that 

(7.15.5) u ( k )  2 (1 - p ( k ) ) z ( k )  2 
(n - l)! 

A""z(k),  

(n.-1) 
An.-' z ( k - a )  

It follows from (7.15.2) and the above inequality that A n - l z ( k )  is an 
eventually positive (cf. (7.15.3)) solution of 

w(k  - a) 5 0. 

But, in view of condition (i) ,  this is a contradiction to Theorem 6.20.5. 
Hence, A z ( k )  5 0 eventually. 

Since A z ( k )  5 0 eventually, in Theorem 1.8.11 we must have 711, = 
j = 0, and 

(7.15.6) (- l ) iA iz (k )  > 0, 0 5 i 5 n - 1, k E IN(k0). 

If n, is even, (7.15.6) yields a contradiction to (7.15.3). This proves part 
(a) of the theorem. 

Now, let n be odd. Assume further that u ( k )  does not tend to zero 
as k + 00. As A z ( k )  5 0 eventually, we have z(k) 1 c as k "+ 00, 
where 0 < c < 00. Then, there exists E > 0 and an integer k4 > ko such 
that 
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and 

(7.15.7) c- E < z ( k )  5 z ( k - 7 )  < C + € ,  k E IN(k.4). 

Thus, from (7.15.4) and (7.15.7), we find for k E m(k4) that 

(7.15.8) 
u ( k )  2 z ( k ) - p ( k ) z ( k - 7 )  2 z(k)-P1z(k.-7) > ( C " ) - P 1 ( C f E )  > c1z(k), 

where cl = [(c - 6 )  - P1(c + F ) ] / ( c  + 6 )  E (0 , l ) .  Let m = j be as i n  
Corollary 1.8.12. We have for k 2 kg > k.4 that 

(n,-l) 
f ( u ( k . - 0 ) )  2 F ( U ( k - a ) )  1 C2yF(c3 )F  ((Z) ) A"-lz(k-0). 

Using the above inequality in (7.15.2), we see that AnP1z(k) is an even- 
tually positive (cf. (7.15.3)) solution of 

In view of condition (ii) ,  this is a contradiction to Theorem 6.20.5. This 
completes the proof of part (b). I 
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Theorem 7.15.2. If - l < -P2 5 p(k) 5 0, where P2 > 0 is a 
constant, and (ii) hold, then every solution of (7.15.1) either oscillates or 
tends to zero as k "-f 00. 

Proof. Let 714k) be a nonoscillatory solution of (7.15.1) with ~ ( k )  > 
0, u ( k  - 7) > 0 arid ~ ( k  - c) > 0 for all k 2 ko 2 KO. Further, we 
assume that v,(k) does not tend to zero as k --f CO. Setting z ( k )  = 
u ( k )  + p(k)v.(k - T ) ,  we get z(k)  1. v,(k)  and also inequality (7.15.2). 

W e  chirn that Au(k) 5 0 eventually. S~~pposc on the contrary that 
Av,(k) > 0 for k 2 kl > ko. Then, for k 2 k2 > k.1 , we have 

(7.15.11) z ( k )  2 7r(k) +p(k )u (k )  2 (1 - PZ)U,(k) > 0. 

Thus, inequality (7.15.3) follows from Theorem 1.8.11. Sincc U( k )  is 
unbounded, it follows from (7.15.11) that z ( k )  is also unbourldcd, and 
hence Az(k) > 0, k E IN(k.2). Applying Corollary 1.8.12, we find 

Therefore, i n  view of the above inequality, for k 2 k3 > k.2 WC obtain 

f (7/4k - c)) 2 F(w,(k - c)) 

It  follows from (7.15.2) and the above inequality that A n - l z ( k )  is an 
eventually positive (cf. (7.15.3)) solution of 

1 
(7.15.12) Aw(k) + q ( k ) C 2 y F  

In view of condition (ii), this contradicts Theorem 6.20.5. Hence, Au.(k) 5 
0 eventually. Consequently, u(k) 1 c as k + 00, where 0 < c < 00. 

From the definition of z ( k ) ,  we find 

Hence, z ( k )  is eventually positive and (7.15.3) holds. Since t ( k )  5 u.(k) 
and ~ ( k )  is nonincreasing eventually, z ( k )  is also no~lincreasing eventually. 
Thus, z ( k )  1 d as IC -+ 00, where 0 < d < 00. Given F E (O ,d ) ,  there 
exists an integer k4 > ko such that 

(7.15.13) d--E < ~ ( k )  < d + ~ ,  k ~ W ( k 4 ) .  
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Using 
tually 

I I1 

the above irlcqllality in (7.15.2), we find that A"-lz(k) is an even- 
positive (cf. (7.15.3)) solution of 

view of cnndition (ii), o r ~ e  again we get a cxmtradiction to Theorem 
6.20.5. B 

Theorem 7.15.3. Let p(k) 3 -1. If (ii) holds, then every solution of 
(7.15.1) either oscillates or tends to zero as k + 00. 

Proof. Let ~ ( k )  be a nonoscillatory solution of (7.15.1) with u ( k )  > 
0, u ( L - 7 )  > 0 and ~ ~ ( k - 0 )  > 0 for all k 2 ko 2 KO. Further, we assume 
that ~ ( k )  docs not tend to aero as k + 00. Setting z(k) = u , ( k ) - u ( k - ~ ) ,  
we get z ( k )  < u(k) and also inequality (7.15.2). 

If z ( k )  < 0 eventually, then u ( k )  < u(k - T )  eventually and therefore 
~ ( k )  is bounded. This in turn implies that z ( k )  is bounded. If z ( k )  > 
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0 eventually, then z ( k )  is also bounded. To show this, suppose that 
z ( k )  is not bounded, i.e. A z ( k )  > 0 for sufficicntly large k .  Using 
Corollary 1.8.12 and proceeding as in the proof of Thcorem 7.15.2, we 
coIlclude that An-%(k) is an evcntually positive solution of (7.15.12), 
which is a contradiction due to condition (ii). Hence, z ( k )  is bounded. 

Next, let limk,, u ( k )  = p > 0. Given E E (O,p), there exists 
kl > ko such that u ( k  - U )  > p - E for k 2 k l .  It follows that 

(7.15.15) f(~(k- U ) )  2 F ( u ( ~  - 0)) 2 F ( p  - c), k E W(k-1). 

1\/Iultiplying (7.15.1) by ( k  - u ) ( ~ , - ’ )  and summing from kl  to k ,  
we get 

(7.15.16) 

where in the last inequality WC have used the fact that z ( k )  is bounded 
irrlplics that An,- i - lz(k) ,  0 5 i 5 n - 1 is bounded. Coupling (7.15.15) 
and (7.15.16), we find 

1: 

F ( p  - E) c ( e  - 0 y n - 1 )  q(l) m, E W(kl) 
t = k : l  

or equivalently, 
03 

(7.15.17) c ( e  - U)(” ( ! )  < Co. 
e=1:, 

Howcver, condition (ii) irnplics that 
M 

which contradicts (7.15.17). I 

Theorem 7.15.4. Let p(k) = 1 and C”q(t) = m. 
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(a) If n is even, then the equation (7.15.1) is oscillatory. 

(b) If n is odd, then every solution of (7.15.1) either oscillates or tends 
to zero as k "+ m. 

Proof. Let u,(k)  be a nonoscillatory solution of (7.15.1) with w,(k) > 
0, u ( k  - T )  > 0 and ~ ( k  - a) > 0 for all k 2 ko 2 KO. Setting 
z ( k )  = u ( k )  + v.(k - T ) ,  we get z ( k )  > 0, k E K ( k 0 )  and also inequalities 
(7.15.2) and (7.15.3). Summing (7.15.1) from k.0 to ( k  - l), and using 
(7.15.3), we get 

!,-l I: - 1 

A d Z ( k . 0 )  = c q ( P ) f ( u ( P  - a)) + An, - l z ( k )  > c q ( P ) - y u ( P  - a), 
e=k0 e=!,,, 

which implies 

(7.15.18) c q(P)Tl,(e - a) < CO. 
00 

P=ko 

WC claim that if liminfI:,, u ( k )  > 0, then C" q ( P )  < CO. To show 
t,his, suppose on the contrary that C" q(P) = m. Let L = infp2I:, u ( P  - 
a)(> 0). Then, we have 

00 03 c q(P)v.(C - a) 2 L c q(P) = m, 
&=ko L=ko 

which contradicts (7.15.18). 

Case (a). n is even. From Theorem 1.8.11, we see that m = j is odd 
and hence A z ( k )  > 0, k E IN( ko). This means that for k 2 kl > ko, 

0 < Z ( k )  - Z ( k - 7 )  = U.(k) - U ( k - 2 7 )  

or, u ( k )  > u ( k  - 27), k E IN(k1). Therefore, liminfk,, u ( k )  > 0. W e  
have seen that this leads to c" q(C) < m, which is a contradiction to 
C" q ( k )  = CO. 

Case (b). n is odd. W e  assume further that u ( k )  does not tend to zero 
as k "+ M. From Theorem 1.8.11, we see that rn = j is even. If j 2 2, 
then again we have A z ( k )  > 0, k E IN(k0). Proceeding as in Case (a), 
we obtain a contradiction. If j = 0, then from Theorem 1.8.11 we have 
A z ( k )  < 0, k E IN(k0). Thus, z ( k )  1 /3 as k "+ m, where 0 < /3 < m. 
For E E (0,/3), there exists an integer kl > ko such that 

Z(k) = U ( k )  f U ( k  - T )  > /3 - E > 0, k E W ( k 1 ) .  

Hence, liminfk,, u(k)  > 0. W e  have noted earlier that this leads to 
C" q(P) < m, which is a contradiction to C" q ( k )  = m. I 
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Remark 7.15.1. Consider the following difference equation which is more 
general than (7.15.1) 

(7.15.19) An(?/.(k) + p ( k ) ~ , ( ~ ( k ) ) )  + q(k)f(~(k - 0)) = 0, k E IN 

where r : IN + W is nondecreasing and r(k) 5 k ,  limA:-+m7(k) = c c .  
We observe that with obvious slight modifications in the proofs, Theorems 
7.15.1 7.15.4 also hold for the equation (7.15.19). 

Example 7.15.1. Consider the difference equation 

(7.15.20) 

+ (-1)n,+0+132n-l?,,(k: - 0) exp(\u(k - .)I) = 0, 
e 

where T is any positive odd integer and (T E IN is such that ( n  + CJ) 
is odd. B y  taking F(u.) = W., we rmtc that all the conditions of Theorem 
7.15.2 arc satisfied. 111 fact, rr(k) = (-1)" is an oscillatory solution of 
(7.15.20). 

Example 7.15.2. Consider the differerlcc equation 

(7.15.21) A"(u(k) - u(k -r)) + (-l)n,+u+l 2n+1 ?r(k-(T)lu(k-o) l  = 0: 

where T is any positive odd integer arid C J  E W is such that ( n  + 
CJ) is odd. B y  choosing F(w,) = f ( u )  = ~ 1 ~ 1 ,  it is noted that all the 
hypotheses of Theorem 7.15.3 arc fulfilled. In fact, the equation (7.15.21) 
has an oscillatory solution ?/,(/c) = (-1)'. 

Example 7.15.3. Consider the difference equation 

(7.15.22) An ( ~ ( k )  + u ( ~ - T ) )  + (-1)n~+u+12"~.(k-~)(1 + It/,(k-a)l) = 0, 

where T E W(1), (T E W is such that (n+a) is odd. B y  taking F(w.) = I / . ,  
we find that all the conditions of Theorern 7.15.4 are satisfied. It is noted 
that v(k )  = (-1)" is an oscillatory solution of (7.15.22). 

7.16. Oscillation and Nonoscillation for 

(7.16.1) A ( a ( k ) A n ' " I ( ~ ~ ( k )  - p ( k ) t r ( k - ~ ) ) ) + S q ( k ) f ( u , ( a ( k ) ) )  = 0, k E W 

whcre S = fl, T E W(1), a ( k )  > 0 with Aa(k) 2 0, k E W and 
c" l /a (k )  = c c ,  1 < c <_ p(k)  5 C < cc for some real rnlnlbers c and 
C ,  q ( k )  2 0, k E W, ( ~ ( k )  E W, k E W arid lirn'+mcr(k) = c c ,  and 
f : R + R is continuous such that u f ( u , )  > 0 for U # 0. 
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Theorem 7.16.1. Suppose that 

(7.16.2) 

Then, the following hold 

(a) every bounded solution u,(k)  of (7.16.1) is oscillatory when (-1)"s = -1 
(b) every bourlded solution u.(k) of (7.16.1) is either oscillatory or sat,isfies 
limA:+m u ( k )  = 0 when (-1)"s = 1. 

Proof. Let u.(k) be an cvcntually positive solution of (7.16.1). Set 
z ( k )  = u ( k )  - p(k)u(k - T ) .  If z ( k )  is eventually positive, then WC have 
u ( k )  > p(k)u(k - T )  2 cw.(k - T ) ,  and t,herefore by induct,ion u ( k )  > 
cju,(k - j ~ )  or w.(k + j ~ )  > cju.(k) for every positive integer j .  Letting 
j + m, we find lirnj-, u(k )  = m. Since this is a contradiction to u(k)  
being bounded, we conclude that z ( k )  is eventmlly ncgative. It follows 
from (7.16.1) that 6 A ( a ( k ) A n - ' z ( k ) )  is also eventually negative. Thus, 
evcntuaIIy SA"-lz(k) is either positive or negative. Suppose that it is 
eventually negative, then there is a kl E W suc:h that for k 2 k l ,  

Ga(k )A" - l z ( k )  5 Ga(kl)A"-lz(kl)  < 0. 

Dividing both sides of this inequality by a ( k )  and summing from kl to 
k ,  we obtain 

This inequality in view of c" l / a ( k )  = m inlplies that SA"-'z(k) -+ 

-m as k -+ cm, which is a contradiction to z ( k )  being bounded. Thus, 
6A"- 'z(k)  is eventually positive. Now from (7.16.1), we have 

(7.16.3) Ga(k )A"z (k )  = - ( A u ( k ) )  (SA"-'z(k + 1)) - q ( k ) f ( v . ( o ( k ) ) .  

Since Aa(k)  and q ( k )  are nonnegative, (7.16.3) implies that 6 A " z ( k )  
is eventually negative. In view of the fact that z ( k )  is boundcd, ap- 
plying Theorem 1.8.11, we see that there are integers k2 2 kl and 
m E (0, l}, (-1)"-"6 = 1, such that for k 2 k2 

(7.16.4) 
A j z ( k )  < 0, j = 0,1, ... ,'m, 

(- l ) jPm,Ajz (k )  < 0, j =*m,+ l , . . . , n  . 

It is clear from (7.16.3) that 

(7.16.5) 
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Multiplying (7.16.5) by km-’ and summing from k2 to k and then 
applying the summation by parts formula to the first term i n  the resulting 
inequalit,y, we obtain 

+(-l)”S (n - l ) ! [ z ( k  + n,) - z (k2  + n - l)] 

Since z ( k )  is bounded, if we let k + m in (7.16.6) then we must have 

(7.16.7) 

From (7.16.2) and (7.16.7) it follows that lirn infk-co u ( k )  = 0. 

Now we shall show that limL.+cc z ( k )  = 0. Clearly, 

(7.16.8) ~ ( k  + T )  - ~ ( k )  = ~ ( k  + T )  - ( p ( k  + T )  + l ) ~ ( k )  + p ( k ) ~ ( k  - T ) .  

Let { k j }  be such that kj 4 m as j ”+ m, and ~ ( 5 )  + 0 as j + m. 
Then, from (7.16.8) we get 

j-cc 
lim [w,(k, + T) + p(kj)u(ki - T)] = 0. 

As ~ ( k ,  + T )  > 0 and p(kj)u(kj - T )  > 0, we see that p(Ic3)u(kj -T) + 0 
as j 4 m. If we now use the fact that p(k) is bounded and z ( k j )  = 
u(kj)  - p(ki)w,(k, - 7), then we have limA:+co z(k) = 0. 

If (-1)”6 = -1, then it follows from (7.16.4) that m = 1 and 
consequently z(k) is negative arid decreasing. In this case, lirnk,, z ( k )  = 
0 is not possible, and therfore ~ ( k )  must be oscillatory. 

If (-1)”s = l ,  then it follows from (7.16.4) that m = 0 and so z ( k )  
increases to 0 as k --f m, i.e. given -E > 0 there exists a k g  2 k2 such 
that z ( k )  > --E for all k 2 kg. Thus, v,(k) - p(k)w.(k - 7) > --E for 
k 2 k g ,  or u ( k )  > --F + cu(k - 7) for k 2 k3, or c71,(k) < -E + w.(k + 7 )  
for k 2 kg. B y  induction, WC have 

L&(k) < F + C€ + . ’. + 2 - l  - ~ + v , ( k + j ~ )  for k 2 F3 

Let M be a bound for u(Ic), then it follows from the last inequality that 

1 - C-3 

c -  1 
(7.16.9) u,(k) < ~ E + Mc-j 
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7.17. Problems 

7.17.1. Consider the difference equation 

(7.17.1) A ( u ( ~ )  + p ~ ( k  - T ) )  + q ~ , ( k  - 0) = 0, k E IN 

where p, q are constants, T E W(1), and (T E W. Show that all solutions 
of (7.17.1) are oscillatory if and only if the characteristic equation 

x - 1 + P ( X  - l)p + qx-" = 0 

of (7.17.1) has no positive roots. In particular, dcducc that all solnt,ions of 
(7.17.1) are oscillatory 

(i) for the case (T = 7 = 1 if and only if q 2 p 2 1, or p < 1 and 

4 > (P+ 112/4 
(ii) for the case (T = 0, T = 1 if and only if p < 0 and q > 1 -p-2J-p, 
or p = 0 and q = 1. 

7.17.2. Consider the difference equation (7.1.1) where p = -1, T E 
W(l ) ,  U E W, 0 5 k q ( k )  < T for k E IN(l), and 

Show that the equation (7.1.1) is oscillatory. 

7.17.3. Consider the difference equation (7.1.1) where p = -1, 7- E 
N(1), o E W, q(k)  L 0, k E IN, and 

m \ 

Show that the equation (7.1.1) is oscillatory 

7.17.4. Consider the difference equation (7.1.1) where p = -1, T E 
W(1), (T E IN, and q ( k )  2 0, k E IN. Assume that there exists a function 
0 5 X(k) 5 1, k E W such that 

k 
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Show that the equation (7.1.1) is oscillatory. 

7.17.5. Consider the difference equation (7.1.1) where p = -1, T E 
N( l ) ,  cr E IN, and q ( k )  >_ 0, k E IN. Show that 

(i) if there exists a T* > T such that 4k2q(k )  2 T*  eventually, then the 
equation (7.1.1) is oscillatory 
(ii) if 4k2q(k )  5 7 eventually, then (7.1.1) has a nonoscillatory solution 
(iii) if lim infk-oo 4k2q(k )  < 7, then (7.1.1) has a nonoscillatory solution 
(iv) if lirnsupL.,, 4k2q(k )  > 7, then the equation (7.1.1) is oscillatory. 

7.17.6. Consider the difference equation (7.1.1) where p = -1, T E 
IN(l), cr E IN, and q ( k )  = k-", N E R. Show that the equation (7.1.1) 
is oscillatory if and only if N < 2, or Q = 2 and T < 4. In particular, 
show that the discrete E d e r  equation, 

A2u.(k - 1) + y k - 2 ~ r ( k )  = 0, k E W(1) 

is oscillatory if and only if y > 1/4. 

7.17.7. Consider the difference equation (7.1.1) where p is a constant, 
T E W(l) ,  o E I N ,  q(k)  2 0 eventually, and condition (7.1.3) holds. Let 
w,(k) he a nonoscillatory solution of (7.1.1). Show that 

(i) if p > -1 and p # 1, then lirnk:-oo w.(k) = 0 
(ii) if p = 1, then construct an equation of thc type (7.1.1) for which 
limk,m u ( k )  # 0 

(iii) if p = 1, q ( k )  > 0 and lim sup = < 00, then 

lirnk,, u ( k )  = 0 
(iv) if p = 1 and condition (7.1.3) is replaced by cz"=, q*(k )  = 00 
where q * ( k )  = rnin{q(k),q(k - T ) } ,  then linlk-m u(k) = 0. 

7.17.8. Consider the difference equation (7.1.1) where - 1 < p < 0, T E 
W(l), cr E W,  and liminfk,,q(k) = A > 0 and limsupk,,q(k) = 
1 - A ,  or lirninfL.-+, q ( k )  > o'/(o + Show that the equation 
(7.1.1) is oscillatory. 

7.17.9. Consider the difference equation (7.1.1) where - l 5 p 5 
0, q ( k )  2 q > 0, T E N( l ) ,  cr E W, and 

q ( k )  
k-oo q ( k  - T) 

Show that the equation (7.1.1) is oscillatory. 
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7.17.10. Consider the differerlcc equations (7.1.1) and (7.3.12) where 
- 1 p I p < 0, T E lN(l), B E W, h,(k) 2 q(k) > 0, k E IN and 

h,(k) = m. Show that the oscillation of (7.1.1) implies that of 
(7.3.12). 

7.17.11. Consider the difference equation (7.3.18) where T E W(1), cri E 

and not identically zero. Let u,(k) be a solution of (7.3.18) and define 
z ( k )  = 7r(k) +p7~(k - T) and w(k)  = z ( k )  +pz(k - T). Show that 

(i) if p E R and the functions qa(k ) ,  l 5 i 5 T are periodic with period 
7, then z ( k )  and ~ ( k )  are solutions of (7.3.18) for all large k 

(ii) if - 1 I p < 0 and w.(k) is eventually positive, then z ( k )  
is eventually positive and norlirlcreasing; further if q i ( k ) ,  1 5 i 5 T arc 
periodic with period T, then w(k )  is an eventually positive nonincrcasing 
solution of (7.3.18) 

(iii) if p <  -1, thereisanindex j E {l,...,~} suchthat C"q J ( k )  =m 
and u ( k )  is eventually positive, thcn z ( k )  is everlt,ually negative and 
nonincreasing; further if qi(k) ,  1 I i 5 T are periodic with period T, 

then ur(k) is an eventually positive nondecreasing solution of (7.3.18). 

7.17.12. Consider the difference equation (7.3.18) where T E W(1), cri E 
N, 1 5  i 5 T, 0 < 01 < 02 < ... < or, q,(k)  2 0, k E W, 1 5  i 5 T and 
not identically zero. Further, assurne that qi(k) ,  1 5 i 5 T are periodic 
with periodic T and dcnote q(k)  = C':==, qi(k),  k E W. Show that 

(i) if - 1 < p < 0 and the inequality 

N, 1 I i I T, 0 < 01  < 02 < ". < or, q i ( k )  2 0, k E W, 1 5  i I T 

Av(k) + -q(k)v(k - 01) I 0,  IC E W 
1 

1 + p  

has no eventually positive solution, then the equation (7.3.18) is oscillatory 

(ii) if p = -1 and the inequality 

has no eventually positive solution, then the equation (7.3.18) is oscillatory 

(iii) if p > 0, 7 < cr1 and the inequality 

has no eventually positive solution, then the equation (7.3.18) is oscillatory 
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(iv) if p < -1, T > or, there exists an index j E {l, .. . , T} such that 
c" q j ( k )  = m, and the inequality 

1 
Y 

Av(k)  + -q(k)v(k + 7 - Or) 5 0, k E N 

has no eventually negative solution, then the equation (7.3.18) is oscillatory. 

7.17.13. Consider the difference equation (7.3.18) where - 1 < p < 
0, 7 E IN(I), oi, 1 5 i L. T are integers with arbitrary sign, q i (k )  qi > 
0, 1 5 i 5 T, and 

where pi is the smallest nonnegative integers such that ?Ti = + ai > 
0, 1 5 i 5 T. Show that the equation (7.3.18) is oscillatory. 

7.17.14. Consider the difference equation (7.1.1) where Ipl < 1, 7 E 
W(l) ,  CJ E N, and q(k)  2 0, k E W. Assume that there exist a constant 
cy > 0 and an integer K sufficiently large such that 

Show that every oscillatory solution of (7.1.1) is bounded. 

7.17.15. Consider the difference equation (7.1.1) where IpJ < 1, 7 E 
IN(1), a E W, q ( k )  2 0, k E W, and c r = l q ( k )  = m. Assume that 
there exist a constant a > 0 and an integer K sufficiently large such 
that (7.17.2) holds. Show that every bounded oscillatory solution of (7.1.1) 
tends to zero as k -+ m. 

7.17.16. A combination of Theorem 7.2.6 and Problems 7.17.14 and 
7.17.15 implies that in Theorem 7.4.1 condition (7.4.1) can be replaced by 
(7.17.2). Construct examples to show thak conditions (7.4.1) and (7.17.2) 
in general cannot be compared. 
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7.17.17. Consider the difference equation (7.5.1) where - l < p 5 

q ( k )  - h(k - (ol - 02)) 2 0, and 
0, 7 E IN(1), 01, 02 E I N ,  0 1  > 02 + 1, q ( k )  2 0, h(k) 2 0, q ( k )  = 

1;- 1 k-l C h,([) 5 1 + p  for all large k ,  liminf C q(e)  > o 
e=k-(ul-ua) 

A:-m 
!=1:-u, 

Show that the equation (7.5.1) is oscillatory. 

7.17.18. Consider the difference equation (7.5.1) whcrc p 5 0, -r E 

(o1 - 02)) 2 0, g ( k )  = CO, and there exist, K E N and X*  > 0 
such that 1 - X*?(k - 1) > 0, k = K, K + 1,. . . , and 

IN(l), 01, 02 E W, 0 1  > 02 + 1, q ( k )  2 0, h(k )  2 0, B(k) = q ( k )  - h,(k - 

k 1: 

(1 - A * q ( t -  1))-1 - p  (1 -A*q(!- 1))-1 

P=k-T+l 

Show that (7.5.1) has a positive solution u(k)  with limk.+m u.(k) = 0. 

7.17.19. Consider the difference equation (7.5.1) where - 1 < p < 0, 7 E 
JN(l), 01, 02 E W, 01 > 02 + 1, q ( k )  L 0, h(k)  2 0, q ( k )  = q ( k )  - h(k - 
(01 - 02 ) )  2 0, CE1 ? ( k )  = C O ,  and lirn SUPk-m C&ul-u*) h( [ )  < 
1 + p. Show that 

(i) every nonoscillatory solution of (7.5.1) tends to zero as k + cc 

(ii) the equation (7.5.1) is oscillatory if and only if the difference inequality 

a ( U ( k )  +p'U(k - T ) )  f q(k )? / ( k  - 01) - h(k)'U(k - 02) 5 0, k E IN 

has no eventually positive solutions. 

7.17.20. Show that in Theorem 7.7.3 the condition p(k)  1 can be 
replaced by p(k) 2 1, k E W and that p(k - a)q (k )  5 a q ( k  - T )  for 
k 2 p where cr 2 1. 
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7.17.21. Consider the difference equation (7.7.1) where 7 E lN(1), cr E 
W, q ( k )  2 0, p(k)  5 0 for all large IC, and there exists a nonnegative 
number (Y s11ch that - p(k  - a)q (k )  5 aq(k - 7 )  for all large k .  Show 
that the equation (7.7.1) is oscillatory provided the inequality 

Aw(k )  + - 
1 + CY w(k  - (c7 - 7)) 5 0, k E N 

does not have an eventually positive solution. 

Consider thc diffcrcnce equation (7.7.1) where 7 E W(1), a E 
0, p(k) 5 0 for all large k ,  and t,here cxists a rlormegativc 
such that 

Show that the cquation (7.7.1) is oscillatory provided the inequality 

docs not have an evcntually positive solution. 

7.17.23. Consider the difference equation (7.7.1) where T E W(1), a E 
W, q ( k )  2 0, k E W, there cxists a positive integer K such that (7.7.2) 
holds, and there exists a nwnbcr cy E [0,1) such that c ~ q ( k  - T) 2 
p(k - a)q (k )  for all large k .  Show that the equation (7.7.1) is oscillatory 
provided the inequality 

Aw(IC) + m w ( k  - (a - 7)) 2 0, k E W 
l - f f  

does not have an eventually positive solution. 

7.17.24. Show that the difference equation 

+ e-Pl.'w,(k - 0) = 0, k E IN 

where a E W and p E lR is oscillatory. 

7.17.25. Show that the difference equation 

A ( s ( k )  - exp (sin E) u(k - 1 7 ) )  + ce-PL:u(k - a) = 0, k E 

where 7, g E N(l ) ,  c > 0 and p 5 1/47 is oscillatory. 
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7.17.26. Consider the difference equation 

(7.17.3) A(u(k)  - p(k)71.(k - T ) )  + q(k)71.(k - 01) - h(k)u.(k - ~ 2 )  = 0, 

k E N  

where T E IN(l), 01, 02 E W, 0 1  2 ~2 and the functions p ( k ) ,  q(k) ,  h(k)  
are defined on W with q ( k )  2 0, h ( k )  2 0, k E IN. Assume that 

(i) p(k)  and q(k)  - h ( k  - (01 - 02)) are eventually nonnegative, and 
q ( k )  - h(k  - (g1 - 02) )  is not identicallv zero for all large k 

(ii) for all large k ,  p(k )  + C:&,,-,,) h ( [ )  5 1 

(iii) ~ ( k )  is an eventually positive solution of the inequality 

and set 

Show that eventually z ( k )  > 0 and A z ( k )  5 0. 

7.17.27. Assunle that in Problem 7.17.26 condition (ii) is rcplaccd by 

(iv) for all large IC ,  p(k )  + ~ : ~ ~ - ~ , 1 - , , 2 )  h ( [ )  2 1, and 
(v) there exists a nonnegative integer s such that the functions 

exist. and that 

Show that eventually z ( k )  < 0 and A z ( k )  5 0. 

7.17.28. Consider the difference equation (7.17.3) where 7 E IN(l), 01, 

02 E I N ,  0 1  2 0 2  and the functions p(k), q(k) ,  h(k) are defined on IN 
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with q(k) 2 0, h(k) >_ 0, k E W. Assume that in addition to conditions 
(i) and (v) of Problems 7.17.26 and 7.17.27, 

I;-1 

e = k - ( U l - " * )  

Show that the equation (7.17.3) is oscillatory. 
difference equation 

1. 

In particular, show that the 

a(IJ.(k) - (1 - CY)'U(k - 7)) f u ( k  -01)  - au(k  - 02)  = 0, 

k € I N  

where 0 < o < 1, 01 = 02 + 1, r = 0 2  > 0 is oscillatory 

7.17.29. Consider the difference equation (7.17.5) where r E W(1), a1, 
0 2  E IN, a1 2 o2 and the fur1c;tions p(k), q ( k ) ,  h,(k) are defined on N 
with q(k)  2 0, h,(k) 2 0, k E IN. Assurne that in addition to conditions 
(i), (ii) and (v) of Problems 7.17.26 and 7.17.27, p(k - gl)[q(k) - h,(k - 
(gl - 0 2 ) ) ]  2 [q(k - 7) - h,(k - c1 + 02 - T ) ]  for all large k .  Show that 
the equation (7.17.3) is oscillatory. 

7.17.30. Consider the difference equation (7.17.3) where T E W(1),  cl, 
0 2  E IN, 01 2 02 arid the functions p (k ) ,  q ( k ) ,  h,(k) are defined 011 W 
with q(k)  2 0, h(k) 2 0, k E W. Assume that i n  addition to conditions 
(i) and (iv), (v) of Problems 7.17.26 and 7.17.27, p(k - a l ) [ q ( k )  - h(k - 

is nondecreasing, and [q(k)  - h(k - (01 - 02))]h,(k - 0 1 )  5 c2[q(k - 02)  - 
h(k - cl)] for all large k ,  where cl, c2 are nonnegative constants and 
satisfy c1 + ~ ~ ( 0 1  - 02 )  = 1. Show that the equation (7.17.3) is oscillatory. 
In particular, show that the difference equation 

( ~ 1 - ~ 2 ) ) 1  5 cl[q(k-.r)-h(k:-al+aa-r)I ,  h (k ) l [ q (k ) - h (k : - ( a l - aa ) ) ]  

u ( k - 1 )  + -+ u ( k - 2 ) - - u ( k - l )  = 0, 
A ( . u ( k : )  - m ) (a (kf 1 ) l . G  

1 
2 

is oscillatory. 

7.17.31. Show that in Problems 7.17.27 ~ 7.17.30 the condition (v) car1 
be replaced by 
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where X = max{.r, C J ~ }  > 0. 

7.17.32. Consider the difference equation 

(7.17.4) A(w, (~)  + p ( k ) ~ . ( k  - T)) = q(k )U(k  - g) + h,(k)u(k) ,  IC E W 

where T E IN(l), C J  E IN and the functions p(k), q ( k ) ,  h ( k )  are defined 
on IN. Assume that p(k )  5 p0 < -1, q ( k )  < 0 and h,(k)  5 0 for all 
large IC. Show that for an eventually positive solution u ( k )  of (7.17.4) the 
function z ( k )  defined by z ( k )  = ~ ( k )  +p(k)v , (k  - T) satisfies z(k) < 0 
and Az(k)  < 0 for all large k .  

7.17.33. Consider the difference equation (7.17.4) where T E IN(1), 0 E 
IN,r > IS and 

(i) for all large k ,  p(k) 5 p0 < -1, q ( k )  < 0,-1 < h(k )  5 O,h.(k + 
T)q(k)p(k  f T) 2 h(k)q(k + T)p(k + 7 - C J )  

where E ( k )  = ntIi(1 + h ( [ ) ) - ' ,  k E W(1). Show that the difference 
equation (7.17.4) is oscillatory. 

7.17.34. Consider the difference equation (7.17.4) where T E IN(1), CJ E 
I N ,  T - cr = W > 1 and in addition to conditions (i)  and (iii) of Problem 
7.17.33 assume that 

r - 1. 1. 
h(k + l ) q ( k ) ( w  - 1)l"WWW h>(k + l ) q ( k )  

- 
lirn inf - - 
k+m h , ( k f T - O ) p ( k + T - 0 )  h(k+Tfl)p(k+T-a)q(k+T) 

Show that the difference equation (7.17.4) is oscillatory. 

7.17.35. Consider the difference equation (7.17.4) where T E IN(1), C J  E 
IN and for all large k ,  p(k) I: p0 < -1, q ( k )  < 0, - 1 < h ( k )  I: 
0, h ( k  - T ) q ( k ) p ( k  - C J )  5 h(k)q(k - ~)p(k), and 

Show that the difference equation (7.17.4) is oscillatory. 
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7.17.36. Consider the difference equation (7.17.4) where T E IN(1), U E 
W, T 5 U and for all large k ,  - 1 5 p(k) 5 0, q ( k )  < 0, - 1 < h ( k )  5 
0, h(k)q(k - T)P (k )  5 h(k - T)q(k)p(k  - T ) ,  

and 

lim inf [" - - ] >l. h,(k + l )p (k )h (k )  - i;(k + l ) q ( k )  i;(k -t l )q (k )p (k  - 0) - 
k - c c  h,(k - T )  h,(k - U )  h,(k - 7 + l ) q (k  - T) 

Show that the diffcrcrlcc eqnation (7.17.4) is oscillatory. 

7.17.37. Considcr the diffcrcnce cquation (7.17.4) where T, a E N(1), 
T < a and for all large k ,  p(k)  2 0, q ( k )  < 0, h,(k) 5 0, q ( k ) p ( k  - 
a ) / q ( k  - T )  5 f?, and 

(1 + B)(a - T y T  

Show that thc difference equation (7.17.4) is oscillatory. 

7.17.38. Considcr the difference cquation (7.8.1) where T E IN(1) and 
the functions r ( k )  > 0, p(k) 2 0, q ( k )  2 0, a ( k )  E W for all k E W, 
and lirrlA.+m(k - a ( k ) )  = 0. Show that 

(i) if r ( k )  = p(k) 1 and C,"=, q(f) = 00, then the cquation (7.8.1) 
is oscillatory 
(ii) if thcre exists a positive integer K such that cithcr (7.8.3) or (7.8.4) 
holds, and p(k - n ( k ) ) q ( k )  2 r ( k  - u ( k ) ) q ( k  - T ) ,  k E IN and 

(7.17.5) 

then the cquation (7.8.1) is oscillatory 
(iii) the difference equation 

A((k + l ) ~ ~ , ( k )  - ( k  + 1 ) ~ ( k  - 2)) + ~ ( k  - 1 - sinrk/2)  = 0, k. E IN 

is oscillatory. 

7.17.39. Consider the difference equation (7.8.1) where T E W(1) and 
the functions r ( k )  > 0, p(k)  2 0, q ( k )  2 0, a ( k )  E W for all k E IN, 
and lirrl~~+m(k - u ( k ) )  = 0. Show that 
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(i) if p(k)  2 r ( k ) ,  k E W and ~ ( k )  is an eventually positive solution of 
(7.8.1), then there exists a kl  E IN such that z ( k )  = r (k )w . (k )  -p(k )u (k-  
r)  < 0 and A z ( k )  5 0, k E IN(k1) 

(ii) if p(k )  >_ r ( k ) ,  p(k - a ( k ) ) q ( k )  5 r (k  - a ( k ) ) q ( k  - T), k E W, 
C,"=, q(P) = m and (7.17.5) hold, then the equation (7.8.1) is oscillatory. 

7.17.40. Consider the difference equation 

(7.17.6) a (U(k )  - p@(k - 7)) + ' I (k)?/ ,P(k - 0) = 0, k E W 

where p is a constant, 7 E W(1), a E W, and (Y and are quotients 
of odd integers. Show that 

(i) if cy E (0, l), p > 0, p > 0 and q ( k )  2 0 eventually, then the 
equation (7.17.6) is oscillatory if and only if c,"=, q(!) = m, K E 

(ii) if p 2 0 and there exists a b E (0, l] suc:h that 

then (7.17.6) has a positive solution ~ ( k )  with liIrl~:,, w.(k) = 0 
(iii) condition c,"=, q(tl) = m is not sufficient for all solutions of (7.17.6) 
with p < 0 to be oscillat,ory 

(iv) if p < 0 and CkEE q ( k )  = m for every subset E of W(1) such 
that m ( E n { k , k + 1 , . . . , k + 2 r - l } )  2 7- foreach k E W(l ) ,  where 
,m(A) denotes thc number of points in the set A, then cvcry solution of 
(7.17.6) is either oscillatory or tends to zero as k + m 
(v) if p < 0, Q ( k )  = -q(k)  2 0 and Ck, ,Q(k)  = m, then every 
bounded solution of (7.17.6) is oscillatory. 

7.17.41. Consider the difference equation 

(7.17.7) A(u(k) +pua(k - T)) + q ( k ) u P ( k  - 0) = F ( k )  = Af(k) ,  k E W 

where p, r, 0, cy and p are as in Problem 7.17.40. Show that 

(i) if p 2 0, q ( k )  5 0 eventually, and lirnsupk+, f(k) = 00 and 
liminfk:,, f ( k )  = -00, then every bounded solution of (7.17.7) is oscil- 
latory 

(ii) if p 2 0, q ( k )  2 0, and limsupk+, f ( k )  = m and liminfk,, f ( k )  
- -00, then the equation (7.17.7) is oscillatory 

(iii) if p > 0, q(k)  2 0 a d  C k E E q ( k ) f f ( k )  = m, C , : , , q ( k ) f _ ( k )  P = 
-m for every subset E of W(1) such that m ( E  n { k ,  k + 1,.  . . , k + 2r - 

- 
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7.17.42. Consider the difference equation 

r 

(7.17.8) A(u(k)  - p ( k ) ~ ( k  - T)) + q ( k )  U l ~ , ( k  - ai)la'Sgn ~ ( k  - 0;) = 0, 
i=l 

k E W  

where r E W(1), ai E I N ,  1 5  i 5 T, p(k)  2 0, q ( k )  2 0 ,  k E W and q ( k )  
is not identically zero for all large k ,  and ai,i 2 0, 1 5 i 5 T are sut:h 
that C:', CY; = 1. Suppose there exists a positive integer K such that 
p ( K  + P7) 5 1, P, E W. Further, let p(k )  + q ( k )  min(cT1, ... ,or} > 0, or 
min{al,. . . , or} > 0 and q ( k )  does not vanish over sets of consecutive 
integers of the form {a, a + 1,. . . ,a  + rnin{ol,. . . , a,r}}. Show that the 
equation (7.17.8) is oscillatory if and only if 

r' 

(7.17.9) A(v (k )  -p(k)u(k - T ) )  + q ( k )  Iu(k - ai)laAsgn ~ ( k  - ai) 5 0, 
i=l 

k E I N  

does not have an eventually positive solution. 
(For T = 1 equation (7.17.8) is the same as (7.7.1).) 

7.17.43. Let T ,  ai, ai, 1 5 i 5 T be as in Problem 7.17.42. Further, lct 
p(k) 2 1, q ( k )  2 0, k E W and q ( k )  is not identically zero for all large 
k. and 

Show that for every eventually positive solution t ~ ( k )  of (7.17.9) the func- 
tion z ( k )  defined by z ( k )  = v(k)  -p(k)v(k - 7 )  satisfies z ( k )  > 0 and 
Az(k) 5 0 for all large k E W. 

7.17.44. Let r, ni, ~ i ,  1 5 i 5 T be as in Problem 7.17.42. Further, let 
p(k) 1, q ( k )  2 0, k E W and q ( k )  is not identically zero for all large 
k ,  and the condition (7.17.10) holds. Show that the equation (7.17.8) is 
oscillatory. 
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7.17.45. Let T, C T ~ ,  ai, 1 5 i 5 T be as in Problem 7.17.42. Further, let 
p(k) 2 0, q ( k )  2 0, k E IN and q ( k )  is not identically zero for all large 
k ,  there exists a positive integer K such that p ( K  + P T )  5 1, l E I N ,  
condition (7.17.10) holds, and for all large k E IN 

(7.17.11) q ( k )  n p y k  - .i) 2 q ( k  - T). 
T 

i.= 1 

Show that the equation (7.17.8) is oscillatory. 

7.17.46. Show that i n  Problem 7.17.45 condition (7.17.11) can be replaced 
by that there exists a number cy E (0 , l )  such that for all large k E IN 

7' 

q ( k )  I - I p y k  - ai) 2 a q ( k  - T) 
i=l 

and the inequality 

a 
A w ( ~ )  + - q ( k ) w ( k - a - ~ )  5 0, a = m i n ( a l , . . . ,  rr,.}, ~ E I N  1 - 0  

does not have an eventually positive solution. 

7.17.47. Consider the difference equation (7.9.1) where p(k )  5 0, q ( k )  2 
0, k E IN, and p (k ) ,  q ( k )  are not zero for infinitely many values of 
k ,  T E IN(1), a E I N ,  and f : IR 4 R is a nondecreasing function with 
U f (w,j > 0 for 11. # 0. Show that 

(i) if there exists an integer K E W such that p ( K  + l ~ )  5 1, l E IN 
then for any eventually positive solution u(k) of (7.9.1), z(k) = 7r(k) + 
p(k)w.(k - T )  > 0 and A z ( k )  5 0 for all large k E IN 

(ii) if p(k) < 0, k E IN and there exists an integer K E IN such that 
p ( K + l ~ )  5 1 for e E N, then the equation (7.9.1) has an eventually pos- 
itive (bounded and eventually positive) solution if and only if the difference 
inequality 

A ( v ( ~ )  + p ( k ) ~ ( k  - T)) + q ( k ) f ( v ( k  - 0)) 5 0, k E IN 

has an eventually positive (bounded and eventually positive) solution 

(iii) the difference inequality 

A2z(k - 1) + ( l / ~ ) q ( k ) f ( z ( k ) )  5 0, k E IN 

has an eventually positive (bounded and eventually positive) solution if and 
only if 

A ( z ( k )  - ~ ( k  - T ) )  + q ( k ) f ( z ( k  - 0)) 5 0, k E IN 
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has an cventually positive (boundcd and eventually positive) solution 

(iv) if y is a quotient of odd positive integers, then the gcneralized 
Errrden.-Fowler. equation (see (6.10.1)) 

(7.17.12) A(u.(k) - u,(k - T ) )  + q ( k ) u Y ( k )  = 0, k E IN 

has a bounded arld eventually positive solution if and only if C:==, kq(k) < 
m, i n  addition if y > 1 or 0 < y < 1 then (7.17.12) has an evcntually 
positivc solution if and only if kq(k) < 00 or C;P_, k ~ q ( k )  < m 
holds respectively. 

7.17.48. Considcr the differcnce equation (7.9.26), where Ip(k)l 5 
P < 1, C" lq(k)I < m, I f ( ? / , ) )  5 AIw.la, 0 < CY 5 1, U. E R, and 
IT E lN(l), o E IN. Show that all solutions of (7.9.26) arc boundcd. In 
particular, deduce that all solutions of the diffcrcncc equation 

= 0, k E W(1) 

are bountied. In fact, w.(k) = 1 - e-k is a bounded solution of (7.17.13). 

7.17.49. Considcr the difference equation (7.9.26), where p(k) = p > 
0, q(k) is IT periodic, f is nondccreasing, IT E W(1), c7 E IN, arld 

f ( U ,  + W) 5 f ( U )  -k f ( ' U ) ,  76,V > 0 
f ( ' U  f v)  2 f(u) + f ( t J ) ,  '7l,,V < 0 

f(xU,) 5 x f ( U , ) ,  x 2 0, 71. > 0 
f ( h )  2 X f ( ? L ) ,  x 2 0, U < 0. 

Show that every bounded solution of (7.9.26) is oscillatory. 

7.17.50. Considcr the difference equation 

(7.17.14) A(u,(k) -p (k ) , q (~ (k  - 7))) + q ( k ) f ( u ( k  - 0)) = 0, k E W 

where p(k)  and q ( k )  are such that q ( k )  2 0 for all k E W, and not 
zero for infinitely many values of k ,  T E lN( l), 0 E W and f, g : R + IR 
are continuous with u f ( u , )  > 0 arld us(.) > 0 for all ?L # 0. Assurrle 
that the functions f and g are increasing, 0 5 p(k)  < 1, k E W, and 
there exists a positive function h,(k) ,  k E W such that for all sufficicntly 
large k 

00 

p ( k ) g ( l l h ( k  - T ) ) h ( k )  + hj(k.1 c s ( e ) f ( l l h ( e  - g) )  5 1. 
P=k 
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Show that the equation (7.17.14) has a positive solution u,(k). Further, this 
solution u(k) + 0 as k "+ CO if h ( k )  + CO as k + CO, and u ( k )  is 
bounded if h,(k) is bounded away from zero. 

7.17.51. Show that the Problem 7.17.50 is applicable to the following 
difference equations 

(i) A(u.(k) - 4'-'11.~(k - 1)) + 23-2k:u,3(k - 1) = 0, k E IN(3) 

with h(k )  = l / k ,  and one of its positive solution is u ( k )  = 2k 

(ii) A ( u ( k )  - ( l / S ) ~ . ~ ( k  - 1)) + q ( k ) ~ ~ / ~ ( k  - 3) = 0, k E IN(1) 

where q(k)  = 2"21'/3 (i - $4"") > 0, with h(k)  = 2k' ,  and one of its 

positive solution which tends to zero as k + CO is u ( k )  = 1/2' 

( k :  - 1)3 
lr3(k - 1) + ) k4 (k+1 )  

u 3 ( k -  1) = 0, k E IN(1) 

with h,(k) = ( k + 2 ) / k ,  and one of its positive bounded solution is (k+l )/k .  

7.17.52. Consider the difference equation (7.17.14) where p(k) and 
q(k) are such that q(k)  2 0 for all k E W, and not zero for infinitely 
many values of k ,  T E IN( l), c7 E W and f ,  g : R "+ R are cont,inuous 
with ~ / , f ( u )  > 0 and u,g(u) > 0 for all U # 0. Assurrle t,hat the function 
f is increasing and c r = , q ( k )  = CO. Show that the equation (7.17.14) is 
oscillatory if either of the following conditions hold 

(i) in addition to (7.9.18) there exist constants M > 0 and p 2 0 such 
that \g(.)\ 5 Mlw.l for all U, and 0 5 p(k) 5 p with p M  < 1; or 

(ii) T - g 2 1, 9 is increasing, there exist positive constants M, A and 
L3 s ~ ~ c h  that 1g(u,)1 2 M ~ T L ~  for all U and A 5 p(k)  5 13 with M A  > 1, 

> -CO for all c > 0; or 
dt "c dt 

arid lm f ( g - l ( t ) )  .I, f (g-l(t)) 
< CO and 

(iii) T -  0 2 1, there cxist positive constants MI ,  M2, A and B such that 
Mllul 5 1,q(u,)1 5 M 2 l w . l  for all IL and A 5 p(k) 5 B with M I A  > 1, 
and (7.9.19) is satisfied. 

7.17.53. Consider the difference equation 

(7.17.15) A(u(k - 1) -pu,(k - T - 1)) = f ( k , u , ( k ) , u , ( k  - T ) ) ,  k E IN 

where T E IN(I), o 5 p < 1, f : I N X R ~  + R is continuous, and f(k, U , V )  

is decreasing with respect to U. E R. Assume that 

(i) U > 'U implies f(k,u,u) < 0, and 

(ii) for 'U. 5 v ,  f ( k , u , , u )  5 q(k)g(U,v) + h(k ) ,  
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where g : R2 + IR is continuous, g(., U) is decreasing with rcspect to 
a and increasing with respect to v ,  and g(.,.) = 0 for all '11. E IR, 
and the functions h,(k)  and q ( k )  are such that C;"=, Ih,(k)l < CO,  0 < 
q ( k )  < M < C O ,  k E W. 

Show that evcrv bounded solution of the equation (7.17.15) tends to a 
constant as k "-f m. 

7.17.54. Show that in Problem 7.17.53 the conditions (i) and (ii) can be 
replaced by 

(i)' U < U implies f ( k , u , w )  > 0, and 

(ii)' for U. 2 v ,  f ( k , u , 7 ~ )  2 q(k)g(u,u) + h(k) .  

7.17.55. Assume that in Problem 7.17.53 the conditions (i) and (ii) are 
replaced by 

(i)* for U. # 71, (71, -W) f ( k , u , v )  < 0, and 

(ii)" either (ii) or (ii)' holds. 

Show that evcry solution of the equation (7.17.15) tends to a constant as 
k "f CO. 

7.17.56. Consider the difference equation 

(7.17.16)s A ( u . ( ~ )  + p ( k ) ~ , ( ~ ( k ) ) )  + 6 f ( k ,  ~ ( g l ( k ) ) ,  . . . , 7/,(am(k)))  = 0, 

k € W  

where the functions p(k )  >_ 0, k E W, ai (k)  E I N ,  lirnk:.+oo ai (k )  = CO, 1 5 
i 5 m, and f : N x R" R is continuous, f ( k ,  11.1,. . . , u rn )  is 
nondccreasing in each u i ,  1 5 i 5 m and 11.1 f ( k ,  u.1 ,  . . . , U,) > 0 
for ului > 0, 1 5 i 5 m .  Show that if there exist constants X, p ,  v and 
T E W( 1) such that 

(i) p(k)  5 X < 1, ~ ( k )  = k - T ,  or 1 < p 5 p(k) 5 v,  ~ ( k )  = k + T 

then the cquation (7.17.16)-1 has a bounded nonoscillatory solution if and 
only if 

(7.17.17) c 1 f ( k ,  b, . . . , b)I < CO for some constant b # 0 

(ii) p(k )  5 X < 1, ~ ( k )  = k + T ,  or 1 < p 5 p(k)  5 v, ~ ( k )  = k - T 

then the equation (7.17.16)1 has a bounded nonoscillatory solution if and 
only if (7.17.17) holds. 

7.17.57. Consider the difference cquation 

m 

(7.17.18)s A ( u ( ~ )  + p ( k ) ~ ( k  - T ) )  + 6q(k) f ( ~ ( k  - g)) = F ( k ) ,  k E W 
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where q ( k )  2 0, k E W, f : R + IR is continuous with ~ / , f ( u , )  > 0 for 
U # 0, C " F ( k )  < c c ,  and T E W(1), 0 E W and S = &l. Show that 

(i) if (7.9.3) holds, then every nonoscillatory solution of (7.17.18)l is 
bounded 

(ii) if (7.9.2), (7.9.4) and p(k) + 0 as k -+ m, then every nonoscillatory 
solution of (7.17.18)l tends to zero as k + cc 

(iii) if (7.9.2) (7.9.4) and p(k) -+ 0 as k + c c ,  then every hounded 
nonoscillatory solution of (7.17.18)-1 tends to zero as k -+ c c .  

7.17.58. Consider the difference equation (7.17.18)1 where f : R + R 
is continuous with u f ( u )  > 0 for W, # 0. Assume that there exist 
nonnegative constants A ,  B and cy with 0 < CY 5 1 such that I f ( u ) /  5 
A(lj,la + B ,  C" Iq(k)l < cc and C" F ( k )  < cm. Show that 

(i) if there exists a constant P such that Ip(k)l 5 P < 1, then all 
solutions of (7.17.18)l are bounded 

(ii) if p(k) 4 0 as k + CO, then every oscillatory solution of (7.17.18)l 
tends to zero as k + CO. 

7.17.59. Consider the difference equation 

(7.17.19) A ( u ( ~ ) A ( w , ( ~ )  + p ( k ) ~ ( k  - T ) ) )  + q ( k ) f ( ~ ( k  - 0)) = 0, k E W 

where -r E W(I), c7 E W and a(k) > 0, k E N with Cy==, l/a (k )  = m, 
and the function f : R -+ R is such that u , f ( u , )  > 0 for 11. # 0. Show 
that 

(i) if O 5 p(k) 5 1, q ( k )  2 0, k E W(kO) ,  f ( u ) / u ,  2 y > O for 11 # 0, 
and there exists a function h,(k) such that h,(k) > 0 for k 2 ko and 

then the equation (7.17.19) is oscillatory 

(ii) if - 1 5 p(k)  5 0, q ( k )  2 0, k E W(ko) ,  f is a nondecreasing 
continuous function such that (7.9.19) holds, and 

then every unbounded solution of (7.17.19) is oscillatory 

(iii) if p(k) p 2 0, f is nondecreasing, and c" q ( k )  = m, then 
A71.(k) of every solution u ( k )  of (7.17.19) oscillates. 
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7.17.60. Consider the difference equation 

(7.17.20) LP(U(k)  - pu(k - 7)) = q ( k ) u ( k  - a), k E IN 

where T E IN( 1). Show that 

(i) if p 2 0, a E I N ,  and q ( k )  2 0, q ( k )  0, k E I N ,  then (7.17.20) 
always has a positive solution which tends to infinity as k --f m 

(ii) if p > 1, 0 E W(1), and xr=O=Kklq(k)I  < m, then (7.17.20) has a 
bounded positive solution 

(iii) if 0 < p < 1, a E IN(1), q ( k )  > 0, k E IN, and limsupk,, Ctli-,[C 
- ( k -a - l ) ]q ( l )  > 1, then evcry bounded solution of (7.17.20) is oscillatory 

(iv) if p > 1, a E IN, q ( k )  2 0, k E IN, and Er=, k q ( k )  = 00, then 
every bounded solution of (7.17.20) is oscillatory. 

7.17.61. Consider the difference equation 

where 7 E IN(1), 0 5 p(k)  5 1, k E IN, q ( k )  2 0, k E IN with infinitely 
many nonzero terms, a ( k )  E IN, k E I N ,  k - a ( k )  is nondecreasing and 
limA:-,(k - a ( k ) )  = m, a ( k )  > 0, k E IN with c;=, l / a ( k )  = m. 
Define Q ( k )  = q ( k ) ( l  -p (k  - a ( k ) ) )  2 0 for all large k ,  and ~ ( k )  = 

l / a ( l ) ,  k E IN(1). Show that 

(i) if C" Q ( k )  < m, then the equation (7.17.21) is oscillatory 

(ii) if a ( k )  3 0 and ~ ( k  -a - 1) C,"=,: &(l) 2 p > 1/4 for all large k ,  
then the equation (7.17.21) is oscillatory. 

7.17.62. Consider the difference equation (7.11.1) where T E W(1), g E 
I N ,  0 5 p(k)  < 1, k E I N ,  q ( k )  2 0 for all k E IN and is not zero for 
infinitely many values of k ,  f : R -+ R is continuous with u f ( u )  > 0 
for W. # 0 and is nondecreasing. Further, assume that f ( - v , v )  2 f ( u , v )  2 
L f ( u ) f ( v )  for u,u > 0, and f (u)/wP 2 d for U # 0, where L and 
d are positive constants and U: is the ratio of odd positive integers. Show 
that the equation (7.11.1) is oscillatory if either of the following holds 

(i) a E (1, m) and Er=, k q ( k ) f ( l  - p(k + 1 - a)) = m, or 

(ii) cy E (0 , l )  and ,- q ( k ) f ( ( k  - T - a ) / 2 ) f ( l  - p(k + 1 - a)) = m. 

7.17.63. Consider the difference equation (7.11.1) where T E IN(l), Q E 
I N ,  q ( k )  2 0 for all k E IN and is not zero for infinitely many values of 
k ,  and f : R --f R is continuous with u f ( u )  > 0 for U, # 0. Further, 
assume that conditions (7.9.2) and (7.9.4) hold. Show that 
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(i) if there exists a constant P such that 0 5 p(k )  5 p < 1, then 
cquation (7.11.1) is oscillatory 

(ii) if condition (7.9.8) holds, then every bounded solution u ( k )  of (7. 
11.1) is cithcr oscillatory or satisfies u(k) + 0 as k -+ 00. 

7.17.64. Consider the difference equation 

(7.17.22) A2(u(k)  + p ( k ) u ( k  - T)) = q ( k ) f ( u ( k  + 1 - a)), k E W 

where p(k)  and q ( k )  arc such that q ( k )  2 0 for all E W, and are not 
zero for infinitely rrlarly values of k ,  T E W(I) ,  E W, and f : R + 
is contirluous with ~ f ( u , )  > 0 for 71, # 0. Assnrrle that (7.9.2) and (7.9.4) 
hold, and thcrc exists a constant A < 0 such that A 5 p(k) 5 0. Show 
that 

(i) if v.(k) is an eventually positive solution of (7.17.22), the11 for 
z ( k )  = ~ , ( k )  +p(k)u(k - T ) ,  A z ( k )  is rlo11decreasingl and either 

(7.17.23) lirn z ( k )  = lirn A z ( k )  = 00 

or 
!,+CO k-CO 

(7.17.24) lim z ( k )  = lim A z ( k )  = 0, A z ( k )  < 0 arid z ( k )  > 0 
k-CO k-CO 

(ii) if u ( k )  is an eventually negat,ive solution of (7.17.22), then &(/c) 
is nonincreasing, and cither 

(7.17.25) 

or 
k-CO 
lirn z ( k )  = lim A z ( k )  = - 00 

k-CO 

(7.17.26) lirn z(k) = lirn A z ( k )  = 0, A z ( k )  > 0 and z(k) < 0. 
k-CO k-03 

7.17.65. The conclusion of Problcrrl 7.17.64 is the bcst possible urldcr its 
hypotheses. For this consider the difference equation 

k E W  

where T E W(1), a E W, a is a constant, and y is thc ratio of odd 
positive integers. Show that 

(i) ul(k) = 2eak and u 2 ( k )  = -2eak are both nonoscillatory solutions 
of (7.17.27) 
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(ii) equation (7.17.27) satisfies all hypotheses of Problem 7.17.64 if either 

(7.17.28) y 5 1 and a > 0, or 

(7.17.29) 7 2 1  and a < O  

(iii) when (7.17.28) holds z ~ ( k )  = 11.~(k) - (1/2) e" 'u l (k - . r )  = eak satisfies 
(7.17.23), and z2 (k )  = uz(k)-(1/2)ea'u2(k-7) = -eak satisfies (7.17.25) 

(iv) when (7.17.29) holds z l ( k )  satisfies (7.17.24), and q ( k )  satisfies 
(7.17.26). 

7.17.66. Consider the difference equation (7.17.22) where p(k )  arid 
q ( k )  are such that q ( k )  2 0 for all k E W, and are not zero for infinitely 
marly values of k ,  7 E W(1), 0 E W, and f : IR + R is continuous with 
uf(71,) > 0 for U # 0. Show that 

(i) if (7.9.2) arid (7.9.4) hold, arid there exists a constant B s ~ ~ h  that 
B 5 p(k)  5 -1, then every nonoscillatory solution u(k)  of (7.17.22) 
satisfies Iw,(k)I --f m as k + m 
(ii) if (7.9.5) holds, the function f is nondecreasing such that (7.9.18) 

holds, and for a 2 1, c:==,:, (E:==,:-g q(li ) )  = m, k.0 E W, then every 

nonoscillatory solution u ( k )  of (7.17.22) satisfies either Iu(k)l + m or 
u ( k )  + 0 as k + m. 

7.17.67. Consider the difference equation 

(7.17.30)h A2(7/,(k) + p ~ ( k  + 67)) + q ( k ) f ( ~ ( ~ ( k ) ) )  = F ( k ) ,  k E W 

where 6 = fl, T E IN(l), ~ ( k )  E W, k E W with limk,, a ( k )  = m, p 
is a nonnegative constant, q ( k )  2 0 eventually, and f : R + IR is 
continuous with u f ( u )  > 0 for 'U. # 0. Assume that there exists an 
oscillatory function h(k) such that A2h,(k)  = F ( k ) .  Show that 

(i) if limsupk:,,(h(k)/k) = m and liminfk,,(h(k)/k) = --m, then 
equation (7.17.30)h is oscillatory 

(ii) if in addition to condition (iii) of Theorem 7.10.3 and (7.10.9) there 
exists a function r ( k )  E W(1), k E IN such that ( k  - r ( k ) )  is increasing, 
1irri=,:4,(k - ~ ( k ) )  = m, o ( k )  - (Y 2 k - r ( k ) ,  k E IN where (Y = 0 if 
S=-1 and O = T  if 6-1, and 
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then (a) the equation (7.17.30)-1 is oscillatory provided 0 5 p < 1, y = 
2/M(l-p)  and cy = 0, (b) the equation (7.17.30)l is oscillatory provided 
p > 1, y = 2p2/M(p - 1) and cy = T 

(iii) if in addition to condition (iii) of Thcorem 7.10.3 and (7.10.2) the 
function P ( k )  = min{k,o(k) - a} where (Y = 0 if 6 = -1 and 
cy = 7 if 6 = 1 is such that A P ( k )  > 0, A2[j(k) 5 0 for k E IN, 
and c" P ( k ) q ( k )  = m, then (a) the equation (7.17.30)-1 is oscillatory 
provided 0 5 p < 1, (b) the equation (7.17.30)1 is oscillatory provided 
p > l  
(iv) if in addition to condition (iii) of Theorem 7.10.3 the function f is 
nondecreasing, and c" q ( k )  = m, then (a) the equation (7.10.30)-1 is 
oscillatory provided 0 5 p < 1, (b) the equation (7.17.30)l is oscillatory 
provided p > 1. 

7.17.68. Consider the difference equation 

(7.17.31) A ( a ( k  - l ) A ( ? ~ , ( k  - 1) +p(k - l ) ~ . ( k -  1 - T))) + q ( k ) f ( u . ( k  - U ) )  

= 0, k E IN(1) 

where T ,  U E I N ,  0 5 p(k)  5 1, k E IN ,  q ( k )  2 0, k E IN with infinitely 
many nonzero terms, a ( k )  > 0, k E IN and C" l / a ( k )  = m, f : R --f IR 
is continuous, and there exists a constant y sudl that f ( u )/u ,  2 y > 0 
for 71, # 0. Assume that there exists a function [ ( k )  > 0, k E IN(1), and 
for k E IN( 1) define 

+ ( k )  = [ ( k ) [ y q ( k  + 1)(1 - p(k + 1 - U ) )  + a (k  - U)C?(k) 

- A ( a ( k  - 1 - a ) ( ~ ( k  - l))], 

where a ( k )  = -A[(k)/2[ (k) .  Let there exist a function H(& ,  k ) ,  &, k E W 
such that 

(i) H(!?,!?) = 0, !? E IN and H(&,  k )  > 0 for & > k 2 0 

(ii) & H ( & ,  k )  5 0 for l > k 2 0, and there exists a nonnegative function 
h(&, k ) ,  & > k 2 0 with & H ( & ,  k )  2 -h,(&, k )  for & > k 2 0. 

Show that the equation (7.17.31) is oscillatory if 

In particular, with H(& ,  k )  = (P - k) ' ,  h(&, k )  = 2 and respectively the 
functions + ( k )  = k + 1 and (k + 1 ) (k  + a), k E IN show that the following 
equations are oscillatory 
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x 
u (k -  1) = 0, k E IN(l), x > 1. 

7.17.69. Considcr the difference eqtlation 

(7.17.32) A ( u ( ~  - l ) A ( ~ ( k  - 1) + p ( k  - l ) ~ ( k  - 1 - T ) ) )  + q ( k ) f ( v ( k  - 0)) 

= F ( k ) ,  k E W(1) 

where T ,  0 E I N ,  a ( k )  # 0, k E W and f : IR + IR is continuous with 
?/ . f (u )  > 0 for U, # 0, and there exist nonrlcgat,ivc constants A ,  B and 
CY with 0 < N 5 1 such that I f ( u ) l  5 Alu.1" + B, 

Show t,hat 

(i) if there exists a constant P swh that Ip(k)I 5 P < 1, thcn all 
solutions of (7.17.32) are bounded 

(ii) if p(k) + 0 as k "-f m, tllcrl cvcrv oscillatory solution of (7.17.32) 
tends to zero as k + m. 

In particxlar, deduce that all solutions of the diffcrcncc equation 

arc lmlrldcd, and every oscillatory solution tcrlds t,o zero. In fact, ~ ( k )  = 
( - l ) k / ( k  + is such a solution of (7.17.33). 

7.17.70. Consider the difference equation 

(7.17.34) Arn,(1L(k) - pu(k - T ) )  + q ( k ) u ( k  - 0) = 0, k E IN 

wllcre T E W(l) ,  0 E W and n is odd. Show that 

(i) if p = -1 and 

W 

(7.17.35) Ck("",Iq(k) l  < m, 

then (7.17.34) has an eventually positive solution 



Qualitative Properties of Solutions of Neutral D X  Eqns. 61s 

(ii) if p = 1 and q ( k )  2 0 for all large k E W, then a necessary and 
sufficient corldition for (7.17.34) to have a bounded positive solutiorl is 

(7.17.36) 

7.17.71. Consider the diffcrcnce equation 

(7.17.37) A n ' ( , ( k )  - p ( k ) ~ ( k  - T ) )  + q ( k ) ~ ( k  - 0) 0, k E IN 

where T E W(I), CT E W, n, is odd, and q(k)  2 0, k E IN. Show that, 

(i) if p(k)  E 1 and 

then the cquat,iorl (7.17.37) is oscillatory 

(ii) if 0 < p(k)  5 P < 1 and 

00 

(7.17.38) c k("-l)q(k)  = m, 

then every bounded nor~oscillatory solntion of (7.17.37) tjends to zero as 
k + m  

(iii) if 1 5 p(k)  5 P and (7.17.38) holds, thcn every bounded solution of 
(7.17.37) is oscillatory 
(iv) if o 5 p(k) 5 P < 1 and Cy=o ~ ~ ( ~ - ' ) q ( k )  = c m ,  tlm1 every 
unbounded solution of (7.17.37) is oscillatory. 

7.17.72. Consider the difference equation 

(7.17.39) An'( , (k)  - p ( k ) ~ ( k  - T ) )  + Sq(k)w,(o(k + - 1)) = 0, k E IN 

where n 2 2, 6 = &l, Ip(k)l 5 X < 1, k E I N ,  o ( k )  E W and o ( k )  5 k 
for k E IN, lirnk,, ~ ( k )  = m, and q(k) > 0, k E IN. Show that 

(a) if 

(i) p(k)p(k - T )  2 0 for all large k E IN 
(ii) the equation (7.17.39) has a nonoscillatory solution w,(k) satisfying 
u(k)(v.(k) -p(k)u(k - 7)) > 0 for all large k E IN and 

lim 
u ( k )  - p(k)u(k - T )  

k-M 
= constant # 0 
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for some j E W(0, n - l), 

then the following inequality holds 

(7.17.40) c ( a ( k  + n - l ) ) ( j ) q ( k )  < 00 
00 

(b) if (-1)"-J"lS = 1 and condition (i) holds, or (-l)n,-j-lS = -1 
and p(k) 2 0 for all large k E W, then (ii) holds provided the inequality 
(7.17.40) is satisfied 

( c )  if (i) holds, then for the equation (7.17.39) to have a nor~oscillatory 
solution u.(k) satisfying 7r(k)(w,(k)-p(k)u(k-7)) > 0 for all large k E W 
and 

for some ' m  E W(1, n, - 1) such that ( -l)n,-m-l S = 1, it is necessary 
that 

c k(n-"-l) 
( a ( k  + n - I ) ) ( , r n - l ) q ( k )  < 00 

00 

and 
W c k("(a(k + n - l ) ) ( " ) q ( k )  = 00 

(d) if p(k)  2 0 and a ( k )  < k for all large k ,  and let m E W(l,n,- 1) 
satisfy (-I)~,- '~,- '  5 = 1, then the equation (7.17.39) has a nonoscillatory 
solution ~ ( k )  satisfying ~ r ( k ) ( u , ( k ) - p ( k ) u , ( k - r ) )  > 0 for all large k E IN 
and (7.17.41), provided 

c ( a ( k  + n, - l ) ) ( m ) q ( k )  < 00 

c k("-")(a(k + n, - l ) )+I )q (k )  = 00. 

and 
W 

7.17.73. Consider the difference equations 

(7.17.42) An(u(k)  - u,(k - 7)) + q ( k ) f ( u ( k  - 0)) = 0, k E IN 

and 

(7.17.43) A"+'?/>(k - 1) + - q ( k ) f ( u , ( k ) )  = 0, k E W 

where R is odd, 7- E W( l), (T E Z, q ( k )  2 0 for all large k E W, and 
f : R -+ IR is continuous, nondecreasing with 7 1 , f ( 7 ~ )  > 0 for all U # 0 
and f ( - u )  = - f ( u ) .  Show that thc equation (7.17.42) is oscillatory 

1 
7- 
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(i) if and only if the difference inequality 

(7.17.44) An,(v(k) - ~ ( k  - T)) + q ( k ) f ( v ( k  - g) )  5 0, k E W 

has no eventually positive solution 

(ii) if and only if (7.17.43) is oscillatory 

(iii) if (7.9.19) and (7.17.36) hold 

(iv) if f ( u )  = W,, and 

I: = m 

where 7 > 1/4, and 

( q ( k )  if R = 1 

7.17.74. Consider the difference equation 

(7.17.45) An'(7/,(k) - p ~ ( k  - 7)) + q ( k ) f ( ~ ( k  - g ) )  = F ( k ) ,  k E IN 

where T E IN(l), 0 E Z, and f : R + R is continuous. Assume that in 
addition to (7.17.35) 

cc 

(7.17.46) c k ( q F ( k ) l  < m. 

Show that the equation (7.17.45) has a bounded positive solution 

(i) if p = 0 

(ii) if p > 1 and f satisfies thc Lipschitz condition 

(7.17.47) I f ( ? / , )  - f ( 7 / ) 1  5 Llv - 111 

for all U ,  W E b, 2pj 

(iii) if p < -1 and f satisfies (7.17.47) for all U, II E [-p, -2pj 

(iv) if - 1 < p < 0 and f satisfies (7.17.47) for all U,,  71 E [-1/2p, -l/p] 
(v) if 0 < p < 1 and f satisfies (7.17.47) for all U,?) E [1/2p, l/pj. 

7.17.75. Consider the difference equation 

(7.17.48)6 A n ( , ( k )  - p ~ . ( k  - T ) )  + Sq(k)f(u.(k - 0)) = F ( k ) ,  k E IN 
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where S = &ll T E IN(1), D E Z, q(k) 2 0, k E W wit,h infinitely 
many positive terms, and f : ]R "+ R is continuous with U. f (U,) > 0 for 
U # 0. Assume that there exists an oscillatory function h ( k )  stlch that 
An,h,(k)  = F ( k ) ,  k E W and limk:-OO A j h , ( k )  = 0, j = 1,. . . , n. - 1. Show 
that 

(i) if p = 0, and (7.17.38) holds, then every bounded solution ~ ( k )  
of (7.17.48)6 is oscillatory when (-1)"5 = 1, and is either oscillatory or 
such that A J u ( k )  = 0 for j = 0,1, .  . . ,n, - 1 when ( -1)"h  = 
-1; further, if (7.17.46) holds then for this cxmdusion (7.17.38) is also a 
necessary condition 

(ii) if p > 1 and (7.17.38) holds, thcn every bounded solution 7r(k) 
of (7.17.48)~ is oscillatory whcn (-1)"6 = -1, and is either oscillatory 
or such that u ( k )  = 0 whcn ( -1)"h = 1; further, if (7.17.46) 
holds and (7.17.47) is satisficd for all U ,  71 E bl 2p] then for this conclusion 
(7.17.38) is also a 1lcc:cssary condition. 

7.17.76. State arid prove results similar to thosc givcn in Problems 7.17.74 
and 7.17.75 for the diffcrencc equation (7.17.48)~ whcn p is a fwct,iou of 
k ,  and t,he function p(k) is such that, 1 < 5 p(k)  5 C ,  k E IN where 
L' and C are rnlrnbcrs. 

7.17.77. Consider the difference equation 

(7.17.49) A " ( 7 ~ ( k )  - p(k)7/,(k - T ) )  + f ( k , ~ ( k  - D) )  = 0, k E W 

where R is an odd integer, T E W(I), (T E N and U, f (IC, U,) > 0 for all 
U, # 0 and k E N. Assume that 

(i) 0 5 p(k) 5 p < 1, k E IN 
(ii) for each k E W, f ( k ,  U,) is rlondecrcasirlg in u E (0, m). 

Show that 

(a) if 

for k 2 K 2 R + 1, then (7.17.49) has an eventually positive solution 
which converges to zero 
(b) if there exists an integer m ,  E IN(1, n - 1) such that 
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arid 
cc 

c kn~-n'~-l f ( k , X ( k  - a)"),) < m 
670 

for some X > 0, then (7.17.49) has an eventually positive solut,ion which 
diverges to infinity 

(c) if p(k)  4 p* E [O,I) as k 4 CO, and 

cc 

1,=0 

for some X > 0, t,hen (7.17.49) has an eventually positive solution which 
tends to a positive (:onstant. 

7.17.79. Consider the difference equation 

(7.17.51) A (a(k)A"-l(u,(k) + p ( k ) v . ( ~ ( k ) ) ) )  + f ( k , w ( a ( k ) ) )  = 0, k E W 

where a ( k )  > 0, Aa,(k) 2 0, k E W and C" l / a ( k )  = m, 0 5 p(k) < 
1, ~ ( k )  5 k ,  k E W and ~ ( k )  -+ m, g ( k )  "-f m as k "-f m, and 
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f ( k ,  U,) : N X IR 4 R is continuous, nondecxeasing in 21, and u.f(k ,  U) > 0 
for all II. # 0 and k E W. Show that 

(i) if for every c > 0, ~ " ( l / a ( k ) ) f ( k ,  (1 - p (a (k ) ) c ) )  = cc, then 

(a) the equation (7.17.51) is oscillatory when R is even 

(b) every solution u(k) of (7.17.51) is either oscillatory or lim inf Iu(k)I = 
cc when n is odd 

(ii) if for every c > 0, C" ( ( k ) ( n , - l ) / a ( k ) )  f ( k ,  (1 - p (a (k ) ) c ) )  = cc, 

I;-cc 

then 

(a) every bounded solution ~ ( k )  of (7.17.51) is oscillatory when n 
even 

(h )  every bounded solution ~ ( k )  of (7.17.51) is eithcr oscillatory 
liminfI;,, Iv(k)I = cc when R is odd. 

7.17.80. Consider the difference equation 

(7.17.52) An(71,(k) + p(k)7/,(7(k)) )  + f(k,7/,(k),71,(a(~))) = F ( k ) ,  k E IN 

is 

or 

where R is even. and for all k E IN, 0 5 p(k) < 1, ~ ( k )  E IN, a ( k )  E 
IN,  ~ ( k )  5 k ,  lirn~-cc ~ ( k )  = c c ,  lirnI;.wu(k) = c c ,  f ( k , u . , w )  is cow 
tilmons on IN x IR2 and not equivalently equal to zero for 7 1 , ~  > 0 and 
k E IN, and 7 1 f ( k ,  76, 71) > 0 for wm > 0. Assume that 

(i) h ( k )  is an oscillatory function such that An,h(k) = F ( k )  and 
lirnI;+m h ( k )  = 0 

Show that if C" d(k) = cc and < cc for all a > 0, then 

the equation (7.17.52) is oscillatory. 

7.18. Notes 

The qualitative study of solutions of neutral differential and difference 
equations is developing very rapidly. In fact, Bairlov and Mishev [7] in their 
monograph cite over 150 recent publications on the oscillation of neutral 
differential equations alone. The equation (7.1.1) was first corlsidcred by 
Brayton and Willoughby [8] frorn the numerical point of view. All the 
results in Sections 7.1 ~ 7.3 are based on the work of Lalli et. al. [38 411, 
except Theorems 7.1.3, 7.2.6 and 7.2.11 which are respectively duc to Yu 
and Wang [89], Zhou, YU and Wong [108], and Shen, Wang and Qian [61]. 
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These results improve/extend those of Georgiou, Grow and Ladas [21,22]. 
Theorem 7.4.1 is a contribution of Yu and Cheng [E%]. Sections 7.5 and 7.6 
once again contains the work of Lalli et. al. [38 -411. Results in Section 
7.7 are borrowed from Chen, Lalli and Yu [12]. Lernrrla 7.8.1 and Theorcnl 
7.8.2 are taken from Pcil [SO]. Resldts in Section 7.9 are adapted from 
Thandapani et. al. [76,82,85]. The nonhomogeneous differcnc:c equation 
(7.10.1)6 with p(k) 3 p has been studied in Grace and Lalli [24,25], also 
see Lalli [41]. Section 7.11 contains the work of Thandapani et. al. [79]. 
All the results in Sections 7.12 and 7.13 are due to Agarwal, Manuel and 
Thandapani [l,2]. Sections 7.14 and 7.15, respectively, are based on the 
work of Agarwal and Grace [6], and Agarwal, Tharldapani and Wong [S]. 
Theorem 7.16.1 is earlier proved in Zafer and Dahiya [go]. For several 
other related results see Agarwal and Wong [4], Agarwal and Grace [5], 
BudinCeviC [9,10], Chen and Zhang [ll], Chcn and Wang [13], Chcrlg et. 
al. [14,15], Dai et. al. [16--20], Grace and Lalli [23], Grace [26], Graef 
et .  al. [27-30], Guan et. al. [31 331, Huang and Yu [34,35], Kordonis and 
Philos [36,37], Lalli and Grace [42,43], Li and Yell [44], Li, Wang arltl Zhang 
[45], Li et, al. [46 -541, Lirl and Cheng [X], Liu and Yan [56], Luo, He and 
Chen [57], 011, Luo arid Tang [50], Shengli and Cheng [62,63], Szrnanda 
[64], Szafranski and Szrnanda [ W  701, Tang et. al. [71 ~741, Tharltlaparli 
et. al. [75,77,78,80,81,83,84], Wang arid Yu [86], Yang, Guan and Liu [87], 
Zafer [91-941, B.G. Zhang et. al. [ 9 5 ~ ~  1001, G. Zhang and Chcng [101-105], 
Z. Zhang and Yu [106], Zhon et. al. [107,109]. 
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Chapter 8 
Boundary Value Problems 

for Linear Systems 

I n  general thc thcory and the construction of the solutions of bound- 
ary valuc problems is more difficult than those of initial value problems. 
Thcreforc, WC bcgin this chapter by providing the necessary and sufficicnt 
renditions for the cxistence and uniqueness of the solutions of linear bound- 
ary valuc problcms. For thcsc problems explicit reprcscntations of the so- 

lutions are given in terms of Green’s matrices. For the construction of the 
solutions WC have included several algorithms which have been proposed 
recently. Although all thcsc algorithms are the same in nature, namely 
convert, the given boundary value problcrn to its equivalent initial value 
problem, in actual construction of the solutions one shows superiority over 
the others for which sometimes reasons can be explained. Most of these 
algorithms have been illustrated by solving discrete two -point boundary 
value problems some of which arc known to be unstable. The minimal 
solution of thc difference equations which plays an important role in sev- 
cral branches of numerical analysis is introduced. For the construction of 
minimal solution classical algorithms of Miller and Olver are discussed. 

8.1. Existence and Uniqueness 

We begin with thc observation that the existence and/or uniqueness 
of continuous boundary value problems do not imply the same for the 
corresponding discretc problems. For example, the continuous problem 

U” + 71, = 0, u(0)  = u (K  + 1) = 0, where 1 5 K E IN 

has an infinite number of solutions u.(t)  = csin - t (c is arbitrary), 
K + 1  

7r2 

( K  + 
7r 

whereas its discrete analog w,(k + 1) - 1r(k) + ?L(k - 

1) = 0, k E IN(l,K), u.(O) = u ( K  + 1) = 0 has only one solution 
-2  

~ ( k )  = 0. The problem U,’’ + ll 

4(K + 11, = 0, u(0)  = 0, u.(K + 1) = 
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1 has only one solution 7 4 t )  = sin t and its discrete analog 
ll 

2 ( K  + 1) 
u ( k  + 1) - 2 - U ( k )  + u ( k  - 1) = 0, k E W ( l , K ) ,  V, (O)  = ( 4(K + 

lution u( t )  = , 

F sin Qt 7T 
where 0 = 2 sin 

sin Q ( K  + 1) ’ 2 ( K  + 1) ’ whereas its 

discrete analog u ( k  + 1) - 2 - 4 sin2 

W(1, K ) ,  u.(O) = 0,  u ( K  + 1) = F (f 0) has 110 solution. 

Theorem 8.1.1. Let U ( k , a ) ,  k E N(a, b )  be the principal fundamental 
matrix sol~~tion of (1.2.12). Then, a Ilccessary and sufficient corltlition for 
the existence of a unique solution of thc boundary value problcrrl (1.2.1 l), 
(1.5.3) is that the matrix 

(8.1.1) FL = C [ U ( k , a ) ]  

be rlorlsingular. Furthcr, this sollIt,ion u(k) can he represented as 

(8.1.2) ~ ( k )  = FL1[b(k)] + FL2[1], 

where FL’ is t,hc lincar operator rnapping B ( a ,  h)  into itself suck1 that 

( 2 ( K  “ 1  + 1) u ( k )  + u ( k  - 1) = 0, k E 

k 

FL1[b(k)] = c G(k ,e )b ( t  - 1) - U ( k ,  a)‘H-lC c G(k , t )b ( t  - 1) , 
t=a+l [’ k a + l  1 

G(k ,  t)  = U ( k ,  a ) U - l ( l ,  a), and X’ is the linear operator mapping R” 
into B ( a , b )  such that 

FL2[1] = U ( k , a ) X P l .  

Proof. From the considerations in Sections 2.5 and 2.6 any solution 
u(k), k E N ( a , b )  of (1.2.11) can be written as 

I; 

(8.1.3) ~ ( k )  = U ( k ,  a)c  + 1 G(lc,l)b(e- l), 

where c is a constant vector. 

P=a+l 

The solution (8.1.3) satisfies (1.5.3) if and only if 

(8.1.4) 
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Thus, from Lemma 2.2.1 the vector c can be determined uniquely if 
and only if det7-1 # 0. Further, in such a case (8.1.4) gives 

LI=a+l 1 

Substituting (8.1.5) i n  (8.1.3), the result (8.1.2) follows. I 

Corollary 8.1.2. A necessary and sufficient condition for the cxistence 
of a unique solution of the problem (1.2.11), (1.5.4) is that the matrix 

r 

(8.1.6) 7-1 = C L i U ( k , ,  k l )  
i=l 

be nonsingular. Further, this solution u(k), k E W(kl, k,,.) (:an be written 
as 

kr  

(8.1.7) ~ ( k )  = U(k,k1)7-1"1+ c M(k,l)b(P - l), 
e=kl+l 

where M ( k ,  l) is thc Green.'s matrix such that for + 1 5 t < k i ,  2 5 
i < r  

I' 

G(k , l )  -U (k , k l ) l - I - lCL jG (k , , e ) ,  
j=i  

(8.1.8) M ( k , l )  = k i - l f l  < e < k 
r 

-U(k ,  k1)7"' c LjG(k,,l), k + 1 5 l 5 ICi. 

,=a 

Proof. In this case (8.1.3) is written as 

and (8.1.5) after arranging the terms becomes 

T h.. T 

Theorem 8.1.3. Let the rank of the matrix 7-1 defined i n  (8.1.1) be 
n - 711 (1 5 'm, < n). Then, the boundary value problem (1.2.11), (1.5.3) 
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has a solution if and only if 

where B is an m .  X n matrix whose row vectors are linearly independent 
vectors d", 1 5 i 5 'm, satisfying di'H = 0. 

I n  case (8.1.9) holds, any solution of (1.2.11), (1.5.3) can be given by 

771 

(8.1.10) u(k) = C ~rLu'(k) + 'H l [b (k ) ]  + 7 i 2 [ 1 ] ,  

i=l 

and 'Hz is the linear operator mapping R" into B(a ,  b)  such that 

7 i 2 [ 1 ]  = U ( k ,  a)S1. 

The rnatrixS is an n x n  matrix independent of l-C 

such that 'HSp = p for any column vector p satisfying B p  = 0. 

Proof. From Lemma 2.2.1 the system (8.1.4) has a solution if and only if 
(8.1.9) holds. Further, in such a case the vector c can be given by 

m 

(8.1.11) C = C a i c i  +S1 - SC G(k,l i )b(P- 1) , 
i= 1 1 

where c", 1 5 i 5 'm are 'm. linearly independent column vectors satisfying 
'Ftci = 0. Let U(k ,a )c i  = ui(k), 1 5 i 5 m, then ui(k) are linearly 
independent solutions of (1.2.12). Moreover, 

Now substituting (8.1.11) i n  (8.1.3) we find (8.1.10). I 
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Corollary 8.1.4. Let the rank of the matrix 'H defined in (8.1.6) be 
n, - , 1 1 1  (1 5 ' m ,  5 n,). Then, (1.2.11), (1.5.4) has a solution if and only if 

where B is an 'm, x n, matrix whose row vectors are linearly irldependent 
vectors d", 1 5 i 5 m. satisfying d"'H = 0. 

In case (8.1.12) holds , any solutions of (1.2.11), (1.5.4) can be given by 

m kr 

(8.1.13) ~ ( k )  = C aiu i (k )  + U(k ,  kl)Sl+ C M ( k , l ) b ( l  - l), 
i = l  P=k:1+l 

where a i ,  1 5 i 5 'rrt are arbitrary constants and u"(k), 1 5 i 5 m arc 'rr) 

linearly irldependent solutions of (1.2.12) sat,isfying C:'=, Lju'(k,) = 0, S 
is an n x n matrix independent of 1 - C':='=, Ci C ~ ~ , , + ,  G(ki,C)b(C - 1) 
such that 'HSp = p for any column vector p satisfying B p  = 0, and 
M ( k ,  e )  is the Green,'s matrix such that for ki-1 + 1 5 C 5 IC', 2 5 i 5 T 

Example 8.1.1. For the boundary value problem 

IC E JN(0, K - 1) 

it is easy to verify that 
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-(K - k ) e  
- (K - k - l)[ 1 ’ 

( K  - e  - 1)(1 + k )  - (K -!)(l +IC) 1 ’ (8.1.18) KM(k,C) = l < C < k < K  
- (K - !)k 

1 5 k + l < l < K .  

we find that 7-1 = [ : ] . Thus, m = 1 and we can take 

(8.1.20) 
l - k  

ul(k) = [ ] , dl = [l -13, S = 

Further, the Green’s matrix M ( k , C )  is given by 

The condition (8.1.12) reduces to 

(8.1.22) C ( b , ( e -  1) - bz( e  - 1)) = 0. 
K 

e= 1 

8.2. Method of Complementary Functions 

We observe that any solution of the difference system (1.2.11) can be 
expressed as 

(8.2.1) u(k) = - p ( k ) U i ( U )  + v(k) ,  IC E N(u,b) 

where uZ(lc), 1 5 i 5 n are the solutions of the homogeneous system 
(1.2.12) satisfying 

(8.2.2) UZ.(U) 3 = & j ,  1 < 2, j 5 72 

and v(k )  is the solution of (1.2.11) satisfying 

(8.2.3) V j ( U )  = 0, 1 < j 5 n. 

n 

i=l 
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The solution (8.2.1) satisfics (1.5.3) if and only if 

n 

(8.2.4) c L [u'(k)] 7r,(a) + L[v(k)] = 1, 
.;= 1 

which is a system of n linear algcbraic: equations i n  n, Ilnknowns u,;(a) ,  1 5 
i 5 n,. If the rrlatrix 'R defined i n  (8.1.1) is rlorlsinglllar then the system 
(8.2.4) can be solved uniquely for ui(o,), 1 5 i 5 n .  Sl11)stituting these 
values i n  (8.2.1), we find the solution of (1.2.11), (1.5.3). 

Thus, to obthirl thc solutions of (1.2.11), (1.5.3) we rleed n solutions 
of (1.2.12) satisfying (8.2.2) and a particular solution v(k) of (1.2.11) 
satisfying (8.2.3), i.e. a tjotal of ( n  + 1) solutions is rlccessary. Since all 
the solutions WC cornputc are from the point a up to b,  this Inethod is 
called forwurd pr.oces.s. Analogous to this method WC have backwar.d process 
i n  which all the 1m:cssary solutions are cwrlputcd from the point b up to 
0.. For this, any solution of (1.2.11) (:an also be writtcn as 

n. 

(8.2.5) ~ ( k )  = x g i ( k ) 7 r i ( b )  + ~ ( k ) ,  k E N(a, 6) 
i= l  

where g i ( k ) ,  1 5 i 5 R are the solutions of the homogeneous system 
(1.2.12) satisfying 

(8.2.6) -J d ( b )  = s,j, 1 5 i, j 5 n, 

and ~ ( k )  is the solution of (1.2.11) satisfying 

(8.2.7) q ( b )  = 0, 1 5 j 5 R. 

The solution (8.2.5) satisfies (1.5.3) if arid only if 

(8.2.8) E c [Lli(k)] U i ( b )  + L[v(k)] = 1. 
n. 

%=l 

The system (8.2.8) provides the values of ui(b), 1 5 i 5 R which we 
substitute i n  (8.2.5) to find the required solution. 

In particular, for the boundary value problem (1.2.11), (1.5.4) in the 
above forward and backward processes we need to change the points a to 
k1 and b to k , . ,  and (8.2.4) becomes 
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whereas (8.2.8) reduces to 

To c:onstruct the solution of (1.2.11), (1.5.3) by forward (backward) 
process we need to store u i ( k )  ( ~ ' ( k ) ) ,  1 5 i 5 n and v (k )  ( ~ ( k ) )  at 
all thc points of IN(a,b) which may not be feasible. However, at least for 
the problem (1.2.11), (1.5.4) this difficulty may bc simplified as follows: we 
store only u i ( k , )  (_y'i(k;)) and v ( k j )  ( ~ ( k , ) )  needed in (8.2.9) ((8.2.10)) 
and solve it for the ui(k.1) (w,i(k,,.)), l 5 i 5 r .  The solution of (1.2.11), 
(1.5.4) is then obtained by computing the solution of (1.2.11) with these 
obtained values of uj(k.1) ( u i ( k T ) ) ,  1 5 i 5 r.  This method of constructing 
the sollition of (1.2,11), (1.5.4) iscalled forward forwardprocess (backward 
backward process). Thus, for both of these methods we need to compute a 
total of (n, + 2) appropriate solutions. 

Ncxt we shall show that the forward process for the problem (1.2.11), 
(1.5.8) requires only (v, - /jl) + 1 solutions instead of (n  + 1). For this, 
we note that (8.2.1) in conlponent form can he expressed as 

n 

where 

(8.2.13) 

Thus, to find (8.2.11) we need (n - solutions of (1.2.12) satisfying 

(8.2.14) U g ( k . 1 )  = 1 if i = j # Z ( s 1 )  

0 otherwise 

and a particular solution of (1.2.11) satisfying (8.2.13), i.e. a total of ( n  - 
PI) + 1 solutions. 
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Now using the boundary conditions (1.5.8) other than at the point k l ,  
we find from (8.2.11) that 

which is a system of (n. - al) algebraic equations in ( n  - PI) urlkrlowrls 
U f ( k l ) ,  1 5 i 5 n, i # l(s1).  

Similarly, the backward process for the problem (1.2.11), (1.5.8) requires 
only ( n  - B,.) + 1 solutions. For this, in component form (8.2.5) can be 
written as 

where 

and 

(8.2.18) 

(8.2.19) 

( kT)  = 1 if i = j # T(.s,.) 
-3 0 otherwise 

The urlknowrls ui(kr), 1 I: i 5 n, i # ~(s,) are obtained from the 
system 

In addition to the above observations we note that for the problem 
(1.2.11), (1.5.8) the forward--forward (backward-backward) process requires 
only (n  - PI) + 2((n - P r )  + 2) solutions. 

Example 8.2.1. From Theorem 1.6.1 the linear differential equation 
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togcther with the bourldary conditions (1.6.11) has a unique solution pro- 
vided f ( t )  2 0 for all t E [a, p] .  For this problem (1.6.13) reduces 
to 

h, 
1 2  x 714k + 1) = - - (Se-l + 10gA. + ,gA:+l) , k E W(1, K )  

where .fA: = f ( a  + kh,) and gk = ,g(" + kh,). 

h2 

12 astg If - rnax f ( t )  < 1, then in system form the boundary value problem 

(8.2.22), (1.6.14) can be written as 

For the problem (8.2.23), (8.2.24) we note that (8.2.11) reduces to  

(8.2.25) u l ( k )  = ~ ~ ( k ) ' W ( o )  -k W ( k )  
u2 (k )  = u.;(k)u2(0) + W Z ( k ) ,  k E N(0, K) 

and (8.2.15) is simply 

(8.2.26) ' 7 1 . ~ ( K ) U , z ( O )  = B - w ~ ( K ) ,  

where ~ , ~ ( k )  is the solution of the homogeneous system 

u 2 ( k +  1) = 
(8.2.27) 

(8.2.28) U l ( 0 )  = 0, 11,2(0) = 1 
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and w ( k )  is the solution of the nonhomogeneous system (8.2.23) satisfying 

From (8.2.26) we find that the problem (8.2.23), (8.2.24) has a unique 
solution provided v . i (K )  # 0, and i n  such a case 

(8.2.30) 

If f ( t )  2 0 in [..,p], then by induction we shall prove that v,i(O) < 
ui(1) < ... < v . ; (K ) .  For this, from (8.2.27) and (8.2.28) we have 

Similarly, for the problem (8.2.23), (8.2.24) equations (8.2.16) and (8.2. 
20) reduce to 

and 

(8.2.32) 

respectively, where u’(lc) is the solution of the homogeneous system 
(8.2.27) satisfying 



and u , ( k )  is the solution of the nonhomogeneous system (8.2.23) satisfying 

(8.2.34) W l ( K )  = 0, w2(K) = B. 

Remark 8.2.1. In usual matrix form the boundary value problem (8.2.22), 
(1.6.14) is i n  fact thc tridiagonal system of algebraic equations, which can bc 
solved by, say, complete Gaussian elimination algorithm (CGEA, hereafter). 

Example 8.2.2. Consider the bourldary valuc problem 

(8.2.35) 

Since f ( t )  = 2/t2 > 0 for all t E [a, 31, the problem has a unique solution 

. We compute an approximate solution of 

(8.2.35) by its discrete analog (8.2.23), (8.2.24). For this discretc problem 
all the four methods discussed i n  this section work equally well. Thc errors 
obtained, as calculated from the cxact solution y ( t )  arid approxirnatc 
solut,ion t ~ , l ( k )  with h = l/256 arc prcsented in Table 8.2.1. 

Example 8.2.3. The boundary value problem 

(8.2.36) y” = 400y, ~ ( 0 )  = 1, y(5) = e 

has a unique solution y ( t )  = e-20t. For the discrete analog (8.2.23), (8.2.24) 
of (8.2.36) the CGEA, the forward method and the forward forward rncthod 
fail, whereas the backward as well as backward- backward method works 
equally well. The errors obtained, as calculated from the exact solution 
y ( t )  and approximate solution ul(k) with h, = 5/1024 are presented in 
Table 8.2.2. 

-100 

Table 8.2.1. 

t I Forw. Method I Forw.-Forw. 
I Method 

2.000 I 0.000000000 00 I 0.000000000 00 
2.125 

0.263951190-12 0.266947050-12 2.375 
0.225507110-12 0.224271120-12 2.250 
0.141157920-12 0.140667860-12 

0,439657660-13 0.138777880-16 3.000 
0.120789660-12 0.122525250-12 2.875 
0.188730980-12 0.214029320-12 2.750 
0.238508000-12 0.268333100-12 2.625 
0.265573150-12 0.282903910-12 2.500 

Back.  Method 

0.138777880-16 
0.162452520-12 
0.250875710-12 
0.280749380-12 
0.263709190-12 
0.219722680-12 
0.158803530-12 
0.843899600-13 
0.000000000 00 

Back.-Back. 

0.155090350-12 
0.230155300-12 
0.260092290-12 
0.254331280-12 
0.219744360-12 
0.160988410-12 
0.848557340-13 
0.000000000 00 
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0.0000 
t 

0.3125 
0.6250 
0.9375 
1.2500 
1.5625 

2.1875 
1.8760 

2.5000 
2.8125 
3.1250 
3.4375 
3.7500 
4.0625 
4.3750 
4.6875 
5.0000 : Table 8.2.2. 

Backward Method 
0.138777880 - 16 
0.228525210 - 08 
0.882314360 - 11 
0.255489960 - 13 
0.657615140 - 16 
0.158686890 - 18 
0.367605100 - 21 
0.827918420 - 24 
0.182658010 - 26 
0.396689290 - 29 
0.850877810 - 32 
0.180683760 - 34 
0.380510730 - 37 
0,795771250 - 40 
0.166436950 - 42 
0.413992910 - 45 
0.372007600 - 43 

Back.-Back. Method 
0.457967000 - 14 
0.228525210 - 08 
0.882314360 - 11 
0.255489960 - 13 
0.657615140 - 16 
0.158686890 - 18 
0.367605100 - 21 
0.827918420 - 24 
0.182658010 - 26 

0.850877810 - 32 
0.180683760 - 34 
0.380510730 - 37 
0,795771250 - 40 
0.165436960 - 42 
0.413992910 - 45 
0.000000000 00 

0.396689290 - 29 

Example  8.2.4. The boundary value problem 

(8.2.37) y” = (2,rn + 1 + P)?), y(0) = /j, y ( m )  = o 

where 7n, 2 0 and /-l are known constants, is known as Holt’s problem. 
This problem is a typical example where usual shooting methods fail [38]. 
Replacing the boundary condition ~ ( m )  = 0 by y ( T )  = 0 (T  finite) 
Holt [26] used finite difference methods (however, for m. = 0, p = 1, T = 
12; 711, = 1, /3 = r-’I2, T = 8; * m  = 2, p = 114, T = 8 the results 
are unsatisfactory [26,38]), whereas Osborne [36] used a multiple shooting 
method and Roberts and Shipman [37] used a multipoint approach. In [3,4] 
we have formulated a new shooting method which gives accurate solutions 
of (8.2.37) for several different values of m and /? up to T = 18 (this 
value of T has been chosen in view of restricted computer capabilities). For 
the same and several other different values of 7n, and accurate solutions 
of (8.2.37) up to T = 18 have also been obtained in [13]. Here the error 
estimates in the solution of (8.2.37) when approximating y(00) = 0 by an 
appropriate boundary condition at T are also available. 

For the discret,e analog (8.2.23), (8.2.24) of (8.2.37) (replacing y ( m )  = 
0 by y(18) = 0) with m = 2, [-l = 114 and h = 1/60 the forward 
method and the forward-f forward method fail, whereas the backward as 
well as backward- backward method works equally well. The numerical 
solution u.l(k) is shown i n  Table 8.2.3. 

Example  8.2.5. Consider the boundary value problem 

(8.2.38) y” = (sin2t)y+  COS^^, ~(-1) = y(1) = 0. 
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Although, the function f ( t )  = sin 2t changcs sign i n  [-l, l], its discrete 
analog (8.2.23), (8.2.24) has a unique solution for all K 2 1 (cf. Problem 
8.10.2). For this discrete problem all the four methods work equally well. 
The numerical solution u, l (k)  for h, = 1/540 is shown in Table 8.2.4. 

Table 8.2.3 

- 
t 
- 
-1 .o 
4 . 9  
4 . 8  
4 . 7  
4 . 6  
4 .5  
4 . 4  
4 . 3  
4 . 2  
4.1 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o - 

- 
t 

0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 

8.0 
7.0 

10.0 
9.0 

11.0 
12.0 
13.0 

15.0 
14.0 

16.0 
17.0 
18.0 

- 

- 

Forw. Method 

0.000000000 00 
4.542197420-01 
4.110172100 00 
4,165318030 00 
4.217151980 00 
4,263367480 00 
-0.302002110 00 
4.331546970 00 
4.351011590 00 
4,359941660 00 
-0.358393900 00 
-0.346877230 00 
4.326272600 00 
-0.297744240 00 
4.262653760 00 
-0.222485540 00 
4.178788180 00 
4.133133220 00 
4.870889320-001 
4.422046870-001 
0.22204460D- l5 

Backward Method 

0.234077710 - 01 
0.250000000 00 

0.141434680 - 02 
0.441148540 - 04 
0.626093360 - 06 
0.376455960 - 08 
0.919298100 - 11 
0.887961210 - 14 
0.333414310 - 17 
0.480889300 - 21 

0.549257070 - 30 
0.264168940 - 25 

0.430202220 - 35 
0.126469190 - 40 
0.139142530 - 46 
0.571602020 - 53 
0.875121380 - 60 
0.498549240 - 67 
0.000000000 00 

Back.-Back. Method 

0.234077710 - 01 
0.250000000 00 

0,141434680 - 02 
0.441148540 - 04 
0.626093360 - 06 
0.376455960 - 08 
0.919298100 - 11 
0.887961210 - 14 
0.333414310 - 17 
0.480889300 - 21 

0.349257070 - 30 
0.264168940 - 25 

0.430202220 - 35 
0.126469190 - 40 
0,139142530 - 46 
0.571602020 - 53 
0.875121380 - 60 
0.498549240 - 67 
0.000000000 00 

Table 8.2.4. 

Forw.-Forw. 
Method 

0.000000000 00 
-0.542197420-01 
4.110172100 00 
4.163318030 00 
-0.217151980 00 
4.263367480 00 
-0.302002110 00 
-0.331546970 00 
4.351011590 00 
4.359941660 00 
-0,358393900 00 
4.346877230 00 
-0.326272600 00 
4.297744240 00 
4,262653760 00 
4,222485540 00 
-0.178788180 00 
-0.133133220 00 
4.870889320-01 
-0.422046870-01 
4.961230920-11 

Back. Method 

4.542197420-01 4.542197420-01 

Back.-Back. 

0.138777880-16 4.523612500-11 

-0).110172100 00 4.110172100 00 

-0.217151980 00 -0.217151980 00 
4.168318030 00 -0.165318030 00 

4,263367480 00 4,263367480 00 
4.302002110 00 -0.302002110 00 

4.351011590 00 -0.351011590 00 
-0.331546970 00 -0.331546970 00 

-0.359941660 00 -0.359941660 00 
4.358393900 00 4.358393900 00 
4,346877230 00 -0.346877230 00 
-0.326272600 00 -0.326272600 00 

4.262653760 00 -0.262653760 00 
-0,297744240 00 4.297744240 00 

-0.222485540 00 -0.222485540 00 
-0.178788180 00 -0.178788180 00 
4.133133220 00 -0.133133220 00 

Method 

-0.870889320-01 

0.000000000 00 0.000000000 00 
-0.422046870-01 -0.422046870-01 
-0.870889320-01 
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8.3. Method of Particular Solutions 

We solve (1.2.11) with (n. + 1) different sets of conditions 

zq") = &jr, 1 5 i , j  5 n 
. ;+'(U) = 0, 1 5 j 5 n, 

(8.3.1) 

to obtain u'(k), 1 5 i 5 n, + I, i.e. ( n  + 1) particular solutions of 
(1.2.1 1). Next we introduce (n, + 1) constants c , ,  1 5 1; 5 n, + 1 arid 
demand that the linear cornbination 

n.+ 1 

(8.3.2) u(k) = c quZ(k) 
i=l  

to be a solution of the problcrn (1.2.11), (1.5.3). For this, we must have 

n. 

(8.3.3) 

and on sllbstituting (8.3.2) in  (1.5.3) we get R more eqllations 

n,+ 1 

(8.3.4) c C[u"(k)]c; = 1. 
i = l  

These (n,+l)  equations (8.3.3), (8.3.4) are solved for the (n,+l)  unknowns 
ci, 15 2 5 n+ 1. 

This method is theoretically the same as the forward process. For this, 
from (8.3.3) we have c , + 1  = 1 -c:', ci, and hence (8.3.2) can be written 
as 

n, 

u(k) = c Ci(UZ(lC) - U"+'(k)) + U"+l(lC), 

i=l 
which is the same as (8.2.1). However, it uses only the nor~homogencous 
system (1.2.11) in contrast with the forward process where (1.2.11) as well 
as the homogeneous system (1.2.12) is being used. But it leads to a system 
of (n + 1) equations instead of R equations. 

The method of particular solutions similar to backward, forward- for- 
ward and backward- backward processes can easily be formulated. 

8.4. Method of Adjoints 

As the name suggests we use the adjoint system (2.7.1) to obtain the 
solution of the problem (1.2.11), (1.5.5). We compute solutions of (2.7.1) 
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backward once for each uIq(ki) ,  2 5 i 5 T appcaring in (1.5.5) with the 
cmlditions 

(8.4.1) d i ) ( k i )  9 = c&, 2 5 i 5 T, 1 5 p , q  5 n, 

where n f i ) ( k i )  is the qth component at ki for the pth t)ackwartl solution. 

Substituting (8.4.1) in the adjoint identity (2.7.9) with k.0 = k l ,  WC 

obtain 

n, n. k ,  n, 

(8.4.2) c aiquq(ki) - c ~ ) $ ~ ) ( k l ) u , ~ ( k 1 )  = c c z f i ) ( t ) b q ( t  - l), 
q=1 q=l P=k1+l q = l  

2 S i 5 r .  

Sunlrrling (T - 1) equations (8.4.2) and rnakirlg use of ( l .5 .5) l  we get 

(8.4.3) 

i e (& + k ? $ ( " ( k l )  ?Lq(kl) = I ,  - x c C v f ] ( ' ) ( P ) h , ( P -  l), 
I '  I;, n 

q = l  i=2 i=2 P=l: l+l q= l  

l < p < n .  

If the matrix ( a i ,  + v$')(kl)) is nonsingular, then the system 

(8.4.3) provides the unknowns u q ( k l ) ,  1 5 q 5 n. The solution of the 
problem (l.2.11)1 (1.5.5) is obtained by computing the solution of (1.2.11) 
with these values of 7Lq(k1), 1 5 q 5 n. However, to evaluate the summa- 
tion term in (8.4.3) we need to store thc solutions of (2.7.1). This can be 
avoided at the cost of solving another (r - 1) systems. For this, we denote 

which is equivalent to solving 

n 

(8.4.4) wp( ; ) (k )  = - C 7 1 P ( l ) ( k  4 + l )b , ( k )  + u J p ( q (k  + 1) 
q= l  

Thus, at the point ki,  2 5 i 5 r we solve a system of order 277, given 
by (2.7.1) and (8.4.4) subject to the corditions (8.4.1) and (8.4.5). 
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l < p < n .  

This method of c:onstruc:ting the solution of (1.2.11), (1.5.5) is called 
the backward f o ~ w a r d  p'rocess and requires (r - 1)" backward solutions of 
the adjoint system (2.7.1) satisfying (8.4.1), (r - 1) backward solutions 
of (8.4.4) satisfying (8.4.5), and 1 forward solution of (1.2.11) with the 
obtained values of 7bq(k1), 1 < q < n from the system (8.4.6), i.e. a total 
of (r - I)(n+ 1) + 1 solutions of nth order systems. In part idar ,  if r = 2 
then once again we need (n, + 2) solutions as i n  the forward forward or 
the backward backward proc:css. 

Similar t,o the backward forward prowss WC have thc forvmrd backwa,rd 
process, and for this WC: solvc (2.7.1) forward on(:c for cad1 l ~ , ~ ( k ~ ) ,  1 < i < 
r - 1 appearing i n  (1.5.5) with the conditions 

(8.4.7) Q(i)(k"')  = 1 < 2 < r - 1, 1 5 p ,q  < n, 
where &")(ki) is the qth corrlporlent, at ki for the pth forward solution. 

Substituting (8.4.7) in the adjoint identity (2.7.10) with k-0 = k,., WC 

obtain 

n n, I:, n 

q=1 q=l I=r(:,+l q=l 

Summing (r - 1) equations (8.4.8) and making use of (1.5.5), we get 

(8.4.9) 

i=l i=l &k,+l q=l 

We introduce 

k n  

t=k,+1 q = l  
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whic:h is eqllivalent to solving 

Substitnting (8.4.13) in (2.7.9) wit,h ko = kl and using (1.5.7), we 
obtain 

k, n 
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(8.4.23) L q S L ) ( k Z )  = 0, 1 5 i 5 T - 1, 1 S ;  5 pi. 

The solution of (1.2.11), (1.5.7) is obtained by solving backward the 
systcrrl (1.2.11) with the obtained values of uq(k,.),  1 5 q 5 n,. 
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Example 8.4.1. To apply  backward^ forward process for the boundary 
valuc problem (8.2.23), (8.2.24) WC note that (2.7.1), (8.4.15), (8.4.13) and 
(8.4.16) reduce to 

(8.4.24) 

‘UIZ(k) = -?&k + l ) d ( k )  + wz(k + 1) 

(8.4.25) 7I3K) = 0, ,&K) = 1, W2(K) = 0, 

F11rthcr, the system (8.4.17), (8.4.18) takes thc form 

‘ I ) : (o)V.1(0)  Uf(O)?L2(0) = B + P112(0) 

71 ,1 (0 )  = A, 
which casily dctcrmincs 

u , ~ ( O )  = A 
(8.4.26) 

1”2(0)  = 
B + ~ z ( 0 )  - v?(O)A 

m )  
Thc solution of (8.2.23), (8.2.24) is obtained by recursing forward the sys- 
tern (8.2.23) with the initial values (8.4.26). 

Similarly, to apply forward backward proccss we find that (2.7.1), (8.4. 
22), (8.4.21) and (8.4.23) reduce to 

(8.4.27) 

Wl(k + 1) = W , ( k )  + l ) d ( k )  

(8.4.28) &O) = 1, &O) = 0, . i l(0) = 0. 

Furthcr, the systerrl (8.4.19), (8.4.20) becomes 

I J ( K ) v . ~ ( K )  + &K)ut2(K) = A + %,(K)  
212(K) = B ,  
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which gives 

(8.4.29) 

The solution of (8.2.23), (8.2.24) is obtained by recursing backward the 
system (8.2.23) with the final values (8.4.29). 

Example  8.4.2. For the discrete analog (8.2.23), (8.2.24) of the boundary 
value problem (8.2.35) both the rrlethotls discussed in this section work 
equally well. The errors obtained, as calcxlatcd from the exact solution 
y ( t )  (sec Example 8.2.2) and approximate sollition ?Ll(k)  with h = 1/256 
are presented i n  Table 8.4.1. 

Table 8.4.1. 

2.000 I 0.000000000 00 I 0.648844180 - 14 
t I Back.-Ford. Method I Ford.-Back. Method 

2.125 
2.250 
2.375 
2.500 
2.625 
2.750 
2.875 
3.000 

0.105460780 - 12 
0.138748010 - 12 
0.177163840 - 12 
0.169461670 - 12 
0.145029820 - 12 
0.108559000 - 12 
0.652394800 - 13 
0.169249730 - 13 

0.108173890 - 12 
0.156465120 - 12 
0.169600440 - 12 
0.157054920 - 12 
0.129771190 - 12 
0.933558790 - 13 
0.490926740 - 13 
0.000000000 00 

Example  8.4.3. We apply the mcthods of this section to the discrete 
boundary value problem considered i n  Example 8.2.3. The results analo- 
gous to Table 8.2.2 are given i n  Table 8.4.2. 

Table 8.4.2. 

t 
0.0000 
0.3125 
0.6250 
0.9375 
1.2500 
1.5625 

2.1875 
1.8750 

2.5000 
2.8125 
3.1250 
3.4375 
3.7500 
4.0625 
4.3750 
4.6875 
5.0000 

Back.-Ford. Method 

Fails 

Ford.-Back. Method 
0.168753900 - 13 
0.228528240 - 08 
0,882314460 - 11 
0.265489990 - 13 
0.657615220 - 16 
0.158686910 - 18 
0.367605140 - 21 
0.827918520 - 24 
0.182658030 - 26 
0,396689340 - 29 
0.850877910 - 32 
0.180683780 - 34 
0.380510770 - 37 
0.795771340 - 40 
0.165436830 - 42 
0.342178670 - 45 
0.000000000 00 
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Example  8.4.4. For the discrete analog (8.2.23), (8.2.24) of (8.2.37) 
(replacing ?/(m) = 0 by ~ ( 1 8 )  = 0) with ' m .  = 0, p = 1 and h, = 1/60 
we apply both the rrlethods of this section. The numerical solutio11 7rl(k) 
is shown in Table 8.4.3. 

Table 8.4.3. 

0.0 I 
t 1 Back.-Ford. Method 1 Ford.-Back. Method 

I 0.100000000 01 
1 

1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 

10.0 
9.0 

11.0 
12.0 
13.0 
14.0 
15.0 
16.0 
17.0 
18.0 

Fails 

0.345640460 - 01 
0.259342550 00 

0.198852320 - 02 
0.459581960 - 04 
0.412557690 - 06 

0.182720320 - 11 
0.141298400 - 08 

0.886298570 - 15 
0.160549900 - 18 
0.108279350 - 22 
0.271282070 - 27 
0.252065840 - 32 
0.867501170 - 38 
0.110472550 - 43 
0.320138570 - 50 
0.904859080 - 57 
0.581307570 - 64 

1 , 0.000000000 00 

Example  8.4.5. We apply the methods of this section to the discrete 
boundary value problem considered in Example 8.2.5. The results arlalo- 
gous to Table 8.2.4 are given in Table 8.4.4. 

Table 8.4.4. 

- 
t 

-1.0 

-0.8 
-0.9 

-0.7 
-0.6 
-0.5 
-0.4 
-0.3 
-0.2 
-0.1 
0 .0 
0.1 
0.2 
0.3 
0.4 

0.6 
0.5 

0.7 
0.8 
0.9 
1.0 

- 

- 

Back.-Ford. Method 
0.000000000 00 

-0.542197420 - 01 
-0.1101721OD 00 
-0.165318030 00 

-0.26336748D 00 
-0.217131980 00 

-0.302002110 00 
-0.331546970 00 
-0.351011590 00 
-0.359941660 00 
-0.358393900 00 
-0.346877230 00 

-0.297744240 00 
-0.326272600 00 

-0.262653760 00 
-0.222485540 00 
-0.178788180 00 

-0.870889320 - 01 
-0.422046870 - 01 
-0.589147990 - 12 

-0.1331332'20 00 

Ford.-Back. Method 
0.227814050 - 13 

-0.542197420 - 01 
-0.110172100 00 
-0.165318030 00 
-0.217151980 00 
-0.263367480 00 
-0.302002110 00 
-0.331546970 00 

-0,359941660 00 
-0.351011590 00 

-0.388393900 00 
-0.346877230 00 
-0.326272600 00 
-0.297744240 00 
-0.262653760 00 
-0.222485540 00 
"0.178788180 00 
-0.133133220 00 
-0.870889320 - 01 
-0.422046870 - 01 

0.000000000 00 
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8.5. Method of Chasing 

This method seems to be applicable only for some particular cases of 
(1.2.11) together with (1.5.7). For example, we shall formulate it for the 
svstcn1 

74(k + 1) = U;+l (kJ ,  1 5 i 5 n - 1 

(8.5.1) 
n,-2 

Un,(k + 1) = - c a3(k)?d3+l(k) + b ( k ) ,  
j=O 

which is equivalent to the difference equation (1.2.3) with an,- l (k)  = 0 
anti a n , ( k )  = 1. 

For simplicity WC shall rewrite the boundary conditions (1.5.7) as 

Based on the form of (8.5.3) we assume that the solution of (8.5.1) 
satisfies the relation 

(8.5.4) l " (q (k )  = 2 Q,,(k)U,(k)  + d7(k), 
, = l , , # " ( L )  

where the urlkrlown functions Qi, ( k ) ,  1 5 j 5 R, j # i(i) and &(/c) arc 
obtained as follows: Relation (8.5.4) is the same as 

(8.5.5) ~ , ; ( , ~ ) ( k  + 1) = 2 Q,(k + l)w,,(k + 1) + di (k  + 1). 
,=1,3fi(i) 
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We shall use (8.5.1) and (8.5.4) to eliminate ~ , ~ ( k )  from (8 .5 .5 ) ,  however it 
depends 011 a particular vallle of i ( i )  and we need to consider the following 
four cases: 

Case 1. i(z) = 1 and n, 2 3 

From (8.5.4), we have 

Using (8.5.1) and (8.5.6) in (8.5.5) and arranging the terms, WC get 

We also desire that the solution representa,tion (8.5.4) satisfies the boun- 
dary condition (8.5.3). For this, we compare (8.5.3) and (8.5.4) at the point 
ki ,  to obtain 

(8.5.8) 

In the rernaining three cases we proceed as for the Case 1 and arrive at 
the following difference systems: 
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Case 2. 2 5 i ( i )  5 n, - 2 

(85.10) 

Case 4. i(i) = R 

(8.5.14) 

For the particular value of i ( i )  we solve the appropriate systcrn from 
ki to k ,  and collect the values of 8ij(k,,),  1 5 j 5 n,, j # i(i) and 
di(k,), therebv obtaining from (8.5.4) a new boundary relation at k ,  

(8.5.15) ?Li(,j)(kn,) = 2 Qi,(k,)2LJ(k,)  + d i ( k , ) .  
j = l , ;#Z( i )  



654 Chapter 8 

Since i n  (8.5.2) we havc p,. relations at the point k ,  (which is i n  fact 
kr) we can find u , j (kn , ) ,  1 j 5 n if n - new relations of the type 
(8.5.15) are known. This in turn implies that we need to solve n - /lr 
appropriate above difference systcrns. Thesc systems are not necessarily 
different, especially because a diffcrence system does not change as long as 
in (8.5.3) i ( i )  is the same (we can have at most n, different diffcrence 
systems). Finally, having obtained w,j(kn,), 1 5 j 5 n, we solve the 
difference system (8.5.1) backward from k ,  to the point k l .  

Example 8.5.1. For the boundary value problem 

(8.5.17) 

WC assume that 

u.z(k) = eZl(k)?rl(k) + d 2 ( k ) ,  

and find (Case 4) that thc unknown functions 621 ( k )  and d2(k) must 
satisfy 

Q21(k + 1) = - Q,O(k)/Q21(k) 

&,(0) = CYO,  d 2 ( 0 )  = Il. 
(8.5.18) &(k  + 1) = - & ( k  + l ) d 2 ( k )  + b(k) 

To find the unknown u l ( K )  we use (8.5.15) which red~~c:cs to 

(8.5.19) 

The solution of (8.5.16), (8.5.17) is obtained by solving (8.5.16) backward 
with these values of u1(K) and u , z (K ) .  

Example 8.5.2. In Example 1.6.4 we have seen that the initial value 
problem (1.4.6), (1.4.7) can be approximated by the boundary value prob- 
lem (1.6.7) ~ (1.6.9). To solve this boundary value problem, since ao(k )  = 
- ( k +  l)(k+ 2), b(k) = - ( k +  l), (YO = -1, I 1  = 1 and b2 = 1/(K+3),  
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equations (8.5.18) and (8.5.19) reduce to 

( k  + 2) 
d2(k+1) = - ( k + l )  l+- [ 021(k) d2(k)] 

Example 8.5.3. Following Example 1.6.4 the initial value problem (1.9.4), 
(1.9.5) can be approxinlated by the boundary value problem 

~ ( k  + 2) = 25u,(k) - 
4k + 9 

( k  + l ) ( k  + 2)’ 
k E W(0, K - 1) 

(8.5.20) ~ , ( 1 )  z= 1 - 5~. (0)  
1 

6 ( K  + 2) .  
u ( K +  1) = 

For this boundary value problem also we use the formulation of Example 
8.5.1 for K = 10000 and present the numerical solution u1(k) in Table 
8.5.2. 

Table 8.5.2 
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Example 8.5.4. Following Example 1.6.4 the initial value problem (1.9.6), 
(1.9.7) can bc approximated by the boundary value problem (sincc u(k) ”-f 
c m ,  we can assume for large K, u(K + 2) = v(K + 1)) 

(8.5.21) ~ ( 1 )  = 2 - 5 ~ ( 0 )  
qK+2 

For this boundary valuc problem also we use the formulation of Examplc 
8.5.1. In view of limited computer capabilitics we choose K = 250 and 
present the rlurnerical solut,ion in Table 8.5.3. 

Table 8.5.3 

80 
70 

90 

0.144363930 
0.998616720 

l K;:;%;: 
0.542521480 
0.476987370 
0.427925010 
0.389892750 

05 120 0.314605790 
07 130 0.297511100 
10 140 0.28300147D 
13 150 0.270565860 
16 160 0.259820470 

22 180 0.242290270 
19 170 0.250471500 

25 190 0.235096130 

- 
31 

37 
34 

40 
43 
46 
49 
52 
JJ 
” 

0.359609990 28 I200 10.228744470 58 

220 0.218121630 64 
230 0.213675540 67 
240 0.209717340 70 
250 0.240274120 73 

8.6. Method of Imbedding: First Formulation 

WC partition thc vector u(k) by setting u(k) = [v (k ) ,  w(k)IT, where 
v (k )  is an p X 1 vector, w(k) is an q X l vector, arid p + q = n. In 
general, thc choice of thc elements of u(k) which are to be v ( k )  and those 
which are to bc w(k) is arbitrary, although for some problems o m  choice 
is more natural than any other. Once this setting is fixed, the differcrlce 
system (1.2.11) can be written as 

(8.6.1) v ( k  + 1) = d’(k)v(k) + d2(k)w(k)  + bl(k) 

(8.6.2) w(IC + l) = d3(k)v(k)  + d4(k)w(IC) + b2(k) 

and the boundary conditions (1.5.4) take the form 

(8.6.3) 
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r r 

(8.6.4) C 3Miv (k , i )  +C 4 M i w ( k i )  = l', 
%=l i=l  

where the matrices d l ( k ) ,  lMi, 1 5 i 5 T are of order p x p, 
d'(k) ,  2Ma, 1 5 1: 5 T of order p X q, d3(k ) ,  1 5 i 5 T of 
order q X p, d 4 ( k ) ,  4 M i ,  1 5 i 5 T of ordcr q x q, and the vectors 
bl(k), 1' are of order p X 1, and b'(k), 1' of order q x 1. 

There are two possible expressions for the development of the solution 
from (8.6.1), (8.6.2), a direct form and an inverse form. The direct form at 
a fixed point k* E IN(k.1, kr) is defined as 

(8.6.5) v ( k )  = Rl(k, k* )w(k )  + R 2 ( k ,  k* )v (k* )  + cl(k, k * )  

(8.6.6) w ( k * )  = Q'(k, k* )w(k )  + Q'@, k*)V(k*)  + c2(k, k * ) ,  

where the matrices R l ( k ,  k * ) ,  R 2 ( k ,  k * ) ,  Q1(k,  k * ) ,  Q'(k, /c*) are oforders 
pxq, pxp, q x q  ancl qxp respectively, arid thevectors c'(k,k*), c'(k,k*) 
are of orders p x 1, q x 1 respectively. 

Rclation (8.6.5) is the same as 

(8.6.7) v ( k+ l )  = R 1 ( k + l ,  k* )~(/c+l )+R' (k+l ,  k*)V(k*)+cl(k+l,  k*) .  

Using (8.6.1), (8.6.2) and (8.6.5) in (8.6.7), we get 

[d'(k) - R ' ( k  + 1, k*)d3(k)  - R 2 ( k  + 1, IC*) ( R 2 ( k ,  k * ) ) - ' ]  v (k )+ 

[dz(I ; )-Rl(k+l,  l ~ * ) ~ 4 ( k ) + ~ 2 ( k + 1 ,  k * ) ( ~ ~ ( l c ,  k*))" ~ ' ( k ,  k * ) j w ( k b  

b l ( k )  - R1(k + 1, k*)b2(k) + R 2 ( k  + 1, k * )  (R2(k, k*))- '  cl(k, k * )  

-c'(k + l , k * ) ]  = 0. 

Thus, for k 2 k* the following system must be satisfied 

(8.6.8) 
R 1 ( k  + 1, k * )  = [d2 (k )+d1(k )R1(k ,  IC*)] [d4(k)+A3(k)R' (k,k*) ]- '  

R2(k + 1, k * )  = [d'(k) - R1(k + 1, k*)d3(k)]  R 2 ( k ,  IC*) 

cl(k 4- 1, k * )  = d l ( k ) c l ( k ,  k * )  - R 1 ( k  + 1, k * )  [b2(k) 
+ d3(k )c1 (k ,  k*)]  + b'(k). 

For k 5 k * ,  (8.6.8) can be conveniently written as 
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(8.6.9) 
R 1 ( k , k * )  = [R1(k+l, k*)A3(k)-A1(k)]" [A2(k)-R1(k+1, k*)A4(k)] 

R 2 ( k ,  k * )  = - [R'(k + 1, k * ) A 3 ( k )  - A1(k)]-' R 2 ( k  + 1, k * )  

~ ' ( k ,  k * )  = [ R1 ( k  + 1, k * ) A 3 ( k )  - A'(k)]" [bl(k) 
- R 1 ( k  + 1, k*)b2(k)  - c'(k + 1, k * ) ]  . 

The initial conditions for the system (8.6.8) as wcll as (8.6.9) are ob- 
tained from the relation (8.6.5) and appcar as 

(8.6.10) R ' ( k * , k * )  = 0, R 2 ( k * , k * )  = Z, c l ( k * , k * )  = 0. 

Sirnilarly, from (8.6.6) and (8.6.2), (8.6.5) we find €or k 2 k* that 

which is for k 5 k* better written as 

(8.6.12) 
e ' ( k ,  IC*) = Q'(k + 1, k*)  [A4(k) + A 3 ( k ) R 1 ( k ,  k * ) ]  

Q 2 ( k ,  k* )  = Qz(k + 1, k * )  + Q'(k + 1, k*)A3(k)R2(k, k * )  

c 2 ( k ,  IC*) = c 2 ( k  + 1, k * )  + Q'(k + 1, IC*) [b2(k) + A3(k)c1(k, k*)] . 

The initial conditions for thc system (8.6.11) as well as (8.6.12) are 
obtained from the relation (8.6.6) and appear as 

Equations (8.6.8), (8.6.10), (8.6.11), (8.6.13) form a RQ forward system 
whereas (8.6.9), (8.6.10), (8.6.12), (8.6.13) form a RQ backward systcm. 

The inverse form a t  a fixed point k* E IN(k1,  k,,.) is defined as 

(8.6.14) ~ ( k )  = S1 (k ,  k * )v (k )  + S 2 ( k ,  k* )w (k* )  + d'(k, k * )  

(8.6.15) ~ ( k " )  = I 1 ( k ,  k')v(k) + 1 2 ( k ,  k*)w(k* )  + d2(k, IC*), 
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where thc matrices S1(k, IC*), S 2 ( k ,  k * ) ,  I 1 ( k ,  k * ) ,  1 2 ( k ,  k * )  arc of orders 
q x p ,  qxq, p x p  and p x q  respeckivcly, and the vectors d l ( k ,  k * ) ,  d2(k, k * )  
are of orders q x 1, p x 1 respectively. 

As above from (8.6.14) and (8.6.1), (8.6.2) for k 2 k * ,  we obtain the 
system 

which is for k 5 k* written as 

(8.6.17) 

S 1 ( k ,  k * )  = [ S1 (k  + 1, k*)A2(k)  - A4(k)]-1 X 

[A3(k)  - S1(k + 1, k* )A1 (k ) ]  

S 2 ( k ,  k * )  = - [ S1 (k  + 1, k* )A2 (k )  - A4(k)]" S 2 ( k  + 1, k * )  

d l ( k ,  k * )  = [ S1 (k  + 1, k* )A2 (k )  - A4(k ) ]- l  X 

[b2(k) - S 1 ( k  + l,k*)bl(k) - d l ( k  + l , k * ) ]  , 

The initial conditions for the system (8.6.16) as well as (8.6.17) are 
obtained from the relation (8.6.14) and appear as 

(8.6.18) S1 (k * , k * )  = 0, S 2 ( k * , k * )  = 1, d l ( k * , k * )  = 0. 

Finally, from (8.6.15) and (8.6.1), (8.6.14) for k 2 k* ,  we find the 
system 

(8.6.19) 

I 1 ( k +  l , k * )  = I l ( k , k * )  [A1(k)  +A'(k)S ' (k ,k*) ]-l  

1 2 ( k  + 1, k * )  = 1 2 ( k ,  k * )  - I 1 ( k  + 1, k*)A2(k)S2(k,  k * )  

d2(k + 1, k * )  = d2(k ,  IC*) - I 1 ( k  + 1, k * )  [bl(k) + A2(k)d1(k ,  IC*)] , 

which is for k 5 k* written as 
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(8.6.20) 
7 ' ( k ,  k * )  = I 1 ( k  + l , k * )  [d l (k )  + A 2 ( k ) S 1 ( k , k * ) ]  
7 2 ( k ,  k * )  = 1 2 ( k  + 1, k * )  + 7 l ( k  + 1, k * ) A 2 ( k ) S 2 ( k ,  k * )  

d2(k, k * )  = d2(k + 1, k * )  + 7 l ( k  + 1, k * )  [b l (k )  + d2(k)d1(k, k * ) ]  

The initial conditions for thc? system (8.6.19) as well as (8.6.20) are 
obtained from the relation (8.6.15) and appear as 

(8.6.21) I 1 ( k * , k * )  = 1, P ( k * , k * )  = 0, d2(k* ,k* )  = 0. 

Equations (8.6.16), (8.6.18), (8.6.19), (8.6.21) form a ST forward sys- 
tem whereas (8.6.17), (8.6.18), (8.6.20), (8.6.21) form a ST backward 
system. 

The above forrnulatiorl gives several methods to obtain the solution 
of the boundary value problem (1.2.11), (8.6.3), (8.6.4) which we list as 
follows: 

The systems (8.6.3), (8.6.4); (8.6.22)i, (8.6.23)i, 2 5 i 5 T are solved 
for the unknowns v (k i ) ,  w(ki), 1 5 i 5 T. For X: E W(kl ,k , ) ,  k # ki,  1 5 
1: 5 T the solution is then obtained by rearranging (8.6.5), (8.6.6) so that 

(8.6.24) W(k.1 = ( Q Y k , k l ) ) - l  [w(k1) - Q2(k,kl)V(kl) - c2(k ,k1)]  

(8.6.25) v(k) = R 1 ( k ,  k l ) W ( k )  + R 2 ( k ,  k l ) V ( k l )  + cl@, k l ) .  
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3. Repeated RQ Forward Process. WC should expect in some 
problems that RQ forward procms will exhibit ovcrflow. To cope with 
this situation, we can switch from the RQ forward system to ''a new" RQ 
forward system prior to overflow, and to continue with the computation. 
111 some problems multiple switching Inay be necessary. In general, one 
does not know where the RQ forward system will overflow before actually 
attempting to solve the problerrl. I n  practice, one carries out the comp~l- 
tation and if overflow occurs, one backs up arld selects a switch point, say, 
al E N(kl ,  k,.) where the solutions are still good, then one attempts to 
solve the problem by continuing the computation from that point. 

To switch from the RQ forward system to a new RQ forward system 
at the switch point al ,  we consider k* = a1 in (8.6.5), (8.6.6) so that 
basically the RQ forward system remains the same except k* = a1 
instead of kl. 

WC assumc: that to cornplctc the forward computation only one switch 
ing at a1 is needed, and k,  < 0.1 < kj+l  where 1 5 j 5 T - 1, but fixed. 
The systems (8.6.3), (8.6.4); (8.6.5), (8.6.6) at k* = k l ,  k = ki ,  2 5 i 5 j 
arid k = al ;  (8.6.5), (8.6.6) at k* = a l ,  k = k,i, j + 1 5 i 5 T are 
solved for the unknowns v(k,), w(ki), 1 5 i 5 T and v(al),  w(a1). For 
k E N(k1, a1 - l), k # ki ,  1 5 i 5 j the solution is obtained from (8.6.24), 
(8.6.25) whereas for k E IN(al+ 1, k T ) ,  k # ki ,  j + 1 5 1: 5 T it is obtained 
from 

(8.6.26) ~ ( k )  = (Q1(k, a1))-' [w(al) - Q2(k,al)v(a1) - c2(k, a,)] 

(8.6.27) v(k) = R1(k, O.l)W(k) + R2(k,Ul)V(U1) + cl@, all). 

The case where multiple switching is needed can bc cxtendcd easily. 

4. ST Forward Process. In ST forward system let k* = k l  and solve it 
for all k E N(k1,k,.). W e  store all the matrices S 1 ( k ,  k l ) ,  S 2 ( k ,  k l ) ,  F ( k ,  
k l ) ,  7 2 ( k ,  k l )  and the vectors dl(k, k1) ,  d2(k, k l )  for all k E N ( k l ,  k,,.). 
The systems (8.6.3), (8.6.4); (8.6.14), (8.6.15) at k* = k l ,  k = k i ,  2 5 
i 5 T are solved for the unknowns v(ki), w(k,i), 1 5 i 5 T. For k E 
IN(k1, kT ) ,  k # ki ,  1 5 i 5 T the solution is then obtained by rearranging 
(8.6.14), (8.6.15) so that 

(8.6.28) v(k) = (T1(k, !cl))-' [v(kl) - 7 2 ( k ,  kl)w(kl) - d2(k, k l ) ]  

(8.6.29) ~ ( k )  = S 1 ( k ,  kl)v(kl) + S 2 ( k ,  kl)w(kl) + dl(k, k l ) .  
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5. Modified ST Forward Process. In ST forward process we use 
the same techrliqlle as in the modified RQ forward process. 

6. Repeated ST Forward Process. As in repeated RQ forward 
process we switch from ST forward system to ST forward system as 
oftrrl as needed. 

7. Repeated RQ - ST Forward Process. We begin with RQ(ST) 
forward system arid wllcncver necessary switch to ST(RQ) forward system. 

1’. RQ Backward Process. In RQ backward systcrn let k* = k r  

and solve it backward for all k E IN(k.1, k,,.). Rest of the technique is the 
same as in RQ forward process. 

Finally, we remark that corrcsponding to 2 ~~ 7 we have 2’ - 7’ wllcre 
forward is replaced by hckward. 

8.7. Method of Imbedding: Second Formulation 

It scerns that this method can be easily formulated only for the following 
lmmdary value problem 

(8.7.1) u ( k  + 1) = A(k)u(k)  + B(k)v (k )  + f (k)  

(8.7.2) ~ ( k  + 1) = C ( k ) ~ ( k )  + D(k)v(k )  + g ( k ) ,  k E W ( 0 , K  - 1) 

(8.7.3) ~ ( 0 )  = C, v (K)  = d, 

where the matrices A ( k ) ,  B ( k ) ,  C ( k ) ,  D ( k )  are of order n x n,, and the 
vectors U(/?), v ( k ) ,  f (k) ,  g ( k ) ,  c, d are of order n x 1. 

W e  shall transform (8.7.1) ~ (8.7.3) into an initial value problem by 
imbedding it with K fixed, i n  a class of similar problems and relat- 
ing the solutions of the problems for which the interva.1 lengths are K 
and K + 1. For this, we shall denote the solution of (8.7.1) ~ (8.7.3) by 
u ( k , K ) ,  v ( k , K )  which emphasizes its dependence on k as well as the 
length K.  It is clear that we may represent this solution in thc form 

(8.7.4) ~ ( k ,  K )  = p(k, K) + U ( k ,  K ) d  

(8.7.5) v ( k , K )  = & ( k , K )  + V ( k ,  K)d, k E W ( 0 , K )  

where the n x n matrices U ( k ,  K )  and V ( k , K )  defined for all k E 
W(0, K )  and K = 0,1, . . . are the solutions of the boundary value problem 

(8.7.6) U ( k  + 1, K )  = A ( k ) U ( k ,  K )  + B ( k ) V ( k ,  K )  
(8.7.7) V ( k  + 1, K )  = C ( k ) U ( k ,  K )  + z ) ( k ) V ( k ,  K ) ,  k E W(0, K - 1) 
(8.7.8) U ( 0 ,  K )  = 0, V ( K , K )  = Z 
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arid the n X 1 vcctors p(k, K )  and q ( k , K )  defined for all k E w(0, K )  
and K = 0 ,1 , .  . . satisfying the system 

(8.7.9) p(k + 1, K )  = d(k)p(k, K )  + B(k)q(k ,  K )  + f ( k )  
(8.7.10) q ( k + l , K )  = C(k )p ( k ,K )+D (k )q ( k ,K )+g (k ) ,  k E N(O,K-1) 
(8.7.11) p(0,K) = C ,  q ( K , K )  = 0. 

For the process of length K + 1, thc cqllations corresponding to (8.7.6) 
~ (8.7.8) arc 

(8.7.12) U ( k  + 1, K + 1) = A ( k ) U ( k ,  K + 1) + B ( k ) V ( k , K  + 1) 
(8.7.13) V ( k + l ,  K+1) = C ( k ) U ( k ,  K + l ) + D ( k ) V ( k ,  K + l ) ,  k. E N(0, K )  
(8.7.14) U ( 0 , K  + 1) = 0, V ( K  + l , K  + 1) = 1. 

On the interval of length K ,  thc rrlat,riccs u ( k ,  K + 1) and v ( k ,  K + 
l), k E N(O, K )  satisfy thc systcrrl 

(8.7.15) U ( k  + 1, K + 1) = A ( k ) U ( k ,  K + 1) + B ( k ) V ( k ,  K + 1) 
(8.7.16) V ( k  + l ,K + 1) = C ( k ) U ( k , K  + 1) + D ( k ) V ( k ,  K + l), 

k E N ( O , K  - 1) 
(8.7.17) U ( 0 , K  + 1) = 0, V ( K , K  + 1) = V ( K , K  + 1). 

Mnltiplying both sides of (8.7.6) ~ (8.7.8) on the right with V ( K ,  K + 
l), t>o find 

(8.7.18) U ( k  + 1, K ) V ( K , K  + 1) = A ( k ) U ( k ,  K ) V ( K ,  K + 1) 
+B(k )V(k ,  K ) V ( K ,  K + 1) 

(8.7.19) V ( k  + 1, K ) V ( K ,  K + 1) = C(k)U(k ,  K ) V ( K ,  K + 1) 
+ D ( k ) V ( k ,  K ) V ( K ,  K + 1) 

(8.7.20) U ( 0 ,  K ) V ( K , K + l )  = 0, V ( K ,  K ) V ( K ,  K +  1) = V ( K ,  K +  I). 

Assuming t,hat (8.7.15) ~ (8.7.17) has a uniquc solution, and comparing 
this system with (8.7.18) ~ (8.7.20), we get 

(8.7.21) U ( k ,  K + 1) = U ( k ,  K ) V ( K ,  K + 1) 

(8.7.22) V ( k , K  + 1) = V ( k , K ) V ( K , K  + l), k E IN(0,K). 

Let k = K in (8.7.21) so that it can be written as 

(8.7.23) U ( K , K + l )  = R ( K ) V ( K , K + l ) ,  K = 0 , 1 , . . .  

where R(K) = U ( K , K ) ,  K = 0, l,... . 

Using (8.7.14) and (8.7.23) i n  (8.7.13) at k = K gives 

1 = [C(K)R(K)  + D ( K ) ]  V ( K ,  K + l), K = 0,1, 
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Using (8.7.23) arid (8.7.24) in (8.7.12) at  k = K leads to 

(8.7.25) R(K + 1) = [ d ( K ) R ( K )  + B ( K ) ]  [C(K)R(K) + D(K)]-' , 
K = 0 ,1 , . " .  

The initial condition for (8.7.25) is obtained from (8.7.8) at  K = 0 
and appears as 

(8.7.26) R(0) = 0. 

In particular (8.7.25), (8.7.213) dcterrnincs R ( k ) .  

For K 2 k the rwurrencc relations for thc 1natric:cs U ( k ,  K )  and 
V ( k , K )  are obtained OII using (8.7.24) in (8.7.21) and (8.7.22) 

(8.7.27) U ( k ,  K + 1) = U ( k ,  K) [C(K)R(K) + D ( K ) ] - l  
(8.7.28) V ( k ,  K + 1) = V ( k ,  K) [C(K)R(K) + D(K)]-' . 

Since U ( K ,  K) = R(K)  and from (8.7.8), V ( K ,  K )  = Z, K = 0,1, .  . . , 
the initial conditions at K = k arc 

Next we shall consider the vectors p(k, K )  and q(k,  K ) .  For this, on 
the interval of length K + 1, equations (8.7.9) - (8.7.11) become 

(8.7.30) p(k + 1, K + 1) = d(k)p(k, K + 1) + B ( k ) q ( k ,  K + 1) + f ( k )  
(8.7.31) q ( k  + 1, K + 1) = C(k)p(k, K + 1) + D ( k ) q ( k ,  K + 1) + g ( k ) ,  

k E W(0, K )  
(8.7.32) p ( 0 , K  + 1) = C,  q(K + 1, K + 1) = 0. 

The difference vectors z(k, K )  = p(k, K +  1) -p(k, K )  and w ( k ,  K )  = 
q ( k ,  K + 1) - q(k,  K ) ,  k E N(O, K) satisfy the system 

(8.7.33) z(k + 1, K) = d(k)z(k, K) + B (k )w (k ,  K )  

(8.7.34) ~ ( k  + 1, K) = C(k)z(k, K) + D(k)w(k ,  K ) ,  k E N(0, K - 1) 

(8.7.35) z(0,K) = 0, w(K ,K )  = q ( K , K +  1). 

The multiplication of equations (8.7.6) - (8.7.8) by the vector q(K, K +  
1) yields the system 
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(8.7.36) U ( k  + 1, K ) q ( K ,  K + 1) = A ( k ) U ( k ,  K ) q ( K ,  K + 1) 
+ B ( k ) V ( k ,  K ) q ( K ,  K + 1) 

+ D ( k ) V ( k ,  K ) q ( K ,  K + l), k E W(0, K - 1) 
(8.7.37) V ( k  + 1, K ) q ( K ,  K + 1) = C ( k ) U ( k ,  K ) q ( K ,  K + 1) 

(8.7.38) U ( 0 ,  K ) q ( K ,  K + 1) = 0, V ( K ,  K ) q ( K ,  K + 1) = q ( K ,  K + 1). 
Assuming that (8.7.33) ~ (8.7.35) has a unique solution and comparing 

this system with (8.7.36) ~~ (8.7.38), we get 

(8.7.39) p(k ,  K + 1) = p(k ,  K )  + U ( k ,  K ) q ( K ,  K + 1) 
(8.7.40) q(k ,  K + 1) = q (k ,  K )  + V ( k ,  K ) q ( K , K  + l), k E W(0, K ) .  

Lct k = K i n  (8.7.39) so that it c z m  be written as 

(8.7.41) p ( K ,  K + 1) = s ( K )  + R(K)q(K,  K + l), 
where s ( K )  = p ( K ,  K ) ,  K = 0,1, ' ' ' . 

Using (8.7.41) i n  (8.7.30) at k = K gives 

(8.7.42) s ( K + l )  = A ( K ) s ( K ) + [ d ( K ) R ( K )  + B ( K ) ]  q(K,K+l)+f(K).  

Using (8.7.32) and (8.7.41) in (8.7.31) at k = K ,  to obtain 

(8.7.43) q ( K ,  K + 1) = - [C(K)R(K)  + D ( K ) ] - l  [C(K)s (K)  + g ( K ) ]  . 

Using (8.7.43) and (8.7.25) i n  (8.7.42), we find 

(8.7.44) s (K + 1) = A ( K ) s ( K )  - R ( K  + 1) [C(K)s (K)  + g ( K ) ]  + f (K),  

K = 0 , 1 , . . .  . 

Since s ( K )  = p(K, K )  the initial condition for (8.7.44) is obtained 
from (8.7.11) and appears as 

(8.7.45) s(0) = c. 

In particular (8.7.44), (8.7.45) determines s ( k ) .  

For K 2 k the recurrence relations for the vectors p(k,  K )  and 
q (k ,  K )  are obtained on using (8.7.43) in (8.7.39) and (8.7.40) 

(8.7.46) p(k ,  K + 1) = p(k ,  K )  - U ( k ,  K ) [ C ( K ) R ( K )  
+DO(K)l-l [C(K)s(K)  + f d W 1  

+DO(K)1r1 [C(K)s(K)  + d W 1 .  
(8.7.47) q ( k , K  + 1) = q ( k ,  K )  - V ( k , K ) [ C ( K ) R ( K )  
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Since p(K, K )  = s ( K )  and from (8.7.11), q(K, K )  = 0, K = 0,1 , .  . . , 
the initial conditions at K = k are 

(8.7.48) p(k,k) = s ( k ) ,  q(k, IC) = 0. 

All the necessary relations are now at hand, and WC may summarize 
the rnethotf. For K = 0,1, .  . . , k - 1 we employ the rccxrrcnce rclatiorls 
(8.7.25), (8.7.44) together with the initial conditions (8.7.26), (8.7.45) so 
that R ( k )  and s ( k )  arc available. For K 2 k ,  we use thc recur- 
rence relations (8.7.25), (8.7.44), (8.7.27), (8.7.28), (8.7.46) and (8.7.47) 
together with the initial conditions R ( k )  = R ( k ) ,  s ( k )  = s ( k ) ,  (8.7.29) 
and (8.7.48). Finally, the required solution is obtained from (8.7.4), (8.7.5). 

Example 8.7.1. Consider thc boundary value problcrrl (1.6.40), (1.6.41). 
On comparing it with (8.7.1) ~ (8.7.3), we have R = L, A(k) = 0 , B ( k )  = 
2, f ( k )  = 0, C ( k )  = -2, D ( k )  = Q, g ( k )  = -r(k  + 1). Thus, to obtain 
the vector u(k), k 5 K WC rlced to solvc 

R ( k +  1) = [Q - R ( k ) ] - l  

s ( k  + 1) = R ( k  + 1) [s(k)  + r(k + l)] 
R(0) = 0, s(0) = c 

and, at k = r n  we adjoin 

U ( n r ,  k + 1) = U(,rrr, k ) R ( k  + 1) 
p("),, k + I) = p(,rrt,, k )  + ZA ( rn ,  k ) s ( k  + 1) 

U(,rr),, nr) = R ( m ) ,  p(m, rrr) = s(,rrb) 

and finallv 
u(,rrt,) = p(m, K )  + M(*rn., K)d. 

8.8. Method of Sweep 

We have seen that the second order recurrence relation 

(8.8.1)~. ~.o(lc)u(k.-1)-al(k)v.(k)+a.~(k)u(k+l) = -b(k) ,  k E W(1,K) 

together with the boundary conditions 

(8.8.2) u(0) = ffu(1) + p, 71(K + 1) = y u ( K )  + S 

appears in several applications. Here, we shall formulate the known method 
of sweep which is very stable. For this, we shall assume that 

(8.8.3) ~ ( k ) ,  a l ( k ) ,  ~ ( k )  > 0, n l ( k )  2 ~ ( k )  + a 2 ( k ) ,  0 5 U: < 1, 

O l y < l .  
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It is clear that the problem (8.2.22), (1.6.14) satisfies the above condi- 

tions provided f ( t )  2 0, t E [ C Y , / ? ] ,  and - max f ( t )  < 1. 
h, 
12 a < t g  

From (8 .8 .1 )~  and u.(K + 1) = y u ( K )  + S, we see that u,(K - 1) is 
a linear funct,ion of ?r(K) .  Also, on elirnirlating ?/,(K) frorn the equations 
(8 .8 .1 )~  and (8.8.1)~-1 it, is clear that ?/.(K - 2) is a linear function of 
U( K - 1). Thus, WC shall attempt to deterrnine coefficients Q( k ) ,  p( k ) ,  k = 
K + 1, K , .  . . , 1 such that the relation 

(8.8.4) u ( k  - 1) = c ~ ( k ) ~ ( k )  + { j ( k ) ,  k E N(1,K + 1) 
holds. For this, let k = 1 i n  (8.8.4), so that from ~ ~ ( 0 )  = wu(1) + /-I, we 
have 

Q?/,(l) + p = u ( 0 )  = tY(1)?/,(1) + [j(l), 
whic:ll provides that 

(8.8.5) (?(l) = U ,  [)(l) = p. 

Next from (8.8.4), equation (8.8.1)k (:an be written as 

(8.8.6) a o ( k ) ( ( ~ ( k ) ~ ( k ) + [ j ( k ) ) - ~ l ( k ) u , ( k ) + a 2 ( k )  
?A(k)- / j (k+l)  

tY(k + 1) = -b (k ) .  

Since the relation (8.8.6) holds for all k ,  we can equate the coefficient 
of ~ ( k )  to zero, to find the initial valuc problems involving first order 
nonlinear difference equations 

(8.8.7) a(/? + 1) = az(k.1 
a1(k) - ao(k)CY(k)’ 

(?(l) = cy 

It is easy to show that if conditions (8.8.3) are satisfied, then the denom- 
inator a l ( k )  - ao(k)cr(k) i n  (8.8.7) as well as (8.8.8) docs not vanish, and 
0 5 ~ ( k )  < 1. Indeed, if we rewrite the condition al(k) 2 ao (k )  + a . z (k )  
as a l ( k )  = a.o(k)  + az(k) + c ( k ) ,  c ( k )  2 0 then (8.8.7) can be written as 

a ( k +  1) = a2(k)  
a2(k )  + ao(k)(l - cy(k) )  + c ( k ) ’  

a(1) = cy 

from which the assertion is irnrnediatc. 

Once the sequences cy(k), p ( k ) ,  k E N(1,K + 1) are known, the 
solution of (8.8.1)k, (8.8.2) can be obtained as follows: From (8.8.4), we 
have u , (K )  = cy(K + l ) u , (K  + 1) + [j(K + l), and hence from the boundary 
condition u,(K + 1) = y u ( K )  + S it follows that u,(K + 1) = Y(CY(K + 
l ) u ( K  + 1) + / j (K + 1)) + S, so that 
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(8.8.9) w,(K + 1) = yP(K  + 1) + 6 
1 - ycu(K + 1) 

Since 0 5 a(K + l), y < l it is clear that ?/,(K + 1) is well defined. Now 
from (8.8.4) the solution v.(k) ,  k = K + 1, K ,  . . . ,l can be computed. 

B y  the relation 0 5 ~ ( k )  < 1, it is clear that in the above process 
the errors will not be compiled. This Inethod we shall call as the forward 
sweep. 

As i n  the forward forward process WC rleed not store cu(k), [)(/c), k E 
W ( l , K + l ) ,  rather only cy(K+1), / j ( K + l )  so that u , (K+ l )  from (8.8.9) 
and then u ( K )  from (8.8.4) arc known. Thc required solution u(k)  now 
can be computed by rec~~rsing backward (8.8.1)k with these known values 
of u(K + l), u(K). However, often it gives urlrealistic values. This process 
WC shall call as the forwurd sweep ~ backwurd ,method. 

From (8.8.1)1 and v,(O) = r u u ( 1 )  + /-/ it is cviclent t,hat u(2) is a linear 
function of ~ ( 1 ) .  Also, on clirrlixtting u(1) from (8.8.1)1 and (8.8.1)~ it 
is clcar that u(3) is a linear function of u(2). Thus, in general u ( k  + 1) 
is a linear function of w.(k) alone. Therefore, we can write 

(8.8.10) u ( k  + 1) = y ( k ) u ( k )  + 6 ( k ) ,  k E IN(0,K). 

Now as in the forward sweep, we find the initial value problems 

(8.8.11) 

Once the sequences ~ ( k ) ,  6 ( k ) ,  k E W ( 0 , K )  are known, the relation 
equivalent to (8.8.9) is irnnlediately available and appears as 

(8.8.13) 
(YS(0) + p 
1 - cuy(0) ‘ 

u(0) = 

The required solution u(k)  is obtained by recursing forward the relation 
(8.8.10). This method we shall call as the backward sweep. 

Instead of storing the sequences y (k ) ,  S ( k ) ,  k E N ( O , K ) ,  we can 
compute ~ ~ ( 0 )  from (8.8.13) and then u(1) from (8.8.10), from the known 
values of y(0) and 6(0). Finally the required solution u ( k )  is cornputed 
by recursing forward (8.8.1)k with these known values of v.(O) and ~ ( 1 ) .  
This process we shall call as backward sweep-forward m.ethod. 
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Example  8.8.1. For the discrete analog (8.2.22), (1.6.14) of the boundary 
value problem (8.2.35) all the four methods discussed in this section work 
equally well. The errors obtained, as calcxlated from the exact solution 
y ( t )  (sec Example 8.2.2) and approximatc solution ~ ( k )  with h, = 1/256 
are presented in Table 8.8.1. 

Table 8.8.1. 

I t I Forw. Sweep I Forw. Sweep- I Back. Sweep- I Back. Sweep- 
Back. Method Ford. Methbd 

2.000 

0.190286110 - 07 0.705044330 - 08 0.238080740 - 07 0.199763820 - 12 2.250 
0.948203840 - 08 0.604321420 - 08 0.258269060 - 07 0.128708680 - 12 2.125 
0.000000000 00 0.000000000 00 0.229473980 - 07 0.000000000 00 

0.228752780 - 12 0.192263280 - 07 0.538975990 - 08 
0.224938120 - 12 0.136899670 - 07 0.269938450 - 08 

0.286918330 - 07 

0.485270490 - 07 0.195015880 - 12 0.832412600 - 08 0.123246820 - 09 
0,385133950 - 07 

0.144106080 - 12 l 0.391369160 - 08 I 0.153493500 - 08 0.587604080 - 07 
2.875 

0.799736810 - 07 0.000000000 00 0.000000000 00 0.000000000 00 3.000 
0.692362840 - 07 0.170888110 - 08 0.10102117D - 08 0.773088190 - 13 

Example  8.8.2. We apply the rncthods of this section to the discrete 
boundary value problem considered in Example 8.2.3. The results analo- 
gous to Table 8.2.2 are given in Table 8.8.2. 

Table 8.8.2. 

t Forw. Sweep 

0.0000 0.000000000 00 
0.3125 

0.882314360 - 11 0.6250 
0.228525210 - 08 

0.158686890 - 18 1.5625 
0.657615150 - 16 1.2500 
0.255489960 - 13 0.9375 

2.1875 0.827918440 - 24 
1.8750 0.367605100 - 21 

2.5000 0.182658010 - 26 
2.8125 0.396689300 - 29 
3.1250 0.850877830 - 32 
3.4375 0.180683760 - 34 
3.7500 0.380510740 - 37 
4.0625 0.795771270 - 40 
4.3750 0.165436960 - 42 
4.6875 0.413992920 - 45 
5.0000 0.000000000 00 

Forw. Sweep- 

0.391547910 - 12 I 0.090000000 00 

Back. Sweep- 
Back. Method 

0.228525290 - 08 
0.882314510 - 11 

0.228525220 - 08 

0.372007600 - 43 0.000000000 00 
0.413992920 - 45 0.413992920 - 45 
0.165436960 - 42 0.165436960 - 42 
0.795771270 - 40 0.795771270 - 40 
0.38061074D - 37 0.380510740 - 37 
0.180683760 - 34 0.180683760 - 34 
0.850877830 - 32 0.850877840 - 32 
0.396689300 - 29 0.396689310 - 29 
0.182658020 - 26 0.182658020 - 26 
0.827918440 - 24 0.827918460 - 24 
0.367605110 - 21 0.367605120 - 21 
0.158686890 - 18 0.158686900 - 18 
0.657615160 - 16 0.657615200 - 16 
0.255489960 - 13 0,255489990 - 13 
0.882314380 - 11 

Back. Sweep- 
Ford. Method 

Fails 

Example  8.8.3. We apply the methods of this section to the discrete 
boundary value problem considered i n  Example 8.2.4. The results analo- 
gous to Table 8.2.3 arc presented in Table 8.8.3. 
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Example 8.8.4. W e  apply the mcthods of this section to the discrete 
boundary valuc problem considered i n  Example 8.2.5. The results analo- 
gous to Table 8.2.4 are presented in Table 8.8.4 

Table 8.8.3. 

- 
t 

- 
0.0 
1 .o 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 

10.0 
9.0 

11.0 
12.0 
13.0 
14.0 
15.0 
16.0 
17.0 c 

- 
t 

-1 .o 
4 . 9  
4 . 8  
4 . 7  
4 . 6  
4 . 5  
4 . 4  
4 . 3  
4 . 2  
4 . 1  

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

- 

- 

Forw. Sweep 

0.250000000 00 
0.234077710-01 
0.141434680-02 
0.441148540-04 
0.626093360-06 
0.376455960-08 
0.919298100-11 
0.887961210- 14 
0,333414310- 17 
0.480889300 - 21 
0.264168940-25 
0.549257070-30 
0.430202220-35 
0.126469190-40 
0.139142530-46 
0.571602020-53 

0.498549240-67 
0.875121380-60 

0.000000000 00 

Forw. Sweep 

0.000000000 00 

4.110172100 00 
4.542197420-01 

4.165318030 00 
4.217151980 00 
4.263367480 00 
4.302002110 00 
4.331546970 00 
4.351011590 00 
4.359941660 00 
4.358393900 00 
4.346877230 00 
4.326272600 00 
4.297744240 00 
4.262653760 00 
4.222485540 00 
4.178788180 00 
-0.133133220 00 
4.870889320-01 
4.422046870-001 
0.000000000 00 

Forw. Sweep- 

0.000000000 00 0.000000000 00 
0.491839990-67 0.499350940-67 
0.864675450-60 0.877880000-60 
0.363596570-53 0.574233860-53 
0.137887000-46 0.139972380-46 
0.125487690-40 0.127383720-40 
0.427293190-35 0.433818440-36 
0.546128260-30 0.354468250-30 
0.262921440-25 0.266936550-25 
0.479042780-21 0.486358300-21 
0.332397800-17 0.337473880-177 
0.885875050-14 0.899403350-144 
0.917697200-11 0.931711460-11 
0.375994850-08 0.381736710-08 
0.625592840-06 0.635146340-06 
0.440943520-04 0.447677220-04 
0.141403530-02 0.143562920-02 
0.234062420-01 0.237636810-01 
0.250000000 00 D.253817780 00 

Back. Method 
Back. Sweep- 

Table 8.8.4. 

Forw. Sweep- 
Back. Method 

4.173993140-06 
4,542199210-01 
4.110172290 00 
4.165318220 00 
4.217132170 00 
4,263367670 00 
-0.302002'280 00 
-0.331547130 00 
4.351011720 00 
-0.359941770 00 
4.358393970 00 
4.346877280 00 
4.326272620 00 
4,297744250 00 
4.262653760 00 
-0.222485530 00 
-0.178788170 00 
4.133133210 00 
4.870889260-001 
4.422046850-01 
0.000000000 00 

Back. Sweep- 

0.000000000 00 

4.110172120 00 
4.542197480-01 

4,165318050 00 
4.217152010 00 
4.263367510 00 
4.302002140 00 
4,331546990 00 
4.351011600 00 
4,359941660 00 
4.358393870 00 
4.346877190 00 

4.297744180 00 
4,326272550 00 

4.262653700 00 
4,222485480 00 
4,178788130 00 
-0.133133190 00 
4.87088909D-01 
4,422046760-01 
0.000000000 00 

j a c k .  Sweep- 
?ord. Method 

Fails 

Back. Sweep- 
Ford. Method 

4.542197460-01 
0.000000000 00 

4.165318040 00 
-0.110172110 01 

4.217151990 00 
4.263367500 00 
-0.302002130 00 
4.331547000 00 
-0.351011620 00 
4,359941690 00 
4.338393930 00 
4,346877260 00 
-0.326272640 00 
4,297744280 00 
-0.262653810 00 

4,178788230 00 
4,222485590 00 

-0.133133280 00 
4.87088996D-01 
4.422047570-01 
4.769620260-07 
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8.9. Miller’s and Olver’s Algorithms 

For the homogeneous difference equation (1.2.4) let ul(k), . . . , un(k) 
be the linearly independent solutions, and let 

(8.9.1) 

Then, the solution u . l (k)  is said to be m.i.n.ima1 (Recessive). The im- 
portance of minimal solution in the study of special functions, orthogonal 
polynomials, quadrature formulas, and numerical methods for ordinary dif- 
ferential equations is well known, e.g. see Cash [l41 and Wimp [54]. The 
difference equation u ( k  + 2) - u,(k) = 0 has no minimal solution, whereas 
the equation u ( k  + 2) - 3u(k + 1) + 2u,(k) = 0 has a minimal solution. 
If a minimal solution exists then it is, up to a constant multiple, unique. 
For if u l  ( k )  and u 2 ( k )  were two minimal solutions then simultaneously 

--f 0, which is impossible. Therefore, to com- 

pute the minirrlal solution of (1.2.4) only one appropriate initial condition 
is needed. 

u , l ( k )  .-+ 0 and - 162 ( k )  

u.2(k-) 111 ( k )  

So far, necessary and sufficient conditions for the existence of minimal 
solution of (1.2.4) are not known. Further, from Problem 8.10.5 it follows 
that, even the cxact initial conditions that guarantee the rninirnal solution 
cannot be used to generate it by recursing (1.2.4) in the forward direction. 
In fact, a srrlall rounding crror in the computation will lead to contain all 
the other solutions w.i(k), i = 2, ... ,n which grow faster than u l ( k ) ,  
and consequently this will lead to overflow. 

The general solution of the nonhomogeneous equation (1.2.3) can be 
written as u.(k) = ciw.i(k) + C ( k ) ,  where C ( k )  is a particular 
solution of (1.2.3), which is also assumed to be minimal, i.e. 

(8.9.2) 

Our interest is in the computation of thc solution 

(8.9.3) = [ U l ( 0 )  1 u(0)  - E(0)  
u1(k) + E ( k )  

For this, Miller’s and Olver’s algorithms and their several refinements 
are well known. We shall discuss these algorithms only for the second order 
difference equations. 
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Theorem 8.9.1. For tjhe second order difference equation 

(8.9.4) .o(k).(k) + .l(k)?f,(k + 1) + az(k)u,(k + 2) = b ( k )  

Ict the conditions (8.9.1) and (8.9.2) be satisfied. Then, for every large 
K E W the boundary value problem 

(8.9.5) ao(k)~(~)(k) + a l ( k ) ~ . ( ~ ) ( k  + 1) + a z ( k ) ~ . ( ~ ) ( k  + 2) = b(k:), 

k E IN(0, K - 1) 

(8.9.6) U ( K ) ( O )  = 7 1 ( 0 ) ,  P ) ( K  + 1) = 0 

has a solution s ~ ( ~ ) ( k ) ,  and rnoreover, for fixed k ,  limK,m ~ ( ~ ) ( k  j + 
U,( k ) .  

Proof. Since w.(k) defined in (8.9.3) is a particular solution of (8.9.5j, 
any other solution of the sarnc cquatiorl can be writtcn as 

(8.9.7) ?L(K)(k)  = c(l%l(k) + c:y)?rz(k)  + If,(k). 

This solution also satisfies the boundary conditions (8.9.6) if and only if 

However, cIK) and "aK) tcrld to zero as K + 00 follows from (8.9.1) and 
(8.9.2). Therefore, from (8.9.7) it is clear that limK+m d K ) ( k )  = w.(k). 

In (8.9.6) the condition t ~ ( ~ ) ( K + l )  = 0 can bc replaced by w , ( ~ ) ( K +  
1) = E ( K  + l), where E ( K  + 1) is an approximation of u (K  + l), if 
available. 

Miller's Algorithm: An approximation to the minimal solution ~ ( k )  of 
(2.16.8) can be obtained by recursing backward (8.9.5) (b(k)  = 0) with 
the conditions u ( ~ ) ( K  + 1) = O , U , ( ~ ) ( K )  = 1 and then multiplying the 

computed solution ~ , ( ~ ) ( k )  by -. It is interesting to note that this 

is precisely the backward process (cf. Section 8.2) to solve (8.9.5), (8.9.6) 
( b ( k )  = 0). A disadvantage of this method is that one does not know a 
priori which value of K must be used to obtain the required accuracy. 

,740) 
U(= (0) 

Olver's Algorithm: In (8.8.4) let k to bc k +  1, a ( k +  1) = - 
and P ( k  + 1) = - so that for the equation (8.9.5) it takes the 

form 

(8.9.8) - p ( k ) ~ ( ~ ) ( k  + 1) +p(k + l)~(~)(k) = e ( k ) ,  k E N(0, K )  

P(k) 
P(k + 1) 

e ( k )  
p(k + 1) 
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and the system (8.8.7), (8.8.8) becomes 

p(0) = 0, p(1) = 1 

k E N(1,K). 

This system (8.9.9), (8.9.10) is solved in the forward direction to c:omputje 
p(k) ,  k E N ( 0 , K  + 1) and e (k ) ,  k E W ( 0 , K ) .  The solution ~ r ( ~ ) ( k )  
of (8.9.5), (8.9.6) is then obtained by recursing tmckward (8.9.8) from the 
known v . ( ~ ) ( K  + 1) = 0. 

Thus, thc method of forward sweep and Olver's algorithm are thco- 
retically the same. Howcvcr, (8.8.7) is a rlorllirlcar first order difference 
equation while (8.9.9) is a sec:ond order linear equation. 

111 (8.9.8) let K to be K + 1, so that it takes the form 

(8.9.11) -p(k.)~(~+~)(IC+l)+p(lC+1)1~(~+~)(k) = e ( k ) ,  k E W(O,K+l). 

Subtracting (8.9.8) from (8.9.11) to obtain 

k E IN(0, K) 

which has the solution 

(8.9.12) [U("+')(k) - I L ( " ) ( k ) ]  = p(k)  e ( K  + 1) 
p ( K  + 1) p ( K  + 2) .  

Suppose that we wish to compute the minimal solution u(k ) ,  k E W(0, L )  
of (8.9.4) to d decimal places for given values of thc integers L and d. 
The recurrence relations for p(k)  and e(k), i.e. (8.9.9) and (8.9.10) arc 
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first applied for k = 1,2,. . . , L ,  L + 1,. . . until a value of k is reachcd 
for which 

1 
lp;(:);;:(22) 1 < 5 x 

and then K is taken as k - 1 and finally v . ( ~ ) ( K  + 1) is set equal to 0. 

8.10. Problems 

8.10.1. Consider the differcnce equation 

(8.10.1) w.(k + 1) - 2w.(k) + u ( k  - 1) = @L, k E W(1,K) 

togcther with the boundary conditions (1.6.14). Show that 

(i) the problcrrl (8.10.1), (1.6.14) is equivalent to 

(8.10.2) 

where 

(8.10.3) g(k,[) = - - 

(ii) the furlction g(k,C)  5 0 and 

(8.10.4) 

(8.10.5) 

K 

(8.10.6) c -g(k,C) sin - = 
( e  - l)" 1 
K + l  e=1 4 sin2 h 

[sin (IC - l)" " 2k 
K + l  

+ sin - - - 
K + 1  K + 1  K t 1  

sin - 

X 

" l  
K 

(8.10.7) c -g(k,  C) sin - = sin - 
e=1 K + 1  

er 1 IC7r 

K +  1 4sin2& 
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K 
(8.10.8) c -g(k,  P) sin - (P + 1). 

K + 1  
I= 1 

(IC + 1)" [ K + 1  
sin - sin - + - sir1 - 

K + l  K + l  K + &  

8.10.2. Use Problem 8.10.1 to show that the discrete boundary value 
problem (8.2.22), (1.6.14) has a unique solution provided 

Furthcr, show that the inequality (8.10.9) is bcst possible in the sense that 
if 8 = 1 thcrl thcrc arc problems for which existence or uniqueness or both 
fail. 

8.10.3. Show that the boundary vahlc problcrrl (8.8.1)~., (1.6.14) whcrc 
~ ( k )  > 0, a ~ ( k )  > 0, a l (k )  > ( ~ ( k )  + uz(lc)) + 6 (S > 0), has a 

unique solution ~ ( k ) ,  which satisfies the i r lcqdity  u(k)  5 rnax 

8.10.4. Let in system (1.2.12) the rnatrix A ( k )  be periodic of period 
K .  Show that for thc boundary value problem (1.2.12), (1.5.6) the Green's 
matrix M ( k , P )  defined in (8.1.8) car1 be written as 

U ( k ,  0) (Z - U ( K ,  0))-l U-l(P, O), 1 5 II 5 k 

k + l s e s A - .  
(8.10.10) M(k4 = U ( k  + K ,  0) (1 - U ( K ,  O))-l U-l(II, O), 

8.10.5. Let u,l(IC) be a minimal solution of the difference equation 
(1.2.4). Show that (1.2.4) is unstable for ul(k). 

8.10.6. Consider the forward sweep for the boundary value problem 

(8.10.11) u.(k - 1) - 2 X ~ ( k )  + ~ ( k  + 1) = - b ( k ) ,  X > 1, k E W(1,K) 

(8.10.12) u ( 0 )  = p, w , ( K +  1) = S 

to show that the solution o ( k )  of the resulting problem (8.8.7) can be 
gcncratcd on W, and 0 5 a ( k )  < 1. Further, a ( k )  tends to the smaller 
root of the characteristic polynornial of (8.10.11). 
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8.10.7. Use Olver’s algoritJlm to find the nlirlirrlal solution of the problem 

200u(k) - 102v4k + 1) + v.(k + 2) = 0, u(0) = v5 
on the interval W(0,30) correct to 10 significant digits. 

8.10.8. The Anger-Weber functions satisfy the nonhornogcneous equation 

(8.10.13) u.(k) - 2(k + l ) ~ ( k  + 1) + u.(k + 2) = - - [l + (-l)!”] 2 
lr 

with u ( 0 )  = -0.568656627. Show that the equation (8.10.13) has a mini- 
mal solution. Further, use Olvcr’s algorithm to find this minimal solution 
on the irltcrval W(0,20) correct to 10 decirnal places. 

8.10.9. Show that the following 1lorlhornogcIleous equations have rnirlimal 
solutions and for their computation Olver’s algorithrn converges 

(i) 7r(k) - 2(k + I)u,(k + I) + u,(k + 2) = 

(ii) (2k  + 3)u(k)  + 2 [I + 2(2k + 1)(2k + S)] u ( k  + I) - (2k + I ) u ( k  + 2) 
- - &-l/’. 

l 

J?F2k+flr ( k  + 5) 
- 

8.10.10. Consider the singular perturbation boulldary value problem 
(2.16.24), (1.6.14). Show that the point k = K + 1 is a boundary 
layer point. Further, deduce that its solution ~ ( k )  can be uniforrrlly 
approximated in W(0, K + 1) by 

u ( k )  = 74k)  + E K + l - A :  w(k) + O(t) as e --f 0, 

where v(k )  and w(k) are thc solutions of 

av(k  + 1) + ~ ( k )  = 0, ~ ( 0 )  = A 

and 

w(k+2)+aw(k+l )  = 0, w ( K + l )  = B - v ( K + l ) .  

8.11. Notes 
The existence and uniqueness of solutions of linear boundary value prob- 

lems has been a subject matter of numerous rlurrher of papers, e.g. Agarwal 
[l$], Derlkowski [18], Halanay [25], Rodriguez [40 421, Sugiyanla [49] and 
Szafraniec: [50]. The results of Section 8.1 are from Agarwal [1,5] and in 
particular include several known criterion. These results will be used i n  the 
next chapter to study boundary value problems for nonlinear systems. The 
method of complementary functions and the method of particular solutions 
are discussed in Agarwal [a], whereas the Examples 8.2.1 - 8.2.5 are from 
Usrrlani and Agarwal [53]. The application of adjoint equations (transpose 
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equations) to compute certain sums was indic:atcd by Clenshaw [l51 (cf. 
Section 2.11). The formulation of the method of adjoints and the Exam- 
ples 8.4.1 - 8.4.5 are due to Agarwal and Nanda [6]. The method of chasing 
for solving second order continuous boundary value problems is originally 
due to Gel’fand, see Agarwal [4, arid references therein]. The rnethoti of 
chasing discussed in Section 8.5 as well as the Examples 8.5.1 - 8.5.4 are 
adapted from Gupta and Agarwal 1241. Invariant imbedding methods are 
well known for solving continuous two point boundary value problerns, e.g. 
Roberts and Shiprnan [39] and Scott [44, and references therein]. The for- 
mulation of this powerful technique in Section 8.6 is based on Agarwal 
and Usmani [7], whereas Section 8.7 is due to Angel and Kalaba [8]. The 
method of sweep in  Section 8.8 is based on Tikllonov et. al. [51], also see 
Godunov and Ryabenki [23] and Trigiantc and Sivasundaram [52]. Nliller’s 
and Olver’s algorithrns and their several thcorctic:al as well as computa- 
tional refinenlerlts arc available i n  Arscott et. al. [9-121, Cruysscrl [16,17], 
Gautsc:hi [l9 211, Mattheij [27 311, Oliver [32,33], Olvcr [34,35], Sadowski 
and Lozier [43], Scraton [45], Shintani [46] ant1 Zallar [55]. Cash [l41 arid 
Wimp [54] provide an up to (late ac:connt for these algorithms. For ot,her 
related results see Gautschi [22], and Spiglcr and Viarlello [47,48]. 
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Chapter 9 
Boundary Value Problems 

for Nonlinear Systems 

It  is well understood that working with generalized normed spaces for 
the systems, one achieves better qualitative as well as quantitative infor- 
mation about the solutions than what can be inferred by considering the 
usual norms. In particular, the component wise study enlarges the domain 
of existence and uniqueness of solutions, weakens the c:onvergence condi- 
tions for the iterative rrlcthods, and provides the sharper error estimates. 
In Section 9.1, we ciefine generalized normed spaces, state two fixed point 
theorems and collect some properties of square matrices which are needed 
throughout this chapter. In Section 9.2, we prove the existencc and unique- 
ness of the solutions of thc problem (1.2.8), (1.5.1). For this problem we 
also provide a priori sufficient conditions which ensure the convergence of 
Picard’s iterative scheme to its unique solution. This is followed by the 
computational aspects of Picard’s scheme on a floating point system. This 
includes the necessary and sufficient conditions for the convergence of the 
approximate Picard’s iterative scheme, sufficient conditions for an oscilla- 
tory state, and the stopping criterion. An application of Picard’s method 
to perturbed boundary value problenls is discussed in Section 9.6. Next, 
for the problem (1.2.8), (1.5.4) we introduce various partial orderings in 
the space D(k.1, k.,,.) and use them to prove the monotonic convergence of 
the Picard’s scheme to its solutions. The monotone convergence of periodic 
boundary value problems is presented in Section 9.8. The convergence of 
the Newt,on’s and approximate Newton’s methods for the problem (1.2.8), 
(1.5.1) is discussed i n  Sections 9.9 and 9.10 respectively. In Section 9.11 we 
shall show that various initial value methods of Chapter 8 can be used i n  an 
iterative way to solve thc nonlinear boundary value problems. This is fol- 
lowed by the invariant imbedding method which converts a given two point 
nonlinear boundary value problem to its equivalent initial value problems. 

9.1. Preliminary Results from Analysis 
We shall consider the incqualitics between two vectors i n  R” compon- 

en-wise. whereas between n x n matrices element wise. 

681 
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Definition 9.1.1. Let E be a real vect20r space. A gen,er.ulized n,ovn, on 
E is a mapping 1 1 .  I I G  : E + R; denoted by l lull~ = ( ( ~ ~ ( u ) ,  . . . , n , ( u ) )  
such that 

(i) l lull~ 2 0, i.e. a,(u) 2 0 for all i 
(ii) IJuJJG = 0 if and only if U = 0, i.e. oi(u) = O for all i if and only 
if u=O 

(iii) 1 1 X ~ 1 1 ~  = ) X ~ ) ~ U I J G ,  i.e. clui(Xu) = IXIoi(u) for all i 
(iv) I I u + v ~ ~ G  5 l l ~ i l G  + IIvllc, i.e. C U ; ( U + V )  5 (Y.~(u) + ( Y ~ ( v )  for all i. 

The space (E, 1 1 . 1 1 ~ )  is called a gen,emlized rroTm,ed space. The topology 
in this space is given in the following way: For each U E E, and t > 0, let 
Bs(u) = {v E E : //v - u l l ~  < EW}, where W = (1, ... ,l) E R”. Then, 
{BF(u) : U E E , F  > 0) forms a basis for a topology on E .  The same 
topology can be induced by the usual norm 1 1  . / /  which is defined as follows: 
If j jul l~ = (ol(u), . . . , on,(u)), then llulj = rrlax{rYl(u), . . . , om,(u)}. 
Since the topology of the rlorrrlcd space ( E ,  1 1  . 1 1 )  is given by thc basis 
of neighborhoods VE(u) = {v E E : IIv - U[/ < F}, U E E, E > 0 
and V e ( u )  = Be(u),  both the above definitions of IlorIrI define the same 
topology 011 E and are equivalent. Thus, from the topological point of 
view there is no need for introducing the gcrleralizcd norm. Howev~r, we 
have morc flexibility when working with generalized spaces. 

Before we state fixed point theorerns in gcrlcralized normed spaces we 
collect the following well known properties of matrices which will be used 
frequently without further mention. 

1. For any square matrix A, linlm-m A‘” = 0 if and only if p(A) < 1, 
where p(A) denotes the spectral radius of A. 
2. For any square matrix A, (2-A)” cxists and (Z-A)-’ = A” 
if p(d )  < 1. Also, if A 2 0, then (Z - A)-’ cxists and is nonnegative 
if and only if p ( d )  < 1. 

3. If 0 5 B 5 A and p(A) < 1, then p (B )  < 1. 

4. If A 2 0 then p(3A) = 3p(A) < 1 if and only if p(2A(Z-A)-’) < 1. 

5. (Toeplitz Lemrna). For a given square matrix A 2 0 with p(A) < 1 
we define the sequence {S” } ,  where S” = 1” A’”,di, ‘m, = 0,1 , .  . . . 
Then, lirrlm,-w sm. = 0 if and only if the sequence { d ” }  + 0. 
6. For any natural norm 11 ’ 11,  p(A) 5 IlAll. Also, if p(A) < 1 then a 
natural norm can be found such that IlAll < 1. 

Theorem 9.1.1 (Schauder’s Fixed Point Theorem). Let E be a gen- 
eralized Banach space (complete generalized normed linear space) and let 
F c E be closed and convex. If 7 : F + F is completely continuous, 
then 7 has a fixed point. 

1=0 
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Theorem 9.1.2 (Contraction Mapping Theorem). Let E be a generalized 
Banach space, and let for r E R?, r > 0, s(uO,r) = {U E E : IIu-u0ll~ 5 
r}. Let 7 map s(uo, r)  into E, and 

(i) for all U, v E S(uo,r) ,  IlIu - TvllG 5 Kllu - v / \ G ,  , where K 2 O 
is an n, x n matrix with p(K)  < 1 
(ii) ro = (Z - K)-'I~TU~ - u0/IG 5 r. 
Then, the following hold 

I. I has a fixed point U* in S(uo, ro) 

2. U* is the unique fixed point of 7 in s(uo, r) 
3. the sequence {U"} dcfirml by U'"+' = 'Tum, 'rrt = 0,1, . . . converges 
to U* with Ilu* - u r n , l j ~  5 K"r0 

4. for any U E S(uo, ro),  U* = linlm+m I m , u  

5. any seql1crlc:c {E~"'} sllc.11 that E"' E S(urr' ,  KrrnrO), ' m  = 0,1, . . . 
c:orlvcrgcs to U*. 

- 

For t,hc rlonlirlear system of algebraic equations g(u) = 0 Newton's 
method (cf. Example 1.4.8) is 

(9.1.1) uI:+l = ub. - (gu(u")"g(u~' ) ,  k = O,1 ,  

The following result provides sufficient conditions for its convergence in the 
maximum norm. 

Theorem 9.1.3 (Kantorovich's Thcorcm). Suppose that 

(i) for the initial approximation uo to the solution of the system 
g(u) = 0, (gu(uo))-' exists arid ~ ~ ( g u ( u o ) ) - ' ~ ~  5 
(ii) uo satisfies g(u) = 0 approximately in the sense that II(gu(uo))-' 

g(uO)ll 5 7 0  
(iii) i n  the region defined by inequality (9.1.2), the components of the vector 
g(u) are twice corltirluously differentiable with respect to the components 

(9.1.2) 

Moreover, the successive approximations uk defined by (9.1.1) exist and 
converge to U and the speed of convergence may be estimated by the 
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which shows that the rate of convergence for the Newton method is quad- 
ratic. 

Theorem 9.2.1. With respect to t,he difference system (1.2.8) on N(a, h- 
1) and the boundary condit,ion (l.S.1) we ass1mle that the following con- 
ditions hold 

(i) there exist an R x R nonsingular matrix A(k) dcfirlcd 011 N ( a ,  h- l), 
and a linear operator L mapping B ( a , b )  into E" such that if ZA(k,a) 
is the principal fundamental matrix of (1.2.12) then the matrix X defined 
in (8.1.1) is nonsingular 

(ii) there exist nonnegative matrices M1 and M' such that llHlllG 5 
M', llH211~ I M2, where the operators 'H1 and 7l' are defined in 
Theorem 8.1.1 

(iii) there exist nonnegative vectors r l  and r2 such that for all IC E 
N(a, b - 1) and U E B l ( a ,  b )  = {u(k) E B ( a , b )  : 1 1 ~ 1 1 ~  5 2r}, If(k,u) - 
A(k)ul 5 r1 and llL[u] zt F[U]IlG 5 r2 

(iv) M l r l  + M 2 r 2  5 2r. 

Further, the function f(k, U) is continuous on lN(o,, b - 1) x R". Then, 
the boundary value problem (1.2.8), (1.5.1) has a solution in B l ( a ,  b ) .  

Proof. Boundary value problem (1.2.8), (1.5.1) is the same as 

(9.2.1) ~ ( k  + 1) = A(k)u(k) + f(k, u(k)) - A(k)u(k), k E lN(a,b - 1) 

(9.2.2) L[u] = L[u] zt 3[u].  

Hence from Theorem 8.1.1 it follows that 

(9.2.3) u(k) = X1[f(k, u(k)) - A(k)u(k)] + X2[L[u] F[u]]. 
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The mapping 7 : B ( a , b )  "+ B ( a , b )  defined by 

(9.2.4) l u ( k )  = ?-I'[f(k,u(k)) - A(k)u(k)] + ?-12[L[u] f F[u]] 

is completely continuous. Obviously, any fixed point of (9.2.4) is a solution 
of (1.2.8), (1.5.1). 

The set & ( a ,  b) C B ( a ,  b) is a closed convex subset of the Banach 
space B ( a , b ) .  Further, for u(k) E B l ( n , b )  it is easy to see that 

l l7Ul lG 5 M 1 r l  + M2r2  5 2r. 

Thus, 7 maps B l ( a , b )  into itself, and from Theorern 9.1.1 it follows that 
7 has a fixed point in L31 (a, b) .  I 

Definition 9.2.1. A function U(k) E B(o , ,  b )  is called an appr,oxirn,ate 
,solution of (1.2.8), (1.5.1) if there exist d' and d2 nonnegative vectors 
such that for all k E N ( a , b  - l), lii(k + 1) - f (k , i i (k ) ) l  I dl and 
l \ F [ i i ] l l ~  I d2, i.e. there exist a function q ( k )  011 N(a ,  b - 1) and a 
constant vector l1 such that i i (k+l )  = f ( k , i i ( k ) ) + q ( k ) ,  k E W(a.,b-l) 
and F[U] = l1 with Iq(k)l I dl and llll/lG I d2. 

Theorem 9.2.2. With respect to the boundary value problem (1.2.8), 
(1.5.1) we assume that there exists an approximate solution i i ( k )  and 

(i) the function f ( k ,  U) is continuously differentiable with respect to 
U in N(a, b - 1) X R" and fu(k,  U) represents the Jacobian matrix of 
f ( k ,  U) with respect to U, F[u] is continuously Frdchct differentiable in 
B ( a ,  b )  and .Fu[u] denotes the linear operator mapping B ( a ,  b) to R" 
(ii) condition (i) of Theorem 9.2.1 

(iii) condition (ii) of Theorem 9.2.1 

(iv) there exist nonnegative matrices M 3  and M4,  and a positive 
vector r such that for all k E N(a ,  b - 1) and U E 3(ii, r)  = {u(k) E 

B ( a , b )  : I I u - ~ ~ I G  I r} ,  I fu(k ,u) -A(k)I  I M 3  and I IFu[U]fLlIG I 
(V) K: = M1M3+M2M4, p ( K )  < 1 and (Z-K:)-1(M1d1+M2d2) 5 r. 

Then, thc following hold 

1. there exists a solution u*(k) of (1.2.8), (1.5.1) in S(ii,ro), where 
ro = (I - K : ) - ' \ \ u ~  - ~ l l G  

2. u*(k) is the unique solution of (1.2.8), (1.5.1) i n  T(ii,r) 
3. the Picard i terat ive sequence { ~ " ( k ) }  defined by 

(9.2.5) 
un,+l(k)  = ?-Il[f(lc7u"(k))-A(k)uyk)]f7P[L[um] fF[u"]] 
uo(k) = ~ ( k ) ,  m = 0,1, ... 
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7 4 k )  - 7 v ( k )  = %'[f(k,u(k)) - f ( k , v ( k ) )  - A ( k ) ( u ( k )  - v(k) ) ]  
+W[C[U - v] i (F[u]  - q v ] ) ]  

= 3-t' [l1 [f,(k,v(k) + e , ( ~ ( k )  - ~ ( k ) ) )  - d(k)] 

x (u (k )  - V(k))Cltll 1 
+H2 [l1 [C zt 3u[v + &(U - v)]] [U - V]d82 1 

Next frorn (9.2.6) and (9.2.4), we get 

7 I i ( k )  - E(k) = I u O ( k )  - uO(k) = 'H'[-q(k)] + 'H2[*1'] 

and herm from the Definition 9.2.1 it follows that 
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Hence, the conditions of Theorem 9.1.2 are satisfied and the conclusions 
1 ~ 5 follow. I 

R e m a r k  9.2.1. From the conchsion 3 and (9.2.7), we have 

/\U* - T i i ( \ ~  5 (Z - Ic)-lllul - ~ ' 1 1 ~  5 (Z - IC)"(M'd' + M2d2). 

Definition 9.2.2. Any solution U(k) E B(a , , b )  of (1.2.8), (1.5.1) is 
called isolated if F,[U] [ U ( k ,  a)] is nonsingular, where U ( k ,  a,) is the 
principal fundamental matrix solut,iorl of the variational system u(k + 1) = 
f,(k, U(k))u(k), k E N ( a , b  - 1). 

Theorem 9.2.3. Let U(k) be an isolated solution of (1.2.8), (1.5.1). 
Then, there is no other solution of (1.2.8), (1.5.1) in a sufficiently small 
neighborhood of U( k ) .  

Proof. Lct U ( k ,  a) be as in thc Definition 9.2.2. For this U ( k ,  a) there 

exist nonnegative n, x n. rrlat,ric:cs M and n2 such that 1 1 ~ 1  5 
M1 arid l l ' H ' 1 1 ~  5 M 2 ,  where 'H' and ' H 2  are dcfincd in Theorem 
8.1.1. Since f,(k,u) and Fu[u] arc continuous, there exists a positive 
vector r3 such that for all k E N(a, b - 1) and U E s(U,r3) we have 
lfu(k,u) -f,(k,U)I 5 M' and IIFu[u] -F,[ii]/IG 5 M 6 ,  where M' and 

M 6  are nonnegative n x n matxices such that p (m1M5 + R 2 M 6 )  < 1. 

Let U*(k) be any other solution of (1.2.8), (1.5.1). Then, for u ( k )  = 

-1 

U(k) - U*(k), we find 

(9.2.8) ~ ( k  + 1) = f (k ,U(k ) )  - f(k,U*(k)) 
1 

= [f,(rC,U*(k) + e3(qlc) - ~ * ( l c ) ) ) l  u(lc)de3 

and 

(9.2.9) 0 = F[U] - F[;*] = F, [U* + e4(U - U * ) ]   de^. I' 
From Theorem 8.1.1, the solution of (9.2.8), (9.2.9) can be written as 



688 Chapter 9 

and from p (n1M5 + n z M 6 )  < 1, we get llull~ <_ 0, which is not true, 

and hence u ( k )  = u*(k). I 

Theorem 9.2.4. The solution u*(k) of (1.2.8), (1.5.1) obtained in 
Theorem 9.2.2 is an isolated solution. 

Proof. If not, then there exists a nonzero vector p such that Fu[u*] 
[U(k,a)]p = 0, where U ( k , a )  is the fundamental matrix solution of 
u(k + 1) = Fu(k,u*(k))u(k). 

Let z(k) = U(k ,a )p ,  so that 

(9.2.11) z(k + 1) = fu(k,u*(k))z(k), Fu[u*][z] = 0. 

From Theorern 8.1.1, the solution z(k) of the problem (9.2.11) can be 
writtcn as 

~ ( k )  = 'H' [fu(k,u*(k))z(k) - d(k)z(k)] + 3-t' [C[Z] h 3u(u*][~]]. 
Thus, from (iii) ~ (v) of Thcorcrrl 9.2.2 it follows that 

llZllG 5 (M1M3 -k M2M4) llZllG KllzllG 

or 1 1 ~ 1 1 ~  5 0, which irnplies that U(k , a )p  0. Since U ( k ,  a,) is 
nonsingular, we find that p = 0. This contradiction proves that u*(k) is 
isolated. I 

Example  9.2.1. The boundary value problerrl 

(9.2.12) yff = ljjeaY7 y(0) = y(1) = 0 

arises i n  applications involving the diffusion of heat generated by positive 
temperature dependent sources. For instance, if cy = 1 it arises in the 
analysis of Joule losses i n  electrically conducting solids, with p representing 
the square of the constant current and e Y  the temperature-dependent 
resistance, or in frictional heating with representing the square of the 
constant shear stress and e" the temperature dependent fluidity. 

If CUB = 0, then the problem (9.2.12) has a unique solution, 

(i) if 0 = 0, then y(t) z 0 

(ii) if cy = 0, then y ( t )  = (/3/2)t(t - 1). 

If CY[? < 0, then the problem (9.2.12) has as many solutions as the 
number of roots of the equation c = J2i;y7-jrcosh(c/4), also for each such 
ci the solution is 
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From the equation c = m c o s h ( c / 4 )  it follows that if 

& rnln 
N[j l  . cOSh(c/4) < 1, (9.2.12) has two solutions 

= 1, (9.2.12) has one solution 
(c/4) > 1, (9.2.12) has 110 solution. 

If cu/j > 0, then the problem (9.2.12) has a unique sohttion 

(9.2.14) y l ( t )  = -111 ( C ~ / W S  (:c1 (t - i))) - -hl(20p), 
2 1 
(Y cy 

where ( 1/4)cl E (-7r/2, -./a) is the root of the equation c/4 = m 
cos(c/4). 

For the problem (9.2.12) we considcr its discrete analog as 

? f , ( k + l )  - 2?/.(k) +?/,(&l) = - B k E W(1, K )  
(9.2.15) (K+1)2 

~ ( 0 )  = ?/,(K + 1) = 0, 

which is in system form can be written as 

k E lN(0, K - 1) 

In (9.2.16), (9.2.17) we shall assume that I c y 1  5 1 and 5 1. 

Let E(k) 0 be an approximate solution of (9.2.16), (9.2.17) so that 

For this approximate solution, we take A(k)  = _", ,!j 1 , and C[u] = 
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( l + l ) ( l + K - k )  - t ( l + K - k )  %'[b(k)] = - 
l+K ( l + t ) ( K - k )  t ( K - k )  

k( K -t) - k ( l + K - t )  5 [ ( l + k ) ( K - l )  - ( l + k ) ( l + K - P )  
I f K  e=k+l 

and hence 

I(%' / / G  

1 
max [ k( l+K) ( l+K-k)+2k k ( l + K ) ( l + K - k )  

5 2 ( l+K )  O<n:<K ( l+k) ( l+K) (K-k)-2(K-k)  ( l + k ) ( l + K ) ( K - k )  1 

Also, we have 

for all k E W(0,K - 1) and U E s(O,r), where r = (T,T), T > 0. 
Further, since ll.Fu[u] - L l l ~  = 0, we can take M 4  = 0. 

Thus, we find 

and p(K) < 1 provided (l/8)er < 1, i.e. T 5 2.07944.. . . 

Hence, in view of (9.2.7) the assumptions of Theorem 9.2.2 are satisfied 
provided (1 - K)- ' (M1dl  + M 2 d 2 )  5 r, which implies that 

(9.2.18) 

Inequality (9.2.18) is satisfied if 0.14614. . . 5 T 5 2.0154.. . . Thus, 
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1. there exists a solution u*(k) of (9.2.16), (9.2.17) in s(O,ro) = {u(k) E 
B(0, K )  : 1 1 ~ 1 1 ~  5 0.14614.. . (1, 

2. u*(k) is the unique solution of (9.2.16), (9.2.17) in S(0,r) = {u(k) E 
B(0,  K )  : I ( u ( ~ G  5 2.0154. . . (1, 

3. if r = 2.0154, then the following crror estimate holds 

((U* - urn / ( G  5 (0.937966. . .)"(0.14614. . .)( 1, 

9.3. Approximate Picard's Iterates 

In Theorem 9.2.2 thc conclusion 3 ensures that the Picard iterative se- 
quence {u"(k)} obtained from (9.2.5) converges to the solution u*(k) of 
(1.2.8), (1.5.1). However, in practical evaluation this sequence is approxi- 
rnatcd hy the corrlputed sequence, say, {~"(k)} .  To find v"+'(k) the 
function f is approximated by f and the operator 3 by 3". There- 
fore, the cornputed scqllcncc {v"' ( k ) }  satisfies the recurrence relation 

With respect to f" and .Fm,,  we shall assurrle the following: 

Condition (c1) .  For all k E W(a,,b-l) and v"(k) obtained from (9.3.1) 
the following inequalities hold 

(9.3.2) (f(k,v"(k)) - f"(k,vm(k))( 5 M7(f(k,vm(k))(  

(9.3.3) l l3[V"] - Fm'[VTn']llG <_ M'llF.[V"']ll~, 

where M7 and M' are n x n, nonnegative matrices with p ( M 7 ) ,  
p(M') < 1. Inequalities (9.3.2) and (9.3.3) correspond to the relative 
error in approximating f and F by f" and F". Further, since 
p ( M 7 ) ,  p ( M ' )  < 1 these inequalities provide that 

(9.3.4) If(k,v"(k))l 5 (Z- M7)"Ifm(k,vm(k))l 

and 

Theorem 9.3.1. With respect to the boundary value problem (1.2.8), 
(1.5.1) we assume that there exists an approximate solution i i ( k )  and 
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conditions (i) ~~ (iv) of Theorcm 9.2.2 arc satisfied. Further, let condition 
(cl)  be satisfied, and p(fcl )  < 1, where 

IC1 = M1(Z+M7)M3+M2(Z+M8)M4+M1M7 sup Id(k)bM2MaIlLllG 
kEW(a ,b- l )  

and 

r4 = (Z-fc1)-1(M1d'+M2d2+M1M7(Z-M7)-' sup Ifo(k,E(k))l 
k E m ( a , b - l )  

+M2Ms(z - M8)-1((Fo[Ti] l l~) I r.  

Then, the following hold 

1. all the conclusions 1 ~ 5 of Thcorem 9.2.2 hold 

2. the sequence {v"(k)} obtained from (9.3.1) remains in ??(E, r4) 
3. the sequcrlce {V* ( k ) }  converges to U* ( k )  the solution of (1.2.8), 
(1.5.1) if and only if linlm,-+m a"' = 0, whcrc 

TO prove 2, we note that E(k) E 3(iT,r4), and from (9.2.6) and (9.3.1) 
we find 

v'(k) - E(k)  = IH1 [fO(k,iT(k)) - f(k,E(k)) - q ( k ) ]  

+E2 [*(F'"[E] - F[E] )  f l'] 
and hence 
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- Now we assume that v"( k )  E S(E, r4)  and will show that vm+'(k) E 
S(U,r4) .  From (9.2.6) and (9.3.1), we have 

V"+1 (IC) - U( k )  

= 'H1 [f"(k,v"(k)) - f(IC,ii(k)) - d(k)(v"(IC) - E(k))  - q(k)] 

+ 'HH2 [ c y  -E] f ( F [ V " ]  - F[ii]) f l'] 

= 7f1 f"(k,v"(k)) - f(IC,v"(k)) - q(k )  + [fu(k,E(k) [ L' 
I 

x [v"', - ii]d06] 

+ Q j ( ~ " ( k )  - U(k))) - d(k)] ( ~ " ( k )  - E(IC))d05 

* ( F ~ , [ V " ]  - F[v"]) * 1' * [ F ~  [U + e6(Vrn - U)] f c] 

it follows that 

- U((G 5 K1r4 + M1dl + M2d2 + M1M7(Z - X ( 

This completes the proof of the conclusion 2. 
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which is the same as (9.3.7). I 

In our next result with respect to f" and .Fm we shall assume the 
following : 

Condition (Q). For all k E N(a, ,  b - l )  and v"(k) obtained from (9.3.1) 
the following irlcqualities hold 

(9.3.11) If(k, v'"(k)) - frn,(k,vrn,(k))l 5 r' 

(9.3.12) 

whcrc r' and r6 are n, X 1 norlnegative vectors. Inequalities (9.3.11), 
(9.3.12) correspond to thc absolute error in approxinlating f and F by 
f" and Fm. 

Theorem 9.3.2. With respcct to the bourltlary valuc problem (1.2.8), 
(1.5.1) we assume that there cxist,s an approxirrlatc solution U(k) and 
conditions (i) (iv) of Thcorcrn 9.2.2 arc satisfied. Furthcr, let condition 
(Q)  be satisfied, and p ( K )  < 1, also 

r' = (1 - K)-'(M'(r' + dl)  + M2(r6 + d2)) 5 r.  

Then, the following hold 

1. all the conclusions 1 5 of Thcorerrl 9.2.2 hold 
2. the sequcnce {vm(k)) ot)taincd from (9.3.1) remains in S@, r') 
3. thc condition lirrlm,-m a" = 0 is necessary and sufficient for the 
convcrgence of {v"(k)} to the solution u*(k) of (1.2.8), (1.5.1) where 
am, are defined in (9.3.6), and 

/lu* - vTn,+lllG 5 (Z - K)-l(Mlr' + M2r6 + I C I I V ~ + ~  - vrn l lG) .  

Proof. The proof is contained in Theorem 9.3.1. I 

9.4. Oscillatory State 

When the sequence {v"(k)} from (9.3.1) is constructed on a floating 
point system, then the rrlutual distances of two distinct vrn(k) cannot be 
smaller than a certain fixed positive constant. If the conditions of Theorem 
9.3.1 or Theorem 9.3.2 arc satisfied, then from the conclusion 2, thc number 
of distinct v"(k) must be finitc. Thus, it is necessary that 

(9.4.1) P + " @ )  = v"(k) 
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for a certain mn and a positive integer p. Also, once (9.4.1) has happened, 
then vrn+p+"(k) = v"tv (k ) ,  v = O,1, .  . . . 

Hence, the sequence {v"(k)} oscillates, taking p values 

(9.4.2) vm(k),vm.+l(k-),...,vm+p-1 ( k )  

Theorem 9.4.1. Let the conditions of Theorem 9.3.1 be satisfied, and let 
the sequence {v"(k)} be obtained from (9.3.1) on a floating point system. 
Then, the sequence {v"(k)} oscillates, taking a finite number of values 
after a certain 'm,, and for v"(k) i n  such an oscillatory state it holds 
that 

Proof. Since WC have already observed that the sequence {v"(k)} 
obtained 011 a floating point system oscillates, we need to show that the 
inequality (9.4.3) holds. For this, as earlier, successively we have 
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In inequality (9.4.5) as q + CO, ue+qf'(k) + u* ( k ) ,  and the second 
term of de+qP tends to zero by the Toeplitz lemma. This completes the 
proof of (9.4.3). I 

Remark 9.4.1. Since u*(k)  E S(l ,ro) the right side of (9.4.3) can 
easily be estimated. Further, if for all m,, f" = and .Fm = F, then 
inequalities (9.3.4) and (9.3.5) can be used in (9.4.3), to obtain 

llvm - u * I ~ c  5 (1- IC')-' M1M7(Z - M7)-l sup IF(k,u*(k))l [ k : E N ( a , b - - l )  

+M2M8(Z - MS)-' 11F[u*] I I G  . 1 
Theorem 9.4.2. Let the conditions of Theorem 9.3.2 be satisfied, and let 
the sequence {v"(k)} be obtained from (9.3.1) on a floating point system. 
Then, the conclusion of Theorern 9.4.1 holds with (9.4.3) replaced by 

llvrn, - U* I I G  5 (1 - IC)-' (M'r' + M2r6) . 

Proof. The proof is contained in the proof of Theorem 9.4.1. I 
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9.5. Stopping Criterion 

In order to detect whether the sequence {v"(k)} obtained from (9.3.1) 
on a floating point system has attained an oscillatory state, it is necessary 
to store all v")(k), ' m  = 0,1, . . . i n  the memory unit until the equality 
(9.4.1) is verified. However, in practical c:ornputations we stop the process 
by the inequality 

(9.5.1) ((Vrn - V" ( ( G  5 r8, 

where r8 is a Ilormegativc vector. Naturally, each component of r8 
cannot 1)e too snlall, sincc ( I V ' ~  - IIG does not always tend to zero as 
m, + 00. Thc following rcsult provides a sufficient condition for thc vector 
r8 so that the process can be stopped by the criterion (9.5.1). 

Theorem 9.5.1. Let the cxmditions of Tllcorcrrl 9.3.1 be satisfied, and let 
the scqucr1c:e {~"'(k)} be obtained from (9.3.1) 011 a floating point systcm. 
F~~rthcr ,  kt, M7 ant1 M' be sllch that p [(I - Icl)-l(Icl - K)] < 1. 
Tllcrl, the proccss (9.3.1) can be stopped by the criterion (9.5.1) if 

(9.5.2) r8 2 2(I- 2K' +K)-' M 1 M 7  sup If(k,v""'(k))/ [ I : E N ( a , b - l )  

+M2M8(1 .F[~m'-1]( l~ . 1 
Proof. Let v'"'(k) be in an oscillatory state. Then, from the incqllality 
(9.4.3), WC have 

(9.5.3) 

((V'~''-'-U*((G L: (Z-K1)-' M'M7 stlp ( f (k ,u* (k ) ) (+M2M8( ( .F [U* ] ( (G  . i I : E N ( a , b - l )  1 
Since vm+l ( k )  is in an oscillatory state, vm ( k )  is also in an oscillatory 
state, and hence from (9.4.3) and (9.5.3), WC get 

(9.5.4) llvrn' - vrn'-' I I G  5 2(2 - K')-' M 1 M 7  slip If(k, u*(k))( 
k E N ( a . 6 - l )  

+M2M811.F[u*lll~] . 

Next, as earlier we find 
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Remark 9.5.1. If for all m ,  f" = and F"" = F, then inequalities 
(9.3.4) and (9.3.5) can be used in (9.5.6), and then (9.5.2) can be replaced 

by 

- 

r8 2 2(2-21C1+iC)-1 M1M7(Z - M7)-' sup IT( k ,  v-1 ( k ) )  I 
I : E W ( a , b - l )  

1 

Theorem 9.5.2. Lct, the conditions of Thcorerrl 9.3.2 be satisfied, and let 
the sequence { v " ( k ) }  be obtained from (9.3.1) on a floating point system. 
Then, the process (9.3.1) can be stopped by the critcrion (9.5.1) if 

r8 2 2(1- IC)-l(M1r' + M2r6). 

Proof. The proof is immediate. R 

9.6. Application to the Perturbation Method 
Here we shall consider the boundary value problem 

(9.6.1) u(k+ 1) = f (k,u(k) )  +Xg(k ,u (k ) ,X ) ,  k E W ( a , b -  1) 

(9.6.2) F[u] + XG[u,X] = 0 

as the perturbed problcrrl of (1.2.8), (1.5.1). In (9.6.1), (9.6.2), X is a 
small parameter such that X E A = { X  E IR : ( X (  5 p}, p > 0, g(k,u,X)  
is continuously differentiable with respect to U in N(a, ,  b -  1) X R" X A, 
and gu(k, U, X) represents the Jacobian matrix of g ( k ,  U, X) with respect 
to U, G[u, X] is continuously Frkchet differentiable in B ( a ,  b) x A, and 
Gu[u, X] denotes the linear opcrator mapping B ( a ,  b )  x A into R". 

Let U(k) be an isolated solution of (1.2.8), (1.5.1). For X # 0 we 
seek an approximate solution i i (k)  of (9.6.1), (9.6.2) of the form i i ( k )  = 
u(k) - Xu(k). W e  substitute this in (9.6.1), (9.6.2) and neglect the terms 
higher than order one in X, to obtain 

(9.6.3) ~ ( k  + 1) = fu(k,  U(k))u(k) - g(k ,  U(k), O), k E N(u,  b - 1) 

(9.6.4) F,[U][u] = G[U,O]. 

Since u(k) is isolated, by Definition 9.2.2 the matrix F,[U][U(k,a)] is 
nonsingular, and from Theorem 8.1.1 the problem (9.6.3), (9.6.4) is equiv- 
alent to 

(9.6.5) u(k) = 3-1l [ - g ( k ,  U(k), O)] + ' H 2  [G[;, O]] . 
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Next for this approximate solution E(k) of (9.6.1), (9.6.2) we shall 
show that the conditions of Theorem 9.2.2 arc satisfied. For this, WC take 
A ( k )  = fu (k ,U(k ) ) ,L  = Fu[u ]  so that, corldition (ii) is satisfied. As in 

the proof of Theorem 9.2.3, we have M1 and M 2  such that l (X1/I~ 5 
M , ( / X 2 ) ( ~  5 M 2 ,  and hence condition (iii) is also satisfied. 
-1 

Let d3 and d4 be nonnegative constants such that supk,EN(a ,b-l )  jg(k, 
U(k) ,O)l  5 d3, llG[u,0]II~ 5 d4. Then, from (9.6.5) it follows that 

l lu(k)l l~ 5 M1d3 +M2d4 = d', say. 

Let r3 be the positive vector as in Theorem 9.2.3. We choose a positive 
vector rQ and X so that 

(9.6.6) rg + / X j d 5  5 r3. 

and 

11Fu[u] + XGU[u, X] - Fu[U]llG 5 M 6  + I X I M 1 O .  

Hence, the condition (iv) is also satisfied. To satisfy condition (v) we need 
p ( K x )  < 1, where 

ICx = M 1 M 5  + IXJMIMQ + M 2 M 6  + IXIM2M10. 

However, in Theorem 9.2.3, p (M1M5 + M 2 M 6 )  < 1, thus there exists a 

norm 1 1  . 1 1  such that II(M1M5 +M2M6)ll < 1. Further, since p ( K x )  5 
l\Kxll, the inequality p ( K x )  < 1 is satisfied provided 

(9.6.7) 
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Similarly, WC obtain 

Thus, the second part of condition (v),  i.e. ( Z-K )-1 (M1d1+M2d2 )  5 
r is satisfied provided 

(9.6.10) I X l ( Z  - ICX)-1(KXd5 + IX l (n1d6  + m 2 d 7 ) )  5 r8. 

Therefore, if ( X (  < p and if (9.6.6), (9.6.7) and (9.6.10) are satisfied 
(which is always the case if 1x1 is sufficiently small), then the conditions 
of Theorem 9.2.2 for the system (9.6.1), (9.6.2) with this approximate so- 
lution i i ( k )  are satisfied, and hence all the corresponding conclusions 1L5 
of Theorem 9.2.2 for this problem also follow. I 

If we further assume that for all k E N ( a ,  b- 1) and u(k) E 7(u,r3), 
Ifu(k, U) - fu(k,U)l  I Pl lu - U l l ~  and IIFu[u] - Fu[U]llc 5 QIIu - U l l ~ ,  
where P and Q are symmetric tensors of the third order with non- 
negative components, then the right side of (9.6.8) can be rcplaced by 

/XI2 ( ;Pd’ . d’ + d6 + M g d 5  and that of (9.6.9) by IXI2 
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d7 + M"dd" )  . With this replacement (9.6.10) takes the form 

Hence, if u*(k) is the solution of (9.6.1), (9.6.2) then from Remark 9.2.1 
it follows that 

Ilu* - ~ l l c  5 d o ,  

i.e. the perturbation method produces an approximate solution within the 
error O(X2). 

9.7. Monotone Convergence 

With respect to thc differcrlce equation (1.2.8) 011 W(k1, IC,. - 1) and 
the boundary conditions (1.5.4) we assume that there exists an R x n, 
nonsingular matrix A(k) defined on W(k1, k,  - 1) such that if U ( k ,  ICl) 

is the principal fundamental matrix of (1.2.12) then the matrix 'H defined 
in (8.1.6) is nonsingular. Thus, from Corollary 8.1.2 any solution u(k) of 
(1.2.8), (1.5.4) also satisfies 

r 

and A" = -'H-' 1 ~ j ~ ( k j ,  /cl), 2 5 i 5 r. 
j=i 

Let 'P: B(kl,k, . )  4 B ( k l , k , )  and Q :  B(kl,k,-l) + B (k l , kT- l )  be 
invertible linear operators. For u , v  E B ( k l ,  and E , V  E B ( k l ,  k,  - 1) 
we define the relations < p  and <Q by 

U IF V if and only if Pu(k) 5 'Pv(k), componentwise, for all 
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and 

- - 
U <Q V if and only if Qii( IC) < QV(IC), cornponentwise, for all 

k E W(k.1, k,,. - 1). 

The relation < p  is a partial ordering i n  B(k.1, kT)  and WC say that 
< p  is the partial ordering induced by P; similarly, the relation <e 

is a partial ordering i n  B(ICl, IC, - 1) and we say that <Q is the partial 
ordering induced by Q. If for some k E JN(ICl,k,.), P u ( k )  < Pv(k), 
componentwise, then we shall say u(k) < p  v(k). 

Suppose there exist nonsingular n x n rnatrices p, d2,. . . , dT such 
that $''Ai( 2. 0 and @(I + Ai)( Q')-' 2 0, elementwise for 
i = 2,...,1-. Let < p  be the partial ordering induced by P = 
@U-'(k,  k l )  i n  B(k1 ,  IC,,.) and <Q be the partial ordering induced by 
Q2 = d2U-1(k,k')d-1(IC),..., Q' = &'U-'(IC,k1)A-'(k) i n  B(kl,ICr - 
1). 

Theorem 9.7.1. Assume that there exist functions uo and vo in 
B( kl , IC.,.) satisfying 

(i) uo < p  vo 

i= 1 ,l=' 
(iii) uo(k+ 1) - f(k,uo(k)) <Q 0 <e vo(k + 1) - f(k,vO(k)) 
(iv) if U, v E B ( k l , k , )  and uo < p  U < p  v < p  v', then f (k,u)  - 
d(k)u  <Q f ( k ,  V)  - A(k)v. 

Further, the function f(k,u) is continuous on W(kl, - 1) x R". Then, 
the boundary value problem (1.2.8), (1.5.4) has at least one solution u*(k) 
such that 

(9.7.3) uo < p  U* < p  v 0 . 

Proof. Let Bz(k1, IC,) = {U E B ( k l ,  k,.) : uo < p  U < p  v'}. Obviously, 
Bz(kl, k,) is a closed convex subset of the Banach space B ( k l ,  ICT) with 
llull = maxlsisn, supkE~(k,l ,k: , )  lu&(k)I. W e  shall show that the continuous 
operator 7 : B(IC1, /c7.) + B ( k l ,  I C , , . )  defined by 

k : r - l  

(9.7.4) 7 u ( k )  = U ( k ,  k1)7d-'l+ C M ( k ,  e)[f(e, U(!)) - d(!)u(!)] 
e = k : l  

maps B2 ( k l  , ICT) into itself. 
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Suppose U, v E Lj2(kl, k T )  and U < p  v.  Then, we havc 

kv-l 

( Iv- 'Tu) (k)  = CXT(k,!)[f(t,v(!))-A(!)v(!)-f(!,u(!))+A(t)~(!)] 
e = k ,  

T k-1 

= C c U ( k ,  k1)(Z+ di)U-'(!,k1)A-'(~)[f(!,v(!)) 
i=2 P=l . ,+ l  

-A( t )~ ( t )  - f(e, U(!)) + d(e)u(!)] 

+ C c U ( k ,  k1)AiU-l(!, kl)d-I(t)[f( ! ,  v([)) 
r k,,-l 

i=2 P=k 

-d ( l )v ( t )  - f(!, ~ ( t ) )  + d(t)~(!)] 

Thus, it follows that 

T k- l  

?('TV - 7 u ) ( k )  = C c $(Z+ d")(C?")-'(C?'U-'(t, k l ) A - l ( f ) )  
i=2 e=k,-l 

X [ f ( t ,v ( f ) )  - A(!)V(!) - f(!, U(!)) + d(!)u(P)] 

-A(!)v(!) - f ( ! , ~ ( l ) )  + d(!)u(e)]. 

However, since P ( Z  + AL)(@)-' 2 0, ?'A"(&i)" 2 0, 2 5 i < T 
elernentwise, and by (iv), f(!, U([)) - d(!)u(!) <Q f(!,v(!)) - d(t )v( ! ) ,  
it follows that P ( 7 v  - 'Tu)(k) 2 0, which is the same as 'Tu < p  'TV, 
i.e. 7 is monotone in Bz(kl, kT)  with respect to < p  . 

WC shall now show that uo < p  'Tu0 and 'TV' < p  v', and then it will 
follow that 7 maps Bz(k l ,  k.,.) into itself. For this, we notc that thc solu- 
tion of the boundary value problcm u(k+l)  = A(k)u(k),  C:='=, Ciu(k i )  = 
X:=, Lciv(ki) = 1 is the same as U ( k ,  kl)'l"'l. Therefore, it follows that 

kr- l  

v0(k) = ZA(k, k 1 ) K ' l  + C M(k,!)[v'(! + 1) - d(t)v0(!)] 
e=k1 

and hcnce 
k ,- l  

(v0 - I V O ) ( k )  = c M(k,!)[vO(! + 1) - f(!,v"(e))]. 
e = k l  

Howevcr, since by (iii), vo(k + 1) - f(k,vo(k)) Q 2 0, by the above 
argument we find that P ( v O  - 'TV') 2 0, i.e. 7 v 0  < p  v'. Thc proof for 
U' <-p T u 0  is similar. 
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The existence of a fixed point U* of 7 in &(/c1, k,.) now follows as 
an application of Theorem 9.1.1. I 

Let the sequences {U"} and {v"} inductively be defined as 

(9.7.5) U"+l ( k )  = 7U"(k),  V"+l (k j  = 7 P ( k ) ,  m = 0,1, ."  

where 7 is as i n  (9.7.4). W e  have shown i n  the proof of Theorem 9.7.1 
that 7 is monotone in B2(k1, k,) with respect to < p ,  and so 

urn, <p um+l < p  vm+l -p < ' I n  = 0, 1, 

Since P is invertible we obtain the following: 

Corollary 9.7.2. Assume that the hypotheses of Theorem 9.7.1 be satis- 
fied . Then, the sequences {U"} and {v"} defined i n  (9.7.5) converge 
in &(/cl, k,.) to the solutions U and v of the boundary valne problcrn 
(1.2.8j, (1.5.4) and 

Urn < p  U"+l LP U <P v LP vm+l LP V", ' m  = 0,1, 

Further, if U* is any solution of (1.2.8), (1.5.4) satisfying (9.7.3), then 
U <p U* <p v. 

Remark 9.7.1. I n  the hypothesis (ii) of Theorem 9.7.1 we have taken 
identity = only for simplicity. The results on the existence of solutions 
and the monotorlc iterative convergence remain valid if = is replaced by 
a suitable partial ordering <S in R". For this, once again for simplicity, 
we let T = 2. A suitable partial ordering <S in R" is then induced 
by p[L1 + L2U(k2, kl ) ]- l ,  and the hypothesis (ii) of Theorern 9.7.1 can 
be replaced by 

(ii)' [ L ' U O ( ~ C ~ )  + c ~ u O ( ~ C ~ ) ]  <S 1 5s [ ~ l v O ( l ~ l )  + ~ ~ v O ( l ~ 2 ) j .  

For this, in the above, thc proof of uo < p  'Tu0 arid TV' <.p vo needs a 
slight modification which is based on the new representation 

v0(k)  = U ( k ,  k1) [L' + L2U(kz,  k1)I-l [L1vo(k1) + L2v0(k2)] 

+ c M ( k ,  l) [vo([ + 1) - d(t)vo(l)] . 
k2-1 

e = k : ,  

To apply above results, in particular, we consider the periodic boundary 
value problem 

(9.7.6) 
A2v.(k) = f ( k ,  ~ ( k ) ,  Au,(k)) ,  k E N(0, K - 1) 

u(0)  = u ( K ) ,  u(1) = u ( K +  1). 
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In system form the above problem is the same as 

Let € be a real 2 X 2 matrix with real eigenvalues X1 and X2 satisfying 
- 1 < X2 < 0 < X I .  Then, the problerrl (9.7.7) is equivalent to 

u(k + 1) = (I+ & ) u ( k )  + f(k,u(k-)) - (1 + &)u(k), 

u(0) - u ( K )  = 0. 
(9.7.8) k E W(0, K - 1) 

Theorem 9.7.3. Let 9 be such that PEPp1 = diag{Xi} ant1 let 

Q' = Q = [ ] P. Let < p  t)e t,hc partial ortlcring induced by 

P and <Q, <s be partial orderings induc:ed by Q. Further, let all 
corltlitions of Theorem 9.7.1, with (ii) replaced by (ii)', be satisfied. Then, 
the bountlary value problem (9.7.6) has a solution u * ( k )  such that 

-1 0 

Proof. For (9.7.8), we have U(k ,O)  = 7t = Z- d2 = 
A =  - [Z- (Z+&)K ]- l [ -Z ] (Z+& )K  = [ Z - ( Z + & ) K ] - l ( Z + & ) K .  Since, 
Pi3P-l = diag{Xi}, PdP-' = diag{[l - (1 + X i )K] " ( l  + X i ) K } ,  - 1 < 
X2 < 0 < XI, and so, PA&' 2 0 and P(Z+ d)Q-' 2 0, clcrncntwisc. 
Let < p  be the partial ordering induced by PU"(k,  0), <Q be the 
partial ordering induced by QU-' (k ,  O)(Z+&)-l, and be the partial 
ordering induced by P[2 - U ( K , O ) ] - l .  Thus, in view of Theorem 9.7.1 
arid Remark 9.7.1 it suffices to show that < p  is induced by 9 and 
<Q, 5s  are induced by Q. For this, since PU-'(k,O) = @(Z+&)-" = 

diag{(l+Xi)-m,}P and so, < p  is induced by P. Further, QU"(k,O)(Z+ 
&)-l = diag{(l + Xi)-(m,+l)}Q and @[Z - U ( K , O ) ] - l  = diag{ll - (1 + 
Xi)KI-l}g, <Q and <S are induced by 0. I 

9.8. Periodic Boundary Value Problems 

Let T = { t o ,  t l ,  . . . , t ~ }  denote a set of increasing time instances. For 
a function U : T + R", we define the first order backward difference 
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operator Vu(tk) = ~ ( t k )  - ~ ( t k - ~ ) ,  1 5 k 5 K.  I n  this section we shall 
develop a monotone iterative method for the following periodic boundary 
value problem 

where f : T X R" 3 R"' is a continuous function. 

Let N1 and N2 be two subsets of the irltlcx set N = { 1,2,. . . , n,}. 
We say that D = {NI, NZ} is a decomposition of N if NI n NZ = 0 and 
NI U NZ = N. 

Definition 9.8.1. A function f = f ( t ,  U) : T x R "  --f R" is said to possess 
the D-qv,asinronoto.n,icity if there exists a decomposition D = {NI, NZ} 
of N such that, for all i, E NI, f , , ( t ,  U) is rrlorlotone nonincreasing i n  
U,?, j = 1,2, .  . . , n, j # i and for all i E NZ, f + ( t ,  U) is nlonotorle 
nondcc:reasing in I I , ~ ,  j = 1,2, . . . , n,, j # i .  

Let 5 and < denote the usual partial ordering in R". Based OII 

the decomposition D = {NI, NZ} of N, we introduce partial ordering 
in R" as follows: Let U, v E R" with U = ( ~ 1 ,  . . . and 

v = (VI,. . . WC say U <D v if I L ~  5 vi for all i E NI and 2 v i  

for all i E NZ. The ordering U <D v can be defined similarly with the 
strict inequalities. 

Definition 9.8.2. Let D = {NI, NZ} be a decomposition of N. A 
function ii : T -+ R" is called a D-upper p e r i o d i c  sohtion of (9.8.1) if 

It  is obvious that every solution of (9.8.1) is a D-upper periodic solution 
as well as a D-lower periodic solution. 

Lemma 9.8.1. Let v, : T "+ IR be a function such that 

(9.8.2) 
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where 0 # 0 I 1 is a given constant. Then, 

Proof. Let v = ( ~ ( t l ) ,  ... , 7 l . ( t ~ ) ) ~  E RK. B y  (9.8.2): 

(9.8.3) AV 2 0, 

where 
- - 

1 - 0  -1 
-1 l-cr 

-1 l-cr 
A =  

-1 1 - 0  
-1 1 - 0  - 

Let A-' = (a,i,j). It c a n  be easily chcckcd t,hat 
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is solvable uniquely. 

For the periodic boundary value problcnl (9.8.1) WC shall consider the 
following iterative process: 

where M* = diag(M;, . . . , M:) is specified later. From Remark 9.8.1 it is 
ckar  that the atmvc iterative process is well defirlcd provided M: # 0, i = 
1,2;..,n,. 

Theorem 9.8.3. Lct D = { N I ,  N2} be a dccorrlposition of N, and ii 
and g be rcspcctivclv D upper and D lower periodic solutions of (9.8.1) 
s11c:h that i i ( t )  2 g(t), f E T.  Assllrrlc that f is D qtlasirrlonotmlc i n  
W = {u(t) : ~ ( t )  5 u(t) 5 i i ( t ) ,  t E T} and 
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Moreover, the scheme (9.8.9) will give bctter results than (9.8.5). 

Theorem 9.8.4. Assume that the conditions of Theorem 9.8.1 hold. Let 
( d m ) ( t k ) }  and { g ( " ) ( t k ) }  denote the sequences generated by (9.8.5) with 
M *  = M and the initial functions ii(')(tk) = i i ( t , : )  and g ( ' ) ( t k )  = ~ ( t k ) ,  

respectively. Also, let { i i ' (m') ( t~: ) }  and {g'(m')(t~:)} denote sequences 
generated from (9.8.9) with M; = M.i (j = 1,2,. .. ,n,) and the same 

initial fnnctions ii'(')(tk) = i i(tk) and g " " ( t k )  = g(tL,), respectively. 
Then all these seqwnces have the same monotone convergence established 
i n  Theorem 9.8.3. Moreover, 

(9.8.10) I T ( " ) ( t k )  2 4 ( m )  U (h.), U ' " ' ( t k )  5 g~~m)(tA,), 
k = 0 , 1 , 2 , . . . , K ,  m = O  3 1  1 .... 

Proof. From the monotone ronvergencc: of the sequences for all k = 
0 ,1 ,2 ,  . . . , K and ' m  = 0,1, .  . . , we have 

from which and Lemrna 9.8.1 we get E$"+')(tn,) 5 0, k = 1,2,. . . , K .  

Similarly, we obtain 5$TT1)(tk) 5 0, k = 1,2,. . . , K if 3 + 1 E NZ. B y  
3fl 
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induction this proves tuJ ( t k , )  5 0, i.e. ~i/(~’+’) -(m+l) ( h )  - < Ti(”+’) ( t k ) ,  

k = 1,2, .  . . , K .  Analogously, we have z(“+l)(tk) 5 g’(7n’+1)(tA7), k = 
1,2,. . . ,K. This shows that (9.8.10) holds for k + l .  I 

Now let tk = .rrk/K, k = 0,1 , .  . . , K and consider the periodic bound- 
ary value problem (9.8.1) where u(t) = ( ~ , ~ ( t ) , u 2 ( t ) ) ~  and f = (fl,fz)T 
with 

f l ( t k ,u ( tk ; ) )  = - (~ , l ( t l ; )  - ~ . z ( t k ) ) ,  1 5 k 5 K 
.rr 

K 

f z ( t k , ~ ( t k : ) )  = - ~ , l ( t k )  - 2 1 / , 2 ( t k )  + -s111(tk) , 1 5 k 5 K .  
K ”( 2 l .  ) 

Here N = { 1,2}. W e  takc NI = {l} and N2 = {a} so that D = 
(N1,Nz) is a dcconlpositiorl of N. Let ~ ( t )  = ( O , O ) T  and E(t) = 
(1.5, It  is clear that E(t) 2 ~ ( t ) ,  t E T and f is D quasirnorlotone 
in W = { u(t) : ~ ( t )  5 u(t) 5 E(t), t E T} . Moreover, WC find easily 
that g(t)  and E( t )  are D lower periodic: solut,ion and D upper periodic: 
solution, rcspcctively. Set M = tliag(n/K, -2.rr/K) and we havc 

f(t,u(t)) - f ( t , i i ( t))  <D M ( u ( t )  - i i ( t ) ) ,  t E T 

whenever ~ ( t )  5 u(t) 5 u(t) 5 E(t), t E T. Let, K = 20. W e  use iterative 
scheme (9.8.5) with M* = M to solve (9.8.1) and denote by ~ ( ~ ) ( t )  the 
,mth iteration. In practical computations, the rnonotone convergence of the 
sequence {u( “ ) ( t ) }  is observed. If u(’)(t) = Ti(t), then { ~ ( “ ’ ( t ) }  is 
a monotone nonincreasing seqllerux (see Table 9.8.1). If u(’)(t) = ~ ( t ) ,  
then { ~ ( “ ’ ( t ) }  is a monotone nondecreasing sequence (see Table 9.8.2). 
The monotonicity in Tables 9.8.1 and 9.8.2 agrees with the one dcscribed 
in Theorem 9.8.3. 

Table 9.8.1. 

5 

0.301929 0.256648 0.228153 0.349111 0.331774 0.307271 26 
0.311083 0.265802 0.237306 0.359629 0.342292 0.317788 13 
0.323163 0.277880 0.249386 0.385917 0.368578 0.344072 10 
0.449332 0.404161 0.375851 0.518673 0.501266 0.477053 

Table 9.8.2. 

m 

0.291913 0.246630 0.218136 0.339042 0.321703 0.297197 10 
0.261832 0.216661 0.188351 0.268673 0.251266 0.227053 5 
0.139736 0.102288 0.080328 0.000000 0.000000 0.000000 1 
U F ” ’ ( t 6 )  u y r L ) ( t 4 )  aY)(tz) u \ ” ” ( t 6 )  ui7f8)(tq) u \ 7 r ” ( t z )  

23 0.306972 0.331475 0.348812 0.227992 
0.299364 0.254083 0.225588 0.344004 0.326667 0.302163 13 
0.301768 0.256487 

Next, we construct the sequence { ~ ( ” ’ ( t ) }  by following the scheme 
(9.8.9) with M’ = M. Table 9.8.3 lists the values of ~ ( ~ , ) ( t )  when 
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u(')(t) = Ti(t), and Table 9.8.4 gives the corresponding values when 
u(')(t) = ~ ( t ) .  Tables 8.8.3 and 9.8.4 illustrate the monotonicity estab- 
lished in Theorem 9.8.3. Moreover, a comparison of the above Tables 9.8.1 

9.8.4 shows that the scheme (9.8.9) indeed gives better results than ob- 
tained from (9.8.5). 

Table 9.8.3. 

m. U P ' ( t 4 )  Uy'(f6) U F " ' ( t z )  U \"" ( t6 )  U j ' " ' ( t 4 )  u\ '" ' ( t * )  
1 

0.301929 0.256648 0.228153 0 349133 0.331797 0.307293 13 
0.302512 0.257231 0.228736 0.350299 0.332963 0.308459 10 
0.323163 0.277880 0.249386 0.391611 0.374261 0.349749 5 
0.639735 0.602288 0.580328 1.000000 1.000000 1.000000 

Table 9.8.4. 

!% U $ ' " ' ( t 6 )  U , y " ' ( t q )  U F ' " ( t 2 )  U j " " ( t 6 )  U , ! " " ' ( t 4 )  ' U , \ ' " ' ( t 2 )  
1 

0.301807 0.256526 0.228031 0.348889 0.331553 0.307049 13 

0.291913 0.246630 0.218136 0.329111 0.311761 0.287250 5 
0.301535 0.256255 0.227759 0.348346 0.331010 0.306506 10 

0.139736 0.102288 0.080328 0.000000 0.000000 0.000000 

9.9. Newton's Method 

For the boundary value problem (1.2.8), (1.5.1) Newton's method leads 
to the construction of the sequence {u"(k)} generated by the iterative 
schcrne 

(9.9.1) 
U""+l(k + 1) = f(k,u"(k)) + fU(k,U~yk))(U'"+l(k) - U"(lc)) 
F[u'"] + Fu[~ln,][~m+l - urn,] = 0, ' m ,  = 0~1,. . . 

where uo(k) = t i ( k ) .  In the following result we shall provide sufficient 
conditions so that this sequence {um(k)} indeed exists and converges to 
the unique solution of (1.2.8), (1.5.1). 

Theorem 9.9.1. With respect to the boundary value problem (1.2.8), 
(1.5.1) we assume that there exists an approximate solution i i (k )  and 
conditions (i) ~ (iv) of Theorem 9.2.2 are satisfied. Further, let 3p(K) < 1, 
and rl' = (1 - 3K)- ' (M1d1  -t M"') _< r. Then, the following hold 

1. the sequence {u"(k)} obtained by Newton's scheme (9.9.1) remains 
in 3 ( ~ ,  rl ) 
2. the sequence {u""(IC)} converges to the unique solution U* (IC) of 
(1.2.8), (1.5.1) 

3. a bound on the error involving the matrix K* = 2K(I  - IC)-' is given 

by 

(9.9.3) 5 (K*)"(Z - 3K )-1 (M1d1  + M 2 d 2 ) .  

(9.9.2) llurn. - u * I I G  5 (K*)"(Z - 1C*)-'llu1 - U I ~ G  - 
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which is the same as 

Thus, we find that 

117~   ell^ 5 2K(Z - K)"(2 - 3K)-' ( M 1 d l  + M 2 d 2 )  

+(Z - IC)-' ( M ' d '  + M 2 d 2 )  

= (Z - K)-' [2K(Z - 3K)" + Z] ( M ' d '  + M 2 d 2 )  

= (2 - K)-'(Z - K) (Z  - 3K)-' ( M ' d l  + M 2 d 2 )  

= (Z - 3K)-' ( M l d l  + M 2 d 2 )  . 

Therefore, ll7u -  ell^ 5 rl '  follows from the definition of r'l 

Next, we shall show the convergence of the sequence {U'" ( k ) } .  From 
(!3.!3.1), in view of (9.9.4), we have 
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and now taking the limit as p "+ c m .  

Finally, from (9.9.5) we have 

ul(k.) - i i (k . )  = R1[(fu(k,U(k)) - A(k))(ul(k) - i i (k) )  - q ( k ) ]  

+R2[-(Fu[E] - L)[u' -E] - 111 

and hence 

( ( U 1  -E((G L M1[M3((u1  - U J J G  + dl] + M2[M4()u1 - UjJG + d2], 

which is the same as 

(9.9.8) 1 1 ~ '   ell^ 5 (Z - IC)-l(M1dl + M2d2).  

Using this inequality i n  (9.9.2) arid the fact that (Z - Ic*)"(Z - IC)-' = 
(Z - X - ' ,  the requircd estimate (9.9.3) follows. D 

In our next result in addition to thc hypotllcscs of Theorerr1 9.9.1 WC 

shall need the following conditions. 

Condition ( d l ) .  For all k E IN(a,b - 1) and u , v  E s(Ei,r l1)  

(9.9.9) If(k, U) - f (k ,  v )  - fu(k,  v)(u - v ) /  5 P ' ( ( U  - v((G ' / ( U  - vI(G, 

where P = (pije) is a symmetric tensor of the third order with rlonnegative 

components. Obviously, if f is twice continuously differentiable with 

respect to U for all (k,u) E N ( a , b  - 1) x S(E,rl') and all the second 

derivatives - are bounded there, then this condition is satisfied, 

with 

( 
d2fi 

8u.j due 
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Example 9.9.1. For the boundary value problern (9.2.16), (9.2.17) we 
follow as in Example 9.2.1 and note that p (3K)  < 1 if (3/8)e" < 1, i.e. 
r 5 0.980829 ... . Further, (Z - X-' (M1dl + M2d2) 5 r providcd 

1 (1 - :e') 5 r, i.e. 0.238565607.. . 5 r 5 0.814141745. . . . Thcre- 
8 
fore, if T = 0.238565607 then all the conditions of Theorem 9.9.1 arc satisficd 
and thc Ncwton's scheme (9.9.1) for the problem (9.2.16), (9.2.17) converges 
to the unique solution u*(k) in S(O,r") = {u(k) E D(O,K)  : ( (u(r~)((G 
5 0.238565607(1, . Morcover, since with this choice of T 

-1 

K =  [ 1 
K * =  [ I (Z- K*)--l = [ 

0 0.158678373 
0 0.158678373 ' 
0 0.377212157 
0 0.377212157 0 1.605683237 I 

[ 1 0.188606078 ] 
0 1.188606079 

1 0.605683237 

(1 - K)-1 = 

the crror bound (9.9.3) reduces to 

((U* - ~ ' ~ 1 1 ~  5 (0.377212157)"L(0.238565607)(l, 
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Further, we have 

Thus, it follows that .=-[ 1 0 
0 1 0 

0.188606078 
2 0 0 0 0.188606078 

Hence, the error bound (9.9.11) gives 

(9.9.13) 1uY" - UTI 5 (0.094303039) I d ?  - u,Y-' l2 

Sincc from (9.9.8), we have 

I ~ U '  - u O / / G  5 0.148575759(1, 

inequality (9.9.14) easily detcrrrlirles 

Iuy+' - UTI 5 (0.094303039 1 ~ ;  - .;I) (10.60411213) 
2"' 

5 (0.014011145)2'" (10.60411213). 

Finally, using this cstirnate in (9.9.13), WC obtain the expected inequality 

1.;"" - u f l  5 (0.014011145)2'"(10.60411213). 

W e  also note that for this particular example the error bound (9.9.12) 
rcduccs to 

I ~ U ' " + '  - ~ ~ ' 1 1 ~  5 (0.377212157)2~-2(0.0020817166)(1, 

9.10. Approximate Newton's Method 

As in Section 9.3, we shall assume that thc sequence { ~ ' " ( k ) }  generated 
by the iterative scheme (9.9.1) is approximated by the computed sequence 
{~'"(k)} .  To find v"+' ( k )  the function f is approximated by fmL,  and 
the operator F by Fm,. Therefore, the computcd sequence {v"(k)} 
satisfies the recurrence relation 

,'"+'(/c) = 'H1 [f"(k,v'"(k)) + f,"(k,v'"(k)) (vm+l(k) 
- v"(k)) - d(k)v'"+'(k)] 

(9.10.1) + [-F'" [v'"] - F," [v"] [V'"+l -v"] + L[v"f']] 
vO(k)=uO(k)=~(k), ' r r l = 0 , 1 , . . .  . 
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With respect to f m, and 3-, l we shall assume the following: 

Condition (pl). For all ( k ,  U) E N(u,  b - 1) X z(ii,r) the function 
f"(k, U) is continuously differentiable with rcspect to U, and If," ( k ,  U) - 

d(k)l 5 M 3 .  Also, for all k E N ( a , b  - 1) and v"(k) obtained from 
(9.10.1) the inequality (9.3.2) holds. 

Condition ( ~ 2 ) .  For all U E T(U, r), 3"[u] is continuously Fr6chet 
differentiable and 113," [U] - L l l ~  5 M 4 .  Also, for v"(k) obtaincd from 
(9.10.1) the incquality (9.3.3) holds. 

Theorem 9.10.1. With respcct to the boundary value problerrl (1.2.8), 
(1.5.1) WC assume that thcre exists an approximate solution E(k )  and 
conditions (i) ~ (iv) of Theorem 9.2.2 are satisfied. Further, let conditions 
(PI) and (p2) be satisfied, and p ( k )  < 1, whcrc 

k = (Z- K)-' 2K + M 1 M 7  M 3  + sup \A(k)l) [ (  k E N ( a , b - l )  

[ 

+ M 2 M 8 ( M 4  + IlLll~) 1 
and 

rI2 = (Z-k)-'(Z-K)-' M'd' + M 2 d 2  + M ' M 7 ( Z - M 7 ) - ' x  

sup ~ f o ( k , T I ( k ) ) ~ + M 2 M 8 ( Z - M 8 ) - 1 ( ~ ~ o [ T I ] ~ ~ ~  5 r.  
k : E W ( a , b - l )  I 

Then, thc following hold 

1. all the conclusions 1 - 3 of Theorem 9.9.1 hold 
2. the sequence {v"(k)} obtained from (9.10.1) rcrrlairls in T(TI, r12) 

3. thc sequence {~'"(k)}  converges to u*(k) the solution of (1.2.8)] 
(1.5.1) if and only if limm+m b" = 0, where 

(9.10.2) b'" = iIv"'(k)-3-11[f(k,vm(k))+f,(k,v"(k))(v'"f1 ( k )  - v" ( k )  ) 
-A(k)vmfl(k)] - ~ 2 [ - ~ [ ~ " ] - ~ " [ ~ m ] [ ~ m + 1 - ~ n r ] + ~ [ ~ m + 1 ] ]  / I G  

and, also 

(9.10.3) Ilu* - V"+] //G 

M 1 M 7 ( Z  - ,U7)-' sup If"(k,v"(k))l 
k e N ( a , b - l )  
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v'@) - E(k) = 'FI' [f"k,E(k)) - f ( k , E ( k ) )  
+(f:(k,E(k)) - d ( k ) ) ( v ' ( k )  -E(k)) - q(k)] 

+x2 [-(Fop] - F [ E ] )  - ( F 3 i ]  - L)[v' -E] - l'] 

which in view of (9.3.4) and (9.3.5) implies that 

I ~ V '  -  ell^ 5 (Z - K)-' M'd' + M2d2 + M1M7(Z - M7)-' X [ 
sup l fo(k,E(k)) l  + M2M8(Z - M8)-111Fo[E]\ll/~ 

k€N(a ,b- l )  1 
5 r12. 

Now we assume that v"(k)  E Y(E, r12) and will show that vm,+'(k) E - 
S(E,r"). From (9 .2 .6)  and (9.10.1), we have 

v"+'(k)-E(k) = 'FI' [f"(k,v"(k)) - f ( k , v " ( k ) )  
+ f (k ,v"(k) )  - f ( k , E ( k ) )  - d(k) (v"(k)  -E(k)) 
+(f,"(k,v"(k)) - d(k))(v"+'(k) -E(k)) 
-(f,"(k,~"(k))-d(k))(~""(k)-E(k))-q(k)] 
+.H2 [-(F"[v"] -F[v"]) - (F[v"] -F[E]  -qv" -E]) 
- (F:[V"]-L)[V"+'-E]+(F~[V"]-L)[V"-U]-l'] - 
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which in view of (9.3.8) and (9.3.9) leads to 

Thus, ((v"+1 - E\\G 5 rl' and this completes the proof of the conclusion 
2. 

Next we shall prove 3. From the definitions of u"+l ( k )  and v"+l ( k ) ,  
we have 

U"+l(k) - v'm+'(k) 
- - - Vrn.+l(k) + IFIl [f(k,v"(k)) + f"(k,V"(k))X 

(v"+l(k) - v"(k)) - A(k)v"+l(k)] 

+ IF12 [-.qv"] - Fu[v"] [vm+l - v"] + L[V"+l]] 

+X' [ f ( k , ~ " ( k ) )  - f(k,v"(k)) - A(k)(u"(k) - v"(k)) 
+ (fu(k, ~ " ( k ) )  - d(k))(u"+'(k) - u"(k)) 
-(f,(k,v"(k)) - A(k))(V"+'(k) - v"@))] 
+ 'H2 [-(F[u"] - F[v"] - L[," - v"]) 
-(fUIU"]-L)[U"+l-Um] + (Fu[Vm]-L)[Vm+l-Vm]] 
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which implies that 

Thus, from (9.9.7) we find that 

Using the fact that l l u o  - ~ ' 1 1 ~  = 0, tho above inequality gives 

Finally, we shall prove (9.10.3). For this, we have 

U*(k) -vm'+'(k) = X' [f(k,u*(k)) - f(k,v"(k)) -d(k)(u*(k) 
-v"(k) )  + f(k,v"(k)) - f"(k,v"(k)) 

+?l2 [-(F[u*] - F[v"] - L[U* - v"]) 
-(F[v"] -F"[V"]) + (F,"[V"] - L ) [ V m , + l - V y ]  

-(f,"(k,v"(k)) - d(k))(v"'l(k) - ~ " ( k ) ) ]  
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which is the same as (9.10.3). B 

I n  our next result we shall need thc following: 

Condition (PS) ((p4)). In cordition (pl) ((pz)) instcad of (9.3.2) ((9.3.3)) 
the inequality (9.3.11) ((93.12)) holds. 

Theorem 9.102. With respect to the bourldary value problem (1.2.8), 
(1.5.1) we assurne that there exists an approximate solution i i ( k )  and 
conditions (i) - (iv) of Theoren1 9.2.2 are satisfied. Further, let conditions 
(p3) and (p4) be satisfied, and p(31C) < 1, also 

r13 = (1 - K*)-l(Z - K)-' (M'(r' + dl) + M2(r6 + d2)) <_ r. 

Then, the following hold 

1. all the conclusions 1 ~~ 3 of Theorem 9.9.1 hold 
2. the sequence {v"(k)} obtained from (9.10.1) remains in 3'(E,r13) 
3. the condition lirrlm,+m b" = 0 is necessary and sufficient for the 
convergence of { ~ " ( k ) }  to the solution u*(k)  of (1.2.8), (1.5.1) where 
b" are defined in (9.10.2), and 

J/u* - V ~ , + ' ( ( G  <_ (1 - K)-' (M'r" + M2r6 + 21Cl)v"+' - v r n ' ) ) ~ )  . 

Proof. The proof is contained in Theorem 9.10.1. B 

9.11. Initial-Value Methods 

The method of complementary functions developed in Section 8.2 for 
linear problems can be used in an iterative way to solve the nonlinear 
boundary value problem (1.2.8), (1.5.1). For this, we assunle the trial value 
of U(.) and find the solution u(k)  of (1.2.8). Let us consider a ncarby 
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solution u(k) + Su(k), where Su(k) is the first order correction to u(k) 
to produce the actual solution of (1.2.8), (1.5.1). The system of the nearby 
solution is 

(9.11.1) u(k + 1) + 6u(k + 1) = f(k,u(k) + Su(k)), k E IN(a,,b - 1) 

Expanding the right side of (9.11.1) i n  a Taylor series up to and including 
first order terms, we obtain the variational system 

(9.11.2) Su(k + 1) = f,(k,U(k))SU(k). 

I n  a similar way, t,he boundary conditions for the variational system arc 
obtained and appear as 

(9.11.3) Fu[u][Su(k)] - F [ ~ ] c a l ,  

wherc F ' [ U ] ~ ~ /  is the vector calculated from the solution u(k). Equations 
(9.11.2), (9.11.3) form a linear system and play the role of (1.2.11), (1.5.3). 

Note that we have irlterprcted the variation Su(k) as thc difference 
between the true (brit unknown) and the calculated solution, i.e. 

(9.11.4) Su(k) = Utl.ue(k) - Ucal(k). 

Sincc cquatiorls (9.11.2) ~ (9.11.4) are only approximate equations, the 
process of finding the true solution is iterative and terminates when /Su(k)l, 
k E W(a ,  b )  is sufficiently small (less than a preassigned tolerance). Equa- 
tions (9.11.2) ~ (9.11.4) for the mth iteration are written as 

(9.11.5) (SU(k + l))(") = (fU(k,U(k)))(-)(SU(k))(m) 

(9.11.6) (3,[U])(")[(SU(k))(")] = - (FIU]cal)(m,) 

(9.11.9) 
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From (9.11.7), we obtain ncw initial condition for the ncxt iteration, 
which is 

(9.11.10) (u(a))(m,+l) - - (u(a))(l.) + dm), 'n7, = 0 , 1 , .  '. . 

If we denote thc solution of (1.2.8) as u(k) = u(k,u(a)), thcn thc 
assumed conditions on the function f ( k ,  U) imply that u(k, U(.)) con- 
tinuously depends on thc initial vector U(.). Thus, solving the bound- 
ary value problem (1.2.8), (1.5.1) is equivalcnt to finding U(.) for which 
~T[u(k, U(.))] = T[u(a,)], say, is zcro. 

Assume that the rnth approximation to ~ ( a , ) ,  which we dcnote as 
(U(.))("), has bcen found. Then, Newton's method provides the (m+l) th 
approximation by t,he rclation 

- 
F [("Q,))'"''] + F("'a))(,,<) ((u(a,))('n+l) - (U(.))'"') = 0, 

which in view of (9.11.8) anti (9.11.10) is the same as 

(9.11.11) 3 [u(k, (u(.))'ln,')j cal + 3"  [u(k, (U(.))""')] x 

Thc total variation in u(k, ( U ( U . ) ) ( ~ , ) )  can be expressed as 

(9.11.12) 
8u(k, (U(.))'"') 

S(U(U))'"' 
6u(k, (u(a))(m,') = ' (Su(a))'"'. 

Also, the solution of (9.11.5) is 

(9.11.13) 
k - l  

6u(k, (U(.))'"') = n(fu(a+k-l-e, u(a+k-l-t, (u(.))'"')))'"'(su(a))'~~). 
C=a 

Therefore, from (9.11.12) and (9.11.13), we gct 

(9.11.14) 

= n (fu(a + k - 1 - l?, U(. + k - 1 - l?, ( ~ ( a ) ) ( ~ , ) ) ) ) ( ~ ) .  
k:- 1 

8(u(.))(m' 
C=a 

Using (9.11.14) in (9.11.11) and rearranging the terms, we obtain (Su(a))(") 
= c("). Thus, thc method (9.11.10) used to find U(.) is equivalent 
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to solving T[u(a)] = 0 for U(.) by Newton's method. Therefore, a 
suitable application of the Kantorovich sufficiency ,Theorern 9.1.3 furnishes 
a theoretical basis for the convergence of the process and an estimate on 
the rate of convergence. 

In particular, for the boundary conditions (1.5.2) equation (9.11.3) takes 
the form (1.5.4), where 

and u(ki) is replaced by Su(k,i). Thus, as i n  Section 8.2, if WC solve the 
linear system (9.11.5) with the initial conditions 

(9.11.15) (Su,;(kl)) (m) = Sij, 1 5 i , j  5 n, 

then (9.11.6) in view of (8.2.9) reduces to 

ThllS, the forward process for thc boundary value problem (1.2,8), (1.5.2) 
is obtained by the equations (9.11.5), (9.11.15), (9.11.16), (9.11.7) and 
(9.11.10) with a replaced by kl and dm,) = (Su , i ( k l ) ) (m) .  

Sirnilarly, the backward p'rocess for the problem (1.2.8), (1.5.2) consists 
of the equations (9.11.5), 

(9.11.17) ( S $ ( k , ) )  = S,,, 1 5  i , j  5 n 

(9.11.7) and (9.11.10) with a replaced by k ,  and d m )  = (Sg,i(k,,.))(m'). 

A s  we have indicated in Section 8.2, if the boundary conditions are such 
t,hat ui(k1) for some fixed indices i are explicitly known, then in the 
initial vector u(kl) these components are taken to be same known values. 
Obviously, then for these indices i ,  Sui(k1) = 0. Further, if the total 
number of such indices i is S ,  then with this choice of u(k1) in the 
forward process each iteration requires only n - S solutions. A similar 
statement holds for the backward process. 
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W e  also note that for thc nonlinear boundary value problcm (1 .24 ,  
(1.5.1), like the mcthod of conlplcmentary functions, the mctllod of adjoints 
discussed in Scction 8.4 can also be used in an iterative way. 

Example 9.11.1. Consider the boundary value problem 

2 

(K+1)2 
?L(k+l) - 2u(k)  + u,(k-1) = - ~ . ~ ( k ) ,  k E IN(1,K) 

(9.11.19) cl 

u (0 )  = 1, u ( K  + 1) - u(K  - 1) + L 
K + 1  

?L2(K) = 0, 

which is the discrcte analog of y” = 2y3, y(1) = 1, yj’(2) + ?j2(2) = 0 
discuscd previously bv Fox [as]. The continuous problem has a urliquc 
solution y ( t )  = I/t. 

I n  systcm form (9.11.19) appcars as 

(9.11.20) 
U l ( k +  1) = 762(k) 

u z ( k  + 1) = 2u2(k)  - q ( k )  + ?“3(k) ,  k E W(O,K - 1) 
2 

( K  + 1)2 

k E N(0, K - 1) 

and the variational boundary conditions are 

1 - .l(O) 

- u z ( K )  + u1(K - 1) - -“u,?(K) 
2 

K + 1  
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For the system (9.11.21) the initial conditions (9.11.15) are 

(9.11.23) su;(o)  = 1, 6Ui(O) = 0 

(9.11.24) 6~:(0) = 0, 6?1.;(0) = 1. 

The equation (9.11.16) reduces to 

1 - U ? l ( O )  

2 

K + 1  (car) 

which is the same as 

(9.11.25) (6?1 , l (O ) ) (~)  = (1 - u1(0))(~) 

(9.11.26) 

The equation (9.11.10) reduces to 

(9.11.27) (211(o))(m+1) = (u,1(0))(-) + (SUl(O))('") 
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Since ul(0) = 1 is already known, the initial vector we choose is u(0) = 
(1, where CY is a known constant. With this choice of initial vector 
equations (9.11.25) and (9.11.27) immediately imply that (SV,~(~) ) ( " )  = 0 
for all * m ,  and (9.13.26) becomes 

in which only thc solution hu2(k) is required. Thus, for each iteration we 
need to solve (9.11.21) only OIKT with the conditions (9.11.24). 

In Table 9.11 .l WC prcscnt the (:onverged rumcric:al solution 71.1 ( k )  
obtaincc1 by taking N = 1 for the scvcral diffcrcnt values of K .  

Table 9.11.1. 

0.627196585 
0.557790149 

Example 9.11.2. Consider the boundary value problem (9.2.16), (9.2.17) 
with a = /3 = 1. For this problem u1(0) = 0 is already known and we 
choosc ,u2(0) = 0.001, and apply the method of adjoints i n  an iterative 
way for the several different values of K .  The nurnerical solution uI(k) 
for the fourth iteration is presented in Table 9.11.2. 

Table 9.11.2. 

1 
K 99 49 9 4 

0.2 

-0.10923457 -0.109159129 -0.108925786 0.6 
-0,109234569 -0.109159129 -0.108925786 0.4 

-0.0732678385 -0.0732662139 -0.0732143313 -0.0730539075 
-0.109236932 

0.8 -0.0730539075 
-0.109236932 

-0.0732143314 -0.0732662144 -0.0732678385 
1.0 5.903402213 - 10 -7.430571723 - 10 -1.35814711E - 10 6.184563976 - 11 
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I 199 I Exact 1 
-0,0732682461 I -0.0732683791 

I Solution 

l -0,109237524 
-0.109237525 I -0.10923772 I -0,10923772 

-0.0732682478 
0.0 -1.489809173 - 09 

-0,0732683791 

9.12. Invariant Imbedding Method 
Consider the difference system (1.2.8) on IN(0,K - 1) together with 

the boundary conditions 

(9.12.1) g(u(0)) + h(u(K)) = 1, 

where g arid h map R" into R" and 1 is the known vector. 
We shall vary K bet,wccrl 1 and K1 (for simplicity, WC will assuIrle 
that K1 = W) and 1 i n  R" to irrlbcd thc problem (1.2.8), (9.12.1) 
into a family of similar problems. Throughout, WC shall assum: that each 
suc:h boundary value problenl has a Imiquc solution. Since the solution to 
the initial value problem for (1.2.8) exists and is luliquc for k E W, the 
solution of the boundary value problern car1 be c:ontirlmd to all of IN. 
This solution we shall denote by u(k, K ,  1) to erriphasize its dcpcnc1cnc:e 
on K and 1. The method of invariant irnbedding seeks to replace (1.2.8), 
(9.12.1) by initial value prohlcrns. For cxarnplc, if we know the final value 
u ( K ,  K ,  1) of the solution of (1.2.8), (9.12.1) and in addition if the backward 
Cauchy problern for (1.2.8) is uniquely solvable, then WC can solve ( 1 . 2 4 ,  
(9.12.1) by backward recursion. The problem now is to find u ( K ,  K ,  1). 
Using invariant imbedding, we set up a difference equation for r ( K ,  1) = 
u ( K ,  K ,  1). Under certain conditions 011 g and h, we can determine a 
complete set of initial conditions for this equation. Once this is done, solving 
the original boundary value problem is reduced to solving two initial value 
problems. 

Theorem 9.12.1. Let u(k, K ,  1) and r ( K ,  1) be as above, and assume 
that the backward Cauchy problem for (1.2.8) is uniquely solvable. If the 
equation u(K  + 1, K + 1,11) = u ( K  + 1, K ,  1) can be solved uniquely for 
11, then the functions u (k ,K , l ) ,  r (K , l )  satisfy the difference equations 

(9.12.2) u(k, K + 1,1+ h ( f (K ,  r ( K ,  1))) - h( r (K ,  1))) = u (k ,  K ,  l) ,  
k E W(0, K )  

(9.12.3) u(k, k,l)  = r(k,l) 

(9.12.4) r ( K  + 1,1+ h(f(K, r ( K ,  1))) - h( r (K ,  1))) = f (K ,  r ( K ,  1)). 

In addition, if g + h has an inverse, then r ( K ,  1) has the initial value 

(9.12.5) r(0,l) = (g + h)-'(l). 
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Proof. Consider u(k, K ,  1) and u(k, K + 1, l l ) .  In order that u(k, K + 
1 , 1 1 )  constitutes the unique extension of u(k, K , l ) ,  it is necessary and 
sufficient that u(K + 1, K ,  1) = u(K + 1, K + 1, ll) .  This follows from the 
cxistencc and uniqueness of solutions to t,he backward Cauchy problem. 
By assumption, we can pick a unique l1 satisfying u(K + 1, K ,  1)  = 
u(K + 1, K + 1, l l ) .  With this choice of 1 1 ,  we arrive at  thc fundamental 
relation 

(9.12.6) u(k,K + 1,11) = U(k,K,l), k E W 

From (1.2.8), we get that 

(9.12.7) u(K + l , K , l )  = f (K ,u(K,K , l ) ) .  

Substituting this in (9.12.6) with k = K + 1 gives 

(0.12.8) u ( K +  1 , K +  l$) = f (K ,u(K,K , l ) ) .  

Using the definition of r(K,  l ) ,  (9.12.8) becorrlcs 

(9.12.9) r(K + 1,11) = f (K,  r(K, l)). 

We now eliminate l 1  from (9.12.6), (9.12.9). From (9.12.1), we get 

(9.12.10) g(u(0,K + 1 , 1 1 ) )  + h(u(K + l , K  + ],l1)) = l l .  

But u(K+1, K+1, l') = f (K,  u ( K ,  K+1, 11) ) ,  arid putting k = K ,  k = 0 
in (9.12.6) gives 

r (K, l )  = u ( K , K , ~ )  = U ( K , K S I , ~ ~ )  

and 
s(K, l)  = U(O,K,l) = u(0,K + 1 , l l ) .  

Using these relations in (9.12.10), to obtain 

(9.12.11) g ( s ( K ,  1)) + h(f(K, r(K,  1))) = l l .  

Substituting this into (9.12.6), (9.12.9), we get 

(9.12.12) u(k, K + 1, g ( s ( K ,  1) )  + h(f(K, r(K,  1 ) ) ) )  = u(k, K ,  1) 

(9.12.13) r(K + 1, g ( s ( K ,  1) )  + h(f(K, r(K, 1 ) ) ) )  = f (K ,  r(K,  1)) .  

From the definition of s(K,l) and (9.12.1), we get 

(9.12.14) g(s(K,  1) )  = 1 - h(r(K, 1)). 
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Putting this into (9.12.12), (9.12.13) gives (9.12.2), (9.12.4). To get 
(9.12.5), we put K = 0 into (9.12.1), giving g(r(0,l)) + h(r(0,l)) = 1. 
Using the fact that g + h has an inverse immediately leads to (9.12.5). I 

Remark 9.12.1. Equations (9.12.2) ~ (9.12.5) can be viewed as the 
fundarrlerltal initial-valuc formulation of (1.2.8), (9.12.1). It  is a single- 
sweep method in that recursion is carried out in the direction of increasing 
k only. 

Theorem 9.12.2. Let the function u(k, K ,  1) be defined by the initial 
value problems (9.12.2) - (9.12.5). Assume also that the Cauchy problems 
for (9.12.2), (9.12.4) have unique solutions. Then, u(k, K,1) satisfies 
(1.2.8), (9.12.1). 

Proof. Define 

(9.12.15) v(k ,K, l )  = u(k + l , K , l )  - f (k,u(k,K, l)) ,  k E IN(0,K) 

and 

(9.12.16) l1 = 1 + h(f(K, r(K,  1 ) ) )  - h(r(K, 1)) .  

From (9.12.15), we get 

(9.12.17) v ( k , K  + 1 ,11)  = ~ ( k  + 1,K + 1,l') - f (k,u(k,K + 1,l')). 
Because of (9.12.2), the above equation is the same as 

(9.12.18) ~ ( k ,  K + 1 , 1 1 )  = ~ ( k  + 1, K ,  1) - f(k,u(k, K,1)) = ~ ( k ,  K, l ) .  
Similarly, we find 

(9.12.19) v(k, k,l) = u(k + l , k , l )  - f(k,u(k,k,l)) 
= u(k + 1, k + 1,l') - f(k, u(k, k ,  1) )  
= r(k+ 1 , 1 1 )  - f(k,r(k,l)) = 0, 

where we have used (9.12.4) in deriving (9.12.19). Therefore, v(k ,K, l )  
satisfies (9.12.2) with the initial condition zero. B y  the assumed uniqueness 
of the initial value problem for (9.12.2), we see that v ( k ,  K ,  1)  = 0, and 
so u(k, K,1) satisfies (1.2.8). 

To obtain (9.12.1), we define 

(9.12.20) w(K ,  1) = g(u(0, K,1)) + h(r(K, 1))  - 1. 

Now, using (9.12.2) and (9.12.4), we see that 

w ( K  + 1, l') = g(u(0, K + 1,l')) + h(r(K + 1,l')) - l1 

= g(u(0, K ,  1) )  + h(f(K, r(K, 1 ) ) )  
-1 - h(f(K,  r ( K ,  1) ) )  + h(r(K, 1))  

= g(u(0, K ,  1) )  + h(r(K, 1))  - 1 = w(K ,  1) .  
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Also, using (9.12.3) and (9.12.5), we get 

w(0,l)  = g(u(O,O, 1)) + h(r(0,l)) - 1 = 1 - 1 = 0 

Therefore, we see that w ( K , l )  satisfies (9.12.2) with k = 0 and initial 
condition zero. Again using the uniqueness assumptions, WC get w(K ,  1) = 
0, and consequently g(u(0, K ,  1)) + h(u(K, K ,  1)) = 1. I 

9.13. Problems 

9.13.1. With respect to the boundary value problem (1.6.13), (1.6.14) let 
there cxist a positive constant T and Q = sup{If(tk,u.)I : k E W(0, K + 
l), 1 u  5 2 ~ ) .  Further, let max{lAl,1B1} 5 T and (p - 0) 5 ( S T / Q ) ~ / ~ .  
Show that the problem (1.6.13), (1.6.14) has at least one solution. 

9.13.2. With respeck to the bolmdary valuc problem (1.6.13), (1.6.14) 
assume that for all k E W(0, K + 1) and 71. E R, I f ( t ~ : , u ) I  5 CO + ~ 1 1 7 6 1 ~ ,  

where 1:0 and cl are normcgativc constants and 0 < CY < 1. Show that 
the problem (1.6.13), (1.6.14) has at least one solution. 

9.13.3. With respect to the boundary value problem (1.6.13), (1.6.14) as- 

sume that for all k E W(0, K + l )  and TI. E S, ( f ( t k , u ) l  < L u,-A-- 1 Kt1 
t q ,  where L and q are norlnegative constants such that 

h2 10 + 2cos L 
(9.13.1) Q = -  ( 

12 4 sin2 x 2(K+1) 

u(k) E B(0,K + 1) : u ( k ) - A - -  K + l  

q sin - 
K + l  

. Show that the problem (1.6.13), (1.6.14) has at least one 

solution in S. 

9.13.4. Let in Problem 9.13.3, S = R, q = 0 and A = B = 0. 
Show that u ( k )  = 0, k E W(0, K + 1) is the only solution of (1.6.13), 
(1.6.14). Further, show that in this conclusion the inequality (9.13.1) is the 
best possible. 

9.13.5. With respect to the boundary value problem (1.6.13), (1.6,14) 
assume that for all IC E W ( 0 , K  + 1) and u,v  E S, I f ( t k , u )  - f ( t ~ : , v ) l  
Llu - v ( ,  where L is a nonnegative constant satisfying (9.13.1), and S = 

~ ( k )  E B(O,K+l) : u ( k ) - A - -  K + l  
sup 
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I f  ( t l ,  A + =e) sin &} . Show that (1.6.13), (1.6.14) has aunique 

solution u(k)  is S. Further, show that the iterative scheme 

WP+'(k + 1) - 2V,"+l(k) + ?L"+'(k - 1) = -h,2(f(t&l,um(k - 1)) 
1 
12 

+ lo f ( tk ,u"(k) )  + f(tkfl,U"(k + 1))) 
um.+l(O) = A, um,+'(K + 1) = B, 'm = 0 , ,  1 . . . 

where uo (k )  = A + - 
K + 1  

k converges to u ( k ) ,  and an estimate on the 

rate of convergence can be given by 

B - A  

lu(k) - u.myk)l 5 e y l -  e)-'(@ - cy)2 X 

1 

9.13.6. With respect to the boundary value problem (1.6.13), (1.6.14) 
assume that the function j ( t ~ : ,  U,) is nonir~crcasing i n  U,,  and let, there 
exist functions U'( k )  and wo ( k )  such that U'( k )  5 w o (  k )  for all k E 
N(0, K + 1) and 

uO(k+l) - 2u.O(k) +uO(k-l)  2 " h 2 ( f ( t ~ : " l , u . 0 ( k - l ) )  + l O f ( t k , . O ( k ) )  

V O ( k + l )  - 2VO(k) + 11y-1) 5 "h2( f ( tk"1 ,VO(k"1))  + l o f ( t k : , V O ( k ) )  

+f(tl;+1,v0(k-f 1))), k E N ( 1 , K )  

1 
12 

+f(tL:+l,  ?ro(k: + 1))) 
1 

12 

~ ' ( 0 )  5 A 5 wo(0) ,  uo (K  + 1) 5 B 5 v o ( k  + 1). 

Show that the sequences {u"(k)},{v"(k)} generated by the iterative 
schemes 

,"+l(k + 1) - 2U"+l(k) + P + ' ( k  - 1) = " h 2 ( f ( t k " 1 , U " ( k  - 1)) 

."+l(k + 1) - 2V"+l(k) + ."+'(k - 1) = " h 2 ( f ( t k " l , V " ( k  - 1)) 

1 
12 

+ l o f ( t k , u " ( k ) )  + f(tk:+1,urn.(k + 1))) 
1 
12 

+ lOf( tk: ,?/"(k))  + f ( t k f l , W " ( k  + l))), k E N(1,K) 

u"+'(O) = A = ~ ~ , + ~ ( 0 ) ,  u"+'(K+ 1) = B = w"+ l ( l c+  1) 

converge to the solutions u ( k ) ,  ~ ( k )  of (1.6.13), (1.6.14). Further, show 
that 

W.O(k) 5 u1(k )  5 .'. 5 u."(k) 1. .'. 5 u ( k )  5 w(k) 5 '.' 
5 V"(k) 5 . .' 5 V y k )  5 V O ( k )  
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and each solution w ( k )  of this problem which is such that uo(k) 5 w ( k )  5 
satisfies u ( k )  5 w(k) 5 w ( l ~ ) .  

9.13.7. For the continuous boundary value problem (9.2.12) instead of 
(9.2.15) consider the discrete analog (1.6.13), (1.6.14) and as in Example 
9.2.1 use Theorem 9.2.2 to this discrete problem to discuss the existence, 
uniqueness and the convergence of the Picard iterative scheme. 

9.13.8. For the continuous boundary value problem y” = e“,v(O) = 
y(1) = 0 consider the discrete analog (1.6.13), (1.6.14) and apply the 
method of complerrlentary functions and the method of adjoints in an iter- 
ative way, and compare the obtained nurnerical results with those of pre- 
sented in Table 9.11.2. 

9.13.9. Consider the boundary value problem 

(9.13.2) 

u(k + 1) - 2u(k )  + u(k - 1) = 
(K+1)2 f ( L . u ( k ) ) ,  K + 1  k E W(1,K) 

(9.13.3) ~ ( 0 )  = C, u(K + 1) = d 

which has an immediate relation with the continuous boundary value prob- 
lem yl’ = f(t,y),  y(0) = c, y(1) = d .  Let r E IR: be a given positive 
vector and let there exist a q E Rf such that for all k E N(1, K )  and 

Further, let max{lcl, [dl} 5 r and -g 5 r. Show that (9.13.2), (9.13.3) 

has at least one solution in Bl(0, K + 1). 

9.13.10. Consider the boundary value problem (9.13.2), (9.13.3) and 

assume that for all k E W(1, K )  and U E R”, iji (-,U) k ~ 5 

pi + x q i ; l ~ j I ~ ( ~ , j ) ,  1 5  i 5 n where pi, q i j  and a ( i , j ) ,  1 5 i ,  j 5 n 

are nonnegative constants and a( i , j )  < 1. Show that (9.13.2), (9.13.3) 
has at least one solution. 

l 

8 

K + l  
n 

j=1 

9.13.11. Consider the boundary value problem (9.13.2), (9.13.3) and as- 

sume that for all k E W(1, K )  and U E S = u(k) E B(0, K + 1) : lu(k) 
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d - c  1 
k 5 - z- 

- - K + 1  I ;T [ 4 ( K  + sin2 M] qsin &} , 
d - c  

ki + q, where M is an n x n 

nonnegative matrix with 

(9.13.4) 

and q E R;. Show that (9.13.2), (9.13.3) has at least one solution in S. 

9.13.12. Let in Problem 9.13.11, S = R", q = 0 and c = d = 0. 
Show that u(k) = 0, k E IN(0, K + 1) is the only solution of (9.13.2)1 
(9.13.3). Further, show that in this conclusion the inequality (9.13.4) is the 
best possible. 

9.13.13. Colisider the hourdary value problem (9.13.2), (9.13.3) and 

assume that for all k E W(1, K) and u1,u2 E S = u(k) E B(0, K + 1) : 

5 M l u '  - u21, where M is an n x n nonnegative matrix satisfying 
(9.13.4). Show that (9.13.2), (9.13.3) has a unique solution u(k) in S. 
Further, show that the iterative scheme 

U*l(k + 1) - 2urn,fl(k) + umfl 
(k-1) = 1f ( " . u " ( k ) )  k 

(K+1)2 K f l  
= c, u l F L f l  ( K t l )  = d, m,=0,1, 

where uo(k) = c + - 
K + l  

k converges to u(k), and an estimate on the 

rate of convergence can be given by 

d - c  

Iu(k)-u'"(k)I 5 1 1 M] 

4(K+1)2 sin2 & 4(K+1)2 sin2 & 
1 I! 

x - sup If 
(-,U'((*)) 1 sin K + 1 .  27r t€W(l,K) K + 

k7r 
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9.13.14. Let v(k) ,  w(k )  E B(0,  K + 1) bc two functions with v(k) 5 
w(k) on lN(0,K + 1) and 

v(k+ l )  - 2v(k) + v(k- l )  2 
( K + 1 ) 2  f ( L I V ( k ) )  K + 1  , 

k 
( K  + 

also v(0) 5 c 5 w(O), v ( K  + 1) 5 d 5 w ( K  + 1). Further, let 

f (A, U) be quasirnonotonc nonir1c:rcasing i n  U, i.e. for fixed k ,  

fi (h, U) is nonincreasing in uj for 1 5 j 5 n,, j # i .  Show 

that the boundary value problem (9.13.2), (9.13.3) has at least one solution 
u(k)  such that v(k) 5 u(k )  5 w(k) .  

9.13.15. The solution v(k) of the boundary value problem 

(9.13.5) v (k+ l )  - 2v(k) + v ( k - l )  + 1 k 
(K + 1)2g (m m )  = 0, 

k E W(1, K )  
(9.13.6) ~ ( 0 )  = cl, v(K + 1) = dl 

is said to be m,azimalif for any other solution w(k) of (9.13.5), (9.13.6) the 

inequality w(k) 5 v(k) holds for all k E IN(O,K+l). Let g - 
be nonnegative and nondccreasing in v for all ( k ,  v )  E IN(1, K )  x R;. 
Further, let c1 and d' be nonnegative and there exists a r E R;, r > 0 
such that for all k E W(0, K + 1) 

( K ?  

where g(k,e) is defined in (8.10.3). Show that the scqucnce {v"(k)} 
generated by 

converges to the maximal solution v(k) of (9.13.5), (9.13.6) and v(k) E 
S, = {v(k) E B(O,N + 1) : llV(k)llc 5 r}. 
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9.13.16. Let the function g and the vectors c’ and dl be as in 
Problem 9.13.15. Further, let IcI 5 c l ,  Id1 5 dl arid for all (k,u) E 
JN(1,K) X R”, I f  (-,U) k ~ 5 g (m, k 1.) . Show that for any 

solution u(k) E S, of (9.13.2), (9.13.3) the inequality lu(k)l 5 v(k) 
holds for all k E N(0, K + l), where v(k) is the maximal solution of 
(9.13.5), (9.13.6). 

9.14. Notes 

The importance of generalized normed spaces in the study of svsterrls of 
rlorllinear equations has txen recognized in numerous recent publications, 
e.g. Agarwal [4,7- 10,13,14], Bernfeld and Lakshmikantham [22], Ortcga and 

Rheinboldt [33], Perov and Kibcrlko [38], Schriider [43], Scda [44], Shrid- 
haran and Agarwal [46,47], Urabc [50,51], Yanlamoto [58 611. The results 
c:ollcctetl i n  Section 9.1 arc available at scveral places, c.g. Agarwal [4], 
Bernfeld and Lakshmikantllarn [22], Uratic [SO]. All the results i n  Sections 
9.2 9.6 arc from Agarwal [5,6,12]. Eloc and Grirrm [23] and Eloc [24] 
form the basis of Theorerris 9.7.1 and 9.7.3. Wforlotone convergence of peri- 
odic boundary value problems presented in Section 9.8 is due to Wang and 
Agarwal [55]. The convergerlce of the Newton’s method and the approxi- 
mate Newton’s method discussed i n  Sections 9.9 and 9.10 are taken from 
Agarwal [13]. Initial value methods for nonlinear boundary value prob- 
lems presented in Section 9.11 arc from Agarwal [6,12]. Theorems 9.12.1 
and 9.12.2 are due to Golbcrg [as]. Discrete boundary value problems for 
rmllirlcar systems have also been discussed in Agarwal et. al. [16,18,20,34- 
36,56,57], Falb and DeJorlg [as], Pao [37], Rodriguez [40- 421, Wang [53,54], 
and Zhuang, Chcng and Cheng [62]. The solutions of most of the problems 
given in Section 9.13 can be deduced from the results proved in Agarwal 
[9,11]. Results related to this chapter for the continuous boundary value 
problems are available i n  Agarwal et. al. [l-3,14,15,17,19], Falb and De- 
Jong [25], Fujii and Hayashi [27], Hayashi [as], Mitsui [SO], Ojika and Kasue 
[31], Ojika [32], Shintani and Hayashi [45], Urabe [48,49,52], and Yamamoto 
[GO]. While attention for the contirluous two point boundary value problems 
has been focused at several places, WC refer to the monographs of Aschcr, 
Mattl1ei.j and Russell [all, Roberts and Shipmarl [39]. 
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Chapter 10 
Miscellaneous Properties of 
Solutions of Higher Order 

Linear Difference Equations 

Discorljugacy property of a linear homogeneous differential equation al- 
lows the possibility of interpolation by its solutions. While this property 
has txcn investigated thoroughly for the differential equations, its discrete 
analogs are not fully developed. In this chapter we shall introduce dis- 
c:orl,jugacv, right discorljugacy, left disc:orljugacy, right disfodity, event11al 
discorljugacy and eventual right disfocality for the linear homogeneous dif- 
ference eqlmtions, and for each such concept state several results whic:h 
provide xlecmsary and sufficient conditions. This includes Polya’s factoriza- 
tion, and interrelationship between D Markov, D--Fekete and D Descartes 
systems. This is followed by the statement of the discrete analog of a result 
due to Elias, which bounds the number of certain types of zeros of solu- 
t,ions of linear homogeneous difference equations on a discrete interval. A 
classificatioll of solutions of these equations based 011 their behavior in a 
neighborhood of infinity is also included. Then, we provide explicit repre- 
sentations of polynomials passing through the given boundary conditions 
which also include (1.5.9) ~ (1.5.14). Such polynomials are called discrete 
interpolating polynomials. This is followed by the explicit representations 
of Green’s functions for several higher order boundary value problems. For 
these Green’s functions we state several equalities and inequalities whose 
continuous analogs have proved to be very useful in providing disconjugacy 
tests and distance between consecutive zeros of the solutions of higher or- 
der differential equations. The explicit forms of interpolating polynomials 
and those of Green’s functions help i n  establishing maximum principles for 
functions satisfying higher order inequalities. W e  state some such maxi- 
mum principles. Finally, in this chapter we have included several results 
which provide error estimates in polynomial interpolation. Some of these 
results will be used in the next chapter to study higher order boundary 
value problems. To limit the size of this volume the proofs of the theo- 
rems i n  this chapter have not, been given. However, we observe that almost 

744 
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all the proofs require special devices and no unified approach seems to be 
available. 

10.1. Disconjugacy 

Throughout, this chapter unless otherwise stated for the nth order 
linear difference equation (1.2.4) we shall assunle that the coefficients a i ( k )  
are defined on W(o, b - l), a , ( k )  1 and ao(k )  satisfies 

(10.1.1) ( - l ) "a . o (k )  > 0. 

Further, whcncvcr rlcccssary we shall extend the domain of the coefficients 
a i ( k )  to Z by defining a i ( k )  = .,(a) for k < 0. and a,.;(k) = ai(b - 1) 
for k 2 b. 

Definition 10.1.1. The difference eqlmtion (1.2.4) is called T discon,,jugate 
011 IN(a,, b- 1 +n) if no rlorltrivial solution has n, nodes on N(u, b- 1 + n). 
Definition 10.1.2. The diffwence equation (1.2.4) is called disconjugate 
on N(a, b - 1 + n,) if 110 nontrivial solution has n, gcncralized zeros on 
W(a,,  b - 1 + n,). 
Theorem 10.1.1. Condition (10.1.1) is ncccssary for (1.2.4) to be dis- 
conjugate on W(n, h - 1 + n,). 
Theorem 10.1.2. The difference equation (1.2.4) is T disconjugate on 
N(a, b - 1 + n,) if and only if it is discor1,jugate on N(a, h - 1 + n). 
Theorem 10.1.3. The difference equation (1.2.4) is discorljugate 011 

N(a, b -1 + n) if and only if u,(k) 0 is the only solution of (1.2.4) 
having p (> 0) successive zeros at k = a ,  a + 1, . . . , a + p - 1 and n, - p 
sw:cessive generalized zeros at k = c, c+l,. . . , c+n,-p- 1 E W(a ,  b- 1 +n.) 
for some c 2 a + p. 
Theorem 10.1.4. The difference equation (1.2.4) is disconjugate on N(a ,  
b - l + n )  if and only if there exists a fundamental set of solutions u,1 ( k ) ,  . . . , 
~ , ~ , ( k )  of (1.2.4) on N ( a , b - l + n )  such that detC(u. l , . . . ,~l i ) (k )  > 0 on 
N ( a , b + n - i ) ,  l < i < n , .  

Theorem 10.1.5 (Polya's Factorization). The difference equation (1.2.4) 
is discoI1.jugate on N(a, h- l+n) if and only if there exist positive functions 
h ,,,, ( k ) ,  k E W ( a , b  - 1 + n, - i ) ,  0 5 i 5 n such that 



746 Chapter 10 

Corollary 10.1.6. The difference cquation 

(10.1.3) An71,(k) = 0, k E N(u,  b - 1) 

is disc,orljugatc on IN(u, b - 1 + m,). 
Theorem 10.1.7. Let 0 5 h,(k) 5 ,9(k), k E N(a ,  h -  1) and assume that 
the equations L [ u ( k ) ]  = 0 and L [ u ( k ) ]  +g( k ) u ( k )  = O are disc;onjugatc 011 

IN(a, b -  1 +TI). Then, the cquation L [ u ( k ) ]  + h , ( k )u (k )  = 0 is disc:or?jugate 
on N(a. ,  b - 1 + n.). 
10.2. Right and Left Disconjugacy 

Definition 10.2.1. Let N(c, d )  C N(a, b - 1 + v,) with d - c + 1 2 R ,  
and let 1 <_ j 5 R - 1. Equation (1.2.4) is said to t x  righ,t ( j , n  - j )  
discon~jugate on IN((:, d )  provided there is 110 nontrivial solution 7r(k) of 
(1.2.4) and integers CY, [j E IN((:, d )  with (r < r r + j  5 5 /j+n-j-l 5 d 
such that 

(10.2.1) 
u ( t r + i )  = 0, o s i s j - l  
u ( / j + Z )  = 0, O < i < n , - j - 2  ( i f n , - j > 2 )  

and 7r(k) has a generalized zero at / j  + n. - j - 1. Similarly, WC say 
that (1.2.4) is left ( j , ~  - j )  di.sconjw.gate on N(c,d) provided thcre is 
no nontrivial solution u ( k )  of (1.2.4) and integers CY,  E IN(c ,d)  with 
N < cy + j 5 [j 5 [j + n - j - l 5 d such that 

(10.2.2) 
u.(cy+i) = 0, O < i < j - - 2 ( i f j > 2 )  

w@+Z) = 0, O < i < n - j - l  

and u(k) has a generalized zero at cy + j - 1. 

Remark 10.2.1. If (1.2.4) is disconjugate 011 IN(c, d) then it is right 
( j ,  n - j )  disconjugate for 1 5 j 5 n - 1. However, right ( j ,  n - j )  
discor1,jugacy for some fixed 1 5 j 5 n, - 1 does not imply right (n - j ,  j )  
disconjugacy or disconjugacy. For example, the difference equation u ( k  + 
3) -1r(lc+2) - u ( k +  1) -u( lc)  = 0 is right (2 , l )  disconjugate on N(O,3), 
but there is a solution w,(k) with ~ ( 0 )  = 7/42> = 0, ~(1) = u(3) = 1 so 
that w.(k) has a generalized zero at k = 3. Hence, this difference equation 
is not right (1,2) disconjugate or disconjugate on IN(0,3). 

Theorem 10.2.1. If the difference equation (1.2.4) is right ( e ,n  - e )  
disconjugate on N(a ,  b - 1 + n), where li E { 1,. . . , n - l} is fixed, then 
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for k E l N ( a , b - j )  and j = 1,2;. . ,b- a. (Here, aj(k) 0 for j > n 
or j < 0.) 

Theorem 10.2.2. Let I! E {l, ... ,v, - l} be fixed, and let (10.2.3) hold 
for k E N(a ,b- j )  and j = 1,2;..,b-a,. Then, (1.2.4) is right (P,v,-!)  
tliscor1jugate on W(n, b - 1 + v,). 

Theorem 10.2.3. A necessary and sufficient condition for (1.2.4) to he 
lcft (P,v,-I!) discoI1jugatcorl IN(a ,b - l+n)  forafixed P E { l ; . . ,n , - l}  
is (10.2.3) for k E N(a ,  b - j )  and j = 1 ,2 , . . . , b  - a,. 

Theorem 10.2.4. The following are equivalent: 

(i) (1.2.4) is tliscorljugatc on W(u, b - 1 + v,) 

(ii) (1.2.4) is right (P, n, - I!) tliscor1,jugate on W(a, h - 1 + v.) for 
P= l ; . . , n , - l  

(iii) (1.2.4) is lcft ( P , ”  - P )  disc:oIljugate 011 W(a. ,  b - 1 + v.) for I! = 
1 , . . . , n , - l  

(iv) (10.2.3) hold for P = 1, ... , n  - 1 and k E N(a ,  b - j )  where 
j = 1 ,2 , . . . , b-a .  . 

Theorem 10.2.5. Let (10.2.3) hold for k = a ,  P = 1,.  . . ,R - 1 and 
j = 1,2, . . . , 0 - a.  Then, (1.2.4) is discorljugat,c on N(a ,  b - 1 + n). 
Theorem 10.2.6. Let u j ( k , e )  be a solution of (1.2.4) satisfying the 
partial set of initial conditions 

(10.2.4) U j ( I ! + i , I ! )  = S,,, 0 < i < j  

for 1 5 j < n - 1. Then, 

(i) the difference equation (1.2.4) is right (j, n. - j )  disc:oIljugate on 
W(c, d) if and only if 

(10.2.5) tlctC(’L1J(JC,e),..’,7/,n_,(k,e)) > 0 

for c < t < k - j < d - n , + l  
(ii) the difference equation (1.2.4) is left ( j ,  n - j )  discorljugate on W(c, d) 
if and only if 

(10.2.6) ( - 1 p - j )  detC(21,-j(k,P),’..,U,-l(IC,P)) > 0 

for c < k < I ! - j < d - - , + l .  
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Corollary 10.2.7. If (1.2.4) is right ( j ,  n - j )  discorijugate on N(c, d)  
then there exist solutions 7 ~ ~ ( k ) ,  . . . , ~ , ~ - ~ ( k )  of (1.2.4) and a linear differ- 
ence equation L1 [ ~ ( k ) ]  = 0 of order j such that 

(10.2.7) L[w.(k)] = L.IL2[u(k)],  k E IN(c,d - n.) 

where L2[u(k)]  = detC(,u(k),7~j(k),...,w. , - l ( k ) ) .  

Definition 10.2.2. Let 1 5 j 5 n,- 1. Equation (1.2.4) is said to be pj 
di,sco,n,,jw,gate on W(c, d )  provided there docs not exist a nontrivial solution 
~ ( k )  arid an integer cy E lN(c, d+l-n,) such that u(cw+i) = 0, 0 5 i 5 j-1 
and when ‘restricted’ to W(c + j ,  d ) ,  u ( k )  has n, - j generalized zeros. 

Remark  10.2.2. To illustrate the rrleaning of the word ‘restricted’ in 
the above definition, consider the functiorl v ( k )  defined on W(0, 2) by 
u(0)  = 1, TI.( 1) = 0, and ~ ( 2 )  = 1. This func.tion has generalized zeros at 
k = 1 and k = 2, but when rcstrictcd to W(1,2), u ( k )  has a generalized 
zero only at k = 1. 

Theorem 10.2.8. Let 1 5 j 5 n - 1. Then, (1.2.4) is right (1,n, - l) 
disconjugate on W ( c , d )  for j 5 1 5 R - 1 if and onlv if (1.2.4) is 
p3 tiisc:onjugate on W(c, d ) .  

Theorem 10.2.9. Assume that ~ ( k )  is a solution of 

(10.2.8) L [w (k ) ]  2 g(k)w(k), k E W(a. ,b -  1) 

with ~ ( k )  2 0 on W ( a , b  - I), and z ( k )  is a solution of 

(10.2.9) L [ z ( k ) ]  5 h(k)z(k) ,  k E W ( a , b  - 1) 

swh  that z(a + i) = w(a  + i), 0 5 i 5 n - 1. If 

(10.2.10) g(k)  2 h(k), k E W(a ,b  - 1) 

and the equation 

(10.2.11) L[v(k ) ]  = h(k)v(k), k E N ( a , b -  1) 

is right (n, - 1,l) disconjugate on N ( a ,  b - 1 + n), then ~ ( k )  2 z ( k )  
for all k E W ( a ,  b - 1 + n). 
Corollary 10.2.10. If (10.2.11) is right (n - 1,l) disconjugate on 
N(a, b - 1 + n) and (10.2.10) holds, then the equation 

(10.2.12) L[w.(k)] = g ( k ) u ( k ) ,  k E W(a, b - 1) 

is right (n. - 1,l) disconjugate on lN(q b - 1 + n). 
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Theorem 10.2.11. Assume that n. is even (odd), w(k )  is a solution of 
(10.2.8) and z ( k )  is a solution of (10.2.9) such that z(a+i )  = w(a+i ) ,  0 < 
and (10.2.11) ((10.2.12)) is left ( l , n , -  1) disconjugatc on N ( u ,  b -  1 +n) ,  
i 5 TI - 1. If ~ ( k )  2 0 ( ~ ( k )  2 O), k E IN(a,b - 1 + V,), (10.2.10) holds 

thcn (-l)"w(k) 2 (-l )"z(k) ,  k E N(a ,  b - 1 + R). 
Corollary 10.2.12. If R is even (odd), (10.2.10) holds, arid (10.2.11) 
((10.2.12)) is left ( l , n , - l )  discoqjugate on N(a, b - l + n ) ,  then (10.2.12) 
((10.2.11)) is left (1,n - 1) discoIijugatc 011 N(a ,b  - 1 + n ) .  

Definition 10.2.3. Let N(c, d )  C N(a, b - 1 + n) with d - c + 1 2 R, 
and let 1 5 j 5 n,- 1. Equation (1.2.4) is said to be ( j , n- j )  di,sconjw,gate 
on N(c, d )  provided it is both left and right (j, n, - j )  discoI1jugate on 
N(c, d ) .  

Theorem 10.2.13. Assume that w(k )  is a solution of (10.2.8) and z ( k )  
is a solution of (10.2.9) with z ( k )  2 0 on N(a, h - l), and 

z ( a + i )  = u ~ ( a + i ) ,  O < i < n - 2  

z ( b  - 1 + n )  = w(b - 1 + n,). (10.2.13) 

If (10.2.11) is right (n - 1 , l )  discor1jugatc on N ( a ,  h - 1 + n,), (10.2.12) 
is (TI - 2,2) disconjugate on N(a, b - 1 + n ) ,  and (10.2.10) holds, then 
z ( k )  2 w(k )  on N(a ,  b - 1 + n). 
Corollary 10.2.14. If (10.2.11) is right ( n  - 1,l) discorljugate on 
N ( a ,  b - 1 + n ) ,  (10.2.12) is ( n  - 2,2) disconjugate on N(a ,  b - 1 + n), 
and (10.2.10) holds, then (10.2.11) is right (n - 2,2) disconjugatc on 
N(a, b - 1 + n). 

Theorem 10.2.15. Let 1 5 j < n - 1. Assume that w ( k )  is a solution 
of (10.2.8) and z ( k )  is a solution of (10.2.9) with 

z ( a + i )  = w ( a + i ) ,  O < i < j - l  
(10.2.14) 

z ( b - l + n , - i )  ~ ( b - l + n - i ) ,  O < i < n - j - l .  

Further, in addition to (10.2.10) one of the following holds 

1. w(k )  2 0 on N(a. ,b  - 1) and (10.2.11) is either disconjugate on 
N(a,  b - 1) or ( i ,  n - i) disconjugate on N(a  + j - i, b - 1 + n + j - i) 
for j - 11.  i < n,  or 

2. z ( k )  2 0 on N ( a , b  - 1) and (10.2.12) is either disconjugate on 
N(a ,  b - 1) or (i, R - i )  discorljugate on N(a  + j - i, b - 1 + n + j - i) 
for j - l < i < n .  

Then, (-l)n+jw(k) 2 ( - l ) n , - j z ( k )  on N(a ,  b - 1 + n ) .  
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10.3. Adjoint Equations 

For the ad,joint of (1.2.4) more than one forrrnllations are possible. In  
fact, one form has already appeared i n  (2.11 .14), another form which has 
provcti to be more useful is defined as 

n 

(10.3.1) L*[?J(k)]  = (-l)n, c ai(k - i ) ?/ (k  + n - 1:) = 0. 
i =O  

Theorem 10.3.1. Let ~ ( k )  be a sollltion of (1.2.4) on Z and p be an 
integer. If q ( k )  = ni ( -k  + p  - n - i), O 5 i 5 n, thcrl ~ ( k )  = u - k  + p )  
is a solution of the adjoint diffcrcrlce equation (10.3.1). 

Corollary 10.3.2. If L [ u ( k ) ]  = 0 has const,ant c:oeffic:ients and u(k) i s  
a solution on Z, then ~ ( k )  = 7r(-k + p) is a solntion of L*[?/ (k )]  = O 
for any integer p. 

To obtain thc Lagrange's itlcntity for t,his new adjoint cquation we define 
the quasi difference operators A,, 0 5 i 5 n, as follows: 

A o ~ ( k )  = 7l(k) 

&w(k) = A ( A , - l ? ~ ( k ) )  + ( - l ) ' ~ , - ~ ( k  - n, + i ) v ( k  + i ) ,  1 5 i 5 n 

Theorem 10.3.3 (Lagrangc's Idcnt,ity). Let the functions u ( k )  and 
v(k) be dcfined on N(a ,  b - 1 + n). Thcn, for k E JN(a, b - 1) 
(10.3.2) v(k + n, )L[w.(k)]  - (- l ) "u(k )L* [v (k ) ]  

= A C ( - l ) ' & u ( k  + n - i - l )An-i-l?~,(k)  . 
r 1  i=O 1 

Let u,(k,  P), 0 5 j 5 n - 1 bc thc solution of (1.2.4) satisfying 

Then, uj(k,P)  has j zerosat t , P + l , . . . , P + j - l  and uj(t+j,C) = 1. 
Similarly, let v,(k, P), 0 5 j 5 n - 1 be the solution of (10.3.1) satisfying 

Thcn, 7 ~ j ( k , P )  has j zerosat P,C-l,...,P-j+l and v , ( P- j , j )  = (-1)i. 
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Theorem 10.3.4. Let p, q E IN(0,n- 1). Then, for t E N(a,, b -  1 +n.) 
and k E N ( a ,  b - 1) 

(10.3.5) A ” ~ , ~ ( t , k )  (-l)P+qA,-q-lv,-,-l(k: + q,t+ n. - 1). 

Theorem 10.3.5. let 0 5 j 5 n, - 1. Then, for c E N ( a ,  b - 1 + n) and 
d E IN(a, b - 1) 

10.4. Right and Left Disconjugacy 
for the Adjoint Equation 

Definition 10.4.1. Let a ( k )  bc a solution of the adjoint equation (103.1) 
whic:h is restricted to W(c, d). WC say that ~ ( k )  has a g e n e d i z e d  ze7.0 
at a E JN(c,d) provided either V ( N )  = 0, or there exists an integer 
‘ m ,  1 5 ‘ r n  5 d - cy such that ( - l ) m , v ( ~ ~ ) ~ l ( ~  + , m )  > 0 and ~ ( j )  = 0 for 
all j E IN(a + l , a  + m - I). 
Definition 10.4.2. Let d - c + 1 2 R,  and let 1 5 j 5 n. - 1. Equation 
(103.1) is said to be left ( n , - j , j )  d isconj~~gate  on IN(c,d) provided there 
is no nontrivial solution ~ ( k )  of (103.1) and intcgcrs cy, p E N(c, d) with 
cy < cy + n, - j 5 p 5 d - j + 1 such that 

and ~ ( k )  has a generalized zero at  a. Similarly, we say that (103.1) is 
r.igh,t (n - j , j )  discon,jugate on W(c, d) provided there is no nontrivial 
solution ~ ( k )  of (10.3.1) and integers a, E IN(c,d) with N < cy+n-j 5 

5 d - j + 1 such that 

and ~ ( k )  has a generalized zero at  p. 

Theorem 10.4.1. Let v j (k , t ) ,  0 5 j 5 n - 1 be the solution of (10.3.1) 
satisfying (10.3.4). Then, 

(i) the adjoint difference equation (10.3.1) is left (n - j, j) disconjugate 
on N(c, d )  if and only if 

(10.4.3) ( - l ) ~ ( ~ - ~ ) c ( U j ( k , t ) , . ’ . , l ~ ~ - l ( k , ~ ) )  > 0 
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for c < k < t - n , + l < d - n + l  
(ii) the adjoint difference equation (10.3.1) is right ( n - j ,  j )  disconjugate 
on W(c, d )  if and only if 

(10.4.4) c ( 71n ,_ j (k ,P ) , . " , 1 , n , _1 (k ,P ) )  > 0 

for c + n - j - l < P < k < d - j + l .  

Theorem 10.4.2. The following hold 

(i) the difference equation (1.2.4) is right ( j , n  - j )  discoI1jugate on 
IN(<:, d )  if and only if the adjoint difference equation (10.3.1) is left ( n - j , j )  
discorljllgate 011 W(c + j ,  d + j )  

(ii) the difference equation (1.2.4) is left ( j ,  n , - j )  discorljugatc on IN(<:, d )  
if and onlv if the adjoint difference equation (10.3.1) is right ( n  - j , j )  
discor1,jugatc on W(c + j ,  d + j ) .  

10.5. Right Disfocality 

Definition 10.5.1. Thc linear difference equat,ion (1.2.4) is said to bc 7"l,gh,t 
disfocal 011 nU(u,, b - 1 + n )  if and only if w,(k) 0 is the only solution of 
(1.2.4) on W ( a ,  b - 1 + n,) suc:h that Aj"lu,(k) has a generalized zero at 
sj, 1 < j I: n. where a < s1 5 s2 5 . . . 5 s n  5 b. 

Definition 10.5.2. Let 1 I: p 5 n and rr/ , l , .  . . , ' m p  be positive integers 
such that cy==, ' m i  = n. WC say that (1.2.4) is 'ml, . . . , m p  right disfocal 
011 W(a, b-  1 +n) if and only if u ( k )  E 0 is the only solution of (1.2.4) on 
W(a,b-l+n,)  such that, for each 1 5 i 5 p, Ai-'v,(k) has 'rn; generalized 
zeros at . s ~ , ~ + . . . + ~ , ~ ~ ~ + ~ ,  . .. , sml+...+ -,,, where a. 5 s1 < . .. < S,, in 
W ( a , b  + 71 -P), and sm.l+...+m.z-l I: ~ m , + . . . + r n ~ - ~ + 1  < ... < sml+...+,mn 

in W(a, b + n - p) for 2 5 i < p. 

Remark 10.5.1. From the discrete Rolle's Theorem 1.8.1 with respect to 
the generalized zeros it immediately follows that if (1.2.4) is right disfocal 
on IN(n.,b-l+n.), thcnitis m.l,...,m,p rightdisfocalon lN(a,b- l+n) 
for all m 1 ,  . . . , m,p. In turn, if (1.2.4) is m l ,  . . . , mp right disfocal for some 
rrt,l , .  . . , ' m p  then it is disconjugate on W ( a ,  b - 1 + n,). 

Let the functions ul(k) ,  . . . , un(k) be defined on lN(a, b - 1 + n). For 
1 5 q 5 n. and indices 1 5 il 5 . . . 5 i, 5 n ,  we define 

Dq(il,...,iq)(k) = det ( A i ~ - ' u ! ( k ) ) ,  15 j ,  t 5 9 
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where a 5 k l  5 . . . 5 k ,  in N(a ,  b + n - i,). 
Definition 10.5.3. Let the functions ul(k), . . . , u , ( k )  bc defined on 
IN(a,b - 1 + n). We shall say that ul(k),...,un(k) forms a D~-Markow 
systemon W ( a , b - l + n )  if Dq(n-q+l,...,n)(k) > 0 ,  k ~ I N ( a , b ) ,  1 5  
q Ln. Weshallcall w,l(k) ,..., u,(k) a D  Feketesyste,m,on W(a ,b- l+n)  
if Dq(i,...,i + q - l ) ( k )  > 0, k E N ( a , b +  n - i - q + l), 1 5 i 5 
n - q + 1, 1 5 q 5 n,. We shall name u1 ( k ) ,  . . . , u , , ( k )  a D-Descartes 
system on N(a, b - 1 + n.) if Dq(i1, .  . . , i , ) ( k )  > 0, k E N(a, b + n - i,) 
for all sets of indices satisfying 1 5 i l  < . . . < i, 5 n. 

Theorem 10.5.1. The following are equivalent 

(i) equation (1.2.4) is right disfocal on N(u ,  b - 1 + n,) 

(ii) equation (1.2.4) has a D-~Nlarkov systcnl of solutions ul(k), . . . ,u,,(k) 
on N ( a ,  h - 1 -+ n )  satisfving thc partial set of initial conditions 

AI,-' u.,l(a) = 0, 1 5 i 5 R - j  

(-1)J-lAn-j U . j ( U )  > 0, 1 5 j 5 n 

(iii) equation (1.2.4) has a D Fekete system of solutions on W(u ,  b -  1 +n) 

(iv) equation (1.2.4) has a D Descartes system of solutions on W ( a ,  b - 
1 +n) 

(v) u(k )  0 is the only solution of the equation (1.2.4) such that for 
each 0 5 j 5 R - 1, U,(.) = ... = An,-j-'w,(a) = 0, An-j+lu(k1) = ... = 
A"-'u(kl) = 0, a + 1 5 ICl E W(a, h ) ,  and An,-ju,(k) has a node at  IC:! 
for sonic E W(a,k1>.  

Remark 10.5.2. If (1.2.4) has a D-Markov system of solutions on 
W ( a ,  b - 1 + n,), then it does not follow that (1.2.4) is right disfocal on 
W(a ,  b - 1 + v,). For example, consider the difference equation 

(105.1) ~ ( k  + 2) - 2 ~ . ( k  + 1) + 2 ~ ( k )  = 0, k = 0,1,2. 

Let u.l(k) and w,2(k) be the solutions of (10.5.1) satisfying the initial 
conditions ul(0) = -2, Aul(0) = 1 and u,2(0) = 0, Au,2(0) = -1. For 
these solutions. we have 

k 0 1 2 3 4  
q ( k )  = D l ( l ) ( k )  -2 -1 2 6 8  

212 (IC) 0 -1 -2 -2 0 
A ~ l ( k )  = D1(2) (k )  1 3 4  2 

A.112 ( k )  -1 -1 0 2 

D2 (1 , 2) ( k )  2 4 8 16. 
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Thus, w,l(k), u2( k )  forms a D-Markov system of solutions of (10.5.1) 
on W(O,4). However, the solution 74k) = {0,1,2,2,0} is a 'right focal 
solution' of (10.5.1) on N(0,4)  since w.(O) = A742) = 0. 

Definition 10.5.4. Let r1,. . . , rn, be positive integers such that n, 2 
TI 2 ... 2 ~j >_ r3+1 2 ... >_ T ,  = 1, and T, 3 < - T ,+1+1, l < j L n - l .  
Further, let the functions u1(k) ,  . . . , ~ , ~ , ( k )  be defined on N(a ,  b -  1 + n ) .  
We shall say that u1(k), ... ,vn, (k)  forms a D Fekete s y s t em,  with, r e sp e c t  
to {T,}F=~ on W(u,  b - 1 + n,) if Dq(i, ... , i  + q - 1)(k) > 0, k E 
W(a,h+n-i-qt-l), 15 i 5 T,, 15 q 5 n. Wcshallcall u,l(k),...,un,(k) 
a D-~Des car t e s  s y s t em  with, r e sp e c t  to (rq}yTl on W ( a ,  b - 1 + n) if 

i l  < ... <ah < i 5 r,, 0 5 h, 1 5  q < n,. 

Theorem 10.5.2. The following are cquivalcnt 

(i) cquation (1.2.4) is nbl, . . . ,m1, right clisfocal 011 W ( a ,  b - 1 + n,) 
(ii) cquation (1.2.4) has a D Fekcte system with rcspcct to {T,};=~ on 
W ( a ,  b - 1 + n.) 
(iii) equation (1.2.4) has a D Dcsrartes system with respect to {T,}& 

D"+¶ ( ' . . . , ih, i, . . . 2 1  , , i + q - l ) ( k ) > O ,  k E W ( a , b + n , - i - q + l ) ,  1 5  

011 N ( a ,  b - 1 + n) 
(iv) there exists a system of solutions ul(k),...,un,(k) of (1.2.4) on 
W(a ,  h - 1 + n) such that Dq(i l , .  . . , i,; ICl,. . . , k q )  > 0 for all sets of 
indices satisfying 1 5 il 5 . . . 5 i, 5 p, and i, 5 rq-j+l, 1 5 j 5 p, 
and for all points {kj}4=1 satisfying a 5 IC, < kj+l in W(a ,  b + n  -ij+l) 
if i .  -2. - 3+1, and a 5 kj 5 kj+1 i n  N(a ,  b + n - i j+l) if i j  < i j+ l ,  1 5 
j 5 q - l , 1 5 q < n .  

10.6. Eventual Disconjugacy and Right Disfocality 

We shall consider the difference equation (1.2.4) in its equivalent form 

on W ( a ) ,  where it is assumed that bo(k)  = 1. 

Definition 10.6.1. The difference equation (10.6.1) is said to be even- 
t va l l y  disconju.gate (eventu,al ly r ight dis focal)  if there exists ko 2 a, ko E 
W ( a )  such that the equation (10.6.1) is disconjugate (right disconjugate) 
on IN(k0) .  

Let ~ ( k )  be a function defined on W ( a ) ,  and let p 2 2. If EEa(t+ 
l)...(t+p-l)o(t) converges, thenwedefine So(k ,a )  = c ~ ( k ) ,  S l ( k ,a )  = 
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00 

Si(k,(Y) = C((!. + 1 - k )  . . . (C + (2 - 1) - k ) / ( i  - l ) ! )Q(C).  
F=I: 

Theorem 10.6.1. Suppose the sums c" k i - 'b i (k ) ,  1 5 i 5 n are finite 
and C" lS,;-l(k, bi)I < 00, 1 5 i 5 n,. Then, the difference equation 
(10.6.1) is eventually discor1,jugatc as well as eventually right disfocal. 

10.7. A Classification of Solutions 

Considcr the linear nth order difference equation 

(10.7.1) L [ u ( k ) ]  + p(k) l I , (k )  = 0, k E N(a) 

whcrc p(k) is sign definite on N(Q), ard L[71(k)] = h,n , (k )A{- .  . A[h, l (k)A  
(h ,O(k )u (k ) ) ] }  with h,i(k) > 0 OII N(a.), 0 5 i 5 n,. Definc qllasi 
difference operators A,, 0 5 v 5 n,, rcc:ursivcly by Aou(k) = h,o(k)u(k)  
and A,71.(k) = h,,,(k)A[A,-,u(k)I, 1 5 v 5 n. We shall assurnc that 
(-l)n [(-1)"ny==, hi(k) +p(k)] > 0, k E N(a ) .  This condition (:orre- 
sponds to (10.1.1) for the difference equation (1.2.4). 

Assume c E IN(a). Then, we define S(w.,c+) to be the maximum 
number of sign changes i n  the sequence (A0u(c) ,  . . . , (-l)"A,w,(c)) where 
zeros are replaced by arbitrary nonzero numbers except if Aou(c) = 0 
(if and only if A,u(c )  = 0) in which case Aou(c) and (-l)"A,u(c) 
can be replaced by nonzero real numbers cy and respectively, where 
sgn ap = sgn {(-l)"+'p(k)}. Define S(u ,  c-) to be the maximum number 
of sign changes in the sequence ( A ~ u ( c ) ,  ... , A,u(c)) where zeros are 
replaced by arbitrary nonzero numbers except if A=,u(c) = 0 in which case 
Aov.(c) and A , u ( c )  can be replaced by nonzero real numbers cy and p 
respectively, where sgn cup = -sgn p(k). 

Theorem 10.7.1. Assume u ( k )  is a nontrivial solution of (10.7.1). Then, 

(i) S(u, c+) and S(u, c-) are greater than or equal to the number of 
values of i such that Aiu(c) = 0, 0 5 i 5 n - 1. 

(ii) S(u, c+) + S(w. ,  c-) 2 n. Further, if Aiu(c) # 0, 0 5 i 5 n - 1 then 
S(U, c+) + S(u, c-) = 72. 
(iii) (-1)'(~,c-)p(k) < 0, (-~)"-S(" )C+)  P(k) < 0. 

Let u ( k )  be a solution of (10.7.1). W e  say A,u(k) has a zero point 
at ko E N(a )  provided A,u(k) has a generalized zero at ko and 
A,u(ko - 1) # 0 (if ko > a) .  Let ko be a zero point of A,u,(k). 
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Then we define the multiplicity n , ( k o )  of the zero point ko as n,(ko) = 
rnax{! : A,u(k) has P - 1 zeros starting at  ko and a generalized zero at 
k-0 + C - l}. We say t,he zero point lo extends through kl  (2 ko)  in case 
the rnultiplicity of the zero point of A,u(IC) a t  IC0 is at least IC1 - ko f 1 
and A,u,(ICl) = 0. 

Let {ki,} be the zero point of A,u(IC) in N(a ,  b) which are not ZCI-OS 

of A,-lu(k),  and {k io}  he the zero points of Aou,(k) in W ( a , b )  which 
are not zeros of An,-17/,(k). Further, let < j > denote the greatcst even 
integer less than or equal to j .  

Theorem 10.7.2. Let ~ ( k )  be a nontrivial solution of (10.7.1) and 
assume that b 2 a. is such that no quasi--difference Ai71.(k) 0 on 
W(a, b) for 0 5 i 5 n, - 1 (if b 2 a, + R - 1 then this condition definitely 
holds). Then, 

n,- 1 

(10.7.2) S(7r,n+) + S(u.,b-) + c 1 < n.,(kiu) > 5 R ,  

W(a,b) 

where the sum over lN(a, b) is understood not to contain any zero point 
which extends through b. 

Remark  10.7.1. The inequality (10.7.2) in Theorem 10.7.2 is not true if 
we just assume b 2 a. To see this, let v ( k )  be the solution of (10.7.1) 
satisfying A,u (a )  = 0, 0 5 i 5 n - 2, An,.-17~(a) = 1. If b = a + 1 then 
S(w,, a+) + S(7r, b-) 2 2n - 3. 

Remark  10.7.2. The inequality (10.7.2) in Theorem 10.7.2 is true with 
a ,  b replaced by c, d respectively, providcd the solution is restricted to 
N(c). 

Corollary 10.7.3. If (-1)"-jp(k) > 0 on W(c,d) for some j E 
{l;..,n-l}, then (10.7.1) isright ( j , n - j )  disconjugateon IN(c,d+n). 

Corollary 10.7.4. If ~ ( k )  is a nontrivial solution of (10.7.1), then 
S(u, k+) 2 S(u, c+) for all IC E W(c + n - I). 
Corollary 10.7.5. If u(k) is a nontrivial solution of (10.7.1), then S(w,) = 
lim S(u,  c+) exists and S(u) is an integer satisfying (-l)n+s(u)p(k) < 0. 

Theorem 10.7.6. If w.(k) is a rlontrivial solution of (10.7.1), then 
S(u, k+) is a nondccreasing function of k for k E N(a). 

C' m 

Assume t,tlat 0 5 j 5 n and (-l)".-jp(k) < 0. For a nontrivial 
solution w.(k) of (10.7.1), let S(u) = limc4w S(u,c+) as in Corollary 
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10.7.5. We define Sj = {u,(k) : u.(k) is a nontrivial solution of (10.7.1) with 
S(?f.) = j } .  

Example 10.7.1. The difference equation A4u(k) - (1/16)~(k) = 0 has 
solutions 7Ll(k) = (1/2lk, u,Z(k) = (&/2)':c;oSek, u,3(k) = ( & / 2 ) k : s i n ~ ~ ,  
u,4(k) = ( 3 / 2 ) k ,  where 8 = tan-l l/2. It is easy to sec that ul(k) 
E So, u 2 ( k ) ,  ~ ( k )  E S2, and u34(k) E S,. 

Example 10.7.2. The difference equation A4u,(k) + ~ ( k )  = 0 has 
solutions 7Ll(k) = ( ~ ~ c o s / j k ,  ?"(/c) = cv"sin[?k, 11,3(k) = 7' COSSIC ,  P ~ , ~ ( I c )  = 
y'ssinSk, where (Y = 11 - (1 - i)/fiI, [? = tan-' l/(a - l), y = 
11 + (1 + i)/fil, and S = tan-' l/(fi + 1). It is easy to sec that 
u l ( k ) ,  u,2(k) E S1 and u ~ ( k ) ,  w4(k) E S,. 

Theorem 10.7.7. The set of Ilontrivial solutions of (10.7.1) is the union 
of the set,s S,, where 0 5 j 5 n, sat,isfics ( - l ) m , - j p ( k )  < 0. Each of 
these sets S, is nonempty. 

Theorem 10.7.8. If { u i ( k ) }  is a scqucrlcc of solutions of (10.7.1) such 
that S(ui)  = j for all i 2 1 and {w,i(k)} (:onverges pointwisc to a 
nontrivial solution v.(k) of (10.7.1) then S(11,) 5 j .  

Example 10.7.3. Consider the difference equation A411.(k)-(l/16)u(k) = 
0 given in Example 10.7.1. Two solutions of this difference equation are 
u ( k )  = (1/2)k, u(k )  = ( 3 / 2 ) k ,  where u.(k) E SO and v(k )  E Sq. Define 
ui(k) = ( I / i ) v ( k )  + ~ ( k ) .  It is easy to see that ui(k) E S, for all z but 
the limit solution u,(k) E So. 

10.8. Interpolating Polynomials 

Theorem 10.8.1. The unique polynomial Pn,-l(k) of degree n - 1 
satisfying conjugate boun,daTy c ond i t i on s  

where a = ICl < kz < . . . < k ,  = b - 1 + n and each ki E N(a, b - 1 + TI.) 

can be written as 

(10.8.2) 

Remark 10.8.1. Niccoletti boundary conditions (1.5.9) are obviously 
a particular case of (10.8.1). Interestingly, Herrnite (r  point) boundary 
conditions (1.5.10) i n  view of (1.1.2) are also a special case of (10.8.1). 
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(10.8.4) 

1 5 i 5 'm. 

Theorem 10.8.3. The unique polynomial Pzm-l(k) of degree 2.m. - 1 
satisfying two point Taylor bou,n<dary co,n.ditiorrs 

(10.8.8) 

where 
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(10.8.9) 

We also have the representation 

(10.8.10) 

(10.8.1 1) 

(10.8.12) 

(k - k j ) ( 4 ( k  - k .  - ,S - 1)h-4 
3 

S ! (- lp-s (p j  - S) !  Aj,e. 

Theorem 10.8.5. The unique polynomial P , - l ( k )  of degree n - 1 
satisfying two--point Hermite boundary conditions (also known as (p, n-p) 
boundary conditions) 

(10.8.14) 
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can be written as 

where 

and 

( b  + p  + j + T - k - l)(;+.) 
j ! ( b  + p + j + 7- - a)(P+T)  ’ j = O , l , . . . , n - p - l  . 

Remark 10.8.2. It is clear that ci(k:) 1 0, 0 I i 5 p - 1, ( -1 ) jd ; (k : )  
1 0, 0 I j L R - p  - 1, k: E nV(a, b + p). Also, 

(10.8.16) co(k) + do(k) = 1. 

Theorem 10.8.6. The unique polynomial Pn-l ( k )  of degree n - 1 sat- 
isfying Abcl- Gontscharoff ( 7i9h1t focal p0in.t) boundary conditions (1.5.11) 
can be written as 

(10.8.17) 

where 

(10.8.18) 

1 
I!. . . i! Ti(k:) = - 
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In particular 

Theorem 10.8.7. The unique polynomial P , - l ( k )  of degree v, - 1 
satisfying two point righ,t focal bomdary conditiom 

AiPn-1(a) = Aiv,(a) = Ai, 0 5 i 5 p - 1 

(10.8.20) (1 5 p 5 n - 1, but fixed) 
AiPn-l(b) = Aiv,(b) = Ai, p 5 i 5 R - 1 

can be written as 
P-1 

(10.8.21) Pn-l(k) = c Ai 
( k  - 

i! 
i=O 

Theorem 10.8.8. The unique polynomial Pn-l(k) of degree n - 1 
satisfying ( n , p )  boundary conditions (1.5.12) can be written as 

n-2 ( k  - 
(10.8.22) Pn-I(k) = C Ai i !  

i=O 
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Theorem 10.8.9. The unique polynomial Pv,-l(k) of degree n, - 1 
satisfying (p, n) boundary conditions (1.5.13) can be written as 

n,-2 ( b  + i - k ) ( " )  
(10.8.23) Pn,-l(k) = c (-1)ZA.; 

i=O 
i! 

10.9. Green's Functions 
Followirlg Section 2.11 let v:, ( k ) ,  1 5 j 5 n bc a fixed set of linearly 

irldcpendcrlt solutions of (1.2.4), arid let # ( k )  bc any particdar solution 
of (1.2.3). Then, any solution of (1.2.3) can be written as 

n, 

(10.9.1) ~ ( k )  = c cJu;, (k) + 4(k), k E N ( a ,  b - I + R) 
j=1 

where c;, 1 j 5 n, are fixed c:onstatlts. 

This solution satisfics the lirlearly independent boundary conditions 

n,-l 

(10.9.2) l i [ ~ ]  = C ~ i , ~ ( k i  + T )  = Ai, 15 i 5 TJ  

T=o 

wherc a 5 kl 5 . . . 5 k ,  5 1) and air, Ai, 1 5 i 5 n,, 0 5 7 <_ n - 1 are 
the known constants, if and only if t,he system 

n 

Ai = l ;  C ~ j ~ j  + 4 = c c J l i [ v j ]  + l i [4 ] ,  1 5 i 5 n 
[j:l ] j=1 

has a unique solution. Thus, by Lernnla 2.2.1 the problem (1.2.3), (10.9.2) 
has a unique solution if and only if det ( l , i [ v j ] )  # 0. Further, in such a case 
the existence of the fundamental system of solutions gj (k ) ,  1 5 j 5 n of 
(1.2.4) satisfying l,;, [F;] = Si,? is assured (det (1, [Ej]) = 1). 

For convenience, we shall write D i ( l )  = cofactor of E~([ + - 1) in 
the det V ( [ )  = det (Zi(t + j ) ) ,  1 5 i <_ R, 0 5 j 5 n, - 1. Further, let 
ko = a, k ,+1 = b ,  and & ( k )  = Dn+l(k)  = g o ( k )  = ~ ~ , + ~ ( k )  = 0 on 
N ( a , b  - 1 + n.). Then, in view of (2.11.8) the general solution of (1.2.3) 
can be written as 

k E N(u,  b - 1 + n). 



Misccllancous Propcrtics of Solutions 763 

Sinc:c: from thc propertics of G(k,P + 1) tlcfirlcd i n  (2.11.7) 

I:-n, n,+ 1 

n h-  1 
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and is uniquely determined on N ( n ,  b - 1 + n,) x IN(n., h - 1). The following 
properties of 9 (  k-, !) are fundamental 

(i) A'g(k, t) ,  0 5 i 5 n, - 1 exists on N(a ,  b - 1 + n, - i )  x IN(a, b - 1) 

(ii) g(k,  e )  as a function of k satisfies 

n 

L[g(k , ! ) ]  = c ai(k)g(k  + i,!) = 6kt, k E N ( a ,  b - 1) 
i=O 

(iii) g(k,  P) as a function of k satisfies the homogeneous boundary con- 
ditions (10.9.5) 
(iv) for any func:tion b ( k )  defined on I N ( a ,  b - l), the unique solution 
of the boundary value problem (1.2.3), (10.9.5) is given by 

b- 1 

u ( k )  = c g(k, I!)b(P). 
F=a 

Theorem 10.9.1. The Grccn's function g(k,I!) of the boundary value 
problem 

(10.9.6) ~ , ( k  + 1) - 2U(k) + ~ ( k  - 1) = 0, k E IN(1,K) 

Theorem 10.9.2. Let the diffcrence equation (1.2.4) be disconjugate 
on IN(a,b - 1 + n). Thcn, the Green's function g(k,!) of the conjugate 
boundary value problem (1.2.4), 

(10.9.10) V.(ki) = 0, 1 52 _< 71 
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where a = kl < k.2 < . . . < k ,  = h - 1 + n, and each Ici E N ( a ,  b - 1 + n,) 
exists on N ( a ,  b - 1 + n) X N ( a ,  b - 1). Further, for all (k lB)  E W ( n ,  b - 
1 + n.) x N ( a ,  b - 1) 

(10.9.11) (_1)”+“(”) d k ’ f )  2 0, 

where a ( k )  = card{i : Ici < k ,  1 5 i 5 n}. 

Theorem 10.9.3. Thc Grecn’s function g(k ,  P) of the cor1,jugate bouI1d- 
aryvalueproblem (10.1.3), (10.9.10) existson I N ( a , b - l + n ) x N ( n , b - l ) ,  
and is given by 

91(k, l?)  - ( k  - e - l)(-’ 

gl(k,!), k - n + 1 5 P 5 ,kr+l - R 
l < r < n , - l  

a < k r - n , + 1 < P < k - n ,  
(10.9.12) g(k,P) = - ~ 

whcrc 

Remark 10.9.1. From Corollary 10.1.6 the difference equation (10.13) 
is disconjugate on N ( a ,  b - 1 + v,) ,  therefore i n  particxlar the inequality 
(10.9.11) holds for the Green’s function g ( k , l )  defined in (10.9.12). 

Theorem 10.9.4. The Green’s function g(k, P) of the osculatory bound- 
ary value problem (10.1.3) with n, = 2m, 

(10.9.14) 
gl(k,e) - ( k  - e  - 1)(2rn-l), 

a 5 k T - 2 r n + 2 < P < k - 2 m  

gl(k, e ) ,  k - 2711. + 1 5 5 kr+l - 2m + 1 
l < r l m - l  

1 g(k,!) = - 



766 Chapter 10 

and h , j ( k ) ,  z j ( k )  are defined in (10.8.5) and (10.8.6). Further, for all 
( k ,  P) E N(u, b - 1 + 2m) x N ( a ,  b - 1) 

(10.9.15) .9(k-,P) 2 0. 

(10.9.17) 

Theorem 10.9.6. Let uj(k, P), 0 5 j 5 n - 1 be the solution of 
(1.2.4) satisfying (10.3.3). Further, let (1.2.4) be (p, n - p) discolljugate 
on N ( a ,  b - 1 + n) for a fixed p, 1 5 p 5 n - 1. Then, the Green's 
function g(k, P) of thc (p, n, - p) boundary value problem (1.2.4), 

(10.9.19) 
Ai7144 = 0, 0 5 i 5 p - 1 

Ai71,(b+p) = 0, 0 5 i L n - p -  1 

exists. It is defined on N ( a ,  b - 1 + n) x JN(a, b - 1) and can be expressed 

for a < k < l i + n - l ,  andfor f + n , < k < b - l + n  
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where 

Theorem 10.9.7. Assume that one of the following holds 

1. equation (1.2.4) is disconjugate on N(a, b - 1 + n), or 
2. 2 5 p 5 R - 1 and equation (1.2.4) is ( j ,  n - j )  discor1jugate on 
N ( u . + p - j , b - 1 + n + p - j )  for j = p - - I , . . . , n - I  . 

Then, the Green's function g(k, P) for the (p ,n  - p) boundary value 
problem (1.2.4)' (10.9.19) satisfies 

(10.9.20) (-l)"-"g(k,C) > 0, k E W(u + p ,  b - 1 +p), P E N ( a , b  - 1). 

Theorem 10.9.8. Thc Grccn's f~~nction g(k, P) of the (p, n-p) boundary 
value problerrl (10.1.3), (10.9.19) with a. = 0 exists on N(0, b - 1 + n,) x 
W(0, b - l), and is given by 

(10.9.21) 

Theorem 10.9.9. The Green's function g(k,C) of the focal boundary 
value problem (10.1.3), 

(10.9.22) Aiv.(ai+l) = 0, 0 5 i 5 n - 1 

where a 5 a1 5 ... 5 a ,  5 b exists on N ( a , b  - 1 + n) x N ( a , b  - l), 
and in terms of AbclLGontscharoff polynomials Ti (k )  (cf. (10.8.18) or 
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(10.8.19)) can be written as 

Theorem 10.9.10. The Green’s function g(k,  e )  of the two point focal 
bourldary value problem (10.1.3), 

(10.9.24) 
Ai7/,(a,) = 0, 0 I i 5 p - 1 (1 5 p I R - 1, lmt fixed) 
A“/@) = 0, p 5 i 5 n - 1 

(10.9.25) g(k,II) = (-l)”-” 7=a { k - l  

where 

(10.9.26) go(k, II, T) = 
( k  - 7 - I ) ( P - l ) ( e  + 72 - p  - 1 - T ) ( n . - P - l )  

(p - l)!(n - p  - l)! 

Further, for 0 5 i 5 p - 1 

where 

and for 0 I i 5 n - p - 1 



A/lisccllancous Properties of Solutions 769 

From (10.9.25) ~ (10.9.29) it is clear that 

Theorem 10.9.11. Let 1 5 p 5 n, but, fixed, and let {TI,. . . , T ~ } ,  (~1,. . . , 
. S , - , , }  be a partition of {l,. . . , n,} such that TI < 7-2 < . . . < T~ and 
s1 < s2 < . . . < Then, thc Green's furlctiorl g(k, l?) of the two point 
focal type boundary vallte problem (10.1.3), 

on N(a, b - 1 + n - i) x N(a ,  b - I), where gi = card{j : .sj > i, 1 5 j 5 
n, -p}. 

Theorem 10.9.12. Let 1 5 p, q 5 n, but fixed. Then, the Green's 
function g(k, l) of the two point boundary value problem (10.1.3), 

exists on N ( a ,  b - 1 + n) x N(a ,  b - l), and 

on N (a ,  b - 1 + n - i) X N(a ,  b - 1). 

Remark 10.9.2. If q = 0 then (10.933) represents conjugate type 
boundary conditions, and if q = p then (10.9.33) reduces to two point 
focal boundary conditions. 
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Theorem 10.9.13. Thc Green's function g(k,  P) of the (n,p) boundary 
value problem (10.1.3), 

(10.9.35) 
Aiv.(a) = 0, 0 5 i 5 n - 2 

A"u(b - 1 + n -p) = 0, (0 5 p I n, - 1, but fixed) 

exists on W(a, b - 1 + n )  x W(a,, b - l), and is given by 

(10.9.38) 
A"v,(u.) = 0 ,  ( 0  5 p 5 n - 1, but fixcd) 
A i u ( b + l )  = 0, O S i I n - 2  

exists on N(a ,  b - 1 + n )  X W(a ,  b - l), and is given by 

(10.9.39) g ( k , l )  = 
g'(k,q, a I e 5 IC - 1 

g1(k,C) - (e+n-l-k)("-'), k <_e I b - l  

where 

Further, 

(10.9.40) (-l)"+i+lAi g ( k , ! )  2 0, 0 I i L P  

on W ( a ,  b - 1 + n - i) x IN(a,b - 1). 

Theorem 10.9.15. The Green's function gk(k,C)  of the Lidstone bound- 
ary value problem (10.1.3) with n = 2 m ,  

(10.9.41) A2iu(a)  = A2"u(b - 1 + 2m - ai) = 0, 0 5 i I rn, - 1 
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(10.9.43) 

which itsclf is t,hc Green's filnct,ion of the t)owldary valuc problcrrl 

A271,(k) = 0 ,  k E N(n ,  b +  22 - 3) 
(10.9.44) 

7r(u,) = u ( h  - 1 + 22) = 0 

and is defincd on N ( u ,  b + 22 - 1) x IN(o,, b + 27: - 3). 

Further, for all ( k ,  P) E N ( a ,  b - 1 + 2711) x N ( a ,  b - 1) 

(10.9.45) ( - v % & , 4  2 0. 

Our final result here shows that the unique polyrlorrlial Pzm,-l(k) of 
degrcc 23rn - 1 satisfying Lidstone boundary conditions (1.5.14) can be 
represented i n  terms of ,9k(k, P), which arc recursively defined as follows: 

For a fixed 1 5 j 5 ' r n  

g i ( k , e )  = g j ( k , ! ) ,  N ( a 7 b + 2 j - 1 ) ~ N ( ~ , b + 2 j - 3 )  
b+Zi-l 

(10.9.46) ,g:+Jk,e) = c ~ , ~ + l ( k 7 k l ) , 9 ~ ( k l , P ) ,  

k I = a  

IN(n,b+27:+1) x W(a7b+2j-3), 2 = j , j + l ; . . , ? r - l .  

Theorem 10.9.16. The unique polynonlial P2,-1 ( k )  of degree 2rrr - 1 
satisfying Lidstorlc boundary conditions (1.5.14) can be written as 

(10.9.47) P2.m-1(k) = ( 
b - 1 + 2rr~ - a 

m.-2 b+Zm-Zi-3 

BO+ (1 - 
b - 1 + 27n, - a 

b + 27n - 27: - 3 - a b21+2 
r=O I=a 
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+(l- b + 2 r n  e - - 2i a. - 3 - a ) A Z i + 4  

10.10. Inequalities and Equalities for Green’s Functions 

Theorem 10.10.1. For the Green’s function g(k ,e )  of the cor1,jugate 
boundaryvalue problcrn (10.1.3), (10.9.10) defined i n  (10.9.12) the following 
hold 

(10.10.1) 

(10.10.2) 

(10.10.3) 

(10.10.4) 
(n, - ~)~--l ( b  - 1 + R - a,)n, 

5 n, n! 

Corollary 10.10.2. For the Green’s fmction g(k,L) of the oscula- 
tory boundary value problem (10.1.3) with R = 2,m., (10.9.13) defined in 
(10.9.14) the following hold 

(10.10.5) 

Corollary 10.10.3. For the Green’s function g(k,e)  of the two point 
Taylor boundary value problem (10.1.3) with n = 2,m,, (10.9.16) defined 
in (10.9.17) the following hold 

(10.10.6) 

Corollary 10.10.4. For the Grecn’s function g(k,  e )  of the (p, n, - p) 
boundary value problcrn (10.1.3), (10.9.19) the following hold 
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(10.10.8) 
pP(n -p)”-” (b - a + n/2)” 

n, n, ! I 

Theorem 10.10.5. For the Green’s function g(k ,P )  of the two point 
right focal boundary value problem (10.1.3), (10.9.24) defi~lcd in (10.9.25) 
the following hold 

(10.10.10) 

(10.10.12) 

Theorem 10.10.6. For the Green’s function g(k ,P )  of the (n,p) 
boundary value problenl (10.1.3), (10.9.35) defined i n  (10.9.36) the following 
hold 

(10.10.14) 
6 

- - 

Theorem 10.10.7. For the Green’s function g(k,P) of the (p, n) 
boundary value problem (10.1.3), (10.9.38) defined in (10.9.39) the following 
hold 
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(10.10.16) 

Theorem 10.10.8. For the Green’s function ,9:! ( k ,  C) of the Lidstone 
boundary value problem (10.1.3) with n, = 27rb, (10.9.41) the following 
holds 

10.11. Maximum Principles 

Theorem 10.11.1. If u ( k )  is dcfirled on N ( a ,  h +  l), and A % ( k )  2 
0, k E W(a , ,  h - I), and attains its nlaxi~nllrrl at  some k* E W ( a  + 1, b ) ,  
thcn u ( k )  is ic1cntic:ally constant on N(u,  h + 1). 

Remark 10.11.1. As a coIlscq11cIlc’c of Tl~corerrl 10.11.1, w.(k) 5 rnax{u(a.), 
u.(h + l)}, k E W(a. ,  h + 1). 

Remark 10.11.2. Thcorem 10.11.1 holds if WC rcvcrse the i rqual i ty  and 
replace “rnaxirrlurn” by “1ni1~irr1111r1”. 

The rnaxirnlm principle statcd in Theorcrrl 10.1 1.1 docs not necessarily 
hold for ft1nc:tions satisfying higher order inequalities. For example, let 
~ r ( k )  = -(k/10 - k E N(O,20). For this function A4u(k) 2 0, k E 
W(0, 16), but u ( k )  attains its rnaxinmrn at  k = 10 which is a point in 
IN( 1,19). Extcnsions of Theorem 10.1 1.1 are errhodied in the following: 
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Then, in the case n - p even ~ ( k )  attains its rrlinirnllrn and in the case 
R - p  odd u(k) attains its rnaxirnurrl either at a or b +p.  

Corollary 10.11.3. Let u ( k )  be defined on N(a,, b - 1 + 2,rrr), and 

(10.11.4) A2"u(k) 2 0, k E N(a ,  b - 1) 

then ~ ( k )  attains its rnaxirnllrrl at a or b - 1 + n~ 
Corollary 10.11.5. Let u(k)  be defined on W(a , ,  b -  1 + n,), and satisfy 
the inequality (10.11.1). Further, let 

(10.11.7) ( - l ) 'A '?r(b+ 1) 2 0, 1 5 i 5 n, - 2 

then in the case n odd (n, even) u(k)  attains its rrlinirnurn (maximum) 
a t  a or b +  1. 

Remark 10.11.3. When the inequalities in (10.11.1) ~ (10.11.7) are 
reversed, the results remain true provided the word maxirnurn (minimum) 
is replaced by rninirnun~ (rnaxirnum). 

10.12. Error Estimates in Polynomial Interpolation 

Theorem 10.12.1. Let u.(k) be a f~~nct ion defined on W ( a ,  b - l + n ) ,  and 
satisfy the conjugate boundary conditiorls (10.8.1). Further, let Pnw1(k) 
and g ( k , e )  be as in (10.8.2) and (10.9.12) respectively. Then, for all 
IC E N ( a ,  b - 1 + n) the following hold 

b- 1 

(10.12.1) ~ , ( k )  = P , - l ( k )  + C g ( k , / ! ) A n ' u ( l )  
I=a 

(10.12.2) 
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Theorem 10.12.2. Let u(k)  be a function defined on IN(a,, b - 1 + 
27r~) ,  and satisfy the osculatory boundary conditions (10.8.3). Further, let 
Pzm-l(k)  and g(k,l?) be as in (10.8.4) and (10.9.14) respectively. Then, 
for all k E N ( a ,  b - 1 + 2m) the following hold 

5- 1 

(10.12.3) u ( k )  = PZnL"l(k) + c g(k, P)A'"?L(l?) 
I=a 

(10.12.4) 

Theorem 10.12.3. Let v.(k) be a function tiefined on nV(a,, b-  1 +2,rn), 
and satisfy thc two point Taylor boundary conditions (10.8.7). Further, let 
P Z , - ~ ( ~ )  and , g ( k , l )  be as i n  (10.8.10) and (10.9.17) respectively. T'ncn, 
for all k E W(a, b - 1 + 2rrr), (10.12.3) holds and 

Theorem 10.12.4. Let ~ ( k )  be a function defined on N(u, b-l+n), and 
satisfy the right focal boundary conditiorls (1.5.11). Further, let P , - l ( k )  
and g(k,P) be as i n  (10.8.17) and (10.9.23) respectively. Then, for all 
k E N(a, 0 - 1 + n,), (10.12.1) holds and 

x nlax \An,v,(k)ll k E N(a,b-l+n-i) ,  0 5 i 2 n - 1. 
k , E N ( a , b - l )  

Further, for each 0 5 i 5 n-l the inequality (10.12.6) is the best possible. 

Theorem 10.12.5. Let CY E N(0,n - 2), p E W( l , n  - l), and a. = 

Theorem 10.12.4 the inequalities (10.12.6) can be improved by 

/J1=.. .=a a+l < aa+2 5 . . . 5 a,-p 5 an,-p+l = . . . = a, = b. Then, in 
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whcre r* = rnax {Q. - i, p, [T] } . Further, for each 0 5 i 5 n - 1 the 
irlequality (10.12.7) is the best possible. 

Theorem 10.12.6. Let v.(k) be a function defined on N(a ,  b - l + n ) ,  and 
satisfy the two point right focal boundary conditions (10.8.20). Further, let 
Pn,-l(k) and g ( k , k )  be as in (10.8.21) and (10.9.25) respectively. Then, 
for all k E N(a , , b  - 1 + n), (10.12.1) holds and 

k E J N ( ~ , b - l + n , - i ) ,  O < i l n , - l  

where Cn,,i are defined in (10.10.10) and (10.10.12). 

Theorem 10.12.7. Lct ~ ( k )  bc a function defined on N(a ,  h - 1 + n,), 
and satisfv the (n,p) boundary conditions (1.5.12). Furt,her, let, Pn,- l (k)  
and g(k,t) be as in (10.8.22) arltl (10.9.36) respectively. Then, for all 
k E N(a., b - 1 + n), (10.12.1) holds and 

k E N ( a , b - l + n - i ) ,  o < i < p  

where Dn,,; are defined in (10.10.14). 

Theorem 10.12.8. Let u ( k )  be a function defined on N ( a ,  b - 1 + n), 
and satisfy the (p,..) boundary conditions (1.5.13). Further, let Pn,-l(k) 
and ,9(k,t)  be as in (10.8.23) arid (10.9.39) respectively. Then, for all 
k E N ( a , b  - 1 + n ) ,  (10.12.1) holds and 

(10.12.10) lAi(u(k) - Pn,-l(k))l 5 En,i max iA"w,(k)l, 
k E N ( a . b - l )  

k E N ( a , b - l + n - i ) ,  O L i < p  

where En3i are defined in (10.10.16). 

Theorem 10.12.9. Let u.(k) be a function defined on N(a ,  b - 1 + 
am.), and satisfy the Lidstone boundary conditions (1.5.14). Further, let 
P2m-l (k)  and gf , ( k , l )  be as in (10.9.47) and (10.9.42) respectively. Then, 
for all k E N(a ,  b - 1 + 2rrr) the following hold 
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(10.12.12) 

10.13. Problems 

10.13.1. Show that the difference cquatior~ 

u ( k  + 2) + pu(k + 1) + q714k) = 0 ,  k E W ( a ,  b)  

is discor1,jugate if q > O, p < o am1 p2 - 4q 2 0. 

10.13.2. Considcr the second order litlcar tliffcrencc eqnation 

(10.13.1) 7r(k + 2) + a l (k ) l r (k  + 1) + no(k)v.(k) = 0, k E W(n, ,  0) 

where no(k) > 0 011 JN(a,b). Show t,hat, (10.15.1) is discorljugatc on 
W ( a ,  b + 2) if and only if ( - l )""Dn, (o , )  > 0, E N(l ,  b - a + 1) whcrc 

tridiagonal determinant defined by 

0 0 0 ' '. a1(a + 'm, - 1) 

10.13.3. Consider the difference equation 

(10.13.2) A 2 ~ , ( k )  + p ( k ) ~ . ( k  + 1) = 0, IC E Z 

Suppose that there exist €1 > 0, 62 > 0 such that 

m 

and 

where 

0 0  = 1 + €1, p 1  = 1 + €2 
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10.13.4. With respect to tshc diffcrcrlcc equation (10.13.2) snpposc that 

~ m T- 1 

10.13.5. In the tlifferer1c:c equation (10.13.2) suppose that p(k )  2 0, k E 
W(1). Show that (10.13.2) is c:orljugatc in N ( K ) ,  K E W(1) if there exist, 
integers L,  M with K < L < M such that 

M 

10.13.6. Consider the third order linear difference cquatiorl 

(10.13.3) A3u(k - l) +p(k-)Au(k-) + q ( k ) u ( k )  = 0, k E N ( a +  l , b +  1) 
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(iii) if p(k) 5 0, q ( k )  2 0, k E N(a+I ,b+I )  and for all ko E N(a+I ,b+l )  

1:-l 

Ip(k)l 2 2 c d e ) ,  ko I e 5 b +  1 
t=ko 

then (10.13.3) is discorljugate on N(a, b + 3) 

10.13.7. Consider the difference equation 

(10.13.4) A47r(k - 2) + q ( k ) ~ ( k )  = 0, k E W(a + 2, b + 2) 

whose solutions are defined on N(a, 0+4). W e  say 74k) has a gen,er,alized 
zero of order w t .  at, a if u.(a + e )  = 0, 0 5 li 5 'rn. - 1, and at 
ko E IN(a+l,b+n,-m+l) if u,(ko-l)  # 0 arid 7r(ko+P) = 0, 0 5 l5 W-1  
or 71,(ko) # 0, 7r(ko+!) = 0, 1 5 5 Prn-1 and (-l)"u.(ko)u.(ko+,rrr) > 0. 
Show that 

(i) no nontrivial solntion of (10.13.4) has a gcncralizcd zero of order four 
or more 

(ii) equation (10.13.4) is (2,2) discorljugatc 011 N(a ,b  + 4), i.e. 110 

nontrivial sollltiorl of (10.13.4) has two distinct generalized zeros, each of 
order two or more, in N(a ,  b + 4) provided 

(10.13.5) c q-(e) 24, 
(3) b+2 

P=a+2 

where +(P) = max(0, -q(t)). Further, construct an example to show that 
inequality (10.13.5) is sharp. 

10.13.8. Consider the nth order linear difference equation 

where a 5 b and 1 5 p 5 n - 1, whose solutions are defined on 
N(a, b + n). Equation (10.13.6) is called (n - 1,l) disfocal on W(a ,  b + n.) 
if u ( k )  is a nontrivial solution of (10.13.6) with a generalized zero (sec 
Problem 10.13.7) of order n - 1 at ko E IN(a.,b), then A"-lu(k) is 
of one sign on IN(k0, b + 1). Show that (10.13.6) is (n - 1, l)-disfocal on 
IN(a, b + n) provided 

(10.13.7) 
b + n , - l - a  ) E q+(k)  < 1. 

e = a + p  

Further, construct an example to show that the inequality (10.13.7) is sharp. 
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10.13.9. Consider the 2mth order linear difference equation 

(10.13.8) c A" [rL(k)Aiu,(k - i ) ]  = 0, k E N ( u  + m , h  + rrr) 

m 

i=O 

where r i ( k )  arc defined on IN(a+*rn, b+rn+i ) ,  0 5 i 5 m and r , , ( k )  > 0 
on W(a+m,  h+ 2711), whose solutions are defined on N ( a ,  b+ 2,m). Show 
that 

(i) no nontrivial solution of (10.13.8) can have a generalized zero (see 
Problem 10.13.6) of order 2711. 

( i i )  if r , ; (k )  2 0, k E W(a  + m ,  b + ' r n  + i ) ,  0 5 i 5 n, - 1 
then (10.13.8) is (m,,rr/.)- discor1,jugate on W(a ,  b+ 2m), i.e. 110 nontrivial 
solution of (10.13.8) has a gcrlcralizcd zero of order nr followed by a 
generalized zero of order 'rr) i n  IN(o., h + 2rn). 

10.13.10. Let D he a subsct of any norrncd linear space S of functions 
which map W(a ,  h+ 2) to R, anti let f(k, 5 ,  v )  : N(n, b+ 2) x R.' + R. 
Assllrrle that f E d 2 )  with respcct to z and y for each k E W ( a ,  b+ 2). 
Consider the discmte functional 

b+2 

(10.13.9) J[u.] = C f ( k ,  u ( k ) ,  A u ( k  - l)), 
I:=a+l 

subject to u ( k )  E D. We call D a set of adrnissible fun,ction,s. Let u ( k )  E 
D ,  then ~ ( k )  E S is called an ad,mis.sible variation for u ( k )  if ~ ( k )  + 
q ( k )  E D for sufficiently small F. Let in D ,  l l u l l  = rrlaxk .EW(a.b+2)  l u ' ( k ) l >  
and let 71,o(k) E D.  Then, .J[II,] has a local ,rn,axl;mn,um fm,in,.inrw,rn) at 
u o ( k )  if t,hcre is a S > 0 such that .][U] 5 ( 2 )  J[U,O] for all u ( k )  E D 
with Ilu-uoll < S. J[u.] is said to have a local extre,m.um at u o ( k )  if it has 
either a local maximum or a local minimum. If in addition J[u] > .][uo] 
for u ( k )  # u o ( k )  in D with I(u - uoI/ < S, then J[u] has a proper 
local m,inarn,um at uo(k) .  Show that 

(i) if J[u], U( k )  E D has a local extremum at ?LO ( k )  E D ,  and ~ ( k )  is 
an atlrnissiblc variation for v,O(k), then the first variation of .][U,] along 

U.O(k) 

b+ 2 

(10.13.10) .JI[V] = J1[77,~0] = C [ f z ( k , ~ o ( k ) , A ~ ~ 0 ( k  - l))q(k) 
k=a+l 

+~, (~C ,~~,O(~C) ,A~O(~C-~) )AV(~C-~) ]  = 0 
(ii) if .J[u], u ( k )  E D has a local rrlinirnum (maximum) at ?f ,o(k) E D ,  
then the second variation. of J[u] along u o ( k ) ,  J ~ [ v ,  uo] 2 ( 5 )  0 for all 
~ ( k )  which are adrnissihle variations for u,O(k), where 
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(10.13.12) (A) f v ( a  + 1, ?/,(a + l), Au(a, ) )  for k = a + 1 

0 for k E N(a, + 2,b)  

- f , , ; ( b  + 2, u ( h  + 2), A u ( ~  + 1)) 
Ll/,( k )  = 

where L is the Eulcr--Langrarlgc operator defined by 

(ii) if J [ u ]  subject, to ~ ( k )  E D1 = {7r(k) : N(a, h+ 2) --f R I .(a) = A }  
has a local extrcrrmrn at 11.0 ( k ) ,  then u,o( k )  satisfies Lu.(k) = 0, k E 
W ( a  + 1, h + l), uo(a) = A and uo(k)  satisfies the trarlsvcrsality condition 

(10.13.14) f , C ( h + 2 , 7 / r ( b + 2 ) , A ~ l . ( b + 1 ) ) + f ~ ( b + 2 , u , ( b + 2 ) , A ~ r ( b + 1 ) )  = 0 
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(iv) if J [w . ]  subject to u ( k )  E D3 = {7r(k) : N(a ,  b +  2) 4 R} has a local 
extremurrl at UO(k), then ~ r o ( k )  satisfies Lv,(k) = 0, k E W(a+ 1, b +  1) 
and uo(k) satisfies the transversality conditions (10.13.14) and (10.13.15). 

10.13.12. Let D be as in Problcrn 10.13.11, arid define 

10.13.13. Let D and DO be as in Problem 10.13.11. Suppose that 
?l,o(k) E D satisfies the condition (10.13.12). Show that if .12[77,uo] is 
positive (negative) definite on DO, then J [w . ]  has a proper local rninirnum 
(maximum) at  w.0 ( k )  . 

10.13.14. Show that J2 [77] ,  77 E D; = { ~ ( k )  : N(a ,  b + 2) 4 R I ~ ( a )  = 
v ( b  + 2) = 0} can be written as 

k:=a+1 

and hence the Euler Langrange equation for , 1 2 [ ~ ]  is the sclf-anjoint dif- 
ference equation 

(10.13.16) Lcu(k) = A[.p(k - l)Av.(k - l)] + q ( k ) u ( k )  = 0, 

k E N(a+ l , b +  1). 

This equation is called the Jacob?; equation for 4211, TL E D" = {u.(k) : 
N(u,, b + 2) * R I .(U,) = A ,  ~ ( b  + 2) = B } .  
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10.13.15. Let D" and D,' be as in Problem 10.13.14. Considcr the 
quadratic: functional Q on D,' as 

(10.13.17) 

where p(k)  > 0, k E W ( a ,  b + 1). Show that the self adjoint equation 
(10.13.16) is disconjugate on W ( a ,  b+2) if and only if Q is positive definite 
on D,'. Hence, if w,~(k )  E D" satisfies the Euler-Lagrange equation 
h ( k )  = 0, k E W ( a  + 1, b + 1) and the corresponding Jacobi equation 
,Lcv.(k) = 0 is discorljugate on W ( q  h+ a), thcn J[t/.] ,  11, E D" has a local 
minimum at, u O (  k ) .  

10.13.16. Show that if the self -adjoint cquation (10.13.16) is discmljugate 
011 W(a ,  b + a), thcn 

10.13.17. (Sturrn's Comparison Theorem). Consider the self- adjoint 
equations 

, L i ~ ( k )  = A~i(k"l)A~l.(k-l)]+~,;(k)t/,(k-) = 0, k E IN(~+l,b+l), i = 1,2 

where ;02(k) 2 pl(k) > 0, k E W ( a ,  b + 1) and q l ( k )  2 q 2 ( k ) ,  k E 
W(a, + 1, b+ 1). Show that if L l u ( k )  = 0 is discor1jugatc on N ( a ,  b +  2), 
then &w.(k) = 0 is disconjugate on nV(u,, b + 2). 

10.13.18. (Reid's Roundabout Theorern). Show that the following arc 
equivalent: 

(i) the equation (10.13.16) is discolljugate on W(u, b + 2) 

(ii) the equation (10.13.16) has a sollltion u ( k )  such that p(k - l ) u ( k  - 
l ) u (k )  > 0 on W ( u  + 1, b + 2) 
(iii) the Riccati equation 

(10.13.18) A z ( k )  + q ( k )  + z y  k) 
z ( k )  + p(k - 1) 

= o  

has a sollition z ( k )  on W ( a  + 1, b + 2) satisfying z ( k )  +p(k - 1) > 0 011 

W ( u  + l , b  + 2) 
(iv) the quadratic functional Q defined in (10.13.17) is positive definite 
on D;. 
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10.13.19. Let the operator L be as in (10.13,16), where p(k )  is defined 
and nonzero on N(a ,  b + l), and q( k )  is defined on W(a + 1, b + 1). 
Let H be a constant such that p(b  + 1) - H # 0. Define the operator 
M = M ( p ,  ql H) on the set of functions with domain N ( u ,  b + 2) by 

The second order difference equation Mu(k) = 0, k E N(a + 1, b + 1) is 
called C disfocal (C stands for Coppcl) on lN(a, b+2) if whenever v(k) is 
its nontrivial solution satisfying Au(b+l) = 0, then p ( k - l ) u , ( k ) ~ ( k - l )  > 
0 for all k E l N ( a  + 1, b + 1). Show that 

(i) Mu(k) = 0, k E W(a + 1, b + 1) is C disfocal on lN(a,, b + 2) if and 
only if thc qlladratic functional Q defined by 

b+ 1 

Q[q] = c [P@ - 1)[Arl(k - Ill2 - q(k.)r12(k.)] + Hr12(b + 2) 
k=a+l 

is positive definite on Dof = { ~ ( k )  : N(a ,  b+2) 4 R I q ( n )  = Aq(b+l)  = 0} 

(ii) if u,o(k)  E Df = { ~ ( k )  : N ( a , b + 2 )  + IR 1 .(a,) = A,  A u ( b + l )  = B} 
satisfies the Euler-Lagrange equation L 7 ~ ( k )  = 0, k E W(a + 1, b + l), 
and the corresponding equation Mu(k) = 0, k E W ( a  + 1, b + 1) with 
H = P ( b + 2 )  +Q(b+2)  is C- disfocal 011 IN(n ,b+2) ,  then ,J[u,], W, E Df 
has a local minimum at u g  ( k ) .  

10.13.20. (Sturm's Comparison Theorem). Consider the second order 
differenceequations M i ( p i , q i , H i )  = 0, k E I N ( a + l , b + l ) ,  i = 1,2 where 
pa(k) 2 pl(k) > 0, k E N(a+ l , b +  l), q l ( k )  2 q z ( k )  on N(a, b +  1) and 
H2 2 HI .  Show that if Mlu. (k)  = 0 is C -disfoc:al on W(a ,  b + a), then 
M g ~ ( k )  = 0 is C-disfocal on lN(a, b + 2). 

10.13.21. Find the minimum for the functional 

b+ 1 

.J[u] = c {(1/8)""[Au(k - 1)12 - 3(l/S)'u2(k)} 
k=a+l 

subject to U E D" and PL E Df . 

10.13.22. Let f ( k ,  x, y) : N(a, b+4) x IR2  + R. Assume that f E C(2) 
with respect to x and 9 for each k E W(a, b+4). Consider the functional 

b + 4  

. I [ U ]  = c f ( k ,  u ( k ) ,  A",(k - 2)) 
k:=a+Z 
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10.13.23. Considcr the 2rnth order linear difference cquation 

m 

(10.13.19) C Ai ( ~ i ( k  - i )Aiu(k - i ) )  = 0, k E N(a )  
i=O 
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where r i ( k )  are dcfincd on N(a. + 'rn, - i ) ,  0 5 i 5 'rrt. and rTn ( k )  > O on 
IN(a). Whenever necessary WC extend the dorr~ain of the functions r i  to 
Z by defining T , ~ (  k )  = T, ( a  + m - i )  for k < a + 'rrt - i ,  0 5 i 5 m .  

For a given function u. (k) ,  k E N(a) on W ( a ,  + m )  we define the 
nonlinear operator F by 

m 

F u ( k )  = (-l)m C(- l ) "A" '~r (k  - 1) ( ~ , ~ ( k  - l )Aiu(k  - 1)) 
i=l 

rrr 'm. 

Show that 

(i) If ~ ( k )  is a solution of (10.13.19), thcn 

rr1 

A F u ( k )  = (-1)"'r0(k)[?r(k)]~ + C(- l ) " ' f ' r i ( k  - 1) [A'u(k  - I)]'. 
i=l 

In particlllar, if 

(10.13.20) (-l)"'+'r.;(k) >_ 0, k E W ( a  + - i ) ,  0 5 i 5 m - 1 

then F is nondecxasing along solutions v(k)  of (10.13.19) on W(a+rrr). 

(ii) If (10.13.20) holds and u ( k )  is a nontrivial solution of (10.13.19) with 
a gerlcralizcd zero (sce Problem 10.13.6) of order at lcast m at ko 2 a ,  
then 

(a) Fu(k0) < 0 provided k-0 > a, and either 
(I) Fv(k0  + 1) > 0, if (-I)m,v.(ko - I)u(ko + m ,  - 1) > 0, or 
(11) v.(k) has exactly m + e consccutivc zeros starting at  /co, where 

0 5 P 5 n1, - 1, and 

(10.13.21) F ~ ( k o  + S) = 0, 1 5 S 5 l + 1 

with 

(10.13.22) Fu,(ko + P + 2) > 0. 

(b) Case (11) holds if ko = a ,  and (10.13.21), (10.13.22) both follow. 
(iii) If (10.13.20) holds, then (10.13.19) is (nl,m)-~disconjugate on N(a). 

(iv) If (10.13.20) holds, then any nontrivial solution v,(k) of (10.13.19) 
with a generalized zero of order at  least m is a type P solution, i.e. 
Fu,(k) > 0 near CO. In particular, (10.13.19) has 2,rn linearly independent 
type P solutions. 
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(v) If (10.13.20) holds, then (10.13.19) has ' m  linearly indeperldent type 
Q solutions, i.e. Fu(k) I 0 in a neighborhood of m. 

(vi) If (10.13.20) holds, then all solutions of (10.13.19) are type P or type 
Q solutions. 

(vii) If (10.13.20) holds and ~ ( k )  is a type Q solution of (10.13.19), then 

03 c ( - l ) m , - i ~ i ( k )  [ALu(k) I2  < 00, 0 5 i 5 m ,  

?,:=a+m.-i 

Further, if ~ ( k )  # 0 in a neighborhood of CO, then every nontrivial type 
Q solution of (10.13.19) is a strict type Q solution. 

(viii) If (10.13.20) holds and l i I r l i l l f~~-03(- l ) '~ ' ,T~(k)  > 0, then (10.13.19) 
has ' rn  linearly independent type Q solutiorls vp(k) satisfying linl~-03 vp(IC) 
= 0, 1 5 ! 5 1 7 1 , .  

10.13.24. Show that 

(i) the Grccn's function g(k,  P) of the boundary value problem 

-A%(k)  = 0, k E W ( 0 , K )  

yu (K  + 1) + SAu(K + 1) = 0 
Nu,(O) - [ja'7l.(o) = 0 

exists on W(O, K+2) xN(O, K )  if arid only if p = ay(K+l)+aS+Py # 0, 
and is given by 

[p + Q.(! + 1)][6 + y ( K  + 1 - k ) ] ,  0 5 li 5 k - 1 
g ( k , l )  = - (P + Qk)[b + y ( K  - e ) ] ,  k -5 e I K 

(ii) if Q > 0, y > 0, ,B 2 0, S 2 y so that p > 0, then 

(a) for ( k ,  e) E N(O, K + 2) x N(O, K )  

0 5 g ( k P )  I L,9(t,f) 

10.13.25. Show that for the Green's function g(k,e) of the (n,p) 
boundary value problem (10.1.3)l (10.935) defined in (10.9.36) with a = 0 
the following hold 
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(i) for ( k ,  l) E N(O, b - 1 + n) x N(o, b - 1) 

(ii) for ( I C , e ) ~ I N ( n - l , b + n - p - l ) x N ( O , b - l )  

10.14. Notes 

The landmark paper of Hartnlan [37] has resulted in the tremendous 
interest i n  establishing discrete analogs of the known results for the ordinary 
differential equations. Theorem 10.1.1 is due to Hankerson [30], Theorems 
10.1.2 10.1.5 and Corollary 10.1.6 arc from Hartman [37], and Theorcm 
10.1.7 is proved by Eloe [24]. Theorem 10.2.1 is due to Peterson [45], 
whereas Theorems 10.2.2 ~ 10.2.5 are proved by Peil [43,44], however some 
parts of these results have appeared earlier in Hankerson [30] and Peterson 
[46]. Theorem 10.2.6 is a contribution of Peterson [47], whereas rest of 
the results i n  Section 10.2 are from Hankerson [34]. Some of these results 
are modifications of the theorems of Peterson [49]. The adjoint difference 
equation (10.3.1) has appeared in Peterson [46-481, whereas all the results 
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related to this equation in Section 10.3 are from Hankerson [30]. Theorerns 
10.4.1 antl 10.4.2 are proved in Hankerson [SO], however a slightly weaker 
form of Theorern 10.4.1 is available iu Peterson [47]. Theorem 10.5.1 is 
from Eloe [20], whereas Theorem 10.5.2 is dlle to Eloe and Herderson [as]. 
Theorem 10.6.1 has been proved by Eloe [23]. All the results in Section 
10.7 are proved in Hankerson and Peterson [31,32]. Discrete interpolating 
polynomials given i n  Section 10.8 arc constrllcted in Agarwal and Lalli [S], 
and Agarwal, 0’Rcgan and Wong [8]. Green’s function for an n.th order 
linear difference equation together with t,wo point, bonndary conditions first 
appeared i n  the work of B & l m  [13]. Theorern 10.9.1 is due to Gairlcs [29], 
whereas Theorem 10.9.2 is from Hartrrlarl [37]. Theorerns 10.9.3 10.9.5 
are proved in Agarwal and Lalli [S]. Thcorcrrls 10.9.6 and 10.9.7 arc from 
Peterson [45,48], also see Hankerson ancl Peterson [33]. Theorerr1 10.9.8 is 
esta1)lishcd in Agarwal, O’Regan and Wong [8], wllcreas Thcorcrn 10.9.9 
is taken from Agarwal [7]. Theorerr1 10.9.10 has appcarcd i n  Hankerson 
antl Peterson [Ss]. Eloc [all has proved Thcorcrrls 10.9.11 arid 10.9.12. All 
the rcrrlairling rcsldts in Section 10.9 arc taken from Agarwal ant1 Lalli 
[S]. Several othcr results for the discrete Grem’s functions arc available in 
Teptiu [56 581. Inequalities (10.10.1) and (10.10.2) arc due t,o Teptill [ S ] ,  
whereas all the rcrrlainirlg results in Section 10.10 are provcd i n  Agarwal and 
Lalli [S]. Results in Sections 10.11 and 10.12 are also from Agarwal arld Lalli 
[S], except Theorerns 10.12.4 arid 10.12.5 which are recent contributions 
of Wong [62]. In recent years discrete c:alculus of variations has attracted 
several researchers, our Problems 10.13.10 10.13.22 are based on Harrnsen 
[36], whereas Problem 10.13.23 is due to Anderson [10,11]. For scveral other 
similar results see Ahlbrandt and Peterson [g], Atici and Peterson [la], 
DoYf arid RehAk 1151, Eloc and Peil [26], Henderson arld Petcrsorl [38], Peil 
[41,421, Peterson and Ridenhour [50,51]. Continuous analogs of most of the 
results presented in this chapter are available in Agarwal [1,3], Agarwal and 
Usrnani [2], Agarwal and Wong [4,6], Coppcl [14], Dunninger [16], Elias [17~ 
191, Eloe and Henderson [22], Etgen, Jones and Taylor [27,28], Muldowncy 
[39,40], ProtLer and Weinberger [52], &da [53], Shui-Nee Chow, Dunrlinger 
arld Lasota [54], Trench [59,60], Wong and Agarwal [61]. 
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Chapter 11 
Boundary Value Problems 

for Higher Order 
Equations 

Difference 

Results stated in Chapter 10 play a fmdarncntal role i n  the study of 
various higher order boundary value prot)lcrrls includirlg those disc:ussed in 
Scctiorl 1.5. Using these results WC: provide easily verifiable sets of Imcssary 
and sllfficicrlt conditions so that each of these t)ourltlary value problerrls 
has at least o11c solution. S11ffi(:icntj conditioIls ensuring t,hc uniqueness 
of these solutions are also included. This is followed by t,hc c:onvergen(:c 
of the c:onstructive rnethods: Picard’s method, the approximate Picarti’s 
rnethod, qllasilinearizatiorl, and the approximate ri~lasilincarixatiorl. The 
results obtained herein arc more explicit t,han those disc:usscd i n  Chapter 9 
for the systems of differer1c:e equations. The monotonic corlvergcrlce of the 
Picard’s it,erative method is analyzed in Section 11.4. Next, we shall show 
that the initial value rrlethods discussed i n  Chapters 8 and 9 for cxmstructing 
the solutions of boundary value problems can also be llsed to prove the 
existence and uniqueness theorems for the higher order discrete boundary 
value problems. In Section 10.9, WC have noticed that the uniqueness of 
the solutions of the linear boundary value problerrls implies the existence of 

the solutions. The argument employed in proving this assertion is algebraic 
and is based on the linear structure of the fundamental system of solutions 
of the difference equations and the linearity of the bonndary conditions. 
In Section 11.6 sufficient conditions which guarantee this property for the 
nonlinear boundary value problems arc provided. 

11.1. Existence and Uniqueness 

Inequalities obtained in Section 10.12 will be used here to provide easier 
tests for the local existence and uniqllerless of the solutions of higher order 
boundary value problems. 

Theorem 11.1.1. With respect to the conjugate boundary value problenl 
(1.2.7), (10.8.1) assume that 

795 
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(i) M > 0 is a given real number and the function f ( k ,  w.0, u,~, . . . , 
is continuous on the compact sct: N(a ,  b - 1) x Do, where 

(ii) rnax JPn-l(k)l 5 M, where Pn,-l(k) is the corljugate interpo- 
W(a,b--l+n,) 

latirlg polynomial defined in (10.8.2) 

(iii) 
(n, - (b  - 1 + n - a)" 

Q 5 M. 
n," n! 

Then, (1.2.7), (10.8.1) has a solution i n  DO. 

Proof. In view of (10.12.1) the problem (1.2.7), (10.8.1) is equivalent to 
the equation 

where g(k,!) is the Green's function of the corljugate boundary value 
problem (10.1.3), (10.9.10) defirlcd i n  (10.9.12). Let S(a ,b -  1+n) be thc 
space of all real functions dcfirlcd on lN(a,, b - 1 + n,). W e  shall equip the 
space S(a., b -  1 +n,) with the norm llull = maxN(a,b-l+n) Ju(k)l, so that 

it becomes a Banach space. Now definc an opcrator T : S(a, b - 1 + n.) + 
S(a, b - l + n.) as follows 

b-l  

(11.1.2) Tw,(k) = P ~ _ l ( k ) + ~ g ( k , Y ) f ( F , u ( F ) , u ( ! + l ) , . . ' , u ( e + n - l ) ) .  
!=a 

Obviously, u ( k )  is a solution of (1.2.7), (10.8.1) if and only if u(k)  is a 
fixed point of T. The set S1 = { ~ ( k )  E S ( a ,  b - 1 + n)  : J J u J J  5 2 M }  is a 
closed convex subset of the Banach space S(a, b - 1 + n). Since 

for any u,(k) E SI, in view of (11.1.2) and (lO.l2.2), it follows that 
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and therefore 

5 M + M  = 2 M .  

Thus, T maps S 1  into itself and that T(S1) is compact. B y  the Schauder 
fixed point theorem, the operator T has a fixed point in SI. Thus, the 
boundary value problem (1.2.7), (10.8.1) has a solution in Do. I 

Theorem 11.1.2. With respect to the osculatory boundary value problem 
(1.2.7) with n, = 2711, (10.8.3) assume that 

(i) M > 0 is a given real number and the function f ( k ,  u.o,11,1, . . . , u.2.,,-1) 

is continuous on the compact set: nV(a, 2, - 1) X DO, where 

Do = {(u,O,u.lr . . . , 1 1 , 2 , ~ - 1 )  : ( u i (  5 2 M ,  0 5 i 5 2rn - 1) 

and m x  Jf(~,~o,~~,1,...,~2n1-1)1 5 Q 

(ii) max 1 P 2 m - 1 ( k ) l  5 M ,  where P 2 1 n - 1 ( k )  is the osc:ulatory 

interpolating polynomial defined in (10.8.4) 

(iii) 
(2m - 1)2m,-1 ( b  - 1 + 27n, - a) 

(2,rn) 2nr (2.m) ! 

Then, (1.2.7) with n = 2m, (10.8.3) has a solution in DO. 

Theorem 11.1.3. With respect to the two point Taylor boundary value 
problem (1.2.7) with n = 2711, (10.8.7) assume that 

(i) condition (i) of Theorem 11.1.2 

(ii) condition (ii) of Theorem 11.1.2 with P2m"I (k )  as the two point 
Taylor interpolating polynomial defined in (10.8.10) 

n \ j (a .b - l ) x l )o  

N ( a , b - l + 2 m )  

Q 5 M .  

(iii) (a) (b  + 7*1 - a)2Tn 
(am,) ! Q 5 M  

Then, (1.2.7) with n = 2m, (10.8.7) has a solution in DO. 

Theorem 11.1.4. With respect to the two point right focal boundary 
value problem (1.2.6), (10.8.20) assume that 

(i) Mi > 0, 0 L i 5 n - 1 are given real numbers and the function 
f ( k , ~ 0 , ~ 1 , . . . , ~ ~ - 1 )  iscontinuousonthecompactsct: N ( a , b - l ) x D o ,  
where 
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and max ( f ( k , u , o , u1 ,  . . . , u n - l ) l  5 Q 

(ii) max lAaPn,-l(k)l 5 Mi,  0 5 i 5 n, - 1 whcrc Pn-l(k) is 

the two point right focal intcrpolatirlg polyrmnlial defincd in (10.8.21) 

(iii) C,<iQ 5 M ; ,  0 5 i 5 n - 1 whcrc arc defined in (10.10.10) and 

N ( a , b - l ) x D o  

m ( a , b - l + n , - i )  

(10.10.12). 

Then, (1.2.6), (10.8.20) has a solution in Do. 

Proof. For thc problcm (1.2.6), (10.8.20) cquat,iorls corresponding to 
(11.1.1) and (11.1.2) are 

where g ( k ,  P) is the Green's function of the two point right focal boundary 
value problem (10.1.3), (10.9.24) defined in (10.9.25). The space S ( n , b - l +  
n) we shall equip with the norrrl l lu l l  = rnax { IIAiu(k)II , 0 5 i 5 R - l} 
wherc \\aLw,(k)ll = rnax la"u,(k)\.  The set S1 = { u ( k )  E S(a ,b  

-1 + n) : IIAiu(k)l/ 5 2A4, 0 5 i 5 n - l }  is a closcd convex subsct of 
the Banach spacc S(a ,  b - 1 + n), and as in Thcorem 11 .l. 1 i n  view of 
(11.1.4) and (10.12.8) for any u,(k) E S1 it follows that 

N ( a , b - l + n - i )  

llA"Tu,(k)ll 5 max /AiPn,-l(k)l + C+Q 

5 2Mi ,  O < i < n , - - l  

W(a,b-l+n.-i) 

from which the conclusion is immediate. I 

Theorem 11.1.5. With respect to thc (n~,p) boundary value problem 
(1.2.7), (1.5.12) assume that 

(i) condition (i) of Theorem 11.1.1 

(ii) condition (ii) of Thcorem 11.1.1 with Pn,-l(k) as the (n,p) inter- 
polating polynomial defined in (10.8.22) 

(iii) D,,oQ 5 M ,  where Dn,0 is defincd in (10.10.14). 

Then, (1.2.7), (1.5.12) has a solution in Do. 
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Theorem 11.1.6. With respect to the (p,n) boundary value problem 
(1.2.7), (1.5.13) assume that 

(i) condition (i) of Theorem 11.1.1 

(ii) condition (ii) of Theorem 11.1.1 with Pn-l(k) as the (p,n,) inter- 
polating polynomial defined in (10.8.23) 

(iii) E,,oQ 5 M ,  where E , , o  is defined in (10.10.16). 

Then, (1.2.7), (1.5.13) has a solution in DO. 

Theorem 11.1.7. With respect to the Lidstone boundary value problem 
(1.2.7) with R = 2wr, (1.5.14) assume that 

(i) condition ( i )  of Theorem 11.1.2 

(ii) condition (ii) of Theorem 11.1.2 with Pzm,-l(k) as the Lidstone 
intcrpolating polynomial defined in (10.9.47) 

Then, (1.2.7) with R = 2,rrt., (1.5.14) has a solution in DO. 

Hereafter, we shall prove results only for the two point right focal bound- 
ary value problem (1.2.6), (10.8.20) whereas, for the other problems anal- 
ogous results can easily be stated. 

Theorem 11.1.8. Suppose that the function f(k, UO, u1,. . . , u , ~ - I )  is 
continuous and on N(a, b - I) X R" 

n-l 

(11.1.5) p ( k , U l o , ? l , l , .  . ' , un-1 )1  5 x + c XilU,ilQ(i), 
i=O 

where 0 5 u(i )  < 1, X and Xi ,  0 5 i 5 n. - 1 are nonnegative constants. 
Then, (1.2.6), (10.8.20) has a solution. 

Proof. W e  shall show that the conditions of Theorcm 11.1.4 are satisfied. 
For this, the inequality (11.1.5) implies that on N(a, b - 1) x Do 

Thus, it suffices to choose M i ,  0 5 i 5 n - 1 so large that condition (ii) 
of Theorem 11.1.4 holds and C,.,Q1 5 M i ,  0 5 i 5 n - 1. I 

Theorem 11.1.4 is a local existence result whereas Theorem 11.1.8 does 
not require any condition on the constants Cn,?i or the boundary conditions. 
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i=@ 

Then, (1.2.6), (10.8.20) has a solution in Dl 

Proof. The boundary value problem (1.2.6), (10.8.20) can be written as 

(11.1.7) An'v(k)  = f ( k , t ~ ( k )  + Pn-I(k),At)(k) + A P , - l ( k ) ; . .  , 
A"-lv(k) + An,-lPn,_l(k)) 

Aiv (a )  = 0, 0 5 i _< p - 1 
A i v ( b )  = 0, p 5 i 5 n - 1. 

(11.1.8) 

W e  define S~(U, b - 1 + n) as the space of all rcal functions defined 
on N(a ,b  - 1 + n) satisfying the boundary conditions (11.1.8). If we 
introduce in Sa(a, b - 1 + n) the norm IlvII = nmxN ( a , b - l )  l A " ' ( l C ) I  7 

then it becomes a Banach space. W e  shall show that the mapping T : 
Sz(a, b - 1 + n) + & ( a ,  b - 1 + n) defined by 

b- l  

(11.1.9) T v ( k )  = c S(k, e ) . f ( e ,4e )  + P n - l ( Q , .  . .) 
k a  

maps the ball S, = v(k) E Sn(a, b - 1 + n) : ((ujl 5 - x + c }  into itself. 
1 - 0  
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For this, let w(k) E SJ then from Theorem 10.12.6 on W(a, b -  1 +n - i ) ,  
we have 

and hence on W ( a ,  b - 1 + R - i )  

Further, from (11.1.9) we have 

and hence in view of (11.1.6) it follows that 

n-l  

= X + c + 8 -  
X + c  X + c  
1 - 8  1-0' 

- - - 

Thus, the operator T has a fixed point in Ss. This fixed point w(k) is a 
solution of (11.1.7), (11.1.8) and hence the problem (1.2.6), (10.8.20) has a 
solution u (k )  = v(k) + Pn,-l(k).  I 

Theorem 11.1.10. Suppose that the boundary value problem (1.2.6), 
(10.9.24) has a nontrivial solution u ( k )  and the condition (11.1.6) with 
X = 0 is satisfied on W(a . , b  - 1) x Dz, where 

and M = rrlaxN lA"u(k)I. Then, it is necessary that 0 2 1. 

Proof. Since u ( k )  is a nontrivial solution of (1.2.6), (10.9.24) it is neces- 
sary that M # 0, and Theorem 10.12.6 implies that ( k ,  u ( k ) ,  A u ( k ) ,  . . . , 

(a&-') 
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An-'u(k)) E N(a, b - 1) x D2. Thus, we have 

n,-l 

and hence 8 2 1. I 

Conditions of Theorem 11.1.10 ensure that in (11.1.6) at  least one of 
the Xi, 0 5 i 5 n - 1 will not bc zcro, otherwise on N(a, b - 1 + TI) the 
solution ~ ( k )  will coincidc with a polynorr~ial of degrcc at  most n - 1 and 
will not be a nontrivial solution of (1.2.6), (10.9.24). Further, 71,(k) 0 
is obviously a solution of (1.2.6), (10.9.24), arid if 8 < 1 thcn it is also 
unique. 

Theorem 11.1.11. Supposc that for a11 (A - ,  710 ,7 / ,1 ,  . . . , v , ~ - I ) ,  ( k ,  V O ,  V I ,  

. . . , ~ ~ - 1 )  E N(a ,  b - l )  x D ~  the function f satisfies the Lipschitz condition 

n.- 1 
(11.1.10) ~ ~ ( ~ , ~ o , ~ l , ~ . . , w , n , - l ) - ~ ( ~ , ~ ~ o , ~ ~ , . ' . , ~ ~ , - l ) ~  I CX~I.U~-.O<\, 

i=O 

where X = maxN \f(k,O,O,--.,O)\. Then, the boundary value prob- 
lem (1.2.6), (10.8.20) has a unique solution in D l .  

Proof. Lipschitz condition (11.1.10) in particxlar implies (11.1.6) and the 
continuity of f on N ( a ,  b - 1) X Dl, therefore the existence of a solution 
of (1.2.6), (10.8.20) follows from Theorem 11.1.9. To show thc uniqueness 
let u,(k) and v(k )  be two solutions of (1.2.6), (10.8.20) in D l .  Then, in 
view of (11.1.3) and Theorem 10.12.6 it follows that 

(a,b--l) 

n-l 

n-l 

I C W n , i  lAn(4k) - 4k))l  
i=O 

= 8 l A n ( ~ ( k )  - .(IC))/. 

Since 0 < 1, we find that An,(u(k)-v(k)) = 0, k E N(a ,  b - l ) .  But, thcn 
~ ( k )  = ~ ( k ) ,  k E N(a ,  b - 1 + n) follows from the boundary conditions 
(10.8.20). I 
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11.2. Picard’s and Approximate Picard’s Methods 

In Sections 9.2 and 9.3 Picard’s and Approximate Picard’s methods have 
hecn successfully used to construct the solutions of the boundary vahle 
problcnls for thc nonlinear systcms. These methods have an important 
characteristic, that bounds of the difference between iterates and the so- 

lution are casily available. In this section we shall discuss these methods 
only for the boundary value problem (1.2.6), (10.8.20). For othcr problems 
analogous rcsults can be stated without much difficulty. For this, we need 

Definition 11.2.1. A function E ( k )  defined on JN(u, b - 1 + n) is 
callcd an app,rozim.ate solu,lion of (1.2.6), (10.8.20) if there exist S and F 

nonnegative constants suc:h that, 

and 

(11.2.2) max lAiPn-l (k)  - Aij7n,-l(k)) 5 CC,,, ,  0 5 i 5 n,- 1 
W(a.b-l+n--i) 

where P , - l ( k )  and Pn-l(k) arc the two point right focal interpolating 
polynorrlials satisfying (10.8.20) and 

- 

AiFP,-l(a)  = Q 7 Z ( a ) ,  0 5 i 5 p - I 
AiFP,-l(b) = A”U,(b), p 5 i 5 n - 1 

respectively, and the constants Cn,i are defined in (10.10.10) and (10.10.12). 

Inequality (11.2.1) Incans that there cxists a function ~ ( k ) ,  k E W(a , ,  b- 

(11.2.3) 

1) such that 

A”%(k) = f (k,B(k),AU,(k),...,A”-l~(k)) + v ( k ) ,  k E N(a ,b-  1) 

whcrc IrlaxN(a,b-l) Iv(k)l 5 S. Thus, the approxinlate solution z(k) can 
be exprcsscd as 

In what follows, we shall consider the Banach space S ( a ,  b - 1 + n) and 
for ~ ( k )  E S ( a , , b - l + n )  the norm is 1 1 u 1 1  = max{llA’~u.(k)II/C,,i, 0 5 i 5 
n. - 1). 
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Theorem 11.2.1. With respect to the boundary value problem (1.2.6), 
(10.8.20) assume that there exists an approximate solution E(k) and 

(i) the function f satisfies the Lipschitz condition (11.1.10) on W(a ,b -  
1) x D3, where 

(ii) 8 < 1 
(iii) (I - e)-l(t + 6) 5 p. 

Then, the following hold 

(1) there exists a solution u*(k)  of (1.2.6), (10.8.20) in S ( E , p o )  

(2) ~ r * ( k )  is the Imiqlle solution of (1.2.6), (10.8.20) in s(C, p )  

(3) the Picard i t e ra t i ve  seque'nce { ~ , ~ , ( k ) j  defined by 

h- 1 

Proof. We shall show that the operator T : S ( E ,  p) 4 S(a, b - 1 + n )  
defined in (11.1.4) satisfies the conditions of Theorem 9.1.2. Let u ( k )  E 
S(E, p), thcrl from the definition of norm, we have 
- 
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Theorem 10.12.6 with P,-l(k) 0, and we get 

n,-I 

nlax lAnw(k)l = max Iq(k)l 5 5 
N(a,b-l) W ( a , b - 1 )  

and hence 
~A’w(IC)~ 5 Cn,,6, 0 5 j 5 TI - 1. 

Using these inequalities and (11.2.2) in (11.2.6), we obtain 

lA ’T~o(k )  - A’~,o(k) /  5 ( F  + S ) C , , j ,  0 5 j 5 TI - 1 

which is the same as 

(A:’Tuo(k-) - A’ , o ( k ) /  /Cn,’ 5 ( E  + S), 0 I j 5 TI - 1 

and hence IITuo - UO/\ 5 ( E  + S). Thus, from the hypothesis (iii) it follows 
that (1 - e)-lIITU,o - ~ , ~ 1 1  5 (I - e ) - ’ (€ + 6) 5 p. 

Hence, the conditions of Theorem 9.1.2 are satisfied and conclusions (1) 
(5) follow. I 

I n  Theorem 11.2.1 the corlclusion (3) ensures that the sequence {U, (IC)} 
obtained from (11.2.5) converges to the solution u*(k) of (1.2.6), (10.8.20). 
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IIleqwtlitv (11.2.8) corrcspontls to thc rclat,ivc crror in approximating 
f by fR, for the (W. + 1)th iteration. 

Theorem 11.2.2. With rcspcct to thc 1)ountiary value problcrrl (1,2.6), 
(10.8.20) assImc that there cxists an approximate solution E ( k )  and the 
condition (cl) is satisfictl. Further, assuIrlc that, 

(i) c:orlditiorl (i) of Thcorcrrl 11.2.1 
(ii) O1 = (1 + v)O < 1 
(iii) p1 = (1 - Ol)-l(t + 6 + v F )  5 p ,  wherc 

F = max l f ( k , E ( k ) , A - i i ( k ) ,  . . . ,A"-lu.(k))l . 
W(a,b-l) 
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r n-l l 

Hence, we get 
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which gives 

Ilv,+l - u.11 I (1 - w p l  = p l .  
- 

This completes the proof of (2). 

which is the same as (11.2.10). I 

In our next rcsult, we shall assume 

Condition (Q). For all k E IN(a,b - 1) and A",,(k), 0 5 i I n - 7 
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obtained from (11.2.7) the following inequality is satisfied 

(11.2.12) I f (k , t )m(k) , . . . )  -frn(k,vrn,(k.),...)) I ~ l r  

where v1 is a nonnegative constant. 

Inequality (11.2.12) corresponds to the absolute error i n  approximating 
f by f m  for the ( , m ,  + 1)th iteration. 

Theorem 11.2.3. With respect to the boundary value problem (1.2.6), 
(10.8.20) assume that there exists an approximak solution E(k) and the 
condition ( Q )  is satisfied. Further, assume that 

(i) condition (i) of Theorem 11.2.1 

(ii) condition (i i )  of TheoreIrl 11.2.1 

(iii) p2 = (1 - Q)-'(f + 6 + V I )  5 p. 

Then, the following hold 

(1) all the corlclusions (1) (5) of Thcorcrn 11.2.1 are valid 

(2) the sequence {7im,(k)}  obtained from (11.2.7) remains in s ( E , p 2 )  

(3) the condition lirnm,+m 'U), = 0 is r1cc:essary and sufficient for t,hc 
convergence of {um(k) }  to the solution u * ( k )  of (1.2.6), (10.8.20) where 
W ,  are defined in (1 1.2.9), anti 

//U* - ?)m+1\1 I (1 - Q)-' [QIl7)m,+l - ?)",.l1 + v11 . 
Proof. The proof is contained in Theorern 11.2.2. I 

11.3. Quasilinearization and Approximate 
Quasilinearization 

Newton's method which has been used in Section 9.8 t,o solve boundary 
value problems for the nonlinear systems when applied to higher order 
differential equations has been labeled as qllasilincarizatiorl. Here, OIICE 

again we shall discuss this method only for the discrete boundary value 
problem (1.2.6), (10.8.20), whereas analogous results for the other problems 
can be stated easily. For this, following the notations and definitions of the 
previous section we shall provide sufficient conditions so that the sequence 
{ u m ( k ) }  generated by the quasilirlear iterative scheme 
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with uo(k) = C ( k ) ,  converges to the lmiquc solution ?I.* ( k )  of the bound- 
ary value problem (1.2.6), (10.8.20). 

Theorem 11.3.1. With respect to thc bourlctary valuc problem (1.2.6), 
(10.8.20) assume that there exists an approximate solution E(k) and 

(i) the function f(k, 71.0, 711, . . . , un , - l )  is c~orltinuo~~sly differentiable with 
respect to all ? I , ; ,  0 5 i 5 n, - 1 OII W(a, b - 1) x 0 3  

(ii) there exist Xi, 0 5 1: 5 n, - 1 rlonncgative constants suc:h that for all 
(k,~3,71,1, . . . E W(O,, b - 1) X 03 

(iii) 38 < 1 

(iv) p3 = (1 - M ) - ' ( c  + 6) 5 p .  
Then, t,he following hold 

(I) the sequence {um,(k)}  gcnerated by the process (11.3.1), (11.3.2) 
remains in T(E, 113) 

(2) the sequence {um,(k)}  converges to the unique solution u * ( k )  of 
(1.2.6), (10.8.20) 

(3) a bound on the error is given by 

(11.3.4) 

Proof. First, we shall show that the sequence {um,(k)}  remains i n  
S(C,p3). WC define an implicit operator T as follows 
- 

b - l  

(11.3.5) Tv.(k) = P , - l ( k )  + c g(k, e )  
P=a 

whose form is patterned on the sunlnlatiorl equation representation of (11. 
3.1), (11.3.2). 
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Thus, an applicztiorl of Thcorcrrl 10.12.6 providcs 

r 

- (Ai?,,,(!) - 
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(11.3.7) 

and now taking p + CO. 

Ncxt, from (11.2.4), (11.3.1), (11.3.2) we have 

b- 1 

?/,l(k) -'7/,0(k) = pn-l(k) - F n , - l ( k )  - c g ( k , ! )  X 
P=a 
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and as earlier, we find 

(11.3.8) - l l ,o ( (  I (1 - e)-l(f + S).  

Using (11.3.8) in (11.3.3) the iIlcquality (11.3.4) follows. I 

Theorem 11.3.2. Let the conditions of Theorem 11.3.1 be satisfied. 
Further, let f ( k ,  ?LO, 711, . . . , un,-l) b e  continuously twice differentiable with 
respect to all U;, 0 5 i 5 n - 1 on IN(a, b - 1) X 0 3  and 

Then, the following hold 

1 
2 

where (Y = (<Q2/2(l - Q)) . Thus, the convergence is quadratic if -((E + 

Proof. From {u,(k)} 2 s(?l,y3) it follows that for all 'm,, ( u m ( k ) ,  
Au., ( k ) ,  . . . , ( k ) )  E 03. Further, since f is twice continuously 
differentiable, we have 
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Using (11.3.10) in (11.3.6), we get 

Chapter 11 

which is the same as the first part of the irlcqmlity (11.3.9). The second 
part of (11.3.9) follows by an easy induction. Finally, the last part is an 
application of (11.3.8). I 

111 Theorem 11.3.1 the c:onc:lusiorl (3) ensures that the sequence {urn,(k)} 
generated from (11.3.1), (11.3.2) converges lirlearly to the uniquc solution 
u,*(k) of the boundary value problcrrl (1.2.6), (10.8.20). Thcorcnl 11.3.2 
provides suffic:ierlt, conditions for its quadratic convergence. However, in 
practical evaluation this scqllcrlcc is approximated by t,hc cornputed se- 
quence, say, (vm,(k)} which satisfies the recurrence relation 

(11.3.11) A " ~ , + l ( k )  = fm, (k,71,(k),Av,(k-),...,A""~~m(k)) 
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Condition (dl). (i) The function f m , ( k ,  U O , U , ~ ,  . . . , un,- l )  is continuously 
differentiable with respect to all ui ,  0 5 i 5 n, - 1 on N(a, b - 1) x 0 3  

and 

(ii) condition (cl) is satisfied. 

Theorem 11.3.3. With respect to the boundary value problem (1.2.6), 
(10.8.20) assume that there exists an approximate solut,iorl E(k) and tlic 
condition ( d l )  is satisfied. Further, we assmne 

(i) conditions (i) arld ( i i )  of Theorem 11.3.1 

(ii) 02 = (3 + v ) B  < 1 

(iii) p4 = (1 - &)-‘(F + 6 + u F )  5 p ,  whcre 

Then, the following hold 

(1) all the conclusions (1) (3) of Theorem 11.3.1 are valid 

(2) the sequence {v,,,(k)} obtained from (11.3.11), (11.3.12) remains in - 
S@, P41 

(3) the sequence {71,,(k)} converges to u * ( k )  the solution of (1.2.6), 
(10.8.20) if and only if lirnm,-m W ,  = 0, where W, are defined in 
(1 1.2.9) , and 

Proof. Since 192 < 1 implies 38 < 1 and obviously p3 5 114, the 
conditions of Theorem 11.3.1 are satisfied and part (1) follows. 

To prove (a), we note that E(k) E s(E,p4) and from (11.2.4), (11.3,11), 
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and Theorem 10.12.6 provides 

and hence, we find 



Boundary Value Problems for Higher Order Difference Equations 817 

From the last inequality, we obtain 

This completes the proof of part (2). 

Next, frorrl the clcfirlitiorls of urn,+l(k) and ?1~~,+1(k ) ,  WC have 

and herlce as earlier, WC find 

Since ?f,O(k) = vo( k )  = E( k ) ,  the above ineqllalit,y provides 

Using (11.3.16) in the triangle inequality, we obtain 

In (11.3.17), Theorem 11.3.1 ensures that lirrlm,+m //um,+l  - ?L */ )  = 0. 
Thus, from the Toeplitz lemma lirnm-CO l / z ~ ~ , ~ , + l  - U * ( /  = 0 if and only 

0, and hence if and only if lirnm+CO w n I  = 0. 
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where cy is the same as in Theorem 11.3.2. 

Proof. As in the proof of Theorem 11.3.2, we have 

%n+l(k) - % ( k )  
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Thus, as earlier we get 

11.4. Monotone Convergence 

Consider the boundary value problem 

(11.4.1) L [ u ( ~ ) ]  = f ( k , ~ ( k ) , ~ ( k +  l ) ; " , ~ ( k + n ,  - 1)) = f [ k , ~ ] ,  

k E N(u, h - 1) 

(11.4.2) P[?/.] = 1, 

w k r c  L [ u ( k ) ]  = Cy='=on , (k )u (k+i ) ,  ~ , ~ ( k )  : I, ~ ( k )  # 0 and a , ; ( k ) ,  0 5 
z 5 n, - 1 arc defined on I N ( n , b  - I), f : IN(a,b - 1) X 111" --f R, P : 
S(a, b- Itn.) --f R" is limar and continuous, whcrc, as earlier S(a., b-l+n,) 
is the space of all rral f1mctions defincd 011 N(a,, b - 1 + n,), and 1 E R" 
is a given vector. 

With respect to L and P, we shall assume the following: 

Condition (PI). u.(k) z 0 is the only solution of the homogclleous 
boundary value problem L [ u ( k ) ]  = 0, P[u] = 0. 

Thus, in view of Section 10.9 for this horrlogermms problem the Green's 
function g(k, e )  exists 0x1 lN(a, h - 1 + n,) X N(a, b - l), the problem 
L[u(k ) ]  = 0, (11.4.2) has a unique solution $l (k) ,  and the problem 
(11.4.1), (11.4.2) is equivalent to 

(11.4.3) d k )  = $l(k) + c S ( k ,  [ ) f [ [ ,  4 .  
b- 1 

P=a 

As in Section 11.1 we shall equip the space S(u. ,b - 1 + n )  with the 
norm Ilu,ll = maxN(a,b"l+n) lv.(k)I ,  so that it becomes a Banach space. 

Theorem 11.4.1. Suppose that condition P1 holds and f is continuous 
and bounded. Then, for any 1 E R" the problem (11.4.1), (11.4.2) has a 
solution. 

Proof. Define an operator T : S(a ,  b - 1 + n )  + S(a ,  b - 1 + n )  as follows 

(11.4.4) Tu(k)  = h ( k )  + c dk, e ) f [ e ,  4 .  
b- 1 

P=a 
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Obviously, u ( k )  is a solution of (11.4.1), (11.4.2) if and onlv if u ( k )  
is a fixed point of T. Let Q = sup{ I f ( k ,u l , .  . . , I L , ) ~  : ( k ,u1 , .  . . , W , , )  E 

W(',,'-') X J R n } ,  4 = II41(k)II> a''' G = IrlaXkE]N(a,b-l+n,) IS(',')(. 
Let S1 = { ~ ( k )  E S ( a ,  b - 1 + n.) : 11u,11 5 4 + QG}, and note that the 
continuous operat,or T defined in (11.4.4) maps the closed c:onvex set 
S1 into itsclf and that T(S1)  is compact. By the Schauder fixed point 
theorem, the operator T has a fixed point in ,Sl. Thus, the problem 
(11.4.1), (11.4.2) has a solution in S1. I 

Condition (Pz). The sign of the Green's function g(k,P) of the problem 
L [ u ( k ) ]  = 0, P[u] = 0 is intiepentlent of P. 

The motivation of this condition comes from the sign propertics of the 
Green's functions stated in Section 10.9, e.g. the inequality (10.9.11). 

Theorem 11.4.2. Suppose that, 

(i) c.onditions P1 and P. hold, arid let { I I ,  12) be a partition of 
lN(o,, b - 1 + n,) suc:h that 

g(k,P) 5 0 for (k ,P)  E Il x W ( a , b -  l), 

g(k,e) 2 0 for (k ,P )  E I2 x N ( a , b -  1) 
(11.4.5) 

(ii) f satisfies theLipschitz condition (11.1.10) with X; = /3, 0 5 i 5 n,-1 
on W ( a ,  b - 1) x R" 
(iii) there exist furlctiorls vo(k )  and wo(k) in the Banach space S(a ,  b -  
1 + n) satisfying 

(11.4.6) P[?jo] = 1 = ?[WO] 

and such that for k E lN(a, b - l), 

(11.4.7) L[vo(k)] - f [ k , v o ]  + Ao(k)  5 0 5 L[~o(k)] - f [ k ,  WO] - Ao(k), 

where 

n,- 1 

(11.4.8) Ao(k) = C I~o(k + i) - ~ o ( k  + i)I. 
i=O 

Thcn, there exists a solution u,(k) of the problem (11.4.1), (11.4.2) such 
that 
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Proof. We shall first show that 

(11.4.10) ?'o(k) 2 wo(k) for k E 11 and vo(k) 5 wo(k) for k E 12. 

B y  (11.4.6), vo(k) - wo(k) satisfies p[?/() - WO] = 0, and hence 

b-l 

?iO(k) - Wo(k) = 1 g(k,l)L[UO(t) - UJo ( l ) ] .  
P=a 

However, in view of (11.4.7), (11.4.8) and the Lipschit,z condition (11.1.10) 
with X i  = [lr, 0 5 i 5 n, - 1 it follows that L[vo(k) - wo(k)] 5 0 on 
N ( n , b  - l). Inequalities (11.4.10) now directly follow from (11.4.5). 

For each U, E S(n,b-l+n,) and k E W(a ,b- l ) ,  wcdefirle B ( k + j ) ,  0 5 
j 5 n, - 1 as follows 

For k ~ I N ( a . , b - l ) ,  wedcfine 7[k,u]_f(k,1I.(k),7l(k.+l),...,~(k+l- 
v,)) .  The function 7 is continuous and bounded on N ( a ,  b- 1) xR" and so, 

by Theorem 11.4.1, the bourldary value problem L[?s(k)] = T [ k ,  W,], P[u]  = 
1 has a solution ~ ( k ) .  W e  shall show that this solution ? ~ ( k )  satisfies 
(11.4.9), which in turn implies t,hat ~ ( k )  is a solution of (11.4.1), (11.4.2). 
For this, we note that vo(k) - u ( k )  satisfies p [ ?10  - U ]  = 0, arid hence for 
all k E N(a, b - 1 + n) 

b- 1 

Vo(k) - U.(k) = c g ( k ,  f ) L [ V O ( t )  - U([)]. 

e=a 

For k E lN(u, b - l), in view of Lipschitz condition (11.1.10) with X i  = 
p, 0 5 i 5 n. - 1, we have 

L[?lO(k) - ~ , ( k ) ]  5 f [ k ,  V O ]  - f [ k ,  U,] - A o ( k )  <_ 0. 

Thus, from (11.4.5) it follows that vo(k) 2 u. (k) ,  k E II and wo(k) 5 
7r(k) ,  k E I,. The proof for .(k) 2 wo(k ) ,  k E 11 and u,(k) 5 wo(k), k E 
12 is similar. I 

Corollary 11.4.3. Assume that all the hypotheses of Theorem 11.4.2 arc 
satisfied, and define the sequences { w , ( k ) }  and {wm ( k ) }  as follows 

b- 1 

71,~+1(k) = + A , ( [ ) ) ,  
I=a 
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(iii) there exist functions v o ( k )  and wo(k) in thc Banach space S(a, b -  
1 + n) satisfying (11.4.6), and 

(11.4.13) ?/o(k) 2 wo(k) ,  k E Il and u0(k) 5 wo(k), k E 12, 

k E N(u, b - 1). 
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. . . <S W1 5 s  W O .  

Also, each solution z ( k )  of this problem which is such that 110 <S z <S WO 

satisfies 7 )  <S z 5 s  W. 

Proof. The proof is similar to that of earlier results. I 

11.5. Initial-Value Methods 

In Chapters 8 and 9 initial-value methods have been used to construct 
the solutions of linear ancl nonlinear boundary value problems. The pur- 
pose of this section is to use these methods to prove some existence and 
uniqueness results for higher order boundary value problems. First, for a 
given 1 5 p < n - 1 we shall consider the (p, R - p) boundary value 
problem 

(11.5.1) L[u(k ) ]  = c a i ( k ) ~ ( k  + i )  = j ( k , u ( k ) ) ,  k E N(u,  b - 1) 
n, 

i=O 

(11.5.2) 
~ ( a  + i )  = Ai, 0 < i 5 p - 1 

u ( b - 1 + n - 2 )  = B,, O < i < n - p - l .  

In (11.5.1) the functions nc(k) arc defined on N(a, b - l ) ,  an(k) 1 and 
ao(k)  satisfies (10.1.1), arld the function f ( k , u )  is defined on N(a, b - 
1) x R. 
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Theorem 11.5.1. Assume that f ( k , u )  is c:ontinuous on N ( n ,  b - l )  xlR, 
and there is a function h(k)  defined on JN(a, b - 1) such that 

(11.5.3) f ( k ,  71.) - f(k, 71)  2 h ( k ) ( u  - U), k E N(a ,  0 - 1) 

holds whenever W. 2 71. If L [ u ( k ) ]  = h , ( k )u (k )  is right ( n  - 1, 1) 
discorljugate on N ( a ,  b - 1 + n ) ,  then (11.5.1), (11.5.2) with p = R - I 
has a unique solution. 

Proof. Let u(k,,m.) bc the uniqlle solution of (11.5.1) satisfying thc 
initial conditions ~ ( a  + i )  = A; ,  0 5 i 5 n, - 2, u ( a  + n, - 1) = 'rn. Let 
S = { u ( b  - 1 + n,) : ' m .  E R}. B,y the continuous dependence of solutions 
on initial conditions S is an interval. To prove the existence of a solution 
it suffices to show that S is not bounded above as well as below. 

D e f i ~ ~  the sequerlcc of intcgral Incans {f , . (  k ,  U,)} of f ( k ,  71.) by 

for k E W(a. ,  h- I), 71. E R. It is dear that &,.(A:, U) + f ( k ,  U )  uniforrrdy 011 

cornpact subsets of N(a,, b - 1) x R, the functions f , ( k ,  W.), 3f, . (k,1r)/aw. 
are continuous 011 N(a ,  b - 1) X R, and i>f,,.(k, 7 r ) / 3 7 r  2 h , ( k ) ,  k E 
N ( a ,  b - 1). 

Let v,,.(k,m) be the solution of the initial value problem L[u.(k)] = 
f , ( k , u ( k ) ) ,  u(a+i) = Ai, 0 5 i 5 n,-2, u(n+n-l)  = ' m .  For m 1  > 'rn2, 
we have 

where aur(k,ET)/8rrl is the solution of the initial value proMcn1 

L[7r(k)] = 
8 fT (k ,71 , , ( k , r n ) )  

311 
7L(k), u(a+i) = 0, 0 5 i 5 n-2, u(a+n-l) = 1. 

Since the equation L[z/, (k) ]  = h ( k ) ~ ( k )  is right (n - 1,l) dis- 
conjugate on W ( a , b  - 1 + n )  and a f , ( k , u , . ( k , $ ) / a ~ ~  2 h,(k),  k E 
N ( a ,  b - l), from Corollary 10.2.10 it follows that the equation L[u,(k)]  = 

~ ( k )  is also right (n,-l, 1) disconjugate on N(a, b - l + n ) .  
Thus, du,,.(k,%)/8rn, as well as the solution ~ ( k )  of the initial value prob- 
lem L[71(k)] = h(k)v(k), v (a  + i) = 0, 0 5 i 5 R - 2, .(a + n - I )  = 1 
is positive on N(u + n - 1, b - 1 + n,). Further, from Theorem 10.2.9 ancl 
(11.5.4) it follows that 

a f , ( k % ( k q )  
i3U 

U,.(k,'rnt,l) - I/,,(k,7712) 2 V(k)(?rLl - m 2 ) ,  k E N ( a , b  - 1 + n). 
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L[v(k)]  = g ( k ) v ( k )  arc right disco11,jugatc by Corollary 10.2.10. Now llsing 
the fact that L[v (k ) ]  = g(k)v(k)  is also right, (n,- 2,2) discorljllgate, from 
Corollary 10.2.14 it follows that L [ z ( k ) ]  = r ( k ) z ( k )  is right (,n, - 2,2) 
discorljugatc. Thus, WC find that, z ( k )  2 0 on N ( n ,  b - 1 + R). Hcrlcq 
in view of Theorerr1 10.2.13 we obtain that z ( k )  2 ?)(/c), where v(k) 
is the solution of L[v(k ) ]  = g(k)v(k), u(a + z) = z(a + i), 0 5 i 5 
n, - 2, ,{/(h - 1 + n.) = z ( b  - 1 + n,). Therefore, u,(k,,rnl) - ?/,(k,,rrt2) 2 
u ( k ) ( m l  - m 2 ) ,  k E IN(a, b - 1 + R). Letting k = b - 2 + n,, we find that 

For t,hc Ilrliqlm~css of sol11tiorls, s~lpposc 011 the (:ontrary that ~ ' ~ ( k . )  
and .z(X-) arc distinct solutions of t,hc t)ollndary valuc prof)Icrn (1 1 . ~ . 1 ) ,  
(11.5.2) with p = n,-2. Sincc solutions of (II.S.I), (11.5.2) with p = R- 1 
arc urliqllc, WC can write ul(k-) = u(k,,rr/. l ) ,  uz(k) = u ( k , , r r I z ) ,  for some 
'rn1 # 'rrI.2. Without loss of generality WC can assume that 70,~ > 7112. 

Bllt the11 (11.5.7) shows that 7r(b - 2 + n,,,rr/,1) # ~ ( b  - 2 + n, , r r/2 ) ,  wllic~h 
contradicts the assumption that both 7/, l(k) and u 2 ( k )  were sollltiorls of 
the same problem. Hence the ImiqIlencss condition is satisfied. I 

Theorem 11.5.4. Let the function f(k,u) be as i n  Theorem 11.5.3. 
If L[u(k) ]  = h , ( k )u (k )  and L [ u ( k ) ]  = g(k)u,(k) are disco1ljugatc on 
W(a, h - 1 + n,), thcn the boundary value problem (11.5.1), (11.5.2) has a 

unique solution. 

Proof. The proof is by induction 011 decreasing valucs of p. The cases 

p = n - 1 and p = n, - 2 arc contairlcd in Theorems 11.5.1 arid 10.5.3 
respectively. Assume p 5 n - 3 and that the theorem holds if p is 
replaced by p + 1. Then, there exists a unique solution u ( k , m )  of thc 
boundary value problem (11.5.1), u(a+i)  = Ai, 0 5 i 5 p- 1, .u(a+p) = 
m ,  u ( b  - 1 + n - i) = B', 0 5 i 5 n, - p  - 2. For m l  > m z  let z ( k )  and 
r ( k )  be as in the proof of Tllcorerrl 11.5.3. Then, z ( k )  is the solntiorl of 
the boundary value problem L [ z ( k ) ]  = r(k)z(k), z ( a  + i) = 0, 0 5 i 5 
p - 1, z(a + p )  = 1, z (b  - 1 + n - i )  = 0, 0 5 ?: 5 n - p  - 2. Since 
h,(k) 5 r ( k )  5 ,9 (k ) ,  IC E W ( a , b  - 1) and both L [ u ( k ) ]  = h , ( k )u (k )  and 

L[u.(lc)] = g(k)u,(k) are disconjugate on W ( a , b  - 1 + n), from a slight 
modification of Thcorem 10.1.7 it follows that L[z(IC)] = r ( k ) z ( k )  is also 
disconjugate on N(a, b - 1 + n). 
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Now consider the case that n, - p is odd, the case for n. - p even 
is similar. Let ~ ( k )  be the solution of L [ w ( k ) ]  = h, (k )v (k ) ,  71(u + i )  = 

the discorljngac,y assumptions, we have ~ ( k )  2 0 on W ( a ,  h- 1 +n,). Thus, 
from Theorem 10.2.15 it follows that z ( k )  2 ~ ( k ) ,  k E IN(u., b - 1 + n ) .  
The remainder of the proof is similar to that of Theorem 11.5.3. I 

z ( u + ~ ) ,  0 5 i < p ,  ~ ( b - l + n - i )  = z (b- l+n. - i ) ,  0 5 i 5 n-p-2. BV 

Next, we shall consider the difference equation 

(11.5.8) A (p (k )An ' - '~ , , ( k ) )  = f (k,u(k),A~~(k),...,a"-~~,.(lC)), 

IC E W(0, b - 1) 
together wit,h the (..,p) hourldary conditions (1.5.12) with a = 0. In 
(11.5.8) the fmc:tiorl p (k )  is defined and positive on W(0, b ) ,  and the 
function f(k, ?LO, 9 6 1 ,  . . . , un, - l )  is defined and c:ontimous on W(0, h - 1) x 
R.. 

Proof. From (1.8.7) it follows that 
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(11.5.12) 
k-n.+i+l 

and from this (11.5.9) is clear. Further, if A"-lu.(k) > 0, k E W(0, g + 1) 
then from (11.5.12), Aju(k) > 0, k E W(n, - j - l , n  + g - j )  is also 
immediate. Now, in view of (1.8.6) and (11,5.9), we have 

= - (k  - n, + j + 1)(")A3,tr(k.). B 1 
j !  

Remark 11.5.1. Throughout, in LeIrlnla 11.5.5 the strict inequalities can 
be replxcd by with eqmlities. 

Lemma 11.5.6. Assurne that u i ( k ) ,  0 5 i 5 n - 1 are defined and 
nonnegative on W(0, h - 1). Then, for cach cy > 0 the solution of the 
initial value problem 

n,-l  

(11.5.13) A (p(k)A"-'v(k)) = C uz (k )A iv (k )  
i = O  

(11.5.14) A~V(O)  = 0, o 5 i 5 n - 2 ,  an,-' v(0) = U: > 0 

has the property that Ajv(k)  2 0 for all k E W(0, h - 1 + n - j )  and 
in particular for all k E N(n - j - 1, h - 1 + n - j )  the strict inequality 
Aju(k) > 0, 0 5 j 5 n - 1 holds. 

Proof. Let q E W(1, h) be the first point where A"-l?r(k) 5 0, then 
from Lenlrna 11.5.5, AJv(k) 2 0 for all k E IN(0,n + q - j - 2), and in 
particular Aju(q - 1) 2 0, 0 5 j 5 n - 2. However, from the difference 
equation (11.5.13), we have 

n - l  

p(q)A"-'?i(g) = p(q  - l ) A " - l ~ ( g  - 1) + C ai(q - 1)Aiv(q - 1) > 0. 
i = O  

This contradiction completes the proof. I 
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Lemma 11.5.7. Assume that 

n,-2 

(11.5.15) l( k )  + c a,, ( k )  
i !  

( k  - TI + i + I)(i) 2 0 

(iii) v(k,O,/;l) is thc solution of (11.5.8) satisfying thc initial conditions 

(113.16) A'8?/,(o) = 0, 0 5 i 5 n - 2, An,-' u.(0) = /l 

(iv) tllcrc cxists a solution ?)(IC, 0, U )  of thc diffcrcncc equat,ion 

+I(k)v(k) + c a.i(k)AiO(k) 

satisfying the initial conditions (11.5.14) swh  that A n , - l ~ ~ ( k , O , ~ ~ )  > 0 for 
all k E l N ( 0 , b ) .  

Then, for all k E N(0, b - 1 + n, - 1:) 

(11.5.18) 0 5 " a ' ? l i ( k , o , o )  5 A'?/.(k,o,p), 0 5 i 5 n,- 1 

where E > 0 and /3 - E > CY. In particular AZu,(k,O,[j) > 0 for all 

i=l 

P - E  

CY 

k E I N ( n - i - l , b - l + n - i ) ,  O < i < n , - l .  

Proof. Since An-'?)(k, 0, CY) > 0 for all k E W(0, b )  and A i ? i ( O ,  0, C Y )  = 
0, 0 5 i 5 R - 2, Lemma 11.5.5 cnsures that A" ? i ( k ,o , ( ~ )  2 0, k E 
N(0, b - 1 + n - i ) ,  and in particular strict inequality holds for all k E 
N ( n  - i - l ,  b - 1 + n - i), 0 5 i 5 n - 1. Thus, it suffices to show that 

- v(k,O,u) 5 AZu(k,O,p), 0 5 i 5 n-1 holdson W(O,b-l+n,-i). 

For this, we define a function + ( k ) ,  k E lN(0, b - 1 -+ n )  as follows +(IC) = 

B - E A '  

CY 

u(k,O,P)  - cy -'u(IC,O,a). Then, A"+(O) = 0, 0 5 i 5 R - 2 and 
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An,-l$(0) = E > 0, and from Lemma 11.5.5 and Remark 11.5.1 note that 
WC need to prove An-'4(k) 2 0, k E IN(0,b).  Let q E IN(1,b)  be the first 
point where An-'4(q) < 0. Then, from Lernrna 11.5.5, A34(k) 2 0, k- E 
]N ( o , ~  + q - j - a), 0 5 j 5 n - 1. Hence, in particular A'@(q - 1) 2 
0, 0 5 j 5 n, - 1. Since p (k )  > 0, k E IN(O,b),  we have 

5 f (q - 1, ~ ( q  - l), Aw.(q - l), . . . , A"-'w,(q - 1)) 
n,-2 

- Z(q - 1)u(q - 1) - c ai(q - l)Aiw.(q - 1) 
i=l 

n,-2 

+ P-E ff p(, - l ) w ( q  - 1) + c ai(q - l)Aiv(q - 1) 
i=l 1 

= f (q - 1 , 7 r ( q  - l), Aw.(q - l),'. . , A"-'w,(q - 1)) 
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Thus, in view of conditio11 (i), in Lerrlrna 11.5.7 the function f can be 
replaced by F, and in conclusion the solutions w(k,X,yl,yz) of (11.5.22) 
and u(k,O,ru) of (11.5.17), (11.5.14) with y1 - y2 > Q > 0 satisfy 

and A i w ( k , T , y l , y 2 ) > 0  forall k E W ( n , - z - l , b - l + n - i ) .  

Thc above inequality in particular implies that 

The rest of the proof is similar to that of Theorem 11.5.3. 

Corollary 11.5.10. Let for a fixctl k E W(0, h - 1) ant1 71.i 2 E;, 0 5 
i 5 n - l  

n-l 

f(k,~,0,7f,1,..',~/,n")-f(k,~0,~1,''',~n,-~) >_ C U i ( k ) ( ? l , , i - E i ) ,  
i=O 

where u.;(k) 2 0, 0 5 i 5 R - 1 are defined on N(a ,  h - l), (in particular 
f is nondecreasing in all u,~, 0 5 i 5 n - 1). Then, the boundary value 
problem (11.5.8), (1.5.12) has a unique solution. 

11.6. Uniqueness Implies Existence 

Here we shall consider the difference equation (1.2.5) together with the 
boundary conditions (10.8.1), where kl < kz < ... < k ,  and each ki E 
W(a ) .  For converlicI1ce, we shall assume that kl  = 'm1, ki - ki-1 = 'rni (2 
l), 2 5 i 5 R and call (10.8.1) as ( m 1 , ' r r / , 2 , .  . . ,711,) conjugate boundary 
conditions. Throughout, for the ( m l ,  m.2, . . . , m , )  conjugate boundary 
value problem (1.2.5), (10.8.1) we shall assume that the following conditions 
arc satisfied. 

Condition 11.6.1. The function f : W(a )  x R" + R is continuous 
and the equation 7 1 , .  = f ( k , ? b o ,  . . . , 71,,,-1) can be solved for 71.0 as a 
continuous function of u , ~ ,  . . . , PI,, for each k E W ( a ) .  

Condition 11.6.2. Given ' rn1  E N(a )  and m 2 , .  . . , m ,  E IN(1), if 
kl = ' r n1  and ki = ki-1 + 'm,i, 2 5 i 5 R and if u(k) and o(k)  
are solutions of (1.2.5) such that u(k.1) = v(k1) and ~ ( k )  - v (k )  has a 
generalized zero at ki ,  2 5 i 5 R, then it follows that u ( k )  = u ( k )  on 

W(k1, h ) .  
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As a consequence of condition 11.6.1 it follows that (1.2.5) is an nth 
order difference equation 011 any subinterval of N ( a ) ,  that solutions of 
initial value problems for (1.2.5) are unique and exist 011 N(a,), and 
that solutions of (1.2.5) depend continuously on initial conditions. Further, 
condition 11.6.2 in facA implies that u(k) = ~ ( k )  011 N(a). 

Theorem 11.6.1. For the difference equation (1.2.5) let the conditions 
11.6.1 and 11.6.2 be satisfied. Then, each (ml, m 2 , .  . . , m,,) coIljugatc 
boundary value problem (1.2.5), (10.8.1) has a unique solution on N(a). 

Proof. We note that the condition 11.6.2 implies the uniqueness of all 
such solutions. The proof of the existence of solutions is by induction 0x1 
m 2 , . . . , m n , .  To begin, let = 1, 2 5 i 5 n, so that (1.2.5), (10.8.1) 
becomes an initial value problem for which a unique sohltion on N(a) 
exists. Assume now that ' m 7 ,  = 1, 2 5 i 5 n, - 1, m , ,  > 1 arid each 
( m 1 ,  1, . . . , 1, h,) cor1jugate boundary value problem, where 1 5 h, < 'mn,, 
for (1.2.5) has a unique solution 011 N(a.). Let v l ( k )  be the solution of 
the (m1 ,1 ,  . . . , 1, m, - 1) conjugate boundary value problem for (1.2.5) 
satisfying U ~ ( I C . L )  = A,;, 1 5 i <_ n, - 1, 911 (k,, - 1) = 0 (see the definition 
of ki,  1 5 i 5 n). Now define SI = {r E R : thcre is a solution u ( k )  
of (1.2.5) satisfying u.(ki) = 111 ( k i ) ,  1 5 i 5 n - 1 and U( k,) = r}. Since 
q ( k , )  E SI, S1 is nonernpty. Moreover, from Problem 11.7.5 it follows 
that S1 is a11 open subset of R. W e  claim that S1 is also a closed subset 
of R. If not, then there exist TO E Tl\S1 and a strictly monotone sequence 
{rm,} C S1 such that lirnm-m T ,  = TO. We may assume without loss 
of generality that r ,  TO. For each ' r n  E IN( l), let urn( k) denote 
the corresponding solution of (1.2.5) satisfying . ~ , ~ ( k i )  = vl (k i ) ,  l 5 i 5 
n - 1, u m ( k , )  = r , .  From the condition 11.6.2 it follows that um(k) < 
~ , + ~ ( k )  on N(/C,-~ +l), for all 'm. E lN(1). Furthermore, the induction 
hypothesis implies the existence of unique solutions of (rnl, 1,.  . . ,l, ,m,-l) 
conjugate boundary value problems for (1.2.5), which when coupled with 
Problem 11.7.6 along with TO $! S1 implies that ~ ~ ( k , ,  - 1) T CO as ' m  + 

03. Moreover, by Problem 11.7.4 there exists ko E N(k, + 1, k,, + n - l) 
such that u r n , ( k ~ )  T CO as m + CO. 

Now let z ( k )  denote the solution of the ( m 1  + 1,1, .. . ,l, m , ,  - 1) 
conjugate boundary value problem for (1.2.5) satisfying z ( k i )  = 111 ( k i ) ,  2 5 
i 5 n - 1, z(k,-l + 1) = 0, z(k,) = TO. Since um,(kn - 1) T CO and 
U, (ko) T CO, whereas ~ , ~ ( k , )  = r, < TO = z(k,) for all m. E N( l), 
it follows that for some M E N(1), z ( k )  - u ~ ( k )  has a generalized zero 
at k,, and also a generalized zero (or zero) at some eo E N(k,, + 1, ko).  
Furthermore, z ( k i )  - u ~ ( k , i )  = 0, 2 <_ i <_ n - 1 and hence from condition 
11.6.2, z ( k )  = u ~ ( k )  on N(a), which is a contradiction. Hence, S1 is 
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also closet1 and consequently S1 = R. Choosing A ,  E S1 it follows that 
there exists a solution u.(k) of (1.2.5) satisfying u(k i )  = Ai, 1 5 i 5 n.. 
In particular, given 'm1 E W ( a ) ,  'mi = 1, 2 5 i 5 R - 1 anti 'rn, 2 1 
each (nr l ,  1, . . . ,I, m,,) conjugate boundary value problem for (1.2.5) has 
a unique solution on IN(a). 

Now lct z(k) denotc the solution of the ( m 1  + 1,1,. . . , 1,mn,-1 - 1 , l )  
c:orl,jugatc boundary value problem for (1.2.5) satisfying z(kL) = v2(k,i), 2 5 
i 5 R - 2, z ( k , - Z  + 1) = 0, z(kn,-l)  = ~ 2 ( k , - ~ ) ,  z(kn) = TO.  Since 
u,,,(k,-1 - 1) 1 -CO, whereas z(k,-l) - u.,(kn-l) = 0 and ~ ( k , . )  - 
um(k,)  > O for all m E IN(1), it follows that for all m sufficiently large, 
z(k) - ~ , ~ ( k )  has a generalized zero at k,. Since ?~,,,,,(ko) CO, there 
exists M E W(1) such that z ( k )  - u ~ ( k )  has a generalized zero at k, 
and a generalized zero (or zero) at some !O E W(k, + 1, ko). W e  also have 
that z(ki) - u ~ ( k i )  = 0, 2 5 i 5 n - 1, arid condition 11.6.2 implies 
that z ( k )  = u ~ ( k )  011 lN(a),  which is again a contradiction. Thus, S2 
is closed and S2 = R. Choosing A ,  E S2 it follows that there exists a 
solution u ( k )  of (1.2.5) satisfying u.(ki) = Ai, 1 5 i 5 n. In summary, 
given 'rr11 E N ( n ) ,  m ;  = 1, 2 5 i 5 n - 2, 7rt,,,-1 > 1, 'run, = 1 each 
(,rrt,1,1,. . . , l,mn,-l, 1) co11jugate boundary value problem for (1.2.5) has a 
unique solution on N(a,). 



Still assuming the inductive hypotheses associated with m , - 1  > 1, 
we assllrrle in addition that m, > 1 and that given m 1  E W(a) 
and m i  = 1, 2 5 i 5 n - 2 there exists a unique solntion of each 
(,ml, 1, . . . , 1, ~rt , , -1 ,  h,) corljugate boundary value problem, where 1 5 h, < 
m ,  for (1.2.5) on W(a,). Let z3(k) be the solution of the (*rr / ,1 ,1 , .  . . , 
I,v~,,,-~,'rn,~, - 1) coqjugate problem for (1.2.5) satisfying z3(k i )  = Ai,  1 5 
i 5 n - 1, z3(k7,, - 1)  = 0. We define S3 = {T E R : there is a SCE 

lution v,(k) of (1.2.5) satisfying ~ ( k i )  = v3(ki), 1 5 i 5 n, - 1 arld 
.(X-,,) = T}. As before S3 is nonempty open subset of R and we 
claim that S3 is also closed. Assuming again that, the claim is false, 
let TO E 73\S3 and {rm} C S3 with T, T TO be as i n  the previous 
considerations, and let ? / , , ( I C )  denote the solutions of (1.2.5) satisfying 
U, ( k ; )  = u 3 (  I C L ) ,  1 5 i 5 n, - 1, U,,, (k,,) = rm,. Cordition 11.6.2 implies 
that ~ . . ~ ~ , , ( k )  < ?/,,n+l(k) on IN(k,-l + I), for all E N(I ) ,  arld be- 
cause of the cxistenc:e of unique solutions of ( , r r / , I ,  1,.  . . ,,rr/,,,-1,'rnn - 1) 
problems for (1.2.5) along with TO S3, Problcrrl 11.7.6 implies that 
?L,,, ( k ,  - 1) T m, as m 4 c m ,  and Problem 11.7.4 implies that for some 
ko E W(k, + 1, k ,  + n, - l), 7 ~ , ( k o )  cm as ' m  4 CO. 

Now let z ( k )  be the solution of the ( m 1  + 1, 1,. . . , l,,rr/,,, - l . , r r/ , )  
boundary value problem for (1.2.5) satisfying z ( k i )  = u 3 ( k i ) ,  2 5 i 5 
n, - 2, z(kn,-2 + 1) = 0, z(k,-1) = v3(kn,-1), z(k,,) = TO. Such a solution 
z ( k )  exists by the primary ir1d11c:tion hypotheses on Becausc of the 
unboundcd conditions on {urr8(k, ,  - l)} and { v , , ( k~ ) } ,  while z(k , )  > 
um,(k , ) ,  for all m E lN(l), therecxists M E W(1) such that z ( k ) - u ~ ( k )  
has a generalized zero at k ,  and a generalized zero at sonlc l io E W ( k ,  + 
1, ko). Morcover, z ( k i )  - u ~ ( k i )  = 0, 2 5 i 5 n - 1 from which it follows 
that z ( k )  = v , ~ ( k )  on nV(a,). This contradiction completes the proof of 
S3 being closed. Thus, S3 = R and choosing A,  E S3 the corresponding 
solution u ( k )  of (1.2.5) satisfying U(,&) = A,  is the desired solution. In 
particular, given m 1  E lN(a) ,  m i  = 1, 2 5 i 5 m. - 2 and m, 2 1 each 
( m l ,  1, ... , l1~m,-1,~m,,) conjugate boundary value problem for (1.2.5) has 
a unique solution on N(a ) .  This cornplctes the induction on m,,-1. 

Now we shall induct on m , - 2 .  For this, our assunlptiorl is that > 
1 and that given m 1  E N(a,), m i  = 1, 2 5 i 5 n- 3 and ~ r - / , ~ - ~ ,  m ,  2 1 
there exists a unique solution of each (,rnl, 1, . . . , 1, q ,  , r r / , , - 1 ,  'rrt,,) co11- 
jugate boundary value problem, where 1 5 q < for (1.2.5) on 
IN(a,). Under this assumption, we will be concerned with the solutions of 
(m,l, 1, . . . , 1, mn,-2, 1,l) followed by ( m l ,  1, . . . , 1,mn-2, 1, m,), 'rn, > 1 
followed by ( m 1 , 1 ,  . . . , 1, TrL,,-2, 'mn,-l, l), m n , - l  > 1 followed by (,rrt,1,1, 
. . . , 1, 'rn,-2, 'mt,-1, m,,), 'rrt,,,-1, m, > 1 boundary value prot)lems for 
(1.2.5). 
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In addition to our assurrlptiorls on rn,-2 > 1 we assume that 'rn, > 1 
and that given ' rn1  E N ( a ) ,  r r ~ 2  = . . . - *rn,-3 = = 1, each 
( m l ,  1, . . . , 1, n r , - 2 ,  1, h,) corljllgate boundary value problem, where 1 5 
h, < m,, for (1.2.5) has a unique solution 011 IN(a). Let v5(k) be 
the solution of the ( m 1 ,  l,-.. , l , ' r r / , n , - z , l , ' r r~ ,n  - 1) problerrl for (1.2.5) 
satisfying 7 ~ 5  ( k i )  = Ai, 1 5 i 5 n, - 1, (km - 1) = 0. Defining Ss 
in the standard way, Ss is rlorlempty and open. If we assume Ss is 
not, closed, then let TO and { T ~ , }  with T ,  T TO be as usual, and let 
I/., ( k )  be the appropriate solution of (1.2.5). By the existence of unique 
solut,ions of ( * m 1 ,  1,. . . , l , m n - 2 ,  1,m, - 1) problems for (1.2.5), WC have 
that wlrn,(k, - 1) T c m .  Also, w.,(ko) T c m ,  where ko is as usual. In this 
case, now let z ( k )  be the solution of the ( , m 1  + 1,1,. . . , l,mn%n-2 -1, l,'rn,,) 
problem for (1.2.5) satisfying z ( k i )  = ~ ~ ( k i ) ,  2 5 i 5 n-3,  Z(/C, ,_~+ 1) = 
0, z(k,i)  = ~ , ( k i ) ,  i = n - 2, n - 1, z(k,) = TO. Thcn, there exists 
M E W( 1) such that z ( k )  - u ~ ( k )  has a generalized zero at k,, a 
generalized zero at some eo E IN(k, + 1, ko), and zeros at k,, 2 5 i 5 n- 1 
which is the usual contradiction. Thus, S5 is closed, and we conclude 
the existence of unique solutions of (,m1, 1, . . . , 1, rr/,n--2, 1,m,,) corljugate 
boundary value problems for (1.2.5) on W ( a ) .  

- 

In addition to the primary inductive hypotheses on 'rrL,-2, we assume 
now that ,rrt, ,-1 > 1 and that given m l  E IN(a), 'rr1i = 1, 2 5 i 5 n. - 
3, 'm,, 2 1 there exists a unique solution of each (ml ,  1,.  . . , 1, 7nn-2,p, m , )  

conjugate boundary value problerrl, where 1 5 p < 'rr1,,-1, for (1.2.5) on 
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11.7. Problems 

11.7.1. Prove Theorem 11.4.5. 

11.7.2. Assume that c,  d E N(n ,  b + p), c + p 5 d and that solutions 
of the ( p , n  - p )  boundary value problem (11.5.1), 

(11.7.1) 
v , ( c+i )  = ci, 0 5 i l p - l  
U ( d + i )  = DL, 0 5 i s n - p - l  
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arc unique on N(c ,  d + n - p - l). B y  using Brouwer theorem on the 
invariance of domain show that for a given solution u ( k )  of (11.5.1) there 
exists an E > 0 such that if 7 = ( 7 0 , .  . . , and 6 = (60,. . . , 
satisfy l ~ i l  < F ,  0 5 i 1. p - 1, I6,I < 6 ,  0 5 i 5 n - p  - 1 then thc 
boundary valuc problem 

- 

L[w(k)] = f ( k ,  11(k)), k E N(a,  b - 1) 

l l (d  + i) = w,(d + i) + bi, 0 5 i 5 n, - p  - 1 
(11.7.2) 71(c+i) = U , ( C + i ) + Y i ,  O < i S p - l  

has a unique solution 71(k,7,5). Furthermore, as F + 0 the solutions 
v ( k , 7 , 5 )  converge to ~ ( I c ) .  

11.7.3. Lct i n  addition to the uniqucrlcss assumption of (p, .,-p) bound- 
arv valuc problern (11.5.1), (11.7.1) in Problem 11.7.2, i3f/i3~ exists and is 

contirmolls. Further, the variational equation L [ z ( k ) ]  = -(k-,u,(k))z(k-)  

is right ( p , n ,  -p) discorljugate along all solutions v(k)  of (11.5.1). Show 
that for a given solution ~ ( k )  of (11.5.1) there exists an F > O such that 
the t)omdary value problem (II.5.1), 

Of 
i3U. 

74c + 1:) = ?/.(C + i), 0 5 i 5 p - 2 
w ( c + p - l )  = I / , ( c+p - l )+X  
w ( d + i )  = u, (d+i ) ,  O < i < n , - p - l  

has a uniquc solution ~ ( k ,  X) for 1x1 < F. Furthermore, w(k) = - 
exists for ( X /  < E and is the solution of the variational equation with 
u ( k )  = ~ ( k ,  X) satisfying the boundary conditions 

8l)(k ,  X) 
dX 

w ( c + i )  = 0, 0 5 i S p - 2  
w ( c + p - l )  = 1 
w ( d + i )  = 0, O < i S n - p - - l .  

11.7.4. For the difference equation (1.2.5) let the condition 11.6.1 be 
satisfied. Further, let there exist a sequence { u m ( k ) }  of solutions of 
(1.2.5), an interval N(k0,ko + n - 1) C N ( a ) ,  and an M > 0 such 
that Ium(k)l 5 M ,  for all k E N(k0, ko + n - 1) and 'm, E W(1). Show 
that there exists a subsequence { ~ , ~ , , ~ ( k ) }  of {um,(k)} that converges 
pointwise 011 N(a )  to a solution of (1.2.5). 

11.7.5. For the difference cquation (1.2.5) let the conditions 10.6.1 and 
11.6.2 be satisfied. Show that for a given solution u ( k )  of (1.2.5) on N ( a ) ,  
points kl  < IC2 < ... < k ,  belonging to N(a,) ,  an interval W(k1, b)  C 
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W(a) where b 2 IC,, and E > 0, there exists a 6 ( ~ , N ( k l , b ) )  > 0 such 
that, if lu(ki) - Ail < 6, 1 < i 5 n then there exists a solution w(k) of 
(1.2.5) satisfying w(ki) = Ai, 1 < i 5 n and (w(IC)  - u(k) l  < E for all 
IC E W(IC1, b). 

11.7.6. For the difference equation (1.2.5) let the conditions 10.6.1 and 
11.6.2 be satisfied. Further, let there exist a sequence {um(k)}  of so- 
lutions of (1.2.5) and an M > 0 such that lum(ki)l 5 M, l 5 i < 
n and m E W( 1). Show that there exists a subsequence { u m , j ( k ) }  
that converges pointwise on W(a). In particular, for this subsequence, if 
limj-wum,j(ICi) = Ai, 1 5 i 5 n then show that {um,j(IC)} converges 
pointwise on W(a) to the solution of the (ml ,  m2,. . . ,m,) conjugate 
boundary value problem (1.2.5), (10.8.1). 

11.7.7. For the difference equation (1.2.5) let the conditions 10.6.1 and 
11.6.3 be satisfied. Let 2 5 p 5 n and positive integers ml ,  . . . , m, such 
that Cy='=, mi = n be given and let s j ,  0 5 j 5 p be the corresponding 
partial sums. Show that for a given solution u ( k )  of (1.2.5) on W ( u ) ,  
points a 5 k, < k,-1 < ... < kl, where each ICi E N(u) and kj + 
mj + 1 5 ICj-1, 2 < j 5 p an interval W(u ,  b ) ,  b 2 IC1 + m1 - l and an 
E > 0, there exists a 6 ( ~ ,  W(u ,  b ) )  > 0 such that, if lAiu(kj) - Ai+l I < 
6, sj-1 < i < s j  - 1, 1 5 j 5 p then there exists a solution w(k) of 
(1.2.5) satisfying Aiw(ICj) = Ai+l, sj-1 5 i 5 s j  - 1, 1 < j 5 p and 
IAZw(IC) - Aiu(IC)) < E, 0 5 i < n - 1 for all IC E IN(u,b). 

11.7.8. Prove Theorem 1 1.6.2. 

11.7.9. Prove Theorem 11.6.3. 

11.7.10. Let (-l)n-Tp(IC) > 0 on N ( c , d )  for some 0 < T 5 n and 
c, d E W(a) with c + n - 1 < d .  Show that the boundary value problem 

L[u(k)l + p ( k ) u ( k )  = f ( k ) ,  E W ( c , d )  
A~u(c)  - aiAi+lu(c) = Ai, i E { i l , . . .  , i T }  

Aju(d) - @jAj+lu(d) Bj, j E {ji,. . .  ,jn-,} 
where the operator L and the quasi-differences Ai are the same as in 
Section 10.7, ai, 2 0 and 0 < i l  < ... < i, 5 n - 1, 0 < j 1  < .. . < 
jnPT 5 n - 1, has a unique solution. 

11.8. Notes. 

In recent years the theory of boundary value problems for higher order 
differential equations has advanced profoundly, e.g. Agarwal [l] contains 
an in-depth and up-to-date coverage of more than 250 research publica- 
tions. All the results in Sections 11.1 - 11.3 have been taken from Agarwal 
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and Lalli [6]. Continuous analogs of these results arc available in Agar- 
wal [l], Agarwal and Wong [S]. An important featurc of Theorcrns 11.2.2 
and 11.2.3 is that these results reduce to Theorem 11.2.1 when Y = 0 
and v1 = 0 respectivcly. It will be of interest to obtain similar results 
when the approximating function fm, satisfies other error criteria. While 
in Section 11.3 we have succeeded i n  establishing the convergence of the 
quasilinear rnethods for the higher order eqllations, the known monotonic 
convergence property shared by second order continllous problems needs 
invcstigations. Theorems 11.4.1 ~ 11.4.4 arc due to Eloe [8], whereas Theo- 
rem 10.4.5 is from Agarwal and Lalli [G]. Similar rcsults for the contirluous 
tmundary value problems arc available in Agarwal [1,3], Agarwal and Us- 
mani [4], Seda [ZO]. Theorems 11.5.1 and 11.5.2 arc from Peterson [19], 
whereas Theorems 11.5.3 and 11.5.4 arc borrowed from Hankerson [9,10]. 
Rest of the results in Section 11.5 are proved i n  Agarwal [a]. Theorem 
11.6.1 is due to Henderson [16]. Its (:ontinnous analog has bccn proved in- 
dependently by Hartmarl [l11 and Klasserl [17]. Theorcrns 11.6.2 and 11.6.3 
have been provcd in Hendcrson [14,15], whereas Hcndcrson [12, 131 contains 
their continuous analogs. Existence and urliqllcrlcss of second and fourth 
order discrete boundary value problems have also t)ecrl discusscd i n  Lasota 
[l81 and Dcrlkowski [7] respectively. 
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Chapter 12 
Sturm-Liouville Problems and 

Related Inequalities 
This chapter is devoted to special type of boundary value problems 

which lead to the concepts of eigenvalues and eigenfunctions, orthogonal- 
ity, and finite Fourier series. While in relation to differential equations these 
notions play a fur~dantental role in the study of rrlathernatical physics and 
engineering, and have resulted i n  a vast arrlount of advanc:ed rrlathcrrlatics, 
i n  the discrete case thcir importance is not fully explored, except that most 
of these problems are equivalent to some special rnatrix eigenvalue prob- 
lems. We shall exploit this equivalence to derive Wirtinger and Opial type 
inequalities. Next, in this chapter we shall touch npon cone theory and use 
it to prove the existence and the comparison theorems for the least, positive 
eigenvallles of the (p, R -p) discrete boundary value problems. Finally, as 

a further application to cone theory we shall discuss positive solutions and 
nonlinear eigenvalue problems for third order difference equations. 

For converlienc'e, throughout this chapt,er a row as well as colurnn vector 
U i n  R" is denoted as U = (ul, . . . , urn,). 

12.1. Sturm-Liouville Problems 

Obviously, the homogeneous linear boundary value problems may have 
nontrivial solutions. If the coefficients of the difference equation and/or of 
the boundary conditions depend upon a parameter, then one of the pioneer 
problems of mathematical physics is to determine the value(s) of the pa- 
rameter for which such nontrivial solutions exist. These special values of 
the parameter are called eigen.values and the corresponding nontrivial so- 
lutions are called e i g en junc t ion .~.  Boundary value problem which consists 
of the difference equation 

(12.1.1) a(p (k- l )Av . (k- l ) )+q( l c )u . (k )+Xr (~)u , ( IC )  0, IC E lN(1,K) 

and the boundary conditions 

(12.1.2) u(0) = CYlL( l ) ,  u ( K  + 1) = ,Bv,(K) 

844 
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is called Stu,,rm-Laouwille problem,. In the difference equation (12.1.1), X is 
a parameter, and the functions p, q and T are defined on W(0, K ) ,  W(1, K )  
and W(1,K) respectively, and p(k) > 0, k E W ( O , K ) ,  r(k)  > 0, k E 
W(1,K). In the boundary conditions (12.1.2), a and p are known 
constants. 

The following results in which the existence of the eigenvalues of (12.1.1), 
(12.1.2) is tacitly assumed are fundarncntal. 

Theorem 12.1.1. The eigenvalues of the Sturnl Liouville problem (12.1. 
I), (12.1.2) are simple, i.e. if X is an eigenvalue of (12.1.1), (12.1.2) and 
$1 ( k )  and $ z ( k )  are the corresponding eigenfunctions, then ( k )  arid 
+ z ( k )  arc linearly dependent on W(0, K + 1). 

Proof. In the expanded form thc difference eqnation (12.1.1) is the same 
as 

(12.1.3) p(k) ' f~(k + 1) - (p(k) +p(k - l ) ) u ( k )  + ( q ( k )  + X r ( k ) ) u ( k )  

+p(k - l ) u , ( k  - 1) = 0, k E W(1,K) .  

Therefore, if & ( k )  and 4 z ( k )  both are solutions of (12.l.3), then from 
Problem 2.16.21 if follows that 

and hence p(k)  $et C($l,42)(k) = c (constant). To find the value of 
c, we note that $1 (0) = ~ $ 1  (1) and $2(0) = ~y42(1). This implies that 
det  C(&, $2)(0) = 0, arid hence c is zero. Thus, p(k )  det C($l, $ z ) ( k )  = 0, 
k E W ( O , K ) ,  i.e. $ l ( k )  and 42(k) are linearly deperldcrlt on N(O ,K+I ) .  

Definition 12.1.1. The set of functions {&(/c), ' m  = 1,2, ...} each of 
which is defined on m is said to be orthogonal on m with respect to the 
nonnegative function r(k), E if 

The func;tion r ( k )  is called the weigh,t function. 

Theorem 12.1.2. Let X , ,  m, = 1,2, ... be the eigenvalues of the 
Sturm-Liouville problem (12.1.1), (12.1.2) and & ( k ) ,  m, = 1,2, ... be 
the corresponding eigenfunctions. Then, the set { $m , (k ) ,  m, = 1,2, . . .} is 
orthogonal on W(1, K )  with respect to the weight function r ( k ) .  
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Proof. Let X, and X, be two distinct eigenvalues of (12.1.1), (12.1.2) 
and 4,(k) and +,(k) be the corresponding eigenfunctions. Then, the 
two equations 

(12.1.4) A ( p ( k  - l)A$,(k - 1)) + q(k)@,(k)  + Apr(k)4,(k) = 0 

and 

K+1 
(12.1.6) = p(P - l)($,(t)f$,(t - 1) - f$,(e)$,(e - 1))l 

e= 1 

In vicw of thc bollrldary conditions (12.1.2) the right side of (12.1.6) clcarly 
vanishes. Hence, WC have 

K 

(12.1.7) (X, - X,) c T ( t ) $ , ( W U ( P )  = 0. 
/=l 

However, sincc X, # X, the result follows. I 

Theorem 12.1.3. Let X1 and X2 be two eigenvalues of the Sturm- 
Liouvillc problem (12.1.1), (12.1.2) and @ l ( k )  arid d z ( k )  be the corr'e- 
sponding eigenfunctions. Thcn, ( k )  and $ z ( k )  are linearly dependent 
011 IN(0,K + 1) only if X1 = X2. 

Proof. The proof is a direct consequence of the equality (12.1.7). I 

Theorem 12.1.4. For the Sturnl-Liouville problcrrl (12.1.1), (12.1.2) 
eigerlvaltlcs arc real. 
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Proof. Let X = < + i< be a complex eigenvalue and 4 ( k )  = v ( k )  + iw (k )  
be the corresponding eigenfunction of (12.1.1), (12.1.2). Then, it is easily 
seen that the equations 

A(p(IC - l ) A ~ ( k  - 1)) + q ( k ) v ( k )  + ( [ ~ ( k )  - Cw(IC)).(k) = 0 

and 

are satisfied. Further 

Thus, as in Theorem 12.1.2, we find 

K C[-(<?@) - < w ( [ ) ) w ( f )  + ( < ? ) ( P )  + E u l ( e ) ) ? i ( P ) ] T ( P )  = 0, 
P=1 

which is the same as 

K 
< C(uP ( e )  + ? P ( l ) ) T ( l i )  = 0 

I= 1 

Hence, it is necessary that C = 0, i.e. X is real. B 

Example 12.1.1. For the Sturrn Liouville problem 

A2u(IC - 1) + (2 - s ) w , ( ~ )  + Xu(k) = 0, IC E JN(l,K), 
(12.1.8) .S > 0 is a number 

W.(O) = u (K  + 1) = 0 

the eigenvalues are X, = s - 2cos ( - g)1) , 1 5 m 5 K and the 

cxxresponding eigenfunctions are 4m,(IC) = sin - 1 5 n l S K .  In 

particular, for S = 2 the eigenvalues simplify to X ,  = 4 sin2 

m 5 K.  

Example 12.1.2. For the Sturm-Liouville problem 

' V U r  

2 ( K  + 1) '  

(12.1.9) 
A2u(IC - 1) + 2Xu(IC) = 0, k E W(1,K) 
u ( 0 )  = u (K  + 1) = 0 
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the eigenvalues are X ,  = 2sin2 
mr 

2(K + 1)’  
1 5 ‘m. 5 K and the corre- 

Example 12.1.3. For the Sturrrl-Liouville problem 

(12.1.10) A%(k - 1) + Xu(k)  = 0, k E IN(1,K) 

(12.1.11) u(0) = u(l), u ( K +  1) = u ( K )  
‘ r r m  
2 K  
~rtm(2k - 1) 

2 K  

the eigenvalues are X,, = 4 sin2 -, 0 5 m 5 K -  1 and the c:orresponding 

eigenfunctions arc &, ( k )  = cos 

Example 12.1.4. For the eigenvalue problern 

, 0 5 m 5 K - 1. 

12.2. Eigenvalue Problems for Symmetric Matrices 

Let A be a real symmetric n, x n matrix, and R be an R x n, 
diagonal rrlatrix with positive diagonal elements. For the matrix eigenvalue 
problem 

(12.2.1) AU = XRu 

the following results are well known. 

1. There exist exactly n, real eigenvalues X , ,  1 5 7rt, 5 n which 11ccd 
not be distinct. 

2. Corresponding to each eigenvalue X, there cxists an eigcnvectm urn 
which can be so chosen that R vectors U’, . . . l un are mutually orthogonal 
with respect to the matrix R = diag (~11, ... , r , , , ) ,  i.e. (up)Ru” = cy=, r;;u:uy = 0 if p # v. In particular, these vectors are linearly 
independent. 
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3. If the real symmetric matrix A is tridiagonal of the form 
- - 
91 h1 
h1 g2 h,z 

(12.2.2) 'Hn,(g,h) = 
h2 . . 

hn-2 gn-1 h - 1  

- h,-1 gn - 

where g = (91,. . . , h = ( h l , .  . . , h,,-l) and h: > 0, 1 _< i 5 n - 1 
then the eigenvalues X ,  of (12.2.1) are real and distinct. 

4. If R = Z and the eigenvalues X,, 1 5 ' r n  5 R (of A ) are arranged 
in an increasing order, i.e. X1 5 . . 5 X ,  then for any vector U E R", 
(12.2.3) Xl(u,u) _< ( A u , ~ )  5 X n . ( U , U ) ,  

where (U, v) = Cyzl uiv i  is the usual scalar product. In casc X1 < X2 
the equality X1 (U, U) = (Au, U) holds if and only if U is a scalar rrlultiple 
of U'. Similarly, if Xt,,-l < X, the equality (Au,u) = X,(u,u)  holds 
if and only if U is a scalar multiple of U". Further, for any vector U 

orthogonal to ul, 

(12.2.4) &(U, U) I (Au, U). 

In case X4 > X3 = X2 > X I ,  then a vector U orthogonal to U' satisfies 
the equality X ~ ( U ,  U) = (Au, U) if and only if U is a linear combination 
of u2 and u3. 

5. If the real symmetric: matrix A is positive definite also, i.e. for every 
U E R", (Au, U) > 0 then the eigenvalues X,,, 1 5 m 5 R arc positjive. 
Thus, in particular, if R = Z and A = 'H,(g, h) is positive definite, then 
the eigenvalues X , ,  1 5 m 5 n (of A ) can be arranged in an strictly 
increasing order, i.e. 0 < X1 < . . . < X , .  

Example 12.2.1. For the positive functions r(IC), IC E N(0,n) and 
p(IC), k E N(1,n) the matrix 'Hn(g ,  h), where 

do) + r(1) . . , r(n - 1) + r ( n )  
g = ( d l )  p(n) 1 , ,  

and h = (- T ( l )  , . . . , - r(n - 1) 

P(l)P(2) Jdn - 1)An) 
is positive definite. 

This is clear from the equality 
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Example 12.2.2. For the positive functions r ( k ) ,  k E N(0,n - 1) and 
p(k ) ,  k E W(l,n,)  the matrix Xn,(g,h) where 

g =  
?-(?l - 2) + T(n. - 1) r(n - 1) 

p(n, - 1) 

and h = ( - J r ( l )  ,...,- r(n. - 1) 
P(l)P(2) J p ( n ,  - l)p(n,) 

is positive definite. 

Example 12.2.3. For the positive functions ~ ( k ) ,  k E W(1,n) and 
p(k ) ,  k E N(1,n) the matrix X,,(g,h) where 

12.3. Matrix Formulation of Sturm-Liouville Problems 

Let in theequation (12.1.3), s ( k )  =p (k )+p (k- l )-q (k ) ,  k E N(1,K) 
so that it can be written as 

(12.3.1) -p(k - l )u ,(k  - 1) + s(k)u(k)  - p(k)u(k + 1) 

= AT(k)?f,(k)' IC E W(1,K). 
Thus, for k = 1, K we have the equations 

(12.3.2) -p(O)u.(O) + .s(l)u(l) - p(l)u(2) = A r ( l ) u ( l )  

and 

(12.3.3) -p(K - l ) u ( K  - 1) + s ( K ) u ( K )  - p ( K ) u ( K +  1) = Xr(K)u(K),  

which in view of the boundary conditions (12.1.2) take the form 

(12.3.4) S(l)u(l) -p( l )u(2)  = Xr(l)u(l) 
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and 

(12.3.5) -p (K  - l ) u ( K  - 1) + s ( K ) u ( K )  = Xr(K)u.(K), 

wherc %(I) = s(1) - ap(0)  and ? ( K )  = s ( K )  - @ ( K )  

The K cquations (12.3.4), (12.3.1) for k E N(2 ,K  - 1) and (12.3.5) 
can bc written in the system form (12.2.1), where the K X K matrix 
A is rcal, syrrmctric and tridiagonal of the form % ~ ( s , p ) ,  with S = 
( ~ ( 1 ) , 4 2 ) , . . . , s ( K  - I ) , Z ( K ) )  and p = (-p(I),-..,-p(K - I)), R is 
a K X K diagonal matrix defincd as R = diag ( ~ ( 1 ) ~ .  . . , r ( K ) ) ,  and 
U = (7 / . (1) ,  . . . , U ( K ) ) .  

Sincc p(k)  > 0, k E N(O,K)  and r ( k )  > 0, k E N ( 1 , K )  it follows that 
(i) the problem (12.1.1), (12.1.2) has cxactly K rcal cigcnvalucs X , ,  1 5 
'rn. 5 K which are distinct, and (ii) corresponding to cach cigcnvaluc X,, 
therc exists an eigcnfunction $,,,, ( k ) ,  k E N( 1, K ) .  Thcsc cigcnfunctions 
qhm ( k ) ,  1 5 m 5 K arc rnutually orthogonal with rcspcct to thc func.t,ion 
~ ( k ) ,  i.e. r(!)qhp(!)qh,(P) = 0, if p # v .  In particular, thesc 
cigenfunctions are linearly indcpcrldcrlt, on IN( 1, K ) .  

K 

Thus, the matrix formulation (12.2.1) of the Sturnl-~Liouvillc problem 
(12.1.1), (12.1.2) is more inforrnativc than thc conclusions of Theorerns 
12.1.1 12.1.4. We further note that if the condition p(k)  > 0, k E 
N ( O , K )  does not hold then also thc problem (12.1.1), (12.1.2) has exactly 
K rcal eigenvalues X,,, 1 5 * r n  5 K but may not bc distinct, and with 
respect to r ( k )  nlut~~al ly  orthogonal cigenfunctions $m( k ) ,  1 5 m 5 K 
can be choscn. 

If p(0) = 0, then in (12.3.2) the quantity v.(O) is not involvcd, so that 
the boundary condition v.(O) = cyw,(l)  is not needed. A similar remark 
holds i n  the casc when p ( K )  = 0. 

Example 12.3.1. For the eigenvalue problem 

(12.3.6) A ( p ( k  - l ) A ~ ( k  - 1)) + X U ( ~ )  = 0, k E W(1,K)  
(12.3.7) ~ ( 0 )  = 0, 

where p(k)  = 1, k E N ( O , K  - I), p ( K )  = O the eigenvahlcs arc X, = 

4Si112 ( 2(2K + K ,  l 5 711 5 K and the corresponding eigcnfunctions 
2m - 1 

Example 12.3.2. For the difference equation (12.3.6) where p(k)  = 
1, k E N ( 1 , K  - l), p(0) = p ( K )  = 0 the eigenvalues are X, = 
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4sin2 (m, - 1). , 1 1. m 5 K and the corresponding eigenfunctions are 

2K ( ( , m  - 1:; - 
drn(k )  = cos ), 1 s m s K .  

12.4. Symmetric, Antisymmetric and Periodic 
Boundary Conditions 

Consider the difference equation (12.1.1) on W(0, K+ l) together with 
the .symmetric bomdary con,dition.s 

(12.4.1) u( -k )  = ~ ( k ) ,  ?/ ,(K+ 1 4  k )  = v.(K + 1 - k ) ,  k E X. 

It  is clcar that the symmetric boundary value problem (12.1.1), (12.4.1) 
extends the definition of u(k)  to all integers k .  

Once again i n  (12.13) we let s ( k )  = p(k)  + p(k - 1) - q ( k ) ,  k E 
W(0, K + 1) so that besides (12.3.1) the equations corresponding to k = 0 
and k = K + 1 are 

(12.4.2) -p(-l )u(-l )  + .s(O)v.(O) -p(O)u.( l )  = X r ( O ) u ( O )  

and 

(12.4.3) -~(K)u(K)+.Y(K+~)u(K+~)-~(K+I)w,(K+~) = Xr(K+l)u(K+l). 

I n  these equations we use (12.4.1) for k = 1 to eliminate U ( - l )  and 
u ( K  + 2). Thus, the resulting equations can be written as 

(12.4.4) s ( O ) U ( O )  - (p (- l )  + p ( O ) ) U ( l )  = X~(O)V.(O) 

and 

(12.4.5) - (p (K )  +p(K+l))u(K) + .s(K+l)u(K+l) = Xr(K+l)u(K+l) .  

If p ( - l )  = p ( K + l )  = 0, then (K+2) equations (12.4.4), (12.3.1) and 
(12.4.5) leadtoasystemoftheform(12.2.1), where A i sa  (K+2)x(K+2) 
real symmetric tridiagonal matrix ZK+~(S,P), with S = (.s(O), . . . , s ( K  + 
1)) and p = (-p(O), . . . , - p ( K ) ) ,  R is a (K+2) X (K+2) diagonal matrix 
defined as R = diag (r(O), ..., r ( K  + l)), and U = (u(O), . . . ,u(K + 1)). 

If p(-l )p (K + 1) # 0, then the (K + 2) equations (12.4.4), (12.3.1) 
and (12.4.5) lead to a system of the form (12.2.1) with a nonsymmetric 
matrix d. However, in this case equations (12.4.4) and (12.4.5) can be 
written as 
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and 

The (K + 2) equations (12.4.6), (12.3.1) and (12.4.7) does lead to a 
system of the form (12.2.1) with a symmetric matrix d. Further, for 
this system if X, arid Xu are the two distinct eigenvalues and +,(IC) 
and +y(k), k E N(0, K + 1) are the corresponding eigenfunctions, then it 
follows that 

Thus, the cigenfunc:tions are orthogonal 011 N(0, K + 1) wit,h respect to 
the weight fmction 

Now we shall consider the difference equation (12.1.1) on N(0, K + 1) 
together with the antisym,m,etr.ic bomdasry con.ditions 

(12.4.8) ?/,(-IC) = - ~ ( k ) ,  u(K + 1 + IC) = - v,(K+ 1 - IC), IC E X. 

In particular, these conditions imply that u(0) = u(K + 1) = 0. Thus, the 
equations (12.4.2) and (12.4.3) reduce to 

(12.4.9) -p(-1)~(-1) -p (O)~(1 )  = 0 

and 

(12.4.10) - p ( K ) u ( K )  - p ( K  + l)u,(K + 2) = 0. 

Therefore, in view of (12.4.8) for IC = 1 these equations are 

(12.4.11) b-1)  - P ( 0 ) ) 4 1 )  = 0 

and 

(12.4.12) ( p ( K  + 1) - p(K))u(K) = 0. 

Since for a nontrivial solution u ( l ) u ( K )  # 0, it is necessary that p(-]) = 
p(O) and p ( K )  = p(K + 1). 
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Finally, we note that the boundary corditions u,(O) = 7r(K + 1) = 0 is a 
particular case of (12.1.2), and therefore all the results of Section 12.1.1 hold 
for the antisymmetric boundary value problem (12.1.1) on W(0, K + l), 
(12.4.8) also. Further, since 

K+1 K c . ( W f L ( W V ( t )  = c~(~)rh, , (c l )oV(o = 0 (X, # L )  
F=O /=l 

the eigcnfunctions arc orthogonal over W(0, K + 1) as well as W(1, K )  
with respect to the function r ( k ) .  

In view of the above considerations it is clear that the eigcrlfunctions 
of the syrnrnetric: (arltisyrrlrrletric:) boundary value problern are even (odd) 
periodic functions of period 2K + 2. Further, if the functions p(k), q ( k )  
and r ( k )  arc periodic of pcriod 2K+2 ,  and if p(-k) = p(k- l), q ( - k )  = 
q ( k )  and r(-,k) = r ( k )  on X, then thc cigcnfunctions of thcse problems 
satisfy the differerwe equation (12.1.1) OII X. 

I n  the rcst of this scction we shall consider tllc differcnce equation 
(12.1.1) on W(0, K + 1) together with the periodic boundary conditions 

(12.4.13) u.(K + 1 + k )  = 71,(k), k E z. 

Since v ( K )  = +l), ?L(]< + 1) = ~ ( 0 )  and u ( K  + 2) = u,(1),  equations 
(12.4.2) and (12.4.3) can be written as 

(12.4.14) s(O)u(O) - p(O)u.(I) - p(- l )u(K) = X r ( O ) t j , ( O )  

and 

(12.4.15) s(K + l)u(O) - p ( K  + 1)?~(1) - p(K)?l,(K) XT(K + I)u,(O). 

Thus, this problem is meaningful only if (12.4.14) is the same as (12.4.15). 
For this, either p(k), q ( k )  and r(k) must bc periodic: of period K + 1, 
or more generally, arc such that 

For k = K equation (12.3.1) can be written as 

(12.4.17) -p(K)u(O) - p ( K  - l ) u ( K  - 1) + s(K)?L(K)  = XT(K)U(K).  

The ( K  + 1) equations (12.4.14), (12.3.1) for IC E W(1, K - 1) and 
(12.4.17) lead to a system of the form (12.2.1), where A is a ( K  + 1) x 
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( K  + 1) real symmetric matrix of the form 

R is a (K + 1) X (K + 1) diagonal matrix defined as R = diag ( r ( 0 ) ,  ..., 
r ( K ) ) ,  and U = ( u ( O ) ,  . . . , u(K)). Further, for this system if X, and 
X, are two distinct eigenvalues and q5,(k) and 4 , ( k ) ,  k E lN(0, K) are 
the corresponding eigenfunctions, then it follows that 

However, since q5,(0)4,(0) = @,(K + 1)4,(K + 1) the ortllogorlality 
relation (12.4.18) can be written as 

Finally, WC note that if p (k ) ,  q ( k )  and r ( k )  arc periodic of period K + 1 
then the eigcrlfunctions of this problem satisfy the difference equation on 
x .  

Example 12.4.1. For the difference equation (12.1.10) on lN(0, K + 1) 
together with the symmetric boundary conditions (12.4.1) the cigcrlvalues 

are X,, = 4 sin2 0 5 m, 5 K + 1 and thc corresponding eigen- 
m7r 

p = 1, q = 0 and T = 1 for # v ’it follows that 

1 
2 K + l  K + 1  2 

K 
- + c c o s  (””I-) cos (-) ve.ir + -(-l)”+” 1 = 0. 

e= 1 

Example 12.4.2. For the difference equation (12.1.10) on X together 
with the periodic boundary conditions 

(12.4.19) 42K + 2 + k )  = 7L(k), k E z 
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the K + 2 distinct eigenvalues are X, = 4 sin2 

and corresponding to X0 = 0 the eigenfunction is $ ~ ( k )  = 1; corre- 
sponding to X K + ~  = 4 the eigenfunction is 4 ~ + 1 ( k )  = c o s ~ k ;  whereas 
corresponding to the remaining eigenvalues each correspond to the two 

linearly independent eigenfunctions 4,n ( 1 )  (IC) = cos (F;;) - , &’(IC) = 

sin (-) , 1 5 m, 5 K.  F~lrther, for 0 5 p, U 5 K + 1 it follows that 

m7r 

2 (K  + 1)’ 
0 5 m 5 K t 1  

. r n , 7 r  k 
K + l  

K+1 C sin (E) K + l  cos (z) = 0, 
K f l  

f=-K--l 

12.5. Discrete Fourier Series 

and hence 
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I n  particular, if the functions 4 m ( k ) ,  a 5 m, 5 b arc orthonormal, i.e. for 
each m,, c::=, r ( / ~ ) 4 ? ~ ( k )  = 1 then thc constants c, simplify to 

The relation (12.5.1) is called thc discrete Fourier se,ries, and the con- 
stants cm in (12.5.2) are the corresponding discrete Fou.rier coeficien,ts. 

K 
each 1 5 'rn, 5 K, c sin2 (;:",) - - - K + l  , for any function u,(k) 

L:= 1 
defined 011 N(1, K) it follows from (12.5.1) and (12.5.2) that 

K 

(12.5.4) u ( k )  = c c,n, S111 ( - ;F1), k E IN(1,K) 
m,= 1 

where 

The relation (12.5.4) is called the discr,ete Fourier sine series. 

Example  12.5.2. From Example 12.4.1 it is clear that the funckions 

f&,,(k) = cos ( - ;Fl) , 0 5 m 5 K + 1 are ortllogonal on ~ ( 0 ,  K 

1) with respect to the weight function r ( k )  = 

Further, since C:=+: r ( k )  cos2 (g) = { 
l /2 ,  k = 0, K + 1 
1, k E W(1,K) 

K + 1, 'rn, = 0, K + 1 
(K + 1)/2, 1 5 'm 5 K 

K f l  

(12.5.5) K + 1  
m=O 
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where 

l 
CO = 

K t 1  
c r(k)7r(k), 
L: =O 

1 
CK+1  K + l  k=O 

Thc relation (12.5.5) is called the discrete F o u r i e ~  c0sin.e series. 

If k E X, then the represcutation (12.5.4) defines an odd periodic 
func:tion of periodic: 2 ( K  + l), which agrees with ? r ( k ) ,  k E W( 1, K )  and 
is zcro wllerl k = 0 and K + 1. Similarly, the rcprcscntation (12.5.5) 
tlcfirles an even periodic f11nction of pcriod 2 (K  + l), which agrees wit>tl 
~ ( k ) ,  k E W(0, K + 1). 

1, K + 1) it follows from (12.5.1) and (12.5.2) that 

k E N ( - K - l , K + l )  

whcrc 
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K+1 

and E(k) = U.(k), k E W ( - K , K )  
(?/,(-K - 1) + u(K + 1))/2,  k = * ( K  + 1) ' 

12.6. Wirtinger Type Inequalities 

Theorem 12.6.1. For arlv furlction ur(k), A- E IN(0, K + 1) satisfying 
~ ( 0 )  = u(K + 1) = 0 the following incqmlitics hold 

trary iwnstarit. . 

Proof. WC notc that 

P=O P=O P=l P=1 

= (Au, U), 

where A is a K X K real symrrletric tridiagonal matrix 'FIK(g, h), with 
g = ( 2 , . - . , 2 ) ,  h = ( - l , . . . , - I ) ,  and ~ = ( ? / , ( 1 ) , . - . , 7 r ( K ) ) .  

For s = 2 writing the problem (12.1.8) in the system form (12,2.1), 
we find from Example 12.1.1 that for this matrix A the K distinct 
eigenvalues are X ,  = 4sin2 1 5 m 5 K and the corre- 

'Wl,T 

1 5 n~ 5 K .  Thercfore, X1 = 4sin 

and XK = 4 sin2 

kr 
K + l  

2 7 r  

2(K + 1)'  
KT 

2(K + 1) 
7r 

= 4cos2 
2(K + 1) ' 

sin (-) . The incqualit,ics (12.6.1) now follow from (12.2.3) 

and (12.6.2). U 
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Theorem 12.6.2. For any function u,(k), k E N(0, K) satisfying u ( 0 )  = 
0 the following inequalities hold 

K K - l  n- K 

(12.6.3) 4 sin2 5 c (Aw.(!))~ 5 4cos2 2K+1 7r Cu2(e). 

In the left (right) of (12.6.3) equality holds if and only if v,(k) = 

csin (L) ( u ( k )  = c(--1)'-1 sin (-)) 2k7r , where c is an ar- 

2(2K+l)  P = l  
L=O e= 1 

2 K + 1  2 K + 1  
bitrary constant. 

Proof. As in Theorem 12.6.1, we have 

K-l K-l K - l  

(12.6.4) 1 (nu,([))' = 2 C ' U 2 ( [ )  + .,'(K) - 2 C ? J , ( ! ) l l , ( !  + 1) 
/=O /= 1 P=1 

= (du, U), 
whcrc A is a K X K real symrnctric tridiagonal rnatrix w K ( g ,  h), with 
g = ( 2 , . . . , 2 , 1 ) ,  h = ( - l , . . . , - l ) ,  and u = ( u ( l ) , . . . , u . ( K ) )  . 

Writing thc problem (12.3.6), (12.3.7) in the system form (12.2.1), we 
find from Example 12.3.1 that for this matrix A the K distinct eigenvalues 

are X, = 4 sin2 ( 2 ~ ~ ~ 7 ~ 1 1 ) )  7rl 1 5 m < K and the corresponding eigen- 

f~mctions are U"' = @mt ( k )  = sin ( ~ ~ ~ ) k n .  - I < k < K  

K. Thcrefore, X 1  = 4sin2 
7r 

2(2K + 1) ' @,(/c) = sin ( - ; and XK = 

2 K - 1  
4 sinz ( ) 7r = 4cos2 - 

2(2K + 1) 2 K + 1 '  

(-l)'-'sin (-) . The irlequalities (12.6.3) now follow from (12.2.3) 

7T 

2kn 

2 K + 1  
and (12.6.4). D 

Theorem 12.6.3. For any function u ( k ) ,  k E IN(0, K + 1) satisfying 
v(0) = u,(K + l), c,"=, ,(P) = 0 the following inequalities hold 

In the left of (12.6.5) equality holds if any only if u ( k )  = cl cos 

+c:! sin - ( , where c1 and c2 are arbitrary constants. 



Sturm~- Liouville Problems and Related Inequalities 861 

Proof. Since u.(0) = v,(K + l), we find that 

K K K - l  

(12.6.6) ~ ( A u ( ! ) ) ~  = 2 c  u2(e) - 2 u ( O ) ~ ( l )  - 2 c U ( ~ ) Z L ( !  + 1) 
e=o e= 1 P=l 

-2u(K)u(O) 

= (Au,u), 

where A is the ( K  + 1) X ( K  + 1) real syrrlrnetric matrix of the form 

- 
2 -1 -1 

-1 2 -1 
-1 . . 

A =  

-1 2 -1 
-1 -1 2 - 

Writing the problem (12.1.10), ?].(-I) = w.(K), u(O) = w.(K+ I) in the 
system form (12.2.1), we find from Problem 12.11.5 that for this matrix A 
the least eigenvalue is X0 = 0, and corresponding to this eigenvalue the 
eigenvector is uo = (l,. . . ,l). A vector U = (u,(O), . . . , v . (K ) )  is orthog- 
onal to uo if and only if CP=071.(t) = 0. Further, from Problem 12.11.5, 

XI = 4sin2 - 
K + 1  

with multiplicity two, i.e. it corresponds to two lirlcarly 

indepcndent eigenvectors u1 = { @il)(k) = cos (-) , 0 5 k 5 K }  , 

and v1 = { # y ) ( k )  = sin (-) , 0 5 k 5 K }  . Thm,  from (12.2.3) 

and (12.6.6) the left inequality in (12.6.5) follows. To show the right part 
of (12.6.5) it suffices to note from Problem 12.11.5 that the greatest eigcn- 

value of this matrix A is 4 sin2 

K 

7r 

2 k-ir 
K + l  

2kT 
K + l  

[ ( K  + 1)/217r 
K + 1  ' 

I 

A generalization of Theorem 12.6.1 is embodied in the following: 

Theorem 12.6.4. Let r ( k ) ,  k E IN(O,K) and p(k), k E W(1,K + 1) 
be positive functions and let Qk:(t), k E W(0, K )  be polynomials defined 
bY 

(12.6.7) 
r ( k  + 1) r ( k )  + r ( k  + 1) 

Qk:+l(t) = ( p(k + - t )  & ~ , ( t )  
J p (  k + l)p( IC + 2) 
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Then, for any function ~ ( k ) ,  k E W ( 0 , K  + 1) satisfying u(0)  = 
w.(K + 1) = 0 the following inequalities hold 

K K K 

e=1 P=O P= I 

where X1 and XK are the minimal and maximal zeros of the polynomial 
Q K ( ~ ) .  I n  the left (right) of (12.6.8) equality holds if and only if u ( k )  = 

Qk;-l(X) ,  k E IN(1,K) where X = X ~ ( X K )  and c is an arbitrary 
c 

m 
constant,. 

Proof. In (12.6.8) we substitnte ~ ( k )  = u ( k ) / m ,  k E W(0, K + 1) 
so that it takes the form 

Now let V = (Qo ( t ) ,  . . . , Q K - ~ ( ~ ) ) ,  then from (12.6.7) it follows that 

(12.6.11) 

where eK = (0;.. ,0, 1). 

Thus, if t is such that Q K ( ~ )  = 0, then t is an eigenvalue of the matrix 
E K ( ~ ,  h) and v is an eigenvector. Conversely, if t is an eigenvalue and v 
is an eigenvector of the matrix ZK(g,  h), then Q K ( ~ )  = 0, i.e. t is a zero 
of the polynomial Q K ( t ) .  Hence, if for the real syrnnletric tridiagonal and 
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positive definite matrix E K ( g ,  h), 0 < x1 < . . . < X K  are the eigenvalues 
then these are also the zeros of Q K ( ~ ) .  The desired inequalities (12.6.10), 
or equivalently (12.6.8), now follow from (12.2.3). I 

Remark 12.6.1. If in Theorem 12.6.4, p(k) = r ( k )  = 1 then (12.6.7) 
reduces to 

which can be solved to obtain 

K. For X1 = 4sin2 
71. 

2(K + 1) 

sin(k + l)e 
sin Q Qk:(t) = 

and hence X ,  = 4 sin2 

, where 2cosQ = 2-t .  

1 5 ' r n  5 T ~ u s ,  Q K ( ~ )  = 
s i n (K  + 1)Q m 7 r  

sin Q 2(K - + 1)' 
the corresponding Q = - and therc- 

K +  1 '  

x sin - 
K + l  

. Thus, in this case Theorem 12.6.4 gives the corlclusions of 

Thcorcm 12.6.1. 

Corollary 12.6.5. For any function ~ ( k ) ,  k E W(0, K + 1) satisfying 
u(0) = u(K + 1) = 0 the following inequalities hold 

K K 

K 

In the left (right) of (12.6.13) equality holds if and only if u ( k )  = 
csin (-) k7r ( ~ , ( k )  = ~(-1)~~' sin (-)) k71. , where c is an arbi- 

K + l  K + l  
trary constant. 

Proof. It  suffices to note that for p(k) = k2 and ~ ( k )  = k ( k  + l), 
(12.6.7) reduces to (12.6.12). I 

Corollary 12.6.6. For any function u ( k ) ,  k E W(0, K + 1) satisfying 
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~ ~ ( 0 )  = u(K  + 1) = 0 the following inequality holds 

K K 

(12.6.14) 
h 0  e= 1 

where XK is the maximal zero of the Laguerre polynomial L K ( t ) .  In 
(12.6.14) equality holds if any only if u(k) = cLkPl (XK) ,  E N ( l , K ) ,  
where c is an arbitrary constant and  LA:-^(^), k E W(1, K )  are Laguerre 
polynomials. 

Proof. It  suffices to note that for p(k)  = 1 and r(k)  = k ,  (12.6.7) 
reduces to 

( k  + l)Qk+l(t) = (2k + 1 - t)Qn:(t) - kQk-l(t), Qo(t) = 1, Q-l(t) = 0 

whose solution is Qk:(t) = Ll;(t). I 

The proof of the following result is similar to that of Theorern 12.6.4. 

Theorem 12.6.7. Let r ( k ) ,  k E N(0, K -  1) and p(k), k E W(1,K) be 
positive functions and let Q k ( t ) ,  k E W(0, K - 1) be polynomials defined 
by (12.6.7). Then, for any function v.(k), k E N(0, K )  satisfying u ( 0 )  = 0 
the following inequalities hold 

e=o e= 1 

where X1  and XK are the minirnal and maximal zeros of the polynomial 
R K ( ~ )  which is defined as 

In the left (right) of (12.6.15) equality holds if and only if ~ ( k )  = - 
Qk-l(X), k E W(1, K )  where X = X1 (XK) and c is an arbitrary constant. 

Remark 12.6.2. As in Remark 12.6.1 for p(k )  = r ( k )  = 1 we have 

c 

m" 

sin(k + 1)O 
QIC ( t )  = sin e , where 2 cos6 = 2 - t .  Therefore, from (12.6.16) we 

reduces to (12.6.3). 
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Corollary 12.6.8. For any function u.(k) ,  k E IN(0.K) satisfying u(0) = 
0 the following inequality llolds 

(12.6.17) 
P=O P= 1 

where X K  is the rrlaxirrlal zero of the generalized Laguerre polynomial 
K K - 1 ( - t )% 

Lkl)(t) = c ( ) -. I n  (12.6.17) the equality holds if and only 
i=l  

K - i  i !  

if u(k)  = d I ; - l ( X K ) ,  k E IN(l,K),  where c is an arbitrary constant and 
L k - l ( t ) ,  k E W(1,K) are Laguerre polynomials. 

Proof. Following the proof of Corollary 12.6.6 it suffices to note that 
n ~ ( t )  = KLkl'(t). D 

12.7. Generalized Wirtinger Type Inequalities 

For a given function ~ ( k ) ,  k E IN(0,K) with the related vector 
U = ( ~ ( 0 1 ,  ... , 7 r ( ~ ) )  we define the operators X"' : + ]nK+l 

and 7 : IRK+1 4 IRK+', 'rn E IN(0, K )  by the formulae A 'U = 
(Ayu(O), . . . , Ayu(K ) )  and T u  = (VFu(O), . . . , V r u ( K ) ) ,  where 

II) 

The set of all vectors U = ( ? I , ( ( ) ) ,  . . . , u ( K ) )  satisfying 

(12.7.1) v.(O) = .. . = ~ ( 7 1 1 . -  1) = u ( K - m + l )  = ... = u. (K) = 0 

is denoted by LE, ' ,  where the integer 711 (2.m 5 K )  is fixed. The 
operator I : LEL' + is defined by the formula 

(12.7.2) 
-,""-m 

7 u  = (-1) v a U. 

Theorem 12.7.1. For any furlction u(k), k E IN(0, K )  satisfying (12.7.1) 
the following inequality holds 

(12.7.3) 
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where is the smallest positive nurnber such that the equation 

(12.7.4) T u  = xu 

has nontrivial solution in L;:'. 

Proof. IRK+' with the usual scalar product (qv) = u,ivi 

and the Ellclidcan norm llull = ( u , u ) ~ / ~  is obviously a Hilbert space. 
Thus, LZKmfl as a subset of IRK+1 is also a Hilbert space. Since for 
U = (u , (o ) ,  . . . , u , ( ~ ) ) ,  v = (~(01 , .  .. , v ( K ) )  E ~2",+', we llavc 

K 

K 

(12.7.5) ( ~ u , v )  = c 7l(t)(-l)""VrA~7~,(t) 
e=o 

from thc rcpcatcd nsc of 

K K 

(12.7.6) c 'U(t)&)ll(t) + c VoU(t)7l(f) = 'U(f , )?l(p) l  , e=o 

which is the samc as (1.8.5), it follows that 

K 

e=o e=o 

e=o 

e=o 
... 

e=o 

.. 

K 

= (-l)m C VrArv(a)u(P) 
e=o 

(12.7.8) = (u,~v). 
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Thus, the operator 7 on L.&:' is selfFadjoint. Further, from (12.7.7), 
we have 

(12.7.9) (7u,u) = G(u) = IlA?ull2. 

Since 7 is self--adjoint it has real eigenvalues. Hence, by (12.7.4) and 
(12.7.9) for the vect,ors U E LZK," satisfying the condition llull = 1 it 
follows that 

(12.7.10) G(u) = X, 

where X is an eigenvalue of 7 .  Therefore, the rrlirlirrlurrl of the rlormcgative 

[lull = l} is tqllal to the srnallcst eigenvalue of the operator 7. From 
the corltiIn1ity of G, and thc vorrlpactrlcss of the set L?:' n S it follows 
that, the r r l i r l i r m l r r l  is attaiIlcd, and therefore, is positive. We denote it by 
X1,r, l .  Thus, for any U E LE:', / / U ( (  > 0 WC have G (u//lu(/) 2 X 1  ,,,,, 
whic:h is the same as (12.7.3). Since the case llull = 0 is trivial, the proof 
is completed. I 

func:tion G : 4 R over thr set ~,K,,tlns, where S = {U E I R ~ + '  : 

It is clear that  (12.7.3) for ' m  = 1 and K = K + 1 reduces to the left 
ineqlmlity (12.6.1). 

12.8. Generalized Opial Type Inequalities 

Theorem 12.8.1. Let r ( k )  and p ( k ) ,  k E N(1,K) be positive f1mc:tions 
arid k t  Q A : ( ~ ) ,  k E W(0, K )  be polynomials defined by 

Q o ( t )  Q0 # 0, Q-l( t)  = 0. 
Then, for any function u ( k ) ,  k E W(0, K) satisfying 1],(0) = 0 the 
following inequalities holtl 

K K K 

where X1 and XK arc the rrlinirrlal and maximal zeros of the polynomial 
QK(I ' ) .  In the left (right) of (12.8.2) equality holds if and only if u ( k )  = 

Q k - 1  (X), k E N(1, K )  where X = X ~ ( X K )  and c is an arbitrary 
c 

m 
(:onstarit. 

Proof. In (12.8.1) we substitute u ( k )  = u ( k ) / m ,  k E N(1,K) so 
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that it takes the form 

K 

I=1 

Thus, as in Theorem 12.6.4 the above inequality is equivalent to (12.6.10), 

where the tridiagorial matrix ' F t K ( g ,  h) is with g = ($,...,a) 
P ( K )  

... - ) , and v = (?)(l),... , 
' 2Jp(K - l ) p ( K )  

?)(K)). The rest of the proof is similar to that of Theorern 12.6.4. I 

Corollary 12.8.2. For any function w.(k), k E JN(0,K) satisfying 
u(0)  = 0 the following inequalities hold 

K K 
7r 

K 

(12.8.3) 2 sin2 C7/,2(f.) 5 c u ( e ) v u ( e )  5 2c0s2 
7r 

2(K+1) e=1 2 ( K + l )  
C2(P). 

!=l I=1 

In the left (right) of (12.8.3) equality holds if arid only if u ( k )  = 
csin (-) k7r (w,(k) = c(- l )  sir1 (L)) , where c is an arti-  

K + 1  K t 1  
trary constant 

Proof. It suffices to note that for p(k)  = r ( k )  = 1, (12.8.1) reduces to 

Remark 12.8.1. Inequalities (12.8.3) can be written as 

which is the same as 

K 

(12.8.4) 

Corollary 12.8.3. Let the functions r ( k )  and p(k )  be recursively given 
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p(k + 1) = p(k) ,  k E N(1, K - 1) 
4k(k + S )  

(2k + S + 1)2 

with ~ ( 1 )  = 1 and S > -1. Then, for any function u, (k) ,  k E W ( 0 , K )  
satisfying ~ ( 0 )  = 0 the inequalities (12.8.2) hold, where X1 and XK 
are the minimal and rnaxirnal zeros of the normalized generalized Laguerre 

K 

polynorrlial -(S) L ,  (t) = L $ ) ( t ) / l l L ~ ) l l  with L$'(t)  = c ( ") - K + ( - q  
K - i  i! 

i=O 

and lIL$)II = J r ( K  + S + l ) / K ! .  In the left (right) of (12.8.2) equality 

holds if and only if v.(k) = - rL,.-l(X), where X = X ~ ( X K )  and c 
-(S) 

P(k-1 
is an arbitrary constant. 

Proof. For this choice of p(k) ant1 r(k) it suffices to note that (12.8.1) 
reduces to 

which is the recI1rrence rclatiorl for the nornlalizcd Lagucrre polyrlornials 
- ( S )  L,. ( t ) .  I 

12.9. Comparison Theorems for Eigenvalues 

Consider the system of difference equations 

(12.9.1) ( - l ) ' " - "L[u (k ) ]  = X P ( k ) u ( k  +p), k E N ( o , K  - 1) 

and 

(12.9.2) ( - l ) " - " L [ u ( k ) ]  = A Q ( k ) u ( k  +p), k E W ( 0 , K  - 1) 

together with the boundary conditions 

(12.9.3) 
A i u ( 0 )  = 0 ,  O < i < p - l  

A " u ( K + p )  = 0,  O < i < r n - p - I  

where L [ u ( k ) ]  = CLO a i ( k ) u ( k  + i ) ,  ai(k)  are defined on W ( 0 , K  - 
l), a,,(k) = 1 and ~ ( k )  satisfies (10.1.1); 1 < p < m - 1 is a fixed 
integer; X and A are parameters, and the n, x R matrices P ( k )  and 
Q(k )  are defined on N(0,K - 1). 

Our aim here is to prove the existence and the comparison theorems 
for the least positive eigenvalues of (12.9.1), (12.9.3) and (l2.9.2), (12.9.3) 
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respectively. For this, we shall need Theorem 10.9.7 which is restated as 
follows: 

Theorem 12.9.1. Assume that one of the following holds 

1. L [ ~ r ( k ) ]  = 0 is discorljugate on W(0, K - 1 + m), or 
2. 2 5 p 5 'rn, - 1 and L[u (k ) ]  = 0 is ( j , ' r r/ ,  - j) discorljugate on 
W ( p - j , K - l + , r r t , + p - j )  for j = p - l ; . . , m - l .  

Then, tllc Green's function g ( k ,  l) of the boundary valuc problem 

(-l)""-" L [ u ( k ) ]  = 0 
ai ~ ( 0 )  = 0, 0 5 i 5 p - 1, A'u(K + p )  = 0, 0 5 i 5 - p  - 1 

satisfies 

We shall also need sonic results from tllc ('o11c theory. For this, Ict 
I3 l x  a Banach space. A c:losctl noncrnpt,y subset, P of I3 is c:allcd a 
cone provided that whcrlcvcr U, v E P it follows that CYU + [ h  E P for 
all (Y 2 0, [j 2 0 and whcncvcr U, - U E P, thcn U = 0. WC say that 
a cone P is , reprod~~ir/q  provided L? = P - P = {U - v : U, v E P}. We 
write U 5 v providrtl v - U E P. If M and N are operators on L?, 
then WC writ,c M 5 N (with rcspcct to P) providcd M u  5 N u  for all 
U E P. A bo~mdcd linear operator M is U' p o s i t i v e  provided U' E P 
and for cac:h Imliscro U E P, thcrc arc positive numbers ( : l ,  ('2 (which 
in general dcpcrld on U) s ld l  that clue 5 M u  5 c2u0. 

Theorem 12.9.2. Assurrle that P is a reproducing cone and M is 
a linear compact optrator whic:h leaves the c:onc P invariant. Further, 
assume that there is a nontrivial uo E L? and an EO > o swh that 
Muo  2 F ~ u ' .  Thcn, M has at least one eigenvector zo E P with 
corresponding eigenvalue X0 2 EO suc:ll that X0 is an upper bound for the 
moduli of t,he cigcnvaluc~s of M .  

Theorem 12.9.3. Assurne that P is a reproduc:ing cone and M is a 
cornpact uo positive linear operator. Thcn, M has an csscntially unique 
eigenvector i n  P and thc corresponding eigcrlvaluc is simple, positive, and 
larger than thc rnotlulus of any othcr cigcnvalue of M .  

Theorem 12.9.4. Assume that M and N are linear operators and that 
at least one of them is uo positive. If M 5 N and t h r c  cxist nontrivial 
ul,  u2 E P, X I ,  X2 > 0 suc:h that Mu' 2 Xlu '  and Nu2 5 &u2, then 
X 1  5 X2 and if X1 = X2 then u1 is a scalar multiple of u2. 
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Let B(0, K - 1 + m )  be the space of all n vector functions defined 
on W(0, K-l+m,) .  The Banach space t,hat we are interested in here is B = 
{u(k) E B(0,K - 1 + m )  : A'u(0) = 0, 0 5 i 5 p - 1, Aiu(K + p )  = 0, 0 
5 i 5 m - p  - l }  , where the norm on B is defined by llull = rnax 

N ( p . K - - l + p )  

(u(k) 1, and 1 . 1  is the Euclidean norm. Let p be a reproducing cone i n  R" 
and define the cone P by P = {U E B : u(k)  E p, k E IN(p, K - 1 +p)}. 
It is clear that P is a reprod1lc:ing cone. Define operators M and N 
on B by 

K - l  

(12.9.5) M u ( k )  = c g ( k ,  P)P(P)u(P + p )  
f=O 

and 

K - l  

(12.9.6) Nu(k) = C ,dk-,P)Q(f)u([ + p )  
f=O 

for k E IN(0, K -  1 +,m). It is easy to verify that the operators M and N 
are compact linear operators, F1lrthcr, if X0 # 0 is an eigenvalue of M 
and wo(k )  is the c:orresporlding eigenvector, thcn M w o ( k )  = X0wo(k-), 
and hence 

(-l)"L[wO(k)] = "P(k)wO(k + p )  1 

X0 

and wo (k )  satisfies the bourldary conditions (12.9.3). This is smnrrlarized 
in the following: 

Remark 12.9.1. X0 # 0 is an eigenvalue of M with the corresponding 
eigerlfurlction wo(k)  if and only if l/& is an eigenvalue of (12.9.1), 
(12.93) with the corresponding cigerlfurlctiorl wo (k ) .  Similar statement 
holds for the operator N and the eigcrlvalue problem (12.9.2), (12.9.3). 

Theorem 12.9.5. In addition to the conditions of Theorem 12.9.1 assume 
that Q ( k ) p  C: p for k E W(0, K - l), and for each nontrivial U E P 
there is a k,  E W(0, K - 1) such that Q(k, )u(k ,  + p) E p' (interior 
of p). Then, the boundary value problem (12.9.2), (12.9.3) has a smallest 
positive eigenvalue A0 and A0 is srnallcr than the modulus of any other 
eigenvalue of (12.9.2), (12.9.3). Furtherrrlorc, there is an essentially unique 
eigcnfunction wo(k)  corresponding t,o A0 and either W' E Po or 
- WO E PO. 

Proof. First we shall show that N : P\{O} + Po.  For this, let 0 # U E P 
and v(k) = Nu(k).  Obviously, v(k) satisfies the boundary conditions 
(12.9.3), and v(k) E p for all k E IN(p.K - 1 +p). B y  hypothesis, there 
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is a k ,  E JN(0, K - 1) such that Q(k,)u(k, + p )  E p'. Thus, i n  view 
of Theorem 12.9.1 it follows that g(k, ku)Q(k,)u(k, + p) E p'. Hence, 
v ( k )  E p', k E W(p ,  K - 1 +p), and from this it is clear that v E Po. 

Next, we shall prove that N is uo -positive. For this, since N : 
P\{O} --f Po,  Po # 8. Let uo E Po and 0 # U E P. Since uo E Po 
and Nu E Po,  we can choose numbers c2 sufficiently large and cl > 0 

sufficiently small so that uo - " N u  E P and Nu - quo E P. Thus, it 

follows that quo 5 Nu 5 Q U O  with respect to P and so N is uo 
positive. The conclusion of the theorem now follows from Theorem 12.9.3 
and Remark 12.9.1. I 

1 
c2 

Theorem 12.9.6. In addition to the (:onclitions of Theorem 12.9.1 assume 
that P ( k )  and Q(k)  satisfy the assurnptions concerning Q ( k )  in Theorem 
12.9.5. If P ( k )  5 Q(k)  with respect to p,  k E IN(0,K - l), then the 
srnallest positive eigenvalues X0 and A 0  of (12.9.1), (12.9.3) and (12.9.2), 
(12.9.3) respectively, satisfy A0 5 XO. Furthermore, if A0 = X0 then 
P (k )wo (k  + p) = Q(k )wo(k  +p), k E ~ ( 0 ,  K - I) where wo (k )  is as i n  
Theorem 12.9.5. 

Proof. B y  Theorem 12.9.5, X0 > 0 and A0 > 0 exist. W e  will now 
show that M I N with respect to P. For U E P, we have 

K - l  

Mu(k) = C g(k,l)P(l)u(l+ p) 
P=O 

K - l  

5 c g(k,l)Q(l)u(l+p) = Nu(k), k E JN(O,K-l+v~.). 
P=O 

Further, AiMu(0) = A'Nu(0) = 0 ,  0 5 i 5 p- 1, and AiMu(K+p) = 
AzNu(K +p) = 0,  0 5 i 5 7. - p  - 1. Thus, Theorem 12.9.4 implies that 

Ao I Xo. 

If A 0  = XO, then by Theorem 12.9.4 the eigenfunctions v ( k )  and w(k )  
of (12.9.1), (12.9.3) and (l2.9.2), (12.9.3) respectively arc scalar multiples 
of each other, say w ( k )  = cv (k ) .  Thus, it follows that 

(-l)"'"[W(k)] = X,Q(k)w(k+p) = XoP(k)w(k+p), k E IN(0,K-l). 

w ( k ) .  I 
Hence, P (k )wo (k+p)  = Q(k )wo (k+p) ,  k E JN(0, K - 1) where wo(k )  = 

In out next result we shall use the cone p1, which is a quadrant in 
R", and i n  tcrrns of Si E { -1, l}, 1 5 i 5 n is defined as p1 = 
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{U E R" : Siui 2 0, 1 5 i 5 n}. The related cone P1 in B is the11 
P1 = {U E B : ~ ( k )  E PI, k E W ( p , K  - 1 +p)}. 

Theorem 12.9.7. In addition to the conditions of Theorem 12.9.1 assurrle 
that GiS j p i j ( k )  2 0 on W(0, K - 1) for 1 5 i, j 5 n and that there is 
a ko E IN(0, K - 1) and an io E N(1,n) such that pi,i,(ko) > 0. Then, 
the eigenvah~e problem (12.9.1), (12.9.3) has a least positive eigenvalue 
X0 which is a lower bound on the rr~od~llus of the eigenvalues of (12.9.1), 
(12.9.3) and satisfies 

Further, M u ( k )  
P1 "f PI. 

Define W E P, 

and set wio ( k )  = 

e=o ,=l 

I 

satisfies the boundary 

5 i 5 n,, k E W(0, K - 1 + m ) .  
conditions (12.9.3). Hence, M : 

on W(0, K - 1 + 7 n )  for i # i o ,  

where io and ko are as in the 

statement of the theorem. Since €0 = g(ko+p, ko)pi,i,(ko) > 0, for i # io 
we have &(Mw) i (k )  2 0 = ~ o S i u r i ( k ) ,  k E W(0, K - 1 + m ) .  Further, for 
k # ko + p ,  &,(Mw)i,(k) 2 0 = E O & ~ W ~ , ( ~ ) .  We also have that 

K - l  n, 

&,(Mw)io(ko+p) = C ~ ( k o  + p , e ) C s ; , f i , p i , j ( P ) ; S , ~ j ( P + p )  
e=o j=1 

= d k . 0  +P, ~ o ~ ~ i , i o ~ ~ o ~ ~ i o w i ~ ( ~ o  +P) 
= EObiolllio(kO +p). 

Thus, it follows that M W  2 cow with respect to PI. The conclusion 
now follows from Theorem 12.9.2. I 

12.10. Positive Solutions of 
(12.10.1) A3u(k) + X a ( k ) f ( u ( k ) )  = 0, k E N(2, K + 2) 
(12.10.2) u ( 0 )  = ?/.(l) = u (K  + 3) = 0 
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where f : R+ + R+ is continuous, and u ( k )  is a positive function defined 
011 N(0, K + 2). 

To establish the positive solutions of (12.10.1), (12.10.2) we shall need 
the following Krasnoscl’skii fixed-point theorem. 

Theorem 12.10.1. [28] Let B be a Banach space, and let P c B be a 
cone in B. Assume 0 1 ,  02 are open subsets of B with 0 E CL1 c c 
( 2 2 ,  and let 

A : P n (i72\(11) + P 

be a cornpletely continuous operator such that, either 

(i) \JAvIl 5 \ ( 7 1 , \ l ,  71. E P n iJ(21 and IIAuIl 2 \ / u \ 1 ,  71, E P n an,, or 
(ii) ((Au(\  2 \\U,\\, 71, E PniXl,  and //ATJ,\~ 5 //u.JJ, 11. E P n 8 l 2 .  

Then, A has a fixed point i n  P n (&\(l1). 

We shall also rcquire certain upprr and lower bounds for the Green’s 
fmxtion g(k,P) of the boundary value proMcm - A37r(k) = 0, k E 
N(2, K + a), (12.10.2). For this, we recall from Theorem 10.9.2 that 

(12.10.3) g(k,P) > 0 011 N (2 ,  K + 2) x W(0, K )  

so that from the boundary conditions (12.10.2) 

(12.10.4) ,9(k.,[) 2 0 on IN(0, K + 3) x nv(0, K ) .  

Now for each P E W(0, K ) ,  let .(C) E W(0, K + 3) be defined by 

(12.10.5) g(r(C),P) = max g(k,P). 
k:€W(O,K+3) 

(Clearly, .(P) E W(2,  K + a).) So, we can state 

As a lower bound, we have 

Q 

(12.10.7) ,9(k,P) 2 
L 

( K + l ) ( K + 2 )  
g(.([), P), k. E N(2,  K+2), e E W(0, K )  

which is a special case of a very general result proved in [3]. 

For our construction, let 

B = {U, 1 N(0, K + 3) 4 R : ~ ~ ( 0 )  = ~ ( 1 )  = u,(K + 3) = 0) 
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with the norm ( ( ~ 1 1  = rnax,,m(o,K+3) Iu(k)I. 
space. We define a cone P, by 

Also, we define the number 0 E lN(0, K + 3) 

K 

Clearly, (B, 11 ' 1 1 )  is a Banach 

1 3), and rnin W,( k )  
k:EN(Z,K+Z) 

2 
( K  + 1) (K  + 2) I I 4 l  ' 1 

(12.10.8) 

(Clearly, o E N(2, K + a).) 
I n  what follows, WC shall also dtnotc b y  

(12.10.9) 

Theorem 12.10.2. With respect to the boundary vallle problem (12.10.1), 
(12.10.2) assume that, X = 1. Further, let cit,hcr 

(i) fO = O and fm = CO, (i.e. f is super.li.n.ear.), or 
(ii) fo = CO and f m  = 0, (i.e. f is snbl inear~) ,  

then (12.10.1), (12.10.2) has at  lcast onc solution in P. 

Proof. We define an opcrator A : P + B by 
K 

(12.10.10) A ~ r ( k )  = C ~ ( k ,  P)a (P ) f ( u (P ) ) ,  U, E P. 
P=O 

Clearly, it, suffices to exhibit a fixed point of A that lies in  the cone P. 

We first observe from (12.10.4) that if U E P, then Au(k) 2 0 
on W(0, K + 3). Further, from the properties of the Green's function 
g ( k , P ) ,  Au satisfies the boundary coditions (12.10.2). Moreover, for U E 
P, we have from (12.10.6) 

K 

Au(k) 5 c g ( . ~ ( ! ) ,  P ) a , ( P ) f ( v ( P ) ) ,  k E W(0, K + 3) 
P=O 

and so 

(12.10.11) 
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Thus, if U E P, then (12.10.7) and (12.10.11) imply 

n 
L 

( K  + 1)(K + 2) I I I I 

As a corlsequencc A : P + P. 111 addtion, it is immediate that, A is 
completely c:ontirluous. 

Next from fm = CO there exist X > 0 and p2 > 0 such that 
f(u) 2 XU for U 2R2, and 
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Let 

I I 4 l  

Corlsequcntly, llAu,ll 2 \ l u l l ,  and so 

(12.10.13) llAull 2 1 1 ~ 1 1  for U, E P n  3522. 

Now an application of Theorem 12.10.1 to (12.10.12) and (12.10.13) 
yields that A has a fixed point U E P n  (n2\nl). As such, the fixed point 
11, is a desired solution of (12.10.1), (12.10.2) for the case of f superlinear. 

Case (ii). Assume fo  = cc and fm = 0. From f o  = 03 there exists 
7 j  > 0 and J1 > 0 such that f(u) 2 7ju for 0 < 11. 5 . I I ,  and 

From which we have 
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For the final part of the proof we deal with fm = 0. In this case there 
exist 1 > 0 and 7 2  > 0 such that f(.) 5 xu, for u, 2 72, and 

There are two subcases: (I) f is bounded, and (11) f is unbounded 

Subcase (I). Suppose M > 0 is such that f(u) <_ M for all 0 < U. < 00. 
Let .l2 = rnax{2J1, M ~ ~ o , q ( ~ ( l ? ) , C ) a ( P ) } .  Then, for 71 E P with 
)\u,\l = ,J2, we have 

Thus, from the two subcascs, an applcation of Theorem 12.10.1 to 
(12.10.14), (12.10.15) or (12.10.14), (12.10.16) yields a fixed point of A 
which belongs to P n (n2\01). This fixed point is a solution of (12.10.1), 
(12.10.2) for the case of f sublinear. I 
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Theorem 12.10.3. With respect to the boundary value problem (12.10.1), 
(12.10.2) assume that fo  and fm both exist as positive real numbers. 
Then, for each X satisfying 

there exists at, least one solution of (12.10.1), (12.10.2) that lies in P. 

Proof. Let X be given as i n  (12.10.17). Then, let E > 0 be such that 

( K  + 1 ) (K  + 2) 1 
- < X 5  K 

2 (EL2 do ,  P),(") ( fw - f) (c,,, a ) u ( p ) )  (f0 + 

We define an operator A : P "-t B by 

K 
(12.10.18) Au(k)  = X C  g (k ,  f )o , ( f ) f (u , ( l ) ) ,  71. E P 

P=O 

and seek a fixed point of A that lies i n  the cone P. 

The arguments identical to those in the first part of the proof of Theorem 
12.10.2 yield that A : P + P and that A is completely continnous. 

(12.10.19) ((Au(1 I ((U,(( for U E Pn3R2, .  

Next, since fm is a positive real number, there exists an p2 > 0 
such that f (u )  2 (fm - E)U for all U 2 ??2. Let H2 = rnax(2H1, ( ( K  + 
1)(K + 2)/2)B2}, and define 0 2  = (71, E B : IIu(( < Hz}. If U E P with 
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Applying Theorem 12.10.1 to (12.10.19) and (12.10.20) we concludc that 
A has a fixcd point ~ ( k )  E P n (n2\(11). This fixed point u(k) is a 
sohltion of (12.10.1), (12.10.2) c:orrcsponding to the given value of X. I 

Theorem 12.10.4. With respect to the boundary valllc problem (12.10.1), 
(12.10.2) a,sslmw that, fo and f m  both exist as positive real numbers. 
Then, for each X satisfying 

there exists at least one solution of (12.1O.1), (12.10.2) that lies in P. 

Proof. Let X be given as in (12.1O.21), and (:home E > 0 such that 

Let A be the cone preserving, completely contirluous operator that is 
defined in (12.10.18). 

Bcginning with f o  there exists an H I  > 0 such that f ( u )  2 ( f o  -€)W, 
for 0 < W. 5 H I .  So for 71, E P and ))u,1) = H I ,  we have 
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Therefore, if we let R1 = { U  E B : 11w.11 < H I } ,  then 

(12.10.22) IIAuII 2 I ~ U ( (  for U E P n a n , .  

There rerrlains to consider f m .  There exists ??2 > 0 such that 
f ( ~ )  5 ( f m  + E)U for all U 2 '112. There are two subcases: (a) f is 
bounded, and (b) f is unbounded. 

For Case (a), suppose M > 0 is such that f ( u )  5 M for all 0 < U, < 
m. Let H2 = max(2H1, MACIS(=Og(~(t ) , t )o (k ) } .  Also, let (22 = {U E 
B : 1 1 ~ 1 1  < H z } .  Then, for 71. E P n 802, we have 

K 

Au(k) I A h f ~ g ( ~ ( O ) , P ) n ( 1 7 )  I 1 1 ~ 1 1 ,  k E W(0, K + 3) 
P=O 

e=o 

In  each of the subcases we apply Theorem 12.10.1 to (12.10.22), (12.10. 
23) or (12.10.22), (12.10.24) to obtain a fixed point of A that lies in P n  
(22\01). This fixed point is a solution of (12~10.1), (12.10.2) corresponding 
to the given X. I 
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12.11. Problems 

Chapter 12 

12.11.1. Let X be an eigenvalue of the Sturnl-Liouville problem (12.1.1), 

(12.11.1) 
(12.11.2) 

cyu(0) + PAu(0) = 0 
yu.(K) + SA71.(K) = 0, 

whcre a’ + p’ # 0, y2 + S’ # 0. Show that if q ( k )  5 0 on lN(1, K),  
a/? 5 0 and yS 2 0, then X 2 0, and if in addition q(k) > 0 at  two 
consecutive integers in IN(1, K), then X > 0. 

12.11.2. Let u l ( k , X ) ,  ~ 2 ( k , X )  be thc linearly independcnt, solutions of 
(12.1.1) satisfying the initial conditions 

~ 1 ( 0 ,  X) = 1, A ~ l ( 0 ,  X) = 0 
?1,2(0, X) = 0, Au~(O, X) = 1 

ancl let ?/,(A-, X) = , h 1  ( k ,  X) - cwu2(k, A),  which is a nontrivial solution 
of (12.1.1) and satisfies thc boundary condition (12.11.1). Show that the 
cigenvalues of the Sturrrl Liouvillc problcrrl (12.1.1), (I2.11.1), (12.11.2) are 
the zeros of s (X )  = yu(K, X) + hAu(K, X), X E R and the zeros of g(X) 
arc simple. 

12.11.3. Show that thc Sturm Liouville problcrrl (12.1.1), ~ ~ ( 0 )  = u . (K+ 
1) = 0 has K eigcnvalues X1 < ... < XK. Further, if X i  are the 
eigenvalues and & ( k ) ,  1 5 i 5 K arc thc corresponding cigenfunctions, 
thcn q5i(k) has exactly i - 1 gcneralized zeros in W(1, K).  

12.11.4. Lct X be an cigerlvaluc and d ( k )  be the cxmesponding eigen- 
function of (12.1.1), (12.11.1), (12.11.2). Show that thc mnhomogeneous 
problcnl 

A ( ~ ( k  - l ) A ~ ( k  - 1)) + q ( k ) ~ ( k )  + Xr(k)u,(k) = f ( k ) ,  k E IN(1,K) 

(12.11.1), (12.11.2) has a solution if and only if Cp(k) and f ( k )  are 
ortllogonal on ~ ( 1 ,  K), i.e. C:==, d ( / c ) f ( k )  = 0. 

12.11.5. For the difference cquatiorl (12.1.10) together with the peri- 
odic boundary conditions u,(-l) = u(K), ? ~ ( 0 )  = u(K + l) show that 

the distinct eigenvalues are X, = 4sin2 - 0 5 ‘ m  _< [ 7 1  and 

corresponding to  X0 = 0 the eigcnfunction is @ o ( k )  = 1; corresponding 
to X ( ~ + l ) p  (which is possible only when K is odd) the eigenfunc- 
tion is d ( ~ + ~ ) , ’ ( k )  = cos2nk; whercas corrcsponding to the remaining 
eigenvalues each corresponds to the two lincarly indcpentlerlt eigcrlfunctiorls 

mn K + l  
K f l ’  
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12.11.6. Show that for any function u ( k ) ,  k E IN(0,K) satisfying 
?/,(K) = 0, u,(K + 1) = u(0) the following inequality holds 

(12.11.3) 

In (12.11.3) cquality holds if and only if u.(k-) = c sin 
( k  + 1)" 
(K + 1) ' where 

c is an arbitrary constant. 

12.11.7. Show that for any function ~ ( k ) ,  k E W(1, K) satisfying 
Cp,, U,(!) = 0 the following incquality holds K 

h'- 1 K 
(12.11.4) c (Aw,(!))~ 2 4 sin2 - xu2(O) + 2K sin - 

2K 2K 
7r 7r 

e=1 P=1 

In (12.11.4) equality holds if and only if ~ ( k )  = c sirl , whcrc 
(2k - 1)n 

2K 
c is an arbitrary constant. 

12.11.8. Show that for any function u ( k ) ,  k E W(1, K )  satisfying 
u,(K + 1) = ?/,(l), XI=, u,(t) = 0, and K = 2m the following inequality 
holds 

K 

I n  (12.11.5) equality holds if and only if ~ ( k )  = cl cos -+c2 sirl -, 2 IC" 2kT 
K K 

where c1 and c2 are arbitrary constants. 

12.11.9. Show that for any complex valned function w,(k), k E W(0, K)  
and 1 5 m 5 K the following best possible inequalities hold 

where y = 2cos - 
r + 2  

and r = [K/m] 
" 
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12.11.10. Show that for any real or complex valued function w,(k), k E 
W(0 ,K )  and 1 5 m, 5 K ,  i = 1,2,3,4 the following best possible 
inequalities hold 

K K 

where the summation symbols are defined by 

1 K-m c =  c 
F=O 

2 K 

F=O 

3 K - 171 

F=-m 

(It is char that the cases i = 2 and 3 are the same apart from the 
notation of the variables 74k). Hence, there are 6 different cases in 
(12.11.6) corresponding to i = 1,2 or 3,4 and the + and - sign.) and 

12.11.11. Use the relation 

5 -4 1 
-4 6 -4 1 
1 -4 6 -4 1 

1 -4 6 -4 1 
7 . .  

1 -4 6 -4 
1 -4 5 
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where g = (2,. . . ,2) and h = (-1,. . . , -1) to show that for any function 
u , (k ) ,  k E IN(0, K + 1) satisfying u(0) = u ( K  + 1) = 0 the following 
inequalities hold 

K K - l  

(12.11.7) 16sin4 c u2(l) 5 c (A2u(l))2 
e=1 f = O  

7r 

2 ( K  + 1) 
K 

5 16c0s4 
" c 7 , 2 ( t ) .  

2 ( K  + 1) F = 1  

In the left (right) of (12.11.7) equality holds if and only if U( k )  = 
c sin (-) kn ( ~ ( k )  = c(--l)"-' sin (-) k-ir ) , where c is an arbi- 

K + 1  K + l  
trary constant. 

12.11.12. Use the relation 

2 -3 1 

1 -4 6 -4 1 
-3 6 -4 1 

1 -4 6 -4 1 
. .  

1 -4 6 -3 
1 -3 2 

where g = (1,2, ... ,2,1) and h = (-1,. . . , -1) to show that for any 
function 7r (k ) ,  k E W(0, K+1)  satisfying ~ ( 0 )  = ~ ( l ) ,  u ( K + l )  = u(K) ,  
C/=, U(!) = 0 the following inequalities hold K 

(12.11.8) 
K K - l  

16sin4 A c u , ' ( ( P )  5 c (A2u(l))2  
e= 1 e=o 2 K  

K 

5 16c0s4 ~ ~ u 2 ( l ) .  
2 K  

" 

e= 1 

In the left (right) of (12.11.8) equality holds if and only if u ( k )  = 
(2k - 1)" 

ccos ( 2K ) (u(k) =ccos ((K - '";LC" - 1)" , where c is an 

arbitrary constant. 

12.11.13. Show that for any function u(k), k E IN(0,K) satisfying 
u.(O) = u(l), v(K + 1) = u ( K )  the following inequality holds 
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In (12.11.9) equality holds if and only if u(k)  = ~ ( - 1 ) ~  sin 
(2k - 1). 

K '  
where c is an arbitrary constant. 

12.11.14. For any K dimensional vector U = (u ( l ) ,  . . . , we 
introduce a periodically extended K -  vector by setting ~ ( k  + T K )  = u,(k) 
for k = 1,. . . , K  and 7 E W, and denote the mth difference of U by 
u ( ~ , )  = (Acm.)u,( l), . . . , ~ I ( ' ~ , ) u ( k ) ) ~ ,  where 

In (12.11.10) equality holds if and only if U is the periodic. ext,crlsion of 
a vector of the form clu + C ~ V ,  where U = (~(l), . . . , and v = 

(?)(I), . . . , have the components v.(k) = (:os -, ~ ( k )  = sin - 2krr 2k. 

K K 
and c l ,  c 2  are arbitrary (:onstants. 

12.11.15. Let m ,  K E lN(l), and define c ( n r )  = 1 - [rn/2] and 
d(rrr) = K - [ ( , m .  + 1)/2]. Show that for any function u ( k ) ,  k E W(1, K )  
satisfying ?I , (")  = ~ ( 1  - T ) ,  7r(K + 1 - T )  = u,(K + T), c(,rn)  5 7 5 0 the 
following inequality holds 

d(m.1 K 

(12.11.11) c 5 (4 (:os2 ") m' 1 ."l). 
2K 

/ = c ( m )  f=1 

In (12.11.11) equality holds if and only if ~ ( k )  = <:(-l)" sin 
(2k - l). 

x ' 
where c is an arbitrary constant. 

12.11.16. Show that, if in addition to conditions of Problem 12.11.15, 
Et,, U ( ( )  = 0, then the following inequality holds K 

I n  (12.11.12) equality holds if and only if u.(k) = ccos 
(2k - l). 

2 K  ' 
where c is an arbitrary constant. 
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12.11.17. Suppose that the function v (k ) ,  k E W(0, K+ 1) satisfies the 
conditions u(0) = ?/,(K + 1) = 0 and the inequality 

If the constants L ,  LO, L1 arc nonnegative and if 

(12.11.13) 
l 1 K + 2  

PK+1 = 
4 sin2 

2(K + 1) 

then show that 

12.11.18. Consider the difference equation 

(12.11.14) A27r(k- 1) = f ( k , ~ ( k ) , A ~ ( k ) ) ,  k E IN(1,K) 

where the constants L,  Lo, L1 are nonnegative and satisfy (12.11.13), 
then show that thc problem (12.11.14), (1.6.14) has at least one solution. 

(ii) If f ( k ,  U ,  U) satisfies the Lipschitx condition 

\f(k,71,,11) - f ( k , E , c ) l  5 LollJ, -El  + LllV -TI 

on IN(1,K) x E t 2  and (12.11.13) holds, then show that the problem 
(12.11.14), (1.6.14) has a unique solution. 

12.11.19. Suppose that the funckion ~ ( k ) ,  k E W ( 0 , K )  satisfies the 
conditions u,(O) = u(1) = u(K  - 1) = u , (K )  = 0 and the inequality 
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If the constants L ,  Lo, L1, L2 are nonnegative and if 

1 1 
(12.11.15) P K  = -Lo + 

X ~ J  2 6 s i n  - 
2K 

where X1.2 is defined in Theorem 12.7.1, then show that 

12.11.20. Consider the boundary value problcrn 

V 2 A 2 , r ~ ( k )  = f ( k , ~ . ( k ) ,  A u ( ~ ) ,  VAu(k)),  k E N(2, K - 2) 

w.(O) = Ao, A?L(O) = A I ,  u(K) Bo, V U ( K )  = B1. 
(12.11.16) 

(i) If f ( k ,  U,, W, UJ) is corltinuous on lN(2, K - 2) x R3 and satisfies 

where the constants L ,  LO,  L1 ,  L2 are nonncgative and satisfy (12.11.15), 
then show that the problem (12.11.16) has at lcast one solution. 

(ii) If f ( k , u , ~ ~ ,  W) satisfies the Lipschitz condition 

l f ( k , ~ , ~ J , w ) - f ( k , ~ , i , - ) l  L L o l . u . - ~ ~ + L 1 I . u - i l + L 2 1 w - - ~  

on lN(2, K - 2) X R3 and (12.11.15) holds, thcrl show that the problem 
(12.11.16) has a unique solution. 

12.11.21. Lct u(k)  be a periodic function of period K, and let 
the function ~ ( k )  be defined on lN(1, K). For the function ~ ( k )  = 
XI=, u,(k + P ) n ( C )  show that K 



Stnrm -Liollville Problems and Related Inequalities 889 

whcre r is a positive integer. 

12.11.22. For any periodic function u(k)  of period K satisfying 
C,"=, U([) = 0, and n any positive integer, show that 

= 0, and n any positive integer, show that 
P = l  

(12.11.17) 

whcre 

for K even, n, odd 

for K cvcn, n, even, K/2 odd 

for K even, n even, K/2 even 

for K odd, n, odd 

W - 3 ~ 2  

M n , ~  = c [l + cos(2!+ l)?] [sin(2t+ l)-] 
--n-l 

K K e=o 
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for K odd, R. even 

I n  (12.11.17) equality holds for the periodic function u,(k) of period 
K satisfying xp=, U, ( [ )  = 0 and defined by A K u ( k )  = v (k ) ,  where K 

for K even, 71(k) = 
1, k E W(0, ( K  - 2)/2) 
-1, k E IN(K/2, K - 1) 

and 

for K odd, ~ ( k )  = 0, k = ( K  - 1)/2 { 
1. k E W(0, ( K  - 3)/2) 

-1, k E N ( ( K  + 1)/2, K - 1). 

12.11.24. (Raylcigh's Irlcqnality). Lct X1 be the smallest eigenvalue of 
(12.1.1), ~ ( 0 )  = u(K + 1) = 0. Show that 

wherc ~ ( k )  is any nontrivial function defined on W(0, K + 1) with 
n ( 0 )  = ,u(K+ 1) = 0. Further, show that i n  (12.11.18) eqnality holds if and 
only if 71(k) is an cigenfurlc:t,ion corrcsponding to X I .  

12.11.25. (Lyapunov's Irlcquality). If the bolmdary value problem 
A2w.(k - l) + q ( k ) u ( k )  = 0, k E N ( l , K ) ,  ~ ( 0 )  = u ( K  + 1) = 0 where 
q ( k )  2 0, k E W(1, K ) ,  has a nontrivial solution .(X-), thcn show that 

and this inequality is best possible i n  the sense that if for any K eqllality 
holds thcn there exist functions q(k)  2 0, k E W(1, K )  and w,(k) # 0, k E 
W ( 0 , K  + 1) such that q(k)  = -A2?r(k - l ) /u ( k ) ,  k E W ( l , K ) ,  v.(O) = 
?/,(K + 1) = 0. 

12.11.26. Let the function u(k)  be defined on W ( O , K ) ,  and 9-l + 
(q')-' = 1, wherc 1 5 q 5 03. Show that 

(i) if ~ ( 0 )  = 0, then 
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(ii) if u(0)  = o(1) = 0, then 

12.11.27. For the computation of the eigcnvalucs of the boundary valuc 
problem 

(12.11.19) g” + (Xr(t) - q( t ) )g  = 0, ?/(a) = y(b)  = 0 

providcs a fourth order approximation, i.e. if X is a fixed cigenvalue 
of (12.11.19) and A is the corrcsponding approximation obtained from 

(12.11.20), then 1 - - = O(h4). I n  (12.11.20), h, = ( b - a ) / ( K + l ) ,  U = ! ;l 
(~,(1), . . . ,7l .(K)),  ~ ( k )  ~ ( t r . ) ,  t k  = a. + kh, k E IN(0, K + l), A = 
180~~(g,h)+15~H2, (g ,h)+2~3, (g ,h) ,  g =  (2;..,2), h =  (-l;..,-]), 
Q = ding (q(tl), . . . , q ( t K ) ) ,  and R = diag ( r ( t l ) ,  . . . , r ( t K ) ) .  

12.11.28. Use (12.11.20) to cxmputc the approximation of the first 
cigcnvalue of the following bourldary valuc problems 

and 
g’’ + (Xcos t - sin t)y = 0, y(0) = v( I )  = 0 

with h = 2-“, 3 5 p 5 8. Does this computation justify the order of 
corlvergence to be four’? 

12.11.29. For the computation of the eigenvalues of the boundary value 
problem 

(12.11.21) y”” - (Xr( t )  - q(t))y = 0 
(12.11.22) y”(0.) = y”’(a) = y”(b) = y”’(b) = 0, 

where T ,  q E C[a ,  b]  and ~ ( t )  > 0, q(t) > 0 for all t E [a,b] show that 
the generalized matrix eigenvalue problem 

(12.11.23) (A+ h4Q)u = Ah4Ru 
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provides a second order approximation. In (12.11.23), h, = ( b  - a ) / ( K  - 

5, A is a singular five-band symmctric matrix 
l), U = ( u ( l ) ,  ’. ’ , u , ( K ) ) ,  u ( k )  = y(tL:),  tL; = a+(k- l )h ,  k E N(1, K ) ,  K 2 

- 
1 -2 1 

1 -4 6 -4 1 

7 

-2 5 -4 1 

A =  1 -4 6 -4 1 
7 . .  

1 -4 5 -2 
1 -2 1 .. - 

12.11.30. Use (12.11.23) to computc thc approximation of thc first 
eigenvalue of the following boundary value problcnls 

(12.11.24) 
y”(1) = ?)”’(l) = ?/’’(a) = y”’(2) = 0 

(12.11.25) 
y’”’ - (X( 2 + sin t )  - cosh t ) ? ~  = 0 

y”(0) = y”’(0) = y”(1) = y”’(1) = 0 

with h, = 2 7 ,  2 5 p 5 8. Does this computation justify the order of 
convergence to be two? 

12.11.31. I n  Problem 12.11.29 let the matrix A be a singular sevcrl-band 
symmetric matrix 

A =  

6 -13 8 -1 
-13 36 -34 12 -1 

8 -34 54 -39 12 -1 
-1 12 -39 56 -39 12 -1 

... ... ... ... 

-1 12 -39 54 -34 8 
-1 12 -34 36 -13 

-1 8 -13 6 

1 



Sturm-Liouville Problems and Related Inequalities 893 

26 59 
- 7 ( t 2 ) ,  12~(t3), 6r(t4), . . . , 6 ~ ( t ~ ” 3 ) ,  

Show that with t,his replacement the generalized matrix eigenvalue problem 
(12.11.23) provides a third order approximation for the computation of the 
eigenvalues of the hourdary value problenl (12.11.21), (12.11.22). Further, 
use this met,hod to c:onlpute the approximation of the first eigenvalue of the 
problems (12.11.24) and (12.11.25) with h, = 2-“, 3 5 p 5 8 and ,justify 
the order of coIlvergencc of the method to be three. 

12.11.32. For the cmnputation of t,he cigcnvalucs of the boundary value 
problem (12.11.21) with q ( t )  2 0, 

(12.11.26) ?/(Q,) = ?/(a) = ?Ab) = = 0 

show that the generalized matrix eigenvalue problem (12.11.23) provides a 
second order approximation, where h = ( b  - a ) / ( K  + l), U = (?),(l), . . . , 
IL (K) ) ,  ~ ( k )  = y ( t ~ : ) ,  t ~ :  = a + kh,, k E W ( 0 , K  + l), A is a five band 
symmetric matrix 

A =  

7 -4 1 
-4 6 -4 1 
1 -4 6 -4 1 

1 -4 6 -4 1 
. .  

1 -4 6 -4 
1 -4 7 

Q = diag ( q ( t l ) ,  . . . , q ( t ~ ) ) ,  and R = diag ( ~ ( t l ) ,  . . . , T ( ~ K ) ) .  Further, use 
this method to compute the approximation of the first eigenvalue of the 
problem 

(12.11.27) y”” - -y = 0, y(1)  = ~ ’ ( 1 )  = y(e) = ?/’(e) = 0 
x 
t4 
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with h = 2-", 3 5 p 5 8 and justify the order of convergence of thc 
method to be two. 

12.11.33. If in Problem 12.11.32 the matrix A 
severi- band symmetric matrix 

A =  

38 1 
3 

-7 2 " 
6 

- 
113 13 -7 - " 
12 2 
13 28 13 2 " - " 
2 3  2 

1 13 28 
6 

2 " - 
2 3  

" 

... ... 

" l 2  
6 

1 
6 
" 

1 
6 
" 

1 
2 " 

6 
13 

2 
" 

... 

13 28 

2 3  
13 

2 " 
2 

" - 

1 
6 
" 2 

is replaccd by the 

1 
6 
" 

... 

" 

13 
2 

113 
12 

-7 

38 
-7 - 

3 

- 

then show that the reslllting gerlcralizcd matrix eigenvalue problem (12.11. 
23) provides a fourth order approximation for the computation of the eigen- 
values of the boundary value problem (12.11.21) with q(t )  2 0, (12.11.26). 
Further, use this method to compute the approximation of the first eigen- 
value of the problem (12.11.27) with h, = 2-", 3 5 p 5 8 and justify the 
order of convergence of the method to bc four. 

12.11.34. Let S i ,  1 5 i 5 R and P: be as i n  Section 12.9. If in addition 
to the conditions of Theorcm 12.9.1, SiS jq i j (k)  > 0, k E W(0, K - l), 1 5 
i , j  5 n then show that the boundary value problem (12.9.2), (12.9.3) has 
a smallest positive eigenvalue A 0  which is smaller than the modulus of any 
other eigenvalue of (12.9.2), (12.9.3). Furthermore, there is an essentially 
unique eigenfunction W O  E P: or - W O  E P:. 

12.11.35. If P ( k )  satisfies the hypot,hesis of Theorem 12.9.7, then show 
that the eigenvalue problem 

-A2u(k) = X P ( k ) u ( k  + l), ~ ( 0 )  = u(K + I) = O 
has a smallest positive eigenvalue X0 which satisfies 

x-' > (ko + 1)(K - ko) 
0 -  K f l  P& (ko) . 
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12.11.36. If the conditions of Theorem 12.9.7 are satisfied, then show 
that the least positive eigenvalue X0 of (12.9.1), (12.9.3) satisfies 

K - l  

g(ko + p ,  ko)Pi,i,(ko) L Xi1 L G C IlP(P)ll, 

where G = max{g(k,&) : k E N ( p , K  - 1 + p ) ,  e E IN(0,K - 1)) and 

IlP(P)II = m a x l l i l n  Cy=, SiS,pij([). 

l = O  

12.11.37. Let Si, 1 L i 5 n be as in Section 12.9. If in addition to 
the conditions of Theorem 12.9.1 there is an io E N(1,n) and a ko E 
W ( 0 , K  - 1) such that pio , io (ko)  > 0, and 0 5 S iS j p i , ( k )  5 SiS,qij(k) 
and q,ij(k) # 0 on N(0,K - 1) for 1 L i, j 5 n then show that the 
eigenvalue problems (12.9.1), (12.9.3) and (l2.9.2), (12.9.3) have smallest 
positive eigenvalues X0 and h0 respectively. Furthermore, h. L X. and 
h0 = X0 if and only if P ( k )  = Q(k )  on IN(O,K - 1). 

12.11.38. Consider t,he two point focal boundary value problem 

(12.11.28) An7/,(k) = (-l)“-”X c qi(k)Aiu,(k), k E lN(0, K - 1) 
n.- 1 

i=O 

(12.11.29) 

where X is a parameter, and the functions q i ( k ) ,  0 5 i 5 n - 1 are 
defined on N(0, K - 1). Further, 

Aiu,(0) = 0, 0 5 i 5 p -  1 (1 L p 5 n, - 1, but fixed) 

A ” ( K )  = 0, p 5 z < n - l  ’ - 

q i (k )  2 0, k E W ( p  - i, K - l), 0 5 i L p - 1 
(-l)iqp+i(k) 2 0, k E N ( 0 , K  - l), 0 5 i L n - p  - 1 
if 1 5  p 5 n -  2, then Cyl iq , ; (K - 1) > 0, and 
if p = n - 1, then qn-2(K - 1) > 0 and qn-l(K - 1) > 0 

Show that the problem (12.11.28), (12.11.29) has a smallest positive eigen- 
value X0 and X0 is smaller than the modulus of any other eigenvalue 
of (12.11.28), (12.11.29). Furthermore, there is an essentially unique eigen- 
f~~nction ~ ~ ( l c )  corresponding to XO, and either uo(k) or - u,o(k) 
satisfies 

Aiu(k)>O, k ~ ~ ( p - z , K - ~ + n - i ) ,  0 < i < p - 1  
( - l ) i A ” f i u ( k )  > 0, k E N(0,K - l), 0 5 i 5 n - p  - 1. 

(12.11.30) 

12.11.39. Consider the difference equations 

p- 1 

(12.11.31) A ” u ( ~ )  = (-1)””XC qi(k)Aiu(k),  k E N(0, K - 1) 
i =O  
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and 

(12.11.32) Anu(IC) = (-1)”-”A c Qi(IC)A%(IC), IC E N(0, K - 1) 

together with the boundary conditions (12.11.29), where X and A are 
parameters, 1 5 p 5 n- 2, and the functions q i ( k ) ,  Qi(lc), 0 5 i 5 p- 1 
are defined on N(0, K - 1). Further, 

P- 1 

i=O 

P ” 2  K- l  

p > 1 and c q i ( K -  1) > 0, or c qp-l(e) > 0, IC E N ( 1 , K  - 1) 
i=O e=k 

and 

K - l  K - l  

0 5  Cqi(e)< C Q i ( ! ) ,  I C € N ( p - i , K - l ) ,  05Zsp-l. 
e=k e=k 

Show that the problem (12.11.31), (12.11.29) ((12.11.32), (12.11.29)) has a 
smallest positive eigenvalue Ao(A0) and Xo(A0) is smaller than the modu- 
lus of any other eigenvalue of (12,11.31), (12.11.29) ((12.11.32), (12.11.29)). 
Furthermore, there is an essentially unique eigenfunction uo(k)(vo(IC)) 
corresponding to Ao(Ao) ,  and either uo(k)(vo(IC)) or - uo(IC)( -v~(k))  
satisfies (12.11.30). Also, show that A0 5 X0 and A0 = X0 if and only if 
qi(IC) = Qi(k) ,  IC E N(p - i , K  - l), 0 5 i 5 p - 1. 

12.12. Notes. 

An elementary discussion of discrete Sturm-Liouville problems is avail- 
able at several places, e.g. see the books by Fort 1181, Hildebrand [25], Levy 
and Lessman [30]. Our treatment in Section 12.1 is similar to the theory of 
continuous Sturm-Liouville problems presented in Agarwal and Gupta [l]. 
Results of Section 12.2 on eigenvalue problems for symmetric matrices can 
be found in Parlett [40], and Usmani [47]. Theorems 12.6.1 - 12.6.3 have 
been adapted from the landmark paper of Fan, Taussky and Todd [15]. 
An alternative proof of Theorem 12.6.1 based on the discrete Fourier series 
representations has been given in Lasota [29]. Redheffer [42] unifies Theo- 
rems 12.6.1 and 12.6.2 and claims to provide an ‘easier’ proof. Losonczi [31] 
contains some generalizations of these results. Theorems 12.6.4 and 12.6.7 
are due to Milovanovid and MilovanoviC [33]. Theorem 12.7.1 is from 
Denkowski [12], whereas Denkowski [l31 contains some of its applications 
to fourth order discrete boundary value problems. Several other related 
inequalities have been established by Alzer [5], Block [6], Chen [g], Cheng 
[lo, 111, Egervdry and Szdsz [14], Fejkr [16], Fink [17], Goodman and 
Lee [20], Lunter [32], MilovanoviC and MilovanoviC [35, 361, Novotna 
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[37-393, Pfeffer [41], Shisha [43], Szego [44], and Yin [49]. Some of these 
interesting inequalities are includcd as problems. Theorem 12.8.1 is taken 
from Milovanovie and Milovanovii: [34]. While the existence and the com- 
parison theorems for the least positive eigenvalues of higher order continu- 
ous boundary value problems have bcen studied extensively in Ahmad and 
Lazer [4], Gentry and Travis [19], Hankerson and Peterson [22], Keener and 
Travis [26,27], Travis [45] and several others, whereas for the discrete case 
very few such results are known. For a systematic treatment of cone the- 
ory see Guo and Lakshmikantharn [all, and Krasnosel’skii [as]. Theorems 
12.9.2 and 12.9.3 are proved in Krasnosel’skii [28], whercas Theorem 12.9.4 
is due to Travis [45]. Rest of the results in Section 12.9 are from Hankcr- 
son and Peterson [23]. Similar results for the focal point discrete boundary 
value problems are available in Hankerson and Peterson [24]. Section 12.10 
contains the work of Agarwal and Henderson [2]. Recent work 011 the pos- 
itive sohltions of differential, difference and integral equations has been 
documented in Agarwal, O’Regan and Wong [3]. Several discretizations 
which provide approximations to the eigenvalues of the continuous Sturrn 
Liouville type boundary value problems based on the work of Chawla and 
Katti 171, Chawla [8], Usrnani and Agarwal [46,48] have been included as 
problems. 
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dcrlotes A,El . . . &,,, u(x1,. . . , x m ) .  The empty sums and products are 
taken to be 0 and 1, respcct,ively. 

Lemma 13.1.1. Let g(x) be defined on IN", then the function 
V(s;x), S 5 n: - 1, ( s ; x )  E IN" x IN"' is a solution of 

(13.1.1) (-l)"A,.lV(s; x) = g(.y)V(.s + 1; X )  

(1x1~2)  V(Z,, x i ; x )  = 1, 1 5 z 5 'rrt. 

if and only if 

(13.1.3) V ( s ;  x) = 1 + S,=, g(P)V(P + 1; x). 
z-l 

Proof. FIorn (13.1.1), WC have 

(-1)"'arl-l[v(j3,,.,P, + 1; x) - V(P; .TT)] = .9(B)V(P + 1; x ) :  
p,,, 

.I' ,,, - 1 
(-1)"',+1A7-1V(?m,, S , , , ;  x) = c ,9(P)V(P + 1; x). 

I,) 

-1 + V(s;s) = S,=, g(C)V(C + 1;x).  I ,'E - 1 

Lemma 13.1.2. The problem (13.1.1), (13.1.2) or equivalently (13.1.3), 
has a urliquc solution V ( s ;  T ) .  Further, if ~ ( x )  2 0 on IN", then 
V(s; . x )  2 1 or1 IN" x IN"'. 
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Proof. For the iterates 

an easy induction gives 

where G = rrlaxo<p<z-l " [g ( [ )  1 .  
Therefore, for ( S ;  x )  E W" X IN'" it follows that 

n 

IVo(s;x)I +c I&.(.s;x) - Vk-1(.S;x)\ 
!,F 1 

n' 1 < - 1 + c Gk- 
k=1 k !  

and hcn(:e thc sequence {Vn(s;  x ) }  (:onverges to a solution V ( s ;  x )  of 
(13.1.3). The uniqueness of V(s; x )  and the inequality V(.; x )  2 1 on 
W"" x W"" (when 9(x)  2 0 on IN",) are obvious from (13.1.4). I 

Lemma 13.1.3. Let ,9(z) 2 0 and h,(x) be defined on W" and the 
following inequality holds 

(13.1.5) ATw,(x) 5 g(x)7r(z) + h,(x),  

where 

(13.1.6) u ( ~ i , O )  = 0, 1 5 i 5 'm. 

Then, for all z E IN" 

(13.1.7) .(x) 5 S::; h>(S)V(.S + 1; x ) ,  

where V ( s ; x )  is the solution of (13.1.1), (13.1.2). 

Proof. From (13.1.1) and (13.1.5), we have 

(13.1.8) S::: V ( s  + l ;x )A~u. ( . s )  - S,=, ( - l ) " A ~ V ( s ; x ) u ( s )  
Z - 1  

5 S::; h ( s ) V ( s  + 1; x ) .  

An application of (1.8.5) provides 
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Using (13.1.2) and (13.1.6), the right side of (13.1.9) reduces to 

sm=O 

Repeating the above arguments successively, we obtain 

x,,,-l "2-1 c . . . c F.,,, . . . AS,t~( .s )V(s l ,  .S2 4 1,.  . . , S ,  + 1; X)( 
s,,,=o s,=o 

%l 

s1=0 

which is the sarne as 

:c ,,I - 1 .c 2 - 1 

or 
- 

Substituting this i n  (13,1.8), the result (13.1.7) follows. I 

Remark 13.1.1 For all g(z) and h,(z) ,  equality in (13.1.5) irnplics 
equality in (13.1.7), and hence V ( s ; z )  the solution of (13.1.1), (13.1.2) is 
the discrete analog of Ri,ernann.'s fun,ction,. 

Corollary 13.1.4. Let g(%) and h(z) be as in Lemma 13.1.3, and 
d(z), +(x) be defined on W" and satisfy 

AFdz) 5 g(z)d)(z) + h(z) 
A,"$(X) L g(.)$(z) + h,(z) 
d(Ti,O) = +(Ti,O), 1 5 i 5 m. 

$!)(X) I +(x). 
Then, for all z E W" 

Lemma 13.1.5. Let g(z) be as in Lemma 13.1.3, and V ( s ; z )  be 
the solution of (13.1.1), (13.1.2). Let W ( s ; z )  be defined for all S 5 
z - 1, ( S ;  x) E W" x W'" arid 
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Next we dcfinc thc iteratcs as follows 

W o ( s ;  x) = V ( s ; x )  

Wn+1 ( S ;  x )  = 1 + S,=, g(e)wn,(e + 1; . x )  + S,=, $)(e; x ) ,  n. = 0,1, ' ' ' . 
.1' - 1 .l: - 1 

Ot)viously, W n ( s ; x )  2 V ( s ; z )  for all R 2 1, and as i n  Lerrlnla 13.1.2 
the scq1lcnc:e {Wn(.s; x)} convcrgcs to W ( s ;  x )  which is the solution of 
(13.1.12), (13.1.11). I 

13.2. Linear Inequalities 

In what follows WC shall assurne that the functions which appear in the 
irlcqualitics are real valued, norlncgative and dcfincd on IN'". 

Theorem 13.2.1. Let for all n: E W" the following inequality bc satisficd 

(13.2.1) 
X - l  

.(x) 5 p(%) + q(x)S,=, f(s).(s). 

Then, for all x E IN" 

(13.2.2) l l . ( Z )  5 p(.) + q(x)S,=, f( .s)p( .s)V(s  + 1; x ) ,  
X - l  

whcre V ( s ;  x )  is the solution of 

(-1 )7n ,a rv (~ ;z )  = f(s)q(.s)v(.s + ~ ; x ) ,  S 5 x - 1 
V(Si,zi;n:) = 1, 1 5 i 5 m .  

Proof. Define a function .(x) on W" as follows 

.(x) = S,=, f ( S ) l l . ( . S ) .  
Z-l 
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The result (13.2.2) follows from (13.2.4) and the inequality .(x) 5 p(.) + 
q(z)7i(x). D 

Remark 13.2.1. The incquality (13.2.2) is the best possible i n  the sense 
that equality i n  (13.2.1) implies equality in (13.2.2). 

Theorem 13.2.2. Lct for all x E IN" the following inequality be satisfied 

where 

Then, for all z E W'" 

wherc V ( s ;  x )  is thc solution of 

Proof. The proof uses the arguments of Thcorem 4.1.4 and Theorcm 
13.2.1. D 

Condition (c). WC say that condition (c) is satisfied if for all x E IN" 
the inequality (13.2.5) holds, whcre 
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Proof. The proof is similar to that of Theorem 4.1.5 and Theorem 
13.2.1. I 

Theorem 13.2.4. Let for all x E W" the following inequality be satisfied 
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Proof. The proof is similar to that of Theorern 4.1.6 and Theorem 
13.2.1. I 

13.3. Wendroff Type Inequalities 

Let W ( s ;  x )  be any function defined for all S 5 2-1, (S;  x) E W" X W" 
and 

Then, from Lemma 13.1.5 it follows that in (13.2.2), V(s + 1 ;x )  can 
bc replaced by W ( s  + 1; x). Howcver, finding a suitablc W ( s ;  x) i n  
atlvarlce which satisfies (13.3.1) seems to be quite difficult. Thcrcfore, for 
the func:t,iorl V(s; x )  we shall provide an upper cstirnatc which is quite 
adequate i n  practical applications. 

Lemma 13.3.1. Lct V ( s ; x )  be as i n  Thcorcrrl 13.2.1. Then, for all 
S 5 x - 1, (s;x) E W" x IN" 

X I - l  

(13.3.2) V ( s ; x )  L (1 + S;;I,',J(P)q(e)) . 

Proof. Sincc f(x)q(x) 2 0 for all x E W", Lcrnrna 13.1.2 implies that 
V (s ;x )  2 1. Thcrcforc, (- l ) " 'A~V( .s ;x )  2 0, which 011 following the 
proof of Lemma 13.1.1 gives that (-l)"As1 ... A,,V(s;x) 2 0, 1 5 1: 5 71). 

Now sincc 

A:,: V ( .S; x) 
V(% + 1, .Sn,,; x )  1 + (-l )"A~,~'V( .s ;x)  x 

1 
- 

[V(% + 1, S"; x) V(.s + l 1  1; x) 
= f ( s ) q ( s )  

it follows that 

(13.3.3) 

I n  (13.3.3) kccping 5, fixed and setting S ,  = l, and summing over 
l ,  = S, to l, = x ,  - 1, to obtain 
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which is the same as 

V(s;x)  5 [l + s ~ ~ ~ ~ , f ( 7 , , ~ s 1 ) q ( ~ , , s l ) ]  V(;Fl,Sl + 1;x). 
- 

The above inequalit,y easily provides (13.3.2). I 

Corollary 13.3.2. Let V(s;x)  hc: as i n  Thcorem 13.2.1. Then, for all 
S 5 x - 1, ( s ; x )  E IN" x W"" 

Theorem 13.3.3. Let for all x E W" the inequality (13.2.1) be satisficd. 
Then. for all x E W" 

(13.3.4) U,(.) 5 p(.) + q ( x ) S ~ ~ ~ f ( s ) p ( . s )  x 

Remark 13.3.1. For ' m  = 1, (13.3.4) is the same as (4.1.2) with a = 0. 

Corollary 13.3.4. Let in Thcorcm 13.2.1, p(.) be r1orldcc:reasing and 

q(x) 2 1. Then, for all x E W" 

= p(x)q(x) [l + (-1)2"L-1(v(xl, 0 , .  ' ' ,o ;  x) - V(0; x ) ) ]  
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(13.3.7) = P(x )q(x )v (o ;  x). 

The inequality (13.3.5) is now immediate from Corollary 13.3.2. 

Theorem 13.3.5. Let for all 2 E IN" the inequality (13.2.5) be satisfied. 
Then, for all z E HV" 

(13.3.8) .(x) 5 p(x )  + q(":)s:zi 

Remark 13.3.2. Results which use the estimates on the corresponding 
functions V, ( S ;  x), 1 5 j 5 T in Theorems 13.2.3 and 13.2.4 can be stated 
analogously. 

Theorem 13.3.6. Let for all x, X E IN" such that x 5 X the following 
inequality be satisfied 

(133.10) 
X 

?J.(X) 2 9 / 4 2 )  - dX)S,=,+,  f ( M [ > .  

Then, for all x, X E IN", z 5 X 

Proof. With the transformation x = X - CY, e = X - ,8 where 0 5 
a,p 5 X, cu,p E W", inequality (13.3.10) can be written as 

. (X)  2 U , ( X  - a) - q(x)s;i; f ( X  - ,8)u(X - p). 

Therefore, if v.(X - 01) = E ( ( Y ~ ) ,  f(X - PI) = T(P1) where 0 5 0 1 ,  p1 5 
X, then it follows that 
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Since the inequality (13.3.12) satisfies the hypotheses of Corollary 13.3.4, 
from (13.3.7) it follows that 

(13.3.13) 

where V(@; a) is the solution of the equation 

- 
U((.) I .(X)V(O;a), 

(13.3.14) V(& a) = 1 + S::; q(X)T(T)V(T + 1; cy). 

However, from Corollary 13.3.2 we have 

Using the above estirnatc in (13.3.13), to obtain 

which is the same as 

13.4. Nonlinear Inequalities 

Our first result for the nonlinear case is connected with the following 
inequality 

(13.4.1) 
i=l 

where 

and cyij, 1 I j I i ,  1 5 i I r are nonnegative constants and the constant 
q > 0. 



(13.4.5) 

(13.4.6) 
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If (Y = 1, the result (13.4.3) irnmcdiately follows from (13.4.6) and the 

fact that u(?&,O) = q. 

If Q # 1, WC have 

AZ771l-"(x) Za+l dw(?i?i,t) AZZ7r(s) I- 
l-rW = L 7lQ (Ti, t) 7 JQ  ( X )  

and from (13.4.6), we obtain 

(13.4.7) I A Z , Q ( ~ ) .  

11) (13.4.7) setting xi = L, and surrmirlg over ki = 0 to c; = zi - 1, we 
get the rcquired inequality (13.4.4). 1 

Azztll-Q(x) 

l - Q  

For the next result WC shall need thc class T (sec Definition 4.2.1). 

Theorem 13.4.2. Lct for all n: E W" the following inequality be satisfied 

where (i) p(n:) 2 1 and nondecreasing, (ii) pi(.) 2 1, 1 I i 7-2, (iii) 
Wi E T,  1 5 i 5 7-2. Then, for all n: E IN" 

(13.4.9) 

wherc 

and 

as long as 

i=l 
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Proof. The proof is similar to that of Theorem 4.2.3 and Theorem 
13.4.1. I 

(13.4.10) 
i=l 

where u*(z) is the same as ?](x) in Theorem 13.4.2 with .(x) = 1; 

j -1  

, ] ; ( X )  = 1, .Jj*(x) = pj(z)GJ Gj(1) + S , = ~ ~ ~ ( . S ) ~ ~ * ( . S ) ~ ~ ( . S )  J-J .]:(.S) , 
x-l 

i =  1 l 
1 5 j L : T Z  

as long as 

Remark 13.4.1. Results analogous to Theorems 4.2.5 and 4.2.6 can bc 
stated similarly. 

13.5. Inequalities Involving Partial Differences 

The following result is two dinlerwional discrete Taylor's f o rmv la .  

Lemma 13.5.1. Let the function u(k ,  l?) be defined on IN x IN. Then, for 
0 5 i 5 TI-1, 0 5 j 5 r:! -1 (TI, r2 positive integers) and (,kt) E W x I N  

(13.5.1) Ai,A{u(k,t) = 4 , i j (k , t )  + 1 
(TI - i - l)!(?-:! - j - l)! 

X 

where 
(13.5.2) 
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Proof. From (1.8.7) it follows that 

Thus, the right side of (13.5.1) is the samc as 

which is 011 applying (1.8.7) successively leads to 
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whcre 
7.2-1 

(13.5.5) A l ( k , l )  = h,,,,,(lc,l)p(k,l) + C h,,.,,(k,l) X 

j=O 

wherc 

7.1-11.7-1 

+ c c hi,,(/?,[) 
1 

X 
(7-1 - i - 1)!(T2 - j - l)! i=o ,,=o 

Proof. Define a function v ( k , l )  on IN x IN as follows 
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then (13.5.3) can bc written as 

(13.5.9) A;lA;'u(k,P) I p(k,P) + g ( k , l ) v ( k , P ) .  

From the definition of v(k, l), we have 

(13.5.10) 

v ( 0 ,P )  = u(k,  0) = 0. 

Using Lemma 13.5.1 and (1.8.7) in (13.5.10), we get 

(13.5.11) AkApll(k,P) = h,,.,,.,(k,P)A;lA~7~(k,l) 

7=0 q=o I 
Using (13.5.9) in (13.5.11) and the nondecreasing nature of u(,k,t), WC 

obtain 

(13.5.12) 
AkAtu(k, l )  I Al(k,l) + & ( k @ ( k , l )  
~ ( 0 , k )  = ~ ( k , o )  = 0. 

Thus, as an application of Lemma 13.1.3 it follows that 

k-l t-1 

(13.5.13) ~ ( k , l )  = CCAl ( . r , 7 )V ( r+1 ,9+1 ;k , l ) .  
T=o T)=o 

Substituting (13.5.13) i n  (13.5.9), the result (13.5.4) follows. I 
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Remark 13.5.1. From (13.5.4) and Lemma 13.5.1 an upper estimate for 
Af:A{u,(k,L) , 0  5 i 5 TI - 1, 0 5 j 6 T:! - 1 is readily available. Indeed, 
WC have 

(13.5.14) A t A ; ~ , ( k , l )  5 d i j ( k , l )  + 1 
(7-1 - 2 - l)!(T:! - j - l)! 

X 

r = O  q=o 

Corollary 13.5.3. In Theorem 13.5.2 the inequality (13.5.4) can be rc- 
placed t y  

k-l 1 e-1 \ 

Proof. From (13.5.12), WC have 

k-l /-l !,-l /-l 

Substituting (13.5.16) in (13.5.9) the inequality (13.5.15) follows. I 

Theorem 13.5.4. Let for all k,!  E W X N the following inequality bc 
satisfied 

r A:-l P-l 

where q(k,l?) 2 1. Then, for all (IC,[) E W x W 
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Proof. Define a function ( k ,  l?) on W x W as follows 

then (13.5.17) can be written as 

From the definition of wl(k, l?) we have 

[ i=O 1 r-l 

A k A t q ( k ,  l )  = h(k ,  l?) AL:A;u(k, e )  + C Az;.A;u.(k, l?) . 

Therefore, from (13.5.20) and Lemma 13.5.1, we obtain 

(13.5.21) Ak:Ar~l(k,l?) + h(k,e)v,(k,l) 

H ( k , t )  + h ( k , e ) q ( k , e ) l l l ( k , c )  + h(kl47J2(k , t ) ,  
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Using (13.5.24) in (13.5.23) and applying Lemma 13.1.3, we get vr(k,f?) 5 
B z ( k , t ) .  Continuing in this way, we find vz(k,t )  5 B,.(k,t).  Thus, from 
(13.5.21), we obtain 

and Lemma 13.1 3 finally gives 

The result (13.5.18) now follows from (13.5.20) and (13.5.25). I 

Remark 13.5.2. For q(k ,P)  not necessarily greater than l, the (:on- 
clusion of Theorem 13.5.3 remains valid if VT, Vp+l and Dr arc replaced 
by V,?, V,?+, and B: defiIled by 

Remark 13.5.3. The result which can be dcduced from Thcorern 13.5.2 
for the inequality (13.5.17) docs not seem to bc comparable with the one 
obtained in Theorem 13.5.4. 

13.6. Multidimensional Linear Inequalities 

The multidimensional version of Lemma 13.1.3 is stated in the following: 

Lemma 13.6.1. Let the n, x n matrix A(.) be defined and nonnegative 
on IN". Let n vector functions h(k) and u(k) be defined on INm. 

Further, let for all x E IN" the following inequality be satisfied 

where 

u(T~,O) = 0, 1 5 i 5 m. 

Thcn, for all E INm 
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where the n, x R matrix V ( s ; z ) ,  S 5 z - 1, (S;.) E W" X W" is a 
solution of 

(-l)"AyV(.s; X )  = V(S + 1; . )A( . )  
V(zi,.i;z) = Z, 1 5 i 5 m .  

or equivalently, 

V ( S ;  X) = Z + St=, V ( [  + 1; .)A([). Z-1 

Theorem 13.6.2. Let the R x R matrices G(z) and %(x) be dcfincd 
and nonnegative on W", and the n vector functions p(z) and U(.) 
be defined on W". Further, let for all z E IN" the following inequality 
be satisfied 

(13.6.1) 
C-l  

U(.) 5 p(.) + G(. )S ,= ,~( .S )U(S) .  

Then, for all n: E W" 

(13.6.2) U(.) 5 p(.) + G(.)s::;V(.s + l;.)%(.s)p(.s), 

whcre V ( s ;  x) satisfies 

(13.6.3) 
Z-l 

V ( s ;  2)  = Z + S,=, V(! + 1; .)%([)G(t). 

Proof. The proof is similar to that of Theorcm 13.2.1. B 

Theorem 13.6.3. Let in addition to hypothcses of Theorcm 13.6.2, 
U(.) 2 0 for all .7: E W". Then, for all z E IN" 

(13.6.4) u,i(.;.) 5 pi(.) + max gij(z)q(z), 
lsjsn 

and 

Proof. The proof is similar to that of Thcorern 4.4.5. B 
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Theorem 13.6.4. Let in addition to hypotheses of Theorem 13.6.3, 
p(.) 2 0 for all x E W”. Then, for all x E IN” 

(13.6.5) u*(z) 5 p* (x )  + g*(z)S~i~h*(s)p*(s) x 

where 
?),*(x) = max ui(x), p*(x)  = rnax p i ( x ) ,  

l<i<n. l<i<n, 

Proof. Tho proof is similar t,o that of Theorem 4.4.6. D 

Thcorcnl 13.6.4 hc satisfied. 

where ((GI) is any n x n matrix norm such that 1,9i, I I 11G11. 
Proof. I n  componcnt form thc inequality (13.6.2) is the same as 

n n. n 

Hence, it follows that 

Next from (13.6.3), we have 
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which is a l-dimensional inequality. Hence Corollary 13.3.2 gives that 

Using (13.6.8) in (13.6.7) the resulting inequality (13.6.6) follows. I 

Remark 13.6.1. Let llull be any vector norm and llBll be the matrix 
conlpatible norm, and the conditions of Theorem 13.6.4 are satisfied, then 
it is easy to get 

(13.6.9) 1 1 ~ ( ~ ) 1 1  5 llp(z)Il + 11B(.)11s~~~lI'H(s)IIIlP(~~)lI x 

Theorem 13.6.6. Let the n, X R matrix K ( z , s )  be defined and 
nonnegative on IN" x IN". Lct n vector f ~ n ~ t i o n s  p(.) and U(.) 
be defined and norlrlegative on W". Further, let for all .2: E W" the 
following inequality be satisfied 

(13.6.10) U(.) 5 p(z) + Sf , 'K ( . ,  S)U(.S). 

Then, for all z E W"" 

(13.6.11) U(.) 5 [z+ s:&s + 1; .)K*(., S )  p*(.), I 
where p*(.) = sup{p(!) : O t 5 x}, K*(z,s) = sup{K([,s) : 0 5 5 
x}, and V ( s ; z )  satisfies 

(13.6.12) V ( s ;  .) = z + s;lslV(t + 1; z)lC*(s,!). 
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111 particular (13.6.13) and (13.6.14) hold for x = X. Thus, replacing 
X by 2 i n  the resulting equations (13.6.13) and (13.6.14), we get the 
desired inequality (13.6.11). I 

13.7. Multidimensional Nonlinear Inequalities 

In this section we are concerned with comparing the solutions u(z), x E 
IN" of the nonlinear difference equation 

(13.7.1) A?u(x) = f(X, U(.)) 

with solutions V(.) and W(.) of the corresponding nonlinear difference 
inequalitics 

(i3.7.2) n,;v(x) I f(x,v(.)) 

and 

(13.7.3) Al,"w(x) 2 f (x ,w(x)) ,  

respectively. 

In what follows ( i ) ~  denotes a point (x1,. . . , xm) in which i vari- 

ables are zero. There arc c )  total sllr:h possibilities. Thus, if at the 'm, 

hyperplanes IC = (1)x the function U(.) is known, then a recursive argu- 
ment can be used to ensure the existence and uniqueness of the solutions 
of (13.7.1). This is apparent from the summation representation 

m. 

(13.7.4) U(.) = -y(-l)"+' c u((i)x) + S::: f(s,u(s)), 
i= 1 i 

where xi represents the summation over all the possibilities (2)~. From 
these notations it is also clear that the solutions V(.) and W(.) of the 
irlcqualities (13.7.2) and (13.7.3) have the summation representat,ion 

m. 

(13.7.5) V(.) 5 ~ ( - 1 ) ~ ~ + 1 ~ v ( ( i ) . )  + S,=, f(s,v(s)) 
Z-l 

i=l a 

and 

i=l i 

Theorem 13.7.1. Let ~ ( z ) ,  V(.) and W(.) be the solutions of (13.7.1), 
(13.7.2) and (13.7.3) respectively, and 
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(13.7.7) ~ ( - l ) i + l x v ( ( i ) x )  5 E(-l)"+'x U((?:).) 

Proof. As  we havc noted u(x), v(x) and W(.) have the represcn- 
tations (13.7.4), (13.7.5) and (13.7.6) respectively. Thus, for all x = 
( j ) x  E W"", 1 5 j 5 'm, (13.7.8) follows from (13.7.7) and the fact that 

s:ib'"f(.s, U(.S)) = 0. 

If U(.) 5 W(.) is not true for all z E INm, then there is some 
1 5 j 5 n and an x*, 0 < z* E IN" such that uJ (x* )  > m,.(.*) and 
U(.) 5 W(.) for all 0 5 n: < x* .  However, since f, is norldecreasing in 
'111, . . . , u , ~ , ,  from (13.7.6) it follows that 

i=l i 

This contradiction completes the proof of U(.) 5 W(.) for all z E W". 
The inequality V(.) 5 U(.) can be proved analogously. I 

Remark 13.7.1. It is easy to verify that 

(13.7.9) x(-l)z+' c u ( ( i ) x )  
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Remark 13.7.2. If the strict inequality holds in (13.7.7), then strict 
inequality holds in (13.7.8). 

Theorem 13.7.2. Assume that the following conditions hold 

(i) u(x,p) is the solution of the problem 

(13.7.10) A,mu(.) = f(s, u(x),p) 

(13.7.11) u((i).) = a (P i ] ,p ) ,  

where 1-1 is an T dimensional vector, and [Ti] represents the points in m(rn.4) of nonzero variables i n  ( 1 : ) ~  
(ii) for all fixed x, 0 5 z 5 X, X E IN" and 1 5 j 5 n the function 
f, ( x ,  u , ~ ,  . . . , U , ,  1-11, . . . , pT) is nondecreasing with respect to 161, . . . , I ] . ,  

and p', . . . , pL,. 
(iii) for all fixed [ ~ , i ] ,  o 5 [T;] 5 [Xi], and 1 5 j 5 n, the function 
Cl"=, ( -1)"' Ci ( [ ~ i ] ,  p1, . . . , p r )  is strictly increasing i n  p 1 ,  . . . , p?. . 
Then, for all x ,  0 5 x 5 X the solution u(z,p) of (13.7.10), (13.7.11) is a 
strictly incwasing function of p, i.e. if p' < p' then u(x ,p l )  < u(x,p2). 

Furthcrrrlore, if (a) for all fixed x ,  0 5 x 5 X the function f(z, u, p) 
is continuous with respect to U and p, and (b) for all fixed [F;], 0 5 
[F,;] 5 [x.~] thc funckion a([Ti], p) is continuous with respcct to p, then 
for all 0 5 n: 5 X ,  lim,,o u(5, p) = u(z), where U(.) is the solution of 
(13.7.1) satisfying 

(13.7.12) u((i)x) = a([Ta]). 

Moreover, if X < 00, then limp-.,o u(x, p) = U(.) is uniform. 

Proof. Let p' < p2,  then since 

m, 

u(x,pL') = C(- I )~+~C~( [Z~I ,~L)  + S : ,~ f ( . s ,u ( . s ,~~) ,p ' ) ,  IC = 1,2 
i=l a 

conditions (ii) and (iii) imply that 

m 

i=l a 

and now for all 2, 0 5 x 5 X the inequality u(x,pl)  < u(z,p2) follows 
as in the proof of Theorem 13.7.1. 

The rcst of the conclusion is a consequence of the continuity assurnp- 
tions. I 



928 Clmpter 13 

Theorem 13.7.3. Let for all fixed z, 0 5 z <_ X, and 1 5 i <_ n, the 
function fi(z, u.1, . . . , U , )  is nondecreasing with respect to all u,1, . . . , 11.". 

Let there cxist a function v(z,u)  defined for all 0 1. z 5 X, U E R" 
which is such that for any function W(.) defined for all x,  0 5 z 5 X 

(13.7.13) AZv(z, w(z)) 5 f (z ,v(x,  W(.))). 

Further, Ict the solution U(.) of (13.7.1) be such that 

(13.7.14) 
i=l i i 

Then, for all z, 0 5 z 5 X 

(13.7.15) v(z,w(z))  5 U(.). 

Proof. Let z(n:) = v(z,  w(z)) ,  then from (13.7.13) it follows that, 

A:?Z(X) = A ~ v ( z ,  W(.)) 5 f (z ,v(x,w(x))  = f ( x , z ( z ) ) .  

Also, (13.7.14) is the same as 

m m 

- y ( - l ) i f l  C z ( ( i ) z )  5 X(-l)++l C u((i)z). 
i=l i i=l i 

Thus, for all x ,  0 5 z 5 X Theorem 13.7.1 gives that z(z) = v(z,  W(.)) <_ 
U(.). I 

Theorem 13.7.4. Assume that the following conditions hold 

(i) for all x, 0 5 z 5 X and U, v E R" 

(13.7.16) If(x,u) - f(z,v)l  I dz, lu - VI), 

where the function g(z, W )  is defined for all z, 0 5 z 5 X ,  W E R?; and 
for all fixed z, 0 5 x 5 X, and 1 5 i I: n the function si(", w1,. . . ,W,) 
is nondecreasing with respect to ~ 1 , .  . . , W, 
(ii) there exist functions ul(x), u2(x), zl(z) and z2(z) which are 
defined for all x, 0 5 z 5 X and satisfy the inequalities 

(13.7.17) lA;u'(z) - f(z,u1(z))I 5 Z'(.) 

and 

(13.7.18) lAFu2(z) - f(z,u2(z))1 5 z2(z) 
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(iii) U(.) is a solution of the difference equation 

(13.7.19) ATU(.) = g(z, U(.)) + .l(.) + z2(z), 

which satisfies the inequality 

x ( u l ( ( i ) x )  - u2((i)x)) C u((i)z). 
i i=l a 

Then, for all z, 0 5 II: 5 X 

(13.7.21) Iu1(z) - u2(.)I 5 U(.). 

Proof. Irlcqualities (13.7.17) and (13.7.18) give 

lAlc"(U'(2) -l?(.)) - (f(.,u1(.)) - f(.,u2(.)))I 5 z'(z) + z2(.) 

which implies that 

I l l ' ( . )  - u2(.)I 5 

S )  - u2(.7)) - s::,'(f(.s,u1(.7)) - f(s,u'(s)))l 

5 s:::(z1(.5) + z2(5)), 

m l 

C(-l)"+1 C(U'((i).) - u2((i)x)) 
i=l i 

Using (13.7.16) and (13.7.20) in the above inequality, to obtain 

a= 1 i 

whcrc W(.) = Iu'(z) - u2(z)I. 

Since U(.), the solution of (13.7.19) has the summation representation 

m 

(13.7.23) U(.) = X(-l)'" ~u( ( i ) z )+S :~~(g ( s ,u ( s ) )+z1 ( s )+z2 ( . 5 ) )  
i=l i 

the inequality W(.) 5 U(.) follows on comparing (13.7.22) and (13.7.23) 
as in Theorem 13.7.1. I 
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Theorem 13.7.5. Assume that u(x,p) is the solution of (13.7.10), 
(13.7.12) and the following conditions hold 

(i) lim,,,o f(z,u,p) = f(z,u,po) uniformly for all x, 0 5 n: I X and 
U E R" 
(ii) for all 0 5 n: 5 X, ul ,  u2 E R" and p E E t T  

If(n:,Ul,P) - f(n:,U2,P)1 5 g(x ,  IU' - u21), 

where g(z,v) is defined for all x ,  0 I n: 5 X, v E R", g(x,O) = 0, 
and for all fixed z and 1 5 i 5 n the function gi(x, 211,. . . ,un,) is 
nondccreasing with rcspcct to u 1 ,  . . . , U,. 

Then, for any given n dirncnsional vector F > 0 thcre exists an T 

dirnensiorlal vector S ( F )  > 0 s~lch that for all x ,  0 I z 5 X < co 
lu(x, p) - u(x, p O ) I  5 F 

provided lp - 110 I 5 6 ( ~ ) .  

Proof. Since g(z,O) = 0 for all x ,  0 5 n: 5 X, the solution v(n:,O) of 
A,Tv(x) = g(z,v(z)) satisfying v((i)z) = 0 is identically aero. Hence, 
for any E > 0 there exists an n dirnensional vector 7 = q(c) such that 
the solution v(x, 0, 7 )  of the diffcrcnce system ATV(.) = g(., V(.)) $7, 
satisfying v((i)x) = 0 has the property that v(z, 0 , q )  I F. Furthermore, 
because of (i) given 7 > 0 there exists a 6 = 6(7) > 0 such that 
If(n:,u,p) - f(z,u,pO)l 5 7 ,  provided I p  - pol 5 6(q). 

Now lct 6 > 0 be given, then since 

2-1 
142, P) - 4 2 ,  Pol l  I S,=, I f ( . ,  4% P), p) - f ( G  U(.% PO), Po)/ 

Z-l 

I S,=, [g(-% 1 4 . 5 ,  P) - U(.,PO)/) + 71 
as in Theorcm 13.7.1 it follows that Iu(x,p) - u(n:,po)I 5 v(x,O,q) 5 E .  

Clearly, 6 depcnds on E since 77 does. I 

13.8. Convolution Type Inequalities 

The Laurent transform (Z--transfornl) introduced i n  Chapter 2 for func- 
tions of one independent variabie can be naturally generalized for functions 
of 'm, independent variables. 

Definition 13.8.1. W e  say that a given function u,(z), IC E IN" has the 
property ( L ) ,  if there exist p1 > 0,. . . ,pm > 0 such that 

sz=o I IL ( z ) / p ;~ l  x . . ' x p;;;"-" < 00. 
03 
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Definition 13.8.2. For the function U(.) having the property ( L ) ,  the 
Laurent transform is the function V ( z )  = U ( z l ,  . . . , zm,), given by 

U ( z )  = S,=, 7L(z)z;z' x ' " x z;:C'n, lz1l > p1,. . ' , Iz,/ > pm,. 
03 

In our first result for all n: E W" we shall consider the incqualitv 

(13.8.1) ?/,(X) 5 p(.) + S,=, f ( x  - 1 - . S ) ' 1 6 ( S ) ,  

where p(.) and ~ ( 2 )  are not necessarily nonnegative, and p(.) and 
f ( x )  have the property ( L ) .  For this, it is clcar that ~ ( 2 )  5 U(.) for all 
x E N'", where v(.) is the solution of the equation 

(13.8.2) ? ) ( X )  = p(.) + S,=, f ( x  - 1 - . S ) 7 1 ( S ) .  

Z-1 

x- l  

Let P ( z )  and F ( z )  be the Lallrent transforms of p(.) and f ( x ) ,  
then from (13.8.2) it follows that 

(13.8.3) 

where V ( z )  is the Laurent transform of ? J ( x ) ,  defined for Iz1 1, . . . , Iz,,, I 
sufficiently large. From (13.8.3), we have 

The function R ( z )  may be written as 

(13.8.5) 

where the coefficient .(x) is given by the forrrmla 

03 

R ( z )  = S,=, .(z)zT"1 x . . . x z;,Zm, 
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Now sincc F ( z )  = S,=, f (x)zcZ1 X ... X and f ( x )  2 0 for all 
W 

follows that .(R:) 2 0. Finally, from (13.8.4) we obtain 

(13.8.7) 
Z-1 

.(R:) = p(5)  + S,=, ?-(x - 1 - .s)p(s), 

and hence WC can state 

Theorem 13.8.1. Let for all z E W'" the inequality (13.8.1) bc satisfied, 
where p(.) and W,(.) are not rlccessarily nonnegative, and p(z) and 
f(x) have the property ( L ) .  Then, for all R: E W" 

(13.8.8) u(x )  L: p(2) + S,=, T ( Z  - 1 - .)p(.s), 

where T ( Z )  is given by (13.8.6). Furthcr, if p(x )  is nondcc:rcasing, then 

(13.8.9) W,(.) 5 p(5) (1 + S:::T(.)) . 

Z-l 

Corollary 13.8.2. Lct for all R: E W" the inequality (13.8.1) be satisfied, 
where p (x )  is nondecreasing for all x E W", and f ( x )  has the propcrty 
( L ) .  Then, for all R: E IN'" bound (13.8.9) holds. 

Proof. I n  this case inequality (13.8.1) can be written as 

w(5) L: 1 + S::; f(. - 1 - S)W(R),  

where w(x) = u ( ~ : ) / ( p ( x )  + E) ( F  > 0). Thus, from Theorcm 13.8.1 it 
follows that 

?/,(X) 5 (p(5) + €) (1 + s:::.(.s)) . 

The result (13.8.9) now follows by taking 6 -+ 0 in the above inequal- 
ity. I 

Corollary 13.8.3. Let the conditions of Theorem 13.8.1 be satisfied. 
Further, let p (x )  be nondecreasing for all x E IN", and F ( z )  is 
defined and F ( z )  - z1 x ... X z, # 0 for Iz1/ > pl,..., Iz,I > pm with 
p1,. . ', pTn E (0 , l ) .  Then, for all x E W" 

(13.8.10) 

Proof. These conditions crlsure that the function R(z)  defined in (13.8.4) 
is holornorphic for lzll > p1,. . . , /z,I > pm and we can put z1 = . . . = 
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z ,  = 1 in (13.8.5) to conclude that the series s:=or(z) converges and 
has the sum R(1, . . . , 1). Now since 

1 + S,=, .(x) = 1 + R ( I , . . . ,  1) = (1 - F ( I , . . . ,  I))-' 
00 

- (1 - S^p,,f(4) , 
-1 

- 

from (13.8.9) the inequality (13.8.10) follows. I 

Remark 13.8.1. From the hypotheses of Corollary 13.8.3 it is clear that 
S,=, f(x) < 1. An example of the function f(x) which satisfies the 
c:onditions of Corollary 13.8.3 is given by f(x) = n:, ziaTz, where each 

03 

Q i  E (0, (3 - &/2) . 

Corollary 13.8.4. Let the conditions of Corollary 13.8.2 be satisfied. 
Further, let F ( z )  be defined and F ( z )  - 21 X ... X z ,  # 0 for (211 > 
pl,. .. , lzT,,l > pm with pl, ... ,pm E (0, l ) .  Then, for all x E IN" 
inequality (13.8.10) holds. 

13.9. Opial and Wirtinger Type Inequalities 
in Two Variables 

Theorem 13.9.1. Let r1 and r2 be fixed positive integers and 7 ~ ( k , l )  
be a function defined on IN X IN such that 7r(k,l)  = 0 for all 0 5 k 5 
r1 - 1, e E IN and k E IN, 0 5 l L r2 - 1. Then, for 0 L i L r1 - 1, 0 5 
j 5 7-2 - 1 and ( k , l )  E IN X W 

(13.9.1) c c / A l A ~ v , ( r + r l - i - l , q + r 2 - j - l ) I  ~ A ~ A ~ u , ( T , ~ ) ~  
A:-,rl+i P-rz+j 

Proof. From Lemma 13.5.1, we have 

x (l - 7 - p - j - 1 )  a: A ~ u ( T ,  V). 

Therefore, by the Schwarz inequality it follows that 
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(13.9.2) IAff,Ai~(k,t)I 5 1 
(7-1 - i - 1 ) ! ( T 2  - j - l)! 

X 

we find that 

Similarly, we also have 

using these estimates in (13.9.2), we get 

(13.9.3) lAiA",(k,I!)I 5 1 
(7-1 - i - 1)!(7-2 - j - l)! 

X 
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(13.9.4) 5 1 
(7.1 - i - l)!(?-’ - j - 1)!(2q - 22 - 1)1/2(2r2 - 2j  - 1 ) W  

X 

we find that 
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Similarly, we also have 

where 
7-1 n-l 

Now since 

and hence 

Thus, WC have 
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Using the above estimate in (13.9.5) the resulting inequality (13.9.1) 

follows. I 

Theorem 13.9.2. Let the functions ui(IC,l), i = 1,2 be defined on 
N(0,K) x W(O,L), and u,i(k,O) = ui(0,C) = u i ( k , L )  = ui(K,l) = 0 for 
all IC E N(0, K )  and l E W(0, L ) .  Then, the following irlequality holds 

1 1  
where p l ,  p2 > 1 arc such t,hat - + - = 1, and and ” delete 

T = [F] - 1, and v =  - 1 in their respective surnrnations. 

Proof. From the assumptions the following identities are obvious 

(13.9.7) 

(13.9.8) 

(13.9.9) 

(13.9.10) 

L . - l  L-l 

K-l e-1 

K-l L-l 

Identity (13.9.7) with an application of Holder’s inequality with indices 

p i  and p i  gives 
- 1 
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Therefore, from Young’s inequality ab 5 - + it fo~~ows that 
a.p1 

P1 P2 

Similarly, from (13.9.8) it follows that 

L:-l L-l 

2 -  6-2 L - l  
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Following as above for the equalities (13.9.9) and (13.9.10) to obtain 

K- l  L-l 

Let k = [ K ;  - '1 in  (13.9.13) and (13.9.14), and summing the resulting 

inequalities, we get the required inequality (13.0.6). I 

Corollary 13.9.3. Let i n  Theorern 13.9.2, ?l,l(k,i?) = ?12(k,e) and 
p1 = p2 = 2. Then, the following inequality holds 

Theorem 13.9.4. Let u ~ ( k , i ? ) ,  i = 1,2 be as in Theorern 13.9.2. Then, 
the following inequality holds 

K-l L-l 

Proof. The proof is similar to that of Theorem 13.9.2 except we use 
Holder's inequality with indices and p1 + p2, and the in- 

equality paP+q+qbp+q-(p+q)aPbq > 0, where a , b  > 0 and p , q  > 0. I 

P1 + P2 
P1 + P2 - 1 

Theorem 13.9.5. Let u i ( k , e ) ,  i = 1 , 2  be as in Theorern 13.9.2. Then, 
the following inequality holds 
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K-l L-l 

Proof. From the given conditions t,he following identities hold 

k-l K-I 

(13.9.18) 
T=O 

e- 1 

T=k 

L-l 

Thus, as i n  Theorem 13.9.2 it follows that 

which also gives 

and similarly, we find 

K-l G 1  2 

7=1 F 1  i l  

Now addition of (13.9.19) and (13.9.20) gives the required inequality (13.9. 
17). I 

Theorem 13.9.6. Let 74(k,l?),  i = 1,2 be as in Theorem 13.9.2. Then, 
the following inequality holds 

Proof. The proof is similar to that of Theorems 13.9.5 and 13.9.4. I 
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Corollary 13.9.7. Let in Theorem 13.9.6, u , l ( k , l )  = u 2 ( k , l )  and 
p1 = p2. Then, the following inequality holds 

K - l  L-l 

r = O  7]=0 

13.10. Problems 

13.10.1. Let for all z E IN" thc inequality (13.2.1) b e  satisfied, and 
p(.) and q(n:) be nondec:reasirlg for all z E W". Show that for all 
x E N" 

13.10.2. Prove Theorem 13.2.2. 

13.10.3. Prove Theorem 13.2.3. 

13.10.4. Prove Theorem 13.2.4. 

13.10.5. Let the function f ( k , l ,  u,u) be defined for all k , l  E W and 
U,, W E R, and nondecreasing in U, '11. Further, let the functions @ ( k ,  l) 
and li/(k, l) be defined for all k ,  l E W, and sat,isfy the irlequalities 

4 ( k  + 1, l) I f ( k ,  l, d(k.3 l), 4(4 k ) )  
$ ( k  + 1, e )  2 f ( k ,  l, ,?qk l), dl(!, k ) )  

4@7C I $ ( O , l ) .  

Show that for all k , l  E W, g ( k , l )  I + ( k , l ) .  

13.10.6. Let for all x, X - 1 E W" such that n: 5 X - 1 the following 
inequality be satisfied 

?).(X) 2 .(x) - q(X)Sp,,  f ( P ) U ( P ) .  
x-l 

Show that for all x, X - 1 E W", x 5 X - 1 
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13.10.8. Prow Thcorern 13.4.3 

13.10.9. Find results analogous to Theorems 4.2.5 and 4.2.6, for functions 
of m irdcperldcnt variables. 

13.10.10. Let for all x, X E W'" s d 1  that I 5 X the following 
irlcquality be satisfied 

u(X) 2 U>(.) - q ( X ) W - I  (s := ,~+~f(e)W(?/ , ( l ) ) )  , 

wllcrc thc furlc:t,iorl W is positivc, incrcasirlg, (:OIIVCX and slll)rrlultiplic.ative 
on (0, cm) and limu-m W(?/,)  = cm. Show that for all I, X E INrr', x 5 X 

x1 

?/,(X) 2 o ( x ) W - l  o- l ( X )W (u ( I ) )  
[l + p ( X ) W ( q ( X ) p ( X ) )  

11=.r1+1 
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and 

13.10.13. Prove Theorern 13.6.2. 

13.10.14. Prove Theorem 13.6.3. 

13.10.15. Prove~Thcorcrrl 13.6.4. 

13.10.16. Assume that u(x,T(a)) is the solution of (13.7.1), (13.7.12) 
where T(a) denotes the term Czl(-l)i+l X i  a([Ti]). Further, let 
v(x, 0) be the solution of the problem ATV(.) = F(x ,  v(x)), v(  (7 : )~ )  = 0, 
whcrc the function F (z ,v )  for 0 5 x 5 X, v E R7 is defined 
as F(x ,v )  = suplu-T(a)15v If(x,u)I. Show that for all x ,  0 5 x 5 
X, (u(z, T(a)) - T(a)I 5 V(X, 0). 

13.10.17. Assume that condition (i) of Theorem 13.7.4 is satisfied, and 
u(x,T(a)) is as in Problerrl 13.10.16. Further, assume that u(x ,T(b) )  
is the solution of (13.7.1) satisfying u ( ( i ) x )  = b([T;]). Show that for all 
x, 0 5 x 5 X, Iu(x, T(a)) - u(z, T(b))l 5 v(x), where V(.) is a solution 
of AFv(x) = g(z,v(x)) ,  sat,isfying IT(a) - T(b)l 5 T(v). 

13.10.18. Assume that for all x, 0 5 z 5 X, U E R", If(x,u)I 5 
g(., IuI) where the function g(x,v)  is defined for all x, 0 5 x 5 X, v E 
+, arid for all fixed x, 0 5 x 5 X, and 1 5 i 5 n, the function 

gi (x ,  ?l1, . . . , vn,) is nondecreasing with respect to v i ,  . . , rln.. Further, let 
U(.) be any solution of (13.7.1), and V(.) be a solution of Arv(x )  = 
g((I:,v(z)) such that IT(u)( 5 T(v) .  Show that (i) if V(.) is bounded, 
so is u(z), and (ii) if v(z) "-f 0 as JJz(j = ((I:: + . . . + 4 CO, so 
is U(.). 

13.10.19. Let for all (I: E INm the following inequality be satisfied 

. 

Z-1 4.) I P(Z) + q(.)S,=o g(.)u(.s) + S,=, f(x - S - l)u,(.s), 
2-1 
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where p ( x )  and q ( x )  are nondecreasing and f(x) satisfies the property 
(L). Show that for all 5 E IN"' 

where 

and ~ ( x )  is given by (13.8.6). 

13.10.20. Prove Theorem 13.9.4. 

13.11. Notes 

The application of Riemann's function to study Gronwall type inequal- 
ities in several independent variables is known from the last few years, e.g. 
sec Thandapani and Agarwal [38, and references therein]. The discrete 
analog of Riemann's function and its applications to several inequalities 
discussed in Sections 13.1 and 13.2 are from Agarwal [6]. Theorem 13.3.1 
which provides an upper estimate on the Ricmann's function and its useful- 
ness to obtain Wendroff typc estimates in Theorem 13.3.3 are also discussed 
in Agarwal [6]. Using a different approach Wendroff type inequalities are 
also studied in Agarwal [4], Agarwal and Thandapani [8], Pachpatte and 
Singare [24], Popenda 131,321, Singare and Pachpatte [34--361, Thandapani 
and Agarwal 1371, Thandapani [40], Yang [41], Yeh [42,43]; however, as a 
consequence of the present approach Theorem 13.3.5 relaxes some of the 
conditions needed on the functions appearing in (13.3.8), and the obtained 
estimate (13.3.9) is sharper. Theorem 13.3.6 uses the transformation in- 
troduced by Beesack [20]. Results of Section 13.4 are taken from Agarwal 
and Thandapani [8]. Two independent variable discrete Taylor's formula 
and the inequalities involving partial differences have appeared in Agarwal 
and Wilson [5]. Some related results are also available in Thandapani [39]. 
Multidimensional discrete analog of Riemann's function given in Lemma 
13.6.1 and the Theorems 13.6.2 - 13.6.6 are proved in Agarwal [lo]. Multi- 
dimensional nonlinear discrete inequalities in Theorems 13.7.1 - 13.7.5 and 
Problems 13.10.16 - 13.10.18 are recently established in Agarwal [9]. Two 
dimensional convolution type inequalities are due to Corduneanu [21]. The- 
orems 13.9.1 - 13.9.6 are adapted from Agarwal [ll]. In particular these 
results improve some of the inequalities of Pachpatte [25-281. Comparison 
principle given in Problem 13.10.5 appears in the study of differential equa- 
tions of Sobolev type [7]. For several other continuous and discrete inequal- 

' 
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ities related to  this chapter see Agarwal et. al. [l-3,12-181, Bainov and 
Simenov [19], MagTiucka-Blandi, Popenda and Agarwal [22), MitrinoviC, 
PeEariC and Fink [23], Pang and Agarwal [29,30], Popenda and Agarwal 
PI * 
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